plateform
stringclasses
1 value
repo_name
stringlengths
13
113
name
stringlengths
3
74
ext
stringclasses
1 value
path
stringlengths
12
229
size
int64
23
843k
source_encoding
stringclasses
9 values
md5
stringlengths
32
32
text
stringlengths
23
843k
github
XuTing95/WDtrace-master
soft_thresh_w.m
.m
WDtrace-master/Code/soft_thresh_w.m
758
utf_8
ab0669cfceff1c6dff6e7c1528ca522e
% --------------------- Weighted SOFT-THRESHOLDING OPERATOR ------------------- % % % -------------- minimize 1/2*||X - Y||_2^2 + lambda*Weight.*||X||_1 ---------- % % % -------------------------- LAST UPDATE: 12/13/2016 -------------------------- % % % % Reference: % T. Xu and X. F. Zhang (2017) % Identifying gene network rewiring by integrating gene expression and gene network data % % COPYRIGHT Central China Normal University % Ting Xu <[email protected]> function X = soft_thresh_w(Y, lambda, Weight, penalize_diagonal) if nargin == 1 disp('Not enough inputs'); disp('Enter both Y and lambda'); return end X = sign(Y).*(max(abs(Y) - lambda.*Weight, 0)); if ~penalize_diagonal X = X - diag(diag(X)) + diag(diag(Y)); end
github
ACloninger/two-sample-anisotropic-master
demo_sec5_example1.m
.m
two-sample-anisotropic-master/demo_sec5_example1.m
11,746
utf_8
359d5f0589c810beb243cc422cfe1640
% set number of Monte Carlo runs in line 65 % statistics for two sample test % (1) gaussian mmd % (2) akmmd-L2 % (3) akmmd-spec % (4) KS-randproj % You are free to use, change, or redistribute this code in any way you % want for non-commercial purposes. However, it is appreciated if you % maintain the name of the original author, and cite the paper: % X. Cheng, A. Cloninger, R. Coifman. "Two Sample Statistics Based on Anisotropic Kernels." % arxiv:1709.05006 % % Date: October 20, 2017. (Last Modified: October 20, 2017) function demo_sec5_example1() clear all;close all; rng(20170807); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% parameter of data delta_max=.02; epsx=.02; dim=2; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% generation of referece set by heuristic sig2g= epsx.^2; sig2m =1; nR=100; [R,gmR]=generate_ref_local_pca(nR, @(n)generate_curve_data(n,delta_max,epsx), sig2g); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% two sample test ntest=200; %n1,n2 nX=ntest; nY=ntest; %% parameter of kernel bandwidth sig2_list= [1/4,1/2,1,2,4].^2; nrow=numel(sig2_list); %% deviation of q from p del_list = (0:.2:1)*delta_max; ncol=numel(del_list); %% lspec=20; numspec=min(nR,ntest); ll=(1:1:numspec)'; targetspec=exp(-2*(ll-(lspec-4)))./(exp(-2*(ll-(lspec-4)))+1); %% under H0 alp=.05; %level of test %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % set number of Monte Carlo runs nrun = 100; % nrun= 1000; % to reproduce figures in the paper, use nrun= 1000 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % numrp=20; %number of random projections in KS test % vote_g=zeros(nrow,ncol,nrun); vote_m=zeros(nrow,ncol,nrun); vote_mspec=zeros(nrow,ncol,nrun); vote_ks=zeros(1,ncol,nrun); numperm=40; %number of permutations to estimate threshold %% for icol=1:ncol delta=del_list(icol); fprintf('del=%6.4f:',delta) for irun=1:nrun if mod(irun,10)==0 fprintf('-%d-',irun) end [X,Y]=generate_curve_data(ntest,delta,epsx); %% gmmd D2=euclidean_dis2(X,Y); for irow=1:nrow s2=sig2g*sig2_list(irow); K1=exp(-D2/(2*s2)); eta1=calculate_kernel_mmd2(K1,nX,nY); etastore=zeros(1,numperm); for iboot=1:numperm idx=randperm(nX+nY); etastore(iboot)=calculate_kernel_mmd2(K1(idx,idx),nX,nY); end talp=quantile(etastore,1-alp); vote_g(irow,icol,irun)=double(eta1>talp); end %% akmmd [D2X,D2Y]=mahal_dis2(X,Y,gmR); for irow=1:nrow s2=sig2m*sig2_list(irow); A=[exp(-D2X/(2*s2)),exp(-D2Y/(2*s2))]; %% akmmd-l2 eta1=calculate_eta_l2(A,nX,nY); etastore=zeros(1,numperm); for iboot=1:numperm idx=randperm(nX+nY); etastore(iboot)=calculate_eta_l2(A(:,idx),nX,nY); end talp=quantile(etastore,1-alp); vote_m(irow,icol,irun)=double(eta1>talp); %% akmmd-spec [~,~,v]=svd(A,'econ'); eta1=calculate_eta_spec(v,nX,nY,targetspec); etastore=zeros(1,numperm); for iboot=1:numperm idx=randperm(nX+nY); etastore(iboot)=calculate_eta_spec(v(idx,:),nX,nY,targetspec); end talp=quantile(etastore,1-alp); vote_mspec(irow,icol,irun)=double(eta1>talp); end %% KS-randproj data=cat(1,X,Y); % numrp many random projections us=zeros(dim,1,numrp); for ii=1:numrp us(:,:,ii)=svd(randn(dim,1),'econ'); end eta1=calculate_KSrandpj(data,nX,nY,us); etastore=zeros(1,numperm); for iboot=1:numperm idx=randperm(nX+nY); etastore(iboot)=calculate_KSrandpj(data(idx,:),nX,nY,us); end talp=quantile(etastore,1-alp); vote_ks(1,icol,irun)=double(eta1>talp); end fprintf('\n') end fprintf('\n') %% compute type I and type II error % powg=zeros(nrow,ncol); powm=zeros(nrow,ncol); powmspec=zeros(nrow,ncol); powks=zeros(1,ncol); for icol=1:ncol tmp=reshape(vote_g(:,icol,:),nrow,nrun); powg(:,icol)=sum( tmp,2)/nrun; tmp=reshape(vote_m(:,icol,:),nrow,nrun); powm(:,icol)=sum( tmp,2)/nrun; tmp=reshape(vote_mspec(:,icol,:),nrow,nrun); powmspec(:,icol)=sum( tmp,2)/nrun; tmp=reshape(vote_ks(1,icol,:),1,nrun); powks(:,icol)=sum( tmp,2)/nrun; end disp('-- Gmmd --') disp(powg*100) disp('-- Mmmd --') disp(powm*100) disp('-- Mmmd spec --') disp(powmspec*100) disp('-- KS randproj --') disp(powks*100) %% irow1=3; irow2=3; irow3=3; figure(22),clf; hold on; plot(del_list,powg','x--b'); plot(del_list,powks,'x--g'); plot(del_list,powm(irow2,:),'x-r'); plot(del_list,powmspec(irow3,:),'x-m'); grid on; xlabel('delta');title('power') %% type I and II error with errorbar % bootstrap to obtain errorbar of power nboot1=40; nrun1=floor(nrun/2); pows_g=zeros(nrow,ncol,nboot1); pows_m=zeros(nrow,ncol,nboot1); pows_mspec=zeros(nrow,ncol,nboot1); pows_ks=zeros(1,ncol,nboot1); for iboot=1:nboot1 idx=randperm(nrun,nrun1); tmp=vote_g(:,:,idx); pows_g(:,:,iboot)=mean(tmp,3); tmp=vote_m(:,:,idx); pows_m(:,:,iboot)=mean(tmp,3); tmp=vote_mspec(:,:,idx); pows_mspec(:,:,iboot)=mean(tmp,3); tmp=vote_ks(1,:,idx); pows_ks(1,:,iboot)=mean(tmp,3); end figure(23),clf; hold on; % p=reshape(pows_g(irow1,:,:),ncol,nboot1); errorbar(del_list,mean(p,2),std(p,1,2),'x--b'); % p=reshape(pows_ks(1,:,:),ncol,nboot1); errorbar(del_list,mean(p,2),std(p,1,2),'x--g'); % p=reshape(pows_m(irow2,:,:),ncol,nboot1); errorbar(del_list,mean(p,2),std(p,1,2),'x-r'); % p=reshape(pows_mspec(irow3,:,:),ncol,nboot1); errorbar(del_list,mean(p,2),std(p,1,2),'x-m'); axis([0,delta,0,1]); xlabel('\delta');ylabel('rejection rate') grid on; legend({'Gaussian MMD', 'Random Proj KS', 'Anisotropic L2', 'Anisotropic Spec'}) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% witness function %% ntest=400; nX=ntest; nY=ntest; delta=delta_max; [X,Y]=generate_curve_data(ntest,delta,epsx); %% grid of x to visualize nl=256; [xx,yy]=meshgrid(1:1:nl, 1:1:nl); xx=xx/nl*1.2; yy=yy/nl*1.2; xx=[xx(:),yy(:)]; %% gaussian kernel D2=pdist2(xx,cat(1,X,Y)).^2; s2=sig2g*sig2_list(irow1); K1=exp(-D2/(2*s2)); w1= mean(K1(:,1:nX),2) - mean(K1(:,nX+1:nX+nY),2); figure(31),clf; scatter(xx(:,1),xx(:,2),80,w1,'o','filled') colorbar();grid on; title('witness gaussian kernel') %% ak L2 m2X=gmR.mahal(X)'; m2Y=gmR.mahal(Y)'; m2xx=gmR.mahal(xx)'; s2=sig2m*sig2_list(irow2); A=[exp(-m2X/(2*s2)),exp(-m2Y/(2*s2))]; Axx=exp(-m2xx/(2*s2)); w2= (Axx'*(mean(A(:,1:nX),2) - mean(A(:,nX+1:nX+nY),2)))/nR; figure(32),clf; scatter(xx(:,1),xx(:,2),80,w2,'o','filled') colorbar();grid on; title('witness ak l2') %% ak spec [u,s,v]=svd(A,'econ'); vX=v(1:nX,:)'; vY=v(nX+1:nX+nY,:)'; vxx= diag(1./diag(s))*(u'*Axx); ltrunc=sum(targetspec>1e-10); w3=vxx(1:ltrunc,:)'*( ... targetspec(1:ltrunc).*(mean(vX(1:ltrunc,:),2)-mean(vY(1:ltrunc,:),2))); figure(33),clf; scatter(xx(:,1),xx(:,2),80,w3,'o','filled') colorbar();grid on; title('witness ak spec') return end function [x,y]=generate_curve_data(n,delta,epsx) tx=sort(rand(n,1)); x=[cos(tx*pi/2),sin(tx*pi/2)]; x=x+randn(size(x))*epsx; ty=sort(rand(n,1)); %ry=1+delta*sin(ty*pi/2*6); ry=1+delta*ones(size(ty)); y=diag(ry)*[cos(ty*pi/2),sin(ty*pi/2)]; y=y+randn(size(y))*epsx; end function [R,gmR]=generate_ref_local_pca(nR,funcXY,sig2g) %% get a pool of X and Y npool=1000; kNN=40; %proportional to npool [x,y]=funcXY(npool); dim=size(x,2); data=cat(1,x,y); xdata=data(1:npool,:); ydata=data(npool+1:npool*2,:); %% R=generate_uniform_reference_set(data,nR,kNN); %% sigma_r by local pca k_loccov= floor(2*npool/4); reg_cov=0.01.^2; tic, [idxnb,~]=knnsearch(data,R,'k',k_loccov); toc SR=zeros(dim,dim,nR); for iR=1:nR xi=data(idxnb(iR,:),:); C=cov(xi); [v,d]=eig(C); [d,tmp]=sort(diag(d),'descend'); v=v(:,tmp); d(d<reg_cov)=reg_cov; C=v*diag(d)*v'; C=(C+C')/2; SR(:,:,iR)=C; end %% rescale the cov by a constant l1s=zeros(nR,1); for ir=1:nR C=SR(:,:,ir); l1s(ir)=min(eig(C)); end c=median(l1s)/sig2g; SR=SR/c; %% gmR=gmdistribution(R,SR,ones(1,nR)/nR); %% vis the kernel ARX=exp(-gmR.mahal(xdata)/2)'; ARY=exp(-gmR.mahal(ydata)/2)'; hX=mean(ARX,2); hY=mean(ARY,2);% deviation of q from p %% vis if (1) n1=200; figure(1),clf;hold on; tmp=randperm(npool,n1); scatter(xdata(tmp,1),xdata(tmp,2),80,'.g') scatter(ydata(tmp,1),ydata(tmp,2),80,'.b') grid on; axis equal title('data X Y') figure(2),clf; scatter(R(:,1),R(:,2),80,hX-hY,'o','filled'); grid on; colorbar();title('hX-hY'); % iR=floor(nR*.75); figure(3),clf,hold on; scatter(ydata(:,1),ydata(:,2),60,ARY(iR,:),'o') scatter(xdata(:,1),xdata(:,2),60,ARX(iR,:),'o') scatter(R(iR,1),R(iR,2),'xr'); axis equal;grid on; title('A(r,x)'); drawnow(); end end function [D2]=euclidean_dis2(X,Y) dis2XX=squareform(pdist(X).^2); dis2YY=squareform(pdist(Y).^2); dis2XY=pdist2(X,Y).^2; D2=[dis2XX, dis2XY; dis2XY', dis2YY]; end function [m2X,m2Y]=mahal_dis2(X,Y,gm) m2X=gm.mahal(X)'; m2Y=gm.mahal(Y)'; end function eta=calculate_eta_l2(A,nX,nY) hX=mean(A(:,1:nX),2); hY=mean(A(:,nX+1:nX+nY),2); eta=mean((hX-hY).^2); end function eta=calculate_eta_spec(v,nX,nY,targetspec) num1=min(size(v,2),numel(targetspec)); vX=v(1:nX,1:num1); vY=v(nX+1:nX+nY,1:num1); vvX=mean(vX,1)'; vvY=mean(vY,1)'; eta=sum((vvX-vvY).^2.*targetspec(1:num1)); end function eta=calculate_kernel_mmd2(K,nX,nY) assert(size(K,1)==nX+nY); KXX=K(1:nX,1:nX); KXY=K(1:nX,nX+1:nX+nY); KYY=K(nX+1:nX+nY,nX+1:nX+nY); eta=mean(KXX(:))+ mean(KYY(:))-2*mean(KXY(:)); end function dd=calculate_KSrandpj(data,nX,nY,us) [n,dim]=size(data); assert(n==nX+nY); assert(size(us,1)==dim) numrp=size(us,3); %% dd=0; for ii=1:numrp u=us(:,:,ii); d1=data*u; X1=d1(1:nX); Y1=d1(nX+1:nX+nY,:); dd=dd+compute_KSstat(X1,Y1); end end function KSstatistic = compute_KSstat(x1, x2) % % Calculate F1(x) and F2(x), the empirical (i.e., sample) CDFs. % binEdges = [-inf ; sort([x1;x2]) ; inf]; binCounts1 = histc (x1 , binEdges, 1); binCounts2 = histc (x2 , binEdges, 1); sumCounts1 = cumsum(binCounts1)./sum(binCounts1); sumCounts2 = cumsum(binCounts2)./sum(binCounts2); sampleCDF1 = sumCounts1(1:end-1); sampleCDF2 = sumCounts2(1:end-1); % % Compute the test statistic of interest. % % 2-sided test: T = max|F1(x) - F2(x)|. deltaCDF = abs(sampleCDF1 - sampleCDF2); KSstatistic = max(deltaCDF); end
github
ACloninger/two-sample-anisotropic-master
demo_sec3_limiting_density.m
.m
two-sample-anisotropic-master/demo_sec3_limiting_density.m
16,593
utf_8
4ff4943f125dfa41ff39398f84d9a7d7
% set number of Monte Carlo runs at line 343 % You are free to use, change, or redistribute this code in any way you % want for non-commercial purposes. However, it is appreciated if you % maintain the name of the original author, and cite the paper: % X. Cheng, A. Cloninger, R. Coifman. "Two Sample Statistics Based on Anisotropic Kernels." % arxiv:1709.05006 % % Date: October 20, 2017. (Last Modified: October 20, 2017) function demo_sec3_limiting_density() clear all; close all; rng(9112017); %% p and q parameter dim=2; epsx=0.02; delta=0.02; %% construnct r and sigma_r nR=100; % npool=4000; kNN=40; %proportional to npool [x,y]=generate_curve_data(npool,delta,epsx); data=cat(1,x,y); xdata=data(1:npool,:); ydata=data(npool+1:npool*2,:); % reference set R=generate_uniform_reference_set(data,nR,kNN); % vis n1=200; figure(1),clf;hold on; tmp=randperm(npool,n1); scatter(xdata(tmp,1),xdata(tmp,2),80,'og') scatter(ydata(tmp,1),ydata(tmp,2),80,'xb') grid on; drawnow();axis equal title('data X Y') %% covariance field Sigma_r % C=diag(([epsx,epsx]).^2); gmRg=gmdistribution(R,C,ones(1,nR)/nR); % sig_Lambda1=0.2; Lambda1=diag(([sig_Lambda1,epsx]).^2); SR=zeros(dim,dim,nR); for iR=1:nR ri=R(iR,:); phi1=[ri(2),-ri(1)]'; phi1=phi1/norm(phi1); phi2=[ri(1),ri(2)]'; phi2=phi2/norm(phi2); C=[phi1,phi2]*Lambda1*[phi1,phi2]'; C=C/2; %because K=A*A^T SR(:,:,iR)=C; end gmRm=gmdistribution(R,SR,ones(1,nR)/nR); % if (1) gmR=gmRm; else gmR = gmRg; %use isotropic gaussian end %% vis the kernel ARX=exp(-gmR.mahal(xdata)/2)'; ARY=exp(-gmR.mahal(ydata)/2)'; hX=mean(ARX,2); hY=mean(ARY,2);% deviation of q from p % figure(2),clf; scatter(R(:,1),R(:,2),80,hX-hY,'o','filled'); grid on; colorbar();title('hX-hY') % iR=floor(nR/4); figure(3),hold on; scatter(ydata(:,1),ydata(:,2),60,ARY(iR,:),'o') scatter(xdata(:,1),xdata(:,2),60,ARX(iR,:),'o') scatter(R(iR,1),R(iR,2),'xr'); axis equal;grid on;title('A(r,x)') drawnow(); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% lambda_k and c_k %% %% compute spectrum of kernel on a large sample of p and q n=5000; [X,Y]=generate_curve_data(n,delta,epsx); numspec=500; %% gausian kernel sig2g=(epsx)^2; % sparse kernel by nearest neighbor kNN=1000; [idx,dis]=knnsearch(X,X,'k',kNN); I=repmat((1:n)',[1,kNN]); J=idx; V=exp(-dis.^2/(2*sig2g)); Kx=sparse(I,J,V,n,n); % centered kernel K1x=mean(Kx,2); K0x=mean(K1x); Ktil=Kx-K1x*ones(n,1)'-ones(n,1)*K1x'+K0x*ones(n,n); Ktil=(Ktil+Ktil')/2; % eig of Ktil disp('... computing eigs of kernel matrix ...') tic, [v,d]=eigs(Ktil/n,numspec); toc [d,tmp]=sort(diag(d),'descend'); lambda1=d(1:numspec); v=v(:,tmp); psi1x=v(:,1:numspec)*sqrt(n); % nystrom to Y [idx,dis]=knnsearch(Y,X,'k',kNN); I=repmat((1:n)',[1,kNN]); J=idx; V=exp(-dis.^2/(2*sig2g)); Kxy=sparse(I,J,V,n,n); %center K1y=mean(Kxy,1)'; K0y=mean(K1y); Ktil=Kxy-K1x*ones(n,1)'-ones(n,1)*K1y'+K0x*ones(n,n); psi1y=(Ktil'*psi1x/n)*diag(1./lambda1); %ck ck1=mean(psi1y-psi1x,1)'; if (0) % vis j=34; figure(10),hold on; scatter(X(:,1),X(:,2),40,psi1x(:,j),'o'); scatter(Y(:,1),Y(:,2),40,psi1y(:,j),'o','filled'); axis equal;colorbar();grid on; title(sprintf('j=%d, gaussian kernel',j)) figure(11),clf;hold on; plot(ck1.^2.*lambda1,'.-'); grid on; title('ck gaussian kernel') figure(12),hold on; plot(lambda1,'.-'); grid on; title('lambdak gaussian kernel') end %% K_L2 [D2X,D2Y]=mahal_dis2(X,Y,gmR); sig2m=1; ARX=exp(-D2X/(2*sig2m)); ARY=exp(-D2Y/(2*sig2m)); % A1=mean(ARX,2); % Atil=ARX-A1*ones(n,1)'; % compute eigenvalues \tilde{\lambda_k} which are w.r.t p [u,s,v]=svd(Atil/sqrt(n*nR),'econ'); s=diag(s); numk=min(numspec,nR); lambda2=s(1:numk).^2; psi2x=v(:,1:numk)*sqrt(n); % nystrom Ktil=(ARX-A1*ones(n,1)')'*(ARY-A1*ones(n,1)')/nR; psi2y=(Ktil'*psi2x/n)*diag(1./lambda2); %ck ck2=mean(psi2y-psi2x,1)'; if (0) %% vis j=5; figure(20),hold on; scatter(X(:,1),X(:,2),40,psi2x(:,j),'o'); scatter(Y(:,1),Y(:,2),40,psi2y(:,j),'o','filled'); axis equal;colorbar();grid on; title(sprintf('j=%d, KL2 kernel',j)) figure(21),clf;hold on; %plot(abs(ck2),'.-'); plot(ck2.^2.*lambda2,'.-'); grid on; title('ck KL2 kernel') figure(22),hold on; plot(lambda2,'.-'); grid on; title('lambdak KL2 kernel') end %% K_spec lspec=20; ll=(1:numspec)'; targetspec=exp(-2*(ll-(lspec-4)))./(exp(-2*(ll-(lspec-4)))+1); %% A=[ARX,ARY]; [~,~,vA]=svd(A,'econ'); p3x=vA(1:n,:)*sqrt(2*n); p3y=vA(n+1:n*2,:)*sqrt(2*n); % num1=min(size(p3x,2),numspec); ax=diag(sqrt(targetspec(1:num1)))*p3x(:,1:num1)'; A1=mean(ax,2); Atil=ax-A1*ones(n,1)'; % [u,s,v]=svd(Atil/sqrt(n),'econ'); s=diag(s); ltrunc=sum(s>1e-10); psi3x=v(:,1:ltrunc)*sqrt(n); lambda3=s(1:ltrunc).^2; % ay=diag(sqrt(targetspec(1:num1)))*p3y(:,1:num1)'; Ktil=(ax-A1*ones(n,1)')'*(ay-A1*ones(n,1)'); psi3y=(Ktil'*psi3x/n)*diag(1./lambda3); %ck ck3=mean(psi3y-psi3x,1)'; if (0) %% vis j=5; figure(30),clf;hold on; scatter(X(:,1),X(:,2),40,psi3x(:,j),'o'); scatter(Y(:,1),Y(:,2),40,psi3y(:,j),'o','filled'); axis equal;colorbar();grid on; title(sprintf('j=%d, Kspec kernel',j)) figure(31),clf;hold on; plot(ck3.^2.*lambda3,'.-'); grid on; title('ck Kspec kernel') figure(32),clf,hold on; plot(lambda3,'.-'); grid on; title('lambdak Kspec kernel') end %% constant to rescale T ll1=lambda1(1); ll2=lambda2(1); ll3=lambda3(1); %% % notice lambda3 is not the target spec: lambda3 is the \tilde{lambda} % after centering the kernel numspecvis=50; num3=min(ltrunc,numspecvis); figure(41),clf; hold on; plot(lambda1(1:numspecvis)/ll1,'s-b'); plot(lambda2(1:numspecvis)/ll2,'x-r'); plot(lambda3(1:num3)/ll3,'o-k'); grid on;xlabel('k') %title('\tilde \lambda_k') title('eigenvalues \lambda_k of centered kernel') legend('gaussian', 'k_{L^2}', 'k_{spec}') % figure(42),clf; hold on; stem(ck1(1:numspecvis).^2.*(lambda1(1:numspecvis)/ll1),'s-b'); stem(ck2(1:numspecvis).^2.*(lambda2(1:numspecvis)/ll2),'x-r'); stem(ck3(1:num3).^2.*(lambda3(1:num3)/ll3),'o-k'); grid on;xlabel('k') %title('\tilde{\lambda}_k c_k^2') title('\lambda_k c_k^2 of centered kernel') legend('gaussian', 'k_{L^2}', 'k_{spec}') drawnow(); %%%%%%%%%%%%%d%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% empirical distribution of Tn %% %% two sample test if (1) % case 1 ntest= 200; tau= 0.5; else % case 2 ntest= 400; tau= 0.5/sqrt(2); end %% new q = tau*q + (1-tau)*p nq=floor(ntest*tau); np=ntest-nq; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % set the number of Monte Carlo runs % nrun = 1000; %nrun = 10000; % to reproduce figures in the paper, use nrun= 10000; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% mmd1=zeros(2,nrun); mmd2=zeros(2,nrun); mmd3=zeros(2,nrun); nX=ntest; nY=ntest; for irun=1:nrun if mod(irun,10)==0 fprintf('-%d-',irun) end %%%%%%%% %% pq [x1,~]=generate_curve_data(ntest,delta,epsx); [x2,y2]=generate_curve_data(ntest,delta,epsx); X=x1; Y=cat(1,x2(randperm(ntest,np),:),y2(randperm(ntest,nq),:)); %% gaussian kernel dis2XX=squareform(pdist(X).^2); dis2YY=squareform(pdist(Y).^2); dis2XY=pdist2(X,Y).^2; H=exp(-dis2XX/(2*sig2g))+exp(-dis2YY/(2*sig2g))... -exp(-dis2XY/(2*sig2g))-exp(-dis2XY/(2*sig2g))'; mmd1(1,irun)=mean(H(:)); %% K_L2 [D2X,D2Y]=mahal_dis2(X,Y,gmR); A=[exp(-D2X/(2*sig2m)),exp(-D2Y/(2*sig2m))]; mmd2(1,irun)=calculate_eta_l2(A,nX,nY); %% K_spec [~,~,v]=svd(A,'econ'); v=v*sqrt(ntest*2); mmd3(1,irun)=calculate_eta_spec(v,nX,nY,targetspec); %%%%%%%% %% pp [x1,~]=generate_curve_data(ntest,delta,epsx); [x2,~]=generate_curve_data(ntest,delta,epsx); X=x1; Y=x2; %% gaussian kernel dis2XX=squareform(pdist(X).^2); dis2YY=squareform(pdist(Y).^2); dis2XY=pdist2(X,Y).^2; H=exp(-dis2XX/(2*sig2g))+exp(-dis2YY/(2*sig2g))... -exp(-dis2XY/(2*sig2g))-exp(-dis2XY/(2*sig2g))'; mmd1(2,irun)=mean(H(:)); %% K_L2 [D2X,D2Y]=mahal_dis2(X,Y,gmR); A=[exp(-D2X/(2*sig2m)),exp(-D2Y/(2*sig2m))]; mmd2(2,irun)=calculate_eta_l2(A,nX,nY); %% K_spec [~,~,v]=svd(A,'econ'); v=v*sqrt(ntest*2); mmd3(2,irun)=calculate_eta_spec(v,nX,nY,targetspec); end fprintf('\n') %% plot histogram numbin=40; % figure(51), clf;hold on; l1=mmd1(2,:); l2=mmd1(1,:); l1=sqrt(l1); l2=sqrt(l2); n1=numel(l1);n2=numel(l2); [nout1,xout1]=hist(l1,numbin); plot(xout1, (nout1/n1)/(xout1(2)-xout1(1)), '.-b'); [nout2,xout2]=hist(l2,numbin); plot(xout2, (nout2/n2)/(xout2(2)-xout2(1)), '.-r'); frac1= sum(l2>quantile(l1,0.95))/n1 title('T under H0 and H1, gaussian mmd') % figure(52), clf;hold on; l1=mmd2(2,:); l2=mmd2(1,:); l1=sqrt(l1); l2=sqrt(l2); n1=numel(l1);n2=numel(l2); [nout1,xout1]=hist(l1,numbin); plot(xout1, (nout1/n1)/(xout1(2)-xout1(1)), '.-b'); [nout2,xout2]=hist(l2,numbin); plot(xout2, (nout2/n2)/(xout2(2)-xout2(1)), '.-r'); frac1= sum(l2>quantile(l1,0.95))/n1 title('T under H0 and H1, kL2 mmd') % figure(53), clf;hold on; l1=mmd3(2,:); l2=mmd3(1,:); l1=sqrt(l1); l2=sqrt(l2); n1=numel(l1);n2=numel(l2); [nout1,xout1]=hist(l1,numbin); plot(xout1, (nout1/n1)/(xout1(2)-xout1(1)), '.-b'); [nout2,xout2]=hist(l2,numbin); plot(xout2, (nout2/n2)/(xout2(2)-xout2(1)), '.-r'); frac1= sum(l2>quantile(l1,0.95))/n1 title('T under H0 and H1, kspec mmd') %% asymptotic value by theory nruna=50000; mmd1a=zeros(2,nruna); mmd2a=zeros(2,nruna); mmd3a=zeros(2,nruna); for irun=1:nruna mmd1a(1,irun)=sum(lambda1.*(... randn(numspec,1)*sqrt(2/ntest) + ... + (-tau)*ck1 ).^2 ); mmd1a(2,irun)=sum(lambda1.*(... (randn(numspec,1)*sqrt(2/ntest)).^2)); numk=min(numspec,nR); mmd2a(1,irun)=sum(lambda2.*(... randn(numk,1)*sqrt(2/ntest) + ... + (-tau)*ck2 ).^2 ); mmd2a(2,irun)=sum(lambda2.*(... (randn(numk,1)*sqrt(2/ntest)).^2)); mmd3a(1,irun)=sum(lambda3(1:ltrunc).*(... randn(ltrunc,1)*sqrt(2/ntest) + ... + (-tau)*ck3(1:ltrunc) ).^2 ); mmd3a(2,irun)=sum(lambda3(1:ltrunc).*(... (randn(ltrunc,1)*sqrt(2/ntest)).^2)); end %% rescale the T and the lambda mmd1=mmd1/ll1; mmd2=mmd2/ll2; mmd3=mmd3/ll3; mmd1a=mmd1a/ll1; mmd2a=mmd2a/ll2; mmd3a=mmd3a/ll3; %% numbin=40; % figure(51),clf; hold on; l1=mmd1(2,:); l2=mmd1(1,:); l1=sqrt(l1); l2=sqrt(l2); n1=numel(l1);n2=numel(l2); [nout1,xout1]=hist(l1,numbin); plot(xout1, (nout1/n1)/(xout1(2)-xout1(1)), '.-b'); [nout2,xout2]=hist(l2,numbin); plot(xout2, (nout2/n2)/(xout2(2)-xout2(1)), '.-r'); frac1= sum(l2>quantile(l1,0.95))/n1 l1=mmd1a(2,:); l2=mmd1a(1,:); l1=sqrt(l1); l2=sqrt(l2); n1=numel(l1);n2=numel(l2); [nout1,xout1]=hist(l1,numbin); plot(xout1, (nout1/n1)/(xout1(2)-xout1(1)), '.--b'); [nout2,xout2]=hist(l2,numbin); plot(xout2, (nout2/n2)/(xout2(2)-xout2(1)), '.--r'); frac11= sum(l2>quantile(l1,0.95))/n1 grid on; title(sprintf('gaussian kernel, %4.2f %4.2f',frac1*100,frac11*100)) % figure(52),clf; hold on; l1=mmd2(2,:); l2=mmd2(1,:); l1=sqrt(l1); l2=sqrt(l2); n1=numel(l1);n2=numel(l2); [nout1,xout1]=hist(l1,numbin); plot(xout1, (nout1/n1)/(xout1(2)-xout1(1)), '.-b'); [nout2,xout2]=hist(l2,numbin); plot(xout2, (nout2/n2)/(xout2(2)-xout2(1)), '.-r'); frac2= sum(l2>quantile(l1,0.95))/n1 l1=mmd2a(2,:); l2=mmd2a(1,:); l1=sqrt(l1); l2=sqrt(l2); n1=numel(l1);n2=numel(l2); [nout1,xout1]=hist(l1,numbin); plot(xout1, (nout1/n1)/(xout1(2)-xout1(1)), '.--b'); [nout2,xout2]=hist(l2,numbin); plot(xout2, (nout2/n2)/(xout2(2)-xout2(1)), '.--r'); frac21= sum(l2>quantile(l1,0.95))/n1 grid on; title(sprintf('kL2, %4.2f %4.2f',frac2*100,frac21*100)) % figure(53),clf; hold on; l1=mmd3(2,:); l2=mmd3(1,:); l1=sqrt(l1); l2=sqrt(l2); n1=numel(l1);n2=numel(l2); [nout1,xout1]=hist(l1,numbin); plot(xout1, (nout1/n1)/(xout1(2)-xout1(1)), '.-b'); [nout2,xout2]=hist(l2,numbin); plot(xout2, (nout2/n2)/(xout2(2)-xout2(1)), '.-r'); frac2= sum(l2>quantile(l1,0.95))/n1 l1=mmd3a(2,:); l2=mmd3a(1,:); l1=sqrt(l1); l2=sqrt(l2); n1=numel(l1);n2=numel(l2); [nout1,xout1]=hist(l1,numbin); plot(xout1, (nout1/n1)/(xout1(2)-xout1(1)), '.--b'); [nout2,xout2]=hist(l2,numbin); plot(xout2, (nout2/n2)/(xout2(2)-xout2(1)), '.--r'); frac21= sum(l2>quantile(l1,0.95))/n1 grid on; title(sprintf('kspec, %4.2f %4.2f',frac2*100,frac21*100)) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% collect values of theta0 etc in the table theta0_1=mean(mmd1(2,:)); sigma0_1=std(mmd1(2,:)); theta0_2=mean(mmd2(2,:)); sigma0_2=std(mmd2(2,:)); theta0_3=mean(mmd3(2,:)); sigma0_3=std(mmd3(2,:)); bartheta0_1=mean(mmd1a(2,:)); barsigma0_1=std(mmd1a(2,:)); bartheta0_2=mean(mmd2a(2,:)); barsigma0_2=std(mmd2a(2,:)); bartheta0_3=mean(mmd3a(2,:)); barsigma0_3=std(mmd3a(2,:)); theta1_1=mean(mmd1(1,:)); sigma1_1=std(mmd1(1,:)); theta1_2=mean(mmd2(1,:)); sigma1_2=std(mmd2(1,:)); theta1_3=mean(mmd3(1,:)); sigma1_3=std(mmd3(1,:)); bartheta1_1=mean(mmd1a(1,:)); barsigma1_1=std(mmd1a(1,:)); bartheta1_2=mean(mmd2a(1,:)); barsigma1_2=std(mmd2a(1,:)); bartheta1_3=mean(mmd3a(1,:)); barsigma1_3=std(mmd3a(1,:)); r_1=(theta1_1-theta0_1)/(sigma1_1+sigma0_1); r_2=(theta1_2-theta0_2)/(sigma1_2+sigma0_2); r_3=(theta1_3-theta0_3)/(sigma1_3+sigma0_3); r_1a=(bartheta1_1-bartheta0_1)/(barsigma1_1+barsigma0_1); r_2a=(bartheta1_2-bartheta0_2)/(barsigma1_2+barsigma0_2); r_3a=(bartheta1_3-bartheta0_3)/(barsigma1_3+barsigma0_3); % fprintf('--- theta0 \t theta1 \t sigma0 \t sigma1 \t r ----\n') fprintf('%6.4f\t%6.4f\t%6.4f\t%6.4f\t%6.4f\t\n',... theta0_1,theta1_1,sigma0_1,sigma1_1,r_1 ); fprintf('%6.4f\t%6.4f\t%6.4f\t%6.4f\t%6.4f\t\n',... theta0_2,theta1_2,sigma0_2,sigma1_2,r_2 ); fprintf('%6.4f\t%6.4f\t%6.4f\t%6.4f\t%6.4f\t\n',... theta0_3,theta1_3,sigma0_3,sigma1_3,r_3 ); fprintf('--- by theory ----\n') fprintf('%6.4f\t%6.4f\t%6.4f\t%6.4f\t%6.4f\t\n',... bartheta0_1,bartheta1_1,barsigma0_1,barsigma1_1,r_1a ); fprintf('%6.4f\t%6.4f\t%6.4f\t%6.4f\t%6.4f\t\n',... bartheta0_2,bartheta1_2,barsigma0_2,barsigma1_2,r_2a ); fprintf('%6.4f\t%6.4f\t%6.4f\t%6.4f\t%6.4f\t\n',... bartheta0_3,bartheta1_3,barsigma0_3,barsigma1_3,r_3a ); %% % n=200 % --- theta0 theta1 sigma0 sigma1 r ---- % 0.4771 0.5444 0.0677 0.0704 0.4874 % 0.0489 0.0958 0.0214 0.0306 0.9000 % 0.0985 0.2046 0.0348 0.0587 1.1351 % --- by theory ---- % 0.4754 0.5439 0.0676 0.0736 0.4848 % 0.0488 0.0939 0.0214 0.0312 0.8573 % 0.0983 0.2013 0.0374 0.0620 1.0354 % % n=400 % --- theta0 theta1 sigma0 sigma1 r ---- % 0.2381 0.2720 0.0334 0.0359 0.4885 % 0.0243 0.0477 0.0107 0.0153 0.8972 % 0.0490 0.1036 0.0177 0.0305 1.1343 % --- by theory ---- % 0.2379 0.2722 0.0339 0.0368 0.4850 % 0.0244 0.0471 0.0106 0.0157 0.8616 % 0.0490 0.1003 0.0188 0.0310 1.0290 return; end function [x,y]=generate_curve_data(n,delta,epsx) tx=sort(rand(n,1)); x=[cos(tx*pi/2),sin(tx*pi/2)]; x=x+randn(size(x))*epsx; ty=sort(rand(n,1)); y=[cos(ty*pi/2),sin(ty*pi/2)]; y=y*(1-delta); y=y+randn(size(y))*epsx; end function [m2X,m2Y]=mahal_dis2(X,Y,gm) m2X=gm.mahal(X)'; m2Y=gm.mahal(Y)'; end function eta=calculate_eta_l2(A,nX,nY) hX=mean(A(:,1:nX),2); hY=mean(A(:,nX+1:nX+nY),2); eta=mean((hX-hY).^2); end function eta=calculate_eta_spec(v,nX,nY,targetspec) num1=min(size(v,2),numel(targetspec)); vX=v(1:nX,1:num1); vY=v(nX+1:nX+nY,1:num1); vvX=mean(vX,1)'; vvY=mean(vY,1)'; eta=sum((vvX-vvY).^2.*targetspec(1:num1)); end
github
ACloninger/two-sample-anisotropic-master
generate_uniform_reference_set.m
.m
two-sample-anisotropic-master/generate_uniform_reference_set.m
2,741
utf_8
2fa96d18a71105b297642795effe75af
% You are free to use, change, or redistribute this code in any way you % want for non-commercial purposes. However, it is appreciated if you % maintain the name of the original author, and cite the paper: % X. Cheng, A. Cloninger, R. Coifman. "Two Sample Statistics Based on Anisotropic Kernels." % arxiv:1709.05006 % % Date: October 20, 2017. (Last Modified: October 20, 2017) function R=generate_uniform_reference_set(data,nR,kNN) % input: % data [n,dim] % nR output R is [nR,dim] % kNN number of nearest neighbors to estimate epsdata1 and epsdata, % every point has a scale which is its median distance to its kNN % neighbors. epsdata1 is the mean of this scale over dataset, % epsdata is the max of this scale. epsdata1 is seen as the % "smallest scale" in the dataset, and used in the kernel for kde % for sampling ref, and in pruning the dataset; epsdata is used % to remove outlier ref point after initial sampling. [n,dim]=size(data); %% estimate epsdata1 in data n1=min(n,1e3); tic, [~,dd]=knnsearch(data,data(randperm(n,n1),:),'k',kNN); toc % dis1= dd(:,kNN); epsdata1=median(dis1) %smallest timescale in data for kde % epsdata=quantile(dis1,.99) %to prune ref est R if mdis is larger than epsdata %% maxnumbatch=100; nbatch=min(n,1000); nsample=floor(nbatch/10); i=0; R=[]; for ibatch=1:maxnumbatch data1=data(randperm(n,nbatch),:); tic [~,d1]=knnsearch(data,data1,'k',kNN); toc % kde on data aff=exp(-d1.^2/(2*(epsdata1)^2)); nu=sum(aff,2); p=1./nu; p=p/sum(p); % sample from data r=mnrnd(nsample,p); xi=data1(r>0,:); xi=xi+(rand(size(xi))-.5)*((epsdata1)/sqrt(dim)); %giggering % pruning the set if size(R,1)>0 dis=min(pdist2(xi,R),[],2); xi( dis<epsdata1,:)=[]; end nxi=size(xi,1); x=[]; for ii=1:nxi nn=size(xi,1); if nn<1 break; end isel=randperm(nn,1); x=[x;xi(isel,:)]; dis=pdist2(xi,xi(isel,:)); xi( dis<epsdata1,:)=[]; end if size(x,1)<1 continue; end % exclude too faraway points [~,dis]=knnsearch(data,x,'k',kNN); disknn=dis(:,kNN); idx=find(disknn<epsdata); ni=numel(idx); R=[R;x(idx,:)]; i=i+ni; if i>nR break; end end ibatch if ibatch==maxnumbatch warning('max number of batch reached.') end %% nR1=size(R,1); R=R(randperm(nR1),:); if nR1>nR R=R(1:nR,:); end [~,tmp]=sort(R(:,1),'ascend'); R=R(tmp,:); end
github
ACloninger/two-sample-anisotropic-master
demo_sec5_example2.m
.m
two-sample-anisotropic-master/demo_sec5_example2.m
13,864
utf_8
3111bc1d2df3f8c606a107c188643708
% set number of Monte Carlo runs in line 74 % set to obtain prefix covariance matrix or from local pca in line 29 % You are free to use, change, or redistribute this code in any way you % want for non-commercial purposes. However, it is appreciated if you % maintain the name of the original author, and cite the paper: % X. Cheng, A. Cloninger, R. Coifman. "Two Sample Statistics Based on Anisotropic Kernels." % arxiv:1709.05006 % % Date: October 20, 2017. (Last Modified: October 20, 2017) function demo_sec5_example2() clear all; close all; rng(6022017); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% parameter of model delta_max=.02; epsx=.02; dim=3; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% generation of referece set by heuristic sig2g= epsx.^2; sig2m =1; nR=100; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % set to be "0" to use prefix local covariance matrix if (1) [R,gmR]=generate_ref_local_pca(nR, ... @(n)gaussianmixture3d1(n,delta_max,epsx), sig2g); else [R,gmR]=generate_ref_local_pca_prefix(nR, ... @(n)gaussianmixture3d1(n,delta_max,epsx), sig2g); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% two sample test ntest=200; %n1,n2 nX=ntest; nY=ntest; %% parameter of kernel bandwidth sig2_list= [1/4,1/2,1,2,4].^2; nrow=numel(sig2_list); %% deviation of q from p del_list = (0:.2:1)*delta_max; ncol=numel(del_list); %% lspec=20; numspec=min(nR,ntest); ll=(1:1:numspec)'; targetspec=exp(-2*(ll-(lspec-4)))./(exp(-2*(ll-(lspec-4)))+1); %% under H0 alp=.05; %level of test %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % set number of Monte Carlo runs % nrun= 100; %nrun= 1000; % to reproduce figures in the paper, use nrun= 1000 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % numrp=20; % vote_g=zeros(nrow,ncol,nrun); vote_m=zeros(nrow,ncol,nrun); vote_mspec=zeros(nrow,ncol,nrun); vote_ks=zeros(1,ncol,nrun); numperm=40; %number of permutations to estimate threshold %% for icol=1:ncol delta=del_list(icol); fprintf('del=%6.4f:',delta) for irun=1:nrun if mod(irun,10)==0 fprintf('-%d-',irun) end [X,Y]=gaussianmixture3d1(ntest,delta,epsx); %% gmmd D2=euclidean_dis2(X,Y); for irow=1:nrow s2=sig2g*sig2_list(irow); K1=exp(-D2/(2*s2)); eta1=calculate_kernel_mmd2(K1,nX,nY); etastore=zeros(1,numperm); for iboot=1:numperm idx=randperm(nX+nY); etastore(iboot)=calculate_kernel_mmd2(K1(idx,idx),nX,nY); end talp=quantile(etastore,1-alp); vote_g(irow,icol,irun)=double(eta1>talp); end %% akmmd [D2X,D2Y]=mahal_dis2(X,Y,gmR); for irow=1:nrow s2=sig2m*sig2_list(irow); A=[exp(-D2X/(2*s2)),exp(-D2Y/(2*s2))]; %% akmmd-l2 eta1=calculate_eta_l2(A,nX,nY); etastore=zeros(1,numperm); for iboot=1:numperm idx=randperm(nX+nY); etastore(iboot)=calculate_eta_l2(A(:,idx),nX,nY); end talp=quantile(etastore,1-alp); vote_m(irow,icol,irun)=double(eta1>talp); %% akmmd-spec [u,s,v]=svd(A,'econ'); eta1=calculate_eta_spec(v,nX,nY,targetspec); etastore=zeros(1,numperm); for iboot=1:numperm idx=randperm(nX+nY); etastore(iboot)=calculate_eta_spec(v(idx,:),nX,nY,targetspec); end talp=quantile(etastore,1-alp); vote_mspec(irow,icol,irun)=double(eta1>talp); end %% KS-randproj data=cat(1,X,Y); % numrp many random projections us=zeros(dim,1,numrp); for ii=1:numrp us(:,:,ii)=svd(randn(dim,1),'econ'); end eta1=calculate_KSrandpj(data,nX,nY,us); etastore=zeros(1,numperm); for iboot=1:numperm idx=randperm(nX+nY); etastore(iboot)=calculate_KSrandpj(data(idx,:),nX,nY,us); end talp=quantile(etastore,1-alp); vote_ks(1,icol,irun)=double(eta1>talp); end fprintf('\n') end fprintf('\n') %% compute type I and type II error % powg=zeros(nrow,ncol); powm=zeros(nrow,ncol); powmspec=zeros(nrow,ncol); powks=zeros(1,ncol); for icol=1:ncol tmp=reshape(vote_g(:,icol,:),nrow,nrun); powg(:,icol)=sum( tmp,2)/nrun; tmp=reshape(vote_m(:,icol,:),nrow,nrun); powm(:,icol)=sum( tmp,2)/nrun; tmp=reshape(vote_mspec(:,icol,:),nrow,nrun); powmspec(:,icol)=sum( tmp,2)/nrun; tmp=reshape(vote_ks(1,icol,:),1,nrun); powks(:,icol)=sum( tmp,2)/nrun; end disp('-- Gmmd --') disp(powg*100) disp('-- Mmmd --') disp(powm*100) disp('-- Mmmd spec --') disp(powmspec*100) disp('-- KS randproj --') disp(powks*100) %% irow1=3; irow2=3; irow3=3; figure(22),clf; hold on; plot(del_list,powg','x--b'); plot(del_list,powks,'x--g'); plot(del_list,powm(irow2,:),'x-r'); plot(del_list,powmspec(irow3,:),'x-m'); grid on; xlabel('delta');title('power') %% type I and II error with errorbar % bootstrap to obtain errorbar of power nboot1=40; nrun1=floor(nrun/2); pows_g=zeros(nrow,ncol,nboot1); pows_m=zeros(nrow,ncol,nboot1); pows_mspec=zeros(nrow,ncol,nboot1); pows_ks=zeros(1,ncol,nboot1); for iboot=1:nboot1 idx=randperm(nrun,nrun1); tmp=vote_g(:,:,idx); pows_g(:,:,iboot)=mean(tmp,3); tmp=vote_m(:,:,idx); pows_m(:,:,iboot)=mean(tmp,3); tmp=vote_mspec(:,:,idx); pows_mspec(:,:,iboot)=mean(tmp,3); tmp=vote_ks(1,:,idx); pows_ks(1,:,iboot)=mean(tmp,3); end figure(23),clf; hold on; % p=reshape(pows_g(irow1,:,:),ncol,nboot1); errorbar(del_list,mean(p,2),std(p,1,2),'x--b'); % p=reshape(pows_ks(1,:,:),ncol,nboot1); errorbar(del_list,mean(p,2),std(p,1,2),'x--g'); % p=reshape(pows_m(irow2,:,:),ncol,nboot1); errorbar(del_list,mean(p,2),std(p,1,2),'x-r'); % p=reshape(pows_mspec(irow3,:,:),ncol,nboot1); errorbar(del_list,mean(p,2),std(p,1,2),'x-m'); axis([0,delta,0,1]);xlabel('\delta');ylabel('rejection rate') grid on; legend({'Gaussian MMD', 'Random Proj KS', 'Anisotropic L2', 'Anisotropic Spec'}) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% witness function %% ntest=400; nX=ntest; nY=ntest; delta=delta_max; [X,Y]=gaussianmixture3d1(ntest,delta,epsx); % grid of x to visualize [xx,~]=gaussianmixture3d1(ntest*2,delta,epsx); %% gaussian kernel D2=pdist2(xx,cat(1,X,Y)).^2; s2=sig2g*sig2_list(irow1); K1=exp(-D2/(2*s2)); w1= mean(K1(:,1:nX),2) - mean(K1(:,nX+1:nX+nY),2); figure(31),clf; scatter3(xx(:,1),xx(:,2),xx(:,3),80,w1,'o','filled') colorbar();grid on; title('witness gaussian kernel') %% ak L2 m2X=gmR.mahal(X)'; m2Y=gmR.mahal(Y)'; m2xx=gmR.mahal(xx)'; s2=sig2m*sig2_list(irow2); A=[exp(-m2X/(2*s2)),exp(-m2Y/(2*s2))]; Axx=exp(-m2xx/(2*s2)); w2= (Axx'*(mean(A(:,1:nX),2) - mean(A(:,nX+1:nX+nY),2)))/nR; figure(32),clf; scatter3(xx(:,1),xx(:,2),xx(:,3),80,w2,'o','filled') colorbar();grid on; title('witness ak l2') %% ak spec [u,s,v]=svd(A,'econ'); vX=v(1:nX,:)'; vY=v(nX+1:nX+nY,:)'; vxx= diag(1./diag(s))*(u'*Axx); ltrunc=sum(targetspec>1e-10); w3=vxx(1:ltrunc,:)'*( ... targetspec(1:ltrunc).*(mean(vX(1:ltrunc,:),2)-mean(vY(1:ltrunc,:),2))); figure(33),clf; scatter3(xx(:,1),xx(:,2),xx(:,3),80,w3,'o','filled') colorbar();grid on; title('witness ak spec') return end %%%%%%%%%%%%% function [x,y,gmp,gmq]=gaussianmixture3d1(n,Delta,epsX) k=3; dim=3; mu=[1,0,0;... 0,1,0;... 0,0,1]; b=1/3; S=zeros(3,3,k); S(:,:,1)=diag([b.^2,epsX.^2,epsX.^2]); S(:,:,2)=diag([epsX.^2,b.^2,epsX.^2]); S(:,:,3)=diag([epsX.^2,epsX.^2,b.^2]); p=ones(1,k)/k; % mu1=mu; S1=S; gmp=gmdistribution(mu1,S1,p); mu2=mu; mu2(1,2)=mu2(1,2)+Delta; mu2(2,3)=mu2(2,3)+Delta; mu2(3,1)=mu2(3,1)+Delta; S2=S; gmq=gmdistribution(mu2,S2,p); % x=gmp.random(n); y=gmq.random(n); end function [R,gmR]=generate_ref_local_pca_prefix(nR,funcXY,sig2g) %% get a pool of X and Y npool=1000; kNN=40; %proportional to npool [x,y]=funcXY(npool); dim=size(x,2); data=cat(1,x,y); xdata=data(1:npool,:); ydata=data(npool+1:npool*2,:); %% R=generate_uniform_reference_set(data,nR,kNN); %% use prefix sigma_r [~,~,gmp,gmq]=gaussianmixture3d1(npool,0,sqrt(sig2g)); labelR=gmp.cluster(R); SR=zeros(dim,dim,nR); for iR=1:nR SR(:,:,iR)=gmp.Sigma(:,:,labelR(iR)); end %% rescale the cov by a constant l1s=zeros(nR,1); for ir=1:nR C=SR(:,:,ir); l1s(ir)=min(eig(C)); end c=median(l1s)/sig2g; SR=SR/c; %% gmR=gmdistribution(R,SR,ones(1,nR)/nR); %% vis the kernel ARX=exp(-gmR.mahal(xdata)/2)'; ARY=exp(-gmR.mahal(ydata)/2)'; hX=mean(ARX,2); hY=mean(ARY,2);% deviation of q from p %% vis if (1) n1=200; figure(1),clf;hold on; tmp=randperm(npool,n1); scatter3(xdata(tmp,1),xdata(tmp,2),xdata(tmp,3),80,'.g') scatter3(ydata(tmp,1),ydata(tmp,2),ydata(tmp,3),80,'.b') grid on; axis equal title('data X Y') figure(2),clf; scatter3(R(:,1),R(:,2),R(:,3),80,hX-hY,'o','filled'); grid on; colorbar();title('hX-hY'); % iR=floor(nR*.75); figure(3),clf,hold on; scatter3(ydata(:,1),ydata(:,2),ydata(:,3),60,ARY(iR,:),'o') scatter3(xdata(:,1),xdata(:,2),xdata(:,3),60,ARX(iR,:),'o') scatter3(R(iR,1),R(iR,2),R(iR,3),'xr'); axis equal;grid on; title('A(r,x)'); drawnow(); end end function [R,gmR]=generate_ref_local_pca(nR,funcXY,sig2g) %% get a pool of X and Y npool=1000; kNN=40; %proportional to npool [x,y]=funcXY(npool); dim=size(x,2); data=cat(1,x,y); xdata=data(1:npool,:); ydata=data(npool+1:npool*2,:); %% R=generate_uniform_reference_set(data,nR,kNN); %% sigma_r by local pca k_loccov= floor(2*npool/4); reg_cov=0.01.^2; tic, [idxnb,~]=knnsearch(data,R,'k',k_loccov); toc SR=zeros(dim,dim,nR); for iR=1:nR xi=data(idxnb(iR,:),:); C=cov(xi); [v,d]=eig(C); [d,tmp]=sort(diag(d),'descend'); v=v(:,tmp); d(d<reg_cov)=reg_cov; C=v*diag(d)*v'; C=(C+C')/2; SR(:,:,iR)=C; end %% rescale the cov by a constant l1s=zeros(nR,1); for ir=1:nR C=SR(:,:,ir); l1s(ir)=min(eig(C)); end c=median(l1s)/sig2g; SR=SR/c; %% gmR=gmdistribution(R,SR,ones(1,nR)/nR); %% vis the kernel ARX=exp(-gmR.mahal(xdata)/2)'; ARY=exp(-gmR.mahal(ydata)/2)'; hX=mean(ARX,2); hY=mean(ARY,2);% deviation of q from p if (1) n1=200; figure(1),clf;hold on; tmp=randperm(npool,n1); scatter3(xdata(tmp,1),xdata(tmp,2),xdata(tmp,3),80,'.g') scatter3(ydata(tmp,1),ydata(tmp,2),ydata(tmp,3),80,'.b') grid on; axis equal title('data X Y') figure(2),clf; scatter3(R(:,1),R(:,2),R(:,3),80,hX-hY,'o','filled'); grid on; colorbar();title('hX-hY'); % iR=floor(nR*.75); figure(3),clf,hold on; scatter3(ydata(:,1),ydata(:,2),ydata(:,3),60,ARY(iR,:),'o') scatter3(xdata(:,1),xdata(:,2),xdata(:,3),60,ARX(iR,:),'o') scatter3(R(iR,1),R(iR,2),R(iR,3),'xr'); axis equal;grid on; title('A(r,x)'); drawnow(); end end function [D2]=euclidean_dis2(X,Y) dis2XX=squareform(pdist(X).^2); dis2YY=squareform(pdist(Y).^2); dis2XY=pdist2(X,Y).^2; D2=[dis2XX, dis2XY; dis2XY', dis2YY]; end function [m2X,m2Y]=mahal_dis2(X,Y,gm) m2X=gm.mahal(X)'; m2Y=gm.mahal(Y)'; end function eta=calculate_eta_l2(A,nX,nY) hX=mean(A(:,1:nX),2); hY=mean(A(:,nX+1:nX+nY),2); eta=mean((hX-hY).^2); end function eta=calculate_eta_spec(v,nX,nY,targetspec) num1=min(size(v,2),numel(targetspec)); vX=v(1:nX,1:num1); vY=v(nX+1:nX+nY,1:num1); vvX=mean(vX,1)'; vvY=mean(vY,1)'; eta=sum((vvX-vvY).^2.*targetspec(1:num1)); end function eta=calculate_kernel_mmd2(K,nX,nY) assert(size(K,1)==nX+nY); KXX=K(1:nX,1:nX); KXY=K(1:nX,nX+1:nX+nY); KYY=K(nX+1:nX+nY,nX+1:nX+nY); eta=mean(KXX(:))+ mean(KYY(:))-2*mean(KXY(:)); end function dd=calculate_KSrandpj(data,nX,nY,us) [n,dim]=size(data); assert(n==nX+nY); assert(size(us,1)==dim) numrp=size(us,3); %% dd=0; for ii=1:numrp u=us(:,:,ii); d1=data*u; X1=d1(1:nX); Y1=d1(nX+1:nX+nY,:); dd=dd+compute_KSstat(X1,Y1); end end function KSstatistic = compute_KSstat(x1, x2) % % Calculate F1(x) and F2(x), the empirical (i.e., sample) CDFs. % binEdges = [-inf ; sort([x1;x2]) ; inf]; binCounts1 = histc (x1 , binEdges, 1); binCounts2 = histc (x2 , binEdges, 1); sumCounts1 = cumsum(binCounts1)./sum(binCounts1); sumCounts2 = cumsum(binCounts2)./sum(binCounts2); sampleCDF1 = sumCounts1(1:end-1); sampleCDF2 = sumCounts2(1:end-1); % % Compute the test statistic of interest. % % 2-sided test: T = max|F1(x) - F2(x)|. deltaCDF = abs(sampleCDF1 - sampleCDF2); KSstatistic = max(deltaCDF); end
github
wishcow79/chabauty-master
cache.m
.m
chabauty-master/cache.m
2,466
utf_8
5cfc6091d4731dc7f6cb94044df21274
use_cache := true; prefix := "Dyfj"; //The typical use case of is the functions in this file is the following: // //function ComputeX(object,parameters) // if IsArrayCached(object,"X",parameters) then // return GetArrayCache(object,"X",parameters); // else; // X := <some code that computes X>; // SetArrayCache(object,"X",parameters,X); // return X; // end if; //end function; function IsCached(object,attribute0) if not use_cache then return false; end if; attribute := prefix cat attribute0; return attribute in GetAttributes(Type(object)) and assigned object``attribute; end function; function IsArrayCached(object,attribute0,key) if not IsCached(object,attribute0) then return false; end if; attribute := prefix cat attribute0; return Type(object``attribute) eq Assoc and IsDefined(object``attribute,key); end function; procedure InitiateCache(object,attribute0) if use_cache then; attribute := prefix cat attribute0; if not attribute in GetAttributes(Type(object)) then AddAttribute(Type(object), attribute); end if; end if; end procedure; procedure InitiateArrayCache(object,attribute0) if use_cache then; InitiateCache(object,attribute0); attribute := prefix cat attribute0; if not assigned object``attribute then object``attribute := AssociativeArray(); end if; end if; end procedure; procedure SetArrayCache(object, attribute0, key, value : initiate := true) attribute := prefix cat attribute0; if use_cache then; if initiate then InitiateArrayCache(object, attribute0); end if; object``attribute[key] := value; end if; end procedure; function GetArrayCache(object, attribute0, key); attribute := prefix cat attribute0; if use_cache then; return (object``attribute)[key]; end if; error "Can only get from cache if use_cache eq true"; end function; procedure SetCache(object, attribute0, value : initiate := true); attribute := prefix cat attribute0; if use_cache then; if initiate then InitiateCache(object,attribute0); end if; object``attribute := value; end if; return; end procedure; function GetCache(object, attribute0); attribute := prefix cat attribute0; if use_cache then; return object``attribute; end if; error "Can only get from cache if use_cache eq true"; end function;
github
wishcow79/chabauty-master
curve_ff.m
.m
chabauty-master/curve_ff.m
5,983
utf_8
49651eeda05cb624783575475e7a555e
load "pcontent.m"; load "curve_funcs.m"; // load "curve_funcs.m"; /* This file is dedicated to all functions that relate to function fields of curves, including differentials. TODO: improve comments. TODO: the line "reduce coordinate ring of curve modulo p" might crash if there are p-s in the denominator */ // function SaturatedIdealOfCurveAtPrime(C,p) // if "SaturatedIdeal" in GetAttributes(Type(C)) and // assigned C`SaturatedIdeal and // IsDefined(C`SaturatedIdeal, p) then // return C`SaturatedIdeal[p]; // end if; // if not "SaturatedIdeal" in GetAttributes(Type(C)) then // AddAttribute(Type(C), "SaturatedIdeal"); // end if; // if not assigned C`SaturatedIdeal then // C`SaturatedIdeal := []; // end if; // I := Ideal(C); // basisI := [ClearDenominators(b) : b in Basis(I)]; // I := Ideal(basisI); // ambR := CoordinateRing(Ambient(C)); // ambRZ := ChangeRing(ambR, Integers()); // IZ := Ideal([ambRZ ! b:b in basisI]); // IZsat := Saturation(IZ, ambRZ ! p); // // C`SaturatedIdeal[p] := IZsat; // return IZsat; // end function; /* Given a rational function with integer coefficients, we want to reduce the function mod p, to the function field of the curve modulo p. TODO: the functions currently only work well with projective curves, otherwise if affine the function Curve(FF) will return a different curve each time it is called. To do this we reduce the numerator and denominator modulo the curve ideal, we then need to reduce the fraction by the highest p-power before reducing modulo p. Uses external functions: * ReduceCurveModp * pContentModI */ // intrinsic ReduceRationalFunctionModp(f::FldFunFracSchElt,p::RngIntElt) -> FldFunFracSchElt // { Reduce rational function element of function field modulo p} function ReduceRationalFunctionModp(f,p) assert IsPrime(p); FF := Parent(f); // The function field of the function f C := Curve(FF); // The curve defining the function field. CAREFUL: This function does not return the original curve C if C is not projective! R := CoordinateRing(C); I := Ideal(C); basisI := [ClearDenominators(b) : b in Basis(I)]; // make sure that coefficients of the basis of I are integers I := Ideal(basisI); ambR := CoordinateRing(Ambient(C)); ambRp := ChangeRing(ambR, GF(p)); // reduce coordinate ring of curve modulo p // IZsat := SaturatedIdealOfCurveAtPrime(C,p); // ambRZ := Generic(IZsat); I := Ideal(C); basisI := [ClearDenominators(b) : b in Basis(I)]; ambRZ := ChangeRing(ambR, Integers()); IZ := Ideal([ambRZ ! b:b in basisI]); // TODO: We assume that the ideal IZ is saturated at p! Cp := ReduceCurveModp(C,p); FFp := FunctionField(Cp); Ip := Ideal(Cp); basisIp := Basis(Ip); Ip := Ideal([ambRp ! b : b in basisIp]); Rp<[a]> := CoordinateRing(Ambient(Cp)); num1, den1 := IntegralSplit(f,C); // num and den are in ambR, this function is VERY SLOW :( num2, lcd_num1 := ClearDenominators(num1); den2, lcd_den1 := ClearDenominators(den1); num3 := ambRZ ! num2; den3 := ambRZ ! den2; content_num3, num4 := ContentAndPrimitivePart(num3); content_den3, den4 := ContentAndPrimitivePart(den3); num4p := ambRp ! num4; den4p := ambRp ! den4; coeff4 := (lcd_den1 * content_num3) / (lcd_num1 * content_den3); if not den4p in Ip and Valuation(coeff4, p) ge 0 then return FFp ! (Evaluate((coeff4 * num4p), a) / Evaluate(den4p,a)); end if; // if we can't fix the numerator then we will never be able to fix either the denominator // or the bad coefficient. if not num4p in Ip then error "Error in reducing rational function. Nothing we can do to fix p in denominator."; end if; coeff_num5,num5 := pContentModI(num4, p, IZ); if den4p in Ip then coeff_den5, den5 := pContentModI(den4, p, IZ); else coeff_den5 := 1; den5 := den4; end if; num5p := ambRp ! num5; den5p := ambRp ! den5; // sanity check: assert not num5p in Ip and not den5p in Ip; coeff5 := coeff4 * coeff_num5 / coeff_den5; if Valuation(coeff5, p) lt 0 then error "Failed to reduce rational function mod p"; end if; return FFp ! (Evaluate((coeff5 * num5p), a) / Evaluate(den5p,a)); end function; // intrinsic ReduceDifferentialModp(d::DiffCrvElt, p::RngIntElt, uni::FldFunFracSchElt) -> DiffCrvElt // {returns reduction of differential mod p} function ReduceDifferentialModp(d, p, uni) C := Curve(d); du := Differential(uni); f := d / du; f_p := ReduceRationalFunctionModp(f,p); uni_p := ReduceRationalFunctionModp(uni, p); duni_p := Differential(uni_p); return f_p * duni_p; end function; // intrinsic ValuationOfRationalFunction(f::FldFunFracSchElt,p::RngIntElt) -> RngIntElt // {returns valuation of a rational function of a curve at a prime p} function ValuationOfRationalFunction(f,p) FF := Parent(f); C := Curve(FF); // IZsat := SaturatedIdealOfCurveAtPrime(C,p); // ambRZ := Generic(IZsat); ambR := CoordinateRing(Ambient(C)); I := Ideal(C); basisI := [ClearDenominators(b) : b in Basis(I)]; ambRZ := ChangeRing(ambR, Integers()); IZ := Ideal([ambRZ ! b:b in basisI]); // TODO: We assume that the ideal IZ is saturated at p! num1, den1 := IntegralSplit(f,C); // num and den are in ambR num2, lcd_num1 := ClearDenominators(num1); den2, lcd_den1 := ClearDenominators(den1); num3 := ambRZ ! num2; den3 := ambRZ ! den2; content_num3, num4 := ContentAndPrimitivePart(num3); content_den3, den4 := ContentAndPrimitivePart(den3); coeff_num5, num5 := pContentModI(num4, p, IZ); coeff_den5, den5 := pContentModI(num5, p, IZ); coeff := (lcd_den1 * content_num3 * coeff_num5) / (lcd_num1 * content_den3 * coeff_den5); v := Valuation(coeff,p); return v; end function;
github
wishcow79/chabauty-master
point_funcs.m
.m
chabauty-master/point_funcs.m
899
utf_8
5d83b0067dbd742524ce27a70899b10e
function ConvertPointToIntSeq(pt) dim := #Eltseq(pt) -1 ; pt_seq := [pt[i]*d where d := LCM([Denominator(pt[j]) : j in [1..dim+1]]): i in [1..dim+1]]; pt_seq := ChangeUniverse(pt_seq, Integers()); return pt_seq; end function; function ReducePointModp(pt, p) C := Curve(pt); Cp := ReduceCurveModp(C, p); pt_seq := ConvertPointToIntSeq(pt); pt_mod_p := Cp ! pt_seq; return pt_mod_p; end function; function ReducePointsModp(pts, p) assert #pts ge 1; assert IsPrime(p); C := Curve(pts[1]); Cp := ReduceCurveModp(C, p); pts_mod_p := [Cp ! ConvertPointToIntSeq(pt) : pt in pts]; return pts_mod_p; end function; procedure PrintPoints(pts) pts_seq := [ConvertPointToIntSeq(pt) : pt in pts]; print "the points found are: \n"; for i in [1..#pts_seq] do printf "P_%o = %o\n", i , pts_seq[i]; end for; end procedure;
github
wishcow79/chabauty-master
chabauty.m
.m
chabauty-master/chabauty.m
37,258
utf_8
e1be54e99fb35947395ce62e2ce0c3b3
//////////////////////////////////////////////////////////////////////// // chabauty.m // Authors: Maarten Derickx, Solomon Vishkautsan, 1 October 2017 // // Online at: // https://github.com/wishcow79/chabauty/blob/master/chabauty.m // A file of examples is at // https://github.com/wishcow79/chabauty/blob/master/chabauty_tests.m // // // Chabauty package // ====================================================== // An implementation of the Chabauty-Coleman algorithm for // curves of genus g >= 2. // The algorithm is based on examples by Michael Stoll, // esp. as in article "Rational 6-cycles under iteration of // quadratic polynomials". // ////////////////////////////////////////////////////////////////////// /* function CleanCurveEqs(C) eqs := DefiningEquations(C); eqseq := [ClearDenominators(e) : e in eqs]; D := Curve(AmbientSpace(C), eqseq); // TODO: decide about saturation of curve if not IsSaturated(D) then Saturate(~D); end if; return D; end function; */ load "cache.m"; load "curve_funcs.m"; load "point_funcs.m"; load "curve_ff.m"; load "hyperelliptic.m"; function GetClassGroupModp(C, p : M := 0) //Gets the classgroup of C modulo p. I.e the F_p points of Pic(C) //If M != 0 then it computes Pic(C)(F_p)/MPic(C)(F_p) instead if IsArrayCached(C, "classgroup", [p,M]) then return GetArrayCache(C, "classgroup", [p,M]); end if; Cp := ReduceCurveModp(C,p); Clp, fromClp, toClp := ClassGroup(Cp); if M eq 0 then ans := [* Clp, fromClp, toClp *]; else ClpM,pi := quo<Clp | M*Clp>; ans := [* ClpM, false, toClp*pi *]; end if; SetArrayCache(C, "classgroup", [p,M], ans); return ans; end function; function CpsToClGrp(C, p, basept : factor := 1, M := 0) assert IsCoercible(C, basept); Cp := ReduceCurveModp(C,p); Clp,fromClp,toClp := Explode(GetClassGroupModp(C,p : M:=M)); baseptCp := ReducePointModp(basept, p); baseptClp := toClp(Place(baseptCp)); return [factor*(toClp(x) - baseptClp) : x in Places(Cp,1)]; end function; function RatPtsToClGrp(C, p, pts, basept : factor := 1, M:=0) assert IsCoercible(C, basept); Cp := ReduceCurveModp(C,p); Clp,fromClp,toClp := Explode(GetClassGroupModp(C,p : M:=M)); baseptCp := ReducePointModp(basept, p); baseptClp := toClp(Place(baseptCp)); return [factor*(toClp(Place(ReducePointModp(x,p))) - baseptClp) : x in pts]; end function; function GetClGrpProd(C, GoodPrimes : M := 0) if IsArrayCached(C, "cgprod", GoodPrimes cat [M]) then return Explode(GetArrayCache(C, "cgprod", GoodPrimes cat [M])); end if; ClgrpsWithMaps := [GetClassGroupModp(C,p : M:=M) : p in GoodPrimes]; Clgrps := [Cl[1] : Cl in ClgrpsWithMaps]; Clprod, injs, projs := DirectProduct(Clgrps); SetArrayCache(C, "cgprod", GoodPrimes cat [M], [*Clprod, injs, projs*]); return Clprod, injs, projs; end function; function DivGrptoClGrp(C, pts, p : M := 0) /* Determine map from free abelian group generated by the given rational points to the product of the class groups of the curves C_p for a given p. */ Clp, fromClp, toClp := Explode(GetClassGroupModp(C, p : M := M)); imgs := [toClp(Divisor(Place(pt))) : pt in ReducePointsModp(pts, p)]; DivGrp := FreeAbelianGroup(#pts); DGtoClGrp := hom<DivGrp -> Clp | imgs>; return DGtoClGrp; end function; function MapFAtoClProd(C, pts, GoodPrimes : M := 0) /* Determine map from free abelian group generated by the given rational points to the product of the class groups of the curves C_p for p in the set of given good primes */ Clprod, injs, projs := GetClGrpProd(C, GoodPrimes : M := M); imgs := [* [toClp(Divisor(Place(pt))) where Clp, fromClp, toClp := Explode(GetClassGroupModp(C,p : M := M)) : pt in ReducePointsModp(pts, p)] : p in GoodPrimes *]; FA := FreeAbelianGroup(#pts); FAtoClprod := hom<FA -> Clprod | [&+[injs[i](imgs[i][j]) : i in [1..#GoodPrimes]]: j in [1..#pts]]>; return FAtoClprod; end function; function MapCpsToClprod(C, GoodPrimes, basept) assert IsCoercible(C, basept); Clprod,injs, projs := GetClGrpProd(C, GoodPrimes); CpsToClprod := [**]; for i in [1..#GoodPrimes] do p := GoodPrimes[i]; inj := injs[i]; Cp := ReduceCurveModp(C,p); ptsCp := RationalPointsModp(C, p); Clp,fromClp,toClp := Explode(GetClassGroupModp(C,p)); baseptCp := ReducePointModp(basept, p); CpToClProd := map<ptsCp->Clprod|x:->inj(toClp(Place(Cp ! x)-Place(baseptCp)))>; Append(~CpsToClprod, CpToClProd); end for; return CpsToClprod; end function; function MapCpsToJps(C, GoodPrimes, basept) assert IsCoercible(C, basept); Clprod,injs, projs := GetClGrpProd(C, GoodPrimes); maps := MapCpsToClprod(C, GoodPrimes, basept); return [maps[i]*projs[i] : i in [1..#GoodPrimes]]; end function; function MapCpProdToClprod(C, GoodPrimes, basept) maps := MapCpsToClprod(C, GoodPrimes, basept); Clprod,injs, projs := GetClGrpProd(C, GoodPrimes); car := CartesianProduct([Set(RationalPointsModp(C,p)) : p in GoodPrimes]); return map<car->Clprod| x:->&+[maps[i](x[i]) : i in [1..#GoodPrimes]]>; end function; function JacobianTorsionBound(C, pts, GoodPrimes) /* Find torsion bound for Jacobian */ // Get upper bound for torsion structure // (do not use reduction mod 2, since 2-torsion may not map injectively) ClgrpsWithMaps := [GetClassGroupModp(C,p) : p in GoodPrimes | p ne 2]; Clgrps := [Cl[1] : Cl in ClgrpsWithMaps]; invs := [[i : i in Invariants(Cl) | i ne 0] : Cl in Clgrps]; tors_bound := [GCD([#seq gt j select seq[#seq-j] else 1 : seq in invs]) : j in [Max([#seq : seq in invs])-1..0 by -1]]; tors_bound := [i : i in tors_bound | i gt 1]; return tors_bound; end function; function JacobianRankLowerBound(C, pts, GoodPrimes) /* Find lower bound for rank of the Jacobian */ tors_bound := JacobianTorsionBound(C, pts, GoodPrimes); FAtoClprod := MapFAtoClProd(C, pts, GoodPrimes); imFAtoClprod := Image(FAtoClprod); iminvs := Invariants(imFAtoClprod); iminvs := [inv : inv in iminvs | inv ne 0]; i := 1; if #tors_bound ne 0 then total_tors_bound := &*tors_bound; while i le #iminvs do boo := IsDivisibleBy(total_tors_bound, iminvs[i]); if not boo then break; end if; i := i + 1; end while; end if; if i gt #iminvs then return 0; else return #iminvs - i + 1; end if; end function; function PrincipalGenerators(C, pts, GoodPrimes : NormBound := 50) FAtoClprod := MapFAtoClProd(C, pts, GoodPrimes); ker := Kernel(FAtoClprod); kerlat := Lattice(Matrix([Eltseq(Domain(FAtoClprod)!b) : b in OrderedGenerators(ker)])); basis := Basis(LLL(kerlat)); small_basis := [b : b in basis | Norm(b) le NormBound]; rels := [&+[b[i]*Place(pts[i]) : i in [1..#pts]] : b in small_basis]; principal_gens := [small_basis[i] : i in [1..#rels]| IsPrincipal(rels[i])]; return principal_gens; end function; function Deg0Divisors(FA) Div0, iDiv0toFA := sub<FA|[FA.i - FA.1 : i in [2..Ngens(FA)]]>; return Div0, iDiv0toFA; end function; function JacobianKnownSubgroup(C, pts, GoodPrimes) //pts := Setseq(pts); //would be better to use [*pts, GoodPrimes*] as cache key //but magma does not know how to hash that. if IsArrayCached(C, "JacKnown",pts) then return Explode(GetArrayCache(C, "JacKnown",pts)); end if; FA2Clprod := MapFAtoClProd(C, pts, GoodPrimes); FA := Domain(FA2Clprod); Clprod := Codomain(FA2Clprod); prgens := PrincipalGenerators(C, pts, GoodPrimes); prgens := [ChangeUniverse(Eltseq(g), Integers()) : g in prgens]; Div0, iDiv0toFA := Deg0Divisors(FA); quot,pi := quo<Div0| [FA ! g : g in prgens]>; ans := [* quot, [iDiv0toFA(g @@ pi) : g in OrderedGenerators(quot)]*]; SetArrayCache(C, "JacKnown", pts, ans); return Explode(ans); end function; function MapJknownToClprod(C, pts, GoodPrimes) Jknown, JknownGenerators := JacobianKnownSubgroup(C, pts, GoodPrimes); Clprod, injs, projs := GetClGrpProd(C, GoodPrimes); FA2Clprod := MapFAtoClProd(C, pts, GoodPrimes); FA := Domain(FA2Clprod); phi := hom<Jknown->Clprod | [FA2Clprod(FA ! Eltseq(g)) : g in JknownGenerators]>; return phi; end function; function JknowntoClGrp(C, pts, p, GoodPrimes : M := 0) Jknown, JknownGenerators := JacobianKnownSubgroup(C, pts, GoodPrimes); DGtoClGrp := DivGrptoClGrp(C, pts, p : M := M); DG := Domain(DGtoClGrp); ClGrp := Codomain(DGtoClGrp); phi := hom<Jknown->ClGrp | [DGtoClGrp(DG ! Eltseq(g)) : g in JknownGenerators]>; return phi; end function; function MWSieveNaive(C, pts, GoodPrimes : factor := 1, M := 0); Jknown := JacobianKnownSubgroup(C, pts, GoodPrimes); Jmod, pi := quo<Jknown | M*Jknown>; JtoClGrps := [JknowntoClGrp(C, pts, p, GoodPrimes : M := M) : p in GoodPrimes]; Cps := [*CpsToClGrp(C, p, pts[1] : factor := factor, M := M) : p in GoodPrimes*]; unsieved_pts := []; for ptmod in Jmod do pt := ptmod @@ pi; keep := true; for i in [1..#GoodPrimes] do if not JtoClGrps[i](pt) in Cps[i] then keep := false; break; end if; end for; if keep then Append(~unsieved_pts,pt); end if; end for; return unsieved_pts; end function; function MapsJknownToJp(C, pts, GoodPrimes) Jknown, JknownGenerators := JacobianKnownSubgroup(C, pts, GoodPrimes); Clprod, injs, projs := GetClGrpProd(C, GoodPrimes); FA2Clprod := MapFAtoClProd(C, pts, GoodPrimes); FA := Domain(FA2Clprod); phi := hom<Jknown->Clprod | [FA2Clprod(FA ! Eltseq(g)) : g in JknownGenerators]>; maps := [phi * projs[i] : i in [1..#GoodPrimes]]; return maps; end function; function JacobianRankUpperBound(C, pts, GoodPrimes : NormBound := 50) principal_gens := PrincipalGenerators(C, pts, GoodPrimes : NormBound := NormBound); return #pts - #principal_gens - 1, principal_gens; end function; function FindRankJacobianSubgrp(C, pts, GoodPrimes) rank_lower_bound := JacobianRankLowerBound(C, pts, GoodPrimes); rank_upper_bound, principal_gens := JacobianRankUpperBound(C, pts, GoodPrimes); print "Lower bound on rank of the Jacobian subgroup:", rank_lower_bound; print "Upper bound on rank of the Jacobian subgroup:", rank_upper_bound; assert(rank_lower_bound eq rank_upper_bound); print "Upper bound = lower bound, so we can proceed."; return rank_upper_bound, principal_gens; end function; function SaturatedIdealOfCurveAtPrime(C,p) if "SaturatedIdeal" in GetAttributes(Type(C)) and assigned C`SaturatedIdeal and IsDefined(C`SaturatedIdeal, p) then return C`SaturatedIdeal[p]; end if; if not "SaturatedIdeal" in GetAttributes(Type(C)) then AddAttribute(Type(C), "SaturatedIdeal"); end if; if not assigned C`SaturatedIdeal then C`SaturatedIdeal := []; end if; I := Ideal(C); basisI := [ClearDenominators(b) : b in Basis(I)]; I := Ideal(basisI); ambR := CoordinateRing(Ambient(C)); ambRZ := ChangeRing(ambR, Integers()); IZ := Ideal([ambRZ ! b:b in basisI]); IZsat := Saturation(IZ, ambRZ ! p); C`SaturatedIdeal[p] := IZsat; return IZsat; end function; // function LiftRationalFunction(f, C) // // lift rational function to a rational function on the curve C // FF<[x]> := FunctionField(C); // dim := Dimension(AmbientSpace(C)); // R<[a]> := PolynomialRing(BaseRing(C), dim); // N := Numerator(f); // coeffs_N := ChangeUniverse(Eltseq(Coefficients(N)), Integers()); // N_lift := Polynomial(coeffs_N,[Monomial(R, Exponents(m)) : m in Monomials(N)]); // D := Denominator(f); // coeffs_D := ChangeUniverse(Eltseq(Coefficients(D)), Integers()); // D_lift := Polynomial(coeffs_D,[Monomial(R, Exponents(m)) : m in Monomials(D)]); // f_lift := Evaluate(N_lift/D_lift,x); // return f_lift; // end function; procedure PrintKernelModp(ker_basis, p) printf "Basis of kernel of reduction modulo %o:\n", p; for b in ker_basis do for i in [1..#b] do if b[i] eq 0 then continue i; end if; if b[i] lt 0 or i eq 1 then printf "%o*P_%o", b[i], i; else printf "+%o*P_%o", b[i], i; end if; end for; printf "\n"; end for; end procedure; function GetKernelModp(C, pts, p, ker_basis) // We take the kernel of FA->Pic(Q) and complete // to a basis of the kernel of reduction mod p from FA->Pic(F_p), // up to a finite index. // The extra vectors map into a finite index subgroup // of the kernel of Pic(Q)->Pic(F_p) assert p gt 2; pts_p := ReducePointsModp(pts, p); Cl_p_seq := GetClassGroupModp(C,p); Cl_p := Cl_p_seq[1]; fromCl_p := Cl_p_seq[2]; FA := FreeAbelianGroup(#pts); hom_p := hom<FA -> Cl_p | [Divisor(Place(Curve(Codomain(fromCl_p)) ! Eltseq(pt))) @@ fromCl_p : pt in pts_p]>; // homs := [hom<FA -> Cls[i] | [Divisor(Place(pt)) @@ fromCls[i] // : pt in ptsred[i]]> : i in [1..#Cls]]; KerQ := sub<FA | [FA!Eltseq(b) : b in ker_basis]>; // Pic, mPic := quo<FA | [FA!Eltseq(b) : b in basis]>; ker_p := Kernel(hom_p); L_p := Lattice(Matrix([Eltseq(FA!k) : k in OrderedGenerators(ker_p)])); // basis_p := Basis(LLL(L_p)); E := EchelonForm(Matrix(GF(5),[Reverse( Coordinates(L_p ! Vector(Eltseq(FA ! g)))) : g in OrderedGenerators(KerQ)])); pivots := []; j := 1; for i in [1..Nrows(E)] do while j le Ncols(E) and E[i,j] eq 0 do j +:= 1; end while; if j gt Ncols(E) then error "unexpected end of matrix"; end if; Append(~pivots, j); end for; non_pivots := [j : j in [1..Ncols(E)] | not j in pivots]; gens := [Eltseq(L_p.(Ncols(E)-j+1)) : j in non_pivots]; return gens; /* // small_basis := [Eltseq(b) : b in basis_p | Norm(b) le NormBound]; divs_p := [&+[small_basis[i,j]*Place(pts[j]) : j in [1..#pts]] : i in [1..#small_basis]]; // first we eliminate the principal divisors in the basis of the kernel idx_ker_p := [i : i in [1..#small_basis] | not IsPrincipal(divs_p[i])]; small_basis := [small_basis[i] : i in idx_ker_p]; divs_p := [divs_p[i] : i in idx_ker_p]; divs_p_reduced := []; small_basis_reduced := []; for i in [1..#divs_p] do d1 := divs_p[i]; for d2 in divs_p_reduced do if IsLinearlyEquivalent(d1,d2) then continue i; end if; end for; Append(~divs_p_reduced, d1); Append(~small_basis_reduced, small_basis[i]); end for; divs_p := divs_p_reduced; small_basis := small_basis_reduced; assert mPic(sub<FA | small_basis>) eq mPic(ker_p); return small_basis; */ end function; function GetCharpols(ker_basis, pts, basept, uni, p) // input: generators of kernel of reduction mod p // computes D_i - n*basept // output: characteristic polynomial of D_i // TODO: change function input to be divisors and not intseq // we CACHE this in the curve, as this is the most expensive step in the computation C := Curve(basept); basept_div := Divisor(Place(basept)); divs_p := [&+[ker_basis[i,j]*Place(pts[j]) : j in [1..#pts]] : i in [1..#ker_basis]]; divs_p_red := [Reduction(d, basept_div) : d in divs_p]; decomps := [Decomposition(d) : d in divs_p_red]; // assert forall{d : d in decomps | #d eq 1 and d[1,2] eq 1}; minpols := [[MinimalPolynomial(Evaluate(uni,RepresentativePoint(dec[i,1]))) : i in [1..#dec]] : dec in decomps]; charpols := [&*[minpols[j][i]^(decomps[j][i,2]*Degree(decomps[j][i,1]) div Degree(minpols[j][i])) : i in [1..#decomps[j]]] : j in [1..#decomps]]; // dpts := [* RepresentativePoint(d[1,1]) : d in decomps *]; // charpols := [MinimalPolynomial(Evaluate(uni,pt)) : pt in dpts]; for charpol in charpols do coeffs_charpol := Coefficients(charpol); try assert forall{c : c in coeffs_charpol[1..(#coeffs_charpol-1)]| Valuation(c, p) gt 0}; catch e print "ERROR: charpol does not reduce to t^n mod p."; print "Charpol = ", charpol; print "Coefficients", coeffs_charpol[1..(#coeffs_charpol-1)]; print [Valuation(c, p) : c in coeffs_charpol[1..(#coeffs_charpol-1)]]; error e`Object; end try; end for; return charpols; end function; function IsGoodUniformizer(u, basept, p) v := Valuation(u, basept); C := Curve(basept); Cp := ReduceCurveModp(C,p); up := ReduceRationalFunctionModp(u, p); vp := Valuation(up, Cp ! Eltseq(ReducePointModp(basept,p))); if v eq 1 and vp eq 1 then return true; else return false; end if; end function; function GetGoodUniformizer(basept, p) C := Curve(basept); if Type(C) eq CrvHyp then return GoodUniformizerHyp(basept); end if; dim := Dimension(AmbientSpace(C)); Cp := ReduceCurveModp(C,p); RCp<[W]> := AmbientSpace(Cp); RC<[A]> := AmbientSpace(C); FF<[x]> := FunctionField(C); FFp<[b]> := FunctionField(Cp); PolQ<[a]> := PolynomialRing(BaseRing(C), dim); // we reduce the basept modulo p basept_seq := Eltseq(basept); basept_seq := [basept_seq[i]*d where d := LCM([Denominator(basept_seq[j]) : j in [1..dim+1]]): i in [1..dim+1]]; basept_seq := ChangeUniverse(basept_seq, Integers()); basept_modp := Cp ! basept_seq; // find non-zero entry of basept (mod p) for dehomogenization basept_modp_seq := Eltseq(basept_modp); i := 1; while i le #basept_modp_seq do if basept_modp_seq[#basept_modp_seq - i + 1] ne 0 then break; end if; i +:= 1; end while; i := #basept_modp_seq - i + 1; uni := 0; for j in [1..dim+1] do if j eq i then continue j; end if; l_p := (W[j] / W[i]) - (basept_modp[j] / basept_modp[i]); v_p := Valuation(l_p,basept_modp); // assert Valuation(FFp ! l_p, basept_modp) eq v_p; if v_p eq 1 then l := A[j]/A[i] - (basept_seq[j] / basept_seq[i]); assert Valuation(l, basept) eq 1; uni := FF ! l; break j; end if; end for; if uni eq 0 then error "Could not find a good uniformizer"; end if; // clear p-powers from numerator and denominator /* N := Numerator(uni); coeffs_N := Coefficients(N); minN := Min([Valuation(c,p) : c in coeffs_N]); D := Denominator(uni); coeffs_D := Coefficients(D); minD := Min([Valuation(c,p) : c in coeffs_D]); uni := (FF ! (N / p^minN)) / (FF ! (D / p^minD)); */ // sanity checks assert ValuationOfRationalFunction(uni, p) eq 0; assert IsGoodUniformizer(uni, basept, p); return uni; end function; function ExpandWithUniformizer(f, pt, u, z : Precision := 50, Power := 0) assert Valuation(f,pt) ge 0; assert Valuation(u,pt) eq 1; FF := Parent(f); R, m := Completion(FF,Place(pt) : Precision := Precision); ex_f := m(f); leading := Evaluate(ex_f,0); ex_f := ex_f - leading; rev := Reversion(m(u)); return Composition(ex_f, rev) + leading; end function; procedure PrintKillingBasis(killing_basis, DiffForms, p, pAdicPrecision) printf "Basis of forms killing J_1 when reduced modulo p^%o:\n",pAdicPrecision; for i := 1 to #killing_basis do start := true; printf " "; for j := 1 to #DiffForms do c := killing_basis[i,j]; if c ne 0 then if not start then printf " + "; else start := false; end if; if c ne Integers(p^pAdicPrecision)!1 then printf "%o ", c; end if; printf "w_%o", j-1; end if; end for; printf "\n"; end for; end procedure; function BasisOfKillingForms(DiffForms, charpols, basept, uni, p : Precision := 50, targetpAdicPrecision := 5, computationalpAdicPrecision := 5) if targetpAdicPrecision gt computationalpAdicPrecision then computationalpAdicPrecision := targetpAdicPrecision; end if; reciprocal_charpols := [ReciprocalPolynomial(charpol): charpol in charpols]; diff_uni := Differential(uni); diff_forms_funcs := [d/diff_uni : d in DiffForms]; Pws_Q<z> := LaurentSeriesAlgebra(Rationals()); diff_forms_exps := []; for d in diff_forms_funcs do exp_d := ExpandWithUniformizer(d, basept, uni, z : Precision := Precision); Append(~diff_forms_exps, exp_d); end for; powersums := [-z*Evaluate(Derivative(reciprocal_charpol), z) / Evaluate(reciprocal_charpol, z) : reciprocal_charpol in reciprocal_charpols]; logs := [Integral(om) : om in diff_forms_exps]; // print "logs:\n", logs; // TODO: set precision of p-adic field Qp := pAdicField(p : Precision := computationalpAdicPrecision); Pws_Qp<w> := LaurentSeriesAlgebra(Qp); mat := Matrix([[Qp ! Evaluate(Convolution(Evaluate(powersum, w), Evaluate(l,w)),1) : powersum in powersums] : l in logs]) / p; // print "mat:\n", mat; mat_prec := ChangeRing(mat, Bang(Qp, Integers()) * Bang(Integers(), Integers(p^computationalpAdicPrecision))); ker := Kernel(mat_prec); ker_mat_prec := BasisMatrix(ker); expected_dim := #DiffForms - #charpols; d := ElementaryDivisors(ker_mat_prec); if #d gt expected_dim then actual_prec := Valuation(Integers() ! d[expected_dim+1],p); if actual_prec lt targetpAdicPrecision then print "Raising precision by:", targetpAdicPrecision - actual_prec; // TODO::: CHECK!!! return BasisOfKillingForms(DiffForms, charpols, basept, uni, p : Precision := Precision, targetpAdicPrecision := targetpAdicPrecision, computationalpAdicPrecision := 2*computationalpAdicPrecision - actual_prec); end if; end if; ker_mat_prec := ChangeRing(ker_mat_prec, Integers(p^targetpAdicPrecision)); S,A,B := SmithForm(ker_mat_prec); //A*S*B eq ker_mat_prec Binv := B^(-1); ker_rows := [v*Binv : v in S[1..expected_dim]]; return ker_rows, mat; end function; function ChooseGoodBasept(pts, p) assert #pts ge 1; C := Curve(pts[1]); dim := Dimension(AmbientSpace(C)); Cp := ReduceCurveModp(C,p); assert IsNonSingular(Cp); pts_seq := [[pt[i]*d where d := LCM([Denominator(pt[j]) : j in [1..dim+1]]): i in [1..dim+1]] : pt in pts]; pts_seq := [ChangeUniverse(pt, Integers()) : pt in pts_seq]; for pt in pts_seq do if not IsWeierstrassPlace(Place(Cp!pt)) then return C ! pt; end if; end for; error "There are no good base points to choose from :("; end function; procedure PrintDifferentialForms(DiffForms) print "Chosen basis of differential forms for the curve:"; ctr := 0; for w in DiffForms do if ctr eq 0 then printf "w_%o = %o \n", ctr, w; w0 := w; else printf "w_%o = (%o) w_0 \n", ctr, w / w0; end if; ctr +:= 1; end for; end procedure; function GoodBasisOfDifferentials(C, p : DiffForms := []) if DiffForms eq [] then DiffForms := BasisOfHolomorphicDifferentials(C); end if; if Type(C) eq CrvHyp then return BasisOfHolomorphicDifferentials(C); end if; V, m := SpaceOfHolomorphicDifferentials(C); minv := Inverse(m); Cp := ReduceCurveModp(C,p); Vp, mp := SpaceOfHolomorphicDifferentials(Cp); mpinv := Inverse(mp); // sanity check: assert Dimension(sub<V | [minv(d) : d in DiffForms]>) eq Genus(C); Pr<[X]> := AmbientSpace(C); FF := FunctionField(C); x := FF ! (X[1]/X[2]); dx := Differential(x); // we clear any p-powers from numerators and denominators // of the differential forms fixed_diff_forms := []; for d in DiffForms do f := d / dx; v := ValuationOfRationalFunction(f,p); Append(~fixed_diff_forms, p^(-v)*d); end for; diff_vectors := [minv(d) : d in fixed_diff_forms]; diffs_p := [ReduceDifferentialModp(d,p,x) : d in fixed_diff_forms]; diff_p_vectors := [mpinv(d) : d in diffs_p]; while Dimension(sub<Vp | diff_p_vectors>) ne Genus(C) do DiffLatC := FreeAbelianGroup(Genus(C)); DiffLatCp := AbelianGroup([p : x in [1..Genus(C)]]); h := hom<DiffLatC->DiffLatCp | [DiffLatCp ! Eltseq(mpinv(d)) : d in diffs_p]>; new_diff_vec_coordinates := [Eltseq(DiffLatC ! d) : d in OrderedGenerators(Kernel(h)) | not d in p*DiffLatC]; new_diffs := [&+[coord[i]*fixed_diff_forms[i] : i in [1..#coord]] : coord in new_diff_vec_coordinates]; for d in new_diffs do f := d / dx; v := ValuationOfRationalFunction(f,p); d_fixed := p^(-v)*d; Append(~diff_vectors, minv(d_fixed)); end for; L := Lattice(Matrix(diff_vectors)); diff_vectors := [V ! Eltseq(b) : b in Basis(L)]; fixed_diff_forms := []; for dv in diff_vectors do d := m(dv); f := d / dx; v := ValuationOfRationalFunction(f,p); Append(~fixed_diff_forms, p^(-v)*d); end for; diff_vectors := [minv(d) : d in fixed_diff_forms]; diffs_p := [ReduceDifferentialModp(d,p,x) : d in fixed_diff_forms]; diff_p_vectors := [mpinv(d) : d in diffs_p]; end while; return fixed_diff_forms; end function; function ChoosePrecision(g,p : pAdicPrecision := 5) l := 1; while (Ceiling((l*p+1)/g) - Valuation(l*p+1,p)) lt pAdicPrecision do l +:= 1; end while; return l*p + 1; end function; function pAdicCoefficients(x : pAdicPrecision := 5) Zp := Parent(x); p := Prime(Zp); //prec_x := Precision(x); //assert prec_x ge pAdicPrecision; assert Degree(Zp) eq 1; xint := Integers()!x; xint := xint mod p^(pAdicPrecision); intseq := Intseq(xint, Prime(Zp)); // pad intseq with zeros up to precision return intseq cat [0 : i in [1..pAdicPrecision - #intseq - 1]]; end function; function pAdicPrettyPrint(x : pAdicPrecision := 5) Zp := Parent(x); p := Prime(Zp); // prec_x := Precision(x); // assert prec_x ge pAdicPrecision; coeffs := pAdicCoefficients(x : pAdicPrecision := pAdicPrecision); strs := []; for i in [0..pAdicPrecision-2] do c := coeffs[i+1]; if c eq 0 then continue i; end if; case i: when 0: Append(~strs,Sprintf("%o", c)); else if c gt 0 then Append(~strs,"+"); end if; if c ne 1 then Append(~strs,Sprintf("%o*", c)); end if; Append(~strs,Sprintf("%o", p)); if i ne 1 then Append(~strs,Sprintf("^%o", i)); end if; end case; end for; Append(~strs,Sprintf("+O(%o^%o)", p, pAdicPrecision)); return &cat strs; end function; function IsReductionModpSurjective(C,pts,p) Cp := ReduceCurveModp(C, p); rat_pts_Cp := RationalPoints(Cp); pts_mod_p := ReducePointsModp(pts, p); is_surjective := #rat_pts_Cp eq #Set(pts_mod_p); return is_surjective; end function; function GetResidueClasses(C,pts, p) // TODO: move print out of this function Cp := ReduceCurveModp(C, p); ptsCp := RationalPointsModp(C,p); pts_seq := [ConvertPointToIntSeq(pt) : pt in pts]; residue_classes := []; for pt in ptsCp do Append(~residue_classes, []); end for; for pt in pts_seq do pt_modp := Cp ! pt; i := Index(ptsCp, ChangeUniverse(Eltseq(pt_modp), Integers())); Append(~residue_classes[i], C ! pt); end for; printf "These are the residue classes mod %o: \n", p; residue_classes_out := []; for i in [1..#ptsCp] do Append(~residue_classes_out, [*ptsCp[i], residue_classes[i]*]); printf "%o <---", ptsCp[i]; for pt in residue_classes[i] do printf "%o,", pt; end for; printf "\n"; end for; return residue_classes_out; end function; function ZerosOfKillingFormsModp(DiffForms, killing_basis, p, uniformizer) assert #DiffForms ge 1; C := Curve(DiffForms[1]); Cp := ReduceCurveModp(C,p); rat_pts_p := RationalPoints(Cp); FFp := FunctionField(Cp); diff_forms_p := [ReduceDifferentialModp(d,p, uniformizer) : d in DiffForms]; ker_diffs_p := [&+[(FFp ! k[i])*diff_forms_p[i] : i in [1..#DiffForms]] : k in killing_basis]; valuations := [[Valuation(d, Place(pt)) : pt in rat_pts_p] : d in ker_diffs_p]; return valuations; end function; function FindBadResidueClasses(residue_classes, valuations, Cp) bad_residues := [i : i in [1..#residue_classes] | forall{v : v in valuations | #residue_classes[i][2] lt v[i] + 1}]; empty_bad_residues := [Cp ! residue_classes[i][1] : i in bad_residues | #residue_classes[i][2] eq 0]; nonempty_bad_residues := [Cp ! residue_classes[i][1] : i in bad_residues | #residue_classes[i][2] ne 0]; return bad_residues, empty_bad_residues, nonempty_bad_residues; end function; function ExpandAtBadResidueClasses(DiffForms, killing_basis, residue_classes, bad_residues) p := Characteristic(BaseField(Scheme(residue_classes[1][1]))); bad_rc_logs := []; for b in bad_residues do // for now we do not deal with expansion at empty residue classes if #residue_classes[b][2] eq 0 then continue b; end if; basept := residue_classes[b][2][1]; ker_diffs := [&+[(Integers() ! k[i])*DiffForms[i] : i in [1..#DiffForms]] : k in killing_basis]; uni := GetGoodUniformizer(basept, p); diff_uni := Differential(uni); ker_diff_forms_funcs := [d/diff_uni : d in ker_diffs]; Pws_Q<z> := LaurentSeriesAlgebra(pAdicField(p)); exps := []; for d in ker_diff_forms_funcs do exp_d := ExpandWithUniformizer(d, basept, uni, z : Precision := 20); Append(~exps, exp_d); end for; logs := [Integral(om) : om in exps]; Append(~bad_rc_logs, logs); end for; // b in bad_residues return bad_rc_logs; end function; /* HeightBound := 100000; NumberOfGoodPrimes := 5; GoodPrimes := []; DiffForms := []; basept := 0; uni := 0; p := 0; pAdicPrecision := 1; UseReduction := true; */ function ChabautyColeman(C : HeightBound := 10000, NumberOfGoodPrimes := 5, GoodPrimes := [], DiffForms := [], basept := 0, uni := 0, p := 0, // chosen prime for Chabauty Coleman pAdicPrecision := 5, UseReduction := true ) t1 := Cputime(); assert IsCurve(C); assert IsProjective(AmbientSpace(C)); assert IsNonsingular(C); // CleanCurveEqs(~C); // SetUseReduction(~C, UseReduction); dim := Dimension(AmbientSpace(C)); print "Computing genus of curve."; print "I am timing this:"; time g := Genus(C); print "attempting Chabauty Coleman on curve of genus", g; assert g ge 2; printf "\nSearching for rational points up to height %o:\n", HeightBound; print "I am timing this:"; pts := []; if Type(C) eq CrvHyp then //this is needed because the code in the else statement does not work for hyperelliptic curves //maybe the code in the else statement can be removed, I did not check this yet time pts := RationalPoints(C : Bound := HeightBound); else time pts := PointSearch(C, HeightBound); end if; printf "There are %o rational points on C.\n", #pts; assert #pts gt 0; PrintPoints(pts); ngp := NumberOfGoodPrimes; if GoodPrimes eq [] then GoodPrimes := FindGoodPrimes(C, ngp); end if; printf "Using the following good primes for the algorithm:%o\n", GoodPrimes; torsion_bound := JacobianTorsionBound(C, pts, GoodPrimes); print "Torsion bounds for Jacobian:", torsion_bound; rank, principal_gens := FindRankJacobianSubgrp(C, pts, GoodPrimes); try assert rank lt g; catch e error "ERROR: rank >= genus"; end try; // choose prime for Chabauty--Coleman if p eq 0 then CC_prime_idx := 1; p := GoodPrimes[CC_prime_idx]; else CC_prime_idx := Index(GoodPrimes, p); end if; print "Good prime chosen for Chabauty-Coleman:", p; Cp := ReduceCurveModp(C,p); printf "Reduction mod %o is surjective: %o \n", p, IsReductionModpSurjective(C, pts, p); prec := ChoosePrecision(g,p : pAdicPrecision := pAdicPrecision); printf "Precision sufficient to calculate integrals to precision O(p^%o) is: %o\n",pAdicPrecision, prec; if not IsCoercible(C, basept) then basept := ChooseGoodBasept(pts, p); end if; baseptidx := Index(pts, basept); assert baseptidx in [1..#pts]; printf "I chose base point P_%o = %o (reduces to non-Weierstrass point mod %o)\n", baseptidx, basept, p; if uni eq 0 then uni := GetGoodUniformizer(basept, p); end if; printf "Choosing uniformizer at the basepoint %o.\n", basept; print "Searching for the basis of the kernel of reduction J(Q)_known->J(F_p). I am timing this:"; time ker_p_basis := GetKernelModp(C, pts, p, principal_gens); PrintKernelModp(ker_p_basis,p); print "Choosing basis of differential forms..."; if #DiffForms eq 0 then DiffForms := GoodBasisOfDifferentials(C,p); else DiffForms := GoodBasisOfDifferentials(C,p : DiffForms := DiffForms); end if; // PrintDifferentialForms(DiffForms); print "Reducing each D in basis of Kernel to the form SUM(Q_i)-gQ,"; print "and find the characteristic polynomial of the Q_i"; print "This might take a *very* long time. Timing:"; time charpols := GetCharpols(ker_p_basis, pts, basept, uni, p); /* print "Characteristic polynomials for the representative points of the Kernel basis:"; PolQ<x> := PolynomialRing(Rationals()); ctr := 1; charpols_out := []; for pol in charpols do Append(~charpols_out, Evaluate(pol,x)); printf "p_%o(x) = %o \n", ctr, Evaluate(pol, x); ctr +:= 1; end for; */ print "Integrating each differential form and evaluating at the basis elements of the kernel."; print "I am timing this:"; time killing_basis, integration_values := BasisOfKillingForms(DiffForms, charpols, basept, uni, p : Precision := prec, targetpAdicPrecision := pAdicPrecision); print "These are the integration values (each row for a diff form):"; print [[pAdicPrettyPrint(integration_values[i,j]):j in [1..Ncols(integration_values)]] : i in [1..Nrows(integration_values)]]; PrintKillingBasis(killing_basis, DiffForms, p, pAdicPrecision); print "We evaluate each element in the killing forms at points of C(F_p):"; valuations := ZerosOfKillingFormsModp(DiffForms, killing_basis, p, uni); print valuations; residue_classes := GetResidueClasses(C,pts, p); bad_residues, empty_bad_residues, nonempty_bad_residues := FindBadResidueClasses(residue_classes, valuations, Cp); t2 := Cputime(t1); printf "Total CPU time for Chabauty-Coleman: %o \n", t2; if #bad_residues eq 0 then print "Chabauty--Coleman procedure successful!"; return true, pts; end if; return false, C, pts, p, basept, empty_bad_residues, nonempty_bad_residues; end function; function MWsieve(C, pts, p, basept, SievePrimes, EmptyBadResidues) GoodPrimes := [p] cat SievePrimes; mJknownToClprod := MapJknownToClprod(C, pts, GoodPrimes); imageJknownToClprod := Image(mJknownToClprod); mCpProdToClprod := MapCpProdToClprod(C, GoodPrimes, basept); cart := Domain(mCpProdToClprod); cart_subset := [x : x in cart | x[1] in EmptyBadResidues]; to_intersection := [x : x in cart_subset | mCpProdToClprod(x) in imageJknownToClprod]; return #to_intersection eq 0; end function; // We can try to get better expansions at the bad residue classes if they are non-empty // logs_at_bad_residues := ExpandAtBadResidueClasses(DiffForms, killing_basis, residue_classes, bad_residues); // return logs_at_bad_residues;
github
wishcow79/chabauty-master
curve_funcs.m
.m
chabauty-master/curve_funcs.m
3,066
utf_8
2f2961d2842f7249a58e7852b8b820f7
/* TODO: Brute reduction might fail if coefficients are not integers */ load "cache.m"; function ReduceCurveModp(C,p : saturate := true) // intrinsic ReduceCurveModp(C::Crv,p::RngIntElt : saturate := true) -> Crv //{Reduce curve modulo p. This function also caches the reduced curve Cp in the curve C} // input checks: assert IsCurve(C); assert IsPrime(p); if IsArrayCached(C,"Cp",p) then return GetArrayCache(C,"Cp",p); end if; if not Type(C) eq CrvHyp and saturate then Cp := Curve(Reduction(C, p)); // Reduction uses saturation else if Type(C) eq CrvHyp then S := ChangeRing(C, GF(p)); else S := BaseChange(C, Bang(Rationals(), GF(p))); end if; if IsCurve(S) then Cp := Curve(S); else error "reduction modulo p is not a curve."; end if; end if; SetArrayCache(C,"Cp",p,Cp); return Cp; end function; function PrimesOfBadReduction(C) /* Find primes of bad reduction for a projective nonsingular curve */ assert IsCurve(C); assert BaseField(C) eq Rationals(); assert IsProjective(C); ambientC := AmbientSpace(C); dimC := Dimension(ambientC); definingC := DefiningEquations(C); definingC := [ClearDenominators(q) : q in definingC]; PZ<[a]> := PolynomialRing(Integers(), dimC); // for each standard affine patch generate the elimination ideal eqnss := [[Evaluate(q, a[1..j-1] cat [1] cat a[j..dimC]) : q in definingC] : j in [1..(dimC+1)]]; reslist := []; for eqns in eqnss do dermat := Matrix([[Derivative(q,i) : i in [1..dimC]] : q in eqns]); minors := Minors(dermat,dimC-1); I := ideal<PZ | eqns, minors>; elim := EliminationIdeal(I, {}); Append(~reslist, Integers()!Basis(elim)[1]); end for; badprimes := &join{Set(PrimeDivisors(b)) : b in reslist}; return badprimes; end function; function IsPrimeOfBadReduction(C,p) try Cp := ReduceCurveModp(C, p); FF := FunctionField(Cp); catch err return true; end try; return not IsNonsingular(Cp); end function; function FindGoodPrimes(C, ngp) p := 3; good_primes := []; while #good_primes lt ngp do if not IsPrimeOfBadReduction(C,p) then Append(~good_primes, p); end if; p := NextPrime(p); end while; return good_primes; end function; function RationalPointsModp(C, p) if "rat_pts_mod_p" in GetAttributes(Type(C)) and assigned C`rat_pts_mod_p and IsDefined(C`rat_pts_mod_p, p) then return C`rat_pts_mod_p[p]; end if; Cp := ReduceCurveModp(C, p); rat_pts := RationalPoints(Cp); if not "rat_pts_mod_p" in GetAttributes(Type(C)) then AddAttribute(Type(C), "rat_pts_mod_p"); end if; if not assigned C`rat_pts_mod_p then C`rat_pts_mod_p := []; end if; rat_pts := [ChangeUniverse(Eltseq(pt), Integers()) : pt in rat_pts]; C`rat_pts_mod_p[p] := rat_pts; return rat_pts; end function;
github
wishcow79/chabauty-master
hyperelliptic.m
.m
chabauty-master/hyperelliptic.m
691
utf_8
9f71c58a5272ea55c12225b5bd0faff6
function GoodBasisOfDifferentialsHyp(H) // it turns out magma creates the same basis, I will leave it here as backup.... g := Genus(H); FF<x,y> := FunctionField(H); dx := Differential(x); w := dx/y; diff_basis := [w*x^(i-1) : i in [1..g]]; return diff_basis; end function; function GoodUniformizerHyp(basept) H := Curve(basept); FF<x,y> := FunctionField(H); g := Genus(H); if basept[3] eq 0 then s := basept[2]; if s eq 0 then return (FF ! (y/x^(g+1))); else return (FF ! (1/x)); end if; else a := basept[1] / basept[3]; b := basept[1] / (basept[3]^(g+1)); if b ne 0 then return (FF ! (x-a)); else return (FF ! y); end if; end if; end function;
github
wishcow79/chabauty-master
pcontent.m
.m
chabauty-master/pcontent.m
1,425
utf_8
448baf351825722596703759347ee7ad
/* TODO: improve documentation TODO: what if I is not p-saturated? TODO: what if F is in I? Do we have infinite loop? No, it crashes on ExactQuotient. Given a polynomial with integer coefficients, a prime p, and an ideal I, we can reduce the polynomial modulo I. We might then get a polynomial which has p-content, i.e. when reduced modulo p, we get 0. This function removes the p-content, and returns the content and the content-less polynomial. */ // intrinsic pContentModI(F::RngMPolElt, p::RngIntElt, I::RngMPol) -> RngIntElt, RngMPolElt // {Return pPrimitive part and pContent of the multivariate polynomial F modulo ideal I} function pContentModI(F, p, I) assert F ne 0; RZ := Generic(I); assert BaseRing(RZ) eq Integers(); Rp := ChangeRing(RZ, GF(p)); gens_I := Generators(I); gens_Ip := [Rp ! g : g in gens_I]; // we want the generators of Ip to be the generators of I, reduced modulo p. // There might be a problem here that I might not be saturated, and then we get Ip := IdealWithFixedBasis(gens_Ip); Fp := Rp ! F; coeff := 1; while Fp in Ip do Fp_coords := Coordinates(Ip, Fp); fixF := &+[gens_I[i]*(RZ ! Fp_coords[i]) : i in [1..#Fp_coords]]; F -:= fixF; contentF := Content(F); coeff *:= contentF; F := ExactQuotient(F , contentF); Fp := Rp ! F; end while; return coeff,F; end function;
github
yonghenglh6/minicaffe-master
classification_demo.m
.m
minicaffe-master/matlab/demo/classification_demo.m
5,466
utf_8
45745fb7cfe37ef723c307dfa06f1b97
function [scores, maxlabel] = classification_demo(im, use_gpu) % [scores, maxlabel] = classification_demo(im, use_gpu) % % Image classification demo using BVLC CaffeNet. % % IMPORTANT: before you run this demo, you should download BVLC CaffeNet % from Model Zoo (http://caffe.berkeleyvision.org/model_zoo.html) % % **************************************************************************** % For detailed documentation and usage on Caffe's Matlab interface, please % refer to the Caffe Interface Tutorial at % http://caffe.berkeleyvision.org/tutorial/interfaces.html#matlab % **************************************************************************** % % input % im color image as uint8 HxWx3 % use_gpu 1 to use the GPU, 0 to use the CPU % % output % scores 1000-dimensional ILSVRC score vector % maxlabel the label of the highest score % % You may need to do the following before you start matlab: % $ export LD_LIBRARY_PATH=/opt/intel/mkl/lib/intel64:/usr/local/cuda-5.5/lib64 % $ export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libstdc++.so.6 % Or the equivalent based on where things are installed on your system % and what versions are installed. % % Usage: % im = imread('../../examples/images/cat.jpg'); % scores = classification_demo(im, 1); % [score, class] = max(scores); % Five things to be aware of: % caffe uses row-major order % matlab uses column-major order % caffe uses BGR color channel order % matlab uses RGB color channel order % images need to have the data mean subtracted % Data coming in from matlab needs to be in the order % [width, height, channels, images] % where width is the fastest dimension. % Here is the rough matlab code for putting image data into the correct % format in W x H x C with BGR channels: % % permute channels from RGB to BGR % im_data = im(:, :, [3, 2, 1]); % % flip width and height to make width the fastest dimension % im_data = permute(im_data, [2, 1, 3]); % % convert from uint8 to single % im_data = single(im_data); % % reshape to a fixed size (e.g., 227x227). % im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % % subtract mean_data (already in W x H x C with BGR channels) % im_data = im_data - mean_data; % If you have multiple images, cat them with cat(4, ...) % Add caffe/matlab to your Matlab search PATH in order to use matcaffe if exist('../+caffe', 'dir') addpath('..'); else error('Please run this demo from caffe/matlab/demo'); end % Set caffe mode if exist('use_gpu', 'var') && use_gpu caffe.set_mode_gpu(); gpu_id = 0; % we will use the first gpu in this demo caffe.set_device(gpu_id); else caffe.set_mode_cpu(); end % Initialize the network using BVLC CaffeNet for image classification % Weights (parameter) file needs to be downloaded from Model Zoo. model_dir = '../../models/bvlc_reference_caffenet/'; net_model = [model_dir 'deploy.prototxt']; net_weights = [model_dir 'bvlc_reference_caffenet.caffemodel']; phase = 'test'; % run with phase test (so that dropout isn't applied) if ~exist(net_weights, 'file') error('Please download CaffeNet from Model Zoo before you run this demo'); end % Initialize a network net = caffe.Net(net_model, net_weights, phase); if nargin < 1 % For demo purposes we will use the cat image fprintf('using caffe/examples/images/cat.jpg as input image\n'); im = imread('../../examples/images/cat.jpg'); end % prepare oversampled input % input_data is Height x Width x Channel x Num tic; input_data = {prepare_image(im)}; toc; % do forward pass to get scores % scores are now Channels x Num, where Channels == 1000 tic; % The net forward function. It takes in a cell array of N-D arrays % (where N == 4 here) containing data of input blob(s) and outputs a cell % array containing data from output blob(s) scores = net.forward(input_data); toc; scores = scores{1}; scores = mean(scores, 2); % take average scores over 10 crops [~, maxlabel] = max(scores); % call caffe.reset_all() to reset caffe caffe.reset_all(); % ------------------------------------------------------------------------ function crops_data = prepare_image(im) % ------------------------------------------------------------------------ % caffe/matlab/+caffe/imagenet/ilsvrc_2012_mean.mat contains mean_data that % is already in W x H x C with BGR channels d = load('../+caffe/imagenet/ilsvrc_2012_mean.mat'); mean_data = d.mean_data; IMAGE_DIM = 256; CROPPED_DIM = 227; % Convert an image returned by Matlab's imread to im_data in caffe's data % format: W x H x C with BGR channels im_data = im(:, :, [3, 2, 1]); % permute channels from RGB to BGR im_data = permute(im_data, [2, 1, 3]); % flip width and height im_data = single(im_data); % convert from uint8 to single im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % resize im_data im_data = im_data - mean_data; % subtract mean_data (already in W x H x C, BGR) % oversample (4 corners, center, and their x-axis flips) crops_data = zeros(CROPPED_DIM, CROPPED_DIM, 3, 10, 'single'); indices = [0 IMAGE_DIM-CROPPED_DIM] + 1; n = 1; for i = indices for j = indices crops_data(:, :, :, n) = im_data(i:i+CROPPED_DIM-1, j:j+CROPPED_DIM-1, :); crops_data(:, :, :, n+5) = crops_data(end:-1:1, :, :, n); n = n + 1; end end center = floor(indices(2) / 2) + 1; crops_data(:,:,:,5) = ... im_data(center:center+CROPPED_DIM-1,center:center+CROPPED_DIM-1,:); crops_data(:,:,:,10) = crops_data(end:-1:1, :, :, 5);
github
solin319/incubator-mxnet-master
parse_json.m
.m
incubator-mxnet-master/matlab/+mxnet/private/parse_json.m
19,095
utf_8
2d934e0eae2779e69f5c3883b8f89963
function data = parse_json(fname,varargin) %PARSE_JSON parse a JSON (JavaScript Object Notation) file or string % % Based on jsonlab (https://github.com/fangq/jsonlab) created by Qianqian Fang. Jsonlab is lisonced under BSD or GPL v3. global pos inStr len esc index_esc len_esc isoct arraytoken if(regexp(fname,'^\s*(?:\[.+\])|(?:\{.+\})\s*$','once')) string=fname; elseif(exist(fname,'file')) try string = fileread(fname); catch try string = urlread(['file://',fname]); catch string = urlread(['file://',fullfile(pwd,fname)]); end end else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); if(jsonopt('ShowProgress',0,opt)==1) opt.progressbar_=waitbar(0,'loading ...'); end jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(isfield(opt,'progressbar_')) close(opt.progressbar_); end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; if next_char ~= '}' while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end parse_char(':'); val = parse_value(varargin{:}); object.(valid_field(str))=val; if next_char == '}' break; end parse_char(','); end end parse_char('}'); if(isstruct(object)) object=struct2jdata(object); end %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim2=[]; arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:}); pbar=-1; if(isfield(varargin{1},'progressbar_')) pbar=varargin{1}.progressbar_; end if next_char ~= ']' if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:})) [endpos, e1l, e1r]=matching_bracket(inStr,pos); arraystr=['[' inStr(pos:endpos)]; arraystr=regexprep(arraystr,'"_NaN_"','NaN'); arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf'); arraystr(arraystr==sprintf('\n'))=[]; arraystr(arraystr==sprintf('\r'))=[]; %arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D astr=inStr((e1l+1):(e1r-1)); astr=regexprep(astr,'"_NaN_"','NaN'); astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf'); astr(astr==sprintf('\n'))=[]; astr(astr==sprintf('\r'))=[]; astr(astr==' ')=''; if(isempty(find(astr=='[', 1))) % array is 2D dim2=length(sscanf(astr,'%f,',[1 inf])); end else % array is 1D astr=arraystr(2:end-1); astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]); if(nextidx>=length(astr)-1) object=obj; pos=endpos; parse_char(']'); return; end end if(~isempty(dim2)) astr=arraystr; astr(astr=='[')=''; astr(astr==']')=''; astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf); if(nextidx>=length(astr)-1) object=reshape(obj,dim2,numel(obj)/dim2)'; pos=endpos; parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end return; end end arraystr=regexprep(arraystr,'\]\s*,','];'); else arraystr='['; end try if(isoct && regexp(arraystr,'"','once')) error('Octave eval can produce empty cells for JSON-like input'); end object=eval(arraystr); pos=endpos; catch while 1 newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1); val = parse_value(newopt); object{end+1} = val; if next_char == ']' break; end parse_char(','); end end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ismatrix(object)) object=object'; end catch end end parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len pos=skip_whitespace(pos,inStr,len); if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; pos=skip_whitespace(pos,inStr,len); end %%------------------------------------------------------------------------- function c = next_char global pos inStr len pos=skip_whitespace(pos,inStr,len); if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function newpos=skip_whitespace(pos,inStr,len) newpos=pos; while newpos <= len && isspace(inStr(newpos)) newpos = newpos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr len esc index_esc len_esc % len, ns = length(inStr), keyboard if inStr(pos) ~= '"' error_pos('String starting with " expected at position %d'); else pos = pos + 1; end str = ''; while pos <= len while index_esc <= len_esc && esc(index_esc) < pos index_esc = index_esc + 1; end if index_esc > len_esc str = [str inStr(pos:len)]; pos = len + 1; break; else str = [str inStr(pos:esc(index_esc)-1)]; pos = esc(index_esc); end nstr = length(str); switch inStr(pos) case '"' pos = pos + 1; if(~isempty(str)) if(strcmp(str,'_Inf_')) str=Inf; elseif(strcmp(str,'-_Inf_')) str=-Inf; elseif(strcmp(str,'_NaN_')) str=NaN; end end return; case '\' if pos+1 > len error_pos('End of file reached right after escape character'); end pos = pos + 1; switch inStr(pos) case {'"' '\' '/'} str(nstr+1) = inStr(pos); pos = pos + 1; case {'b' 'f' 'n' 'r' 't'} str(nstr+1) = sprintf(['\' inStr(pos)]); pos = pos + 1; case 'u' if pos+4 > len error_pos('End of file reached in escaped unicode character'); end str(nstr+(1:6)) = inStr(pos-1:pos+4); pos = pos + 5; end otherwise % should never happen str(nstr+1) = inStr(pos); keyboard; pos = pos + 1; end end error_pos('End of file while expecting end of inStr'); %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr isoct currstr=inStr(pos:min(pos+30,end)); if(isoct~=0) numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end'); [num] = sscanf(currstr, '%f', 1); delta=numstr+1; else [num, one, err, delta] = sscanf(currstr, '%f', 1); if ~isempty(err) error_pos('Error reading number at position %d'); end end pos = pos + delta-1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len if(isfield(varargin{1},'progressbar_')) waitbar(pos/len,varargin{1}.progressbar_,'loading ...'); end switch(inStr(pos)) case '"' val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); return; case {'-','0','1','2','3','4','5','6','7','8','9'} val = parse_number(varargin{:}); return; case 't' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true') val = true; pos = pos + 4; return; end case 'f' if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false') val = false; pos = pos + 5; return; end case 'n' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null') val = []; pos = pos + 4; return; end end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end function opt=varargin2struct(varargin) % % opt=varargin2struct('param1',value1,'param2',value2,...) % or % opt=varargin2struct(...,optstruct,...) % % convert a series of input parameters into a structure % % input: % 'param', value: the input parameters should be pairs of a string and a value % optstruct: if a parameter is a struct, the fields will be merged to the output struct % % output: % opt: a struct where opt.param1=value1, opt.param2=value2 ... % len=length(varargin); opt=struct; if(len==0) return; end i=1; while(i<=len) if(isstruct(varargin{i})) opt=mergestruct(opt,varargin{i}); elseif(ischar(varargin{i}) && i<len) opt=setfield(opt,lower(varargin{i}),varargin{i+1}); i=i+1; else error('input must be in the form of ...,''name'',value,... pairs or structs'); end i=i+1; end function val=jsonopt(key,default,varargin) % % val=jsonopt(key,default,optstruct) % % setting options based on a struct. The struct can be produced % by varargin2struct from a list of 'param','value' pairs % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % % $Id: loadjson.m 371 2012-06-20 12:43:06Z fangq $ % % input: % key: a string with which one look up a value from a struct % default: if the key does not exist, return default % optstruct: a struct where each sub-field is a key % % output: % val: if key exists, val=optstruct.key; otherwise val=default % val=default; if(nargin<=2) return; end opt=varargin{1}; if(isstruct(opt)) if(isfield(opt,key)) val=getfield(opt,key); elseif(isfield(opt,lower(key))) val=getfield(opt,lower(key)); end end function s=mergestruct(s1,s2) % % s=mergestruct(s1,s2) % % merge two struct objects into one % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % date: 2012/12/22 % % input: % s1,s2: a struct object, s1 and s2 can not be arrays % % output: % s: the merged struct object. fields in s1 and s2 will be combined in s. if(~isstruct(s1) || ~isstruct(s2)) error('input parameters contain non-struct'); end if(length(s1)>1 || length(s2)>1) error('can not merge struct arrays'); end fn=fieldnames(s2); s=s1; for i=1:length(fn) s=setfield(s,fn{i},getfield(s2,fn{i})); end function newdata=struct2jdata(data,varargin) % % newdata=struct2jdata(data,opt,...) % % convert a JData object (in the form of a struct array) into an array % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % % input: % data: a struct array. If data contains JData keywords in the first % level children, these fields are parsed and regrouped into a % data object (arrays, trees, graphs etc) based on JData % specification. The JData keywords are % "_ArrayType_", "_ArraySize_", "_ArrayData_" % "_ArrayIsSparse_", "_ArrayIsComplex_" % opt: (optional) a list of 'Param',value pairs for additional options % The supported options include % 'Recursive', if set to 1, will apply the conversion to % every child; 0 to disable % % output: % newdata: the covnerted data if the input data does contain a JData % structure; otherwise, the same as the input. % % examples: % obj=struct('_ArrayType_','double','_ArraySize_',[2 3], % '_ArrayIsSparse_',1 ,'_ArrayData_',null); % ubjdata=struct2jdata(obj); fn=fieldnames(data); newdata=data; len=length(data); if(jsonopt('Recursive',0,varargin{:})==1) for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=double(data(j).x0x5F_ArraySize_); if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end
github
mattwang44/Human-Motion-Analysis-MATLAB-master
PolyDer.m
.m
Human-Motion-Analysis-MATLAB-master/Week04/PolyDer.m
1,310
utf_8
c40e41cc2fdc02e6446f97347cedabfc
function dp = PolyDer( p, dorder ) % the function the coefficients of polynmial with dth-order of derivation. % p: coefficient of original polynomial (power down) [(n+1) x 1] % dorder: order of derivation [1 x 1] / [1 x N] % dp: coefficient of derivative polynomial (power down) [(n+1-dorder) x 1] % E.g. % >> PolyDer( 1:7, 0:7) % % ans = % % 1 2 3 4 5 6 7 % 0 6 10 12 12 10 6 % 0 0 30 40 36 24 10 % 0 0 0 120 120 72 24 % 0 0 0 0 360 240 72 % 0 0 0 0 0 720 240 % 0 0 0 0 0 0 720 % 0 0 0 0 0 0 0 if ~isequal(size(p,1),1) || ~isequal(ndims(p),2) warning('p should be the format of [1 x n]. Modified automatically.') p = reshape(p, 1, []); end if ~isequal(size(dorder,1), size(dorder,2), 1) d = dorder(:); dp = zeros(length(d), size(p,2)); for i = 1:length(d) dp(i,d(i)+1:size(p,2)) = derivation( p, d(i) ); end else dp = derivation( p, dorder ); end function np = derivation( p, d ) n = length(p); if d == 0 np = p; return elseif d >= n np = 0; return end sq = fliplr(d:n-1); np = p(1:n-d); for i = 1:d np = np .* (sq - i + 1); end
github
mattwang44/Human-Motion-Analysis-MATLAB-master
HW10.m
.m
Human-Motion-Analysis-MATLAB-master/Week10/HW10.m
7,835
utf_8
08385326d06f16ba999a3d2e8bad3fff
%% % Computer Methods in Human Motion Analysis 2017 -- HW9 % Matlab Version: MATLAB R2017a % Operating System Ubuntu (Linux) % Student: Wei-hsiang Wang % Department: Mechanical Engineering % Student ID: R05522625 addpath(genpath(fileparts(cd))) % adding all hw directory to PATH. %% Initialization clc; clearvars; close all; %% variables smprate = 120; Mass = 73.5; %kg g = 9.81; LL = 0.85; %m load('subcali.mat') %% Ms InterASIS = sqrt(sum((RASI - LASI).^2, 2)); lHipLoc = InterASIS .* [-.19 -.3 -.36]; rHipLoc = InterASIS .* [-.19 -.3 .36]; [rRg2p, ~, ~] = CoordPelvis(cat(3, LASI, RPSI, RASI), 'r', {'LASI', 'RPSI', 'RASI'}); [lRg2p, ~, ~] = CoordPelvis(cat(3, LASI, LPSI, RASI), 'l', {'LASI', 'LPSI', 'RASI'}); lHip = (RASI + LASI)/2 + lHipLoc * lRg2p; rHip = (RASI + LASI)/2 + rHipLoc * rRg2p; lKnee = (LLFC+LMFC)/2; rKnee = (RLFC+RMFC)/2; lAnkle = (LLMA+LMMA)/2; rAnkle = (RLMA+RMMA)/2; CoordP = cat(3, lHip, rHip, lKnee, rKnee, lAnkle, rAnkle); CoordD = cat(3, CoordP(:,:,3:end), LBTO, RBTO); [ Ms, Is ] = LLInertia( Mass, CoordP, CoordD); Is = Is / 1000000; % kg mm^2 -> kg m^2 Ms = Ms(:); %% dH load('DataQ1.mat') lRg2t = CoordThigh(cat(3, LLFC, LTRO, LMFC), 'l', {'LLFC', 'LTRO', 'LMFC'}); rRg2t = CoordThigh(cat(3, RTRO, RMFC, RLFC), 'r', {'RTRO', 'RMFC', 'RLFC'}); lRg2s = CoordShank(cat(3, LTT, LLMA, LMMA, LSHA), 'l', {'LTT', 'LLMA', 'LMMA', 'LSHA'}); rRg2s = CoordShank(cat(3, RTT, RSHA, RLMA, RMMA), 'r', {'RTT', 'RSHA', 'RLMA', 'RMMA'}); lRg2f = CoordFoot(cat(3, LHEE, LTOE, LFOO), 'l', {'LHEE', 'LTOE', 'LFOO'}); rRg2f = CoordFoot(cat(3, RFOO, RHEE, RTOE), 'r', {'RFOO', 'RHEE', 'RTOE'}); AllLimbRg2l = cat(4, lRg2t, rRg2t, lRg2s, rRg2s, lRg2f, rRg2f); [ AngVel, AngAcc ] = Rot2LocalAngularEP( AllLimbRg2l, smprate ); [ H, dH ] = AngularMomentum( Is, AngVel, AngAcc ); %% segmentCOMAcc, rCOM2P, rCOM2D % nCOP Fthd = 5; Mthd = 80; fpF_local1 = [AVGfilt(Fx1, Fthd) AVGfilt(Fy1, Fthd), AVGfilt(Fz1, Fthd)]; fpF_local2 = [AVGfilt(Fx2, Fthd) AVGfilt(Fy2, Fthd), AVGfilt(Fz2, Fthd)]; % fpF_local1 = [Fx1,Fy1,Fz1]; % fpF_local2 = [Fx2,Fy2,Fz2]; fpM_local1 = [AVGfilt(Mx1, Mthd) AVGfilt(My1, Mthd), AVGfilt(Mz1, Mthd)]; fpM_local2 = [AVGfilt(Mx2, Mthd) AVGfilt(My2, Mthd), AVGfilt(Mz2, Mthd)]; corners1 = [0, 508, 0;... 464, 508, 0;... 464, 0, 0;... 0, 0, 0]; corners2 = [464, 511, 0;... 0, 511, 0;... 0, 1019, 0;... 464, 1019, 0]; Vfp2tc1 = [ -0.156, 0.995, -43.574 ]; Vfp2tc2 = [ 0.195, 1.142, -41.737 ]; fpF_local = cat(3, fpF_local1, fpF_local2); fpM_local = cat(3, fpM_local1, fpM_local2); corners = cat(3, corners1, corners2); Vfp2tc = cat(1, Vfp2tc1, Vfp2tc2); Pz = Vfp2tc(:,3).'; [ gCOP1, fpFg1, Rg2fp1, Vg2fp1 ] = ForcePlate( fpF_local1, fpM_local1, corners1, Vfp2tc1, Pz(1) ); [ gCOP2, fpFg2, Rg2fp2, Vg2fp2 ] = ForcePlate( fpF_local2, fpM_local2, corners2, Vfp2tc2, Pz(2) ); [ gCOP, nCOP, fpFg, Rg2fp, Vg2fp ] = ForcePlateN( fpF_local, fpM_local, corners, Vfp2tc, Pz ); fpMg1 = fpM_local1*Rg2fp1.'; %fpMg1(isnan(fpMg1)) = 0; fpMg2 = fpM_local2*Rg2fp2.'; %fpMg2(isnan(fpMg2)) = 0; % COM of lower limb LKnee = (LLFC + LMFC)/2; RKnee = (RLFC + RMFC)/2; ProxLL = cat(3, LTRO, RTRO, LKnee, RKnee, LLMA, RLMA); DistLL = cat(3, LKnee, RKnee, LMMA, RMMA, LBTO, RBTO); w = reshape(repmat([.433 .433 .5],2,1),1,1,[]); COMLL = w .* DistLL + (1-w) .* ProxLL; % Joint center of lower limb InterASIS = sqrt(sum((RASI - LASI).^2, 2));%nx1 lHipLoc = permute(InterASIS .* [-.19 -.3 -.36], [2 3 1]); rHipLoc = permute(InterASIS .* [-.19 -.3 .36], [2 3 1]); [rRg2p, ~, ~] = CoordPelvis(cat(3, LASI, RPSI, RASI), 'r', {'LASI', 'RPSI', 'RASI'}); [lRg2p, ~, ~] = CoordPelvis(cat(3, LASI, LPSI, RASI), 'l', {'LASI', 'LPSI', 'RASI'}); LLJC = cat(4, cat(3, (RASI + LASI)/2 + permute(mtimesx(lRg2p,lHipLoc), [3 1 2]), ...%left hip (RASI + LASI)/2 + permute(mtimesx(rRg2p,rHipLoc), [3 1 2]))... %right hip ,cat(3, (LLFC+LMFC)/2, (RLFC+RMFC)/2)...%knee ,cat(3, (LLMA+LMMA)/2, (RLMA+RMMA)/2));%ankle [ rCOM2P, rCOM2D, segCOMAcc ] = LLCOM2PD( COMLL, LLJC, nCOP, smprate ); rCOP2P = cat(3, rCOM2P(:,:,:,1), rCOM2P(:,:,:,2), rCOM2P(:,:,:,3)); rCOP2D = cat(3, rCOM2D(:,:,:,1), rCOM2D(:,:,:,2), rCOM2D(:,:,:,3)); segCOMAcc = cat(3, segCOMAcc(:,:,:,1), segCOMAcc(:,:,:,2), segCOMAcc(:,:,:,3)); %% Force & Moment of segments segCOMAcc = segCOMAcc/1000; % mm/sec^2 -> m/sec^2 Fd_fp = cat(3, fpFg2, fpFg1); % N Md_fp = cat(3, fpMg2, fpMg1)/1000; % Nmm -> Nm %%%????????????????????????????????????????????? /1000 ?????????????????????????????????????????????? rCOM2P = rCOM2P/1000; % mm -> m rCOM2D = rCOM2D/1000; % mm -> m [ Fp_local_Ak, Mp_local_Ak, Fp_Ak, Mp_Ak ] = JointForceMoment( AllLimbRg2l(:,:,:,5:6), Ms(5:6), segCOMAcc(:,:,5:6), dH(:,:,5:6), rCOM2P(:,:,5:6), rCOM2D(:,:,5:6), Fd_fp, 0); [ Fp_local_Kn, Mp_local_Kn, Fp_Kn, Mp_Kn ] = JointForceMoment( AllLimbRg2l(:,:,:,3:4), Ms(3:4), segCOMAcc(:,:,3:4), dH(:,:,3:4), rCOM2P(:,:,3:4), rCOM2D(:,:,3:4), -Fp_Ak, -Mp_Ak ); [ Fp_local_Hp, Mp_local_Hp, Fp_Hp, Mp_Hp ] = JointForceMoment( AllLimbRg2l(:,:,:,1:2), Ms(1:2), segCOMAcc(:,:,1:2), dH(:,:,1:2), rCOM2P(:,:,1:2), rCOM2D(:,:,1:2), -Fp_Kn, -Mp_Kn ); Fp_local = cat(4, Fp_local_Hp, Fp_local_Kn, Fp_local_Ak); Mp_local = cat(4, Mp_local_Hp, Mp_local_Kn, Mp_local_Ak); %% plotting % F = figure('Name','Force Applied at the Lower Limb Joints', 'NumberTitle','off','position',[0 50 1680 750]); % M = figure('Name','Moment Applied at the Lower Limb Joints', 'NumberTitle','off','position',[0 50 1680 750]); dirname = {'Anterior(+)/Posteriro(-)','Superior(+)/Inferior(-)','Lateral(+)/Medial(-)'}; artiname = {'Hip','Knee','Ankle'}; %open Joint_Force.fig; for i = 1:3 for j = 1:3 figure(1) subplot(3,3,(i-1)*3+j) hold on if j == 3 data = cat(3,-Fp_local(:,j,1,i), Fp_local(:,j,2,i))/Mass/g; else data = cat(3, Fp_local(:,j,1,i), Fp_local(:,j,2,i))/Mass/g; end if i == 1 title(dirname(j)) end if j == 1 ylabel([artiname{i},' (N/BW)']) end xlim([0 159]) ylim([min(data(:)) max(data(:))]) hold on a=plot(1:159,data(:,:,1,:),'b'); b=plot(1:159,data(:,:,2,:),'r'); legend([a; b], {'Left','Right'}); end end figure %open Joint_Moment.fig; dirname = {'Abd(+)/Adduction(-)','Internal(+)/External(-) rotation','Flex(+)/Extension(-)'}; for i = 1:3 for j = 1:3 subplot(3,3,(i-1)*3+j) hold on if j == 1 data = cat(3, Mp_local(:,j,1,i), -Mp_local(:,j,2,i))/Mass/g/LL; end if j == 2 data = cat(3, -Mp_local(:,j,1,i), Mp_local(:,j,2,i))/Mass/g/LL; end if j == 3 data = cat(3, Mp_local(:,j,1,i), Mp_local(:,j,2,i))/Mass/g/LL; if i == 2 data = cat(3, -Mp_local(:,j,1,i), -Mp_local(:,j,2,i))/Mass/g/LL; end end % if j >0 % data = cat(3, Mp_local(:,j,1,i), Mp_local(:,j,2,i))/Mass/g/LL; % end if i == 1 title(dirname(j)) end if j == 1 ylabel([artiname{i},' (Nm/BW/LL)']) end xlim([0 159]) ylim([min(data(:)) max(data(:))]) hold on a=plot(1:159,data(:,:,1,:),'b'); b=plot(1:159,data(:,:,2,:),'r'); legend([a; b], {'Left','Right'}); end end % open Joint_Moment.fig; % close all function [ Xf ]= AVGfilt( X, thd) % Function: offset the data to eliminate the means of error and the data % with absolute values under the threshold. % thd : threshold s = size(X); Is = abs(X)<thd; Xf = X - mean(X(Is)); Xf(Is)=0; end
github
mattwang44/Human-Motion-Analysis-MATLAB-master
final.m
.m
Human-Motion-Analysis-MATLAB-master/final/final.m
7,794
utf_8
a3dacda01fae3fa94fbb812defde78cd
%% % Computer Methods in Human Motion Analysis 2017 -- HW9 % Matlab Version: MATLAB R2017a % Operating System Ubuntu (Linux) % Student: Wei-hsiang Wang % Department: Mechanical Engineering % Student ID: R05522625 addpath(genpath(fileparts(cd))) % adding all hw directory to PATH. %% Initialization clc; clearvars; close all; %% variables load('subcali.mat') %% Ms InterASIS = sqrt(sum((RASI - LASI).^2, 2)); lHipLoc = InterASIS .* [-.19 -.3 -.36]; rHipLoc = InterASIS .* [-.19 -.3 .36]; [rRg2p, ~, ~] = CoordPelvis(cat(3, LASI, RPSI, RASI), 'r', {'LASI', 'RPSI', 'RASI'}); [lRg2p, ~, ~] = CoordPelvis(cat(3, LASI, LPSI, RASI), 'l', {'LASI', 'LPSI', 'RASI'}); lHip = (RASI + LASI)/2 + lHipLoc * lRg2p; rHip = (RASI + LASI)/2 + rHipLoc * rRg2p; lKnee = (LLFC+LMFC)/2; rKnee = (RLFC+RMFC)/2; lAnkle = (LLMA+LMMA)/2; rAnkle = (RLMA+RMMA)/2; CoordP = cat(3, lHip, rHip, lKnee, rKnee, lAnkle, rAnkle); CoordD = cat(3, CoordP(:,:,3:end), LBTO, RBTO); [ Ms, Is ] = LLInertia( Mass, CoordP, CoordD); Is = Is / 1000000; % kg mm^2 -> kg m^2 Ms = Ms(:); %% dH load('DataQ1.mat') lRg2t = CoordThigh(cat(3, LLFC, LTRO, LMFC), 'l', {'LLFC', 'LTRO', 'LMFC'}); rRg2t = CoordThigh(cat(3, RTRO, RMFC, RLFC), 'r', {'RTRO', 'RMFC', 'RLFC'}); lRg2s = CoordShank(cat(3, LTT, LLMA, LMMA, LSHA), 'l', {'LTT', 'LLMA', 'LMMA', 'LSHA'}); rRg2s = CoordShank(cat(3, RTT, RSHA, RLMA, RMMA), 'r', {'RTT', 'RSHA', 'RLMA', 'RMMA'}); lRg2f = CoordFoot(cat(3, LHEE, LTOE, LFOO), 'l', {'LHEE', 'LTOE', 'LFOO'}); rRg2f = CoordFoot(cat(3, RFOO, RHEE, RTOE), 'r', {'RFOO', 'RHEE', 'RTOE'}); AllLimbRg2l = cat(4, lRg2t, rRg2t, lRg2s, rRg2s, lRg2f, rRg2f); [ AngVel, AngAcc ] = Rot2LocalAngularEP( AllLimbRg2l, smprate ); [ H, dH ] = AngularMomentum( Is, AngVel, AngAcc ); %% segmentCOMAcc, rCOM2P, rCOM2D % nCOP Fthd = 5; Mthd = 80; fpF_local1 = [AVGfilt(Fx1, Fthd) AVGfilt(Fy1, Fthd), AVGfilt(Fz1, Fthd)]; fpF_local2 = [AVGfilt(Fx2, Fthd) AVGfilt(Fy2, Fthd), AVGfilt(Fz2, Fthd)]; % fpF_local1 = [Fx1,Fy1,Fz1]; % fpF_local2 = [Fx2,Fy2,Fz2]; fpM_local1 = [AVGfilt(Mx1, Mthd) AVGfilt(My1, Mthd), AVGfilt(Mz1, Mthd)]; fpM_local2 = [AVGfilt(Mx2, Mthd) AVGfilt(My2, Mthd), AVGfilt(Mz2, Mthd)]; corners1 = [0, 508, 0;... 464, 508, 0;... 464, 0, 0;... 0, 0, 0]; corners2 = [464, 511, 0;... 0, 511, 0;... 0, 1019, 0;... 464, 1019, 0]; Vfp2tc1 = [ -0.156, 0.995, -43.574 ]; Vfp2tc2 = [ 0.195, 1.142, -41.737 ]; fpF_local = cat(3, fpF_local1, fpF_local2); fpM_local = cat(3, fpM_local1, fpM_local2); corners = cat(3, corners1, corners2); Vfp2tc = cat(1, Vfp2tc1, Vfp2tc2); Pz = Vfp2tc(:,3).'; [ gCOP1, fpFg1, Rg2fp1, Vg2fp1 ] = ForcePlate( fpF_local1, fpM_local1, corners1, Vfp2tc1, Pz(1) ); [ gCOP2, fpFg2, Rg2fp2, Vg2fp2 ] = ForcePlate( fpF_local2, fpM_local2, corners2, Vfp2tc2, Pz(2) ); [ gCOP, nCOP, fpFg, Rg2fp, Vg2fp ] = ForcePlateN( fpF_local, fpM_local, corners, Vfp2tc, Pz ); fpMg1 = fpM_local1*Rg2fp1.'; %fpMg1(isnan(fpMg1)) = 0; fpMg2 = fpM_local2*Rg2fp2.'; %fpMg2(isnan(fpMg2)) = 0; % COM of lower limb LKnee = (LLFC + LMFC)/2; RKnee = (RLFC + RMFC)/2; ProxLL = cat(3, LTRO, RTRO, LKnee, RKnee, LLMA, RLMA); DistLL = cat(3, LKnee, RKnee, LMMA, RMMA, LBTO, RBTO); w = reshape(repmat([.433 .433 .5],2,1),1,1,[]); COMLL = w .* DistLL + (1-w) .* ProxLL; % Joint center of lower limb InterASIS = sqrt(sum((RASI - LASI).^2, 2));%nx1 lHipLoc = permute(InterASIS .* [-.19 -.3 -.36], [2 3 1]); rHipLoc = permute(InterASIS .* [-.19 -.3 .36], [2 3 1]); [rRg2p, ~, ~] = CoordPelvis(cat(3, LASI, RPSI, RASI), 'r', {'LASI', 'RPSI', 'RASI'}); [lRg2p, ~, ~] = CoordPelvis(cat(3, LASI, LPSI, RASI), 'l', {'LASI', 'LPSI', 'RASI'}); LLJC = cat(4, cat(3, (RASI + LASI)/2 + permute(mtimesx(lRg2p,lHipLoc), [3 1 2]), ...%left hip (RASI + LASI)/2 + permute(mtimesx(rRg2p,rHipLoc), [3 1 2]))... %right hip ,cat(3, (LLFC+LMFC)/2, (RLFC+RMFC)/2)...%knee ,cat(3, (LLMA+LMMA)/2, (RLMA+RMMA)/2));%ankle [ rCOM2P, rCOM2D, segCOMAcc ] = LLCOM2PD( COMLL, LLJC, nCOP, smprate ); rCOP2P = cat(3, rCOM2P(:,:,:,1), rCOM2P(:,:,:,2), rCOM2P(:,:,:,3)); rCOP2D = cat(3, rCOM2D(:,:,:,1), rCOM2D(:,:,:,2), rCOM2D(:,:,:,3)); segCOMAcc = cat(3, segCOMAcc(:,:,:,1), segCOMAcc(:,:,:,2), segCOMAcc(:,:,:,3)); %% Force & Moment of segments segCOMAcc = segCOMAcc/1000; % mm/sec^2 -> m/sec^2 Fd_fp = cat(3, fpFg2, fpFg1); % N Md_fp = cat(3, fpMg2, fpMg1)/1000000; % Nmm -> Nm %%%????????????????????????????????????????????? /1000 ?????????????????????????????????????????????? rCOM2P = rCOM2P/1000; % mm -> m rCOM2D = rCOM2D/1000; % mm -> m [ Fp_local_Ak, Mp_local_Ak, Fp_Ak, Mp_Ak ] = JointForceMoment( AllLimbRg2l(:,:,:,5:6), Ms(5:6), segCOMAcc(:,:,5:6), dH(:,:,5:6), rCOM2P(:,:,5:6), rCOM2D(:,:,5:6), Fd_fp, Md_fp ); [ Fp_local_Kn, Mp_local_Kn, Fp_Kn, Mp_Kn ] = JointForceMoment( AllLimbRg2l(:,:,:,3:4), Ms(3:4), segCOMAcc(:,:,3:4), dH(:,:,3:4), rCOM2P(:,:,3:4), rCOM2D(:,:,3:4), -Fp_Ak, -Mp_Ak ); [ Fp_local_Hp, Mp_local_Hp, Fp_Hp, Mp_Hp ] = JointForceMoment( AllLimbRg2l(:,:,:,1:2), Ms(1:2), segCOMAcc(:,:,1:2), dH(:,:,1:2), rCOM2P(:,:,1:2), rCOM2D(:,:,1:2), -Fp_Kn, -Mp_Kn ); Fp_local = cat(4, Fp_local_Hp, Fp_local_Kn, Fp_local_Ak); Mp_local = cat(4, Mp_local_Hp, Mp_local_Kn, Mp_local_Ak); %% plotting % F = figure('Name','Force Applied at the Lower Limb Joints', 'NumberTitle','off','position',[0 50 1680 750]); % M = figure('Name','Moment Applied at the Lower Limb Joints', 'NumberTitle','off','position',[0 50 1680 750]); dirname = {'Anterior(+)/Posteriro(-)','Superior(+)/Inferior(-)','Lateral(+)/Medial(-)'}; artiname = {'Hip','Knee','Ankle'}; open Joint_Force.fig; for i = 1:3 for j = 1:3 figure(1) subplot(3,3,(i-1)*3+j) hold on if j == 3 data = cat(3,-Fp_local(:,j,1,i), Fp_local(:,j,2,i))/Mass/g; else data = cat(3, Fp_local(:,j,1,i), Fp_local(:,j,2,i))/Mass/g; end if i == 1 title(dirname(j)) end if j == 1 ylabel([artiname{i},' (N/BW)']) end xlim([0 159]) ylim([min(data(:)) max(data(:))]) hold on a=plot(1:159,data(:,:,1,:),'b--'); b=plot(1:159,data(:,:,2,:),'r--'); legend([a; b], {'Left','Right'}); end end open Joint_Moment.fig; dirname = {'Abd(+)/Adduction(-)','Internal(+)/External(-) rotation','Flex(+)/Extension(-)'}; % figure for i = 1:3 for j = 1:3 subplot(3,3,(i-1)*3+j) hold on if j == 1 data = cat(3, Mp_local(:,j,1,i), -Mp_local(:,j,2,i))/Mass/g/LL; end if j == 2 data = cat(3, -Mp_local(:,j,1,i), Mp_local(:,j,2,i))/Mass/g/LL; end if j == 3 data = cat(3, Mp_local(:,j,1,i), Mp_local(:,j,2,i))/Mass/g/LL; if i == 2 data = cat(3, -Mp_local(:,j,1,i), -Mp_local(:,j,2,i))/Mass/g/LL; end end % if j >0 % data = cat(3, Mp_local(:,j,1,i), Mp_local(:,j,2,i))/Mass/g/LL; % end if i == 1 title(dirname(j)) end if j == 1 ylabel([artiname{i},' (Nm/BW/LL)']) end xlim([0 159]) ylim([min(data(:)) max(data(:))]) hold on a=plot(1:159,data(:,:,1,:),'b--'); b=plot(1:159,data(:,:,2,:),'r--'); legend([a; b], {'Left','Right'}); end end % open Joint_Moment.fig; % close all function [ Xf ]= AVGfilt( X, thd) % Function: offset the data to eliminate the means of error and the data % with absolute values under the threshold. % thd : threshold s = size(X); Is = abs(X)<thd; Xf = X - mean(X(Is)); Xf(Is)=0; end
github
mattwang44/Human-Motion-Analysis-MATLAB-master
Rot2AngFSOLVE.m
.m
Human-Motion-Analysis-MATLAB-master/Week03/Rot2AngFSOLVE.m
1,849
utf_8
273e2cded528f3a522c66dd9e43afffa
function theta = Rot2AngFSOLVE( Rot, sequence ) % The function derives the Euler angles from rotation matrice % Rot: Rotation matrix [3 x 3 x nframes] % sequence: sequence of the Euler angles '1 x 3' (composed of 'x', 'y', 'z') % Validation of rotation matrice (dimension) if ~isequal(3,size(Rot,1),size(Rot,2)) errordlg('Please enter the rotation matrice in the form of [3 x 3 x n] matrice.', 'Rotation Matrice Input Error');return end nframes = size(Rot,3); theta = zeros(nframes,3); % Eliminate the error when at least one component of Rot is zero % Rot = fix(10^17*Rot)/10^17; Rot(abs(Rot)<10^-12) = 0; % Validation of rotation matrice (determinant) dmtmo = ones(1, nframes);% DeterMinanT Minus One for i=1:nframes dmtmo(i) = det(Rot(:,:,i))-1; end if ~isempty(dmtmo(dmtmo>10^-12)) text = ['Rotation matrice have wrong forms (determinant is not equal to 1). Matrice of frame no. = ('... ,num2str(find(abs(dmtmo)>10^-12)), ') have problems.']; errordlg(text, 'Rotation Matrice Error'); end % fsolve options = optimset('Display','off','Algorithm','levenberg-marquardt','MaxIter',400000,'TolFun',10^-12); for i = 1:nframes eqn = matlabFunction(genEq( Rot(:,:,i), sequence )); modeqn = @(t)eqn(t(1),t(2),t(3)); the = fsolve(modeqn,[pi/4;10^3;10^3],options); theta(i,:) = reshape(the*180/pi,1,[]); theta(i,:) = degcst(theta(i,:)); end % Generate equations for 'fsolve' function F = genEq( Rot, sequence ) eval(['R',sequence,'=RotFormula(sequence);']); l=reshape(eval(['R',sequence])-Rot, 1, []); for i=1:length(l) F(i)=l(i); end % Constraint of output degree: 0 <= theta < 360 function F = degcst(X) for j = 1:3 if X(1,j)>360 X(1,j)=X(1,j)-floor(X(1,j)/360)*360; continue elseif X(1,j)<=0 X(1,j)=X(1,j)-floor(X(1,j)/360)*360; continue end end F=X;
github
josiasritter/nechi-reservoir-network-master
durationCurve_vs3.m
.m
nechi-reservoir-network-master/General/durationCurve_vs3.m
166
utf_8
f66be8bdece54afbd0f9c8609ee0c6fe
function [dCurve,pEmp] = durationCurve_vs3(inputSeries) [r c] = size(inputSeries); dCurve = sort(inputSeries,1,'descend'); pEmp = cumsum(ones(r,1))/(r); end
github
MINED-MATKIT/Generator-master
vol3d.m
.m
Generator-master/Functions/vol3d.m
7,355
utf_8
98b2ce5a001d8f6ff987e01366315782
function [model] = vol3d(varargin) %H = VOL3D Volume render 3-D data. % VOL3D uses the orthogonal plane 2-D texture mapping technique for % volume rending 3-D data in OpenGL. Use the 'texture' option to fine % tune the texture mapping technique. This function is best used with % fast OpenGL hardware. % % vol3d Provide a demo of functionality. % % H = vol3d('CData',data) Create volume render object from input % 3-D data. Use interp3 on data to increase volume % rendering resolution. Returns a struct % encapsulating the pseudo-volume rendering object. % XxYxZ array represents scaled colormap indices. % XxYxZx3 array represents truecolor RGB values for % each voxel (along the 4th dimension). % % vol3d(...,'Alpha',alpha) XxYxZ array of alpha values for each voxel, in % range [0,1]. Default: data (interpreted as % scaled alphamap indices). % % vol3d(...,'Parent',axH) Specify parent axes. Default: gca. % % vol3d(...,'XData',x) 1x2 x-axis bounds. Default: [0 size(data, 2)]. % vol3d(...,'YData',y) 1x2 y-axis bounds. Default: [0 size(data, 1)]. % vol3d(...,'ZData',z) 1x2 z-axis bounds. Default: [0 size(data, 3)]. % % vol3d(...,'texture','2D') Only render texture planes parallel to nearest % orthogonal viewing plane. Requires doing % vol3d(h) to refresh if the view is rotated % (i.e. using cameratoolbar). % % vol3d(...,'texture','3D') Default. Render x,y,z texture planes % simultaneously. This avoids the need to % refresh the view but requires faster OpenGL % hardware peformance. % % vol3d(H) Refresh view. Updates rendering of texture planes % to reduce visual aliasing when using the 'texture'='2D' % option. % % NOTES % Use vol3dtool (from the original vol3d FEX submission) for editing the % colormap and alphamap. Adjusting these maps will allow you to explore % your 3-D volume data at various intensity levels. See documentation on % alphamap and colormap for more information. % % Use interp3 on input date to increase/decrease resolution of data % % Examples: % % % Visualizing fluid flow % v = flow(50); % h = vol3d('cdata',v,'texture','2D'); % view(3); % % Update view since 'texture' = '2D' % vol3d(h); % alphamap('rampdown'), alphamap('decrease'), alphamap('decrease') % % % Visualizing MRI data % load mri.mat % D = squeeze(D); % h = vol3d('cdata',D,'texture','3D'); % view(3); % axis tight; daspect([1 1 .4]) % alphamap('rampup'); % alphamap(.06 .* alphamap); % % See also alphamap, colormap, opengl, isosurface % Copyright Joe Conti, 2004 % Improvements by Oliver Woodford, 2008-2011, with permission of the % copyright holder. if nargin == 0 demo_vol3d; return end if isstruct(varargin{1}) model = varargin{1}; if length(varargin) > 1 varargin = {varargin{2:end}}; end else model = localGetDefaultModel; end if length(varargin)>1 for n = 1:2:length(varargin) switch(lower(varargin{n})) case 'cdata' model.cdata = varargin{n+1}; case 'parent' model.parent = varargin{n+1}; case 'texture' model.texture = varargin{n+1}; case 'alpha' model.alpha = varargin{n+1}; case 'xdata' model.xdata = varargin{n+1}([1 end]); case 'ydata' model.ydata = varargin{n+1}([1 end]); case 'zdata' model.zdata = varargin{n+1}([1 end]); end end end if isempty(model.parent) model.parent = gca; end [model] = local_draw(model); %------------------------------------------% function [model] = localGetDefaultModel model.cdata = []; model.alpha = []; model.xdata = []; model.ydata = []; model.zdata = []; model.parent = []; model.handles = []; model.texture = '3D'; tag = tempname; model.tag = ['vol3d_' tag(end-11:end)]; %------------------------------------------% function [model,ax] = local_draw(model) cdata = model.cdata; siz = size(cdata); % Define [x,y,z]data if isempty(model.xdata) model.xdata = [0 siz(2)]; end if isempty(model.ydata) model.ydata = [0 siz(1)]; end if isempty(model.zdata) model.zdata = [0 siz(3)]; end try delete(model.handles); catch end ax = model.parent; cam_dir = camtarget(ax) - campos(ax); [m,ind] = max(abs(cam_dir)); opts = {'Parent',ax,'cdatamapping',[],'alphadatamapping',[],'facecolor','texturemap','edgealpha',0,'facealpha','texturemap','tag',model.tag}; if ndims(cdata) > 3 opts{4} = 'direct'; else cdata = double(cdata); opts{4} = 'scaled'; end if isempty(model.alpha) alpha = cdata; if ndims(model.cdata) > 3 alpha = sqrt(sum(double(alpha).^2, 4)); alpha = alpha - min(alpha(:)); alpha = 1 - alpha / max(alpha(:)); end opts{6} = 'scaled'; else alpha = model.alpha; if ~isequal(siz(1:3), size(alpha)) error('Incorrect size of alphamatte'); end opts{6} = 'none'; end h = findobj(ax,'type','surface','tag',model.tag); for n = 1:length(h) try delete(h(n)); catch end end is3DTexture = strcmpi(model.texture,'3D'); handle_ind = 1; % Create z-slice if(ind==3 || is3DTexture ) x = [model.xdata(1), model.xdata(2); model.xdata(1), model.xdata(2)]; y = [model.ydata(1), model.ydata(1); model.ydata(2), model.ydata(2)]; z = [model.zdata(1), model.zdata(1); model.zdata(1), model.zdata(1)]; diff = model.zdata(2)-model.zdata(1); delta = diff/size(cdata,3); for n = 1:size(cdata,3) cslice = squeeze(cdata(:,:,n,:)); aslice = double(squeeze(alpha(:,:,n))); h(handle_ind) = surface(x,y,z,cslice,'alphadata',aslice,opts{:}); z = z + delta; handle_ind = handle_ind + 1; end end % Create x-slice if (ind==1 || is3DTexture ) x = [model.xdata(1), model.xdata(1); model.xdata(1), model.xdata(1)]; y = [model.ydata(1), model.ydata(1); model.ydata(2), model.ydata(2)]; z = [model.zdata(1), model.zdata(2); model.zdata(1), model.zdata(2)]; diff = model.xdata(2)-model.xdata(1); delta = diff/size(cdata,2); for n = 1:size(cdata,2) cslice = squeeze(cdata(:,n,:,:)); aslice = double(squeeze(alpha(:,n,:))); h(handle_ind) = surface(x,y,z,cslice,'alphadata',aslice,opts{:}); x = x + delta; handle_ind = handle_ind + 1; end end % Create y-slice if (ind==2 || is3DTexture) x = [model.xdata(1), model.xdata(1); model.xdata(2), model.xdata(2)]; y = [model.ydata(1), model.ydata(1); model.ydata(1), model.ydata(1)]; z = [model.zdata(1), model.zdata(2); model.zdata(1), model.zdata(2)]; diff = model.ydata(2)-model.ydata(1); delta = diff/size(cdata,1); for n = 1:size(cdata,1) cslice = squeeze(cdata(n,:,:,:)); aslice = double(squeeze(alpha(n,:,:))); h(handle_ind) = surface(x,y,z,cslice,'alphadata',aslice,opts{:}); y = y + delta; handle_ind = handle_ind + 1; end end model.handles = h; function demo_vol3d figure; load mri.mat vol3d('cdata', squeeze(D), 'xdata', [0 1], 'ydata', [0 1], 'zdata', [0 0.7]); colormap(bone(256)); alphamap([0 linspace(0.1, 0, 255)]); axis equal off set(gcf, 'color', 'w'); view(3);
github
MINED-MATKIT/Generator-master
vol3d.m
.m
Generator-master/Thesis Toy Rectangles/vol3d.m
7,355
utf_8
98b2ce5a001d8f6ff987e01366315782
function [model] = vol3d(varargin) %H = VOL3D Volume render 3-D data. % VOL3D uses the orthogonal plane 2-D texture mapping technique for % volume rending 3-D data in OpenGL. Use the 'texture' option to fine % tune the texture mapping technique. This function is best used with % fast OpenGL hardware. % % vol3d Provide a demo of functionality. % % H = vol3d('CData',data) Create volume render object from input % 3-D data. Use interp3 on data to increase volume % rendering resolution. Returns a struct % encapsulating the pseudo-volume rendering object. % XxYxZ array represents scaled colormap indices. % XxYxZx3 array represents truecolor RGB values for % each voxel (along the 4th dimension). % % vol3d(...,'Alpha',alpha) XxYxZ array of alpha values for each voxel, in % range [0,1]. Default: data (interpreted as % scaled alphamap indices). % % vol3d(...,'Parent',axH) Specify parent axes. Default: gca. % % vol3d(...,'XData',x) 1x2 x-axis bounds. Default: [0 size(data, 2)]. % vol3d(...,'YData',y) 1x2 y-axis bounds. Default: [0 size(data, 1)]. % vol3d(...,'ZData',z) 1x2 z-axis bounds. Default: [0 size(data, 3)]. % % vol3d(...,'texture','2D') Only render texture planes parallel to nearest % orthogonal viewing plane. Requires doing % vol3d(h) to refresh if the view is rotated % (i.e. using cameratoolbar). % % vol3d(...,'texture','3D') Default. Render x,y,z texture planes % simultaneously. This avoids the need to % refresh the view but requires faster OpenGL % hardware peformance. % % vol3d(H) Refresh view. Updates rendering of texture planes % to reduce visual aliasing when using the 'texture'='2D' % option. % % NOTES % Use vol3dtool (from the original vol3d FEX submission) for editing the % colormap and alphamap. Adjusting these maps will allow you to explore % your 3-D volume data at various intensity levels. See documentation on % alphamap and colormap for more information. % % Use interp3 on input date to increase/decrease resolution of data % % Examples: % % % Visualizing fluid flow % v = flow(50); % h = vol3d('cdata',v,'texture','2D'); % view(3); % % Update view since 'texture' = '2D' % vol3d(h); % alphamap('rampdown'), alphamap('decrease'), alphamap('decrease') % % % Visualizing MRI data % load mri.mat % D = squeeze(D); % h = vol3d('cdata',D,'texture','3D'); % view(3); % axis tight; daspect([1 1 .4]) % alphamap('rampup'); % alphamap(.06 .* alphamap); % % See also alphamap, colormap, opengl, isosurface % Copyright Joe Conti, 2004 % Improvements by Oliver Woodford, 2008-2011, with permission of the % copyright holder. if nargin == 0 demo_vol3d; return end if isstruct(varargin{1}) model = varargin{1}; if length(varargin) > 1 varargin = {varargin{2:end}}; end else model = localGetDefaultModel; end if length(varargin)>1 for n = 1:2:length(varargin) switch(lower(varargin{n})) case 'cdata' model.cdata = varargin{n+1}; case 'parent' model.parent = varargin{n+1}; case 'texture' model.texture = varargin{n+1}; case 'alpha' model.alpha = varargin{n+1}; case 'xdata' model.xdata = varargin{n+1}([1 end]); case 'ydata' model.ydata = varargin{n+1}([1 end]); case 'zdata' model.zdata = varargin{n+1}([1 end]); end end end if isempty(model.parent) model.parent = gca; end [model] = local_draw(model); %------------------------------------------% function [model] = localGetDefaultModel model.cdata = []; model.alpha = []; model.xdata = []; model.ydata = []; model.zdata = []; model.parent = []; model.handles = []; model.texture = '3D'; tag = tempname; model.tag = ['vol3d_' tag(end-11:end)]; %------------------------------------------% function [model,ax] = local_draw(model) cdata = model.cdata; siz = size(cdata); % Define [x,y,z]data if isempty(model.xdata) model.xdata = [0 siz(2)]; end if isempty(model.ydata) model.ydata = [0 siz(1)]; end if isempty(model.zdata) model.zdata = [0 siz(3)]; end try delete(model.handles); catch end ax = model.parent; cam_dir = camtarget(ax) - campos(ax); [m,ind] = max(abs(cam_dir)); opts = {'Parent',ax,'cdatamapping',[],'alphadatamapping',[],'facecolor','texturemap','edgealpha',0,'facealpha','texturemap','tag',model.tag}; if ndims(cdata) > 3 opts{4} = 'direct'; else cdata = double(cdata); opts{4} = 'scaled'; end if isempty(model.alpha) alpha = cdata; if ndims(model.cdata) > 3 alpha = sqrt(sum(double(alpha).^2, 4)); alpha = alpha - min(alpha(:)); alpha = 1 - alpha / max(alpha(:)); end opts{6} = 'scaled'; else alpha = model.alpha; if ~isequal(siz(1:3), size(alpha)) error('Incorrect size of alphamatte'); end opts{6} = 'none'; end h = findobj(ax,'type','surface','tag',model.tag); for n = 1:length(h) try delete(h(n)); catch end end is3DTexture = strcmpi(model.texture,'3D'); handle_ind = 1; % Create z-slice if(ind==3 || is3DTexture ) x = [model.xdata(1), model.xdata(2); model.xdata(1), model.xdata(2)]; y = [model.ydata(1), model.ydata(1); model.ydata(2), model.ydata(2)]; z = [model.zdata(1), model.zdata(1); model.zdata(1), model.zdata(1)]; diff = model.zdata(2)-model.zdata(1); delta = diff/size(cdata,3); for n = 1:size(cdata,3) cslice = squeeze(cdata(:,:,n,:)); aslice = double(squeeze(alpha(:,:,n))); h(handle_ind) = surface(x,y,z,cslice,'alphadata',aslice,opts{:}); z = z + delta; handle_ind = handle_ind + 1; end end % Create x-slice if (ind==1 || is3DTexture ) x = [model.xdata(1), model.xdata(1); model.xdata(1), model.xdata(1)]; y = [model.ydata(1), model.ydata(1); model.ydata(2), model.ydata(2)]; z = [model.zdata(1), model.zdata(2); model.zdata(1), model.zdata(2)]; diff = model.xdata(2)-model.xdata(1); delta = diff/size(cdata,2); for n = 1:size(cdata,2) cslice = squeeze(cdata(:,n,:,:)); aslice = double(squeeze(alpha(:,n,:))); h(handle_ind) = surface(x,y,z,cslice,'alphadata',aslice,opts{:}); x = x + delta; handle_ind = handle_ind + 1; end end % Create y-slice if (ind==2 || is3DTexture) x = [model.xdata(1), model.xdata(1); model.xdata(2), model.xdata(2)]; y = [model.ydata(1), model.ydata(1); model.ydata(1), model.ydata(1)]; z = [model.zdata(1), model.zdata(2); model.zdata(1), model.zdata(2)]; diff = model.ydata(2)-model.ydata(1); delta = diff/size(cdata,1); for n = 1:size(cdata,1) cslice = squeeze(cdata(n,:,:,:)); aslice = double(squeeze(alpha(n,:,:))); h(handle_ind) = surface(x,y,z,cslice,'alphadata',aslice,opts{:}); y = y + delta; handle_ind = handle_ind + 1; end end model.handles = h; function demo_vol3d figure; load mri.mat vol3d('cdata', squeeze(D), 'xdata', [0 1], 'ydata', [0 1], 'zdata', [0 0.7]); colormap(bone(256)); alphamap([0 linspace(0.1, 0, 255)]); axis equal off set(gcf, 'color', 'w'); view(3);
github
MINED-MATKIT/Generator-master
vol3d.m
.m
Generator-master/GeneratorDev/vol3d.m
7,355
utf_8
98b2ce5a001d8f6ff987e01366315782
function [model] = vol3d(varargin) %H = VOL3D Volume render 3-D data. % VOL3D uses the orthogonal plane 2-D texture mapping technique for % volume rending 3-D data in OpenGL. Use the 'texture' option to fine % tune the texture mapping technique. This function is best used with % fast OpenGL hardware. % % vol3d Provide a demo of functionality. % % H = vol3d('CData',data) Create volume render object from input % 3-D data. Use interp3 on data to increase volume % rendering resolution. Returns a struct % encapsulating the pseudo-volume rendering object. % XxYxZ array represents scaled colormap indices. % XxYxZx3 array represents truecolor RGB values for % each voxel (along the 4th dimension). % % vol3d(...,'Alpha',alpha) XxYxZ array of alpha values for each voxel, in % range [0,1]. Default: data (interpreted as % scaled alphamap indices). % % vol3d(...,'Parent',axH) Specify parent axes. Default: gca. % % vol3d(...,'XData',x) 1x2 x-axis bounds. Default: [0 size(data, 2)]. % vol3d(...,'YData',y) 1x2 y-axis bounds. Default: [0 size(data, 1)]. % vol3d(...,'ZData',z) 1x2 z-axis bounds. Default: [0 size(data, 3)]. % % vol3d(...,'texture','2D') Only render texture planes parallel to nearest % orthogonal viewing plane. Requires doing % vol3d(h) to refresh if the view is rotated % (i.e. using cameratoolbar). % % vol3d(...,'texture','3D') Default. Render x,y,z texture planes % simultaneously. This avoids the need to % refresh the view but requires faster OpenGL % hardware peformance. % % vol3d(H) Refresh view. Updates rendering of texture planes % to reduce visual aliasing when using the 'texture'='2D' % option. % % NOTES % Use vol3dtool (from the original vol3d FEX submission) for editing the % colormap and alphamap. Adjusting these maps will allow you to explore % your 3-D volume data at various intensity levels. See documentation on % alphamap and colormap for more information. % % Use interp3 on input date to increase/decrease resolution of data % % Examples: % % % Visualizing fluid flow % v = flow(50); % h = vol3d('cdata',v,'texture','2D'); % view(3); % % Update view since 'texture' = '2D' % vol3d(h); % alphamap('rampdown'), alphamap('decrease'), alphamap('decrease') % % % Visualizing MRI data % load mri.mat % D = squeeze(D); % h = vol3d('cdata',D,'texture','3D'); % view(3); % axis tight; daspect([1 1 .4]) % alphamap('rampup'); % alphamap(.06 .* alphamap); % % See also alphamap, colormap, opengl, isosurface % Copyright Joe Conti, 2004 % Improvements by Oliver Woodford, 2008-2011, with permission of the % copyright holder. if nargin == 0 demo_vol3d; return end if isstruct(varargin{1}) model = varargin{1}; if length(varargin) > 1 varargin = {varargin{2:end}}; end else model = localGetDefaultModel; end if length(varargin)>1 for n = 1:2:length(varargin) switch(lower(varargin{n})) case 'cdata' model.cdata = varargin{n+1}; case 'parent' model.parent = varargin{n+1}; case 'texture' model.texture = varargin{n+1}; case 'alpha' model.alpha = varargin{n+1}; case 'xdata' model.xdata = varargin{n+1}([1 end]); case 'ydata' model.ydata = varargin{n+1}([1 end]); case 'zdata' model.zdata = varargin{n+1}([1 end]); end end end if isempty(model.parent) model.parent = gca; end [model] = local_draw(model); %------------------------------------------% function [model] = localGetDefaultModel model.cdata = []; model.alpha = []; model.xdata = []; model.ydata = []; model.zdata = []; model.parent = []; model.handles = []; model.texture = '3D'; tag = tempname; model.tag = ['vol3d_' tag(end-11:end)]; %------------------------------------------% function [model,ax] = local_draw(model) cdata = model.cdata; siz = size(cdata); % Define [x,y,z]data if isempty(model.xdata) model.xdata = [0 siz(2)]; end if isempty(model.ydata) model.ydata = [0 siz(1)]; end if isempty(model.zdata) model.zdata = [0 siz(3)]; end try delete(model.handles); catch end ax = model.parent; cam_dir = camtarget(ax) - campos(ax); [m,ind] = max(abs(cam_dir)); opts = {'Parent',ax,'cdatamapping',[],'alphadatamapping',[],'facecolor','texturemap','edgealpha',0,'facealpha','texturemap','tag',model.tag}; if ndims(cdata) > 3 opts{4} = 'direct'; else cdata = double(cdata); opts{4} = 'scaled'; end if isempty(model.alpha) alpha = cdata; if ndims(model.cdata) > 3 alpha = sqrt(sum(double(alpha).^2, 4)); alpha = alpha - min(alpha(:)); alpha = 1 - alpha / max(alpha(:)); end opts{6} = 'scaled'; else alpha = model.alpha; if ~isequal(siz(1:3), size(alpha)) error('Incorrect size of alphamatte'); end opts{6} = 'none'; end h = findobj(ax,'type','surface','tag',model.tag); for n = 1:length(h) try delete(h(n)); catch end end is3DTexture = strcmpi(model.texture,'3D'); handle_ind = 1; % Create z-slice if(ind==3 || is3DTexture ) x = [model.xdata(1), model.xdata(2); model.xdata(1), model.xdata(2)]; y = [model.ydata(1), model.ydata(1); model.ydata(2), model.ydata(2)]; z = [model.zdata(1), model.zdata(1); model.zdata(1), model.zdata(1)]; diff = model.zdata(2)-model.zdata(1); delta = diff/size(cdata,3); for n = 1:size(cdata,3) cslice = squeeze(cdata(:,:,n,:)); aslice = double(squeeze(alpha(:,:,n))); h(handle_ind) = surface(x,y,z,cslice,'alphadata',aslice,opts{:}); z = z + delta; handle_ind = handle_ind + 1; end end % Create x-slice if (ind==1 || is3DTexture ) x = [model.xdata(1), model.xdata(1); model.xdata(1), model.xdata(1)]; y = [model.ydata(1), model.ydata(1); model.ydata(2), model.ydata(2)]; z = [model.zdata(1), model.zdata(2); model.zdata(1), model.zdata(2)]; diff = model.xdata(2)-model.xdata(1); delta = diff/size(cdata,2); for n = 1:size(cdata,2) cslice = squeeze(cdata(:,n,:,:)); aslice = double(squeeze(alpha(:,n,:))); h(handle_ind) = surface(x,y,z,cslice,'alphadata',aslice,opts{:}); x = x + delta; handle_ind = handle_ind + 1; end end % Create y-slice if (ind==2 || is3DTexture) x = [model.xdata(1), model.xdata(1); model.xdata(2), model.xdata(2)]; y = [model.ydata(1), model.ydata(1); model.ydata(1), model.ydata(1)]; z = [model.zdata(1), model.zdata(2); model.zdata(1), model.zdata(2)]; diff = model.ydata(2)-model.ydata(1); delta = diff/size(cdata,1); for n = 1:size(cdata,1) cslice = squeeze(cdata(n,:,:,:)); aslice = double(squeeze(alpha(n,:,:))); h(handle_ind) = surface(x,y,z,cslice,'alphadata',aslice,opts{:}); y = y + delta; handle_ind = handle_ind + 1; end end model.handles = h; function demo_vol3d figure; load mri.mat vol3d('cdata', squeeze(D), 'xdata', [0 1], 'ydata', [0 1], 'zdata', [0 0.7]); colormap(bone(256)); alphamap([0 linspace(0.1, 0, 255)]); axis equal off set(gcf, 'color', 'w'); view(3);
github
hnanhtuan/Gemb-master
trainSpH.m
.m
Gemb-master/SpH/trainSpH.m
2,603
utf_8
3f2378c24e811cd2bf9ecf1be5b629ac
function SpHparam = trainSpH(data, SpHparam) % Input: % data: training data, n*d, n is the trainging data % SpHparam: % SpHparam.nbits---encoding length % Output: % SpHparam: % SpHparam.nbits---encoding length % SpHparam.centers---spherical centers % SpHparam.radii---spherical radii bit = SpHparam.nbits; [N, D] = size(data); % initialize center positions centers = random_center(data, bit); [O1, O2, radii, avg, stddev] = compute_statistics(data, centers); iter = 1; while true % force computation based on intersection of each pair of hyper-spheres forces = zeros(bit, D); for i = 1:bit - 1 for j = i + 1:bit force = 0.5 * (O2(i, j) - N / 4) / (N / 4) * (centers(i, :) - centers(j, :)); forces(i, :) = forces(i, :) + force ./ bit; forces(j, :) = forces(j, :) - force ./ bit; end end % apply forces centers = centers + forces; [O1, O2, radii, avg, stddev] = compute_statistics(data, centers); % convergence condition if avg <= 0.1 * N / 4 && stddev <= 0.15 * N / 4 break; end if iter >= 100 fprintf('iter exceed 100, avg = %f, stddev = %f\n', avg, stddev); end % fprintf('SpH: iteration %d has finished\r',iter); iter = iter + 1; end SpHparam.centers = centers; SpHparam.radii = radii; % fprintf('SpH training process has finished\r'); end function centers = random_center(data, bit) [N, D] = size(data); centers = zeros(bit, D); for i = 1:bit R = randperm(N); sample = data(R(1:5), :); sample = sum(sample, 1) / 5; centers(i, :) = sample(:); end end % the function to compute o_i, o_ij, radii, mean and average of o_ij function [O1, O2, radii, avg, stddev] = compute_statistics(data, centers) [N, D] = size(data); bit = size(centers, 1); dist = distMat(centers, data); sort_dist = sort(dist, 2); % set radii to satisfy balanced partitioning radii = sort_dist(:, ceil(N / 2)); dist = dist <= repmat(radii, 1, N); dist = dist * 1.0; O1 = sum(dist, 2); avg = 0; avg2 = 0; O2 = dist * dist'; for i = 1:bit-1 for j = i + 1:bit avg = avg + abs(O2(i, j) - N / 4); avg2 = avg2 + O2(i, j); end end avg = avg / (bit * (bit - 1) / 2); avg2 = avg2 / (bit * (bit - 1) / 2); stddev = 0; for i = 1:bit - 1 for j = i + 1:bit stddev = stddev + (O2(i, j) - avg2) ^ 2; end end stddev = sqrt(stddev / (bit * (bit - 1) / 2)); end
github
hnanhtuan/Gemb-master
gen_marker.m
.m
Gemb-master/utils/gen_marker.m
694
utf_8
31bf91686817b908bc736fa9f0da232b
function marker=gen_marker(curve_idx) markers=[]; % scheme % scheme markers{end+1}='o'; markers{end+1}='*'; markers{end+1}='d'; markers{end+1}='p'; markers{end+1}='s'; markers{end+1}='h'; markers{end+1}='o'; markers{end+1}='*'; markers{end+1}='o'; markers{end+1}='o'; markers{end+1}='o'; markers{end+1}='o'; markers{end+1}='o'; % markers{end+1}='s'; % markers{end+1}='o'; % markers{end+1}='d'; % markers{end+1}='^'; % markers{end+1}='*'; % markers{end+1}='v'; % markers{end+1}='x'; % markers{end+1}='+'; % markers{end+1}='>'; % markers{end+1}='<'; % markers{end+1}='.'; % markers{end+1}='p'; % markers{end+1}='h'; sel_idx=mod(curve_idx-1, length(markers))+1; marker=markers{sel_idx}; end
github
hnanhtuan/Gemb-master
compactbit.m
.m
Gemb-master/utils/compactbit.m
407
utf_8
c7fd0cd80d0d1a0e21e55c121bc8c067
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function cb = compactbit(b) % % b = bits array % cb = compacted string of bits (using words of 'word' bits) % Examples: [1 1 0 0 0]-> 3 [nSamples nbits] = size(b); nwords = ceil(nbits/8); cb = zeros([nSamples nwords], 'uint8'); for j = 1:nbits w = ceil(j/8); cb(:,w) = bitset(cb(:,w), mod(j-1,8)+1, b(:,j)); end
github
hnanhtuan/Gemb-master
EuDist2.m
.m
Gemb-master/utils/EuDist2.m
1,248
utf_8
8992ee5820611c32f63c31dd9cc3ab8c
function D = EuDist2(fea_a,fea_b,bSqrt) %EUDIST2 Efficiently Compute the Euclidean Distance Matrix by Exploring the %Matlab matrix operations. % % D = EuDist(fea_a,fea_b) % fea_a: nSample_a * nFeature % fea_b: nSample_b * nFeature % D: nSample_a * nSample_a % or nSample_a * nSample_b % % Examples: % % a = rand(500,10); % b = rand(1000,10); % % A = EuDist2(a); % A: 500*500 % D = EuDist2(a,b); % D: 500*1000 % % version 2.1 --November/2011 % version 2.0 --May/2009 % version 1.0 --November/2005 % % Written by Deng Cai (dengcai AT gmail.com) if ~exist('bSqrt','var') bSqrt = 1; end if (~exist('fea_b','var')) || isempty(fea_b) aa = sum(fea_a.*fea_a,2); ab = fea_a*fea_a'; if issparse(aa) aa = full(aa); end D = bsxfun(@plus,aa,aa') - 2*ab; D(D<0) = 0; if bSqrt D = sqrt(D); end D = max(D,D'); else aa = sum(fea_a.*fea_a,2); bb = sum(fea_b.*fea_b,2); ab = fea_a*fea_b'; if issparse(aa) aa = full(aa); bb = full(bb); end D = bsxfun(@plus,aa,bb') - 2*ab; D(D<0) = 0; if bSqrt D = sqrt(D); end end
github
hnanhtuan/Gemb-master
compute_map.m
.m
Gemb-master/BA/evaluation_tools/compute_map.m
1,846
utf_8
97ec2a86542fd2a35fd509732ae5f396
% This function computes the mAP for a given set of returned results. % % Usage: map = compute_map (ranks, gnd); % % Notes: % 1) ranks starts from 1, size(ranks) = db_size X #queries % 2) The junk results (e.g., the query itself) should be declared in the gnd stuct array function [map, aps] = compute_map (ranks, gnd, verbose) if nargin < 3 verbose = false; end map = 0; nq = numel (gnd); % number of queries aps = zeros (nq, 1); for i = 1:nq qgnd = gnd(i).ok; if isfield (gnd(i), 'junk') qgndj = gnd(i).junk; else qgndj = []; end % positions of positive and junk images [~, pos] = intersect (ranks (:,i), qgnd); [~, junk] = intersect (ranks (:,i), qgndj); pos = sort(pos); junk = sort(junk); k = 0; ij = 1; if length (junk) % decrease positions of positives based on the number of junk images appearing before them ip = 1; while ip <= numel (pos) while ( ij <= length (junk) & pos (ip) > junk (ij) ) k = k + 1; ij = ij + 1; end pos (ip) = pos (ip) - k; ip = ip + 1; end end ap = score_ap_from_ranks1 (pos, length (qgnd)); if verbose fprintf ('query no %d -> gnd = ', i); fprintf ('%d ', qgnd); fprintf ('\n tp ranks = '); fprintf ('%d ', pos); fprintf (' -> ap=%.3f\n', ap); end map = map + ap; aps (i) = ap; end map = map / nq; end % This function computes the AP for a query function ap = score_ap_from_ranks1 (ranks, nres) % number of images ranked by the system nimgranks = length (ranks); ranks = ranks - 1; % accumulate trapezoids in PR-plot ap = 0; recall_step = 1 / nres; for j = 1:nimgranks rank = ranks(j); if rank == 0 precision_0 = 1.0; else precision_0 = (j - 1) / rank; end precision_1 = j / (rank + 1); ap = ap + (precision_0 + precision_1) * recall_step / 2; end end
github
hnanhtuan/Gemb-master
KNNRecall.m
.m
Gemb-master/BA/evaluation_tools/KNNRecall.m
559
utf_8
baa615f2ec0246a10ecb30c42a33e4f5
function R = KNNRecall(trainZ,testZ,K,gt) [numTest,b] = size(testZ); R = zeros(size(K)); for i = 1:numTest point = testZ(i,:); dist = sum(bsxfun(@xor,trainZ,point),2); [~,idx] = sort(dist); for j = 1:numel(K) idx1 = idx(1:K(j)); if iscell(gt) c = intersect(idx1,gt{i}); else c = intersect(idx1,gt(i,:)); end retrievedGoodPairs = numel(c); num_gnd = numel(gt{i}); if num_gnd == 0 continue; end R(j) = R(j) + retrievedGoodPairs/num_gnd; end end R = R/numTest; end
github
hnanhtuan/Gemb-master
KNNPrecision.m
.m
Gemb-master/BA/evaluation_tools/KNNPrecision.m
1,154
utf_8
9ff3a85f46a648b127b9c765c79955d7
% P = KNNPrecision(trainZ,testZ,K,gt) K-nearest neighbors precision % % In: % trainZ: NxL binary matrix containing binary codes for training set. % testZ: MxL binary matrix containing binary codes for test set. % K: number of neighbors, or a list of neighbors. % gt: MxK matrix containing the index of the K-nearest-neighbors of the % test points (ground truth). % junk: index of the query in the database % Out: % P: K-nearest neighbor precision or list of precisions (if K is a list). % Copyright (c) 2015 by Ramin Raziperchikolaei and Miguel A. Carreira-Perpinan function P = KNNPrecision(trainZ,testZ,K,gt, junk) [numTest,b] = size(testZ); P = zeros(size(K)); for i = 1:numTest point = testZ(i,:); dist = sum(bsxfun(@xor,trainZ,point),2); [~,idx] = sort(dist); for j = 1:numel(K) idx1 = idx(1:K(j)); if iscell(gt) c = intersect(idx1,gt{i}); else c = intersect(idx1,gt(i,:)); end if exist('junk', 'var') && ~isempty(junk) c = setdiff(c, junk{i}); end retrievedGoodPairs = numel(c); P(j) = P(j) + retrievedGoodPairs/K(j); end end P = P/numTest; end
github
hnanhtuan/Gemb-master
ba.m
.m
Gemb-master/BA/auxiliary/ba.m
4,348
utf_8
bcbad7d4e8e1560544b358639b4ba775
% [h,Z,f] = ba(X,L,mu,[Z,V,enum]) Binary Autoencoder (BA) % % Train a binary autoencoder using a MAC algorithm. The encoder can be % used as a binary hash function for information retrieval. % % Notes: % - We use a validation set V to check the precision at each step. By default, % this is a random subset of 200 points from X, and we do not remove them % from the training set. If you want disjoint training and validation sets, % provide them explicitly as arguments. % - Internally, BA.m normalizes the data points to [0,1] and undoes this % normalization before returning the final hash function (so the process is % transparent to the user). This simplifies setting set the schedule for the % mu parameter, and makes LIBLINEAR train the SVMs more efficiently. % % In: % X: NxD matrix containing N D-dim data points rowwise, the training set. % L: number of bits in the Hamming space (= number of binary hash functions). % mu: list of penalty parameter values; we run one MAC iteration for each. % Z: NxL binary matrix containing N L-bit binary data points (0/1) rowwise % (initial codes). Default: ITQ. % V: MxD matrix containing M D-dim data points rowwise, the validation set. % We skip a value of mu if the precision on V does not increase. % Default: 200 points randomly selected from dataset X. % enum: if L <= enum, use enumeration (exact) optimization in the Z-step, % otherwise use alternating optimization. Default: 10. % Out: % h: hash function (encoder). It is a struct with parameters: % type = 'linh', W = weight matrix (of LxD), w = bias vector (of Lx1). % Z: NxL binary matrix, final codes. It equals the output of h(X). % f: decoder function. It is a struct with parameters: % type = 'linf', W = weight matrix (of DxL), w = bias vector (of Dx1). % Any non-mandatory argument can be given the value [] to force it to take % its default value. % Copyright (c) 2015 by Ramin Raziperchikolaei and Miguel A. Carreira-Perpinan function [h,Z,f] = ba(X,L,mu,Z,V,enum) % Normalize data points to [0,1] max_dims = max(X,[],1); min_dims = min(X,[],1); range_dims = max(max(max_dims-min_dims+eps)); X = bsxfun(@minus,X,min_dims); X = bsxfun(@rdivide,X,range_dims); N = size(X,1); % ---------- Argument defaults ---------- if ~exist('Z','var') || isempty(Z) [~,Z] = itq(X,L); end; if ~exist('V','var') || isempty(V) V = X(randperm(N,200),:); end; if ~exist('enum','var') || isempty(enum) enum = 16; end; % ---------- End of "argument defaults" ---------- mkdir BAtemp % Temporary directory for LIBLINEAR files % Ground truth for the validation set k = floor(0.002*N); dist = sqdist(V,X); [~,gt] = sort(dist,2); gt = gt(:,1:k); oldP = 0; % Initialization of binary codes, hash function and decoder L = size(Z,2); Z = logical(Z); oldZ = false((size(Z))); rZ = []; h = []; f = []; SX = sparse(X); % LIBLINEAR requires a sparse data matrix i = 0; while i < length(mu) i = i+1; oldf = f; f = linftrain(double(Z),X); % Train the decoder % Determine which bits have not changed from the previous iteration do_h = sum(xor(Z,oldZ)); do_h = do_h>0; oldh = h; [h hX] = optenc(double(Z),SX,h,i~=1,do_h); % Train the encoder (hash fcn) % Check precision on validation set before Z step newP = KNNPrecision(hX,linh(V,h),k,gt); if newP < oldP % Skip the step if the precision does not increase h = oldh; f = oldf; Z = oldZ; rZ = oldrZ; idx = find(mu==mu(i)); i = idx(end)+1; if i>length(mu) disp('Stop because i > length(mu)'); break; end else oldP = newP; end % Train the binary codes (Z step) oldZ = Z; oldrZ = rZ; if L < enum Z = Zenum(X,f,hX,mu(i)); % Enumeration else % Alternating optimization % Initialization: truncated relaxed problem [Z rZ] = Zrelaxed(X,f,hX,mu(i),rZ); % Alternating optimization Z = Zaltopt(X,f,hX,mu(i),Z); end % Stop when the output of the hash function equals the binary codes if all(hX(:)==Z(:)) disp('Stop because Z = h'); break; end end if (i == length(mu)) disp('Stop because out of mu'); end Z = hX; % Unnormalise back hash function h h.W = bsxfun(@rdivide,h.W,range_dims); h.w = h.w - h.W*min_dims'; delete('BAtemp/*'); rmdir BAtemp % Remove the temporary directory end
github
hnanhtuan/Gemb-master
linftrain.m
.m
Gemb-master/BA/auxiliary/linftrain.m
1,053
utf_8
3f610feb964c525635b16cdc7c58c399
% [f,fX,E] = linftrain(X,Y[,l]) Train linear function y = f(x) = W.x+w % % In: % X: NxL matrix, N L-dim data points rowwise. % Y: NxD matrix, N D-dim data points rowwise. % l: (nonnegative scalar) regularisation parameter. Default: 0. % Out: % f: (struct) the linear function, with fields: % type='linf', W (DxL), w (Dx1), regularisation parameter l. % fX: NxD matrix, f(X). % E: 1x2 list, fit error and regularisation error. % Copyright (c) 2010 by Miguel A. Carreira-Perpinan function [f,fX,E] = linftrain(X,Y,l) % ---------- Argument defaults ---------- if ~exist('l','var') l = []; f.l = 0; else f.l = l; end; % ---------- End of "argument defaults" ---------- [N,L] = size(X); f.type = 'linf'; X1 = sum(X,1)'; XX = X'*X - X1*(X1'/N); if ~isempty(l) XX = XX + spdiags(repmat(l,L,1),0,L,L); end f.W = (Y'*X-mean(Y,1)'*X1') / XX; f.w = mean(Y-X*f.W',1)'; if nargout>1 fX = linf(X,f); end if nargout>2 E = sum(sum((Y-fX).^2)); % Fit error %if ~isempty(l) E = [E l*(f.W(:)'*f.W(:))]; else E=[E 0]; end % Regul. error end
github
hnanhtuan/Gemb-master
bfa.m
.m
Gemb-master/BA/auxiliary/bfa.m
2,665
utf_8
9c6730b9a14030b1fa6100b1cd17e794
% [h,Z,f] = bfa(X,L,[Z,V,enum,maxit]) Binary Factor Analysis (BFA) % % Train a binary factor analysis using a MAC algorithm. The encoder can be % used as a binary hash function for information retrieval. % % See usage instructions in ba.m. % % In: % X,L,Z,V,enum: as in ba.m. Default for Z: tPCA. % maxit: maximal number of iterations. Default: 20. % Out: % h,Z,f: as in ba.m. % Any non-mandatory argument can be given the value [] to force it to take % its default value. % Copyright (c) 2015 by Ramin Raziperchikolaei and Miguel A. Carreira-Perpinan function [h,Z,f] = bfa(X,L,Z,V,enum) % Normalize data points to [0,1] max_dims = max(X,[],1); min_dims = min(X,[],1); range_dims = max(max(max_dims-min_dims+eps)); X = bsxfun(@minus,X,min_dims); X = bsxfun(@rdivide,X,range_dims); N = size(X,1); % ---------- Argument defaults ---------- if ~exist('Z','var') || isempty(Z) [~,Z] = itq(X,L,0); end; if ~exist('V','var') || isempty(V) V = X(randperm(N,200),:); end; if ~exist('enum','var') || isempty(enum) enum = 10; end; if ~exist('maxit','var') || isempty(maxit) maxit = 20; end; % ---------- End of "argument defaults" ---------- mkdir BAtemp % Temporary directory for LIBLINEAR files % Ground truth for the validation set k = floor(0.01*N); dist = sqdist(V,X); [~,gt] = sort(dist,2); gt = gt(:,1:k); oldP = 0; % Initialization of binary codes, hash function and decoder L = size(Z,2); Z = logical(Z); oldZ = false((size(Z))); rZ = []; h = []; SX = sparse(X); % LIBLINEAR requires a sparse data matrix i = 0; while i < maxit i = i+1; f = linftrain(double(Z),X); % Train the decoder % Determine which bits have not changed from the previous iteration do_h = sum(xor(Z,oldZ)); do_h = do_h>0; [h hX] = optenc(double(Z),SX,h,i~=1,do_h); % Train the encoder (hash fcn) % Check precision on validation set before Z step newP = KNNPrecision(hX,linh(V,h),k,gt); if newP < oldP % Stop when new precision worse than previous one break else oldP = newP; end % Train the binary codes (Z step) oldZ = Z; if L <= enum Z = Zenum(X,f,hX,0); % Enumeration else % Alternating optimization % Initialization: truncated relaxed problem [Z rZ] = Zrelaxed(X,f,hX,0,rZ); % Alternating optimization Z = Zaltopt(X,f,hX,0,Z); end % Stop when the output of the hash function equals the binary codes % or when there is no change in binary codes if (all(hX(:)==Z(:))) || (all(oldZ(:)==Z(:))) break; end end Z = hX; % Unnormalise back hash function h h.W = bsxfun(@rdivide,h.W,range_dims); h.w = h.w - h.W*min_dims'; delete('BAtemp/*'); rmdir BAtemp % Remove the temporary directory end
github
hnanhtuan/Gemb-master
binset.m
.m
Gemb-master/BA/auxiliary/binset.m
426
utf_8
90eeb676b27c9fb06794c3a844b9b9c1
% B = binset(n) Set of n-bit binary numbers % % In: % n: number of binary variables (bits). % Out: % B: (2^n x n matrix) the 2^n binary numbers in ascending order; % each number is 1..n = MSB..LSB. % % Any non-mandatory argument can be given the value [] to force it to take % its default value. % Copyright (c) 2014 by Miguel A. Carreira-Perpinan function B = binset(n) B = logical(dec2bin((0:2^n-1)',n) - '0');
github
hnanhtuan/Gemb-master
linf.m
.m
Gemb-master/BA/auxiliary/linf.m
418
utf_8
cb63f64993075054d35e97c88685bf5d
% [Y,J] = linf(X,f) Value of linear function y = f(x) = W.x+w % % See linftrain. % % In: % X: NxL matrix, N L-dim data points rowwise. % f: (struct) the linear function. % Out: % Y: NxD matrix, N D-dim outputs Y = f(X). % J: DxL Jacobian matrix (assumes N=1 input only). % Copyright (c) 2009 by Miguel A. Carreira-Perpinan function [Y,J] = linf(X,f) Y = bsxfun(@plus,X*f.W',f.w'); if nargout>1 J = f.W; end
github
hnanhtuan/Gemb-master
optenc.m
.m
Gemb-master/BA/auxiliary/optenc.m
2,449
utf_8
e74e497606c9670df5439da24377dd52
% [h,hX] = optenc(Z,X,[h,warm,do_h]) % % Train the encoder (hash function) given input data and binary codes. % % The hash function h consists of L binary linear SVMs (one per code bit). % We train each SVM using LIBLINEAR. % % Notes: % - Warm-start means that, when training the hash function h, we initialize % the training to the hash function resulting from previous MAC iteration. % This way, training is faster than if using an arbitrary initial h. % - When using warm-start, LIBLINEAR uses text files to pass information: it % puts all the information about the trained SVMs in text files (with names % tmph001, tmph002... for bits 1, 2...) and initializes itself by reading % from them. In our code, the input argument h contains the same information % as the text files but in matrix format so we can use it in our Matlab code. % % In: % Z: NxL binary matrix containing N L-dim binary data points rowwise. % X: NxD *sparse* matrix containing N D-dim data points rowwise. % h: (struct) hash function (L binary SVMs) trained in the previous % iteration of the MAC algorithm. % warm: 1 if we use warm-start to initialize h, 0 otherwise. Default: 0. % do_h: 1xL binary vector, do_h(l) = 1 if we need to train the lth hash % function. Default: ones. % Out: % h: (struct) hash function (L binary SVMs). % hX: NxL binary matrix containing the output of the hash function for % each training point. % Copyright (c) 2015 by Ramin Raziperchikolaei and Miguel A. Carreira-Perpinan function [h,hX] = optenc(Z,X,h,warm,do_h) L = size(Z,2); D = size(X,2); % ---------- Argument defaults ---------- if ~exist('h','var') || isempty(h) h.W = zeros(L,D); h.w = zeros(L,1); end; if ~exist('warm','var') || isempty(warm) warm = 0; end; if ~exist('do_h','var') || isempty(do_h) do_h = ones(1,L); end; % ---------- End of "argument defaults" ---------- W = h.W; w = h.w; % unpack struct so we can assign variables in parfor for j=find(do_h) % Call LIBLINEAR's "train" with appropriate parameters: LIBLINEARopt = [' tmph' num2str(j,'%03d')]; if warm LIBLINEARopt = [' -i' ' tmph' num2str(j,'%03d') LIBLINEARopt]; end model = train(Z(:,j),X,['-e .001 -s 2 -B 1 -q -c 100' LIBLINEARopt]); % Extract SVM parameters from LIBLINEAR output: tempw = (model.Label(1)*2 - 1)*model.w; W(j,:) = tempw(1:end-1)'; w(j,1) = tempw(end); end h.type = 'linh'; h.w = w; h.W = W; if nargout > 1 hX = linh(X,h); end end
github
hnanhtuan/Gemb-master
Zrelaxed.m
.m
Gemb-master/BA/auxiliary/Zrelaxed.m
1,750
UNKNOWN
7c23abbdfff789d41f206145eac8d410
% [Z rZ] = Zrelaxed(X,f,V,mu,[Z,maxit,tol]) % % Binary autoencoder Z step: truncated relaxed approximation. % % Optimizes over the real codes Z in [0,1] (a convex QP): % min_Z{ |X - f(Z)|� + �.|Z - V|� } s.t. 0 >= Z >= 1 % then projects Z onto {0,1} using a greedy truncation procedure where, for % each bit in sequence 1:L, we pick the value in {0,1} that has smallest % objective. % % In: % X: NxD matrix. % f: mapping from z to x. % V: NxL binary matrix. % mu: positive scalar. % Z: NxL binary matrix (initial Z). Default: V. % maxit: maximal number of iterations. Default: 1000. % tol: small positive number, tolerance in the change of Z to stop iterating. % Default: 1e-4. % Out: % Z: NxL binary matrix. % rZ: NxL matrix containing the relaxed solution before truncation. % % Any non-mandatory argument can be given the value [] to force it to take % its default value. % Copyright (c) 2015 by Ramin Raziperchikolaei and Miguel A. Carreira-Perpinan function [Z,rZ] = Zrelaxed(X,f,V,mu,Z,maxit,tol) % ---------- Argument defaults ---------- if ~exist('Z','var') || isempty(Z) Z = V; end; if ~exist('maxit','var') || isempty(Z) maxit = 1000; end; if ~exist('tol','var') || isempty(Z) tol = 1e-4; end; % ---------- End of "argument defaults" ---------- [N L] = size(V); W = f.W; w = f.w'; X1 = bsxfun(@minus,X,w); % Solve relaxed QP rZ = proxbqp(V',mu,W'*W,W'*X1',[],[],Z',[],[],maxit,tol)'; % Sequential greedy truncation [Q R] = qr(W,0); X = X1*Q; for n = 1:N % parfor n = 1:N z = rZ(n,:); v = V(n,:); x = X(n,:); for i = 1:L z(i) = 1; e1 = (norm(x-z*R').^2) + (mu)*(norm(z-v).^2); z(i) = 0; e2 = (norm(x-z*R').^2) + (mu)*(norm(z-v).^2); z(i) = e1 < e2; end Z(n,:) = z; end end
github
hnanhtuan/Gemb-master
linh.m
.m
Gemb-master/BA/auxiliary/linh.m
443
utf_8
cf6b0c9959a424fd934643f353dc31c1
% Y = linh(X,h) % % Value of step linear function y = h(x) = step(W.x+w), where % step(t) = 1 if t>0, 0 otherwise % applies elementwise. % % In: % X: NxL matrix, N L-dim data points rowwise. % h: (struct) hash function (containing D binary functions). % Out: % Y: NxD logical matrix, N D-dim outputs Y = h(X). % Copyright (c) 2015 by Ramin Raziperchikolaei and Miguel A. Carreira-Perpinan function Y = linh(X,h) Y = linf(X,h) > 0;
github
hnanhtuan/Gemb-master
itq.m
.m
Gemb-master/BA/auxiliary/itq.m
2,271
utf_8
77e2b4bbd764ce1a0fe99ff5b180df65
% [h,Z] = itq(X,L[,rot]) ITQ and tPCA % % Learn binary hash functions with ITQ (iterative quantization) or with tPCA % (thresholded PCA). % % tPCA computes PCA and truncates its low-dim codes using zero as threshold. % Run it as itq(X,L). % ITQ computes PCA and rotates its low-dim codes to make them as binary as % possible, then truncates them. Run it as itq(X,L,0). % % In: % X: NxD matrix containing N D-dim data points rowwise, the training set. % L: number of bits in the Hamming space. % rot: 1 to do ITQ rotation, 0 otherwise (ie tPCA). Default: 1. % Out: % h: hash function. It is a struct with parameters: % type = 'linh', W = weight matrix (of LxD), w = bias vector (of Lx1). % Z: NxL binary matrix, final codes. It equals the output of h(X). % Any non-mandatory argument can be given the value [] to force it to take % its default value. % Copyright (c) 2015 by Ramin Raziperchikolaei and Miguel A. Carreira-Perpinan function [h,Z] = itq(X,L,rot) % ---------- Argument defaults ---------- if ~exist('rot','var') || isempty(rot) rot = 1; end; % ---------- End of "argument defaults" ---------- m = mean(X,1); X = bsxfun(@minus,X,m); U = pca(X,'NumComponents',L); if rot==1 % ITQ ZZ = X*U; [~,R] = ITQ(ZZ,50); U = U*R; Z = (ZZ*R) > 0; else % tPCA Z = (X*U) > 0; end h.type = 'linh'; h.W = U'; h.w = (-m*U)'; function [B,R] = ITQ(V, n_iter) % % main function for ITQ which finds a rotation of the PCA embedded data % Input: % V: n*c PCA embedded data, n is the number of images and c is the % code length % n_iter: max number of iterations, 50 is usually enough % Output: % B: n*c binary matrix % R: the c*c rotation matrix found by ITQ % Author: % Yunchao Gong ([email protected]) % Publications: % Yunchao Gong and Svetlana Lazebnik. Iterative Quantization: A % Procrustes Approach to Learning Binary Codes. In CVPR 2011. % % initialize with a orthogonal random rotation bit = size(V,2); R = randn(bit,bit); [U11 S2 V2] = svd(R); R = U11(:,1:bit); % ITQ to find optimal rotation for iter=0:n_iter Z = V * R; UX = ones(size(Z,1),size(Z,2)).*-1; UX(Z>=0) = 1; C = UX' * V; [UB,sigma,UA] = svd(C); R = UA * UB'; end % make B binary B = UX; B = B>0;
github
epilepsyecosystem/3rdPlace_GarethJones-master
zscore2.m
.m
3rdPlace_GarethJones-master/zscore2.m
1,862
utf_8
bc34b745e5214b3f2d4faf9ed9fc6193
% MATLAB zscore function modified to handle nans using nanmean and nanstd. % Note that this is slower than using mean and std. % Original version Copyright 1993-2015 The MathWorks, Inc. function [z,mu,sigma] = zscore2(x,flag,dim) %ZSCORE Standardized z score. % Z = ZSCORE(X) returns a centered, scaled version of X, the same size as X. % For vector input X, Z is the vector of z-scores (X-MEAN(X)) ./ STD(X). For % matrix X, z-scores are computed using the mean and standard deviation % along each column of X. For higher-dimensional arrays, z-scores are % computed using the mean and standard deviation along the first % non-singleton dimension. % % The columns of Z have sample mean zero and sample standard deviation one % (unless a column of X is constant, in which case that column of Z is % constant at 0). % % [Z,MU,SIGMA] = ZSCORE(X) also returns MEAN(X) in MU and STD(X) in SIGMA. % % [...] = ZSCORE(X,1) normalizes X using STD(X,1), i.e., by computing the % standard deviation(s) using N rather than N-1, where N is the length of % the dimension along which ZSCORE works. ZSCORE(X,0) is the same as % ZSCORE(X). % % [...] = ZSCORE(X,FLAG,DIM) standardizes X by working along the dimension % DIM of X. Pass in FLAG==0 to use the default normalization by N-1, or 1 % to use N. % % See also MEAN, STD. % Copyright 1993-2015 The MathWorks, Inc. % [] is a special case for std and mean, just handle it out here. if isequal(x,[]), z = x; return; end if nargin < 2 flag = 0; end if nargin < 3 % Figure out which dimension to work along. dim = find(size(x) ~= 1, 1); if isempty(dim), dim = 1; end end % Compute X's mean and sd, and standardize it mu = nanmean(x,dim); sigma = nanstd(x,flag,dim); sigma0 = sigma; sigma0(sigma0==0) = 1; z = bsxfun(@minus,x, mu); z = bsxfun(@rdivide, z, sigma0);
github
Rookfighter/robmap-ws17-18-master
resample.m
.m
robmap-ws17-18-master/ex08/octave/tools/resample.m
1,264
utf_8
d5f805465ccb86ff9b4315695ffaa07c
% resample the set of particles. % A particle has a probability proportional to its weight to get % selected. A good option for such a resampling method is the so-called low % variance sampling, Probabilistic Robotics pg. 109 function newParticles = resample(particles) numParticles = length(particles); w = [particles.weight]; % normalize the weight w = w / sum(w); % consider number of effective particles, to decide whether to resample or not useNeff = false; %useNeff = true; if useNeff neff = 1. / sum(w.^2); neff if neff > 0.5*numParticles newParticles = particles; for i = 1:numParticles newParticles(i).weight = w(i); end return; end end newParticles = struct; % TODO: implement the low variance re-sampling % the cummulative sum cs = cumsum(w); weightSum = cs(length(cs)); % initialize the step and the current position on the roulette wheel step = weightSum / numParticles; position = unifrnd(0, weightSum); idx = 1; % walk along the wheel to select the particles for i = 1:numParticles position += step; if (position > weightSum) position -= weightSum; idx = 1; end while (position > cs(idx)) idx++; end newParticles(i) = particles(idx); newParticles(i).weight = 1/numParticles; end end
github
Rookfighter/robmap-ws17-18-master
drawprobellipse.m
.m
robmap-ws17-18-master/ex08/octave/tools/drawprobellipse.m
1,803
utf_8
90c41a3bebf740e86100f47974753eb3
%DRAWPROBELLIPSE Draw elliptic probability region of a Gaussian in 2D. % DRAWPROBELLIPSE(X,C,ALPHA,COLOR) draws the elliptic iso-probabi- % lity contour of a Gaussian distributed bivariate random vector X % at the significance level ALPHA. The ellipse is centered at X = % [x; y] where C is the associated 2x2 covariance matrix. COLOR is % a [r g b]-vector or a color string such as 'r' or 'g'. % % X and C can also be of size 3x1 and 3x3 respectively. % % For proper scaling, the function CHI2INVTABLE is employed to % avoid the use of CHI2INV from the Matlab statistics toolbox. % % In case of a negative definite matrix C, the ellipse collapses % to a line which is drawn instead. % % H = DRAWPROBELLIPSE(...) returns the graphic handle H. % % See also DRAWELLIPSE, CHI2INVTABLE, CHI2INV. % v.1.0-v.1.3, 97-Jan.03, Kai Arras, ASL-EPFL % v.1.4, 03.12.03, Kai Arras, CAS-KTH: toolbox version function h = drawprobellipse(x,C,alpha,color); % Calculate unscaled half axes sxx = C(1,1); syy = C(2,2); sxy = C(1,2); a = sqrt(0.5*(sxx+syy+sqrt((sxx-syy)^2+4*sxy^2))); % always greater b = sqrt(0.5*(sxx+syy-sqrt((sxx-syy)^2+4*sxy^2))); % always smaller % Remove imaginary parts in case of neg. definite C if ~isreal(a), a = real(a); end; if ~isreal(b), b = real(b); end; % Scaling in order to reflect specified probability a = a*sqrt(chi2invtable(alpha,2)); b = b*sqrt(chi2invtable(alpha,2)); % Look where the greater half axis belongs to if sxx < syy, swap = a; a = b; b = swap; end; % Calculate inclination (numerically stable) if sxx ~= syy, angle = 0.5*atan(2*sxy/(sxx-syy)); elseif sxy == 0, angle = 0; % angle doesn't matter elseif sxy > 0, angle = pi/4; elseif sxy < 0, angle = -pi/4; end; x(3) = angle; % Draw ellipse h = drawellipse(x,a,b,color);
github
Rookfighter/robmap-ws17-18-master
drawrobot.m
.m
robmap-ws17-18-master/ex08/octave/tools/drawrobot.m
5,225
utf_8
3dfed55ac85a746f0f7c2407e1880069
%DRAWROBOT Draw robot. % DRAWROBOT(X,COLOR) draws a robot at pose X = [x y theta] such % that the robot reference frame is attached to the center of % the wheelbase with the x-axis looking forward. COLOR is a % [r g b]-vector or a color string such as 'r' or 'g'. % % DRAWROBOT(X,COLOR,TYPE) draws a robot of type TYPE. Five % different models are implemented: % TYPE = 0 draws only a cross with orientation theta % TYPE = 1 is a differential drive robot without contour % TYPE = 2 is a differential drive robot with round shape % TYPE = 3 is a round shaped robot with a line at theta % TYPE = 4 is a differential drive robot with rectangular shape % TYPE = 5 is a rectangular shaped robot with a line at theta % % DRAWROBOT(X,COLOR,TYPE,W,L) draws a robot of type TYPE with % width W and length L in [m]. % % H = DRAWROBOT(...) returns a column vector of handles to all % graphic objects of the robot drawing. Remember that not all % graphic properties apply to all types of graphic objects. Use % FINDOBJ to find and access the individual objects. % % See also DRAWRECT, DRAWARROW, FINDOBJ, PLOT. % v.1.0, 16.06.03, Kai Arras, ASL-EPFL % v.1.1, 12.10.03, Kai Arras, ASL-EPFL: uses drawrect % v.1.2, 03.12.03, Kai Arras, CAS-KTH : types implemented function h = drawrobot(varargin); % Constants DEFT = 2; % default robot type DEFB = 0.4; % default robot width in [m], defines y-dir. of {R} WT = 0.03; % wheel thickness in [m] DEFL = DEFB+0.2; % default robot length in [m] WD = 0.2; % wheel diameter in [m] RR = WT/2; % wheel roundness radius in [m] RRR = 0.04; % roundness radius for rectangular robots in [m] HL = 0.09; % arrow head length in [m] CS = 0.1; % cross size in [m], showing the {R} origin % Input argument check inputerr = 0; switch nargin, case 2, xvec = varargin{1}; color = varargin{2}; type = DEFT; B = DEFB; L = DEFL; case 3; xvec = varargin{1}; color = varargin{2}; type = varargin{3}; B = DEFB; L = DEFL; case 5; xvec = varargin{1}; color = varargin{2}; type = varargin{3}; B = varargin{4}; L = varargin{5}; otherwise inputerr = 1; end; % Main switch statement if ~inputerr, x = xvec(1); y = xvec(2); theta = xvec(3); T = [x; y]; R = [cos(theta), -sin(theta); sin(theta), cos(theta)]; switch type case 0, % Draw origin cross p = R*[CS, -CS, 0, 0; 0, 0, -CS, CS] + T*ones(1,4); % horiz. line h = plot(p(1,1:2),p(2,1:2),'Color',color,p(1,3:4),p(2,3:4),'Color',color); case 1, % Draw wheel pair with axis and arrow xlw = [x+B/2*cos(theta+pi/2); y+B/2*sin(theta+pi/2); theta]; h1 = drawrect(xlw,WD,WT,RR,1,color); % left wheel xlw = [x-B/2*cos(theta+pi/2); y-B/2*sin(theta+pi/2); theta]; h2 = drawrect(xlw,WD,WT,RR,1,color); % right wheel % Draw axis cross with arrow p = R*[0, 0; -B/2+WT/2, B/2-WT/2] + T*ones(1,2); h3 = plot(p(1,:),p(2,:),'Color',color); p = R*[L/2; 0] + T; h4 = drawarrow(T,p,1,HL,color); h = cat(1,h1,h2,h3,h4); case 2, % Draw wheel pair with axis and arrow xlw = [x+B/2*cos(theta+pi/2); y+B/2*sin(theta+pi/2); theta]; h1 = drawrect(xlw,WD,WT,RR,1,color); % left wheel xlw = [x-B/2*cos(theta+pi/2); y-B/2*sin(theta+pi/2); theta]; h2 = drawrect(xlw,WD,WT,RR,1,color); % right wheel % Draw axis cross with arrow p = R*[0, 0; -B/2+WT/2, B/2-WT/2] + T*ones(1,2); h3 = plot(p(1,:),p(2,:),'Color',color); p = R*[(B+WT)/2; 0] + T; h4 = drawarrow(T,p,1,HL,color); % Draw circular contour radius = (B+WT)/2; h5 = drawellipse(xvec,radius,radius,color); h = cat(1,h1,h2,h3,h4,h5); case 3, % Draw circular contour radius = (B+WT)/2; h1 = drawellipse(xvec,radius,radius,color); % Draw line with orientation theta with length radius p = R*[(B+WT)/2;0] + T; h2 = plot([T(1) p(1)],[T(2) p(2)],'Color',color,'linewidth',2); h = cat(1,h1,h2); case 4, % Draw wheel pair with axis and arrow xlw = [x+B/2*cos(theta+pi/2); y+B/2*sin(theta+pi/2); theta]; h1 = drawrect(xlw,WD,WT,RR,1,color); % left wheel xlw = [x-B/2*cos(theta+pi/2); y-B/2*sin(theta+pi/2); theta]; h2 = drawrect(xlw,WD,WT,RR,1,color); % right wheel % Draw axis cross with arrow p = R*[0, 0; -B/2+WT/2, B/2-WT/2] + T*ones(1,2); h3 = plot(p(1,:),p(2,:),'Color',color); p = R*[L/2; 0] + T; h4 = drawarrow(T,p,1,HL,color); % Draw rectangular contour h5 = drawrect(xvec,L,B,RRR,0,color); h = cat(1,h1,h2,h3,h4,h5); case 5, % Draw rectangular contour h1 = drawrect(xvec,L,B,RRR,0,color); % Draw line with orientation theta with length L p = R*[L/2; 0] + T; h2 = plot([T(1) p(1)],[T(2) p(2)],'Color',color,'linewidth',2); h = cat(1,h1,h2); otherwise disp('drawrobot: Unsupported robot type'); h = []; end; else disp('drawrobot: Wrong number of input arguments'); h = []; end;
github
Rookfighter/robmap-ws17-18-master
measurement_model.m
.m
robmap-ws17-18-master/ex08/octave/tools/measurement_model.m
1,025
utf_8
4a0ad5fabced752df762d7390cdab378
% compute the expected measurement for a landmark % and the Jacobian with respect to the landmark function [h, H] = measurement_model(particle, z) % extract the id of the landmark landmarkId = z.id; % two 2D vector for the position (x,y) of the observed landmark landmarkPos = particle.landmarks(landmarkId).mu; % TODO: use the current state of the particle to predict the measurment landmarkX = landmarkPos(1); landmarkY = landmarkPos(2); expectedRange = sqrt((landmarkX - particle.pose(1))^2 + (landmarkY - particle.pose(2))^2); expectedBearing = normalize_angle(atan2(landmarkY-particle.pose(2), landmarkX-particle.pose(1)) - particle.pose(3)); h = [expectedRange; expectedBearing]; % TODO: Compute the Jacobian H of the measurement function h wrt the landmark location H = zeros(2,2); H(1,1) = (landmarkX - particle.pose(1))/expectedRange; H(1,2) = (landmarkY - particle.pose(2))/expectedRange; H(2,1) = (particle.pose(2) - landmarkY)/(expectedRange^2); H(2,2) = (landmarkX - particle.pose(1))/(expectedRange^2); end
github
Rookfighter/robmap-ws17-18-master
chi2invtable.m
.m
robmap-ws17-18-master/ex08/octave/tools/chi2invtable.m
231,909
utf_8
d16aef6be089f46039e76c200f7577d8
