plateform
stringclasses
1 value
repo_name
stringlengths
13
113
name
stringlengths
3
74
ext
stringclasses
1 value
path
stringlengths
12
229
size
int64
23
843k
source_encoding
stringclasses
9 values
md5
stringlengths
32
32
text
stringlengths
23
843k
github
minjiang/transferlearning-master
MyTCA.m
.m
transferlearning-master/code/MyTCA.m
2,818
utf_8
7aee1d32ebfb97f5974be024ce450ce1
function [X_src_new,X_tar_new,A] = MyTCA(X_src,X_tar,options) % Inputs: [dim is the dimension of features] %%% X_src:source feature matrix, ns * dim %%% X_tar:target feature matrix, nt * dim %%% options:option struct % Outputs: %%% X_src_new:transformed source feature matrix, ns * dim_new %%% X_tar_new:transformed target feature matrix, nt * dim_new %%% A: adaptation matrix, (ns + nt) * (ns + nt) %% Set options lambda = options.lambda; %% lambda for the regularization dim = options.dim; %% dim is the dimension after adaptation kernel_type = options.kernel_type; %% kernel_type is the kernel name, primal|linear|rbf gamma = options.gamma; %% gamma is the bandwidth of rbf kernel %% Calculate X = [X_src',X_tar']; X = X*diag(sparse(1./sqrt(sum(X.^2)))); [m,n] = size(X); ns = size(X_src,1); nt = size(X_tar,1); e = [1/ns*ones(ns,1);-1/nt*ones(nt,1)]; M = e * e'; M = M / norm(M,'fro'); H = eye(n)-1/(n)*ones(n,n); if strcmp(kernel_type,'primal') [A,~] = eigs(X*M*X'+lambda*eye(m),X*H*X',dim,'SM'); Z = A' * X; Z = Z * diag(sparse(1./sqrt(sum(Z.^2)))); X_src_new = Z(:,1:ns)'; X_tar_new = Z(:,ns+1:end)'; else K = TCA_kernel(kernel_type,X,[],gamma); [A,~] = eigs(K*M*K'+lambda*eye(n),K*H*K',dim,'SM'); Z = A' * K; Z = Z*diag(sparse(1./sqrt(sum(Z.^2)))); X_src_new = Z(:,1:ns)'; X_tar_new = Z(:,ns+1:end)'; end end % With Fast Computation of the RBF kernel matrix % To speed up the computation, we exploit a decomposition of the Euclidean distance (norm) % % Inputs: % ker: 'linear','rbf','sam' % X: data matrix (features * samples) % gamma: bandwidth of the RBF/SAM kernel % Output: % K: kernel matrix % % Gustavo Camps-Valls % 2006(c) % Jordi ([email protected]), 2007 % 2007-11: if/then -> switch, and fixed RBF kernel % Modified by Mingsheng Long % 2013(c) % Mingsheng Long ([email protected]), 2013 function K = TCA_kernel(ker,X,X2,gamma) switch ker case 'linear' if isempty(X2) K = X'*X; else K = X'*X2; end case 'rbf' n1sq = sum(X.^2,1); n1 = size(X,2); if isempty(X2) D = (ones(n1,1)*n1sq)' + ones(n1,1)*n1sq -2*X'*X; else n2sq = sum(X2.^2,1); n2 = size(X2,2); D = (ones(n2,1)*n1sq)' + ones(n1,1)*n2sq -2*X'*X2; end K = exp(-gamma*D); case 'sam' if isempty(X2) D = X'*X; else D = X'*X2; end K = exp(-gamma*acos(D).^2); otherwise error(['Unsupported kernel ' ker]) end end
github
minjiang/transferlearning-master
lapgraph.m
.m
transferlearning-master/code/MyARTL/lapgraph.m
20,244
utf_8
cfed436191fe6a863089f6da80644260
function [W, elapse] = lapgraph(fea,options) % Usage: % W = graph(fea,options) % % fea: Rows of vectors of data points. Each row is x_i % options: Struct value in Matlab. The fields in options that can be set: % Metric - Choices are: % 'Euclidean' - Will use the Euclidean distance of two data % points to evaluate the "closeness" between % them. [Default One] % 'Cosine' - Will use the cosine value of two vectors % to evaluate the "closeness" between them. % A popular similarity measure used in % Information Retrieval. % % NeighborMode - Indicates how to construct the graph. Choices % are: [Default 'KNN'] % 'KNN' - k = 0 % Complete graph % k > 0 % Put an edge between two nodes if and % only if they are among the k nearst % neighbors of each other. You are % required to provide the parameter k in % the options. Default k=5. % 'Supervised' - k = 0 % Put an edge between two nodes if and % only if they belong to same class. % k > 0 % Put an edge between two nodes if % they belong to same class and they % are among the k nearst neighbors of % each other. % Default: k=0 % You are required to provide the label % information gnd in the options. % % WeightMode - Indicates how to assign weights for each edge % in the graph. Choices are: % 'Binary' - 0-1 weighting. Every edge receiveds weight % of 1. [Default One] % 'HeatKernel' - If nodes i and j are connected, put weight % W_ij = exp(-norm(x_i - x_j)/2t^2). This % weight mode can only be used under % 'Euclidean' metric and you are required to % provide the parameter t. % 'Cosine' - If nodes i and j are connected, put weight % cosine(x_i,x_j). Can only be used under % 'Cosine' metric. % % k - The parameter needed under 'KNN' NeighborMode. % Default will be 5. % gnd - The parameter needed under 'Supervised' % NeighborMode. Colunm vector of the label % information for each data point. % bLDA - 0 or 1. Only effective under 'Supervised' % NeighborMode. If 1, the graph will be constructed % to make LPP exactly same as LDA. Default will be % 0. % t - The parameter needed under 'HeatKernel' % WeightMode. Default will be 1 % bNormalized - 0 or 1. Only effective under 'Cosine' metric. % Indicates whether the fea are already be % normalized to 1. Default will be 0 % bSelfConnected - 0 or 1. Indicates whether W(i,i) == 1. Default 1 % if 'Supervised' NeighborMode & bLDA == 1, % bSelfConnected will always be 1. Default 1. % % % Examples: % % fea = rand(50,15); % options = []; % options.Metric = 'Euclidean'; % options.NeighborMode = 'KNN'; % options.k = 5; % options.WeightMode = 'HeatKernel'; % options.t = 1; % W = constructW(fea,options); % % % fea = rand(50,15); % gnd = [ones(10,1);ones(15,1)*2;ones(10,1)*3;ones(15,1)*4]; % options = []; % options.Metric = 'Euclidean'; % options.NeighborMode = 'Supervised'; % options.gnd = gnd; % options.WeightMode = 'HeatKernel'; % options.t = 1; % W = constructW(fea,options); % % % fea = rand(50,15); % gnd = [ones(10,1);ones(15,1)*2;ones(10,1)*3;ones(15,1)*4]; % options = []; % options.Metric = 'Euclidean'; % options.NeighborMode = 'Supervised'; % options.gnd = gnd; % options.bLDA = 1; % W = constructW(fea,options); % % % For more details about the different ways to construct the W, please % refer: % Deng Cai, Xiaofei He and Jiawei Han, "Document Clustering Using % Locality Preserving Indexing" IEEE TKDE, Dec. 2005. % % % Written by Deng Cai (dengcai2 AT cs.uiuc.edu), April/2004, Feb/2006, % May/2007 % if (~exist('options','var')) options = []; else if ~isstruct(options) error('parameter error!'); end end %================================================= if ~isfield(options,'Metric') options.Metric = 'Cosine'; end switch lower(options.Metric) case {lower('Euclidean')} case {lower('Cosine')} if ~isfield(options,'bNormalized') options.bNormalized = 0; end otherwise error('Metric does not exist!'); end %================================================= if ~isfield(options,'NeighborMode') options.NeighborMode = 'KNN'; end switch lower(options.NeighborMode) case {lower('KNN')} %For simplicity, we include the data point itself in the kNN if ~isfield(options,'k') options.k = 5; end case {lower('Supervised')} if ~isfield(options,'bLDA') options.bLDA = 0; end if options.bLDA options.bSelfConnected = 1; end if ~isfield(options,'k') options.k = 0; end if ~isfield(options,'gnd') error('Label(gnd) should be provided under ''Supervised'' NeighborMode!'); end if ~isempty(fea) && length(options.gnd) ~= size(fea,1) error('gnd doesn''t match with fea!'); end otherwise error('NeighborMode does not exist!'); end %================================================= if ~isfield(options,'WeightMode') options.WeightMode = 'Binary'; end bBinary = 0; switch lower(options.WeightMode) case {lower('Binary')} bBinary = 1; case {lower('HeatKernel')} if ~strcmpi(options.Metric,'Euclidean') warning('''HeatKernel'' WeightMode should be used under ''Euclidean'' Metric!'); options.Metric = 'Euclidean'; end if ~isfield(options,'t') options.t = 1; end case {lower('Cosine')} if ~strcmpi(options.Metric,'Cosine') warning('''Cosine'' WeightMode should be used under ''Cosine'' Metric!'); options.Metric = 'Cosine'; end if ~isfield(options,'bNormalized') options.bNormalized = 0; end otherwise error('WeightMode does not exist!'); end %================================================= if ~isfield(options,'bSelfConnected') options.bSelfConnected = 1; end %================================================= tmp_T = cputime; if isfield(options,'gnd') nSmp = length(options.gnd); else nSmp = size(fea,1); end maxM = 62500000; %500M BlockSize = floor(maxM/(nSmp*3)); if strcmpi(options.NeighborMode,'Supervised') Label = unique(options.gnd); nLabel = length(Label); if options.bLDA G = zeros(nSmp,nSmp); for idx=1:nLabel classIdx = options.gnd==Label(idx); G(classIdx,classIdx) = 1/sum(classIdx); end W = sparse(G); elapse = cputime - tmp_T; return; end switch lower(options.WeightMode) case {lower('Binary')} if options.k > 0 G = zeros(nSmp*(options.k+1),3); idNow = 0; for i=1:nLabel classIdx = find(options.gnd==Label(i)); D = EuDist2(fea(classIdx,:),[],0); [dump idx] = sort(D,2); % sort each row clear D dump; idx = idx(:,1:options.k+1); nSmpClass = length(classIdx)*(options.k+1); G(idNow+1:nSmpClass+idNow,1) = repmat(classIdx,[options.k+1,1]); G(idNow+1:nSmpClass+idNow,2) = classIdx(idx(:)); G(idNow+1:nSmpClass+idNow,3) = 1; idNow = idNow+nSmpClass; clear idx end G = sparse(G(:,1),G(:,2),G(:,3),nSmp,nSmp); G = max(G,G'); else G = zeros(nSmp,nSmp); for i=1:nLabel classIdx = find(options.gnd==Label(i)); G(classIdx,classIdx) = 1; end end if ~options.bSelfConnected for i=1:size(G,1) G(i,i) = 0; end end W = sparse(G); case {lower('HeatKernel')} if options.k > 0 G = zeros(nSmp*(options.k+1),3); idNow = 0; for i=1:nLabel classIdx = find(options.gnd==Label(i)); D = EuDist2(fea(classIdx,:),[],0); [dump idx] = sort(D,2); % sort each row clear D; idx = idx(:,1:options.k+1); dump = dump(:,1:options.k+1); dump = exp(-dump/(2*options.t^2)); nSmpClass = length(classIdx)*(options.k+1); G(idNow+1:nSmpClass+idNow,1) = repmat(classIdx,[options.k+1,1]); G(idNow+1:nSmpClass+idNow,2) = classIdx(idx(:)); G(idNow+1:nSmpClass+idNow,3) = dump(:); idNow = idNow+nSmpClass; clear dump idx end G = sparse(G(:,1),G(:,2),G(:,3),nSmp,nSmp); else G = zeros(nSmp,nSmp); for i=1:nLabel classIdx = find(options.gnd==Label(i)); D = EuDist2(fea(classIdx,:),[],0); D = exp(-D/(2*options.t^2)); G(classIdx,classIdx) = D; end end if ~options.bSelfConnected for i=1:size(G,1) G(i,i) = 0; end end W = sparse(max(G,G')); case {lower('Cosine')} if ~options.bNormalized [nSmp, nFea] = size(fea); if issparse(fea) fea2 = fea'; feaNorm = sum(fea2.^2,1).^.5; for i = 1:nSmp fea2(:,i) = fea2(:,i) ./ max(1e-10,feaNorm(i)); end fea = fea2'; clear fea2; else feaNorm = sum(fea.^2,2).^.5; for i = 1:nSmp fea(i,:) = fea(i,:) ./ max(1e-12,feaNorm(i)); end end end if options.k > 0 G = zeros(nSmp*(options.k+1),3); idNow = 0; for i=1:nLabel classIdx = find(options.gnd==Label(i)); D = fea(classIdx,:)*fea(classIdx,:)'; [dump idx] = sort(-D,2); % sort each row clear D; idx = idx(:,1:options.k+1); dump = -dump(:,1:options.k+1); nSmpClass = length(classIdx)*(options.k+1); G(idNow+1:nSmpClass+idNow,1) = repmat(classIdx,[options.k+1,1]); G(idNow+1:nSmpClass+idNow,2) = classIdx(idx(:)); G(idNow+1:nSmpClass+idNow,3) = dump(:); idNow = idNow+nSmpClass; clear dump idx end G = sparse(G(:,1),G(:,2),G(:,3),nSmp,nSmp); else G = zeros(nSmp,nSmp); for i=1:nLabel classIdx = find(options.gnd==Label(i)); G(classIdx,classIdx) = fea(classIdx,:)*fea(classIdx,:)'; end end if ~options.bSelfConnected for i=1:size(G,1) G(i,i) = 0; end end W = sparse(max(G,G')); otherwise error('WeightMode does not exist!'); end elapse = cputime - tmp_T; return; end if strcmpi(options.NeighborMode,'KNN') && (options.k > 0) if strcmpi(options.Metric,'Euclidean') G = zeros(nSmp*(options.k+1),3); for i = 1:ceil(nSmp/BlockSize) if i == ceil(nSmp/BlockSize) smpIdx = (i-1)*BlockSize+1:nSmp; dist = EuDist2(fea(smpIdx,:),fea,0); dist = full(dist); [dump idx] = sort(dist,2); % sort each row idx = idx(:,1:options.k+1); dump = dump(:,1:options.k+1); if ~bBinary dump = exp(-dump/(2*options.t^2)); end G((i-1)*BlockSize*(options.k+1)+1:nSmp*(options.k+1),1) = repmat(smpIdx',[options.k+1,1]); G((i-1)*BlockSize*(options.k+1)+1:nSmp*(options.k+1),2) = idx(:); if ~bBinary G((i-1)*BlockSize*(options.k+1)+1:nSmp*(options.k+1),3) = dump(:); else G((i-1)*BlockSize*(options.k+1)+1:nSmp*(options.k+1),3) = 1; end else smpIdx = (i-1)*BlockSize+1:i*BlockSize; dist = EuDist2(fea(smpIdx,:),fea,0); dist = full(dist); [dump idx] = sort(dist,2); % sort each row idx = idx(:,1:options.k+1); dump = dump(:,1:options.k+1); if ~bBinary dump = exp(-dump/(2*options.t^2)); end G((i-1)*BlockSize*(options.k+1)+1:i*BlockSize*(options.k+1),1) = repmat(smpIdx',[options.k+1,1]); G((i-1)*BlockSize*(options.k+1)+1:i*BlockSize*(options.k+1),2) = idx(:); if ~bBinary G((i-1)*BlockSize*(options.k+1)+1:i*BlockSize*(options.k+1),3) = dump(:); else G((i-1)*BlockSize*(options.k+1)+1:i*BlockSize*(options.k+1),3) = 1; end end end W = sparse(G(:,1),G(:,2),G(:,3),nSmp,nSmp); else if ~options.bNormalized [nSmp, nFea] = size(fea); if issparse(fea) fea2 = fea'; clear fea; for i = 1:nSmp fea2(:,i) = fea2(:,i) ./ max(1e-10,sum(fea2(:,i).^2,1).^.5); end fea = fea2'; clear fea2; else feaNorm = sum(fea.^2,2).^.5; for i = 1:nSmp fea(i,:) = fea(i,:) ./ max(1e-12,feaNorm(i)); end end end G = zeros(nSmp*(options.k+1),3); for i = 1:ceil(nSmp/BlockSize) if i == ceil(nSmp/BlockSize) smpIdx = (i-1)*BlockSize+1:nSmp; dist = fea(smpIdx,:)*fea'; dist = full(dist); [dump idx] = sort(-dist,2); % sort each row idx = idx(:,1:options.k+1); dump = -dump(:,1:options.k+1); G((i-1)*BlockSize*(options.k+1)+1:nSmp*(options.k+1),1) = repmat(smpIdx',[options.k+1,1]); G((i-1)*BlockSize*(options.k+1)+1:nSmp*(options.k+1),2) = idx(:); G((i-1)*BlockSize*(options.k+1)+1:nSmp*(options.k+1),3) = dump(:); else smpIdx = (i-1)*BlockSize+1:i*BlockSize; dist = fea(smpIdx,:)*fea'; dist = full(dist); [dump idx] = sort(-dist,2); % sort each row idx = idx(:,1:options.k+1); dump = -dump(:,1:options.k+1); G((i-1)*BlockSize*(options.k+1)+1:i*BlockSize*(options.k+1),1) = repmat(smpIdx',[options.k+1,1]); G((i-1)*BlockSize*(options.k+1)+1:i*BlockSize*(options.k+1),2) = idx(:); G((i-1)*BlockSize*(options.k+1)+1:i*BlockSize*(options.k+1),3) = dump(:); end end W = sparse(G(:,1),G(:,2),G(:,3),nSmp,nSmp); end if strcmpi(options.WeightMode,'Binary') W(find(W)) = 1; end if isfield(options,'bSemiSupervised') && options.bSemiSupervised tmpgnd = options.gnd(options.semiSplit); Label = unique(tmpgnd); nLabel = length(Label); G = zeros(sum(options.semiSplit),sum(options.semiSplit)); for idx=1:nLabel classIdx = tmpgnd==Label(idx); G(classIdx,classIdx) = 1; end Wsup = sparse(G); if ~isfield(options,'SameCategoryWeight') options.SameCategoryWeight = 1; end W(options.semiSplit,options.semiSplit) = (Wsup>0)*options.SameCategoryWeight; end if ~options.bSelfConnected for i=1:size(W,1) W(i,i) = 0; end end W = max(W,W'); elapse = cputime - tmp_T; return; end % strcmpi(options.NeighborMode,'KNN') & (options.k == 0) % Complete Graph if strcmpi(options.Metric,'Euclidean') W = EuDist2(fea,[],0); W = exp(-W/(2*options.t^2)); else if ~options.bNormalized % feaNorm = sum(fea.^2,2).^.5; % fea = fea ./ repmat(max(1e-10,feaNorm),1,size(fea,2)); [nSmp, nFea] = size(fea); if issparse(fea) fea2 = fea'; feaNorm = sum(fea2.^2,1).^.5; for i = 1:nSmp fea2(:,i) = fea2(:,i) ./ max(1e-10,feaNorm(i)); end fea = fea2'; clear fea2; else feaNorm = sum(fea.^2,2).^.5; for i = 1:nSmp fea(i,:) = fea(i,:) ./ max(1e-12,feaNorm(i)); end end end % W = full(fea*fea'); W = fea*fea'; end if ~options.bSelfConnected for i=1:size(W,1) W(i,i) = 0; end end W = max(W,W'); elapse = cputime - tmp_T; function D = EuDist2(fea_a,fea_b,bSqrt) % Euclidean Distance matrix % D = EuDist(fea_a,fea_b) % fea_a: nSample_a * nFeature % fea_b: nSample_b * nFeature % D: nSample_a * nSample_a % or nSample_a * nSample_b if ~exist('bSqrt','var') bSqrt = 1; end if (~exist('fea_b','var')) | isempty(fea_b) [nSmp, nFea] = size(fea_a); aa = sum(fea_a.*fea_a,2); ab = fea_a*fea_a'; aa = full(aa); ab = full(ab); if bSqrt D = sqrt(repmat(aa, 1, nSmp) + repmat(aa', nSmp, 1) - 2*ab); D = real(D); else D = repmat(aa, 1, nSmp) + repmat(aa', nSmp, 1) - 2*ab; end D = max(D,D'); D = D - diag(diag(D)); D = abs(D); else [nSmp_a, nFea] = size(fea_a); [nSmp_b, nFea] = size(fea_b); aa = sum(fea_a.*fea_a,2); bb = sum(fea_b.*fea_b,2); ab = fea_a*fea_b'; aa = full(aa); bb = full(bb); ab = full(ab); if bSqrt D = sqrt(repmat(aa, 1, nSmp_b) + repmat(bb', nSmp_a, 1) - 2*ab); D = real(D); else D = repmat(aa, 1, nSmp_b) + repmat(bb', nSmp_a, 1) - 2*ab; end D = abs(D); end
github
minjiang/transferlearning-master
MyARTL.m
.m
transferlearning-master/code/MyARTL/MyARTL.m
3,503
utf_8
91802921f23d322f2ffca0e311f9372a
function [acc,acc_ite,Alpha] = MyARTL(X_src,Y_src,X_tar,Y_tar,options) % Inputs: %%% X_src :source feature matrix, ns * m %%% Y_src :source label vector, ns * 1 %%% X_tar :target feature matrix, nt * m %%% Y_tar :target label vector, nt * 1 %%% options:option struct % Outputs: %%% acc :final accuracy using knn, float %%% acc_ite:list of all accuracies during iterations %%% A :final adaptation matrix, (ns + nt) * (ns + nt) %% Set options lambda = options.lambda; %% lambda for the regularization kernel_type = options.kernel_type; %% kernel_type is the kernel name, primal|linear|rbf T = options.T; %% iteration number n_neighbor = options.n_neighbor; sigma = options.sigma; gamma = options.gamma; X = [X_src',X_tar']; Y = [Y_src;Y_tar]; X = X*diag(sparse(1./sqrt(sum(X.^2)))); ns = size(X_src,1); nt = size(X_tar,1); nm = ns + nt; e = [1/ns*ones(ns,1);-1/nt*ones(nt,1)]; C = length(unique(Y_src)); E = diag(sparse([ones(ns,1);zeros(nt,1)])); YY = []; for c = reshape(unique(Y),1,length(unique(Y))) YY = [YY,Y==c]; end %% Construct graph laplacian manifold.k = options.n_neighbor; manifold.Metric = 'Cosine'; manifold.NeighborMode = 'KNN'; manifold.WeightMode = 'Cosine'; [W,Dw,L] = construct_lapgraph(X',manifold); %%% M0 M = e * e' * C; %multiply C for better normalization acc_ite = []; Y_tar_pseudo = []; % If want to include conditional distribution in iteration 1, then open % this % if ~isfield(options,'Yt0') % % model = train(Y(1:ns),sparse(X(:,1:ns)'),'-s 0 -c 1 -q 1'); % % [Y_tar_pseudo,~] = predict(Y(ns+1:end),sparse(X(:,ns+1:end)'),model); % knn_model = fitcknn(X_src,Y_src,'NumNeighbors',1); % Y_tar_pseudo = knn_model.predict(X_tar); % else % Y_tar_pseudo = options.Yt0; % end %% Iteration for i = 1 : T %%% Mc N = 0; if ~isempty(Y_tar_pseudo) && length(Y_tar_pseudo)==nt for c = reshape(unique(Y_src),1,C) e = zeros(nm,1); e(Y_src==c) = 1 / length(find(Y_src==c)); e(ns+find(Y_tar_pseudo==c)) = -1 / length(find(Y_tar_pseudo==c)); e(isinf(e)) = 0; N = N + e*e'; end end M = M + N; M = M / norm(M,'fro'); %% Calculation K = kernel_artl(kernel_type,X,sqrt(sum(sum(X.^2).^0.5)/nm)); Alpha = ((E + lambda * M + gamma * L) * K + sigma * speye(nm,nm)) \ (E * YY); F = K * Alpha; [~,Cls] = max(F,[],2); Acc = numel(find(Cls(ns+1:end)==Y(ns+1:end)))/nt; Y_tar_pseudo = Cls(ns+1:end); fprintf('Iteration [%2d]:ARTL=%0.4f\n',i,Acc); acc_ite = [acc_ite;Acc]; end end function [W,Dw,L] = construct_lapgraph(X,options) W = lapgraph(X,options); Dw = diag(sparse(sqrt(1./sum(W)))); L = speye(size(X,1)) - Dw * W * Dw; end function K = kernel_artl(ker,X,sigma) switch ker case 'linear' K = X' * X; case 'rbf' n1sq = sum(X.^2,1); n1 = size(X,2); D = (ones(n1,1)*n1sq)' + ones(n1,1)*n1sq -2*X'*X; K = exp(-D/(2*sigma^2)); case 'sam' D = X'*X; K = exp(-acos(D).^2/(2*sigma^2)); otherwise error(['Unsupported kernel ' ker]) end end
github
100957264/WatchLauncher-master
echo_diagnostic.m
.m
WatchLauncher-master/NormalTools/studio/android/app/src/main/jni/libspeex/echo_diagnostic.m
2,076
utf_8
8d5e7563976fbd9bd2eda26711f7d8dc
% Attempts to diagnose AEC problems from recorded samples % % out = echo_diagnostic(rec_file, play_file, out_file, tail_length) % % Computes the full matrix inversion to cancel echo from the % recording 'rec_file' using the far end signal 'play_file' using % a filter length of 'tail_length'. The output is saved to 'out_file'. function out = echo_diagnostic(rec_file, play_file, out_file, tail_length) F=fopen(rec_file,'rb'); rec=fread(F,Inf,'short'); fclose (F); F=fopen(play_file,'rb'); play=fread(F,Inf,'short'); fclose (F); rec = [rec; zeros(1024,1)]; play = [play; zeros(1024,1)]; N = length(rec); corr = real(ifft(fft(rec).*conj(fft(play)))); acorr = real(ifft(fft(play).*conj(fft(play)))); [a,b] = max(corr); if b > N/2 b = b-N; end printf ("Far end to near end delay is %d samples\n", b); if (b > .3*tail_length) printf ('This is too much delay, try delaying the far-end signal a bit\n'); else if (b < 0) printf ('You have a negative delay, the echo canceller has no chance to cancel anything!\n'); else printf ('Delay looks OK.\n'); end end end N2 = round(N/2); corr1 = real(ifft(fft(rec(1:N2)).*conj(fft(play(1:N2))))); corr2 = real(ifft(fft(rec(N2+1:end)).*conj(fft(play(N2+1:end))))); [a,b1] = max(corr1); if b1 > N2/2 b1 = b1-N2; end [a,b2] = max(corr2); if b2 > N2/2 b2 = b2-N2; end drift = (b1-b2)/N2; printf ('Drift estimate is %f%% (%d samples)\n', 100*drift, b1-b2); if abs(b1-b2) < 10 printf ('A drift of a few (+-10) samples is normal.\n'); else if abs(b1-b2) < 30 printf ('There may be (not sure) excessive clock drift. Is the capture and playback done on the same soundcard?\n'); else printf ('Your clock is drifting! No way the AEC will be able to do anything with that. Most likely, you''re doing capture and playback from two different cards.\n'); end end end acorr(1) = .001+1.00001*acorr(1); AtA = toeplitz(acorr(1:tail_length)); bb = corr(1:tail_length); h = AtA\bb; out = (rec - filter(h, 1, play)); F=fopen(out_file,'w'); fwrite(F,out,'short'); fclose (F);
github
jkjung-avt/py-faster-rcnn-master
voc_eval.m
.m
py-faster-rcnn-master/lib/datasets/VOCdevkit-matlab-wrapper/voc_eval.m
1,332
utf_8
3ee1d5373b091ae4ab79d26ab657c962
function res = voc_eval(path, comp_id, test_set, output_dir) VOCopts = get_voc_opts(path); VOCopts.testset = test_set; for i = 1:length(VOCopts.classes) cls = VOCopts.classes{i}; res(i) = voc_eval_cls(cls, VOCopts, comp_id, output_dir); end fprintf('\n~~~~~~~~~~~~~~~~~~~~\n'); fprintf('Results:\n'); aps = [res(:).ap]'; fprintf('%.1f\n', aps * 100); fprintf('%.1f\n', mean(aps) * 100); fprintf('~~~~~~~~~~~~~~~~~~~~\n'); function res = voc_eval_cls(cls, VOCopts, comp_id, output_dir) test_set = VOCopts.testset; year = VOCopts.dataset(4:end); addpath(fullfile(VOCopts.datadir, 'VOCcode')); res_fn = sprintf(VOCopts.detrespath, comp_id, cls); recall = []; prec = []; ap = 0; ap_auc = 0; do_eval = (str2num(year) <= 2007) | ~strcmp(test_set, 'test'); if do_eval % Bug in VOCevaldet requires that tic has been called first tic; [recall, prec, ap] = VOCevaldet(VOCopts, comp_id, cls, true); ap_auc = xVOCap(recall, prec); % force plot limits ylim([0 1]); xlim([0 1]); print(gcf, '-djpeg', '-r0', ... [output_dir '/' cls '_pr.jpg']); end fprintf('!!! %s : %.4f %.4f\n', cls, ap, ap_auc); res.recall = recall; res.prec = prec; res.ap = ap; res.ap_auc = ap_auc; save([output_dir '/' cls '_pr.mat'], ... 'res', 'recall', 'prec', 'ap', 'ap_auc'); rmpath(fullfile(VOCopts.datadir, 'VOCcode'));
github
vkalogeiton/caffe-master
classification_demo.m
.m
caffe-master/matlab/demo/classification_demo.m
5,466
utf_8
45745fb7cfe37ef723c307dfa06f1b97
function [scores, maxlabel] = classification_demo(im, use_gpu) % [scores, maxlabel] = classification_demo(im, use_gpu) % % Image classification demo using BVLC CaffeNet. % % IMPORTANT: before you run this demo, you should download BVLC CaffeNet % from Model Zoo (http://caffe.berkeleyvision.org/model_zoo.html) % % **************************************************************************** % For detailed documentation and usage on Caffe's Matlab interface, please % refer to the Caffe Interface Tutorial at % http://caffe.berkeleyvision.org/tutorial/interfaces.html#matlab % **************************************************************************** % % input % im color image as uint8 HxWx3 % use_gpu 1 to use the GPU, 0 to use the CPU % % output % scores 1000-dimensional ILSVRC score vector % maxlabel the label of the highest score % % You may need to do the following before you start matlab: % $ export LD_LIBRARY_PATH=/opt/intel/mkl/lib/intel64:/usr/local/cuda-5.5/lib64 % $ export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libstdc++.so.6 % Or the equivalent based on where things are installed on your system % and what versions are installed. % % Usage: % im = imread('../../examples/images/cat.jpg'); % scores = classification_demo(im, 1); % [score, class] = max(scores); % Five things to be aware of: % caffe uses row-major order % matlab uses column-major order % caffe uses BGR color channel order % matlab uses RGB color channel order % images need to have the data mean subtracted % Data coming in from matlab needs to be in the order % [width, height, channels, images] % where width is the fastest dimension. % Here is the rough matlab code for putting image data into the correct % format in W x H x C with BGR channels: % % permute channels from RGB to BGR % im_data = im(:, :, [3, 2, 1]); % % flip width and height to make width the fastest dimension % im_data = permute(im_data, [2, 1, 3]); % % convert from uint8 to single % im_data = single(im_data); % % reshape to a fixed size (e.g., 227x227). % im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % % subtract mean_data (already in W x H x C with BGR channels) % im_data = im_data - mean_data; % If you have multiple images, cat them with cat(4, ...) % Add caffe/matlab to your Matlab search PATH in order to use matcaffe if exist('../+caffe', 'dir') addpath('..'); else error('Please run this demo from caffe/matlab/demo'); end % Set caffe mode if exist('use_gpu', 'var') && use_gpu caffe.set_mode_gpu(); gpu_id = 0; % we will use the first gpu in this demo caffe.set_device(gpu_id); else caffe.set_mode_cpu(); end % Initialize the network using BVLC CaffeNet for image classification % Weights (parameter) file needs to be downloaded from Model Zoo. model_dir = '../../models/bvlc_reference_caffenet/'; net_model = [model_dir 'deploy.prototxt']; net_weights = [model_dir 'bvlc_reference_caffenet.caffemodel']; phase = 'test'; % run with phase test (so that dropout isn't applied) if ~exist(net_weights, 'file') error('Please download CaffeNet from Model Zoo before you run this demo'); end % Initialize a network net = caffe.Net(net_model, net_weights, phase); if nargin < 1 % For demo purposes we will use the cat image fprintf('using caffe/examples/images/cat.jpg as input image\n'); im = imread('../../examples/images/cat.jpg'); end % prepare oversampled input % input_data is Height x Width x Channel x Num tic; input_data = {prepare_image(im)}; toc; % do forward pass to get scores % scores are now Channels x Num, where Channels == 1000 tic; % The net forward function. It takes in a cell array of N-D arrays % (where N == 4 here) containing data of input blob(s) and outputs a cell % array containing data from output blob(s) scores = net.forward(input_data); toc; scores = scores{1}; scores = mean(scores, 2); % take average scores over 10 crops [~, maxlabel] = max(scores); % call caffe.reset_all() to reset caffe caffe.reset_all(); % ------------------------------------------------------------------------ function crops_data = prepare_image(im) % ------------------------------------------------------------------------ % caffe/matlab/+caffe/imagenet/ilsvrc_2012_mean.mat contains mean_data that % is already in W x H x C with BGR channels d = load('../+caffe/imagenet/ilsvrc_2012_mean.mat'); mean_data = d.mean_data; IMAGE_DIM = 256; CROPPED_DIM = 227; % Convert an image returned by Matlab's imread to im_data in caffe's data % format: W x H x C with BGR channels im_data = im(:, :, [3, 2, 1]); % permute channels from RGB to BGR im_data = permute(im_data, [2, 1, 3]); % flip width and height im_data = single(im_data); % convert from uint8 to single im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % resize im_data im_data = im_data - mean_data; % subtract mean_data (already in W x H x C, BGR) % oversample (4 corners, center, and their x-axis flips) crops_data = zeros(CROPPED_DIM, CROPPED_DIM, 3, 10, 'single'); indices = [0 IMAGE_DIM-CROPPED_DIM] + 1; n = 1; for i = indices for j = indices crops_data(:, :, :, n) = im_data(i:i+CROPPED_DIM-1, j:j+CROPPED_DIM-1, :); crops_data(:, :, :, n+5) = crops_data(end:-1:1, :, :, n); n = n + 1; end end center = floor(indices(2) / 2) + 1; crops_data(:,:,:,5) = ... im_data(center:center+CROPPED_DIM-1,center:center+CROPPED_DIM-1,:); crops_data(:,:,:,10) = crops_data(end:-1:1, :, :, 5);
github
lederman/Prol-master
gpsf_report1_figures.m
.m
Prol-master/doc/figures/gpsf_report1_figures.m
3,770
utf_8
e0676d6ce41e08e23c42591f0ce93954