%CHI2INVTABLE Lookup table of the inverse of the chi-square cdf. % X = CHI2INVTABLE(P,V) returns the inverse of the chi-square cumu- % lative distribution function (cdf) with V degrees of freedom at % the value P. The chi-square cdf with V degrees of freedom, is % the gamma cdf with parameters V/2 and 2. % % Opposed to CHI2INV of the Matlab statistics toolbox which might % be not part of your Matlab installation, this is a lookup table % which has the side effect of being much faster than CHI2INV. % However, as any lookup table is a collection of sample points, % accuracy is smaller and between the sample points of the cdf, a % linear interpolation is made. % % Currently, the function supports the degrees of freedom V between % 1 and 10 and the probability levels P between 0 and 0.9999 in steps % of 0.0001 and the level of 0.99999. % % See also CHI2INV. % v.1.0, 18.12.03, Kai Arras, CAS-KTH function x = chi2invtable(alpha,dof); persistent T LEVELS DOFS; % Check whether table is already in memory vars = whos; it = strcmp({vars.name},'T'); if (sum(it) == 0) | (prod(vars(find(it)).size) == 0), LEVELS = [0:0.001:0.999, 0.9999, 0.99999]; DOFS = 1:10; T( 1, 1)= 0.00000000; T( 1, 2)= 0.00000157; T( 1, 3)= 0.00000628; T( 1, 4)= 0.00001414; T( 1, 5)= 0.00002513; T( 1, 6)= 0.00003927; T( 1, 7)= 0.00005655; T( 1, 8)= 0.00007697; T( 1, 9)= 0.00010053; T( 1,10)= 0.00012724; T( 1,11)= 0.00015709; T( 1,12)= 0.00019008; T( 1,13)= 0.00022621; T( 1,14)= 0.00026549; T( 1,15)= 0.00030791; T( 1,16)= 0.00035347; T( 1,17)= 0.00040218; T( 1,18)= 0.00045403; T( 1,19)= 0.00050902; T( 1,20)= 0.00056716; T( 1,21)= 0.00062845; T( 1,22)= 0.00069288; T( 1,23)= 0.00076046; T( 1,24)= 0.00083118; T( 1,25)= 0.00090505; T( 1,26)= 0.00098207; T( 1,27)= 0.00106223; T( 1,28)= 0.00114555; T( 1,29)= 0.00123201; T( 1,30)= 0.00132162; T( 1,31)= 0.00141438; T( 1,32)= 0.00151030; T( 1,33)= 0.00160936; T( 1,34)= 0.00171157; T( 1,35)= 0.00181694; T( 1,36)= 0.00192546; T( 1,37)= 0.00203713; T( 1,38)= 0.00215196; T( 1,39)= 0.00226995; T( 1,40)= 0.00239109; T( 1,41)= 0.00251538; T( 1,42)= 0.00264284; T( 1,43)= 0.00277345; T( 1,44)= 0.00290722; T( 1,45)= 0.00304415; T( 1,46)= 0.00318424; T( 1,47)= 0.00332749; T( 1,48)= 0.00347391; T( 1,49)= 0.00362349; T( 1,50)= 0.00377623; T( 1,51)= 0.00393214; T( 1,52)= 0.00409122; T( 1,53)= 0.00425346; T( 1,54)= 0.00441887; T( 1,55)= 0.00458745; T( 1,56)= 0.00475920; T( 1,57)= 0.00493412; T( 1,58)= 0.00511222; T( 1,59)= 0.00529349; T( 1,60)= 0.00547793; T( 1,61)= 0.00566555; T( 1,62)= 0.00585635; T( 1,63)= 0.00605033; T( 1,64)= 0.00624748; T( 1,65)= 0.00644782; T( 1,66)= 0.00665134; T( 1,67)= 0.00685804; T( 1,68)= 0.00706793; T( 1,69)= 0.00728100; T( 1,70)= 0.00749726; T( 1,71)= 0.00771672; T( 1,72)= 0.00793936; T( 1,73)= 0.00816519; T( 1,74)= 0.00839422; T( 1,75)= 0.00862644; T( 1,76)= 0.00886185; T( 1,77)= 0.00910047; T( 1,78)= 0.00934228; T( 1,79)= 0.00958730; T( 1,80)= 0.00983551; T( 1,81)= 0.01008693; T( 1,82)= 0.01034156; T( 1,83)= 0.01059939; T( 1,84)= 0.01086043; T( 1,85)= 0.01112468; T( 1,86)= 0.01139215; T( 1,87)= 0.01166283; T( 1,88)= 0.01193672; T( 1,89)= 0.01221383; T( 1,90)= 0.01249416; T( 1,91)= 0.01277771; T( 1,92)= 0.01306448; T( 1,93)= 0.01335448; T( 1,94)= 0.01364771; T( 1,95)= 0.01394416; T( 1,96)= 0.01424384; T( 1,97)= 0.01454676; T( 1,98)= 0.01485290; T( 1,99)= 0.01516229; T( 1,100)= 0.01547491; T( 1,101)= 0.01579077; T( 1,102)= 0.01610988; T( 1,103)= 0.01643223; T( 1,104)= 0.01675782; T( 1,105)= 0.01708666; T( 1,106)= 0.01741876; T( 1,107)= 0.01775410; T( 1,108)= 0.01809270; T( 1,109)= 0.01843456; T( 1,110)= 0.01877968; T( 1,111)= 0.01912805; T( 1,112)= 0.01947969; T( 1,113)= 0.01983460; T( 1,114)= 0.02019278; T( 1,115)= 0.02055422; T( 1,116)= 0.02091894; T( 1,117)= 0.02128693; T( 1,118)= 0.02165820; T( 1,119)= 0.02203275; T( 1,120)= 0.02241059; T( 1,121)= 0.02279170; T( 1,122)= 0.02317611; T( 1,123)= 0.02356380; T( 1,124)= 0.02395479; T( 1,125)= 0.02434907; T( 1,126)= 0.02474665; T( 1,127)= 0.02514753; T( 1,128)= 0.02555171; T( 1,129)= 0.02595920; T( 1,130)= 0.02636999; T( 1,131)= 0.02678410; T( 1,132)= 0.02720152; T( 1,133)= 0.02762225; T( 1,134)= 0.02804631; T( 1,135)= 0.02847368; T( 1,136)= 0.02890438; T( 1,137)= 0.02933841; T( 1,138)= 0.02977577; T( 1,139)= 0.03021646; T( 1,140)= 0.03066048; T( 1,141)= 0.03110785; T( 1,142)= 0.03155855; T( 1,143)= 0.03201260; T( 1,144)= 0.03247000; T( 1,145)= 0.03293075; T( 1,146)= 0.03339485; T( 1,147)= 0.03386231; T( 1,148)= 0.03433313; T( 1,149)= 0.03480731; T( 1,150)= 0.03528486; T( 1,151)= 0.03576578; T( 1,152)= 0.03625007; T( 1,153)= 0.03673773; T( 1,154)= 0.03722878; T( 1,155)= 0.03772321; T( 1,156)= 0.03822102; T( 1,157)= 0.03872222; T( 1,158)= 0.03922681; T( 1,159)= 0.03973480; T( 1,160)= 0.04024619; T( 1,161)= 0.04076098; T( 1,162)= 0.04127917; T( 1,163)= 0.04180078; T( 1,164)= 0.04232579; T( 1,165)= 0.04285423; T( 1,166)= 0.04338608; T( 1,167)= 0.04392135; T( 1,168)= 0.04446006; T( 1,169)= 0.04500219; T( 1,170)= 0.04554776; T( 1,171)= 0.04609676; T( 1,172)= 0.04664921; T( 1,173)= 0.04720510; T( 1,174)= 0.04776444; T( 1,175)= 0.04832724; T( 1,176)= 0.04889349; T( 1,177)= 0.04946320; T( 1,178)= 0.05003637; T( 1,179)= 0.05061301; T( 1,180)= 0.05119313; T( 1,181)= 0.05177672; T( 1,182)= 0.05236379; T( 1,183)= 0.05295434; T( 1,184)= 0.05354838; T( 1,185)= 0.05414592; T( 1,186)= 0.05474695; T( 1,187)= 0.05535147; T( 1,188)= 0.05595951; T( 1,189)= 0.05657105; T( 1,190)= 0.05718611; T( 1,191)= 0.05780468; T( 1,192)= 0.05842677; T( 1,193)= 0.05905239; T( 1,194)= 0.05968153; T( 1,195)= 0.06031421; T( 1,196)= 0.06095043; T( 1,197)= 0.06159019; T( 1,198)= 0.06223350; T( 1,199)= 0.06288036; T( 1,200)= 0.06353078; T( 1,201)= 0.06418475; T( 1,202)= 0.06484230; T( 1,203)= 0.06550341; T( 1,204)= 0.06616809; T( 1,205)= 0.06683635; T( 1,206)= 0.06750820; T( 1,207)= 0.06818363; T( 1,208)= 0.06886266; T( 1,209)= 0.06954528; T( 1,210)= 0.07023151; T( 1,211)= 0.07092134; T( 1,212)= 0.07161479; T( 1,213)= 0.07231185; T( 1,214)= 0.07301253; T( 1,215)= 0.07371684; T( 1,216)= 0.07442478; T( 1,217)= 0.07513636; T( 1,218)= 0.07585157; T( 1,219)= 0.07657044; T( 1,220)= 0.07729295; T( 1,221)= 0.07801912; T( 1,222)= 0.07874896; T( 1,223)= 0.07948246; T( 1,224)= 0.08021963; T( 1,225)= 0.08096048; T( 1,226)= 0.08170501; T( 1,227)= 0.08245322; T( 1,228)= 0.08320514; T( 1,229)= 0.08396074; T( 1,230)= 0.08472006; T( 1,231)= 0.08548308; T( 1,232)= 0.08624982; T( 1,233)= 0.08702027; T( 1,234)= 0.08779446; T( 1,235)= 0.08857237; T( 1,236)= 0.08935402; T( 1,237)= 0.09013941; T( 1,238)= 0.09092855; T( 1,239)= 0.09172144; T( 1,240)= 0.09251809; T( 1,241)= 0.09331851; T( 1,242)= 0.09412270; T( 1,243)= 0.09493066; T( 1,244)= 0.09574241; T( 1,245)= 0.09655795; T( 1,246)= 0.09737728; T( 1,247)= 0.09820041; T( 1,248)= 0.09902734; T( 1,249)= 0.09985809; T( 1,250)= 0.10069265; T( 1,251)= 0.10153104; T( 1,252)= 0.10237326; T( 1,253)= 0.10321932; T( 1,254)= 0.10406922; T( 1,255)= 0.10492297; T( 1,256)= 0.10578057; T( 1,257)= 0.10664204; T( 1,258)= 0.10750737; T( 1,259)= 0.10837658; T( 1,260)= 0.10924967; T( 1,261)= 0.11012664; T( 1,262)= 0.11100751; T( 1,263)= 0.11189228; T( 1,264)= 0.11278096; T( 1,265)= 0.11367355; T( 1,266)= 0.11457005; T( 1,267)= 0.11547049; T( 1,268)= 0.11637486; T( 1,269)= 0.11728317; T( 1,270)= 0.11819542; T( 1,271)= 0.11911163; T( 1,272)= 0.12003180; T( 1,273)= 0.12095594; T( 1,274)= 0.12188405; T( 1,275)= 0.12281614; T( 1,276)= 0.12375223; T( 1,277)= 0.12469230; T( 1,278)= 0.12563638; T( 1,279)= 0.12658447; T( 1,280)= 0.12753658; T( 1,281)= 0.12849271; T( 1,282)= 0.12945287; T( 1,283)= 0.13041707; T( 1,284)= 0.13138531; T( 1,285)= 0.13235761; T( 1,286)= 0.13333397; T( 1,287)= 0.13431440; T( 1,288)= 0.13529891; T( 1,289)= 0.13628749; T( 1,290)= 0.13728017; T( 1,291)= 0.13827695; T( 1,292)= 0.13927783; T( 1,293)= 0.14028283; T( 1,294)= 0.14129195; T( 1,295)= 0.14230520; T( 1,296)= 0.14332259; T( 1,297)= 0.14434412; T( 1,298)= 0.14536981; T( 1,299)= 0.14639965; T( 1,300)= 0.14743367; T( 1,301)= 0.14847186; T( 1,302)= 0.14951424; T( 1,303)= 0.15056081; T( 1,304)= 0.15161159; T( 1,305)= 0.15266657; T( 1,306)= 0.15372578; T( 1,307)= 0.15478921; T( 1,308)= 0.15585687; T( 1,309)= 0.15692878; T( 1,310)= 0.15800494; T( 1,311)= 0.15908536; T( 1,312)= 0.16017005; T( 1,313)= 0.16125902; T( 1,314)= 0.16235228; T( 1,315)= 0.16344983; T( 1,316)= 0.16455169; T( 1,317)= 0.16565785; T( 1,318)= 0.16676834; T( 1,319)= 0.16788316; T( 1,320)= 0.16900232; T( 1,321)= 0.17012583; T( 1,322)= 0.17125370; T( 1,323)= 0.17238593; T( 1,324)= 0.17352254; T( 1,325)= 0.17466354; T( 1,326)= 0.17580893; T( 1,327)= 0.17695872; T( 1,328)= 0.17811293; T( 1,329)= 0.17927156; T( 1,330)= 0.18043462; T( 1,331)= 0.18160212; T( 1,332)= 0.18277408; T( 1,333)= 0.18395050; T( 1,334)= 0.18513138; T( 1,335)= 0.18631675; T( 1,336)= 0.18750661; T( 1,337)= 0.18870096; T( 1,338)= 0.18989983; T( 1,339)= 0.19110322; T( 1,340)= 0.19231114; T( 1,341)= 0.19352359; T( 1,342)= 0.19474060; T( 1,343)= 0.19596217; T( 1,344)= 0.19718831; T( 1,345)= 0.19841903; T( 1,346)= 0.19965434; T( 1,347)= 0.20089425; T( 1,348)= 0.20213877; T( 1,349)= 0.20338792; T( 1,350)= 0.20464170; T( 1,351)= 0.20590013; T( 1,352)= 0.20716320; T( 1,353)= 0.20843095; T( 1,354)= 0.20970337; T( 1,355)= 0.21098048; T( 1,356)= 0.21226228; T( 1,357)= 0.21354880; T( 1,358)= 0.21484003; T( 1,359)= 0.21613600; T( 1,360)= 0.21743670; T( 1,361)= 0.21874217; T( 1,362)= 0.22005239; T( 1,363)= 0.22136740; T( 1,364)= 0.22268719; T( 1,365)= 0.22401178; T( 1,366)= 0.22534118; T( 1,367)= 0.22667540; T( 1,368)= 0.22801446; T( 1,369)= 0.22935836; T( 1,370)= 0.23070713; T( 1,371)= 0.23206076; T( 1,372)= 0.23341927; T( 1,373)= 0.23478268; T( 1,374)= 0.23615099; T( 1,375)= 0.23752422; T( 1,376)= 0.23890238; T( 1,377)= 0.24028548; T( 1,378)= 0.24167354; T( 1,379)= 0.24306657; T( 1,380)= 0.24446457; T( 1,381)= 0.24586757; T( 1,382)= 0.24727557; T( 1,383)= 0.24868859; T( 1,384)= 0.25010664; T( 1,385)= 0.25152973; T( 1,386)= 0.25295788; T( 1,387)= 0.25439110; T( 1,388)= 0.25582940; T( 1,389)= 0.25727280; T( 1,390)= 0.25872130; T( 1,391)= 0.26017493; T( 1,392)= 0.26163369; T( 1,393)= 0.26309761; T( 1,394)= 0.26456668; T( 1,395)= 0.26604093; T( 1,396)= 0.26752037; T( 1,397)= 0.26900501; T( 1,398)= 0.27049487; T( 1,399)= 0.27198997; T( 1,400)= 0.27349030; T( 1,401)= 0.27499590; T( 1,402)= 0.27650677; T( 1,403)= 0.27802292; T( 1,404)= 0.27954438; T( 1,405)= 0.28107116; T( 1,406)= 0.28260326; T( 1,407)= 0.28414071; T( 1,408)= 0.28568353; T( 1,409)= 0.28723171; T( 1,410)= 0.28878529; T( 1,411)= 0.29034427; T( 1,412)= 0.29190867; T( 1,413)= 0.29347850; T( 1,414)= 0.29505378; T( 1,415)= 0.29663453; T( 1,416)= 0.29822076; T( 1,417)= 0.29981248; T( 1,418)= 0.30140972; T( 1,419)= 0.30301248; T( 1,420)= 0.30462079; T( 1,421)= 0.30623465; T( 1,422)= 0.30785408; T( 1,423)= 0.30947911; T( 1,424)= 0.31110974; T( 1,425)= 0.31274600; T( 1,426)= 0.31438789; T( 1,427)= 0.31603544; T( 1,428)= 0.31768866; T( 1,429)= 0.31934756; T( 1,430)= 0.32101217; T( 1,431)= 0.32268250; T( 1,432)= 0.32435857; T( 1,433)= 0.32604040; T( 1,434)= 0.32772799; T( 1,435)= 0.32942138; T( 1,436)= 0.33112057; T( 1,437)= 0.33282558; T( 1,438)= 0.33453644; T( 1,439)= 0.33625315; T( 1,440)= 0.33797574; T( 1,441)= 0.33970422; T( 1,442)= 0.34143862; T( 1,443)= 0.34317894; T( 1,444)= 0.34492521; T( 1,445)= 0.34667745; T( 1,446)= 0.34843567; T( 1,447)= 0.35019989; T( 1,448)= 0.35197013; T( 1,449)= 0.35374641; T( 1,450)= 0.35552875; T( 1,451)= 0.35731717; T( 1,452)= 0.35911168; T( 1,453)= 0.36091231; T( 1,454)= 0.36271907; T( 1,455)= 0.36453198; T( 1,456)= 0.36635106; T( 1,457)= 0.36817634; T( 1,458)= 0.37000783; T( 1,459)= 0.37184555; T( 1,460)= 0.37368952; T( 1,461)= 0.37553976; T( 1,462)= 0.37739629; T( 1,463)= 0.37925914; T( 1,464)= 0.38112831; T( 1,465)= 0.38300384; T( 1,466)= 0.38488574; T( 1,467)= 0.38677403; T( 1,468)= 0.38866874; T( 1,469)= 0.39056988; T( 1,470)= 0.39247748; T( 1,471)= 0.39439155; T( 1,472)= 0.39631213; T( 1,473)= 0.39823922; T( 1,474)= 0.40017286; T( 1,475)= 0.40211306; T( 1,476)= 0.40405984; T( 1,477)= 0.40601323; T( 1,478)= 0.40797325; T( 1,479)= 0.40993992; T( 1,480)= 0.41191327; T( 1,481)= 0.41389331; T( 1,482)= 0.41588007; T( 1,483)= 0.41787358; T( 1,484)= 0.41987384; T( 1,485)= 0.42188090; T( 1,486)= 0.42389477; T( 1,487)= 0.42591547; T( 1,488)= 0.42794303; T( 1,489)= 0.42997748; T( 1,490)= 0.43201883; T( 1,491)= 0.43406711; T( 1,492)= 0.43612234; T( 1,493)= 0.43818455; T( 1,494)= 0.44025376; T( 1,495)= 0.44233000; T( 1,496)= 0.44441330; T( 1,497)= 0.44650367; T( 1,498)= 0.44860114; T( 1,499)= 0.45070574; T( 1,500)= 0.45281749; T( 1,501)= 0.45493642; T( 1,502)= 0.45706256; T( 1,503)= 0.45919592; T( 1,504)= 0.46133654; T( 1,505)= 0.46348444; T( 1,506)= 0.46563966; T( 1,507)= 0.46780220; T( 1,508)= 0.46997211; T( 1,509)= 0.47214941; T( 1,510)= 0.47433412; T( 1,511)= 0.47652627; T( 1,512)= 0.47872590; T( 1,513)= 0.48093302; T( 1,514)= 0.48314767; T( 1,515)= 0.48536987; T( 1,516)= 0.48759966; T( 1,517)= 0.48983705; T( 1,518)= 0.49208209; T( 1,519)= 0.49433479; T( 1,520)= 0.49659519; T( 1,521)= 0.49886331; T( 1,522)= 0.50113919; T( 1,523)= 0.50342285; T( 1,524)= 0.50571433; T( 1,525)= 0.50801365; T( 1,526)= 0.51032084; T( 1,527)= 0.51263594; T( 1,528)= 0.51495897; T( 1,529)= 0.51728997; T( 1,530)= 0.51962896; T( 1,531)= 0.52197598; T( 1,532)= 0.52433106; T( 1,533)= 0.52669423; T( 1,534)= 0.52906552; T( 1,535)= 0.53144496; T( 1,536)= 0.53383259; T( 1,537)= 0.53622844; T( 1,538)= 0.53863254; T( 1,539)= 0.54104492; T( 1,540)= 0.54346562; T( 1,541)= 0.54589467; T( 1,542)= 0.54833210; T( 1,543)= 0.55077795; T( 1,544)= 0.55323224; T( 1,545)= 0.55569503; T( 1,546)= 0.55816633; T( 1,547)= 0.56064619; T( 1,548)= 0.56313464; T( 1,549)= 0.56563171; T( 1,550)= 0.56813744; T( 1,551)= 0.57065186; T( 1,552)= 0.57317502; T( 1,553)= 0.57570694; T( 1,554)= 0.57824767; T( 1,555)= 0.58079723; T( 1,556)= 0.58335568; T( 1,557)= 0.58592304; T( 1,558)= 0.58849935; T( 1,559)= 0.59108464; T( 1,560)= 0.59367897; T( 1,561)= 0.59628236; T( 1,562)= 0.59889485; T( 1,563)= 0.60151649; T( 1,564)= 0.60414731; T( 1,565)= 0.60678735; T( 1,566)= 0.60943665; T( 1,567)= 0.61209525; T( 1,568)= 0.61476319; T( 1,569)= 0.61744051; T( 1,570)= 0.62012726; T( 1,571)= 0.62282346; T( 1,572)= 0.62552918; T( 1,573)= 0.62824443; T( 1,574)= 0.63096928; T( 1,575)= 0.63370375; T( 1,576)= 0.63644790; T( 1,577)= 0.63920176; T( 1,578)= 0.64196538; T( 1,579)= 0.64473880; T( 1,580)= 0.64752207; T( 1,581)= 0.65031523; T( 1,582)= 0.65311832; T( 1,583)= 0.65593139; T( 1,584)= 0.65875449; T( 1,585)= 0.66158766; T( 1,586)= 0.66443094; T( 1,587)= 0.66728438; T( 1,588)= 0.67014804; T( 1,589)= 0.67302194; T( 1,590)= 0.67590615; T( 1,591)= 0.67880071; T( 1,592)= 0.68170567; T( 1,593)= 0.68462108; T( 1,594)= 0.68754698; T( 1,595)= 0.69048342; T( 1,596)= 0.69343046; T( 1,597)= 0.69638814; T( 1,598)= 0.69935651; T( 1,599)= 0.70233563; T( 1,600)= 0.70532554; T( 1,601)= 0.70832630; T( 1,602)= 0.71133796; T( 1,603)= 0.71436056; T( 1,604)= 0.71739417; T( 1,605)= 0.72043884; T( 1,606)= 0.72349461; T( 1,607)= 0.72656155; T( 1,608)= 0.72963970; T( 1,609)= 0.73272913; T( 1,610)= 0.73582988; T( 1,611)= 0.73894201; T( 1,612)= 0.74206558; T( 1,613)= 0.74520065; T( 1,614)= 0.74834727; T( 1,615)= 0.75150550; T( 1,616)= 0.75467539; T( 1,617)= 0.75785701; T( 1,618)= 0.76105041; T( 1,619)= 0.76425565; T( 1,620)= 0.76747280; T( 1,621)= 0.77070190; T( 1,622)= 0.77394304; T( 1,623)= 0.77719625; T( 1,624)= 0.78046161; T( 1,625)= 0.78373918; T( 1,626)= 0.78702902; T( 1,627)= 0.79033119; T( 1,628)= 0.79364576; T( 1,629)= 0.79697279; T( 1,630)= 0.80031234; T( 1,631)= 0.80366449; T( 1,632)= 0.80702930; T( 1,633)= 0.81040683; T( 1,634)= 0.81379714; T( 1,635)= 0.81720032; T( 1,636)= 0.82061642; T( 1,637)= 0.82404552; T( 1,638)= 0.82748768; T( 1,639)= 0.83094297; T( 1,640)= 0.83441147; T( 1,641)= 0.83789324; T( 1,642)= 0.84138836; T( 1,643)= 0.84489690; T( 1,644)= 0.84841893; T( 1,645)= 0.85195452; T( 1,646)= 0.85550376; T( 1,647)= 0.85906670; T( 1,648)= 0.86264344; T( 1,649)= 0.86623404; T( 1,650)= 0.86983858; T( 1,651)= 0.87345714; T( 1,652)= 0.87708980; T( 1,653)= 0.88073664; T( 1,654)= 0.88439773; T( 1,655)= 0.88807315; T( 1,656)= 0.89176299; T( 1,657)= 0.89546733; T( 1,658)= 0.89918625; T( 1,659)= 0.90291984; T( 1,660)= 0.90666817; T( 1,661)= 0.91043133; T( 1,662)= 0.91420941; T( 1,663)= 0.91800249; T( 1,664)= 0.92181066; T( 1,665)= 0.92563401; T( 1,666)= 0.92947263; T( 1,667)= 0.93332660; T( 1,668)= 0.93719601; T( 1,669)= 0.94108097; T( 1,670)= 0.94498155; T( 1,671)= 0.94889785; T( 1,672)= 0.95282996; T( 1,673)= 0.95677798; T( 1,674)= 0.96074201; T( 1,675)= 0.96472213; T( 1,676)= 0.96871846; T( 1,677)= 0.97273107; T( 1,678)= 0.97676009; T( 1,679)= 0.98080559; T( 1,680)= 0.98486769; T( 1,681)= 0.98894648; T( 1,682)= 0.99304207; T( 1,683)= 0.99715457; T( 1,684)= 1.00128407; T( 1,685)= 1.00543068; T( 1,686)= 1.00959452; T( 1,687)= 1.01377568; T( 1,688)= 1.01797427; T( 1,689)= 1.02219041; T( 1,690)= 1.02642421; T( 1,691)= 1.03067578; T( 1,692)= 1.03494522; T( 1,693)= 1.03923267; T( 1,694)= 1.04353822; T( 1,695)= 1.04786201; T( 1,696)= 1.05220414; T( 1,697)= 1.05656473; T( 1,698)= 1.06094391; T( 1,699)= 1.06534179; T( 1,700)= 1.06975851; T( 1,701)= 1.07419417; T( 1,702)= 1.07864891; T( 1,703)= 1.08312286; T( 1,704)= 1.08761614; T( 1,705)= 1.09212887; T( 1,706)= 1.09666120; T( 1,707)= 1.10121325; T( 1,708)= 1.10578516; T( 1,709)= 1.11037705; T( 1,710)= 1.11498907; T( 1,711)= 1.11962136; T( 1,712)= 1.12427404; T( 1,713)= 1.12894727; T( 1,714)= 1.13364118; T( 1,715)= 1.13835591; T( 1,716)= 1.14309162; T( 1,717)= 1.14784844; T( 1,718)= 1.15262653; T( 1,719)= 1.15742603; T( 1,720)= 1.16224709; T( 1,721)= 1.16708988; T( 1,722)= 1.17195453; T( 1,723)= 1.17684122; T( 1,724)= 1.18175009; T( 1,725)= 1.18668130; T( 1,726)= 1.19163503; T( 1,727)= 1.19661142; T( 1,728)= 1.20161064; T( 1,729)= 1.20663287; T( 1,730)= 1.21167827; T( 1,731)= 1.21674700; T( 1,732)= 1.22183925; T( 1,733)= 1.22695519; T( 1,734)= 1.23209498; T( 1,735)= 1.23725882; T( 1,736)= 1.24244689; T( 1,737)= 1.24765935; T( 1,738)= 1.25289640; T( 1,739)= 1.25815823; T( 1,740)= 1.26344503; T( 1,741)= 1.26875698; T( 1,742)= 1.27409427; T( 1,743)= 1.27945711; T( 1,744)= 1.28484570; T( 1,745)= 1.29026023; T( 1,746)= 1.29570090; T( 1,747)= 1.30116792; T( 1,748)= 1.30666150; T( 1,749)= 1.31218185; T( 1,750)= 1.31772917; T( 1,751)= 1.32330370; T( 1,752)= 1.32890563; T( 1,753)= 1.33453520; T( 1,754)= 1.34019263; T( 1,755)= 1.34587814; T( 1,756)= 1.35159197; T( 1,757)= 1.35733433; T( 1,758)= 1.36310547; T( 1,759)= 1.36890563; T( 1,760)= 1.37473505; T( 1,761)= 1.38059396; T( 1,762)= 1.38648262; T( 1,763)= 1.39240128; T( 1,764)= 1.39835018; T( 1,765)= 1.40432959; T( 1,766)= 1.41033976; T( 1,767)= 1.41638095; T( 1,768)= 1.42245344; T( 1,769)= 1.42855750; T( 1,770)= 1.43469339; T( 1,771)= 1.44086139; T( 1,772)= 1.44706178; T( 1,773)= 1.45329486; T( 1,774)= 1.45956089; T( 1,775)= 1.46586019; T( 1,776)= 1.47219304; T( 1,777)= 1.47855974; T( 1,778)= 1.48496060; T( 1,779)= 1.49139593; T( 1,780)= 1.49786603; T( 1,781)= 1.50437123; T( 1,782)= 1.51091184; T( 1,783)= 1.51748820; T( 1,784)= 1.52410062; T( 1,785)= 1.53074945; T( 1,786)= 1.53743503; T( 1,787)= 1.54415770; T( 1,788)= 1.55091780; T( 1,789)= 1.55771570; T( 1,790)= 1.56455174; T( 1,791)= 1.57142631; T( 1,792)= 1.57833976; T( 1,793)= 1.58529247; T( 1,794)= 1.59228482; T( 1,795)= 1.59931720; T( 1,796)= 1.60639000; T( 1,797)= 1.61350362; T( 1,798)= 1.62065845; T( 1,799)= 1.62785492; T( 1,800)= 1.63509343; T( 1,801)= 1.64237442; T( 1,802)= 1.64969829; T( 1,803)= 1.65706550; T( 1,804)= 1.66447649; T( 1,805)= 1.67193169; T( 1,806)= 1.67943157; T( 1,807)= 1.68697660; T( 1,808)= 1.69456723; T( 1,809)= 1.70220395; T( 1,810)= 1.70988725; T( 1,811)= 1.71761761; T( 1,812)= 1.72539554; T( 1,813)= 1.73322154; T( 1,814)= 1.74109613; T( 1,815)= 1.74901984; T( 1,816)= 1.75699320; T( 1,817)= 1.76501675; T( 1,818)= 1.77309105; T( 1,819)= 1.78121665; T( 1,820)= 1.78939413; T( 1,821)= 1.79762406; T( 1,822)= 1.80590704; T( 1,823)= 1.81424366; T( 1,824)= 1.82263454; T( 1,825)= 1.83108029; T( 1,826)= 1.83958155; T( 1,827)= 1.84813896; T( 1,828)= 1.85675316; T( 1,829)= 1.86542483; T( 1,830)= 1.87415465; T( 1,831)= 1.88294329; T( 1,832)= 1.89179147; T( 1,833)= 1.90069989; T( 1,834)= 1.90966928; T( 1,835)= 1.91870038; T( 1,836)= 1.92779395; T( 1,837)= 1.93695075; T( 1,838)= 1.94617156; T( 1,839)= 1.95545717; T( 1,840)= 1.96480841; T( 1,841)= 1.97422609; T( 1,842)= 1.98371106; T( 1,843)= 1.99326417; T( 1,844)= 2.00288630; T( 1,845)= 2.01257834; T( 1,846)= 2.02234120; T( 1,847)= 2.03217580; T( 1,848)= 2.04208310; T( 1,849)= 2.05206405; T( 1,850)= 2.06211963; T( 1,851)= 2.07225086; T( 1,852)= 2.08245874; T( 1,853)= 2.09274434; T( 1,854)= 2.10310870; T( 1,855)= 2.11355293; T( 1,856)= 2.12407812; T( 1,857)= 2.13468542; T( 1,858)= 2.14537598; T( 1,859)= 2.15615098; T( 1,860)= 2.16701163; T( 1,861)= 2.17795916; T( 1,862)= 2.18899483; T( 1,863)= 2.20011994; T( 1,864)= 2.21133579; T( 1,865)= 2.22264373; T( 1,866)= 2.23404513; T( 1,867)= 2.24554141; T( 1,868)= 2.25713401; T( 1,869)= 2.26882438; T( 1,870)= 2.28061404; T( 1,871)= 2.29250453; T( 1,872)= 2.30449742; T( 1,873)= 2.31659432; T( 1,874)= 2.32879689; T( 1,875)= 2.34110682; T( 1,876)= 2.35352584; T( 1,877)= 2.36605573; T( 1,878)= 2.37869829; T( 1,879)= 2.39145540; T( 1,880)= 2.40432896; T( 1,881)= 2.41732093; T( 1,882)= 2.43043331; T( 1,883)= 2.44366817; T( 1,884)= 2.45702761; T( 1,885)= 2.47051380; T( 1,886)= 2.48412895; T( 1,887)= 2.49787536; T( 1,888)= 2.51175537; T( 1,889)= 2.52577137; T( 1,890)= 2.53992584; T( 1,891)= 2.55422131; T( 1,892)= 2.56866040; T( 1,893)= 2.58324579; T( 1,894)= 2.59798022; T( 1,895)= 2.61286654; T( 1,896)= 2.62790766; T( 1,897)= 2.64310659; T( 1,898)= 2.65846640; T( 1,899)= 2.67399029; T( 1,900)= 2.68968151; T( 1,901)= 2.70554345; T( 1,902)= 2.72157959; T( 1,903)= 2.73779350; T( 1,904)= 2.75418887; T( 1,905)= 2.77076952; T( 1,906)= 2.78753937; T( 1,907)= 2.80450249; T( 1,908)= 2.82166305; T( 1,909)= 2.83902539; T( 1,910)= 2.85659397; T( 1,911)= 2.87437340; T( 1,912)= 2.89236845; T( 1,913)= 2.91058407; T( 1,914)= 2.92902536; T( 1,915)= 2.94769760; T( 1,916)= 2.96660627; T( 1,917)= 2.98575702; T( 1,918)= 3.00515574; T( 1,919)= 3.02480852; T( 1,920)= 3.04472166; T( 1,921)= 3.06490172; T( 1,922)= 3.08535550; T( 1,923)= 3.10609006; T( 1,924)= 3.12711274; T( 1,925)= 3.14843116; T( 1,926)= 3.17005327; T( 1,927)= 3.19198732; T( 1,928)= 3.21424190; T( 1,929)= 3.23682596; T( 1,930)= 3.25974885; T( 1,931)= 3.28302029; T( 1,932)= 3.30665043; T( 1,933)= 3.33064990; T( 1,934)= 3.35502975; T( 1,935)= 3.37980159; T( 1,936)= 3.40497752; T( 1,937)= 3.43057023; T( 1,938)= 3.45659301; T( 1,939)= 3.48305980; T( 1,940)= 3.50998521; T( 1,941)= 3.53738460; T( 1,942)= 3.56527408; T( 1,943)= 3.59367062; T( 1,944)= 3.62259207; T( 1,945)= 3.65205725; T( 1,946)= 3.68208597; T( 1,947)= 3.71269918; T( 1,948)= 3.74391899; T( 1,949)= 3.77576877; T( 1,950)= 3.80827331; T( 1,951)= 3.84145882; T( 1,952)= 3.87535316; T( 1,953)= 3.90998590; T( 1,954)= 3.94538850; T( 1,955)= 3.98159446; T( 1,956)= 4.01863951; T( 1,957)= 4.05656180; T( 1,958)= 4.09540213; T( 1,959)= 4.13520420; T( 1,960)= 4.17601489; T( 1,961)= 4.21788459; T( 1,962)= 4.26086752; T( 1,963)= 4.30502217; T( 1,964)= 4.35041174; T( 1,965)= 4.39710464; T( 1,966)= 4.44517514; T( 1,967)= 4.49470397; T( 1,968)= 4.54577916; T( 1,969)= 4.59849691; T( 1,970)= 4.65296265; T( 1,971)= 4.70929225; T( 1,972)= 4.76761342; T( 1,973)= 4.82806742; T( 1,974)= 4.89081102; T( 1,975)= 4.95601884; T( 1,976)= 5.02388619; T( 1,977)= 5.09463243; T( 1,978)= 5.16850511; T( 1,979)= 5.24578502; T( 1,980)= 5.32679234; T( 1,981)= 5.41189443; T( 1,982)= 5.50151554; T( 1,983)= 5.59614912; T( 1,984)= 5.69637381; T( 1,985)= 5.80287411; T( 1,986)= 5.91646788; T( 1,987)= 6.03814337; T( 1,988)= 6.16910990; T( 1,989)= 6.31086912; T( 1,990)= 6.46531729; T( 1,991)= 6.63489660; T( 1,992)= 6.82282684; T( 1,993)= 7.03347427; T( 1,994)= 7.27296897; T( 1,995)= 7.55030254; T( 1,996)= 7.87943858; T( 1,997)= 8.28381500; T( 1,998)= 8.80746839; T( 1,999)= 9.54953571; T( 1,1000)=10.82756617; T( 1,1001)=15.13670523; T( 1,1002)=19.51142096; T( 2, 1)= 0.00000000; T( 2, 2)= 0.00200100; T( 2, 3)= 0.00400401; T( 2, 4)= 0.00600902; T( 2, 5)= 0.00801604; T( 2, 6)= 0.01002508; T( 2, 7)= 0.01203614; T( 2, 8)= 0.01404923; T( 2, 9)= 0.01606434; T( 2,10)= 0.01808149; T( 2,11)= 0.02010067; T( 2,12)= 0.02212189; T( 2,13)= 0.02414516; T( 2,14)= 0.02617048; T( 2,15)= 0.02819785; T( 2,16)= 0.03022728; T( 2,17)= 0.03225876; T( 2,18)= 0.03429232; T( 2,19)= 0.03632794; T( 2,20)= 0.03836564; T( 2,21)= 0.04040541; T( 2,22)= 0.04244727; T( 2,23)= 0.04449122; T( 2,24)= 0.04653725; T( 2,25)= 0.04858539; T( 2,26)= 0.05063562; T( 2,27)= 0.05268795; T( 2,28)= 0.05474239; T( 2,29)= 0.05679895; T( 2,30)= 0.05885762; T( 2,31)= 0.06091841; T( 2,32)= 0.06298133; T( 2,33)= 0.06504638; T( 2,34)= 0.06711357; T( 2,35)= 0.06918289; T( 2,36)= 0.07125436; T( 2,37)= 0.07332797; T( 2,38)= 0.07540373; T( 2,39)= 0.07748166; T( 2,40)= 0.07956174; T( 2,41)= 0.08164399; T( 2,42)= 0.08372841; T( 2,43)= 0.08581500; T( 2,44)= 0.08790378; T( 2,45)= 0.08999473; T( 2,46)= 0.09208788; T( 2,47)= 0.09418322; T( 2,48)= 0.09628075; T( 2,49)= 0.09838049; T( 2,50)= 0.10048243; T( 2,51)= 0.10258659; T( 2,52)= 0.10469296; T( 2,53)= 0.10680155; T( 2,54)= 0.10891237; T( 2,55)= 0.11102542; T( 2,56)= 0.11314070; T( 2,57)= 0.11525823; T( 2,58)= 0.11737799; T( 2,59)= 0.11950001; T( 2,60)= 0.12162428; T( 2,61)= 0.12375081; T( 2,62)= 0.12587960; T( 2,63)= 0.12801066; T( 2,64)= 0.13014399; T( 2,65)= 0.13227961; T( 2,66)= 0.13441750; T( 2,67)= 0.13655768; T( 2,68)= 0.13870016; T( 2,69)= 0.14084493; T( 2,70)= 0.14299200; T( 2,71)= 0.14514139; T( 2,72)= 0.14729308; T( 2,73)= 0.14944709; T( 2,74)= 0.15160343; T( 2,75)= 0.15376209; T( 2,76)= 0.15592308; T( 2,77)= 0.15808641; T( 2,78)= 0.16025209; T( 2,79)= 0.16242011; T( 2,80)= 0.16459049; T( 2,81)= 0.16676322; T( 2,82)= 0.16893831; T( 2,83)= 0.17111578; T( 2,84)= 0.17329561; T( 2,85)= 0.17547783; T( 2,86)= 0.17766243; T( 2,87)= 0.17984942; T( 2,88)= 0.18203880; T( 2,89)= 0.18423058; T( 2,90)= 0.18642476; T( 2,91)= 0.18862136; T( 2,92)= 0.19082037; T( 2,93)= 0.19302180; T( 2,94)= 0.19522566; T( 2,95)= 0.19743195; T( 2,96)= 0.19964067; T( 2,97)= 0.20185184; T( 2,98)= 0.20406545; T( 2,99)= 0.20628152; T( 2,100)= 0.20850004; T( 2,101)= 0.21072103; T( 2,102)= 0.21294449; T( 2,103)= 0.21517042; T( 2,104)= 0.21739883; T( 2,105)= 0.21962973; T( 2,106)= 0.22186312; T( 2,107)= 0.22409901; T( 2,108)= 0.22633740; T( 2,109)= 0.22857829; T( 2,110)= 0.23082170; T( 2,111)= 0.23306763; T( 2,112)= 0.23531609; T( 2,113)= 0.23756707; T( 2,114)= 0.23982059; T( 2,115)= 0.24207666; T( 2,116)= 0.24433527; T( 2,117)= 0.24659643; T( 2,118)= 0.24886016; T( 2,119)= 0.25112645; T( 2,120)= 0.25339531; T( 2,121)= 0.25566674; T( 2,122)= 0.25794076; T( 2,123)= 0.26021737; T( 2,124)= 0.26249657; T( 2,125)= 0.26477838; T( 2,126)= 0.26706279; T( 2,127)= 0.26934981; T( 2,128)= 0.27163945; T( 2,129)= 0.27393171; T( 2,130)= 0.27622660; T( 2,131)= 0.27852413; T( 2,132)= 0.28082431; T( 2,133)= 0.28312713; T( 2,134)= 0.28543260; T( 2,135)= 0.28774074; T( 2,136)= 0.29005154; T( 2,137)= 0.29236502; T( 2,138)= 0.29468118; T( 2,139)= 0.29700002; T( 2,140)= 0.29932155; T( 2,141)= 0.30164578; T( 2,142)= 0.30397271; T( 2,143)= 0.30630236; T( 2,144)= 0.30863472; T( 2,145)= 0.31096981; T( 2,146)= 0.31330762; T( 2,147)= 0.31564817; T( 2,148)= 0.31799146; T( 2,149)= 0.32033750; T( 2,150)= 0.32268630; T( 2,151)= 0.32503786; T( 2,152)= 0.32739219; T( 2,153)= 0.32974929; T( 2,154)= 0.33210917; T( 2,155)= 0.33447184; T( 2,156)= 0.33683730; T( 2,157)= 0.33920557; T( 2,158)= 0.34157664; T( 2,159)= 0.34395053; T( 2,160)= 0.34632724; T( 2,161)= 0.34870677; T( 2,162)= 0.35108915; T( 2,163)= 0.35347436; T( 2,164)= 0.35586242; T( 2,165)= 0.35825333; T( 2,166)= 0.36064711; T( 2,167)= 0.36304375; T( 2,168)= 0.36544327; T( 2,169)= 0.36784568; T( 2,170)= 0.37025097; T( 2,171)= 0.37265916; T( 2,172)= 0.37507025; T( 2,173)= 0.37748425; T( 2,174)= 0.37990117; T( 2,175)= 0.38232101; T( 2,176)= 0.38474379; T( 2,177)= 0.38716950; T( 2,178)= 0.38959816; T( 2,179)= 0.39202977; T( 2,180)= 0.39446434; T( 2,181)= 0.39690188; T( 2,182)= 0.39934239; T( 2,183)= 0.40178588; T( 2,184)= 0.40423237; T( 2,185)= 0.40668185; T( 2,186)= 0.40913433; T( 2,187)= 0.41158983; T( 2,188)= 0.41404834; T( 2,189)= 0.41650988; T( 2,190)= 0.41897445; T( 2,191)= 0.42144206; T( 2,192)= 0.42391272; T( 2,193)= 0.42638644; T( 2,194)= 0.42886322; T( 2,195)= 0.43134307; T( 2,196)= 0.43382600; T( 2,197)= 0.43631202; T( 2,198)= 0.43880113; T( 2,199)= 0.44129334; T( 2,200)= 0.44378866; T( 2,201)= 0.44628710; T( 2,202)= 0.44878867; T( 2,203)= 0.45129336; T( 2,204)= 0.45380120; T( 2,205)= 0.45631219; T( 2,206)= 0.45882633; T( 2,207)= 0.46134364; T( 2,208)= 0.46386411; T( 2,209)= 0.46638777; T( 2,210)= 0.46891462; T( 2,211)= 0.47144467; T( 2,212)= 0.47397792; T( 2,213)= 0.47651438; T( 2,214)= 0.47905406; T( 2,215)= 0.48159697; T( 2,216)= 0.48414312; T( 2,217)= 0.48669252; T( 2,218)= 0.48924517; T( 2,219)= 0.49180108; T( 2,220)= 0.49436026; T( 2,221)= 0.49692272; T( 2,222)= 0.49948847; T( 2,223)= 0.50205751; T( 2,224)= 0.50462986; T( 2,225)= 0.50720552; T( 2,226)= 0.50978450; T( 2,227)= 0.51236681; T( 2,228)= 0.51495246; T( 2,229)= 0.51754146; T( 2,230)= 0.52013381; T( 2,231)= 0.52272953; T( 2,232)= 0.52532862; T( 2,233)= 0.52793109; T( 2,234)= 0.53053696; T( 2,235)= 0.53314622; T( 2,236)= 0.53575889; T( 2,237)= 0.53837498; T( 2,238)= 0.54099450; T( 2,239)= 0.54361745; T( 2,240)= 0.54624384; T( 2,241)= 0.54887369; T( 2,242)= 0.55150700; T( 2,243)= 0.55414379; T( 2,244)= 0.55678405; T( 2,245)= 0.55942781; T( 2,246)= 0.56207506; T( 2,247)= 0.56472582; T( 2,248)= 0.56738010; T( 2,249)= 0.57003791; T( 2,250)= 0.57269925; T( 2,251)= 0.57536414; T( 2,252)= 0.57803259; T( 2,253)= 0.58070460; T( 2,254)= 0.58338019; T( 2,255)= 0.58605936; T( 2,256)= 0.58874212; T( 2,257)= 0.59142849; T( 2,258)= 0.59411847; T( 2,259)= 0.59681207; T( 2,260)= 0.59950931; T( 2,261)= 0.60221019; T( 2,262)= 0.60491472; T( 2,263)= 0.60762291; T( 2,264)= 0.61033477; T( 2,265)= 0.61305032; T( 2,266)= 0.61576956; T( 2,267)= 0.61849250; T( 2,268)= 0.62121915; T( 2,269)= 0.62394953; T( 2,270)= 0.62668364; T( 2,271)= 0.62942149; T( 2,272)= 0.63216309; T( 2,273)= 0.63490846; T( 2,274)= 0.63765760; T( 2,275)= 0.64041053; T( 2,276)= 0.64316725; T( 2,277)= 0.64592777; T( 2,278)= 0.64869211; T( 2,279)= 0.65146028; T( 2,280)= 0.65423228; T( 2,281)= 0.65700813; T( 2,282)= 0.65978784; T( 2,283)= 0.66257142; T( 2,284)= 0.66535888; T( 2,285)= 0.66815022; T( 2,286)= 0.67094547; T( 2,287)= 0.67374463; T( 2,288)= 0.67654772; T( 2,289)= 0.67935474; T( 2,290)= 0.68216570; T( 2,291)= 0.68498062; T( 2,292)= 0.68779950; T( 2,293)= 0.69062237; T( 2,294)= 0.69344923; T( 2,295)= 0.69628008; T( 2,296)= 0.69911495; T( 2,297)= 0.70195385; T( 2,298)= 0.70479677; T( 2,299)= 0.70764375; T( 2,300)= 0.71049478; T( 2,301)= 0.71334989; T( 2,302)= 0.71620907; T( 2,303)= 0.71907235; T( 2,304)= 0.72193974; T( 2,305)= 0.72481124; T( 2,306)= 0.72768687; T( 2,307)= 0.73056664; T( 2,308)= 0.73345056; T( 2,309)= 0.73633865; T( 2,310)= 0.73923091; T( 2,311)= 0.74212736; T( 2,312)= 0.74502802; T( 2,313)= 0.74793288; T( 2,314)= 0.75084197; T( 2,315)= 0.75375530; T( 2,316)= 0.75667288; T( 2,317)= 0.75959472; T( 2,318)= 0.76252084; T( 2,319)= 0.76545124; T( 2,320)= 0.76838595; T( 2,321)= 0.77132496; T( 2,322)= 0.77426830; T( 2,323)= 0.77721598; T( 2,324)= 0.78016801; T( 2,325)= 0.78312441; T( 2,326)= 0.78608518; T( 2,327)= 0.78905034; T( 2,328)= 0.79201990; T( 2,329)= 0.79499388; T( 2,330)= 0.79797228; T( 2,331)= 0.80095513; T( 2,332)= 0.80394244; T( 2,333)= 0.80693421; T( 2,334)= 0.80993047; T( 2,335)= 0.81293122; T( 2,336)= 0.81593648; T( 2,337)= 0.81894626; T( 2,338)= 0.82196058; T( 2,339)= 0.82497945; T( 2,340)= 0.82800288; T( 2,341)= 0.83103089; T( 2,342)= 0.83406349; T( 2,343)= 0.83710070; T( 2,344)= 0.84014252; T( 2,345)= 0.84318898; T( 2,346)= 0.84624009; T( 2,347)= 0.84929586; T( 2,348)= 0.85235630; T( 2,349)= 0.85542143; T( 2,350)= 0.85849127; T( 2,351)= 0.86156583; T( 2,352)= 0.86464512; T( 2,353)= 0.86772917; T( 2,354)= 0.87081797; T( 2,355)= 0.87391155; T( 2,356)= 0.87700992; T( 2,357)= 0.88011311; T( 2,358)= 0.88322111; T( 2,359)= 0.88633395; T( 2,360)= 0.88945164; T( 2,361)= 0.89257421; T( 2,362)= 0.89570165; T( 2,363)= 0.89883399; T( 2,364)= 0.90197125; T( 2,365)= 0.90511343; T( 2,366)= 0.90826056; T( 2,367)= 0.91141265; T( 2,368)= 0.91456971; T( 2,369)= 0.91773177; T( 2,370)= 0.92089883; T( 2,371)= 0.92407092; T( 2,372)= 0.92724804; T( 2,373)= 0.93043023; T( 2,374)= 0.93361748; T( 2,375)= 0.93680982; T( 2,376)= 0.94000726; T( 2,377)= 0.94320982; T( 2,378)= 0.94641752; T( 2,379)= 0.94963037; T( 2,380)= 0.95284839; T( 2,381)= 0.95607160; T( 2,382)= 0.95930001; T( 2,383)= 0.96253364; T( 2,384)= 0.96577251; T( 2,385)= 0.96901663; T( 2,386)= 0.97226602; T( 2,387)= 0.97552070; T( 2,388)= 0.97878069; T( 2,389)= 0.98204599; T( 2,390)= 0.98531664; T( 2,391)= 0.98859264; T( 2,392)= 0.99187402; T( 2,393)= 0.99516079; T( 2,394)= 0.99845298; T( 2,395)= 1.00175059; T( 2,396)= 1.00505364; T( 2,397)= 1.00836216; T( 2,398)= 1.01167616; T( 2,399)= 1.01499567; T( 2,400)= 1.01832069; T( 2,401)= 1.02165125; T( 2,402)= 1.02498736; T( 2,403)= 1.02832905; T( 2,404)= 1.03167633; T( 2,405)= 1.03502922; T( 2,406)= 1.03838775; T( 2,407)= 1.04175192; T( 2,408)= 1.04512176; T( 2,409)= 1.04849729; T( 2,410)= 1.05187852; T( 2,411)= 1.05526548; T( 2,412)= 1.05865819; T( 2,413)= 1.06205666; T( 2,414)= 1.06546092; T( 2,415)= 1.06887098; T( 2,416)= 1.07228686; T( 2,417)= 1.07570859; T( 2,418)= 1.07913619; T( 2,419)= 1.08256966; T( 2,420)= 1.08600904; T( 2,421)= 1.08945435; T( 2,422)= 1.09290560; T( 2,423)= 1.09636282; T( 2,424)= 1.09982602; T( 2,425)= 1.10329524; T( 2,426)= 1.10677048; T( 2,427)= 1.11025177; T( 2,428)= 1.11373912; T( 2,429)= 1.11723258; T( 2,430)= 1.12073214; T( 2,431)= 1.12423784; T( 2,432)= 1.12774969; T( 2,433)= 1.13126772; T( 2,434)= 1.13479195; T( 2,435)= 1.13832240; T( 2,436)= 1.14185910; T( 2,437)= 1.14540205; T( 2,438)= 1.14895130; T( 2,439)= 1.15250686; T( 2,440)= 1.15606875; T( 2,441)= 1.15963699; T( 2,442)= 1.16321161; T( 2,443)= 1.16679263; T( 2,444)= 1.17038008; T( 2,445)= 1.17397397; T( 2,446)= 1.17757433; T( 2,447)= 1.18118118; T( 2,448)= 1.18479455; T( 2,449)= 1.18841447; T( 2,450)= 1.19204094; T( 2,451)= 1.19567400; T( 2,452)= 1.19931367; T( 2,453)= 1.20295998; T( 2,454)= 1.20661295; T( 2,455)= 1.21027261; T( 2,456)= 1.21393897; T( 2,457)= 1.21761206; T( 2,458)= 1.22129192; T( 2,459)= 1.22497856; T( 2,460)= 1.22867200; T( 2,461)= 1.23237228; T( 2,462)= 1.23607942; T( 2,463)= 1.23979344; T( 2,464)= 1.24351437; T( 2,465)= 1.24724224; T( 2,466)= 1.25097706; T( 2,467)= 1.25471888; T( 2,468)= 1.25846771; T( 2,469)= 1.26222358; T( 2,470)= 1.26598652; T( 2,471)= 1.26975654; T( 2,472)= 1.27353369; T( 2,473)= 1.27731799; T( 2,474)= 1.28110946; T( 2,475)= 1.28490813; T( 2,476)= 1.28871403; T( 2,477)= 1.29252719; T( 2,478)= 1.29634763; T( 2,479)= 1.30017538; T( 2,480)= 1.30401047; T( 2,481)= 1.30785293; T( 2,482)= 1.31170279; T( 2,483)= 1.31556007; T( 2,484)= 1.31942481; T( 2,485)= 1.32329703; T( 2,486)= 1.32717676; T( 2,487)= 1.33106403; T( 2,488)= 1.33495887; T( 2,489)= 1.33886131; T( 2,490)= 1.34277138; T( 2,491)= 1.34668911; T( 2,492)= 1.35061452; T( 2,493)= 1.35454766; T( 2,494)= 1.35848855; T( 2,495)= 1.36243722; T( 2,496)= 1.36639370; T( 2,497)= 1.37035802; T( 2,498)= 1.37433022; T( 2,499)= 1.37831032; T( 2,500)= 1.38229836; T( 2,501)= 1.38629436; T( 2,502)= 1.39029837; T( 2,503)= 1.39431040; T( 2,504)= 1.39833051; T( 2,505)= 1.40235870; T( 2,506)= 1.40639503; T( 2,507)= 1.41043952; T( 2,508)= 1.41449221; T( 2,509)= 1.41855312; T( 2,510)= 1.42262230; T( 2,511)= 1.42669978; T( 2,512)= 1.43078558; T( 2,513)= 1.43487975; T( 2,514)= 1.43898231; T( 2,515)= 1.44309331; T( 2,516)= 1.44721278; T( 2,517)= 1.45134074; T( 2,518)= 1.45547725; T( 2,519)= 1.45962233; T( 2,520)= 1.46377602; T( 2,521)= 1.46793835; T( 2,522)= 1.47210936; T( 2,523)= 1.47628909; T( 2,524)= 1.48047758; T( 2,525)= 1.48467485; T( 2,526)= 1.48888095; T( 2,527)= 1.49309591; T( 2,528)= 1.49731978; T( 2,529)= 1.50155259; T( 2,530)= 1.50579437; T( 2,531)= 1.51004517; T( 2,532)= 1.51430502; T( 2,533)= 1.51857397; T( 2,534)= 1.52285204; T( 2,535)= 1.52713929; T( 2,536)= 1.53143575; T( 2,537)= 1.53574145; T( 2,538)= 1.54005645; T( 2,539)= 1.54438078; T( 2,540)= 1.54871447; T( 2,541)= 1.55305758; T( 2,542)= 1.55741014; T( 2,543)= 1.56177219; T( 2,544)= 1.56614378; T( 2,545)= 1.57052494; T( 2,546)= 1.57491572; T( 2,547)= 1.57931616; T( 2,548)= 1.58372631; T( 2,549)= 1.58814620; T( 2,550)= 1.59257588; T( 2,551)= 1.59701539; T( 2,552)= 1.60146478; T( 2,553)= 1.60592409; T( 2,554)= 1.61039337; T( 2,555)= 1.61487265; T( 2,556)= 1.61936199; T( 2,557)= 1.62386143; T( 2,558)= 1.62837102; T( 2,559)= 1.63289079; T( 2,560)= 1.63742081; T( 2,561)= 1.64196110; T( 2,562)= 1.64651173; T( 2,563)= 1.65107274; T( 2,564)= 1.65564417; T( 2,565)= 1.66022607; T( 2,566)= 1.66481850; T( 2,567)= 1.66942149; T( 2,568)= 1.67403510; T( 2,569)= 1.67865938; T( 2,570)= 1.68329438; T( 2,571)= 1.68794014; T( 2,572)= 1.69259672; T( 2,573)= 1.69726417; T( 2,574)= 1.70194253; T( 2,575)= 1.70663187; T( 2,576)= 1.71133222; T( 2,577)= 1.71604365; T( 2,578)= 1.72076620; T( 2,579)= 1.72549993; T( 2,580)= 1.73024489; T( 2,581)= 1.73500114; T( 2,582)= 1.73976872; T( 2,583)= 1.74454769; T( 2,584)= 1.74933811; T( 2,585)= 1.75414004; T( 2,586)= 1.75895352; T( 2,587)= 1.76377861; T( 2,588)= 1.76861537; T( 2,589)= 1.77346386; T( 2,590)= 1.77832413; T( 2,591)= 1.78319624; T( 2,592)= 1.78808025; T( 2,593)= 1.79297621; T( 2,594)= 1.79788419; T( 2,595)= 1.80280424; T( 2,596)= 1.80773642; T( 2,597)= 1.81268080; T( 2,598)= 1.81763743; T( 2,599)= 1.82260638; T( 2,600)= 1.82758770; T( 2,601)= 1.83258146; T( 2,602)= 1.83758772; T( 2,603)= 1.84260655; T( 2,604)= 1.84763800; T( 2,605)= 1.85268214; T( 2,606)= 1.85773903; T( 2,607)= 1.86280874; T( 2,608)= 1.86789133; T( 2,609)= 1.87298688; T( 2,610)= 1.87809544; T( 2,611)= 1.88321708; T( 2,612)= 1.88835187; T( 2,613)= 1.89349988; T( 2,614)= 1.89866117; T( 2,615)= 1.90383582; T( 2,616)= 1.90902389; T( 2,617)= 1.91422545; T( 2,618)= 1.91944058; T( 2,619)= 1.92466934; T( 2,620)= 1.92991181; T( 2,621)= 1.93516805; T( 2,622)= 1.94043815; T( 2,623)= 1.94572217; T( 2,624)= 1.95102018; T( 2,625)= 1.95633227; T( 2,626)= 1.96165851; T( 2,627)= 1.96699896; T( 2,628)= 1.97235372; T( 2,629)= 1.97772285; T( 2,630)= 1.98310643; T( 2,631)= 1.98850455; T( 2,632)= 1.99391727; T( 2,633)= 1.99934468; T( 2,634)= 2.00478686; T( 2,635)= 2.01024389; T( 2,636)= 2.01571585; T( 2,637)= 2.02120282; T( 2,638)= 2.02670489; T( 2,639)= 2.03222213; T( 2,640)= 2.03775464; T( 2,641)= 2.04330250; T( 2,642)= 2.04886578; T( 2,643)= 2.05444459; T( 2,644)= 2.06003899; T( 2,645)= 2.06564910; T( 2,646)= 2.07127498; T( 2,647)= 2.07691673; T( 2,648)= 2.08257444; T( 2,649)= 2.08824821; T( 2,650)= 2.09393811; T( 2,651)= 2.09964425; T( 2,652)= 2.10536671; T( 2,653)= 2.11110560; T( 2,654)= 2.11686100; T( 2,655)= 2.12263301; T( 2,656)= 2.12842172; T( 2,657)= 2.13422724; T( 2,658)= 2.14004966; T( 2,659)= 2.14588908; T( 2,660)= 2.15174560; T( 2,661)= 2.15761932; T( 2,662)= 2.16351034; T( 2,663)= 2.16941877; T( 2,664)= 2.17534470; T( 2,665)= 2.18128824; T( 2,666)= 2.18724949; T( 2,667)= 2.19322857; T( 2,668)= 2.19922558; T( 2,669)= 2.20524062; T( 2,670)= 2.21127381; T( 2,671)= 2.21732525; T( 2,672)= 2.22339506; T( 2,673)= 2.22948334; T( 2,674)= 2.23559022; T( 2,675)= 2.24171580; T( 2,676)= 2.24786019; T( 2,677)= 2.25402353; T( 2,678)= 2.26020591; T( 2,679)= 2.26640747; T( 2,680)= 2.27262831; T( 2,681)= 2.27886857; T( 2,682)= 2.28512835; T( 2,683)= 2.29140779; T( 2,684)= 2.29770701; T( 2,685)= 2.30402613; T( 2,686)= 2.31036528; T( 2,687)= 2.31672459; T( 2,688)= 2.32310418; T( 2,689)= 2.32950418; T( 2,690)= 2.33592473; T( 2,691)= 2.34236596; T( 2,692)= 2.34882800; T( 2,693)= 2.35531099; T( 2,694)= 2.36181506; T( 2,695)= 2.36834035; T( 2,696)= 2.37488700; T( 2,697)= 2.38145516; T( 2,698)= 2.38804495; T( 2,699)= 2.39465652; T( 2,700)= 2.40129003; T( 2,701)= 2.40794561; T( 2,702)= 2.41462341; T( 2,703)= 2.42132358; T( 2,704)= 2.42804628; T( 2,705)= 2.43479165; T( 2,706)= 2.44155985; T( 2,707)= 2.44835102; T( 2,708)= 2.45516534; T( 2,709)= 2.46200295; T( 2,710)= 2.46886402; T( 2,711)= 2.47574871; T( 2,712)= 2.48265718; T( 2,713)= 2.48958960; T( 2,714)= 2.49654613; T( 2,715)= 2.50352694; T( 2,716)= 2.51053220; T( 2,717)= 2.51756208; T( 2,718)= 2.52461676; T( 2,719)= 2.53169642; T( 2,720)= 2.53880122; T( 2,721)= 2.54593135; T( 2,722)= 2.55308699; T( 2,723)= 2.56026833; T( 2,724)= 2.56747555; T( 2,725)= 2.57470883; T( 2,726)= 2.58196836; T( 2,727)= 2.58925435; T( 2,728)= 2.59656697; T( 2,729)= 2.60390643; T( 2,730)= 2.61127292; T( 2,731)= 2.61866664; T( 2,732)= 2.62608780; T( 2,733)= 2.63353660; T( 2,734)= 2.64101324; T( 2,735)= 2.64851794; T( 2,736)= 2.65605091; T( 2,737)= 2.66361235; T( 2,738)= 2.67120249; T( 2,739)= 2.67882155; T( 2,740)= 2.68646974; T( 2,741)= 2.69414730; T( 2,742)= 2.70185443; T( 2,743)= 2.70959139; T( 2,744)= 2.71735839; T( 2,745)= 2.72515567; T( 2,746)= 2.73298347; T( 2,747)= 2.74084202; T( 2,748)= 2.74873158; T( 2,749)= 2.75665238; T( 2,750)= 2.76460468; T( 2,751)= 2.77258872; T( 2,752)= 2.78060477; T( 2,753)= 2.78865307; T( 2,754)= 2.79673388; T( 2,755)= 2.80484749; T( 2,756)= 2.81299414; T( 2,757)= 2.82117411; T( 2,758)= 2.82938767; T( 2,759)= 2.83763511; T( 2,760)= 2.84591669; T( 2,761)= 2.85423271; T( 2,762)= 2.86258345; T( 2,763)= 2.87096921; T( 2,764)= 2.87939028; T( 2,765)= 2.88784695; T( 2,766)= 2.89633953; T( 2,767)= 2.90486833; T( 2,768)= 2.91343365; T( 2,769)= 2.92203581; T( 2,770)= 2.93067514; T( 2,771)= 2.93935194; T( 2,772)= 2.94806655; T( 2,773)= 2.95681930; T( 2,774)= 2.96561052; T( 2,775)= 2.97444056; T( 2,776)= 2.98330975; T( 2,777)= 2.99221845; T( 2,778)= 3.00116702; T( 2,779)= 3.01015579; T( 2,780)= 3.01918515; T( 2,781)= 3.02825547; T( 2,782)= 3.03736710; T( 2,783)= 3.04652043; T( 2,784)= 3.05571585; T( 2,785)= 3.06495374; T( 2,786)= 3.07423450; T( 2,787)= 3.08355853; T( 2,788)= 3.09292623; T( 2,789)= 3.10233801; T( 2,790)= 3.11179429; T( 2,791)= 3.12129550; T( 2,792)= 3.13084205; T( 2,793)= 3.14043440; T( 2,794)= 3.15007297; T( 2,795)= 3.15975822; T( 2,796)= 3.16949060; T( 2,797)= 3.17927057; T( 2,798)= 3.18909860; T( 2,799)= 3.19897516; T( 2,800)= 3.20890074; T( 2,801)= 3.21887582; T( 2,802)= 3.22890091; T( 2,803)= 3.23897650; T( 2,804)= 3.24910310; T( 2,805)= 3.25928124; T( 2,806)= 3.26951144; T( 2,807)= 3.27979424; T( 2,808)= 3.29013018; T( 2,809)= 3.30051981; T( 2,810)= 3.31096370; T( 2,811)= 3.32146241; T( 2,812)= 3.33201653; T( 2,813)= 3.34262663; T( 2,814)= 3.35329332; T( 2,815)= 3.36401721; T( 2,816)= 3.37479891; T( 2,817)= 3.38563904; T( 2,818)= 3.39653825; T( 2,819)= 3.40749718; T( 2,820)= 3.41851650; T( 2,821)= 3.42959686; T( 2,822)= 3.44073895; T( 2,823)= 3.45194346; T( 2,824)= 3.46321109; T( 2,825)= 3.47454257; T( 2,826)= 3.48593861; T( 2,827)= 3.49739996; T( 2,828)= 3.50892737; T( 2,829)= 3.52052160; T( 2,830)= 3.53218344; T( 2,831)= 3.54391368; T( 2,832)= 3.55571313; T( 2,833)= 3.56758260; T( 2,834)= 3.57952293; T( 2,835)= 3.59153498; T( 2,836)= 3.60361961; T( 2,837)= 3.61577770; T( 2,838)= 3.62801016; T( 2,839)= 3.64031789; T( 2,840)= 3.65270183; T( 2,841)= 3.66516293; T( 2,842)= 3.67770215; T( 2,843)= 3.69032049; T( 2,844)= 3.70301895; T( 2,845)= 3.71579854; T( 2,846)= 3.72866032; T( 2,847)= 3.74160535; T( 2,848)= 3.75463472; T( 2,849)= 3.76774952; T( 2,850)= 3.78095088; T( 2,851)= 3.79423997; T( 2,852)= 3.80761795; T( 2,853)= 3.82108601; T( 2,854)= 3.83464538; T( 2,855)= 3.84829731; T( 2,856)= 3.86204307; T( 2,857)= 3.87588396; T( 2,858)= 3.88982130; T( 2,859)= 3.90385644; T( 2,860)= 3.91799078; T( 2,861)= 3.93222571; T( 2,862)= 3.94656269; T( 2,863)= 3.96100319; T( 2,864)= 3.97554871; T( 2,865)= 3.99020079; T( 2,866)= 4.00496100; T( 2,867)= 4.01983096; T( 2,868)= 4.03481230; T( 2,869)= 4.04990671; T( 2,870)= 4.06511591; T( 2,871)= 4.08044166; T( 2,872)= 4.09588575; T( 2,873)= 4.11145003; T( 2,874)= 4.12713639; T( 2,875)= 4.14294674; T( 2,876)= 4.15888308; T( 2,877)= 4.17494743; T( 2,878)= 4.19114185; T( 2,879)= 4.20746847; T( 2,880)= 4.22392947; T( 2,881)= 4.24052707; T( 2,882)= 4.25726357; T( 2,883)= 4.27414131; T( 2,884)= 4.29116269; T( 2,885)= 4.30833018; T( 2,886)= 4.32564630; T( 2,887)= 4.34311366; T( 2,888)= 4.36073492; T( 2,889)= 4.37851282; T( 2,890)= 4.39645016; T( 2,891)= 4.41454983; T( 2,892)= 4.43281479; T( 2,893)= 4.45124810; T( 2,894)= 4.46985289; T( 2,895)= 4.48863237; T( 2,896)= 4.50758986; T( 2,897)= 4.52672876; T( 2,898)= 4.54605258; T( 2,899)= 4.56556493; T( 2,900)= 4.58526952; T( 2,901)= 4.60517019; T( 2,902)= 4.62527086; T( 2,903)= 4.64557560; T( 2,904)= 4.66608860; T( 2,905)= 4.68681418; T( 2,906)= 4.70775677; T( 2,907)= 4.72892099; T( 2,908)= 4.75031157; T( 2,909)= 4.77193340; T( 2,910)= 4.79379154; T( 2,911)= 4.81589122; T( 2,912)= 4.83823782; T( 2,913)= 4.86083693; T( 2,914)= 4.88369432; T( 2,915)= 4.90681597; T( 2,916)= 4.93020804; T( 2,917)= 4.95387696; T( 2,918)= 4.97782934; T( 2,919)= 5.00207206; T( 2,920)= 5.02661225; T( 2,921)= 5.05145729; T( 2,922)= 5.07661485; T( 2,923)= 5.10209290; T( 2,924)= 5.12789971; T( 2,925)= 5.15404388; T( 2,926)= 5.18053433; T( 2,927)= 5.20738037; T( 2,928)= 5.23459168; T( 2,929)= 5.26217832; T( 2,930)= 5.29015080; T( 2,931)= 5.31852007; T( 2,932)= 5.34729755; T( 2,933)= 5.37649515; T( 2,934)= 5.40612532; T( 2,935)= 5.43620107; T( 2,936)= 5.46673602; T( 2,937)= 5.49774439; T( 2,938)= 5.52924111; T( 2,939)= 5.56124179; T( 2,940)= 5.59376283; T( 2,941)= 5.62682143; T( 2,942)= 5.66043567; T( 2,943)= 5.69462454; T( 2,944)= 5.72940802; T( 2,945)= 5.76480718; T( 2,946)= 5.80084419; T( 2,947)= 5.83754246; T( 2,948)= 5.87492673; T( 2,949)= 5.91302312; T( 2,950)= 5.95185929; T( 2,951)= 5.99146455; T( 2,952)= 6.03186996; T( 2,953)= 6.07310854; T( 2,954)= 6.11521535; T( 2,955)= 6.15822776; T( 2,956)= 6.20218558; T( 2,957)= 6.24713129; T( 2,958)= 6.29311033; T( 2,959)= 6.34017132; T( 2,960)= 6.38836642; T( 2,961)= 6.43775165; T( 2,962)= 6.48838727; T( 2,963)= 6.54033824; T( 2,964)= 6.59367473; T( 2,965)= 6.64847268; T( 2,966)= 6.70481443; T( 2,967)= 6.76278951; T( 2,968)= 6.82249544; T( 2,969)= 6.88403875; T( 2,970)= 6.94753615; T( 2,971)= 7.01311579; T( 2,972)= 7.08091890; T( 2,973)= 7.15110154; T( 2,974)= 7.22383683; T( 2,975)= 7.29931748; T( 2,976)= 7.37775891; T( 2,977)= 7.45940290; T( 2,978)= 7.54452213; T( 2,979)= 7.63342565; T( 2,980)= 7.72646568; T( 2,981)= 7.82404601; T( 2,982)= 7.92663260; T( 2,983)= 8.03476704; T( 2,984)= 8.14908387; T( 2,985)= 8.27033311; T( 2,986)= 8.39941016; T( 2,987)= 8.53739590; T( 2,988)= 8.68561184; T( 2,989)= 8.84569726; T( 2,990)= 9.01972001; T( 2,991)= 9.21034037; T( 2,992)= 9.42106140; T( 2,993)= 9.65662747; T( 2,994)= 9.92369026; T( 2,995)=10.23199162; T( 2,996)=10.59663473; T( 2,997)=11.04292184; T( 2,998)=11.61828598; T( 2,999)=12.42921620; T( 2,1000)=13.81551056; T( 2,1001)=18.42068074; T( 2,1002)=23.02585093; T( 3, 1)= 0.00000000; T( 3, 2)= 0.02429759; T( 3, 3)= 0.03868093; T( 3, 4)= 0.05080913; T( 3, 5)= 0.06168447; T( 3, 6)= 0.07172177; T( 3, 7)= 0.08114342; T( 3, 8)= 0.09008603; T( 3, 9)= 0.09864107; T( 3,10)= 0.10687357; T( 3,11)= 0.11483180; T( 3,12)= 0.12255284; T( 3,13)= 0.13006595; T( 3,14)= 0.13739472; T( 3,15)= 0.14455853; T( 3,16)= 0.15157352; T( 3,17)= 0.15845335; T( 3,18)= 0.16520966; T( 3,19)= 0.17185252; T( 3,20)= 0.17839068; T( 3,21)= 0.18483182; T( 3,22)= 0.19118271; T( 3,23)= 0.19744939; T( 3,24)= 0.20363723; T( 3,25)= 0.20975107; T( 3,26)= 0.21579528; T( 3,27)= 0.22177382; T( 3,28)= 0.22769028; T( 3,29)= 0.23354794; T( 3,30)= 0.23934983; T( 3,31)= 0.24509871; T( 3,32)= 0.25079713; T( 3,33)= 0.25644744; T( 3,34)= 0.26205185; T( 3,35)= 0.26761236; T( 3,36)= 0.27313088; T( 3,37)= 0.27860917; T( 3,38)= 0.28404887; T( 3,39)= 0.28945153; T( 3,40)= 0.29481859; T( 3,41)= 0.30015142; T( 3,42)= 0.30545129; T( 3,43)= 0.31071942; T( 3,44)= 0.31595694; T( 3,45)= 0.32116493; T( 3,46)= 0.32634441; T( 3,47)= 0.33149635; T( 3,48)= 0.33662166; T( 3,49)= 0.34172121; T( 3,50)= 0.34679583; T( 3,51)= 0.35184632; T( 3,52)= 0.35687342; T( 3,53)= 0.36187784; T( 3,54)= 0.36686029; T( 3,55)= 0.37182140; T( 3,56)= 0.37676180; T( 3,57)= 0.38168210; T( 3,58)= 0.38658287; T( 3,59)= 0.39146465; T( 3,60)= 0.39632798; T( 3,61)= 0.40117336; T( 3,62)= 0.40600128; T( 3,63)= 0.41081221; T( 3,64)= 0.41560659; T( 3,65)= 0.42038487; T( 3,66)= 0.42514747; T( 3,67)= 0.42989477; T( 3,68)= 0.43462718; T( 3,69)= 0.43934506; T( 3,70)= 0.44404879; T( 3,71)= 0.44873870; T( 3,72)= 0.45341514; T( 3,73)= 0.45807844; T( 3,74)= 0.46272891; T( 3,75)= 0.46736686; T( 3,76)= 0.47199258; T( 3,77)= 0.47660636; T( 3,78)= 0.48120848; T( 3,79)= 0.48579922; T( 3,80)= 0.49037883; T( 3,81)= 0.49494756; T( 3,82)= 0.49950567; T( 3,83)= 0.50405340; T( 3,84)= 0.50859097; T( 3,85)= 0.51311862; T( 3,86)= 0.51763656; T( 3,87)= 0.52214501; T( 3,88)= 0.52664418; T( 3,89)= 0.53113427; T( 3,90)= 0.53561547; T( 3,91)= 0.54008799; T( 3,92)= 0.54455201; T( 3,93)= 0.54900771; T( 3,94)= 0.55345527; T( 3,95)= 0.55789487; T( 3,96)= 0.56232666; T( 3,97)= 0.56675083; T( 3,98)= 0.57116753; T( 3,99)= 0.57557692; T( 3,100)= 0.57997915; T( 3,101)= 0.58437437; T( 3,102)= 0.58876274; T( 3,103)= 0.59314439; T( 3,104)= 0.59751946; T( 3,105)= 0.60188810; T( 3,106)= 0.60625044; T( 3,107)= 0.61060660; T( 3,108)= 0.61495672; T( 3,109)= 0.61930092; T( 3,110)= 0.62363934; T( 3,111)= 0.62797208; T( 3,112)= 0.63229926; T( 3,113)= 0.63662101; T( 3,114)= 0.64093743; T( 3,115)= 0.64524864; T( 3,116)= 0.64955475; T( 3,117)= 0.65385586; T( 3,118)= 0.65815208; T( 3,119)= 0.66244351; T( 3,120)= 0.66673026; T( 3,121)= 0.67101242; T( 3,122)= 0.67529008; T( 3,123)= 0.67956335; T( 3,124)= 0.68383232; T( 3,125)= 0.68809708; T( 3,126)= 0.69235773; T( 3,127)= 0.69661434; T( 3,128)= 0.70086701; T( 3,129)= 0.70511583; T( 3,130)= 0.70936087; T( 3,131)= 0.71360223; T( 3,132)= 0.71783998; T( 3,133)= 0.72207420; T( 3,134)= 0.72630497; T( 3,135)= 0.73053238; T( 3,136)= 0.73475649; T( 3,137)= 0.73897738; T( 3,138)= 0.74319513; T( 3,139)= 0.74740981; T( 3,140)= 0.75162148; T( 3,141)= 0.75583023; T( 3,142)= 0.76003612; T( 3,143)= 0.76423922; T( 3,144)= 0.76843960; T( 3,145)= 0.77263731; T( 3,146)= 0.77683244; T( 3,147)= 0.78102504; T( 3,148)= 0.78521518; T( 3,149)= 0.78940292; T( 3,150)= 0.79358832; T( 3,151)= 0.79777144; T( 3,152)= 0.80195235; T( 3,153)= 0.80613110; T( 3,154)= 0.81030775; T( 3,155)= 0.81448236; T( 3,156)= 0.81865499; T( 3,157)= 0.82282568; T( 3,158)= 0.82699451; T( 3,159)= 0.83116152; T( 3,160)= 0.83532677; T( 3,161)= 0.83949030; T( 3,162)= 0.84365218; T( 3,163)= 0.84781246; T( 3,164)= 0.85197118; T( 3,165)= 0.85612840; T( 3,166)= 0.86028417; T( 3,167)= 0.86443854; T( 3,168)= 0.86859155; T( 3,169)= 0.87274326; T( 3,170)= 0.87689372; T( 3,171)= 0.88104296; T( 3,172)= 0.88519105; T( 3,173)= 0.88933801; T( 3,174)= 0.89348391; T( 3,175)= 0.89762878; T( 3,176)= 0.90177268; T( 3,177)= 0.90591564; T( 3,178)= 0.91005770; T( 3,179)= 0.91419892; T( 3,180)= 0.91833934; T( 3,181)= 0.92247899; T( 3,182)= 0.92661793; T( 3,183)= 0.93075618; T( 3,184)= 0.93489380; T( 3,185)= 0.93903082; T( 3,186)= 0.94316729; T( 3,187)= 0.94730324; T( 3,188)= 0.95143871; T( 3,189)= 0.95557375; T( 3,190)= 0.95970839; T( 3,191)= 0.96384268; T( 3,192)= 0.96797664; T( 3,193)= 0.97211032; T( 3,194)= 0.97624375; T( 3,195)= 0.98037698; T( 3,196)= 0.98451003; T( 3,197)= 0.98864295; T( 3,198)= 0.99277578; T( 3,199)= 0.99690854; T( 3,200)= 1.00104127; T( 3,201)= 1.00517401; T( 3,202)= 1.00930680; T( 3,203)= 1.01343967; T( 3,204)= 1.01757264; T( 3,205)= 1.02170577; T( 3,206)= 1.02583908; T( 3,207)= 1.02997260; T( 3,208)= 1.03410637; T( 3,209)= 1.03824042; T( 3,210)= 1.04237479; T( 3,211)= 1.04650951; T( 3,212)= 1.05064460; T( 3,213)= 1.05478011; T( 3,214)= 1.05891606; T( 3,215)= 1.06305249; T( 3,216)= 1.06718942; T( 3,217)= 1.07132690; T( 3,218)= 1.07546494; T( 3,219)= 1.07960359; T( 3,220)= 1.08374286; T( 3,221)= 1.08788280; T( 3,222)= 1.09202343; T( 3,223)= 1.09616478; T( 3,224)= 1.10030689; T( 3,225)= 1.10444978; T( 3,226)= 1.10859348; T( 3,227)= 1.11273802; T( 3,228)= 1.11688343; T( 3,229)= 1.12102974; T( 3,230)= 1.12517697; T( 3,231)= 1.12932517; T( 3,232)= 1.13347435; T( 3,233)= 1.13762455; T( 3,234)= 1.14177578; T( 3,235)= 1.14592809; T( 3,236)= 1.15008149; T( 3,237)= 1.15423602; T( 3,238)= 1.15839171; T( 3,239)= 1.16254857; T( 3,240)= 1.16670665; T( 3,241)= 1.17086596; T( 3,242)= 1.17502653; T( 3,243)= 1.17918839; T( 3,244)= 1.18335157; T( 3,245)= 1.18751609; T( 3,246)= 1.19168198; T( 3,247)= 1.19584927; T( 3,248)= 1.20001798; T( 3,249)= 1.20418814; T( 3,250)= 1.20835977; T( 3,251)= 1.21253290; T( 3,252)= 1.21670756; T( 3,253)= 1.22088378; T( 3,254)= 1.22506157; T( 3,255)= 1.22924097; T( 3,256)= 1.23342199; T( 3,257)= 1.23760467; T( 3,258)= 1.24178903; T( 3,259)= 1.24597510; T( 3,260)= 1.25016289; T( 3,261)= 1.25435244; T( 3,262)= 1.25854377; T( 3,263)= 1.26273691; T( 3,264)= 1.26693188; T( 3,265)= 1.27112870; T( 3,266)= 1.27532740; T( 3,267)= 1.27952800; T( 3,268)= 1.28373053; T( 3,269)= 1.28793502; T( 3,270)= 1.29214148; T( 3,271)= 1.29634995; T( 3,272)= 1.30056043; T( 3,273)= 1.30477297; T( 3,274)= 1.30898758; T( 3,275)= 1.31320429; T( 3,276)= 1.31742312; T( 3,277)= 1.32164410; T( 3,278)= 1.32586724; T( 3,279)= 1.33009258; T( 3,280)= 1.33432014; T( 3,281)= 1.33854993; T( 3,282)= 1.34278199; T( 3,283)= 1.34701634; T( 3,284)= 1.35125299; T( 3,285)= 1.35549198; T( 3,286)= 1.35973333; T( 3,287)= 1.36397706; T( 3,288)= 1.36822319; T( 3,289)= 1.37247175; T( 3,290)= 1.37672276; T( 3,291)= 1.38097625; T( 3,292)= 1.38523223; T( 3,293)= 1.38949074; T( 3,294)= 1.39375178; T( 3,295)= 1.39801539; T( 3,296)= 1.40228159; T( 3,297)= 1.40655041; T( 3,298)= 1.41082186; T( 3,299)= 1.41509596; T( 3,300)= 1.41937275; T( 3,301)= 1.42365224; T( 3,302)= 1.42793446; T( 3,303)= 1.43221943; T( 3,304)= 1.43650717; T( 3,305)= 1.44079770; T( 3,306)= 1.44509106; T( 3,307)= 1.44938725; T( 3,308)= 1.45368631; T( 3,309)= 1.45798825; T( 3,310)= 1.46229310; T( 3,311)= 1.46660089; T( 3,312)= 1.47091162; T( 3,313)= 1.47522534; T( 3,314)= 1.47954205; T( 3,315)= 1.48386178; T( 3,316)= 1.48818456; T( 3,317)= 1.49251041; T( 3,318)= 1.49683934; T( 3,319)= 1.50117139; T( 3,320)= 1.50550658; T( 3,321)= 1.50984492; T( 3,322)= 1.51418644; T( 3,323)= 1.51853116; T( 3,324)= 1.52287911; T( 3,325)= 1.52723031; T( 3,326)= 1.53158477; T( 3,327)= 1.53594253; T( 3,328)= 1.54030361; T( 3,329)= 1.54466802; T( 3,330)= 1.54903580; T( 3,331)= 1.55340696; T( 3,332)= 1.55778152; T( 3,333)= 1.56215951; T( 3,334)= 1.56654096; T( 3,335)= 1.57092588; T( 3,336)= 1.57531429; T( 3,337)= 1.57970623; T( 3,338)= 1.58410171; T( 3,339)= 1.58850075; T( 3,340)= 1.59290338; T( 3,341)= 1.59730962; T( 3,342)= 1.60171949; T( 3,343)= 1.60613302; T( 3,344)= 1.61055022; T( 3,345)= 1.61497113; T( 3,346)= 1.61939577; T( 3,347)= 1.62382415; T( 3,348)= 1.62825630; T( 3,349)= 1.63269224; T( 3,350)= 1.63713200; T( 3,351)= 1.64157560; T( 3,352)= 1.64602306; T( 3,353)= 1.65047440; T( 3,354)= 1.65492966; T( 3,355)= 1.65938884; T( 3,356)= 1.66385198; T( 3,357)= 1.66831910; T( 3,358)= 1.67279021; T( 3,359)= 1.67726535; T( 3,360)= 1.68174454; T( 3,361)= 1.68622780; T( 3,362)= 1.69071515; T( 3,363)= 1.69520662; T( 3,364)= 1.69970222; T( 3,365)= 1.70420200; T( 3,366)= 1.70870596; T( 3,367)= 1.71321413; T( 3,368)= 1.71772653; T( 3,369)= 1.72224319; T( 3,370)= 1.72676414; T( 3,371)= 1.73128939; T( 3,372)= 1.73581896; T( 3,373)= 1.74035290; T( 3,374)= 1.74489120; T( 3,375)= 1.74943391; T( 3,376)= 1.75398104; T( 3,377)= 1.75853263; T( 3,378)= 1.76308868; T( 3,379)= 1.76764923; T( 3,380)= 1.77221430; T( 3,381)= 1.77678392; T( 3,382)= 1.78135810; T( 3,383)= 1.78593688; T( 3,384)= 1.79052027; T( 3,385)= 1.79510831; T( 3,386)= 1.79970102; T( 3,387)= 1.80429841; T( 3,388)= 1.80890052; T( 3,389)= 1.81350738; T( 3,390)= 1.81811899; T( 3,391)= 1.82273540; T( 3,392)= 1.82735662; T( 3,393)= 1.83198268; T( 3,394)= 1.83661361; T( 3,395)= 1.84124942; T( 3,396)= 1.84589015; T( 3,397)= 1.85053582; T( 3,398)= 1.85518646; T( 3,399)= 1.85984208; T( 3,400)= 1.86450272; T( 3,401)= 1.86916840; T( 3,402)= 1.87383915; T( 3,403)= 1.87851499; T( 3,404)= 1.88319595; T( 3,405)= 1.88788205; T( 3,406)= 1.89257333; T( 3,407)= 1.89726979; T( 3,408)= 1.90197148; T( 3,409)= 1.90667842; T( 3,410)= 1.91139063; T( 3,411)= 1.91610814; T( 3,412)= 1.92083098; T( 3,413)= 1.92555917; T( 3,414)= 1.93029273; T( 3,415)= 1.93503171; T( 3,416)= 1.93977611; T( 3,417)= 1.94452598; T( 3,418)= 1.94928133; T( 3,419)= 1.95404219; T( 3,420)= 1.95880859; T( 3,421)= 1.96358056; T( 3,422)= 1.96835812; T( 3,423)= 1.97314131; T( 3,424)= 1.97793014; T( 3,425)= 1.98272465; T( 3,426)= 1.98752486; T( 3,427)= 1.99233080; T( 3,428)= 1.99714251; T( 3,429)= 2.00195999; T( 3,430)= 2.00678330; T( 3,431)= 2.01161244; T( 3,432)= 2.01644746; T( 3,433)= 2.02128838; T( 3,434)= 2.02613522; T( 3,435)= 2.03098802; T( 3,436)= 2.03584681; T( 3,437)= 2.04071161; T( 3,438)= 2.04558245; T( 3,439)= 2.05045936; T( 3,440)= 2.05534237; T( 3,441)= 2.06023151; T( 3,442)= 2.06512681; T( 3,443)= 2.07002829; T( 3,444)= 2.07493600; T( 3,445)= 2.07984995; T( 3,446)= 2.08477018; T( 3,447)= 2.08969671; T( 3,448)= 2.09462958; T( 3,449)= 2.09956881; T( 3,450)= 2.10451445; T( 3,451)= 2.10946651; T( 3,452)= 2.11442502; T( 3,453)= 2.11939003; T( 3,454)= 2.12436155; T( 3,455)= 2.12933962; T( 3,456)= 2.13432428; T( 3,457)= 2.13931554; T( 3,458)= 2.14431345; T( 3,459)= 2.14931803; T( 3,460)= 2.15432931; T( 3,461)= 2.15934734; T( 3,462)= 2.16437213; T( 3,463)= 2.16940372; T( 3,464)= 2.17444214; T( 3,465)= 2.17948743; T( 3,466)= 2.18453962; T( 3,467)= 2.18959874; T( 3,468)= 2.19466482; T( 3,469)= 2.19973789; T( 3,470)= 2.20481800; T( 3,471)= 2.20990516; T( 3,472)= 2.21499942; T( 3,473)= 2.22010080; T( 3,474)= 2.22520935; T( 3,475)= 2.23032509; T( 3,476)= 2.23544806; T( 3,477)= 2.24057829; T( 3,478)= 2.24571582; T( 3,479)= 2.25086068; T( 3,480)= 2.25601290; T( 3,481)= 2.26117253; T( 3,482)= 2.26633959; T( 3,483)= 2.27151412; T( 3,484)= 2.27669615; T( 3,485)= 2.28188573; T( 3,486)= 2.28708288; T( 3,487)= 2.29228764; T( 3,488)= 2.29750005; T( 3,489)= 2.30272014; T( 3,490)= 2.30794796; T( 3,491)= 2.31318352; T( 3,492)= 2.31842688; T( 3,493)= 2.32367807; T( 3,494)= 2.32893712; T( 3,495)= 2.33420408; T( 3,496)= 2.33947898; T( 3,497)= 2.34476185; T( 3,498)= 2.35005274; T( 3,499)= 2.35535169; T( 3,500)= 2.36065872; T( 3,501)= 2.36597388; T( 3,502)= 2.37129722; T( 3,503)= 2.37662875; T( 3,504)= 2.38196854; T( 3,505)= 2.38731660; T( 3,506)= 2.39267299; T( 3,507)= 2.39803775; T( 3,508)= 2.40341090; T( 3,509)= 2.40879250; T( 3,510)= 2.41418258; T( 3,511)= 2.41958119; T( 3,512)= 2.42498835; T( 3,513)= 2.43040412; T( 3,514)= 2.43582854; T( 3,515)= 2.44126164; T( 3,516)= 2.44670347; T( 3,517)= 2.45215407; T( 3,518)= 2.45761348; T( 3,519)= 2.46308174; T( 3,520)= 2.46855890; T( 3,521)= 2.47404500; T( 3,522)= 2.47954008; T( 3,523)= 2.48504418; T( 3,524)= 2.49055734; T( 3,525)= 2.49607962; T( 3,526)= 2.50161105; T( 3,527)= 2.50715169; T( 3,528)= 2.51270156; T( 3,529)= 2.51826072; T( 3,530)= 2.52382921; T( 3,531)= 2.52940708; T( 3,532)= 2.53499437; T( 3,533)= 2.54059113; T( 3,534)= 2.54619740; T( 3,535)= 2.55181323; T( 3,536)= 2.55743867; T( 3,537)= 2.56307376; T( 3,538)= 2.56871854; T( 3,539)= 2.57437308; T( 3,540)= 2.58003741; T( 3,541)= 2.58571158; T( 3,542)= 2.59139564; T( 3,543)= 2.59708963; T( 3,544)= 2.60279362; T( 3,545)= 2.60850764; T( 3,546)= 2.61423174; T( 3,547)= 2.61996598; T( 3,548)= 2.62571040; T( 3,549)= 2.63146505; T( 3,550)= 2.63722999; T( 3,551)= 2.64300526; T( 3,552)= 2.64879092; T( 3,553)= 2.65458702; T( 3,554)= 2.66039360; T( 3,555)= 2.66621073; T( 3,556)= 2.67203845; T( 3,557)= 2.67787681; T( 3,558)= 2.68372587; T( 3,559)= 2.68958569; T( 3,560)= 2.69545631; T( 3,561)= 2.70133778; T( 3,562)= 2.70723017; T( 3,563)= 2.71313353; T( 3,564)= 2.71904792; T( 3,565)= 2.72497338; T( 3,566)= 2.73090997; T( 3,567)= 2.73685776; T( 3,568)= 2.74281679; T( 3,569)= 2.74878712; T( 3,570)= 2.75476881; T( 3,571)= 2.76076193; T( 3,572)= 2.76676651; T( 3,573)= 2.77278264; T( 3,574)= 2.77881035; T( 3,575)= 2.78484972; T( 3,576)= 2.79090079; T( 3,577)= 2.79696364; T( 3,578)= 2.80303832; T( 3,579)= 2.80912489; T( 3,580)= 2.81522341; T( 3,581)= 2.82133395; T( 3,582)= 2.82745656; T( 3,583)= 2.83359131; T( 3,584)= 2.83973826; T( 3,585)= 2.84589748; T( 3,586)= 2.85206902; T( 3,587)= 2.85825296; T( 3,588)= 2.86444935; T( 3,589)= 2.87065826; T( 3,590)= 2.87687976; T( 3,591)= 2.88311391; T( 3,592)= 2.88936078; T( 3,593)= 2.89562043; T( 3,594)= 2.90189294; T( 3,595)= 2.90817836; T( 3,596)= 2.91447678; T( 3,597)= 2.92078824; T( 3,598)= 2.92711284; T( 3,599)= 2.93345063; T( 3,600)= 2.93980168; T( 3,601)= 2.94616607; T( 3,602)= 2.95254387; T( 3,603)= 2.95893514; T( 3,604)= 2.96533997; T( 3,605)= 2.97175842; T( 3,606)= 2.97819056; T( 3,607)= 2.98463648; T( 3,608)= 2.99109623; T( 3,609)= 2.99756991; T( 3,610)= 3.00405758; T( 3,611)= 3.01055932; T( 3,612)= 3.01707521; T( 3,613)= 3.02360532; T( 3,614)= 3.03014973; T( 3,615)= 3.03670852; T( 3,616)= 3.04328177; T( 3,617)= 3.04986955; T( 3,618)= 3.05647195; T( 3,619)= 3.06308905; T( 3,620)= 3.06972093; T( 3,621)= 3.07636767; T( 3,622)= 3.08302935; T( 3,623)= 3.08970606; T( 3,624)= 3.09639787; T( 3,625)= 3.10310488; T( 3,626)= 3.10982717; T( 3,627)= 3.11656482; T( 3,628)= 3.12331792; T( 3,629)= 3.13008656; T( 3,630)= 3.13687083; T( 3,631)= 3.14367081; T( 3,632)= 3.15048658; T( 3,633)= 3.15731826; T( 3,634)= 3.16416591; T( 3,635)= 3.17102964; T( 3,636)= 3.17790953; T( 3,637)= 3.18480568; T( 3,638)= 3.19171818; T( 3,639)= 3.19864712; T( 3,640)= 3.20559261; T( 3,641)= 3.21255473; T( 3,642)= 3.21953358; T( 3,643)= 3.22652926; T( 3,644)= 3.23354187; T( 3,645)= 3.24057150; T( 3,646)= 3.24761826; T( 3,647)= 3.25468224; T( 3,648)= 3.26176355; T( 3,649)= 3.26886229; T( 3,650)= 3.27597856; T( 3,651)= 3.28311246; T( 3,652)= 3.29026411; T( 3,653)= 3.29743360; T( 3,654)= 3.30462104; T( 3,655)= 3.31182654; T( 3,656)= 3.31905020; T( 3,657)= 3.32629215; T( 3,658)= 3.33355247; T( 3,659)= 3.34083130; T( 3,660)= 3.34812873; T( 3,661)= 3.35544489; T( 3,662)= 3.36277988; T( 3,663)= 3.37013382; T( 3,664)= 3.37750683; T( 3,665)= 3.38489902; T( 3,666)= 3.39231051; T( 3,667)= 3.39974142; T( 3,668)= 3.40719187; T( 3,669)= 3.41466198; T( 3,670)= 3.42215187; T( 3,671)= 3.42966167; T( 3,672)= 3.43719150; T( 3,673)= 3.44474148; T( 3,674)= 3.45231175; T( 3,675)= 3.45990242; T( 3,676)= 3.46751363; T( 3,677)= 3.47514551; T( 3,678)= 3.48279819; T( 3,679)= 3.49047180; T( 3,680)= 3.49816648; T( 3,681)= 3.50588236; T( 3,682)= 3.51361957; T( 3,683)= 3.52137825; T( 3,684)= 3.52915854; T( 3,685)= 3.53696059; T( 3,686)= 3.54478453; T( 3,687)= 3.55263050; T( 3,688)= 3.56049865; T( 3,689)= 3.56838913; T( 3,690)= 3.57630207; T( 3,691)= 3.58423763; T( 3,692)= 3.59219596; T( 3,693)= 3.60017721; T( 3,694)= 3.60818152; T( 3,695)= 3.61620906; T( 3,696)= 3.62425998; T( 3,697)= 3.63233443; T( 3,698)= 3.64043258; T( 3,699)= 3.64855458; T( 3,700)= 3.65670059; T( 3,701)= 3.66487078; T( 3,702)= 3.67306531; T( 3,703)= 3.68128435; T( 3,704)= 3.68952807; T( 3,705)= 3.69779663; T( 3,706)= 3.70609020; T( 3,707)= 3.71440896; T( 3,708)= 3.72275309; T( 3,709)= 3.73112275; T( 3,710)= 3.73951813; T( 3,711)= 3.74793941; T( 3,712)= 3.75638677; T( 3,713)= 3.76486039; T( 3,714)= 3.77336045; T( 3,715)= 3.78188715; T( 3,716)= 3.79044068; T( 3,717)= 3.79902122; T( 3,718)= 3.80762897; T( 3,719)= 3.81626412; T( 3,720)= 3.82492688; T( 3,721)= 3.83361743; T( 3,722)= 3.84233599; T( 3,723)= 3.85108276; T( 3,724)= 3.85985793; T( 3,725)= 3.86866173; T( 3,726)= 3.87749436; T( 3,727)= 3.88635602; T( 3,728)= 3.89524695; T( 3,729)= 3.90416735; T( 3,730)= 3.91311745; T( 3,731)= 3.92209746; T( 3,732)= 3.93110762; T( 3,733)= 3.94014814; T( 3,734)= 3.94921926; T( 3,735)= 3.95832121; T( 3,736)= 3.96745422; T( 3,737)= 3.97661853; T( 3,738)= 3.98581438; T( 3,739)= 3.99504202; T( 3,740)= 4.00430169; T( 3,741)= 4.01359363; T( 3,742)= 4.02291810; T( 3,743)= 4.03227535; T( 3,744)= 4.04166564; T( 3,745)= 4.05108923; T( 3,746)= 4.06054637; T( 3,747)= 4.07003735; T( 3,748)= 4.07956242; T( 3,749)= 4.08912186; T( 3,750)= 4.09871593; T( 3,751)= 4.10834494; T( 3,752)= 4.11800914; T( 3,753)= 4.12770883; T( 3,754)= 4.13744430; T( 3,755)= 4.14721584; T( 3,756)= 4.15702374; T( 3,757)= 4.16686831; T( 3,758)= 4.17674984; T( 3,759)= 4.18666865; T( 3,760)= 4.19662504; T( 3,761)= 4.20661933; T( 3,762)= 4.21665183; T( 3,763)= 4.22672288; T( 3,764)= 4.23683278; T( 3,765)= 4.24698188; T( 3,766)= 4.25717052; T( 3,767)= 4.26739901; T( 3,768)= 4.27766772; T( 3,769)= 4.28797699; T( 3,770)= 4.29832716; T( 3,771)= 4.30871860; T( 3,772)= 4.31915167; T( 3,773)= 4.32962673; T( 3,774)= 4.34014415; T( 3,775)= 4.35070431; T( 3,776)= 4.36130759; T( 3,777)= 4.37195437; T( 3,778)= 4.38264504; T( 3,779)= 4.39338001; T( 3,780)= 4.40415966; T( 3,781)= 4.41498441; T( 3,782)= 4.42585467; T( 3,783)= 4.43677085; T( 3,784)= 4.44773338; T( 3,785)= 4.45874269; T( 3,786)= 4.46979921; T( 3,787)= 4.48090338; T( 3,788)= 4.49205566; T( 3,789)= 4.50325649; T( 3,790)= 4.51450633; T( 3,791)= 4.52580565; T( 3,792)= 4.53715492; T( 3,793)= 4.54855463; T( 3,794)= 4.56000525; T( 3,795)= 4.57150728; T( 3,796)= 4.58306123; T( 3,797)= 4.59466759; T( 3,798)= 4.60632689; T( 3,799)= 4.61803965; T( 3,800)= 4.62980640; T( 3,801)= 4.64162768; T( 3,802)= 4.65350402; T( 3,803)= 4.66543600; T( 3,804)= 4.67742417; T( 3,805)= 4.68946910; T( 3,806)= 4.70157137; T( 3,807)= 4.71373158; T( 3,808)= 4.72595032; T( 3,809)= 4.73822819; T( 3,810)= 4.75056583; T( 3,811)= 4.76296384; T( 3,812)= 4.77542287; T( 3,813)= 4.78794356; T( 3,814)= 4.80052658; T( 3,815)= 4.81317259; T( 3,816)= 4.82588226; T( 3,817)= 4.83865629; T( 3,818)= 4.85149538; T( 3,819)= 4.86440023; T( 3,820)= 4.87737157; T( 3,821)= 4.89041014; T( 3,822)= 4.90351669; T( 3,823)= 4.91669196; T( 3,824)= 4.92993675; T( 3,825)= 4.94325182; T( 3,826)= 4.95663799; T( 3,827)= 4.97009606; T( 3,828)= 4.98362685; T( 3,829)= 4.99723122; T( 3,830)= 5.01091002; T( 3,831)= 5.02466411; T( 3,832)= 5.03849439; T( 3,833)= 5.05240175; T( 3,834)= 5.06638711; T( 3,835)= 5.08045141; T( 3,836)= 5.09459559; T( 3,837)= 5.10882063; T( 3,838)= 5.12312751; T( 3,839)= 5.13751723; T( 3,840)= 5.15199082; T( 3,841)= 5.16654932; T( 3,842)= 5.18119378; T( 3,843)= 5.19592529; T( 3,844)= 5.21074496; T( 3,845)= 5.22565389; T( 3,846)= 5.24065324; T( 3,847)= 5.25574417; T( 3,848)= 5.27092788; T( 3,849)= 5.28620556; T( 3,850)= 5.30157846; T( 3,851)= 5.31704784; T( 3,852)= 5.33261498; T( 3,853)= 5.34828119; T( 3,854)= 5.36404781; T( 3,855)= 5.37991621; T( 3,856)= 5.39588777; T( 3,857)= 5.41196392; T( 3,858)= 5.42814612; T( 3,859)= 5.44443583; T( 3,860)= 5.46083458; T( 3,861)= 5.47734390; T( 3,862)= 5.49396539; T( 3,863)= 5.51070063; T( 3,864)= 5.52755130; T( 3,865)= 5.54451906; T( 3,866)= 5.56160563; T( 3,867)= 5.57881278; T( 3,868)= 5.59614230; T( 3,869)= 5.61359603; T( 3,870)= 5.63117585; T( 3,871)= 5.64888367; T( 3,872)= 5.66672148; T( 3,873)= 5.68469127; T( 3,874)= 5.70279511; T( 3,875)= 5.72103510; T( 3,876)= 5.73941341; T( 3,877)= 5.75793225; T( 3,878)= 5.77659387; T( 3,879)= 5.79540059; T( 3,880)= 5.81435480; T( 3,881)= 5.83345891; T( 3,882)= 5.85271544; T( 3,883)= 5.87212693; T( 3,884)= 5.89169601; T( 3,885)= 5.91142538; T( 3,886)= 5.93131777; T( 3,887)= 5.95137604; T( 3,888)= 5.97160308; T( 3,889)= 5.99200188; T( 3,890)= 6.01257550; T( 3,891)= 6.03332709; T( 3,892)= 6.05425987; T( 3,893)= 6.07537716; T( 3,894)= 6.09668239; T( 3,895)= 6.11817905; T( 3,896)= 6.13987076; T( 3,897)= 6.16176122; T( 3,898)= 6.18385425; T( 3,899)= 6.20615378; T( 3,900)= 6.22866385; T( 3,901)= 6.25138863; T( 3,902)= 6.27433241; T( 3,903)= 6.29749960; T( 3,904)= 6.32089476; T( 3,905)= 6.34452258; T( 3,906)= 6.36838791; T( 3,907)= 6.39249574; T( 3,908)= 6.41685123; T( 3,909)= 6.44145970; T( 3,910)= 6.46632663; T( 3,911)= 6.49145772; T( 3,912)= 6.51685881; T( 3,913)= 6.54253598; T( 3,914)= 6.56849550; T( 3,915)= 6.59474385; T( 3,916)= 6.62128774; T( 3,917)= 6.64813413; T( 3,918)= 6.67529022; T( 3,919)= 6.70276346; T( 3,920)= 6.73056159; T( 3,921)= 6.75869262; T( 3,922)= 6.78716488; T( 3,923)= 6.81598701; T( 3,924)= 6.84516797; T( 3,925)= 6.87471709; T( 3,926)= 6.90464406; T( 3,927)= 6.93495896; T( 3,928)= 6.96567226; T( 3,929)= 6.99679490; T( 3,930)= 7.02833825; T( 3,931)= 7.06031417; T( 3,932)= 7.09273502; T( 3,933)= 7.12561371; T( 3,934)= 7.15896372; T( 3,935)= 7.19279914; T( 3,936)= 7.22713469; T( 3,937)= 7.26198577; T( 3,938)= 7.29736853; T( 3,939)= 7.33329986; T( 3,940)= 7.36979750; T( 3,941)= 7.40688004; T( 3,942)= 7.44456702; T( 3,943)= 7.48287898; T( 3,944)= 7.52183750; T( 3,945)= 7.56146534; T( 3,946)= 7.60178647; T( 3,947)= 7.64282615; T( 3,948)= 7.68461110; T( 3,949)= 7.72716951; T( 3,950)= 7.77053124; T( 3,951)= 7.81472790; T( 3,952)= 7.85979303; T( 3,953)= 7.90576221; T( 3,954)= 7.95267326; T( 3,955)= 8.00056647; T( 3,956)= 8.04948472; T( 3,957)= 8.09947381; T( 3,958)= 8.15058267; T( 3,959)= 8.20286369; T( 3,960)= 8.25637300; T( 3,961)= 8.31117091; T( 3,962)= 8.36732227; T( 3,963)= 8.42489697; T( 3,964)= 8.48397049; T( 3,965)= 8.54462446; T( 3,966)= 8.60694740; T( 3,967)= 8.67103553; T( 3,968)= 8.73699360; T( 3,969)= 8.80493605; T( 3,970)= 8.87498816; T( 3,971)= 8.94728750; T( 3,972)= 9.02198557; T( 3,973)= 9.09924980; T( 3,974)= 9.17926579; T( 3,975)= 9.26224013; T( 3,976)= 9.34840360; T( 3,977)= 9.43801521; T( 3,978)= 9.53136689; T( 3,979)= 9.62878943; T( 3,980)= 9.73065964; T( 3,981)= 9.83740931; T( 3,982)= 9.94953654; T( 3,983)=10.06762000; T( 3,984)=10.19233733; T( 3,985)=10.32448914; T( 3,986)=10.46503071; T( 3,987)=10.61511464; T( 3,988)=10.77614929; T( 3,989)=10.94988065; T( 3,990)=11.13850986; T( 3,991)=11.34486673; T( 3,992)=11.57267496; T( 3,993)=11.82697385; T( 3,994)=12.11482274; T( 3,995)=12.44655104; T( 3,996)=12.83815647; T( 3,997)=13.31640865; T( 3,998)=13.93142267; T( 3,999)=14.79551705; T( 3,1000)=16.26623620; T( 3,1001)=21.10751347; T( 3,1002)=25.90174975; T( 4, 1)= 0.00000000; T( 4, 2)= 0.09080404; T( 4, 3)= 0.12923771; T( 4, 4)= 0.15906734; T( 4, 5)= 0.18444814; T( 4, 6)= 0.20698909; T( 4, 7)= 0.22751512; T( 4, 8)= 0.24651611; T( 4, 9)= 0.26431116; T( 4,10)= 0.28112186; T( 4,11)= 0.29710948; T( 4,12)= 0.31239575; T( 4,13)= 0.32707521; T( 4,14)= 0.34122302; T( 4,15)= 0.35490010; T( 4,16)= 0.36815665; T( 4,17)= 0.38103461; T( 4,18)= 0.39356944; T( 4,19)= 0.40579145; T( 4,20)= 0.41772679; T( 4,21)= 0.42939819; T( 4,22)= 0.44082558; T( 4,23)= 0.45202654; T( 4,24)= 0.46301666; T( 4,25)= 0.47380984; T( 4,26)= 0.48441856; T( 4,27)= 0.49485405; T( 4,28)= 0.50512649; T( 4,29)= 0.51524508; T( 4,30)= 0.52521825; T( 4,31)= 0.53505367; T( 4,32)= 0.54475841; T( 4,33)= 0.55433893; T( 4,34)= 0.56380124; T( 4,35)= 0.57315084; T( 4,36)= 0.58239287; T( 4,37)= 0.59153209; T( 4,38)= 0.60057293; T( 4,39)= 0.60951952; T( 4,40)= 0.61837573; T( 4,41)= 0.62714516; T( 4,42)= 0.63583121; T( 4,43)= 0.64443707; T( 4,44)= 0.65296573; T( 4,45)= 0.66142000; T( 4,46)= 0.66980256; T( 4,47)= 0.67811591; T( 4,48)= 0.68636244; T( 4,49)= 0.69454440; T( 4,50)= 0.70266392; T( 4,51)= 0.71072302; T( 4,52)= 0.71872364; T( 4,53)= 0.72666760; T( 4,54)= 0.73455665; T( 4,55)= 0.74239246; T( 4,56)= 0.75017659; T( 4,57)= 0.75791057; T( 4,58)= 0.76559585; T( 4,59)= 0.77323380; T( 4,60)= 0.78082575; T( 4,61)= 0.78837296; T( 4,62)= 0.79587666; T( 4,63)= 0.80333800; T( 4,64)= 0.81075810; T( 4,65)= 0.81813804; T( 4,66)= 0.82547884; T( 4,67)= 0.83278151; T( 4,68)= 0.84004699; T( 4,69)= 0.84727621; T( 4,70)= 0.85447005; T( 4,71)= 0.86162937; T( 4,72)= 0.86875498; T( 4,73)= 0.87584769; T( 4,74)= 0.88290826; T( 4,75)= 0.88993743; T( 4,76)= 0.89693592; T( 4,77)= 0.90390442; T( 4,78)= 0.91084360; T( 4,79)= 0.91775411; T( 4,80)= 0.92463657; T( 4,81)= 0.93149160; T( 4,82)= 0.93831978; T( 4,83)= 0.94512169; T( 4,84)= 0.95189787; T( 4,85)= 0.95864887; T( 4,86)= 0.96537520; T( 4,87)= 0.97207738; T( 4,88)= 0.97875589; T( 4,89)= 0.98541121; T( 4,90)= 0.99204380; T( 4,91)= 0.99865412; T( 4,92)= 1.00524261; T( 4,93)= 1.01180968; T( 4,94)= 1.01835577; T( 4,95)= 1.02488126; T( 4,96)= 1.03138656; T( 4,97)= 1.03787205; T( 4,98)= 1.04433810; T( 4,99)= 1.05078507; T( 4,100)= 1.05721333; T( 4,101)= 1.06362322; T( 4,102)= 1.07001507; T( 4,103)= 1.07638921; T( 4,104)= 1.08274597; T( 4,105)= 1.08908566; T( 4,106)= 1.09540858; T( 4,107)= 1.10171504; T( 4,108)= 1.10800533; T( 4,109)= 1.11427973; T( 4,110)= 1.12053852; T( 4,111)= 1.12678198; T( 4,112)= 1.13301037; T( 4,113)= 1.13922395; T( 4,114)= 1.14542298; T( 4,115)= 1.15160771; T( 4,116)= 1.15777838; T( 4,117)= 1.16393523; T( 4,118)= 1.17007849; T( 4,119)= 1.17620840; T( 4,120)= 1.18232518; T( 4,121)= 1.18842905; T( 4,122)= 1.19452023; T( 4,123)= 1.20059892; T( 4,124)= 1.20666533; T( 4,125)= 1.21271967; T( 4,126)= 1.21876214; T( 4,127)= 1.22479292; T( 4,128)= 1.23081222; T( 4,129)= 1.23682021; T( 4,130)= 1.24281709; T( 4,131)= 1.24880304; T( 4,132)= 1.25477823; T( 4,133)= 1.26074283; T( 4,134)= 1.26669702; T( 4,135)= 1.27264097; T( 4,136)= 1.27857484; T( 4,137)= 1.28449879; T( 4,138)= 1.29041298; T( 4,139)= 1.29631757; T( 4,140)= 1.30221271; T( 4,141)= 1.30809856; T( 4,142)= 1.31397526; T( 4,143)= 1.31984296; T( 4,144)= 1.32570180; T( 4,145)= 1.33155192; T( 4,146)= 1.33739346; T( 4,147)= 1.34322657; T( 4,148)= 1.34905136; T( 4,149)= 1.35486799; T( 4,150)= 1.36067656; T( 4,151)= 1.36647723; T( 4,152)= 1.37227010; T( 4,153)= 1.37805531; T( 4,154)= 1.38383297; T( 4,155)= 1.38960322; T( 4,156)= 1.39536616; T( 4,157)= 1.40112191; T( 4,158)= 1.40687059; T( 4,159)= 1.41261231; T( 4,160)= 1.41834719; T( 4,161)= 1.42407533; T( 4,162)= 1.42979685; T( 4,163)= 1.43551184; T( 4,164)= 1.44122042; T( 4,165)= 1.44692269; T( 4,166)= 1.45261875; T( 4,167)= 1.45830870; T( 4,168)= 1.46399265; T( 4,169)= 1.46967069; T( 4,170)= 1.47534292; T( 4,171)= 1.48100943; T( 4,172)= 1.48667032; T( 4,173)= 1.49232569; T( 4,174)= 1.49797562; T( 4,175)= 1.50362021; T( 4,176)= 1.50925954; T( 4,177)= 1.51489371; T( 4,178)= 1.52052280; T( 4,179)= 1.52614689; T( 4,180)= 1.53176608; T( 4,181)= 1.53738045; T( 4,182)= 1.54299008; T( 4,183)= 1.54859506; T( 4,184)= 1.55419546; T( 4,185)= 1.55979136; T( 4,186)= 1.56538285; T( 4,187)= 1.57097000; T( 4,188)= 1.57655289; T( 4,189)= 1.58213160; T( 4,190)= 1.58770620; T( 4,191)= 1.59327678; T( 4,192)= 1.59884339; T( 4,193)= 1.60440612; T( 4,194)= 1.60996503; T( 4,195)= 1.61552021; T( 4,196)= 1.62107171; T( 4,197)= 1.62661962; T( 4,198)= 1.63216399; T( 4,199)= 1.63770491; T( 4,200)= 1.64324243; T( 4,201)= 1.64877662; T( 4,202)= 1.65430755; T( 4,203)= 1.65983529; T( 4,204)= 1.66535990; T( 4,205)= 1.67088144; T( 4,206)= 1.67639998; T( 4,207)= 1.68191559; T( 4,208)= 1.68742832; T( 4,209)= 1.69293823; T( 4,210)= 1.69844540; T( 4,211)= 1.70394987; T( 4,212)= 1.70945172; T( 4,213)= 1.71495099; T( 4,214)= 1.72044775; T( 4,215)= 1.72594205; T( 4,216)= 1.73143396; T( 4,217)= 1.73692353; T( 4,218)= 1.74241082; T( 4,219)= 1.74789589; T( 4,220)= 1.75337878; T( 4,221)= 1.75885957; T( 4,222)= 1.76433829; T( 4,223)= 1.76981501; T( 4,224)= 1.77528978; T( 4,225)= 1.78076266; T( 4,226)= 1.78623369; T( 4,227)= 1.79170293; T( 4,228)= 1.79717043; T( 4,229)= 1.80263625; T( 4,230)= 1.80810043; T( 4,231)= 1.81356303; T( 4,232)= 1.81902409; T( 4,233)= 1.82448367; T( 4,234)= 1.82994182; T( 4,235)= 1.83539858; T( 4,236)= 1.84085401; T( 4,237)= 1.84630815; T( 4,238)= 1.85176106; T( 4,239)= 1.85721277; T( 4,240)= 1.86266334; T( 4,241)= 1.86811282; T( 4,242)= 1.87356125; T( 4,243)= 1.87900868; T( 4,244)= 1.88445515; T( 4,245)= 1.88990071; T( 4,246)= 1.89534541; T( 4,247)= 1.90078929; T( 4,248)= 1.90623240; T( 4,249)= 1.91167478; T( 4,250)= 1.91711647; T( 4,251)= 1.92255753; T( 4,252)= 1.92799798; T( 4,253)= 1.93343789; T( 4,254)= 1.93887729; T( 4,255)= 1.94431622; T( 4,256)= 1.94975472; T( 4,257)= 1.95519285; T( 4,258)= 1.96063064; T( 4,259)= 1.96606812; T( 4,260)= 1.97150536; T( 4,261)= 1.97694238; T( 4,262)= 1.98237923; T( 4,263)= 1.98781595; T( 4,264)= 1.99325257; T( 4,265)= 1.99868915; T( 4,266)= 2.00412572; T( 4,267)= 2.00956231; T( 4,268)= 2.01499898; T( 4,269)= 2.02043576; T( 4,270)= 2.02587268; T( 4,271)= 2.03130980; T( 4,272)= 2.03674714; T( 4,273)= 2.04218475; T( 4,274)= 2.04762267; T( 4,275)= 2.05306093; T( 4,276)= 2.05849957; T( 4,277)= 2.06393863; T( 4,278)= 2.06937815; T( 4,279)= 2.07481817; T( 4,280)= 2.08025872; T( 4,281)= 2.08569984; T( 4,282)= 2.09114157; T( 4,283)= 2.09658394; T( 4,284)= 2.10202700; T( 4,285)= 2.10747077; T( 4,286)= 2.11291531; T( 4,287)= 2.11836063; T( 4,288)= 2.12380678; T( 4,289)= 2.12925380; T( 4,290)= 2.13470172; T( 4,291)= 2.14015057; T( 4,292)= 2.14560040; T( 4,293)= 2.15105123; T( 4,294)= 2.15650311; T( 4,295)= 2.16195607; T( 4,296)= 2.16741014; T( 4,297)= 2.17286536; T( 4,298)= 2.17832176; T( 4,299)= 2.18377938; T( 4,300)= 2.18923826; T( 4,301)= 2.19469842; T( 4,302)= 2.20015991; T( 4,303)= 2.20562275; T( 4,304)= 2.21108699; T( 4,305)= 2.21655265; T( 4,306)= 2.22201977; T( 4,307)= 2.22748838; T( 4,308)= 2.23295853; T( 4,309)= 2.23843023; T( 4,310)= 2.24390353; T( 4,311)= 2.24937845; T( 4,312)= 2.25485504; T( 4,313)= 2.26033333; T( 4,314)= 2.26581334; T( 4,315)= 2.27129512; T( 4,316)= 2.27677869; T( 4,317)= 2.28226408; T( 4,318)= 2.28775134; T( 4,319)= 2.29324050; T( 4,320)= 2.29873158; T( 4,321)= 2.30422462; T( 4,322)= 2.30971966; T( 4,323)= 2.31521671; T( 4,324)= 2.32071583; T( 4,325)= 2.32621704; T( 4,326)= 2.33172037; T( 4,327)= 2.33722585; T( 4,328)= 2.34273353; T( 4,329)= 2.34824342; T( 4,330)= 2.35375556; T( 4,331)= 2.35926999; T( 4,332)= 2.36478674; T( 4,333)= 2.37030583; T( 4,334)= 2.37582731; T( 4,335)= 2.38135119; T( 4,336)= 2.38687752; T( 4,337)= 2.39240633; T( 4,338)= 2.39793764; T( 4,339)= 2.40347150; T( 4,340)= 2.40900792; T( 4,341)= 2.41454695; T( 4,342)= 2.42008862; T( 4,343)= 2.42563295; T( 4,344)= 2.43117998; T( 4,345)= 2.43672974; T( 4,346)= 2.44228226; T( 4,347)= 2.44783757; T( 4,348)= 2.45339571; T( 4,349)= 2.45895671; T( 4,350)= 2.46452059; T( 4,351)= 2.47008739; T( 4,352)= 2.47565714; T( 4,353)= 2.48122987; T( 4,354)= 2.48680562; T( 4,355)= 2.49238441; T( 4,356)= 2.49796627; T( 4,357)= 2.50355125; T( 4,358)= 2.50913936; T( 4,359)= 2.51473064; T( 4,360)= 2.52032513; T( 4,361)= 2.52592284; T( 4,362)= 2.53152382; T( 4,363)= 2.53712810; T( 4,364)= 2.54273570; T( 4,365)= 2.54834666; T( 4,366)= 2.55396101; T( 4,367)= 2.55957878; T( 4,368)= 2.56520000; T( 4,369)= 2.57082471; T( 4,370)= 2.57645293; T( 4,371)= 2.58208469; T( 4,372)= 2.58772004; T( 4,373)= 2.59335899; T( 4,374)= 2.59900158; T( 4,375)= 2.60464784; T( 4,376)= 2.61029781; T( 4,377)= 2.61595151; T( 4,378)= 2.62160897; T( 4,379)= 2.62727024; T( 4,380)= 2.63293533; T( 4,381)= 2.63860428; T( 4,382)= 2.64427712; T( 4,383)= 2.64995389; T( 4,384)= 2.65563461; T( 4,385)= 2.66131932; T( 4,386)= 2.66700804; T( 4,387)= 2.67270082; T( 4,388)= 2.67839767; T( 4,389)= 2.68409864; T( 4,390)= 2.68980376; T( 4,391)= 2.69551305; T( 4,392)= 2.70122654; T( 4,393)= 2.70694428; T( 4,394)= 2.71266630; T( 4,395)= 2.71839261; T( 4,396)= 2.72412326; T( 4,397)= 2.72985828; T( 4,398)= 2.73559770; T( 4,399)= 2.74134155; T( 4,400)= 2.74708987; T( 4,401)= 2.75284268; T( 4,402)= 2.75860003; T( 4,403)= 2.76436193; T( 4,404)= 2.77012843; T( 4,405)= 2.77589955; T( 4,406)= 2.78167533; T( 4,407)= 2.78745580; T( 4,408)= 2.79324100; T( 4,409)= 2.79903095; T( 4,410)= 2.80482569; T( 4,411)= 2.81062526; T( 4,412)= 2.81642967; T( 4,413)= 2.82223898; T( 4,414)= 2.82805320; T( 4,415)= 2.83387238; T( 4,416)= 2.83969655; T( 4,417)= 2.84552573; T( 4,418)= 2.85135997; T( 4,419)= 2.85719929; T( 4,420)= 2.86304373; T( 4,421)= 2.86889333; T( 4,422)= 2.87474811; T( 4,423)= 2.88060811; T( 4,424)= 2.88647336; T( 4,425)= 2.89234391; T( 4,426)= 2.89821977; T( 4,427)= 2.90410099; T( 4,428)= 2.90998759; T( 4,429)= 2.91587962; T( 4,430)= 2.92177711; T( 4,431)= 2.92768009; T( 4,432)= 2.93358859; T( 4,433)= 2.93950266; T( 4,434)= 2.94542232; T( 4,435)= 2.95134761; T( 4,436)= 2.95727856; T( 4,437)= 2.96321521; T( 4,438)= 2.96915760; T( 4,439)= 2.97510575; T( 4,440)= 2.98105971; T( 4,441)= 2.98701950; T( 4,442)= 2.99298518; T( 4,443)= 2.99895676; T( 4,444)= 3.00493428; T( 4,445)= 3.01091779; T( 4,446)= 3.01690731; T( 4,447)= 3.02290288; T( 4,448)= 3.02890455; T( 4,449)= 3.03491233; T( 4,450)= 3.04092628; T( 4,451)= 3.04694642; T( 4,452)= 3.05297280; T( 4,453)= 3.05900545; T( 4,454)= 3.06504440; T( 4,455)= 3.07108969; T( 4,456)= 3.07714137; T( 4,457)= 3.08319946; T( 4,458)= 3.08926400; T( 4,459)= 3.09533504; T( 4,460)= 3.10141260; T( 4,461)= 3.10749673; T( 4,462)= 3.11358747; T( 4,463)= 3.11968484; T( 4,464)= 3.12578890; T( 4,465)= 3.13189967; T( 4,466)= 3.13801719; T( 4,467)= 3.14414151; T( 4,468)= 3.15027266; T( 4,469)= 3.15641069; T( 4,470)= 3.16255562; T( 4,471)= 3.16870750; T( 4,472)= 3.17486636; T( 4,473)= 3.18103226; T( 4,474)= 3.18720522; T( 4,475)= 3.19338528; T( 4,476)= 3.19957249; T( 4,477)= 3.20576688; T( 4,478)= 3.21196850; T( 4,479)= 3.21817738; T( 4,480)= 3.22439357; T( 4,481)= 3.23061710; T( 4,482)= 3.23684802; T( 4,483)= 3.24308636; T( 4,484)= 3.24933218; T( 4,485)= 3.25558550; T( 4,486)= 3.26184637; T( 4,487)= 3.26811483; T( 4,488)= 3.27439092; T( 4,489)= 3.28067469; T( 4,490)= 3.28696618; T( 4,491)= 3.29326542; T( 4,492)= 3.29957246; T( 4,493)= 3.30588735; T( 4,494)= 3.31221013; T( 4,495)= 3.31854083; T( 4,496)= 3.32487950; T( 4,497)= 3.33122619; T( 4,498)= 3.33758094; T( 4,499)= 3.34394380; T( 4,500)= 3.35031479; T( 4,501)= 3.35669398; T( 4,502)= 3.36308140; T( 4,503)= 3.36947710; T( 4,504)= 3.37588113; T( 4,505)= 3.38229352; T( 4,506)= 3.38871433; T( 4,507)= 3.39514359; T( 4,508)= 3.40158136; T( 4,509)= 3.40802768; T( 4,510)= 3.41448259; T( 4,511)= 3.42094615; T( 4,512)= 3.42741839; T( 4,513)= 3.43389937; T( 4,514)= 3.44038913; T( 4,515)= 3.44688772; T( 4,516)= 3.45339518; T( 4,517)= 3.45991157; T( 4,518)= 3.46643693; T( 4,519)= 3.47297131; T( 4,520)= 3.47951475; T( 4,521)= 3.48606731; T( 4,522)= 3.49262904; T( 4,523)= 3.49919998; T( 4,524)= 3.50578018; T( 4,525)= 3.51236969; T( 4,526)= 3.51896857; T( 4,527)= 3.52557685; T( 4,528)= 3.53219460; T( 4,529)= 3.53882186; T( 4,530)= 3.54545868; T( 4,531)= 3.55210512; T( 4,532)= 3.55876122; T( 4,533)= 3.56542704; T( 4,534)= 3.57210263; T( 4,535)= 3.57878804; T( 4,536)= 3.58548332; T( 4,537)= 3.59218853; T( 4,538)= 3.59890372; T( 4,539)= 3.60562893; T( 4,540)= 3.61236424; T( 4,541)= 3.61910968; T( 4,542)= 3.62586532; T( 4,543)= 3.63263120; T( 4,544)= 3.63940739; T( 4,545)= 3.64619393; T( 4,546)= 3.65299089; T( 4,547)= 3.65979832; T( 4,548)= 3.66661627; T( 4,549)= 3.67344480; T( 4,550)= 3.68028397; T( 4,551)= 3.68713383; T( 4,552)= 3.69399445; T( 4,553)= 3.70086587; T( 4,554)= 3.70774817; T( 4,555)= 3.71464138; T( 4,556)= 3.72154558; T( 4,557)= 3.72846083; T( 4,558)= 3.73538718; T( 4,559)= 3.74232468; T( 4,560)= 3.74927341; T( 4,561)= 3.75623343; T( 4,562)= 3.76320478; T( 4,563)= 3.77018754; T( 4,564)= 3.77718177; T( 4,565)= 3.78418752; T( 4,566)= 3.79120486; T( 4,567)= 3.79823386; T( 4,568)= 3.80527456; T( 4,569)= 3.81232705; T( 4,570)= 3.81939138; T( 4,571)= 3.82646762; T( 4,572)= 3.83355582; T( 4,573)= 3.84065607; T( 4,574)= 3.84776841; T( 4,575)= 3.85489292; T( 4,576)= 3.86202966; T( 4,577)= 3.86917871; T( 4,578)= 3.87634012; T( 4,579)= 3.88351396; T( 4,580)= 3.89070031; T( 4,581)= 3.89789922; T( 4,582)= 3.90511077; T( 4,583)= 3.91233504; T( 4,584)= 3.91957208; T( 4,585)= 3.92682197; T( 4,586)= 3.93408477; T( 4,587)= 3.94136057; T( 4,588)= 3.94864942; T( 4,589)= 3.95595141; T( 4,590)= 3.96326661; T( 4,591)= 3.97059508; T( 4,592)= 3.97793690; T( 4,593)= 3.98529215; T( 4,594)= 3.99266090; T( 4,595)= 4.00004322; T( 4,596)= 4.00743920; T( 4,597)= 4.01484890; T( 4,598)= 4.02227240; T( 4,599)= 4.02970978; T( 4,600)= 4.03716112; T( 4,601)= 4.04462649; T( 4,602)= 4.05210598; T( 4,603)= 4.05959966; T( 4,604)= 4.06710761; T( 4,605)= 4.07462991; T( 4,606)= 4.08216664; T( 4,607)= 4.08971789; T( 4,608)= 4.09728374; T( 4,609)= 4.10486427; T( 4,610)= 4.11245955; T( 4,611)= 4.12006968; T( 4,612)= 4.12769475; T( 4,613)= 4.13533482; T( 4,614)= 4.14299000; T( 4,615)= 4.15066036; T( 4,616)= 4.15834600; T( 4,617)= 4.16604699; T( 4,618)= 4.17376344; T( 4,619)= 4.18149542; T( 4,620)= 4.18924303; T( 4,621)= 4.19700635; T( 4,622)= 4.20478548; T( 4,623)= 4.21258051; T( 4,624)= 4.22039152; T( 4,625)= 4.22821862; T( 4,626)= 4.23606190; T( 4,627)= 4.24392145; T( 4,628)= 4.25179736; T( 4,629)= 4.25968973; T( 4,630)= 4.26759865; T( 4,631)= 4.27552424; T( 4,632)= 4.28346657; T( 4,633)= 4.29142575; T( 4,634)= 4.29940188; T( 4,635)= 4.30739506; T( 4,636)= 4.31540539; T( 4,637)= 4.32343296; T( 4,638)= 4.33147790; T( 4,639)= 4.33954028; T( 4,640)= 4.34762023; T( 4,641)= 4.35571785; T( 4,642)= 4.36383323; T( 4,643)= 4.37196649; T( 4,644)= 4.38011774; T( 4,645)= 4.38828707; T( 4,646)= 4.39647461; T( 4,647)= 4.40468046; T( 4,648)= 4.41290473; T( 4,649)= 4.42114754; T( 4,650)= 4.42940899; T( 4,651)= 4.43768920; T( 4,652)= 4.44598828; T( 4,653)= 4.45430636; T( 4,654)= 4.46264354; T( 4,655)= 4.47099994; T( 4,656)= 4.47937568; T( 4,657)= 4.48777089; T( 4,658)= 4.49618567; T( 4,659)= 4.50462016; T( 4,660)= 4.51307447; T( 4,661)= 4.52154873; T( 4,662)= 4.53004306; T( 4,663)= 4.53855758; T( 4,664)= 4.54709243; T( 4,665)= 4.55564773; T( 4,666)= 4.56422361; T( 4,667)= 4.57282020; T( 4,668)= 4.58143763; T( 4,669)= 4.59007603; T( 4,670)= 4.59873554; T( 4,671)= 4.60741628; T( 4,672)= 4.61611840; T( 4,673)= 4.62484204; T( 4,674)= 4.63358732; T( 4,675)= 4.64235439; T( 4,676)= 4.65114339; T( 4,677)= 4.65995446; T( 4,678)= 4.66878774; T( 4,679)= 4.67764338; T( 4,680)= 4.68652153; T( 4,681)= 4.69542232; T( 4,682)= 4.70434591; T( 4,683)= 4.71329245; T( 4,684)= 4.72226208; T( 4,685)= 4.73125497; T( 4,686)= 4.74027126; T( 4,687)= 4.74931111; T( 4,688)= 4.75837467; T( 4,689)= 4.76746211; T( 4,690)= 4.77657358; T( 4,691)= 4.78570924; T( 4,692)= 4.79486926; T( 4,693)= 4.80405379; T( 4,694)= 4.81326301; T( 4,695)= 4.82249709; T( 4,696)= 4.83175618; T( 4,697)= 4.84104046; T( 4,698)= 4.85035011; T( 4,699)= 4.85968529; T( 4,700)= 4.86904619; T( 4,701)= 4.87843297; T( 4,702)= 4.88784581; T( 4,703)= 4.89728491; T( 4,704)= 4.90675043; T( 4,705)= 4.91624257; T( 4,706)= 4.92576151; T( 4,707)= 4.93530743; T( 4,708)= 4.94488052; T( 4,709)= 4.95448099; T( 4,710)= 4.96410901; T( 4,711)= 4.97376479; T( 4,712)= 4.98344853; T( 4,713)= 4.99316041; T( 4,714)= 5.00290065; T( 4,715)= 5.01266944; T( 4,716)= 5.02246700; T( 4,717)= 5.03229352; T( 4,718)= 5.04214922; T( 4,719)= 5.05203432; T( 4,720)= 5.06194901; T( 4,721)= 5.07189353; T( 4,722)= 5.08186809; T( 4,723)= 5.09187290; T( 4,724)= 5.10190820; T( 4,725)= 5.11197421; T( 4,726)= 5.12207115; T( 4,727)= 5.13219926; T( 4,728)= 5.14235877; T( 4,729)= 5.15254991; T( 4,730)= 5.16277293; T( 4,731)= 5.17302806; T( 4,732)= 5.18331554; T( 4,733)= 5.19363562; T( 4,734)= 5.20398856; T( 4,735)= 5.21437459; T( 4,736)= 5.22479398; T( 4,737)= 5.23524698; T( 4,738)= 5.24573386; T( 4,739)= 5.25625486; T( 4,740)= 5.26681027; T( 4,741)= 5.27740034; T( 4,742)= 5.28802535; T( 4,743)= 5.29868557; T( 4,744)= 5.30938129; T( 4,745)= 5.32011278; T( 4,746)= 5.33088032; T( 4,747)= 5.34168421; T( 4,748)= 5.35252473; T( 4,749)= 5.36340218; T( 4,750)= 5.37431685; T( 4,751)= 5.38526906; T( 4,752)= 5.39625909; T( 4,753)= 5.40728727; T( 4,754)= 5.41835389; T( 4,755)= 5.42945929; T( 4,756)= 5.44060377; T( 4,757)= 5.45178766; T( 4,758)= 5.46301129; T( 4,759)= 5.47427499; T( 4,760)= 5.48557909; T( 4,761)= 5.49692394; T( 4,762)= 5.50830987; T( 4,763)= 5.51973724; T( 4,764)= 5.53120640; T( 4,765)= 5.54271769; T( 4,766)= 5.55427150; T( 4,767)= 5.56586817; T( 4,768)= 5.57750808; T( 4,769)= 5.58919161; T( 4,770)= 5.60091913; T( 4,771)= 5.61269103; T( 4,772)= 5.62450770; T( 4,773)= 5.63636954; T( 4,774)= 5.64827693; T( 4,775)= 5.66023029; T( 4,776)= 5.67223003; T( 4,777)= 5.68427657; T( 4,778)= 5.69637031; T( 4,779)= 5.70851170; T( 4,780)= 5.72070116; T( 4,781)= 5.73293913; T( 4,782)= 5.74522606; T( 4,783)= 5.75756239; T( 4,784)= 5.76994858; T( 4,785)= 5.78238510; T( 4,786)= 5.79487241; T( 4,787)= 5.80741098; T( 4,788)= 5.82000131; T( 4,789)= 5.83264387; T( 4,790)= 5.84533917; T( 4,791)= 5.85808770; T( 4,792)= 5.87088997; T( 4,793)= 5.88374651; T( 4,794)= 5.89665783; T( 4,795)= 5.90962447; T( 4,796)= 5.92264696; T( 4,797)= 5.93572586; T( 4,798)= 5.94886171; T( 4,799)= 5.96205509; T( 4,800)= 5.97530656; T( 4,801)= 5.98861669; T( 4,802)= 6.00198609; T( 4,803)= 6.01541535; T( 4,804)= 6.02890507; T( 4,805)= 6.04245586; T( 4,806)= 6.05606836; T( 4,807)= 6.06974320; T( 4,808)= 6.08348102; T( 4,809)= 6.09728247; T( 4,810)= 6.11114822; T( 4,811)= 6.12507894; T( 4,812)= 6.13907532; T( 4,813)= 6.15313805; T( 4,814)= 6.16726784; T( 4,815)= 6.18146541; T( 4,816)= 6.19573148; T( 4,817)= 6.21006680; T( 4,818)= 6.22447212; T( 4,819)= 6.23894820; T( 4,820)= 6.25349583; T( 4,821)= 6.26811579; T( 4,822)= 6.28280888; T( 4,823)= 6.29757593; T( 4,824)= 6.31241776; T( 4,825)= 6.32733521; T( 4,826)= 6.34232915; T( 4,827)= 6.35740046; T( 4,828)= 6.37255000; T( 4,829)= 6.38777870; T( 4,830)= 6.40308747; T( 4,831)= 6.41847725; T( 4,832)= 6.43394898; T( 4,833)= 6.44950363; T( 4,834)= 6.46514220; T( 4,835)= 6.48086568; T( 4,836)= 6.49667509; T( 4,837)= 6.51257148; T( 4,838)= 6.52855590; T( 4,839)= 6.54462942; T( 4,840)= 6.56079316; T( 4,841)= 6.57704821; T( 4,842)= 6.59339573; T( 4,843)= 6.60983688; T( 4,844)= 6.62637282; T( 4,845)= 6.64300478; T( 4,846)= 6.65973397; T( 4,847)= 6.67656164; T( 4,848)= 6.69348908; T( 4,849)= 6.71051758; T( 4,850)= 6.72764847; T( 4,851)= 6.74488309; T( 4,852)= 6.76222282; T( 4,853)= 6.77966908; T( 4,854)= 6.79722330; T( 4,855)= 6.81488693; T( 4,856)= 6.83266148; T( 4,857)= 6.85054846; T( 4,858)= 6.86854943; T( 4,859)= 6.88666598; T( 4,860)= 6.90489973; T( 4,861)= 6.92325233; T( 4,862)= 6.94172549; T( 4,863)= 6.96032091; T( 4,864)= 6.97904037; T( 4,865)= 6.99788567; T( 4,866)= 7.01685866; T( 4,867)= 7.03596121; T( 4,868)= 7.05519525; T( 4,869)= 7.07456274; T( 4,870)= 7.09406571; T( 4,871)= 7.11370621; T( 4,872)= 7.13348634; T( 4,873)= 7.15340826; T( 4,874)= 7.17347418; T( 4,875)= 7.19368635; T( 4,876)= 7.21404707; T( 4,877)= 7.23455872; T( 4,878)= 7.25522372; T( 4,879)= 7.27604455; T( 4,880)= 7.29702375; T( 4,881)= 7.31816392; T( 4,882)= 7.33946774; T( 4,883)= 7.36093793; T( 4,884)= 7.38257731; T( 4,885)= 7.40438875; T( 4,886)= 7.42637521; T( 4,887)= 7.44853970; T( 4,888)= 7.47088534; T( 4,889)= 7.49341532; T( 4,890)= 7.51613291; T( 4,891)= 7.53904148; T( 4,892)= 7.56214447; T( 4,893)= 7.58544544; T( 4,894)= 7.60894803; T( 4,895)= 7.63265599; T( 4,896)= 7.65657318; T( 4,897)= 7.68070356; T( 4,898)= 7.70505121; T( 4,899)= 7.72962032; T( 4,900)= 7.75441521; T( 4,901)= 7.77944034; T( 4,902)= 7.80470028; T( 4,903)= 7.83019975; T( 4,904)= 7.85594361; T( 4,905)= 7.88193688; T( 4,906)= 7.90818472; T( 4,907)= 7.93469248; T( 4,908)= 7.96146564; T( 4,909)= 7.98850988; T( 4,910)= 8.01583108; T( 4,911)= 8.04343529; T( 4,912)= 8.07132876; T( 4,913)= 8.09951796; T( 4,914)= 8.12800958; T( 4,915)= 8.15681054; T( 4,916)= 8.18592800; T( 4,917)= 8.21536937; T( 4,918)= 8.24514233; T( 4,919)= 8.27525482; T( 4,920)= 8.30571510; T( 4,921)= 8.33653170; T( 4,922)= 8.36771351; T( 4,923)= 8.39926971; T( 4,924)= 8.43120988; T( 4,925)= 8.46354394; T( 4,926)= 8.49628221; T( 4,927)= 8.52943543; T( 4,928)= 8.56301477; T( 4,929)= 8.59703186; T( 4,930)= 8.63149880; T( 4,931)= 8.66642823; T( 4,932)= 8.70183332; T( 4,933)= 8.73772779; T( 4,934)= 8.77412600; T( 4,935)= 8.81104292; T( 4,936)= 8.84849424; T( 4,937)= 8.88649634; T( 4,938)= 8.92506638; T( 4,939)= 8.96422234; T( 4,940)= 9.00398308; T( 4,941)= 9.04436837; T( 4,942)= 9.08539898; T( 4,943)= 9.12709674; T( 4,944)= 9.16948460; T( 4,945)= 9.21258674; T( 4,946)= 9.25642862; T( 4,947)= 9.30103711; T( 4,948)= 9.34644054; T( 4,949)= 9.39266890; T( 4,950)= 9.43975387; T( 4,951)= 9.48772904; T( 4,952)= 9.53662998; T( 4,953)= 9.58649448; T( 4,954)= 9.63736268; T( 4,955)= 9.68927731; T( 4,956)= 9.74228389; T( 4,957)= 9.79643098; T( 4,958)= 9.85177050; T( 4,959)= 9.90835797; T( 4,960)= 9.96625293; T( 4,961)=10.02551929; T( 4,962)=10.08622578; T( 4,963)=10.14844648; T( 4,964)=10.21226132; T( 4,965)=10.27775679; T( 4,966)=10.34502663; T( 4,967)=10.41417271; T( 4,968)=10.48530593; T( 4,969)=10.55854739; T( 4,970)=10.63402967; T( 4,971)=10.71189829; T( 4,972)=10.79231350; T( 4,973)=10.87545233; T( 4,974)=10.96151101; T( 4,975)=11.05070787; T( 4,976)=11.14328678; T( 4,977)=11.23952133; T( 4,978)=11.33971984; T( 4,979)=11.44423156; T( 4,980)=11.55345420; T( 4,981)=11.66784340; T( 4,982)=11.78792460; T( 4,983)=11.91430801; T( 4,984)=12.04770801; T( 4,985)=12.18896832; T( 4,986)=12.33909528; T( 4,987)=12.49930265; T( 4,988)=12.67107294; T( 4,989)=12.85624330; T( 4,990)=13.05712875; T( 4,991)=13.27670414; T( 4,992)=13.51888199; T( 4,993)=13.78895432; T( 4,994)=14.09432997; T( 4,995)=14.44584270; T( 4,996)=14.86025900; T( 4,997)=15.36561125; T( 4,998)=16.01432631; T( 4,999)=16.92375820; T( 4,1000)=18.46682695; T( 4,1001)=23.51274244; T( 4,1002)=28.47325542; T( 5, 1)= 0.00000000; T( 5, 2)= 0.21021260; T( 5, 3)= 0.28013998; T( 5, 4)= 0.33188723; T( 5, 5)= 0.37461651; T( 5, 6)= 0.41174190; T( 5, 7)= 0.44496986; T( 5, 8)= 0.47529445; T( 5, 9)= 0.50335314; T( 5,10)= 0.52958287; T( 5,11)= 0.55429808; T( 5,12)= 0.57773376; T( 5,13)= 0.60007082; T( 5,14)= 0.62145195; T( 5,15)= 0.64199196; T( 5,16)= 0.66178485; T( 5,17)= 0.68090864; T( 5,18)= 0.69942897; T( 5,19)= 0.71740161; T( 5,20)= 0.73487445; T( 5,21)= 0.75188893; T( 5,22)= 0.76848123; T( 5,23)= 0.78468309; T( 5,24)= 0.80052258; T( 5,25)= 0.81602466; T( 5,26)= 0.83121161; T( 5,27)= 0.84610345; T( 5,28)= 0.86071821; T( 5,29)= 0.87507221; T( 5,30)= 0.88918030; T( 5,31)= 0.90305599; T( 5,32)= 0.91671165; T( 5,33)= 0.93015862; T( 5,34)= 0.94340735; T( 5,35)= 0.95646745; T( 5,36)= 0.96934783; T( 5,37)= 0.98205672; T( 5,38)= 0.99460179; T( 5,39)= 1.00699016; T( 5,40)= 1.01922849; T( 5,41)= 1.03132297; T( 5,42)= 1.04327942; T( 5,43)= 1.05510328; T( 5,44)= 1.06679967; T( 5,45)= 1.07837340; T( 5,46)= 1.08982898; T( 5,47)= 1.10117069; T( 5,48)= 1.11240256; T( 5,49)= 1.12352840; T( 5,50)= 1.13455182; T( 5,51)= 1.14547623; T( 5,52)= 1.15630487; T( 5,53)= 1.16704082; T( 5,54)= 1.17768700; T( 5,55)= 1.18824621; T( 5,56)= 1.19872109; T( 5,57)= 1.20911418; T( 5,58)= 1.21942787; T( 5,59)= 1.22966448; T( 5,60)= 1.23982621; T( 5,61)= 1.24991516; T( 5,62)= 1.25993334; T( 5,63)= 1.26988270; T( 5,64)= 1.27976507; T( 5,65)= 1.28958223; T( 5,66)= 1.29933590; T( 5,67)= 1.30902769; T( 5,68)= 1.31865919; T( 5,69)= 1.32823191; T( 5,70)= 1.33774731; T( 5,71)= 1.34720678; T( 5,72)= 1.35661167; T( 5,73)= 1.36596330; T( 5,74)= 1.37526290; T( 5,75)= 1.38451170; T( 5,76)= 1.39371085; T( 5,77)= 1.40286150; T( 5,78)= 1.41196472; T( 5,79)= 1.42102158; T( 5,80)= 1.43003310; T( 5,81)= 1.43900026; T( 5,82)= 1.44792401; T( 5,83)= 1.45680528; T( 5,84)= 1.46564497; T( 5,85)= 1.47444395; T( 5,86)= 1.48320306; T( 5,87)= 1.49192310; T( 5,88)= 1.50060489; T( 5,89)= 1.50924918; T( 5,90)= 1.51785672; T( 5,91)= 1.52642824; T( 5,92)= 1.53496444; T( 5,93)= 1.54346601; T( 5,94)= 1.55193361; T( 5,95)= 1.56036789; T( 5,96)= 1.56876948; T( 5,97)= 1.57713900; T( 5,98)= 1.58547703; T( 5,99)= 1.59378416; T( 5,100)= 1.60206097; T( 5,101)= 1.61030799; T( 5,102)= 1.61852576; T( 5,103)= 1.62671482; T( 5,104)= 1.63487566; T( 5,105)= 1.64300880; T( 5,106)= 1.65111471; T( 5,107)= 1.65919387; T( 5,108)= 1.66724674; T( 5,109)= 1.67527377; T( 5,110)= 1.68327541; T( 5,111)= 1.69125208; T( 5,112)= 1.69920421; T( 5,113)= 1.70713221; T( 5,114)= 1.71503648; T( 5,115)= 1.72291741; T( 5,116)= 1.73077539; T( 5,117)= 1.73861080; T( 5,118)= 1.74642399; T( 5,119)= 1.75421534; T( 5,120)= 1.76198520; T( 5,121)= 1.76973390; T( 5,122)= 1.77746178; T( 5,123)= 1.78516918; T( 5,124)= 1.79285643; T( 5,125)= 1.80052383; T( 5,126)= 1.80817169; T( 5,127)= 1.81580033; T( 5,128)= 1.82341004; T( 5,129)= 1.83100111; T( 5,130)= 1.83857383; T( 5,131)= 1.84612848; T( 5,132)= 1.85366534; T( 5,133)= 1.86118467; T( 5,134)= 1.86868675; T( 5,135)= 1.87617183; T( 5,136)= 1.88364016; T( 5,137)= 1.89109200; T( 5,138)= 1.89852760; T( 5,139)= 1.90594719; T( 5,140)= 1.91335102; T( 5,141)= 1.92073931; T( 5,142)= 1.92811230; T( 5,143)= 1.93547020; T( 5,144)= 1.94281325; T( 5,145)= 1.95014166; T( 5,146)= 1.95745564; T( 5,147)= 1.96475540; T( 5,148)= 1.97204115; T( 5,149)= 1.97931310; T( 5,150)= 1.98657143; T( 5,151)= 1.99381635; T( 5,152)= 2.00104804; T( 5,153)= 2.00826671; T( 5,154)= 2.01547254; T( 5,155)= 2.02266570; T( 5,156)= 2.02984639; T( 5,157)= 2.03701477; T( 5,158)= 2.04417103; T( 5,159)= 2.05131534; T( 5,160)= 2.05844786; T( 5,161)= 2.06556876; T( 5,162)= 2.07267822; T( 5,163)= 2.07977638; T( 5,164)= 2.08686342; T( 5,165)= 2.09393949; T( 5,166)= 2.10100474; T( 5,167)= 2.10805932; T( 5,168)= 2.11510339; T( 5,169)= 2.12213710; T( 5,170)= 2.12916059; T( 5,171)= 2.13617401; T( 5,172)= 2.14317749; T( 5,173)= 2.15017118; T( 5,174)= 2.15715522; T( 5,175)= 2.16412975; T( 5,176)= 2.17109489; T( 5,177)= 2.17805079; T( 5,178)= 2.18499756; T( 5,179)= 2.19193535; T( 5,180)= 2.19886428; T( 5,181)= 2.20578447; T( 5,182)= 2.21269605; T( 5,183)= 2.21959915; T( 5,184)= 2.22649387; T( 5,185)= 2.23338035; T( 5,186)= 2.24025870; T( 5,187)= 2.24712904; T( 5,188)= 2.25399147; T( 5,189)= 2.26084613; T( 5,190)= 2.26769311; T( 5,191)= 2.27453253; T( 5,192)= 2.28136449; T( 5,193)= 2.28818912; T( 5,194)= 2.29500650; T( 5,195)= 2.30181676; T( 5,196)= 2.30861999; T( 5,197)= 2.31541630; T( 5,198)= 2.32220578; T( 5,199)= 2.32898854; T( 5,200)= 2.33576469; T( 5,201)= 2.34253431; T( 5,202)= 2.34929750; T( 5,203)= 2.35605437; T( 5,204)= 2.36280500; T( 5,205)= 2.36954949; T( 5,206)= 2.37628794; T( 5,207)= 2.38302043; T( 5,208)= 2.38974707; T( 5,209)= 2.39646792; T( 5,210)= 2.40318310; T( 5,211)= 2.40989268; T( 5,212)= 2.41659675; T( 5,213)= 2.42329541; T( 5,214)= 2.42998873; T( 5,215)= 2.43667679; T( 5,216)= 2.44335969; T( 5,217)= 2.45003751; T( 5,218)= 2.45671033; T( 5,219)= 2.46337822; T( 5,220)= 2.47004128; T( 5,221)= 2.47669958; T( 5,222)= 2.48335319; T( 5,223)= 2.49000221; T( 5,224)= 2.49664670; T( 5,225)= 2.50328674; T( 5,226)= 2.50992241; T( 5,227)= 2.51655379; T( 5,228)= 2.52318094; T( 5,229)= 2.52980395; T( 5,230)= 2.53642289; T( 5,231)= 2.54303782; T( 5,232)= 2.54964882; T( 5,233)= 2.55625597; T( 5,234)= 2.56285932; T( 5,235)= 2.56945897; T( 5,236)= 2.57605496; T( 5,237)= 2.58264738; T( 5,238)= 2.58923628; T( 5,239)= 2.59582175; T( 5,240)= 2.60240384; T( 5,241)= 2.60898262; T( 5,242)= 2.61555816; T( 5,243)= 2.62213053; T( 5,244)= 2.62869978; T( 5,245)= 2.63526599; T( 5,246)= 2.64182921; T( 5,247)= 2.64838952; T( 5,248)= 2.65494697; T( 5,249)= 2.66150163; T( 5,250)= 2.66805355; T( 5,251)= 2.67460281; T( 5,252)= 2.68114946; T( 5,253)= 2.68769356; T( 5,254)= 2.69423517; T( 5,255)= 2.70077436; T( 5,256)= 2.70731118; T( 5,257)= 2.71384569; T( 5,258)= 2.72037795; T( 5,259)= 2.72690801; T( 5,260)= 2.73343595; T( 5,261)= 2.73996180; T( 5,262)= 2.74648564; T( 5,263)= 2.75300751; T( 5,264)= 2.75952747; T( 5,265)= 2.76604558; T( 5,266)= 2.77256190; T( 5,267)= 2.77907647; T( 5,268)= 2.78558936; T( 5,269)= 2.79210062; T( 5,270)= 2.79861030; T( 5,271)= 2.80511845; T( 5,272)= 2.81162513; T( 5,273)= 2.81813040; T( 5,274)= 2.82463430; T( 5,275)= 2.83113688; T( 5,276)= 2.83763821; T( 5,277)= 2.84413832; T( 5,278)= 2.85063728; T( 5,279)= 2.85713514; T( 5,280)= 2.86363193; T( 5,281)= 2.87012773; T( 5,282)= 2.87662256; T( 5,283)= 2.88311650; T( 5,284)= 2.88960958; T( 5,285)= 2.89610185; T( 5,286)= 2.90259337; T( 5,287)= 2.90908418; T( 5,288)= 2.91557433; T( 5,289)= 2.92206387; T( 5,290)= 2.92855285; T( 5,291)= 2.93504132; T( 5,292)= 2.94152932; T( 5,293)= 2.94801690; T( 5,294)= 2.95450412; T( 5,295)= 2.96099100; T( 5,296)= 2.96747761; T( 5,297)= 2.97396399; T( 5,298)= 2.98045019; T( 5,299)= 2.98693625; T( 5,300)= 2.99342221; T( 5,301)= 2.99990813; T( 5,302)= 3.00639405; T( 5,303)= 3.01288002; T( 5,304)= 3.01936607; T( 5,305)= 3.02585226; T( 5,306)= 3.03233863; T( 5,307)= 3.03882522; T( 5,308)= 3.04531208; T( 5,309)= 3.05179925; T( 5,310)= 3.05828679; T( 5,311)= 3.06477472; T( 5,312)= 3.07126310; T( 5,313)= 3.07775196; T( 5,314)= 3.08424136; T( 5,315)= 3.09073133; T( 5,316)= 3.09722192; T( 5,317)= 3.10371318; T( 5,318)= 3.11020513; T( 5,319)= 3.11669783; T( 5,320)= 3.12319133; T( 5,321)= 3.12968565; T( 5,322)= 3.13618085; T( 5,323)= 3.14267696; T( 5,324)= 3.14917404; T( 5,325)= 3.15567211; T( 5,326)= 3.16217122; T( 5,327)= 3.16867142; T( 5,328)= 3.17517274; T( 5,329)= 3.18167523; T( 5,330)= 3.18817892; T( 5,331)= 3.19468387; T( 5,332)= 3.20119010; T( 5,333)= 3.20769767; T( 5,334)= 3.21420660; T( 5,335)= 3.22071695; T( 5,336)= 3.22722875; T( 5,337)= 3.23374204; T( 5,338)= 3.24025687; T( 5,339)= 3.24677327; T( 5,340)= 3.25329128; T( 5,341)= 3.25981095; T( 5,342)= 3.26633231; T( 5,343)= 3.27285541; T( 5,344)= 3.27938028; T( 5,345)= 3.28590697; T( 5,346)= 3.29243551; T( 5,347)= 3.29896594; T( 5,348)= 3.30549831; T( 5,349)= 3.31203265; T( 5,350)= 3.31856900; T( 5,351)= 3.32510740; T( 5,352)= 3.33164789; T( 5,353)= 3.33819051; T( 5,354)= 3.34473530; T( 5,355)= 3.35128230; T( 5,356)= 3.35783155; T( 5,357)= 3.36438308; T( 5,358)= 3.37093694; T( 5,359)= 3.37749316; T( 5,360)= 3.38405178; T( 5,361)= 3.39061285; T( 5,362)= 3.39717640; T( 5,363)= 3.40374246; T( 5,364)= 3.41031109; T( 5,365)= 3.41688231; T( 5,366)= 3.42345617; T( 5,367)= 3.43003270; T( 5,368)= 3.43661194; T( 5,369)= 3.44319393; T( 5,370)= 3.44977871; T( 5,371)= 3.45636632; T( 5,372)= 3.46295680; T( 5,373)= 3.46955018; T( 5,374)= 3.47614651; T( 5,375)= 3.48274581; T( 5,376)= 3.48934814; T( 5,377)= 3.49595352; T( 5,378)= 3.50256200; T( 5,379)= 3.50917361; T( 5,380)= 3.51578840; T( 5,381)= 3.52240640; T( 5,382)= 3.52902765; T( 5,383)= 3.53565218; T( 5,384)= 3.54228004; T( 5,385)= 3.54891127; T( 5,386)= 3.55554590; T( 5,387)= 3.56218396; T( 5,388)= 3.56882551; T( 5,389)= 3.57547058; T( 5,390)= 3.58211920; T( 5,391)= 3.58877141; T( 5,392)= 3.59542725; T( 5,393)= 3.60208677; T( 5,394)= 3.60874999; T( 5,395)= 3.61541697; T( 5,396)= 3.62208772; T( 5,397)= 3.62876230; T( 5,398)= 3.63544074; T( 5,399)= 3.64212309; T( 5,400)= 3.64880937; T( 5,401)= 3.65549962; T( 5,402)= 3.66219390; T( 5,403)= 3.66889222; T( 5,404)= 3.67559464; T( 5,405)= 3.68230119; T( 5,406)= 3.68901191; T( 5,407)= 3.69572684; T( 5,408)= 3.70244602; T( 5,409)= 3.70916948; T( 5,410)= 3.71589726; T( 5,411)= 3.72262941; T( 5,412)= 3.72936596; T( 5,413)= 3.73610695; T( 5,414)= 3.74285242; T( 5,415)= 3.74960241; T( 5,416)= 3.75635695; T( 5,417)= 3.76311610; T( 5,418)= 3.76987987; T( 5,419)= 3.77664833; T( 5,420)= 3.78342149; T( 5,421)= 3.79019941; T( 5,422)= 3.79698212; T( 5,423)= 3.80376966; T( 5,424)= 3.81056208; T( 5,425)= 3.81735940; T( 5,426)= 3.82416168; T( 5,427)= 3.83096894; T( 5,428)= 3.83778123; T( 5,429)= 3.84459860; T( 5,430)= 3.85142107; T( 5,431)= 3.85824869; T( 5,432)= 3.86508150; T( 5,433)= 3.87191953; T( 5,434)= 3.87876284; T( 5,435)= 3.88561146; T( 5,436)= 3.89246542; T( 5,437)= 3.89932478; T( 5,438)= 3.90618956; T( 5,439)= 3.91305982; T( 5,440)= 3.91993558; T( 5,441)= 3.92681690; T( 5,442)= 3.93370381; T( 5,443)= 3.94059636; T( 5,444)= 3.94749457; T( 5,445)= 3.95439851; T( 5,446)= 3.96130820; T( 5,447)= 3.96822369; T( 5,448)= 3.97514502; T( 5,449)= 3.98207223; T( 5,450)= 3.98900536; T( 5,451)= 3.99594446; T( 5,452)= 4.00288956; T( 5,453)= 4.00984071; T( 5,454)= 4.01679794; T( 5,455)= 4.02376131; T( 5,456)= 4.03073086; T( 5,457)= 4.03770662; T( 5,458)= 4.04468864; T( 5,459)= 4.05167696; T( 5,460)= 4.05867162; T( 5,461)= 4.06567267; T( 5,462)= 4.07268015; T( 5,463)= 4.07969411; T( 5,464)= 4.08671458; T( 5,465)= 4.09374161; T( 5,466)= 4.10077524; T( 5,467)= 4.10781551; T( 5,468)= 4.11486248; T( 5,469)= 4.12191618; T( 5,470)= 4.12897666; T( 5,471)= 4.13604396; T( 5,472)= 4.14311813; T( 5,473)= 4.15019920; T( 5,474)= 4.15728724; T( 5,475)= 4.16438227; T( 5,476)= 4.17148434; T( 5,477)= 4.17859351; T( 5,478)= 4.18570981; T( 5,479)= 4.19283329; T( 5,480)= 4.19996400; T( 5,481)= 4.20710197; T( 5,482)= 4.21424727; T( 5,483)= 4.22139992; T( 5,484)= 4.22855999; T( 5,485)= 4.23572751; T( 5,486)= 4.24290253; T( 5,487)= 4.25008510; T( 5,488)= 4.25727527; T( 5,489)= 4.26447308; T( 5,490)= 4.27167857; T( 5,491)= 4.27889181; T( 5,492)= 4.28611283; T( 5,493)= 4.29334167; T( 5,494)= 4.30057840; T( 5,495)= 4.30782306; T( 5,496)= 4.31507569; T( 5,497)= 4.32233635; T( 5,498)= 4.32960508; T( 5,499)= 4.33688193; T( 5,500)= 4.34416695; T( 5,501)= 4.35146019; T( 5,502)= 4.35876170; T( 5,503)= 4.36607153; T( 5,504)= 4.37338973; T( 5,505)= 4.38071635; T( 5,506)= 4.38805143; T( 5,507)= 4.39539504; T( 5,508)= 4.40274722; T( 5,509)= 4.41010801; T( 5,510)= 4.41747748; T( 5,511)= 4.42485568; T( 5,512)= 4.43224265; T( 5,513)= 4.43963844; T( 5,514)= 4.44704312; T( 5,515)= 4.45445672; T( 5,516)= 4.46187931; T( 5,517)= 4.46931094; T( 5,518)= 4.47675166; T( 5,519)= 4.48420152; T( 5,520)= 4.49166057; T( 5,521)= 4.49912888; T( 5,522)= 4.50660648; T( 5,523)= 4.51409345; T( 5,524)= 4.52158983; T( 5,525)= 4.52909568; T( 5,526)= 4.53661105; T( 5,527)= 4.54413600; T( 5,528)= 4.55167058; T( 5,529)= 4.55921484; T( 5,530)= 4.56676886; T( 5,531)= 4.57433267; T( 5,532)= 4.58190635; T( 5,533)= 4.58948993; T( 5,534)= 4.59708349; T( 5,535)= 4.60468708; T( 5,536)= 4.61230076; T( 5,537)= 4.61992458; T( 5,538)= 4.62755861; T( 5,539)= 4.63520290; T( 5,540)= 4.64285751; T( 5,541)= 4.65052250; T( 5,542)= 4.65819793; T( 5,543)= 4.66588386; T( 5,544)= 4.67358035; T( 5,545)= 4.68128746; T( 5,546)= 4.68900525; T( 5,547)= 4.69673379; T( 5,548)= 4.70447312; T( 5,549)= 4.71222333; T( 5,550)= 4.71998446; T( 5,551)= 4.72775659; T( 5,552)= 4.73553976; T( 5,553)= 4.74333406; T( 5,554)= 4.75113953; T( 5,555)= 4.75895625; T( 5,556)= 4.76678427; T( 5,557)= 4.77462367; T( 5,558)= 4.78247451; T( 5,559)= 4.79033685; T( 5,560)= 4.79821075; T( 5,561)= 4.80609630; T( 5,562)= 4.81399354; T( 5,563)= 4.82190255; T( 5,564)= 4.82982340; T( 5,565)= 4.83775614; T( 5,566)= 4.84570086; T( 5,567)= 4.85365762; T( 5,568)= 4.86162649; T( 5,569)= 4.86960753; T( 5,570)= 4.87760082; T( 5,571)= 4.88560643; T( 5,572)= 4.89362442; T( 5,573)= 4.90165487; T( 5,574)= 4.90969785; T( 5,575)= 4.91775343; T( 5,576)= 4.92582168; T( 5,577)= 4.93390268; T( 5,578)= 4.94199650; T( 5,579)= 4.95010321; T( 5,580)= 4.95822288; T( 5,581)= 4.96635559; T( 5,582)= 4.97450142; T( 5,583)= 4.98266044; T( 5,584)= 4.99083273; T( 5,585)= 4.99901836; T( 5,586)= 5.00721740; T( 5,587)= 5.01542995; T( 5,588)= 5.02365606; T( 5,589)= 5.03189583; T( 5,590)= 5.04014933; T( 5,591)= 5.04841664; T( 5,592)= 5.05669784; T( 5,593)= 5.06499301; T( 5,594)= 5.07330223; T( 5,595)= 5.08162558; T( 5,596)= 5.08996314; T( 5,597)= 5.09831500; T( 5,598)= 5.10668124; T( 5,599)= 5.11506195; T( 5,600)= 5.12345719; T( 5,601)= 5.13186707; T( 5,602)= 5.14029167; T( 5,603)= 5.14873107; T( 5,604)= 5.15718535; T( 5,605)= 5.16565462; T( 5,606)= 5.17413894; T( 5,607)= 5.18263841; T( 5,608)= 5.19115313; T( 5,609)= 5.19968317; T( 5,610)= 5.20822863; T( 5,611)= 5.21678960; T( 5,612)= 5.22536617; T( 5,613)= 5.23395843; T( 5,614)= 5.24256647; T( 5,615)= 5.25119040; T( 5,616)= 5.25983029; T( 5,617)= 5.26848625; T( 5,618)= 5.27715837; T( 5,619)= 5.28584675; T( 5,620)= 5.29455148; T( 5,621)= 5.30327266; T( 5,622)= 5.31201039; T( 5,623)= 5.32076476; T( 5,624)= 5.32953588; T( 5,625)= 5.33832385; T( 5,626)= 5.34712876; T( 5,627)= 5.35595072; T( 5,628)= 5.36478984; T( 5,629)= 5.37364620; T( 5,630)= 5.38251992; T( 5,631)= 5.39141111; T( 5,632)= 5.40031986; T( 5,633)= 5.40924628; T( 5,634)= 5.41819049; T( 5,635)= 5.42715258; T( 5,636)= 5.43613267; T( 5,637)= 5.44513086; T( 5,638)= 5.45414727; T( 5,639)= 5.46318201; T( 5,640)= 5.47223519; T( 5,641)= 5.48130691; T( 5,642)= 5.49039731; T( 5,643)= 5.49950648; T( 5,644)= 5.50863455; T( 5,645)= 5.51778163; T( 5,646)= 5.52694784; T( 5,647)= 5.53613330; T( 5,648)= 5.54533812; T( 5,649)= 5.55456244; T( 5,650)= 5.56380635; T( 5,651)= 5.57307000; T( 5,652)= 5.58235350; T( 5,653)= 5.59165698; T( 5,654)= 5.60098056; T( 5,655)= 5.61032437; T( 5,656)= 5.61968853; T( 5,657)= 5.62907318; T( 5,658)= 5.63847844; T( 5,659)= 5.64790444; T( 5,660)= 5.65735131; T( 5,661)= 5.66681919; T( 5,662)= 5.67630821; T( 5,663)= 5.68581850; T( 5,664)= 5.69535021; T( 5,665)= 5.70490346; T( 5,666)= 5.71447840; T( 5,667)= 5.72407516; T( 5,668)= 5.73369388; T( 5,669)= 5.74333472; T( 5,670)= 5.75299780; T( 5,671)= 5.76268327; T( 5,672)= 5.77239128; T( 5,673)= 5.78212198; T( 5,674)= 5.79187551; T( 5,675)= 5.80165203; T( 5,676)= 5.81145167; T( 5,677)= 5.82127461; T( 5,678)= 5.83112097; T( 5,679)= 5.84099094; T( 5,680)= 5.85088465; T( 5,681)= 5.86080226; T( 5,682)= 5.87074394; T( 5,683)= 5.88070984; T( 5,684)= 5.89070013; T( 5,685)= 5.90071497; T( 5,686)= 5.91075452; T( 5,687)= 5.92081895; T( 5,688)= 5.93090842; T( 5,689)= 5.94102311; T( 5,690)= 5.95116319; T( 5,691)= 5.96132883; T( 5,692)= 5.97152020; T( 5,693)= 5.98173748; T( 5,694)= 5.99198084; T( 5,695)= 6.00225046; T( 5,696)= 6.01254654; T( 5,697)= 6.02286923; T( 5,698)= 6.03321874; T( 5,699)= 6.04359524; T( 5,700)= 6.05399893; T( 5,701)= 6.06442998; T( 5,702)= 6.07488861; T( 5,703)= 6.08537498; T( 5,704)= 6.09588931; T( 5,705)= 6.10643179; T( 5,706)= 6.11700261; T( 5,707)= 6.12760198; T( 5,708)= 6.13823010; T( 5,709)= 6.14888717; T( 5,710)= 6.15957341; T( 5,711)= 6.17028901; T( 5,712)= 6.18103419; T( 5,713)= 6.19180916; T( 5,714)= 6.20261415; T( 5,715)= 6.21344935; T( 5,716)= 6.22431500; T( 5,717)= 6.23521132; T( 5,718)= 6.24613853; T( 5,719)= 6.25709685; T( 5,720)= 6.26808651; T( 5,721)= 6.27910775; T( 5,722)= 6.29016080; T( 5,723)= 6.30124590; T( 5,724)= 6.31236327; T( 5,725)= 6.32351317; T( 5,726)= 6.33469584; T( 5,727)= 6.34591151; T( 5,728)= 6.35716045; T( 5,729)= 6.36844290; T( 5,730)= 6.37975911; T( 5,731)= 6.39110935; T( 5,732)= 6.40249386; T( 5,733)= 6.41391292; T( 5,734)= 6.42536679; T( 5,735)= 6.43685574; T( 5,736)= 6.44838003; T( 5,737)= 6.45993994; T( 5,738)= 6.47153575; T( 5,739)= 6.48316774; T( 5,740)= 6.49483619; T( 5,741)= 6.50654138; T( 5,742)= 6.51828362; T( 5,743)= 6.53006318; T( 5,744)= 6.54188036; T( 5,745)= 6.55373547; T( 5,746)= 6.56562881; T( 5,747)= 6.57756068; T( 5,748)= 6.58953140; T( 5,749)= 6.60154127; T( 5,750)= 6.61359062; T( 5,751)= 6.62567976; T( 5,752)= 6.63780903; T( 5,753)= 6.64997874; T( 5,754)= 6.66218923; T( 5,755)= 6.67444084; T( 5,756)= 6.68673390; T( 5,757)= 6.69906877; T( 5,758)= 6.71144579; T( 5,759)= 6.72386531; T( 5,760)= 6.73632769; T( 5,761)= 6.74883329; T( 5,762)= 6.76138248; T( 5,763)= 6.77397563; T( 5,764)= 6.78661311; T( 5,765)= 6.79929530; T( 5,766)= 6.81202259; T( 5,767)= 6.82479536; T( 5,768)= 6.83761401; T( 5,769)= 6.85047894; T( 5,770)= 6.86339055; T( 5,771)= 6.87634926; T( 5,772)= 6.88935547; T( 5,773)= 6.90240960; T( 5,774)= 6.91551209; T( 5,775)= 6.92866336; T( 5,776)= 6.94186385; T( 5,777)= 6.95511399; T( 5,778)= 6.96841425; T( 5,779)= 6.98176506; T( 5,780)= 6.99516690; T( 5,781)= 7.00862022; T( 5,782)= 7.02212551; T( 5,783)= 7.03568323; T( 5,784)= 7.04929388; T( 5,785)= 7.06295794; T( 5,786)= 7.07667591; T( 5,787)= 7.09044831; T( 5,788)= 7.10427563; T( 5,789)= 7.11815841; T( 5,790)= 7.13209716; T( 5,791)= 7.14609242; T( 5,792)= 7.16014473; T( 5,793)= 7.17425464; T( 5,794)= 7.18842272; T( 5,795)= 7.20264951; T( 5,796)= 7.21693560; T( 5,797)= 7.23128157; T( 5,798)= 7.24568800; T( 5,799)= 7.26015550; T( 5,800)= 7.27468467; T( 5,801)= 7.28927613; T( 5,802)= 7.30393050; T( 5,803)= 7.31864841; T( 5,804)= 7.33343052; T( 5,805)= 7.34827747; T( 5,806)= 7.36318993; T( 5,807)= 7.37816857; T( 5,808)= 7.39321407; T( 5,809)= 7.40832713; T( 5,810)= 7.42350845; T( 5,811)= 7.43875876; T( 5,812)= 7.45407877; T( 5,813)= 7.46946922; T( 5,814)= 7.48493087; T( 5,815)= 7.50046447; T( 5,816)= 7.51607081; T( 5,817)= 7.53175066; T( 5,818)= 7.54750482; T( 5,819)= 7.56333411; T( 5,820)= 7.57923936; T( 5,821)= 7.59522140; T( 5,822)= 7.61128108; T( 5,823)= 7.62741927; T( 5,824)= 7.64363685; T( 5,825)= 7.65993472; T( 5,826)= 7.67631379; T( 5,827)= 7.69277498; T( 5,828)= 7.70931924; T( 5,829)= 7.72594752; T( 5,830)= 7.74266081; T( 5,831)= 7.75946008; T( 5,832)= 7.77634636; T( 5,833)= 7.79332066; T( 5,834)= 7.81038403; T( 5,835)= 7.82753755; T( 5,836)= 7.84478227; T( 5,837)= 7.86211932; T( 5,838)= 7.87954982; T( 5,839)= 7.89707489; T( 5,840)= 7.91469571; T( 5,841)= 7.93241347; T( 5,842)= 7.95022937; T( 5,843)= 7.96814463; T( 5,844)= 7.98616051; T( 5,845)= 8.00427829; T( 5,846)= 8.02249927; T( 5,847)= 8.04082477; T( 5,848)= 8.05925615; T( 5,849)= 8.07779477; T( 5,850)= 8.09644205; T( 5,851)= 8.11519941; T( 5,852)= 8.13406832; T( 5,853)= 8.15305027; T( 5,854)= 8.17214677; T( 5,855)= 8.19135937; T( 5,856)= 8.21068966; T( 5,857)= 8.23013925; T( 5,858)= 8.24970978; T( 5,859)= 8.26940294; T( 5,860)= 8.28922045; T( 5,861)= 8.30916405; T( 5,862)= 8.32923554; T( 5,863)= 8.34943674; T( 5,864)= 8.36976952; T( 5,865)= 8.39023580; T( 5,866)= 8.41083751; T( 5,867)= 8.43157666; T( 5,868)= 8.45245528; T( 5,869)= 8.47347545; T( 5,870)= 8.49463930; T( 5,871)= 8.51594902; T( 5,872)= 8.53740682; T( 5,873)= 8.55901500; T( 5,874)= 8.58077587; T( 5,875)= 8.60269183; T( 5,876)= 8.62476532; T( 5,877)= 8.64699885; T( 5,878)= 8.66939497; T( 5,879)= 8.69195631; T( 5,880)= 8.71468555; T( 5,881)= 8.73758546; T( 5,882)= 8.76065884; T( 5,883)= 8.78390860; T( 5,884)= 8.80733771; T( 5,885)= 8.83094920; T( 5,886)= 8.85474619; T( 5,887)= 8.87873188; T( 5,888)= 8.90290956; T( 5,889)= 8.92728260; T( 5,890)= 8.95185446; T( 5,891)= 8.97662869; T( 5,892)= 9.00160894; T( 5,893)= 9.02679896; T( 5,894)= 9.05220261; T( 5,895)= 9.07782384; T( 5,896)= 9.10366673; T( 5,897)= 9.12973547; T( 5,898)= 9.15603435; T( 5,899)= 9.18256782; T( 5,900)= 9.20934044; T( 5,901)= 9.23635690; T( 5,902)= 9.26362204; T( 5,903)= 9.29114084; T( 5,904)= 9.31891844; T( 5,905)= 9.34696013; T( 5,906)= 9.37527136; T( 5,907)= 9.40385777; T( 5,908)= 9.43272516; T( 5,909)= 9.46187952; T( 5,910)= 9.49132705; T( 5,911)= 9.52107413; T( 5,912)= 9.55112737; T( 5,913)= 9.58149359; T( 5,914)= 9.61217984; T( 5,915)= 9.64319344; T( 5,916)= 9.67454192; T( 5,917)= 9.70623310; T( 5,918)= 9.73827509; T( 5,919)= 9.77067627; T( 5,920)= 9.80344533; T( 5,921)= 9.83659128; T( 5,922)= 9.87012349; T( 5,923)= 9.90405164; T( 5,924)= 9.93838582; T( 5,925)= 9.97313649; T( 5,926)=10.00831453; T( 5,927)=10.04393127; T( 5,928)=10.07999846; T( 5,929)=10.11652837; T( 5,930)=10.15353375; T( 5,931)=10.19102791; T( 5,932)=10.22902471; T( 5,933)=10.26753863; T( 5,934)=10.30658478; T( 5,935)=10.34617893; T( 5,936)=10.38633760; T( 5,937)=10.42707803; T( 5,938)=10.46841830; T( 5,939)=10.51037734; T( 5,940)=10.55297499; T( 5,941)=10.59623206; T( 5,942)=10.64017042; T( 5,943)=10.68481303; T( 5,944)=10.73018406; T( 5,945)=10.77630892; T( 5,946)=10.82321441; T( 5,947)=10.87092879; T( 5,948)=10.91948187; T( 5,949)=10.96890516; T( 5,950)=11.01923201; T( 5,951)=11.07049769; T( 5,952)=11.12273964; T( 5,953)=11.17599756; T( 5,954)=11.23031364; T( 5,955)=11.28573279; T( 5,956)=11.34230283; T( 5,957)=11.40007480; T( 5,958)=11.45910322; T( 5,959)=11.51944642; T( 5,960)=11.58116693; T( 5,961)=11.64433185; T( 5,962)=11.70901336; T( 5,963)=11.77528921; T( 5,964)=11.84324331; T( 5,965)=11.91296643; T( 5,966)=11.98455693; T( 5,967)=12.05812169; T( 5,968)=12.13377705; T( 5,969)=12.21165003; T( 5,970)=12.29187964; T( 5,971)=12.37461848; T( 5,972)=12.46003454; T( 5,973)=12.54831336; T( 5,974)=12.63966059; T( 5,975)=12.73430498; T( 5,976)=12.83250199; T( 5,977)=12.93453818; T( 5,978)=13.04073639; T( 5,979)=13.15146225; T( 5,980)=13.26713205; T( 5,981)=13.38822260; T( 5,982)=13.51528360; T( 5,983)=13.64895331; T( 5,984)=13.78997877; T( 5,985)=13.93924200; T( 5,986)=14.09779477; T( 5,987)=14.26690524; T( 5,988)=14.44812191; T( 5,989)=14.64336310; T( 5,990)=14.85504527; T( 5,991)=15.08627247; T( 5,992)=15.34112561; T( 5,993)=15.62512207; T( 5,994)=15.94598266; T( 5,995)=16.31499158; T( 5,996)=16.74960234; T( 5,997)=17.27897691; T( 5,998)=17.95761227; T( 5,999)=18.90737738; T( 5,1000)=20.51500565; T( 5,1001)=25.74483196; T( 5,1002)=30.85618994; T( 6, 1)= 0.00000000; T( 6, 2)= 0.38106676; T( 6, 3)= 0.48640703; T( 6, 4)= 0.56201301; T( 6, 5)= 0.62325656; T( 6, 6)= 0.67572678; T( 6, 7)= 0.72217246; T( 6, 8)= 0.76417539; T( 6, 9)= 0.80273999; T( 6,10)= 0.83854900; T( 6,11)= 0.87209033; T( 6,12)= 0.90372628; T( 6,13)= 0.93373424; T( 6,14)= 0.96233189; T( 6,15)= 0.98969361; T( 6,16)= 1.01596153; T( 6,17)= 1.04125321; T( 6,18)= 1.06566716; T( 6,19)= 1.08928684; T( 6,20)= 1.11218365; T( 6,21)= 1.13441924; T( 6,22)= 1.15604723; T( 6,23)= 1.17711459; T( 6,24)= 1.19766272; T( 6,25)= 1.21772837; T( 6,26)= 1.23734425; T( 6,27)= 1.25653968; T( 6,28)= 1.27534105; T( 6,29)= 1.29377218; T( 6,30)= 1.31185468; T( 6,31)= 1.32960822; T( 6,32)= 1.34705073; T( 6,33)= 1.36419867; T( 6,34)= 1.38106713; T( 6,35)= 1.39767001; T( 6,36)= 1.41402014; T( 6,37)= 1.43012939; T( 6,38)= 1.44600879; T( 6,39)= 1.46166856; T( 6,40)= 1.47711824; T( 6,41)= 1.49236671; T( 6,42)= 1.50742228; T( 6,43)= 1.52229274; T( 6,44)= 1.53698537; T( 6,45)= 1.55150704; T( 6,46)= 1.56586418; T( 6,47)= 1.58006287; T( 6,48)= 1.59410882; T( 6,49)= 1.60800745; T( 6,50)= 1.62176386; T( 6,51)= 1.63538289; T( 6,52)= 1.64886913; T( 6,53)= 1.66222693; T( 6,54)= 1.67546042; T( 6,55)= 1.68857351; T( 6,56)= 1.70156996; T( 6,57)= 1.71445332; T( 6,58)= 1.72722698; T( 6,59)= 1.73989418; T( 6,60)= 1.75245800; T( 6,61)= 1.76492141; T( 6,62)= 1.77728723; T( 6,63)= 1.78955815; T( 6,64)= 1.80173678; T( 6,65)= 1.81382559; T( 6,66)= 1.82582697; T( 6,67)= 1.83774319; T( 6,68)= 1.84957646; T( 6,69)= 1.86132888; T( 6,70)= 1.87300248; T( 6,71)= 1.88459921; T( 6,72)= 1.89612094; T( 6,73)= 1.90756950; T( 6,74)= 1.91894661; T( 6,75)= 1.93025397; T( 6,76)= 1.94149319; T( 6,77)= 1.95266584; T( 6,78)= 1.96377343; T( 6,79)= 1.97481741; T( 6,80)= 1.98579921; T( 6,81)= 1.99672018; T( 6,82)= 2.00758165; T( 6,83)= 2.01838488; T( 6,84)= 2.02913113; T( 6,85)= 2.03982158; T( 6,86)= 2.05045741; T( 6,87)= 2.06103972; T( 6,88)= 2.07156962; T( 6,89)= 2.08204816; T( 6,90)= 2.09247636; T( 6,91)= 2.10285524; T( 6,92)= 2.11318574; T( 6,93)= 2.12346882; T( 6,94)= 2.13370539; T( 6,95)= 2.14389634; T( 6,96)= 2.15404252; T( 6,97)= 2.16414479; T( 6,98)= 2.17420395; T( 6,99)= 2.18422080; T( 6,100)= 2.19419612; T( 6,101)= 2.20413066; T( 6,102)= 2.21402515; T( 6,103)= 2.22388031; T( 6,104)= 2.23369684; T( 6,105)= 2.24347542; T( 6,106)= 2.25321670; T( 6,107)= 2.26292134; T( 6,108)= 2.27258997; T( 6,109)= 2.28222319; T( 6,110)= 2.29182162; T( 6,111)= 2.30138584; T( 6,112)= 2.31091642; T( 6,113)= 2.32041391; T( 6,114)= 2.32987888; T( 6,115)= 2.33931184; T( 6,116)= 2.34871332; T( 6,117)= 2.35808383; T( 6,118)= 2.36742388; T( 6,119)= 2.37673394; T( 6,120)= 2.38601449; T( 6,121)= 2.39526601; T( 6,122)= 2.40448894; T( 6,123)= 2.41368373; T( 6,124)= 2.42285083; T( 6,125)= 2.43199065; T( 6,126)= 2.44110363; T( 6,127)= 2.45019016; T( 6,128)= 2.45925066; T( 6,129)= 2.46828552; T( 6,130)= 2.47729511; T( 6,131)= 2.48627983; T( 6,132)= 2.49524004; T( 6,133)= 2.50417611; T( 6,134)= 2.51308839; T( 6,135)= 2.52197723; T( 6,136)= 2.53084299; T( 6,137)= 2.53968598; T( 6,138)= 2.54850655; T( 6,139)= 2.55730502; T( 6,140)= 2.56608171; T( 6,141)= 2.57483693; T( 6,142)= 2.58357099; T( 6,143)= 2.59228418; T( 6,144)= 2.60097681; T( 6,145)= 2.60964916; T( 6,146)= 2.61830153; T( 6,147)= 2.62693418; T( 6,148)= 2.63554741; T( 6,149)= 2.64414147; T( 6,150)= 2.65271664; T( 6,151)= 2.66127318; T( 6,152)= 2.66981134; T( 6,153)= 2.67833137; T( 6,154)= 2.68683354; T( 6,155)= 2.69531807; T( 6,156)= 2.70378522; T( 6,157)= 2.71223522; T( 6,158)= 2.72066830; T( 6,159)= 2.72908469; T( 6,160)= 2.73748463; T( 6,161)= 2.74586832; T( 6,162)= 2.75423599; T( 6,163)= 2.76258786; T( 6,164)= 2.77092413; T( 6,165)= 2.77924502; T( 6,166)= 2.78755073; T( 6,167)= 2.79584147; T( 6,168)= 2.80411743; T( 6,169)= 2.81237881; T( 6,170)= 2.82062580; T( 6,171)= 2.82885860; T( 6,172)= 2.83707740; T( 6,173)= 2.84528237; T( 6,174)= 2.85347370; T( 6,175)= 2.86165158; T( 6,176)= 2.86981618; T( 6,177)= 2.87796767; T( 6,178)= 2.88610623; T( 6,179)= 2.89423202; T( 6,180)= 2.90234523; T( 6,181)= 2.91044600; T( 6,182)= 2.91853451; T( 6,183)= 2.92661092; T( 6,184)= 2.93467538; T( 6,185)= 2.94272805; T( 6,186)= 2.95076910; T( 6,187)= 2.95879866; T( 6,188)= 2.96681690; T( 6,189)= 2.97482395; T( 6,190)= 2.98281998; T( 6,191)= 2.99080511; T( 6,192)= 2.99877951; T( 6,193)= 3.00674330; T( 6,194)= 3.01469663; T( 6,195)= 3.02263963; T( 6,196)= 3.03057245; T( 6,197)= 3.03849522; T( 6,198)= 3.04640807; T( 6,199)= 3.05431113; T( 6,200)= 3.06220453; T( 6,201)= 3.07008841; T( 6,202)= 3.07796288; T( 6,203)= 3.08582807; T( 6,204)= 3.09368411; T( 6,205)= 3.10153113; T( 6,206)= 3.10936923; T( 6,207)= 3.11719854; T( 6,208)= 3.12501919; T( 6,209)= 3.13283128; T( 6,210)= 3.14063493; T( 6,211)= 3.14843026; T( 6,212)= 3.15621739; T( 6,213)= 3.16399641; T( 6,214)= 3.17176745; T( 6,215)= 3.17953061; T( 6,216)= 3.18728600; T( 6,217)= 3.19503373; T( 6,218)= 3.20277391; T( 6,219)= 3.21050664; T( 6,220)= 3.21823203; T( 6,221)= 3.22595017; T( 6,222)= 3.23366117; T( 6,223)= 3.24136513; T( 6,224)= 3.24906215; T( 6,225)= 3.25675234; T( 6,226)= 3.26443578; T( 6,227)= 3.27211257; T( 6,228)= 3.27978282; T( 6,229)= 3.28744661; T( 6,230)= 3.29510404; T( 6,231)= 3.30275520; T( 6,232)= 3.31040019; T( 6,233)= 3.31803910; T( 6,234)= 3.32567201; T( 6,235)= 3.33329903; T( 6,236)= 3.34092023; T( 6,237)= 3.34853570; T( 6,238)= 3.35614554; T( 6,239)= 3.36374983; T( 6,240)= 3.37134865; T( 6,241)= 3.37894209; T( 6,242)= 3.38653024; T( 6,243)= 3.39411317; T( 6,244)= 3.40169098; T( 6,245)= 3.40926374; T( 6,246)= 3.41683153; T( 6,247)= 3.42439444; T( 6,248)= 3.43195255; T( 6,249)= 3.43950593; T( 6,250)= 3.44705467; T( 6,251)= 3.45459884; T( 6,252)= 3.46213851; T( 6,253)= 3.46967378; T( 6,254)= 3.47720471; T( 6,255)= 3.48473137; T( 6,256)= 3.49225385; T( 6,257)= 3.49977222; T( 6,258)= 3.50728655; T( 6,259)= 3.51479692; T( 6,260)= 3.52230340; T( 6,261)= 3.52980605; T( 6,262)= 3.53730496; T( 6,263)= 3.54480020; T( 6,264)= 3.55229183; T( 6,265)= 3.55977992; T( 6,266)= 3.56726455; T( 6,267)= 3.57474578; T( 6,268)= 3.58222368; T( 6,269)= 3.58969833; T( 6,270)= 3.59716978; T( 6,271)= 3.60463811; T( 6,272)= 3.61210338; T( 6,273)= 3.61956566; T( 6,274)= 3.62702502; T( 6,275)= 3.63448151; T( 6,276)= 3.64193521; T( 6,277)= 3.64938618; T( 6,278)= 3.65683448; T( 6,279)= 3.66428019; T( 6,280)= 3.67172335; T( 6,281)= 3.67916403; T( 6,282)= 3.68660231; T( 6,283)= 3.69403823; T( 6,284)= 3.70147187; T( 6,285)= 3.70890327; T( 6,286)= 3.71633251; T( 6,287)= 3.72375964; T( 6,288)= 3.73118473; T( 6,289)= 3.73860783; T( 6,290)= 3.74602901; T( 6,291)= 3.75344832; T( 6,292)= 3.76086582; T( 6,293)= 3.76828158; T( 6,294)= 3.77569564; T( 6,295)= 3.78310807; T( 6,296)= 3.79051893; T( 6,297)= 3.79792827; T( 6,298)= 3.80533615; T( 6,299)= 3.81274262; T( 6,300)= 3.82014775; T( 6,301)= 3.82755159; T( 6,302)= 3.83495419; T( 6,303)= 3.84235562; T( 6,304)= 3.84975592; T( 6,305)= 3.85715515; T( 6,306)= 3.86455337; T( 6,307)= 3.87195063; T( 6,308)= 3.87934698; T( 6,309)= 3.88674248; T( 6,310)= 3.89413719; T( 6,311)= 3.90153116; T( 6,312)= 3.90892443; T( 6,313)= 3.91631707; T( 6,314)= 3.92370912; T( 6,315)= 3.93110064; T( 6,316)= 3.93849169; T( 6,317)= 3.94588230; T( 6,318)= 3.95327255; T( 6,319)= 3.96066247; T( 6,320)= 3.96805211; T( 6,321)= 3.97544154; T( 6,322)= 3.98283080; T( 6,323)= 3.99021995; T( 6,324)= 3.99760902; T( 6,325)= 4.00499808; T( 6,326)= 4.01238717; T( 6,327)= 4.01977635; T( 6,328)= 4.02716566; T( 6,329)= 4.03455516; T( 6,330)= 4.04194489; T( 6,331)= 4.04933490; T( 6,332)= 4.05672525; T( 6,333)= 4.06411597; T( 6,334)= 4.07150713; T( 6,335)= 4.07889877; T( 6,336)= 4.08629094; T( 6,337)= 4.09368368; T( 6,338)= 4.10107705; T( 6,339)= 4.10847109; T( 6,340)= 4.11586586; T( 6,341)= 4.12326139; T( 6,342)= 4.13065774; T( 6,343)= 4.13805496; T( 6,344)= 4.14545309; T( 6,345)= 4.15285218; T( 6,346)= 4.16025228; T( 6,347)= 4.16765343; T( 6,348)= 4.17505568; T( 6,349)= 4.18245909; T( 6,350)= 4.18986369; T( 6,351)= 4.19726953; T( 6,352)= 4.20467666; T( 6,353)= 4.21208512; T( 6,354)= 4.21949497; T( 6,355)= 4.22690625; T( 6,356)= 4.23431900; T( 6,357)= 4.24173327; T( 6,358)= 4.24914911; T( 6,359)= 4.25656656; T( 6,360)= 4.26398567; T( 6,361)= 4.27140649; T( 6,362)= 4.27882905; T( 6,363)= 4.28625341; T( 6,364)= 4.29367961; T( 6,365)= 4.30110770; T( 6,366)= 4.30853772; T( 6,367)= 4.31596971; T( 6,368)= 4.32340373; T( 6,369)= 4.33083982; T( 6,370)= 4.33827802; T( 6,371)= 4.34571837; T( 6,372)= 4.35316093; T( 6,373)= 4.36060574; T( 6,374)= 4.36805284; T( 6,375)= 4.37550227; T( 6,376)= 4.38295409; T( 6,377)= 4.39040834; T( 6,378)= 4.39786505; T( 6,379)= 4.40532429; T( 6,380)= 4.41278608; T( 6,381)= 4.42025048; T( 6,382)= 4.42771752; T( 6,383)= 4.43518727; T( 6,384)= 4.44265975; T( 6,385)= 4.45013501; T( 6,386)= 4.45761310; T( 6,387)= 4.46509406; T( 6,388)= 4.47257794; T( 6,389)= 4.48006477; T( 6,390)= 4.48755462; T( 6,391)= 4.49504751; T( 6,392)= 4.50254349; T( 6,393)= 4.51004261; T( 6,394)= 4.51754491; T( 6,395)= 4.52505044; T( 6,396)= 4.53255923; T( 6,397)= 4.54007135; T( 6,398)= 4.54758681; T( 6,399)= 4.55510568; T( 6,400)= 4.56262800; T( 6,401)= 4.57015381; T( 6,402)= 4.57768315; T( 6,403)= 4.58521607; T( 6,404)= 4.59275261; T( 6,405)= 4.60029282; T( 6,406)= 4.60783675; T( 6,407)= 4.61538442; T( 6,408)= 4.62293590; T( 6,409)= 4.63049122; T( 6,410)= 4.63805043; T( 6,411)= 4.64561357; T( 6,412)= 4.65318069; T( 6,413)= 4.66075183; T( 6,414)= 4.66832704; T( 6,415)= 4.67590635; T( 6,416)= 4.68348982; T( 6,417)= 4.69107749; T( 6,418)= 4.69866940; T( 6,419)= 4.70626560; T( 6,420)= 4.71386613; T( 6,421)= 4.72147104; T( 6,422)= 4.72908037; T( 6,423)= 4.73669416; T( 6,424)= 4.74431247; T( 6,425)= 4.75193533; T( 6,426)= 4.75956279; T( 6,427)= 4.76719489; T( 6,428)= 4.77483169; T( 6,429)= 4.78247322; T( 6,430)= 4.79011953; T( 6,431)= 4.79777067; T( 6,432)= 4.80542667; T( 6,433)= 4.81308759; T( 6,434)= 4.82075348; T( 6,435)= 4.82842436; T( 6,436)= 4.83610030; T( 6,437)= 4.84378134; T( 6,438)= 4.85146751; T( 6,439)= 4.85915888; T( 6,440)= 4.86685548; T( 6,441)= 4.87455736; T( 6,442)= 4.88226456; T( 6,443)= 4.88997713; T( 6,444)= 4.89769512; T( 6,445)= 4.90541858; T( 6,446)= 4.91314754; T( 6,447)= 4.92088206; T( 6,448)= 4.92862217; T( 6,449)= 4.93636794; T( 6,450)= 4.94411940; T( 6,451)= 4.95187661; T( 6,452)= 4.95963960; T( 6,453)= 4.96740842; T( 6,454)= 4.97518313; T( 6,455)= 4.98296376; T( 6,456)= 4.99075038; T( 6,457)= 4.99854301; T( 6,458)= 5.00634171; T( 6,459)= 5.01414653; T( 6,460)= 5.02195752; T( 6,461)= 5.02977472; T( 6,462)= 5.03759818; T( 6,463)= 5.04542795; T( 6,464)= 5.05326407; T( 6,465)= 5.06110660; T( 6,466)= 5.06895559; T( 6,467)= 5.07681107; T( 6,468)= 5.08467310; T( 6,469)= 5.09254173; T( 6,470)= 5.10041701; T( 6,471)= 5.10829899; T( 6,472)= 5.11618771; T( 6,473)= 5.12408322; T( 6,474)= 5.13198558; T( 6,475)= 5.13989483; T( 6,476)= 5.14781103; T( 6,477)= 5.15573421; T( 6,478)= 5.16366444; T( 6,479)= 5.17160176; T( 6,480)= 5.17954623; T( 6,481)= 5.18749789; T( 6,482)= 5.19545679; T( 6,483)= 5.20342298; T( 6,484)= 5.21139652; T( 6,485)= 5.21937746; T( 6,486)= 5.22736584; T( 6,487)= 5.23536173; T( 6,488)= 5.24336516; T( 6,489)= 5.25137620; T( 6,490)= 5.25939488; T( 6,491)= 5.26742128; T( 6,492)= 5.27545543; T( 6,493)= 5.28349739; T( 6,494)= 5.29154722; T( 6,495)= 5.29960496; T( 6,496)= 5.30767067; T( 6,497)= 5.31574441; T( 6,498)= 5.32382621; T( 6,499)= 5.33191615; T( 6,500)= 5.34001427; T( 6,501)= 5.34812063; T( 6,502)= 5.35623527; T( 6,503)= 5.36435827; T( 6,504)= 5.37248966; T( 6,505)= 5.38062950; T( 6,506)= 5.38877786; T( 6,507)= 5.39693478; T( 6,508)= 5.40510032; T( 6,509)= 5.41327454; T( 6,510)= 5.42145748; T( 6,511)= 5.42964922; T( 6,512)= 5.43784980; T( 6,513)= 5.44605928; T( 6,514)= 5.45427772; T( 6,515)= 5.46250517; T( 6,516)= 5.47074169; T( 6,517)= 5.47898734; T( 6,518)= 5.48724218; T( 6,519)= 5.49550627; T( 6,520)= 5.50377965; T( 6,521)= 5.51206240; T( 6,522)= 5.52035457; T( 6,523)= 5.52865622; T( 6,524)= 5.53696741; T( 6,525)= 5.54528819; T( 6,526)= 5.55361864; T( 6,527)= 5.56195880; T( 6,528)= 5.57030874; T( 6,529)= 5.57866852; T( 6,530)= 5.58703819; T( 6,531)= 5.59541783; T( 6,532)= 5.60380750; T( 6,533)= 5.61220724; T( 6,534)= 5.62061714; T( 6,535)= 5.62903724; T( 6,536)= 5.63746761; T( 6,537)= 5.64590832; T( 6,538)= 5.65435943; T( 6,539)= 5.66282100; T( 6,540)= 5.67129309; T( 6,541)= 5.67977577; T( 6,542)= 5.68826910; T( 6,543)= 5.69677316; T( 6,544)= 5.70528799; T( 6,545)= 5.71381368; T( 6,546)= 5.72235028; T( 6,547)= 5.73089787; T( 6,548)= 5.73945650; T( 6,549)= 5.74802624; T( 6,550)= 5.75660717; T( 6,551)= 5.76519934; T( 6,552)= 5.77380283; T( 6,553)= 5.78241771; T( 6,554)= 5.79104404; T( 6,555)= 5.79968189; T( 6,556)= 5.80833134; T( 6,557)= 5.81699245; T( 6,558)= 5.82566528; T( 6,559)= 5.83434993; T( 6,560)= 5.84304644; T( 6,561)= 5.85175490; T( 6,562)= 5.86047537; T( 6,563)= 5.86920793; T( 6,564)= 5.87795265; T( 6,565)= 5.88670961; T( 6,566)= 5.89547887; T( 6,567)= 5.90426051; T( 6,568)= 5.91305460; T( 6,569)= 5.92186122; T( 6,570)= 5.93068044; T( 6,571)= 5.93951235; T( 6,572)= 5.94835700; T( 6,573)= 5.95721449; T( 6,574)= 5.96608489; T( 6,575)= 5.97496826; T( 6,576)= 5.98386470; T( 6,577)= 5.99277428; T( 6,578)= 6.00169708; T( 6,579)= 6.01063317; T( 6,580)= 6.01958264; T( 6,581)= 6.02854556; T( 6,582)= 6.03752202; T( 6,583)= 6.04651210; T( 6,584)= 6.05551588; T( 6,585)= 6.06453343; T( 6,586)= 6.07356485; T( 6,587)= 6.08261022; T( 6,588)= 6.09166961; T( 6,589)= 6.10074312; T( 6,590)= 6.10983082; T( 6,591)= 6.11893280; T( 6,592)= 6.12804915; T( 6,593)= 6.13717996; T( 6,594)= 6.14632530; T( 6,595)= 6.15548527; T( 6,596)= 6.16465995; T( 6,597)= 6.17384944; T( 6,598)= 6.18305382; T( 6,599)= 6.19227318; T( 6,600)= 6.20150760; T( 6,601)= 6.21075719; T( 6,602)= 6.22002204; T( 6,603)= 6.22930222; T( 6,604)= 6.23859784; T( 6,605)= 6.24790899; T( 6,606)= 6.25723577; T( 6,607)= 6.26657826; T( 6,608)= 6.27593656; T( 6,609)= 6.28531076; T( 6,610)= 6.29470097; T( 6,611)= 6.30410728; T( 6,612)= 6.31352979; T( 6,613)= 6.32296859; T( 6,614)= 6.33242379; T( 6,615)= 6.34189548; T( 6,616)= 6.35138376; T( 6,617)= 6.36088874; T( 6,618)= 6.37041051; T( 6,619)= 6.37994918; T( 6,620)= 6.38950485; T( 6,621)= 6.39907763; T( 6,622)= 6.40866761; T( 6,623)= 6.41827491; T( 6,624)= 6.42789963; T( 6,625)= 6.43754188; T( 6,626)= 6.44720175; T( 6,627)= 6.45687938; T( 6,628)= 6.46657485; T( 6,629)= 6.47628828; T( 6,630)= 6.48601979; T( 6,631)= 6.49576948; T( 6,632)= 6.50553746; T( 6,633)= 6.51532385; T( 6,634)= 6.52512877; T( 6,635)= 6.53495232; T( 6,636)= 6.54479462; T( 6,637)= 6.55465580; T( 6,638)= 6.56453596; T( 6,639)= 6.57443522; T( 6,640)= 6.58435371; T( 6,641)= 6.59429154; T( 6,642)= 6.60424884; T( 6,643)= 6.61422573; T( 6,644)= 6.62422232; T( 6,645)= 6.63423875; T( 6,646)= 6.64427513; T( 6,647)= 6.65433160; T( 6,648)= 6.66440829; T( 6,649)= 6.67450530; T( 6,650)= 6.68462279; T( 6,651)= 6.69476088; T( 6,652)= 6.70491969; T( 6,653)= 6.71509936; T( 6,654)= 6.72530002; T( 6,655)= 6.73552181; T( 6,656)= 6.74576487; T( 6,657)= 6.75602932; T( 6,658)= 6.76631530; T( 6,659)= 6.77662296; T( 6,660)= 6.78695243; T( 6,661)= 6.79730386; T( 6,662)= 6.80767738; T( 6,663)= 6.81807314; T( 6,664)= 6.82849128; T( 6,665)= 6.83893194; T( 6,666)= 6.84939529; T( 6,667)= 6.85988145; T( 6,668)= 6.87039059; T( 6,669)= 6.88092285; T( 6,670)= 6.89147838; T( 6,671)= 6.90205734; T( 6,672)= 6.91265987; T( 6,673)= 6.92328615; T( 6,674)= 6.93393631; T( 6,675)= 6.94461053; T( 6,676)= 6.95530896; T( 6,677)= 6.96603176; T( 6,678)= 6.97677909; T( 6,679)= 6.98755113; T( 6,680)= 6.99834802; T( 6,681)= 7.00916995; T( 6,682)= 7.02001707; T( 6,683)= 7.03088956; T( 6,684)= 7.04178759; T( 6,685)= 7.05271133; T( 6,686)= 7.06366096; T( 6,687)= 7.07463665; T( 6,688)= 7.08563859; T( 6,689)= 7.09666694; T( 6,690)= 7.10772189; T( 6,691)= 7.11880362; T( 6,692)= 7.12991232; T( 6,693)= 7.14104817; T( 6,694)= 7.15221136; T( 6,695)= 7.16340208; T( 6,696)= 7.17462052; T( 6,697)= 7.18586687; T( 6,698)= 7.19714133; T( 6,699)= 7.20844409; T( 6,700)= 7.21977536; T( 6,701)= 7.23113533; T( 6,702)= 7.24252421; T( 6,703)= 7.25394219; T( 6,704)= 7.26538949; T( 6,705)= 7.27686632; T( 6,706)= 7.28837288; T( 6,707)= 7.29990938; T( 6,708)= 7.31147605; T( 6,709)= 7.32307309; T( 6,710)= 7.33470073; T( 6,711)= 7.34635918; T( 6,712)= 7.35804867; T( 6,713)= 7.36976943; T( 6,714)= 7.38152168; T( 6,715)= 7.39330565; T( 6,716)= 7.40512157; T( 6,717)= 7.41696968; T( 6,718)= 7.42885021; T( 6,719)= 7.44076341; T( 6,720)= 7.45270951; T( 6,721)= 7.46468876; T( 6,722)= 7.47670141; T( 6,723)= 7.48874771; T( 6,724)= 7.50082789; T( 6,725)= 7.51294224; T( 6,726)= 7.52509098; T( 6,727)= 7.53727440; T( 6,728)= 7.54949275; T( 6,729)= 7.56174629; T( 6,730)= 7.57403530; T( 6,731)= 7.58636004; T( 6,732)= 7.59872080; T( 6,733)= 7.61111783; T( 6,734)= 7.62355144; T( 6,735)= 7.63602189; T( 6,736)= 7.64852948; T( 6,737)= 7.66107449; T( 6,738)= 7.67365722; T( 6,739)= 7.68627797; T( 6,740)= 7.69893702; T( 6,741)= 7.71163469; T( 6,742)= 7.72437128; T( 6,743)= 7.73714709; T( 6,744)= 7.74996245; T( 6,745)= 7.76281766; T( 6,746)= 7.77571306; T( 6,747)= 7.78864895; T( 6,748)= 7.80162567; T( 6,749)= 7.81464355; T( 6,750)= 7.82770292; T( 6,751)= 7.84080412; T( 6,752)= 7.85394750; T( 6,753)= 7.86713340; T( 6,754)= 7.88036217; T( 6,755)= 7.89363417; T( 6,756)= 7.90694975; T( 6,757)= 7.92030928; T( 6,758)= 7.93371313; T( 6,759)= 7.94716167; T( 6,760)= 7.96065528; T( 6,761)= 7.97419433; T( 6,762)= 7.98777921; T( 6,763)= 8.00141032; T( 6,764)= 8.01508805; T( 6,765)= 8.02881280; T( 6,766)= 8.04258497; T( 6,767)= 8.05640497; T( 6,768)= 8.07027323; T( 6,769)= 8.08419016; T( 6,770)= 8.09815618; T( 6,771)= 8.11217173; T( 6,772)= 8.12623725; T( 6,773)= 8.14035318; T( 6,774)= 8.15451996; T( 6,775)= 8.16873806; T( 6,776)= 8.18300792; T( 6,777)= 8.19733002; T( 6,778)= 8.21170483; T( 6,779)= 8.22613283; T( 6,780)= 8.24061449; T( 6,781)= 8.25515032; T( 6,782)= 8.26974081; T( 6,783)= 8.28438647; T( 6,784)= 8.29908780; T( 6,785)= 8.31384532; T( 6,786)= 8.32865956; T( 6,787)= 8.34353106; T( 6,788)= 8.35846034; T( 6,789)= 8.37344796; T( 6,790)= 8.38849448; T( 6,791)= 8.40360045; T( 6,792)= 8.41876644; T( 6,793)= 8.43399304; T( 6,794)= 8.44928083; T( 6,795)= 8.46463040; T( 6,796)= 8.48004236; T( 6,797)= 8.49551732; T( 6,798)= 8.51105590; T( 6,799)= 8.52665873; T( 6,800)= 8.54232646; T( 6,801)= 8.55805972; T( 6,802)= 8.57385918; T( 6,803)= 8.58972550; T( 6,804)= 8.60565937; T( 6,805)= 8.62166147; T( 6,806)= 8.63773249; T( 6,807)= 8.65387315; T( 6,808)= 8.67008417; T( 6,809)= 8.68636628; T( 6,810)= 8.70272021; T( 6,811)= 8.71914673; T( 6,812)= 8.73564660; T( 6,813)= 8.75222059; T( 6,814)= 8.76886949; T( 6,815)= 8.78559411; T( 6,816)= 8.80239527; T( 6,817)= 8.81927377; T( 6,818)= 8.83623048; T( 6,819)= 8.85326624; T( 6,820)= 8.87038192; T( 6,821)= 8.88757840; T( 6,822)= 8.90485658; T( 6,823)= 8.92221737; T( 6,824)= 8.93966170; T( 6,825)= 8.95719051; T( 6,826)= 8.97480476; T( 6,827)= 8.99250542; T( 6,828)= 9.01029348; T( 6,829)= 9.02816995; T( 6,830)= 9.04613586; T( 6,831)= 9.06419225; T( 6,832)= 9.08234018; T( 6,833)= 9.10058073; T( 6,834)= 9.11891500; T( 6,835)= 9.13734410; T( 6,836)= 9.15586918; T( 6,837)= 9.17449139; T( 6,838)= 9.19321191; T( 6,839)= 9.21203195; T( 6,840)= 9.23095272; T( 6,841)= 9.24997547; T( 6,842)= 9.26910147; T( 6,843)= 9.28833201; T( 6,844)= 9.30766841; T( 6,845)= 9.32711200; T( 6,846)= 9.34666416; T( 6,847)= 9.36632628; T( 6,848)= 9.38609978; T( 6,849)= 9.40598609; T( 6,850)= 9.42598671; T( 6,851)= 9.44610313; T( 6,852)= 9.46633688; T( 6,853)= 9.48668954; T( 6,854)= 9.50716269; T( 6,855)= 9.52775796; T( 6,856)= 9.54847702; T( 6,857)= 9.56932156; T( 6,858)= 9.59029332; T( 6,859)= 9.61139404; T( 6,860)= 9.63262554; T( 6,861)= 9.65398967; T( 6,862)= 9.67548829; T( 6,863)= 9.69712332; T( 6,864)= 9.71889674; T( 6,865)= 9.74081054; T( 6,866)= 9.76286677; T( 6,867)= 9.78506752; T( 6,868)= 9.80741493; T( 6,869)= 9.82991118; T( 6,870)= 9.85255852; T( 6,871)= 9.87535923; T( 6,872)= 9.89831564; T( 6,873)= 9.92143015; T( 6,874)= 9.94470521; T( 6,875)= 9.96814332; T( 6,876)= 9.99174704; T( 6,877)=10.01551901; T( 6,878)=10.03946190; T( 6,879)=10.06357847; T( 6,880)=10.08787155; T( 6,881)=10.11234401; T( 6,882)=10.13699883; T( 6,883)=10.16183903; T( 6,884)=10.18686773; T( 6,885)=10.21208812; T( 6,886)=10.23750347; T( 6,887)=10.26311713; T( 6,888)=10.28893255; T( 6,889)=10.31495327; T( 6,890)=10.34118291; T( 6,891)=10.36762520; T( 6,892)=10.39428397; T( 6,893)=10.42116314; T( 6,894)=10.44826677; T( 6,895)=10.47559899; T( 6,896)=10.50316408; T( 6,897)=10.53096643; T( 6,898)=10.55901055; T( 6,899)=10.58730108; T( 6,900)=10.61584282; T( 6,901)=10.64464068; T( 6,902)=10.67369972; T( 6,903)=10.70302518; T( 6,904)=10.73262243; T( 6,905)=10.76249701; T( 6,906)=10.79265465; T( 6,907)=10.82310124; T( 6,908)=10.85384286; T( 6,909)=10.88488579; T( 6,910)=10.91623651; T( 6,911)=10.94790172; T( 6,912)=10.97988834; T( 6,913)=11.01220350; T( 6,914)=11.04485460; T( 6,915)=11.07784928; T( 6,916)=11.11119545; T( 6,917)=11.14490129; T( 6,918)=11.17897528; T( 6,919)=11.21342620; T( 6,920)=11.24826316; T( 6,921)=11.28349557; T( 6,922)=11.31913324; T( 6,923)=11.35518632; T( 6,924)=11.39166534; T( 6,925)=11.42858128; T( 6,926)=11.46594551; T( 6,927)=11.50376986; T( 6,928)=11.54206667; T( 6,929)=11.58084873; T( 6,930)=11.62012941; T( 6,931)=11.65992262; T( 6,932)=11.70024286; T( 6,933)=11.74110527; T( 6,934)=11.78252566; T( 6,935)=11.82452051; T( 6,936)=11.86710710; T( 6,937)=11.91030346; T( 6,938)=11.95412849; T( 6,939)=11.99860197; T( 6,940)=12.04374465; T( 6,941)=12.08957827; T( 6,942)=12.13612570; T( 6,943)=12.18341093; T( 6,944)=12.23145921; T( 6,945)=12.28029710; T( 6,946)=12.32995260; T( 6,947)=12.38045522; T( 6,948)=12.43183612; T( 6,949)=12.48412821; T( 6,950)=12.53736629; T( 6,951)=12.59158724; T( 6,952)=12.64683013; T( 6,953)=12.70313641; T( 6,954)=12.76055014; T( 6,955)=12.81911819; T( 6,956)=12.87889050; T( 6,957)=12.93992031; T( 6,958)=13.00226454; T( 6,959)=13.06598405; T( 6,960)=13.13114408; T( 6,961)=13.19781465; T( 6,962)=13.26607104; T( 6,963)=13.33599435; T( 6,964)=13.40767211; T( 6,965)=13.48119895; T( 6,966)=13.55667746; T( 6,967)=13.63421904; T( 6,968)=13.71394497; T( 6,969)=13.79598766; T( 6,970)=13.88049198; T( 6,971)=13.96761693; T( 6,972)=14.05753754; T( 6,973)=14.15044710; T( 6,974)=14.24655980; T( 6,975)=14.34611387; T( 6,976)=14.44937534; T( 6,977)=14.55664250; T( 6,978)=14.66825145; T( 6,979)=14.78458270; T( 6,980)=14.90606945; T( 6,981)=15.03320775; T( 6,982)=15.16656941; T( 6,983)=15.30681822; T( 6,984)=15.45473093; T( 6,985)=15.61122447; T( 6,986)=15.77739196; T( 6,987)=15.95455115; T( 6,988)=16.14431068; T( 6,989)=16.34866283; T( 6,990)=16.57011657; T( 6,991)=16.81189383; T( 6,992)=17.07822912; T( 6,993)=17.37484553; T( 6,994)=17.70974876; T( 6,995)=18.09463447; T( 6,996)=18.54758418; T( 6,997)=19.09879292; T( 6,998)=19.80465236; T( 6,999)=20.79116772; T( 6,1000)=22.45774448; T( 6,1001)=27.85634124; T( 6,1002)=33.10705682; T( 7, 1)= 0.00000000; T( 7, 2)= 0.59849375; T( 7, 3)= 0.74105733; T( 7, 4)= 0.84123592; T( 7, 5)= 0.92131322; T( 7, 6)= 0.98925568; T( 7, 7)= 1.04893803; T( 7, 8)= 1.10257133; T( 7, 9)= 1.15155015; T( 7,10)= 1.19681705; T( 7,11)= 1.23904231; T( 7,12)= 1.27872156; T( 7,13)= 1.31623280; T( 7,14)= 1.35187166; T( 7,15)= 1.38587420; T( 7,16)= 1.41843230; T( 7,17)= 1.44970423; T( 7,18)= 1.47982230; T( 7,19)= 1.50889834; T( 7,20)= 1.53702782; T( 7,21)= 1.56429300; T( 7,22)= 1.59076530; T( 7,23)= 1.61650716; T( 7,24)= 1.64157355; T( 7,25)= 1.66601312; T( 7,26)= 1.68986918; T( 7,27)= 1.71318046; T( 7,28)= 1.73598176; T( 7,29)= 1.75830447; T( 7,30)= 1.78017701; T( 7,31)= 1.80162523; T( 7,32)= 1.82267268; T( 7,33)= 1.84334091; T( 7,34)= 1.86364970; T( 7,35)= 1.88361722; T( 7,36)= 1.90326023; T( 7,37)= 1.92259425; T( 7,38)= 1.94163363; T( 7,39)= 1.96039171; T( 7,40)= 1.97888088; T( 7,41)= 1.99711272; T( 7,42)= 2.01509801; T( 7,43)= 2.03284686; T( 7,44)= 2.05036872; T( 7,45)= 2.06767248; T( 7,46)= 2.08476649; T( 7,47)= 2.10165859; T( 7,48)= 2.11835619; T( 7,49)= 2.13486627; T( 7,50)= 2.15119543; T( 7,51)= 2.16734991; T( 7,52)= 2.18333563; T( 7,53)= 2.19915818; T( 7,54)= 2.21482289; T( 7,55)= 2.23033482; T( 7,56)= 2.24569875; T( 7,57)= 2.26091928; T( 7,58)= 2.27600075; T( 7,59)= 2.29094732; T( 7,60)= 2.30576296; T( 7,61)= 2.32045145; T( 7,62)= 2.33501641; T( 7,63)= 2.34946131; T( 7,64)= 2.36378945; T( 7,65)= 2.37800403; T( 7,66)= 2.39210807; T( 7,67)= 2.40610450; T( 7,68)= 2.41999612; T( 7,69)= 2.43378563; T( 7,70)= 2.44747560; T( 7,71)= 2.46106854; T( 7,72)= 2.47456683; T( 7,73)= 2.48797278; T( 7,74)= 2.50128861; T( 7,75)= 2.51451646; T( 7,76)= 2.52765839; T( 7,77)= 2.54071639; T( 7,78)= 2.55369238; T( 7,79)= 2.56658822; T( 7,80)= 2.57940570; T( 7,81)= 2.59214655; T( 7,82)= 2.60481245; T( 7,83)= 2.61740502; T( 7,84)= 2.62992582; T( 7,85)= 2.64237638; T( 7,86)= 2.65475817; T( 7,87)= 2.66707260; T( 7,88)= 2.67932106; T( 7,89)= 2.69150489; T( 7,90)= 2.70362540; T( 7,91)= 2.71568383; T( 7,92)= 2.72768141; T( 7,93)= 2.73961934; T( 7,94)= 2.75149875; T( 7,95)= 2.76332079; T( 7,96)= 2.77508653; T( 7,97)= 2.78679704; T( 7,98)= 2.79845334; T( 7,99)= 2.81005644; T( 7,100)= 2.82160732; T( 7,101)= 2.83310692; T( 7,102)= 2.84455617; T( 7,103)= 2.85595596; T( 7,104)= 2.86730719; T( 7,105)= 2.87861069; T( 7,106)= 2.88986731; T( 7,107)= 2.90107786; T( 7,108)= 2.91224313; T( 7,109)= 2.92336389; T( 7,110)= 2.93444089; T( 7,111)= 2.94547488; T( 7,112)= 2.95646657; T( 7,113)= 2.96741666; T( 7,114)= 2.97832584; T( 7,115)= 2.98919478; T( 7,116)= 3.00002412; T( 7,117)= 3.01081452; T( 7,118)= 3.02156659; T( 7,119)= 3.03228094; T( 7,120)= 3.04295818; T( 7,121)= 3.05359888; T( 7,122)= 3.06420361; T( 7,123)= 3.07477294; T( 7,124)= 3.08530742; T( 7,125)= 3.09580757; T( 7,126)= 3.10627392; T( 7,127)= 3.11670698; T( 7,128)= 3.12710726; T( 7,129)= 3.13747525; T( 7,130)= 3.14781143; T( 7,131)= 3.15811628; T( 7,132)= 3.16839025; T( 7,133)= 3.17863380; T( 7,134)= 3.18884737; T( 7,135)= 3.19903141; T( 7,136)= 3.20918634; T( 7,137)= 3.21931257; T( 7,138)= 3.22941052; T( 7,139)= 3.23948060; T( 7,140)= 3.24952320; T( 7,141)= 3.25953871; T( 7,142)= 3.26952750; T( 7,143)= 3.27948996; T( 7,144)= 3.28942646; T( 7,145)= 3.29933734; T( 7,146)= 3.30922298; T( 7,147)= 3.31908372; T( 7,148)= 3.32891989; T( 7,149)= 3.33873184; T( 7,150)= 3.34851989; T( 7,151)= 3.35828438; T( 7,152)= 3.36802562; T( 7,153)= 3.37774392; T( 7,154)= 3.38743959; T( 7,155)= 3.39711294; T( 7,156)= 3.40676426; T( 7,157)= 3.41639385; T( 7,158)= 3.42600200; T( 7,159)= 3.43558899; T( 7,160)= 3.44515509; T( 7,161)= 3.45470060; T( 7,162)= 3.46422576; T( 7,163)= 3.47373086; T( 7,164)= 3.48321615; T( 7,165)= 3.49268189; T( 7,166)= 3.50212834; T( 7,167)= 3.51155574; T( 7,168)= 3.52096434; T( 7,169)= 3.53035439; T( 7,170)= 3.53972612; T( 7,171)= 3.54907977; T( 7,172)= 3.55841557; T( 7,173)= 3.56773374; T( 7,174)= 3.57703452; T( 7,175)= 3.58631813; T( 7,176)= 3.59558478; T( 7,177)= 3.60483469; T( 7,178)= 3.61406808; T( 7,179)= 3.62328514; T( 7,180)= 3.63248609; T( 7,181)= 3.64167114; T( 7,182)= 3.65084048; T( 7,183)= 3.65999431; T( 7,184)= 3.66913282; T( 7,185)= 3.67825622; T( 7,186)= 3.68736468; T( 7,187)= 3.69645840; T( 7,188)= 3.70553756; T( 7,189)= 3.71460235; T( 7,190)= 3.72365294; T( 7,191)= 3.73268952; T( 7,192)= 3.74171225; T( 7,193)= 3.75072132; T( 7,194)= 3.75971689; T( 7,195)= 3.76869913; T( 7,196)= 3.77766821; T( 7,197)= 3.78662430; T( 7,198)= 3.79556755; T( 7,199)= 3.80449813; T( 7,200)= 3.81341620; T( 7,201)= 3.82232191; T( 7,202)= 3.83121542; T( 7,203)= 3.84009688; T( 7,204)= 3.84896644; T( 7,205)= 3.85782426; T( 7,206)= 3.86667047; T( 7,207)= 3.87550523; T( 7,208)= 3.88432869; T( 7,209)= 3.89314097; T( 7,210)= 3.90194224; T( 7,211)= 3.91073261; T( 7,212)= 3.91951224; T( 7,213)= 3.92828125; T( 7,214)= 3.93703979; T( 7,215)= 3.94578799; T( 7,216)= 3.95452597; T( 7,217)= 3.96325387; T( 7,218)= 3.97197182; T( 7,219)= 3.98067994; T( 7,220)= 3.98937837; T( 7,221)= 3.99806722; T( 7,222)= 4.00674663; T( 7,223)= 4.01541671; T( 7,224)= 4.02407758; T( 7,225)= 4.03272936; T( 7,226)= 4.04137218; T( 7,227)= 4.05000614; T( 7,228)= 4.05863137; T( 7,229)= 4.06724799; T( 7,230)= 4.07585610; T( 7,231)= 4.08445581; T( 7,232)= 4.09304725; T( 7,233)= 4.10163051; T( 7,234)= 4.11020571; T( 7,235)= 4.11877297; T( 7,236)= 4.12733237; T( 7,237)= 4.13588404; T( 7,238)= 4.14442808; T( 7,239)= 4.15296458; T( 7,240)= 4.16149367; T( 7,241)= 4.17001543; T( 7,242)= 4.17852997; T( 7,243)= 4.18703738; T( 7,244)= 4.19553778; T( 7,245)= 4.20403126; T( 7,246)= 4.21251791; T( 7,247)= 4.22099784; T( 7,248)= 4.22947113; T( 7,249)= 4.23793789; T( 7,250)= 4.24639821; T( 7,251)= 4.25485218; T( 7,252)= 4.26329990; T( 7,253)= 4.27174146; T( 7,254)= 4.28017695; T( 7,255)= 4.28860646; T( 7,256)= 4.29703008; T( 7,257)= 4.30544790; T( 7,258)= 4.31386000; T( 7,259)= 4.32226649; T( 7,260)= 4.33066744; T( 7,261)= 4.33906293; T( 7,262)= 4.34745306; T( 7,263)= 4.35583792; T( 7,264)= 4.36421757; T( 7,265)= 4.37259212; T( 7,266)= 4.38096163; T( 7,267)= 4.38932620; T( 7,268)= 4.39768591; T( 7,269)= 4.40604083; T( 7,270)= 4.41439105; T( 7,271)= 4.42273665; T( 7,272)= 4.43107771; T( 7,273)= 4.43941430; T( 7,274)= 4.44774650; T( 7,275)= 4.45607440; T( 7,276)= 4.46439807; T( 7,277)= 4.47271758; T( 7,278)= 4.48103301; T( 7,279)= 4.48934445; T( 7,280)= 4.49765195; T( 7,281)= 4.50595561; T( 7,282)= 4.51425548; T( 7,283)= 4.52255165; T( 7,284)= 4.53084419; T( 7,285)= 4.53913317; T( 7,286)= 4.54741866; T( 7,287)= 4.55570074; T( 7,288)= 4.56397948; T( 7,289)= 4.57225494; T( 7,290)= 4.58052720; T( 7,291)= 4.58879633; T( 7,292)= 4.59706240; T( 7,293)= 4.60532547; T( 7,294)= 4.61358562; T( 7,295)= 4.62184291; T( 7,296)= 4.63009741; T( 7,297)= 4.63834919; T( 7,298)= 4.64659832; T( 7,299)= 4.65484486; T( 7,300)= 4.66308888; T( 7,301)= 4.67133045; T( 7,302)= 4.67956963; T( 7,303)= 4.68780648; T( 7,304)= 4.69604108; T( 7,305)= 4.70427348; T( 7,306)= 4.71250375; T( 7,307)= 4.72073195; T( 7,308)= 4.72895816; T( 7,309)= 4.73718242; T( 7,310)= 4.74540481; T( 7,311)= 4.75362539; T( 7,312)= 4.76184421; T( 7,313)= 4.77006135; T( 7,314)= 4.77827686; T( 7,315)= 4.78649080; T( 7,316)= 4.79470324; T( 7,317)= 4.80291424; T( 7,318)= 4.81112385; T( 7,319)= 4.81933214; T( 7,320)= 4.82753917; T( 7,321)= 4.83574499; T( 7,322)= 4.84394967; T( 7,323)= 4.85215327; T( 7,324)= 4.86035584; T( 7,325)= 4.86855744; T( 7,326)= 4.87675814; T( 7,327)= 4.88495798; T( 7,328)= 4.89315704; T( 7,329)= 4.90135536; T( 7,330)= 4.90955300; T( 7,331)= 4.91775003; T( 7,332)= 4.92594649; T( 7,333)= 4.93414245; T( 7,334)= 4.94233796; T( 7,335)= 4.95053308; T( 7,336)= 4.95872787; T( 7,337)= 4.96692237; T( 7,338)= 4.97511665; T( 7,339)= 4.98331076; T( 7,340)= 4.99150476; T( 7,341)= 4.99969871; T( 7,342)= 5.00789265; T( 7,343)= 5.01608664; T( 7,344)= 5.02428074; T( 7,345)= 5.03247501; T( 7,346)= 5.04066949; T( 7,347)= 5.04886424; T( 7,348)= 5.05705931; T( 7,349)= 5.06525477; T( 7,350)= 5.07345066; T( 7,351)= 5.08164703; T( 7,352)= 5.08984394; T( 7,353)= 5.09804145; T( 7,354)= 5.10623960; T( 7,355)= 5.11443845; T( 7,356)= 5.12263806; T( 7,357)= 5.13083847; T( 7,358)= 5.13903973; T( 7,359)= 5.14724191; T( 7,360)= 5.15544505; T( 7,361)= 5.16364920; T( 7,362)= 5.17185442; T( 7,363)= 5.18006076; T( 7,364)= 5.18826827; T( 7,365)= 5.19647700; T( 7,366)= 5.20468701; T( 7,367)= 5.21289834; T( 7,368)= 5.22111105; T( 7,369)= 5.22932519; T( 7,370)= 5.23754080; T( 7,371)= 5.24575795; T( 7,372)= 5.25397668; T( 7,373)= 5.26219704; T( 7,374)= 5.27041909; T( 7,375)= 5.27864287; T( 7,376)= 5.28686844; T( 7,377)= 5.29509584; T( 7,378)= 5.30332513; T( 7,379)= 5.31155635; T( 7,380)= 5.31978957; T( 7,381)= 5.32802482; T( 7,382)= 5.33626216; T( 7,383)= 5.34450164; T( 7,384)= 5.35274330; T( 7,385)= 5.36098721; T( 7,386)= 5.36923340; T( 7,387)= 5.37748194; T( 7,388)= 5.38573286; T( 7,389)= 5.39398622; T( 7,390)= 5.40224207; T( 7,391)= 5.41050045; T( 7,392)= 5.41876143; T( 7,393)= 5.42702504; T( 7,394)= 5.43529134; T( 7,395)= 5.44356038; T( 7,396)= 5.45183220; T( 7,397)= 5.46010686; T( 7,398)= 5.46838441; T( 7,399)= 5.47666489; T( 7,400)= 5.48494836; T( 7,401)= 5.49323486; T( 7,402)= 5.50152445; T( 7,403)= 5.50981716; T( 7,404)= 5.51811306; T( 7,405)= 5.52641220; T( 7,406)= 5.53471461; T( 7,407)= 5.54302036; T( 7,408)= 5.55132949; T( 7,409)= 5.55964204; T( 7,410)= 5.56795808; T( 7,411)= 5.57627764; T( 7,412)= 5.58460078; T( 7,413)= 5.59292755; T( 7,414)= 5.60125800; T( 7,415)= 5.60959217; T( 7,416)= 5.61793012; T( 7,417)= 5.62627189; T( 7,418)= 5.63461754; T( 7,419)= 5.64296712; T( 7,420)= 5.65132066; T( 7,421)= 5.65967823; T( 7,422)= 5.66803987; T( 7,423)= 5.67640564; T( 7,424)= 5.68477557; T( 7,425)= 5.69314973; T( 7,426)= 5.70152816; T( 7,427)= 5.70991091; T( 7,428)= 5.71829803; T( 7,429)= 5.72668957; T( 7,430)= 5.73508558; T( 7,431)= 5.74348611; T( 7,432)= 5.75189121; T( 7,433)= 5.76030093; T( 7,434)= 5.76871532; T( 7,435)= 5.77713443; T( 7,436)= 5.78555831; T( 7,437)= 5.79398702; T( 7,438)= 5.80242059; T( 7,439)= 5.81085908; T( 7,440)= 5.81930254; T( 7,441)= 5.82775103; T( 7,442)= 5.83620459; T( 7,443)= 5.84466327; T( 7,444)= 5.85312712; T( 7,445)= 5.86159620; T( 7,446)= 5.87007055; T( 7,447)= 5.87855023; T( 7,448)= 5.88703528; T( 7,449)= 5.89552576; T( 7,450)= 5.90402173; T( 7,451)= 5.91252322; T( 7,452)= 5.92103029; T( 7,453)= 5.92954299; T( 7,454)= 5.93806138; T( 7,455)= 5.94658550; T( 7,456)= 5.95511541; T( 7,457)= 5.96365116; T( 7,458)= 5.97219280; T( 7,459)= 5.98074038; T( 7,460)= 5.98929396; T( 7,461)= 5.99785358; T( 7,462)= 6.00641930; T( 7,463)= 6.01499118; T( 7,464)= 6.02356925; T( 7,465)= 6.03215359; T( 7,466)= 6.04074423; T( 7,467)= 6.04934124; T( 7,468)= 6.05794466; T( 7,469)= 6.06655454; T( 7,470)= 6.07517095; T( 7,471)= 6.08379394; T( 7,472)= 6.09242355; T( 7,473)= 6.10105984; T( 7,474)= 6.10970287; T( 7,475)= 6.11835269; T( 7,476)= 6.12700935; T( 7,477)= 6.13567291; T( 7,478)= 6.14434343; T( 7,479)= 6.15302094; T( 7,480)= 6.16170552; T( 7,481)= 6.17039722; T( 7,482)= 6.17909608; T( 7,483)= 6.18780218; T( 7,484)= 6.19651555; T( 7,485)= 6.20523626; T( 7,486)= 6.21396436; T( 7,487)= 6.22269990; T( 7,488)= 6.23144295; T( 7,489)= 6.24019357; T( 7,490)= 6.24895179; T( 7,491)= 6.25771769; T( 7,492)= 6.26649132; T( 7,493)= 6.27527273; T( 7,494)= 6.28406199; T( 7,495)= 6.29285914; T( 7,496)= 6.30166426; T( 7,497)= 6.31047738; T( 7,498)= 6.31929858; T( 7,499)= 6.32812791; T( 7,500)= 6.33696543; T( 7,501)= 6.34581120; T( 7,502)= 6.35466527; T( 7,503)= 6.36352770; T( 7,504)= 6.37239855; T( 7,505)= 6.38127789; T( 7,506)= 6.39016577; T( 7,507)= 6.39906225; T( 7,508)= 6.40796739; T( 7,509)= 6.41688125; T( 7,510)= 6.42580390; T( 7,511)= 6.43473538; T( 7,512)= 6.44367577; T( 7,513)= 6.45262512; T( 7,514)= 6.46158349; T( 7,515)= 6.47055095; T( 7,516)= 6.47952755; T( 7,517)= 6.48851337; T( 7,518)= 6.49750845; T( 7,519)= 6.50651287; T( 7,520)= 6.51552669; T( 7,521)= 6.52454997; T( 7,522)= 6.53358276; T( 7,523)= 6.54262515; T( 7,524)= 6.55167718; T( 7,525)= 6.56073893; T( 7,526)= 6.56981045; T( 7,527)= 6.57889182; T( 7,528)= 6.58798309; T( 7,529)= 6.59708434; T( 7,530)= 6.60619562; T( 7,531)= 6.61531701; T( 7,532)= 6.62444857; T( 7,533)= 6.63359036; T( 7,534)= 6.64274245; T( 7,535)= 6.65190491; T( 7,536)= 6.66107781; T( 7,537)= 6.67026121; T( 7,538)= 6.67945519; T( 7,539)= 6.68865980; T( 7,540)= 6.69787512; T( 7,541)= 6.70710121; T( 7,542)= 6.71633815; T( 7,543)= 6.72558601; T( 7,544)= 6.73484485; T( 7,545)= 6.74411474; T( 7,546)= 6.75339576; T( 7,547)= 6.76268797; T( 7,548)= 6.77199145; T( 7,549)= 6.78130627; T( 7,550)= 6.79063250; T( 7,551)= 6.79997021; T( 7,552)= 6.80931947; T( 7,553)= 6.81868037; T( 7,554)= 6.82805296; T( 7,555)= 6.83743732; T( 7,556)= 6.84683354; T( 7,557)= 6.85624167; T( 7,558)= 6.86566181; T( 7,559)= 6.87509402; T( 7,560)= 6.88453837; T( 7,561)= 6.89399495; T( 7,562)= 6.90346383; T( 7,563)= 6.91294508; T( 7,564)= 6.92243879; T( 7,565)= 6.93194503; T( 7,566)= 6.94146388; T( 7,567)= 6.95099542; T( 7,568)= 6.96053972; T( 7,569)= 6.97009688; T( 7,570)= 6.97966695; T( 7,571)= 6.98925004; T( 7,572)= 6.99884621; T( 7,573)= 7.00845555; T( 7,574)= 7.01807813; T( 7,575)= 7.02771405; T( 7,576)= 7.03736339; T( 7,577)= 7.04702622; T( 7,578)= 7.05670263; T( 7,579)= 7.06639270; T( 7,580)= 7.07609652; T( 7,581)= 7.08581418; T( 7,582)= 7.09554575; T( 7,583)= 7.10529133; T( 7,584)= 7.11505100; T( 7,585)= 7.12482485; T( 7,586)= 7.13461297; T( 7,587)= 7.14441543; T( 7,588)= 7.15423234; T( 7,589)= 7.16406378; T( 7,590)= 7.17390984; T( 7,591)= 7.18377061; T( 7,592)= 7.19364618; T( 7,593)= 7.20353665; T( 7,594)= 7.21344210; T( 7,595)= 7.22336262; T( 7,596)= 7.23329832; T( 7,597)= 7.24324928; T( 7,598)= 7.25321559; T( 7,599)= 7.26319736; T( 7,600)= 7.27319467; T( 7,601)= 7.28320763; T( 7,602)= 7.29323633; T( 7,603)= 7.30328087; T( 7,604)= 7.31334134; T( 7,605)= 7.32341784; T( 7,606)= 7.33351047; T( 7,607)= 7.34361934; T( 7,608)= 7.35374454; T( 7,609)= 7.36388618; T( 7,610)= 7.37404434; T( 7,611)= 7.38421915; T( 7,612)= 7.39441070; T( 7,613)= 7.40461909; T( 7,614)= 7.41484443; T( 7,615)= 7.42508683; T( 7,616)= 7.43534638; T( 7,617)= 7.44562321; T( 7,618)= 7.45591741; T( 7,619)= 7.46622909; T( 7,620)= 7.47655836; T( 7,621)= 7.48690533; T( 7,622)= 7.49727011; T( 7,623)= 7.50765282; T( 7,624)= 7.51805356; T( 7,625)= 7.52847245; T( 7,626)= 7.53890960; T( 7,627)= 7.54936513; T( 7,628)= 7.55983914; T( 7,629)= 7.57033177; T( 7,630)= 7.58084311; T( 7,631)= 7.59137330; T( 7,632)= 7.60192245; T( 7,633)= 7.61249067; T( 7,634)= 7.62307810; T( 7,635)= 7.63368485; T( 7,636)= 7.64431104; T( 7,637)= 7.65495679; T( 7,638)= 7.66562224; T( 7,639)= 7.67630750; T( 7,640)= 7.68701270; T( 7,641)= 7.69773797; T( 7,642)= 7.70848343; T( 7,643)= 7.71924921; T( 7,644)= 7.73003545; T( 7,645)= 7.74084228; T( 7,646)= 7.75166981; T( 7,647)= 7.76251820; T( 7,648)= 7.77338757; T( 7,649)= 7.78427805; T( 7,650)= 7.79518979; T( 7,651)= 7.80612292; T( 7,652)= 7.81707757; T( 7,653)= 7.82805389; T( 7,654)= 7.83905201; T( 7,655)= 7.85007209; T( 7,656)= 7.86111425; T( 7,657)= 7.87217864; T( 7,658)= 7.88326542; T( 7,659)= 7.89437471; T( 7,660)= 7.90550668; T( 7,661)= 7.91666147; T( 7,662)= 7.92783923; T( 7,663)= 7.93904010; T( 7,664)= 7.95026425; T( 7,665)= 7.96151182; T( 7,666)= 7.97278296; T( 7,667)= 7.98407785; T( 7,668)= 7.99539662; T( 7,669)= 8.00673944; T( 7,670)= 8.01810647; T( 7,671)= 8.02949787; T( 7,672)= 8.04091381; T( 7,673)= 8.05235444; T( 7,674)= 8.06381993; T( 7,675)= 8.07531045; T( 7,676)= 8.08682617; T( 7,677)= 8.09836725; T( 7,678)= 8.10993387; T( 7,679)= 8.12152619; T( 7,680)= 8.13314440; T( 7,681)= 8.14478867; T( 7,682)= 8.15645917; T( 7,683)= 8.16815609; T( 7,684)= 8.17987960; T( 7,685)= 8.19162988; T( 7,686)= 8.20340713; T( 7,687)= 8.21521152; T( 7,688)= 8.22704324; T( 7,689)= 8.23890248; T( 7,690)= 8.25078942; T( 7,691)= 8.26270427; T( 7,692)= 8.27464722; T( 7,693)= 8.28661845; T( 7,694)= 8.29861817; T( 7,695)= 8.31064658; T( 7,696)= 8.32270388; T( 7,697)= 8.33479026; T( 7,698)= 8.34690594; T( 7,699)= 8.35905113; T( 7,700)= 8.37122602; T( 7,701)= 8.38343083; T( 7,702)= 8.39566577; T( 7,703)= 8.40793106; T( 7,704)= 8.42022692; T( 7,705)= 8.43255356; T( 7,706)= 8.44491120; T( 7,707)= 8.45730007; T( 7,708)= 8.46972039; T( 7,709)= 8.48217239; T( 7,710)= 8.49465629; T( 7,711)= 8.50717234; T( 7,712)= 8.51972076; T( 7,713)= 8.53230179; T( 7,714)= 8.54491567; T( 7,715)= 8.55756264; T( 7,716)= 8.57024295; T( 7,717)= 8.58295683; T( 7,718)= 8.59570455; T( 7,719)= 8.60848634; T( 7,720)= 8.62130247; T( 7,721)= 8.63415318; T( 7,722)= 8.64703875; T( 7,723)= 8.65995943; T( 7,724)= 8.67291548; T( 7,725)= 8.68590717; T( 7,726)= 8.69893477; T( 7,727)= 8.71199856; T( 7,728)= 8.72509880; T( 7,729)= 8.73823579; T( 7,730)= 8.75140979; T( 7,731)= 8.76462110; T( 7,732)= 8.77786999; T( 7,733)= 8.79115677; T( 7,734)= 8.80448173; T( 7,735)= 8.81784516; T( 7,736)= 8.83124735; T( 7,737)= 8.84468863; T( 7,738)= 8.85816929; T( 7,739)= 8.87168963; T( 7,740)= 8.88524999; T( 7,741)= 8.89885067; T( 7,742)= 8.91249199; T( 7,743)= 8.92617428; T( 7,744)= 8.93989786; T( 7,745)= 8.95366307; T( 7,746)= 8.96747025; T( 7,747)= 8.98131972; T( 7,748)= 8.99521184; T( 7,749)= 9.00914695; T( 7,750)= 9.02312540; T( 7,751)= 9.03714755; T( 7,752)= 9.05121375; T( 7,753)= 9.06532438; T( 7,754)= 9.07947979; T( 7,755)= 9.09368036; T( 7,756)= 9.10792646; T( 7,757)= 9.12221848; T( 7,758)= 9.13655680; T( 7,759)= 9.15094182; T( 7,760)= 9.16537392; T( 7,761)= 9.17985350; T( 7,762)= 9.19438098; T( 7,763)= 9.20895675; T( 7,764)= 9.22358124; T( 7,765)= 9.23825486; T( 7,766)= 9.25297803; T( 7,767)= 9.26775120; T( 7,768)= 9.28257478; T( 7,769)= 9.29744923; T( 7,770)= 9.31237499; T( 7,771)= 9.32735251; T( 7,772)= 9.34238225; T( 7,773)= 9.35746467; T( 7,774)= 9.37260024; T( 7,775)= 9.38778944; T( 7,776)= 9.40303274; T( 7,777)= 9.41833065; T( 7,778)= 9.43368364; T( 7,779)= 9.44909223; T( 7,780)= 9.46455692; T( 7,781)= 9.48007822; T( 7,782)= 9.49565665; T( 7,783)= 9.51129274; T( 7,784)= 9.52698704; T( 7,785)= 9.54274007; T( 7,786)= 9.55855239; T( 7,787)= 9.57442456; T( 7,788)= 9.59035714; T( 7,789)= 9.60635070; T( 7,790)= 9.62240583; T( 7,791)= 9.63852311; T( 7,792)= 9.65470314; T( 7,793)= 9.67094652; T( 7,794)= 9.68725388; T( 7,795)= 9.70362582; T( 7,796)= 9.72006299; T( 7,797)= 9.73656602; T( 7,798)= 9.75313556; T( 7,799)= 9.76977227; T( 7,800)= 9.78647683; T( 7,801)= 9.80324990; T( 7,802)= 9.82009218; T( 7,803)= 9.83700436; T( 7,804)= 9.85398716; T( 7,805)= 9.87104130; T( 7,806)= 9.88816749; T( 7,807)= 9.90536650; T( 7,808)= 9.92263906; T( 7,809)= 9.93998594; T( 7,810)= 9.95740793; T( 7,811)= 9.97490580; T( 7,812)= 9.99248035; T( 7,813)=10.01013241; T( 7,814)=10.02786278; T( 7,815)=10.04567232; T( 7,816)=10.06356188; T( 7,817)=10.08153231; T( 7,818)=10.09958450; T( 7,819)=10.11771934; T( 7,820)=10.13593773; T( 7,821)=10.15424061; T( 7,822)=10.17262891; T( 7,823)=10.19110358; T( 7,824)=10.20966558; T( 7,825)=10.22831592; T( 7,826)=10.24705557; T( 7,827)=10.26588558; T( 7,828)=10.28480696; T( 7,829)=10.30382077; T( 7,830)=10.32292809; T( 7,831)=10.34213000; T( 7,832)=10.36142762; T( 7,833)=10.38082207; T( 7,834)=10.40031449; T( 7,835)=10.41990606; T( 7,836)=10.43959797; T( 7,837)=10.45939143; T( 7,838)=10.47928766; T( 7,839)=10.49928792; T( 7,840)=10.51939350; T( 7,841)=10.53960569; T( 7,842)=10.55992581; T( 7,843)=10.58035522; T( 7,844)=10.60089529; T( 7,845)=10.62154741; T( 7,846)=10.64231303; T( 7,847)=10.66319359; T( 7,848)=10.68419057; T( 7,849)=10.70530549; T( 7,850)=10.72653989; T( 7,851)=10.74789533; T( 7,852)=10.76937342; T( 7,853)=10.79097580; T( 7,854)=10.81270412; T( 7,855)=10.83456008; T( 7,856)=10.85654543; T( 7,857)=10.87866193; T( 7,858)=10.90091139; T( 7,859)=10.92329565; T( 7,860)=10.94581659; T( 7,861)=10.96847613; T( 7,862)=10.99127624; T( 7,863)=11.01421892; T( 7,864)=11.03730621; T( 7,865)=11.06054021; T( 7,866)=11.08392305; T( 7,867)=11.10745692; T( 7,868)=11.13114405; T( 7,869)=11.15498671; T( 7,870)=11.17898725; T( 7,871)=11.20314805; T( 7,872)=11.22747154; T( 7,873)=11.25196023; T( 7,874)=11.27661667; T( 7,875)=11.30144347; T( 7,876)=11.32644330; T( 7,877)=11.35161891; T( 7,878)=11.37697309; T( 7,879)=11.40250873; T( 7,880)=11.42822876; T( 7,881)=11.45413619; T( 7,882)=11.48023412; T( 7,883)=11.50652570; T( 7,884)=11.53301419; T( 7,885)=11.55970291; T( 7,886)=11.58659527; T( 7,887)=11.61369477; T( 7,888)=11.64100501; T( 7,889)=11.66852966; T( 7,890)=11.69627252; T( 7,891)=11.72423746; T( 7,892)=11.75242849; T( 7,893)=11.78084968; T( 7,894)=11.80950527; T( 7,895)=11.83839957; T( 7,896)=11.86753703; T( 7,897)=11.89692223; T( 7,898)=11.92655988; T( 7,899)=11.95645482; T( 7,900)=11.98661202; T( 7,901)=12.01703662; T( 7,902)=12.04773391; T( 7,903)=12.07870932; T( 7,904)=12.10996845; T( 7,905)=12.14151709; T( 7,906)=12.17336120; T( 7,907)=12.20550690; T( 7,908)=12.23796056; T( 7,909)=12.27072869; T( 7,910)=12.30381806; T( 7,911)=12.33723564; T( 7,912)=12.37098862; T( 7,913)=12.40508447; T( 7,914)=12.43953086; T( 7,915)=12.47433576; T( 7,916)=12.50950741; T( 7,917)=12.54505433; T( 7,918)=12.58098534; T( 7,919)=12.61730958; T( 7,920)=12.65403654; T( 7,921)=12.69117603; T( 7,922)=12.72873824; T( 7,923)=12.76673375; T( 7,924)=12.80517352; T( 7,925)=12.84406898; T( 7,926)=12.88343195; T( 7,927)=12.92327477; T( 7,928)=12.96361024; T( 7,929)=13.00445172; T( 7,930)=13.04581309; T( 7,931)=13.08770883; T( 7,932)=13.13015403; T( 7,933)=13.17316444; T( 7,934)=13.21675650; T( 7,935)=13.26094738; T( 7,936)=13.30575503; T( 7,937)=13.35119820; T( 7,938)=13.39729657; T( 7,939)=13.44407069; T( 7,940)=13.49154215; T( 7,941)=13.53973357; T( 7,942)=13.58866870; T( 7,943)=13.63837250; T( 7,944)=13.68887122; T( 7,945)=13.74019248; T( 7,946)=13.79236538; T( 7,947)=13.84542058; T( 7,948)=13.89939049; T( 7,949)=13.95430929; T( 7,950)=14.01021318; T( 7,951)=14.06714045; T( 7,952)=14.12513170; T( 7,953)=14.18423001; T( 7,954)=14.24448115; T( 7,955)=14.30593381; T( 7,956)=14.36863984; T( 7,957)=14.43265458; T( 7,958)=14.49803711; T( 7,959)=14.56485065; T( 7,960)=14.63316294; T( 7,961)=14.70304667; T( 7,962)=14.77458001; T( 7,963)=14.84784715; T( 7,964)=14.92293892; T( 7,965)=14.99995356; T( 7,966)=15.07899753; T( 7,967)=15.16018643; T( 7,968)=15.24364611; T( 7,969)=15.32951391; T( 7,970)=15.41794014; T( 7,971)=15.50908970; T( 7,972)=15.60314414; T( 7,973)=15.70030389; T( 7,974)=15.80079104; T( 7,975)=15.90485259; T( 7,976)=16.01276427; T( 7,977)=16.12483531; T( 7,978)=16.24141398; T( 7,979)=16.36289458; T( 7,980)=16.48972592; T( 7,981)=16.62242187; T( 7,982)=16.76157466; T( 7,983)=16.90787168; T( 7,984)=17.06211718; T( 7,985)=17.22526035; T( 7,986)=17.39843261; T( 7,987)=17.58299757; T( 7,988)=17.78061953; T( 7,989)=17.99335926; T( 7,990)=18.22381135; T( 7,991)=18.47530691; T( 7,992)=18.75222273; T( 7,993)=19.06047255; T( 7,994)=19.40832608; T( 7,995)=19.80786051; T( 7,996)=20.27773987; T( 7,997)=20.84911788; T( 7,998)=21.58014539; T( 7,999)=22.60067086; T( 7,1000)=24.32188635; T( 7,1001)=29.87750391; T( 7,1002)=35.25853642; T( 8, 1)= 0.00000000; T( 8, 2)= 0.85710483; T( 8, 3)= 1.03752390; T( 8, 4)= 1.16235294; T( 8, 5)= 1.26116792; T( 8, 6)= 1.34441309; T( 8, 7)= 1.41712746; T( 8, 8)= 1.48216905; T( 8, 9)= 1.54133162; T( 8,10)= 1.59582254; T( 8,11)= 1.64649737; T( 8,12)= 1.69398678; T( 8,13)= 1.73877041; T( 8,14)= 1.78122244; T( 8,15)= 1.82164101; T( 8,16)= 1.86026790; T( 8,17)= 1.89730220; T( 8,18)= 1.93291002; T( 8,19)= 1.96723154; T( 8,20)= 2.00038624; T( 8,21)= 2.03247692; T( 8,22)= 2.06359269; T( 8,23)= 2.09381138; T( 8,24)= 2.12320141; T( 8,25)= 2.15182328; T( 8,26)= 2.17973075; T( 8,27)= 2.20697188; T( 8,28)= 2.23358978; T( 8,29)= 2.25962333; T( 8,30)= 2.28510767; T( 8,31)= 2.31007474; T( 8,32)= 2.33455363; T( 8,33)= 2.35857091; T( 8,34)= 2.38215096; T( 8,35)= 2.40531616; T( 8,36)= 2.42808714; T( 8,37)= 2.45048298; T( 8,38)= 2.47252132; T( 8,39)= 2.49421852; T( 8,40)= 2.51558982; T( 8,41)= 2.53664938; T( 8,42)= 2.55741045; T( 8,43)= 2.57788538; T( 8,44)= 2.59808577; T( 8,45)= 2.61802247; T( 8,46)= 2.63770569; T( 8,47)= 2.65714502; T( 8,48)= 2.67634951; T( 8,49)= 2.69532767; T( 8,50)= 2.71408756; T( 8,51)= 2.73263679; T( 8,52)= 2.75098257; T( 8,53)= 2.76913171; T( 8,54)= 2.78709070; T( 8,55)= 2.80486568; T( 8,56)= 2.82246250; T( 8,57)= 2.83988672; T( 8,58)= 2.85714363; T( 8,59)= 2.87423829; T( 8,60)= 2.89117551; T( 8,61)= 2.90795987; T( 8,62)= 2.92459578; T( 8,63)= 2.94108744; T( 8,64)= 2.95743886; T( 8,65)= 2.97365388; T( 8,66)= 2.98973621; T( 8,67)= 3.00568936; T( 8,68)= 3.02151674; T( 8,69)= 3.03722161; T( 8,70)= 3.05280708; T( 8,71)= 3.06827618; T( 8,72)= 3.08363179; T( 8,73)= 3.09887669; T( 8,74)= 3.11401358; T( 8,75)= 3.12904503; T( 8,76)= 3.14397353; T( 8,77)= 3.15880149; T( 8,78)= 3.17353122; T( 8,79)= 3.18816495; T( 8,80)= 3.20270486; T( 8,81)= 3.21715302; T( 8,82)= 3.23151145; T( 8,83)= 3.24578211; T( 8,84)= 3.25996689; T( 8,85)= 3.27406760; T( 8,86)= 3.28808603; T( 8,87)= 3.30202387; T( 8,88)= 3.31588281; T( 8,89)= 3.32966443; T( 8,90)= 3.34337031; T( 8,91)= 3.35700197; T( 8,92)= 3.37056086; T( 8,93)= 3.38404841; T( 8,94)= 3.39746602; T( 8,95)= 3.41081502; T( 8,96)= 3.42409673; T( 8,97)= 3.43731242; T( 8,98)= 3.45046331; T( 8,99)= 3.46355062; T( 8,100)= 3.47657551; T( 8,101)= 3.48953913; T( 8,102)= 3.50244257; T( 8,103)= 3.51528691; T( 8,104)= 3.52807321; T( 8,105)= 3.54080250; T( 8,106)= 3.55347576; T( 8,107)= 3.56609397; T( 8,108)= 3.57865808; T( 8,109)= 3.59116901; T( 8,110)= 3.60362766; T( 8,111)= 3.61603492; T( 8,112)= 3.62839164; T( 8,113)= 3.64069865; T( 8,114)= 3.65295679; T( 8,115)= 3.66516684; T( 8,116)= 3.67732959; T( 8,117)= 3.68944580; T( 8,118)= 3.70151621; T( 8,119)= 3.71354156; T( 8,120)= 3.72552255; T( 8,121)= 3.73745988; T( 8,122)= 3.74935424; T( 8,123)= 3.76120628; T( 8,124)= 3.77301666; T( 8,125)= 3.78478602; T( 8,126)= 3.79651499; T( 8,127)= 3.80820416; T( 8,128)= 3.81985415; T( 8,129)= 3.83146553; T( 8,130)= 3.84303889; T( 8,131)= 3.85457477; T( 8,132)= 3.86607374; T( 8,133)= 3.87753633; T( 8,134)= 3.88896308; T( 8,135)= 3.90035450; T( 8,136)= 3.91171109; T( 8,137)= 3.92303336; T( 8,138)= 3.93432180; T( 8,139)= 3.94557688; T( 8,140)= 3.95679908; T( 8,141)= 3.96798886; T( 8,142)= 3.97914667; T( 8,143)= 3.99027295; T( 8,144)= 4.00136815; T( 8,145)= 4.01243269; T( 8,146)= 4.02346699; T( 8,147)= 4.03447146; T( 8,148)= 4.04544651; T( 8,149)= 4.05639254; T( 8,150)= 4.06730994; T( 8,151)= 4.07819910; T( 8,152)= 4.08906038; T( 8,153)= 4.09989418; T( 8,154)= 4.11070084; T( 8,155)= 4.12148073; T( 8,156)= 4.13223421; T( 8,157)= 4.14296161; T( 8,158)= 4.15366329; T( 8,159)= 4.16433957; T( 8,160)= 4.17499078; T( 8,161)= 4.18561726; T( 8,162)= 4.19621932; T( 8,163)= 4.20679728; T( 8,164)= 4.21735144; T( 8,165)= 4.22788211; T( 8,166)= 4.23838959; T( 8,167)= 4.24887418; T( 8,168)= 4.25933616; T( 8,169)= 4.26977583; T( 8,170)= 4.28019346; T( 8,171)= 4.29058933; T( 8,172)= 4.30096371; T( 8,173)= 4.31131689; T( 8,174)= 4.32164911; T( 8,175)= 4.33196064; T( 8,176)= 4.34225175; T( 8,177)= 4.35252267; T( 8,178)= 4.36277367; T( 8,179)= 4.37300499; T( 8,180)= 4.38321688; T( 8,181)= 4.39340957; T( 8,182)= 4.40358329; T( 8,183)= 4.41373829; T( 8,184)= 4.42387480; T( 8,185)= 4.43399303; T( 8,186)= 4.44409321; T( 8,187)= 4.45417557; T( 8,188)= 4.46424032; T( 8,189)= 4.47428768; T( 8,190)= 4.48431785; T( 8,191)= 4.49433105; T( 8,192)= 4.50432748; T( 8,193)= 4.51430735; T( 8,194)= 4.52427086; T( 8,195)= 4.53421820; T( 8,196)= 4.54414958; T( 8,197)= 4.55406518; T( 8,198)= 4.56396519; T( 8,199)= 4.57384981; T( 8,200)= 4.58371923; T( 8,201)= 4.59357361; T( 8,202)= 4.60341315; T( 8,203)= 4.61323803; T( 8,204)= 4.62304842; T( 8,205)= 4.63284450; T( 8,206)= 4.64262644; T( 8,207)= 4.65239441; T( 8,208)= 4.66214859; T( 8,209)= 4.67188913; T( 8,210)= 4.68161620; T( 8,211)= 4.69132997; T( 8,212)= 4.70103059; T( 8,213)= 4.71071823; T( 8,214)= 4.72039305; T( 8,215)= 4.73005520; T( 8,216)= 4.73970482; T( 8,217)= 4.74934209; T( 8,218)= 4.75896714; T( 8,219)= 4.76858013; T( 8,220)= 4.77818120; T( 8,221)= 4.78777050; T( 8,222)= 4.79734817; T( 8,223)= 4.80691436; T( 8,224)= 4.81646920; T( 8,225)= 4.82601284; T( 8,226)= 4.83554542; T( 8,227)= 4.84506706; T( 8,228)= 4.85457792; T( 8,229)= 4.86407811; T( 8,230)= 4.87356778; T( 8,231)= 4.88304705; T( 8,232)= 4.89251605; T( 8,233)= 4.90197492; T( 8,234)= 4.91142378; T( 8,235)= 4.92086275; T( 8,236)= 4.93029197; T( 8,237)= 4.93971154; T( 8,238)= 4.94912161; T( 8,239)= 4.95852228; T( 8,240)= 4.96791369; T( 8,241)= 4.97729594; T( 8,242)= 4.98666915; T( 8,243)= 4.99603345; T( 8,244)= 5.00538894; T( 8,245)= 5.01473575; T( 8,246)= 5.02407398; T( 8,247)= 5.03340375; T( 8,248)= 5.04272517; T( 8,249)= 5.05203835; T( 8,250)= 5.06134340; T( 8,251)= 5.07064042; T( 8,252)= 5.07992954; T( 8,253)= 5.08921084; T( 8,254)= 5.09848444; T( 8,255)= 5.10775045; T( 8,256)= 5.11700896; T( 8,257)= 5.12626009; T( 8,258)= 5.13550392; T( 8,259)= 5.14474057; T( 8,260)= 5.15397013; T( 8,261)= 5.16319271; T( 8,262)= 5.17240840; T( 8,263)= 5.18161730; T( 8,264)= 5.19081950; T( 8,265)= 5.20001512; T( 8,266)= 5.20920423; T( 8,267)= 5.21838693; T( 8,268)= 5.22756333; T( 8,269)= 5.23673351; T( 8,270)= 5.24589756; T( 8,271)= 5.25505559; T( 8,272)= 5.26420767; T( 8,273)= 5.27335390; T( 8,274)= 5.28249437; T( 8,275)= 5.29162917; T( 8,276)= 5.30075839; T( 8,277)= 5.30988212; T( 8,278)= 5.31900044; T( 8,279)= 5.32811344; T( 8,280)= 5.33722121; T( 8,281)= 5.34632383; T( 8,282)= 5.35542138; T( 8,283)= 5.36451396; T( 8,284)= 5.37360165; T( 8,285)= 5.38268452; T( 8,286)= 5.39176266; T( 8,287)= 5.40083616; T( 8,288)= 5.40990510; T( 8,289)= 5.41896955; T( 8,290)= 5.42802960; T( 8,291)= 5.43708532; T( 8,292)= 5.44613681; T( 8,293)= 5.45518412; T( 8,294)= 5.46422736; T( 8,295)= 5.47326658; T( 8,296)= 5.48230188; T( 8,297)= 5.49133332; T( 8,298)= 5.50036099; T( 8,299)= 5.50938495; T( 8,300)= 5.51840529; T( 8,301)= 5.52742209; T( 8,302)= 5.53643540; T( 8,303)= 5.54544532; T( 8,304)= 5.55445191; T( 8,305)= 5.56345525; T( 8,306)= 5.57245542; T( 8,307)= 5.58145247; T( 8,308)= 5.59044649; T( 8,309)= 5.59943755; T( 8,310)= 5.60842572; T( 8,311)= 5.61741107; T( 8,312)= 5.62639367; T( 8,313)= 5.63537359; T( 8,314)= 5.64435090; T( 8,315)= 5.65332568; T( 8,316)= 5.66229798; T( 8,317)= 5.67126789; T( 8,318)= 5.68023547; T( 8,319)= 5.68920078; T( 8,320)= 5.69816389; T( 8,321)= 5.70712488; T( 8,322)= 5.71608381; T( 8,323)= 5.72504075; T( 8,324)= 5.73399576; T( 8,325)= 5.74294891; T( 8,326)= 5.75190027; T( 8,327)= 5.76084990; T( 8,328)= 5.76979787; T( 8,329)= 5.77874424; T( 8,330)= 5.78768908; T( 8,331)= 5.79663245; T( 8,332)= 5.80557442; T( 8,333)= 5.81451505; T( 8,334)= 5.82345440; T( 8,335)= 5.83239255; T( 8,336)= 5.84132954; T( 8,337)= 5.85026546; T( 8,338)= 5.85920034; T( 8,339)= 5.86813428; T( 8,340)= 5.87706731; T( 8,341)= 5.88599951; T( 8,342)= 5.89493094; T( 8,343)= 5.90386165; T( 8,344)= 5.91279172; T( 8,345)= 5.92172120; T( 8,346)= 5.93065015; T( 8,347)= 5.93957863; T( 8,348)= 5.94850671; T( 8,349)= 5.95743445; T( 8,350)= 5.96636190; T( 8,351)= 5.97528912; T( 8,352)= 5.98421618; T( 8,353)= 5.99314314; T( 8,354)= 6.00207005; T( 8,355)= 6.01099697; T( 8,356)= 6.01992397; T( 8,357)= 6.02885110; T( 8,358)= 6.03777842; T( 8,359)= 6.04670599; T( 8,360)= 6.05563386; T( 8,361)= 6.06456210; T( 8,362)= 6.07349077; T( 8,363)= 6.08241992; T( 8,364)= 6.09134961; T( 8,365)= 6.10027990; T( 8,366)= 6.10921084; T( 8,367)= 6.11814249; T( 8,368)= 6.12707492; T( 8,369)= 6.13600817; T( 8,370)= 6.14494231; T( 8,371)= 6.15387739; T( 8,372)= 6.16281347; T( 8,373)= 6.17175060; T( 8,374)= 6.18068884; T( 8,375)= 6.18962826; T( 8,376)= 6.19856889; T( 8,377)= 6.20751081; T( 8,378)= 6.21645406; T( 8,379)= 6.22539871; T( 8,380)= 6.23434480; T( 8,381)= 6.24329240; T( 8,382)= 6.25224156; T( 8,383)= 6.26119234; T( 8,384)= 6.27014478; T( 8,385)= 6.27909896; T( 8,386)= 6.28805491; T( 8,387)= 6.29701270; T( 8,388)= 6.30597239; T( 8,389)= 6.31493402; T( 8,390)= 6.32389766; T( 8,391)= 6.33286336; T( 8,392)= 6.34183116; T( 8,393)= 6.35080114; T( 8,394)= 6.35977334; T( 8,395)= 6.36874781; T( 8,396)= 6.37772462; T( 8,397)= 6.38670382; T( 8,398)= 6.39568546; T( 8,399)= 6.40466959; T( 8,400)= 6.41365627; T( 8,401)= 6.42264556; T( 8,402)= 6.43163751; T( 8,403)= 6.44063217; T( 8,404)= 6.44962960; T( 8,405)= 6.45862985; T( 8,406)= 6.46763298; T( 8,407)= 6.47663905; T( 8,408)= 6.48564809; T( 8,409)= 6.49466018; T( 8,410)= 6.50367536; T( 8,411)= 6.51269369; T( 8,412)= 6.52171522; T( 8,413)= 6.53074001; T( 8,414)= 6.53976811; T( 8,415)= 6.54879957; T( 8,416)= 6.55783445; T( 8,417)= 6.56687281; T( 8,418)= 6.57591469; T( 8,419)= 6.58496016; T( 8,420)= 6.59400926; T( 8,421)= 6.60306205; T( 8,422)= 6.61211858; T( 8,423)= 6.62117891; T( 8,424)= 6.63024310; T( 8,425)= 6.63931119; T( 8,426)= 6.64838324; T( 8,427)= 6.65745931; T( 8,428)= 6.66653944; T( 8,429)= 6.67562370; T( 8,430)= 6.68471214; T( 8,431)= 6.69380481; T( 8,432)= 6.70290177; T( 8,433)= 6.71200306; T( 8,434)= 6.72110876; T( 8,435)= 6.73021890; T( 8,436)= 6.73933355; T( 8,437)= 6.74845275; T( 8,438)= 6.75757658; T( 8,439)= 6.76670506; T( 8,440)= 6.77583828; T( 8,441)= 6.78497627; T( 8,442)= 6.79411909; T( 8,443)= 6.80326680; T( 8,444)= 6.81241946; T( 8,445)= 6.82157711; T( 8,446)= 6.83073981; T( 8,447)= 6.83990763; T( 8,448)= 6.84908060; T( 8,449)= 6.85825880; T( 8,450)= 6.86744227; T( 8,451)= 6.87663107; T( 8,452)= 6.88582525; T( 8,453)= 6.89502487; T( 8,454)= 6.90422999; T( 8,455)= 6.91344067; T( 8,456)= 6.92265695; T( 8,457)= 6.93187889; T( 8,458)= 6.94110655; T( 8,459)= 6.95033999; T( 8,460)= 6.95957927; T( 8,461)= 6.96882443; T( 8,462)= 6.97807553; T( 8,463)= 6.98733264; T( 8,464)= 6.99659581; T( 8,465)= 7.00586509; T( 8,466)= 7.01514054; T( 8,467)= 7.02442223; T( 8,468)= 7.03371020; T( 8,469)= 7.04300451; T( 8,470)= 7.05230522; T( 8,471)= 7.06161239; T( 8,472)= 7.07092608; T( 8,473)= 7.08024634; T( 8,474)= 7.08957323; T( 8,475)= 7.09890681; T( 8,476)= 7.10824714; T( 8,477)= 7.11759428; T( 8,478)= 7.12694828; T( 8,479)= 7.13630920; T( 8,480)= 7.14567710; T( 8,481)= 7.15505205; T( 8,482)= 7.16443409; T( 8,483)= 7.17382329; T( 8,484)= 7.18321972; T( 8,485)= 7.19262341; T( 8,486)= 7.20203445; T( 8,487)= 7.21145288; T( 8,488)= 7.22087877; T( 8,489)= 7.23031217; T( 8,490)= 7.23975316; T( 8,491)= 7.24920178; T( 8,492)= 7.25865810; T( 8,493)= 7.26812217; T( 8,494)= 7.27759407; T( 8,495)= 7.28707385; T( 8,496)= 7.29656158; T( 8,497)= 7.30605730; T( 8,498)= 7.31556110; T( 8,499)= 7.32507302; T( 8,500)= 7.33459313; T( 8,501)= 7.34412150; T( 8,502)= 7.35365818; T( 8,503)= 7.36320324; T( 8,504)= 7.37275674; T( 8,505)= 7.38231874; T( 8,506)= 7.39188932; T( 8,507)= 7.40146852; T( 8,508)= 7.41105642; T( 8,509)= 7.42065308; T( 8,510)= 7.43025856; T( 8,511)= 7.43987293; T( 8,512)= 7.44949626; T( 8,513)= 7.45912860; T( 8,514)= 7.46877002; T( 8,515)= 7.47842060; T( 8,516)= 7.48808039; T( 8,517)= 7.49774946; T( 8,518)= 7.50742788; T( 8,519)= 7.51711571; T( 8,520)= 7.52681302; T( 8,521)= 7.53651987; T( 8,522)= 7.54623635; T( 8,523)= 7.55596250; T( 8,524)= 7.56569840; T( 8,525)= 7.57544413; T( 8,526)= 7.58519973; T( 8,527)= 7.59496530; T( 8,528)= 7.60474088; T( 8,529)= 7.61452656; T( 8,530)= 7.62432241; T( 8,531)= 7.63412848; T( 8,532)= 7.64394486; T( 8,533)= 7.65377161; T( 8,534)= 7.66360880; T( 8,535)= 7.67345651; T( 8,536)= 7.68331481; T( 8,537)= 7.69318376; T( 8,538)= 7.70306344; T( 8,539)= 7.71295393; T( 8,540)= 7.72285528; T( 8,541)= 7.73276759; T( 8,542)= 7.74269092; T( 8,543)= 7.75262534; T( 8,544)= 7.76257092; T( 8,545)= 7.77252776; T( 8,546)= 7.78249590; T( 8,547)= 7.79247544; T( 8,548)= 7.80246645; T( 8,549)= 7.81246900; T( 8,550)= 7.82248317; T( 8,551)= 7.83250904; T( 8,552)= 7.84254668; T( 8,553)= 7.85259617; T( 8,554)= 7.86265758; T( 8,555)= 7.87273100; T( 8,556)= 7.88281651; T( 8,557)= 7.89291417; T( 8,558)= 7.90302408; T( 8,559)= 7.91314631; T( 8,560)= 7.92328094; T( 8,561)= 7.93342805; T( 8,562)= 7.94358773; T( 8,563)= 7.95376004; T( 8,564)= 7.96394508; T( 8,565)= 7.97414293; T( 8,566)= 7.98435367; T( 8,567)= 7.99457738; T( 8,568)= 8.00481414; T( 8,569)= 8.01506405; T( 8,570)= 8.02532718; T( 8,571)= 8.03560361; T( 8,572)= 8.04589344; T( 8,573)= 8.05619675; T( 8,574)= 8.06651363; T( 8,575)= 8.07684415; T( 8,576)= 8.08718842; T( 8,577)= 8.09754651; T( 8,578)= 8.10791852; T( 8,579)= 8.11830453; T( 8,580)= 8.12870463; T( 8,581)= 8.13911891; T( 8,582)= 8.14954747; T( 8,583)= 8.15999039; T( 8,584)= 8.17044776; T( 8,585)= 8.18091968; T( 8,586)= 8.19140623; T( 8,587)= 8.20190752; T( 8,588)= 8.21242363; T( 8,589)= 8.22295465; T( 8,590)= 8.23350069; T( 8,591)= 8.24406183; T( 8,592)= 8.25463818; T( 8,593)= 8.26522983; T( 8,594)= 8.27583687; T( 8,595)= 8.28645940; T( 8,596)= 8.29709752; T( 8,597)= 8.30775134; T( 8,598)= 8.31842094; T( 8,599)= 8.32910643; T( 8,600)= 8.33980790; T( 8,601)= 8.35052547; T( 8,602)= 8.36125922; T( 8,603)= 8.37200927; T( 8,604)= 8.38277572; T( 8,605)= 8.39355867; T( 8,606)= 8.40435821; T( 8,607)= 8.41517447; T( 8,608)= 8.42600755; T( 8,609)= 8.43685754; T( 8,610)= 8.44772456; T( 8,611)= 8.45860872; T( 8,612)= 8.46951012; T( 8,613)= 8.48042887; T( 8,614)= 8.49136509; T( 8,615)= 8.50231888; T( 8,616)= 8.51329036; T( 8,617)= 8.52427963; T( 8,618)= 8.53528681; T( 8,619)= 8.54631202; T( 8,620)= 8.55735536; T( 8,621)= 8.56841696; T( 8,622)= 8.57949693; T( 8,623)= 8.59059538; T( 8,624)= 8.60171244; T( 8,625)= 8.61284822; T( 8,626)= 8.62400284; T( 8,627)= 8.63517642; T( 8,628)= 8.64636909; T( 8,629)= 8.65758095; T( 8,630)= 8.66881215; T( 8,631)= 8.68006280; T( 8,632)= 8.69133302; T( 8,633)= 8.70262294; T( 8,634)= 8.71393269; T( 8,635)= 8.72526239; T( 8,636)= 8.73661217; T( 8,637)= 8.74798217; T( 8,638)= 8.75937251; T( 8,639)= 8.77078331; T( 8,640)= 8.78221473; T( 8,641)= 8.79366688; T( 8,642)= 8.80513990; T( 8,643)= 8.81663392; T( 8,644)= 8.82814909; T( 8,645)= 8.83968553; T( 8,646)= 8.85124340; T( 8,647)= 8.86282282; T( 8,648)= 8.87442393; T( 8,649)= 8.88604688; T( 8,650)= 8.89769181; T( 8,651)= 8.90935887; T( 8,652)= 8.92104819; T( 8,653)= 8.93275993; T( 8,654)= 8.94449422; T( 8,655)= 8.95625122; T( 8,656)= 8.96803109; T( 8,657)= 8.97983395; T( 8,658)= 8.99165998; T( 8,659)= 9.00350932; T( 8,660)= 9.01538212; T( 8,661)= 9.02727855; T( 8,662)= 9.03919875; T( 8,663)= 9.05114289; T( 8,664)= 9.06311112; T( 8,665)= 9.07510361; T( 8,666)= 9.08712051; T( 8,667)= 9.09916200; T( 8,668)= 9.11122822; T( 8,669)= 9.12331936; T( 8,670)= 9.13543557; T( 8,671)= 9.14757703; T( 8,672)= 9.15974390; T( 8,673)= 9.17193636; T( 8,674)= 9.18415458; T( 8,675)= 9.19639873; T( 8,676)= 9.20866899; T( 8,677)= 9.22096554; T( 8,678)= 9.23328855; T( 8,679)= 9.24563821; T( 8,680)= 9.25801470; T( 8,681)= 9.27041820; T( 8,682)= 9.28284890; T( 8,683)= 9.29530697; T( 8,684)= 9.30779262; T( 8,685)= 9.32030604; T( 8,686)= 9.33284740; T( 8,687)= 9.34541692; T( 8,688)= 9.35801477; T( 8,689)= 9.37064117; T( 8,690)= 9.38329630; T( 8,691)= 9.39598037; T( 8,692)= 9.40869359; T( 8,693)= 9.42143614; T( 8,694)= 9.43420825; T( 8,695)= 9.44701012; T( 8,696)= 9.45984196; T( 8,697)= 9.47270399; T( 8,698)= 9.48559640; T( 8,699)= 9.49851943; T( 8,700)= 9.51147329; T( 8,701)= 9.52445819; T( 8,702)= 9.53747437; T( 8,703)= 9.55052204; T( 8,704)= 9.56360144; T( 8,705)= 9.57671278; T( 8,706)= 9.58985631; T( 8,707)= 9.60303225; T( 8,708)= 9.61624084; T( 8,709)= 9.62948231; T( 8,710)= 9.64275691; T( 8,711)= 9.65606488; T( 8,712)= 9.66940646; T( 8,713)= 9.68278190; T( 8,714)= 9.69619145; T( 8,715)= 9.70963536; T( 8,716)= 9.72311389; T( 8,717)= 9.73662729; T( 8,718)= 9.75017582; T( 8,719)= 9.76375974; T( 8,720)= 9.77737932; T( 8,721)= 9.79103483; T( 8,722)= 9.80472654; T( 8,723)= 9.81845471; T( 8,724)= 9.83221963; T( 8,725)= 9.84602157; T( 8,726)= 9.85986082; T( 8,727)= 9.87373766; T( 8,728)= 9.88765238; T( 8,729)= 9.90160527; T( 8,730)= 9.91559661; T( 8,731)= 9.92962672; T( 8,732)= 9.94369589; T( 8,733)= 9.95780441; T( 8,734)= 9.97195261; T( 8,735)= 9.98614078; T( 8,736)=10.00036925; T( 8,737)=10.01463832; T( 8,738)=10.02894832; T( 8,739)=10.04329957; T( 8,740)=10.05769240; T( 8,741)=10.07212714; T( 8,742)=10.08660412; T( 8,743)=10.10112368; T( 8,744)=10.11568617; T( 8,745)=10.13029192; T( 8,746)=10.14494130; T( 8,747)=10.15963465; T( 8,748)=10.17437232; T( 8,749)=10.18915469; T( 8,750)=10.20398212; T( 8,751)=10.21885497; T( 8,752)=10.23377363; T( 8,753)=10.24873846; T( 8,754)=10.26374987; T( 8,755)=10.27880822; T( 8,756)=10.29391392; T( 8,757)=10.30906736; T( 8,758)=10.32426894; T( 8,759)=10.33951907; T( 8,760)=10.35481817; T( 8,761)=10.37016664; T( 8,762)=10.38556491; T( 8,763)=10.40101340; T( 8,764)=10.41651256; T( 8,765)=10.43206280; T( 8,766)=10.44766459; T( 8,767)=10.46331836; T( 8,768)=10.47902456; T( 8,769)=10.49478367; T( 8,770)=10.51059614; T( 8,771)=10.52646244; T( 8,772)=10.54238305; T( 8,773)=10.55835845; T( 8,774)=10.57438914; T( 8,775)=10.59047561; T( 8,776)=10.60661835; T( 8,777)=10.62281788; T( 8,778)=10.63907472; T( 8,779)=10.65538938; T( 8,780)=10.67176239; T( 8,781)=10.68819430; T( 8,782)=10.70468563; T( 8,783)=10.72123695; T( 8,784)=10.73784880; T( 8,785)=10.75452176; T( 8,786)=10.77125639; T( 8,787)=10.78805328; T( 8,788)=10.80491301; T( 8,789)=10.82183619; T( 8,790)=10.83882340; T( 8,791)=10.85587528; T( 8,792)=10.87299244; T( 8,793)=10.89017551; T( 8,794)=10.90742512; T( 8,795)=10.92474194; T( 8,796)=10.94212660; T( 8,797)=10.95957979; T( 8,798)=10.97710218; T( 8,799)=10.99469445; T( 8,800)=11.01235730; T( 8,801)=11.03009143; T( 8,802)=11.04789757; T( 8,803)=11.06577644; T( 8,804)=11.08372877; T( 8,805)=11.10175532; T( 8,806)=11.11985685; T( 8,807)=11.13803413; T( 8,808)=11.15628794; T( 8,809)=11.17461907; T( 8,810)=11.19302834; T( 8,811)=11.21151657; T( 8,812)=11.23008458; T( 8,813)=11.24873322; T( 8,814)=11.26746336; T( 8,815)=11.28627586; T( 8,816)=11.30517160; T( 8,817)=11.32415150; T( 8,818)=11.34321646; T( 8,819)=11.36236742; T( 8,820)=11.38160531; T( 8,821)=11.40093110; T( 8,822)=11.42034576; T( 8,823)=11.43985029; T( 8,824)=11.45944568; T( 8,825)=11.47913298; T( 8,826)=11.49891321; T( 8,827)=11.51878743; T( 8,828)=11.53875673; T( 8,829)=11.55882221; T( 8,830)=11.57898496; T( 8,831)=11.59924613; T( 8,832)=11.61960687; T( 8,833)=11.64006836; T( 8,834)=11.66063178; T( 8,835)=11.68129836; T( 8,836)=11.70206932; T( 8,837)=11.72294593; T( 8,838)=11.74392947; T( 8,839)=11.76502124; T( 8,840)=11.78622257; T( 8,841)=11.80753482; T( 8,842)=11.82895936; T( 8,843)=11.85049759; T( 8,844)=11.87215095; T( 8,845)=11.89392088; T( 8,846)=11.91580888; T( 8,847)=11.93781645; T( 8,848)=11.95994514; T( 8,849)=11.98219651; T( 8,850)=12.00457218; T( 8,851)=12.02707376; T( 8,852)=12.04970293; T( 8,853)=12.07246138; T( 8,854)=12.09535085; T( 8,855)=12.11837310; T( 8,856)=12.14152993; T( 8,857)=12.16482318; T( 8,858)=12.18825473; T( 8,859)=12.21182650; T( 8,860)=12.23554043; T( 8,861)=12.25939853; T( 8,862)=12.28340284; T( 8,863)=12.30755543; T( 8,864)=12.33185844; T( 8,865)=12.35631403; T( 8,866)=12.38092443; T( 8,867)=12.40569189; T( 8,868)=12.43061876; T( 8,869)=12.45570738; T( 8,870)=12.48096019; T( 8,871)=12.50637966; T( 8,872)=12.53196833; T( 8,873)=12.55772879; T( 8,874)=12.58366370; T( 8,875)=12.60977576; T( 8,876)=12.63606776; T( 8,877)=12.66254253; T( 8,878)=12.68920300; T( 8,879)=12.71605214; T( 8,880)=12.74309301; T( 8,881)=12.77032874; T( 8,882)=12.79776253; T( 8,883)=12.82539767; T( 8,884)=12.85323753; T( 8,885)=12.88128557; T( 8,886)=12.90954532; T( 8,887)=12.93802042; T( 8,888)=12.96671460; T( 8,889)=12.99563168; T( 8,890)=13.02477560; T( 8,891)=13.05415038; T( 8,892)=13.08376017; T( 8,893)=13.11360922; T( 8,894)=13.14370190; T( 8,895)=13.17404271; T( 8,896)=13.20463625; T( 8,897)=13.23548729; T( 8,898)=13.26660069; T( 8,899)=13.29798150; T( 8,900)=13.32963487; T( 8,901)=13.36156614; T( 8,902)=13.39378077; T( 8,903)=13.42628443; T( 8,904)=13.45908291; T( 8,905)=13.49218222; T( 8,906)=13.52558855; T( 8,907)=13.55930825; T( 8,908)=13.59334790; T( 8,909)=13.62771430; T( 8,910)=13.66241443; T( 8,911)=13.69745554; T( 8,912)=13.73284510; T( 8,913)=13.76859083; T( 8,914)=13.80470070; T( 8,915)=13.84118298; T( 8,916)=13.87804619; T( 8,917)=13.91529919; T( 8,918)=13.95295113; T( 8,919)=13.99101147; T( 8,920)=14.02949005; T( 8,921)=14.06839705; T( 8,922)=14.10774303; T( 8,923)=14.14753895; T( 8,924)=14.18779620; T( 8,925)=14.22852659; T( 8,926)=14.26974241; T( 8,927)=14.31145642; T( 8,928)=14.35368191; T( 8,929)=14.39643270; T( 8,930)=14.43972320; T( 8,931)=14.48356840; T( 8,932)=14.52798395; T( 8,933)=14.57298616; T( 8,934)=14.61859207; T( 8,935)=14.66481946; T( 8,936)=14.71168693; T( 8,937)=14.75921392; T( 8,938)=14.80742080; T( 8,939)=14.85632887; T( 8,940)=14.90596048; T( 8,941)=14.95633906; T( 8,942)=15.00748923; T( 8,943)=15.05943682; T( 8,944)=15.11220901; T( 8,945)=15.16583441; T( 8,946)=15.22034314; T( 8,947)=15.27576697; T( 8,948)=15.33213943; T( 8,949)=15.38949593; T( 8,950)=15.44787392; T( 8,951)=15.50731306; T( 8,952)=15.56785535; T( 8,953)=15.62954539; T( 8,954)=15.69243055; T( 8,955)=15.75656121; T( 8,956)=15.82199104; T( 8,957)=15.88877729; T( 8,958)=15.95698108; T( 8,959)=16.02666783; T( 8,960)=16.09790761; T( 8,961)=16.17077561; T( 8,962)=16.24535269; T( 8,963)=16.32172592; T( 8,964)=16.39998923; T( 8,965)=16.48024423; T( 8,966)=16.56260097; T( 8,967)=16.64717898; T( 8,968)=16.73410838; T( 8,969)=16.82353113; T( 8,970)=16.91560259; T( 8,971)=17.01049321; T( 8,972)=17.10839060; T( 8,973)=17.20950186; T( 8,974)=17.31405648; T( 8,975)=17.42230962; T( 8,976)=17.53454614; T( 8,977)=17.65108541; T( 8,978)=17.77228713; T( 8,979)=17.89855848; T( 8,980)=18.03036285; T( 8,981)=18.16823076; T( 8,982)=18.31277355; T( 8,983)=18.46470069; T( 8,984)=18.62484212; T( 8,985)=18.79417722; T( 8,986)=18.97387323; T( 8,987)=19.16533665; T( 8,988)=19.37028387; T( 8,989)=19.59083975; T( 8,990)=19.82967904; T( 8,991)=20.09023503; T( 8,992)=20.37701777; T( 8,993)=20.69611949; T( 8,994)=21.05605726; T( 8,995)=21.46926575; T( 8,996)=21.95495499; T( 8,997)=22.54517756; T( 8,998)=23.29973450; T( 8,999)=24.35208135; T( 8,1000)=26.12448156; T( 8,1001)=31.82762800; T( 8,1002)=37.33159364; T( 9, 1)= 0.00000000; T( 9, 2)= 1.15194955; T( 9, 3)= 1.37020546; T( 9, 4)= 1.51943564; T( 9, 5)= 1.63669070; T( 9, 6)= 1.73493290; T( 9, 7)= 1.82037797; T( 9, 8)= 1.89653501; T( 9, 9)= 1.96559825; T( 9,10)= 2.02904000; T( 9,11)= 2.08790074; T( 9,12)= 2.14294562; T( 9,13)= 2.19475535; T( 9,14)= 2.24378211; T( 9,15)= 2.29038551; T( 9,16)= 2.33485678; T( 9,17)= 2.37743533; T( 9,18)= 2.41832067; T( 9,19)= 2.45768093; T( 9,20)= 2.49565926; T( 9,21)= 2.53237867; T( 9,22)= 2.56794569; T( 9,23)= 2.60245327; T( 9,24)= 2.63598304; T( 9,25)= 2.66860710; T( 9,26)= 2.70038950; T( 9,27)= 2.73138742; T( 9,28)= 2.76165214; T( 9,29)= 2.79122983; T( 9,30)= 2.82016223; T( 9,31)= 2.84848723; T( 9,32)= 2.87623931; T( 9,33)= 2.90344997; T( 9,34)= 2.93014807; T( 9,35)= 2.95636010; T( 9,36)= 2.98211048; T( 9,37)= 3.00742173; T( 9,38)= 3.03231470; T( 9,39)= 3.05680873; T( 9,40)= 3.08092177; T( 9,41)= 3.10467056; T( 9,42)= 3.12807070; T( 9,43)= 3.15113676; T( 9,44)= 3.17388238; T( 9,45)= 3.19632036; T( 9,46)= 3.21846269; T( 9,47)= 3.24032068; T( 9,48)= 3.26190494; T( 9,49)= 3.28322551; T( 9,50)= 3.30429183; T( 9,51)= 3.32511284; T( 9,52)= 3.34569701; T( 9,53)= 3.36605234; T( 9,54)= 3.38618644; T( 9,55)= 3.40610651; T( 9,56)= 3.42581940; T( 9,57)= 3.44533163; T( 9,58)= 3.46464940; T( 9,59)= 3.48377863; T( 9,60)= 3.50272495; T( 9,61)= 3.52149373; T( 9,62)= 3.54009013; T( 9,63)= 3.55851904; T( 9,64)= 3.57678517; T( 9,65)= 3.59489302; T( 9,66)= 3.61284689; T( 9,67)= 3.63065091; T( 9,68)= 3.64830905; T( 9,69)= 3.66582510; T( 9,70)= 3.68320273; T( 9,71)= 3.70044544; T( 9,72)= 3.71755660; T( 9,73)= 3.73453947; T( 9,74)= 3.75139717; T( 9,75)= 3.76813270; T( 9,76)= 3.78474899; T( 9,77)= 3.80124881; T( 9,78)= 3.81763487; T( 9,79)= 3.83390978; T( 9,80)= 3.85007605; T( 9,81)= 3.86613610; T( 9,82)= 3.88209230; T( 9,83)= 3.89794690; T( 9,84)= 3.91370210; T( 9,85)= 3.92936004; T( 9,86)= 3.94492275; T( 9,87)= 3.96039224; T( 9,88)= 3.97577044; T( 9,89)= 3.99105922; T( 9,90)= 4.00626039; T( 9,91)= 4.02137570; T( 9,92)= 4.03640687; T( 9,93)= 4.05135555; T( 9,94)= 4.06622335; T( 9,95)= 4.08101183; T( 9,96)= 4.09572250; T( 9,97)= 4.11035685; T( 9,98)= 4.12491630; T( 9,99)= 4.13940224; T( 9,100)= 4.15381604; T( 9,101)= 4.16815901; T( 9,102)= 4.18243243; T( 9,103)= 4.19663756; T( 9,104)= 4.21077561; T( 9,105)= 4.22484776; T( 9,106)= 4.23885517; T( 9,107)= 4.25279897; T( 9,108)= 4.26668026; T( 9,109)= 4.28050009; T( 9,110)= 4.29425952; T( 9,111)= 4.30795956; T( 9,112)= 4.32160120; T( 9,113)= 4.33518542; T( 9,114)= 4.34871316; T( 9,115)= 4.36218535; T( 9,116)= 4.37560287; T( 9,117)= 4.38896663; T( 9,118)= 4.40227747; T( 9,119)= 4.41553624; T( 9,120)= 4.42874376; T( 9,121)= 4.44190084; T( 9,122)= 4.45500826; T( 9,123)= 4.46806678; T( 9,124)= 4.48107717; T( 9,125)= 4.49404015; T( 9,126)= 4.50695646; T( 9,127)= 4.51982678; T( 9,128)= 4.53265182; T( 9,129)= 4.54543224; T( 9,130)= 4.55816871; T( 9,131)= 4.57086188; T( 9,132)= 4.58351239; T( 9,133)= 4.59612084; T( 9,134)= 4.60868786; T( 9,135)= 4.62121403; T( 9,136)= 4.63369996; T( 9,137)= 4.64614620; T( 9,138)= 4.65855333; T( 9,139)= 4.67092189; T( 9,140)= 4.68325242; T( 9,141)= 4.69554547; T( 9,142)= 4.70780154; T( 9,143)= 4.72002115; T( 9,144)= 4.73220480; T( 9,145)= 4.74435299; T( 9,146)= 4.75646620; T( 9,147)= 4.76854490; T( 9,148)= 4.78058956; T( 9,149)= 4.79260064; T( 9,150)= 4.80457858; T( 9,151)= 4.81652384; T( 9,152)= 4.82843684; T( 9,153)= 4.84031801; T( 9,154)= 4.85216777; T( 9,155)= 4.86398654; T( 9,156)= 4.87577471; T( 9,157)= 4.88753269; T( 9,158)= 4.89926087; T( 9,159)= 4.91095963; T( 9,160)= 4.92262936; T( 9,161)= 4.93427042; T( 9,162)= 4.94588318; T( 9,163)= 4.95746801; T( 9,164)= 4.96902525; T( 9,165)= 4.98055527; T( 9,166)= 4.99205839; T( 9,167)= 5.00353496; T( 9,168)= 5.01498531; T( 9,169)= 5.02640978; T( 9,170)= 5.03780868; T( 9,171)= 5.04918233; T( 9,172)= 5.06053104; T( 9,173)= 5.07185513; T( 9,174)= 5.08315490; T( 9,175)= 5.09443064; T( 9,176)= 5.10568265; T( 9,177)= 5.11691122; T( 9,178)= 5.12811664; T( 9,179)= 5.13929920; T( 9,180)= 5.15045916; T( 9,181)= 5.16159680; T( 9,182)= 5.17271239; T( 9,183)= 5.18380621; T( 9,184)= 5.19487851; T( 9,185)= 5.20592954; T( 9,186)= 5.21695958; T( 9,187)= 5.22796886; T( 9,188)= 5.23895764; T( 9,189)= 5.24992616; T( 9,190)= 5.26087466; T( 9,191)= 5.27180339; T( 9,192)= 5.28271258; T( 9,193)= 5.29360245; T( 9,194)= 5.30447325; T( 9,195)= 5.31532519; T( 9,196)= 5.32615850; T( 9,197)= 5.33697340; T( 9,198)= 5.34777011; T( 9,199)= 5.35854884; T( 9,200)= 5.36930980; T( 9,201)= 5.38005321; T( 9,202)= 5.39077927; T( 9,203)= 5.40148819; T( 9,204)= 5.41218016; T( 9,205)= 5.42285539; T( 9,206)= 5.43351408; T( 9,207)= 5.44415641; T( 9,208)= 5.45478258; T( 9,209)= 5.46539279; T( 9,210)= 5.47598721; T( 9,211)= 5.48656604; T( 9,212)= 5.49712945; T( 9,213)= 5.50767763; T( 9,214)= 5.51821077; T( 9,215)= 5.52872902; T( 9,216)= 5.53923258; T( 9,217)= 5.54972160; T( 9,218)= 5.56019628; T( 9,219)= 5.57065676; T( 9,220)= 5.58110323; T( 9,221)= 5.59153584; T( 9,222)= 5.60195476; T( 9,223)= 5.61236016; T( 9,224)= 5.62275219; T( 9,225)= 5.63313100; T( 9,226)= 5.64349677; T( 9,227)= 5.65384964; T( 9,228)= 5.66418976; T( 9,229)= 5.67451729; T( 9,230)= 5.68483238; T( 9,231)= 5.69513517; T( 9,232)= 5.70542582; T( 9,233)= 5.71570447; T( 9,234)= 5.72597127; T( 9,235)= 5.73622635; T( 9,236)= 5.74646986; T( 9,237)= 5.75670193; T( 9,238)= 5.76692272; T( 9,239)= 5.77713234; T( 9,240)= 5.78733095; T( 9,241)= 5.79751867; T( 9,242)= 5.80769564; T( 9,243)= 5.81786199; T( 9,244)= 5.82801785; T( 9,245)= 5.83816335; T( 9,246)= 5.84829861; T( 9,247)= 5.85842378; T( 9,248)= 5.86853896; T( 9,249)= 5.87864429; T( 9,250)= 5.88873989; T( 9,251)= 5.89882588; T( 9,252)= 5.90890239; T( 9,253)= 5.91896953; T( 9,254)= 5.92902742; T( 9,255)= 5.93907619; T( 9,256)= 5.94911594; T( 9,257)= 5.95914680; T( 9,258)= 5.96916888; T( 9,259)= 5.97918230; T( 9,260)= 5.98918716; T( 9,261)= 5.99918358; T( 9,262)= 6.00917168; T( 9,263)= 6.01915155; T( 9,264)= 6.02912332; T( 9,265)= 6.03908709; T( 9,266)= 6.04904297; T( 9,267)= 6.05899106; T( 9,268)= 6.06893147; T( 9,269)= 6.07886431; T( 9,270)= 6.08878968; T( 9,271)= 6.09870768; T( 9,272)= 6.10861842; T( 9,273)= 6.11852200; T( 9,274)= 6.12841851; T( 9,275)= 6.13830807; T( 9,276)= 6.14819077; T( 9,277)= 6.15806671; T( 9,278)= 6.16793598; T( 9,279)= 6.17779869; T( 9,280)= 6.18765493; T( 9,281)= 6.19750480; T( 9,282)= 6.20734839; T( 9,283)= 6.21718579; T( 9,284)= 6.22701711; T( 9,285)= 6.23684243; T( 9,286)= 6.24666185; T( 9,287)= 6.25647546; T( 9,288)= 6.26628335; T( 9,289)= 6.27608561; T( 9,290)= 6.28588234; T( 9,291)= 6.29567361; T( 9,292)= 6.30545952; T( 9,293)= 6.31524017; T( 9,294)= 6.32501563; T( 9,295)= 6.33478599; T( 9,296)= 6.34455134; T( 9,297)= 6.35431177; T( 9,298)= 6.36406737; T( 9,299)= 6.37381821; T( 9,300)= 6.38356438; T( 9,301)= 6.39330596; T( 9,302)= 6.40304305; T( 9,303)= 6.41277572; T( 9,304)= 6.42250405; T( 9,305)= 6.43222813; T( 9,306)= 6.44194804; T( 9,307)= 6.45166386; T( 9,308)= 6.46137567; T( 9,309)= 6.47108355; T( 9,310)= 6.48078758; T( 9,311)= 6.49048784; T( 9,312)= 6.50018441; T( 9,313)= 6.50987736; T( 9,314)= 6.51956678; T( 9,315)= 6.52925274; T( 9,316)= 6.53893531; T( 9,317)= 6.54861459; T( 9,318)= 6.55829063; T( 9,319)= 6.56796353; T( 9,320)= 6.57763335; T( 9,321)= 6.58730017; T( 9,322)= 6.59696406; T( 9,323)= 6.60662509; T( 9,324)= 6.61628336; T( 9,325)= 6.62593891; T( 9,326)= 6.63559184; T( 9,327)= 6.64524221; T( 9,328)= 6.65489009; T( 9,329)= 6.66453556; T( 9,330)= 6.67417869; T( 9,331)= 6.68381954; T( 9,332)= 6.69345821; T( 9,333)= 6.70309474; T( 9,334)= 6.71272922; T( 9,335)= 6.72236171; T( 9,336)= 6.73199229; T( 9,337)= 6.74162102; T( 9,338)= 6.75124797; T( 9,339)= 6.76087322; T( 9,340)= 6.77049683; T( 9,341)= 6.78011887; T( 9,342)= 6.78973941; T( 9,343)= 6.79935851; T( 9,344)= 6.80897626; T( 9,345)= 6.81859270; T( 9,346)= 6.82820791; T( 9,347)= 6.83782196; T( 9,348)= 6.84743492; T( 9,349)= 6.85704684; T( 9,350)= 6.86665781; T( 9,351)= 6.87626787; T( 9,352)= 6.88587711; T( 9,353)= 6.89548557; T( 9,354)= 6.90509334; T( 9,355)= 6.91470048; T( 9,356)= 6.92430705; T( 9,357)= 6.93391311; T( 9,358)= 6.94351873; T( 9,359)= 6.95312398; T( 9,360)= 6.96272891; T( 9,361)= 6.97233360; T( 9,362)= 6.98193811; T( 9,363)= 6.99154249; T( 9,364)= 7.00114683; T( 9,365)= 7.01075116; T( 9,366)= 7.02035557; T( 9,367)= 7.02996012; T( 9,368)= 7.03956485; T( 9,369)= 7.04916985; T( 9,370)= 7.05877517; T( 9,371)= 7.06838088; T( 9,372)= 7.07798703; T( 9,373)= 7.08759369; T( 9,374)= 7.09720092; T( 9,375)= 7.10680878; T( 9,376)= 7.11641733; T( 9,377)= 7.12602664; T( 9,378)= 7.13563677; T( 9,379)= 7.14524778; T( 9,380)= 7.15485972; T( 9,381)= 7.16447266; T( 9,382)= 7.17408667; T( 9,383)= 7.18370179; T( 9,384)= 7.19331810; T( 9,385)= 7.20293565; T( 9,386)= 7.21255451; T( 9,387)= 7.22217472; T( 9,388)= 7.23179637; T( 9,389)= 7.24141949; T( 9,390)= 7.25104416; T( 9,391)= 7.26067043; T( 9,392)= 7.27029837; T( 9,393)= 7.27992803; T( 9,394)= 7.28955947; T( 9,395)= 7.29919276; T( 9,396)= 7.30882795; T( 9,397)= 7.31846510; T( 9,398)= 7.32810427; T( 9,399)= 7.33774552; T( 9,400)= 7.34738891; T( 9,401)= 7.35703450; T( 9,402)= 7.36668235; T( 9,403)= 7.37633252; T( 9,404)= 7.38598506; T( 9,405)= 7.39564003; T( 9,406)= 7.40529751; T( 9,407)= 7.41495753; T( 9,408)= 7.42462017; T( 9,409)= 7.43428547; T( 9,410)= 7.44395351; T( 9,411)= 7.45362433; T( 9,412)= 7.46329800; T( 9,413)= 7.47297458; T( 9,414)= 7.48265412; T( 9,415)= 7.49233668; T( 9,416)= 7.50202232; T( 9,417)= 7.51171111; T( 9,418)= 7.52140309; T( 9,419)= 7.53109833; T( 9,420)= 7.54079688; T( 9,421)= 7.55049881; T( 9,422)= 7.56020417; T( 9,423)= 7.56991303; T( 9,424)= 7.57962543; T( 9,425)= 7.58934144; T( 9,426)= 7.59906111; T( 9,427)= 7.60878452; T( 9,428)= 7.61851170; T( 9,429)= 7.62824273; T( 9,430)= 7.63797766; T( 9,431)= 7.64771655; T( 9,432)= 7.65745946; T( 9,433)= 7.66720644; T( 9,434)= 7.67695756; T( 9,435)= 7.68671287; T( 9,436)= 7.69647244; T( 9,437)= 7.70623631; T( 9,438)= 7.71600456; T( 9,439)= 7.72577724; T( 9,440)= 7.73555440; T( 9,441)= 7.74533611; T( 9,442)= 7.75512243; T( 9,443)= 7.76491341; T( 9,444)= 7.77470912; T( 9,445)= 7.78450961; T( 9,446)= 7.79431494; T( 9,447)= 7.80412517; T( 9,448)= 7.81394037; T( 9,449)= 7.82376058; T( 9,450)= 7.83358588; T( 9,451)= 7.84341631; T( 9,452)= 7.85325194; T( 9,453)= 7.86309283; T( 9,454)= 7.87293904; T( 9,455)= 7.88279062; T( 9,456)= 7.89264764; T( 9,457)= 7.90251016; T( 9,458)= 7.91237824; T( 9,459)= 7.92225194; T( 9,460)= 7.93213131; T( 9,461)= 7.94201642; T( 9,462)= 7.95190733; T( 9,463)= 7.96180410; T( 9,464)= 7.97170679; T( 9,465)= 7.98161545; T( 9,466)= 7.99153016; T( 9,467)= 8.00145097; T( 9,468)= 8.01137795; T( 9,469)= 8.02131115; T( 9,470)= 8.03125063; T( 9,471)= 8.04119646; T( 9,472)= 8.05114870; T( 9,473)= 8.06110741; T( 9,474)= 8.07107265; T( 9,475)= 8.08104448; T( 9,476)= 8.09102297; T( 9,477)= 8.10100818; T( 9,478)= 8.11100017; T( 9,479)= 8.12099900; T( 9,480)= 8.13100473; T( 9,481)= 8.14101744; T( 9,482)= 8.15103717; T( 9,483)= 8.16106400; T( 9,484)= 8.17109798; T( 9,485)= 8.18113918; T( 9,486)= 8.19118767; T( 9,487)= 8.20124350; T( 9,488)= 8.21130675; T( 9,489)= 8.22137747; T( 9,490)= 8.23145573; T( 9,491)= 8.24154159; T( 9,492)= 8.25163512; T( 9,493)= 8.26173639; T( 9,494)= 8.27184545; T( 9,495)= 8.28196237; T( 9,496)= 8.29208722; T( 9,497)= 8.30222007; T( 9,498)= 8.31236097; T( 9,499)= 8.32251000; T( 9,500)= 8.33266722; T( 9,501)= 8.34283269; T( 9,502)= 8.35300649; T( 9,503)= 8.36318868; T( 9,504)= 8.37337932; T( 9,505)= 8.38357849; T( 9,506)= 8.39378625; T( 9,507)= 8.40400267; T( 9,508)= 8.41422781; T( 9,509)= 8.42446175; T( 9,510)= 8.43470455; T( 9,511)= 8.44495628; T( 9,512)= 8.45521701; T( 9,513)= 8.46548681; T( 9,514)= 8.47576574; T( 9,515)= 8.48605388; T( 9,516)= 8.49635130; T( 9,517)= 8.50665806; T( 9,518)= 8.51697424; T( 9,519)= 8.52729991; T( 9,520)= 8.53763513; T( 9,521)= 8.54797998; T( 9,522)= 8.55833453; T( 9,523)= 8.56869885; T( 9,524)= 8.57907301; T( 9,525)= 8.58945709; T( 9,526)= 8.59985115; T( 9,527)= 8.61025527; T( 9,528)= 8.62066953; T( 9,529)= 8.63109399; T( 9,530)= 8.64152872; T( 9,531)= 8.65197381; T( 9,532)= 8.66242932; T( 9,533)= 8.67289534; T( 9,534)= 8.68337193; T( 9,535)= 8.69385917; T( 9,536)= 8.70435713; T( 9,537)= 8.71486590; T( 9,538)= 8.72538554; T( 9,539)= 8.73591613; T( 9,540)= 8.74645775; T( 9,541)= 8.75701048; T( 9,542)= 8.76757440; T( 9,543)= 8.77814957; T( 9,544)= 8.78873609; T( 9,545)= 8.79933402; T( 9,546)= 8.80994344; T( 9,547)= 8.82056444; T( 9,548)= 8.83119710; T( 9,549)= 8.84184149; T( 9,550)= 8.85249770; T( 9,551)= 8.86316579; T( 9,552)= 8.87384587; T( 9,553)= 8.88453800; T( 9,554)= 8.89524227; T( 9,555)= 8.90595876; T( 9,556)= 8.91668755; T( 9,557)= 8.92742873; T( 9,558)= 8.93818238; T( 9,559)= 8.94894858; T( 9,560)= 8.95972742; T( 9,561)= 8.97051897; T( 9,562)= 8.98132334; T( 9,563)= 8.99214059; T( 9,564)= 9.00297083; T( 9,565)= 9.01381412; T( 9,566)= 9.02467057; T( 9,567)= 9.03554025; T( 9,568)= 9.04642326; T( 9,569)= 9.05731968; T( 9,570)= 9.06822960; T( 9,571)= 9.07915312; T( 9,572)= 9.09009031; T( 9,573)= 9.10104127; T( 9,574)= 9.11200610; T( 9,575)= 9.12298487; T( 9,576)= 9.13397769; T( 9,577)= 9.14498464; T( 9,578)= 9.15600581; T( 9,579)= 9.16704131; T( 9,580)= 9.17809122; T( 9,581)= 9.18915564; T( 9,582)= 9.20023466; T( 9,583)= 9.21132837; T( 9,584)= 9.22243688; T( 9,585)= 9.23356028; T( 9,586)= 9.24469866; T( 9,587)= 9.25585212; T( 9,588)= 9.26702077; T( 9,589)= 9.27820469; T( 9,590)= 9.28940399; T( 9,591)= 9.30061876; T( 9,592)= 9.31184912; T( 9,593)= 9.32309515; T( 9,594)= 9.33435696; T( 9,595)= 9.34563465; T( 9,596)= 9.35692833; T( 9,597)= 9.36823809; T( 9,598)= 9.37956404; T( 9,599)= 9.39090629; T( 9,600)= 9.40226494; T( 9,601)= 9.41364009; T( 9,602)= 9.42503186; T( 9,603)= 9.43644035; T( 9,604)= 9.44786566; T( 9,605)= 9.45930791; T( 9,606)= 9.47076721; T( 9,607)= 9.48224366; T( 9,608)= 9.49373737; T( 9,609)= 9.50524846; T( 9,610)= 9.51677704; T( 9,611)= 9.52832322; T( 9,612)= 9.53988712; T( 9,613)= 9.55146884; T( 9,614)= 9.56306851; T( 9,615)= 9.57468623; T( 9,616)= 9.58632213; T( 9,617)= 9.59797633; T( 9,618)= 9.60964893; T( 9,619)= 9.62134007; T( 9,620)= 9.63304986; T( 9,621)= 9.64477841; T( 9,622)= 9.65652586; T( 9,623)= 9.66829231; T( 9,624)= 9.68007791; T( 9,625)= 9.69188276; T( 9,626)= 9.70370700; T( 9,627)= 9.71555075; T( 9,628)= 9.72741414; T( 9,629)= 9.73929729; T( 9,630)= 9.75120033; T( 9,631)= 9.76312339; T( 9,632)= 9.77506660; T( 9,633)= 9.78703009; T( 9,634)= 9.79901400; T( 9,635)= 9.81101845; T( 9,636)= 9.82304359; T( 9,637)= 9.83508954; T( 9,638)= 9.84715643; T( 9,639)= 9.85924442; T( 9,640)= 9.87135363; T( 9,641)= 9.88348421; T( 9,642)= 9.89563628; T( 9,643)= 9.90781001; T( 9,644)= 9.92000552; T( 9,645)= 9.93222295; T( 9,646)= 9.94446247; T( 9,647)= 9.95672420; T( 9,648)= 9.96900829; T( 9,649)= 9.98131490; T( 9,650)= 9.99364416; T( 9,651)=10.00599624; T( 9,652)=10.01837127; T( 9,653)=10.03076942; T( 9,654)=10.04319084; T( 9,655)=10.05563568; T( 9,656)=10.06810409; T( 9,657)=10.08059623; T( 9,658)=10.09311226; T( 9,659)=10.10565235; T( 9,660)=10.11821664; T( 9,661)=10.13080531; T( 9,662)=10.14341851; T( 9,663)=10.15605641; T( 9,664)=10.16871917; T( 9,665)=10.18140697; T( 9,666)=10.19411997; T( 9,667)=10.20685834; T( 9,668)=10.21962225; T( 9,669)=10.23241188; T( 9,670)=10.24522739; T( 9,671)=10.25806897; T( 9,672)=10.27093679; T( 9,673)=10.28383103; T( 9,674)=10.29675187; T( 9,675)=10.30969950; T( 9,676)=10.32267408; T( 9,677)=10.33567582; T( 9,678)=10.34870489; T( 9,679)=10.36176149; T( 9,680)=10.37484580; T( 9,681)=10.38795801; T( 9,682)=10.40109832; T( 9,683)=10.41426693; T( 9,684)=10.42746402; T( 9,685)=10.44068979; T( 9,686)=10.45394445; T( 9,687)=10.46722820; T( 9,688)=10.48054124; T( 9,689)=10.49388377; T( 9,690)=10.50725600; T( 9,691)=10.52065815; T( 9,692)=10.53409042; T( 9,693)=10.54755302; T( 9,694)=10.56104617; T( 9,695)=10.57457008; T( 9,696)=10.58812498; T( 9,697)=10.60171108; T( 9,698)=10.61532861; T( 9,699)=10.62897779; T( 9,700)=10.64265884; T( 9,701)=10.65637201; T( 9,702)=10.67011751; T( 9,703)=10.68389558; T( 9,704)=10.69770646; T( 9,705)=10.71155038; T( 9,706)=10.72542759; T( 9,707)=10.73933832; T( 9,708)=10.75328283; T( 9,709)=10.76726135; T( 9,710)=10.78127414; T( 9,711)=10.79532144; T( 9,712)=10.80940352; T( 9,713)=10.82352064; T( 9,714)=10.83767304; T( 9,715)=10.85186099; T( 9,716)=10.86608475; T( 9,717)=10.88034460; T( 9,718)=10.89464080; T( 9,719)=10.90897363; T( 9,720)=10.92334336; T( 9,721)=10.93775026; T( 9,722)=10.95219462; T( 9,723)=10.96667673; T( 9,724)=10.98119687; T( 9,725)=10.99575533; T( 9,726)=11.01035240; T( 9,727)=11.02498837; T( 9,728)=11.03966356; T( 9,729)=11.05437825; T( 9,730)=11.06913276; T( 9,731)=11.08392739; T( 9,732)=11.09876245; T( 9,733)=11.11363826; T( 9,734)=11.12855514; T( 9,735)=11.14351342; T( 9,736)=11.15851340; T( 9,737)=11.17355543; T( 9,738)=11.18863983; T( 9,739)=11.20376695; T( 9,740)=11.21893712; T( 9,741)=11.23415068; T( 9,742)=11.24940799; T( 9,743)=11.26470939; T( 9,744)=11.28005524; T( 9,745)=11.29544589; T( 9,746)=11.31088172; T( 9,747)=11.32636309; T( 9,748)=11.34189037; T( 9,749)=11.35746393; T( 9,750)=11.37308416; T( 9,751)=11.38875144; T( 9,752)=11.40446616; T( 9,753)=11.42022871; T( 9,754)=11.43603949; T( 9,755)=11.45189890; T( 9,756)=11.46780736; T( 9,757)=11.48376527; T( 9,758)=11.49977304; T( 9,759)=11.51583111; T( 9,760)=11.53193990; T( 9,761)=11.54809984; T( 9,762)=11.56431136; T( 9,763)=11.58057492; T( 9,764)=11.59689096; T( 9,765)=11.61325993; T( 9,766)=11.62968230; T( 9,767)=11.64615852; T( 9,768)=11.66268907; T( 9,769)=11.67927442; T( 9,770)=11.69591507; T( 9,771)=11.71261149; T( 9,772)=11.72936418; T( 9,773)=11.74617364; T( 9,774)=11.76304038; T( 9,775)=11.77996492; T( 9,776)=11.79694777; T( 9,777)=11.81398947; T( 9,778)=11.83109054; T( 9,779)=11.84825153; T( 9,780)=11.86547298; T( 9,781)=11.88275546; T( 9,782)=11.90009953; T( 9,783)=11.91750574; T( 9,784)=11.93497470; T( 9,785)=11.95250697; T( 9,786)=11.97010315; T( 9,787)=11.98776385; T( 9,788)=12.00548968; T( 9,789)=12.02328125; T( 9,790)=12.04113920; T( 9,791)=12.05906415; T( 9,792)=12.07705675; T( 9,793)=12.09511766; T( 9,794)=12.11324753; T( 9,795)=12.13144705; T( 9,796)=12.14971689; T( 9,797)=12.16805774; T( 9,798)=12.18647031; T( 9,799)=12.20495530; T( 9,800)=12.22351345; T( 9,801)=12.24214547; T( 9,802)=12.26085212; T( 9,803)=12.27963414; T( 9,804)=12.29849231; T( 9,805)=12.31742740; T( 9,806)=12.33644020; T( 9,807)=12.35553151; T( 9,808)=12.37470213; T( 9,809)=12.39395290; T( 9,810)=12.41328465; T( 9,811)=12.43269824; T( 9,812)=12.45219452; T( 9,813)=12.47177437; T( 9,814)=12.49143868; T( 9,815)=12.51118836; T( 9,816)=12.53102432; T( 9,817)=12.55094750; T( 9,818)=12.57095885; T( 9,819)=12.59105932; T( 9,820)=12.61124990; T( 9,821)=12.63153158; T( 9,822)=12.65190538; T( 9,823)=12.67237231; T( 9,824)=12.69293343; T( 9,825)=12.71358979; T( 9,826)=12.73434248; T( 9,827)=12.75519259; T( 9,828)=12.77614124; T( 9,829)=12.79718957; T( 9,830)=12.81833872; T( 9,831)=12.83958988; T( 9,832)=12.86094424; T( 9,833)=12.88240301; T( 9,834)=12.90396743; T( 9,835)=12.92563876; T( 9,836)=12.94741828; T( 9,837)=12.96930729; T( 9,838)=12.99130713; T( 9,839)=13.01341914; T( 9,840)=13.03564470; T( 9,841)=13.05798521; T( 9,842)=13.08044209; T( 9,843)=13.10301681; T( 9,844)=13.12571083; T( 9,845)=13.14852568; T( 9,846)=13.17146287; T( 9,847)=13.19452400; T( 9,848)=13.21771064; T( 9,849)=13.24102442; T( 9,850)=13.26446700; T( 9,851)=13.28804008; T( 9,852)=13.31174538; T( 9,853)=13.33558465; T( 9,854)=13.35955969; T( 9,855)=13.38367233; T( 9,856)=13.40792443; T( 9,857)=13.43231790; T( 9,858)=13.45685468; T( 9,859)=13.48153676; T( 9,860)=13.50636615; T( 9,861)=13.53134493; T( 9,862)=13.55647521; T( 9,863)=13.58175914; T( 9,864)=13.60719892; T( 9,865)=13.63279681; T( 9,866)=13.65855509; T( 9,867)=13.68447612; T( 9,868)=13.71056231; T( 9,869)=13.73681609; T( 9,870)=13.76323998; T( 9,871)=13.78983655; T( 9,872)=13.81660842; T( 9,873)=13.84355827; T( 9,874)=13.87068884; T( 9,875)=13.89800295; T( 9,876)=13.92550348; T( 9,877)=13.95319335; T( 9,878)=13.98107560; T( 9,879)=14.00915329; T( 9,880)=14.03742961; T( 9,881)=14.06590777; T( 9,882)=14.09459111; T( 9,883)=14.12348301; T( 9,884)=14.15258698; T( 9,885)=14.18190657; T( 9,886)=14.21144546; T( 9,887)=14.24120741; T( 9,888)=14.27119626; T( 9,889)=14.30141599; T( 9,890)=14.33187066; T( 9,891)=14.36256442; T( 9,892)=14.39350158; T( 9,893)=14.42468653; T( 9,894)=14.45612379; T( 9,895)=14.48781800; T( 9,896)=14.51977395; T( 9,897)=14.55199654; T( 9,898)=14.58449083; T( 9,899)=14.61726200; T( 9,900)=14.65031542; T( 9,901)=14.68365657; T( 9,902)=14.71729114; T( 9,903)=14.75122495; T( 9,904)=14.78546403; T( 9,905)=14.82001456; T( 9,906)=14.85488294; T( 9,907)=14.89007576; T( 9,908)=14.92559982; T( 9,909)=14.96146212; T( 9,910)=14.99766991; T( 9,911)=15.03423067; T( 9,912)=15.07115212; T( 9,913)=15.10844223; T( 9,914)=15.14610927; T( 9,915)=15.18416175; T( 9,916)=15.22260851; T( 9,917)=15.26145869; T( 9,918)=15.30072174; T( 9,919)=15.34040745; T( 9,920)=15.38052598; T( 9,921)=15.42108786; T( 9,922)=15.46210399; T( 9,923)=15.50358571; T( 9,924)=15.54554477; T( 9,925)=15.58799338; T( 9,926)=15.63094424; T( 9,927)=15.67441053; T( 9,928)=15.71840598; T( 9,929)=15.76294488; T( 9,930)=15.80804209; T( 9,931)=15.85371311; T( 9,932)=15.89997410; T( 9,933)=15.94684192; T( 9,934)=15.99433414; T( 9,935)=16.04246915; T( 9,936)=16.09126615; T( 9,937)=16.14074522; T( 9,938)=16.19092738; T( 9,939)=16.24183463; T( 9,940)=16.29349005; T( 9,941)=16.34591784; T( 9,942)=16.39914340; T( 9,943)=16.45319341; T( 9,944)=16.50809593; T( 9,945)=16.56388048; T( 9,946)=16.62057817; T( 9,947)=16.67822177; T( 9,948)=16.73684590; T( 9,949)=16.79648711; T( 9,950)=16.85718404; T( 9,951)=16.91897760; T( 9,952)=16.98191117; T( 9,953)=17.04603075; T( 9,954)=17.11138520; T( 9,955)=17.17802652; T( 9,956)=17.24601008; T( 9,957)=17.31539491; T( 9,958)=17.38624409; T( 9,959)=17.45862507; T( 9,960)=17.53261014; T( 9,961)=17.60827684; T( 9,962)=17.68570856; T( 9,963)=17.76499507; T( 9,964)=17.84623325; T( 9,965)=17.92952784; T( 9,966)=18.01499231; T( 9,967)=18.10274988; T( 9,968)=18.19293468; T( 9,969)=18.28569303; T( 9,970)=18.38118506; T( 9,971)=18.47958642; T( 9,972)=18.58109043; T( 9,973)=18.68591052; T( 9,974)=18.79428310; T( 9,975)=18.90647105; T( 9,976)=19.02276780; T( 9,977)=19.14350231; T( 9,978)=19.26904504; T( 9,979)=19.39981530; T( 9,980)=19.53629025; T( 9,981)=19.67901609; T( 9,982)=19.82862217; T( 9,983)=19.98583877; T( 9,984)=20.15152006; T( 9,985)=20.32667391; T( 9,986)=20.51250131; T( 9,987)=20.71044925; T( 9,988)=20.92228324; T( 9,989)=21.15018860; T( 9,990)=21.39691572; T( 9,991)=21.66599433; T( 9,992)=21.96206024; T( 9,993)=22.29137421; T( 9,994)=22.66268685; T( 9,995)=23.08877044; T( 9,996)=23.58935078; T( 9,997)=24.19732982; T( 9,998)=24.97406845; T( 9,999)=26.05643335; T( 9,1000)=27.87716487; T( 9,1001)=33.71994844; T( 9,1002)=39.34065373; T(10, 1)= 0.00000000; T(10, 2)= 1.47874346; T(10, 3)= 1.73445958; T(10, 4)= 1.90767634; T(10, 5)= 2.04298034; T(10, 6)= 2.15585648; T(10, 7)= 2.25369458; T(10, 8)= 2.34065149; T(10, 9)= 2.41931882; T(10,10)= 2.49143127; T(10,11)= 2.55821216; T(10,12)= 2.62055942; T(10,13)= 2.67915339; T(10,14)= 2.73452303; T(10,15)= 2.78708848; T(10,16)= 2.83718951; T(10,17)= 2.88510516; T(10,18)= 2.93106767; T(10,19)= 2.97527258; T(10,20)= 3.01788623; T(10,21)= 3.05905141; T(10,22)= 3.09889170; T(10,23)= 3.13751482; T(10,24)= 3.17501530; T(10,25)= 3.21147659; T(10,26)= 3.24697278; T(10,27)= 3.28156994; T(10,28)= 3.31532730; T(10,29)= 3.34829816; T(10,30)= 3.38053068; T(10,31)= 3.41206855; T(10,32)= 3.44295150; T(10,33)= 3.47321582; T(10,34)= 3.50289473; T(10,35)= 3.53201873; T(10,36)= 3.56061588; T(10,37)= 3.58871209; T(10,38)= 3.61633131; T(10,39)= 3.64349577; T(10,40)= 3.67022608; T(10,41)= 3.69654144; T(10,42)= 3.72245976; T(10,43)= 3.74799774; T(10,44)= 3.77317103; T(10,45)= 3.79799429; T(10,46)= 3.82248127; T(10,47)= 3.84664490; T(10,48)= 3.87049735; T(10,49)= 3.89405010; T(10,50)= 3.91731395; T(10,51)= 3.94029914; T(10,52)= 3.96301533; T(10,53)= 3.98547169; T(10,54)= 4.00767689; T(10,55)= 4.02963918; T(10,56)= 4.05136637; T(10,57)= 4.07286591; T(10,58)= 4.09414489; T(10,59)= 4.11521004; T(10,60)= 4.13606779; T(10,61)= 4.15672429; T(10,62)= 4.17718539; T(10,63)= 4.19745669; T(10,64)= 4.21754354; T(10,65)= 4.23745107; T(10,66)= 4.25718419; T(10,67)= 4.27674760; T(10,68)= 4.29614582; T(10,69)= 4.31538317; T(10,70)= 4.33446381; T(10,71)= 4.35339173; T(10,72)= 4.37217078; T(10,73)= 4.39080465; T(10,74)= 4.40929689; T(10,75)= 4.42765093; T(10,76)= 4.44587007; T(10,77)= 4.46395749; T(10,78)= 4.48191625; T(10,79)= 4.49974931; T(10,80)= 4.51745953; T(10,81)= 4.53504967; T(10,82)= 4.55252239; T(10,83)= 4.56988027; T(10,84)= 4.58712581; T(10,85)= 4.60426142; T(10,86)= 4.62128942; T(10,87)= 4.63821208; T(10,88)= 4.65503159; T(10,89)= 4.67175007; T(10,90)= 4.68836957; T(10,91)= 4.70489208; T(10,92)= 4.72131955; T(10,93)= 4.73765385; T(10,94)= 4.75389680; T(10,95)= 4.77005016; T(10,96)= 4.78611567; T(10,97)= 4.80209497; T(10,98)= 4.81798971; T(10,99)= 4.83380145; T(10,100)= 4.84953174; T(10,101)= 4.86518205; T(10,102)= 4.88075385; T(10,103)= 4.89624855; T(10,104)= 4.91166753; T(10,105)= 4.92701212; T(10,106)= 4.94228363; T(10,107)= 4.95748333; T(10,108)= 4.97261247; T(10,109)= 4.98767225; T(10,110)= 5.00266385; T(10,111)= 5.01758843; T(10,112)= 5.03244709; T(10,113)= 5.04724095; T(10,114)= 5.06197106; T(10,115)= 5.07663847; T(10,116)= 5.09124420; T(10,117)= 5.10578924; T(10,118)= 5.12027456; T(10,119)= 5.13470112; T(10,120)= 5.14906984; T(10,121)= 5.16338164; T(10,122)= 5.17763738; T(10,123)= 5.19183795; T(10,124)= 5.20598420; T(10,125)= 5.22007694; T(10,126)= 5.23411700; T(10,127)= 5.24810517; T(10,128)= 5.26204223; T(10,129)= 5.27592893; T(10,130)= 5.28976602; T(10,131)= 5.30355424; T(10,132)= 5.31729430; T(10,133)= 5.33098690; T(10,134)= 5.34463273; T(10,135)= 5.35823245; T(10,136)= 5.37178673; T(10,137)= 5.38529622; T(10,138)= 5.39876154; T(10,139)= 5.41218333; T(10,140)= 5.42556218; T(10,141)= 5.43889870; T(10,142)= 5.45219348; T(10,143)= 5.46544708; T(10,144)= 5.47866009; T(10,145)= 5.49183303; T(10,146)= 5.50496648; T(10,147)= 5.51806095; T(10,148)= 5.53111697; T(10,149)= 5.54413505; T(10,150)= 5.55711571; T(10,151)= 5.57005944; T(10,152)= 5.58296673; T(10,153)= 5.59583806; T(10,154)= 5.60867389; T(10,155)= 5.62147470; T(10,156)= 5.63424093; T(10,157)= 5.64697304; T(10,158)= 5.65967146; T(10,159)= 5.67233664; T(10,160)= 5.68496898; T(10,161)= 5.69756892; T(10,162)= 5.71013686; T(10,163)= 5.72267321; T(10,164)= 5.73517836; T(10,165)= 5.74765272; T(10,166)= 5.76009666; T(10,167)= 5.77251056; T(10,168)= 5.78489480; T(10,169)= 5.79724975; T(10,170)= 5.80957576; T(10,171)= 5.82187320; T(10,172)= 5.83414241; T(10,173)= 5.84638375; T(10,174)= 5.85859755; T(10,175)= 5.87078414; T(10,176)= 5.88294387; T(10,177)= 5.89507704; T(10,178)= 5.90718399; T(10,179)= 5.91926503; T(10,180)= 5.93132048; T(10,181)= 5.94335063; T(10,182)= 5.95535579; T(10,183)= 5.96733626; T(10,184)= 5.97929234; T(10,185)= 5.99122431; T(10,186)= 6.00313246; T(10,187)= 6.01501707; T(10,188)= 6.02687843; T(10,189)= 6.03871679; T(10,190)= 6.05053244; T(10,191)= 6.06232564; T(10,192)= 6.07409666; T(10,193)= 6.08584575; T(10,194)= 6.09757318; T(10,195)= 6.10927918; T(10,196)= 6.12096403; T(10,197)= 6.13262795; T(10,198)= 6.14427119; T(10,199)= 6.15589400; T(10,200)= 6.16749661; T(10,201)= 6.17907926; T(10,202)= 6.19064217; T(10,203)= 6.20218557; T(10,204)= 6.21370970; T(10,205)= 6.22521476; T(10,206)= 6.23670099; T(10,207)= 6.24816860; T(10,208)= 6.25961780; T(10,209)= 6.27104881; T(10,210)= 6.28246183; T(10,211)= 6.29385708; T(10,212)= 6.30523475; T(10,213)= 6.31659506; T(10,214)= 6.32793819; T(10,215)= 6.33926434; T(10,216)= 6.35057372; T(10,217)= 6.36186651; T(10,218)= 6.37314291; T(10,219)= 6.38440310; T(10,220)= 6.39564727; T(10,221)= 6.40687561; T(10,222)= 6.41808829; T(10,223)= 6.42928550; T(10,224)= 6.44046742; T(10,225)= 6.45163422; T(10,226)= 6.46278607; T(10,227)= 6.47392316; T(10,228)= 6.48504564; T(10,229)= 6.49615369; T(10,230)= 6.50724748; T(10,231)= 6.51832717; T(10,232)= 6.52939293; T(10,233)= 6.54044491; T(10,234)= 6.55148328; T(10,235)= 6.56250820; T(10,236)= 6.57351982; T(10,237)= 6.58451830; T(10,238)= 6.59550379; T(10,239)= 6.60647645; T(10,240)= 6.61743642; T(10,241)= 6.62838386; T(10,242)= 6.63931892; T(10,243)= 6.65024173; T(10,244)= 6.66115245; T(10,245)= 6.67205123; T(10,246)= 6.68293819; T(10,247)= 6.69381348; T(10,248)= 6.70467725; T(10,249)= 6.71552963; T(10,250)= 6.72637076; T(10,251)= 6.73720077; T(10,252)= 6.74801980; T(10,253)= 6.75882799; T(10,254)= 6.76962545; T(10,255)= 6.78041234; T(10,256)= 6.79118877; T(10,257)= 6.80195487; T(10,258)= 6.81271078; T(10,259)= 6.82345661; T(10,260)= 6.83419250; T(10,261)= 6.84491857; T(10,262)= 6.85563493; T(10,263)= 6.86634173; T(10,264)= 6.87703906; T(10,265)= 6.88772706; T(10,266)= 6.89840585; T(10,267)= 6.90907554; T(10,268)= 6.91973625; T(10,269)= 6.93038809; T(10,270)= 6.94103119; T(10,271)= 6.95166565; T(10,272)= 6.96229159; T(10,273)= 6.97290912; T(10,274)= 6.98351836; T(10,275)= 6.99411941; T(10,276)= 7.00471239; T(10,277)= 7.01529740; T(10,278)= 7.02587455; T(10,279)= 7.03644396; T(10,280)= 7.04700572; T(10,281)= 7.05755994; T(10,282)= 7.06810673; T(10,283)= 7.07864619; T(10,284)= 7.08917843; T(10,285)= 7.09970355; T(10,286)= 7.11022165; T(10,287)= 7.12073283; T(10,288)= 7.13123719; T(10,289)= 7.14173484; T(10,290)= 7.15222587; T(10,291)= 7.16271038; T(10,292)= 7.17318846; T(10,293)= 7.18366023; T(10,294)= 7.19412577; T(10,295)= 7.20458517; T(10,296)= 7.21503855; T(10,297)= 7.22548598; T(10,298)= 7.23592756; T(10,299)= 7.24636339; T(10,300)= 7.25679356; T(10,301)= 7.26721817; T(10,302)= 7.27763729; T(10,303)= 7.28805103; T(10,304)= 7.29845948; T(10,305)= 7.30886273; T(10,306)= 7.31926085; T(10,307)= 7.32965396; T(10,308)= 7.34004212; T(10,309)= 7.35042544; T(10,310)= 7.36080400; T(10,311)= 7.37117788; T(10,312)= 7.38154717; T(10,313)= 7.39191196; T(10,314)= 7.40227233; T(10,315)= 7.41262837; T(10,316)= 7.42298017; T(10,317)= 7.43332780; T(10,318)= 7.44367135; T(10,319)= 7.45401090; T(10,320)= 7.46434654; T(10,321)= 7.47467835; T(10,322)= 7.48500641; T(10,323)= 7.49533080; T(10,324)= 7.50565161; T(10,325)= 7.51596890; T(10,326)= 7.52628277; T(10,327)= 7.53659330; T(10,328)= 7.54690055; T(10,329)= 7.55720462; T(10,330)= 7.56750558; T(10,331)= 7.57780350; T(10,332)= 7.58809848; T(10,333)= 7.59839058; T(10,334)= 7.60867988; T(10,335)= 7.61896645; T(10,336)= 7.62925039; T(10,337)= 7.63953175; T(10,338)= 7.64981062; T(10,339)= 7.66008707; T(10,340)= 7.67036118; T(10,341)= 7.68063302; T(10,342)= 7.69090267; T(10,343)= 7.70117020; T(10,344)= 7.71143568; T(10,345)= 7.72169920; T(10,346)= 7.73196081; T(10,347)= 7.74222060; T(10,348)= 7.75247864; T(10,349)= 7.76273500; T(10,350)= 7.77298975; T(10,351)= 7.78324297; T(10,352)= 7.79349472; T(10,353)= 7.80374508; T(10,354)= 7.81399412; T(10,355)= 7.82424191; T(10,356)= 7.83448852; T(10,357)= 7.84473402; T(10,358)= 7.85497848; T(10,359)= 7.86522197; T(10,360)= 7.87546457; T(10,361)= 7.88570633; T(10,362)= 7.89594734; T(10,363)= 7.90618765; T(10,364)= 7.91642734; T(10,365)= 7.92666648; T(10,366)= 7.93690513; T(10,367)= 7.94714337; T(10,368)= 7.95738126; T(10,369)= 7.96761887; T(10,370)= 7.97785626; T(10,371)= 7.98809351; T(10,372)= 7.99833068; T(10,373)= 8.00856784; T(10,374)= 8.01880506; T(10,375)= 8.02904239; T(10,376)= 8.03927992; T(10,377)= 8.04951771; T(10,378)= 8.05975581; T(10,379)= 8.06999431; T(10,380)= 8.08023326; T(10,381)= 8.09047273; T(10,382)= 8.10071279; T(10,383)= 8.11095349; T(10,384)= 8.12119492; T(10,385)= 8.13143713; T(10,386)= 8.14168018; T(10,387)= 8.15192415; T(10,388)= 8.16216910; T(10,389)= 8.17241509; T(10,390)= 8.18266219; T(10,391)= 8.19291046; T(10,392)= 8.20315996; T(10,393)= 8.21341077; T(10,394)= 8.22366294; T(10,395)= 8.23391655; T(10,396)= 8.24417164; T(10,397)= 8.25442829; T(10,398)= 8.26468657; T(10,399)= 8.27494653; T(10,400)= 8.28520824; T(10,401)= 8.29547176; T(10,402)= 8.30573716; T(10,403)= 8.31600450; T(10,404)= 8.32627384; T(10,405)= 8.33654525; T(10,406)= 8.34681879; T(10,407)= 8.35709452; T(10,408)= 8.36737250; T(10,409)= 8.37765281; T(10,410)= 8.38793550; T(10,411)= 8.39822064; T(10,412)= 8.40850828; T(10,413)= 8.41879850; T(10,414)= 8.42909135; T(10,415)= 8.43938690; T(10,416)= 8.44968520; T(10,417)= 8.45998633; T(10,418)= 8.47029035; T(10,419)= 8.48059731; T(10,420)= 8.49090729; T(10,421)= 8.50122034; T(10,422)= 8.51153652; T(10,423)= 8.52185591; T(10,424)= 8.53217855; T(10,425)= 8.54250452; T(10,426)= 8.55283388; T(10,427)= 8.56316669; T(10,428)= 8.57350300; T(10,429)= 8.58384290; T(10,430)= 8.59418643; T(10,431)= 8.60453366; T(10,432)= 8.61488465; T(10,433)= 8.62523947; T(10,434)= 8.63559817; T(10,435)= 8.64596083; T(10,436)= 8.65632750; T(10,437)= 8.66669824; T(10,438)= 8.67707312; T(10,439)= 8.68745221; T(10,440)= 8.69783555; T(10,441)= 8.70822323; T(10,442)= 8.71861529; T(10,443)= 8.72901181; T(10,444)= 8.73941284; T(10,445)= 8.74981845; T(10,446)= 8.76022871; T(10,447)= 8.77064366; T(10,448)= 8.78106339; T(10,449)= 8.79148794; T(10,450)= 8.80191739; T(10,451)= 8.81235180; T(10,452)= 8.82279123; T(10,453)= 8.83323574; T(10,454)= 8.84368540; T(10,455)= 8.85414027; T(10,456)= 8.86460041; T(10,457)= 8.87506590; T(10,458)= 8.88553678; T(10,459)= 8.89601313; T(10,460)= 8.90649502; T(10,461)= 8.91698249; T(10,462)= 8.92747563; T(10,463)= 8.93797449; T(10,464)= 8.94847913; T(10,465)= 8.95898963; T(10,466)= 8.96950604; T(10,467)= 8.98002843; T(10,468)= 8.99055687; T(10,469)= 9.00109142; T(10,470)= 9.01163214; T(10,471)= 9.02217910; T(10,472)= 9.03273237; T(10,473)= 9.04329201; T(10,474)= 9.05385808; T(10,475)= 9.06443066; T(10,476)= 9.07500980; T(10,477)= 9.08559557; T(10,478)= 9.09618805; T(10,479)= 9.10678729; T(10,480)= 9.11739336; T(10,481)= 9.12800633; T(10,482)= 9.13862626; T(10,483)= 9.14925322; T(10,484)= 9.15988728; T(10,485)= 9.17052851; T(10,486)= 9.18117697; T(10,487)= 9.19183272; T(10,488)= 9.20249584; T(10,489)= 9.21316640; T(10,490)= 9.22384446; T(10,491)= 9.23453008; T(10,492)= 9.24522335; T(10,493)= 9.25592432; T(10,494)= 9.26663307; T(10,495)= 9.27734966; T(10,496)= 9.28807416; T(10,497)= 9.29880664; T(10,498)= 9.30954717; T(10,499)= 9.32029582; T(10,500)= 9.33105266; T(10,501)= 9.34181777; T(10,502)= 9.35259120; T(10,503)= 9.36337303; T(10,504)= 9.37416332; T(10,505)= 9.38496216; T(10,506)= 9.39576962; T(10,507)= 9.40658575; T(10,508)= 9.41741064; T(10,509)= 9.42824435; T(10,510)= 9.43908696; T(10,511)= 9.44993854; T(10,512)= 9.46079916; T(10,513)= 9.47166890; T(10,514)= 9.48254782; T(10,515)= 9.49343600; T(10,516)= 9.50433351; T(10,517)= 9.51524043; T(10,518)= 9.52615684; T(10,519)= 9.53708279; T(10,520)= 9.54801837; T(10,521)= 9.55896366; T(10,522)= 9.56991872; T(10,523)= 9.58088364; T(10,524)= 9.59185848; T(10,525)= 9.60284333; T(10,526)= 9.61383826; T(10,527)= 9.62484335; T(10,528)= 9.63585866; T(10,529)= 9.64688429; T(10,530)= 9.65792030; T(10,531)= 9.66896678; T(10,532)= 9.68002379; T(10,533)= 9.69109143; T(10,534)= 9.70216976; T(10,535)= 9.71325888; T(10,536)= 9.72435884; T(10,537)= 9.73546974; T(10,538)= 9.74659166; T(10,539)= 9.75772467; T(10,540)= 9.76886885; T(10,541)= 9.78002429; T(10,542)= 9.79119107; T(10,543)= 9.80236926; T(10,544)= 9.81355895; T(10,545)= 9.82476023; T(10,546)= 9.83597317; T(10,547)= 9.84719785; T(10,548)= 9.85843437; T(10,549)= 9.86968279; T(10,550)= 9.88094322; T(10,551)= 9.89221573; T(10,552)= 9.90350040; T(10,553)= 9.91479732; T(10,554)= 9.92610658; T(10,555)= 9.93742827; T(10,556)= 9.94876246; T(10,557)= 9.96010925; T(10,558)= 9.97146872; T(10,559)= 9.98284096; T(10,560)= 9.99422606; T(10,561)=10.00562411; T(10,562)=10.01703519; T(10,563)=10.02845940; T(10,564)=10.03989682; T(10,565)=10.05134755; T(10,566)=10.06281167; T(10,567)=10.07428928; T(10,568)=10.08578047; T(10,569)=10.09728533; T(10,570)=10.10880395; T(10,571)=10.12033642; T(10,572)=10.13188285; T(10,573)=10.14344332; T(10,574)=10.15501792; T(10,575)=10.16660676; T(10,576)=10.17820993; T(10,577)=10.18982752; T(10,578)=10.20145963; T(10,579)=10.21310636; T(10,580)=10.22476781; T(10,581)=10.23644407; T(10,582)=10.24813524; T(10,583)=10.25984142; T(10,584)=10.27156271; T(10,585)=10.28329922; T(10,586)=10.29505104; T(10,587)=10.30681827; T(10,588)=10.31860102; T(10,589)=10.33039938; T(10,590)=10.34221347; T(10,591)=10.35404338; T(10,592)=10.36588923; T(10,593)=10.37775111; T(10,594)=10.38962913; T(10,595)=10.40152340; T(10,596)=10.41343402; T(10,597)=10.42536110; T(10,598)=10.43730476; T(10,599)=10.44926509; T(10,600)=10.46124221; T(10,601)=10.47323623; T(10,602)=10.48524726; T(10,603)=10.49727541; T(10,604)=10.50932080; T(10,605)=10.52138353; T(10,606)=10.53346373; T(10,607)=10.54556149; T(10,608)=10.55767695; T(10,609)=10.56981022; T(10,610)=10.58196140; T(10,611)=10.59413063; T(10,612)=10.60631801; T(10,613)=10.61852367; T(10,614)=10.63074773; T(10,615)=10.64299031; T(10,616)=10.65525152; T(10,617)=10.66753150; T(10,618)=10.67983035; T(10,619)=10.69214822; T(10,620)=10.70448521; T(10,621)=10.71684147; T(10,622)=10.72921710; T(10,623)=10.74161225; T(10,624)=10.75402703; T(10,625)=10.76646158; T(10,626)=10.77891603; T(10,627)=10.79139051; T(10,628)=10.80388514; T(10,629)=10.81640006; T(10,630)=10.82893541; T(10,631)=10.84149132; T(10,632)=10.85406792; T(10,633)=10.86666535; T(10,634)=10.87928375; T(10,635)=10.89192325; T(10,636)=10.90458400; T(10,637)=10.91726613; T(10,638)=10.92996979; T(10,639)=10.94269511; T(10,640)=10.95544225; T(10,641)=10.96821134; T(10,642)=10.98100253; T(10,643)=10.99381596; T(10,644)=11.00665180; T(10,645)=11.01951017; T(10,646)=11.03239124; T(10,647)=11.04529515; T(10,648)=11.05822206; T(10,649)=11.07117211; T(10,650)=11.08414547; T(10,651)=11.09714228; T(10,652)=11.11016271; T(10,653)=11.12320691; T(10,654)=11.13627505; T(10,655)=11.14936727; T(10,656)=11.16248375; T(10,657)=11.17562465; T(10,658)=11.18879012; T(10,659)=11.20198035; T(10,660)=11.21519548; T(10,661)=11.22843570; T(10,662)=11.24170116; T(10,663)=11.25499205; T(10,664)=11.26830853; T(10,665)=11.28165077; T(10,666)=11.29501896; T(10,667)=11.30841326; T(10,668)=11.32183386; T(10,669)=11.33528093; T(10,670)=11.34875466; T(10,671)=11.36225523; T(10,672)=11.37578282; T(10,673)=11.38933761; T(10,674)=11.40291980; T(10,675)=11.41652958; T(10,676)=11.43016712; T(10,677)=11.44383263; T(10,678)=11.45752629; T(10,679)=11.47124831; T(10,680)=11.48499887; T(10,681)=11.49877818; T(10,682)=11.51258644; T(10,683)=11.52642385; T(10,684)=11.54029061; T(10,685)=11.55418692; T(10,686)=11.56811300; T(10,687)=11.58206906; T(10,688)=11.59605530; T(10,689)=11.61007193; T(10,690)=11.62411918; T(10,691)=11.63819726; T(10,692)=11.65230638; T(10,693)=11.66644677; T(10,694)=11.68061865; T(10,695)=11.69482224; T(10,696)=11.70905777; T(10,697)=11.72332548; T(10,698)=11.73762558; T(10,699)=11.75195832; T(10,700)=11.76632392; T(10,701)=11.78072263; T(10,702)=11.79515468; T(10,703)=11.80962032; T(10,704)=11.82411979; T(10,705)=11.83865334; T(10,706)=11.85322121; T(10,707)=11.86782366; T(10,708)=11.88246093; T(10,709)=11.89713330; T(10,710)=11.91184101; T(10,711)=11.92658432; T(10,712)=11.94136350; T(10,713)=11.95617882; T(10,714)=11.97103054; T(10,715)=11.98591893; T(10,716)=12.00084428; T(10,717)=12.01580685; T(10,718)=12.03080692; T(10,719)=12.04584478; T(10,720)=12.06092072; T(10,721)=12.07603501; T(10,722)=12.09118796; T(10,723)=12.10637985; T(10,724)=12.12161098; T(10,725)=12.13688166; T(10,726)=12.15219219; T(10,727)=12.16754286; T(10,728)=12.18293400; T(10,729)=12.19836592; T(10,730)=12.21383892; T(10,731)=12.22935333; T(10,732)=12.24490948; T(10,733)=12.26050769; T(10,734)=12.27614828; T(10,735)=12.29183160; T(10,736)=12.30755797; T(10,737)=12.32332775; T(10,738)=12.33914127; T(10,739)=12.35499888; T(10,740)=12.37090093; T(10,741)=12.38684778; T(10,742)=12.40283980; T(10,743)=12.41887733; T(10,744)=12.43496075; T(10,745)=12.45109044; T(10,746)=12.46726676; T(10,747)=12.48349010; T(10,748)=12.49976084; T(10,749)=12.51607938; T(10,750)=12.53244610; T(10,751)=12.54886140; T(10,752)=12.56532568; T(10,753)=12.58183936; T(10,754)=12.59840284; T(10,755)=12.61501654; T(10,756)=12.63168088; T(10,757)=12.64839630; T(10,758)=12.66516321; T(10,759)=12.68198206; T(10,760)=12.69885329; T(10,761)=12.71577734; T(10,762)=12.73275467; T(10,763)=12.74978574; T(10,764)=12.76687101; T(10,765)=12.78401095; T(10,766)=12.80120604; T(10,767)=12.81845675; T(10,768)=12.83576358; T(10,769)=12.85312701; T(10,770)=12.87054755; T(10,771)=12.88802570; T(10,772)=12.90556198; T(10,773)=12.92315689; T(10,774)=12.94081098; T(10,775)=12.95852476; T(10,776)=12.97629878; T(10,777)=12.99413358; T(10,778)=13.01202971; T(10,779)=13.02998775; T(10,780)=13.04800824; T(10,781)=13.06609177; T(10,782)=13.08423892; T(10,783)=13.10245028; T(10,784)=13.12072645; T(10,785)=13.13906803; T(10,786)=13.15747564; T(10,787)=13.17594990; T(10,788)=13.19449144; T(10,789)=13.21310090; T(10,790)=13.23177893; T(10,791)=13.25052619; T(10,792)=13.26934334; T(10,793)=13.28823105; T(10,794)=13.30719002; T(10,795)=13.32622094; T(10,796)=13.34532452; T(10,797)=13.36450146; T(10,798)=13.38375250; T(10,799)=13.40307836; T(10,800)=13.42247980; T(10,801)=13.44195757; T(10,802)=13.46151245; T(10,803)=13.48114520; T(10,804)=13.50085663; T(10,805)=13.52064753; T(10,806)=13.54051871; T(10,807)=13.56047102; T(10,808)=13.58050527; T(10,809)=13.60062234; T(10,810)=13.62082308; T(10,811)=13.64110836; T(10,812)=13.66147909; T(10,813)=13.68193617; T(10,814)=13.70248052; T(10,815)=13.72311306; T(10,816)=13.74383476; T(10,817)=13.76464658; T(10,818)=13.78554949; T(10,819)=13.80654449; T(10,820)=13.82763260; T(10,821)=13.84881483; T(10,822)=13.87009224; T(10,823)=13.89146588; T(10,824)=13.91293683; T(10,825)=13.93450620; T(10,826)=13.95617510; T(10,827)=13.97794465; T(10,828)=13.99981602; T(10,829)=14.02179037; T(10,830)=14.04386891; T(10,831)=14.06605283; T(10,832)=14.08834338; T(10,833)=14.11074182; T(10,834)=14.13324941; T(10,835)=14.15586747; T(10,836)=14.17859730; T(10,837)=14.20144027; T(10,838)=14.22439774; T(10,839)=14.24747110; T(10,840)=14.27066178; T(10,841)=14.29397123; T(10,842)=14.31740091; T(10,843)=14.34095233; T(10,844)=14.36462702; T(10,845)=14.38842654; T(10,846)=14.41235247; T(10,847)=14.43640643; T(10,848)=14.46059006; T(10,849)=14.48490506; T(10,850)=14.50935312; T(10,851)=14.53393600; T(10,852)=14.55865547; T(10,853)=14.58351335; T(10,854)=14.60851150; T(10,855)=14.63365179; T(10,856)=14.65893616; T(10,857)=14.68436658; T(10,858)=14.70994504; T(10,859)=14.73567360; T(10,860)=14.76155435; T(10,861)=14.78758942; T(10,862)=14.81378098; T(10,863)=14.84013127; T(10,864)=14.86664256; T(10,865)=14.89331716; T(10,866)=14.92015745; T(10,867)=14.94716586; T(10,868)=14.97434485; T(10,869)=15.00169697; T(10,870)=15.02922480; T(10,871)=15.05693099; T(10,872)=15.08481824; T(10,873)=15.11288932; T(10,874)=15.14114708; T(10,875)=15.16959439; T(10,876)=15.19823425; T(10,877)=15.22706967; T(10,878)=15.25610377; T(10,879)=15.28533974; T(10,880)=15.31478083; T(10,881)=15.34443039; T(10,882)=15.37429183; T(10,883)=15.40436868; T(10,884)=15.43466452; T(10,885)=15.46518304; T(10,886)=15.49592802; T(10,887)=15.52690335; T(10,888)=15.55811299; T(10,889)=15.58956104; T(10,890)=15.62125168; T(10,891)=15.65318922; T(10,892)=15.68537808; T(10,893)=15.71782279; T(10,894)=15.75052802; T(10,895)=15.78349856; T(10,896)=15.81673933; T(10,897)=15.85025541; T(10,898)=15.88405199; T(10,899)=15.91813444; T(10,900)=15.95250828; T(10,901)=15.98717917; T(10,902)=16.02215297; T(10,903)=16.05743569; T(10,904)=16.09303353; T(10,905)=16.12895289; T(10,906)=16.16520035; T(10,907)=16.20178271; T(10,908)=16.23870697; T(10,909)=16.27598036; T(10,910)=16.31361036; T(10,911)=16.35160466; T(10,912)=16.38997123; T(10,913)=16.42871830; T(10,914)=16.46785436; T(10,915)=16.50738822; T(10,916)=16.54732898; T(10,917)=16.58768604; T(10,918)=16.62846915; T(10,919)=16.66968842; T(10,920)=16.71135430; T(10,921)=16.75347765; T(10,922)=16.79606970; T(10,923)=16.83914214; T(10,924)=16.88270707; T(10,925)=16.92677708; T(10,926)=16.97136525; T(10,927)=17.01648517; T(10,928)=17.06215098; T(10,929)=17.10837739; T(10,930)=17.15517973; T(10,931)=17.20257397; T(10,932)=17.25057674; T(10,933)=17.29920541; T(10,934)=17.34847809; T(10,935)=17.39841372; T(10,936)=17.44903207; T(10,937)=17.50035382; T(10,938)=17.55240063; T(10,939)=17.60519515; T(10,940)=17.65876116; T(10,941)=17.71312357; T(10,942)=17.76830853; T(10,943)=17.82434352; T(10,944)=17.88125743; T(10,945)=17.93908067; T(10,946)=17.99784525; T(10,947)=18.05758492; T(10,948)=18.11833532; T(10,949)=18.18013406; T(10,950)=18.24302093; T(10,951)=18.30703805; T(10,952)=18.37223005; T(10,953)=18.43864428; T(10,954)=18.50633104; T(10,955)=18.57534383; T(10,956)=18.64573962; T(10,957)=18.71757918; T(10,958)=18.79092740; T(10,959)=18.86585369; T(10,960)=18.94243241; T(10,961)=19.02074335; T(10,962)=19.10087228; T(10,963)=19.18291155; T(10,964)=19.26696082; T(10,965)=19.35312780; T(10,966)=19.44152922; T(10,967)=19.53229177; T(10,968)=19.62555340; T(10,969)=19.72146456; T(10,970)=19.82018990; T(10,971)=19.92191001; T(10,972)=20.02682363; T(10,973)=20.13515015; T(10,974)=20.24713259; T(10,975)=20.36304113; T(10,976)=20.48317735; T(10,977)=20.60787929; T(10,978)=20.73752761; T(10,979)=20.87255314; T(10,980)=21.01344608; T(10,981)=21.16076754; T(10,982)=21.31516393; T(10,983)=21.47738530; T(10,984)=21.64830882; T(10,985)=21.82896937; T(10,986)=22.02059999; T(10,987)=22.22468610; T(10,988)=22.44303984; T(10,989)=22.67790394; T(10,990)=22.93210061; T(10,991)=23.20925116; T(10,992)=23.51411084; T(10,993)=23.85310050; T(10,994)=24.23519263; T(10,995)=24.67348033; T(10,996)=25.18817957; T(10,997)=25.81299977; T(10,998)=26.61078512; T(10,999)=27.72164723; T(10,1000)=29.58829845; T(10,1001)=35.56401394; T(10,1002)=41.29615797; end; % Check arguments if (dof > 0) & (dof <= length(DOFS)), if (alpha >= min(LEVELS)) & (alpha <= max(LEVELS)), % Determine lookup indices of alpha % Find start index in array of levels [mindiff,imin] = min(abs(LEVELS-alpha)); % Set correct start index and iterate i = imin-1*(imin>1); found = 0; while (i < length(LEVELS)) & ~found, diff1 = LEVELS(i) - alpha; diff2 = LEVELS(i+1) - alpha; if sign(diff1) == 0, x = T(dof,i); found = 1; elseif sign(diff2) == 0, x = T(dof,i+1); found = 1; elseif sign(diff1)*sign(diff2) < 0, x1 = T(dof,i); x2 = T(dof,i+1); % Interpolate linearly x = x2 - (LEVELS(i+1)-alpha)*(x2-x1)/(LEVELS(i+1)-LEVELS(i)); found = 1; end; i = i + 1; end; else error('chi2invtable: Unsupported alpha level (either too small or too big).'); end; else error('chi2invtable: Unsupported number of degrees of freedom.'); end;
github
Rookfighter/robmap-ws17-18-master
drawellipse.m
.m
robmap-ws17-18-master/ex08/octave/tools/drawellipse.m
994
utf_8
c0100a4cf263e6e87026b3214221e84d
%DRAWELLIPSE Draw ellipse. % DRAWELLIPSE(X,A,B,COLOR) draws an ellipse at X = [x y theta] % with half axes A and B. Theta is the inclination angle of A, % regardless if A is smaller or greater than B. COLOR is a % [r g b]-vector or a color string such as 'r' or 'g'. % % H = DRAWELLIPSE(...) returns the graphic handle H. % % See also DRAWPROBELLIPSE. % v.1.0-v.1.1, Aug.97-Jan.03, Kai Arras, ASL-EPFL % v.1.2, 03.12.03, Kai Arras, CAS-KTH: (x,a,b) interface function h = drawellipse(x,a,b,color); % Constants NPOINTS = 100; % point density or resolution % Compose point vector ivec = 0:2*pi/NPOINTS:2*pi; % index vector p(1,:) = a*cos(ivec); % 2 x n matrix which p(2,:) = b*sin(ivec); % hold ellipse points % Translate and rotate xo = x(1); yo = x(2); angle = x(3); R = [cos(angle) -sin(angle); sin(angle) cos(angle)]; T = [xo; yo]*ones(1,length(ivec)); p = R*p + T; % Plot h = plot(p(1,:),p(2,:),'Color',color, 'linewidth', 2);
github
Rookfighter/robmap-ws17-18-master
drawprobellipse.m
.m
robmap-ws17-18-master/ex04/octave/tools/drawprobellipse.m
1,803
utf_8
90c41a3bebf740e86100f47974753eb3
%DRAWPROBELLIPSE Draw elliptic probability region of a Gaussian in 2D. % DRAWPROBELLIPSE(X,C,ALPHA,COLOR) draws the elliptic iso-probabi- % lity contour of a Gaussian distributed bivariate random vector X % at the significance level ALPHA. The ellipse is centered at X = % [x; y] where C is the associated 2x2 covariance matrix. COLOR is % a [r g b]-vector or a color string such as 'r' or 'g'. % % X and C can also be of size 3x1 and 3x3 respectively. % % For proper scaling, the function CHI2INVTABLE is employed to % avoid the use of CHI2INV from the Matlab statistics toolbox. % % In case of a negative definite matrix C, the ellipse collapses % to a line which is drawn instead. % % H = DRAWPROBELLIPSE(...) returns the graphic handle H. % % See also DRAWELLIPSE, CHI2INVTABLE, CHI2INV. % v.1.0-v.1.3, 97-Jan.03, Kai Arras, ASL-EPFL % v.1.4, 03.12.03, Kai Arras, CAS-KTH: toolbox version function h = drawprobellipse(x,C,alpha,color); % Calculate unscaled half axes sxx = C(1,1); syy = C(2,2); sxy = C(1,2); a = sqrt(0.5*(sxx+syy+sqrt((sxx-syy)^2+4*sxy^2))); % always greater b = sqrt(0.5*(sxx+syy-sqrt((sxx-syy)^2+4*sxy^2))); % always smaller % Remove imaginary parts in case of neg. definite C if ~isreal(a), a = real(a); end; if ~isreal(b), b = real(b); end; % Scaling in order to reflect specified probability a = a*sqrt(chi2invtable(alpha,2)); b = b*sqrt(chi2invtable(alpha,2)); % Look where the greater half axis belongs to if sxx < syy, swap = a; a = b; b = swap; end; % Calculate inclination (numerically stable) if sxx ~= syy, angle = 0.5*atan(2*sxy/(sxx-syy)); elseif sxy == 0, angle = 0; % angle doesn't matter elseif sxy > 0, angle = pi/4; elseif sxy < 0, angle = -pi/4; end; x(3) = angle; % Draw ellipse h = drawellipse(x,a,b,color);
github
Rookfighter/robmap-ws17-18-master
drawrobot.m
.m
robmap-ws17-18-master/ex04/octave/tools/drawrobot.m
5,225
utf_8
3dfed55ac85a746f0f7c2407e1880069
%DRAWROBOT Draw robot. % DRAWROBOT(X,COLOR) draws a robot at pose X = [x y theta] such % that the robot reference frame is attached to the center of % the wheelbase with the x-axis looking forward. COLOR is a % [r g b]-vector or a color string such as 'r' or 'g'. % % DRAWROBOT(X,COLOR,TYPE) draws a robot of type TYPE. Five % different models are implemented: % TYPE = 0 draws only a cross with orientation theta % TYPE = 1 is a differential drive robot without contour % TYPE = 2 is a differential drive robot with round shape % TYPE = 3 is a round shaped robot with a line at theta % TYPE = 4 is a differential drive robot with rectangular shape % TYPE = 5 is a rectangular shaped robot with a line at theta % % DRAWROBOT(X,COLOR,TYPE,W,L) draws a robot of type TYPE with % width W and length L in [m]. % % H = DRAWROBOT(...) returns a column vector of handles to all % graphic objects of the robot drawing. Remember that not all % graphic properties apply to all types of graphic objects. Use % FINDOBJ to find and access the individual objects. % % See also DRAWRECT, DRAWARROW, FINDOBJ, PLOT. % v.1.0, 16.06.03, Kai Arras, ASL-EPFL % v.1.1, 12.10.03, Kai Arras, ASL-EPFL: uses drawrect % v.1.2, 03.12.03, Kai Arras, CAS-KTH : types implemented function h = drawrobot(varargin); % Constants DEFT = 2; % default robot type DEFB = 0.4; % default robot width in [m], defines y-dir. of {R} WT = 0.03; % wheel thickness in [m] DEFL = DEFB+0.2; % default robot length in [m] WD = 0.2; % wheel diameter in [m] RR = WT/2; % wheel roundness radius in [m] RRR = 0.04; % roundness radius for rectangular robots in [m] HL = 0.09; % arrow head length in [m] CS = 0.1; % cross size in [m], showing the {R} origin % Input argument check inputerr = 0; switch nargin, case 2, xvec = varargin{1}; color = varargin{2}; type = DEFT; B = DEFB; L = DEFL; case 3; xvec = varargin{1}; color = varargin{2}; type = varargin{3}; B = DEFB; L = DEFL; case 5; xvec = varargin{1}; color = varargin{2}; type = varargin{3}; B = varargin{4}; L = varargin{5}; otherwise inputerr = 1; end; % Main switch statement if ~inputerr, x = xvec(1); y = xvec(2); theta = xvec(3); T = [x; y]; R = [cos(theta), -sin(theta); sin(theta), cos(theta)]; switch type case 0, % Draw origin cross p = R*[CS, -CS, 0, 0; 0, 0, -CS, CS] + T*ones(1,4); % horiz. line h = plot(p(1,1:2),p(2,1:2),'Color',color,p(1,3:4),p(2,3:4),'Color',color); case 1, % Draw wheel pair with axis and arrow xlw = [x+B/2*cos(theta+pi/2); y+B/2*sin(theta+pi/2); theta]; h1 = drawrect(xlw,WD,WT,RR,1,color); % left wheel xlw = [x-B/2*cos(theta+pi/2); y-B/2*sin(theta+pi/2); theta]; h2 = drawrect(xlw,WD,WT,RR,1,color); % right wheel % Draw axis cross with arrow p = R*[0, 0; -B/2+WT/2, B/2-WT/2] + T*ones(1,2); h3 = plot(p(1,:),p(2,:),'Color',color); p = R*[L/2; 0] + T; h4 = drawarrow(T,p,1,HL,color); h = cat(1,h1,h2,h3,h4); case 2, % Draw wheel pair with axis and arrow xlw = [x+B/2*cos(theta+pi/2); y+B/2*sin(theta+pi/2); theta]; h1 = drawrect(xlw,WD,WT,RR,1,color); % left wheel xlw = [x-B/2*cos(theta+pi/2); y-B/2*sin(theta+pi/2); theta]; h2 = drawrect(xlw,WD,WT,RR,1,color); % right wheel % Draw axis cross with arrow p = R*[0, 0; -B/2+WT/2, B/2-WT/2] + T*ones(1,2); h3 = plot(p(1,:),p(2,:),'Color',color); p = R*[(B+WT)/2; 0] + T; h4 = drawarrow(T,p,1,HL,color); % Draw circular contour radius = (B+WT)/2; h5 = drawellipse(xvec,radius,radius,color); h = cat(1,h1,h2,h3,h4,h5); case 3, % Draw circular contour radius = (B+WT)/2; h1 = drawellipse(xvec,radius,radius,color); % Draw line with orientation theta with length radius p = R*[(B+WT)/2;0] + T; h2 = plot([T(1) p(1)],[T(2) p(2)],'Color',color,'linewidth',2); h = cat(1,h1,h2); case 4, % Draw wheel pair with axis and arrow xlw = [x+B/2*cos(theta+pi/2); y+B/2*sin(theta+pi/2); theta]; h1 = drawrect(xlw,WD,WT,RR,1,color); % left wheel xlw = [x-B/2*cos(theta+pi/2); y-B/2*sin(theta+pi/2); theta]; h2 = drawrect(xlw,WD,WT,RR,1,color); % right wheel % Draw axis cross with arrow p = R*[0, 0; -B/2+WT/2, B/2-WT/2] + T*ones(1,2); h3 = plot(p(1,:),p(2,:),'Color',color); p = R*[L/2; 0] + T; h4 = drawarrow(T,p,1,HL,color); % Draw rectangular contour h5 = drawrect(xvec,L,B,RRR,0,color); h = cat(1,h1,h2,h3,h4,h5); case 5, % Draw rectangular contour h1 = drawrect(xvec,L,B,RRR,0,color); % Draw line with orientation theta with length L p = R*[L/2; 0] + T; h2 = plot([T(1) p(1)],[T(2) p(2)],'Color',color,'linewidth',2); h = cat(1,h1,h2); otherwise disp('drawrobot: Unsupported robot type'); h = []; end; else disp('drawrobot: Wrong number of input arguments'); h = []; end;
github
Rookfighter/robmap-ws17-18-master
chi2invtable.m
.m
robmap-ws17-18-master/ex04/octave/tools/chi2invtable.m
231,909
utf_8
d16aef6be089f46039e76c200f7577d8
%CHI2INVTABLE Lookup table of the inverse of the chi-square cdf. % X = CHI2INVTABLE(P,V) returns the inverse of the chi-square cumu- % lative distribution function (cdf) with V degrees of freedom at % the value P. The chi-square cdf with V degrees of freedom, is % the gamma cdf with parameters V/2 and 2. % % Opposed to CHI2INV of the Matlab statistics toolbox which might % be not part of your Matlab installation, this is a lookup table % which has the side effect of being much faster than CHI2INV. % However, as any lookup table is a collection of sample points, % accuracy is smaller and between the sample points of the cdf, a % linear interpolation is made. % % Currently, the function supports the degrees of freedom V between % 1 and 10 and the probability levels P between 0 and 0.9999 in steps % of 0.0001 and the level of 0.99999. % % See also CHI2INV. % v.1.0, 18.12.03, Kai Arras, CAS-KTH function x = chi2invtable(alpha,dof); persistent T LEVELS DOFS; % Check whether table is already in memory vars = whos; it = strcmp({vars.name},'T'); if (sum(it) == 0) | (prod(vars(find(it)).size) == 0), LEVELS = [0:0.001:0.999, 0.9999, 0.99999]; DOFS = 1:10; T( 1, 1)= 0.00000000; T( 1, 2)= 0.00000157; T( 1, 3)= 0.00000628; T( 1, 4)= 0.00001414; T( 1, 5)= 0.00002513; T( 1, 6)= 0.00003927; T( 1, 7)= 0.00005655; T( 1, 8)= 0.00007697; T( 1, 9)= 0.00010053; T( 1,10)= 0.00012724; T( 1,11)= 0.00015709; T( 1,12)= 0.00019008; T( 1,13)= 0.00022621; T( 1,14)= 0.00026549; T( 1,15)= 0.00030791; T( 1,16)= 0.00035347; T( 1,17)= 0.00040218; T( 1,18)= 0.00045403; T( 1,19)= 0.00050902; T( 1,20)= 0.00056716; T( 1,21)= 0.00062845; T( 1,22)= 0.00069288; T( 1,23)= 0.00076046; T( 1,24)= 0.00083118; T( 1,25)= 0.00090505; T( 1,26)= 0.00098207; T( 1,27)= 0.00106223; T( 1,28)= 0.00114555; T( 1,29)= 0.00123201; T( 1,30)= 0.00132162; T( 1,31)= 0.00141438; T( 1,32)= 0.00151030; T( 1,33)= 0.00160936; T( 1,34)= 0.00171157; T( 1,35)= 0.00181694; T( 1,36)= 0.00192546; T( 1,37)= 0.00203713; T( 1,38)= 0.00215196; T( 1,39)= 0.00226995; T( 1,40)= 0.00239109; T( 1,41)= 0.00251538; T( 1,42)= 0.00264284; T( 1,43)= 0.00277345; T( 1,44)= 0.00290722; T( 1,45)= 0.00304415; T( 1,46)= 0.00318424; T( 1,47)= 0.00332749; T( 1,48)= 0.00347391; T( 1,49)= 0.00362349; T( 1,50)= 0.00377623; T( 1,51)= 0.00393214; T( 1,52)= 0.00409122; T( 1,53)= 0.00425346; T( 1,54)= 0.00441887; T( 1,55)= 0.00458745; T( 1,56)= 0.00475920; T( 1,57)= 0.00493412; T( 1,58)= 0.00511222; T( 1,59)= 0.00529349; T( 1,60)= 0.00547793; T( 1,61)= 0.00566555; T( 1,62)= 0.00585635; T( 1,63)= 0.00605033; T( 1,64)= 0.00624748; T( 1,65)= 0.00644782; T( 1,66)= 0.00665134; T( 1,67)= 0.00685804; T( 1,68)= 0.00706793; T( 1,69)= 0.00728100; T( 1,70)= 0.00749726; T( 1,71)= 0.00771672; T( 1,72)= 0.00793936; T( 1,73)= 0.00816519; T( 1,74)= 0.00839422; T( 1,75)= 0.00862644; T( 1,76)= 0.00886185; T( 1,77)= 0.00910047; T( 1,78)= 0.00934228; T( 1,79)= 0.00958730; T( 1,80)= 0.00983551; T( 1,81)= 0.01008693; T( 1,82)= 0.01034156; T( 1,83)= 0.01059939; T( 1,84)= 0.01086043; T( 1,85)= 0.01112468; T( 1,86)= 0.01139215; T( 1,87)= 0.01166283; T( 1,88)= 0.01193672; T( 1,89)= 0.01221383; T( 1,90)= 0.01249416; T( 1,91)= 0.01277771; T( 1,92)= 0.01306448; T( 1,93)= 0.01335448; T( 1,94)= 0.01364771; T( 1,95)= 0.01394416; T( 1,96)= 0.01424384; T( 1,97)= 0.01454676; T( 1,98)= 0.01485290; T( 1,99)= 0.01516229; T( 1,100)= 0.01547491; T( 1,101)= 0.01579077; T( 1,102)= 0.01610988; T( 1,103)= 0.01643223; T( 1,104)= 0.01675782; T( 1,105)= 0.01708666; T( 1,106)= 0.01741876; T( 1,107)= 0.01775410; T( 1,108)= 0.01809270; T( 1,109)= 0.01843456; T( 1,110)= 0.01877968; T( 1,111)= 0.01912805; T( 1,112)= 0.01947969; T( 1,113)= 0.01983460; T( 1,114)= 0.02019278; T( 1,115)= 0.02055422; T( 1,116)= 0.02091894; T( 1,117)= 0.02128693; T( 1,118)= 0.02165820; T( 1,119)= 0.02203275; T( 1,120)= 0.02241059; T( 1,121)= 0.02279170; T( 1,122)= 0.02317611; T( 1,123)= 0.02356380; T( 1,124)= 0.02395479; T( 1,125)= 0.02434907; T( 1,126)= 0.02474665; T( 1,127)= 0.02514753; T( 1,128)= 0.02555171; T( 1,129)= 0.02595920; T( 1,130)= 0.02636999; T( 1,131)= 0.02678410; T( 1,132)= 0.02720152; T( 1,133)= 0.02762225; T( 1,134)= 0.02804631; T( 1,135)= 0.02847368; T( 1,136)= 0.02890438; T( 1,137)= 0.02933841; T( 1,138)= 0.02977577; T( 1,139)= 0.03021646; T( 1,140)= 0.03066048; T( 1,141)= 0.03110785; T( 1,142)= 0.03155855; T( 1,143)= 0.03201260; T( 1,144)= 0.03247000; T( 1,145)= 0.03293075; T( 1,146)= 0.03339485; T( 1,147)= 0.03386231; T( 1,148)= 0.03433313; T( 1,149)= 0.03480731; T( 1,150)= 0.03528486; T( 1,151)= 0.03576578; T( 1,152)= 0.03625007; T( 1,153)= 0.03673773; T( 1,154)= 0.03722878; T( 1,155)= 0.03772321; T( 1,156)= 0.03822102; T( 1,157)= 0.03872222; T( 1,158)= 0.03922681; T( 1,159)= 0.03973480; T( 1,160)= 0.04024619; T( 1,161)= 0.04076098; T( 1,162)= 0.04127917; T( 1,163)= 0.04180078; T( 1,164)= 0.04232579; T( 1,165)= 0.04285423; T( 1,166)= 0.04338608; T( 1,167)= 0.04392135; T( 1,168)= 0.04446006; T( 1,169)= 0.04500219; T( 1,170)= 0.04554776; T( 1,171)= 0.04609676; T( 1,172)= 0.04664921; T( 1,173)= 0.04720510; T( 1,174)= 0.04776444; T( 1,175)= 0.04832724; T( 1,176)= 0.04889349; T( 1,177)= 0.04946320; T( 1,178)= 0.05003637; T( 1,179)= 0.05061301; T( 1,180)= 0.05119313; T( 1,181)= 0.05177672; T( 1,182)= 0.05236379; T( 1,183)= 0.05295434; T( 1,184)= 0.05354838; T( 1,185)= 0.05414592; T( 1,186)= 0.05474695; T( 1,187)= 0.05535147; T( 1,188)= 0.05595951; T( 1,189)= 0.05657105; T( 1,190)= 0.05718611; T( 1,191)= 0.05780468; T( 1,192)= 0.05842677; T( 1,193)= 0.05905239; T( 1,194)= 0.05968153; T( 1,195)= 0.06031421; T( 1,196)= 0.06095043; T( 1,197)= 0.06159019; T( 1,198)= 0.06223350; T( 1,199)= 0.06288036; T( 1,200)= 0.06353078; T( 1,201)= 0.06418475; T( 1,202)= 0.06484230; T( 1,203)= 0.06550341; T( 1,204)= 0.06616809; T( 1,205)= 0.06683635; T( 1,206)= 0.06750820; T( 1,207)= 0.06818363; T( 1,208)= 0.06886266; T( 1,209)= 0.06954528; T( 1,210)= 0.07023151; T( 1,211)= 0.07092134; T( 1,212)= 0.07161479; T( 1,213)= 0.07231185; T( 1,214)= 0.07301253; T( 1,215)= 0.07371684; T( 1,216)= 0.07442478; T( 1,217)= 0.07513636; T( 1,218)= 0.07585157; T( 1,219)= 0.07657044; T( 1,220)= 0.07729295; T( 1,221)= 0.07801912; T( 1,222)= 0.07874896; T( 1,223)= 0.07948246; T( 1,224)= 0.08021963; T( 1,225)= 0.08096048; T( 1,226)= 0.08170501; T( 1,227)= 0.08245322; T( 1,228)= 0.08320514; T( 1,229)= 0.08396074; T( 1,230)= 0.08472006; T( 1,231)= 0.08548308; T( 1,232)= 0.08624982; T( 1,233)= 0.08702027; T( 1,234)= 0.08779446; T( 1,235)= 0.08857237; T( 1,236)= 0.08935402; T( 1,237)= 0.09013941; T( 1,238)= 0.09092855; T( 1,239)= 0.09172144; T( 1,240)= 0.09251809; T( 1,241)= 0.09331851; T( 1,242)= 0.09412270; T( 1,243)= 0.09493066; T( 1,244)= 0.09574241; T( 1,245)= 0.09655795; T( 1,246)= 0.09737728; T( 1,247)= 0.09820041; T( 1,248)= 0.09902734; T( 1,249)= 0.09985809; T( 1,250)= 0.10069265; T( 1,251)= 0.10153104; T( 1,252)= 0.10237326; T( 1,253)= 0.10321932; T( 1,254)= 0.10406922; T( 1,255)= 0.10492297; T( 1,256)= 0.10578057; T( 1,257)= 0.10664204; T( 1,258)= 0.10750737; T( 1,259)= 0.10837658; T( 1,260)= 0.10924967; T( 1,261)= 0.11012664; T( 1,262)= 0.11100751; T( 1,263)= 0.11189228; T( 1,264)= 0.11278096; T( 1,265)= 0.11367355; T( 1,266)= 0.11457005; T( 1,267)= 0.11547049; T( 1,268)= 0.11637486; T( 1,269)= 0.11728317; T( 1,270)= 0.11819542; T( 1,271)= 0.11911163; T( 1,272)= 0.12003180; T( 1,273)= 0.12095594; T( 1,274)= 0.12188405; T( 1,275)= 0.12281614; T( 1,276)= 0.12375223; T( 1,277)= 0.12469230; T( 1,278)= 0.12563638; T( 1,279)= 0.12658447; T( 1,280)= 0.12753658; T( 1,281)= 0.12849271; T( 1,282)= 0.12945287; T( 1,283)= 0.13041707; T( 1,284)= 0.13138531; T( 1,285)= 0.13235761; T( 1,286)= 0.13333397; T( 1,287)= 0.13431440; T( 1,288)= 0.13529891; T( 1,289)= 0.13628749; T( 1,290)= 0.13728017; T( 1,291)= 0.13827695; T( 1,292)= 0.13927783; T( 1,293)= 0.14028283; T( 1,294)= 0.14129195; T( 1,295)= 0.14230520; T( 1,296)= 0.14332259; T( 1,297)= 0.14434412; T( 1,298)= 0.14536981; T( 1,299)= 0.14639965; T( 1,300)= 0.14743367; T( 1,301)= 0.14847186; T( 1,302)= 0.14951424; T( 1,303)= 0.15056081; T( 1,304)= 0.15161159; T( 1,305)= 0.15266657; T( 1,306)= 0.15372578; T( 1,307)= 0.15478921; T( 1,308)= 0.15585687; T( 1,309)= 0.15692878; T( 1,310)= 0.15800494; T( 1,311)= 0.15908536; T( 1,312)= 0.16017005; T( 1,313)= 0.16125902; T( 1,314)= 0.16235228; T( 1,315)= 0.16344983; T( 1,316)= 0.16455169; T( 1,317)= 0.16565785; T( 1,318)= 0.16676834; T( 1,319)= 0.16788316; T( 1,320)= 0.16900232; T( 1,321)= 0.17012583; T( 1,322)= 0.17125370; T( 1,323)= 0.17238593; T( 1,324)= 0.17352254; T( 1,325)= 0.17466354; T( 1,326)= 0.17580893; T( 1,327)= 0.17695872; T( 1,328)= 0.17811293; T( 1,329)= 0.17927156; T( 1,330)= 0.18043462; T( 1,331)= 0.18160212; T( 1,332)= 0.18277408; T( 1,333)= 0.18395050; T( 1,334)= 0.18513138; T( 1,335)= 0.18631675; T( 1,336)= 0.18750661; T( 1,337)= 0.18870096; T( 1,338)= 0.18989983; T( 1,339)= 0.19110322; T( 1,340)= 0.19231114; T( 1,341)= 0.19352359; T( 1,342)= 0.19474060; T( 1,343)= 0.19596217; T( 1,344)= 0.19718831; T( 1,345)= 0.19841903; T( 1,346)= 0.19965434; T( 1,347)= 0.20089425; T( 1,348)= 0.20213877; T( 1,349)= 0.20338792; T( 1,350)= 0.20464170; T( 1,351)= 0.20590013; T( 1,352)= 0.20716320; T( 1,353)= 0.20843095; T( 1,354)= 0.20970337; T( 1,355)= 0.21098048; T( 1,356)= 0.21226228; T( 1,357)= 0.21354880; T( 1,358)= 0.21484003; T( 1,359)= 0.21613600; T( 1,360)= 0.21743670; T( 1,361)= 0.21874217; T( 1,362)= 0.22005239; T( 1,363)= 0.22136740; T( 1,364)= 0.22268719; T( 1,365)= 0.22401178; T( 1,366)= 0.22534118; T( 1,367)= 0.22667540; T( 1,368)= 0.22801446; T( 1,369)= 0.22935836; T( 1,370)= 0.23070713; T( 1,371)= 0.23206076; T( 1,372)= 0.23341927; T( 1,373)= 0.23478268; T( 1,374)= 0.23615099; T( 1,375)= 0.23752422; T( 1,376)= 0.23890238; T( 1,377)= 0.24028548; T( 1,378)= 0.24167354; T( 1,379)= 0.24306657; T( 1,380)= 0.24446457; T( 1,381)= 0.24586757; T( 1,382)= 0.24727557; T( 1,383)= 0.24868859; T( 1,384)= 0.25010664; T( 1,385)= 0.25152973; T( 1,386)= 0.25295788; T( 1,387)= 0.25439110; T( 1,388)= 0.25582940; T( 1,389)= 0.25727280; T( 1,390)= 0.25872130; T( 1,391)= 0.26017493; T( 1,392)= 0.26163369; T( 1,393)= 0.26309761; T( 1,394)= 0.26456668; T( 1,395)= 0.26604093; T( 1,396)= 0.26752037; T( 1,397)= 0.26900501; T( 1,398)= 0.27049487; T( 1,399)= 0.27198997; T( 1,400)= 0.27349030; T( 1,401)= 0.27499590; T( 1,402)= 0.27650677; T( 1,403)= 0.27802292; T( 1,404)= 0.27954438; T( 1,405)= 0.28107116; T( 1,406)= 0.28260326; T( 1,407)= 0.28414071; T( 1,408)= 0.28568353; T( 1,409)= 0.28723171; T( 1,410)= 0.28878529; T( 1,411)= 0.29034427; T( 1,412)= 0.29190867; T( 1,413)= 0.29347850; T( 1,414)= 0.29505378; T( 1,415)= 0.29663453; T( 1,416)= 0.29822076; T( 1,417)= 0.29981248; T( 1,418)= 0.30140972; T( 1,419)= 0.30301248; T( 1,420)= 0.30462079; T( 1,421)= 0.30623465; T( 1,422)= 0.30785408; T( 1,423)= 0.30947911; T( 1,424)= 0.31110974; T( 1,425)= 0.31274600; T( 1,426)= 0.31438789; T( 1,427)= 0.31603544; T( 1,428)= 0.31768866; T( 1,429)= 0.31934756; T( 1,430)= 0.32101217; T( 1,431)= 0.32268250; T( 1,432)= 0.32435857; T( 1,433)= 0.32604040; T( 1,434)= 0.32772799; T( 1,435)= 0.32942138; T( 1,436)= 0.33112057; T( 1,437)= 0.33282558; T( 1,438)= 0.33453644; T( 1,439)= 0.33625315; T( 1,440)= 0.33797574; T( 1,441)= 0.33970422; T( 1,442)= 0.34143862; T( 1,443)= 0.34317894; T( 1,444)= 0.34492521; T( 1,445)= 0.34667745; T( 1,446)= 0.34843567; T( 1,447)= 0.35019989; T( 1,448)= 0.35197013; T( 1,449)= 0.35374641; T( 1,450)= 0.35552875; T( 1,451)= 0.35731717; T( 1,452)= 0.35911168; T( 1,453)= 0.36091231; T( 1,454)= 0.36271907; T( 1,455)= 0.36453198; T( 1,456)= 0.36635106; T( 1,457)= 0.36817634; T( 1,458)= 0.37000783; T( 1,459)= 0.37184555; T( 1,460)= 0.37368952; T( 1,461)= 0.37553976; T( 1,462)= 0.37739629; T( 1,463)= 0.37925914; T( 1,464)= 0.38112831; T( 1,465)= 0.38300384; T( 1,466)= 0.38488574; T( 1,467)= 0.38677403; T( 1,468)= 0.38866874; T( 1,469)= 0.39056988; T( 1,470)= 0.39247748; T( 1,471)= 0.39439155; T( 1,472)= 0.39631213; T( 1,473)= 0.39823922; T( 1,474)= 0.40017286; T( 1,475)= 0.40211306; T( 1,476)= 0.40405984; T( 1,477)= 0.40601323; T( 1,478)= 0.40797325; T( 1,479)= 0.40993992; T( 1,480)= 0.41191327; T( 1,481)= 0.41389331; T( 1,482)= 0.41588007; T( 1,483)= 0.41787358; T( 1,484)= 0.41987384; T( 1,485)= 0.42188090; T( 1,486)= 0.42389477; T( 1,487)= 0.42591547; T( 1,488)= 0.42794303; T( 1,489)= 0.42997748; T( 1,490)= 0.43201883; T( 1,491)= 0.43406711; T( 1,492)= 0.43612234; T( 1,493)= 0.43818455; T( 1,494)= 0.44025376; T( 1,495)= 0.44233000; T( 1,496)= 0.44441330; T( 1,497)= 0.44650367; T( 1,498)= 0.44860114; T( 1,499)= 0.45070574; T( 1,500)= 0.45281749; T( 1,501)= 0.45493642; T( 1,502)= 0.45706256; T( 1,503)= 0.45919592; T( 1,504)= 0.46133654; T( 1,505)= 0.46348444; T( 1,506)= 0.46563966; T( 1,507)= 0.46780220; T( 1,508)= 0.46997211; T( 1,509)= 0.47214941; T( 1,510)= 0.47433412; T( 1,511)= 0.47652627; T( 1,512)= 0.47872590; T( 1,513)= 0.48093302; T( 1,514)= 0.48314767; T( 1,515)= 0.48536987; T( 1,516)= 0.48759966; T( 1,517)= 0.48983705; T( 1,518)= 0.49208209; T( 1,519)= 0.49433479; T( 1,520)= 0.49659519; T( 1,521)= 0.49886331; T( 1,522)= 0.50113919; T( 1,523)= 0.50342285; T( 1,524)= 0.50571433; T( 1,525)= 0.50801365; T( 1,526)= 0.51032084; T( 1,527)= 0.51263594; T( 1,528)= 0.51495897; T( 1,529)= 0.51728997; T( 1,530)= 0.51962896; T( 1,531)= 0.52197598; T( 1,532)= 0.52433106; T( 1,533)= 0.52669423; T( 1,534)= 0.52906552; T( 1,535)= 0.53144496; T( 1,536)= 0.53383259; T( 1,537)= 0.53622844; T( 1,538)= 0.53863254; T( 1,539)= 0.54104492; T( 1,540)= 0.54346562; T( 1,541)= 0.54589467; T( 1,542)= 0.54833210; T( 1,543)= 0.55077795; T( 1,544)= 0.55323224; T( 1,545)= 0.55569503; T( 1,546)= 0.55816633; T( 1,547)= 0.56064619; T( 1,548)= 0.56313464; T( 1,549)= 0.56563171; T( 1,550)= 0.56813744; T( 1,551)= 0.57065186; T( 1,552)= 0.57317502; T( 1,553)= 0.57570694; T( 1,554)= 0.57824767; T( 1,555)= 0.58079723; T( 1,556)= 0.58335568; T( 1,557)= 0.58592304; T( 1,558)= 0.58849935; T( 1,559)= 0.59108464; T( 1,560)= 0.59367897; T( 1,561)= 0.59628236; T( 1,562)= 0.59889485; T( 1,563)= 0.60151649; T( 1,564)= 0.60414731; T( 1,565)= 0.60678735; T( 1,566)= 0.60943665; T( 1,567)= 0.61209525; T( 1,568)= 0.61476319; T( 1,569)= 0.61744051; T( 1,570)= 0.62012726; T( 1,571)= 0.62282346; T( 1,572)= 0.62552918; T( 1,573)= 0.62824443; T( 1,574)= 0.63096928; T( 1,575)= 0.63370375; T( 1,576)= 0.63644790; T( 1,577)= 0.63920176; T( 1,578)= 0.64196538; T( 1,579)= 0.64473880; T( 1,580)= 0.64752207; T( 1,581)= 0.65031523; T( 1,582)= 0.65311832; T( 1,583)= 0.65593139; T( 1,584)= 0.65875449; T( 1,585)= 0.66158766; T( 1,586)= 0.66443094; T( 1,587)= 0.66728438; T( 1,588)= 0.67014804; T( 1,589)= 0.67302194; T( 1,590)= 0.67590615; T( 1,591)= 0.67880071; T( 1,592)= 0.68170567; T( 1,593)= 0.68462108; T( 1,594)= 0.68754698; T( 1,595)= 0.69048342; T( 1,596)= 0.69343046; T( 1,597)= 0.69638814; T( 1,598)= 0.69935651; T( 1,599)= 0.70233563; T( 1,600)= 0.70532554; T( 1,601)= 0.70832630; T( 1,602)= 0.71133796; T( 1,603)= 0.71436056; T( 1,604)= 0.71739417; T( 1,605)= 0.72043884; T( 1,606)= 0.72349461; T( 1,607)= 0.72656155; T( 1,608)= 0.72963970; T( 1,609)= 0.73272913; T( 1,610)= 0.73582988; T( 1,611)= 0.73894201; T( 1,612)= 0.74206558; T( 1,613)= 0.74520065; T( 1,614)= 0.74834727; T( 1,615)= 0.75150550; T( 1,616)= 0.75467539; T( 1,617)= 0.75785701; T( 1,618)= 0.76105041; T( 1,619)= 0.76425565; T( 1,620)= 0.76747280; T( 1,621)= 0.77070190; T( 1,622)= 0.77394304; T( 1,623)= 0.77719625; T( 1,624)= 0.78046161; T( 1,625)= 0.78373918; T( 1,626)= 0.78702902; T( 1,627)= 0.79033119; T( 1,628)= 0.79364576; T( 1,629)= 0.79697279; T( 1,630)= 0.80031234; T( 1,631)= 0.80366449; T( 1,632)= 0.80702930; T( 1,633)= 0.81040683; T( 1,634)= 0.81379714; T( 1,635)= 0.81720032; T( 1,636)= 0.82061642; T( 1,637)= 0.82404552; T( 1,638)= 0.82748768; T( 1,639)= 0.83094297; T( 1,640)= 0.83441147; T( 1,641)= 0.83789324; T( 1,642)= 0.84138836; T( 1,643)= 0.84489690; T( 1,644)= 0.84841893; T( 1,645)= 0.85195452; T( 1,646)= 0.85550376; T( 1,647)= 0.85906670; T( 1,648)= 0.86264344; T( 1,649)= 0.86623404; T( 1,650)= 0.86983858; T( 1,651)= 0.87345714; T( 1,652)= 0.87708980; T( 1,653)= 0.88073664; T( 1,654)= 0.88439773; T( 1,655)= 0.88807315; T( 1,656)= 0.89176299; T( 1,657)= 0.89546733; T( 1,658)= 0.89918625; T( 1,659)= 0.90291984; T( 1,660)= 0.90666817; T( 1,661)= 0.91043133; T( 1,662)= 0.91420941; T( 1,663)= 0.91800249; T( 1,664)= 0.92181066; T( 1,665)= 0.92563401; T( 1,666)= 0.92947263; T( 1,667)= 0.93332660; T( 1,668)= 0.93719601; T( 1,669)= 0.94108097; T( 1,670)= 0.94498155; T( 1,671)= 0.94889785; T( 1,672)= 0.95282996; T( 1,673)= 0.95677798; T( 1,674)= 0.96074201; T( 1,675)= 0.96472213; T( 1,676)= 0.96871846; T( 1,677)= 0.97273107; T( 1,678)= 0.97676009; T( 1,679)= 0.98080559; T( 1,680)= 0.98486769; T( 1,681)= 0.98894648; T( 1,682)= 0.99304207; T( 1,683)= 0.99715457; T( 1,684)= 1.00128407; T( 1,685)= 1.00543068; T( 1,686)= 1.00959452; T( 1,687)= 1.01377568; T( 1,688)= 1.01797427; T( 1,689)= 1.02219041; T( 1,690)= 1.02642421; T( 1,691)= 1.03067578; T( 1,692)= 1.03494522; T( 1,693)= 1.03923267; T( 1,694)= 1.04353822; T( 1,695)= 1.04786201; T( 1,696)= 1.05220414; T( 1,697)= 1.05656473; T( 1,698)= 1.06094391; T( 1,699)= 1.06534179; T( 1,700)= 1.06975851; T( 1,701)= 1.07419417; T( 1,702)= 1.07864891; T( 1,703)= 1.08312286; T( 1,704)= 1.08761614; T( 1,705)= 1.09212887; T( 1,706)= 1.09666120; T( 1,707)= 1.10121325; T( 1,708)= 1.10578516; T( 1,709)= 1.11037705; T( 1,710)= 1.11498907; T( 1,711)= 1.11962136; T( 1,712)= 1.12427404; T( 1,713)= 1.12894727; T( 1,714)= 1.13364118; T( 1,715)= 1.13835591; T( 1,716)= 1.14309162; T( 1,717)= 1.14784844; T( 1,718)= 1.15262653; T( 1,719)= 1.15742603; T( 1,720)= 1.16224709; T( 1,721)= 1.16708988; T( 1,722)= 1.17195453; T( 1,723)= 1.17684122; T( 1,724)= 1.18175009; T( 1,725)= 1.18668130; T( 1,726)= 1.19163503; T( 1,727)= 1.19661142; T( 1,728)= 1.20161064; T( 1,729)= 1.20663287; T( 1,730)= 1.21167827; T( 1,731)= 1.21674700; T( 1,732)= 1.22183925; T( 1,733)= 1.22695519; T( 1,734)= 1.23209498; T( 1,735)= 1.23725882; T( 1,736)= 1.24244689; T( 1,737)= 1.24765935; T( 1,738)= 1.25289640; T( 1,739)= 1.25815823; T( 1,740)= 1.26344503; T( 1,741)= 1.26875698; T( 1,742)= 1.27409427; T( 1,743)= 1.27945711; T( 1,744)= 1.28484570; T( 1,745)= 1.29026023; T( 1,746)= 1.29570090; T( 1,747)= 1.30116792; T( 1,748)= 1.30666150; T( 1,749)= 1.31218185; T( 1,750)= 1.31772917; T( 1,751)= 1.32330370; T( 1,752)= 1.32890563; T( 1,753)= 1.33453520; T( 1,754)= 1.34019263; T( 1,755)= 1.34587814; T( 1,756)= 1.35159197; T( 1,757)= 1.35733433; T( 1,758)= 1.36310547; T( 1,759)= 1.36890563; T( 1,760)= 1.37473505; T( 1,761)= 1.38059396; T( 1,762)= 1.38648262; T( 1,763)= 1.39240128; T( 1,764)= 1.39835018; T( 1,765)= 1.40432959; T( 1,766)= 1.41033976; T( 1,767)= 1.41638095; T( 1,768)= 1.42245344; T( 1,769)= 1.42855750; T( 1,770)= 1.43469339; T( 1,771)= 1.44086139; T( 1,772)= 1.44706178; T( 1,773)= 1.45329486; T( 1,774)= 1.45956089; T( 1,775)= 1.46586019; T( 1,776)= 1.47219304; T( 1,777)= 1.47855974; T( 1,778)= 1.48496060; T( 1,779)= 1.49139593; T( 1,780)= 1.49786603; T( 1,781)= 1.50437123; T( 1,782)= 1.51091184; T( 1,783)= 1.51748820; T( 1,784)= 1.52410062; T( 1,785)= 1.53074945; T( 1,786)= 1.53743503; T( 1,787)= 1.54415770; T( 1,788)= 1.55091780; T( 1,789)= 1.55771570; T( 1,790)= 1.56455174; T( 1,791)= 1.57142631; T( 1,792)= 1.57833976; T( 1,793)= 1.58529247; T( 1,794)= 1.59228482; T( 1,795)= 1.59931720; T( 1,796)= 1.60639000; T( 1,797)= 1.61350362; T( 1,798)= 1.62065845; T( 1,799)= 1.62785492; T( 1,800)= 1.63509343; T( 1,801)= 1.64237442; T( 1,802)= 1.64969829; T( 1,803)= 1.65706550; T( 1,804)= 1.66447649; T( 1,805)= 1.67193169; T( 1,806)= 1.67943157; T( 1,807)= 1.68697660; T( 1,808)= 1.69456723; T( 1,809)= 1.70220395; T( 1,810)= 1.70988725; T( 1,811)= 1.71761761; T( 1,812)= 1.72539554; T( 1,813)= 1.73322154; T( 1,814)= 1.74109613; T( 1,815)= 1.74901984; T( 1,816)= 1.75699320; T( 1,817)= 1.76501675; T( 1,818)= 1.77309105; T( 1,819)= 1.78121665; T( 1,820)= 1.78939413; T( 1,821)= 1.79762406; T( 1,822)= 1.80590704; T( 1,823)= 1.81424366; T( 1,824)= 1.82263454; T( 1,825)= 1.83108029; T( 1,826)= 1.83958155; T( 1,827)= 1.84813896; T( 1,828)= 1.85675316; T( 1,829)= 1.86542483; T( 1,830)= 1.87415465; T( 1,831)= 1.88294329; T( 1,832)= 1.89179147; T( 1,833)= 1.90069989; T( 1,834)= 1.90966928; T( 1,835)= 1.91870038; T( 1,836)= 1.92779395; T( 1,837)= 1.93695075; T( 1,838)= 1.94617156; T( 1,839)= 1.95545717; T( 1,840)= 1.96480841; T( 1,841)= 1.97422609; T( 1,842)= 1.98371106; T( 1,843)= 1.99326417; T( 1,844)= 2.00288630; T( 1,845)= 2.01257834; T( 1,846)= 2.02234120; T( 1,847)= 2.03217580; T( 1,848)= 2.04208310; T( 1,849)= 2.05206405; T( 1,850)= 2.06211963; T( 1,851)= 2.07225086; T( 1,852)= 2.08245874; T( 1,853)= 2.09274434; T( 1,854)= 2.10310870; T( 1,855)= 2.11355293; T( 1,856)= 2.12407812; T( 1,857)= 2.13468542; T( 1,858)= 2.14537598; T( 1,859)= 2.15615098; T( 1,860)= 2.16701163; T( 1,861)= 2.17795916; T( 1,862)= 2.18899483; T( 1,863)= 2.20011994; T( 1,864)= 2.21133579; T( 1,865)= 2.22264373; T( 1,866)= 2.23404513; T( 1,867)= 2.24554141; T( 1,868)= 2.25713401; T( 1,869)= 2.26882438; T( 1,870)= 2.28061404; T( 1,871)= 2.29250453; T( 1,872)= 2.30449742; T( 1,873)= 2.31659432; T( 1,874)= 2.32879689; T( 1,875)= 2.34110682; T( 1,876)= 2.35352584; T( 1,877)= 2.36605573; T( 1,878)= 2.37869829; T( 1,879)= 2.39145540; T( 1,880)= 2.40432896; T( 1,881)= 2.41732093; T( 1,882)= 2.43043331; T( 1,883)= 2.44366817; T( 1,884)= 2.45702761; T( 1,885)= 2.47051380; T( 1,886)= 2.48412895; T( 1,887)= 2.49787536; T( 1,888)= 2.51175537; T( 1,889)= 2.52577137; T( 1,890)= 2.53992584; T( 1,891)= 2.55422131; T( 1,892)= 2.56866040; T( 1,893)= 2.58324579; T( 1,894)= 2.59798022; T( 1,895)= 2.61286654; T( 1,896)= 2.62790766; T( 1,897)= 2.64310659; T( 1,898)= 2.65846640; T( 1,899)= 2.67399029; T( 1,900)= 2.68968151; T( 1,901)= 2.70554345; T( 1,902)= 2.72157959; T( 1,903)= 2.73779350; T( 1,904)= 2.75418887; T( 1,905)= 2.77076952; T( 1,906)= 2.78753937; T( 1,907)= 2.80450249; T( 1,908)= 2.82166305; T( 1,909)= 2.83902539; T( 1,910)= 2.85659397; T( 1,911)= 2.87437340; T( 1,912)= 2.89236845; T( 1,913)= 2.91058407; T( 1,914)= 2.92902536; T( 1,915)= 2.94769760; T( 1,916)= 2.96660627; T( 1,917)= 2.98575702; T( 1,918)= 3.00515574; T( 1,919)= 3.02480852; T( 1,920)= 3.04472166; T( 1,921)= 3.06490172; T( 1,922)= 3.08535550; T( 1,923)= 3.10609006; T( 1,924)= 3.12711274; T( 1,925)= 3.14843116; T( 1,926)= 3.17005327; T( 1,927)= 3.19198732; T( 1,928)= 3.21424190; T( 1,929)= 3.23682596; T( 1,930)= 3.25974885; T( 1,931)= 3.28302029; T( 1,932)= 3.30665043; T( 1,933)= 3.33064990; T( 1,934)= 3.35502975; T( 1,935)= 3.37980159; T( 1,936)= 3.40497752; T( 1,937)= 3.43057023; T( 1,938)= 3.45659301; T( 1,939)= 3.48305980; T( 1,940)= 3.50998521; T( 1,941)= 3.53738460; T( 1,942)= 3.56527408; T( 1,943)= 3.59367062; T( 1,944)= 3.62259207; T( 1,945)= 3.65205725; T( 1,946)= 3.68208597; T( 1,947)= 3.71269918; T( 1,948)= 3.74391899; T( 1,949)= 3.77576877; T( 1,950)= 3.80827331; T( 1,951)= 3.84145882; T( 1,952)= 3.87535316; T( 1,953)= 3.90998590; T( 1,954)= 3.94538850; T( 1,955)= 3.98159446; T( 1,956)= 4.01863951; T( 1,957)= 4.05656180; T( 1,958)= 4.09540213; T( 1,959)= 4.13520420; T( 1,960)= 4.17601489; T( 1,961)= 4.21788459; T( 1,962)= 4.26086752; T( 1,963)= 4.30502217; T( 1,964)= 4.35041174; T( 1,965)= 4.39710464; T( 1,966)= 4.44517514; T( 1,967)= 4.49470397; T( 1,968)= 4.54577916; T( 1,969)= 4.59849691; T( 1,970)= 4.65296265; T( 1,971)= 4.70929225; T( 1,972)= 4.76761342; T( 1,973)= 4.82806742; T( 1,974)= 4.89081102; T( 1,975)= 4.95601884; T( 1,976)= 5.02388619; T( 1,977)= 5.09463243; T( 1,978)= 5.16850511; T( 1,979)= 5.24578502; T( 1,980)= 5.32679234; T( 1,981)= 5.41189443; T( 1,982)= 5.50151554; T( 1,983)= 5.59614912; T( 1,984)= 5.69637381; T( 1,985)= 5.80287411; T( 1,986)= 5.91646788; T( 1,987)= 6.03814337; T( 1,988)= 6.16910990; T( 1,989)= 6.31086912; T( 1,990)= 6.46531729; T( 1,991)= 6.63489660; T( 1,992)= 6.82282684; T( 1,993)= 7.03347427; T( 1,994)= 7.27296897; T( 1,995)= 7.55030254; T( 1,996)= 7.87943858; T( 1,997)= 8.28381500; T( 1,998)= 8.80746839; T( 1,999)= 9.54953571; T( 1,1000)=10.82756617; T( 1,1001)=15.13670523; T( 1,1002)=19.51142096; T( 2, 1)= 0.00000000; T( 2, 2)= 0.00200100; T( 2, 3)= 0.00400401; T( 2, 4)= 0.00600902; T( 2, 5)= 0.00801604; T( 2, 6)= 0.01002508; T( 2, 7)= 0.01203614; T( 2, 8)= 0.01404923; T( 2, 9)= 0.01606434; T( 2,10)= 0.01808149; T( 2,11)= 0.02010067; T( 2,12)= 0.02212189; T( 2,13)= 0.02414516; T( 2,14)= 0.02617048; T( 2,15)= 0.02819785; T( 2,16)= 0.03022728; T( 2,17)= 0.03225876; T( 2,18)= 0.03429232; T( 2,19)= 0.03632794; T( 2,20)= 0.03836564; T( 2,21)= 0.04040541; T( 2,22)= 0.04244727; T( 2,23)= 0.04449122; T( 2,24)= 0.04653725; T( 2,25)= 0.04858539; T( 2,26)= 0.05063562; T( 2,27)= 0.05268795; T( 2,28)= 0.05474239; T( 2,29)= 0.05679895; T( 2,30)= 0.05885762; T( 2,31)= 0.06091841; T( 2,32)= 0.06298133; T( 2,33)= 0.06504638; T( 2,34)= 0.06711357; T( 2,35)= 0.06918289; T( 2,36)= 0.07125436; T( 2,37)= 0.07332797; T( 2,38)= 0.07540373; T( 2,39)= 0.07748166; T( 2,40)= 0.07956174; T( 2,41)= 0.08164399; T( 2,42)= 0.08372841; T( 2,43)= 0.08581500; T( 2,44)= 0.08790378; T( 2,45)= 0.08999473; T( 2,46)= 0.09208788; T( 2,47)= 0.09418322; T( 2,48)= 0.09628075; T( 2,49)= 0.09838049; T( 2,50)= 0.10048243; T( 2,51)= 0.10258659; T( 2,52)= 0.10469296; T( 2,53)= 0.10680155; T( 2,54)= 0.10891237; T( 2,55)= 0.11102542; T( 2,56)= 0.11314070; T( 2,57)= 0.11525823; T( 2,58)= 0.11737799; T( 2,59)= 0.11950001; T( 2,60)= 0.12162428; T( 2,61)= 0.12375081; T( 2,62)= 0.12587960; T( 2,63)= 0.12801066; T( 2,64)= 0.13014399; T( 2,65)= 0.13227961; T( 2,66)= 0.13441750; T( 2,67)= 0.13655768; T( 2,68)= 0.13870016; T( 2,69)= 0.14084493; T( 2,70)= 0.14299200; T( 2,71)= 0.14514139; T( 2,72)= 0.14729308; T( 2,73)= 0.14944709; T( 2,74)= 0.15160343; T( 2,75)= 0.15376209; T( 2,76)= 0.15592308; T( 2,77)= 0.15808641; T( 2,78)= 0.16025209; T( 2,79)= 0.16242011; T( 2,80)= 0.16459049; T( 2,81)= 0.16676322; T( 2,82)= 0.16893831; T( 2,83)= 0.17111578; T( 2,84)= 0.17329561; T( 2,85)= 0.17547783; T( 2,86)= 0.17766243; T( 2,87)= 0.17984942; T( 2,88)= 0.18203880; T( 2,89)= 0.18423058; T( 2,90)= 0.18642476; T( 2,91)= 0.18862136; T( 2,92)= 0.19082037; T( 2,93)= 0.19302180; T( 2,94)= 0.19522566; T( 2,95)= 0.19743195; T( 2,96)= 0.19964067; T( 2,97)= 0.20185184; T( 2,98)= 0.20406545; T( 2,99)= 0.20628152; T( 2,100)= 0.20850004; T( 2,101)= 0.21072103; T( 2,102)= 0.21294449; T( 2,103)= 0.21517042; T( 2,104)= 0.21739883; T( 2,105)= 0.21962973; T( 2,106)= 0.22186312; T( 2,107)= 0.22409901; T( 2,108)= 0.22633740; T( 2,109)= 0.22857829; T( 2,110)= 0.23082170; T( 2,111)= 0.23306763; T( 2,112)= 0.23531609; T( 2,113)= 0.23756707; T( 2,114)= 0.23982059; T( 2,115)= 0.24207666; T( 2,116)= 0.24433527; T( 2,117)= 0.24659643; T( 2,118)= 0.24886016; T( 2,119)= 0.25112645; T( 2,120)= 0.25339531; T( 2,121)= 0.25566674; T( 2,122)= 0.25794076; T( 2,123)= 0.26021737; T( 2,124)= 0.26249657; T( 2,125)= 0.26477838; T( 2,126)= 0.26706279; T( 2,127)= 0.26934981; T( 2,128)= 0.27163945; T( 2,129)= 0.27393171; T( 2,130)= 0.27622660; T( 2,131)= 0.27852413; T( 2,132)= 0.28082431; T( 2,133)= 0.28312713; T( 2,134)= 0.28543260; T( 2,135)= 0.28774074; T( 2,136)= 0.29005154; T( 2,137)= 0.29236502; T( 2,138)= 0.29468118; T( 2,139)= 0.29700002; T( 2,140)= 0.29932155; T( 2,141)= 0.30164578; T( 2,142)= 0.30397271; T( 2,143)= 0.30630236; T( 2,144)= 0.30863472; T( 2,145)= 0.31096981; T( 2,146)= 0.31330762; T( 2,147)= 0.31564817; T( 2,148)= 0.31799146; T( 2,149)= 0.32033750; T( 2,150)= 0.32268630; T( 2,151)= 0.32503786; T( 2,152)= 0.32739219; T( 2,153)= 0.32974929; T( 2,154)= 0.33210917; T( 2,155)= 0.33447184; T( 2,156)= 0.33683730; T( 2,157)= 0.33920557; T( 2,158)= 0.34157664; T( 2,159)= 0.34395053; T( 2,160)= 0.34632724; T( 2,161)= 0.34870677; T( 2,162)= 0.35108915; T( 2,163)= 0.35347436; T( 2,164)= 0.35586242; T( 2,165)= 0.35825333; T( 2,166)= 0.36064711; T( 2,167)= 0.36304375; T( 2,168)= 0.36544327; T( 2,169)= 0.36784568; T( 2,170)= 0.37025097; T( 2,171)= 0.37265916; T( 2,172)= 0.37507025; T( 2,173)= 0.37748425; T( 2,174)= 0.37990117; T( 2,175)= 0.38232101; T( 2,176)= 0.38474379; T( 2,177)= 0.38716950; T( 2,178)= 0.38959816; T( 2,179)= 0.39202977; T( 2,180)= 0.39446434; T( 2,181)= 0.39690188; T( 2,182)= 0.39934239; T( 2,183)= 0.40178588; T( 2,184)= 0.40423237; T( 2,185)= 0.40668185; T( 2,186)= 0.40913433; T( 2,187)= 0.41158983; T( 2,188)= 0.41404834; T( 2,189)= 0.41650988; T( 2,190)= 0.41897445; T( 2,191)= 0.42144206; T( 2,192)= 0.42391272; T( 2,193)= 0.42638644; T( 2,194)= 0.42886322; T( 2,195)= 0.43134307; T( 2,196)= 0.43382600; T( 2,197)= 0.43631202; T( 2,198)= 0.43880113; T( 2,199)= 0.44129334; T( 2,200)= 0.44378866; T( 2,201)= 0.44628710; T( 2,202)= 0.44878867; T( 2,203)= 0.45129336; T( 2,204)= 0.45380120; T( 2,205)= 0.45631219; T( 2,206)= 0.45882633; T( 2,207)= 0.46134364; T( 2,208)= 0.46386411; T( 2,209)= 0.46638777; T( 2,210)= 0.46891462; T( 2,211)= 0.47144467; T( 2,212)= 0.47397792; T( 2,213)= 0.47651438; T( 2,214)= 0.47905406; T( 2,215)= 0.48159697; T( 2,216)= 0.48414312; T( 2,217)= 0.48669252; T( 2,218)= 0.48924517; T( 2,219)= 0.49180108; T( 2,220)= 0.49436026; T( 2,221)= 0.49692272; T( 2,222)= 0.49948847; T( 2,223)= 0.50205751; T( 2,224)= 0.50462986; T( 2,225)= 0.50720552; T( 2,226)= 0.50978450; T( 2,227)= 0.51236681; T( 2,228)= 0.51495246; T( 2,229)= 0.51754146; T( 2,230)= 0.52013381; T( 2,231)= 0.52272953; T( 2,232)= 0.52532862; T( 2,233)= 0.52793109; T( 2,234)= 0.53053696; T( 2,235)= 0.53314622; T( 2,236)= 0.53575889; T( 2,237)= 0.53837498; T( 2,238)= 0.54099450; T( 2,239)= 0.54361745; T( 2,240)= 0.54624384; T( 2,241)= 0.54887369; T( 2,242)= 0.55150700; T( 2,243)= 0.55414379; T( 2,244)= 0.55678405; T( 2,245)= 0.55942781; T( 2,246)= 0.56207506; T( 2,247)= 0.56472582; T( 2,248)= 0.56738010; T( 2,249)= 0.57003791; T( 2,250)= 0.57269925; T( 2,251)= 0.57536414; T( 2,252)= 0.57803259; T( 2,253)= 0.58070460; T( 2,254)= 0.58338019; T( 2,255)= 0.58605936; T( 2,256)= 0.58874212; T( 2,257)= 0.59142849; T( 2,258)= 0.59411847; T( 2,259)= 0.59681207; T( 2,260)= 0.59950931; T( 2,261)= 0.60221019; T( 2,262)= 0.60491472; T( 2,263)= 0.60762291; T( 2,264)= 0.61033477; T( 2,265)= 0.61305032; T( 2,266)= 0.61576956; T( 2,267)= 0.61849250; T( 2,268)= 0.62121915; T( 2,269)= 0.62394953; T( 2,270)= 0.62668364; T( 2,271)= 0.62942149; T( 2,272)= 0.63216309; T( 2,273)= 0.63490846; T( 2,274)= 0.63765760; T( 2,275)= 0.64041053; T( 2,276)= 0.64316725; T( 2,277)= 0.64592777; T( 2,278)= 0.64869211; T( 2,279)= 0.65146028; T( 2,280)= 0.65423228; T( 2,281)= 0.65700813; T( 2,282)= 0.65978784; T( 2,283)= 0.66257142; T( 2,284)= 0.66535888; T( 2,285)= 0.66815022; T( 2,286)= 0.67094547; T( 2,287)= 0.67374463; T( 2,288)= 0.67654772; T( 2,289)= 0.67935474; T( 2,290)= 0.68216570; T( 2,291)= 0.68498062; T( 2,292)= 0.68779950; T( 2,293)= 0.69062237; T( 2,294)= 0.69344923; T( 2,295)= 0.69628008; T( 2,296)= 0.69911495; T( 2,297)= 0.70195385; T( 2,298)= 0.70479677; T( 2,299)= 0.70764375; T( 2,300)= 0.71049478; T( 2,301)= 0.71334989; T( 2,302)= 0.71620907; T( 2,303)= 0.71907235; T( 2,304)= 0.72193974; T( 2,305)= 0.72481124; T( 2,306)= 0.72768687; T( 2,307)= 0.73056664; T( 2,308)= 0.73345056; T( 2,309)= 0.73633865; T( 2,310)= 0.73923091; T( 2,311)= 0.74212736; T( 2,312)= 0.74502802; T( 2,313)= 0.74793288; T( 2,314)= 0.75084197; T( 2,315)= 0.75375530; T( 2,316)= 0.75667288; T( 2,317)= 0.75959472; T( 2,318)= 0.76252084; T( 2,319)= 0.76545124; T( 2,320)= 0.76838595; T( 2,321)= 0.77132496; T( 2,322)= 0.77426830; T( 2,323)= 0.77721598; T( 2,324)= 0.78016801; T( 2,325)= 0.78312441; T( 2,326)= 0.78608518; T( 2,327)= 0.78905034; T( 2,328)= 0.79201990; T( 2,329)= 0.79499388; T( 2,330)= 0.79797228; T( 2,331)= 0.80095513; T( 2,332)= 0.80394244; T( 2,333)= 0.80693421; T( 2,334)= 0.80993047; T( 2,335)= 0.81293122; T( 2,336)= 0.81593648; T( 2,337)= 0.81894626; T( 2,338)= 0.82196058; T( 2,339)= 0.82497945; T( 2,340)= 0.82800288; T( 2,341)= 0.83103089; T( 2,342)= 0.83406349; T( 2,343)= 0.83710070; T( 2,344)= 0.84014252; T( 2,345)= 0.84318898; T( 2,346)= 0.84624009; T( 2,347)= 0.84929586; T( 2,348)= 0.85235630; T( 2,349)= 0.85542143; T( 2,350)= 0.85849127; T( 2,351)= 0.86156583; T( 2,352)= 0.86464512; T( 2,353)= 0.86772917; T( 2,354)= 0.87081797; T( 2,355)= 0.87391155; T( 2,356)= 0.87700992; T( 2,357)= 0.88011311; T( 2,358)= 0.88322111; T( 2,359)= 0.88633395; T( 2,360)= 0.88945164; T( 2,361)= 0.89257421; T( 2,362)= 0.89570165; T( 2,363)= 0.89883399; T( 2,364)= 0.90197125; T( 2,365)= 0.90511343; T( 2,366)= 0.90826056; T( 2,367)= 0.91141265; T( 2,368)= 0.91456971; T( 2,369)= 0.91773177; T( 2,370)= 0.92089883; T( 2,371)= 0.92407092; T( 2,372)= 0.92724804; T( 2,373)= 0.93043023; T( 2,374)= 0.93361748; T( 2,375)= 0.93680982; T( 2,376)= 0.94000726; T( 2,377)= 0.94320982; T( 2,378)= 0.94641752; T( 2,379)= 0.94963037; T( 2,380)= 0.95284839; T( 2,381)= 0.95607160; T( 2,382)= 0.95930001; T( 2,383)= 0.96253364; T( 2,384)= 0.96577251; T( 2,385)= 0.96901663; T( 2,386)= 0.97226602; T( 2,387)= 0.97552070; T( 2,388)= 0.97878069; T( 2,389)= 0.98204599; T( 2,390)= 0.98531664; T( 2,391)= 0.98859264; T( 2,392)= 0.99187402; T( 2,393)= 0.99516079; T( 2,394)= 0.99845298; T( 2,395)= 1.00175059; T( 2,396)= 1.00505364; T( 2,397)= 1.00836216; T( 2,398)= 1.01167616; T( 2,399)= 1.01499567; T( 2,400)= 1.01832069; T( 2,401)= 1.02165125; T( 2,402)= 1.02498736; T( 2,403)= 1.02832905; T( 2,404)= 1.03167633; T( 2,405)= 1.03502922; T( 2,406)= 1.03838775; T( 2,407)= 1.04175192; T( 2,408)= 1.04512176; T( 2,409)= 1.04849729; T( 2,410)= 1.05187852; T( 2,411)= 1.05526548; T( 2,412)= 1.05865819; T( 2,413)= 1.06205666; T( 2,414)= 1.06546092; T( 2,415)= 1.06887098; T( 2,416)= 1.07228686; T( 2,417)= 1.07570859; T( 2,418)= 1.07913619; T( 2,419)= 1.08256966; T( 2,420)= 1.08600904; T( 2,421)= 1.08945435; T( 2,422)= 1.09290560; T( 2,423)= 1.09636282; T( 2,424)= 1.09982602; T( 2,425)= 1.10329524; T( 2,426)= 1.10677048; T( 2,427)= 1.11025177; T( 2,428)= 1.11373912; T( 2,429)= 1.11723258; T( 2,430)= 1.12073214; T( 2,431)= 1.12423784; T( 2,432)= 1.12774969; T( 2,433)= 1.13126772; T( 2,434)= 1.13479195; T( 2,435)= 1.13832240; T( 2,436)= 1.14185910; T( 2,437)= 1.14540205; T( 2,438)= 1.14895130; T( 2,439)= 1.15250686; T( 2,440)= 1.15606875; T( 2,441)= 1.15963699; T( 2,442)= 1.16321161; T( 2,443)= 1.16679263; T( 2,444)= 1.17038008; T( 2,445)= 1.17397397; T( 2,446)= 1.17757433; T( 2,447)= 1.18118118; T( 2,448)= 1.18479455; T( 2,449)= 1.18841447; T( 2,450)= 1.19204094; T( 2,451)= 1.19567400; T( 2,452)= 1.19931367; T( 2,453)= 1.20295998; T( 2,454)= 1.20661295; T( 2,455)= 1.21027261; T( 2,456)= 1.21393897; T( 2,457)= 1.21761206; T( 2,458)= 1.22129192; T( 2,459)= 1.22497856; T( 2,460)= 1.22867200; T( 2,461)= 1.23237228; T( 2,462)= 1.23607942; T( 2,463)= 1.23979344; T( 2,464)= 1.24351437; T( 2,465)= 1.24724224; T( 2,466)= 1.25097706; T( 2,467)= 1.25471888; T( 2,468)= 1.25846771; T( 2,469)= 1.26222358; T( 2,470)= 1.26598652; T( 2,471)= 1.26975654; T( 2,472)= 1.27353369; T( 2,473)= 1.27731799; T( 2,474)= 1.28110946; T( 2,475)= 1.28490813; T( 2,476)= 1.28871403; T( 2,477)= 1.29252719; T( 2,478)= 1.29634763; T( 2,479)= 1.30017538; T( 2,480)= 1.30401047; T( 2,481)= 1.30785293; T( 2,482)= 1.31170279; T( 2,483)= 1.31556007; T( 2,484)= 1.31942481; T( 2,485)= 1.32329703; T( 2,486)= 1.32717676; T( 2,487)= 1.33106403; T( 2,488)= 1.33495887; T( 2,489)= 1.33886131; T( 2,490)= 1.34277138; T( 2,491)= 1.34668911; T( 2,492)= 1.35061452; T( 2,493)= 1.35454766; T( 2,494)= 1.35848855; T( 2,495)= 1.36243722; T( 2,496)= 1.36639370; T( 2,497)= 1.37035802; T( 2,498)= 1.37433022; T( 2,499)= 1.37831032; T( 2,500)= 1.38229836; T( 2,501)= 1.38629436; T( 2,502)= 1.39029837; T( 2,503)= 1.39431040; T( 2,504)= 1.39833051; T( 2,505)= 1.40235870; T( 2,506)= 1.40639503; T( 2,507)= 1.41043952; T( 2,508)= 1.41449221; T( 2,509)= 1.41855312; T( 2,510)= 1.42262230; T( 2,511)= 1.42669978; T( 2,512)= 1.43078558; T( 2,513)= 1.43487975; T( 2,514)= 1.43898231; T( 2,515)= 1.44309331; T( 2,516)= 1.44721278; T( 2,517)= 1.45134074; T( 2,518)= 1.45547725; T( 2,519)= 1.45962233; T( 2,520)= 1.46377602; T( 2,521)= 1.46793835; T( 2,522)= 1.47210936; T( 2,523)= 1.47628909; T( 2,524)= 1.48047758; T( 2,525)= 1.48467485; T( 2,526)= 1.48888095; T( 2,527)= 1.49309591; T( 2,528)= 1.49731978; T( 2,529)= 1.50155259; T( 2,530)= 1.50579437; T( 2,531)= 1.51004517; T( 2,532)= 1.51430502; T( 2,533)= 1.51857397; T( 2,534)= 1.52285204; T( 2,535)= 1.52713929; T( 2,536)= 1.53143575; T( 2,537)= 1.53574145; T( 2,538)= 1.54005645; T( 2,539)= 1.54438078; T( 2,540)= 1.54871447; T( 2,541)= 1.55305758; T( 2,542)= 1.55741014; T( 2,543)= 1.56177219; T( 2,544)= 1.56614378; T( 2,545)= 1.57052494; T( 2,546)= 1.57491572; T( 2,547)= 1.57931616; T( 2,548)= 1.58372631; T( 2,549)= 1.58814620; T( 2,550)= 1.59257588; T( 2,551)= 1.59701539; T( 2,552)= 1.60146478; T( 2,553)= 1.60592409; T( 2,554)= 1.61039337; T( 2,555)= 1.61487265; T( 2,556)= 1.61936199; T( 2,557)= 1.62386143; T( 2,558)= 1.62837102; T( 2,559)= 1.63289079; T( 2,560)= 1.63742081; T( 2,561)= 1.64196110; T( 2,562)= 1.64651173; T( 2,563)= 1.65107274; T( 2,564)= 1.65564417; T( 2,565)= 1.66022607; T( 2,566)= 1.66481850; T( 2,567)= 1.66942149; T( 2,568)= 1.67403510; T( 2,569)= 1.67865938; T( 2,570)= 1.68329438; T( 2,571)= 1.68794014; T( 2,572)= 1.69259672; T( 2,573)= 1.69726417; T( 2,574)= 1.70194253; T( 2,575)= 1.70663187; T( 2,576)= 1.71133222; T( 2,577)= 1.71604365; T( 2,578)= 1.72076620; T( 2,579)= 1.72549993; T( 2,580)= 1.73024489; T( 2,581)= 1.73500114; T( 2,582)= 1.73976872; T( 2,583)= 1.74454769; T( 2,584)= 1.74933811; T( 2,585)= 1.75414004; T( 2,586)= 1.75895352; T( 2,587)= 1.76377861; T( 2,588)= 1.76861537; T( 2,589)= 1.77346386; T( 2,590)= 1.77832413; T( 2,591)= 1.78319624; T( 2,592)= 1.78808025; T( 2,593)= 1.79297621; T( 2,594)= 1.79788419; T( 2,595)= 1.80280424; T( 2,596)= 1.80773642; T( 2,597)= 1.81268080; T( 2,598)= 1.81763743; T( 2,599)= 1.82260638; T( 2,600)= 1.82758770; T( 2,601)= 1.83258146; T( 2,602)= 1.83758772; T( 2,603)= 1.84260655; T( 2,604)= 1.84763800; T( 2,605)= 1.85268214; T( 2,606)= 1.85773903; T( 2,607)= 1.86280874; T( 2,608)= 1.86789133; T( 2,609)= 1.87298688; T( 2,610)= 1.87809544; T( 2,611)= 1.88321708; T( 2,612)= 1.88835187; T( 2,613)= 1.89349988; T( 2,614)= 1.89866117; T( 2,615)= 1.90383582; T( 2,616)= 1.90902389; T( 2,617)= 1.91422545; T( 2,618)= 1.91944058; T( 2,619)= 1.92466934; T( 2,620)= 1.92991181; T( 2,621)= 1.93516805; T( 2,622)= 1.94043815; T( 2,623)= 1.94572217; T( 2,624)= 1.95102018; T( 2,625)= 1.95633227; T( 2,626)= 1.96165851; T( 2,627)= 1.96699896; T( 2,628)= 1.97235372; T( 2,629)= 1.97772285; T( 2,630)= 1.98310643; T( 2,631)= 1.98850455; T( 2,632)= 1.99391727; T( 2,633)= 1.99934468; T( 2,634)= 2.00478686; T( 2,635)= 2.01024389; T( 2,636)= 2.01571585; T( 2,637)= 2.02120282; T( 2,638)= 2.02670489; T( 2,639)= 2.03222213; T( 2,640)= 2.03775464; T( 2,641)= 2.04330250; T( 2,642)= 2.04886578; T( 2,643)= 2.05444459; T( 2,644)= 2.06003899; T( 2,645)= 2.06564910; T( 2,646)= 2.07127498; T( 2,647)= 2.07691673; T( 2,648)= 2.08257444; T( 2,649)= 2.08824821; T( 2,650)= 2.09393811; T( 2,651)= 2.09964425; T( 2,652)= 2.10536671; T( 2,653)= 2.11110560; T( 2,654)= 2.11686100; T( 2,655)= 2.12263301; T( 2,656)= 2.12842172; T( 2,657)= 2.13422724; T( 2,658)= 2.14004966; T( 2,659)= 2.14588908; T( 2,660)= 2.15174560; T( 2,661)= 2.15761932; T( 2,662)= 2.16351034; T( 2,663)= 2.16941877; T( 2,664)= 2.17534470; T( 2,665)= 2.18128824; T( 2,666)= 2.18724949; T( 2,667)= 2.19322857; T( 2,668)= 2.19922558; T( 2,669)= 2.20524062; T( 2,670)= 2.21127381; T( 2,671)= 2.21732525; T( 2,672)= 2.22339506; T( 2,673)= 2.22948334; T( 2,674)= 2.23559022; T( 2,675)= 2.24171580; T( 2,676)= 2.24786019; T( 2,677)= 2.25402353; T( 2,678)= 2.26020591; T( 2,679)= 2.26640747; T( 2,680)= 2.27262831; T( 2,681)= 2.27886857; T( 2,682)= 2.28512835; T( 2,683)= 2.29140779; T( 2,684)= 2.29770701; T( 2,685)= 2.30402613; T( 2,686)= 2.31036528; T( 2,687)= 2.31672459; T( 2,688)= 2.32310418; T( 2,689)= 2.32950418; T( 2,690)= 2.33592473; T( 2,691)= 2.34236596; T( 2,692)= 2.34882800; T( 2,693)= 2.35531099; T( 2,694)= 2.36181506; T( 2,695)= 2.36834035; T( 2,696)= 2.37488700; T( 2,697)= 2.38145516; T( 2,698)= 2.38804495; T( 2,699)= 2.39465652; T( 2,700)= 2.40129003; T( 2,701)= 2.40794561; T( 2,702)= 2.41462341; T( 2,703)= 2.42132358; T( 2,704)= 2.42804628; T( 2,705)= 2.43479165; T( 2,706)= 2.44155985; T( 2,707)= 2.44835102; T( 2,708)= 2.45516534; T( 2,709)= 2.46200295; T( 2,710)= 2.46886402; T( 2,711)= 2.47574871; T( 2,712)= 2.48265718; T( 2,713)= 2.48958960; T( 2,714)= 2.49654613; T( 2,715)= 2.50352694; T( 2,716)= 2.51053220; T( 2,717)= 2.51756208; T( 2,718)= 2.52461676; T( 2,719)= 2.53169642; T( 2,720)= 2.53880122; T( 2,721)= 2.54593135; T( 2,722)= 2.55308699; T( 2,723)= 2.56026833; T( 2,724)= 2.56747555; T( 2,725)= 2.57470883; T( 2,726)= 2.58196836; T( 2,727)= 2.58925435; T( 2,728)= 2.59656697; T( 2,729)= 2.60390643; T( 2,730)= 2.61127292; T( 2,731)= 2.61866664; T( 2,732)= 2.62608780; T( 2,733)= 2.63353660; T( 2,734)= 2.64101324; T( 2,735)= 2.64851794; T( 2,736)= 2.65605091; T( 2,737)= 2.66361235; T( 2,738)= 2.67120249; T( 2,739)= 2.67882155; T( 2,740)= 2.68646974; T( 2,741)= 2.69414730; T( 2,742)= 2.70185443; T( 2,743)= 2.70959139; T( 2,744)= 2.71735839; T( 2,745)= 2.72515567; T( 2,746)= 2.73298347; T( 2,747)= 2.74084202; T( 2,748)= 2.74873158; T( 2,749)= 2.75665238; T( 2,750)= 2.76460468; T( 2,751)= 2.77258872; T( 2,752)= 2.78060477; T( 2,753)= 2.78865307; T( 2,754)= 2.79673388; T( 2,755)= 2.80484749; T( 2,756)= 2.81299414; T( 2,757)= 2.82117411; T( 2,758)= 2.82938767; T( 2,759)= 2.83763511; T( 2,760)= 2.84591669; T( 2,761)= 2.85423271; T( 2,762)= 2.86258345; T( 2,763)= 2.87096921; T( 2,764)= 2.87939028; T( 2,765)= 2.88784695; T( 2,766)= 2.89633953; T( 2,767)= 2.90486833; T( 2,768)= 2.91343365; T( 2,769)= 2.92203581; T( 2,770)= 2.93067514; T( 2,771)= 2.93935194; T( 2,772)= 2.94806655; T( 2,773)= 2.95681930; T( 2,774)= 2.96561052; T( 2,775)= 2.97444056; T( 2,776)= 2.98330975; T( 2,777)= 2.99221845; T( 2,778)= 3.00116702; T( 2,779)= 3.01015579; T( 2,780)= 3.01918515; T( 2,781)= 3.02825547; T( 2,782)= 3.03736710; T( 2,783)= 3.04652043; T( 2,784)= 3.05571585; T( 2,785)= 3.06495374; T( 2,786)= 3.07423450; T( 2,787)= 3.08355853; T( 2,788)= 3.09292623; T( 2,789)= 3.10233801; T( 2,790)= 3.11179429; T( 2,791)= 3.12129550; T( 2,792)= 3.13084205; T( 2,793)= 3.14043440; T( 2,794)= 3.15007297; T( 2,795)= 3.15975822; T( 2,796)= 3.16949060; T( 2,797)= 3.17927057; T( 2,798)= 3.18909860; T( 2,799)= 3.19897516; T( 2,800)= 3.20890074; T( 2,801)= 3.21887582; T( 2,802)= 3.22890091; T( 2,803)= 3.23897650; T( 2,804)= 3.24910310; T( 2,805)= 3.25928124; T( 2,806)= 3.26951144; T( 2,807)= 3.27979424; T( 2,808)= 3.29013018; T( 2,809)= 3.30051981; T( 2,810)= 3.31096370; T( 2,811)= 3.32146241; T( 2,812)= 3.33201653; T( 2,813)= 3.34262663; T( 2,814)= 3.35329332; T( 2,815)= 3.36401721; T( 2,816)= 3.37479891; T( 2,817)= 3.38563904; T( 2,818)= 3.39653825; T( 2,819)= 3.40749718; T( 2,820)= 3.41851650; T( 2,821)= 3.42959686; T( 2,822)= 3.44073895; T( 2,823)= 3.45194346; T( 2,824)= 3.46321109; T( 2,825)= 3.47454257; T( 2,826)= 3.48593861; T( 2,827)= 3.49739996; T( 2,828)= 3.50892737; T( 2,829)= 3.52052160; T( 2,830)= 3.53218344; T( 2,831)= 3.54391368; T( 2,832)= 3.55571313; T( 2,833)= 3.56758260; T( 2,834)= 3.57952293; T( 2,835)= 3.59153498; T( 2,836)= 3.60361961; T( 2,837)= 3.61577770; T( 2,838)= 3.62801016; T( 2,839)= 3.64031789; T( 2,840)= 3.65270183; T( 2,841)= 3.66516293; T( 2,842)= 3.67770215; T( 2,843)= 3.69032049; T( 2,844)= 3.70301895; T( 2,845)= 3.71579854; T( 2,846)= 3.72866032; T( 2,847)= 3.74160535; T( 2,848)= 3.75463472; T( 2,849)= 3.76774952; T( 2,850)= 3.78095088; T( 2,851)= 3.79423997; T( 2,852)= 3.80761795; T( 2,853)= 3.82108601; T( 2,854)= 3.83464538; T( 2,855)= 3.84829731; T( 2,856)= 3.86204307; T( 2,857)= 3.87588396; T( 2,858)= 3.88982130; T( 2,859)= 3.90385644; T( 2,860)= 3.91799078; T( 2,861)= 3.93222571; T( 2,862)= 3.94656269; T( 2,863)= 3.96100319; T( 2,864)= 3.97554871; T( 2,865)= 3.99020079; T( 2,866)= 4.00496100; T( 2,867)= 4.01983096; T( 2,868)= 4.03481230; T( 2,869)= 4.04990671; T( 2,870)= 4.06511591; T( 2,871)= 4.08044166; T( 2,872)= 4.09588575; T( 2,873)= 4.11145003; T( 2,874)= 4.12713639; T( 2,875)= 4.14294674; T( 2,876)= 4.15888308; T( 2,877)= 4.17494743; T( 2,878)= 4.19114185; T( 2,879)= 4.20746847; T( 2,880)= 4.22392947; T( 2,881)= 4.24052707; T( 2,882)= 4.25726357; T( 2,883)= 4.27414131; T( 2,884)= 4.29116269; T( 2,885)= 4.30833018; T( 2,886)= 4.32564630; T( 2,887)= 4.34311366; T( 2,888)= 4.36073492; T( 2,889)= 4.37851282; T( 2,890)= 4.39645016; T( 2,891)= 4.41454983; T( 2,892)= 4.43281479; T( 2,893)= 4.45124810; T( 2,894)= 4.46985289; T( 2,895)= 4.48863237; T( 2,896)= 4.50758986; T( 2,897)= 4.52672876; T( 2,898)= 4.54605258; T( 2,899)= 4.56556493; T( 2,900)= 4.58526952; T( 2,901)= 4.60517019; T( 2,902)= 4.62527086; T( 2,903)= 4.64557560; T( 2,904)= 4.66608860; T( 2,905)= 4.68681418; T( 2,906)= 4.70775677; T( 2,907)= 4.72892099; T( 2,908)= 4.75031157; T( 2,909)= 4.77193340; T( 2,910)= 4.79379154; T( 2,911)= 4.81589122; T( 2,912)= 4.83823782; T( 2,913)= 4.86083693; T( 2,914)= 4.88369432; T( 2,915)= 4.90681597; T( 2,916)= 4.93020804; T( 2,917)= 4.95387696; T( 2,918)= 4.97782934; T( 2,919)= 5.00207206; T( 2,920)= 5.02661225; T( 2,921)= 5.05145729; T( 2,922)= 5.07661485; T( 2,923)= 5.10209290; T( 2,924)= 5.12789971; T( 2,925)= 5.15404388; T( 2,926)= 5.18053433; T( 2,927)= 5.20738037; T( 2,928)= 5.23459168; T( 2,929)= 5.26217832; T( 2,930)= 5.29015080; T( 2,931)= 5.31852007; T( 2,932)= 5.34729755; T( 2,933)= 5.37649515; T( 2,934)= 5.40612532; T( 2,935)= 5.43620107; T( 2,936)= 5.46673602; T( 2,937)= 5.49774439; T( 2,938)= 5.52924111; T( 2,939)= 5.56124179; T( 2,940)= 5.59376283; T( 2,941)= 5.62682143; T( 2,942)= 5.66043567; T( 2,943)= 5.69462454; T( 2,944)= 5.72940802; T( 2,945)= 5.76480718; T( 2,946)= 5.80084419; T( 2,947)= 5.83754246; T( 2,948)= 5.87492673; T( 2,949)= 5.91302312; T( 2,950)= 5.95185929; T( 2,951)= 5.99146455; T( 2,952)= 6.03186996; T( 2,953)= 6.07310854; T( 2,954)= 6.11521535; T( 2,955)= 6.15822776; T( 2,956)= 6.20218558; T( 2,957)= 6.24713129; T( 2,958)= 6.29311033; T( 2,959)= 6.34017132; T( 2,960)= 6.38836642; T( 2,961)= 6.43775165; T( 2,962)= 6.48838727; T( 2,963)= 6.54033824; T( 2,964)= 6.59367473; T( 2,965)= 6.64847268; T( 2,966)= 6.70481443; T( 2,967)= 6.76278951; T( 2,968)= 6.82249544; T( 2,969)= 6.88403875; T( 2,970)= 6.94753615; T( 2,971)= 7.01311579; T( 2,972)= 7.08091890; T( 2,973)= 7.15110154; T( 2,974)= 7.22383683; T( 2,975)= 7.29931748; T( 2,976)= 7.37775891; T( 2,977)= 7.45940290; T( 2,978)= 7.54452213; T( 2,979)= 7.63342565; T( 2,980)= 7.72646568; T( 2,981)= 7.82404601; T( 2,982)= 7.92663260; T( 2,983)= 8.03476704; T( 2,984)= 8.14908387; T( 2,985)= 8.27033311; T( 2,986)= 8.39941016; T( 2,987)= 8.53739590; T( 2,988)= 8.68561184; T( 2,989)= 8.84569726; T( 2,990)= 9.01972001; T( 2,991)= 9.21034037; T( 2,992)= 9.42106140; T( 2,993)= 9.65662747; T( 2,994)= 9.92369026; T( 2,995)=10.23199162; T( 2,996)=10.59663473; T( 2,997)=11.04292184; T( 2,998)=11.61828598; T( 2,999)=12.42921620; T( 2,1000)=13.81551056; T( 2,1001)=18.42068074; T( 2,1002)=23.02585093; T( 3, 1)= 0.00000000; T( 3, 2)= 0.02429759; T( 3, 3)= 0.03868093; T( 3, 4)= 0.05080913; T( 3, 5)= 0.06168447; T( 3, 6)= 0.07172177; T( 3, 7)= 0.08114342; T( 3, 8)= 0.09008603; T( 3, 9)= 0.09864107; T( 3,10)= 0.10687357; T( 3,11)= 0.11483180; T( 3,12)= 0.12255284; T( 3,13)= 0.13006595; T( 3,14)= 0.13739472; T( 3,15)= 0.14455853; T( 3,16)= 0.15157352; T( 3,17)= 0.15845335; T( 3,18)= 0.16520966; T( 3,19)= 0.17185252; T( 3,20)= 0.17839068; T( 3,21)= 0.18483182; T( 3,22)= 0.19118271; T( 3,23)= 0.19744939; T( 3,24)= 0.20363723; T( 3,25)= 0.20975107; T( 3,26)= 0.21579528; T( 3,27)= 0.22177382; T( 3,28)= 0.22769028; T( 3,29)= 0.23354794; T( 3,30)= 0.23934983; T( 3,31)= 0.24509871; T( 3,32)= 0.25079713; T( 3,33)= 0.25644744; T( 3,34)= 0.26205185; T( 3,35)= 0.26761236; T( 3,36)= 0.27313088; T( 3,37)= 0.27860917; T( 3,38)= 0.28404887; T( 3,39)= 0.28945153; T( 3,40)= 0.29481859; T( 3,41)= 0.30015142; T( 3,42)= 0.30545129; T( 3,43)= 0.31071942; T( 3,44)= 0.31595694; T( 3,45)= 0.32116493; T( 3,46)= 0.32634441; T( 3,47)= 0.33149635; T( 3,48)= 0.33662166; T( 3,49)= 0.34172121; T( 3,50)= 0.34679583; T( 3,51)= 0.35184632; T( 3,52)= 0.35687342; T( 3,53)= 0.36187784; T( 3,54)= 0.36686029; T( 3,55)= 0.37182140; T( 3,56)= 0.37676180; T( 3,57)= 0.38168210; T( 3,58)= 0.38658287; T( 3,59)= 0.39146465; T( 3,60)= 0.39632798; T( 3,61)= 0.40117336; T( 3,62)= 0.40600128; T( 3,63)= 0.41081221; T( 3,64)= 0.41560659; T( 3,65)= 0.42038487; T( 3,66)= 0.42514747; T( 3,67)= 0.42989477; T( 3,68)= 0.43462718; T( 3,69)= 0.43934506; T( 3,70)= 0.44404879; T( 3,71)= 0.44873870; T( 3,72)= 0.45341514; T( 3,73)= 0.45807844; T( 3,74)= 0.46272891; T( 3,75)= 0.46736686; T( 3,76)= 0.47199258; T( 3,77)= 0.47660636; T( 3,78)= 0.48120848; T( 3,79)= 0.48579922; T( 3,80)= 0.49037883; T( 3,81)= 0.49494756; T( 3,82)= 0.49950567; T( 3,83)= 0.50405340; T( 3,84)= 0.50859097; T( 3,85)= 0.51311862; T( 3,86)= 0.51763656; T( 3,87)= 0.52214501; T( 3,88)= 0.52664418; T( 3,89)= 0.53113427; T( 3,90)= 0.53561547; T( 3,91)= 0.54008799; T( 3,92)= 0.54455201; T( 3,93)= 0.54900771; T( 3,94)= 0.55345527; T( 3,95)= 0.55789487; T( 3,96)= 0.56232666; T( 3,97)= 0.56675083; T( 3,98)= 0.57116753; T( 3,99)= 0.57557692; T( 3,100)= 0.57997915; T( 3,101)= 0.58437437; T( 3,102)= 0.58876274; T( 3,103)= 0.59314439; T( 3,104)= 0.59751946; T( 3,105)= 0.60188810; T( 3,106)= 0.60625044; T( 3,107)= 0.61060660; T( 3,108)= 0.61495672; T( 3,109)= 0.61930092; T( 3,110)= 0.62363934; T( 3,111)= 0.62797208; T( 3,112)= 0.63229926; T( 3,113)= 0.63662101; T( 3,114)= 0.64093743; T( 3,115)= 0.64524864; T( 3,116)= 0.64955475; T( 3,117)= 0.65385586; T( 3,118)= 0.65815208; T( 3,119)= 0.66244351; T( 3,120)= 0.66673026; T( 3,121)= 0.67101242; T( 3,122)= 0.67529008; T( 3,123)= 0.67956335; T( 3,124)= 0.68383232; T( 3,125)= 0.68809708; T( 3,126)= 0.69235773; T( 3,127)= 0.69661434; T( 3,128)= 0.70086701; T( 3,129)= 0.70511583; T( 3,130)= 0.70936087; T( 3,131)= 0.71360223; T( 3,132)= 0.71783998; T( 3,133)= 0.72207420; T( 3,134)= 0.72630497; T( 3,135)= 0.73053238; T( 3,136)= 0.73475649; T( 3,137)= 0.73897738; T( 3,138)= 0.74319513; T( 3,139)= 0.74740981; T( 3,140)= 0.75162148; T( 3,141)= 0.75583023; T( 3,142)= 0.76003612; T( 3,143)= 0.76423922; T( 3,144)= 0.76843960; T( 3,145)= 0.77263731; T( 3,146)= 0.77683244; T( 3,147)= 0.78102504; T( 3,148)= 0.78521518; T( 3,149)= 0.78940292; T( 3,150)= 0.79358832; T( 3,151)= 0.79777144; T( 3,152)= 0.80195235; T( 3,153)= 0.80613110; T( 3,154)= 0.81030775; T( 3,155)= 0.81448236; T( 3,156)= 0.81865499; T( 3,157)= 0.82282568; T( 3,158)= 0.82699451; T( 3,159)= 0.83116152; T( 3,160)= 0.83532677; T( 3,161)= 0.83949030; T( 3,162)= 0.84365218; T( 3,163)= 0.84781246; T( 3,164)= 0.85197118; T( 3,165)= 0.85612840; T( 3,166)= 0.86028417; T( 3,167)= 0.86443854; T( 3,168)= 0.86859155; T( 3,169)= 0.87274326; T( 3,170)= 0.87689372; T( 3,171)= 0.88104296; T( 3,172)= 0.88519105; T( 3,173)= 0.88933801; T( 3,174)= 0.89348391; T( 3,175)= 0.89762878; T( 3,176)= 0.90177268; T( 3,177)= 0.90591564; T( 3,178)= 0.91005770; T( 3,179)= 0.91419892; T( 3,180)= 0.91833934; T( 3,181)= 0.92247899; T( 3,182)= 0.92661793; T( 3,183)= 0.93075618; T( 3,184)= 0.93489380; T( 3,185)= 0.93903082; T( 3,186)= 0.94316729; T( 3,187)= 0.94730324; T( 3,188)= 0.95143871; T( 3,189)= 0.95557375; T( 3,190)= 0.95970839; T( 3,191)= 0.96384268; T( 3,192)= 0.96797664; T( 3,193)= 0.97211032; T( 3,194)= 0.97624375; T( 3,195)= 0.98037698; T( 3,196)= 0.98451003; T( 3,197)= 0.98864295; T( 3,198)= 0.99277578; T( 3,199)= 0.99690854; T( 3,200)= 1.00104127; T( 3,201)= 1.00517401; T( 3,202)= 1.00930680; T( 3,203)= 1.01343967; T( 3,204)= 1.01757264; T( 3,205)= 1.02170577; T( 3,206)= 1.02583908; T( 3,207)= 1.02997260; T( 3,208)= 1.03410637; T( 3,209)= 1.03824042; T( 3,210)= 1.04237479; T( 3,211)= 1.04650951; T( 3,212)= 1.05064460; T( 3,213)= 1.05478011; T( 3,214)= 1.05891606; T( 3,215)= 1.06305249; T( 3,216)= 1.06718942; T( 3,217)= 1.07132690; T( 3,218)= 1.07546494; T( 3,219)= 1.07960359; T( 3,220)= 1.08374286; T( 3,221)= 1.08788280; T( 3,222)= 1.09202343; T( 3,223)= 1.09616478; T( 3,224)= 1.10030689; T( 3,225)= 1.10444978; T( 3,226)= 1.10859348; T( 3,227)= 1.11273802; T( 3,228)= 1.11688343; T( 3,229)= 1.12102974; T( 3,230)= 1.12517697; T( 3,231)= 1.12932517; T( 3,232)= 1.13347435; T( 3,233)= 1.13762455; T( 3,234)= 1.14177578; T( 3,235)= 1.14592809; T( 3,236)= 1.15008149; T( 3,237)= 1.15423602; T( 3,238)= 1.15839171; T( 3,239)= 1.16254857; T( 3,240)= 1.16670665; T( 3,241)= 1.17086596; T( 3,242)= 1.17502653; T( 3,243)= 1.17918839; T( 3,244)= 1.18335157; T( 3,245)= 1.18751609; T( 3,246)= 1.19168198; T( 3,247)= 1.19584927; T( 3,248)= 1.20001798; T( 3,249)= 1.20418814; T( 3,250)= 1.20835977; T( 3,251)= 1.21253290; T( 3,252)= 1.21670756; T( 3,253)= 1.22088378; T( 3,254)= 1.22506157; T( 3,255)= 1.22924097; T( 3,256)= 1.23342199; T( 3,257)= 1.23760467; T( 3,258)= 1.24178903; T( 3,259)= 1.24597510; T( 3,260)= 1.25016289; T( 3,261)= 1.25435244; T( 3,262)= 1.25854377; T( 3,263)= 1.26273691; T( 3,264)= 1.26693188; T( 3,265)= 1.27112870; T( 3,266)= 1.27532740; T( 3,267)= 1.27952800; T( 3,268)= 1.28373053; T( 3,269)= 1.28793502; T( 3,270)= 1.29214148; T( 3,271)= 1.29634995; T( 3,272)= 1.30056043; T( 3,273)= 1.30477297; T( 3,274)= 1.30898758; T( 3,275)= 1.31320429; T( 3,276)= 1.31742312; T( 3,277)= 1.32164410; T( 3,278)= 1.32586724; T( 3,279)= 1.33009258; T( 3,280)= 1.33432014; T( 3,281)= 1.33854993; T( 3,282)= 1.34278199; T( 3,283)= 1.34701634; T( 3,284)= 1.35125299; T( 3,285)= 1.35549198; T( 3,286)= 1.35973333; T( 3,287)= 1.36397706; T( 3,288)= 1.36822319; T( 3,289)= 1.37247175; T( 3,290)= 1.37672276; T( 3,291)= 1.38097625; T( 3,292)= 1.38523223; T( 3,293)= 1.38949074; T( 3,294)= 1.39375178; T( 3,295)= 1.39801539; T( 3,296)= 1.40228159; T( 3,297)= 1.40655041; T( 3,298)= 1.41082186; T( 3,299)= 1.41509596; T( 3,300)= 1.41937275; T( 3,301)= 1.42365224; T( 3,302)= 1.42793446; T( 3,303)= 1.43221943; T( 3,304)= 1.43650717; T( 3,305)= 1.44079770; T( 3,306)= 1.44509106; T( 3,307)= 1.44938725; T( 3,308)= 1.45368631; T( 3,309)= 1.45798825; T( 3,310)= 1.46229310; T( 3,311)= 1.46660089; T( 3,312)= 1.47091162; T( 3,313)= 1.47522534; T( 3,314)= 1.47954205; T( 3,315)= 1.48386178; T( 3,316)= 1.48818456; T( 3,317)= 1.49251041; T( 3,318)= 1.49683934; T( 3,319)= 1.50117139; T( 3,320)= 1.50550658; T( 3,321)= 1.50984492; T( 3,322)= 1.51418644; T( 3,323)= 1.51853116; T( 3,324)= 1.52287911; T( 3,325)= 1.52723031; T( 3,326)= 1.53158477; T( 3,327)= 1.53594253; T( 3,328)= 1.54030361; T( 3,329)= 1.54466802; T( 3,330)= 1.54903580; T( 3,331)= 1.55340696; T( 3,332)= 1.55778152; T( 3,333)= 1.56215951; T( 3,334)= 1.56654096; T( 3,335)= 1.57092588; T( 3,336)= 1.57531429; T( 3,337)= 1.57970623; T( 3,338)= 1.58410171; T( 3,339)= 1.58850075; T( 3,340)= 1.59290338; T( 3,341)= 1.59730962; T( 3,342)= 1.60171949; T( 3,343)= 1.60613302; T( 3,344)= 1.61055022; T( 3,345)= 1.61497113; T( 3,346)= 1.61939577; T( 3,347)= 1.62382415; T( 3,348)= 1.62825630; T( 3,349)= 1.63269224; T( 3,350)= 1.63713200; T( 3,351)= 1.64157560; T( 3,352)= 1.64602306; T( 3,353)= 1.65047440; T( 3,354)= 1.65492966; T( 3,355)= 1.65938884; T( 3,356)= 1.66385198; T( 3,357)= 1.66831910; T( 3,358)= 1.67279021; T( 3,359)= 1.67726535; T( 3,360)= 1.68174454; T( 3,361)= 1.68622780; T( 3,362)= 1.69071515; T( 3,363)= 1.69520662; T( 3,364)= 1.69970222; T( 3,365)= 1.70420200; T( 3,366)= 1.70870596; T( 3,367)= 1.71321413; T( 3,368)= 1.71772653; T( 3,369)= 1.72224319; T( 3,370)= 1.72676414; T( 3,371)= 1.73128939; T( 3,372)= 1.73581896; T( 3,373)= 1.74035290; T( 3,374)= 1.74489120; T( 3,375)= 1.74943391; T( 3,376)= 1.75398104; T( 3,377)= 1.75853263; T( 3,378)= 1.76308868; T( 3,379)= 1.76764923; T( 3,380)= 1.77221430; T( 3,381)= 1.77678392; T( 3,382)= 1.78135810; T( 3,383)= 1.78593688; T( 3,384)= 1.79052027; T( 3,385)= 1.79510831; T( 3,386)= 1.79970102; T( 3,387)= 1.80429841; T( 3,388)= 1.80890052; T( 3,389)= 1.81350738; T( 3,390)= 1.81811899; T( 3,391)= 1.82273540; T( 3,392)= 1.82735662; T( 3,393)= 1.83198268; T( 3,394)= 1.83661361; T( 3,395)= 1.84124942; T( 3,396)= 1.84589015; T( 3,397)= 1.85053582; T( 3,398)= 1.85518646; T( 3,399)= 1.85984208; T( 3,400)= 1.86450272; T( 3,401)= 1.86916840; T( 3,402)= 1.87383915; T( 3,403)= 1.87851499; T( 3,404)= 1.88319595; T( 3,405)= 1.88788205; T( 3,406)= 1.89257333; T( 3,407)= 1.89726979; T( 3,408)= 1.90197148; T( 3,409)= 1.90667842; T( 3,410)= 1.91139063; T( 3,411)= 1.91610814; T( 3,412)= 1.92083098; T( 3,413)= 1.92555917; T( 3,414)= 1.93029273; T( 3,415)= 1.93503171; T( 3,416)= 1.93977611; T( 3,417)= 1.94452598; T( 3,418)= 1.94928133; T( 3,419)= 1.95404219; T( 3,420)= 1.95880859; T( 3,421)= 1.96358056; T( 3,422)= 1.96835812; T( 3,423)= 1.97314131; T( 3,424)= 1.97793014; T( 3,425)= 1.98272465; T( 3,426)= 1.98752486; T( 3,427)= 1.99233080; T( 3,428)= 1.99714251; T( 3,429)= 2.00195999; T( 3,430)= 2.00678330; T( 3,431)= 2.01161244; T( 3,432)= 2.01644746; T( 3,433)= 2.02128838; T( 3,434)= 2.02613522; T( 3,435)= 2.03098802; T( 3,436)= 2.03584681; T( 3,437)= 2.04071161; T( 3,438)= 2.04558245; T( 3,439)= 2.05045936; T( 3,440)= 2.05534237; T( 3,441)= 2.06023151; T( 3,442)= 2.06512681; T( 3,443)= 2.07002829; T( 3,444)= 2.07493600; T( 3,445)= 2.07984995; T( 3,446)= 2.08477018; T( 3,447)= 2.08969671; T( 3,448)= 2.09462958; T( 3,449)= 2.09956881; T( 3,450)= 2.10451445; T( 3,451)= 2.10946651; T( 3,452)= 2.11442502; T( 3,453)= 2.11939003; T( 3,454)= 2.12436155; T( 3,455)= 2.12933962; T( 3,456)= 2.13432428; T( 3,457)= 2.13931554; T( 3,458)= 2.14431345; T( 3,459)= 2.14931803; T( 3,460)= 2.15432931; T( 3,461)= 2.15934734; T( 3,462)= 2.16437213; T( 3,463)= 2.16940372; T( 3,464)= 2.17444214; T( 3,465)= 2.17948743; T( 3,466)= 2.18453962; T( 3,467)= 2.18959874; T( 3,468)= 2.19466482; T( 3,469)= 2.19973789; T( 3,470)= 2.20481800; T( 3,471)= 2.20990516; T( 3,472)= 2.21499942; T( 3,473)= 2.22010080; T( 3,474)= 2.22520935; T( 3,475)= 2.23032509; T( 3,476)= 2.23544806; T( 3,477)= 2.24057829; T( 3,478)= 2.24571582; T( 3,479)= 2.25086068; T( 3,480)= 2.25601290; T( 3,481)= 2.26117253; T( 3,482)= 2.26633959; T( 3,483)= 2.27151412; T( 3,484)= 2.27669615; T( 3,485)= 2.28188573; T( 3,486)= 2.28708288; T( 3,487)= 2.29228764; T( 3,488)= 2.29750005; T( 3,489)= 2.30272014; T( 3,490)= 2.30794796; T( 3,491)= 2.31318352; T( 3,492)= 2.31842688; T( 3,493)= 2.32367807; T( 3,494)= 2.32893712; T( 3,495)= 2.33420408; T( 3,496)= 2.33947898; T( 3,497)= 2.34476185; T( 3,498)= 2.35005274; T( 3,499)= 2.35535169; T( 3,500)= 2.36065872; T( 3,501)= 2.36597388; T( 3,502)= 2.37129722; T( 3,503)= 2.37662875; T( 3,504)= 2.38196854; T( 3,505)= 2.38731660; T( 3,506)= 2.39267299; T( 3,507)= 2.39803775; T( 3,508)= 2.40341090; T( 3,509)= 2.40879250; T( 3,510)= 2.41418258; T( 3,511)= 2.41958119; T( 3,512)= 2.42498835; T( 3,513)= 2.43040412; T( 3,514)= 2.43582854; T( 3,515)= 2.44126164; T( 3,516)= 2.44670347; T( 3,517)= 2.45215407; T( 3,518)= 2.45761348; T( 3,519)= 2.46308174; T( 3,520)= 2.46855890; T( 3,521)= 2.47404500; T( 3,522)= 2.47954008; T( 3,523)= 2.48504418; T( 3,524)= 2.49055734; T( 3,525)= 2.49607962; T( 3,526)= 2.50161105; T( 3,527)= 2.50715169; T( 3,528)= 2.51270156; T( 3,529)= 2.51826072; T( 3,530)= 2.52382921; T( 3,531)= 2.52940708; T( 3,532)= 2.53499437; T( 3,533)= 2.54059113; T( 3,534)= 2.54619740; T( 3,535)= 2.55181323; T( 3,536)= 2.55743867; T( 3,537)= 2.56307376; T( 3,538)= 2.56871854; T( 3,539)= 2.57437308; T( 3,540)= 2.58003741; T( 3,541)= 2.58571158; T( 3,542)= 2.59139564; T( 3,543)= 2.59708963; T( 3,544)= 2.60279362; T( 3,545)= 2.60850764; T( 3,546)= 2.61423174; T( 3,547)= 2.61996598; T( 3,548)= 2.62571040; T( 3,549)= 2.63146505; T( 3,550)= 2.63722999; T( 3,551)= 2.64300526; T( 3,552)= 2.64879092; T( 3,553)= 2.65458702; T( 3,554)= 2.66039360; T( 3,555)= 2.66621073; T( 3,556)= 2.67203845; T( 3,557)= 2.67787681; T( 3,558)= 2.68372587; T( 3,559)= 2.68958569; T( 3,560)= 2.69545631; T( 3,561)= 2.70133778; T( 3,562)= 2.70723017; T( 3,563)= 2.71313353; T( 3,564)= 2.71904792; T( 3,565)= 2.72497338; T( 3,566)= 2.73090997; T( 3,567)= 2.73685776; T( 3,568)= 2.74281679; T( 3,569)= 2.74878712; T( 3,570)= 2.75476881; T( 3,571)= 2.76076193; T( 3,572)= 2.76676651; T( 3,573)= 2.77278264; T( 3,574)= 2.77881035; T( 3,575)= 2.78484972; T( 3,576)= 2.79090079; T( 3,577)= 2.79696364; T( 3,578)= 2.80303832; T( 3,579)= 2.80912489; T( 3,580)= 2.81522341; T( 3,581)= 2.82133395; T( 3,582)= 2.82745656; T( 3,583)= 2.83359131; T( 3,584)= 2.83973826; T( 3,585)= 2.84589748; T( 3,586)= 2.85206902; T( 3,587)= 2.85825296; T( 3,588)= 2.86444935; T( 3,589)= 2.87065826; T( 3,590)= 2.87687976; T( 3,591)= 2.88311391; T( 3,592)= 2.88936078; T( 3,593)= 2.89562043; T( 3,594)= 2.90189294; T( 3,595)= 2.90817836; T( 3,596)= 2.91447678; T( 3,597)= 2.92078824; T( 3,598)= 2.92711284; T( 3,599)= 2.93345063; T( 3,600)= 2.93980168; T( 3,601)= 2.94616607; T( 3,602)= 2.95254387; T( 3,603)= 2.95893514; T( 3,604)= 2.96533997; T( 3,605)= 2.97175842; T( 3,606)= 2.97819056; T( 3,607)= 2.98463648; T( 3,608)= 2.99109623; T( 3,609)= 2.99756991; T( 3,610)= 3.00405758; T( 3,611)= 3.01055932; T( 3,612)= 3.01707521; T( 3,613)= 3.02360532; T( 3,614)= 3.03014973; T( 3,615)= 3.03670852; T( 3,616)= 3.04328177; T( 3,617)= 3.04986955; T( 3,618)= 3.05647195; T( 3,619)= 3.06308905; T( 3,620)= 3.06972093; T( 3,621)= 3.07636767; T( 3,622)= 3.08302935; T( 3,623)= 3.08970606; T( 3,624)= 3.09639787; T( 3,625)= 3.10310488; T( 3,626)= 3.10982717; T( 3,627)= 3.11656482; T( 3,628)= 3.12331792; T( 3,629)= 3.13008656; T( 3,630)= 3.13687083; T( 3,631)= 3.14367081; T( 3,632)= 3.15048658; T( 3,633)= 3.15731826; T( 3,634)= 3.16416591; T( 3,635)= 3.17102964; T( 3,636)= 3.17790953; T( 3,637)= 3.18480568; T( 3,638)= 3.19171818; T( 3,639)= 3.19864712; T( 3,640)= 3.20559261; T( 3,641)= 3.21255473; T( 3,642)= 3.21953358; T( 3,643)= 3.22652926; T( 3,644)= 3.23354187; T( 3,645)= 3.24057150; T( 3,646)= 3.24761826; T( 3,647)= 3.25468224; T( 3,648)= 3.26176355; T( 3,649)= 3.26886229; T( 3,650)= 3.27597856; T( 3,651)= 3.28311246; T( 3,652)= 3.29026411; T( 3,653)= 3.29743360; T( 3,654)= 3.30462104; T( 3,655)= 3.31182654; T( 3,656)= 3.31905020; T( 3,657)= 3.32629215; T( 3,658)= 3.33355247; T( 3,659)= 3.34083130; T( 3,660)= 3.34812873; T( 3,661)= 3.35544489; T( 3,662)= 3.36277988; T( 3,663)= 3.37013382; T( 3,664)= 3.37750683; T( 3,665)= 3.38489902; T( 3,666)= 3.39231051; T( 3,667)= 3.39974142; T( 3,668)= 3.40719187; T( 3,669)= 3.41466198; T( 3,670)= 3.42215187; T( 3,671)= 3.42966167; T( 3,672)= 3.43719150; T( 3,673)= 3.44474148; T( 3,674)= 3.45231175; T( 3,675)= 3.45990242; T( 3,676)= 3.46751363; T( 3,677)= 3.47514551; T( 3,678)= 3.48279819; T( 3,679)= 3.49047180; T( 3,680)= 3.49816648; T( 3,681)= 3.50588236; T( 3,682)= 3.51361957; T( 3,683)= 3.52137825; T( 3,684)= 3.52915854; T( 3,685)= 3.53696059; T( 3,686)= 3.54478453; T( 3,687)= 3.55263050; T( 3,688)= 3.56049865; T( 3,689)= 3.56838913; T( 3,690)= 3.57630207; T( 3,691)= 3.58423763; T( 3,692)= 3.59219596; T( 3,693)= 3.60017721; T( 3,694)= 3.60818152; T( 3,695)= 3.61620906; T( 3,696)= 3.62425998; T( 3,697)= 3.63233443; T( 3,698)= 3.64043258; T( 3,699)= 3.64855458; T( 3,700)= 3.65670059; T( 3,701)= 3.66487078; T( 3,702)= 3.67306531; T( 3,703)= 3.68128435; T( 3,704)= 3.68952807; T( 3,705)= 3.69779663; T( 3,706)= 3.70609020; T( 3,707)= 3.71440896; T( 3,708)= 3.72275309; T( 3,709)= 3.73112275; T( 3,710)= 3.73951813; T( 3,711)= 3.74793941; T( 3,712)= 3.75638677; T( 3,713)= 3.76486039; T( 3,714)= 3.77336045; T( 3,715)= 3.78188715; T( 3,716)= 3.79044068; T( 3,717)= 3.79902122; T( 3,718)= 3.80762897; T( 3,719)= 3.81626412; T( 3,720)= 3.82492688; T( 3,721)= 3.83361743; T( 3,722)= 3.84233599; T( 3,723)= 3.85108276; T( 3,724)= 3.85985793; T( 3,725)= 3.86866173; T( 3,726)= 3.87749436; T( 3,727)= 3.88635602; T( 3,728)= 3.89524695; T( 3,729)= 3.90416735; T( 3,730)= 3.91311745; T( 3,731)= 3.92209746; T( 3,732)= 3.93110762; T( 3,733)= 3.94014814; T( 3,734)= 3.94921926; T( 3,735)= 3.95832121; T( 3,736)= 3.96745422; T( 3,737)= 3.97661853; T( 3,738)= 3.98581438; T( 3,739)= 3.99504202; T( 3,740)= 4.00430169; T( 3,741)= 4.01359363; T( 3,742)= 4.02291810; T( 3,743)= 4.03227535; T( 3,744)= 4.04166564; T( 3,745)= 4.05108923; T( 3,746)= 4.06054637; T( 3,747)= 4.07003735; T( 3,748)= 4.07956242; T( 3,749)= 4.08912186; T( 3,750)= 4.09871593; T( 3,751)= 4.10834494; T( 3,752)= 4.11800914; T( 3,753)= 4.12770883; T( 3,754)= 4.13744430; T( 3,755)= 4.14721584; T( 3,756)= 4.15702374; T( 3,757)= 4.16686831; T( 3,758)= 4.17674984; T( 3,759)= 4.18666865; T( 3,760)= 4.19662504; T( 3,761)= 4.20661933; T( 3,762)= 4.21665183; T( 3,763)= 4.22672288; T( 3,764)= 4.23683278; T( 3,765)= 4.24698188; T( 3,766)= 4.25717052; T( 3,767)= 4.26739901; T( 3,768)= 4.27766772; T( 3,769)= 4.28797699; T( 3,770)= 4.29832716; T( 3,771)= 4.30871860; T( 3,772)= 4.31915167; T( 3,773)= 4.32962673; T( 3,774)= 4.34014415; T( 3,775)= 4.35070431; T( 3,776)= 4.36130759; T( 3,777)= 4.37195437; T( 3,778)= 4.38264504; T( 3,779)= 4.39338001; T( 3,780)= 4.40415966; T( 3,781)= 4.41498441; T( 3,782)= 4.42585467; T( 3,783)= 4.43677085; T( 3,784)= 4.44773338; T( 3,785)= 4.45874269; T( 3,786)= 4.46979921; T( 3,787)= 4.48090338; T( 3,788)= 4.49205566; T( 3,789)= 4.50325649; T( 3,790)= 4.51450633; T( 3,791)= 4.52580565; T( 3,792)= 4.53715492; T( 3,793)= 4.54855463; T( 3,794)= 4.56000525; T( 3,795)= 4.57150728; T( 3,796)= 4.58306123; T( 3,797)= 4.59466759; T( 3,798)= 4.60632689; T( 3,799)= 4.61803965; T( 3,800)= 4.62980640; T( 3,801)= 4.64162768; T( 3,802)= 4.65350402; T( 3,803)= 4.66543600; T( 3,804)= 4.67742417; T( 3,805)= 4.68946910; T( 3,806)= 4.70157137; T( 3,807)= 4.71373158; T( 3,808)= 4.72595032; T( 3,809)= 4.73822819; T( 3,810)= 4.75056583; T( 3,811)= 4.76296384; T( 3,812)= 4.77542287; T( 3,813)= 4.78794356; T( 3,814)= 4.80052658; T( 3,815)= 4.81317259; T( 3,816)= 4.82588226; T( 3,817)= 4.83865629; T( 3,818)= 4.85149538; T( 3,819)= 4.86440023; T( 3,820)= 4.87737157; T( 3,821)= 4.89041014; T( 3,822)= 4.90351669; T( 3,823)= 4.91669196; T( 3,824)= 4.92993675; T( 3,825)= 4.94325182; T( 3,826)= 4.95663799; T( 3,827)= 4.97009606; T( 3,828)= 4.98362685; T( 3,829)= 4.99723122; T( 3,830)= 5.01091002; T( 3,831)= 5.02466411; T( 3,832)= 5.03849439; T( 3,833)= 5.05240175; T( 3,834)= 5.06638711; T( 3,835)= 5.08045141; T( 3,836)= 5.09459559; T( 3,837)= 5.10882063; T( 3,838)= 5.12312751; T( 3,839)= 5.13751723; T( 3,840)= 5.15199082; T( 3,841)= 5.16654932; T( 3,842)= 5.18119378; T( 3,843)= 5.19592529; T( 3,844)= 5.21074496; T( 3,845)= 5.22565389; T( 3,846)= 5.24065324; T( 3,847)= 5.25574417; T( 3,848)= 5.27092788; T( 3,849)= 5.28620556; T( 3,850)= 5.30157846; T( 3,851)= 5.31704784; T( 3,852)= 5.33261498; T( 3,853)= 5.34828119; T( 3,854)= 5.36404781; T( 3,855)= 5.37991621; T( 3,856)= 5.39588777; T( 3,857)= 5.41196392; T( 3,858)= 5.42814612; T( 3,859)= 5.44443583; T( 3,860)= 5.46083458; T( 3,861)= 5.47734390; T( 3,862)= 5.49396539; T( 3,863)= 5.51070063; T( 3,864)= 5.52755130; T( 3,865)= 5.54451906; T( 3,866)= 5.56160563; T( 3,867)= 5.57881278; T( 3,868)= 5.59614230; T( 3,869)= 5.61359603; T( 3,870)= 5.63117585; T( 3,871)= 5.64888367; T( 3,872)= 5.66672148; T( 3,873)= 5.68469127; T( 3,874)= 5.70279511; T( 3,875)= 5.72103510; T( 3,876)= 5.73941341; T( 3,877)= 5.75793225; T( 3,878)= 5.77659387; T( 3,879)= 5.79540059; T( 3,880)= 5.81435480; T( 3,881)= 5.83345891; T( 3,882)= 5.85271544; T( 3,883)= 5.87212693; T( 3,884)= 5.89169601; T( 3,885)= 5.91142538; T( 3,886)= 5.93131777; T( 3,887)= 5.95137604; T( 3,888)= 5.97160308; T( 3,889)= 5.99200188; T( 3,890)= 6.01257550; T( 3,891)= 6.03332709; T( 3,892)= 6.05425987; T( 3,893)= 6.07537716; T( 3,894)= 6.09668239; T( 3,895)= 6.11817905; T( 3,896)= 6.13987076; T( 3,897)= 6.16176122; T( 3,898)= 6.18385425; T( 3,899)= 6.20615378; T( 3,900)= 6.22866385; T( 3,901)= 6.25138863; T( 3,902)= 6.27433241; T( 3,903)= 6.29749960; T( 3,904)= 6.32089476; T( 3,905)= 6.34452258; T( 3,906)= 6.36838791; T( 3,907)= 6.39249574; T( 3,908)= 6.41685123; T( 3,909)= 6.44145970; T( 3,910)= 6.46632663; T( 3,911)= 6.49145772; T( 3,912)= 6.51685881; T( 3,913)= 6.54253598; T( 3,914)= 6.56849550; T( 3,915)= 6.59474385; T( 3,916)= 6.62128774; T( 3,917)= 6.64813413; T( 3,918)= 6.67529022; T( 3,919)= 6.70276346; T( 3,920)= 6.73056159; T( 3,921)= 6.75869262; T( 3,922)= 6.78716488; T( 3,923)= 6.81598701; T( 3,924)= 6.84516797; T( 3,925)= 6.87471709; T( 3,926)= 6.90464406; T( 3,927)= 6.93495896; T( 3,928)= 6.96567226; T( 3,929)= 6.99679490; T( 3,930)= 7.02833825; T( 3,931)= 7.06031417; T( 3,932)= 7.09273502; T( 3,933)= 7.12561371; T( 3,934)= 7.15896372; T( 3,935)= 7.19279914; T( 3,936)= 7.22713469; T( 3,937)= 7.26198577; T( 3,938)= 7.29736853; T( 3,939)= 7.33329986; T( 3,940)= 7.36979750; T( 3,941)= 7.40688004; T( 3,942)= 7.44456702; T( 3,943)= 7.48287898; T( 3,944)= 7.52183750; T( 3,945)= 7.56146534; T( 3,946)= 7.60178647; T( 3,947)= 7.64282615; T( 3,948)= 7.68461110; T( 3,949)= 7.72716951; T( 3,950)= 7.77053124; T( 3,951)= 7.81472790; T( 3,952)= 7.85979303; T( 3,953)= 7.90576221; T( 3,954)= 7.95267326; T( 3,955)= 8.00056647; T( 3,956)= 8.04948472; T( 3,957)= 8.09947381; T( 3,958)= 8.15058267; T( 3,959)= 8.20286369; T( 3,960)= 8.25637300; T( 3,961)= 8.31117091; T( 3,962)= 8.36732227; T( 3,963)= 8.42489697; T( 3,964)= 8.48397049; T( 3,965)= 8.54462446; T( 3,966)= 8.60694740; T( 3,967)= 8.67103553; T( 3,968)= 8.73699360; T( 3,969)= 8.80493605; T( 3,970)= 8.87498816; T( 3,971)= 8.94728750; T( 3,972)= 9.02198557; T( 3,973)= 9.09924980; T( 3,974)= 9.17926579; T( 3,975)= 9.26224013; T( 3,976)= 9.34840360; T( 3,977)= 9.43801521; T( 3,978)= 9.53136689; T( 3,979)= 9.62878943; T( 3,980)= 9.73065964; T( 3,981)= 9.83740931; T( 3,982)= 9.94953654; T( 3,983)=10.06762000; T( 3,984)=10.19233733; T( 3,985)=10.32448914; T( 3,986)=10.46503071; T( 3,987)=10.61511464; T( 3,988)=10.77614929; T( 3,989)=10.94988065; T( 3,990)=11.13850986; T( 3,991)=11.34486673; T( 3,992)=11.57267496; T( 3,993)=11.82697385; T( 3,994)=12.11482274; T( 3,995)=12.44655104; T( 3,996)=12.83815647; T( 3,997)=13.31640865; T( 3,998)=13.93142267; T( 3,999)=14.79551705; T( 3,1000)=16.26623620; T( 3,1001)=21.10751347; T( 3,1002)=25.90174975; T( 4, 1)= 0.00000000; T( 4, 2)= 0.09080404; T( 4, 3)= 0.12923771; T( 4, 4)= 0.15906734; T( 4, 5)= 0.18444814; T( 4, 6)= 0.20698909; T( 4, 7)= 0.22751512; T( 4, 8)= 0.24651611; T( 4, 9)= 0.26431116; T( 4,10)= 0.28112186; T( 4,11)= 0.29710948; T( 4,12)= 0.31239575; T( 4,13)= 0.32707521; T( 4,14)= 0.34122302; T( 4,15)= 0.35490010; T( 4,16)= 0.36815665; T( 4,17)= 0.38103461; T( 4,18)= 0.39356944; T( 4,19)= 0.40579145; T( 4,20)= 0.41772679; T( 4,21)= 0.42939819; T( 4,22)= 0.44082558; T( 4,23)= 0.45202654; T( 4,24)= 0.46301666; T( 4,25)= 0.47380984; T( 4,26)= 0.48441856; T( 4,27)= 0.49485405; T( 4,28)= 0.50512649; T( 4,29)= 0.51524508; T( 4,30)= 0.52521825; T( 4,31)= 0.53505367; T( 4,32)= 0.54475841; T( 4,33)= 0.55433893; T( 4,34)= 0.56380124; T( 4,35)= 0.57315084; T( 4,36)= 0.58239287; T( 4,37)= 0.59153209; T( 4,38)= 0.60057293; T( 4,39)= 0.60951952; T( 4,40)= 0.61837573; T( 4,41)= 0.62714516; T( 4,42)= 0.63583121; T( 4,43)= 0.64443707; T( 4,44)= 0.65296573; T( 4,45)= 0.66142000; T( 4,46)= 0.66980256; T( 4,47)= 0.67811591; T( 4,48)= 0.68636244; T( 4,49)= 0.69454440; T( 4,50)= 0.70266392; T( 4,51)= 0.71072302; T( 4,52)= 0.71872364; T( 4,53)= 0.72666760; T( 4,54)= 0.73455665; T( 4,55)= 0.74239246; T( 4,56)= 0.75017659; T( 4,57)= 0.75791057; T( 4,58)= 0.76559585; T( 4,59)= 0.77323380; T( 4,60)= 0.78082575; T( 4,61)= 0.78837296; T( 4,62)= 0.79587666; T( 4,63)= 0.80333800; T( 4,64)= 0.81075810; T( 4,65)= 0.81813804; T( 4,66)= 0.82547884; T( 4,67)= 0.83278151; T( 4,68)= 0.84004699; T( 4,69)= 0.84727621; T( 4,70)= 0.85447005; T( 4,71)= 0.86162937; T( 4,72)= 0.86875498; T( 4,73)= 0.87584769; T( 4,74)= 0.88290826; T( 4,75)= 0.88993743; T( 4,76)= 0.89693592; T( 4,77)= 0.90390442; T( 4,78)= 0.91084360; T( 4,79)= 0.91775411; T( 4,80)= 0.92463657; T( 4,81)= 0.93149160; T( 4,82)= 0.93831978; T( 4,83)= 0.94512169; T( 4,84)= 0.95189787; T( 4,85)= 0.95864887; T( 4,86)= 0.96537520; T( 4,87)= 0.97207738; T( 4,88)= 0.97875589; T( 4,89)= 0.98541121; T( 4,90)= 0.99204380; T( 4,91)= 0.99865412; T( 4,92)= 1.00524261; T( 4,93)= 1.01180968; T( 4,94)= 1.01835577; T( 4,95)= 1.02488126; T( 4,96)= 1.03138656; T( 4,97)= 1.03787205; T( 4,98)= 1.04433810; T( 4,99)= 1.05078507; T( 4,100)= 1.05721333; T( 4,101)= 1.06362322; T( 4,102)= 1.07001507; T( 4,103)= 1.07638921; T( 4,104)= 1.08274597; T( 4,105)= 1.08908566; T( 4,106)= 1.09540858; T( 4,107)= 1.10171504; T( 4,108)= 1.10800533; T( 4,109)= 1.11427973; T( 4,110)= 1.12053852; T( 4,111)= 1.12678198; T( 4,112)= 1.13301037; T( 4,113)= 1.13922395; T( 4,114)= 1.14542298; T( 4,115)= 1.15160771; T( 4,116)= 1.15777838; T( 4,117)= 1.16393523; T( 4,118)= 1.17007849; T( 4,119)= 1.17620840; T( 4,120)= 1.18232518; T( 4,121)= 1.18842905; T( 4,122)= 1.19452023; T( 4,123)= 1.20059892; T( 4,124)= 1.20666533; T( 4,125)= 1.21271967; T( 4,126)= 1.21876214; T( 4,127)= 1.22479292; T( 4,128)= 1.23081222; T( 4,129)= 1.23682021; T( 4,130)= 1.24281709; T( 4,131)= 1.24880304; T( 4,132)= 1.25477823; T( 4,133)= 1.26074283; T( 4,134)= 1.26669702; T( 4,135)= 1.27264097; T( 4,136)= 1.27857484; T( 4,137)= 1.28449879; T( 4,138)= 1.29041298; T( 4,139)= 1.29631757; T( 4,140)= 1.30221271; T( 4,141)= 1.30809856; T( 4,142)= 1.31397526; T( 4,143)= 1.31984296; T( 4,144)= 1.32570180; T( 4,145)= 1.33155192; T( 4,146)= 1.33739346; T( 4,147)= 1.34322657; T( 4,148)= 1.34905136; T( 4,149)= 1.35486799; T( 4,150)= 1.36067656; T( 4,151)= 1.36647723; T( 4,152)= 1.37227010; T( 4,153)= 1.37805531; T( 4,154)= 1.38383297; T( 4,155)= 1.38960322; T( 4,156)= 1.39536616; T( 4,157)= 1.40112191; T( 4,158)= 1.40687059; T( 4,159)= 1.41261231; T( 4,160)= 1.41834719; T( 4,161)= 1.42407533; T( 4,162)= 1.42979685; T( 4,163)= 1.43551184; T( 4,164)= 1.44122042; T( 4,165)= 1.44692269; T( 4,166)= 1.45261875; T( 4,167)= 1.45830870; T( 4,168)= 1.46399265; T( 4,169)= 1.46967069; T( 4,170)= 1.47534292; T( 4,171)= 1.48100943; T( 4,172)= 1.48667032; T( 4,173)= 1.49232569; T( 4,174)= 1.49797562; T( 4,175)= 1.50362021; T( 4,176)= 1.50925954; T( 4,177)= 1.51489371; T( 4,178)= 1.52052280; T( 4,179)= 1.52614689; T( 4,180)= 1.53176608; T( 4,181)= 1.53738045; T( 4,182)= 1.54299008; T( 4,183)= 1.54859506; T( 4,184)= 1.55419546; T( 4,185)= 1.55979136; T( 4,186)= 1.56538285; T( 4,187)= 1.57097000; T( 4,188)= 1.57655289; T( 4,189)= 1.58213160; T( 4,190)= 1.58770620; T( 4,191)= 1.59327678; T( 4,192)= 1.59884339; T( 4,193)= 1.60440612; T( 4,194)= 1.60996503; T( 4,195)= 1.61552021; T( 4,196)= 1.62107171; T( 4,197)= 1.62661962; T( 4,198)= 1.63216399; T( 4,199)= 1.63770491; T( 4,200)= 1.64324243; T( 4,201)= 1.64877662; T( 4,202)= 1.65430755; T( 4,203)= 1.65983529; T( 4,204)= 1.66535990; T( 4,205)= 1.67088144; T( 4,206)= 1.67639998; T( 4,207)= 1.68191559; T( 4,208)= 1.68742832; T( 4,209)= 1.69293823; T( 4,210)= 1.69844540; T( 4,211)= 1.70394987; T( 4,212)= 1.70945172; T( 4,213)= 1.71495099; T( 4,214)= 1.72044775; T( 4,215)= 1.72594205; T( 4,216)= 1.73143396; T( 4,217)= 1.73692353; T( 4,218)= 1.74241082; T( 4,219)= 1.74789589; T( 4,220)= 1.75337878; T( 4,221)= 1.75885957; T( 4,222)= 1.76433829; T( 4,223)= 1.76981501; T( 4,224)= 1.77528978; T( 4,225)= 1.78076266; T( 4,226)= 1.78623369; T( 4,227)= 1.79170293; T( 4,228)= 1.79717043; T( 4,229)= 1.80263625; T( 4,230)= 1.80810043; T( 4,231)= 1.81356303; T( 4,232)= 1.81902409; T( 4,233)= 1.82448367; T( 4,234)= 1.82994182; T( 4,235)= 1.83539858; T( 4,236)= 1.84085401; T( 4,237)= 1.84630815; T( 4,238)= 1.85176106; T( 4,239)= 1.85721277; T( 4,240)= 1.86266334; T( 4,241)= 1.86811282; T( 4,242)= 1.87356125; T( 4,243)= 1.87900868; T( 4,244)= 1.88445515; T( 4,245)= 1.88990071; T( 4,246)= 1.89534541; T( 4,247)= 1.90078929; T( 4,248)= 1.90623240; T( 4,249)= 1.91167478; T( 4,250)= 1.91711647; T( 4,251)= 1.92255753; T( 4,252)= 1.92799798; T( 4,253)= 1.93343789; T( 4,254)= 1.93887729; T( 4,255)= 1.94431622; T( 4,256)= 1.94975472; T( 4,257)= 1.95519285; T( 4,258)= 1.96063064; T( 4,259)= 1.96606812; T( 4,260)= 1.97150536; T( 4,261)= 1.97694238; T( 4,262)= 1.98237923; T( 4,263)= 1.98781595; T( 4,264)= 1.99325257; T( 4,265)= 1.99868915; T( 4,266)= 2.00412572; T( 4,267)= 2.00956231; T( 4,268)= 2.01499898; T( 4,269)= 2.02043576; T( 4,270)= 2.02587268; T( 4,271)= 2.03130980; T( 4,272)= 2.03674714; T( 4,273)= 2.04218475; T( 4,274)= 2.04762267; T( 4,275)= 2.05306093; T( 4,276)= 2.05849957; T( 4,277)= 2.06393863; T( 4,278)= 2.06937815; T( 4,279)= 2.07481817; T( 4,280)= 2.08025872; T( 4,281)= 2.08569984; T( 4,282)= 2.09114157; T( 4,283)= 2.09658394; T( 4,284)= 2.10202700; T( 4,285)= 2.10747077; T( 4,286)= 2.11291531; T( 4,287)= 2.11836063; T( 4,288)= 2.12380678; T( 4,289)= 2.12925380; T( 4,290)= 2.13470172; T( 4,291)= 2.14015057; T( 4,292)= 2.14560040; T( 4,293)= 2.15105123; T( 4,294)= 2.15650311; T( 4,295)= 2.16195607; T( 4,296)= 2.16741014; T( 4,297)= 2.17286536; T( 4,298)= 2.17832176; T( 4,299)= 2.18377938; T( 4,300)= 2.18923826; T( 4,301)= 2.19469842; T( 4,302)= 2.20015991; T( 4,303)= 2.20562275; T( 4,304)= 2.21108699; T( 4,305)= 2.21655265; T( 4,306)= 2.22201977; T( 4,307)= 2.22748838; T( 4,308)= 2.23295853; T( 4,309)= 2.23843023; T( 4,310)= 2.24390353; T( 4,311)= 2.24937845; T( 4,312)= 2.25485504; T( 4,313)= 2.26033333; T( 4,314)= 2.26581334; T( 4,315)= 2.27129512; T( 4,316)= 2.27677869; T( 4,317)= 2.28226408; T( 4,318)= 2.28775134; T( 4,319)= 2.29324050; T( 4,320)= 2.29873158; T( 4,321)= 2.30422462; T( 4,322)= 2.30971966; T( 4,323)= 2.31521671; T( 4,324)= 2.32071583; T( 4,325)= 2.32621704; T( 4,326)= 2.33172037; T( 4,327)= 2.33722585; T( 4,328)= 2.34273353; T( 4,329)= 2.34824342; T( 4,330)= 2.35375556; T( 4,331)= 2.35926999; T( 4,332)= 2.36478674; T( 4,333)= 2.37030583; T( 4,334)= 2.37582731; T( 4,335)= 2.38135119; T( 4,336)= 2.38687752; T( 4,337)= 2.39240633; T( 4,338)= 2.39793764; T( 4,339)= 2.40347150; T( 4,340)= 2.40900792; T( 4,341)= 2.41454695; T( 4,342)= 2.42008862; T( 4,343)= 2.42563295; T( 4,344)= 2.43117998; T( 4,345)= 2.43672974; T( 4,346)= 2.44228226; T( 4,347)= 2.44783757; T( 4,348)= 2.45339571; T( 4,349)= 2.45895671; T( 4,350)= 2.46452059; T( 4,351)= 2.47008739; T( 4,352)= 2.47565714; T( 4,353)= 2.48122987; T( 4,354)= 2.48680562; T( 4,355)= 2.49238441; T( 4,356)= 2.49796627; T( 4,357)= 2.50355125; T( 4,358)= 2.50913936; T( 4,359)= 2.51473064; T( 4,360)= 2.52032513; T( 4,361)= 2.52592284; T( 4,362)= 2.53152382; T( 4,363)= 2.53712810; T( 4,364)= 2.54273570; T( 4,365)= 2.54834666; T( 4,366)= 2.55396101; T( 4,367)= 2.55957878; T( 4,368)= 2.56520000; T( 4,369)= 2.57082471; T( 4,370)= 2.57645293; T( 4,371)= 2.58208469; T( 4,372)= 2.58772004; T( 4,373)= 2.59335899; T( 4,374)= 2.59900158; T( 4,375)= 2.60464784; T( 4,376)= 2.61029781; T( 4,377)= 2.61595151; T( 4,378)= 2.62160897; T( 4,379)= 2.62727024; T( 4,380)= 2.63293533; T( 4,381)= 2.63860428; T( 4,382)= 2.64427712; T( 4,383)= 2.64995389; T( 4,384)= 2.65563461; T( 4,385)= 2.66131932; T( 4,386)= 2.66700804; T( 4,387)= 2.67270082; T( 4,388)= 2.67839767; T( 4,389)= 2.68409864; T( 4,390)= 2.68980376; T( 4,391)= 2.69551305; T( 4,392)= 2.70122654; T( 4,393)= 2.70694428; T( 4,394)= 2.71266630; T( 4,395)= 2.71839261; T( 4,396)= 2.72412326; T( 4,397)= 2.72985828; T( 4,398)= 2.73559770; T( 4,399)= 2.74134155; T( 4,400)= 2.74708987; T( 4,401)= 2.75284268; T( 4,402)= 2.75860003; T( 4,403)= 2.76436193; T( 4,404)= 2.77012843; T( 4,405)= 2.77589955; T( 4,406)= 2.78167533; T( 4,407)= 2.78745580; T( 4,408)= 2.79324100; T( 4,409)= 2.79903095; T( 4,410)= 2.80482569; T( 4,411)= 2.81062526; T( 4,412)= 2.81642967; T( 4,413)= 2.82223898; T( 4,414)= 2.82805320; T( 4,415)= 2.83387238; T( 4,416)= 2.83969655; T( 4,417)= 2.84552573; T( 4,418)= 2.85135997; T( 4,419)= 2.85719929; T( 4,420)= 2.86304373; T( 4,421)= 2.86889333; T( 4,422)= 2.87474811; T( 4,423)= 2.88060811; T( 4,424)= 2.88647336; T( 4,425)= 2.89234391; T( 4,426)= 2.89821977; T( 4,427)= 2.90410099; T( 4,428)= 2.90998759; T( 4,429)= 2.91587962; T( 4,430)= 2.92177711; T( 4,431)= 2.92768009; T( 4,432)= 2.93358859; T( 4,433)= 2.93950266; T( 4,434)= 2.94542232; T( 4,435)= 2.95134761; T( 4,436)= 2.95727856; T( 4,437)= 2.96321521; T( 4,438)= 2.96915760; T( 4,439)= 2.97510575; T( 4,440)= 2.98105971; T( 4,441)= 2.98701950; T( 4,442)= 2.99298518; T( 4,443)= 2.99895676; T( 4,444)= 3.00493428; T( 4,445)= 3.01091779; T( 4,446)= 3.01690731; T( 4,447)= 3.02290288; T( 4,448)= 3.02890455; T( 4,449)= 3.03491233; T( 4,450)= 3.04092628; T( 4,451)= 3.04694642; T( 4,452)= 3.05297280; T( 4,453)= 3.05900545; T( 4,454)= 3.06504440; T( 4,455)= 3.07108969; T( 4,456)= 3.07714137; T( 4,457)= 3.08319946; T( 4,458)= 3.08926400; T( 4,459)= 3.09533504; T( 4,460)= 3.10141260; T( 4,461)= 3.10749673; T( 4,462)= 3.11358747; T( 4,463)= 3.11968484; T( 4,464)= 3.12578890; T( 4,465)= 3.13189967; T( 4,466)= 3.13801719; T( 4,467)= 3.14414151; T( 4,468)= 3.15027266; T( 4,469)= 3.15641069; T( 4,470)= 3.16255562; T( 4,471)= 3.16870750; T( 4,472)= 3.17486636; T( 4,473)= 3.18103226; T( 4,474)= 3.18720522; T( 4,475)= 3.19338528; T( 4,476)= 3.19957249; T( 4,477)= 3.20576688; T( 4,478)= 3.21196850; T( 4,479)= 3.21817738; T( 4,480)= 3.22439357; T( 4,481)= 3.23061710; T( 4,482)= 3.23684802; T( 4,483)= 3.24308636; T( 4,484)= 3.24933218; T( 4,485)= 3.25558550; T( 4,486)= 3.26184637; T( 4,487)= 3.26811483; T( 4,488)= 3.27439092; T( 4,489)= 3.28067469; T( 4,490)= 3.28696618; T( 4,491)= 3.29326542; T( 4,492)= 3.29957246; T( 4,493)= 3.30588735; T( 4,494)= 3.31221013; T( 4,495)= 3.31854083; T( 4,496)= 3.32487950; T( 4,497)= 3.33122619; T( 4,498)= 3.33758094; T( 4,499)= 3.34394380; T( 4,500)= 3.35031479; T( 4,501)= 3.35669398; T( 4,502)= 3.36308140; T( 4,503)= 3.36947710; T( 4,504)= 3.37588113; T( 4,505)= 3.38229352; T( 4,506)= 3.38871433; T( 4,507)= 3.39514359; T( 4,508)= 3.40158136; T( 4,509)= 3.40802768; T( 4,510)= 3.41448259; T( 4,511)= 3.42094615; T( 4,512)= 3.42741839; T( 4,513)= 3.43389937; T( 4,514)= 3.44038913; T( 4,515)= 3.44688772; T( 4,516)= 3.45339518; T( 4,517)= 3.45991157; T( 4,518)= 3.46643693; T( 4,519)= 3.47297131; T( 4,520)= 3.47951475; T( 4,521)= 3.48606731; T( 4,522)= 3.49262904; T( 4,523)= 3.49919998; T( 4,524)= 3.50578018; T( 4,525)= 3.51236969; T( 4,526)= 3.51896857; T( 4,527)= 3.52557685; T( 4,528)= 3.53219460; T( 4,529)= 3.53882186; T( 4,530)= 3.54545868; T( 4,531)= 3.55210512; T( 4,532)= 3.55876122; T( 4,533)= 3.56542704; T( 4,534)= 3.57210263; T( 4,535)= 3.57878804; T( 4,536)= 3.58548332; T( 4,537)= 3.59218853; T( 4,538)= 3.59890372; T( 4,539)= 3.60562893; T( 4,540)= 3.61236424; T( 4,541)= 3.61910968; T( 4,542)= 3.62586532; T( 4,543)= 3.63263120; T( 4,544)= 3.63940739; T( 4,545)= 3.64619393; T( 4,546)= 3.65299089; T( 4,547)= 3.65979832; T( 4,548)= 3.66661627; T( 4,549)= 3.67344480; T( 4,550)= 3.68028397; T( 4,551)= 3.68713383; T( 4,552)= 3.69399445; T( 4,553)= 3.70086587; T( 4,554)= 3.70774817; T( 4,555)= 3.71464138; T( 4,556)= 3.72154558; T( 4,557)= 3.72846083; T( 4,558)= 3.73538718; T( 4,559)= 3.74232468; T( 4,560)= 3.74927341; T( 4,561)= 3.75623343; T( 4,562)= 3.76320478; T( 4,563)= 3.77018754; T( 4,564)= 3.77718177; T( 4,565)= 3.78418752; T( 4,566)= 3.79120486; T( 4,567)= 3.79823386; T( 4,568)= 3.80527456; T( 4,569)= 3.81232705; T( 4,570)= 3.81939138; T( 4,571)= 3.82646762; T( 4,572)= 3.83355582; T( 4,573)= 3.84065607; T( 4,574)= 3.84776841; T( 4,575)= 3.85489292; T( 4,576)= 3.86202966; T( 4,577)= 3.86917871; T( 4,578)= 3.87634012; T( 4,579)= 3.88351396; T( 4,580)= 3.89070031; T( 4,581)= 3.89789922; T( 4,582)= 3.90511077; T( 4,583)= 3.91233504; T( 4,584)= 3.91957208; T( 4,585)= 3.92682197; T( 4,586)= 3.93408477; T( 4,587)= 3.94136057; T( 4,588)= 3.94864942; T( 4,589)= 3.95595141; T( 4,590)= 3.96326661; T( 4,591)= 3.97059508; T( 4,592)= 3.97793690; T( 4,593)= 3.98529215; T( 4,594)= 3.99266090; T( 4,595)= 4.00004322; T( 4,596)= 4.00743920; T( 4,597)= 4.01484890; T( 4,598)= 4.02227240; T( 4,599)= 4.02970978; T( 4,600)= 4.03716112; T( 4,601)= 4.04462649; T( 4,602)= 4.05210598; T( 4,603)= 4.05959966; T( 4,604)= 4.06710761; T( 4,605)= 4.07462991; T( 4,606)= 4.08216664; T( 4,607)= 4.08971789; T( 4,608)= 4.09728374; T( 4,609)= 4.10486427; T( 4,610)= 4.11245955; T( 4,611)= 4.12006968; T( 4,612)= 4.12769475; T( 4,613)= 4.13533482; T( 4,614)= 4.14299000; T( 4,615)= 4.15066036; T( 4,616)= 4.15834600; T( 4,617)= 4.16604699; T( 4,618)= 4.17376344; T( 4,619)= 4.18149542; T( 4,620)= 4.18924303; T( 4,621)= 4.19700635; T( 4,622)= 4.20478548; T( 4,623)= 4.21258051; T( 4,624)= 4.22039152; T( 4,625)= 4.22821862; T( 4,626)= 4.23606190; T( 4,627)= 4.24392145; T( 4,628)= 4.25179736; T( 4,629)= 4.25968973; T( 4,630)= 4.26759865; T( 4,631)= 4.27552424; T( 4,632)= 4.28346657; T( 4,633)= 4.29142575; T( 4,634)= 4.29940188; T( 4,635)= 4.30739506; T( 4,636)= 4.31540539; T( 4,637)= 4.32343296; T( 4,638)= 4.33147790; T( 4,639)= 4.33954028; T( 4,640)= 4.34762023; T( 4,641)= 4.35571785; T( 4,642)= 4.36383323; T( 4,643)= 4.37196649; T( 4,644)= 4.38011774; T( 4,645)= 4.38828707; T( 4,646)= 4.39647461; T( 4,647)= 4.40468046; T( 4,648)= 4.41290473; T( 4,649)= 4.42114754; T( 4,650)= 4.42940899; T( 4,651)= 4.43768920; T( 4,652)= 4.44598828; T( 4,653)= 4.45430636; T( 4,654)= 4.46264354; T( 4,655)= 4.47099994; T( 4,656)= 4.47937568; T( 4,657)= 4.48777089; T( 4,658)= 4.49618567; T( 4,659)= 4.50462016; T( 4,660)= 4.51307447; T( 4,661)= 4.52154873; T( 4,662)= 4.53004306; T( 4,663)= 4.53855758; T( 4,664)= 4.54709243; T( 4,665)= 4.55564773; T( 4,666)= 4.56422361; T( 4,667)= 4.57282020; T( 4,668)= 4.58143763; T( 4,669)= 4.59007603; T( 4,670)= 4.59873554; T( 4,671)= 4.60741628; T( 4,672)= 4.61611840; T( 4,673)= 4.62484204; T( 4,674)= 4.63358732; T( 4,675)= 4.64235439; T( 4,676)= 4.65114339; T( 4,677)= 4.65995446; T( 4,678)= 4.66878774; T( 4,679)= 4.67764338; T( 4,680)= 4.68652153; T( 4,681)= 4.69542232; T( 4,682)= 4.70434591; T( 4,683)= 4.71329245; T( 4,684)= 4.72226208; T( 4,685)= 4.73125497; T( 4,686)= 4.74027126; T( 4,687)= 4.74931111; T( 4,688)= 4.75837467; T( 4,689)= 4.76746211; T( 4,690)= 4.77657358; T( 4,691)= 4.78570924; T( 4,692)= 4.79486926; T( 4,693)= 4.80405379; T( 4,694)= 4.81326301; T( 4,695)= 4.82249709; T( 4,696)= 4.83175618; T( 4,697)= 4.84104046; T( 4,698)= 4.85035011; T( 4,699)= 4.85968529; T( 4,700)= 4.86904619; T( 4,701)= 4.87843297; T( 4,702)= 4.88784581; T( 4,703)= 4.89728491; T( 4,704)= 4.90675043; T( 4,705)= 4.91624257; T( 4,706)= 4.92576151; T( 4,707)= 4.93530743; T( 4,708)= 4.94488052; T( 4,709)= 4.95448099; T( 4,710)= 4.96410901; T( 4,711)= 4.97376479; T( 4,712)= 4.98344853; T( 4,713)= 4.99316041; T( 4,714)= 5.00290065; T( 4,715)= 5.01266944; T( 4,716)= 5.02246700; T( 4,717)= 5.03229352; T( 4,718)= 5.04214922; T( 4,719)= 5.05203432; T( 4,720)= 5.06194901; T( 4,721)= 5.07189353; T( 4,722)= 5.08186809; T( 4,723)= 5.09187290; T( 4,724)= 5.10190820; T( 4,725)= 5.11197421; T( 4,726)= 5.12207115; T( 4,727)= 5.13219926; T( 4,728)= 5.14235877; T( 4,729)= 5.15254991; T( 4,730)= 5.16277293; T( 4,731)= 5.17302806; T( 4,732)= 5.18331554; T( 4,733)= 5.19363562; T( 4,734)= 5.20398856; T( 4,735)= 5.21437459; T( 4,736)= 5.22479398; T( 4,737)= 5.23524698; T( 4,738)= 5.24573386; T( 4,739)= 5.25625486; T( 4,740)= 5.26681027; T( 4,741)= 5.27740034; T( 4,742)= 5.28802535; T( 4,743)= 5.29868557; T( 4,744)= 5.30938129; T( 4,745)= 5.32011278; T( 4,746)= 5.33088032; T( 4,747)= 5.34168421; T( 4,748)= 5.35252473; T( 4,749)= 5.36340218; T( 4,750)= 5.37431685; T( 4,751)= 5.38526906; T( 4,752)= 5.39625909; T( 4,753)= 5.40728727; T( 4,754)= 5.41835389; T( 4,755)= 5.42945929; T( 4,756)= 5.44060377; T( 4,757)= 5.45178766; T( 4,758)= 5.46301129; T( 4,759)= 5.47427499; T( 4,760)= 5.48557909; T( 4,761)= 5.49692394; T( 4,762)= 5.50830987; T( 4,763)= 5.51973724; T( 4,764)= 5.53120640; T( 4,765)= 5.54271769; T( 4,766)= 5.55427150; T( 4,767)= 5.56586817; T( 4,768)= 5.57750808; T( 4,769)= 5.58919161; T( 4,770)= 5.60091913; T( 4,771)= 5.61269103; T( 4,772)= 5.62450770; T( 4,773)= 5.63636954; T( 4,774)= 5.64827693; T( 4,775)= 5.66023029; T( 4,776)= 5.67223003; T( 4,777)= 5.68427657; T( 4,778)= 5.69637031; T( 4,779)= 5.70851170; T( 4,780)= 5.72070116; T( 4,781)= 5.73293913; T( 4,782)= 5.74522606; T( 4,783)= 5.75756239; T( 4,784)= 5.76994858; T( 4,785)= 5.78238510; T( 4,786)= 5.79487241; T( 4,787)= 5.80741098; T( 4,788)= 5.82000131; T( 4,789)= 5.83264387; T( 4,790)= 5.84533917; T( 4,791)= 5.85808770; T( 4,792)= 5.87088997; T( 4,793)= 5.88374651; T( 4,794)= 5.89665783; T( 4,795)= 5.90962447; T( 4,796)= 5.92264696; T( 4,797)= 5.93572586; T( 4,798)= 5.94886171; T( 4,799)= 5.96205509; T( 4,800)= 5.97530656; T( 4,801)= 5.98861669; T( 4,802)= 6.00198609; T( 4,803)= 6.01541535; T( 4,804)= 6.02890507; T( 4,805)= 6.04245586; T( 4,806)= 6.05606836; T( 4,807)= 6.06974320; T( 4,808)= 6.08348102; T( 4,809)= 6.09728247; T( 4,810)= 6.11114822; T( 4,811)= 6.12507894; T( 4,812)= 6.13907532; T( 4,813)= 6.15313805; T( 4,814)= 6.16726784; T( 4,815)= 6.18146541; T( 4,816)= 6.19573148; T( 4,817)= 6.21006680; T( 4,818)= 6.22447212; T( 4,819)= 6.23894820; T( 4,820)= 6.25349583; T( 4,821)= 6.26811579; T( 4,822)= 6.28280888; T( 4,823)= 6.29757593; T( 4,824)= 6.31241776; T( 4,825)= 6.32733521; T( 4,826)= 6.34232915; T( 4,827)= 6.35740046; T( 4,828)= 6.37255000; T( 4,829)= 6.38777870; T( 4,830)= 6.40308747; T( 4,831)= 6.41847725; T( 4,832)= 6.43394898; T( 4,833)= 6.44950363; T( 4,834)= 6.46514220; T( 4,835)= 6.48086568; T( 4,836)= 6.49667509; T( 4,837)= 6.51257148; T( 4,838)= 6.52855590; T( 4,839)= 6.54462942; T( 4,840)= 6.56079316; T( 4,841)= 6.57704821; T( 4,842)= 6.59339573; T( 4,843)= 6.60983688; T( 4,844)= 6.62637282; T( 4,845)= 6.64300478; T( 4,846)= 6.65973397; T( 4,847)= 6.67656164; T( 4,848)= 6.69348908; T( 4,849)= 6.71051758; T( 4,850)= 6.72764847; T( 4,851)= 6.74488309; T( 4,852)= 6.76222282; T( 4,853)= 6.77966908; T( 4,854)= 6.79722330; T( 4,855)= 6.81488693; T( 4,856)= 6.83266148; T( 4,857)= 6.85054846; T( 4,858)= 6.86854943; T( 4,859)= 6.88666598; T( 4,860)= 6.90489973; T( 4,861)= 6.92325233; T( 4,862)= 6.94172549; T( 4,863)= 6.96032091; T( 4,864)= 6.97904037; T( 4,865)= 6.99788567; T( 4,866)= 7.01685866; T( 4,867)= 7.03596121; T( 4,868)= 7.05519525; T( 4,869)= 7.07456274; T( 4,870)= 7.09406571; T( 4,871)= 7.11370621; T( 4,872)= 7.13348634; T( 4,873)= 7.15340826; T( 4,874)= 7.17347418; T( 4,875)= 7.19368635; T( 4,876)= 7.21404707; T( 4,877)= 7.23455872; T( 4,878)= 7.25522372; T( 4,879)= 7.27604455; T( 4,880)= 7.29702375; T( 4,881)= 7.31816392; T( 4,882)= 7.33946774; T( 4,883)= 7.36093793; T( 4,884)= 7.38257731; T( 4,885)= 7.40438875; T( 4,886)= 7.42637521; T( 4,887)= 7.44853970; T( 4,888)= 7.47088534; T( 4,889)= 7.49341532; T( 4,890)= 7.51613291; T( 4,891)= 7.53904148; T( 4,892)= 7.56214447; T( 4,893)= 7.58544544; T( 4,894)= 7.60894803; T( 4,895)= 7.63265599; T( 4,896)= 7.65657318; T( 4,897)= 7.68070356; T( 4,898)= 7.70505121; T( 4,899)= 7.72962032; T( 4,900)= 7.75441521; T( 4,901)= 7.77944034; T( 4,902)= 7.80470028; T( 4,903)= 7.83019975; T( 4,904)= 7.85594361; T( 4,905)= 7.88193688; T( 4,906)= 7.90818472; T( 4,907)= 7.93469248; T( 4,908)= 7.96146564; T( 4,909)= 7.98850988; T( 4,910)= 8.01583108; T( 4,911)= 8.04343529; T( 4,912)= 8.07132876; T( 4,913)= 8.09951796; T( 4,914)= 8.12800958; T( 4,915)= 8.15681054; T( 4,916)= 8.18592800; T( 4,917)= 8.21536937; T( 4,918)= 8.24514233; T( 4,919)= 8.27525482; T( 4,920)= 8.30571510; T( 4,921)= 8.33653170; T( 4,922)= 8.36771351; T( 4,923)= 8.39926971; T( 4,924)= 8.43120988; T( 4,925)= 8.46354394; T( 4,926)= 8.49628221; T( 4,927)= 8.52943543; T( 4,928)= 8.56301477; T( 4,929)= 8.59703186; T( 4,930)= 8.63149880; T( 4,931)= 8.66642823; T( 4,932)= 8.70183332; T( 4,933)= 8.73772779; T( 4,934)= 8.77412600; T( 4,935)= 8.81104292; T( 4,936)= 8.84849424; T( 4,937)= 8.88649634; T( 4,938)= 8.92506638; T( 4,939)= 8.96422234; T( 4,940)= 9.00398308; T( 4,941)= 9.04436837; T( 4,942)= 9.08539898; T( 4,943)= 9.12709674; T( 4,944)= 9.16948460; T( 4,945)= 9.21258674; T( 4,946)= 9.25642862; T( 4,947)= 9.30103711; T( 4,948)= 9.34644054; T( 4,949)= 9.39266890; T( 4,950)= 9.43975387; T( 4,951)= 9.48772904; T( 4,952)= 9.53662998; T( 4,953)= 9.58649448; T( 4,954)= 9.63736268; T( 4,955)= 9.68927731; T( 4,956)= 9.74228389; T( 4,957)= 9.79643098; T( 4,958)= 9.85177050; T( 4,959)= 9.90835797; T( 4,960)= 9.96625293; T( 4,961)=10.02551929; T( 4,962)=10.08622578; T( 4,963)=10.14844648; T( 4,964)=10.21226132; T( 4,965)=10.27775679; T( 4,966)=10.34502663; T( 4,967)=10.41417271; T( 4,968)=10.48530593; T( 4,969)=10.55854739; T( 4,970)=10.63402967; T( 4,971)=10.71189829; T( 4,972)=10.79231350; T( 4,973)=10.87545233; T( 4,974)=10.96151101; T( 4,975)=11.05070787; T( 4,976)=11.14328678; T( 4,977)=11.23952133; T( 4,978)=11.33971984; T( 4,979)=11.44423156; T( 4,980)=11.55345420; T( 4,981)=11.66784340; T( 4,982)=11.78792460; T( 4,983)=11.91430801; T( 4,984)=12.04770801; T( 4,985)=12.18896832; T( 4,986)=12.33909528; T( 4,987)=12.49930265; T( 4,988)=12.67107294; T( 4,989)=12.85624330; T( 4,990)=13.05712875; T( 4,991)=13.27670414; T( 4,992)=13.51888199; T( 4,993)=13.78895432; T( 4,994)=14.09432997; T( 4,995)=14.44584270; T( 4,996)=14.86025900; T( 4,997)=15.36561125; T( 4,998)=16.01432631; T( 4,999)=16.92375820; T( 4,1000)=18.46682695; T( 4,1001)=23.51274244; T( 4,1002)=28.47325542; T( 5, 1)= 0.00000000; T( 5, 2)= 0.21021260; T( 5, 3)= 0.28013998; T( 5, 4)= 0.33188723; T( 5, 5)= 0.37461651; T( 5, 6)= 0.41174190; T( 5, 7)= 0.44496986; T( 5, 8)= 0.47529445; T( 5, 9)= 0.50335314; T( 5,10)= 0.52958287; T( 5,11)= 0.55429808; T( 5,12)= 0.57773376; T( 5,13)= 0.60007082; T( 5,14)= 0.62145195; T( 5,15)= 0.64199196; T( 5,16)= 0.66178485; T( 5,17)= 0.68090864; T( 5,18)= 0.69942897; T( 5,19)= 0.71740161; T( 5,20)= 0.73487445; T( 5,21)= 0.75188893; T( 5,22)= 0.76848123; T( 5,23)= 0.78468309; T( 5,24)= 0.80052258; T( 5,25)= 0.81602466; T( 5,26)= 0.83121161; T( 5,27)= 0.84610345; T( 5,28)= 0.86071821; T( 5,29)= 0.87507221; T( 5,30)= 0.88918030; T( 5,31)= 0.90305599; T( 5,32)= 0.91671165; T( 5,33)= 0.93015862; T( 5,34)= 0.94340735; T( 5,35)= 0.95646745; T( 5,36)= 0.96934783; T( 5,37)= 0.98205672; T( 5,38)= 0.99460179; T( 5,39)= 1.00699016; T( 5,40)= 1.01922849; T( 5,41)= 1.03132297; T( 5,42)= 1.04327942; T( 5,43)= 1.05510328; T( 5,44)= 1.06679967; T( 5,45)= 1.07837340; T( 5,46)= 1.08982898; T( 5,47)= 1.10117069; T( 5,48)= 1.11240256; T( 5,49)= 1.12352840; T( 5,50)= 1.13455182; T( 5,51)= 1.14547623; T( 5,52)= 1.15630487; T( 5,53)= 1.16704082; T( 5,54)= 1.17768700; T( 5,55)= 1.18824621; T( 5,56)= 1.19872109; T( 5,57)= 1.20911418; T( 5,58)= 1.21942787; T( 5,59)= 1.22966448; T( 5,60)= 1.23982621; T( 5,61)= 1.24991516; T( 5,62)= 1.25993334; T( 5,63)= 1.26988270; T( 5,64)= 1.27976507; T( 5,65)= 1.28958223; T( 5,66)= 1.29933590; T( 5,67)= 1.30902769; T( 5,68)= 1.31865919; T( 5,69)= 1.32823191; T( 5,70)= 1.33774731; T( 5,71)= 1.34720678; T( 5,72)= 1.35661167; T( 5,73)= 1.36596330; T( 5,74)= 1.37526290; T( 5,75)= 1.38451170; T( 5,76)= 1.39371085; T( 5,77)= 1.40286150; T( 5,78)= 1.41196472; T( 5,79)= 1.42102158; T( 5,80)= 1.43003310; T( 5,81)= 1.43900026; T( 5,82)= 1.44792401; T( 5,83)= 1.45680528; T( 5,84)= 1.46564497; T( 5,85)= 1.47444395; T( 5,86)= 1.48320306; T( 5,87)= 1.49192310; T( 5,88)= 1.50060489; T( 5,89)= 1.50924918; T( 5,90)= 1.51785672; T( 5,91)= 1.52642824; T( 5,92)= 1.53496444; T( 5,93)= 1.54346601; T( 5,94)= 1.55193361; T( 5,95)= 1.56036789; T( 5,96)= 1.56876948; T( 5,97)= 1.57713900; T( 5,98)= 1.58547703; T( 5,99)= 1.59378416; T( 5,100)= 1.60206097; T( 5,101)= 1.61030799; T( 5,102)= 1.61852576; T( 5,103)= 1.62671482; T( 5,104)= 1.63487566; T( 5,105)= 1.64300880; T( 5,106)= 1.65111471; T( 5,107)= 1.65919387; T( 5,108)= 1.66724674; T( 5,109)= 1.67527377; T( 5,110)= 1.68327541; T( 5,111)= 1.69125208; T( 5,112)= 1.69920421; T( 5,113)= 1.70713221; T( 5,114)= 1.71503648; T( 5,115)= 1.72291741; T( 5,116)= 1.73077539; T( 5,117)= 1.73861080; T( 5,118)= 1.74642399; T( 5,119)= 1.75421534; T( 5,120)= 1.76198520; T( 5,121)= 1.76973390; T( 5,122)= 1.77746178; T( 5,123)= 1.78516918; T( 5,124)= 1.79285643; T( 5,125)= 1.80052383; T( 5,126)= 1.80817169; T( 5,127)= 1.81580033; T( 5,128)= 1.82341004; T( 5,129)= 1.83100111; T( 5,130)= 1.83857383; T( 5,131)= 1.84612848; T( 5,132)= 1.85366534; T( 5,133)= 1.86118467; T( 5,134)= 1.86868675; T( 5,135)= 1.87617183; T( 5,136)= 1.88364016; T( 5,137)= 1.89109200; T( 5,138)= 1.89852760; T( 5,139)= 1.90594719; T( 5,140)= 1.91335102; T( 5,141)= 1.92073931; T( 5,142)= 1.92811230; T( 5,143)= 1.93547020; T( 5,144)= 1.94281325; T( 5,145)= 1.95014166; T( 5,146)= 1.95745564; T( 5,147)= 1.96475540; T( 5,148)= 1.97204115; T( 5,149)= 1.97931310; T( 5,150)= 1.98657143; T( 5,151)= 1.99381635; T( 5,152)= 2.00104804; T( 5,153)= 2.00826671; T( 5,154)= 2.01547254; T( 5,155)= 2.02266570; T( 5,156)= 2.02984639; T( 5,157)= 2.03701477; T( 5,158)= 2.04417103; T( 5,159)= 2.05131534; T( 5,160)= 2.05844786; T( 5,161)= 2.06556876; T( 5,162)= 2.07267822; T( 5,163)= 2.07977638; T( 5,164)= 2.08686342; T( 5,165)= 2.09393949; T( 5,166)= 2.10100474; T( 5,167)= 2.10805932; T( 5,168)= 2.11510339; T( 5,169)= 2.12213710; T( 5,170)= 2.12916059; T( 5,171)= 2.13617401; T( 5,172)= 2.14317749; T( 5,173)= 2.15017118; T( 5,174)= 2.15715522; T( 5,175)= 2.16412975; T( 5,176)= 2.17109489; T( 5,177)= 2.17805079; T( 5,178)= 2.18499756; T( 5,179)= 2.19193535; T( 5,180)= 2.19886428; T( 5,181)= 2.20578447; T( 5,182)= 2.21269605; T( 5,183)= 2.21959915; T( 5,184)= 2.22649387; T( 5,185)= 2.23338035; T( 5,186)= 2.24025870; T( 5,187)= 2.24712904; T( 5,188)= 2.25399147; T( 5,189)= 2.26084613; T( 5,190)= 2.26769311; T( 5,191)= 2.27453253; T( 5,192)= 2.28136449; T( 5,193)= 2.28818912; T( 5,194)= 2.29500650; T( 5,195)= 2.30181676; T( 5,196)= 2.30861999; T( 5,197)= 2.31541630; T( 5,198)= 2.32220578; T( 5,199)= 2.32898854; T( 5,200)= 2.33576469; T( 5,201)= 2.34253431; T( 5,202)= 2.34929750; T( 5,203)= 2.35605437; T( 5,204)= 2.36280500; T( 5,205)= 2.36954949; T( 5,206)= 2.37628794; T( 5,207)= 2.38302043; T( 5,208)= 2.38974707; T( 5,209)= 2.39646792; T( 5,210)= 2.40318310; T( 5,211)= 2.40989268; T( 5,212)= 2.41659675; T( 5,213)= 2.42329541; T( 5,214)= 2.42998873; T( 5,215)= 2.43667679; T( 5,216)= 2.44335969; T( 5,217)= 2.45003751; T( 5,218)= 2.45671033; T( 5,219)= 2.46337822; T( 5,220)= 2.47004128; T( 5,221)= 2.47669958; T( 5,222)= 2.48335319; T( 5,223)= 2.49000221; T( 5,224)= 2.49664670; T( 5,225)= 2.50328674; T( 5,226)= 2.50992241; T( 5,227)= 2.51655379; T( 5,228)= 2.52318094; T( 5,229)= 2.52980395; T( 5,230)= 2.53642289; T( 5,231)= 2.54303782; T( 5,232)= 2.54964882; T( 5,233)= 2.55625597; T( 5,234)= 2.56285932; T( 5,235)= 2.56945897; T( 5,236)= 2.57605496; T( 5,237)= 2.58264738; T( 5,238)= 2.58923628; T( 5,239)= 2.59582175; T( 5,240)= 2.60240384; T( 5,241)= 2.60898262; T( 5,242)= 2.61555816; T( 5,243)= 2.62213053; T( 5,244)= 2.62869978; T( 5,245)= 2.63526599; T( 5,246)= 2.64182921; T( 5,247)= 2.64838952; T( 5,248)= 2.65494697; T( 5,249)= 2.66150163; T( 5,250)= 2.66805355; T( 5,251)= 2.67460281; T( 5,252)= 2.68114946; T( 5,253)= 2.68769356; T( 5,254)= 2.69423517; T( 5,255)= 2.70077436; T( 5,256)= 2.70731118; T( 5,257)= 2.71384569; T( 5,258)= 2.72037795; T( 5,259)= 2.72690801; T( 5,260)= 2.73343595; T( 5,261)= 2.73996180; T( 5,262)= 2.74648564; T( 5,263)= 2.75300751; T( 5,264)= 2.75952747; T( 5,265)= 2.76604558; T( 5,266)= 2.77256190; T( 5,267)= 2.77907647; T( 5,268)= 2.78558936; T( 5,269)= 2.79210062; T( 5,270)= 2.79861030; T( 5,271)= 2.80511845; T( 5,272)= 2.81162513; T( 5,273)= 2.81813040; T( 5,274)= 2.82463430; T( 5,275)= 2.83113688; T( 5,276)= 2.83763821; T( 5,277)= 2.84413832; T( 5,278)= 2.85063728; T( 5,279)= 2.85713514; T( 5,280)= 2.86363193; T( 5,281)= 2.87012773; T( 5,282)= 2.87662256; T( 5,283)= 2.88311650; T( 5,284)= 2.88960958; T( 5,285)= 2.89610185; T( 5,286)= 2.90259337; T( 5,287)= 2.90908418; T( 5,288)= 2.91557433; T( 5,289)= 2.92206387; T( 5,290)= 2.92855285; T( 5,291)= 2.93504132; T( 5,292)= 2.94152932; T( 5,293)= 2.94801690; T( 5,294)= 2.95450412; T( 5,295)= 2.96099100; T( 5,296)= 2.96747761; T( 5,297)= 2.97396399; T( 5,298)= 2.98045019; T( 5,299)= 2.98693625; T( 5,300)= 2.99342221; T( 5,301)= 2.99990813; T( 5,302)= 3.00639405; T( 5,303)= 3.01288002; T( 5,304)= 3.01936607; T( 5,305)= 3.02585226; T( 5,306)= 3.03233863; T( 5,307)= 3.03882522; T( 5,308)= 3.04531208; T( 5,309)= 3.05179925; T( 5,310)= 3.05828679; T( 5,311)= 3.06477472; T( 5,312)= 3.07126310; T( 5,313)= 3.07775196; T( 5,314)= 3.08424136; T( 5,315)= 3.09073133; T( 5,316)= 3.09722192; T( 5,317)= 3.10371318; T( 5,318)= 3.11020513; T( 5,319)= 3.11669783; T( 5,320)= 3.12319133; T( 5,321)= 3.12968565; T( 5,322)= 3.13618085; T( 5,323)= 3.14267696; T( 5,324)= 3.14917404; T( 5,325)= 3.15567211; T( 5,326)= 3.16217122; T( 5,327)= 3.16867142; T( 5,328)= 3.17517274; T( 5,329)= 3.18167523; T( 5,330)= 3.18817892; T( 5,331)= 3.19468387; T( 5,332)= 3.20119010; T( 5,333)= 3.20769767; T( 5,334)= 3.21420660; T( 5,335)= 3.22071695; T( 5,336)= 3.22722875; T( 5,337)= 3.23374204; T( 5,338)= 3.24025687; T( 5,339)= 3.24677327; T( 5,340)= 3.25329128; T( 5,341)= 3.25981095; T( 5,342)= 3.26633231; T( 5,343)= 3.27285541; T( 5,344)= 3.27938028; T( 5,345)= 3.28590697; T( 5,346)= 3.29243551; T( 5,347)= 3.29896594; T( 5,348)= 3.30549831; T( 5,349)= 3.31203265; T( 5,350)= 3.31856900; T( 5,351)= 3.32510740; T( 5,352)= 3.33164789; T( 5,353)= 3.33819051; T( 5,354)= 3.34473530; T( 5,355)= 3.35128230; T( 5,356)= 3.35783155; T( 5,357)= 3.36438308; T( 5,358)= 3.37093694; T( 5,359)= 3.37749316; T( 5,360)= 3.38405178; T( 5,361)= 3.39061285; T( 5,362)= 3.39717640; T( 5,363)= 3.40374246; T( 5,364)= 3.41031109; T( 5,365)= 3.41688231; T( 5,366)= 3.42345617; T( 5,367)= 3.43003270; T( 5,368)= 3.43661194; T( 5,369)= 3.44319393; T( 5,370)= 3.44977871; T( 5,371)= 3.45636632; T( 5,372)= 3.46295680; T( 5,373)= 3.46955018; T( 5,374)= 3.47614651; T( 5,375)= 3.48274581; T( 5,376)= 3.48934814; T( 5,377)= 3.49595352; T( 5,378)= 3.50256200; T( 5,379)= 3.50917361; T( 5,380)= 3.51578840; T( 5,381)= 3.52240640; T( 5,382)= 3.52902765; T( 5,383)= 3.53565218; T( 5,384)= 3.54228004; T( 5,385)= 3.54891127; T( 5,386)= 3.55554590; T( 5,387)= 3.56218396; T( 5,388)= 3.56882551; T( 5,389)= 3.57547058; T( 5,390)= 3.58211920; T( 5,391)= 3.58877141; T( 5,392)= 3.59542725; T( 5,393)= 3.60208677; T( 5,394)= 3.60874999; T( 5,395)= 3.61541697; T( 5,396)= 3.62208772; T( 5,397)= 3.62876230; T( 5,398)= 3.63544074; T( 5,399)= 3.64212309; T( 5,400)= 3.64880937; T( 5,401)= 3.65549962; T( 5,402)= 3.66219390; T( 5,403)= 3.66889222; T( 5,404)= 3.67559464; T( 5,405)= 3.68230119; T( 5,406)= 3.68901191; T( 5,407)= 3.69572684; T( 5,408)= 3.70244602; T( 5,409)= 3.70916948; T( 5,410)= 3.71589726; T( 5,411)= 3.72262941; T( 5,412)= 3.72936596; T( 5,413)= 3.73610695; T( 5,414)= 3.74285242; T( 5,415)= 3.74960241; T( 5,416)= 3.75635695; T( 5,417)= 3.76311610; T( 5,418)= 3.76987987; T( 5,419)= 3.77664833; T( 5,420)= 3.78342149; T( 5,421)= 3.79019941; T( 5,422)= 3.79698212; T( 5,423)= 3.80376966; T( 5,424)= 3.81056208; T( 5,425)= 3.81735940; T( 5,426)= 3.82416168; T( 5,427)= 3.83096894; T( 5,428)= 3.83778123; T( 5,429)= 3.84459860; T( 5,430)= 3.85142107; T( 5,431)= 3.85824869; T( 5,432)= 3.86508150; T( 5,433)= 3.87191953; T( 5,434)= 3.87876284; T( 5,435)= 3.88561146; T( 5,436)= 3.89246542; T( 5,437)= 3.89932478; T( 5,438)= 3.90618956; T( 5,439)= 3.91305982; T( 5,440)= 3.91993558; T( 5,441)= 3.92681690; T( 5,442)= 3.93370381; T( 5,443)= 3.94059636; T( 5,444)= 3.94749457; T( 5,445)= 3.95439851; T( 5,446)= 3.96130820; T( 5,447)= 3.96822369; T( 5,448)= 3.97514502; T( 5,449)= 3.98207223; T( 5,450)= 3.98900536; T( 5,451)= 3.99594446; T( 5,452)= 4.00288956; T( 5,453)= 4.00984071; T( 5,454)= 4.01679794; T( 5,455)= 4.02376131; T( 5,456)= 4.03073086; T( 5,457)= 4.03770662; T( 5,458)= 4.04468864; T( 5,459)= 4.05167696; T( 5,460)= 4.05867162; T( 5,461)= 4.06567267; T( 5,462)= 4.07268015; T( 5,463)= 4.07969411; T( 5,464)= 4.08671458; T( 5,465)= 4.09374161; T( 5,466)= 4.10077524; T( 5,467)= 4.10781551; T( 5,468)= 4.11486248; T( 5,469)= 4.12191618; T( 5,470)= 4.12897666; T( 5,471)= 4.13604396; T( 5,472)= 4.14311813; T( 5,473)= 4.15019920; T( 5,474)= 4.15728724; T( 5,475)= 4.16438227; T( 5,476)= 4.17148434; T( 5,477)= 4.17859351; T( 5,478)= 4.18570981; T( 5,479)= 4.19283329; T( 5,480)= 4.19996400; T( 5,481)= 4.20710197; T( 5,482)= 4.21424727; T( 5,483)= 4.22139992; T( 5,484)= 4.22855999; T( 5,485)= 4.23572751; T( 5,486)= 4.24290253; T( 5,487)= 4.25008510; T( 5,488)= 4.25727527; T( 5,489)= 4.26447308; T( 5,490)= 4.27167857; T( 5,491)= 4.27889181; T( 5,492)= 4.28611283; T( 5,493)= 4.29334167; T( 5,494)= 4.30057840; T( 5,495)= 4.30782306; T( 5,496)= 4.31507569; T( 5,497)= 4.32233635; T( 5,498)= 4.32960508; T( 5,499)= 4.33688193; T( 5,500)= 4.34416695; T( 5,501)= 4.35146019; T( 5,502)= 4.35876170; T( 5,503)= 4.36607153; T( 5,504)= 4.37338973; T( 5,505)= 4.38071635; T( 5,506)= 4.38805143; T( 5,507)= 4.39539504; T( 5,508)= 4.40274722; T( 5,509)= 4.41010801; T( 5,510)= 4.41747748; T( 5,511)= 4.42485568; T( 5,512)= 4.43224265; T( 5,513)= 4.43963844; T( 5,514)= 4.44704312; T( 5,515)= 4.45445672; T( 5,516)= 4.46187931; T( 5,517)= 4.46931094; T( 5,518)= 4.47675166; T( 5,519)= 4.48420152; T( 5,520)= 4.49166057; T( 5,521)= 4.49912888; T( 5,522)= 4.50660648; T( 5,523)= 4.51409345; T( 5,524)= 4.52158983; T( 5,525)= 4.52909568; T( 5,526)= 4.53661105; T( 5,527)= 4.54413600; T( 5,528)= 4.55167058; T( 5,529)= 4.55921484; T( 5,530)= 4.56676886; T( 5,531)= 4.57433267; T( 5,532)= 4.58190635; T( 5,533)= 4.58948993; T( 5,534)= 4.59708349; T( 5,535)= 4.60468708; T( 5,536)= 4.61230076; T( 5,537)= 4.61992458; T( 5,538)= 4.62755861; T( 5,539)= 4.63520290; T( 5,540)= 4.64285751; T( 5,541)= 4.65052250; T( 5,542)= 4.65819793; T( 5,543)= 4.66588386; T( 5,544)= 4.67358035; T( 5,545)= 4.68128746; T( 5,546)= 4.68900525; T( 5,547)= 4.69673379; T( 5,548)= 4.70447312; T( 5,549)= 4.71222333; T( 5,550)= 4.71998446; T( 5,551)= 4.72775659; T( 5,552)= 4.73553976; T( 5,553)= 4.74333406; T( 5,554)= 4.75113953; T( 5,555)= 4.75895625; T( 5,556)= 4.76678427; T( 5,557)= 4.77462367; T( 5,558)= 4.78247451; T( 5,559)= 4.79033685; T( 5,560)= 4.79821075; T( 5,561)= 4.80609630; T( 5,562)= 4.81399354; T( 5,563)= 4.82190255; T( 5,564)= 4.82982340; T( 5,565)= 4.83775614; T( 5,566)= 4.84570086; T( 5,567)= 4.85365762; T( 5,568)= 4.86162649; T( 5,569)= 4.86960753; T( 5,570)= 4.87760082; T( 5,571)= 4.88560643; T( 5,572)= 4.89362442; T( 5,573)= 4.90165487; T( 5,574)= 4.90969785; T( 5,575)= 4.91775343; T( 5,576)= 4.92582168; T( 5,577)= 4.93390268; T( 5,578)= 4.94199650; T( 5,579)= 4.95010321; T( 5,580)= 4.95822288; T( 5,581)= 4.96635559; T( 5,582)= 4.97450142; T( 5,583)= 4.98266044; T( 5,584)= 4.99083273; T( 5,585)= 4.99901836; T( 5,586)= 5.00721740; T( 5,587)= 5.01542995; T( 5,588)= 5.02365606; T( 5,589)= 5.03189583; T( 5,590)= 5.04014933; T( 5,591)= 5.04841664; T( 5,592)= 5.05669784; T( 5,593)= 5.06499301; T( 5,594)= 5.07330223; T( 5,595)= 5.08162558; T( 5,596)= 5.08996314; T( 5,597)= 5.09831500; T( 5,598)= 5.10668124; T( 5,599)= 5.11506195; T( 5,600)= 5.12345719; T( 5,601)= 5.13186707; T( 5,602)= 5.14029167; T( 5,603)= 5.14873107; T( 5,604)= 5.15718535; T( 5,605)= 5.16565462; T( 5,606)= 5.17413894; T( 5,607)= 5.18263841; T( 5,608)= 5.19115313; T( 5,609)= 5.19968317; T( 5,610)= 5.20822863; T( 5,611)= 5.21678960; T( 5,612)= 5.22536617; T( 5,613)= 5.23395843; T( 5,614)= 5.24256647; T( 5,615)= 5.25119040; T( 5,616)= 5.25983029; T( 5,617)= 5.26848625; T( 5,618)= 5.27715837; T( 5,619)= 5.28584675; T( 5,620)= 5.29455148; T( 5,621)= 5.30327266; T( 5,622)= 5.31201039; T( 5,623)= 5.32076476; T( 5,624)= 5.32953588; T( 5,625)= 5.33832385; T( 5,626)= 5.34712876; T( 5,627)= 5.35595072; T( 5,628)= 5.36478984; T( 5,629)= 5.37364620; T( 5,630)= 5.38251992; T( 5,631)= 5.39141111; T( 5,632)= 5.40031986; T( 5,633)= 5.40924628; T( 5,634)= 5.41819049; T( 5,635)= 5.42715258; T( 5,636)= 5.43613267; T( 5,637)= 5.44513086; T( 5,638)= 5.45414727; T( 5,639)= 5.46318201; T( 5,640)= 5.47223519; T( 5,641)= 5.48130691; T( 5,642)= 5.49039731; T( 5,643)= 5.49950648; T( 5,644)= 5.50863455; T( 5,645)= 5.51778163; T( 5,646)= 5.52694784; T( 5,647)= 5.53613330; T( 5,648)= 5.54533812; T( 5,649)= 5.55456244; T( 5,650)= 5.56380635; T( 5,651)= 5.57307000; T( 5,652)= 5.58235350; T( 5,653)= 5.59165698; T( 5,654)= 5.60098056; T( 5,655)= 5.61032437; T( 5,656)= 5.61968853; T( 5,657)= 5.62907318; T( 5,658)= 5.63847844; T( 5,659)= 5.64790444; T( 5,660)= 5.65735131; T( 5,661)= 5.66681919; T( 5,662)= 5.67630821; T( 5,663)= 5.68581850; T( 5,664)= 5.69535021; T( 5,665)= 5.70490346; T( 5,666)= 5.71447840; T( 5,667)= 5.72407516; T( 5,668)= 5.73369388; T( 5,669)= 5.74333472; T( 5,670)= 5.75299780; T( 5,671)= 5.76268327; T( 5,672)= 5.77239128; T( 5,673)= 5.78212198; T( 5,674)= 5.79187551; T( 5,675)= 5.80165203; T( 5,676)= 5.81145167; T( 5,677)= 5.82127461; T( 5,678)= 5.83112097; T( 5,679)= 5.84099094; T( 5,680)= 5.85088465; T( 5,681)= 5.86080226; T( 5,682)= 5.87074394; T( 5,683)= 5.88070984; T( 5,684)= 5.89070013; T( 5,685)= 5.90071497; T( 5,686)= 5.91075452; T( 5,687)= 5.92081895; T( 5,688)= 5.93090842; T( 5,689)= 5.94102311; T( 5,690)= 5.95116319; T( 5,691)= 5.96132883; T( 5,692)= 5.97152020; T( 5,693)= 5.98173748; T( 5,694)= 5.99198084; T( 5,695)= 6.00225046; T( 5,696)= 6.01254654; T( 5,697)= 6.02286923; T( 5,698)= 6.03321874; T( 5,699)= 6.04359524; T( 5,700)= 6.05399893; T( 5,701)= 6.06442998; T( 5,702)= 6.07488861; T( 5,703)= 6.08537498; T( 5,704)= 6.09588931; T( 5,705)= 6.10643179; T( 5,706)= 6.11700261; T( 5,707)= 6.12760198; T( 5,708)= 6.13823010; T( 5,709)= 6.14888717; T( 5,710)= 6.15957341; T( 5,711)= 6.17028901; T( 5,712)= 6.18103419; T( 5,713)= 6.19180916; T( 5,714)= 6.20261415; T( 5,715)= 6.21344935; T( 5,716)= 6.22431500; T( 5,717)= 6.23521132; T( 5,718)= 6.24613853; T( 5,719)= 6.25709685; T( 5,720)= 6.26808651; T( 5,721)= 6.27910775; T( 5,722)= 6.29016080; T( 5,723)= 6.30124590; T( 5,724)= 6.31236327; T( 5,725)= 6.32351317; T( 5,726)= 6.33469584; T( 5,727)= 6.34591151; T( 5,728)= 6.35716045; T( 5,729)= 6.36844290; T( 5,730)= 6.37975911; T( 5,731)= 6.39110935; T( 5,732)= 6.40249386; T( 5,733)= 6.41391292; T( 5,734)= 6.42536679; T( 5,735)= 6.43685574; T( 5,736)= 6.44838003; T( 5,737)= 6.45993994; T( 5,738)= 6.47153575; T( 5,739)= 6.48316774; T( 5,740)= 6.49483619; T( 5,741)= 6.50654138; T( 5,742)= 6.51828362; T( 5,743)= 6.53006318; T( 5,744)= 6.54188036; T( 5,745)= 6.55373547; T( 5,746)= 6.56562881; T( 5,747)= 6.57756068; T( 5,748)= 6.58953140; T( 5,749)= 6.60154127; T( 5,750)= 6.61359062; T( 5,751)= 6.62567976; T( 5,752)= 6.63780903; T( 5,753)= 6.64997874; T( 5,754)= 6.66218923; T( 5,755)= 6.67444084; T( 5,756)= 6.68673390; T( 5,757)= 6.69906877; T( 5,758)= 6.71144579; T( 5,759)= 6.72386531; T( 5,760)= 6.73632769; T( 5,761)= 6.74883329; T( 5,762)= 6.76138248; T( 5,763)= 6.77397563; T( 5,764)= 6.78661311; T( 5,765)= 6.79929530; T( 5,766)= 6.81202259; T( 5,767)= 6.82479536; T( 5,768)= 6.83761401; T( 5,769)= 6.85047894; T( 5,770)= 6.86339055; T( 5,771)= 6.87634926; T( 5,772)= 6.88935547; T( 5,773)= 6.90240960; T( 5,774)= 6.91551209; T( 5,775)= 6.92866336; T( 5,776)= 6.94186385; T( 5,777)= 6.95511399; T( 5,778)= 6.96841425; T( 5,779)= 6.98176506; T( 5,780)= 6.99516690; T( 5,781)= 7.00862022; T( 5,782)= 7.02212551; T( 5,783)= 7.03568323; T( 5,784)= 7.04929388; T( 5,785)= 7.06295794; T( 5,786)= 7.07667591; T( 5,787)= 7.09044831; T( 5,788)= 7.10427563; T( 5,789)= 7.11815841; T( 5,790)= 7.13209716; T( 5,791)= 7.14609242; T( 5,792)= 7.16014473; T( 5,793)= 7.17425464; T( 5,794)= 7.18842272; T( 5,795)= 7.20264951; T( 5,796)= 7.21693560; T( 5,797)= 7.23128157; T( 5,798)= 7.24568800; T( 5,799)= 7.26015550; T( 5,800)= 7.27468467; T( 5,801)= 7.28927613; T( 5,802)= 7.30393050; T( 5,803)= 7.31864841; T( 5,804)= 7.33343052; T( 5,805)= 7.34827747; T( 5,806)= 7.36318993; T( 5,807)= 7.37816857; T( 5,808)= 7.39321407; T( 5,809)= 7.40832713; T( 5,810)= 7.42350845; T( 5,811)= 7.43875876; T( 5,812)= 7.45407877; T( 5,813)= 7.46946922; T( 5,814)= 7.48493087; T( 5,815)= 7.50046447; T( 5,816)= 7.51607081; T( 5,817)= 7.53175066; T( 5,818)= 7.54750482; T( 5,819)= 7.56333411; T( 5,820)= 7.57923936; T( 5,821)= 7.59522140; T( 5,822)= 7.61128108; T( 5,823)= 7.62741927; T( 5,824)= 7.64363685; T( 5,825)= 7.65993472; T( 5,826)= 7.67631379; T( 5,827)= 7.69277498; T( 5,828)= 7.70931924; T( 5,829)= 7.72594752; T( 5,830)= 7.74266081; T( 5,831)= 7.75946008; T( 5,832)= 7.77634636; T( 5,833)= 7.79332066; T( 5,834)= 7.81038403; T( 5,835)= 7.82753755; T( 5,836)= 7.84478227; T( 5,837)= 7.86211932; T( 5,838)= 7.87954982; T( 5,839)= 7.89707489; T( 5,840)= 7.91469571; T( 5,841)= 7.93241347; T( 5,842)= 7.95022937; T( 5,843)= 7.96814463; T( 5,844)= 7.98616051; T( 5,845)= 8.00427829; T( 5,846)= 8.02249927; T( 5,847)= 8.04082477; T( 5,848)= 8.05925615; T( 5,849)= 8.07779477; T( 5,850)= 8.09644205; T( 5,851)= 8.11519941; T( 5,852)= 8.13406832; T( 5,853)= 8.15305027; T( 5,854)= 8.17214677; T( 5,855)= 8.19135937; T( 5,856)= 8.21068966; T( 5,857)= 8.23013925; T( 5,858)= 8.24970978; T( 5,859)= 8.26940294; T( 5,860)= 8.28922045; T( 5,861)= 8.30916405; T( 5,862)= 8.32923554; T( 5,863)= 8.34943674; T( 5,864)= 8.36976952; T( 5,865)= 8.39023580; T( 5,866)= 8.41083751; T( 5,867)= 8.43157666; T( 5,868)= 8.45245528; T( 5,869)= 8.47347545; T( 5,870)= 8.49463930; T( 5,871)= 8.51594902; T( 5,872)= 8.53740682; T( 5,873)= 8.55901500; T( 5,874)= 8.58077587; T( 5,875)= 8.60269183; T( 5,876)= 8.62476532; T( 5,877)= 8.64699885; T( 5,878)= 8.66939497; T( 5,879)= 8.69195631; T( 5,880)= 8.71468555; T( 5,881)= 8.73758546; T( 5,882)= 8.76065884; T( 5,883)= 8.78390860; T( 5,884)= 8.80733771; T( 5,885)= 8.83094920; T( 5,886)= 8.85474619; T( 5,887)= 8.87873188; T( 5,888)= 8.90290956; T( 5,889)= 8.92728260; T( 5,890)= 8.95185446; T( 5,891)= 8.97662869; T( 5,892)= 9.00160894; T( 5,893)= 9.02679896; T( 5,894)= 9.05220261; T( 5,895)= 9.07782384; T( 5,896)= 9.10366673; T( 5,897)= 9.12973547; T( 5,898)= 9.15603435; T( 5,899)= 9.18256782; T( 5,900)= 9.20934044; T( 5,901)= 9.23635690; T( 5,902)= 9.26362204; T( 5,903)= 9.29114084; T( 5,904)= 9.31891844; T( 5,905)= 9.34696013; T( 5,906)= 9.37527136; T( 5,907)= 9.40385777; T( 5,908)= 9.43272516; T( 5,909)= 9.46187952; T( 5,910)= 9.49132705; T( 5,911)= 9.52107413; T( 5,912)= 9.55112737; T( 5,913)= 9.58149359; T( 5,914)= 9.61217984; T( 5,915)= 9.64319344; T( 5,916)= 9.67454192; T( 5,917)= 9.70623310; T( 5,918)= 9.73827509; T( 5,919)= 9.77067627; T( 5,920)= 9.80344533; T( 5,921)= 9.83659128; T( 5,922)= 9.87012349; T( 5,923)= 9.90405164; T( 5,924)= 9.93838582; T( 5,925)= 9.97313649; T( 5,926)=10.00831453; T( 5,927)=10.04393127; T( 5,928)=10.07999846; T( 5,929)=10.11652837; T( 5,930)=10.15353375; T( 5,931)=10.19102791; T( 5,932)=10.22902471; T( 5,933)=10.26753863; T( 5,934)=10.30658478; T( 5,935)=10.34617893; T( 5,936)=10.38633760; T( 5,937)=10.42707803; T( 5,938)=10.46841830; T( 5,939)=10.51037734; T( 5,940)=10.55297499; T( 5,941)=10.59623206; T( 5,942)=10.64017042; T( 5,943)=10.68481303; T( 5,944)=10.73018406; T( 5,945)=10.77630892; T( 5,946)=10.82321441; T( 5,947)=10.87092879; T( 5,948)=10.91948187; T( 5,949)=10.96890516; T( 5,950)=11.01923201; T( 5,951)=11.07049769; T( 5,952)=11.12273964; T( 5,953)=11.17599756; T( 5,954)=11.23031364; T( 5,955)=11.28573279; T( 5,956)=11.34230283; T( 5,957)=11.40007480; T( 5,958)=11.45910322; T( 5,959)=11.51944642; T( 5,960)=11.58116693; T( 5,961)=11.64433185; T( 5,962)=11.70901336; T( 5,963)=11.77528921; T( 5,964)=11.84324331; T( 5,965)=11.91296643; T( 5,966)=11.98455693; T( 5,967)=12.05812169; T( 5,968)=12.13377705; T( 5,969)=12.21165003; T( 5,970)=12.29187964; T( 5,971)=12.37461848; T( 5,972)=12.46003454; T( 5,973)=12.54831336; T( 5,974)=12.63966059; T( 5,975)=12.73430498; T( 5,976)=12.83250199; T( 5,977)=12.93453818; T( 5,978)=13.04073639; T( 5,979)=13.15146225; T( 5,980)=13.26713205; T( 5,981)=13.38822260; T( 5,982)=13.51528360; T( 5,983)=13.64895331; T( 5,984)=13.78997877; T( 5,985)=13.93924200; T( 5,986)=14.09779477; T( 5,987)=14.26690524; T( 5,988)=14.44812191; T( 5,989)=14.64336310; T( 5,990)=14.85504527; T( 5,991)=15.08627247; T( 5,992)=15.34112561; T( 5,993)=15.62512207; T( 5,994)=15.94598266; T( 5,995)=16.31499158; T( 5,996)=16.74960234; T( 5,997)=17.27897691; T( 5,998)=17.95761227; T( 5,999)=18.90737738; T( 5,1000)=20.51500565; T( 5,1001)=25.74483196; T( 5,1002)=30.85618994; T( 6, 1)= 0.00000000; T( 6, 2)= 0.38106676; T( 6, 3)= 0.48640703; T( 6, 4)= 0.56201301; T( 6, 5)= 0.62325656; T( 6, 6)= 0.67572678; T( 6, 7)= 0.72217246; T( 6, 8)= 0.76417539; T( 6, 9)= 0.80273999; T( 6,10)= 0.83854900; T( 6,11)= 0.87209033; T( 6,12)= 0.90372628; T( 6,13)= 0.93373424; T( 6,14)= 0.96233189; T( 6,15)= 0.98969361; T( 6,16)= 1.01596153; T( 6,17)= 1.04125321; T( 6,18)= 1.06566716; T( 6,19)= 1.08928684; T( 6,20)= 1.11218365; T( 6,21)= 1.13441924; T( 6,22)= 1.15604723; T( 6,23)= 1.17711459; T( 6,24)= 1.19766272; T( 6,25)= 1.21772837; T( 6,26)= 1.23734425; T( 6,27)= 1.25653968; T( 6,28)= 1.27534105; T( 6,29)= 1.29377218; T( 6,30)= 1.31185468; T( 6,31)= 1.32960822; T( 6,32)= 1.34705073; T( 6,33)= 1.36419867; T( 6,34)= 1.38106713; T( 6,35)= 1.39767001; T( 6,36)= 1.41402014; T( 6,37)= 1.43012939; T( 6,38)= 1.44600879; T( 6,39)= 1.46166856; T( 6,40)= 1.47711824; T( 6,41)= 1.49236671; T( 6,42)= 1.50742228; T( 6,43)= 1.52229274; T( 6,44)= 1.53698537; T( 6,45)= 1.55150704; T( 6,46)= 1.56586418; T( 6,47)= 1.58006287; T( 6,48)= 1.59410882; T( 6,49)= 1.60800745; T( 6,50)= 1.62176386; T( 6,51)= 1.63538289; T( 6,52)= 1.64886913; T( 6,53)= 1.66222693; T( 6,54)= 1.67546042; T( 6,55)= 1.68857351; T( 6,56)= 1.70156996; T( 6,57)= 1.71445332; T( 6,58)= 1.72722698; T( 6,59)= 1.73989418; T( 6,60)= 1.75245800; T( 6,61)= 1.76492141; T( 6,62)= 1.77728723; T( 6,63)= 1.78955815; T( 6,64)= 1.80173678; T( 6,65)= 1.81382559; T( 6,66)= 1.82582697; T( 6,67)= 1.83774319; T( 6,68)= 1.84957646; T( 6,69)= 1.86132888; T( 6,70)= 1.87300248; T( 6,71)= 1.88459921; T( 6,72)= 1.89612094; T( 6,73)= 1.90756950; T( 6,74)= 1.91894661; T( 6,75)= 1.93025397; T( 6,76)= 1.94149319; T( 6,77)= 1.95266584; T( 6,78)= 1.96377343; T( 6,79)= 1.97481741; T( 6,80)= 1.98579921; T( 6,81)= 1.99672018; T( 6,82)= 2.00758165; T( 6,83)= 2.01838488; T( 6,84)= 2.02913113; T( 6,85)= 2.03982158; T( 6,86)= 2.05045741; T( 6,87)= 2.06103972; T( 6,88)= 2.07156962; T( 6,89)= 2.08204816; T( 6,90)= 2.09247636; T( 6,91)= 2.10285524; T( 6,92)= 2.11318574; T( 6,93)= 2.12346882; T( 6,94)= 2.13370539; T( 6,95)= 2.14389634; T( 6,96)= 2.15404252; T( 6,97)= 2.16414479; T( 6,98)= 2.17420395; T( 6,99)= 2.18422080; T( 6,100)= 2.19419612; T( 6,101)= 2.20413066; T( 6,102)= 2.21402515; T( 6,103)= 2.22388031; T( 6,104)= 2.23369684; T( 6,105)= 2.24347542; T( 6,106)= 2.25321670; T( 6,107)= 2.26292134; T( 6,108)= 2.27258997; T( 6,109)= 2.28222319; T( 6,110)= 2.29182162; T( 6,111)= 2.30138584; T( 6,112)= 2.31091642; T( 6,113)= 2.32041391; T( 6,114)= 2.32987888; T( 6,115)= 2.33931184; T( 6,116)= 2.34871332; T( 6,117)= 2.35808383; T( 6,118)= 2.36742388; T( 6,119)= 2.37673394; T( 6,120)= 2.38601449; T( 6,121)= 2.39526601; T( 6,122)= 2.40448894; T( 6,123)= 2.41368373; T( 6,124)= 2.42285083; T( 6,125)= 2.43199065; T( 6,126)= 2.44110363; T( 6,127)= 2.45019016; T( 6,128)= 2.45925066; T( 6,129)= 2.46828552; T( 6,130)= 2.47729511; T( 6,131)= 2.48627983; T( 6,132)= 2.49524004; T( 6,133)= 2.50417611; T( 6,134)= 2.51308839; T( 6,135)= 2.52197723; T( 6,136)= 2.53084299; T( 6,137)= 2.53968598; T( 6,138)= 2.54850655; T( 6,139)= 2.55730502; T( 6,140)= 2.56608171; T( 6,141)= 2.57483693; T( 6,142)= 2.58357099; T( 6,143)= 2.59228418; T( 6,144)= 2.60097681; T( 6,145)= 2.60964916; T( 6,146)= 2.61830153; T( 6,147)= 2.62693418; T( 6,148)= 2.63554741; T( 6,149)= 2.64414147; T( 6,150)= 2.65271664; T( 6,151)= 2.66127318; T( 6,152)= 2.66981134; T( 6,153)= 2.67833137; T( 6,154)= 2.68683354; T( 6,155)= 2.69531807; T( 6,156)= 2.70378522; T( 6,157)= 2.71223522; T( 6,158)= 2.72066830; T( 6,159)= 2.72908469; T( 6,160)= 2.73748463; T( 6,161)= 2.74586832; T( 6,162)= 2.75423599; T( 6,163)= 2.76258786; T( 6,164)= 2.77092413; T( 6,165)= 2.77924502; T( 6,166)= 2.78755073; T( 6,167)= 2.79584147; T( 6,168)= 2.80411743; T( 6,169)= 2.81237881; T( 6,170)= 2.82062580; T( 6,171)= 2.82885860; T( 6,172)= 2.83707740; T( 6,173)= 2.84528237; T( 6,174)= 2.85347370; T( 6,175)= 2.86165158; T( 6,176)= 2.86981618; T( 6,177)= 2.87796767; T( 6,178)= 2.88610623; T( 6,179)= 2.89423202; T( 6,180)= 2.90234523; T( 6,181)= 2.91044600; T( 6,182)= 2.91853451; T( 6,183)= 2.92661092; T( 6,184)= 2.93467538; T( 6,185)= 2.94272805; T( 6,186)= 2.95076910; T( 6,187)= 2.95879866; T( 6,188)= 2.96681690; T( 6,189)= 2.97482395; T( 6,190)= 2.98281998; T( 6,191)= 2.99080511; T( 6,192)= 2.99877951; T( 6,193)= 3.00674330; T( 6,194)= 3.01469663; T( 6,195)= 3.02263963; T( 6,196)= 3.03057245; T( 6,197)= 3.03849522; T( 6,198)= 3.04640807; T( 6,199)= 3.05431113; T( 6,200)= 3.06220453; T( 6,201)= 3.07008841; T( 6,202)= 3.07796288; T( 6,203)= 3.08582807; T( 6,204)= 3.09368411; T( 6,205)= 3.10153113; T( 6,206)= 3.10936923; T( 6,207)= 3.11719854; T( 6,208)= 3.12501919; T( 6,209)= 3.13283128; T( 6,210)= 3.14063493; T( 6,211)= 3.14843026; T( 6,212)= 3.15621739; T( 6,213)= 3.16399641; T( 6,214)= 3.17176745; T( 6,215)= 3.17953061; T( 6,216)= 3.18728600; T( 6,217)= 3.19503373; T( 6,218)= 3.20277391; T( 6,219)= 3.21050664; T( 6,220)= 3.21823203; T( 6,221)= 3.22595017; T( 6,222)= 3.23366117; T( 6,223)= 3.24136513; T( 6,224)= 3.24906215; T( 6,225)= 3.25675234; T( 6,226)= 3.26443578; T( 6,227)= 3.27211257; T( 6,228)= 3.27978282; T( 6,229)= 3.28744661; T( 6,230)= 3.29510404; T( 6,231)= 3.30275520; T( 6,232)= 3.31040019; T( 6,233)= 3.31803910; T( 6,234)= 3.32567201; T( 6,235)= 3.33329903; T( 6,236)= 3.34092023; T( 6,237)= 3.34853570; T( 6,238)= 3.35614554; T( 6,239)= 3.36374983; T( 6,240)= 3.37134865; T( 6,241)= 3.37894209; T( 6,242)= 3.38653024; T( 6,243)= 3.39411317; T( 6,244)= 3.40169098; T( 6,245)= 3.40926374; T( 6,246)= 3.41683153; T( 6,247)= 3.42439444; T( 6,248)= 3.43195255; T( 6,249)= 3.43950593; T( 6,250)= 3.44705467; T( 6,251)= 3.45459884; T( 6,252)= 3.46213851; T( 6,253)= 3.46967378; T( 6,254)= 3.47720471; T( 6,255)= 3.48473137; T( 6,256)= 3.49225385; T( 6,257)= 3.49977222; T( 6,258)= 3.50728655; T( 6,259)= 3.51479692; T( 6,260)= 3.52230340; T( 6,261)= 3.52980605; T( 6,262)= 3.53730496; T( 6,263)= 3.54480020; T( 6,264)= 3.55229183; T( 6,265)= 3.55977992; T( 6,266)= 3.56726455; T( 6,267)= 3.57474578; T( 6,268)= 3.58222368; T( 6,269)= 3.58969833; T( 6,270)= 3.59716978; T( 6,271)= 3.60463811; T( 6,272)= 3.61210338; T( 6,273)= 3.61956566; T( 6,274)= 3.62702502; T( 6,275)= 3.63448151; T( 6,276)= 3.64193521; T( 6,277)= 3.64938618; T( 6,278)= 3.65683448; T( 6,279)= 3.66428019; T( 6,280)= 3.67172335; T( 6,281)= 3.67916403; T( 6,282)= 3.68660231; T( 6,283)= 3.69403823; T( 6,284)= 3.70147187; T( 6,285)= 3.70890327; T( 6,286)= 3.71633251; T( 6,287)= 3.72375964; T( 6,288)= 3.73118473; T( 6,289)= 3.73860783; T( 6,290)= 3.74602901; T( 6,291)= 3.75344832; T( 6,292)= 3.76086582; T( 6,293)= 3.76828158; T( 6,294)= 3.77569564; T( 6,295)= 3.78310807; T( 6,296)= 3.79051893; T( 6,297)= 3.79792827; T( 6,298)= 3.80533615; T( 6,299)= 3.81274262; T( 6,300)= 3.82014775; T( 6,301)= 3.82755159; T( 6,302)= 3.83495419; T( 6,303)= 3.84235562; T( 6,304)= 3.84975592; T( 6,305)= 3.85715515; T( 6,306)= 3.86455337; T( 6,307)= 3.87195063; T( 6,308)= 3.87934698; T( 6,309)= 3.88674248; T( 6,310)= 3.89413719; T( 6,311)= 3.90153116; T( 6,312)= 3.90892443; T( 6,313)= 3.91631707; T( 6,314)= 3.92370912; T( 6,315)= 3.93110064; T( 6,316)= 3.93849169; T( 6,317)= 3.94588230; T( 6,318)= 3.95327255; T( 6,319)= 3.96066247; T( 6,320)= 3.96805211; T( 6,321)= 3.97544154; T( 6,322)= 3.98283080; T( 6,323)= 3.99021995; T( 6,324)= 3.99760902; T( 6,325)= 4.00499808; T( 6,326)= 4.01238717; T( 6,327)= 4.01977635; T( 6,328)= 4.02716566; T( 6,329)= 4.03455516; T( 6,330)= 4.04194489; T( 6,331)= 4.04933490; T( 6,332)= 4.05672525; T( 6,333)= 4.06411597; T( 6,334)= 4.07150713; T( 6,335)= 4.07889877; T( 6,336)= 4.08629094; T( 6,337)= 4.09368368; T( 6,338)= 4.10107705; T( 6,339)= 4.10847109; T( 6,340)= 4.11586586; T( 6,341)= 4.12326139; T( 6,342)= 4.13065774; T( 6,343)= 4.13805496; T( 6,344)= 4.14545309; T( 6,345)= 4.15285218; T( 6,346)= 4.16025228; T( 6,347)= 4.16765343; T( 6,348)= 4.17505568; T( 6,349)= 4.18245909; T( 6,350)= 4.18986369; T( 6,351)= 4.19726953; T( 6,352)= 4.20467666; T( 6,353)= 4.21208512; T( 6,354)= 4.21949497; T( 6,355)= 4.22690625; T( 6,356)= 4.23431900; T( 6,357)= 4.24173327; T( 6,358)= 4.24914911; T( 6,359)= 4.25656656; T( 6,360)= 4.26398567; T( 6,361)= 4.27140649; T( 6,362)= 4.27882905; T( 6,363)= 4.28625341; T( 6,364)= 4.29367961; T( 6,365)= 4.30110770; T( 6,366)= 4.30853772; T( 6,367)= 4.31596971; T( 6,368)= 4.32340373; T( 6,369)= 4.33083982; T( 6,370)= 4.33827802; T( 6,371)= 4.34571837; T( 6,372)= 4.35316093; T( 6,373)= 4.36060574; T( 6,374)= 4.36805284; T( 6,375)= 4.37550227; T( 6,376)= 4.38295409; T( 6,377)= 4.39040834; T( 6,378)= 4.39786505; T( 6,379)= 4.40532429; T( 6,380)= 4.41278608; T( 6,381)= 4.42025048; T( 6,382)= 4.42771752; T( 6,383)= 4.43518727; T( 6,384)= 4.44265975; T( 6,385)= 4.45013501; T( 6,386)= 4.45761310; T( 6,387)= 4.46509406; T( 6,388)= 4.47257794; T( 6,389)= 4.48006477; T( 6,390)= 4.48755462; T( 6,391)= 4.49504751; T( 6,392)= 4.50254349; T( 6,393)= 4.51004261; T( 6,394)= 4.51754491; T( 6,395)= 4.52505044; T( 6,396)= 4.53255923; T( 6,397)= 4.54007135; T( 6,398)= 4.54758681; T( 6,399)= 4.55510568; T( 6,400)= 4.56262800; T( 6,401)= 4.57015381; T( 6,402)= 4.57768315; T( 6,403)= 4.58521607; T( 6,404)= 4.59275261; T( 6,405)= 4.60029282; T( 6,406)= 4.60783675; T( 6,407)= 4.61538442; T( 6,408)= 4.62293590; T( 6,409)= 4.63049122; T( 6,410)= 4.63805043; T( 6,411)= 4.64561357; T( 6,412)= 4.65318069; T( 6,413)= 4.66075183; T( 6,414)= 4.66832704; T( 6,415)= 4.67590635; T( 6,416)= 4.68348982; T( 6,417)= 4.69107749; T( 6,418)= 4.69866940; T( 6,419)= 4.70626560; T( 6,420)= 4.71386613; T( 6,421)= 4.72147104; T( 6,422)= 4.72908037; T( 6,423)= 4.73669416; T( 6,424)= 4.74431247; T( 6,425)= 4.75193533; T( 6,426)= 4.75956279; T( 6,427)= 4.76719489; T( 6,428)= 4.77483169; T( 6,429)= 4.78247322; T( 6,430)= 4.79011953; T( 6,431)= 4.79777067; T( 6,432)= 4.80542667; T( 6,433)= 4.81308759; T( 6,434)= 4.82075348; T( 6,435)= 4.82842436; T( 6,436)= 4.83610030; T( 6,437)= 4.84378134; T( 6,438)= 4.85146751; T( 6,439)= 4.85915888; T( 6,440)= 4.86685548; T( 6,441)= 4.87455736; T( 6,442)= 4.88226456; T( 6,443)= 4.88997713; T( 6,444)= 4.89769512; T( 6,445)= 4.90541858; T( 6,446)= 4.91314754; T( 6,447)= 4.92088206; T( 6,448)= 4.92862217; T( 6,449)= 4.93636794; T( 6,450)= 4.94411940; T( 6,451)= 4.95187661; T( 6,452)= 4.95963960; T( 6,453)= 4.96740842; T( 6,454)= 4.97518313; T( 6,455)= 4.98296376; T( 6,456)= 4.99075038; T( 6,457)= 4.99854301; T( 6,458)= 5.00634171; T( 6,459)= 5.01414653; T( 6,460)= 5.02195752; T( 6,461)= 5.02977472; T( 6,462)= 5.03759818; T( 6,463)= 5.04542795; T( 6,464)= 5.05326407; T( 6,465)= 5.06110660; T( 6,466)= 5.06895559; T( 6,467)= 5.07681107; T( 6,468)= 5.08467310; T( 6,469)= 5.09254173; T( 6,470)= 5.10041701; T( 6,471)= 5.10829899; T( 6,472)= 5.11618771; T( 6,473)= 5.12408322; T( 6,474)= 5.13198558; T( 6,475)= 5.13989483; T( 6,476)= 5.14781103; T( 6,477)= 5.15573421; T( 6,478)= 5.16366444; T( 6,479)= 5.17160176; T( 6,480)= 5.17954623; T( 6,481)= 5.18749789; T( 6,482)= 5.19545679; T( 6,483)= 5.20342298; T( 6,484)= 5.21139652; T( 6,485)= 5.21937746; T( 6,486)= 5.22736584; T( 6,487)= 5.23536173; T( 6,488)= 5.24336516; T( 6,489)= 5.25137620; T( 6,490)= 5.25939488; T( 6,491)= 5.26742128; T( 6,492)= 5.27545543; T( 6,493)= 5.28349739; T( 6,494)= 5.29154722; T( 6,495)= 5.29960496; T( 6,496)= 5.30767067; T( 6,497)= 5.31574441; T( 6,498)= 5.32382621; T( 6,499)= 5.33191615; T( 6,500)= 5.34001427; T( 6,501)= 5.34812063; T( 6,502)= 5.35623527; T( 6,503)= 5.36435827; T( 6,504)= 5.37248966; T( 6,505)= 5.38062950; T( 6,506)= 5.38877786; T( 6,507)= 5.39693478; T( 6,508)= 5.40510032; T( 6,509)= 5.41327454; T( 6,510)= 5.42145748; T( 6,511)= 5.42964922; T( 6,512)= 5.43784980; T( 6,513)= 5.44605928; T( 6,514)= 5.45427772; T( 6,515)= 5.46250517; T( 6,516)= 5.47074169; T( 6,517)= 5.47898734; T( 6,518)= 5.48724218; T( 6,519)= 5.49550627; T( 6,520)= 5.50377965; T( 6,521)= 5.51206240; T( 6,522)= 5.52035457; T( 6,523)= 5.52865622; T( 6,524)= 5.53696741; T( 6,525)= 5.54528819; T( 6,526)= 5.55361864; T( 6,527)= 5.56195880; T( 6,528)= 5.57030874; T( 6,529)= 5.57866852; T( 6,530)= 5.58703819; T( 6,531)= 5.59541783; T( 6,532)= 5.60380750; T( 6,533)= 5.61220724; T( 6,534)= 5.62061714; T( 6,535)= 5.62903724; T( 6,536)= 5.63746761; T( 6,537)= 5.64590832; T( 6,538)= 5.65435943; T( 6,539)= 5.66282100; T( 6,540)= 5.67129309; T( 6,541)= 5.67977577; T( 6,542)= 5.68826910; T( 6,543)= 5.69677316; T( 6,544)= 5.70528799; T( 6,545)= 5.71381368; T( 6,546)= 5.72235028; T( 6,547)= 5.73089787; T( 6,548)= 5.73945650; T( 6,549)= 5.74802624; T( 6,550)= 5.75660717; T( 6,551)= 5.76519934; T( 6,552)= 5.77380283; T( 6,553)= 5.78241771; T( 6,554)= 5.79104404; T( 6,555)= 5.79968189; T( 6,556)= 5.80833134; T( 6,557)= 5.81699245; T( 6,558)= 5.82566528; T( 6,559)= 5.83434993; T( 6,560)= 5.84304644; T( 6,561)= 5.85175490; T( 6,562)= 5.86047537; T( 6,563)= 5.86920793; T( 6,564)= 5.87795265; T( 6,565)= 5.88670961; T( 6,566)= 5.89547887; T( 6,567)= 5.90426051; T( 6,568)= 5.91305460; T( 6,569)= 5.92186122; T( 6,570)= 5.93068044; T( 6,571)= 5.93951235; T( 6,572)= 5.94835700; T( 6,573)= 5.95721449; T( 6,574)= 5.96608489; T( 6,575)= 5.97496826; T( 6,576)= 5.98386470; T( 6,577)= 5.99277428; T( 6,578)= 6.00169708; T( 6,579)= 6.01063317; T( 6,580)= 6.01958264; T( 6,581)= 6.02854556; T( 6,582)= 6.03752202; T( 6,583)= 6.04651210; T( 6,584)= 6.05551588; T( 6,585)= 6.06453343; T( 6,586)= 6.07356485; T( 6,587)= 6.08261022; T( 6,588)= 6.09166961; T( 6,589)= 6.10074312; T( 6,590)= 6.10983082; T( 6,591)= 6.11893280; T( 6,592)= 6.12804915; T( 6,593)= 6.13717996; T( 6,594)= 6.14632530; T( 6,595)= 6.15548527; T( 6,596)= 6.16465995; T( 6,597)= 6.17384944; T( 6,598)= 6.18305382; T( 6,599)= 6.19227318; T( 6,600)= 6.20150760; T( 6,601)= 6.21075719; T( 6,602)= 6.22002204; T( 6,603)= 6.22930222; T( 6,604)= 6.23859784; T( 6,605)= 6.24790899; T( 6,606)= 6.25723577; T( 6,607)= 6.26657826; T( 6,608)= 6.27593656; T( 6,609)= 6.28531076; T( 6,610)= 6.29470097; T( 6,611)= 6.30410728; T( 6,612)= 6.31352979; T( 6,613)= 6.32296859; T( 6,614)= 6.33242379; T( 6,615)= 6.34189548; T( 6,616)= 6.35138376; T( 6,617)= 6.36088874; T( 6,618)= 6.37041051; T( 6,619)= 6.37994918; T( 6,620)= 6.38950485; T( 6,621)= 6.39907763; T( 6,622)= 6.40866761; T( 6,623)= 6.41827491; T( 6,624)= 6.42789963; T( 6,625)= 6.43754188; T( 6,626)= 6.44720175; T( 6,627)= 6.45687938; T( 6,628)= 6.46657485; T( 6,629)= 6.47628828; T( 6,630)= 6.48601979; T( 6,631)= 6.49576948; T( 6,632)= 6.50553746; T( 6,633)= 6.51532385; T( 6,634)= 6.52512877; T( 6,635)= 6.53495232; T( 6,636)= 6.54479462; T( 6,637)= 6.55465580; T( 6,638)= 6.56453596; T( 6,639)= 6.57443522; T( 6,640)= 6.58435371; T( 6,641)= 6.59429154; T( 6,642)= 6.60424884; T( 6,643)= 6.61422573; T( 6,644)= 6.62422232; T( 6,645)= 6.63423875; T( 6,646)= 6.64427513; T( 6,647)= 6.65433160; T( 6,648)= 6.66440829; T( 6,649)= 6.67450530; T( 6,650)= 6.68462279; T( 6,651)= 6.69476088; T( 6,652)= 6.70491969; T( 6,653)= 6.71509936; T( 6,654)= 6.72530002; T( 6,655)= 6.73552181; T( 6,656)= 6.74576487; T( 6,657)= 6.75602932; T( 6,658)= 6.76631530; T( 6,659)= 6.77662296; T( 6,660)= 6.78695243; T( 6,661)= 6.79730386; T( 6,662)= 6.80767738; T( 6,663)= 6.81807314; T( 6,664)= 6.82849128; T( 6,665)= 6.83893194; T( 6,666)= 6.84939529; T( 6,667)= 6.85988145; T( 6,668)= 6.87039059; T( 6,669)= 6.88092285; T( 6,670)= 6.89147838; T( 6,671)= 6.90205734; T( 6,672)= 6.91265987; T( 6,673)= 6.92328615; T( 6,674)= 6.93393631; T( 6,675)= 6.94461053; T( 6,676)= 6.95530896; T( 6,677)= 6.96603176; T( 6,678)= 6.97677909; T( 6,679)= 6.98755113; T( 6,680)= 6.99834802; T( 6,681)= 7.00916995; T( 6,682)= 7.02001707; T( 6,683)= 7.03088956; T( 6,684)= 7.04178759; T( 6,685)= 7.05271133; T( 6,686)= 7.06366096; T( 6,687)= 7.07463665; T( 6,688)= 7.08563859; T( 6,689)= 7.09666694; T( 6,690)= 7.10772189; T( 6,691)= 7.11880362; T( 6,692)= 7.12991232; T( 6,693)= 7.14104817; T( 6,694)= 7.15221136; T( 6,695)= 7.16340208; T( 6,696)= 7.17462052; T( 6,697)= 7.18586687; T( 6,698)= 7.19714133; T( 6,699)= 7.20844409; T( 6,700)= 7.21977536; T( 6,701)= 7.23113533; T( 6,702)= 7.24252421; T( 6,703)= 7.25394219; T( 6,704)= 7.26538949; T( 6,705)= 7.27686632; T( 6,706)= 7.28837288; T( 6,707)= 7.29990938; T( 6,708)= 7.31147605; T( 6,709)= 7.32307309; T( 6,710)= 7.33470073; T( 6,711)= 7.34635918; T( 6,712)= 7.35804867; T( 6,713)= 7.36976943; T( 6,714)= 7.38152168; T( 6,715)= 7.39330565; T( 6,716)= 7.40512157; T( 6,717)= 7.41696968; T( 6,718)= 7.42885021; T( 6,719)= 7.44076341; T( 6,720)= 7.45270951; T( 6,721)= 7.46468876; T( 6,722)= 7.47670141; T( 6,723)= 7.48874771; T( 6,724)= 7.50082789; T( 6,725)= 7.51294224; T( 6,726)= 7.52509098; T( 6,727)= 7.53727440; T( 6,728)= 7.54949275; T( 6,729)= 7.56174629; T( 6,730)= 7.57403530; T( 6,731)= 7.58636004; T( 6,732)= 7.59872080; T( 6,733)= 7.61111783; T( 6,734)= 7.62355144; T( 6,735)= 7.63602189; T( 6,736)= 7.64852948; T( 6,737)= 7.66107449; T( 6,738)= 7.67365722; T( 6,739)= 7.68627797; T( 6,740)= 7.69893702; T( 6,741)= 7.71163469; T( 6,742)= 7.72437128; T( 6,743)= 7.73714709; T( 6,744)= 7.74996245; T( 6,745)= 7.76281766; T( 6,746)= 7.77571306; T( 6,747)= 7.78864895; T( 6,748)= 7.80162567; T( 6,749)= 7.81464355; T( 6,750)= 7.82770292; T( 6,751)= 7.84080412; T( 6,752)= 7.85394750; T( 6,753)= 7.86713340; T( 6,754)= 7.88036217; T( 6,755)= 7.89363417; T( 6,756)= 7.90694975; T( 6,757)= 7.92030928; T( 6,758)= 7.93371313; T( 6,759)= 7.94716167; T( 6,760)= 7.96065528; T( 6,761)= 7.97419433; T( 6,762)= 7.98777921; T( 6,763)= 8.00141032; T( 6,764)= 8.01508805; T( 6,765)= 8.02881280; T( 6,766)= 8.04258497; T( 6,767)= 8.05640497; T( 6,768)= 8.07027323; T( 6,769)= 8.08419016; T( 6,770)= 8.09815618; T( 6,771)= 8.11217173; T( 6,772)= 8.12623725; T( 6,773)= 8.14035318; T( 6,774)= 8.15451996; T( 6,775)= 8.16873806; T( 6,776)= 8.18300792; T( 6,777)= 8.19733002; T( 6,778)= 8.21170483; T( 6,779)= 8.22613283; T( 6,780)= 8.24061449; T( 6,781)= 8.25515032; T( 6,782)= 8.26974081; T( 6,783)= 8.28438647; T( 6,784)= 8.29908780; T( 6,785)= 8.31384532; T( 6,786)= 8.32865956; T( 6,787)= 8.34353106; T( 6,788)= 8.35846034; T( 6,789)= 8.37344796; T( 6,790)= 8.38849448; T( 6,791)= 8.40360045; T( 6,792)= 8.41876644; T( 