% % prol % Demosntration code for computing generalized prolate spheroidal functions. % (Matlab(R) version) % % Author: Roy R. Lederman % http://roy.lederman.name/ % http://github.com/lederman/prol % % This code generates the figures for the paper gpsf_report1.tex % function gpsf_report1_figures() % run matlab_addpath_prol_src() in /src/matlab before running this code. file_header = 'gpsf_report1_' report_part001(file_header) end function report_part001(file_header) % % sample eigenvalues figures % c=pi*20; D=3; h1=figure; % eigenvalues magnitude |\nu| h2=figure; % eigenvalues magnitude is close to one: |1-|\nu|| matdim = 800; minEigenvalRatio = 10^-40; prolate_crea_options.isfixfirst = 1; Ns = [0:5:20]; for j1=1:length(Ns) N=Ns(j1); tic [prolate_dat, iserr , ~] = prolate_crea(c,D,N,minEigenvalRatio, matdim, prolate_crea_options); toc figure(h1) semilogy([0:prolate_dat.num_prols-1],(abs(prolate_dat.nu)),'LineWidth',3) hold on figure(h2) semilogy([0:prolate_dat.num_prols-1],max(abs(1-abs(prolate_dat.nu)),10^-20),'LineWidth',3) % the max is taken to avoid log(0) when |\nu| = 1 exactly. hold on end figure(h1) ylim([10^-30,3]) xlabel('n') lgd=legend(num2str(Ns')); %title(lgd,'N=') set(gca,'FontSize', 12); ylabel('|\nu_n|','FontSize', 14) print([file_header,'D3_eigenvals.png'],'-dpng') figure(h2) ylim([10^-16,3]) xlabel('n') lgd=legend(num2str(Ns')); %title(lgd,'N=') set(gca,'FontSize', 12); ylabel('|1-|\nu_n||','FontSize', 14) print([file_header,'D3_eigenvals_to_one.png'],'-dpng') % % Without fixing the coefficients of the first eigenvector % h1=figure; h2=figure; prolate_crea_options.isfixfirst = 0; Ns = [0:3:20]; for j1=1:length(Ns) N=Ns(j1); tic [prolate_dat, iserr , ~] = prolate_crea(c,D,N,minEigenvalRatio, matdim, prolate_crea_options); toc figure(h1) semilogy([0:prolate_dat.num_prols-1],(abs(prolate_dat.nu)),'LineWidth',3) hold on figure(h2) semilogy([0:prolate_dat.num_prols-1],abs(1-abs(prolate_dat.nu)),'LineWidth',3) hold on end figure(h1) ylim([10^-30,3]) xlabel('n') lgd=legend(num2str(Ns')); %title(lgd,'N=') set(gca,'FontSize', 12); ylabel('\nu_n','FontSize', 14) % % sample eigenfunctions figures % c= 20 * pi; D=3; N=0; matdim = 800; xx = linspace(0,1,1000); minEigenvalRatio = 10^-30; prolate_crea_options.isfixfirst = 1; tic [prolate_dat, iserr , ~] = prolate_crea(c,D,N,minEigenvalRatio, matdim, prolate_crea_options); toc tic [v] = prolate_ev(prolate_dat, [0:prolate_dat.num_prols-1], xx); toc h1 = figure; funcid = [0:1,2,5,10]; plot(xx,v(:,funcid+1),'LineWidth',2); xlabel('x') lgd=legend(num2str(funcid')); set(gca,'FontSize', 12); ylabel('\Phi_{N,n}(x)','FontSize', 14) print([file_header,'D3_N0_eigenfuncs.png'],'-dpng') % % % N=1; tic [prolate_dat, iserr , ~] = prolate_crea(c,D,N,minEigenvalRatio, matdim, prolate_crea_options); toc tic [v] = prolate_ev(prolate_dat, [0:prolate_dat.num_prols-1], xx); toc h1 = figure; funcid = [0:1,2,5,10]; plot(xx,v(:,funcid+1),'LineWidth',2); xlabel('x') lgd=legend(num2str(funcid')); set(gca,'FontSize', 12); ylabel('\Phi_{N,n}(x)','FontSize', 14) print([file_header,'D3_N1_eigenfuncs.png'],'-dpng') end
github
lederman/Prol-master
prolate_ev.m
.m
Prol-master/src/matlab/prolate_ev.m
647
utf_8
ea9b52e826d67d93d39a8d5ebe4dee78
function [v] = prolate_ev(prolate_dat, prolate_ids, xx) % % Evaluates the prolate functions. % % Input: % * prolate_dat : precomputed data structure (prolate_crea). % * prolate_ids : which prolates to compute. vector of ids between 0 and prolate_dat.num_prols-1. % * xx : vector of points in the interval [0,1] where the prolates should be evaluated % Output: % * v : matrix of evaluate prolates. % each column refers to a different prolate, each row to a different coordinate. % % assert( prolate_dat.type == 2 ) v = prolate_ZernikeNorm_ex(prolate_dat.p,prolate_dat.N, prolate_dat.cfs(:,prolate_ids+1), xx) ; end
github
lederman/Prol-master
prolate_crea.m
.m
Prol-master/src/matlab/prolate_crea.m
6,511
utf_8
5a20b52f509115bbf50f57247e82a50e
function [prolate_dat, iserr , prolate_dat_tmp] = prolate_crea(c, D, N, minEigenvalRatio, matdim , prolate_crea_options) % % prolate_crea creates a data-structure for computing a family of % generalized prolate spheroidal functions for dimension D and order N. % % Input: % * c : prolate truncation frequency % * D : prolate dimension (D=p+2) % * N : prolate order % * minEigenvalRatio : keep only prolates the with eigenvalue \gamma s.t. % | \gamma_n | > c^{-1/2} * minEigenvalRatio . % The reason is that for small n and large c, c^{1/2}| \gamma_n | -> 1 % * matdim : the dimensionality of teh matrix used in precomputation. % This is a technical parameter which will be removed in future versions. % If this number is too small, a warning will be generated. % If this number is too large, the precomputation can be slow. % * prolate_crea_options : optional patameters % isfast : run faster computation without fixing the eigenvectors? % This will be removed in future versions. % % Output: % * prolate_dat : data structure to be used in prolate_ev % * iserr : error code % 0 : no error % 1 : empty set of prolates. % 10 : matdim may be too small (based on number of prolates kept) % 100 : matdim may be too small (based on number of coefficients kept) % % % % TODO: % * Remove Matlab eig for more accurate computation of eigenvectors' % elements without the second pass on the eigenvectors. % * Introduce wrapper to compute matdim % * Introduce warpper to compute for all N. % * Add user control of accuracy. % assert(round(D)==D) % Integer dimension assert(D>1) % One dimensional case to be treated separately assert(c>0) % Physical c assert(N>=0) % Physical N assert(round(N)==N) assert(minEigenvalRatio<1) % otherwise, what is the point? assert(minEigenvalRatio > 0) % Eigenvalues must be truncated assert(matdim > 10) % The matrix for computing the coefficients cannot be too small isfast = 1; % don't bypass the eigenvector correction isfixfirst = 1; % don't bypass the eigenvector correction if exist('prolate_crea_options') if isfield(prolate_crea_options,'isfast') isfast = prolate_crea_options.isfast; end if isfield(prolate_crea_options,'isfixfirst') isfixfirst = prolate_crea_options.isfixfirst; end end % % Parameters % iserr = 0; prolate_dat.type = 2; prolate_dat.c = c; prolate_dat.D = D; prolate_dat.p = D-2; prolate_dat.N = N; prolate_dat.creaparam.minEigenvalRatio = minEigenvalRatio; prolate_dat.creaparam.matdim = matdim; prolate_dat.evparam.cfs_eps = eps(1.0)/100; % % differential equation eigenproblem in matrix form, the eigenvectors % ate the coefficients of the prolats. % % TODO: replace the full matrix operation. [mat, vdiag, voffdiag] = prolate_diffop_mat_full(prolate_dat.c, prolate_dat.p ,prolate_dat.N , prolate_dat.creaparam.matdim-1); [u,d] = eig(mat); % Note that Matlab eig truncates some small coefficients by setting them to 0. [eigvals,eigvals_order] = sort(diag(d),'descend'); eigvecs = u(:,eigvals_order); eigvecs = bsxfun(@times, eigvecs, sign(eigvecs(1,:)).*(-1).^[0:matdim-1] ); % standard sign. Assumes accurate first element. % % temporary data structure that stores data before truncation % prolate_dat_tmp = prolate_dat; prolate_dat_tmp.cfs = eigvecs; prolate_dat_tmp.diffeigs = eigvals; % fix the first eigenvector to reduce the scope of numerical inaccuracy % due to eigenvector truncation in Matlab's eig. if (isfixfirst==1) prolate_dat_tmp.cfs(:,1) = prolate_crea_fix_eigenvec(mat, prolate_dat_tmp , 1); end % compute the first eigenvalue %gam0num = prolate_numericalgam(prolate_dat_tmp, 0);% TODO: replace with approximate maximum using WKB and/or Newton method search. gam0 = prolate_analyticgam(prolate_dat_tmp, 0); % Compute the rest of the eigenvalues through recurrsion [ratios , ~] = prolate_crea_eigRatios(prolate_dat_tmp); prolate_dat_tmp.gams = gam0 * ratios; prolate_dat_tmp.nu_abs = abs(gam0 * ratios * prolate_dat.c^(1/2)); % Find where to truncate ids_prolate_to_discard = find( prolate_dat_tmp.nu_abs <= prolate_dat.creaparam.minEigenvalRatio ); ids_prolate_to_keep = [1:min(ids_prolate_to_discard)-1+1]; if (isempty(ids_prolate_to_keep)) warning('No prolates to keep'); iserr = 1; return end % Note that Matlab eig truncates the small coefficients by setting them to 0. abs_cfs = max( abs(prolate_dat_tmp.cfs (:,[1:ids_prolate_to_keep(end)])), [], 2) ; cfs_to_keep = find( abs_cfs >= prolate_dat.evparam.cfs_eps ); cfs_to_keep = [1:max(cfs_to_keep)]; % truncated coefficients prolate_dat.cfs = prolate_dat_tmp.cfs( 1:cfs_to_keep(end) , 1:ids_prolate_to_keep(end) ) ; % the various forms of the integral operator eigenvalues prolate_dat.gam = gam0 * ratios(1:ids_prolate_to_keep(end) ); prolate_dat.bet = prolate_dat.gam/(prolate_dat.c^((prolate_dat.p+1)/2)); prolate_dat.alp = prolate_dat.bet * (1i)^prolate_dat.N * (2*pi)^(1+prolate_dat.p/2); prolate_dat.nu = (1i)^prolate_dat.N * prolate_dat.c^(1/2) * prolate_dat.gam; % the differential operator eigenvalues prolate_dat.chi = eigvals(1:ids_prolate_to_keep(end)); prolate_dat.num_prols = ids_prolate_to_keep(end); % % Warnings % Take plenty of margin for the truncation. % if (ids_prolate_to_keep(end)+20 >= matdim) warning('prolate_crea: insufficient margin in matrix size (number of prolates)') iserr = iserr+10; end if (cfs_to_keep(end)+40 >= matdim) warning('prolate_crea: insufficient margin in matrix size (number of coefficients)') iserr = iserr+100; end end function v = prolate_crea_fix_eigenvec(mat, prolate_dat , jj) tmpmat = mat-eye(prolate_dat.creaparam.matdim)*... (prolate_dat.diffeigs(jj)+(prolate_dat.diffeigs(jj+1)-prolate_dat.diffeigs(jj))/10^5/(jj+1) ); v=tmpmat\prolate_dat.cfs(:,jj); v = v/norm(v); end
github
lederman/Prol-master
matlab_addpath_prol_src.m
.m
Prol-master/src/matlab/matlab_addpath_prol_src.m
224
utf_8
f61dd8a0f775bcd01a4600503a733dc1
% % Add to path % function matlab_addpath_prol_src() path_to_pkg = fileparts(mfilename('fullpath')); addp = @(d)(addpath(fullfile(path_to_pkg, d))); addp(''); addp('polynomials'); addp('service'); end
github
lederman/Prol-master
prolate_analyticgam.m
.m
Prol-master/src/matlab/service/prolate_analyticgam.m
1,598
utf_8
a8cef2c41c56b40443b2f172ac32a1a7
function gam = prolate_analyticgam(prolate_dat, n) % % Computation of the n-th eigenvalue of the integral operator. % Uses the data structure prolate_dat created by prolate_crea. % % Generally speaking, this function should only be used for computing the % eigenvalue for n=0 by prolate_crea. % % Input: % * prolate_dat : precomputed prolate information. % * n : the id of the eigenvalue to be computed. % This would usually be n=0. % Output: % * gam : the eigenvalue \gamma_n % % Todo: remove dependency on undocumented properties of the eigenvector % computation in matlab. % % Note: this function can be more sensitive to the truncation of the list % of coefficients. % % coefficients of the chosen prolate cfs = prolate_dat.cfs(:,n+1); % extract parameters N=prolate_dat.N; p=prolate_dat.p; c=prolate_dat.c; k=[0:length(cfs)-1]'; % parts of the computation cfs1 = (-1).^k .* sqrt(2+4*k+2*N+p) .* (2+2*N+p) /2; cfs2n = (N+p/2 + k); cfs2n(1) = gamma(1+ N+p/2 ); cfs2d = k; cfs2d(1) = 1; cfs2 = cumprod(cfs2n./cfs2d); % % Safety truncation to avoid inf. % mytrunc1 = find(abs(cfs2)>realmax*10^-10); mytrunc2 = find(abs(cfs)<realmin*10^10); mytrunc = min([mytrunc1,mytrunc2]); if ~isempty(mytrunc) cfs = cfs(1:mytrunc); cfs1 = cfs1(1:mytrunc); cfs2 = cfs2(1:mytrunc); end % % Compute \gamma % num = 2^(-(N+p/2+1)) * c^(N+p/2+0.5) * sqrt(2+2*N+p) * cfs(1); denom = sum( cfs.*cfs1.*cfs2 ); gam = num/denom; end
github
lederman/Prol-master
prolate_numericalgam.m
.m
Prol-master/src/matlab/service/prolate_numericalgam.m
1,757
utf_8
96fdcfafa9bf6765fd02db80606f0be4
function gam = prolate_numericalgam(prolate_dat, n) % % Numerical computation of the n-th eigenvalue of the integral operator. % Uses the data structure prolate_dat created by prolate_crea. % % Generally speaking, this function should only be used for computing the % eigenvalue for n=0 by prolate_crea, and should not be used otherwise. % % Input: % * prolate_dat : precomputed prolate information. % * n : the id of the eigenvalue to be computed. % This would usually be n=0. % Output: % * gam : the eigenvalue \gamma_n % % Todo: remove matlab dependency assert( prolate_dat.type == 2 ) % find a large enough point % TODO: replace with approximate maximum using WKB and/or Newton method search. xx0 = linspace(0,1,1000)'; % prolate [v] = prolate_ev(prolate_dat, [n], xx0); % weighted prolate: \phi_n(x) = x^{(p+1)/2} \Phi_n (x); v=bsxfun(@times, xx0.^((prolate_dat.p+1)/2) , v); % find max [xmax_v,xmax_id] = max(abs(v)); xmax_v = v(xmax_id); xmax = xx0(xmax_id); % truncate the vector of coefficients vec = prolate_dat.cfs(:,n+1); tmpkeep = find(abs(vec) >= prolate_dat.evparam.cfs_eps); idskeep=tmpkeep(end); vec((idskeep+1):end) = []; % % numerical integration: % % function to integrate fun = @(y) reshape( besselj(prolate_dat.N+prolate_dat.p/2, prolate_dat.c*xmax*y(:)).*sqrt(prolate_dat.c *xmax *y(:)) .*y(:).^((prolate_dat.p+1)/2) .* prolate_ZernikeNorm_ex(prolate_dat.p,prolate_dat.N, vec, y(:)) , size(y) ); % integration: %q1 = integral( fun,0,1 ); % matlab only q1 = quad( fun,0,1, eps(xmax_v)*2 ); % compatible with Octave % % The eigenvalue is the ratio: % gam = q1 / xmax_v; end
github
lederman/Prol-master
prolate_diffop_mat_tridiag.m
.m
Prol-master/src/matlab/service/prolate_diffop_mat_tridiag.m
1,607
utf_8
f7308e7a142a5c14badff37d8e20c56c
function [vdiag, voffdiag] = prolate_diffop_mat_tridiag(c,p,N,maxk) % % Computes the matrix representation of the differential operator, % in the basis of Zernike polynomials. % % Input: % * c,p,N : prolate parameters. % * maxk : matrix truncations: the dimensionality of the matrix is k+1 % Output: % * vdiag : vector of the elements of the matrix diagonal % * voffdiad : vector of coefficients of the matrix off diagonal % % Note that the matrix is symmetric tridiagonal. All other elements are % zeros. % vdiag = zeros(maxk+1,1); voffdiag = zeros(maxk,1); for k=0:maxk vdiag(k+1,1) = prolate_diffop_mat_diag_element(c,p,N,k); end for k=0:maxk-1 voffdiag(k+1,1) = prolate_diffop_mat_offdiag_element(c,p,N,k); end end function v = prolate_diffop_mat_offdiag_element(c,p,N,k) % % helper function for prolate_diffop_mat_tridiag. % offdiagonal elements. % nn = k+1; NN = N+p/2; if nn<=0 v=0; else v = -(c^2*nn)/((2*nn+NN)*(2*nn+NN+1)) * (nn+NN)/(sqrt(1-2/(1+2*nn+NN))); end end function v = prolate_diffop_mat_diag_element(c,p,N,k) % % helper function for prolate_diffop_mat_tridiag. % elements on the diagonal. % NN=N+p/2; if (NN==0)&&(k==0) v = -( prolate_diffop_mat_kappa(p,N,k) +c^2/2 ); else v = -( prolate_diffop_mat_kappa(p,N,k) +c^2*(2*k*(k+1)+NN*(2*k+NN+1))/((2*k+NN)*(2*k+NN+2)) ); end end function kap = prolate_diffop_mat_kappa(p,N,k) % % helper function for prolate_diffop_mat_tridiag. % NN = N+p/2; kap = (NN+2*k+1/2)*(NN+2*k+3/2); end
github
lederman/Prol-master
prolate_diffop_mat_full.m
.m
Prol-master/src/matlab/service/prolate_diffop_mat_full.m
834
utf_8
ca3ead2addc46e97c38d150ba121df6b
function [mat, vdiag, voffdiag ] = prolate_diffop_mat_full(c,p,N,maxk) % % Computes the full matrix representation of the differential operator, % in the basis of Zernike polynomials. % % Input: % * c,p,N : prolate parameters. % * maxk : matrix truncations: the dimensionality of the matrix is k+1 % Output: % * mat : the matrix % * vdiag : vector of the elements of the matrix diagonal % * voffdiad : vector of coefficients of the matrix off diagonal % % Note that the matrix is symmetric tridiagonal. All other elements are % zeros. % mat = zeros(maxk+1); [vdiag, voffdiag] = prolate_diffop_mat_tridiag(c,p,N,maxk); for k=0:maxk mat(k+1,k+1) = vdiag(k+1); end for k=0:maxk-1 mat(k+1,k+2) = voffdiag(k+1); mat(k+2,k+1) = voffdiag(k+1); end end
github
lederman/Prol-master
prolate_ZernikeNorm_ex.m
.m
Prol-master/src/matlab/polynomials/prolate_ZernikeNorm_ex.m
796
utf_8
32da78a7d24f02fd89e8f9c58e238999
function v = prolate_ZernikeNorm_ex(p,N,cfsvec,xx) % % % Evaluates functions expanded in the basis of normalized Zernike % polynomials. % % v(i,j) = \sum_{q=0}^{k-1} cfsvec(q,j) \hat{R}_{N,n,p}_q(x_i) % % % Input: % * p,N : the p,N parameters of the Zernike polynomials to use here. % * cfsvec : k x m matrix. % Columns of coefficients, each column has the k coefficients of an expansion % in Zernike polynoimals of order k-1 for one of the m different functions. % * xx : a vector of length l. % each entry is a value of x where each one of the k expansions should be evaluated. % Output: % * v : l x m matrix. % The j-th column is the j-th function evaluated at the l points. % % v = prolate_ZernikeNorm_ex_fromJacobi(p,N,cfsvec,xx) ; end
github
lederman/Prol-master
prolate_xdZernikeNorm_coef.m
.m
Prol-master/src/matlab/polynomials/prolate_xdZernikeNorm_coef.m
1,054
utf_8
e1d65d8fdd68d9868f8e127161c4ed41
function dvec = prolate_xdZernikeNorm_coef(p,N,vec) % % Computes the expansion of xf'(x) in the basis of Zernike polynomials, % where f(x) is given in the basis of Zernike polynomials. % % Input: % * p,N : Prolate/Zernike parameters. % * vec : vector (or multiple vectors in multiple columns) of the % coefficients of funtions, expanded in the basis of Zernike polynomials. % % Output: % * dvec : vector (or multiple vectors in multiple columns) of the % coefficients of the expansion of xf'(x). % dvec = 0 * vec; tmpvec = vec; tmpjacvec = 0*vec; for n=size(vec,1)-1:-1:0 dvec(n+1,:) = dvec(n+1,:) + sqrt(2*n + N + p/2 + 1)/sqrt(2)/(n + N + p/2 + 1) * tmpjacvec(n+1,:); dvec(n+1,:) = dvec(n+1,:) + (2*n+N) * (tmpvec(n+1,:)); if (n==0) break end tmpjacvec(n,:)= (n + N + p/2)/(n + N + p/2 + 1) * tmpjacvec(n+1,:); tmpjacvec(n,:) = tmpjacvec(n,:) + (2*(n + N) + p)* sqrt(2*(2*n + N + p/2 + 1)) * tmpvec(n+1,:); % Jacobi component end end
github
lederman/Prol-master
prolate_ZernikeNorm_ex_fromJacobi.m
.m
Prol-master/src/matlab/polynomials/prolate_ZernikeNorm_ex_fromJacobi.m
1,221
utf_8
4cfe0e16b432763a99f8566676137ce5
function v = prolate_ZernikeNorm_ex_fromJacobi(p,N,cfsvec,xx) % % Evaluates functions expanded in the basis of normalized Zernike polynomials % using Jacobi polynomials. % % v(i,j) = \sum_{q=0}^{k-1} cfsvec(q,j) \hat{R}_{N,n,p}_q(x_i) % % Using Jacobi polynomials: % \hat{R}_{N,n,p}_q(x_i) = (-1)^n \sqrt{2(2n+N+p/2+1)} x^N P^{(N+p/2,0)}_n(1-2x^2) % % Input: % * p,N : the p,N parameters of the Zernike polynomials to use here. % * cfsvec : k x m matrix. % Columns of coefficients, each column has the k coefficients of an expansion % in Zernike polynoimals of order k-1 for one of the m different functions. % * xx : a vector of length l. % each entry is a value of x where each one of the k expansions should be evaluated. % Output: % * v : l x m matrix. % The j-th column is the j-th function evaluated at the l points. % % b=0; a=N+p/2; yy = 1-2 * xx(:).^2; K = size(cfsvec,1)-1; cfsvec_jac = cfsvec; cfsvec_jac = bsxfun(@times, (-1).^[0:K]', cfsvec_jac); cfsvec_jac = bsxfun(@times, sqrt(2*(2*[0:K]' + N + p/2 + 1)), cfsvec_jac); v = prolate_JacobiP_ex(a,b,cfsvec_jac,yy) ; v=bsxfun(@times, xx(:).^N , v); end
github
ngcthuong/CSNet-master
Cal_PSNRSSIM.m
.m
CSNet-master/utilities/Cal_PSNRSSIM.m
6,250
utf_8
891b4e57ebcd097592850eecf97f150e
function [psnr_cur, ssim_cur] = Cal_PSNRSSIM(A,B,row,col) [n,m,ch]=size(B); A = A(row+1:n-row,col+1:m-col,:); B = B(row+1:n-row,col+1:m-col,:); A=double(A); % Ground-truth B=double(B); % e=A(:)-B(:); mse=mean(e.^2); psnr_cur=10*log10(255^2/mse); if ch==1 [ssim_cur, ~] = ssim_index(A, B); else ssim_cur = -1; end function [mssim, ssim_map] = ssim_index(img1, img2, K, window, L) %======================================================================== %SSIM Index, Version 1.0 %Copyright(c) 2003 Zhou Wang %All Rights Reserved. % %The author is with Howard Hughes Medical Institute, and Laboratory %for Computational Vision at Center for Neural Science and Courant %Institute of Mathematical Sciences, New York University. % %---------------------------------------------------------------------- %Permission to use, copy, or modify this software and its documentation %for educational and research purposes only and without fee is hereby %granted, provided that this copyright notice and the original authors' %names appear on all copies and supporting documentation. This program %shall not be used, rewritten, or adapted as the basis of a commercial %software or hardware product without first obtaining permission of the %authors. The authors make no representations about the suitability of %this software for any purpose. It is provided "as is" without express %or implied warranty. %---------------------------------------------------------------------- % %This is an implementation of the algorithm for calculating the %Structural SIMilarity (SSIM) index between two images. Please refer %to the following paper: % %Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image %quality assessment: From error measurement to structural similarity" %IEEE Transactios on Image Processing, vol. 13, no. 1, Jan. 2004. % %Kindly report any suggestions or corrections to [email protected] % %---------------------------------------------------------------------- % %Input : (1) img1: the first image being compared % (2) img2: the second image being compared % (3) K: constants in the SSIM index formula (see the above % reference). defualt value: K = [0.01 0.03] % (4) window: local window for statistics (see the above % reference). default widnow is Gaussian given by % window = fspecial('gaussian', 11, 1.5); % (5) L: dynamic range of the images. default: L = 255 % %Output: (1) mssim: the mean SSIM index value between 2 images. % If one of the images being compared is regarded as % perfect quality, then mssim can be considered as the % quality measure of the other image. % If img1 = img2, then mssim = 1. % (2) ssim_map: the SSIM index map of the test image. The map % has a smaller size than the input images. The actual size: % size(img1) - size(window) + 1. % %Default Usage: % Given 2 test images img1 and img2, whose dynamic range is 0-255 % % [mssim ssim_map] = ssim_index(img1, img2); % %Advanced Usage: % User defined parameters. For example % % K = [0.05 0.05]; % window = ones(8); % L = 100; % [mssim ssim_map] = ssim_index(img1, img2, K, window, L); % %See the results: % % mssim %Gives the mssim value % imshow(max(0, ssim_map).^4) %Shows the SSIM index map % %======================================================================== if (nargin < 2 || nargin > 5) ssim_index = -Inf; ssim_map = -Inf; return; end if (size(img1) ~= size(img2)) ssim_index = -Inf; ssim_map = -Inf; return; end [M N] = size(img1); if (nargin == 2) if ((M < 11) || (N < 11)) ssim_index = -Inf; ssim_map = -Inf; return end window = fspecial('gaussian', 11, 1.5); % K(1) = 0.01; % default settings K(2) = 0.03; % L = 255; % end if (nargin == 3) if ((M < 11) || (N < 11)) ssim_index = -Inf; ssim_map = -Inf; return end window = fspecial('gaussian', 11, 1.5); L = 255; if (length(K) == 2) if (K(1) < 0 || K(2) < 0) ssim_index = -Inf; ssim_map = -Inf; return; end else ssim_index = -Inf; ssim_map = -Inf; return; end end if (nargin == 4) [H W] = size(window); if ((H*W) < 4 || (H > M) || (W > N)) ssim_index = -Inf; ssim_map = -Inf; return end L = 255; if (length(K) == 2) if (K(1) < 0 || K(2) < 0) ssim_index = -Inf; ssim_map = -Inf; return; end else ssim_index = -Inf; ssim_map = -Inf; return; end end if (nargin == 5) [H W] = size(window); if ((H*W) < 4 || (H > M) || (W > N)) ssim_index = -Inf; ssim_map = -Inf; return end if (length(K) == 2) if (K(1) < 0 || K(2) < 0) ssim_index = -Inf; ssim_map = -Inf; return; end else ssim_index = -Inf; ssim_map = -Inf; return; end end C1 = (K(1)*L)^2; C2 = (K(2)*L)^2; window = window/sum(sum(window)); img1 = double(img1); img2 = double(img2); mu1 = filter2(window, img1, 'valid'); mu2 = filter2(window, img2, 'valid'); mu1_sq = mu1.*mu1; mu2_sq = mu2.*mu2; mu1_mu2 = mu1.*mu2; sigma1_sq = filter2(window, img1.*img1, 'valid') - mu1_sq; sigma2_sq = filter2(window, img2.*img2, 'valid') - mu2_sq; sigma12 = filter2(window, img1.*img2, 'valid') - mu1_mu2; if (C1 > 0 & C2 > 0) ssim_map = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))./((mu1_sq + mu2_sq + C1).*(sigma1_sq + sigma2_sq + C2)); else numerator1 = 2*mu1_mu2 + C1; numerator2 = 2*sigma12 + C2; denominator1 = mu1_sq + mu2_sq + C1; denominator2 = sigma1_sq + sigma2_sq + C2; ssim_map = ones(size(mu1)); index = (denominator1.*denominator2 > 0); ssim_map(index) = (numerator1(index).*numerator2(index))./(denominator1(index).*denominator2(index)); index = (denominator1 ~= 0) & (denominator2 == 0); ssim_map(index) = numerator1(index)./denominator1(index); end mssim = mean2(ssim_map); return
github
ngcthuong/CSNet-master
test_network_v02.m
.m
CSNet-master/utilities/test_network_v02.m
3,766
utf_8
6abb3286637df8403f7e640f9b53db51
function net = CSNet_init global featureSize noLayer blkSize subRate; test = 1; if test == 1 featureSize = 64; noLayer = 7; blkSize = 32; subRate = 0.1; end noMeas = round(subRate * blkSize ^2); %%% 17 layers b_min = 0.025; lr11 = [1 1]; lr10 = [1 0]; lr00 = [0 0]; weightDecay = [1 0]; meanvar = [zeros(featureSize,1,'single'), 0.01*ones(featureSize,1,'single')]; % Define network net.layers = {} ; %% 1. Sampling layer - for gray image % Sampling network, with kernel size of blkSize x blkSize, do no use % bias --> initialized as zero and learn rate = 0. % Load sensing matrix of size blkSizexBlkSize trial = 1; fileName = ['SensingMtxs\BlkSize' num2str(blkSize) '_trial' num2str(trial) '.mat' ]; if ~(exist(fileName)) Phi_Full = orth(rand(blkSize^2, blkSize^2)); save(fileName, 'Phi_Full'); else load(fileName); Phi = single(Phi_Full(1:noMeas, :)); end net.layers{end+1} = struct('type', 'conv', ... 'weights', {{zeros(blkSize, blkSize, 1, noMeas,'single'), zeros(featureSize,1,'single')}}, ... 'stride', blkSize, ... 'pad', 0, ... 'dilate',1, ... 'learningRate',lr00, ... 'weightDecay',weightDecay, ... 'opts',{{}}) ; % net.layers{end+1} = struct('type', 'relu','leak',0) ; -- do not use relu % assign the sampling matrix W = zeros(blkSize, blkSize, 1, noMeas); for i = 1:1:noMeas W(:, :, 1, i) = reshape(Phi(i, :), blkSize, blkSize); end net.layers{1}.weights(1) = {single(W)}; % im = double(imread('cameraman.tif')); %% 2. Initial reconstruction layer with 1x1 Convolution net.layers{end+1} = struct('type', 'conv', ... 'weights', {{zeros(1, 1, noMeas, blkSize*blkSize,'single'), zeros(featureSize,1,'single')}}, ... 'stride', 1, ... 'pad', 0, ... 'dilate',1, ... 'learningRate',lr11, ... 'weightDecay',weightDecay, ... 'opts',{{}}) ; W2 = zeros(1, 1, noMeas, blkSize*blkSize); PhiInv = pinv(Phi); for i = 1:1:noMeas W2(:, :, i, :) = PhiInv(:, i); end net.layers{2}.weights(1) = {single(W2)}; %% 3. Reshape and concatinate to make recon. image net.layers{end+1} = struct{'type', 'reshapeconcat'}; %% 4. Reconstruction network - DnCNN net.layers{end+1} = struct('type', 'conv', ... 'weights', {{sqrt(2/(9*featureSize))*randn(3,3,1,featureSize,'single'), zeros(featureSize,1,'single')}}, ... 'stride', 1, ... 'pad', 1, ... 'dilate',1, ... 'learningRate',lr11, ... 'weightDecay',weightDecay, ... 'opts',{{}}) ; net.layers{end+1} = struct('type', 'relu','leak',0) ; for i = 1:1:noLayer - 2 net.layers{end+1} = struct('type', 'conv', ... 'weights', {{sqrt(2/(9*featureSize))*randn(3,3,featureSize,featureSize,'single'), zeros(featureSize,1,'single')}}, ... 'stride', 1, ... 'learningRate',lr10, ... 'dilate',1, ... 'weightDecay',weightDecay, ... 'pad', 1, 'opts', {{}}) ; net.layers{end+1} = struct('type', 'bnorm', ... 'weights', {{clipping(sqrt(2/(9*featureSize))*randn(featureSize,1,'single'),b_min), zeros(featureSize,1,'single'),meanvar}}, ... 'learningRate', [1 1 1], ... 'weightDecay', [0 0], ... 'opts', {{}}) ; net.layers{end+1} = struct('type', 'relu','leak',0) ; end net.layers{end+1} = struct('type', 'conv', ... 'weights', {{sqrt(2/(9*featureSize))*randn(3,3,featureSize,1,'single'), zeros(1,1,'single')}}, ... 'stride', 1, ... 'learningRate',lr11, ... 'dilate',1, ... 'weightDecay',weightDecay, ... 'pad', 1, 'opts', {{}}) ; net.layers{end+1} = struct('type', 'loss') ; % make sure the new 'vl_nnloss.m' is in the same folder. % Fill in default values net = vl_simplenn_tidy(net); function A = clipping(A,b) A(A>=0&A<b) = b; A(A<0&A>-b) = -b;
github
ngcthuong/CSNet-master
Cal_PSNRSSIM.m
.m
CSNet-master/Data/utilities/Cal_PSNRSSIM.m
6,250
utf_8
891b4e57ebcd097592850eecf97f150e