6,793)= 8.43399304; T( 6,794)= 8.44928083; T( 6,795)= 8.46463040; T( 6,796)= 8.48004236; T( 6,797)= 8.49551732; T( 6,798)= 8.51105590; T( 6,799)= 8.52665873; T( 6,800)= 8.54232646; T( 6,801)= 8.55805972; T( 6,802)= 8.57385918; T( 6,803)= 8.58972550; T( 6,804)= 8.60565937; T( 6,805)= 8.62166147; T( 6,806)= 8.63773249; T( 6,807)= 8.65387315; T( 6,808)= 8.67008417; T( 6,809)= 8.68636628; T( 6,810)= 8.70272021; T( 6,811)= 8.71914673; T( 6,812)= 8.73564660; T( 6,813)= 8.75222059; T( 6,814)= 8.76886949; T( 6,815)= 8.78559411; T( 6,816)= 8.80239527; T( 6,817)= 8.81927377; T( 6,818)= 8.83623048; T( 6,819)= 8.85326624; T( 6,820)= 8.87038192; T( 6,821)= 8.88757840; T( 6,822)= 8.90485658; T( 6,823)= 8.92221737; T( 6,824)= 8.93966170; T( 6,825)= 8.95719051; T( 6,826)= 8.97480476; T( 6,827)= 8.99250542; T( 6,828)= 9.01029348; T( 6,829)= 9.02816995; T( 6,830)= 9.04613586; T( 6,831)= 9.06419225; T( 6,832)= 9.08234018; T( 6,833)= 9.10058073; T( 6,834)= 9.11891500; T( 6,835)= 9.13734410; T( 6,836)= 9.15586918; T( 6,837)= 9.17449139; T( 6,838)= 9.19321191; T( 6,839)= 9.21203195; T( 6,840)= 9.23095272; T( 6,841)= 9.24997547; T( 6,842)= 9.26910147; T( 6,843)= 9.28833201; T( 6,844)= 9.30766841; T( 6,845)= 9.32711200; T( 6,846)= 9.34666416; T( 6,847)= 9.36632628; T( 6,848)= 9.38609978; T( 6,849)= 9.40598609; T( 6,850)= 9.42598671; T( 6,851)= 9.44610313; T( 6,852)= 9.46633688; T( 6,853)= 9.48668954; T( 6,854)= 9.50716269; T( 6,855)= 9.52775796; T( 6,856)= 9.54847702; T( 6,857)= 9.56932156; T( 6,858)= 9.59029332; T( 6,859)= 9.61139404; T( 6,860)= 9.63262554; T( 6,861)= 9.65398967; T( 6,862)= 9.67548829; T( 6,863)= 9.69712332; T( 6,864)= 9.71889674; T( 6,865)= 9.74081054; T( 6,866)= 9.76286677; T( 6,867)= 9.78506752; T( 6,868)= 9.80741493; T( 6,869)= 9.82991118; T( 6,870)= 9.85255852; T( 6,871)= 9.87535923; T( 6,872)= 9.89831564; T( 6,873)= 9.92143015; T( 6,874)= 9.94470521; T( 6,875)= 9.96814332; T( 6,876)= 9.99174704; T( 6,877)=10.01551901; T( 6,878)=10.03946190; T( 6,879)=10.06357847; T( 6,880)=10.08787155; T( 6,881)=10.11234401; T( 6,882)=10.13699883; T( 6,883)=10.16183903; T( 6,884)=10.18686773; T( 6,885)=10.21208812; T( 6,886)=10.23750347; T( 6,887)=10.26311713; T( 6,888)=10.28893255; T( 6,889)=10.31495327; T( 6,890)=10.34118291; T( 6,891)=10.36762520; T( 6,892)=10.39428397; T( 6,893)=10.42116314; T( 6,894)=10.44826677; T( 6,895)=10.47559899; T( 6,896)=10.50316408; T( 6,897)=10.53096643; T( 6,898)=10.55901055; T( 6,899)=10.58730108; T( 6,900)=10.61584282; T( 6,901)=10.64464068; T( 6,902)=10.67369972; T( 6,903)=10.70302518; T( 6,904)=10.73262243; T( 6,905)=10.76249701; T( 6,906)=10.79265465; T( 6,907)=10.82310124; T( 6,908)=10.85384286; T( 6,909)=10.88488579; T( 6,910)=10.91623651; T( 6,911)=10.94790172; T( 6,912)=10.97988834; T( 6,913)=11.01220350; T( 6,914)=11.04485460; T( 6,915)=11.07784928; T( 6,916)=11.11119545; T( 6,917)=11.14490129; T( 6,918)=11.17897528; T( 6,919)=11.21342620; T( 6,920)=11.24826316; T( 6,921)=11.28349557; T( 6,922)=11.31913324; T( 6,923)=11.35518632; T( 6,924)=11.39166534; T( 6,925)=11.42858128; T( 6,926)=11.46594551; T( 6,927)=11.50376986; T( 6,928)=11.54206667; T( 6,929)=11.58084873; T( 6,930)=11.62012941; T( 6,931)=11.65992262; T( 6,932)=11.70024286; T( 6,933)=11.74110527; T( 6,934)=11.78252566; T( 6,935)=11.82452051; T( 6,936)=11.86710710; T( 6,937)=11.91030346; T( 6,938)=11.95412849; T( 6,939)=11.99860197; T( 6,940)=12.04374465; T( 6,941)=12.08957827; T( 6,942)=12.13612570; T( 6,943)=12.18341093; T( 6,944)=12.23145921; T( 6,945)=12.28029710; T( 6,946)=12.32995260; T( 6,947)=12.38045522; T( 6,948)=12.43183612; T( 6,949)=12.48412821; T( 6,950)=12.53736629; T( 6,951)=12.59158724; T( 6,952)=12.64683013; T( 6,953)=12.70313641; T( 6,954)=12.76055014; T( 6,955)=12.81911819; T( 6,956)=12.87889050; T( 6,957)=12.93992031; T( 6,958)=13.00226454; T( 6,959)=13.06598405; T( 6,960)=13.13114408; T( 6,961)=13.19781465; T( 6,962)=13.26607104; T( 6,963)=13.33599435; T( 6,964)=13.40767211; T( 6,965)=13.48119895; T( 6,966)=13.55667746; T( 6,967)=13.63421904; T( 6,968)=13.71394497; T( 6,969)=13.79598766; T( 6,970)=13.88049198; T( 6,971)=13.96761693; T( 6,972)=14.05753754; T( 6,973)=14.15044710; T( 6,974)=14.24655980; T( 6,975)=14.34611387; T( 6,976)=14.44937534; T( 6,977)=14.55664250; T( 6,978)=14.66825145; T( 6,979)=14.78458270; T( 6,980)=14.90606945; T( 6,981)=15.03320775; T( 6,982)=15.16656941; T( 6,983)=15.30681822; T( 6,984)=15.45473093; T( 6,985)=15.61122447; T( 6,986)=15.77739196; T( 6,987)=15.95455115; T( 6,988)=16.14431068; T( 6,989)=16.34866283; T( 6,990)=16.57011657; T( 6,991)=16.81189383; T( 6,992)=17.07822912; T( 6,993)=17.37484553; T( 6,994)=17.70974876; T( 6,995)=18.09463447; T( 6,996)=18.54758418; T( 6,997)=19.09879292; T( 6,998)=19.80465236; T( 6,999)=20.79116772; T( 6,1000)=22.45774448; T( 6,1001)=27.85634124; T( 6,1002)=33.10705682; T( 7, 1)= 0.00000000; T( 7, 2)= 0.59849375; T( 7, 3)= 0.74105733; T( 7, 4)= 0.84123592; T( 7, 5)= 0.92131322; T( 7, 6)= 0.98925568; T( 7, 7)= 1.04893803; T( 7, 8)= 1.10257133; T( 7, 9)= 1.15155015; T( 7,10)= 1.19681705; T( 7,11)= 1.23904231; T( 7,12)= 1.27872156; T( 7,13)= 1.31623280; T( 7,14)= 1.35187166; T( 7,15)= 1.38587420; T( 7,16)= 1.41843230; T( 7,17)= 1.44970423; T( 7,18)= 1.47982230; T( 7,19)= 1.50889834; T( 7,20)= 1.53702782; T( 7,21)= 1.56429300; T( 7,22)= 1.59076530; T( 7,23)= 1.61650716; T( 7,24)= 1.64157355; T( 7,25)= 1.66601312; T( 7,26)= 1.68986918; T( 7,27)= 1.71318046; T( 7,28)= 1.73598176; T( 7,29)= 1.75830447; T( 7,30)= 1.78017701; T( 7,31)= 1.80162523; T( 7,32)= 1.82267268; T( 7,33)= 1.84334091; T( 7,34)= 1.86364970; T( 7,35)= 1.88361722; T( 7,36)= 1.90326023; T( 7,37)= 1.92259425; T( 7,38)= 1.94163363; T( 7,39)= 1.96039171; T( 7,40)= 1.97888088; T( 7,41)= 1.99711272; T( 7,42)= 2.01509801; T( 7,43)= 2.03284686; T( 7,44)= 2.05036872; T( 7,45)= 2.06767248; T( 7,46)= 2.08476649; T( 7,47)= 2.10165859; T( 7,48)= 2.11835619; T( 7,49)= 2.13486627; T( 7,50)= 2.15119543; T( 7,51)= 2.16734991; T( 7,52)= 2.18333563; T( 7,53)= 2.19915818; T( 7,54)= 2.21482289; T( 7,55)= 2.23033482; T( 7,56)= 2.24569875; T( 7,57)= 2.26091928; T( 7,58)= 2.27600075; T( 7,59)= 2.29094732; T( 7,60)= 2.30576296; T( 7,61)= 2.32045145; T( 7,62)= 2.33501641; T( 7,63)= 2.34946131; T( 7,64)= 2.36378945; T( 7,65)= 2.37800403; T( 7,66)= 2.39210807; T( 7,67)= 2.40610450; T( 7,68)= 2.41999612; T( 7,69)= 2.43378563; T( 7,70)= 2.44747560; T( 7,71)= 2.46106854; T( 7,72)= 2.47456683; T( 7,73)= 2.48797278; T( 7,74)= 2.50128861; T( 7,75)= 2.51451646; T( 7,76)= 2.52765839; T( 7,77)= 2.54071639; T( 7,78)= 2.55369238; T( 7,79)= 2.56658822; T( 7,80)= 2.57940570; T( 7,81)= 2.59214655; T( 7,82)= 2.60481245; T( 7,83)= 2.61740502; T( 7,84)= 2.62992582; T( 7,85)= 2.64237638; T( 7,86)= 2.65475817; T( 7,87)= 2.66707260; T( 7,88)= 2.67932106; T( 7,89)= 2.69150489; T( 7,90)= 2.70362540; T( 7,91)= 2.71568383; T( 7,92)= 2.72768141; T( 7,93)= 2.73961934; T( 7,94)= 2.75149875; T( 7,95)= 2.76332079; T( 7,96)= 2.77508653; T( 7,97)= 2.78679704; T( 7,98)= 2.79845334; T( 7,99)= 2.81005644; T( 7,100)= 2.82160732; T( 7,101)= 2.83310692; T( 7,102)= 2.84455617; T( 7,103)= 2.85595596; T( 7,104)= 2.86730719; T( 7,105)= 2.87861069; T( 7,106)= 2.88986731; T( 7,107)= 2.90107786; T( 7,108)= 2.91224313; T( 7,109)= 2.92336389; T( 7,110)= 2.93444089; T( 7,111)= 2.94547488; T( 7,112)= 2.95646657; T( 7,113)= 2.96741666; T( 7,114)= 2.97832584; T( 7,115)= 2.98919478; T( 7,116)= 3.00002412; T( 7,117)= 3.01081452; T( 7,118)= 3.02156659; T( 7,119)= 3.03228094; T( 7,120)= 3.04295818; T( 7,121)= 3.05359888; T( 7,122)= 3.06420361; T( 7,123)= 3.07477294; T( 7,124)= 3.08530742; T( 7,125)= 3.09580757; T( 7,126)= 3.10627392; T( 7,127)= 3.11670698; T( 7,128)= 3.12710726; T( 7,129)= 3.13747525; T( 7,130)= 3.14781143; T( 7,131)= 3.15811628; T( 7,132)= 3.16839025; T( 7,133)= 3.17863380; T( 7,134)= 3.18884737; T( 7,135)= 3.19903141; T( 7,136)= 3.20918634; T( 7,137)= 3.21931257; T( 7,138)= 3.22941052; T( 7,139)= 3.23948060; T( 7,140)= 3.24952320; T( 7,141)= 3.25953871; T( 7,142)= 3.26952750; T( 7,143)= 3.27948996; T( 7,144)= 3.28942646; T( 7,145)= 3.29933734; T( 7,146)= 3.30922298; T( 7,147)= 3.31908372; T( 7,148)= 3.32891989; T( 7,149)= 3.33873184; T( 7,150)= 3.34851989; T( 7,151)= 3.35828438; T( 7,152)= 3.36802562; T( 7,153)= 3.37774392; T( 7,154)= 3.38743959; T( 7,155)= 3.39711294; T( 7,156)= 3.40676426; T( 7,157)= 3.41639385; T( 7,158)= 3.42600200; T( 7,159)= 3.43558899; T( 7,160)= 3.44515509; T( 7,161)= 3.45470060; T( 7,162)= 3.46422576; T( 7,163)= 3.47373086; T( 7,164)= 3.48321615; T( 7,165)= 3.49268189; T( 7,166)= 3.50212834; T( 7,167)= 3.51155574; T( 7,168)= 3.52096434; T( 7,169)= 3.53035439; T( 7,170)= 3.53972612; T( 7,171)= 3.54907977; T( 7,172)= 3.55841557; T( 7,173)= 3.56773374; T( 7,174)= 3.57703452; T( 7,175)= 3.58631813; T( 7,176)= 3.59558478; T( 7,177)= 3.60483469; T( 7,178)= 3.61406808; T( 7,179)= 3.62328514; T( 7,180)= 3.63248609; T( 7,181)= 3.64167114; T( 7,182)= 3.65084048; T( 7,183)= 3.65999431; T( 7,184)= 3.66913282; T( 7,185)= 3.67825622; T( 7,186)= 3.68736468; T( 7,187)= 3.69645840; T( 7,188)= 3.70553756; T( 7,189)= 3.71460235; T( 7,190)= 3.72365294; T( 7,191)= 3.73268952; T( 7,192)= 3.74171225; T( 7,193)= 3.75072132; T( 7,194)= 3.75971689; T( 7,195)= 3.76869913; T( 7,196)= 3.77766821; T( 7,197)= 3.78662430; T( 7,198)= 3.79556755; T( 7,199)= 3.80449813; T( 7,200)= 3.81341620; T( 7,201)= 3.82232191; T( 7,202)= 3.83121542; T( 7,203)= 3.84009688; T( 7,204)= 3.84896644; T( 7,205)= 3.85782426; T( 7,206)= 3.86667047; T( 7,207)= 3.87550523; T( 7,208)= 3.88432869; T( 7,209)= 3.89314097; T( 7,210)= 3.90194224; T( 7,211)= 3.91073261; T( 7,212)= 3.91951224; T( 7,213)= 3.92828125; T( 7,214)= 3.93703979; T( 7,215)= 3.94578799; T( 7,216)= 3.95452597; T( 7,217)= 3.96325387; T( 7,218)= 3.97197182; T( 7,219)= 3.98067994; T( 7,220)= 3.98937837; T( 7,221)= 3.99806722; T( 7,222)= 4.00674663; T( 7,223)= 4.01541671; T( 7,224)= 4.02407758; T( 7,225)= 4.03272936; T( 7,226)= 4.04137218; T( 7,227)= 4.05000614; T( 7,228)= 4.05863137; T( 7,229)= 4.06724799; T( 7,230)= 4.07585610; T( 7,231)= 4.08445581; T( 7,232)= 4.09304725; T( 7,233)= 4.10163051; T( 7,234)= 4.11020571; T( 7,235)= 4.11877297; T( 7,236)= 4.12733237; T( 7,237)= 4.13588404; T( 7,238)= 4.14442808; T( 7,239)= 4.15296458; T( 7,240)= 4.16149367; T( 7,241)= 4.17001543; T( 7,242)= 4.17852997; T( 7,243)= 4.18703738; T( 7,244)= 4.19553778; T( 7,245)= 4.20403126; T( 7,246)= 4.21251791; T( 7,247)= 4.22099784; T( 7,248)= 4.22947113; T( 7,249)= 4.23793789; T( 7,250)= 4.24639821; T( 7,251)= 4.25485218; T( 7,252)= 4.26329990; T( 7,253)= 4.27174146; T( 7,254)= 4.28017695; T( 7,255)= 4.28860646; T( 7,256)= 4.29703008; T( 7,257)= 4.30544790; T( 7,258)= 4.31386000; T( 7,259)= 4.32226649; T( 7,260)= 4.33066744; T( 7,261)= 4.33906293; T( 7,262)= 4.34745306; T( 7,263)= 4.35583792; T( 7,264)= 4.36421757; T( 7,265)= 4.37259212; T( 7,266)= 4.38096163; T( 7,267)= 4.38932620; T( 7,268)= 4.39768591; T( 7,269)= 4.40604083; T( 7,270)= 4.41439105; T( 7,271)= 4.42273665; T( 7,272)= 4.43107771; T( 7,273)= 4.43941430; T( 7,274)= 4.44774650; T( 7,275)= 4.45607440; T( 7,276)= 4.46439807; T( 7,277)= 4.47271758; T( 7,278)= 4.48103301; T( 7,279)= 4.48934445; T( 7,280)= 4.49765195; T( 7,281)= 4.50595561; T( 7,282)= 4.51425548; T( 7,283)= 4.52255165; T( 7,284)= 4.53084419; T( 7,285)= 4.53913317; T( 7,286)= 4.54741866; T( 7,287)= 4.55570074; T( 7,288)= 4.56397948; T( 7,289)= 4.57225494; T( 7,290)= 4.58052720; T( 7,291)= 4.58879633; T( 7,292)= 4.59706240; T( 7,293)= 4.60532547; T( 7,294)= 4.61358562; T( 7,295)= 4.62184291; T( 7,296)= 4.63009741; T( 7,297)= 4.63834919; T( 7,298)= 4.64659832; T( 7,299)= 4.65484486; T( 7,300)= 4.66308888; T( 7,301)= 4.67133045; T( 7,302)= 4.67956963; T( 7,303)= 4.68780648; T( 7,304)= 4.69604108; T( 7,305)= 4.70427348; T( 7,306)= 4.71250375; T( 7,307)= 4.72073195; T( 7,308)= 4.72895816; T( 7,309)= 4.73718242; T( 7,310)= 4.74540481; T( 7,311)= 4.75362539; T( 7,312)= 4.76184421; T( 7,313)= 4.77006135; T( 7,314)= 4.77827686; T( 7,315)= 4.78649080; T( 7,316)= 4.79470324; T( 7,317)= 4.80291424; T( 7,318)= 4.81112385; T( 7,319)= 4.81933214; T( 7,320)= 4.82753917; T( 7,321)= 4.83574499; T( 7,322)= 4.84394967; T( 7,323)= 4.85215327; T( 7,324)= 4.86035584; T( 7,325)= 4.86855744; T( 7,326)= 4.87675814; T( 7,327)= 4.88495798; T( 7,328)= 4.89315704; T( 7,329)= 4.90135536; T( 7,330)= 4.90955300; T( 7,331)= 4.91775003; T( 7,332)= 4.92594649; T( 7,333)= 4.93414245; T( 7,334)= 4.94233796; T( 7,335)= 4.95053308; T( 7,336)= 4.95872787; T( 7,337)= 4.96692237; T( 7,338)= 4.97511665; T( 7,339)= 4.98331076; T( 7,340)= 4.99150476; T( 7,341)= 4.99969871; T( 7,342)= 5.00789265; T( 7,343)= 5.01608664; T( 7,344)= 5.02428074; T( 7,345)= 5.03247501; T( 7,346)= 5.04066949; T( 7,347)= 5.04886424; T( 7,348)= 5.05705931; T( 7,349)= 5.06525477; T( 7,350)= 5.07345066; T( 7,351)= 5.08164703; T( 7,352)= 5.08984394; T( 7,353)= 5.09804145; T( 7,354)= 5.10623960; T( 7,355)= 5.11443845; T( 7,356)= 5.12263806; T( 7,357)= 5.13083847; T( 7,358)= 5.13903973; T( 7,359)= 5.14724191; T( 7,360)= 5.15544505; T( 7,361)= 5.16364920; T( 7,362)= 5.17185442; T( 7,363)= 5.18006076; T( 7,364)= 5.18826827; T( 7,365)= 5.19647700; T( 7,366)= 5.20468701; T( 7,367)= 5.21289834; T( 7,368)= 5.22111105; T( 7,369)= 5.22932519; T( 7,370)= 5.23754080; T( 7,371)= 5.24575795; T( 7,372)= 5.25397668; T( 7,373)= 5.26219704; T( 7,374)= 5.27041909; T( 7,375)= 5.27864287; T( 7,376)= 5.28686844; T( 7,377)= 5.29509584; T( 7,378)= 5.30332513; T( 7,379)= 5.31155635; T( 7,380)= 5.31978957; T( 7,381)= 5.32802482; T( 7,382)= 5.33626216; T( 7,383)= 5.34450164; T( 7,384)= 5.35274330; T( 7,385)= 5.36098721; T( 7,386)= 5.36923340; T( 7,387)= 5.37748194; T( 7,388)= 5.38573286; T( 7,389)= 5.39398622; T( 7,390)= 5.40224207; T( 7,391)= 5.41050045; T( 7,392)= 5.41876143; T( 7,393)= 5.42702504; T( 7,394)= 5.43529134; T( 7,395)= 5.44356038; T( 7,396)= 5.45183220; T( 7,397)= 5.46010686; T( 7,398)= 5.46838441; T( 7,399)= 5.47666489; T( 7,400)= 5.48494836; T( 7,401)= 5.49323486; T( 7,402)= 5.50152445; T( 7,403)= 5.50981716; T( 7,404)= 5.51811306; T( 7,405)= 5.52641220; T( 7,406)= 5.53471461; T( 7,407)= 5.54302036; T( 7,408)= 5.55132949; T( 7,409)= 5.55964204; T( 7,410)= 5.56795808; T( 7,411)= 5.57627764; T( 7,412)= 5.58460078; T( 7,413)= 5.59292755; T( 7,414)= 5.60125800; T( 7,415)= 5.60959217; T( 7,416)= 5.61793012; T( 7,417)= 5.62627189; T( 7,418)= 5.63461754; T( 7,419)= 5.64296712; T( 7,420)= 5.65132066; T( 7,421)= 5.65967823; T( 7,422)= 5.66803987; T( 7,423)= 5.67640564; T( 7,424)= 5.68477557; T( 7,425)= 5.69314973; T( 7,426)= 5.70152816; T( 7,427)= 5.70991091; T( 7,428)= 5.71829803; T( 7,429)= 5.72668957; T( 7,430)= 5.73508558; T( 7,431)= 5.74348611; T( 7,432)= 5.75189121; T( 7,433)= 5.76030093; T( 7,434)= 5.76871532; T( 7,435)= 5.77713443; T( 7,436)= 5.78555831; T( 7,437)= 5.79398702; T( 7,438)= 5.80242059; T( 7,439)= 5.81085908; T( 7,440)= 5.81930254; T( 7,441)= 5.82775103; T( 7,442)= 5.83620459; T( 7,443)= 5.84466327; T( 7,444)= 5.85312712; T( 7,445)= 5.86159620; T( 7,446)= 5.87007055; T( 7,447)= 5.87855023; T( 7,448)= 5.88703528; T( 7,449)= 5.89552576; T( 7,450)= 5.90402173; T( 7,451)= 5.91252322; T( 7,452)= 5.92103029; T( 7,453)= 5.92954299; T( 7,454)= 5.93806138; T( 7,455)= 5.94658550; T( 7,456)= 5.95511541; T( 7,457)= 5.96365116; T( 7,458)= 5.97219280; T( 7,459)= 5.98074038; T( 7,460)= 5.98929396; T( 7,461)= 5.99785358; T( 7,462)= 6.00641930; T( 7,463)= 6.01499118; T( 7,464)= 6.02356925; T( 7,465)= 6.03215359; T( 7,466)= 6.04074423; T( 7,467)= 6.04934124; T( 7,468)= 6.05794466; T( 7,469)= 6.06655454; T( 7,470)= 6.07517095; T( 7,471)= 6.08379394; T( 7,472)= 6.09242355; T( 7,473)= 6.10105984; T( 7,474)= 6.10970287; T( 7,475)= 6.11835269; T( 7,476)= 6.12700935; T( 7,477)= 6.13567291; T( 7,478)= 6.14434343; T( 7,479)= 6.15302094; T( 7,480)= 6.16170552; T( 7,481)= 6.17039722; T( 7,482)= 6.17909608; T( 7,483)= 6.18780218; T( 7,484)= 6.19651555; T( 7,485)= 6.20523626; T( 7,486)= 6.21396436; T( 7,487)= 6.22269990; T( 7,488)= 6.23144295; T( 7,489)= 6.24019357; T( 7,490)= 6.24895179; T( 7,491)= 6.25771769; T( 7,492)= 6.26649132; T( 7,493)= 6.27527273; T( 7,494)= 6.28406199; T( 7,495)= 6.29285914; T( 7,496)= 6.30166426; T( 7,497)= 6.31047738; T( 7,498)= 6.31929858; T( 7,499)= 6.32812791; T( 7,500)= 6.33696543; T( 7,501)= 6.34581120; T( 7,502)= 6.35466527; T( 7,503)= 6.36352770; T( 7,504)= 6.37239855; T( 7,505)= 6.38127789; T( 7,506)= 6.39016577; T( 7,507)= 6.39906225; T( 7,508)= 6.40796739; T( 7,509)= 6.41688125; T( 7,510)= 6.42580390; T( 7,511)= 6.43473538; T( 7,512)= 6.44367577; T( 7,513)= 6.45262512; T( 7,514)= 6.46158349; T( 7,515)= 6.47055095; T( 7,516)= 6.47952755; T( 7,517)= 6.48851337; T( 7,518)= 6.49750845; T( 7,519)= 6.50651287; T( 7,520)= 6.51552669; T( 7,521)= 6.52454997; T( 7,522)= 6.53358276; T( 7,523)= 6.54262515; T( 7,524)= 6.55167718; T( 7,525)= 6.56073893; T( 7,526)= 6.56981045; T( 7,527)= 6.57889182; T( 7,528)= 6.58798309; T( 7,529)= 6.59708434; T( 7,530)= 6.60619562; T( 7,531)= 6.61531701; T( 7,532)= 6.62444857; T( 7,533)= 6.63359036; T( 7,534)= 6.64274245; T( 7,535)= 6.65190491; T( 7,536)= 6.66107781; T( 7,537)= 6.67026121; T( 7,538)= 6.67945519; T( 7,539)= 6.68865980; T( 7,540)= 6.69787512; T( 7,541)= 6.70710121; T( 7,542)= 6.71633815; T( 7,543)= 6.72558601; T( 7,544)= 6.73484485; T( 7,545)= 6.74411474; T( 7,546)= 6.75339576; T( 7,547)= 6.76268797; T( 7,548)= 6.77199145; T( 7,549)= 6.78130627; T( 7,550)= 6.79063250; T( 7,551)= 6.79997021; T( 7,552)= 6.80931947; T( 7,553)= 6.81868037; T( 7,554)= 6.82805296; T( 7,555)= 6.83743732; T( 7,556)= 6.84683354; T( 7,557)= 6.85624167; T( 7,558)= 6.86566181; T( 7,559)= 6.87509402; T( 7,560)= 6.88453837; T( 7,561)= 6.89399495; T( 7,562)= 6.90346383; T( 7,563)= 6.91294508; T( 7,564)= 6.92243879; T( 7,565)= 6.93194503; T( 7,566)= 6.94146388; T( 7,567)= 6.95099542; T( 7,568)= 6.96053972; T( 7,569)= 6.97009688; T( 7,570)= 6.97966695; T( 7,571)= 6.98925004; T( 7,572)= 6.99884621; T( 7,573)= 7.00845555; T( 7,574)= 7.01807813; T( 7,575)= 7.02771405; T( 7,576)= 7.03736339; T( 7,577)= 7.04702622; T( 7,578)= 7.05670263; T( 7,579)= 7.06639270; T( 7,580)= 7.07609652; T( 7,581)= 7.08581418; T( 7,582)= 7.09554575; T( 7,583)= 7.10529133; T( 7,584)= 7.11505100; T( 7,585)= 7.12482485; T( 7,586)= 7.13461297; T( 7,587)= 7.14441543; T( 7,588)= 7.15423234; T( 7,589)= 7.16406378; T( 7,590)= 7.17390984; T( 7,591)= 7.18377061; T( 7,592)= 7.19364618; T( 7,593)= 7.20353665; T( 7,594)= 7.21344210; T( 7,595)= 7.22336262; T( 7,596)= 7.23329832; T( 7,597)= 7.24324928; T( 7,598)= 7.25321559; T( 7,599)= 7.26319736; T( 7,600)= 7.27319467; T( 7,601)= 7.28320763; T( 7,602)= 7.29323633; T( 7,603)= 7.30328087; T( 7,604)= 7.31334134; T( 7,605)= 7.32341784; T( 7,606)= 7.33351047; T( 7,607)= 7.34361934; T( 7,608)= 7.35374454; T( 7,609)= 7.36388618; T( 7,610)= 7.37404434; T( 7,611)= 7.38421915; T( 7,612)= 7.39441070; T( 7,613)= 7.40461909; T( 7,614)= 7.41484443; T( 7,615)= 7.42508683; T( 7,616)= 7.43534638; T( 7,617)= 7.44562321; T( 7,618)= 7.45591741; T( 7,619)= 7.46622909; T( 7,620)= 7.47655836; T( 7,621)= 7.48690533; T( 7,622)= 7.49727011; T( 7,623)= 7.50765282; T( 7,624)= 7.51805356; T( 7,625)= 7.52847245; T( 7,626)= 7.53890960; T( 7,627)= 7.54936513; T( 7,628)= 7.55983914; T( 7,629)= 7.57033177; T( 7,630)= 7.58084311; T( 7,631)= 7.59137330; T( 7,632)= 7.60192245; T( 7,633)= 7.61249067; T( 7,634)= 7.62307810; T( 7,635)= 7.63368485; T( 7,636)= 7.64431104; T( 7,637)= 7.65495679; T( 7,638)= 7.66562224; T( 7,639)= 7.67630750; T( 7,640)= 7.68701270; T( 7,641)= 7.69773797; T( 7,642)= 7.70848343; T( 7,643)= 7.71924921; T( 7,644)= 7.73003545; T( 7,645)= 7.74084228; T( 7,646)= 7.75166981; T( 7,647)= 7.76251820; T( 7,648)= 7.77338757; T( 7,649)= 7.78427805; T( 7,650)= 7.79518979; T( 7,651)= 7.80612292; T( 7,652)= 7.81707757; T( 7,653)= 7.82805389; T( 7,654)= 7.83905201; T( 7,655)= 7.85007209; T( 7,656)= 7.86111425; T( 7,657)= 7.87217864; T( 7,658)= 7.88326542; T( 7,659)= 7.89437471; T( 7,660)= 7.90550668; T( 7,661)= 7.91666147; T( 7,662)= 7.92783923; T( 7,663)= 7.93904010; T( 7,664)= 7.95026425; T( 7,665)= 7.96151182; T( 7,666)= 7.97278296; T( 7,667)= 7.98407785; T( 7,668)= 7.99539662; T( 7,669)= 8.00673944; T( 7,670)= 8.01810647; T( 7,671)= 8.02949787; T( 7,672)= 8.04091381; T( 7,673)= 8.05235444; T( 7,674)= 8.06381993; T( 7,675)= 8.07531045; T( 7,676)= 8.08682617; T( 7,677)= 8.09836725; T( 7,678)= 8.10993387; T( 7,679)= 8.12152619; T( 7,680)= 8.13314440; T( 7,681)= 8.14478867; T( 7,682)= 8.15645917; T( 7,683)= 8.16815609; T( 7,684)= 8.17987960; T( 7,685)= 8.19162988; T( 7,686)= 8.20340713; T( 7,687)= 8.21521152; T( 7,688)= 8.22704324; T( 7,689)= 8.23890248; T( 7,690)= 8.25078942; T( 7,691)= 8.26270427; T( 7,692)= 8.27464722; T( 7,693)= 8.28661845; T( 7,694)= 8.29861817; T( 7,695)= 8.31064658; T( 7,696)= 8.32270388; T( 7,697)= 8.33479026; T( 7,698)= 8.34690594; T( 7,699)= 8.35905113; T( 7,700)= 8.37122602; T( 7,701)= 8.38343083; T( 7,702)= 8.39566577; T( 7,703)= 8.40793106; T( 7,704)= 8.42022692; T( 7,705)= 8.43255356; T( 7,706)= 8.44491120; T( 7,707)= 8.45730007; T( 7,708)= 8.46972039; T( 7,709)= 8.48217239; T( 7,710)= 8.49465629; T( 7,711)= 8.50717234; T( 7,712)= 8.51972076; T( 7,713)= 8.53230179; T( 7,714)= 8.54491567; T( 7,715)= 8.55756264; T( 7,716)= 8.57024295; T( 7,717)= 8.58295683; T( 7,718)= 8.59570455; T( 7,719)= 8.60848634; T( 7,720)= 8.62130247; T( 7,721)= 8.63415318; T( 7,722)= 8.64703875; T( 7,723)= 8.65995943; T( 7,724)= 8.67291548; T( 7,725)= 8.68590717; T( 7,726)= 8.69893477; T( 7,727)= 8.71199856; T( 7,728)= 8.72509880; T( 7,729)= 8.73823579; T( 7,730)= 8.75140979; T( 7,731)= 8.76462110; T( 7,732)= 8.77786999; T( 7,733)= 8.79115677; T( 7,734)= 8.80448173; T( 7,735)= 8.81784516; T( 7,736)= 8.83124735; T( 7,737)= 8.84468863; T( 7,738)= 8.85816929; T( 7,739)= 8.87168963; T( 7,740)= 8.88524999; T( 7,741)= 8.89885067; T( 7,742)= 8.91249199; T( 7,743)= 8.92617428; T( 7,744)= 8.93989786; T( 7,745)= 8.95366307; T( 7,746)= 8.96747025; T( 7,747)= 8.98131972; T( 7,748)= 8.99521184; T( 7,749)= 9.00914695; T( 7,750)= 9.02312540; T( 7,751)= 9.03714755; T( 7,752)= 9.05121375; T( 7,753)= 9.06532438; T( 7,754)= 9.07947979; T( 7,755)= 9.09368036; T( 7,756)= 9.10792646; T( 7,757)= 9.12221848; T( 7,758)= 9.13655680; T( 7,759)= 9.15094182; T( 7,760)= 9.16537392; T( 7,761)= 9.17985350; T( 7,762)= 9.19438098; T( 7,763)= 9.20895675; T( 7,764)= 9.22358124; T( 7,765)= 9.23825486; T( 7,766)= 9.25297803; T( 7,767)= 9.26775120; T( 7,768)= 9.28257478; T( 7,769)= 9.29744923; T( 7,770)= 9.31237499; T( 7,771)= 9.32735251; T( 7,772)= 9.34238225; T( 7,773)= 9.35746467; T( 7,774)= 9.37260024; T( 7,775)= 9.38778944; T( 7,776)= 9.40303274; T( 7,777)= 9.41833065; T( 7,778)= 9.43368364; T( 7,779)= 9.44909223; T( 7,780)= 9.46455692; T( 7,781)= 9.48007822; T( 7,782)= 9.49565665; T( 7,783)= 9.51129274; T( 7,784)= 9.52698704; T( 7,785)= 9.54274007; T( 7,786)= 9.55855239; T( 7,787)= 9.57442456; T( 7,788)= 9.59035714; T( 7,789)= 9.60635070; T( 7,790)= 9.62240583; T( 7,791)= 9.63852311; T( 7,792)= 9.65470314; T( 7,793)= 9.67094652; T( 7,794)= 9.68725388; T( 7,795)= 9.70362582; T( 7,796)= 9.72006299; T( 7,797)= 9.73656602; T( 7,798)= 9.75313556; T( 7,799)= 9.76977227; T( 7,800)= 9.78647683; T( 7,801)= 9.80324990; T( 7,802)= 9.82009218; T( 7,803)= 9.83700436; T( 7,804)= 9.85398716; T( 7,805)= 9.87104130; T( 7,806)= 9.88816749; T( 7,807)= 9.90536650; T( 7,808)= 9.92263906; T( 7,809)= 9.93998594; T( 7,810)= 9.95740793; T( 7,811)= 9.97490580; T( 7,812)= 9.99248035; T( 7,813)=10.01013241; T( 7,814)=10.02786278; T( 7,815)=10.04567232; T( 7,816)=10.06356188; T( 7,817)=10.08153231; T( 7,818)=10.09958450; T( 7,819)=10.11771934; T( 7,820)=10.13593773; T( 7,821)=10.15424061; T( 7,822)=10.17262891; T( 7,823)=10.19110358; T( 7,824)=10.20966558; T( 7,825)=10.22831592; T( 7,826)=10.24705557; T( 7,827)=10.26588558; T( 7,828)=10.28480696; T( 7,829)=10.30382077; T( 7,830)=10.32292809; T( 7,831)=10.34213000; T( 7,832)=10.36142762; T( 7,833)=10.38082207; T( 7,834)=10.40031449; T( 7,835)=10.41990606; T( 7,836)=10.43959797; T( 7,837)=10.45939143; T( 7,838)=10.47928766; T( 7,839)=10.49928792; T( 7,840)=10.51939350; T( 7,841)=10.53960569; T( 7,842)=10.55992581; T( 7,843)=10.58035522; T( 7,844)=10.60089529; T( 7,845)=10.62154741; T( 7,846)=10.64231303; T( 7,847)=10.66319359; T( 7,848)=10.68419057; T( 7,849)=10.70530549; T( 7,850)=10.72653989; T( 7,851)=10.74789533; T( 7,852)=10.76937342; T( 7,853)=10.79097580; T( 7,854)=10.81270412; T( 7,855)=10.83456008; T( 7,856)=10.85654543; T( 7,857)=10.87866193; T( 7,858)=10.90091139; T( 7,859)=10.92329565; T( 7,860)=10.94581659; T( 7,861)=10.96847613; T( 7,862)=10.99127624; T( 7,863)=11.01421892; T( 7,864)=11.03730621; T( 7,865)=11.06054021; T( 7,866)=11.08392305; T( 7,867)=11.10745692; T( 7,868)=11.13114405; T( 7,869)=11.15498671; T( 7,870)=11.17898725; T( 7,871)=11.20314805; T( 7,872)=11.22747154; T( 7,873)=11.25196023; T( 7,874)=11.27661667; T( 7,875)=11.30144347; T( 7,876)=11.32644330; T( 7,877)=11.35161891; T( 7,878)=11.37697309; T( 7,879)=11.40250873; T( 7,880)=11.42822876; T( 7,881)=11.45413619; T( 7,882)=11.48023412; T( 7,883)=11.50652570; T( 7,884)=11.53301419; T( 7,885)=11.55970291; T( 7,886)=11.58659527; T( 7,887)=11.61369477; T( 7,888)=11.64100501; T( 7,889)=11.66852966; T( 7,890)=11.69627252; T( 7,891)=11.72423746; T( 7,892)=11.75242849; T( 7,893)=11.78084968; T( 7,894)=11.80950527; T( 7,895)=11.83839957; T( 7,896)=11.86753703; T( 7,897)=11.89692223; T( 7,898)=11.92655988; T( 7,899)=11.95645482; T( 7,900)=11.98661202; T( 7,901)=12.01703662; T( 7,902)=12.04773391; T( 7,903)=12.07870932; T( 7,904)=12.10996845; T( 7,905)=12.14151709; T( 7,906)=12.17336120; T( 7,907)=12.20550690; T( 7,908)=12.23796056; T( 7,909)=12.27072869; T( 7,910)=12.30381806; T( 7,911)=12.33723564; T( 7,912)=12.37098862; T( 7,913)=12.40508447; T( 7,914)=12.43953086; T( 7,915)=12.47433576; T( 7,916)=12.50950741; T( 7,917)=12.54505433; T( 7,918)=12.58098534; T( 7,919)=12.61730958; T( 7,920)=12.65403654; T( 7,921)=12.69117603; T( 7,922)=12.72873824; T( 7,923)=12.76673375; T( 7,924)=12.80517352; T( 7,925)=12.84406898; T( 7,926)=12.88343195; T( 7,927)=12.92327477; T( 7,928)=12.96361024; T( 7,929)=13.00445172; T( 7,930)=13.04581309; T( 7,931)=13.08770883; T( 7,932)=13.13015403; T( 7,933)=13.17316444; T( 7,934)=13.21675650; T( 7,935)=13.26094738; T( 7,936)=13.30575503; T( 7,937)=13.35119820; T( 7,938)=13.39729657; T( 7,939)=13.44407069; T( 7,940)=13.49154215; T( 7,941)=13.53973357; T( 7,942)=13.58866870; T( 7,943)=13.63837250; T( 7,944)=13.68887122; T( 7,945)=13.74019248; T( 7,946)=13.79236538; T( 7,947)=13.84542058; T( 7,948)=13.89939049; T( 7,949)=13.95430929; T( 7,950)=14.01021318; T( 7,951)=14.06714045; T( 7,952)=14.12513170; T( 7,953)=14.18423001; T( 7,954)=14.24448115; T( 7,955)=14.30593381; T( 7,956)=14.36863984; T( 7,957)=14.43265458; T( 7,958)=14.49803711; T( 7,959)=14.56485065; T( 7,960)=14.63316294; T( 7,961)=14.70304667; T( 7,962)=14.77458001; T( 7,963)=14.84784715; T( 7,964)=14.92293892; T( 7,965)=14.99995356; T( 7,966)=15.07899753; T( 7,967)=15.16018643; T( 7,968)=15.24364611; T( 7,969)=15.32951391; T( 7,970)=15.41794014; T( 7,971)=15.50908970; T( 7,972)=15.60314414; T( 7,973)=15.70030389; T( 7,974)=15.80079104; T( 7,975)=15.90485259; T( 7,976)=16.01276427; T( 7,977)=16.12483531; T( 7,978)=16.24141398; T( 7,979)=16.36289458; T( 7,980)=16.48972592; T( 7,981)=16.62242187; T( 7,982)=16.76157466; T( 7,983)=16.90787168; T( 7,984)=17.06211718; T( 7,985)=17.22526035; T( 7,986)=17.39843261; T( 7,987)=17.58299757; T( 7,988)=17.78061953; T( 7,989)=17.99335926; T( 7,990)=18.22381135; T( 7,991)=18.47530691; T( 7,992)=18.75222273; T( 7,993)=19.06047255; T( 7,994)=19.40832608; T( 7,995)=19.80786051; T( 7,996)=20.27773987; T( 7,997)=20.84911788; T( 7,998)=21.58014539; T( 7,999)=22.60067086; T( 7,1000)=24.32188635; T( 7,1001)=29.87750391; T( 7,1002)=35.25853642; T( 8, 1)= 0.00000000; T( 8, 2)= 0.85710483; T( 8, 3)= 1.03752390; T( 8, 4)= 1.16235294; T( 8, 5)= 1.26116792; T( 8, 6)= 1.34441309; T( 8, 7)= 1.41712746; T( 8, 8)= 1.48216905; T( 8, 9)= 1.54133162; T( 8,10)= 1.59582254; T( 8,11)= 1.64649737; T( 8,12)= 1.69398678; T( 8,13)= 1.73877041; T( 8,14)= 1.78122244; T( 8,15)= 1.82164101; T( 8,16)= 1.86026790; T( 8,17)= 1.89730220; T( 8,18)= 1.93291002; T( 8,19)= 1.96723154; T( 8,20)= 2.00038624; T( 8,21)= 2.03247692; T( 8,22)= 2.06359269; T( 8,23)= 2.09381138; T( 8,24)= 2.12320141; T( 8,25)= 2.15182328; T( 8,26)= 2.17973075; T( 8,27)= 2.20697188; T( 8,28)= 2.23358978; T( 8,29)= 2.25962333; T( 8,30)= 2.28510767; T( 8,31)= 2.31007474; T( 8,32)= 2.33455363; T( 8,33)= 2.35857091; T( 8,34)= 2.38215096; T( 8,35)= 2.40531616; T( 8,36)= 2.42808714; T( 8,37)= 2.45048298; T( 8,38)= 2.47252132; T( 8,39)= 2.49421852; T( 8,40)= 2.51558982; T( 8,41)= 2.53664938; T( 8,42)= 2.55741045; T( 8,43)= 2.57788538; T( 8,44)= 2.59808577; T( 8,45)= 2.61802247; T( 8,46)= 2.63770569; T( 8,47)= 2.65714502; T( 8,48)= 2.67634951; T( 8,49)= 2.69532767; T( 8,50)= 2.71408756; T( 8,51)= 2.73263679; T( 8,52)= 2.75098257; T( 8,53)= 2.76913171; T( 8,54)= 2.78709070; T( 8,55)= 2.80486568; T( 8,56)= 2.82246250; T( 8,57)= 2.83988672; T( 8,58)= 2.85714363; T( 8,59)= 2.87423829; T( 8,60)= 2.89117551; T( 8,61)= 2.90795987; T( 8,62)= 2.92459578; T( 8,63)= 2.94108744; T( 8,64)= 2.95743886; T( 8,65)= 2.97365388; T( 8,66)= 2.98973621; T( 8,67)= 3.00568936; T( 8,68)= 3.02151674; T( 8,69)= 3.03722161; T( 8,70)= 3.05280708; T( 8,71)= 3.06827618; T( 8,72)= 3.08363179; T( 8,73)= 3.09887669; T( 8,74)= 3.11401358; T( 8,75)= 3.12904503; T( 8,76)= 3.14397353; T( 8,77)= 3.15880149; T( 8,78)= 3.17353122; T( 8,79)= 3.18816495; T( 8,80)= 3.20270486; T( 8,81)= 3.21715302; T( 8,82)= 3.23151145; T( 8,83)= 3.24578211; T( 8,84)= 3.25996689; T( 8,85)= 3.27406760; T( 8,86)= 3.28808603; T( 8,87)= 3.30202387; T( 8,88)= 3.31588281; T( 8,89)= 3.32966443; T( 8,90)= 3.34337031; T( 8,91)= 3.35700197; T( 8,92)= 3.37056086; T( 8,93)= 3.38404841; T( 8,94)= 3.39746602; T( 8,95)= 3.41081502; T( 8,96)= 3.42409673; T( 8,97)= 3.43731242; T( 8,98)= 3.45046331; T( 8,99)= 3.46355062; T( 8,100)= 3.47657551; T( 8,101)= 3.48953913; T( 8,102)= 3.50244257; T( 8,103)= 3.51528691; T( 8,104)= 3.52807321; T( 8,105)= 3.54080250; T( 8,106)= 3.55347576; T( 8,107)= 3.56609397; T( 8,108)= 3.57865808; T( 8,109)= 3.59116901; T( 8,110)= 3.60362766; T( 8,111)= 3.61603492; T( 8,112)= 3.62839164; T( 8,113)= 3.64069865; T( 8,114)= 3.65295679; T( 8,115)= 3.66516684; T( 8,116)= 3.67732959; T( 8,117)= 3.68944580; T( 8,118)= 3.70151621; T( 8,119)= 3.71354156; T( 8,120)= 3.72552255; T( 8,121)= 3.73745988; T( 8,122)= 3.74935424; T( 8,123)= 3.76120628; T( 8,124)= 3.77301666; T( 8,125)= 3.78478602; T( 8,126)= 3.79651499; T( 8,127)= 3.80820416; T( 8,128)= 3.81985415; T( 8,129)= 3.83146553; T( 8,130)= 3.84303889; T( 8,131)= 3.85457477; T( 8,132)= 3.86607374; T( 8,133)= 3.87753633; T( 8,134)= 3.88896308; T( 8,135)= 3.90035450; T( 8,136)= 3.91171109; T( 8,137)= 3.92303336; T( 8,138)= 3.93432180; T( 8,139)= 3.94557688; T( 8,140)= 3.95679908; T( 8,141)= 3.96798886; T( 8,142)= 3.97914667; T( 8,143)= 3.99027295; T( 8,144)= 4.00136815; T( 8,145)= 4.01243269; T( 8,146)= 4.02346699; T( 8,147)= 4.03447146; T( 8,148)= 4.04544651; T( 8,149)= 4.05639254; T( 8,150)= 4.06730994; T( 8,151)= 4.07819910; T( 8,152)= 4.08906038; T( 8,153)= 4.09989418; T( 8,154)= 4.11070084; T( 8,155)= 4.12148073; T( 8,156)= 4.13223421; T( 8,157)= 4.14296161; T( 8,158)= 4.15366329; T( 8,159)= 4.16433957; T( 8,160)= 4.17499078; T( 8,161)= 4.18561726; T( 8,162)= 4.19621932; T( 8,163)= 4.20679728; T( 8,164)= 4.21735144; T( 8,165)= 4.22788211; T( 8,166)= 4.23838959; T( 8,167)= 4.24887418; T( 8,168)= 4.25933616; T( 8,169)= 4.26977583; T( 8,170)= 4.28019346; T( 8,171)= 4.29058933; T( 8,172)= 4.30096371; T( 8,173)= 4.31131689; T( 8,174)= 4.32164911; T( 8,175)= 4.33196064; T( 8,176)= 4.34225175; T( 8,177)= 4.35252267; T( 8,178)= 4.36277367; T( 8,179)= 4.37300499; T( 8,180)= 4.38321688; T( 8,181)= 4.39340957; T( 8,182)= 4.40358329; T( 8,183)= 4.41373829; T( 8,184)= 4.42387480; T( 8,185)= 4.43399303; T( 8,186)= 4.44409321; T( 8,187)= 4.45417557; T( 8,188)= 4.46424032; T( 8,189)= 4.47428768; T( 8,190)= 4.48431785; T( 8,191)= 4.49433105; T( 8,192)= 4.50432748; T( 8,193)= 4.51430735; T( 8,194)= 4.52427086; T( 8,195)= 4.53421820; T( 8,196)= 4.54414958; T( 8,197)= 4.55406518; T( 8,198)= 4.56396519; T( 8,199)= 4.57384981; T( 8,200)= 4.58371923; T( 8,201)= 4.59357361; T( 8,202)= 4.60341315; T( 8,203)= 4.61323803; T( 8,204)= 4.62304842; T( 8,205)= 4.63284450; T( 8,206)= 4.64262644; T( 8,207)= 4.65239441; T( 8,208)= 4.66214859; T( 8,209)= 4.67188913; T( 8,210)= 4.68161620; T( 8,211)= 4.69132997; T( 8,212)= 4.70103059; T( 8,213)= 4.71071823; T( 8,214)= 4.72039305; T( 8,215)= 4.73005520; T( 8,216)= 4.73970482; T( 8,217)= 4.74934209; T( 8,218)= 4.75896714; T( 8,219)= 4.76858013; T( 8,220)= 4.77818120; T( 8,221)= 4.78777050; T( 8,222)= 4.79734817; T( 8,223)= 4.80691436; T( 8,224)= 4.81646920; T( 8,225)= 4.82601284; T( 8,226)= 4.83554542; T( 8,227)= 4.84506706; T( 8,228)= 4.85457792; T( 8,229)= 4.86407811; T( 8,230)= 4.87356778; T( 8,231)= 4.88304705; T( 8,232)= 4.89251605; T( 8,233)= 4.90197492; T( 8,234)= 4.91142378; T( 8,235)= 4.92086275; T( 8,236)= 4.93029197; T( 8,237)= 4.93971154; T( 8,238)= 4.94912161; T( 8,239)= 4.95852228; T( 8,240)= 4.96791369; T( 8,241)= 4.97729594; T( 8,242)= 4.98666915; T( 8,243)= 4.99603345; T( 8,244)= 5.00538894; T( 8,245)= 5.01473575; T( 8,246)= 5.02407398; T( 8,247)= 5.03340375; T( 8,248)= 5.04272517; T( 8,249)= 5.05203835; T( 8,250)= 5.06134340; T( 8,251)= 5.07064042; T( 8,252)= 5.07992954; T( 8,253)= 5.08921084; T( 8,254)= 5.09848444; T( 8,255)= 5.10775045; T( 8,256)= 5.11700896; T( 8,257)= 5.12626009; T( 8,258)= 5.13550392; T( 8,259)= 5.14474057; T( 8,260)= 5.15397013; T( 8,261)= 5.16319271; T( 8,262)= 5.17240840; T( 8,263)= 5.18161730; T( 8,264)= 5.19081950; T( 8,265)= 5.20001512; T( 8,266)= 5.20920423; T( 8,267)= 5.21838693; T( 8,268)= 5.22756333; T( 8,269)= 5.23673351; T( 8,270)= 5.24589756; T( 8,271)= 5.25505559; T( 8,272)= 5.26420767; T( 8,273)= 5.27335390; T( 8,274)= 5.28249437; T( 8,275)= 5.29162917; T( 8,276)= 5.30075839; T( 8,277)= 5.30988212; T( 8,278)= 5.31900044; T( 8,279)= 5.32811344; T( 8,280)= 5.33722121; T( 8,281)= 5.34632383; T( 8,282)= 5.35542138; T( 8,283)= 5.36451396; T( 8,284)= 5.37360165; T( 8,285)= 5.38268452; T( 8,286)= 5.39176266; T( 8,287)= 5.40083616; T( 8,288)= 5.40990510; T( 8,289)= 5.41896955; T( 8,290)= 5.42802960; T( 8,291)= 5.43708532; T( 8,292)= 5.44613681; T( 8,293)= 5.45518412; T( 8,294)= 5.46422736; T( 8,295)= 5.47326658; T( 8,296)= 5.48230188; T( 8,297)= 5.49133332; T( 8,298)= 5.50036099; T( 8,299)= 5.50938495; T( 8,300)= 5.51840529; T( 8,301)= 5.52742209; T( 8,302)= 5.53643540; T( 8,303)= 5.54544532; T( 8,304)= 5.55445191; T( 8,305)= 5.56345525; T( 8,306)= 5.57245542; T( 8,307)= 5.58145247; T( 8,308)= 5.59044649; T( 8,309)= 5.59943755; T( 8,310)= 5.60842572; T( 8,311)= 5.61741107; T( 8,312)= 5.62639367; T( 8,313)= 5.63537359; T( 8,314)= 5.64435090; T( 8,315)= 5.65332568; T( 8,316)= 5.66229798; T( 8,317)= 5.67126789; T( 8,318)= 5.68023547; T( 8,319)= 5.68920078; T( 8,320)= 5.69816389; T( 8,321)= 5.70712488; T( 8,322)= 5.71608381; T( 8,323)= 5.72504075; T( 8,324)= 5.73399576; T( 8,325)= 5.74294891; T( 8,326)= 5.75190027; T( 8,327)= 5.76084990; T( 8,328)= 5.76979787; T( 8,329)= 5.77874424; T( 8,330)= 5.78768908; T( 8,331)= 5.79663245; T( 8,332)= 5.80557442; T( 8,333)= 5.81451505; T( 8,334)= 5.82345440; T( 8,335)= 5.83239255; T( 8,336)= 5.84132954; T( 8,337)= 5.85026546; T( 8,338)= 5.85920034; T( 8,339)= 5.86813428; T( 8,340)= 5.87706731; T( 8,341)= 5.88599951; T( 8,342)= 5.89493094; T( 8,343)= 5.90386165; T( 8,344)= 5.91279172; T( 8,345)= 5.92172120; T( 8,346)= 5.93065015; T( 8,347)= 5.93957863; T( 8,348)= 5.94850671; T( 8,349)= 5.95743445; T( 8,350)= 5.96636190; T( 8,351)= 5.97528912; T( 8,352)= 5.98421618; T( 8,353)= 5.99314314; T( 8,354)= 6.00207005; T( 8,355)= 6.01099697; T( 8,356)= 6.01992397; T( 8,357)= 6.02885110; T( 8,358)= 6.03777842; T( 8,359)= 6.04670599; T( 8,360)= 6.05563386; T( 8,361)= 6.06456210; T( 8,362)= 6.07349077; T( 8,363)= 6.08241992; T( 8,364)= 6.09134961; T( 8,365)= 6.10027990; T( 8,366)= 6.10921084; T( 8,367)= 6.11814249; T( 8,368)= 6.12707492; T( 8,369)= 6.13600817; T( 8,370)= 6.14494231; T( 8,371)= 6.15387739; T( 8,372)= 6.16281347; T( 8,373)= 6.17175060; T( 8,374)= 6.18068884; T( 8,375)= 6.18962826; T( 8,376)= 6.19856889; T( 8,377)= 6.20751081; T( 8,378)= 6.21645406; T( 8,379)= 6.22539871; T( 8,380)= 6.23434480; T( 8,381)= 6.24329240; T( 8,382)= 6.25224156; T( 8,383)= 6.26119234; T( 8,384)= 6.27014478; T( 8,385)= 6.27909896; T( 8,386)= 6.28805491; T( 8,387)= 6.29701270; T( 8,388)= 6.30597239; T( 8,389)= 6.31493402; T( 8,390)= 6.32389766; T( 8,391)= 6.33286336; T( 8,392)= 6.34183116; T( 8,393)= 6.35080114; T( 8,394)= 6.35977334; T( 8,395)= 6.36874781; T( 8,396)= 6.37772462; T( 8,397)= 6.38670382; T( 8,398)= 6.39568546; T( 8,399)= 6.40466959; T( 8,400)= 6.41365627; T( 8,401)= 6.42264556; T( 8,402)= 6.43163751; T( 8,403)= 6.44063217; T( 8,404)= 6.44962960; T( 8,405)= 6.45862985; T( 8,406)= 6.46763298; T( 8,407)= 6.47663905; T( 8,408)= 6.48564809; T( 8,409)= 6.49466018; T( 8,410)= 6.50367536; T( 8,411)= 6.51269369; T( 8,412)= 6.52171522; T( 8,413)= 6.53074001; T( 8,414)= 6.53976811; T( 8,415)= 6.54879957; T( 8,416)= 6.55783445; T( 8,417)= 6.56687281; T( 8,418)= 6.57591469; T( 8,419)= 6.58496016; T( 8,420)= 6.59400926; T( 8,421)= 6.60306205; T( 8,422)= 6.61211858; T( 8,423)= 6.62117891; T( 8,424)= 6.63024310; T( 8,425)= 6.63931119; T( 8,426)= 6.64838324; T( 8,427)= 6.65745931; T( 8,428)= 6.66653944; T( 8,429)= 6.67562370; T( 8,430)= 6.68471214; T( 8,431)= 6.69380481; T( 8,432)= 6.70290177; T( 8,433)= 6.71200306; T( 8,434)= 6.72110876; T( 8,435)= 6.73021890; T( 8,436)= 6.73933355; T( 8,437)= 6.74845275; T( 8,438)= 6.75757658; T( 8,439)= 6.76670506; T( 8,440)= 6.77583828; T( 8,441)= 6.78497627; T( 8,442)= 6.79411909; T( 8,443)= 6.80326680; T( 8,444)= 6.81241946; T( 8,445)= 6.82157711; T( 8,446)= 6.83073981; T( 8,447)= 6.83990763; T( 8,448)= 6.84908060; T( 8,449)= 6.85825880; T( 8,450)= 6.86744227; T( 8,451)= 6.87663107; T( 8,452)= 6.88582525; T( 8,453)= 6.89502487; T( 8,454)= 6.90422999; T( 8,455)= 6.91344067; T( 8,456)= 6.92265695; T( 8,457)= 6.93187889; T( 8,458)= 6.94110655; T( 8,459)= 6.95033999; T( 8,460)= 6.95957927; T( 8,461)= 6.96882443; T( 8,462)= 6.97807553; T( 8,463)= 6.98733264; T( 8,464)= 6.99659581; T( 8,465)= 7.00586509; T( 8,466)= 7.01514054; T( 8,467)= 7.02442223; T( 8,468)= 7.03371020; T( 8,469)= 7.04300451; T( 8,470)= 7.05230522; T( 8,471)= 7.06161239; T( 8,472)= 7.07092608; T( 8,473)= 7.08024634; T( 8,474)= 7.08957323; T( 8,475)= 7.09890681; T( 8,476)= 7.10824714; T( 8,477)= 7.11759428; T( 8,478)= 7.12694828; T( 8,479)= 7.13630920; T( 8,480)= 7.14567710; T( 8,481)= 7.15505205; T( 8,482)= 7.16443409; T( 8,483)= 7.17382329; T( 8,484)= 7.18321972; T( 8,485)= 7.19262341; T( 8,486)= 7.20203445; T( 8,487)= 7.21145288; T( 8,488)= 7.22087877; T( 8,489)= 7.23031217; T( 8,490)= 7.23975316; T( 8,491)= 7.24920178; T( 8,492)= 7.25865810; T( 8,493)= 7.26812217; T( 8,494)= 7.27759407; T( 8,495)= 7.28707385; T( 8,496)= 7.29656158; T( 8,497)= 7.30605730; T( 8,498)= 7.31556110; T( 8,499)= 7.32507302; T( 8,500)= 7.33459313; T( 8,501)= 7.34412150; T( 8,502)= 7.35365818; T( 8,503)= 7.36320324; T( 8,504)= 7.37275674; T( 8,505)= 7.38231874; T( 8,506)= 7.39188932; T( 8,507)= 7.40146852; T( 8,508)= 7.41105642; T( 8,509)= 7.42065308; T( 8,510)= 7.43025856; T( 8,511)= 7.43987293; T( 8,512)= 7.44949626; T( 8,513)= 7.45912860; T( 8,514)= 7.46877002; T( 8,515)= 7.47842060; T( 8,516)= 7.48808039; T( 8,517)= 7.49774946; T( 8,518)= 7.50742788; T( 8,519)= 7.51711571; T( 8,520)= 7.52681302; T( 8,521)= 7.53651987; T( 8,522)= 7.54623635; T( 8,523)= 7.55596250; T( 8,524)= 7.56569840; T( 8,525)= 7.57544413; T( 8,526)= 7.58519973; T( 8,527)= 7.59496530; T( 8,528)= 7.60474088; T( 8,529)= 7.61452656; T( 8,530)= 7.62432241; T( 8,531)= 7.63412848; T( 8,532)= 7.64394486; T( 8,533)= 7.65377161; T( 8,534)= 7.66360880; T( 8,535)= 7.67345651; T( 8,536)= 7.68331481; T( 8,537)= 7.69318376; T( 8,538)= 7.70306344; T( 8,539)= 7.71295393; T( 8,540)= 7.72285528; T( 8,541)= 7.73276759; T( 8,542)= 7.74269092; T( 8,543)= 7.75262534; T( 8,544)= 7.76257092; T( 8,545)= 7.77252776; T( 8,546)= 7.78249590; T( 8,547)= 7.79247544; T( 8,548)= 7.80246645; T( 8,549)= 7.81246900; T( 8,550)= 7.82248317; T( 8,551)= 7.83250904; T( 8,552)= 7.84254668; T( 8,553)= 7.85259617; T( 8,554)= 7.86265758; T( 8,555)= 7.87273100; T( 8,556)= 7.88281651; T( 8,557)= 7.89291417; T( 8,558)= 7.90302408; T( 8,559)= 7.91314631; T( 8,560)= 7.92328094; T( 8,561)= 7.93342805; T( 8,562)= 7.94358773; T( 8,563)= 7.95376004; T( 8,564)= 7.96394508; T( 8,565)= 7.97414293; T( 8,566)= 7.98435367; T( 8,567)= 7.99457738; T( 8,568)= 8.00481414; T( 8,569)= 8.01506405; T( 8,570)= 8.02532718; T( 8,571)= 8.03560361; T( 8,572)= 8.04589344; T( 8,573)= 8.05619675; T( 8,574)= 8.06651363; T( 8,575)= 8.07684415; T( 8,576)= 8.08718842; T( 8,577)= 8.09754651; T( 8,578)= 8.10791852; T( 8,579)= 8.11830453; T( 8,580)= 8.12870463; T( 8,581)= 8.13911891; T( 8,582)= 8.14954747; T( 8,583)= 8.15999039; T( 8,584)= 8.17044776; T( 8,585)= 8.18091968; T( 8,586)= 8.19140623; T( 8,587)= 8.20190752; T( 8,588)= 8.21242363; T( 8,589)= 8.22295465; T( 8,590)= 8.23350069; T( 8,591)= 8.24406183; T( 8,592)= 8.25463818; T( 8,593)= 8.26522983; T( 8,594)= 8.27583687; T( 8,595)= 8.28645940; T( 8,596)= 8.29709752; T( 8,597)= 8.30775134; T( 8,598)= 8.31842094; T( 8,599)= 8.32910643; T( 8,600)= 8.33980790; T( 8,601)= 8.35052547; T( 8,602)= 8.36125922; T( 8,603)= 8.37200927; T( 8,604)= 8.38277572; T( 8,605)= 8.39355867; T( 8,606)= 8.40435821; T( 8,607)= 8.41517447; T( 8,608)= 8.42600755; T( 8,609)= 8.43685754; T( 8,610)= 8.44772456; T( 8,611)= 8.45860872; T( 8,612)= 8.46951012; T( 8,613)= 8.48042887; T( 8,614)= 8.49136509; T( 8,615)= 8.50231888; T( 8,616)= 8.51329036; T( 8,617)= 8.52427963; T( 8,618)= 8.53528681; T( 8,619)= 8.54631202; T( 8,620)= 8.55735536; T( 8,621)= 8.56841696; T( 8,622)= 8.57949693; T( 8,623)= 8.59059538; T( 8,624)= 8.60171244; T( 8,625)= 8.61284822; T( 8,626)= 8.62400284; T( 8,627)= 8.63517642; T( 8,628)= 8.64636909; T( 8,629)= 8.65758095; T( 8,630)= 8.66881215; T( 8,631)= 8.68006280; T( 8,632)= 8.69133302; T( 8,633)= 8.70262294; T( 8,634)= 8.71393269; T( 8,635)= 8.72526239; T( 8,636)= 8.73661217; T( 8,637)= 8.74798217; T( 8,638)= 8.75937251; T( 8,639)= 8.77078331; T( 8,640)= 8.78221473; T( 8,641)= 8.79366688; T( 8,642)= 8.80513990; T( 8,643)= 8.81663392; T( 8,644)= 8.82814909; T( 8,645)= 8.83968553; T( 8,646)= 8.85124340; T( 8,647)= 8.86282282; T( 8,648)= 8.87442393; T( 8,649)= 8.88604688; T( 8,650)= 8.89769181; T( 8,651)= 8.90935887; T( 8,652)= 8.92104819; T( 8,653)= 8.93275993; T( 8,654)= 8.94449422; T( 8,655)= 8.95625122; T( 8,656)= 8.96803109; T( 8,657)= 8.97983395; T( 8,658)= 8.99165998; T( 8,659)= 9.00350932; T( 8,660)= 9.01538212; T( 8,661)= 9.02727855; T( 8,662)= 9.03919875; T( 8,663)= 9.05114289; T( 8,664)= 9.06311112; T( 8,665)= 9.07510361; T( 8,666)= 9.08712051; T( 8,667)= 9.09916200; T( 8,668)= 9.11122822; T( 8,669)= 9.12331936; T( 8,670)= 9.13543557; T( 8,671)= 9.14757703; T( 8,672)= 9.15974390; T( 8,673)= 9.17193636; T( 8,674)= 9.18415458; T( 8,675)= 9.19639873; T( 8,676)= 9.20866899; T( 8,677)= 9.22096554; T( 8,678)= 9.23328855; T( 8,679)= 9.24563821; T( 8,680)= 9.25801470; T( 8,681)= 9.27041820; T( 8,682)= 9.28284890; T( 8,683)= 9.29530697; T( 8,684)= 9.30779262; T( 8,685)= 9.32030604; T( 8,686)= 9.33284740; T( 8,687)= 9.34541692; T( 8,688)= 9.35801477; T( 8,689)= 9.37064117; T( 8,690)= 9.38329630; T( 8,691)= 9.39598037; T( 8,692)= 9.40869359; T( 8,693)= 9.42143614; T( 8,694)= 9.43420825; T( 8,695)= 9.44701012; T( 8,696)= 9.45984196; T( 8,697)= 9.47270399; T( 8,698)= 9.48559640; T( 8,699)= 9.49851943; T( 8,700)= 9.51147329; T( 8,701)= 9.52445819; T( 8,702)= 9.53747437; T( 8,703)= 9.55052204; T( 8,704)= 9.56360144; T( 8,705)= 9.57671278; T( 8,706)= 9.58985631; T( 8,707)= 9.60303225; T( 8,708)= 9.61624084; T( 8,709)= 9.62948231; T( 8,710)= 9.64275691; T( 8,711)= 9.65606488; T( 8,712)= 9.66940646; T( 8,713)= 9.68278190; T( 8,714)= 9.69619145; T( 8,715)= 9.70963536; T( 8,716)= 9.72311389; T( 8,717)= 9.73662729; T( 8,718)= 9.75017582; T( 8,719)= 9.76375974; T( 8,720)= 9.77737932; T( 8,721)= 9.79103483; T( 8,722)= 9.80472654; T( 8,723)= 9.81845471; T( 8,724)= 9.83221963; T( 8,725)= 9.84602157; T( 8,726)= 9.85986082; T( 8,727)= 9.87373766; T( 8,728)= 9.88765238; T( 8,729)= 9.90160527; T( 8,730)= 9.91559661; T( 8,731)= 9.92962672; T( 8,732)= 9.94369589; T( 8,733)= 9.95780441; T( 8,734)= 9.97195261; T( 8,735)= 9.98614078; T( 8,736)=10.00036925; T( 8,737)=10.01463832; T( 8,738)=10.02894832; T( 8,739)=10.04329957; T( 8,740)=10.05769240; T( 8,741)=10.07212714; T( 8,742)=10.08660412; T( 8,743)=10.10112368; T( 8,744)=10.11568617; T( 8,745)=10.13029192; T( 8,746)=10.14494130; T( 8,747)=10.15963465; T( 8,748)=10.17437232; T( 8,749)=10.18915469; T( 8,750)=10.20398212; T( 8,751)=10.21885497; T( 8,752)=10.23377363; T( 8,753)=10.24873846; T( 8,754)=10.26374987; T( 8,755)=10.27880822; T( 8,756)=10.29391392; T( 8,757)=10.30906736; T( 8,758)=10.32426894; T( 8,759)=10.33951907; T( 8,760)=10.35481817; T( 8,761)=10.37016664; T( 8,762)=10.38556491; T( 8,763)=10.40101340; T( 8,764)=10.41651256; T( 8,765)=10.43206280; T( 8,766)=10.44766459; T( 8,767)=10.46331836; T( 8,768)=10.47902456; T( 8,769)=10.49478367; T( 8,770)=10.51059614; T( 8,771)=10.52646244; T( 8,772)=10.54238305; T( 8,773)=10.55835845; T( 8,774)=10.57438914; T( 8,775)=10.59047561; T( 8,776)=10.60661835; T( 8,777)=10.62281788; T( 8,778)=10.63907472; T( 8,779)=10.65538938; T( 8,780)=10.67176239; T( 8,781)=10.68819430; T( 8,782)=10.70468563; T( 8,783)=10.72123695; T( 8,784)=10.73784880; T( 8,785)=10.75452176; T( 8,786)=10.77125639; T( 8,787)=10.78805328; T( 8,788)=10.80491301; T( 8,789)=10.82183619; T( 8,790)=10.83882340; T( 8,791)=10.85587528; T( 8,792)=10.87299244; T( 8,793)=10.89017551; T( 8,794)=10.90742512; T( 8,795)=10.92474194; T( 8,796)=10.94212660; T( 8,797)=10.95957979; T( 8,798)=10.97710218; T( 8,799)=10.99469445; T( 8,800)=11.01235730; T( 8,801)=11.03009143; T( 8,802)=11.04789757; T( 8,803)=11.06577644; T( 8,804)=11.08372877; T( 8,805)=11.10175532; T( 8,806)=11.11985685; T( 8,807)=11.13803413; T( 8,808)=11.15628794; T( 8,809)=11.17461907; T( 8,810)=11.19302834; T( 8,811)=11.21151657; T( 8,812)=11.23008458; T( 8,813)=11.24873322; T( 8,814)=11.26746336; T( 8,815)=11.28627586; T( 8,816)=11.30517160; T( 8,817)=11.32415150; T( 8,818)=11.34321646; T( 8,819)=11.36236742; T( 8,820)=11.38160531; T( 8,821)=11.40093110; T( 8,822)=11.42034576; T( 8,823)=11.43985029; T( 8,824)=11.45944568; T( 8,825)=11.47913298; T( 8,826)=11.49891321; T( 8,827)=11.51878743; T( 8,828)=11.53875673; T( 8,829)=11.55882221; T( 8,830)=11.57898496; T( 8,831)=11.59924613; T( 8,832)=11.61960687; T( 8,833)=11.64006836; T( 8,834)=11.66063178; T( 8,835)=11.68129836; T( 8,836)=11.70206932; T( 8,837)=11.72294593; T( 8,838)=11.74392947; T( 8,839)=11.76502124; T( 8,840)=11.78622257; T( 8,841)=11.80753482; T( 8,842)=11.82895936; T( 8,843)=11.85049759; T( 8,844)=11.87215095; T( 8,845)=11.89392088; T( 8,846)=11.91580888; T( 8,847)=11.93781645; T( 8,848)=11.95994514; T( 8,849)=11.98219651; T( 8,850)=12.00457218; T( 8,851)=12.02707376; T( 8,852)=12.04970293; T( 8,853)=12.07246138; T( 8,854)=12.09535085; T( 8,855)=12.11837310; T( 8,856)=12.14152993; T( 8,857)=12.16482318; T( 8,858)=12.18825473; T( 8,859)=12.21182650; T( 8,860)=12.23554043; T( 8,861)=12.25939853; T( 8,862)=12.28340284; T( 8,863)=12.30755543; T( 8,864)=12.33185844; T( 8,865)=12.35631403; T( 8,866)=12.38092443; T( 8,867)=12.40569189; T( 8,868)=12.43061876; T( 8,869)=12.45570738; T( 8,870)=12.48096019; T( 8,871)=12.50637966; T( 8,872)=12.53196833; T( 8,873)=12.55772879; T( 8,874)=12.58366370; T( 8,875)=12.60977576; T( 8,876)=12.63606776; T( 8,877)=12.66254253; T( 8,878)=12.68920300; T( 8,879)=12.71605214; T( 8,880)=12.74309301; T( 8,881)=12.77032874; T( 8,882)=12.79776253; T( 8,883)=12.82539767; T( 8,884)=12.85323753; T( 8,885)=12.88128557; T( 8,886)=12.90954532; T( 8,887)=12.93802042; T( 8,888)=12.96671460; T( 8,889)=12.99563168; T( 8,890)=13.02477560; T( 8,891)=13.05415038; T( 8,892)=13.08376017; T( 8,893)=13.11360922; T( 8,894)=13.14370190; T( 8,895)=13.17404271; T( 8,896)=13.20463625; T( 8,897)=13.23548729; T( 8,898)=13.26660069; T( 8,899)=13.29798150; T( 8,900)=13.32963487; T( 8,901)=13.36156614; T( 8,902)=13.39378077; T( 8,903)=13.42628443; T( 8,904)=13.45908291; T( 8,905)=13.49218222; T( 8,906)=13.52558855; T( 8,907)=13.55930825; T( 8,908)=13.59334790; T( 8,909)=13.62771430; T( 8,910)=13.66241443; T( 8,911)=13.69745554; T( 8,912)=13.73284510; T( 8,913)=13.76859083; T( 8,914)=13.80470070; T( 8,915)=13.84118298; T( 8,916)=13.87804619; T( 8,917)=13.91529919; T( 8,918)=13.95295113; T( 8,919)=13.99101147; T( 8,920)=14.02949005; T( 8,921)=14.06839705; T( 8,922)=14.10774303; T( 8,923)=14.14753895; T( 8,924)=14.18779620; T( 8,925)=14.22852659; T( 8,926)=14.26974241; T( 8,927)=14.31145642; T( 8,928)=14.35368191; T( 8,929)=14.39643270; T( 8,930)=14.43972320; T( 8,931)=14.48356840; T( 8,932)=14.52798395; T( 8,933)=14.57298616; T( 8,934)=14.61859207; T( 8,935)=14.66481946; T( 8,936)=14.71168693; T( 8,937)=14.75921392; T( 8,938)=14.80742080; T( 8,939)=14.85632887; T( 8,940)=14.90596048; T( 8,941)=14.95633906; T( 8,942)=15.00748923; T( 8,943)=15.05943682; T( 8,944)=15.11220901; T( 8,945)=15.16583441; T( 8,946)=15.22034314; T( 8,947)=15.27576697; T( 8,948)=15.33213943; T( 8,949)=15.38949593; T( 8,950)=15.44787392; T( 8,951)=15.50731306; T( 8,952)=15.56785535; T( 8,953)=15.62954539; T( 8,954)=15.69243055; T( 8,955)=15.75656121; T( 8,956)=15.82199104; T( 8,957)=15.88877729; T( 8,958)=15.95698108; T( 8,959)=16.02666783; T( 8,960)=16.09790761; T( 8,961)=16.17077561; T( 8,962)=16.24535269; T( 8,963)=16.32172592; T( 8,964)=16.39998923; T( 8,965)=16.48024423; T( 8,966)=16.56260097; T( 8,967)=16.64717898; T( 8,968)=16.73410838; T( 8,969)=16.82353113; T( 8,970)=16.91560259; T( 8,971)=17.01049321; T( 8,972)=17.10839060; T( 8,973)=17.20950186; T( 8,974)=17.31405648; T( 8,975)=17.42230962; T( 8,976)=17.53454614; T( 8,977)=17.65108541; T( 8,978)=17.77228713; T( 8,979)=17.89855848; T( 8,980)=18.03036285; T( 8,981)=18.16823076; T( 8,982)=18.31277355; T( 8,983)=18.46470069; T( 8,984)=18.62484212; T( 8,985)=18.79417722; T( 8,986)=18.97387323; T( 8,987)=19.16533665; T( 8,988)=19.37028387; T( 8,989)=19.59083975; T( 8,990)=19.82967904; T( 8,991)=20.09023503; T( 8,992)=20.37701777; T( 8,993)=20.69611949; T( 8,994)=21.05605726; T( 8,995)=21.46926575; T( 8,996)=21.95495499; T( 8,997)=22.54517756; T( 8,998)=23.29973450; T( 8,999)=24.35208135; T( 8,1000)=26.12448156; T( 8,1001)=31.82762800; T( 8,1002)=37.33159364; T( 9, 1)= 0.00000000; T( 9, 2)= 1.15194955; T( 9, 3)= 1.37020546; T( 9, 4)= 1.51943564; T( 9, 5)= 1.63669070; T( 9, 6)= 1.73493290; T( 9, 7)= 1.82037797; T( 9, 8)= 1.89653501; T( 9, 9)= 1.96559825; T( 9,10)= 2.02904000; T( 9,11)= 2.08790074; T( 9,12)= 2.14294562; T( 9,13)= 2.19475535; T( 9,14)= 2.24378211; T( 9,15)= 2.29038551; T( 9,16)= 2.33485678; T( 9,17)= 2.37743533; T( 9,18)= 2.41832067; T( 9,19)= 2.45768093; T( 9,20)= 2.49565926; T( 9,21)= 2.53237867; T( 9,22)= 2.56794569; T( 9,23)= 2.60245327; T( 9,24)= 2.63598304; T( 9,25)= 2.66860710; T( 9,26)= 2.70038950; T( 9,27)= 2.73138742; T( 9,28)= 2.76165214; T( 9,29)= 2.79122983; T( 9,30)= 2.82016223; T( 9,31)= 2.84848723; T( 9,32)= 2.87623931; T( 9,33)= 2.90344997; T( 9,34)= 2.93014807; T( 9,35)= 2.95636010; T( 9,36)= 2.98211048; T( 9,37)= 3.00742173; T( 9,38)= 3.03231470; T( 9,39)= 3.05680873; T( 9,40)= 3.08092177; T( 9,41)= 3.10467056; T( 9,42)= 3.12807070; T( 9,43)= 3.15113676; T( 9,44)= 3.17388238; T( 9,45)= 3.19632036; T( 9,46)= 3.21846269; T( 9,47)= 3.24032068; T( 9,48)= 3.26190494; T( 9,49)= 3.28322551; T( 9,50)= 3.30429183; T( 9,51)= 3.32511284; T( 9,52)= 3.34569701; T( 9,53)= 3.36605234; T( 9,54)= 3.38618644; T( 9,55)= 3.40610651; T( 9,56)= 3.42581940; T( 9,57)= 3.44533163; T( 9,58)= 3.46464940; T( 9,59)= 3.48377863; T( 9,60)= 3.50272495; T( 9,61)= 3.52149373; T( 9,62)= 3.54009013; T( 9,63)= 3.55851904; T( 9,64)= 3.57678517; T( 9,65)= 3.59489302; T( 9,66)= 3.61284689; T( 9,67)= 3.63065091; T( 9,68)= 3.64830905; T( 9,69)= 3.66582510; T( 9,70)= 3.68320273; T( 9,71)= 3.70044544; T( 9,72)= 3.71755660; T( 9,73)= 3.73453947; T( 9,74)= 3.75139717; T( 9,75)= 3.76813270; T( 9,76)= 3.78474899; T( 9,77)= 3.80124881; T( 9,78)= 3.81763487; T( 9,79)= 3.83390978; T( 9,80)= 3.85007605; T( 9,81)= 3.86613610; T( 9,82)= 3.88209230; T( 9,83)= 3.89794690; T( 9,84)= 3.91370210; T( 9,85)= 3.92936004; T( 9,86)= 3.94492275; T( 9,87)= 3.96039224; T( 9,88)= 3.97577044; T( 9,89)= 3.99105922; T( 9,90)= 4.00626039; T( 9,91)= 4.02137570; T( 9,92)= 4.03640687; T( 9,93)= 4.05135555; T( 9,94)= 4.06622335; T( 9,95)= 4.08101183; T( 9,96)= 4.09572250; T( 9,97)= 4.11035685; T( 9,98)= 4.12491630; T( 9,99)= 4.13940224; T( 9,100)= 4.15381604; T( 9,101)= 4.16815901; T( 9,102)= 4.18243243; T( 9,103)= 4.19663756; T( 9,104)= 4.21077561; T( 9,105)= 4.22484776; T( 9,106)= 4.23885517; T( 9,107)= 4.25279897; T( 9,108)= 4.26668026; T( 9,109)= 4.28050009; T( 9,110)= 4.29425952; T( 9,111)= 4.30795956; T( 9,112)= 4.32160120; T( 9,113)= 4.33518542; T( 9,114)= 4.34871316; T( 9,115)= 4.36218535; T( 9,116)= 4.37560287; T( 9,117)= 4.38896663; T( 9,118)= 4.40227747; T( 9,119)= 4.41553624; T( 9,120)= 4.42874376; T( 9,121)= 4.44190084; T( 9,122)= 4.45500826; T( 9,123)= 4.46806678; T( 9,124)= 4.48107717; T( 9,125)= 4.49404015; T( 9,126)= 4.50695646; T( 9,127)= 4.51982678; T( 9,128)= 4.53265182; T( 9,129)= 4.54543224; T( 9,130)= 4.55816871; T( 9,131)= 4.57086188; T( 9,132)= 4.58351239; T( 9,133)= 4.59612084; T( 9,134)= 4.60868786; T( 9,135)= 4.62121403; T( 9,136)= 4.63369996; T( 9,137)= 4.64614620; T( 9,138)= 4.65855333; T( 9,139)= 4.67092189; T( 9,140)= 4.68325242; T( 9,141)= 4.69554547; T( 9,142)= 4.70780154; T( 9,143)= 4.72002115; T( 9,144)= 4.73220480; T( 9,145)= 4.74435299; T( 9,146)= 4.75646620; T( 9,147)= 4.76854490; T( 9,148)= 4.78058956; T( 9,149)= 4.79260064; T( 9,150)= 4.80457858; T( 9,151)= 4.81652384; T( 9,152)= 4.82843684; T( 9,153)= 4.84031801; T( 9,154)= 4.85216777; T( 9,155)= 4.86398654; T( 9,156)= 4.87577471; T( 9,157)= 4.88753269; T( 9,158)= 4.89926087; T( 9,159)= 4.91095963; T( 9,160)= 4.92262936; T( 9,161)= 4.93427042; T( 9,162)= 4.94588318; T( 9,163)= 4.95746801; T( 9,164)= 4.96902525; T( 9,165)= 4.98055527; T( 9,166)= 4.99205839; T( 9,167)= 5.00353496; T( 9,168)= 5.01498531; T( 9,169)= 5.02640978; T( 9,170)= 5.03780868; T( 9,171)= 5.04918233; T( 9,172)= 5.06053104; T( 9,173)= 5.07185513; T( 9,174)= 5.08315490; T( 9,175)= 5.09443064; T( 9,176)= 5.10568265; T( 9,177)= 5.11691122; T( 9,178)= 5.12811664; T( 9,179)= 5.13929920; T( 9,180)= 5.15045916; T( 9,181)= 5.16159680; T( 9,182)= 5.17271239; T( 9,183)= 5.18380621; T( 9,184)= 5.19487851; T( 9,185)= 5.20592954; T( 9,186)= 5.21695958; T( 9,187)= 5.22796886; T( 9,188)= 5.23895764; T( 9,189)= 5.24992616; T( 9,190)= 5.26087466; T( 9,191)= 5.27180339; T( 9,192)= 5.28271258; T( 9,193)= 5.29360245; T( 9,194)= 5.30447325; T( 9,195)= 5.31532519; T( 9,196)= 5.32615850; T( 9,197)= 5.33697340; T( 9,198)= 5.34777011; T( 9,199)= 5.35854884; T( 9,200)= 5.36930980; T( 9,201)= 5.38005321; T( 9,202)= 5.39077927; T( 9,203)= 5.40148819; T( 9,204)= 5.41218016; T( 9,205)= 5.42285539; T( 9,206)= 5.43351408; T( 9,207)= 5.44415641; T( 9,208)= 5.45478258; T( 9,209)= 5.46539279; T( 9,210)= 5.47598721; T( 9,211)= 5.48656604; T( 9,212)= 5.49712945; T( 9,213)= 5.50767763; T( 9,214)= 5.51821077; T( 9,215)= 5.52872902; T( 9,216)= 5.53923258; T( 9,217)= 5.54972160; T( 9,218)= 5.56019628; T( 9,219)= 5.57065676; T( 9,220)= 5.58110323; T( 9,221)= 5.59153584; T( 9,222)= 5.60195476; T( 9,223)= 5.61236016; T( 9,224)= 5.62275219; T( 9,225)= 5.63313100; T( 9,226)= 5.64349677; T( 9,227)= 5.65384964; T( 9,228)= 5.66418976; T( 9,229)= 5.67451729; T( 9,230)= 5.68483238; T( 9,231)= 5.69513517; T( 9,232)= 5.70542582; T( 9,233)= 5.71570447; T( 9,234)= 5.72597127; T( 9,235)= 5.73622635; T( 9,236)= 5.74646986; T( 9,237)= 5.75670193; T( 9,238)= 5.76692272; T( 9,239)= 5.77713234; T( 9,240)= 5.78733095; T( 9,241)= 5.79751867; T( 9,242)= 5.80769564; T( 9,243)= 5.81786199; T( 9,244)= 5.82801785; T( 9,245)= 5.83816335; T( 9,246)= 5.84829861; T( 9,247)= 5.85842378; T( 9,248)= 5.86853896; T( 9,249)= 5.87864429; T( 9,250)= 5.88873989; T( 9,251)= 5.89882588; T( 9,252)= 5.90890239; T( 9,253)= 5.91896953; T( 9,254)= 5.92902742; T( 9,255)= 5.93907619; T( 9,256)= 5.94911594; T( 9,257)= 5.95914680; T( 9,258)= 5.96916888; T( 9,259)= 5.97918230; T( 9,260)= 5.98918716; T( 9,261)= 5.99918358; T( 9,262)= 6.00917168; T( 9,263)= 6.01915155; T( 9,264)= 6.02912332; T( 9,265)= 6.03908709; T( 9,266)= 6.04904297; T( 9,267)= 6.05899106; T( 9,268)= 6.06893147; T( 9,269)= 6.07886431; T( 9,270)= 6.08878968; T( 9,271)= 6.09870768; T( 9,272)= 6.10861842; T( 9,273)= 6.11852200; T( 9,274)= 6.12841851; T( 9,275)= 6.13830807; T( 9,276)= 6.14819077; T( 9,277)= 6.15806671; T( 9,278)= 6.16793598; T( 9,279)= 6.17779869; T( 9,280)= 6.18765493; T( 9,281)= 6.19750480; T( 9,282)= 6.20734839; T( 9,283)= 6.21718579; T( 9,284)= 6.22701711; T( 9,285)= 6.23684243; T( 9,286)= 6.24666185; T( 9,287)= 6.25647546; T( 9,288)= 6.26628335; T( 9,289)= 6.27608561; T( 9,290)= 6.28588234; T( 9,291)= 6.29567361; T( 9,292)= 6.30545952; T( 9,293)= 6.31524017; T( 9,294)= 6.32501563; T( 9,295)= 6.33478599; T( 9,296)= 6.34455134; T( 9,297)= 6.35431177; T( 9,298)= 6.36406737; T( 9,299)= 6.37381821; T( 9,300)= 6.38356438; T( 9,301)= 6.39330596; T( 9,302)= 6.40304305; T( 9,303)= 6.41277572; T( 9,304)= 6.42250405; T( 9,305)= 6.43222813; T( 9,306)= 6.44194804; T( 9,307)= 6.45166386; T( 9,308)= 6.46137567; T( 9,309)= 6.47108355; T( 9,310)= 6.48078758; T( 9,311)= 6.49048784; T( 9,312)= 6.50018441; T( 9,313)= 6.50987736; T( 9,314)= 6.51956678; T( 9,315)= 6.52925274; T( 9,316)= 6.53893531; T( 9,317)= 6.54861459; T( 9,318)= 6.55829063; T( 9,319)= 6.56796353; T( 9,320)= 6.57763335; T( 9,321)= 6.58730017; T( 9,322)= 6.59696406; T( 9,323)= 6.60662509; T( 9,324)= 6.61628336; T( 9,325)= 6.62593891; T( 9,326)= 6.63559184; T( 9,327)= 6.64524221; T( 9,328)= 6.65489009; T( 9,329)= 6.66453556; T( 9,330)= 6.67417869; T( 9,331)= 6.68381954; T( 9,332)= 6.69345821; T( 9,333)= 6.70309474; T( 9,334)= 6.71272922; T( 9,335)= 6.72236171; T( 9,336)= 6.73199229; T( 9,337)= 6.74162102; T( 9,338)= 6.75124797; T( 9,339)= 6.76087322; T( 9,340)= 6.77049683; T( 9,341)= 6.78011887; T( 9,342)= 6.78973941; T( 9,343)= 6.79935851; T( 9,344)= 6.80897626; T( 9,345)= 6.81859270; T( 9,346)= 6.82820791; T( 9,347)= 6.83782196; T( 9,348)= 6.84743492; T( 9,349)= 6.85704684; T( 9,350)= 6.86665781; T( 9,351)= 6.87626787; T( 9,352)= 6.88587711; T( 9,353)= 6.89548557; T( 9,354)= 6.90509334; T( 9,355)= 6.91470048; T( 9,356)= 6.92430705; T( 9,357)= 6.93391311; T( 9,358)= 6.94351873; T( 9,359)= 6.95312398; T( 9,360)= 6.96272891; T( 9,361)= 6.97233360; T( 9,362)= 6.98193811; T( 9,363)= 6.99154249; T( 9,364)= 7.00114683; T( 9,365)= 7.01075116; T( 9,366)= 7.02035557; T( 9,367)= 7.02996012; T( 9,368)= 7.03956485; T( 9,369)= 7.04916985; T( 9,370)= 7.05877517; T( 9,371)= 7.06838088; T( 9,372)= 7.07798703; T( 9,373)= 7.08759369; T( 9,374)= 7.09720092; T( 9,375)= 7.10680878; T( 9,376)= 7.11641733; T( 9,377)= 7.12602664; T( 9,378)= 7.13563677; T( 9,379)= 7.14524778; T( 9,380)= 7.15485972; T( 9,381)= 7.16447266; T( 9,382)= 7.17408667; T( 9,383)= 7.18370179; T( 9,384)= 7.19331810; T( 9,385)= 7.20293565; T( 9,386)= 7.21255451; T( 9,387)= 7.22217472; T( 9,388)= 7.23179637; T( 9,389)= 7.24141949; T( 9,390)= 7.25104416; T( 9,391)= 7.26067043; T( 9,392)= 7.27029837; T( 9,393)= 7.27992803; T( 9,394)= 7.28955947; T( 9,395)= 7.29919276; T( 9,396)= 7.30882795; T( 9,397)= 7.31846510; T( 9,398)= 7.32810427; T( 9,399)= 7.33774552; T( 9,400)= 7.34738891; T( 9,401)= 7.35703450; T( 9,402)= 7.36668235; T( 9,403)= 7.37633252; T( 9,404)= 7.38598506; T( 9,405)= 7.39564003; T( 9,406)= 7.40529751; T( 9,407)= 7.41495753; T( 9,408)= 7.42462017; T( 9,409)= 7.43428547; T( 9,410)= 7.44395351; T( 9,411)= 7.45362433; T( 9,412)= 7.46329800; T( 9,413)= 7.47297458; T( 9,414)= 7.48265412; T( 9,415)= 7.49233668; T( 9,416)= 7.50202232; T( 9,417)= 7.51171111; T( 9,418)= 7.52140309; T( 9,419)= 7.53109833; T( 9,420)= 7.54079688; T( 9,421)= 7.55049881; T( 9,422)= 7.56020417; T( 9,423)= 7.56991303; T( 9,424)= 7.57962543; T( 9,425)= 7.58934144; T( 9,426)= 7.59906111; T( 9,427)= 7.60878452; T( 9,428)= 7.61851170; T( 9,429)= 7.62824273; T( 9,430)= 7.63797766; T( 9,431)= 7.64771655; T( 9,432)= 7.65745946; T( 9,433)= 7.66720644; T( 9,434)= 7.67695756; T( 9,435)= 7.68671287; T( 9,436)= 7.69647244; T( 9,437)= 7.70623631; T( 9,438)= 7.71600456; T( 9,439)= 7.72577724; T( 9,440)= 7.73555440; T( 9,441)= 7.74533611; T( 9,442)= 7.75512243; T( 9,443)= 7.76491341; T( 9,444)= 7.77470912; T( 9,445)= 7.78450961; T( 9,446)= 7.79431494; T( 9,447)= 7.80412517; T( 9,448)= 7.81394037; T( 9,449)= 7.82376058; T( 9,450)= 7.83358588; T( 9,451)= 7.84341631; T( 9,452)= 7.85325194; T( 9,453)= 7.86309283; T( 9,454)= 7.87293904; T( 9,455)= 7.88279062; T( 9,456)= 7.89264764; T( 9,457)= 7.90251016; T( 9,458)= 7.91237824; T( 9,459)= 7.92225194; T( 9,460)= 7.93213131; T( 9,461)= 7.94201642; T( 9,462)= 7.95190733; T( 9,463)= 7.96180410; T( 9,464)= 7.97170679; T( 9,465)= 7.98161545; T( 9,466)= 7.99153016; T( 9,467)= 8.00145097; T( 9,468)= 8.01137795; T( 9,469)= 8.02131115; T( 9,470)= 8.03125063; T( 9,471)= 8.04119646; T( 9,472)= 8.05114870; T( 9,473)= 8.06110741; T( 9,474)= 8.07107265; T( 9,475)= 8.08104448; T( 9,476)= 8.09102297; T( 9,477)= 8.10100818; T( 9,478)= 8.11100017; T( 9,479)= 8.12099900; T( 9,480)= 8.13100473; T( 9,481)= 8.14101744; T( 9,482)= 8.15103717; T( 9,483)= 8.16106400; T( 9,484)= 8.17109798; T( 9,485)= 8.18113918; T( 9,486)= 8.19118767; T( 9,487)= 8.20124350; T( 9,488)= 8.21130675; T( 9,489)= 8.22137747; T( 9,490)= 8.23145573; T( 9,491)= 8.24154159; T( 9,492)= 8.25163512; T( 9,493)= 8.26173639; T( 9,494)= 8.27184545; T( 9,495)= 8.28196237; T( 9,496)= 8.29208722; T( 9,497)= 8.30222007; T( 9,498)= 8.31236097; T( 9,499)= 8.32251000; T( 9,500)= 8.33266722; T( 9,501)= 8.34283269; T( 9,502)= 8.35300649; T( 9,503)= 8.36318868; T( 9,504)= 8.37337932; T( 9,505)= 8.38357849; T( 9,506)= 8.39378625; T( 9,507)= 8.40400267; T( 9,508)= 8.41422781; T( 9,509)= 8.42446175; T( 9,510)= 8.43470455; T( 9,511)= 8.44495628; T( 9,512)= 8.45521701; T( 9,513)= 8.46548681; T( 9,514)= 8.47576574; T( 9,515)= 8.48605388; T( 9,516)= 8.49635130; T( 9,517)= 8.50665806; T( 9,518)= 8.51697424; T( 9,519)= 8.52729991; T( 9,520)= 8.53763513; T( 9,521)= 8.54797998; T( 9,522)= 8.55833453; T( 9,523)= 8.56869885; T( 9,524)= 8.57907301; T( 9,525)= 8.58945709; T( 9,526)= 8.59985115; T( 9,527)= 8.61025527; T( 9,528)= 8.62066953; T( 9,529)= 8.63109399; T( 9,530)= 8.64152872; T( 9,531)= 8.65197381; T( 9,532)= 8.66242932; T( 9,533)= 8.67289534; T( 9,534)= 8.68337193; T( 9,535)= 8.69385917; T( 9,536)= 8.70435713; T( 9,537)= 8.71486590; T( 9,538)= 8.72538554; T( 9,539)= 8.73591613; T( 9,540)= 8.74645775; T( 9,541)= 8.75701048; T( 9,542)= 8.76757440; T( 9,543)= 8.77814957; T( 9,544)= 8.78873609; T( 9,545)= 8.79933402; T( 9,546)= 8.80994344; T( 9,547)= 8.82056444; T( 9,548)= 8.83119710; T( 9,549)= 8.84184149; T( 9,550)= 8.85249770; T( 9,551)= 8.86316579; T( 9,552)= 8.87384587; T( 9,553)= 8.88453800; T( 9,554)= 8.89524227; T( 9,555)= 8.90595876; T( 9,556)= 8.91668755; T( 9,557)= 8.92742873; T( 9,558)= 8.93818238; T( 9,559)= 8.94894858; T( 9,560)= 8.95972742; T( 9,561)= 8.97051897; T( 9,562)= 8.98132334; T( 9,563)= 8.99214059; T( 9,564)= 9.00297083; T( 9,565)= 9.01381412; T( 9,566)= 9.02467057; T( 9,567)= 9.03554025; T( 9,568)= 9.04642326; T( 9,569)= 9.05731968; T( 9,570)= 9.06822960; T( 9,571)= 9.07915312; T( 9,572)= 9.09009031; T( 9,573)= 9.10104127; T( 9,574)= 9.11200610; T( 9,575)= 9.12298487; T( 9,576)= 9.13397769; T( 9,577)= 9.14498464; T( 9,578)= 9.15600581; T( 9,579)= 9.16704131; T( 9,580)= 9.17809122; T( 9,581)= 9.18915564; T( 9,582)= 9.20023466; T( 9,583)= 9.21132837; T( 9,584)= 9.22243688; T( 9,585)= 9.23356028; T( 9,586)= 9.24469866; T( 9,587)= 9.25585212; T( 9,588)= 9.26702077; T( 9,589)= 9.27820469; T( 9,590)= 9.28940399; T( 9,591)= 9.30061876; T( 9,592)= 9.31184912; T( 9,593)= 9.32309515; T( 9,594)= 9.33435696; T( 9,595)= 9.34563465; T( 9,596)= 9.35692833; T( 9,597)= 9.36823809; T( 9,598)= 9.37956404; T( 9,599)= 9.39090629; T( 9,600)= 9.40226494; T( 9,601)= 9.41364009; T( 9,602)= 9.42503186; T( 9,603)= 9.43644035; T( 9,604)= 9.44786566; T( 9,605)= 9.45930791; T( 9,606)= 9.47076721; T( 9,607)= 9.48224366; T( 9,608)= 9.49373737; T( 9,609)= 9.50524846; T( 9,610)= 9.51677704; T( 9,611)= 9.52832322; T( 9,612)= 9.53988712; T( 9,613)= 9.55146884; T( 9,614)= 9.56306851; T( 9,615)= 9.57468623; T( 9,616)= 9.58632213; T( 9,617)= 9.59797633; T( 9,618)= 9.60964893; T( 9,619)= 9.62134007; T( 9,620)= 9.63304986; T( 9,621)= 9.64477841; T( 9,622)= 9.65652586; T( 9,623)= 9.66829231; T( 9,624)= 9.68007791; T( 9,625)= 9.69188276; T( 9,626)= 9.70370700; T( 9,627)= 9.71555075; T( 9,628)= 9.72741414; T( 9,629)= 9.73929729; T( 9,630)= 9.75120033; T( 9,631)= 9.76312339; T( 9,632)= 9.77506660; T( 9,633)= 9.78703009; T( 9,634)= 9.79901400; T( 9,635)= 9.81101845; T( 9,636)= 9.82304359; T( 9,637)= 9.83508954; T( 9,638)= 9.84715643; T( 9,639)= 9.85924442; T( 9,640)= 9.87135363; T( 9,641)= 9.88348421; T( 9,642)= 9.89563628; T( 9,643)= 9.90781001; T( 9,644)= 9.92000552; T( 9,645)= 9.93222295; T( 9,646)= 9.94446247; T( 9,647)= 9.95672420; T( 9,648)= 9.96900829; T( 9,649)= 9.98131490; T( 9,650)= 9.99364416; T( 9,651)=10.00599624; T( 9,652)=10.01837127; T( 9,653)=10.03076942; T( 9,654)=10.04319084; T( 9,655)=10.05563568; T( 9,656)=10.06810409; T( 9,657)=10.08059623; T( 9,658)=10.09311226; T( 9,659)=10.10565235; T( 9,660)=10.11821664; T( 9,661)=10.13080531; T( 9,662)=10.14341851; T( 9,663)=10.15605641; T( 9,664)=10.16871917; T( 9,665)=10.18140697; T( 9,666)=10.19411997; T( 9,667)=10.20685834; T( 9,668)=10.21962225; T( 9,669)=10.23241188; T( 9,670)=10.24522739; T( 9,671)=10.25806897; T( 9,672)=10.27093679; T( 9,673)=10.28383103; T( 9,674)=10.29675187; T( 9,675)=10.30969950; T( 9,676)=10.32267408; T( 9,677)=10.33567582; T( 9,678)=10.34870489; T( 9,679)=10.36176149; T( 9,680)=10.37484580; T( 9,681)=10.38795801; T( 9,682)=10.40109832; T( 9,683)=10.41426693; T( 9,684)=10.42746402; T( 9,685)=10.44068979; T( 9,686)=10.45394445; T( 9,687)=10.46722820; T( 9,688)=10.48054124; T( 9,689)=10.49388377; T( 9,690)=10.50725600; T( 9,691)=10.52065815; T( 9,692)=10.53409042; T( 9,693)=10.54755302; T( 9,694)=10.56104617; T( 9,695)=10.57457008; T( 9,696)=10.58812498; T( 9,697)=10.60171108; T( 9,698)=10.61532861; T( 9,699)=10.62897779; T( 9,700)=10.64265884; T( 9,701)=10.65637201; T( 9,702)=10.67011751; T( 9,703)=10.68389558; T( 9,704)=10.69770646; T( 9,705)=10.71155038; T( 9,706)=10.72542759; T( 9,707)=10.73933832; T( 9,708)=10.75328283; T( 9,709)=10.76726135; T( 9,710)=10.78127414; T( 9,711)=10.79532144; T( 9,712)=10.80940352; T( 9,713)=10.82352064; T( 9,714)=10.83767304; T( 9,715)=10.85186099; T( 9,716)=10.86608475; T( 9,717)=10.88034460; T( 9,718)=10.89464080; T( 9,719)=10.90897363; T( 9,720)=10.92334336; T( 9,721)=10.93775026; T( 9,722)=10.95219462; T( 9,723)=10.96667673; T( 9,724)=10.98119687; T( 9,725)=10.99575533; T( 9,726)=11.01035240; T( 9,727)=11.02498837; T( 9,728)=11.03966356; T( 9,729)=11.05437825; T( 9,730)=11.06913276; T( 9,731)=11.08392739; T( 9,732)=11.09876245; T( 9,733)=11.11363826; T( 9,734)=11.12855514; T( 9,735)=11.14351342; T( 9,736)=11.15851340; T( 9,737)=11.17355543; T( 9,738)=11.18863983; T( 9,739)=11.20376695; T( 9,740)=11.21893712; T( 9,741)=11.23415068; T( 9,742)=11.24940799; T( 9,743)=11.26470939; T( 9,744)=11.28005524; T( 9,745)=11.29544589; T( 9,746)=11.31088172; T( 9,747)=11.32636309; T( 9,748)=11.34189037; T( 9,749)=11.35746393; T( 9,750)=11.37308416; T( 9,751)=11.38875144; T( 9,752)=11.40446616; T( 9,753)=11.42022871; T( 9,754)=11.43603949; T( 9,755)=11.45189890; T( 9,756)=11.46780736; T( 9,757)=11.48376527; T( 9,758)=11.49977304; T( 9,759)=11.51583111; T( 9,760)=11.53193990; T( 9,761)=11.54809984; T( 9,762)=11.56431136; T( 9,763)=11.58057492; T( 9,764)=11.59689096; T( 9,765)=11.61325993; T( 9,766)=11.62968230; T( 9,767)=11.64615852; T( 9,768)=11.66268907; T( 9,769)=11.67927442; T( 9,770)=11.69591507; T( 9,771)=11.71261149; T( 9,772)=11.72936418; T( 9,773)=11.74617364; T( 9,774)=11.76304038; T( 9,775)=11.77996492; T( 9,776)=11.79694777; T( 9,777)=11.81398947; T( 9,778)=11.83109054; T( 9,779)=11.84825153; T( 9,780)=11.86547298; T( 9,781)=11.88275546; T( 9,782)=11.90009953; T( 9,783)=11.91750574; T( 9,784)=11.93497470; T( 9,785)=11.95250697; T( 9,786)=11.97010315; T( 9,787)=11.98776385; T( 9,788)=12.00548968; T( 9,789)=12.02328125; T( 9,790)=12.04113920; T( 9,791)=12.05906415; T( 9,792)=12.07705675; T( 9,793)=12.09511766; T( 9,794)=12.11324753; T( 9,795)=12.13144705; T( 9,796)=12.14971689; T( 9,797)=12.16805774; T( 9,798)=12.18647031; T( 9,799)=12.20495530; T( 9,800)=12.22351345; T( 9,801)=12.24214547; T( 9,802)=12.26085212; T( 9,803)=12.27963414; T( 9,804)=12.29849231; T( 9,805)=12.31742740; T( 9,806)=12.33644020; T( 9,807)=12.35553151; T( 9,808)=12.37470213; T( 9,809)=12.39395290; T( 9,810)=12.41328465; T( 9,811)=12.43269824; T( 9,812)=12.45219452; T( 9,813)=12.47177437; T( 9,814)=12.49143868; T( 9,815)=12.51118836; T( 9,816)=12.53102432; T( 9,817)=12.55094750; T( 9,818)=12.57095885; T( 9,819)=12.59105932; T( 9,820)=12.61124990; T( 9,821)=12.63153158; T( 9,822)=12.65190538; T( 9,823)=12.67237231; T( 9,824)=12.69293343; T( 9,825)=12.71358979; T( 9,826)=12.73434248; T( 9,827)=12.75519259; T( 9,828)=12.77614124; T( 9,829)=12.79718957; T( 9,830)=12.81833872; T( 9,831)=12.83958988; T( 9,832)=12.86094424; T( 9,833)=12.88240301; T( 9,834)=12.90396743; T( 9,835)=12.92563876; T( 9,836)=12.94741828; T( 9,837)=12.96930729; T( 9,838)=12.99130713; T( 9,839)=13.01341914; T( 9,840)=13.03564470; T( 9,841)=13.05798521; T( 9,842)=13.08044209; T( 9,843)=13.10301681; T( 9,844)=13.12571083; T( 9,845)=13.14852568; T( 9,846)=13.17146287; T( 9,847)=13.19452400; T( 9,848)=13.21771064; T( 9,849)=13.24102442; T( 9,850)=13.26446700; T( 9,851)=13.28804008; T( 9,852)=13.31174538; T( 9,853)=13.33558465; T( 9,854)=13.35955969; T( 9,855)=13.38367233; T( 9,856)=13.40792443; T( 9,857)=13.43231790; T( 9,858)=13.45685468; T( 9,859)=13.48153676; T( 9,860)=13.50636615; T( 9,861)=13.53134493; T( 9,862)=13.55647521; T( 9,863)=13.58175914; T( 9,864)=13.60719892; T( 9,865)=13.63279681; T( 9,866)=13.65855509; T( 9,867)=13.68447612; T( 9,868)=13.71056231; T( 9,869)=13.73681609; T( 9,870)=13.76323998; T( 9,871)=13.78983655; T( 9,872)=13.81660842; T( 9,873)=13.84355827; T( 9,874)=13.87068884; T( 9,875)=13.89800295; T( 9,876)=13.92550348; T( 9,877)=13.95319335; T( 9,878)=13.98107560; T( 9,879)=14.00915329; T( 9,880)=14.03742961; T( 9,881)=14.06590777; T( 9,882)=14.09459111; T( 9,883)=14.12348301; T( 9,884)=14.15258698; T( 9,885)=14.18190657; T( 9,886)=14.21144546; T( 9,887)=14.24120741; T( 9,888)=14.27119626; T( 9,889)=14.30141599; T( 9,890)=14.33187066; T( 9,891)=14.36256442; T( 9,892)=14.39350158; T( 9,893)=14.42468653; T( 9,894)=14.45612379; T( 9,895)=14.48781800; T( 9,896)=14.51977395; T( 9,897)=14.55199654; T( 9,898)=14.58449083; T( 9,899)=14.61726200; T( 9,900)=14.65031542; T( 9,901)=14.68365657; T( 9,902)=14.71729114; T( 9,903)=14.75122495; T( 9,904)=14.78546403; T( 9,905)=14.82001456; T( 9,906)=14.85488294; T( 9,907)=14.89007576; T( 9,908)=14.92559982; T( 9,909)=14.96146212; T( 9,910)=14.99766991; T( 9,911)=15.03423067; T( 9,912)=15.07115212; T( 9,913)=15.10844223; T( 9,914)=15.14610927; T( 9,915)=15.18416175; T( 9,916)=15.22260851; T( 9,917)=15.26145869; T( 9,918)=15.30072174; T( 9,919)=15.34040745; T( 9,920)=15.38052598; T( 9,921)=15.42108786; T( 9,922)=15.46210399; T( 9,923)=15.50358571; T( 9,924)=15.54554477; T( 9,925)=15.58799338; T( 9,926)=15.63094424; T( 9,927)=15.67441053; T( 9,928)=15.71840598; T( 9,929)=15.76294488; T( 9,930)=15.80804209; T( 9,931)=15.85371311; T( 9,932)=15.89997410; T( 9,933)=15.94684192; T( 9,934)=15.99433414; T( 9,935)=16.04246915; T( 9,936)=16.09126615; T( 9,937)=16.14074522; T( 9,938)=16.19092738; T( 9,939)=16.24183463; T( 9,940)=16.29349005; T( 9,941)=16.34591784; T( 9,942)=16.39914340; T( 9,943)=16.45319341; T( 9,944)=16.50809593; T( 9,945)=16.56388048; T( 9,946)=16.62057817; T( 9,947)=16.67822177; T( 9,948)=16.73684590; T( 9,949)=16.79648711; T( 9,950)=16.85718404; T( 9,951)=16.91897760; T( 9,952)=16.98191117; T( 9,953)=17.04603075; T( 9,954)=17.11138520; T( 9,955)=17.17802652; T( 9,956)=17.24601008; T( 9,957)=17.31539491; T( 9,958)=17.38624409; T( 9,959)=17.45862507; T( 9,960)=17.53261014; T( 9,961)=17.60827684; T( 9,962)=17.68570856; T( 9,963)=17.76499507; T( 9,964)=17.84623325; T( 9,965)=17.92952784; T( 9,966)=18.01499231; T( 9,967)=18.10274988; T( 9,968)=18.19293468; T( 9,969)=18.28569303; T( 9,970)=18.38118506; T( 9,971)=18.47958642; T( 9,972)=18.58109043; T( 9,973)=18.68591052; T( 9,974)=18.79428310; T( 9,975)=18.90647105; T( 9,976)=19.02276780; T( 9,977)=19.14350231; T( 9,978)=19.26904504; T( 9,979)=19.39981530; T( 9,980)=19.53629025; T( 9,981)=19.67901609; T( 9,982)=19.82862217; T( 9,983)=19.98583877; T( 9,984)=20.15152006; T( 9,985)=20.32667391; T( 9,986)=20.51250131; T( 9,987)=20.71044925; T( 9,988)=20.92228324; T( 9,989)=21.15018860; T( 9,990)=21.39691572; T( 9,991)=21.66599433; T( 9,992)=21.96206024; T( 9,993)=22.29137421; T( 9,994)=22.66268685; T( 9,995)=23.08877044; T( 9,996)=23.58935078; T( 9,997)=24.19732982; T( 9,998)=24.97406845; T( 9,999)=26.05643335; T( 9,1000)=27.87716487; T( 9,1001)=33.71994844; T( 9,1002)=39.34065373; T(10, 1)= 0.00000000; T(10, 2)= 1.47874346; T(10, 3)= 1.73445958; T(10, 4)= 1.90767634; T(10, 5)= 2.04298034; T(10, 6)= 2.15585648; T(10, 7)= 2.25369458; T(10, 8)= 2.34065149; T(10, 9)= 2.41931882; T(10,10)= 2.49143127; T(10,11)= 2.55821216; T(10,12)= 2.62055942; T(10,13)= 2.67915339; T(10,14)= 2.73452303; T(10,15)= 2.78708848; T(10,16)= 2.83718951; T(10,17)= 2.88510516; T(10,18)= 2.93106767; T(10,19)= 2.97527258; T(10,20)= 3.01788623; T(10,21)= 3.05905141; T(10,22)= 3.09889170; T(10,23)= 3.13751482; T(10,24)= 3.17501530; T(10,25)= 3.21147659; T(10,26)= 3.24697278; T(10,27)= 3.28156994; T(10,28)= 3.31532730; T(10,29)= 3.34829816; T(10,30)= 3.38053068; T(10,31)= 3.41206855; T(10,32)= 3.44295150; T(10,33)= 3.47321582; T(10,34)= 3.50289473; T(10,35)= 3.53201873; T(10,36)= 3.56061588; T(10,37)= 3.58871209; T(10,38)= 3.61633131; T(10,39)= 3.64349577; T(10,40)= 3.67022608; T(10,41)= 3.69654144; T(10,42)= 3.72245976; T(10,43)= 3.74799774; T(10,44)= 3.77317103; T(10,45)= 3.79799429; T(10,46)= 3.82248127; T(10,47)= 3.84664490; T(10,48)= 3.87049735; T(10,49)= 3.89405010; T(10,50)= 3.91731395; T(10,51)= 3.94029914; T(10,52)= 3.96301533; T(10,53)= 3.98547169; T(10,54)= 4.00767689; T(10,55)= 4.02963918; T(10,56)= 4.05136637; T(10,57)= 4.07286591; T(10,58)= 4.09414489; T(10,59)= 4.11521004; T(10,60)= 4.13606779; T(10,61)= 4.15672429; T(10,62)= 4.17718539; T(10,63)= 4.19745669; T(10,64)= 4.21754354; T(10,65)= 4.23745107; T(10,66)= 4.25718419; T(10,67)= 4.27674760; T(10,68)= 4.29614582; T(10,69)= 4.31538317; T(10,70)= 4.33446381; T(10,71)= 4.35339173; T(10,72)= 4.37217078; T(10,73)= 4.39080465; T(10,74)= 4.40929689; T(10,75)= 4.42765093; T(10,76)= 4.44587007; T(10,77)= 4.46395749; T(10,78)= 4.48191625; T(10,79)= 4.49974931; T(10,80)= 4.51745953; T(10,81)= 4.53504967; T(10,82)= 4.55252239; T(10,83)= 4.56988027; T(10,84)= 4.58712581; T(10,85)= 4.60426142; T(10,86)= 4.62128942; T(10,87)= 4.63821208; T(10,88)= 4.65503159; T(10,89)= 4.67175007; T(10,90)= 4.68836957; T(10,91)= 4.70489208; T(10,92)= 4.72131955; T(10,93)= 4.73765385; T(10,94)= 4.75389680; T(10,95)= 4.77005016; T(10,96)= 4.78611567; T(10,97)= 4.80209497; T(10,98)= 4.81798971; T(10,99)= 4.83380145; T(10,100)= 4.84953174; T(10,101)= 4.86518205; T(10,102)= 4.88075385; T(10,103)= 4.89624855; T(10,104)= 4.91166753; T(10,105)= 4.92701212; T(10,106)= 4.94228363; T(10,107)= 4.95748333; T(10,108)= 4.97261247; T(10,109)= 4.98767225; T(10,110)= 5.00266385; T(10,111)= 5.01758843; T(10,112)= 5.03244709; T(10,113)= 5.04724095; T(10,114)= 5.06197106; T(10,115)= 5.07663847; T(10,116)= 5.09124420; T(10,117)= 5.10578924; T(10,118)= 5.12027456; T(10,119)= 5.13470112; T(10,120)= 5.14906984; T(10,121)= 5.16338164; T(10,122)= 5.17763738; T(10,123)= 5.19183795; T(10,124)= 5.20598420; T(10,125)= 5.22007694; T(10,126)= 5.23411700; T(10,127)= 5.24810517; T(10,128)= 5.26204223; T(10,129)= 5.27592893; T(10,130)= 5.28976602; T(10,131)= 5.30355424; T(10,132)= 5.31729430; T(10,133)= 5.33098690; T(10,134)= 5.34463273; T(10,135)= 5.35823245; T(10,136)= 5.37178673; T(10,137)= 5.38529622; T(10,138)= 5.39876154; T(10,139)= 5.41218333; T(10,140)= 5.42556218; T(10,141)= 5.43889870; T(10,142)= 5.45219348; T(10,143)= 5.46544708; T(10,144)= 5.47866009; T(10,145)= 5.49183303; T(10,146)= 5.50496648; T(10,147)= 5.51806095; T(10,148)= 5.53111697; T(10,149)= 5.54413505; T(10,150)= 5.55711571; T(10,151)= 5.57005944; T(10,152)= 5.58296673; T(10,153)= 5.59583806; T(10,154)= 5.60867389; T(10,155)= 5.62147470; T(10,156)= 5.63424093; T(10,157)= 5.64697304; T(10,158)= 5.65967146; T(10,159)= 5.67233664; T(10,160)= 5.68496898; T(10,161)= 5.69756892; T(10,162)= 5.71013686; T(10,163)= 5.72267321; T(10,164)= 5.73517836; T(10,165)= 5.74765272; T(10,166)= 5.76009666; T(10,167)= 5.77251056; T(10,168)= 5.78489480; T(10,169)= 5.79724975; T(10,170)= 5.80957576; T(10,171)= 5.82187320; T(10,172)= 5.83414241; T(10,173)= 5.84638375; T(10,174)= 5.85859755; T(10,175)= 5.87078414; T(10,176)= 5.88294387; T(10,177)= 5.89507704; T(10,178)= 5.90718399; T(10,179)= 5.91926503; T(10,180)= 5.93132048; T(10,181)= 5.94335063; T(10,182)= 5.95535579; T(10,183)= 5.96733626; T(10,184)= 5.97929234; T(10,185)= 5.99122431; T(10,186)= 6.00313246; T(10,187)= 6.01501707; T(10,188)= 6.02687843; T(10,189)= 6.03871679; T(10,190)= 6.05053244; T(10,191)= 6.06232564; T(10,192)= 6.07409666; T(10,193)= 6.08584575; T(10,194)= 6.09757318; T(10,195)= 6.10927918; T(10,196)= 6.12096403; T(10,197)= 6.13262795; T(10,198)= 6.14427119; T(10,199)= 6.15589400; T(10,200)= 6.16749661; T(10,201)= 6.17907926; T(10,202)= 6.19064217; T(10,203)= 6.20218557; T(10,204)= 6.21370970; T(10,205)= 6.22521476; T(10,206)= 6.23670099; T(10,207)= 6.24816860; T(10,208)= 6.25961780; T(10,209)= 6.27104881; T(10,210)= 6.28246183; T(10,211)= 6.29385708; T(10,212)= 6.30523475; T(10,213)= 6.31659506; T(10,214)= 6.32793819; T(10,215)= 6.33926434; T(10,216)= 6.35057372; T(10,217)= 6.36186651; T(10,218)= 6.37314291; T(10,219)= 6.38440310; T(10,220)= 6.39564727; T(10,221)= 6.40687561; T(10,222)= 6.41808829; T(10,223)= 6.42928550; T(10,224)= 6.44046742; T(10,225)= 6.45163422; T(10,226)= 6.46278607; T(10,227)= 6.47392316; T(10,228)= 6.48504564; T(10,229)= 6.49615369; T(10,230)= 6.50724748; T(10,231)= 6.51832717; T(10,232)= 6.52939293; T(10,233)= 6.54044491; T(10,234)= 6.55148328; T(10,235)= 6.56250820; T(10,236)= 6.57351982; T(10,237)= 6.58451830; T(10,238)= 6.59550379; T(10,239)= 6.60647645; T(10,240)= 6.61743642; T(10,241)= 6.62838386; T(10,242)= 6.63931892; T(10,243)= 6.65024173; T(10,244)= 6.66115245; T(10,245)= 6.67205123; T(10,246)= 6.68293819; T(10,247)= 6.69381348; T(10,248)= 6.70467725; T(10,249)= 6.71552963; T(10,250)= 6.72637076; T(10,251)= 6.73720077; T(10,252)= 6.74801980; T(10,253)= 6.75882799; T(10,254)= 6.76962545; T(10,255)= 6.78041234; T(10,256)= 6.79118877; T(10,257)= 6.80195487; T(10,258)= 6.81271078; T(10,259)= 6.82345661; T(10,260)= 6.83419250; T(10,261)= 6.84491857; T(10,262)= 6.85563493; T(10,263)= 6.86634173; T(10,264)= 6.87703906; T(10,265)= 6.88772706; T(10,266)= 6.89840585; T(10,267)= 6.90907554; T(10,268)= 6.91973625; T(10,269)= 6.93038809; T(10,270)= 6.94103119; T(10,271)= 6.95166565; T(10,272)= 6.96229159; T(10,273)= 6.97290912; T(10,274)= 6.98351836; T(10,275)= 6.99411941; T(10,276)= 7.00471239; T(10,277)= 7.01529740; T(10,278)= 7.02587455; T(10,279)= 7.03644396; T(10,280)= 7.04700572; T(10,281)= 7.05755994; T(10,282)= 7.06810673; T(10,283)= 7.07864619; T(10,284)= 7.08917843; T(10,285)= 7.09970355; T(10,286)= 7.11022165; T(10,287)= 7.12073283; T(10,288)= 7.13123719; T(10,289)= 7.14173484; T(10,290)= 7.15222587; T(10,291)= 7.16271038; T(10,292)= 7.17318846; T(10,293)= 7.18366023; T(10,294)= 7.19412577; T(10,295)= 7.20458517; T(10,296)= 7.21503855; T(10,297)= 7.22548598; T(10,298)= 7.23592756; T(10,299)= 7.24636339; T(10,300)= 7.25679356; T(10,301)= 7.26721817; T(10,302)= 7.27763729; T(10,303)= 7.28805103; T(10,304)= 7.29845948; T(10,305)= 7.30886273; T(10,306)= 7.31926085; T(10,307)= 7.32965396; T(10,308)= 7.34004212; T(10,309)= 7.35042544; T(10,310)= 7.36080400; T(10,311)= 7.37117788; T(10,312)= 7.38154717; T(10,313)= 7.39191196; T(10,314)= 7.40227233; T(10,315)= 7.41262837; T(10,316)= 7.42298017; T(10,317)= 7.43332780; T(10,318)= 7.44367135; T(10,319)= 7.45401090; T(10,320)= 7.46434654; T(10,321)= 7.47467835; T(10,322)= 7.48500641; T(10,323)= 7.49533080; T(10,324)= 7.50565161; T(10,325)= 7.51596890; T(10,326)= 7.52628277; T(10,327)= 7.53659330; T(10,328)= 7.54690055; T(10,329)= 7.55720462; T(10,330)= 7.56750558; T(10,331)= 7.57780350; T(10,332)= 7.58809848; T(10,333)= 7.59839058; T(10,334)= 7.60867988; T(10,335)= 7.61896645; T(10,336)= 7.62925039; T(10,337)= 7.63953175; T(10,338)= 7.64981062; T(10,339)= 7.66008707; T(10,340)= 7.67036118; T(10,341)= 7.68063302; T(10,342)= 7.69090267; T(10,343)= 7.70117020; T(10,344)= 7.71143568; T(10,345)= 7.72169920; T(10,346)= 7.73196081; T(10,347)= 7.74222060; T(10,348)= 7.75247864; T(10,349)= 7.76273500; T(10,350)= 7.77298975; T(10,351)= 7.78324297; T(10,352)= 7.79349472; T(10,353)= 7.80374508; T(10,354)= 7.81399412; T(10,355)= 7.82424191; T(10,356)= 7.83448852; T(10,357)= 7.84473402; T(10,358)= 7.85497848; T(10,359)= 7.86522197; T(10,360)= 7.87546457; T(10,361)= 7.88570633; T(10,362)= 7.89594734; T(10,363)= 7.90618765; T(10,364)= 7.91642734; T(10,365)= 7.92666648; T(10,366)= 7.93690513; T(10,367)= 7.94714337; T(10,368)= 7.95738126; T(10,369)= 7.96761887; T(10,370)= 7.97785626; T(10,371)= 7.98809351; T(10,372)= 7.99833068; T(10,373)= 8.00856784; T(10,374)= 8.01880506; T(10,375)= 8.02904239; T(10,376)= 8.03927992; T(10,377)= 8.04951771; T(10,378)= 8.05975581; T(10,379)= 8.06999431; T(10,380)= 8.08023326; T(10,381)= 8.09047273; T(10,382)= 8.10071279; T(10,383)= 8.11095349; T(10,384)= 8.12119492; T(10,385)= 8.13143713; T(10,386)= 8.14168018; T(10,387)= 8.15192415; T(10,388)= 8.16216910; T(10,389)= 8.17241509; T(10,390)= 8.18266219; T(10,391)= 8.19291046; T(10,392)= 8.20315996; T(10,393)= 8.21341077; T(10,394)= 8.22366294; T(10,395)= 8.23391655; T(10,396)= 8.24417164; T(10,397)= 8.25442829; T(10,398)= 8.26468657; T(10,399)= 8.27494653; T(10,400)= 8.28520824; T(10,401)= 8.29547176; T(10,402)= 8.30573716; T(10,403)= 8.31600450; T(10,404)= 8.32627384; T(10,405)= 8.33654525; T(10,406)= 8.34681879; T(10,407)= 8.35709452; T(10,408)= 8.36737250; T(10,409)= 8.37765281; T(10,410)= 8.38793550; T(10,411)= 8.39822064; T(10,412)= 8.40850828; T(10,413)= 8.41879850; T(10,414)= 8.42909135; T(10,415)= 8.43938690; T(10,416)= 8.44968520; T(10,417)= 8.45998633; T(10,418)= 8.47029035; T(10,419)= 8.48059731; T(10,420)= 8.49090729; T(10,421)= 8.50122034; T(10,422)= 8.51153652; T(10,423)= 8.52185591; T(10,424)= 8.53217855; T(10,425)= 8.54250452; T(10,426)= 8.55283388; T(10,427)= 8.56316669; T(10,428)= 8.57350300; T(10,429)= 8.58384290; T(10,430)= 8.59418643; T(10,431)= 8.60453366; T(10,432)= 8.61488465; T(10,433)= 8.62523947; T(10,434)= 8.63559817; T(10,435)= 8.64596083; T(10,436)= 8.65632750; T(10,437)= 8.66669824; T(10,438)= 8.67707312; T(10,439)= 8.68745221; T(10,440)= 8.69783555; T(10,441)= 8.70822323; T(10,442)= 8.71861529; T(10,443)= 8.72901181; T(10,444)= 8.73941284; T(10,445)= 8.74981845; T(10,446)= 8.76022871; T(10,447)= 8.77064366; T(10,448)= 8.78106339; T(10,449)= 8.79148794; T(10,450)= 8.80191739; T(10,451)= 8.81235180; T(10,452)= 8.82279123; T(10,453)= 8.83323574; T(10,454)= 8.84368540; T(10,455)= 8.85414027; T(10,456)= 8.86460041; T(10,457)= 8.87506590; T(10,458)= 8.88553678; T(10,459)= 8.89601313; T(10,460)= 8.90649502; T(10,461)= 8.91698249; T(10,462)= 8.92747563; T(10,463)= 8.93797449; T(10,464)= 8.94847913; T(10,465)= 8.95898963; T(10,466)= 8.96950604; T(10,467)= 8.98002843; T(10,468)= 8.99055687; T(10,469)= 9.00109142; T(10,470)= 9.01163214; T(10,471)= 9.02217910; T(10,472)= 9.03273237; T(10,473)= 9.04329201; T(10,474)= 9.05385808; T(10,475)= 9.06443066; T(10,476)= 9.07500980; T(10,477)= 9.08559557; T(10,478)= 9.09618805; T(10,479)= 9.10678729; T(10,480)= 9.11739336; T(10,481)= 9.12800633; T(10,482)= 9.13862626; T(10,483)= 9.14925322; T(10,484)= 9.15988728; T(10,485)= 9.17052851; T(10,486)= 9.18117697; T(10,487)= 9.19183272; T(10,488)= 9.20249584; T(10,489)= 9.21316640; T(10,490)= 9.22384446; T(10,491)= 9.23453008; T(10,492)= 9.24522335; T(10,493)= 9.25592432; T(10,494)= 9.26663307; T(10,495)= 9.27734966; T(10,496)= 9.28807416; T(10,497)= 9.29880664; T(10,498)= 9.30954717; T(10,499)= 9.32029582; T(10,500)= 9.33105266; T(10,501)= 9.34181777; T(10,502)= 9.35259120; T(10,503)= 9.36337303; T(10,504)= 9.37416332; T(10,505)= 9.38496216; T(10,506)= 9.39576962; T(10,507)= 9.40658575; T(10,508)= 9.41741064; T(10,509)= 9.42824435; T(10,510)= 9.43908696; T(10,511)= 9.44993854; T(10,512)= 9.46079916; T(10,513)= 9.47166890; T(10,514)= 9.48254782; T(10,515)= 9.49343600; T(10,516)= 9.50433351; T(10,517)= 9.51524043; T(10,518)= 9.52615684; T(10,519)= 9.53708279; T(10,520)= 9.54801837; T(10,521)= 9.55896366; T(10,522)= 9.56991872; T(10,523)= 9.58088364; T(10,524)= 9.59185848; T(10,525)= 9.60284333; T(10,526)= 9.61383826; T(10,527)= 9.62484335; T(10,528)= 9.63585866; T(10,529)= 9.64688429; T(10,530)= 9.65792030; T(10,531)= 9.66896678; T(10,532)= 9.68002379; T(10,533)= 9.69109143; T(10,534)= 9.70216976; T(10,535)= 9.71325888; T(10,536)= 9.72435884; T(10,537)= 9.73546974; T(10,538)= 9.74659166; T(10,539)= 9.75772467; T(10,540)= 9.76886885; T(10,541)= 9.78002429; T(10,542)= 9.79119107; T(10,543)= 9.80236926; T(10,544)= 9.81355895; T(10,545)= 9.82476023; T(10,546)= 9.83597317; T(10,547)= 9.84719785; T(10,548)= 9.85843437; T(10,549)= 9.86968279; T(10,550)= 9.88094322; T(10,551)= 9.89221573; T(10,552)= 9.90350040; T(10,553)= 9.91479732; T(10,554)= 9.92610658; T(10,555)= 9.93742827; T(10,556)= 9.94876246; T(10,557)= 9.96010925; T(10,558)= 9.97146872; T(10,559)= 9.98284096; T(10,560)= 9.99422606; T(10,561)=10.00562411; T(10,562)=10.01703519; T(10,563)=10.02845940; T(10,564)=10.03989682; T(10,565)=10.05134755; T(10,566)=10.06281167; T(10,567)=10.07428928; T(10,568)=10.08578047; T(10,569)=10.09728533; T(10,570)=10.10880395; T(10,571)=10.12033642; T(10,572)=10.13188285; T(10,573)=10.14344332; T(10,574)=10.15501792; T(10,575)=10.16660676; T(10,576)=10.17820993; T(10,577)=10.18982752; T(10,578)=10.20145963; T(10,579)=10.21310636; T(10,580)=10.22476781; T(10,581)=10.23644407; T(10,582)=10.24813524; T(10,583)=10.25984142; T(10,584)=10.27156271; T(10,585)=10.28329922; T(10,586)=10.29505104; T(10,587)=10.30681827; T(10,588)=10.31860102; T(10,589)=10.33039938; T(10,590)=10.34221347; T(10,591)=10.35404338; T(10,592)=10.36588923; T(10,593)=10.37775111; T(10,594)=10.38962913; T(10,595)=10.40152340; T(10,596)=10.41343402; T(10,597)=10.42536110; T(10,598)=10.43730476; T(10,599)=10.44926509; T(10,600)=10.46124221; T(10,601)=10.47323623; T(10,602)=10.48524726; T(10,603)=10.49727541; T(10,604)=10.50932080; T(10,605)=10.52138353; T(10,606)=10.53346373; T(10,607)=10.54556149; T(10,608)=10.55767695; T(10,609)=10.56981022; T(10,610)=10.58196140; T(10,611)=10.59413063; T(10,612)=10.60631801; T(10,613)=10.61852367; T(10,614)=10.63074773; T(10,615)=10.64299031; T(10,616)=10.65525152; T(10,617)=10.66753150; T(10,618)=10.67983035; T(10,619)=10.69214822; T(10,620)=10.70448521; T(10,621)=10.71684147; T(10,622)=10.72921710; T(10,623)=10.74161225; T(10,624)=10.75402703; T(10,625)=10.76646158; T(10,626)=10.77891603; T(10,627)=10.79139051; T(10,628)=10.80388514; T(10,629)=10.81640006; T(10,630)=10.82893541; T(10,631)=10.84149132; T(10,632)=10.85406792; T(10,633)=10.86666535; T(10,634)=10.87928375; T(10,635)=10.89192325; T(10,636)=10.90458400; T(10,637)=10.91726613; T(10,638)=10.92996979; T(10,639)=10.94269511; T(10,640)=10.95544225; T(10,641)=10.96821134; T(10,642)=10.98100253; T(10,643)=10.99381596; T(10,644)=11.00665180; T(10,645)=11.01951017; T(10,646)=11.03239124; T(10,647)=11.04529515; T(10,648)=11.05822206; T(10,649)=11.07117211; T(10,650)=11.08414547; T(10,651)=11.09714228; T(10,652)=11.11016271; T(10,653)=11.12320691; T(10,654)=11.13627505; T(10,655)=11.14936727; T(10,656)=11.16248375; T(10,657)=11.17562465; T(10,658)=11.18879012; T(10,659)=11.20198035; T(10,660)=11.21519548; T(10,661)=11.22843570; T(10,662)=11.24170116; T(10,663)=11.25499205; T(10,664)=11.26830853; T(10,665)=11.28165077; T(10,666)=11.29501896; T(10,667)=11.30841326; T(10,668)=11.32183386; T(10,669)=11.33528093; T(10,670)=11.34875466; T(10,671)=11.36225523; T(10,672)=11.37578282; T(10,673)=11.38933761; T(10,674)=11.40291980; T(10,675)=11.41652958; T(10,676)=11.43016712; T(10,677)=11.44383263; T(10,678)=11.45752629; T(10,679)=11.47124831; T(10,680)=11.48499887; T(10,681)=11.49877818; T(10,682)=11.51258644; T(10,683)=11.52642385; T(10,684)=11.54029061; T(10,685)=11.55418692; T(10,686)=11.56811300; T(10,687)=11.58206906; T(10,688)=11.59605530; T(10,689)=11.61007193; T(10,690)=11.62411918; T(10,691)=11.63819726; T(10,692)=11.65230638; T(10,693)=11.66644677; T(10,694)=11.68061865; T(10,695)=11.69482224; T(10,696)=11.70905777; T(10,697)=11.72332548; T(10,698)=11.73762558; T(10,699)=11.75195832; T(10,700)=11.76632392; T(10,701)=11.78072263; T(10,702)=11.79515468; T(10,703)=11.80962032; T(10,704)=11.82411979; T(10,705)=11.83865334; T(10,706)=11.85322121; T(10,707)=11.86782366; T(10,708)=11.88246093; T(10,709)=11.89713330; T(10,710)=11.91184101; T(10,711)=11.92658432; T(10,712)=11.94136350; T(10,713)=11.95617882; T(10,714)=11.97103054; T(10,715)=11.98591893; T(10,716)=12.00084428; T(10,717)=12.01580685; T(10,718)=12.03080692; T(10,719)=12.04584478; T(10,720)=12.06092072; T(10,721)=12.07603501; T(10,722)=12.09118796; T(10,723)=12.10637985; T(10,724)=12.12161098; T(10,725)=12.13688166; T(10,726)=12.15219219; T(10,727)=12.16754286; T(10,728)=12.18293400; T(10,729)=12.19836592; T(10,730)=12.21383892; T(10,731)=12.22935333; T(10,732)=12.24490948; T(10,733)=12.26050769; T(10,734)=12.27614828; T(10,735)=12.29183160; T(10,736)=12.30755797; T(10,737)=12.32332775; T(10,738)=12.33914127; T(10,739)=12.35499888; T(10,740)=12.37090093; T(10,741)=12.38684778; T(10,742)=12.40283980; T(10,743)=12.41887733; T(10,744)=12.43496075; T(10,745)=12.45109044; T(10,746)=12.46726676; T(10,747)=12.48349010; T(10,748)=12.49976084; T(10,749)=12.51607938; T(10,750)=12.53244610; T(10,751)=12.54886140; T(10,752)=12.56532568; T(10,753)=12.58183936; T(10,754)=12.59840284; T(10,755)=12.61501654; T(10,756)=12.63168088; T(10,757)=12.64839630; T(10,758)=12.66516321; T(10,759)=12.68198206; T(10,760)=12.69885329; T(10,761)=12.71577734; T(10,762)=12.73275467; T(10,763)=12.74978574; T(10,764)=12.76687101; T(10,765)=12.78401095; T(10,766)=12.80120604; T(10,767)=12.81845675; T(10,768)=12.83576358; T(10,769)=12.85312701; T(10,770)=12.87054755; T(10,771)=12.88802570; T(10,772)=12.90556198; T(10,773)=12.92315689; T(10,774)=12.94081098; T(10,775)=12.95852476; T(10,776)=12.97629878; T(10,777)=12.99413358; T(10,778)=13.01202971; T(10,779)=13.02998775; T(10,780)=13.04800824; T(10,781)=13.06609177; T(10,782)=13.08423892; T(10,783)=13.10245028; T(10,784)=13.12072645; T(10,785)=13.13906803; T(10,786)=13.15747564; T(10,787)=13.17594990; T(10,788)=13.19449144; T(10,789)=13.21310090; T(10,790)=13.23177893; T(10,791)=13.25052619; T(10,792)=13.26934334; T(10,793)=13.28823105; T(10,794)=13.30719002; T(10,795)=13.32622094; T(10,796)=13.34532452; T(10,797)=13.36450146; T(10,798)=13.38375250; T(10,799)=13.40307836; T(10,800)=13.42247980; T(10,801)=13.44195757; T(10,802)=13.46151245; T(10,803)=13.48114520; T(10,804)=13.50085663; T(10,805)=13.52064753; T(10,806)=13.54051871; T(10,807)=13.56047102; T(10,808)=13.58050527; T(10,809)=13.60062234; T(10,810)=13.62082308; T(10,811)=13.64110836; T(10,812)=13.66147909; T(10,813)=13.68193617; T(10,814)=13.70248052; T(10,815)=13.72311306; T(10,816)=13.74383476; T(10,817)=13.76464658; T(10,818)=13.78554949; T(10,819)=13.80654449; T(10,820)=13.82763260; T(10,821)=13.84881483; T(10,822)=13.87009224; T(10,823)=13.89146588; T(10,824)=13.91293683; T(10,825)=13.93450620; T(10,826)=13.95617510; T(10,827)=13.97794465; T(10,828)=13.99981602; T(10,829)=14.02179037; T(10,830)=14.04386891; T(10,831)=14.06605283; T(10,832)=14.08834338; T(10,833)=14.11074182; T(10,834)=14.13324941; T(10,835)=14.15586747; T(10,836)=14.17859730; T(10,837)=14.20144027; T(10,838)=14.22439774; T(10,839)=14.24747110; T(10,840)=14.27066178; T(10,841)=14.29397123; T(10,842)=14.31740091; T(10,843)=14.34095233; T(10,844)=14.36462702; T(10,845)=14.38842654; T(10,846)=14.41235247; T(10,847)=14.43640643; T(10,848)=14.46059006; T(10,849)=14.48490506; T(10,850)=14.50935312; T(10,851)=14.53393600; T(10,852)=14.55865547; T(10,853)=14.58351335; T(10,854)=14.60851150; T(10,855)=14.63365179; T(10,856)=14.65893616; T(10,857)=14.68436658; T(10,858)=14.70994504; T(10,859)=14.73567360; T(10,860)=14.76155435; T(10,861)=14.78758942; T(10,862)=14.81378098; T(10,863)=14.84013127; T(10,864)=14.86664256; T(10,865)=14.89331716; T(10,866)=14.92015745; T(10,867)=14.94716586; T(10,868)=14.97434485; T(10,869)=15.00169697; T(10,870)=15.02922480; T(10,871)=15.05693099; T(10,872)=15.08481824; T(10,873)=15.11288932; T(10,874)=15.14114708; T(10,875)=15.16959439; T(10,876)=15.19823425; T(10,877)=15.22706967; T(10,878)=15.25610377; T(10,879)=15.28533974; T(10,880)=15.31478083; T(10,881)=15.34443039; T(10,882)=15.37429183; T(10,883)=15.40436868; T(10,884)=15.43466452; T(10,885)=15.46518304; T(10,886)=15.49592802; T(10,887)=15.52690335; T(10,888)=15.55811299; T(10,889)=15.58956104; T(10,890)=15.62125168; T(10,891)=15.65318922; T(10,892)=15.68537808; T(10,893)=15.71782279; T(10,894)=15.75052802; T(10,895)=15.78349856; T(10,896)=15.81673933; T(10,897)=15.85025541; T(10,898)=15.88405199; T(10,899)=15.91813444; T(10,900)=15.95250828; T(10,901)=15.98717917; T(10,902)=16.02215297; T(10,903)=16.05743569; T(10,904)=16.09303353; T(10,905)=16.12895289; T(10,906)=16.16520035; T(10,907)=16.20178271; T(10,908)=16.23870697; T(10,909)=16.27598036; T(10,910)=16.31361036; T(10,911)=16.35160466; T(10,912)=16.38997123; T(10,913)=16.42871830; T(10,914)=16.46785436; T(10,915)=16.50738822; T(10,916)=16.54732898; T(10,917)=16.58768604; T(10,918)=16.62846915; T(10,919)=16.66968842; T(10,920)=16.71135430; T(10,921)=16.75347765; T(10,922)=16.79606970; T(10,923)=16.83914214; T(10,924)=16.88270707; T(10,925)=16.92677708; T(10,926)=16.97136525; T(10,927)=17.01648517; T(10,928)=17.06215098; T(10,929)=17.10837739; T(10,930)=17.15517973; T(10,931)=17.20257397; T(10,932)=17.25057674; T(10,933)=17.29920541; T(10,934)=17.34847809; T(10,935)=17.39841372; T(10,936)=17.44903207; T(10,937)=17.50035382; T(10,938)=17.55240063; T(10,939)=17.60519515; T(10,940)=17.65876116; T(10,941)=17.71312357; T(10,942)=17.76830853; T(10,943)=17.82434352; T(10,944)=17.88125743; T(10,945)=17.93908067; T(10,946)=17.99784525; T(10,947)=18.05758492; T(10,948)=18.11833532; T(10,949)=18.18013406; T(10,950)=18.24302093; T(10,951)=18.30703805; T(10,952)=18.37223005; T(10,953)=18.43864428; T(10,954)=18.50633104; T(10,955)=18.57534383; T(10,956)=18.64573962; T(10,957)=18.71757918; T(10,958)=18.79092740; T(10,959)=18.86585369; T(10,960)=18.94243241; T(10,961)=19.02074335; T(10,962)=19.10087228; T(10,963)=19.18291155; T(10,964)=19.26696082; T(10,965)=19.35312780; T(10,966)=19.44152922; T(10,967)=19.53229177; T(10,968)=19.62555340; T(10,969)=19.72146456; T(10,970)=19.82018990; T(10,971)=19.92191001; T(10,972)=20.02682363; T(10,973)=20.13515015; T(10,974)=20.24713259; T(10,975)=20.36304113; T(10,976)=20.48317735; T(10,977)=20.60787929; T(10,978)=20.73752761; T(10,979)=20.87255314; T(10,980)=21.01344608; T(10,981)=21.16076754; T(10,982)=21.31516393; T(10,983)=21.47738530; T(10,984)=21.64830882; T(10,985)=21.82896937; T(10,986)=22.02059999; T(10,987)=22.22468610; T(10,988)=22.44303984; T(10,989)=22.67790394; T(10,990)=22.93210061; T(10,991)=23.20925116; T(10,992)=23.51411084; T(10,993)=23.85310050; T(10,994)=24.23519263; T(10,995)=24.67348033; T(10,996)=25.18817957; T(10,997)=25.81299977; T(10,998)=26.61078512; T(10,999)=27.72164723; T(10,1000)=29.58829845; T(10,1001)=35.56401394; T(10,1002)=41.29615797; end; % Check arguments if (dof > 0) & (dof <= length(DOFS)), if (alpha >= min(LEVELS)) & (alpha <= max(LEVELS)), % Determine lookup indices of alpha % Find start index in array of levels [mindiff,imin] = min(abs(LEVELS-alpha)); % Set correct start index and iterate i = imin-1*(imin>1); found = 0; while (i < length(LEVELS)) & ~found, diff1 = LEVELS(i) - alpha; diff2 = LEVELS(i+1) - alpha; if sign(diff1) == 0, x = T(dof,i); found = 1; elseif sign(diff2) == 0, x = T(dof,i+1); found = 1; elseif sign(diff1)*sign(diff2) < 0, x1 = T(dof,i); x2 = T(dof,i+1); % Interpolate linearly x = x2 - (LEVELS(i+1)-alpha)*(x2-x1)/(LEVELS(i+1)-LEVELS(i)); found = 1; end; i = i + 1; end; else error('chi2invtable: Unsupported alpha level (either too small or too big).'); end; else error('chi2invtable: Unsupported number of degrees of freedom.'); end;
github
Rookfighter/robmap-ws17-18-master
drawellipse.m
.m
robmap-ws17-18-master/ex04/octave/tools/drawellipse.m
994
utf_8
c0100a4cf263e6e87026b3214221e84d
%DRAWELLIPSE Draw ellipse. % DRAWELLIPSE(X,A,B,COLOR) draws an ellipse at X = [x y theta] % with half axes A and B. Theta is the inclination angle of A, % regardless if A is smaller or greater than B. COLOR is a % [r g b]-vector or a color string such as 'r' or 'g'. % % H = DRAWELLIPSE(...) returns the graphic handle H. % % See also DRAWPROBELLIPSE. % v.1.0-v.1.1, Aug.97-Jan.03, Kai Arras, ASL-EPFL % v.1.2, 03.12.03, Kai Arras, CAS-KTH: (x,a,b) interface function h = drawellipse(x,a,b,color); % Constants NPOINTS = 100; % point density or resolution % Compose point vector ivec = 0:2*pi/NPOINTS:2*pi; % index vector p(1,:) = a*cos(ivec); % 2 x n matrix which p(2,:) = b*sin(ivec); % hold ellipse points % Translate and rotate xo = x(1); yo = x(2); angle = x(3); R = [cos(angle) -sin(angle); sin(angle) cos(angle)]; T = [xo; yo]*ones(1,length(ivec)); p = R*p + T; % Plot h = plot(p(1,:),p(2,:),'Color',color, 'linewidth', 2);
github
Rookfighter/robmap-ws17-18-master
t2v.m
.m
robmap-ws17-18-master/ex07/octave/tools/t2v.m
133
utf_8
6606805d2b95b1d27de95e33aa633889
#computes the pose vector v from an homogeneous transform A function v=t2v(A) v(1:2, 1)=A(1:2,3); v(3,1)=atan2(A(2,1),A(1,1)); end
github
Rookfighter/robmap-ws17-18-master
read_robotlaser.m
.m
robmap-ws17-18-master/ex07/octave/tools/read_robotlaser.m
1,375
utf_8
7b26523688f4d9499097947920eeef74
% read a file containing ROBOTLASER1 in CARMEN logfile format function laser=read_robotlaser(filename) fid = fopen(filename, 'r'); laser = cell(); while true ln = fgetl(fid); if (ln == -1) break endif tokens = strsplit(ln, ' ', true); if (strcmp(tokens(1), "ROBOTLASER1") == 0) continue; endif num_tokens = str2double(tokens); currentReading = struct ( "start_angle", 0, "angular_resolution", 0, "maximum_range", 0, "ranges", [], "pose", zeros(3,1), "laser_offset", zeros(3,1), "timestamp", 0 ); tk = 3; currentReading.start_angle = num_tokens(tk++); tk++; % skip FOV currentReading.angular_resolution = num_tokens(tk++); currentReading.maximum_range = num_tokens(tk++); tk += 2; % skip accuracy, remission_mode num_readings = int32(num_tokens(tk++)); currentReading.ranges = num_tokens(tk:tk+num_readings-1); tk += num_readings; num_remissions = int32(num_tokens(tk++)); % skip reading the remission values tk += num_remissions; laser_pose = num_tokens(tk:tk+2); tk += 3; currentReading.pose = num_tokens(tk:tk+2); tk += 3; currentReading.laser_offset = t2v(inv(v2t(currentReading.pose)) * v2t(laser_pose)); tk += 5; % skip tv, rv, forward, side, turn currentReading.timestamp = num_tokens(tk++); laser{end+1} = currentReading; endwhile laser = cell2mat(laser); end
github
Rookfighter/robmap-ws17-18-master
v2t.m
.m
robmap-ws17-18-master/ex07/octave/tools/v2t.m
165
utf_8
bd190805c2c8033bb7843a4c3559f866
#computes the homogeneous transform matrix A of the pose vector v function A=v2t(v) c=cos(v(3)); s=sin(v(3)); A=[c, -s, v(1); s, c, v(2); 0 0 1 ]; end
github
Rookfighter/robmap-ws17-18-master
bresenham.m
.m
robmap-ws17-18-master/ex07/octave/tools/bresenham.m
1,346
utf_8
67508ba3dbef9fe8543bf12af0767805
function [X,Y] = bresenham(mycoords) % BRESENHAM: Generate a line profile of a 2d image % using Bresenham's algorithm % [myline,mycoords] = bresenham(mymat,mycoords,dispFlag) % % - For a demo purpose, try >> bresenham(); % % - mymat is an input image matrix. % % - mycoords is coordinate of the form: [x1, y1; x2, y2] % which can be obtained from ginput function % % Author: N. Chattrapiban % % Ref: nprotech: Chackrit Sangkaew; Citec % Ref: http://en.wikipedia.org/wiki/Bresenham's_line_algorithm % % See also: tut_line_algorithm x = round(mycoords(:,1)); y = round(mycoords(:,2)); steep = (abs(y(2)-y(1)) > abs(x(2)-x(1))); if steep, [x,y] = swap(x,y); end if x(1)>x(2), [x(1),x(2)] = swap(x(1),x(2)); [y(1),y(2)] = swap(y(1),y(2)); end delx = x(2)-x(1); dely = abs(y(2)-y(1)); error = 0; x_n = x(1); y_n = y(1); if y(1) < y(2), ystep = 1; else ystep = -1; end for n = 1:delx+1 if steep, X(n) = x_n; Y(n) = y_n; else X(n) = y_n; Y(n) = x_n; end x_n = x_n + 1; error = error + dely; if bitshift(error,1) >= delx, % same as -> if 2*error >= delx, y_n = y_n + ystep; error = error - delx; end end temp = X; X = Y; Y = temp; function [q,r] = swap(s,t) % function SWAP q = t; r = s;
github
Rookfighter/robmap-ws17-18-master
linearize_pose_landmark_constraint.m
.m
robmap-ws17-18-master/ex10/octave/linearize_pose_landmark_constraint.m
763
utf_8
d5433b83c27734ba80d65c33de469835
% Compute the error of a pose-landmark constraint % x 3x1 vector (x,y,theta) of the robot pose % l 2x1 vector (x,y) of the landmark % z 2x1 vector (x,y) of the measurement, the position of the landmark in % the coordinate frame of the robot given by the vector x % % Output % e 2x1 error of the constraint % A 2x3 Jacobian wrt x % B 2x2 Jacobian wrt l function [e, A, B] = linearize_pose_landmark_constraint(x, l, z) X = v2t(x); % retrieve rotation matrix of x Rx = X(1:2,1:2); d = l(1:2) - x(1:2); % calculate error e = Rx' * d - z; % jacobian of err wrt x s = sin(x(3)); c = cos(x(3)); A = [-c, -s, -s * d(1) + c * d(2); s, -c, -c * d(1) - s * d(2)]; % jacobian of err wrt l B = -A(1:2, 1:2); end;
github
Rookfighter/robmap-ws17-18-master
linearize_pose_pose_constraint.m
.m
robmap-ws17-18-master/ex10/octave/linearize_pose_pose_constraint.m
1,049
utf_8
a55bad89aef9a7dd7b4a5761f601ff9d
% Compute the error of a pose-pose constraint % x1 3x1 vector (x,y,theta) of the first robot pose % x2 3x1 vector (x,y,theta) of the second robot pose % z 3x1 vector (x,y,theta) of the measurement % % You may use the functions v2t() and t2v() to compute % a Homogeneous matrix out of a (x, y, theta) vector % for computing the error. % % Output % e 3x1 error of the constraint % A 3x3 Jacobian wrt x1 % B 3x3 Jacobian wrt x2 function [e, A, B] = linearize_pose_pose_constraint(x1, x2, z) % transform poses and meaurement to homog corrds xt1 = v2t(x1); xt2 = v2t(x2); zt = v2t(z); % calculate error e = t2v(inv(zt) * (inv(xt1) * xt2)); d = x2 - x1; % calculate intermediate jacobian s = sin(x1(3)); c = cos(x1(3)); Atmp = [-c, -s, -s * d(1) + c * d(2); s, -c, -c * d(1) - s * d(2)]; % retrieve rotation matrix of z Rz = zt(1:2,1:2)'; A = [Rz * Atmp; 0, 0, -1]; Btmp = [-Atmp(1,1:2), 0; -Atmp(2,1:2), 0]; B = [Rz * Btmp; 0, 0, 1]; end;
github
Rookfighter/robmap-ws17-18-master
linearize_and_solve.m
.m
robmap-ws17-18-master/ex10/octave/linearize_and_solve.m
2,957
utf_8
08db4f47ff36acf2b7eb7ee73afbb03c
% performs one iteration of the Gauss-Newton algorithm % each constraint is linearized and added to the Hessian function dx = linearize_and_solve(g) nnz = nnz_of_graph(g); N = length(g.x); % allocate the sparse H and the vector b H = spalloc(N, N, nnz); b = zeros(1,N); needToAddPrior = true; % compute the addend term to H and b for each of our constraints disp('linearize and build system'); for eid = 1:length(g.edges) edge = g.edges(eid); % pose-pose constraint if (strcmp(edge.type, 'P') != 0) % edge.fromIdx and edge.toIdx describe the location of % the first element of the pose in the state vector % You should use also this index when updating the elements % of the H matrix and the vector b. % edge.measurement is the measurement % edge.information is the information matrix i = edge.fromIdx; j = edge.toIdx; xi = g.x(i:i+2); % the first robot pose xj = g.x(j:j+2); % the second robot pose z = edge.measurement; Omega = edge.information; % Computing the error and the Jacobians % e the error vector % A Jacobian wrt x1 % B Jacobian wrt x2 [e, A, B] = linearize_pose_pose_constraint(xi, xj, z); % compute and add the term to H and b % Hii H(i:i+2,i:i+2) += A' * Omega * A; % Hij H(i:i+2,j:j+2) += A' * Omega * B; % Hji H(j:j+2,i:i+2) += B' * Omega * A; % Hjj H(j:j+2,j:j+2) += B' * Omega * B; % biT b(i:i+2) += e' * Omega * A; % bjT b(j:j+2) += e' * Omega * B; if (needToAddPrior) % This fixes one node to remain at its current location H(1:3,1:3) += eye(3); needToAddPrior = false; end % pose-landmark constraint elseif (strcmp(edge.type, 'L') != 0) % edge.fromIdx and edge.toIdx describe the location of % the first element of the pose and the landmark in the state vector % You should use also this index when updating the elements % of the H matrix and the vector b. % edge.measurement is the measurement % edge.information is the information matrix i = edge.fromIdx; j = edge.toIdx; x = g.x(i:i+2); % the robot pose l = g.x(j:j+1); % the landmark z = edge.measurement; Omega = edge.information; % Computing the error and the Jacobians % e the error vector % A Jacobian wrt x1 % B Jacobian wrt x2 [e, A, B] = linearize_pose_landmark_constraint(x, l, z); % compute and add the term to H and b % Hii H(i:i+2,i:i+2) += A' * Omega * A; % Hij H(i:i+2,j:j+1) += A' * Omega * B; % Hji H(j:j+1,i:i+2) += B' * Omega * A; % Hjj H(j:j+1,j:j+1) += B' * Omega * B; % biT b(i:i+2) += e' * Omega * A; % bjT b(j:j+1) += e' * Omega * B; end end disp('solving system'); % transpose b b = b'; % calculate newton step dx = H\-b; end
github
Rookfighter/robmap-ws17-18-master
compute_global_error.m
.m
robmap-ws17-18-master/ex10/octave/compute_global_error.m
1,115
utf_8
f5230779348b082530858334674f9dde
% Computes the total error of the graph function Fx = compute_global_error(g) Fx = 0; % Loop over all edges for eid = 1:length(g.edges) edge = g.edges(eid); % pose-pose constraint if (strcmp(edge.type, 'P') != 0) x1 = g.x(edge.fromIdx:edge.fromIdx+2); % the first robot pose x2 = g.x(edge.toIdx:edge.toIdx+2); % the second robot pose z = edge.measurement; % measurement of the edge % calc error between measurement and poses [err, _, _] = linearize_pose_pose_constraint(x1, x2, z); % add error to global error Fx = Fx + err' * edge.information * err; % pose-landmark constraint elseif (strcmp(edge.type, 'L') != 0) x = g.x(edge.fromIdx:edge.fromIdx+2); % the robot pose l = g.x(edge.toIdx:edge.toIdx+1); % the landmark z = edge.measurement; % measurement of lm position % calculate error [err, _, _] = linearize_pose_landmark_constraint(x, l, z); % add error to global error Fx = Fx + err' * edge.information * err; end end
github
Rookfighter/robmap-ws17-18-master
t2v.m
.m
robmap-ws17-18-master/ex10/octave/tools/t2v.m
122
utf_8
4fe2d6a6a2d9713d1811c566c00df3a4
% computes the pose vector v from a homogeneous transform A function v=t2v(A) v = [A(1:2,3); atan2(A(2,1),A(1,1))]; end
github
Rookfighter/robmap-ws17-18-master
get_block_for_id.m
.m
robmap-ws17-18-master/ex10/octave/tools/get_block_for_id.m
242
utf_8
45c79bac533c38cfb5bab150d76a2cfe
% returns the block of the state vector which corresponds to the given id function block = get_block_for_id(g, id) blockInfo = getfield(g.idLookup, num2str(id)); block = g.x(1+blockInfo.offset : blockInfo.offset + blockInfo.dimension); end
github
Rookfighter/robmap-ws17-18-master
nnz_of_graph.m
.m
robmap-ws17-18-master/ex10/octave/tools/nnz_of_graph.m
468
utf_8
7eb6fe50658d285bbb992af21794cd89
% calculates the number of non-zeros of a graph % Actually, it is an upper bound, as duplicate edges might be counted several times function nnz = nnz_of_graph(g) nnz = 0; % elements along the diagonal for [value, key] = g.idLookup nnz += value.dimension^2; end % off-diagonal elements for eid = 1:length(g.edges) edge = g.edges(eid); if (strcmp(edge.type, 'P') != 0) nnz += 2 * 9; elseif (strcmp(edge.type, 'L') != 0) nnz += 2 * 6; end end end
github
Rookfighter/robmap-ws17-18-master
invt.m
.m
robmap-ws17-18-master/ex10/octave/tools/invt.m
136
utf_8
9af4f2e99d37fa3d3d966dadec4d881e
% inverts a homogenous transform function A = invt(m) A = [m(1:2, 1:2)' [0 0]'; [0 0 1]]; A(1:2, 3) = -A(1:2, 1:2) * m(1:2, 3); end
github
Rookfighter/robmap-ws17-18-master
build_structure.m
.m
robmap-ws17-18-master/ex10/octave/tools/build_structure.m
766
utf_8
8ad7922f6ba64b1062ea3edfdc853840
% calculates the non-zero pattern of the Hessian matrix of a given graph function idx = build_structure(g) idx = []; % elements along the diagonal for [value, key] = g.idLookup dim = value.dimension; offset = value.offset; [r,c] = meshgrid(offset+1 : offset+dim, offset+1 : offset+dim); idx = [idx; [vec(r) vec(c)]]; end % off-diagonal elements for eid = 1:length(g.edges) edge = g.edges(eid); if (strcmp(edge.type, 'P') != 0) [r,c] = meshgrid(edge.fromIdx:edge.fromIdx+2, edge.toIdx:edge.toIdx+2); idx = [idx; [vec(r) vec(c); vec(c) vec(r)]]; elseif (strcmp(edge.type, 'L') != 0) [r,c] = meshgrid(edge.fromIdx:edge.fromIdx+2, edge.toIdx:edge.toIdx+1); idx = [idx; [vec(r) vec(c); vec(c) vec(r)]]; end end %idx = sort(idx); end
github
Rookfighter/robmap-ws17-18-master
get_poses_landmarks.m
.m
robmap-ws17-18-master/ex10/octave/tools/get_poses_landmarks.m
333
utf_8
13eea96e29c0c9b7010f898ae4d72d87
% extract the offset of the poses and the landmarks function [poses, landmarks] = get_poses_landmarks(g) poses = []; landmarks = []; for [value, key] = g.idLookup dim = value.dimension; offset = value.offset; if (dim == 3) poses = [poses; offset]; elseif (dim == 2) landmarks = [landmarks; offset]; end end end
github
Rookfighter/robmap-ws17-18-master
v2t.m
.m
robmap-ws17-18-master/ex10/octave/tools/v2t.m
166
utf_8
43f0d024b79314db5a2b162943010b6c
% computes the homogeneous transform matrix A of the pose vector v function A=v2t(v) c=cos(v(3)); s=sin(v(3)); A=[c, -s, v(1); s, c, v(2); 0 0 1 ]; end
github
Rookfighter/robmap-ws17-18-master
plot_graph.m
.m
robmap-ws17-18-master/ex10/octave/tools/plot_graph.m
1,368
utf_8
b28b807027071e8baf69f2bbec67bea3
% plot a 2D SLAM graph function plot_graph(g, iteration = -1) clf; hold on; [p, l] = get_poses_landmarks(g); if (length(l) > 0) landmarkIdxX = l+1; landmarkIdxY = l+2; plot(g.x(landmarkIdxX), g.x(landmarkIdxY), '.or', 'markersize', 4); end if (length(p) > 0) pIdxX = p+1; pIdxY = p+2; plot(g.x(pIdxX), g.x(pIdxY), '.xb', 'markersize', 4); end % draw line segments??? if 0 poseEdgesP1 = []; poseEdgesP2 = []; landmarkEdgesP1 = []; landmarkEdgesP2 = []; for eid = 1:length(g.edges) edge = g.edges(eid); if (strcmp(edge.type, 'P') != 0) poseEdgesP1 = [poseEdgesP1, g.x(edge.fromIdx:edge.fromIdx+1)]; poseEdgesP2 = [poseEdgesP2, g.x(edge.toIdx:edge.toIdx+1)]; elseif (strcmp(edge.type, 'L') != 0) landmarkEdgesP1 = [landmarkEdgesP1, g.x(edge.fromIdx:edge.fromIdx+1)]; landmarkEdgesP2 = [landmarkEdgesP2, g.x(edge.toIdx:edge.toIdx+1)]; end end linespointx = [poseEdgesP1(1,:); poseEdgesP2(1,:)]; linespointy = [poseEdgesP1(2,:); poseEdgesP2(2,:)]; plot(linespointx, linespointy, "r"); end %plot(poseEdgesP1(1,:), poseEdgesP1(2,:), "r"); %if (columns(poseEdgesP1) > 0) %end %if (columns(landmarkEdges) > 0) %end hold off; figure(1, "visible", "on"); drawnow; %pause(0.1); if (iteration >= 0) filename = sprintf('../plots/lsslam_%03d.png', iteration); print(filename, '-dpng'); end end
github
Rookfighter/robmap-ws17-18-master
read_graph.m
.m
robmap-ws17-18-master/ex10/octave/tools/read_graph.m
2,293
utf_8
0630181c14990966fed786509ae5a85c
% read a g2o data file describing a 2D SLAM instance function graph = read_graph(filename) fid = fopen(filename, 'r'); graph = struct ( 'x', [], 'edges', [], 'idLookup', struct ); disp('Parsing File'); while true ln = fgetl(fid); if (ln == -1) break; end tokens = strsplit(ln, ' ', true); double_tokens = str2double(tokens); tk = 2; if (strcmp(tokens(1), 'VERTEX_SE2') != 0) id = int32(double_tokens(tk++)); values = double_tokens(tk:tk+2)'; tk += 3; graph.idLookup = setfield(graph.idLookup, num2str(id), struct('offset', length(graph.x), 'dimension', length(values))); graph.x = [graph.x; values]; elseif (strcmp(tokens(1), 'VERTEX_XY') != 0) id = int32(double_tokens(tk++)); values = double_tokens(tk:tk+1)'; tk += 2; graph.idLookup = setfield(graph.idLookup, num2str(id), struct('offset', length(graph.x), 'dimension', length(values))); graph.x = [graph.x; values]; elseif (strcmp(tokens(1), 'EDGE_SE2') != 0) fromId = int32(double_tokens(tk++)); toId = int32(double_tokens(tk++)); measurement = double_tokens(tk:tk+2)'; tk += 3; uppertri = double_tokens(tk:tk+5)'; tk += 6; information = [uppertri(1), uppertri(2), uppertri(3); uppertri(2), uppertri(4), uppertri(5); uppertri(3), uppertri(5), uppertri(6)]; graph.edges = [graph.edges; struct( 'type', 'P', 'from', fromId, 'to', toId, 'measurement', measurement, 'information', information)]; elseif (strcmp(tokens(1), 'EDGE_SE2_XY') != 0) fromId = int32(double_tokens(tk++)); toId = int32(double_tokens(tk++)); measurement = double_tokens(tk:tk+1)'; tk += 2; uppertri = double_tokens(tk:tk+2)'; tk += 3; information = [uppertri(1), uppertri(2); uppertri(2), uppertri(3)]; graph.edges = [graph.edges; struct( 'type', 'L', 'from', fromId, 'to', toId, 'measurement', measurement, 'information', information)]; end end % setup the index into the state vector disp('Preparing helper structs'); for eid = 1:length(graph.edges) graph.edges(eid).fromIdx = getfield(graph.idLookup, num2str(graph.edges(eid).from)).offset + 1; graph.edges(eid).toIdx = getfield(graph.idLookup, num2str(graph.edges(eid).to)).offset + 1; end end
github
Rookfighter/robmap-ws17-18-master
add_landmark_to_map.m
.m
robmap-ws17-18-master/ex06/octave/tools/add_landmark_to_map.m
2,007
utf_8
618ae778ad57b5aff7d749d25ba196d4
% Add a landmark to the UKF. % We have to compute the uncertainty of the landmark given the current state % (and its uncertainty) of the newly observed landmark. To this end, we also % employ the unscented transform to propagate Q (sensor noise) through the % current state function [mu, sigma, map] = add_landmark_to_map(mu, sigma, z, map, Q); % For computing sigma global scale; landmarkId = z.id; %add landmark to the map map = [map; landmarkId]; % TODO: Initialize its pose according to the measurement and add it to mu % Append the measurement to the state vector mu = [mu; z.range(); z.bearing()]; % Initialize its uncertainty and add it to sigma sigma = blkdiag(sigma, Q); % Transform from [range, bearing] to the x/y location of the landmark % This operation intializes the uncertainty in the position of the landmark % Sample sigma points sig_pnts_new = compute_sigma_points(mu, sigma); % Normalize! sig_pnts_new(3,:) = normalize_angle(sig_pnts_new(3,:)); % Compute the xy location of the new landmark according to each sigma point newX = sig_pnts_new(1,:) + sig_pnts_new(end-1,:).*cos(sig_pnts_new(3,:) + sig_pnts_new(end,:)); newY = sig_pnts_new(2,:) + sig_pnts_new(end-1,:).*sin(sig_pnts_new(3,:) + sig_pnts_new(end,:)); % The last 2 components of the sigma points can now be replaced by the xy pose of the landmark sig_pnts_new(end-1,:) = newX; sig_pnts_new(end,:) = newY; % Recover mu and sigma n = length(mu); lambda = scale - n; w0 = lambda/scale; wm = [w0, repmat(1/(2*scale),1,2*n)]; wc = wm; % Theta should be recovered by summing up the sines and cosines cosines = sum(cos(sig_pnts_new(3,:)).*wm); sines = sum(sin(sig_pnts_new(3,:)).*wm); % recompute the angle and normalize it mu_theta = normalize_angle(atan2(sines, cosines)); mu = sum(sig_pnts_new .* repmat(wm, rows(sig_pnts_new), 1), 2); mu(3) = mu_theta; diff = sig_pnts_new - repmat(mu,1,size(sig_pnts_new,2)); % Normalize! diff(3,:) = normalize_angle(diff(3,:)); sigma = (repmat(wc, rows(diff), 1) .* diff) * diff'; end
github
Rookfighter/robmap-ws17-18-master
drawprobellipse.m
.m
robmap-ws17-18-master/ex06/octave/tools/drawprobellipse.m
1,803
utf_8
90c41a3bebf740e86100f47974753eb3
%DRAWPROBELLIPSE Draw elliptic probability region of a Gaussian in 2D. % DRAWPROBELLIPSE(X,C,ALPHA,COLOR) draws the elliptic iso-probabi- % lity contour of a Gaussian distributed bivariate random vector X % at the significance level ALPHA. The ellipse is centered at X = % [x; y] where C is the associated 2x2 covariance matrix. COLOR is % a [r g b]-vector or a color string such as 'r' or 'g'. % % X and C can also be of size 3x1 and 3x3 respectively. % % For proper scaling, the function CHI2INVTABLE is employed to % avoid the use of CHI2INV from the Matlab statistics toolbox. % % In case of a negative definite matrix C, the ellipse collapses % to a line which is drawn instead. % % H = DRAWPROBELLIPSE(...) returns the graphic handle H. % % See also DRAWELLIPSE, CHI2INVTABLE, CHI2INV. % v.1.0-v.1.3, 97-Jan.03, Kai Arras, ASL-EPFL % v.1.4, 03.12.03, Kai Arras, CAS-KTH: toolbox version function h = drawprobellipse(x,C,alpha,color); % Calculate unscaled half axes sxx = C(1,1); syy = C(2,2); sxy = C(1,2); a = sqrt(0.5*(sxx+syy+sqrt((sxx-syy)^2+4*sxy^2))); % always greater b = sqrt(0.5*(sxx+syy-sqrt((sxx-syy)^2+4*sxy^2))); % always smaller % Remove imaginary parts in case of neg. definite C if ~isreal(a), a = real(a); end; if ~isreal(b), b = real(b); end; % Scaling in order to reflect specified probability a = a*sqrt(chi2invtable(alpha,2)); b = b*sqrt(chi2invtable(alpha,2)); % Look where the greater half axis belongs to if sxx < syy, swap = a; a = b; b = swap; end; % Calculate inclination (numerically stable) if sxx ~= syy, angle = 0.5*atan(2*sxy/(sxx-syy)); elseif sxy == 0, angle = 0; % angle doesn't matter elseif sxy > 0, angle = pi/4; elseif sxy < 0, angle = -pi/4; end; x(3) = angle; % Draw ellipse h = drawellipse(x,a,b,color);
github
Rookfighter/robmap-ws17-18-master
drawrobot.m
.m
robmap-ws17-18-master/ex06/octave/tools/drawrobot.m
5,225
utf_8
3dfed55ac85a746f0f7c2407e1880069
%DRAWROBOT Draw robot. % DRAWROBOT(X,COLOR) draws a robot at pose X = [x y theta] such % that the robot reference frame is attached to the center of % the wheelbase with the x-axis looking forward. COLOR is a % [r g b]-vector or a color string such as 'r' or 'g'. % % DRAWROBOT(X,COLOR,TYPE) draws a robot of type TYPE. Five % different models are implemented: % TYPE = 0 draws only a cross with orientation theta % TYPE = 1 is a differential drive robot without contour % TYPE = 2 is a differential drive robot with round shape % TYPE = 3 is a round shaped robot with a line at theta % TYPE = 4 is a differential drive robot with rectangular shape % TYPE = 5 is a rectangular shaped robot with a line at theta % % DRAWROBOT(X,COLOR,TYPE,W,L) draws a robot of type TYPE with % width W and length L in [m]. % % H = DRAWROBOT(...) returns a column vector of handles to all % graphic objects of the robot drawing. Remember that not all % graphic properties apply to all types of graphic objects. Use % FINDOBJ to find and access the individual objects. % % See also DRAWRECT, DRAWARROW, FINDOBJ, PLOT. % v.1.0, 16.06.03, Kai Arras, ASL-EPFL % v.1.1, 12.10.03, Kai Arras, ASL-EPFL: uses drawrect % v.1.2, 03.12.03, Kai Arras, CAS-KTH : types implemented function h = drawrobot(varargin); % Constants DEFT = 2; % default robot type DEFB = 0.4; % default robot width in [m], defines y-dir. of {R} WT = 0.03; % wheel thickness in [m] DEFL = DEFB+0.2; % default robot length in [m] WD = 0.2; % wheel diameter in [m] RR = WT/2; % wheel roundness radius in [m] RRR = 0.04; % roundness radius for rectangular robots in [m] HL = 0.09; % arrow head length in [m] CS = 0.1; % cross size in [m], showing the {R} origin % Input argument check inputerr = 0; switch nargin, case 2, xvec = varargin{1}; color = varargin{2}; type = DEFT; B = DEFB; L = DEFL; case 3; xvec = varargin{1}; color = varargin{2}; type = varargin{3}; B = DEFB; L = DEFL; case 5; xvec = varargin{1}; color = varargin{2}; type = varargin{3}; B = varargin{4}; L = varargin{5}; otherwise inputerr = 1; end; % Main switch statement if ~inputerr, x = xvec(1); y = xvec(2); theta = xvec(3); T = [x; y]; R = [cos(theta), -sin(theta); sin(theta), cos(theta)]; switch type case 0, % Draw origin cross p = R*[CS, -CS, 0, 0; 0, 0, -CS, CS] + T*ones(1,4); % horiz. line h = plot(p(1,1:2),p(2,1:2),'Color',color,p(1,3:4),p(2,3:4),'Color',color); case 1, % Draw wheel pair with axis and arrow xlw = [x+B/2*cos(theta+pi/2); y+B/2*sin(theta+pi/2); theta]; h1 = drawrect(xlw,WD,WT,RR,1,color); % left wheel xlw = [x-B/2*cos(theta+pi/2); y-B/2*sin(theta+pi/2); theta]; h2 = drawrect(xlw,WD,WT,RR,1,color); % right wheel % Draw axis cross with arrow p = R*[0, 0; -B/2+WT/2, B/2-WT/2] + T*ones(1,2); h3 = plot(p(1,:),p(2,:),'Color',color); p = R*[L/2; 0] + T; h4 = drawarrow(T,p,1,HL,color); h = cat(1,h1,h2,h3,h4); case 2, % Draw wheel pair with axis and arrow xlw = [x+B/2*cos(theta+pi/2); y+B/2*sin(theta+pi/2); theta]; h1 = drawrect(xlw,WD,WT,RR,1,color); % left wheel xlw = [x-B/2*cos(theta+pi/2); y-B/2*sin(theta+pi/2); theta]; h2 = drawrect(xlw,WD,WT,RR,1,color); % right wheel % Draw axis cross with arrow p = R*[0, 0; -B/2+WT/2, B/2-WT/2] + T*ones(1,2); h3 = plot(p(1,:),p(2,:),'Color',color); p = R*[(B+WT)/2; 0] + T; h4 = drawarrow(T,p,1,HL,color); % Draw circular contour radius = (B+WT)/2; h5 = drawellipse(xvec,radius,radius,color); h = cat(1,h1,h2,h3,h4,h5); case 3, % Draw circular contour radius = (B+WT)/2; h1 = drawellipse(xvec,radius,radius,color); % Draw line with orientation theta with length radius p = R*[(B+WT)/2;0] + T; h2 = plot([T(1) p(1)],[T(2) p(2)],'Color',color,'linewidth',2); h = cat(1,h1,h2); case 4, % Draw wheel pair with axis and arrow xlw = [x+B/2*cos(theta+pi/2); y+B/2*sin(theta+pi/2); theta]; h1 = drawrect(xlw,WD,WT,RR,1,color); % left wheel xlw = [x-B/2*cos(theta+pi/2); y-B/2*sin(theta+pi/2); theta]; h2 = drawrect(xlw,WD,WT,RR,1,color); % right wheel % Draw axis cross with arrow p = R*[0, 0; -B/2+WT/2, B/2-WT/2] + T*ones(1,2); h3 = plot(p(1,:),p(2,:),'Color',color); p = R*[L/2; 0] + T; h4 = drawarrow(T,p,1,HL,color); % Draw rectangular contour h5 = drawrect(xvec,L,B,RRR,0,color); h = cat(1,h1,h2,h3,h4,h5); case 5, % Draw rectangular contour h1 = drawrect(xvec,L,B,RRR,0,color); % Draw line with orientation theta with length L p = R*[L/2; 0] + T; h2 = plot([T(1) p(1)],[T(2) p(2)],'Color',color,'linewidth',2); h = cat(1,h1,h2); otherwise disp('drawrobot: Unsupported robot type'); h = []; end; else disp('drawrobot: Wrong number of input arguments'); h = []; end;
github
Rookfighter/robmap-ws17-18-master
chi2invtable.m
.m
robmap-ws17-18-master/ex06/octave/tools/chi2invtable.m
231,909
utf_8
d16aef6be089f46039e76c200f7577d8
%CHI2INVTABLE Lookup table of the inverse of the chi-square cdf. % X = CHI2INVTABLE(P,V) returns the inverse of the chi-square cumu- % lative distribution function (cdf) with V degrees of freedom at % the value P. The chi-square cdf with V degrees of freedom, is % the gamma cdf with parameters V/2 and 2. % % Opposed to CHI2INV of the Matlab statistics toolbox which might % be not part of your Matlab installation, this is a lookup table % which has the side effect of being much faster than CHI2INV. % However, as any lookup table is a collection of sample points, % accuracy is smaller and between the sample points of the cdf, a % linear interpolation is made. % % Currently, the function supports the degrees of freedom V between % 1 and 10 and the probability levels P between 0 and 0.9999 in steps % of 0.0001 and the level of 0.99999. % % See also CHI2INV. % v.1.0, 18.12.03, Kai Arras, CAS-KTH function x = chi2invtable(alpha,dof); persistent T LEVELS DOFS; % Check whether table is already in memory vars = whos; it = strcmp({vars.name},'T'); if (sum(it) == 0) | (prod(vars(find(it)).size) == 0), LEVELS = [0:0.001:0.999, 0.9999, 0.99999]; DOFS = 1:10; T( 1, 1)= 0.00000000; T( 1, 2)= 0.00000157; T( 1, 3)= 0.00000628; T( 1, 4)= 0.00001414; T( 1, 5)= 0.00002513; T( 1, 6)= 0.00003927; T( 1, 7)= 0.00005655; T( 1, 8)= 0.00007697; T( 1, 9)= 0.00010053; T( 1,10)= 0.00012724; T( 1,11)= 0.00015709; T( 1,12)= 0.00019008; T( 1,13)= 0.00022621; T( 1,14)= 0.00026549; T( 1,15)= 0.00030791; T( 1,16)= 0.00035347; T( 1,17)= 0.00040218; T( 1,18)= 0.00045403; T( 1,19)= 0.00050902; T( 1,20)= 0.00056716; T( 1,21)= 0.00062845; T( 1,22)= 0.00069288; T( 1,23)= 0.00076046; T( 1,24)= 0.00083118; T( 1,25)= 0.00090505; T( 1,26)= 0.00098207; T( 1,27)= 0.00106223; T( 1,28)= 0.00114555; T( 1,29)= 0.00123201; T( 1,30)= 0.00132162; T( 1,31)= 0.00141438; T( 1,32)= 0.00151030; T( 1,33)= 0.00160936; T( 1,34)= 0.00171157; T( 1,35)= 0.00181694; T( 1,36)= 0.00192546; T( 1,37)= 0.00203713; T( 1,38)= 0.00215196; T( 1,39)= 0.00226995; T( 1,40)= 0.00239109; T( 1,41)= 0.00251538; T( 1,42)= 0.00264284; T( 1,43)= 0.00277345; T( 1,44)= 0.00290722; T( 1,45)= 0.00304415; T( 1,46)= 0.00318424; T( 1,47)= 0.00332749; T( 1,48)= 0.00347391; T( 1,49)= 0.00362349; T( 1,50)= 0.00377623; T( 1,51)= 0.00393214; T( 1,52)= 0.00409122; T( 1,53)= 0.00425346; T( 1,54)= 0.00441887; T( 1,55)= 0.00458745; T( 1,56)= 0.00475920; T( 1,57)= 0.00493412; T( 1,58)= 0.00511222; T( 1,59)= 0.00529349; T( 1,60)= 0.00547793; T( 1,61)= 0.00566555; T( 1,62)= 0.00585635; T( 1,63)= 0.00605033; T( 1,64)= 0.00624748; T( 1,65)= 0.00644782; T( 1,66)= 0.00665134; T( 1,67)= 0.00685804; T( 1,68)= 0.00706793; T( 1,69)= 0.00728100; T( 1,70)= 0.00749726; T( 1,71)= 0.00771672; T( 1,72)= 0.00793936; T( 1,73)= 0.00816519; T( 1,74)= 0.00839422; T( 1,75)= 0.00862644; T( 1,76)= 0.00886185; T( 1,77)= 0.00910047; T( 1,78)= 0.00934228; T( 1,79)= 0.00958730; T( 1,80)= 0.00983551; T( 1,81)= 0.01008693; T( 1,82)= 0.01034156; T( 1,83)= 0.01059939; T( 1,84)= 0.01086043; T( 1,85)= 0.01112468; T( 1,86)= 0.01139215; T( 1,87)= 0.01166283; T( 1,88)= 0.01193672; T( 1,89)= 0.01221383; T( 1,90)= 0.01249416; T( 1,91)= 0.01277771; T( 1,92)= 0.01306448; T( 1,93)= 0.01335448; T( 1,94)= 0.01364771; T( 1,95)= 0.01394416; T( 1,96)= 0.01424384; T( 1,97)= 0.01454676; T( 1,98)= 0.01485290; T( 1,99)= 0.01516229; T( 1,100)= 0.01547491; T( 1,101)= 0.01579077; T( 1,102)= 0.01610988; T( 1,103)= 0.01643223; T( 1,104)= 0.01675782; T( 1,105)= 0.01708666; T( 1,106)= 0.01741876; T( 1,107)= 0.01775410; T( 1,108)= 0.01809270; T( 1,109)= 0.01843456; T( 1,110)= 0.01877968; T( 1,111)= 0.01912805; T( 1,112)= 0.01947969; T( 1,113)= 0.01983460; T( 1,114)= 0.02019278; T( 1,115)= 0.02055422; T( 1,116)= 0.02091894; T( 1,117)= 0.02128693; T( 1,118)= 0.02165820; T( 1,119)= 0.02203275; T( 1,120)= 0.02241059; T( 1,121)= 0.02279170; T( 1,122)= 0.02317611; T( 1,123)= 0.02356380; T( 1,124)= 0.02395479; T( 1,125)= 0.02434907; T( 1,126)= 0.02474665; T( 1,127)= 0.02514753; T( 1,128)= 0.02555171; T( 1,129)= 0.02595920; T( 1,130)= 0.02636999; T( 1,131)= 0.02678410; T( 1,132)= 0.02720152; T( 1,133)= 0.02762225; T( 1,134)= 0.02804631; T( 1,135)= 0.02847368; T( 1,136)= 0.02890438; T( 1,137)= 0.02933841; T( 1,138)= 0.02977577; T( 1,139)= 0.03021646; T( 1,140)= 0.03066048; T( 1,141)= 0.03110785; T( 1,142)= 0.03155855; T( 1,143)= 0.03201260; T( 1,144)= 0.03247000; T( 1,145)= 0.03293075; T( 1,146)= 0.03339485; T( 1,147)= 0.03386231; T( 1,148)= 0.03433313; T( 1,149)= 0.03480731; T( 1,150)= 0.03528486; T( 1,151)= 0.03576578; T( 1,152)= 0.03625007; T( 1,153)= 0.03673773; T( 1,154)= 0.03722878; T( 1,155)= 0.03772321; T( 1,156)= 0.03822102; T( 1,157)= 0.03872222; T( 1,158)= 0.03922681; T( 1,159)= 0.03973480; T( 1,160)= 0.04024619; T( 1,161)= 0.04076098; T( 1,162)= 0.04127917; T( 1,163)= 0.04180078; T( 1,164)= 0.04232579; T( 1,165)= 0.04285423; T( 1,166)= 0.04338608; T( 1,167)= 0.04392135; T( 1,168)= 0.04446006; T( 1,169)= 0.04500219; T( 1,170)= 0.04554776; T( 1,171)= 0.04609676; T( 1,172)= 0.04664921; T( 1,173)= 0.04720510; T( 1,174)= 0.04776444; T( 1,175)= 0.04832724; T( 1,176)= 0.04889349; T( 1,177)= 0.04946320; T( 1,178)= 0.05003637; T( 1,179)= 0.05061301; T( 1,180)= 0.05119313; T( 1,181)= 0.05177672; T( 1,182)= 0.05236379; T( 1,183)= 0.05295434; T( 1,184)= 0.05354838; T( 1,185)= 0.05414592; T( 1,186)= 0.05474695; T( 1,187)= 0.05535147; T( 1,188)= 0.05595951; T( 1,189)= 0.05657105; T( 1,190)= 0.05718611; T( 1,191)= 0.05780468; T( 1,192)= 0.05842677; T( 1,193)= 0.05905239; T( 1,194)= 0.05968153; T( 1,195)= 0.06031421; T( 1,196)= 0.06095043; T( 1,197)= 0.06159019; T( 1,198)= 0.06223350; T( 1,199)= 0.06288036; T( 1,200)= 0.06353078; T( 1,201)= 0.06418475; T( 1,202)= 0.06484230; T( 1,203)= 0.06550341; T( 1,204)= 0.06616809; T( 1,205)= 0.06683635; T( 1,206)= 0.06750820; T( 1,207)= 0.06818363; T( 1,208)= 0.06886266; T( 1,209)= 0.06954528; T( 1,210)= 0.07023151; T( 1,211)= 0.07092134; T( 1,212)= 0.07161479; T( 1,213)= 0.07231185; T( 1,214)= 0.07301253; T( 1,215)= 0.07371684; T( 1,216)= 0.07442478; T( 1,217)= 0.07513636; T( 1,218)= 0.07585157; T( 1,219)= 0.07657044; T( 1,220)= 0.07729295; T( 1,221)= 0.07801912; T( 1,222)= 0.07874896; T( 1,223)= 0.07948246; T( 1,224)= 0.08021963; T( 1,225)= 0.08096048; T( 1,226)= 0.08170501; T( 1,227)= 0.08245322; T( 1,228)= 0.08320514; T( 1,229)= 0.08396074; T( 1,230)= 0.08472006; T( 1,231)= 0.08548308; T( 1,232)= 0.08624982; T( 1,233)= 0.08702027; T( 1,234)= 0.08779446; T( 1,235)= 0.08857237; T( 1,236)= 0.08935402; T( 1,237)= 0.09013941; T( 1,238)= 0.09092855; T( 1,239)= 0.09172144; T( 1,240)= 0.09251809; T( 1,241)= 0.09331851; T( 1,242)= 0.09412270; T( 1,243)= 0.09493066; T( 1,244)= 0.09574241; T( 1,245)= 0.09655795; T( 1,246)= 0.09737728; T( 1,247)= 0.09820041; T( 1,248)= 0.09902734; T( 1,249)= 0.09985809; T( 1,250)= 0.10069265; T( 1,251)= 0.10153104; T( 1,252)= 0.10237326; T( 1,253)= 0.10321932; T( 1,254)= 0.10406922; T( 1,255)= 0.10492297; T( 1,256)= 0.10578057; T( 1,257)= 0.10664204; T( 1,258)= 0.10750737; T( 1,259)= 0.10837658; T( 1,260)= 0.10924967; T( 1,261)= 0.11012664; T( 1,262)= 0.11100751; T( 1,263)= 0.11189228; T( 1,264)= 0.11278096; T( 1,265)= 0.11367355; T( 1,266)= 0.11457005; T( 1,267)= 0.11547049; T( 1,268)= 0.11637486; T( 1,269)= 0.11728317; T( 1,270)= 0.11819542; T( 1,271)= 0.11911163; T( 1,272)= 0.12003180; T( 1,273)= 0.12095594; T( 1,274)= 0.12188405; T( 1,275)= 0.12281614; T( 1,276)= 0.12375223; T( 1,277)= 0.12469230; T( 1,278)= 0.12563638; T( 1,279)= 0.12658447; T( 1,280)= 0.12753658; T( 1,281)= 0.12849271; T( 1,282)= 0.12945287; T( 1,283)= 0.13041707; T( 1,284)= 0.13138531; T( 1,285)= 0.13235761; T( 1,286)= 0.13333397; T( 1,287)= 0.13431440; T( 1,288)= 0.13529891; T( 1,289)= 0.13628749; T( 1,290)= 0.13728017; T( 1,291)= 0.13827695; T( 1,292)= 0.13927783; T( 1,293)= 0.14028283; T( 1,294)= 0.14129195; T( 1,295)= 0.14230520; T( 1,296)= 0.14332259; T( 1,297)= 0.14434412; T( 1,298)= 0.14536981; T( 1,299)= 0.14639965; T( 1,300)= 0.14743367; T( 1,301)= 0.14847186; T( 1,302)= 0.14951424; T( 1,303)= 0.15056081; T( 1,304)= 0.15161159; T( 1,305)= 0.15266657; T( 1,306)= 0.15372578; T( 1,307)= 0.15478921; T( 1,308)= 0.15585687; T( 1,309)= 0.15692878; T( 1,310)= 0.15800494; T( 1,311)= 0.15908536; T( 1,312)= 0.16017005; T( 1,313)= 0.16125902; T( 1,314)= 0.16235228; T( 1,315)= 0.16344983; T( 1,316)= 0.16455169; T( 1,317)= 0.16565785; T( 1,318)= 0.16676834; T( 1,319)= 0.16788316; T( 1,320)= 0.16900232; T( 1,321)= 0.17012583; T( 1,322)= 0.17125370; T( 1,323)= 0.17238593; T( 1,324)= 0.17352254; T( 1,325)= 0.17466354; T( 1,326)= 0.17580893; T( 1,327)= 0.17695872; T( 1,328)= 0.17811293; T( 1,329)= 0.17927156; T( 1,330)= 0.18043462; T( 1,331)= 0.18160212; T( 1,332)= 0.18277408; T( 1,333)= 0.18395050; T( 1,334)= 0.18513138; T( 1,335)= 0.18631675; T( 1,336)= 0.18750661; T( 1,337)= 0.18870096; T( 1,338)= 0.18989983; T( 1,339)= 0.19110322; T( 1,340)= 0.19231114; T( 1,341)= 0.19352359; T( 1,342)= 0.19474060; T( 1,343)= 0.19596217; T( 1,344)= 0.19718831; T( 1,345)= 0.19841903; T( 1,346)= 0.19965434; T( 1,347)= 0.20089425; T( 1,348)= 0.20213877; T( 1,349)= 0.20338792; T( 1,350)= 0.20464170; T( 1,351)= 0.20590013; T( 1,352)= 0.20716320; T( 1,353)= 0.20843095; T( 1,354)= 0.20970337; T( 1,355)= 0.21098048; T( 1,356)= 0.21226228; T( 1,357)= 0.21354880; T( 1,358)= 0.21484003; T( 1,359)= 0.21613600; T( 1,360)= 0.21743670; T( 1,361)= 0.21874217; T( 1,362)= 0.22005239; T( 1,363)= 0.22136740; T( 1,364)= 0.22268719; T( 1,365)= 0.22401178; T( 1,366)= 0.22534118; T( 1,367)= 0.22667540; T( 1,368)= 0.22801446; T( 1,369)= 0.22935836; T( 1,370)= 0.23070713; T( 1,371)= 0.23206076; T( 1,372)= 0.23341927; T( 1,373)= 0.23478268; T( 1,374)= 0.23615099; T( 1,375)= 0.23752422; T( 1,376)= 0.23890238; T( 1,377)= 0.24028548; T( 1,378)= 0.24167354; T( 1,379)= 0.24306657; T( 1,380)= 0.24446457; T( 1,381)= 0.24586757; T( 1,382)= 0.24727557; T( 1,383)= 0.24868859; T( 1,384)= 0.25010664; T( 1,385)= 0.25152973; T( 1,386)= 0.25295788; T( 1,387)= 0.25439110; T( 1,388)= 0.25582940; T( 1,389)= 0.25727280; T( 1,390)= 0.25872130; T( 1,391)= 0.26017493; T( 1,392)= 0.26163369; T( 1,393)= 0.26309761; T( 1,394)= 0.26456668; T( 1,395)= 0.26604093; T( 1,396)= 0.26752037; T( 1,397)= 0.26900501; T( 1,398)= 0.27049487; T( 1,399)= 0.27198997; T( 1,400)= 0.27349030; T( 1,401)= 0.27499590; T( 1,402)= 0.27650677; T( 1,403)= 0.27802292; T( 1,404)= 0.27954438; T( 1,405)= 0.28107116; T( 1,406)= 0.28260326; T( 1,407)= 0.28414071; T( 1,408)= 0.28568353; T( 1,409)= 0.28723171; T( 1,410)= 0.28878529; T( 1,411)= 0.29034427; T( 1,412)= 0.29190867; T( 1,413)= 0.29347850; T( 1,414)= 0.29505378; T( 1,415)= 0.29663453; T( 1,416)= 0.29822076; T( 1,417)= 0.29981248; T( 1,418)= 0.30140972; T( 1,419)= 0.30301248; T( 1,420)= 0.30462079; T( 1,421)= 0.30623465; T( 1,422)= 0.30785408; T( 1,423)= 0.30947911; T( 1,424)= 0.31110974; T( 1,425)= 0.31274600; T( 1,426)= 0.31438789; T( 1,427)= 0.31603544; T( 1,428)= 0.31768866; T( 1,429)= 0.31934756; T( 1,430)= 0.32101217; T( 1,431)= 0.32268250; T( 1,432)= 0.32435857; T( 1,433)= 0.32604040; T( 1,434)= 0.32772799; T( 1,435)= 0.32942138; T( 1,436)= 0.33112057; T( 1,437)= 0.33282558; T( 1,438)= 0.33453644; T( 1,439)= 0.33625315; T( 1,440)= 0.33797574; T( 1,441)= 0.33970422; T( 1,442)= 0.34143862; T( 1,443)= 0.34317894; T( 1,444)= 0.34492521; T( 1,445)= 0.34667745; T( 1,446)= 0.34843567; T( 1,447)= 0.35019989; T( 1,448)= 0.35197013; T( 1,449)= 0.35374641; T( 1,450)= 0.35552875; T( 1,451)= 0.35731717; T( 1,452)= 0.35911168; T( 1,453)= 0.36091231; T( 1,454)= 0.36271907; T( 1,455)= 0.36453198; T( 1,456)= 0.36635106; T( 1,457)= 0.36817634; T( 1,458)= 0.37000783; T( 1,459)= 0.37184555; T( 1,460)= 0.37368952; T( 1,461)= 0.37553976; T( 1,462)= 0.37739629; T( 1,463)= 0.37925914; T( 1,464)= 0.38112831; T( 1,465)= 0.38300384; T( 1,466)= 0.38488574; T( 1,467)= 0.38677403; T( 1,468)= 0.38866874; T( 1,469)= 0.39056988; T( 1,470)= 0.39247748; T( 1,471)= 0.39439155; T( 1,472)= 0.39631213; T( 1,473)= 0.39823922; T( 1,474)= 0.40017286; T( 1,475)= 0.40211306; T( 1,476)= 0.40405984; T( 1,477)= 0.40601323; T( 1,478)= 0.40797325; T( 1,479)= 0.40993992; T( 1,480)= 0.41191327; T( 1,481)= 0.41389331; T( 1,482)= 0.41588007; T( 1,483)= 0.41787358; T( 1,484)= 0.41987384; T( 1,485)= 0.42188090; T( 1,486)= 0.42389477; T( 1,487)= 0.42591547; T( 1,488)= 0.42794303; T( 1,489)= 0.42997748; T( 1,490)= 0.43201883; T( 1,491)= 0.43406711; T( 1,492)= 0.43612234; T( 1,493)= 0.43818455; T( 1,494)= 0.44025376; T( 1,495)= 0.44233000; T( 1,496)= 0.44441330; T( 1,497)= 0.44650367; T( 1,498)= 0.44860114; T( 1,499)= 0.45070574; T( 1,500)= 0.45281749; T( 1,501)= 0.45493642; T( 1,502)= 0.45706256; T( 1,503)= 0.45919592; T( 1,504)= 0.46133654; T( 1,505)= 0.46348444; T( 1,506)= 0.46563966; T( 1,507)= 0.46780220; T( 1,508)= 0.46997211; T( 1,509)= 0.47214941; T( 1,510)= 0.47433412; T( 1,511)= 0.47652627; T( 1,512)= 0.47872590; T( 1,513)= 0.48093302; T( 1,514)= 0.48314767; T( 1,515)= 0.48536987; T( 1,516)= 0.48759966; T( 1,517)= 0.48983705; T( 1,518)= 0.49208209; T( 1,519)= 0.49433479; T( 1,520)= 0.49659519; T( 1,521)= 0.49886331; T( 1,522)= 0.50113919; T( 1,523)= 0.50342285; T( 1,524)= 0.50571433; T( 1,525)= 0.50801365; T( 1,526)= 0.51032084; T( 1,527)= 0.51263594; T( 1,528)= 0.51495897; T( 1,529)= 0.51728997; T( 1,530)= 0.51962896; T( 1,531)= 0.52197598; T( 1,532)= 0.52433106; T( 1,533)= 0.52669423; T( 1,534)= 0.52906552; T( 1,535)= 0.53144496; T( 1,536)= 0.53383259; T( 1,537)= 0.53622844; T( 1,538)= 0.53863254; T( 1,539)= 0.54104492; T( 1,540)= 0.54346562; T( 1,541)= 0.54589467; T( 1,542)= 0.54833210; T( 1,543)= 0.55077795; T( 1,544)= 0.55323224; T( 1,545)= 0.55569503; T( 1,546)= 0.55816633; T( 1,547)= 0.56064619; T( 1,548)= 0.56313464; T( 1,549)= 0.56563171; T( 1,550)= 0.56813744; T( 1,551)= 0.57065186; T( 1,552)= 0.57317502; T( 1,553)= 0.57570694; T( 1,554)= 0.57824767; T( 1,555)= 0.58079723; T( 1,556)= 0.58335568; T( 1,557)= 0.58592304; T( 1,558)= 0.58849935; T( 1,559)= 0.59108464; T( 1,560)= 0.59367897; T( 1,561)= 0.59628236; T( 1,562)= 0.59889485; T( 1,563)= 0.60151649; T( 1,564)= 0.60414731; T( 1,565)= 0.60678735; T( 1,566)= 0.60943665; T( 1,567)= 0.61209525; T( 1,568)= 0.61476319; T( 1,569)= 0.61744051; T( 1,570)= 0.62012726; T( 1,571)= 0.62282346; T( 1,572)= 0.62552918; T( 1,573)= 0.62824443; T( 1,574)= 0.63096928; T( 1,575)= 0.63370375; T( 1,576)= 0.63644790; T( 1,577)= 0.63920176; T( 1,578)= 0.64196538; T( 1,579)= 0.64473880; T( 1,580)= 0.64752207; T( 1,581)= 0.65031523; T( 1,582)= 0.65311832; T( 1,583)= 0.65593139; T( 1,584)= 0.65875449; T( 1,585)= 0.66158766; T( 1,586)= 0.66443094; T( 1,587)= 0.66728438; T( 1,588)= 0.67014804; T( 1,589)= 0.67302194; T( 1,590)= 0.67590615; T( 1,591)= 0.67880071; T( 1,592)= 0.68170567; T( 1,593)= 0.68462108; T( 1,594)= 0.68754698; T( 1,595)= 0.69048342; T( 1,596)= 0.69343046; T( 1,597)= 0.69638814; T( 1,598)= 0.69935651; T( 1,599)= 0.70233563; T( 1,600)= 0.70532554; T( 1,601)= 0.70832630; T( 1,602)= 0.71133796; T( 1,603)= 0.71436056; T( 1,604)= 0.71739417; T( 1,605)= 0.72043884; T( 1,606)= 0.72349461; T( 1,607)= 0.72656155; T( 1,608)= 0.72963970; T( 1,609)= 0.73272913; T( 1,610)= 0.73582988; T( 1,611)= 0.73894201; T( 1,612)= 0.74206558; T( 1,613)= 0.74520065; T( 1,614)= 0.74834727; T( 1,615)= 0.75150550; T( 1,616)= 0.75467539; T( 1,617)= 0.75785701; T( 1,618)= 0.76105041; T( 1,619)= 0.76425565; T( 1,620)= 0.76747280; T( 1,621)= 0.77070190; T( 1,622)= 0.77394304; T( 1,623)= 0.77719625; T( 1,624)= 0.78046161; T( 1,625)= 0.78373918; T( 1,626)= 0.78702902; T( 1,627)= 0.79033119; T( 1,628)= 0.79364576; T( 1,629)= 0.79697279; T( 1,630)= 0.80031234; T( 1,631)= 0.80366449; T( 1,632)= 0.80702930; T( 1,633)= 0.81040683; T( 1,634)= 0.81379714; T( 1,635)= 0.81720032; T( 1,636)= 0.82061642; T( 1,637)= 0.82404552; T( 1,638)= 0.82748768; T( 1,639)= 0.83094297; T( 1,640)= 0.83441147; T( 1,641)= 0.83789324; T( 1,642)= 0.84138836; T( 1,643)= 0.84489690; T( 1,644)= 0.84841893; T( 1,645)= 0.85195452; T( 1,646)= 0.85550376; T( 1,647)= 0.85906670; T( 1,648)= 0.86264344; T( 1,649)= 0.86623404; T( 1,650)= 0.86983858; T( 1,651)= 0.87345714; T( 1,652)= 0.87708980; T( 1,653)= 0.88073664; T( 1,654)= 0.88439773; T( 1,655)= 0.88807315; T( 1,656)= 0.89176299; T( 1,657)= 0.89546733; T( 1,658)= 0.89918625; T( 1,659)= 0.90291984; T( 1,660)= 0.90666817; T( 1,661)= 0.91043133; T( 1,662)= 0.91420941; T( 1,663)= 0.91800249; T( 1,664)= 0.92181066; T( 1,665)= 0.92563401; T( 1,666)= 0.92947263; T( 1,667)= 0.93332660; T( 1,668)= 0.93719601; T( 1,669)= 0.94108097; T( 1,670)= 0.94498155; T( 1,671)= 0.94889785; T( 1,672)= 0.95282996; T( 1,673)= 0.95677798; T( 1,674)= 0.96074201; T( 1,675)= 0.96472213; T( 1,676)= 0.96871846; T( 1,677)= 0.97273107; T( 1,678)= 0.97676009; T( 1,679)= 0.98080559; T( 1,680)= 0.98486769; T( 1,681)= 0.98894648; T( 1,682)= 0.99304207; T( 1,683)= 0.99715457; T( 1,684)= 1.00128407; T( 1,685)= 1.00543068; T( 1,686)= 1.00959452; T( 1,687)= 1.01377568; T( 1,688)= 1.01797427; T( 1,689)= 1.02219041; T( 1,690)= 1.02642421; T( 1,691)= 1.03067578; T( 1,692)= 1.03494522; T( 1,693)= 1.03923267; T( 1,694)= 1.04353822; T( 1,695)= 1.04786201; T( 1,696)= 1.05220414; T( 1,697)= 1.05656473; T( 1,698)= 1.06094391; T( 1,699)= 1.06534179; T( 1,700)= 1.06975851; T( 1,701)= 1.07419417; T( 1,702)= 1.07864891; T( 1,703)= 1.08312286; T( 1,704)= 1.08761614; T( 1,705)= 1.09212887; T( 1,706)= 1.09666120; T( 1,707)= 1.10121325; T( 1,708)= 1.10578516; T( 1,709)= 1.11037705; T( 1,710)= 1.11498907; T( 1,711)= 1.11962136; T( 1,712)= 1.12427404; T( 1,713)= 1.12894727; T( 1,714)= 1.13364118; T( 1,715)= 1.13835591; T( 1,716)= 1.14309162; T( 1,717)= 1.14784844; T( 1,718)= 1.15262653; T( 1,719)= 1.15742603; T( 1,720)= 1.16224709; T( 1,721)= 1.16708988; T( 1,722)= 1.17195453; T( 1,723)= 1.17684122; T( 1,724)= 1.18175009; T( 1,725)= 1.18668130; T( 1,726)= 1.19163503; T( 1,727)= 1.19661142; T( 1,728)= 1.20161064; T( 1,729)= 1.20663287; T( 1,730)= 1.21167827; T( 1,731)= 1.21674700; T( 1,732)= 1.22183925; T( 1,733)= 1.22695519; T( 1,734)= 1.23209498; T( 1,735)= 1.23725882; T( 1,736)= 1.24244689; T( 1,737)= 1.24765935; T( 1,738)= 1.25289640; T( 1,739)= 1.25815823; T( 1,740)= 1.26344503; T( 1,741)= 1.26875698; T( 1,742)= 1.27409427; T( 1,743)= 1.27945711; T( 1,744)= 1.28484570; T( 1,745)= 1.29026023; T( 1,746)= 1.29570090; T( 1,747)= 1.30116792; T( 1,748)= 1.30666150; T( 1,749)= 1.31218185; T( 1,750)= 1.31772917; T( 1,751)= 1.32330370; T( 1,752)= 1.32890563; T( 1,753)= 1.33453520; T( 1,754)= 1.34019263; T( 1,755)= 1.34587814; T( 1,756)= 1.35159197; T( 1,757)= 1.35733433; T( 1,758)= 1.36310547; T( 1,759)= 1.36890563; T( 1,760)= 1.37473505; T( 1,761)= 1.38059396; T( 1,762)= 1.38648262; T( 1,763)= 1.39240128; T( 1,764)= 1.39835018; T( 1,765)= 1.40432959; T( 1,766)= 1.41033976; T( 1,767)= 1.41638095; T( 1,768)= 1.42245344; T( 1,769)= 1.42855750; T( 1,770)= 1.43469339; T( 1,771)= 1.44086139; T( 1,772)= 1.44706178; T( 1,773)= 1.45329486; T( 1,774)= 1.45956089; T( 1,775)= 1.46586019; T( 1,776)= 1.47219304; T( 1,777)= 1.47855974; T( 1,778)= 1.48496060; T( 1,779)= 1.49139593; T( 1,780)= 1.49786603; T( 1,781)= 1.50437123; T( 1,782)= 1.51091184; T( 1,783)= 1.51748820; T( 1,784)= 1.52410062; T( 1,785)= 1.53074945; T( 1,786)= 1.53743503; T( 1,787)= 1.54415770; T( 1,788)= 1.55091780; T( 1,789)= 1.55771570; T( 1,790)= 1.56455174; T( 1,791)= 1.57142631; T( 1,792)= 1.57833976; T( 1,793)= 1.58529247; T( 1,794)= 1.59228482; T( 1,795)= 1.59931720; T( 1,796)= 1.60639000; T( 1,797)= 1.61350362; T( 1,798)= 1.62065845; T( 1,799)= 1.62785492; T( 1,800)= 1.63509343; T( 1,801)= 1.64237442; T( 1,802)= 1.64969829; T( 1,803)= 1.65706550; T( 1,804)= 1.66447649; T( 1,805)= 1.67193169; T( 1,806)= 1.67943157; T( 1,807)= 1.68697660; T( 1,808)= 1.69456723; T( 1,809)= 1.70220395; T( 1,810)= 1.70988725; T( 1,811)= 1.71761761; T( 1,812)= 1.72539554; T( 1,813)= 1.73322154; T( 1,814)= 1.74109613; T( 1,815)= 1.74901984; T( 1,816)= 1.75699320; T( 1,817)= 1.76501675; T( 1,818)= 1.77309105; T( 1,819)= 1.78121665; T( 1,820)= 1.78939413; T( 1,821)= 1.79762406; T( 1,822)= 1.80590704; T( 1,823)= 1.81424366; T( 1,824)= 1.82263454; T( 1,825)= 1.83108029; T( 1,826)= 1.83958155; T( 1,827)= 1.84813896; T( 1,828)= 1.85675316; T( 1,829)= 1.86542483; T( 1,830)= 1.87415465; T( 1,831)= 1.88294329; T( 1,832)= 1.89179147; T( 1,833)= 1.90069989; T( 1,834)= 1.90966928; T( 1,835)= 1.91870038; T( 1,836)= 1.92779395; T( 1,837)= 1.93695075; T( 1,838)= 1.94617156; T( 1,839)= 1.95545717; T( 1,840)= 1.96480841; T( 1,841)= 1.97422609; T( 1,842)= 1.98371106; T( 1,843)= 1.99326417; T( 1,844)= 2.00288630; T( 1,845)= 2.01257834; T( 1,846)= 2.02234120; T( 1,847)= 2.03217580; T( 1,848)= 2.04208310; T( 1,849)= 2.05206405; T( 1,850)= 2.06211963; T( 1,851)= 2.07225086; T( 1,852)= 2.08245874; T( 1,853)= 2.09274434; T( 1,854)= 2.10310870; T( 1,855)= 2.11355293; T( 1,856)= 2.12407812; T( 1,857)= 2.13468542; T( 1,858)= 2.14537598; T( 1,859)= 2.15615098; T( 1,860)= 2.16701163; T( 1,861)= 2.17795916; T( 1,862)= 2.18899483; T( 1,863)= 2.20011994; T( 1,864)= 2.21133579; T( 1,865)= 2.22264373; T( 1,866)= 2.23404513; T( 1,867)= 2.24554141; T( 1,868)= 2.25713401; T( 1,869)= 2.26882438; T( 1,870)= 2.28061404; T( 1,871)= 2.29250453; T( 1,872)= 2.30449742; T( 1,873)= 2.31659432; T( 1,874)= 2.32879689; T( 1,875)= 2.34110682; T( 1,876)= 2.35352584; T( 1,877)= 2.36605573; T( 1,878)= 2.37869829; T( 1,879)= 2.39145540; T( 1,880)= 2.40432896; T( 1,881)= 2.41732093; T( 1,882)= 2.43043331; T( 1,883)= 2.44366817; T( 1,884)= 2.45702761; T( 1,885)= 2.47051380; T( 1,886)= 2.48412895; T( 1,887)= 2.49787536; T( 1,888)= 2.51175537; T( 1,889)= 2.52577137; T( 1,890)= 2.53992584; T( 1,891)= 2.55422131; T( 1,892)= 2.56866040; T( 1,893)= 2.58324579; T( 1,894)= 2.59798022; T( 1,895)= 2.61286654; T( 1,896)= 2.62790766; T( 1,897)= 2.64310659; T( 1,898)= 2.65846640; T( 1,899)= 2.67399029; T( 1,900)= 2.68968151; T( 1,901)= 2.70554345; T( 1,902)= 2.72157959; T( 1,903)= 2.73779350; T( 1,904)= 2.75418887; T( 1,905)= 2.77076952; T( 1,906)= 2.78753937; T( 1,907)= 2.80450249; T( 1,908)= 2.82166305; T( 1,909)= 2.83902539; T( 1,910)= 2.85659397; T( 1,911)= 2.87437340; T( 1,912)= 2.89236845; T( 1,913)= 2.91058407; T( 1,914)= 2.92902536; T( 1,915)= 2.94769760; T( 1,916)= 2.96660627; T( 1,917)= 2.98575702; T( 1,918)= 3.00515574; T( 1,919)= 3.02480852; T( 1,920)= 3.04472166; T( 1,921)= 3.06490172; T( 1,922)= 3.08535550; T( 1,923)= 3.10609006; T( 1,924)= 3.12711274; T( 1,925)= 3.14843116; T( 1,926)= 3.17005327; T( 1,927)= 3.19198732; T( 1,928)= 3.21424190; T( 1,929)= 3.23682596; T( 1,930)= 3.25974885; T( 1,931)= 3.28302029; T( 1,932)= 3.30665043; T( 1,933)= 3.33064990; T( 1,934)= 3.35502975; T( 1,935)= 3.37980159; T( 1,936)= 3.40497752; T( 1,937)= 3.43057023; T( 1,938)= 3.45659301; T( 1,939)= 3.48305980; T( 1,940)= 3.50998521; T( 1,941)= 3.53738460; T( 1,942)= 3.56527408; T( 1,943)= 3.59367062; T( 1,944)= 3.62259207; T( 1,945)= 3.65205725; T( 1,946)= 3.68208597; T( 1,947)= 3.71269918; T( 1,948)= 3.74391899; T( 1,949)= 3.77576877; T( 1,950)= 3.80827331; T( 1,951)= 3.84145882; T( 1,952)= 3.87535316; T( 1,953)= 3.90998590; T( 1,954)= 3.94538850; T( 1,955)= 3.98159446; T( 1,956)= 4.01863951; T( 1,957)= 4.05656180; T( 1,958)= 4.09540213; T( 1,959)= 4.13520420; T( 1,960)= 4.17601489; T( 1,961)= 4.21788459; T( 1,962)= 4.26086752; T( 1,963)= 4.30502217; T( 1,964)= 4.35041174; T( 1,965)= 4.39710464; T( 1,966)= 4.44517514; T( 1,967)= 4.49470397; T( 1,968)= 4.54577916; T( 1,969)= 4.59849691; T( 1,970)= 4.65296265; T( 1,971)= 4.70929225; T( 1,972)= 4.76761342; T( 1,973)= 4.82806742; T( 1,974)= 4.89081102; T( 1,975)= 4.95601884; T( 1,976)= 5.02388619; T( 1,977)= 5.09463243; T( 1,978)= 5.16850511; T( 1,979)= 5.24578502; T( 1,980)= 5.32679234; T( 1,981)= 5.41189443; T( 1,982)= 5.50151554; T( 1,983)= 5.59614912; T( 1,984)= 5.69637381; T( 1,985)= 5.80287411; T( 1,986)= 5.91646788; T( 1,987)= 6.03814337; T( 1,988)= 6.16910990; T( 1,989)= 6.31086912; T( 1,990)= 6.46531729; T( 1,991)= 6.63489660; T( 1,992)= 6.82282684; T( 1,993)= 7.03347427; T( 1,994)= 7.27296897; T( 1,995)= 7.55030254; T( 1,996)= 7.87943858; T( 1,997)= 8.28381500; T( 1,998)= 8.80746839; T( 1,999)= 9.54953571; T( 1,1000)=10.82756617; T( 1,1001)=15.13670523; T( 1,1002)=19.51142096; T( 2, 1)= 0.00000000; T( 2, 2)= 0.00200100; T( 2, 3)= 0.00400401; T( 2, 4)= 0.00600902; T( 2, 5)= 0.00801604; T( 2, 6)= 0.01002508; T( 2, 7)= 0.01203614; T( 2, 8)= 0.01404923; T( 2, 9)= 0.01606434; T( 2,10)= 0.01808149; T( 2,11)= 0.02010067; T( 2,12)= 0.02212189; T( 2,13)= 0.02414516; T( 2,14)= 0.02617048; T( 2,15)= 0.02819785; T( 2,16)= 0.03022728; T( 2,17)= 0.03225876; T( 2,18)= 0.03429232; T( 2,19)= 0.03632794; T( 2,20)= 0.03836564; T( 2,21)= 0.04040541; T( 2,22)= 0.04244727; T( 2,23)= 0.04449122; T( 2,24)= 0.04653725; T( 2,25)= 0.04858539; T( 2,26)= 0.05063562; T( 2,27)= 0.05268795; T( 2,28)= 0.05474239; T( 2,29)= 0.05679895; T( 2,30)= 0.05885762; T( 2,31)= 0.06091841; T( 2,32)= 0.06298133; T( 2,33)= 0.06504638; T( 2,34)= 0.06711357; T( 2,35)= 0.06918289; T( 2,36)= 0.07125436; T( 2,37)= 0.07332797; T( 2,38)= 0.07540373; T( 2,39)= 0.07748166; T( 2,40)= 0.07956174; T( 2,41)= 0.08164399; T( 2,42)= 0.08372841; T( 2,43)= 0.08581500; T( 2,44)= 0.08790378; T( 2,45)= 0.08999473; T( 2,46)= 0.09208788; T( 2,47)= 0.09418322; T( 2,48)= 0.09628075; T( 2,49)= 0.09838049; T( 2,50)= 0.10048243; T( 2,51)= 0.10258659; T( 2,52)= 0.10469296; T( 2,53)= 0.10680155; T( 2,54)= 0.10891237; T( 2,55)= 0.11102542; T( 2,56)= 0.11314070; T( 2,57)= 0.11525823; T( 2,58)= 0.11737799; T( 2,59)= 0.11950001; T( 2,60)= 0.12162428; T( 2,61)= 0.12375081; T( 2,62)= 0.12587960; T( 2,63)= 0.12801066; T( 2,64)= 0.13014399; T( 2,65)= 0.13227961; T( 2,66)= 0.13441750; T( 2,67)= 0.13655768; T( 2,68)= 0.13870016; T( 2,69)= 0.14084493; T( 2,70)= 0.14299200; T( 2,71)= 0.14514139; T( 2,72)= 0.14729308; T( 2,73)= 0.14944709; T( 2,74)= 0.15160343; T( 2,75)= 0.15376209; T( 2,76)= 0.15592308; T( 2,77)= 0.15808641; T( 2,78)= 0.16025209; T( 2,79)= 0.16242011; T( 2,80)= 0.16459049; T( 2,81)= 0.16676322; T( 2,82)= 0.16893831; T( 2,83)= 0.17111578; T( 2,84)= 0.17329561; T( 2,85)= 0.17547783; T( 2,86)= 0.17766243; T( 2,87)= 0.17984942; T( 2,88)= 0.18203880; T( 2,89)= 0.18423058; T( 2,90)= 0.18642476; T( 2,91)= 0.18862136; T( 2,92)= 0.19082037; T( 2,93)= 0.19302180; T( 2,94)= 0.19522566; T( 2,95)= 0.19743195; T( 2,96)= 0.19964067; T( 2,97)= 0.20185184; T( 2,98)= 0.20406545; T( 2,99)= 0.20628152; T( 2,100)= 0.20850004; T( 2,101)= 0.21072103; T( 2,102)= 0.21294449; T( 2,103)= 0.21517042; T( 2,104)= 0.21739883; T( 2,105)= 0.21962973; T( 2,106)= 0.22186312; T( 2,107)= 0.22409901; T( 2,108)= 0.22633740; T( 2,109)= 0.22857829; T( 2,110)= 0.23082170; T( 2,111)= 0.23306763; T( 2,112)= 0.23531609; T( 2,113)= 0.23756707; T( 2,114)= 0.23982059; T( 2,115)= 0.24207666; T( 2,116)= 0.24433527; T( 2,117)= 0.24659643; T( 2,118)= 0.24886016; T( 2,119)= 0.25112645; T( 2,120)= 0.25339531; T( 2,121)= 0.25566674; T( 2,122)= 0.25794076; T( 2,123)= 0.26021737; T( 2,124)= 0.26249657; T( 2,125)= 0.26477838; T( 2,126)= 0.26706279; T( 2,127)= 0.26934981; T( 2,128)= 0.27163945; T( 2,129)= 0.27393171; T( 2,130)= 0.27622660; T( 2,131)= 0.27852413; T( 2,132)= 0.28082431; T( 2,133)= 0.28312713; T( 2,134)= 0.28543260; T( 2,135)= 0.28774074; T( 2,136)= 0.29005154; T( 2,137)= 0.29236502; T( 2,138)= 0.29468118; T( 2,139)= 0.29700002; T( 2,140)= 0.29932155; T( 2,141)= 0.30164578; T( 2,142)= 0.30397271; T( 2,143)= 0.30630236; T( 2,144)= 0.30863472; T( 2,145)= 0.31096981; T( 2,146)= 0.31330762; T( 2,147)= 0.31564817; T( 2,148)= 0.31799146; T( 2,149)= 0.32033750; T( 2,150)= 0.32268630; T( 2,151)= 0.32503786; T( 2,152)= 0.32739219; T( 2,153)= 0.32974929; T( 2,154)= 0.33210917; T( 2,155)= 0.33447184; T( 2,156)= 0.33683730; T( 2,157)= 0.33920557; T( 2,158)= 0.34157664; T( 2,159)= 0.34395053; T( 2,160)= 0.34632724; T( 2,161)= 0.34870677; T( 2,162)= 0.35108915; T( 2,163)= 0.35347436; T( 2,164)= 0.35586242; T( 2,165)= 0.35825333; T( 2,166)= 0.36064711; T( 2,167)= 0.36304375; T( 2,168)= 0.36544327; T( 2,169)= 0.36784568; T( 2,170)= 0.37025097; T( 2,171)= 0.37265916; T( 2,172)= 0.37507025; T( 2,173)= 0.37748425; T( 2,174)= 0.37990117; T( 2,175)= 0.38232101; T( 2,176)= 0.38474379; T( 2,177)= 0.38716950; T( 2,178)= 0.38959816; T( 2,179)= 0.39202977; T( 2,180)= 0.39446434; T( 2,181)= 0.39690188; T( 2,182)= 0.39934239; T( 2,183)= 0.40178588; T( 2,184)= 0.40423237; T( 2,185)= 0.40668185; T( 2,186)= 0.40913433; T( 2,187)= 0.41158983; T( 2,188)= 0.41404834; T( 2,189)= 0.41650988; T( 2,190)= 0.41897445; T( 2,191)= 0.42144206; T( 2,192)= 0.42391272; T( 2,193)= 0.42638644; T( 2,194)= 0.42886322; T( 2,195)= 0.43134307; T( 2,196)= 0.43382600; T( 2,197)= 0.43631202; T( 2,198)= 0.43880113; T( 2,199)= 0.44129334; T( 2,200)= 0.44378866; T( 2,201)= 0.44628710; T( 2,202)= 0.44878867; T( 2,203)= 0.45129336; T( 2,204)= 0.45380120; T( 2,205)= 0.45631219; T( 2,206)= 0.45882633; T( 2,207)= 0.46134364; T( 2,208)= 0.46386411; T( 2,209)= 0.46638777; T( 2,210)= 0.46891462; T( 2,211)= 0.47144467; T( 2,212)= 0.47397792; T( 2,213)= 0.47651438; T( 2,214)= 0.47905406; T( 2,215)= 0.48159697; T( 2,216)= 0.48414312; T( 2,217)= 0.48669252; T( 2,218)= 0.48924517; T( 2,219)= 0.49180108; T( 2,220)= 0.49436026; T( 2,221)= 0.49692272; T( 2,222)= 0.49948847; T( 2,223)= 0.50205751; T( 2,224)= 0.50462986; T( 2,225)= 0.50720552; T( 2,226)= 0.50978450; T( 2,227)= 0.51236681; T( 2,228)= 0.51495246; T( 2,229)= 0.51754146; T( 2,230)= 0.52013381; T( 2,231)= 0.52272953; T( 2,232)= 0.52532862; T( 2,233)= 0.52793109; T( 2,234)= 0.53053696; T( 2,235)= 0.53314622; T( 2,236)= 0.53575889; T( 2,237)= 0.53837498; T( 2,238)= 0.54099450; T( 2,239)= 0.54361745; T( 2,240)= 0.54624384; T( 2,241)= 0.54887369; T( 2,242)= 0.55150700; T( 2,243)= 0.55414379; T( 2,244)= 0.55678405; T( 2,245)= 0.55942781; T( 2,246)= 0.56207506; T( 2,247)= 0.56472582; T( 2,248)= 0.56738010; T( 2,249)= 0.57003791; T( 2,250)= 0.57269925; T( 2,251)= 0.57536414; T( 2,252)= 0.57803259; T( 2,253)= 0.58070460; T( 2,254)= 0.58338019; T( 2,255)= 0.58605936; T( 2,256)= 0.58874212; T( 2,257)= 0.59142849; T( 2,258)= 0.59411847; T( 2,259)= 0.59681207; T( 2,260)= 0.59950931; T( 2,261)= 0.60221019; T( 2,262)= 0.60491472; T( 2,263)= 0.60762291; T( 2,264)= 0.61033477; T( 2,265)= 0.61305032; T( 2,266)= 0.61576956; T( 2,267)= 0.61849250; T( 2,268)= 0.62121915; T( 2,269)= 0.62394953; T( 2,270)= 0.62668364; T( 2,271)= 0.62942149; T( 2,272)= 0.63216309; T( 2,273)= 0.63490846; T( 2,274)= 0.63765760; T( 2,275)= 0.64041053; T( 2,276)= 0.64316725; T( 2,277)= 0.64592777; T( 2,278)= 0.64869211; T( 2,279)= 0.65146028; T( 2,280)= 0.65423228; T( 2,281)= 0.65700813; T( 2,282)= 0.65978784; T( 2,283)= 0.66257142; T( 2,284)= 0.66535888; T( 2,285)= 0.66815022; T( 2,286)= 0.67094547; T( 2,287)= 0.67374463; T( 2,288)= 0.67654772; T( 2,289)= 0.67935474; T( 2,290)= 0.68216570; T( 2,291)= 0.68498062; T( 2,292)= 0.68779950; T( 2,293)= 0.69062237; T( 2,294)= 0.69344923; T( 2,295)= 0.69628008; T( 2,296)= 0.69911495; T( 2,297)= 0.70195385; T( 2,298)= 0.70479677; T( 2,299)= 0.70764375; T( 2,300)= 0.71049478; T( 2,301)= 0.71334989; T( 2,302)= 0.71620907; T( 2,303)= 0.71907235; T( 2,304)= 0.72193974; T( 2,305)= 0.72481124; T( 2,306)= 0.72768687; T( 2,307)= 0.73056664; T( 2,308)= 0.73345056; T( 2,309)= 0.73633865; T( 2,310)= 0.73923091; T( 2,311)= 0.74212736; T( 2,312)= 0.74502802; T( 2,313)= 0.74793288; T( 2,314)= 0.75084197; T( 2,315)= 0.75375530; T( 2,316)= 0.75667288; T( 2,317)= 0.75959472; T( 2,318)= 0.76252084; T( 2,319)= 0.76545124; T( 2,320)= 0.76838595; T( 2,321)= 0.77132496; T( 2,322)= 0.77426830; T( 2,323)= 0.77721598; T( 2,324)= 0.78016801; T( 2,325)= 0.78312441; T( 2,326)= 0.78608518; T( 2,327)= 0.78905034; T( 2,328)= 0.79201990; T( 2,329)= 0.79499388; T( 2,330)= 0.79797228; T( 2,331)= 0.80095513; T( 2,332)= 0.80394244; T( 2,333)= 0.80693421; T( 2,334)= 0.80993047; T( 2,335)= 0.81293122; T( 2,336)= 0.81593648; T( 2,337)= 0.81894626; T( 2,338)= 0.82196058; T( 2,339)= 0.82497945; T( 2,340)= 0.82800288; T( 2,341)= 0.83103089; T( 2,342)= 0.83406349; T( 2,343)= 0.83710070; T( 2,344)= 0.84014252; T( 2,345)= 0.84318898; T( 2,346)= 0.84624009; T( 2,347)= 0.84929586; T( 2,348)= 0.85235630; T( 2,349)= 0.85542143; T( 2,350)= 0.85849127; T( 2,351)= 0.86156583; T( 2,352)= 0.86464512; T( 2,353)= 0.86772917; T( 2,354)= 0.87081797; T( 2,355)= 0.87391155; T( 2,356)= 0.87700992; T( 2,357)= 0.88011311; T( 2,358)= 0.88322111; T( 2,359)= 0.88633395; T( 2,360)= 0.88945164; T( 2,361)= 0.89257421; T( 2,362)= 0.89570165; T( 2,363)= 0.89883399; T( 2,364)= 0.90197125; T( 2,365)= 0.90511343; T( 2,366)= 0.90826056; T( 2,367)= 0.91141265; T( 2,368)= 0.91456971; T( 2,369)= 0.91773177; T( 2,370)= 0.92089883; T( 2,371)= 0.92407092; T( 2,372)= 0.92724804; T( 2,373)= 0.93043023; T( 2,374)= 0.93361748; T( 2,375)= 0.93680982; T( 2,376)= 0.94000726; T( 2,377)= 0.94320982; T( 2,378)= 0.94641752; T( 2,379)= 0.94963037; T( 2,380)= 0.95284839; T( 2,381)= 0.95607160; T( 2,382)= 0.95930001; T( 2,383)= 0.96253364; T( 2,384)= 0.96577251; T( 2,385)= 0.96901663; T( 2,386)= 0.97226602; T( 2,387)= 0.97552070; T( 2,388)= 0.97878069; T( 2,389)= 0.98204599; T( 2,390)= 0.98531664; T( 2,391)= 0.98859264; T( 2,392)= 0.99187402; T( 2,393)= 0.99516079; T( 2,394)= 0.99845298; T( 2,395)= 1.00175059; T( 2,396)= 1.00505364; T( 2,397)= 1.00836216; T( 2,398)= 1.01167616; T( 2,399)= 1.01499567; T( 2,400)= 1.01832069; T( 2,401)= 1.02165125; T( 2,402)= 1.02498736; T( 2,403)= 1.02832905; T( 2,404)= 1.03167633; T( 2,405)= 1.03502922; T( 2,406)= 1.03838775; T( 2,407)= 1.04175192; T( 2,408)= 1.04512176; T( 2,409)= 1.04849729; T( 2,410)= 1.05187852; T( 2,411)= 1.05526548; T( 2,412)= 1.05865819; T( 2,413)= 1.06205666; T( 2,414)= 1.06546092; T( 2,415)= 1.06887098; T( 2,416)= 1.07228686; T( 2,417)= 1.07570859; T( 2,418)= 1.07913619; T( 2,419)= 1.08256966; T( 2,420)= 1.08600904; T( 2,421)= 1.08945435; T( 2,422)= 1.09290560; T( 2,423)= 1.09636282; T( 2,424)= 1.09982602; T( 2,425)= 1.10329524; T( 2,426)= 1.10677048; T( 2,427)= 1.11025177; T( 2,428)= 1.11373912; T( 2,429)= 1.11723258; T( 2,430)= 1.12073214; T( 2,431)= 1.12423784; T( 2,432)= 1.12774969; T( 2,433)= 1.13126772; T( 2,434)= 1.13479195; T( 2,435)= 1.13832240; T( 2,436)= 1.14185910; T( 2,437)= 1.14540205; T( 2,438)= 1.14895130; T( 2,439)= 1.15250686; T( 2,440)= 1.15606875; T( 2,441)= 1.15963699; T( 2,442)= 1.16321161; T( 2,443)= 1.16679263; T( 2,444)= 1.17038008; T( 2,445)= 1.17397397; T( 2,446)= 1.17757433; T( 2,447)= 1.18118118; T( 2,448)= 1.18479455; T( 2,449)= 1.18841447; T( 2,450)= 1.19204094; T( 2,451)= 1.19567400; T( 2,452)= 1.19931367; T( 2,453)= 1.20295998; T( 2,454)= 1.20661295; T( 2,455)= 1.21027261; T( 2,456)= 1.21393897; T( 2,457)= 1.21761206; T( 2,458)= 1.22129192; T( 2,459)= 1.22497856; T( 2,460)= 1.22867200; T( 2,461)= 1.23237228; T( 2,462)= 1.23607942; T( 2,463)= 1.23979344; T( 2,464)= 1.24351437; T( 2,465)= 1.24724224; T( 2,466)= 1.25097706; T( 2,467)= 1.25471888; T( 2,468)= 1.25846771; T( 2,469)= 1.26222358; T( 2,470)= 1.26598652; T( 2,471)= 1.26975654; T( 2,472)= 1.27353369; T( 2,473)= 1.27731799; T( 2,474)= 1.28110946; T( 2,475)= 1.28490813; T( 2,476)= 1.28871403; T( 2,477)= 1.29252719; T( 2,478)= 1.29634763; T( 2,479)= 1.30017538; T( 2,480)= 1.30401047; T( 2,481)= 1.30785293; T( 2,482)= 1.31170279; T( 2,483)= 1.31556007; T( 2,484)= 1.31942481; T( 2,485)= 1.32329703; T( 2,486)= 1.32717676; T( 2,487)= 1.33106403; T( 2,488)= 1.33495887; T( 2,489)= 1.33886131; T( 2,490)= 1.34277138; T( 2,491)= 1.34668911; T( 2,492)= 1.35061452; T( 2,493)= 1.35454766; T( 2,494)= 1.35848855; T( 2,495)= 1.36243722; T( 2,496)= 1.36639370; T( 2,497)= 1.37035802; T( 2,498)= 1.37433022; T( 2,499)= 1.37831032; T( 2,500)= 1.38229836; T( 2,501)= 1.38629436; T( 2,502)= 1.39029837; T( 2,503)= 1.39431040; T( 2,504)= 1.39833051; T( 2,505)= 1.40235870; T( 2,506)= 1.40639503; T( 2,507)= 1.41043952; T( 2,508)= 1.41449221; T( 2,509)= 1.41855312; T( 2,510)= 1.42262230; T( 2,511)= 1.42669978; T( 2,512)= 1.43078558; T( 2,513)= 1.43487975; T( 2,514)= 1.43898231; T( 2,515)= 1.44309331; T( 2,516)= 1.44721278; T( 2,517)= 1.45134074; T( 2,518)= 1.45547725; T( 2,519)= 1.45962233; T( 2,520)= 1.46377602; T( 2,521)= 1.46793835; T( 2,522)= 1.47210936; T( 2,523)= 1.47628909; T( 2,524)= 1.48047758; T( 2,525)= 1.48467485; T( 2,526)= 1.48888095; T( 2,527)= 1.49309591; T( 2,528)= 1.49731978; T( 2,529)= 1.50155259; T( 2,530)= 1.50579437; T( 2,531)= 1.51004517; T( 2,532)= 1.51430502; T( 2,533)= 1.51857397; T( 2,534)= 1.52285204; T( 2,535)= 1.52713929; T( 2,536)= 1.53143575; T( 2,537)= 1.53574145; T( 2,538)= 1.54005645; T( 2,539)= 1.54438078; T( 2,540)= 1.54871447; T( 2,541)= 1.55305758; T( 2,542)= 1.55741014; T( 2,543)= 1.56177219; T( 2,544)= 1.56614378; T( 2,545)= 1.57052494; T( 2,546)= 1.57491572; T( 2,547)= 1.57931616; T( 2,548)= 1.58372631; T( 2,549)= 1.58814620; T( 2,550)= 1.59257588; T( 2,551)= 1.59701539; T( 2,552)= 1.60146478; T( 2,553)= 1.60592409; T( 2,554)= 1.61039337; T( 2,555)= 1.61487265; T( 2,556)= 1.61936199; T( 2,557)= 1.62386143; T( 2,558)= 1.62837102; T( 2,559)= 1.63289079; T( 2,560)= 1.63742081; T( 2,561)= 1.64196110; T( 2,562)= 1.64651173; T( 2,563)= 1.65107274; T( 2,564)= 1.65564417; T( 2,565)= 1.66022607; T( 2,566)= 1.66481850; T( 2,567)= 1.66942149; T( 2,568)= 1.67403510; T( 2,569)= 1.67865938; T( 2,570)= 1.68329438; T( 2,571)= 1.68794014; T( 2,572)= 1.69259672; T( 2,573)= 1.69726417; T( 2,574)= 1.70194253; T( 2,575)= 1.70663187; T( 2,576)= 1.71133222; T( 2,577)= 1.71604365; T( 2,578)= 1.72076620; T( 2,579)= 1.72549993; T( 2,580)= 1.73024489; T( 2,581)= 1.73500114; T( 2,582)= 1.73976872; T( 2,583)= 1.74454769; T( 2,584)= 1.74933811; T( 2,585)= 1.75414004; T( 2,586)= 1.75895352; T( 2,587)= 1.76377861; T( 2,588)= 1.76861537; T( 2,589)= 1.77346386; T( 2,590)= 1.77832413; T( 2,591)= 1.78319624; T( 2,592)= 1.78808025; T( 2,593)= 1.79297621; T( 2,594)= 1.79788419; T( 2,595)= 1.80280424; T( 2,596)= 1.80773642; T( 2,597)= 1.81268080; T( 2,598)= 1.81763743; T( 2,599)= 1.82260638; T( 2,600)= 1.82758770; T( 2,601)= 1.83258146; T( 2,602)= 1.83758772; T( 2,603)= 1.84260655; T( 2,604)= 1.84763800; T( 2,605)= 1.85268214; T( 2,606)= 1.85773903; T( 2,607)= 1.86280874; T( 2,608)= 1.86789133; T( 2,609)= 1.87298688; T( 2,610)= 1.87809544; T( 2,611)= 1.88321708; T( 2,612)= 1.88835187; T( 2,613)= 1.89349988; T( 2,614)= 1.89866117; T( 2,615)= 1.90383582; T( 2,616)= 1.90902389; T( 2,617)= 1.91422545; T( 2,618)= 1.91944058; T( 2,619)= 1.92466934; T( 2,620)= 1.92991181; T( 2,621)= 1.93516805; T( 2,622)= 1.94043815; T( 2,623)= 1.94572217; T( 2,624)= 1.95102018; T( 2,625)= 1.95633227; T( 2,626)= 1.96165851; T( 2,627)= 1.96699896; T( 2,628)= 1.97235372; T( 2,629)= 1.97772285; T( 2,630)= 1.98310643; T( 2,631)= 1.98850455; T( 2,632)= 1.99391727; T( 2,633)= 1.99934468; T( 2,634)= 2.00478686; T( 2,635)= 2.01024389; T( 2,636)= 2.01571585; T( 2,637)= 2.02120282; T( 2,638)= 2.02670489; T( 2,639)= 2.03222213; T( 2,640)= 2.03775464; T( 2,641)= 2.04330250; T( 2,642)= 2.04886578; T( 2,643)= 2.05444459; T( 2,644)= 2.06003899; T( 2,645)= 2.06564910; T( 2,646)= 2.07127498; T( 2,647)= 2.07691673; T( 2,648)= 2.08257444; T( 2,649)= 2.08824821; T( 2,650)= 2.09393811; T( 2,651)= 2.09964425; T( 2,652)= 2.10536671; T( 2,653)= 2.11110560; T( 2,654)= 2.11686100; T( 2,655)= 2.12263301; T( 2,656)= 2.12842172; T( 2,657)= 2.13422724; T( 2,658)= 2.14004966; T( 2,659)= 2.14588908; T( 2,660)= 2.15174560; T( 2,661)= 2.15761932; T( 2,662)= 2.16351034; T( 2,663)= 2.16941877; T( 2,664)= 2.17534470; T( 2,665)= 2.18128824; T( 2,666)= 2.18724949; T( 2,667)= 2.19322857; T( 2,668)= 2.19922558; T( 2,669)= 2.20524062; T( 2,670)= 2.21127381; T( 2,671)= 2.21732525; T( 2,672)= 2.22339506; T( 2,673)= 2.22948334; T( 2,674)= 2.23559022; T( 2,675)= 2.24171580; T( 2,676)= 2.24786019; T( 2,677)= 2.25402353; T( 2,678)= 2.26020591; T( 2,679)= 2.26640747; T( 2,680)= 2.27262831; T( 2,681)= 2.27886857; T( 2,682)= 2.28512835; T( 2,683)= 2.29140779; T( 2,684)= 2.29770701; T( 2,685)= 2.30402613; T( 2,686)= 2.31036528; T( 2,687)= 2.31672459; T( 2,688)= 2.32310418; T( 2,689)= 2.32950418; T( 2,690)= 2.33592473; T( 2,691)= 2.34236596; T( 2,692)= 2.34882800; T( 2,693)= 2.35531099; T( 2,694)= 2.36181506; T( 2,695)= 2.36834035; T( 2,696)= 2.37488700; T( 2,697)= 2.38145516; T( 2,698)= 2.38804495; T( 2,699)= 2.39465652; T( 2,700)= 2.40129003; T( 2,701)= 2.40794561; T( 2,702)= 2.41462341; T( 2,703)= 2.42132358; T( 2,704)= 2.42804628; T( 2,705)= 2.43479165; T( 2,706)= 2.44155985; T( 2,707)= 2.44835102; T( 2,708)= 2.45516534; T( 2,709)= 2.46200295; T( 2,710)= 2.46886402; T( 2,711)= 2.47574871; T( 2,712)= 2.48265718; T( 2,713)= 2.48958960; T( 2,714)= 2.49654613; T( 2,715)= 2.50352694; T( 2,716)= 2.51053220; T( 2,717)= 2.51756208; T( 2,718)= 2.52461676; T( 2,719)= 2.53169642; T( 2,720)= 2.53880122; T( 2,721)= 2.54593135; T( 2,722)= 2.55308699; T( 2,723)= 2.56026833; T( 2,724)= 2.56747555; T( 2,725)= 2.57470883; T( 2,726)= 2.58196836; T( 2,727)= 2.58925435; T( 2,728)= 2.59656697; T( 2,729)= 2.60390643; T( 2,730)= 2.61127292; T( 2,731)= 2.61866664; T( 2,732)= 2.62608780; T( 2,733)= 2.63353660; T( 2,734)= 2.64101324; T( 2,735)= 2.64851794; T( 2,736)= 2.65605091; T( 2,737)= 2.66361235; T( 2,738)= 2.67120249; T( 2,739)= 2.67882155; T( 2,740)= 2.68646974; T( 2,741)= 2.69414730; T( 2,742)= 2.70185443; T( 2,743)= 2.70959139; T( 2,744)= 2.71735839; T( 2,745)= 2.72515567; T( 2,746)= 2.73298347; T( 2,747)= 2.74084202; T( 2,748)= 2.74873158; T( 2,749)= 2.75665238; T( 2,750)= 2.76460468; T( 2,751)= 2.77258872; T( 2,752)= 2.78060477; T( 2,753)= 2.78865307; T( 2,754)= 2.79673388; T( 2,755)= 2.80484749; T( 2,756)= 2.81299414; T( 2,757)= 2.82117411; T( 2,758)= 2.82938767; T( 2,759)= 2.83763511; T( 2,760)= 2.84591669; T( 2,761)= 2.85423271; T( 2,762)= 2.86258345; T( 2,763)= 2.87096921; T( 2,764)= 2.87939028; T( 2,765)= 2.88784695; T( 2,766)= 2.89633953; T( 2,767)= 2.90486833; T( 2,768)= 2.91343365; T( 2,769)= 2.92203581; T( 2,770)= 2.93067514; T( 2,771)= 2.93935194; T( 2,772)= 2.94806655; T( 2,773)= 2.95681930; T( 2,774)= 2.96561052; T( 2,775)= 2.97444056; T( 2,776)= 2.98330975; T( 2,777)= 2.99221845; T( 2,778)= 3.00116702; T( 2,779)= 3.01015579; T( 2,780)= 3.01918515; T( 2,781)= 3.02825547; T( 2,782)= 3.03736710; T( 2,783)= 3.04652043; T( 2,784)= 3.05571585; T( 2,785)= 3.06495374; T( 2,786)= 3.07423450; T( 2,787)= 3.08355853; T( 2,788)= 3.09292623; T( 2,789)= 3.10233801; T( 2,790)= 3.11179429; T( 2,791)= 3.12129550; T( 2,792)= 3.13084205; T( 2,793)= 3.14043440; T( 2,794)= 3.15007297; T( 2,795)= 3.15975822; T( 2,796)= 3.16949060; T( 2,797)= 3.17927057; T( 2,798)= 3.18909860; T( 2,799)= 3.19897516; T( 2,800)= 3.20890074; T( 2,801)= 3.21887582; T( 2,802)= 3.22890091; T( 2,803)= 3.23897650; T( 2,804)= 3.24910310; T( 2,805)= 3.25928124; T( 2,806)= 3.26951144; T( 2,807)= 3.27979424; T( 2,808)= 3.29013018; T( 2,809)= 3.30051981; T( 2,810)= 3.31096370; T( 2,811)= 3.32146241; T( 2,812)= 3.33201653; T( 2,813)= 3.34262663; T( 2,814)= 3.35329332; T( 2,815)= 3.36401721; T( 2,816)= 3.37479891; T( 2,817)= 3.38563904; T( 2,818)= 3.39653825; T( 2,819)= 3.40749718; T( 2,820)= 3.41851650; T( 2,821)= 3.42959686; T( 2,822)= 3.44073895; T( 2,823)= 3.45194346; T( 2,824)= 3.46321109; T( 2,825)= 3.47454257; T( 2,826)= 3.48593861; T( 2,827)= 3.49739996; T( 2,828)= 3.50892737; T( 2,829)= 3.52052160; T( 2,830)= 3.53218344; T( 2,831)= 3.54391368; T( 2,832)= 3.55571313; T( 2,833)= 3.56758260; T( 2,834)= 3.57952293; T( 2,835)= 3.59153498; T( 2,836)= 3.60361961; T( 2,837)= 3.61577770; T( 2,838)= 3.62801016; T( 2,839)= 3.64031789; T( 2,840)= 3.65270183; T( 2,841)= 3.66516293; T( 2,842)= 3.67770215; T( 2,843)= 3.69032049; T( 2,844)= 3.70301895; T( 2,845)= 3.71579854; T( 2,846)= 3.72866032; T( 2,847)= 3.74160535; T( 2,848)= 3.75463472; T( 2,849)= 3.76774952; T( 2,850)= 3.78095088; T( 2,851)= 3.79423997; T( 2,852)= 3.80761795; T( 2,853)= 3.82108601; T( 2,854)= 3.83464538; T( 2,855)= 3.84829731; T( 2,856)= 3.86204307; T( 2,857)= 3.87588396; T( 2,858)= 3.88982130; T( 2,859)= 3.90385644; T( 2,860)= 3.91799078; T( 2,861)= 3.93222571; T( 2,862)= 3.94656269; T( 2,863)= 3.96100319; T( 2,864)= 3.97554871; T( 2,865)= 3.99020079; T( 2,866)= 4.00496100; T( 2,867)= 4.01983096; T( 2,868)= 4.03481230; T( 2,869)= 4.04990671; T( 2,870)= 4.06511591; T( 2,871)= 4.08044166; T( 2,872)= 4.09588575; T( 2,873)= 4.11145003; T( 2,874)= 4.12713639; T( 2,875)= 4.14294674; T( 2,876)= 4.15888308; T( 2,877)= 4.17494743; T( 2,878)= 4.19114185; T( 2,879)= 4.20746847; T( 2,880)= 4.22392947; T( 2,881)= 4.24052707; T( 2,882)= 4.25726357; T( 2,883)= 4.27414131; T( 2,884)= 4.29116269; T( 2,885)= 4.30833018; T( 2,886)= 4.32564630; T( 2,887)= 4.34311366; T( 2,888)= 4.36073492; T( 2,889)= 4.37851282; T( 2,890)= 4.39645016; T( 2,891)= 4.41454983; T( 2,892)= 4.43281479; T( 2,893)= 4.45124810; T( 2,894)= 4.46985289; T( 2,895)= 4.48863237; T( 2,896)= 4.50758986; T( 2,897)= 4.52672876; T( 2,898)= 4.54605258; T( 2,899)= 4.56556493; T( 2,900)= 4.58526952; T( 2,901)= 4.60517019; T( 2,902)= 4.62527086; T( 2,903)= 4.64557560; T( 2,904)= 4.66608860; T( 2,905)= 4.68681418; T( 2,906)= 4.70775677; T( 2,907)= 4.72892099; T( 2,908)= 4.75031157; T( 2,909)= 4.77193340; T( 2,910)= 4.79379154; T( 2,911)= 4.81589122; T( 2,912)= 4.83823782; T( 2,913)= 4.86083693; T( 2,914)= 4.88369432; T( 2,915)= 4.90681597; T( 2,916)= 4.93020804; T( 2,917)= 4.95387696; T( 2,918)= 4.97782934; T( 2,919)= 5.00207206; T( 2,920)= 5.02661225; T( 2,921)= 5.05145729; T( 2,922)= 5.07661485; T( 2,923)= 5.10209290; T( 2,924)= 5.12789971; T( 2,925)= 5.15404388; T( 2,926)= 5.18053433; T( 2,927)= 5.20738037; T( 2,928)= 5.23459168; T( 2,929)= 5.26217832; T( 2,930)= 5.29015080; T( 2,931)= 5.31852007; T( 2,932)= 5.34729755; T( 2,933)= 5.37649515; T( 2,934)= 5.40612532; T( 2,935)= 5.43620107; T( 2,936)= 5.46673602; T( 2,937)= 5.49774439; T( 2,938)= 5.52924111; T( 2,939)= 5.56124179; T( 2,940)= 5.59376283; T( 2,941)= 5.62682143; T( 2,942)= 5.66043567; T( 2,943)= 5.69462454; T( 2,944)= 5.72940802; T( 2,945)= 5.76480718; T( 2,946)= 5.80084419; T( 2,947)= 5.83754246; T( 2,948)= 5.87492673; T( 2,949)= 5.91302312; T( 2,950)= 5.95185929; T( 2,951)= 5.99146455; T( 2,952)= 6.03186996; T( 2,953)= 6.07310854; T( 2,954)= 6.11521535; T( 2,955)= 6.15822776; T( 2,956)= 6.20218558; T( 2,957)= 6.24713129; T( 2,958)= 6.29311033; T( 2,959)= 6.34017132; T( 2,960)= 6.38836642; T( 2,961)= 6.43775165; T( 2,962)= 6.48838727; T( 2,963)= 6.54033824; T( 2,964)= 6.59367473; T( 2,965)= 6.64847268; T( 2,966)= 6.70481443; T( 2,967)= 6.76278951; T( 2,968)= 6.82249544; T( 2,969)= 6.88403875; T( 2,970)= 6.94753615; T( 2,971)= 7.01311579; T( 2,972)= 7.08091890; T( 2,973)= 7.15110154; T( 2,974)= 7.22383683; T( 2,975)= 7.29931748; T( 2,976)= 7.37775891; T( 2,977)= 7.45940290; T( 2,978)= 7.54452213; T( 2,979)= 7.63342565; T( 2,980)= 7.72646568; T( 2,981)= 7.82404601; T( 2,982)= 7.92663260; T( 2,983)= 8.03476704; T( 2,984)= 8.14908387; T( 2,985)= 8.27033311; T( 2,986)= 8.39941016; T( 2,987)= 8.53739590; T( 2,988)= 8.68561184; T( 2,989)= 8.84569726; T( 2,990)= 9.01972001; T( 2,991)= 9.21034037; T( 2,992)= 9.42106140; T( 2,993)= 9.65662747; T( 2,994)= 9.92369026; T( 2,995)=10.23199162; T( 2,996)=10.59663473; T( 2,997)=11.04292184; T( 2,998)=11.61828598; T( 2,999)=12.42921620; T( 2,1000)=13.81551056; T( 2,1001)=18.42068074; T( 2,1002)=23.02585093; T( 3, 1)= 0.00000000; T( 3, 2)= 0.02429759; T( 3, 3)= 0.03868093; T( 3, 4)= 0.05080913; T( 3, 5)= 0.06168447; T( 3, 6)= 0.07172177; T( 3, 7)= 0.08114342; T( 3, 8)= 0.09008603; T( 3, 9)= 0.09864107; T( 3,10)= 0.10687357; T( 3,11)= 0.11483180; T( 3,12)= 0.12255284; T( 3,13)= 0.13006595; T( 3,14)= 0.13739472; T( 3,15)= 0.14455853; T( 3,16)= 0.15157352; T( 3,17)= 0.15845335; T( 3,18)= 0.16520966; T( 3,19)= 0.17185252; T( 3,20)= 0.17839068; T( 3,21)= 0.18483182; T( 3,22)= 0.19118271; T( 3,23)= 0.19744939; T( 3,24)= 0.20363723; T( 3,25)= 0.20975107; T( 3,26)= 0.21579528; T( 3,27)= 0.22177382; T( 3,28)= 0.22769028; T( 3,29)= 0.23354794; T( 3,30)= 0.23934983; T( 3,31)= 0.24509871; T( 3,32)= 0.25079713; T( 3,33)= 0.25644744; T( 3,34)= 0.26205185; T( 3,35)= 0.26761236; T( 3,36)= 0.27313088; T( 3,37)= 0.27860917; T( 3,38)= 0.28404887; T( 3,39)= 0.28945153; T( 3,40)= 0.29481859; T( 3,41)= 0.30015142; T( 3,42)= 0.30545129; T( 3,43)= 0.31071942; T( 3,44)= 0.31595694; T( 3,45)= 0.32116493; T( 3,46)= 0.32634441; T( 3,47)= 0.33149635; T( 3,48)= 0.33662166; T( 3,49)= 0.34172121; T( 3,50)= 0.34679583; T( 3,51)= 0.35184632; T( 3,52)= 0.35687342; T( 3,53)= 0.36187784; T( 3,54)= 0.36686029; T( 3,55)= 0.37182140; T( 3,56)= 0.37676180; T( 3,57)= 0.38168210; T( 3,58)= 0.38658287; T( 3,59)= 0.39146465; T( 3,60)= 0.39632798; T( 3,61)= 0.40117336; T( 3,62)= 0.40600128; T( 3,63)= 0.41081221; T( 3,64)= 0.41560659; T( 3,65)= 0.42038487; T( 3,66)= 0.42514747; T( 3,67)= 0.42989477; T( 3,68)= 0.43462718; T( 3,69)= 0.43934506; T( 3,70)= 0.44404879; T( 3,71)= 0.44873870; T( 3,72)= 0.45341514; T( 3,73)= 0.45807844; T( 3,74)= 0.46272891; T( 3,75)= 0.46736686; T( 3,76)= 0.47199258; T( 3,77)= 0.47660636; T( 3,78)= 0.48120848; T( 3,79)= 0.48579922; T( 3,80)= 0.49037883; T( 3,81)= 0.49494756; T( 3,82)= 0.49950567; T( 3,83)= 0.50405340; T( 3,84)= 0.50859097; T( 3,85)= 0.51311862; T( 3,86)= 0.51763656; T( 3,87)= 0.52214501; T( 3,88)= 0.52664418; T( 3,89)= 0.53113427; T( 3,90)= 0.53561547; T( 3,91)= 0.54008799; T( 3,92)= 0.54455201; T( 3,93)= 0.54900771; T( 3,94)= 0.55345527; T( 3,95)= 0.55789487; T( 3,96)= 0.56232666; T( 3,97)= 0.56675083; T( 3,98)= 0.57116753; T( 3,99)= 0.57557692; T( 3,100)= 0.57997915; T( 3,101)= 0.58437437; T( 3,102)= 0.58876274; T( 3,103)= 0.59314439; T( 3,104)= 0.59751946; T( 3,105)= 0.60188810; T( 3,106)= 0.60625044; T( 3,107)= 0.61060660; T( 3,108)= 0.61495672; T( 3,109)= 0.61930092; T( 3,110)= 0.62363934; T( 3,111)= 0.62797208; T( 3,112)= 0.63229926; T( 3,113)= 0.63662101; T( 3,114)= 0.64093743; T( 3,115)= 0.64524864; T( 3,116)= 0.64955475; T( 3,117)= 0.65385586; T( 3,118)= 0.65815208; T( 3,119)= 0.66244351; T( 3,120)= 0.66673026; T( 3,121)= 0.67101242; T( 3,122)= 0.67529008; T( 3,123)= 0.67956335; T( 3,124)= 0.68383232; T( 3,125)= 0.68809708; T( 3,126)= 0.69235773; T( 3,127)= 0.69661434; T( 3,128)= 0.70086701; T( 3,129)= 0.70511583; T( 3,130)= 0.70936087; T( 3,131)= 0.71360223; T( 3,132)= 0.71783998; T( 3,133)= 0.72207420; T( 3,134)= 0.72630497; T( 3,135)= 0.73053238; T( 3,136)= 0.73475649; T( 3,137)= 0.73897738; T( 3,138)= 0.74319513; T( 3,139)= 0.74740981; T( 3,140)= 0.75162148; T( 3,141)= 0.75583023; T( 3,142)= 0.76003612; T( 3,143)= 0.76423922; T( 3,144)= 0.76843960; T( 3,145)= 0.77263731; T( 3,146)= 0.77683244; T( 3,147)= 0.78102504; T( 3,148)= 0.78521518; T( 3,149)= 0.78940292; T( 3,150)= 0.79358832; T( 3,151)= 0.79777144; T( 3,152)= 0.80195235; T( 3,153)= 0.80613110; T( 3,154)= 0.81030775; T( 3,155)= 0.81448236; T( 3,156)= 0.81865499; T( 3,157)= 0.82282568; T( 3,158)= 0.82699451; T( 3,159)= 0.83116152; T( 3,160)= 0.83532677; T( 3,161)= 0.83949030; T( 3,162)= 0.84365218; T( 3,163)= 0.84781246; T( 3,164)= 0.85197118; T( 3,165)= 0.85612840; T( 3,166)= 0.86028417; T( 3,167)= 0.86443854; T( 3,168)= 0.86859155; T( 3,169)= 0.87274326; T( 3,170)= 0.87689372; T( 3,171)= 0.88104296; T( 3,172)= 0.88519105; T( 3,173)= 0.88933801; T( 3,174)= 0.89348391; T( 3,175)= 0.89762878; T( 3,176)= 0.90177268; T( 3,177)= 0.90591564; T( 3,178)= 0.91005770; T( 3,179)= 0.91419892; T( 3,180)= 0.91833934; T( 3,181)= 0.92247899; T( 3,182)= 0.92661793; T( 3,183)= 0.93075618; T( 3,184)= 0.93489380; T( 3,185)= 0.93903082; T( 3,186)= 0.94316729; T( 3,187)= 0.94730324; T( 3,188)= 0.95143871; T( 3,189)= 0.95557375; T( 3,190)= 0.95970839; T( 3,191)= 0.96384268; T( 3,192)= 0.96797664; T( 3,193)= 0.97211032; T( 3,194)= 0.97624375; T( 3,195)= 0.98037698; T( 3,196)= 0.98451003; T( 3,197)= 0.98864295; T( 3,198)= 0.99277578; T( 3,199)= 0.99690854; T( 3,200)= 1.00104127; T( 3,201)= 1.00517401; T( 3,202)= 1.00930680; T( 3,203)= 1.01343967; T( 3,204)= 1.01757264; T( 3,205)= 1.02170577; T( 3,206)= 1.02583908; T( 3,207)= 1.02997260; T( 3,208)= 1.03410637; T( 3,209)= 1.03824042; T( 3,210)= 1.04237479; T( 3,211)= 1.04650951; T( 3,212)= 1.05064460; T( 3,213)= 1.05478011; T( 3,214)= 1.05891606; T( 3,215)= 1.06305249; T( 3,216)= 1.06718942; T( 3,217)= 1.07132690; T( 3,218)= 1.07546494; T( 3,219)= 1.07960359; T( 3,220)= 1.08374286; T( 3,221)= 1.08788280; T( 3,222)= 1.09202343; T( 3,223)= 1.09616478; T( 3,224)= 1.10030689; T( 3,225)= 1.10444978; T( 3,226)= 1.10859348; T( 3,227)= 1.11273802; T( 3,228)= 1.11688343; T( 3,229)= 1.12102974; T( 3,230)= 1.12517697; T( 3,231)= 1.12932517; T( 3,232)= 1.13347435; T( 3,233)= 1.13762455; T( 3,234)= 1.14177578; T( 3,235)= 1.14592809; T( 3,236)= 1.15008149; T( 3,237)= 1.15423602; T( 3,238)= 1.15839171; T( 3,239)= 1.16254857; T( 3,240)= 1.16670665; T( 3,241)= 1.17086596; T( 3,242)= 1.17502653; T( 3,243)= 1.17918839; T( 3,244)= 1.18335157; T( 3,245)= 1.18751609; T( 3,246)= 1.19168198; T( 3,247)= 1.19584927; T( 3,248)= 1.20001798; T( 3,249)= 1.20418814; T( 3,250)= 1.20835977; T( 3,251)= 1.21253290; T( 3,252)= 1.21670756; T( 3,253)= 1.22088378; T( 3,254)= 1.22506157; T( 3,255)= 1.22924097; T( 3,256)= 1.23342199; T( 3,257)= 1.23760467; T( 3,258)= 1.24178903; T( 3,259)= 1.24597510; T( 3,260)= 1.25016289; T( 3,261)= 1.25435244; T( 3,262)= 1.25854377; T( 3,263)= 1.26273691; T( 3,264)= 1.26693188; T( 3,265)= 1.27112870; T( 3,266)= 1.27532740; T( 3,267)= 1.27952800; T( 3,268)= 1.28373053; T( 3,269)= 1.28793502; T( 3,270)= 1.29214148; T( 3,271)= 1.29634995; T( 3,272)= 1.30056043; T( 3,273)= 1.30477297; T( 3,274)= 1.30898758; T( 3,275)= 1.31320429; T( 3,276)= 1.31742312; T( 3,277)= 1.32164410; T( 3,278)= 1.32586724; T( 3,279)= 1.33009258; T( 3,280)= 1.33432014; T( 3,281)= 1.33854993; T( 3,282)= 1.34278199; T( 3,283)= 1.34701634; T( 3,284)= 1.35125299; T( 3,285)= 1.35549198; T( 3,286)= 1.35973333; T( 3,287)= 1.36397706; T( 3,288)= 1.36822319; T( 3,289)= 1.37247175; T( 3,290)= 1.37672276; T( 3,291)= 1.38097625; T( 3,292)= 1.38523223; T( 3,293)= 1.38949074; T( 3,294)= 1.39375178; T( 3,295)= 1.39801539; T( 3,296)= 1.40228159; T( 3,297)= 1.40655041; T( 3,298)= 1.41082186; T( 3,299)= 1.41509596; T( 3,300)= 1.41937275; T( 3,301)= 1.42365224; T( 3,302)= 1.42793446; T( 3,303)= 1.43221943; T( 3,304)= 1.43650717; T( 3,305)= 1.44079770; T( 3,306)= 1.44509106; T( 3,307)= 1.44938725; T( 3,308)= 1.45368631; T( 3,309)= 1.45798825; T( 3,310)= 1.46229310; T( 3,311)= 1.46660089; T( 3,312)= 1.47091162; T( 3,313)= 1.47522534; T( 3,314)= 1.47954205; T( 3,315)= 1.48386178; T( 3,316)= 1.48818456; T( 3,317)= 1.49251041; T( 3,318)= 1.49683934; T( 3,319)= 1.50117139; T( 3,320)= 1.50550658; T( 3,321)= 1.50984492; T( 3,322)= 1.51418644; T( 3,323)= 1.51853116; T( 3,324)= 1.52287911; T( 3,325)= 1.52723031; T( 3,326)= 1.53158477; T( 3,327)= 1.53594253; T( 3,328)= 1.54030361; T( 3,329)= 1.54466802; T( 3,330)= 1.54903580; T( 3,331)= 1.55340696; T( 3,332)= 1.55778152; T( 3,333)= 1.56215951; T( 3,334)= 1.56654096; T( 3,335)= 1.57092588; T( 3,336)= 1.57531429; T( 3,337)= 1.57970623; T( 3,338)= 1.58410171; T( 3,339)= 1.58850075; T( 3,340)= 1.59290338; T( 3,341)= 1.59730962; T( 3,342)= 1.60171949; T( 3,343)= 1.60613302; T( 3,344)= 1.61055022; T( 3,345)= 1.61497113; T( 3,346)= 1.61939577; T( 3,347)= 1.62382415; T( 3,348)= 1.62825630; T( 3,349)= 1.63269224; T( 3,350)= 1.63713200; T( 3,351)= 1.64157560; T( 3,352)= 1.64602306; T( 3,353)= 1.65047440; T( 3,354)= 1.65492966; T( 3,355)= 1.65938884; T( 3,356)= 1.66385198; T( 3,357)= 1.66831910; T( 3,358)= 1.67279021; T( 3,359)= 1.67726535; T( 3,360)= 1.68174454; T( 3,361)= 1.68622780; T( 3,362)= 1.69071515; T( 3,363)= 1.69520662; T( 3,364)= 1.69970222; T( 3,365)= 1.70420200; T( 3,366)= 1.70870596; T( 3,367)= 1.71321413; T( 3,368)= 1.71772653; T( 3,369)= 1.72224319; T( 3,370)= 1.72676414; T( 3,371)= 1.73128939; T( 3,372)= 1.73581896; T( 3,373)= 1.74035290; T( 3,374)= 1.74489120; T( 3,375)= 1.74943391; T( 3,376)= 1.75398104; T( 3,377)= 1.75853263; T( 3,378)= 1.76308868; T( 3,379)= 1.76764923; T( 3,380)= 1.77221430; T( 3,381)= 1.77678392; T( 3,382)= 1.78135810; T( 3,383)= 1.78593688; T( 3,384)= 1.79052027; T( 3,385)= 1.79510831; T( 3,386)= 1.79970102; T( 3,387)= 1.80429841; T( 3,388)= 1.80890052; T( 3,389)= 1.81350738; T( 3,390)= 1.81811899; T( 3,391)= 1.82273540; T( 3,392)= 1.82735662; T( 3,393)= 1.83198268; T( 3,394)= 1.83661361; T( 3,395)= 1.84124942; T( 3,396)= 1.84589015; T( 3,397)= 1.85053582; T( 3,398)= 1.85518646; T( 3,399)= 1.85984208; T( 3,400)= 1.86450272; T( 3,401)= 1.86916840; T( 3,402)= 1.87383915; T( 3,403)= 1.87851499; T( 3,404)= 1.88319595; T( 3,405)= 1.88788205; T( 3,406)= 1.89257333; T( 3,407)= 1.89726979; T( 3,408)= 1.90197148; T( 3,409)= 1.90667842; T( 3,410)= 1.91139063; T( 3,411)= 1.91610814; T( 3,412)= 1.92083098; T( 3,413)= 1.92555917; T( 3,414)= 1.93029273; T( 3,415)= 1.93503171; T( 3,416)= 1.93977611; T( 3,417)= 1.94452598; T( 3,418)= 1.94928133; T( 3,419)= 1.95404219; T( 3,420)= 1.95880859; T( 3,421)= 1.96358056; T( 3,422)= 1.96835812; T( 3,423)= 1.97314131; T( 3,424)= 1.97793014; T( 3,425)= 1.98272465; T( 3,426)= 1.98752486; T( 3,427)= 1.99233080; T( 3,428)= 1.99714251; T( 3,429)= 2.00195999; T( 3,430)= 2.00678330; T( 3,431)= 2.01161244; T( 3,432)= 2.01644746; T( 3,433)= 2.02128838; T( 3,434)= 2.02613522; T( 3,435)= 2.03098802; T( 3,436)= 2.03584681; T( 3,437)= 2.04071161; T( 3,438)= 2.04558245; T( 3,439)= 2.05045936; T( 3,440)= 2.05534237; T( 3,441)= 2.06023151; T( 3,442)= 2.06512681; T( 3,443)= 2.07002829; T( 3,444)= 2.07493600; T( 3,445)= 2.07984995; T( 3,446)= 2.08477018; T( 3,447)= 2.08969671; T( 3,448)= 2.09462958; T( 3,449)= 2.09956881; T( 3,450)= 2.10451445; T( 3,451)= 2.10946651; T( 3,452)= 2.11442502; T( 3,453)= 2.11939003; T( 3,454)= 2.12436155; T( 3,455)= 2.12933962; T( 3,456)= 2.13432428; T( 3,457)= 2.13931554; T( 3,458)= 2.14431345; T( 3,459)= 2.14931803; T( 3,460)= 2.15432931; T( 3,461)= 2.15934734; T( 3,462)= 2.16437213; T( 3,463)= 2.16940372; T( 3,464)= 2.17444214; T( 3,465)= 2.17948743; T( 3,466)= 2.18453962; T( 3,467)= 2.18959874; T( 3,468)= 2.19466482; T( 3,469)= 2.19973789; T( 3,470)= 2.20481800; T( 3,471)= 2.20990516; T( 3,472)= 2.21499942; T( 3,473)= 2.22010080; T( 3,474)= 2.22520935; T( 3,475)= 2.23032509; T( 3,476)= 2.23544806; T( 3,477)= 2.24057829; T( 3,478)= 2.24571582; T( 3,479)= 2.25086068; T( 3,480)= 2.25601290; T( 3,481)= 2.26117253; T( 3,482)= 2.26633959; T( 3,483)= 2.27151412; T( 3,484)= 2.27669615; T( 3,485)= 2.28188573; T( 3,486)= 2.28708288; T( 3,487)= 2.29228764; T( 3,488)= 2.29750005; T( 3,489)= 2.30272014; T( 3,490)= 2.30794796; T( 3,491)= 2.31318352; T( 3,492)= 2.31842688; T( 3,493)= 2.32367807; T( 3,494)= 2.32893712; T( 3,495)= 2.33420408; T( 3,496)= 2.33947898; T( 3,497)= 2.34476185; T( 3,498)= 2.35005274; T( 3,499)= 2.35535169; T( 3,500)= 2.36065872; T( 3,501)= 2.36597388; T( 3,502)= 2.37129722; T( 3,503)= 2.37662875; T( 3,504)= 2.38196854; T( 3,505)= 2.38731660; T( 3,506)= 2.39267299; T( 3,507)= 2.39803775; T( 3,508)= 2.40341090; T( 3,509)= 2.40879250; T( 3,510)= 2.41418258; T( 3,511)= 2.41958119; T( 3,512)= 2.42498835; T( 3,513)= 2.43040412; T( 3,514)= 2.43582854; T( 3,515)= 2.44126164; T( 3,516)= 2.44670347; T( 3,517)= 2.45215407; T( 3,518)= 2.45761348; T( 3,519)= 2.46308174; T( 3,520)= 2.46855890; T( 3,521)= 2.47404500; T( 3,522)= 2.47954008; T( 3,523)= 2.48504418; T( 3,524)= 2.49055734; T( 3,525)= 2.49607962; T( 3,526)= 2.50161105; T( 3,527)= 2.50715169; T( 3,528)= 2.51270156; T( 3,529)= 2.51826072; T( 3,530)= 2.52382921; T( 3,531)= 