function [psnr_cur, ssim_cur] = Cal_PSNRSSIM(A,B,row,col) [n,m,ch]=size(B); A = A(row+1:n-row,col+1:m-col,:); B = B(row+1:n-row,col+1:m-col,:); A=double(A); % Ground-truth B=double(B); % e=A(:)-B(:); mse=mean(e.^2); psnr_cur=10*log10(255^2/mse); if ch==1 [ssim_cur, ~] = ssim_index(A, B); else ssim_cur = -1; end function [mssim, ssim_map] = ssim_index(img1, img2, K, window, L) %======================================================================== %SSIM Index, Version 1.0 %Copyright(c) 2003 Zhou Wang %All Rights Reserved. % %The author is with Howard Hughes Medical Institute, and Laboratory %for Computational Vision at Center for Neural Science and Courant %Institute of Mathematical Sciences, New York University. % %---------------------------------------------------------------------- %Permission to use, copy, or modify this software and its documentation %for educational and research purposes only and without fee is hereby %granted, provided that this copyright notice and the original authors' %names appear on all copies and supporting documentation. This program %shall not be used, rewritten, or adapted as the basis of a commercial %software or hardware product without first obtaining permission of the %authors. The authors make no representations about the suitability of %this software for any purpose. It is provided "as is" without express %or implied warranty. %---------------------------------------------------------------------- % %This is an implementation of the algorithm for calculating the %Structural SIMilarity (SSIM) index between two images. Please refer %to the following paper: % %Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image %quality assessment: From error measurement to structural similarity" %IEEE Transactios on Image Processing, vol. 13, no. 1, Jan. 2004. % %Kindly report any suggestions or corrections to [email protected] % %---------------------------------------------------------------------- % %Input : (1) img1: the first image being compared % (2) img2: the second image being compared % (3) K: constants in the SSIM index formula (see the above % reference). defualt value: K = [0.01 0.03] % (4) window: local window for statistics (see the above % reference). default widnow is Gaussian given by % window = fspecial('gaussian', 11, 1.5); % (5) L: dynamic range of the images. default: L = 255 % %Output: (1) mssim: the mean SSIM index value between 2 images. % If one of the images being compared is regarded as % perfect quality, then mssim can be considered as the % quality measure of the other image. % If img1 = img2, then mssim = 1. % (2) ssim_map: the SSIM index map of the test image. The map % has a smaller size than the input images. The actual size: % size(img1) - size(window) + 1. % %Default Usage: % Given 2 test images img1 and img2, whose dynamic range is 0-255 % % [mssim ssim_map] = ssim_index(img1, img2); % %Advanced Usage: % User defined parameters. For example % % K = [0.05 0.05]; % window = ones(8); % L = 100; % [mssim ssim_map] = ssim_index(img1, img2, K, window, L); % %See the results: % % mssim %Gives the mssim value % imshow(max(0, ssim_map).^4) %Shows the SSIM index map % %======================================================================== if (nargin < 2 || nargin > 5) ssim_index = -Inf; ssim_map = -Inf; return; end if (size(img1) ~= size(img2)) ssim_index = -Inf; ssim_map = -Inf; return; end [M N] = size(img1); if (nargin == 2) if ((M < 11) || (N < 11)) ssim_index = -Inf; ssim_map = -Inf; return end window = fspecial('gaussian', 11, 1.5); % K(1) = 0.01; % default settings K(2) = 0.03; % L = 255; % end if (nargin == 3) if ((M < 11) || (N < 11)) ssim_index = -Inf; ssim_map = -Inf; return end window = fspecial('gaussian', 11, 1.5); L = 255; if (length(K) == 2) if (K(1) < 0 || K(2) < 0) ssim_index = -Inf; ssim_map = -Inf; return; end else ssim_index = -Inf; ssim_map = -Inf; return; end end if (nargin == 4) [H W] = size(window); if ((H*W) < 4 || (H > M) || (W > N)) ssim_index = -Inf; ssim_map = -Inf; return end L = 255; if (length(K) == 2) if (K(1) < 0 || K(2) < 0) ssim_index = -Inf; ssim_map = -Inf; return; end else ssim_index = -Inf; ssim_map = -Inf; return; end end if (nargin == 5) [H W] = size(window); if ((H*W) < 4 || (H > M) || (W > N)) ssim_index = -Inf; ssim_map = -Inf; return end if (length(K) == 2) if (K(1) < 0 || K(2) < 0) ssim_index = -Inf; ssim_map = -Inf; return; end else ssim_index = -Inf; ssim_map = -Inf; return; end end C1 = (K(1)*L)^2; C2 = (K(2)*L)^2; window = window/sum(sum(window)); img1 = double(img1); img2 = double(img2); mu1 = filter2(window, img1, 'valid'); mu2 = filter2(window, img2, 'valid'); mu1_sq = mu1.*mu1; mu2_sq = mu2.*mu2; mu1_mu2 = mu1.*mu2; sigma1_sq = filter2(window, img1.*img1, 'valid') - mu1_sq; sigma2_sq = filter2(window, img2.*img2, 'valid') - mu2_sq; sigma12 = filter2(window, img1.*img2, 'valid') - mu1_mu2; if (C1 > 0 & C2 > 0) ssim_map = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))./((mu1_sq + mu2_sq + C1).*(sigma1_sq + sigma2_sq + C2)); else numerator1 = 2*mu1_mu2 + C1; numerator2 = 2*sigma12 + C2; denominator1 = mu1_sq + mu2_sq + C1; denominator2 = sigma1_sq + sigma2_sq + C2; ssim_map = ones(size(mu1)); index = (denominator1.*denominator2 > 0); ssim_map(index) = (numerator1(index).*numerator2(index))./(denominator1(index).*denominator2(index)); index = (denominator1 ~= 0) & (denominator2 == 0); ssim_map(index) = numerator1(index)./denominator1(index); end mssim = mean2(ssim_map); return
github
ngcthuong/CSNet-master
CSNet_init.m
.m
CSNet-master/TrainingCode/CSNet_v03/CSNet_init.m
3,597
utf_8
f6f53c2bb1c1455b8cf8497263f2e338
function net = CSNet_init global featureSize noLayer blkSize subRate isLearnMtx; test = 0; if test == 1 featureSize = 64; noLayer = 7; blkSize = 32; subRate = 0.1; end noMeas = round(subRate * blkSize ^2); %%% 17 layers b_min = 0.025; lr11 = [1 1]; lr10 = [1 0]; lr00 = [0 0]; weightDecay = [1 0]; meanvar = [zeros(featureSize,1,'single'), 0.01*ones(featureSize,1,'single')]; % Define network net.layers = {} ; %% 1. Sampling layer - for gray image % Sampling network, with kernel size of blkSize x blkSize, do no use % bias --> initialized as zero and learn rate = 0. % Load sensing matrix of size blkSizexBlkSize trial = 1; fileName = ['SensingMtxs\BlkSize' num2str(blkSize) '_trial' num2str(trial) '.mat' ]; if ~(exist(fileName)) Phi_Full = orth(rand(blkSize^2, blkSize^2)); save(fileName, 'Phi_Full'); else load(fileName); Phi = single(Phi_Full(1:noMeas, :)); end net.layers{end+1} = struct('type', 'conv', ... 'weights', {{zeros(blkSize, blkSize, 1, noMeas,'single'), zeros(noMeas,1,'single')}}, ... 'stride', blkSize, ... 'pad', 0, ... 'dilate',1, ... 'learningRate', isLearnMtx, ... 'weightDecay',weightDecay, ... 'opts',{{}}) ; % net.layers{end+1} = struct('type', 'relu','leak',0) ; -- do not use relu % assign the sampling matrix W = zeros(blkSize, blkSize, 1, noMeas); for i = 1:1:noMeas W(:, :, 1, i) = reshape(Phi(i, :), blkSize, blkSize); end net.layers{1}.weights(1) = {single(W)}; % im = double(imread('cameraman.tif')); %% 2. Initial reconstruction layer with 1x1 Convolution net.layers{end+1} = struct('type', 'conv', ... 'weights', {{zeros(1, 1, noMeas, blkSize*blkSize,'single'), zeros(blkSize*blkSize,1,'single')}}, ... 'stride', 1, ... 'pad', 0, ... 'dilate',1, ... 'learningRate',lr10, ... 'weightDecay',weightDecay, ... 'opts',{{}}) ; W2 = zeros(1, 1, noMeas, blkSize*blkSize); PhiInv = pinv(Phi); for i = 1:1:noMeas W2(:, :, i, :) = PhiInv(:, i); end net.layers{2}.weights(1) = {single(W2)}; %% 3. Reshape and concatinate to make recon. image %net.layers{end+1} = struct('type', 'reshapeconcat'); net.layers{end+1} = struct('type', 'bcs_init_rec'); net.layers{end}.dims = [blkSize, blkSize]; %% 4. Reconstruction network - DnCNN net.layers{end+1} = struct('type', 'conv', ... 'weights', {{sqrt(2/(9*featureSize))*randn(3,3,1,featureSize,'single'), zeros(featureSize,1,'single')}}, ... 'stride', 1, ... 'pad', 1, ... 'dilate',1, ... 'learningRate',lr11, ... 'weightDecay',weightDecay, ... 'opts',{{}}) ; net.layers{end+1} = struct('type', 'relu','leak',0) ; for i = 1:1:noLayer - 2 net.layers{end+1} = struct('type', 'conv', ... 'weights', {{sqrt(2/(9*featureSize))*randn(3,3,featureSize,featureSize,'single'), zeros(featureSize,1,'single')}}, ... 'stride', 1, ... 'learningRate', lr10, ... 'dilate',1, ... 'weightDecay',weightDecay, ... 'pad', 1, 'opts', {{}}) ; net.layers{end+1} = struct('type', 'relu','leak',0) ; end net.layers{end+1} = struct('type', 'conv', ... 'weights', {{sqrt(2/(9*featureSize))*randn(3,3,featureSize,1,'single'), zeros(1,1,'single')}}, ... 'stride', 1, ... 'learningRate', lr11, ... 'dilate',1, ... 'weightDecay',weightDecay, ... 'pad', 1, 'opts', {{}}) ; net.layers{end+1} = struct('type', 'loss') ; % make sure the new 'vl_nnloss.m' is in the same folder. % Fill in default values net = vl_simplenn_tidy(net); function A = clipping(A,b) A(A>=0&A<b) = b; A(A<0&A>-b) = -b;
github
ngcthuong/CSNet-master
CSNet_train.m
.m
CSNet-master/TrainingCode/CSNet_v03/CSNet_train.m
12,946
utf_8
dbf0bbf2dc7f04221f1c4cec58d49787
function [net, state] = CSNet_train(net, varargin) % The function automatically restarts after each training epoch by % checkpointing. % % The function supports training on CPU or on one or more GPUs % (specify the list of GPU IDs in the `gpus` option). % Copyright (C) 2014-16 Andrea Vedaldi. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). %%%------------------------------------------------------------------------- %%% solvers: SGD(default) and Adam with(default)/without gradientClipping %%%------------------------------------------------------------------------- %%% solver: Adam opts.solver = 'Adam'; opts.beta1 = 0.9; opts.beta2 = 0.999; opts.alpha = 0.01; opts.epsilon = 1e-8; %%% solver: SGD % opts.solver = 'SGD'; opts.learningRate = 0.01; opts.weightDecay = 0.001; opts.momentum = 0.9 ; %%% GradientClipping opts.gradientClipping = false; opts.theta = 0.005; %%% specific parameter for Bnorm opts.bnormLearningRate = 0; %%%------------------------------------------------------------------------- %%% setting for simplenn %%%------------------------------------------------------------------------- opts.conserveMemory = true; opts.mode = 'normal'; opts.cudnn = true ; opts.backPropDepth = +inf ; opts.skipForward = false; opts.numSubBatches = 1; %%%------------------------------------------------------------------------- %%% setting for model %%%------------------------------------------------------------------------- opts.batchSize = 128 ; opts.gpus = []; opts.numEpochs = 300 ; opts.modelName = 'model'; opts.expDir = fullfile('data',opts.modelName) ; opts.numberImdb = 1; opts.imdbDir = opts.expDir; %%%------------------------------------------------------------------------- %%% update settings %%%------------------------------------------------------------------------- opts = vl_argparse(opts, varargin); opts.numEpochs = numel(opts.learningRate); if ~exist(opts.expDir, 'dir'), mkdir(opts.expDir) ; end %%%------------------------------------------------------------------------- %%% Initialization %%%------------------------------------------------------------------------- net = vl_simplenn_tidy(net); %%% fill in some eventually missing values net.layers{end-1}.precious = 1; vl_simplenn_display(net, 'batchSize', opts.batchSize) ; state.getBatch = getBatch ; %%%------------------------------------------------------------------------- %%% Train and Test %%%------------------------------------------------------------------------- modelPath = @(ep) fullfile(opts.expDir, sprintf([opts.modelName,'-epoch-%d.mat'], ep)); start = findLastCheckpoint(opts.expDir,opts.modelName) ; if start >= 1 fprintf('%s: resuming by loading epoch %d', mfilename, start) ; load(modelPath(start), 'net') ; net = vl_simplenn_tidy(net) ; end %%% load training data opts.imdbPath = fullfile(opts.imdbDir); imdb = load(opts.imdbPath) ; opts.train = find(imdb.set==1); for epoch = start+1 : opts.numEpochs %%% Train for one epoch. state.epoch = epoch ; state.learningRate = opts.learningRate(min(epoch, numel(opts.learningRate))); opts.thetaCurrent = opts.theta(min(epoch, numel(opts.theta))); if numel(opts.gpus) == 1 net = vl_simplenn_move(net, 'gpu') ; end state.train = opts.train(randperm(numel(opts.train))) ; %%% shuffle [net, state] = process_epoch(net, state, imdb, opts, 'train'); net.layers{end}.class =[]; net = vl_simplenn_move(net, 'cpu'); %%% save current model save(modelPath(epoch), 'net') end %%%------------------------------------------------------------------------- function [net, state] = process_epoch(net, state, imdb, opts, mode) %%%------------------------------------------------------------------------- if strcmp(mode,'train') switch opts.solver case 'SGD' %%% solver: SGD for i = 1:numel(net.layers) if isfield(net.layers{i}, 'weights') for j = 1:numel(net.layers{i}.weights) state.layers{i}.momentum{j} = 0; end end end case 'Adam' %%% solver: Adam for i = 1:numel(net.layers) if isfield(net.layers{i}, 'weights') for j = 1:numel(net.layers{i}.weights) state.layers{i}.t{j} = 0; state.layers{i}.m{j} = 0; state.layers{i}.v{j} = 0; end end end end end subset = state.(mode) ; num = 0 ; res = []; for t=1:opts.batchSize:numel(subset) for s=1:opts.numSubBatches % get this image batch batchStart = t + (s-1); batchEnd = min(t+opts.batchSize-1, numel(subset)) ; batch = subset(batchStart : opts.numSubBatches : batchEnd) ; num = num + numel(batch) ; if numel(batch) == 0, continue ; end [inputs,labels] = state.getBatch(imdb, batch) ; if numel(opts.gpus) == 1 inputs = gpuArray(inputs); labels = gpuArray(labels); end if strcmp(mode, 'train') dzdy = single(1); evalMode = 'normal';%%% forward and backward (Gradients) else dzdy = [] ; evalMode = 'test'; %%% forward only end net.layers{end}.class = labels ; res = vl_simplenn(net, inputs, dzdy, res, ... 'accumulate', s ~= 1, ... 'mode', evalMode, ... 'conserveMemory', opts.conserveMemory, ... 'backPropDepth', opts.backPropDepth, ... 'cudnn', opts.cudnn) ; end if strcmp(mode, 'train') [state, net] = params_updates(state, net, res, opts, opts.batchSize) ; end lossL2 = gather(res(end).x) ; %%%--------add your code here------------------------ %%%-------------------------------------------------- fprintf('%s: epoch %02d dataset %02d: %3d/%3d:', mode, state.epoch, mod(state.epoch,opts.numberImdb), ... fix((t-1)/opts.batchSize)+1, ceil(numel(subset)/opts.batchSize)) ; fprintf('error: %f \n', lossL2) ; end %%%------------------------------------------------------------------------- function [state, net] = params_updates(state, net, res, opts, batchSize) %%%------------------------------------------------------------------------- switch opts.solver case 'SGD' %%% solver: SGD for l=numel(net.layers):-1:1 for j=1:numel(res(l).dzdw) if j == 3 && strcmp(net.layers{l}.type, 'bnorm') %%% special case for learning bnorm moments thisLR = net.layers{l}.learningRate(j) - opts.bnormLearningRate; net.layers{l}.weights{j} = vl_taccum(... 1 - thisLR, ... net.layers{l}.weights{j}, ... thisLR / batchSize, ... res(l).dzdw{j}) ; else thisDecay = opts.weightDecay * net.layers{l}.weightDecay(j); thisLR = state.learningRate * net.layers{l}.learningRate(j); if opts.gradientClipping theta = opts.thetaCurrent/thisLR; state.layers{l}.momentum{j} = opts.momentum * state.layers{l}.momentum{j} ... - thisDecay * net.layers{l}.weights{j} ... - (1 / batchSize) * gradientClipping(res(l).dzdw{j},theta) ; net.layers{l}.weights{j} = net.layers{l}.weights{j} + ... thisLR * state.layers{l}.momentum{j} ; else state.layers{l}.momentum{j} = opts.momentum * state.layers{l}.momentum{j} ... - thisDecay * net.layers{l}.weights{j} ... - (1 / batchSize) * res(l).dzdw{j} ; net.layers{l}.weights{j} = net.layers{l}.weights{j} + ... thisLR * state.layers{l}.momentum{j} ; end end end end case 'Adam' %%% solver: Adam for l=numel(net.layers):-1:1 for j=1:numel(res(l).dzdw) if j == 3 && strcmp(net.layers{l}.type, 'bnorm') %%% special case for learning bnorm moments thisLR = net.layers{l}.learningRate(j) - opts.bnormLearningRate; net.layers{l}.weights{j} = vl_taccum(... 1 - thisLR, ... net.layers{l}.weights{j}, ... thisLR / batchSize, ... res(l).dzdw{j}) ; else thisLR = state.learningRate * net.layers{l}.learningRate(j); state.layers{l}.t{j} = state.layers{l}.t{j} + 1; t = state.layers{l}.t{j}; alpha = thisLR; lr = alpha * sqrt(1 - opts.beta2^t) / (1 - opts.beta1^t); state.layers{l}.m{j} = state.layers{l}.m{j} + (1 - opts.beta1) .* (res(l).dzdw{j} - state.layers{l}.m{j}); state.layers{l}.v{j} = state.layers{l}.v{j} + (1 - opts.beta2) .* (res(l).dzdw{j} .* res(l).dzdw{j} - state.layers{l}.v{j}); if opts.gradientClipping theta = opts.thetaCurrent/lr; net.layers{l}.weights{j} = net.layers{l}.weights{j} - lr * gradientClipping(state.layers{l}.m{j} ./ (sqrt(state.layers{l}.v{j}) + opts.epsilon),theta); else net.layers{l}.weights{j} = net.layers{l}.weights{j} - lr * state.layers{l}.m{j} ./ (sqrt(state.layers{l}.v{j}) + opts.epsilon); end % net.layers{l}.weights{j} = weightClipping(net.layers{l}.weights{j},2); % gradually clip the weights end end end end %%%------------------------------------------------------------------------- function epoch = findLastCheckpoint(modelDir,modelName) %%%------------------------------------------------------------------------- list = dir(fullfile(modelDir, [modelName,'-epoch-*.mat'])) ; tokens = regexp({list.name}, [modelName,'-epoch-([\d]+).mat'], 'tokens') ; epoch = cellfun(@(x) sscanf(x{1}{1}, '%d'), tokens) ; epoch = max([epoch 0]) ; %%%------------------------------------------------------------------------- function A = gradientClipping(A, theta) %%%------------------------------------------------------------------------- A(A>theta) = theta; A(A<-theta) = -theta; %%%------------------------------------------------------------------------- function A = weightClipping(A, theta) %%%------------------------------------------------------------------------- A(A>theta) = A(A>theta) -0.0005; A(A<-theta) = A(A<-theta)+0.0005; %%%------------------------------------------------------------------------- function fn = getBatch %%%------------------------------------------------------------------------- fn = @(x,y) getSimpleNNBatch(x,y); %%%------------------------------------------------------------------------- function [inputs,labels] = getSimpleNNBatch(imdb, batch) %%%------------------------------------------------------------------------- inputs = imdb.inputs(:,:,:,batch); rng('shuffle'); mode = randperm(8); inputs = data_augmentation_CSNet(inputs, mode(1)); labels = inputs; function image = data_augmentation_CSNet(image, mode) if mode == 1 return; end if mode == 2 % flipped image = flipud(image); return; end if mode == 3 % rotation 90 image = fliplr(image); return; end if mode == 4 % rotation 90 & flipped image = fliplr(image); image = flipud(image); return; end function image = data_augmentation(image, mode) if mode == 1 return; end if mode == 2 % flipped image = flipud(image); return; end if mode == 3 % rotation 90 image = rot90(image,1); return; end if mode == 4 % rotation 90 & flipped image = rot90(image,1); image = flipud(image); return; end if mode == 5 % rotation 180 image = rot90(image,2); return; end if mode == 6 % rotation 180 & flipped image = rot90(image,2); image = flipud(image); return; end if mode == 7 % rotation 270 image = rot90(image,3); return; end if mode == 8 % rotation 270 & flipped image = rot90(image,3); image = flipud(image); return; end
github
ngcthuong/CSNet-master
Cal_PSNRSSIM.m
.m
CSNet-master/TrainingCode/CSNet_v03/utilities/Cal_PSNRSSIM.m
6,250
utf_8
891b4e57ebcd097592850eecf97f150e
function [psnr_cur, ssim_cur] = Cal_PSNRSSIM(A,B,row,col) [n,m,ch]=size(B); A = A(row+1:n-row,col+1:m-col,:); B = B(row+1:n-row,col+1:m-col,:); A=double(A); % Ground-truth B=double(B); % e=A(:)-B(:); mse=mean(e.^2); psnr_cur=10*log10(255^2/mse); if ch==1 [ssim_cur, ~] = ssim_index(A, B); else ssim_cur = -1; end function [mssim, ssim_map] = ssim_index(img1, img2, K, window, L) %======================================================================== %SSIM Index, Version 1.0 %Copyright(c) 2003 Zhou Wang %All Rights Reserved. % %The author is with Howard Hughes Medical Institute, and Laboratory %for Computational Vision at Center for Neural Science and Courant %Institute of Mathematical Sciences, New York University. % %---------------------------------------------------------------------- %Permission to use, copy, or modify this software and its documentation %for educational and research purposes only and without fee is hereby %granted, provided that this copyright notice and the original authors' %names appear on all copies and supporting documentation. This program %shall not be used, rewritten, or adapted as the basis of a commercial %software or hardware product without first obtaining permission of the %authors. The authors make no representations about the suitability of %this software for any purpose. It is provided "as is" without express %or implied warranty. %---------------------------------------------------------------------- % %This is an implementation of the algorithm for calculating the %Structural SIMilarity (SSIM) index between two images. Please refer %to the following paper: % %Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image %quality assessment: From error measurement to structural similarity" %IEEE Transactios on Image Processing, vol. 13, no. 1, Jan. 2004. % %Kindly report any suggestions or corrections to [email protected] % %---------------------------------------------------------------------- % %Input : (1) img1: the first image being compared % (2) img2: the second image being compared % (3) K: constants in the SSIM index formula (see the above % reference). defualt value: K = [0.01 0.03] % (4) window: local window for statistics (see the above % reference). default widnow is Gaussian given by % window = fspecial('gaussian', 11, 1.5); % (5) L: dynamic range of the images. default: L = 255 % %Output: (1) mssim: the mean SSIM index value between 2 images. % If one of the images being compared is regarded as % perfect quality, then mssim can be considered as the % quality measure of the other image. % If img1 = img2, then mssim = 1. % (2) ssim_map: the SSIM index map of the test image. The map % has a smaller size than the input images. The actual size: % size(img1) - size(window) + 1. % %Default Usage: % Given 2 test images img1 and img2, whose dynamic range is 0-255 % % [mssim ssim_map] = ssim_index(img1, img2); % %Advanced Usage: % User defined parameters. For example % % K = [0.05 0.05]; % window = ones(8); % L = 100; % [mssim ssim_map] = ssim_index(img1, img2, K, window, L); % %See the results: % % mssim %Gives the mssim value % imshow(max(0, ssim_map).^4) %Shows the SSIM index map % %======================================================================== if (nargin < 2 || nargin > 5) ssim_index = -Inf; ssim_map = -Inf; return; end if (size(img1) ~= size(img2)) ssim_index = -Inf; ssim_map = -Inf; return; end [M N] = size(img1); if (nargin == 2) if ((M < 11) || (N < 11)) ssim_index = -Inf; ssim_map = -Inf; return end window = fspecial('gaussian', 11, 1.5); % K(1) = 0.01; % default settings K(2) = 0.03; % L = 255; % end if (nargin == 3) if ((M < 11) || (N < 11)) ssim_index = -Inf; ssim_map = -Inf; return end window = fspecial('gaussian', 11, 1.5); L = 255; if (length(K) == 2) if (K(1) < 0 || K(2) < 0) ssim_index = -Inf; ssim_map = -Inf; return; end else ssim_index = -Inf; ssim_map = -Inf; return; end end if (nargin == 4) [H W] = size(window); if ((H*W) < 4 || (H > M) || (W > N)) ssim_index = -Inf; ssim_map = -Inf; return end L = 255; if (length(K) == 2) if (K(1) < 0 || K(2) < 0) ssim_index = -Inf; ssim_map = -Inf; return; end else ssim_index = -Inf; ssim_map = -Inf; return; end end if (nargin == 5) [H W] = size(window); if ((H*W) < 4 || (H > M) || (W > N)) ssim_index = -Inf; ssim_map = -Inf; return end if (length(K) == 2) if (K(1) < 0 || K(2) < 0) ssim_index = -Inf; ssim_map = -Inf; return; end else ssim_index = -Inf; ssim_map = -Inf; return; end end C1 = (K(1)*L)^2; C2 = (K(2)*L)^2; window = window/sum(sum(window)); img1 = double(img1); img2 = double(img2); mu1 = filter2(window, img1, 'valid'); mu2 = filter2(window, img2, 'valid'); mu1_sq = mu1.*mu1; mu2_sq = mu2.*mu2; mu1_mu2 = mu1.*mu2; sigma1_sq = filter2(window, img1.*img1, 'valid') - mu1_sq; sigma2_sq = filter2(window, img2.*img2, 'valid') - mu2_sq; sigma12 = filter2(window, img1.*img2, 'valid') - mu1_mu2; if (C1 > 0 & C2 > 0) ssim_map = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))./((mu1_sq + mu2_sq + C1).*(sigma1_sq + sigma2_sq + C2)); else numerator1 = 2*mu1_mu2 + C1; numerator2 = 2*sigma12 + C2; denominator1 = mu1_sq + mu2_sq + C1; denominator2 = sigma1_sq + sigma2_sq + C2; ssim_map = ones(size(mu1)); index = (denominator1.*denominator2 > 0); ssim_map(index) = (numerator1(index).*numerator2(index))./(denominator1(index).*denominator2(index)); index = (denominator1 ~= 0) & (denominator2 == 0); ssim_map(index) = numerator1(index)./denominator1(index); end mssim = mean2(ssim_map); return
github
ngcthuong/CSNet-master
test_network_v02.m
.m
CSNet-master/TrainingCode/CSNet_v03/utilities/test_network_v02.m
3,766
utf_8
6abb3286637df8403f7e640f9b53db51
function net = CSNet_init global featureSize noLayer blkSize subRate; test = 1; if test == 1 featureSize = 64; noLayer = 7; blkSize = 32; subRate = 0.1; end noMeas = round(subRate * blkSize ^2); %%% 17 layers b_min = 0.025; lr11 = [1 1]; lr10 = [1 0]; lr00 = [0 0]; weightDecay = [1 0]; meanvar = [zeros(featureSize,1,'single'), 0.01*ones(featureSize,1,'single')]; % Define network net.layers = {} ; %% 1. Sampling layer - for gray image % Sampling network, with kernel size of blkSize x blkSize, do no use % bias --> initialized as zero and learn rate = 0. % Load sensing matrix of size blkSizexBlkSize trial = 1; fileName = ['SensingMtxs\BlkSize' num2str(blkSize) '_trial' num2str(trial) '.mat' ]; if ~(exist(fileName)) Phi_Full = orth(rand(blkSize^2, blkSize^2)); save(fileName, 'Phi_Full'); else load(fileName); Phi = single(Phi_Full(1:noMeas, :)); end net.layers{end+1} = struct('type', 'conv', ... 'weights', {{zeros(blkSize, blkSize, 1, noMeas,'single'), zeros(featureSize,1,'single')}}, ... 'stride', blkSize, ... 'pad', 0, ... 'dilate',1, ... 'learningRate',lr00, ... 'weightDecay',weightDecay, ... 'opts',{{}}) ; % net.layers{end+1} = struct('type', 'relu','leak',0) ; -- do not use relu % assign the sampling matrix W = zeros(blkSize, blkSize, 1, noMeas); for i = 1:1:noMeas W(:, :, 1, i) = reshape(Phi(i, :), blkSize, blkSize); end net.layers{1}.weights(1) = {single(W)}; % im = double(imread('cameraman.tif')); %% 2. Initial reconstruction layer with 1x1 Convolution net.layers{end+1} = struct('type', 'conv', ... 'weights', {{zeros(1, 1, noMeas, blkSize*blkSize,'single'), zeros(featureSize,1,'single')}}, ... 'stride', 1, ... 'pad', 0, ... 'dilate',1, ... 'learningRate',lr11, ... 'weightDecay',weightDecay, ... 'opts',{{}}) ; W2 = zeros(1, 1, noMeas, blkSize*blkSize); PhiInv = pinv(Phi); for i = 1:1:noMeas W2(:, :, i, :) = PhiInv(:, i); end net.layers{2}.weights(1) = {single(W2)}; %% 3. Reshape and concatinate to make recon. image net.layers{end+1} = struct{'type', 'reshapeconcat'}; %% 4. Reconstruction network - DnCNN net.layers{end+1} = struct('type', 'conv', ... 'weights', {{sqrt(2/(9*featureSize))*randn(3,3,1,featureSize,'single'), zeros(featureSize,1,'single')}}, ... 'stride', 1, ... 'pad', 1, ... 'dilate',1, ... 'learningRate',lr11, ... 'weightDecay',weightDecay, ... 'opts',{{}}) ; net.layers{end+1} = struct('type', 'relu','leak',0) ; for i = 1:1:noLayer - 2 net.layers{end+1} = struct('type', 'conv', ... 'weights', {{sqrt(2/(9*featureSize))*randn(3,3,featureSize,featureSize,'single'), zeros(featureSize,1,'single')}}, ... 'stride', 1, ... 'learningRate',lr10, ... 'dilate',1, ... 'weightDecay',weightDecay, ... 'pad', 1, 'opts', {{}}) ; net.layers{end+1} = struct('type', 'bnorm', ... 'weights', {{clipping(sqrt(2/(9*featureSize))*randn(featureSize,1,'single'),b_min), zeros(featureSize,1,'single'),meanvar}}, ... 'learningRate', [1 1 1], ... 'weightDecay', [0 0], ... 'opts', {{}}) ; net.layers{end+1} = struct('type', 'relu','leak',0) ; end net.layers{end+1} = struct('type', 'conv', ... 'weights', {{sqrt(2/(9*featureSize))*randn(3,3,featureSize,1,'single'), zeros(1,1,'single')}}, ... 'stride', 1, ... 'learningRate',lr11, ... 'dilate',1, ... 'weightDecay',weightDecay, ... 'pad', 1, 'opts', {{}}) ; net.layers{end+1} = struct('type', 'loss') ; % make sure the new 'vl_nnloss.m' is in the same folder. % Fill in default values net = vl_simplenn_tidy(net); function A = clipping(A,b) A(A>=0&A<b) = b; A(A<0&A>-b) = -b;
github
ngcthuong/CSNet-master
CSNet_init.m
.m
CSNet-master/TrainingCode/CSNet_v02/CSNet_init.m
3,501
utf_8
ea6f159161352a1a5852a8f290a8e6e3