2.52940708; T( 3,532)= 2.53499437; T( 3,533)= 2.54059113; T( 3,534)= 2.54619740; T( 3,535)= 2.55181323; T( 3,536)= 2.55743867; T( 3,537)= 2.56307376; T( 3,538)= 2.56871854; T( 3,539)= 2.57437308; T( 3,540)= 2.58003741; T( 3,541)= 2.58571158; T( 3,542)= 2.59139564; T( 3,543)= 2.59708963; T( 3,544)= 2.60279362; T( 3,545)= 2.60850764; T( 3,546)= 2.61423174; T( 3,547)= 2.61996598; T( 3,548)= 2.62571040; T( 3,549)= 2.63146505; T( 3,550)= 2.63722999; T( 3,551)= 2.64300526; T( 3,552)= 2.64879092; T( 3,553)= 2.65458702; T( 3,554)= 2.66039360; T( 3,555)= 2.66621073; T( 3,556)= 2.67203845; T( 3,557)= 2.67787681; T( 3,558)= 2.68372587; T( 3,559)= 2.68958569; T( 3,560)= 2.69545631; T( 3,561)= 2.70133778; T( 3,562)= 2.70723017; T( 3,563)= 2.71313353; T( 3,564)= 2.71904792; T( 3,565)= 2.72497338; T( 3,566)= 2.73090997; T( 3,567)= 2.73685776; T( 3,568)= 2.74281679; T( 3,569)= 2.74878712; T( 3,570)= 2.75476881; T( 3,571)= 2.76076193; T( 3,572)= 2.76676651; T( 3,573)= 2.77278264; T( 3,574)= 2.77881035; T( 3,575)= 2.78484972; T( 3,576)= 2.79090079; T( 3,577)= 2.79696364; T( 3,578)= 2.80303832; T( 3,579)= 2.80912489; T( 3,580)= 2.81522341; T( 3,581)= 2.82133395; T( 3,582)= 2.82745656; T( 3,583)= 2.83359131; T( 3,584)= 2.83973826; T( 3,585)= 2.84589748; T( 3,586)= 2.85206902; T( 3,587)= 2.85825296; T( 3,588)= 2.86444935; T( 3,589)= 2.87065826; T( 3,590)= 2.87687976; T( 3,591)= 2.88311391; T( 3,592)= 2.88936078; T( 3,593)= 2.89562043; T( 3,594)= 2.90189294; T( 3,595)= 2.90817836; T( 3,596)= 2.91447678; T( 3,597)= 2.92078824; T( 3,598)= 2.92711284; T( 3,599)= 2.93345063; T( 3,600)= 2.93980168; T( 3,601)= 2.94616607; T( 3,602)= 2.95254387; T( 3,603)= 2.95893514; T( 3,604)= 2.96533997; T( 3,605)= 2.97175842; T( 3,606)= 2.97819056; T( 3,607)= 2.98463648; T( 3,608)= 2.99109623; T( 3,609)= 2.99756991; T( 3,610)= 3.00405758; T( 3,611)= 3.01055932; T( 3,612)= 3.01707521; T( 3,613)= 3.02360532; T( 3,614)= 3.03014973; T( 3,615)= 3.03670852; T( 3,616)= 3.04328177; T( 3,617)= 3.04986955; T( 3,618)= 3.05647195; T( 3,619)= 3.06308905; T( 3,620)= 3.06972093; T( 3,621)= 3.07636767; T( 3,622)= 3.08302935; T( 3,623)= 3.08970606; T( 3,624)= 3.09639787; T( 3,625)= 3.10310488; T( 3,626)= 3.10982717; T( 3,627)= 3.11656482; T( 3,628)= 3.12331792; T( 3,629)= 3.13008656; T( 3,630)= 3.13687083; T( 3,631)= 3.14367081; T( 3,632)= 3.15048658; T( 3,633)= 3.15731826; T( 3,634)= 3.16416591; T( 3,635)= 3.17102964; T( 3,636)= 3.17790953; T( 3,637)= 3.18480568; T( 3,638)= 3.19171818; T( 3,639)= 3.19864712; T( 3,640)= 3.20559261; T( 3,641)= 3.21255473; T( 3,642)= 3.21953358; T( 3,643)= 3.22652926; T( 3,644)= 3.23354187; T( 3,645)= 3.24057150; T( 3,646)= 3.24761826; T( 3,647)= 3.25468224; T( 3,648)= 3.26176355; T( 3,649)= 3.26886229; T( 3,650)= 3.27597856; T( 3,651)= 3.28311246; T( 3,652)= 3.29026411; T( 3,653)= 3.29743360; T( 3,654)= 3.30462104; T( 3,655)= 3.31182654; T( 3,656)= 3.31905020; T( 3,657)= 3.32629215; T( 3,658)= 3.33355247; T( 3,659)= 3.34083130; T( 3,660)= 3.34812873; T( 3,661)= 3.35544489; T( 3,662)= 3.36277988; T( 3,663)= 3.37013382; T( 3,664)= 3.37750683; T( 3,665)= 3.38489902; T( 3,666)= 3.39231051; T( 3,667)= 3.39974142; T( 3,668)= 3.40719187; T( 3,669)= 3.41466198; T( 3,670)= 3.42215187; T( 3,671)= 3.42966167; T( 3,672)= 3.43719150; T( 3,673)= 3.44474148; T( 3,674)= 3.45231175; T( 3,675)= 3.45990242; T( 3,676)= 3.46751363; T( 3,677)= 3.47514551; T( 3,678)= 3.48279819; T( 3,679)= 3.49047180; T( 3,680)= 3.49816648; T( 3,681)= 3.50588236; T( 3,682)= 3.51361957; T( 3,683)= 3.52137825; T( 3,684)= 3.52915854; T( 3,685)= 3.53696059; T( 3,686)= 3.54478453; T( 3,687)= 3.55263050; T( 3,688)= 3.56049865; T( 3,689)= 3.56838913; T( 3,690)= 3.57630207; T( 3,691)= 3.58423763; T( 3,692)= 3.59219596; T( 3,693)= 3.60017721; T( 3,694)= 3.60818152; T( 3,695)= 3.61620906; T( 3,696)= 3.62425998; T( 3,697)= 3.63233443; T( 3,698)= 3.64043258; T( 3,699)= 3.64855458; T( 3,700)= 3.65670059; T( 3,701)= 3.66487078; T( 3,702)= 3.67306531; T( 3,703)= 3.68128435; T( 3,704)= 3.68952807; T( 3,705)= 3.69779663; T( 3,706)= 3.70609020; T( 3,707)= 3.71440896; T( 3,708)= 3.72275309; T( 3,709)= 3.73112275; T( 3,710)= 3.73951813; T( 3,711)= 3.74793941; T( 3,712)= 3.75638677; T( 3,713)= 3.76486039; T( 3,714)= 3.77336045; T( 3,715)= 3.78188715; T( 3,716)= 3.79044068; T( 3,717)= 3.79902122; T( 3,718)= 3.80762897; T( 3,719)= 3.81626412; T( 3,720)= 3.82492688; T( 3,721)= 3.83361743; T( 3,722)= 3.84233599; T( 3,723)= 3.85108276; T( 3,724)= 3.85985793; T( 3,725)= 3.86866173; T( 3,726)= 3.87749436; T( 3,727)= 3.88635602; T( 3,728)= 3.89524695; T( 3,729)= 3.90416735; T( 3,730)= 3.91311745; T( 3,731)= 3.92209746; T( 3,732)= 3.93110762; T( 3,733)= 3.94014814; T( 3,734)= 3.94921926; T( 3,735)= 3.95832121; T( 3,736)= 3.96745422; T( 3,737)= 3.97661853; T( 3,738)= 3.98581438; T( 3,739)= 3.99504202; T( 3,740)= 4.00430169; T( 3,741)= 4.01359363; T( 3,742)= 4.02291810; T( 3,743)= 4.03227535; T( 3,744)= 4.04166564; T( 3,745)= 4.05108923; T( 3,746)= 4.06054637; T( 3,747)= 4.07003735; T( 3,748)= 4.07956242; T( 3,749)= 4.08912186; T( 3,750)= 4.09871593; T( 3,751)= 4.10834494; T( 3,752)= 4.11800914; T( 3,753)= 4.12770883; T( 3,754)= 4.13744430; T( 3,755)= 4.14721584; T( 3,756)= 4.15702374; T( 3,757)= 4.16686831; T( 3,758)= 4.17674984; T( 3,759)= 4.18666865; T( 3,760)= 4.19662504; T( 3,761)= 4.20661933; T( 3,762)= 4.21665183; T( 3,763)= 4.22672288; T( 3,764)= 4.23683278; T( 3,765)= 4.24698188; T( 3,766)= 4.25717052; T( 3,767)= 4.26739901; T( 3,768)= 4.27766772; T( 3,769)= 4.28797699; T( 3,770)= 4.29832716; T( 3,771)= 4.30871860; T( 3,772)= 4.31915167; T( 3,773)= 4.32962673; T( 3,774)= 4.34014415; T( 3,775)= 4.35070431; T( 3,776)= 4.36130759; T( 3,777)= 4.37195437; T( 3,778)= 4.38264504; T( 3,779)= 4.39338001; T( 3,780)= 4.40415966; T( 3,781)= 4.41498441; T( 3,782)= 4.42585467; T( 3,783)= 4.43677085; T( 3,784)= 4.44773338; T( 3,785)= 4.45874269; T( 3,786)= 4.46979921; T( 3,787)= 4.48090338; T( 3,788)= 4.49205566; T( 3,789)= 4.50325649; T( 3,790)= 4.51450633; T( 3,791)= 4.52580565; T( 3,792)= 4.53715492; T( 3,793)= 4.54855463; T( 3,794)= 4.56000525; T( 3,795)= 4.57150728; T( 3,796)= 4.58306123; T( 3,797)= 4.59466759; T( 3,798)= 4.60632689; T( 3,799)= 4.61803965; T( 3,800)= 4.62980640; T( 3,801)= 4.64162768; T( 3,802)= 4.65350402; T( 3,803)= 4.66543600; T( 3,804)= 4.67742417; T( 3,805)= 4.68946910; T( 3,806)= 4.70157137; T( 3,807)= 4.71373158; T( 3,808)= 4.72595032; T( 3,809)= 4.73822819; T( 3,810)= 4.75056583; T( 3,811)= 4.76296384; T( 3,812)= 4.77542287; T( 3,813)= 4.78794356; T( 3,814)= 4.80052658; T( 3,815)= 4.81317259; T( 3,816)= 4.82588226; T( 3,817)= 4.83865629; T( 3,818)= 4.85149538; T( 3,819)= 4.86440023; T( 3,820)= 4.87737157; T( 3,821)= 4.89041014; T( 3,822)= 4.90351669; T( 3,823)= 4.91669196; T( 3,824)= 4.92993675; T( 3,825)= 4.94325182; T( 3,826)= 4.95663799; T( 3,827)= 4.97009606; T( 3,828)= 4.98362685; T( 3,829)= 4.99723122; T( 3,830)= 5.01091002; T( 3,831)= 5.02466411; T( 3,832)= 5.03849439; T( 3,833)= 5.05240175; T( 3,834)= 5.06638711; T( 3,835)= 5.08045141; T( 3,836)= 5.09459559; T( 3,837)= 5.10882063; T( 3,838)= 5.12312751; T( 3,839)= 5.13751723; T( 3,840)= 5.15199082; T( 3,841)= 5.16654932; T( 3,842)= 5.18119378; T( 3,843)= 5.19592529; T( 3,844)= 5.21074496; T( 3,845)= 5.22565389; T( 3,846)= 5.24065324; T( 3,847)= 5.25574417; T( 3,848)= 5.27092788; T( 3,849)= 5.28620556; T( 3,850)= 5.30157846; T( 3,851)= 5.31704784; T( 3,852)= 5.33261498; T( 3,853)= 5.34828119; T( 3,854)= 5.36404781; T( 3,855)= 5.37991621; T( 3,856)= 5.39588777; T( 3,857)= 5.41196392; T( 3,858)= 5.42814612; T( 3,859)= 5.44443583; T( 3,860)= 5.46083458; T( 3,861)= 5.47734390; T( 3,862)= 5.49396539; T( 3,863)= 5.51070063; T( 3,864)= 5.52755130; T( 3,865)= 5.54451906; T( 3,866)= 5.56160563; T( 3,867)= 5.57881278; T( 3,868)= 5.59614230; T( 3,869)= 5.61359603; T( 3,870)= 5.63117585; T( 3,871)= 5.64888367; T( 3,872)= 5.66672148; T( 3,873)= 5.68469127; T( 3,874)= 5.70279511; T( 3,875)= 5.72103510; T( 3,876)= 5.73941341; T( 3,877)= 5.75793225; T( 3,878)= 5.77659387; T( 3,879)= 5.79540059; T( 3,880)= 5.81435480; T( 3,881)= 5.83345891; T( 3,882)= 5.85271544; T( 3,883)= 5.87212693; T( 3,884)= 5.89169601; T( 3,885)= 5.91142538; T( 3,886)= 5.93131777; T( 3,887)= 5.95137604; T( 3,888)= 5.97160308; T( 3,889)= 5.99200188; T( 3,890)= 6.01257550; T( 3,891)= 6.03332709; T( 3,892)= 6.05425987; T( 3,893)= 6.07537716; T( 3,894)= 6.09668239; T( 3,895)= 6.11817905; T( 3,896)= 6.13987076; T( 3,897)= 6.16176122; T( 3,898)= 6.18385425; T( 3,899)= 6.20615378; T( 3,900)= 6.22866385; T( 3,901)= 6.25138863; T( 3,902)= 6.27433241; T( 3,903)= 6.29749960; T( 3,904)= 6.32089476; T( 3,905)= 6.34452258; T( 3,906)= 6.36838791; T( 3,907)= 6.39249574; T( 3,908)= 6.41685123; T( 3,909)= 6.44145970; T( 3,910)= 6.46632663; T( 3,911)= 6.49145772; T( 3,912)= 6.51685881; T( 3,913)= 6.54253598; T( 3,914)= 6.56849550; T( 3,915)= 6.59474385; T( 3,916)= 6.62128774; T( 3,917)= 6.64813413; T( 3,918)= 6.67529022; T( 3,919)= 6.70276346; T( 3,920)= 6.73056159; T( 3,921)= 6.75869262; T( 3,922)= 6.78716488; T( 3,923)= 6.81598701; T( 3,924)= 6.84516797; T( 3,925)= 6.87471709; T( 3,926)= 6.90464406; T( 3,927)= 6.93495896; T( 3,928)= 6.96567226; T( 3,929)= 6.99679490; T( 3,930)= 7.02833825; T( 3,931)= 7.06031417; T( 3,932)= 7.09273502; T( 3,933)= 7.12561371; T( 3,934)= 7.15896372; T( 3,935)= 7.19279914; T( 3,936)= 7.22713469; T( 3,937)= 7.26198577; T( 3,938)= 7.29736853; T( 3,939)= 7.33329986; T( 3,940)= 7.36979750; T( 3,941)= 7.40688004; T( 3,942)= 7.44456702; T( 3,943)= 7.48287898; T( 3,944)= 7.52183750; T( 3,945)= 7.56146534; T( 3,946)= 7.60178647; T( 3,947)= 7.64282615; T( 3,948)= 7.68461110; T( 3,949)= 7.72716951; T( 3,950)= 7.77053124; T( 3,951)= 7.81472790; T( 3,952)= 7.85979303; T( 3,953)= 7.90576221; T( 3,954)= 7.95267326; T( 3,955)= 8.00056647; T( 3,956)= 8.04948472; T( 3,957)= 8.09947381; T( 3,958)= 8.15058267; T( 3,959)= 8.20286369; T( 3,960)= 8.25637300; T( 3,961)= 8.31117091; T( 3,962)= 8.36732227; T( 3,963)= 8.42489697; T( 3,964)= 8.48397049; T( 3,965)= 8.54462446; T( 3,966)= 8.60694740; T( 3,967)= 8.67103553; T( 3,968)= 8.73699360; T( 3,969)= 8.80493605; T( 3,970)= 8.87498816; T( 3,971)= 8.94728750; T( 3,972)= 9.02198557; T( 3,973)= 9.09924980; T( 3,974)= 9.17926579; T( 3,975)= 9.26224013; T( 3,976)= 9.34840360; T( 3,977)= 9.43801521; T( 3,978)= 9.53136689; T( 3,979)= 9.62878943; T( 3,980)= 9.73065964; T( 3,981)= 9.83740931; T( 3,982)= 9.94953654; T( 3,983)=10.06762000; T( 3,984)=10.19233733; T( 3,985)=10.32448914; T( 3,986)=10.46503071; T( 3,987)=10.61511464; T( 3,988)=10.77614929; T( 3,989)=10.94988065; T( 3,990)=11.13850986; T( 3,991)=11.34486673; T( 3,992)=11.57267496; T( 3,993)=11.82697385; T( 3,994)=12.11482274; T( 3,995)=12.44655104; T( 3,996)=12.83815647; T( 3,997)=13.31640865; T( 3,998)=13.93142267; T( 3,999)=14.79551705; T( 3,1000)=16.26623620; T( 3,1001)=21.10751347; T( 3,1002)=25.90174975; T( 4, 1)= 0.00000000; T( 4, 2)= 0.09080404; T( 4, 3)= 0.12923771; T( 4, 4)= 0.15906734; T( 4, 5)= 0.18444814; T( 4, 6)= 0.20698909; T( 4, 7)= 0.22751512; T( 4, 8)= 0.24651611; T( 4, 9)= 0.26431116; T( 4,10)= 0.28112186; T( 4,11)= 0.29710948; T( 4,12)= 0.31239575; T( 4,13)= 0.32707521; T( 4,14)= 0.34122302; T( 4,15)= 0.35490010; T( 4,16)= 0.36815665; T( 4,17)= 0.38103461; T( 4,18)= 0.39356944; T( 4,19)= 0.40579145; T( 4,20)= 0.41772679; T( 4,21)= 0.42939819; T( 4,22)= 0.44082558; T( 4,23)= 0.45202654; T( 4,24)= 0.46301666; T( 4,25)= 0.47380984; T( 4,26)= 0.48441856; T( 4,27)= 0.49485405; T( 4,28)= 0.50512649; T( 4,29)= 0.51524508; T( 4,30)= 0.52521825; T( 4,31)= 0.53505367; T( 4,32)= 0.54475841; T( 4,33)= 0.55433893; T( 4,34)= 0.56380124; T( 4,35)= 0.57315084; T( 4,36)= 0.58239287; T( 4,37)= 0.59153209; T( 4,38)= 0.60057293; T( 4,39)= 0.60951952; T( 4,40)= 0.61837573; T( 4,41)= 0.62714516; T( 4,42)= 0.63583121; T( 4,43)= 0.64443707; T( 4,44)= 0.65296573; T( 4,45)= 0.66142000; T( 4,46)= 0.66980256; T( 4,47)= 0.67811591; T( 4,48)= 0.68636244; T( 4,49)= 0.69454440; T( 4,50)= 0.70266392; T( 4,51)= 0.71072302; T( 4,52)= 0.71872364; T( 4,53)= 0.72666760; T( 4,54)= 0.73455665; T( 4,55)= 0.74239246; T( 4,56)= 0.75017659; T( 4,57)= 0.75791057; T( 4,58)= 0.76559585; T( 4,59)= 0.77323380; T( 4,60)= 0.78082575; T( 4,61)= 0.78837296; T( 4,62)= 0.79587666; T( 4,63)= 0.80333800; T( 4,64)= 0.81075810; T( 4,65)= 0.81813804; T( 4,66)= 0.82547884; T( 4,67)= 0.83278151; T( 4,68)= 0.84004699; T( 4,69)= 0.84727621; T( 4,70)= 0.85447005; T( 4,71)= 0.86162937; T( 4,72)= 0.86875498; T( 4,73)= 0.87584769; T( 4,74)= 0.88290826; T( 4,75)= 0.88993743; T( 4,76)= 0.89693592; T( 4,77)= 0.90390442; T( 4,78)= 0.91084360; T( 4,79)= 0.91775411; T( 4,80)= 0.92463657; T( 4,81)= 0.93149160; T( 4,82)= 0.93831978; T( 4,83)= 0.94512169; T( 4,84)= 0.95189787; T( 4,85)= 0.95864887; T( 4,86)= 0.96537520; T( 4,87)= 0.97207738; T( 4,88)= 0.97875589; T( 4,89)= 0.98541121; T( 4,90)= 0.99204380; T( 4,91)= 0.99865412; T( 4,92)= 1.00524261; T( 4,93)= 1.01180968; T( 4,94)= 1.01835577; T( 4,95)= 1.02488126; T( 4,96)= 1.03138656; T( 4,97)= 1.03787205; T( 4,98)= 1.04433810; T( 4,99)= 1.05078507; T( 4,100)= 1.05721333; T( 4,101)= 1.06362322; T( 4,102)= 1.07001507; T( 4,103)= 1.07638921; T( 4,104)= 1.08274597; T( 4,105)= 1.08908566; T( 4,106)= 1.09540858; T( 4,107)= 1.10171504; T( 4,108)= 1.10800533; T( 4,109)= 1.11427973; T( 4,110)= 1.12053852; T( 4,111)= 1.12678198; T( 4,112)= 1.13301037; T( 4,113)= 1.13922395; T( 4,114)= 1.14542298; T( 4,115)= 1.15160771; T( 4,116)= 1.15777838; T( 4,117)= 1.16393523; T( 4,118)= 1.17007849; T( 4,119)= 1.17620840; T( 4,120)= 1.18232518; T( 4,121)= 1.18842905; T( 4,122)= 1.19452023; T( 4,123)= 1.20059892; T( 4,124)= 1.20666533; T( 4,125)= 1.21271967; T( 4,126)= 1.21876214; T( 4,127)= 1.22479292; T( 4,128)= 1.23081222; T( 4,129)= 1.23682021; T( 4,130)= 1.24281709; T( 4,131)= 1.24880304; T( 4,132)= 1.25477823; T( 4,133)= 1.26074283; T( 4,134)= 1.26669702; T( 4,135)= 1.27264097; T( 4,136)= 1.27857484; T( 4,137)= 1.28449879; T( 4,138)= 1.29041298; T( 4,139)= 1.29631757; T( 4,140)= 1.30221271; T( 4,141)= 1.30809856; T( 4,142)= 1.31397526; T( 4,143)= 1.31984296; T( 4,144)= 1.32570180; T( 4,145)= 1.33155192; T( 4,146)= 1.33739346; T( 4,147)= 1.34322657; T( 4,148)= 1.34905136; T( 4,149)= 1.35486799; T( 4,150)= 1.36067656; T( 4,151)= 1.36647723; T( 4,152)= 1.37227010; T( 4,153)= 1.37805531; T( 4,154)= 1.38383297; T( 4,155)= 1.38960322; T( 4,156)= 1.39536616; T( 4,157)= 1.40112191; T( 4,158)= 1.40687059; T( 4,159)= 1.41261231; T( 4,160)= 1.41834719; T( 4,161)= 1.42407533; T( 4,162)= 1.42979685; T( 4,163)= 1.43551184; T( 4,164)= 1.44122042; T( 4,165)= 1.44692269; T( 4,166)= 1.45261875; T( 4,167)= 1.45830870; T( 4,168)= 1.46399265; T( 4,169)= 1.46967069; T( 4,170)= 1.47534292; T( 4,171)= 1.48100943; T( 4,172)= 1.48667032; T( 4,173)= 1.49232569; T( 4,174)= 1.49797562; T( 4,175)= 1.50362021; T( 4,176)= 1.50925954; T( 4,177)= 1.51489371; T( 4,178)= 1.52052280; T( 4,179)= 1.52614689; T( 4,180)= 1.53176608; T( 4,181)= 1.53738045; T( 4,182)= 1.54299008; T( 4,183)= 1.54859506; T( 4,184)= 1.55419546; T( 4,185)= 1.55979136; T( 4,186)= 1.56538285; T( 4,187)= 1.57097000; T( 4,188)= 1.57655289; T( 4,189)= 1.58213160; T( 4,190)= 1.58770620; T( 4,191)= 1.59327678; T( 4,192)= 1.59884339; T( 4,193)= 1.60440612; T( 4,194)= 1.60996503; T( 4,195)= 1.61552021; T( 4,196)= 1.62107171; T( 4,197)= 1.62661962; T( 4,198)= 1.63216399; T( 4,199)= 1.63770491; T( 4,200)= 1.64324243; T( 4,201)= 1.64877662; T( 4,202)= 1.65430755; T( 4,203)= 1.65983529; T( 4,204)= 1.66535990; T( 4,205)= 1.67088144; T( 4,206)= 1.67639998; T( 4,207)= 1.68191559; T( 4,208)= 1.68742832; T( 4,209)= 1.69293823; T( 4,210)= 1.69844540; T( 4,211)= 1.70394987; T( 4,212)= 1.70945172; T( 4,213)= 1.71495099; T( 4,214)= 1.72044775; T( 4,215)= 1.72594205; T( 4,216)= 1.73143396; T( 4,217)= 1.73692353; T( 4,218)= 1.74241082; T( 4,219)= 1.74789589; T( 4,220)= 1.75337878; T( 4,221)= 1.75885957; T( 4,222)= 1.76433829; T( 4,223)= 1.76981501; T( 4,224)= 1.77528978; T( 4,225)= 1.78076266; T( 4,226)= 1.78623369; T( 4,227)= 1.79170293; T( 4,228)= 1.79717043; T( 4,229)= 1.80263625; T( 4,230)= 1.80810043; T( 4,231)= 1.81356303; T( 4,232)= 1.81902409; T( 4,233)= 1.82448367; T( 4,234)= 1.82994182; T( 4,235)= 1.83539858; T( 4,236)= 1.84085401; T( 4,237)= 1.84630815; T( 4,238)= 1.85176106; T( 4,239)= 1.85721277; T( 4,240)= 1.86266334; T( 4,241)= 1.86811282; T( 4,242)= 1.87356125; T( 4,243)= 1.87900868; T( 4,244)= 1.88445515; T( 4,245)= 1.88990071; T( 4,246)= 1.89534541; T( 4,247)= 1.90078929; T( 4,248)= 1.90623240; T( 4,249)= 1.91167478; T( 4,250)= 1.91711647; T( 4,251)= 1.92255753; T( 4,252)= 1.92799798; T( 4,253)= 1.93343789; T( 4,254)= 1.93887729; T( 4,255)= 1.94431622; T( 4,256)= 1.94975472; T( 4,257)= 1.95519285; T( 4,258)= 1.96063064; T( 4,259)= 1.96606812; T( 4,260)= 1.97150536; T( 4,261)= 1.97694238; T( 4,262)= 1.98237923; T( 4,263)= 1.98781595; T( 4,264)= 1.99325257; T( 4,265)= 1.99868915; T( 4,266)= 2.00412572; T( 4,267)= 2.00956231; T( 4,268)= 2.01499898; T( 4,269)= 2.02043576; T( 4,270)= 2.02587268; T( 4,271)= 2.03130980; T( 4,272)= 2.03674714; T( 4,273)= 2.04218475; T( 4,274)= 2.04762267; T( 4,275)= 2.05306093; T( 4,276)= 2.05849957; T( 4,277)= 2.06393863; T( 4,278)= 2.06937815; T( 4,279)= 2.07481817; T( 4,280)= 2.08025872; T( 4,281)= 2.08569984; T( 4,282)= 2.09114157; T( 4,283)= 2.09658394; T( 4,284)= 2.10202700; T( 4,285)= 2.10747077; T( 4,286)= 2.11291531; T( 4,287)= 2.11836063; T( 4,288)= 2.12380678; T( 4,289)= 2.12925380; T( 4,290)= 2.13470172; T( 4,291)= 2.14015057; T( 4,292)= 2.14560040; T( 4,293)= 2.15105123; T( 4,294)= 2.15650311; T( 4,295)= 2.16195607; T( 4,296)= 2.16741014; T( 4,297)= 2.17286536; T( 4,298)= 2.17832176; T( 4,299)= 2.18377938; T( 4,300)= 2.18923826; T( 4,301)= 2.19469842; T( 4,302)= 2.20015991; T( 4,303)= 2.20562275; T( 4,304)= 2.21108699; T( 4,305)= 2.21655265; T( 4,306)= 2.22201977; T( 4,307)= 2.22748838; T( 4,308)= 2.23295853; T( 4,309)= 2.23843023; T( 4,310)= 2.24390353; T( 4,311)= 2.24937845; T( 4,312)= 2.25485504; T( 4,313)= 2.26033333; T( 4,314)= 2.26581334; T( 4,315)= 2.27129512; T( 4,316)= 2.27677869; T( 4,317)= 2.28226408; T( 4,318)= 2.28775134; T( 4,319)= 2.29324050; T( 4,320)= 2.29873158; T( 4,321)= 2.30422462; T( 4,322)= 2.30971966; T( 4,323)= 2.31521671; T( 4,324)= 2.32071583; T( 4,325)= 2.32621704; T( 4,326)= 2.33172037; T( 4,327)= 2.33722585; T( 4,328)= 2.34273353; T( 4,329)= 2.34824342; T( 4,330)= 2.35375556; T( 4,331)= 2.35926999; T( 4,332)= 2.36478674; T( 4,333)= 2.37030583; T( 4,334)= 2.37582731; T( 4,335)= 2.38135119; T( 4,336)= 2.38687752; T( 4,337)= 2.39240633; T( 4,338)= 2.39793764; T( 4,339)= 2.40347150; T( 4,340)= 2.40900792; T( 4,341)= 2.41454695; T( 4,342)= 2.42008862; T( 4,343)= 2.42563295; T( 4,344)= 2.43117998; T( 4,345)= 2.43672974; T( 4,346)= 2.44228226; T( 4,347)= 2.44783757; T( 4,348)= 2.45339571; T( 4,349)= 2.45895671; T( 4,350)= 2.46452059; T( 4,351)= 2.47008739; T( 4,352)= 2.47565714; T( 4,353)= 2.48122987; T( 4,354)= 2.48680562; T( 4,355)= 2.49238441; T( 4,356)= 2.49796627; T( 4,357)= 2.50355125; T( 4,358)= 2.50913936; T( 4,359)= 2.51473064; T( 4,360)= 2.52032513; T( 4,361)= 2.52592284; T( 4,362)= 2.53152382; T( 4,363)= 2.53712810; T( 4,364)= 2.54273570; T( 4,365)= 2.54834666; T( 4,366)= 2.55396101; T( 4,367)= 2.55957878; T( 4,368)= 2.56520000; T( 4,369)= 2.57082471; T( 4,370)= 2.57645293; T( 4,371)= 2.58208469; T( 4,372)= 2.58772004; T( 4,373)= 2.59335899; T( 4,374)= 2.59900158; T( 4,375)= 2.60464784; T( 4,376)= 2.61029781; T( 4,377)= 2.61595151; T( 4,378)= 2.62160897; T( 4,379)= 2.62727024; T( 4,380)= 2.63293533; T( 4,381)= 2.63860428; T( 4,382)= 2.64427712; T( 4,383)= 2.64995389; T( 4,384)= 2.65563461; T( 4,385)= 2.66131932; T( 4,386)= 2.66700804; T( 4,387)= 2.67270082; T( 4,388)= 2.67839767; T( 4,389)= 2.68409864; T( 4,390)= 2.68980376; T( 4,391)= 2.69551305; T( 4,392)= 2.70122654; T( 4,393)= 2.70694428; T( 4,394)= 2.71266630; T( 4,395)= 2.71839261; T( 4,396)= 2.72412326; T( 4,397)= 2.72985828; T( 4,398)= 2.73559770; T( 4,399)= 2.74134155; T( 4,400)= 2.74708987; T( 4,401)= 2.75284268; T( 4,402)= 2.75860003; T( 4,403)= 2.76436193; T( 4,404)= 2.77012843; T( 4,405)= 2.77589955; T( 4,406)= 2.78167533; T( 4,407)= 2.78745580; T( 4,408)= 2.79324100; T( 4,409)= 2.79903095; T( 4,410)= 2.80482569; T( 4,411)= 2.81062526; T( 4,412)= 2.81642967; T( 4,413)= 2.82223898; T( 4,414)= 2.82805320; T( 4,415)= 2.83387238; T( 4,416)= 2.83969655; T( 4,417)= 2.84552573; T( 4,418)= 2.85135997; T( 4,419)= 2.85719929; T( 4,420)= 2.86304373; T( 4,421)= 2.86889333; T( 4,422)= 2.87474811; T( 4,423)= 2.88060811; T( 4,424)= 2.88647336; T( 4,425)= 2.89234391; T( 4,426)= 2.89821977; T( 4,427)= 2.90410099; T( 4,428)= 2.90998759; T( 4,429)= 2.91587962; T( 4,430)= 2.92177711; T( 4,431)= 2.92768009; T( 4,432)= 2.93358859; T( 4,433)= 2.93950266; T( 4,434)= 2.94542232; T( 4,435)= 2.95134761; T( 4,436)= 2.95727856; T( 4,437)= 2.96321521; T( 4,438)= 2.96915760; T( 4,439)= 2.97510575; T( 4,440)= 2.98105971; T( 4,441)= 2.98701950; T( 4,442)= 2.99298518; T( 4,443)= 2.99895676; T( 4,444)= 3.00493428; T( 4,445)= 3.01091779; T( 4,446)= 3.01690731; T( 4,447)= 3.02290288; T( 4,448)= 3.02890455; T( 4,449)= 3.03491233; T( 4,450)= 3.04092628; T( 4,451)= 3.04694642; T( 4,452)= 3.05297280; T( 4,453)= 3.05900545; T( 4,454)= 3.06504440; T( 4,455)= 3.07108969; T( 4,456)= 3.07714137; T( 4,457)= 3.08319946; T( 4,458)= 3.08926400; T( 4,459)= 3.09533504; T( 4,460)= 3.10141260; T( 4,461)= 3.10749673; T( 4,462)= 3.11358747; T( 4,463)= 3.11968484; T( 4,464)= 3.12578890; T( 4,465)= 3.13189967; T( 4,466)= 3.13801719; T( 4,467)= 3.14414151; T( 4,468)= 3.15027266; T( 4,469)= 3.15641069; T( 4,470)= 3.16255562; T( 4,471)= 3.16870750; T( 4,472)= 3.17486636; T( 4,473)= 3.18103226; T( 4,474)= 3.18720522; T( 4,475)= 3.19338528; T( 4,476)= 3.19957249; T( 4,477)= 3.20576688; T( 4,478)= 3.21196850; T( 4,479)= 3.21817738; T( 4,480)= 3.22439357; T( 4,481)= 3.23061710; T( 4,482)= 3.23684802; T( 4,483)= 3.24308636; T( 4,484)= 3.24933218; T( 4,485)= 3.25558550; T( 4,486)= 3.26184637; T( 4,487)= 3.26811483; T( 4,488)= 3.27439092; T( 4,489)= 3.28067469; T( 4,490)= 3.28696618; T( 4,491)= 3.29326542; T( 4,492)= 3.29957246; T( 4,493)= 3.30588735; T( 4,494)= 3.31221013; T( 4,495)= 3.31854083; T( 4,496)= 3.32487950; T( 4,497)= 3.33122619; T( 4,498)= 3.33758094; T( 4,499)= 3.34394380; T( 4,500)= 3.35031479; T( 4,501)= 3.35669398; T( 4,502)= 3.36308140; T( 4,503)= 3.36947710; T( 4,504)= 3.37588113; T( 4,505)= 3.38229352; T( 4,506)= 3.38871433; T( 4,507)= 3.39514359; T( 4,508)= 3.40158136; T( 4,509)= 3.40802768; T( 4,510)= 3.41448259; T( 4,511)= 3.42094615; T( 4,512)= 3.42741839; T( 4,513)= 3.43389937; T( 4,514)= 3.44038913; T( 4,515)= 3.44688772; T( 4,516)= 3.45339518; T( 4,517)= 3.45991157; T( 4,518)= 3.46643693; T( 4,519)= 3.47297131; T( 4,520)= 3.47951475; T( 4,521)= 3.48606731; T( 4,522)= 3.49262904; T( 4,523)= 3.49919998; T( 4,524)= 3.50578018; T( 4,525)= 3.51236969; T( 4,526)= 3.51896857; T( 4,527)= 3.52557685; T( 4,528)= 3.53219460; T( 4,529)= 3.53882186; T( 4,530)= 3.54545868; T( 4,531)= 3.55210512; T( 4,532)= 3.55876122; T( 4,533)= 3.56542704; T( 4,534)= 3.57210263; T( 4,535)= 3.57878804; T( 4,536)= 3.58548332; T( 4,537)= 3.59218853; T( 4,538)= 3.59890372; T( 4,539)= 3.60562893; T( 4,540)= 3.61236424; T( 4,541)= 3.61910968; T( 4,542)= 3.62586532; T( 4,543)= 3.63263120; T( 4,544)= 3.63940739; T( 4,545)= 3.64619393; T( 4,546)= 3.65299089; T( 4,547)= 3.65979832; T( 4,548)= 3.66661627; T( 4,549)= 3.67344480; T( 4,550)= 3.68028397; T( 4,551)= 3.68713383; T( 4,552)= 3.69399445; T( 4,553)= 3.70086587; T( 4,554)= 3.70774817; T( 4,555)= 3.71464138; T( 4,556)= 3.72154558; T( 4,557)= 3.72846083; T( 4,558)= 3.73538718; T( 4,559)= 3.74232468; T( 4,560)= 3.74927341; T( 4,561)= 3.75623343; T( 4,562)= 3.76320478; T( 4,563)= 3.77018754; T( 4,564)= 3.77718177; T( 4,565)= 3.78418752; T( 4,566)= 3.79120486; T( 4,567)= 3.79823386; T( 4,568)= 3.80527456; T( 4,569)= 3.81232705; T( 4,570)= 3.81939138; T( 4,571)= 3.82646762; T( 4,572)= 3.83355582; T( 4,573)= 3.84065607; T( 4,574)= 3.84776841; T( 4,575)= 3.85489292; T( 4,576)= 3.86202966; T( 4,577)= 3.86917871; T( 4,578)= 3.87634012; T( 4,579)= 3.88351396; T( 4,580)= 3.89070031; T( 4,581)= 3.89789922; T( 4,582)= 3.90511077; T( 4,583)= 3.91233504; T( 4,584)= 3.91957208; T( 4,585)= 3.92682197; T( 4,586)= 3.93408477; T( 4,587)= 3.94136057; T( 4,588)= 3.94864942; T( 4,589)= 3.95595141; T( 4,590)= 3.96326661; T( 4,591)= 3.97059508; T( 4,592)= 3.97793690; T( 4,593)= 3.98529215; T( 4,594)= 3.99266090; T( 4,595)= 4.00004322; T( 4,596)= 4.00743920; T( 4,597)= 4.01484890; T( 4,598)= 4.02227240; T( 4,599)= 4.02970978; T( 4,600)= 4.03716112; T( 4,601)= 4.04462649; T( 4,602)= 4.05210598; T( 4,603)= 4.05959966; T( 4,604)= 4.06710761; T( 4,605)= 4.07462991; T( 4,606)= 4.08216664; T( 4,607)= 4.08971789; T( 4,608)= 4.09728374; T( 4,609)= 4.10486427; T( 4,610)= 4.11245955; T( 4,611)= 4.12006968; T( 4,612)= 4.12769475; T( 4,613)= 4.13533482; T( 4,614)= 4.14299000; T( 4,615)= 4.15066036; T( 4,616)= 4.15834600; T( 4,617)= 4.16604699; T( 4,618)= 4.17376344; T( 4,619)= 4.18149542; T( 4,620)= 4.18924303; T( 4,621)= 4.19700635; T( 4,622)= 4.20478548; T( 4,623)= 4.21258051; T( 4,624)= 4.22039152; T( 4,625)= 4.22821862; T( 4,626)= 4.23606190; T( 4,627)= 4.24392145; T( 4,628)= 4.25179736; T( 4,629)= 4.25968973; T( 4,630)= 4.26759865; T( 4,631)= 4.27552424; T( 4,632)= 4.28346657; T( 4,633)= 4.29142575; T( 4,634)= 4.29940188; T( 4,635)= 4.30739506; T( 4,636)= 4.31540539; T( 4,637)= 4.32343296; T( 4,638)= 4.33147790; T( 4,639)= 4.33954028; T( 4,640)= 4.34762023; T( 4,641)= 4.35571785; T( 4,642)= 4.36383323; T( 4,643)= 4.37196649; T( 4,644)= 4.38011774; T( 4,645)= 4.38828707; T( 4,646)= 4.39647461; T( 4,647)= 4.40468046; T( 4,648)= 4.41290473; T( 4,649)= 4.42114754; T( 4,650)= 4.42940899; T( 4,651)= 4.43768920; T( 4,652)= 4.44598828; T( 4,653)= 4.45430636; T( 4,654)= 4.46264354; T( 4,655)= 4.47099994; T( 4,656)= 4.47937568; T( 4,657)= 4.48777089; T( 4,658)= 4.49618567; T( 4,659)= 4.50462016; T( 4,660)= 4.51307447; T( 4,661)= 4.52154873; T( 4,662)= 4.53004306; T( 4,663)= 4.53855758; T( 4,664)= 4.54709243; T( 4,665)= 4.55564773; T( 4,666)= 4.56422361; T( 4,667)= 4.57282020; T( 4,668)= 4.58143763; T( 4,669)= 4.59007603; T( 4,670)= 4.59873554; T( 4,671)= 4.60741628; T( 4,672)= 4.61611840; T( 4,673)= 4.62484204; T( 4,674)= 4.63358732; T( 4,675)= 4.64235439; T( 4,676)= 4.65114339; T( 4,677)= 4.65995446; T( 4,678)= 4.66878774; T( 4,679)= 4.67764338; T( 4,680)= 4.68652153; T( 4,681)= 4.69542232; T( 4,682)= 4.70434591; T( 4,683)= 4.71329245; T( 4,684)= 4.72226208; T( 4,685)= 4.73125497; T( 4,686)= 4.74027126; T( 4,687)= 4.74931111; T( 4,688)= 4.75837467; T( 4,689)= 4.76746211; T( 4,690)= 4.77657358; T( 4,691)= 4.78570924; T( 4,692)= 4.79486926; T( 4,693)= 4.80405379; T( 4,694)= 4.81326301; T( 4,695)= 4.82249709; T( 4,696)= 4.83175618; T( 4,697)= 4.84104046; T( 4,698)= 4.85035011; T( 4,699)= 4.85968529; T( 4,700)= 4.86904619; T( 4,701)= 4.87843297; T( 4,702)= 4.88784581; T( 4,703)= 4.89728491; T( 4,704)= 4.90675043; T( 4,705)= 4.91624257; T( 4,706)= 4.92576151; T( 4,707)= 4.93530743; T( 4,708)= 4.94488052; T( 4,709)= 4.95448099; T( 4,710)= 4.96410901; T( 4,711)= 4.97376479; T( 4,712)= 4.98344853; T( 4,713)= 4.99316041; T( 4,714)= 5.00290065; T( 4,715)= 5.01266944; T( 4,716)= 5.02246700; T( 4,717)= 5.03229352; T( 4,718)= 5.04214922; T( 4,719)= 5.05203432; T( 4,720)= 5.06194901; T( 4,721)= 5.07189353; T( 4,722)= 5.08186809; T( 4,723)= 5.09187290; T( 4,724)= 5.10190820; T( 4,725)= 5.11197421; T( 4,726)= 5.12207115; T( 4,727)= 5.13219926; T( 4,728)= 5.14235877; T( 4,729)= 5.15254991; T( 4,730)= 5.16277293; T( 4,731)= 5.17302806; T( 4,732)= 5.18331554; T( 4,733)= 5.19363562; T( 4,734)= 5.20398856; T( 4,735)= 5.21437459; T( 4,736)= 5.22479398; T( 4,737)= 5.23524698; T( 4,738)= 5.24573386; T( 4,739)= 5.25625486; T( 4,740)= 5.26681027; T( 4,741)= 5.27740034; T( 4,742)= 5.28802535; T( 4,743)= 5.29868557; T( 4,744)= 5.30938129; T( 4,745)= 5.32011278; T( 4,746)= 5.33088032; T( 4,747)= 5.34168421; T( 4,748)= 5.35252473; T( 4,749)= 5.36340218; T( 4,750)= 5.37431685; T( 4,751)= 5.38526906; T( 4,752)= 5.39625909; T( 4,753)= 5.40728727; T( 4,754)= 5.41835389; T( 4,755)= 5.42945929; T( 4,756)= 5.44060377; T( 4,757)= 5.45178766; T( 4,758)= 5.46301129; T( 4,759)= 5.47427499; T( 4,760)= 5.48557909; T( 4,761)= 5.49692394; T( 4,762)= 5.50830987; T( 4,763)= 5.51973724; T( 4,764)= 5.53120640; T( 4,765)= 5.54271769; T( 4,766)= 5.55427150; T( 4,767)= 5.56586817; T( 4,768)= 5.57750808; T( 4,769)= 5.58919161; T( 4,770)= 5.60091913; T( 4,771)= 5.61269103; T( 4,772)= 5.62450770; T( 4,773)= 5.63636954; T( 4,774)= 5.64827693; T( 4,775)= 5.66023029; T( 4,776)= 5.67223003; T( 4,777)= 5.68427657; T( 4,778)= 5.69637031; T( 4,779)= 5.70851170; T( 4,780)= 5.72070116; T( 4,781)= 5.73293913; T( 4,782)= 5.74522606; T( 4,783)= 5.75756239; T( 4,784)= 5.76994858; T( 4,785)= 5.78238510; T( 4,786)= 5.79487241; T( 4,787)= 5.80741098; T( 4,788)= 5.82000131; T( 4,789)= 5.83264387; T( 4,790)= 5.84533917; T( 4,791)= 5.85808770; T( 4,792)= 5.87088997; T( 4,793)= 5.88374651; T( 4,794)= 5.89665783; T( 4,795)= 5.90962447; T( 4,796)= 5.92264696; T( 4,797)= 5.93572586; T( 4,798)= 5.94886171; T( 4,799)= 5.96205509; T( 4,800)= 5.97530656; T( 4,801)= 5.98861669; T( 4,802)= 6.00198609; T( 4,803)= 6.01541535; T( 4,804)= 6.02890507; T( 4,805)= 6.04245586; T( 4,806)= 6.05606836; T( 4,807)= 6.06974320; T( 4,808)= 6.08348102; T( 4,809)= 6.09728247; T( 4,810)= 6.11114822; T( 4,811)= 6.12507894; T( 4,812)= 6.13907532; T( 4,813)= 6.15313805; T( 4,814)= 6.16726784; T( 4,815)= 6.18146541; T( 4,816)= 6.19573148; T( 4,817)= 6.21006680; T( 4,818)= 6.22447212; T( 4,819)= 6.23894820; T( 4,820)= 6.25349583; T( 4,821)= 6.26811579; T( 4,822)= 6.28280888; T( 4,823)= 6.29757593; T( 4,824)= 6.31241776; T( 4,825)= 6.32733521; T( 4,826)= 6.34232915; T( 4,827)= 6.35740046; T( 4,828)= 6.37255000; T( 4,829)= 6.38777870; T( 4,830)= 6.40308747; T( 4,831)= 6.41847725; T( 4,832)= 6.43394898; T( 4,833)= 6.44950363; T( 4,834)= 6.46514220; T( 4,835)= 6.48086568; T( 4,836)= 6.49667509; T( 4,837)= 6.51257148; T( 4,838)= 6.52855590; T( 4,839)= 6.54462942; T( 4,840)= 6.56079316; T( 4,841)= 6.57704821; T( 4,842)= 6.59339573; T( 4,843)= 6.60983688; T( 4,844)= 6.62637282; T( 4,845)= 6.64300478; T( 4,846)= 6.65973397; T( 4,847)= 6.67656164; T( 4,848)= 6.69348908; T( 4,849)= 6.71051758; T( 4,850)= 6.72764847; T( 4,851)= 6.74488309; T( 4,852)= 6.76222282; T( 4,853)= 6.77966908; T( 4,854)= 6.79722330; T( 4,855)= 6.81488693; T( 4,856)= 6.83266148; T( 4,857)= 6.85054846; T( 4,858)= 6.86854943; T( 4,859)= 6.88666598; T( 4,860)= 6.90489973; T( 4,861)= 6.92325233; T( 4,862)= 6.94172549; T( 4,863)= 6.96032091; T( 4,864)= 6.97904037; T( 4,865)= 6.99788567; T( 4,866)= 7.01685866; T( 4,867)= 7.03596121; T( 4,868)= 7.05519525; T( 4,869)= 7.07456274; T( 4,870)= 7.09406571; T( 4,871)= 7.11370621; T( 4,872)= 7.13348634; T( 4,873)= 7.15340826; T( 4,874)= 7.17347418; T( 4,875)= 7.19368635; T( 4,876)= 7.21404707; T( 4,877)= 7.23455872; T( 4,878)= 7.25522372; T( 4,879)= 7.27604455; T( 4,880)= 7.29702375; T( 4,881)= 7.31816392; T( 4,882)= 7.33946774; T( 4,883)= 7.36093793; T( 4,884)= 7.38257731; T( 4,885)= 7.40438875; T( 4,886)= 7.42637521; T( 4,887)= 7.44853970; T( 4,888)= 7.47088534; T( 4,889)= 7.49341532; T( 4,890)= 7.51613291; T( 4,891)= 7.53904148; T( 4,892)= 7.56214447; T( 4,893)= 7.58544544; T( 4,894)= 7.60894803; T( 4,895)= 7.63265599; T( 4,896)= 7.65657318; T( 4,897)= 7.68070356; T( 4,898)= 7.70505121; T( 4,899)= 7.72962032; T( 4,900)= 7.75441521; T( 4,901)= 7.77944034; T( 4,902)= 7.80470028; T( 4,903)= 7.83019975; T( 4,904)= 7.85594361; T( 4,905)= 7.88193688; T( 4,906)= 7.90818472; T( 4,907)= 7.93469248; T( 4,908)= 7.96146564; T( 4,909)= 7.98850988; T( 4,910)= 8.01583108; T( 4,911)= 8.04343529; T( 4,912)= 8.07132876; T( 4,913)= 8.09951796; T( 4,914)= 8.12800958; T( 4,915)= 8.15681054; T( 4,916)= 8.18592800; T( 4,917)= 8.21536937; T( 4,918)= 8.24514233; T( 4,919)= 8.27525482; T( 4,920)= 8.30571510; T( 4,921)= 8.33653170; T( 4,922)= 8.36771351; T( 4,923)= 8.39926971; T( 4,924)= 8.43120988; T( 4,925)= 8.46354394; T( 4,926)= 8.49628221; T( 4,927)= 8.52943543; T( 4,928)= 8.56301477; T( 4,929)= 8.59703186; T( 4,930)= 8.63149880; T( 4,931)= 8.66642823; T( 4,932)= 8.70183332; T( 4,933)= 8.73772779; T( 4,934)= 8.77412600; T( 4,935)= 8.81104292; T( 4,936)= 8.84849424; T( 4,937)= 8.88649634; T( 4,938)= 8.92506638; T( 4,939)= 8.96422234; T( 4,940)= 9.00398308; T( 4,941)= 9.04436837; T( 4,942)= 9.08539898; T( 4,943)= 9.12709674; T( 4,944)= 9.16948460; T( 4,945)= 9.21258674; T( 4,946)= 9.25642862; T( 4,947)= 9.30103711; T( 4,948)= 9.34644054; T( 4,949)= 9.39266890; T( 4,950)= 9.43975387; T( 4,951)= 9.48772904; T( 4,952)= 9.53662998; T( 4,953)= 9.58649448; T( 4,954)= 9.63736268; T( 4,955)= 9.68927731; T( 4,956)= 9.74228389; T( 4,957)= 9.79643098; T( 4,958)= 9.85177050; T( 4,959)= 9.90835797; T( 4,960)= 9.96625293; T( 4,961)=10.02551929; T( 4,962)=10.08622578; T( 4,963)=10.14844648; T( 4,964)=10.21226132; T( 4,965)=10.27775679; T( 4,966)=10.34502663; T( 4,967)=10.41417271; T( 4,968)=10.48530593; T( 4,969)=10.55854739; T( 4,970)=10.63402967; T( 4,971)=10.71189829; T( 4,972)=10.79231350; T( 4,973)=10.87545233; T( 4,974)=10.96151101; T( 4,975)=11.05070787; T( 4,976)=11.14328678; T( 4,977)=11.23952133; T( 4,978)=11.33971984; T( 4,979)=11.44423156; T( 4,980)=11.55345420; T( 4,981)=11.66784340; T( 4,982)=11.78792460; T( 4,983)=11.91430801; T( 4,984)=12.04770801; T( 4,985)=12.18896832; T( 4,986)=12.33909528; T( 4,987)=12.49930265; T( 4,988)=12.67107294; T( 4,989)=12.85624330; T( 4,990)=13.05712875; T( 4,991)=13.27670414; T( 4,992)=13.51888199; T( 4,993)=13.78895432; T( 4,994)=14.09432997; T( 4,995)=14.44584270; T( 4,996)=14.86025900; T( 4,997)=15.36561125; T( 4,998)=16.01432631; T( 4,999)=16.92375820; T( 4,1000)=18.46682695; T( 4,1001)=23.51274244; T( 4,1002)=28.47325542; T( 5, 1)= 0.00000000; T( 5, 2)= 0.21021260; T( 5, 3)= 0.28013998; T( 5, 4)= 0.33188723; T( 5, 5)= 0.37461651; T( 5, 6)= 0.41174190; T( 5, 7)= 0.44496986; T( 5, 8)= 0.47529445; T( 5, 9)= 0.50335314; T( 5,10)= 0.52958287; T( 5,11)= 0.55429808; T( 5,12)= 0.57773376; T( 5,13)= 0.60007082; T( 5,14)= 0.62145195; T( 5,15)= 0.64199196; T( 5,16)= 0.66178485; T( 5,17)= 0.68090864; T( 5,18)= 0.69942897; T( 5,19)= 0.71740161; T( 5,20)= 0.73487445; T( 5,21)= 0.75188893; T( 5,22)= 0.76848123; T( 5,23)= 0.78468309; T( 5,24)= 0.80052258; T( 5,25)= 0.81602466; T( 5,26)= 0.83121161; T( 5,27)= 0.84610345; T( 5,28)= 0.86071821; T( 5,29)= 0.87507221; T( 5,30)= 0.88918030; T( 5,31)= 0.90305599; T( 5,32)= 0.91671165; T( 5,33)= 0.93015862; T( 5,34)= 0.94340735; T( 5,35)= 0.95646745; T( 5,36)= 0.96934783; T( 5,37)= 0.98205672; T( 5,38)= 0.99460179; T( 5,39)= 1.00699016; T( 5,40)= 1.01922849; T( 5,41)= 1.03132297; T( 5,42)= 1.04327942; T( 5,43)= 1.05510328; T( 5,44)= 1.06679967; T( 5,45)= 1.07837340; T( 5,46)= 1.08982898; T( 5,47)= 1.10117069; T( 5,48)= 1.11240256; T( 5,49)= 1.12352840; T( 5,50)= 1.13455182; T( 5,51)= 1.14547623; T( 5,52)= 1.15630487; T( 5,53)= 1.16704082; T( 5,54)= 1.17768700; T( 5,55)= 1.18824621; T( 5,56)= 1.19872109; T( 5,57)= 1.20911418; T( 5,58)= 1.21942787; T( 5,59)= 1.22966448; T( 5,60)= 1.23982621; T( 5,61)= 1.24991516; T( 5,62)= 1.25993334; T( 5,63)= 1.26988270; T( 5,64)= 1.27976507; T( 5,65)= 1.28958223; T( 5,66)= 1.29933590; T( 5,67)= 1.30902769; T( 5,68)= 1.31865919; T( 5,69)= 1.32823191; T( 5,70)= 1.33774731; T( 5,71)= 1.34720678; T( 5,72)= 1.35661167; T( 5,73)= 1.36596330; T( 5,74)= 1.37526290; T( 5,75)= 1.38451170; T( 5,76)= 1.39371085; T( 5,77)= 1.40286150; T( 5,78)= 1.41196472; T( 5,79)= 1.42102158; T( 5,80)= 1.43003310; T( 5,81)= 1.43900026; T( 5,82)= 1.44792401; T( 5,83)= 1.45680528; T( 5,84)= 1.46564497; T( 5,85)= 1.47444395; T( 5,86)= 1.48320306; T( 5,87)= 1.49192310; T( 5,88)= 1.50060489; T( 5,89)= 1.50924918; T( 5,90)= 1.51785672; T( 5,91)= 1.52642824; T( 5,92)= 1.53496444; T( 5,93)= 1.54346601; T( 5,94)= 1.55193361; T( 5,95)= 1.56036789; T( 5,96)= 1.56876948; T( 5,97)= 1.57713900; T( 5,98)= 1.58547703; T( 5,99)= 1.59378416; T( 5,100)= 1.60206097; T( 5,101)= 1.61030799; T( 5,102)= 1.61852576; T( 5,103)= 1.62671482; T( 5,104)= 1.63487566; T( 5,105)= 1.64300880; T( 5,106)= 1.65111471; T( 5,107)= 1.65919387; T( 5,108)= 1.66724674; T( 5,109)= 1.67527377; T( 5,110)= 1.68327541; T( 5,111)= 1.69125208; T( 5,112)= 1.69920421; T( 5,113)= 1.70713221; T( 5,114)= 1.71503648; T( 5,115)= 1.72291741; T( 5,116)= 1.73077539; T( 5,117)= 1.73861080; T( 5,118)= 1.74642399; T( 5,119)= 1.75421534; T( 5,120)= 1.76198520; T( 5,121)= 1.76973390; T( 5,122)= 1.77746178; T( 5,123)= 1.78516918; T( 5,124)= 1.79285643; T( 5,125)= 1.80052383; T( 5,126)= 1.80817169; T( 5,127)= 1.81580033; T( 5,128)= 1.82341004; T( 5,129)= 1.83100111; T( 5,130)= 1.83857383; T( 5,131)= 1.84612848; T( 5,132)= 1.85366534; T( 5,133)= 1.86118467; T( 5,134)= 1.86868675; T( 5,135)= 1.87617183; T( 5,136)= 1.88364016; T( 5,137)= 1.89109200; T( 5,138)= 1.89852760; T( 5,139)= 1.90594719; T( 5,140)= 1.91335102; T( 5,141)= 1.92073931; T( 5,142)= 1.92811230; T( 5,143)= 1.93547020; T( 5,144)= 1.94281325; T( 5,145)= 1.95014166; T( 5,146)= 1.95745564; T( 5,147)= 1.96475540; T( 5,148)= 1.97204115; T( 5,149)= 1.97931310; T( 5,150)= 1.98657143; T( 5,151)= 1.99381635; T( 5,152)= 2.00104804; T( 5,153)= 2.00826671; T( 5,154)= 2.01547254; T( 5,155)= 2.02266570; T( 5,156)= 2.02984639; T( 5,157)= 2.03701477; T( 5,158)= 2.04417103; T( 5,159)= 2.05131534; T( 5,160)= 2.05844786; T( 5,161)= 2.06556876; T( 5,162)= 2.07267822; T( 5,163)= 2.07977638; T( 5,164)= 2.08686342; T( 5,165)= 2.09393949; T( 5,166)= 2.10100474; T( 5,167)= 2.10805932; T( 5,168)= 2.11510339; T( 5,169)= 2.12213710; T( 5,170)= 2.12916059; T( 5,171)= 2.13617401; T( 5,172)= 2.14317749; T( 5,173)= 2.15017118; T( 5,174)= 2.15715522; T( 5,175)= 2.16412975; T( 5,176)= 2.17109489; T( 5,177)= 2.17805079; T( 5,178)= 2.18499756; T( 5,179)= 2.19193535; T( 5,180)= 2.19886428; T( 5,181)= 2.20578447; T( 5,182)= 2.21269605; T( 5,183)= 2.21959915; T( 5,184)= 2.22649387; T( 5,185)= 2.23338035; T( 5,186)= 2.24025870; T( 5,187)= 2.24712904; T( 5,188)= 2.25399147; T( 5,189)= 2.26084613; T( 5,190)= 2.26769311; T( 5,191)= 2.27453253; T( 5,192)= 2.28136449; T( 5,193)= 2.28818912; T( 5,194)= 2.29500650; T( 5,195)= 2.30181676; T( 5,196)= 2.30861999; T( 5,197)= 2.31541630; T( 5,198)= 2.32220578; T( 5,199)= 2.32898854; T( 5,200)= 2.33576469; T( 5,201)= 2.34253431; T( 5,202)= 2.34929750; T( 5,203)= 2.35605437; T( 5,204)= 2.36280500; T( 5,205)= 2.36954949; T( 5,206)= 2.37628794; T( 5,207)= 2.38302043; T( 5,208)= 2.38974707; T( 5,209)= 2.39646792; T( 5,210)= 2.40318310; T( 5,211)= 2.40989268; T( 5,212)= 2.41659675; T( 5,213)= 2.42329541; T( 5,214)= 2.42998873; T( 5,215)= 2.43667679; T( 5,216)= 2.44335969; T( 5,217)= 2.45003751; T( 5,218)= 2.45671033; T( 5,219)= 2.46337822; T( 5,220)= 2.47004128; T( 5,221)= 2.47669958; T( 5,222)= 2.48335319; T( 5,223)= 2.49000221; T( 5,224)= 2.49664670; T( 5,225)= 2.50328674; T( 5,226)= 2.50992241; T( 5,227)= 2.51655379; T( 5,228)= 2.52318094; T( 5,229)= 2.52980395; T( 5,230)= 2.53642289; T( 5,231)= 2.54303782; T( 5,232)= 2.54964882; T( 5,233)= 2.55625597; T( 5,234)= 2.56285932; T( 5,235)= 2.56945897; T( 5,236)= 2.57605496; T( 5,237)= 2.58264738; T( 5,238)= 2.58923628; T( 5,239)= 2.59582175; T( 5,240)= 2.60240384; T( 5,241)= 2.60898262; T( 5,242)= 2.61555816; T( 5,243)= 2.62213053; T( 5,244)= 2.62869978; T( 5,245)= 2.63526599; T( 5,246)= 2.64182921; T( 5,247)= 2.64838952; T( 5,248)= 2.65494697; T( 5,249)= 2.66150163; T( 5,250)= 2.66805355; T( 5,251)= 2.67460281; T( 5,252)= 2.68114946; T( 5,253)= 2.68769356; T( 5,254)= 2.69423517; T( 5,255)= 2.70077436; T( 5,256)= 2.70731118; T( 5,257)= 2.71384569; T( 5,258)= 2.72037795; T( 5,259)= 2.72690801; T( 5,260)= 2.73343595; T( 5,261)= 2.73996180; T( 5,262)= 2.74648564; T( 5,263)= 2.75300751; T( 5,264)= 2.75952747; T( 5,265)= 2.76604558; T( 5,266)= 2.77256190; T( 5,267)= 2.77907647; T( 5,268)= 2.78558936; T( 5,269)= 2.79210062; T( 5,270)= 2.79861030; T( 5,271)= 2.80511845; T( 5,272)= 2.81162513; T( 5,273)= 2.81813040; T( 5,274)= 2.82463430; T( 5,275)= 2.83113688; T( 5,276)= 2.83763821; T( 5,277)= 2.84413832; T( 5,278)= 2.85063728; T( 5,279)= 2.85713514; T( 5,280)= 2.86363193; T( 5,281)= 2.87012773; T( 5,282)= 2.87662256; T( 5,283)= 2.88311650; T( 5,284)= 2.88960958; T( 5,285)= 2.89610185; T( 5,286)= 2.90259337; T( 5,287)= 2.90908418; T( 5,288)= 2.91557433; T( 5,289)= 2.92206387; T( 5,290)= 2.92855285; T( 5,291)= 2.93504132; T( 5,292)= 2.94152932; T( 5,293)= 2.94801690; T( 5,294)= 2.95450412; T( 5,295)= 2.96099100; T( 5,296)= 2.96747761; T( 5,297)= 2.97396399; T( 5,298)= 2.98045019; T( 5,299)= 2.98693625; T( 5,300)= 2.99342221; T( 5,301)= 2.99990813; T( 5,302)= 3.00639405; T( 5,303)= 3.01288002; T( 5,304)= 3.01936607; T( 5,305)= 3.02585226; T( 5,306)= 3.03233863; T( 5,307)= 3.03882522; T( 5,308)= 3.04531208; T( 5,309)= 3.05179925; T( 5,310)= 3.05828679; T( 5,311)= 3.06477472; T( 5,312)= 3.07126310; T( 5,313)= 3.07775196; T( 5,314)= 3.08424136; T( 5,315)= 3.09073133; T( 5,316)= 3.09722192; T( 5,317)= 3.10371318; T( 5,318)= 3.11020513; T( 5,319)= 3.11669783; T( 5,320)= 3.12319133; T( 5,321)= 3.12968565; T( 5,322)= 3.13618085; T( 5,323)= 3.14267696; T( 5,324)= 3.14917404; T( 5,325)= 3.15567211; T( 5,326)= 3.16217122; T( 5,327)= 3.16867142; T( 5,328)= 3.17517274; T( 5,329)= 3.18167523; T( 5,330)= 3.18817892; T( 5,331)= 3.19468387; T( 5,332)= 3.20119010; T( 5,333)= 3.20769767; T( 5,334)= 3.21420660; T( 5,335)= 3.22071695; T( 5,336)= 3.22722875; T( 5,337)= 3.23374204; T( 5,338)= 3.24025687; T( 5,339)= 3.24677327; T( 5,340)= 3.25329128; T( 5,341)= 3.25981095; T( 5,342)= 3.26633231; T( 5,343)= 3.27285541; T( 5,344)= 3.27938028; T( 5,345)= 3.28590697; T( 5,346)= 3.29243551; T( 5,347)= 3.29896594; T( 5,348)= 3.30549831; T( 5,349)= 3.31203265; T( 5,350)= 3.31856900; T( 5,351)= 3.32510740; T( 5,352)= 3.33164789; T( 5,353)= 3.33819051; T( 5,354)= 3.34473530; T( 5,355)= 3.35128230; T( 5,356)= 3.35783155; T( 5,357)= 3.36438308; T( 5,358)= 3.37093694; T( 5,359)= 3.37749316; T( 5,360)= 3.38405178; T( 5,361)= 3.39061285; T( 5,362)= 3.39717640; T( 5,363)= 3.40374246; T( 5,364)= 3.41031109; T( 5,365)= 3.41688231; T( 5,366)= 3.42345617; T( 5,367)= 3.43003270; T( 5,368)= 3.43661194; T( 5,369)= 3.44319393; T( 5,370)= 3.44977871; T( 5,371)= 3.45636632; T( 5,372)= 3.46295680; T( 5,373)= 3.46955018; T( 5,374)= 3.47614651; T( 5,375)= 3.48274581; T( 5,376)= 3.48934814; T( 5,377)= 3.49595352; T( 5,378)= 3.50256200; T( 5,379)= 3.50917361; T( 5,380)= 3.51578840; T( 5,381)= 3.52240640; T( 5,382)= 3.52902765; T( 5,383)= 3.53565218; T( 5,384)= 3.54228004; T( 5,385)= 3.54891127; T( 5,386)= 3.55554590; T( 5,387)= 3.56218396; T( 5,388)= 3.56882551; T( 5,389)= 3.57547058; T( 5,390)= 3.58211920; T( 5,391)= 3.58877141; T( 5,392)= 3.59542725; T( 5,393)= 3.60208677; T( 5,394)= 3.60874999; T( 5,395)= 3.61541697; T( 5,396)= 3.62208772; T( 5,397)= 3.62876230; T( 5,398)= 3.63544074; T( 5,399)= 3.64212309; T( 5,400)= 3.64880937; T( 5,401)= 3.65549962; T( 5,402)= 3.66219390; T( 5,403)= 3.66889222; T( 5,404)= 3.67559464; T( 5,405)= 3.68230119; T( 5,406)= 3.68901191; T( 5,407)= 3.69572684; T( 5,408)= 3.70244602; T( 5,409)= 3.70916948; T( 5,410)= 3.71589726; T( 5,411)= 3.72262941; T( 5,412)= 3.72936596; T( 5,413)= 3.73610695; T( 5,414)= 3.74285242; T( 5,415)= 3.74960241; T( 5,416)= 3.75635695; T( 5,417)= 3.76311610; T( 5,418)= 3.76987987; T( 5,419)= 3.77664833; T( 5,420)= 3.78342149; T( 5,421)= 3.79019941; T( 5,422)= 3.79698212; T( 5,423)= 3.80376966; T( 5,424)= 3.81056208; T( 5,425)= 3.81735940; T( 5,426)= 3.82416168; T( 5,427)= 3.83096894; T( 5,428)= 3.83778123; T( 5,429)= 3.84459860; T( 5,430)= 3.85142107; T( 5,431)= 3.85824869; T( 5,432)= 3.86508150; T( 5,433)= 3.87191953; T( 5,434)= 3.87876284; T( 5,435)= 3.88561146; T( 5,436)= 3.89246542; T( 5,437)= 3.89932478; T( 5,438)= 3.90618956; T( 5,439)= 3.91305982; T( 5,440)= 3.91993558; T( 5,441)= 3.92681690; T( 5,442)= 3.93370381; T( 5,443)= 3.94059636; T( 5,444)= 3.94749457; T( 5,445)= 3.95439851; T( 5,446)= 3.96130820; T( 5,447)= 3.96822369; T( 5,448)= 3.97514502; T( 5,449)= 3.98207223; T( 5,450)= 3.98900536; T( 5,451)= 3.99594446; T( 5,452)= 4.00288956; T( 5,453)= 4.00984071; T( 5,454)= 4.01679794; T( 5,455)= 4.02376131; T( 5,456)= 4.03073086; T( 5,457)= 4.03770662; T( 5,458)= 4.04468864; T( 5,459)= 4.05167696; T( 5,460)= 4.05867162; T( 5,461)= 4.06567267; T( 5,462)= 4.07268015; T( 5,463)= 4.07969411; T( 5,464)= 4.08671458; T( 5,465)= 4.09374161; T( 5,466)= 4.10077524; T( 5,467)= 4.10781551; T( 5,468)= 4.11486248; T( 5,469)= 4.12191618; T( 5,470)= 4.12897666; T( 5,471)= 4.13604396; T( 5,472)= 4.14311813; T( 5,473)= 4.15019920; T( 5,474)= 4.15728724; T( 5,475)= 4.16438227; T( 5,476)= 4.17148434; T( 5,477)= 4.17859351; T( 5,478)= 4.18570981; T( 5,479)= 4.19283329; T( 5,480)= 4.19996400; T( 5,481)= 4.20710197; T( 5,482)= 4.21424727; T( 5,483)= 4.22139992; T( 5,484)= 4.22855999; T( 5,485)= 4.23572751; T( 5,486)= 4.24290253; T( 5,487)= 4.25008510; T( 5,488)= 4.25727527; T( 5,489)= 4.26447308; T( 5,490)= 4.27167857; T( 5,491)= 4.27889181; T( 5,492)= 4.28611283; T( 5,493)= 4.29334167; T( 5,494)= 4.30057840; T( 5,495)= 4.30782306; T( 5,496)= 4.31507569; T( 5,497)= 4.32233635; T( 5,498)= 4.32960508; T( 5,499)= 4.33688193; T( 5,500)= 4.34416695; T( 5,501)= 4.35146019; T( 5,502)= 4.35876170; T( 5,503)= 4.36607153; T( 5,504)= 4.37338973; T( 5,505)= 4.38071635; T( 5,506)= 4.38805143; T( 5,507)= 4.39539504; T( 5,508)= 4.40274722; T( 5,509)= 4.41010801; T( 5,510)= 4.41747748; T( 5,511)= 4.42485568; T( 5,512)= 4.43224265; T( 5,513)= 4.43963844; T( 5,514)= 4.44704312; T( 5,515)= 4.45445672; T( 5,516)= 4.46187931; T( 5,517)= 4.46931094; T( 5,518)= 4.47675166; T( 5,519)= 4.48420152; T( 5,520)= 4.49166057; T( 5,521)= 4.49912888; T( 5,522)= 4.50660648; T( 5,523)= 4.51409345; T( 5,524)= 4.52158983; T( 5,525)= 4.52909568; T( 5,526)= 4.53661105; T( 5,527)= 4.54413600; T( 5,528)= 4.55167058; T( 5,529)= 4.55921484; T( 5,530)= 4.56676886; T( 5,531)= 4.57433267; T( 5,532)= 4.58190635; T( 5,533)= 4.58948993; T( 5,534)= 4.59708349; T( 5,535)= 4.60468708; T( 5,536)= 4.61230076; T( 5,537)= 4.61992458; T( 5,538)= 4.62755861; T( 5,539)= 4.63520290; T( 5,540)= 4.64285751; T( 5,541)= 4.65052250; T( 5,542)= 4.65819793; T( 5,543)= 4.66588386; T( 5,544)= 4.67358035; T( 5,545)= 4.68128746; T( 5,546)= 4.68900525; T( 5,547)= 4.69673379; T( 5,548)= 4.70447312; T( 5,549)= 4.71222333; T( 5,550)= 4.71998446; T( 5,551)= 4.72775659; T( 5,552)= 4.73553976; T( 5,553)= 4.74333406; T( 5,554)= 4.75113953; T( 5,555)= 4.75895625; T( 5,556)= 4.76678427; T( 5,557)= 4.77462367; T( 5,558)= 4.78247451; T( 5,559)= 4.79033685; T( 5,560)= 4.79821075; T( 5,561)= 4.80609630; T( 5,562)= 4.81399354; T( 5,563)= 4.82190255; T( 5,564)= 4.82982340; T( 5,565)= 4.83775614; T( 5,566)= 4.84570086; T( 5,567)= 4.85365762; T( 5,568)= 4.86162649; T( 5,569)= 4.86960753; T( 5,570)= 4.87760082; T( 5,571)= 4.88560643; T( 5,572)= 4.89362442; T( 5,573)= 4.90165487; T( 5,574)= 4.90969785; T( 5,575)= 4.91775343; T( 5,576)= 4.92582168; T( 5,577)= 4.93390268; T( 5,578)= 4.94199650; T( 5,579)= 4.95010321; T( 5,580)= 4.95822288; T( 5,581)= 4.96635559; T( 5,582)= 4.97450142; T( 5,583)= 4.98266044; T( 5,584)= 4.99083273; T( 5,585)= 4.99901836; T( 5,586)= 5.00721740; T( 5,587)= 5.01542995; T( 5,588)= 5.02365606; T( 5,589)= 5.03189583; T( 5,590)= 5.04014933; T( 5,591)= 5.04841664; T( 5,592)= 5.05669784; T( 5,593)= 5.06499301; T( 5,594)= 5.07330223; T( 5,595)= 5.08162558; T( 5,596)= 5.08996314; T( 5,597)= 5.09831500; T( 5,598)= 5.10668124; T( 5,599)= 5.11506195; T( 5,600)= 5.12345719; T( 5,601)= 5.13186707; T( 5,602)= 5.14029167; T( 5,603)= 5.14873107; T( 5,604)= 5.15718535; T( 5,605)= 5.16565462; T( 5,606)= 5.17413894; T( 5,607)= 5.18263841; T( 5,608)= 5.19115313; T( 5,609)= 5.19968317; T( 5,610)= 5.20822863; T( 5,611)= 5.21678960; T( 5,612)= 5.22536617; T( 5,613)= 5.23395843; T( 5,614)= 5.24256647; T( 5,615)= 5.25119040; T( 5,616)= 5.25983029; T( 5,617)= 5.26848625; T( 5,618)= 5.27715837; T( 5,619)= 5.28584675; T( 5,620)= 5.29455148; T( 5,621)= 5.30327266; T( 5,622)= 5.31201039; T( 5,623)= 5.32076476; T( 5,624)= 5.32953588; T( 5,625)= 5.33832385; T( 5,626)= 5.34712876; T( 5,627)= 5.35595072; T( 5,628)= 5.36478984; T( 5,629)= 5.37364620; T( 5,630)= 5.38251992; T( 5,631)= 5.39141111; T( 5,632)= 5.40031986; T( 5,633)= 5.40924628; T( 5,634)= 5.41819049; T( 5,635)= 5.42715258; T( 5,636)= 5.43613267; T( 5,637)= 5.44513086; T( 5,638)= 5.45414727; T( 5,639)= 5.46318201; T( 5,640)= 5.47223519; T( 5,641)= 5.48130691; T( 5,642)= 5.49039731; T( 5,643)= 5.49950648; T( 5,644)= 5.50863455; T( 5,645)= 5.51778163; T( 5,646)= 5.52694784; T( 5,647)= 5.53613330; T( 5,648)= 5.54533812; T( 5,649)= 5.55456244; T( 5,650)= 5.56380635; T( 5,651)= 5.57307000; T( 5,652)= 5.58235350; T( 5,653)= 5.59165698; T( 5,654)= 5.60098056; T( 5,655)= 5.61032437; T( 5,656)= 5.61968853; T( 5,657)= 5.62907318; T( 5,658)= 5.63847844; T( 5,659)= 5.64790444; T( 5,660)= 5.65735131; T( 5,661)= 5.66681919; T( 5,662)= 5.67630821; T( 5,663)= 5.68581850; T( 5,664)= 5.69535021; T( 5,665)= 5.70490346; T( 5,666)= 5.71447840; T( 5,667)= 5.72407516; T( 5,668)= 5.73369388; T( 5,669)= 5.74333472; T( 5,670)= 5.75299780; T( 5,671)= 5.76268327; T( 5,672)= 5.77239128; T( 5,673)= 5.78212198; T( 5,674)= 5.79187551; T( 5,675)= 5.80165203; T( 5,676)= 5.81145167; T( 5,677)= 5.82127461; T( 5,678)= 5.83112097; T( 5,679)= 5.84099094; T( 5,680)= 5.85088465; T( 5,681)= 5.86080226; T( 5,682)= 5.87074394; T( 5,683)= 5.88070984; T( 5,684)= 5.89070013; T( 5,685)= 5.90071497; T( 5,686)= 5.91075452; T( 5,687)= 5.92081895; T( 5,688)= 5.93090842; T( 5,689)= 5.94102311; T( 5,690)= 5.95116319; T( 5,691)= 5.96132883; T( 5,692)= 5.97152020; T( 5,693)= 5.98173748; T( 5,694)= 5.99198084; T( 5,695)= 6.00225046; T( 5,696)= 6.01254654; T( 5,697)= 6.02286923; T( 5,698)= 6.03321874; T( 5,699)= 6.04359524; T( 5,700)= 6.05399893; T( 5,701)= 6.06442998; T( 5,702)= 6.07488861; T( 5,703)= 6.08537498; T( 5,704)= 6.09588931; T( 5,705)= 6.10643179; T( 5,706)= 6.11700261; T( 5,707)= 6.12760198; T( 5,708)= 6.13823010; T( 5,709)= 6.14888717; T( 5,710)= 6.15957341; T( 5,711)= 6.17028901; T( 5,712)= 6.18103419; T( 5,713)= 6.19180916; T( 5,714)= 6.20261415; T( 5,715)= 6.21344935; T( 5,716)= 6.22431500; T( 5,717)= 6.23521132; T( 5,718)= 6.24613853; T( 5,719)= 6.25709685; T( 5,720)= 6.26808651; T( 5,721)= 6.27910775; T( 5,722)= 6.29016080; T( 5,723)= 6.30124590; T( 5,724)= 6.31236327; T( 5,725)= 6.32351317; T( 5,726)= 6.33469584; T( 5,727)= 6.34591151; T( 5,728)= 6.35716045; T( 5,729)= 6.36844290; T( 5,730)= 6.37975911; T( 5,731)= 6.39110935; T( 5,732)= 6.40249386; T( 5,733)= 6.41391292; T( 5,734)= 6.42536679; T( 5,735)= 6.43685574; T( 5,736)= 6.44838003; T( 5,737)= 6.45993994; T( 5,738)= 6.47153575; T( 5,739)= 6.48316774; T( 5,740)= 6.49483619; T( 5,741)= 6.50654138; T( 5,742)= 6.51828362; T( 5,743)= 6.53006318; T( 5,744)= 6.54188036; T( 5,745)= 6.55373547; T( 5,746)= 6.56562881; T( 5,747)= 6.57756068; T( 5,748)= 6.58953140; T( 5,749)= 6.60154127; T( 5,750)= 6.61359062; T( 5,751)= 6.62567976; T( 5,752)= 6.63780903; T( 5,753)= 6.64997874; T( 5,754)= 6.66218923; T( 5,755)= 6.67444084; T( 5,756)= 6.68673390; T( 5,757)= 6.69906877; T( 5,758)= 6.71144579; T( 5,759)= 6.72386531; T( 5,760)= 6.73632769; T( 5,761)= 6.74883329; T( 5,762)= 6.76138248; T( 5,763)= 6.77397563; T( 5,764)= 6.78661311; T( 5,765)= 6.79929530; T( 5,766)= 6.81202259; T( 5,767)= 6.82479536; T( 5,768)= 6.83761401; T( 5,769)= 6.85047894; T( 5,770)= 6.86339055; T( 5,771)= 6.87634926; T( 5,772)= 6.88935547; T( 5,773)= 6.90240960; T( 5,774)= 6.91551209; T( 5,775)= 6.92866336; T( 5,776)= 6.94186385; T( 5,777)= 6.95511399; T( 5,778)= 6.96841425; T( 5,779)= 6.98176506; T( 5,780)= 6.99516690; T( 5,781)= 7.00862022; T( 5,782)= 7.02212551; T( 5,783)= 7.03568323; T( 5,784)= 7.04929388; T( 5,785)= 7.06295794; T( 5,786)= 7.07667591; T( 5,787)= 7.09044831; T( 5,788)= 7.10427563; T( 5,789)= 7.11815841; T( 5,790)= 7.13209716; T( 5,791)= 7.14609242; T( 5,792)= 7.16014473; T( 5,793)= 7.17425464; T( 5,794)= 7.18842272; T( 5,795)= 7.20264951; T( 5,796)= 7.21693560; T( 5,797)= 7.23128157; T( 5,798)= 7.24568800; T( 5,799)= 7.26015550; T( 5,800)= 7.27468467; T( 5,801)= 7.28927613; T( 5,802)= 7.30393050; T( 5,803)= 7.31864841; T( 5,804)= 7.33343052; T( 5,805)= 7.34827747; T( 5,806)= 7.36318993; T( 5,807)= 7.37816857; T( 5,808)= 7.39321407; T( 5,809)= 7.40832713; T( 5,810)= 7.42350845; T( 5,811)= 7.43875876; T( 5,812)= 7.45407877; T( 5,813)= 7.46946922; T( 5,814)= 7.48493087; T( 5,815)= 7.50046447; T( 5,816)= 7.51607081; T( 5,817)= 7.53175066; T( 5,818)= 7.54750482; T( 5,819)= 7.56333411; T( 5,820)= 7.57923936; T( 5,821)= 7.59522140; T( 5,822)= 7.61128108; T( 5,823)= 7.62741927; T( 5,824)= 7.64363685; T( 5,825)= 7.65993472; T( 5,826)= 7.67631379; T( 5,827)= 7.69277498; T( 5,828)= 7.70931924; T( 5,829)= 7.72594752; T( 5,830)= 7.74266081; T( 5,831)= 7.75946008; T( 5,832)= 7.77634636; T( 5,833)= 7.79332066; T( 5,834)= 7.81038403; T( 5,835)= 7.82753755; T( 5,836)= 7.84478227; T( 5,837)= 7.86211932; T( 5,838)= 7.87954982; T( 5,839)= 7.89707489; T( 5,840)= 7.91469571; T( 5,841)= 7.93241347; T( 5,842)= 7.95022937; T( 5,843)= 7.96814463; T( 5,844)= 7.98616051; T( 5,845)= 8.00427829; T( 5,846)= 8.02249927; T( 5,847)= 8.04082477; T( 5,848)= 8.05925615; T( 5,849)= 8.07779477; T( 5,850)= 8.09644205; T( 5,851)= 8.11519941; T( 5,852)= 8.13406832; T( 5,853)= 8.15305027; T( 5,854)= 8.17214677; T( 5,855)= 8.19135937; T( 5,856)= 8.21068966; T( 5,857)= 8.23013925; T( 5,858)= 8.24970978; T( 5,859)= 8.26940294; T( 5,860)= 8.28922045; T( 5,861)= 8.30916405; T( 5,862)= 8.32923554; T( 5,863)= 8.34943674; T( 5,864)= 8.36976952; T( 5,865)= 8.39023580; T( 5,866)= 8.41083751; T( 5,867)= 8.43157666; T( 5,868)= 8.45245528; T( 5,869)= 8.47347545; T( 5,870)= 8.49463930; T( 5,871)= 8.51594902; T( 5,872)= 8.53740682; T( 5,873)= 8.55901500; T( 5,874)= 8.58077587; T( 5,875)= 8.60269183; T( 5,876)= 8.62476532; T( 5,877)= 8.64699885; T( 5,878)= 8.66939497; T( 5,879)= 8.69195631; T( 5,880)= 8.71468555; T( 5,881)= 8.73758546; T( 5,882)= 8.76065884; T( 5,883)= 8.78390860; T( 5,884)= 8.80733771; T( 5,885)= 8.83094920; T( 5,886)= 8.85474619; T( 5,887)= 8.87873188; T( 5,888)= 8.90290956; T( 5,889)= 8.92728260; T( 5,890)= 8.95185446; T( 5,891)= 8.97662869; T( 5,892)= 9.00160894; T( 5,893)= 9.02679896; T( 5,894)= 9.05220261; T( 5,895)= 9.07782384; T( 5,896)= 9.10366673; T( 5,897)= 9.12973547; T( 5,898)= 9.15603435; T( 5,899)= 9.18256782; T( 5,900)= 9.20934044; T( 5,901)= 9.23635690; T( 5,902)= 9.26362204; T( 5,903)= 9.29114084; T( 5,904)= 9.31891844; T( 5,905)= 9.34696013; T( 5,906)= 9.37527136; T( 5,907)= 9.40385777; T( 5,908)= 9.43272516; T( 5,909)= 9.46187952; T( 5,910)= 9.49132705; T( 5,911)= 9.52107413; T( 5,912)= 9.55112737; T( 5,913)= 9.58149359; T( 5,914)= 9.61217984; T( 5,915)= 9.64319344; T( 5,916)= 9.67454192; T( 5,917)= 9.70623310; T( 5,918)= 9.73827509; T( 5,919)= 9.77067627; T( 5,920)= 9.80344533; T( 5,921)= 9.83659128; T( 5,922)= 9.87012349; T( 5,923)= 9.90405164; T( 5,924)= 9.93838582; T( 5,925)= 9.97313649; T( 5,926)=10.00831453; T( 5,927)=10.04393127; T( 5,928)=10.07999846; T( 5,929)=10.11652837; T( 5,930)=10.15353375; T( 5,931)=10.19102791; T( 5,932)=10.22902471; T( 5,933)=10.26753863; T( 5,934)=10.30658478; T( 5,935)=10.34617893; T( 5,936)=10.38633760; T( 5,937)=10.42707803; T( 5,938)=10.46841830; T( 5,939)=10.51037734; T( 5,940)=10.55297499; T( 5,941)=10.59623206; T( 5,942)=10.64017042; T( 5,943)=10.68481303; T( 5,944)=10.73018406; T( 5,945)=10.77630892; T( 5,946)=10.82321441; T( 5,947)=10.87092879; T( 5,948)=10.91948187; T( 5,949)=10.96890516; T( 5,950)=11.01923201; T( 5,951)=11.07049769; T( 5,952)=11.12273964; T( 5,953)=11.17599756; T( 5,954)=11.23031364; T( 5,955)=11.28573279; T( 5,956)=11.34230283; T( 5,957)=11.40007480; T( 5,958)=11.45910322; T( 5,959)=11.51944642; T( 5,960)=11.58116693; T( 5,961)=11.64433185; T( 5,962)=11.70901336; T( 5,963)=11.77528921; T( 5,964)=11.84324331; T( 5,965)=11.91296643; T( 5,966)=11.98455693; T( 5,967)=12.05812169; T( 5,968)=12.13377705; T( 5,969)=12.21165003; T( 5,970)=12.29187964; T( 5,971)=12.37461848; T( 5,972)=12.46003454; T( 5,973)=12.54831336; T( 5,974)=12.63966059; T( 5,975)=12.73430498; T( 5,976)=12.83250199; T( 5,977)=12.93453818; T( 5,978)=13.04073639; T( 5,979)=13.15146225; T( 5,980)=13.26713205; T( 5,981)=13.38822260; T( 5,982)=13.51528360; T( 5,983)=13.64895331; T( 5,984)=13.78997877; T( 5,985)=13.93924200; T( 5,986)=14.09779477; T( 5,987)=14.26690524; T( 5,988)=14.44812191; T( 5,989)=14.64336310; T( 5,990)=14.85504527; T( 5,991)=15.08627247; T( 5,992)=15.34112561; T( 5,993)=15.62512207; T( 5,994)=15.94598266; T( 5,995)=16.31499158; T( 5,996)=16.74960234; T( 5,997)=17.27897691; T( 5,998)=17.95761227; T( 5,999)=18.90737738; T( 5,1000)=20.51500565; T( 5,1001)=25.74483196; T( 5,1002)=30.85618994; T( 6, 1)= 0.00000000; T( 6, 2)= 0.38106676; T( 6, 3)= 0.48640703; T( 6, 4)= 0.56201301; T( 6, 5)= 0.62325656; T( 6, 6)= 0.67572678; T( 6, 7)= 0.72217246; T( 6, 8)= 0.76417539; T( 6, 9)= 0.80273999; T( 6,10)= 0.83854900; T( 6,11)= 0.87209033; T( 6,12)= 0.90372628; T( 6,13)= 0.93373424; T( 6,14)= 0.96233189; T( 6,15)= 0.98969361; T( 6,16)= 1.01596153; T( 6,17)= 1.04125321; T( 6,18)= 1.06566716; T( 6,19)= 1.08928684; T( 6,20)= 1.11218365; T( 6,21)= 1.13441924; T( 6,22)= 1.15604723; T( 6,23)= 1.17711459; T( 6,24)= 1.19766272; T( 6,25)= 1.21772837; T( 6,26)= 1.23734425; T( 6,27)= 1.25653968; T( 6,28)= 1.27534105; T( 6,29)= 1.29377218; T( 6,30)= 1.31185468; T( 6,31)= 1.32960822; T( 6,32)= 1.34705073; T( 6,33)= 1.36419867; T( 6,34)= 1.38106713; T( 6,35)= 1.39767001; T( 6,36)= 1.41402014; T( 6,37)= 1.43012939; T( 6,38)= 1.44600879; T( 6,39)= 1.46166856; T( 6,40)= 1.47711824; T( 6,41)= 1.49236671; T( 6,42)= 1.50742228; T( 6,43)= 1.52229274; T( 6,44)= 1.53698537; T( 6,45)= 1.55150704; T( 6,46)= 1.56586418; T( 6,47)= 1.58006287; T( 6,48)= 1.59410882; T( 6,49)= 1.60800745; T( 6,50)= 1.62176386; T( 6,51)= 1.63538289; T( 6,52)= 1.64886913; T( 6,53)= 1.66222693; T( 6,54)= 1.67546042; T( 6,55)= 1.68857351; T( 6,56)= 1.70156996; T( 6,57)= 1.71445332; T( 6,58)= 1.72722698; T( 6,59)= 1.73989418; T( 6,60)= 1.75245800; T( 6,61)= 1.76492141; T( 6,62)= 1.77728723; T( 6,63)= 1.78955815; T( 6,64)= 1.80173678; T( 6,65)= 1.81382559; T( 6,66)= 1.82582697; T( 6,67)= 1.83774319; T( 6,68)= 1.84957646; T( 6,69)= 1.86132888; T( 6,70)= 1.87300248; T( 6,71)= 1.88459921; T( 6,72)= 1.89612094; T( 6,73)= 1.90756950; T( 6,74)= 1.91894661; T( 6,75)= 1.93025397; T( 6,76)= 1.94149319; T( 6,77)= 1.95266584; T( 6,78)= 1.96377343; T( 6,79)= 1.97481741; T( 6,80)= 1.98579921; T( 6,81)= 1.99672018; T( 6,82)= 2.00758165; T( 6,83)= 2.01838488; T( 6,84)= 2.02913113; T( 6,85)= 2.03982158; T( 6,86)= 2.05045741; T( 6,87)= 2.06103972; T( 6,88)= 2.07156962; T( 6,89)= 2.08204816; T( 6,90)= 2.09247636; T( 6,91)= 2.10285524; T( 6,92)= 2.11318574; T( 6,93)= 2.12346882; T( 6,94)= 2.13370539; T( 6,95)= 2.14389634; T( 6,96)= 2.15404252; T( 6,97)= 2.16414479; T( 6,98)= 2.17420395; T( 6,99)= 2.18422080; T( 6,100)= 2.19419612; T( 6,101)= 2.20413066; T( 6,102)= 2.21402515; T( 6,103)= 2.22388031; T( 6,104)= 2.23369684; T( 6,105)= 2.24347542; T( 6,106)= 2.25321670; T( 6,107)= 2.26292134; T( 6,108)= 2.27258997; T( 6,109)= 2.28222319; T( 6,110)= 2.29182162; T( 6,111)= 2.30138584; T( 6,112)= 2.31091642; T( 6,113)= 2.32041391; T( 6,114)= 2.32987888; T( 6,115)= 2.33931184; T( 6,116)= 2.34871332; T( 6,117)= 2.35808383; T( 6,118)= 2.36742388; T( 6,119)= 2.37673394; T( 6,120)= 2.38601449; T( 6,121)= 2.39526601; T( 6,122)= 2.40448894; T( 6,123)= 2.41368373; T( 6,124)= 2.42285083; T( 6,125)= 2.43199065; T( 6,126)= 2.44110363; T( 6,127)= 2.45019016; T( 6,128)= 2.45925066; T( 6,129)= 2.46828552; T( 6,130)= 2.47729511; T( 6,131)= 2.48627983; T( 6,132)= 2.49524004; T( 6,133)= 2.50417611; T( 6,134)= 2.51308839; T( 6,135)= 2.52197723; T( 6,136)= 2.53084299; T( 6,137)= 2.53968598; T( 6,138)= 2.54850655; T( 6,139)= 2.55730502; T( 6,140)= 2.56608171; T( 6,141)= 2.57483693; T( 6,142)= 2.58357099; T( 6,143)= 2.59228418; T( 6,144)= 2.60097681; T( 6,145)= 2.60964916; T( 6,146)= 2.61830153; T( 6,147)= 2.62693418; T( 6,148)= 2.63554741; T( 6,149)= 2.64414147; T( 6,150)= 2.65271664; T( 6,151)= 2.66127318; T( 6,152)= 2.66981134; T( 6,153)= 2.67833137; T( 6,154)= 2.68683354; T( 6,155)= 2.69531807; T( 6,156)= 2.70378522; T( 6,157)= 2.71223522; T( 6,158)= 2.72066830; T( 6,159)= 2.72908469; T( 6,160)= 2.73748463; T( 6,161)= 2.74586832; T( 6,162)= 2.75423599; T( 6,163)= 2.76258786; T( 6,164)= 2.77092413; T( 6,165)= 2.77924502; T( 6,166)= 2.78755073; T( 6,167)= 2.79584147; T( 6,168)= 2.80411743; T( 6,169)= 2.81237881; T( 6,170)= 2.82062580; T( 6,171)= 2.82885860; T( 6,172)= 2.83707740; T( 6,173)= 2.84528237; T( 6,174)= 2.85347370; T( 6,175)= 2.86165158; T( 6,176)= 2.86981618; T( 6,177)= 2.87796767; T( 6,178)= 2.88610623; T( 6,179)= 2.89423202; T( 6,180)= 2.90234523; T( 6,181)= 2.91044600; T( 6,182)= 2.91853451; T( 6,183)= 2.92661092; T( 6,184)= 2.93467538; T( 6,185)= 2.94272805; T( 6,186)= 2.95076910; T( 6,187)= 2.95879866; T( 6,188)= 2.96681690; T( 6,189)= 2.97482395; T( 6,190)= 2.98281998; T( 6,191)= 2.99080511; T( 6,192)= 2.99877951; T( 6,193)= 3.00674330; T( 6,194)= 3.01469663; T( 6,195)= 3.02263963; T( 6,196)= 3.03057245; T( 6,197)= 3.03849522; T( 6,198)= 3.04640807; T( 6,199)= 3.05431113; T( 6,200)= 3.06220453; T( 6,201)= 3.07008841; T( 6,202)= 3.07796288; T( 6,203)= 3.08582807; T( 6,204)= 3.09368411; T( 6,205)= 3.10153113; T( 6,206)= 3.10936923; T( 6,207)= 3.11719854; T( 6,208)= 3.12501919; T( 6,209)= 3.13283128; T( 6,210)= 3.14063493; T( 6,211)= 3.14843026; T( 6,212)= 3.15621739; T( 6,213)= 3.16399641; T( 6,214)= 3.17176745; T( 6,215)= 3.17953061; T( 6,216)= 3.18728600; T( 6,217)= 3.19503373; T( 6,218)= 3.20277391; T( 6,219)= 3.21050664; T( 6,220)= 3.21823203; T( 6,221)= 3.22595017; T( 6,222)= 3.23366117; T( 6,223)= 3.24136513; T( 6,224)= 3.24906215; T( 6,225)= 3.25675234; T( 6,226)= 3.26443578; T( 6,227)= 3.27211257; T( 6,228)= 3.27978282; T( 6,229)= 3.28744661; T( 6,230)= 3.29510404; T( 6,231)= 3.30275520; T( 6,232)= 3.31040019; T( 6,233)= 3.31803910; T( 6,234)= 3.32567201; T( 6,235)= 3.33329903; T( 6,236)= 3.34092023; T( 6,237)= 3.34853570; T( 6,238)= 3.35614554; T( 6,239)= 3.36374983; T( 6,240)= 3.37134865; T( 6,241)= 3.37894209; T( 6,242)= 3.38653024; T( 6,243)= 3.39411317; T( 6,244)= 3.40169098; T( 6,245)= 3.40926374; T( 6,246)= 3.41683153; T( 6,247)= 3.42439444; T( 6,248)= 3.43195255; T( 6,249)= 3.43950593; T( 6,250)= 3.44705467; T( 6,251)= 3.45459884; T( 6,252)= 3.46213851; T( 6,253)= 3.46967378; T( 6,254)= 3.47720471; T( 6,255)= 3.48473137; T( 6,256)= 3.49225385; T( 6,257)= 3.49977222; T( 6,258)= 3.50728655; T( 6,259)= 3.51479692; T( 6,260)= 3.52230340; T( 6,261)= 3.52980605; T( 6,262)= 3.53730496; T( 6,263)= 3.54480020; T( 6,264)= 3.55229183; T( 6,265)= 3.55977992; T( 6,266)= 3.56726455; T( 6,267)= 3.57474578; T( 6,268)= 3.58222368; T( 6,269)= 3.58969833; T( 6,270)= 3.59716978; T( 6,271)= 3.60463811; T( 6,272)= 3.61210338; T( 6,273)= 3.61956566; T( 6,274)= 3.62702502; T( 6,275)= 3.63448151; T( 6,276)= 3.64193521; T( 6,277)= 3.64938618; T( 6,278)= 3.65683448; T( 6,279)= 3.66428019; T( 6,280)= 3.67172335; T( 6,281)= 3.67916403; T( 6,282)= 3.68660231; T( 6,283)= 3.69403823; T( 6,284)= 3.70147187; T( 6,285)= 3.70890327; T( 6,286)= 3.71633251; T( 6,287)= 3.72375964; T( 6,288)= 3.73118473; T( 6,289)= 3.73860783; T( 6,290)= 3.74602901; T( 6,291)= 3.75344832; T( 6,292)= 3.76086582; T( 6,293)= 3.76828158; T( 6,294)= 3.77569564; T( 6,295)= 3.78310807; T( 6,296)= 3.79051893; T( 6,297)= 3.79792827; T( 6,298)= 3.80533615; T( 6,299)= 3.81274262; T( 6,300)= 3.82014775; T( 6,301)= 3.82755159; T( 6,302)= 3.83495419; T( 6,303)= 3.84235562; T( 6,304)= 3.84975592; T( 6,305)= 3.85715515; T( 6,306)= 3.86455337; T( 6,307)= 3.87195063; T( 6,308)= 3.87934698; T( 6,309)= 3.88674248; T( 6,310)= 3.89413719; T( 6,311)= 3.90153116; T( 6,312)= 3.90892443; T( 6,313)= 3.91631707; T( 6,314)= 3.92370912; T( 6,315)= 3.93110064; T( 6,316)= 3.93849169; T( 6,317)= 3.94588230; T( 6,318)= 3.95327255; T( 6,319)= 3.96066247; T( 6,320)= 3.96805211; T( 6,321)= 3.97544154; T( 6,322)= 3.98283080; T( 6,323)= 3.99021995; T( 6,324)= 3.99760902; T( 6,325)= 4.00499808; T( 6,326)= 4.01238717; T( 6,327)= 4.01977635; T( 6,328)= 4.02716566; T( 6,329)= 4.03455516; T( 6,330)= 4.04194489; T( 6,331)= 4.04933490; T( 6,332)= 4.05672525; T( 6,333)= 4.06411597; T( 6,334)= 4.07150713; T( 6,335)= 4.07889877; T( 6,336)= 4.08629094; T( 6,337)= 4.09368368; T( 6,338)= 4.10107705; T( 6,339)= 4.10847109; T( 6,340)= 4.11586586; T( 6,341)= 4.12326139; T( 6,342)= 4.13065774; T( 6,343)= 4.13805496; T( 6,344)= 4.14545309; T( 6,345)= 4.15285218; T( 6,346)= 4.16025228; T( 6,347)= 4.16765343; T( 6,348)= 4.17505568; T( 6,349)= 4.18245909; T( 6,350)= 4.18986369; T( 6,351)= 4.19726953; T( 6,352)= 4.20467666; T( 6,353)= 4.21208512; T( 6,354)= 4.21949497; T( 6,355)= 4.22690625; T( 6,356)= 4.23431900; T( 6,357)= 4.24173327; T( 6,358)= 4.24914911; T( 6,359)= 4.25656656; T( 6,360)= 4.26398567; T( 6,361)= 4.27140649; T( 6,362)= 4.27882905; T( 6,363)= 4.28625341; T( 6,364)= 4.29367961; T( 6,365)= 4.30110770; T( 6,366)= 4.30853772; T( 6,367)= 4.31596971; T( 6,368)= 4.32340373; T( 6,369)= 4.33083982; T( 6,370)= 4.33827802; T( 6,371)= 4.34571837; T( 6,372)= 4.35316093; T( 6,373)= 4.36060574; T( 6,374)= 4.36805284; T( 6,375)= 4.37550227; T( 6,376)= 4.38295409; T( 6,377)= 4.39040834; T( 6,378)= 4.39786505; T( 6,379)= 4.40532429; T( 6,380)= 4.41278608; T( 6,381)= 4.42025048; T( 6,382)= 4.42771752; T( 6,383)= 4.43518727; T( 6,384)= 4.44265975; T( 6,385)= 4.45013501; T( 6,386)= 4.45761310; T( 6,387)= 4.46509406; T( 6,388)= 4.47257794; T( 6,389)= 4.48006477; T( 6,390)= 4.48755462; T( 6,391)= 4.49504751; T( 6,392)= 4.50254349; T( 6,393)= 4.51004261; T( 6,394)= 4.51754491; T( 6,395)= 4.52505044; T( 6,396)= 4.53255923; T( 6,397)= 4.54007135; T( 6,398)= 4.54758681; T( 6,399)= 4.55510568; T( 6,400)= 4.56262800; T( 6,401)= 4.57015381; T( 6,402)= 4.57768315; T( 6,403)= 4.58521607; T( 6,404)= 4.59275261; T( 6,405)= 4.60029282; T( 6,406)= 4.60783675; T( 6,407)= 4.61538442; T( 6,408)= 4.62293590; T( 6,409)= 4.63049122; T( 6,410)= 4.63805043; T( 6,411)= 4.64561357; T( 6,412)= 4.65318069; T( 6,413)= 4.66075183; T( 6,414)= 4.66832704; T( 6,415)= 4.67590635; T( 6,416)= 4.68348982; T( 6,417)= 4.69107749; T( 6,418)= 4.69866940; T( 6,419)= 4.70626560; T( 6,420)= 4.71386613; T( 6,421)= 4.72147104; T( 6,422)= 4.72908037; T( 6,423)= 4.73669416; T( 6,424)= 4.74431247; T( 6,425)= 4.75193533; T( 6,426)= 4.75956279; T( 6,427)= 4.76719489; T( 6,428)= 4.77483169; T( 6,429)= 4.78247322; T( 6,430)= 4.79011953; T( 6,431)= 4.79777067; T( 6,432)= 4.80542667; T( 6,433)= 4.81308759; T( 6,434)= 4.82075348; T( 6,435)= 4.82842436; T( 6,436)= 4.83610030; T( 6,437)= 4.84378134; T( 6,438)= 4.85146751; T( 6,439)= 4.85915888; T( 6,440)= 4.86685548; T( 6,441)= 4.87455736; T( 6,442)= 4.88226456; T( 6,443)= 4.88997713; T( 6,444)= 4.89769512; T( 6,445)= 4.90541858; T( 6,446)= 4.91314754; T( 6,447)= 4.92088206; T( 6,448)= 4.92862217; T( 6,449)= 4.93636794; T( 6,450)= 4.94411940; T( 6,451)= 4.95187661; T( 6,452)= 4.95963960; T( 6,453)= 4.96740842; T( 6,454)= 4.97518313; T( 6,455)= 4.98296376; T( 6,456)= 4.99075038; T( 6,457)= 4.99854301; T( 6,458)= 5.00634171; T( 6,459)= 5.01414653; T( 6,460)= 5.02195752; T( 6,461)= 5.02977472; T( 6,462)= 5.03759818; T( 6,463)= 5.04542795; T( 6,464)= 5.05326407; T( 6,465)= 5.06110660; T( 6,466)= 5.06895559; T( 6,467)= 5.07681107; T( 6,468)= 5.08467310; T( 6,469)= 5.09254173; T( 6,470)= 5.10041701; T( 6,471)= 5.10829899; T( 6,472)= 5.11618771; T( 6,473)= 5.12408322; T( 6,474)= 5.13198558; T( 6,475)= 5.13989483; T( 6,476)= 5.14781103; T( 6,477)= 5.15573421; T( 6,478)= 5.16366444; T( 6,479)= 5.17160176; T( 6,480)= 5.17954623; T( 6,481)= 5.18749789; T( 6,482)= 5.19545679; T( 6,483)= 5.20342298; T( 6,484)= 5.21139652; T( 6,485)= 5.21937746; T( 6,486)= 5.22736584; T( 6,487)= 5.23536173; T( 6,488)= 5.24336516; T( 6,489)= 5.25137620; T( 6,490)= 5.25939488; T( 6,491)= 5.26742128; T( 6,492)= 5.27545543; T( 6,493)= 5.28349739; T( 6,494)= 5.29154722; T( 6,495)= 5.29960496; T( 6,496)= 5.30767067; T( 6,497)= 5.31574441; T( 6,498)= 5.32382621; T( 6,499)= 5.33191615; T( 6,500)= 5.34001427; T( 6,501)= 5.34812063; T( 6,502)= 5.35623527; T( 6,503)= 5.36435827; T( 6,504)= 5.37248966; T( 6,505)= 5.38062950; T( 6,506)= 5.38877786; T( 6,507)= 5.39693478; T( 6,508)= 5.40510032; T( 6,509)= 5.41327454; T( 6,510)= 5.42145748; T( 6,511)= 5.42964922; T( 6,512)= 5.43784980; T( 6,513)= 5.44605928; T( 6,514)= 5.45427772; T( 6,515)= 5.46250517; T( 6,516)= 5.47074169; T( 6,517)= 5.47898734; T( 6,518)= 5.48724218; T( 6,519)= 5.49550627; T( 6,520)= 5.50377965; T( 6,521)= 5.51206240; T( 6,522)= 5.52035457; T( 6,523)= 5.52865622; T( 6,524)= 5.53696741; T( 6,525)= 5.54528819; T( 6,526)= 5.55361864; T( 6,527)= 5.56195880; T( 6,528)= 5.57030874; T( 6,529)= 5.57866852; T( 6,530)= 5.58703819; T( 6,531)= 5.59541783; T( 6,532)= 5.60380750; T( 6,533)= 5.61220724; T( 6,534)= 5.62061714; T( 6,535)= 5.62903724; T( 6,536)= 5.63746761; T( 6,537)= 5.64590832; T( 6,538)= 5.65435943; T( 6,539)= 5.66282100; T( 6,540)= 5.67129309; T( 6,541)= 5.67977577; T( 6,542)= 5.68826910; T( 6,543)= 5.69677316; T( 6,544)= 5.70528799; T( 6,545)= 5.71381368; T( 6,546)= 5.72235028; T( 6,547)= 5.73089787; T( 6,548)= 5.73945650; T( 6,549)= 5.74802624; T( 6,550)= 5.75660717; T( 6,551)= 5.76519934; T( 6,552)= 5.77380283; T( 6,553)= 5.78241771; T( 6,554)= 5.79104404; T( 6,555)= 5.79968189; T( 6,556)= 5.80833134; T( 6,557)= 5.81699245; T( 6,558)= 5.82566528; T( 6,559)= 5.83434993; T( 6,560)= 5.84304644; T( 6,561)= 5.85175490; T( 6,562)= 5.86047537; T( 6,563)= 5.86920793; T( 6,564)= 5.87795265; T( 6,565)= 5.88670961; T( 6,566)= 5.89547887; T( 6,567)= 5.90426051; T( 6,568)= 5.91305460; T( 6,569)= 5.92186122; T( 6,570)= 5.93068044; T( 6,571)= 5.93951235; T( 6,572)= 5.94835700; T( 6,573)= 5.95721449; T( 6,574)= 5.96608489; T( 6,575)= 5.97496826; T( 6,576)= 5.98386470; T( 6,577)= 5.99277428; T( 6,578)= 6.00169708; T( 6,579)= 6.01063317; T( 6,580)= 6.01958264; T( 6,581)= 6.02854556; T( 6,582)= 6.03752202; T( 6,583)= 6.04651210; T( 6,584)= 6.05551588; T( 6,585)= 6.06453343; T( 6,586)= 6.07356485; T( 6,587)= 6.08261022; T( 6,588)= 6.09166961; T( 6,589)= 6.10074312; T( 6,590)= 6.10983082; T( 6,591)= 6.11893280; T( 6,592)= 6.12804915; T( 6,593)= 6.13717996; T( 6,594)= 6.14632530; T( 6,595)= 6.15548527; T( 6,596)= 6.16465995; T( 6,597)= 6.17384944; T( 6,598)= 6.18305382; T( 6,599)= 6.19227318; T( 6,600)= 6.20150760; T( 6,601)= 6.21075719; T( 6,602)= 6.22002204; T( 6,603)= 6.22930222; T( 6,604)= 6.23859784; T( 6,605)= 6.24790899; T( 6,606)= 6.25723577; T( 6,607)= 6.26657826; T( 6,608)= 6.27593656; T( 6,609)= 6.28531076; T( 6,610)= 6.29470097; T( 6,611)= 6.30410728; T( 6,612)= 6.31352979; T( 6,613)= 6.32296859; T( 6,614)= 6.33242379; T( 6,615)= 6.34189548; T( 6,616)= 6.35138376; T( 6,617)= 6.36088874; T( 6,618)= 6.37041051; T( 6,619)= 6.37994918; T( 6,620)= 6.38950485; T( 6,621)= 6.39907763; T( 6,622)= 6.40866761; T( 6,623)= 6.41827491; T( 6,624)= 6.42789963; T( 6,625)= 6.43754188; T( 6,626)= 6.44720175; T( 6,627)= 6.45687938; T( 6,628)= 6.46657485; T( 6,629)= 6.47628828; T( 6,630)= 6.48601979; T( 6,631)= 6.49576948; T( 6,632)= 6.50553746; T( 6,633)= 6.51532385; T( 6,634)= 6.52512877; T( 6,635)= 6.53495232; T( 6,636)= 6.54479462; T( 6,637)= 6.55465580; T( 6,638)= 6.56453596; T( 6,639)= 6.57443522; T( 6,640)= 6.58435371; T( 6,641)= 6.59429154; T( 6,642)= 6.60424884; T( 6,643)= 6.61422573; T( 6,644)= 6.62422232; T( 6,645)= 6.63423875; T( 6,646)= 6.64427513; T( 6,647)= 6.65433160; T( 6,648)= 6.66440829; T( 6,649)= 6.67450530; T( 6,650)= 6.68462279; T( 6,651)= 6.69476088; T( 6,652)= 6.70491969; T( 6,653)= 6.71509936; T( 6,654)= 6.72530002; T( 6,655)= 6.73552181; T( 6,656)= 6.74576487; T( 6,657)= 6.75602932; T( 6,658)= 6.76631530; T( 6,659)= 6.77662296; T( 6,660)= 6.78695243; T( 6,661)= 6.79730386; T( 6,662)= 6.80767738; T( 6,663)= 6.81807314; T( 6,664)= 6.82849128; T( 6,665)= 6.83893194; T( 6,666)= 6.84939529; T( 6,667)= 6.85988145; T( 6,668)= 6.87039059; T( 6,669)= 6.88092285; T( 6,670)= 6.89147838; T( 6,671)= 6.90205734; T( 6,672)= 6.91265987; T( 6,673)= 6.92328615; T( 6,674)= 6.93393631; T( 6,675)= 6.94461053; T( 6,676)= 6.95530896; T( 6,677)= 6.96603176; T( 6,678)= 6.97677909; T( 6,679)= 6.98755113; T( 6,680)= 6.99834802; T( 6,681)= 7.00916995; T( 6,682)= 7.02001707; T( 6,683)= 7.03088956; T( 6,684)= 7.04178759; T( 6,685)= 7.05271133; T( 6,686)= 7.06366096; T( 6,687)= 7.07463665; T( 6,688)= 7.08563859; T( 6,689)= 7.09666694; T( 6,690)= 7.10772189; T( 6,691)= 7.11880362; T( 6,692)= 7.12991232; T( 6,693)= 7.14104817; T( 6,694)= 7.15221136; T( 6,695)= 7.16340208; T( 6,696)= 7.17462052; T( 6,697)= 7.18586687; T( 6,698)= 7.19714133; T( 6,699)= 7.20844409; T( 6,700)= 7.21977536; T( 6,701)= 7.23113533; T( 6,702)= 7.24252421; T( 6,703)= 7.25394219; T( 6,704)= 7.26538949; T( 6,705)= 7.27686632; T( 6,706)= 7.28837288; T( 6,707)= 7.29990938; T( 6,708)= 7.31147605; T( 6,709)= 7.32307309; T( 6,710)= 7.33470073; T( 6,711)= 7.34635918; T( 6,712)= 7.35804867; T( 6,713)= 7.36976943; T( 6,714)= 7.38152168; T( 6,715)= 7.39330565; T( 6,716)= 7.40512157; T( 6,717)= 7.41696968; T( 6,718)= 7.42885021; T( 6,719)= 7.44076341; T( 6,720)= 7.45270951; T( 6,721)= 7.46468876; T( 6,722)= 7.47670141; T( 6,723)= 7.48874771; T( 6,724)= 7.50082789; T( 6,725)= 7.51294224; T( 6,726)= 7.52509098; T( 6,727)= 7.53727440; T( 6,728)= 7.54949275; T( 6,729)= 7.56174629; T( 6,730)= 7.57403530; T( 6,731)= 7.58636004; T( 6,732)= 7.59872080; T( 6,733)= 7.61111783; T( 6,734)= 7.62355144; T( 6,735)= 7.63602189; T( 6,736)= 7.64852948; T( 6,737)= 7.66107449; T( 6,738)= 7.67365722; T( 6,739)= 7.68627797; T( 6,740)= 7.69893702; T( 6,741)= 7.71163469; T( 6,742)= 7.72437128; T( 6,743)= 7.73714709; T( 6,744)= 7.74996245; T( 6,745)= 7.76281766; T( 6,746)= 7.77571306; T( 6,747)= 7.78864895; T( 6,748)= 7.80162567; T( 6,749)= 7.81464355; T( 6,750)= 7.82770292; T( 6,751)= 7.84080412; T( 6,752)= 7.85394750; T( 6,753)= 7.86713340; T( 6,754)= 7.88036217; T( 6,755)= 7.89363417; T( 6,756)= 7.90694975; T( 6,757)= 7.92030928; T( 6,758)= 7.93371313; T( 6,759)= 7.94716167; T( 6,760)= 7.96065528; T( 6,761)= 7.97419433; T( 6,762)= 7.98777921; T( 6,763)= 8.00141032; T( 6,764)= 8.01508805; T( 6,765)= 8.02881280; T( 6,766)= 8.04258497; T( 6,767)= 8.05640497; T( 6,768)= 8.07027323; T( 6,769)= 8.08419016; T( 6,770)= 8.09815618; T( 6,771)= 8.11217173; T( 6,772)= 8.12623725; T( 6,773)= 8.14035318; T( 6,774)= 8.15451996; T( 6,775)= 8.16873806; T( 6,776)= 8.18300792; T( 6,777)= 8.19733002; T( 6,778)= 8.21170483; T( 6,779)= 8.22613283; T( 6,780)= 8.24061449; T( 6,781)= 8.25515032; T( 6,782)= 8.26974081; T( 6,783)= 8.28438647; T( 6,784)= 8.29908780; T( 6,785)= 8.31384532; T( 6,786)= 8.32865956; T( 6,787)= 8.34353106; T( 6,788)= 8.35846034; T( 6,789)= 8.37344796; T( 6,790)= 8.38849448; T( 6,791)= 8.40360045; T( 6,792)= 8.41876644; T( 6,793)= 8.43399304; T( 6,794)= 8.44928083; T( 6,795)= 8.46463040; T( 6,796)= 8.48004236; T( 6,797)= 8.49551732; T( 6,798)= 8.51105590; T( 6,799)= 8.52665873; T( 6,800)= 8.54232646; T( 6,801)= 8.55805972; T( 6,802)= 8.57385918; T( 6,803)= 8.58972550; T( 6,804)= 8.60565937; T( 6,805)= 8.62166147; T( 6,806)= 8.63773249; T( 6,807)= 8.65387315; T( 6,808)= 8.67008417; T( 6,809)= 8.68636628; T( 6,810)= 8.70272021; T( 6,811)= 8.71914673; T( 6,812)= 8.73564660; T( 6,813)= 8.75222059; T( 6,814)= 8.76886949; T( 6,815)= 8.78559411; T( 6,816)= 8.80239527; T( 6,817)= 8.81927377; T( 6,818)= 8.83623048; T( 6,819)= 8.85326624; T( 6,820)= 8.87038192; T( 6,821)= 8.88757840; T( 6,822)= 8.90485658; T( 6,823)= 8.92221737; T( 6,824)= 8.93966170; T( 6,825)= 8.95719051; T( 6,826)= 8.97480476; T( 6,827)= 8.99250542; T( 6,828)= 9.01029348; T( 6,829)= 9.02816995; T( 6,830)= 9.04613586; T( 6,831)= 9.06419225; T( 6,832)= 9.08234018; T( 6,833)= 9.10058073; T( 6,834)= 9.11891500; T( 6,835)= 9.13734410; T( 6,836)= 9.15586918; T( 6,837)= 9.17449139; T( 6,838)= 9.19321191; T( 6,839)= 9.21203195; T( 6,840)= 9.23095272; T( 6,841)= 9.24997547; T( 6,842)= 9.26910147; T( 6,843)= 9.28833201; T( 6,844)= 9.30766841; T( 6,845)= 9.32711200; T( 6,846)= 9.34666416; T( 6,847)= 9.36632628; T( 6,848)= 9.38609978; T( 6,849)= 9.40598609; T( 6,850)= 9.42598671; T( 6,851)= 9.44610313; T( 6,852)= 9.46633688; T( 6,853)= 9.48668954; T( 6,854)= 9.50716269; T( 6,855)= 9.52775796; T( 6,856)= 9.54847702; T( 6,857)= 9.56932156; T( 6,858)= 9.59029332; T( 6,859)= 9.61139404; T( 6,860)= 9.63262554; T( 6,861)= 9.65398967; T( 6,862)= 9.67548829; T( 6,863)= 9.69712332; T( 6,864)= 9.71889674; T( 6,865)= 9.74081054; T( 6,866)= 9.76286677; T( 6,867)= 9.78506752; T( 6,868)= 9.80741493; T( 6,869)= 9.82991118; T( 6,870)= 9.85255852; T( 6,871)= 9.87535923; T( 6,872)= 9.89831564; T( 6,873)= 9.92143015; T( 6,874)= 9.94470521; T( 6,875)= 9.96814332; T( 6,876)= 9.99174704; T( 6,877)=10.01551901; T( 6,878)=10.03946190; T( 6,879)=10.06357847; T( 6,880)=10.08787155; T( 6,881)=10.11234401; T( 6,882)=10.13699883; T( 6,883)=10.16183903; T( 6,884)=10.18686773; T( 6,885)=10.21208812; T( 6,886)=10.23750347; T( 6,887)=10.26311713; T( 6,888)=10.28893255; T( 6,889)=10.31495327; T( 6,890)=10.34118291; T( 6,891)=10.36762520; T( 6,892)=10.39428397; T( 6,893)=10.42116314; T( 6,894)=10.44826677; T( 6,895)=10.47559899; T( 6,896)=10.50316408; T( 6,897)=10.53096643; T( 6,898)=10.55901055; T( 6,899)=10.58730108; T( 6,900)=10.61584282; T( 6,901)=10.64464068; T( 6,902)=10.67369972; T( 6,903)=10.70302518; T( 6,904)=10.73262243; T( 6,905)=10.76249701; T( 6,906)=10.79265465; T( 6,907)=10.82310124; T( 6,908)=10.85384286; T( 6,909)=10.88488579; T( 6,910)=10.91623651; T( 6,911)=10.94790172; T( 6,912)=10.97988834; T( 6,913)=11.01220350; T( 6,914)=11.04485460; T( 6,915)=11.07784928; T( 6,916)=11.11119545; T( 6,917)=11.14490129; T( 6,918)=11.17897528; T( 6,919)=11.21342620; T( 6,920)=11.24826316; T( 6,921)=11.28349557; T( 6,922)=11.31913324; T( 6,923)=11.35518632; T( 6,924)=11.39166534; T( 6,925)=11.42858128; T( 6,926)=11.46594551; T( 6,927)=11.50376986; T( 6,928)=11.54206667; T( 6,929)=11.58084873; T( 6,930)=11.62012941; T( 6,931)=11.65992262; T( 6,932)=11.70024286; T( 6,933)=11.74110527; T( 6,934)=11.78252566; T( 6,935)=11.82452051; T( 6,936)=11.86710710; T( 6,937)=11.91030346; T( 6,938)=11.95412849; T( 6,939)=11.99860197; T( 6,940)=12.04374465; T( 6,941)=12.08957827; T( 6,942)=12.13612570; T( 6,943)=12.18341093; T( 6,944)=12.23145921; T( 6,945)=12.28029710; T( 6,946)=12.32995260; T( 6,947)=12.38045522; T( 6,948)=12.43183612; T( 6,949)=12.48412821; T( 6,950)=12.53736629; T( 6,951)=12.59158724; T( 6,952)=12.64683013; T( 6,953)=12.70313641; T( 6,954)=12.76055014; T( 6,955)=12.81911819; T( 6,956)=12.87889050; T( 6,957)=12.93992031; T( 6,958)=13.00226454; T( 6,959)=13.06598405; T( 6,960)=13.13114408; T( 6,961)=13.19781465; T( 6,962)=13.26607104; T( 6,963)=13.33599435; T( 6,964)=13.40767211; T( 6,965)=13.48119895; T( 6,966)=13.55667746; T( 6,967)=13.63421904; T( 6,968)=13.71394497; T( 6,969)=13.79598766; T( 6,970)=13.88049198; T( 6,971)=13.96761693; T( 6,972)=14.05753754; T( 6,973)=14.15044710; T( 6,974)=14.24655980; T( 6,975)=14.34611387; T( 6,976)=14.44937534; T( 6,977)=14.55664250; T( 6,978)=14.66825145; T( 6,979)=14.78458270; T( 6,980)=14.90606945; T( 6,981)=15.03320775; T( 6,982)=15.16656941; T( 6,983)=15.30681822; T( 6,984)=15.45473093; T( 6,985)=15.61122447; T( 6,986)=15.77739196; T( 6,987)=15.95455115; T( 6,988)=16.14431068; T( 6,989)=16.34866283; T( 6,990)=16.57011657; T( 6,991)=16.81189383; T( 6,992)=17.07822912; T( 6,993)=17.37484553; T( 6,994)=17.70974876; T( 6,995)=18.09463447; T( 6,996)=18.54758418; T( 6,997)=19.09879292; T( 6,998)=19.80465236; T( 6,999)=20.79116772; T( 6,1000)=22.45774448; T( 6,1001)=27.85634124; T( 6,1002)=33.10705682; T( 7, 1)= 0.00000000; T( 7, 2)= 0.59849375; T( 7, 3)= 0.74105733; T( 7, 4)= 0.84123592; T( 7, 5)= 0.92131322; T( 7, 6)= 0.98925568; T( 7, 7)= 1.04893803; T( 7, 8)= 1.10257133; T( 7, 9)= 1.15155015; T( 7,10)= 1.19681705; T( 7,11)= 1.23904231; T( 7,12)= 1.27872156; T( 7,13)= 1.31623280; T( 7,14)= 1.35187166; T( 7,15)= 1.38587420; T( 7,16)= 1.41843230; T( 7,17)= 1.44970423; T( 7,18)= 1.47982230; T( 7,19)= 1.50889834; T( 7,20)= 1.53702782; T( 7,21)= 1.56429300; T( 7,22)= 1.59076530; T( 7,23)= 1.61650716; T( 7,24)= 1.64157355; T( 7,25)= 1.66601312; T( 7,26)= 1.68986918; T( 7,27)= 1.71318046; T( 7,28)= 1.73598176; T( 7,29)= 1.75830447; T( 7,30)= 1.78017701; T( 7,31)= 1.80162523; T( 7,32)= 1.82267268; T( 7,33)= 1.84334091; T( 7,34)= 1.86364970; T( 7,35)= 1.88361722; T( 7,36)= 1.90326023; T( 7,37)= 1.92259425; T( 7,38)= 1.94163363; T( 7,39)= 1.96039171; T( 7,40)= 1.97888088; T( 7,41)= 1.99711272; T( 7,42)= 2.01509801; T( 7,43)= 2.03284686; T( 7,44)= 2.05036872; T( 7,45)= 2.06767248; T( 7,46)= 2.08476649; T( 7,47)= 2.10165859; T( 7,48)= 2.11835619; T( 7,49)= 2.13486627; T( 7,50)= 2.15119543; T( 7,51)= 2.16734991; T( 7,52)= 2.18333563; T( 7,53)= 2.19915818; T( 7,54)= 2.21482289; T( 7,55)= 2.23033482; T( 7,56)= 2.24569875; T( 7,57)= 2.26091928; T( 7,58)= 2.27600075; T( 7,59)= 2.29094732; T( 7,60)= 2.30576296; T( 7,61)= 2.32045145; T( 7,62)= 2.33501641; T( 7,63)= 2.34946131; T( 7,64)= 2.36378945; T( 7,65)= 2.37800403; T( 7,66)= 2.39210807; T( 7,67)= 2.40610450; T( 7,68)= 2.41999612; T( 7,69)= 2.43378563; T( 7,70)= 2.44747560; T( 7,71)= 2.46106854; T( 7,72)= 2.47456683; T( 7,73)= 2.48797278; T( 7,74)= 2.50128861; T( 7,75)= 2.51451646; T( 7,76)= 2.52765839; T( 7,77)= 2.54071639; T( 7,78)= 2.55369238; T( 7,79)= 2.56658822; T( 7,80)= 2.57940570; T( 7,81)= 2.59214655; T( 7,82)= 2.60481245; T( 7,83)= 2.61740502; T( 7,84)= 2.62992582; T( 7,85)= 2.64237638; T( 7,86)= 2.65475817; T( 7,87)= 2.66707260; T( 7,88)= 2.67932106; T( 7,89)= 2.69150489; T( 7,90)= 2.70362540; T( 7,91)= 2.71568383; T( 7,92)= 2.72768141; T( 7,93)= 2.73961934; T( 7,94)= 2.75149875; T( 7,95)= 2.76332079; T( 7,96)= 2.77508653; T( 7,97)= 2.78679704; T( 7,98)= 2.79845334; T( 7,99)= 2.81005644; T( 7,100)= 2.82160732; T( 7,101)= 2.83310692; T( 7,102)= 2.84455617; T( 7,103)= 2.85595596; T( 7,104)= 2.86730719; T( 7,105)= 2.87861069; T( 7,106)= 2.88986731; T( 7,107)= 2.90107786; T( 7,108)= 2.91224313; T( 7,109)= 2.92336389; T( 7,110)= 2.93444089; T( 7,111)= 2.94547488; T( 7,112)= 2.95646657; T( 7,113)= 2.96741666; T( 7,114)= 2.97832584; T( 7,115)= 2.98919478; T( 7,116)= 3.00002412; T( 7,117)= 3.01081452; T( 7,118)= 3.02156659; T( 7,119)= 3.03228094; T( 7,120)= 3.04295818; T( 7,121)= 3.05359888; T( 7,122)= 3.06420361; T( 7,123)= 3.07477294; T( 7,124)= 3.08530742; T( 7,125)= 3.09580757; T( 7,126)= 3.10627392; T( 7,127)= 3.11670698; T( 7,128)= 3.12710726; T( 7,129)= 3.13747525; T( 7,130)= 3.14781143; T( 7,131)= 3.15811628; T( 7,132)= 3.16839025; T( 7,133)= 3.17863380; T( 7,134)= 3.18884737; T( 7,135)= 3.19903141; T( 7,136)= 3.20918634; T( 7,137)= 3.21931257; T( 7,138)= 3.22941052; T( 7,139)= 3.23948060; T( 7,140)= 3.24952320; T( 7,141)= 3.25953871; T( 7,142)= 3.26952750; T( 7,143)= 3.27948996; T( 7,144)= 3.28942646; T( 7,145)= 3.29933734; T( 7,146)= 3.30922298; T( 7,147)= 3.31908372; T( 7,148)= 3.32891989; T( 7,149)= 3.33873184; T( 7,150)= 3.34851989; T( 7,151)= 3.35828438; T( 7,152)= 3.36802562; T( 7,153)= 3.37774392; T( 7,154)= 3.38743959; T( 7,155)= 3.39711294; T( 7,156)= 3.40676426; T( 7,157)= 3.41639385; T( 7,158)= 3.42600200; T( 7,159)= 3.43558899; T( 7,160)= 3.44515509; T( 7,161)= 3.45470060; T( 7,162)= 3.46422576; T( 7,163)= 3.47373086; T( 7,164)= 3.48321615; T( 7,165)= 3.49268189; T( 7,166)= 3.50212834; T( 7,167)= 3.51155574; T( 7,168)= 3.52096434; T( 7,169)= 3.53035439; T( 7,170)= 3.53972612; T( 7,171)= 3.54907977; T( 7,172)= 3.55841557; T( 7,173)= 3.56773374; T( 7,174)= 3.57703452; T( 7,175)= 3.58631813; T( 7,176)= 3.59558478; T( 7,177)= 3.60483469; T( 7,178)= 3.61406808; T( 7,179)= 3.62328514; T( 7,180)= 3.63248609; T( 7,181)= 3.64167114; T( 7,182)= 3.65084048; T( 7,183)= 3.65999431; T( 7,184)= 3.66913282; T( 7,185)= 3.67825622; T( 7,186)= 3.68736468; T( 7,187)= 3.69645840; T( 7,188)= 3.70553756; T( 7,189)= 3.71460235; T( 7,190)= 3.72365294; T( 7,191)= 3.73268952; T( 7,192)= 3.74171225; T( 7,193)= 3.75072132; T( 7,194)= 3.75971689; T( 7,195)= 3.76869913; T( 7,196)= 3.77766821; T( 7,197)= 3.78662430; T( 7,198)= 3.79556755; T( 7,199)= 3.80449813; T( 7,200)= 3.81341620; T( 7,201)= 3.82232191; T( 7,202)= 3.83121542; T( 7,203)= 3.84009688; T( 7,204)= 3.84896644; T( 7,205)= 3.85782426; T( 7,206)= 3.86667047; T( 7,207)= 3.87550523; T( 7,208)= 3.88432869; T( 7,209)= 3.89314097; T( 7,210)= 3.90194224; T( 7,211)= 3.91073261; T( 7,212)= 3.91951224; T( 7,213)= 3.92828125; T( 7,214)= 3.93703979; T( 7,215)= 3.94578799; T( 7,216)= 3.95452597; T( 7,217)= 3.96325387; T( 7,218)= 3.97197182; T( 7,219)= 3.98067994; T( 7,220)= 3.98937837; T( 7,221)= 3.99806722; T( 7,222)= 4.00674663; T( 7,223)= 4.01541671; T( 7,224)= 4.02407758; T( 7,225)= 4.03272936; T( 7,226)= 4.04137218; T( 7,227)= 4.05000614; T( 7,228)= 4.05863137; T( 7,229)= 4.06724799; T( 7,230)= 4.07585610; T( 7,231)= 4.08445581; T( 7,232)= 4.09304725; T( 7,233)= 4.10163051; T( 7,234)= 4.11020571; T( 7,235)= 4.11877297; T( 7,236)= 4.12733237; T( 7,237)= 4.13588404; T( 7,238)= 4.14442808; T( 7,239)= 4.15296458; T( 7,240)= 4.16149367; T( 7,241)= 4.17001543; T( 7,242)= 4.17852997; T( 7,243)= 4.18703738; T( 7,244)= 4.19553778; T( 7,245)= 4.20403126; T( 7,246)= 4.21251791; T( 7,247)= 4.22099784; T( 7,248)= 4.22947113; T( 7,249)= 4.23793789; T( 7,250)= 4.24639821; T( 7,251)= 4.25485218; T( 7,252)= 4.26329990; T( 7,253)= 4.27174146; T( 7,254)= 4.28017695; T( 7,255)= 4.28860646; T( 7,256)= 4.29703008; T( 7,257)= 4.30544790; T( 7,258)= 4.31386000; T( 7,259)= 4.32226649; T( 7,260)= 4.33066744; T( 7,261)= 4.33906293; T( 7,262)= 4.34745306; T( 7,263)= 4.35583792; T( 7,264)= 4.36421757; T( 7,265)= 4.37259212; T( 7,266)= 4.38096163; T( 7,267)= 4.38932620; T( 7,268)= 4.39768591; T( 7,269)= 4.40604083; T( 7,270)= 4.41439105; T( 7,271)= 4.42273665; T( 7,272)= 4.43107771; T( 7,273)= 4.43941430; T( 7,274)= 4.44774650; T( 7,275)= 4.45607440; T( 7,276)= 4.46439807; T( 7,277)= 4.47271758; T( 7,278)= 4.48103301; T( 7,279)= 4.48934445; T( 7,280)= 4.49765195; T( 7,281)= 4.50595561; T( 7,282)= 4.51425548; T( 7,283)= 4.52255165; T( 7,284)= 4.53084419; T( 7,285)= 4.53913317; T( 7,286)= 4.54741866; T( 7,287)= 4.55570074; T( 7,288)= 4.56397948; T( 7,289)= 4.57225494; T( 7,290)= 4.58052720; T( 7,291)= 4.58879633; T( 7,292)= 4.59706240; T( 7,293)= 4.60532547; T( 7,294)= 4.61358562; T( 7,295)= 4.62184291; T( 7,296)= 4.63009741; T( 7,297)= 4.63834919; T( 7,298)= 4.64659832; T( 7,299)= 4.65484486; T( 7,300)= 4.66308888; T( 7,301)= 4.67133045; T( 7,302)= 4.67956963; T( 7,303)= 4.68780648; T( 7,304)= 4.69604108; T( 7,305)= 4.70427348; T( 7,306)= 4.71250375; T( 7,307)= 4.72073195; T( 7,308)= 4.72895816; T( 7,309)= 4.73718242; T( 7,310)= 4.74540481; T( 7,311)= 4.75362539; T( 7,312)= 4.76184421; T( 7,313)= 4.77006135; T( 7,314)= 4.77827686; T( 7,315)= 4.78649080; T( 7,316)= 4.79470324; T( 7,317)= 4.80291424; T( 7,318)= 4.81112385; T( 7,319)= 4.81933214; T( 7,320)= 4.82753917; T( 7,321)= 4.83574499; T( 7,322)= 4.84394967; T( 7,323)= 4.85215327; T( 7,324)= 4.86035584; T( 7,325)= 4.86855744; T( 7,326)= 4.87675814; T( 7,327)= 4.88495798; T( 7,328)= 4.89315704; T( 7,329)= 4.90135536; T( 7,330)= 4.90955300; T( 7,331)= 4.91775003; T( 7,332)= 4.92594649; T( 7,333)= 4.93414245; T( 7,334)= 4.94233796; T( 7,335)= 4.95053308; T( 7,336)= 4.95872787; T( 7,337)= 4.96692237; T( 7,338)= 4.97511665; T( 7,339)= 4.98331076; T( 7,340)= 4.99150476; T( 7,341)= 4.99969871; T( 7,342)= 5.00789265; T( 7,343)= 5.01608664; T( 7,344)= 5.02428074; T( 7,345)= 5.03247501; T( 7,346)= 5.04066949; T( 7,347)= 5.04886424; T( 7,348)= 5.05705931; T( 7,349)= 5.06525477; T( 7,350)= 5.07345066; T( 7,351)= 5.08164703; T( 7,352)= 5.08984394; T( 7,353)= 5.09804145; T( 7,354)= 5.10623960; T( 7,355)= 5.11443845; T( 7,356)= 5.12263806; T( 7,357)= 5.13083847; T( 7,358)= 5.13903973; T( 7,359)= 5.14724191; T( 7,360)= 5.15544505; T( 7,361)= 5.16364920; T( 7,362)= 5.17185442; T( 7,363)= 5.18006076; T( 7,364)= 5.18826827; T( 7,365)= 5.19647700; T( 7,366)= 5.20468701; T( 7,367)= 5.21289834; T( 7,368)= 5.22111105; T( 7,369)= 5.22932519; T( 7,370)= 5.23754080; T( 7,371)= 5.24575795; T( 7,372)= 5.25397668; T( 7,373)= 5.26219704; T( 7,374)= 5.27041909; T( 7,375)= 5.27864287; T( 7,376)= 5.28686844; T( 7,377)= 5.29509584; T( 7,378)= 5.30332513; T( 7,379)= 5.31155635; T( 7,380)= 5.31978957; T( 7,381)= 5.32802482; T( 7,382)= 5.33626216; T( 7,383)= 5.34450164; T( 7,384)= 5.35274330; T( 7,385)= 5.36098721; T( 7,386)= 5.36923340; T( 7,387)= 5.37748194; T( 7,388)= 5.38573286; T( 7,389)= 5.39398622; T( 7,390)= 5.40224207; T( 7,391)= 5.41050045; T( 7,392)= 5.41876143; T( 7,393)= 5.42702504; T( 7,394)= 5.43529134; T( 7,395)= 5.44356038; T( 7,396)= 5.45183220; T( 7,397)= 5.46010686; T( 7,398)= 5.46838441; T( 7,399)= 5.47666489; T( 7,400)= 5.48494836; T( 7,401)= 5.49323486; T( 7,402)= 5.50152445; T( 7,403)= 5.50981716; T( 7,404)= 5.51811306; T( 7,405)= 5.52641220; T( 7,406)= 5.53471461; T( 7,407)= 5.54302036; T( 7,408)= 5.55132949; T( 7,409)= 5.55964204; T( 7,410)= 5.56795808; T( 7,411)= 5.57627764; T( 7,412)= 5.58460078; T( 7,413)= 5.59292755; T( 7,414)= 5.60125800; T( 7,415)= 5.60959217; T( 7,416)= 5.61793012; T( 7,417)= 5.62627189; T( 7,418)= 5.63461754; T( 7,419)= 5.64296712; T( 7,420)= 5.65132066; T( 7,421)= 5.65967823; T( 7,422)= 5.66803987; T( 7,423)= 5.67640564; T( 7,424)= 5.68477557; T( 7,425)= 5.69314973; T( 7,426)= 5.70152816; T( 7,427)= 5.70991091; T( 7,428)= 5.71829803; T( 7,429)= 5.72668957; T( 7,430)= 5.73508558; T( 7,431)= 5.74348611; T( 7,432)= 5.75189121; T( 7,433)= 5.76030093; T( 7,434)= 5.76871532; T( 7,435)= 5.77713443; T( 7,436)= 5.78555831; T( 7,437)= 5.79398702; T( 7,438)= 5.80242059; T( 7,439)= 5.81085908; T( 7,440)= 5.81930254; T( 7,441)= 5.82775103; T( 7,442)= 5.83620459; T( 7,443)= 5.84466327; T( 7,444)= 5.85312712; T( 7,445)= 5.86159620; T( 7,446)= 5.87007055; T( 7,447)= 5.87855023; T( 7,448)= 5.88703528; T( 7,449)= 5.89552576; T( 7,450)= 5.90402173; T( 7,451)= 5.91252322; T( 7,452)= 5.92103029; T( 7,453)= 5.92954299; T( 7,454)= 5.93806138; T( 7,455)= 5.94658550; T( 7,456)= 5.95511541; T( 7,457)= 5.96365116; T( 7,458)= 5.97219280; T( 7,459)= 5.98074038; T( 7,460)= 5.98929396; T( 7,461)= 5.99785358; T( 7,462)= 6.00641930; T( 7,463)= 6.01499118; T( 7,464)= 6.02356925; T( 7,465)= 6.03215359; T( 7,466)= 6.04074423; T( 7,467)= 6.04934124; T( 7,468)= 6.05794466; T( 7,469)= 6.06655454; T( 7,470)= 6.07517095; T( 7,471)= 6.08379394; T( 7,472)= 6.09242355; T( 7,473)= 6.10105984; T( 7,474)= 6.10970287; T( 7,475)= 6.11835269; T( 7,476)= 6.12700935; T( 7,477)= 6.13567291; T( 7,478)= 6.14434343; T( 7,479)= 6.15302094; T( 7,480)= 6.16170552; T( 7,481)= 6.17039722; T( 7,482)= 6.17909608; T( 7,483)= 6.18780218; T( 7,484)= 6.19651555; T( 7,485)= 6.20523626; T( 7,486)= 6.21396436; T( 7,487)= 6.22269990; T( 7,488)= 6.23144295; T( 7,489)= 6.24019357; T( 7,490)= 6.24895179; T( 7,491)= 6.25771769; T( 7,492)= 6.26649132; T( 7,493)= 6.27527273; T( 7,494)= 6.28406199; T( 7,495)= 6.29285914; T( 7,496)= 6.30166426; T( 7,497)= 6.31047738; T( 7,498)= 6.31929858; T( 7,499)= 6.32812791; T( 7,500)= 6.33696543; T( 7,501)= 6.34581120; T( 7,502)= 6.35466527; T( 7,503)= 6.36352770; T( 7,504)= 6.37239855; T( 7,505)= 6.38127789; T( 7,506)= 6.39016577; T( 7,507)= 6.39906225; T( 7,508)= 6.40796739; T( 7,509)= 6.41688125; T( 7,510)= 6.42580390; T( 7,511)= 6.43473538; T( 7,512)= 6.44367577; T( 7,513)= 6.45262512; T( 7,514)= 6.46158349; T( 7,515)= 6.47055095; T( 7,516)= 6.47952755; T( 7,517)= 6.48851337; T( 7,518)= 6.49750845; T( 7,519)= 6.50651287; T( 7,520)= 6.51552669; T( 7,521)= 6.52454997; T( 7,522)= 6.53358276; T( 7,523)= 6.54262515; T( 7,524)= 6.55167718; T( 7,525)= 6.56073893; T( 7,526)= 6.56981045; T( 7,527)= 6.57889182; T( 7,528)= 6.58798309; T( 7,529)= 6.59708434; T( 7,530)= 6.60619562; T( 7,531)= 6.61531701; T( 7,532)= 6.62444857; T( 7,533)= 6.63359036; T( 7,534)= 6.64274245; T( 7,535)= 6.65190491; T( 7,536)= 6.66107781; T( 7,537)= 6.67026121; T( 7,538)= 6.67945519; T( 7,539)= 6.68865980; T( 7,540)= 6.69787512; T( 7,541)= 6.70710121; T( 7,542)= 6.71633815; T( 7,543)= 6.72558601; T( 7,544)= 6.73484485; T( 7,545)= 6.74411474; T( 7,546)= 6.75339576; T( 7,547)= 6.76268797; T( 7,548)= 6.77199145; T( 7,549)= 6.78130627; T( 7,550)= 6.79063250; T( 7,551)= 6.79997021; T( 7,552)= 6.80931947; T( 7,553)= 6.81868037; T( 7,554)= 6.82805296; T( 7,555)= 6.83743732; T( 7,556)= 6.84683354; T( 7,557)= 6.85624167; T( 7,558)= 6.86566181; T( 7,559)= 6.87509402; T( 7,560)= 6.88453837; T( 7,561)= 6.89399495; T( 7,562)= 6.90346383; T( 7,563)= 6.91294508; T( 7,564)= 6.92243879; T( 7,565)= 6.93194503; T( 7,566)= 6.94146388; T( 7,567)= 6.95099542; T( 7,568)= 6.96053972; T( 7,569)= 6.97009688; T( 7,570)= 6.97966695; T( 7,571)= 6.98925004; T( 7,572)= 6.99884621; T( 7,573)= 7.00845555; T( 7,574)= 7.01807813; T( 7,575)= 7.02771405; T( 7,576)= 7.03736339; T( 7,577)= 7.04702622; T( 7,578)= 7.05670263; T( 7,579)= 7.06639270; T( 7,580)= 7.07609652; T( 7,581)= 7.08581418; T( 7,582)= 7.09554575; T( 7,583)= 7.10529133; T( 7,584)= 7.11505100; T( 7,585)= 7.12482485; T( 7,586)= 7.13461297; T( 7,587)= 7.14441543; T( 7,588)= 7.15423234; T( 7,589)= 7.16406378; T( 7,590)= 7.17390984; T( 7,591)= 7.18377061; T( 7,592)= 7.19364618; T( 7,593)= 7.20353665; T( 7,594)= 7.21344210; T( 7,595)= 7.22336262; T( 7,596)= 7.23329832; T( 7,597)= 7.24324928; T( 7,598)= 7.25321559; T( 7,599)= 7.26319736; T( 7,600)= 7.27319467; T( 7,601)= 7.28320763; T( 7,602)= 7.29323633; T( 7,603)= 7.30328087; T( 7,604)= 7.31334134; T( 7,605)= 7.32341784; T( 7,606)= 7.33351047; T( 7,607)= 7.34361934; T( 7,608)= 7.35374454; T( 7,609)= 7.36388618; T( 7,610)= 7.37404434; T( 7,611)= 7.38421915; T( 7,612)= 7.39441070; T( 7,613)= 7.40461909; T( 7,614)= 7.41484443; T( 7,615)= 7.42508683; T( 7,616)= 7.43534638; T( 7,617)= 7.44562321; T( 7,618)= 7.45591741; T( 7,619)= 7.46622909; T( 7,620)= 7.47655836; T( 7,621)= 7.48690533; T( 7,622)= 7.49727011; T( 7,623)= 7.50765282; T( 7,624)= 7.51805356; T( 7,625)= 7.52847245; T( 7,626)= 7.53890960; T( 7,627)= 7.54936513; T( 7,628)= 7.55983914; T( 7,629)= 7.57033177; T( 7,630)= 7.58084311; T( 7,631)= 7.59137330; T( 7,632)= 7.60192245; T( 7,633)= 7.61249067; T( 7,634)= 7.62307810; T( 7,635)= 7.63368485; T( 7,636)= 7.64431104; T( 7,637)= 7.65495679; T( 7,638)= 7.66562224; T( 7,639)= 7.67630750; T( 7,640)= 7.68701270; T( 7,641)= 7.69773797; T( 7,642)= 7.70848343; T( 7,643)= 7.71924921; T( 7,644)= 7.73003545; T( 7,645)= 7.74084228; T( 7,646)= 7.75166981; T( 7,647)= 7.76251820; T( 7,648)= 7.77338757; T( 7,649)= 7.78427805; T( 7,650)= 7.79518979; T( 7,651)= 7.80612292; T( 7,652)= 7.81707757; T( 7,653)= 7.82805389; T( 7,654)= 7.83905201; T( 7,655)= 7.85007209; T( 7,656)= 7.86111425; T( 7,657)= 7.87217864; T( 7,658)= 7.88326542; T( 7,659)= 7.89437471; T( 7,660)= 7.90550668; T( 7,661)= 7.91666147; T( 7,662)= 7.92783923; T( 7,663)= 7.93904010; T( 7,664)= 7.95026425; T( 7,665)= 7.96151182; T( 7,666)= 7.97278296; T( 7,667)= 7.98407785; T( 7,668)= 7.99539662; T( 7,669)= 8.00673944; T( 7,670)= 8.01810647; T( 7,671)= 8.02949787; T( 7,672)= 8.04091381; T( 7,673)= 8.05235444; T( 7,674)= 8.06381993; T( 7,675)= 8.07531045; T( 7,676)= 8.08682617; T( 7,677)= 8.09836725; T( 7,678)= 8.10993387; T( 7,679)= 8.12152619; T( 7,680)= 8.13314440; T( 7,681)= 8.14478867; T( 7,682)= 8.15645917; T( 7,683)= 8.16815609; T( 7,684)= 8.17987960; T( 7,685)= 8.19162988; T( 7,686)= 8.20340713; T( 7,687)= 8.21521152; T( 7,688)= 8.22704324; T( 7,689)= 8.23890248; T( 7,690)= 8.25078942; T( 7,691)= 8.26270427; T( 7,692)= 8.27464722; T( 7,693)= 8.28661845; T( 7,694)= 8.29861817; T( 7,695)= 8.31064658; T( 7,696)= 8.32270388; T( 7,697)= 8.33479026; T( 7,698)= 8.34690594; T( 7,699)= 8.35905113; T( 7,700)= 8.37122602; T( 7,701)= 8.38343083; T( 7,702)= 8.39566577; T( 7,703)= 8.40793106; T( 7,704)= 8.42022692; T( 7,705)= 8.43255356; T( 7,706)= 8.44491120; T( 7,707)= 8.45730007; T( 7,708)= 8.46972039; T( 7,709)= 8.48217239; T( 7,710)= 8.49465629; T( 7,711)= 8.50717234; T( 7,712)= 8.51972076; T( 7,713)= 8.53230179; T( 7,714)= 8.54491567; T( 7,715)= 8.55756264; T( 7,716)= 8.57024295; T( 7,717)= 8.58295683; T( 7,718)= 8.59570455; T( 7,719)= 8.60848634; T( 7,720)= 8.62130247; T( 7,721)= 8.63415318; T( 7,722)= 8.64703875; T( 7,723)= 8.65995943; T( 7,724)= 8.67291548; T( 7,725)= 8.68590717; T( 7,726)= 8.69893477; T( 7,727)= 8.71199856; T( 7,728)= 8.72509880; T( 7,729)= 8.73823579; T( 7,730)= 8.75140979; T( 7,731)= 8.76462110; T( 7,732)= 8.77786999; T( 7,733)= 8.79115677; T( 7,734)= 8.80448173; T( 7,735)= 8.81784516; T( 7,736)= 8.83124735; T( 7,737)= 8.84468863; T( 7,738)= 8.85816929; T( 7,739)= 8.87168963; T( 7,740)= 8.88524999; T( 7,741)= 8.89885067; T( 7,742)= 8.91249199; T( 7,743)= 8.92617428; T( 7,744)= 8.93989786; T( 7,745)= 8.95366307; T( 7,746)= 8.96747025; T( 7,747)= 8.98131972; T( 7,748)= 8.99521184; T( 7,749)= 9.00914695; T( 7,750)= 9.02312540; T( 7,751)= 9.03714755; T( 7,752)= 9.05121375; T( 7,753)= 9.06532438; T( 7,754)= 9.07947979; T( 7,755)= 9.09368036; T( 7,756)= 9.10792646; T( 7,757)= 9.12221848; T( 7,758)= 9.13655680; T( 7,759)= 9.15094182; T( 7,760)= 9.16537392; T( 7,761)= 9.17985350; T( 7,762)= 9.19438098; T( 7,763)= 9.20895675; T( 7,764)= 9.22358124; T( 7,765)= 9.23825486; T( 7,766)= 9.25297803; T( 7,767)= 9.26775120; T( 7,768)= 9.28257478; T( 7,769)= 9.29744923; T( 7,770)= 9.31237499; T( 7,771)= 9.32735251; T( 7,772)= 9.34238225; T( 7,773)= 9.35746467; T( 7,774)= 9.37260024; T( 7,775)= 9.38778944; T( 7,776)= 9.40303274; T( 7,777)= 9.41833065; T( 7,778)= 9.43368364; T( 7,779)= 9.44909223; T( 7,780)= 9.46455692; T( 7,781)= 9.48007822; T( 7,782)= 9.49565665; T( 7,783)= 9.51129274; T( 7,784)= 9.52698704; T( 7,785)= 9.54274007; T( 7,786)= 9.55855239; T( 7,787)= 9.57442456; T( 7,788)= 9.59035714; T( 7,789)= 9.60635070; T( 7,790)= 9.62240583; T( 7,791)= 9.63852311; T( 7,792)= 9.65470314; T( 7,793)= 9.67094652; T( 7,794)= 9.68725388; T( 7,795)= 9.70362582; T( 7,796)= 9.72006299; T( 7,797)= 9.73656602; T( 7,798)= 9.75313556; T( 7,799)= 9.76977227; T( 7,800)= 9.78647683; T( 7,801)= 9.80324990; T( 7,802)= 9.82009218; T( 7,803)= 9.83700436; T( 7,804)= 9.85398716; T( 7,805)= 9.87104130; T( 7,806)= 9.88816749; T( 7,807)= 9.90536650; T( 7,808)= 9.92263906; T( 7,809)= 9.93998594; T( 7,810)= 9.95740793; T( 7,811)= 9.97490580; T( 7,812)= 9.99248035; T( 7,813)=10.01013241; T( 7,814)=10.02786278; T( 7,815)=10.04567232; T( 7,816)=10.06356188; T( 7,817)=10.08153231; T( 7,818)=10.09958450; T( 7,819)=10.11771934; T( 7,820)=10.13593773; T( 7,821)=10.15424061; T( 7,822)=10.17262891; T( 7,823)=10.19110358; T( 7,824)=10.20966558; T( 7,825)=10.22831592; T( 7,826)=10.24705557; T( 7,827)=10.26588558; T( 7,828)=10.28480696; T( 7,829)=10.30382077; T( 7,830)=10.32292809; T( 7,831)=10.34213000; T( 7,832)=10.36142762; T( 7,833)=10.38082207; T( 7,834)=10.40031449; T( 7,835)=10.41990606; T( 7,836)=10.43959797; T( 7,837)=10.45939143; T( 7,838)=10.47928766; T( 7,839)=10.49928792; T( 7,840)=10.51939350; T( 7,841)=10.53960569; T( 7,842)=10.55992581; T( 7,843)=10.58035522; T( 7,844)=10.60089529; T( 7,845)=10.62154741; T( 7,846)=10.64231303; T( 7,847)=10.66319359; T( 7,848)=10.68419057; T( 7,849)=10.70530549; T( 7,850)=10.72653989; T( 7,851)=10.74789533; T( 7,852)=10.76937342; T( 7,853)=10.79097580; T( 7,854)=10.81270412; T( 7,855)=10.83456008; T( 7,856)=10.85654543; T( 7,857)=10.87866193; T( 7,858)=10.90091139; T( 7,859)=10.92329565; T( 7,860)=10.94581659; T( 7,861)=10.96847613; T( 7,862)=10.99127624; T( 7,863)=11.01421892; T( 7,864)=11.03730621; T( 7,865)=11.06054021; T( 7,866)=11.08392305; T( 7,867)=11.10745692; T( 7,868)=11.13114405; T( 7,869)=11.15498671; T( 7,870)=11.17898725; T( 7,871)=11.20314805; T( 7,872)=11.22747154; T( 7,873)=11.25196023; T( 7,874)=11.27661667; T( 7,875)=11.30144347; T( 7,876)=11.32644330; T( 7,877)=11.35161891; T( 7,878)=11.37697309; T( 7,879)=11.40250873; T( 7,880)=11.42822876; T( 7,881)=11.45413619; T( 7,882)=11.48023412; T( 7,883)=11.50652570; T( 7,884)=11.53301419; T( 7,885)=11.55970291; T( 7,886)=11.58659527; T( 7,887)=11.61369477; T( 7,888)=11.64100501; T( 7,889)=11.66852966; T( 7,890)=11.69627252; T( 7,891)=11.72423746; T( 7,892)=11.75242849; T( 7,893)=11.78084968; T( 7,894)=11.80950527; T( 7,895)=11.83839957; T( 7,896)=11.86753703; T( 7,897)=11.89692223; T( 7,898)=11.92655988; T( 7,899)=11.95645482; T( 7,900)=11.98661202; T( 7,901)=12.01703662; T( 7,902)=12.04773391; T( 7,903)=12.07870932; T( 7,904)=12.10996845; T( 7,905)=12.14151709; T( 7,906)=12.17336120; T( 7,907)=12.20550690; T( 7,908)=12.23796056; T( 7,909)=12.27072869; T( 7,910)=12.30381806; T( 7,911)=12.33723564; T( 7,912)=12.37098862; T( 7,913)=12.40508447; T( 7,914)=12.43953086; T( 7,915)=12.47433576; T( 7,916)=12.50950741; T( 7,917)=12.54505433; T( 7,918)=12.58098534; T( 7,919)=12.61730958; T( 7,920)=12.65403654; T( 7,921)=12.69117603; T( 7,922)=12.72873824; T( 7,923)=12.76673375; T( 7,924)=12.80517352; T( 7,925)=12.84406898; T( 7,926)=12.88343195; T( 7,927)=12.92327477; T( 7,928)=12.96361024; T( 7,929)=13.00445172; T( 7,930)=13.04581309; T( 7,931)=13.08770883; T( 7,932)=13.13015403; T( 7,933)=13.17316444; T( 7,934)=13.21675650; T( 7,935)=13.26094738; T( 7,936)=13.30575503; T( 7,937)=13.35119820; T( 7,938)=13.39729657; T( 7,939)=13.44407069; T( 7,940)=13.49154215; T( 7,941)=13.53973357; T( 7,942)=13.58866870; T( 7,943)=13.63837250; T( 7,944)=13.68887122; T( 7,945)=13.74019248; T( 7,946)=13.79236538; T( 7,947)=13.84542058; T( 7,948)=13.89939049; T( 7,949)=13.95430929; T( 7,950)=14.01021318; T( 7,951)=14.06714045; T( 7,952)=14.12513170; T( 7,953)=14.18423001; T( 7,954)=14.24448115; T( 7,955)=14.30593381; T( 7,956)=14.36863984; T( 7,957)=14.43265458; T( 7,958)=14.49803711; T( 7,959)=14.56485065; T( 7,960)=14.63316294; T( 7,961)=14.70304667; T( 7,962)=14.77458001; T( 7,963)=14.84784715; T( 7,964)=14.92293892; T( 7,965)=14.99995356; T( 7,966)=15.07899753; T( 7,967)=15.16018643; T( 7,968)=15.24364611; T( 7,969)=15.32951391; T( 7,970)=15.41794014; T( 7,971)=15.50908970; T( 7,972)=15.60314414; T( 7,973)=15.70030389; T( 7,974)=15.80079104; T( 7,975)=15.90485259; T( 7,976)=16.01276427; T( 7,977)=16.12483531; T( 7,978)=16.24141398; T( 7,979)=16.36289458; T( 7,980)=16.48972592; T( 7,981)=16.62242187; T( 7,982)=16.76157466; T( 7,983)=16.90787168; T( 7,984)=17.06211718; T( 7,985)=17.22526035; T( 7,986)=17.39843261; T( 7,987)=17.58299757; T( 7,988)=17.78061953; T( 7,989)=17.99335926; T( 7,990)=18.22381135; T( 7,991)=18.47530691; T( 7,992)=18.75222273; T( 7,993)=19.06047255; T( 7,994)=19.40832608; T( 7,995)=19.80786051; T( 7,996)=20.27773987; T( 7,997)=20.84911788; T( 7,998)=21.58014539; T( 7,999)=22.60067086; T( 7,1000)=24.32188635; T( 7,1001)=29.87750391; T( 7,1002)=35.25853642; T( 8, 1)= 0.00000000; T( 8, 2)= 0.85710483; T( 8, 3)= 1.03752390; T( 8, 4)= 1.16235294; T( 8, 5)= 1.26116792; T( 8, 6)= 1.34441309; T( 8, 7)= 1.41712746; T( 8, 8)= 1.48216905; T( 8, 9)= 1.54133162; T( 8,10)= 1.59582254; T( 8,11)= 1.64649737; T( 8,12)= 1.69398678; T( 8,13)= 1.73877041; T( 8,14)= 1.78122244; T( 8,15)= 1.82164101; T( 8,16)= 1.86026790; T( 8,17)= 1.89730220; T( 8,18)= 1.93291002; T( 8,19)= 1.96723154; T( 8,20)= 2.00038624; T( 8,21)= 2.03247692; T( 8,22)= 2.06359269; T( 8,23)= 2.09381138; T( 8,24)= 2.12320141; T( 8,25)= 2.15182328; T( 8,26)= 2.17973075; T( 8,27)= 2.20697188; T( 8,28)= 2.23358978; T( 8,29)= 2.25962333; T( 8,30)= 2.28510767; T( 8,31)= 2.31007474; T( 8,32)= 2.33455363; T( 8,33)= 2.35857091; T( 8,34)= 2.38215096; T( 8,35)= 2.40531616; T( 8,36)= 2.42808714; T( 8,37)= 2.45048298; T( 8,38)= 2.47252132; T( 8,39)= 2.49421852; T( 8,40)= 2.51558982; T( 8,41)= 2.53664938; T( 8,42)= 2.55741045; T( 8,43)= 2.57788538; T( 8,44)= 2.59808577; T( 8,45)= 2.61802247; T( 8,46)= 2.63770569; T( 8,47)= 2.65714502; T( 8,48)= 2.67634951; T( 8,49)= 2.69532767; T( 8,50)= 2.71408756; T( 8,51)= 2.73263679; T( 8,52)= 2.75098257; T( 8,53)= 2.76913171; T( 8,54)= 2.78709070; T( 8,55)= 2.80486568; T( 8,56)= 2.82246250; T( 8,57)= 2.83988672; T( 8,58)= 2.85714363; T( 8,59)= 2.87423829; T( 8,60)= 2.89117551; T( 8,61)= 2.90795987; T( 8,62)= 2.92459578; T( 8,63)= 2.94108744; T( 8,64)= 2.95743886; T( 8,65)= 2.97365388; T( 8,66)= 2.98973621; T( 8,67)= 3.00568936; T( 8,68)= 3.02151674; T( 8,69)= 3.03722161; T( 8,70)= 3.05280708; T( 8,71)= 3.06827618; T( 8,72)= 3.08363179; T( 8,73)= 3.09887669; T( 8,74)= 3.11401358; T( 8,75)= 3.12904503; T( 8,76)= 3.14397353; T( 8,77)= 3.15880149; T( 8,78)= 3.17353122; T( 8,79)= 3.18816495; T( 8,80)= 3.20270486; T( 8,81)= 3.21715302; T( 8,82)= 3.23151145; T( 8,83)= 3.24578211; T( 8,84)= 3.25996689; T( 8,85)= 3.27406760; T( 8,86)= 3.28808603; T( 8,87)= 3.30202387; T( 8,88)= 3.31588281; T( 8,89)= 3.32966443; T( 8,90)= 3.34337031; T( 8,91)= 3.35700197; T( 8,92)= 3.37056086; T( 8,93)= 3.38404841; T( 8,94)= 3.39746602; T( 8,95)= 3.41081502; T( 8,96)= 3.42409673; T( 8,97)= 3.43731242; T( 8,98)= 3.45046331; T( 8,99)= 3.46355062; T( 8,100)= 3.47657551; T( 8,101)= 3.48953913; T( 8,102)= 3.50244257; T( 8,103)= 3.51528691; T( 8,104)= 3.52807321; T( 8,105)= 3.54080250; T( 8,106)= 3.55347576; T( 8,107)= 3.56609397; T( 8,108)= 3.57865808; T( 8,109)= 3.59116901; T( 8,110)= 3.60362766; T( 8,111)= 3.61603492; T( 8,112)= 3.62839164; T( 8,113)= 3.64069865; T( 8,114)= 3.65295679; T( 8,115)= 3.66516684; T( 8,116)= 3.67732959; T( 8,117)= 3.68944580; T( 8,118)= 3.70151621; T( 8,119)= 3.71354156; T( 8,120)= 3.72552255; T( 8,121)= 3.73745988; T( 8,122)= 3.74935424; T( 8,123)= 3.76120628; T( 8,124)= 3.77301666; T( 8,125)= 3.78478602; T( 8,126)= 3.79651499; T( 8,127)= 3.80820416; T( 8,128)= 3.81985415; T( 8,129)= 3.83146553; T( 8,130)= 3.84303889; T( 8,131)= 3.85457477; T( 8,132)= 3.86607374; T( 8,133)= 3.87753633; T( 8,134)= 3.88896308; T( 8,135)= 3.90035450; T( 8,136)= 3.91171109; T( 8,137)= 3.92303336; T( 8,138)= 3.93432180; T( 8,139)= 3.94557688; T( 8,140)= 3.95679908; T( 8,141)= 3.96798886; T( 8,142)= 3.97914667; T( 8,143)= 3.99027295; T( 8,144)= 4.00136815; T( 8,145)= 4.01243269; T( 8,146)= 4.02346699; T( 8,147)= 4.03447146; T( 8,148)= 4.04544651; T( 8,149)= 4.05639254; T( 8,150)= 4.06730994; T( 8,151)= 4.07819910; T( 8,152)= 4.08906038; T( 8,153)= 4.09989418; T( 8,154)= 4.11070084; T( 8,155)= 4.12148073; T( 8,156)= 4.13223421; T( 8,157)= 4.14296161; T( 8,158)= 4.15366329; T( 8,159)= 4.16433957; T( 8,160)= 4.17499078; T( 8,161)= 4.18561726; T( 8,162)= 4.19621932; T( 8,163)= 4.20679728; T( 8,164)= 4.21735144; T( 8,165)= 4.22788211; T( 8,166)= 4.23838959; T( 8,167)= 4.24887418; T( 8,168)= 4.25933616; T( 8,169)= 4.26977583; T( 8,170)= 4.28019346; T( 8,171)= 4.29058933; T( 8,172)= 4.30096371; T( 8,173)= 4.31131689; T( 8,174)= 4.32164911; T( 8,175)= 4.33196064; T( 8,176)= 4.34225175; T( 8,177)= 4.35252267; T( 8,178)= 4.36277367; T( 8,179)= 4.37300499; T( 8,180)= 4.38321688; T( 8,181)= 4.39340957; T( 8,182)= 4.40358329; T( 8,183)= 4.41373829; T( 8,184)= 4.42387480; T( 8,185)= 4.43399303; T( 8,186)= 4.44409321; T( 8,187)= 4.45417557; T( 8,188)= 4.46424032; T( 8,189)= 4.47428768; T( 8,190)= 4.48431785; T( 8,191)= 4.49433105; T( 8,192)= 4.50432748; T( 8,193)= 4.51430735; T( 8,194)= 4.52427086; T( 8,195)= 4.53421820; T( 8,196)= 4.54414958; T( 8,197)= 4.55406518; T( 8,198)= 4.56396519; T( 8,199)= 4.57384981; T( 8,200)= 4.58371923; T( 8,201)= 4.59357361; T( 8,202)= 4.60341315; T( 8,203)= 4.61323803; T( 8,204)= 4.62304842; T( 8,205)= 4.63284450; T( 8,206)= 4.64262644; T( 8,207)= 4.65239441; T( 8,208)= 4.66214859; T( 8,209)= 4.67188913; T( 8,210)= 4.68161620; T( 8,211)= 4.69132997; T( 8,212)= 4.70103059; T( 8,213)= 4.71071823; T( 8,214)= 4.72039305; T( 8,215)= 4.73005520; T( 8,216)= 4.73970482; T( 8,217)= 4.74934209; T( 8,218)= 4.75896714; T( 8,219)= 4.76858013; T( 8,220)= 4.77818120; T( 8,221)= 4.78777050; T( 8,222)= 4.79734817; T( 8,223)= 4.80691436; T( 8,224)= 4.81646920; T( 8,225)= 4.82601284; T( 8,226)= 4.83554542; T( 8,227)= 4.84506706; T( 8,228)= 4.85457792; T( 8,229)= 4.86407811; T( 8,230)= 4.87356778; T( 8,231)= 4.88304705; T( 8,232)= 4.89251605; T( 8,233)= 4.90197492; T( 8,234)= 4.91142378; T( 8,235)= 4.92086275; T( 8,236)= 4.93029197; T( 8,237)= 4.93971154; T( 8,238)= 4.94912161; T( 8,239)= 4.95852228; T( 8,240)= 4.96791369; T( 8,241)= 4.97729594; T( 8,242)= 4.98666915; T( 8,243)= 4.99603345; T( 8,244)= 5.00538894; T( 8,245)= 5.01473575; T( 8,246)= 5.02407398; T( 8,247)= 5.03340375; T( 8,248)= 5.04272517; T( 8,249)= 5.05203835; T( 8,250)= 5.06134340; T( 8,251)= 5.07064042; T( 8,252)= 5.07992954; T( 8,253)= 5.08921084; T( 8,254)= 5.09848444; T( 8,255)= 5.10775045; T( 8,256)= 5.11700896; T( 8,257)= 5.12626009; T( 8,258)= 5.13550392; T( 8,259)= 5.14474057; T( 8,260)= 5.15397013; T( 8,261)= 5.16319271; T( 8,262)= 5.17240840; T( 8,263)= 5.18161730; T( 8,264)= 5.19081950; T( 8,265)= 5.20001512; T( 8,266)= 5.20920423; T( 8,267)= 5.21838693; T( 8,268)= 5.22756333; T( 8,269)= 5.23673351; T( 8,270)= 5.24589756; T( 8,271)= 5.25505559; T( 8,272)= 5.26420767; T( 8,273)= 5.27335390; T( 8,274)= 5.28249437; T( 8,275)= 5.29162917; T( 8,276)= 5.30075839; T( 8,277)= 5.30988212; T( 8,278)= 5.31900044; T( 8,279)= 5.32811344; T( 8,280)= 5.33722121; T( 8,281)= 5.34632383; T( 8,282)= 5.35542138; T( 8,283)= 5.36451396; T( 8,284)= 5.37360165; T( 8,285)= 5.38268452; T( 8,286)= 5.39176266; T( 8,287)= 5.40083616; T( 8,288)= 5.40990510; T( 8,289)= 5.41896955; T( 8,290)= 5.42802960; T( 8,291)= 5.43708532; T( 8,292)= 5.44613681; T( 8,293)= 5.45518412; T( 8,294)= 5.46422736; T( 8,295)= 5.47326658; T( 8,296)= 5.48230188; T( 8,297)= 5.49133332; T( 8,298)= 5.50036099; T( 8,299)= 5.50938495; T( 8,300)= 5.51840529; T( 8,301)= 5.52742209; T( 8,302)= 5.53643540; T( 8,303)= 5.54544532; T( 8,304)= 5.55445191; T( 8,305)= 5.56345525; T( 8,306)= 5.57245542; T( 8,307)= 5.58145247; T( 8,308)= 5.59044649; T( 8,309)= 5.59943755; T( 8,310)= 5.60842572; T( 8,311)= 5.61741107; T( 8,312)= 5.62639367; T( 8,313)= 5.63537359; T( 8,314)= 5.64435090; T( 8,315)= 5.65332568; T( 8,316)= 5.66229798; T( 8,317)= 5.67126789; T( 8,318)= 5.68023547; T( 8,319)= 5.68920078; T( 8,320)= 5.69816389; T( 8,321)= 5.70712488; T( 8,322)= 5.71608381; T( 8,323)= 5.72504075; T( 8,324)= 5.73399576; T( 8,325)= 5.74294891; T( 8,326)= 5.75190027; T( 8,327)= 5.76084990; T( 8,328)= 5.76979787; T( 8,329)= 5.77874424; T( 8,330)= 5.78768908; T( 8,331)= 5.79663245; T( 8,332)= 5.80557442; T( 8,333)= 5.81451505; T( 8,334)= 5.82345440; T( 8,335)= 5.83239255; T( 8,336)= 5.84132954; T( 8,337)= 5.85026546; T( 8,338)= 5.85920034; T( 8,339)= 5.86813428; T( 8,340)= 5.87706731; T( 8,341)= 5.88599951; T( 8,342)= 5.89493094; T( 8,343)= 5.90386165; T( 8,344)= 5.91279172; T( 8,345)= 5.92172120; T( 8,346)= 5.93065015; T( 8,347)= 5.93957863; T( 8,348)= 5.94850671; T( 8,349)= 5.95743445; T( 8,350)= 5.96636190; T( 8,351)= 5.97528912; T( 8,352)= 5.98421618; T( 8,353)= 5.99314314; T( 8,354)= 6.00207005; T( 8,355)= 6.01099697; T( 8,356)= 6.01992397; T( 8,357)= 6.02885110; T( 8,358)= 6.03777842; T( 8,359)= 6.04670599; T( 8,360)= 6.05563386; T( 8,361)= 6.06456210; T( 8,362)= 6.07349077; T( 8,363)= 6.08241992; T( 8,364)= 6.09134961; T( 8,365)= 6.10027990; T( 8,366)= 6.10921084; T( 8,367)= 6.11814249; T( 8,368)= 6.12707492; T( 8,369)= 6.13600817; T( 8,370)= 6.14494231; T( 8,371)= 6.15387739; T( 8,372)= 6.16281347; T( 8,373)= 6.17175060; T( 8,374)= 6.18068884; T( 8,375)= 6.18962826; T( 8,376)= 6.19856889; T( 8,377)= 6.20751081; T( 8,378)= 6.21645406; T( 8,379)= 6.22539871; T( 8,380)= 6.23434480; T( 8,381)= 6.24329240; T( 8,382)= 6.25224156; T( 8,383)= 6.26119234; T( 8,384)= 6.27014478; T( 8,385)= 6.27909896; T( 8,386)= 6.28805491; T( 8,387)= 6.29701270; T( 8,388)= 6.30597239; T( 8,389)= 6.31493402; T( 8,390)= 6.32389766; T( 8,391)= 6.33286336; T( 8,392)= 6.34183116; T( 8,393)= 6.35080114; T( 8,394)= 6.35977334; T( 8,395)= 6.36874781; T( 8,396)= 6.37772462; T( 8,397)= 6.38670382; T( 8,398)= 6.39568546; T( 8,399)= 6.40466959; T( 8,400)= 6.41365627; T( 8,401)= 6.42264556; T( 8,402)= 6.43163751; T( 8,403)= 6.44063217; T( 8,404)= 6.44962960; T( 8,405)= 6.45862985; T( 8,406)= 6.46763298; T( 8,407)= 6.47663905; T( 8,408)= 6.48564809; T( 8,409)= 6.49466018; T( 8,410)= 6.50367536; T( 8,411)= 6.51269369; T( 8,412)= 6.52171522; T( 8,413)= 6.53074001; T( 8,414)= 6.53976811; T( 8,415)= 6.54879957; T( 8,416)= 6.55783445; T( 8,417)= 6.56687281; T( 8,418)= 6.57591469; T( 8,419)= 6.58496016; T( 8,420)= 6.59400926; T( 8,421)= 6.60306205; T( 8,422)= 6.61211858; T( 8,423)= 6.62117891; T( 8,424)= 6.63024310; T( 8,425)= 6.63931119; T( 8,426)= 6.64838324; T( 8,427)= 6.65745931; T( 8,428)= 6.66653944; T( 8,429)= 6.67562370; T( 8,430)= 6.68471214; T( 8,431)= 6.69380481; T( 8,432)= 6.70290177; T( 8,433)= 6.71200306; T( 8,434)= 6.72110876; T( 8,435)= 6.73021890; T( 8,436)= 6.73933355; T( 8,437)= 6.74845275; T( 8,438)= 6.75757658; T( 8,439)= 6.76670506; T( 8,440)= 6.77583828; T( 8,441)= 6.78497627; T( 8,442)= 6.79411909; T( 8,443)= 6.80326680; T( 8,444)= 6.81241946; T( 8,445)= 6.82157711; T( 8,446)= 6.83073981; T( 8,447)= 6.83990763; T( 8,448)= 6.84908060; T( 8,449)= 6.85825880; T( 8,450)= 6.86744227; T( 8,451)= 6.87663107; T( 8,452)= 6.88582525; T( 8,453)= 6.89502487; T( 8,454)= 6.90422999; T( 8,455)= 6.91344067; T( 8,456)= 6.92265695; T( 8,457)= 6.93187889; T( 8,458)= 6.94110655; T( 8,459)= 6.95033999; T( 8,460)= 6.95957927; T( 8,461)= 6.96882443; T( 8,462)= 6.97807553; T( 8,463)= 6.98733264; T( 8,464)= 6.99659581; T( 8,465)= 7.00586509; T( 8,466)= 7.01514054; T( 8,467)= 7.02442223; T( 8,468)= 7.03371020; T( 8,469)= 7.04300451; T( 8,470)= 7.05230522; T( 8,471)= 7.06161239; T( 8,472)= 7.07092608; T( 8,473)= 7.08024634; T( 8,474)= 7.08957323; T( 8,475)= 7.09890681; T( 8,476)= 7.10824714; T( 8,477)= 7.11759428; T( 8,478)= 7.12694828; T( 8,479)= 7.13630920; T( 8,480)= 7.14567710; T( 8,481)= 7.15505205; T( 8,482)= 7.16443409; T( 8,483)= 7.17382329; T( 8,484)= 7.18321972; T( 8,485)= 7.19262341; T( 8,486)= 7.20203445; T( 8,487)= 7.21145288; T( 8,488)= 7.22087877; T( 8,489)= 7.23031217; T( 8,490)= 7.23975316; T( 8,491)= 7.24920178; T( 8,492)= 7.25865810; T( 8,493)= 7.26812217; T( 8,494)= 7.27759407; T( 8,495)= 7.28707385; T( 8,496)= 7.29656158; T( 8,497)= 7.30605730; T( 8,498)= 7.31556110; T( 8,499)= 7.32507302; T( 8,500)= 7.33459313; T( 8,501)= 7.34412150; T( 8,502)= 7.35365818; T( 8,503)= 7.36320324; T( 8,504)= 7.37275674; T( 8,505)= 7.38231874; T( 8,506)= 7.39188932; T( 8,507)= 7.40146852; T( 8,508)= 7.41105642; T( 8,509)= 7.42065308; T( 8,510)= 7.43025856; T( 8,511)= 7.43987293; T( 8,512)= 7.44949626; T( 8,513)= 7.45912860; T( 8,514)= 7.46877002; T( 8,515)= 7.47842060; T( 8,516)= 7.48808039; T( 8,517)= 7.49774946; T( 8,518)= 7.50742788; T( 8,519)= 7.51711571; T( 8,520)= 7.52681302; T( 8,521)= 7.53651987; T( 8,522)= 7.54623635; T( 8,523)= 7.55596250; T( 8,524)= 7.56569840; T( 8,525)= 7.57544413; T( 8,526)= 7.58519973; T( 8,527)= 7.59496530; T( 8,528)= 7.60474088; T( 8,529)= 7.61452656; T( 8,530)= 7.62432241; T( 8,531)= 7.63412848; T( 8,532)= 7.64394486; T( 8,533)= 7.65377161; T( 8,534)= 7.66360880; T( 8,535)= 7.67345651; T( 8,536)= 7.68331481; T( 8,537)= 7.69318376; T( 8,538)= 7.70306344; T( 8,539)= 7.71295393; T( 8,540)= 7.72285528; T( 8,541)= 7.73276759; T( 8,542)= 7.74269092; T( 8,543)= 7.75262534; T( 8,544)= 7.76257092; T( 8,545)= 7.77252776; T( 8,546)= 7.78249590; T( 8,547)= 7.79247544; T( 8,548)= 7.80246645; T( 8,549)= 7.81246900; T( 8,550)= 7.82248317; T( 8,551)= 7.83250904; T( 8,552)= 7.84254668; T( 8,553)= 7.85259617; T( 8,554)= 7.86265758; T( 8,555)= 7.87273100; T( 8,556)= 7.88281651; T( 8,557)= 7.89291417; T( 8,558)= 7.90302408; T( 8,559)= 7.91314631; T( 8,560)= 7.92328094; T( 8,561)= 7.93342805; T( 8,562)= 7.94358773; T( 8,563)= 7.95376004; T( 8,564)= 7.96394508; T( 8,565)= 7.97414293; T( 8,566)= 7.98435367; T( 8,567)= 7.99457738; T( 8,568)= 8.00481414; T( 8,569)= 8.01506405; T( 8,570)= 8.02532718; T( 8,571)= 8.03560361; T( 8,572)= 8.04589344; T( 8,573)= 8.05619675; T( 8,574)= 8.06651363; T( 8,575)= 8.07684415; T( 8,576)= 8.08718842; T( 8,577)= 8.09754651; T( 8,578)= 8.10791852; T( 8,579)= 8.11830453; T( 8,580)= 8.12870463; T( 8,581)= 8.13911891; T( 8,582)= 8.14954747; T( 8,583)= 8.15999039; T( 8,584)= 8.17044776; T( 8,585)= 8.18091968; T( 8,586)= 8.19140623; T( 8,587)= 8.20190752; T( 8,588)= 8.21242363; T( 8,589)= 8.22295465; T( 8,590)= 8.23350069; T( 8,591)= 8.24406183; T( 8,592)= 8.25463818; T( 8,593)= 8.26522983; T( 8,594)= 8.27583687; T( 8,595)= 8.28645940; T( 8,596)= 8.29709752; T( 8,597)= 8.30775134; T( 8,598)= 8.31842094; T( 8,599)= 8.32910643; T( 8,600)= 8.33980790; T( 8,601)= 8.35052547; T( 8,602)= 8.36125922; T( 8,603)= 8.37200927; T( 8,604)= 8.38277572; T( 8,605)= 8.39355867; T( 8,606)= 8.40435821; T( 8,607)= 8.41517447; T( 8,608)= 8.42600755; T( 8,609)= 8.43685754; T( 8,610)= 8.44772456; T( 8,611)= 8.45860872; T( 8,612)= 8.46951012; T( 8,613)= 8.48042887; T( 8,614)= 8.49136509; T( 8,615)= 8.50231888; T( 8,616)= 8.51329036; T( 8,617)= 8.52427963; T( 8,618)= 8.53528681; T( 8,619)= 8.54631202; T( 8,620)= 8.55735536; T( 8,621)= 8.56841696; T( 8,622)= 8.57949693; T( 8,623)= 8.59059538; T( 8,624)= 8.60171244; T( 8,625)= 8.61284822; T( 8,626)= 8.62400284; T( 8,627)= 8.63517642; T( 8,628)= 8.64636909; T( 8,629)= 8.65758095; T( 8,630)= 8.66881215; T( 8,631)= 8.68006280; T( 8,632)= 8.69133302; T( 8,633)= 8.70262294; T( 8,634)= 8.71393269; T( 8,635)= 8.72526239; T( 8,636)= 8.73661217; T( 8,637)= 8.74798217; T( 8,638)= 8.75937251; T( 8,639)= 8.77078331; T( 8,640)= 8.78221473; T( 8,641)= 8.79366688; T( 8,642)= 8.80513990; T( 8,643)= 8.81663392; T( 8,644)= 8.82814909; T( 8,645)= 8.83968553; T( 8,646)= 8.85124340; T( 8,647)= 8.86282282; T( 8,648)= 8.87442393; T( 8,649)= 8.88604688; T( 8,650)= 8.89769181; T( 8,651)= 8.90935887; T( 8,652)= 8.92104819; T( 8,653)= 8.93275993; T( 8,654)= 8.94449422; T( 8,655)= 8.95625122; T( 8,656)= 8.96803109; T( 8,657)= 8.97983395; T( 8,658)= 8.99165998; T( 8,659)= 9.00350932; T( 8,660)= 9.01538212; T( 8,661)= 9.02727855; T( 8,662)= 9.03919875; T( 8,663)= 9.05114289; T( 8,664)= 9.06311112; T( 8,665)= 9.07510361; T( 8,666)= 9.08712051; T( 8,667)= 9.09916200; T( 8,668)= 9.11122822; T( 8,669)= 9.12331936; T( 8,670)= 9.13543557; T( 8,671)= 9.14757703; T( 8,672)= 9.15974390; T( 8,673)= 9.17193636; T( 8,674)= 9.18415458; T( 8,675)= 9.19639873; T( 8,676)= 9.20866899; T( 8,677)= 9.22096554; T( 8,678)= 9.23328855; T( 8,679)= 9.24563821; T( 8,680)= 9.25801470; T( 8,681)= 9.27041820; T( 8,682)= 9.28284890; T( 8,683)= 9.29530697; T( 8,684)= 9.30779262; T( 8,685)= 9.32030604; T( 8,686)= 9.33284740; T( 8,687)= 9.34541692; T( 8,688)= 9.35801477; T( 8,689)= 9.37064117; T( 8,690)= 9.38329630; T( 8,691)= 9.39598037; T( 8,692)= 9.40869359; T( 8,693)= 9.42143614; T( 8,694)= 9.43420825; T( 8,695)= 9.44701012; T( 8,696)= 9.45984196; T( 8,697)= 9.47270399; T( 8,698)= 9.48559640; T( 8,699)= 9.49851943; T( 8,700)= 9.51147329; T( 8,701)= 9.52445819; T( 8,702)= 9.53747437; T( 8,703)= 9.55052204; T( 8,704)= 9.56360144; T( 8,705)= 9.57671278; T( 8,706)= 9.58985631; T( 8,707)= 9.60303225; T( 8,708)= 9.61624084; T( 8,709)= 9.62948231; T( 8,710)= 9.64275691; T( 8,711)= 9.65606488; T( 8,712)= 9.66940646; T( 8,713)= 9.68278190; T( 8,714)= 9.69619145; T( 8,715)= 9.70963536; T( 8,716)= 9.72311389; T( 8,717)= 9.73662729; T( 8,718)= 9.75017582; T( 8,719)= 9.76375974; T( 8,720)= 9.77737932; T( 8,721)= 9.79103483; T( 8,722)= 9.80472654; T( 8,723)= 9.81845471; T( 8,724)= 9.83221963; T( 8,725)= 9.84602157; T( 8,726)= 9.85986082; T( 8,727)= 9.87373766; T( 8,728)= 9.88765238; T( 8,729)= 9.90160527; T( 8,730)= 9.91559661; T( 8,731)= 9.92962672; T( 8,732)= 9.94369589; T( 8,733)= 9.95780441; T( 8,734)= 9.97195261; T( 8,735)= 9.98614078; T( 8,736)=10.00036925; T( 8,737)=10.01463832; T( 8,738)=10.02894832; T( 8,739)=10.04329957; T( 8,740)=10.05769240; T( 8,741)=10.07212714; T( 8,742)=10.08660412; T( 8,743)=10.10112368; T( 8,744)=10.11568617; T( 8,745)=10.13029192; T( 8,746)=10.14494130; T( 8,747)=10.15963465; T( 8,748)=10.17437232; T( 8,749)=10.18915469; T( 8,750)=10.20398212; T( 8,751)=10.21885497; T( 8,752)=10.23377363; T( 8,753)=10.24873846; T( 8,754)=10.26374987; T( 8,755)=10.27880822; T( 8,756)=10.29391392; T( 8,757)=10.30906736; T( 8,758)=10.32426894; T( 8,759)=10.33951907; T( 8,760)=10.35481817; T( 8,761)=10.37016664; T( 8,762)=10.38556491; T( 8,763)=10.40101340; T( 8,764)=10.41651256; T( 8,765)=10.43206280; T( 8,766)=10.44766459; T( 8,767)=10.46331836; T( 8,768)=10.47902456; T( 8,769)=10.49478367; T( 8,770)=10.51059614; T( 8,771)=10.52646244; T( 8,772)=10.54238305; T( 8,773)=10.55835845; T( 8,774)=10.57438914; T( 8,775)=10.59047561; T( 8,776)=10.60661835; T( 8,777)=10.62281788; T( 8,778)=10.63907472; T( 8,779)=10.65538938; T( 8,780)=10.67176239; T( 8,781)=10.68819430; T( 8,782)=10.70468563; T( 8,783)=10.72123695; T( 8,784)=10.73784880; T( 8,785)=10.75452176; T( 8,786)=10.77125639; T( 8,787)=10.78805328; T( 8,788)=10.80491301; T( 8,789)=10.82183619; T( 8,790)=10.83882340; T( 8,791)=10.85587528; T( 8,792)=10.87299244; T( 8,793)=10.89017551; T( 8,794)=10.90742512; T( 8,795)=10.92474194; T( 8,796)=10.94212660; T( 8,797)=10.95957979; T( 8,798)=10.97710218; T( 8,799)=10.99469445; T( 8,800)=11.01235730; T( 8,801)=11.03009143; T( 8,802)=11.04789757; T( 8,803)=11.06577644; T( 8,804)=11.08372877; T( 8,805)=11.10175532; T( 8,806)=11.11985685; T( 8,807)=11.13803413; T( 8,808)=11.15628794; T( 8,809)=11.17461907; T( 8,810)=11.19302834; T( 8,811)=11.21151657; T( 8,812)=11.23008458; T( 8,813)=11.24873322; T( 8,814)=11.26746336; T( 8,815)=11.28627586; T( 8,816)=11.30517160; T( 8,817)=11.32415150; T( 8,818)=11.34321646; T( 8,819)=11.36236742; T( 8,820)=11.38160531; T( 8,821)=11.40093110; T( 8,822)=11.42034576; T( 8,823)=11.43985029; T( 8,824)=11.45944568; T( 8,825)=11.47913298; T( 8,826)=11.49891321; T( 8,827)=11.51878743; T( 8,828)=11.53875673; T( 8,829)=11.55882221; T( 8,830)=11.57898496; T( 8,831)=11.59924613; T( 8,832)=11.61960687; T( 8,833)=11.64006836; T( 8,834)=11.66063178; T( 8,835)=11.68129836; T( 8,836)=11.70206932; T( 8,837)=11.72294593; T( 8,838)=11.74392947; T( 8,839)=11.76502124; T( 8,840)=11.78622257; T( 8,841)=11.80753482; T( 8,842)=11.82895936; T( 8,843)=11.85049759; T( 8,844)=11.87215095; T( 8,845)=11.89392088; T( 8,846)=11.91580888; T( 8,847)=11.93781645; T( 8,848)=11.95994514; T( 8,849)=11.98219651; T( 8,850)=12.00457218; T( 8,851)=12.02707376; T( 8,852)=12.04970293; T( 8,853)=12.07246138; T( 8,854)=12.09535085; T( 8,855)=12.11837310; T( 8,856)=12.14152993; T( 8,857)=12.16482318; T( 8,858)=12.18825473; T( 8,859)=12.21182650; T( 8,860)=12.23554043; T( 8,861)=12.25939853; T( 8,862)=12.28340284; T( 8,863)=12.30755543; T( 8,864)=12.33185844; T( 8,865)=12.35631403; T( 8,866)=12.38092443; T( 8,867)=12.40569189; T( 8,868)=12.43061876; T( 8,869)=12.45570738; T( 8,870)=12.48096019; T( 8,871)=12.50637966; T( 8,872)=12.53196833; T( 8,873)=12.55772879; T( 8,874)=12.58366370; T( 8,875)=12.60977576; T( 8,876)=12.63606776; T( 8,877)=12.66254253; T( 8,878)=12.68920300; T( 8,879)=12.71605214; T( 8,880)=12.74309301; T( 8,881)=12.77032874; T( 8,882)=12.79776253; T( 8,883)=12.82539767; T( 8,884)=12.85323753; T( 8,885)=12.88128557; T( 8,886)=12.90954532; T( 8,887)=12.93802042; T( 8,888)=12.96671460; T( 8,889)=12.99563168; T( 8,890)=13.02477560; T( 8,891)=13.05415038; T( 8,892)=13.08376017; T( 8,893)=13.11360922; T( 8,894)=13.14370190; T( 8,895)=13.17404271; T( 8,896)=13.20463625; T( 8,897)=13.23548729; T( 8,898)=13.26660069; T( 8,899)=13.29798150; T( 8,900)=13.32963487; T( 8,901)=13.36156614; T( 8,902)=13.39378077; T( 8,903)=13.42628443; T( 8,904)=13.45908291; T( 8,905)=13.49218222; T( 8,906)=13.52558855; T( 8,907)=13.55930825; T( 8,908)=13.59334790; T( 8,909)=13.62771430; T( 8,910)=13.66241443; T( 8,911)=13.69745554; T( 8,912)=13.73284510; T( 8,913)=13.76859083; T( 8,914)=13.80470070; T( 8,915)=13.84118298; T( 8,916)=13.87804619; T( 8,917)=13.91529919; T( 8,918)=13.95295113; T( 8,919)=13.99101147; T( 8,920)=14.02949005; T( 8,921)=14.06839705; T( 8,922)=14.10774303; T( 8,923)=14.14753895; T( 8,924)=14.18779620; T( 8,925)=14.22852659; T( 8,926)=14.26974241; T( 8,927)=14.31145642; T( 8,928)=14.35368191; T( 8,929)=14.39643270; T( 8,930)=14.43972320; T( 8,931)=14.48356840; T( 8,932)=14.52798395; T( 8,933)=14.57298616; T( 8,934)=14.61859207; T( 8,935)=14.66481946; T( 8,936)=14.71168693; T( 8,937)=14.75921392; T( 8,938)=14.80742080; T( 8,939)=14.85632887; T( 8,940)=14.90596048; T( 8,941)=14.95633906; T( 8,942)=15.00748923; T( 8,943)=15.05943682; T( 8,944)=15.11220901; T( 8,945)=15.16583441; T( 8,946)=15.22034314; T( 8,947)=15.27576697; T( 8,948)=15.33213943; T( 8,949)=15.38949593; T( 8,950)=15.44787392; T( 8,951)=15.50731306; T( 8,952)=15.56785535; T( 8,953)=15.62954539; T( 8,954)=15.69243055; T( 8,955)=15.75656121; T( 8,956)=15.82199104; T( 8,957)=15.88877729; T( 8,958)=15.95698108; T( 8,959)=16.02666783; T( 8,960)=16.09790761; T( 8,961)=16.17077561; T( 8,962)=16.24535269; T( 8,963)=16.32172592; T( 8,964)=16.39998923; T( 8,965)=16.48024423; T( 8,966)=16.56260097; T( 8,967)=16.64717898; T( 8,968)=16.73410838; T( 8,969)=16.82353113; T( 8,970)=16.91560259; T( 8,971)=17.01049321; T( 8,972)=17.10839060; T( 8,973)=17.20950186; T( 8,974)=17.31405648; T( 8,975)=17.42230962; T( 8,976)=17.53454614; T( 8,977)=17.65108541; T( 8,978)=17.77228713; T( 8,979)=17.89855848; T( 8,980)=18.03036285; T( 8,981)=18.16823076; T( 8,982)=18.31277355; T( 8,983)=18.46470069; T( 8,984)=18.62484212; T( 8,985)=18.79417722; T( 8,986)=18.97387323; T( 8,987)=19.16533665; T( 8,988)=19.37028387; T( 8,989)=19.59083975; T( 8,990)=19.82967904; T( 8,991)=20.09023503; T( 8,992)=20.37701777; T( 8,993)=20.69611949; T( 8,994)=21.05605726; T( 8,995)=21.46926575; T( 8,996)=21.95495499; T( 8,997)=22.54517756; T( 8,998)=23.29973450; T( 8,999)=24.35208135; T( 8,1000)=26.12448156; T( 8,1001)=31.82762800; T( 8,1002)=37.33159364; T( 9, 1)= 0.00000000; T( 9, 2)= 1.15194955; T( 9, 3)= 1.37020546; T( 9, 4)= 1.51943564; T( 9, 5)= 1.63669070; T( 9, 6)= 1.73493290; T( 9, 7)= 1.82037797; T( 9, 8)= 1.89653501; T( 9, 9)= 1.96559825; T( 9,10)= 2.02904000; T( 9,11)= 2.08790074; T( 9,12)= 2.14294562; T( 9,13)= 2.19475535; T( 9,14)= 2.24378211; T( 9,15)= 2.29038551; T( 9,16)= 2.33485678; T( 9,17)= 2.37743533; T( 9,18)= 2.41832067; T( 9,19)= 2.45768093; T( 9,20)= 2.49565926; T( 9,21)= 2.53237867; T( 9,22)= 2.56794569; T( 9,23)= 2.60245327; T( 9,24)= 2.63598304; T( 9,25)= 2.66860710; T( 9,26)= 2.70038950; T( 9,27)= 2.73138742; T( 9,28)= 2.76165214; T( 9,29)= 2.79122983; T( 9,30)= 2.82016223; T( 9,31)= 2.84848723; T( 9,32)= 2.87623931; T( 9,33)= 2.90344997; T( 9,34)= 2.93014807; T( 9,35)= 2.95636010; T( 9,36)= 2.98211048; T( 9,37)= 3.00742173; T( 9,38)= 3.03231470; T( 9,39)= 3.05680873; T( 9,40)= 3.08092177; T( 9,41)= 3.10467056; T( 9,42)= 3.12807070; T( 9,43)= 3.15113676; T( 9,44)= 3.17388238; T( 9,45)= 3.19632036; T( 9,46)= 3.21846269; T( 9,47)= 3.24032068; T( 9,48)= 3.26190494; T( 9,49)= 3.28322551; T( 9,50)= 3.30429183; T( 9,51)= 3.32511284; T( 9,52)= 3.34569701; T( 9,53)= 3.36605234; T( 9,54)= 3.38618644; T( 9,55)= 3.40610651; T( 9,56)= 3.42581940; T( 9,57)= 3.44533163; T( 9,58)= 3.46464940; T( 9,59)= 3.48377863; T( 9,60)= 3.50272495; T( 9,61)= 3.52149373; T( 9,62)= 3.54009013; T( 9,63)= 3.55851904; T( 9,64)= 3.57678517; T( 9,65)= 3.59489302; T( 9,66)= 3.61284689; T( 9,67)= 3.63065091; T( 9,68)= 3.64830905; T( 9,69)= 3.66582510; T( 9,70)= 3.68320273; T( 9,71)= 3.70044544; T( 9,72)= 3.71755660; T( 9,73)= 3.73453947; T( 9,74)= 3.75139717; T( 9,75)= 3.76813270; T( 9,76)= 3.78474899; T( 9,77)= 3.80124881; T( 9,78)= 3.81763487; T( 9,79)= 3.83390978; T( 9,80)= 3.85007605; T( 9,81)= 3.86613610; T( 9,82)= 3.88209230; T( 9,83)= 3.89794690; T( 9,84)= 3.91370210; T( 9,85)= 3.92936004; T( 9,86)= 3.94492275; T( 9,87)= 3.96039224; T( 9,88)= 3.97577044; T( 9,89)= 3.99105922; T( 9,90)= 4.00626039; T( 9,91)= 4.02137570; T( 9,92)= 4.03640687; T( 9,93)= 4.05135555; T( 9,94)= 4.06622335; T( 9,95)= 4.08101183; T( 9,96)= 4.09572250; T( 9,97)= 4.11035685; T( 9,98)= 4.12491630; T( 9,99)= 4.13940224; T( 9,100)= 4.15381604; T( 9,101)= 4.16815901; T( 9,102)= 4.18243243; T( 9,103)= 4.19663756; T( 9,104)= 4.21077561; T( 9,105)= 4.22484776; T( 9,106)= 4.23885517; T( 9,107)= 4.25279897; T( 9,108)= 4.26668026; T( 9,109)= 4.28050009; T( 9,110)= 4.29425952; T( 9,111)= 4.30795956; T( 9,112)= 4.32160120; T( 9,113)= 4.33518542; T( 9,114)= 4.34871316; T( 9,115)= 4.36218535; T( 9,116)= 4.37560287; T( 9,117)= 4.38896663; T( 9,118)= 4.40227747; T( 9,119)= 4.41553624; T( 9,120)= 4.42874376; T( 9,121)= 4.44190084; T( 9,122)= 4.45500826; T( 9,123)= 4.46806678; T( 9,124)= 4.48107717; T( 9,125)= 4.49404015; T( 9,126)= 4.50695646; T( 9,127)= 4.51982678; T( 9,128)= 4.53265182; T( 9,129)= 4.54543224; T( 9,130)= 4.55816871; T( 9,131)= 4.57086188; T( 9,132)= 4.58351239; T( 9,133)= 4.59612084; T( 9,134)= 4.60868786; T( 9,135)= 4.62121403; T( 9,136)= 4.63369996; T( 9,137)= 4.64614620; T( 9,138)= 4.65855333; T( 9,139)= 4.67092189; T( 9,140)= 4.68325242; T( 9,141)= 4.69554547; T( 9,142)= 4.70780154; T( 9,143)= 4.72002115; T( 9,144)= 4.73220480; T( 9,145)= 4.74435299; T( 9,146)= 4.75646620; T( 9,147)= 4.76854490; T( 9,148)= 4.78058956; T( 9,149)= 4.79260064; T( 9,150)= 4.80457858; T( 9,151)= 4.81652384; T( 9,152)= 4.82843684; T( 9,153)= 4.84031801; T( 9,154)= 4.85216777; T( 9,155)= 4.86398654; T( 9,156)= 4.87577471; T( 9,157)= 4.88753269; T( 9,158)= 4.89926087; T( 9,159)= 4.91095963; T( 9,160)= 4.92262936; T( 9,161)= 4.93427042; T( 9,162)= 4.94588318; T( 9,163)= 4.95746801; T( 9,164)= 4.96902525; T( 9,165)= 4.98055527; T( 9,166)= 4.99205839; T( 9,167)= 5.00353496; T( 9,168)= 5.01498531; T( 9,169)= 5.02640978; T( 9,170)= 5.03780868; T( 9,171)= 5.04918233; T( 9,172)= 5.06053104; T( 9,173)= 5.07185513; T( 9,174)= 5.08315490; T( 9,175)= 5.09443064; T( 9,176)= 5.10568265; T( 9,177)= 5.11691122; T( 9,178)= 5.12811664; T( 9,179)= 5.13929920; T( 9,180)= 5.15045916; T( 9,181)= 5.16159680; T( 9,182)= 5.17271239; T( 9,183)= 5.18380621; T( 9,184)= 5.19487851; T( 9,185)= 5.20592954; T( 9,186)= 5.21695958; T( 9,187)= 5.22796886; T( 9,188)= 5.23895764; T( 9,189)= 5.24992616; T( 9,190)= 5.26087466; T( 9,191)= 5.27180339; T( 9,192)= 5.28271258; T( 9,193)= 5.29360245; T( 9,194)= 5.30447325; T( 9,195)= 5.31532519; T( 9,196)= 5.32615850; T( 9,197)= 5.33697340; T( 9,198)= 5.34777011; T( 9,199)= 5.35854884; T( 9,200)= 5.36930980; T( 9,201)= 5.38005321; T( 9,202)= 5.39077927; T( 9,203)= 5.40148819; T( 9,204)= 5.41218016; T( 9,205)= 5.42285539; T( 9,206)= 5.43351408; T( 9,207)= 5.44415641; T( 9,208)= 5.45478258; T( 9,209)= 5.46539279; T( 9,210)= 5.47598721; T( 9,211)= 5.48656604; T( 9,212)= 5.49712945; T( 9,213)= 5.50767763; T( 9,214)= 5.51821077; T( 9,215)= 5.52872902; T( 9,216)= 5.53923258; T( 9,217)= 5.54972160; T( 9,218)= 5.56019628; T( 9,219)= 5.57065676; T( 9,220)= 5.58110323; T( 9,221)= 5.59153584; T( 9,222)= 5.60195476; T( 9,223)= 5.61236016; T( 9,224)= 5.62275219; T( 9,225)= 5.63313100; T( 9,226)= 5.64349677; T( 9,227)= 5.65384964; T( 9,228)= 5.66418976; T( 9,229)= 5.67451729; T( 9,230)= 5.68483238; T( 9,231)= 5.69513517; T( 9,232)= 5.70542582; T( 9,233)= 5.71570447; T( 9,234)= 5.72597127; T( 9,235)= 5.73622635; T( 9,236)= 5.74646986; T( 9,237)= 5.75670193; T( 9,238)= 5.76692272; T( 9,239)= 5.77713234; T( 9,240)= 5.78733095; T( 9,241)= 5.79751867; T( 9,242)= 5.80769564; T( 9,243)= 5.81786199; T( 9,244)= 5.82801785; T( 9,245)= 5.83816335; T( 9,246)= 5.84829861; T( 9,247)= 5.85842378; T( 9,248)= 5.86853896; T( 9,249)= 5.87864429; T( 9,250)= 5.88873989; T( 9,251)= 5.89882588; T( 9,252)= 5.90890239; T( 9,253)= 5.91896953; T( 9,254)= 5.92902742; T( 9,255)= 5.93907619; T( 9,256)= 5.94911594; T( 9,257)= 5.95914680; T( 9,258)= 5.96916888; T( 9,259)= 5.97918230; T( 9,260)= 5.98918716; T( 9,261)= 5.99918358; T( 9,262)= 6.00917168; T( 9,263)= 6.01915155; T( 9,264)= 6.02912332; T( 9,265)= 6.03908709; T( 9,266)= 6.04904297; T( 9,267)= 6.05899106; T( 9,268)= 6.06893147; T( 9,269)= 6.07886431; T( 9,270)= 6.08878968; T( 9,271)= 6.09870768; T( 9,272)= 6.10861842; T( 9,273)= 6.11852200; T( 9,274)= 6.12841851; T( 9,275)= 6.13830807; T( 9,276)= 6.14819077; T( 9,277)= 6.15806671; T( 9,278)= 6.16793598; T( 9,279)= 6.17779869; T( 9,280)= 6.18765493; T( 9,281)= 6.19750480; T( 9,282)= 6.20734839; T( 9,283)= 6.21718579; T( 9,284)= 6.22701711; T( 9,285)= 6.23684243; T( 9,286)= 6.24666185; T( 9,287)= 6.25647546; T( 9,288)= 6.26628335; T( 9,289)= 6.27608561; T( 9,290)= 6.28588234; T( 9,291)= 6.29567361; T( 9,292)= 6.30545952; T( 9,293)= 6.31524017; T( 9,294)= 6.32501563; T( 9,295)= 6.33478599; T( 9,296)= 6.34455134; T( 9,297)= 6.35431177; T( 9,298)= 6.36406737; T( 9,299)= 6.37381821; T( 9,300)= 6.38356438; T( 9,301)= 6.39330596; T( 9,302)= 6.40304305; T( 9,303)= 6.41277572; T( 9,304)= 6.42250405; T( 9,305)= 6.43222813; T( 9,306)= 6.44194804; T( 9,307)= 6.45166386; T( 9,308)= 6.46137567; T( 9,309)= 6.47108355; T( 9,310)= 6.48078758; T( 9,311)= 6.49048784; T( 9,312)= 6.50018441; T( 9,313)= 6.50987736; T( 9,314)= 6.51956678; T( 9,315)= 6.52925274; T( 9,316)= 6.53893531; T( 9,317)= 6.54861459; T( 9,318)= 6.55829063; T( 9,319)= 6.56796353; T( 9,320)= 6.57763335; T( 9,321)= 6.58730017; T( 9,322)= 6.59696406; T( 9,323)= 6.60662509; T( 9,324)= 6.61628336; T( 9,325)= 6.62593891; T( 9,326)= 6.63559184; T( 9,327)= 6.64524221; T( 9,328)= 6.65489009; T( 9,329)= 6.66453556; T( 9,330)= 6.67417869; T( 9,331)= 6.68381954; T( 9,332)= 6.69345821; T( 9,333)= 6.70309474; T( 9,334)= 6.71272922; T( 9,335)= 6.72236171; T( 9,336)= 6.73199229; T( 9,337)= 6.74162102; T( 9,338)= 6.75124797; T( 9,339)= 6.76087322; T( 9,340)= 6.77049683; T( 9,341)= 6.78011887; T( 9,342)= 6.78973941; T( 9,343)= 6.79935851; T( 9,344)= 6.80897626; T( 9,345)= 6.81859270; T( 9,346)= 6.82820791; T( 9,347)= 6.83782196; T( 9,348)= 6.84743492; T( 9,349)= 6.85704684; T( 9,350)= 6.86665781; T( 9,351)= 6.87626787; T( 9,352)= 6.88587711; T( 9,353)= 6.89548557; T( 9,354)= 6.90509334; T( 9,355)= 6.91470048; T( 9,356)= 6.92430705; T( 9,357)= 6.93391311; T( 9,358)= 6.94351873; T( 9,359)= 6.95312398; T( 9,360)= 6.96272891; T( 9,361)= 6.97233360; T( 9,362)= 6.98193811; T( 9,363)= 6.99154249; T( 9,364)= 7.00114683; T( 9,365)= 7.01075116; T( 9,366)= 7.02035557; T( 9,367)= 7.02996012; T( 9,368)= 7.03956485; T( 9,369)= 7.04916985; T( 9,370)= 7.05877517; T( 9,371)= 7.06838088; T( 9,372)= 7.07798703; T( 9,373)= 7.08759369; T( 9,374)= 7.09720092; T( 9,375)= 7.10680878; T( 9,376)= 7.11641733; T( 9,377)= 7.12602664; T( 9,378)= 7.13563677; T( 9,379)= 7.14524778; T( 9,380)= 7.15485972; T( 9,381)= 7.16447266; T( 9,382)= 7.17408667; T( 9,383)= 7.18370179; T( 9,384)= 7.19331810; T( 9,385)= 7.20293565; T( 9,386)= 7.21255451; T( 9,387)= 7.22217472; T( 9,388)= 7.23179637; T( 9,389)= 7.24141949; T( 9,390)= 7.25104416; T( 9,391)= 7.26067043; T( 9,392)= 7.27029837; T( 9,393)= 7.27992803; T( 9,394)= 7.28955947; T( 9,395)= 7.29919276; T( 9,396)= 7.30882795; T( 9,397)= 7.31846510; T( 9,398)= 7.32810427; T( 9,399)= 7.33774552; T( 9,400)= 7.34738891; T( 9,401)= 7.35703450; T( 9,402)= 7.36668235; T( 9,403)= 7.37633252; T( 9,404)= 7.38598506; T( 9,405)= 7.39564003; T( 9,406)= 7.40529751; T( 9,407)= 7.41495753; T( 9,408)= 7.42462017; T( 9,409)= 7.43428547; T( 9,410)= 7.44395351; T( 9,411)= 7.45362433; T( 9,412)= 7.46329800; T( 9,413)= 7.47297458; T( 9,414)= 7.48265412; T( 9,415)= 7.49233668; T( 9,416)= 7.50202232; T( 9,417)= 7.51171111; T( 9,418)= 7.52140309; T( 9,419)= 7.53109833; T( 9,420)= 7.54079688; T( 9,421)= 7.55049881; T( 9,422)= 7.56020417; T( 9,423)= 7.56991303; T( 9,424)= 7.57962543; T( 9,425)= 7.58934144; T( 9,426)= 7.59906111; T( 9,427)= 7.60878452; T( 9,428)= 7.61851170; T( 9,429)= 7.62824273; T( 9,430)= 7.63797766; T( 9,431)= 7.64771655; T( 9,432)= 7.65745946; T( 9,433)= 7.66720644; T( 9,434)= 7.67695756; T( 9,435)= 7.68671287; T( 9,436)= 7.69647244; T( 9,437)= 7.70623631; T( 9,438)= 7.71600456; T( 9,439)= 7.72577724; T( 9,440)= 7.73555440; T( 9,441)= 7.74533611; T( 9,442)= 7.75512243; T( 9,443)= 7.76491341; T( 9,444)= 7.77470912; T( 9,445)= 7.78450961; T( 9,446)= 7.79431494; T( 9,447)= 7.80412517; T( 9,448)= 7.81394037; T( 9,449)= 7.82376058; T( 9,450)= 7.83358588; T( 9,451)= 7.84341631; T( 9,452)= 7.85325194; T( 9,453)= 7.86309283; T( 9,454)= 7.87293904; T( 9,455)= 7.88279062; T( 9,456)= 7.89264764; T( 9,457)= 7.90251016; T( 9,458)= 7.91237824; T( 9,459)= 7.92225194; T( 9,460)= 7.93213131; T( 9,461)= 7.94201642; T( 9,462)= 7.95190733; T( 9,463)= 7.96180410; T( 9,464)= 7.97170679; T( 9,465)= 7.98161545; T( 9,466)= 7.99153016; T( 9,467)= 8.00145097; T( 9,468)= 8.01137795; T( 9,469)= 8.02131115; T( 9,470)= 8.03125063; T( 9,471)= 8.04119646; T( 9,472)= 8.05114870; T( 9,473)= 8.06110741; T( 9,474)= 8.07107265; T( 9,475)= 8.08104448; T( 9,476)= 8.09102297; T( 9,477)= 8.10100818; T( 9,478)= 8.11100017; T( 9,479)= 8.12099900; T( 9,480)= 8.13100473; T( 9,481)= 8.14101744; T( 9,482)= 8.15103717; T( 9,483)= 8.16106400; T( 9,484)= 8.17109798; T( 9,485)= 8.18113918; T( 9,486)= 8.19118767; T( 9,487)= 8.20124350; T( 9,488)= 8.21130675; T( 9,489)= 8.22137747; T( 9,490)= 8.23145573; T( 9,491)= 8.24154159; T( 9,492)= 8.25163512; T( 9,493)= 8.26173639; T( 9,494)= 8.27184545; T( 9,495)= 8.28196237; T( 9,496)= 8.29208722; T( 9,497)= 8.30222007; T( 9,498)= 8.31236097; T( 9,499)= 8.32251000; T( 9,500)= 8.33266722; T( 9,501)= 8.34283269; T( 9,502)= 8.35300649; T( 9,503)= 8.36318868; T( 9,504)= 8.37337932; T( 9,505)= 8.38357849; T( 9,506)= 8.39378625; T( 9,507)= 8.40400267; T( 9,508)= 8.41422781; T( 9,509)= 8.42446175; T( 9,510)= 8.43470455; T( 9,511)= 8.44495628; T( 9,512)= 8.45521701; T( 9,513)= 8.46548681; T( 9,514)= 8.47576574; T( 9,515)= 8.48605388; T( 9,516)= 8.49635130; T( 9,517)= 8.50665806; T( 9,518)= 8.51697424; T( 9,519)= 8.52729991; T( 9,520)= 8.53763513; T( 9,521)= 8.54797998; T( 9,522)= 8.55833453; T( 9,523)= 8.56869885; T( 9,524)= 8.57907301; T( 9,525)= 8.58945709; T( 9,526)= 8.59985115; T( 9,527)= 8.61025527; T( 9,528)= 8.62066953; T( 9,529)= 8.63109399; T( 9,530)= 8.64152872; T( 9,531)= 8.65197381; T( 9,532)= 8.66242932; T( 9,533)= 8.67289534; T( 9,534)= 8.68337193; T( 9,535)= 8.69385917; T( 9,536)= 8.70435713; T( 9,537)= 8.71486590; T( 9,538)= 8.72538554; T( 9,539)= 8.73591613; T( 9,540)= 8.74645775; T( 9,541)= 8.75701048; T( 9,542)= 8.76757440; T( 9,543)= 8.77814957; T( 9,544)= 8.78873609; T( 9,545)= 8.79933402; T( 9,546)= 8.80994344; T( 9,547)= 8.82056444; T( 9,548)= 8.83119710; T( 9,549)= 8.84184149; T( 9,550)= 8.85249770; T( 9,551)= 8.86316579; T( 9,552)= 8.87384587; T( 9,553)= 8.88453800; T( 9,554)= 8.89524227; T( 9,555)= 8.90595876; T( 9,556)= 8.91668755; T( 9,557)= 8.92742873; T( 9,558)= 8.93818238; T( 9,559)= 8.94894858; T( 9,560)= 8.95972742; T( 9,561)= 8.97051897; T( 9,562)= 8.98132334; T( 9,563)= 8.99214059; T( 9,564)= 9.00297083; T( 9,565)= 9.01381412; T( 9,566)= 9.02467057; T( 9,567)= 9.03554025; T( 9,568)= 9.04642326; T( 9,569)= 9.05731968; T( 9,570)= 9.06822960; T( 9,571)= 9.07915312; T( 9,572)= 9.09009031; T( 9,573)= 9.10104127; T( 9,574)= 9.11200610; T( 9,575)= 9.12298487; T( 9,576)= 9.13397769; T( 9,577)= 9.14498464; T( 9,578)= 9.15600581; T( 9,579)= 9.16704131; T( 9,580)= 9.17809122; T( 9,581)= 9.18915564; T( 9,582)= 9.20023466; T( 9,583)= 9.21132837; T( 9,584)= 9.22243688; T( 9,585)= 9.23356028; T( 9,586)= 9.24469866; T( 9,587)= 9.25585212; T( 9,588)= 9.26702077; T( 9,589)= 9.27820469; T( 9,590)= 9.28940399; T( 9,591)= 9.30061876; T( 9,592)= 9.31184912; T( 9,593)= 9.32309515; T( 9,594)= 9.33435696; T( 9,595)= 9.34563465; T( 9,596)= 9.35692833; T( 9,597)= 9.36823809; T( 9,598)= 9.37956404; T( 9,599)= 9.39090629; T( 9,600)= 9.40226494; T( 9,601)= 9.41364009; T( 9,602)= 9.42503186; T( 9,603)= 9.43644035; T( 9,604)= 9.44786566; T( 9,605)= 9.45930791; T( 9,606)= 9.47076721; T( 9,607)= 9.48224366; T( 9,608)= 9.49373737; T( 9,609)= 9.50524846; T( 9,610)= 9.51677704; T( 9,611)= 9.52832322; T( 9,612)= 9.53988712; T( 9,613)= 9.55146884; T( 9,614)= 9.56306851; T( 9,615)= 9.57468623; T( 9,616)= 9.58632213; T( 9,617)= 9.59797633; T( 9,618)= 9.60964893; T( 9,619)= 9.62134007; T( 9,620)= 9.63304986; T( 9,621)= 9.64477841; T( 9,622)= 9.65652586; T( 9,623)= 9.66829231; T( 9,624)= 9.68007791; T( 9,625)= 9.69188276; T( 9,626)= 9.70370700; T( 9,627)= 9.71555075; T( 9,628)= 9.72741414; T( 9,629)= 9.73929729; T( 9,630)= 9.75120033; T( 9,631)= 9.76312339; T( 9,632)= 9.77506660; T( 9,633)= 9.78703009; T( 9,634)= 9.79901400; T( 9,635)= 9.81101845; T( 9,636)= 9.82304359; T( 9,637)= 9.83508954; T( 9,638)= 9.84715643; T( 9,639)= 9.85924442; T( 9,640)= 9.87135363; T( 9,641)= 9.88348421; T( 9,642)= 9.89563628; T( 9,643)= 9.90781001; T( 9,644)= 9.92000552; T( 9,645)= 9.93222295; T( 9,646)= 9.94446247; T( 9,647)= 9.95672420; T( 9,648)= 9.96900829; T( 9,649)= 9.98131490; T( 9,650)= 9.99364416; T( 9,651)=10.00599624; T( 9,652)=10.01837127; T( 9,653)=10.03076942; T( 9,654)=10.04319084; T( 9,655)=10.05563568; T( 9,656)=10.06810409; T( 9,657)=10.08059623; T( 9,658)=10.09311226; T( 9,659)=10.10565235; T( 9,660)=10.11821664; T( 9,661)=10.13080531; T( 9,662)=10.14341851; T( 9,663)=10.15605641; T( 9,664)=10.16871917; T( 9,665)=10.18140697; T( 9,666)=10.19411997; T( 9,667)=10.20685834; T( 9,668)=10.21962225; T( 9,669)=10.23241188; T( 9,670)=10.24522739; T( 9,671)=10.25806897; T( 9,672)=10.27093679; T( 9,673)=10.28383103; T( 9,674)=10.29675187; T( 9,675)=10.30969950; T( 9,676)=10.32267408; T( 9,677)=10.33567582; T( 9,678)=10.34870489; T( 9,679)=10.36176149; T( 9,680)=10.37484580; T( 9,681)=10.38795801; T( 9,682)=10.40109832; T( 9,683)=10.41426693; T( 9,684)=10.42746402; T( 9,685)=10.44068979; T( 9,686)=10.45394445; T( 9,687)=10.46722820; T( 9,688)=10.48054124; T( 9,689)=10.49388377; T( 9,690)=10.50725600; T( 9,691)=10.52065815; T( 9,692)=10.53409042; T( 9,693)=10.54755302; T( 9,694)=10.56104617; T( 9,695)=10.57457008; T( 9,696)=10.58812498; T( 9,697)=10.60171108; T( 9,698)=10.61532861; T( 9,699)=10.62897779; T( 9,700)=10.64265884; T( 9,701)=10.65637201; T( 9,702)=10.67011751; T( 9,703)=10.68389558; T( 9,704)=10.69770646; T( 9,705)=10.71155038; T( 9,706)=10.72542759; T( 9,707)=10.73933832; T( 9,708)=10.75328283; T( 9,709)=10.76726135; T( 9,710)=10.78127414; T( 9,711)=10.79532144; T( 9,712)=10.80940352; T( 9,713)=10.82352064; T( 9,714)=10.83767304; T( 9,715)=10.85186099; T( 9,716)=10.86608475; T( 9,717)=10.88034460; T( 9,718)=10.89464080; T( 9,719)=10.90897363; T( 9,720)=10.92334336; T( 9,721)=10.93775026; T( 9,722)=10.95219462; T( 9,723)=10.96667673; T( 9,724)=10.98119687; T( 9,725)=10.99575533; T( 9,726)=11.01035240; T( 9,727)=11.02498837; T( 9,728)=11.03966356; T( 9,729)=11.05437825; T( 9,730)=11.06913276; T( 9,731)=11.08392739; T( 9,732)=11.09876245; T( 9,733)=11.11363826; T( 9,734)=11.12855514; T( 9,735)=11.14351342; T( 9,736)=11.15851340; T( 9,737)=11.17355543; T( 9,738)=11.18863983; T( 9,739)=11.20376695; T( 9,740)=11.21893712; T( 9,741)=11.23415068; T( 9,742)=11.24940799; T( 9,743)=11.26470939; T( 9,744)=11.28005524; T( 9,745)=11.29544589; T( 9,746)=11.31088172; T( 9,747)=11.32636309; T( 9,748)=11.34189037; T( 9,749)=11.35746393; T( 9,750)=11.37308416; T( 9,751)=11.38875144; T( 9,752)=11.40446616; T( 9,753)=11.42022871; T( 9,754)=11.43603949; T( 9,755)=11.45189890; T( 9,756)=11.46780736; T( 9,757)=11.48376527; T( 9,758)=11.49977304; T( 9,759)=11.51583111; T( 9,760)=11.53193990; T( 9,761)=11.54809984; T( 9,762)=11.56431136; T( 9,763)=11.58057492; T( 9,764)=11.59689096; T( 9,765)=11.61325993; T( 9,766)=11.62968230; T( 9,767)=11.64615852; T( 9,768)=11.66268907; T( 9,769)=11.67927442; T( 9,770)=11.69591507; T( 9,771)=11.71261149; T( 9,772)=11.72936418; T( 9,773)=11.74617364; T( 9,774)=11.76304038; T( 9,775)=11.77996492; T( 9,776)=11.79694777; T( 9,777)=11.81398947; T( 9,778)=11.83109054; T( 9,779)=11.84825153; T( 9,780)=11.86547298; T( 9,781)=11.88275546; T( 9,782)=11.90009953; T( 9,783)=11.91750574; T( 9,784)=11.93497470; T( 9,785)=11.95250697; T( 9,786)=11.97010315; T( 9,787)=11.98776385; T( 9,788)=12.00548968; T( 9,789)=12.02328125; T( 9,790)=12.04113920; T( 9,791)=12.05906415; T( 9,792)=12.07705675; T( 9,793)=12.09511766; T( 9,794)=12.11324753; T( 9,795)=12.13144705; T( 9,796)=12.14971689; T( 9,797)=12.16805774; T( 9,798)=12.18647031; T( 9,799)=12.20495530; T( 9,800)=12.22351345; T( 9,801)=12.24214547; T( 9,802)=12.26085212; T( 9,803)=12.27963414; T( 9,804)=12.29849231; T( 9,805)=12.31742740; T( 9,806)=12.33644020; T( 9,807)=12.35553151; T( 9,808)=12.37470213; T( 9,809)=12.39395290; T( 9,810)=12.41328465; T( 9,811)=12.43269824; T( 9,812)=12.45219452; T( 9,813)=12.47177437; T( 9,814)=12.49143868; T( 9,815)=12.51118836; T( 9,816)=12.53102432; T( 9,817)=12.55094750; T( 9,818)=12.57095885; T( 9,819)=12.59105932; T( 9,820)=12.61124990; T( 9,821)=12.63153158; T( 9,822)=12.65190538; T( 9,823)=12.67237231; T( 9,824)=12.69293343; T( 9,825)=12.71358979; T( 9,826)=12.73434248; T( 9,827)=12.75519259; T( 9,828)=12.77614124; T( 9,829)=12.79718957; T( 9,830)=12.81833872; T( 9,831)=12.83958988; T( 9,832)=12.86094424; T( 9,833)=12.88240301; T( 9,834)=12.90396743; T( 9,835)=12.92563876; T( 9,836)=12.94741828; T( 9,837)=12.96930729; T( 9,838)=12.99130713; T( 9,839)=13.01341914; T( 9,840)=13.03564470; T( 9,841)=13.05798521; T( 9,842)=13.08044209; T( 9,843)=13.10301681; T( 9,844)=13.12571083; T( 9,845)=13.14852568; T( 9,846)=13.17146287; T( 9,847)=13.19452400; T( 9,848)=13.21771064; T( 9,849)=13.24102442; T( 9,850)=13.26446700; T( 9,851)=13.28804008; T( 9,852)=13.31174538; T( 9,853)=13.33558465; T( 9,854)=13.35955969; T( 9,855)=13.38367233; T( 9,856)=13.40792443; T( 9,857)=13.43231790; T( 9,858)=13.45685468; T( 9,859)=13.48153676; T( 9,860)=13.50636615; T( 9,861)=13.53134493; T( 9,862)=13.55647521; T( 9,863)=13.58175914; T( 9,864)=13.60719892; T( 9,865)=13.63279681; T( 9,866)=13.65855509; T( 9,867)=13.68447612; T( 9,868)=13.71056231; T( 9,869)=13.73681609; T( 9,870)=13.76323998; T( 9,871)=13.78983655; T( 9,872)=13.81660842; T( 9,873)=13.84355827; T( 9,874)=13.87068884; T( 9,875)=13.89800295; T( 9,876)=13.92550348; T( 9,877)=13.95319335; T( 9,878)=13.98107560; T( 9,879)=14.00915329; T( 9,880)=14.03742961; T( 9,881)=14.06590777; T( 9,882)=14.09459111; T( 9,883)=14.12348301; T( 9,884)=14.15258698; T( 9,885)=14.18190657; T( 9,886)=14.21144546; T( 9,887)=14.24120741; T( 9,888)=14.27119626; T( 9,889)=14.30141599; T( 9,890)=14.33187066; T( 9,891)=14.36256442; T( 9,892)=14.39350158; T( 9,893)=14.42468653; T( 9,894)=14.45612379; T( 9,895)=14.48781800; T( 9,896)=14.51977395; T( 9,897)=14.55199654; T( 9,898)=14.58449083; T( 9,899)=14.61726200; T( 9,900)=14.65031542; T( 9,901)=14.68365657; T( 9,902)=14.71729114; T( 9,903)=14.75122495; T( 9,904)=14.78546403; T( 9,905)=14.82001456; T( 9,906)=14.85488294; T( 9,907)=14.89007576; T( 9,908)=14.92559982; T( 9,909)=14.96146212; T( 9,910)=14.99766991; T( 9,911)=15.03423067; T( 9,912)=15.07115212; T( 9,913)=15.10844223; T( 9,914)=15.14610927; T( 9,915)=15.18416175; T( 9,916)=15.22260851; T( 9,917)=15.26145869; T( 9,918)=15.30072174; T( 9,919)=15.34040745; T( 9,920)=15.38052598; T( 9,921)=15.42108786; T( 9,922)=15.46210399; T( 9,923)=15.50358571; T( 9,924)=15.54554477; T( 9,925)=15.58799338; T( 9,926)=15.63094424; T( 9,927)=15.67441053; T( 9,928)=15.71840598; T( 9,929)=15.76294488; T( 9,930)=15.80804209; T( 9,931)=15.85371311; T( 9,932)=15.89997410; T( 9,933)=15.94684192; T( 9,934)=15.99433414; T( 9,935)=16.04246915; T( 9,936)=16.09126615; T( 9,937)=16.14074522; T( 9,938)=16.19092738; T( 9,939)=16.24183463; T( 9,940)=16.29349005; T( 9,941)=16.34591784; T( 9,942)=16.39914340; T( 9,943)=16.45319341; T( 9,944)=16.50809593; T( 9,945)=16.56388048; T( 9,946)=16.62057817; T( 9,947)=16.67822177; T( 9,948)=16.73684590; T( 9,949)=16.79648711; T( 9,950)=16.85718404; T( 9,951)=16.91897760; T( 9,952)=16.98191117; T( 9,953)=17.04603075; T( 9,954)=17.11138520; T( 9,955)=17.17802652; T( 9,956)=17.24601008; T( 9,957)=17.31539491; T( 9,958)=17.38624409; T( 9,959)=17.45862507; T( 9,960)=17.53261014; T( 9,961)=17.60827684; T( 9,962)=17.68570856; T( 9,963)=17.76499507; T( 9,964)=17.84623325; T( 9,965)=17.92952784; T( 9,966)=18.01499231; T( 9,967)=18.10274988; T( 9,968)=18.19293468; T( 9,969)=18.28569303; T( 9,970)=18.38118506; T( 9,971)=18.47958642; T( 9,972)=18.58109043; T( 9,973)=18.68591052; T( 9,974)=18.79428310; T( 9,975)=18.90647105; T( 9,976)=19.02276780; T( 9,977)=19.14350231; T( 9,978)=19.26904504; T( 9,979)=19.39981530; T( 9,980)=19.53629025; T( 9,981)=19.67901609; T( 9,982)=19.82862217; T( 9,983)=19.98583877; T( 9,984)=20.15152006; T( 9,985)=20.32667391; T( 9,986)=20.51250131; T( 9,987)=20.71044925; T( 9,988)=20.92228324; T( 9,989)=21.15018860; T( 9,990)=21.39691572; T( 9,991)=21.66599433; T( 9,992)=21.96206024; T( 9,993)=22.29137421; T( 9,994)=22.66268685; T( 9,995)=23.08877044; T( 9,996)=23.58935078; T( 9,997)=24.19732982; T( 9,998)=24.97406845; T( 9,999)=26.05643335; T( 9,1000)=27.87716487; T( 9,1001)=33.71994844; T( 9,1002)=39.34065373; T(10, 1)= 0.00000000; T(10, 2)= 1.47874346; T(10, 3)= 1.73445958; T(10, 4)= 1.90767634; T(10, 5)= 2.04298034; T(10, 6)= 2.15585648; T(10, 7)= 2.25369458; T(10, 8)= 2.34065149; T(10, 9)= 2.41931882; T(10,10)= 2.49143127; T(10,11)= 2.55821216; T(10,12)= 2.62055942; T(10,13)= 2.67915339; T(10,14)= 2.73452303; T(10,15)= 2.78708848; T(10,16)= 2.83718951; T(10,17)= 2.88510516; T(10,18)= 2.93106767; T(10,19)= 2.97527258; T(10,20)= 3.01788623; T(10,21)= 3.05905141; T(10,22)= 3.09889170; T(10,23)= 3.13751482; T(10,24)= 3.17501530; T(10,25)= 3.21147659; T(10,26)= 3.24697278; T(10,27)= 3.28156994; T(10,28)= 3.31532730; T(10,29)= 3.34829816; T(10,30)= 3.38053068; T(10,31)= 3.41206855; T(10,32)= 3.44295150; T(10,33)= 3.47321582; T(10,34)= 3.50289473; T(10,35)= 3.53201873; T(10,36)= 3.56061588; T(10,37)= 3.58871209; T(10,38)= 3.61633131; T(10,39)= 3.64349577; T(10,40)= 3.67022608; T(10,41)= 3.69654144; T(10,42)= 3.72245976; T(10,43)= 3.74799774; T(10,44)= 3.77317103; T(10,45)= 3.79799429; T(10,46)= 3.82248127; T(10,47)= 3.84664490; T(10,48)= 3.87049735; T(10,49)= 3.89405010; T(10,50)= 3.91731395; T(10,51)= 3.94029914; T(10,52)= 3.96301533; T(10,53)= 3.98547169; T(10,54)= 4.00767689; T(10,55)= 4.02963918; T(10,56)= 4.05136637; T(10,57)= 4.07286591; T(10,58)= 4.09414489; T(10,59)= 4.11521004; T(10,60)= 4.13606779; T(10,61)= 4.15672429; T(10,62)= 4.17718539; T(10,63)= 4.19745669; T(10,64)= 4.21754354; T(10,65)= 4.23745107; T(10,66)= 4.25718419; T(10,67)= 4.27674760; T(10,68)= 4.29614582; T(10,69)= 4.31538317; T(10,70)= 4.33446381; T(10,71)= 4.35339173; T(10,72)= 4.37217078; T(10,73)= 4.39080465; T(10,74)= 4.40929689; T(10,75)= 4.42765093; T(10,76)= 4.44587007; T(10,77)= 4.46395749; T(10,78)= 4.48191625; T(10,79)= 4.49974931; T(10,80)= 4.51745953; T(10,81)= 4.53504967; T(10,82)= 4.55252239; T(10,83)= 4.56988027; T(10,84)= 4.58712581; T(10,85)= 4.60426142; T(10,86)= 4.62128942; T(10,87)= 4.63821208; T(10,88)= 4.65503159; T(10,89)= 4.67175007; T(10,90)= 4.68836957; T(10,91)= 4.70489208; T(10,92)= 4.72131955; T(10,93)= 4.73765385; T(10,94)= 4.75389680; T(10,95)= 4.77005016; T(10,96)= 4.78611567; T(10,97)= 4.80209497; T(10,98)= 4.81798971; T(10,99)= 4.83380145; T(10,100)= 4.84953174; T(10,101)= 4.86518205; T(10,102)= 4.88075385; T(10,103)= 4.89624855; T(10,104)= 4.91166753; T(10,105)= 4.92701212; T(10,106)= 4.94228363; T(10,107)= 4.95748333; T(10,108)= 4.97261247; T(10,109)= 4.98767225; T(10,110)= 5.00266385; T(10,111)= 5.01758843; T(10,112)= 5.03244709; T(10,113)= 5.04724095; T(10,114)= 5.06197106; T(10,115)= 5.07663847; T(10,116)= 5.09124420; T(10,117)= 5.10578924; T(10,118)= 5.12027456; T(10,119)= 5.13470112; T(10,120)= 5.14906984; T(10,121)= 5.16338164; T(10,122)= 5.17763738; T(10,123)= 5.19183795; T(10,124)= 5.20598420; T(10,125)= 5.22007694; T(10,126)= 5.23411700; T(10,127)= 5.24810517; T(10,128)= 5.26204223; T(10,129)= 5.27592893; T(10,130)= 5.28976602; T(10,131)= 5.30355424; T(10,132)= 5.31729430; T(10,133)= 5.33098690; T(10,134)= 5.34463273; T(10,135)= 5.35823245; T(10,136)= 5.37178673; T(10,137)= 5.38529622; T(10,138)= 5.39876154; T(10,139)= 5.41218333; T(10,140)= 5.42556218; T(10,141)= 5.43889870; T(10,142)= 5.45219348; T(10,143)= 5.46544708; T(10,144)= 5.47866009; T(10,145)= 5.49183303; T(10,146)= 5.50496648; T(10,147)= 5.51806095; T(10,148)= 5.53111697; T(10,149)= 5.54413505; T(10,150)= 5.55711571; T(10,151)= 5.57005944; T(10,152)= 5.58296673; T(10,153)= 5.59583806; T(10,154)= 5.60867389; T(10,155)= 5.62147470; T(10,156)= 5.63424093; T(10,157)= 5.64697304; T(10,158)= 5.65967146; T(10,159)= 5.67233664; T(10,160)= 5.68496898; T(10,161)= 5.69756892; T(10,162)= 5.71013686; T(10,163)= 5.72267321; T(10,164)= 5.73517836; T(10,165)= 5.74765272; T(10,166)= 5.76009666; T(10,167)= 5.77251056; T(10,168)= 5.78489480; T(10,169)= 5.79724975; T(10,170)= 5.80957576; T(10,171)= 5.82187320; T(10,172)= 5.83414241; T(10,173)= 5.84638375; T(10,174)= 5.85859755; T(10,175)= 5.87078414; T(10,176)= 5.88294387; T(10,177)= 5.89507704; T(10,178)= 5.90718399; T(10,179)= 5.91926503; T(10,180)= 5.93132048; T(10,181)= 5.94335063; T(10,182)= 5.95535579; T(10,183)= 5.96733626; T(10,184)= 5.97929234; T(10,185)= 5.99122431; T(10,186)= 6.00313246; T(10,187)= 6.01501707; T(10,188)= 6.02687843; T(10,189)= 6.03871679; T(10,190)= 6.05053244; T(10,191)= 6.06232564; T(10,192)= 6.07409666; T(10,193)= 6.08584575; T(10,194)= 6.09757318; T(10,195)= 6.10927918; T(10,196)= 6.12096403; T(10,197)= 6.13262795; T(10,198)= 6.14427119; T(10,199)= 6.15589400; T(10,200)= 6.16749661; T(10,201)= 6.17907926; T(10,202)= 6.19064217; T(10,203)= 6.20218557; T(10,204)= 6.21370970; T(10,205)= 6.22521476; T(10,206)= 6.23670099; T(10,207)= 6.24816860; T(10,208)= 6.25961780; T(10,209)= 6.27104881; T(10,210)= 6.28246183; T(10,211)= 6.29385708; T(10,212)= 6.30523475; T(10,213)= 6.31659506; T(10,214)= 6.32793819; T(10,215)= 6.33926434; T(10,216)= 6.35057372; T(10,217)= 6.36186651; T(10,218)= 6.37314291; T(10,219)= 6.38440310; T(10,220)= 6.39564727; T(10,221)= 6.40687561; T(10,222)= 6.41808829; T(10,223)= 6.42928550; T(10,224)= 6.44046742; T(10,225)= 6.45163422; T(10,226)= 6.46278607; T(10,227)= 6.47392316; T(10,228)= 6.48504564; T(10,229)= 6.49615369; T(10,230)= 6.50724748; T(10,231)= 6.51832717; T(10,232)= 6.52939293; T(10,233)= 6.54044491; T(10,234)= 6.55148328; T(10,235)= 6.56250820; T(10,236)= 6.57351982; T(10,237)= 6.58451830; T(10,238)= 6.59550379; T(10,239)= 6.60647645; T(10,240)= 6.61743642; T(10,241)= 6.62838386; T(10,242)= 6.63931892; T(10,243)= 6.65024173; T(10,244)= 6.66115245; T(10,245)= 6.67205123; T(10,246)= 6.68293819; T(10,247)= 6.69381348; T(10,248)= 6.70467725; T(10,249)= 6.71552963; T(10,250)= 6.72637076; T(10,251)= 6.73720077; T(10,252)= 6.74801980; T(10,253)= 6.75882799; T(10,254)= 6.76962545; T(10,255)= 6.78041234; T(10,256)= 6.79118877; T(10,257)= 6.80195487; T(10,258)= 6.81271078; T(10,259)= 6.82345661; T(10,260)= 6.83419250; T(10,261)= 6.84491857; T(10,262)= 6.85563493; T(10,263)= 6.86634173; T(10,264)= 6.87703906; T(10,265)= 6.88772706; T(10,266)= 6.89840585; T(10,267)= 6.90907554; T(10,268)= 6.91973625; T(10,269)= 6.93038809; T(10,270)= 6.94103119; T(10,271)= 6.95166565; T(10,272)= 6.96229159; T(10,273)= 6.97290912; T(10,274)= 6.98351836; T(10,275)= 6.99411941; T(10,276)= 7.00471239; T(10,277)= 7.01529740; T(10,278)= 7.02587455; T(10,279)= 7.03644396; T(10,280)= 7.04700572; T(10,281)= 7.05755994; T(10,282)= 7.06810673; T(10,283)= 7.07864619; T(10,284)= 7.08917843; T(10,285)= 7.09970355; T(10,286)= 7.11022165; T(10,287)= 7.12073283; T(10,288)= 7.13123719; T(10,289)= 7.14173484; T(10,290)= 7.15222587; T(10,291)= 7.16271038; T(10,292)= 7.17318846; T(10,293)= 7.18366023; T(10,294)= 7.19412577; T(10,295)= 7.20458517; T(10,296)= 7.21503855; T(10,297)= 7.22548598; T(10,298)= 7.23592756; T(10,299)= 7.24636339; T(10,300)= 7.25679356; T(10,301)= 7.26721817; T(10,302)= 7.27763729; T(10,303)= 7.28805103; T(10,304)= 7.29845948; T(10,305)= 7.30886273; T(10,306)= 7.31926085; T(10,307)= 7.32965396; T(10,308)= 7.34004212; T(10,309)= 7.35042544; T(10,310)= 7.36080400; T(10,311)= 7.37117788; T(10,312)= 7.38154717; T(10,313)= 7.39191196; T(10,314)= 7.40227233; T(10,315)= 7.41262837; T(10,316)= 7.42298017; T(10,317)= 7.43332780; T(10,318)= 7.44367135; T(10,319)= 7.45401090; T(10,320)= 7.46434654; T(10,321)= 7.47467835; T(10,322)= 7.48500641; T(10,323)= 7.49533080; T(10,324)= 7.50565161; T(10,325)= 7.51596890; T(10,326)= 7.52628277; T(10,327)= 7.53659330; T(10,328)= 7.54690055; T(10,329)= 7.55720462; T(10,330)= 7.56750558; T(10,331)= 7.57780350; T(10,332)= 7.58809848; T(10,333)= 7.59839058; T(10,334)= 7.60867988; T(10,335)= 7.61896645; T(10,336)= 7.62925039; T(10,337)= 7.63953175; T(10,338)= 7.64981062; T(10,339)= 7.66008707; T(10,340)= 7.67036118; T(10,341)= 7.68063302; T(10,342)= 7.69090267; T(10,343)= 7.70117020; T(10,344)= 7.71143568; T(10,345)= 7.72169920; T(10,346)= 7.73196081; T(10,347)= 7.74222060; T(10,348)= 7.75247864; T(10,349)= 7.76273500; T(10,350)= 7.77298975; T(10,351)= 7.78324297; T(10,352)= 7.79349472; T(10,353)= 7.80374508; T(10,354)= 7.81399412; T(10,355)= 7.82424191; T(10,356)= 7.83448852; T(10,357)= 7.84473402; T(10,358)= 7.85497848; T(10,359)= 7.86522197; T(10,360)= 7.87546457; T(10,361)= 7.88570633; T(10,362)= 7.89594734; T(10,363)= 7.90618765; T(10,364)= 7.91642734; T(10,365)= 7.92666648; T(10,366)= 7.93690513; T(10,367)= 7.94714337; T(10,368)= 7.95738126; T(10,369)= 7.96761887; T(10,370)= 7.97785626; T(10,371)= 7.98809351; T(10,372)= 7.99833068; T(10,373)= 8.00856784; T(10,374)= 8.01880506; T(10,375)= 8.02904239; T(10,376)= 8.03927992; T(10,377)= 8.04951771; T(10,378)= 8.05975581; T(10,379)= 8.06999431; T(10,380)= 8.08023326; T(10,381)= 8.09047273; T(10,382)= 8.10071279; T(10,383)= 8.11095349; T(10,384)= 8.12119492; T(10,385)= 8.13143713; T(10,386)= 8.14168018; T(10,387)= 8.15192415; T(10,388)= 8.16216910; T(10,389)= 8.17241509; T(10,390)= 8.18266219; T(10,391)= 8.19291046; T(10,392)= 8.20315996; T(10,393)= 8.21341077; T(10,394)= 8.22366294; T(10,395)= 8.23391655; T(10,396)= 8.24417164; T(10,397)= 8.25442829; T(10,398)= 8.26468657; T(10,399)= 8.27494653; T(10,400)= 8.28520824; T(10,401)= 8.29547176; T(10,402)= 8.30573716; T(10,403)= 8.31600450; T(10,404)= 8.32627384; T(10,405)= 8.33654525; T(10,406)= 8.34681879; T(10,407)= 8.35709452; T(10,408)= 8.36737250; T(10,409)= 8.37765281; T(10,410)= 8.38793550; T(10,411)= 8.39822064; T(10,412)= 8.40850828; T(10,413)= 8.41879850; T(10,414)= 8.42909135; T(10,415)= 8.43938690; T(10,416)= 8.44968520; T(10,417)= 8.45998633; T(10,418)= 8.47029035; T(10,419)= 8.48059731; T(10,420)= 8.49090729; T(10,421)= 8.50122034; T(10,422)= 8.51153652; T(10,423)= 8.52185591; T(10,424)= 8.53217855; T(10,425)= 8.54250452; T(10,426)= 8.55283388; T(10,427)= 8.56316669; T(10,428)= 8.57350300; T(10,429)= 8.58384290; T(10,430)= 8.59418643; T(10,431)= 8.60453366; T(10,432)= 8.61488465; T(10,433)= 8.62523947; T(10,434)= 8.63559817; T(10,435)= 8.64596083; T(10,436)= 8.65632750; T(10,437)= 8.66669824; T(10,438)= 8.67707312; T(10,439)= 8.68745221; T(10,440)= 8.69783555; T(10,441)= 8.70822323; T(10,442)= 8.71861529; T(10,443)= 8.72901181; T(10,444)= 8.73941284; T(10,445)= 8.74981845; T(10,446)= 8.76022871; T(10,447)= 8.77064366; T(10,448)= 8.78106339; T(10,449)= 8.79148794; T(10,450)= 8.80191739; T(10,451)= 8.81235180; T(10,452)= 8.82279123; T(10,453)= 8.83323574; T(10,454)= 8.84368540; T(10,455)= 8.85414027; T(10,456)= 8.86460041; T(10,457)= 8.87506590; T(10,458)= 8.88553678; T(10,459)= 8.89601313; T(10,460)= 8.90649502; T(10,461)= 8.91698249; T(10,462)= 8.92747563; T(10,463)= 8.93797449; T(10,464)= 8.94847913; T(10,465)= 8.95898963; T(10,466)= 8.96950604; T(10,467)= 8.98002843; T(10,468)= 8.99055687; T(10,469)= 9.00109142; T(10,470)= 9.01163214; T(10,471)= 9.02217910; T(10,472)= 9.03273237; T(10,473)= 9.04329201; T(10,474)= 9.05385808; T(10,475)= 9.06443066; T(10,476)= 9.07500980; T(10,477)= 9.08559557; T(10,478)= 9.09618805; T(10,479)= 9.10678729; T(10,480)= 9.11739336; T(10,481)= 9.12800633; T(10,482)= 9.13862626; T(10,483)= 9.14925322; T(10,484)= 9.15988728; T(10,485)= 9.17052851; T(10,486)= 9.18117697; T(10,487)= 9.19183272; T(10,488)= 9.20249584; T(10,489)= 9.21316640; T(10,490)= 9.22384446; T(10,491)= 9.23453008; T(10,492)= 9.24522335; T(10,493)= 9.25592432; T(10,494)= 9.26663307; T(10,495)= 9.27734966; T(10,496)= 9.28807416; T(10,497)= 9.29880664; T(10,498)= 9.30954717; T(10,499)= 9.32029582; T(10,500)= 9.33105266; T(10,501)= 9.34181777; T(10,502)= 9.35259120; T(10,503)= 9.36337303; T(10,504)= 9.37416332; T(10,505)= 9.38496216; T(10,506)= 9.39576962; T(10,507)= 9.40658575; T(10,508)= 9.41741064; T(10,509)= 9.42824435; T(10,510)= 9.43908696; T(10,511)= 9.44993854; T(10,512)= 9.46079916; T(10,513)= 9.47166890; T(10,514)= 9.48254782; T(10,515)= 9.49343600; T(10,516)= 9.50433351; T(10,517)= 9.51524043; T(10,518)= 9.52615684; T(10,519)= 9.53708279; T(10,520)= 9.54801837; T(10,521)= 9.55896366; T(10,522)= 9.56991872; T(10,523)= 9.58088364; T(10,524)= 9.59185848; T(10,525)= 9.60284333; T(10,526)= 9.61383826; T(10,527)= 9.62484335; T(10,528)= 9.63585866; T(10,529)= 9.64688429; T(10,530)= 9.65792030; T(10,531)= 9.66896678; T(10,532)= 9.68002379; T(10,533)= 9.69109143; T(10,534)= 9.70216976; T(10,535)= 9.71325888; T(10,536)= 9.72435884; T(10,537)= 9.73546974; T(10,538)= 9.74659166; T(10,539)= 9.75772467; T(10,540)= 9.76886885; T(10,541)= 9.78002429; T(10,542)= 9.79119107; T(10,543)= 9.80236926; T(10,544)= 9.81355895; T(10,545)= 9.82476023; T(10,546)= 9.83597317; T(10,547)= 9.84719785; T(10,548)= 9.85843437; T(10,549)= 9.86968279; T(10,550)= 9.88094322; T(10,551)= 9.89221573; T(10,552)= 9.90350040; T(10,553)= 9.91479732; T(10,554)= 9.92610658; T(10,555)= 9.93742827; T(10,556)= 9.94876246; T(10,557)= 9.96010925; T(10,558)= 9.97146872; T(10,559)= 9.98284096; T(10,560)= 9.99422606; T(10,561)=10.00562411; T(10,562)=10.01703519; T(10,563)=10.02845940; T(10,564)=10.03989682; T(10,565)=10.05134755; T(10,566)=10.06281167; T(10,567)=10.07428928; T(10,568)=10.08578047; T(10,569)=10.09728533; T(10,570)=10.10880395; T(10,571)=10.12033642; T(10,572)=10.13188285; T(10,573)=10.14344332; T(10,574)=10.15501792; T(10,575)=10.16660676; T(10,576)=10.17820993; T(10,577)=10.18982752; T(10,578)=10.20145963; T(10,579)=10.21310636; T(10,580)=10.22476781; T(10,581)=10.23644407; T(10,582)=10.24813524; T(10,583)=10.25984142; T(10,584)=10.27156271; T(10,585)=10.28329922; T(10,586)=10.29505104; T(10,587)=10.30681827; T(10,588)=10.31860102; T(10,589)=10.33039938; T(10,590)=10.34221347; T(10,591)=10.35404338; T(10,592)=10.36588923; T(10,593)=10.37775111; T(10,594)=10.38962913; T(10,595)=10.40152340; T(10,596)=10.41343402; T(10,597)=10.42536110; T(10,598)=10.43730476; T(10,599)=10.44926509; T(10,600)=10.46124221; T(10,601)=10.47323623; T(10,602)=10.48524726; T(10,603)=10.49727541; T(10,604)=10.50932080; T(10,605)=10.52138353; T(10,606)=10.53346373; T(10,607)=10.54556149; T(10,608)=10.55767695; T(10,609)=10.56981022; T(10,610)=10.58196140; T(10,611)=10.59413063; T(10,612)=10.60631801; T(10,613)=10.61852367; T(10,614)=10.63074773; T(10,615)=10.64299031; T(10,616)=10.65525152; T(10,617)=10.66753150; T(10,618)=10.67983035; T(10,619)=10.69214822; T(10,620)=10.70448521; T(10,621)=10.71684147; T(10,622)=10.72921710; T(10,623)=10.74161225; T(10,624)=10.75402703; T(10,625)=10.76646158; T(10,626)=10.77891603; T(10,627)=10.79139051; T(10,628)=10.80388514; T(10,629)=10.81640006; T(10,630)=10.82893541; T(10,631)=10.84149132; T(10,632)=10.85406792; T(10,633)=10.86666535; T(10,634)=10.87928375; T(10,635)=10.89192325; T(10,636)=10.90458400; T(10,637)=10.91726613; T(10,638)=10.92996979; T(10,639)=10.94269511; T(10,640)=10.95544225; T(10,641)=10.96821134; T(10,642)=10.98100253; T(10,643)=10.99381596; T(10,644)=11.00665180; T(10,645)=11.01951017; T(10,646)=11.03239124; T(10,647)=11.04529515; T(10,648)=11.05822206; T(10,649)=11.07117211; T(10,650)=11.08414547; T(10,651)=11.09714228; T(10,652)=11.11016271; T(10,653)=11.12320691; T(10,654)=11.13627505; T(10,655)=11.14936727; T(10,656)=11.16248375; T(10,657)=11.17562465; T(10,658)=11.18879012; T(10,659)=11.20198035; T(10,660)=11.21519548; T(10,661)=11.22843570; T(10,662)=11.24170116; T(10,663)=11.25499205; T(10,664)=11.26830853; T(10,665)=11.28165077; T(10,666)=11.29501896; T(10,667)=11.30841326; T(10,668)=11.32183386; T(10,669)=11.33528093; T(10,670)=11.34875466; T(10,671)=11.36225523; T(10,672)=11.37578282; T(10,673)=11.38933761; T(10,674)=11.40291980; T(10,675)=11.41652958; T(10,676)=11.43016712; T(10,677)=11.44383263; T(10,678)=11.45752629; T(10,679)=11.47124831; T(10,680)=11.48499887; T(10,681)=11.49877818; T(10,682)=11.51258644; T(10,683)=11.52642385; T(10,684)=11.54029061; T(10,685)=11.55418692; T(10,686)=11.56811300; T(10,687)=11.58206906; T(10,688)=11.59605530; T(10,689)=11.61007193; T(10,690)=11.62411918; T(10,691)=11.63819726; T(10,692)=11.65230638; T(10,693)=11.66644677; T(10,694)=11.68061865; T(10,695)=11.69482224; T(10,696)=11.70905777; T(10,697)=11.72332548; T(10,698)=11.73762558; T(10,699)=11.75195832; T(10,700)=11.76632392; T(10,701)=11.78072263; T(10,702)=11.79515468; T(10,703)=11.80962032; T(10,704)=11.82411979; T(10,705)=11.83865334; T(10,706)=11.85322121; T(10,707)=11.86782366; T(10,708)=11.88246093; T(10,709)=11.89713330; T(10,710)=11.91184101; T(10,711)=11.92658432; T(10,712)=11.94136350; T(10,713)=11.95617882; T(10,714)=11.97103054; T(10,715)=11.98591893; T(10,716)=12.00084428; T(10,717)=12.01580685; T(10,718)=12.03080692; T(10,719)=12.04584478; T(10,720)=12.06092072; T(10,721)=12.07603501; T(10,722)=12.09118796; T(10,723)=12.10637985; T(10,724)=12.12161098; T(10,725)=12.13688166; T(10,726)=12.15219219; T(10,727)=12.16754286; T(10,728)=12.18293400; T(10,729)=12.19836592; T(10,730)=12.21383892; T(10,731)=12.22935333; T(10,732)=12.24490948; T(10,733)=12.26050769; T(10,734)=12.27614828; T(10,735)=12.29183160; T(10,736)=12.30755797; T(10,737)=12.32332775; T(10,738)=12.33914127; T(10,739)=12.35499888; T(10,740)=12.37090093; T(10,741)=12.38684778; T(10,742)=12.40283980; T(10,743)=12.41887733; T(10,744)=12.43496075; T(10,745)=12.45109044; T(10,746)=12.46726676; T(10,747)=12.48349010; T(10,748)=12.49976084; T(10,749)=12.51607938; T(10,750)=12.53244610; T(10,751)=12.54886140; T(10,752)=12.56532568; T(10,753)=12.58183936; T(10,754)=12.59840284; T(10,755)=12.61501654; T(10,756)=12.63168088; T(10,757)=12.64839630; T(10,758)=12.66516321; T(10,759)=12.68198206; T(10,760)=12.69885329; T(10,761)=12.71577734; T(10,762)=12.73275467; T(10,763)=12.74978574; T(10,764)=12.76687101; T(10,765)=12.78401095; T(10,766)=12.80120604; T(10,767)=12.81845675; T(10,768)=12.83576358; T(10,769)=12.85312701; T(10,770)=12.87054755; T(10,771)=12.88802570; T(10,772)=12.90556198; T(10,773)=12.92315689; T(10,774)=12.94081098; T(10,775)=12.95852476; T(10,776)=12.97629878; T(10,777)=12.99413358; T(10,778)=13.01202971; T(10,779)=13.02998775; T(10,780)=13.04800824; T(10,781)=13.06609177; T(10,782)=13.08423892; T(10,783)=13.10245028; T(10,784)=13.12072645; T(10,785)=13.13906803; T(10,786)=13.15747564; T(10,787)=13.17594990; T(10,788)=13.19449144; T(10,789)=13.21310090; T(10,790)=13.23177893; T(10,791)=13.25052619; T(10,792)=13.26934334; T(10,793)=13.28823105; T(10,794)=13.30719002; T(10,795)=13.32622094; T(10,796)=13.34532452; T(10,797)=13.36450146; T(10,798)=13.38375250; T(10,799)=13.40307836; T(10,800)=13.42247980; T(10,801)=13.44195757; T(10,802)=13.46151245; T(10,803)=13.48114520; T(10,804)=13.50085663; T(10,805)=13.52064753; T(10,806)=13.54051871; T(10,807)=13.56047102; T(10,808)=13.58050527; T(10,809)=13.60062234; T(10,810)=13.62082308; T(10,811)=13.64110836; T(10,812)=13.66147909; T(10,813)=13.68193617; T(10,814)=13.70248052; T(10,815)=13.72311306; T(10,816)=13.74383476; T(10,817)=13.76464658; T(10,818)=13.78554949; T(10,819)=13.80654449; T(10,820)=13.82763260; T(10,821)=13.84881483; T(10,822)=13.87009224; T(10,823)=13.89146588; T(10,824)=13.91293683; T(10,825)=13.93450620; T(10,826)=13.95617510; T(10,827)=13.97794465; T(10,828)=13.99981602; T(10,829)=14.02179037; T(10,830)=14.04386891; T(10,831)=14.06605283; T(10,832)=14.08834338; T(10,833)=14.11074182; T(10,834)=14.13324941; T(10,835)=14.15586747; T(10,836)=14.17859730; T(10,837)=14.20144027; T(10,838)=14.22439774; T(10,839)=14.24747110; T(10,840)=14.27066178; T(10,841)=14.29397123; T(10,842)=14.31740091; T(10,843)=14.34095233; T(10,844)=14.36462702; T(10,845)=14.38842654; T(10,846)=14.41235247; T(10,847)=14.43640643; T(10,848)=14.46059006; T(10,849)=14.48490506; T(10,850)=14.50935312; T(10,851)=14.53393600; T(10,852)=14.55865547; T(10,853)=14.58351335; T(10,854)=14.60851150; T(10,855)=14.63365179; T(10,856)=14.65893616; T(10,857)=14.68436658; T(10,858)=14.70994504; T(10,859)=14.73567360; T(10,860)=14.76155435; T(10,861)=14.78758942; T(10,862)=14.81378098; T(10,863)=14.84013127; T(10,864)=14.86664256; T(10,865)=14.89331716; T(10,866)=14.92015745; T(10,867)=14.94716586; T(10,868)=14.97434485; T(10,869)=15.00169697; T(10,870)=15.02922480; T(10,871)=15.05693099; T(10,872)=15.08481824; T(10,873)=15.11288932; T(10,874)=15.14114708; T(10,875)=15.16959439; T(10,876)=15.19823425; T(10,877)=15.22706967; T(10,878)=15.25610377; T(10,879)=15.28533974; T(10,880)=15.31478083; T(10,881)=15.34443039; T(10,882)=15.37429183; T(10,883)=15.40436868; T(10,884)=15.43466452; T(10,885)=15.46518304; T(10,886)=15.49592802; T(10,887)=15.52690335; T(10,888)=15.55811299; T(10,889)=15.58956104; T(10,890)=15.62125168; T(10,891)=15.65318922; T(10,892)=15.68537808; T(10,893)=15.71782279; T(10,894)=15.75052802; T(10,895)=15.78349856; T(10,896)=15.81673933; T(10,897)=15.85025541; T(10,898)=15.88405199; T(10,899)=15.91813444; T(10,900)=15.95250828; T(10,901)=15.98717917; T(10,902)=16.02215297; T(10,903)=16.05743569; T(10,904)=16.09303353; T(10,905)=16.12895289; T(10,906)=16.16520035; T(10,907)=16.20178271; T(10,908)=16.23870697; T(10,909)=16.27598036; T(10,910)=16.31361036; T(10,911)=16.35160466; T(10,912)=16.38997123; T(10,913)=16.42871830; T(10,914)=16.46785436; T(10,915)=16.50738822; T(10,916)=16.54732898; T(10,917)=16.58768604; T(10,918)=16.62846915; T(10,919)=16.66968842; T(10,920)=16.71135430; T(10,921)=16.75347765; T(10,922)=16.79606970; T(10,923)=16.83914214; T(10,924)=16.88270707; T(10,925)=16.92677708; T(10,926)=16.97136525; T(10,927)=17.01648517; T(10,928)=17.06215098; T(10,929)=17.10837739; T(10,930)=17.15517973; T(10,931)=17.20257397; T(10,932)=17.25057674; T(10,933)=17.29920541; T(10,934)=17.34847809; T(10,935)=17.39841372; T(10,936)=17.44903207; T(10,937)=17.50035382; T(10,938)=17.55240063; T(10,939)=17.60519515; T(10,940)=17.65876116; T(10,941)=17.71312357; T(10,942)=17.76830853; T(10,943)=17.82434352; T(10,944)=17.88125743; T(10,945)=17.93908067; T(10,946)=17.99784525; T(10,947)=18.05758492; T(10,948)=18.11833532; T(10,949)=18.18013406; T(10,950)=18.24302093; T(10,951)=18.30703805; T(10,952)=18.37223005; T(10,953)=18.43864428; T(10,954)=18.50633104; T(10,955)=18.57534383; T(10,956)=18.64573962; T(10,957)=18.71757918; T(10,958)=18.79092740; T(10,959)=18.86585369; T(10,960)=18.94243241; T(10,961)=19.02074335; T(10,962)=19.10087228; T(10,963)=19.18291155; T(10,964)=19.26696082; T(10,965)=19.35312780; T(10,966)=19.44152922; T(10,967)=19.53229177; T(10,968)=19.62555340; T(10,969)=19.72146456; T(10,970)=19.82018990; T(10,971)=19.92191001; T(10,972)=20.02682363; T(10,973)=20.13515015; T(10,974)=20.24713259; T(10,975)=20.36304113; T(10,976)=20.48317735; T(10,977)=20.60787929; T(10,978)=20.73752761; T(10,979)=20.87255314; T(10,980)=21.01344608; T(10,981)=21.16076754; T(10,982)=21.31516393; T(10,983)=21.47738530; T(10,984)=21.64830882; T(10,985)=21.82896937; T(10,986)=22.02059999; T(10,987)=22.22468610; T(10,988)=22.44303984; T(10,989)=22.67790394; T(10,990)=22.93210061; T(10,991)=23.20925116; T(10,992)=23.51411084; T(10,993)=23.85310050; T(10,994)=24.23519263; T(10,995)=24.67348033; T(10,996)=25.18817957; T(10,997)=25.81299977; T(10,998)=26.61078512; T(10,999)=27.72164723; T(10,1000)=29.58829845; T(10,1001)=35.56401394; T(10,1002)=41.29615797; end; % Check arguments if (dof > 0) & (dof <= length(DOFS)), if (alpha >= min(LEVELS)) & (alpha <= max(LEVELS)), % Determine lookup indices of alpha % Find start index in array of levels [mindiff,imin] = min(abs(LEVELS-alpha)); % Set correct start index and iterate i = imin-1*(imin>1); found = 0; while (i < length(LEVELS)) & ~found, diff1 = LEVELS(i) - alpha; diff2 = LEVELS(i+1) - alpha; if sign(diff1) == 0, x = T(dof,i); found = 1; elseif sign(diff2) == 0, x = T(dof,i+1); found = 1; elseif sign(diff1)*sign(diff2) < 0, x1 = T(dof,i); x2 = T(dof,i+1); % Interpolate linearly x = x2 - (LEVELS(i+1)-alpha)*(x2-x1)/(LEVELS(i+1)-LEVELS(i)); found = 1; end; i = i + 1; end; else error('chi2invtable: Unsupported alpha level (either too small or too big).'); end; else error('chi2invtable: Unsupported number of degrees of freedom.'); end;
github
Rookfighter/robmap-ws17-18-master
drawellipse.m
.m
robmap-ws17-18-master/ex06/octave/tools/drawellipse.m
994
utf_8
c0100a4cf263e6e87026b3214221e84d
%DRAWELLIPSE Draw ellipse. % DRAWELLIPSE(X,A,B,COLOR) draws an ellipse at X = [x y theta] % with half axes A and B. Theta is the inclination angle of A, % regardless if A is smaller or greater than B. COLOR is a % [r g b]-vector or a color string such as 'r' or 'g'. % % H = DRAWELLIPSE(...) returns the graphic handle H. % % See also DRAWPROBELLIPSE. % v.1.0-v.1.1, Aug.97-Jan.03, Kai Arras, ASL-EPFL % v.1.2, 03.12.03, Kai Arras, CAS-KTH: (x,a,b) interface function h = drawellipse(x,a,b,color); % Constants NPOINTS = 100; % point density or resolution % Compose point vector ivec = 0:2*pi/NPOINTS:2*pi; % index vector p(1,:) = a*cos(ivec); % 2 x n matrix which p(2,:) = b*sin(ivec); % hold ellipse points % Translate and rotate xo = x(1); yo = x(2); angle = x(3); R = [cos(angle) -sin(angle); sin(angle) cos(angle)]; T = [xo; yo]*ones(1,length(ivec)); p = R*p + T; % Plot h = plot(p(1,:),p(2,:),'Color',color, 'linewidth', 2);
github
Rookfighter/robmap-ws17-18-master
apply_odometry_correction.m
.m
robmap-ws17-18-master/ex09/octave/apply_odometry_correction.m
409
utf_8
07db7a4853e0f65bb87f94bda4d88e30
% computes a calibrated vector of odometry measurements % by applying the bias term to each line of the measurements % X: 3x3 matrix obtained by the calibration process % U: Nx3 matrix containing the odometry measurements % C: Nx3 matrix containing the corrected odometry measurements function C = apply_odometry_correction(X, U) X = [X(1:3)'; X(4:6)'; X(7:9)']; C = U * X'; end
github
Rookfighter/robmap-ws17-18-master
compute_trajectory.m
.m
robmap-ws17-18-master/ex09/octave/compute_trajectory.m
820
utf_8
6cd65accf9184595dfd5d7d37df51d3d
% computes the trajectory of the robot by chaining up % the incremental movements of the odometry vector % U: a Nx3 matrix, each row contains the odoemtry ux, uy utheta % T: a (N+1)x3 matrix, each row contains the robot position (starting from 0,0,0) function T = compute_trajectory(U) % initialize the trajectory matrix N = size(U,1); T = zeros(N + 1, 3); % store the first pose in the result T(1, :) = zeros(1,3); % the current pose in the chain currPose = v2t(T(1, :)); % TODO: compute the result of chaining up the odometry deltas % Note that U(i) results in T(i+1). % T(i+1) can be computed by calling t2v(currentPose) % after computing the current pose of the robot for i=1:N currPose = currPose * v2t(U(i,:)); T(i+1,:) = t2v(currPose); end end
github
Rookfighter/robmap-ws17-18-master
ls_calibrate_odometry.m
.m
robmap-ws17-18-master/ex09/octave/ls_calibrate_odometry.m
2,266
utf_8
a20379c0962e54f2b988a0d54694d73c
% this function solves the odometry calibration problem % given a measurement matrix Z. % We assume that the information matrix is the identity % for each of the measurements % Every row of the matrix contains % z_i = [u'x, u'y, u'theta, ux, uy, ytheta] % Z: The measurement matrix % X: the calibration matrix % returns the correction matrix X function X = ls_calibrate_odometry(Z) N = size(Z, 1); % max iterations maxit = 100; % Error is normal distributed: omega = sigma = identity Omega = eye(3); % initial solution X = zeros(9,1); % alpha param for Levenberg-Marquardt method % get Gauss-Newton for alpha = 0 alpha = 1.0; disp('Run newton method.') for k=1:maxit % init H and b with 0 H = zeros(9,9); b = zeros(1,9); % accumulate data from measurements for i=1:N erri = error_function(i, X, Z); %err(:,i); Ji = jacobian(i, Z); b = b + erri' * Omega * Ji; H = H + Ji' * Omega * Ji; end b = b'; % check if we found minimum, i.e. b is sufficiently close % to zero if norm(b) <= 1e-3 disp(['Newton method converged after ', num2str(k), ' iterations!']) break; end % apply Levenberg-Marquardt method H = H + eye(9) * alpha; % calc newton step pk = -inv(H) * b; X = X + pk; end end % this U_estfunction computes the error of the i^th measurement in Z % given the calibration parameters % i: the number of the measurement % X: the actual calibration parameters % Z: the measurement matrix, each row contains first the scan-match result % and then the motion reported by odometry % e: the error of the ith measurement function e = error_function(i, X, Z) U_act = Z(i, 1:3)'; U_est = Z(i, 4:6)'; X = [X(1:3)'; X(4:6)'; X(7:9)']; e = U_act - X * U_est; end % derivative of the error function for the ith measurement in Z % i: the measurement number % Z: the measurement matrix % J: the jacobian of the ith measurement function J = jacobian(i, Z) U_est = Z(i, 4:6); J = zeros(3,9); J(1, 1:3) = -U_est; J(2, 4:6) = -U_est; J(3, 7:9) = -U_est; end
github
Rookfighter/robmap-ws17-18-master
t2v.m
.m
robmap-ws17-18-master/ex09/octave/tools/t2v.m
122
utf_8
869378bf4d6409006dc9681e45aecdbb
#computes the pose vector v from an homogeneous transform A function v=t2v(A) v = [A(1:2,3); atan2(A(2,1),A(1,1))]; end
github
Rookfighter/robmap-ws17-18-master
v2t.m
.m
robmap-ws17-18-master/ex09/octave/tools/v2t.m
165
utf_8
bd190805c2c8033bb7843a4c3559f866
#computes the homogeneous transform matrix A of the pose vector v function A=v2t(v) c=cos(v(3)); s=sin(v(3)); A=[c, -s, v(1); s, c, v(2); 0 0 1 ]; end
github
Rookfighter/robmap-ws17-18-master
t2v.m
.m
robmap-ws17-18-master/ex01/octave/t2v.m
175
utf_8
ac627ffe4f502dae869c291a41bbceaa
% t2v.m % % Author: Fabian Meyer % Created On: 21 Oct 2017 function [x] = t2v(t) x = [t(1,3) / t(3,3); t(2,3) / t(3,3); acos(t(1,1) / t(3,3))]; end
github
Rookfighter/robmap-ws17-18-master
v2t.m
.m
robmap-ws17-18-master/ex01/octave/v2t.m
196
utf_8
bd3a9aa0990cd1f53631a5f130291783
% v2t.m % % Author: Fabian Meyer % Created On: 21 Oct 2017 function [t] = v2t(x) t = [cos(x(3)) -sin(x(3)) x(1); sin(x(3)) cos(x(3)) x(2); 0 0 1]; end
github
Rookfighter/robmap-ws17-18-master
octavehelp.m
.m
robmap-ws17-18-master/ex01/octave/octavehelp.m
4,448
utf_8
c7a2a53c8e1fbfa584b06fd063d64ded
% GNU Octave is a (programmable) calculator and is very good at performing % matrix operations. The basic syntax is the same as MATLAB's. At Octave's % command prompt, a command can be entered. If you end a line with a semicolon, % the output is suppressed. If the output is longer than one screen, you might % have to press 'q' to get back to the prompt. Everything you enter at the % prompt can as well be written into a script file with extension .m (like this % one). Scripts can be executed by calling its name. Comments are done with the % '%' sign. %%%%%% GETTING HELP % The command 'help <command>' displays the help text for the desired % command. help rand % Search for the given string in the help text of all functions. lookfor eigenvalues % List all currently defined variables who % Delete all variables defined until now clear % Clear screen clc %Turn off output pagination more off %%%%%% DATA ENTRY % Vectors and matrices are entered using square brackets [ ]. % Elements are seperated by a space or a comma, a new row is % started with a semicolon: % A 1x4 row vector a = [ 1, 2, 3, 4 ] a2 = [ 1 2 3 4 ] % A 2x2 matrix A = [ 1, 2; 3, 4 ] A2 = [ 1 2; 3 4 ] % Get the size of a matrix size(A) size(A,1) size(A,2) %%%%%% DATA GENERATION % Generate a row vector with elements 1, ..., 10 b = [1:10] % Generate a row vector with elements 1, 1.1, 1.2, ..., 10 c = [1:0.1:10] % Get the length of a vector length(c) % Create a 2x3 matrix filled with zeros or ones respectively C = zeros(2,3) D = ones(2,3) % Create a 2x2 identity matrix E = eye(2) %Create matrix from other matrices/vectors (dimensions must agree) X = [c;c] Y = [A2 A2] help repmat Z = repmat(A,2,3) % Create a column vector of 10 uniformly distributed random numbers % between 5 and 15. u = unifrnd(5, 15, 10, 1) % Create a 5x5 matrix with normally distributed random variables with a % mean of 2.5 and a sigma of 5.0. N = normrnd(2.5, 5.0, 5, 5) %%%%%% DATA ACCESS % All indices in Octave start with 1, as opposed to 0 as usual in other % programming languages. % Retrieve the element in row 1 and column 2 A(1,2) % Retrieve all elements of row 1 in the matrix A(1,:) % Retrieve all elements of column 2 in the matrix A(:,2) % Retrieve a submatrix Z2 = Z(1:2,3:6) % Retrieve every third element of a vector x = [1:20] x2 = x(1:3:length(x)) % Saving and loading data save A clear A load A %%%%%% MATRIX OPERATIONS % Transpose A' % Matrix addition, subtraction, multiplication and inversion F = A + E + C * D' G = F * inv(F) % Element-wise operations H = A * 2 + A .* E + A .^ 2 % Matrix-scalar addition/multiplication threes = 3 + zeros(3) tens = 10*ones(3) %%%%%% OTHER FUNCTIONS % Can be used on scalars as well as matrices. When applied to matrices the % operations are performed elementwise. a = 2 b = 3 v = [2 4 6] w = [3 5 7] sin(a) sin(v) cos(a) cos(v) atan2(a, b) atan2(v, w) sqrt(a) sqrt(v) %%%%%% PROGRAMMING CONSTRUCTS % Functions % Functions have the following layout: % function [retval1, retval2, ...] <function_name>(arg1, arg2, ...) % <function body> % end % Returning values is performed by assigning values to the return values % defined in the header of the function. function y = add_two_numbers(a, b) y = a + b; end % For loops for i=[1:10] if mod(i,2) == 0 disp(['even: ', num2str(i)]) else disp(['odd: ', num2str(i)]) endif endfor % Always try to vectorize operations when possible! v1 = [1:10] v2 = [3:12] dotProduct = 0 for i=1:length(v1) dotProduct = dotProduct + v1(i)*v2(i) endfor % Better: dotProduct = sum(v1.*v2) %%%%%% BASIC PLOTTING % Create a vector of values in the range [1, 10] with an increment of 0.1 % and suppress the output (semicolon at the end). x = -2*pi:0.1:2*pi; % Compute sin() for all elements of the vector y = sin(x); % Close all existing plot windows close all % Plot the the values of x against those in y plot(x, y) % Draw following plots into the same figure. If this is not set subsequent % plots erase the previously generated plots. hold on % Plot the cosine of the data points in green (g) with markers (+) % instead of lines. plot(x, cos(x), '+g'); % Plot a blue point plot(2, 0.5, 'ob'); title("sine and cosine") xlabel('x (rad)') ylabel('y = f(x)') % Add a grid grid on %Useful options: 'markersize', 'linewidth' %See also the commands: xlabel, ylabel, title % Save the complete plot to a file. print('/tmp/plot.png', '-dpng')
github
Rookfighter/robmap-ws17-18-master
drawprobellipse.m
.m
robmap-ws17-18-master/ex01/octave/tools/drawprobellipse.m
1,803
utf_8
90c41a3bebf740e86100f47974753eb3
%DRAWPROBELLIPSE Draw elliptic probability region of a Gaussian in 2D. % DRAWPROBELLIPSE(X,C,ALPHA,COLOR) draws the elliptic iso-probabi- % lity contour of a Gaussian distributed bivariate random vector X % at the significance level ALPHA. The ellipse is centered at X = % [x; y] where C is the associated 2x2 covariance matrix. COLOR is % a [r g b]-vector or a color string such as 'r' or 'g'. % % X and C can also be of size 3x1 and 3x3 respectively. % % For proper scaling, the function CHI2INVTABLE is employed to % avoid the use of CHI2INV from the Matlab statistics toolbox. % % In case of a negative definite matrix C, the ellipse collapses % to a line which is drawn instead. % % H = DRAWPROBELLIPSE(...) returns the graphic handle H. % % See also DRAWELLIPSE, CHI2INVTABLE, CHI2INV. % v.1.0-v.1.3, 97-Jan.03, Kai Arras, ASL-EPFL % v.1.4, 03.12.03, Kai Arras, CAS-KTH: toolbox version function h = drawprobellipse(x,C,alpha,color); % Calculate unscaled half axes sxx = C(1,1); syy = C(2,2); sxy = C(1,2); a = sqrt(0.5*(sxx+syy+sqrt((sxx-syy)^2+4*sxy^2))); % always greater b = sqrt(0.5*(sxx+syy-sqrt((sxx-syy)^2+4*sxy^2))); % always smaller % Remove imaginary parts in case of neg. definite C if ~isreal(a), a = real(a); end; if ~isreal(b), b = real(b); end; % Scaling in order to reflect specified probability a = a*sqrt(chi2invtable(alpha,2)); b = b*sqrt(chi2invtable(alpha,2)); % Look where the greater half axis belongs to if sxx < syy, swap = a; a = b; b = swap; end; % Calculate inclination (numerically stable) if sxx ~= syy, angle = 0.5*atan(2*sxy/(sxx-syy)); elseif sxy == 0, angle = 0; % angle doesn't matter elseif sxy > 0, angle = pi/4; elseif sxy < 0, angle = -pi/4; end; x(3) = angle; % Draw ellipse h = drawellipse(x,a,b,color);
github
Rookfighter/robmap-ws17-18-master
drawrobot.m
.m
robmap-ws17-18-master/ex01/octave/tools/drawrobot.m
5,225
utf_8
3dfed55ac85a746f0f7c2407e1880069
%DRAWROBOT Draw robot. % DRAWROBOT(X,COLOR) draws a robot at pose X = [x y theta] such % that the robot reference frame is attached to the center of % the wheelbase with the x-axis looking forward. COLOR is a % [r g b]-vector or a color string such as 'r' or 'g'. % % DRAWROBOT(X,COLOR,TYPE) draws a robot of type TYPE. Five % different models are implemented: % TYPE = 0 draws only a cross with orientation theta % TYPE = 1 is a differential drive robot without contour % TYPE = 2 is a differential drive robot with round shape % TYPE = 3 is a round shaped robot with a line at theta % TYPE = 4 is a differential drive robot with rectangular shape % TYPE = 5 is a rectangular shaped robot with a line at theta % % DRAWROBOT(X,COLOR,TYPE,W,L) draws a robot of type TYPE with % width W and length L in [m]. % % H = DRAWROBOT(...) returns a column vector of handles to all % graphic objects of the robot drawing. Remember that not all % graphic properties apply to all types of graphic objects. Use % FINDOBJ to find and access the individual objects. % % See also DRAWRECT, DRAWARROW, FINDOBJ, PLOT. % v.1.0, 16.06.03, Kai Arras, ASL-EPFL % v.1.1, 12.10.03, Kai Arras, ASL-EPFL: uses drawrect % v.1.2, 03.12.03, Kai Arras, CAS-KTH : types implemented function h = drawrobot(varargin); % Constants DEFT = 2; % default robot type DEFB = 0.4; % default robot width in [m], defines y-dir. of {R} WT = 0.03; % wheel thickness in [m] DEFL = DEFB+0.2; % default robot length in [m] WD = 0.2; % wheel diameter in [m] RR = WT/2; % wheel roundness radius in [m] RRR = 0.04; % roundness radius for rectangular robots in [m] HL = 0.09; % arrow head length in [m] CS = 0.1; % cross size in [m], showing the {R} origin % Input argument check inputerr = 0; switch nargin, case 2, xvec = varargin{1}; color = varargin{2}; type = DEFT; B = DEFB; L = DEFL; case 3; xvec = varargin{1}; color = varargin{2}; type = varargin{3}; B = DEFB; L = DEFL; case 5; xvec = varargin{1}; color = varargin{2}; type = varargin{3}; B = varargin{4}; L = varargin{5}; otherwise inputerr = 1; end; % Main switch statement if ~inputerr, x = xvec(1); y = xvec(2); theta = xvec(3); T = [x; y]; R = [cos(theta), -sin(theta); sin(theta), cos(theta)]; switch type case 0, % Draw origin cross p = R*[CS, -CS, 0, 0; 0, 0, -CS, CS] + T*ones(1,4); % horiz. line h = plot(p(1,1:2),p(2,1:2),'Color',color,p(1,3:4),p(2,3:4),'Color',color); case 1, % Draw wheel pair with axis and arrow xlw = [x+B/2*cos(theta+pi/2); y+B/2*sin(theta+pi/2); theta]; h1 = drawrect(xlw,WD,WT,RR,1,color); % left wheel xlw = [x-B/2*cos(theta+pi/2); y-B/2*sin(theta+pi/2); theta]; h2 = drawrect(xlw,WD,WT,RR,1,color); % right wheel % Draw axis cross with arrow p = R*[0, 0; -B/2+WT/2, B/2-WT/2] + T*ones(1,2); h3 = plot(p(1,:),p(2,:),'Color',color); p = R*[L/2; 0] + T; h4 = drawarrow(T,p,1,HL,color); h = cat(1,h1,h2,h3,h4); case 2, % Draw wheel pair with axis and arrow xlw = [x+B/2*cos(theta+pi/2); y+B/2*sin(theta+pi/2); theta]; h1 = drawrect(xlw,WD,WT,RR,1,color); % left wheel xlw = [x-B/2*cos(theta+pi/2); y-B/2*sin(theta+pi/2); theta]; h2 = drawrect(xlw,WD,WT,RR,1,color); % right wheel % Draw axis cross with arrow p = R*[0, 0; -B/2+WT/2, B/2-WT/2] + T*ones(1,2); h3 = plot(p(1,:),p(2,:),'Color',color); p = R*[(B+WT)/2; 0] + T; h4 = drawarrow(T,p,1,HL,color); % Draw circular contour radius = (B+WT)/2; h5 = drawellipse(xvec,radius,radius,color); h = cat(1,h1,h2,h3,h4,h5); case 3, % Draw circular contour radius = (B+WT)/2; h1 = drawellipse(xvec,radius,radius,color); % Draw line with orientation theta with length radius p = R*[(B+WT)/2;0] + T; h2 = plot([T(1) p(1)],[T(2) p(2)],'Color',color,'linewidth',2); h = cat(1,h1,h2); case 4, % Draw wheel pair with axis and arrow xlw = [x+B/2*cos(theta+pi/2); y+B/2*sin(theta+pi/2); theta]; h1 = drawrect(xlw,WD,WT,RR,1,color); % left wheel xlw = [x-B/2*cos(theta+pi/2); y-B/2*sin(theta+pi/2); theta]; h2 = drawrect(xlw,WD,WT,RR,1,color); % right wheel % Draw axis cross with arrow p = R*[0, 0; -B/2+WT/2, B/2-WT/2] + T*ones(1,2); h3 = plot(p(1,:),p(2,:),'Color',color); p = R*[L/2; 0] + T; h4 = drawarrow(T,p,1,HL,color); % Draw rectangular contour h5 = drawrect(xvec,L,B,RRR,0,color); h = cat(1,h1,h2,h3,h4,h5); case 5, % Draw rectangular contour h1 = drawrect(xvec,L,B,RRR,0,color); % Draw line with orientation theta with length L p = R*[L/2; 0] + T; h2 = plot([T(1) p(1)],[T(2) p(2)],'Color',color,'linewidth',2); h = cat(1,h1,h2); otherwise disp('drawrobot: Unsupported robot type'); h = []; end; else disp('drawrobot: Wrong number of input arguments'); h = []; end;
github
Rookfighter/robmap-ws17-18-master
chi2invtable.m
.m
robmap-ws17-18-master/ex01/octave/tools/chi2invtable.m
231,909
utf_8
d16aef6be089f46039e76c200f7577d8
%CHI2INVTABLE Lookup table of the inverse of the chi-square cdf. % X = CHI2INVTABLE(P,V) returns the inverse of the chi-square cumu- % lative distribution function (cdf) with V degrees of freedom at % the value P. The chi-square cdf with V degrees of freedom, is % the gamma cdf with parameters V/2 and 2. % % Opposed to CHI2INV of the Matlab statistics toolbox which might % be not part of your Matlab installation, this is a lookup table % which has the side effect of being much faster than CHI2INV. % However, as any lookup table is a collection of sample points, % accuracy is smaller and between the sample points of the cdf, a % linear interpolation is made. % % Currently, the function supports the degrees of freedom V between % 1 and 10 and the probability levels P between 0 and 0.9999 in steps % of 0.0001 and the level of 0.99999. % % See also CHI2INV. % v.1.0, 18.12.03, Kai Arras, CAS-KTH function x = chi2invtable(alpha,dof); persistent T LEVELS DOFS; % Check whether table is already in memory vars = whos; it = strcmp({vars.name},'T'); if (sum(it) == 0) | (prod(vars(find(it)).size) == 0), LEVELS = [0:0.001:0.999, 0.9999, 0.99999]; DOFS = 1:10; T( 1, 1)= 0.00000000; T( 1, 2)= 0.00000157; T( 1, 3)= 0.00000628; T( 1, 4)= 0.00001414; T( 1, 5)= 0.00002513; T( 1, 6)= 0.00003927; T( 1, 7)= 0.00005655; T( 1, 8)= 0.00007697; T( 1, 9)= 0.00010053; T( 1,10)= 0.00012724; T( 1,11)= 0.00015709; T( 1,12)= 0.00019008; T( 1,13)= 0.00022621; T( 1,14)= 0.00026549; T( 1,15)= 0.00030791; T( 1,16)= 0.00035347; T( 1,17)= 0.00040218; T( 1,18)= 0.00045403; T( 1,19)= 0.00050902; T( 1,20)= 0.00056716; T( 1,21)= 0.00062845; T( 1,22)= 0.00069288; T( 1,23)= 0.00076046; T( 1,24)= 0.00083118; T( 1,25)= 0.00090505; T( 1,26)= 0.00098207; T( 1,27)= 0.00106223; T( 1,28)= 0.00114555; T( 1,29)= 0.00123201; T( 1,30)= 0.00132162; T( 1,31)= 0.00141438; T( 1,32)= 0.00151030; T( 1,33)= 0.00160936; T( 1,34)= 0.00171157; T( 1,35)= 0.00181694; T( 1,36)= 0.00192546; T( 1,37)= 0.00203713; T( 1,38)= 0.00215196; T( 1,39)= 0.00226995; T( 1,40)= 0.00239109; T( 1,41)= 0.00251538; T( 1,42)= 0.00264284; T( 1,43)= 0.00277345; T( 1,44)= 0.00290722; T( 1,45)= 0.00304415; T( 1,46)= 0.00318424; T( 1,47)= 0.00332749; T( 1,48)= 0.00347391; T( 1,49)= 0.00362349; T( 1,50)= 0.00377623; T( 1,51)= 0.00393214; T( 1,52)= 0.00409122; T( 1,53)= 0.00425346; T( 1,54)= 0.00441887; T( 1,55)= 0.00458745; T( 1,56)= 0.00475920; T( 1,57)= 0.00493412; T( 1,58)= 0.00511222; T( 1,59)= 0.00529349; T( 1,60)= 0.00547793; T( 1,61)= 0.00566555; T( 1,62)= 0.00585635; T( 1,63)= 0.00605033; T( 1,64)= 0.00624748; T( 1,65)= 0.00644782; T( 1,66)= 0.00665134; T( 1,67)= 0.00685804; T( 1,68)= 0.00706793; T( 1,69)= 0.00728100; T( 1,70)= 0.00749726; T( 1,71)= 0.00771672; T( 1,72)= 0.00793936; T( 1,73)= 0.00816519; T( 1,74)= 0.00839422; T( 1,75)= 0.00862644; T( 1,76)= 0.00886185; T( 1,77)= 0.00910047; T( 1,78)= 0.00934228; T( 1,79)= 0.00958730; T( 1,80)= 0.00983551; T( 1,81)= 0.01008693; T( 1,82)= 0.01034156; T( 1,83)= 0.01059939; T( 1,84)= 0.01086043; T( 1,85)= 0.01112468; T( 1,86)= 0.01139215; T( 1,87)= 0.01166283; T( 1,88)= 0.01193672; T( 1,89)= 0.01221383; T( 1,90)= 0.01249416; T( 1,91)= 0.01277771; T( 1,92)= 0.01306448; T( 1,93)= 0.01335448; T( 1,94)= 0.01364771; T( 1,95)= 0.01394416; T( 1,96)= 0.01424384; T( 1,97)= 0.01454676; T( 1,98)= 0.01485290; T( 1,99)= 0.01516229; T( 1,100)= 0.01547491; T( 1,101)= 0.01579077; T( 1,102)= 0.01610988; T( 1,103)= 0.01643223; T( 1,104)= 0.01675782; T( 1,105)= 0.01708666; T( 1,106)= 0.01741876; T( 1,107)= 0.01775410; T( 1,108)= 0.01809270; T( 1,109)= 0.01843456; T( 1,110)= 0.01877968; T( 1,111)= 0.01912805; T( 1,112)= 0.01947969; T( 1,113)= 0.01983460; T( 1,114)= 0.02019278; T( 1,115)= 0.02055422; T( 1,116)= 0.02091894; T( 1,117)= 0.02128693; T( 1,118)= 0.02165820; T( 1,119)= 0.02203275; T( 1,120)= 0.02241059; T( 1,121)= 0.02279170; T( 1,122)= 0.02317611; T( 1,123)= 0.02356380; T( 1,124)= 0.02395479; T( 1,125)= 0.02434907; T( 1,126)= 0.02474665; T( 1,127)= 0.02514753; T( 1,128)= 0.02555171; T( 1,129)= 0.02595920; T( 1,130)= 0.02636999; T( 1,131)= 0.02678410; T( 1,132)= 0.02720152; T( 1,133)= 0.02762225; T( 1,134)= 0.02804631; T( 1,135)= 0.02847368; T( 1,136)= 0.02890438; T( 1,137)= 0.02933841; T( 1,138)= 0.02977577; T( 1,139)= 0.03021646; T( 1,140)= 0.03066048; T( 1,141)= 0.03110785; T( 1,142)= 0.03155855; T( 1,143)= 0.03201260; T( 1,144)= 0.03247000; T( 1,145)= 0.03293075; T( 1,146)= 0.03339485; T( 1,147)= 0.03386231; T( 1,148)= 0.03433313; T( 1,149)= 0.03480731; T( 1,150)= 0.03528486; T( 1,151)= 0.03576578; T( 1,152)= 0.03625007; T( 1,153)= 0.03673773; T( 1,154)= 0.03722878; T( 1,155)= 0.03772321; T( 1,156)= 0.03822102; T( 1,157)= 0.03872222; T( 1,158)= 0.03922681; T( 1,159)= 0.03973480; T( 1,160)= 0.04024619; T( 1,161)= 0.04076098; T( 1,162)= 0.04127917; T( 1,163)= 0.04180078; T( 1,164)= 0.04232579; T( 1,165)= 0.04285423; T( 1,166)= 0.04338608; T( 1,167)= 0.04392135; T( 1,168)= 0.04446006; T( 1,169)= 0.04500219; T( 1,170)= 0.04554776; T( 1,171)= 0.04609676; T( 1,172)= 0.04664921; T( 1,173)= 0.04720510; T( 1,174)= 0.04776444; T( 1,175)= 0.04832724; T( 1,176)= 0.04889349; T( 1,177)= 0.04946320; T( 1,178)= 0.05003637; T( 1,179)= 0.05061301; T( 1,180)= 0.05119313; T( 1,181)= 0.05177672; T( 1,182)= 0.05236379; T( 1,183)= 0.05295434; T( 1,184)= 0.05354838; T( 1,185)= 0.05414592; T( 1,186)= 0.05474695; T( 1,187)= 0.05535147; T( 1,188)= 0.05595951; T( 1,189)= 0.05657105; T( 1,190)= 0.05718611; T( 1,191)= 0.05780468; T( 1,192)= 0.05842677; T( 1,193)= 0.05905239; T( 1,194)= 0.05968153; T( 1,195)= 0.06031421; T( 1,196)= 0.06095043; T( 1,197)= 0.06159019; T( 1,198)= 0.06223350; T( 1,199)= 0.06288036; T( 1,200)= 0.06353078; T( 1,201)= 0.06418475; T( 1,202)= 0.06484230; T( 1,203)= 0.06550341; T( 1,204)= 0.06616809; T( 1,205)= 0.06683635; T( 1,206)= 0.06750820; T( 1,207)= 0.06818363; T( 1,208)= 0.06886266; T( 1,209)= 0.06954528; T( 1,210)= 0.07023151; T( 1,211)= 0.07092134; T( 1,212)= 0.07161479; T( 1,213)= 0.07231185; T( 1,214)= 0.07301253; T( 1,215)= 0.07371684; T( 1,216)= 0.07442478; T( 1,217)= 0.07513636; T( 1,218)= 0.07585157; T( 1,219)= 0.07657044; T( 1,220)= 0.07729295; T( 1,221)= 0.07801912; T( 1,222)= 0.07874896; T( 1,223)= 0.07948246; T( 1,224)= 0.08021963; T( 1,225)= 0.08096048; T( 1,226)= 0.08170501; T( 1,227)= 0.08245322; T( 1,228)= 0.08320514; T( 1,229)= 0.08396074; T( 1,230)= 0.08472006; T( 1,231)= 0.08548308; T( 1,232)= 0.08624982; T( 1,233)= 0.08702027; T( 1,234)= 0.08779446; T( 1,235)= 0.08857237; T( 1,236)= 0.08935402; T( 1,237)= 0.09013941; T( 1,238)= 0.09092855; T( 1,239)= 0.09172144; T( 1,240)= 0.09251809; T( 1,241)= 0.09331851; T( 1,242)= 0.09412270; T( 1,243)= 0.09493066; T( 1,244)= 0.09574241; T( 1,245)= 0.09655795; T( 1,246)= 0.09737728; T( 1,247)= 0.09820041; T( 1,248)= 0.09902734; T( 1,249)= 0.09985809; T( 1,250)= 0.10069265; T( 1,251)= 0.10153104; T( 1,252)= 0.10237326; T( 1,253)= 0.10321932; T( 1,254)= 0.10406922; T( 1,255)= 0.10492297; T( 1,256)= 0.10578057; T( 1,257)= 0.10664204; T( 1,258)= 0.10750737; T( 1,259)= 0.10837658; T( 1,260)= 0.10924967; T( 1,261)= 0.11012664; T( 1,262)= 0.11100751; T( 1,263)= 0.11189228; T( 1,264)= 0.11278096; T( 1,265)= 0.11367355; T( 1,266)= 0.11457005; T( 1,267)= 0.11547049; T( 1,268)= 0.11637486; T( 1,269)= 0.11728317; T( 1,270)= 0.11819542; T( 1,271)= 0.11911163; T( 1,272)= 0.12003180; T( 1,273)= 0.12095594; T( 1,274)= 0.12188405; T( 1,275)= 0.12281614; T( 1,276)= 0.12375223; T( 1,277)= 0.12469230; T( 1,278)= 0.12563638; T( 1,279)= 0.12658447; T( 1,280)= 0.12753658; T( 1,281)= 0.12849271; T( 1,282)= 0.12945287; T( 1,283)= 0.13041707; T( 1,284)= 0.13138531; T( 1,285)= 0.13235761; T( 1,286)= 0.13333397; T( 1,287)= 0.13431440; T( 1,288)= 0.13529891; T( 1,289)= 0.13628749; T( 1,290)= 0.13728017; T( 1,291)= 0.13827695; T( 1,292)= 0.13927783; T( 1,293)= 0.14028283; T( 1,294)= 0.14129195; T( 1,295)= 0.14230520; T( 1,296)= 0.14332259; T( 1,297)= 0.14434412; T( 1,298)= 0.14536981; T( 1,299)= 0.14639965; T( 1,300)= 0.14743367; T( 1,301)= 0.14847186; T( 1,302)= 0.14951424; T( 1,303)= 0.15056081; T( 1,304)= 0.15161159; T( 1,305)= 0.15266657; T( 1,306)= 0.15372578; T( 1,307)= 0.15478921; T( 1,308)= 0.15585687; T( 1,309)= 0.15692878; T( 1,310)= 0.15800494; T( 1,311)= 0.15908536; T( 1,312)= 0.16017005; T( 1,313)= 0.16125902; T( 1,314)= 0.16235228; T( 1,315)= 0.16344983; T( 1,316)= 0.16455169; T( 1,317)= 0.16565785; T( 1,318)= 0.16676834; T( 1,319)= 0.16788316; T( 1,320)= 0.16900232; T( 1,321)= 0.17012583; T( 1,322)= 0.17125370; T( 1,323)= 0.17238593; T( 1,324)= 0.17352254; T( 1,325)= 0.17466354; T( 1,326)= 0.17580893; T( 1,327)= 0.17695872; T( 1,328)= 0.17811293; T( 1,329)= 0.17927156; T( 1,330)= 0.18043462; T( 1,331)= 0.18160212; T( 1,332)= 0.18277408; T( 1,333)= 0.18395050; T( 1,334)= 0.18513138; T( 1,335)= 0.18631675; T( 1,336)= 0.18750661; T( 1,337)= 0.18870096; T( 1,338)= 0.18989983; T( 1,339)= 0.19110322; T( 1,340)= 0.19231114; T( 1,341)= 0.19352359; T( 1,342)= 0.19474060; T( 1,343)= 0.19596217; T( 1,344)= 0.19718831; T( 1,345)= 0.19841903; T( 1,346)= 0.19965434; T( 1,347)= 0.20089425; T( 1,348)= 0.20213877; T( 1,349)= 0.20338792; T( 1,350)= 0.20464170; T( 1,351)= 0.20590013; T( 1,352)= 0.20716320; T( 1,353)= 0.20843095; T( 1,354)= 0.20970337; T( 1,355)= 0.21098048; T( 1,356)= 0.21226228; T( 1,357)= 0.21354880; T( 1,358)= 0.21484003; T( 1,359)= 0.21613600; T( 1,360)= 0.21743670; T( 1,361)= 0.21874217; T( 1,362)= 0.22005239; T( 1,363)= 0.22136740; T( 1,364)= 0.22268719; T( 1,365)= 0.22401178; T( 1,366)= 0.22534118; T( 1,367)= 0.22667540; T( 1,368)= 0.22801446; T( 1,369)= 0.22935836; T( 1,370)= 0.23070713; T( 1,371)= 0.23206076; T( 1,372)= 0.23341927; T( 1,373)= 0.23478268; T( 1,374)= 0.23615099; T( 1,375)= 0.23752422; T( 1,376)= 0.23890238; T( 1,377)= 0.24028548; T( 1,378)= 0.24167354; T( 1,379)= 0.24306657; T( 1,380)= 0.24446457; T( 1,381)= 0.24586757; T( 1,382)= 0.24727557; T( 1,383)= 0.24868859; T( 1,384)= 0.25010664; T( 1,385)= 0.25152973; T( 1,386)= 0.25295788; T( 1,387)= 0.25439110; T( 1,388)= 0.25582940; T( 1,389)= 0.25727280; T( 1,390)= 0.25872130; T( 1,391)= 0.26017493; T( 1,392)= 0.26163369; T( 1,393)= 0.26309761; T( 1,394)= 0.26456668; T( 1,395)= 0.26604093; T( 1,396)= 0.26752037; T( 1,397)= 0.26900501; T( 1,398)= 0.27049487; T( 1,399)= 0.27198997; T( 1,400)= 0.27349030; T( 1,401)= 0.27499590; T( 1,402)= 0.27650677; T( 1,403)= 0.27802292; T( 1,404)= 0.27954438; T( 1,405)= 0.28107116; T( 1,406)= 0.28260326; T( 1,407)= 0.28414071; T( 1,408)= 0.28568353; T( 1,409)= 0.28723171; T( 1,410)= 0.28878529; T( 1,411)= 0.29034427; T( 1,412)= 0.29190867; T( 1,413)= 0.29347850; T( 1,414)= 0.29505378; T( 1,415)= 0.29663453; T( 1,416)= 0.29822076; T( 1,417)= 0.29981248; T( 1,418)= 0.30140972; T( 1,419)= 0.30301248; T( 1,420)= 0.30462079; T( 1,421)= 0.30623465; T( 1,422)= 0.30785408; T( 1,423)= 0.30947911; T( 1,424)= 0.31110974; T( 1,425)= 0.31274600; T( 1,426)= 0.31438789; T( 1,427)= 0.31603544; T( 1,428)= 0.31768866; T( 1,429)= 0.31934756; T( 1,430)= 0.32101217; T( 1,431)= 0.32268250; T( 1,432)= 0.32435857; T( 1,433)= 0.32604040; T( 1,434)= 0.32772799; T( 1,435)= 0.32942138; T( 1,436)= 0.33112057; T( 1,437)= 0.33282558; T( 1,438)= 0.33453644; T( 1,439)= 0.33625315; T( 1,440)= 0.33797574; T( 1,441)= 0.33970422; T( 1,442)= 0.34143862; T( 1,443)= 0.34317894; T( 1,444)= 0.34492521; T( 1,445)= 0.34667745; T( 1,446)= 0.34843567; T( 1,447)= 0.35019989; T( 1,448)= 0.35197013; T( 1,449)= 0.35374641; T( 1,450)= 0.35552875; T( 1,451)= 0.35731717; T( 1,452)= 0.35911168; T( 1,453)= 0.36091231; T( 1,454)= 0.36271907; T( 1,455)= 0.36453198; T( 1,456)= 0.36635106; T( 1,457)= 0.36817634; T( 1,458)= 0.37000783; T( 1,459)= 0.37184555; T( 1,460)= 0.37368952; T( 1,461)= 0.37553976; T( 1,462)= 0.37739629; T( 1,463)= 0.37925914; T( 1,464)= 0.38112831; T( 1,465)= 0.38300384; T( 1,466)= 0.38488574; T( 1,467)= 0.38677403; T( 1,468)= 0.38866874; T( 1,469)= 0.39056988; T( 1,470)= 0.39247748; T( 1,471)= 0.39439155; T( 1,472)= 0.39631213; T( 1,473)= 0.39823922; T( 1,474)= 0.40017286; T( 1,475)= 0.40211306; T( 1,476)= 0.40405984; T( 1,477)= 0.40601323; T( 1,478)= 0.40797325; T( 1,479)= 0.40993992; T( 1,480)= 0.41191327; T( 1,481)= 0.41389331; T( 1,482)= 0.41588007; T( 1,483)= 0.41787358; T( 1,484)= 0.41987384; T( 1,485)= 0.42188090; T( 1,486)= 0.42389477; T( 1,487)= 0.42591547; T( 1,488)= 0.42794303; T( 1,489)= 0.42997748; T( 1,490)= 0.43201883; T( 1,491)= 0.43406711; T( 1,492)= 0.43612234; T( 1,493)= 0.43818455; T( 1,494)= 0.44025376; T( 1,495)= 0.44233000; T( 1,496)= 0.44441330; T( 1,497)= 0.44650367; T( 1,498)= 0.44860114; T( 1,499)= 0.45070574; T( 1,500)= 0.45281749; T( 1,501)= 0.45493642; T( 1,502)= 0.45706256; T( 1,503)= 0.45919592; T( 1,504)= 0.46133654; T( 1,505)= 0.46348444; T( 1,506)= 0.46563966; T( 1,507)= 0.46780220; T( 1,508)= 0.46997211; T( 1,509)= 0.47214941; T( 1,510)= 0.47433412; T( 1,511)= 0.47652627; T( 1,512)= 0.47872590; T( 1,513)= 0.48093302; T( 1,514)= 0.48314767; T( 1,515)= 0.48536987; T( 1,516)= 0.48759966; T( 1,517)= 0.48983705; T( 1,518)= 0.49208209; T( 1,519)= 0.49433479; T( 1,520)= 0.49659519; T( 1,521)= 0.49886331; T( 1,522)= 0.50113919; T( 1,523)= 0.50342285; T( 1,524)= 0.50571433; T( 1,525)= 0.50801365; T( 1,526)= 0.51032084; T( 1,527)= 0.51263594; T( 1,528)= 0.51495897; T( 1,529)= 0.51728997; T( 1,530)= 0.51962896; T( 1,531)= 0.52197598; T( 1,532)= 0.52433106; T( 1,533)= 0.52669423; T( 1,534)= 0.52906552; T( 1,535)= 0.53144496; T( 1,536)= 0.53383259; T( 1,537)= 0.53622844; T( 1,538)= 0.53863254; T( 1,539)= 0.54104492; T( 1,540)= 0.54346562; T( 1,541)= 0.54589467; T( 1,542)= 0.54833210; T( 1,543)= 0.55077795; T( 1,544)= 0.55323224; T( 1,545)= 0.55569503; T( 1,546)= 0.55816633; T( 1,547)= 0.56064619; T( 1,548)= 0.56313464; T( 1,549)= 0.56563171; T( 1,550)= 0.56813744; T( 1,551)= 0.57065186; T( 1,552)= 0.57317502; T( 1,553)= 0.57570694; T( 1,554)= 0.57824767; T( 1,555)= 0.58079723; T( 1,556)= 0.58335568; T( 1,557)= 0.58592304; T( 1,558)= 0.58849935; T( 1,559)= 0.59108464; T( 1,560)= 0.59367897; T( 1,561)= 0.59628236; T( 1,562)= 0.59889485; T( 1,563)= 0.60151649; T( 1,564)= 0.60414731; T( 1,565)= 0.60678735; T( 1,566)= 0.60943665; T( 1,567)= 0.61209525; T( 1,568)= 0.61476319; T( 1,569)= 0.61744051; T( 1,570)= 0.62012726; T( 1,571)= 0.62282346; T( 1,572)= 0.62552918; T( 1,573)= 0.62824443; T( 1,574)= 0.63096928; T( 1,575)= 0.63370375; T( 1,576)= 0.63644790; T( 1,577)= 0.63920176; T( 1,578)= 0.64196538; T( 1,579)= 0.64473880; T( 1,580)= 0.64752207; T( 1,581)= 0.65031523; T( 1,582)= 0.65311832; T( 1,583)= 0.65593139; T( 1,584)= 0.65875449; T( 1,585)= 0.66158766; T( 1,586)= 0.66443094; T( 1,587)= 0.66728438; T( 1,588)= 0.67014804; T( 1,589)= 0.67302194; T( 1,590)= 0.67590615; T( 1,591)= 0.67880071; T( 1,592)= 0.68170567; T( 1,593)= 0.68462108; T( 1,594)= 0.68754698; T( 1,595)= 0.69048342; T( 1,596)= 0.69343046; T( 1,597)= 0.69638814; T( 1,598)= 0.69935651; T( 1,599)= 0.70233563; T( 1,600)= 0.70532554; T( 1,601)= 0.70832630; T( 1,602)= 0.71133796; T( 1,603)= 0.71436056; T( 1,604)= 0.71739417; T( 1,605)= 0.72043884; T( 1,606)= 0.72349461; T( 1,607)= 0.72656155; T( 1,608)= 0.72963970; T( 1,609)= 0.73272913; T( 1,610)= 0.73582988; T( 1,611)= 0.73894201; T( 1,612)= 0.74206558; T( 1,613)= 0.74520065; T( 1,614)= 0.74834727; T( 1,615)= 0.75150550; T( 1,616)= 0.75467539; T( 1,617)= 0.75785701; T( 1,618)= 0.76105041; T( 1,619)= 0.76425565; T( 1,620)= 0.76747280; T( 1,621)= 0.77070190; T( 1,622)= 0.77394304; T( 1,623)= 0.77719625; T( 1,624)= 0.78046161; T( 1,625)= 0.78373918; T( 1,626)= 0.78702902; T( 1,627)= 0.79033119; T( 1,628)= 0.79364576; T( 1,629)= 0.79697279; T( 1,630)= 0.80031234; T( 1,631)= 0.80366449; T( 1,632)= 0.80702930; T( 1,633)= 0.81040683; T( 1,634)= 0.81379714; T( 1,635)= 0.81720032; T( 1,636)= 0.82061642; T( 1,637)= 0.82404552; T( 1,638)= 0.82748768; T( 1,639)= 0.83094297; T( 1,640)= 0.83441147; T( 1,641)= 0.83789324; T( 1,642)= 0.84138836; T( 1,643)= 0.84489690; T( 1,644)= 0.84841893; T( 1,645)= 0.85195452; T( 1,646)= 0.85550376; T( 1,647)= 0.85906670; T( 1,648)= 0.86264344; T( 1,649)= 0.86623404; T( 1,650)= 0.86983858; T( 1,651)= 0.87345714; T( 1,652)= 0.87708980; T( 1,653)= 0.88073664; T( 1,654)= 0.88439773; T( 1,655)= 0.88807315; T( 1,656)= 0.89176299; T( 1,657)= 0.89546733; T( 1,658)= 0.89918625; T( 1,659)= 0.90291984; T( 1,660)= 0.90666817; T( 1,661)= 0.91043133; T( 1,662)= 0.91420941; T( 1,663)= 0.91800249; T( 1,664)= 0.92181066; T( 1,665)= 0.92563401; T( 1,666)= 0.92947263; T( 1,667)= 0.93332660; T( 1,668)= 0.93719601; T( 1,669)= 0.94108097; T( 1,670)= 0.94498155; T( 1,671)= 0.94889785; T( 1,672)= 0.95282996; T( 1,673)= 0.95677798; T( 1,674)= 0.96074201; T( 1,675)= 0.96472213; T( 1,676)= 0.96871846; T( 1,677)= 0.97273107; T( 1,678)= 0.97676009; T( 1,679)= 0.98080559; T( 1,680)= 0.98486769; T( 1,681)= 0.98894648; T( 1,682)= 0.99304207; T( 1,683)= 0.99715457; T( 1,684)= 1.00128407; T( 1,685)= 1.00543068; T( 1,686)= 1.00959452; T( 1,687)= 1.01377568; T( 1,688)= 1.01797427; T( 1,689)= 1.02219041; T( 1,690)= 1.02642421; T( 1,691)= 1.03067578; T( 1,692)= 1.03494522; T( 1,693)= 1.03923267; T( 1,694)= 1.04353822; T( 1,695)= 1.04786201; T( 1,696)= 1.05220414; T( 1,697)= 1.05656473; T( 1,698)= 1.06094391; T( 1,699)= 1.06534179; T( 1,700)= 1.06975851; T( 1,701)= 1.07419417; T( 1,702)= 1.07864891; T( 1,703)= 1.08312286; T( 1,704)= 1.08761614; T( 1,705)= 1.09212887; T( 1,706)= 1.09666120; T( 1,707)= 1.10121325; T( 1,708)= 1.10578516; T( 1,709)= 1.11037705; T( 1,710)= 1.11498907; T( 1,711)= 1.11962136; T( 1,712)= 1.12427404; T( 1,713)= 1.12894727; T( 1,714)= 1.13364118; T( 1,715)= 1.13835591; T( 1,716)= 1.14309162; T( 1,717)= 1.14784844; T( 1,718)= 1.15262653; T( 1,719)= 1.15742603; T( 1,720)= 1.16224709; T( 1,721)= 1.16708988; T( 1,722)= 1.17195453; T( 1,723)= 1.17684122; T( 1,724)= 1.18175009; T( 1,725)= 1.18668130; T( 1,726)= 1.19163503; T( 1,727)= 1.19661142; T( 1,728)= 1.20161064; T( 1,729)= 1.20663287; T( 1,730)= 1.21167827; T( 1,731)= 1.21674700; T( 1,732)= 1.22183925; T( 1,733)= 1.22695519; T( 1,734)= 1.23209498; T( 1,735)= 1.23725882; T( 1,736)= 1.24244689; T( 1,737)= 1.24765935; T( 1,738)= 1.25289640; T( 1,739)= 1.25815823; T( 1,740)= 1.26344503; T( 1,741)= 1.26875698; T( 1,742)= 1.27409427; T( 1,743)= 1.27945711; T( 1,744)= 1.28484570; T( 1,745)= 1.29026023; T( 1,746)= 1.29570090; T( 1,747)= 1.30116792; T( 1,748)= 1.30666150; T( 1,749)= 1.31218185; T( 1,750)= 1.31772917; T( 1,751)= 1.32330370; T( 1,752)= 1.32890563; T( 1,753)= 1.33453520; T( 1,754)= 1.34019263; T( 1,755)= 1.34587814; T( 1,756)= 1.35159197; T( 1,757)= 1.35733433; T( 1,758)= 1.36310547; T( 1,759)= 1.36890563; T( 1,760)= 1.37473505; T( 1,761)= 1.38059396; T( 1,762)= 1.38648262; T( 1,763)= 1.39240128; T( 1,764)= 1.39835018; T( 1,765)= 1.40432959; T( 1,766)= 1.41033976; T( 1,767)= 1.41638095; T( 1,768)= 1.42245344; T( 1,769)= 1.42855750; T( 1,770)= 1.43469339; T( 1,771)= 1.44086139; T( 1,772)= 1.44706178; T( 1,773)= 1.45329486; T( 1,774)= 1.45956089; T( 1,775)= 1.46586019; T( 1,776)= 1.47219304; T( 1,777)= 1.47855974; T( 1,778)= 1.48496060; T( 1,779)= 1.49139593; T( 1,780)= 1.49786603; T( 1,781)= 1.50437123; T( 1,782)= 1.51091184; T( 1,783)= 1.51748820; T( 1,784)= 1.52410062; T( 1,785)= 1.53074945; T( 1,786)= 1.53743503; T( 1,787)= 1.54415770; T( 1,788)= 1.55091780; T( 1,789)= 1.55771570; T( 1,790)= 1.56455174; T( 1,791)= 1.57142631; T( 1,792)= 1.57833976; T( 1,793)= 1.58529247; T( 1,794)= 1.59228482; T( 1,795)= 1.59931720; T( 1,796)= 1.60639000; T( 1,797)= 1.61350362; T( 1,798)= 1.62065845; T( 1,799)= 1.62785492; T( 1,800)= 1.63509343; T( 1,801)= 1.64237442; T( 1,802)= 1.64969829; T( 1,803)= 1.65706550; T( 1,804)= 1.66447649; T( 1,805)= 1.67193169; T( 1,806)= 1.67943157; T( 1,807)= 1.68697660; T( 1,808)= 1.69456723; T( 1,809)= 1.70220395; T( 1,810)= 1.70988725; T( 1,811)= 1.71761761; T( 1,812)= 1.72539554; T( 1,813)= 1.73322154; T( 1,814)= 1.74109613; T( 1,815)= 1.74901984; T( 1,816)= 1.75699320; T( 1,817)= 1.76501675; T( 1,818)= 1.77309105; T( 1,819)= 1.78121665; T( 1,820)= 1.78939413; T( 1,821)= 1.79762406; T( 1,822)= 1.80590704; T( 1,823)= 1.81424366; T( 1,824)= 1.82263454; T( 1,825)= 1.83108029; T( 1,826)= 1.83958155; T( 1,827)= 1.84813896; T( 1,828)= 1.85675316; T( 1,829)= 1.86542483; T( 1,830)= 1.87415465; T( 1,831)= 1.88294329; T( 1,832)= 1.89179147; T( 1,833)= 1.90069989; T( 1,834)= 1.90966928; T( 1,835)= 1.91870038; T( 1,836)= 1.92779395; T( 1,837)= 1.93695075; T( 1,838)= 1.94617156; T( 1,839)= 1.95545717; T( 1,840)= 1.96480841; T( 1,841)= 1.97422609; T( 1,842)= 1.98371106; T( 1,843)= 1.99326417; T( 1,844)= 2.00288630; T( 1,845)= 2.01257834; T( 1,846)= 2.02234120; T( 1,847)= 2.03217580; T( 1,848)= 2.04208310; T( 1,849)= 2.05206405; T( 1,850)= 2.06211963; T( 1,851)= 2.07225086; T( 1,852)= 2.08245874; T( 1,853)= 2.09274434; T( 1,854)= 2.10310870; T( 1,855)= 2.11355293; T( 1,856)= 2.12407812; T( 1,857)= 2.13468542; T( 1,858)= 2.14537598; T( 1,859)= 2.15615098; T( 1,860)= 2.16701163; T( 1,861)= 2.17795916; T( 1,862)= 2.18899483; T( 1,863)= 2.20011994; T( 1,864)= 2.21133579; T( 1,865)= 2.22264373; T( 1,866)= 2.23404513; T( 1,867)= 2.24554141; T( 1,868)= 2.25713401; T( 1,869)= 2.26882438; T( 1,870)= 2.28061404; T( 1,871)= 2.29250453; T( 1,872)= 2.30449742; T( 1,873)= 2.31659432; T( 1,874)= 2.32879689; T( 1,875)= 2.34110682; T( 1,876)= 2.35352584; T( 1,877)= 2.36605573; T( 1,878)= 2.37869829; T( 1,879)= 2.39145540; T( 1,880)= 2.40432896; T( 1,881)= 2.41732093; T( 1,882)= 2.43043331; T( 1,883)= 2.44366817; T( 1,884)= 2.45702761; T( 1,885)= 2.47051380; T( 1,886)= 2.48412895; T( 1,887)= 2.49787536; T( 1,888)= 2.51175537; T( 1,889)= 2.52577137; T( 1,890)= 2.53992584; T( 1,891)= 2.55422131; T( 1,892)= 2.56866040; T( 1,893)= 2.58324579; T( 1,894)= 2.59798022; T( 1,895)= 2.61286654; T( 1,896)= 2.62790766; T( 1,897)= 2.64310659; T( 1,898)= 2.65846640; T( 1,899)= 2.67399029; T( 1,900)= 2.68968151; T( 1,901)= 2.70554345; T( 1,902)= 2.72157959; T( 1,903)= 2.73779350; T( 1,904)= 2.75418887; T( 1,905)= 2.77076952; T( 1,906)= 2.78753937; T( 1,907)= 2.80450249; T( 1,908)= 2.82166305; T( 1,909)= 2.83902539; T( 1,910)= 2.85659397; T( 1,911)= 2.87437340; T( 1,912)= 2.89236845; T( 1,913)= 2.91058407; T( 1,914)= 2.92902536; T( 1,915)= 2.94769760; T( 1,916)= 2.96660627; T( 1,917)= 2.98575702; T( 1,918)= 3.00515574; T( 1,919)= 3.02480852; T( 1,920)= 3.04472166; T( 1,921)= 3.06490172; T( 1,922)= 3.08535550; T( 1,923)= 3.10609006; T( 1,924)= 3.12711274; T( 1,925)= 3.14843116; T( 1,926)= 3.17005327; T( 1,927)= 3.19198732; T( 1,928)= 3.21424190; T( 1,929)= 3.23682596; T( 1,930)= 3.25974885; T( 1,931)= 3.28302029; T( 1,932)= 3.30665043; T( 1,933)= 3.33064990; T( 1,934)= 3.35502975; T( 1,935)= 3.37980159; T( 1,936)= 3.40497752; T( 1,937)= 3.43057023; T( 1,938)= 3.45659301; T( 1,939)= 3.48305980; T( 1,940)= 3.50998521; T( 1,941)= 3.53738460; T( 1,942)= 3.56527408; T( 1,943)= 3.59367062; T( 1,944)= 3.62259207; T( 1,945)= 3.65205725; T( 1,946)= 3.68208597; T( 1,947)= 3.71269918; T( 1,948)= 3.74391899; T( 1,949)= 3.77576877; T( 1,950)= 3.80827331; T( 1,951)= 3.84145882; T( 1,952)= 3.87535316; T( 1,953)= 3.90998590; T( 1,954)= 3.94538850; T( 1,955)= 3.98159446; T( 1,956)= 4.01863951; T( 1,957)= 4.05656180; T( 1,958)= 4.09540213; T( 1,959)= 4.13520420; T( 1,960)= 4.17601489; T( 1,961)= 4.21788459; T( 1,962)= 4.26086752; T( 1,963)= 4.30502217; T( 1,964)= 4.35041174; T( 1,965)= 4.39710464; T( 1,966)= 4.44517514; T( 1,967)= 4.49470397; T( 1,968)= 4.54577916; T( 1,969)= 4.59849691; T( 1,970)= 4.65296265; T( 1,971)= 4.70929225; T( 1,972)= 4.76761342; T( 1,973)= 4.82806742; T( 1,974)= 4.89081102; T( 1,975)= 4.95601884; T( 1,976)= 5.02388619; T( 1,977)= 5.09463243; T( 1,978)= 5.16850511; T( 1,979)= 5.24578502; T( 1,980)= 5.32679234; T( 1,981)= 5.41189443; T( 1,982)= 5.50151554; T( 1,983)= 5.59614912; T( 1,984)= 5.69637381; T( 1,985)= 5.80287411; T( 1,986)= 5.91646788; T( 1,987)= 6.03814337; T( 1,988)= 6.16910990; T( 1,989)= 6.31086912; T( 1,990)= 6.46531729; T( 1,991)= 6.63489660; T( 1,992)= 6.82282684; T( 1,993)= 7.03347427; T( 1,994)= 7.27296897; T( 1,995)= 7.55030254; T( 1,996)= 7.87943858; T( 1,997)= 8.28381500; T( 1,998)= 8.80746839; T( 1,999)= 9.54953571; T( 1,1000)=10.82756617; T( 1,1001)=15.13670523; T( 1,1002)=19.51142096; T( 2, 1)= 0.00000000; T( 2, 2)= 0.00200100; T( 2, 3)= 0.00400401; T( 2, 4)= 0.00600902; T( 2, 5)= 0.00801604; T( 2, 6)= 0.01002508; T( 2, 7)= 0.01203614; T( 2, 8)= 0.01404923; T( 2, 9)= 0.01606434; T( 2,10)= 0.01808149; T( 2,11)= 0.02010067; T( 2,12)= 0.02212189; T( 2,13)= 0.02414516; T( 2,14)= 0.02617048; T( 2,15)= 0.02819785; T( 2,16)= 0.03022728; T( 2,17)= 0.03225876; T( 2,18)= 0.03429232; T( 2,19)= 0.03632794; T( 2,20)= 0.03836564; T( 2,21)= 0.04040541; T( 2,22)= 0.04244727; T( 2,23)= 0.04449122; T( 2,24)= 0.04653725; T( 2,25)= 0.04858539; T( 2,26)= 0.05063562; T( 2,27)= 0.05268795; T( 2,28)= 0.05474239; T( 2,29)= 0.05679895; T( 2,30)= 0.05885762; T( 2,31)= 0.06091841; T( 2,32)= 0.06298133; T( 2,33)= 0.06504638; T( 2,34)= 0.06711357; T( 2,35)= 0.06918289; T( 2,36)= 0.07125436; T( 2,37)= 0.07332797; T( 2,38)= 0.07540373; T( 2,39)= 0.07748166; T( 2,40)= 0.07956174; T( 2,41)= 0.08164399; T( 2,42)= 0.08372841; T( 2,43)= 0.08581500; T( 2,44)= 0.08790378; T( 2,45)= 0.08999473; T( 2,46)= 0.09208788; T( 2,47)= 0.09418322; T( 2,48)= 0.09628075; T( 2,49)= 0.09838049; T( 2,50)= 0.10048243; T( 2,51)= 0.10258659; T( 2,52)= 0.10469296; T( 2,53)= 0.10680155; T( 2,54)= 0.10891237; T( 2,55)= 0.11102542; T( 2,56)= 0.11314070; T( 2,57)= 0.11525823; T( 2,58)= 0.11737799; T( 2,59)= 0.11950001; T( 2,60)= 0.12162428; T( 2,61)= 0.12375081; T( 2,62)= 0.12587960; T( 2,63)= 0.12801066; T( 2,64)= 0.13014399; T( 2,65)= 0.13227961; T( 2,66)= 0.13441750; T( 2,67)= 0.13655768; T( 2,68)= 0.13870016; T( 2,69)= 0.14084493; T( 2,70)= 0.14299200; T( 2,71)= 0.14514139; T( 2,72)= 0.14729308; T( 2,73)= 0.14944709; T( 2,74)= 0.15160343; T( 2,75)= 0.15376209; T( 2,76)= 0.15592308; T( 2,77)= 0.15808641; T( 2,78)= 0.16025209; T( 2,79)= 0.16242011; T( 2,80)= 0.16459049; T( 2,81)= 0.16676322; T( 2,82)= 0.16893831; T( 2,83)= 0.17111578; T( 2,84)= 0.17329561; T( 2,85)= 0.17547783; T( 2,86)= 0.17766243; T( 2,87)= 0.17984942; T( 2,88)= 0.18203880; T( 2,89)= 0.18423058; T( 2,90)= 0.18642476; T( 2,91)= 0.18862136; T( 2,92)= 0.19082037; T( 2,93)= 0.19302180; T( 2,94)= 0.19522566; T( 2,95)= 0.19743195; T( 2,96)= 0.19964067; T( 2,97)= 0.20185184; T( 2,98)= 0.20406545; T( 2,99)= 0.20628152; T( 2,100)= 0.20850004; T( 2,101)= 0.21072103; T( 2,102)= 0.21294449; T( 2,103)= 0.21517042; T( 2,104)= 0.21739883; T( 2,105)= 0.21962973; T( 2,106)= 0.22186312; T( 2,107)= 0.22409901; T( 2,108)= 0.22633740; T( 2,109)= 0.22857829; T( 2,110)= 0.23082170; T( 2,111)= 0.23306763; T( 2,112)= 0.23531609; T( 2,113)= 0.23756707; T( 2,114)= 0.23982059; T( 2,115)= 0.24207666; T( 2,116)= 0.24433527; T( 2,117)= 0.24659643; T( 2,118)= 0.24886016; T( 2,119)= 0.25112645; T( 2,120)= 0.25339531; T( 2,121)= 0.25566674; T( 2,122)= 0.25794076; T( 2,123)= 0.26021737; T( 2,124)= 0.26249657; T( 2,125)= 0.26477838; T( 2,126)= 0.26706279; T( 2,127)= 0.26934981; T( 2,128)= 0.27163945; T( 2,129)= 0.27393171; T( 2,130)= 0.27622660; T( 2,131)= 0.27852413; T( 2,132)= 0.28082431; T( 2,133)= 0.28312713; T( 2,134)= 0.28543260; T( 2,135)= 0.28774074; T( 2,136)= 0.29005154; T( 2,137)= 0.29236502; T( 2,138)= 0.29468118; T( 2,139)= 0.29700002; T( 2,140)= 0.29932155; T( 2,141)= 0.30164578; T( 2,142)= 0.30397271; T( 2,143)= 0.30630236; T( 2,144)= 0.30863472; T( 2,145)= 0.31096981; T( 2,146)= 0.31330762; T( 2,147)= 0.31564817; T( 2,148)= 0.31799146; T( 2,149)= 0.32033750; T( 2,150)= 0.32268630; T( 2,151)= 0.32503786; T( 2,152)= 0.32739219; T( 2,153)= 0.32974929; T( 2,154)= 0.33210917; T( 2,155)= 0.33447184; T( 2,156)= 0.33683730; T( 2,157)= 0.33920557; T( 2,158)= 0.34157664; T( 2,159)= 0.34395053; T( 2,160)= 0.34632724; T( 2,161)= 0.34870677; T( 2,162)= 0.35108915; T( 2,163)= 0.35347436; T( 2,164)= 0.35586242; T( 2,165)= 0.35825333; T( 2,166)= 0.36064711; T( 2,167)= 0.36304375; T( 2,168)= 0.36544327; T( 2,169)= 0.36784568; T( 2,170)= 0.37025097; T( 2,171)= 0.37265916; T( 2,172)= 0.37507025; T( 2,173)= 0.37748425; T( 2,174)= 0.37990117; T( 2,175)= 0.38232101; T( 2,176)= 0.38474379; T( 2,177)= 0.38716950; T( 2,178)= 0.38959816; T( 2,179)= 0.39202977; T( 2,180)= 0.39446434; T( 2,181)= 0.39690188; T( 2,182)= 0.39934239; T( 2,183)= 0.40178588; T( 2,184)= 0.40423237; T( 2,185)= 0.40668185; T( 2,186)= 0.40913433; T( 2,187)= 0.41158983; T( 2,188)= 0.41404834; T( 2,189)= 0.41650988; T( 2,190)= 0.41897445; T( 2,191)= 0.42144206; T( 2,192)= 0.42391272; T( 2,193)= 0.42638644; T( 2,194)= 0.42886322; T( 2,195)= 0.43134307; T( 2,196)= 0.43382600; T( 2,197)= 0.43631202; T( 2,198)= 0.43880113; T( 2,199)= 0.44129334; T( 2,200)= 0.44378866; T( 2,201)= 0.44628710; T( 2,202)= 0.44878867; T( 2,203)= 0.45129336; T( 2,204)= 0.45380120; T( 2,205)= 0.45631219; T( 2,206)= 0.45882633; T( 2,207)= 0.46134364; T( 2,208)= 0.46386411; T( 2,209)= 0.46638777; T( 2,210)= 0.46891462; T( 2,211)= 0.47144467; T( 2,212)= 0.47397792; T( 2,213)= 0.47651438; T( 2,214)= 0.47905406; T( 2,215)= 0.48159697; T( 2,216)= 0.48414312; T( 2,217)= 0.48669252; T( 2,218)= 0.48924517; T( 2,219)= 0.49180108; T( 2,220)= 0.49436026; T( 2,221)= 0.49692272; T( 2,222)= 0.49948847; T( 2,223)= 0.50205751; T( 2,224)= 0.50462986; T( 2,225)= 0.50720552; T( 2,226)= 0.50978450; T( 2,227)= 0.51236681; T( 2,228)= 0.51495246; T( 2,229)= 0.51754146; T( 2,230)= 0.52013381; T( 2,231)= 0.52272953; T( 2,232)= 0.52532862; T( 2,233)= 0.52793109; T( 2,234)= 0.53053696; T( 2,235)= 0.53314622; T( 2,236)= 0.53575889; T( 2,237)= 0.53837498; T( 2,238)= 0.54099450; T( 2,239)= 0.54361745; T( 2,240)= 0.54624384; T( 2,241)= 0.54887369; T( 2,242)= 0.55150700; T( 2,243)= 0.55414379; T( 2,244)= 0.55678405; T( 2,245)= 0.55942781; T( 2,246)= 0.56207506; T( 2,247)= 0.56472582; T( 2,248)= 0.56738010; T( 2,249)= 0.57003791; T( 2,250)= 0.57269925; T( 2,251)= 0.57536414; T( 2,252)= 0.57803259; T( 2,253)= 0.58070460; T( 2,254)= 0.58338019; T( 2,255)= 0.58605936; T( 2,256)= 0.58874212; T( 2,257)= 0.59142849; T( 2,258)= 0.59411847; T( 2,259)= 0.59681207; T( 2,260)= 0.59950931; T( 2,261)= 0.60221019; T( 2,262)= 0.60491472; T( 2,263)= 0.60762291; T( 2,264)= 0.61033477; T( 2,265)= 0.61305032; T( 2,266)= 0.61576956; T( 2,267)= 0.61849250; T( 2,268)= 0.62121915; T( 2,269)= 0.62394953; T( 2,270)= 0.62668364; T( 2,271)= 0.62942149; T( 2,272)= 0.63216309; T( 2,273)= 0.63490846; T( 2,274)= 0.63765760; T( 2,275)= 0.64041053; T( 2,276)= 0.64316725; T( 2,277)= 0.64592777; T( 2,278)= 0.64869211; T( 2,279)= 0.65146028; T( 2,280)= 0.65423228; T( 2,281)= 0.65700813; T( 2,282)= 0.65978784; T( 2,283)= 0.66257142; T( 2,284)= 0.66535888; T( 2,285)= 0.66815022; T( 2,286)= 0.67094547; T( 2,287)= 0.67374463; T( 2,288)= 0.67654772; T( 2,289)= 0.67935474; T( 2,290)= 0.68216570; T( 2,291)= 0.68498062; T( 2,292)= 0.68779950; T( 2,293)= 0.69062237; T( 2,294)= 0.69344923; T( 2,295)= 0.69628008; T( 2,296)= 0.69911495; T( 2,297)= 0.70195385; T( 2,298)= 0.70479677; T( 2,299)= 0.70764375; T( 2,300)= 0.71049478; T( 2,301)= 0.71334989; T( 2,302)= 0.71620907; T( 2,303)= 0.71907235; T( 2,304)= 0.72193974; T( 2,305)= 0.72481124; T( 2,306)= 0.72768687; T( 2,307)= 0.73056664; T( 2,308)= 0.73345056; T( 2,309)= 0.73633865; T( 2,310)= 0.73923091; T( 2,311)= 0.74212736; T( 2,312)= 0.74502802; T( 2,313)= 0.74793288; T( 2,314)= 0.75084197; T( 2,315)= 0.75375530; T( 2,316)= 0.75667288; T( 2,317)= 0.75959472; T( 2,318)= 0.76252084; T( 2,319)= 0.76545124; T( 2,320)= 0.76838595; T( 2,321)= 0.77132496; T( 2,322)= 0.77426830; T( 2,323)= 0.77721598; T( 2,324)= 0.78016801; T( 2,325)= 0.78312441; T( 2,326)= 0.78608518; T( 2,327)= 0.78905034; T( 2,328)= 0.79201990; T( 2,329)= 0.79499388; T( 2,330)= 0.79797228; T( 2,331)= 0.80095513; T( 2,332)= 0.80394244; T( 2,333)= 0.80693421; T( 2,334)= 0.80993047; T( 2,335)= 0.81293122; T( 2,336)= 0.81593648; T( 2,337)= 0.81894626; T( 2,338)= 0.82196058; T( 2,339)= 0.82497945; T( 2,340)= 0.82800288; T( 2,341)= 0.83103089; T( 2,342)= 0.83406349; T( 2,343)= 0.83710070; T( 2,344)= 0.84014252; T( 2,345)= 0.84318898; T( 2,346)= 0.84624009; T( 2,347)= 0.84929586; T( 2,348)= 0.85235630; T( 2,349)= 0.85542143; T( 2,350)= 0.85849127; T( 2,351)= 0.86156583; T( 2,352)= 0.86464512; T( 2,353)= 0.86772917; T( 2,354)= 0.87081797; T( 2,355)= 0.87391155; T( 2,356)= 0.87700992; T( 2,357)= 0.88011311; T( 2,358)= 0.88322111; T( 2,359)= 0.88633395; T( 2,360)= 0.88945164; T( 2,361)= 0.89257421; T( 2,362)= 0.89570165; T( 2,363)= 0.89883399; T( 2,364)= 0.90197125; T( 2,365)= 0.90511343; T( 2,366)= 0.90826056; T( 2,367)= 0.91141265; T( 2,368)= 0.91456971; T( 2,369)= 0.91773177; T( 2,370)= 0.92089883; T( 2,371)= 0.92407092; T( 2,372)= 0.92724804; T( 2,373)= 0.93043023; T( 2,374)= 0.93361748; T( 2,375)= 0.93680982; T( 2,376)= 0.94000726; T( 2,377)= 0.94320982; T( 2,378)= 0.94641752; T( 2,379)= 0.94963037; T( 2,380)= 0.95284839; T( 2,381)= 0.95607160; T( 2,382)= 0.95930001; T( 2,383)= 0.96253364; T( 2,384)= 0.96577251; T( 2,385)= 0.96901663; T( 2,386)= 0.97226602; T( 2,387)= 0.97552070; T( 2,388)= 0.97878069; T( 2,389)= 0.98204599; T( 2,390)= 0.98531664; T( 2,391)= 0.98859264; T( 2,392)= 0.99187402; T( 2,393)= 0.99516079; T( 2,394)= 0.99845298; T( 2,395)= 1.00175059; T( 2,396)= 1.00505364; T( 2,397)= 1.00836216; T( 2,398)= 1.01167616; T( 2,399)= 1.01499567; T( 2,400)= 1.01832069; T( 2,401)= 1.02165125; T( 2,402)= 1.02498736; T( 2,403)= 1.02832905; T( 2,404)= 1.03167633; T( 2,405)= 1.03502922; T( 2,406)= 1.03838775; T( 2,407)= 1.04175192; T( 2,408)= 1.04512176; T( 2,409)= 1.04849729; T( 2,410)= 1.05187852; T( 2,411)= 1.05526548; T( 2,412)= 1.05865819; T( 2,413)= 1.06205666; T( 2,414)= 1.06546092; T( 2,415)= 1.06887098; T( 2,416)= 1.07228686; T( 2,417)= 1.07570859; T( 2,418)= 1.07913619; T( 2,419)= 1.08256966; T( 2,420)= 1.08600904; T( 2,421)= 1.08945435; T( 2,422)= 1.09290560; T( 2,423)= 1.09636282; T( 2,424)= 1.09982602; T( 2,425)= 1.10329524; T( 2,426)= 1.10677048; T( 2,427)= 1.11025177; T( 2,428)= 1.11373912; T( 2,429)= 1.11723258; T( 2,430)= 1.12073214; T( 2,431)= 1.12423784; T( 2,432)= 1.12774969; T( 2,433)= 1.13126772; T( 2,434)= 1.13479195; T( 2,435)= 1.13832240; T( 2,436)= 1.14185910; T( 2,437)= 1.14540205; T( 2,438)= 1.14895130; T( 2,439)= 1.15250686; T( 2,440)= 1.15606875; T( 2,441)= 1.15963699; T( 2,442)= 1.16321161; T( 2,443)= 1.16679263; T( 2,444)= 1.17038008; T( 2,445)= 1.17397397; T( 2,446)= 1.17757433; T( 2,447)= 1.18118118; T( 2,448)= 1.18479455; T( 2,449)= 1.18841447; T( 2,450)= 1.19204094; T( 2,451)= 1.19567400; T( 2,452)= 1.19931367; T( 2,453)= 1.20295998; T( 2,454)= 1.20661295; T( 2,455)= 1.21027261; T( 2,456)= 1.21393897; T( 2,457)= 1.21761206; T( 2,458)= 1.22129192; T( 2,459)= 1.22497856; T( 2,460)= 1.22867200; T( 2,461)= 1.23237228; T( 2,462)= 1.23607942; T( 2,463)= 1.23979344; T( 2,464)= 1.24351437; T( 2,465)= 1.24724224; T( 2,466)= 1.25097706; T( 2,467)= 1.25471888; T( 2,468)= 1.25846771; T( 2,469)= 1.26222358; T( 2,470)= 1.26598652; T( 2,471)= 1.26975654; T( 2,472)= 1.27353369; T( 2,473)= 1.27731799; T( 2,474)= 1.28110946; T( 2,475)= 1.28490813; T( 2,476)= 1.28871403; T( 2,477)= 1.29252719; T( 2,478)= 1.29634763; T( 2,479)= 1.30017538; T( 2,480)= 1.30401047; T( 2,481)= 1.30785293; T( 2,482)= 1.31170279; T( 2,483)= 1.31556007; T( 2,484)= 1.31942481; T( 2,485)= 1.32329703; T( 2,486)= 1.32717676; T( 2,487)= 1.33106403; T( 2,488)= 1.33495887; T( 2,489)= 1.33886131; T( 2,490)= 1.34277138; T( 2,491)= 1.34668911; T( 2,492)= 1.35061452; T( 2,493)= 1.35454766; T( 2,494)= 1.35848855; T( 2,495)= 1.36243722; T( 2,496)= 1.36639370; T( 2,497)= 1.37035802; T( 2,498)= 1.37433022; T( 2,499)= 1.37831032; T( 2,500)= 1.38229836; T( 2,501)= 1.38629436; T( 2,502)= 1.39029837; T( 2,503)= 1.39431040; T( 2,504)= 1.39833051; T( 2,505)= 1.40235870; T( 2,506)= 1.40639503; T( 2,507)= 1.41043952; T( 2,508)= 1.41449221; T( 2,509)= 1.41855312; T( 2,510)= 1.42262230; T( 2,511)= 1.42669978; T( 2,512)= 1.43078558; T( 2,513)= 1.43487975; T( 2,514)= 1.43898231; T( 2,515)= 1.44309331; T( 2,516)= 1.44721278; T( 2,517)= 1.45134074; T( 2,518)= 1.45547725; T( 2,519)= 1.45962233; T( 2,520)= 1.46377602; T( 2,521)= 1.46793835; T( 2,522)= 1.47210936; T( 2,523)= 1.47628909; T( 2,524)= 1.48047758; T( 2,525)= 1.48467485; T( 2,526)= 1.48888095; T( 2,527)= 1.49309591; T( 2,528)= 1.49731978; T( 2,529)= 1.50155259; T( 2,530)= 1.50579437; T( 2,531)= 1.51004517; T( 2,532)= 1.51430502; T( 2,533)= 1.51857397; T( 2,534)= 1.52285204; T( 2,535)= 1.52713929; T( 2,536)= 1.53143575; T( 2,537)= 1.53574145; T( 2,538)= 1.54005645; T( 2,539)= 1.54438078; T( 2,540)= 1.54871447; T( 2,541)= 1.55305758; T( 2,542)= 1.55741014; T( 2,543)= 1.56177219; T( 2,544)= 1.56614378; T( 2,545)= 1.57052494; T( 2,546)= 1.57491572; T( 2,547)= 1.57931616; T( 2,548)= 1.58372631; T( 2,549)= 1.58814620; T( 2,550)= 1.59257588; T( 2,551)= 1.59701539; T( 2,552)= 1.60146478; T( 2,553)= 1.60592409; T( 2,554)= 1.61039337; T( 2,555)= 1.61487265; T( 2,556)= 1.61936199; T( 2,557)= 1.62386143; T( 2,558)= 1.62837102; T( 2,559)= 1.63289079; T( 2,560)= 1.63742081; T( 2,561)= 1.64196110; T( 2,562)= 1.64651173; T( 2,563)= 1.65107274; T( 2,564)= 1.65564417; T( 2,565)= 1.66022607; T( 2,566)= 1.66481850; T( 2,567)= 1.66942149; T( 2,568)= 1.67403510; T( 2,569)= 1.67865938; T( 2,570)= 1.68329438; T( 2,571)= 1.68794014; T( 2,572)= 1.69259672; T( 2,573)= 1.69726417; T( 2,574)= 1.70194253; T( 2,575)= 1.70663187; T( 2,576)= 1.71133222; T( 2,577)= 1.71604365; T( 2,578)= 1.72076620; T( 2,579)= 1.72549993; T( 2,580)= 1.73024489; T( 2,581)= 1.73500114; T( 2,582)= 1.73976872; T( 2,583)= 1.74454769; T( 2,584)= 1.74933811; T( 2,585)= 1.75414004; T( 2,586)= 1.75895352; T( 2,587)= 1.76377861; T( 2,588)= 1.76861537; T( 2,589)= 1.77346386; T( 2,590)= 1.77832413; T( 2,591)= 1.78319624; T( 2,592)= 1.78808025; T( 2,593)= 1.79297621; T( 2,594)= 1.79788419; T( 2,595)= 1.80280424; T( 2,596)= 1.80773642; T( 2,597)= 1.81268080; T( 2,598)= 1.81763743; T( 2,599)= 1.82260638; T( 2,600)= 1.82758770; T( 2,601)= 1.83258146; T( 2,602)= 1.83758772; T( 2,603)= 1.84260655; T( 2,604)= 1.84763800; T( 2,605)= 1.85268214; T( 2,606)= 1.85773903; T( 2,607)= 1.86280874; T( 2,608)= 1.86789133; T( 2,609)= 1.87298688; T( 2,610)= 1.87809544; T( 2,611)= 1.88321708; T( 2,612)= 1.88835187; T( 2,613)= 1.89349988; T( 2,614)= 1.89866117; T( 2,615)= 1.90383582; T( 2,616)= 1.90902389; T( 2,617)= 1.91422545; T( 2,618)= 1.91944058; T( 2,619)= 1.92466934; T( 2,620)= 1.92991181; T( 2,621)= 1.93516805; T( 2,622)= 1.94043815; T( 2,623)= 1.94572217; T( 2,624)= 1.95102018; T( 2,625)= 1.95633227; T( 2,626)= 1.96165851; T( 2,627)= 1.96699896; T( 2,628)= 1.97235372; T( 2,629)= 1.97772285; T( 2,630)= 1.98310643; T( 2,631)= 1.98850455; T( 2,632)= 1.99391727; T( 2,633)= 1.99934468; T( 2,634)= 2.00478686; T( 2,635)= 2.01024389; T( 2,636)= 2.01571585; T( 2,637)= 2.02120282; T( 2,638)= 2.02670489; T( 2,639)= 2.03222213; T( 2,640)= 2.03775464; T( 2,641)= 2.04330250; T( 2,642)= 2.04886578; T( 2,643)= 2.05444459; T( 2,644)= 2.06003899; T( 2,645)= 2.06564910; T( 2,646)= 2.07127498; T( 2,647)= 2.07691673; T( 2,648)= 2.08257444; T( 2,649)= 2.08824821; T( 2,650)= 2.09393811; T( 2,651)= 2.09964425; T( 2,652)= 2.10536671; T( 2,653)= 2.11110560; T( 2,654)= 2.11686100; T( 2,655)= 2.12263301; T( 2,656)= 2.12842172; T( 2,657)= 2.13422724; T( 2,658)= 2.14004966; T( 2,659)= 2.14588908; T( 2,660)= 2.15174560; T( 2,661)= 2.15761932; T( 2,662)= 2.16351034; T( 2,663)= 2.16941877; T( 2,664)= 2.17534470; T( 2,665)= 2.18128824; T( 2,666)= 2.18724949; T( 2,667)= 2.19322857; T( 2,668)= 2.19922558; T( 2,669)= 2.20524062; T( 2,670)= 2.21127381; T( 2,671)= 2.21732525; T( 2,672)= 2.22339506; T( 2,673)= 2.22948334; T( 2,674)= 2.23559022; T( 2,675)= 2.24171580; T( 2,676)= 2.24786019; T( 2,677)= 2.25402353; T( 2,678)= 2.26020591; T( 2,679)= 2.26640747; T( 2,680)= 2.27262831; T( 2,681)= 2.27886857; T( 2,682)= 2.28512835; T( 2,683)= 2.29140779; T( 2,684)= 2.29770701; T( 2,685)= 2.30402613; T( 2,686)= 2.31036528; T( 2,687)= 2.31672459; T( 2,688)= 2.32310418; T( 2,689)= 2.32950418; T( 2,690)= 2.33592473; T( 2,691)= 2.34236596; T( 2,692)= 2.34882800; T( 2,693)= 2.35531099; T( 2,694)= 2.36181506; T( 2,695)= 2.36834035; T( 2,696)= 2.37488700; T( 2,697)= 2.38145516; T( 2,698)= 2.38804495; T( 2,699)= 2.39465652; T( 2,700)= 2.40129003; T( 2,701)= 2.40794561; T( 2,702)= 2.41462341; T( 2,703)= 2.42132358; T( 2,704)= 2.42804628; T( 2,705)= 2.43479165; T( 2,706)= 2.44155985; T( 2,707)= 2.44835102; T( 2,708)= 2.45516534; T( 2,709)= 2.46200295; T( 2,710)= 2.46886402; T( 2,711)= 2.47574871; T( 2,712)= 2.48265718; T( 2,713)= 2.48958960; T( 2,714)= 2.49654613; T( 2,715)= 2.50352694; T( 2,716)= 2.51053220; T( 2,717)= 2.51756208; T( 2,718)= 2.52461676; T( 2,719)= 2.53169642; T( 2,720)= 2.53880122; T( 2,721)= 2.54593135; T( 2,722)= 2.55308699; T( 2,723)= 2.56026833; T( 2,724)= 2.56747555; T( 2,725)= 2.57470883; T( 2,726)= 2.58196836; T( 2,727)= 2.58925435; T( 2,728)= 2.59656697; T( 2,729)= 2.60390643; T( 2,730)= 2.61127292; T( 2,731)= 2.61866664; T( 2,732)= 2.62608780; T( 2,733)= 2.63353660; T( 2,734)= 2.64101324; T( 2,735)= 2.64851794; T( 2,736)= 2.65605091; T( 2,737)= 2.66361235; T( 2,738)= 2.67120249; T( 2,739)= 2.67882155; T( 2,740)= 2.68646974; T( 2,741)= 2.69414730; T( 2,742)= 2.70185443; T( 2,743)= 2.70959139; T( 2,744)= 2.71735839; T( 2,745)= 2.72515567; T( 2,746)= 2.73298347; T( 2,747)= 2.74084202; T( 2,748)= 2.74873158; T( 2,749)= 2.75665238; T( 2,750)= 2.76460468; T( 2,751)= 2.77258872; T( 2,752)= 2.78060477; T( 2,753)= 2.78865307; T( 2,754)= 2.79673388; T( 2,755)= 2.80484749; T( 2,756)= 2.81299414; T( 2,757)= 2.82117411; T( 2,758)= 2.82938767; T( 2,759)= 2.83763511; T( 2,760)= 2.84591669; T( 2,761)= 2.85423271; T( 2,762)= 2.86258345; T( 2,763)= 2.87096921; T( 2,764)= 2.87939028; T( 2,765)= 2.88784695; T( 2,766)= 2.89633953; T( 2,767)= 2.90486833; T( 2,768)= 2.91343365; T( 2,769)= 2.92203581; T( 2,770)= 2.93067514; T( 2,771)= 2.93935194; T( 2,772)= 2.94806655; T( 2,773)= 2.95681930; T( 2,774)= 2.96561052; T( 2,775)= 2.97444056; T( 2,776)= 2.98330975; T( 2,777)= 2.99221845; T( 2,778)= 3.00116702; T( 2,779)= 3.01015579; T( 2,780)= 3.01918515; T( 2,781)= 3.02825547; T( 2,782)= 3.03736710; T( 2,783)= 3.04652043; T( 2,784)= 3.05571585; T( 2,785)= 3.06495374; T( 2,786)= 3.07423450; T( 2,787)= 3.08355853; T( 2,788)= 3.09292623; T( 2,789)= 3.10233801; T( 2,790)= 3.11179429; T( 2,791)= 3.12129550; T( 2,792)= 3.13084205; T( 2,793)= 3.14043440; T( 2,794)= 3.15007297; T( 2,795)= 3.15975822; T( 2,796)= 3.16949060; T( 2,797)= 3.17927057; T( 2,798)= 3.18909860; T( 2,799)= 3.19897516; T( 2,800)= 3.20890074; T( 2,801)= 3.21887582; T( 2,802)= 3.22890091; T( 2,803)= 3.23897650; T( 2,804)= 3.24910310; T( 2,805)= 3.25928124; T( 2,806)= 3.26951144; T( 2,807)= 3.27979424; T( 2,808)= 3.29013018; T( 2,809)= 3.30051981; T( 2,810)= 3.31096370; T( 2,811)= 3.32146241; T( 2,812)= 3.33201653; T( 2,813)= 3.34262663; T( 2,814)= 3.35329332; T( 2,815)= 3.36401721; T( 2,816)= 3.37479891; T( 2,817)= 3.38563904; T( 2,818)= 3.39653825; T( 2,819)= 3.40749718; T( 2,820)= 3.41851650; T( 2,821)= 3.42959686; T( 2,822)= 3.44073895; T( 2,823)= 3.45194346; T( 2,824)= 3.46321109; T( 2,825)= 3.47454257; T( 2,826)= 3.48593861; T( 2,827)= 3.49739996; T( 2,828)= 3.50892737; T( 2,829)= 3.52052160; T( 2,830)= 3.53218344; T( 2,831)= 3.54391368; T( 2,832)= 3.55571313; T( 2,833)= 3.56758260; T( 2,834)= 3.57952293; T( 2,835)= 3.59153498; T( 2,836)= 3.60361961; T( 2,837)= 3.61577770; T( 2,838)= 3.62801016; T( 2,839)= 3.64031789; T( 2,840)= 3.65270183; T( 2,841)= 3.66516293; T( 2,842)= 3.67770215; T( 2,843)= 3.69032049; T( 2,844)= 3.70301895; T( 2,845)= 3.71579854; T( 2,846)= 3.72866032; T( 2,847)= 3.74160535; T( 2,848)= 3.75463472; T( 2,849)= 3.76774952; T( 2,850)= 3.78095088; T( 2,851)= 3.79423997; T( 2,852)= 3.80761795; T( 2,853)= 3.82108601; T( 2,854)= 3.83464538; T( 2,855)= 3.84829731; T( 2,856)= 3.86204307; T( 2,857)= 3.87588396; T( 2,858)= 3.88982130; T( 2,859)= 3.90385644; T( 2,860)= 3.91799078; T( 2,861)= 3.93222571; T( 2,862)= 3.94656269; T( 2,863)= 3.96100319; T( 2,864)= 3.97554871; T( 2,865)= 3.99020079; T( 2,866)= 4.00496100; T( 2,867)= 4.01983096; T( 2,868)= 4.03481230; T( 2,869)= 4.04990671; T( 2,870)= 4.06511591; T( 2,871)= 4.08044166; T( 2,872)= 4.09588575; T( 2,873)= 4.11145003; T( 2,874)= 4.12713639; T( 2,875)= 4.14294674; T( 2,876)= 4.15888308; T( 2,877)= 4.17494743; T( 2,878)= 4.19114185; T( 2,879)= 4.20746847; T( 2,880)= 4.22392947; T( 2,881)= 4.24052707; T( 2,882)= 4.25726357; T( 2,883)= 4.27414131; T( 2,884)= 4.29116269; T( 2,885)= 4.30833018; T( 2,886)= 4.32564630; T( 2,887)= 4.34311366; T( 2,888)= 4.36073492; T( 2,889)= 4.37851282; T( 2,890)= 4.39645016; T( 2,891)= 4.41454983; T( 2,892)= 4.43281479; T( 2,893)= 4.45124810; T( 2,894)= 4.46985289; T( 2,895)= 4.48863237; T( 2,896)= 4.50758986; T( 2,897)= 4.52672876; T( 2,898)= 4.54605258; T( 2,899)= 4.56556493; T( 2,900)= 4.58526952; T( 2,901)= 4.60517019; T( 2,902)= 4.62527086; T( 2,903)= 4.64557560; T( 2,904)= 4.66608860; T( 2,905)= 4.68681418; T( 2,906)= 4.70775677; T( 2,907)= 4.72892099; T( 2,908)= 4.75031157; T( 2,909)= 4.77193340; T( 2,910)= 4.79379154; T( 2,911)= 4.81589122; T( 2,912)= 4.83823782; T( 2,913)= 4.86083693; T( 2,914)= 4.88369432; T( 2,915)= 4.90681597; T( 2,916)= 4.93020804; T( 2,917)= 4.95387696; T( 2,918)= 4.97782934; T( 2,919)= 5.00207206; T( 2,920)= 5.02661225; T( 2,921)= 5.05145729; T( 2,922)= 5.07661485; T( 2,923)= 5.10209290; T( 2,924)= 5.12789971; T( 2,925)= 5.15404388; T( 2,926)= 5.18053433; T( 2,927)= 5.20738037; T( 2,928)= 5.23459168; T( 2,929)= 5.26217832; T( 2,930)= 5.29015080; T( 2,931)= 5.31852007; T( 2,932)= 5.34729755; T( 2,933)= 5.37649515; T( 2,934)= 5.40612532; T( 2,935)= 5.43620107; T( 2,936)= 5.46673602; T( 2,937)= 5.49774439; T( 2,938)= 5.52924111; T( 2,939)= 5.56124179; T( 2,940)= 5.59376283; T( 2,941)= 5.62682143; T( 2,942)= 5.66043567; T( 2,943)= 5.69462454; T( 2,944)= 5.72940802; T( 2,945)= 5.76480718; T( 2,946)= 5.80084419; T( 2,947)= 5.83754246; T( 2,948)= 5.87492673; T( 2,949)= 5.91302312; T( 2,950)= 5.95185929; T( 2,951)= 5.99146455; T( 2,952)= 6.03186996; T( 2,953)= 6.07310854; T( 2,954)= 6.11521535; T( 2,955)= 6.15822776; T( 2,956)= 6.20218558; T( 2,957)= 6.24713129; T( 2,958)= 6.29311033; T( 2,959)= 6.34017132; T( 2,960)= 6.38836642; T( 2,961)= 6.43775165; T( 2,962)= 6.48838727; T( 2,963)= 6.54033824; T( 2,964)= 6.59367473; T( 2,965)= 6.64847268; T( 2,966)= 6.70481443; T( 2,967)= 6.76278951; T( 2,968)= 6.82249544; T( 2,969)= 6.88403875; T( 2,970)= 6.94753615; T( 2,971)= 7.01311579; T( 2,972)= 7.08091890; T( 2,973)= 7.15110154; T( 2,974)= 7.22383683; T( 2,975)= 7.29931748; T( 2,976)= 7.37775891; T( 2,977)= 7.45940290; T( 2,978)= 7.54452213; T( 2,979)= 7.63342565; T( 2,980)= 7.72646568; T( 2,981)= 7.82404601; T( 2,982)= 7.92663260; T( 2,983)= 8.03476704; T( 2,984)= 8.14908387; T( 2,985)= 8.27033311; T( 2,986)= 8.39941016; T( 2,987)= 8.53739590; T( 2,988)= 8.68561184; T( 2,989)= 8.84569726; T( 2,990)= 9.01972001; T( 2,991)= 9.21034037; T( 2,992)= 9.42106140; T( 2,993)= 9.65662747; T( 2,994)= 9.92369026; T( 2,995)=10.23199162; T( 2,996)=10.59663473; T( 2,997)=11.04292184; T( 2,998)=11.61828598; T( 2,999)=12.42921620; T( 2,1000)=13.81551056; T( 2,1001)=18.42068074; T( 2,1002)=23.02585093; T( 3, 1)= 0.00000000; T( 3, 2)= 0.02429759; T( 3, 3)= 0.03868093; T( 3, 4)= 0.05080913; T( 3, 5)= 0.06168447; T( 3, 6)= 0.07172177; T( 3, 7)= 0.08114342; T( 3, 8)= 0.09008603; T( 3, 9)= 0.09864107; T( 3,10)= 0.10687357; T( 3,11)= 0.11483180; T( 3,12)= 0.12255284; T( 3,13)= 0.13006595; T( 3,14)= 0.13739472; T( 3,15)= 0.14455853; T( 3,16)= 0.15157352; T( 3,17)= 0.15845335; T( 3,18)= 0.16520966; T( 3,19)= 0.17185252; T( 3,20)= 0.17839068; T( 3,21)= 0.18483182; T( 3,22)= 0.19118271; T( 3,23)= 0.19744939; T( 3,24)= 0.20363723; T( 3,25)= 0.20975107; T( 3,26)= 0.21579528; T( 3,27)= 0.22177382; T( 3,28)= 0.22769028; T( 3,29)= 0.23354794; T( 3,30)= 0.23934983; T( 3,31)= 0.24509871; T( 3,32)= 0.25079713; T( 3,33)= 0.25644744; T( 3,34)= 0.26205185; T( 3,35)= 0.26761236; T( 3,36)= 0.27313088; T( 3,37)= 0.27860917; T( 3,38)= 0.28404887; T( 3,39)= 0.28945153; T( 3,40)= 0.29481859; T( 3,41)= 0.30015142; T( 3,42)= 0.30545129; T( 3,43)= 0.31071942; T( 3,44)= 0.31595694; T( 3,45)= 0.32116493; T( 3,46)= 0.32634441; T( 3,47)= 0.33149635; T( 3,48)= 0.33662166; T( 3,49)= 0.34172121; T( 3,50)= 0.34679583; T( 3,51)= 0.35184632; T( 3,52)= 0.35687342; T( 3,53)= 0.36187784; T( 3,54)= 0.36686029; T( 3,55)= 0.37182140; T( 3,56)= 0.37676180; T( 3,57)= 0.38168210; T( 3,58)= 0.38658287; T( 3,59)= 0.39146465; T( 3,60)= 0.39632798; T( 3,61)= 0.40117336; T( 3,62)= 0.40600128; T( 3,63)= 0.41081221; T( 3,64)= 0.41560659; T( 3,65)= 0.42038487; T( 3,66)= 0.42514747; T( 3,67)= 0.42989477; T( 3,68)= 0.43462718; T( 3,69)= 0.43934506; T( 3,70)= 0.44404879; T( 3,71)= 0.44873870; T( 3,72)= 0.45341514; T( 3,73)= 0.45807844; T( 3,74)= 0.46272891; T( 3,75)= 0.46736686; T( 3,76)= 0.47199258; T( 3,77)= 0.47660636; T( 3,78)= 0.48120848; T( 3,79)= 0.48579922; T( 3,80)= 0.49037883; T( 3,81)= 0.49494756; T( 3,82)= 0.49950567; T( 3,83)= 0.50405340; T( 3,84)= 0.50859097; T( 3,85)= 0.51311862; T( 3,86)= 0.51763656; T( 3,87)= 0.52214501; T( 3,88)= 0.52664418; T( 3,89)= 0.53113427; T( 3,90)= 0.53561547; T( 3,91)= 0.54008799; T( 3,92)= 0.54455201; T( 3,93)= 0.54900771; T( 3,94)= 0.55345527; T( 3,95)= 0.55789487; T( 3,96)= 0.56232666; T( 3,97)= 0.56675083; T( 3,98)= 0.57116753; T( 3,99)= 0.57557692; T( 3,100)= 0.57997915; T( 3,101)= 0.58437437; T( 3,102)= 0.58876274; T( 3,103)= 0.59314439; T( 3,104)= 0.59751946; T( 3,105)= 0.60188810; T( 3,106)= 0.60625044; T( 3,107)= 0.61060660; T( 3,108)= 0.61495672; T( 3,109)= 0.61930092; T( 3,110)= 0.62363934; T( 3,111)= 0.62797208; T( 3,112)= 0.63229926; T( 3,113)= 0.63662101; T( 3,114)= 0.64093743; T( 3,115)= 0.64524864; T( 3,116)= 0.64955475; T( 3,117)= 0.65385586; T( 3,118)= 0.65815208; T( 3,119)= 0.66244351; T( 3,120)= 0.66673026; T( 3,121)= 0.67101242; T( 3,122)= 0.67529008; T( 3,123)= 0.67956335; T( 3,124)= 0.68383232; T( 3,125)= 0.68809708; T( 3,126)= 0.69235773; T( 3,127)= 0.69661434; T( 3,128)= 0.70086701; T( 3,129)= 0.70511583; T( 3,130)= 0.70936087; T( 3,131)= 0.71360223; T( 3,132)= 0.71783998; T( 3,133)= 0.72207420; T( 3,134)= 0.72630497; T( 3,135)= 0.73053238; T( 3,136)= 0.73475649; T( 3,137)= 0.73897738; T( 3,138)= 0.74319513; T( 3,139)= 0.74740981; T( 3,140)= 0.75162148; T( 3,141)= 0.75583023; T( 3,142)= 0.76003612; T( 3,143)= 0.76423922; T( 3,144)= 0.76843960; T( 3,145)= 0.77263731; T( 3,146)= 0.77683244; T( 3,147)= 0.78102504; T( 3,148)= 0.78521518; T( 3,149)= 0.78940292; T( 3,150)= 0.79358832; T( 3,151)= 0.79777144; T( 3,152)= 0.80195235; T( 3,153)= 0.80613110; T( 3,154)= 0.81030775; T( 3,155)= 0.81448236; T( 3,156)= 0.81865499; T( 3,157)= 0.82282568; T( 3,158)= 0.82699451; T( 3,159)= 0.83116152; T( 3,160)= 0.83532677; T( 3,161)= 0.83949030; T( 3,162)= 0.84365218; T( 3,163)= 0.84781246; T( 3,164)= 0.85197118; T( 3,165)= 0.85612840; T( 3,166)= 0.86028417; T( 3,167)= 0.86443854; T( 3,168)= 0.86859155; T( 3,169)= 0.87274326; T( 3,170)= 0.87689372; T( 3,171)= 0.88104296; T( 3,172)= 0.88519105; T( 3,173)= 0.88933801; T( 3,174)= 0.89348391; T( 3,175)= 0.89762878; T( 3,176)= 0.90177268; T( 3,177)= 0.90591564; T( 3,178)= 0.91005770; T( 3,179)= 0.91419892; T( 3,180)= 0.91833934; T( 3,181)= 0.92247899; T( 3,182)= 0.92661793; T( 3,183)= 0.93075618; T( 3,184)= 0.93489380; T( 3,185)= 0.93903082; T( 3,186)= 0.94316729; T( 3,187)= 0.94730324; T( 3,188)= 0.95143871; T( 3,189)= 0.95557375; T( 3,190)= 0.95970839; T( 3,191)= 0.96384268; T( 3,192)= 0.96797664; T( 3,193)= 0.97211032; T( 3,194)= 0.97624375; T( 3,195)= 0.98037698; T( 3,196)= 0.98451003; T( 3,197)= 0.98864295; T( 3,198)= 0.99277578; T( 3,199)= 0.99690854; T( 3,200)= 1.00104127; T( 3,201)= 1.00517401; T( 3,202)= 1.00930680; T( 3,203)= 1.01343967; T( 3,204)= 1.01757264; T( 3,205)= 1.02170577; T( 3,206)= 1.02583908; T( 3,207)= 1.02997260; T( 3,208)= 1.03410637; T( 3,209)= 1.03824042; T( 3,210)= 1.04237479; T( 3,211)= 1.04650951; T( 3,212)= 1.05064460; T( 3,213)= 1.05478011; T( 3,214)= 1.05891606; T( 3,215)= 1.06305249; T( 3,216)= 1.06718942; T( 3,217)= 1.07132690; T( 3,218)= 1.07546494; T( 3,219)= 1.07960359; T( 3,220)= 1.08374286; T( 3,221)= 1.08788280; T( 3,222)= 1.09202343; T( 3,223)= 1.09616478; T( 3,224)= 1.10030689; T( 3,225)= 1.10444978; T( 3,226)= 1.10859348; T( 3,227)= 1.11273802; T( 3,228)= 1.11688343; T( 3,229)= 1.12102974; T( 3,230)= 1.12517697; T( 3,231)= 1.12932517; T( 3,232)= 1.13347435; T( 3,233)= 1.13762455; T( 3,234)= 1.14177578; T( 3,235)= 1.14592809; T( 3,236)= 1.15008149; T( 3,237)= 1.15423602; T( 3,238)= 1.15839171; T( 3,239)= 1.16254857; T( 3,240)= 1.16670665; T( 3,241)= 1.17086596; T( 3,242)= 1.17502653; T( 3,243)= 1.17918839; T( 3,244)= 1.18335157; T( 3,245)= 1.18751609; T( 3,246)= 1.19168198; T( 3,247)= 1.19584927; T( 3,248)= 1.20001798; T( 3,249)= 1.20418814; T( 3,250)= 1.20835977; T( 3,251)= 1.21253290; T( 3,252)= 1.21670756; T( 3,253)= 1.22088378; T( 3,254)= 1.22506157; T( 3,255)= 1.22924097; T( 3,256)= 1.23342199; T( 3,257)= 1.23760467; T( 3,258)= 1.24178903; T( 3,259)= 1.24597510; T( 3,260)= 1.25016289; T( 3,261)= 1.25435244; T( 3,262)= 1.25854377; T( 3,263)= 1.26273691; T( 3,264)= 1.26693188; T( 3,265)= 1.27112870; T( 3,266)= 1.27532740; T( 3,267)= 1.27952800; T( 3,268)= 1.28373053; T( 3,269)= 1.28793502; T( 3,270)= 1.29214148; T( 3,271)= 1.29634995; T( 3,272)= 1.30056043; T( 3,273)= 1.30477297; T( 3,274)= 1.30898758; T( 3,275)= 1.31320429; T( 3,276)= 1.31742312; T( 3,277)= 1.32164410; T( 3,278)= 1.32586724; T( 3,279)= 1.33009258; T( 3,280)= 1.33432014; T( 3,281)= 1.33854993; T( 3,282)= 1.34278199; T( 3,283)= 1.34701634; T( 3,284)= 1.35125299; T( 3,285)= 1.35549198; T( 3,286)= 1.35973333; T( 3,287)= 1.36397706; T( 3,288)= 1.36822319; T( 3,289)= 1.37247175; T( 3,290)= 1.37672276; T( 3,291)= 1.38097625; T( 3,292)= 1.38523223; T( 3,293)= 1.38949074; T( 3,294)= 1.39375178; T( 3,295)= 1.39801539; T( 3,296)= 1.40228159; T( 3,297)= 1.40655041; T( 3,298)= 1.41082186; T( 3,299)= 1.41509596; T( 3,300)= 1.41937275; T( 3,301)= 1.42365224; T( 3,302)= 1.42793446; T( 3,303)= 1.43221943; T( 3,304)= 1.43650717; T( 3,305)= 1.44079770; T( 3,306)= 1.44509106; T( 3,307)= 1.44938725; T( 3,308)= 1.45368631; T( 3,309)= 1.45798825; T( 3,310)= 1.46229310; T( 3,311)= 1.46660089; T( 3,312)= 1.47091162; T( 3,313)= 1.47522534; T( 3,314)= 1.47954205; T( 3,315)= 1.48386178; T( 3,316)= 1.48818456; T( 3,317)= 1.49251041; T( 3,318)= 1.49683934; T( 3,319)= 1.50117139; T( 3,320)= 1.50550658; T( 3,321)= 1.50984492; T( 3,322)= 1.51418644; T( 3,323)= 1.51853116; T( 3,324)= 1.52287911; T( 3,325)= 1.52723031; T( 3,326)= 1.53158477; T( 3,327)= 1.53594253; T( 3,328)= 1.54030361; T( 3,329)= 1.54466802; T( 3,330)= 1.54903580; T( 3,331)= 1.55340696; T( 3,332)= 1.55778152; T( 3,333)= 1.56215951; T( 3,334)= 1.56654096; T( 3,335)= 1.57092588; T( 3,336)= 1.57531429; T( 3,337)= 1.57970623; T( 3,338)= 1.58410171; T( 3,339)= 1.58850075; T( 3,340)= 1.59290338; T( 3,341)= 1.59730962; T( 3,342)= 1.60171949; T( 3,343)= 1.60613302; T( 3,344)= 1.61055022; T( 3,345)= 1.61497113; T( 3,346)= 1.61939577; T( 3,347)= 1.62382415; T( 3,348)= 1.62825630; T( 3,349)= 1.63269224; T( 3,350)= 1.63713200; T( 3,351)= 1.64157560; T( 3,352)= 1.64602306; T( 3,353)= 1.65047440; T( 3,354)= 1.65492966; T( 3,355)= 1.65938884; T( 3,356)= 1.66385198; T( 3,357)= 1.66831910; T( 3,358)= 1.67279021; T( 3,359)= 1.67726535; T( 3,360)= 1.68174454; T( 3,361)= 1.68622780; T( 3,362)= 1.69071515; T( 3,363)= 1.69520662; T( 3,364)= 1.69970222; T( 3,365)= 1.70420200; T( 3,366)= 1.70870596; T( 3,367)= 1.71321413; T( 3,368)= 1.71772653; T( 3,369)= 1.72224319; T( 3,370)= 1.72676414; T( 3,371)= 1.73128939; T( 3,372)= 1.73581896; T( 3,373)= 1.74035290; T( 3,374)= 1.74489120; T( 3,375)= 1.74943391; T( 3,376)= 1.75398104; T( 3,377)= 1.75853263; T( 3,378)= 1.76308868; T( 3,379)= 1.76764923; T( 3,380)= 1.77221430; T( 3,381)= 1.77678392; T( 3,382)= 1.78135810; T( 3,383)= 1.78593688; T( 3,384)= 1.79052027; T( 3,385)= 1.79510831; T( 3,386)= 1.79970102; T( 3,387)= 1.80429841; T( 3,388)= 1.80890052; T( 3,389)= 1.81350738; T( 3,390)= 1.81811899; T( 3,391)= 1.82273540; T( 3,392)= 1.82735662; T( 3,393)= 1.83198268; T( 3,394)= 1.83661361; T( 3,395)= 1.84124942; T( 3,396)= 1.84589015; T( 3,397)= 1.85053582; T( 3,398)= 1.85518646; T( 3,399)= 1.85984208; T( 3,400)= 1.86450272; T( 3,401)= 1.86916840; T( 3,402)= 1.87383915; T( 3,403)= 1.87851499; T( 3,404)= 1.88319595; T( 3,405)= 1.88788205; T( 3,406)= 1.89257333; T( 3,407)= 1.89726979; T( 3,408)= 1.90197148; T( 3,409)= 1.90667842; T( 3,410)= 1.91139063; T( 3,411)= 1.91610814; T( 3,412)= 1.92083098; T( 3,413)= 1.92555917; T( 3,414)= 1.93029273; T( 3,415)= 1.93503171; T( 3,416)= 1.93977611; T( 3,417)= 1.94452598; T( 3,418)= 1.94928133; T( 3,419)= 1.95404219; T( 3,420)= 1.95880859; T( 3,421)= 1.96358056; T( 3,422)= 1.96835812; T( 3,423)= 1.97314131; T( 3,424)= 1.97793014; T( 3,425)= 1.98272465; T( 3,426)= 1.98752486; T( 3,427)= 1.99233080; T( 3,428)= 1.99714251; T( 3,429)= 2.00195999; T( 3,430)= 2.00678330; T( 3,431)= 2.01161244; T( 3,432)= 2.01644746; T( 3,433)= 2.02128838; T( 3,434)= 2.02613522; T( 3,435)= 2.03098802; T( 3,436)= 2.03584681; T( 3,437)= 2.04071161; T( 3,438)= 2.04558245; T( 3,439)= 2.05045936; T( 3,440)= 2.05534237; T( 3,441)= 2.06023151; T( 3,442)= 2.06512681; T( 3,443)= 2.07002829; T( 3,444)= 2.07493600; T( 3,445)= 2.07984995; T( 3,446)= 2.08477018; T( 3,447)= 2.08969671; T( 3,448)= 2.09462958; T( 3,449)= 2.09956881; T( 3,450)= 2.10451445; T( 3,451)= 2.10946651; T( 3,452)= 2.11442502; T( 3,453)= 2.11939003; T( 3,454)= 2.12436155; T( 3,455)= 2.12933962; T( 3,456)= 2.13432428; T( 3,457)= 2.13931554; T( 3,458)= 2.14431345; T( 3,459)= 2.14931803; T( 3,460)= 2.15432931; T( 3,461)= 2.15934734; T( 3,462)= 2.16437213; T( 3,463)= 2.16940372; T( 3,464)= 2.17444214; T( 3,465)= 2.17948743; T( 3,466)= 2.18453962; T( 3,467)= 2.18959874; T( 3,468)= 2.19466482; T( 3,469)= 2.19973789; T( 3,470)= 2.20481800; T( 3,471)= 2.20990516; T( 3,472)= 2.21499942; T( 3,473)= 2.22010080; T( 3,474)= 2.22520935; T( 3,475)= 2.23032509; T( 3,476)= 2.23544806; T( 3,477)= 2.24057829; T( 3,478)= 2.24571582; T( 3,479)= 2.25086068; T( 3,480)= 2.25601290; T( 3,481)= 2.26117253; T( 3,482)= 2.26633959; T( 3,483)= 2.27151412; T( 3,484)= 2.27669615; T( 3,485)= 2.28188573; T( 3,486)= 2.28708288; T( 3,487)= 2.29228764; T( 3,488)= 2.29750005; T( 3,489)= 2.30272014; T( 3,490)= 2.30794796; T( 3,491)= 2.31318352; T( 3,492)= 2.31842688; T( 3,493)= 2.32367807; T( 3,494)= 2.32893712; T( 3,495)= 2.33420408; T( 3,496)= 2.33947898; T( 3,497)= 2.34476185; T( 3,498)= 2.35005274; T( 3,499)= 2.35535169; T( 3,500)= 2.36065872; T( 3,501)= 2.36597388; T( 3,502)= 2.37129722; T( 3,503)= 2.37662875; T( 3,504)= 2.38196854; T( 3,505)= 2.38731660; T( 3,506)= 2.39267299; T( 3,507)= 2.39803775; T( 3,508)= 2.40341090; T( 3,509)= 2.40879250; T( 3,510)= 2.41418258; T( 3,511)= 2.41958119; T( 3,512)= 2.42498835; T( 3,513)= 2.43040412; T( 3,514)= 2.43582854; T( 3,515)= 2.44126164; T( 3,516)= 2.44670347; T( 3,517)= 2.45215407; T( 3,518)= 2.45761348; T( 3,519)= 2.46308174; T( 3,520)= 2.46855890; T( 3,521)= 2.47404500; T( 3,522)= 2.47954008; T( 3,523)= 2.48504418; T( 3,524)= 2.49055734; T( 3,525)= 2.49607962; T( 3,526)= 2.50161105; T( 3,527)= 2.50715169; T( 3,528)= 2.51270156; T( 3,529)= 2.51826072; T( 3,530)= 2.52382921; T( 3,531)= 2.52940708; T( 3,532)= 2.53499437; T( 3,533)= 2.54059113; T( 3,534)= 2.54619740; T( 3,535)= 2.55181323; T( 3,536)= 2.55743867; T( 3,537)= 2.56307376; T( 3,538)= 2.56871854; T( 3,539)= 2.57437308; T( 3,540)= 2.58003741; T( 3,541)= 2.58571158; T( 3,542)= 2.59139564; T( 3,543)= 2.59708963; T( 3,544)= 2.60279362; T( 3,545)= 2.60850764; T( 3,546)= 2.61423174; T( 3,547)= 2.61996598; T( 3,548)= 2.62571040; T( 3,549)= 2.63146505; T( 3,550)= 2.63722999; T( 3,551)= 2.64300526; T( 3,552)= 2.64879092; T( 3,553)= 2.65458702; T( 3,554)= 2.66039360; T( 3,555)= 2.66621073; T( 3,556)= 2.67203845; T( 3,557)= 2.67787681; T( 3,558)= 2.68372587; T( 3,559)= 2.68958569; T( 3,560)= 2.69545631; T( 3,561)= 2.70133778; T( 3,562)= 2.70723017; T( 3,563)= 2.71313353; T( 3,564)= 2.71904792; T( 3,565)= 2.72497338; T( 3,566)= 2.73090997; T( 3,567)= 2.73685776; T( 3,568)= 2.74281679; T( 3,569)= 2.74878712; T( 3,570)= 2.75476881; T( 3,571)= 2.76076193; T( 3,572)= 2.76676651; T( 3,573)= 2.77278264; T( 3,574)= 2.77881035; T( 3,575)= 2.78484972; T( 3,576)= 2.79090079; T( 3,577)= 2.79696364; T( 3,578)= 2.80303832; T( 3,579)= 2.80912489; T( 3,580)= 2.81522341; T( 3,581)= 2.82133395; T( 3,582)= 2.82745656; T( 3,583)= 2.83359131; T( 3,584)= 2.83973826; T( 3,585)= 2.84589748; T( 3,586)= 2.85206902; T( 3,587)= 2.85825296; T( 3,588)= 2.86444935; T( 3,589)= 2.87065826; T( 3,590)= 2.87687976; T( 3,591)= 2.88311391; T( 3,592)= 2.88936078; T( 3,593)= 2.89562043; T( 3,594)= 2.90189294; T( 3,595)= 2.90817836; T( 3,596)= 2.91447678; T( 3,597)= 2.92078824; T( 3,598)= 2.92711284; T( 3,599)= 2.93345063; T( 3,600)= 2.93980168; T( 3,601)= 2.94616607; T( 3,602)= 2.95254387; T( 3,603)= 2.95893514; T( 3,604)= 2.96533997; T( 3,605)= 2.97175842; T( 3,606)= 2.97819056; T( 3,607)= 2.98463648; T( 3,608)= 2.99109623; T( 3,609)= 2.99756991; T( 3,610)= 3.00405758; T( 3,611)= 3.01055932; T( 3,612)= 3.01707521; T( 3,613)= 3.02360532; T( 3,614)= 3.03014973; T( 3,615)= 3.03670852; T( 3,616)= 3.04328177; T( 3,617)= 3.04986955; T( 3,618)= 3.05647195; T( 3,619)= 3.06308905; T( 3,620)= 3.06972093; T( 3,621)= 3.07636767; T( 3,622)= 3.08302935; T( 3,623)= 3.08970606; T( 3,624)= 3.09639787; T( 3,625)= 3.10310488; T( 3,626)= 3.10982717; T( 3,627)= 3.11656482; T( 3,628)= 3.12331792; T( 3,629)= 3.13008656; T( 3,630)= 3.13687083; T( 3,631)= 3.14367081; T( 3,632)= 3.15048658; T( 3,633)= 3.15731826; T( 3,634)= 3.16416591; T( 3,635)= 3.17102964; T( 3,636)= 3.17790953; T( 3,637)= 3.18480568; T( 3,638)= 3.19171818; T( 3,639)= 3.19864712; T( 3,640)= 3.20559261; T( 3,641)= 3.21255473; T( 3,642)= 3.21953358; T( 3,643)= 3.22652926; T( 3,644)= 3.23354187; T( 3,645)= 3.24057150; T( 3,646)= 3.24761826; T( 3,647)= 3.25468224; T( 3,648)= 3.26176355; T( 3,649)= 3.26886229; T( 3,650)= 3.27597856; T( 3,651)= 3.28311246; T( 3,652)= 3.29026411; T( 3,653)= 3.29743360; T( 3,654)= 3.30462104; T( 3,655)= 3.31182654; T( 3,656)= 3.31905020; T( 3,657)= 3.32629215; T( 3,658)= 3.33355247; T( 3,659)= 3.34083130; T( 3,660)= 3.34812873; T( 3,661)= 3.35544489; T( 3,662)= 3.36277988; T( 3,663)= 3.37013382; T( 3,664)= 3.37750683; T( 3,665)= 3.38489902; T( 3,666)= 3.39231051; T( 3,667)= 3.39974142; T( 3,668)= 3.40719187; T( 3,669)= 3.41466198; T( 3,670)= 3.42215187; T( 3,671)= 3.42966167; T( 3,672)= 3.43719150; T( 3,673)= 3.44474148; T( 3,674)= 3.45231175; T( 3,675)= 3.45990242; T( 3,676)= 3.46751363; T( 3,677)= 3.47514551; T( 3,678)= 3.48279819; T( 3,679)= 3.49047180; T( 3,680)= 3.49816648; T( 3,681)= 3.50588236; T( 3,682)= 3.51361957; T( 3,683)= 3.52137825; T( 3,684)= 3.52915854; T( 3,685)= 3.53696059; T( 3,686)= 3.54478453; T( 3,687)= 3.55263050; T( 3,688)= 3.56049865; T( 3,689)= 3.56838913; T( 3,690)= 3.57630207; T( 3,691)= 3.58423763; T( 3,692)= 3.59219596; T( 3,693)= 3.60017721; T( 3,694)= 3.60818152; T( 3,695)= 3.61620906; T( 3,696)= 3.62425998; T( 3,697)= 3.63233443; T( 3,698)= 3.64043258; T( 3,699)= 3.64855458; T( 3,700)= 3.65670059; T( 3,701)= 3.66487078; T( 3,702)= 3.67306531; T( 3,703)= 3.68128435; T( 3,704)= 3.68952807; T( 3,705)= 3.69779663; T( 3,706)= 3.70609020; T( 3,707)= 3.71440896; T( 3,708)= 3.72275309; T( 3,709)= 3.73112275; T( 3,710)= 3.73951813; T( 3,711)= 3.74793941; T( 3,712)= 3.75638677; T( 3,713)= 3.76486039; T( 3,714)= 3.77336045; T( 3,715)= 3.78188715; T( 3,716)= 3.79044068; T( 3,717)= 3.79902122; T( 3,718)= 3.80762897; T( 3,719)= 3.81626412; T( 3,720)= 3.82492688; T( 3,721)= 3.83361743; T( 3,722)= 3.84233599; T( 3,723)= 3.85108276; T( 3,724)= 3.85985793; T( 3,725)= 3.86866173; T( 3,726)= 3.87749436; T( 3,727)= 3.88635602; T( 3,728)= 3.89524695; T( 3,729)= 3.90416735; T( 3,730)= 3.91311745; T( 3,731)= 3.92209746; T( 3,732)= 3.93110762; T( 3,733)= 3.94014814; T( 3,734)= 3.94921926; T( 3,735)= 3.95832121; T( 3,736)= 3.96745422; T( 3,737)= 3.97661853; T( 3,738)= 3.98581438; T( 3,739)= 3.99504202; T( 3,740)= 4.00430169; T( 3,741)= 4.01359363; T( 3,742)= 4.02291810; T( 3,743)= 4.03227535; T( 3,744)= 4.04166564; T( 3,745)= 4.05108923; T( 3,746)= 4.06054637; T( 3,747)= 4.07003735; T( 3,748)= 4.07956242; T( 3,749)= 4.08912186; T( 3,750)= 4.09871593; T( 3,751)= 4.10834494; T( 3,752)= 4.11800914; T( 3,753)= 4.12770883; T( 3,754)= 4.13744430; T( 3,755)= 4.14721584; T( 3,756)= 4.15702374; T( 3,757)= 4.16686831; T( 3,758)= 4.17674984; T( 3,759)= 4.18666865; T( 3,760)= 4.19662504; T( 3,761)= 4.20661933; T( 3,762)= 4.21665183; T( 3,763)= 4.22672288; T( 3,764)= 4.23683278; T( 3,765)= 4.24698188; T( 3,766)= 4.25717052; T( 3,767)= 4.26739901; T( 3,768)= 4.27766772; T( 3,769)= 4.28797699; T( 3,770)= 4.29832716; T( 3,771)= 4.30871860; T( 3,772)= 4.31915167; T( 3,773)= 4.32962673; T( 3,774)= 4.34014415; T( 3,775)= 4.35070431; T( 3,776)= 4.36130759; T( 3,777)= 4.37195437; T( 3,778)= 4.38264504; T( 3,779)= 4.39338001; T( 3,780)= 4.40415966; T( 3,781)= 4.41498441; T( 3,782)= 4.42585467; T( 3,783)= 4.43677085; T( 3,784)= 4.44773338; T( 3,785)= 4.45874269; T( 3,786)= 4.46979921; T( 3,787)= 4.48090338; T( 3,788)= 4.49205566; T( 3,789)= 4.50325649; T( 3,790)= 4.51450633; T( 3,791)= 4.52580565; T( 3,792)= 4.53715492; T( 3,793)= 4.54855463; T( 3,794)= 4.56000525; T( 3,795)= 4.57150728; T( 3,796)= 4.58306123; T( 3,797)= 4.59466759; T( 3,798)= 4.60632689; T( 3,799)= 4.61803965; T( 3,800)= 4.62980640; T( 3,801)= 4.64162768; T( 3,802)= 4.65350402; T( 3,803)= 4.66543600; T( 3,804)= 4.67742417; T( 3,805)= 4.68946910; T( 3,806)= 4.70157137; T( 3,807)= 4.71373158; T( 3,808)= 4.72595032; T( 3,809)= 4.73822819; T( 3,810)= 4.75056583; T( 3,811)= 4.76296384; T( 3,812)= 4.77542287; T( 3,813)= 4.78794356; T( 3,814)= 4.80052658; T( 3,815)= 4.81317259; T( 3,816)= 4.82588226; T( 3,817)= 4.83865629; T( 3,818)= 4.85149538; T( 3,819)= 4.86440023; T( 3,820)= 4.87737157; T( 3,821)= 4.89041014; T( 3,822)= 4.90351669; T( 3,823)= 4.91669196; T( 3,824)= 4.92993675; T( 3,825)= 4.94325182; T( 3,826)= 4.95663799; T( 3,827)= 4.97009606; T( 3,828)= 4.98362685; T( 3,829)= 4.99723122; T( 3,830)= 5.01091002; T( 3,831)= 5.02466411; T( 3,832)= 5.03849439; T( 3,833)= 5.05240175; T( 3,834)= 5.06638711; T( 3,835)= 5.08045141; T( 3,836)= 5.09459559; T( 3,837)= 5.10882063; T( 3,838)= 5.12312751; T( 3,839)= 5.13751723; T( 3,840)= 5.15199082; T( 3,841)= 5.16654932; T( 3,842)= 5.18119378; T( 3,843)= 5.19592529; T( 3,844)= 5.21074496; T( 3,845)= 5.22565389; T( 3,846)= 5.24065324; T( 3,847)= 5.25574417; T( 3,848)= 5.27092788; T( 3,849)= 5.28620556; T( 3,850)= 5.30157846; T( 3,851)= 5.31704784; T( 3,852)= 5.33261498; T( 3,853)= 5.34828119; T( 3,854)= 5.36404781; T( 3,855)= 5.37991621; T( 3,856)= 5.39588777; T( 3,857)= 5.41196392; T( 3,858)= 5.42814612; T( 3,859)= 5.44443583; T( 3,860)= 5.46083458; T( 3,861)= 5.47734390; T( 3,862)= 5.49396539; T( 3,863)= 5.51070063; T( 3,864)= 5.52755130; T( 3,865)= 5.54451906; T( 3,866)= 5.56160563; T( 3,867)= 5.57881278; T( 3,868)= 5.59614230; T( 3,869)= 5.61359603; T( 3,870)= 5.63117585; T( 3,871)= 5.64888367; T( 3,872)= 5.66672148; T( 3,873)= 5.68469127; T( 3,874)= 5.70279511; T( 3,875)= 5.72103510; T( 3,876)= 5.73941341; T( 3,877)= 5.75793225; T( 3,878)= 5.77659387; T( 3,879)= 5.79540059; T( 3,880)= 5.81435480; T( 3,881)= 5.83345891; T( 3,882)= 5.85271544; T( 3,883)= 5.87212693; T( 3,884)= 5.89169601; T( 3,885)= 5.91142538; T( 3,886)= 5.93131777; T( 3,887)= 5.95137604; T( 3,888)= 5.97160308; T( 3,889)= 5.99200188; T( 3,890)= 6.01257550; T( 3,891)= 6.03332709; T( 3,892)= 6.05425987; T( 3,893)= 6.07537716; T( 3,894)= 6.09668239; T( 3,895)= 6.11817905; T( 3,896)= 6.13987076; T( 3,897)= 6.16176122; T( 3,898)= 6.18385425; T( 3,899)= 6.20615378; T( 3,900)= 6.22866385; T( 3,901)= 6.25138863; T( 3,902)= 6.27433241; T( 3,903)= 6.29749960; T( 3,904)= 6.32089476; T( 3,905)= 6.34452258; T( 3,906)= 6.36838791; T( 3,907)= 6.39249574; T( 3,908)= 6.41685123; T( 3,909)= 6.44145970; T( 3,910)= 6.46632663; T( 3,911)= 6.49145772; T( 3,912)= 6.51685881; T( 3,913)= 6.54253598; T( 3,914)= 6.56849550; T( 3,915)= 6.59474385; T( 3,916)= 6.62128774; T( 3,917)= 6.64813413; T( 3,918)= 6.67529022; T( 3,919)= 6.70276346; T( 3,920)= 6.73056159; T( 3,921)= 6.75869262; T( 3,922)= 6.78716488; T( 3,923)= 6.81598701; T( 3,924)= 6.84516797; T( 3,925)= 6.87471709; T( 3,926)= 6.90464406; T( 3,927)= 6.93495896; T( 3,928)= 6.96567226; T( 3,929)= 6.99679490; T( 3,930)= 7.02833825; T( 3,931)= 7.06031417; T( 3,932)= 7.09273502; T( 3,933)= 7.12561371; T( 3,934)= 7.15896372; T( 3,935)= 7.19279914; T( 3,936)= 7.22713469; T( 3,937)= 7.26198577; T( 3,938)= 7.29736853; T( 3,939)= 7.33329986; T( 3,940)= 7.36979750; T( 3,941)= 7.40688004; T( 3,942)= 7.44456702; T( 3,943)= 7.48287898; T( 3,944)= 7.52183750; T( 3,945)= 7.56146534; T( 3,946)= 7.60178647; T( 3,947)= 7.64282615; T( 3,948)= 7.68461110; T( 3,949)= 7.72716951; T( 3,950)= 7.77053124; T( 3,951)= 7.81472790; T( 3,952)= 7.85979303; T( 3,953)= 7.90576221; T( 3,954)= 7.95267326; T( 3,955)= 8.00056647; T( 3,956)= 8.04948472; T( 3,957)= 8.09947381; T( 3,958)= 8.15058267; T( 3,959)= 8.20286369; T( 3,960)= 8.25637300; T( 3,961)= 8.31117091; T( 3,962)= 8.36732227; T( 3,963)= 8.42489697; T( 3,964)= 8.48397049; T( 3,965)= 8.54462446; T( 3,966)= 8.60694740; T( 3,967)= 8.67103553; T( 3,968)= 8.73699360; T( 3,969)= 8.80493605; T( 3,970)= 8.87498816; T( 3,971)= 8.94728750; T( 3,972)= 9.02198557; T( 3,973)= 9.09924980; T( 3,974)= 9.17926579; T( 3,975)= 9.26224013; T( 3,976)= 9.34840360; T( 3,977)= 9.43801521; T( 3,978)= 9.53136689; T( 3,979)= 9.62878943; T( 3,980)= 9.73065964; T( 3,981)= 9.83740931; T( 3,982)= 9.94953654; T( 3,983)=10.06762000; T( 3,984)=10.19233733; T( 3,985)=10.32448914; T( 3,986)=10.46503071; T( 3,987)=10.61511464; T( 3,988)=10.77614929; T( 3,989)=10.94988065; T( 3,990)=11.13850986; T( 3,991)=11.34486673; T( 3,992)=11.57267496; T( 3,993)=11.82697385; T( 3,994)=12.11482274; T( 3,995)=12.44655104; T( 3,996)=12.83815647; T( 3,997)=13.31640865; T( 3,998)=13.93142267; T( 3,999)=14.79551705; T( 3,1000)=16.26623620; T( 3,1001)=21.10751347; T( 3,1002)=25.90174975; T( 4, 1)= 0.00000000; T( 4, 2)= 0.09080404; T( 4, 3)= 0.12923771; T( 4, 4)= 0.15906734; T( 4, 5)= 0.18444814; T( 4, 6)= 0.20698909; T( 4, 7)= 0.22751512; T( 4, 8)= 0.24651611; T( 4, 9)= 0.26431116; T( 4,10)= 0.28112186; T( 4,11)= 0.29710948; T( 4,12)= 0.31239575; T( 4,13)= 0.32707521; T( 4,14)= 0.34122302; T( 4,15)= 0.35490010; T( 4,16)= 0.36815665; T( 4,17)= 0.38103461; T( 4,18)= 0.39356944; T( 4,19)= 0.40579145; T( 4,20)= 0.41772679; T( 4,21)= 0.42939819; T( 4,22)= 0.44082558; T( 4,23)= 0.45202654; T( 4,24)= 0.46301666; T( 4,25)= 0.47380984; T( 4,26)= 0.48441856; T( 4,27)= 0.49485405; T( 4,28)= 0.50512649; T( 4,29)= 0.51524508; T( 4,30)= 0.52521825; T( 4,31)= 0.53505367; T( 4,32)= 0.54475841; T( 4,33)= 0.55433893; T( 4,34)= 0.56380124; T( 4,35)= 0.57315084; T( 4,36)= 0.58239287; T( 4,37)= 0.59153209; T( 4,38)= 0.60057293; T( 4,39)= 0.60951952; T( 4,40)= 0.61837573; T( 4,41)= 0.62714516; T( 4,42)= 0.63583121; T( 4,43)= 0.64443707; T( 4,44)= 0.65296573; T( 4,45)= 0.66142000; T( 4,46)= 0.66980256; T( 4,47)= 0.67811591; T( 4,48)= 0.68636244; T( 4,49)= 0.69454440; T( 4,50)= 0.70266392; T( 4,51)= 0.71072302; T( 4,52)= 0.71872364; T( 4,53)= 0.72666760; T( 4,54)= 0.73455665; T( 4,55)= 0.74239246; T( 4,56)= 0.75017659; T( 4,57)= 0.75791057; T( 4,58)= 0.76559585; T( 4,59)= 0.77323380; T( 4,60)= 0.78082575; T( 4,61)= 0.78837296; T( 4,62)= 0.79587666; T( 4,63)= 0.80333800; T( 4,64)= 0.81075810; T( 4,65)= 0.81813804; T( 4,66)= 0.82547884; T( 4,67)= 0.83278151; T( 4,68)= 0.84004699; T( 4,69)= 0.84727621; T( 4,70)= 0.85447005; T( 4,71)= 0.86162937; T( 4,72)= 0.86875498; T( 4,73)= 0.87584769; T( 4,74)= 0.88290826; T( 4,75)= 0.88993743; T( 4,76)= 0.89693592; T( 4,77)= 0.90390442; T( 4,78)= 0.91084360; T( 4,79)= 0.91775411; T( 4,80)= 0.92463657; T( 4,81)= 0.93149160; T( 4,82)= 0.93831978; T( 4,83)= 0.94512169; T( 4,84)= 0.95189787; T( 4,85)= 0.95864887; T( 4,86)= 0.96537520; T( 4,87)= 0.97207738; T( 4,88)= 0.97875589; T( 4,89)= 0.98541121; T( 4,90)= 0.99204380; T( 4,91)= 0.99865412; T( 4,92)= 1.00524261; T( 4,93)= 1.01180968; T( 4,94)= 1.01835577; T( 4,95)= 1.02488126; T( 4,96)= 1.03138656; T( 4,97)= 1.03787205; T( 4,98)= 1.04433810; T( 4,99)= 1.05078507; T( 4,100)= 1.05721333; T( 4,101)= 1.06362322; T( 4,102)= 1.07001507; T( 4,103)= 1.07638921; T( 4,104)= 1.08274597; T( 4,105)= 1.08908566; T( 4,106)= 1.09540858; T( 4,107)= 1.10171504; T( 4,108)= 1.10800533; T( 4,109)= 1.11427973; T( 4,110)= 1.12053852; T( 4,111)= 1.12678198; T( 4,112)= 1.13301037; T( 4,113)= 1.13922395; T( 4,114)= 1.14542298; T( 4,115)= 1.15160771; T( 4,116)= 1.15777838; T( 4,117)= 1.16393523; T( 4,118)= 1.17007849; T( 4,119)= 1.17620840; T( 4,120)= 1.18232518; T( 4,121)= 1.18842905; T( 4,122)= 1.19452023; T( 4,123)= 1.20059892; T( 4,124)= 1.20666533; T( 4,125)= 1.21271967; T( 4,126)= 1.21876214; T( 4,127)= 1.22479292; T( 4,128)= 1.23081222; T( 4,129)= 1.23682021; T( 4,130)= 1.24281709; T( 4,131)= 1.24880304; T( 4,132)= 1.25477823; T( 4,133)= 1.26074283; T( 4,134)= 1.26669702; T( 4,135)= 1.27264097; T( 4,136)= 1.27857484; T( 4,137)= 1.28449879; T( 4,138)= 1.29041298; T( 4,139)= 1.29631757; T( 4,140)= 1.30221271; T( 4,141)= 1.30809856; T( 4,142)= 1.31397526; T( 4,143)= 1.31984296; T( 4,144)= 1.32570180; T( 4,145)= 1.33155192; T( 4,146)= 1.33739346; T( 4,147)= 1.34322657; T( 4,148)= 1.34905136; T( 4,149)= 1.35486799; T( 4,150)= 1.36067656; T( 4,151)= 1.36647723; T( 4,152)= 1.37227010; T( 4,153)= 1.37805531; T( 4,154)= 1.38383297; T( 4,155)= 1.38960322; T( 4,156)= 1.39536616; T( 4,157)= 1.40112191; T( 4,158)= 1.40687059; T( 4,159)= 1.41261231; T( 4,160)= 1.41834719; T( 4,161)= 1.42407533; T( 4,162)= 1.42979685; T( 4,163)= 1.43551184; T( 4,164)= 1.44122042; T( 4,165)= 1.44692269; T( 4,166)= 1.45261875; T( 4,167)= 1.45830870; T( 4,168)= 1.46399265; T( 4,169)= 1.46967069; T( 4,170)= 1.47534292; T( 4,171)= 1.48100943; T( 4,172)= 1.48667032; T( 4,173)= 1.49232569; T( 4,174)= 1.49797562; T( 4,175)= 1.50362021; T( 4,176)= 1.50925954; T( 4,177)= 1.51489371; T( 4,178)= 1.52052280; T( 4,179)= 1.52614689; T( 4,180)= 1.53176608; T( 4,181)= 1.53738045; T( 4,182)= 1.54299008; T( 4,183)= 1.54859506; T( 4,184)= 1.55419546; T( 4,185)= 1.55979136; T( 4,186)= 1.56538285; T( 4,187)= 1.57097000; T( 4,188)= 1.57655289; T( 4,189)= 1.58213160; T( 4,190)= 1.58770620; T( 4,191)= 1.59327678; T( 4,192)= 1.59884339; T( 4,193)= 1.60440612; T( 4,194)= 1.60996503; T( 4,195)= 1.61552021; T( 4,196)= 1.62107171; T( 4,197)= 1.62661962; T( 4,198)= 1.63216399; T( 4,199)= 1.63770491; T( 4,200)= 1.64324243; T( 4,201)= 1.64877662; T( 4,202)= 1.65430755; T( 4,203)= 1.65983529; T( 4,204)= 1.66535990; T( 4,205)= 1.67088144; T( 4,206)= 1.67639998; T( 4,207)= 1.68191559; T( 4,208)= 1.68742832; T( 4,209)= 1.69293823; T( 4,210)= 1.69844540; T( 4,211)= 1.70394987; T( 4,212)= 1.70945172; T( 4,213)= 1.71495099; T( 4,214)= 1.72044775; T( 4,215)= 1.72594205; T( 4,216)= 1.73143396; T( 4,217)= 1.73692353; T( 4,218)= 1.74241082; T( 4,219)= 1.74789589; T( 4,220)= 1.75337878; T( 4,221)= 1.75885957; T( 4,222)= 1.76433829; T( 4,223)= 1.76981501; T( 4,224)= 1.77528978; T( 4,225)= 1.78076266; T( 4,226)= 1.78623369; T( 4,227)= 1.79170293; T( 4,228)= 1.79717043; T( 4,229)= 1.80263625; T( 4,230)= 1.80810043; T( 4,231)= 1.81356303; T( 4,232)= 1.81902409; T( 4,233)= 1.82448367; T( 4,234)= 1.82994182; T( 4,235)= 1.83539858; T( 4,236)= 1.84085401; T( 4,237)= 1.84630815; T( 4,238)= 1.85176106; T( 4,239)= 1.85721277; T( 4,240)= 1.86266334; T( 4,241)= 1.86811282; T( 4,242)= 1.87356125; T( 4,243)= 1.87900868; T( 4,244)= 1.88445515; T( 4,245)= 1.88990071; T( 4,246)= 1.89534541; T( 4,247)= 1.90078929; T( 4,248)= 1.90623240; T( 4,249)= 1.91167478; T( 4,250)= 1.91711647; T( 4,251)= 1.92255753; T( 4,252)= 1.92799798; T( 4,253)= 1.93343789; T( 4,254)= 1.93887729; T( 4,255)= 1.94431622; T( 4,256)= 1.94975472; T( 4,257)= 1.95519285; T( 4,258)= 1.96063064; T( 4,259)= 1.96606812; T( 4,260)= 1.97150536; T( 4,261)= 1.97694238; T( 4,262)= 1.98237923; T( 4,263)= 1.98781595; T( 4,264)= 1.99325257; T( 4,265)= 1.99868915; T( 4,266)= 2.00412572; T( 4,267)= 2.00956231; T( 4,268)= 2.01499898; T( 4,269)= 2.02043576; T( 4,270)= 2.02587268; T( 4,271)= 2.03130980; T( 4,272)= 2.03674714; T( 4,273)= 2.04218475; T( 4,274)= 2.04762267; T( 4,275)= 2.05306093; T( 4,276)= 2.05849957; T( 4,277)= 2.06393863; T( 4,278)= 2.06937815; T( 4,279)= 2.07481817; T( 4,280)= 2.08025872; T( 4,281)= 2.08569984; T( 4,282)= 2.09114157; T( 4,283)= 2.09658394; T( 4,284)= 2.10202700; T( 4,285)= 2.10747077; T( 4,286)= 2.11291531; T( 4,287)= 2.11836063; T( 4,288)= 2.12380678; T( 4,289)= 2.12925380; T( 4,290)= 2.13470172; T( 4,291)= 2.14015057; T( 4,292)= 2.14560040; T( 4,293)= 2.15105123; T( 4,294)= 2.15650311; T( 4,295)= 2.16195607; T( 4,296)= 2.16741014; T( 4,297)= 2.17286536; T( 4,298)= 2.17832176; T( 4,299)= 2.18377938; T( 4,300)= 2.18923826; T( 4,301)= 2.19469842; T( 4,302)= 2.20015991; T( 4,303)= 2.20562275; T( 4,304)= 2.21108699; T( 4,305)= 2.21655265; T( 4,306)= 2.22201977; T( 4,307)= 2.22748838; T( 4,308)= 2.23295853; T( 4,309)= 2.23843023; T( 4,310)= 2.24390353; T( 4,311)= 2.24937845; T( 4,312)= 2.25485504; T( 4,313)= 2.26033333; T( 4,314)= 2.26581334; T( 4,315)= 2.27129512; T( 4,316)= 2.27677869; T( 4,317)= 2.28226408; T( 4,318)= 2.28775134; T( 4,319)= 2.29324050; T( 4,320)= 2.29873158; T( 4,321)= 2.30422462; T( 4,322)= 2.30971966; T( 4,323)= 2.31521671; T( 4,324)= 2.32071583; T( 4,325)= 2.32621704; T( 4,326)= 2.33172037; T( 4,327)= 2.33722585; T( 4,328)= 2.34273353; T( 4,329)= 2.34824342; T( 4,330)= 2.35375556; T( 4,331)= 2.35926999; T( 4,332)= 2.36478674; T( 4,333)= 2.37030583; T( 4,334)= 2.37582731; T( 4,335)= 2.38135119; T( 4,336)= 2.38687752; T( 4,337)= 2.39240633; T( 4,338)= 2.39793764; T( 4,339)= 2.40347150; T( 4,340)= 2.40900792; T( 4,341)= 2.41454695; T( 4,342)= 2.42008862; T( 4,343)= 2.42563295; T( 4,344)= 2.43117998; T( 4,345)= 2.43672974; T( 4,346)= 2.44228226; T( 4,347)= 2.44783757; T( 4,348)= 2.45339571; T( 4,349)= 2.45895671; T( 4,350)= 2.46452059; T( 4,351)= 2.47008739; T( 4,352)= 2.47565714; T( 4,353)= 2.48122987; T( 4,354)= 2.48680562; T( 4,355)= 2.49238441; T( 4,356)= 2.49796627; T( 4,357)= 2.50355125; T( 4,358)= 2.50913936; T( 4,359)= 2.51473064; T( 4,360)= 2.52032513; T( 4,361)= 2.52592284; T( 4,362)= 2.53152382; T( 4,363)= 2.53712810; T( 4,364)= 2.54273570; T( 4,365)= 2.54834666; T( 4,366)= 2.55396101; T( 4,367)= 2.55957878; T( 4,368)= 2.56520000; T( 4,369)= 2.57082471; T( 4,370)= 2.57645293; T( 4,371)= 2.58208469; T( 4,372)= 2.58772004; T( 4,373)= 2.59335899; T( 4,374)= 2.59900158; T( 4,375)= 2.60464784; T( 4,376)= 2.61029781; T( 4,377)= 2.61595151; T( 4,378)= 2.62160897; T( 4,379)= 2.62727024; T( 4,380)= 2.63293533; T( 4,381)= 2.63860428; T( 4,382)= 2.64427712; T( 4,383)= 2.64995389; T( 4,384)= 2.65563461; T( 4,385)= 2.66131932; T( 4,386)= 2.66700804; T( 4,387)= 2.67270082; T( 4,388)= 2.67839767; T( 4,389)= 2.68409864; T( 4,390)= 2.68980376; T( 4,391)= 2.69551305; T( 4,392)= 2.70122654; T( 4,393)= 2.70694428; T( 4,394)= 2.71266630; T( 4,395)= 2.71839261; T( 4,396)= 2.72412326; T( 4,397)= 2.72985828; T( 4,398)= 2.73559770; T( 4,399)= 2.74134155; T( 4,400)= 2.74708987; T( 4,401)= 2.75284268; T( 4,402)= 2.75860003; T( 4,403)= 2.76436193; T( 4,404)= 2.77012843; T( 4,405)= 2.77589955; T( 4,406)= 2.78167533; T( 4,407)= 2.78745580; T( 4,408)= 2.79324100; T( 4,409)= 2.79903095; T( 4,410)= 2.80482569; T( 4,411)= 2.81062526; T( 4,412)= 2.81642967; T( 4,413)= 2.82223898; T( 4,414)= 2.82805320; T( 4,415)= 2.83387238; T( 4,416)= 2.83969655; T( 4,417)= 2.84552573; T( 4,418)= 2.85135997; T( 4,419)= 2.85719929; T( 4,420)= 2.86304373; T( 4,421)= 2.86889333; T( 4,422)= 2.87474811; T( 4,423)= 2.88060811; T( 4,424)= 2.88647336; T( 4,425)= 2.89234391; T( 4,426)= 2.89821977; T( 4,427)= 2.90410099; T( 4,428)= 2.90998759; T( 4,429)= 2.91587962; T( 4,430)= 2.92177711; T( 4,431)= 2.92768009; T( 4,432)= 2.93358859; T( 4,433)= 2.93950266; T( 4,434)= 2.94542232; T( 4,435)= 2.95134761; T( 4,436)= 2.95727856; T( 4,437)= 2.96321521; T( 4,438)= 2.96915760; T( 4,439)= 2.97510575; T( 4,440)= 2.98105971; T( 4,441)= 2.98701950; T( 4,442)= 2.99298518; T( 4,443)= 2.99895676; T( 4,444)= 3.00493428; T( 4,445)= 3.01091779; T( 4,446)= 3.01690731; T( 4,447)= 3.02290288; T( 4,448)= 3.02890455; T( 4,449)= 3.03491233; T( 4,450)= 3.04092628; T( 4,451)= 3.04694642; T( 4,452)= 3.05297280; T( 4,453)= 3.05900545; T( 4,454)= 3.06504440; T( 4,455)= 3.07108969; T( 4,456)= 3.07714137; T( 4,457)= 3.08319946; T( 4,458)= 3.08926400; T( 4,459)= 3.09533504; T( 4,460)= 3.10141260; T( 4,461)= 3.10749673; T( 4,462)= 3.11358747; T( 4,463)= 3.11968484; T( 4,464)= 3.12578890; T( 4,465)= 3.13189967; T( 4,466)= 3.13801719; T( 4,467)= 3.14414151; T( 4,468)= 3.15027266; T( 4,469)= 3.15641069; T( 4,470)= 3.16255562; T( 4,471)= 3.16870750; T( 4,472)= 3.17486636; T( 4,473)= 3.18103226; T( 4,474)= 3.18720522; T( 4,475)= 3.19338528; T( 4,476)= 3.19957249; T( 4,477)= 3.20576688; T( 4,478)= 3.21196850; T( 4,479)= 3.21817738; T( 4,480)= 3.22439357; T( 4,481)= 3.23061710; T( 4,482)= 3.23684802; T( 4,483)= 3.24308636; T( 4,484)= 3.24933218; T( 4,485)= 3.25558550; T( 4,486)= 3.26184637; T( 4,487)= 3.26811483; T( 4,488)= 3.27439092; T( 4,489)= 3.28067469; T( 4,490)= 3.28696618; T( 4,491)= 3.29326542; T( 4,492)= 3.29957246; T( 4,493)= 3.30588735; T( 4,494)= 3.31221013; T( 4,495)= 3.31854083; T( 4,496)= 3.32487950; T( 4,497)= 3.33122619; T( 4,498)= 3.33758094; T( 4,499)= 3.34394380; T( 4,500)= 3.35031479; T( 4,501)= 3.35669398; T( 4,502)= 3.36308140; T( 4,503)= 3.36947710; T( 4,504)= 3.37588113; T( 4,505)= 3.38229352; T( 4,506)= 3.38871433; T( 4,507)= 3.39514359; T( 4,508)= 3.40158136; T( 4,509)= 3.40802768; T( 4,510)= 3.41448259; T( 4,511)= 3.42094615; T( 4,512)= 3.42741839; T( 4,513)= 3.43389937; T( 4,514)= 3.44038913; T( 4,515)= 3.44688772; T( 4,516)= 3.45339518; T( 4,517)= 3.45991157; T( 4,518)= 3.46643693; T( 4,519)= 3.47297131; T( 4,520)= 3.47951475; T( 4,521)= 3.48606731; T( 4,522)= 3.49262904; T( 4,523)= 3.49919998; T( 4,524)= 3.50578018; T( 4,525)= 3.51236969; T( 4,526)= 3.51896857; T( 4,527)= 3.52557685; T( 4,528)= 3.53219460; T( 4,529)= 3.53882186; T( 4,530)= 3.54545868; T( 4,531)= 3.55210512; T( 4,532)= 3.55876122; T( 4,533)= 3.56542704; T( 4,534)= 3.57210263; T( 4,535)= 3.57878804; T( 4,536)= 3.58548332; T( 4,537)= 3.59218853; T( 4,538)= 3.59890372; T( 4,539)= 3.60562893; T( 4,540)= 3.61236424; T( 4,541)= 3.61910968; T( 4,542)= 3.62586532; T( 4,543)= 3.63263120; T( 4,544)= 3.63940739; T( 4,545)= 3.64619393; T( 4,546)= 3.65299089; T( 4,547)= 3.65979832; T( 4,548)= 3.66661627; T( 4,549)= 3.67344480; T( 4,550)= 3.68028397; T( 4,551)= 3.68713383; T( 4,552)= 3.69399445; T( 4,553)= 3.70086587; T( 4,554)= 3.70774817; T( 4,555)= 3.71464138; T( 4,556)= 3.72154558; T( 4,557)= 3.72846083; T( 4,558)= 3.73538718; T( 4,559)= 3.74232468; T( 4,560)= 3.74927341; T( 4,561)= 3.75623343; T( 4,562)= 3.76320478; T( 4,563)= 3.77018754; T( 4,564)= 3.77718177; T( 4,565)= 3.78418752; T( 4,566)= 3.79120486; T( 4,567)= 3.79823386; T( 4,568)= 3.80527456; T( 4,569)= 3.81232705; T( 4,570)= 3.81939138; T( 4,571)= 3.82646762; T( 4,572)= 3.83355582; T( 4,573)= 3.84065607; T( 4,574)= 3.84776841; T( 4,575)= 3.85489292; T( 4,576)= 3.86202966; T( 4,577)= 3.86917871; T( 4,578)= 3.87634012; T( 4,579)= 3.88351396; T( 4,580)= 3.89070031; T( 4,581)= 3.89789922; T( 4,582)= 3.90511077; T( 4,583)= 3.91233504; T( 4,584)= 3.91957208; T( 4,585)= 3.92682197; T( 4,586)= 3.93408477; T( 4,587)= 3.94136057; T( 4,588)= 3.94864942; T( 4,589)= 3.95595141; T( 4,590)= 3.96326661; T( 4,591)= 3.97059508; T( 4,592)= 3.97793690; T( 4,593)= 3.98529215; T( 4,594)= 3.99266090; T( 4,595)= 4.00004322; T( 4,596)= 4.00743920; T( 4,597)= 4.01484890; T( 4,598)= 4.02227240; T( 4,599)= 4.02970978; T( 4,600)= 4.03716112; T( 4,601)= 4.04462649; T( 4,602)= 4.05210598; T( 4,603)= 4.05959966; T( 4,604)= 4.06710761; T( 4,605)= 4.07462991; T( 4,606)= 4.08216664; T( 4,607)= 4.08971789; T( 4,608)= 4.09728374; T( 4,609)= 4.10486427; T( 4,610)= 4.11245955; T( 4,611)= 4.12006968; T( 4,612)= 4.12769475; T( 4,613)= 4.13533482; T( 4,614)= 4.14299000; T( 4,615)= 4.15066036; T( 4,616)= 4.15834600; T( 4,617)= 4.16604699; T( 4,618)= 4.17376344; T( 4,619)= 4.18149542; T( 4,620)= 4.18924303; T( 4,621)= 4.19700635; T( 4,622)= 4.20478548; T( 4,623)= 4.21258051; T( 4,624)= 4.22039152; T( 4,625)= 4.22821862; T( 4,626)= 4.23606190; T( 4,627)= 4.24392145; T( 4,628)= 4.25179736; T( 4,629)= 4.25968973; T( 4,630)= 4.26759865; T( 4,631)= 4.27552424; T( 4,632)= 4.28346657; T( 4,633)= 4.29142575; T( 4,634)= 4.29940188; T( 4,635)= 4.30739506; T( 4,636)= 4.31540539; T( 4,637)= 4.32343296; T( 4,638)= 4.33147790; T( 4,639)= 4.33954028; T( 4,640)= 4.34762023; T( 4,641)= 4.35571785; T( 4,642)= 4.36383323; T( 4,643)= 4.37196649; T( 4,644)= 4.38011774; T( 4,645)= 4.38828707; T( 4,646)= 4.39647461; T( 4,647)= 4.40468046; T( 4,648)= 4.41290473; T( 4,649)= 4.42114754; T( 4,650)= 4.42940899; T( 4,651)= 4.43768920; T( 4,652)= 4.44598828; T( 4,653)= 4.45430636; T( 4,654)= 4.46264354; T( 4,655)= 4.47099994; T( 4,656)= 4.47937568; T( 4,657)= 4.48777089; T( 4,658)= 4.49618567; T( 4,659)= 4.50462016; T( 4,660)= 4.51307447; T( 4,661)= 4.52154873; T( 4,662)= 4.53004306; T( 4,663)= 4.53855758; T( 4,664)= 4.54709243; T( 4,665)= 4.55564773; T( 4,666)= 4.56422361; T( 4,667)= 4.57282020; T( 4,668)= 4.58143763; T( 4,669)= 4.59007603; T( 4,670)= 4.59873554; T( 4,671)= 4.60741628; T( 4,672)= 4.61611840; T( 4,673)= 4.62484204; T( 4,674)= 4.63358732; T( 4,675)= 4.64235439; T( 4,676)= 4.65114339; T( 4,677)= 4.65995446; T( 4,678)= 4.66878774; T( 4,679)= 4.67764338; T( 4,680)= 4.68652153; T( 4,681)= 4.69542232; T( 4,682)= 4.70434591; T( 4,683)= 4.71329245; T( 4,684)= 4.72226208; T( 4,685)= 4.73125497; T( 4,686)= 4.74027126; T( 4,687)= 4.74931111; T( 4,688)= 4.75837467; T( 4,689)= 4.76746211; T( 4,690)= 4.77657358; T( 4,691)= 4.78570924; T( 4,692)= 4.79486926; T( 4,693)= 4.80405379; T( 4,694)= 4.81326301; T( 4,695)= 4.82249709; T( 4,696)= 4.83175618; T( 4,697)= 4.84104046; T( 4,698)= 4.85035011; T( 4,699)= 4.85968529; T( 4,700)= 4.86904619; T( 4,701)= 4.87843297; T( 4,702)= 4.88784581; T( 4,703)= 4.89728491; T( 4,704)= 4.90675043; T( 4,705)= 4.91624257; T( 4,706)= 4.92576151; T( 4,707)= 4.93530743; T( 4,708)= 4.94488052; T( 4,709)= 4.95448099; T( 4,710)= 4.96410901; T( 4,711)= 4.97376479; T( 4,712)= 4.98344853; T( 4,713)= 4.99316041; T( 4,714)= 5.00290065; T( 4,715)= 5.01266944; T( 4,716)= 5.02246700; T( 4,717)= 5.03229352; T( 4,718)= 5.04214922; T( 4,719)= 5.05203432; T( 4,720)= 5.06194901; T( 4,721)= 5.07189353; T( 4,722)= 5.08186809; T( 4,723)= 5.09187290; T( 4,724)= 5.10190820; T( 4,725)= 5.11197421; T( 4,726)= 5.12207115; T( 4,727)= 5.13219926; T( 4,728)= 5.14235877; T( 4,729)= 5.15254991; T( 4,730)= 5.16277293; T( 4,731)= 5.17302806; T( 4,732)= 5.18331554; T( 4,733)= 5.19363562; T( 4,734)= 5.20398856; T( 4,735)= 5.21437459; T( 4,736)= 5.22479398; T( 4,737)= 5.23524698; T( 4,738)= 5.24573386; T( 4,739)= 5.25625486; T( 4,740)= 5.26681027; T( 4,741)= 5.27740034; T( 4,742)= 5.28802535; T( 4,743)= 5.29868557; T( 4,744)= 5.30938129; T( 4,745)= 5.32011278; T( 4,746)= 5.33088032; T( 4,747)= 5.34168421; T( 4,748)= 5.35252473; T( 4,749)= 5.36340218; T( 4,750)= 5.37431685; T( 4,751)= 5.38526906; T( 4,752)= 5.39625909; T( 4,753)= 5.40728727; T( 4,754)= 5.41835389; T( 4,755)= 5.42945929; T( 4,756)= 5.44060377; T( 4,757)= 5.45178766; T( 4,758)= 5.46301129; T( 4,759)= 5.47427499; T( 4,760)= 5.48557909; T( 4,761)= 5.49692394; T( 4,762)= 5.50830987; T( 4,763)= 5.51973724; T( 4,764)= 5.53120640; T( 4,765)= 5.54271769; T( 4,766)= 5.55427150; T( 4,767)= 5.56586817; T( 4,768)= 5.57750808; T( 4,769)= 5.58919161; T( 4,770)= 5.60091913; T( 4,771)= 5.61269103; T( 4,772)= 5.62450770; T( 4,773)= 5.63636954; T( 4,774)= 5.64827693; T( 4,775)= 5.66023029; T( 4,776)= 5.67223003; T( 4,777)= 5.68427657; T( 4,778)= 5.69637031; T( 4,779)= 5.70851170; T( 4,780)= 5.72070116; T( 4,781)= 5.73293913; T( 4,782)= 5.74522606; T( 4,783)= 5.75756239; T( 4,784)= 5.76994858; T( 4,785)= 5.78238510; T( 4,786)= 5.79487241; T( 4,787)= 5.80741098; T( 4,788)= 5.82000131; T( 4,789)= 5.83264387; T( 4,790)= 5.84533917; T( 4,791)= 5.85808770; T( 4,792)= 5.87088997; T( 4,793)= 5.88374651; T( 4,794)= 5.89665783; T( 4,795)= 5.90962447; T( 4,796)= 5.92264696; T( 4,797)= 5.93572586; T( 4,798)= 5.94886171; T( 4,799)= 5.96205509; T( 4,800)= 5.97530656; T( 4,801)= 5.98861669; T( 4,802)= 6.00198609; T( 4,803)= 6.01541535; T( 4,804)= 6.02890507; T( 4,805)= 6.04245586; T( 4,806)= 6.05606836; T( 4,807)= 6.06974320; T( 4,808)= 6.08348102; T( 4,809)= 6.09728247; T( 4,810)= 6.11114822; T( 4,811)= 6.12507894; T( 4,812)= 6.13907532; T( 4,813)= 6.15313805; T( 4,814)= 6.16726784; T( 4,815)= 6.18146541; T( 4,816)= 6.19573148; T( 4,817)= 6.21006680; T( 4,818)= 6.22447212; T( 4,819)= 6.23894820; T( 4,820)= 6.25349583; T( 4,821)= 6.26811579; T( 4,822)= 6.28280888; T( 4,823)= 6.29757593; T( 4,824)= 6.31241776; T( 4,825)= 6.32733521; T( 4,826)= 6.34232915; T( 4,827)= 6.35740046; T( 4,828)= 6.37255000; T( 4,829)= 6.38777870; T( 4,830)= 6.40308747; T( 4,831)= 6.41847725; T( 4,832)= 6.43394898; T( 4,833)= 6.44950363; T( 4,834)= 6.46514220; T( 4,835)= 6.48086568; T( 4,836)= 6.49667509; T( 4,837)= 6.51257148; T( 4,838)= 6.52855590; T( 4,839)= 6.54462942; T( 4,840)= 6.56079316; T( 4,841)= 6.57704821; T( 4,842)= 6.59339573; T( 4,843)= 6.60983688; T( 4,844)= 6.62637282; T( 4,845)= 6.64300478; T( 4,846)= 6.65973397; T( 4,847)= 6.67656164; T( 4,848)= 6.69348908; T( 4,849)= 6.71051758; T( 4,850)= 6.72764847; T( 4,851)= 6.74488309; T( 4,852)= 6.76222282; T( 4,853)= 6.77966908; T( 4,854)= 6.79722330; T( 4,855)= 6.81488693; T( 4,856)= 6.83266148; T( 4,857)= 6.85054846; T( 4,858)= 6.86854943; T( 4,859)= 6.88666598; T( 4,860)= 6.90489973; T( 4,861)= 6.92325233; T( 4,862)= 6.94172549; T( 4,863)= 6.96032091; T( 4,864)= 6.97904037; T( 4,865)= 6.99788567; T( 4,866)= 7.01685866; T( 4,867)= 7.03596121; T( 4,868)= 7.05519525; T( 4,869)= 7.07456274; T( 4,870)= 7.09406571; T( 4,871)= 7.11370621; T( 4,872)= 7.13348634; T( 4,873)= 7.15340826; T( 4,874)= 7.17347418; T( 4,875)= 7.19368635; T( 4,876)= 7.21404707; T( 4,877)= 7.23455872; T( 4,878)= 7.25522372; T( 4,879)= 7.27604455; T( 4,880)= 7.29702375; T( 4,881)= 7.31816392; T( 4,882)= 7.33946774; T( 4,883)= 7.36093793; T( 4,884)= 7.38257731; T( 4,885)= 7.40438875; T( 4,886)= 7.42637521; T( 4,887)= 7.44853970; T( 4,888)= 7.47088534; T( 4,889)= 7.49341532; T( 4,890)= 7.51613291; T( 4,891)= 7.53904148; T( 4,892)= 7.56214447; T( 4,893)= 7.58544544; T( 4,894)= 7.60894803; T( 4,895)= 7.63265599; T( 4,896)= 7.65657318; T( 4,897)= 7.68070356; T( 4,898)= 7.70505121; T( 4,899)= 7.72962032; T( 4,900)= 7.75441521; T( 4,901)= 7.77944034; T( 4,902)= 7.80470028; T( 4,903)= 7.83019975; T( 4,904)= 7.85594361; T( 4,905)= 7.88193688; T( 4,906)= 7.90818472; T( 4,907)= 7.93469248; T( 4,908)= 7.96146564; T( 4,909)= 7.98850988; T( 4,910)= 8.01583108; T( 4,911)= 8.04343529; T( 4,912)= 8.07132876; T( 4,913)= 8.09951796; T( 4,914)= 8.12800958; T( 4,915)= 8.15681054; T( 4,916)= 8.18592800; T( 4,917)= 8.21536937; T( 4,918)= 8.24514233; T( 4,919)= 8.27525482; T( 4,920)= 8.30571510; T( 4,921)= 8.33653170; T( 4,922)= 8.36771351; T( 4,923)= 8.39926971; T( 4,924)= 8.43120988; T( 4,925)= 8.46354394; T( 4,926)= 8.49628221; T( 4,927)= 8.52943543; T( 4,928)= 8.56301477; T( 4,929)= 8.59703186; T( 4,930)= 8.63149880; T( 4,931)= 8.66642823; T( 4,932)= 8.70183332; T( 4,933)= 8.73772779; T( 4,934)= 8.77412600; T( 4,935)= 8.81104292; T( 4,936)= 8.84849424; T( 4,937)= 8.88649634; T( 4,938)= 8.92506638; T( 4,939)= 8.96422234; T( 4,940)= 9.00398308; T( 4,941)= 9.04436837; T( 4,942)= 9.08539898; T( 4,943)= 9.12709674; T( 4,944)= 9.16948460; T( 4,945)= 9.21258674; T( 4,946)= 9.25642862; T( 4,947)= 9.30103711; T( 4,948)= 9.34644054; T( 4,949)= 9.39266890; T( 4,950)= 9.43975387; T( 4,951)= 9.48772904; T( 4,952)= 9.53662998; T( 4,953)= 9.58649448; T( 4,954)= 9.63736268; T( 4,955)= 9.68927731; T( 4,956)= 9.74228389; T( 4,957)= 9.79643098; T( 4,958)= 9.85177050; T( 4,959)= 9.90835797; T( 4,960)= 9.96625293; T( 4,961)=10.02551929; T( 4,962)=10.08622578; T( 4,963)=10.14844648; T( 4,964)=10.21226132; T( 4,965)=10.27775679; T( 4,966)=10.34502663; T( 4,967)=10.41417271; T( 4,968)=10.48530593; T( 4,969)=10.55854739; T( 4,970)=10.63402967; T( 4,971)=10.71189829; T( 4,972)=10.79231350; T( 4,973)=10.87545233; T( 4,974)=10.96151101; T( 4,975)=11.05070787; T( 4,976)=11.14328678; T( 4,977)=11.23952133; T( 4,978)=11.33971984; T( 4,979)=11.44423156; T( 4,980)=11.55345420; T( 4,981)=11.66784340; T( 4,982)=11.78792460; T( 4,983)=11.91430801; T( 4,984)=12.04770801; T( 4,985)=12.18896832; T( 4,986)=12.33909528; T( 4,987)=12.49930265; T( 4,988)=12.67107294; T( 4,989)=12.85624330; T( 4,990)=13.05712875; T( 4,991)=13.27670414; T( 4,992)=13.51888199; T( 4,993)=13.78895432; T( 4,994)=14.09432997; T( 4,995)=14.44584270; T( 4,996)=14.86025900; T( 4,997)=15.36561125; T( 4,998)=16.01432631; T( 4,999)=16.92375820; T( 4,1000)=18.46682695; T( 4,1001)=23.51274244; T( 4,1002)=28.47325542; T( 5, 1)= 0.00000000; T( 5, 2)= 0.21021260; T( 5, 3)= 0.28013998; T( 5, 4)= 0.33188723; T( 5, 5)= 0.37461651; T( 5, 6)= 0.41174190; T( 5, 7)= 0.44496986; T( 5, 8)= 0.47529445; T( 5, 9)= 0.50335314; T( 5,10)= 0.52958287; T( 5,11)= 0.55429808; T( 5,12)= 0.57773376; T( 5,13)= 0.60007082; T( 5,14)= 0.62145195; T( 5,15)= 0.64199196; T( 5,16)= 0.66178485; T( 5,17)= 0.68090864; T( 5,18)= 0.69942897; T( 5,19)= 0.71740161; T( 5,20)= 0.73487445; T( 5,21)= 0.75188893; T( 5,22)= 0.76848123; T( 5,23)= 0.78468309; T( 5,24)= 0.80052258; T( 5,25)= 0.81602466; T( 5,26)= 0.83121161; T( 5,27)= 0.84610345; T( 5,28)= 0.86071821; T( 5,29)= 0.87507221; T( 5,30)= 0.88918030; T( 5,31)= 0.90305599; T( 5,32)= 0.91671165; T( 5,33)= 0.93015862; T( 5,34)= 0.94340735; T( 5,35)= 0.95646745; T( 5,36)= 0.96934783; T( 5,37)= 0.98205672; T( 5,38)= 0.99460179; T( 5,39)= 1.00699016; T( 5,40)= 1.01922849; T( 5,41)= 1.03132297; T( 5,42)= 1.04327942; T( 5,43)= 1.05510328; T( 5,44)= 1.06679967; T( 5,45)= 1.07837340; T( 5,46)= 1.08982898; T( 5,47)= 1.10117069; T( 5,48)= 1.11240256; T( 5,49)= 1.12352840; T( 5,50)= 1.13455182; T( 5,51)= 1.14547623; T( 5,52)= 1.15630487; T( 5,53)= 1.16704082; T( 5,54)= 1.17768700; T( 5,55)= 1.18824621; T( 5,56)= 1.19872109; T( 5,57)= 1.20911418; T( 5,58)= 1.21942787; T( 5,59)= 1.22966448; T( 5,60)= 1.23982621; T( 5,61)= 1.24991516; T( 5,62)= 1.25993334; T( 5,63)= 1.26988270; T( 5,64)= 1.27976507; T( 5,65)= 1.28958223; T( 5,66)= 1.29933590; T( 5,67)= 1.30902769; T( 5,68)= 1.31865919; T( 5,69)= 1.32823191; T( 5,70)= 1.33774731; T( 5,71)= 1.34720678; T( 5,72)= 1.35661167; T( 5,73)= 1.36596330; T( 5,74)= 1.37526290; T( 5,75)= 1.38451170; T( 5,76)= 1.39371085; T( 5,77)= 1.40286150; T( 5,78)= 1.41196472; T( 5,79)= 1.42102158; T( 5,80)= 1.43003310; T( 5,81)= 1.43900026; T( 5,82)= 1.44792401; T( 5,83)= 1.45680528; T( 5,84)= 1.46564497; T( 5,85)= 1.47444395; T( 5,86)= 1.48320306; T( 5,87)= 1.49192310; T( 5,88)= 1.50060489; T( 5,89)= 1.50924918; T( 5,90)= 1.51785672; T( 5,91)= 1.52642824; T( 5,92)= 1.53496444; T( 5,93)= 1.54346601; T( 5,94)= 1.55193361; T( 5,95)= 1.56036789; T( 5,96)= 1.56876948; T( 5,97)= 1.57713900; T( 5,98)= 1.58547703; T( 5,99)= 1.59378416; T( 5,100)= 1.60206097; T( 5,101)= 1.61030799; T( 5,102)= 1.61852576; T( 5,103)= 1.62671482; T( 5,104)= 1.63487566; T( 5,105)= 1.64300880; T( 5,106)= 1.65111471; T( 5,107)= 1.65919387; T( 5,108)= 1.66724674; T( 5,109)= 1.67527377; T( 5,110)= 1.68327541; T( 5,111)= 1.69125208; T( 5,112)= 1.69920421; T( 5,113)= 1.70713221; T( 5,114)= 1.71503648; T( 5,115)= 1.72291741; T( 5,116)= 1.73077539; T( 5,117)= 1.73861080; T( 5,118)= 1.74642399; T( 5,119)= 1.75421534; T( 5,120)= 1.76198520; T( 5,121)= 1.76973390; T( 5,122)= 1.77746178; T( 5,123)= 1.78516918; T( 5,124)= 1.79285643; T( 5,125)= 1.80052383; T( 5,126)= 1.80817169; T( 5,127)= 1.81580033; T( 5,128)= 1.82341004; T( 5,129)= 1.83100111; T( 5,130)= 1.83857383; T( 5,131)= 1.84612848; T( 5,132)= 1.85366534; T( 5,133)= 1.86118467; T( 5,134)= 1.86868675; T( 5,135)= 1.87617183; T( 5,136)= 1.88364016; T( 5,137)= 1.89109200; T( 5,138)= 1.89852760; T( 5,139)= 1.90594719; T( 5,140)= 1.91335102; T( 5,141)= 1.92073931; T( 5,142)= 1.92811230; T( 5,143)= 1.93547020; T( 5,144)= 1.94281325; T( 5,145)= 1.95014166; T( 5,146)= 1.95745564; T( 5,147)= 1.96475540; T( 5,148)= 1.97204115; T( 5,149)= 1.97931310; T( 5,150)= 1.98657143; T( 5,151)= 1.99381635; T( 5,152)= 2.00104804; T( 5,153)= 2.00826671; T( 5,154)= 2.01547254; T( 5,155)= 2.02266570; T( 5,156)= 2.02984639; T( 5,157)= 2.03701477; T( 5,158)= 2.04417103; T( 5,159)= 2.05131534; T( 5,160)= 2.05844786; T( 5,161)= 2.06556876; T( 5,162)= 2.07267822; T( 5,163)= 2.07977638; T( 5,164)= 2.08686342; T( 5,165)= 2.09393949; T( 5,166)= 2.10100474; T( 5,167)= 2.10805932; T( 5,168)= 2.11510339; T( 5,169)= 2.12213710; T( 5,170)= 2.12916059; T( 5,171)= 2.13617401; T( 5,172)= 2.14317749; T( 5,173)= 2.15017118; T( 5,174)= 2.15715522; T( 5,175)= 2.16412975; T( 5,176)= 2.17109489; T( 5,177)= 2.17805079; T( 5,178)= 2.18499756; T( 5,179)= 2.19193535; T( 5,180)= 2.19886428; T( 5,181)= 2.20578447; T( 5,182)= 2.21269605; T( 5,183)= 2.21959915; T( 5,184)= 2.22649387; T( 5,185)= 2.23338035; T( 5,186)= 2.24025870; T( 5,187)= 2.24712904; T( 5,188)= 2.25399147; T( 5,189)= 2.26084613; T( 5,190)= 2.26769311; T( 5,191)= 2.27453253; T( 5,192)= 2.28136449; T( 5,193)= 2.28818912; T( 5,194)= 2.29500650; T( 5,195)= 2.30181676; T( 5,196)= 2.30861999; T( 5,197)= 2.31541630; T( 5,198)= 2.32220578; T( 5,199)= 2.32898854; T( 5,200)= 2.33576469; T( 5,201)= 2.34253431; T( 5,202)= 2.34929750; T( 5,203)= 2.35605437; T( 5,204)= 2.36280500; T( 5,205)= 2.36954949; T( 5,206)= 2.37628794; T( 5,207)= 2.38302043; T( 5,208)= 2.38974707; T( 5,209)= 2.39646792; T( 5,210)= 2.40318310; T( 5,211)= 2.40989268; T( 5,212)= 2.41659675; T( 5,213)= 2.42329541; T( 5,214)= 2.42998873; T( 5,215)= 2.43667679; T( 5,216)= 2.44335969; T( 5,217)= 2.45003751; T( 5,218)= 2.45671033; T( 5,219)= 2.46337822; T( 5,220)= 2.47004128; T( 5,221)= 2.47669958; T( 5,222)= 2.48335319; T( 5,223)= 2.49000221; T( 5,224)= 2.49664670; T( 5,225)= 2.50328674; T( 5,226)= 2.50992241; T( 5,227)= 2.51655379; T( 5,228)= 2.52318094; T( 5,229)= 2.52980395; T( 5,230)= 2.53642289; T( 5,231)= 2.54303782; T( 5,232)= 2.54964882; T( 5,233)= 2.55625597; T( 5,234)= 2.56285932; T( 5,235)= 2.56945897; T( 5,236)= 2.57605496; T( 5,237)= 2.58264738; T( 5,238)= 2.58923628; T( 5,239)= 2.59582175; T( 5,240)= 2.60240384; T( 5,241)= 2.60898262; T( 5,242)= 2.61555816; T( 5,243)= 2.62213053; T( 5,244)= 2.62869978; T( 5,245)= 2.63526599; T( 5,246)= 2.64182921; T( 5,247)= 2.64838952; T( 5,248)= 2.65494697; T( 5,249)= 2.66150163; T( 5,250)= 2.66805355; T( 5,251)= 2.67460281; T( 5,252)= 2.68114946; T( 5,253)= 2.68769356; T( 5,254)= 2.69423517; T( 5,255)= 2.70077436; T( 5,256)= 2.70731118; T( 5,257)= 2.71384569; T( 5,258)= 2.72037795; T( 5,259)= 2.72690801; T( 5,260)= 2.73343595; T( 5,261)= 2.73996180; T( 5,262)= 2.74648564; T( 5,263)= 2.75300751; T( 5,264)= 2.75952747; T( 5,265)= 2.76604558; T( 5,266)= 2.77256190; T( 5,267)= 2.77907647; T( 5,268)= 2.78558936; T( 5,269)= 2.79210062; T( 5,270)= 2.79861030; T( 5,271)= 2.80511845; T( 5,272)= 2.81162513; T( 5,273)= 2.81813040; T( 5,274)= 2.82463430; T( 5,275)= 2.83113688; T( 5,276)= 2.83763821; T( 5,277)= 2.84413832; T( 5,278)= 2.85063728; T( 5,279)= 2.85713514; T( 5,280)= 2.86363193; T( 5,281)= 2.87012773; T( 5,282)= 2.87662256; T( 5,283)= 2.88311650; T( 5,284)= 2.88960958; T( 5,285)= 2.89610185; T( 5,286)= 2.90259337; T( 5,287)= 2.90908418; T( 5,288)= 2.91557433; T( 5,289)= 2.92206387; T( 5,290)= 2.92855285; T( 5,291)= 2.93504132; T( 5,292)= 2.94152932; T( 5,293)= 2.94801690; T( 5,294)= 2.95450412; T( 5,295)= 2.96099100; T( 5,296)= 2.96747761; T( 5,297)= 2.97396399; T( 5,298)= 2.98045019; T( 5,299)= 2.98693625; T( 5,300)= 2.99342221; T( 5,301)= 2.99990813; T( 5,302)= 3.00639405; T( 5,303)= 3.01288002; T( 5,304)= 3.01936607; T( 5,305)= 3.02585226; T( 5,306)= 3.03233863; T( 5,307)= 3.03882522; T( 5,308)= 3.04531208; T( 5,309)= 3.05179925; T( 5,310)= 3.05828679; T( 5,311)= 3.06477472; T( 5,312)= 3.07126310; T( 5,313)= 3.07775196; T( 5,314)= 3.08424136; T( 5,315)= 3.09073133; T( 5,316)= 3.09722192; T( 5,317)= 3.10371318; T( 5,318)= 3.11020513; T( 5,319)= 3.11669783; T( 5,320)= 3.12319133; T( 5,321)= 3.12968565; T( 5,322)= 3.13618085; T( 5,323)= 3.14267696; T( 5,324)= 3.14917404; T( 5,325)= 3.15567211; T( 5,326)= 3.16217122; T( 5,327)= 3.16867142; T( 5,328)= 3.17517274; T( 5,329)= 3.18167523; T( 5,330)= 3.18817892; T( 5,331)= 3.19468387; T( 5,332)= 3.20119010; T( 5,333)= 3.20769767; T( 5,334)= 3.21420660; T( 5,335)= 3.22071695; T( 5,336)= 3.22722875; T( 5,337)= 3.23374204; T( 5,338)= 3.24025687; T( 5,339)= 3.24677327; T( 5,340)= 3.25329128; T( 5,341)= 3.25981095; T( 5,342)= 3.26633231; T( 5,343)= 3.27285541; T( 5,344)= 3.27938028; T( 5,345)= 3.28590697; T( 5,346)= 3.29243551; T( 5,347)= 3.29896594; T( 5,348)= 3.30549831; T( 5,349)= 3.31203265; T( 5,350)= 3.31856900; T( 5,351)= 3.32510740; T( 5,352)= 3.33164789; T( 5,353)= 3.33819051; T( 5,354)= 3.34473530; T( 5,355)= 3.35128230; T( 5,356)= 3.35783155; T( 5,357)= 3.36438308; T( 5,358)= 3.37093694; T( 5,359)= 3.37749316; T( 5,360)= 3.38405178; T( 5,361)= 3.39061285; T( 5,362)= 3.39717640; T( 5,363)= 3.40374246; T( 5,364)= 3.41031109; T( 5,365)= 3.41688231; T( 5,366)= 3.42345617; T( 5,367)= 3.43003270; T( 5,368)= 3.43661194; T( 5,369)= 3.44319393; T( 5,370)= 3.44977871; T( 5,371)= 3.45636632; T( 5,372)= 3.46295680; T( 5,373)= 3.46955018; T( 5,374)= 3.47614651; T( 5,375)= 3.48274581; T( 5,376)= 3.48934814; T( 5,377)= 3.49595352; T( 5,378)= 3.50256200; T( 5,379)= 3.50917361; T( 5,380)= 3.51578840; T( 5,381)= 3.52240640; T( 5,382)= 3.52902765; T( 5,383)= 3.53565218; T( 5,384)= 3.54228004; T( 5,385)= 3.54891127; T( 5,386)= 3.55554590; T( 5,387)= 3.56218396; T( 5,388)= 3.56882551; T( 5,389)= 3.57547058; T( 5,390)= 3.58211920; T( 5,391)= 3.58877141; T( 5,392)= 3.59542725; T( 5,393)= 3.60208677; T( 5,394)= 3.60874999; T( 5,395)= 3.61541697; T( 5,396)= 3.62208772; T( 5,397)= 3.62876230; T( 5,398)= 3.63544074; T( 5,399)= 3.64212309; T( 5,400)= 3.64880937; T( 5,401)= 3.65549962; T( 5,402)= 3.66219390; T( 5,403)= 3.66889222; T( 5,404)= 3.67559464; T( 5,405)= 3.68230119; T( 5,406)= 3.68901191; T( 5,407)= 3.69572684; T( 5,408)= 3.70244602; T( 5,409)= 3.70916948; T( 5,410)= 3.71589726; T( 5,411)= 3.72262941; T( 5,412)= 3.72936596; T( 5,413)= 3.73610695; T( 5,414)= 3.74285242; T( 5,415)= 3.74960241; T( 5,416)= 3.75635695; T( 5,417)= 3.76311610; T( 5,418)= 3.76987987; T( 5,419)= 3.77664833; T( 5,420)= 3.78342149; T( 5,421)= 3.79019941; T( 5,422)= 3.79698212; T( 5,423)= 3.80376966; T( 5,424)= 3.81056208; T( 5,425)= 3.81735940; T( 5,426)= 3.82416168; T( 5,427)= 3.83096894; T( 5,428)= 3.83778123; T( 5,429)= 3.84459860; T( 5,430)= 3.85142107; T( 5,431)= 3.85824869; T( 5,432)= 3.86508150; T( 5,433)= 3.87191953; T( 5,434)= 3.87876284; T( 5,435)= 3.88561146; T( 5,436)= 3.89246542; T( 5,437)= 3.89932478; T( 5,438)= 3.90618956; T( 5,439)= 3.91305982; T( 5,440)= 3.91993558; T( 5,441)= 3.92681690; T( 5,442)= 3.93370381; T( 5,443)= 3.94059636; T( 5,444)= 3.94749457; T( 5,445)= 3.95439851; T( 5,446)= 3.96130820; T( 5,447)= 3.96822369; T( 5,448)= 3.97514502; T( 5,449)= 3.98207223; T( 5,450)= 3.98900536; T( 5,451)= 3.99594446; T( 5,452)= 4.00288956; T( 5,453)= 4.00984071; T( 5,454)= 4.01679794; T( 5,455)= 4.02376131; T( 5,456)= 4.03073086; T( 5,457)= 4.03770662; T( 5,458)= 4.04468864; T( 5,459)= 4.05167696; T( 5,460)= 4.05867162; T( 5,461)= 4.06567267; T( 5,462)= 4.07268015; T( 5,463)= 4.07969411; T( 5,464)= 4.08671458; T( 5,465)= 4.09374161; T( 5,466)= 4.10077524; T( 5,467)= 4.10781551; T( 5,468)= 4.11486248; T( 5,469)= 4.12191618; T( 5,470)= 4.12897666; T( 5,471)= 4.13604396; T( 5,472)= 4.14311813; T( 5,473)= 4.15019920; T( 5,474)= 4.15728724; T( 5,475)= 4.16438227; T( 5,476)= 4.17148434; T( 5,477)= 4.17859351; T( 5,478)= 4.18570981; T( 5,479)= 4.19283329; T( 5,480)= 4.19996400; T( 5,481)= 4.20710197; T( 5,482)= 4.21424727; T( 5,483)= 4.22139992; T( 5,484)= 4.22855999; T( 5,485)= 4.23572751; T( 5,486)= 4.24290253; T( 5,487)= 4.25008510; T( 5,488)= 4.25727527; T( 5,489)= 4.26447308; T( 5,490)= 4.27167857; T( 5,491)= 4.27889181; T( 5,492)= 4.28611283; T( 5,493)= 4.29334167; T( 5,494)= 4.30057840; T( 5,495)= 4.30782306; T( 5,496)= 4.31507569; T( 5,497)= 4.32233635; T( 5,498)= 4.32960508; T( 5,499)= 4.33688193; T( 5,500)= 4.34416695; T( 5,501)= 4.35146019; T( 5,502)= 4.35876170; T( 5,503)= 4.36607153; T( 5,504)= 4.37338973; T( 5,505)= 4.38071635; T( 5,506)= 4.38805143; T( 5,507)= 4.39539504; T( 5,508)= 4.40274722; T( 5,509)= 4.41010801; T( 5,510)= 4.41747748; T( 5,511)= 4.42485568; T( 5,512)= 4.43224265; T( 5,513)= 4.43963844; T( 5,514)= 4.44704312; T( 5,515)= 4.45445672; T( 5,516)= 4.46187931; T( 5,517)= 4.46931094; T( 5,518)= 4.47675166; T( 5,519)= 4.48420152; T( 5,520)= 4.49166057; T( 5,521)= 4.49912888; T( 5,522)= 4.50660648; T( 5,523)= 4.51409345; T( 5,524)= 4.52158983; T( 5,525)= 4.52909568; T( 5,526)= 4.53661105; T( 5,527)= 4.54413600; T( 5,528)= 4.55167058; T( 5,529)= 4.55921484; T( 5,530)= 4.56676886; T( 5,531)= 4.57433267; T( 5,532)= 4.58190635; T( 5,533)= 4.58948993; T( 5,534)= 4.59708349; T( 5,535)= 4.60468708; T( 5,536)= 4.61230076; T( 5,537)= 4.61992458; T( 5,538)= 4.62755861; T( 5,539)= 4.63520290; T( 5,540)= 4.64285751; T( 5,541)= 4.65052250; T( 5,542)= 4.65819793; T( 5,543)= 4.66588386; T( 5,544)= 4.67358035; T( 5,545)= 4.68128746; T( 5,546)= 4.68900525; T( 5,547)= 4.69673379; T( 5,548)= 4.70447312; T( 5,549)= 4.71222333; T( 5,550)= 4.71998446; T( 5,551)= 4.72775659; T( 5,552)= 4.73553976; T( 5,553)= 4.74333406; T( 5,554)= 4.75113953; T( 5,555)= 4.75895625; T( 5,556)= 4.76678427; T( 5,557)= 4.77462367; T( 5,558)= 4.78247451; T( 5,559)= 4.79033685; T( 5,560)= 4.79821075; T( 5,561)= 4.80609630; T( 5,562)= 4.81399354; T( 5,563)= 4.82190255; T( 5,564)= 4.82982340; T( 5,565)= 4.83775614; T( 5,566)= 4.84570086; T( 5,567)= 4.85365762; T( 5,568)= 4.86162649; T( 5,569)= 4.86960753; T( 5,570)= 4.87760082; T( 5,571)= 4.88560643; T( 5,572)= 4.89362442; T( 5,573)= 4.90165487; T( 5,574)= 4.90969785; T( 5,575)= 4.91775343; T( 5,576)= 4.92582168; T( 5,577)= 4.93390268; T( 5,578)= 4.94199650; T( 5,579)= 4.95010321; T( 5,580)= 4.95822288; T( 5,581)= 4.96635559; T( 5,582)= 4.97450142; T( 5,583)= 4.98266044; T( 5,584)= 4.99083273; T( 5,585)= 4.99901836; T( 5,586)= 5.00721740; T( 5,587)= 5.01542995; T( 5,588)= 5.02365606; T( 5,589)= 5.03189583; T( 5,590)= 5.04014933; T( 5,591)= 5.04841664; T( 5,592)= 5.05669784; T( 5,593)= 5.06499301; T( 5,594)= 5.07330223; T( 5,595)= 5.08162558; T( 5,596)= 5.08996314; T( 5,597)= 5.09831500; T( 5,598)= 5.10668124; T( 5,599)= 5.11506195; T( 5,600)= 5.12345719; T( 5,601)= 5.13186707; T( 5,602)= 5.14029167; T( 5,603)= 5.14873107; T( 5,604)= 5.15718535; T( 5,605)= 5.16565462; T( 5,606)= 5.17413894; T( 5,607)= 5.18263841; T( 5,608)= 5.19115313; T( 5,609)= 5.19968317; T( 5,610)= 5.20822863; T( 5,611)= 5.21678960; T( 5,612)= 5.22536617; T( 5,613)= 5.23395843; T( 5,614)= 5.24256647; T( 5,615)= 5.25119040; T( 5,616)= 5.25983029; T( 5,617)= 5.26848625; T( 5,618)= 5.27715837; T( 5,619)= 5.28584675; T( 5,620)= 5.29455148; T( 5,621)= 5.30327266; T( 5,622)= 5.31201039; T( 5,623)= 5.32076476; T( 5,624)= 5.32953588; T( 5,625)= 5.33832385; T( 5,626)= 5.34712876; T( 5,627)= 5.35595072; T( 5,628)= 5.36478984; T( 5,629)= 5.37364620; T( 5,630)= 5.38251992; T( 5,631)= 5.39141111; T( 5,632)= 5.40031986; T( 5,633)= 5.40924628; T( 5,634)= 5.41819049; T( 5,635)= 5.42715258; T( 5,636)= 5.43613267; T( 5,637)= 5.44513086; T( 5,638)= 5.45414727; T( 5,639)= 5.46318201; T( 5,640)= 5.47223519; T( 5,641)= 5.48130691; T( 5,642)= 5.49039731; T( 5,643)= 5.49950648; T( 5,644)= 5.50863455; T( 5,645)= 5.51778163; T( 5,646)= 5.52694784; T( 5,647)= 5.53613330; T( 5,648)= 5.54533812; T( 5,649)= 5.55456244; T( 5,650)= 5.56380635; T( 5,651)= 5.57307000; T( 5,652)= 5.58235350; T( 5,653)= 5.59165698; T( 5,654)= 5.60098056; T( 5,655)= 5.61032437; T( 5,656)= 5.61968853; T( 5,657)= 5.62907318; T( 5,658)= 5.63847844; T( 5,659)= 5.64790444; T( 5,660)= 5.65735131; T( 5,661)= 5.66681919; T( 5,662)= 5.67630821; T( 5,663)= 5.68581850; T( 5,664)= 5.69535021; T( 5,665)= 5.70490346; T( 5,666)= 5.71447840; T( 5,667)= 5.72407516; T( 5,668)= 5.73369388; T( 5,669)= 5.74333472; T( 5,670)= 5.75299780; T( 5,671)= 5.76268327; T( 5,672)= 5.77239128; T( 5,673)= 5.78212198; T( 5,674)= 5.79187551; T( 5,675)= 5.80165203; T( 5,676)= 5.81145167; T( 5,677)= 5.82127461; T( 5,678)= 5.83112097; T( 5,679)= 5.84099094; T( 5,680)= 5.85088465; T( 5,681)= 5.86080226; T( 5,682)= 5.87074394; T( 5,683)= 5.88070984; T( 5,684)= 5.89070013; T( 5,685)= 5.90071497; T( 5,686)= 5.91075452; T( 5,687)= 5.92081895; T( 5,688)= 5.93090842; T( 5,689)= 5.94102311; T( 5,690)= 5.95116319; T( 5,691)= 5.96132883; T( 5,692)= 5.97152020; T( 5,693)= 5.98173748; T( 5,694)= 5.99198084; T( 5,695)= 6.00225046; T( 5,696)= 6.01254654; T( 5,697)= 6.02286923; T( 5,698)= 6.03321874; T( 5,699)= 6.04359524; T( 5,700)= 6.05399893; T( 5,701)= 6.06442998; T( 5,702)= 6.07488861; T( 5,703)= 6.08537498; T( 5,704)= 6.09588931; T( 5,705)= 6.10643179; T( 5,706)= 6.11700261; T( 5,707)= 6.12760198; T( 5,708)= 6.13823010; T( 5,709)= 6.14888717; T( 5,710)= 6.15957341; T( 5,711)= 6.17028901; T( 5,712)= 6.18103419; T( 5,713)= 6.19180916; T( 5,714)= 6.20261415; T( 5,715)= 6.21344935; T( 5,716)= 6.22431500; T( 5,717)= 6.23521132; T( 5,718)= 6.24613853; T( 5,719)= 6.25709685; T( 5,720)= 6.26808651; T( 5,721)= 6.27910775; T( 5,722)= 6.29016080; T( 5,723)= 6.30124590; T( 5,724)= 6.31236327; T( 5,725)= 6.32351317; T( 5,726)= 6.33469584; T( 5,727)= 6.34591151; T( 5,728)= 6.35716045; T( 5,729)= 6.36844290; T( 5,730)= 6.37975911; T( 5,731)= 6.39110935; T( 5,732)= 6.40249386; T( 5,733)= 6.41391292; T( 5,734)= 6.42536679; T( 5,735)= 6.43685574; T( 5,736)= 6.44838003; T( 5,737)= 6.45993994; T( 5,738)= 6.47153575; T( 5,739)= 6.48316774; T( 5,740)= 6.49483619; T( 5,741)= 6.50654138; T( 5,742)= 6.51828362; T( 5,743)= 6.53006318; T( 5,744)= 6.54188036; T( 5,745)= 6.55373547; T( 5,746)= 6.56562881; T( 5,747)= 6.57756068; T( 5,748)= 6.58953140; T( 5,749)= 6.60154127; T( 5,750)= 6.61359062; T( 5,751)= 6.62567976; T( 5,752)= 6.63780903; T( 5,753)= 6.64997874; T( 5,754)= 6.66218923; T( 5,755)= 6.67444084; T( 5,756)= 6.68673390; T( 5,757)= 6.69906877; T( 5,758)= 6.71144579; T( 5,759)= 6.72386531; T( 5,760)= 6.73632769; T( 5,761)= 6.74883329; T( 5,762)= 6.76138248; T( 5,763)= 6.77397563; T( 5,764)= 6.78661311; T( 5,765)= 6.79929530; T( 5,766)= 6.81202259; T( 5,767)= 6.82479536; T( 5,768)= 6.83761401; T( 5,769)= 6.85047894; T( 5,770)= 6.86339055; T( 5,771)= 6.87634926; T( 5,772)= 6.88935547; T( 5,773)= 6.90240960; T( 5,774)= 6.91551209; T( 5,775)= 6.92866336; T( 5,776)= 6.94186385; T( 5,777)= 6.95511399; T( 5,778)= 6.96841425; T( 5,779)= 6.98176506; T( 5,780)= 6.99516690; T( 5,781)= 7.00862022; T( 5,782)= 7.02212551; T( 5,783)= 7.03568323; T( 5,784)= 7.04929388; T( 5,785)= 7.06295794; T( 5,786)= 7.07667591; T( 5,787)= 7.09044831; T( 5,788)= 7.10427563; T( 5,789)= 7.11815841; T( 5,790)= 7.13209716; T( 5,791)= 7.14609242; T( 5,792)= 7.16014473; T( 5,793)= 7.17425464; T( 5,794)= 7.18842272; T( 5,795)= 7.20264951; T( 5,796)= 7.21693560; T( 5,797)= 7.23128157; T( 5,798)= 7.24568800; T( 5,799)= 7.26015550; T( 5,800)= 7.27468467; T( 5,801)= 7.28927613; T( 5,802)= 7.30393050; T( 5,803)= 7.31864841; T( 5,804)= 7.33343052; T( 5,805)= 7.34827747; T( 5,806)= 7.36318993; T( 5,807)= 7.37816857; T( 5,808)= 7.39321407; T( 5,809)= 7.40832713; T( 5,810)= 7.42350845; T( 5,811)= 7.43875876; T( 5,812)= 7.45407877; T( 5,813)= 7.46946922; T( 5,814)= 7.48493087; T( 5,815)= 7.50046447; T( 5,816)= 7.51607081; T( 5,817)= 7.53175066; T( 5,818)= 7.54750482; T( 5,819)= 7.56333411; T( 5,820)= 7.57923936; T( 5,821)= 7.59522140; T( 5,822)= 7.61128108; T( 5,823)= 7.62741927; T( 5,824)= 7.64363685; T( 5,825)= 7.65993472; T( 5,826)= 7.67631379; T( 5,827)= 7.69277498; T( 5,828)= 7.70931924; T( 5,829)= 7.72594752; T( 5,830)= 7.74266081; T( 5,831)= 7.75946008; T( 5,832)= 7.77634636; T( 5,833)= 7.79332066; T( 5,834)= 7.81038403; T( 5,835)= 7.82753755; T( 5,836)= 7.84478227; T( 5,837)= 7.86211932; T( 5,838)= 7.87954982; T( 5,839)= 7.89707489; T( 5,840)= 7.91469571; T( 5,841)= 7.93241347; T( 5,842)= 7.95022937; T( 5,843)= 7.96814463; T( 5,844)= 7.98616051; T( 5,845)= 8.00427829; T( 5,846)= 8.02249927; T( 5,847)= 8.04082477; T( 5,848)= 8.05925615; T( 5,849)= 8.07779477; T( 5,850)= 8.09644205; T( 5,851)= 8.11519941; T( 5,852)= 8.13406832; T( 5,853)= 8.15305027; T( 5,854)= 8.17214677; T( 5,855)= 8.19135937; T( 5,856)= 8.21068966; T( 5,857)= 8.23013925; T( 5,858)= 8.24970978; T( 5,859)= 8.26940294; T( 5,860)= 8.28922045; T( 5,861)= 8.30916405; T( 5,862)= 8.32923554; T( 5,863)= 8.34943674; T( 5,864)= 8.36976952; T( 5,865)= 8.39023580; T( 5,866)= 8.41083751; T( 5,867)= 8.43157666; T( 5,868)= 8.45245528; T( 5,869)= 8.47347545; T( 5,870)= 8.49463930; T( 5,871)= 8.51594902; T( 5,872)= 8.53740682; T( 5,873)= 8.55901500; T( 5,874)= 8.58077587; T( 5,875)= 8.60269183; T( 5,876)= 8.62476532; T( 5,877)= 8.64699885; T( 5,878)= 8.66939497; T( 5,879)= 8.69195631; T( 5,880)= 8.71468555; T( 5,881)= 8.73758546; T( 5,882)= 8.76065884; T( 5,883)= 8.78390860; T( 5,884)= 8.80733771; T( 5,885)= 8.83094920; T( 5,886)= 8.85474619; T( 5,887)= 8.87873188; T( 5,888)= 8.90290956; T( 5,889)= 8.92728260; T( 5,890)= 8.95185446; T( 5,891)= 8.97662869; T( 5,892)= 9.00160894; T( 5,893)= 9.02679896; T( 5,894)= 9.05220261; T( 5,895)= 9.07782384; T( 5,896)= 9.10366673; T( 5,897)= 9.12973547; T( 5,898)= 9.15603435; T( 5,899)= 9.18256782; T( 5,900)= 9.20934044; T( 5,901)= 9.23635690; T( 5,902)= 9.26362204; T( 5,903)= 9.29114084; T( 5,904)= 9.31891844; T( 5,905)= 9.34696013; T( 5,906)= 9.37527136; T( 5,907)= 9.40385777; T( 5,908)= 9.43272516; T( 5,909)= 9.46187952; T( 5,910)= 9.49132705; T( 5,911)= 9.52107413; T( 5,912)= 9.55112737; T( 5,913)= 9.58149359; T( 5,914)= 9.61217984; T( 5,915)= 9.64319344; T( 5,916)= 9.67454192; T( 5,917)= 9.70623310; T( 5,918)= 9.73827509; T( 5,919)= 9.77067627; T( 5,920)= 9.80344533; T( 5,921)= 9.83659128; T( 5,922)= 9.87012349; T( 5,923)= 9.90405164; T( 5,924)= 9.93838582; T( 5,925)= 9.97313649; T( 5,926)=10.00831453; T( 5,927)=10.04393127; T( 5,928)=10.07999846; T( 5,929)=10.11652837; T( 5,930)=10.15353375; T( 5,931)=10.19102791; T( 5,932)=10.22902471; T( 5,933)=10.26753863; T( 5,934)=10.30658478; T( 5,935)=10.34617893; T( 5,936)=10.38633760; T( 5,937)=10.42707803; T( 5,938)=10.46841830; T( 5,939)=10.51037734; T( 5,940)=10.55297499; T( 5,941)=10.59623206; T( 5,942)=10.64017042; T( 5,943)=10.68481303; T( 5,944)=10.73018406; T( 5,945)=10.77630892; T( 5,946)=10.82321441; T( 5,947)=10.87092879; T( 5,948)=10.91948187; T( 5,949)=10.96890516; T( 5,950)=11.01923201; T( 5,951)=11.07049769; T( 5,952)=11.12273964; T( 5,953)=11.17599756; T( 5,954)=11.23031364; T( 5,955)=11.28573279; T( 5,956)=11.34230283; T( 5,957)=11.40007480; T( 5,958)=11.45910322; T( 5,959)=11.51944642; T( 5,960)=11.58116693; T( 5,961)=11.64433185; T( 5,962)=11.70901336; T( 5,963)=11.77528921; T( 5,964)=11.84324331; T( 5,965)=11.91296643; T( 5,966)=11.98455693; T( 5,967)=12.05812169; T( 5,968)=12.13377705; T( 5,969)=12.21165003; T( 5,970)=12.29187964; T( 5,971)=12.37461848; T( 5,972)=12.46003454; T( 5,973)=12.54831336; T( 5,974)=12.63966059; T( 5,975)=12.73430498; T( 5,976)=12.83250199; T( 5,977)=12.93453818; T( 5,978)=13.04073639; T( 5,979)=13.15146225; T( 5,980)=13.26713205; T( 5,981)=13.38822260; T( 5,982)=13.51528360; T( 5,983)=13.64895331; T( 5,984)=13.78997877; T( 5,985)=13.93924200; T( 5,986)=14.09779477; T( 5,987)=14.26690524; T( 5,988)=14.44812191; T( 5,989)=14.64336310; T( 5,990)=14.85504527; T( 5,991)=15.08627247; T( 5,992)=15.34112561; T( 5,993)=15.62512207; T( 5,994)=15.94598266; T( 5,995)=16.31499158; T( 5,996)=16.74960234; T( 5,997)=17.27897691; T( 5,998)=17.95761227; T( 5,999)=18.90737738; T( 5,1000)=20.51500565; T( 5,1001)=25.74483196; T( 5,1002)=30.85618994; T( 6, 1)= 0.00000000; T( 6, 2)= 0.38106676; T( 6, 3)= 0.48640703; T( 6, 4)= 0.56201301; T( 6, 5)= 0.62325656; T( 6, 6)= 0.67572678; T( 6, 7)= 0.72217246; T( 6, 8)= 0.76417539; T( 6, 9)= 0.80273999; T( 6,10)= 0.83854900; T( 6,11)= 0.87209033; T( 6,12)= 0.90372628; T( 6,13)= 0.93373424; T( 6,14)= 0.96233189; T( 6,15)= 0.98969361; T( 6,16)= 1.01596153; T( 6,17)= 1.04125321; T( 6,18)= 1.06566716; T( 6,19)= 1.08928684; T( 6,20)= 1.11218365; T( 6,21)= 1.13441924; T( 6,22)= 1.15604723; T( 6,23)= 1.17711459; T( 6,24)= 1.19766272; T( 6,25)= 1.21772837; T( 6,26)= 1.23734425; T( 6,27)= 1.25653968; T( 6,28)= 1.27534105; T( 6,29)= 1.29377218; T( 6,30)= 1.31185468; T( 6,31)= 1.32960822; T( 6,32)= 1.34705073; T( 6,33)= 1.36419867; T( 6,34)= 1.38106713; T( 6,35)= 1.39767001; T( 6,36)= 1.41402014; T( 6,37)= 1.43012939; T( 6,38)= 1.44600879; T( 6,39)= 1.46166856; T( 6,40)= 1.47711824; T( 6,41)= 1.49236671; T( 6,42)= 1.50742228; T( 6,43)= 1.52229274; T( 6,44)= 1.53698537; T( 6,45)= 1.55150704; T( 6,46)= 1.56586418; T( 6,47)= 1.58006287; T( 6,48)= 1.59410882; T( 6,49)= 1.60800745; T( 6,50)= 1.62176386; T( 6,51)= 1.63538289; T( 6,52)= 1.64886913; T( 6,53)= 1.66222693; T( 6,54)= 1.67546042; T( 6,55)= 1.68857351; T( 6,56)= 1.70156996; T( 6,57)= 1.71445332; T( 6,58)= 1.72722698; T( 6,59)= 1.73989418; T( 6,60)= 1.75245800; T( 6,61)= 1.76492141; T( 6,62)= 1.77728723; T( 6,63)= 1.78955815; T( 6,64)= 1.80173678; T( 6,65)= 1.81382559; T( 6,66)= 1.82582697; T( 6,67)= 1.83774319; T( 6,68)= 1.84957646; T( 6,69)= 1.86132888; T( 6,70)= 1.87300248; T( 6,71)= 1.88459921; T( 6,72)= 1.89612094; T( 6,73)= 1.90756950; T( 6,74)= 1.91894661; T( 6,75)= 1.93025397; T( 6,76)= 1.94149319; T( 6,77)= 1.95266584; T( 6,78)= 1.96377343; T( 6,79)= 1.97481741; T( 6,80)= 1.98579921; T( 6,81)= 1.99672018; T( 6,82)= 2.00758165; T( 6,83)= 2.01838488; T( 6,84)= 2.02913113; T( 6,85)= 2.03982158; T( 6,86)= 2.05045741; T( 6,87)= 2.06103972; T( 6,88)= 2.07156962; T( 6,89)= 2.08204816; T( 6,90)= 2.09247636; T( 6,91)= 2.10285524; T( 6,92)= 2.11318574; T( 6,93)= 2.12346882; T( 6,94)= 2.13370539; T( 6,95)= 2.14389634; T( 6,96)= 2.15404252; T( 6,97)= 2.16414479; T( 6,98)= 2.17420395; T( 6,99)= 2.18422080; T( 6,100)= 2.19419612; T( 6,101)= 2.20413066; T( 6,102)= 2.21402515; T( 6,103)= 2.22388031; T( 6,104)= 2.23369684; T( 6,105)= 2.24347542; T( 6,106)= 2.25321670; T( 6,107)= 2.26292134; T( 6,108)= 2.27258997; T( 6,109)= 2.28222319; T( 6,110)= 2.29182162; T( 6,111)= 2.30138584; T( 6,112)= 2.31091642; T( 6,113)= 2.32041391; T( 6,114)= 2.32987888; T( 6,115)= 2.33931184; T( 6,116)= 2.34871332; T( 6,117)= 2.35808383; T( 6,118)= 2.36742388; T( 6,119)= 2.37673394; T( 6,120)= 2.38601449; T( 6,121)= 2.39526601; T( 6,122)= 2.40448894; T( 6,123)= 2.41368373; T( 6,124)= 2.42285083; T( 6,125)= 2.43199065; T( 6,126)= 2.44110363; T( 6,127)= 2.45019016; T( 6,128)= 2.45925066; T( 6,129)= 2.46828552; T( 6,130)= 2.47729511; T( 6,131)= 2.48627983; T( 6,132)= 2.49524004; T( 6,133)= 2.50417611; T( 6,134)= 2.51308839; T( 6,135)= 2.52197723; T( 6,136)= 2.53084299; T( 6,137)= 2.53968598; T( 6,138)= 2.54850655; T( 6,139)= 2.55730502; T( 6,140)= 2.56608171; T( 6,141)= 2.57483693; T( 6,142)= 2.58357099; T( 6,143)= 2.59228418; T( 6,144)= 2.60097681; T( 6,145)= 2.60964916; T( 6,146)= 2.61830153; T( 6,147)= 2.62693418; T( 6,148)= 2.63554741; T( 6,149)= 2.64414147; T( 6,150)= 2.65271664; T( 6,151)= 2.66127318; T( 6,152)= 2.66981134; T( 6,153)= 2.67833137; T( 6,154)= 2.68683354; T( 6,155)= 2.69531807; T( 6,156)= 2.70378522; T( 6,157)= 2.71223522; T( 6,158)= 2.72066830; T( 6,159)= 2.72908469; T( 6,160)= 2.73748463; T( 6,161)= 2.74586832; T( 6,162)= 2.75423599; T( 6,163)= 2.76258786; T( 6,164)= 2.77092413; T( 6,165)= 2.77924502; T( 6,166)= 2.78755073; T( 6,167)= 2.79584147; T( 6,168)= 2.80411743; T( 6,169)= 2.81237881; T( 6,170)= 2.82062580; T( 6,171)= 2.82885860; T( 6,172)= 2.83707740; T( 6,173)= 2.84528237; T( 6,174)= 2.85347370; T( 6,175)= 2.86165158; T( 6,176)= 2.86981618; T( 6,177)= 2.87796767; T( 6,178)= 2.88610623; T( 6,179)= 2.89423202; T( 6,180)= 2.90234523; T( 6,181)= 2.91044600; T( 6,182)= 2.91853451; T( 6,183)= 2.92661092; T( 6,184)= 2.93467538; T( 6,185)= 2.94272805; T( 6,186)= 2.95076910; T( 6,187)= 2.95879866; T( 6,188)= 2.96681690; T( 6,189)= 2.97482395; T( 6,190)= 2.98281998; T( 6,191)= 2.99080511; T( 6,192)= 2.99877951; T( 6,193)= 3.00674330; T( 6,194)= 3.01469663; T( 6,195)= 3.02263963; T( 6,196)= 3.03057245; T( 6,197)= 3.03849522; T( 6,198)= 3.04640807; T( 6,199)= 3.05431113; T( 6,200)= 3.06220453; T( 6,201)= 3.07008841; T( 6,202)= 3.07796288; T( 6,203)= 3.08582807; T( 6,204)= 3.09368411; T( 6,205)= 3.10153113; T( 6,206)= 3.10936923; T( 6,207)= 3.11719854; T( 6,208)= 3.12501919; T( 6,209)= 3.13283128; T( 6,210)= 3.14063493; T( 6,211)= 3.14843026; T( 6,212)= 3.15621739; T( 6,213)= 3.16399641; T( 6,214)= 3.17176745; T( 6,215)= 3.17953061; T( 6,216)= 3.18728600; T( 6,217)= 3.19503373; T( 6,218)= 3.20277391; T( 6,219)= 3.21050664; T( 6,220)= 3.21823203; T( 6,221)= 3.22595017; T( 6,222)= 3.23366117; T( 6,223)= 3.24136513; T( 6,224)= 3.24906215; T( 6,225)= 3.25675234; T( 6,226)= 3.26443578; T( 6,227)= 3.27211257; T( 6,228)= 3.27978282; T( 6,229)= 3.28744661; T( 6,230)= 3.29510404; T( 6,231)= 3.30275520; T( 6,232)= 3.31040019; T( 6,233)= 3.31803910; T( 6,234)= 3.32567201; T( 6,235)= 3.33329903; T( 6,236)= 3.34092023; T( 6,237)= 3.34853570; T( 6,238)= 3.35614554; T( 6,239)= 3.36374983; T( 6,240)= 3.37134865; T( 6,241)= 3.37894209; T( 6,242)= 3.38653024; T( 6,243)= 3.39411317; T( 6,244)= 3.40169098; T( 6,245)= 3.40926374; T( 6,246)= 3.41683153; T( 6,247)= 3.42439444; T( 6,248)= 3.43195255; T( 6,249)= 3.43950593; T( 6,250)= 3.44705467; T( 6,251)= 3.45459884; T( 6,252)= 3.46213851; T( 6,253)= 3.46967378; T( 6,254)= 3.47720471; T( 6,255)= 3.48473137; T( 6,256)= 3.49225385; T( 6,257)= 3.49977222; T( 6,258)= 3.50728655; T( 6,259)= 3.51479692; T( 6,260)= 3.52230340; T( 6,261)= 3.52980605; T( 6,262)= 3.53730496; T( 6,263)= 3.54480020; T( 6,264)= 3.55229183; T( 6,265)= 3.55977992; T( 6,266)= 3.56726455; T( 6,267)= 3.57474578; T( 6,268)= 3.58222368; T( 6,269)= 3.58969833; T( 6,270)= 3.59716978; T( 6,271)= 3.60463811; T( 6,272)= 3.61210338; T( 6,273)= 3.61956566; T( 6,274)= 3.62702502; T( 6,275)= 3.63448151; T( 6,276)= 3.64193521; T( 6,277)= 3.64938618; T( 6,278)= 3.65683448; T( 6,279)= 3.66428019; T( 6,280)= 3.67172335; T( 6,281)= 3.67916403; T( 6,282)= 3.68660231; T( 6,283)= 3.69403823; T( 6,284)= 3.70147187; T( 6,285)= 3.70890327; T( 6,286)= 3.71633251; T( 6,287)= 3.72375964; T( 6,288)= 3.73118473; T( 6,289)= 3.73860783; T( 6,290)= 3.74602901; T( 6,291)= 3.75344832; T( 6,292)= 3.76086582; T( 6,293)= 3.76828158; T( 6,294)= 3.77569564; T( 6,295)= 3.78310807; T( 6,296)= 3.79051893; T( 6,297)= 3.79792827; T( 6,298)= 3.80533615; T( 6,299)= 3.81274262; T( 6,300)= 3.82014775; T( 6,301)= 3.82755159; T( 6,302)= 3.83495419; T( 6,303)= 3.84235562; T( 6,304)= 3.84975592; T( 6,305)= 3.85715515; T( 6,306)= 3.86455337; T( 6,307)= 3.87195063; T( 6,308)= 3.87934698; T( 6,309)= 3.88674248; T( 6,310)= 3.89413719; T( 6,311)= 3.90153116; T( 6,312)= 3.90892443; T( 6,313)= 3.91631707; T( 6,314)= 3.92370912; T( 6,315)= 3.93110064; T( 6,316)= 3.93849169; T( 6,317)= 3.94588230; T( 6,318)= 3.95327255; T( 6,319)= 3.96066247; T( 6,320)= 3.96805211; T( 6,321)= 3.97544154; T( 6,322)= 3.98283080; T( 6,323)= 3.99021995; T( 6,324)= 3.99760902; T( 6,325)= 4.00499808; T( 6,326)= 4.01238717; T( 6,327)= 4.01977635; T( 6,328)= 4.02716566; T( 6,329)= 4.03455516; T( 6,330)= 4.04194489; T( 6,331)= 4.04933490; T( 6,332)= 4.05672525; T( 6,333)= 4.06411597; T( 6,334)= 4.07150713; T( 6,335)= 4.07889877; T( 6,336)= 4.08629094; T( 6,337)= 4.09368368; T( 6,338)= 4.10107705; T( 6,339)= 4.10847109; T( 6,340)= 4.11586586; T( 6,341)= 4.12326139; T( 6,342)= 4.13065774; T( 6,343)= 4.13805496; T( 6,344)= 4.14545309; T( 6,345)= 4.15285218; T( 6,346)= 4.16025228; T( 6,347)= 4.16765343; T( 6,348)= 4.17505568; T( 6,349)= 4.18245909; T( 6,350)= 4.18986369; T( 6,351)= 4.19726953; T( 6,352)= 4.20467666; T( 6,353)= 4.21208512; T( 6,354)= 4.21949497; T( 6,355)= 4.22690625; T( 6,356)= 4.23431900; T( 6,357)= 4.24173327; T( 6,358)= 4.24914911; T( 6,359)= 4.25656656; T( 6,360)= 4.26398567; T( 6,361)= 4.27140649; T( 6,362)= 4.27882905; T( 6,363)= 4.28625341; T( 6,364)= 4.29367961; T( 6,365)= 4.30110770; T( 6,366)= 4.30853772; T( 6,367)= 4.31596971; T( 6,368)= 4.32340373; T( 6,369)= 4.33083982; T( 6,370)= 4.33827802; T( 6,371)= 4.34571837; T( 6,372)= 4.35316093; T( 6,373)= 4.36060574; T( 6,374)= 4.36805284; T( 6,375)= 4.37550227; T( 6,376)= 4.38295409; T( 6,377)= 4.39040834; T( 6,378)= 4.39786505; T( 6,379)= 4.40532429; T( 6,380)= 4.41278608; T( 6,381)= 4.42025048; T( 6,382)= 4.42771752; T( 6,383)= 4.43518727; T( 6,384)= 4.44265975; T( 6,385)= 4.45013501; T( 6,386)= 4.45761310; T( 6,387)= 4.46509406; T( 6,388)= 4.47257794; T( 6,389)= 4.48006477; T( 6,390)= 4.48755462; T( 6,391)= 4.49504751; T( 6,392)= 4.50254349; T( 6,393)= 4.51004261; T( 6,394)= 4.51754491; T( 6,395)= 4.52505044; T( 6,396)= 4.53255923; T( 6,397)= 4.54007135; T( 6,398)= 4.54758681; T( 6,399)= 4.55510568; T( 6,400)= 4.56262800; T( 6,401)= 4.57015381; T( 6,402)= 4.57768315; T( 6,403)= 4.58521607; T( 6,404)= 4.59275261; T( 6,405)= 4.60029282; T( 6,406)= 4.60783675; T( 6,407)= 4.61538442; T( 6,408)= 4.62293590; T( 6,409)= 4.63049122; T( 6,410)= 4.63805043; T( 6,411)= 4.64561357; T( 6,412)= 4.65318069; T( 6,413)= 4.66075183; T( 6,414)= 4.66832704; T( 6,415)= 4.67590635; T( 6,416)= 4.68348982; T( 6,417)= 4.69107749; T( 6,418)= 4.69866940; T( 6,419)= 4.70626560; T( 6,420)= 4.71386613; T( 6,421)= 4.72147104; T( 6,422)= 4.72908037; T( 6,423)= 4.73669416; T( 6,424)= 4.74431247; T( 6,425)= 4.75193533; T( 6,426)= 4.75956279; T( 6,427)= 4.76719489; T( 6,428)= 4.77483169; T( 6,429)= 4.78247322; T( 6,430)= 4.79011953; T( 6,431)= 4.79777067; T( 6,432)= 4.80542667; T( 6,433)= 4.81308759; T( 6,434)= 4.82075348; T( 6,435)= 4.82842436; T( 6,436)= 4.83610030; T( 6,437)= 4.84378134; T( 6,438)= 4.85146751; T( 6,439)= 4.85915888; T( 6,440)= 4.86685548; T( 6,441)= 4.87455736; T( 6,442)= 4.88226456; T( 6,443)= 4.88997713; T( 6,444)= 4.89769512; T( 6,445)= 4.90541858; T( 6,446)= 4.91314754; T( 6,447)= 4.92088206; T( 6,448)= 4.92862217; T( 6,449)= 4.93636794; T( 6,450)= 4.94411940; T( 6,451)= 4.95187661; T( 6,452)= 4.95963960; T( 6,453)= 4.96740842; T( 6,454)= 4.97518313; T( 6,455)= 4.98296376; T( 6,456)= 4.99075038; T( 6,457)= 4.99854301; T( 6,458)= 5.00634171; T( 6,459)= 5.01414653; T( 6,460)= 5.02195752; T( 6,461)= 5.02977472; T( 6,462)= 5.03759818; T( 6,463)= 5.04542795; T( 6,464)= 5.05326407; T( 6,465)= 5.06110660; T( 6,466)= 5.06895559; T( 6,467)= 5.07681107; T( 6,468)= 5.08467310; T( 6,469)= 5.09254173; T( 6,470)= 5.10041701; T( 6,471)= 5.10829899; T( 6,472)= 5.11618771; T( 6,473)= 5.12408322; T( 6,474)= 5.13198558; T( 6,475)= 5.13989483; T( 6,476)= 5.14781103; T( 6,477)= 5.15573421; T( 6,478)= 5.16366444; T( 6,479)= 5.17160176; T( 6,480)= 5.17954623; T( 6,481)= 5.18749789; T( 6,482)= 5.19545679; T( 6,483)= 5.20342298; T( 6,484)= 5.21139652; T( 6,485)= 5.21937746; T( 6,486)= 5.22736584; T( 6,487)= 5.23536173; T( 6,488)= 5.24336516; T( 6,489)= 5.25137620; T( 6,490)= 5.25939488; T( 6,491)= 5.26742128; T( 6,492)= 5.27545543; T( 6,493)= 5.28349739; T( 6,494)= 5.29154722; T( 6,495)= 5.29960496; T( 6,496)= 5.30767067; T( 6,497)= 5.31574441; T( 6,498)= 5.32382621; T( 6,499)= 5.33191615; T( 6,500)= 5.34001427; T( 6,501)= 5.34812063; T( 6,502)= 5.35623527; T( 6,503)= 5.36435827; T( 6,504)= 5.37248966; T( 6,505)= 5.38062950; T( 6,506)= 5.38877786; T( 6,507)= 5.39693478; T( 6,508)= 5.40510032; T( 6,509)= 5.41327454; T( 6,510)= 5.42145748; T( 6,511)= 5.42964922; T( 6,512)= 5.43784980; T( 6,513)= 5.44605928; T( 6,514)= 5.45427772; T( 6,515)= 5.46250517; T( 6,516)= 5.47074169; T( 6,517)= 5.47898734; T( 6,518)= 5.48724218; T( 6,519)= 5.49550627; T( 6,520)= 5.50377965; T( 6,521)= 5.51206240; T( 6,522)= 5.52035457; T( 6,523)= 5.52865622; T( 6,524)= 5.53696741; T( 6,525)= 5.54528819; T( 6,526)= 5.55361864; T( 6,527)= 5.56195880; T( 6,528)= 5.57030874; T( 6,529)= 5.57866852; T( 6,530)= 5.58703819; T( 6,531)= 5.59541783; T( 6,532)= 5.60380750; T( 6,533)= 5.61220724; T( 6,534)= 5.62061714; T( 6,535)= 5.62903724; T( 6,536)= 5.63746761; T( 6,537)= 5.64590832; T( 6,538)= 5.65435943; T( 6,539)= 5.66282100; T( 6,540)= 5.67129309; T( 6,541)= 5.67977577; T( 6,542)= 5.68826910; T( 6,543)= 5.69677316; T( 6,544)= 5.70528799; T( 6,545)= 5.71381368; T( 6,546)= 5.72235028; T( 6,547)= 5.73089787; T( 6,548)= 5.73945650; T( 6,549)= 5.74802624; T( 6,550)= 5.75660717; T( 6,551)= 5.76519934; T( 6,552)= 5.77380283; T( 6,553)= 5.78241771; T( 6,554)= 5.79104404; T( 6,555)= 5.79968189; T( 6,556)= 5.80833134; T( 6,557)= 5.81699245; T( 6,558)= 5.82566528; T( 6,559)= 5.83434993; T( 6,560)= 5.84304644; T( 6,561)= 5.85175490; T( 6,562)= 5.86047537; T( 6,563)= 5.86920793; T( 6,564)= 5.87795265; T( 6,565)= 5.88670961; T( 6,566)= 5.89547887; T( 6,567)= 5.90426051; T( 6,568)= 5.91305460; T( 6,569)= 5.92186122; T( 6,570)= 5.93068044; T( 6,571)= 5.93951235; T( 6,572)= 5.94835700; T( 6,573)= 5.95721449; T( 6,574)= 5.96608489; T( 6,575)= 5.97496826; T( 6,576)= 5.98386470; T( 6,577)= 5.99277428; T( 6,578)= 6.00169708; T( 6,579)= 6.01063317; T( 6,580)= 6.01958264; T( 6,581)= 6.02854556; T( 6,582)= 6.03752202; T( 6,583)= 6.04651210; T( 6,584)= 6.05551588; T( 6,585)= 6.06453343; T( 6,586)= 6.07356485; T( 6,587)= 6.08261022; T( 6,588)= 6.09166961; T( 6,589)= 6.10074312; T( 6,590)= 6.10983082; T( 6,591)= 6.11893280; T( 6,592)= 6.12804915; T( 6,593)= 6.13717996; T( 6,594)= 6.14632530; T( 6,595)= 6.15548527; T( 6,596)= 6.16465995; T( 6,597)= 6.17384944; T( 6,598)= 6.18305382; T( 6,599)= 6.19227318; T( 6,600)= 6.20150760; T( 6,601)= 6.21075719; T( 6,602)= 6.22002204; T( 6,603)= 6.22930222; T( 6,604)= 6.23859784; T( 6,605)= 6.24790899; T( 6,606)= 6.25723577; T( 6,607)= 6.26657826; T( 6,608)= 6.27593656; T( 6,609)= 6.28531076; T( 6,610)= 6.29470097; T( 6,611)= 6.30410728; T( 6,612)= 6.31352979; T( 6,613)= 6.32296859; T( 6,614)= 6.33242379; T( 6,615)= 6.34189548; T( 6,616)= 6.35138376; T( 6,617)= 6.36088874; T( 6,618)= 6.37041051; T( 6,619)= 6.37994918; T( 6,620)= 6.38950485; T( 6,621)= 6.39907763; T( 6,622)= 6.40866761; T( 6,623)= 6.41827491; T( 6,624)= 6.42789963; T( 6,625)= 6.43754188; T( 6,626)= 6.44720175; T( 6,627)= 6.45687938; T( 6,628)= 6.46657485; T( 6,629)= 6.47628828; T( 6,630)= 6.48601979; T( 6,631)= 6.49576948; T( 6,632)= 6.50553746; T( 6,633)= 6.51532385; T( 6,634)= 6.52512877; T( 6,635)= 6.53495232; T( 6,636)= 6.54479462; T( 6,637)= 6.55465580; T( 6,638)= 6.56453596; T( 6,639)= 6.57443522; T( 6,640)= 6.58435371; T( 6,641)= 6.59429154; T( 6,642)= 6.60424884; T( 6,643)= 6.61422573; T( 6,644)= 6.62422232; T( 6,645)= 6.63423875; T( 6,646)= 6.64427513; T( 6,647)= 6.65433160; T( 6,648)= 6.66440829; T( 6,649)= 6.67450530; T( 6,650)= 6.68462279; T( 6,651)= 6.69476088; T( 6,652)= 6.70491969; T( 6,653)= 6.71509936; T( 6,654)= 6.72530002; T( 6,655)= 6.73552181; T( 6,656)= 6.74576487; T( 6,657)= 6.75602932; T( 6,658)= 6.76631530; T( 6,659)= 6.77662296; T( 6,660)= 6.78695243; T( 6,661)= 6.79730386; T( 6,662)= 6.80767738; T( 6,663)= 6.81807314; T( 6,664)= 6.82849128; T( 6,665)= 6.83893194; T( 6,666)= 6.84939529; T( 6,667)= 6.85988145; T( 6,668)= 6.87039059; T( 6,669)= 6.88092285; T( 6,670)= 6.89147838; T( 6,671)= 6.90205734; T( 6,672)= 6.91265987; T( 6,673)= 6.92328615; T( 6,674)= 6.93393631; T( 6,675)= 6.94461053; T( 6,676)= 6.95530896; T( 6,677)= 6.96603176; T( 6,678)= 6.97677909; T( 6,679)= 6.98755113; T( 6,680)= 6.99834802; T( 6,681)= 7.00916995; T( 6,682)= 7.02001707; T( 6,683)= 7.03088956; T( 6,684)= 7.04178759; T( 6,685)= 7.05271133; T( 6,686)= 7.06366096; T( 6,687)= 7.07463665; T( 6,688)= 7.08563859; T( 6,689)= 7.09666694; T( 6,690)= 7.10772189; T( 6,691)= 7.11880362; T( 6,692)= 7.12991232; T( 6,693)= 7.14104817; T( 6,694)= 7.15221136; T( 6,695)= 7.16340208; T( 6,696)= 7.17462052; T( 6,697)= 7.18586687; T( 6,698)= 7.19714133; T( 6,699)= 7.20844409; T( 6,700)= 7.21977536; T( 6,701)= 7.23113533; T( 6,702)= 7.24252421; T( 6,703)= 7.25394219; T( 6,704)= 7.26538949; T( 6,705)= 7.27686632; T( 6,706)= 7.28837288; T( 6,707)= 7.29990938; T( 6,708)= 7.31147605; T( 6,709)= 7.32307309; T( 6,710)= 7.33470073; T( 6,711)= 7.34635918; T( 6,712)= 7.35804867; T( 6,713)= 7.36976943; T( 6,714)= 7.38152168; T( 6,715)= 7.39330565; T( 6,716)= 7.40512157; T( 6,717)= 7.41696968; T( 6,718)= 7.42885021; T( 6,719)= 7.44076341; T( 6,720)= 7.45270951; T( 6,721)= 7.46468876; T( 6,722)= 7.47670141; T( 6,723)= 7.48874771; T( 6,724)= 7.50082789; T( 6,725)= 7.51294224; T( 6,726)= 7.52509098; T( 6,727)= 7.53727440; T( 6,728)= 7.54949275; T( 6,729)= 7.56174629; T( 6,730)= 7.57403530; T( 6,731)= 7.58636004; T( 6,732)= 7.59872080; T( 6,733)= 7.61111783; T( 6,734)= 7.62355144; T( 6,735)= 7.63602189; T( 6,736)= 7.64852948; T( 6,737)= 7.66107449; T( 6,738)= 7.67365722; T( 6,739)= 7.68627797; T( 6,740)= 7.69893702; T( 6,741)= 7.71163469; T( 6,742)= 7.72437128; T( 6,743)= 7.73714709; T( 6,744)= 7.74996245; T( 6,745)= 7.76281766; T( 6,746)= 7.77571306; T( 6,747)= 7.78864895; T( 6,748)= 7.80162567; T( 6,749)= 7.81464355; T( 6,750)= 7.82770292; T( 6,751)= 7.84080412; T( 6,752)= 7.85394750; T( 6,753)= 7.86713340; T( 6,754)= 7.88036217; T( 6,755)= 7.89363417; T( 6,756)= 7.90694975; T( 6,757)= 7.92030928; T( 6,758)= 7.93371313; T( 6,759)= 7.94716167; T( 6,760)= 7.96065528; T( 6,761)= 7.97419433; T( 6,762)= 7.98777921; T( 6,763)= 8.00141032; T( 6,764)= 8.01508805; T( 6,765)= 8.02881280; T( 6,766)= 8.04258497; T( 6,767)= 8.05640497; T( 6,768)= 8.07027323; T( 6,769)= 8.08419016; T( 6,770)= 8.09815618; T( 6,771)= 8.11217173; T( 6,772)= 8.12623725; T( 6,773)= 8.14035318; T( 6,774)= 8.15451996; T( 6,775)= 8.16873806; T( 6,776)= 8.18300792; T( 6,777)= 8.19733002; T( 6,778)= 8.21170483; T( 6,779)= 8.22613283; T( 6,780)= 8.24061449; T( 6,781)= 8.25515032; T( 6,782)= 8.26974081; T( 6,783)= 8.28438647; T( 6,784)= 8.29908780; T( 6,785)= 8.31384532; T( 6,786)= 8.32865956; T( 6,787)= 8.34353106; T( 6,788)= 8.35846034; T( 6,789)= 8.37344796; T( 6,790)= 8.38849448; T( 6,791)= 8.40360045; T( 6,792)= 8.41876644; T( 6,793)= 8.43399304; T( 6,794)= 8.44928083; T( 6,795)= 8.46463040; T( 6,796)= 8.48004236; T( 6,797)= 8.49551732; T( 6,798)= 8.51105590; T( 6,799)= 8.52665873; T( 6,800)= 8.54232646; T( 6,801)= 8.55805972; T( 6,802)= 8.57385918; T( 6,803)= 8.58972550; T( 6,804)= 8.60565937; T( 6,805)= 8.62166147; T( 6,806)= 8.63773249; T( 6,807)= 8.65387315; T( 6,808)= 8.67008417; T( 6,809)= 8.68636628; T( 6,810)= 8.70272021; T( 6,811)= 8.71914673; T( 6,812)= 8.73564660; T( 6,813)= 8.75222059; T( 6,814)= 8.76886949; T( 6,815)= 8.78559411; T( 6,816)= 8.80239527; T( 6,817)= 8.81927377; T( 6,818)= 8.83623048; T( 6,819)= 8.85326624; T( 6,820)= 8.87038192; T( 6,821)= 8.88757840; T( 6,822)= 8.90485658; T( 6,823)= 8.92221737; T( 6,824)= 8.93966170; T( 6,825)= 8.95719051; T( 6,826)= 8.97480476; T( 6,827)= 8.99250542; T( 6,828)= 9.01029348; T( 6,829)= 9.02816995; T( 6,830)= 9.04613586; T( 6,831)= 9.06419225; T( 6,832)= 9.08234018; T( 6,833)= 9.10058073; T( 6,834)= 9.11891500; T( 6,835)= 9.13734410; T( 6,836)= 9.15586918; T( 6,837)= 9.17449139; T( 6,838)= 9.19321191; T( 6,839)= 9.21203195; T( 6,840)= 9.23095272; T( 6,841)= 9.24997547; T( 6,842)= 9.26910147; T( 6,843)= 9.28833201; T( 6,844)= 9.30766841; T( 6,845)= 9.32711200; T( 6,846)= 9.34666416; T( 6,847)= 9.36632628; T( 6,848)= 9.38609978; T( 6,849)= 9.40598609; T( 6,850)= 9.42598671; T( 6,851)= 9.44610313; T( 6,852)= 9.46633688; T( 6,853)= 9.48668954; T( 6,854)= 9.50716269; T( 6,855)= 9.52775796; T( 6,856)= 9.54847702; T( 6,857)= 9.56932156; T( 6,858)= 9.59029332; T( 6,859)= 9.61139404; T( 6,860)= 9.63262554; T( 6,861)= 9.65398967; T( 6,862)= 9.67548829; T( 6,863)= 9.69712332; T( 6,864)= 9.71889674; T( 6,865)= 9.74081054; T( 6,866)= 9.76286677; T( 6,867)= 9.78506752; T( 6,868)= 9.80741493; T( 6,869)= 9.82991118; T( 6,870)= 9.85255852; T( 6,871)= 9.87535923; T( 6,872)= 9.89831564; T( 6,873)= 9.92143015; T( 6,874)= 9.94470521; T( 6,875)= 9.96814332; T( 6,876)= 9.99174704; T( 6,877)=10.01551901; T( 6,878)=10.03946190; T( 6,879)=10.06357847; T( 6,880)=10.08787155; T( 6,881)=10.11234401; T( 6,882)=10.13699883; T( 6,883)=10.16183903; T( 6,884)=10.18686773; T( 6,885)=10.21208812; T( 6,886)=10.23750347; T( 6,887)=10.26311713; T( 6,888)=10.28893255; T( 6,889)=10.31495327; T( 6,890)=10.34118291; T( 6,891)=10.36762520; T( 6,892)=10.39428397; T( 6,893)=10.42116314; T( 6,894)=10.44826677; T( 6,895)=10.47559899; T( 6,896)=10.50316408; T( 6,897)=10.53096643; T( 6,898)=10.55901055; T( 6,899)=10.58730108; T( 6,900)=10.61584282; T( 6,901)=10.64464068; T( 6,902)=10.67369972; T( 6,903)=10.70302518; T( 6,904)=10.73262243; T( 6,905)=10.76249701; T( 6,906)=10.79265465; T( 6,907)=10.82310124; T( 6,908)=10.85384286; T( 6,909)=10.88488579; T( 6,910)=10.91623651; T( 6,911)=10.94790172; T( 6,912)=10.97988834; T( 6,913)=11.01220350; T( 6,914)=11.04485460; T( 6,915)=11.07784928; T( 6,916)=11.11119545; T( 6,917)=11.14490129; T( 6,918)=11.17897528; T( 6,919)=11.21342620; T( 6,920)=11.24826316; T( 6,921)=11.28349557; T( 6,922)=11.31913324; T( 6,923)=11.35518632; T( 6,924)=11.39166534; T( 6,925)=11.42858128; T( 6,926)=11.46594551; T( 6,927)=11.50376986; T( 6,928)=11.54206667; T( 6,929)=11.58084873; T( 6,930)=11.62012941; T( 6,931)=11.65992262; T( 6,932)=11.70024286; T( 6,933)=11.74110527; T( 6,934)=11.78252566; T( 6,935)=11.82452051; T( 6,936)=11.86710710; T( 6,937)=11.91030346; T( 6,938)=11.95412849; T( 6,939)=11.99860197; T( 6,940)=12.04374465; T( 6,941)=12.08957827; T( 6,942)=12.13612570; T( 6,943)=12.18341093; T( 6,944)=12.23145921; T( 6,945)=12.28029710; T( 6,946)=12.32995260; T( 6,947)=12.38045522; T( 6,948)=12.43183612; T( 6,949)=12.48412821; T( 6,950)=12.53736629; T( 6,951)=12.59158724; T( 6,952)=12.64683013; T( 6,953)=12.70313641; T( 6,954)=12.76055014; T( 6,955)=12.81911819; T( 6,956)=12.87889050; T( 6,957)=12.93992031; T( 6,958)=13.00226454; T( 6,959)=13.06598405; T( 6,960)=13.13114408; T( 6,961)=13.19781465; T( 6,962)=13.26607104; T( 6,963)=13.33599435; T( 6,964)=13.40767211; T( 6,965)=13.48119895; T( 6,966)=13.55667746; T( 6,967)=13.63421904; T( 6,968)=13.71394497; T( 6,969)=13.79598766; T( 6,970)=13.88049198; T( 6,971)=13.96761693; T( 6,972)=14.05753754; T( 6,973)=14.15044710; T( 6,974)=14.24655980; T( 6,975)=14.34611387; T( 6,976)=14.44937534; T( 6,977)=14.55664250; T( 6,978)=14.66825145; T( 6,979)=14.78458270; T( 6,980)=14.90606945; T( 6,981)=15.03320775; T( 6,982)=15.16656941; T( 6,983)=15.30681822; T( 6,984)=15.45473093; T( 6,985)=15.61122447; T( 6,986)=15.77739196; T( 6,987)=15.95455115; T( 6,988)=16.14431068; T( 6,989)=16.34866283; T( 6,990)=16.57011657; T( 6,991)=16.81189383; T( 6,992)=17.07822912; T( 6,993)=17.37484553; T( 6,994)=17.70974876; T( 6,995)=18.09463447; T( 6,996)=18.54758418; T( 6,997)=19.09879292; T( 6,998)=19.80465236; T( 6,999)=20.79116772; T( 6,1000)=22.45774448; T( 6,1001)=27.85634124; T( 6,1002)=33.10705682; T( 7, 1)= 0.00000000; T( 7, 2)= 0.59849375; T( 7, 3)= 0.74105733; T( 7, 4)= 0.84123592; T( 7, 5)= 0.92131322; T( 7, 6)= 0.98925568; T( 7, 7)= 1.04893803; T( 7, 8)= 1.10257133; T( 7, 9)= 1.15155015; T( 7,10)= 1.19681705; T( 7,11)= 1.23904231; T( 7,12)= 1.27872156; T( 7,13)= 1.31623280; T( 7,14)= 1.35187166; T( 7,15)= 1.38587420; T( 7,16)= 1.41843230; T( 7,17)= 1.44970423; T( 7,18)= 1.47982230; T( 7,19)= 1.50889834; T( 7,20)= 1.53702782; T( 7,21)= 1.56429300; T( 7,22)= 1.59076530; T( 7,23)= 1.61650716; T( 7,24)= 1.64157355; T( 7,25)= 1.66601312; T( 7,26)= 1.68986918; T( 7,27)= 1.71318046; T( 7,28)= 1.73598176; T( 7,29)= 1.75830447; T( 7,30)= 1.78017701; T( 7,31)= 1.80162523; T( 7,32)= 1.82267268; T( 7,33)= 1.84334091; T( 7,34)= 1.86364970; T( 7,35)= 1.88361722; T( 7,36)= 1.90326023; T( 7,37)= 1.92259425; T( 7,38)= 1.94163363; T( 7,39)= 1.96039171; T( 7,40)= 1.97888088; T( 7,41)= 1.99711272; T( 7,42)= 2.01509801; T( 7,43)= 2.03284686; T( 7,44)= 2.05036872; T( 7,45)= 2.06767248; T( 7,46)= 2.08476649; T( 7,47)= 2.10165859; T( 7,48)= 2.11835619; T( 7,49)= 2.13486627; T( 7,50)= 2.15119543; T( 7,51)= 2.16734991; T( 7,52)= 2.18333563; T( 7,53)= 2.19915818; T( 7,54)= 2.21482289; T( 7,55)= 2.23033482; T( 7,56)= 2.24569875; T( 7,57)= 2.26091928; T( 7,58)= 2.27600075; T( 7,59)= 2.29094732; T( 7,60)= 2.30576296; T( 7,61)= 2.32045145; T( 7,62)= 2.33501641; T( 7,63)= 2.34946131; T( 7,64)= 2.36378945; T( 7,65)= 2.37800403; T( 7,66)= 2.39210807; T( 7,67)= 2.40610450; T( 7,68)= 2.41999612; T( 7,69)= 2.43378563; T( 7,70)= 2.44747560; T( 7,71)= 2.46106854; T( 7,72)= 2.47456683; T( 7,73)= 2.48797278; T( 7,74)= 2.50128861; T( 7,75)= 2.51451646; T( 7,76)= 2.52765839; T( 7,77)= 2.54071639; T( 7,78)= 2.55369238; T( 7,79)= 2.56658822; T( 7,80)= 2.57940570; T( 7,81)= 2.59214655; T( 7,82)= 2.60481245; T( 7,83)= 2.61740502; T( 7,84)= 2.62992582; T( 7,85)= 2.64237638; T( 7,86)= 2.65475817; T( 7,87)= 2.66707260; T( 7,88)= 2.67932106; T( 7,89)= 2.69150489; T( 7,90)= 2.70362540; T( 7,91)= 2.71568383; T( 7,92)= 2.72768141; T( 7,93)= 2.73961934; T( 7,94)= 2.75149875; T( 7,95)= 2.76332079; T( 7,96)= 2.77508653; T( 7,97)= 2.78679704; T( 7,98)= 2.79845334; T( 7,99)= 2.81005644; T( 7,100)= 2.82160732; T( 7,101)= 2.83310692; T( 7,102)= 2.84455617; T( 7,103)= 2.85595596; T( 7,104)= 2.86730719; T( 7,105)= 2.87861069; T( 7,106)= 2.88986731; T( 7,107)= 2.90107786; T( 7,108)= 2.91224313; T( 7,109)= 2.92336389; T( 7,110)= 2.93444089; T( 7,111)= 2.94547488; T( 7,112)= 2.95646657; T( 7,113)= 2.96741666; T( 7,114)= 2.97832584; T( 7,115)= 2.98919478; T( 7,116)= 3.00002412; T( 7,117)= 3.01081452; T( 7,118)= 3.02156659; T( 7,119)= 3.03228094; T( 7,120)= 3.04295818; T( 7,121)= 3.05359888; T( 7,122)= 3.06420361; T( 7,123)= 3.07477294; T( 7,124)= 3.08530742; T( 7,125)= 3.09580757; T( 7,126)= 3.10627392; T( 7,127)= 3.11670698; T( 7,128)= 3.12710726; T( 7,129)= 3.13747525; T( 7,130)= 3.14781143; T( 7,131)= 3.15811628; T( 7,132)= 3.16839025; T( 7,133)= 3.17863380; T( 7,134)= 3.18884737; T( 7,135)= 3.19903141; T( 7,136)= 3.20918634; T( 7,137)= 3.21931257; T( 7,138)= 3.22941052; T( 7,139)= 3.23948060; T( 7,140)= 3.24952320; T( 7,141)= 3.25953871; T( 7,142)= 3.26952750; T( 7,143)= 3.27948996; T( 7,144)= 3.28942646; T( 7,145)= 3.29933734; T( 7,146)= 3.30922298; T( 7,147)= 3.31908372; T( 7,148)= 3.32891989; T( 7,149)= 3.33873184; T( 7,150)= 3.34851989; T( 7,151)= 3.35828438; T( 7,152)= 3.36802562; T( 7,153)= 3.37774392; T( 7,154)= 3.38743959; T( 7,155)= 3.39711294; T( 7,156)= 3.40676426; T( 7,157)= 3.41639385; T( 7,158)= 3.42600200; T( 7,159)= 3.43558899; T( 7,160)= 3.44515509; T( 7,161)= 3.45470060; T( 7,162)= 3.46422576; T( 7,163)= 3.47373086; T( 7,164)= 3.48321615; T( 7,165)= 3.49268189; T( 7,166)= 3.50212834; T( 7,167)= 3.51155574; T( 7,168)= 3.52096434; T( 7,169)= 3.53035439; T( 7,170)= 3.53972612; T( 7,171)= 3.54907977; T( 7,172)= 3.55841557; T( 7,173)= 3.56773374; T( 7,174)= 3.57703452; T( 7,175)= 3.58631813; T( 7,176)= 3.59558478; T( 7,177)= 3.60483469; T( 7,178)= 3.61406808; T( 7,179)= 3.62328514; T( 7,180)= 3.63248609; T( 7,181)= 3.64167114; T( 7,182)= 3.65084048; T( 7,183)= 3.65999431; T( 7,184)= 3.66913282; T( 7,185)= 3.67825622; T( 7,186)= 3.68736468; T( 7,187)= 3.69645840; T( 7,188)= 3.70553756; T( 7,189)= 3.71460235; T( 7,190)= 3.72365294; T( 7,191)= 3.73268952; T( 7,192)= 3.74171225; T( 7,193)= 3.75072132; T( 7,194)= 3.75971689; T( 7,195)= 3.76869913; T( 7,196)= 3.77766821; T( 7,197)= 3.78662430; T( 7,198)= 3.79556755; T( 7,199)= 3.80449813; T( 7,200)= 3.81341620; T( 7,201)= 3.82232191; T( 7,202)= 3.83121542; T( 7,203)= 3.84009688; T( 7,204)= 3.84896644; T( 7,205)= 3.85782426; T( 7,206)= 3.86667047; T( 7,207)= 3.87550523; T( 7,208)= 3.88432869; T( 7,209)= 3.89314097; T( 7,210)= 3.90194224; T( 7,211)= 3.91073261; T( 7,212)= 3.91951224; T( 7,213)= 3.92828125; T( 7,214)= 3.93703979; T( 7,215)= 3.94578799; T( 7,216)= 3.95452597; T( 7,217)= 3.96325387; T( 7,218)= 3.97197182; T( 7,219)= 3.98067994; T( 7,220)= 3.98937837; T( 7,221)= 3.99806722; T( 7,222)= 4.00674663; T( 7,223)= 4.01541671; T( 7,224)= 4.02407758; T( 7,225)= 4.03272936; T( 7,226)= 4.04137218; T( 7,227)= 4.05000614; T( 7,228)= 4.05863137; T( 7,229)= 4.06724799; T( 7,230)= 4.07585610; T( 7,231)= 4.08445581; T( 7,232)= 4.09304725; T( 7,233)= 4.10163051; T( 7,234)= 4.11020571; T( 7,235)= 4.11877297; T( 7,236)= 4.12733237; T( 7,237)= 4.13588404; T( 7,238)= 4.14442808; T( 7,239)= 4.15296458; T( 7,240)= 4.16149367; T( 7,241)= 4.17001543; T( 7,242)= 4.17852997; T( 7,243)= 4.18703738; T( 7,244)= 4.19553778; T( 7,245)= 4.20403126; T( 7,246)= 4.21251791; T( 7,247)= 4.22099784; T( 7,248)= 4.22947113; T( 7,249)= 4.23793789; T( 7,250)= 4.24639821; T( 7,251)= 4.25485218; T( 7,252)= 4.26329990; T( 7,253)= 4.27174146; T( 7,254)= 4.28017695; T( 7,255)= 4.28860646; T( 7,256)= 4.29703008; T( 7,257)= 4.30544790; T( 7,258)= 4.31386000; T( 7,259)= 4.32226649; T( 7,260)= 4.33066744; T( 7,261)= 4.33906293; T( 7,262)= 4.34745306; T( 7,263)= 4.35583792; T( 7,264)= 4.36421757; T( 7,265)= 4.37259212; T( 7,266)= 4.38096163; T( 7,267)= 4.38932620; T( 7,268)= 4.39768591; T( 7,269)= 4.40604083; T( 7,270)= 4.41439105; T( 7,271)= 4.42273665; T( 7,272)= 4.43107771; T( 7,273)= 4.43941430; T( 7,274)= 4.44774650; T( 7,275)= 4.45607440; T( 7,276)= 4.46439807; T( 7,277)= 4.47271758; T( 7,278)= 4.48103301; T( 7,279)= 4.48934445; T( 7,280)= 4.49765195; T( 7,281)= 4.50595561; T( 7,282)= 4.51425548; T( 7,283)= 4.52255165; T( 7,284)= 4.53084419; T( 7,285)= 4.53913317; T( 7,286)= 4.54741866; T( 7,287)= 4.55570074; T( 7,288)= 4.56397948; T( 7,289)= 4.57225494; T( 7,290)= 4.58052720; T( 7,291)= 4.58879633; T( 7,292)= 4.59706240; T( 7,293)= 4.60532547; T( 7,294)= 4.61358562; T( 7,295)= 4.62184291; T( 7,296)= 4.63009741; T( 7,297)= 4.63834919; T( 7,298)= 4.64659832; T( 7,299)= 4.65484486; T( 7,300)= 4.66308888; T( 7,301)= 4.67133045; T( 7,302)= 4.67956963; T( 7,303)= 4.68780648; T( 7,304)= 4.69604108; T( 7,305)= 4.70427348; T( 7,306)= 4.71250375; T( 7,307)= 4.72073195; T( 7,308)= 4.72895816; T( 7,309)= 4.73718242; T( 7,310)= 4.74540481; T( 7,311)= 4.75362539; T( 7,312)= 4.76184421; T( 7,313)= 4.77006135; T( 7,314)= 4.77827686; T( 7,315)= 4.78649080; T( 7,316)= 4.79470324; T( 7,317)= 4.80291424; T( 7,318)= 4.81112385; T( 7,319)= 4.81933214; T( 7,320)= 4.82753917; T( 7,321)= 4.83574499; T( 7,322)= 4.84394967; T( 7,323)= 4.85215327; T( 7,324)= 4.86035584; T( 7,325)= 4.86855744; T( 7,326)= 4.87675814; T( 7,327)= 4.88495798; T( 7,328)= 4.89315704; T( 7,329)= 4.90135536; T( 7,330)= 4.90955300; T( 7,331)= 4.91775003; T( 7,332)= 4.92594649; T( 7,333)= 4.93414245; T( 7,334)= 4.94233796; T( 7,335)= 4.95053308; T( 7,336)= 4.95872787; T( 7,337)= 4.96692237; T( 7,338)= 4.97511665; T( 7,339)= 4.98331076; T( 7,340)= 4.99150476; T( 7,341)= 4.99969871; T( 7,342)= 5.00789265; T( 7,343)= 5.01608664; T( 7,344)= 5.02428074; T( 7,345)= 5.03247501; T( 7,346)= 5.04066949; T( 7,347)= 5.04886424; T( 7,348)= 5.05705931; T( 7,349)= 5.06525477; T( 7,350)= 5.07345066; T( 7,351)= 5.08164703; T( 7,352)= 5.08984394; T( 7,353)= 5.09804145; T( 7,354)= 5.10623960; T( 7,355)= 5.11443845; T( 7,356)= 5.12263806; T( 7,357)= 5.13083847; T( 7,358)= 5.13903973; T( 7,359)= 5.14724191; T( 7,360)= 5.15544505; T( 7,361)= 5.16364920; T( 7,362)= 5.17185442; T( 7,363)= 5.18006076; T( 7,364)= 5.18826827; T( 7,365)= 5.19647700; T( 7,366)= 5.20468701; T( 7,367)= 5.21289834; T( 7,368)= 5.22111105; T( 7,369)= 5.22932519; T( 7,370)= 5.23754080; T( 7,371)= 5.24575795; T( 7,372)= 5.25397668; T( 7,373)= 5.26219704; T( 7,374)= 5.27041909; T( 7,375)= 5.27864287; T( 7,376)= 5.28686844; T( 7,377)= 5.29509584; T( 7,378)= 5.30332513; T( 7,379)= 5.31155635; T( 7,380)= 5.31978957; T( 7,381)= 5.32802482; T( 7,382)= 5.33626216; T( 7,383)= 5.34450164; T( 7,384)= 5.35274330; T( 7,385)= 5.36098721; T( 7,386)= 5.36923340; T( 7,387)= 5.37748194; T( 7,388)= 5.38573286; T( 7,389)= 5.39398622; T( 7,390)= 5.40224207; T( 7,391)= 5.41050045; T( 7,392)= 5.41876143; T( 7,393)= 5.42702504; T( 7,394)= 5.43529134; T( 7,395)= 5.44356038; T( 7,396)= 5.45183220; T( 7,397)= 5.46010686; T( 7,398)= 5.46838441; T( 7,399)= 5.47666489; T( 7,400)= 5.48494836; T( 7,401)= 5.49323486; T( 7,402)= 5.50152445; T( 7,403)= 5.50981716; T( 7,404)= 5.51811306; T( 7,405)= 5.52641220; T( 7,406)= 5.53471461; T( 7,407)= 5.54302036; T( 7,408)= 5.55132949; T( 7,409)= 5.55964204; T( 7,410)= 5.56795808; T( 7,411)= 5.57627764; T( 7,412)= 5.58460078; T( 7,413)= 5.59292755; T( 7,414)= 5.60125800; T( 7,415)= 5.60959217; T( 7,416)= 5.61793012; T( 7,417)= 5.62627189; T( 7,418)= 5.63461754; T( 7,419)= 5.64296712; T( 7,420)= 5.65132066; T( 7,421)= 5.65967823; T( 7,422)= 5.66803987; T( 7,423)= 5.67640564; T( 7,424)= 5.68477557; T( 7,425)= 5.69314973; T( 7,426)= 5.70152816; T( 7,427)= 5.70991091; T( 7,428)= 5.71829803; T( 7,429)= 5.72668957; T( 7,430)= 5.73508558; T( 7,431)= 5.74348611; T( 7,432)= 5.75189121; T( 7,433)= 5.76030093; T( 7,434)= 5.76871532; T( 7,435)= 5.77713443; T( 7,436)= 5.78555831; T( 7,437)= 5.79398702; T( 7,438)= 5.80242059; T( 7,439)= 5.81085908; T( 7,440)= 5.81930254; T( 7,441)= 5.82775103; T( 7,442)= 5.83620459; T( 7,443)= 5.84466327; T( 7,444)= 5.85312712; T( 7,445)= 5.86159620; T( 7,446)= 5.87007055; T( 7,447)= 5.87855023; T( 7,448)= 5.88703528; T( 7,449)= 5.89552576; T( 7,450)= 5.90402173; T( 7,451)= 5.91252322; T( 7,452)= 5.92103029; T( 7,453)= 5.92954299; T( 7,454)= 5.93806138; T( 7,455)= 5.94658550; T( 7,456)= 5.95511541; T( 7,457)= 5.96365116; T( 7,458)= 5.97219280; T( 7,459)= 5.98074038; T( 7,460)= 5.98929396; T( 7,461)= 5.99785358; T( 7,462)= 6.00641930; T( 7,463)= 6.01499118; T( 7,464)= 6.02356925; T( 7,465)= 6.03215359; T( 7,466)= 6.04074423; T( 7,467)= 6.04934124; T( 7,468)= 6.05794466; T( 7,469)= 6.06655454; T( 7,470)= 6.07517095; T( 7,471)= 6.08379394; T( 7,472)= 6.09242355; T( 7,473)= 6.10105984; T( 7,474)= 6.10970287; T( 7,475)= 6.11835269; T( 7,476)= 6.12700935; T( 7,477)= 6.13567291; T( 7,478)= 6.14434343; T( 7,479)= 6.15302094; T( 7,480)= 6.16170552; T( 7,481)= 6.17039722; T( 7,482)= 6.17909608; T( 7,483)= 6.18780218; T( 7,484)= 6.19651555; T( 7,485)= 6.20523626; T( 7,486)= 6.21396436; T( 7,487)= 6.22269990; T( 7,488)= 6.23144295; T( 7,489)= 6.24019357; T( 7,490)= 6.24895179; T( 7,491)= 6.25771769; T( 7,492)= 6.26649132; T( 7,493)= 6.27527273; T( 7,494)= 6.28406199; T( 7,495)= 6.29285914; T( 7,496)= 6.30166426; T( 7,497)= 6.31047738; T( 7,498)= 6.31929858; T( 7,499)= 6.32812791; T( 7,500)= 6.33696543; T( 7,501)= 6.34581120; T( 7,502)= 6.35466527; T( 7,503)= 6.36352770; T( 7,504)= 6.37239855; T( 7,505)= 6.38127789; T( 7,506)= 6.39016577; T( 7,507)= 6.39906225; T( 7,508)= 6.40796739; T( 7,509)= 6.41688125; T( 7,510)= 6.42580390; T( 7,511)= 6.43473538; T( 7,512)= 6.44367577; T( 7,513)= 6.45262512; T( 7,514)= 6.46158349; T( 7,515)= 6.47055095; T( 7,516)= 6.47952755; T( 7,517)= 6.48851337; T( 7,518)= 6.49750845; T( 7,519)= 6.50651287; T( 7,520)= 6.51552669; T( 7,521)= 6.52454997; T( 7,522)= 6.53358276; T( 7,523)= 6.54262515; T( 7,524)= 6.55167718; T( 7,525)= 6.56073893; T( 7,526)= 6.56981045; T( 7,527)= 6.57889182; T( 7,528)= 6.58798309; T( 7,529)= 6.59708434; T( 7,530)= 6.60619562; T( 7,531)= 6.61531701; T( 7,532)= 6.62444857; T( 7,533)= 6.63359036; T( 7,534)= 6.64274245; T( 7,535)= 6.65190491; T( 7,536)= 6.66107781; T( 7,537)= 6.67026121; T( 7,538)= 6.67945519; T( 7,539)= 6.68865980; T( 7,540)= 6.69787512; T( 7,541)= 6.70710121; T( 7,542)= 6.71633815; T( 7,543)= 6.72558601; T( 7,544)= 6.73484485; T( 7,545)= 6.74411474; T( 7,546)= 6.75339576; T( 7,547)= 6.76268797; T( 7,548)= 6.77199145; T( 7,549)= 6.78130627; T( 7,550)= 6.79063250; T( 7,551)= 6.79997021; T( 7,552)= 6.80931947; T( 7,553)= 6.81868037; T( 7,554)= 6.82805296; T( 7,555)= 6.83743732; T( 7,556)= 6.84683354; T( 7,557)= 6.85624167; T( 7,558)= 6.86566181; T( 7,559)= 6.87509402; T( 7,560)= 6.88453837; T( 7,561)= 6.89399495; T( 7,562)= 6.90346383; T( 7,563)= 6.91294508; T( 7,564)= 6.92243879; T( 7,565)= 6.93194503; T( 7,566)= 6.94146388; T( 7,567)= 6.95099542; T( 7,568)= 6.96053972; T( 7,569)= 6.97009688; T( 7,570)= 6.97966695; T( 7,571)= 6.98925004; T( 7,572)= 6.99884621; T( 7,573)= 7.00845555; T( 7,574)= 7.01807813; T( 7,575)= 7.02771405; T( 7,576)= 7.03736339; T( 7,577)= 7.04702622; T( 7,578)= 7.05670263; T( 7,579)= 7.06639270; T( 7,580)= 7.07609652; T( 7,581)= 7.08581418; T( 7,582)= 7.09554575; T( 7,583)= 7.10529133; T( 7,584)= 7.11505100; T( 7,585)= 7.12482485; T( 7,586)= 7.13461297; T( 7,587)= 7.14441543; T( 7,588)= 7.15423234; T( 7,589)= 7.16406378; T( 7,590)= 7.17390984; T( 7,591)= 7.18377061; T( 7,592)= 7.19364618; T( 7,593)= 7.20353665; T( 7,594)= 7.21344210; T( 7,595)= 7.22336262; T( 7,596)= 7.23329832; T( 7,597)= 7.24324928; T( 7,598)= 7.25321559; T( 7,599)= 7.26319736; T( 7,600)= 7.27319467; T( 7,601)= 7.28320763; T( 7,602)= 7.29323633; T( 7,603)= 7.30328087; T( 7,604)= 7.31334134; T( 7,605)= 7.32341784; T( 7,606)= 7.33351047; T( 7,607)= 7.34361934; T( 7,608)= 7.35374454; T( 7,609)= 7.36388618; T( 7,610)= 7.37404434; T( 7,611)= 7.38421915; T( 7,612)= 7.39441070; T( 7,613)= 7.40461909; T( 7,614)= 7.41484443; T( 7,615)= 7.42508683; T( 7,616)= 7.43534638; T( 7,617)= 7.44562321; T( 7,618)= 7.45591741; T( 7,619)= 7.46622909; T( 7,620)= 7.47655836; T( 7,621)= 7.48690533; T( 7,622)= 7.49727011; T( 7,623)= 7.50765282; T( 7,624)= 7.51805356; T( 7,625)= 7.52847245; T( 7,626)= 7.53890960; T( 7,627)= 7.54936513; T( 7,628)= 7.55983914; T( 7,629)= 7.57033177; T( 7,630)= 7.58084311; T( 7,631)= 7.59137330; T( 7,632)= 7.60192245; T( 7,633)= 7.61249067; T( 7,634)= 7.62307810; T( 7,635)= 7.63368485; T( 7,636)= 7.64431104; T( 7,637)= 7.65495679; T( 7,638)= 7.66562224; T( 7,639)= 7.67630750; T( 7,640)= 7.68701270; T( 7,641)= 7.69773797; T( 7,642)= 7.70848343; T( 7,643)= 7.71924921; T( 7,644)= 7.73003545; T( 7,645)= 7.74084228; T( 7,646)= 7.75166981; T( 7,647)= 7.76251820; T( 7,648)= 7.77338757; T( 7,649)= 7.78427805; T( 7,650)= 7.79518979; T( 7,651)= 7.80612292; T( 7,652)= 7.81707757; T( 7,653)= 7.82805389; T( 7,654)= 7.83905201; T( 7,655)= 7.85007209; T( 7,656)= 7.86111425; T( 7,657)= 7.87217864; T( 7,658)= 7.88326542; T( 7,659)= 7.89437471; T( 7,660)= 7.90550668; T( 7,661)= 7.91666147; T( 7,662)= 7.92783923; T( 7,663)= 7.93904010; T( 7,664)= 7.95026425; T( 7,665)= 7.96151182; T( 7,666)= 7.97278296; T( 7,667)= 7.98407785; T( 7,668)= 7.99539662; T( 7,669)= 8.00673944; T( 7,670)= 8.01810647; T( 7,671)= 8.02949787; T( 7,672)= 8.04091381; T( 7,673)= 8.05235444; T( 7,674)= 8.06381993; T( 7,675)= 8.07531045; T( 7,676)= 8.08682617; T( 7,677)= 8.09836725; T( 7,678)= 8.10993387; T( 7,679)= 8.12152619; T( 7,680)= 8.13314440; T( 7,681)= 8.14478867; T( 7,682)= 8.15645917; T( 7,683)= 8.16815609; T( 7,684)= 8.17987960; T( 7,685)= 8.19162988; T( 7,686)= 8.20340713; T( 7,687)= 8.21521152; T( 7,688)= 8.22704324; T( 7,689)= 8.23890248; T( 7,690)= 8.25078942; T( 7,691)= 8.26270427; T( 7,692)= 8.27464722; T( 7,693)= 8.28661845; T( 7,694)= 8.29861817; T( 7,695)= 8.31064658; T( 7,696)= 8.32270388; T( 7,697)= 8.33479026; T( 7,698)= 8.34690594; T( 7,699)= 8.35905113; T( 7,700)= 8.37122602; T( 7,701)= 8.38343083; T( 7,702)= 8.39566577; T( 7,703)= 8.40793106; T( 7,704)= 8.42022692; T( 7,705)= 8.43255356; T( 7,706)= 8.44491120; T( 7,707)= 8.45730007; T( 7,708)= 8.46972039; T( 7,709)= 8.48217239; T( 7,710)= 8.49465629; T( 7,711)= 8.50717234; T( 7,712)= 8.51972076; T( 7,713)= 8.53230179; T( 7,714)= 8.54491567; T( 7,715)= 8.55756264; T( 7,716)= 8.57024295; T( 7,717)= 8.58295683; T( 7,718)= 8.59570455; T( 7,719)= 8.60848634; T( 7,720)= 8.62130247; T( 7,721)= 8.63415318; T( 7,722)= 8.64703875; T( 7,723)= 8.65995943; T( 7,724)= 8.67291548; T( 7,725)= 8.68590717; T( 7,726)= 8.69893477; T( 7,727)= 8.71199856; T( 7,728)= 8.72509880; T( 7,729)= 8.73823579; T( 7,730)= 8.75140979; T( 7,731)= 8.76462110; T( 7,732)= 8.77786999; T( 7,733)= 8.79115677; T( 7,734)= 8.80448173; T( 7,735)= 8.81784516; T( 7,736)= 8.83124735; T( 7,737)= 8.84468863; T( 7,738)= 8.85816929; T( 7,739)= 8.87168963; T( 7,740)= 8.88524999; T( 7,741)= 8.89885067; T( 7,742)= 8.91249199; T( 7,743)= 8.92617428; T( 7,744)= 8.93989786; T( 7,745)= 8.95366307; T( 7,746)= 8.96747025; T( 7,747)= 8.98131972; T( 7,748)= 8.99521184; T( 7,749)= 9.00914695; T( 7,750)= 9.02312540; T( 7,751)= 9.03714755; T( 7,752)= 9.05121375; T( 7,753)= 9.06532438; T( 7,754)= 9.07947979; T( 7,755)= 9.09368036; T( 7,756)= 9.10792646; T( 7,757)= 9.12221848; T( 7,758)= 9.13655680; T( 7,759)= 9.15094182; T( 7,760)= 9.16537392; T( 7,761)= 9.17985350; T( 7,762)= 9.19438098; T( 7,763)= 9.20895675; T( 7,764)= 9.22358124; T( 7,765)= 9.23825486; T( 7,766)= 9.25297803; T( 7,767)= 9.26775120; T( 7,768)= 9.28257478; T( 7,769)= 9.29744923; T( 7,770)= 9.31237499; T( 7,771)= 9.32735251; T( 7,772)= 9.34238225; T( 7,773)= 9.35746467; T( 7,774)= 9.37260024; T( 7,775)= 9.38778944; T( 7,776)= 9.40303274; T( 7,777)= 9.41833065; T( 7,778)= 9.43368364; T( 7,779)= 9.44909223; T( 7,780)= 9.46455692; T( 7,781)= 9.48007822; T( 7,782)= 9.49565665; T( 7,783)= 9.51129274; T( 7,784)= 9.52698704; T( 7,785)= 9.54274007; T( 7,786)= 9.55855239; T( 7,787)= 9.57442456; T( 7,788)= 9.59035714; T( 7,789)= 9.60635070; T( 7,790)= 9.62240583; T( 7,791)= 9.63852311; T( 7,792)= 9.65470314; T( 7,793)= 9.67094652; T( 7,794)= 9.68725388; T( 7,795)= 9.70362582; T( 7,796)= 9.72006299; T( 7,797)= 9.73656602; T( 7,798)= 9.75313556; T( 7,799)= 9.76977227; T( 7,800)= 9.78647683; T( 7,801)= 9.80324990; T( 7,802)= 9.82009218; T( 7,803)= 9.83700436; T( 7,804)= 9.85398716; T( 7,805)= 9.87104130; T( 7,806)= 9.88816749; T( 7,807)= 9.90536650; T( 7,808)= 9.92263906; T( 7,809)= 9.93998594; T( 7,810)= 9.95740793; T( 7,811)= 9.97490580; T( 7,812)= 9.99248035; T( 7,813)=10.01013241; T( 7,814)=10.02786278; T( 7,815)=10.04567232; T( 7,816)=10.06356188; T( 7,817)=10.08153231; T( 7,818)=10.09958450; T( 7,819)=10.11771934; T( 7,820)=10.13593773; T( 7,821)=10.15424061; T( 7,822)=10.17262891; T( 7,823)=10.19110358; T( 7,824)=10.20966558; T( 7,825)=10.22831592; T( 7,826)=10.24705557; T( 7,827)=10.26588558; T( 7,828)=10.28480696; T( 7,829)=10.30382077; T( 7,830)=10.32292809; T( 7,831)=10.34213000; T( 7,832)=10.36142762; T( 7,833)=10.38082207; T( 7,834)=10.40031449; T( 7,835)=10.41990606; T( 7,836)=10.43959797; T( 7,837)=10.45939143; T( 7,838)=10.47928766; T( 7,839)=10.49928792; T( 7,840)=10.51939350; T( 7,841)=10.53960569; T( 7,842)=10.55992581; T( 7,843)=10.58035522; T( 7,844)=10.60089529; T( 7,845)=10.62154741; T( 7,846)=10.64231303; T( 7,847)=10.66319359; T( 7,848)=10.68419057; T( 7,849)=10.70530549; T( 7,850)=10.72653989; T( 7,851)=10.74789533; T( 7,852)=10.76937342; T( 7,853)=10.79097580; T( 7,854)=10.81270412; T( 7,855)=10.83456008; T( 7,856)=10.85654543; T( 7,857)=10.87866193; T( 7,858)=10.90091139; T( 7,859)=10.92329565; T( 7,860)=10.94581659; T( 7,861)=10.96847613; T( 7,862)=10.99127624; T( 7,863)=11.01421892; T( 7,864)=11.03730621; T( 7,865)=11.06054021; T( 7,866)=11.08392305; T( 7,867)=11.10745692; T( 7,868)=11.13114405; T( 7,869)=11.15498671; T( 7,870)=11.17898725; T( 7,871)=11.20314805; T( 7,872)=11.22747154; T( 7,873)=11.25196023; T( 7,874)=11.27661667; T( 7,875)=11.30144347; T( 7,876)=11.32644330; T( 7,877)=11.35161891; T( 7,878)=11.37697309; T( 7,879)=11.40250873; T( 7,880)=11.42822876; T( 7,881)=11.45413619; T( 7,882)=11.48023412; T( 7,883)=11.50652570; T( 7,884)=11.53301419; T( 7,885)=11.55970291; T( 7,886)=11.58659527; T( 7,887)=11.61369477; T( 7,888)=11.64100501; T( 7,889)=11.66852966; T( 7,890)=11.69627252; T( 7,891)=11.72423746; T( 7,892)=11.75242849; T( 7,893)=11.78084968; T( 7,894)=11.80950527; T( 7,895)=11.83839957; T( 7,896)=11.86753703; T( 7,897)=11.89692223; T( 7,898)=11.92655988; T( 7,899)=11.95645482; T( 7,900)=11.98661202; T( 7,901)=12.01703662; T( 7,902)=12.04773391; T( 7,903)=12.07870932; T( 7,904)=12.10996845; T( 7,905)=12.14151709; T( 7,906)=12.17336120; T( 7,907)=12.20550690; T( 7,908)=12.23796056; T( 7,909)=12.27072869; T( 7,910)=12.30381806; T( 7,911)=12.33723564; T( 7,912)=12.37098862; T( 7,913)=12.40508447; T( 7,914)=12.43953086; T( 7,915)=12.47433576; T( 7,916)=12.50950741; T( 7,917)=12.54505433; T( 7,918)=12.58098534; T( 7,919)=12.61730958; T( 7,920)=12.65403654; T( 7,921)=12.69117603; T( 7,922)=12.72873824; T( 7,923)=12.76673375; T( 7,924)=12.80517352; T( 7,925)=12.84406898; T( 7,926)=12.88343195; T( 7,927)=12.92327477; T( 7,928)=12.96361024; T( 7,929)=13.00445172; T( 7,930)=13.04581309; T( 7,931)=13.08770883; T( 7,932)=13.13015403; T( 7,933)=13.17316444; T( 7,934)=13.21675650; T( 7,935)=13.26094738; T( 7,936)=13.30575503; T( 7,937)=13.35119820; T( 7,938)=13.39729657; T( 7,939)=13.44407069; T( 7,940)=13.49154215; T( 7,941)=13.53973357; T( 7,942)=13.58866870; T( 7,943)=13.63837250; T( 7,944)=13.68887122; T( 7,945)=13.74019248; T( 7,946)=13.79236538; T( 7,947)=13.84542058; T( 7,948)=13.89939049; T( 7,949)=13.95430929; T( 7,950)=14.01021318; T( 7,951)=14.06714045; T( 7,952)=14.12513170; T( 7,953)=14.18423001; T( 7,954)=14.24448115; T( 7,955)=14.30593381; T( 7,956)=14.36863984; T( 7,957)=14.43265458; T( 7,958)=14.49803711; T( 7,959)=14.56485065; T( 7,960)=14.63316294; T( 7,961)=14.70304667; T( 7,962)=14.77458001; T( 7,963)=14.84784715; T( 7,964)=14.92293892; T( 7,965)=14.99995356; T( 7,966)=15.07899753; T( 7,967)=15.16018643; T( 7,968)=15.24364611; T( 7,969)=15.32951391; T( 7,970)=15.41794014; T( 7,971)=15.50908970; T( 7,972)=15.60314414; T( 7,973)=15.70030389; T( 7,974)=15.80079104; T( 7,975)=15.90485259; T( 7,976)=16.01276427; T( 7,977)=16.12483531; T( 7,978)=16.24141398; T( 7,979)=16.36289458; T( 7,980)=16.48972592; T( 7,981)=16.62242187; T( 7,982)=16.76157466; T( 7,983)=16.90787168; T( 7,984)=17.06211718; T( 7,985)=17.22526035; T( 7,986)=17.39843261; T( 7,987)=17.58299757; T( 7,988)=17.78061953; T( 7,989)=17.99335926; T( 7,990)=18.22381135; T( 7,991)=18.47530691; T( 7,992)=18.75222273; T( 7,993)=19.06047255; T( 7,994)=19.40832608; T( 7,995)=19.80786051; T( 7,996)=20.27773987; T( 7,997)=20.84911788; T( 7,998)=21.58014539; T( 7,999)=22.60067086; T( 7,1000)=24.32188635; T( 7,1001)=29.87750391; T( 7,1002)=35.25853642; T( 8, 1)= 0.00000000; T( 8, 2)= 0.85710483; T( 8, 3)= 1.03752390; T( 8, 4)= 1.16235294; T( 8, 5)= 1.26116792; T( 8, 6)= 1.34441309; T( 8, 7)= 1.41712746; T( 8, 8)= 1.48216905; T( 8, 9)= 1.54133162; T( 8,10)= 1.59582254; T( 8,11)= 1.64649737; T( 8,12)= 1.69398678; T( 8,13)= 1.73877041; T( 8,14)= 1.78122244; T( 8,15)= 1.82164101; T( 8,16)= 1.86026790; T( 8,17)= 1.89730220; T( 8,18)= 1.93291002; T( 8,19)= 1.96723154; T( 8,20)= 2.00038624; T( 8,21)= 2.03247692; T( 8,22)= 2.06359269; T( 8,23)= 2.09381138; T( 8,24)= 2.12320141; T( 8,25)= 2.15182328; T( 8,26)= 2.17973075; T( 8,27)= 2.20697188; T( 8,28)= 2.23358978; T( 8,29)= 2.25962333; T( 8,30)= 2.28510767; T( 8,31)= 2.31007474; T( 8,32)= 2.33455363; T( 8,33)= 2.35857091; T( 8,34)= 2.38215096; T( 8,35)= 2.40531616; T( 8,36)= 2.42808714; T( 8,37)= 2.45048298; T( 8,38)= 2.47252132; T( 8,39)= 2.49421852; T( 8,40)= 2.51558982; T( 8,41)= 2.53664938; T( 8,42)= 2.55741045; T( 8,43)= 2.57788538; T( 8,44)= 2.59808577; T( 8,45)= 2.61802247; T( 8,46)= 2.63770569; T( 8,47)= 2.65714502; T( 8,48)= 2.67634951; T( 8,49)= 2.69532767; T( 8,50)= 2.71408756; T( 8,51)= 2.73263679; T( 8,52)= 2.75098257; T( 8,53)= 2.76913171; T( 8,54)= 2.78709070; T( 8,55)= 2.80486568; T( 8,56)= 2.82246250; T( 8,57)= 2.83988672; T( 8,58)= 2.85714363; T( 8,59)= 2.87423829; T( 8,60)= 2.89117551; T( 8,61)= 2.90795987; T( 8,62)= 2.92459578; T( 8,63)= 2.94108744; T( 8,64)= 2.95743886; T( 8,65)= 2.97365388; T( 8,66)= 2.98973621; T( 8,67)= 3.00568936; T( 8,68)= 3.02151674; T( 8,69)= 3.03722161; T( 8,70)= 3.05280708; T( 8,71)= 3.06827618; T( 8,72)= 3.08363179; T( 8,73)= 3.09887669; T( 8,74)= 3.11401358; T( 8,75)= 3.12904503; T( 8,76)= 3.14397353; T( 8,77)= 3.15880149; T( 8,78)= 3.17353122; T( 8,79)= 3.18816495; T( 8,80)= 3.20270486; T( 8,81)= 3.21715302; T( 8,82)= 3.23151145; T( 8,83)= 3.24578211; T( 8,84)= 3.25996689; T( 8,85)= 3.27406760; T( 8,86)= 3.28808603; T( 8,87)= 3.30202387; T( 8,88)= 3.31588281; T( 8,89)= 3.32966443; T( 8,90)= 3.34337031; T( 8,91)= 3.35700197; T( 8,92)= 3.37056086; T( 8,93)= 3.38404841; T( 8,94)= 3.39746602; T( 8,95)= 3.41081502; T( 8,96)= 3.42409673; T( 8,97)= 3.43731242; T( 8,98)= 3.45046331; T( 8,99)= 3.46355062; T( 8,100)= 3.47657551; T( 8,101)= 3.48953913; T( 8,102)= 3.50244257; T( 8,103)= 3.51528691; T( 8,104)= 3.52807321; T( 8,105)= 3.54080250; T( 8,106)= 3.55347576; T( 8,107)= 3.56609397; T( 8,108)= 3.57865808; T( 8,109)= 3.59116901; T( 8,110)= 3.60362766; T( 8,111)= 3.61603492; T( 8,112)= 3.62839164; T( 8,113)= 3.64069865; T( 8,114)= 3.65295679; T( 8,115)= 3.66516684; T( 8,116)= 3.67732959; T( 8,117)= 3.68944580; T( 8,118)= 3.70151621; T( 8,119)= 3.71354156; T( 8,120)= 3.72552255; T( 8,121)= 3.73745988; T( 8,122)= 3.74935424; T( 8,123)= 3.76120628; T( 8,124)= 3.77301666; T( 8,125)= 3.78478602; T( 8,126)= 3.79651499; T( 8,127)= 3.80820416; T( 8,128)= 3.81985415; T( 8,129)= 3.83146553; T( 8,130)= 3.84303889; T( 8,131)= 3.85457477; T( 8,132)= 3.86607374; T( 8,133)= 3.87753633; T( 8,134)= 3.88896308; T( 8,135)= 3.90035450; T( 8,136)= 3.91171109; T( 8,137)= 3.92303336; T( 8,138)= 3.93432180; T( 8,139)= 3.94557688; T( 8,140)= 3.95679908; T( 8,141)= 3.96798886; T( 8,142)= 3.97914667; T( 8,143)= 3.99027295; T( 8,144)= 4.00136815; T( 8,145)= 4.01243269; T( 8,146)= 4.02346699; T( 8,147)= 4.03447146; T( 8,148)= 4.04544651; T( 8,149)= 4.05639254; T( 8,150)= 4.06730994; T( 8,151)= 4.07819910; T( 8,152)= 4.08906038; T( 8,153)= 4.09989418; T( 8,154)= 4.11070084; T( 8,155)= 4.12148073; T( 8,156)= 4.13223421; T( 8,157)= 4.14296161; T( 8,158)= 4.15366329; T( 8,159)= 4.16433957; T( 8,160)= 4.17499078; T( 8,161)= 4.18561726; T( 8,162)= 4.19621932; T( 8,163)= 4.20679728; T( 8,164)= 4.21735144; T( 8,165)= 4.22788211; T( 8,166)= 4.23838959; T( 8,167)= 4.24887418; T( 8,168)= 4.25933616; T( 8,169)= 4.26977583; T( 8,170)= 4.28019346; T( 8,171)= 4.29058933; T( 8,172)= 4.30096371; T( 8,173)= 4.31131689; T( 8,174)= 4.32164911; T( 8,175)= 4.33196064; T( 8,176)= 4.34225175; T( 8,177)= 4.35252267; T( 8,178)= 4.36277367; T( 8,179)= 4.37300499; T( 8,180)= 4.38321688; T( 8,181)= 4.39340957; T( 8,182)= 4.40358329; T( 8,183)= 4.41373829; T( 8,184)= 4.42387480; T( 8,185)= 4.43399303; T( 8,186)= 4.44409321; T( 8,187)= 4.45417557; T( 8,188)= 4.46424032; T( 8,189)= 4.47428768; T( 8,190)= 4.48431785; T( 8,191)= 4.49433105; T( 8,192)= 4.50432748; T( 8,193)= 4.51430735; T( 8,194)= 4.52427086; T( 8,195)= 4.53421820; T( 8,196)= 4.54414958; T( 8,197)= 4.55406518; T( 8,198)= 4.56396519; T( 8,199)= 4.57384981; T( 8,200)= 4.58371923; T( 8,201)= 4.59357361; T( 8,202)= 4.60341315; T( 8,203)= 4.61323803; T( 8,204)= 4.62304842; T( 8,205)= 4.63284450; T( 8,206)= 4.64262644; T( 8,207)= 4.65239441; T( 8,208)= 4.66214859; T( 8,209)= 4.67188913; T( 8,210)= 4.68161620; T( 8,211)= 4.69132997; T( 8,212)= 4.70103059; T( 8,213)= 4.71071823; T( 8,214)= 4.72039305; T( 8,215)= 4.73005520; T( 8,216)= 4.73970482; T( 8,217)= 4.74934209; T( 8,218)= 4.75896714; T( 8,219)= 4.76858013; T( 8,220)= 4.77818120; T( 8,221)= 4.78777050; T( 8,222)= 4.79734817; T( 8,223)= 4.80691436; T( 8,224)= 4.81646920; T( 8,225)= 4.82601284; T( 8,226)= 4.83554542; T( 8,227)= 4.84506706; T( 8,228)= 4.85457792; T( 8,229)= 4.86407811; T( 8,230)= 4.87356778; T( 8,231)= 4.88304705; T( 8,232)= 4.89251605; T( 8,233)= 4.90197492; T( 8,234)= 4.91142378; T( 8,235)= 4.92086275; T( 8,236)= 4.93029197; T( 8,237)= 4.93971154; T( 8,238)= 4.94912161; T( 8,239)= 4.95852228; T( 8,240)= 4.96791369; T( 8,241)= 4.97729594; T( 8,242)= 4.98666915; T( 8,243)= 4.99603345; T( 8,244)= 5.00538894; T( 8,245)= 5.01473575; T( 8,246)= 5.02407398; T( 8,247)= 5.03340375; T( 8,248)= 5.04272517; T( 8,249)= 5.05203835; T( 8,250)= 5.06134340; T( 8,251)= 5.07064042; T( 8,252)= 5.07992954; T( 8,253)= 5.08921084; T( 8,254)= 5.09848444; T( 8,255)= 5.10775045; T( 8,256)= 5.11700896; T( 8,257)= 5.12626009; T( 8,258)= 5.13550392; T( 8,259)= 5.14474057; T( 8,260)= 5.15397013; T( 8,261)= 5.16319271; T( 8,262)= 5.17240840; T( 8,263)= 5.18161730; T( 8,264)= 5.19081950; T( 8,265)= 5.20001512; T( 8,266)= 5.20920423; T( 8,267)= 5.21838693; T( 8,268)= 5.22756333; T( 8,269)= 5.23673351; T( 8,270)= 5.24589756; T( 8,271)= 5.25505559; T( 8,272)= 5.26420767; T( 8,273)= 5.27335390; T( 8,274)= 5.28249437; T( 8,275)= 5.29162917; T( 8,276)= 5.30075839; T( 8,277)= 5.30988212; T( 8,278)= 5.31900044; T( 8,279)= 5.32811344; T( 8,280)= 5.33722121; T( 8,281)= 5.34632383; T( 8,282)= 5.35542138; T( 8,283)= 5.36451396; T( 8,284)= 5.37360165; T( 8,285)= 5.38268452; T( 8,286)= 5.39176266; T( 8,287)= 5.40083616; T( 8,288)= 5.40990510; T( 8,289)= 5.41896955; T( 8,290)= 5.42802960; T( 8,291)= 5.43708532; T( 8,292)= 5.44613681; T( 8,293)= 5.45518412; T( 8,294)= 5.46422736; T( 8,295)= 5.47326658; T( 8,296)= 5.48230188; T( 8,297)= 5.49133332; T( 8,298)= 5.50036099; T( 8,299)= 5.50938495; T( 8,300)= 5.51840529; T( 8,301)= 5.52742209; T( 8,302)= 5.53643540; T( 8,303)= 5.54544532; T( 8,304)= 5.55445191; T( 8,305)= 5.56345525; T( 8,306)= 5.57245542; T( 8,307)= 5.58145247; T( 8,308)= 5.59044649; T( 8,309)= 5.59943755; T( 8,310)= 5.60842572; T( 8,311)= 5.61741107; T( 8,312)= 5.62639367; T( 8,313)= 5.63537359; T( 8,314)= 5.64435090; T( 8,315)= 5.65332568; T( 8,316)= 5.66229798; T( 8,317)= 5.67126789; T( 8,318)= 5.68023547; T( 8,319)= 5.68920078; T( 8,320)= 5.69816389; T( 8,321)= 5.70712488; T( 8,322)= 5.71608381; T( 8,323)= 5.72504075; T( 8,324)= 5.73399576; T( 8,325)= 5.74294891; T( 8,326)= 5.75190027; T( 8,327)= 5.76084990; T( 8,328)= 5.76979787; T( 8,329)= 5.77874424; T( 8,330)= 5.78768908; T( 8,331)= 5.79663245; T( 8,332)= 5.80557442; T( 8,333)= 5.81451505; T( 8,334)= 5.82345440; T( 8,335)= 5.83239255; T( 8,336)= 5.84132954; T( 8,337)= 5.85026546; T( 8,338)= 5.85920034; T( 8,339)= 5.86813428; T( 8,340)= 5.87706731; T( 8,341)= 5.88599951; T( 8,342)= 5.89493094; T( 8,343)= 5.90386165; T( 8,344)= 5.91279172; T( 8,345)= 5.92172120; T( 8,346)= 5.93065015; T( 8,347)= 5.93957863; T( 8,348)= 5.94850671; T( 8,349)= 5.95743445; T( 8,350)= 5.96636190; T( 8,351)= 5.97528912; T( 8,352)= 5.98421618; T( 8,353)= 5.99314314; T( 8,354)= 6.00207005; T( 8,355)= 6.01099697; T( 8,356)= 6.01992397; T( 8,357)= 6.02885110; T( 8,358)= 6.03777842; T( 8,359)= 6.04670599; T( 8,360)= 6.05563386; T( 8,361)= 6.06456210; T( 8,362)= 6.07349077; T( 8,363)= 6.08241992; T( 8,364)= 6.09134961; T( 8,365)= 6.10027990; T( 8,366)= 6.10921084; T( 8,367)= 6.11814249; T( 8,368)= 6.12707492; T( 8,369)= 6.13600817; T( 8,370)= 6.14494231; T( 8,371)= 6.15387739; T( 8,372)= 6.16281347; T( 8,373)= 6.17175060; T( 8,374)= 6.18068884; T( 8,375)= 6.18962826; T( 8,376)= 6.19856889; T( 8,377)= 6.20751081; T( 8,378)= 6.21645406; T( 8,379)= 6.22539871; T( 8,380)= 6.23434480; T( 8,381)= 6.24329240; T( 8,382)= 6.25224156; T( 8,383)= 6.26119234; T( 8,384)= 6.27014478; T( 8,385)= 6.27909896; T( 8,386)= 6.28805491; T( 8,387)= 6.29701270; T( 8,388)= 6.30597239; T( 8,389)= 6.31493402; T( 8,390)= 6.32389766; T( 8,391)= 6.33286336; T( 8,392)= 6.34183116; T( 8,393)= 6.35080114; T( 8,394)= 6.35977334; T( 8,395)= 6.36874781; T( 8,396)= 6.37772462; T( 8,397)= 6.38670382; T( 8,398)= 6.39568546; T( 8,399)= 6.40466959; T( 8,400)= 6.41365627; T( 8,401)= 6.42264556; T( 8,402)= 6.43163751; T( 8,403)= 6.44063217; T( 8,404)= 6.44962960; T( 8,405)= 6.45862985; T( 8,406)= 6.46763298; T( 8,407)= 6.47663905; T( 8,408)= 6.48564809; T( 8,409)= 6.49466018; T( 8,410)= 6.50367536; T( 8,411)= 6.51269369; T( 8,412)= 6.52171522; T( 8,413)= 6.53074001; T( 8,414)= 6.53976811; T( 8,415)= 6.54879957; T( 8,416)= 6.55783445; T( 8,417)= 6.56687281; T( 8,418)= 6.57591469; T( 8,419)= 6.58496016; T( 8,420)= 6.59400926; T( 8,421)= 6.60306205; T( 8,422)= 6.61211858; T( 8,423)= 6.62117891; T( 8,424)= 6.63024310; T( 8,425)= 6.63931119; T( 8,426)= 6.64838324; T( 8,427)= 6.65745931; T( 8,428)= 6.66653944; T( 8,429)= 6.67562370; T( 8,430)= 6.68471214; T( 8,431)= 6.69380481; T( 8,432)= 6.70290177; T( 8,433)= 6.71200306; T( 8,434)= 6.72110876; T( 8,435)= 6.73021890; T( 8,436)= 6.73933355; T( 8,437)= 6.74845275; T( 8,438)= 6.75757658; T( 8,439)= 6.76670506; T( 8,440)= 6.77583828; T( 8,441)= 6.78497627; T( 8,442)= 6.79411909; T( 8,443)= 6.80326680; T( 8,444)= 6.81241946; T( 8,445)= 6.82157711; T( 8,446)= 6.83073981; T( 8,447)= 6.83990763; T( 8,448)= 6.84908060; T( 8,449)= 6.85825880; T( 8,450)= 6.86744227; T( 8,451)= 6.87663107; T( 8,452)= 6.88582525; T( 8,453)= 6.89502487; T( 8,454)= 6.90422999; T( 8,455)= 6.91344067; T( 8,456)= 6.92265695; T( 8,457)= 6.93187889; T( 8,458)= 6.94110655; T( 8,459)= 6.95033999; T( 8,460)= 6.95957927; T( 8,461)= 6.96882443; T( 8,462)= 6.97807553; T( 8,463)= 6.98733264; T( 8,464)= 6.99659581; T( 8,465)= 7.00586509; T( 8,466)= 7.01514054; T( 8,467)= 7.02442223; T( 8,468)= 7.03371020; T( 8,469)= 7.04300451; T( 8,470)= 7.05230522; T( 8,471)= 7.06161239; T( 8,472)= 7.07092608; T( 8,473)= 7.08024634; T( 8,474)= 7.08957323; T( 8,475)= 7.09890681; T( 8,476)= 7.10824714; T( 8,477)= 7.11759428; T( 8,478)= 7.12694828; T( 8,479)= 7.13630920; T( 8,480)= 7.14567710; T( 8,481)= 7.15505205; T( 8,482)= 7.16443409; T( 8,483)= 7.17382329; T( 8,484)= 7.18321972; T( 8,485)= 7.19262341; T( 8,486)= 7.20203445; T( 8,487)= 7.21145288; T( 8,488)= 7.22087877; T( 8,489)= 7.23031217; T( 8,490)= 7.23975316; T( 8,491)= 7.24920178; T( 8,492)= 7.25865810; T( 8,493)= 7.26812217; T( 8,494)= 7.27759407; T( 8,495)= 7.28707385; T( 8,496)= 7.29656158; T( 8,497)= 7.30605730; T( 8,498)= 7.31556110; T( 8,499)= 7.32507302; T( 8,500)= 7.33459313; T( 8,501)= 7.34412150; T( 8,502)= 7.35365818; T( 8,503)= 7.36320324; T( 8,504)= 7.37275674; T( 8,505)= 7.38231874; T( 8,506)= 7.39188932; T( 8,507)= 7.40146852; T( 8,508)= 7.41105642; T( 8,509)= 7.42065308; T( 8,510)= 7.43025856; T( 8,511)= 7.43987293; T( 8,512)= 7.44949626; T( 8,513)= 7.45912860; T( 8,514)= 7.46877002; T( 8,515)= 7.47842060; T( 8,516)= 7.48808039; T( 8,517)= 7.49774946; T( 8,518)= 7.50742788; T( 8,519)= 7.51711571; T( 8,520)= 7.52681302; T( 8,521)= 7.53651987; T( 8,522)= 7.54623635; T( 8,523)= 7.55596250; T( 8,524)= 7.56569840; T( 8,525)= 7.57544413; T( 8,526)= 7.58519973; T( 8,527)= 7.59496530; T( 8,528)= 7.60474088; T( 8,529)= 7.61452656; T( 8,530)= 7.62432241; T( 8,531)= 7.63412848; T( 8,532)= 7.64394486; T( 8,533)= 7.65377161; T( 8,534)= 7.66360880; T( 8,535)= 7.67345651; T( 8,536)= 7.68331481; T( 8,537)= 7.69318376; T( 8,538)= 7.70306344; T( 8,539)= 7.71295393; T( 8,540)= 7.72285528; T( 8,541)= 7.73276759; T( 8,542)= 7.74269092; T( 8,543)= 7.75262534; T( 8,544)= 7.76257092; T( 8,545)= 7.77252776; T( 8,546)= 7.78249590; T( 8,547)= 7.79247544; T( 8,548)= 7.80246645; T( 8,549)= 7.81246900; T( 8,550)= 7.82248317; T( 8,551)= 7.83250904; T( 8,552)= 7.84254668; T( 8,553)= 7.85259617; T( 8,554)= 7.86265758; T( 8,555)= 7.87273100; T( 8,556)= 7.88281651; T( 8,557)= 7.89291417; T( 8,558)= 7.90302408; T( 8,559)= 7.91314631; T( 8,560)= 7.92328094; T( 8,561)= 7.93342805; T( 8,562)= 7.94358773; T( 8,563)= 7.95376004; T( 8,564)= 7.96394508; T( 8,565)= 7.97414293; T( 8,566)= 7.98435367; T( 8,567)= 7.99457738; T( 8,568)= 8.00481414; T( 8,569)= 8.01506405; T( 8,570)= 8.02532718; T( 8,571)= 8.03560361; T( 8,572)= 8.04589344; T( 8,573)= 8.05619675; T( 8,574)= 8.06651363; T( 8,575)= 8.07684415; T( 8,576)= 8.08718842; T( 8,577)= 8.09754651; T( 8,578)= 8.10791852; T( 8,579)= 8.11830453; T( 8,580)= 8.12870463; T( 8,581)= 8.13911891; T( 8,582)= 8.14954747; T( 8,583)= 8.15999039; T( 8,584)= 8.17044776; T( 8,585)= 8.18091968; T( 8,586)= 8.19140623; T( 8,587)= 8.20190752; T( 8,588)= 8.21242363; T( 8,589)= 8.22295465; T( 8,590)= 8.23350069; T( 8,591)= 8.24406183; T( 8,592)= 8.25463818; T( 8,593)= 8.26522983; T( 8,594)= 8.27583687; T( 8,595)= 8.28645940; T( 8,596)= 8.29709752; T( 8,597)= 8.30775134; T( 8,598)= 8.31842094; T( 8,599)= 8.32910643; T( 8,600)= 8.33980790; T( 8,601)= 8.35052547; T( 8,602)= 8.36125922; T( 8,603)= 8.37200927; T( 8,604)= 8.38277572; T( 8,605)= 8.39355867; T( 8,606)= 8.40435821; T( 8,607)= 8.41517447; T( 8,608)= 8.42600755; T( 8,609)= 8.43685754; T( 8,610)= 8.44772456; T( 8,611)= 8.45860872; T( 8,612)= 8.46951012; T( 8,613)= 8.48042887; T( 8,614)= 8.49136509; T( 8,615)= 8.50231888; T( 8,616)= 8.51329036; T( 8,617)= 8.52427963; T( 8,618)= 8.53528681; T( 8,619)= 