function net = CSNet_init global featureSize noLayer blkSize subRate isLearnMtx; test = 0; if test == 1 featureSize = 64; noLayer = 7; blkSize = 32; subRate = 0.1; end noMeas = round(subRate * blkSize ^2); %%% 17 layers b_min = 0.025; lr11 = [1 1]; lr10 = [1 0]; lr00 = [0 0]; weightDecay = [1 0]; meanvar = [zeros(featureSize,1,'single'), 0.01*ones(featureSize,1,'single')]; % Define network net.layers = {} ; %% 1. Sampling layer - for gray image % Sampling network, with kernel size of blkSize x blkSize, do no use % bias --> initialized as zero and learn rate = 0. % Load sensing matrix of size blkSizexBlkSize trial = 1; fileName = ['SensingMtxs\BlkSize' num2str(blkSize) '_trial' num2str(trial) '.mat' ]; if ~(exist(fileName)) Phi_Full = orth(rand(blkSize^2, blkSize^2)); save(fileName, 'Phi_Full'); else load(fileName); Phi = single(Phi_Full(1:noMeas, :)); end net.layers{end+1} = struct('type', 'conv', ... 'weights', {{zeros(blkSize, blkSize, 1, noMeas,'single'), zeros(noMeas,1,'single')}}, ... 'stride', blkSize, ... 'pad', 0, ... 'dilate',1, ... 'learningRate', isLearnMtx, ... 'weightDecay',weightDecay, ... 'opts',{{}}) ; % net.layers{end+1} = struct('type', 'relu','leak',0) ; -- do not use relu % assign the sampling matrix W = zeros(blkSize, blkSize, 1, noMeas); for i = 1:1:noMeas W(:, :, 1, i) = reshape(Phi(i, :), blkSize, blkSize); end net.layers{1}.weights(1) = {single(W)}; % im = double(imread('cameraman.tif')); %% 2. Initial reconstruction layer with 1x1 Convolution net.layers{end+1} = struct('type', 'conv', ... 'weights', {{zeros(1, 1, noMeas, blkSize*blkSize,'single'), zeros(blkSize*blkSize,1,'single')}}, ... 'stride', 1, ... 'pad', 0, ... 'dilate',1, ... 'learningRate',lr10, ... 'weightDecay',weightDecay, ... 'opts',{{}}) ; W2 = zeros(1, 1, noMeas, blkSize*blkSize); PhiInv = pinv(Phi); for i = 1:1:noMeas W2(:, :, i, :) = PhiInv(:, i); end net.layers{2}.weights(1) = {single(W2)}; %% 3. Reshape and concatinate to make recon. image net.layers{end+1} = struct('type', 'reshapeconcat'); %% 4. Reconstruction network - DnCNN net.layers{end+1} = struct('type', 'conv', ... 'weights', {{sqrt(2/(9*featureSize))*randn(3,3,1,featureSize,'single'), zeros(featureSize,1,'single')}}, ... 'stride', 1, ... 'pad', 1, ... 'dilate',1, ... 'learningRate',lr11, ... 'weightDecay',weightDecay, ... 'opts',{{}}) ; net.layers{end+1} = struct('type', 'relu','leak',0) ; for i = 1:1:noLayer - 2 net.layers{end+1} = struct('type', 'conv', ... 'weights', {{sqrt(2/(9*featureSize))*randn(3,3,featureSize,featureSize,'single'), zeros(featureSize,1,'single')}}, ... 'stride', 1, ... 'learningRate', lr10, ... 'dilate',1, ... 'weightDecay',weightDecay, ... 'pad', 1, 'opts', {{}}) ; net.layers{end+1} = struct('type', 'relu','leak',0) ; end net.layers{end+1} = struct('type', 'conv', ... 'weights', {{sqrt(2/(9*featureSize))*randn(3,3,featureSize,1,'single'), zeros(1,1,'single')}}, ... 'stride', 1, ... 'learningRate', lr11, ... 'dilate',1, ... 'weightDecay',weightDecay, ... 'pad', 1, 'opts', {{}}) ; net.layers{end+1} = struct('type', 'loss') ; % make sure the new 'vl_nnloss.m' is in the same folder. % Fill in default values net = vl_simplenn_tidy(net); function A = clipping(A,b) A(A>=0&A<b) = b; A(A<0&A>-b) = -b;
github
ngcthuong/CSNet-master
CSNet_train.m
.m
CSNet-master/TrainingCode/CSNet_v02/CSNet_train.m
12,946
utf_8
dbf0bbf2dc7f04221f1c4cec58d49787
function [net, state] = CSNet_train(net, varargin) % The function automatically restarts after each training epoch by % checkpointing. % % The function supports training on CPU or on one or more GPUs % (specify the list of GPU IDs in the `gpus` option). % Copyright (C) 2014-16 Andrea Vedaldi. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). %%%------------------------------------------------------------------------- %%% solvers: SGD(default) and Adam with(default)/without gradientClipping %%%------------------------------------------------------------------------- %%% solver: Adam opts.solver = 'Adam'; opts.beta1 = 0.9; opts.beta2 = 0.999; opts.alpha = 0.01; opts.epsilon = 1e-8; %%% solver: SGD % opts.solver = 'SGD'; opts.learningRate = 0.01; opts.weightDecay = 0.001; opts.momentum = 0.9 ; %%% GradientClipping opts.gradientClipping = false; opts.theta = 0.005; %%% specific parameter for Bnorm opts.bnormLearningRate = 0; %%%------------------------------------------------------------------------- %%% setting for simplenn %%%------------------------------------------------------------------------- opts.conserveMemory = true; opts.mode = 'normal'; opts.cudnn = true ; opts.backPropDepth = +inf ; opts.skipForward = false; opts.numSubBatches = 1; %%%------------------------------------------------------------------------- %%% setting for model %%%------------------------------------------------------------------------- opts.batchSize = 128 ; opts.gpus = []; opts.numEpochs = 300 ; opts.modelName = 'model'; opts.expDir = fullfile('data',opts.modelName) ; opts.numberImdb = 1; opts.imdbDir = opts.expDir; %%%------------------------------------------------------------------------- %%% update settings %%%------------------------------------------------------------------------- opts = vl_argparse(opts, varargin); opts.numEpochs = numel(opts.learningRate); if ~exist(opts.expDir, 'dir'), mkdir(opts.expDir) ; end %%%------------------------------------------------------------------------- %%% Initialization %%%------------------------------------------------------------------------- net = vl_simplenn_tidy(net); %%% fill in some eventually missing values net.layers{end-1}.precious = 1; vl_simplenn_display(net, 'batchSize', opts.batchSize) ; state.getBatch = getBatch ; %%%------------------------------------------------------------------------- %%% Train and Test %%%------------------------------------------------------------------------- modelPath = @(ep) fullfile(opts.expDir, sprintf([opts.modelName,'-epoch-%d.mat'], ep)); start = findLastCheckpoint(opts.expDir,opts.modelName) ; if start >= 1 fprintf('%s: resuming by loading epoch %d', mfilename, start) ; load(modelPath(start), 'net') ; net = vl_simplenn_tidy(net) ; end %%% load training data opts.imdbPath = fullfile(opts.imdbDir); imdb = load(opts.imdbPath) ; opts.train = find(imdb.set==1); for epoch = start+1 : opts.numEpochs %%% Train for one epoch. state.epoch = epoch ; state.learningRate = opts.learningRate(min(epoch, numel(opts.learningRate))); opts.thetaCurrent = opts.theta(min(epoch, numel(opts.theta))); if numel(opts.gpus) == 1 net = vl_simplenn_move(net, 'gpu') ; end state.train = opts.train(randperm(numel(opts.train))) ; %%% shuffle [net, state] = process_epoch(net, state, imdb, opts, 'train'); net.layers{end}.class =[]; net = vl_simplenn_move(net, 'cpu'); %%% save current model save(modelPath(epoch), 'net') end %%%------------------------------------------------------------------------- function [net, state] = process_epoch(net, state, imdb, opts, mode) %%%------------------------------------------------------------------------- if strcmp(mode,'train') switch opts.solver case 'SGD' %%% solver: SGD for i = 1:numel(net.layers) if isfield(net.layers{i}, 'weights') for j = 1:numel(net.layers{i}.weights) state.layers{i}.momentum{j} = 0; end end end case 'Adam' %%% solver: Adam for i = 1:numel(net.layers) if isfield(net.layers{i}, 'weights') for j = 1:numel(net.layers{i}.weights) state.layers{i}.t{j} = 0; state.layers{i}.m{j} = 0; state.layers{i}.v{j} = 0; end end end end end subset = state.(mode) ; num = 0 ; res = []; for t=1:opts.batchSize:numel(subset) for s=1:opts.numSubBatches % get this image batch batchStart = t + (s-1); batchEnd = min(t+opts.batchSize-1, numel(subset)) ; batch = subset(batchStart : opts.numSubBatches : batchEnd) ; num = num + numel(batch) ; if numel(batch) == 0, continue ; end [inputs,labels] = state.getBatch(imdb, batch) ; if numel(opts.gpus) == 1 inputs = gpuArray(inputs); labels = gpuArray(labels); end if strcmp(mode, 'train') dzdy = single(1); evalMode = 'normal';%%% forward and backward (Gradients) else dzdy = [] ; evalMode = 'test'; %%% forward only end net.layers{end}.class = labels ; res = vl_simplenn(net, inputs, dzdy, res, ... 'accumulate', s ~= 1, ... 'mode', evalMode, ... 'conserveMemory', opts.conserveMemory, ... 'backPropDepth', opts.backPropDepth, ... 'cudnn', opts.cudnn) ; end if strcmp(mode, 'train') [state, net] = params_updates(state, net, res, opts, opts.batchSize) ; end lossL2 = gather(res(end).x) ; %%%--------add your code here------------------------ %%%-------------------------------------------------- fprintf('%s: epoch %02d dataset %02d: %3d/%3d:', mode, state.epoch, mod(state.epoch,opts.numberImdb), ... fix((t-1)/opts.batchSize)+1, ceil(numel(subset)/opts.batchSize)) ; fprintf('error: %f \n', lossL2) ; end %%%------------------------------------------------------------------------- function [state, net] = params_updates(state, net, res, opts, batchSize) %%%------------------------------------------------------------------------- switch opts.solver case 'SGD' %%% solver: SGD for l=numel(net.layers):-1:1 for j=1:numel(res(l).dzdw) if j == 3 && strcmp(net.layers{l}.type, 'bnorm') %%% special case for learning bnorm moments thisLR = net.layers{l}.learningRate(j) - opts.bnormLearningRate; net.layers{l}.weights{j} = vl_taccum(... 1 - thisLR, ... net.layers{l}.weights{j}, ... thisLR / batchSize, ... res(l).dzdw{j}) ; else thisDecay = opts.weightDecay * net.layers{l}.weightDecay(j); thisLR = state.learningRate * net.layers{l}.learningRate(j); if opts.gradientClipping theta = opts.thetaCurrent/thisLR; state.layers{l}.momentum{j} = opts.momentum * state.layers{l}.momentum{j} ... - thisDecay * net.layers{l}.weights{j} ... - (1 / batchSize) * gradientClipping(res(l).dzdw{j},theta) ; net.layers{l}.weights{j} = net.layers{l}.weights{j} + ... thisLR * state.layers{l}.momentum{j} ; else state.layers{l}.momentum{j} = opts.momentum * state.layers{l}.momentum{j} ... - thisDecay * net.layers{l}.weights{j} ... - (1 / batchSize) * res(l).dzdw{j} ; net.layers{l}.weights{j} = net.layers{l}.weights{j} + ... thisLR * state.layers{l}.momentum{j} ; end end end end case 'Adam' %%% solver: Adam for l=numel(net.layers):-1:1 for j=1:numel(res(l).dzdw) if j == 3 && strcmp(net.layers{l}.type, 'bnorm') %%% special case for learning bnorm moments thisLR = net.layers{l}.learningRate(j) - opts.bnormLearningRate; net.layers{l}.weights{j} = vl_taccum(... 1 - thisLR, ... net.layers{l}.weights{j}, ... thisLR / batchSize, ... res(l).dzdw{j}) ; else thisLR = state.learningRate * net.layers{l}.learningRate(j); state.layers{l}.t{j} = state.layers{l}.t{j} + 1; t = state.layers{l}.t{j}; alpha = thisLR; lr = alpha * sqrt(1 - opts.beta2^t) / (1 - opts.beta1^t); state.layers{l}.m{j} = state.layers{l}.m{j} + (1 - opts.beta1) .* (res(l).dzdw{j} - state.layers{l}.m{j}); state.layers{l}.v{j} = state.layers{l}.v{j} + (1 - opts.beta2) .* (res(l).dzdw{j} .* res(l).dzdw{j} - state.layers{l}.v{j}); if opts.gradientClipping theta = opts.thetaCurrent/lr; net.layers{l}.weights{j} = net.layers{l}.weights{j} - lr * gradientClipping(state.layers{l}.m{j} ./ (sqrt(state.layers{l}.v{j}) + opts.epsilon),theta); else net.layers{l}.weights{j} = net.layers{l}.weights{j} - lr * state.layers{l}.m{j} ./ (sqrt(state.layers{l}.v{j}) + opts.epsilon); end % net.layers{l}.weights{j} = weightClipping(net.layers{l}.weights{j},2); % gradually clip the weights end end end end %%%------------------------------------------------------------------------- function epoch = findLastCheckpoint(modelDir,modelName) %%%------------------------------------------------------------------------- list = dir(fullfile(modelDir, [modelName,'-epoch-*.mat'])) ; tokens = regexp({list.name}, [modelName,'-epoch-([\d]+).mat'], 'tokens') ; epoch = cellfun(@(x) sscanf(x{1}{1}, '%d'), tokens) ; epoch = max([epoch 0]) ; %%%------------------------------------------------------------------------- function A = gradientClipping(A, theta) %%%------------------------------------------------------------------------- A(A>theta) = theta; A(A<-theta) = -theta; %%%------------------------------------------------------------------------- function A = weightClipping(A, theta) %%%------------------------------------------------------------------------- A(A>theta) = A(A>theta) -0.0005; A(A<-theta) = A(A<-theta)+0.0005; %%%------------------------------------------------------------------------- function fn = getBatch %%%------------------------------------------------------------------------- fn = @(x,y) getSimpleNNBatch(x,y); %%%------------------------------------------------------------------------- function [inputs,labels] = getSimpleNNBatch(imdb, batch) %%%------------------------------------------------------------------------- inputs = imdb.inputs(:,:,:,batch); rng('shuffle'); mode = randperm(8); inputs = data_augmentation_CSNet(inputs, mode(1)); labels = inputs; function image = data_augmentation_CSNet(image, mode) if mode == 1 return; end if mode == 2 % flipped image = flipud(image); return; end if mode == 3 % rotation 90 image = fliplr(image); return; end if mode == 4 % rotation 90 & flipped image = fliplr(image); image = flipud(image); return; end function image = data_augmentation(image, mode) if mode == 1 return; end if mode == 2 % flipped image = flipud(image); return; end if mode == 3 % rotation 90 image = rot90(image,1); return; end if mode == 4 % rotation 90 & flipped image = rot90(image,1); image = flipud(image); return; end if mode == 5 % rotation 180 image = rot90(image,2); return; end if mode == 6 % rotation 180 & flipped image = rot90(image,2); image = flipud(image); return; end if mode == 7 % rotation 270 image = rot90(image,3); return; end if mode == 8 % rotation 270 & flipped image = rot90(image,3); image = flipud(image); return; end
github
cedricxie/MATLAB_Automated_Driving_Box-master
clusterDetections.m
.m
MATLAB_Automated_Driving_Box-master/Sensor_Fusion_Using_Synthetic_Radar_and_Vision_Data/clusterDetections.m
2,042
utf_8
6d58bf60e4d9920de8dcf76f50fc1911
% clusterDetections % This function merges multiple detections suspected to be of the same vehicle to a single detection. % The function looks for detections that are closer than the size of a vehicle. % Detections that fit this criterion are considered a cluster and are merged to a single detection % at the centroid of the cluster. % The measurement noises are modified to represent the possibility that each detection can be anywhere on the vehicle. % Therefore, the noise should have the same size as the vehicle size. % In addition, this function removes the third dimension of the measurement (the height) and % reduces the measurement vector to [x;y;vx;vy]. function detectionClusters = clusterDetections(detections, vehicleSize) N = numel(detections); distances = zeros(N); for i = 1:N for j = i+1:N if detections{i}.SensorIndex == detections{j}.SensorIndex distances(i,j) = norm(detections{i}.Measurement(1:2) - detections{j}.Measurement(1:2)); else distances(i,j) = inf; end end end leftToCheck = 1:N; i = 0; detectionClusters = cell(N,1); while ~isempty(leftToCheck) % Remove the detections that are in the same cluster as the one under % consideration underConsideration = leftToCheck(1); clusterInds = (distances(underConsideration, leftToCheck) < vehicleSize); detInds = leftToCheck(clusterInds); clusterDets = [detections{detInds}]; clusterMeas = [clusterDets.Measurement]; meas = mean(clusterMeas, 2); meas2D = [meas(1:2);meas(4:5)]; i = i + 1; detectionClusters{i} = detections{detInds(1)}; detectionClusters{i}.Measurement = meas2D; leftToCheck(clusterInds) = []; end detectionClusters(i+1:end) = []; % Since the detections are now for clusters, modify the noise to represent % that they are of the whole car for i = 1:numel(detectionClusters) measNoise(1:2,1:2) = vehicleSize^2 * eye(2); measNoise(3:4,3:4) = eye(2) * 100 * vehicleSize^2; detectionClusters{i}.MeasurementNoise = measNoise; end end
github
cedricxie/MATLAB_Automated_Driving_Box-master
createDemoDisplay.m
.m
MATLAB_Automated_Driving_Box-master/Sensor_Fusion_Using_Synthetic_Radar_and_Vision_Data/createDemoDisplay.m
2,798
utf_8
61b8d87959d894c7cb1233665f7ca089
% createDemoDisplay % This function creates a three-panel display: % Top-left corner of display: A top view that follows the ego vehicle. % Bottom-left corner of display: A chase-camera view that follows the ego vehicle. % Right-half of display: A bird's-eye plot display. function BEP = createDemoDisplay(egoCar, sensors) % Make a figure hFigure = figure('Position', [0, 0, 1200, 640], 'Name', 'Sensor Fusion with Synthetic Data Example'); movegui(hFigure, [0 -1]); % Moves the figure to the left and a little down from the top % Add a car plot that follows the ego vehicle from behind hCarViewPanel = uipanel(hFigure, 'Position', [0 0 0.5 0.5], 'Title', 'Chase Camera View'); hCarPlot = axes(hCarViewPanel); chasePlot(egoCar, 'Centerline', 'on', 'Parent', hCarPlot); % Add a car plot that follows the ego vehicle from a top view hTopViewPanel = uipanel(hFigure, 'Position', [0 0.5 0.5 0.5], 'Title', 'Top View'); hCarPlot = axes(hTopViewPanel); chasePlot(egoCar, 'Centerline', 'on', 'Parent', hCarPlot, 'ViewHeight', 130, 'ViewLocation', [0 0], 'ViewPitch', 90); % Add a panel for a bird's-eye plot hBEVPanel = uipanel(hFigure, 'Position', [0.5 0 0.5 1], 'Title', 'Bird''s-Eye Plot'); % Create bird's-eye plot for the ego car and sensor coverage hBEVPlot = axes(hBEVPanel); frontBackLim = 60; BEP = birdsEyePlot('Parent', hBEVPlot, 'Xlimits', [-frontBackLim frontBackLim], 'Ylimits', [-35 35]); % Plot the coverage areas for radars for i = 1:6 cap = coverageAreaPlotter(BEP,'FaceColor','red','EdgeColor','red'); plotCoverageArea(cap, sensors{i}.SensorLocation,... sensors{i}.MaxRange, sensors{i}.Yaw, sensors{i}.FieldOfView(1)); end % Plot the coverage areas for vision sensors for i = 7:8 cap = coverageAreaPlotter(BEP,'FaceColor','blue','EdgeColor','blue'); plotCoverageArea(cap, sensors{i}.SensorLocation,... sensors{i}.MaxRange, sensors{i}.Yaw, 45); end % Create a vision detection plotter put it in a struct for future use detectionPlotter(BEP, 'DisplayName','vision', 'MarkerEdgeColor','blue', 'Marker','^'); % Combine all radar detctions into one entry and store it for later update detectionPlotter(BEP, 'DisplayName','radar', 'MarkerEdgeColor','red'); % Add road borders to plot laneBoundaryPlotter(BEP, 'DisplayName','road', 'Color', [.75 .75 0]); % Add the tracks to the bird's-eye plot. Show last 10 track updates. trackPlotter(BEP, 'DisplayName','track', 'HistoryDepth',10); axis(BEP.Parent, 'equal'); xlim(BEP.Parent, [-frontBackLim frontBackLim]); ylim(BEP.Parent, [-40 40]); % Add an outline plotter for ground truth outlinePlotter(BEP, 'Tag', 'Ground truth'); end
github
cedricxie/MATLAB_Automated_Driving_Box-master
vehicleToImageROI.m
.m
MATLAB_Automated_Driving_Box-master/Visual_Perception_Using_Monocular_Camera/vehicleToImageROI.m
653
utf_8
9afa4c556cc9a400e9c90235a6468c54
%% % *vehicleToImageROI* converts ROI in vehicle coordinates to image coordinates % in bird's-eye-view image. function imageROI = vehicleToImageROI(birdsEyeConfig, vehicleROI) vehicleROI = double(vehicleROI); loc2 = abs(vehicleToImage(birdsEyeConfig, [vehicleROI(2) vehicleROI(4)])); loc1 = abs(vehicleToImage(birdsEyeConfig, [vehicleROI(1) vehicleROI(4)])); loc4 = vehicleToImage(birdsEyeConfig, [vehicleROI(1) vehicleROI(4)]); loc3 = vehicleToImage(birdsEyeConfig, [vehicleROI(1) vehicleROI(3)]); [minRoiX, maxRoiX, minRoiY, maxRoiY] = deal(loc4(1), loc3(1), loc2(2), loc1(2)); imageROI = round([minRoiX, maxRoiX, minRoiY, maxRoiY]); end
github
cedricxie/MATLAB_Automated_Driving_Box-master
takeSnapshot.m
.m
MATLAB_Automated_Driving_Box-master/Visual_Perception_Using_Monocular_Camera/takeSnapshot.m
747
utf_8
1791ab533aacfe782877dc4956d747f3
%% % *takeSnapshot* captures the output for the HTML publishing report. function I = takeSnapshot(frame, sensor, sensorOut) % Unpack the inputs leftEgoBoundary = sensorOut.leftEgoBoundary; rightEgoBoundary = sensorOut.rightEgoBoundary; locations = sensorOut.vehicleLocations; xVehiclePoints = sensorOut.xVehiclePoints; bboxes = sensorOut.vehicleBoxes; frameWithOverlays = insertLaneBoundary(frame, leftEgoBoundary, sensor, xVehiclePoints, 'Color','Red'); frameWithOverlays = insertLaneBoundary(frameWithOverlays, rightEgoBoundary, sensor, xVehiclePoints, 'Color','Green'); frameWithOverlays = insertVehicleDetections(frameWithOverlays, locations, bboxes); I = frameWithOverlays; end
github
cedricxie/MATLAB_Automated_Driving_Box-master
validateBoundaryFcn.m
.m
MATLAB_Automated_Driving_Box-master/Visual_Perception_Using_Monocular_Camera/validateBoundaryFcn.m
364
utf_8
3899e015c1d26d20057a5c58c7b0d8d3
%% % *validateBoundaryFcn* rejects some of the lane boundary curves % computed using the RANSAC algorithm. function isGood = validateBoundaryFcn(params) if ~isempty(params) a = params(1); % Reject any curve with a small 'a' coefficient, which makes it highly % curved. isGood = abs(a) < 0.003; % a from ax^2+bx+c else isGood = false; end end
github
cedricxie/MATLAB_Automated_Driving_Box-master
insertVehicleDetections.m
.m
MATLAB_Automated_Driving_Box-master/Visual_Perception_Using_Monocular_Camera/insertVehicleDetections.m
480
utf_8
3ab6baac14f95acdee8c09e73aa3706a
%% % *insertVehicleDetections* inserts bounding boxes and displays % [x,y] locations corresponding to returned vehicle detections. function imgOut = insertVehicleDetections(imgIn, locations, bboxes) imgOut = imgIn; for i = 1:size(locations, 1) location = locations(i, :); bbox = bboxes(i, :); label = sprintf('X=%0.2f, Y=%0.2f', location(1), location(2)); imgOut = insertObjectAnnotation(imgOut, ... 'rectangle', bbox, label, 'Color','g'); end end
github
cedricxie/MATLAB_Automated_Driving_Box-master
computeVehicleLocations.m
.m
MATLAB_Automated_Driving_Box-master/Visual_Perception_Using_Monocular_Camera/computeVehicleLocations.m
1,058
utf_8
7df6f836cb4cca22035ffe4fad5968d8
%% % *computeVehicleLocations* calculates the location of a vehicle % in vehicle coordinates, given a bounding box returned by a detection % algorithm in image coordinates. It returns the center location of the % bottom of the bounding box in vehicle coordinates. Because a monocular % camera sensor and a simple homography are used, only distances along the % surface of the road can be computed. Computation of an arbitrary location % in 3-D space requires use of a stereo camera or another sensor capable of % triangulation. function locations = computeVehicleLocations(bboxes, sensor) locations = zeros(size(bboxes,1),2); for i = 1:size(bboxes, 1) bbox = bboxes(i, :); % Get [x,y] location of the center of the lower portion of the % detection bounding box in meters. bbox is [x, y, width, height] in % image coordinates, where [x,y] represents upper-left corner. yBottom = bbox(2) + bbox(4) - 1; xCenter = bbox(1) + (bbox(3)-1)/2; % approximate center locations(i,:) = imageToVehicle(sensor, [xCenter, yBottom]); end end
github
cedricxie/MATLAB_Automated_Driving_Box-master
classifyLaneTypes.m
.m
MATLAB_Automated_Driving_Box-master/Visual_Perception_Using_Monocular_Camera/classifyLaneTypes.m
979
utf_8
4fa6c4e6726da000a539c83cb0589b84
%% % *classifyLaneTypes* determines lane marker types as |solid|, |dashed|, etc. function boundaries = classifyLaneTypes(boundaries, boundaryPoints) for bInd = 1 : numel(boundaries) vehiclePoints = boundaryPoints{bInd}; % Sort by x vehiclePoints = sortrows(vehiclePoints, 1); xVehicle = vehiclePoints(:,1); xVehicleUnique = unique(xVehicle); % Dashed vs solid xdiff = diff(xVehicleUnique); % Sufficiently large threshold to remove spaces between points of a % solid line, but not large enough to remove spaces between dashes xdifft = mean(xdiff) + 3*std(xdiff); largeGaps = xdiff(xdiff > xdifft); % Safe default boundaries(bInd).BoundaryType= LaneBoundaryType.Solid; if largeGaps>2 % Ideally, these gaps should be consistent, but you cannot rely % on that unless you know that the ROI extent includes at least 3 dashes. boundaries(bInd).BoundaryType = LaneBoundaryType.Dashed; end end end
github
cedricxie/MATLAB_Automated_Driving_Box-master
visualizeSensorResults.m
.m
MATLAB_Automated_Driving_Box-master/Visual_Perception_Using_Monocular_Camera/visualizeSensorResults.m
2,379
utf_8
469fbc729ba3949f70d12fce4d77e690
%% visualizeSensorResults displays core information and intermediate results from the monocular camera sensor simulation. function isPlayerOpen = visualizeSensorResults(frame, sensor, sensorOut,... intOut, closePlayers) % Unpack the main inputs leftEgoBoundary = sensorOut.leftEgoBoundary; rightEgoBoundary = sensorOut.rightEgoBoundary; locations = sensorOut.vehicleLocations; xVehiclePoints = sensorOut.xVehiclePoints; bboxes = sensorOut.vehicleBoxes; % Unpack additional intermediate data birdsEyeViewImage = intOut.birdsEyeImage; birdsEyeConfig = intOut.birdsEyeConfig; vehicleROI = intOut.vehicleROI; birdsEyeViewBW = intOut.birdsEyeBW; % Visualize left and right ego-lane boundaries in bird's-eye view birdsEyeWithOverlays = insertLaneBoundary(birdsEyeViewImage, leftEgoBoundary , birdsEyeConfig, xVehiclePoints, 'Color','Red'); birdsEyeWithOverlays = insertLaneBoundary(birdsEyeWithOverlays, rightEgoBoundary, birdsEyeConfig, xVehiclePoints, 'Color','Green'); % Visualize ego-lane boundaries in camera view frameWithOverlays = insertLaneBoundary(frame, leftEgoBoundary, sensor, xVehiclePoints, 'Color','Red'); frameWithOverlays = insertLaneBoundary(frameWithOverlays, rightEgoBoundary, sensor, xVehiclePoints, 'Color','Green'); frameWithOverlays = insertVehicleDetections(frameWithOverlays, locations, bboxes); imageROI = vehicleToImageROI(birdsEyeConfig, vehicleROI); ROI = [imageROI(1) imageROI(3) imageROI(2)-imageROI(1) imageROI(4)-imageROI(3)]; % Highlight candidate lane points that include outliers birdsEyeViewImage = insertShape(birdsEyeViewImage, 'rectangle', ROI); % show detection ROI birdsEyeViewImage = imoverlay(birdsEyeViewImage, birdsEyeViewBW, 'blue'); % Display the results frames = {frameWithOverlays, birdsEyeViewImage, birdsEyeWithOverlays}; persistent players; if isempty(players) frameNames = {'Lane marker and vehicle detections', 'Raw segmentation', 'Lane marker detections'}; players = helperVideoPlayerSet(frames, frameNames); end update(players, frames); % Terminate the loop when the first player is closed isPlayerOpen = isOpen(players, 1); if (~isPlayerOpen || closePlayers) % close down the other players clear players; end end
github
tjdodwell/matLam-master
makeMesh.m
.m
matLam-master/include/preProcessing/makeMesh.m
4,803
utf_8
6896a25bf75578e555cda0b40938ee2c
function msh = makeMesh(model) % ----------------------------------------------------------------------- % This code is released under GNU LESSER GENERAL PUBLIC LICENSE v3 (LGPL) % % Details are provided in license.txt file in the main directory % % 1/8/14 - Dr T. J. Dodwell - University of Bath - [email protected] % ----------------------------------------------------------------------- % makemsh.m - Written (TJD - 3/6/2014) % % Creates Coarse Quadrilateral msh on [0,Lx] by [0,Ly] and refines uniformly to desired msh size % % -------------------------------- % (1) Set up Coarse Rectangle % -------------------------------- msh.coords = [0 0; model.Lx 0; model.Lx model.Ly; 0 model.Ly]; msh.elements = 1:4; % nodesOfRefinement = zeros(9,1); edgeTable = zeros(0,3); % Create an empty matrix with two columns for ii = 1:model.meshRefinement % For each refinement visitedEdges = 0; nelem = 0; inode = 0; newcoords = []; nodesPreviousRefinement = size(msh.coords(:,1),1); for ie = 1:size(msh.elements,1); % Each Element nodesOfRefinement(1:4) = msh.elements(ie,:); % First Add Mid Point inode=inode+1; newcoords(inode,:) = 0.5*(msh.coords(msh.elements(ie,1),:) + msh.coords(msh.elements(ie,3),:)); nodesOfRefinement(5)=inode + nodesPreviousRefinement; for edge = 1:4 % For Each Edge n1 = msh.elements(ie,edge); n2 = msh.elements(ie,mod(edge,4)+1); % Has Edge been visited before - if so return id = 1 and the node [id,oldNode] = edgeVisited(edgeTable,n1,n2); if id == 0 % If new edge add midpoint as new node inode=inode+1; nodesOfRefinement(5+edge) = inode + nodesPreviousRefinement; newcoords(inode,:) = 0.5*(msh.coords(n1,:)+msh.coords(n2,:)); edgeTable(visitedEdges+1,1:2) = [n1,n2]; edgeTable(visitedEdges+1,3) = inode + nodesPreviousRefinement; visitedEdges=visitedEdges+1; else nodesOfRefinement(5+edge) = oldNode; end end % For each edge newelements(nelem+1,:)=nodesOfRefinement([1,6,5,9]); newelements(nelem+2,:)=nodesOfRefinement([6,2,7,5]); newelements(nelem+3,:)=nodesOfRefinement([5,7,3,8]); newelements(nelem+4,:)=nodesOfRefinement([9,5,8,4]); nelem=nelem+4; end msh.elements = newelements; msh.coords = [msh.coords;newcoords]; end % for each refinelement % Mesh Constructed msh.nnod = size(msh.coords,1); msh.nel = size(msh.elements,1); msh.ndim = 2; switch lower(model.type) case 'mindlin' msh.dof = 5; case 'zigzag' msh.dof = 7; end msh.nnodel = 4; % Nodes per Element msh.nedof = msh.nnodel*msh.dof; msh.tdof = msh.dof*msh.nnod; % Setup local to global number of general element formulation with msh.dof degrees of freedom per node. msh.e2g = zeros(msh.nel,msh.nedof); for ie = 1 : msh.nel ne = msh.elements(ie,:); for j = 1 : msh.dof msh.e2g(ie,(j-1)*length(ne) + 1: j * length(ne)) = (j-1) * msh.nnod + ne; end end [msh.nip,msh.IP_X, msh.IP_w] = ip_quad(model.integrationOption); [msh.N, msh.dNdu] = shapeFunctionQ4(msh.IP_X); end function [id,node] = edgeVisited(edgeTable,n1,n2) id = 0; node = 0; numEdgesVisited = size(edgeTable,1); temp = find(edgeTable(:,1) == n1); for i = 1:length(temp) if edgeTable(temp(i),2) == n2 id = 1; node = edgeTable(temp(i),3); end end if id == 0 temp = find(edgeTable(:,2) == n1); for i = 1:length(temp) if edgeTable(temp(i),1) == n2 id = 1; node = edgeTable(temp(i),3); end end end end function [N, dNdu] = shapeFunctionQ4(IP_X,nnodel) % TJD - June 2014 nip = size(IP_X,1); N = cell(nip,1); dNdu = cell(nip,1); for i = 1:nip xi = IP_X(i,1); eta = IP_X(i,2); shp=0.25*[ (1-xi)*(1-eta); (1+xi)*(1-eta); (1+xi)*(1+eta); (1-xi)*(1+eta)]; deriv=0.25*[-(1-eta), -(1-xi); 1-eta, -(1+xi); 1+eta, 1+xi; -(1+eta), 1-xi]; N{i} = shp; dNdu{i} = deriv'; end end % end function shapeFunctionQ4 function [nip,IP_X,IP_W] = ip_quad(option) % TJD - June 2014 % Gauss quadrature for Q4 elements % option 'complete' (2x2) % option 'reduced' (1x1) % nip: Number of Integration Points % ipx: Gauss point locations % ipw: Gauss point weights switch option case 'complete' nip = 4; IP_X=... [ -0.577350269189626 -0.577350269189626; 0.577350269189626 -0.577350269189626; 0.577350269189626 0.577350269189626; -0.577350269189626 0.577350269189626]; IP_W=[ 1;1;1;1]; case 'reduced' nip = 1; IP_X=[0 0]; IP_W=[4]; end % end of switch 'option' end % end of function ip_quad