8.54631202; T( 8,620)= 8.55735536; T( 8,621)= 8.56841696; T( 8,622)= 8.57949693; T( 8,623)= 8.59059538; T( 8,624)= 8.60171244; T( 8,625)= 8.61284822; T( 8,626)= 8.62400284; T( 8,627)= 8.63517642; T( 8,628)= 8.64636909; T( 8,629)= 8.65758095; T( 8,630)= 8.66881215; T( 8,631)= 8.68006280; T( 8,632)= 8.69133302; T( 8,633)= 8.70262294; T( 8,634)= 8.71393269; T( 8,635)= 8.72526239; T( 8,636)= 8.73661217; T( 8,637)= 8.74798217; T( 8,638)= 8.75937251; T( 8,639)= 8.77078331; T( 8,640)= 8.78221473; T( 8,641)= 8.79366688; T( 8,642)= 8.80513990; T( 8,643)= 8.81663392; T( 8,644)= 8.82814909; T( 8,645)= 8.83968553; T( 8,646)= 8.85124340; T( 8,647)= 8.86282282; T( 8,648)= 8.87442393; T( 8,649)= 8.88604688; T( 8,650)= 8.89769181; T( 8,651)= 8.90935887; T( 8,652)= 8.92104819; T( 8,653)= 8.93275993; T( 8,654)= 8.94449422; T( 8,655)= 8.95625122; T( 8,656)= 8.96803109; T( 8,657)= 8.97983395; T( 8,658)= 8.99165998; T( 8,659)= 9.00350932; T( 8,660)= 9.01538212; T( 8,661)= 9.02727855; T( 8,662)= 9.03919875; T( 8,663)= 9.05114289; T( 8,664)= 9.06311112; T( 8,665)= 9.07510361; T( 8,666)= 9.08712051; T( 8,667)= 9.09916200; T( 8,668)= 9.11122822; T( 8,669)= 9.12331936; T( 8,670)= 9.13543557; T( 8,671)= 9.14757703; T( 8,672)= 9.15974390; T( 8,673)= 9.17193636; T( 8,674)= 9.18415458; T( 8,675)= 9.19639873; T( 8,676)= 9.20866899; T( 8,677)= 9.22096554; T( 8,678)= 9.23328855; T( 8,679)= 9.24563821; T( 8,680)= 9.25801470; T( 8,681)= 9.27041820; T( 8,682)= 9.28284890; T( 8,683)= 9.29530697; T( 8,684)= 9.30779262; T( 8,685)= 9.32030604; T( 8,686)= 9.33284740; T( 8,687)= 9.34541692; T( 8,688)= 9.35801477; T( 8,689)= 9.37064117; T( 8,690)= 9.38329630; T( 8,691)= 9.39598037; T( 8,692)= 9.40869359; T( 8,693)= 9.42143614; T( 8,694)= 9.43420825; T( 8,695)= 9.44701012; T( 8,696)= 9.45984196; T( 8,697)= 9.47270399; T( 8,698)= 9.48559640; T( 8,699)= 9.49851943; T( 8,700)= 9.51147329; T( 8,701)= 9.52445819; T( 8,702)= 9.53747437; T( 8,703)= 9.55052204; T( 8,704)= 9.56360144; T( 8,705)= 9.57671278; T( 8,706)= 9.58985631; T( 8,707)= 9.60303225; T( 8,708)= 9.61624084; T( 8,709)= 9.62948231; T( 8,710)= 9.64275691; T( 8,711)= 9.65606488; T( 8,712)= 9.66940646; T( 8,713)= 9.68278190; T( 8,714)= 9.69619145; T( 8,715)= 9.70963536; T( 8,716)= 9.72311389; T( 8,717)= 9.73662729; T( 8,718)= 9.75017582; T( 8,719)= 9.76375974; T( 8,720)= 9.77737932; T( 8,721)= 9.79103483; T( 8,722)= 9.80472654; T( 8,723)= 9.81845471; T( 8,724)= 9.83221963; T( 8,725)= 9.84602157; T( 8,726)= 9.85986082; T( 8,727)= 9.87373766; T( 8,728)= 9.88765238; T( 8,729)= 9.90160527; T( 8,730)= 9.91559661; T( 8,731)= 9.92962672; T( 8,732)= 9.94369589; T( 8,733)= 9.95780441; T( 8,734)= 9.97195261; T( 8,735)= 9.98614078; T( 8,736)=10.00036925; T( 8,737)=10.01463832; T( 8,738)=10.02894832; T( 8,739)=10.04329957; T( 8,740)=10.05769240; T( 8,741)=10.07212714; T( 8,742)=10.08660412; T( 8,743)=10.10112368; T( 8,744)=10.11568617; T( 8,745)=10.13029192; T( 8,746)=10.14494130; T( 8,747)=10.15963465; T( 8,748)=10.17437232; T( 8,749)=10.18915469; T( 8,750)=10.20398212; T( 8,751)=10.21885497; T( 8,752)=10.23377363; T( 8,753)=10.24873846; T( 8,754)=10.26374987; T( 8,755)=10.27880822; T( 8,756)=10.29391392; T( 8,757)=10.30906736; T( 8,758)=10.32426894; T( 8,759)=10.33951907; T( 8,760)=10.35481817; T( 8,761)=10.37016664; T( 8,762)=10.38556491; T( 8,763)=10.40101340; T( 8,764)=10.41651256; T( 8,765)=10.43206280; T( 8,766)=10.44766459; T( 8,767)=10.46331836; T( 8,768)=10.47902456; T( 8,769)=10.49478367; T( 8,770)=10.51059614; T( 8,771)=10.52646244; T( 8,772)=10.54238305; T( 8,773)=10.55835845; T( 8,774)=10.57438914; T( 8,775)=10.59047561; T( 8,776)=10.60661835; T( 8,777)=10.62281788; T( 8,778)=10.63907472; T( 8,779)=10.65538938; T( 8,780)=10.67176239; T( 8,781)=10.68819430; T( 8,782)=10.70468563; T( 8,783)=10.72123695; T( 8,784)=10.73784880; T( 8,785)=10.75452176; T( 8,786)=10.77125639; T( 8,787)=10.78805328; T( 8,788)=10.80491301; T( 8,789)=10.82183619; T( 8,790)=10.83882340; T( 8,791)=10.85587528; T( 8,792)=10.87299244; T( 8,793)=10.89017551; T( 8,794)=10.90742512; T( 8,795)=10.92474194; T( 8,796)=10.94212660; T( 8,797)=10.95957979; T( 8,798)=10.97710218; T( 8,799)=10.99469445; T( 8,800)=11.01235730; T( 8,801)=11.03009143; T( 8,802)=11.04789757; T( 8,803)=11.06577644; T( 8,804)=11.08372877; T( 8,805)=11.10175532; T( 8,806)=11.11985685; T( 8,807)=11.13803413; T( 8,808)=11.15628794; T( 8,809)=11.17461907; T( 8,810)=11.19302834; T( 8,811)=11.21151657; T( 8,812)=11.23008458; T( 8,813)=11.24873322; T( 8,814)=11.26746336; T( 8,815)=11.28627586; T( 8,816)=11.30517160; T( 8,817)=11.32415150; T( 8,818)=11.34321646; T( 8,819)=11.36236742; T( 8,820)=11.38160531; T( 8,821)=11.40093110; T( 8,822)=11.42034576; T( 8,823)=11.43985029; T( 8,824)=11.45944568; T( 8,825)=11.47913298; T( 8,826)=11.49891321; T( 8,827)=11.51878743; T( 8,828)=11.53875673; T( 8,829)=11.55882221; T( 8,830)=11.57898496; T( 8,831)=11.59924613; T( 8,832)=11.61960687; T( 8,833)=11.64006836; T( 8,834)=11.66063178; T( 8,835)=11.68129836; T( 8,836)=11.70206932; T( 8,837)=11.72294593; T( 8,838)=11.74392947; T( 8,839)=11.76502124; T( 8,840)=11.78622257; T( 8,841)=11.80753482; T( 8,842)=11.82895936; T( 8,843)=11.85049759; T( 8,844)=11.87215095; T( 8,845)=11.89392088; T( 8,846)=11.91580888; T( 8,847)=11.93781645; T( 8,848)=11.95994514; T( 8,849)=11.98219651; T( 8,850)=12.00457218; T( 8,851)=12.02707376; T( 8,852)=12.04970293; T( 8,853)=12.07246138; T( 8,854)=12.09535085; T( 8,855)=12.11837310; T( 8,856)=12.14152993; T( 8,857)=12.16482318; T( 8,858)=12.18825473; T( 8,859)=12.21182650; T( 8,860)=12.23554043; T( 8,861)=12.25939853; T( 8,862)=12.28340284; T( 8,863)=12.30755543; T( 8,864)=12.33185844; T( 8,865)=12.35631403; T( 8,866)=12.38092443; T( 8,867)=12.40569189; T( 8,868)=12.43061876; T( 8,869)=12.45570738; T( 8,870)=12.48096019; T( 8,871)=12.50637966; T( 8,872)=12.53196833; T( 8,873)=12.55772879; T( 8,874)=12.58366370; T( 8,875)=12.60977576; T( 8,876)=12.63606776; T( 8,877)=12.66254253; T( 8,878)=12.68920300; T( 8,879)=12.71605214; T( 8,880)=12.74309301; T( 8,881)=12.77032874; T( 8,882)=12.79776253; T( 8,883)=12.82539767; T( 8,884)=12.85323753; T( 8,885)=12.88128557; T( 8,886)=12.90954532; T( 8,887)=12.93802042; T( 8,888)=12.96671460; T( 8,889)=12.99563168; T( 8,890)=13.02477560; T( 8,891)=13.05415038; T( 8,892)=13.08376017; T( 8,893)=13.11360922; T( 8,894)=13.14370190; T( 8,895)=13.17404271; T( 8,896)=13.20463625; T( 8,897)=13.23548729; T( 8,898)=13.26660069; T( 8,899)=13.29798150; T( 8,900)=13.32963487; T( 8,901)=13.36156614; T( 8,902)=13.39378077; T( 8,903)=13.42628443; T( 8,904)=13.45908291; T( 8,905)=13.49218222; T( 8,906)=13.52558855; T( 8,907)=13.55930825; T( 8,908)=13.59334790; T( 8,909)=13.62771430; T( 8,910)=13.66241443; T( 8,911)=13.69745554; T( 8,912)=13.73284510; T( 8,913)=13.76859083; T( 8,914)=13.80470070; T( 8,915)=13.84118298; T( 8,916)=13.87804619; T( 8,917)=13.91529919; T( 8,918)=13.95295113; T( 8,919)=13.99101147; T( 8,920)=14.02949005; T( 8,921)=14.06839705; T( 8,922)=14.10774303; T( 8,923)=14.14753895; T( 8,924)=14.18779620; T( 8,925)=14.22852659; T( 8,926)=14.26974241; T( 8,927)=14.31145642; T( 8,928)=14.35368191; T( 8,929)=14.39643270; T( 8,930)=14.43972320; T( 8,931)=14.48356840; T( 8,932)=14.52798395; T( 8,933)=14.57298616; T( 8,934)=14.61859207; T( 8,935)=14.66481946; T( 8,936)=14.71168693; T( 8,937)=14.75921392; T( 8,938)=14.80742080; T( 8,939)=14.85632887; T( 8,940)=14.90596048; T( 8,941)=14.95633906; T( 8,942)=15.00748923; T( 8,943)=15.05943682; T( 8,944)=15.11220901; T( 8,945)=15.16583441; T( 8,946)=15.22034314; T( 8,947)=15.27576697; T( 8,948)=15.33213943; T( 8,949)=15.38949593; T( 8,950)=15.44787392; T( 8,951)=15.50731306; T( 8,952)=15.56785535; T( 8,953)=15.62954539; T( 8,954)=15.69243055; T( 8,955)=15.75656121; T( 8,956)=15.82199104; T( 8,957)=15.88877729; T( 8,958)=15.95698108; T( 8,959)=16.02666783; T( 8,960)=16.09790761; T( 8,961)=16.17077561; T( 8,962)=16.24535269; T( 8,963)=16.32172592; T( 8,964)=16.39998923; T( 8,965)=16.48024423; T( 8,966)=16.56260097; T( 8,967)=16.64717898; T( 8,968)=16.73410838; T( 8,969)=16.82353113; T( 8,970)=16.91560259; T( 8,971)=17.01049321; T( 8,972)=17.10839060; T( 8,973)=17.20950186; T( 8,974)=17.31405648; T( 8,975)=17.42230962; T( 8,976)=17.53454614; T( 8,977)=17.65108541; T( 8,978)=17.77228713; T( 8,979)=17.89855848; T( 8,980)=18.03036285; T( 8,981)=18.16823076; T( 8,982)=18.31277355; T( 8,983)=18.46470069; T( 8,984)=18.62484212; T( 8,985)=18.79417722; T( 8,986)=18.97387323; T( 8,987)=19.16533665; T( 8,988)=19.37028387; T( 8,989)=19.59083975; T( 8,990)=19.82967904; T( 8,991)=20.09023503; T( 8,992)=20.37701777; T( 8,993)=20.69611949; T( 8,994)=21.05605726; T( 8,995)=21.46926575; T( 8,996)=21.95495499; T( 8,997)=22.54517756; T( 8,998)=23.29973450; T( 8,999)=24.35208135; T( 8,1000)=26.12448156; T( 8,1001)=31.82762800; T( 8,1002)=37.33159364; T( 9, 1)= 0.00000000; T( 9, 2)= 1.15194955; T( 9, 3)= 1.37020546; T( 9, 4)= 1.51943564; T( 9, 5)= 1.63669070; T( 9, 6)= 1.73493290; T( 9, 7)= 1.82037797; T( 9, 8)= 1.89653501; T( 9, 9)= 1.96559825; T( 9,10)= 2.02904000; T( 9,11)= 2.08790074; T( 9,12)= 2.14294562; T( 9,13)= 2.19475535; T( 9,14)= 2.24378211; T( 9,15)= 2.29038551; T( 9,16)= 2.33485678; T( 9,17)= 2.37743533; T( 9,18)= 2.41832067; T( 9,19)= 2.45768093; T( 9,20)= 2.49565926; T( 9,21)= 2.53237867; T( 9,22)= 2.56794569; T( 9,23)= 2.60245327; T( 9,24)= 2.63598304; T( 9,25)= 2.66860710; T( 9,26)= 2.70038950; T( 9,27)= 2.73138742; T( 9,28)= 2.76165214; T( 9,29)= 2.79122983; T( 9,30)= 2.82016223; T( 9,31)= 2.84848723; T( 9,32)= 2.87623931; T( 9,33)= 2.90344997; T( 9,34)= 2.93014807; T( 9,35)= 2.95636010; T( 9,36)= 2.98211048; T( 9,37)= 3.00742173; T( 9,38)= 3.03231470; T( 9,39)= 3.05680873; T( 9,40)= 3.08092177; T( 9,41)= 3.10467056; T( 9,42)= 3.12807070; T( 9,43)= 3.15113676; T( 9,44)= 3.17388238; T( 9,45)= 3.19632036; T( 9,46)= 3.21846269; T( 9,47)= 3.24032068; T( 9,48)= 3.26190494; T( 9,49)= 3.28322551; T( 9,50)= 3.30429183; T( 9,51)= 3.32511284; T( 9,52)= 3.34569701; T( 9,53)= 3.36605234; T( 9,54)= 3.38618644; T( 9,55)= 3.40610651; T( 9,56)= 3.42581940; T( 9,57)= 3.44533163; T( 9,58)= 3.46464940; T( 9,59)= 3.48377863; T( 9,60)= 3.50272495; T( 9,61)= 3.52149373; T( 9,62)= 3.54009013; T( 9,63)= 3.55851904; T( 9,64)= 3.57678517; T( 9,65)= 3.59489302; T( 9,66)= 3.61284689; T( 9,67)= 3.63065091; T( 9,68)= 3.64830905; T( 9,69)= 3.66582510; T( 9,70)= 3.68320273; T( 9,71)= 3.70044544; T( 9,72)= 3.71755660; T( 9,73)= 3.73453947; T( 9,74)= 3.75139717; T( 9,75)= 3.76813270; T( 9,76)= 3.78474899; T( 9,77)= 3.80124881; T( 9,78)= 3.81763487; T( 9,79)= 3.83390978; T( 9,80)= 3.85007605; T( 9,81)= 3.86613610; T( 9,82)= 3.88209230; T( 9,83)= 3.89794690; T( 9,84)= 3.91370210; T( 9,85)= 3.92936004; T( 9,86)= 3.94492275; T( 9,87)= 3.96039224; T( 9,88)= 3.97577044; T( 9,89)= 3.99105922; T( 9,90)= 4.00626039; T( 9,91)= 4.02137570; T( 9,92)= 4.03640687; T( 9,93)= 4.05135555; T( 9,94)= 4.06622335; T( 9,95)= 4.08101183; T( 9,96)= 4.09572250; T( 9,97)= 4.11035685; T( 9,98)= 4.12491630; T( 9,99)= 4.13940224; T( 9,100)= 4.15381604; T( 9,101)= 4.16815901; T( 9,102)= 4.18243243; T( 9,103)= 4.19663756; T( 9,104)= 4.21077561; T( 9,105)= 4.22484776; T( 9,106)= 4.23885517; T( 9,107)= 4.25279897; T( 9,108)= 4.26668026; T( 9,109)= 4.28050009; T( 9,110)= 4.29425952; T( 9,111)= 4.30795956; T( 9,112)= 4.32160120; T( 9,113)= 4.33518542; T( 9,114)= 4.34871316; T( 9,115)= 4.36218535; T( 9,116)= 4.37560287; T( 9,117)= 4.38896663; T( 9,118)= 4.40227747; T( 9,119)= 4.41553624; T( 9,120)= 4.42874376; T( 9,121)= 4.44190084; T( 9,122)= 4.45500826; T( 9,123)= 4.46806678; T( 9,124)= 4.48107717; T( 9,125)= 4.49404015; T( 9,126)= 4.50695646; T( 9,127)= 4.51982678; T( 9,128)= 4.53265182; T( 9,129)= 4.54543224; T( 9,130)= 4.55816871; T( 9,131)= 4.57086188; T( 9,132)= 4.58351239; T( 9,133)= 4.59612084; T( 9,134)= 4.60868786; T( 9,135)= 4.62121403; T( 9,136)= 4.63369996; T( 9,137)= 4.64614620; T( 9,138)= 4.65855333; T( 9,139)= 4.67092189; T( 9,140)= 4.68325242; T( 9,141)= 4.69554547; T( 9,142)= 4.70780154; T( 9,143)= 4.72002115; T( 9,144)= 4.73220480; T( 9,145)= 4.74435299; T( 9,146)= 4.75646620; T( 9,147)= 4.76854490; T( 9,148)= 4.78058956; T( 9,149)= 4.79260064; T( 9,150)= 4.80457858; T( 9,151)= 4.81652384; T( 9,152)= 4.82843684; T( 9,153)= 4.84031801; T( 9,154)= 4.85216777; T( 9,155)= 4.86398654; T( 9,156)= 4.87577471; T( 9,157)= 4.88753269; T( 9,158)= 4.89926087; T( 9,159)= 4.91095963; T( 9,160)= 4.92262936; T( 9,161)= 4.93427042; T( 9,162)= 4.94588318; T( 9,163)= 4.95746801; T( 9,164)= 4.96902525; T( 9,165)= 4.98055527; T( 9,166)= 4.99205839; T( 9,167)= 5.00353496; T( 9,168)= 5.01498531; T( 9,169)= 5.02640978; T( 9,170)= 5.03780868; T( 9,171)= 5.04918233; T( 9,172)= 5.06053104; T( 9,173)= 5.07185513; T( 9,174)= 5.08315490; T( 9,175)= 5.09443064; T( 9,176)= 5.10568265; T( 9,177)= 5.11691122; T( 9,178)= 5.12811664; T( 9,179)= 5.13929920; T( 9,180)= 5.15045916; T( 9,181)= 5.16159680; T( 9,182)= 5.17271239; T( 9,183)= 5.18380621; T( 9,184)= 5.19487851; T( 9,185)= 5.20592954; T( 9,186)= 5.21695958; T( 9,187)= 5.22796886; T( 9,188)= 5.23895764; T( 9,189)= 5.24992616; T( 9,190)= 5.26087466; T( 9,191)= 5.27180339; T( 9,192)= 5.28271258; T( 9,193)= 5.29360245; T( 9,194)= 5.30447325; T( 9,195)= 5.31532519; T( 9,196)= 5.32615850; T( 9,197)= 5.33697340; T( 9,198)= 5.34777011; T( 9,199)= 5.35854884; T( 9,200)= 5.36930980; T( 9,201)= 5.38005321; T( 9,202)= 5.39077927; T( 9,203)= 5.40148819; T( 9,204)= 5.41218016; T( 9,205)= 5.42285539; T( 9,206)= 5.43351408; T( 9,207)= 5.44415641; T( 9,208)= 5.45478258; T( 9,209)= 5.46539279; T( 9,210)= 5.47598721; T( 9,211)= 5.48656604; T( 9,212)= 5.49712945; T( 9,213)= 5.50767763; T( 9,214)= 5.51821077; T( 9,215)= 5.52872902; T( 9,216)= 5.53923258; T( 9,217)= 5.54972160; T( 9,218)= 5.56019628; T( 9,219)= 5.57065676; T( 9,220)= 5.58110323; T( 9,221)= 5.59153584; T( 9,222)= 5.60195476; T( 9,223)= 5.61236016; T( 9,224)= 5.62275219; T( 9,225)= 5.63313100; T( 9,226)= 5.64349677; T( 9,227)= 5.65384964; T( 9,228)= 5.66418976; T( 9,229)= 5.67451729; T( 9,230)= 5.68483238; T( 9,231)= 5.69513517; T( 9,232)= 5.70542582; T( 9,233)= 5.71570447; T( 9,234)= 5.72597127; T( 9,235)= 5.73622635; T( 9,236)= 5.74646986; T( 9,237)= 5.75670193; T( 9,238)= 5.76692272; T( 9,239)= 5.77713234; T( 9,240)= 5.78733095; T( 9,241)= 5.79751867; T( 9,242)= 5.80769564; T( 9,243)= 5.81786199; T( 9,244)= 5.82801785; T( 9,245)= 5.83816335; T( 9,246)= 5.84829861; T( 9,247)= 5.85842378; T( 9,248)= 5.86853896; T( 9,249)= 5.87864429; T( 9,250)= 5.88873989; T( 9,251)= 5.89882588; T( 9,252)= 5.90890239; T( 9,253)= 5.91896953; T( 9,254)= 5.92902742; T( 9,255)= 5.93907619; T( 9,256)= 5.94911594; T( 9,257)= 5.95914680; T( 9,258)= 5.96916888; T( 9,259)= 5.97918230; T( 9,260)= 5.98918716; T( 9,261)= 5.99918358; T( 9,262)= 6.00917168; T( 9,263)= 6.01915155; T( 9,264)= 6.02912332; T( 9,265)= 6.03908709; T( 9,266)= 6.04904297; T( 9,267)= 6.05899106; T( 9,268)= 6.06893147; T( 9,269)= 6.07886431; T( 9,270)= 6.08878968; T( 9,271)= 6.09870768; T( 9,272)= 6.10861842; T( 9,273)= 6.11852200; T( 9,274)= 6.12841851; T( 9,275)= 6.13830807; T( 9,276)= 6.14819077; T( 9,277)= 6.15806671; T( 9,278)= 6.16793598; T( 9,279)= 6.17779869; T( 9,280)= 6.18765493; T( 9,281)= 6.19750480; T( 9,282)= 6.20734839; T( 9,283)= 6.21718579; T( 9,284)= 6.22701711; T( 9,285)= 6.23684243; T( 9,286)= 6.24666185; T( 9,287)= 6.25647546; T( 9,288)= 6.26628335; T( 9,289)= 6.27608561; T( 9,290)= 6.28588234; T( 9,291)= 6.29567361; T( 9,292)= 6.30545952; T( 9,293)= 6.31524017; T( 9,294)= 6.32501563; T( 9,295)= 6.33478599; T( 9,296)= 6.34455134; T( 9,297)= 6.35431177; T( 9,298)= 6.36406737; T( 9,299)= 6.37381821; T( 9,300)= 6.38356438; T( 9,301)= 6.39330596; T( 9,302)= 6.40304305; T( 9,303)= 6.41277572; T( 9,304)= 6.42250405; T( 9,305)= 6.43222813; T( 9,306)= 6.44194804; T( 9,307)= 6.45166386; T( 9,308)= 6.46137567; T( 9,309)= 6.47108355; T( 9,310)= 6.48078758; T( 9,311)= 6.49048784; T( 9,312)= 6.50018441; T( 9,313)= 6.50987736; T( 9,314)= 6.51956678; T( 9,315)= 6.52925274; T( 9,316)= 6.53893531; T( 9,317)= 6.54861459; T( 9,318)= 6.55829063; T( 9,319)= 6.56796353; T( 9,320)= 6.57763335; T( 9,321)= 6.58730017; T( 9,322)= 6.59696406; T( 9,323)= 6.60662509; T( 9,324)= 6.61628336; T( 9,325)= 6.62593891; T( 9,326)= 6.63559184; T( 9,327)= 6.64524221; T( 9,328)= 6.65489009; T( 9,329)= 6.66453556; T( 9,330)= 6.67417869; T( 9,331)= 6.68381954; T( 9,332)= 6.69345821; T( 9,333)= 6.70309474; T( 9,334)= 6.71272922; T( 9,335)= 6.72236171; T( 9,336)= 6.73199229; T( 9,337)= 6.74162102; T( 9,338)= 6.75124797; T( 9,339)= 6.76087322; T( 9,340)= 6.77049683; T( 9,341)= 6.78011887; T( 9,342)= 6.78973941; T( 9,343)= 6.79935851; T( 9,344)= 6.80897626; T( 9,345)= 6.81859270; T( 9,346)= 6.82820791; T( 9,347)= 6.83782196; T( 9,348)= 6.84743492; T( 9,349)= 6.85704684; T( 9,350)= 6.86665781; T( 9,351)= 6.87626787; T( 9,352)= 6.88587711; T( 9,353)= 6.89548557; T( 9,354)= 6.90509334; T( 9,355)= 6.91470048; T( 9,356)= 6.92430705; T( 9,357)= 6.93391311; T( 9,358)= 6.94351873; T( 9,359)= 6.95312398; T( 9,360)= 6.96272891; T( 9,361)= 6.97233360; T( 9,362)= 6.98193811; T( 9,363)= 6.99154249; T( 9,364)= 7.00114683; T( 9,365)= 7.01075116; T( 9,366)= 7.02035557; T( 9,367)= 7.02996012; T( 9,368)= 7.03956485; T( 9,369)= 7.04916985; T( 9,370)= 7.05877517; T( 9,371)= 7.06838088; T( 9,372)= 7.07798703; T( 9,373)= 7.08759369; T( 9,374)= 7.09720092; T( 9,375)= 7.10680878; T( 9,376)= 7.11641733; T( 9,377)= 7.12602664; T( 9,378)= 7.13563677; T( 9,379)= 7.14524778; T( 9,380)= 7.15485972; T( 9,381)= 7.16447266; T( 9,382)= 7.17408667; T( 9,383)= 7.18370179; T( 9,384)= 7.19331810; T( 9,385)= 7.20293565; T( 9,386)= 7.21255451; T( 9,387)= 7.22217472; T( 9,388)= 7.23179637; T( 9,389)= 7.24141949; T( 9,390)= 7.25104416; T( 9,391)= 7.26067043; T( 9,392)= 7.27029837; T( 9,393)= 7.27992803; T( 9,394)= 7.28955947; T( 9,395)= 7.29919276; T( 9,396)= 7.30882795; T( 9,397)= 7.31846510; T( 9,398)= 7.32810427; T( 9,399)= 7.33774552; T( 9,400)= 7.34738891; T( 9,401)= 7.35703450; T( 9,402)= 7.36668235; T( 9,403)= 7.37633252; T( 9,404)= 7.38598506; T( 9,405)= 7.39564003; T( 9,406)= 7.40529751; T( 9,407)= 7.41495753; T( 9,408)= 7.42462017; T( 9,409)= 7.43428547; T( 9,410)= 7.44395351; T( 9,411)= 7.45362433; T( 9,412)= 7.46329800; T( 9,413)= 7.47297458; T( 9,414)= 7.48265412; T( 9,415)= 7.49233668; T( 9,416)= 7.50202232; T( 9,417)= 7.51171111; T( 9,418)= 7.52140309; T( 9,419)= 7.53109833; T( 9,420)= 7.54079688; T( 9,421)= 7.55049881; T( 9,422)= 7.56020417; T( 9,423)= 7.56991303; T( 9,424)= 7.57962543; T( 9,425)= 7.58934144; T( 9,426)= 7.59906111; T( 9,427)= 7.60878452; T( 9,428)= 7.61851170; T( 9,429)= 7.62824273; T( 9,430)= 7.63797766; T( 9,431)= 7.64771655; T( 9,432)= 7.65745946; T( 9,433)= 7.66720644; T( 9,434)= 7.67695756; T( 9,435)= 7.68671287; T( 9,436)= 7.69647244; T( 9,437)= 7.70623631; T( 9,438)= 7.71600456; T( 9,439)= 7.72577724; T( 9,440)= 7.73555440; T( 9,441)= 7.74533611; T( 9,442)= 7.75512243; T( 9,443)= 7.76491341; T( 9,444)= 7.77470912; T( 9,445)= 7.78450961; T( 9,446)= 7.79431494; T( 9,447)= 7.80412517; T( 9,448)= 7.81394037; T( 9,449)= 7.82376058; T( 9,450)= 7.83358588; T( 9,451)= 7.84341631; T( 9,452)= 7.85325194; T( 9,453)= 7.86309283; T( 9,454)= 7.87293904; T( 9,455)= 7.88279062; T( 9,456)= 7.89264764; T( 9,457)= 7.90251016; T( 9,458)= 7.91237824; T( 9,459)= 7.92225194; T( 9,460)= 7.93213131; T( 9,461)= 7.94201642; T( 9,462)= 7.95190733; T( 9,463)= 7.96180410; T( 9,464)= 7.97170679; T( 9,465)= 7.98161545; T( 9,466)= 7.99153016; T( 9,467)= 8.00145097; T( 9,468)= 8.01137795; T( 9,469)= 8.02131115; T( 9,470)= 8.03125063; T( 9,471)= 8.04119646; T( 9,472)= 8.05114870; T( 9,473)= 8.06110741; T( 9,474)= 8.07107265; T( 9,475)= 8.08104448; T( 9,476)= 8.09102297; T( 9,477)= 8.10100818; T( 9,478)= 8.11100017; T( 9,479)= 8.12099900; T( 9,480)= 8.13100473; T( 9,481)= 8.14101744; T( 9,482)= 8.15103717; T( 9,483)= 8.16106400; T( 9,484)= 8.17109798; T( 9,485)= 8.18113918; T( 9,486)= 8.19118767; T( 9,487)= 8.20124350; T( 9,488)= 8.21130675; T( 9,489)= 8.22137747; T( 9,490)= 8.23145573; T( 9,491)= 8.24154159; T( 9,492)= 8.25163512; T( 9,493)= 8.26173639; T( 9,494)= 8.27184545; T( 9,495)= 8.28196237; T( 9,496)= 8.29208722; T( 9,497)= 8.30222007; T( 9,498)= 8.31236097; T( 9,499)= 8.32251000; T( 9,500)= 8.33266722; T( 9,501)= 8.34283269; T( 9,502)= 8.35300649; T( 9,503)= 8.36318868; T( 9,504)= 8.37337932; T( 9,505)= 8.38357849; T( 9,506)= 8.39378625; T( 9,507)= 8.40400267; T( 9,508)= 8.41422781; T( 9,509)= 8.42446175; T( 9,510)= 8.43470455; T( 9,511)= 8.44495628; T( 9,512)= 8.45521701; T( 9,513)= 8.46548681; T( 9,514)= 8.47576574; T( 9,515)= 8.48605388; T( 9,516)= 8.49635130; T( 9,517)= 8.50665806; T( 9,518)= 8.51697424; T( 9,519)= 8.52729991; T( 9,520)= 8.53763513; T( 9,521)= 8.54797998; T( 9,522)= 8.55833453; T( 9,523)= 8.56869885; T( 9,524)= 8.57907301; T( 9,525)= 8.58945709; T( 9,526)= 8.59985115; T( 9,527)= 8.61025527; T( 9,528)= 8.62066953; T( 9,529)= 8.63109399; T( 9,530)= 8.64152872; T( 9,531)= 8.65197381; T( 9,532)= 8.66242932; T( 9,533)= 8.67289534; T( 9,534)= 8.68337193; T( 9,535)= 8.69385917; T( 9,536)= 8.70435713; T( 9,537)= 8.71486590; T( 9,538)= 8.72538554; T( 9,539)= 8.73591613; T( 9,540)= 8.74645775; T( 9,541)= 8.75701048; T( 9,542)= 8.76757440; T( 9,543)= 8.77814957; T( 9,544)= 8.78873609; T( 9,545)= 8.79933402; T( 9,546)= 8.80994344; T( 9,547)= 8.82056444; T( 9,548)= 8.83119710; T( 9,549)= 8.84184149; T( 9,550)= 8.85249770; T( 9,551)= 8.86316579; T( 9,552)= 8.87384587; T( 9,553)= 8.88453800; T( 9,554)= 8.89524227; T( 9,555)= 8.90595876; T( 9,556)= 8.91668755; T( 9,557)= 8.92742873; T( 9,558)= 8.93818238; T( 9,559)= 8.94894858; T( 9,560)= 8.95972742; T( 9,561)= 8.97051897; T( 9,562)= 8.98132334; T( 9,563)= 8.99214059; T( 9,564)= 9.00297083; T( 9,565)= 9.01381412; T( 9,566)= 9.02467057; T( 9,567)= 9.03554025; T( 9,568)= 9.04642326; T( 9,569)= 9.05731968; T( 9,570)= 9.06822960; T( 9,571)= 9.07915312; T( 9,572)= 9.09009031; T( 9,573)= 9.10104127; T( 9,574)= 9.11200610; T( 9,575)= 9.12298487; T( 9,576)= 9.13397769; T( 9,577)= 9.14498464; T( 9,578)= 9.15600581; T( 9,579)= 9.16704131; T( 9,580)= 9.17809122; T( 9,581)= 9.18915564; T( 9,582)= 9.20023466; T( 9,583)= 9.21132837; T( 9,584)= 9.22243688; T( 9,585)= 9.23356028; T( 9,586)= 9.24469866; T( 9,587)= 9.25585212; T( 9,588)= 9.26702077; T( 9,589)= 9.27820469; T( 9,590)= 9.28940399; T( 9,591)= 9.30061876; T( 9,592)= 9.31184912; T( 9,593)= 9.32309515; T( 9,594)= 9.33435696; T( 9,595)= 9.34563465; T( 9,596)= 9.35692833; T( 9,597)= 9.36823809; T( 9,598)= 9.37956404; T( 9,599)= 9.39090629; T( 9,600)= 9.40226494; T( 9,601)= 9.41364009; T( 9,602)= 9.42503186; T( 9,603)= 9.43644035; T( 9,604)= 9.44786566; T( 9,605)= 9.45930791; T( 9,606)= 9.47076721; T( 9,607)= 9.48224366; T( 9,608)= 9.49373737; T( 9,609)= 9.50524846; T( 9,610)= 9.51677704; T( 9,611)= 9.52832322; T( 9,612)= 9.53988712; T( 9,613)= 9.55146884; T( 9,614)= 9.56306851; T( 9,615)= 9.57468623; T( 9,616)= 9.58632213; T( 9,617)= 9.59797633; T( 9,618)= 9.60964893; T( 9,619)= 9.62134007; T( 9,620)= 9.63304986; T( 9,621)= 9.64477841; T( 9,622)= 9.65652586; T( 9,623)= 9.66829231; T( 9,624)= 9.68007791; T( 9,625)= 9.69188276; T( 9,626)= 9.70370700; T( 9,627)= 9.71555075; T( 9,628)= 9.72741414; T( 9,629)= 9.73929729; T( 9,630)= 9.75120033; T( 9,631)= 9.76312339; T( 9,632)= 9.77506660; T( 9,633)= 9.78703009; T( 9,634)= 9.79901400; T( 9,635)= 9.81101845; T( 9,636)= 9.82304359; T( 9,637)= 9.83508954; T( 9,638)= 9.84715643; T( 9,639)= 9.85924442; T( 9,640)= 9.87135363; T( 9,641)= 9.88348421; T( 9,642)= 9.89563628; T( 9,643)= 9.90781001; T( 9,644)= 9.92000552; T( 9,645)= 9.93222295; T( 9,646)= 9.94446247; T( 9,647)= 9.95672420; T( 9,648)= 9.96900829; T( 9,649)= 9.98131490; T( 9,650)= 9.99364416; T( 9,651)=10.00599624; T( 9,652)=10.01837127; T( 9,653)=10.03076942; T( 9,654)=10.04319084; T( 9,655)=10.05563568; T( 9,656)=10.06810409; T( 9,657)=10.08059623; T( 9,658)=10.09311226; T( 9,659)=10.10565235; T( 9,660)=10.11821664; T( 9,661)=10.13080531; T( 9,662)=10.14341851; T( 9,663)=10.15605641; T( 9,664)=10.16871917; T( 9,665)=10.18140697; T( 9,666)=10.19411997; T( 9,667)=10.20685834; T( 9,668)=10.21962225; T( 9,669)=10.23241188; T( 9,670)=10.24522739; T( 9,671)=10.25806897; T( 9,672)=10.27093679; T( 9,673)=10.28383103; T( 9,674)=10.29675187; T( 9,675)=10.30969950; T( 9,676)=10.32267408; T( 9,677)=10.33567582; T( 9,678)=10.34870489; T( 9,679)=10.36176149; T( 9,680)=10.37484580; T( 9,681)=10.38795801; T( 9,682)=10.40109832; T( 9,683)=10.41426693; T( 9,684)=10.42746402; T( 9,685)=10.44068979; T( 9,686)=10.45394445; T( 9,687)=10.46722820; T( 9,688)=10.48054124; T( 9,689)=10.49388377; T( 9,690)=10.50725600; T( 9,691)=10.52065815; T( 9,692)=10.53409042; T( 9,693)=10.54755302; T( 9,694)=10.56104617; T( 9,695)=10.57457008; T( 9,696)=10.58812498; T( 9,697)=10.60171108; T( 9,698)=10.61532861; T( 9,699)=10.62897779; T( 9,700)=10.64265884; T( 9,701)=10.65637201; T( 9,702)=10.67011751; T( 9,703)=10.68389558; T( 9,704)=10.69770646; T( 9,705)=10.71155038; T( 9,706)=10.72542759; T( 9,707)=10.73933832; T( 9,708)=10.75328283; T( 9,709)=10.76726135; T( 9,710)=10.78127414; T( 9,711)=10.79532144; T( 9,712)=10.80940352; T( 9,713)=10.82352064; T( 9,714)=10.83767304; T( 9,715)=10.85186099; T( 9,716)=10.86608475; T( 9,717)=10.88034460; T( 9,718)=10.89464080; T( 9,719)=10.90897363; T( 9,720)=10.92334336; T( 9,721)=10.93775026; T( 9,722)=10.95219462; T( 9,723)=10.96667673; T( 9,724)=10.98119687; T( 9,725)=10.99575533; T( 9,726)=11.01035240; T( 9,727)=11.02498837; T( 9,728)=11.03966356; T( 9,729)=11.05437825; T( 9,730)=11.06913276; T( 9,731)=11.08392739; T( 9,732)=11.09876245; T( 9,733)=11.11363826; T( 9,734)=11.12855514; T( 9,735)=11.14351342; T( 9,736)=11.15851340; T( 9,737)=11.17355543; T( 9,738)=11.18863983; T( 9,739)=11.20376695; T( 9,740)=11.21893712; T( 9,741)=11.23415068; T( 9,742)=11.24940799; T( 9,743)=11.26470939; T( 9,744)=11.28005524; T( 9,745)=11.29544589; T( 9,746)=11.31088172; T( 9,747)=11.32636309; T( 9,748)=11.34189037; T( 9,749)=11.35746393; T( 9,750)=11.37308416; T( 9,751)=11.38875144; T( 9,752)=11.40446616; T( 9,753)=11.42022871; T( 9,754)=11.43603949; T( 9,755)=11.45189890; T( 9,756)=11.46780736; T( 9,757)=11.48376527; T( 9,758)=11.49977304; T( 9,759)=11.51583111; T( 9,760)=11.53193990; T( 9,761)=11.54809984; T( 9,762)=11.56431136; T( 9,763)=11.58057492; T( 9,764)=11.59689096; T( 9,765)=11.61325993; T( 9,766)=11.62968230; T( 9,767)=11.64615852; T( 9,768)=11.66268907; T( 9,769)=11.67927442; T( 9,770)=11.69591507; T( 9,771)=11.71261149; T( 9,772)=11.72936418; T( 9,773)=11.74617364; T( 9,774)=11.76304038; T( 9,775)=11.77996492; T( 9,776)=11.79694777; T( 9,777)=11.81398947; T( 9,778)=11.83109054; T( 9,779)=11.84825153; T( 9,780)=11.86547298; T( 9,781)=11.88275546; T( 9,782)=11.90009953; T( 9,783)=11.91750574; T( 9,784)=11.93497470; T( 9,785)=11.95250697; T( 9,786)=11.97010315; T( 9,787)=11.98776385; T( 9,788)=12.00548968; T( 9,789)=12.02328125; T( 9,790)=12.04113920; T( 9,791)=12.05906415; T( 9,792)=12.07705675; T( 9,793)=12.09511766; T( 9,794)=12.11324753; T( 9,795)=12.13144705; T( 9,796)=12.14971689; T( 9,797)=12.16805774; T( 9,798)=12.18647031; T( 9,799)=12.20495530; T( 9,800)=12.22351345; T( 9,801)=12.24214547; T( 9,802)=12.26085212; T( 9,803)=12.27963414; T( 9,804)=12.29849231; T( 9,805)=12.31742740; T( 9,806)=12.33644020; T( 9,807)=12.35553151; T( 9,808)=12.37470213; T( 9,809)=12.39395290; T( 9,810)=12.41328465; T( 9,811)=12.43269824; T( 9,812)=12.45219452; T( 9,813)=12.47177437; T( 9,814)=12.49143868; T( 9,815)=12.51118836; T( 9,816)=12.53102432; T( 9,817)=12.55094750; T( 9,818)=12.57095885; T( 9,819)=12.59105932; T( 9,820)=12.61124990; T( 9,821)=12.63153158; T( 9,822)=12.65190538; T( 9,823)=12.67237231; T( 9,824)=12.69293343; T( 9,825)=12.71358979; T( 9,826)=12.73434248; T( 9,827)=12.75519259; T( 9,828)=12.77614124; T( 9,829)=12.79718957; T( 9,830)=12.81833872; T( 9,831)=12.83958988; T( 9,832)=12.86094424; T( 9,833)=12.88240301; T( 9,834)=12.90396743; T( 9,835)=12.92563876; T( 9,836)=12.94741828; T( 9,837)=12.96930729; T( 9,838)=12.99130713; T( 9,839)=13.01341914; T( 9,840)=13.03564470; T( 9,841)=13.05798521; T( 9,842)=13.08044209; T( 9,843)=13.10301681; T( 9,844)=13.12571083; T( 9,845)=13.14852568; T( 9,846)=13.17146287; T( 9,847)=13.19452400; T( 9,848)=13.21771064; T( 9,849)=13.24102442; T( 9,850)=13.26446700; T( 9,851)=13.28804008; T( 9,852)=13.31174538; T( 9,853)=13.33558465; T( 9,854)=13.35955969; T( 9,855)=13.38367233; T( 9,856)=13.40792443; T( 9,857)=13.43231790; T( 9,858)=13.45685468; T( 9,859)=13.48153676; T( 9,860)=13.50636615; T( 9,861)=13.53134493; T( 9,862)=13.55647521; T( 9,863)=13.58175914; T( 9,864)=13.60719892; T( 9,865)=13.63279681; T( 9,866)=13.65855509; T( 9,867)=13.68447612; T( 9,868)=13.71056231; T( 9,869)=13.73681609; T( 9,870)=13.76323998; T( 9,871)=13.78983655; T( 9,872)=13.81660842; T( 9,873)=13.84355827; T( 9,874)=13.87068884; T( 9,875)=13.89800295; T( 9,876)=13.92550348; T( 9,877)=13.95319335; T( 9,878)=13.98107560; T( 9,879)=14.00915329; T( 9,880)=14.03742961; T( 9,881)=14.06590777; T( 9,882)=14.09459111; T( 9,883)=14.12348301; T( 9,884)=14.15258698; T( 9,885)=14.18190657; T( 9,886)=14.21144546; T( 9,887)=14.24120741; T( 9,888)=14.27119626; T( 9,889)=14.30141599; T( 9,890)=14.33187066; T( 9,891)=14.36256442; T( 9,892)=14.39350158; T( 9,893)=14.42468653; T( 9,894)=14.45612379; T( 9,895)=14.48781800; T( 9,896)=14.51977395; T( 9,897)=14.55199654; T( 9,898)=14.58449083; T( 9,899)=14.61726200; T( 9,900)=14.65031542; T( 9,901)=14.68365657; T( 9,902)=14.71729114; T( 9,903)=14.75122495; T( 9,904)=14.78546403; T( 9,905)=14.82001456; T( 9,906)=14.85488294; T( 9,907)=14.89007576; T( 9,908)=14.92559982; T( 9,909)=14.96146212; T( 9,910)=14.99766991; T( 9,911)=15.03423067; T( 9,912)=15.07115212; T( 9,913)=15.10844223; T( 9,914)=15.14610927; T( 9,915)=15.18416175; T( 9,916)=15.22260851; T( 9,917)=15.26145869; T( 9,918)=15.30072174; T( 9,919)=15.34040745; T( 9,920)=15.38052598; T( 9,921)=15.42108786; T( 9,922)=15.46210399; T( 9,923)=15.50358571; T( 9,924)=15.54554477; T( 9,925)=15.58799338; T( 9,926)=15.63094424; T( 9,927)=15.67441053; T( 9,928)=15.71840598; T( 9,929)=15.76294488; T( 9,930)=15.80804209; T( 9,931)=15.85371311; T( 9,932)=15.89997410; T( 9,933)=15.94684192; T( 9,934)=15.99433414; T( 9,935)=16.04246915; T( 9,936)=16.09126615; T( 9,937)=16.14074522; T( 9,938)=16.19092738; T( 9,939)=16.24183463; T( 9,940)=16.29349005; T( 9,941)=16.34591784; T( 9,942)=16.39914340; T( 9,943)=16.45319341; T( 9,944)=16.50809593; T( 9,945)=16.56388048; T( 9,946)=16.62057817; T( 9,947)=16.67822177; T( 9,948)=16.73684590; T( 9,949)=16.79648711; T( 9,950)=16.85718404; T( 9,951)=16.91897760; T( 9,952)=16.98191117; T( 9,953)=17.04603075; T( 9,954)=17.11138520; T( 9,955)=17.17802652; T( 9,956)=17.24601008; T( 9,957)=17.31539491; T( 9,958)=17.38624409; T( 9,959)=17.45862507; T( 9,960)=17.53261014; T( 9,961)=17.60827684; T( 9,962)=17.68570856; T( 9,963)=17.76499507; T( 9,964)=17.84623325; T( 9,965)=17.92952784; T( 9,966)=18.01499231; T( 9,967)=18.10274988; T( 9,968)=18.19293468; T( 9,969)=18.28569303; T( 9,970)=18.38118506; T( 9,971)=18.47958642; T( 9,972)=18.58109043; T( 9,973)=18.68591052; T( 9,974)=18.79428310; T( 9,975)=18.90647105; T( 9,976)=19.02276780; T( 9,977)=19.14350231; T( 9,978)=19.26904504; T( 9,979)=19.39981530; T( 9,980)=19.53629025; T( 9,981)=19.67901609; T( 9,982)=19.82862217; T( 9,983)=19.98583877; T( 9,984)=20.15152006; T( 9,985)=20.32667391; T( 9,986)=20.51250131; T( 9,987)=20.71044925; T( 9,988)=20.92228324; T( 9,989)=21.15018860; T( 9,990)=21.39691572; T( 9,991)=21.66599433; T( 9,992)=21.96206024; T( 9,993)=22.29137421; T( 9,994)=22.66268685; T( 9,995)=23.08877044; T( 9,996)=23.58935078; T( 9,997)=24.19732982; T( 9,998)=24.97406845; T( 9,999)=26.05643335; T( 9,1000)=27.87716487; T( 9,1001)=33.71994844; T( 9,1002)=39.34065373; T(10, 1)= 0.00000000; T(10, 2)= 1.47874346; T(10, 3)= 1.73445958; T(10, 4)= 1.90767634; T(10, 5)= 2.04298034; T(10, 6)= 2.15585648; T(10, 7)= 2.25369458; T(10, 8)= 2.34065149; T(10, 9)= 2.41931882; T(10,10)= 2.49143127; T(10,11)= 2.55821216; T(10,12)= 2.62055942; T(10,13)= 2.67915339; T(10,14)= 2.73452303; T(10,15)= 2.78708848; T(10,16)= 2.83718951; T(10,17)= 2.88510516; T(10,18)= 2.93106767; T(10,19)= 2.97527258; T(10,20)= 3.01788623; T(10,21)= 3.05905141; T(10,22)= 3.09889170; T(10,23)= 3.13751482; T(10,24)= 3.17501530; T(10,25)= 3.21147659; T(10,26)= 3.24697278; T(10,27)= 3.28156994; T(10,28)= 3.31532730; T(10,29)= 3.34829816; T(10,30)= 3.38053068; T(10,31)= 3.41206855; T(10,32)= 3.44295150; T(10,33)= 3.47321582; T(10,34)= 3.50289473; T(10,35)= 3.53201873; T(10,36)= 3.56061588; T(10,37)= 3.58871209; T(10,38)= 3.61633131; T(10,39)= 3.64349577; T(10,40)= 3.67022608; T(10,41)= 3.69654144; T(10,42)= 3.72245976; T(10,43)= 3.74799774; T(10,44)= 3.77317103; T(10,45)= 3.79799429; T(10,46)= 3.82248127; T(10,47)= 3.84664490; T(10,48)= 3.87049735; T(10,49)= 3.89405010; T(10,50)= 3.91731395; T(10,51)= 3.94029914; T(10,52)= 3.96301533; T(10,53)= 3.98547169; T(10,54)= 4.00767689; T(10,55)= 4.02963918; T(10,56)= 4.05136637; T(10,57)= 4.07286591; T(10,58)= 4.09414489; T(10,59)= 4.11521004; T(10,60)= 4.13606779; T(10,61)= 4.15672429; T(10,62)= 4.17718539; T(10,63)= 4.19745669; T(10,64)= 4.21754354; T(10,65)= 4.23745107; T(10,66)= 4.25718419; T(10,67)= 4.27674760; T(10,68)= 4.29614582; T(10,69)= 4.31538317; T(10,70)= 4.33446381; T(10,71)= 4.35339173; T(10,72)= 4.37217078; T(10,73)= 4.39080465; T(10,74)= 4.40929689; T(10,75)= 4.42765093; T(10,76)= 4.44587007; T(10,77)= 4.46395749; T(10,78)= 4.48191625; T(10,79)= 4.49974931; T(10,80)= 4.51745953; T(10,81)= 4.53504967; T(10,82)= 4.55252239; T(10,83)= 4.56988027; T(10,84)= 4.58712581; T(10,85)= 4.60426142; T(10,86)= 4.62128942; T(10,87)= 4.63821208; T(10,88)= 4.65503159; T(10,89)= 4.67175007; T(10,90)= 4.68836957; T(10,91)= 4.70489208; T(10,92)= 4.72131955; T(10,93)= 4.73765385; T(10,94)= 4.75389680; T(10,95)= 4.77005016; T(10,96)= 4.78611567; T(10,97)= 4.80209497; T(10,98)= 4.81798971; T(10,99)= 4.83380145; T(10,100)= 4.84953174; T(10,101)= 4.86518205; T(10,102)= 4.88075385; T(10,103)= 4.89624855; T(10,104)= 4.91166753; T(10,105)= 4.92701212; T(10,106)= 4.94228363; T(10,107)= 4.95748333; T(10,108)= 4.97261247; T(10,109)= 4.98767225; T(10,110)= 5.00266385; T(10,111)= 5.01758843; T(10,112)= 5.03244709; T(10,113)= 5.04724095; T(10,114)= 5.06197106; T(10,115)= 5.07663847; T(10,116)= 5.09124420; T(10,117)= 5.10578924; T(10,118)= 5.12027456; T(10,119)= 5.13470112; T(10,120)= 5.14906984; T(10,121)= 5.16338164; T(10,122)= 5.17763738; T(10,123)= 5.19183795; T(10,124)= 5.20598420; T(10,125)= 5.22007694; T(10,126)= 5.23411700; T(10,127)= 5.24810517; T(10,128)= 5.26204223; T(10,129)= 5.27592893; T(10,130)= 5.28976602; T(10,131)= 5.30355424; T(10,132)= 5.31729430; T(10,133)= 5.33098690; T(10,134)= 5.34463273; T(10,135)= 5.35823245; T(10,136)= 5.37178673; T(10,137)= 5.38529622; T(10,138)= 5.39876154; T(10,139)= 5.41218333; T(10,140)= 5.42556218; T(10,141)= 5.43889870; T(10,142)= 5.45219348; T(10,143)= 5.46544708; T(10,144)= 5.47866009; T(10,145)= 5.49183303; T(10,146)= 5.50496648; T(10,147)= 5.51806095; T(10,148)= 5.53111697; T(10,149)= 5.54413505; T(10,150)= 5.55711571; T(10,151)= 5.57005944; T(10,152)= 5.58296673; T(10,153)= 5.59583806; T(10,154)= 5.60867389; T(10,155)= 5.62147470; T(10,156)= 5.63424093; T(10,157)= 5.64697304; T(10,158)= 5.65967146; T(10,159)= 5.67233664; T(10,160)= 5.68496898; T(10,161)= 5.69756892; T(10,162)= 5.71013686; T(10,163)= 5.72267321; T(10,164)= 5.73517836; T(10,165)= 5.74765272; T(10,166)= 5.76009666; T(10,167)= 5.77251056; T(10,168)= 5.78489480; T(10,169)= 5.79724975; T(10,170)= 5.80957576; T(10,171)= 5.82187320; T(10,172)= 5.83414241; T(10,173)= 5.84638375; T(10,174)= 5.85859755; T(10,175)= 5.87078414; T(10,176)= 5.88294387; T(10,177)= 5.89507704; T(10,178)= 5.90718399; T(10,179)= 5.91926503; T(10,180)= 5.93132048; T(10,181)= 5.94335063; T(10,182)= 5.95535579; T(10,183)= 5.96733626; T(10,184)= 5.97929234; T(10,185)= 5.99122431; T(10,186)= 6.00313246; T(10,187)= 6.01501707; T(10,188)= 6.02687843; T(10,189)= 6.03871679; T(10,190)= 6.05053244; T(10,191)= 6.06232564; T(10,192)= 6.07409666; T(10,193)= 6.08584575; T(10,194)= 6.09757318; T(10,195)= 6.10927918; T(10,196)= 6.12096403; T(10,197)= 6.13262795; T(10,198)= 6.14427119; T(10,199)= 6.15589400; T(10,200)= 6.16749661; T(10,201)= 6.17907926; T(10,202)= 6.19064217; T(10,203)= 6.20218557; T(10,204)= 6.21370970; T(10,205)= 6.22521476; T(10,206)= 6.23670099; T(10,207)= 6.24816860; T(10,208)= 6.25961780; T(10,209)= 6.27104881; T(10,210)= 6.28246183; T(10,211)= 6.29385708; T(10,212)= 6.30523475; T(10,213)= 6.31659506; T(10,214)= 6.32793819; T(10,215)= 6.33926434; T(10,216)= 6.35057372; T(10,217)= 6.36186651; T(10,218)= 6.37314291; T(10,219)= 6.38440310; T(10,220)= 6.39564727; T(10,221)= 6.40687561; T(10,222)= 6.41808829; T(10,223)= 6.42928550; T(10,224)= 6.44046742; T(10,225)= 6.45163422; T(10,226)= 6.46278607; T(10,227)= 6.47392316; T(10,228)= 6.48504564; T(10,229)= 6.49615369; T(10,230)= 6.50724748; T(10,231)= 6.51832717; T(10,232)= 6.52939293; T(10,233)= 6.54044491; T(10,234)= 6.55148328; T(10,235)= 6.56250820; T(10,236)= 6.57351982; T(10,237)= 6.58451830; T(10,238)= 6.59550379; T(10,239)= 6.60647645; T(10,240)= 6.61743642; T(10,241)= 6.62838386; T(10,242)= 6.63931892; T(10,243)= 6.65024173; T(10,244)= 6.66115245; T(10,245)= 6.67205123; T(10,246)= 6.68293819; T(10,247)= 6.69381348; T(10,248)= 6.70467725; T(10,249)= 6.71552963; T(10,250)= 6.72637076; T(10,251)= 6.73720077; T(10,252)= 6.74801980; T(10,253)= 6.75882799; T(10,254)= 6.76962545; T(10,255)= 6.78041234; T(10,256)= 6.79118877; T(10,257)= 6.80195487; T(10,258)= 6.81271078; T(10,259)= 6.82345661; T(10,260)= 6.83419250; T(10,261)= 6.84491857; T(10,262)= 6.85563493; T(10,263)= 6.86634173; T(10,264)= 6.87703906; T(10,265)= 6.88772706; T(10,266)= 6.89840585; T(10,267)= 6.90907554; T(10,268)= 6.91973625; T(10,269)= 6.93038809; T(10,270)= 6.94103119; T(10,271)= 6.95166565; T(10,272)= 6.96229159; T(10,273)= 6.97290912; T(10,274)= 6.98351836; T(10,275)= 6.99411941; T(10,276)= 7.00471239; T(10,277)= 7.01529740; T(10,278)= 7.02587455; T(10,279)= 7.03644396; T(10,280)= 7.04700572; T(10,281)= 7.05755994; T(10,282)= 7.06810673; T(10,283)= 7.07864619; T(10,284)= 7.08917843; T(10,285)= 7.09970355; T(10,286)= 7.11022165; T(10,287)= 7.12073283; T(10,288)= 7.13123719; T(10,289)= 7.14173484; T(10,290)= 7.15222587; T(10,291)= 7.16271038; T(10,292)= 7.17318846; T(10,293)= 7.18366023; T(10,294)= 7.19412577; T(10,295)= 7.20458517; T(10,296)= 7.21503855; T(10,297)= 7.22548598; T(10,298)= 7.23592756; T(10,299)= 7.24636339; T(10,300)= 7.25679356; T(10,301)= 7.26721817; T(10,302)= 7.27763729; T(10,303)= 7.28805103; T(10,304)= 7.29845948; T(10,305)= 7.30886273; T(10,306)= 7.31926085; T(10,307)= 7.32965396; T(10,308)= 7.34004212; T(10,309)= 7.35042544; T(10,310)= 7.36080400; T(10,311)= 7.37117788; T(10,312)= 7.38154717; T(10,313)= 7.39191196; T(10,314)= 7.40227233; T(10,315)= 7.41262837; T(10,316)= 7.42298017; T(10,317)= 7.43332780; T(10,318)= 7.44367135; T(10,319)= 7.45401090; T(10,320)= 7.46434654; T(10,321)= 7.47467835; T(10,322)= 7.48500641; T(10,323)= 7.49533080; T(10,324)= 7.50565161; T(10,325)= 7.51596890; T(10,326)= 7.52628277; T(10,327)= 7.53659330; T(10,328)= 7.54690055; T(10,329)= 7.55720462; T(10,330)= 7.56750558; T(10,331)= 7.57780350; T(10,332)= 7.58809848; T(10,333)= 7.59839058; T(10,334)= 7.60867988; T(10,335)= 7.61896645; T(10,336)= 7.62925039; T(10,337)= 7.63953175; T(10,338)= 7.64981062; T(10,339)= 7.66008707; T(10,340)= 7.67036118; T(10,341)= 7.68063302; T(10,342)= 7.69090267; T(10,343)= 7.70117020; T(10,344)= 7.71143568; T(10,345)= 7.72169920; T(10,346)= 7.73196081; T(10,347)= 7.74222060; T(10,348)= 7.75247864; T(10,349)= 7.76273500; T(10,350)= 7.77298975; T(10,351)= 7.78324297; T(10,352)= 7.79349472; T(10,353)= 7.80374508; T(10,354)= 7.81399412; T(10,355)= 7.82424191; T(10,356)= 7.83448852; T(10,357)= 7.84473402; T(10,358)= 7.85497848; T(10,359)= 7.86522197; T(10,360)= 7.87546457; T(10,361)= 7.88570633; T(10,362)= 7.89594734; T(10,363)= 7.90618765; T(10,364)= 7.91642734; T(10,365)= 7.92666648; T(10,366)= 7.93690513; T(10,367)= 7.94714337; T(10,368)= 7.95738126; T(10,369)= 7.96761887; T(10,370)= 7.97785626; T(10,371)= 7.98809351; T(10,372)= 7.99833068; T(10,373)= 8.00856784; T(10,374)= 8.01880506; T(10,375)= 8.02904239; T(10,376)= 8.03927992; T(10,377)= 8.04951771; T(10,378)= 8.05975581; T(10,379)= 8.06999431; T(10,380)= 8.08023326; T(10,381)= 8.09047273; T(10,382)= 8.10071279; T(10,383)= 8.11095349; T(10,384)= 8.12119492; T(10,385)= 8.13143713; T(10,386)= 8.14168018; T(10,387)= 8.15192415; T(10,388)= 8.16216910; T(10,389)= 8.17241509; T(10,390)= 8.18266219; T(10,391)= 8.19291046; T(10,392)= 8.20315996; T(10,393)= 8.21341077; T(10,394)= 8.22366294; T(10,395)= 8.23391655; T(10,396)= 8.24417164; T(10,397)= 8.25442829; T(10,398)= 8.26468657; T(10,399)= 8.27494653; T(10,400)= 8.28520824; T(10,401)= 8.29547176; T(10,402)= 8.30573716; T(10,403)= 8.31600450; T(10,404)= 8.32627384; T(10,405)= 8.33654525; T(10,406)= 8.34681879; T(10,407)= 8.35709452; T(10,408)= 8.36737250; T(10,409)= 8.37765281; T(10,410)= 8.38793550; T(10,411)= 8.39822064; T(10,412)= 8.40850828; T(10,413)= 8.41879850; T(10,414)= 8.42909135; T(10,415)= 8.43938690; T(10,416)= 8.44968520; T(10,417)= 8.45998633; T(10,418)= 8.47029035; T(10,419)= 8.48059731; T(10,420)= 8.49090729; T(10,421)= 8.50122034; T(10,422)= 8.51153652; T(10,423)= 8.52185591; T(10,424)= 8.53217855; T(10,425)= 8.54250452; T(10,426)= 8.55283388; T(10,427)= 8.56316669; T(10,428)= 8.57350300; T(10,429)= 8.58384290; T(10,430)= 8.59418643; T(10,431)= 8.60453366; T(10,432)= 8.61488465; T(10,433)= 8.62523947; T(10,434)= 8.63559817; T(10,435)= 8.64596083; T(10,436)= 8.65632750; T(10,437)= 8.66669824; T(10,438)= 8.67707312; T(10,439)= 8.68745221; T(10,440)= 8.69783555; T(10,441)= 8.70822323; T(10,442)= 8.71861529; T(10,443)= 8.72901181; T(10,444)= 8.73941284; T(10,445)= 8.74981845; T(10,446)= 8.76022871; T(10,447)= 8.77064366; T(10,448)= 8.78106339; T(10,449)= 8.79148794; T(10,450)= 8.80191739; T(10,451)= 8.81235180; T(10,452)= 8.82279123; T(10,453)= 8.83323574; T(10,454)= 8.84368540; T(10,455)= 8.85414027; T(10,456)= 8.86460041; T(10,457)= 8.87506590; T(10,458)= 8.88553678; T(10,459)= 8.89601313; T(10,460)= 8.90649502; T(10,461)= 8.91698249; T(10,462)= 8.92747563; T(10,463)= 8.93797449; T(10,464)= 8.94847913; T(10,465)= 8.95898963; T(10,466)= 8.96950604; T(10,467)= 8.98002843; T(10,468)= 8.99055687; T(10,469)= 9.00109142; T(10,470)= 9.01163214; T(10,471)= 9.02217910; T(10,472)= 9.03273237; T(10,473)= 9.04329201; T(10,474)= 9.05385808; T(10,475)= 9.06443066; T(10,476)= 9.07500980; T(10,477)= 9.08559557; T(10,478)= 9.09618805; T(10,479)= 9.10678729; T(10,480)= 9.11739336; T(10,481)= 9.12800633; T(10,482)= 9.13862626; T(10,483)= 9.14925322; T(10,484)= 9.15988728; T(10,485)= 9.17052851; T(10,486)= 9.18117697; T(10,487)= 9.19183272; T(10,488)= 9.20249584; T(10,489)= 9.21316640; T(10,490)= 9.22384446; T(10,491)= 9.23453008; T(10,492)= 9.24522335; T(10,493)= 9.25592432; T(10,494)= 9.26663307; T(10,495)= 9.27734966; T(10,496)= 9.28807416; T(10,497)= 9.29880664; T(10,498)= 9.30954717; T(10,499)= 9.32029582; T(10,500)= 9.33105266; T(10,501)= 9.34181777; T(10,502)= 9.35259120; T(10,503)= 9.36337303; T(10,504)= 9.37416332; T(10,505)= 9.38496216; T(10,506)= 9.39576962; T(10,507)= 9.40658575; T(10,508)= 9.41741064; T(10,509)= 9.42824435; T(10,510)= 9.43908696; T(10,511)= 9.44993854; T(10,512)= 9.46079916; T(10,513)= 9.47166890; T(10,514)= 9.48254782; T(10,515)= 9.49343600; T(10,516)= 9.50433351; T(10,517)= 9.51524043; T(10,518)= 9.52615684; T(10,519)= 9.53708279; T(10,520)= 9.54801837; T(10,521)= 9.55896366; T(10,522)= 9.56991872; T(10,523)= 9.58088364; T(10,524)= 9.59185848; T(10,525)= 9.60284333; T(10,526)= 9.61383826; T(10,527)= 9.62484335; T(10,528)= 9.63585866; T(10,529)= 9.64688429; T(10,530)= 9.65792030; T(10,531)= 9.66896678; T(10,532)= 9.68002379; T(10,533)= 9.69109143; T(10,534)= 9.70216976; T(10,535)= 9.71325888; T(10,536)= 9.72435884; T(10,537)= 9.73546974; T(10,538)= 9.74659166; T(10,539)= 9.75772467; T(10,540)= 9.76886885; T(10,541)= 9.78002429; T(10,542)= 9.79119107; T(10,543)= 9.80236926; T(10,544)= 9.81355895; T(10,545)= 9.82476023; T(10,546)= 9.83597317; T(10,547)= 9.84719785; T(10,548)= 9.85843437; T(10,549)= 9.86968279; T(10,550)= 9.88094322; T(10,551)= 9.89221573; T(10,552)= 9.90350040; T(10,553)= 9.91479732; T(10,554)= 9.92610658; T(10,555)= 9.93742827; T(10,556)= 9.94876246; T(10,557)= 9.96010925; T(10,558)= 9.97146872; T(10,559)= 9.98284096; T(10,560)= 9.99422606; T(10,561)=10.00562411; T(10,562)=10.01703519; T(10,563)=10.02845940; T(10,564)=10.03989682; T(10,565)=10.05134755; T(10,566)=10.06281167; T(10,567)=10.07428928; T(10,568)=10.08578047; T(10,569)=10.09728533; T(10,570)=10.10880395; T(10,571)=10.12033642; T(10,572)=10.13188285; T(10,573)=10.14344332; T(10,574)=10.15501792; T(10,575)=10.16660676; T(10,576)=10.17820993; T(10,577)=10.18982752; T(10,578)=10.20145963; T(10,579)=10.21310636; T(10,580)=10.22476781; T(10,581)=10.23644407; T(10,582)=10.24813524; T(10,583)=10.25984142; T(10,584)=10.27156271; T(10,585)=10.28329922; T(10,586)=10.29505104; T(10,587)=10.30681827; T(10,588)=10.31860102; T(10,589)=10.33039938; T(10,590)=10.34221347; T(10,591)=10.35404338; T(10,592)=10.36588923; T(10,593)=10.37775111; T(10,594)=10.38962913; T(10,595)=10.40152340; T(10,596)=10.41343402; T(10,597)=10.42536110; T(10,598)=10.43730476; T(10,599)=10.44926509; T(10,600)=10.46124221; T(10,601)=10.47323623; T(10,602)=10.48524726; T(10,603)=10.49727541; T(10,604)=10.50932080; T(10,605)=10.52138353; T(10,606)=10.53346373; T(10,607)=10.54556149; T(10,608)=10.55767695; T(10,609)=10.56981022; T(10,610)=10.58196140; T(10,611)=10.59413063; T(10,612)=10.60631801; T(10,613)=10.61852367; T(10,614)=10.63074773; T(10,615)=10.64299031; T(10,616)=10.65525152; T(10,617)=10.66753150; T(10,618)=10.67983035; T(10,619)=10.69214822; T(10,620)=10.70448521; T(10,621)=10.71684147; T(10,622)=10.72921710; T(10,623)=10.74161225; T(10,624)=10.75402703; T(10,625)=10.76646158; T(10,626)=10.77891603; T(10,627)=10.79139051; T(10,628)=10.80388514; T(10,629)=10.81640006; T(10,630)=10.82893541; T(10,631)=10.84149132; T(10,632)=10.85406792; T(10,633)=10.86666535; T(10,634)=10.87928375; T(10,635)=10.89192325; T(10,636)=10.90458400; T(10,637)=10.91726613; T(10,638)=10.92996979; T(10,639)=10.94269511; T(10,640)=10.95544225; T(10,641)=10.96821134; T(10,642)=10.98100253; T(10,643)=10.99381596; T(10,644)=11.00665180; T(10,645)=11.01951017; T(10,646)=11.03239124; T(10,647)=11.04529515; T(10,648)=11.05822206; T(10,649)=11.07117211; T(10,650)=11.08414547; T(10,651)=11.09714228; T(10,652)=11.11016271; T(10,653)=11.12320691; T(10,654)=11.13627505; T(10,655)=11.14936727; T(10,656)=11.16248375; T(10,657)=11.17562465; T(10,658)=11.18879012; T(10,659)=11.20198035; T(10,660)=11.21519548; T(10,661)=11.22843570; T(10,662)=11.24170116; T(10,663)=11.25499205; T(10,664)=11.26830853; T(10,665)=11.28165077; T(10,666)=11.29501896; T(10,667)=11.30841326; T(10,668)=11.32183386; T(10,669)=11.33528093; T(10,670)=11.34875466; T(10,671)=11.36225523; T(10,672)=11.37578282; T(10,673)=11.38933761; T(10,674)=11.40291980; T(10,675)=11.41652958; T(10,676)=11.43016712; T(10,677)=11.44383263; T(10,678)=11.45752629; T(10,679)=11.47124831; T(10,680)=11.48499887; T(10,681)=11.49877818; T(10,682)=11.51258644; T(10,683)=11.52642385; T(10,684)=11.54029061; T(10,685)=11.55418692; T(10,686)=11.56811300; T(10,687)=11.58206906; T(10,688)=11.59605530; T(10,689)=11.61007193; T(10,690)=11.62411918; T(10,691)=11.63819726; T(10,692)=11.65230638; T(10,693)=11.66644677; T(10,694)=11.68061865; T(10,695)=11.69482224; T(10,696)=11.70905777; T(10,697)=11.72332548; T(10,698)=11.73762558; T(10,699)=11.75195832; T(10,700)=11.76632392; T(10,701)=11.78072263; T(10,702)=11.79515468; T(10,703)=11.80962032; T(10,704)=11.82411979; T(10,705)=11.83865334; T(10,706)=11.85322121; T(10,707)=11.86782366; T(10,708)=11.88246093; T(10,709)=11.89713330; T(10,710)=11.91184101; T(10,711)=11.92658432; T(10,712)=11.94136350; T(10,713)=11.95617882; T(10,714)=11.97103054; T(10,715)=11.98591893; T(10,716)=12.00084428; T(10,717)=12.01580685; T(10,718)=12.03080692; T(10,719)=12.04584478; T(10,720)=12.06092072; T(10,721)=12.07603501; T(10,722)=12.09118796; T(10,723)=12.10637985; T(10,724)=12.12161098; T(10,725)=12.13688166; T(10,726)=12.15219219; T(10,727)=12.16754286; T(10,728)=12.18293400; T(10,729)=12.19836592; T(10,730)=12.21383892; T(10,731)=12.22935333; T(10,732)=12.24490948; T(10,733)=12.26050769; T(10,734)=12.27614828; T(10,735)=12.29183160; T(10,736)=12.30755797; T(10,737)=12.32332775; T(10,738)=12.33914127; T(10,739)=12.35499888; T(10,740)=12.37090093; T(10,741)=12.38684778; T(10,742)=12.40283980; T(10,743)=12.41887733; T(10,744)=12.43496075; T(10,745)=12.45109044; T(10,746)=12.46726676; T(10,747)=12.48349010; T(10,748)=12.49976084; T(10,749)=12.51607938; T(10,750)=12.53244610; T(10,751)=12.54886140; T(10,752)=12.56532568; T(10,753)=12.58183936; T(10,754)=12.59840284; T(10,755)=12.61501654; T(10,756)=12.63168088; T(10,757)=12.64839630; T(10,758)=12.66516321; T(10,759)=12.68198206; T(10,760)=12.69885329; T(10,761)=12.71577734; T(10,762)=12.73275467; T(10,763)=12.74978574; T(10,764)=12.76687101; T(10,765)=12.78401095; T(10,766)=12.80120604; T(10,767)=12.81845675; T(10,768)=12.83576358; T(10,769)=12.85312701; T(10,770)=12.87054755; T(10,771)=12.88802570; T(10,772)=12.90556198; T(10,773)=12.92315689; T(10,774)=12.94081098; T(10,775)=12.95852476; T(10,776)=12.97629878; T(10,777)=12.99413358; T(10,778)=13.01202971; T(10,779)=13.02998775; T(10,780)=13.04800824; T(10,781)=13.06609177; T(10,782)=13.08423892; T(10,783)=13.10245028; T(10,784)=13.12072645; T(10,785)=13.13906803; T(10,786)=13.15747564; T(10,787)=13.17594990; T(10,788)=13.19449144; T(10,789)=13.21310090; T(10,790)=13.23177893; T(10,791)=13.25052619; T(10,792)=13.26934334; T(10,793)=13.28823105; T(10,794)=13.30719002; T(10,795)=13.32622094; T(10,796)=13.34532452; T(10,797)=13.36450146; T(10,798)=13.38375250; T(10,799)=13.40307836; T(10,800)=13.42247980; T(10,801)=13.44195757; T(10,802)=13.46151245; T(10,803)=13.48114520; T(10,804)=13.50085663; T(10,805)=13.52064753; T(10,806)=13.54051871; T(10,807)=13.56047102; T(10,808)=13.58050527; T(10,809)=13.60062234; T(10,810)=13.62082308; T(10,811)=13.64110836; T(10,812)=13.66147909; T(10,813)=13.68193617; T(10,814)=13.70248052; T(10,815)=13.72311306; T(10,816)=13.74383476; T(10,817)=13.76464658; T(10,818)=13.78554949; T(10,819)=13.80654449; T(10,820)=13.82763260; T(10,821)=13.84881483; T(10,822)=13.87009224; T(10,823)=13.89146588; T(10,824)=13.91293683; T(10,825)=13.93450620; T(10,826)=13.95617510; T(10,827)=13.97794465; T(10,828)=13.99981602; T(10,829)=14.02179037; T(10,830)=14.04386891; T(10,831)=14.06605283; T(10,832)=14.08834338; T(10,833)=14.11074182; T(10,834)=14.13324941; T(10,835)=14.15586747; T(10,836)=14.17859730; T(10,837)=14.20144027; T(10,838)=14.22439774; T(10,839)=14.24747110; T(10,840)=14.27066178; T(10,841)=14.29397123; T(10,842)=14.31740091; T(10,843)=14.34095233; T(10,844)=14.36462702; T(10,845)=14.38842654; T(10,846)=14.41235247; T(10,847)=14.43640643; T(10,848)=14.46059006; T(10,849)=14.48490506; T(10,850)=14.50935312; T(10,851)=14.53393600; T(10,852)=14.55865547; T(10,853)=14.58351335; T(10,854)=14.60851150; T(10,855)=14.63365179; T(10,856)=14.65893616; T(10,857)=14.68436658; T(10,858)=14.70994504; T(10,859)=14.73567360; T(10,860)=14.76155435; T(10,861)=14.78758942; T(10,862)=14.81378098; T(10,863)=14.84013127; T(10,864)=14.86664256; T(10,865)=14.89331716; T(10,866)=14.92015745; T(10,867)=14.94716586; T(10,868)=14.97434485; T(10,869)=15.00169697; T(10,870)=15.02922480; T(10,871)=15.05693099; T(10,872)=15.08481824; T(10,873)=15.11288932; T(10,874)=15.14114708; T(10,875)=15.16959439; T(10,876)=15.19823425; T(10,877)=15.22706967; T(10,878)=15.25610377; T(10,879)=15.28533974; T(10,880)=15.31478083; T(10,881)=15.34443039; T(10,882)=15.37429183; T(10,883)=15.40436868; T(10,884)=15.43466452; T(10,885)=15.46518304; T(10,886)=15.49592802; T(10,887)=15.52690335; T(10,888)=15.55811299; T(10,889)=15.58956104; T(10,890)=15.62125168; T(10,891)=15.65318922; T(10,892)=15.68537808; T(10,893)=15.71782279; T(10,894)=15.75052802; T(10,895)=15.78349856; T(10,896)=15.81673933; T(10,897)=15.85025541; T(10,898)=15.88405199; T(10,899)=15.91813444; T(10,900)=15.95250828; T(10,901)=15.98717917; T(10,902)=16.02215297; T(10,903)=16.05743569; T(10,904)=16.09303353; T(10,905)=16.12895289; T(10,906)=16.16520035; T(10,907)=16.20178271; T(10,908)=16.23870697; T(10,909)=16.27598036; T(10,910)=16.31361036; T(10,911)=16.35160466; T(10,912)=16.38997123; T(10,913)=16.42871830; T(10,914)=16.46785436; T(10,915)=16.50738822; T(10,916)=16.54732898; T(10,917)=16.58768604; T(10,918)=16.62846915; T(10,919)=16.66968842; T(10,920)=16.71135430; T(10,921)=16.75347765; T(10,922)=16.79606970; T(10,923)=16.83914214; T(10,924)=16.88270707; T(10,925)=16.92677708; T(10,926)=16.97136525; T(10,927)=17.01648517; T(10,928)=17.06215098; T(10,929)=17.10837739; T(10,930)=17.15517973; T(10,931)=17.20257397; T(10,932)=17.25057674; T(10,933)=17.29920541; T(10,934)=17.34847809; T(10,935)=17.39841372; T(10,936)=17.44903207; T(10,937)=17.50035382; T(10,938)=17.55240063; T(10,939)=17.60519515; T(10,940)=17.65876116; T(10,941)=17.71312357; T(10,942)=17.76830853; T(10,943)=17.82434352; T(10,944)=17.88125743; T(10,945)=17.93908067; T(10,946)=17.99784525; T(10,947)=18.05758492; T(10,948)=18.11833532; T(10,949)=18.18013406; T(10,950)=18.24302093; T(10,951)=18.30703805; T(10,952)=18.37223005; T(10,953)=18.43864428; T(10,954)=18.50633104; T(10,955)=18.57534383; T(10,956)=18.64573962; T(10,957)=18.71757918; T(10,958)=18.79092740; T(10,959)=18.86585369; T(10,960)=18.94243241; T(10,961)=19.02074335; T(10,962)=19.10087228; T(10,963)=19.18291155; T(10,964)=19.26696082; T(10,965)=19.35312780; T(10,966)=19.44152922; T(10,967)=19.53229177; T(10,968)=19.62555340; T(10,969)=19.72146456; T(10,970)=19.82018990; T(10,971)=19.92191001; T(10,972)=20.02682363; T(10,973)=20.13515015; T(10,974)=20.24713259; T(10,975)=20.36304113; T(10,976)=20.48317735; T(10,977)=20.60787929; T(10,978)=20.73752761; T(10,979)=20.87255314; T(10,980)=21.01344608; T(10,981)=21.16076754; T(10,982)=21.31516393; T(10,983)=21.47738530; T(10,984)=21.64830882; T(10,985)=21.82896937; T(10,986)=22.02059999; T(10,987)=22.22468610; T(10,988)=22.44303984; T(10,989)=22.67790394; T(10,990)=22.93210061; T(10,991)=23.20925116; T(10,992)=23.51411084; T(10,993)=23.85310050; T(10,994)=24.23519263; T(10,995)=24.67348033; T(10,996)=25.18817957; T(10,997)=25.81299977; T(10,998)=26.61078512; T(10,999)=27.72164723; T(10,1000)=29.58829845; T(10,1001)=35.56401394; T(10,1002)=41.29615797; end; % Check arguments if (dof > 0) & (dof <= length(DOFS)), if (alpha >= min(LEVELS)) & (alpha <= max(LEVELS)), % Determine lookup indices of alpha % Find start index in array of levels [mindiff,imin] = min(abs(LEVELS-alpha)); % Set correct start index and iterate i = imin-1*(imin>1); found = 0; while (i < length(LEVELS)) & ~found, diff1 = LEVELS(i) - alpha; diff2 = LEVELS(i+1) - alpha; if sign(diff1) == 0, x = T(dof,i); found = 1; elseif sign(diff2) == 0, x = T(dof,i+1); found = 1; elseif sign(diff1)*sign(diff2) < 0, x1 = T(dof,i); x2 = T(dof,i+1); % Interpolate linearly x = x2 - (LEVELS(i+1)-alpha)*(x2-x1)/(LEVELS(i+1)-LEVELS(i)); found = 1; end; i = i + 1; end; else error('chi2invtable: Unsupported alpha level (either too small or too big).'); end; else error('chi2invtable: Unsupported number of degrees of freedom.'); end;
github
Rookfighter/robmap-ws17-18-master
drawellipse.m
.m
robmap-ws17-18-master/ex01/octave/tools/drawellipse.m
994
utf_8
c0100a4cf263e6e87026b3214221e84d
%DRAWELLIPSE Draw ellipse. % DRAWELLIPSE(X,A,B,COLOR) draws an ellipse at X = [x y theta] % with half axes A and B. Theta is the inclination angle of A, % regardless if A is smaller or greater than B. COLOR is a % [r g b]-vector or a color string such as 'r' or 'g'. % % H = DRAWELLIPSE(...) returns the graphic handle H. % % See also DRAWPROBELLIPSE. % v.1.0-v.1.1, Aug.97-Jan.03, Kai Arras, ASL-EPFL % v.1.2, 03.12.03, Kai Arras, CAS-KTH: (x,a,b) interface function h = drawellipse(x,a,b,color); % Constants NPOINTS = 100; % point density or resolution % Compose point vector ivec = 0:2*pi/NPOINTS:2*pi; % index vector p(1,:) = a*cos(ivec); % 2 x n matrix which p(2,:) = b*sin(ivec); % hold ellipse points % Translate and rotate xo = x(1); yo = x(2); angle = x(3); R = [cos(angle) -sin(angle); sin(angle) cos(angle)]; T = [xo; yo]*ones(1,length(ivec)); p = R*p + T; % Plot h = plot(p(1,:),p(2,:),'Color',color, 'linewidth', 2);
github
Rookfighter/robmap-ws17-18-master
drawprobellipse.m
.m
robmap-ws17-18-master/ex05/octave/tools/drawprobellipse.m
1,803
utf_8
90c41a3bebf740e86100f47974753eb3
%DRAWPROBELLIPSE Draw elliptic probability region of a Gaussian in 2D. % DRAWPROBELLIPSE(X,C,ALPHA,COLOR) draws the elliptic iso-probabi- % lity contour of a Gaussian distributed bivariate random vector X % at the significance level ALPHA. The ellipse is centered at X = % [x; y] where C is the associated 2x2 covariance matrix. COLOR is % a [r g b]-vector or a color string such as 'r' or 'g'. % % X and C can also be of size 3x1 and 3x3 respectively. % % For proper scaling, the function CHI2INVTABLE is employed to % avoid the use of CHI2INV from the Matlab statistics toolbox. % % In case of a negative definite matrix C, the ellipse collapses % to a line which is drawn instead. % % H = DRAWPROBELLIPSE(...) returns the graphic handle H. % % See also DRAWELLIPSE, CHI2INVTABLE, CHI2INV. % v.1.0-v.1.3, 97-Jan.03, Kai Arras, ASL-EPFL % v.1.4, 03.12.03, Kai Arras, CAS-KTH: toolbox version function h = drawprobellipse(x,C,alpha,color); % Calculate unscaled half axes sxx = C(1,1); syy = C(2,2); sxy = C(1,2); a = sqrt(0.5*(sxx+syy+sqrt((sxx-syy)^2+4*sxy^2))); % always greater b = sqrt(0.5*(sxx+syy-sqrt((sxx-syy)^2+4*sxy^2))); % always smaller % Remove imaginary parts in case of neg. definite C if ~isreal(a), a = real(a); end; if ~isreal(b), b = real(b); end; % Scaling in order to reflect specified probability a = a*sqrt(chi2invtable(alpha,2)); b = b*sqrt(chi2invtable(alpha,2)); % Look where the greater half axis belongs to if sxx < syy, swap = a; a = b; b = swap; end; % Calculate inclination (numerically stable) if sxx ~= syy, angle = 0.5*atan(2*sxy/(sxx-syy)); elseif sxy == 0, angle = 0; % angle doesn't matter elseif sxy > 0, angle = pi/4; elseif sxy < 0, angle = -pi/4; end; x(3) = angle; % Draw ellipse h = drawellipse(x,a,b,color);
github
Rookfighter/robmap-ws17-18-master
chi2invtable.m
.m
robmap-ws17-18-master/ex05/octave/tools/chi2invtable.m
231,909
utf_8
d16aef6be089f46039e76c200f7577d8
%CHI2INVTABLE Lookup table of the inverse of the chi-square cdf. % X = CHI2INVTABLE(P,V) returns the inverse of the chi-square cumu- % lative distribution function (cdf) with V degrees of freedom at % the value P. The chi-square cdf with V degrees of freedom, is % the gamma cdf with parameters V/2 and 2. % % Opposed to CHI2INV of the Matlab statistics toolbox which might % be not part of your Matlab installation, this is a lookup table % which has the side effect of being much faster than CHI2INV. % However, as any lookup table is a collection of sample points, % accuracy is smaller and between the sample points of the cdf, a % linear interpolation is made. % % Currently, the function supports the degrees of freedom V between % 1 and 10 and the probability levels P between 0 and 0.9999 in steps % of 0.0001 and the level of 0.99999. % % See also CHI2INV. % v.1.0, 18.12.03, Kai Arras, CAS-KTH function x = chi2invtable(alpha,dof); persistent T LEVELS DOFS; % Check whether table is already in memory vars = whos; it = strcmp({vars.name},'T'); if (sum(it) == 0) | (prod(vars(find(it)).size) == 0), LEVELS = [0:0.001:0.999, 0.9999, 0.99999]; DOFS = 1:10; T( 1, 1)= 0.00000000; T( 1, 2)= 0.00000157; T( 1, 3)= 0.00000628; T( 1, 4)= 0.00001414; T( 1, 5)= 0.00002513; T( 1, 6)= 0.00003927; T( 1, 7)= 0.00005655; T( 1, 8)= 0.00007697; T( 1, 9)= 0.00010053; T( 1,10)= 0.00012724; T( 1,11)= 0.00015709; T( 1,12)= 0.00019008; T( 1,13)= 0.00022621; T( 1,14)= 0.00026549; T( 1,15)= 0.00030791; T( 1,16)= 0.00035347; T( 1,17)= 0.00040218; T( 1,18)= 0.00045403; T( 1,19)= 0.00050902; T( 1,20)= 0.00056716; T( 1,21)= 0.00062845; T( 1,22)= 0.00069288; T( 1,23)= 0.00076046; T( 1,24)= 0.00083118; T( 1,25)= 0.00090505; T( 1,26)= 0.00098207; T( 1,27)= 0.00106223; T( 1,28)= 0.00114555; T( 1,29)= 0.00123201; T( 1,30)= 0.00132162; T( 1,31)= 0.00141438; T( 1,32)= 0.00151030; T( 1,33)= 0.00160936; T( 1,34)= 0.00171157; T( 1,35)= 0.00181694; T( 1,36)= 0.00192546; T( 1,37)= 0.00203713; T( 1,38)= 0.00215196; T( 1,39)= 0.00226995; T( 1,40)= 0.00239109; T( 1,41)= 0.00251538; T( 1,42)= 0.00264284; T( 1,43)= 0.00277345; T( 1,44)= 0.00290722; T( 1,45)= 0.00304415; T( 1,46)= 0.00318424; T( 1,47)= 0.00332749; T( 1,48)= 0.00347391; T( 1,49)= 0.00362349; T( 1,50)= 0.00377623; T( 1,51)= 0.00393214; T( 1,52)= 0.00409122; T( 1,53)= 0.00425346; T( 1,54)= 0.00441887; T( 1,55)= 0.00458745; T( 1,56)= 0.00475920; T( 1,57)= 0.00493412; T( 1,58)= 0.00511222; T( 1,59)= 0.00529349; T( 1,60)= 0.00547793; T( 1,61)= 0.00566555; T( 1,62)= 0.00585635; T( 1,63)= 0.00605033; T( 1,64)= 0.00624748; T( 1,65)= 0.00644782; T( 1,66)= 0.00665134; T( 1,67)= 0.00685804; T( 1,68)= 0.00706793; T( 1,69)= 0.00728100; T( 1,70)= 0.00749726; T( 1,71)= 0.00771672; T( 1,72)= 0.00793936; T( 1,73)= 0.00816519; T( 1,74)= 0.00839422; T( 1,75)= 0.00862644; T( 1,76)= 0.00886185; T( 1,77)= 0.00910047; T( 1,78)= 0.00934228; T( 1,79)= 0.00958730; T( 1,80)= 0.00983551; T( 1,81)= 0.01008693; T( 1,82)= 0.01034156; T( 1,83)= 0.01059939; T( 1,84)= 0.01086043; T( 1,85)= 0.01112468; T( 1,86)= 0.01139215; T( 1,87)= 0.01166283; T( 1,88)= 0.01193672; T( 1,89)= 0.01221383; T( 1,90)= 0.01249416; T( 1,91)= 0.01277771; T( 1,92)= 0.01306448; T( 1,93)= 0.01335448; T( 1,94)= 0.01364771; T( 1,95)= 0.01394416; T( 1,96)= 0.01424384; T( 1,97)= 0.01454676; T( 1,98)= 0.01485290; T( 1,99)= 0.01516229; T( 1,100)= 0.01547491; T( 1,101)= 0.01579077; T( 1,102)= 0.01610988; T( 1,103)= 0.01643223; T( 1,104)= 0.01675782; T( 1,105)= 0.01708666; T( 1,106)= 0.01741876; T( 1,107)= 0.01775410; T( 1,108)= 0.01809270; T( 1,109)= 0.01843456; T( 1,110)= 0.01877968; T( 1,111)= 0.01912805; T( 1,112)= 0.01947969; T( 1,113)= 0.01983460; T( 1,114)= 0.02019278; T( 1,115)= 0.02055422; T( 1,116)= 0.02091894; T( 1,117)= 0.02128693; T( 1,118)= 0.02165820; T( 1,119)= 0.02203275; T( 1,120)= 0.02241059; T( 1,121)= 0.02279170; T( 1,122)= 0.02317611; T( 1,123)= 0.02356380; T( 1,124)= 0.02395479; T( 1,125)= 0.02434907; T( 1,126)= 0.02474665; T( 1,127)= 0.02514753; T( 1,128)= 0.02555171; T( 1,129)= 0.02595920; T( 1,130)= 0.02636999; T( 1,131)= 0.02678410; T( 1,132)= 0.02720152; T( 1,133)= 0.02762225; T( 1,134)= 0.02804631; T( 1,135)= 0.02847368; T( 1,136)= 0.02890438; T( 1,137)= 0.02933841; T( 1,138)= 0.02977577; T( 1,139)= 0.03021646; T( 1,140)= 0.03066048; T( 1,141)= 0.03110785; T( 1,142)= 0.03155855; T( 1,143)= 0.03201260; T( 1,144)= 0.03247000; T( 1,145)= 0.03293075; T( 1,146)= 0.03339485; T( 1,147)= 0.03386231; T( 1,148)= 0.03433313; T( 1,149)= 0.03480731; T( 1,150)= 0.03528486; T( 1,151)= 0.03576578; T( 1,152)= 0.03625007; T( 1,153)= 0.03673773; T( 1,154)= 0.03722878; T( 1,155)= 0.03772321; T( 1,156)= 0.03822102; T( 1,157)= 0.03872222; T( 1,158)= 0.03922681; T( 1,159)= 0.03973480; T( 1,160)= 0.04024619; T( 1,161)= 0.04076098; T( 1,162)= 0.04127917; T( 1,163)= 0.04180078; T( 1,164)= 0.04232579; T( 1,165)= 0.04285423; T( 1,166)= 0.04338608; T( 1,167)= 0.04392135; T( 1,168)= 0.04446006; T( 1,169)= 0.04500219; T( 1,170)= 0.04554776; T( 1,171)= 0.04609676; T( 1,172)= 0.04664921; T( 1,173)= 0.04720510; T( 1,174)= 0.04776444; T( 1,175)= 0.04832724; T( 1,176)= 0.04889349; T( 1,177)= 0.04946320; T( 1,178)= 0.05003637; T( 1,179)= 0.05061301; T( 1,180)= 0.05119313; T( 1,181)= 0.05177672; T( 1,182)= 0.05236379; T( 1,183)= 0.05295434; T( 1,184)= 0.05354838; T( 1,185)= 0.05414592; T( 1,186)= 0.05474695; T( 1,187)= 0.05535147; T( 1,188)= 0.05595951; T( 1,189)= 0.05657105; T( 1,190)= 0.05718611; T( 1,191)= 0.05780468; T( 1,192)= 0.05842677; T( 1,193)= 0.05905239; T( 1,194)= 0.05968153; T( 1,195)= 0.06031421; T( 1,196)= 0.06095043; T( 1,197)= 0.06159019; T( 1,198)= 0.06223350; T( 1,199)= 0.06288036; T( 1,200)= 0.06353078; T( 1,201)= 0.06418475; T( 1,202)= 0.06484230; T( 1,203)= 0.06550341; T( 1,204)= 0.06616809; T( 1,205)= 0.06683635; T( 1,206)= 0.06750820; T( 1,207)= 0.06818363; T( 1,208)= 0.06886266; T( 1,209)= 0.06954528; T( 1,210)= 0.07023151; T( 1,211)= 0.07092134; T( 1,212)= 0.07161479; T( 1,213)= 0.07231185; T( 1,214)= 0.07301253; T( 1,215)= 0.07371684; T( 1,216)= 0.07442478; T( 1,217)= 0.07513636; T( 1,218)= 0.07585157; T( 1,219)= 0.07657044; T( 1,220)= 0.07729295; T( 1,221)= 0.07801912; T( 1,222)= 0.07874896; T( 1,223)= 0.07948246; T( 1,224)= 0.08021963; T( 1,225)= 0.08096048; T( 1,226)= 0.08170501; T( 1,227)= 0.08245322; T( 1,228)= 0.08320514; T( 1,229)= 0.08396074; T( 1,230)= 0.08472006; T( 1,231)= 0.08548308; T( 1,232)= 0.08624982; T( 1,233)= 0.08702027; T( 1,234)= 0.08779446; T( 1,235)= 0.08857237; T( 1,236)= 0.08935402; T( 1,237)= 0.09013941; T( 1,238)= 0.09092855; T( 1,239)= 0.09172144; T( 1,240)= 0.09251809; T( 1,241)= 0.09331851; T( 1,242)= 0.09412270; T( 1,243)= 0.09493066; T( 1,244)= 0.09574241; T( 1,245)= 0.09655795; T( 1,246)= 0.09737728; T( 1,247)= 0.09820041; T( 1,248)= 0.09902734; T( 1,249)= 0.09985809; T( 1,250)= 0.10069265; T( 1,251)= 0.10153104; T( 1,252)= 0.10237326; T( 1,253)= 0.10321932; T( 1,254)= 0.10406922; T( 1,255)= 0.10492297; T( 1,256)= 0.10578057; T( 1,257)= 0.10664204; T( 1,258)= 0.10750737; T( 1,259)= 0.10837658; T( 1,260)= 0.10924967; T( 1,261)= 0.11012664; T( 1,262)= 0.11100751; T( 1,263)= 0.11189228; T( 1,264)= 0.11278096; T( 1,265)= 0.11367355; T( 1,266)= 0.11457005; T( 1,267)= 0.11547049; T( 1,268)= 0.11637486; T( 1,269)= 0.11728317; T( 1,270)= 0.11819542; T( 1,271)= 0.11911163; T( 1,272)= 0.12003180; T( 1,273)= 0.12095594; T( 1,274)= 0.12188405; T( 1,275)= 0.12281614; T( 1,276)= 0.12375223; T( 1,277)= 0.12469230; T( 1,278)= 0.12563638; T( 1,279)= 0.12658447; T( 1,280)= 0.12753658; T( 1,281)= 0.12849271; T( 1,282)= 0.12945287; T( 1,283)= 0.13041707; T( 1,284)= 0.13138531; T( 1,285)= 0.13235761; T( 1,286)= 0.13333397; T( 1,287)= 0.13431440; T( 1,288)= 0.13529891; T( 1,289)= 0.13628749; T( 1,290)= 0.13728017; T( 1,291)= 0.13827695; T( 1,292)= 0.13927783; T( 1,293)= 0.14028283; T( 1,294)= 0.14129195; T( 1,295)= 0.14230520; T( 1,296)= 0.14332259; T( 1,297)= 0.14434412; T( 1,298)= 0.14536981; T( 1,299)= 0.14639965; T( 1,300)= 0.14743367; T( 1,301)= 0.14847186; T( 1,302)= 0.14951424; T( 1,303)= 0.15056081; T( 1,304)= 0.15161159; T( 1,305)= 0.15266657; T( 1,306)= 0.15372578; T( 1,307)= 0.15478921; T( 1,308)= 0.15585687; T( 1,309)= 0.15692878; T( 1,310)= 0.15800494; T( 1,311)= 0.15908536; T( 1,312)= 0.16017005; T( 1,313)= 0.16125902; T( 1,314)= 0.16235228; T( 1,315)= 0.16344983; T( 1,316)= 0.16455169; T( 1,317)= 0.16565785; T( 1,318)= 0.16676834; T( 1,319)= 0.16788316; T( 1,320)= 0.16900232; T( 1,321)= 0.17012583; T( 1,322)= 0.17125370; T( 1,323)= 0.17238593; T( 1,324)= 0.17352254; T( 1,325)= 0.17466354; T( 1,326)= 0.17580893; T( 1,327)= 0.17695872; T( 1,328)= 0.17811293; T( 1,329)= 0.17927156; T( 1,330)= 0.18043462; T( 1,331)= 0.18160212; T( 1,332)= 0.18277408; T( 1,333)= 0.18395050; T( 1,334)= 0.18513138; T( 1,335)= 0.18631675; T( 1,336)= 0.18750661; T( 1,337)= 0.18870096; T( 1,338)= 0.18989983; T( 1,339)= 0.19110322; T( 1,340)= 0.19231114; T( 1,341)= 0.19352359; T( 1,342)= 0.19474060; T( 1,343)= 0.19596217; T( 1,344)= 0.19718831; T( 1,345)= 0.19841903; T( 1,346)= 0.19965434; T( 1,347)= 0.20089425; T( 1,348)= 0.20213877; T( 1,349)= 0.20338792; T( 1,350)= 0.20464170; T( 1,351)= 0.20590013; T( 1,352)= 0.20716320; T( 1,353)= 0.20843095; T( 1,354)= 0.20970337; T( 1,355)= 0.21098048; T( 1,356)= 0.21226228; T( 1,357)= 0.21354880; T( 1,358)= 0.21484003; T( 1,359)= 0.21613600; T( 1,360)= 0.21743670; T( 1,361)= 0.21874217; T( 1,362)= 0.22005239; T( 1,363)= 0.22136740; T( 1,364)= 0.22268719; T( 1,365)= 0.22401178; T( 1,366)= 0.22534118; T( 1,367)= 0.22667540; T( 1,368)= 0.22801446; T( 1,369)= 0.22935836; T( 1,370)= 0.23070713; T( 1,371)= 0.23206076; T( 1,372)= 0.23341927; T( 1,373)= 0.23478268; T( 1,374)= 0.23615099; T( 1,375)= 0.23752422; T( 1,376)= 0.23890238; T( 1,377)= 0.24028548; T( 1,378)= 0.24167354; T( 1,379)= 0.24306657; T( 1,380)= 0.24446457; T( 1,381)= 0.24586757; T( 1,382)= 0.24727557; T( 1,383)= 0.24868859; T( 1,384)= 0.25010664; T( 1,385)= 0.25152973; T( 1,386)= 0.25295788; T( 1,387)= 0.25439110; T( 1,388)= 0.25582940; T( 1,389)= 0.25727280; T( 1,390)= 0.25872130; T( 1,391)= 0.26017493; T( 1,392)= 0.26163369; T( 1,393)= 0.26309761; T( 1,394)= 0.26456668; T( 1,395)= 0.26604093; T( 1,396)= 0.26752037; T( 1,397)= 0.26900501; T( 1,398)= 0.27049487; T( 1,399)= 0.27198997; T( 1,400)= 0.27349030; T( 1,401)= 0.27499590; T( 1,402)= 0.27650677; T( 1,403)= 0.27802292; T( 1,404)= 0.27954438; T( 1,405)= 0.28107116; T( 1,406)= 0.28260326; T( 1,407)= 0.28414071; T( 1,408)= 0.28568353; T( 1,409)= 0.28723171; T( 1,410)= 0.28878529; T( 1,411)= 0.29034427; T( 1,412)= 0.29190867; T( 1,413)= 0.29347850; T( 1,414)= 0.29505378; T( 1,415)= 0.29663453; T( 1,416)= 0.29822076; T( 1,417)= 0.29981248; T( 1,418)= 0.30140972; T( 1,419)= 0.30301248; T( 1,420)= 0.30462079; T( 1,421)= 0.30623465; T( 1,422)= 0.30785408; T( 1,423)= 0.30947911; T( 1,424)= 0.31110974; T( 1,425)= 0.31274600; T( 1,426)= 0.31438789; T( 1,427)= 0.31603544; T( 1,428)= 0.31768866; T( 1,429)= 0.31934756; T( 1,430)= 0.32101217; T( 1,431)= 0.32268250; T( 1,432)= 0.32435857; T( 1,433)= 0.32604040; T( 1,434)= 0.32772799; T( 1,435)= 0.32942138; T( 1,436)= 0.33112057; T( 1,437)= 0.33282558; T( 1,438)= 0.33453644; T( 1,439)= 0.33625315; T( 1,440)= 0.33797574; T( 1,441)= 0.33970422; T( 1,442)= 0.34143862; T( 1,443)= 0.34317894; T( 1,444)= 0.34492521; T( 1,445)= 0.34667745; T( 1,446)= 0.34843567; T( 1,447)= 0.35019989; T( 1,448)= 0.35197013; T( 1,449)= 0.35374641; T( 1,450)= 0.35552875; T( 1,451)= 0.35731717; T( 1,452)= 0.35911168; T( 1,453)= 0.36091231; T( 1,454)= 0.36271907; T( 1,455)= 0.36453198; T( 1,456)= 0.36635106; T( 1,457)= 0.36817634; T( 1,458)= 0.37000783; T( 1,459)= 0.37184555; T( 1,460)= 0.37368952; T( 1,461)= 0.37553976; T( 1,462)= 0.37739629; T( 1,463)= 0.37925914; T( 1,464)= 0.38112831; T( 1,465)= 0.38300384; T( 1,466)= 0.38488574; T( 1,467)= 0.38677403; T( 1,468)= 0.38866874; T( 1,469)= 0.39056988; T( 1,470)= 0.39247748; T( 1,471)= 0.39439155; T( 1,472)= 0.39631213; T( 1,473)= 0.39823922; T( 1,474)= 0.40017286; T( 1,475)= 0.40211306; T( 1,476)= 0.40405984; T( 1,477)= 0.40601323; T( 1,478)= 0.40797325; T( 1,479)= 0.40993992; T( 1,480)= 0.41191327; T( 1,481)= 0.41389331; T( 1,482)= 0.41588007; T( 1,483)= 0.41787358; T( 1,484)= 0.41987384; T( 1,485)= 0.42188090; T( 1,486)= 0.42389477; T( 1,487)= 0.42591547; T( 1,488)= 0.42794303; T( 1,489)= 0.42997748; T( 1,490)= 0.43201883; T( 1,491)= 0.43406711; T( 1,492)= 0.43612234; T( 1,493)= 0.43818455; T( 1,494)= 0.44025376; T( 1,495)= 0.44233000; T( 1,496)= 0.44441330; T( 1,497)= 0.44650367; T( 1,498)= 0.44860114; T( 1,499)= 0.45070574; T( 1,500)= 0.45281749; T( 1,501)= 0.45493642; T( 1,502)= 0.45706256; T( 1,503)= 0.45919592; T( 1,504)= 0.46133654; T( 1,505)= 0.46348444; T( 1,506)= 0.46563966; T( 1,507)= 0.46780220; T( 1,508)= 0.46997211; T( 1,509)= 0.47214941; T( 1,510)= 0.47433412; T( 1,511)= 0.47652627; T( 1,512)= 0.47872590; T( 1,513)= 0.48093302; T( 1,514)= 0.48314767; T( 1,515)= 0.48536987; T( 1,516)= 0.48759966; T( 1,517)= 0.48983705; T( 1,518)= 0.49208209; T( 1,519)= 0.49433479; T( 1,520)= 0.49659519; T( 1,521)= 0.49886331; T( 1,522)= 0.50113919; T( 1,523)= 0.50342285; T( 1,524)= 0.50571433; T( 1,525)= 0.50801365; T( 1,526)= 0.51032084; T( 1,527)= 0.51263594; T( 1,528)= 0.51495897; T( 1,529)= 0.51728997; T( 1,530)= 0.51962896; T( 1,531)= 0.52197598; T( 1,532)= 0.52433106; T( 1,533)= 0.52669423; T( 1,534)= 0.52906552; T( 1,535)= 0.53144496; T( 1,536)= 0.53383259; T( 1,537)= 0.53622844; T( 1,538)= 0.53863254; T( 1,539)= 0.54104492; T( 1,540)= 0.54346562; T( 1,541)= 0.54589467; T( 1,542)= 0.54833210; T( 1,543)= 0.55077795; T( 1,544)= 0.55323224; T( 1,545)= 0.55569503; T( 1,546)= 0.55816633; T( 1,547)= 0.56064619; T( 1,548)= 0.56313464; T( 1,549)= 0.56563171; T( 1,550)= 0.56813744; T( 1,551)= 0.57065186; T( 1,552)= 0.57317502; T( 1,553)= 0.57570694; T( 1,554)= 0.57824767; T( 1,555)= 0.58079723; T( 1,556)= 0.58335568; T( 1,557)= 0.58592304; T( 1,558)= 0.58849935; T( 1,559)= 0.59108464; T( 1,560)= 0.59367897; T( 1,561)= 0.59628236; T( 1,562)= 0.59889485; T( 1,563)= 0.60151649; T( 1,564)= 0.60414731; T( 1,565)= 0.60678735; T( 1,566)= 0.60943665; T( 1,567)= 0.61209525; T( 1,568)= 0.61476319; T( 1,569)= 0.61744051; T( 1,570)= 0.62012726; T( 1,571)= 0.62282346; T( 1,572)= 0.62552918; T( 1,573)= 0.62824443; T( 1,574)= 0.63096928; T( 1,575)= 0.63370375; T( 1,576)= 0.63644790; T( 1,577)= 0.63920176; T( 1,578)= 0.64196538; T( 1,579)= 0.64473880; T( 1,580)= 0.64752207; T( 1,581)= 0.65031523; T( 1,582)= 0.65311832; T( 1,583)= 0.65593139; T( 1,584)= 0.65875449; T( 1,585)= 0.66158766; T( 1,586)= 0.66443094; T( 1,587)= 0.66728438; T( 1,588)= 0.67014804; T( 1,589)= 0.67302194; T( 1,590)= 0.67590615; T( 1,591)= 0.67880071; T( 1,592)= 0.68170567; T( 1,593)= 0.68462108; T( 1,594)= 0.68754698; T( 1,595)= 0.69048342; T( 1,596)= 0.69343046; T( 1,597)= 0.69638814; T( 1,598)= 0.69935651; T( 1,599)= 0.70233563; T( 1,600)= 0.70532554; T( 1,601)= 0.70832630; T( 1,602)= 0.71133796; T( 1,603)= 0.71436056; T( 1,604)= 0.71739417; T( 1,605)= 0.72043884; T( 1,606)= 0.72349461; T( 1,607)= 0.72656155; T( 1,608)= 0.72963970; T( 1,609)= 0.73272913; T( 1,610)= 0.73582988; T( 1,611)= 0.73894201; T( 1,612)= 0.74206558; T( 1,613)= 0.74520065; T( 1,614)= 0.74834727; T( 1,615)= 0.75150550; T( 1,616)= 0.75467539; T( 1,617)= 0.75785701; T( 1,618)= 0.76105041; T( 1,619)= 0.76425565; T( 1,620)= 0.76747280; T( 1,621)= 0.77070190; T( 1,622)= 0.77394304; T( 1,623)= 0.77719625; T( 1,624)= 0.78046161; T( 1,625)= 0.78373918; T( 1,626)= 0.78702902; T( 1,627)= 0.79033119; T( 1,628)= 0.79364576; T( 1,629)= 0.79697279; T( 1,630)= 0.80031234; T( 1,631)= 0.80366449; T( 1,632)= 0.80702930; T( 1,633)= 0.81040683; T( 1,634)= 0.81379714; T( 1,635)= 0.81720032; T( 1,636)= 0.82061642; T( 1,637)= 0.82404552; T( 1,638)= 0.82748768; T( 1,639)= 0.83094297; T( 1,640)= 0.83441147; T( 1,641)= 0.83789324; T( 1,642)= 0.84138836; T( 1,643)= 0.84489690; T( 1,644)= 0.84841893; T( 1,645)= 0.85195452; T( 1,646)= 0.85550376; T( 1,647)= 0.85906670; T( 1,648)= 0.86264344; T( 1,649)= 0.86623404; T( 1,650)= 0.86983858; T( 1,651)= 0.87345714; T( 1,652)= 0.87708980; T( 1,653)= 0.88073664; T( 1,654)= 0.88439773; T( 1,655)= 0.88807315; T( 1,656)= 0.89176299; T( 1,657)= 0.89546733; T( 1,658)= 0.89918625; T( 1,659)= 0.90291984; T( 1,660)= 0.90666817; T( 1,661)= 0.91043133; T( 1,662)= 0.91420941; T( 1,663)= 0.91800249; T( 1,664)= 0.92181066; T( 1,665)= 0.92563401; T( 1,666)= 0.92947263; T( 1,667)= 0.93332660; T( 1,668)= 0.93719601; T( 1,669)= 0.94108097; T( 1,670)= 0.94498155; T( 1,671)= 0.94889785; T( 1,672)= 0.95282996; T( 1,673)= 0.95677798; T( 1,674)= 0.96074201; T( 1,675)= 0.96472213; T( 1,676)= 0.96871846; T( 1,677)= 0.97273107; T( 1,678)= 0.97676009; T( 1,679)= 0.98080559; T( 1,680)= 0.98486769; T( 1,681)= 0.98894648; T( 1,682)= 0.99304207; T( 1,683)= 0.99715457; T( 1,684)= 1.00128407; T( 1,685)= 1.00543068; T( 1,686)= 1.00959452; T( 1,687)= 1.01377568; T( 1,688)= 1.01797427; T( 1,689)= 1.02219041; T( 1,690)= 1.02642421; T( 1,691)= 1.03067578; T( 1,692)= 1.03494522; T( 1,693)= 1.03923267; T( 1,694)= 1.04353822; T( 1,695)= 1.04786201; T( 1,696)= 1.05220414; T( 1,697)= 1.05656473; T( 1,698)= 1.06094391; T( 1,699)= 1.06534179; T( 1,700)= 1.06975851; T( 1,701)= 1.07419417; T( 1,702)= 1.07864891; T( 1,703)= 1.08312286; T( 1,704)= 1.08761614; T( 1,705)= 1.09212887; T( 1,706)= 1.09666120; T( 1,707)= 1.10121325; T( 1,708)= 1.10578516; T( 1,709)= 1.11037705; T( 1,710)= 1.11498907; T( 1,711)= 1.11962136; T( 1,712)= 1.12427404; T( 1,713)= 1.12894727; T( 1,714)= 1.13364118; T( 1,715)= 1.13835591; T( 1,716)= 1.14309162; T( 1,717)= 1.14784844; T( 1,718)= 1.15262653; T( 1,719)= 1.15742603; T( 1,720)= 1.16224709; T( 1,721)= 1.16708988; T( 1,722)= 1.17195453; T( 1,723)= 1.17684122; T( 1,724)= 1.18175009; T( 1,725)= 1.18668130; T( 1,726)= 1.19163503; T( 1,727)= 1.19661142; T( 1,728)= 1.20161064; T( 1,729)= 1.20663287; T( 1,730)= 1.21167827; T( 1,731)= 1.21674700; T( 1,732)= 1.22183925; T( 1,733)= 1.22695519; T( 1,734)= 1.23209498; T( 1,735)= 1.23725882; T( 1,736)= 1.24244689; T( 1,737)= 1.24765935; T( 1,738)= 1.25289640; T( 1,739)= 1.25815823; T( 1,740)= 1.26344503; T( 1,741)= 1.26875698; T( 1,742)= 1.27409427; T( 1,743)= 1.27945711; T( 1,744)= 1.28484570; T( 1,745)= 1.29026023; T( 1,746)= 1.29570090; T( 1,747)= 1.30116792; T( 1,748)= 1.30666150; T( 1,749)= 1.31218185; T( 1,750)= 1.31772917; T( 1,751)= 1.32330370; T( 1,752)= 1.32890563; T( 1,753)= 1.33453520; T( 1,754)= 1.34019263; T( 1,755)= 1.34587814; T( 1,756)= 1.35159197; T( 1,757)= 1.35733433; T( 1,758)= 1.36310547; T( 1,759)= 1.36890563; T( 1,760)= 1.37473505; T( 1,761)= 1.38059396; T( 1,762)= 1.38648262; T( 1,763)= 1.39240128; T( 1,764)= 1.39835018; T( 1,765)= 1.40432959; T( 1,766)= 1.41033976; T( 1,767)= 1.41638095; T( 1,768)= 1.42245344; T( 1,769)= 1.42855750; T( 1,770)= 1.43469339; T( 1,771)= 1.44086139; T( 1,772)= 1.44706178; T( 1,773)= 1.45329486; T( 1,774)= 1.45956089; T( 1,775)= 1.46586019; T( 1,776)= 1.47219304; T( 1,777)= 1.47855974; T( 1,778)= 1.48496060; T( 1,779)= 1.49139593; T( 1,780)= 1.49786603; T( 1,781)= 1.50437123; T( 1,782)= 1.51091184; T( 1,783)= 1.51748820; T( 1,784)= 1.52410062; T( 1,785)= 1.53074945; T( 1,786)= 1.53743503; T( 1,787)= 1.54415770; T( 1,788)= 1.55091780; T( 1,789)= 1.55771570; T( 1,790)= 1.56455174; T( 1,791)= 1.57142631; T( 1,792)= 1.57833976; T( 1,793)= 1.58529247; T( 1,794)= 1.59228482; T( 1,795)= 1.59931720; T( 1,796)= 1.60639000; T( 1,797)= 1.61350362; T( 1,798)= 1.62065845; T( 1,799)= 1.62785492; T( 1,800)= 1.63509343; T( 1,801)= 1.64237442; T( 1,802)= 1.64969829; T( 1,803)= 1.65706550; T( 1,804)= 1.66447649; T( 1,805)= 1.67193169; T( 1,806)= 1.67943157; T( 1,807)= 1.68697660; T( 1,808)= 1.69456723; T( 1,809)= 1.70220395; T( 1,810)= 1.70988725; T( 1,811)= 1.71761761; T( 1,812)= 1.72539554; T( 1,813)= 1.73322154; T( 1,814)= 1.74109613; T( 1,815)= 1.74901984; T( 1,816)= 1.75699320; T( 1,817)= 1.76501675; T( 1,818)= 1.77309105; T( 1,819)= 1.78121665; T( 1,820)= 1.78939413; T( 1,821)= 1.79762406; T( 1,822)= 1.80590704; T( 1,823)= 1.81424366; T( 1,824)= 1.82263454; T( 1,825)= 1.83108029; T( 1,826)= 1.83958155; T( 1,827)= 1.84813896; T( 1,828)= 1.85675316; T( 1,829)= 1.86542483; T( 1,830)= 1.87415465; T( 1,831)= 1.88294329; T( 1,832)= 1.89179147; T( 1,833)= 1.90069989; T( 1,834)= 1.90966928; T( 1,835)= 1.91870038; T( 1,836)= 1.92779395; T( 1,837)= 1.93695075; T( 1,838)= 1.94617156; T( 1,839)= 1.95545717; T( 1,840)= 1.96480841; T( 1,841)= 1.97422609; T( 1,842)= 1.98371106; T( 1,843)= 1.99326417; T( 1,844)= 2.00288630; T( 1,845)= 2.01257834; T( 1,846)= 2.02234120; T( 1,847)= 2.03217580; T( 1,848)= 2.04208310; T( 1,849)= 2.05206405; T( 1,850)= 2.06211963; T( 1,851)= 2.07225086; T( 1,852)= 2.08245874; T( 1,853)= 2.09274434; T( 1,854)= 2.10310870; T( 1,855)= 2.11355293; T( 1,856)= 2.12407812; T( 1,857)= 2.13468542; T( 1,858)= 2.14537598; T( 1,859)= 2.15615098; T( 1,860)= 2.16701163; T( 1,861)= 2.17795916; T( 1,862)= 2.18899483; T( 1,863)= 2.20011994; T( 1,864)= 2.21133579; T( 1,865)= 2.22264373; T( 1,866)= 2.23404513; T( 1,867)= 2.24554141; T( 1,868)= 2.25713401; T( 1,869)= 2.26882438; T( 1,870)= 2.28061404; T( 1,871)= 2.29250453; T( 1,872)= 2.30449742; T( 1,873)= 2.31659432; T( 1,874)= 2.32879689; T( 1,875)= 2.34110682; T( 1,876)= 2.35352584; T( 1,877)= 2.36605573; T( 1,878)= 2.37869829; T( 1,879)= 2.39145540; T( 1,880)= 2.40432896; T( 1,881)= 2.41732093; T( 1,882)= 2.43043331; T( 1,883)= 2.44366817; T( 1,884)= 2.45702761; T( 1,885)= 2.47051380; T( 1,886)= 2.48412895; T( 1,887)= 2.49787536; T( 1,888)= 2.51175537; T( 1,889)= 2.52577137; T( 1,890)= 2.53992584; T( 1,891)= 2.55422131; T( 1,892)= 2.56866040; T( 1,893)= 2.58324579; T( 1,894)= 2.59798022; T( 1,895)= 2.61286654; T( 1,896)= 2.62790766; T( 1,897)= 2.64310659; T( 1,898)= 2.65846640; T( 1,899)= 2.67399029; T( 1,900)= 2.68968151; T( 1,901)= 2.70554345; T( 1,902)= 2.72157959; T( 1,903)= 2.73779350; T( 1,904)= 2.75418887; T( 1,905)= 2.77076952; T( 1,906)= 2.78753937; T( 1,907)= 2.80450249; T( 1,908)= 2.82166305; T( 1,909)= 2.83902539; T( 1,910)= 2.85659397; T( 1,911)= 2.87437340; T( 1,912)= 2.89236845; T( 1,913)= 2.91058407; T( 1,914)= 2.92902536; T( 1,915)= 2.94769760; T( 1,916)= 2.96660627; T( 1,917)= 2.98575702; T( 1,918)= 3.00515574; T( 1,919)= 3.02480852; T( 1,920)= 3.04472166; T( 1,921)= 3.06490172; T( 1,922)= 3.08535550; T( 1,923)= 3.10609006; T( 1,924)= 3.12711274; T( 1,925)= 3.14843116; T( 1,926)= 3.17005327; T( 1,927)= 3.19198732; T( 1,928)= 3.21424190; T( 1,929)= 3.23682596; T( 1,930)= 3.25974885; T( 1,931)= 3.28302029; T( 1,932)= 3.30665043; T( 1,933)= 3.33064990; T( 1,934)= 3.35502975; T( 1,935)= 3.37980159; T( 1,936)= 3.40497752; T( 1,937)= 3.43057023; T( 1,938)= 3.45659301; T( 1,939)= 3.48305980; T( 1,940)= 3.50998521; T( 1,941)= 3.53738460; T( 1,942)= 3.56527408; T( 1,943)= 3.59367062; T( 1,944)= 3.62259207; T( 1,945)= 3.65205725; T( 1,946)= 3.68208597; T( 1,947)= 3.71269918; T( 1,948)= 3.74391899; T( 1,949)= 3.77576877; T( 1,950)= 3.80827331; T( 1,951)= 3.84145882; T( 1,952)= 3.87535316; T( 1,953)= 3.90998590; T( 1,954)= 3.94538850; T( 1,955)= 3.98159446; T( 1,956)= 4.01863951; T( 1,957)= 4.05656180; T( 1,958)= 4.09540213; T( 1,959)= 4.13520420; T( 1,960)= 4.17601489; T( 1,961)= 4.21788459; T( 1,962)= 4.26086752; T( 1,963)= 4.30502217; T( 1,964)= 4.35041174; T( 1,965)= 4.39710464; T( 1,966)= 4.44517514; T( 1,967)= 4.49470397; T( 1,968)= 4.54577916; T( 1,969)= 4.59849691; T( 1,970)= 4.65296265; T( 1,971)= 4.70929225; T( 1,972)= 4.76761342; T( 1,973)= 4.82806742; T( 1,974)= 4.89081102; T( 1,975)= 4.95601884; T( 1,976)= 5.02388619; T( 1,977)= 5.09463243; T( 1,978)= 5.16850511; T( 1,979)= 5.24578502; T( 1,980)= 5.32679234; T( 1,981)= 5.41189443; T( 1,982)= 5.50151554; T( 1,983)= 5.59614912; T( 1,984)= 5.69637381; T( 1,985)= 5.80287411; T( 1,986)= 5.91646788; T( 1,987)= 6.03814337; T( 1,988)= 6.16910990; T( 1,989)= 6.31086912; T( 1,990)= 6.46531729; T( 1,991)= 6.63489660; T( 1,992)= 6.82282684; T( 1,993)= 7.03347427; T( 1,994)= 7.27296897; T( 1,995)= 7.55030254; T( 1,996)= 7.87943858; T( 1,997)= 8.28381500; T( 1,998)= 8.80746839; T( 1,999)= 9.54953571; T( 1,1000)=10.82756617; T( 1,1001)=15.13670523; T( 1,1002)=19.51142096; T( 2, 1)= 0.00000000; T( 2, 2)= 0.00200100; T( 2, 3)= 0.00400401; T( 2, 4)= 0.00600902; T( 2, 5)= 0.00801604; T( 2, 6)= 0.01002508; T( 2, 7)= 0.01203614; T( 2, 8)= 0.01404923; T( 2, 9)= 0.01606434; T( 2,10)= 0.01808149; T( 2,11)= 0.02010067; T( 2,12)= 0.02212189; T( 2,13)= 0.02414516; T( 2,14)= 0.02617048; T( 2,15)= 0.02819785; T( 2,16)= 0.03022728; T( 2,17)= 0.03225876; T( 2,18)= 0.03429232; T( 2,19)= 0.03632794; T( 2,20)= 0.03836564; T( 2,21)= 0.04040541; T( 2,22)= 0.04244727; T( 2,23)= 0.04449122; T( 2,24)= 0.04653725; T( 2,25)= 0.04858539; T( 2,26)= 0.05063562; T( 2,27)= 0.05268795; T( 2,28)= 0.05474239; T( 2,29)= 0.05679895; T( 2,30)= 0.05885762; T( 2,31)= 0.06091841; T( 2,32)= 0.06298133; T( 2,33)= 0.06504638; T( 2,34)= 0.06711357; T( 2,35)= 0.06918289; T( 2,36)= 0.07125436; T( 2,37)= 0.07332797; T( 2,38)= 0.07540373; T( 2,39)= 0.07748166; T( 2,40)= 0.07956174; T( 2,41)= 0.08164399; T( 2,42)= 0.08372841; T( 2,43)= 0.08581500; T( 2,44)= 0.08790378; T( 2,45)= 0.08999473; T( 2,46)= 0.09208788; T( 2,47)= 0.09418322; T( 2,48)= 0.09628075; T( 2,49)= 0.09838049; T( 2,50)= 0.10048243; T( 2,51)= 0.10258659; T( 2,52)= 0.10469296; T( 2,53)= 0.10680155; T( 2,54)= 0.10891237; T( 2,55)= 0.11102542; T( 2,56)= 0.11314070; T( 2,57)= 0.11525823; T( 2,58)= 0.11737799; T( 2,59)= 0.11950001; T( 2,60)= 0.12162428; T( 2,61)= 0.12375081; T( 2,62)= 0.12587960; T( 2,63)= 0.12801066; T( 2,64)= 0.13014399; T( 2,65)= 0.13227961; T( 2,66)= 0.13441750; T( 2,67)= 0.13655768; T( 2,68)= 0.13870016; T( 2,69)= 0.14084493; T( 2,70)= 0.14299200; T( 2,71)= 0.14514139; T( 2,72)= 0.14729308; T( 2,73)= 0.14944709; T( 2,74)= 0.15160343; T( 2,75)= 0.15376209; T( 2,76)= 0.15592308; T( 2,77)= 0.15808641; T( 2,78)= 0.16025209; T( 2,79)= 0.16242011; T( 2,80)= 0.16459049; T( 2,81)= 0.16676322; T( 2,82)= 0.16893831; T( 2,83)= 0.17111578; T( 2,84)= 0.17329561; T( 2,85)= 0.17547783; T( 2,86)= 0.17766243; T( 2,87)= 0.17984942; T( 2,88)= 0.18203880; T( 2,89)= 0.18423058; T( 2,90)= 0.18642476; T( 2,91)= 0.18862136; T( 2,92)= 0.19082037; T( 2,93)= 0.19302180; T( 2,94)= 0.19522566; T( 2,95)= 0.19743195; T( 2,96)= 0.19964067; T( 2,97)= 0.20185184; T( 2,98)= 0.20406545; T( 2,99)= 0.20628152; T( 2,100)= 0.20850004; T( 2,101)= 0.21072103; T( 2,102)= 0.21294449; T( 2,103)= 0.21517042; T( 2,104)= 0.21739883; T( 2,105)= 0.21962973; T( 2,106)= 0.22186312; T( 2,107)= 0.22409901; T( 2,108)= 0.22633740; T( 2,109)= 0.22857829; T( 2,110)= 0.23082170; T( 2,111)= 0.23306763; T( 2,112)= 0.23531609; T( 2,113)= 0.23756707; T( 2,114)= 0.23982059; T( 2,115)= 0.24207666; T( 2,116)= 0.24433527; T( 2,117)= 0.24659643; T( 2,118)= 0.24886016; T( 2,119)= 0.25112645; T( 2,120)= 0.25339531; T( 2,121)= 0.25566674; T( 2,122)= 0.25794076; T( 2,123)= 0.26021737; T( 2,124)= 0.26249657; T( 2,125)= 0.26477838; T( 2,126)= 0.26706279; T( 2,127)= 0.26934981; T( 2,128)= 0.27163945; T( 2,129)= 0.27393171; T( 2,130)= 0.27622660; T( 2,131)= 0.27852413; T( 2,132)= 0.28082431; T( 2,133)= 0.28312713; T( 2,134)= 0.28543260; T( 2,135)= 0.28774074; T( 2,136)= 0.29005154; T( 2,137)= 0.29236502; T( 2,138)= 0.29468118; T( 2,139)= 0.29700002; T( 2,140)= 0.29932155; T( 2,141)= 0.30164578; T( 2,142)= 0.30397271; T( 2,143)= 0.30630236; T( 2,144)= 0.30863472; T( 2,145)= 0.31096981; T( 2,146)= 0.31330762; T( 2,147)= 0.31564817; T( 2,148)= 0.31799146; T( 2,149)= 0.32033750; T( 2,150)= 0.32268630; T( 2,151)= 0.32503786; T( 2,152)= 0.32739219; T( 2,153)= 0.32974929; T( 2,154)= 0.33210917; T( 2,155)= 0.33447184; T( 2,156)= 0.33683730; T( 2,157)= 0.33920557; T( 2,158)= 0.34157664; T( 2,159)= 0.34395053; T( 2,160)= 0.34632724; T( 2,161)= 0.34870677; T( 2,162)= 0.35108915; T( 2,163)= 0.35347436; T( 2,164)= 0.35586242; T( 2,165)= 0.35825333; T( 2,166)= 0.36064711; T( 2,167)= 0.36304375; T( 2,168)= 0.36544327; T( 2,169)= 0.36784568; T( 2,170)= 0.37025097; T( 2,171)= 0.37265916; T( 2,172)= 0.37507025; T( 2,173)= 0.37748425; T( 2,174)= 0.37990117; T( 2,175)= 0.38232101; T( 2,176)= 0.38474379; T( 2,177)= 0.38716950; T( 2,178)= 0.38959816; T( 2,179)= 0.39202977; T( 2,180)= 0.39446434; T( 2,181)= 0.39690188; T( 2,182)= 0.39934239; T( 2,183)= 0.40178588; T( 2,184)= 0.40423237; T( 2,185)= 0.40668185; T( 2,186)= 0.40913433; T( 2,187)= 0.41158983; T( 2,188)= 0.41404834; T( 2,189)= 0.41650988; T( 2,190)= 0.41897445; T( 2,191)= 0.42144206; T( 2,192)= 0.42391272; T( 2,193)= 0.42638644; T( 2,194)= 0.42886322; T( 2,195)= 0.43134307; T( 2,196)= 0.43382600; T( 2,197)= 0.43631202; T( 2,198)= 0.43880113; T( 2,199)= 0.44129334; T( 2,200)= 0.44378866; T( 2,201)= 0.44628710; T( 2,202)= 0.44878867; T( 2,203)= 0.45129336; T( 2,204)= 0.45380120; T( 2,205)= 0.45631219; T( 2,206)= 0.45882633; T( 2,207)= 0.46134364; T( 2,208)= 0.46386411; T( 2,209)= 0.46638777; T( 2,210)= 0.46891462; T( 2,211)= 0.47144467; T( 2,212)= 0.47397792; T( 2,213)= 0.47651438; T( 2,214)= 0.47905406; T( 2,215)= 0.48159697; T( 2,216)= 0.48414312; T( 2,217)= 0.48669252; T( 2,218)= 0.48924517; T( 2,219)= 0.49180108; T( 2,220)= 0.49436026; T( 2,221)= 0.49692272; T( 2,222)= 0.49948847; T( 2,223)= 0.50205751; T( 2,224)= 0.50462986; T( 2,225)= 0.50720552; T( 2,226)= 0.50978450; T( 2,227)= 0.51236681; T( 2,228)= 0.51495246; T( 2,229)= 0.51754146; T( 2,230)= 0.52013381; T( 2,231)= 0.52272953; T( 2,232)= 0.52532862; T( 2,233)= 0.52793109; T( 2,234)= 0.53053696; T( 2,235)= 0.53314622; T( 2,236)= 0.53575889; T( 2,237)= 0.53837498; T( 2,238)= 0.54099450; T( 2,239)= 0.54361745; T( 2,240)= 0.54624384; T( 2,241)= 0.54887369; T( 2,242)= 0.55150700; T( 2,243)= 0.55414379; T( 2,244)= 0.55678405; T( 2,245)= 0.55942781; T( 2,246)= 0.56207506; T( 2,247)= 0.56472582; T( 2,248)= 0.56738010; T( 2,249)= 0.57003791; T( 2,250)= 0.57269925; T( 2,251)= 0.57536414; T( 2,252)= 0.57803259; T( 2,253)= 0.58070460; T( 2,254)= 0.58338019; T( 2,255)= 0.58605936; T( 2,256)= 0.58874212; T( 2,257)= 0.59142849; T( 2,258)= 0.59411847; T( 2,259)= 0.59681207; T( 2,260)= 0.59950931; T( 2,261)= 0.60221019; T( 2,262)= 0.60491472; T( 2,263)= 0.60762291; T( 2,264)= 0.61033477; T( 2,265)= 0.61305032; T( 2,266)= 0.61576956; T( 2,267)= 0.61849250; T( 2,268)= 0.62121915; T( 2,269)= 0.62394953; T( 2,270)= 0.62668364; T( 2,271)= 0.62942149; T( 2,272)= 0.63216309; T( 2,273)= 0.63490846; T( 2,274)= 0.63765760; T( 2,275)= 0.64041053; T( 2,276)= 0.64316725; T( 2,277)= 0.64592777; T( 2,278)= 0.64869211; T( 2,279)= 0.65146028; T( 2,280)= 0.65423228; T( 2,281)= 0.65700813; T( 2,282)= 0.65978784; T( 2,283)= 0.66257142; T( 2,284)= 0.66535888; T( 2,285)= 0.66815022; T( 2,286)= 0.67094547; T( 2,287)= 0.67374463; T( 2,288)= 0.67654772; T( 2,289)= 0.67935474; T( 2,290)= 0.68216570; T( 2,291)= 0.68498062; T( 2,292)= 0.68779950; T( 2,293)= 0.69062237; T( 2,294)= 0.69344923; T( 2,295)= 0.69628008; T( 2,296)= 0.69911495; T( 2,297)= 0.70195385; T( 2,298)= 0.70479677; T( 2,299)= 0.70764375; T( 2,300)= 0.71049478; T( 2,301)= 0.71334989; T( 2,302)= 0.71620907; T( 2,303)= 0.71907235; T( 2,304)= 0.72193974; T( 2,305)= 0.72481124; T( 2,306)= 0.72768687; T( 2,307)= 0.73056664; T( 2,308)= 0.73345056; T( 2,309)= 0.73633865; T( 2,310)= 0.73923091; T( 2,311)= 0.74212736; T( 2,312)= 0.74502802; T( 2,313)= 0.74793288; T( 2,314)= 0.75084197; T( 2,315)= 0.75375530; T( 2,316)= 0.75667288; T( 2,317)= 0.75959472; T( 2,318)= 0.76252084; T( 2,319)= 0.76545124; T( 2,320)= 0.76838595; T( 2,321)= 0.77132496; T( 2,322)= 0.77426830; T( 2,323)= 0.77721598; T( 2,324)= 0.78016801; T( 2,325)= 0.78312441; T( 2,326)= 0.78608518; T( 2,327)= 0.78905034; T( 2,328)= 0.79201990; T( 2,329)= 0.79499388; T( 2,330)= 0.79797228; T( 2,331)= 0.80095513; T( 2,332)= 0.80394244; T( 2,333)= 0.80693421; T( 2,334)= 0.80993047; T( 2,335)= 0.81293122; T( 2,336)= 0.81593648; T( 2,337)= 0.81894626; T( 2,338)= 0.82196058; T( 2,339)= 0.82497945; T( 2,340)= 0.82800288; T( 2,341)= 0.83103089; T( 2,342)= 0.83406349; T( 2,343)= 0.83710070; T( 2,344)= 0.84014252; T( 2,345)= 0.84318898; T( 2,346)= 0.84624009; T( 2,347)= 0.84929586; T( 2,348)= 0.85235630; T( 2,349)= 0.85542143; T( 2,350)= 0.85849127; T( 2,351)= 0.86156583; T( 2,352)= 0.86464512; T( 2,353)= 0.86772917; T( 2,354)= 0.87081797; T( 2,355)= 0.87391155; T( 2,356)= 0.87700992; T( 2,357)= 0.88011311; T( 2,358)= 0.88322111; T( 2,359)= 0.88633395; T( 2,360)= 0.88945164; T( 2,361)= 0.89257421; T( 2,362)= 0.89570165; T( 2,363)= 0.89883399; T( 2,364)= 0.90197125; T( 2,365)= 0.90511343; T( 2,366)= 0.90826056; T( 2,367)= 0.91141265; T( 2,368)= 0.91456971; T( 2,369)= 0.91773177; T( 2,370)= 0.92089883; T( 2,371)= 0.92407092; T( 2,372)= 0.92724804; T( 2,373)= 0.93043023; T( 2,374)= 0.93361748; T( 2,375)= 0.93680982; T( 2,376)= 0.94000726; T( 2,377)= 0.94320982; T( 2,378)= 0.94641752; T( 2,379)= 0.94963037; T( 2,380)= 0.95284839; T( 2,381)= 0.95607160; T( 2,382)= 0.95930001; T( 2,383)= 0.96253364; T( 2,384)= 0.96577251; T( 2,385)= 0.96901663; T( 2,386)= 0.97226602; T( 2,387)= 0.97552070; T( 2,388)= 0.97878069; T( 2,389)= 0.98204599; T( 2,390)= 0.98531664; T( 2,391)= 0.98859264; T( 2,392)= 0.99187402; T( 2,393)= 0.99516079; T( 2,394)= 0.99845298; T( 2,395)= 1.00175059; T( 2,396)= 1.00505364; T( 2,397)= 1.00836216; T( 2,398)= 1.01167616; T( 2,399)= 1.01499567; T( 2,400)= 1.01832069; T( 2,401)= 1.02165125; T( 2,402)= 1.02498736; T( 2,403)= 1.02832905; T( 2,404)= 1.03167633; T( 2,405)= 1.03502922; T( 2,406)= 1.03838775; T( 2,407)= 1.04175192; T( 2,408)= 1.04512176; T( 2,409)= 1.04849729; T( 2,410)= 1.05187852; T( 2,411)= 1.05526548; T( 2,412)= 1.05865819; T( 2,413)= 1.06205666; T( 2,414)= 1.06546092; T( 2,415)= 1.06887098; T( 2,416)= 1.07228686; T( 2,417)= 1.07570859; T( 2,418)= 1.07913619; T( 2,419)= 1.08256966; T( 2,420)= 1.08600904; T( 2,421)= 1.08945435; T( 2,422)= 1.09290560; T( 2,423)= 1.09636282; T( 2,424)= 1.09982602; T( 2,425)= 1.10329524; T( 2,426)= 1.10677048; T( 2,427)= 1.11025177; T( 2,428)= 1.11373912; T( 2,429)= 1.11723258; T( 2,430)= 1.12073214; T( 2,431)= 1.12423784; T( 2,432)= 1.12774969; T( 2,433)= 1.13126772; T( 2,434)= 1.13479195; T( 2,435)= 1.13832240; T( 2,436)= 1.14185910; T( 2,437)= 1.14540205; T( 2,438)= 1.14895130; T( 2,439)= 1.15250686; T( 2,440)= 1.15606875; T( 2,441)= 1.15963699; T( 2,442)= 1.16321161; T( 2,443)= 1.16679263; T( 2,444)= 1.17038008; T( 2,445)= 1.17397397; T( 2,446)= 1.17757433; T( 2,447)= 1.18118118; T( 2,448)= 1.18479455; T( 2,449)= 1.18841447; T( 2,450)= 1.19204094; T( 2,451)= 1.19567400; T( 2,452)= 1.19931367; T( 2,453)= 1.20295998; T( 2,454)= 1.20661295; T( 2,455)= 1.21027261; T( 2,456)= 1.21393897; T( 2,457)= 1.21761206; T( 2,458)= 1.22129192; T( 2,459)= 1.22497856; T( 2,460)= 1.22867200; T( 2,461)= 1.23237228; T( 2,462)= 1.23607942; T( 2,463)= 1.23979344; T( 2,464)= 1.24351437; T( 2,465)= 1.24724224; T( 2,466)= 1.25097706; T( 2,467)= 1.25471888; T( 2,468)= 1.25846771; T( 2,469)= 1.26222358; T( 2,470)= 1.26598652; T( 2,471)= 1.26975654; T( 2,472)= 1.27353369; T( 2,473)= 1.27731799; T( 2,474)= 1.28110946; T( 2,475)= 1.28490813; T( 2,476)= 1.28871403; T( 2,477)= 1.29252719; T( 2,478)= 1.29634763; T( 2,479)= 1.30017538; T( 2,480)= 1.30401047; T( 2,481)= 1.30785293; T( 2,482)= 1.31170279; T( 2,483)= 1.31556007; T( 2,484)= 1.31942481; T( 2,485)= 1.32329703; T( 2,486)= 1.32717676; T( 2,487)= 1.33106403; T( 2,488)= 1.33495887; T( 2,489)= 1.33886131; T( 2,490)= 1.34277138; T( 2,491)= 1.34668911; T( 2,492)= 1.35061452; T( 2,493)= 1.35454766; T( 2,494)= 1.35848855; T( 2,495)= 1.36243722; T( 2,496)= 1.36639370; T( 2,497)= 1.37035802; T( 2,498)= 1.37433022; T( 2,499)= 1.37831032; T( 2,500)= 1.38229836; T( 2,501)= 1.38629436; T( 2,502)= 1.39029837; T( 2,503)= 1.39431040; T( 2,504)= 1.39833051; T( 2,505)= 1.40235870; T( 2,506)= 1.40639503; T( 2,507)= 1.41043952; T( 2,508)= 1.41449221; T( 2,509)= 1.41855312; T( 2,510)= 1.42262230; T( 2,511)= 1.42669978; T( 2,512)= 1.43078558; T( 2,513)= 1.43487975; T( 2,514)= 1.43898231; T( 2,515)= 1.44309331; T( 2,516)= 1.44721278; T( 2,517)= 1.45134074; T( 2,518)= 1.45547725; T( 2,519)= 1.45962233; T( 2,520)= 1.46377602; T( 2,521)= 1.46793835; T( 2,522)= 1.47210936; T( 2,523)= 1.47628909; T( 2,524)= 1.48047758; T( 2,525)= 1.48467485; T( 2,526)= 1.48888095; T( 2,527)= 1.49309591; T( 2,528)= 1.49731978; T( 2,529)= 1.50155259; T( 2,530)= 1.50579437; T( 2,531)= 1.51004517; T( 2,532)= 1.51430502; T( 2,533)= 1.51857397; T( 2,534)= 1.52285204; T( 2,535)= 1.52713929; T( 2,536)= 1.53143575; T( 2,537)= 1.53574145; T( 2,538)= 1.54005645; T( 2,539)= 1.54438078; T( 2,540)= 1.54871447; T( 2,541)= 1.55305758; T( 2,542)= 1.55741014; T( 2,543)= 1.56177219; T( 2,544)= 1.56614378; T( 2,545)= 1.57052494; T( 2,546)= 1.57491572; T( 2,547)= 1.57931616; T( 2,548)= 1.58372631; T( 2,549)= 1.58814620; T( 2,550)= 1.59257588; T( 2,551)= 1.59701539; T( 2,552)= 1.60146478; T( 2,553)= 1.60592409; T( 2,554)= 1.61039337; T( 2,555)= 1.61487265; T( 2,556)= 1.61936199; T( 2,557)= 1.62386143; T( 2,558)= 1.62837102; T( 2,559)= 1.63289079; T( 2,560)= 1.63742081; T( 2,561)= 1.64196110; T( 2,562)= 1.64651173; T( 2,563)= 1.65107274; T( 2,564)= 1.65564417; T( 2,565)= 1.66022607; T( 2,566)= 1.66481850; T( 2,567)= 1.66942149; T( 2,568)= 1.67403510; T( 2,569)= 1.67865938; T( 2,570)= 1.68329438; T( 2,571)= 1.68794014; T( 2,572)= 1.69259672; T( 2,573)= 1.69726417; T( 2,574)= 1.70194253; T( 2,575)= 1.70663187; T( 2,576)= 1.71133222; T( 2,577)= 1.71604365; T( 2,578)= 1.72076620; T( 2,579)= 1.72549993; T( 2,580)= 1.73024489; T( 2,581)= 1.73500114; T( 2,582)= 1.73976872; T( 2,583)= 1.74454769; T( 2,584)= 1.74933811; T( 2,585)= 1.75414004; T( 2,586)= 1.75895352; T( 2,587)= 1.76377861; T( 2,588)= 1.76861537; T( 2,589)= 1.77346386; T( 2,590)= 1.77832413; T( 2,591)= 1.78319624; T( 2,592)= 1.78808025; T( 2,593)= 1.79297621; T( 2,594)= 1.79788419; T( 2,595)= 1.80280424; T( 2,596)= 1.80773642; T( 2,597)= 1.81268080; T( 2,598)= 1.81763743; T( 2,599)= 1.82260638; T( 2,600)= 1.82758770; T( 2,601)= 1.83258146; T( 2,602)= 1.83758772; T( 2,603)= 1.84260655; T( 2,604)= 1.84763800; T( 2,605)= 1.85268214; T( 2,606)= 1.85773903; T( 2,607)= 1.86280874; T( 2,608)= 1.86789133; T( 2,609)= 1.87298688; T( 2,610)= 1.87809544; T( 2,611)= 1.88321708; T( 2,612)= 1.88835187; T( 2,613)= 1.89349988; T( 2,614)= 1.89866117; T( 2,615)= 1.90383582; T( 2,616)= 1.90902389; T( 2,617)= 1.91422545; T( 2,618)= 1.91944058; T( 2,619)= 1.92466934; T( 2,620)= 1.92991181; T( 2,621)= 1.93516805; T( 2,622)= 1.94043815; T( 2,623)= 1.94572217; T( 2,624)= 1.95102018; T( 2,625)= 1.95633227; T( 2,626)= 1.96165851; T( 2,627)= 1.96699896; T( 2,628)= 1.97235372; T( 2,629)= 1.97772285; T( 2,630)= 1.98310643; T( 2,631)= 1.98850455; T( 2,632)= 1.99391727; T( 2,633)= 1.99934468; T( 2,634)= 2.00478686; T( 2,635)= 2.01024389; T( 2,636)= 2.01571585; T( 2,637)= 2.02120282; T( 2,638)= 2.02670489; T( 2,639)= 2.03222213; T( 2,640)= 2.03775464; T( 2,641)= 2.04330250; T( 2,642)= 2.04886578; T( 2,643)= 2.05444459; T( 2,644)= 2.06003899; T( 2,645)= 2.06564910; T( 2,646)= 2.07127498; T( 2,647)= 2.07691673; T( 2,648)= 2.08257444; T( 2,649)= 2.08824821; T( 2,650)= 2.09393811; T( 2,651)= 2.09964425; T( 2,652)= 2.10536671; T( 2,653)= 2.11110560; T( 2,654)= 2.11686100; T( 2,655)= 2.12263301; T( 2,656)= 2.12842172; T( 2,657)= 2.13422724; T( 2,658)= 2.14004966; T( 2,659)= 2.14588908; T( 2,660)= 2.15174560; T( 2,661)= 2.15761932; T( 2,662)= 2.16351034; T( 2,663)= 2.16941877; T( 2,664)= 2.17534470; T( 2,665)= 2.18128824; T( 2,666)= 2.18724949; T( 2,667)= 2.19322857; T( 2,668)= 2.19922558; T( 2,669)= 2.20524062; T( 2,670)= 2.21127381; T( 2,671)= 2.21732525; T( 2,672)= 2.22339506; T( 2,673)= 2.22948334; T( 2,674)= 2.23559022; T( 2,675)= 2.24171580; T( 2,676)= 2.24786019; T( 2,677)= 2.25402353; T( 2,678)= 2.26020591; T( 2,679)= 2.26640747; T( 2,680)= 2.27262831; T( 2,681)= 2.27886857; T( 2,682)= 2.28512835; T( 2,683)= 2.29140779; T( 2,684)= 2.29770701; T( 2,685)= 2.30402613; T( 2,686)= 2.31036528; T( 2,687)= 2.31672459; T( 2,688)= 2.32310418; T( 2,689)= 2.32950418; T( 2,690)= 2.33592473; T( 2,691)= 2.34236596; T( 2,692)= 2.34882800; T( 2,693)= 2.35531099; T( 2,694)= 2.36181506; T( 2,695)= 2.36834035; T( 2,696)= 2.37488700; T( 2,697)= 2.38145516; T( 2,698)= 2.38804495; T( 2,699)= 2.39465652; T( 2,700)= 2.40129003; T( 2,701)= 2.40794561; T( 2,702)= 2.41462341; T( 2,703)= 2.42132358; T( 2,704)= 2.42804628; T( 2,705)= 2.43479165; T( 2,706)= 2.44155985; T( 2,707)= 2.44835102; T( 2,708)= 2.45516534; T( 2,709)= 2.46200295; T( 2,710)= 2.46886402; T( 2,711)= 2.47574871; T( 2,712)= 2.48265718; T( 2,713)= 2.48958960; T( 2,714)= 2.49654613; T( 2,715)= 2.50352694; T( 2,716)= 2.51053220; T( 2,717)= 2.51756208; T( 2,718)= 2.52461676; T( 2,719)= 2.53169642; T( 2,720)= 2.53880122; T( 2,721)= 2.54593135; T( 2,722)= 2.55308699; T( 2,723)= 2.56026833; T( 2,724)= 2.56747555; T( 2,725)= 2.57470883; T( 2,726)= 2.58196836; T( 2,727)= 2.58925435; T( 2,728)= 2.59656697; T( 2,729)= 2.60390643; T( 2,730)= 2.61127292; T( 2,731)= 2.61866664; T( 2,732)= 2.62608780; T( 2,733)= 2.63353660; T( 2,734)= 2.64101324; T( 2,735)= 2.64851794; T( 2,736)= 2.65605091; T( 2,737)= 2.66361235; T( 2,738)= 2.67120249; T( 2,739)= 2.67882155; T( 2,740)= 2.68646974; T( 2,741)= 2.69414730; T( 2,742)= 2.70185443; T( 2,743)= 2.70959139; T( 2,744)= 2.71735839; T( 2,745)= 2.72515567; T( 2,746)= 2.73298347; T( 2,747)= 2.74084202; T( 2,748)= 2.74873158; T( 2,749)= 2.75665238; T( 2,750)= 2.76460468; T( 2,751)= 2.77258872; T( 2,752)= 2.78060477; T( 2,753)= 2.78865307; T( 2,754)= 2.79673388; T( 2,755)= 2.80484749; T( 2,756)= 2.81299414; T( 2,757)= 2.82117411; T( 2,758)= 2.82938767; T( 2,759)= 2.83763511; T( 2,760)= 2.84591669; T( 2,761)= 2.85423271; T( 2,762)= 2.86258345; T( 2,763)= 2.87096921; T( 2,764)= 2.87939028; T( 2,765)= 2.88784695; T( 2,766)= 2.89633953; T( 2,767)= 2.90486833; T( 2,768)= 2.91343365; T( 2,769)= 2.92203581; T( 2,770)= 2.93067514; T( 2,771)= 2.93935194; T( 2,772)= 2.94806655; T( 2,773)= 2.95681930; T( 2,774)= 2.96561052; T( 2,775)= 2.97444056; T( 2,776)= 2.98330975; T( 2,777)= 2.99221845; T( 2,778)= 3.00116702; T( 2,779)= 3.01015579; T( 2,780)= 3.01918515; T( 2,781)= 3.02825547; T( 2,782)= 3.03736710; T( 2,783)= 3.04652043; T( 2,784)= 3.05571585; T( 2,785)= 3.06495374; T( 2,786)= 3.07423450; T( 2,787)= 3.08355853; T( 2,788)= 3.09292623; T( 2,789)= 3.10233801; T( 2,790)= 3.11179429; T( 2,791)= 3.12129550; T( 2,792)= 3.13084205; T( 2,793)= 3.14043440; T( 2,794)= 3.15007297; T( 2,795)= 3.15975822; T( 2,796)= 3.16949060; T( 2,797)= 3.17927057; T( 2,798)= 3.18909860; T( 2,799)= 3.19897516; T( 2,800)= 3.20890074; T( 2,801)= 3.21887582; T( 2,802)= 3.22890091; T( 2,803)= 3.23897650; T( 2,804)= 3.24910310; T( 2,805)= 3.25928124; T( 2,806)= 3.26951144; T( 2,807)= 3.27979424; T( 2,808)= 3.29013018; T( 2,809)= 3.30051981; T( 2,810)= 3.31096370; T( 2,811)= 3.32146241; T( 2,812)= 3.33201653; T( 2,813)= 3.34262663; T( 2,814)= 3.35329332; T( 2,815)= 3.36401721; T( 2,816)= 3.37479891; T( 2,817)= 3.38563904; T( 2,818)= 3.39653825; T( 2,819)= 3.40749718; T( 2,820)= 3.41851650; T( 2,821)= 3.42959686; T( 2,822)= 3.44073895; T( 2,823)= 3.45194346; T( 2,824)= 3.46321109; T( 2,825)= 3.47454257; T( 2,826)= 3.48593861; T( 2,827)= 3.49739996; T( 2,828)= 3.50892737; T( 2,829)= 3.52052160; T( 2,830)= 3.53218344; T( 2,831)= 3.54391368; T( 2,832)= 3.55571313; T( 2,833)= 3.56758260; T( 2,834)= 3.57952293; T( 2,835)= 3.59153498; T( 2,836)= 3.60361961; T( 2,837)= 3.61577770; T( 2,838)= 3.62801016; T( 2,839)= 3.64031789; T( 2,840)= 3.65270183; T( 2,841)= 3.66516293; T( 2,842)= 3.67770215; T( 2,843)= 3.69032049; T( 2,844)= 3.70301895; T( 2,845)= 3.71579854; T( 2,846)= 3.72866032; T( 2,847)= 3.74160535; T( 2,848)= 3.75463472; T( 2,849)= 3.76774952; T( 2,850)= 3.78095088; T( 2,851)= 3.79423997; T( 2,852)= 3.80761795; T( 2,853)= 3.82108601; T( 2,854)= 3.83464538; T( 2,855)= 3.84829731; T( 2,856)= 3.86204307; T( 2,857)= 3.87588396; T( 2,858)= 3.88982130; T( 2,859)= 3.90385644; T( 2,860)= 3.91799078; T( 2,861)= 3.93222571; T( 2,862)= 3.94656269; T( 2,863)= 3.96100319; T( 2,864)= 3.97554871; T( 2,865)= 3.99020079; T( 2,866)= 4.00496100; T( 2,867)= 4.01983096; T( 2,868)= 4.03481230; T( 2,869)= 4.04990671; T( 2,870)= 4.06511591; T( 2,871)= 4.08044166; T( 2,872)= 4.09588575; T( 2,873)= 4.11145003; T( 2,874)= 4.12713639; T( 2,875)= 4.14294674; T( 2,876)= 4.15888308; T( 2,877)= 4.17494743; T( 2,878)= 4.19114185; T( 2,879)= 4.20746847; T( 2,880)= 4.22392947; T( 2,881)= 4.24052707; T( 2,882)= 4.25726357; T( 2,883)= 4.27414131; T( 2,884)= 4.29116269; T( 2,885)= 4.30833018; T( 2,886)= 4.32564630; T( 2,887)= 4.34311366; T( 2,888)= 4.36073492; T( 2,889)= 4.37851282; T( 2,890)= 4.39645016; T( 2,891)= 4.41454983; T( 2,892)= 4.43281479; T( 2,893)= 4.45124810; T( 2,894)= 4.46985289; T( 2,895)= 4.48863237; T( 2,896)= 4.50758986; T( 2,897)= 4.52672876; T( 2,898)= 4.54605258; T( 2,899)= 4.56556493; T( 2,900)= 4.58526952; T( 2,901)= 4.60517019; T( 2,902)= 4.62527086; T( 2,903)= 4.64557560; T( 2,904)= 4.66608860; T( 2,905)= 4.68681418; T( 2,906)= 4.70775677; T( 2,907)= 4.72892099; T( 2,908)= 4.75031157; T( 2,909)= 4.77193340; T( 2,910)= 4.79379154; T( 2,911)= 4.81589122; T( 2,912)= 4.83823782; T( 2,913)= 4.86083693; T( 2,914)= 4.88369432; T( 2,915)= 4.90681597; T( 2,916)= 4.93020804; T( 2,917)= 4.95387696; T( 2,918)= 4.97782934; T( 2,919)= 5.00207206; T( 2,920)= 5.02661225; T( 2,921)= 5.05145729; T( 2,922)= 5.07661485; T( 2,923)= 5.10209290; T( 2,924)= 5.12789971; T( 2,925)= 5.15404388; T( 2,926)= 5.18053433; T( 2,927)= 5.20738037; T( 2,928)= 5.23459168; T( 2,929)= 5.26217832; T( 2,930)= 5.29015080; T( 2,931)= 5.31852007; T( 2,932)= 5.34729755; T( 2,933)= 5.37649515; T( 2,934)= 5.40612532; T( 2,935)= 5.43620107; T( 2,936)= 5.46673602; T( 2,937)= 5.49774439; T( 2,938)= 5.52924111; T( 2,939)= 5.56124179; T( 2,940)= 5.59376283; T( 2,941)= 5.62682143; T( 2,942)= 5.66043567; T( 2,943)= 5.69462454; T( 2,944)= 5.72940802; T( 2,945)= 5.76480718; T( 2,946)= 5.80084419; T( 2,947)= 5.83754246; T( 2,948)= 5.87492673; T( 2,949)= 5.91302312; T( 2,950)= 5.95185929; T( 2,951)= 5.99146455; T( 2,952)= 6.03186996; T( 2,953)= 6.07310854; T( 2,954)= 6.11521535; T( 2,955)= 6.15822776; T( 2,956)= 6.20218558; T( 2,957)= 6.24713129; T( 2,958)= 6.29311033; T( 2,959)= 6.34017132; T( 2,960)= 6.38836642; T( 2,961)= 6.43775165; T( 2,962)= 6.48838727; T( 2,963)= 6.54033824; T( 2,964)= 6.59367473; T( 2,965)= 6.64847268; T( 2,966)= 6.70481443; T( 2,967)= 6.76278951; T( 2,968)= 6.82249544; T( 2,969)= 6.88403875; T( 2,970)= 6.94753615; T( 2,971)= 7.01311579; T( 2,972)= 7.08091890; T( 2,973)= 7.15110154; T( 2,974)= 7.22383683; T( 2,975)= 7.29931748; T( 2,976)= 7.37775891; T( 2,977)= 7.45940290; T( 2,978)= 7.54452213; T( 2,979)= 7.63342565; T( 2,980)= 7.72646568; T( 2,981)= 7.82404601; T( 2,982)= 7.92663260; T( 2,983)= 8.03476704; T( 2,984)= 8.14908387; T( 2,985)= 8.27033311; T( 2,986)= 8.39941016; T( 2,987)= 8.53739590; T( 2,988)= 8.68561184; T( 2,989)= 8.84569726; T( 2,990)= 9.01972001; T( 2,991)= 9.21034037; T( 2,992)= 9.42106140; T( 2,993)= 9.65662747; T( 2,994)= 9.92369026; T( 2,995)=10.23199162; T( 2,996)=10.59663473; T( 2,997)=11.04292184; T( 2,998)=11.61828598; T( 2,999)=12.42921620; T( 2,1000)=13.81551056; T( 2,1001)=18.42068074; T( 2,1002)=23.02585093; T( 3, 1)= 0.00000000; T( 3, 2)= 0.02429759; T( 3, 3)= 0.03868093; T( 3, 4)= 0.05080913; T( 3, 5)= 0.06168447; T( 3, 6)= 0.07172177; T( 3, 7)= 0.08114342; T( 3, 8)= 0.09008603; T( 3, 9)= 0.09864107; T( 3,10)= 0.10687357; T( 3,11)= 0.11483180; T( 3,12)= 0.12255284; T( 3,13)= 0.13006595; T( 3,14)= 0.13739472; T( 3,15)= 0.14455853; T( 3,16)= 0.15157352; T( 3,17)= 0.15845335; T( 3,18)= 0.16520966; T( 3,19)= 0.17185252; T( 3,20)= 0.17839068; T( 3,21)= 0.18483182; T( 3,22)= 0.19118271; T( 3,23)= 0.19744939; T( 3,24)= 0.20363723; T( 3,25)= 0.20975107; T( 3,26)= 0.21579528; T( 3,27)= 0.22177382; T( 3,28)= 0.22769028; T( 3,29)= 0.23354794; T( 3,30)= 0.23934983; T( 3,31)= 0.24509871; T( 3,32)= 0.25079713; T( 3,33)= 0.25644744; T( 3,34)= 0.26205185; T( 3,35)= 0.26761236; T( 3,36)= 0.27313088; T( 3,37)= 0.27860917; T( 3,38)= 0.28404887; T( 3,39)= 0.28945153; T( 3,40)= 0.29481859; T( 3,41)= 0.30015142; T( 3,42)= 0.30545129; T( 3,43)= 0.31071942; T( 3,44)= 0.31595694; T( 3,45)= 0.32116493; T( 3,46)= 0.32634441; T( 3,47)= 0.33149635; T( 3,48)= 0.33662166; T( 3,49)= 0.34172121; T( 3,50)= 0.34679583; T( 3,51)= 0.35184632; T( 3,52)= 0.35687342; T( 3,53)= 0.36187784; T( 3,54)= 0.36686029; T( 3,55)= 0.37182140; T( 3,56)= 0.37676180; T( 3,57)= 0.38168210; T( 3,58)= 0.38658287; T( 3,59)= 0.39146465; T( 3,60)= 0.39632798; T( 3,61)= 0.40117336; T( 3,62)= 0.40600128; T( 3,63)= 0.41081221; T( 3,64)= 0.41560659; T( 3,65)= 0.42038487; T( 3,66)= 0.42514747; T( 3,67)= 0.42989477; T( 3,68)= 0.43462718; T( 3,69)= 0.43934506; T( 3,70)= 0.44404879; T( 3,71)= 0.44873870; T( 3,72)= 0.45341514; T( 3,73)= 0.45807844; T( 3,74)= 0.46272891; T( 3,75)= 0.46736686; T( 3,76)= 0.47199258; T( 3,77)= 0.47660636; T( 3,78)= 0.48120848; T( 3,79)= 0.48579922; T( 3,80)= 0.49037883; T( 3,81)= 0.49494756; T( 3,82)= 0.49950567; T( 3,83)= 0.50405340; T( 3,84)= 0.50859097; T( 3,85)= 0.51311862; T( 3,86)= 0.51763656; T( 3,87)= 0.52214501; T( 3,88)= 0.52664418; T( 3,89)= 0.53113427; T( 3,90)= 0.53561547; T( 3,91)= 0.54008799; T( 3,92)= 0.54455201; T( 3,93)= 0.54900771; T( 3,94)= 0.55345527; T( 3,95)= 0.55789487; T( 3,96)= 0.56232666; T( 3,97)= 0.56675083; T( 3,98)= 0.57116753; T( 3,99)= 0.57557692; T( 3,100)= 0.57997915; T( 3,101)= 0.58437437; T( 3,102)= 0.58876274; T( 3,103)= 0.59314439; T( 3,104)= 0.59751946; T( 3,105)= 0.60188810; T( 3,106)= 0.60625044; T( 3,107)= 0.61060660; T( 3,108)= 0.61495672; T( 3,109)= 0.61930092; T( 3,110)= 0.62363934; T( 3,111)= 0.62797208; T( 3,112)= 0.63229926; T( 3,113)= 0.63662101; T( 3,114)= 0.64093743; T( 3,115)= 0.64524864; T( 3,116)= 0.64955475; T( 3,117)= 0.65385586; T( 3,118)= 0.65815208; T( 3,119)= 0.66244351; T( 3,120)= 0.66673026; T( 3,121)= 0.67101242; T( 3,122)= 0.67529008; T( 3,123)= 0.67956335; T( 3,124)= 0.68383232; T( 3,125)= 0.68809708; T( 3,126)= 0.69235773; T( 3,127)= 0.69661434; T( 3,128)= 0.70086701; T( 3,129)= 0.70511583; T( 3,130)= 0.70936087; T( 3,131)= 0.71360223; T( 3,132)= 0.71783998; T( 3,133)= 0.72207420; T( 3,134)= 0.72630497; T( 3,135)= 0.73053238; T( 3,136)= 0.73475649; T( 3,137)= 0.73897738; T( 3,138)= 0.74319513; T( 3,139)= 0.74740981; T( 3,140)= 0.75162148; T( 3,141)= 0.75583023; T( 3,142)= 0.76003612; T( 3,143)= 0.76423922; T( 3,144)= 0.76843960; T( 3,145)= 0.77263731; T( 3,146)= 0.77683244; T( 3,147)= 0.78102504; T( 3,148)= 0.78521518; T( 3,149)= 0.78940292; T( 3,150)= 0.79358832; T( 3,151)= 0.79777144; T( 3,152)= 0.80195235; T( 3,153)= 0.80613110; T( 3,154)= 0.81030775; T( 3,155)= 0.81448236; T( 3,156)= 0.81865499; T( 3,157)= 0.82282568; T( 3,158)= 0.82699451; T( 3,159)= 0.83116152; T( 3,160)= 0.83532677; T( 3,161)= 0.83949030; T( 3,162)= 0.84365218; T( 3,163)= 0.84781246; T( 3,164)= 0.85197118; T( 3,165)= 0.85612840; T( 3,166)= 0.86028417; T( 3,167)= 0.86443854; T( 3,168)= 0.86859155; T( 3,169)= 0.87274326; T( 3,170)= 0.87689372; T( 3,171)= 0.88104296; T( 3,172)= 0.88519105; T( 3,173)= 0.88933801; T( 3,174)= 0.89348391; T( 3,175)= 0.89762878; T( 3,176)= 0.90177268; T( 3,177)= 0.90591564; T( 3,178)= 0.91005770; T( 3,179)= 0.91419892; T( 3,180)= 0.91833934; T( 3,181)= 0.92247899; T( 3,182)= 0.92661793; T( 3,183)= 0.93075618; T( 3,184)= 0.93489380; T( 3,185)= 0.93903082; T( 3,186)= 0.94316729; T( 3,187)= 0.94730324; T( 3,188)= 0.95143871; T( 3,189)= 0.95557375; T( 3,190)= 0.95970839; T( 3,191)= 0.96384268; T( 3,192)= 0.96797664; T( 3,193)= 0.97211032; T( 3,194)= 0.97624375; T( 3,195)= 0.98037698; T( 3,196)= 0.98451003; T( 3,197)= 0.98864295; T( 3,198)= 0.99277578; T( 3,199)= 0.99690854; T( 3,200)= 1.00104127; T( 3,201)= 1.00517401; T( 3,202)= 1.00930680; T( 3,203)= 1.01343967; T( 3,204)= 1.01757264; T( 3,205)= 1.02170577; T( 3,206)= 1.02583908; T( 3,207)= 1.02997260; T( 3,208)= 1.03410637; T( 3,209)= 1.03824042; T( 3,210)= 1.04237479; T( 3,211)= 1.04650951; T( 3,212)= 1.05064460; T( 3,213)= 1.05478011; T( 3,214)= 1.05891606; T( 3,215)= 1.06305249; T( 3,216)= 1.06718942; T( 3,217)= 1.07132690; T( 3,218)= 1.07546494; T( 3,219)= 1.07960359; T( 3,220)= 1.08374286; T( 3,221)= 1.08788280; T( 3,222)= 1.09202343; T( 3,223)= 1.09616478; T( 3,224)= 1.10030689; T( 3,225)= 1.10444978; T( 3,226)= 1.10859348; T( 3,227)= 1.11273802; T( 3,228)= 1.11688343; T( 3,229)= 1.12102974; T( 3,230)= 1.12517697; T( 3,231)= 1.12932517; T( 3,232)= 1.13347435; T( 3,233)= 1.13762455; T( 3,234)= 1.14177578; T( 3,235)= 1.14592809; T( 3,236)= 1.15008149; T( 3,237)= 1.15423602; T( 3,238)= 1.15839171; T( 3,239)= 1.16254857; T( 3,240)= 1.16670665; T( 3,241)= 1.17086596; T( 3,242)= 1.17502653; T( 3,243)= 1.17918839; T( 3,244)= 1.18335157; T( 3,245)= 1.18751609; T( 3,246)= 1.19168198; T( 3,247)= 1.19584927; T( 3,248)= 1.20001798; T( 3,249)= 1.20418814; T( 3,250)= 1.20835977; T( 3,251)= 1.21253290; T( 3,252)= 1.21670756; T( 3,253)= 1.22088378; T( 3,254)= 1.22506157; T( 3,255)= 1.22924097; T( 3,256)= 1.23342199; T( 3,257)= 1.23760467; T( 3,258)= 1.24178903; T( 3,259)= 1.24597510; T( 3,260)= 1.25016289; T( 3,261)= 1.25435244; T( 3,262)= 1.25854377; T( 3,263)= 1.26273691; T( 3,264)= 1.26693188; T( 3,265)= 1.27112870; T( 3,266)= 1.27532740; T( 3,267)= 1.27952800; T( 3,268)= 1.28373053; T( 3,269)= 1.28793502; T( 3,270)= 1.29214148; T( 3,271)= 1.29634995; T( 3,272)= 1.30056043; T( 3,273)= 1.30477297; T( 3,274)= 1.30898758; T( 3,275)= 1.31320429; T( 3,276)= 1.31742312; T( 3,277)= 1.32164410; T( 3,278)= 1.32586724; T( 3,279)= 1.33009258; T( 3,280)= 1.33432014; T( 3,281)= 1.33854993; T( 3,282)= 1.34278199; T( 3,283)= 1.34701634; T( 3,284)= 1.35125299; T( 3,285)= 1.35549198; T( 3,286)= 1.35973333; T( 3,287)= 1.36397706; T( 3,288)= 1.36822319; T( 3,289)= 1.37247175; T( 3,290)= 1.37672276; T( 3,291)= 1.38097625; T( 3,292)= 1.38523223; T( 3,293)= 1.38949074; T( 3,294)= 1.39375178; T( 3,295)= 1.39801539; T( 3,296)= 1.40228159; T( 3,297)= 1.40655041; T( 3,298)= 1.41082186; T( 3,299)= 1.41509596; T( 3,300)= 1.41937275; T( 3,301)= 1.42365224; T( 3,302)= 1.42793446; T( 3,303)= 1.43221943; T( 3,304)= 1.43650717; T( 3,305)= 1.44079770; T( 3,306)= 1.44509106; T( 3,307)= 1.44938725; T( 3,308)= 1.45368631; T( 3,309)= 1.45798825; T( 3,310)= 1.46229310; T( 3,311)= 1.46660089; T( 3,312)= 1.47091162; T( 3,313)= 1.47522534; T( 3,314)= 1.47954205; T( 3,315)= 1.48386178; T( 3,316)= 1.48818456; T( 3,317)= 1.49251041; T( 3,318)= 1.49683934; T( 3,319)= 1.50117139; T( 3,320)= 1.50550658; T( 3,321)= 1.50984492; T( 3,322)= 1.51418644; T( 3,323)= 1.51853116; T( 3,324)= 1.52287911; T( 3,325)= 1.52723031; T( 3,326)= 1.53158477; T( 3,327)= 1.53594253; T( 3,328)= 1.54030361; T( 3,329)= 1.54466802; T( 3,330)= 1.54903580; T( 3,331)= 1.55340696; T( 3,332)= 1.55778152; T( 3,333)= 1.56215951; T( 3,334)= 1.56654096; T( 3,335)= 1.57092588; T( 3,336)= 1.57531429; T( 3,337)= 1.57970623; T( 3,338)= 1.58410171; T( 3,339)= 1.58850075; T( 3,340)= 1.59290338; T( 3,341)= 1.59730962; T( 3,342)= 1.60171949; T( 3,343)= 1.60613302; T( 3,344)= 1.61055022; T( 3,345)= 1.61497113; T( 3,346)= 1.61939577; T( 3,347)= 1.62382415; T( 3,348)= 1.62825630; T( 3,349)= 1.63269224; T( 3,350)= 1.63713200; T( 3,351)= 1.64157560; T( 3,352)= 1.64602306; T( 3,353)= 1.65047440; T( 3,354)= 1.65492966; T( 3,355)= 1.65938884; T( 3,356)= 1.66385198; T( 3,357)= 1.66831910; T( 3,358)= 1.67279021; T( 3,359)= 1.67726535; T( 3,360)= 1.68174454; T( 3,361)= 1.68622780; T( 3,362)= 1.69071515; T( 3,363)= 1.69520662; T( 3,364)= 1.69970222; T( 3,365)= 1.70420200; T( 3,366)= 1.70870596; T( 3,367)= 1.71321413; T( 3,368)= 1.71772653; T( 3,369)= 1.72224319; T( 3,370)= 1.72676414; T( 3,371)= 1.73128939; T( 3,372)= 1.73581896; T( 3,373)= 1.74035290; T( 3,374)= 1.74489120; T( 3,375)= 1.74943391; T( 3,376)= 1.75398104; T( 3,377)= 1.75853263; T( 3,378)= 1.76308868; T( 3,379)= 1.76764923; T( 3,380)= 1.77221430; T( 3,381)= 1.77678392; T( 3,382)= 1.78135810; T( 3,383)= 1.78593688; T( 3,384)= 1.79052027; T( 3,385)= 1.79510831; T( 3,386)= 1.79970102; T( 3,387)= 1.80429841; T( 3,388)= 1.80890052; T( 3,389)= 1.81350738; T( 3,390)= 1.81811899; T( 3,391)= 1.82273540; T( 3,392)= 1.82735662; T( 3,393)= 1.83198268; T( 3,394)= 1.83661361; T( 3,395)= 1.84124942; T( 3,396)= 1.84589015; T( 3,397)= 1.85053582; T( 3,398)= 1.85518646; T( 3,399)= 1.85984208; T( 3,400)= 1.86450272; T( 3,401)= 1.86916840; T( 3,402)= 1.87383915; T( 3,403)= 1.87851499; T( 3,404)= 1.88319595; T( 3,405)= 1.88788205; T( 3,406)= 1.89257333; T( 3,407)= 1.89726979; T( 3,408)= 1.90197148; T( 3,409)= 1.90667842; T( 3,410)= 1.91139063; T( 3,411)= 1.91610814; T( 3,412)= 1.92083098; T( 3,413)= 1.92555917; T( 3,414)= 1.93029273; T( 3,415)= 1.93503171; T( 3,416)= 1.93977611; T( 3,417)= 1.94452598; T( 3,418)= 1.94928133; T( 3,419)= 1.95404219; T( 3,420)= 1.95880859; T( 3,421)= 1.96358056; T( 3,422)= 1.96835812; T( 3,423)= 1.97314131; T( 3,424)= 1.97793014; T( 3,425)= 1.98272465; T( 3,426)= 1.98752486; T( 3,427)= 1.99233080; T( 3,428)= 1.99714251; T( 3,429)= 2.00195999; T( 3,430)= 2.00678330; T( 3,431)= 2.01161244; T( 3,432)= 2.01644746; T( 3,433)= 2.02128838; T( 3,434)= 2.02613522; T( 3,435)= 2.03098802; T( 3,436)= 2.03584681; T( 3,437)= 2.04071161; T( 3,438)= 2.04558245; T( 3,439)= 2.05045936; T( 3,440)= 2.05534237; T( 3,441)= 2.06023151; T( 3,442)= 2.06512681; T( 3,443)= 2.07002829; T( 3,444)= 2.07493600; T( 3,445)= 2.07984995; T( 3,446)= 2.08477018; T( 3,447)= 2.08969671; T( 3,448)= 2.09462958; T( 3,449)= 2.09956881; T( 3,450)= 2.10451445; T( 3,451)= 2.10946651; T( 3,452)= 2.11442502; T( 3,453)= 2.11939003; T( 3,454)= 2.12436155; T( 3,455)= 2.12933962; T( 3,456)= 2.13432428; T( 3,457)= 2.13931554; T( 3,458)= 2.14431345; T( 3,459)= 2.14931803; T( 3,460)= 2.15432931; T( 3,461)= 2.15934734; T( 3,462)= 2.16437213; T( 3,463)= 2.16940372; T( 3,464)= 2.17444214; T( 3,465)= 2.17948743; T( 3,466)= 2.18453962; T( 3,467)= 2.18959874; T( 3,468)= 2.19466482; T( 3,469)= 2.19973789; T( 3,470)= 2.20481800; T( 3,471)= 2.20990516; T( 3,472)= 2.21499942; T( 3,473)= 2.22010080; T( 3,474)= 2.22520935; T( 3,475)= 2.23032509; T( 3,476)= 2.23544806; T( 3,477)= 2.24057829; T( 3,478)= 2.24571582; T( 3,479)= 2.25086068; T( 3,480)= 2.25601290; T( 3,481)= 2.26117253; T( 3,482)= 2.26633959; T( 3,483)= 2.27151412; T( 3,484)= 2.27669615; T( 3,485)= 2.28188573; T( 3,486)= 2.28708288; T( 3,487)= 2.29228764; T( 3,488)= 2.29750005; T( 3,489)= 2.30272014; T( 3,490)= 2.30794796; T( 3,491)= 2.31318352; T( 3,492)= 2.31842688; T( 3,493)= 2.32367807; T( 3,494)= 2.32893712; T( 3,495)= 2.33420408; T( 3,496)= 2.33947898; T( 3,497)= 2.34476185; T( 3,498)= 2.35005274; T( 3,499)= 2.35535169; T( 3,500)= 2.36065872; T( 3,501)= 2.36597388; T( 3,502)= 2.37129722; T( 3,503)= 2.37662875; T( 3,504)= 2.38196854; T( 3,505)= 2.38731660; T( 3,506)= 2.39267299; T( 3,507)= 2.39803775; T( 3,508)= 2.40341090; T( 3,509)= 2.40879250; T( 3,510)= 2.41418258; T( 3,511)= 2.41958119; T( 3,512)= 2.42498835; T( 3,513)= 2.43040412; T( 3,514)= 2.43582854; T( 3,515)= 2.44126164; T( 3,516)= 2.44670347; T( 3,517)= 2.45215407; T( 3,518)= 2.45761348; T( 3,519)= 2.46308174; T( 3,520)= 2.46855890; T( 3,521)= 2.47404500; T( 3,522)= 2.47954008; T( 3,523)= 2.48504418; T( 3,524)= 2.49055734; T( 3,525)= 2.49607962; T( 3,526)= 2.50161105; T( 3,527)= 2.50715169; T( 3,528)= 2.51270156; T( 3,529)= 2.51826072; T( 3,530)= 2.52382921; T( 3,531)= 2.52940708; T( 3,532)= 2.53499437; T( 3,533)= 2.54059113; T( 3,534)= 2.54619740; T( 3,535)= 2.55181323; T( 3,536)= 2.55743867; T( 3,537)= 2.56307376; T( 3,538)= 2.56871854; T( 3,539)= 2.57437308; T( 3,540)= 2.58003741; T( 3,541)= 2.58571158; T( 3,542)= 2.59139564; T( 3,543)= 2.59708963; T( 3,544)= 2.60279362; T( 3,545)= 2.60850764; T( 3,546)= 2.61423174; T( 3,547)= 2.61996598; T( 3,548)= 2.62571040; T( 3,549)= 2.63146505; T( 3,550)= 2.63722999; T( 3,551)= 2.64300526; T( 3,552)= 2.64879092; T( 3,553)= 2.65458702; T( 3,554)= 2.66039360; T( 3,555)= 2.66621073; T( 3,556)= 2.67203845; T( 3,557)= 2.67787681; T( 3,558)= 2.68372587; T( 3,559)= 2.68958569; T( 3,560)= 2.69545631; T( 3,561)= 2.70133778; T( 3,562)= 2.70723017; T( 3,563)= 2.71313353; T( 3,564)= 2.71904792; T( 3,565)= 2.72497338; T( 3,566)= 2.73090997; T( 3,567)= 2.73685776; T( 3,568)= 2.74281679; T( 3,569)= 2.74878712; T( 3,570)= 2.75476881; T( 3,571)= 2.76076193; T( 3,572)= 2.76676651; T( 3,573)= 2.77278264; T( 3,574)= 2.77881035; T( 3,575)= 2.78484972; T( 3,576)= 2.79090079; T( 3,577)= 2.79696364; T( 3,578)= 2.80303832; T( 3,579)= 2.80912489; T( 3,580)= 2.81522341; T( 3,581)= 2.82133395; T( 3,582)= 2.82745656; T( 3,583)= 2.83359131; T( 3,584)= 2.83973826; T( 3,585)= 2.84589748; T( 3,586)= 2.85206902; T( 3,587)= 2.85825296; T( 3,588)= 2.86444935; T( 3,589)= 2.87065826; T( 3,590)= 2.87687976; T( 3,591)= 2.88311391; T( 3,592)= 2.88936078; T( 3,593)= 2.89562043; T( 3,594)= 2.90189294; T( 3,595)= 2.90817836; T( 3,596)= 2.91447678; T( 3,597)= 2.92078824; T( 3,598)= 2.92711284; T( 3,599)= 2.93345063; T( 3,600)= 2.93980168; T( 3,601)= 2.94616607; T( 3,602)= 2.95254387; T( 3,603)= 2.95893514; T( 3,604)= 2.96533997; T( 3,605)= 2.97175842; T( 3,606)= 2.97819056; T( 3,607)= 2.98463648; T( 3,608)= 2.99109623; T( 3,609)= 2.99756991; T( 3,610)= 3.00405758; T( 3,611)= 3.01055932; T( 3,612)= 3.01707521; T( 3,613)= 3.02360532; T( 3,614)= 3.03014973; T( 3,615)= 3.03670852; T( 3,616)= 3.04328177; T( 3,617)= 3.04986955; T( 3,618)= 3.05647195; T( 3,619)= 3.06308905; T( 3,620)= 3.06972093; T( 3,621)= 3.07636767; T( 3,622)= 3.08302935; T( 3,623)= 3.08970606; T( 3,624)= 3.09639787; T( 3,625)= 3.10310488; T( 3,626)= 3.10982717; T( 3,627)= 3.11656482; T( 3,628)= 3.12331792; T( 3,629)= 3.13008656; T( 3,630)= 3.13687083; T( 3,631)= 3.14367081; T( 3,632)= 3.15048658; T( 3,633)= 3.15731826; T( 3,634)= 3.16416591; T( 3,635)= 3.17102964; T( 3,636)= 3.17790953; T( 3,637)= 3.18480568; T( 3,638)= 3.19171818; T( 3,639)= 3.19864712; T( 3,640)= 3.20559261; T( 3,641)= 3.21255473; T( 3,642)= 3.21953358; T( 3,643)= 3.22652926; T( 3,644)= 3.23354187; T( 3,645)= 3.24057150; T( 3,646)= 3.24761826; T( 3,647)= 3.25468224; T( 3,648)= 3.26176355; T( 3,649)= 3.26886229; T( 3,650)= 3.27597856; T( 3,651)= 3.28311246; T( 3,652)= 3.29026411; T( 3,653)= 3.29743360; T( 3,654)= 3.30462104; T( 3,655)= 3.31182654; T( 3,656)= 3.31905020; T( 3,657)= 3.32629215; T( 3,658)= 3.33355247; T( 3,659)= 3.34083130; T( 3,660)= 3.34812873; T( 3,661)= 3.35544489; T( 3,662)= 3.36277988; T( 3,663)= 3.37013382; T( 3,664)= 3.37750683; T( 3,665)= 3.38489902; T( 3,666)= 3.39231051; T( 3,667)= 3.39974142; T( 3,668)= 3.40719187; T( 3,669)= 3.41466198; T( 3,670)= 3.42215187; T( 3,671)= 3.42966167; T( 3,672)= 3.43719150; T( 3,673)= 3.44474148; T( 3,674)= 3.45231175; T( 3,675)= 3.45990242; T( 3,676)= 3.46751363; T( 3,677)= 3.47514551; T( 3,678)= 3.48279819; T( 3,679)= 3.49047180; T( 3,680)= 3.49816648; T( 3,681)= 3.50588236; T( 3,682)= 3.51361957; T( 3,683)= 3.52137825; T( 3,684)= 3.52915854; T( 3,685)= 3.53696059; T( 3,686)= 3.54478453; T( 3,687)= 3.55263050; T( 3,688)= 3.56049865; T( 3,689)= 3.56838913; T( 3,690)= 3.57630207; T( 3,691)= 3.58423763; T( 3,692)= 3.59219596; T( 3,693)= 3.60017721; T( 3,694)= 3.60818152; T( 3,695)= 3.61620906; T( 3,696)= 3.62425998; T( 3,697)= 3.63233443; T( 3,698)= 3.64043258; T( 3,699)= 3.64855458; T( 3,700)= 3.65670059; T( 3,701)= 3.66487078; T( 3,702)= 3.67306531; T( 3,703)= 3.68128435; T( 3,704)= 3.68952807; T( 3,705)= 3.69779663; T( 3,706)= 3.70609020; T( 3,707)= 3.71440896; T( 3,708)= 3.72275309; T( 3,709)= 3.73112275; T( 3,710)= 3.73951813; T( 3,711)= 3.74793941; T( 3,712)= 3.75638677; T( 3,713)= 3.76486039; T( 3,714)= 3.77336045; T( 3,715)= 3.78188715; T( 3,716)= 3.79044068; T( 3,717)= 3.79902122; T( 3,718)= 3.80762897; T( 3,719)= 3.81626412; T( 3,720)= 3.82492688; T( 3,721)= 3.83361743; T( 3,722)= 3.84233599; T( 3,723)= 3.85108276; T( 3,724)= 3.85985793; T( 3,725)= 3.86866173; T( 3,726)= 3.87749436; T( 3,727)= 3.88635602; T( 3,728)= 3.89524695; T( 3,729)= 3.90416735; T( 3,730)= 3.91311745; T( 3,731)= 3.92209746; T( 3,732)= 3.93110762; T( 3,733)= 3.94014814; T( 3,734)= 3.94921926; T( 3,735)= 3.95832121; T( 3,736)= 3.96745422; T( 3,737)= 3.97661853; T( 3,738)= 3.98581438; T( 3,739)= 3.99504202; T( 3,740)= 4.00430169; T( 3,741)= 4.01359363; T( 3,742)= 4.02291810; T( 3,743)= 4.03227535; T( 3,744)= 4.04166564; T( 3,745)= 4.05108923; T( 3,746)= 4.06054637; T( 3,747)= 4.07003735; T( 3,748)= 4.07956242; T( 3,749)= 4.08912186; T( 3,750)= 4.09871593; T( 3,751)= 4.10834494; T( 3,752)= 4.11800914; T( 3,753)= 4.12770883; T( 3,754)= 4.13744430; T( 3,755)= 4.14721584; T( 3,756)= 4.15702374; T( 3,757)= 4.16686831; T( 3,758)= 4.17674984; T( 3,759)= 4.18666865; T( 3,760)= 4.19662504; T( 3,761)= 4.20661933; T( 3,762)= 4.21665183; T( 3,763)= 4.22672288; T( 3,764)= 4.23683278; T( 3,765)= 4.24698188; T( 3,766)= 4.25717052; T( 3,767)= 4.26739901; T( 3,768)= 4.27766772; T( 3,769)= 4.28797699; T( 3,770)= 4.29832716; T( 3,771)= 4.30871860; T( 3,772)= 4.31915167; T( 3,773)= 4.32962673; T( 3,774)= 4.34014415; T( 3,775)= 4.35070431; T( 3,776)= 4.36130759; T( 3,777)= 4.37195437; T( 3,778)= 4.38264504; T( 3,779)= 4.39338001; T( 3,780)= 4.40415966; T( 3,781)= 4.41498441; T( 3,782)= 4.42585467; T( 3,783)= 4.43677085; T( 3,784)= 4.44773338; T( 3,785)= 4.45874269; T( 3,786)= 4.46979921; T( 3,787)= 4.48090338; T( 3,788)= 4.49205566; T( 3,789)= 4.50325649; T( 3,790)= 4.51450633; T( 3,791)= 4.52580565; T( 3,792)= 4.53715492; T( 3,793)= 4.54855463; T( 3,794)= 4.56000525; T( 3,795)= 4.57150728; T( 3,796)= 4.58306123; T( 3,797)= 4.59466759; T( 3,798)= 4.60632689; T( 3,799)= 4.61803965; T( 3,800)= 4.62980640; T( 3,801)= 4.64162768; T( 3,802)= 4.65350402; T( 3,803)= 4.66543600; T( 3,804)= 4.67742417; T( 3,805)= 4.68946910; T( 3,806)= 4.70157137; T( 3,807)= 4.71373158; T( 3,808)= 4.72595032; T( 3,809)= 4.73822819; T( 3,810)= 4.75056583; T( 3,811)= 4.76296384; T( 3,812)= 4.77542287; T( 3,813)= 4.78794356; T( 3,814)= 4.80052658; T( 3,815)= 4.81317259; T( 3,816)= 4.82588226; T( 3,817)= 4.83865629; T( 3,818)= 4.85149538; T( 3,819)= 4.86440023; T( 3,820)= 4.87737157; T( 3,821)= 4.89041014; T( 3,822)= 4.90351669; T( 3,823)= 4.91669196; T( 3,824)= 4.92993675; T( 3,825)= 4.94325182; T( 3,826)= 4.95663799; T( 3,827)= 4.97009606; T( 3,828)= 4.98362685; T( 3,829)= 4.99723122; T( 3,830)= 5.01091002; T( 3,831)= 5.02466411; T( 3,832)= 5.03849439; T( 3,833)= 5.05240175; T( 3,834)= 5.06638711; T( 3,835)= 5.08045141; T( 3,836)= 5.09459559; T( 3,837)= 5.10882063; T( 3,838)= 5.12312751; T( 3,839)= 5.13751723; T( 3,840)= 5.15199082; T( 3,841)= 5.16654932; T( 3,842)= 5.18119378; T( 3,843)= 5.19592529; T( 3,844)= 5.21074496; T( 3,845)= 5.22565389; T( 3,846)= 5.24065324; T( 3,847)= 5.25574417; T( 3,848)= 5.27092788; T( 3,849)= 5.28620556; T( 3,850)= 5.30157846; T( 3,851)= 5.31704784; T( 3,852)= 5.33261498; T( 3,853)= 5.34828119; T( 3,854)= 5.36404781; T( 3,855)= 5.37991621; T( 3,856)= 5.39588777; T( 3,857)= 5.41196392; T( 3,858)= 5.42814612; T( 3,859)= 5.44443583; T( 3,860)= 5.46083458; T( 3,861)= 5.47734390; T( 3,862)= 5.49396539; T( 3,863)= 5.51070063; T( 3,864)= 5.52755130; T( 3,865)= 5.54451906; T( 3,866)= 5.56160563; T( 3,867)= 5.57881278; T( 3,868)= 5.59614230; T( 3,869)= 5.61359603; T( 3,870)= 5.63117585; T( 3,871)= 5.64888367; T( 3,872)= 5.66672148; T( 3,873)= 5.68469127; T( 3,874)= 5.70279511; T( 3,875)= 5.72103510; T( 3,876)= 5.73941341; T( 3,877)= 5.75793225; T( 3,878)= 5.77659387; T( 3,879)= 5.79540059; T( 3,880)= 5.81435480; T( 3,881)= 5.83345891; T( 3,882)= 5.85271544; T( 3,883)= 5.87212693; T( 3,884)= 5.89169601; T( 3,885)= 5.91142538; T( 3,886)= 5.93131777; T( 3,887)= 5.95137604; T( 3,888)= 5.97160308; T( 3,889)= 5.99200188; T( 3,890)= 6.01257550; T( 3,891)= 6.03332709; T( 3,892)= 6.05425987; T( 3,893)= 6.07537716; T( 3,894)= 6.09668239; T( 3,895)= 6.11817905; T( 3,896)= 6.13987076; T( 3,897)= 6.16176122; T( 3,898)= 6.18385425; T( 3,899)= 6.20615378; T( 3,900)= 6.22866385; T( 3,901)= 6.25138863; T( 3,902)= 6.27433241; T( 3,903)= 6.29749960; T( 3,904)= 6.32089476; T( 3,905)= 6.34452258; T( 3,906)= 6.36838791; T( 3,907)= 6.39249574; T( 3,908)= 6.41685123; T( 3,909)= 6.44145970; T( 3,910)= 6.46632663; T( 3,911)= 6.49145772; T( 3,912)= 6.51685881; T( 3,913)= 6.54253598; T( 3,914)= 6.56849550; T( 3,915)= 6.59474385; T( 3,916)= 6.62128774; T( 3,917)= 6.64813413; T( 3,918)= 6.67529022; T( 3,919)= 6.70276346; T( 3,920)= 6.73056159; T( 3,921)= 6.75869262; T( 3,922)= 6.78716488; T( 3,923)= 6.81598701; T( 3,924)= 6.84516797; T( 3,925)= 6.87471709; T( 3,926)= 6.90464406; T( 3,927)= 6.93495896; T( 3,928)= 6.96567226; T( 3,929)= 6.99679490; T( 3,930)= 7.02833825; T( 3,931)= 7.06031417; T( 3,932)= 7.09273502; T( 3,933)= 7.12561371; T( 3,934)= 7.15896372; T( 3,935)= 7.19279914; T( 3,936)= 7.22713469; T( 3,937)= 7.26198577; T( 3,938)= 7.29736853; T( 3,939)= 7.33329986; T( 3,940)= 7.36979750; T( 3,941)= 7.40688004; T( 3,942)= 7.44456702; T( 3,943)= 7.48287898; T( 3,944)= 7.52183750; T( 3,945)= 7.56146534; T( 3,946)= 7.60178647; T( 3,947)= 7.64282615; T( 3,948)= 7.68461110; T( 3,949)= 7.72716951; T( 3,950)= 7.77053124; T( 3,951)= 7.81472790; T( 3,952)= 7.85979303; T( 3,953)= 7.90576221; T( 3,954)= 7.95267326; T( 3,955)= 8.00056647; T( 3,956)= 8.04948472; T( 3,957)= 8.09947381; T( 3,958)= 8.15058267; T( 3,959)= 8.20286369; T( 3,960)= 8.25637300; T( 3,961)= 8.31117091; T( 3,962)= 8.36732227; T( 3,963)= 8.42489697; T( 3,964)= 8.48397049; T( 3,965)= 8.54462446; T( 3,966)= 8.60694740; T( 3,967)= 8.67103553; T( 3,968)= 8.73699360; T( 3,969)= 8.80493605; T( 3,970)= 8.87498816; T( 3,971)= 8.94728750; T( 3,972)= 9.02198557; T( 3,973)= 9.09924980; T( 3,974)= 9.17926579; T( 3,975)= 9.26224013; T( 3,976)= 9.34840360; T( 3,977)= 9.43801521; T( 3,978)= 9.53136689; T( 3,979)= 9.62878943; T( 3,980)= 9.73065964; T( 3,981)= 9.83740931; T( 3,982)= 9.94953654; T( 3,983)=10.06762000; T( 3,984)=10.19233733; T( 3,985)=10.32448914; T( 3,986)=10.46503071; T( 3,987)=10.61511464; T( 3,988)=10.77614929; T( 3,989)=10.94988065; T( 3,990)=11.13850986; T( 3,991)=11.34486673; T( 3,992)=11.57267496; T( 3,993)=11.82697385; T( 3,994)=12.11482274; T( 3,995)=12.44655104; T( 3,996)=12.83815647; T( 3,997)=13.31640865; T( 3,998)=13.93142267; T( 3,999)=14.79551705; T( 3,1000)=16.26623620; T( 3,1001)=21.10751347; T( 3,1002)=25.90174975; T( 4, 1)= 0.00000000; T( 4, 2)= 0.09080404; T( 4, 3)= 0.12923771; T( 4, 4)= 0.15906734; T( 4, 5)= 0.18444814; T( 4, 6)= 0.20698909; T( 4, 7)= 0.22751512; T( 4, 8)= 0.24651611; T( 4, 9)= 0.26431116; T( 4,10)= 0.28112186; T( 4,11)= 0.29710948; T( 4,12)= 0.31239575; T( 4,13)= 0.32707521; T( 4,14)= 0.34122302; T( 4,15)= 0.35490010; T( 4,16)= 0.36815665; T( 4,17)= 0.38103461; T( 4,18)= 0.39356944; T( 4,19)= 0.40579145; T( 4,20)= 0.41772679; T( 4,21)= 0.42939819; T( 4,22)= 0.44082558; T( 4,23)= 0.45202654; T( 4,24)= 0.46301666; T( 4,25)= 0.47380984; T( 4,26)= 0.48441856; T( 4,27)= 0.49485405; T( 4,28)= 0.50512649; T( 4,29)= 0.51524508; T( 4,30)= 0.52521825; T( 4,31)= 0.53505367; T( 4,32)= 0.54475841; T( 4,33)= 0.55433893; T( 4,34)= 0.56380124; T( 4,35)= 0.57315084; T( 4,36)= 0.58239287; T( 4,37)= 0.59153209; T( 4,38)= 0.60057293; T( 4,39)= 0.60951952; T( 4,40)= 0.61837573; T( 4,41)= 0.62714516; T( 4,42)= 0.63583121; T( 4,43)= 0.64443707; T( 4,44)= 0.65296573; T( 4,45)= 0.66142000; T( 4,46)= 0.66980256; T( 4,47)= 0.67811591; T( 4,48)= 0.68636244; T( 4,49)= 0.69454440; T( 4,50)= 0.70266392; T( 4,51)= 0.71072302; T( 4,52)= 0.71872364; T( 4,53)= 0.72666760; T( 4,54)= 0.73455665; T( 4,55)= 0.74239246; T( 4,56)= 0.75017659; T( 4,57)= 0.75791057; T( 4,58)= 0.76559585; T( 4,59)= 0.77323380; T( 4,60)= 0.78082575; T( 4,61)= 0.78837296; T( 4,62)= 0.79587666; T( 4,63)= 0.80333800; T( 4,64)= 0.81075810; T( 4,65)= 0.81813804; T( 4,66)= 0.82547884; T( 4,67)= 0.83278151; T( 4,68)= 0.84004699; T( 4,69)= 0.84727621; T( 4,70)= 0.85447005; T( 4,71)= 0.86162937; T( 4,72)= 0.86875498; T( 4,73)= 0.87584769; T( 4,74)= 0.88290826; T( 4,75)= 0.88993743; T( 4,76)= 0.89693592; T( 4,77)= 0.90390442; T( 4,78)= 0.91084360; T( 4,79)= 0.91775411; T( 4,80)= 0.92463657; T( 4,81)= 0.93149160; T( 4,82)= 0.93831978; T( 4,83)= 0.94512169; T( 4,84)= 0.95189787; T( 4,85)= 0.95864887; T( 4,86)= 0.96537520; T( 4,87)= 0.97207738; T( 4,88)= 0.97875589; T( 4,89)= 0.98541121; T( 4,90)= 0.99204380; T( 4,91)= 0.99865412; T( 4,92)= 1.00524261; T( 4,93)= 1.01180968; T( 4,94)= 1.01835577; T( 4,95)= 1.02488126; T( 4,96)= 1.03138656; T( 4,97)= 1.03787205; T( 4,98)= 1.04433810; T( 4,99)= 1.05078507; T( 4,100)= 1.05721333; T( 4,101)= 1.06362322; T( 4,102)= 1.07001507; T( 4,103)= 1.07638921; T( 4,104)= 1.08274597; T( 4,105)= 1.08908566; T( 4,106)= 1.09540858; T( 4,107)= 1.10171504; T( 4,108)= 1.10800533; T( 4,109)= 1.11427973; T( 4,110)= 1.12053852; T( 4,111)= 1.12678198; T( 4,112)= 1.13301037; T( 4,113)= 1.13922395; T( 4,114)= 1.14542298; T( 4,115)= 1.15160771; T( 4,116)= 1.15777838; T( 4,117)= 1.16393523; T( 4,118)= 1.17007849; T( 4,119)= 1.17620840; T( 4,120)= 1.18232518; T( 4,121)= 1.18842905; T( 4,122)= 1.19452023; T( 4,123)= 1.20059892; T( 4,124)= 1.20666533; T( 4,125)= 1.21271967; T( 4,126)= 1.21876214; T( 4,127)= 1.22479292; T( 4,128)= 1.23081222; T( 4,129)= 1.23682021; T( 4,130)= 1.24281709; T( 4,131)= 1.24880304; T( 4,132)= 1.25477823; T( 4,133)= 1.26074283; T( 4,134)= 1.26669702; T( 4,135)= 1.27264097; T( 4,136)= 1.27857484; T( 4,137)= 1.28449879; T( 4,138)= 1.29041298; T( 4,139)= 1.29631757; T( 4,140)= 1.30221271; T( 4,141)= 1.30809856; T( 4,142)= 1.31397526; T( 4,143)= 1.31984296; T( 4,144)= 1.32570180; T( 4,145)= 1.33155192; T( 4,146)= 1.33739346; T( 4,147)= 1.34322657; T( 4,148)= 1.34905136; T( 4,149)= 1.35486799; T( 4,150)= 1.36067656; T( 4,151)= 1.36647723; T( 4,152)= 1.37227010; T( 4,153)= 1.37805531; T( 4,154)= 1.38383297; T( 4,155)= 1.38960322; T( 4,156)= 1.39536616; T( 4,157)= 1.40112191; T( 4,158)= 1.40687059; T( 4,159)= 1.41261231; T( 4,160)= 1.41834719; T( 4,161)= 1.42407533; T( 4,162)= 1.42979685; T( 4,163)= 1.43551184; T( 4,164)= 1.44122042; T( 4,165)= 1.44692269; T( 4,166)= 1.45261875; T( 4,167)= 1.45830870; T( 4,168)= 1.46399265; T( 4,169)= 1.46967069; T( 4,170)= 1.47534292; T( 4,171)= 1.48100943; T( 4,172)= 1.48667032; T( 4,173)= 1.49232569; T( 4,174)= 1.49797562; T( 4,175)= 1.50362021; T( 4,176)= 1.50925954; T( 4,177)= 1.51489371; T( 4,178)= 1.52052280; T( 4,179)= 1.52614689; T( 4,180)= 1.53176608; T( 4,181)= 1.53738045; T( 4,182)= 1.54299008; T( 4,183)= 1.54859506; T( 4,184)= 1.55419546; T( 4,185)= 1.55979136; T( 4,186)= 1.56538285; T( 4,187)= 1.57097000; T( 4,188)= 1.57655289; T( 4,189)= 1.58213160; T( 4,190)= 1.58770620; T( 4,191)= 1.59327678; T( 4,192)= 1.59884339; T( 4,193)= 1.60440612; T( 4,194)= 1.60996503; T( 4,195)= 1.61552021; T( 4,196)= 1.62107171; T( 4,197)= 1.62661962; T( 4,198)= 1.63216399; T( 4,199)= 1.63770491; T( 4,200)= 1.64324243; T( 4,201)= 1.64877662; T( 4,202)= 1.65430755; T( 4,203)= 1.65983529; T( 4,204)= 1.66535990; T( 4,205)= 1.67088144; T( 4,206)= 1.67639998; T( 4,207)= 1.68191559; T( 4,208)= 1.68742832; T( 4,209)= 1.69293823; T( 4,210)= 1.69844540; T( 4,211)= 1.70394987; T( 4,212)= 1.70945172; T( 4,213)= 1.71495099; T( 4,214)= 1.72044775; T( 4,215)= 1.72594205; T( 4,216)= 1.73143396; T( 4,217)= 1.73692353; T( 4,218)= 1.74241082; T( 4,219)= 1.74789589; T( 4,220)= 1.75337878; T( 4,221)= 1.75885957; T( 4,222)= 1.76433829; T( 4,223)= 1.76981501; T( 4,224)= 1.77528978; T( 4,225)= 1.78076266; T( 4,226)= 1.78623369; T( 4,227)= 1.79170293; T( 4,228)= 1.79717043; T( 4,229)= 1.80263625; T( 4,230)= 1.80810043; T( 4,231)= 1.81356303; T( 4,232)= 1.81902409; T( 4,233)= 1.82448367; T( 4,234)= 1.82994182; T( 4,235)= 1.83539858; T( 4,236)= 1.84085401; T( 4,237)= 1.84630815; T( 4,238)= 1.85176106; T( 4,239)= 1.85721277; T( 4,240)= 1.86266334; T( 4,241)= 1.86811282; T( 4,242)= 1.87356125; T( 4,243)= 1.87900868; T( 4,244)= 1.88445515; T( 4,245)= 1.88990071; T( 4,246)= 1.89534541; T( 4,247)= 1.90078929; T( 4,248)= 1.90623240; T( 4,249)= 1.91167478; T( 4,250)= 1.91711647; T( 4,251)= 1.92255753; T( 4,252)= 1.92799798; T( 4,253)= 1.93343789; T( 4,254)= 1.93887729; T( 4,255)= 1.94431622; T( 4,256)= 1.94975472; T( 4,257)= 1.95519285; T( 4,258)= 1.96063064; T( 4,259)= 1.96606812; T( 4,260)= 1.97150536; T( 4,261)= 1.97694238; T( 4,262)= 1.98237923; T( 4,263)= 1.98781595; T( 4,264)= 1.99325257; T( 4,265)= 1.99868915; T( 4,266)= 2.00412572; T( 4,267)= 2.00956231; T( 4,268)= 2.01499898; T( 4,269)= 2.02043576; T( 4,270)= 2.02587268; T( 4,271)= 2.03130980; T( 4,272)= 2.03674714; T( 4,273)= 2.04218475; T( 4,274)= 2.04762267; T( 4,275)= 2.05306093; T( 4,276)= 2.05849957; T( 4,277)= 2.06393863; T( 4,278)= 2.06937815; T( 4,279)= 2.07481817; T( 4,280)= 2.08025872; T( 4,281)= 2.08569984; T( 4,282)= 2.09114157; T( 4,283)= 2.09658394; T( 4,284)= 2.10202700; T( 4,285)= 2.10747077; T( 4,286)= 2.11291531; T( 4,287)= 2.11836063; T( 4,288)= 2.12380678; T( 4,289)= 2.12925380; T( 4,290)= 2.13470172; T( 4,291)= 2.14015057; T( 4,292)= 2.14560040; T( 4,293)= 2.15105123; T( 4,294)= 2.15650311; T( 4,295)= 2.16195607; T( 4,296)= 2.16741014; T( 4,297)= 2.17286536; T( 4,298)= 2.17832176; T( 4,299)= 2.18377938; T( 4,300)= 2.18923826; T( 4,301)= 2.19469842; T( 4,302)= 2.20015991; T( 4,303)= 2.20562275; T( 4,304)= 2.21108699; T( 4,305)= 2.21655265; T( 4,306)= 2.22201977; T( 4,307)= 2.22748838; T( 4,308)= 2.23295853; T( 4,309)= 2.23843023; T( 4,310)= 2.24390353; T( 4,311)= 2.24937845; T( 4,312)= 2.25485504; T( 4,313)= 2.26033333; T( 4,314)= 2.26581334; T( 4,315)= 2.27129512; T( 4,316)= 2.27677869; T( 4,317)= 2.28226408; T( 4,318)= 2.28775134; T( 4,319)= 2.29324050; T( 4,320)= 2.29873158; T( 4,321)= 2.30422462; T( 4,322)= 2.30971966; T( 4,323)= 2.31521671; T( 4,324)= 2.32071583; T( 4,325)= 2.32621704; T( 4,326)= 2.33172037; T( 4,327)= 2.33722585; T( 4,328)= 2.34273353; T( 4,329)= 2.34824342; T( 4,330)= 2.35375556; T( 4,331)= 2.35926999; T( 4,332)= 2.36478674; T( 4,333)= 2.37030583; T( 4,334)= 2.37582731; T( 4,335)= 2.38135119; T( 4,336)= 2.38687752; T( 4,337)= 2.39240633; T( 4,338)= 2.39793764; T( 4,339)= 2.40347150; T( 4,340)= 2.40900792; T( 4,341)= 2.41454695; T( 4,342)= 2.42008862; T( 4,343)= 2.42563295; T( 4,344)= 2.43117998; T( 4,345)= 2.43672974; T( 4,346)= 2.44228226; T( 4,347)= 2.44783757; T( 4,348)= 2.45339571; T( 4,349)= 2.45895671; T( 4,350)= 2.46452059; T( 4,351)= 2.47008739; T( 4,352)= 2.47565714; T( 4,353)= 2.48122987; T( 4,354)= 2.48680562; T( 4,355)= 2.49238441; T( 4,356)= 2.49796627; T( 4,357)= 2.50355125; T( 4,358)= 2.50913936; T( 4,359)= 2.51473064; T( 4,360)= 2.52032513; T( 4,361)= 2.52592284; T( 4,362)= 2.53152382; T( 4,363)= 2.53712810; T( 4,364)= 2.54273570; T( 4,365)= 2.54834666; T( 4,366)= 2.55396101; T( 4,367)= 2.55957878; T( 4,368)= 2.56520000; T( 4,369)= 2.57082471; T( 4,370)= 2.57645293; T( 4,371)= 2.58208469; T( 4,372)= 2.58772004; T( 4,373)= 2.59335899; T( 4,374)= 2.59900158; T( 4,375)= 2.60464784; T( 4,376)= 2.61029781; T( 4,377)= 2.61595151; T( 4,378)= 2.62160897; T( 4,379)= 2.62727024; T( 4,380)= 2.63293533; T( 4,381)= 2.63860428; T( 4,382)= 2.64427712; T( 4,383)= 2.64995389; T( 4,384)= 2.65563461; T( 4,385)= 2.66131932; T( 4,386)= 2.66700804; T( 4,387)= 2.67270082; T( 4,388)= 2.67839767; T( 4,389)= 2.68409864; T( 4,390)= 2.68980376; T( 4,391)= 2.69551305; T( 4,392)= 2.70122654; T( 4,393)= 2.70694428; T( 4,394)= 2.71266630; T( 4,395)= 2.71839261; T( 4,396)= 2.72412326; T( 4,397)= 2.72985828; T( 4,398)= 2.73559770; T( 4,399)= 2.74134155; T( 4,400)= 2.74708987; T( 4,401)= 2.75284268; T( 4,402)= 2.75860003; T( 4,403)= 2.76436193; T( 4,404)= 2.77012843; T( 4,405)= 2.77589955; T( 4,406)= 2.78167533; T( 4,407)= 2.78745580; T( 4,408)= 2.79324100; T( 4,409)= 2.79903095; T( 4,410)= 2.80482569; T( 4,411)= 2.81062526; T( 4,412)= 2.81642967; T( 4,413)= 2.82223898; T( 4,414)= 2.82805320; T( 4,415)= 2.83387238; T( 4,416)= 2.83969655; T( 4,417)= 2.84552573; T( 4,418)= 2.85135997; T( 4,419)= 2.85719929; T( 4,420)= 2.86304373; T( 4,421)= 2.86889333; T( 4,422)= 2.87474811; T( 4,423)= 2.88060811; T( 4,424)= 2.88647336; T( 4,425)= 2.89234391; T( 4,426)= 2.89821977; T( 4,427)= 2.90410099; T( 4,428)= 2.90998759; T( 4,429)= 2.91587962; T( 4,430)= 2.92177711; T( 4,431)= 2.92768009; T( 4,432)= 2.93358859; T( 4,433)= 2.93950266; T( 4,434)= 2.94542232; T( 4,435)= 2.95134761; T( 4,436)= 2.95727856; T( 4,437)= 2.96321521; T( 4,438)= 2.96915760; T( 4,439)= 2.97510575; T( 4,440)= 2.98105971; T( 4,441)= 2.98701950; T( 4,442)= 2.99298518; T( 4,443)= 2.99895676; T( 4,444)= 3.00493428; T( 4,445)= 3.01091779; T( 4,446)= 3.01690731; T( 4,447)= 3.02290288; T( 4,448)= 3.02890455; T( 4,449)= 3.03491233; T( 4,450)= 3.04092628; T( 4,451)= 3.04694642; T( 4,452)= 3.05297280; T( 4,453)= 3.05900545; T( 4,454)= 3.06504440; T( 4,455)= 3.07108969; T( 4,456)= 3.07714137; T( 4,457)= 3.08319946; T( 4,458)= 3.08926400; T( 4,459)= 3.09533504; T( 4,460)= 3.10141260; T( 4,461)= 3.10749673; T( 4,462)= 3.11358747; T( 4,463)= 3.11968484; T( 4,464)= 3.12578890; T( 4,465)= 3.13189967; T( 4,466)= 3.13801719; T( 4,467)= 3.14414151; T( 4,468)= 3.15027266; T( 4,469)= 3.15641069; T( 4,470)= 3.16255562; T( 4,471)= 3.16870750; T( 4,472)= 3.17486636; T( 4,473)= 3.18103226; T( 4,474)= 3.18720522; T( 4,475)= 3.19338528; T( 4,476)= 3.19957249; T( 4,477)= 3.20576688; T( 4,478)= 3.21196850; T( 4,479)= 3.21817738; T( 4,480)= 3.22439357; T( 4,481)= 3.23061710; T( 4,482)= 3.23684802; T( 4,483)= 3.24308636; T( 4,484)= 3.24933218; T( 4,485)= 3.25558550; T( 4,486)= 3.26184637; T( 4,487)= 3.26811483; T( 4,488)= 3.27439092; T( 4,489)= 3.28067469; T( 4,490)= 3.28696618; T( 4,491)= 3.29326542; T( 4,492)= 3.29957246; T( 4,493)= 3.30588735; T( 4,494)= 3.31221013; T( 4,495)= 3.31854083; T( 4,496)= 3.32487950; T( 4,497)= 3.33122619; T( 4,498)= 3.33758094; T( 4,499)= 3.34394380; T( 4,500)= 3.35031479; T( 4,501)= 3.35669398; T( 4,502)= 3.36308140; T( 4,503)= 3.36947710; T( 4,504)= 3.37588113; T( 4,505)= 3.38229352; T( 4,506)= 3.38871433; T( 4,507)= 3.39514359; T( 4,508)= 3.40158136; T( 4,509)= 3.40802768; T( 4,510)= 3.41448259; T( 4,511)= 3.42094615; T( 4,512)= 3.42741839; T( 4,513)= 3.43389937; T( 4,514)= 3.44038913; T( 4,515)= 3.44688772; T( 4,516)= 3.45339518; T( 4,517)= 3.45991157; T( 4,518)= 3.46643693; T( 4,519)= 3.47297131; T( 4,520)= 3.47951475; T( 4,521)= 3.48606731; T( 4,522)= 3.49262904; T( 4,523)= 3.49919998; T( 4,524)= 3.50578018; T( 4,525)= 3.51236969; T( 4,526)= 3.51896857; T( 4,527)= 3.52557685; T( 4,528)= 3.53219460; T( 4,529)= 3.53882186; T( 4,530)= 3.54545868; T( 4,531)= 3.55210512; T( 4,532)= 3.55876122; T( 4,533)= 3.56542704; T( 4,534)= 3.57210263; T( 4,535)= 3.57878804; T( 4,536)= 3.58548332; T( 4,537)= 3.59218853; T( 4,538)= 3.59890372; T( 4,539)= 3.60562893; T( 4,540)= 3.61236424; T( 4,541)= 3.61910968; T( 4,542)= 3.62586532; T( 4,543)= 3.63263120; T( 4,544)= 3.63940739; T( 4,545)= 3.64619393; T( 4,546)= 3.65299089; T( 4,547)= 3.65979832; T( 4,548)= 3.66661627; T( 4,549)= 3.67344480; T( 4,550)= 3.68028397; T( 4,551)= 3.68713383; T( 4,552)= 3.69399445; T( 4,553)= 3.70086587; T( 4,554)= 3.70774817; T( 4,555)= 3.71464138; T( 4,556)= 3.72154558; T( 4,557)= 3.72846083; T( 4,558)= 3.73538718; T( 4,559)= 3.74232468; T( 4,560)= 3.74927341; T( 4,561)= 3.75623343; T( 4,562)= 3.76320478; T( 4,563)= 3.77018754; T( 4,564)= 3.77718177; T( 4,565)= 3.78418752; T( 4,566)= 3.79120486; T( 4,567)= 3.79823386; T( 4,568)= 3.80527456; T( 4,569)= 3.81232705; T( 4,570)= 3.81939138; T( 4,571)= 3.82646762; T( 4,572)= 3.83355582; T( 4,573)= 3.84065607; T( 4,574)= 3.84776841; T( 4,575)= 3.85489292; T( 4,576)= 3.86202966; T( 4,577)= 3.86917871; T( 4,578)= 3.87634012; T( 4,579)= 3.88351396; T( 4,580)= 3.89070031; T( 4,581)= 3.89789922; T( 4,582)= 3.90511077; T( 4,583)= 3.91233504; T( 4,584)= 3.91957208; T( 4,585)= 3.92682197; T( 4,586)= 3.93408477; T( 4,587)= 3.94136057; T( 4,588)= 3.94864942; T( 4,589)= 3.95595141; T( 4,590)= 3.96326661; T( 4,591)= 3.97059508; T( 4,592)= 3.97793690; T( 4,593)= 3.98529215; T( 4,594)= 3.99266090; T( 4,595)= 4.00004322; T( 4,596)= 4.00743920; T( 4,597)= 4.01484890; T( 4,598)= 4.02227240; T( 4,599)= 4.02970978; T( 4,600)= 4.03716112; T( 4,601)= 4.04462649; T( 4,602)= 4.05210598; T( 4,603)= 4.05959966; T( 4,604)= 4.06710761; T( 4,605)= 4.07462991; T( 4,606)= 4.08216664; T( 4,607)= 4.08971789; T( 4,608)= 4.09728374; T( 4,609)= 4.10486427; T( 4,610)= 4.11245955; T( 4,611)= 4.12006968; T( 4,612)= 4.12769475; T( 4,613)= 4.13533482; T( 4,614)= 4.14299000; T( 4,615)= 4.15066036; T( 4,616)= 4.15834600; T( 4,617)= 4.16604699; T( 4,618)= 4.17376344; T( 4,619)= 4.18149542; T( 4,620)= 4.18924303; T( 4,621)= 4.19700635; T( 4,622)= 4.20478548; T( 4,623)= 4.21258051; T( 4,624)= 4.22039152; T( 4,625)= 4.22821862; T( 4,626)= 4.23606190; T( 4,627)= 4.24392145; T( 4,628)= 4.25179736; T( 4,629)= 4.25968973; T( 4,630)= 4.26759865; T( 4,631)= 4.27552424; T( 4,632)= 4.28346657; T( 4,633)= 4.29142575; T( 4,634)= 4.29940188; T( 4,635)= 4.30739506; T( 4,636)= 4.31540539; T( 4,637)= 4.32343296; T( 4,638)= 4.33147790; T( 4,639)= 4.33954028; T( 4,640)= 4.34762023; T( 4,641)= 4.35571785; T( 4,642)= 4.36383323; T( 4,643)= 4.37196649; T( 4,644)= 4.38011774; T( 4,645)= 4.38828707; T( 4,646)= 4.39647461; T( 4,647)= 4.40468046; T( 4,648)= 4.41290473; T( 4,649)= 4.42114754; T( 4,650)= 4.42940899; T( 4,651)= 4.43768920; T( 4,652)= 4.44598828; T( 4,653)= 4.45430636; T( 4,654)= 4.46264354; T( 4,655)= 4.47099994; T( 4,656)= 4.47937568; T( 4,657)= 4.48777089; T( 4,658)= 4.49618567; T( 4,659)= 4.50462016; T( 4,660)= 4.51307447; T( 4,661)= 4.52154873; T( 4,662)= 4.53004306; T( 4,663)= 4.53855758; T( 4,664)= 4.54709243; T( 4,665)= 4.55564773; T( 4,666)= 4.56422361; T( 4,667)= 4.57282020; T( 4,668)= 4.58143763; T( 4,669)= 4.59007603; T( 4,670)= 4.59873554; T( 4,671)= 4.60741628; T( 4,672)= 4.61611840; T( 4,673)= 4.62484204; T( 4,674)= 4.63358732; T( 4,675)= 4.64235439; T( 4,676)= 4.65114339; T( 4,677)= 4.65995446; T( 4,678)= 4.66878774; T( 4,679)= 4.67764338; T( 4,680)= 4.68652153; T( 4,681)= 4.69542232; T( 4,682)= 4.70434591; T( 4,683)= 4.71329245; T( 4,684)= 4.72226208; T( 4,685)= 4.73125497; T( 4,686)= 4.74027126; T( 4,687)= 4.74931111; T( 4,688)= 4.75837467; T( 4,689)= 4.76746211; T( 4,690)= 4.77657358; T( 4,691)= 4.78570924; T( 4,692)= 4.79486926; T( 4,693)= 4.80405379; T( 4,694)= 4.81326301; T( 4,695)= 4.82249709; T( 4,696)= 4.83175618; T( 4,697)= 4.84104046; T( 4,698)= 4.85035011; T( 4,699)= 4.85968529; T( 4,700)= 4.86904619; T( 4,701)= 4.87843297; T( 4,702)= 4.88784581; T( 4,703)= 4.89728491; T( 4,704)= 4.90675043; T( 4,705)= 4.91624257; T( 4,706)= 4.92576151; T( 4,707)= 4.93530743; T( 4,708)= 4.94488052; T( 4,709)= 4.95448099; T( 4,710)= 4.96410901; T( 4,711)= 4.97376479; T( 4,712)= 4.98344853; T( 4,713)= 4.99316041; T( 4,714)= 5.00290065; T( 4,715)= 5.01266944; T( 4,716)= 5.02246700; T( 4,717)= 5.03229352; T( 4,718)= 5.04214922; T( 4,719)= 5.05203432; T( 4,720)= 5.06194901; T( 4,721)= 5.07189353; T( 4,722)= 5.08186809; T( 4,723)= 5.09187290; T( 4,724)= 5.10190820; T( 4,725)= 5.11197421; T( 4,726)= 5.12207115; T( 4,727)= 5.13219926; T( 4,728)= 5.14235877; T( 4,729)= 5.15254991; T( 4,730)= 5.16277293; T( 4,731)= 5.17302806; T( 4,732)= 5.18331554; T( 4,733)= 5.19363562; T( 4,734)= 5.20398856; T( 4,735)= 5.21437459; T( 4,736)= 5.22479398; T( 4,737)= 5.23524698; T( 4,738)= 5.24573386; T( 4,739)= 5.25625486; T( 4,740)= 5.26681027; T( 4,741)= 5.27740034; T( 4,742)= 5.28802535; T( 4,743)= 5.29868557; T( 4,744)= 5.30938129; T( 4,745)= 5.32011278; T( 4,746)= 5.33088032; T( 4,747)= 5.34168421; T( 4,748)= 5.35252473; T( 4,749)= 5.36340218; T( 4,750)= 5.37431685; T( 4,751)= 5.38526906; T( 4,752)= 5.39625909; T( 4,753)= 5.40728727; T( 4,754)= 5.41835389; T( 4,755)= 5.42945929; T( 4,756)= 5.44060377; T( 4,757)= 5.45178766; T( 4,758)= 5.46301129; T( 4,759)= 5.47427499; T( 4,760)= 5.48557909; T( 4,761)= 5.49692394; T( 4,762)= 5.50830987; T( 4,763)= 5.51973724; T( 4,764)= 5.53120640; T( 4,765)= 5.54271769; T( 4,766)= 5.55427150; T( 4,767)= 5.56586817; T( 4,768)= 5.57750808; T( 4,769)= 5.58919161; T( 4,770)= 5.60091913; T( 4,771)= 5.61269103; T( 4,772)= 5.62450770; T( 4,773)= 5.63636954; T( 4,774)= 5.64827693; T( 4,775)= 5.66023029; T( 4,776)= 5.67223003; T( 4,777)= 5.68427657; T( 4,778)= 5.69637031; T( 4,779)= 5.70851170; T( 4,780)= 5.72070116; T( 4,781)= 5.73293913; T( 4,782)= 5.74522606; T( 4,783)= 5.75756239; T( 4,784)= 5.76994858; T( 4,785)= 5.78238510; T( 4,786)= 5.79487241; T( 4,787)= 5.80741098; T( 4,788)= 5.82000131; T( 4,789)= 5.83264387; T( 4,790)= 5.84533917; T( 4,791)= 5.85808770; T( 4,792)= 5.87088997; T( 4,793)= 5.88374651; T( 4,794)= 5.89665783; T( 4,795)= 5.90962447; T( 4,796)= 5.92264696; T( 4,797)= 5.93572586; T( 4,798)= 5.94886171; T( 4,799)= 5.96205509; T( 4,800)= 5.97530656; T( 4,801)= 5.98861669; T( 4,802)= 6.00198609; T( 4,803)= 6.01541535; T( 4,804)= 6.02890507; T( 4,805)= 6.04245586; T( 4,806)= 6.05606836; T( 4,807)= 6.06974320; T( 4,808)= 6.08348102; T( 4,809)= 6.09728247; T( 4,810)= 6.11114822; T( 4,811)= 6.12507894; T( 4,812)= 6.13907532; T( 4,813)= 6.15313805; T( 4,814)= 6.16726784; T( 4,815)= 6.18146541; T( 4,816)= 6.19573148; T( 4,817)= 6.21006680; T( 4,818)= 6.22447212; T( 4,819)= 6.23894820; T( 4,820)= 6.25349583; T( 4,821)= 6.26811579; T( 4,822)= 6.28280888; T( 4,823)= 6.29757593; T( 4,824)= 6.31241776; T( 4,825)= 6.32733521; T( 4,826)= 6.34232915; T( 4,827)= 6.35740046; T( 4,828)= 6.37255000; T( 4,829)= 6.38777870; T( 4,830)= 6.40308747; T( 4,831)= 6.41847725; T( 4,832)= 6.43394898; T( 4,833)= 6.44950363; T( 4,834)= 6.46514220; T( 4,835)= 6.48086568; T( 4,836)= 6.49667509; T( 4,837)= 6.51257148; T( 4,838)= 6.52855590; T( 4,839)= 6.54462942; T( 4,840)= 6.56079316; T( 4,841)= 6.57704821; T( 4,842)= 6.59339573; T( 4,843)= 6.60983688; T( 4,844)= 6.62637282; T( 4,845)= 6.64300478; T( 4,846)= 6.65973397; T( 4,847)= 6.67656164; T( 4,848)= 6.69348908; T( 4,849)= 6.71051758; T( 4,850)= 6.72764847; T( 4,851)= 6.74488309; T( 4,852)= 6.76222282; T( 4,853)= 6.77966908; T( 4,854)= 6.79722330; T( 4,855)= 6.81488693; T( 4,856)= 6.83266148; T( 4,857)= 6.85054846; T( 4,858)= 6.86854943; T( 4,859)= 6.88666598; T( 4,860)= 6.90489973; T( 4,861)= 6.92325233; T( 4,862)= 6.94172549; T( 4,863)= 6.96032091; T( 4,864)= 6.97904037; T( 4,865)= 6.99788567; T( 4,866)= 7.01685866; T( 4,867)= 7.03596121; T( 4,868)= 7.05519525; T( 4,869)= 7.07456274; T( 4,870)= 7.09406571; T( 4,871)= 7.11370621; T( 4,872)= 7.13348634; T( 4,873)= 7.15340826; T( 4,874)= 7.17347418; T( 4,875)= 7.19368635; T( 4,876)= 7.21404707; T( 4,877)= 7.23455872; T( 4,878)= 7.25522372; T( 4,879)= 7.27604455; T( 4,880)= 7.29702375; T( 4,881)= 7.31816392; T( 4,882)= 7.33946774; T( 4,883)= 7.36093793; T( 4,884)= 7.38257731; T( 4,885)= 7.40438875; T( 4,886)= 7.42637521; T( 4,887)= 7.44853970; T( 4,888)= 7.47088534; T( 4,889)= 7.49341532; T( 4,890)= 7.51613291; T( 4,891)= 7.53904148; T( 4,892)= 7.56214447; T( 4,893)= 7.58544544; T( 4,894)= 7.60894803; T( 4,895)= 7.63265599; T( 4,896)= 7.65657318; T( 4,897)= 7.68070356; T( 4,898)= 7.70505121; T( 4,899)= 7.72962032; T( 4,900)= 7.75441521; T( 4,901)= 7.77944034; T( 4,902)= 7.80470028; T( 4,903)= 7.83019975; T( 4,904)= 7.85594361; T( 4,905)= 7.88193688; T( 4,906)= 7.90818472; T( 4,907)= 7.93469248; T( 4,908)= 7.96146564; T( 4,909)= 7.98850988; T( 4,910)= 8.01583108; T( 4,911)= 8.04343529; T( 4,912)= 8.07132876; T( 4,913)= 8.09951796; T( 4,914)= 8.12800958; T( 4,915)= 8.15681054; T( 4,916)= 8.18592800; T( 4,917)= 8.21536937; T( 4,918)= 8.24514233; T( 4,919)= 8.27525482; T( 4,920)= 8.30571510; T( 4,921)= 8.33653170; T( 4,922)= 8.36771351; T( 4,923)= 8.39926971; T( 4,924)= 8.43120988; T( 4,925)= 8.46354394; T( 4,926)= 8.49628221; T( 4,927)= 8.52943543; T( 4,928)= 8.56301477; T( 4,929)= 8.59703186; T( 4,930)= 8.63149880; T( 4,931)= 8.66642823; T( 4,932)= 8.70183332; T( 4,933)= 8.73772779; T( 4,934)= 8.77412600; T( 4,935)= 8.81104292; T( 4,936)= 8.84849424; T( 4,937)= 8.88649634; T( 4,938)= 8.92506638; T( 4,939)= 8.96422234; T( 4,940)= 9.00398308; T( 4,941)= 9.04436837; T( 4,942)= 9.08539898; T( 4,943)= 9.12709674; T( 4,944)= 9.16948460; T( 4,945)= 9.21258674; T( 4,946)= 9.25642862; T( 4,947)= 9.30103711; T( 4,948)= 9.34644054; T( 4,949)= 9.39266890; T( 4,950)= 9.43975387; T( 4,951)= 9.48772904; T( 4,952)= 9.53662998; T( 4,953)= 9.58649448; T( 4,954)= 9.63736268; T( 4,955)= 9.68927731; T( 4,956)= 9.74228389; T( 4,957)= 9.79643098; T( 4,958)= 9.85177050; T( 4,959)= 9.90835797; T( 4,960)= 9.96625293; T( 4,961)=10.02551929; T( 4,962)=10.08622578; T( 4,963)=10.14844648; T( 4,964)=10.21226132; T( 4,965)=10.27775679; T( 4,966)=10.34502663; T( 4,967)=10.41417271; T( 4,968)=10.48530593; T( 4,969)=10.55854739; T( 4,970)=10.63402967; T( 4,971)=10.71189829; T( 4,972)=10.79231350; T( 4,973)=10.87545233; T( 4,974)=10.96151101; T( 4,975)=11.05070787; T( 4,976)=11.14328678; T( 4,977)=11.23952133; T( 4,978)=11.33971984; T( 4,979)=11.44423156; T( 4,980)=11.55345420; T( 4,981)=11.66784340; T( 4,982)=11.78792460; T( 4,983)=11.91430801; T( 4,984)=12.04770801; T( 4,985)=12.18896832; T( 4,986)=12.33909528; T( 4,987)=12.49930265; T( 4,988)=12.67107294; T( 4,989)=12.85624330; T( 4,990)=13.05712875; T( 4,991)=13.27670414; T( 4,992)=13.51888199; T( 4,993)=13.78895432; T( 4,994)=14.09432997; T( 4,995)=14.44584270; T( 4,996)=14.86025900; T( 4,997)=15.36561125; T( 4,998)=16.01432631; T( 4,999)=16.92375820; T( 4,1000)=18.46682695; T( 4,1001)=23.51274244; T( 4,1002)=28.47325542; T( 5, 1)= 0.00000000; T( 5, 2)= 0.21021260; T( 5, 3)= 0.28013998; T( 5, 4)= 0.33188723; T( 5, 5)= 0.37461651; T( 5, 6)= 0.41174190; T( 5, 7)= 0.44496986; T( 5, 8)= 0.47529445; T( 5, 9)= 0.50335314; T( 5,10)= 0.52958287; T( 5,11)= 0.55429808; T( 5,12)= 0.57773376; T( 5,13)= 0.60007082; T( 5,14)= 0.62145195; T( 5,15)= 0.64199196; T( 5,16)= 0.66178485; T( 5,17)= 0.68090864; T( 5,18)= 0.69942897; T( 5,19)= 0.71740161; T( 5,20)= 0.73487445; T( 5,21)= 0.75188893; T( 5,22)= 0.76848123; T( 5,23)= 0.78468309; T( 5,24)= 0.80052258; T( 5,25)= 0.81602466; T( 5,26)= 0.83121161; T( 5,27)= 0.84610345; T( 5,28)= 0.86071821; T( 5,29)= 0.87507221; T( 5,30)= 0.88918030; T( 5,31)= 0.90305599; T( 5,32)= 0.91671165; T( 5,33)= 0.93015862; T( 5,34)= 0.94340735; T( 5,35)= 0.95646745; T( 5,36)= 0.96934783; T( 5,37)= 0.98205672; T( 5,38)= 0.99460179; T( 5,39)= 1.00699016; T( 5,40)= 1.01922849; T( 5,41)= 1.03132297; T( 5,42)= 1.04327942; T( 5,43)= 1.05510328; T( 5,44)= 1.06679967; T( 5,45)= 1.07837340; T( 5,46)= 1.08982898; T( 5,47)= 1.10117069; T( 5,48)= 1.11240256; T( 5,49)= 1.12352840; T( 5,50)= 1.13455182; T( 5,51)= 1.14547623; T( 5,52)= 1.15630487; T( 5,53)= 1.16704082; T( 5,54)= 1.17768700; T( 5,55)= 1.18824621; T( 5,56)= 1.19872109; T( 5,57)= 1.20911418; T( 5,58)= 1.21942787; T( 5,59)= 1.22966448; T( 5,60)= 1.23982621; T( 5,61)= 1.24991516; T( 5,62)= 1.25993334; T( 5,63)= 1.26988270; T( 5,64)= 1.27976507; T( 5,65)= 1.28958223; T( 5,66)= 1.29933590; T( 5,67)= 1.30902769; T( 5,68)= 1.31865919; T( 5,69)= 1.32823191; T( 5,70)= 1.33774731; T( 5,71)= 1.34720678; T( 5,72)= 1.35661167; T( 5,73)= 1.36596330; T( 5,74)= 1.37526290; T( 5,75)= 1.38451170; T( 5,76)= 1.39371085; T( 5,77)= 1.40286150; T( 5,78)= 1.41196472; T( 5,79)= 1.42102158; T( 5,80)= 1.43003310; T( 5,81)= 1.43900026; T( 5,82)= 1.44792401; T( 5,83)= 1.45680528; T( 5,84)= 1.46564497; T( 5,85)= 1.47444395; T( 5,86)= 1.48320306; T( 5,87)= 1.49192310; T( 5,88)= 1.50060489; T( 5,89)= 1.50924918; T( 5,90)= 1.51785672; T( 5,91)= 1.52642824; T( 5,92)= 1.53496444; T( 5,93)= 1.54346601; T( 5,94)= 1.55193361; T( 5,95)= 1.56036789; T( 5,96)= 1.56876948; T( 5,97)= 1.57713900; T( 5,98)= 1.58547703; T( 5,99)= 1.59378416; T( 5,100)= 1.60206097; T( 5,101)= 1.61030799; T( 5,102)= 1.61852576; T( 5,103)= 1.62671482; T( 5,104)= 1.63487566; T( 5,105)= 1.64300880; T( 5,106)= 1.65111471; T( 5,107)= 1.65919387; T( 5,108)= 1.66724674; T( 5,109)= 1.67527377; T( 5,110)= 1.68327541; T( 5,111)= 1.69125208; T( 5,112)= 1.69920421; T( 5,113)= 1.70713221; T( 5,114)= 1.71503648; T( 5,115)= 1.72291741; T( 5,116)= 1.73077539; T( 5,117)= 1.73861080; T( 5,118)= 1.74642399; T( 5,119)= 1.75421534; T( 5,120)= 1.76198520; T( 5,121)= 1.76973390; T( 5,122)= 1.77746178; T( 5,123)= 1.78516918; T( 5,124)= 1.79285643; T( 5,125)= 1.80052383; T( 5,126)= 1.80817169; T( 5,127)= 1.81580033; T( 5,128)= 1.82341004; T( 5,129)= 1.83100111; T( 5,130)= 1.83857383; T( 5,131)= 1.84612848; T( 5,132)= 1.85366534; T( 5,133)= 1.86118467; T( 5,134)= 1.86868675; T( 5,135)= 1.87617183; T( 5,136)= 1.88364016; T( 5,137)= 1.89109200; T( 5,138)= 1.89852760; T( 5,139)= 1.90594719; T( 5,140)= 1.91335102; T( 5,141)= 1.92073931; T( 5,142)= 1.92811230; T( 5,143)= 1.93547020; T( 5,144)= 1.94281325; T( 5,145)= 1.95014166; T( 5,146)= 1.95745564; T( 5,147)= 1.96475540; T( 5,148)= 1.97204115; T( 5,149)= 1.97931310; T( 5,150)= 1.98657143; T( 5,151)= 1.99381635; T( 5,152)= 2.00104804; T( 5,153)= 2.00826671; T( 5,154)= 2.01547254; T( 5,155)= 2.02266570; T( 5,156)= 2.02984639; T( 5,157)= 2.03701477; T( 5,158)= 2.04417103; T( 5,159)= 2.05131534; T( 5,160)= 2.05844786; T( 5,161)= 2.06556876; T( 5,162)= 2.07267822; T( 5,163)= 2.07977638; T( 5,164)= 2.08686342; T( 5,165)= 2.09393949; T( 5,166)= 2.10100474; T( 5,167)= 2.10805932; T( 5,168)= 2.11510339; T( 5,169)= 2.12213710; T( 5,170)= 2.12916059; T( 5,171)= 2.13617401; T( 5,172)= 2.14317749; T( 5,173)= 2.15017118; T( 5,174)= 2.15715522; T( 5,175)= 2.16412975; T( 5,176)= 2.17109489; T( 5,177)= 2.17805079; T( 5,178)= 2.18499756; T( 5,179)= 2.19193535; T( 5,180)= 2.19886428; T( 5,181)= 2.20578447; T( 5,182)= 2.21269605; T( 5,183)= 2.21959915; T( 5,184)= 2.22649387; T( 5,185)= 2.23338035; T( 5,186)= 2.24025870; T( 5,187)= 2.24712904; T( 5,188)= 2.25399147; T( 5,189)= 2.26084613; T( 5,190)= 2.26769311; T( 5,191)= 2.27453253; T( 5,192)= 2.28136449; T( 5,193)= 2.28818912; T( 5,194)= 2.29500650; T( 5,195)= 2.30181676; T( 5,196)= 2.30861999; T( 5,197)= 2.31541630; T( 5,198)= 2.32220578; T( 5,199)= 2.32898854; T( 5,200)= 2.33576469; T( 5,201)= 2.34253431; T( 5,202)= 2.34929750; T( 5,203)= 2.35605437; T( 5,204)= 2.36280500; T( 5,205)= 2.36954949; T( 5,206)= 2.37628794; T( 5,207)= 2.38302043; T( 5,208)= 2.38974707; T( 5,209)= 2.39646792; T( 5,210)= 2.40318310; T( 5,211)= 2.40989268; T( 5,212)= 2.41659675; T( 5,213)= 2.42329541; T( 5,214)= 2.42998873; T( 5,215)= 2.43667679; T( 5,216)= 2.44335969; T( 5,217)= 2.45003751; T( 5,218)= 2.45671033; T( 5,219)= 2.46337822; T( 5,220)= 2.47004128; T( 5,221)= 2.47669958; T( 5,222)= 2.48335319; T( 5,223)= 2.49000221; T( 5,224)= 2.49664670; T( 5,225)= 2.50328674; T( 5,226)= 2.50992241; T( 5,227)= 2.51655379; T( 5,228)= 2.52318094; T( 5,229)= 2.52980395; T( 5,230)= 2.53642289; T( 5,231)= 2.54303782; T( 5,232)= 2.54964882; T( 5,233)= 2.55625597; T( 5,234)= 2.56285932; T( 5,235)= 2.56945897; T( 5,236)= 2.57605496; T( 5,237)= 2.58264738; T( 5,238)= 2.58923628; T( 5,239)= 2.59582175; T( 5,240)= 2.60240384; T( 5,241)= 2.60898262; T( 5,242)= 2.61555816; T( 5,243)= 2.62213053; T( 5,244)= 2.62869978; T( 5,245)= 2.63526599; T( 5,246)= 2.64182921; T( 5,247)= 2.64838952; T( 5,248)= 2.65494697; T( 5,249)= 2.66150163; T( 5,250)= 2.66805355; T( 5,251)= 2.67460281; T( 5,252)= 2.68114946; T( 5,253)= 2.68769356; T( 5,254)= 2.69423517; T( 5,255)= 2.70077436; T( 5,256)= 2.70731118; T( 5,257)= 2.71384569; T( 5,258)= 2.72037795; T( 5,259)= 2.72690801; T( 5,260)= 2.73343595; T( 5,261)= 2.73996180; T( 5,262)= 2.74648564; T( 5,263)= 2.75300751; T( 5,264)= 2.75952747; T( 5,265)= 2.76604558; T( 5,266)= 2.77256190; T( 5,267)= 2.77907647; T( 5,268)= 2.78558936; T( 5,269)= 2.79210062; T( 5,270)= 2.79861030; T( 5,271)= 2.80511845; T( 5,272)= 2.81162513; T( 5,273)= 2.81813040; T( 5,274)= 2.82463430; T( 5,275)= 2.83113688; T( 5,276)= 2.83763821; T( 5,277)= 2.84413832; T( 5,278)= 2.85063728; T( 5,279)= 2.85713514; T( 5,280)= 2.86363193; T( 5,281)= 2.87012773; T( 5,282)= 2.87662256; T( 5,283)= 2.88311650; T( 5,284)= 2.88960958; T( 5,285)= 2.89610185; T( 5,286)= 2.90259337; T( 5,287)= 2.90908418; T( 5,288)= 2.91557433; T( 5,289)= 2.92206387; T( 5,290)= 2.92855285; T( 5,291)= 2.93504132; T( 5,292)= 2.94152932; T( 5,293)= 2.94801690; T( 5,294)= 2.95450412; T( 5,295)= 2.96099100; T( 5,296)= 2.96747761; T( 5,297)= 2.97396399; T( 5,298)= 2.98045019; T( 5,299)= 2.98693625; T( 5,300)= 2.99342221; T( 5,301)= 2.99990813; T( 5,302)= 3.00639405; T( 5,303)= 3.01288002; T( 5,304)= 3.01936607; T( 5,305)= 3.02585226; T( 5,306)= 3.03233863; T( 5,307)= 3.03882522; T( 5,308)= 3.04531208; T( 5,309)= 3.05179925; T( 5,310)= 3.05828679; T( 5,311)= 3.06477472; T( 5,312)= 3.07126310; T( 5,313)= 3.07775196; T( 5,314)= 3.08424136; T( 5,315)= 3.09073133; T( 5,316)= 3.09722192; T( 5,317)= 3.10371318; T( 5,318)= 3.11020513; T( 5,319)= 3.11669783; T( 5,320)= 3.12319133; T( 5,321)= 3.12968565; T( 5,322)= 3.13618085; T( 5,323)= 3.14267696; T( 5,324)= 3.14917404; T( 5,325)= 3.15567211; T( 5,326)= 3.16217122; T( 5,327)= 3.16867142; T( 5,328)= 3.17517274; T( 5,329)= 3.18167523; T( 5,330)= 3.18817892; T( 5,331)= 3.19468387; T( 5,332)= 3.20119010; T( 5,333)= 3.20769767; T( 5,334)= 3.21420660; T( 5,335)= 3.22071695; T( 5,336)= 3.22722875; T( 5,337)= 3.23374204; T( 5,338)= 3.24025687; T( 5,339)= 3.24677327; T( 5,340)= 3.25329128; T( 5,341)= 3.25981095; T( 5,342)= 3.26633231; T( 5,343)= 3.27285541; T( 5,344)= 3.27938028; T( 5,345)= 3.28590697; T( 5,346)= 3.29243551; T( 5,347)= 3.29896594; T( 5,348)= 3.30549831; T( 5,349)= 3.31203265; T( 5,350)= 3.31856900; T( 5,351)= 3.32510740; T( 5,352)= 3.33164789; T( 5,353)= 3.33819051; T( 5,354)= 3.34473530; T( 5,355)= 3.35128230; T( 5,356)= 3.35783155; T( 5,357)= 3.36438308; T( 5,358)= 3.37093694; T( 5,359)= 3.37749316; T( 5,360)= 3.38405178; T( 5,361)= 3.39061285; T( 5,362)= 3.39717640; T( 5,363)= 3.40374246; T( 5,364)= 3.41031109; T( 5,365)= 3.41688231; T( 5,366)= 3.42345617; T( 5,367)= 3.43003270; T( 5,368)= 3.43661194; T( 5,369)= 3.44319393; T( 5,370)= 3.44977871; T( 5,371)= 3.45636632; T( 5,372)= 3.46295680; T( 5,373)= 3.46955018; T( 5,374)= 3.47614651; T( 5,375)= 3.48274581; T( 5,376)= 3.48934814; T( 5,377)= 3.49595352; T( 5,378)= 3.50256200; T( 5,379)= 3.50917361; T( 5,380)= 3.51578840; T( 5,381)= 3.52240640; T( 5,382)= 3.52902765; T( 5,383)= 3.53565218; T( 5,384)= 3.54228004; T( 5,385)= 3.54891127; T( 5,386)= 3.55554590; T( 5,387)= 3.56218396; T( 5,388)= 3.56882551; T( 5,389)= 3.57547058; T( 5,390)= 3.58211920; T( 5,391)= 3.58877141; T( 5,392)= 3.59542725; T( 5,393)= 3.60208677; T( 5,394)= 3.60874999; T( 5,395)= 3.61541697; T( 5,396)= 3.62208772; T( 5,397)= 3.62876230; T( 5,398)= 3.63544074; T( 5,399)= 3.64212309; T( 5,400)= 3.64880937; T( 5,401)= 3.65549962; T( 5,402)= 3.66219390; T( 5,403)= 3.66889222; T( 5,404)= 3.67559464; T( 5,405)= 3.68230119; T( 5,406)= 3.68901191; T( 5,407)= 3.69572684; T( 5,408)= 3.70244602; T( 5,409)= 3.70916948; T( 5,410)= 3.71589726; T( 5,411)= 3.72262941; T( 5,412)= 3.72936596; T( 5,413)= 3.73610695; T( 5,414)= 3.74285242; T( 5,415)= 3.74960241; T( 5,416)= 3.75635695; T( 5,417)= 3.76311610; T( 5,418)= 3.76987987; T( 5,419)= 3.77664833; T( 5,420)= 3.78342149; T( 5,421)= 3.79019941; T( 5,422)= 3.79698212; T( 5,423)= 3.80376966; T( 5,424)= 3.81056208; T( 5,425)= 3.81735940; T( 5,426)= 3.82416168; T( 5,427)= 3.83096894; T( 5,428)= 3.83778123; T( 5,429)= 3.84459860; T( 5,430)= 3.85142107; T( 5,431)= 3.85824869; T( 5,432)= 3.86508150; T( 5,433)= 3.87191953; T( 5,434)= 3.87876284; T( 5,435)= 3.88561146; T( 5,436)= 3.89246542; T( 5,437)= 3.89932478; T( 5,438)= 3.90618956; T( 5,439)= 3.91305982; T( 5,440)= 3.91993558; T( 5,441)= 3.92681690; T( 5,442)= 3.93370381; T( 5,443)= 3.94059636; T( 5,444)= 3.94749457; T( 5,445)= 3.95439851; T( 5,446)= 3.96130820; T( 5,447)= 3.96822369; T( 5,448)= 3.97514502; T( 5,449)= 3.98207223; T( 5,450)= 3.98900536; T( 5,451)= 3.99594446; T( 5,452)= 4.00288956; T( 5,453)= 4.00984071; T( 5,454)= 4.01679794; T( 5,455)= 4.02376131; T( 5,456)= 4.03073086; T( 5,457)= 4.03770662; T( 5,458)= 4.04468864; T( 5,459)= 4.05167696; T( 5,460)= 4.05867162; T( 5,461)= 4.06567267; T( 5,462)= 4.07268015; T( 5,463)= 4.07969411; T( 5,464)= 4.08671458; T( 5,465)= 4.09374161; T( 5,466)= 4.10077524; T( 5,467)= 4.10781551; T( 5,468)= 4.11486248; T( 5,469)= 4.12191618; T( 5,470)= 4.12897666; T( 5,471)= 4.13604396; T( 5,472)= 4.14311813; T( 5,473)= 4.15019920; T( 5,474)= 4.15728724; T( 5,475)= 4.16438227; T( 5,476)= 4.17148434; T( 5,477)= 4.17859351; T( 5,478)= 4.18570981; T( 5,479)= 4.19283329; T( 5,480)= 4.19996400; T( 5,481)= 4.20710197; T( 5,482)= 4.21424727; T( 5,483)= 4.22139992; T( 5,484)= 4.22855999; T( 5,485)= 4.23572751; T( 5,486)= 4.24290253; T( 5,487)= 4.25008510; T( 5,488)= 4.25727527; T( 5,489)= 4.26447308; T( 5,490)= 4.27167857; T( 5,491)= 4.27889181; T( 5,492)= 4.28611283; T( 5,493)= 4.29334167; T( 5,494)= 4.30057840; T( 5,495)= 4.30782306; T( 5,496)= 4.31507569; T( 5,497)= 4.32233635; T( 5,498)= 4.32960508; T( 5,499)= 4.33688193; T( 5,500)= 4.34416695; T( 5,501)= 4.35146019; T( 5,502)= 4.35876170; T( 5,503)= 4.36607153; T( 5,504)= 4.37338973; T( 5,505)= 4.38071635; T( 5,506)= 4.38805143; T( 5,507)= 4.39539504; T( 5,508)= 4.40274722; T( 5,509)= 4.41010801; T( 5,510)= 4.41747748; T( 5,511)= 4.42485568; T( 5,512)= 4.43224265; T( 5,513)= 4.43963844; T( 5,514)= 4.44704312; T( 5,515)= 4.45445672; T( 5,516)= 4.46187931; T( 5,517)= 4.46931094; T( 5,518)= 4.47675166; T( 5,519)= 4.48420152; T( 5,520)= 4.49166057; T( 5,521)= 4.49912888; T( 5,522)= 4.50660648; T( 5,523)= 4.51409345; T( 5,524)= 4.52158983; T( 5,525)= 4.52909568; T( 5,526)= 4.53661105; T( 5,527)= 4.54413600; T( 5,528)= 4.55167058; T( 5,529)= 4.55921484; T( 5,530)= 4.56676886; T( 5,531)= 4.57433267; T( 5,532)= 4.58190635; T( 5,533)= 4.58948993; T( 5,534)= 4.59708349; T( 5,535)= 4.60468708; T( 5,536)= 4.61230076; T( 5,537)= 4.61992458; T( 5,538)= 4.62755861; T( 5,539)= 4.63520290; T( 5,540)= 4.64285751; T( 5,541)= 4.65052250; T( 5,542)= 4.65819793; T( 5,543)= 4.66588386; T( 5,544)= 4.67358035; T( 5,545)= 4.68128746; T( 5,546)= 4.68900525; T( 5,547)= 4.69673379; T( 5,548)= 4.70447312; T( 5,549)= 4.71222333; T( 5,550)= 4.71998446; T( 5,551)= 4.72775659; T( 5,552)= 4.73553976; T( 5,553)= 4.74333406; T( 5,554)= 4.75113953; T( 5,555)= 4.75895625; T( 5,556)= 4.76678427; T( 5,557)= 4.77462367; T( 5,558)= 4.78247451; T( 5,559)= 4.79033685; T( 5,560)= 4.79821075; T( 5,561)= 4.80609630; T( 5,562)= 4.81399354; T( 5,563)= 4.82190255; T( 5,564)= 4.82982340; T( 5,565)= 4.83775614; T( 5,566)= 4.84570086; T( 5,567)= 4.85365762; T( 5,568)= 4.86162649; T( 5,569)= 4.86960753; T( 5,570)= 4.87760082; T( 5,571)= 4.88560643; T( 5,572)= 4.89362442; T( 5,573)= 4.90165487; T( 5,574)= 4.90969785; T( 5,575)= 4.91775343; T( 5,576)= 4.92582168; T( 5,577)= 4.93390268; T( 5,578)= 4.94199650; T( 5,579)= 4.95010321; T( 5,580)= 4.95822288; T( 5,581)= 4.96635559; T( 5,582)= 4.97450142; T( 5,583)= 4.98266044; T( 5,584)= 4.99083273; T( 5,585)= 4.99901836; T( 5,586)= 5.00721740; T( 5,587)= 5.01542995; T( 5,588)= 5.02365606; T( 5,589)= 5.03189583; T( 5,590)= 5.04014933; T( 5,591)= 5.04841664; T( 5,592)= 5.05669784; T( 5,593)= 5.06499301; T( 5,594)= 5.07330223; T( 5,595)= 5.08162558; T( 5,596)= 5.08996314; T( 5,597)= 5.09831500; T( 5,598)= 5.10668124; T( 5,599)= 5.11506195; T( 5,600)= 5.12345719; T( 5,601)= 5.13186707; T( 5,602)= 5.14029167; T( 5,603)= 5.14873107; T( 5,604)= 5.15718535; T( 5,605)= 5.16565462; T( 5,606)= 5.17413894; T( 5,607)= 5.18263841; T( 5,608)= 5.19115313; T( 5,609)= 5.19968317; T( 5,610)= 5.20822863; T( 5,611)= 5.21678960; T( 5,612)= 5.22536617; T( 5,613)= 5.23395843; T( 5,614)= 5.24256647; T( 5,615)= 5.25119040; T( 5,616)= 5.25983029; T( 5,617)= 5.26848625; T( 5,618)= 5.27715837; T( 5,619)= 5.28584675; T( 5,620)= 5.29455148; T( 5,621)= 5.30327266; T( 5,622)= 5.31201039; T( 5,623)= 5.32076476; T( 5,624)= 5.32953588; T( 5,625)= 5.33832385; T( 5,626)= 5.34712876; T( 5,627)= 5.35595072; T( 5,628)= 5.36478984; T( 5,629)= 5.37364620; T( 5,630)= 5.38251992; T( 5,631)= 5.39141111; T( 5,632)= 5.40031986; T( 5,633)= 5.40924628; T( 5,634)= 5.41819049; T( 5,635)= 5.42715258; T( 5,636)= 5.43613267; T( 5,637)= 5.44513086; T( 5,638)= 5.45414727; T( 5,639)= 5.46318201; T( 5,640)= 5.47223519; T( 5,641)= 5.48130691; T( 5,642)= 5.49039731; T( 5,643)= 5.49950648; T( 5,644)= 5.50863455; T( 5,645)= 5.51778163; T( 5,646)= 5.52694784; T( 5,647)= 5.53613330; T( 5,648)= 5.54533812; T( 5,649)= 5.55456244; T( 5,650)= 5.56380635; T( 5,651)= 5.57307000; T( 5,652)= 5.58235350; T( 5,653)= 5.59165698; T( 5,654)= 5.60098056; T( 5,655)= 5.61032437; T( 5,656)= 5.61968853; T( 5,657)= 5.62907318; T( 5,658)= 5.63847844; T( 5,659)= 5.64790444; T( 5,660)= 5.65735131; T( 5,661)= 5.66681919; T( 5,662)= 5.67630821; T( 5,663)= 5.68581850; T( 5,664)= 5.69535021; T( 5,665)= 5.70490346; T( 5,666)= 5.71447840; T( 5,667)= 5.72407516; T( 5,668)= 5.73369388; T( 5,669)= 5.74333472; T( 5,670)= 5.75299780; T( 5,671)= 5.76268327; T( 5,672)= 5.77239128; T( 5,673)= 5.78212198; T( 5,674)= 5.79187551; T( 5,675)= 5.80165203; T( 5,676)= 5.81145167; T( 5,677)= 5.82127461; T( 5,678)= 5.83112097; T( 5,679)= 5.84099094; T( 5,680)= 5.85088465; T( 5,681)= 5.86080226; T( 5,682)= 5.87074394; T( 5,683)= 5.88070984; T( 5,684)= 5.89070013; T( 5,685)= 5.90071497; T( 5,686)= 5.91075452; T( 5,687)= 5.92081895; T( 5,688)= 5.93090842; T( 5,689)= 5.94102311; T( 5,690)= 5.95116319; T( 5,691)= 5.96132883; T( 5,692)= 5.97152020; T( 5,693)= 5.98173748; T( 5,694)= 5.99198084; T( 5,695)= 6.00225046; T( 5,696)= 6.01254654; T( 5,697)= 6.02286923; T( 5,698)= 6.03321874; T( 5,699)= 6.04359524; T( 5,700)= 6.05399893; T( 5,701)= 6.06442998; T( 5,702)= 6.07488861; T( 5,703)= 6.08537498; T( 5,704)= 6.09588931; T( 5,705)= 6.10643179; T( 5,706)= 6.11700261; T( 5,707)= 6.12760198; T( 5,708)= 6.13823010; T( 5,709)= 6.14888717; T( 5,710)= 6.15957341; T( 5,711)= 6.17028901; T( 5,712)= 6.18103419; T( 5,713)= 6.19180916; T( 5,714)= 6.20261415; T( 5,715)= 6.21344935; T( 5,716)= 6.22431500; T( 5,717)= 6.23521132; T( 5,718)= 6.24613853; T( 5,719)= 6.25709685; T( 5,720)= 6.26808651; T( 5,721)= 6.27910775; T( 5,722)= 6.29016080; T( 5,723)= 6.30124590; T( 5,724)= 6.31236327; T( 5,725)= 6.32351317; T( 5,726)= 6.33469584; T( 5,727)= 6.34591151; T( 5,728)= 6.35716045; T( 5,729)= 6.36844290; T( 5,730)= 6.37975911; T( 5,731)= 6.39110935; T( 5,732)= 6.40249386; T( 5,733)= 6.41391292; T( 5,734)= 6.42536679; T( 5,735)= 6.43685574; T( 5,736)= 6.44838003; T( 5,737)= 6.45993994; T( 5,738)= 6.47153575; T( 5,739)= 6.48316774; T( 5,740)= 6.49483619; T( 5,741)= 6.50654138; T( 5,742)= 6.51828362; T( 5,743)= 6.53006318; T( 5,744)= 6.54188036; T( 5,745)= 6.55373547; T( 5,746)= 6.56562881; T( 5,747)= 6.57756068; T( 5,748)= 6.58953140; T( 5,749)= 6.60154127; T( 5,750)= 6.61359062; T( 5,751)= 6.62567976; T( 5,752)= 6.63780903; T( 5,753)= 6.64997874; T( 5,754)= 6.66218923; T( 5,755)= 6.67444084; T( 5,756)= 6.68673390; T( 5,757)= 6.69906877; T( 5,758)= 6.71144579; T( 5,759)= 6.72386531; T( 5,760)= 6.73632769; T( 5,761)= 6.74883329; T( 5,762)= 6.76138248; T( 5,763)= 6.77397563; T( 5,764)= 6.78661311; T( 5,765)= 6.79929530; T( 5,766)= 6.81202259; T( 5,767)= 6.82479536; T( 5,768)= 6.83761401; T( 5,769)= 6.85047894; T( 5,770)= 6.86339055; T( 5,771)= 6.87634926; T( 5,772)= 6.88935547; T( 5,773)= 6.90240960; T( 5,774)= 6.91551209; T( 5,775)= 6.92866336; T( 5,776)= 6.94186385; T( 5,777)= 6.95511399; T( 5,778)= 6.96841425; T( 5,779)= 6.98176506; T( 5,780)= 6.99516690; T( 5,781)= 7.00862022; T( 5,782)= 7.02212551; T( 5,783)= 7.03568323; T( 5,784)= 7.04929388; T( 5,785)= 7.06295794; T( 5,786)= 7.07667591; T( 5,787)= 7.09044831; T( 5,788)= 7.10427563; T( 5,789)= 7.11815841; T( 5,790)= 7.13209716; T( 5,791)= 7.14609242; T( 5,792)= 7.16014473; T( 5,793)= 7.17425464; T( 5,794)= 7.18842272; T( 5,795)= 7.20264951; T( 5,796)= 7.21693560; T( 5,797)= 7.23128157; T( 5,798)= 7.24568800; T( 5,799)= 7.26015550; T( 5,800)= 7.27468467; T( 5,801)= 7.28927613; T( 5,802)= 7.30393050; T( 5,803)= 7.31864841; T( 5,804)= 7.33343052; T( 5,805)= 7.34827747; T( 5,806)= 7.36318993; T( 5,807)= 7.37816857; T( 5,808)= 7.39321407; T( 5,809)= 7.40832713; T( 5,810)= 7.42350845; T( 5,811)= 7.43875876; T( 5,812)= 7.45407877; T( 5,813)= 7.46946922; T( 5,814)= 7.48493087; T( 5,815)= 7.50046447; T( 5,816)= 7.51607081; T( 5,817)= 7.53175066; T( 5,818)= 7.54750482; T( 5,819)= 7.56333411; T( 5,820)= 7.57923936; T( 5,821)= 7.59522140; T( 5,822)= 7.61128108; T( 5,823)= 7.62741927; T( 5,824)= 7.64363685; T( 5,825)= 7.65993472; T( 5,826)= 7.67631379; T( 5,827)= 7.69277498; T( 5,828)= 7.70931924; T( 5,829)= 7.72594752; T( 5,830)= 7.74266081; T( 5,831)= 7.75946008; T( 5,832)= 7.77634636; T( 5,833)= 7.79332066; T( 5,834)= 7.81038403; T( 5,835)= 7.82753755; T( 5,836)= 7.84478227; T( 5,837)= 7.86211932; T( 5,838)= 7.87954982; T( 5,839)= 7.89707489; T( 5,840)= 7.91469571; T( 5,841)= 7.93241347; T( 5,842)= 7.95022937; T( 5,843)= 7.96814463; T( 5,844)= 7.98616051; T( 5,845)= 8.00427829; T( 5,846)= 8.02249927; T( 5,847)= 8.04082477; T( 5,848)= 8.05925615; T( 5,849)= 8.07779477; T( 5,850)= 8.09644205; T( 5,851)= 8.11519941; T( 5,852)= 8.13406832; T( 5,853)= 8.15305027; T( 5,854)= 8.17214677; T( 5,855)= 8.19135937; T( 5,856)= 8.21068966; T( 5,857)= 8.23013925; T( 5,858)= 8.24970978; T( 5,859)= 8.26940294; T( 5,860)= 8.28922045; T( 5,861)= 8.30916405; T( 5,862)= 8.32923554; T( 5,863)= 8.34943674; T( 5,864)= 8.36976952; T( 5,865)= 8.39023580; T( 5,866)= 8.41083751; T( 5,867)= 8.43157666; T( 5,868)= 8.45245528; T( 5,869)= 8.47347545; T( 5,870)= 8.49463930; T( 5,871)= 8.51594902; T( 5,872)= 8.53740682; T( 5,873)= 8.55901500; T( 5,874)= 8.58077587; T( 5,875)= 8.60269183; T( 5,876)= 8.62476532; T( 5,877)= 8.64699885; T( 5,878)= 8.66939497; T( 5,879)= 8.69195631; T( 5,880)= 8.71468555; T( 5,881)= 8.73758546; T( 5,882)= 8.76065884; T( 5,883)= 8.78390860; T( 5,884)= 8.80733771; T( 5,885)= 8.83094920; T( 5,886)= 8.85474619; T( 5,887)= 8.87873188; T( 5,888)= 8.90290956; T( 5,889)= 8.92728260; T( 5,890)= 8.95185446; T( 5,891)= 8.97662869; T( 5,892)= 9.00160894; T( 5,893)= 9.02679896; T( 5,894)= 9.05220261; T( 5,895)= 9.07782384; T( 5,896)= 9.10366673; T( 5,897)= 9.12973547; T( 5,898)= 9.15603435; T( 5,899)= 9.18256782; T( 5,900)= 9.20934044; T( 5,901)= 9.23635690; T( 5,902)= 9.26362204; T( 5,903)= 9.29114084; T( 5,904)= 9.31891844; T( 5,905)= 9.34696013; T( 5,906)= 9.37527136; T( 5,907)= 9.40385777; T( 5,908)= 9.43272516; T( 5,909)= 9.46187952; T( 5,910)= 9.49132705; T( 5,911)= 9.52107413; T( 5,912)= 9.55112737; T( 5,913)= 9.58149359; T( 5,914)= 9.61217984; T( 5,915)= 9.64319344; T( 5,916)= 9.67454192; T( 5,917)= 9.70623310; T( 5,918)= 9.73827509; T( 5,919)= 9.77067627; T( 5,920)= 9.80344533; T( 5,921)= 9.83659128; T( 5,922)= 9.87012349; T( 5,923)= 9.90405164; T( 5,924)= 9.93838582; T( 5,925)= 9.97313649; T( 5,926)=10.00831453; T( 5,927)=10.04393127; T( 5,928)=10.07999846; T( 5,929)=10.11652837; T( 5,930)=10.15353375; T( 5,931)=10.19102791; T( 5,932)=10.22902471; T( 5,933)=10.26753863; T( 5,934)=10.30658478; T( 5,935)=10.34617893; T( 5,936)=10.38633760; T( 5,937)=10.42707803; T( 5,938)=10.46841830; T( 5,939)=10.51037734; T( 5,940)=10.55297499; T( 5,941)=10.59623206; T( 5,942)=10.64017042; T( 5,943)=10.68481303; T( 5,944)=10.73018406; T( 5,945)=10.77630892; T( 5,946)=10.82321441; T( 5,947)=10.87092879; T( 5,948)=10.91948187; T( 5,949)=10.96890516; T( 5,950)=11.01923201; T( 5,951)=11.07049769; T( 5,952)=11.12273964; T( 5,953)=11.17599756; T( 5,954)=11.23031364; T( 5,955)=11.28573279; T( 5,956)=11.34230283; T( 5,957)=11.40007480; T( 5,958)=11.45910322; T( 5,959)=11.51944642; T( 5,960)=11.58116693; T( 5,961)=11.64433185; T( 5,962)=11.70901336; T( 5,963)=11.77528921; T( 5,964)=11.84324331; T( 5,965)=11.91296643; T( 5,966)=11.98455693; T( 5,967)=12.05812169; T( 5,968)=12.13377705; T( 5,969)=12.21165003; T( 5,970)=12.29187964; T( 5,971)=12.37461848; T( 5,972)=12.46003454; T( 5,973)=12.54831336; T( 5,974)=12.63966059; T( 5,975)=12.73430498; T( 5,976)=12.83250199; T( 5,977)=12.93453818; T( 5,978)=13.04073639; T( 5,979)=13.15146225; T( 5,980)=13.26713205; T( 5,981)=13.38822260; T( 5,982)=13.51528360; T( 5,983)=13.64895331; T( 5,984)=13.78997877; T( 5,985)=13.93924200; T( 5,986)=14.09779477; T( 5,987)=14.26690524; T( 5,988)=14.44812191; T( 5,989)=14.64336310; T( 5,990)=14.85504527; T( 5,991)=15.08627247; T( 5,992)=15.34112561; T( 5,993)=15.62512207; T( 5,994)=15.94598266; T( 5,995)=16.31499158; T( 5,996)=16.74960234; T( 5,997)=17.27897691; T( 5,998)=17.95761227; T( 5,999)=18.90737738; T( 5,1000)=20.51500565; T( 5,1001)=25.74483196; T( 5,1002)=30.85618994; T( 6, 1)= 0.00000000; T( 6, 2)= 0.38106676; T( 6, 3)= 0.48640703; T( 6, 4)= 0.56201301; T( 6, 5)= 0.62325656; T( 6, 6)= 0.67572678; T( 6, 7)= 0.72217246; T( 6, 8)= 0.76417539; T( 6, 9)= 0.80273999; T( 6,10)= 0.83854900; T( 6,11)= 0.87209033; T( 6,12)= 0.90372628; T( 6,13)= 0.93373424; T( 6,14)= 0.96233189; T( 6,15)= 0.98969361; T( 6,16)= 1.01596153; T( 6,17)= 1.04125321; T( 6,18)= 1.06566716; T( 6,19)= 1.08928684; T( 6,20)= 1.11218365; T( 6,21)= 1.13441924; T( 6,22)= 1.15604723; T( 6,23)= 1.17711459; T( 6,24)= 1.19766272; T( 6,25)= 1.21772837; T( 6,26)= 1.23734425; T( 6,27)= 1.25653968; T( 6,28)= 1.27534105; T( 6,29)= 1.29377218; T( 6,30)= 1.31185468; T( 6,31)= 1.32960822; T( 6,32)= 1.34705073; T( 6,33)= 1.36419867; T( 6,34)= 1.38106713; T( 6,35)= 1.39767001; T( 6,36)= 1.41402014; T( 6,37)= 1.43012939; T( 6,38)= 1.44600879; T( 6,39)= 1.46166856; T( 6,40)= 1.47711824; T( 6,41)= 1.49236671; T( 6,42)= 1.50742228; T( 6,43)= 1.52229274; T( 6,44)= 1.53698537; T( 6,45)= 1.55150704; T( 6,46)= 1.56586418; T( 6,47)= 1.58006287; T( 6,48)= 1.59410882; T( 6,49)= 1.60800745; T( 6,50)= 1.62176386; T( 6,51)= 1.63538289; T( 6,52)= 1.64886913; T( 6,53)= 1.66222693; T( 6,54)= 1.67546042; T( 6,55)= 1.68857351; T( 6,56)= 1.70156996; T( 6,57)= 1.71445332; T( 6,58)= 1.72722698; T( 6,59)= 1.73989418; T( 6,60)= 1.75245800; T( 6,61)= 1.76492141; T( 6,62)= 1.77728723; T( 6,63)= 1.78955815; T( 6,64)= 1.80173678; T( 6,65)= 1.81382559; T( 6,66)= 1.82582697; T( 6,67)= 1.83774319; T( 6,68)= 1.84957646; T( 6,69)= 1.86132888; T( 6,70)= 1.87300248; T( 6,71)= 1.88459921; T( 6,72)= 1.89612094; T( 6,73)= 1.90756950; T( 6,74)= 1.91894661; T( 6,75)= 1.93025397; T( 6,76)= 1.94149319; T( 6,77)= 1.95266584; T( 6,78)= 1.96377343; T( 6,79)= 1.97481741; T( 6,80)= 1.98579921; T( 6,81)= 1.99672018; T( 6,82)= 2.00758165; T( 6,83)= 2.01838488; T( 6,84)= 2.02913113; T( 6,85)= 2.03982158; T( 6,86)= 2.05045741; T( 6,87)= 2.06103972; T( 6,88)= 2.07156962; T( 6,89)= 2.08204816; T( 6,90)= 2.09247636; T( 6,91)= 2.10285524; T( 6,92)= 2.11318574; T( 6,93)= 2.12346882; T( 6,94)= 2.13370539; T( 6,95)= 2.14389634; T( 6,96)= 2.15404252; T( 6,97)= 2.16414479; T( 6,98)= 2.17420395; T( 6,99)= 2.18422080; T( 6,100)= 2.19419612; T( 6,101)= 2.20413066; T( 6,102)= 2.21402515; T( 6,103)= 2.22388031; T( 6,104)= 2.23369684; T( 6,105)= 2.24347542; T( 6,106)= 2.25321670; T( 6,107)= 2.26292134; T( 6,108)= 2.27258997; T( 6,109)= 2.28222319; T( 6,110)= 2.29182162; T( 6,111)= 2.30138584; T( 6,112)= 2.31091642; T( 6,113)= 2.32041391; T( 6,114)= 2.32987888; T( 6,115)= 2.33931184; T( 6,116)= 2.34871332; T( 6,117)= 2.35808383; T( 6,118)= 2.36742388; T( 6,119)= 2.37673394; T( 6,120)= 2.38601449; T( 6,121)= 2.39526601; T( 6,122)= 2.40448894; T( 6,123)= 2.41368373; T( 6,124)= 2.42285083; T( 6,125)= 2.43199065; T( 6,126)= 2.44110363; T( 6,127)= 2.45019016; T( 6,128)= 2.45925066; T( 6,129)= 2.46828552; T( 6,130)= 2.47729511; T( 6,131)= 2.48627983; T( 6,132)= 2.49524004; T( 6,133)= 2.50417611; T( 6,134)= 2.51308839; T( 6,135)= 2.52197723; T( 6,136)= 2.53084299; T( 6,137)= 2.53968598; T( 6,138)= 2.54850655; T( 6,139)= 2.55730502; T( 6,140)= 2.56608171; T( 6,141)= 2.57483693; T( 6,142)= 2.58357099; T( 6,143)= 2.59228418; T( 6,144)= 2.60097681; T( 6,145)= 2.60964916; T( 6,146)= 2.61830153; T( 6,147)= 2.62693418; T( 6,148)= 2.63554741; T( 6,149)= 2.64414147; T( 6,150)= 2.65271664; T( 6,151)= 2.66127318; T( 6,152)= 2.66981134; T( 6,153)= 2.67833137; T( 6,154)= 2.68683354; T( 6,155)= 2.69531807; T( 6,156)= 2.70378522; T( 6,157)= 2.71223522; T( 6,158)= 2.72066830; T( 6,159)= 2.72908469; T( 6,160)= 2.73748463; T( 6,161)= 2.74586832; T( 6,162)= 2.75423599; T( 6,163)= 2.76258786; T( 6,164)= 2.77092413; T( 6,165)= 2.77924502; T( 6,166)= 2.78755073; T( 6,167)= 2.79584147; T( 6,168)= 2.80411743; T( 6,169)= 2.81237881; T( 6,170)= 2.82062580; T( 6,171)= 2.82885860; T( 6,172)= 2.83707740; T( 6,173)= 2.84528237; T( 6,174)= 2.85347370; T( 6,175)= 2.86165158; T( 6,176)= 2.86981618; T( 6,177)= 2.87796767; T( 6,178)= 2.88610623; T( 6,179)= 2.89423202; T( 6,180)= 2.90234523; T( 6,181)= 2.91044600; T( 6,182)= 2.91853451; T( 6,183)= 2.92661092; T( 6,184)= 2.93467538; T( 6,185)= 2.94272805; T( 6,186)= 2.95076910; T( 6,187)= 2.95879866; T( 6,188)= 2.96681690; T( 6,189)= 2.97482395; T( 6,190)= 2.98281998; T( 6,191)= 2.99080511; T( 6,192)= 2.99877951; T( 6,193)= 3.00674330; T( 6,194)= 3.01469663; T( 6,195)= 3.02263963; T( 6,196)= 3.03057245; T( 6,197)= 3.03849522; T( 6,198)= 3.04640807; T( 6,199)= 3.05431113; T( 6,200)= 3.06220453; T( 6,201)= 3.07008841; T( 6,202)= 3.07796288; T( 6,203)= 3.08582807; T( 6,204)= 3.09368411; T( 6,205)= 3.10153113; T( 6,206)= 3.10936923; T( 6,207)= 3.11719854; T( 6,208)= 3.12501919; T( 6,209)= 3.13283128; T( 6,210)= 3.14063493; T( 6,211)= 3.14843026; T( 6,212)= 3.15621739; T( 6,213)= 3.16399641; T( 6,214)= 3.17176745; T( 6,215)= 3.17953061; T( 6,216)= 3.18728600; T( 6,217)= 3.19503373; T( 6,218)= 3.20277391; T( 6,219)= 3.21050664; T( 6,220)= 3.21823203; T( 6,221)= 3.22595017; T( 6,222)= 3.23366117; T( 6,223)= 3.24136513; T( 6,224)= 3.24906215; T( 6,225)= 3.25675234; T( 6,226)= 3.26443578; T( 6,227)= 3.27211257; T( 6,228)= 3.27978282; T( 6,229)= 3.28744661; T( 6,230)= 3.29510404; T( 6,231)= 3.30275520; T( 6,232)= 3.31040019; T( 6,233)= 3.31803910; T( 6,234)= 3.32567201; T( 6,235)= 3.33329903; T( 6,236)= 3.34092023; T( 6,237)= 3.34853570; T( 6,238)= 3.35614554; T( 6,239)= 3.36374983; T( 6,240)= 3.37134865; T( 6,241)= 3.37894209; T( 6,242)= 3.38653024; T( 6,243)= 3.39411317; T( 6,244)= 3.40169098; T( 6,245)= 3.40926374; T( 6,246)= 3.41683153; T( 6,247)= 3.42439444; T( 6,248)= 3.43195255; T( 6,249)= 3.43950593; T( 6,250)= 3.44705467; T( 6,251)= 3.45459884; T( 6,252)= 3.46213851; T( 6,253)= 3.46967378; T( 6,254)= 3.47720471; T( 6,255)= 3.48473137; T( 6,256)= 3.49225385; T( 6,257)= 3.49977222; T( 6,258)= 3.50728655; T( 6,259)= 3.51479692; T( 6,260)= 3.52230340; T( 6,261)= 3.52980605; T( 6,262)= 3.53730496; T( 6,263)= 3.54480020; T( 6,264)= 3.55229183; T( 6,265)= 3.55977992; T( 6,266)= 3.56726455; T( 6,267)= 3.57474578; T( 6,268)= 3.58222368; T( 6,269)= 3.58969833; T( 6,270)= 3.59716978; T( 6,271)= 3.60463811; T( 6,272)= 3.61210338; T( 6,273)= 3.61956566; T( 6,274)= 3.62702502; T( 6,275)= 3.63448151; T( 6,276)= 3.64193521; T( 6,277)= 3.64938618; T( 6,278)= 3.65683448; T( 6,279)= 3.66428019; T( 6,280)= 3.67172335; T( 6,281)= 3.67916403; T( 6,282)= 3.68660231; T( 6,283)= 3.69403823; T( 6,284)= 3.70147187; T( 6,285)= 3.70890327; T( 6,286)= 3.71633251; T( 6,287)= 3.72375964; T( 6,288)= 3.73118473; T( 6,289)= 3.73860783; T( 6,290)= 3.74602901; T( 6,291)= 3.75344832; T( 6,292)= 3.76086582; T( 6,293)= 3.76828158; T( 6,294)= 3.77569564; T( 6,295)= 3.78310807; T( 6,296)= 3.79051893; T( 6,297)= 3.79792827; T( 6,298)= 3.80533615; T( 6,299)= 3.81274262; T( 6,300)= 3.82014775; T( 6,301)= 3.82755159; T( 6,302)= 3.83495419; T( 6,303)= 3.84235562; T( 6,304)= 3.84975592; T( 6,305)= 3.85715515; T( 6,306)= 3.86455337; T( 6,307)= 3.87195063; T( 6,308)= 3.87934698; T( 6,309)= 3.88674248; T( 6,310)= 3.89413719; T( 6,311)= 3.90153116; T( 6,312)= 3.90892443; T( 6,313)= 3.91631707; T( 6,314)= 3.92370912; T( 6,315)= 3.93110064; T( 6,316)= 3.93849169; T( 6,317)= 3.94588230; T( 6,318)= 3.95327255; T( 6,319)= 3.96066247; T( 6,320)= 3.96805211; T( 6,321)= 3.97544154; T( 6,322)= 3.98283080; T( 6,323)= 3.99021995; T( 6,324)= 3.99760902; T( 6,325)= 4.00499808; T( 6,326)= 4.01238717; T( 6,327)= 4.01977635; T( 6,328)= 4.02716566; T( 6,329)= 4.03455516; T( 6,330)= 4.04194489; T( 6,331)= 4.04933490; T( 6,332)= 4.05672525; T( 6,333)= 4.06411597; T( 6,334)= 4.07150713; T( 6,335)= 4.07889877; T( 6,336)= 4.08629094; T( 6,337)= 4.09368368; T( 6,338)= 4.10107705; T( 6,339)= 4.10847109; T( 6,340)= 4.11586586; T( 6,341)= 4.12326139; T( 6,342)= 4.13065774; T( 6,343)= 4.13805496; T( 6,344)= 4.14545309; T( 6,345)= 4.15285218; T( 6,346)= 4.16025228; T( 6,347)= 4.16765343; T( 6,348)= 4.17505568; T( 6,349)= 4.18245909; T( 6,350)= 4.18986369; T( 6,351)= 4.19726953; T( 6,352)= 4.20467666; T( 6,353)= 4.21208512; T( 6,354)= 