github
tjdodwell/matLam-master
makeABDH2.m
.m
matLam-master/include/FEM/makeABDH2.m
7,495
utf_8
cfbbd48beb5d01237bbfee4326aab1c5
function mat = makeABDH2(model) switch lower(model.type) case 'mindlin' % upper and lower coordinates z = zeros(1,model.numPly+1); z(1) = 0; for i = 2:model.numPly+1 z(i) = z(i-1) + model.t(i-1); end z = z - mean(z); model.material.nu21=model.material.nu12*(model.material.E2/model.material.E1); factor=1-model.material.nu12*model.material.nu21; Q = zeros(5); Q(1,1)=model.material.E1/factor; Q(1,2)=model.material.nu12*model.material.E2/factor; Q(2,1)=Q(1,2); Q(2,2)=model.material.E2/factor; Q(3,3)=model.material.G12; Q(4,4)=model.material.SF*model.material.G23; Q(5,5)=model.material.SF*model.material.G13; %______________________________________________ A = zeros(5); B = zeros(5); D = zeros(5); H = zeros(5); T = zeros(5); for k=1:model.numPly phi = model.ss(k); % Transformation Matrix c = cos(phi); s = sin(phi); T(1,1) = c^2; T(1,2) = s^2; T(1,3) = 2*c*s; T(2,1) = s^2; T(2,2) = c^2; T(2,3) = -2*c*s; T(3,1) = -c*s; T(3,2) = c*s; T(3,3) = c^2-s^2; T(4,4) = c; T(4,5) = s; T(5,4) = -s; T(5,5) = c; % [Q] in structural axes invT = inv(T); Qbar= invT*Q*(invT'); A= A + Qbar*(z(k+1)-z(k)); B= B + Qbar*(z(k+1)^2-z(k)^2)/2; D= D + Qbar*(z(k+1)^3-z(k)^3)/3; H= H + Qbar*(z(k+1)-z(k)); end A = A(1:3,1:3); B = B(1:3,1:3); D = D(1:3,1:3); H = H(4:5,4:5); mat.A = A; mat.B = B; mat.D = D; mat.H = H; case 'zigzag' % Compute the interfaces % upper and lower coordinates z = zeros(1,model.numPly+1); z(1) = 0; for i = 2:model.numPly+1 z(i) = z(i-1) + model.t(i-1); end z = z - mean(z); % Compute Q - composite matrix in local axis model.material.nu21=model.material.nu12*(model.material.E2/model.material.E1); factor=1-model.material.nu12*model.material.nu21; Q = zeros(5); Q(1,1)=model.material.E1/factor; Q(1,2)=model.material.nu12*model.material.E2/factor; Q(2,1)=Q(1,2); Q(2,2)=model.material.E2/factor; Q(3,3)=model.material.G12; G23 = model.material.G23; G13 = model.material.G13; G13i = model.material.G13i; G23i = model.material.G23i; E_int = model.material.E2; nu12_int = model.material.nu12; % Compute Zig-Zag Matrices [G1, G2] = computeGs(model,G13,G23,G13i,G23i); % Compute laminate shear moduli A = zeros(3); B = zeros(3,7); D = zeros(7); H = zeros(4); for k = 1 : model.numPly phi = model.ss(k); if (phi > 0) % This is a composite ply % Transformation Matrix c = cos(phi); s = sin(phi); T = zeros(3); T(1,1) = c^2; T(1,2) = s^2; T(1,3) = 2*c*s; T(2,1) = s^2; T(2,2) = c^2; T(2,3) = -2*c*s; T(3,1) = -c*s; T(3,2) = c*s; T(3,3) = c^2-s^2; % Rotate [Q] to structural axes invT = inv(T); Qk = invT * Q * (invT'); % Shear Matrix Hk = [cos(phi)^2 * G23 + sin(phi)^2 * G13, sin(phi) * cos(phi) * (G13 - G23); sin(phi) * cos(phi) * (G13 - G23), (cos(phi) ^2) * G13 + (sin(phi) ^ 2) * G23]; else % This is an interface layer % In this case notation is required. factor = 1.0 - nu12_int * nu12_int; Qk = [E_int/factor, nu12_int * E_int/factor, 0.0; nu12_int * E_int/factor, E_int/factor, 0.0; 0.0, 0.0, E_int / (2.0 * (1.0 + nu12_int))]; Hk = [G23i,0.0;0.0,G13i]; end % Compute A matrix - constant within each layer A = A + Qk * model.t(k); % Compute B matrix - linear in each layer - compute exactly with trapezoidal rule Bk0 = calB_phi(z(k),k,G13,G23,G13i,G23i,G1,G2,model); Bk1 = calB_phi(z(k+1),k,G13,G23,G13i,G23i,G1,G2,model); B = B + 0.5 * model.t(k) * Qk * (Bk1 + Bk0); % Compute D matrix - since quadratic in each layer - compute exactly with simpsons rule Bkhalf = calB_phi(0.5*(z(k)+z(k+1)),k,G13,G23,G13i,G23i,G1,G2,model); D = D + (1.0 / 6.0) * model.t(k) * (Bk0' * Qk * Bk0 + 4.0 * Bkhalf' * Qk * Bkhalf + Bk1' * Qk * Bk1); % Compute G matrix [beta1, beta2] = computeBetas(k,G1,G2,G13,G23,G13i,G23i,model); Bb = [1.0, beta2, 0.0, 0.0; 0.0, 0.0, 1.0, beta1]; H = H + model.t(k) * (Bb' * Hk * Bb) * model.t(k); end % end for each ply mat.A = A; mat.B = B; mat.D = D; mat.H = H; end end % model.t - contains layer thickness % model.ss - contains stacking sequence % Need a function which calculates Bphi function [G1, G2] = computeGs(model,G13,G23,G13i,G23i) G1 = 0.0; G2 = 0.0; for k = 1 : 2 : model.numPly phi = model.ss(k); Q11k = (cos(phi) ^ 2) * G13 + (sin(phi) ^ 2) * G23; Q22k = (cos(phi) ^ 2) * G23 + (sin(phi) ^ 2) * G13; G1 = G1 + model.t(k) / Q11k; G2 = G2 + model.t(k) / Q22k; end for k = 2 : 2 : model.numPly % For the interfaces G1 = G1 + model.t(k) / G13i; G2 = G2 + model.t(k) / G23i; end G1 = G1 / sum(model.t); G2 = G2 / sum(model.t); G1 = 1 / G1; G2 = 1 / G2; end function [beta1, beta2] = computeBetas(k,G1,G2,G13,G23,G13i,G23i,model) if (model.ss(k) < 0.0) % It is an interface beta1 = G1 / G13i - 1.0; beta2 = G2 / G23i - 1.0; else phi = model.ss(k); Q11k = (cos(phi) ^ 2) * G13 + (sin(phi) ^ 2) * G23; Q22k = (cos(phi) ^ 2) * G23 + (sin(phi) ^ 2) * G13; beta1 = G1 / Q11k - 1.0; beta2 = G2 / Q22k - 1.0; end end function B = calB_phi(z,k,G13,G23,G13i,G23i,G1,G2,model) B = zeros(3,7); [phi1, phi2] = calPhi(z,k,G13,G23,G13i,G23i,G1,G2,model); B(1,1) = z; B(1,2) = phi1; B(2,3) = z; B(2,4) = phi2; B(3,5) = z; B(3,6) = phi1; B(3,7) = phi2; end function [phi1, phi2] = calPhi(z,k,G13,G23,G13i,G23i,G1,G2,model) % Note that this is a linear function in z h = 0.5 * sum(model.t); phi = model.ss(k); Q11k = (cos(phi) ^ 2) * G13 + (sin(phi) ^ 2) * G23; Q22k = (cos(phi) ^ 2) * G23 + (sin(phi) ^ 2) * G13; phi1 = (z + h) * (G1 / Q11k - 1.0); phi2 = (z + h) * (G2 / Q22k - 1.0); if (k > 0) for i = 2 : model.numPly phi = model.ss(i); if(phi < 0.0) Q11i = G13i; Q22i = G23i; else Q11i = (cos(phi) ^ 2 * G13) + (sin(phi) ^ 2) * G23; Q22i = (cos(phi) ^ 2 * G23) + (sin(phi) ^ 2) * G13; end phi1 = phi1 + model.t(i-1) * (G1 / Q11i - G1 / Q11k); phi2 = phi2 + model.t(i-1) * (G2 / Q22i - G2 / Q22k); end end end
github
tjdodwell/matLam-master
elementShapeFunctions.m
.m
matLam-master/include/FEM/elementShapeFunctions.m
1,612
utf_8
30bd5c1f46692a39f093d1514e018e26
function [Ni,dNdX,detJ] = elementShapeFunctions(msh,ie,ip,integration_option) switch lower(integration_option); case 'full' [IP_X,IP_W] = ip_quad; [N, dNdu] = shapeFunctionQ4(IP_X); Ni = N{ip}; dNdui = dNdu{ip}; case 'reduced' Ni = msh.N{1}; dNdui = msh.dNdu{1}; end J = msh.coords(msh.elements(ie,:),:)'*dNdui'; detJ = det(J); dNdX = dNdui'*inv(J); end function [N, dNdu] = shapeFunctionQ4(IP_X) % TJD - June 2014 nip = 4; N = cell(nip,1); dNdu = cell(nip,1); for i = 1:nip xi = IP_X(i,1); eta = IP_X(i,2); shp=0.25*[ (1-xi)*(1-eta); (1+xi)*(1-eta); (1+xi)*(1+eta); (1-xi)*(1+eta)]; deriv=0.25*[-(1-eta), -(1-xi); 1-eta, -(1+xi); 1+eta, 1+xi; -(1+eta), 1-xi]; N{i} = shp; dNdu{i} = deriv'; end end % end function shapeFunctionQ4 function [IP_X,IP_W] = ip_quad % TJD - June 2014 % Gauss quadrature for Q4 elements % option 'complete' (2x2) % option 'reduced' (1x1) % nip: Number of Integration Points % ipx: Gauss point locations % ipw: Gauss point weights IP_X=... [ -0.577350269189626 -0.577350269189626; 0.577350269189626 -0.577350269189626; 0.577350269189626 0.577350269189626; -0.577350269189626 0.577350269189626]; IP_W=[ 1;1;1;1]; end % end of function ip_quad
github
RWEISCHEDEL/University-of-Utah-Coursework-master
matchExposures.m
.m
University-of-Utah-Coursework-master/CS 6320 - Computer Vision/project_1/project_1/matchExposures.m
2,853
utf_8
ae91ed3665fbf30805c02a26aedd688d
function [matchedImage] = matchExposures(images, transforms, performLoop) numberImages = size(images, 4); gammaList = ones(numberImages, 1); for i = 2 : numberImages gammaList(i) = matchImagePair(images(:, :, :, i - 1), images(:, :, :, i), transforms(:, :, i)); end if performLoop logGammaList = log(gammaList); logGammaList(1) = []; A = eye(nImgs - 2); A = [A; -ones(1, numberImages - 2)]; updatedLogGammaList = A \ logGammaList; updatedLogGammaList = [0; updatedLogGammaList]; finalGammas = exp(updatedLogGammaList); accGammaList = ones(nImgs, 1); for i = 2 : numberImages - 1 accGammaList(i) = accGammaList(i - 1) * finalGammas(i); end else accGammaList = ones(numberImages, 1); for i = 2 : numberImages accGammaList(i) = accGammaList(i - 1) * gammaList(i); end end matchedImage = zeros(size(images), 'uint8'); for i = 1 : numberImages matchedImage(:, :, :, i) = gammaCorrection(images(:, :, :, i), accGammaList(i)); end end %% Match pairs of images function [gammaVal] = matchImagePair(image1, image2, transformVal) numberIterations = 1000; alphaVal = 1; sampleRatioVal = 0.01; outlierThresholdVal = 1.0; height = size(image1, 1); width = size(image1, 2); labImage1 = rgb2lab(image1); labImage2 = rgb2lab(image2); k = 1; numberPixels = numel(image1); numberSamples = round(numberPixels * sampleRatioVal); samples = zeros(numberSamples, 2); while true pixel2 = [randi([1 height]); randi([1 width]); 1]; pixel1 = transformVal * pixel2; pixel1 = pixel1 ./ pixel1(3); if pixel1(1) >= 1 && pixel1(1) < height && pixel1(2) >= 1 && pixel1(2) < width i = floor(pixel1(2)); a = pixel1(2) - i; j = floor(pixel1(1)); b = pixel1(1) - j; sample1 = (1 - a) * (1 - b) * labImage1(j, i, 1) + a * (1 - b) * labImage1(j, i + 1, 1) + a * b * labImage1(j + 1, i + 1, 1) + (1 - a) * b * labImage1(j + 1, i, 1); sample2 = labImage2(pixel2(1), pixel2(2), 1); if sample1 > outlierThresholdVal && sample2 > outlierThresholdVal samples(k, 1) = sample1 / 100; samples(k, 2) = sample2 / 100; k = k + 1; if k > numberSamples break; end end end end gammaVal = 1; for i = 1 : numberIterations gammaVal = gammaVal - alphaVal * sum((samples(:, 2) .^ gammaVal - samples(:, 1)) .* log(samples(:, 2)) .* (samples(:, 2) .^ gammaVal)) / numberSamples; end end %% Perform Gamma Correction function [gammaImage] = gammaCorrection(image, gammaVal) labImage = rgb2lab(image); labImage(:, :, 1) = (labImage(:, :, 1) / 100) .^ gammaVal * 100; gammaImage = lab2rgb(labImage, 'OutputType', 'uint8'); end
github
RWEISCHEDEL/University-of-Utah-Coursework-master
CannyEdgeDetection.m
.m
University-of-Utah-Coursework-master/CS 6320 - Computer Vision/project_1/project_1/Functions/CannyEdgeDetection.m
3,412
utf_8
6f73fb6ab7f1dff7fd8e67c55ce58382
imageMatrix1 = imread('lineDetect1.bmp'); imageMatrix2 = imread('lineDetect2.bmp'); imageMatrix3 = imread('lineDetect3.bmp'); outputImage1 = edgeDetection(imageMatrix1); outputImage2 = edgeDetection(imageMatrix1); outputImage3 = edgeDetection(imageMatrix1); imwrite(outputImage1, 'Outputs/cannyedgedetection1.png', 'png'); imwrite(outputImage2, 'Outputs/cannyedgedetection2.png', 'png'); imwrite(outputImage3, 'Outputs/cannyedgedetection3.png', 'png'); figure(1); subplot(3,2,1); imagesc(imageMatrix1); subplot(3,2,2); imagesc(outputImage1); subplot(3,2,3); imagesc(imageMatrix2); subplot(3,2,4); imagesc(outputImage2); subplot(3,2,5); imagesc(imageMatrix3); subplot(3,2,6); imagesc(outputImage3); function outputImage = edgeDetection(imageMatrix) LINE_SET = {}; EDGE_SET = {}; ITERS = 0; TOTAL_NO_ITERS = 10000; MAX_PAIR_DISTANCE = 100; MIN_POINTLINE_DISTANCE = 2; MIN_LINE_PIXEL_NUM = 50; cannyEdges = edge(rgb2gray(imageMatrix),'Canny', 0.1); sizeX = size(imageMatrix,1); sizeY = size(imageMatrix,2); for i = 1:1:sizeX for j = 1:1:sizeY if(cannyEdges(i,j) == 1) EDGE_SET{end + 1} = [i j]; end end end while(ITERS ~= TOTAL_NO_ITERS) ITERS = ITERS + 1; %disp(ITERS) edgeSize = size(EDGE_SET); randP = randi([1 edgeSize(2)]); pPoint = EDGE_SET(randP); pPointArray = pPoint{1,1}; px = pPointArray(1); py = pPointArray(2); dist = MAX_PAIR_DISTANCE + 1; randQ = 0; while(dist > MAX_PAIR_DISTANCE) randQ = randi([1 edgeSize(2)]); qPoint = EDGE_SET(randQ); qPointArray = qPoint{1,1}; cqx = qPointArray(1); cqy = qPointArray(2); dist = pdist([px, py; cqx, cqy], 'euclidean'); end qPoint = EDGE_SET(randQ); qPointArray = qPoint{1,1}; INPUT_SET = {}; i = 1; edgeS = edgeSize(2); while(i < edgeS) point = EDGE_SET(i); pointArray = point{1,1}; x1 = pPointArray(1); y1 = pPointArray(2); x2 = qPointArray(1); y2 = qPointArray(2); x0 = pointArray(1); y0 = pointArray(2); numerator = abs((y2 - y1)*x0 - (x2 - x1)*y0 + (x2*y1) - (y2*x1)); denominator = sqrt((y2 - y1)^2 + (x2 - x1)^2); dist = numerator / denominator; if(dist <= MIN_POINTLINE_DISTANCE) INPUT_SET{end + 1} = pointArray; EDGE_SET(i) = []; end edgeS = edgeS - 1; i = i + 1; end inputSize = size(INPUT_SET); if(inputSize(2) >= MIN_LINE_PIXEL_NUM) LINE_SET{end + 1} = INPUT_SET; end end lineSize = size(LINE_SET); newImage = uint8(zeros(sizeX, sizeY,3)); for(w = 1:1:lineSize(2)) randR = randi([50 200]); randG = randi([50 200]); randB = randi([50 200]); currLine = LINE_SET(w); currentL = currLine{1,1}; currLineSize = size(currentL); for(q = 1:1:currLineSize(2)) pPoint = currLine(1); pointArray = pPoint{1,1}; finalArray = pointArray(q); points = finalArray{1, 1}; x = points(1); y = points(2); newImage(x, y, 1) = randR; newImage(x, y, 2) = randG; newImage(x, y, 3) = randB; end end outputImage = newImage; end
github
RWEISCHEDEL/University-of-Utah-Coursework-master
StereoMatching.m
.m
University-of-Utah-Coursework-master/CS 6320 - Computer Vision/project_1/project_1/Functions/StereoMatching.m
2,242
utf_8
5ed51e493dc2bb8c52487d16eafb2b2c
left1 = imread('left1.png'); left2 = imread('left2.png'); left3 = imread('left3.bmp'); right1 = imread('right1.png'); right2 = imread('right2.png'); right3 = imread('right3.bmp'); outputImage1 = stereoMatch(left1, right1); outputImage2 = stereoMatch(left2, right2); outputImage3 = stereoMatch(left3, right3); imwrite(outputImage1, 'Outputs/stereomatching1.png', 'png'); imwrite(outputImage2, 'Outputs/stereomatching2.png', 'png'); imwrite(outputImage3, 'Outputs/stereomatching3.png', 'png'); colormap(gray); % image(outputImage1); % figure % colormap(gray); % image(outputImage2); % figure % colormap(gray); % image(outputImage3); figure(3); subplot(3,3,1); imagesc(left1); subplot(3,3,2); imagesc(right1); subplot(3,3,3); imagesc(outputImage1); subplot(3,3,4); imagesc(left2); subplot(3,3,5); imagesc(right2); subplot(3,3,6); imagesc(outputImage2); subplot(3,3,7); imagesc(left3); subplot(3,3,8); imagesc(right3); subplot(3,3,9); imagesc(outputImage3); function outputImage = stereoMatch(left, right) DISPARITY_RANGE = 50; WIN_SIZE = 5; EXTEND = (WIN_SIZE - 1) / 2; Nx = size(left, 1); Ny = size(left, 2); ileft = double(rgb2gray(left)); iright = double(rgb2gray(right)); colormap(gray); DISPARITY = uint8(zeros(Nx, Ny, 3)); for y = 1:1:Nx for x = 1:1:Ny bestDisparity = 0; bestNCC = 0; % Lowest NCC Score for myDisp = 1:1:DISPARITY_RANGE if(y - EXTEND >= 1 && y + EXTEND <= Nx && x - EXTEND >= 1 && x + EXTEND <= Ny && x - myDisp - EXTEND >= 1 && x - myDisp + EXTEND <= Ny) Patch1 = ileft(y - EXTEND:y + EXTEND, x - EXTEND:x + EXTEND); Patch2 = iright(y - EXTEND:y + EXTEND, x - myDisp - EXTEND:x - myDisp + EXTEND); currNCC = NCC(Patch1, Patch2); if(currNCC > bestNCC) bestNCC = currNCC; bestDisparity = myDisp; end end end %disp(bestDisparity) DISPARITY(y,x, 1) = bestDisparity * 5; DISPARITY(y,x, 2) = bestDisparity * 5; DISPARITY(y,x, 3) = bestDisparity * 5; end end % Not needed... outputImage = DISPARITY; end
github
RWEISCHEDEL/University-of-Utah-Coursework-master
SimpleSkySegmentation.m
.m
University-of-Utah-Coursework-master/CS 6320 - Computer Vision/project_1/project_1/Functions/SimpleSkySegmentation.m
1,708
utf_8
aac6dec37084561767bdb82c8459d3ed
imageMatrix1 = imread('detectSky1.bmp'); imageMatrix2 = imread('detectSky2.bmp'); imageMatrix3 = imread('detectSky3.bmp'); outputImage1 = segmentation(imageMatrix1); outputImage2 = segmentation(imageMatrix2); outputImage3 = segmentation(imageMatrix3); imwrite(outputImage1, 'Outputs/simpleskydetection1.png', 'png'); imwrite(outputImage2, 'Outputs/simpleskydetection2.png', 'png'); imwrite(outputImage3, 'Outputs/simpleskydetection3.png', 'png'); figure(2); subplot(3,2,1); imagesc(imageMatrix1); subplot(3,2,2); imagesc(outputImage1); subplot(3,2,3); imagesc(imageMatrix2); subplot(3,2,4); imagesc(outputImage2); subplot(3,2,5); imagesc(imageMatrix3); subplot(3,2,6); imagesc(outputImage3); function outputImage = segmentation(imageMatrix) R_MIN = 0; R_MAX = 100; G_MIN = 1; G_MAX = 150; B_MIN = 100; B_MAX = 255; sizeX = size(imageMatrix,1); sizeY = size(imageMatrix,2); outputImage = zeros(sizeX, sizeY); for i = 1:1:sizeX for j = 1:1:sizeY redValue = imageMatrix(i,j,1); greenValue = imageMatrix(i,j,2); blueValue = imageMatrix(i,j,3); isSky = true; if(redValue < R_MIN || redValue > R_MAX) isSky = false; end if(greenValue < G_MIN || greenValue > G_MAX) isSky = false; end if(blueValue < B_MIN || blueValue > B_MAX) isSky = false; end if(isSky == true) outputImage(i,j,1) = 255; outputImage(i,j,2) = 255; outputImage(i,j,3) = 255; else outputImage(i,j,1) = 0; outputImage(i,j,2) = 0; outputImage(i,j,3) = 0; end end end end
github
RWEISCHEDEL/University-of-Utah-Coursework-master
savepgm.m
.m
University-of-Utah-Coursework-master/CS 6320 - Computer Vision/project_2/Functions/toolbox_calib/TOOLBOX_calib/savepgm.m
447
utf_8
b8fe9ed33cbd68ea4b83271b431e3667
%SAVEPGM Write a PGM format file % % SAVEPGM(filename, im) % % Saves the specified image array in a binary (P5) format PGM image file. % % SEE ALSO: loadpgm % % Copyright (c) Peter Corke, 1999 Machine Vision Toolbox for Matlab % Peter Corke 1994 function savepgm(fname, im) fid = fopen(fname, 'w'); [r,c] = size(im'); fprintf(fid, 'P5\n'); fprintf(fid, '%d %d\n', r, c); fprintf(fid, '255\n'); fwrite(fid, im', 'uchar'); fclose(fid);
github
RWEISCHEDEL/University-of-Utah-Coursework-master
ginput4.m
.m
University-of-Utah-Coursework-master/CS 6320 - Computer Vision/project_2/Functions/toolbox_calib/TOOLBOX_calib/ginput4.m
7,121
utf_8
1d7231b0daed3533514a77f79f4e096a
function [out1,out2,out3] = ginput4(arg1) [out1,out2,out3] = ginput(arg1); return; %GINPUT Graphical input from mouse. % [X,Y] = GINPUT(N) gets N points from the current axes and returns % the X- and Y-coordinates in length N vectors X and Y. The cursor % can be positioned using a mouse (or by using the Arrow Keys on some % systems). Data points are entered by pressing a mouse button % or any key on the keyboard except carriage return, which terminates % the input before N points are entered. % % [X,Y] = GINPUT gathers an unlimited number of points until the % return key is pressed. % % [X,Y,BUTTON] = GINPUT(N) returns a third result, BUTTON, that % contains a vector of integers specifying which mouse button was % used (1,2,3 from left) or ASCII numbers if a key on the keyboard % was used. % % Examples: % [x,y] = ginput; % % [x,y] = ginput(5); % % [x, y, button] = ginput(1); % % See also GTEXT, UIRESTORE, UISUSPEND, WAITFORBUTTONPRESS. % Copyright 1984-2006 The MathWorks, Inc. % $Revision: 5.32.4.9 $ $Date: 2006/12/20 07:19:10 $ P = NaN*ones(16,16); P(1:15,1:15) = 2*ones(15,15); P(2:14,2:14) = ones(13,13); P(3:13,3:13) = NaN*ones(11,11); P(6:10,6:10) = 2*ones(5,5); P(7:9,7:9) = 1*ones(3,3); out1 = []; out2 = []; out3 = []; y = []; c = computer; if ~strcmp(c(1:2),'PC') tp = get(0,'TerminalProtocol'); else tp = 'micro'; end if ~strcmp(tp,'none') && ~strcmp(tp,'x') && ~strcmp(tp,'micro'), if nargout == 1, if nargin == 1, out1 = trmginput(arg1); else out1 = trmginput; end elseif nargout == 2 || nargout == 0, if nargin == 1, [out1,out2] = trmginput(arg1); else [out1,out2] = trmginput; end if nargout == 0 out1 = [ out1 out2 ]; end elseif nargout == 3, if nargin == 1, [out1,out2,out3] = trmginput(arg1); else [out1,out2,out3] = trmginput; end end else fig = gcf; figure(gcf); if nargin == 0 how_many = -1; b = []; else how_many = arg1; b = []; if ischar(how_many) ... || size(how_many,1) ~= 1 || size(how_many,2) ~= 1 ... || ~(fix(how_many) == how_many) ... || how_many < 0 error('MATLAB:ginput:NeedPositiveInt', 'Requires a positive integer.') end if how_many == 0 ptr_fig = 0; while(ptr_fig ~= fig) ptr_fig = get(0,'PointerWindow'); end scrn_pt = get(0,'PointerLocation'); loc = get(fig,'Position'); pt = [scrn_pt(1) - loc(1), scrn_pt(2) - loc(2)]; out1 = pt(1); y = pt(2); elseif how_many < 0 error('MATLAB:ginput:InvalidArgument', 'Argument must be a positive integer.') end end % Suspend figure functions state = uisuspend(fig); toolbar = findobj(allchild(fig),'flat','Type','uitoolbar'); if ~isempty(toolbar) ptButtons = [uigettool(toolbar,'Plottools.PlottoolsOff'), ... uigettool(toolbar,'Plottools.PlottoolsOn')]; ptState = get (ptButtons,'Enable'); set (ptButtons,'Enable','off'); end %set(fig,'pointer','fullcrosshair'); set(fig,'Pointer','custom','PointerShapeCData',P,'PointerShapeHotSpot',[8,8]); fig_units = get(fig,'units'); char = 0; % We need to pump the event queue on unix % before calling WAITFORBUTTONPRESS drawnow while how_many ~= 0 % Use no-side effect WAITFORBUTTONPRESS waserr = 0; try keydown = wfbp; catch waserr = 1; end if(waserr == 1) if(ishandle(fig)) set(fig,'units',fig_units); uirestore(state); error('MATLAB:ginput:Interrupted', 'Interrupted'); else error('MATLAB:ginput:FigureDeletionPause', 'Interrupted by figure deletion'); end end ptr_fig = get(0,'CurrentFigure'); if(ptr_fig == fig) if keydown char = get(fig, 'CurrentCharacter'); button = abs(get(fig, 'CurrentCharacter')); scrn_pt = get(0, 'PointerLocation'); set(fig,'units','pixels') loc = get(fig, 'Position'); % We need to compensate for an off-by-one error: pt = [scrn_pt(1) - loc(1) + 1, scrn_pt(2) - loc(2) + 1]; set(fig,'CurrentPoint',pt); else button = get(fig, 'SelectionType'); if strcmp(button,'open') button = 1; elseif strcmp(button,'normal') button = 1; elseif strcmp(button,'extend') button = 2; elseif strcmp(button,'alt') button = 3; else error('MATLAB:ginput:InvalidSelection', 'Invalid mouse selection.') end end pt = get(gca, 'CurrentPoint'); how_many = how_many - 1; if(char == 13) % & how_many ~= 0) % if the return key was pressed, char will == 13, % and that's our signal to break out of here whether % or not we have collected all the requested data % points. % If this was an early breakout, don't include % the <Return> key info in the return arrays. % We will no longer count it if it's the last input. break; end out1 = [out1;pt(1,1)]; y = [y;pt(1,2)]; b = [b;button]; end end uirestore(state); if ~isempty(toolbar) && ~isempty(ptButtons) set (ptButtons(1),'Enable',ptState{1}); set (ptButtons(2),'Enable',ptState{2}); end set(fig,'units',fig_units); if nargout > 1 out2 = y; if nargout > 2 out3 = b; end else out1 = [out1 y]; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function key = wfbp %WFBP Replacement for WAITFORBUTTONPRESS that has no side effects. fig = gcf; current_char = []; % Now wait for that buttonpress, and check for error conditions waserr = 0; try h=findall(fig,'type','uimenu','accel','C'); % Disabling ^C for edit menu so the only ^C is for set(h,'accel',''); % interrupting the function. keydown = waitforbuttonpress; current_char = double(get(fig,'CurrentCharacter')); % Capturing the character. if~isempty(current_char) && (keydown == 1) % If the character was generated by the if(current_char == 3) % current keypress AND is ^C, set 'waserr'to 1 waserr = 1; % so that it errors out. end end set(h,'accel','C'); % Set back the accelerator for edit menu. catch waserr = 1; end drawnow; if(waserr == 1) set(h,'accel','C'); % Set back the accelerator if it errored out. error('MATLAB:ginput:Interrupted', 'Interrupted'); end if nargout>0, key = keydown; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
github
RWEISCHEDEL/University-of-Utah-Coursework-master
loadinr.m
.m
University-of-Utah-Coursework-master/CS 6320 - Computer Vision/project_2/Functions/toolbox_calib/TOOLBOX_calib/loadinr.m
1,029
utf_8
ac39329cc5acba186f4c5ef4c62f3a33
%LOADINR Load an INRIMAGE format file % % LOADINR(filename, im) % % Load an INRIA image format file and return it as a matrix % % SEE ALSO: saveinr % % Copyright (c) Peter Corke, 1999 Machine Vision Toolbox for Matlab % Peter Corke 1996 function im = loadinr(fname, im) fid = fopen(fname, 'r'); s = fgets(fid); if strcmp(s(1:12), '#INRIMAGE-4#') == 0, error('not INRIMAGE format'); end % not very complete, only looks for the X/YDIM keys while 1, s = fgets(fid); n = length(s) - 1; if s(1) == '#', break end if strcmp(s(1:5), 'XDIM='), cols = str2num(s(6:n)); end if strcmp(s(1:5), 'YDIM='), rows = str2num(s(6:n)); end if strcmp(s(1:4), 'CPU='), if strcmp(s(5:n), 'sun') == 0, error('not sun data ordering'); end end end disp(['INRIMAGE format file ' num2str(rows) ' x ' num2str(cols)]) % now the binary data fseek(fid, 256, 'bof'); [im count] = fread(fid, [cols rows], 'float32'); im = im'; if count ~= (rows*cols), error('file too short'); end fclose(fid);
github
RWEISCHEDEL/University-of-Utah-Coursework-master
saveppm.m
.m
University-of-Utah-Coursework-master/CS 6320 - Computer Vision/project_2/Functions/toolbox_calib/TOOLBOX_calib/saveppm.m
722
utf_8
9904ad3d075a120ca32bd9c10e019512
%SAVEPPM Write a PPM format file % % SAVEPPM(filename, I) % % Saves the specified red, green and blue planes in a binary (P6) % format PPM image file. % % SEE ALSO: loadppm % % Copyright (c) Peter Corke, 1999 Machine Vision Toolbox for Matlab % Peter Corke 1994 function saveppm(fname, I) I = double(I); if size(I,3) == 1, R = I; G = I; B = I; else R = I(:,:,1); G = I(:,:,2); B = I(:,:,3); end; %keyboard; fid = fopen(fname, 'w'); [r,c] = size(R'); fprintf(fid, 'P6\n'); fprintf(fid, '%d %d\n', r, c); fprintf(fid, '255\n'); R = R'; G = G'; B = B'; im = [R(:) G(:) B(:)]; %im = reshape(im,r,c*3); im = im'; %im = im(:); fwrite(fid, im, 'uchar'); fclose(fid);
github
RWEISCHEDEL/University-of-Utah-Coursework-master
ginput3.m
.m
University-of-Utah-Coursework-master/CS 6320 - Computer Vision/project_2/Functions/toolbox_calib/TOOLBOX_calib/ginput3.m
6,344
utf_8
1cc27af57f9872f05bbf0d9b8a0fdbc9
function [out1,out2,out3] = ginput2(arg1) %GINPUT Graphical input from mouse. % [X,Y] = GINPUT(N) gets N points from the current axes and returns % the X- and Y-coordinates in length N vectors X and Y. The cursor % can be positioned using a mouse (or by using the Arrow Keys on some % systems). Data points are entered by pressing a mouse button % or any key on the keyboard except carriage return, which terminates % the input before N points are entered. % % [X,Y] = GINPUT gathers an unlimited number of points until the % return key is pressed. % % [X,Y,BUTTON] = GINPUT(N) returns a third result, BUTTON, that % contains a vector of integers specifying which mouse button was % used (1,2,3 from left) or ASCII numbers if a key on the keyboard % was used. % Copyright (c) 1984-96 by The MathWorks, Inc. % $Revision: 5.18 $ $Date: 1996/11/10 17:48:08 $ % Fixed version by Jean-Yves Bouguet to have a cross instead of 2 lines % More visible for images P = NaN*ones(16,16); P(1:15,1:15) = 2*ones(15,15); P(2:14,2:14) = ones(13,13); P(3:13,3:13) = NaN*ones(11,11); P(6:10,6:10) = 2*ones(5,5); P(7:9,7:9) = 1*ones(3,3); out1 = []; out2 = []; out3 = []; y = []; c = computer; if ~strcmp(c(1:2),'PC') & ~strcmp(c(1:2),'MA') tp = get(0,'TerminalProtocol'); else tp = 'micro'; end if ~strcmp(tp,'none') & ~strcmp(tp,'x') & ~strcmp(tp,'micro'), if nargout == 1, if nargin == 1, eval('out1 = trmginput(arg1);'); else eval('out1 = trmginput;'); end elseif nargout == 2 | nargout == 0, if nargin == 1, eval('[out1,out2] = trmginput(arg1);'); else eval('[out1,out2] = trmginput;'); end if nargout == 0 out1 = [ out1 out2 ]; end elseif nargout == 3, if nargin == 1, eval('[out1,out2,out3] = trmginput(arg1);'); else eval('[out1,out2,out3] = trmginput;'); end end else fig = gcf; figure(gcf); if nargin == 0 how_many = -1; b = []; else how_many = arg1; b = []; if isstr(how_many) ... | size(how_many,1) ~= 1 | size(how_many,2) ~= 1 ... | ~(fix(how_many) == how_many) ... | how_many < 0 error('Requires a positive integer.') end if how_many == 0 ptr_fig = 0; while(ptr_fig ~= fig) ptr_fig = get(0,'PointerWindow'); end scrn_pt = get(0,'PointerLocation'); loc = get(fig,'Position'); pt = [scrn_pt(1) - loc(1), scrn_pt(2) - loc(2)]; out1 = pt(1); y = pt(2); elseif how_many < 0 error('Argument must be a positive integer.') end end pointer = get(gcf,'pointer'); set(gcf,'Pointer','custom','PointerShapeCData',P,'PointerShapeHotSpot',[8,8]); %set(gcf,'pointer','crosshair'); fig_units = get(fig,'units'); char = 0; while how_many ~= 0 % Use no-side effect WAITFORBUTTONPRESS waserr = 0; eval('keydown = wfbp;', 'waserr = 1;'); if(waserr == 1) if(ishandle(fig)) set(fig,'pointer',pointer,'units',fig_units); error('Interrupted'); else error('Interrupted by figure deletion'); end end ptr_fig = get(0,'CurrentFigure'); if(ptr_fig == fig) if keydown char = get(fig, 'CurrentCharacter'); button = abs(get(fig, 'CurrentCharacter')); scrn_pt = get(0, 'PointerLocation'); set(fig,'units','pixels') loc = get(fig, 'Position'); pt = [scrn_pt(1) - loc(1), scrn_pt(2) - loc(2)]; set(fig,'CurrentPoint',pt); else button = get(fig, 'SelectionType'); if strcmp(button,'open') button = 1; %b(length(b)); elseif strcmp(button,'normal') button = 1; elseif strcmp(button,'extend') button = 2; elseif strcmp(button,'alt') button = 3; else error('Invalid mouse selection.') end end pt = get(gca, 'CurrentPoint'); how_many = how_many - 1; if(char == 13) % & how_many ~= 0) % if the return key was pressed, char will == 13, % and that's our signal to break out of here whether % or not we have collected all the requested data % points. % If this was an early breakout, don't include % the <Return> key info in the return arrays. % We will no longer count it if it's the last input. break; end out1 = [out1;pt(1,1)]; y = [y;pt(1,2)]; b = [b;button]; end end set(fig,'pointer',pointer,'units',fig_units); if nargout > 1 out2 = y; if nargout > 2 out3 = b; end else out1 = [out1 y]; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function key = wfbp %WFBP Replacement for WAITFORBUTTONPRESS that has no side effects. % Remove figure button functions fprops = {'windowbuttonupfcn','buttondownfcn', ... 'windowbuttondownfcn','windowbuttonmotionfcn'}; fig = gcf; fvals = get(fig,fprops); set(fig,fprops,{'','','',''}) % Remove all other buttondown functions ax = findobj(fig,'type','axes'); if isempty(ax) ch = {}; else ch = get(ax,{'Children'}); end for i=1:length(ch), ch{i} = ch{i}(:)'; end h = [ax(:)',ch{:}]; vals = get(h,{'buttondownfcn'}); mt = repmat({''},size(vals)); set(h,{'buttondownfcn'},mt); % Now wait for that buttonpress, and check for error conditions waserr = 0; eval(['if nargout==0,', ... ' waitforbuttonpress,', ... 'else,', ... ' keydown = waitforbuttonpress;',... 'end' ], 'waserr = 1;'); % Put everything back if(ishandle(fig)) set(fig,fprops,fvals) set(h,{'buttondownfcn'},vals) end if(waserr == 1) error('Interrupted'); end if nargout>0, key = keydown; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
github
RWEISCHEDEL/University-of-Utah-Coursework-master
ginput2.m
.m
University-of-Utah-Coursework-master/CS 6320 - Computer Vision/project_2/Functions/toolbox_calib/TOOLBOX_calib/ginput2.m
6,105
utf_8
983a72db9a079ba54ab084149ced6ae9
function [out1,out2,out3] = ginput2(arg1) %GINPUT Graphical input from mouse. % [X,Y] = GINPUT(N) gets N points from the current axes and returns % the X- and Y-coordinates in length N vectors X and Y. The cursor % can be positioned using a mouse (or by using the Arrow Keys on some % systems). Data points are entered by pressing a mouse button % or any key on the keyboard except carriage return, which terminates % the input before N points are entered. % % [X,Y] = GINPUT gathers an unlimited number of points until the % return key is pressed. % % [X,Y,BUTTON] = GINPUT(N) returns a third result, BUTTON, that % contains a vector of integers specifying which mouse button was % used (1,2,3 from left) or ASCII numbers if a key on the keyboard % was used. % Copyright (c) 1984-96 by The MathWorks, Inc. % $Revision: 5.18 $ $Date: 1996/11/10 17:48:08 $ % Fixed version by Jean-Yves Bouguet to have a cross instead of 2 lines % More visible for images out1 = []; out2 = []; out3 = []; y = []; c = computer; if ~strcmp(c(1:2),'PC') & ~strcmp(c(1:2),'MA') tp = get(0,'TerminalProtocol'); else tp = 'micro'; end if ~strcmp(tp,'none') & ~strcmp(tp,'x') & ~strcmp(tp,'micro'), if nargout == 1, if nargin == 1, eval('out1 = trmginput(arg1);'); else eval('out1 = trmginput;'); end elseif nargout == 2 | nargout == 0, if nargin == 1, eval('[out1,out2] = trmginput(arg1);'); else eval('[out1,out2] = trmginput;'); end if nargout == 0 out1 = [ out1 out2 ]; end elseif nargout == 3, if nargin == 1, eval('[out1,out2,out3] = trmginput(arg1);'); else eval('[out1,out2,out3] = trmginput;'); end end else fig = gcf; figure(gcf); if nargin == 0 how_many = -1; b = []; else how_many = arg1; b = []; if isstr(how_many) ... | size(how_many,1) ~= 1 | size(how_many,2) ~= 1 ... | ~(fix(how_many) == how_many) ... | how_many < 0 error('Requires a positive integer.') end if how_many == 0 ptr_fig = 0; while(ptr_fig ~= fig) ptr_fig = get(0,'PointerWindow'); end scrn_pt = get(0,'PointerLocation'); loc = get(fig,'Position'); pt = [scrn_pt(1) - loc(1), scrn_pt(2) - loc(2)]; out1 = pt(1); y = pt(2); elseif how_many < 0 error('Argument must be a positive integer.') end end pointer = get(gcf,'pointer'); set(gcf,'pointer','crosshair'); fig_units = get(fig,'units'); char = 0; while how_many ~= 0 % Use no-side effect WAITFORBUTTONPRESS waserr = 0; eval('keydown = wfbp;', 'waserr = 1;'); if(waserr == 1) if(ishandle(fig)) set(fig,'pointer',pointer,'units',fig_units); error('Interrupted'); else error('Interrupted by figure deletion'); end end ptr_fig = get(0,'CurrentFigure'); if(ptr_fig == fig) if keydown char = get(fig, 'CurrentCharacter'); button = abs(get(fig, 'CurrentCharacter')); scrn_pt = get(0, 'PointerLocation'); set(fig,'units','pixels') loc = get(fig, 'Position'); pt = [scrn_pt(1) - loc(1), scrn_pt(2) - loc(2)]; set(fig,'CurrentPoint',pt); else button = get(fig, 'SelectionType'); if strcmp(button,'open') button = 1; %b(length(b)); elseif strcmp(button,'normal') button = 1; elseif strcmp(button,'extend') button = 2; elseif strcmp(button,'alt') button = 3; else error('Invalid mouse selection.') end end pt = get(gca, 'CurrentPoint'); how_many = how_many - 1; if(char == 13) % & how_many ~= 0) % if the return key was pressed, char will == 13, % and that's our signal to break out of here whether % or not we have collected all the requested data % points. % If this was an early breakout, don't include % the <Return> key info in the return arrays. % We will no longer count it if it's the last input. break; end out1 = [out1;pt(1,1)]; y = [y;pt(1,2)]; b = [b;button]; end end set(fig,'pointer',pointer,'units',fig_units); if nargout > 1 out2 = y; if nargout > 2 out3 = b; end else out1 = [out1 y]; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function key = wfbp %WFBP Replacement for WAITFORBUTTONPRESS that has no side effects. % Remove figure button functions fprops = {'windowbuttonupfcn','buttondownfcn', ... 'windowbuttondownfcn','windowbuttonmotionfcn'}; fig = gcf; fvals = get(fig,fprops); set(fig,fprops,{'','','',''}) % Remove all other buttondown functions ax = findobj(fig,'type','axes'); if isempty(ax) ch = {}; else ch = get(ax,{'Children'}); end for i=1:length(ch), ch{i} = ch{i}(:)'; end h = [ax(:)',ch{:}]; vals = get(h,{'buttondownfcn'}); mt = repmat({''},size(vals)); set(h,{'buttondownfcn'},mt); % Now wait for that buttonpress, and check for error conditions waserr = 0; eval(['if nargout==0,', ... ' waitforbuttonpress,', ... 'else,', ... ' keydown = waitforbuttonpress;',... 'end' ], 'waserr = 1;'); % Put everything back if(ishandle(fig)) set(fig,fprops,fvals) set(h,{'buttondownfcn'},vals) end if(waserr == 1) error('Interrupted'); end if nargout>0, key = keydown; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
github
RWEISCHEDEL/University-of-Utah-Coursework-master
loadppm.m
.m
University-of-Utah-Coursework-master/CS 6320 - Computer Vision/project_2/Functions/toolbox_calib/TOOLBOX_calib/loadppm.m
2,356
utf_8
341aee7d75f529ff3425160291592356
%LOADPPM Load a PPM image % % I = loadppm(filename) % % Returns a matrix containing the image loaded from the PPM format % file filename. Handles ASCII (P3) and binary (P6) PPM file formats. % % If the filename has no extension, and open fails, a '.ppm' and % '.pnm' extension will be tried. % % SEE ALSO: saveppm loadpgm % % Copyright (c) Peter Corke, 1999 Machine Vision Toolbox for Matlab % Peter Corke 1994 function I = loadppm(file) white = [' ' 9 10 13]; % space, tab, lf, cr white = setstr(white); fid = fopen(file, 'r'); if fid < 0, fid = fopen([file '.ppm'], 'r'); end if fid < 0, fid = fopen([file '.pnm'], 'r'); end if fid < 0, error('Couldn''t open file'); end magic = fread(fid, 2, 'char'); while 1 c = fread(fid,1,'char'); if c == '#', fgetl(fid); elseif ~any(c == white) fseek(fid, -1, 'cof'); % unputc() break; end end cols = fscanf(fid, '%d', 1); while 1 c = fread(fid,1,'char'); if c == '#', fgetl(fid); elseif ~any(c == white) fseek(fid, -1, 'cof'); % unputc() return; end end rows = fscanf(fid, '%d', 1); while 1 c = fread(fid,1,'char'); if c == '#', fgetl(fid); elseif ~any(c == white) fseek(fid, -1, 'cof'); % unputc() break; end end maxval = fscanf(fid, '%d', 1); % assume a carriage return only: c = fread(fid,1,'char'); % bug: because the image might be starting with special characters! %while 1 % c = fread(fid,1,'char'); % if c == '#', % fgetl(fid); % elseif ~any(c == white) % fseek(fid, -1, 'cof'); % unputc() % break; % end %end if magic(1) == 'P', if magic(2) == '3', %disp(['ASCII PPM file ' num2str(rows) ' x ' num2str(cols)]) I = fscanf(fid, '%d', [cols*3 rows]); elseif magic(2) == '6', %disp(['Binary PPM file ' num2str(rows) ' x ' num2str(cols)]) if maxval == 1, fmt = 'unint1'; elseif maxval == 15, fmt = 'uint4'; elseif maxval == 255, fmt = 'uint8'; elseif maxval == 2^32-1, fmt = 'uint32'; end I = fread(fid, [cols*3 rows], fmt); else disp('Not a PPM file'); end end % % now the matrix has interleaved columns of R, G, B % I = I'; size(I); R = I(:,1:3:(cols*3)); G = I(:,2:3:(cols*3)); B = I(:,3:3:(cols*3)); fclose(fid); I = zeros(rows,cols,3); I(:,:,1) = R; I(:,:,2) = G; I(:,:,3) = B; I = uint8(I);
github
RWEISCHEDEL/University-of-Utah-Coursework-master
saveinr.m
.m
University-of-Utah-Coursework-master/CS 6320 - Computer Vision/project_2/Functions/toolbox_calib/TOOLBOX_calib/saveinr.m
949
utf_8
a18df4fba021be006842fbc35166bc23
%SAVEINR Write an INRIMAGE format file % % SAVEINR(filename, im) % % Saves the specified image array in a INRIA image format file. % % SEE ALSO: loadinr % % Copyright (c) Peter Corke, 1999 Machine Vision Toolbox for Matlab % Peter Corke 1996 function saveinr(fname, im) fid = fopen(fname, 'w'); [r,c] = size(im'); % build the header hdr = []; s = sprintf('#INRIMAGE-4#{\n'); hdr = [hdr s]; s = sprintf('XDIM=%d\n',c); hdr = [hdr s]; s = sprintf('YDIM=%d\n',r); hdr = [hdr s]; s = sprintf('ZDIM=1\n'); hdr = [hdr s]; s = sprintf('VDIM=1\n'); hdr = [hdr s]; s = sprintf('TYPE=float\n'); hdr = [hdr s]; s = sprintf('PIXSIZE=32\n'); hdr = [hdr s]; s = sprintf('SCALE=2**0\n'); hdr = [hdr s]; s = sprintf('CPU=sun\n#'); hdr = [hdr s]; % make it 256 bytes long and write it hdr256 = zeros(1,256); hdr256(1:length(hdr)) = hdr; fwrite(fid, hdr256, 'uchar'); % now the binary data fwrite(fid, im', 'float32'); fclose(fid)
github
RWEISCHEDEL/University-of-Utah-Coursework-master
stereo_gui.m
.m
University-of-Utah-Coursework-master/CS 6320 - Computer Vision/project_2/Functions/toolbox_calib/TOOLBOX_calib/stereo_gui.m
6,208
utf_8
6cc48675fdf9c8c36bc147da7d046d06
% stereo_gui % Stereo Camera Calibration Toolbox (two cameras, internal and external calibration): % % It is assumed that the two cameras (left and right) have been calibrated with the pattern at the same 3D locations, and the same points % on the pattern (select the same grid points). Therefore, in particular, the same number of images were used to calibrate both cameras. % The two calibration result files must have been saved under two seperate data files (Calib_Results_left.mat and Calib_Results_right.mat) % prior to running this toolbox. To generate the two files, run the classic Camera Calibration toolbox calib.m. % % INPUT: Calib_Results_left.mat, Calib_Results_right.mat -> Generated by the standard calibration toolbox on the two cameras individually % OUTPUT: Calib_Results_stereo.mat -> The saved result after global stereo calibration (after running stereo calibration, and hitting Save stereo calib results) % % Main result variables stored in Calib_Results_stereo.mat: % om, R, T: relative rotation and translation of the right camera wrt the left camera % fc_left, cc_left, kc_left, alpha_c_left, KK_left: New intrinsic parameters of the left camera % fc_right, cc_right, kc_right, alpha_c_right, KK_right: New intrinsic parameters of the right camera % % Both sets of intrinsic parameters are equivalent to the classical {fc,cc,kc,alpha_c,KK} described online at: % http://www.vision.caltech.edu/bouguetj/calib_doc/parameters.html % % Note: If you do not want to recompute the intinsic parameters, through stereo calibration you may want to set % recompute_intrinsic_right and recompute_intrinsic_left to zero, prior to running stereo calibration. Default: 1 % % Definition of the extrinsic parameters: R and om are related through the rodrigues formula (R=rodrigues(om)). % Consider a point P of coordinates XL and XR in the left and right camera reference frames respectively. % XL and XR are related to each other through the following rigid motion transformation: % XR = R * XL + T % R and T (or equivalently om and T) fully describe the relative displacement of the two cameras. % % % If the Warning message "Disabling view kk - Reason: the left and right images are found inconsistent" is encountered during stereo calibration, % that probably means that for the kkth pair of images, the left and right images are found to have captured the calibration pattern at two % different locations in space. That means that the two views are not consistent, and therefore cannot be used for stereo calibration. % When capturing your images, make sure that you do not move the calibration pattern between capturing the left and the right images. % The pattwern can (and should) be moved in space only between two sets of (left,right) images. % Another reason for inconsistency is that you selected a different set of points on the pattern when running the separate calibrations % (leading to the two files Calib_Results_left.mat and Calib_Results_left.mat). Make sure that the same points are selected in the % two separate calibration. In other words, the points need to correspond. % (c) Jean-Yves Bouguet - Intel Corporation % October 25, 2001 -- Last updated June 14, 2004 function stereo_gui, cell_list = {}; %-------- Begin editable region -------------% %-------- Begin editable region -------------% fig_number = 1; title_figure = 'Stereo Camera Calibration Toolbox'; cell_list{1,1} = {'Load left and right calibration files','load_stereo_calib_files;'}; cell_list{1,2} = {'Run stereo calibration','go_calib_stereo;'}; cell_list{2,1} = {'Show Extrinsics of stereo rig','ext_calib_stereo;'}; cell_list{2,2} = {'Show Intrinsic parameters','show_stereo_calib_results;'}; cell_list{3,1} = {'Save stereo calib results','saving_stereo_calib;'}; cell_list{3,2} = {'Load stereo calib results','loading_stereo_calib;'}; cell_list{4,1} = {'Rectify the calibration images','rectify_stereo_pair;'}; cell_list{4,2} = {'Exit',['disp(''Bye. To run again, type stereo_gui.''); close(' num2str(fig_number) ');']}; %{'Exit','calib_gui;'}; show_window(cell_list,fig_number,title_figure,150,14); %-------- End editable region -------------% %-------- End editable region -------------% %------- DO NOT EDIT ANYTHING BELOW THIS LINE -----------% function show_window(cell_list,fig_number,title_figure,x_size,y_size,gap_x,font_name,font_size) if ~exist('cell_list'), error('No description of the functions'); end; if ~exist('fig_number'), fig_number = 1; end; if ~exist('title_figure'), title_figure = ''; end; if ~exist('x_size'), x_size = 85; end; if ~exist('y_size'), y_size = 14; end; if ~exist('gap_x'), gap_x = 0; end; if ~exist('font_name'), font_name = 'clean'; end; if ~exist('font_size'), font_size = 8; end; figure(fig_number); clf; pos = get(fig_number,'Position'); [n_row,n_col] = size(cell_list); fig_size_x = x_size*n_col+(n_col+1)*gap_x; fig_size_y = y_size*n_row+(n_row+1)*gap_x; set(fig_number,'Units','points', ... 'BackingStore','off', ... 'Color',[0.8 0.8 0.8], ... 'MenuBar','none', ... 'Resize','off', ... 'Name',title_figure, ... 'Position',[pos(1) pos(2) fig_size_x fig_size_y], ... 'NumberTitle','off'); %,'WindowButtonMotionFcn',['figure(' num2str(fig_number) ');']); h_mat = zeros(n_row,n_col); posx = zeros(n_row,n_col); posy = zeros(n_row,n_col); for i=n_row:-1:1, for j = n_col:-1:1, posx(i,j) = gap_x+(j-1)*(x_size+gap_x); posy(i,j) = fig_size_y - i*(gap_x+y_size); end; end; for i=n_row:-1:1, for j = n_col:-1:1, if ~isempty(cell_list{i,j}), if ~isempty(cell_list{i,j}{1}) & ~isempty(cell_list{i,j}{2}), h_mat(i,j) = uicontrol('Parent',fig_number, ... 'Units','points', ... 'Callback',cell_list{i,j}{2}, ... 'ListboxTop',0, ... 'Position',[posx(i,j) posy(i,j) x_size y_size], ... 'String',cell_list{i,j}{1}, ... 'fontsize',font_size,... 'fontname',font_name,... 'Tag','Pushbutton1'); end; end; end; end; %------ END PROTECTED REGION ----------------%
github
RWEISCHEDEL/University-of-Utah-Coursework-master
loadpgm.m
.m
University-of-Utah-Coursework-master/CS 6320 - Computer Vision/project_2/Functions/toolbox_calib/TOOLBOX_calib/loadpgm.m
1,838
utf_8
6ec18330c2633d5519c72eb2e6fe963b
%LOADPGM Load a PGM image % % I = loadpgm(filename) % % Returns a matrix containing the image loaded from the PGM format % file filename. Handles ASCII (P2) and binary (P5) PGM file formats. % % If the filename has no extension, and open fails, a '.pgm' will % be appended. % % % Copyright (c) Peter Corke, 1999 Machine Vision Toolbox for Matlab % Peter Corke 1994 function I = loadpgm(file) white = [' ' 9 10 13]; % space, tab, lf, cr white = setstr(white); fid = fopen(file, 'r'); if fid < 0, fid = fopen([file '.pgm'], 'r'); end if fid < 0, error('Couldn''t open file'); end magic = fread(fid, 2, 'char'); while 1 c = fread(fid,1,'char'); if c == '#', fgetl(fid); elseif ~any(c == white) fseek(fid, -1, 'cof'); % unputc() break; end end cols = fscanf(fid, '%d', 1); while 1 c = fread(fid,1,'char'); if c == '#', fgetl(fid); elseif ~any(c == white) fseek(fid, -1, 'cof'); % unputc() break; end end rows = fscanf(fid, '%d', 1); while 1 c = fread(fid,1,'char'); if c == '#', fgetl(fid); elseif ~any(c == white) fseek(fid, -1, 'cof'); % unputc() break; end end maxval = fscanf(fid, '%d', 1); while 1 c = fread(fid,1,'char'); if c == '#', fgetl(fid); elseif ~any(c == white) fseek(fid, -1, 'cof'); % unputc() break; end end if magic(1) == 'P', if magic(2) == '2', %disp(['ASCII PGM file ' num2str(rows) ' x ' num2str(cols)]) I = fscanf(fid, '%d', [cols rows])'; elseif magic(2) == '5', %disp(['Binary PGM file ' num2str(rows) ' x ' num2str(cols)]) if maxval == 1, fmt = 'unint1'; elseif maxval == 15, fmt = 'uint4'; elseif maxval == 255, fmt = 'uint8'; elseif maxval == 2^32-1, fmt = 'uint32'; end I = fread(fid, [cols rows], fmt)'; else disp('Not a PGM file'); end end fclose(fid);
github
RWEISCHEDEL/University-of-Utah-Coursework-master
Quaternion2R.m
.m
University-of-Utah-Coursework-master/CS 6320 - Computer Vision/project_2/Inputs/Assignment2_DATA/Assignment2_DATA/CODE/Quaternion2R.m
342
utf_8
0dc39a43367f00b5830e73144bf55f7c
function R = Quaternion2R(q) q = q / norm(q); R = [ q(1)^2 + q(2)^2 - q(3)^2 - q(4)^2, 2*(q(2)*q(3) - q(1)*q(4)), 2*(q(2)*q(4) + q(1)*q(3)); 2*(q(2)*q(3) + q(1)*q(4)), q(1)^2-q(2)^2 + q(3)^2 - q(4)^2, 2*(q(3)*q(4) - q(1)*q(2)); 2*(q(2)*q(4) - q(1)*q(3)), 2*(q(3)*q(4) + q(1)*q(2)), q(1)^2 - q(2)^2 - q(3)^2 + q(4)^2; ];
github
RWEISCHEDEL/University-of-Utah-Coursework-master
Register3DPointsQuaternion.m
.m
University-of-Utah-Coursework-master/CS 6320 - Computer Vision/project_2/Inputs/Assignment2_DATA/Assignment2_DATA/CODE/Register3DPointsQuaternion.m
1,501
utf_8
6535ceb941775580a6874cc4223f7f0c
% compute transformation from pointsA and poitnsB so that % pointsB = R * pointsA + t function finalTrans = Register3DPointsQuaternion(pointsA, pointsB) % pointsA, pointsB - 3 x n matrices. % clear all; close all; clc; % % pointsA = [5 6 8; 10 2 3; 18 9 10]'; % % trueRotMat = RPY2Rot(10, 15, 30); % trueTransVec = [10 7 33]'; % trueTrans = RT2Trans(trueRotMat, trueTransVec); % truePose = Trans2Pose(trueTrans)' % % pointsB = trueTrans * [pointsA; ones(1, size(pointsA, 2))]; % pointsB = pointsB(1:3,:) ./ repmat(pointsB(4,:), 3, 1); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% numPoints = size(pointsA, 2); % comptue centroid centroidA = mean(pointsA, 2); centroidB = mean(pointsB, 2); % find rotation pA = pointsA - repmat(centroidA, 1, numPoints); pB = pointsB - repmat(centroidB, 1, numPoints); M = zeros(3, 3); for i=1:numPoints M = M + pA(:,i) * pB(:,i)'; end N = [ M(1,1)+M(2,2)+M(3,3), M(2,3)-M(3,2), M(3,1)-M(1,3), M(1,2)-M(2,1); M(2,3)-M(3,2), M(1,1)-M(2,2)-M(3,3), M(1,2)+M(2,1), M(3,1)+M(1,3); M(3,1)-M(1,3), M(1,2)+M(2,1), -M(1,1)+M(2,2)-M(3,3), M(2,3)+M(3,2); M(1,2)-M(2,1), M(3,1)+M(1,3), M(2,3)+M(3,2), -M(1,1)-M(2,2)+M(3,3); ]; [V, D] = eig(N); DVec = diag(D); % sortedDVec = sort(DVec); maxIdx = find(DVec == max(DVec)); qmin = V(:, maxIdx); R = Quaternion2R(qmin); % find translation given rotation rotPointsA = R * pointsA; rotCentroidA = mean(rotPointsA, 2); t = centroidB - rotCentroidA; finalTrans = RT2Trans(R, t);
github
RWEISCHEDEL/University-of-Utah-Coursework-master
appendimages.m
.m
University-of-Utah-Coursework-master/CS 6320 - Computer Vision/project_2/siftDemoV4/siftDemoV4/appendimages.m
461
utf_8
a7ad42558236d4f7bd90dc6e72631d54
% im = appendimages(image1, image2) % % Return a new image that appends the two images side-by-side. function im = appendimages(image1, image2) % Select the image with the fewest rows and fill in enough empty rows % to make it the same height as the other image. rows1 = size(image1,1); rows2 = size(image2,1); if (rows1 < rows2) image1(rows2,1) = 0; else image2(rows1,1) = 0; end % Now append both images side-by-side. im = [image1 image2];
github
RWEISCHEDEL/University-of-Utah-Coursework-master
showkeys.m
.m
University-of-Utah-Coursework-master/CS 6320 - Computer Vision/project_2/siftDemoV4/siftDemoV4/showkeys.m
1,699
utf_8
4e67466c0fd7739350cb2af5767e10a4
% showkeys(image, locs) % % This function displays an image with SIFT keypoints overlayed. % Input parameters: % image: the file name for the image (grayscale) % locs: matrix in which each row gives a keypoint location (row, % column, scale, orientation) function showkeys(image, locs) disp('Drawing SIFT keypoints ...'); % Draw image with keypoints figure('Position', [50 50 size(image,2) size(image,1)]); colormap('gray'); imagesc(image); hold on; imsize = size(image); for i = 1: size(locs,1) % Draw an arrow, each line transformed according to keypoint parameters. TransformLine(imsize, locs(i,:), 0.0, 0.0, 1.0, 0.0); TransformLine(imsize, locs(i,:), 0.85, 0.1, 1.0, 0.0); TransformLine(imsize, locs(i,:), 0.85, -0.1, 1.0, 0.0); end hold off; % ------ Subroutine: TransformLine ------- % Draw the given line in the image, but first translate, rotate, and % scale according to the keypoint parameters. % % Parameters: % Arrays: % imsize = [rows columns] of image % keypoint = [subpixel_row subpixel_column scale orientation] % % Scalars: % x1, y1; begining of vector % x2, y2; ending of vector function TransformLine(imsize, keypoint, x1, y1, x2, y2) % The scaling of the unit length arrow is set to approximately the radius % of the region used to compute the keypoint descriptor. len = 6 * keypoint(3); % Rotate the keypoints by 'ori' = keypoint(4) s = sin(keypoint(4)); c = cos(keypoint(4)); % Apply transform r1 = keypoint(1) - len * (c * y1 + s * x1); c1 = keypoint(2) + len * (- s * y1 + c * x1); r2 = keypoint(1) - len * (c * y2 + s * x2); c2 = keypoint(2) + len * (- s * y2 + c * x2); line([c1 c2], [r1 r2], 'Color', 'c');
github
RWEISCHEDEL/University-of-Utah-Coursework-master
sift.m
.m
University-of-Utah-Coursework-master/CS 6320 - Computer Vision/project_2/siftDemoV4/siftDemoV4/sift.m
2,496
utf_8
7cdcf3bcc06643a2ec205788c77ac597
% [image, descriptors, locs] = sift(imageFile) % % This function reads an image and returns its SIFT keypoints. % Input parameters: % imageFile: the file name for the image. % % Returned: % image: the image array in double format % descriptors: a K-by-128 matrix, where each row gives an invariant % descriptor for one of the K keypoints. The descriptor is a vector % of 128 values normalized to unit length. % locs: K-by-4 matrix, in which each row has the 4 values for a % keypoint location (row, column, scale, orientation). The % orientation is in the range [-PI, PI] radians. % % Credits: Thanks for initial version of this program to D. Alvaro and % J.J. Guerrero, Universidad de Zaragoza (modified by D. Lowe) function [image, descriptors, locs] = sift(imageFile) % Load image image = imread(imageFile); % If you have the Image Processing Toolbox, you can uncomment the following % lines to allow input of color images, which will be converted to grayscale. if size(image, 3) == 3 image = rgb2gray(image); end [rows, cols] = size(image); % Convert into PGM imagefile, readable by "keypoints" executable f = fopen('tmp.pgm', 'w'); if f == -1 error('Could not create file tmp.pgm.'); end fprintf(f, 'P5\n%d\n%d\n255\n', cols, rows); fwrite(f, image', 'uint8'); fclose(f); % Call keypoints executable if isunix command = '!./sift '; else command = '!siftWin32 '; end command = [command ' <tmp.pgm >tmp.key']; eval(command); % Open tmp.key and check its header g = fopen('tmp.key', 'r'); if g == -1 error('Could not open file tmp.key.'); end [header, count] = fscanf(g, '%d %d', [1 2]); if count ~= 2 error('Invalid keypoint file beginning.'); end num = header(1); len = header(2); if len ~= 128 error('Keypoint descriptor length invalid (should be 128).'); end % Creates the two output matrices (use known size for efficiency) locs = double(zeros(num, 4)); descriptors = double(zeros(num, 128)); % Parse tmp.key for i = 1:num [vector, count] = fscanf(g, '%f %f %f %f', [1 4]); %row col scale ori if count ~= 4 error('Invalid keypoint file format'); end locs(i, :) = vector(1, :); [descrip, count] = fscanf(g, '%d', [1 len]); if (count ~= 128) error('Invalid keypoint file value.'); end % Normalize each input vector to unit length descrip = descrip / sqrt(sum(descrip.^2)); descriptors(i, :) = descrip(1, :); end fclose(g);
github
RWEISCHEDEL/University-of-Utah-Coursework-master
Q3VT.m
.m
University-of-Utah-Coursework-master/CS 6320 - Computer Vision/project_2/siftDemoV4/siftDemoV4/Q3VT.m
1,016
utf_8
6fa94d5010a5e371dfcd7bd64490424c
% Q3 - Image Based Location with Vocab Tree function VT dataBaseDescriptors = []; queryDescriptors = []; dataBaseImgOrder = []; queryImageOrder = []; files = dir('D:/Matlab Projects/project_2/Inputs/Assignment2_DATA/Assignment2_DATA/database/*.png'); % Build the Codebase of Descriptors for file = files' filePath = strcat('Assignment2_DATA/Assignment2_DATA/database/', + file.name); dataBaseImgOrder = [dataBaseImgOrder, file.name]; [image, descriptors] = sift(filePath); dataBaseDescriptors = [dataBaseDescriptors; descriptors]; end % [idx,C,sumd,D] = kmeans(dataBaseDescriptors, 1000); files = dir('D:/Matlab Projects/project_2/Inputs/Assignment2_DATA/Assignment2_DATA/query/*.png'); for file = files' clusterCount = matrix(1, 1000); filePath = strcat('Assignment2_DATA/Assignment2_DATA/query/', + file.name); queryImageOrder = [queryBaseImgOrder, file.name]; [image, descriptors] = sift(filePath); queryDescriptors = [queryDescriptors; descriptors]; end