4.21949497; T( 6,355)= 4.22690625; T( 6,356)= 4.23431900; T( 6,357)= 4.24173327; T( 6,358)= 4.24914911; T( 6,359)= 4.25656656; T( 6,360)= 4.26398567; T( 6,361)= 4.27140649; T( 6,362)= 4.27882905; T( 6,363)= 4.28625341; T( 6,364)= 4.29367961; T( 6,365)= 4.30110770; T( 6,366)= 4.30853772; T( 6,367)= 4.31596971; T( 6,368)= 4.32340373; T( 6,369)= 4.33083982; T( 6,370)= 4.33827802; T( 6,371)= 4.34571837; T( 6,372)= 4.35316093; T( 6,373)= 4.36060574; T( 6,374)= 4.36805284; T( 6,375)= 4.37550227; T( 6,376)= 4.38295409; T( 6,377)= 4.39040834; T( 6,378)= 4.39786505; T( 6,379)= 4.40532429; T( 6,380)= 4.41278608; T( 6,381)= 4.42025048; T( 6,382)= 4.42771752; T( 6,383)= 4.43518727; T( 6,384)= 4.44265975; T( 6,385)= 4.45013501; T( 6,386)= 4.45761310; T( 6,387)= 4.46509406; T( 6,388)= 4.47257794; T( 6,389)= 4.48006477; T( 6,390)= 4.48755462; T( 6,391)= 4.49504751; T( 6,392)= 4.50254349; T( 6,393)= 4.51004261; T( 6,394)= 4.51754491; T( 6,395)= 4.52505044; T( 6,396)= 4.53255923; T( 6,397)= 4.54007135; T( 6,398)= 4.54758681; T( 6,399)= 4.55510568; T( 6,400)= 4.56262800; T( 6,401)= 4.57015381; T( 6,402)= 4.57768315; T( 6,403)= 4.58521607; T( 6,404)= 4.59275261; T( 6,405)= 4.60029282; T( 6,406)= 4.60783675; T( 6,407)= 4.61538442; T( 6,408)= 4.62293590; T( 6,409)= 4.63049122; T( 6,410)= 4.63805043; T( 6,411)= 4.64561357; T( 6,412)= 4.65318069; T( 6,413)= 4.66075183; T( 6,414)= 4.66832704; T( 6,415)= 4.67590635; T( 6,416)= 4.68348982; T( 6,417)= 4.69107749; T( 6,418)= 4.69866940; T( 6,419)= 4.70626560; T( 6,420)= 4.71386613; T( 6,421)= 4.72147104; T( 6,422)= 4.72908037; T( 6,423)= 4.73669416; T( 6,424)= 4.74431247; T( 6,425)= 4.75193533; T( 6,426)= 4.75956279; T( 6,427)= 4.76719489; T( 6,428)= 4.77483169; T( 6,429)= 4.78247322; T( 6,430)= 4.79011953; T( 6,431)= 4.79777067; T( 6,432)= 4.80542667; T( 6,433)= 4.81308759; T( 6,434)= 4.82075348; T( 6,435)= 4.82842436; T( 6,436)= 4.83610030; T( 6,437)= 4.84378134; T( 6,438)= 4.85146751; T( 6,439)= 4.85915888; T( 6,440)= 4.86685548; T( 6,441)= 4.87455736; T( 6,442)= 4.88226456; T( 6,443)= 4.88997713; T( 6,444)= 4.89769512; T( 6,445)= 4.90541858; T( 6,446)= 4.91314754; T( 6,447)= 4.92088206; T( 6,448)= 4.92862217; T( 6,449)= 4.93636794; T( 6,450)= 4.94411940; T( 6,451)= 4.95187661; T( 6,452)= 4.95963960; T( 6,453)= 4.96740842; T( 6,454)= 4.97518313; T( 6,455)= 4.98296376; T( 6,456)= 4.99075038; T( 6,457)= 4.99854301; T( 6,458)= 5.00634171; T( 6,459)= 5.01414653; T( 6,460)= 5.02195752; T( 6,461)= 5.02977472; T( 6,462)= 5.03759818; T( 6,463)= 5.04542795; T( 6,464)= 5.05326407; T( 6,465)= 5.06110660; T( 6,466)= 5.06895559; T( 6,467)= 5.07681107; T( 6,468)= 5.08467310; T( 6,469)= 5.09254173; T( 6,470)= 5.10041701; T( 6,471)= 5.10829899; T( 6,472)= 5.11618771; T( 6,473)= 5.12408322; T( 6,474)= 5.13198558; T( 6,475)= 5.13989483; T( 6,476)= 5.14781103; T( 6,477)= 5.15573421; T( 6,478)= 5.16366444; T( 6,479)= 5.17160176; T( 6,480)= 5.17954623; T( 6,481)= 5.18749789; T( 6,482)= 5.19545679; T( 6,483)= 5.20342298; T( 6,484)= 5.21139652; T( 6,485)= 5.21937746; T( 6,486)= 5.22736584; T( 6,487)= 5.23536173; T( 6,488)= 5.24336516; T( 6,489)= 5.25137620; T( 6,490)= 5.25939488; T( 6,491)= 5.26742128; T( 6,492)= 5.27545543; T( 6,493)= 5.28349739; T( 6,494)= 5.29154722; T( 6,495)= 5.29960496; T( 6,496)= 5.30767067; T( 6,497)= 5.31574441; T( 6,498)= 5.32382621; T( 6,499)= 5.33191615; T( 6,500)= 5.34001427; T( 6,501)= 5.34812063; T( 6,502)= 5.35623527; T( 6,503)= 5.36435827; T( 6,504)= 5.37248966; T( 6,505)= 5.38062950; T( 6,506)= 5.38877786; T( 6,507)= 5.39693478; T( 6,508)= 5.40510032; T( 6,509)= 5.41327454; T( 6,510)= 5.42145748; T( 6,511)= 5.42964922; T( 6,512)= 5.43784980; T( 6,513)= 5.44605928; T( 6,514)= 5.45427772; T( 6,515)= 5.46250517; T( 6,516)= 5.47074169; T( 6,517)= 5.47898734; T( 6,518)= 5.48724218; T( 6,519)= 5.49550627; T( 6,520)= 5.50377965; T( 6,521)= 5.51206240; T( 6,522)= 5.52035457; T( 6,523)= 5.52865622; T( 6,524)= 5.53696741; T( 6,525)= 5.54528819; T( 6,526)= 5.55361864; T( 6,527)= 5.56195880; T( 6,528)= 5.57030874; T( 6,529)= 5.57866852; T( 6,530)= 5.58703819; T( 6,531)= 5.59541783; T( 6,532)= 5.60380750; T( 6,533)= 5.61220724; T( 6,534)= 5.62061714; T( 6,535)= 5.62903724; T( 6,536)= 5.63746761; T( 6,537)= 5.64590832; T( 6,538)= 5.65435943; T( 6,539)= 5.66282100; T( 6,540)= 5.67129309; T( 6,541)= 5.67977577; T( 6,542)= 5.68826910; T( 6,543)= 5.69677316; T( 6,544)= 5.70528799; T( 6,545)= 5.71381368; T( 6,546)= 5.72235028; T( 6,547)= 5.73089787; T( 6,548)= 5.73945650; T( 6,549)= 5.74802624; T( 6,550)= 5.75660717; T( 6,551)= 5.76519934; T( 6,552)= 5.77380283; T( 6,553)= 5.78241771; T( 6,554)= 5.79104404; T( 6,555)= 5.79968189; T( 6,556)= 5.80833134; T( 6,557)= 5.81699245; T( 6,558)= 5.82566528; T( 6,559)= 5.83434993; T( 6,560)= 5.84304644; T( 6,561)= 5.85175490; T( 6,562)= 5.86047537; T( 6,563)= 5.86920793; T( 6,564)= 5.87795265; T( 6,565)= 5.88670961; T( 6,566)= 5.89547887; T( 6,567)= 5.90426051; T( 6,568)= 5.91305460; T( 6,569)= 5.92186122; T( 6,570)= 5.93068044; T( 6,571)= 5.93951235; T( 6,572)= 5.94835700; T( 6,573)= 5.95721449; T( 6,574)= 5.96608489; T( 6,575)= 5.97496826; T( 6,576)= 5.98386470; T( 6,577)= 5.99277428; T( 6,578)= 6.00169708; T( 6,579)= 6.01063317; T( 6,580)= 6.01958264; T( 6,581)= 6.02854556; T( 6,582)= 6.03752202; T( 6,583)= 6.04651210; T( 6,584)= 6.05551588; T( 6,585)= 6.06453343; T( 6,586)= 6.07356485; T( 6,587)= 6.08261022; T( 6,588)= 6.09166961; T( 6,589)= 6.10074312; T( 6,590)= 6.10983082; T( 6,591)= 6.11893280; T( 6,592)= 6.12804915; T( 6,593)= 6.13717996; T( 6,594)= 6.14632530; T( 6,595)= 6.15548527; T( 6,596)= 6.16465995; T( 6,597)= 6.17384944; T( 6,598)= 6.18305382; T( 6,599)= 6.19227318; T( 6,600)= 6.20150760; T( 6,601)= 6.21075719; T( 6,602)= 6.22002204; T( 6,603)= 6.22930222; T( 6,604)= 6.23859784; T( 6,605)= 6.24790899; T( 6,606)= 6.25723577; T( 6,607)= 6.26657826; T( 6,608)= 6.27593656; T( 6,609)= 6.28531076; T( 6,610)= 6.29470097; T( 6,611)= 6.30410728; T( 6,612)= 6.31352979; T( 6,613)= 6.32296859; T( 6,614)= 6.33242379; T( 6,615)= 6.34189548; T( 6,616)= 6.35138376; T( 6,617)= 6.36088874; T( 6,618)= 6.37041051; T( 6,619)= 6.37994918; T( 6,620)= 6.38950485; T( 6,621)= 6.39907763; T( 6,622)= 6.40866761; T( 6,623)= 6.41827491; T( 6,624)= 6.42789963; T( 6,625)= 6.43754188; T( 6,626)= 6.44720175; T( 6,627)= 6.45687938; T( 6,628)= 6.46657485; T( 6,629)= 6.47628828; T( 6,630)= 6.48601979; T( 6,631)= 6.49576948; T( 6,632)= 6.50553746; T( 6,633)= 6.51532385; T( 6,634)= 6.52512877; T( 6,635)= 6.53495232; T( 6,636)= 6.54479462; T( 6,637)= 6.55465580; T( 6,638)= 6.56453596; T( 6,639)= 6.57443522; T( 6,640)= 6.58435371; T( 6,641)= 6.59429154; T( 6,642)= 6.60424884; T( 6,643)= 6.61422573; T( 6,644)= 6.62422232; T( 6,645)= 6.63423875; T( 6,646)= 6.64427513; T( 6,647)= 6.65433160; T( 6,648)= 6.66440829; T( 6,649)= 6.67450530; T( 6,650)= 6.68462279; T( 6,651)= 6.69476088; T( 6,652)= 6.70491969; T( 6,653)= 6.71509936; T( 6,654)= 6.72530002; T( 6,655)= 6.73552181; T( 6,656)= 6.74576487; T( 6,657)= 6.75602932; T( 6,658)= 6.76631530; T( 6,659)= 6.77662296; T( 6,660)= 6.78695243; T( 6,661)= 6.79730386; T( 6,662)= 6.80767738; T( 6,663)= 6.81807314; T( 6,664)= 6.82849128; T( 6,665)= 6.83893194; T( 6,666)= 6.84939529; T( 6,667)= 6.85988145; T( 6,668)= 6.87039059; T( 6,669)= 6.88092285; T( 6,670)= 6.89147838; T( 6,671)= 6.90205734; T( 6,672)= 6.91265987; T( 6,673)= 6.92328615; T( 6,674)= 6.93393631; T( 6,675)= 6.94461053; T( 6,676)= 6.95530896; T( 6,677)= 6.96603176; T( 6,678)= 6.97677909; T( 6,679)= 6.98755113; T( 6,680)= 6.99834802; T( 6,681)= 7.00916995; T( 6,682)= 7.02001707; T( 6,683)= 7.03088956; T( 6,684)= 7.04178759; T( 6,685)= 7.05271133; T( 6,686)= 7.06366096; T( 6,687)= 7.07463665; T( 6,688)= 7.08563859; T( 6,689)= 7.09666694; T( 6,690)= 7.10772189; T( 6,691)= 7.11880362; T( 6,692)= 7.12991232; T( 6,693)= 7.14104817; T( 6,694)= 7.15221136; T( 6,695)= 7.16340208; T( 6,696)= 7.17462052; T( 6,697)= 7.18586687; T( 6,698)= 7.19714133; T( 6,699)= 7.20844409; T( 6,700)= 7.21977536; T( 6,701)= 7.23113533; T( 6,702)= 7.24252421; T( 6,703)= 7.25394219; T( 6,704)= 7.26538949; T( 6,705)= 7.27686632; T( 6,706)= 7.28837288; T( 6,707)= 7.29990938; T( 6,708)= 7.31147605; T( 6,709)= 7.32307309; T( 6,710)= 7.33470073; T( 6,711)= 7.34635918; T( 6,712)= 7.35804867; T( 6,713)= 7.36976943; T( 6,714)= 7.38152168; T( 6,715)= 7.39330565; T( 6,716)= 7.40512157; T( 6,717)= 7.41696968; T( 6,718)= 7.42885021; T( 6,719)= 7.44076341; T( 6,720)= 7.45270951; T( 6,721)= 7.46468876; T( 6,722)= 7.47670141; T( 6,723)= 7.48874771; T( 6,724)= 7.50082789; T( 6,725)= 7.51294224; T( 6,726)= 7.52509098; T( 6,727)= 7.53727440; T( 6,728)= 7.54949275; T( 6,729)= 7.56174629; T( 6,730)= 7.57403530; T( 6,731)= 7.58636004; T( 6,732)= 7.59872080; T( 6,733)= 7.61111783; T( 6,734)= 7.62355144; T( 6,735)= 7.63602189; T( 6,736)= 7.64852948; T( 6,737)= 7.66107449; T( 6,738)= 7.67365722; T( 6,739)= 7.68627797; T( 6,740)= 7.69893702; T( 6,741)= 7.71163469; T( 6,742)= 7.72437128; T( 6,743)= 7.73714709; T( 6,744)= 7.74996245; T( 6,745)= 7.76281766; T( 6,746)= 7.77571306; T( 6,747)= 7.78864895; T( 6,748)= 7.80162567; T( 6,749)= 7.81464355; T( 6,750)= 7.82770292; T( 6,751)= 7.84080412; T( 6,752)= 7.85394750; T( 6,753)= 7.86713340; T( 6,754)= 7.88036217; T( 6,755)= 7.89363417; T( 6,756)= 7.90694975; T( 6,757)= 7.92030928; T( 6,758)= 7.93371313; T( 6,759)= 7.94716167; T( 6,760)= 7.96065528; T( 6,761)= 7.97419433; T( 6,762)= 7.98777921; T( 6,763)= 8.00141032; T( 6,764)= 8.01508805; T( 6,765)= 8.02881280; T( 6,766)= 8.04258497; T( 6,767)= 8.05640497; T( 6,768)= 8.07027323; T( 6,769)= 8.08419016; T( 6,770)= 8.09815618; T( 6,771)= 8.11217173; T( 6,772)= 8.12623725; T( 6,773)= 8.14035318; T( 6,774)= 8.15451996; T( 6,775)= 8.16873806; T( 6,776)= 8.18300792; T( 6,777)= 8.19733002; T( 6,778)= 8.21170483; T( 6,779)= 8.22613283; T( 6,780)= 8.24061449; T( 6,781)= 8.25515032; T( 6,782)= 8.26974081; T( 6,783)= 8.28438647; T( 6,784)= 8.29908780; T( 6,785)= 8.31384532; T( 6,786)= 8.32865956; T( 6,787)= 8.34353106; T( 6,788)= 8.35846034; T( 6,789)= 8.37344796; T( 6,790)= 8.38849448; T( 6,791)= 8.40360045; T( 6,792)= 8.41876644; T( 6,793)= 8.43399304; T( 6,794)= 8.44928083; T( 6,795)= 8.46463040; T( 6,796)= 8.48004236; T( 6,797)= 8.49551732; T( 6,798)= 8.51105590; T( 6,799)= 8.52665873; T( 6,800)= 8.54232646; T( 6,801)= 8.55805972; T( 6,802)= 8.57385918; T( 6,803)= 8.58972550; T( 6,804)= 8.60565937; T( 6,805)= 8.62166147; T( 6,806)= 8.63773249; T( 6,807)= 8.65387315; T( 6,808)= 8.67008417; T( 6,809)= 8.68636628; T( 6,810)= 8.70272021; T( 6,811)= 8.71914673; T( 6,812)= 8.73564660; T( 6,813)= 8.75222059; T( 6,814)= 8.76886949; T( 6,815)= 8.78559411; T( 6,816)= 8.80239527; T( 6,817)= 8.81927377; T( 6,818)= 8.83623048; T( 6,819)= 8.85326624; T( 6,820)= 8.87038192; T( 6,821)= 8.88757840; T( 6,822)= 8.90485658; T( 6,823)= 8.92221737; T( 6,824)= 8.93966170; T( 6,825)= 8.95719051; T( 6,826)= 8.97480476; T( 6,827)= 8.99250542; T( 6,828)= 9.01029348; T( 6,829)= 9.02816995; T( 6,830)= 9.04613586; T( 6,831)= 9.06419225; T( 6,832)= 9.08234018; T( 6,833)= 9.10058073; T( 6,834)= 9.11891500; T( 6,835)= 9.13734410; T( 6,836)= 9.15586918; T( 6,837)= 9.17449139; T( 6,838)= 9.19321191; T( 6,839)= 9.21203195; T( 6,840)= 9.23095272; T( 6,841)= 9.24997547; T( 6,842)= 9.26910147; T( 6,843)= 9.28833201; T( 6,844)= 9.30766841; T( 6,845)= 9.32711200; T( 6,846)= 9.34666416; T( 6,847)= 9.36632628; T( 6,848)= 9.38609978; T( 6,849)= 9.40598609; T( 6,850)= 9.42598671; T( 6,851)= 9.44610313; T( 6,852)= 9.46633688; T( 6,853)= 9.48668954; T( 6,854)= 9.50716269; T( 6,855)= 9.52775796; T( 6,856)= 9.54847702; T( 6,857)= 9.56932156; T( 6,858)= 9.59029332; T( 6,859)= 9.61139404; T( 6,860)= 9.63262554; T( 6,861)= 9.65398967; T( 6,862)= 9.67548829; T( 6,863)= 9.69712332; T( 6,864)= 9.71889674; T( 6,865)= 9.74081054; T( 6,866)= 9.76286677; T( 6,867)= 9.78506752; T( 6,868)= 9.80741493; T( 6,869)= 9.82991118; T( 6,870)= 9.85255852; T( 6,871)= 9.87535923; T( 6,872)= 9.89831564; T( 6,873)= 9.92143015; T( 6,874)= 9.94470521; T( 6,875)= 9.96814332; T( 6,876)= 9.99174704; T( 6,877)=10.01551901; T( 6,878)=10.03946190; T( 6,879)=10.06357847; T( 6,880)=10.08787155; T( 6,881)=10.11234401; T( 6,882)=10.13699883; T( 6,883)=10.16183903; T( 6,884)=10.18686773; T( 6,885)=10.21208812; T( 6,886)=10.23750347; T( 6,887)=10.26311713; T( 6,888)=10.28893255; T( 6,889)=10.31495327; T( 6,890)=10.34118291; T( 6,891)=10.36762520; T( 6,892)=10.39428397; T( 6,893)=10.42116314; T( 6,894)=10.44826677; T( 6,895)=10.47559899; T( 6,896)=10.50316408; T( 6,897)=10.53096643; T( 6,898)=10.55901055; T( 6,899)=10.58730108; T( 6,900)=10.61584282; T( 6,901)=10.64464068; T( 6,902)=10.67369972; T( 6,903)=10.70302518; T( 6,904)=10.73262243; T( 6,905)=10.76249701; T( 6,906)=10.79265465; T( 6,907)=10.82310124; T( 6,908)=10.85384286; T( 6,909)=10.88488579; T( 6,910)=10.91623651; T( 6,911)=10.94790172; T( 6,912)=10.97988834; T( 6,913)=11.01220350; T( 6,914)=11.04485460; T( 6,915)=11.07784928; T( 6,916)=11.11119545; T( 6,917)=11.14490129; T( 6,918)=11.17897528; T( 6,919)=11.21342620; T( 6,920)=11.24826316; T( 6,921)=11.28349557; T( 6,922)=11.31913324; T( 6,923)=11.35518632; T( 6,924)=11.39166534; T( 6,925)=11.42858128; T( 6,926)=11.46594551; T( 6,927)=11.50376986; T( 6,928)=11.54206667; T( 6,929)=11.58084873; T( 6,930)=11.62012941; T( 6,931)=11.65992262; T( 6,932)=11.70024286; T( 6,933)=11.74110527; T( 6,934)=11.78252566; T( 6,935)=11.82452051; T( 6,936)=11.86710710; T( 6,937)=11.91030346; T( 6,938)=11.95412849; T( 6,939)=11.99860197; T( 6,940)=12.04374465; T( 6,941)=12.08957827; T( 6,942)=12.13612570; T( 6,943)=12.18341093; T( 6,944)=12.23145921; T( 6,945)=12.28029710; T( 6,946)=12.32995260; T( 6,947)=12.38045522; T( 6,948)=12.43183612; T( 6,949)=12.48412821; T( 6,950)=12.53736629; T( 6,951)=12.59158724; T( 6,952)=12.64683013; T( 6,953)=12.70313641; T( 6,954)=12.76055014; T( 6,955)=12.81911819; T( 6,956)=12.87889050; T( 6,957)=12.93992031; T( 6,958)=13.00226454; T( 6,959)=13.06598405; T( 6,960)=13.13114408; T( 6,961)=13.19781465; T( 6,962)=13.26607104; T( 6,963)=13.33599435; T( 6,964)=13.40767211; T( 6,965)=13.48119895; T( 6,966)=13.55667746; T( 6,967)=13.63421904; T( 6,968)=13.71394497; T( 6,969)=13.79598766; T( 6,970)=13.88049198; T( 6,971)=13.96761693; T( 6,972)=14.05753754; T( 6,973)=14.15044710; T( 6,974)=14.24655980; T( 6,975)=14.34611387; T( 6,976)=14.44937534; T( 6,977)=14.55664250; T( 6,978)=14.66825145; T( 6,979)=14.78458270; T( 6,980)=14.90606945; T( 6,981)=15.03320775; T( 6,982)=15.16656941; T( 6,983)=15.30681822; T( 6,984)=15.45473093; T( 6,985)=15.61122447; T( 6,986)=15.77739196; T( 6,987)=15.95455115; T( 6,988)=16.14431068; T( 6,989)=16.34866283; T( 6,990)=16.57011657; T( 6,991)=16.81189383; T( 6,992)=17.07822912; T( 6,993)=17.37484553; T( 6,994)=17.70974876; T( 6,995)=18.09463447; T( 6,996)=18.54758418; T( 6,997)=19.09879292; T( 6,998)=19.80465236; T( 6,999)=20.79116772; T( 6,1000)=22.45774448; T( 6,1001)=27.85634124; T( 6,1002)=33.10705682; T( 7, 1)= 0.00000000; T( 7, 2)= 0.59849375; T( 7, 3)= 0.74105733; T( 7, 4)= 0.84123592; T( 7, 5)= 0.92131322; T( 7, 6)= 0.98925568; T( 7, 7)= 1.04893803; T( 7, 8)= 1.10257133; T( 7, 9)= 1.15155015; T( 7,10)= 1.19681705; T( 7,11)= 1.23904231; T( 7,12)= 1.27872156; T( 7,13)= 1.31623280; T( 7,14)= 1.35187166; T( 7,15)= 1.38587420; T( 7,16)= 1.41843230; T( 7,17)= 1.44970423; T( 7,18)= 1.47982230; T( 7,19)= 1.50889834; T( 7,20)= 1.53702782; T( 7,21)= 1.56429300; T( 7,22)= 1.59076530; T( 7,23)= 1.61650716; T( 7,24)= 1.64157355; T( 7,25)= 1.66601312; T( 7,26)= 1.68986918; T( 7,27)= 1.71318046; T( 7,28)= 1.73598176; T( 7,29)= 1.75830447; T( 7,30)= 1.78017701; T( 7,31)= 1.80162523; T( 7,32)= 1.82267268; T( 7,33)= 1.84334091; T( 7,34)= 1.86364970; T( 7,35)= 1.88361722; T( 7,36)= 1.90326023; T( 7,37)= 1.92259425; T( 7,38)= 1.94163363; T( 7,39)= 1.96039171; T( 7,40)= 1.97888088; T( 7,41)= 1.99711272; T( 7,42)= 2.01509801; T( 7,43)= 2.03284686; T( 7,44)= 2.05036872; T( 7,45)= 2.06767248; T( 7,46)= 2.08476649; T( 7,47)= 2.10165859; T( 7,48)= 2.11835619; T( 7,49)= 2.13486627; T( 7,50)= 2.15119543; T( 7,51)= 2.16734991; T( 7,52)= 2.18333563; T( 7,53)= 2.19915818; T( 7,54)= 2.21482289; T( 7,55)= 2.23033482; T( 7,56)= 2.24569875; T( 7,57)= 2.26091928; T( 7,58)= 2.27600075; T( 7,59)= 2.29094732; T( 7,60)= 2.30576296; T( 7,61)= 2.32045145; T( 7,62)= 2.33501641; T( 7,63)= 2.34946131; T( 7,64)= 2.36378945; T( 7,65)= 2.37800403; T( 7,66)= 2.39210807; T( 7,67)= 2.40610450; T( 7,68)= 2.41999612; T( 7,69)= 2.43378563; T( 7,70)= 2.44747560; T( 7,71)= 2.46106854; T( 7,72)= 2.47456683; T( 7,73)= 2.48797278; T( 7,74)= 2.50128861; T( 7,75)= 2.51451646; T( 7,76)= 2.52765839; T( 7,77)= 2.54071639; T( 7,78)= 2.55369238; T( 7,79)= 2.56658822; T( 7,80)= 2.57940570; T( 7,81)= 2.59214655; T( 7,82)= 2.60481245; T( 7,83)= 2.61740502; T( 7,84)= 2.62992582; T( 7,85)= 2.64237638; T( 7,86)= 2.65475817; T( 7,87)= 2.66707260; T( 7,88)= 2.67932106; T( 7,89)= 2.69150489; T( 7,90)= 2.70362540; T( 7,91)= 2.71568383; T( 7,92)= 2.72768141; T( 7,93)= 2.73961934; T( 7,94)= 2.75149875; T( 7,95)= 2.76332079; T( 7,96)= 2.77508653; T( 7,97)= 2.78679704; T( 7,98)= 2.79845334; T( 7,99)= 2.81005644; T( 7,100)= 2.82160732; T( 7,101)= 2.83310692; T( 7,102)= 2.84455617; T( 7,103)= 2.85595596; T( 7,104)= 2.86730719; T( 7,105)= 2.87861069; T( 7,106)= 2.88986731; T( 7,107)= 2.90107786; T( 7,108)= 2.91224313; T( 7,109)= 2.92336389; T( 7,110)= 2.93444089; T( 7,111)= 2.94547488; T( 7,112)= 2.95646657; T( 7,113)= 2.96741666; T( 7,114)= 2.97832584; T( 7,115)= 2.98919478; T( 7,116)= 3.00002412; T( 7,117)= 3.01081452; T( 7,118)= 3.02156659; T( 7,119)= 3.03228094; T( 7,120)= 3.04295818; T( 7,121)= 3.05359888; T( 7,122)= 3.06420361; T( 7,123)= 3.07477294; T( 7,124)= 3.08530742; T( 7,125)= 3.09580757; T( 7,126)= 3.10627392; T( 7,127)= 3.11670698; T( 7,128)= 3.12710726; T( 7,129)= 3.13747525; T( 7,130)= 3.14781143; T( 7,131)= 3.15811628; T( 7,132)= 3.16839025; T( 7,133)= 3.17863380; T( 7,134)= 3.18884737; T( 7,135)= 3.19903141; T( 7,136)= 3.20918634; T( 7,137)= 3.21931257; T( 7,138)= 3.22941052; T( 7,139)= 3.23948060; T( 7,140)= 3.24952320; T( 7,141)= 3.25953871; T( 7,142)= 3.26952750; T( 7,143)= 3.27948996; T( 7,144)= 3.28942646; T( 7,145)= 3.29933734; T( 7,146)= 3.30922298; T( 7,147)= 3.31908372; T( 7,148)= 3.32891989; T( 7,149)= 3.33873184; T( 7,150)= 3.34851989; T( 7,151)= 3.35828438; T( 7,152)= 3.36802562; T( 7,153)= 3.37774392; T( 7,154)= 3.38743959; T( 7,155)= 3.39711294; T( 7,156)= 3.40676426; T( 7,157)= 3.41639385; T( 7,158)= 3.42600200; T( 7,159)= 3.43558899; T( 7,160)= 3.44515509; T( 7,161)= 3.45470060; T( 7,162)= 3.46422576; T( 7,163)= 3.47373086; T( 7,164)= 3.48321615; T( 7,165)= 3.49268189; T( 7,166)= 3.50212834; T( 7,167)= 3.51155574; T( 7,168)= 3.52096434; T( 7,169)= 3.53035439; T( 7,170)= 3.53972612; T( 7,171)= 3.54907977; T( 7,172)= 3.55841557; T( 7,173)= 3.56773374; T( 7,174)= 3.57703452; T( 7,175)= 3.58631813; T( 7,176)= 3.59558478; T( 7,177)= 3.60483469; T( 7,178)= 3.61406808; T( 7,179)= 3.62328514; T( 7,180)= 3.63248609; T( 7,181)= 3.64167114; T( 7,182)= 3.65084048; T( 7,183)= 3.65999431; T( 7,184)= 3.66913282; T( 7,185)= 3.67825622; T( 7,186)= 3.68736468; T( 7,187)= 3.69645840; T( 7,188)= 3.70553756; T( 7,189)= 3.71460235; T( 7,190)= 3.72365294; T( 7,191)= 3.73268952; T( 7,192)= 3.74171225; T( 7,193)= 3.75072132; T( 7,194)= 3.75971689; T( 7,195)= 3.76869913; T( 7,196)= 3.77766821; T( 7,197)= 3.78662430; T( 7,198)= 3.79556755; T( 7,199)= 3.80449813; T( 7,200)= 3.81341620; T( 7,201)= 3.82232191; T( 7,202)= 3.83121542; T( 7,203)= 3.84009688; T( 7,204)= 3.84896644; T( 7,205)= 3.85782426; T( 7,206)= 3.86667047; T( 7,207)= 3.87550523; T( 7,208)= 3.88432869; T( 7,209)= 3.89314097; T( 7,210)= 3.90194224; T( 7,211)= 3.91073261; T( 7,212)= 3.91951224; T( 7,213)= 3.92828125; T( 7,214)= 3.93703979; T( 7,215)= 3.94578799; T( 7,216)= 3.95452597; T( 7,217)= 3.96325387; T( 7,218)= 3.97197182; T( 7,219)= 3.98067994; T( 7,220)= 3.98937837; T( 7,221)= 3.99806722; T( 7,222)= 4.00674663; T( 7,223)= 4.01541671; T( 7,224)= 4.02407758; T( 7,225)= 4.03272936; T( 7,226)= 4.04137218; T( 7,227)= 4.05000614; T( 7,228)= 4.05863137; T( 7,229)= 4.06724799; T( 7,230)= 4.07585610; T( 7,231)= 4.08445581; T( 7,232)= 4.09304725; T( 7,233)= 4.10163051; T( 7,234)= 4.11020571; T( 7,235)= 4.11877297; T( 7,236)= 4.12733237; T( 7,237)= 4.13588404; T( 7,238)= 4.14442808; T( 7,239)= 4.15296458; T( 7,240)= 4.16149367; T( 7,241)= 4.17001543; T( 7,242)= 4.17852997; T( 7,243)= 4.18703738; T( 7,244)= 4.19553778; T( 7,245)= 4.20403126; T( 7,246)= 4.21251791; T( 7,247)= 4.22099784; T( 7,248)= 4.22947113; T( 7,249)= 4.23793789; T( 7,250)= 4.24639821; T( 7,251)= 4.25485218; T( 7,252)= 4.26329990; T( 7,253)= 4.27174146; T( 7,254)= 4.28017695; T( 7,255)= 4.28860646; T( 7,256)= 4.29703008; T( 7,257)= 4.30544790; T( 7,258)= 4.31386000; T( 7,259)= 4.32226649; T( 7,260)= 4.33066744; T( 7,261)= 4.33906293; T( 7,262)= 4.34745306; T( 7,263)= 4.35583792; T( 7,264)= 4.36421757; T( 7,265)= 4.37259212; T( 7,266)= 4.38096163; T( 7,267)= 4.38932620; T( 7,268)= 4.39768591; T( 7,269)= 4.40604083; T( 7,270)= 4.41439105; T( 7,271)= 4.42273665; T( 7,272)= 4.43107771; T( 7,273)= 4.43941430; T( 7,274)= 4.44774650; T( 7,275)= 4.45607440; T( 7,276)= 4.46439807; T( 7,277)= 4.47271758; T( 7,278)= 4.48103301; T( 7,279)= 4.48934445; T( 7,280)= 4.49765195; T( 7,281)= 4.50595561; T( 7,282)= 4.51425548; T( 7,283)= 4.52255165; T( 7,284)= 4.53084419; T( 7,285)= 4.53913317; T( 7,286)= 4.54741866; T( 7,287)= 4.55570074; T( 7,288)= 4.56397948; T( 7,289)= 4.57225494; T( 7,290)= 4.58052720; T( 7,291)= 4.58879633; T( 7,292)= 4.59706240; T( 7,293)= 4.60532547; T( 7,294)= 4.61358562; T( 7,295)= 4.62184291; T( 7,296)= 4.63009741; T( 7,297)= 4.63834919; T( 7,298)= 4.64659832; T( 7,299)= 4.65484486; T( 7,300)= 4.66308888; T( 7,301)= 4.67133045; T( 7,302)= 4.67956963; T( 7,303)= 4.68780648; T( 7,304)= 4.69604108; T( 7,305)= 4.70427348; T( 7,306)= 4.71250375; T( 7,307)= 4.72073195; T( 7,308)= 4.72895816; T( 7,309)= 4.73718242; T( 7,310)= 4.74540481; T( 7,311)= 4.75362539; T( 7,312)= 4.76184421; T( 7,313)= 4.77006135; T( 7,314)= 4.77827686; T( 7,315)= 4.78649080; T( 7,316)= 4.79470324; T( 7,317)= 4.80291424; T( 7,318)= 4.81112385; T( 7,319)= 4.81933214; T( 7,320)= 4.82753917; T( 7,321)= 4.83574499; T( 7,322)= 4.84394967; T( 7,323)= 4.85215327; T( 7,324)= 4.86035584; T( 7,325)= 4.86855744; T( 7,326)= 4.87675814; T( 7,327)= 4.88495798; T( 7,328)= 4.89315704; T( 7,329)= 4.90135536; T( 7,330)= 4.90955300; T( 7,331)= 4.91775003; T( 7,332)= 4.92594649; T( 7,333)= 4.93414245; T( 7,334)= 4.94233796; T( 7,335)= 4.95053308; T( 7,336)= 4.95872787; T( 7,337)= 4.96692237; T( 7,338)= 4.97511665; T( 7,339)= 4.98331076; T( 7,340)= 4.99150476; T( 7,341)= 4.99969871; T( 7,342)= 5.00789265; T( 7,343)= 5.01608664; T( 7,344)= 5.02428074; T( 7,345)= 5.03247501; T( 7,346)= 5.04066949; T( 7,347)= 5.04886424; T( 7,348)= 5.05705931; T( 7,349)= 5.06525477; T( 7,350)= 5.07345066; T( 7,351)= 5.08164703; T( 7,352)= 5.08984394; T( 7,353)= 5.09804145; T( 7,354)= 5.10623960; T( 7,355)= 5.11443845; T( 7,356)= 5.12263806; T( 7,357)= 5.13083847; T( 7,358)= 5.13903973; T( 7,359)= 5.14724191; T( 7,360)= 5.15544505; T( 7,361)= 5.16364920; T( 7,362)= 5.17185442; T( 7,363)= 5.18006076; T( 7,364)= 5.18826827; T( 7,365)= 5.19647700; T( 7,366)= 5.20468701; T( 7,367)= 5.21289834; T( 7,368)= 5.22111105; T( 7,369)= 5.22932519; T( 7,370)= 5.23754080; T( 7,371)= 5.24575795; T( 7,372)= 5.25397668; T( 7,373)= 5.26219704; T( 7,374)= 5.27041909; T( 7,375)= 5.27864287; T( 7,376)= 5.28686844; T( 7,377)= 5.29509584; T( 7,378)= 5.30332513; T( 7,379)= 5.31155635; T( 7,380)= 5.31978957; T( 7,381)= 5.32802482; T( 7,382)= 5.33626216; T( 7,383)= 5.34450164; T( 7,384)= 5.35274330; T( 7,385)= 5.36098721; T( 7,386)= 5.36923340; T( 7,387)= 5.37748194; T( 7,388)= 5.38573286; T( 7,389)= 5.39398622; T( 7,390)= 5.40224207; T( 7,391)= 5.41050045; T( 7,392)= 5.41876143; T( 7,393)= 5.42702504; T( 7,394)= 5.43529134; T( 7,395)= 5.44356038; T( 7,396)= 5.45183220; T( 7,397)= 5.46010686; T( 7,398)= 5.46838441; T( 7,399)= 5.47666489; T( 7,400)= 5.48494836; T( 7,401)= 5.49323486; T( 7,402)= 5.50152445; T( 7,403)= 5.50981716; T( 7,404)= 5.51811306; T( 7,405)= 5.52641220; T( 7,406)= 5.53471461; T( 7,407)= 5.54302036; T( 7,408)= 5.55132949; T( 7,409)= 5.55964204; T( 7,410)= 5.56795808; T( 7,411)= 5.57627764; T( 7,412)= 5.58460078; T( 7,413)= 5.59292755; T( 7,414)= 5.60125800; T( 7,415)= 5.60959217; T( 7,416)= 5.61793012; T( 7,417)= 5.62627189; T( 7,418)= 5.63461754; T( 7,419)= 5.64296712; T( 7,420)= 5.65132066; T( 7,421)= 5.65967823; T( 7,422)= 5.66803987; T( 7,423)= 5.67640564; T( 7,424)= 5.68477557; T( 7,425)= 5.69314973; T( 7,426)= 5.70152816; T( 7,427)= 5.70991091; T( 7,428)= 5.71829803; T( 7,429)= 5.72668957; T( 7,430)= 5.73508558; T( 7,431)= 5.74348611; T( 7,432)= 5.75189121; T( 7,433)= 5.76030093; T( 7,434)= 5.76871532; T( 7,435)= 5.77713443; T( 7,436)= 5.78555831; T( 7,437)= 5.79398702; T( 7,438)= 5.80242059; T( 7,439)= 5.81085908; T( 7,440)= 5.81930254; T( 7,441)= 5.82775103; T( 7,442)= 5.83620459; T( 7,443)= 5.84466327; T( 7,444)= 5.85312712; T( 7,445)= 5.86159620; T( 7,446)= 5.87007055; T( 7,447)= 5.87855023; T( 7,448)= 5.88703528; T( 7,449)= 5.89552576; T( 7,450)= 5.90402173; T( 7,451)= 5.91252322; T( 7,452)= 5.92103029; T( 7,453)= 5.92954299; T( 7,454)= 5.93806138; T( 7,455)= 5.94658550; T( 7,456)= 5.95511541; T( 7,457)= 5.96365116; T( 7,458)= 5.97219280; T( 7,459)= 5.98074038; T( 7,460)= 5.98929396; T( 7,461)= 5.99785358; T( 7,462)= 6.00641930; T( 7,463)= 6.01499118; T( 7,464)= 6.02356925; T( 7,465)= 6.03215359; T( 7,466)= 6.04074423; T( 7,467)= 6.04934124; T( 7,468)= 6.05794466; T( 7,469)= 6.06655454; T( 7,470)= 6.07517095; T( 7,471)= 6.08379394; T( 7,472)= 6.09242355; T( 7,473)= 6.10105984; T( 7,474)= 6.10970287; T( 7,475)= 6.11835269; T( 7,476)= 6.12700935; T( 7,477)= 6.13567291; T( 7,478)= 6.14434343; T( 7,479)= 6.15302094; T( 7,480)= 6.16170552; T( 7,481)= 6.17039722; T( 7,482)= 6.17909608; T( 7,483)= 6.18780218; T( 7,484)= 6.19651555; T( 7,485)= 6.20523626; T( 7,486)= 6.21396436; T( 7,487)= 6.22269990; T( 7,488)= 6.23144295; T( 7,489)= 6.24019357; T( 7,490)= 6.24895179; T( 7,491)= 6.25771769; T( 7,492)= 6.26649132; T( 7,493)= 6.27527273; T( 7,494)= 6.28406199; T( 7,495)= 6.29285914; T( 7,496)= 6.30166426; T( 7,497)= 6.31047738; T( 7,498)= 6.31929858; T( 7,499)= 6.32812791; T( 7,500)= 6.33696543; T( 7,501)= 6.34581120; T( 7,502)= 6.35466527; T( 7,503)= 6.36352770; T( 7,504)= 6.37239855; T( 7,505)= 6.38127789; T( 7,506)= 6.39016577; T( 7,507)= 6.39906225; T( 7,508)= 6.40796739; T( 7,509)= 6.41688125; T( 7,510)= 6.42580390; T( 7,511)= 6.43473538; T( 7,512)= 6.44367577; T( 7,513)= 6.45262512; T( 7,514)= 6.46158349; T( 7,515)= 6.47055095; T( 7,516)= 6.47952755; T( 7,517)= 6.48851337; T( 7,518)= 6.49750845; T( 7,519)= 6.50651287; T( 7,520)= 6.51552669; T( 7,521)= 6.52454997; T( 7,522)= 6.53358276; T( 7,523)= 6.54262515; T( 7,524)= 6.55167718; T( 7,525)= 6.56073893; T( 7,526)= 6.56981045; T( 7,527)= 6.57889182; T( 7,528)= 6.58798309; T( 7,529)= 6.59708434; T( 7,530)= 6.60619562; T( 7,531)= 6.61531701; T( 7,532)= 6.62444857; T( 7,533)= 6.63359036; T( 7,534)= 6.64274245; T( 7,535)= 6.65190491; T( 7,536)= 6.66107781; T( 7,537)= 6.67026121; T( 7,538)= 6.67945519; T( 7,539)= 6.68865980; T( 7,540)= 6.69787512; T( 7,541)= 6.70710121; T( 7,542)= 6.71633815; T( 7,543)= 6.72558601; T( 7,544)= 6.73484485; T( 7,545)= 6.74411474; T( 7,546)= 6.75339576; T( 7,547)= 6.76268797; T( 7,548)= 6.77199145; T( 7,549)= 6.78130627; T( 7,550)= 6.79063250; T( 7,551)= 6.79997021; T( 7,552)= 6.80931947; T( 7,553)= 6.81868037; T( 7,554)= 6.82805296; T( 7,555)= 6.83743732; T( 7,556)= 6.84683354; T( 7,557)= 6.85624167; T( 7,558)= 6.86566181; T( 7,559)= 6.87509402; T( 7,560)= 6.88453837; T( 7,561)= 6.89399495; T( 7,562)= 6.90346383; T( 7,563)= 6.91294508; T( 7,564)= 6.92243879; T( 7,565)= 6.93194503; T( 7,566)= 6.94146388; T( 7,567)= 6.95099542; T( 7,568)= 6.96053972; T( 7,569)= 6.97009688; T( 7,570)= 6.97966695; T( 7,571)= 6.98925004; T( 7,572)= 6.99884621; T( 7,573)= 7.00845555; T( 7,574)= 7.01807813; T( 7,575)= 7.02771405; T( 7,576)= 7.03736339; T( 7,577)= 7.04702622; T( 7,578)= 7.05670263; T( 7,579)= 7.06639270; T( 7,580)= 7.07609652; T( 7,581)= 7.08581418; T( 7,582)= 7.09554575; T( 7,583)= 7.10529133; T( 7,584)= 7.11505100; T( 7,585)= 7.12482485; T( 7,586)= 7.13461297; T( 7,587)= 7.14441543; T( 7,588)= 7.15423234; T( 7,589)= 7.16406378; T( 7,590)= 7.17390984; T( 7,591)= 7.18377061; T( 7,592)= 7.19364618; T( 7,593)= 7.20353665; T( 7,594)= 7.21344210; T( 7,595)= 7.22336262; T( 7,596)= 7.23329832; T( 7,597)= 7.24324928; T( 7,598)= 7.25321559; T( 7,599)= 7.26319736; T( 7,600)= 7.27319467; T( 7,601)= 7.28320763; T( 7,602)= 7.29323633; T( 7,603)= 7.30328087; T( 7,604)= 7.31334134; T( 7,605)= 7.32341784; T( 7,606)= 7.33351047; T( 7,607)= 7.34361934; T( 7,608)= 7.35374454; T( 7,609)= 7.36388618; T( 7,610)= 7.37404434; T( 7,611)= 7.38421915; T( 7,612)= 7.39441070; T( 7,613)= 7.40461909; T( 7,614)= 7.41484443; T( 7,615)= 7.42508683; T( 7,616)= 7.43534638; T( 7,617)= 7.44562321; T( 7,618)= 7.45591741; T( 7,619)= 7.46622909; T( 7,620)= 7.47655836; T( 7,621)= 7.48690533; T( 7,622)= 7.49727011; T( 7,623)= 7.50765282; T( 7,624)= 7.51805356; T( 7,625)= 7.52847245; T( 7,626)= 7.53890960; T( 7,627)= 7.54936513; T( 7,628)= 7.55983914; T( 7,629)= 7.57033177; T( 7,630)= 7.58084311; T( 7,631)= 7.59137330; T( 7,632)= 7.60192245; T( 7,633)= 7.61249067; T( 7,634)= 7.62307810; T( 7,635)= 7.63368485; T( 7,636)= 7.64431104; T( 7,637)= 7.65495679; T( 7,638)= 7.66562224; T( 7,639)= 7.67630750; T( 7,640)= 7.68701270; T( 7,641)= 7.69773797; T( 7,642)= 7.70848343; T( 7,643)= 7.71924921; T( 7,644)= 7.73003545; T( 7,645)= 7.74084228; T( 7,646)= 7.75166981; T( 7,647)= 7.76251820; T( 7,648)= 7.77338757; T( 7,649)= 7.78427805; T( 7,650)= 7.79518979; T( 7,651)= 7.80612292; T( 7,652)= 7.81707757; T( 7,653)= 7.82805389; T( 7,654)= 7.83905201; T( 7,655)= 7.85007209; T( 7,656)= 7.86111425; T( 7,657)= 7.87217864; T( 7,658)= 7.88326542; T( 7,659)= 7.89437471; T( 7,660)= 7.90550668; T( 7,661)= 7.91666147; T( 7,662)= 7.92783923; T( 7,663)= 7.93904010; T( 7,664)= 7.95026425; T( 7,665)= 7.96151182; T( 7,666)= 7.97278296; T( 7,667)= 7.98407785; T( 7,668)= 7.99539662; T( 7,669)= 8.00673944; T( 7,670)= 8.01810647; T( 7,671)= 8.02949787; T( 7,672)= 8.04091381; T( 7,673)= 8.05235444; T( 7,674)= 8.06381993; T( 7,675)= 8.07531045; T( 7,676)= 8.08682617; T( 7,677)= 8.09836725; T( 7,678)= 8.10993387; T( 7,679)= 8.12152619; T( 7,680)= 8.13314440; T( 7,681)= 8.14478867; T( 7,682)= 8.15645917; T( 7,683)= 8.16815609; T( 7,684)= 8.17987960; T( 7,685)= 8.19162988; T( 7,686)= 8.20340713; T( 7,687)= 8.21521152; T( 7,688)= 8.22704324; T( 7,689)= 8.23890248; T( 7,690)= 8.25078942; T( 7,691)= 8.26270427; T( 7,692)= 8.27464722; T( 7,693)= 8.28661845; T( 7,694)= 8.29861817; T( 7,695)= 8.31064658; T( 7,696)= 8.32270388; T( 7,697)= 8.33479026; T( 7,698)= 8.34690594; T( 7,699)= 8.35905113; T( 7,700)= 8.37122602; T( 7,701)= 8.38343083; T( 7,702)= 8.39566577; T( 7,703)= 8.40793106; T( 7,704)= 8.42022692; T( 7,705)= 8.43255356; T( 7,706)= 8.44491120; T( 7,707)= 8.45730007; T( 7,708)= 8.46972039; T( 7,709)= 8.48217239; T( 7,710)= 8.49465629; T( 7,711)= 8.50717234; T( 7,712)= 8.51972076; T( 7,713)= 8.53230179; T( 7,714)= 8.54491567; T( 7,715)= 8.55756264; T( 7,716)= 8.57024295; T( 7,717)= 8.58295683; T( 7,718)= 8.59570455; T( 7,719)= 8.60848634; T( 7,720)= 8.62130247; T( 7,721)= 8.63415318; T( 7,722)= 8.64703875; T( 7,723)= 8.65995943; T( 7,724)= 8.67291548; T( 7,725)= 8.68590717; T( 7,726)= 8.69893477; T( 7,727)= 8.71199856; T( 7,728)= 8.72509880; T( 7,729)= 8.73823579; T( 7,730)= 8.75140979; T( 7,731)= 8.76462110; T( 7,732)= 8.77786999; T( 7,733)= 8.79115677; T( 7,734)= 8.80448173; T( 7,735)= 8.81784516; T( 7,736)= 8.83124735; T( 7,737)= 8.84468863; T( 7,738)= 8.85816929; T( 7,739)= 8.87168963; T( 7,740)= 8.88524999; T( 7,741)= 8.89885067; T( 7,742)= 8.91249199; T( 7,743)= 8.92617428; T( 7,744)= 8.93989786; T( 7,745)= 8.95366307; T( 7,746)= 8.96747025; T( 7,747)= 8.98131972; T( 7,748)= 8.99521184; T( 7,749)= 9.00914695; T( 7,750)= 9.02312540; T( 7,751)= 9.03714755; T( 7,752)= 9.05121375; T( 7,753)= 9.06532438; T( 7,754)= 9.07947979; T( 7,755)= 9.09368036; T( 7,756)= 9.10792646; T( 7,757)= 9.12221848; T( 7,758)= 9.13655680; T( 7,759)= 9.15094182; T( 7,760)= 9.16537392; T( 7,761)= 9.17985350; T( 7,762)= 9.19438098; T( 7,763)= 9.20895675; T( 7,764)= 9.22358124; T( 7,765)= 9.23825486; T( 7,766)= 9.25297803; T( 7,767)= 9.26775120; T( 7,768)= 9.28257478; T( 7,769)= 9.29744923; T( 7,770)= 9.31237499; T( 7,771)= 9.32735251; T( 7,772)= 9.34238225; T( 7,773)= 9.35746467; T( 7,774)= 9.37260024; T( 7,775)= 9.38778944; T( 7,776)= 9.40303274; T( 7,777)= 9.41833065; T( 7,778)= 9.43368364; T( 7,779)= 9.44909223; T( 7,780)= 9.46455692; T( 7,781)= 9.48007822; T( 7,782)= 9.49565665; T( 7,783)= 9.51129274; T( 7,784)= 9.52698704; T( 7,785)= 9.54274007; T( 7,786)= 9.55855239; T( 7,787)= 9.57442456; T( 7,788)= 9.59035714; T( 7,789)= 9.60635070; T( 7,790)= 9.62240583; T( 7,791)= 9.63852311; T( 7,792)= 9.65470314; T( 7,793)= 9.67094652; T( 7,794)= 9.68725388; T( 7,795)= 9.70362582; T( 7,796)= 9.72006299; T( 7,797)= 9.73656602; T( 7,798)= 9.75313556; T( 7,799)= 9.76977227; T( 7,800)= 9.78647683; T( 7,801)= 9.80324990; T( 7,802)= 9.82009218; T( 7,803)= 9.83700436; T( 7,804)= 9.85398716; T( 7,805)= 9.87104130; T( 7,806)= 9.88816749; T( 7,807)= 9.90536650; T( 7,808)= 9.92263906; T( 7,809)= 9.93998594; T( 7,810)= 9.95740793; T( 7,811)= 9.97490580; T( 7,812)= 9.99248035; T( 7,813)=10.01013241; T( 7,814)=10.02786278; T( 7,815)=10.04567232; T( 7,816)=10.06356188; T( 7,817)=10.08153231; T( 7,818)=10.09958450; T( 7,819)=10.11771934; T( 7,820)=10.13593773; T( 7,821)=10.15424061; T( 7,822)=10.17262891; T( 7,823)=10.19110358; T( 7,824)=10.20966558; T( 7,825)=10.22831592; T( 7,826)=10.24705557; T( 7,827)=10.26588558; T( 7,828)=10.28480696; T( 7,829)=10.30382077; T( 7,830)=10.32292809; T( 7,831)=10.34213000; T( 7,832)=10.36142762; T( 7,833)=10.38082207; T( 7,834)=10.40031449; T( 7,835)=10.41990606; T( 7,836)=10.43959797; T( 7,837)=10.45939143; T( 7,838)=10.47928766; T( 7,839)=10.49928792; T( 7,840)=10.51939350; T( 7,841)=10.53960569; T( 7,842)=10.55992581; T( 7,843)=10.58035522; T( 7,844)=10.60089529; T( 7,845)=10.62154741; T( 7,846)=10.64231303; T( 7,847)=10.66319359; T( 7,848)=10.68419057; T( 7,849)=10.70530549; T( 7,850)=10.72653989; T( 7,851)=10.74789533; T( 7,852)=10.76937342; T( 7,853)=10.79097580; T( 7,854)=10.81270412; T( 7,855)=10.83456008; T( 7,856)=10.85654543; T( 7,857)=10.87866193; T( 7,858)=10.90091139; T( 7,859)=10.92329565; T( 7,860)=10.94581659; T( 7,861)=10.96847613; T( 7,862)=10.99127624; T( 7,863)=11.01421892; T( 7,864)=11.03730621; T( 7,865)=11.06054021; T( 7,866)=11.08392305; T( 7,867)=11.10745692; T( 7,868)=11.13114405; T( 7,869)=11.15498671; T( 7,870)=11.17898725; T( 7,871)=11.20314805; T( 7,872)=11.22747154; T( 7,873)=11.25196023; T( 7,874)=11.27661667; T( 7,875)=11.30144347; T( 7,876)=11.32644330; T( 7,877)=11.35161891; T( 7,878)=11.37697309; T( 7,879)=11.40250873; T( 7,880)=11.42822876; T( 7,881)=11.45413619; T( 7,882)=11.48023412; T( 7,883)=11.50652570; T( 7,884)=11.53301419; T( 7,885)=11.55970291; T( 7,886)=11.58659527; T( 7,887)=11.61369477; T( 7,888)=11.64100501; T( 7,889)=11.66852966; T( 7,890)=11.69627252; T( 7,891)=11.72423746; T( 7,892)=11.75242849; T( 7,893)=11.78084968; T( 7,894)=11.80950527; T( 7,895)=11.83839957; T( 7,896)=11.86753703; T( 7,897)=11.89692223; T( 7,898)=11.92655988; T( 7,899)=11.95645482; T( 7,900)=11.98661202; T( 7,901)=12.01703662; T( 7,902)=12.04773391; T( 7,903)=12.07870932; T( 7,904)=12.10996845; T( 7,905)=12.14151709; T( 7,906)=12.17336120; T( 7,907)=12.20550690; T( 7,908)=12.23796056; T( 7,909)=12.27072869; T( 7,910)=12.30381806; T( 7,911)=12.33723564; T( 7,912)=12.37098862; T( 7,913)=12.40508447; T( 7,914)=12.43953086; T( 7,915)=12.47433576; T( 7,916)=12.50950741; T( 7,917)=12.54505433; T( 7,918)=12.58098534; T( 7,919)=12.61730958; T( 7,920)=12.65403654; T( 7,921)=12.69117603; T( 7,922)=12.72873824; T( 7,923)=12.76673375; T( 7,924)=12.80517352; T( 7,925)=12.84406898; T( 7,926)=12.88343195; T( 7,927)=12.92327477; T( 7,928)=12.96361024; T( 7,929)=13.00445172; T( 7,930)=13.04581309; T( 7,931)=13.08770883; T( 7,932)=13.13015403; T( 7,933)=13.17316444; T( 7,934)=13.21675650; T( 7,935)=13.26094738; T( 7,936)=13.30575503; T( 7,937)=13.35119820; T( 7,938)=13.39729657; T( 7,939)=13.44407069; T( 7,940)=13.49154215; T( 7,941)=13.53973357; T( 7,942)=13.58866870; T( 7,943)=13.63837250; T( 7,944)=13.68887122; T( 7,945)=13.74019248; T( 7,946)=13.79236538; T( 7,947)=13.84542058; T( 7,948)=13.89939049; T( 7,949)=13.95430929; T( 7,950)=14.01021318; T( 7,951)=14.06714045; T( 7,952)=14.12513170; T( 7,953)=14.18423001; T( 7,954)=14.24448115; T( 7,955)=14.30593381; T( 7,956)=14.36863984; T( 7,957)=14.43265458; T( 7,958)=14.49803711; T( 7,959)=14.56485065; T( 7,960)=14.63316294; T( 7,961)=14.70304667; T( 7,962)=14.77458001; T( 7,963)=14.84784715; T( 7,964)=14.92293892; T( 7,965)=14.99995356; T( 7,966)=15.07899753; T( 7,967)=15.16018643; T( 7,968)=15.24364611; T( 7,969)=15.32951391; T( 7,970)=15.41794014; T( 7,971)=15.50908970; T( 7,972)=15.60314414; T( 7,973)=15.70030389; T( 7,974)=15.80079104; T( 7,975)=15.90485259; T( 7,976)=16.01276427; T( 7,977)=16.12483531; T( 7,978)=16.24141398; T( 7,979)=16.36289458; T( 7,980)=16.48972592; T( 7,981)=16.62242187; T( 7,982)=16.76157466; T( 7,983)=16.90787168; T( 7,984)=17.06211718; T( 7,985)=17.22526035; T( 7,986)=17.39843261; T( 7,987)=17.58299757; T( 7,988)=17.78061953; T( 7,989)=17.99335926; T( 7,990)=18.22381135; T( 7,991)=18.47530691; T( 7,992)=18.75222273; T( 7,993)=19.06047255; T( 7,994)=19.40832608; T( 7,995)=19.80786051; T( 7,996)=20.27773987; T( 7,997)=20.84911788; T( 7,998)=21.58014539; T( 7,999)=22.60067086; T( 7,1000)=24.32188635; T( 7,1001)=29.87750391; T( 7,1002)=35.25853642; T( 8, 1)= 0.00000000; T( 8, 2)= 0.85710483; T( 8, 3)= 1.03752390; T( 8, 4)= 1.16235294; T( 8, 5)= 1.26116792; T( 8, 6)= 1.34441309; T( 8, 7)= 1.41712746; T( 8, 8)= 1.48216905; T( 8, 9)= 1.54133162; T( 8,10)= 1.59582254; T( 8,11)= 1.64649737; T( 8,12)= 1.69398678; T( 8,13)= 1.73877041; T( 8,14)= 1.78122244; T( 8,15)= 1.82164101; T( 8,16)= 1.86026790; T( 8,17)= 1.89730220; T( 8,18)= 1.93291002; T( 8,19)= 1.96723154; T( 8,20)= 2.00038624; T( 8,21)= 2.03247692; T( 8,22)= 2.06359269; T( 8,23)= 2.09381138; T( 8,24)= 2.12320141; T( 8,25)= 2.15182328; T( 8,26)= 2.17973075; T( 8,27)= 2.20697188; T( 8,28)= 2.23358978; T( 8,29)= 2.25962333; T( 8,30)= 2.28510767; T( 8,31)= 2.31007474; T( 8,32)= 2.33455363; T( 8,33)= 2.35857091; T( 8,34)= 2.38215096; T( 8,35)= 2.40531616; T( 8,36)= 2.42808714; T( 8,37)= 2.45048298; T( 8,38)= 2.47252132; T( 8,39)= 2.49421852; T( 8,40)= 2.51558982; T( 8,41)= 2.53664938; T( 8,42)= 2.55741045; T( 8,43)= 2.57788538; T( 8,44)= 2.59808577; T( 8,45)= 2.61802247; T( 8,46)= 2.63770569; T( 8,47)= 2.65714502; T( 8,48)= 2.67634951; T( 8,49)= 2.69532767; T( 8,50)= 2.71408756; T( 8,51)= 2.73263679; T( 8,52)= 2.75098257; T( 8,53)= 2.76913171; T( 8,54)= 2.78709070; T( 8,55)= 2.80486568; T( 8,56)= 2.82246250; T( 8,57)= 2.83988672; T( 8,58)= 2.85714363; T( 8,59)= 2.87423829; T( 8,60)= 2.89117551; T( 8,61)= 2.90795987; T( 8,62)= 2.92459578; T( 8,63)= 2.94108744; T( 8,64)= 2.95743886; T( 8,65)= 2.97365388; T( 8,66)= 2.98973621; T( 8,67)= 3.00568936; T( 8,68)= 3.02151674; T( 8,69)= 3.03722161; T( 8,70)= 3.05280708; T( 8,71)= 3.06827618; T( 8,72)= 3.08363179; T( 8,73)= 3.09887669; T( 8,74)= 3.11401358; T( 8,75)= 3.12904503; T( 8,76)= 3.14397353; T( 8,77)= 3.15880149; T( 8,78)= 3.17353122; T( 8,79)= 3.18816495; T( 8,80)= 3.20270486; T( 8,81)= 3.21715302; T( 8,82)= 3.23151145; T( 8,83)= 3.24578211; T( 8,84)= 3.25996689; T( 8,85)= 3.27406760; T( 8,86)= 3.28808603; T( 8,87)= 3.30202387; T( 8,88)= 3.31588281; T( 8,89)= 3.32966443; T( 8,90)= 3.34337031; T( 8,91)= 3.35700197; T( 8,92)= 3.37056086; T( 8,93)= 3.38404841; T( 8,94)= 3.39746602; T( 8,95)= 3.41081502; T( 8,96)= 3.42409673; T( 8,97)= 3.43731242; T( 8,98)= 3.45046331; T( 8,99)= 3.46355062; T( 8,100)= 3.47657551; T( 8,101)= 3.48953913; T( 8,102)= 3.50244257; T( 8,103)= 3.51528691; T( 8,104)= 3.52807321; T( 8,105)= 3.54080250; T( 8,106)= 3.55347576; T( 8,107)= 3.56609397; T( 8,108)= 3.57865808; T( 8,109)= 3.59116901; T( 8,110)= 3.60362766; T( 8,111)= 3.61603492; T( 8,112)= 3.62839164; T( 8,113)= 3.64069865; T( 8,114)= 3.65295679; T( 8,115)= 3.66516684; T( 8,116)= 3.67732959; T( 8,117)= 3.68944580; T( 8,118)= 3.70151621; T( 8,119)= 3.71354156; T( 8,120)= 3.72552255; T( 8,121)= 3.73745988; T( 8,122)= 3.74935424; T( 8,123)= 3.76120628; T( 8,124)= 3.77301666; T( 8,125)= 3.78478602; T( 8,126)= 3.79651499; T( 8,127)= 3.80820416; T( 8,128)= 3.81985415; T( 8,129)= 3.83146553; T( 8,130)= 3.84303889; T( 8,131)= 3.85457477; T( 8,132)= 3.86607374; T( 8,133)= 3.87753633; T( 8,134)= 3.88896308; T( 8,135)= 3.90035450; T( 8,136)= 3.91171109; T( 8,137)= 3.92303336; T( 8,138)= 3.93432180; T( 8,139)= 3.94557688; T( 8,140)= 3.95679908; T( 8,141)= 3.96798886; T( 8,142)= 3.97914667; T( 8,143)= 3.99027295; T( 8,144)= 4.00136815; T( 8,145)= 4.01243269; T( 8,146)= 4.02346699; T( 8,147)= 4.03447146; T( 8,148)= 4.04544651; T( 8,149)= 4.05639254; T( 8,150)= 4.06730994; T( 8,151)= 4.07819910; T( 8,152)= 4.08906038; T( 8,153)= 4.09989418; T( 8,154)= 4.11070084; T( 8,155)= 4.12148073; T( 8,156)= 4.13223421; T( 8,157)= 4.14296161; T( 8,158)= 4.15366329; T( 8,159)= 4.16433957; T( 8,160)= 4.17499078; T( 8,161)= 4.18561726; T( 8,162)= 4.19621932; T( 8,163)= 4.20679728; T( 8,164)= 4.21735144; T( 8,165)= 4.22788211; T( 8,166)= 4.23838959; T( 8,167)= 4.24887418; T( 8,168)= 4.25933616; T( 8,169)= 4.26977583; T( 8,170)= 4.28019346; T( 8,171)= 4.29058933; T( 8,172)= 4.30096371; T( 8,173)= 4.31131689; T( 8,174)= 4.32164911; T( 8,175)= 4.33196064; T( 8,176)= 4.34225175; T( 8,177)= 4.35252267; T( 8,178)= 4.36277367; T( 8,179)= 4.37300499; T( 8,180)= 4.38321688; T( 8,181)= 4.39340957; T( 8,182)= 4.40358329; T( 8,183)= 4.41373829; T( 8,184)= 4.42387480; T( 8,185)= 4.43399303; T( 8,186)= 4.44409321; T( 8,187)= 4.45417557; T( 8,188)= 4.46424032; T( 8,189)= 4.47428768; T( 8,190)= 4.48431785; T( 8,191)= 4.49433105; T( 8,192)= 4.50432748; T( 8,193)= 4.51430735; T( 8,194)= 4.52427086; T( 8,195)= 4.53421820; T( 8,196)= 4.54414958; T( 8,197)= 4.55406518; T( 8,198)= 4.56396519; T( 8,199)= 4.57384981; T( 8,200)= 4.58371923; T( 8,201)= 4.59357361; T( 8,202)= 4.60341315; T( 8,203)= 4.61323803; T( 8,204)= 4.62304842; T( 8,205)= 4.63284450; T( 8,206)= 4.64262644; T( 8,207)= 4.65239441; T( 8,208)= 4.66214859; T( 8,209)= 4.67188913; T( 8,210)= 4.68161620; T( 8,211)= 4.69132997; T( 8,212)= 4.70103059; T( 8,213)= 4.71071823; T( 8,214)= 4.72039305; T( 8,215)= 4.73005520; T( 8,216)= 4.73970482; T( 8,217)= 4.74934209; T( 8,218)= 4.75896714; T( 8,219)= 4.76858013; T( 8,220)= 4.77818120; T( 8,221)= 4.78777050; T( 8,222)= 4.79734817; T( 8,223)= 4.80691436; T( 8,224)= 4.81646920; T( 8,225)= 4.82601284; T( 8,226)= 4.83554542; T( 8,227)= 4.84506706; T( 8,228)= 4.85457792; T( 8,229)= 4.86407811; T( 8,230)= 4.87356778; T( 8,231)= 4.88304705; T( 8,232)= 4.89251605; T( 8,233)= 4.90197492; T( 8,234)= 4.91142378; T( 8,235)= 4.92086275; T( 8,236)= 4.93029197; T( 8,237)= 4.93971154; T( 8,238)= 4.94912161; T( 8,239)= 4.95852228; T( 8,240)= 4.96791369; T( 8,241)= 4.97729594; T( 8,242)= 4.98666915; T( 8,243)= 4.99603345; T( 8,244)= 5.00538894; T( 8,245)= 5.01473575; T( 8,246)= 5.02407398; T( 8,247)= 5.03340375; T( 8,248)= 5.04272517; T( 8,249)= 5.05203835; T( 8,250)= 5.06134340; T( 8,251)= 5.07064042; T( 8,252)= 5.07992954; T( 8,253)= 5.08921084; T( 8,254)= 5.09848444; T( 8,255)= 5.10775045; T( 8,256)= 5.11700896; T( 8,257)= 5.12626009; T( 8,258)= 5.13550392; T( 8,259)= 5.14474057; T( 8,260)= 5.15397013; T( 8,261)= 5.16319271; T( 8,262)= 5.17240840; T( 8,263)= 5.18161730; T( 8,264)= 5.19081950; T( 8,265)= 5.20001512; T( 8,266)= 5.20920423; T( 8,267)= 5.21838693; T( 8,268)= 5.22756333; T( 8,269)= 5.23673351; T( 8,270)= 5.24589756; T( 8,271)= 5.25505559; T( 8,272)= 5.26420767; T( 8,273)= 5.27335390; T( 8,274)= 5.28249437; T( 8,275)= 5.29162917; T( 8,276)= 5.30075839; T( 8,277)= 5.30988212; T( 8,278)= 5.31900044; T( 8,279)= 5.32811344; T( 8,280)= 5.33722121; T( 8,281)= 5.34632383; T( 8,282)= 5.35542138; T( 8,283)= 5.36451396; T( 8,284)= 5.37360165; T( 8,285)= 5.38268452; T( 8,286)= 5.39176266; T( 8,287)= 5.40083616; T( 8,288)= 5.40990510; T( 8,289)= 5.41896955; T( 8,290)= 5.42802960; T( 8,291)= 5.43708532; T( 8,292)= 5.44613681; T( 8,293)= 5.45518412; T( 8,294)= 5.46422736; T( 8,295)= 5.47326658; T( 8,296)= 5.48230188; T( 8,297)= 5.49133332; T( 8,298)= 5.50036099; T( 8,299)= 5.50938495; T( 8,300)= 5.51840529; T( 8,301)= 5.52742209; T( 8,302)= 5.53643540; T( 8,303)= 5.54544532; T( 8,304)= 5.55445191; T( 8,305)= 5.56345525; T( 8,306)= 5.57245542; T( 8,307)= 5.58145247; T( 8,308)= 5.59044649; T( 8,309)= 5.59943755; T( 8,310)= 5.60842572; T( 8,311)= 5.61741107; T( 8,312)= 5.62639367; T( 8,313)= 5.63537359; T( 8,314)= 5.64435090; T( 8,315)= 5.65332568; T( 8,316)= 5.66229798; T( 8,317)= 5.67126789; T( 8,318)= 5.68023547; T( 8,319)= 5.68920078; T( 8,320)= 5.69816389; T( 8,321)= 5.70712488; T( 8,322)= 5.71608381; T( 8,323)= 5.72504075; T( 8,324)= 5.73399576; T( 8,325)= 5.74294891; T( 8,326)= 5.75190027; T( 8,327)= 5.76084990; T( 8,328)= 5.76979787; T( 8,329)= 5.77874424; T( 8,330)= 5.78768908; T( 8,331)= 5.79663245; T( 8,332)= 5.80557442; T( 8,333)= 5.81451505; T( 8,334)= 5.82345440; T( 8,335)= 5.83239255; T( 8,336)= 5.84132954; T( 8,337)= 5.85026546; T( 8,338)= 5.85920034; T( 8,339)= 5.86813428; T( 8,340)= 5.87706731; T( 8,341)= 5.88599951; T( 8,342)= 5.89493094; T( 8,343)= 5.90386165; T( 8,344)= 5.91279172; T( 8,345)= 5.92172120; T( 8,346)= 5.93065015; T( 8,347)= 5.93957863; T( 8,348)= 5.94850671; T( 8,349)= 5.95743445; T( 8,350)= 5.96636190; T( 8,351)= 5.97528912; T( 8,352)= 5.98421618; T( 8,353)= 5.99314314; T( 8,354)= 6.00207005; T( 8,355)= 6.01099697; T( 8,356)= 6.01992397; T( 8,357)= 6.02885110; T( 8,358)= 6.03777842; T( 8,359)= 6.04670599; T( 8,360)= 6.05563386; T( 8,361)= 6.06456210; T( 8,362)= 6.07349077; T( 8,363)= 6.08241992; T( 8,364)= 6.09134961; T( 8,365)= 6.10027990; T( 8,366)= 6.10921084; T( 8,367)= 6.11814249; T( 8,368)= 6.12707492; T( 8,369)= 6.13600817; T( 8,370)= 6.14494231; T( 8,371)= 6.15387739; T( 8,372)= 6.16281347; T( 8,373)= 6.17175060; T( 8,374)= 6.18068884; T( 8,375)= 6.18962826; T( 8,376)= 6.19856889; T( 8,377)= 6.20751081; T( 8,378)= 6.21645406; T( 8,379)= 6.22539871; T( 8,380)= 6.23434480; T( 8,381)= 6.24329240; T( 8,382)= 6.25224156; T( 8,383)= 6.26119234; T( 8,384)= 6.27014478; T( 8,385)= 6.27909896; T( 8,386)= 6.28805491; T( 8,387)= 6.29701270; T( 8,388)= 6.30597239; T( 8,389)= 6.31493402; T( 8,390)= 6.32389766; T( 8,391)= 6.33286336; T( 8,392)= 6.34183116; T( 8,393)= 6.35080114; T( 8,394)= 6.35977334; T( 8,395)= 6.36874781; T( 8,396)= 6.37772462; T( 8,397)= 6.38670382; T( 8,398)= 6.39568546; T( 8,399)= 6.40466959; T( 8,400)= 6.41365627; T( 8,401)= 6.42264556; T( 8,402)= 6.43163751; T( 8,403)= 6.44063217; T( 8,404)= 6.44962960; T( 8,405)= 6.45862985; T( 8,406)= 6.46763298; T( 8,407)= 6.47663905; T( 8,408)= 6.48564809; T( 8,409)= 6.49466018; T( 8,410)= 6.50367536; T( 8,411)= 6.51269369; T( 8,412)= 6.52171522; T( 8,413)= 6.53074001; T( 8,414)= 6.53976811; T( 8,415)= 6.54879957; T( 8,416)= 6.55783445; T( 8,417)= 6.56687281; T( 8,418)= 6.57591469; T( 8,419)= 6.58496016; T( 8,420)= 6.59400926; T( 8,421)= 6.60306205; T( 8,422)= 6.61211858; T( 8,423)= 6.62117891; T( 8,424)= 6.63024310; T( 8,425)= 6.63931119; T( 8,426)= 6.64838324; T( 8,427)= 6.65745931; T( 8,428)= 6.66653944; T( 8,429)= 6.67562370; T( 8,430)= 6.68471214; T( 8,431)= 6.69380481; T( 8,432)= 6.70290177; T( 8,433)= 6.71200306; T( 8,434)= 6.72110876; T( 8,435)= 6.73021890; T( 8,436)= 6.73933355; T( 8,437)= 6.74845275; T( 8,438)= 6.75757658; T( 8,439)= 6.76670506; T( 8,440)= 6.77583828; T( 8,441)= 6.78497627; T( 8,442)= 6.79411909; T( 8,443)= 6.80326680; T( 8,444)= 6.81241946; T( 8,445)= 6.82157711; T( 8,446)= 6.83073981; T( 8,447)= 6.83990763; T( 8,448)= 6.84908060; T( 8,449)= 6.85825880; T( 8,450)= 6.86744227; T( 8,451)= 6.87663107; T( 8,452)= 6.88582525; T( 8,453)= 6.89502487; T( 8,454)= 6.90422999; T( 8,455)= 6.91344067; T( 8,456)= 6.92265695; T( 8,457)= 6.93187889; T( 8,458)= 6.94110655; T( 8,459)= 6.95033999; T( 8,460)= 6.95957927; T( 8,461)= 6.96882443; T( 8,462)= 6.97807553; T( 8,463)= 6.98733264; T( 8,464)= 6.99659581; T( 8,465)= 7.00586509; T( 8,466)= 7.01514054; T( 8,467)= 7.02442223; T( 8,468)= 7.03371020; T( 8,469)= 7.04300451; T( 8,470)= 7.05230522; T( 8,471)= 7.06161239; T( 8,472)= 7.07092608; T( 8,473)= 7.08024634; T( 8,474)= 7.08957323; T( 8,475)= 7.09890681; T( 8,476)= 7.10824714; T( 8,477)= 7.11759428; T( 8,478)= 7.12694828; T( 8,479)= 7.13630920; T( 8,480)= 7.14567710; T( 8,481)= 7.15505205; T( 8,482)= 7.16443409; T( 8,483)= 7.17382329; T( 8,484)= 7.18321972; T( 8,485)= 7.19262341; T( 8,486)= 7.20203445; T( 8,487)= 7.21145288; T( 8,488)= 7.22087877; T( 8,489)= 7.23031217; T( 8,490)= 7.23975316; T( 8,491)= 7.24920178; T( 8,492)= 7.25865810; T( 8,493)= 7.26812217; T( 8,494)= 7.27759407; T( 8,495)= 7.28707385; T( 8,496)= 7.29656158; T( 8,497)= 7.30605730; T( 8,498)= 7.31556110; T( 8,499)= 7.32507302; T( 8,500)= 7.33459313; T( 8,501)= 7.34412150; T( 8,502)= 7.35365818; T( 8,503)= 7.36320324; T( 8,504)= 7.37275674; T( 8,505)= 7.38231874; T( 8,506)= 7.39188932; T( 8,507)= 7.40146852; T( 8,508)= 7.41105642; T( 8,509)= 7.42065308; T( 8,510)= 7.43025856; T( 8,511)= 7.43987293; T( 8,512)= 7.44949626; T( 8,513)= 7.45912860; T( 8,514)= 7.46877002; T( 8,515)= 7.47842060; T( 8,516)= 7.48808039; T( 8,517)= 7.49774946; T( 8,518)= 7.50742788; T( 8,519)= 7.51711571; T( 8,520)= 7.52681302; T( 8,521)= 7.53651987; T( 8,522)= 7.54623635; T( 8,523)= 7.55596250; T( 8,524)= 7.56569840; T( 8,525)= 7.57544413; T( 8,526)= 7.58519973; T( 8,527)= 7.59496530; T( 8,528)= 7.60474088; T( 8,529)= 7.61452656; T( 8,530)= 7.62432241; T( 8,531)= 7.63412848; T( 8,532)= 7.64394486; T( 8,533)= 7.65377161; T( 8,534)= 7.66360880; T( 8,535)= 7.67345651; T( 8,536)= 7.68331481; T( 8,537)= 7.69318376; T( 8,538)= 7.70306344; T( 8,539)= 7.71295393; T( 8,540)= 7.72285528; T( 8,541)= 7.73276759; T( 8,542)= 7.74269092; T( 8,543)= 7.75262534; T( 8,544)= 7.76257092; T( 8,545)= 7.77252776; T( 8,546)= 7.78249590; T( 8,547)= 7.79247544; T( 8,548)= 7.80246645; T( 8,549)= 7.81246900; T( 8,550)= 7.82248317; T( 8,551)= 7.83250904; T( 8,552)= 7.84254668; T( 8,553)= 7.85259617; T( 8,554)= 7.86265758; T( 8,555)= 7.87273100; T( 8,556)= 7.88281651; T( 8,557)= 7.89291417; T( 8,558)= 7.90302408; T( 8,559)= 7.91314631; T( 8,560)= 7.92328094; T( 8,561)= 7.93342805; T( 8,562)= 7.94358773; T( 8,563)= 7.95376004; T( 8,564)= 7.96394508; T( 8,565)= 7.97414293; T( 8,566)= 7.98435367; T( 8,567)= 7.99457738; T( 8,568)= 8.00481414; T( 8,569)= 8.01506405; T( 8,570)= 8.02532718; T( 8,571)= 8.03560361; T( 8,572)= 8.04589344; T( 8,573)= 8.05619675; T( 8,574)= 8.06651363; T( 8,575)= 8.07684415; T( 8,576)= 8.08718842; T( 8,577)= 8.09754651; T( 8,578)= 8.10791852; T( 8,579)= 8.11830453; T( 8,580)= 8.12870463; T( 8,581)= 8.13911891; T( 8,582)= 8.14954747; T( 8,583)= 8.15999039; T( 8,584)= 8.17044776; T( 8,585)= 8.18091968; T( 8,586)= 8.19140623; T( 8,587)= 8.20190752; T( 8,588)= 8.21242363; T( 8,589)= 8.22295465; T( 8,590)= 8.23350069; T( 8,591)= 8.24406183; T( 8,592)= 8.25463818; T( 8,593)= 8.26522983; T( 8,594)= 8.27583687; T( 8,595)= 8.28645940; T( 8,596)= 8.29709752; T( 8,597)= 8.30775134; T( 8,598)= 8.31842094; T( 8,599)= 8.32910643; T( 8,600)= 8.33980790; T( 8,601)= 8.35052547; T( 8,602)= 8.36125922; T( 8,603)= 8.37200927; T( 8,604)= 8.38277572; T( 8,605)= 8.39355867; T( 8,606)= 8.40435821; T( 8,607)= 8.41517447; T( 8,608)= 8.42600755; T( 8,609)= 8.43685754; T( 8,610)= 8.44772456; T( 8,611)= 8.45860872; T( 8,612)= 8.46951012; T( 8,613)= 8.48042887; T( 8,614)= 8.49136509; T( 8,615)= 8.50231888; T( 8,616)= 8.51329036; T( 8,617)= 8.52427963; T( 8,618)= 8.53528681; T( 8,619)= 8.54631202; T( 8,620)= 8.55735536; T( 8,621)= 8.56841696; T( 8,622)= 8.57949693; T( 8,623)= 8.59059538; T( 8,624)= 8.60171244; T( 8,625)= 8.61284822; T( 8,626)= 8.62400284; T( 8,627)= 8.63517642; T( 8,628)= 8.64636909; T( 8,629)= 8.65758095; T( 8,630)= 8.66881215; T( 8,631)= 8.68006280; T( 8,632)= 8.69133302; T( 8,633)= 8.70262294; T( 8,634)= 8.71393269; T( 8,635)= 8.72526239; T( 8,636)= 8.73661217; T( 8,637)= 8.74798217; T( 8,638)= 8.75937251; T( 8,639)= 8.77078331; T( 8,640)= 8.78221473; T( 8,641)= 8.79366688; T( 8,642)= 8.80513990; T( 8,643)= 8.81663392; T( 8,644)= 8.82814909; T( 8,645)= 8.83968553; T( 8,646)= 8.85124340; T( 8,647)= 8.86282282; T( 8,648)= 8.87442393; T( 8,649)= 8.88604688; T( 8,650)= 8.89769181; T( 8,651)= 8.90935887; T( 8,652)= 8.92104819; T( 8,653)= 8.93275993; T( 8,654)= 8.94449422; T( 8,655)= 8.95625122; T( 8,656)= 8.96803109; T( 8,657)= 8.97983395; T( 8,658)= 8.99165998; T( 8,659)= 9.00350932; T( 8,660)= 9.01538212; T( 8,661)= 9.02727855; T( 8,662)= 9.03919875; T( 8,663)= 9.05114289; T( 8,664)= 9.06311112; T( 8,665)= 9.07510361; T( 8,666)= 9.08712051; T( 8,667)= 9.09916200; T( 8,668)= 9.11122822; T( 8,669)= 9.12331936; T( 8,670)= 9.13543557; T( 8,671)= 9.14757703; T( 8,672)= 9.15974390; T( 8,673)= 9.17193636; T( 8,674)= 9.18415458; T( 8,675)= 9.19639873; T( 8,676)= 9.20866899; T( 8,677)= 9.22096554; T( 8,678)= 9.23328855; T( 8,679)= 9.24563821; T( 8,680)= 9.25801470; T( 8,681)= 9.27041820; T( 8,682)= 9.28284890; T( 8,683)= 9.29530697; T( 8,684)= 9.30779262; T( 8,685)= 9.32030604; T( 8,686)= 9.33284740; T( 8,687)= 9.34541692; T( 8,688)= 9.35801477; T( 8,689)= 9.37064117; T( 8,690)= 9.38329630; T( 8,691)= 9.39598037; T( 8,692)= 9.40869359; T( 8,693)= 9.42143614; T( 8,694)= 9.43420825; T( 8,695)= 9.44701012; T( 8,696)= 9.45984196; T( 8,697)= 9.47270399; T( 8,698)= 9.48559640; T( 8,699)= 9.49851943; T( 8,700)= 9.51147329; T( 8,701)= 9.52445819; T( 8,702)= 9.53747437; T( 8,703)= 9.55052204; T( 8,704)= 9.56360144; T( 8,705)= 9.57671278; T( 8,706)= 9.58985631; T( 8,707)= 9.60303225; T( 8,708)= 9.61624084; T( 8,709)= 9.62948231; T( 8,710)= 9.64275691; T( 8,711)= 9.65606488; T( 8,712)= 9.66940646; T( 8,713)= 9.68278190; T( 8,714)= 9.69619145; T( 8,715)= 9.70963536; T( 8,716)= 9.72311389; T( 8,717)= 9.73662729; T( 8,718)= 9.75017582; T( 8,719)= 9.76375974; T( 8,720)= 9.77737932; T( 8,721)= 9.79103483; T( 8,722)= 9.80472654; T( 8,723)= 9.81845471; T( 8,724)= 9.83221963; T( 8,725)= 9.84602157; T( 8,726)= 9.85986082; T( 8,727)= 9.87373766; T( 8,728)= 9.88765238; T( 8,729)= 9.90160527; T( 8,730)= 9.91559661; T( 8,731)= 9.92962672; T( 8,732)= 9.94369589; T( 8,733)= 9.95780441; T( 8,734)= 9.97195261; T( 8,735)= 9.98614078; T( 8,736)=10.00036925; T( 8,737)=10.01463832; T( 8,738)=10.02894832; T( 8,739)=10.04329957; T( 8,740)=10.05769240; T( 8,741)=10.07212714; T( 8,742)=10.08660412; T( 8,743)=10.10112368; T( 8,744)=10.11568617; T( 8,745)=10.13029192; T( 8,746)=10.14494130; T( 8,747)=10.15963465; T( 8,748)=10.17437232; T( 8,749)=10.18915469; T( 8,750)=10.20398212; T( 8,751)=10.21885497; T( 8,752)=10.23377363; T( 8,753)=10.24873846; T( 8,754)=10.26374987; T( 8,755)=10.27880822; T( 8,756)=10.29391392; T( 8,757)=10.30906736; T( 8,758)=10.32426894; T( 8,759)=10.33951907; T( 8,760)=10.35481817; T( 8,761)=10.37016664; T( 8,762)=10.38556491; T( 8,763)=10.40101340; T( 8,764)=10.41651256; T( 8,765)=10.43206280; T( 8,766)=10.44766459; T( 8,767)=10.46331836; T( 8,768)=10.47902456; T( 8,769)=10.49478367; T( 8,770)=10.51059614; T( 8,771)=10.52646244; T( 8,772)=10.54238305; T( 8,773)=10.55835845; T( 8,774)=10.57438914; T( 8,775)=10.59047561; T( 8,776)=10.60661835; T( 8,777)=10.62281788; T( 8,778)=10.63907472; T( 8,779)=10.65538938; T( 8,780)=10.67176239; T( 8,781)=10.68819430; T( 8,782)=10.70468563; T( 8,783)=10.72123695; T( 8,784)=10.73784880; T( 8,785)=10.75452176; T( 8,786)=10.77125639; T( 8,787)=10.78805328; T( 8,788)=10.80491301; T( 8,789)=10.82183619; T( 8,790)=10.83882340; T( 8,791)=10.85587528; T( 8,792)=10.87299244; T( 8,793)=10.89017551; T( 8,794)=10.90742512; T( 8,795)=10.92474194; T( 8,796)=10.94212660; T( 8,797)=10.95957979; T( 8,798)=10.97710218; T( 8,799)=10.99469445; T( 8,800)=11.01235730; T( 8,801)=11.03009143; T( 8,802)=11.04789757; T( 8,803)=11.06577644; T( 8,804)=11.08372877; T( 8,805)=11.10175532; T( 8,806)=11.11985685; T( 8,807)=11.13803413; T( 8,808)=11.15628794; T( 8,809)=11.17461907; T( 8,810)=11.19302834; T( 8,811)=11.21151657; T( 8,812)=11.23008458; T( 8,813)=11.24873322; T( 8,814)=11.26746336; T( 8,815)=11.28627586; T( 8,816)=11.30517160; T( 8,817)=11.32415150; T( 8,818)=11.34321646; T( 8,819)=11.36236742; T( 8,820)=11.38160531; T( 8,821)=11.40093110; T( 8,822)=11.42034576; T( 8,823)=11.43985029; T( 8,824)=11.45944568; T( 8,825)=11.47913298; T( 8,826)=11.49891321; T( 8,827)=11.51878743; T( 8,828)=11.53875673; T( 8,829)=11.55882221; T( 8,830)=11.57898496; T( 8,831)=11.59924613; T( 8,832)=11.61960687; T( 8,833)=11.64006836; T( 8,834)=11.66063178; T( 8,835)=11.68129836; T( 8,836)=11.70206932; T( 8,837)=11.72294593; T( 8,838)=11.74392947; T( 8,839)=11.76502124; T( 8,840)=11.78622257; T( 8,841)=11.80753482; T( 8,842)=11.82895936; T( 8,843)=11.85049759; T( 8,844)=11.87215095; T( 8,845)=11.89392088; T( 8,846)=11.91580888; T( 8,847)=11.93781645; T( 8,848)=11.95994514; T( 8,849)=11.98219651; T( 8,850)=12.00457218; T( 8,851)=12.02707376; T( 8,852)=12.04970293; T( 8,853)=12.07246138; T( 8,854)=12.09535085; T( 8,855)=12.11837310; T( 8,856)=12.14152993; T( 8,857)=12.16482318; T( 8,858)=12.18825473; T( 8,859)=12.21182650; T( 8,860)=12.23554043; T( 8,861)=12.25939853; T( 8,862)=12.28340284; T( 8,863)=12.30755543; T( 8,864)=12.33185844; T( 8,865)=12.35631403; T( 8,866)=12.38092443; T( 8,867)=12.40569189; T( 8,868)=12.43061876; T( 8,869)=12.45570738; T( 8,870)=12.48096019; T( 8,871)=12.50637966; T( 8,872)=12.53196833; T( 8,873)=12.55772879; T( 8,874)=12.58366370; T( 8,875)=12.60977576; T( 8,876)=12.63606776; T( 8,877)=12.66254253; T( 8,878)=12.68920300; T( 8,879)=12.71605214; T( 8,880)=12.74309301; T( 8,881)=12.77032874; T( 8,882)=12.79776253; T( 8,883)=12.82539767; T( 8,884)=12.85323753; T( 8,885)=12.88128557; T( 8,886)=12.90954532; T( 8,887)=12.93802042; T( 8,888)=12.96671460; T( 8,889)=12.99563168; T( 8,890)=13.02477560; T( 8,891)=13.05415038; T( 8,892)=13.08376017; T( 8,893)=13.11360922; T( 8,894)=13.14370190; T( 8,895)=13.17404271; T( 8,896)=13.20463625; T( 8,897)=13.23548729; T( 8,898)=13.26660069; T( 8,899)=13.29798150; T( 8,900)=13.32963487; T( 8,901)=13.36156614; T( 8,902)=13.39378077; T( 8,903)=13.42628443; T( 8,904)=13.45908291; T( 8,905)=13.49218222; T( 8,906)=13.52558855; T( 8,907)=13.55930825; T( 8,908)=13.59334790; T( 8,909)=13.62771430; T( 8,910)=13.66241443; T( 8,911)=13.69745554; T( 8,912)=13.73284510; T( 8,913)=13.76859083; T( 8,914)=13.80470070; T( 8,915)=13.84118298; T( 8,916)=13.87804619; T( 8,917)=13.91529919; T( 8,918)=13.95295113; T( 8,919)=13.99101147; T( 8,920)=14.02949005; T( 8,921)=14.06839705; T( 8,922)=14.10774303; T( 8,923)=14.14753895; T( 8,924)=14.18779620; T( 8,925)=14.22852659; T( 8,926)=14.26974241; T( 8,927)=14.31145642; T( 8,928)=14.35368191; T( 8,929)=14.39643270; T( 8,930)=14.43972320; T( 8,931)=14.48356840; T( 8,932)=14.52798395; T( 8,933)=14.57298616; T( 8,934)=14.61859207; T( 8,935)=14.66481946; T( 8,936)=14.71168693; T( 8,937)=14.75921392; T( 8,938)=14.80742080; T( 8,939)=14.85632887; T( 8,940)=14.90596048; T( 8,941)=14.95633906; T( 8,942)=15.00748923; T( 8,943)=15.05943682; T( 8,944)=15.11220901; T( 8,945)=15.16583441; T( 8,946)=15.22034314; T( 8,947)=15.27576697; T( 8,948)=15.33213943; T( 8,949)=15.38949593; T( 8,950)=15.44787392; T( 8,951)=15.50731306; T( 8,952)=15.56785535; T( 8,953)=15.62954539; T( 8,954)=15.69243055; T( 8,955)=15.75656121; T( 8,956)=15.82199104; T( 8,957)=15.88877729; T( 8,958)=15.95698108; T( 8,959)=16.02666783; T( 8,960)=16.09790761; T( 8,961)=16.17077561; T( 8,962)=16.24535269; T( 8,963)=16.32172592; T( 8,964)=16.39998923; T( 8,965)=16.48024423; T( 8,966)=16.56260097; T( 8,967)=16.64717898; T( 8,968)=16.73410838; T( 8,969)=16.82353113; T( 8,970)=16.91560259; T( 8,971)=17.01049321; T( 8,972)=17.10839060; T( 8,973)=17.20950186; T( 8,974)=17.31405648; T( 8,975)=17.42230962; T( 8,976)=17.53454614; T( 8,977)=17.65108541; T( 8,978)=17.77228713; T( 8,979)=17.89855848; T( 8,980)=18.03036285; T( 8,981)=18.16823076; T( 8,982)=18.31277355; T( 8,983)=18.46470069; T( 8,984)=18.62484212; T( 8,985)=18.79417722; T( 8,986)=18.97387323; T( 8,987)=19.16533665; T( 8,988)=19.37028387; T( 8,989)=19.59083975; T( 8,990)=19.82967904; T( 8,991)=20.09023503; T( 8,992)=20.37701777; T( 8,993)=20.69611949; T( 8,994)=21.05605726; T( 8,995)=21.46926575; T( 8,996)=21.95495499; T( 8,997)=22.54517756; T( 8,998)=23.29973450; T( 8,999)=24.35208135; T( 8,1000)=26.12448156; T( 8,1001)=31.82762800; T( 8,1002)=37.33159364; T( 9, 1)= 0.00000000; T( 9, 2)= 1.15194955; T( 9, 3)= 1.37020546; T( 9, 4)= 1.51943564; T( 9, 5)= 1.63669070; T( 9, 6)= 1.73493290; T( 9, 7)= 1.82037797; T( 9, 8)= 1.89653501; T( 9, 9)= 1.96559825; T( 9,10)= 2.02904000; T( 9,11)= 2.08790074; T( 9,12)= 2.14294562; T( 9,13)= 2.19475535; T( 9,14)= 2.24378211; T( 9,15)= 2.29038551; T( 9,16)= 2.33485678; T( 9,17)= 2.37743533; T( 9,18)= 2.41832067; T( 9,19)= 2.45768093; T( 9,20)= 2.49565926; T( 9,21)= 2.53237867; T( 9,22)= 2.56794569; T( 9,23)= 2.60245327; T( 9,24)= 2.63598304; T( 9,25)= 2.66860710; T( 9,26)= 2.70038950; T( 9,27)= 2.73138742; T( 9,28)= 2.76165214; T( 9,29)= 2.79122983; T( 9,30)= 2.82016223; T( 9,31)= 2.84848723; T( 9,32)= 2.87623931; T( 9,33)= 2.90344997; T( 9,34)= 2.93014807; T( 9,35)= 2.95636010; T( 9,36)= 2.98211048; T( 9,37)= 3.00742173; T( 9,38)= 3.03231470; T( 9,39)= 3.05680873; T( 9,40)= 3.08092177; T( 9,41)= 3.10467056; T( 9,42)= 3.12807070; T( 9,43)= 3.15113676; T( 9,44)= 3.17388238; T( 9,45)= 3.19632036; T( 9,46)= 3.21846269; T( 9,47)= 3.24032068; T( 9,48)= 3.26190494; T( 9,49)= 3.28322551; T( 9,50)= 3.30429183; T( 9,51)= 3.32511284; T( 9,52)= 3.34569701; T( 9,53)= 3.36605234; T( 9,54)= 3.38618644; T( 9,55)= 3.40610651; T( 9,56)= 3.42581940; T( 9,57)= 3.44533163; T( 9,58)= 3.46464940; T( 9,59)= 3.48377863; T( 9,60)= 3.50272495; T( 9,61)= 3.52149373; T( 9,62)= 3.54009013; T( 9,63)= 3.55851904; T( 9,64)= 3.57678517; T( 9,65)= 3.59489302; T( 9,66)= 3.61284689; T( 9,67)= 3.63065091; T( 9,68)= 3.64830905; T( 9,69)= 3.66582510; T( 9,70)= 3.68320273; T( 9,71)= 3.70044544; T( 9,72)= 3.71755660; T( 9,73)= 3.73453947; T( 9,74)= 3.75139717; T( 9,75)= 3.76813270; T( 9,76)= 3.78474899; T( 9,77)= 3.80124881; T( 9,78)= 3.81763487; T( 9,79)= 3.83390978; T( 9,80)= 3.85007605; T( 9,81)= 3.86613610; T( 9,82)= 3.88209230; T( 9,83)= 3.89794690; T( 9,84)= 3.91370210; T( 9,85)= 3.92936004; T( 9,86)= 3.94492275; T( 9,87)= 3.96039224; T( 9,88)= 3.97577044; T( 9,89)= 3.99105922; T( 9,90)= 4.00626039; T( 9,91)= 4.02137570; T( 9,92)= 4.03640687; T( 9,93)= 4.05135555; T( 9,94)= 4.06622335; T( 9,95)= 4.08101183; T( 9,96)= 4.09572250; T( 9,97)= 4.11035685; T( 9,98)= 4.12491630; T( 9,99)= 4.13940224; T( 9,100)= 4.15381604; T( 9,101)= 4.16815901; T( 9,102)= 4.18243243; T( 9,103)= 4.19663756; T( 9,104)= 4.21077561; T( 9,105)= 4.22484776; T( 9,106)= 4.23885517; T( 9,107)= 4.25279897; T( 9,108)= 4.26668026; T( 9,109)= 4.28050009; T( 9,110)= 4.29425952; T( 9,111)= 4.30795956; T( 9,112)= 4.32160120; T( 9,113)= 4.33518542; T( 9,114)= 4.34871316; T( 9,115)= 4.36218535; T( 9,116)= 4.37560287; T( 9,117)= 4.38896663; T( 9,118)= 4.40227747; T( 9,119)= 4.41553624; T( 9,120)= 4.42874376; T( 9,121)= 4.44190084; T( 9,122)= 4.45500826; T( 9,123)= 4.46806678; T( 9,124)= 4.48107717; T( 9,125)= 4.49404015; T( 9,126)= 4.50695646; T( 9,127)= 4.51982678; T( 9,128)= 4.53265182; T( 9,129)= 4.54543224; T( 9,130)= 4.55816871; T( 9,131)= 4.57086188; T( 9,132)= 4.58351239; T( 9,133)= 4.59612084; T( 9,134)= 4.60868786; T( 9,135)= 4.62121403; T( 9,136)= 4.63369996; T( 9,137)= 4.64614620; T( 9,138)= 4.65855333; T( 9,139)= 4.67092189; T( 9,140)= 4.68325242; T( 9,141)= 4.69554547; T( 9,142)= 4.70780154; T( 9,143)= 4.72002115; T( 9,144)= 4.73220480; T( 9,145)= 4.74435299; T( 9,146)= 4.75646620; T( 9,147)= 4.76854490; T( 9,148)= 4.78058956; T( 9,149)= 4.79260064; T( 9,150)= 4.80457858; T( 9,151)= 4.81652384; T( 9,152)= 4.82843684; T( 9,153)= 4.84031801; T( 9,154)= 4.85216777; T( 9,155)= 4.86398654; T( 9,156)= 4.87577471; T( 9,157)= 4.88753269; T( 9,158)= 4.89926087; T( 9,159)= 4.91095963; T( 9,160)= 4.92262936; T( 9,161)= 4.93427042; T( 9,162)= 4.94588318; T( 9,163)= 4.95746801; T( 9,164)= 4.96902525; T( 9,165)= 4.98055527; T( 9,166)= 4.99205839; T( 9,167)= 5.00353496; T( 9,168)= 5.01498531; T( 9,169)= 5.02640978; T( 9,170)= 5.03780868; T( 9,171)= 5.04918233; T( 9,172)= 5.06053104; T( 9,173)= 5.07185513; T( 9,174)= 5.08315490; T( 9,175)= 5.09443064; T( 9,176)= 5.10568265; T( 9,177)= 5.11691122; T( 9,178)= 5.12811664; T( 9,179)= 5.13929920; T( 9,180)= 5.15045916; T( 9,181)= 5.16159680; T( 9,182)= 5.17271239; T( 9,183)= 5.18380621; T( 9,184)= 5.19487851; T( 9,185)= 5.20592954; T( 9,186)= 5.21695958; T( 9,187)= 5.22796886; T( 9,188)= 5.23895764; T( 9,189)= 5.24992616; T( 9,190)= 5.26087466; T( 9,191)= 5.27180339; T( 9,192)= 5.28271258; T( 9,193)= 5.29360245; T( 9,194)= 5.30447325; T( 9,195)= 5.31532519; T( 9,196)= 5.32615850; T( 9,197)= 5.33697340; T( 9,198)= 5.34777011; T( 9,199)= 5.35854884; T( 9,200)= 5.36930980; T( 9,201)= 5.38005321; T( 9,202)= 5.39077927; T( 9,203)= 5.40148819; T( 9,204)= 5.41218016; T( 9,205)= 5.42285539; T( 9,206)= 5.43351408; T( 9,207)= 5.44415641; T( 9,208)= 5.45478258; T( 9,209)= 5.46539279; T( 9,210)= 5.47598721; T( 9,211)= 5.48656604; T( 9,212)= 5.49712945; T( 9,213)= 5.50767763; T( 9,214)= 5.51821077; T( 9,215)= 5.52872902; T( 9,216)= 5.53923258; T( 9,217)= 5.54972160; T( 9,218)= 5.56019628; T( 9,219)= 5.57065676; T( 9,220)= 5.58110323; T( 9,221)= 5.59153584; T( 9,222)= 5.60195476; T( 9,223)= 5.61236016; T( 9,224)= 5.62275219; T( 9,225)= 5.63313100; T( 9,226)= 5.64349677; T( 9,227)= 5.65384964; T( 9,228)= 5.66418976; T( 9,229)= 5.67451729; T( 9,230)= 5.68483238; T( 9,231)= 5.69513517; T( 9,232)= 5.70542582; T( 9,233)= 5.71570447; T( 9,234)= 5.72597127; T( 9,235)= 5.73622635; T( 9,236)= 5.74646986; T( 9,237)= 5.75670193; T( 9,238)= 5.76692272; T( 9,239)= 5.77713234; T( 9,240)= 5.78733095; T( 9,241)= 5.79751867; T( 9,242)= 5.80769564; T( 9,243)= 5.81786199; T( 9,244)= 5.82801785; T( 9,245)= 5.83816335; T( 9,246)= 5.84829861; T( 9,247)= 5.85842378; T( 9,248)= 5.86853896; T( 9,249)= 5.87864429; T( 9,250)= 5.88873989; T( 9,251)= 5.89882588; T( 9,252)= 5.90890239; T( 9,253)= 5.91896953; T( 9,254)= 5.92902742; T( 9,255)= 5.93907619; T( 9,256)= 5.94911594; T( 9,257)= 5.95914680; T( 9,258)= 5.96916888; T( 9,259)= 5.97918230; T( 9,260)= 5.98918716; T( 9,261)= 5.99918358; T( 9,262)= 6.00917168; T( 9,263)= 6.01915155; T( 9,264)= 6.02912332; T( 9,265)= 6.03908709; T( 9,266)= 6.04904297; T( 9,267)= 6.05899106; T( 9,268)= 6.06893147; T( 9,269)= 6.07886431; T( 9,270)= 6.08878968; T( 9,271)= 6.09870768; T( 9,272)= 6.10861842; T( 9,273)= 6.11852200; T( 9,274)= 6.12841851; T( 9,275)= 6.13830807; T( 9,276)= 6.14819077; T( 9,277)= 6.15806671; T( 9,278)= 6.16793598; T( 9,279)= 6.17779869; T( 9,280)= 6.18765493; T( 9,281)= 6.19750480; T( 9,282)= 6.20734839; T( 9,283)= 6.21718579; T( 9,284)= 6.22701711; T( 9,285)= 6.23684243; T( 9,286)= 6.24666185; T( 9,287)= 6.25647546; T( 9,288)= 6.26628335; T( 9,289)= 6.27608561; T( 9,290)= 6.28588234; T( 9,291)= 6.29567361; T( 9,292)= 6.30545952; T( 9,293)= 6.31524017; T( 9,294)= 6.32501563; T( 9,295)= 6.33478599; T( 9,296)= 6.34455134; T( 9,297)= 6.35431177; T( 9,298)= 6.36406737; T( 9,299)= 6.37381821; T( 9,300)= 6.38356438; T( 9,301)= 6.39330596; T( 9,302)= 6.40304305; T( 9,303)= 6.41277572; T( 9,304)= 6.42250405; T( 9,305)= 6.43222813; T( 9,306)= 6.44194804; T( 9,307)= 6.45166386; T( 9,308)= 6.46137567; T( 9,309)= 6.47108355; T( 9,310)= 6.48078758; T( 9,311)= 6.49048784; T( 9,312)= 6.50018441; T( 9,313)= 6.50987736; T( 9,314)= 6.51956678; T( 9,315)= 6.52925274; T( 9,316)= 6.53893531; T( 9,317)= 6.54861459; T( 9,318)= 6.55829063; T( 9,319)= 6.56796353; T( 9,320)= 6.57763335; T( 9,321)= 6.58730017; T( 9,322)= 6.59696406; T( 9,323)= 6.60662509; T( 9,324)= 6.61628336; T( 9,325)= 6.62593891; T( 9,326)= 6.63559184; T( 9,327)= 6.64524221; T( 9,328)= 6.65489009; T( 9,329)= 6.66453556; T( 9,330)= 6.67417869; T( 9,331)= 6.68381954; T( 9,332)= 6.69345821; T( 9,333)= 6.70309474; T( 9,334)= 6.71272922; T( 9,335)= 6.72236171; T( 9,336)= 6.73199229; T( 9,337)= 6.74162102; T( 9,338)= 6.75124797; T( 9,339)= 6.76087322; T( 9,340)= 6.77049683; T( 9,341)= 6.78011887; T( 9,342)= 6.78973941; T( 9,343)= 6.79935851; T( 9,344)= 6.80897626; T( 9,345)= 6.81859270; T( 9,346)= 6.82820791; T( 9,347)= 6.83782196; T( 9,348)= 6.84743492; T( 9,349)= 6.85704684; T( 9,350)= 6.86665781; T( 9,351)= 6.87626787; T( 9,352)= 6.88587711; T( 9,353)= 6.89548557; T( 9,354)= 6.90509334; T( 9,355)= 6.91470048; T( 9,356)= 6.92430705; T( 9,357)= 6.93391311; T( 9,358)= 6.94351873; T( 9,359)= 6.95312398; T( 9,360)= 6.96272891; T( 9,361)= 6.97233360; T( 9,362)= 6.98193811; T( 9,363)= 6.99154249; T( 9,364)= 7.00114683; T( 9,365)= 7.01075116; T( 9,366)= 7.02035557; T( 9,367)= 7.02996012; T( 9,368)= 7.03956485; T( 9,369)= 7.04916985; T( 9,370)= 7.05877517; T( 9,371)= 7.06838088; T( 9,372)= 7.07798703; T( 9,373)= 7.08759369; T( 9,374)= 7.09720092; T( 9,375)= 7.10680878; T( 9,376)= 7.11641733; T( 9,377)= 7.12602664; T( 9,378)= 7.13563677; T( 9,379)= 7.14524778; T( 9,380)= 7.15485972; T( 9,381)= 7.16447266; T( 9,382)= 7.17408667; T( 9,383)= 7.18370179; T( 9,384)= 7.19331810; T( 9,385)= 7.20293565; T( 9,386)= 7.21255451; T( 9,387)= 7.22217472; T( 9,388)= 7.23179637; T( 9,389)= 7.24141949; T( 9,390)= 7.25104416; T( 9,391)= 7.26067043; T( 9,392)= 7.27029837; T( 9,393)= 7.27992803; T( 9,394)= 7.28955947; T( 9,395)= 7.29919276; T( 9,396)= 7.30882795; T( 9,397)= 7.31846510; T( 9,398)= 7.32810427; T( 9,399)= 7.33774552; T( 9,400)= 7.34738891; T( 9,401)= 7.35703450; T( 9,402)= 7.36668235; T( 9,403)= 7.37633252; T( 9,404)= 7.38598506; T( 9,405)= 7.39564003; T( 9,406)= 7.40529751; T( 9,407)= 7.41495753; T( 9,408)= 7.42462017; T( 9,409)= 7.43428547; T( 9,410)= 7.44395351; T( 9,411)= 7.45362433; T( 9,412)= 7.46329800; T( 9,413)= 7.47297458; T( 9,414)= 7.48265412; T( 9,415)= 7.49233668; T( 9,416)= 7.50202232; T( 9,417)= 7.51171111; T( 9,418)= 7.52140309; T( 9,419)= 7.53109833; T( 9,420)= 7.54079688; T( 9,421)= 7.55049881; T( 9,422)= 7.56020417; T( 9,423)= 7.56991303; T( 9,424)= 7.57962543; T( 9,425)= 7.58934144; T( 9,426)= 7.59906111; T( 9,427)= 7.60878452; T( 9,428)= 7.61851170; T( 9,429)= 7.62824273; T( 9,430)= 7.63797766; T( 9,431)= 7.64771655; T( 9,432)= 7.65745946; T( 9,433)= 7.66720644; T( 9,434)= 7.67695756; T( 9,435)= 7.68671287; T( 9,436)= 7.69647244; T( 9,437)= 7.70623631; T( 9,438)= 7.71600456; T( 9,439)= 7.72577724; T( 9,440)= 7.73555440; T( 9,441)= 7.74533611; T( 9,442)= 7.75512243; T( 9,443)= 7.76491341; T( 9,444)= 7.77470912; T( 9,445)= 7.78450961; T( 9,446)= 7.79431494; T( 9,447)= 7.80412517; T( 9,448)= 7.81394037; T( 9,449)= 7.82376058; T( 9,450)= 7.83358588; T( 9,451)= 7.84341631; T( 9,452)= 7.85325194; T( 9,453)= 7.86309283; T( 9,454)= 7.87293904; T( 9,455)= 7.88279062; T( 9,456)= 7.89264764; T( 9,457)= 7.90251016; T( 9,458)= 7.91237824; T( 9,459)= 7.92225194; T( 9,460)= 7.93213131; T( 9,461)= 7.94201642; T( 9,462)= 7.95190733; T( 9,463)= 7.96180410; T( 9,464)= 7.97170679; T( 9,465)= 7.98161545; T( 9,466)= 7.99153016; T( 9,467)= 8.00145097; T( 9,468)= 8.01137795; T( 9,469)= 8.02131115; T( 9,470)= 8.03125063; T( 9,471)= 8.04119646; T( 9,472)= 8.05114870; T( 9,473)= 8.06110741; T( 9,474)= 8.07107265; T( 9,475)= 8.08104448; T( 9,476)= 8.09102297; T( 9,477)= 8.10100818; T( 9,478)= 8.11100017; T( 9,479)= 8.12099900; T( 9,480)= 8.13100473; T( 9,481)= 8.14101744; T( 9,482)= 8.15103717; T( 9,483)= 8.16106400; T( 9,484)= 8.17109798; T( 9,485)= 8.18113918; T( 9,486)= 8.19118767; T( 9,487)= 8.20124350; T( 9,488)= 8.21130675; T( 9,489)= 8.22137747; T( 9,490)= 8.23145573; T( 9,491)= 8.24154159; T( 9,492)= 8.25163512; T( 9,493)= 8.26173639; T( 9,494)= 8.27184545; T( 9,495)= 8.28196237; T( 9,496)= 8.29208722; T( 9,497)= 8.30222007; T( 9,498)= 8.31236097; T( 9,499)= 8.32251000; T( 9,500)= 8.33266722; T( 9,501)= 8.34283269; T( 9,502)= 8.35300649; T( 9,503)= 8.36318868; T( 9,504)= 8.37337932; T( 9,505)= 8.38357849; T( 9,506)= 8.39378625; T( 9,507)= 8.40400267; T( 9,508)= 8.41422781; T( 9,509)= 8.42446175; T( 9,510)= 8.43470455; T( 9,511)= 8.44495628; T( 9,512)= 8.45521701; T( 9,513)= 8.46548681; T( 9,514)= 8.47576574; T( 9,515)= 8.48605388; T( 9,516)= 8.49635130; T( 9,517)= 8.50665806; T( 9,518)= 8.51697424; T( 9,519)= 8.52729991; T( 9,520)= 8.53763513; T( 9,521)= 8.54797998; T( 9,522)= 8.55833453; T( 9,523)= 8.56869885; T( 9,524)= 8.57907301; T( 9,525)= 8.58945709; T( 9,526)= 8.59985115; T( 9,527)= 8.61025527; T( 9,528)= 8.62066953; T( 9,529)= 8.63109399; T( 9,530)= 8.64152872; T( 9,531)= 8.65197381; T( 9,532)= 8.66242932; T( 9,533)= 8.67289534; T( 9,534)= 8.68337193; T( 9,535)= 8.69385917; T( 9,536)= 8.70435713; T( 9,537)= 8.71486590; T( 9,538)= 8.72538554; T( 9,539)= 8.73591613; T( 9,540)= 8.74645775; T( 9,541)= 8.75701048; T( 9,542)= 8.76757440; T( 9,543)= 8.77814957; T( 9,544)= 8.78873609; T( 9,545)= 8.79933402; T( 9,546)= 8.80994344; T( 9,547)= 8.82056444; T( 9,548)= 8.83119710; T( 9,549)= 8.84184149; T( 9,550)= 8.85249770; T( 9,551)= 8.86316579; T( 9,552)= 8.87384587; T( 9,553)= 8.88453800; T( 9,554)= 8.89524227; T( 9,555)= 8.90595876; T( 9,556)= 8.91668755; T( 9,557)= 8.92742873; T( 9,558)= 8.93818238; T( 9,559)= 8.94894858; T( 9,560)= 8.95972742; T( 9,561)= 8.97051897; T( 9,562)= 8.98132334; T( 9,563)= 8.99214059; T( 9,564)= 9.00297083; T( 9,565)= 9.01381412; T( 9,566)= 9.02467057; T( 9,567)= 9.03554025; T( 9,568)= 9.04642326; T( 9,569)= 9.05731968; T( 9,570)= 9.06822960; T( 9,571)= 9.07915312; T( 9,572)= 9.09009031; T( 9,573)= 9.10104127; T( 9,574)= 9.11200610; T( 9,575)= 9.12298487; T( 9,576)= 9.13397769; T( 9,577)= 9.14498464; T( 9,578)= 9.15600581; T( 9,579)= 9.16704131; T( 9,580)= 9.17809122; T( 9,581)= 9.18915564; T( 9,582)= 9.20023466; T( 9,583)= 9.21132837; T( 9,584)= 9.22243688; T( 9,585)= 9.23356028; T( 9,586)= 9.24469866; T( 9,587)= 9.25585212; T( 9,588)= 9.26702077; T( 9,589)= 9.27820469; T( 9,590)= 9.28940399; T( 9,591)= 9.30061876; T( 9,592)= 9.31184912; T( 9,593)= 9.32309515; T( 9,594)= 9.33435696; T( 9,595)= 9.34563465; T( 9,596)= 9.35692833; T( 9,597)= 9.36823809; T( 9,598)= 9.37956404; T( 9,599)= 9.39090629; T( 9,600)= 9.40226494; T( 9,601)= 9.41364009; T( 9,602)= 9.42503186; T( 9,603)= 9.43644035; T( 9,604)= 9.44786566; T( 9,605)= 9.45930791; T( 9,606)= 9.47076721; T( 9,607)= 9.48224366; T( 9,608)= 9.49373737; T( 9,609)= 9.50524846; T( 9,610)= 9.51677704; T( 9,611)= 9.52832322; T( 9,612)= 9.53988712; T( 9,613)= 9.55146884; T( 9,614)= 9.56306851; T( 9,615)= 9.57468623; T( 9,616)= 9.58632213; T( 9,617)= 9.59797633; T( 9,618)= 9.60964893; T( 9,619)= 9.62134007; T( 9,620)= 9.63304986; T( 9,621)= 9.64477841; T( 9,622)= 9.65652586; T( 9,623)= 9.66829231; T( 9,624)= 9.68007791; T( 9,625)= 9.69188276; T( 9,626)= 9.70370700; T( 9,627)= 9.71555075; T( 9,628)= 9.72741414; T( 9,629)= 9.73929729; T( 9,630)= 9.75120033; T( 9,631)= 9.76312339; T( 9,632)= 9.77506660; T( 9,633)= 9.78703009; T( 9,634)= 9.79901400; T( 9,635)= 9.81101845; T( 9,636)= 9.82304359; T( 9,637)= 9.83508954; T( 9,638)= 9.84715643; T( 9,639)= 9.85924442; T( 9,640)= 9.87135363; T( 9,641)= 9.88348421; T( 9,642)= 9.89563628; T( 9,643)= 9.90781001; T( 9,644)= 9.92000552; T( 9,645)= 9.93222295; T( 9,646)= 9.94446247; T( 9,647)= 9.95672420; T( 9,648)= 9.96900829; T( 9,649)= 9.98131490; T( 9,650)= 9.99364416; T( 9,651)=10.00599624; T( 9,652)=10.01837127; T( 9,653)=10.03076942; T( 9,654)=10.04319084; T( 9,655)=10.05563568; T( 9,656)=10.06810409; T( 9,657)=10.08059623; T( 9,658)=10.09311226; T( 9,659)=10.10565235; T( 9,660)=10.11821664; T( 9,661)=10.13080531; T( 9,662)=10.14341851; T( 9,663)=10.15605641; T( 9,664)=10.16871917; T( 9,665)=10.18140697; T( 9,666)=10.19411997; T( 9,667)=10.20685834; T( 9,668)=10.21962225; T( 9,669)=10.23241188; T( 9,670)=10.24522739; T( 9,671)=10.25806897; T( 9,672)=10.27093679; T( 9,673)=10.28383103; T( 9,674)=10.29675187; T( 9,675)=10.30969950; T( 9,676)=10.32267408; T( 9,677)=10.33567582; T( 9,678)=10.34870489; T( 9,679)=10.36176149; T( 9,680)=10.37484580; T( 9,681)=10.38795801; T( 9,682)=10.40109832; T( 9,683)=10.41426693; T( 9,684)=10.42746402; T( 9,685)=10.44068979; T( 9,686)=10.45394445; T( 9,687)=10.46722820; T( 9,688)=10.48054124; T( 9,689)=10.49388377; T( 9,690)=10.50725600; T( 9,691)=10.52065815; T( 9,692)=10.53409042; T( 9,693)=10.54755302; T( 9,694)=10.56104617; T( 9,695)=10.57457008; T( 9,696)=10.58812498; T( 9,697)=10.60171108; T( 9,698)=10.61532861; T( 9,699)=10.62897779; T( 9,700)=10.64265884; T( 9,701)=10.65637201; T( 9,702)=10.67011751; T( 9,703)=10.68389558; T( 9,704)=10.69770646; T( 9,705)=10.71155038; T( 9,706)=10.72542759; T( 9,707)=10.73933832; T( 9,708)=10.75328283; T( 9,709)=10.76726135; T( 9,710)=10.78127414; T( 9,711)=10.79532144; T( 9,712)=10.80940352; T( 9,713)=10.82352064; T( 9,714)=10.83767304; T( 9,715)=10.85186099; T( 9,716)=10.86608475; T( 9,717)=10.88034460; T( 9,718)=10.89464080; T( 9,719)=10.90897363; T( 9,720)=10.92334336; T( 9,721)=10.93775026; T( 9,722)=10.95219462; T( 9,723)=10.96667673; T( 9,724)=10.98119687; T( 9,725)=10.99575533; T( 9,726)=11.01035240; T( 9,727)=11.02498837; T( 9,728)=11.03966356; T( 9,729)=11.05437825; T( 9,730)=11.06913276; T( 9,731)=11.08392739; T( 9,732)=11.09876245; T( 9,733)=11.11363826; T( 9,734)=11.12855514; T( 9,735)=11.14351342; T( 9,736)=11.15851340; T( 9,737)=11.17355543; T( 9,738)=11.18863983; T( 9,739)=11.20376695; T( 9,740)=11.21893712; T( 9,741)=11.23415068; T( 9,742)=11.24940799; T( 9,743)=11.26470939; T( 9,744)=11.28005524; T( 9,745)=11.29544589; T( 9,746)=11.31088172; T( 9,747)=11.32636309; T( 9,748)=11.34189037; T( 9,749)=11.35746393; T( 9,750)=11.37308416; T( 9,751)=11.38875144; T( 9,752)=11.40446616; T( 9,753)=11.42022871; T( 9,754)=11.43603949; T( 9,755)=11.45189890; T( 9,756)=11.46780736; T( 9,757)=11.48376527; T( 9,758)=11.49977304; T( 9,759)=11.51583111; T( 9,760)=11.53193990; T( 9,761)=11.54809984; T( 9,762)=11.56431136; T( 9,763)=11.58057492; T( 9,764)=11.59689096; T( 9,765)=11.61325993; T( 9,766)=11.62968230; T( 9,767)=11.64615852; T( 9,768)=11.66268907; T( 9,769)=11.67927442; T( 9,770)=11.69591507; T( 9,771)=11.71261149; T( 9,772)=11.72936418; T( 9,773)=11.74617364; T( 9,774)=11.76304038; T( 9,775)=11.77996492; T( 9,776)=11.79694777; T( 9,777)=11.81398947; T( 9,778)=11.83109054; T( 9,779)=11.84825153; T( 9,780)=11.86547298; T( 9,781)=11.88275546; T( 9,782)=11.90009953; T( 9,783)=11.91750574; T( 9,784)=11.93497470; T( 9,785)=11.95250697; T( 9,786)=11.97010315; T( 9,787)=11.98776385; T( 9,788)=12.00548968; T( 9,789)=12.02328125; T( 9,790)=12.04113920; T( 9,791)=12.05906415; T( 9,792)=12.07705675; T( 9,793)=12.09511766; T( 9,794)=12.11324753; T( 9,795)=12.13144705; T( 9,796)=12.14971689; T( 9,797)=12.16805774; T( 9,798)=12.18647031; T( 9,799)=12.20495530; T( 9,800)=12.22351345; T( 9,801)=12.24214547; T( 9,802)=12.26085212; T( 9,803)=12.27963414; T( 9,804)=12.29849231; T( 9,805)=12.31742740; T( 9,806)=12.33644020; T( 9,807)=12.35553151; T( 9,808)=12.37470213; T( 9,809)=12.39395290; T( 9,810)=12.41328465; T( 9,811)=12.43269824; T( 9,812)=12.45219452; T( 9,813)=12.47177437; T( 9,814)=12.49143868; T( 9,815)=12.51118836; T( 9,816)=12.53102432; T( 9,817)=12.55094750; T( 9,818)=12.57095885; T( 9,819)=12.59105932; T( 9,820)=12.61124990; T( 9,821)=12.63153158; T( 9,822)=12.65190538; T( 9,823)=12.67237231; T( 9,824)=12.69293343; T( 9,825)=12.71358979; T( 9,826)=12.73434248; T( 9,827)=12.75519259; T( 9,828)=12.77614124; T( 9,829)=12.79718957; T( 9,830)=12.81833872; T( 9,831)=12.83958988; T( 9,832)=12.86094424; T( 9,833)=12.88240301; T( 9,834)=12.90396743; T( 9,835)=12.92563876; T( 9,836)=12.94741828; T( 9,837)=12.96930729; T( 9,838)=12.99130713; T( 9,839)=13.01341914; T( 9,840)=13.03564470; T( 9,841)=13.05798521; T( 9,842)=13.08044209; T( 9,843)=13.10301681; T( 9,844)=13.12571083; T( 9,845)=13.14852568; T( 9,846)=13.17146287; T( 9,847)=13.19452400; T( 9,848)=13.21771064; T( 9,849)=13.24102442; T( 9,850)=13.26446700; T( 9,851)=13.28804008; T( 9,852)=13.31174538; T( 9,853)=13.33558465; T( 9,854)=13.35955969; T( 9,855)=13.38367233; T( 9,856)=13.40792443; T( 9,857)=13.43231790; T( 9,858)=13.45685468; T( 9,859)=13.48153676; T( 9,860)=13.50636615; T( 9,861)=13.53134493; T( 9,862)=13.55647521; T( 9,863)=13.58175914; T( 9,864)=13.60719892; T( 9,865)=13.63279681; T( 9,866)=13.65855509; T( 9,867)=13.68447612; T( 9,868)=13.71056231; T( 9,869)=13.73681609; T( 9,870)=13.76323998; T( 9,871)=13.78983655; T( 9,872)=13.81660842; T( 9,873)=13.84355827; T( 9,874)=13.87068884; T( 9,875)=13.89800295; T( 9,876)=13.92550348; T( 9,877)=13.95319335; T( 9,878)=13.98107560; T( 9,879)=14.00915329; T( 9,880)=14.03742961; T( 9,881)=14.06590777; T( 9,882)=14.09459111; T( 9,883)=14.12348301; T( 9,884)=14.15258698; T( 9,885)=14.18190657; T( 9,886)=14.21144546; T( 9,887)=14.24120741; T( 9,888)=14.27119626; T( 9,889)=14.30141599; T( 9,890)=14.33187066; T( 9,891)=14.36256442; T( 9,892)=14.39350158; T( 9,893)=14.42468653; T( 9,894)=14.45612379; T( 9,895)=14.48781800; T( 9,896)=14.51977395; T( 9,897)=14.55199654; T( 9,898)=14.58449083; T( 9,899)=14.61726200; T( 9,900)=14.65031542; T( 9,901)=14.68365657; T( 9,902)=14.71729114; T( 9,903)=14.75122495; T( 9,904)=14.78546403; T( 9,905)=14.82001456; T( 9,906)=14.85488294; T( 9,907)=14.89007576; T( 9,908)=14.92559982; T( 9,909)=14.96146212; T( 9,910)=14.99766991; T( 9,911)=15.03423067; T( 9,912)=15.07115212; T( 9,913)=15.10844223; T( 9,914)=15.14610927; T( 9,915)=15.18416175; T( 9,916)=15.22260851; T( 9,917)=15.26145869; T( 9,918)=15.30072174; T( 9,919)=15.34040745; T( 9,920)=15.38052598; T( 9,921)=15.42108786; T( 9,922)=15.46210399; T( 9,923)=15.50358571; T( 9,924)=15.54554477; T( 9,925)=15.58799338; T( 9,926)=15.63094424; T( 9,927)=15.67441053; T( 9,928)=15.71840598; T( 9,929)=15.76294488; T( 9,930)=15.80804209; T( 9,931)=15.85371311; T( 9,932)=15.89997410; T( 9,933)=15.94684192; T( 9,934)=15.99433414; T( 9,935)=16.04246915; T( 9,936)=16.09126615; T( 9,937)=16.14074522; T( 9,938)=16.19092738; T( 9,939)=16.24183463; T( 9,940)=16.29349005; T( 9,941)=16.34591784; T( 9,942)=16.39914340; T( 9,943)=16.45319341; T( 9,944)=16.50809593; T( 9,945)=16.56388048; T( 9,946)=16.62057817; T( 9,947)=16.67822177; T( 9,948)=16.73684590; T( 9,949)=16.79648711; T( 9,950)=16.85718404; T( 9,951)=16.91897760; T( 9,952)=16.98191117; T( 9,953)=17.04603075; T( 9,954)=17.11138520; T( 9,955)=17.17802652; T( 9,956)=17.24601008; T( 9,957)=17.31539491; T( 9,958)=17.38624409; T( 9,959)=17.45862507; T( 9,960)=17.53261014; T( 9,961)=17.60827684; T( 9,962)=17.68570856; T( 9,963)=17.76499507; T( 9,964)=17.84623325; T( 9,965)=17.92952784; T( 9,966)=18.01499231; T( 9,967)=18.10274988; T( 9,968)=18.19293468; T( 9,969)=18.28569303; T( 9,970)=18.38118506; T( 9,971)=18.47958642; T( 9,972)=18.58109043; T( 9,973)=18.68591052; T( 9,974)=18.79428310; T( 9,975)=18.90647105; T( 9,976)=19.02276780; T( 9,977)=19.14350231; T( 9,978)=19.26904504; T( 9,979)=19.39981530; T( 9,980)=19.53629025; T( 9,981)=19.67901609; T( 9,982)=19.82862217; T( 9,983)=19.98583877; T( 9,984)=20.15152006; T( 9,985)=20.32667391; T( 9,986)=20.51250131; T( 9,987)=20.71044925; T( 9,988)=20.92228324; T( 9,989)=21.15018860; T( 9,990)=21.39691572; T( 9,991)=21.66599433; T( 9,992)=21.96206024; T( 9,993)=22.29137421; T( 9,994)=22.66268685; T( 9,995)=23.08877044; T( 9,996)=23.58935078; T( 9,997)=24.19732982; T( 9,998)=24.97406845; T( 9,999)=26.05643335; T( 9,1000)=27.87716487; T( 9,1001)=33.71994844; T( 9,1002)=39.34065373; T(10, 1)= 0.00000000; T(10, 2)= 1.47874346; T(10, 3)= 1.73445958; T(10, 4)= 1.90767634; T(10, 5)= 2.04298034; T(10, 6)= 2.15585648; T(10, 7)= 2.25369458; T(10, 8)= 2.34065149; T(10, 9)= 2.41931882; T(10,10)= 2.49143127; T(10,11)= 2.55821216; T(10,12)= 2.62055942; T(10,13)= 2.67915339; T(10,14)= 2.73452303; T(10,15)= 2.78708848; T(10,16)= 2.83718951; T(10,17)= 2.88510516; T(10,18)= 2.93106767; T(10,19)= 2.97527258; T(10,20)= 3.01788623; T(10,21)= 3.05905141; T(10,22)= 3.09889170; T(10,23)= 3.13751482; T(10,24)= 3.17501530; T(10,25)= 3.21147659; T(10,26)= 3.24697278; T(10,27)= 3.28156994; T(10,28)= 3.31532730; T(10,29)= 3.34829816; T(10,30)= 3.38053068; T(10,31)= 3.41206855; T(10,32)= 3.44295150; T(10,33)= 3.47321582; T(10,34)= 3.50289473; T(10,35)= 3.53201873; T(10,36)= 3.56061588; T(10,37)= 3.58871209; T(10,38)= 3.61633131; T(10,39)= 3.64349577; T(10,40)= 3.67022608; T(10,41)= 3.69654144; T(10,42)= 3.72245976; T(10,43)= 3.74799774; T(10,44)= 3.77317103; T(10,45)= 3.79799429; T(10,46)= 3.82248127; T(10,47)= 3.84664490; T(10,48)= 3.87049735; T(10,49)= 3.89405010; T(10,50)= 3.91731395; T(10,51)= 3.94029914; T(10,52)= 3.96301533; T(10,53)= 3.98547169; T(10,54)= 4.00767689; T(10,55)= 4.02963918; T(10,56)= 4.05136637; T(10,57)= 4.07286591; T(10,58)= 4.09414489; T(10,59)= 4.11521004; T(10,60)= 4.13606779; T(10,61)= 4.15672429; T(10,62)= 4.17718539; T(10,63)= 4.19745669; T(10,64)= 4.21754354; T(10,65)= 4.23745107; T(10,66)= 4.25718419; T(10,67)= 4.27674760; T(10,68)= 4.29614582; T(10,69)= 4.31538317; T(10,70)= 4.33446381; T(10,71)= 4.35339173; T(10,72)= 4.37217078; T(10,73)= 4.39080465; T(10,74)= 4.40929689; T(10,75)= 4.42765093; T(10,76)= 4.44587007; T(10,77)= 4.46395749; T(10,78)= 4.48191625; T(10,79)= 4.49974931; T(10,80)= 4.51745953; T(10,81)= 4.53504967; T(10,82)= 4.55252239; T(10,83)= 4.56988027; T(10,84)= 4.58712581; T(10,85)= 4.60426142; T(10,86)= 4.62128942; T(10,87)= 4.63821208; T(10,88)= 4.65503159; T(10,89)= 4.67175007; T(10,90)= 4.68836957; T(10,91)= 4.70489208; T(10,92)= 4.72131955; T(10,93)= 4.73765385; T(10,94)= 4.75389680; T(10,95)= 4.77005016; T(10,96)= 4.78611567; T(10,97)= 4.80209497; T(10,98)= 4.81798971; T(10,99)= 4.83380145; T(10,100)= 4.84953174; T(10,101)= 4.86518205; T(10,102)= 4.88075385; T(10,103)= 4.89624855; T(10,104)= 4.91166753; T(10,105)= 4.92701212; T(10,106)= 4.94228363; T(10,107)= 4.95748333; T(10,108)= 4.97261247; T(10,109)= 4.98767225; T(10,110)= 5.00266385; T(10,111)= 5.01758843; T(10,112)= 5.03244709; T(10,113)= 5.04724095; T(10,114)= 5.06197106; T(10,115)= 5.07663847; T(10,116)= 5.09124420; T(10,117)= 5.10578924; T(10,118)= 5.12027456; T(10,119)= 5.13470112; T(10,120)= 5.14906984; T(10,121)= 5.16338164; T(10,122)= 5.17763738; T(10,123)= 5.19183795; T(10,124)= 5.20598420; T(10,125)= 5.22007694; T(10,126)= 5.23411700; T(10,127)= 5.24810517; T(10,128)= 5.26204223; T(10,129)= 5.27592893; T(10,130)= 5.28976602; T(10,131)= 5.30355424; T(10,132)= 5.31729430; T(10,133)= 5.33098690; T(10,134)= 5.34463273; T(10,135)= 5.35823245; T(10,136)= 5.37178673; T(10,137)= 5.38529622; T(10,138)= 5.39876154; T(10,139)= 5.41218333; T(10,140)= 5.42556218; T(10,141)= 5.43889870; T(10,142)= 5.45219348; T(10,143)= 5.46544708; T(10,144)= 5.47866009; T(10,145)= 5.49183303; T(10,146)= 5.50496648; T(10,147)= 5.51806095; T(10,148)= 5.53111697; T(10,149)= 5.54413505; T(10,150)= 5.55711571; T(10,151)= 5.57005944; T(10,152)= 5.58296673; T(10,153)= 5.59583806; T(10,154)= 5.60867389; T(10,155)= 5.62147470; T(10,156)= 5.63424093; T(10,157)= 5.64697304; T(10,158)= 5.65967146; T(10,159)= 5.67233664; T(10,160)= 5.68496898; T(10,161)= 5.69756892; T(10,162)= 5.71013686; T(10,163)= 5.72267321; T(10,164)= 5.73517836; T(10,165)= 5.74765272; T(10,166)= 5.76009666; T(10,167)= 5.77251056; T(10,168)= 5.78489480; T(10,169)= 5.79724975; T(10,170)= 5.80957576; T(10,171)= 5.82187320; T(10,172)= 5.83414241; T(10,173)= 5.84638375; T(10,174)= 5.85859755; T(10,175)= 5.87078414; T(10,176)= 5.88294387; T(10,177)= 5.89507704; T(10,178)= 5.90718399; T(10,179)= 5.91926503; T(10,180)= 5.93132048; T(10,181)= 5.94335063; T(10,182)= 5.95535579; T(10,183)= 5.96733626; T(10,184)= 5.97929234; T(10,185)= 5.99122431; T(10,186)= 6.00313246; T(10,187)= 6.01501707; T(10,188)= 6.02687843; T(10,189)= 6.03871679; T(10,190)= 6.05053244; T(10,191)= 6.06232564; T(10,192)= 6.07409666; T(10,193)= 6.08584575; T(10,194)= 6.09757318; T(10,195)= 6.10927918; T(10,196)= 6.12096403; T(10,197)= 6.13262795; T(10,198)= 6.14427119; T(10,199)= 6.15589400; T(10,200)= 6.16749661; T(10,201)= 6.17907926; T(10,202)= 6.19064217; T(10,203)= 6.20218557; T(10,204)= 6.21370970; T(10,205)= 6.22521476; T(10,206)= 6.23670099; T(10,207)= 6.24816860; T(10,208)= 6.25961780; T(10,209)= 6.27104881; T(10,210)= 6.28246183; T(10,211)= 6.29385708; T(10,212)= 6.30523475; T(10,213)= 6.31659506; T(10,214)= 6.32793819; T(10,215)= 6.33926434; T(10,216)= 6.35057372; T(10,217)= 6.36186651; T(10,218)= 6.37314291; T(10,219)= 6.38440310; T(10,220)= 6.39564727; T(10,221)= 6.40687561; T(10,222)= 6.41808829; T(10,223)= 6.42928550; T(10,224)= 6.44046742; T(10,225)= 6.45163422; T(10,226)= 6.46278607; T(10,227)= 6.47392316; T(10,228)= 6.48504564; T(10,229)= 6.49615369; T(10,230)= 6.50724748; T(10,231)= 6.51832717; T(10,232)= 6.52939293; T(10,233)= 6.54044491; T(10,234)= 6.55148328; T(10,235)= 6.56250820; T(10,236)= 6.57351982; T(10,237)= 6.58451830; T(10,238)= 6.59550379; T(10,239)= 6.60647645; T(10,240)= 6.61743642; T(10,241)= 6.62838386; T(10,242)= 6.63931892; T(10,243)= 6.65024173; T(10,244)= 6.66115245; T(10,245)= 6.67205123; T(10,246)= 6.68293819; T(10,247)= 6.69381348; T(10,248)= 6.70467725; T(10,249)= 6.71552963; T(10,250)= 6.72637076; T(10,251)= 6.73720077; T(10,252)= 6.74801980; T(10,253)= 6.75882799; T(10,254)= 6.76962545; T(10,255)= 6.78041234; T(10,256)= 6.79118877; T(10,257)= 6.80195487; T(10,258)= 6.81271078; T(10,259)= 6.82345661; T(10,260)= 6.83419250; T(10,261)= 6.84491857; T(10,262)= 6.85563493; T(10,263)= 6.86634173; T(10,264)= 6.87703906; T(10,265)= 6.88772706; T(10,266)= 6.89840585; T(10,267)= 6.90907554; T(10,268)= 6.91973625; T(10,269)= 6.93038809; T(10,270)= 6.94103119; T(10,271)= 6.95166565; T(10,272)= 6.96229159; T(10,273)= 6.97290912; T(10,274)= 6.98351836; T(10,275)= 6.99411941; T(10,276)= 7.00471239; T(10,277)= 7.01529740; T(10,278)= 7.02587455; T(10,279)= 7.03644396; T(10,280)= 7.04700572; T(10,281)= 7.05755994; T(10,282)= 7.06810673; T(10,283)= 7.07864619; T(10,284)= 7.08917843; T(10,285)= 7.09970355; T(10,286)= 7.11022165; T(10,287)= 7.12073283; T(10,288)= 7.13123719; T(10,289)= 7.14173484; T(10,290)= 7.15222587; T(10,291)= 7.16271038; T(10,292)= 7.17318846; T(10,293)= 7.18366023; T(10,294)= 7.19412577; T(10,295)= 7.20458517; T(10,296)= 7.21503855; T(10,297)= 7.22548598; T(10,298)= 7.23592756; T(10,299)= 7.24636339; T(10,300)= 7.25679356; T(10,301)= 7.26721817; T(10,302)= 7.27763729; T(10,303)= 7.28805103; T(10,304)= 7.29845948; T(10,305)= 7.30886273; T(10,306)= 7.31926085; T(10,307)= 7.32965396; T(10,308)= 7.34004212; T(10,309)= 7.35042544; T(10,310)= 7.36080400; T(10,311)= 7.37117788; T(10,312)= 7.38154717; T(10,313)= 7.39191196; T(10,314)= 7.40227233; T(10,315)= 7.41262837; T(10,316)= 7.42298017; T(10,317)= 7.43332780; T(10,318)= 7.44367135; T(10,319)= 7.45401090; T(10,320)= 7.46434654; T(10,321)= 7.47467835; T(10,322)= 7.48500641; T(10,323)= 7.49533080; T(10,324)= 7.50565161; T(10,325)= 7.51596890; T(10,326)= 7.52628277; T(10,327)= 7.53659330; T(10,328)= 7.54690055; T(10,329)= 7.55720462; T(10,330)= 7.56750558; T(10,331)= 7.57780350; T(10,332)= 7.58809848; T(10,333)= 7.59839058; T(10,334)= 7.60867988; T(10,335)= 7.61896645; T(10,336)= 7.62925039; T(10,337)= 7.63953175; T(10,338)= 7.64981062; T(10,339)= 7.66008707; T(10,340)= 7.67036118; T(10,341)= 7.68063302; T(10,342)= 7.69090267; T(10,343)= 7.70117020; T(10,344)= 7.71143568; T(10,345)= 7.72169920; T(10,346)= 7.73196081; T(10,347)= 7.74222060; T(10,348)= 7.75247864; T(10,349)= 7.76273500; T(10,350)= 7.77298975; T(10,351)= 7.78324297; T(10,352)= 7.79349472; T(10,353)= 7.80374508; T(10,354)= 7.81399412; T(10,355)= 7.82424191; T(10,356)= 7.83448852; T(10,357)= 7.84473402; T(10,358)= 7.85497848; T(10,359)= 7.86522197; T(10,360)= 7.87546457; T(10,361)= 7.88570633; T(10,362)= 7.89594734; T(10,363)= 7.90618765; T(10,364)= 7.91642734; T(10,365)= 7.92666648; T(10,366)= 7.93690513; T(10,367)= 7.94714337; T(10,368)= 7.95738126; T(10,369)= 7.96761887; T(10,370)= 7.97785626; T(10,371)= 7.98809351; T(10,372)= 7.99833068; T(10,373)= 8.00856784; T(10,374)= 8.01880506; T(10,375)= 8.02904239; T(10,376)= 8.03927992; T(10,377)= 8.04951771; T(10,378)= 8.05975581; T(10,379)= 8.06999431; T(10,380)= 8.08023326; T(10,381)= 8.09047273; T(10,382)= 8.10071279; T(10,383)= 8.11095349; T(10,384)= 8.12119492; T(10,385)= 8.13143713; T(10,386)= 8.14168018; T(10,387)= 8.15192415; T(10,388)= 8.16216910; T(10,389)= 8.17241509; T(10,390)= 8.18266219; T(10,391)= 8.19291046; T(10,392)= 8.20315996; T(10,393)= 8.21341077; T(10,394)= 8.22366294; T(10,395)= 8.23391655; T(10,396)= 8.24417164; T(10,397)= 8.25442829; T(10,398)= 8.26468657; T(10,399)= 8.27494653; T(10,400)= 8.28520824; T(10,401)= 8.29547176; T(10,402)= 8.30573716; T(10,403)= 8.31600450; T(10,404)= 8.32627384; T(10,405)= 8.33654525; T(10,406)= 8.34681879; T(10,407)= 8.35709452; T(10,408)= 8.36737250; T(10,409)= 8.37765281; T(10,410)= 8.38793550; T(10,411)= 8.39822064; T(10,412)= 8.40850828; T(10,413)= 8.41879850; T(10,414)= 8.42909135; T(10,415)= 8.43938690; T(10,416)= 8.44968520; T(10,417)= 8.45998633; T(10,418)= 8.47029035; T(10,419)= 8.48059731; T(10,420)= 8.49090729; T(10,421)= 8.50122034; T(10,422)= 8.51153652; T(10,423)= 8.52185591; T(10,424)= 8.53217855; T(10,425)= 8.54250452; T(10,426)= 8.55283388; T(10,427)= 8.56316669; T(10,428)= 8.57350300; T(10,429)= 8.58384290; T(10,430)= 8.59418643; T(10,431)= 8.60453366; T(10,432)= 8.61488465; T(10,433)= 8.62523947; T(10,434)= 8.63559817; T(10,435)= 8.64596083; T(10,436)= 8.65632750; T(10,437)= 8.66669824; T(10,438)= 8.67707312; T(10,439)= 8.68745221; T(10,440)= 8.69783555; T(10,441)= 8.70822323; T(10,442)= 8.71861529; T(10,443)= 8.72901181; T(10,444)= 8.73941284; T(10,445)= 8.74981845; T(10,446)= 8.76022871; T(10,447)= 8.77064366; T(10,448)= 8.78106339; T(10,449)= 8.79148794; T(10,450)= 8.80191739; T(10,451)= 8.81235180; T(10,452)= 8.82279123; T(10,453)= 8.83323574; T(10,454)= 8.84368540; T(10,455)= 8.85414027; T(10,456)= 8.86460041; T(10,457)= 8.87506590; T(10,458)= 8.88553678; T(10,459)= 8.89601313; T(10,460)= 8.90649502; T(10,461)= 8.91698249; T(10,462)= 8.92747563; T(10,463)= 8.93797449; T(10,464)= 8.94847913; T(10,465)= 8.95898963; T(10,466)= 8.96950604; T(10,467)= 8.98002843; T(10,468)= 8.99055687; T(10,469)= 9.00109142; T(10,470)= 9.01163214; T(10,471)= 9.02217910; T(10,472)= 9.03273237; T(10,473)= 9.04329201; T(10,474)= 9.05385808; T(10,475)= 9.06443066; T(10,476)= 9.07500980; T(10,477)= 9.08559557; T(10,478)= 9.09618805; T(10,479)= 9.10678729; T(10,480)= 9.11739336; T(10,481)= 9.12800633; T(10,482)= 9.13862626; T(10,483)= 9.14925322; T(10,484)= 9.15988728; T(10,485)= 9.17052851; T(10,486)= 9.18117697; T(10,487)= 9.19183272; T(10,488)= 9.20249584; T(10,489)= 9.21316640; T(10,490)= 9.22384446; T(10,491)= 9.23453008; T(10,492)= 9.24522335; T(10,493)= 9.25592432; T(10,494)= 9.26663307; T(10,495)= 9.27734966; T(10,496)= 9.28807416; T(10,497)= 9.29880664; T(10,498)= 9.30954717; T(10,499)= 9.32029582; T(10,500)= 9.33105266; T(10,501)= 9.34181777; T(10,502)= 9.35259120; T(10,503)= 9.36337303; T(10,504)= 9.37416332; T(10,505)= 9.38496216; T(10,506)= 9.39576962; T(10,507)= 9.40658575; T(10,508)= 9.41741064; T(10,509)= 9.42824435; T(10,510)= 9.43908696; T(10,511)= 9.44993854; T(10,512)= 9.46079916; T(10,513)= 9.47166890; T(10,514)= 9.48254782; T(10,515)= 9.49343600; T(10,516)= 9.50433351; T(10,517)= 9.51524043; T(10,518)= 9.52615684; T(10,519)= 9.53708279; T(10,520)= 9.54801837; T(10,521)= 9.55896366; T(10,522)= 9.56991872; T(10,523)= 9.58088364; T(10,524)= 9.59185848; T(10,525)= 9.60284333; T(10,526)= 9.61383826; T(10,527)= 9.62484335; T(10,528)= 9.63585866; T(10,529)= 9.64688429; T(10,530)= 9.65792030; T(10,531)= 9.66896678; T(10,532)= 9.68002379; T(10,533)= 9.69109143; T(10,534)= 9.70216976; T(10,535)= 9.71325888; T(10,536)= 9.72435884; T(10,537)= 9.73546974; T(10,538)= 9.74659166; T(10,539)= 9.75772467; T(10,540)= 9.76886885; T(10,541)= 9.78002429; T(10,542)= 9.79119107; T(10,543)= 9.80236926; T(10,544)= 9.81355895; T(10,545)= 9.82476023; T(10,546)= 9.83597317; T(10,547)= 9.84719785; T(10,548)= 9.85843437; T(10,549)= 9.86968279; T(10,550)= 9.88094322; T(10,551)= 9.89221573; T(10,552)= 9.90350040; T(10,553)= 9.91479732; T(10,554)= 9.92610658; T(10,555)= 9.93742827; T(10,556)= 9.94876246; T(10,557)= 9.96010925; T(10,558)= 9.97146872; T(10,559)= 9.98284096; T(10,560)= 9.99422606; T(10,561)=10.00562411; T(10,562)=10.01703519; T(10,563)=10.02845940; T(10,564)=10.03989682; T(10,565)=10.05134755; T(10,566)=10.06281167; T(10,567)=10.07428928; T(10,568)=10.08578047; T(10,569)=10.09728533; T(10,570)=10.10880395; T(10,571)=10.12033642; T(10,572)=10.13188285; T(10,573)=10.14344332; T(10,574)=10.15501792; T(10,575)=10.16660676; T(10,576)=10.17820993; T(10,577)=10.18982752; T(10,578)=10.20145963; T(10,579)=10.21310636; T(10,580)=10.22476781; T(10,581)=10.23644407; T(10,582)=10.24813524; T(10,583)=10.25984142; T(10,584)=10.27156271; T(10,585)=10.28329922; T(10,586)=10.29505104; T(10,587)=10.30681827; T(10,588)=10.31860102; T(10,589)=10.33039938; T(10,590)=10.34221347; T(10,591)=10.35404338; T(10,592)=10.36588923; T(10,593)=10.37775111; T(10,594)=10.38962913; T(10,595)=10.40152340; T(10,596)=10.41343402; T(10,597)=10.42536110; T(10,598)=10.43730476; T(10,599)=10.44926509; T(10,600)=10.46124221; T(10,601)=10.47323623; T(10,602)=10.48524726; T(10,603)=10.49727541; T(10,604)=10.50932080; T(10,605)=10.52138353; T(10,606)=10.53346373; T(10,607)=10.54556149; T(10,608)=10.55767695; T(10,609)=10.56981022; T(10,610)=10.58196140; T(10,611)=10.59413063; T(10,612)=10.60631801; T(10,613)=10.61852367; T(10,614)=10.63074773; T(10,615)=10.64299031; T(10,616)=10.65525152; T(10,617)=10.66753150; T(10,618)=10.67983035; T(10,619)=10.69214822; T(10,620)=10.70448521; T(10,621)=10.71684147; T(10,622)=10.72921710; T(10,623)=10.74161225; T(10,624)=10.75402703; T(10,625)=10.76646158; T(10,626)=10.77891603; T(10,627)=10.79139051; T(10,628)=10.80388514; T(10,629)=10.81640006; T(10,630)=10.82893541; T(10,631)=10.84149132; T(10,632)=10.85406792; T(10,633)=10.86666535; T(10,634)=10.87928375; T(10,635)=10.89192325; T(10,636)=10.90458400; T(10,637)=10.91726613; T(10,638)=10.92996979; T(10,639)=10.94269511; T(10,640)=10.95544225; T(10,641)=10.96821134; T(10,642)=10.98100253; T(10,643)=10.99381596; T(10,644)=11.00665180; T(10,645)=11.01951017; T(10,646)=11.03239124; T(10,647)=11.04529515; T(10,648)=11.05822206; T(10,649)=11.07117211; T(10,650)=11.08414547; T(10,651)=11.09714228; T(10,652)=11.11016271; T(10,653)=11.12320691; T(10,654)=11.13627505; T(10,655)=11.14936727; T(10,656)=11.16248375; T(10,657)=11.17562465; T(10,658)=11.18879012; T(10,659)=11.20198035; T(10,660)=11.21519548; T(10,661)=11.22843570; T(10,662)=11.24170116; T(10,663)=11.25499205; T(10,664)=11.26830853; T(10,665)=11.28165077; T(10,666)=11.29501896; T(10,667)=11.30841326; T(10,668)=11.32183386; T(10,669)=11.33528093; T(10,670)=11.34875466; T(10,671)=11.36225523; T(10,672)=11.37578282; T(10,673)=11.38933761; T(10,674)=11.40291980; T(10,675)=11.41652958; T(10,676)=11.43016712; T(10,677)=11.44383263; T(10,678)=11.45752629; T(10,679)=11.47124831; T(10,680)=11.48499887; T(10,681)=11.49877818; T(10,682)=11.51258644; T(10,683)=11.52642385; T(10,684)=11.54029061; T(10,685)=11.55418692; T(10,686)=11.56811300; T(10,687)=11.58206906; T(10,688)=11.59605530; T(10,689)=11.61007193; T(10,690)=11.62411918; T(10,691)=11.63819726; T(10,692)=11.65230638; T(10,693)=11.66644677; T(10,694)=11.68061865; T(10,695)=11.69482224; T(10,696)=11.70905777; T(10,697)=11.72332548; T(10,698)=11.73762558; T(10,699)=11.75195832; T(10,700)=11.76632392; T(10,701)=11.78072263; T(10,702)=11.79515468; T(10,703)=11.80962032; T(10,704)=11.82411979; T(10,705)=11.83865334; T(10,706)=11.85322121; T(10,707)=11.86782366; T(10,708)=11.88246093; T(10,709)=11.89713330; T(10,710)=11.91184101; T(10,711)=11.92658432; T(10,712)=11.94136350; T(10,713)=11.95617882; T(10,714)=11.97103054; T(10,715)=11.98591893; T(10,716)=12.00084428; T(10,717)=12.01580685; T(10,718)=12.03080692; T(10,719)=12.04584478; T(10,720)=12.06092072; T(10,721)=12.07603501; T(10,722)=12.09118796; T(10,723)=12.10637985; T(10,724)=12.12161098; T(10,725)=12.13688166; T(10,726)=12.15219219; T(10,727)=12.16754286; T(10,728)=12.18293400; T(10,729)=12.19836592; T(10,730)=12.21383892; T(10,731)=12.22935333; T(10,732)=12.24490948; T(10,733)=12.26050769; T(10,734)=12.27614828; T(10,735)=12.29183160; T(10,736)=12.30755797; T(10,737)=12.32332775; T(10,738)=12.33914127; T(10,739)=12.35499888; T(10,740)=12.37090093; T(10,741)=12.38684778; T(10,742)=12.40283980; T(10,743)=12.41887733; T(10,744)=12.43496075; T(10,745)=12.45109044; T(10,746)=12.46726676; T(10,747)=12.48349010; T(10,748)=12.49976084; T(10,749)=12.51607938; T(10,750)=12.53244610; T(10,751)=12.54886140; T(10,752)=12.56532568; T(10,753)=12.58183936; T(10,754)=12.59840284; T(10,755)=12.61501654; T(10,756)=12.63168088; T(10,757)=12.64839630; T(10,758)=12.66516321; T(10,759)=12.68198206; T(10,760)=12.69885329; T(10,761)=12.71577734; T(10,762)=12.73275467; T(10,763)=12.74978574; T(10,764)=12.76687101; T(10,765)=12.78401095; T(10,766)=12.80120604; T(10,767)=12.81845675; T(10,768)=12.83576358; T(10,769)=12.85312701; T(10,770)=12.87054755; T(10,771)=12.88802570; T(10,772)=12.90556198; T(10,773)=12.92315689; T(10,774)=12.94081098; T(10,775)=12.95852476; T(10,776)=12.97629878; T(10,777)=12.99413358; T(10,778)=13.01202971; T(10,779)=13.02998775; T(10,780)=13.04800824; T(10,781)=13.06609177; T(10,782)=13.08423892; T(10,783)=13.10245028; T(10,784)=13.12072645; T(10,785)=13.13906803; T(10,786)=13.15747564; T(10,787)=13.17594990; T(10,788)=13.19449144; T(10,789)=13.21310090; T(10,790)=13.23177893; T(10,791)=13.25052619; T(10,792)=13.26934334; T(10,793)=13.28823105; T(10,794)=13.30719002; T(10,795)=13.32622094; T(10,796)=13.34532452; T(10,797)=13.36450146; T(10,798)=13.38375250; T(10,799)=13.40307836; T(10,800)=13.42247980; T(10,801)=13.44195757; T(10,802)=13.46151245; T(10,803)=13.48114520; T(10,804)=13.50085663; T(10,805)=13.52064753; T(10,806)=13.54051871; T(10,807)=13.56047102; T(10,808)=13.58050527; T(10,809)=13.60062234; T(10,810)=13.62082308; T(10,811)=13.64110836; T(10,812)=13.66147909; T(10,813)=13.68193617; T(10,814)=13.70248052; T(10,815)=13.72311306; T(10,816)=13.74383476; T(10,817)=13.76464658; T(10,818)=13.78554949; T(10,819)=13.80654449; T(10,820)=13.82763260; T(10,821)=13.84881483; T(10,822)=13.87009224; T(10,823)=13.89146588; T(10,824)=13.91293683; T(10,825)=13.93450620; T(10,826)=13.95617510; T(10,827)=13.97794465; T(10,828)=13.99981602; T(10,829)=14.02179037; T(10,830)=14.04386891; T(10,831)=14.06605283; T(10,832)=14.08834338; T(10,833)=14.11074182; T(10,834)=14.13324941; T(10,835)=14.15586747; T(10,836)=14.17859730; T(10,837)=14.20144027; T(10,838)=14.22439774; T(10,839)=14.24747110; T(10,840)=14.27066178; T(10,841)=14.29397123; T(10,842)=14.31740091; T(10,843)=14.34095233; T(10,844)=14.36462702; T(10,845)=14.38842654; T(10,846)=14.41235247; T(10,847)=14.43640643; T(10,848)=14.46059006; T(10,849)=14.48490506; T(10,850)=14.50935312; T(10,851)=14.53393600; T(10,852)=14.55865547; T(10,853)=14.58351335; T(10,854)=14.60851150; T(10,855)=14.63365179; T(10,856)=14.65893616; T(10,857)=14.68436658; T(10,858)=14.70994504; T(10,859)=14.73567360; T(10,860)=14.76155435; T(10,861)=14.78758942; T(10,862)=14.81378098; T(10,863)=14.84013127; T(10,864)=14.86664256; T(10,865)=14.89331716; T(10,866)=14.92015745; T(10,867)=14.94716586; T(10,868)=14.97434485; T(10,869)=15.00169697; T(10,870)=15.02922480; T(10,871)=15.05693099; T(10,872)=15.08481824; T(10,873)=15.11288932; T(10,874)=15.14114708; T(10,875)=15.16959439; T(10,876)=15.19823425; T(10,877)=15.22706967; T(10,878)=15.25610377; T(10,879)=15.28533974; T(10,880)=15.31478083; T(10,881)=15.34443039; T(10,882)=15.37429183; T(10,883)=15.40436868; T(10,884)=15.43466452; T(10,885)=15.46518304; T(10,886)=15.49592802; T(10,887)=15.52690335; T(10,888)=15.55811299; T(10,889)=15.58956104; T(10,890)=15.62125168; T(10,891)=15.65318922; T(10,892)=15.68537808; T(10,893)=15.71782279; T(10,894)=15.75052802; T(10,895)=15.78349856; T(10,896)=15.81673933; T(10,897)=15.85025541; T(10,898)=15.88405199; T(10,899)=15.91813444; T(10,900)=15.95250828; T(10,901)=15.98717917; T(10,902)=16.02215297; T(10,903)=16.05743569; T(10,904)=16.09303353; T(10,905)=16.12895289; T(10,906)=16.16520035; T(10,907)=16.20178271; T(10,908)=16.23870697; T(10,909)=16.27598036; T(10,910)=16.31361036; T(10,911)=16.35160466; T(10,912)=16.38997123; T(10,913)=16.42871830; T(10,914)=16.46785436; T(10,915)=16.50738822; T(10,916)=16.54732898; T(10,917)=16.58768604; T(10,918)=16.62846915; T(10,919)=16.66968842; T(10,920)=16.71135430; T(10,921)=16.75347765; T(10,922)=16.79606970; T(10,923)=16.83914214; T(10,924)=16.88270707; T(10,925)=16.92677708; T(10,926)=16.97136525; T(10,927)=17.01648517; T(10,928)=17.06215098; T(10,929)=17.10837739; T(10,930)=17.15517973; T(10,931)=17.20257397; T(10,932)=17.25057674; T(10,933)=17.29920541; T(10,934)=17.34847809; T(10,935)=17.39841372; T(10,936)=17.44903207; T(10,937)=17.50035382; T(10,938)=17.55240063; T(10,939)=17.60519515; T(10,940)=17.65876116; T(10,941)=17.71312357; T(10,942)=17.76830853; T(10,943)=17.82434352; T(10,944)=17.88125743; T(10,945)=17.93908067; T(10,946)=17.99784525; T(10,947)=18.05758492; T(10,948)=18.11833532; T(10,949)=18.18013406; T(10,950)=18.24302093; T(10,951)=18.30703805; T(10,952)=18.37223005; T(10,953)=18.43864428; T(10,954)=18.50633104; T(10,955)=18.57534383; T(10,956)=18.64573962; T(10,957)=18.71757918; T(10,958)=18.79092740; T(10,959)=18.86585369; T(10,960)=18.94243241; T(10,961)=19.02074335; T(10,962)=19.10087228; T(10,963)=19.18291155; T(10,964)=19.26696082; T(10,965)=19.35312780; T(10,966)=19.44152922; T(10,967)=19.53229177; T(10,968)=19.62555340; T(10,969)=19.72146456; T(10,970)=19.82018990; T(10,971)=19.92191001; T(10,972)=20.02682363; T(10,973)=20.13515015; T(10,974)=20.24713259; T(10,975)=20.36304113; T(10,976)=20.48317735; T(10,977)=20.60787929; T(10,978)=20.73752761; T(10,979)=20.87255314; T(10,980)=21.01344608; T(10,981)=21.16076754; T(10,982)=21.31516393; T(10,983)=21.47738530; T(10,984)=21.64830882; T(10,985)=21.82896937; T(10,986)=22.02059999; T(10,987)=22.22468610; T(10,988)=22.44303984; T(10,989)=22.67790394; T(10,990)=22.93210061; T(10,991)=23.20925116; T(10,992)=23.51411084; T(10,993)=23.85310050; T(10,994)=24.23519263; T(10,995)=24.67348033; T(10,996)=25.18817957; T(10,997)=25.81299977; T(10,998)=26.61078512; T(10,999)=27.72164723; T(10,1000)=29.58829845; T(10,1001)=35.56401394; T(10,1002)=41.29615797; end; % Check arguments if (dof > 0) & (dof <= length(DOFS)), if (alpha >= min(LEVELS)) & (alpha <= max(LEVELS)), % Determine lookup indices of alpha % Find start index in array of levels [mindiff,imin] = min(abs(LEVELS-alpha)); % Set correct start index and iterate i = imin-1*(imin>1); found = 0; while (i < length(LEVELS)) & ~found, diff1 = LEVELS(i) - alpha; diff2 = LEVELS(i+1) - alpha; if sign(diff1) == 0, x = T(dof,i); found = 1; elseif sign(diff2) == 0, x = T(dof,i+1); found = 1; elseif sign(diff1)*sign(diff2) < 0, x1 = T(dof,i); x2 = T(dof,i+1); % Interpolate linearly x = x2 - (LEVELS(i+1)-alpha)*(x2-x1)/(LEVELS(i+1)-LEVELS(i)); found = 1; end; i = i + 1; end; else error('chi2invtable: Unsupported alpha level (either too small or too big).'); end; else error('chi2invtable: Unsupported number of degrees of freedom.'); end;
github
Rookfighter/robmap-ws17-18-master
drawellipse.m
.m
robmap-ws17-18-master/ex05/octave/tools/drawellipse.m
994
utf_8
c0100a4cf263e6e87026b3214221e84d
%DRAWELLIPSE Draw ellipse. % DRAWELLIPSE(X,A,B,COLOR) draws an ellipse at X = [x y theta] % with half axes A and B. Theta is the inclination angle of A, % regardless if A is smaller or greater than B. COLOR is a % [r g b]-vector or a color string such as 'r' or 'g'. % % H = DRAWELLIPSE(...) returns the graphic handle H. % % See also DRAWPROBELLIPSE. % v.1.0-v.1.1, Aug.97-Jan.03, Kai Arras, ASL-EPFL % v.1.2, 03.12.03, Kai Arras, CAS-KTH: (x,a,b) interface function h = drawellipse(x,a,b,color); % Constants NPOINTS = 100; % point density or resolution % Compose point vector ivec = 0:2*pi/NPOINTS:2*pi; % index vector p(1,:) = a*cos(ivec); % 2 x n matrix which p(2,:) = b*sin(ivec); % hold ellipse points % Translate and rotate xo = x(1); yo = x(2); angle = x(3); R = [cos(angle) -sin(angle); sin(angle) cos(angle)]; T = [xo; yo]*ones(1,length(ivec)); p = R*p + T; % Plot h = plot(p(1,:),p(2,:),'Color',color, 'linewidth', 2);
github
jagmoreira/machine-learning-coursera-master
submit.m
.m
machine-learning-coursera-master/machine-learning-ex2/ex2/submit.m
1,605
utf_8
9b63d386e9bd7bcca66b1a3d2fa37579
function submit() addpath('./lib'); conf.assignmentSlug = 'logistic-regression'; conf.itemName = 'Logistic Regression'; conf.partArrays = { ... { ... '1', ... { 'sigmoid.m' }, ... 'Sigmoid Function', ... }, ... { ... '2', ... { 'costFunction.m' }, ... 'Logistic Regression Cost', ... }, ... { ... '3', ... { 'costFunction.m' }, ... 'Logistic Regression Gradient', ... }, ... { ... '4', ... { 'predict.m' }, ... 'Predict', ... }, ... { ... '5', ... { 'costFunctionReg.m' }, ... 'Regularized Logistic Regression Cost', ... }, ... { ... '6', ... { 'costFunctionReg.m' }, ... 'Regularized Logistic Regression Gradient', ... }, ... }; conf.output = @output; submitWithConfiguration(conf); end function out = output(partId, auxstring) % Random Test Cases X = [ones(20,1) (exp(1) * sin(1:1:20))' (exp(0.5) * cos(1:1:20))']; y = sin(X(:,1) + X(:,2)) > 0; if partId == '1' out = sprintf('%0.5f ', sigmoid(X)); elseif partId == '2' out = sprintf('%0.5f ', costFunction([0.25 0.5 -0.5]', X, y)); elseif partId == '3' [cost, grad] = costFunction([0.25 0.5 -0.5]', X, y); out = sprintf('%0.5f ', grad); elseif partId == '4' out = sprintf('%0.5f ', predict([0.25 0.5 -0.5]', X)); elseif partId == '5' out = sprintf('%0.5f ', costFunctionReg([0.25 0.5 -0.5]', X, y, 0.1)); elseif partId == '6' [cost, grad] = costFunctionReg([0.25 0.5 -0.5]', X, y, 0.1); out = sprintf('%0.5f ', grad); end end
github
jagmoreira/machine-learning-coursera-master
submitWithConfiguration.m
.m
machine-learning-coursera-master/machine-learning-ex2/ex2/lib/submitWithConfiguration.m
5,562
utf_8
4ac719ea6570ac228ea6c7a9c919e3f5
function submitWithConfiguration(conf) addpath('./lib/jsonlab'); parts = parts(conf); fprintf('== Submitting solutions | %s...\n', conf.itemName); tokenFile = 'token.mat'; if exist(tokenFile, 'file') load(tokenFile); [email token] = promptToken(email, token, tokenFile); else [email token] = promptToken('', '', tokenFile); end if isempty(token) fprintf('!! Submission Cancelled\n'); return end try response = submitParts(conf, email, token, parts); catch e = lasterror(); fprintf('\n!! Submission failed: %s\n', e.message); fprintf('\n\nFunction: %s\nFileName: %s\nLineNumber: %d\n', ... e.stack(1,1).name, e.stack(1,1).file, e.stack(1,1).line); fprintf('\nPlease correct your code and resubmit.\n'); return end if isfield(response, 'errorMessage') fprintf('!! Submission failed: %s\n', response.errorMessage); elseif isfield(response, 'errorCode') fprintf('!! Submission failed: %s\n', response.message); else showFeedback(parts, response); save(tokenFile, 'email', 'token'); end end function [email token] = promptToken(email, existingToken, tokenFile) if (~isempty(email) && ~isempty(existingToken)) prompt = sprintf( ... 'Use token from last successful submission (%s)? (Y/n): ', ... email); reenter = input(prompt, 's'); if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y') token = existingToken; return; else delete(tokenFile); end end email = input('Login (email address): ', 's'); token = input('Token: ', 's'); end function isValid = isValidPartOptionIndex(partOptions, i) isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions)); end function response = submitParts(conf, email, token, parts) body = makePostBody(conf, email, token, parts); submissionUrl = submissionUrl(); responseBody = getResponse(submissionUrl, body); jsonResponse = validateResponse(responseBody); response = loadjson(jsonResponse); end function body = makePostBody(conf, email, token, parts) bodyStruct.assignmentSlug = conf.assignmentSlug; bodyStruct.submitterEmail = email; bodyStruct.secret = token; bodyStruct.parts = makePartsStruct(conf, parts); opt.Compact = 1; body = savejson('', bodyStruct, opt); end function partsStruct = makePartsStruct(conf, parts) for part = parts partId = part{:}.id; fieldName = makeValidFieldName(partId); outputStruct.output = conf.output(partId); partsStruct.(fieldName) = outputStruct; end end function [parts] = parts(conf) parts = {}; for partArray = conf.partArrays part.id = partArray{:}{1}; part.sourceFiles = partArray{:}{2}; part.name = partArray{:}{3}; parts{end + 1} = part; end end function showFeedback(parts, response) fprintf('== \n'); fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback'); fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------'); for part = parts score = ''; partFeedback = ''; partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id)); partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id)); score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore); fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback); end evaluation = response.evaluation; totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore); fprintf('== --------------------------------\n'); fprintf('== %43s | %9s | %-s\n', '', totalScore, ''); fprintf('== \n'); end % use urlread or curl to send submit results to the grader and get a response function response = getResponse(url, body) % try using urlread() and a secure connection params = {'jsonBody', body}; [response, success] = urlread(url, 'post', params); if (success == 0) % urlread didn't work, try curl & the peer certificate patch if ispc % testing note: use 'jsonBody =' for a test case json_command = sprintf('echo jsonBody=%s | curl -k -X POST -d @- %s', body, url); else % it's linux/OS X, so use the other form json_command = sprintf('echo ''jsonBody=%s'' | curl -k -X POST -d @- %s', body, url); end % get the response body for the peer certificate patch method [code, response] = system(json_command); % test the success code if (code ~= 0) fprintf('[error] submission with curl() was not successful\n'); end end end % validate the grader's response function response = validateResponse(resp) % test if the response is json or an HTML page isJson = length(resp) > 0 && resp(1) == '{'; isHtml = findstr(lower(resp), '<html'); if (isJson) response = resp; elseif (isHtml) % the response is html, so it's probably an error message printHTMLContents(resp); error('Grader response is an HTML message'); else error('Grader sent no response'); end end % parse a HTML response and print it's contents function printHTMLContents(response) strippedResponse = regexprep(response, '<[^>]+>', ' '); strippedResponse = regexprep(strippedResponse, '[\t ]+', ' '); fprintf(strippedResponse); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Service configuration % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function submissionUrl = submissionUrl() submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1'; end
github
jagmoreira/machine-learning-coursera-master
savejson.m
.m
machine-learning-coursera-master/machine-learning-ex2/ex2/lib/jsonlab/savejson.m
17,462
utf_8
861b534fc35ffe982b53ca3ca83143bf
function json=savejson(rootname,obj,varargin) % % json=savejson(rootname,obj,filename) % or % json=savejson(rootname,obj,opt) % json=savejson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a JSON (JavaScript % Object Notation) string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09 % % $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array). % filename: a string for the file name to save the output JSON data. % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.FloatFormat ['%.10g'|string]: format to show each numeric element % of a 1D/2D array; % opt.ArrayIndent [1|0]: if 1, output explicit data array with % precedent indentation; if 0, no indentation % opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [0|1]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern % to represent +/-Inf. The matched pattern is '([-+]*)Inf' % and $1 represents the sign. For those who want to use % 1e999 to represent Inf, they can set opt.Inf to '$11e999' % opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern % to represent NaN % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSONP='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode. % opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs) % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a string in the JSON format (see http://json.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % savejson('jmesh',jsonmesh) % savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); if(jsonopt('Compact',0,opt)==1) whitespaces=struct('tab','','newline','','sep',','); end if(~isfield(opt,'whitespaces_')) opt.whitespaces_=whitespaces; end nl=whitespaces.newline; json=obj2json(rootname,obj,rootlevel,opt); if(rootisarray) json=sprintf('%s%s',json,nl); else json=sprintf('{%s%s%s}\n',nl,json,nl); end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=sprintf('%s(%s);%s',jsonp,json,nl); end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) if(jsonopt('SaveBinary',0,opt)==1) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); else fid = fopen(opt.FileName, 'wt'); fwrite(fid,json,'char'); end fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2json(name,item,level,varargin) if(iscell(item)) txt=cell2json(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2json(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2json(name,item,level,varargin{:}); else txt=mat2json(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2json(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); nl=ws.newline; if(len>1) if(~isempty(name)) txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name=''; else txt=sprintf('%s[%s',padding0,nl); end elseif(len==0) if(~isempty(name)) txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name=''; else txt=sprintf('%s[]',padding0); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:})); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end %if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=struct2json(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1)); nl=ws.newline; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding0,nl); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl); else txt=sprintf('%s%s{%s',txt,padding1,nl); end if(~isempty(names)) for e=1:length(names) txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})); if(e<length(names)) txt=sprintf('%s%s',txt,','); end txt=sprintf('%s%s',txt,nl); end end txt=sprintf('%s%s}',txt,padding1); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=str2json(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding1,nl); end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len if(isoct) val=regexprep(item(e,:),'\\','\\'); val=regexprep(val,'"','\"'); val=regexprep(val,'^"','\"'); else val=regexprep(item(e,:),'\\','\\\\'); val=regexprep(val,'"','\\"'); val=regexprep(val,'^"','\\"'); end val=escapejsonstring(val); if(len==1) obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"']; if(isempty(name)) obj=['"',val,'"']; end txt=sprintf('%s%s%s%s',txt,padding1,obj); else txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']); end if(e==len) sep=''; end txt=sprintf('%s%s',txt,sep); end if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end %%------------------------------------------------------------------------- function txt=mat2json(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:})) if(isempty(name)) txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); else txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); end else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0) numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']',''); else numtxt=matdata2json(item,level+1,varargin{:}); end if(isempty(name)) txt=sprintf('%s%s',padding1,numtxt); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); else txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); end end return; end dataformat='%s%s%s%s%s'; if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep); if(size(item,1)==1) % Row vector, store only column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([iy(:),data'],level+2,varargin{:}), nl); elseif(size(item,2)==1) % Column vector, store only row indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,data],level+2,varargin{:}), nl); else % General case, store row and column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,iy,data],level+2,varargin{:}), nl); end else if(isreal(item)) txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json(item(:)',level+2,varargin{:}), nl); else txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl); end end txt=sprintf('%s%s%s',txt,padding1,'}'); %%------------------------------------------------------------------------- function txt=matdata2json(mat,level,varargin) ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); tab=ws.tab; nl=ws.newline; if(size(mat,1)==1) pre=''; post=''; level=level-1; else pre=sprintf('[%s',nl); post=sprintf('%s%s]',nl,repmat(tab,1,level-1)); end if(isempty(mat)) txt='null'; return; end floatformat=jsonopt('FloatFormat','%.10g',varargin{:}); %if(numel(mat)>1) formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]]; %else % formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]]; %end if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1) formatstr=[repmat(tab,1,level) formatstr]; end txt=sprintf(formatstr,mat'); txt(end-length(nl):end)=[]; if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1) txt=regexprep(txt,'1','true'); txt=regexprep(txt,'0','false'); end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],\n[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end txt=[pre txt post]; if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function newstr=escapejsonstring(str) newstr=str; isoct=exist('OCTAVE_VERSION','builtin'); if(isoct) vv=sscanf(OCTAVE_VERSION,'%f'); if(vv(1)>=3.8) isoct=0; end end if(isoct) escapechars={'\a','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},escapechars{i}); end else escapechars={'\a','\b','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\')); end end
github
jagmoreira/machine-learning-coursera-master
loadjson.m
.m
machine-learning-coursera-master/machine-learning-ex2/ex2/lib/jsonlab/loadjson.m
18,732
ibm852
ab98cf173af2d50bbe8da4d6db252a20
function data = loadjson(fname,varargin) % % data=loadjson(fname,opt) % or % data=loadjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09, including previous works from % % Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713 % created on 2009/11/02 % François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393 % created on 2009/03/22 % Joel Feenstra: % http://www.mathworks.com/matlabcentral/fileexchange/20565 % created on 2008/07/03 % % $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a JSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.FastArrayParser [1|0 or integer]: if set to 1, use a % speed-optimized array parser when loading an % array object. The fast array parser may % collapse block arrays into a single large % array similar to rules defined in cell2mat; 0 to % use a legacy parser; if set to a larger-than-1 % value, this option will specify the minimum % dimension to enable the fast array parser. For % example, if the input is a 3D array, setting % FastArrayParser to 1 will return a 3D array; % setting to 2 will return a cell array of 2D % arrays; setting to 3 will return to a 2D cell % array of 1D vectors; setting to 4 will return a % 3D cell array. % opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}') % dat=loadjson(['examples' filesep 'example1.json']) % dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); if(jsonopt('ShowProgress',0,opt)==1) opt.progressbar_=waitbar(0,'loading ...'); end jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end if(isfield(opt,'progressbar_')) close(opt.progressbar_); end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=data(j).x0x5F_ArraySize_; if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; if next_char ~= '}' while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end parse_char(':'); val = parse_value(varargin{:}); eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' break; end parse_char(','); end end parse_char('}'); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim2=[]; arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:}); pbar=jsonopt('progressbar_',-1,varargin{:}); if next_char ~= ']' if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:})) [endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos); arraystr=['[' inStr(pos:endpos)]; arraystr=regexprep(arraystr,'"_NaN_"','NaN'); arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf'); arraystr(arraystr==sprintf('\n'))=[]; arraystr(arraystr==sprintf('\r'))=[]; %arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D astr=inStr((e1l+1):(e1r-1)); astr=regexprep(astr,'"_NaN_"','NaN'); astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf'); astr(astr==sprintf('\n'))=[]; astr(astr==sprintf('\r'))=[]; astr(astr==' ')=''; if(isempty(find(astr=='[', 1))) % array is 2D dim2=length(sscanf(astr,'%f,',[1 inf])); end else % array is 1D astr=arraystr(2:end-1); astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]); if(nextidx>=length(astr)-1) object=obj; pos=endpos; parse_char(']'); return; end end if(~isempty(dim2)) astr=arraystr; astr(astr=='[')=''; astr(astr==']')=''; astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf); if(nextidx>=length(astr)-1) object=reshape(obj,dim2,numel(obj)/dim2)'; pos=endpos; parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end return; end end arraystr=regexprep(arraystr,'\]\s*,','];'); else arraystr='['; end try if(isoct && regexp(arraystr,'"','once')) error('Octave eval can produce empty cells for JSON-like input'); end object=eval(arraystr); pos=endpos; catch while 1 newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1); val = parse_value(newopt); object{end+1} = val; if next_char == ']' break; end parse_char(','); end end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr len esc index_esc len_esc % len, ns = length(inStr), keyboard if inStr(pos) ~= '"' error_pos('String starting with " expected at position %d'); else pos = pos + 1; end str = ''; while pos <= len while index_esc <= len_esc && esc(index_esc) < pos index_esc = index_esc + 1; end if index_esc > len_esc str = [str inStr(pos:len)]; pos = len + 1; break; else str = [str inStr(pos:esc(index_esc)-1)]; pos = esc(index_esc); end nstr = length(str); switch inStr(pos) case '"' pos = pos + 1; if(~isempty(str)) if(strcmp(str,'_Inf_')) str=Inf; elseif(strcmp(str,'-_Inf_')) str=-Inf; elseif(strcmp(str,'_NaN_')) str=NaN; end end return; case '\' if pos+1 > len error_pos('End of file reached right after escape character'); end pos = pos + 1; switch inStr(pos) case {'"' '\' '/'} str(nstr+1) = inStr(pos); pos = pos + 1; case {'b' 'f' 'n' 'r' 't'} str(nstr+1) = sprintf(['\' inStr(pos)]); pos = pos + 1; case 'u' if pos+4 > len error_pos('End of file reached in escaped unicode character'); end str(nstr+(1:6)) = inStr(pos-1:pos+4); pos = pos + 5; end otherwise % should never happen str(nstr+1) = inStr(pos), keyboard pos = pos + 1; end end error_pos('End of file while expecting end of inStr'); %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct currstr=inStr(pos:end); numstr=0; if(isoct~=0) numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end'); [num, one] = sscanf(currstr, '%f', 1); delta=numstr+1; else [num, one, err, delta] = sscanf(currstr, '%f', 1); if ~isempty(err) error_pos('Error reading number at position %d'); end end pos = pos + delta-1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; pbar=jsonopt('progressbar_',-1,varargin{:}); if(pbar>0) waitbar(pos/len,pbar,'loading ...'); end switch(inStr(pos)) case '"' val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'-','0','1','2','3','4','5','6','7','8','9'} val = parse_number(varargin{:}); return; case 't' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true') val = true; pos = pos + 4; return; end case 'f' if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false') val = false; pos = pos + 5; return; end case 'n' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null') val = []; pos = pos + 4; return; end end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
jagmoreira/machine-learning-coursera-master
loadubjson.m
.m
machine-learning-coursera-master/machine-learning-ex2/ex2/lib/jsonlab/loadubjson.m
15,574
utf_8
5974e78e71b81b1e0f76123784b951a4
function data = loadubjson(fname,varargin) % % data=loadubjson(fname,opt) % or % data=loadubjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/01 % % $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a UBJSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.IntEndian [B|L]: specify the endianness of the integer fields % in the UBJSON input data. B - Big-Endian format for % integers (as required in the UBJSON specification); % L - input integer fields are in Little-Endian order. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % obj=struct('string','value','array',[1 2 3]); % ubjdata=saveubjson('obj',obj); % dat=loadubjson(ubjdata) % dat=loadubjson(['examples' filesep 'example1.ubj']) % dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); fileendian=upper(jsonopt('IntEndian','B',opt)); [os,maxelem,systemendian]=computer; jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end %% function newdata=parse_collection(id,data,obj) if(jsoncount>0 && exist('data','var')) if(~iscell(data)) newdata=cell(1); newdata{1}=data; data=newdata; end end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=double(data(j).x0x5F_ArraySize_); if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); % TODO pos=pos+2; end if(next_char == '#') pos=pos+1; count=double(parse_number()); end if next_char ~= '}' num=0; while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end %parse_char(':'); val = parse_value(varargin{:}); num=num+1; eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' || (count>=0 && num>=count) break; end %parse_char(','); end end if(count==-1) parse_char('}'); end %%------------------------------------------------------------------------- function [cid,len]=elem_info(type) id=strfind('iUIlLdD',type); dataclass={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; if(id>0) cid=dataclass{id}; len=bytelen(id); else error_pos('unsupported type at position %d'); end %%------------------------------------------------------------------------- function [data adv]=parse_block(type,count,varargin) global pos inStr isoct fileendian systemendian [cid,len]=elem_info(type); datastr=inStr(pos:pos+len*count-1); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end id=strfind('iUIlLdD',type); if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,cid)); end data=typecast(newdata,cid); adv=double(len*count); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim=[]; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); pos=pos+2; end if(next_char == '#') pos=pos+1; if(next_char=='[') dim=parse_array(varargin{:}); count=prod(double(dim)); else count=double(parse_number()); end end if(~isempty(type)) if(count>=0) [object adv]=parse_block(type,count,varargin{:}); if(~isempty(dim)) object=reshape(object,dim); end pos=pos+adv; return; else endpos=matching_bracket(inStr,pos); [cid,len]=elem_info(type); count=(endpos-pos)/len; [object adv]=parse_block(type,count,varargin{:}); pos=pos+adv; parse_char(']'); return; end end if next_char ~= ']' while 1 val = parse_value(varargin{:}); object{end+1} = val; if next_char == ']' break; end %parse_char(','); end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end if(count==-1) parse_char(']'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr esc index_esc len_esc % len, ns = length(inStr), keyboard type=inStr(pos); if type ~= 'S' && type ~= 'C' && type ~= 'H' error_pos('String starting with S expected at position %d'); else pos = pos + 1; end if(type == 'C') str=inStr(pos); pos=pos+1; return; end bytelen=double(parse_number()); if(length(inStr)>=pos+bytelen-1) str=inStr(pos:pos+bytelen-1); pos=pos+bytelen; else error_pos('End of file while expecting end of inStr'); end %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct fileendian systemendian id=strfind('iUIlLdD',inStr(pos)); if(isempty(id)) error_pos('expecting a number at position %d'); end type={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; datastr=inStr(pos+1:pos+bytelen(id)); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,type{id})); end num=typecast(newdata,type{id}); pos = pos + bytelen(id)+1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; switch(inStr(pos)) case {'S','C','H'} val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'i','U','I','l','L','d','D'} val = parse_number(varargin{:}); return; case 'T' val = true; pos = pos + 1; return; case 'F' val = false; pos = pos + 1; return; case {'Z','N'} val = []; pos = pos + 1; return; end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos e1l e1r maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
jagmoreira/machine-learning-coursera-master
saveubjson.m
.m
machine-learning-coursera-master/machine-learning-ex2/ex2/lib/jsonlab/saveubjson.m
16,123
utf_8
61d4f51010aedbf97753396f5d2d9ec0
function json=saveubjson(rootname,obj,varargin) % % json=saveubjson(rootname,obj,filename) % or % json=saveubjson(rootname,obj,opt) % json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a Universal % Binary JSON (UBJSON) binary string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/17 % % $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array) % filename: a string for the file name to save the output UBJSON data % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [1|0]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSON='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a binary string in the UBJSON format (see http://ubjson.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % saveubjson('jsonmesh',jsonmesh) % saveubjson('jsonmesh',jsonmesh,'meshdata.ubj') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end json=obj2ubjson(rootname,obj,rootlevel,opt); if(~rootisarray) json=['{' json '}']; end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=[jsonp '(' json ')']; end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2ubjson(name,item,level,varargin) if(iscell(item)) txt=cell2ubjson(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2ubjson(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2ubjson(name,item,level,varargin{:}); else txt=mat2ubjson(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2ubjson(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); % let's handle 1D cell first if(len>1) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) '[']; name=''; else txt='['; end elseif(len==0) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) 'Z']; name=''; else txt='Z'; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})]; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=struct2ubjson(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=[txt S_(checkname(name,varargin{:})) '{']; else txt=[txt '{']; end if(~isempty(names)) for e=1:length(names) txt=[txt obj2ubjson(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})]; end end txt=[txt '}']; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=str2ubjson(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len val=item(e,:); if(len==1) obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),'']; if(isempty(name)) obj=['',S_(val),'']; end txt=[txt,'',obj]; else txt=[txt,'',['',S_(val),'']]; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=mat2ubjson(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) || jsonopt('ArrayToStruct',0,varargin{:})) cid=I_(uint32(max(size(item)))); if(isempty(name)) txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ]; else if(isempty(item)) txt=[S_(checkname(name,varargin{:})),'Z']; return; else txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))]; end end else if(isempty(name)) txt=matdata2ubjson(item,level+1,varargin{:}); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']',''); txt=[S_(checkname(name,varargin{:})) numtxt]; else txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})]; end end return; end if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=[txt,S_('_ArrayIsComplex_'),'T']; end txt=[txt,S_('_ArrayIsSparse_'),'T']; if(size(item,1)==1) % Row vector, store only column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([iy(:),data'],level+2,varargin{:})]; elseif(size(item,2)==1) % Column vector, store only row indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,data],level+2,varargin{:})]; else % General case, store row and column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,iy,data],level+2,varargin{:})]; end else if(isreal(item)) txt=[txt,S_('_ArrayData_'),... matdata2ubjson(item(:)',level+2,varargin{:})]; else txt=[txt,S_('_ArrayIsComplex_'),'T']; txt=[txt,S_('_ArrayData_'),... matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})]; end end txt=[txt,'}']; %%------------------------------------------------------------------------- function txt=matdata2ubjson(mat,level,varargin) if(isempty(mat)) txt='Z'; return; end if(size(mat,1)==1) level=level-1; end type=''; hasnegtive=(mat<0); if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0))) if(isempty(hasnegtive)) if(max(mat(:))<=2^8) type='U'; end end if(isempty(type)) % todo - need to consider negative ones separately id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]); if(isempty(find(id))) error('high-precision data is not yet supported'); end key='iIlL'; type=key(find(id)); end txt=[I_a(mat(:),type,size(mat))]; elseif(islogical(mat)) logicalval='FT'; if(numel(mat)==1) txt=logicalval(mat+1); else txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')]; end else if(numel(mat)==1) txt=['[' D_(mat) ']']; else txt=D_a(mat(:),'D',size(mat)); end end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function val=S_(str) if(length(str)==1) val=['C' str]; else val=['S' I_(int32(length(str))) str]; end %%------------------------------------------------------------------------- function val=I_(num) if(~isinteger(num)) error('input is not an integer'); end if(num>=0 && num<255) val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')]; return; end key='iIlL'; cid={'int8','int16','int32','int64'}; for i=1:4 if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1))) val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')]; return; end end error('unsupported integer'); %%------------------------------------------------------------------------- function val=D_(num) if(~isfloat(num)) error('input is not a float'); end if(isa(num,'single')) val=['d' data2byte(num,'uint8')]; else val=['D' data2byte(num,'uint8')]; end %%------------------------------------------------------------------------- function data=I_a(num,type,dim,format) id=find(ismember('iUIlL',type)); if(id==0) error('unsupported integer array'); end % based on UBJSON specs, all integer types are stored in big endian format if(id==1) data=data2byte(swapbytes(int8(num)),'uint8'); blen=1; elseif(id==2) data=data2byte(swapbytes(uint8(num)),'uint8'); blen=1; elseif(id==3) data=data2byte(swapbytes(int16(num)),'uint8'); blen=2; elseif(id==4) data=data2byte(swapbytes(int32(num)),'uint8'); blen=4; elseif(id==5) data=data2byte(swapbytes(int64(num)),'uint8'); blen=8; end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/blen)) data(:)']; end data=['[' data(:)']; else data=reshape(data,blen,numel(data)/blen); data(2:blen+1,:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function data=D_a(num,type,dim,format) id=find(ismember('dD',type)); if(id==0) error('unsupported float array'); end if(id==1) data=data2byte(single(num),'uint8'); elseif(id==2) data=data2byte(double(num),'uint8'); end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)']; end data=['[' data]; else data=reshape(data,(id*4),length(data)/(id*4)); data(2:(id*4+1),:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function bytes=data2byte(varargin) bytes=typecast(varargin{:}); bytes=bytes(:)';
github
jagmoreira/machine-learning-coursera-master
submit.m
.m
machine-learning-coursera-master/machine-learning-ex4/ex4/submit.m
1,635
utf_8
ae9c236c78f9b5b09db8fbc2052990fc
function submit() addpath('./lib'); conf.assignmentSlug = 'neural-network-learning'; conf.itemName = 'Neural Networks Learning'; conf.partArrays = { ... { ... '1', ... { 'nnCostFunction.m' }, ... 'Feedforward and Cost Function', ... }, ... { ... '2', ... { 'nnCostFunction.m' }, ... 'Regularized Cost Function', ... }, ... { ... '3', ... { 'sigmoidGradient.m' }, ... 'Sigmoid Gradient', ... }, ... { ... '4', ... { 'nnCostFunction.m' }, ... 'Neural Network Gradient (Backpropagation)', ... }, ... { ... '5', ... { 'nnCostFunction.m' }, ... 'Regularized Gradient', ... }, ... }; conf.output = @output; submitWithConfiguration(conf); end function out = output(partId, auxstring) % Random Test Cases X = reshape(3 * sin(1:1:30), 3, 10); Xm = reshape(sin(1:32), 16, 2) / 5; ym = 1 + mod(1:16,4)'; t1 = sin(reshape(1:2:24, 4, 3)); t2 = cos(reshape(1:2:40, 4, 5)); t = [t1(:) ; t2(:)]; if partId == '1' [J] = nnCostFunction(t, 2, 4, 4, Xm, ym, 0); out = sprintf('%0.5f ', J); elseif partId == '2' [J] = nnCostFunction(t, 2, 4, 4, Xm, ym, 1.5); out = sprintf('%0.5f ', J); elseif partId == '3' out = sprintf('%0.5f ', sigmoidGradient(X)); elseif partId == '4' [J, grad] = nnCostFunction(t, 2, 4, 4, Xm, ym, 0); out = sprintf('%0.5f ', J); out = [out sprintf('%0.5f ', grad)]; elseif partId == '5' [J, grad] = nnCostFunction(t, 2, 4, 4, Xm, ym, 1.5); out = sprintf('%0.5f ', J); out = [out sprintf('%0.5f ', grad)]; end end
github
jagmoreira/machine-learning-coursera-master
submitWithConfiguration.m
.m
machine-learning-coursera-master/machine-learning-ex4/ex4/lib/submitWithConfiguration.m
5,562
utf_8
4ac719ea6570ac228ea6c7a9c919e3f5
function submitWithConfiguration(conf) addpath('./lib/jsonlab'); parts = parts(conf); fprintf('== Submitting solutions | %s...\n', conf.itemName); tokenFile = 'token.mat'; if exist(tokenFile, 'file') load(tokenFile); [email token] = promptToken(email, token, tokenFile); else [email token] = promptToken('', '', tokenFile); end if isempty(token) fprintf('!! Submission Cancelled\n'); return end try response = submitParts(conf, email, token, parts); catch e = lasterror(); fprintf('\n!! Submission failed: %s\n', e.message); fprintf('\n\nFunction: %s\nFileName: %s\nLineNumber: %d\n', ... e.stack(1,1).name, e.stack(1,1).file, e.stack(1,1).line); fprintf('\nPlease correct your code and resubmit.\n'); return end if isfield(response, 'errorMessage') fprintf('!! Submission failed: %s\n', response.errorMessage); elseif isfield(response, 'errorCode') fprintf('!! Submission failed: %s\n', response.message); else showFeedback(parts, response); save(tokenFile, 'email', 'token'); end end function [email token] = promptToken(email, existingToken, tokenFile) if (~isempty(email) && ~isempty(existingToken)) prompt = sprintf( ... 'Use token from last successful submission (%s)? (Y/n): ', ... email); reenter = input(prompt, 's'); if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y') token = existingToken; return; else delete(tokenFile); end end email = input('Login (email address): ', 's'); token = input('Token: ', 's'); end function isValid = isValidPartOptionIndex(partOptions, i) isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions)); end function response = submitParts(conf, email, token, parts) body = makePostBody(conf, email, token, parts); submissionUrl = submissionUrl(); responseBody = getResponse(submissionUrl, body); jsonResponse = validateResponse(responseBody); response = loadjson(jsonResponse); end function body = makePostBody(conf, email, token, parts) bodyStruct.assignmentSlug = conf.assignmentSlug; bodyStruct.submitterEmail = email; bodyStruct.secret = token; bodyStruct.parts = makePartsStruct(conf, parts); opt.Compact = 1; body = savejson('', bodyStruct, opt); end function partsStruct = makePartsStruct(conf, parts) for part = parts partId = part{:}.id; fieldName = makeValidFieldName(partId); outputStruct.output = conf.output(partId); partsStruct.(fieldName) = outputStruct; end end function [parts] = parts(conf) parts = {}; for partArray = conf.partArrays part.id = partArray{:}{1}; part.sourceFiles = partArray{:}{2}; part.name = partArray{:}{3}; parts{end + 1} = part; end end function showFeedback(parts, response) fprintf('== \n'); fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback'); fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------'); for part = parts score = ''; partFeedback = ''; partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id)); partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id)); score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore); fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback); end evaluation = response.evaluation; totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore); fprintf('== --------------------------------\n'); fprintf('== %43s | %9s | %-s\n', '', totalScore, ''); fprintf('== \n'); end % use urlread or curl to send submit results to the grader and get a response function response = getResponse(url, body) % try using urlread() and a secure connection params = {'jsonBody', body}; [response, success] = urlread(url, 'post', params); if (success == 0) % urlread didn't work, try curl & the peer certificate patch if ispc % testing note: use 'jsonBody =' for a test case json_command = sprintf('echo jsonBody=%s | curl -k -X POST -d @- %s', body, url); else % it's linux/OS X, so use the other form json_command = sprintf('echo ''jsonBody=%s'' | curl -k -X POST -d @- %s', body, url); end % get the response body for the peer certificate patch method [code, response] = system(json_command); % test the success code if (code ~= 0) fprintf('[error] submission with curl() was not successful\n'); end end end % validate the grader's response function response = validateResponse(resp) % test if the response is json or an HTML page isJson = length(resp) > 0 && resp(1) == '{'; isHtml = findstr(lower(resp), '<html'); if (isJson) response = resp; elseif (isHtml) % the response is html, so it's probably an error message printHTMLContents(resp); error('Grader response is an HTML message'); else error('Grader sent no response'); end end % parse a HTML response and print it's contents function printHTMLContents(response) strippedResponse = regexprep(response, '<[^>]+>', ' '); strippedResponse = regexprep(strippedResponse, '[\t ]+', ' '); fprintf(strippedResponse); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Service configuration % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function submissionUrl = submissionUrl() submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1'; end
github
jagmoreira/machine-learning-coursera-master
savejson.m
.m
machine-learning-coursera-master/machine-learning-ex4/ex4/lib/jsonlab/savejson.m
17,462
utf_8
861b534fc35ffe982b53ca3ca83143bf
function json=savejson(rootname,obj,varargin) % % json=savejson(rootname,obj,filename) % or % json=savejson(rootname,obj,opt) % json=savejson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a JSON (JavaScript % Object Notation) string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09 % % $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array). % filename: a string for the file name to save the output JSON data. % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.FloatFormat ['%.10g'|string]: format to show each numeric element % of a 1D/2D array; % opt.ArrayIndent [1|0]: if 1, output explicit data array with % precedent indentation; if 0, no indentation % opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [0|1]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern % to represent +/-Inf. The matched pattern is '([-+]*)Inf' % and $1 represents the sign. For those who want to use % 1e999 to represent Inf, they can set opt.Inf to '$11e999' % opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern % to represent NaN % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSONP='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode. % opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs) % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a string in the JSON format (see http://json.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % savejson('jmesh',jsonmesh) % savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); if(jsonopt('Compact',0,opt)==1) whitespaces=struct('tab','','newline','','sep',','); end if(~isfield(opt,'whitespaces_')) opt.whitespaces_=whitespaces; end nl=whitespaces.newline; json=obj2json(rootname,obj,rootlevel,opt); if(rootisarray) json=sprintf('%s%s',json,nl); else json=sprintf('{%s%s%s}\n',nl,json,nl); end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=sprintf('%s(%s);%s',jsonp,json,nl); end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) if(jsonopt('SaveBinary',0,opt)==1) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); else fid = fopen(opt.FileName, 'wt'); fwrite(fid,json,'char'); end fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2json(name,item,level,varargin) if(iscell(item)) txt=cell2json(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2json(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2json(name,item,level,varargin{:}); else txt=mat2json(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2json(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); nl=ws.newline; if(len>1) if(~isempty(name)) txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name=''; else txt=sprintf('%s[%s',padding0,nl); end elseif(len==0) if(~isempty(name)) txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name=''; else txt=sprintf('%s[]',padding0); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:})); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end %if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=struct2json(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1)); nl=ws.newline; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding0,nl); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl); else txt=sprintf('%s%s{%s',txt,padding1,nl); end if(~isempty(names)) for e=1:length(names) txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})); if(e<length(names)) txt=sprintf('%s%s',txt,','); end txt=sprintf('%s%s',txt,nl); end end txt=sprintf('%s%s}',txt,padding1); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=str2json(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding1,nl); end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len if(isoct) val=regexprep(item(e,:),'\\','\\'); val=regexprep(val,'"','\"'); val=regexprep(val,'^"','\"'); else val=regexprep(item(e,:),'\\','\\\\'); val=regexprep(val,'"','\\"'); val=regexprep(val,'^"','\\"'); end val=escapejsonstring(val); if(len==1) obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"']; if(isempty(name)) obj=['"',val,'"']; end txt=sprintf('%s%s%s%s',txt,padding1,obj); else txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']); end if(e==len) sep=''; end txt=sprintf('%s%s',txt,sep); end if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end %%------------------------------------------------------------------------- function txt=mat2json(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:})) if(isempty(name)) txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); else txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); end else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0) numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']',''); else numtxt=matdata2json(item,level+1,varargin{:}); end if(isempty(name)) txt=sprintf('%s%s',padding1,numtxt); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); else txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); end end return; end dataformat='%s%s%s%s%s'; if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep); if(size(item,1)==1) % Row vector, store only column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([iy(:),data'],level+2,varargin{:}), nl); elseif(size(item,2)==1) % Column vector, store only row indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,data],level+2,varargin{:}), nl); else % General case, store row and column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,iy,data],level+2,varargin{:}), nl); end else if(isreal(item)) txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json(item(:)',level+2,varargin{:}), nl); else txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl); end end txt=sprintf('%s%s%s',txt,padding1,'}'); %%------------------------------------------------------------------------- function txt=matdata2json(mat,level,varargin) ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); tab=ws.tab; nl=ws.newline; if(size(mat,1)==1) pre=''; post=''; level=level-1; else pre=sprintf('[%s',nl); post=sprintf('%s%s]',nl,repmat(tab,1,level-1)); end if(isempty(mat)) txt='null'; return; end floatformat=jsonopt('FloatFormat','%.10g',varargin{:}); %if(numel(mat)>1) formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]]; %else % formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]]; %end if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1) formatstr=[repmat(tab,1,level) formatstr]; end txt=sprintf(formatstr,mat'); txt(end-length(nl):end)=[]; if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1) txt=regexprep(txt,'1','true'); txt=regexprep(txt,'0','false'); end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],\n[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end txt=[pre txt post]; if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function newstr=escapejsonstring(str) newstr=str; isoct=exist('OCTAVE_VERSION','builtin'); if(isoct) vv=sscanf(OCTAVE_VERSION,'%f'); if(vv(1)>=3.8) isoct=0; end end if(isoct) escapechars={'\a','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},escapechars{i}); end else escapechars={'\a','\b','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\')); end end
github
jagmoreira/machine-learning-coursera-master
loadjson.m
.m
machine-learning-coursera-master/machine-learning-ex4/ex4/lib/jsonlab/loadjson.m
18,732
ibm852
ab98cf173af2d50bbe8da4d6db252a20
function data = loadjson(fname,varargin) % % data=loadjson(fname,opt) % or % data=loadjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09, including previous works from % % Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713 % created on 2009/11/02 % François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393 % created on 2009/03/22 % Joel Feenstra: % http://www.mathworks.com/matlabcentral/fileexchange/20565 % created on 2008/07/03 % % $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a JSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.FastArrayParser [1|0 or integer]: if set to 1, use a % speed-optimized array parser when loading an % array object. The fast array parser may % collapse block arrays into a single large % array similar to rules defined in cell2mat; 0 to % use a legacy parser; if set to a larger-than-1 % value, this option will specify the minimum % dimension to enable the fast array parser. For % example, if the input is a 3D array, setting % FastArrayParser to 1 will return a 3D array; % setting to 2 will return a cell array of 2D % arrays; setting to 3 will return to a 2D cell % array of 1D vectors; setting to 4 will return a % 3D cell array. % opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}') % dat=loadjson(['examples' filesep 'example1.json']) % dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); if(jsonopt('ShowProgress',0,opt)==1) opt.progressbar_=waitbar(0,'loading ...'); end jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end if(isfield(opt,'progressbar_')) close(opt.progressbar_); end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=data(j).x0x5F_ArraySize_; if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; if next_char ~= '}' while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end parse_char(':'); val = parse_value(varargin{:}); eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' break; end parse_char(','); end end parse_char('}'); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim2=[]; arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:}); pbar=jsonopt('progressbar_',-1,varargin{:}); if next_char ~= ']' if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:})) [endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos); arraystr=['[' inStr(pos:endpos)]; arraystr=regexprep(arraystr,'"_NaN_"','NaN'); arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf'); arraystr(arraystr==sprintf('\n'))=[]; arraystr(arraystr==sprintf('\r'))=[]; %arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D astr=inStr((e1l+1):(e1r-1)); astr=regexprep(astr,'"_NaN_"','NaN'); astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf'); astr(astr==sprintf('\n'))=[]; astr(astr==sprintf('\r'))=[]; astr(astr==' ')=''; if(isempty(find(astr=='[', 1))) % array is 2D dim2=length(sscanf(astr,'%f,',[1 inf])); end else % array is 1D astr=arraystr(2:end-1); astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]); if(nextidx>=length(astr)-1) object=obj; pos=endpos; parse_char(']'); return; end end if(~isempty(dim2)) astr=arraystr; astr(astr=='[')=''; astr(astr==']')=''; astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf); if(nextidx>=length(astr)-1) object=reshape(obj,dim2,numel(obj)/dim2)'; pos=endpos; parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end return; end end arraystr=regexprep(arraystr,'\]\s*,','];'); else arraystr='['; end try if(isoct && regexp(arraystr,'"','once')) error('Octave eval can produce empty cells for JSON-like input'); end object=eval(arraystr); pos=endpos; catch while 1 newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1); val = parse_value(newopt); object{end+1} = val; if next_char == ']' break; end parse_char(','); end end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr len esc index_esc len_esc % len, ns = length(inStr), keyboard if inStr(pos) ~= '"' error_pos('String starting with " expected at position %d'); else pos = pos + 1; end str = ''; while pos <= len while index_esc <= len_esc && esc(index_esc) < pos index_esc = index_esc + 1; end if index_esc > len_esc str = [str inStr(pos:len)]; pos = len + 1; break; else str = [str inStr(pos:esc(index_esc)-1)]; pos = esc(index_esc); end nstr = length(str); switch inStr(pos) case '"' pos = pos + 1; if(~isempty(str)) if(strcmp(str,'_Inf_')) str=Inf; elseif(strcmp(str,'-_Inf_')) str=-Inf; elseif(strcmp(str,'_NaN_')) str=NaN; end end return; case '\' if pos+1 > len error_pos('End of file reached right after escape character'); end pos = pos + 1; switch inStr(pos) case {'"' '\' '/'} str(nstr+1) = inStr(pos); pos = pos + 1; case {'b' 'f' 'n' 'r' 't'} str(nstr+1) = sprintf(['\' inStr(pos)]); pos = pos + 1; case 'u' if pos+4 > len error_pos('End of file reached in escaped unicode character'); end str(nstr+(1:6)) = inStr(pos-1:pos+4); pos = pos + 5; end otherwise % should never happen str(nstr+1) = inStr(pos), keyboard pos = pos + 1; end end error_pos('End of file while expecting end of inStr'); %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct currstr=inStr(pos:end); numstr=0; if(isoct~=0) numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end'); [num, one] = sscanf(currstr, '%f', 1); delta=numstr+1; else [num, one, err, delta] = sscanf(currstr, '%f', 1); if ~isempty(err) error_pos('Error reading number at position %d'); end end pos = pos + delta-1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; pbar=jsonopt('progressbar_',-1,varargin{:}); if(pbar>0) waitbar(pos/len,pbar,'loading ...'); end switch(inStr(pos)) case '"' val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'-','0','1','2','3','4','5','6','7','8','9'} val = parse_number(varargin{:}); return; case 't' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true') val = true; pos = pos + 4; return; end case 'f' if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false') val = false; pos = pos + 5; return; end case 'n' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null') val = []; pos = pos + 4; return; end end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
jagmoreira/machine-learning-coursera-master
loadubjson.m
.m
machine-learning-coursera-master/machine-learning-ex4/ex4/lib/jsonlab/loadubjson.m
15,574
utf_8
5974e78e71b81b1e0f76123784b951a4
function data = loadubjson(fname,varargin) % % data=loadubjson(fname,opt) % or % data=loadubjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/01 % % $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a UBJSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.IntEndian [B|L]: specify the endianness of the integer fields % in the UBJSON input data. B - Big-Endian format for % integers (as required in the UBJSON specification); % L - input integer fields are in Little-Endian order. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % obj=struct('string','value','array',[1 2 3]); % ubjdata=saveubjson('obj',obj); % dat=loadubjson(ubjdata) % dat=loadubjson(['examples' filesep 'example1.ubj']) % dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); fileendian=upper(jsonopt('IntEndian','B',opt)); [os,maxelem,systemendian]=computer; jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end %% function newdata=parse_collection(id,data,obj) if(jsoncount>0 && exist('data','var')) if(~iscell(data)) newdata=cell(1); newdata{1}=data; data=newdata; end end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=double(data(j).x0x5F_ArraySize_); if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); % TODO pos=pos+2; end if(next_char == '#') pos=pos+1; count=double(parse_number()); end if next_char ~= '}' num=0; while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end %parse_char(':'); val = parse_value(varargin{:}); num=num+1; eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' || (count>=0 && num>=count) break; end %parse_char(','); end end if(count==-1) parse_char('}'); end %%------------------------------------------------------------------------- function [cid,len]=elem_info(type) id=strfind('iUIlLdD',type); dataclass={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; if(id>0) cid=dataclass{id}; len=bytelen(id); else error_pos('unsupported type at position %d'); end %%------------------------------------------------------------------------- function [data adv]=parse_block(type,count,varargin) global pos inStr isoct fileendian systemendian [cid,len]=elem_info(type); datastr=inStr(pos:pos+len*count-1); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end id=strfind('iUIlLdD',type); if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,cid)); end data=typecast(newdata,cid); adv=double(len*count); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim=[]; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); pos=pos+2; end if(next_char == '#') pos=pos+1; if(next_char=='[') dim=parse_array(varargin{:}); count=prod(double(dim)); else count=double(parse_number()); end end if(~isempty(type)) if(count>=0) [object adv]=parse_block(type,count,varargin{:}); if(~isempty(dim)) object=reshape(object,dim); end pos=pos+adv; return; else endpos=matching_bracket(inStr,pos); [cid,len]=elem_info(type); count=(endpos-pos)/len; [object adv]=parse_block(type,count,varargin{:}); pos=pos+adv; parse_char(']'); return; end end if next_char ~= ']' while 1 val = parse_value(varargin{:}); object{end+1} = val; if next_char == ']' break; end %parse_char(','); end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end if(count==-1) parse_char(']'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr esc index_esc len_esc % len, ns = length(inStr), keyboard type=inStr(pos); if type ~= 'S' && type ~= 'C' && type ~= 'H' error_pos('String starting with S expected at position %d'); else pos = pos + 1; end if(type == 'C') str=inStr(pos); pos=pos+1; return; end bytelen=double(parse_number()); if(length(inStr)>=pos+bytelen-1) str=inStr(pos:pos+bytelen-1); pos=pos+bytelen; else error_pos('End of file while expecting end of inStr'); end %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct fileendian systemendian id=strfind('iUIlLdD',inStr(pos)); if(isempty(id)) error_pos('expecting a number at position %d'); end type={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; datastr=inStr(pos+1:pos+bytelen(id)); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,type{id})); end num=typecast(newdata,type{id}); pos = pos + bytelen(id)+1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; switch(inStr(pos)) case {'S','C','H'} val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'i','U','I','l','L','d','D'} val = parse_number(varargin{:}); return; case 'T' val = true; pos = pos + 1; return; case 'F' val = false; pos = pos + 1; return; case {'Z','N'} val = []; pos = pos + 1; return; end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos e1l e1r maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
jagmoreira/machine-learning-coursera-master
saveubjson.m
.m
machine-learning-coursera-master/machine-learning-ex4/ex4/lib/jsonlab/saveubjson.m
16,123
utf_8
61d4f51010aedbf97753396f5d2d9ec0
function json=saveubjson(rootname,obj,varargin) % % json=saveubjson(rootname,obj,filename) % or % json=saveubjson(rootname,obj,opt) % json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a Universal % Binary JSON (UBJSON) binary string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/17 % % $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array) % filename: a string for the file name to save the output UBJSON data % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [1|0]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSON='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a binary string in the UBJSON format (see http://ubjson.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % saveubjson('jsonmesh',jsonmesh) % saveubjson('jsonmesh',jsonmesh,'meshdata.ubj') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end json=obj2ubjson(rootname,obj,rootlevel,opt); if(~rootisarray) json=['{' json '}']; end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=[jsonp '(' json ')']; end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2ubjson(name,item,level,varargin) if(iscell(item)) txt=cell2ubjson(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2ubjson(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2ubjson(name,item,level,varargin{:}); else txt=mat2ubjson(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2ubjson(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); % let's handle 1D cell first if(len>1) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) '[']; name=''; else txt='['; end elseif(len==0) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) 'Z']; name=''; else txt='Z'; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})]; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=struct2ubjson(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=[txt S_(checkname(name,varargin{:})) '{']; else txt=[txt '{']; end if(~isempty(names)) for e=1:length(names) txt=[txt obj2ubjson(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})]; end end txt=[txt '}']; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=str2ubjson(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len val=item(e,:); if(len==1) obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),'']; if(isempty(name)) obj=['',S_(val),'']; end txt=[txt,'',obj]; else txt=[txt,'',['',S_(val),'']]; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=mat2ubjson(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) || jsonopt('ArrayToStruct',0,varargin{:})) cid=I_(uint32(max(size(item)))); if(isempty(name)) txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ]; else if(isempty(item)) txt=[S_(checkname(name,varargin{:})),'Z']; return; else txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))]; end end else if(isempty(name)) txt=matdata2ubjson(item,level+1,varargin{:}); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']',''); txt=[S_(checkname(name,varargin{:})) numtxt]; else txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})]; end end return; end if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=[txt,S_('_ArrayIsComplex_'),'T']; end txt=[txt,S_('_ArrayIsSparse_'),'T']; if(size(item,1)==1) % Row vector, store only column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([iy(:),data'],level+2,varargin{:})]; elseif(size(item,2)==1) % Column vector, store only row indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,data],level+2,varargin{:})]; else % General case, store row and column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,iy,data],level+2,varargin{:})]; end else if(isreal(item)) txt=[txt,S_('_ArrayData_'),... matdata2ubjson(item(:)',level+2,varargin{:})]; else txt=[txt,S_('_ArrayIsComplex_'),'T']; txt=[txt,S_('_ArrayData_'),... matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})]; end end txt=[txt,'}']; %%------------------------------------------------------------------------- function txt=matdata2ubjson(mat,level,varargin) if(isempty(mat)) txt='Z'; return; end if(size(mat,1)==1) level=level-1; end type=''; hasnegtive=(mat<0); if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0))) if(isempty(hasnegtive)) if(max(mat(:))<=2^8) type='U'; end end if(isempty(type)) % todo - need to consider negative ones separately id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]); if(isempty(find(id))) error('high-precision data is not yet supported'); end key='iIlL'; type=key(find(id)); end txt=[I_a(mat(:),type,size(mat))]; elseif(islogical(mat)) logicalval='FT'; if(numel(mat)==1) txt=logicalval(mat+1); else txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')]; end else if(numel(mat)==1) txt=['[' D_(mat) ']']; else txt=D_a(mat(:),'D',size(mat)); end end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function val=S_(str) if(length(str)==1) val=['C' str]; else val=['S' I_(int32(length(str))) str]; end %%------------------------------------------------------------------------- function val=I_(num) if(~isinteger(num)) error('input is not an integer'); end if(num>=0 && num<255) val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')]; return; end key='iIlL'; cid={'int8','int16','int32','int64'}; for i=1:4 if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1))) val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')]; return; end end error('unsupported integer'); %%------------------------------------------------------------------------- function val=D_(num) if(~isfloat(num)) error('input is not a float'); end if(isa(num,'single')) val=['d' data2byte(num,'uint8')]; else val=['D' data2byte(num,'uint8')]; end %%------------------------------------------------------------------------- function data=I_a(num,type,dim,format) id=find(ismember('iUIlL',type)); if(id==0) error('unsupported integer array'); end % based on UBJSON specs, all integer types are stored in big endian format if(id==1) data=data2byte(swapbytes(int8(num)),'uint8'); blen=1; elseif(id==2) data=data2byte(swapbytes(uint8(num)),'uint8'); blen=1; elseif(id==3) data=data2byte(swapbytes(int16(num)),'uint8'); blen=2; elseif(id==4) data=data2byte(swapbytes(int32(num)),'uint8'); blen=4; elseif(id==5) data=data2byte(swapbytes(int64(num)),'uint8'); blen=8; end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/blen)) data(:)']; end data=['[' data(:)']; else data=reshape(data,blen,numel(data)/blen); data(2:blen+1,:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function data=D_a(num,type,dim,format) id=find(ismember('dD',type)); if(id==0) error('unsupported float array'); end if(id==1) data=data2byte(single(num),'uint8'); elseif(id==2) data=data2byte(double(num),'uint8'); end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)']; end data=['[' data]; else data=reshape(data,(id*4),length(data)/(id*4)); data(2:(id*4+1),:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function bytes=data2byte(varargin) bytes=typecast(varargin{:}); bytes=bytes(:)';
github
jagmoreira/machine-learning-coursera-master
submit.m
.m
machine-learning-coursera-master/machine-learning-ex6/ex6/submit.m
1,318
utf_8
bfa0b4ffb8a7854d8e84276e91818107
function submit() addpath('./lib'); conf.assignmentSlug = 'support-vector-machines'; conf.itemName = 'Support Vector Machines'; conf.partArrays = { ... { ... '1', ... { 'gaussianKernel.m' }, ... 'Gaussian Kernel', ... }, ... { ... '2', ... { 'dataset3Params.m' }, ... 'Parameters (C, sigma) for Dataset 3', ... }, ... { ... '3', ... { 'processEmail.m' }, ... 'Email Preprocessing', ... }, ... { ... '4', ... { 'emailFeatures.m' }, ... 'Email Feature Extraction', ... }, ... }; conf.output = @output; submitWithConfiguration(conf); end function out = output(partId, auxstring) % Random Test Cases x1 = sin(1:10)'; x2 = cos(1:10)'; ec = 'the quick brown fox jumped over the lazy dog'; wi = 1 + abs(round(x1 * 1863)); wi = [wi ; wi]; if partId == '1' sim = gaussianKernel(x1, x2, 2); out = sprintf('%0.5f ', sim); elseif partId == '2' load('ex6data3.mat'); [C, sigma] = dataset3Params(X, y, Xval, yval); out = sprintf('%0.5f ', C); out = [out sprintf('%0.5f ', sigma)]; elseif partId == '3' word_indices = processEmail(ec); out = sprintf('%d ', word_indices); elseif partId == '4' x = emailFeatures(wi); out = sprintf('%d ', x); end end
github
jagmoreira/machine-learning-coursera-master
porterStemmer.m
.m
machine-learning-coursera-master/machine-learning-ex6/ex6/porterStemmer.m
9,902
utf_8
7ed5acd925808fde342fc72bd62ebc4d
function stem = porterStemmer(inString) % Applies the Porter Stemming algorithm as presented in the following % paper: % Porter, 1980, An algorithm for suffix stripping, Program, Vol. 14, % no. 3, pp 130-137 % Original code modeled after the C version provided at: % http://www.tartarus.org/~martin/PorterStemmer/c.txt % The main part of the stemming algorithm starts here. b is an array of % characters, holding the word to be stemmed. The letters are in b[k0], % b[k0+1] ending at b[k]. In fact k0 = 1 in this demo program (since % matlab begins indexing by 1 instead of 0). k is readjusted downwards as % the stemming progresses. Zero termination is not in fact used in the % algorithm. % To call this function, use the string to be stemmed as the input % argument. This function returns the stemmed word as a string. % Lower-case string inString = lower(inString); global j; b = inString; k = length(b); k0 = 1; j = k; % With this if statement, strings of length 1 or 2 don't go through the % stemming process. Remove this conditional to match the published % algorithm. stem = b; if k > 2 % Output displays per step are commented out. %disp(sprintf('Word to stem: %s', b)); x = step1ab(b, k, k0); %disp(sprintf('Steps 1A and B yield: %s', x{1})); x = step1c(x{1}, x{2}, k0); %disp(sprintf('Step 1C yields: %s', x{1})); x = step2(x{1}, x{2}, k0); %disp(sprintf('Step 2 yields: %s', x{1})); x = step3(x{1}, x{2}, k0); %disp(sprintf('Step 3 yields: %s', x{1})); x = step4(x{1}, x{2}, k0); %disp(sprintf('Step 4 yields: %s', x{1})); x = step5(x{1}, x{2}, k0); %disp(sprintf('Step 5 yields: %s', x{1})); stem = x{1}; end % cons(j) is TRUE <=> b[j] is a consonant. function c = cons(i, b, k0) c = true; switch(b(i)) case {'a', 'e', 'i', 'o', 'u'} c = false; case 'y' if i == k0 c = true; else c = ~cons(i - 1, b, k0); end end % mseq() measures the number of consonant sequences between k0 and j. If % c is a consonant sequence and v a vowel sequence, and <..> indicates % arbitrary presence, % <c><v> gives 0 % <c>vc<v> gives 1 % <c>vcvc<v> gives 2 % <c>vcvcvc<v> gives 3 % .... function n = measure(b, k0) global j; n = 0; i = k0; while true if i > j return end if ~cons(i, b, k0) break; end i = i + 1; end i = i + 1; while true while true if i > j return end if cons(i, b, k0) break; end i = i + 1; end i = i + 1; n = n + 1; while true if i > j return end if ~cons(i, b, k0) break; end i = i + 1; end i = i + 1; end % vowelinstem() is TRUE <=> k0,...j contains a vowel function vis = vowelinstem(b, k0) global j; for i = k0:j, if ~cons(i, b, k0) vis = true; return end end vis = false; %doublec(i) is TRUE <=> i,(i-1) contain a double consonant. function dc = doublec(i, b, k0) if i < k0+1 dc = false; return end if b(i) ~= b(i-1) dc = false; return end dc = cons(i, b, k0); % cvc(j) is TRUE <=> j-2,j-1,j has the form consonant - vowel - consonant % and also if the second c is not w,x or y. this is used when trying to % restore an e at the end of a short word. e.g. % % cav(e), lov(e), hop(e), crim(e), but % snow, box, tray. function c1 = cvc(i, b, k0) if ((i < (k0+2)) || ~cons(i, b, k0) || cons(i-1, b, k0) || ~cons(i-2, b, k0)) c1 = false; else if (b(i) == 'w' || b(i) == 'x' || b(i) == 'y') c1 = false; return end c1 = true; end % ends(s) is TRUE <=> k0,...k ends with the string s. function s = ends(str, b, k) global j; if (str(length(str)) ~= b(k)) s = false; return end % tiny speed-up if (length(str) > k) s = false; return end if strcmp(b(k-length(str)+1:k), str) s = true; j = k - length(str); return else s = false; end % setto(s) sets (j+1),...k to the characters in the string s, readjusting % k accordingly. function so = setto(s, b, k) global j; for i = j+1:(j+length(s)) b(i) = s(i-j); end if k > j+length(s) b((j+length(s)+1):k) = ''; end k = length(b); so = {b, k}; % rs(s) is used further down. % [Note: possible null/value for r if rs is called] function r = rs(str, b, k, k0) r = {b, k}; if measure(b, k0) > 0 r = setto(str, b, k); end % step1ab() gets rid of plurals and -ed or -ing. e.g. % caresses -> caress % ponies -> poni % ties -> ti % caress -> caress % cats -> cat % feed -> feed % agreed -> agree % disabled -> disable % matting -> mat % mating -> mate % meeting -> meet % milling -> mill % messing -> mess % meetings -> meet function s1ab = step1ab(b, k, k0) global j; if b(k) == 's' if ends('sses', b, k) k = k-2; elseif ends('ies', b, k) retVal = setto('i', b, k); b = retVal{1}; k = retVal{2}; elseif (b(k-1) ~= 's') k = k-1; end end if ends('eed', b, k) if measure(b, k0) > 0; k = k-1; end elseif (ends('ed', b, k) || ends('ing', b, k)) && vowelinstem(b, k0) k = j; retVal = {b, k}; if ends('at', b, k) retVal = setto('ate', b(k0:k), k); elseif ends('bl', b, k) retVal = setto('ble', b(k0:k), k); elseif ends('iz', b, k) retVal = setto('ize', b(k0:k), k); elseif doublec(k, b, k0) retVal = {b, k-1}; if b(retVal{2}) == 'l' || b(retVal{2}) == 's' || ... b(retVal{2}) == 'z' retVal = {retVal{1}, retVal{2}+1}; end elseif measure(b, k0) == 1 && cvc(k, b, k0) retVal = setto('e', b(k0:k), k); end k = retVal{2}; b = retVal{1}(k0:k); end j = k; s1ab = {b(k0:k), k}; % step1c() turns terminal y to i when there is another vowel in the stem. function s1c = step1c(b, k, k0) global j; if ends('y', b, k) && vowelinstem(b, k0) b(k) = 'i'; end j = k; s1c = {b, k}; % step2() maps double suffices to single ones. so -ization ( = -ize plus % -ation) maps to -ize etc. note that the string before the suffix must give % m() > 0. function s2 = step2(b, k, k0) global j; s2 = {b, k}; switch b(k-1) case {'a'} if ends('ational', b, k) s2 = rs('ate', b, k, k0); elseif ends('tional', b, k) s2 = rs('tion', b, k, k0); end; case {'c'} if ends('enci', b, k) s2 = rs('ence', b, k, k0); elseif ends('anci', b, k) s2 = rs('ance', b, k, k0); end; case {'e'} if ends('izer', b, k) s2 = rs('ize', b, k, k0); end; case {'l'} if ends('bli', b, k) s2 = rs('ble', b, k, k0); elseif ends('alli', b, k) s2 = rs('al', b, k, k0); elseif ends('entli', b, k) s2 = rs('ent', b, k, k0); elseif ends('eli', b, k) s2 = rs('e', b, k, k0); elseif ends('ousli', b, k) s2 = rs('ous', b, k, k0); end; case {'o'} if ends('ization', b, k) s2 = rs('ize', b, k, k0); elseif ends('ation', b, k) s2 = rs('ate', b, k, k0); elseif ends('ator', b, k) s2 = rs('ate', b, k, k0); end; case {'s'} if ends('alism', b, k) s2 = rs('al', b, k, k0); elseif ends('iveness', b, k) s2 = rs('ive', b, k, k0); elseif ends('fulness', b, k) s2 = rs('ful', b, k, k0); elseif ends('ousness', b, k) s2 = rs('ous', b, k, k0); end; case {'t'} if ends('aliti', b, k) s2 = rs('al', b, k, k0); elseif ends('iviti', b, k) s2 = rs('ive', b, k, k0); elseif ends('biliti', b, k) s2 = rs('ble', b, k, k0); end; case {'g'} if ends('logi', b, k) s2 = rs('log', b, k, k0); end; end j = s2{2}; % step3() deals with -ic-, -full, -ness etc. similar strategy to step2. function s3 = step3(b, k, k0) global j; s3 = {b, k}; switch b(k) case {'e'} if ends('icate', b, k) s3 = rs('ic', b, k, k0); elseif ends('ative', b, k) s3 = rs('', b, k, k0); elseif ends('alize', b, k) s3 = rs('al', b, k, k0); end; case {'i'} if ends('iciti', b, k) s3 = rs('ic', b, k, k0); end; case {'l'} if ends('ical', b, k) s3 = rs('ic', b, k, k0); elseif ends('ful', b, k) s3 = rs('', b, k, k0); end; case {'s'} if ends('ness', b, k) s3 = rs('', b, k, k0); end; end j = s3{2}; % step4() takes off -ant, -ence etc., in context <c>vcvc<v>. function s4 = step4(b, k, k0) global j; switch b(k-1) case {'a'} if ends('al', b, k) end; case {'c'} if ends('ance', b, k) elseif ends('ence', b, k) end; case {'e'} if ends('er', b, k) end; case {'i'} if ends('ic', b, k) end; case {'l'} if ends('able', b, k) elseif ends('ible', b, k) end; case {'n'} if ends('ant', b, k) elseif ends('ement', b, k) elseif ends('ment', b, k) elseif ends('ent', b, k) end; case {'o'} if ends('ion', b, k) if j == 0 elseif ~(strcmp(b(j),'s') || strcmp(b(j),'t')) j = k; end elseif ends('ou', b, k) end; case {'s'} if ends('ism', b, k) end; case {'t'} if ends('ate', b, k) elseif ends('iti', b, k) end; case {'u'} if ends('ous', b, k) end; case {'v'} if ends('ive', b, k) end; case {'z'} if ends('ize', b, k) end; end if measure(b, k0) > 1 s4 = {b(k0:j), j}; else s4 = {b(k0:k), k}; end % step5() removes a final -e if m() > 1, and changes -ll to -l if m() > 1. function s5 = step5(b, k, k0) global j; j = k; if b(k) == 'e' a = measure(b, k0); if (a > 1) || ((a == 1) && ~cvc(k-1, b, k0)) k = k-1; end end if (b(k) == 'l') && doublec(k, b, k0) && (measure(b, k0) > 1) k = k-1; end s5 = {b(k0:k), k};