github
RWEISCHEDEL/University-of-Utah-Coursework-master
match.m
.m
University-of-Utah-Coursework-master/CS 6320 - Computer Vision/project_2/siftDemoV4/siftDemoV4/match.m
1,940
utf_8
e876f215400508c0507fd248db781333
% num = match(image1, image2) % % This function reads two images, finds their SIFT features, and % displays lines connecting the matched keypoints. A match is accepted % only if its distance is less than distRatio times the distance to the % second closest match. % It returns the number of matches displayed. % % Example: match('scene.pgm','book.pgm'); function num = match(image1, image2) % Find SIFT keypoints for each image [im1, des1, loc1] = sift(image1); [im2, des2, loc2] = sift(image2); % For efficiency in Matlab, it is cheaper to compute dot products between % unit vectors rather than Euclidean distances. Note that the ratio of % angles (acos of dot products of unit vectors) is a close approximation % to the ratio of Euclidean distances for small angles. % % distRatio: Only keep matches in which the ratio of vector angles from the % nearest to second nearest neighbor is less than distRatio. distRatio = 0.6; % For each descriptor in the first image, select its match to second image. des2t = des2'; % Precompute matrix transpose for i = 1 : size(des1,1) dotprods = des1(i,:) * des2t; % Computes vector of dot products [vals,indx] = sort(acos(dotprods)); % Take inverse cosine and sort results % Check if nearest neighbor has angle less than distRatio times 2nd. if (vals(1) < distRatio * vals(2)) match(i) = indx(1); else match(i) = 0; end end % Create a new image showing the two images side by side. im3 = appendimages(im1,im2); % Show a figure with lines joining the accepted matches. figure('Position', [100 100 size(im3,2) size(im3,1)]); colormap('gray'); imagesc(im3); hold on; cols1 = size(im1,2); for i = 1: size(des1,1) if (match(i) > 0) line([loc1(i,2) loc2(match(i),2)+cols1], ... [loc1(i,1) loc2(match(i),1)], 'Color', 'c'); end end hold off; num = sum(match > 0); fprintf('Found %d matches.\n', num);
github
RWEISCHEDEL/University-of-Utah-Coursework-master
Q3BOW.m
.m
University-of-Utah-Coursework-master/CS 6320 - Computer Vision/project_2/siftDemoV4/siftDemoV4/Q3BOW.m
2,621
utf_8
349eabe80816699c0b002a45c4951563
% Q3 - Image Based Location with Bag of Words function BOW dataBaseDescriptors = []; queryDescriptors = []; dataBaseImgOrder = []; queryImageOrder = []; files = dir('D:/Matlab Projects/project_2/Inputs/Assignment2_DATA/Assignment2_DATA/database/*.png'); % Build the Codebase of Descriptors for file = files' filePath = strcat('Assignment2_DATA/Assignment2_DATA/database/', + file.name); dataBaseImgOrder = [dataBaseImgOrder, file.name]; [image, descriptors] = sift(filePath); dataBaseDescriptors = [dataBaseDescriptors; descriptors]; end % [idx,C,sumd,D] = kmeans(dataBaseDescriptors, 1000); files = dir('D:/Matlab Projects/project_2/Inputs/Assignment2_DATA/Assignment2_DATA/query/*.png'); clusterQCounts = []; for file = files' clusterCount = matrix(1, 1000); filePath = strcat('Assignment2_DATA/Assignment2_DATA/query/', + file.name); queryImageOrder = [queryBaseImgOrder, file.name]; [image, descriptors] = sift(filePath); queryDescriptors = [queryDescriptors; descriptors]; for row = 1:1:size(descriptors, 1) int largestCluster = 0; int largestDotProduct = 0; for c = 1:1:size(C, 1) value = dot(descriptors(row), C(c)); if largestDotProduct < dot(descriptors(row), C(c)) largestDotProduct = value; largestCluster = c; end end count = clusterCount(c); count = count + 1; clusterCount(c) = count; end clusterQCount = [clusterQCount; clusterCount]; end files = dir('D:/Matlab Projects/project_2/Inputs/Assignment2_DATA/Assignment2_DATA/database/*.png'); clusterDCounts = []; for file = files' clusterCount = matrix(1, 1000); filePath = strcat('Assignment2_DATA/Assignment2_DATA/database/', + file.name); queryImageOrder = [queryBaseImgOrder, file.name]; [image, descriptors] = sift(filePath); queryDescriptors = [queryDescriptors; descriptors]; for row = 1:1:size(descriptors, 1) int largestCluster = 0; int largestDotProduct = 0; for c = 1:1:size(C, 1) value = dot(descriptors(row), C(c)); if largestDotProduct < dot(descriptors(row), C(c)) largestDotProduct = value; largestCluster = c; end end count = clusterCount(c); count = count + 1; clusterCount(c) = count; end clusterDCount = [clusterCount; clusterCount]; end
github
RWEISCHEDEL/University-of-Utah-Coursework-master
matchExposures.m
.m
University-of-Utah-Coursework-master/CS 6320 - Computer Vision/Panorama - Final Project/matchExposures.m
2,853
utf_8
ae91ed3665fbf30805c02a26aedd688d
function [matchedImage] = matchExposures(images, transforms, performLoop) numberImages = size(images, 4); gammaList = ones(numberImages, 1); for i = 2 : numberImages gammaList(i) = matchImagePair(images(:, :, :, i - 1), images(:, :, :, i), transforms(:, :, i)); end if performLoop logGammaList = log(gammaList); logGammaList(1) = []; A = eye(nImgs - 2); A = [A; -ones(1, numberImages - 2)]; updatedLogGammaList = A \ logGammaList; updatedLogGammaList = [0; updatedLogGammaList]; finalGammas = exp(updatedLogGammaList); accGammaList = ones(nImgs, 1); for i = 2 : numberImages - 1 accGammaList(i) = accGammaList(i - 1) * finalGammas(i); end else accGammaList = ones(numberImages, 1); for i = 2 : numberImages accGammaList(i) = accGammaList(i - 1) * gammaList(i); end end matchedImage = zeros(size(images), 'uint8'); for i = 1 : numberImages matchedImage(:, :, :, i) = gammaCorrection(images(:, :, :, i), accGammaList(i)); end end %% Match pairs of images function [gammaVal] = matchImagePair(image1, image2, transformVal) numberIterations = 1000; alphaVal = 1; sampleRatioVal = 0.01; outlierThresholdVal = 1.0; height = size(image1, 1); width = size(image1, 2); labImage1 = rgb2lab(image1); labImage2 = rgb2lab(image2); k = 1; numberPixels = numel(image1); numberSamples = round(numberPixels * sampleRatioVal); samples = zeros(numberSamples, 2); while true pixel2 = [randi([1 height]); randi([1 width]); 1]; pixel1 = transformVal * pixel2; pixel1 = pixel1 ./ pixel1(3); if pixel1(1) >= 1 && pixel1(1) < height && pixel1(2) >= 1 && pixel1(2) < width i = floor(pixel1(2)); a = pixel1(2) - i; j = floor(pixel1(1)); b = pixel1(1) - j; sample1 = (1 - a) * (1 - b) * labImage1(j, i, 1) + a * (1 - b) * labImage1(j, i + 1, 1) + a * b * labImage1(j + 1, i + 1, 1) + (1 - a) * b * labImage1(j + 1, i, 1); sample2 = labImage2(pixel2(1), pixel2(2), 1); if sample1 > outlierThresholdVal && sample2 > outlierThresholdVal samples(k, 1) = sample1 / 100; samples(k, 2) = sample2 / 100; k = k + 1; if k > numberSamples break; end end end end gammaVal = 1; for i = 1 : numberIterations gammaVal = gammaVal - alphaVal * sum((samples(:, 2) .^ gammaVal - samples(:, 1)) .* log(samples(:, 2)) .* (samples(:, 2) .^ gammaVal)) / numberSamples; end end %% Perform Gamma Correction function [gammaImage] = gammaCorrection(image, gammaVal) labImage = rgb2lab(image); labImage(:, :, 1) = (labImage(:, :, 1) / 100) .^ gammaVal * 100; gammaImage = lab2rgb(labImage, 'OutputType', 'uint8'); end
github
albanie/mcnExtraLayers-master
setup_mcnExtraLayers.m
.m
mcnExtraLayers-master/setup_mcnExtraLayers.m
1,383
utf_8
027d96f5ef9ba1d0e9f6b49f6cb1bfe3
function setup_mcnExtraLayers %SETUP_MCNEXTRALAYERS Sets up mcnExtraLayers by adding its folders to the path % add dependencies check_dependency('autonn') ; root = fileparts(mfilename('fullpath')) ; addpath(root, [root '/matlab'], [root '/matlab/wrappers'], [root '/utils']) ; % ----------------------------------- function check_dependency(moduleName) % ----------------------------------- name2path = @(name) strrep(name, '-', '_') ; setupFunc = ['setup_', name2path(moduleName)] ; if exist(setupFunc, 'file') vl_contrib('setup', moduleName) ; else % try adding the module to the path addpath(fullfile(vl_rootnn, 'contrib', moduleName)) ; if exist(setupFunc, 'file') vl_contrib('setup', moduleName) ; else waiting = true ; msg = ['module %s was not found on the MATLAB path. Would you like ' ... 'to install it now? (y/n)\n'] ; prompt = sprintf(msg, moduleName) ; while waiting str = input(prompt,'s') ; switch str case 'y' vl_contrib('install', moduleName) ; vl_contrib('compile', moduleName) ; vl_contrib('setup', moduleName) ; return ; case 'n' throw(exception) ; otherwise fprintf('input %s not recognised, please use `y` or `n`\n', str) ; end end end end
github
albanie/mcnExtraLayers-master
findBestEpoch.m
.m
mcnExtraLayers-master/utils/findBestEpoch.m
3,735
utf_8
b82068b1b1ed40c9b537adbec22bb03a
function bestEpoch = findBestEpoch(expDir, varargin) %FINDBESTEPOCH finds the best epoch of training % FINDBESTEPOCH(EXPDIR) evaluates the checkpoints % (the `net-epoch-%d.mat` files created during % training) in EXPDIR % % FINDBESTEPOCH(..., 'option', value, ...) accepts the following % options: % % `priorityMetric`:: 'classError' % Determines the highest priority metric by which to rank the % checkpoints. % % `prune`:: false % Removes all saved checkpoints to save space except: % % 1. The checkpoint with the lowest validation error metric % 2. The last checkpoint % % Copyright (C) 2017 Samuel Albanie % Licensed under The MIT License [see LICENSE.md for details] opts.prune = false ; opts.priorityMetric = 'classError' ; opts = vl_argparse(opts, varargin) ; lastEpoch = findLastCheckpoint(expDir); if ~lastEpoch, return ; end % return if no checkpoints were found bestEpoch = findBestValCheckpoint(expDir, opts.priorityMetric); if opts.prune preciousEpochs = [bestEpoch lastEpoch]; removeOtherCheckpoints(expDir, preciousEpochs); fprintf('----------------------- \n'); fprintf('directory cleaned: %s\n', expDir); fprintf('----------------------- \n'); end % ------------------------------------------------------------------------- function removeOtherCheckpoints(expDir, preciousEpochs) % ------------------------------------------------------------------------- list = dir(fullfile(expDir, 'net-epoch-*.mat')) ; tokens = regexp({list.name}, 'net-epoch-([\d]+).mat', 'tokens') ; epochs = cellfun(@(x) sscanf(x{1}{1}, '%d'), tokens) ; targets = ~ismember(epochs, preciousEpochs); files = cellfun(@(x) fullfile(expDir, sprintf('net-epoch-%d.mat', x)), ... num2cell(epochs(targets)), 'UniformOutput', false); cellfun(@(x) delete(x), files) % ------------------------------------------------------------------------- function bestEpoch = findBestValCheckpoint(expDir, priorityMetric) % ------------------------------------------------------------------------- lastEpoch = findLastCheckpoint(expDir) ; if strcmp(priorityMetric, 'last'), bestEpoch = lastEpoch ; return ; end % handle the different storage structures/error metrics path = fullfile(expDir, sprintf('net-epoch-%d.mat', lastEpoch)) ; try data = load(path) ; catch msg = 'checkopint at %s was malformed, trying agin in 10 secs....\n' ; warning(msg, path) ; pause(10) ; data = load(path) ; end if isfield(data, 'stats') valStats = data.stats.val; elseif isfield(data, 'info') valStats = data.info.val; elseif isfield(data, 'state') valStats = data.state.stats.val ; else error('storage structure not recognised'); end ascending = {'mAP', 'accuracy'} ; descending = {'top1error', 'error', 'mbox_loss', 'class_loss'} ; % find best checkpoint according to the following priority metrics = [{priorityMetric} ascending descending] ; for i = 1:numel(metrics) if isfield(valStats, metrics{i}) errorMetric = [valStats.(metrics{i})] ; selectedMetric = metrics{i} ; break ; end end assert(logical(exist('errorMetric', 'var')), 'error metrics not recognized') ; if ismember(selectedMetric, ascending) pick = @max ; else pick = @min ; end [~, bestEpoch] = pick(errorMetric); % ------------------------------------------------------------------------- function epoch = findLastCheckpoint(expDir) % ------------------------------------------------------------------------- list = dir(fullfile(expDir, 'net-epoch-*.mat')) ; tokens = regexp({list.name}, 'net-epoch-([\d]+).mat', 'tokens') ; epoch = cellfun(@(x) sscanf(x{1}{1}, '%d'), tokens) ; epoch = max([epoch 0]) ;
github
albanie/mcnExtraLayers-master
checkLearningParams.m
.m
mcnExtraLayers-master/utils/checkLearningParams.m
9,611
utf_8
0dea868bbdec5be853e0fb633f4309ff
function checkLearningParams(mcn_outs, opts) %CHECKlEARNINGPARAMS compare parameters against caffe. % Algo: we first parse the prototxt and build a set of basic "layer" % objects to store parameters. These can then be directly compared against % their mcn equivalents to reduced the risk of incorrect initialisation. caffeLayers = parseCaffeLayers(opts) ; % loop over layers and check against network for ii = 1:numel(caffeLayers) layer = caffeLayers{ii} ; msg = 'checking layer settings (%d/%d): %s\n' ; fprintf(msg, ii, numel(caffeLayers), layer.name) ; ignoreTypes = {'ReLU', 'Scale', 'Silence', 'Eltwise', 'Accuracy', ... 'BatchNorm', 'ImageData'} ; ignoreNames = {'input-data', 'AnchorTargetLayer', 'rpn-data', ... 'roi-data', 'Annotation'} ; if ismember(layer.type, ignoreTypes), continue ; end if ismember(layer.name, ignoreNames), continue ; end mcnLayerName = layer.name ; found = false ; if contains(layer.name, '-') mcnLayerName = strrep(mcnLayerName, '-', '_') ; fprintf('renaming search layer %s to %s\n', layer.name, mcnLayerName) ; end for jj = 1:numel(mcn_outs) mcnLayer = mcn_outs{jj}.find(mcnLayerName) ; if ~isempty(mcnLayer), mcn = mcnLayer{1} ; found = true ; break ; end end assert(found, 'matching layer not found') ; switch layer.type case 'Convolution' checkFields = {'stride', 'pad', 'dilate', 'out', 'kernel_size', ... 'lr_mult', 'decay_mult'} ; hasBias = isfield(layer, 'lr_multx') ; mcnFilters = mcn.inputs{2} ; % assume square filters msg = 'code must be modified to handle non-square filter checks' ; assert(size(mcnFilters.value,1) == size(mcnFilters.value,2), msg) ; filterOpts = {'kernel_size', size(mcnFilters.value, 1), ... 'out', size(mcnFilters.value, 4), ... 'lr_mult', mcnFilters.learningRate, ... 'decay_mult', mcnFilters.weightDecay} ; mcnArgs = [ mcn.inputs filterOpts ] ; if hasBias mcnBias = mcnArgs{3} ; biasOpts = {'lr_multx', mcnBias.learningRate, ... 'decay_multx', mcnBias.weightDecay} ; mcnArgs = [ mcnArgs biasOpts ] ; %#ok checkFields = [checkFields biasOpts([1 3])] ; %#ok end mcnArgs(strcmp(mcnArgs, 'CuDNN')) = [] ; % extract params, fill in defaults and convert to canonical shape caffe.stride = fetch(layer, 'stride', [1 2], [1 1]) ; caffe.pad = fetch(layer, 'pad', [1 4], [0 0 0 0]) ; caffe.out = fetch(layer, 'num_output', 1, 1) ; caffe.dilate = fetch(layer, 'dilation', [1 2], [1 1]) ; caffe.kernel_size = fetch(layer, 'kernel_size', [1 2], [1 1]) ; caffe.decay_mult = fetch(layer, 'decay_mult', 1, 1) ; caffe.lr_mult = fetch(layer, 'lr_mult', 1, 1) ; if hasBias caffe.lr_multx = fetch(layer, 'lr_multx', 1, 2) ; caffe.decay_multx = fetch(layer, 'decay_multx', 1, 0) ; end case 'BatchNorm' checkFields = {'lr_mult', 'lr_multx', 'lr_multxx', ... 'decay_mult', 'decay_multx', 'decay_multxx'} ; mcnMult = mcn.inputs{2} ; mcnBias = mcn.inputs{3} ; mcnMoments = mcn.inputs{4} ; mcnArgs = {'lr_mult', mcnMult.learningRate, ... 'decay_mult', mcnMult.weightDecay, ... 'lr_multx', mcnBias.learningRate, ... 'decay_multx', mcnBias.weightDecay, ... 'lr_multxx', mcnMoments.learningRate, ... 'decay_multxx', mcnMoments.weightDecay} ; for jj = 1:numel(checkFields) caffe.(checkFields{jj}) = str2double(layer.(checkFields{jj})) ; end case 'Pooling' checkFields = {'stride', 'pad', 'method', 'kernel_size'} ; caffe.kernel_size = fetch(layer, 'kernel_size', [1 2], [1 1]) ; caffe.stride = fetch(layer, 'stride', [1 2], [1 1]) ; caffe.pad = fetch(layer, 'pad', [1 4], [0 0 0 0]) ; % different convnetions: mcn `avg` == caffe `ave` (both use % `max` for max pooling caffe. method = strrep(lower(layer.pool), 'ave', 'avg') ; poolOpts = mcn.inputs(3:end) ; poolOpts(strcmp(poolOpts, 'CuDNN')) = [] ; mcnArgs = [poolOpts {'kernel_size', mcn.inputs{2}}] ; otherwise, fprintf('checking layer type: %s\n', layer.type) ; end % run checks for jj = 1:numel(checkFields) fieldName = checkFields{jj} ; mcnPos = find(strcmp(mcnArgs, fieldName)) + 1 ; value = mcnArgs{mcnPos} ; cValue = caffe.(fieldName) ; if strcmp(fieldName, 'pad') % since mcn and caffe handle padding slightly differntly, produce a % warning rather than an error for different padding settings if ~all(value == cValue) msg = 'WARNING:: pad values do not match for %s: %s vs %s\n' ; fprintf(msg, layer.name, mat2str(value), mat2str(cValue)) ; end else msg = sprintf('unmatched parameters for %s', fieldName) ; assert(all(value == cValue), msg) ; end end end % --------------------------------------------- function x = fetch(layer, name, shape, default) % --------------------------------------------- if isfield(layer, name) x = str2double(layer.(name)) ; if numel(x) == 1, x = repmat(x, shape) ; end else x = default ; end % -------------------------------------- function layers = parseCaffeLayers(opts) % -------------------------------------- % create name map nameMap = containers.Map ; nameMap('rpn_conv/3x3') = 'rpn_conv_3x3' ; nameMap('psroipooled_loc_rois') = 'psroipooled_bbox_rois' ; nameMap('loss') = 'loss_cls' ; % maintain mcn consistency proto = fileread(opts.modelOpts.protoPath) ; % mini parser stack = {} ; tokens = strsplit(proto, '\n') ; known = {'ResNet-50', 'ResNet50_BN_SCALE_Merge', ... 'VGG_ILSVRC_16_layers', 'SEC'} ; msg = 'wrong proto' ; assert(contains(tokens{1}, known), msg) ; tokens(1) = [] ; layers = {} ; layer = struct() ; while ~isempty(tokens) head = tokens{1} ; tokens(1) = [] ; clean = cleanStr(head) ; if isempty(clean) || strcmp(clean(1), '#') % comment or blank proto line (do nothing) elseif contains(head, '}') && contains(head, '{') % NOTE: it's not always necessary to flatten out subfields pair = strsplit(head, '{') ; key = cleanStr(pair{1}) ; value = strjoin(pair(2:end), '{') ; ptr = numel(value) - strfind(fliplr(value), '}') ; value = value(1:ptr) ; ignore = {'reshape_param'} ; % caffe and mcn use different values examine = {'param', 'weight_filler', 'bias_filler', 'smooth_l1_loss_param'} ; switch key case ignore, continue ; case examine, pairs = parseInlinePairs(value) ; otherwise, error('nested key %s not recognised', key) ; end for jj = 1:numel(pairs) pair = strsplit(pairs{jj}, ':') ; layer = put(layer, cleanStr(pair{1}), cleanStr(pair{2})) ; end elseif contains(head, '}'), stack(end) = [] ; elseif contains(head, '{'), stack{end+1} = head ; %#ok else % handle some messy cases tuple = strsplit(head, ':') ; if numel(tuple) > 2 if strcmp(cleanStr(tuple{1}), 'param_str') if numel(tuple) == 3 % standard param_str spec form. E.g. % param_str: "'feat_stride': 16" tuple(1) = [] ; % pop param_str specifier else, keyboard end elseif numel(tuple) == 4 pairs = parseInlinePairs(head) ; for jj = 1:numel(pairs) pair = strsplit(pairs{jj}, ':') ; layer = put(layer, cleanStr(pair{1}), cleanStr(pair{2})) ; end else, keyboard ; end end key = cleanStr(tuple{1}) ; value = cleanStr(tuple{2}) ; %if contains(head, 'rpn_conv/3x3'), keyboard ; end if isKey(nameMap, value), value = nameMap(value) ; end layer = put(layer, key, value) ; end if isempty(stack) && ~isempty(layer) layers{end+1} = layer ; layer = {} ; %#ok end end % ------------------------------------- function layer = put(layer, key, value) % ------------------------------------- % store key-value pairs in layer without overwriting previous % values. Due to MATLAB key naming restrictions, an x-suffix count is used % for indexing while isfield(layer, key), key = sprintf('%sx', key) ; end layer.(key) = value ; % ------------------------------------ function pairs = parseInlinePairs(str) % ------------------------------------ % PARSIiNLINEPAIRS parses prototxt strings in which key-value pairs % are supplied in a line, delimited only by whitespace. For example: % kernel_size: 3 pad: 1 stride: 1 str = strtrim(str) ; % remove leading/trailing whitespace dividers = strfind(str, ' ') ; assert(mod(numel(dividers),2) == 1, 'expected odd number of dividers') ; starts = [1 dividers(2:2:end)+1] ; ends = [dividers(2:2:end)-1 numel(str)] ; pairs = arrayfun(@(s,e) {str(s:e)}, starts, ends) ; % -------------------------- function str = cleanStr(str) % -------------------------- % prune unused space and punctuation from prototxt files % clean up str = strrep(strrep(strrep(str, '"', ''), ' ', ''), '''', '') ; % stop at comments comment = strfind(str, '#') ; if ~isempty(comment) str = str(1:comment(1)-1) ; % stop at first # end
github
albanie/mcnExtraLayers-master
vl_nnaugdata.m
.m
mcnExtraLayers-master/matlab/vl_nnaugdata.m
3,294
utf_8
701424346f4149e883a403a5d675fc60
function y = vl_nnaugdata(x, varargin) % VL_NNAUGDATA data augmentation for visual data % Y = VL_NNAUGDATA(X) randomly applies a set of data augmentation % transformations to the HxWxCxN input tensor X to produce an % augmented version of the data Y (of the same shape as X). % % VL_NNAUGDATA(..., 'option', value, ...) takes the following options: % % `rotateLims`:: [-pi/8, pi/8] % Uniformly samples rotation angles (in radians) from the given range and % applies them to each batch element of the input. % % `zoomLims' :: [0.9, 1.1] % Uniformly samples zoom factors from the given range and applies them to % each batch element of the input. % % `skewLims' :: [-0.1, 0.1] % Uniformly samples x and x skew-factors from the given range and applies % them to each batch element of the input. % % `randTranslation` :: true % If true, randomly samples an (x,y) offset for each batch element of the % input, taking account of the zoomScale that was applied. % % Copyright (C) 2018 Samuel Albanie % All rights reserved. opts.rotateLims = [-pi/8, pi/8] ; opts.zoomLims = [0.9, 1.1] ; opts.skewLims = [-0.1, 0.1] ; opts.randTranslation = true ; [opts, dzdy] = vl_argparsepos(opts, varargin) ; assert(isempty(dzdy), 'vl_nnaugdata does not current support backprop') ; augs = computeAugs(numel(batch), opts) ; % -------------------------------------------------------------------- function affs = computeAugs(batchSize, opts) % -------------------------------------------------------------------- % Training time augmentations ratio = 1/25 ; augs = repmat(eye(3,3), 1, 1, batchSize) ; maxOffset = round(ratio * 224) ; % based on Zhiding Yu's paper minXY = randi(maxOffset, batchSize, 2) ; zoomSc = (1 - ratio) + (ratio*2) * rand(1, batchSize) ; zAffs = arrayfun(@(x) {zoomOut(zoomSc(x), minXY(x,:))}, 1:batchSize) ; zAffs = cat(3, zAffs{:}) ; vals = [-pi/18 0 pi/18] ; thetas = randi(3, batchSize) ; rAffs = arrayfun(@(x) {rotate(vals(thetas(x)))}, 1:batchSize) ; rAffs = cat(3, rAffs{:}) ; vals = [-0.1 0 0.1] ; skews = randi(3, batchSize, 2) ; sAffs = arrayfun(@(x) {skew(vals(skews(x,1)), vals(skews(x,2)))}, 1:batchSize) ; sAffs = cat(3, sAffs{:}) ; for ii = 1:batchSize affs(:,:,ii) = zAffs(:,:,ii) * rAffs(:,:,ii) * sAffs(:,:,ii) ; end % only augment 50% of time drop = find(rand(1, batchSize) > 0.5) ; for ii = 1:numel(drop) affs(:,:,drop(ii)) = eye(3,3) ; end % -------------------------------------------------------- function aff = zoomOut(zoomScale, minYX) % -------------------------------------------------------- zs = (zoomScale - 1) / zoomScale ; tx = zs - 2 * zs * minYX(2) ; ty = zs - 2 * zs * minYX(1) ; aff = [ 1 0 tx ; % compute the affine matrix 0 1 ty ; 0 0 1] * zoomScale ; % -------------------------------------------------------- function aff = rotate(theta) % -------------------------------------------------------- aff = [ cos(theta) -sin(theta) 0 ; % compute the affine matrix sin(theta) cos(theta) 0 ; 0 0 1] ; % -------------------------------------------------------- function aff = skew(s1, s2) % -------------------------------------------------------- aff = [ 1 s1 0 ; % compute the affine matrix s2 1 0 ; 0 0 1] ;
github
albanie/mcnExtraLayers-master
vl_nnnonorm.m
.m
mcnExtraLayers-master/matlab/vl_nnnonorm.m
1,345
utf_8
807c6f7dfff7d9811abb625348f1ea26
function [y, dzdg, dzdb] = vl_nnnonorm(x, g, b, varargin) %VL_NNNONORM applies weights and biases, but does no normalization % Y = VL_NNNONORM(X,G,B) applies a set of gains and biases to % the input X with shape HxWxCxN. "No normalization" is defined as: % % Y(i,j,k,t) = G(k') * X(i,j,k,t) + B(k') % % where % k' = group_idx(k,C,G), where N_G is the number of groups and % group_idx(k,C,G) := floor(k / (C/N_G)). % % VL_NNGNORM(..., 'option', value, ...) takes the following option: % % This layer was largely inspired by this blog post: % http://www.offconvex.org/2018/03/02/acceleration-overparameterization/ % % Copyright (C) 2018 Samuel Albanie % All rights reserved. [~,dzdy] = vl_argparsepos(struct(), varargin) ; expectedSz = [1 1 size(x,3) 1] ; sg = size(g) ; sb = size(b) ; assert(all(expectedSz(1:numel(sg)) == sg), 'GAINS have unexpected size') ; assert(all(expectedSz(1:numel(sb)) == sb), 'BIASES have unexpected size') ; if isempty(dzdy) y = bsxfun(@times, g, x) ; % apply gain y = bsxfun(@plus, y, b) ; % add bias else dzdy = dzdy{1} ; dzdb = chanSum(dzdy) ; dzdg = chanSum(x .* dzdy) ; dzdx = bsxfun(@times, dzdy, g) ; y = dzdx ; end % ----------------------- function res = chanSum(x) % ----------------------- res = sum(sum(sum(x, 1), 2), 4) ;
github
albanie/mcnExtraLayers-master
vl_nngnorm.m
.m
mcnExtraLayers-master/matlab/vl_nngnorm.m
3,180
utf_8
823c3574250346a697bc9a4f1c6de84d
function [y, dzdg, dzdb] = vl_nngnorm(x, g, b, varargin) %VL_NNGNORM CNN group normalization. % Y = VL_NNGNORM(X,G,B) applies group normalization % to the input X with shape HxWxCxN. Group normalization is defined as: % % Y(i,j,k,t) = G(k',t) * X_HAT(i,j,k,t) + B(k',t) % % where % k' = group_idx(k,C,G), where N_G is the number of groups and % group_idx(k,C,G) := floor(k / (C/N_G)). % X_HAT(i,j,k,t) = (X_HAT(i,j,k,t) - mu(k',t)) / sigma(k',t) % mu(k',t) = mean_ijk'' X(i,j,k'',t), % sigma2(k',t) = mean_ijk'' (X(i,j,k'',t) - mu(k'',t))^2, % sigma(k',t) = sqrt(sigma2(k) + EPSILON) % where k'' takes values such that group_idx(k'',C,G) == group_idx(k,C,G) % % VL_NNGNORM(..., 'option', value, ...) takes the following option: % % `numGroups`:: 32 % The number of groups used to split the channels when computing % normalization statistics. % % `epsilon`:: 1e-4 % A parameter to add stability to the normalization operation. % % Notes: GroupNorm is introduced in the paper: % `Group Normalization, Yuxin Wu, Kaiming He, % arXiv preprint arXiv:1803.08494 (2018) % % Copyright (C) 2018 Samuel Albanie % All rights reserved. opts.numGroups = 32 ; opts.epsilon = 1e-4 ; [opts,dzdy] = vl_argparsepos(opts, varargin) ; bsize = size(x, 4) ; expectedSz = [1 1 size(x,3) 1] ; sg = size(g) ; sb = size(b) ; assert(all(expectedSz(1:numel(sg)) == sg), 'GAINS have unexpected size') ; assert(all(expectedSz(1:numel(sb)) == sb), 'BIASES have unexpected size') ; szX = size(x) ; % store original shape % compute statistics per group for current minibatch and normalize x = reshape(x, size(x,1), size(x,2), [], opts.numGroups, bsize) ; mu = groupAvg(x) ; sigma2 = groupAvg(bsxfun(@minus, x, mu).^ 2) ; sigma = sqrt(sigma2 + opts.epsilon) ; x_hat = bsxfun(@rdivide, bsxfun(@minus, x, mu), sigma) ; if isempty(dzdy) x_hat_ = reshape(x_hat, szX) ; y = bsxfun(@times, g, x_hat_) ; % apply gain y = bsxfun(@plus, y, b) ; % add bias else dzdy = dzdy{1} ; dzdb = chanSum(dzdy) ; x_hat_ = reshape(x_hat, szX) ; dzdg = chanSum(x_hat_ .* dzdy) ; dzdy = reshape(dzdy, size(x,1), size(x,2), [], opts.numGroups, bsize) ; g_ = reshape(g, 1, 1, size(dzdy, 3), []) ; dzdx_hat = bsxfun(@times, dzdy, g_) ; t1 = bsxfun(@minus, x, mu) ; m = prod([size(x,1) size(x,2) size(x,3)]) ; dzdsigma = groupSum((-1/2) * dzdx_hat .* bsxfun(@rdivide, t1, sigma.^3)) ; dzdmu = groupSum(bsxfun(@rdivide, dzdx_hat, -sigma)) + ... bsxfun(@times, dzdsigma, -2 * groupAvg(t1)) ; t4 = bsxfun(@rdivide, dzdx_hat, sigma) + ... bsxfun(@times, dzdsigma, (2 / m) * t1) ; dzdx = bsxfun(@plus, t4, dzdmu * (1/m)) ; y = reshape(dzdx, szX) ; end % ---------------------------------------- function avg = groupAvg(x) % ---------------------------------------- avg = mean(mean(mean(x, 1), 2), 3) ; % ----------------------- function res = groupSum(x) % ----------------------- res = sum(sum(sum(x, 1), 2), 3) ; % ----------------------- function res = chanSum(x) % ----------------------- res = sum(sum(sum(x, 1), 2), 4) ;
github
albanie/mcnExtraLayers-master
vl_nnbrenorm.m
.m
mcnExtraLayers-master/matlab/vl_nnbrenorm.m
3,216
utf_8
5fdea2ededecb39d822efa787e95fe7c
function [y, dzdg, dzdb, m] = vl_nnbrenorm(x, g, b, m, clips, test, varargin) %VL_NNBRENORM CNN batch renormalisation. % Y = VL_NNBRENORM(X,G,B,M,CLIPS,TEST) applies batch renormalization % to the input X. Batch renormalization is defined as: % % Y(i,j,k,t) = G(k) * X_HAT(i,j,k,t) + B(k) % % where % X_HAT(i,j,k,t) = R(k) * (X_HAT(i,j,k,t) - mu(k)) / sigma(k) + D(k) % mu(k) = mean_ijt X(i,j,k,t), % sigma2(k) = mean_ijt (X(i,j,k,t) - mu(k))^2, % sigma(k) = sqrt(sigma2(k) + EPSILON) % R(k) = cutoff(sigma(k) / M(2,k)), [1/rMax, rMax]) % D(k) = cutoff((mu(k) - M(1,k))/ M(2,k)), [-dMax, dMax]) % rMax = clips(1) % dMax = clips(2) % % and we define cutoff(x, [a b]) to be the operation that clips the value % of x to lie inside the range [a b]. The parameters G(k) and B(k) are % multiplicative and additive constants use to scale each data channel, M % is the 2xC array of moments used to track the batch mean and variance. % R(k) and D(k) are used to balance the current estimate of feature % means and variances between the statistics gathered from the current % minibatch, and rolling averages over previous minibatches, as discussed % in the paper: % % `Batch Renormalization: Towards Reducing Minibatch Dependence in % Batch-Normalized Models` by Sergey Ioffe, 2017 % % Copyright (C) 2017 Samuel Albanie % All rights reserved. [~, dzdy] = vl_argparsepos(struct(), varargin) ; % unpack parameters epsilon = 1e-4 ; rMax = clips(1) ; dMax = clips(2) ; rolling_mu = permute(m(:,1), [3 2 1]) ; rolling_sigma = permute(m(:,2), [3 2 1]) ; if ~test % first compute statistics per channel for current minibatch and normalize mu = chanAvg(x) ; sigma2 = chanAvg(bsxfun(@minus, x, mu).^ 2) ; sigma = sqrt(sigma2 + epsilon) ; x_hat_ = bsxfun(@rdivide, bsxfun(@minus, x, mu), sigma) ; % then "renormalize" r = bsxfun(@min, bsxfun(@max, sigma ./ rolling_sigma, 1 / rMax), rMax) ; d = bsxfun(@min, bsxfun(@max, (mu - rolling_mu)./rolling_sigma,-dMax), dMax) ; x_hat = bsxfun(@plus, bsxfun(@times, x_hat_, r), d) ; else x_hat = bsxfun(@rdivide, bsxfun(@minus, x, rolling_mu), rolling_sigma) ; end if isempty(dzdy) res = bsxfun(@times, g, x_hat) ; % apply gain y = bsxfun(@plus, res, b) ; % add bias else % precompute some common terms t1 = bsxfun(@minus, x, mu) ; t2 = bsxfun(@rdivide, r, sigma) ; t3 = bsxfun(@rdivide, r, sigma2) ; sz = size(x) ; m = prod([sz(1:2) size(x,4)]) ; dzdy = dzdy{1} ; dzdx_hat = bsxfun(@times, dzdy, g) ; dzdsigma = chanSum(dzdx_hat .* bsxfun(@times, t1, -t3)) ; dzdmu = chanSum(bsxfun(@times, dzdx_hat, -t2)) ; t4 = bsxfun(@times, dzdx_hat, t2) + ... bsxfun(@times, dzdsigma, bsxfun(@rdivide, t1, m * sigma)) ; dzdx = bsxfun(@plus, t4, dzdmu * (1/m)) ; y = dzdx ; dzdg = chanSum(x_hat .* dzdy) ; dzdb = chanSum(dzdy) ; m = horzcat(squeeze(mu), squeeze(sigma)) ; end % ----------------------- function avg = chanAvg(x) % ----------------------- avg = mean(mean(mean(x, 1), 2), 4) ; % ----------------------- function res = chanSum(x) % ----------------------- res = sum(sum(sum(x, 1), 2), 4) ;
github
albanie/mcnExtraLayers-master
vl_nnbrenorm_wrapper.m
.m
mcnExtraLayers-master/matlab/wrappers/vl_nnbrenorm_wrapper.m
1,743
utf_8
cff657bd6caed20fcb40d29a091db700
function [y, dzdg, dzdb, moments] = vl_nnbrenorm_wrapper(x, g, b, ... moments, clips, test, varargin) %VL_NNBRENORM_WRAPPER AutoNN wrapper for MatConvNet's vl_nnbrenorm % VL_NNBRENORM has a non-standard interface (returns a derivative for the % moments, even though they are not an input), so we must wrap it. % Layer.vl_nnbrenorm replaces a standard VL_NNBRENORM call with this one. % % Copyright (C) 2017 Samuel Albanie % (based on the autonn batchnorm wrapper by Joao F. Henriques) % All rights reserved. [opts, dzdy] = vl_argparsepos(struct(), varargin) ; if isscalar(g) g(1,1,1:size(x,3)) = g ; end if isscalar(b) b(1,1,1:size(x,3)) = b ; end if isscalar(moments) moments(1:size(x,3),1:2) = moments ; end if isempty(dzdy) y = vl_nnbrenorm(x, g, b, moments, clips, test, varargin{:}) ; else [y, dzdg, dzdb, moments] = vl_nnbrenorm(x, g, b, moments, clips, ... test, dzdy{1}, varargin{2:end}) ; if usingDeprecatedLossFn moments = moments * size(x, 4) ; end end % --------------------------------------------------------------------- function old = usingDeprecatedLossFn() % --------------------------------------------------------------------- % stolen from Joao Henriques (autonn compatibility code) % this is needed to harmonize the behavior of two versions of vl_nnloss: % the legacy behavior which *sums* the loss over the batch, and the new % behavior that takes the *average* over the batch. % first, detect if the new behavior ('normalise' option) is present. old = false ; try vl_nnloss([], [], 'normalise', true) ; catch % unrecognized option, must be the old vl_nnloss old = true ; end
github
albanie/mcnExtraLayers-master
nnslice.m
.m
mcnExtraLayers-master/matlab/xtest/suite/nnslice.m
881
utf_8
9094327e26df505701c1a9362932ec3c
classdef nnslice < nntest methods (Test) function basic(test) sz = [3,3,5,4] ; x = test.randn(sz) ; dim = 4 ; slicePoints = 1:dim - 1 ; % slice along fourth dim y = vl_nnslice(x, dim, slicePoints, []) ; % check derivatives with numerical approximation dzdy = cellfun(@(x) test.randn(size(x)), y, 'Uni', 0) ; dzdx = vl_nnslice(x, dim, slicePoints, dzdy, 'inputSizes', {sz}) ; dzdy_ = cat(dim, dzdy{:}) ; dzdx_ = dzdx{1} ; test.der(@(x) forward_wrapper(x, dim, slicePoints), x, dzdy_, dzdx_, 1e-3*test.range) ; end end end % ----------------------------------------------------------------- function y = forward_wrapper(x, dim, slicePoints) % ----------------------------------------------------------------- y = vl_nnslice(x, dim, slicePoints, []) ; y = cat(dim, y{:}) ; end
github
albanie/mcnExtraLayers-master
nntukeyloss.m
.m
mcnExtraLayers-master/matlab/xtest/suite/nntukeyloss.m
1,350
utf_8
977e5438454bf3ef4c0eb49b95fa5ec3
classdef nntukeyloss < nntest methods (Test) function basic(test) % We have to be a little bit devious when constructing the % numerical check - if computing % x(i) + delta % changes the value of the median of the residuals, the MAD value % will also change and there will appear to be a discontinuity % Therefore, we only run derivative checks on part of the input % In particular, we deliberately run checks on a portion % the inputs (which should not trigger the change in median) n = 50 ; safety = 5 ; m = n * safety ; % create extra entries to safeguard the median xSource = sort(test.randn([m 1]) / 1) ; x = xSource(1:n) ; xPad = xSource(n+1:end) ; fullX = [x ; xPad] ; t = sort(test.randn([m 1]) / 1) ; y = vl_nntukeyloss(fullX, t) ; % check derivatives with numerical approximation dzdy = test.randn(size(y)) ; dzdx = vl_nntukeyloss(fullX, t, dzdy) ; % restrict to test range dzdx = dzdx(1:numel(x)) ; test.der(@(x) splitInputsTukey(x, t, xPad), x, dzdy, dzdx, 1e-3*test.range) ; end end end % --------------------------------------- function y = splitInputsTukey(x, t, xPad) % --------------------------------------- fullX = [x ; xPad] ; y = vl_nntukeyloss(fullX, t) ; end
github
g4idrijs/ultrasoundsim-master
off_axis_demo.m
.m
ultrasoundsim-master/demos/off_axis_demo.m
2,827
utf_8
5c1318c6b824864b8e1d0cbdc2bb87aa
% Demo of simulating off axis. function [pw] = simulate_off_axis() % Structured as a function so that we can write helper functions in the % same file. % Setup the transducer array. width = 5e-5; height = 5e-5; elements_x = 800; elements_y = 1; kerf = 5e-5; r_curv = 6e-2; transducer_array = create_rect_csa(... elements_x, elements_y, width, height, kerf, kerf, r_curv); % figure(); % draw_array(transducer_array); % Set up the media. By default we'll use water. define_media(); %%% Spot 1 focus_x = 1.75e-2; focus_y = 0; focus_z = 0.75e-2; freq = 4e6; target_1_array = find_single_focus_phase(... transducer_array, focus_x, focus_y, focus_z, water, freq, 200); target_1_array = target_1_array(600:700); pw1 = calc_pw(target_1_array, freq); %%% Spot 2 focus_x = 0; focus_y = 0; focus_z = 0.75e-2; freq = 4e6; target_2_array = find_single_focus_phase(... transducer_array, focus_x, focus_y, focus_z, water, freq, 200); target_2_array = target_2_array(350:450); pw2 = calc_pw(target_2_array, freq); %%% Trick to highlight the whole array. focus_x = 0e-2; focus_y = 0; focus_z = 0; freq = 5e7; transducer_array = find_single_focus_phase(... transducer_array, focus_x, focus_y, focus_z, water, freq, 200); % pw3 = calc_pw(transducer_array, freq); % Add the pressure waves and plot. % pw = pw1 + pw2 + pw3; pw = pw1 + pw2; % pw = pw1; plot_pw(pw) end function [x, y, z, coord_grid] = get_x_y_z_coord_grid() % Helper to get coordinates. define_media(); % Set up the viewport and resolution. xmin = -4e-2; xmax = 4e-2; ymin = 0; ymax = 0; zmin = -0.5e-2; zmax = 2.5e-2; xpoints = 500; ypoints = 1; zpoints = 500; dx = (xmax-xmin)/xpoints; dy = (ymax-ymin)/ypoints; dz = (zmax-zmin)/zpoints; delta = [dx dy dz]; x = xmin:dx:xmax; y = ymin:dy:ymax; z = zmin:dz:zmax; coord_grid = set_coordinate_grid(delta, xmin, xmax, ymin, ymax, zmin, zmax); end function [p_cw] = calc_pw(transducer_array, freq) % Helper function to compute pressure wave and plot on sublot. define_media(); [x, y, z, coord_grid] = get_x_y_z_coord_grid(); % Run the simulation to calculate the pressure field. ndiv=3; tic(); disp('Calculating pressure field...'); p_cw=cw_pressure(transducer_array, coord_grid, water, ndiv, freq); disp(['Simulation complete in ', num2str(toc()), ' seconds.']) end function plot_pw(p_cw) [x, y, z, coord_grid] = get_x_y_z_coord_grid(); h = pcolor(x*100,z*100,rot90(squeeze(abs(p_cw)),3)); set(h,'edgecolor','none'); xlabel('x (cm)'); ylabel('z (cm)'); end
github
g4idrijs/ultrasoundsim-master
titrate_size_spacing_combo_and_focus.m
.m
ultrasoundsim-master/demos/titrate_size_spacing_combo_and_focus.m
3,710
utf_8
e87dc4285343cb1fca055bd56b79f452
% Script to run through different spacings and focus. function titrate_spacing_and_focus() % Structured as a function so that we can write helper functions in the % same file. % Constant of 1 element in y-direction. elements_y = 1; % Curvature to match human skull. r_curv = 6e-2; % Define media variables. define_media(); % Set stimulation frequency. f0 = 4e6; num_elements = 100; % Set the focus target. focus_x = 0; focus_y = 0; focus_z = 1e-2; % 2e-2; % 1cm % Try all combinations of spacing and focus. spacing_list = [ 5e-5 1e-4 5e-4 1e-3 5e-3 ]; focus_z_list = [ 1e-2 2e-2 3e-2 4e-2 5e-2 ]; % Dimensions of subplots, i.e. how many plots to show. subplot_dims = [length(spacing_list) length(focus_z_list)]; figure(); % Main title. text(0.5, 1,'\bf Spacing vs Focus Titration','HorizontalAlignment' , ... 'center', 'VerticalAlignment', 'top'); for spacing_idx = 1:length(spacing_list) for focus_z_idx = 1:length(focus_z_list) spacing = spacing_list(spacing_idx); focus_z = focus_z_list(focus_z_idx); subplot_idx = (spacing_idx - 1) * length(focus_z_list) + ... focus_z_idx; % Decrement num_elements until fits within curvature. % Based on error-catching code in create_rect_csa.m. c_length = 2*pi*r_curv; while (num_elements * 2 * spacing) > (c_length/2) num_elements = num_elements - 1; end transducer_array = create_rect_csa(num_elements, elements_y, ... spacing, spacing, spacing, spacing, r_curv); % Uncomment to draw array diagrams only. % subplot(subplot_dims(1), subplot_dims(2), subplot_idx); % draw_array(transducer_array); % title(sprintf('spacing: %g, elements: %g', spacing, num_elements)); % continue; % Caculate single-focus phase. transducer_array = find_single_focus_phase(... transducer_array, focus_x, focus_y, focus_z, water, f0, 200); % Compuate pressure wave and plot result. calc_pw_and_plot(transducer_array, subplot_dims, subplot_idx, ... spacing, num_elements, focus_z); end end end function calc_pw_and_plot(transducer_array, subplot_dims, subplot_idx, ... spacing, num_elements, focus) % Helper function to compute pressure wave and plot on sublot. define_media(); % Set up the viewport and resolution. xmin = -2e-2; xmax = 2e-2; ymin = 0; ymax = 0; zmin = -1e-2; zmax = 6e-2; xpoints = 500; ypoints = 1; zpoints = 500; dx = (xmax-xmin)/xpoints; dy = (ymax-ymin)/ypoints; dz = (zmax-zmin)/zpoints; delta = [dx dy dz]; x = xmin:dx:xmax; y = ymin:dy:ymax; z = zmin:dz:zmax; coord_grid = set_coordinate_grid(delta, xmin, xmax, ymin, ymax, zmin, zmax); % Run the simulation to calculate the pressure field. ndiv=3; tic(); disp('Calculating pressure field...'); p_cw=cw_pressure(transducer_array, coord_grid, water, ndiv, f0); disp(['Simulation complete in ', num2str(toc()), ' seconds.']) % Plot the result. subplot(subplot_dims(1), subplot_dims(2), subplot_idx); h = pcolor(x*100,z*100,rot90(squeeze(abs(p_cw)),3)); set(h,'edgecolor','none'); title(sprintf('focus: %g, spacing: %g, elements: %g', ... focus, spacing, num_elements)); xlabel('x (cm)'); ylabel('z (cm)'); end
github
g4idrijs/ultrasoundsim-master
titrate_spacing_and_focus.m
.m
ultrasoundsim-master/demos/titrate_spacing_and_focus.m
3,749
utf_8
7c08022742b0c92d5a9bc139f1b16e5b
% Script to run through different spacings and focus. function titrate_spacing_and_focus() % Structured as a function so that we can write helper functions in the % same file. % Constant of 1 element in y-direction. elements_y = 1; % Curvature to match human skull. r_curv = 6e-2; % Define media variables. define_media(); % Set stimulation frequency. f0 = 4e6; num_elements = 100; % Set the focus target. focus_x = 0; focus_y = 0; focus_z = 1e-2; % 2e-2; % 1cm element_width = 5e-4; % Try all combinations of spacing and focus. spacing_list = [ 5e-5 1e-4 5e-4 1e-3 5e-3 ]; focus_z_list = [ 1e-2 2e-2 3e-2 4e-2 5e-2 ]; % Dimensions of subplots, i.e. how many plots to show. subplot_dims = [length(spacing_list) length(focus_z_list)]; figure(); % Main title. text(0.5, 1,'\bf Spacing vs Focus Titration','HorizontalAlignment' , ... 'center', 'VerticalAlignment', 'top'); for spacing_idx = 1:length(spacing_list) for focus_z_idx = 1:length(focus_z_list) spacing = spacing_list(spacing_idx); focus_z = focus_z_list(focus_z_idx); subplot_idx = (spacing_idx - 1) * length(focus_z_list) + ... focus_z_idx; % Decrement num_elements until fits within curvature. % Based on error-catching code in create_rect_csa.m. c_length = 2*pi*r_curv; while (num_elements * 2 * spacing) > (c_length/2) num_elements = num_elements - 1; end transducer_array = create_rect_csa(num_elements, elements_y, ... element_width, element_width, spacing, spacing, r_curv); % Uncomment to draw array diagrams only. % subplot(subplot_dims(1), subplot_dims(2), subplot_idx); % draw_array(transducer_array); % title(sprintf('spacing: %g, elements: %g', spacing, num_elements)); % continue; % Caculate single-focus phase. transducer_array = find_single_focus_phase(... transducer_array, focus_x, focus_y, focus_z, water, f0, 200); % Compuate pressure wave and plot result. calc_pw_and_plot(transducer_array, subplot_dims, subplot_idx, ... spacing, num_elements, focus_z); end end end function calc_pw_and_plot(transducer_array, subplot_dims, subplot_idx, ... spacing, num_elements, focus) % Helper function to compute pressure wave and plot on sublot. define_media(); % Set up the viewport and resolution. xmin = -2e-2; xmax = 2e-2; ymin = 0; ymax = 0; zmin = -1e-2; zmax = 6e-2; xpoints = 500; ypoints = 1; zpoints = 500; dx = (xmax-xmin)/xpoints; dy = (ymax-ymin)/ypoints; dz = (zmax-zmin)/zpoints; delta = [dx dy dz]; x = xmin:dx:xmax; y = ymin:dy:ymax; z = zmin:dz:zmax; coord_grid = set_coordinate_grid(delta, xmin, xmax, ymin, ymax, zmin, zmax); % Run the simulation to calculate the pressure field. ndiv=3; tic(); disp('Calculating pressure field...'); p_cw=cw_pressure(transducer_array, coord_grid, water, ndiv, f0); disp(['Simulation complete in ', num2str(toc()), ' seconds.']) % Plot the result. subplot(subplot_dims(1), subplot_dims(2), subplot_idx); h = pcolor(x*100,z*100,rot90(squeeze(abs(p_cw)),3)); set(h,'edgecolor','none'); title(sprintf('focus: %g, spacing: %g, elements: %g', ... focus, spacing, num_elements)); xlabel('x (cm)'); ylabel('z (cm)'); end
github
g4idrijs/ultrasoundsim-master
titrate_spacing_and_num_elements.m
.m
ultrasoundsim-master/demos/titrate_spacing_and_num_elements.m
3,890
utf_8
cfc872229bb8c15d3bef27fb6f767c37
% Script to run through different element spacings to observe effect. % Titrate through combinations of num elements and spacing. function titrate_spacing_and_num_elements() % Structured as a function so that we can write helper functions in the % same file. % Constant of 1 element in y-direction. elements_y = 1; % Curvature to match human skull. r_curv = 6e-2; % Define media variables. define_media(); % Set stimulation frequency. f0 = 4e6; % Set the focus target. focus_x = 0; focus_y = 0; focus_z = 1e-2; % 2e-2; % 1cm % Try all combinations of spacing and num_elements. If num_elements too % large, decrement until acceptible number. spacing_list = [ 1e-5 5e-5 1e-4 5e-4 1e-3 5e-3 ]; num_elements_list = [ 100 150 200 250 ]; % Dimensions of subplots, i.e. how many plots to show. subplot_dims = [length(spacing_list) length(num_elements_list)]; figure(); for spacing_idx = 1:length(spacing_list) for num_elements_idx = 1:length(num_elements_list) spacing = spacing_list(spacing_idx); num_elements = num_elements_list(num_elements_idx); subplot_idx = (spacing_idx - 1) * length(num_elements_list) + ... num_elements_idx; % Decrement num_elements until fits within curvature. % Based on error-catching code in create_rect_csa.m. c_length = 2*pi*r_curv; while (num_elements * 2 * spacing) > (c_length/2) num_elements = num_elements - 1; end transducer_array = create_rect_csa(num_elements, elements_y, ... spacing, spacing, spacing, spacing, r_curv); % Uncomment to draw array diagrams only. % subplot(subplot_dims(1), subplot_dims(2), subplot_idx); % draw_array(transducer_array); % title(sprintf('spacing: %g, elements: %g', spacing, num_elements)); % continue; % Caculate single-focus phase. transducer_array = find_single_focus_phase(... transducer_array, focus_x, focus_y, focus_z, water, f0, 200); % Compuate pressure wave and plot result. calc_pw_and_plot(transducer_array, subplot_dims, subplot_idx, ... spacing, num_elements); % Give the processor a rest. pause(30); end end % Main title. text(0.5, 1,'\bf Spacing Titration','HorizontalAlignment' ,'center', ... 'VerticalAlignment', 'top'); end function calc_pw_and_plot(transducer_array, subplot_dims, subplot_idx, ... spacing, num_elements) % Helper function to compute pressure wave and plot on sublot. define_media(); % Set up the viewport and resolution. xmin = -2e-2; xmax = 2e-2; ymin = 0; ymax = 0; zmin = -1e-2; zmax = 3e-2; xpoints = 1000; ypoints = 1; zpoints = 1000; dx = (xmax-xmin)/xpoints; dy = (ymax-ymin)/ypoints; dz = (zmax-zmin)/zpoints; delta = [dx dy dz]; x = xmin:dx:xmax; y = ymin:dy:ymax; z = zmin:dz:zmax; coord_grid = set_coordinate_grid(delta, xmin, xmax, ymin, ymax, zmin, zmax); % Run the simulation to calculate the pressure field. ndiv=3; tic(); disp('Calculating pressure field...'); p_cw=cw_pressure(transducer_array, coord_grid, water, ndiv, f0); disp(['Simulation complete in ', num2str(toc()), ' seconds.']) % Plot the result. subplot(subplot_dims(1), subplot_dims(2), subplot_idx); h = pcolor(x*100,z*100,rot90(squeeze(abs(p_cw)),3)); set(h,'edgecolor','none'); title(sprintf('spacing: %g, elements: %g', spacing, num_elements)); xlabel('x (cm)'); ylabel('z (cm)'); end
github
g4idrijs/ultrasoundsim-master
titrate_frequency.m
.m
ultrasoundsim-master/demos/titrate_frequency.m
2,752
utf_8
7955d432fdd68a56a0a038a40a0c6693
% Script to run through different frequencies to observe effect. function titrate_frequency() % Structured as a function so that we can write helper functions in the % same file. % Setup the transducer array. width = 5e-5; height = 5e-5; elements_x = 200; elements_y = 1; kerf = 5e-5; r_curv = 6e-2; transducer_array = create_rect_csa(... elements_x, elements_y, width, height, kerf, kerf, r_curv); figure(); draw_array(transducer_array); % Set up the media. By default we'll use water. define_media(); % Set the focus target. focus_x = 0; focus_y = 0; focus_z = 1e-2; % 2e-2; % 1cm % Titrate over these frequencies. freq_list = [ 1e4 5e4 1e5 5e5 1e6 4e6 5e6 1e7 5e7 ]; % Dimensions of subplots, i.e. how many plots to show. figure(); subplot_dims = [3 3]; for i = 1:length(freq_list) freq = freq_list(i); % Caculate single-focus phase. transducer_array = find_single_focus_phase(... transducer_array, focus_x, focus_y, focus_z, water, freq, 200); % Compuate pressure wave and plot result. calc_pw_and_plot(transducer_array, subplot_dims, i, freq); end % Main title. ha = axes('Position',[0 0 1 1],'Xlim',[0 1],'Ylim',[0 1],'Box','off', ... 'Visible','off','Units','normalized', 'clipping' , 'off'); text(0.5, 1,'\bf Frequency Tittration?','HorizontalAlignment' ,'center', ... 'VerticalAlignment', 'top'); end function calc_pw_and_plot(transducer_array, subplot_dims, subplot_idx, freq) % Helper function to compute pressure wave and plot on sublot. define_media(); % Set up the viewport and resolution. xmin = -2e-2; xmax = 2e-2; ymin = 0; ymax = 0; zmin = -1e-2; zmax = 3e-2; xpoints = 1000; ypoints = 1; zpoints = 1000; dx = (xmax-xmin)/xpoints; dy = (ymax-ymin)/ypoints; dz = (zmax-zmin)/zpoints; delta = [dx dy dz]; x = xmin:dx:xmax; y = ymin:dy:ymax; z = zmin:dz:zmax; coord_grid = set_coordinate_grid(delta, xmin, xmax, ymin, ymax, zmin, zmax); % Run the simulation to calculate the pressure field. ndiv=3; tic(); disp('Calculating pressure field...'); p_cw=cw_pressure(transducer_array, coord_grid, water, ndiv, f0); disp(['Simulation complete in ', num2str(toc()), ' seconds.']) % Plot the result. subplot(subplot_dims(1), subplot_dims(2), subplot_idx); h = pcolor(x*100,z*100,rot90(squeeze(abs(p_cw)),3)); set(h,'edgecolor','none'); title(sprintf('freq = %g', freq)); xlabel('x (cm)'); ylabel('z (cm)'); end
github
g4idrijs/ultrasoundsim-master
titrate_focus_position.m
.m
ultrasoundsim-master/demos/titrate_focus_position.m
2,762
utf_8
915696ae209fb87bf5994cc3c0f4f71c
% Script to run through different frequencies to observe effect. function titrate_focus_position() % Structured as a function so that we can write helper functions in the % same file. % Setup the transducer array. width = 5e-4; height = 5e-4; elements_x = 100; elements_y = 1; kerf = 1e-3; r_curv = 6e-2; transducer_array = create_rect_csa(... elements_x, elements_y, width, height, kerf, kerf, r_curv); figure(); draw_array(transducer_array); % Set up the media. By default we'll use water. define_media(); % Set the focus target. focus_x = 0; focus_y = 0; focus_z = 1e-2; % 2e-2; % 1cm freq = 1e6; focus_z_list = [ 5e-5 1e-2 2e-2 3e-2 4e-2 5e-2 6e-2 7e-2 8e-2 ]; % Dimensions of subplots, i.e. how many plots to show. figure(); subplot_dims = [3 3]; for i = 1:length(focus_z_list) focus_z = focus_z_list(i); % Caculate single-focus phase. transducer_array = find_single_focus_phase(... transducer_array, focus_x, focus_y, focus_z, water, freq, 200); % Compuate pressure wave and plot result. calc_pw_and_plot(transducer_array, subplot_dims, i, focus_z); end % Main title. ha = axes('Position',[0 0 1 1],'Xlim',[0 1],'Ylim',[0 1],'Box','off', ... 'Visible','off','Units','normalized', 'clipping' , 'off'); text(0.5, 1,'\bf Frequency Tittration?','HorizontalAlignment' ,'center', ... 'VerticalAlignment', 'top'); end function calc_pw_and_plot(transducer_array, subplot_dims, subplot_idx, focus) % Helper function to compute pressure wave and plot on sublot. define_media(); % Set up the viewport and resolution. xmin = -6e-2; xmax = 6e-2; ymin = 0; ymax = 0; zmin = -1e-2; zmax = 10e-2; xpoints = 300; ypoints = 1; zpoints = 300; dx = (xmax-xmin)/xpoints; dy = (ymax-ymin)/ypoints; dz = (zmax-zmin)/zpoints; delta = [dx dy dz]; x = xmin:dx:xmax; y = ymin:dy:ymax; z = zmin:dz:zmax; coord_grid = set_coordinate_grid(delta, xmin, xmax, ymin, ymax, zmin, zmax); % Run the simulation to calculate the pressure field. ndiv=3; tic(); disp('Calculating pressure field...'); p_cw=cw_pressure(transducer_array, coord_grid, water, ndiv, f0); disp(['Simulation complete in ', num2str(toc()), ' seconds.']) % Plot the result. subplot(subplot_dims(1), subplot_dims(2), subplot_idx); h = pcolor(x*100,z*100,rot90(squeeze(abs(p_cw)),3)); set(h,'edgecolor','none'); title(sprintf('focus = %g', focus)); xlabel('x (cm)'); ylabel('z (cm)'); end
github
Bladefidz/machine-learning-master
submit.m
.m
machine-learning-master/coursera/machine-learning-standford-univerity/machine-learning-ex2/ex2/submit.m
1,605
utf_8
9b63d386e9bd7bcca66b1a3d2fa37579
function submit() addpath('./lib'); conf.assignmentSlug = 'logistic-regression'; conf.itemName = 'Logistic Regression'; conf.partArrays = { ... { ... '1', ... { 'sigmoid.m' }, ... 'Sigmoid Function', ... }, ... { ... '2', ... { 'costFunction.m' }, ... 'Logistic Regression Cost', ... }, ... { ... '3', ... { 'costFunction.m' }, ... 'Logistic Regression Gradient', ... }, ... { ... '4', ... { 'predict.m' }, ... 'Predict', ... }, ... { ... '5', ... { 'costFunctionReg.m' }, ... 'Regularized Logistic Regression Cost', ... }, ... { ... '6', ... { 'costFunctionReg.m' }, ... 'Regularized Logistic Regression Gradient', ... }, ... }; conf.output = @output; submitWithConfiguration(conf); end function out = output(partId, auxstring) % Random Test Cases X = [ones(20,1) (exp(1) * sin(1:1:20))' (exp(0.5) * cos(1:1:20))']; y = sin(X(:,1) + X(:,2)) > 0; if partId == '1' out = sprintf('%0.5f ', sigmoid(X)); elseif partId == '2' out = sprintf('%0.5f ', costFunction([0.25 0.5 -0.5]', X, y)); elseif partId == '3' [cost, grad] = costFunction([0.25 0.5 -0.5]', X, y); out = sprintf('%0.5f ', grad); elseif partId == '4' out = sprintf('%0.5f ', predict([0.25 0.5 -0.5]', X)); elseif partId == '5' out = sprintf('%0.5f ', costFunctionReg([0.25 0.5 -0.5]', X, y, 0.1)); elseif partId == '6' [cost, grad] = costFunctionReg([0.25 0.5 -0.5]', X, y, 0.1); out = sprintf('%0.5f ', grad); end end
github
Bladefidz/machine-learning-master
submit.m
.m
machine-learning-master/coursera/machine-learning-standford-univerity/machine-learning-ex4/ex4/submit.m
1,635
utf_8
ae9c236c78f9b5b09db8fbc2052990fc
function submit() addpath('./lib'); conf.assignmentSlug = 'neural-network-learning'; conf.itemName = 'Neural Networks Learning'; conf.partArrays = { ... { ... '1', ... { 'nnCostFunction.m' }, ... 'Feedforward and Cost Function', ... }, ... { ... '2', ... { 'nnCostFunction.m' }, ... 'Regularized Cost Function', ... }, ... { ... '3', ... { 'sigmoidGradient.m' }, ... 'Sigmoid Gradient', ... }, ... { ... '4', ... { 'nnCostFunction.m' }, ... 'Neural Network Gradient (Backpropagation)', ... }, ... { ... '5', ... { 'nnCostFunction.m' }, ... 'Regularized Gradient', ... }, ... }; conf.output = @output; submitWithConfiguration(conf); end function out = output(partId, auxstring) % Random Test Cases X = reshape(3 * sin(1:1:30), 3, 10); Xm = reshape(sin(1:32), 16, 2) / 5; ym = 1 + mod(1:16,4)'; t1 = sin(reshape(1:2:24, 4, 3)); t2 = cos(reshape(1:2:40, 4, 5)); t = [t1(:) ; t2(:)]; if partId == '1' [J] = nnCostFunction(t, 2, 4, 4, Xm, ym, 0); out = sprintf('%0.5f ', J); elseif partId == '2' [J] = nnCostFunction(t, 2, 4, 4, Xm, ym, 1.5); out = sprintf('%0.5f ', J); elseif partId == '3' out = sprintf('%0.5f ', sigmoidGradient(X)); elseif partId == '4' [J, grad] = nnCostFunction(t, 2, 4, 4, Xm, ym, 0); out = sprintf('%0.5f ', J); out = [out sprintf('%0.5f ', grad)]; elseif partId == '5' [J, grad] = nnCostFunction(t, 2, 4, 4, Xm, ym, 1.5); out = sprintf('%0.5f ', J); out = [out sprintf('%0.5f ', grad)]; end end
github
Bladefidz/machine-learning-master
submit.m
.m
machine-learning-master/coursera/machine-learning-standford-univerity/machine-learning-ex6/ex6/submit.m
1,318
utf_8
bfa0b4ffb8a7854d8e84276e91818107
function submit() addpath('./lib'); conf.assignmentSlug = 'support-vector-machines'; conf.itemName = 'Support Vector Machines'; conf.partArrays = { ... { ... '1', ... { 'gaussianKernel.m' }, ... 'Gaussian Kernel', ... }, ... { ... '2', ... { 'dataset3Params.m' }, ... 'Parameters (C, sigma) for Dataset 3', ... }, ... { ... '3', ... { 'processEmail.m' }, ... 'Email Preprocessing', ... }, ... { ... '4', ... { 'emailFeatures.m' }, ... 'Email Feature Extraction', ... }, ... }; conf.output = @output; submitWithConfiguration(conf); end function out = output(partId, auxstring) % Random Test Cases x1 = sin(1:10)'; x2 = cos(1:10)'; ec = 'the quick brown fox jumped over the lazy dog'; wi = 1 + abs(round(x1 * 1863)); wi = [wi ; wi]; if partId == '1' sim = gaussianKernel(x1, x2, 2); out = sprintf('%0.5f ', sim); elseif partId == '2' load('ex6data3.mat'); [C, sigma] = dataset3Params(X, y, Xval, yval); out = sprintf('%0.5f ', C); out = [out sprintf('%0.5f ', sigma)]; elseif partId == '3' word_indices = processEmail(ec); out = sprintf('%d ', word_indices); elseif partId == '4' x = emailFeatures(wi); out = sprintf('%d ', x); end end
github
Bladefidz/machine-learning-master
porterStemmer.m
.m
machine-learning-master/coursera/machine-learning-standford-univerity/machine-learning-ex6/ex6/porterStemmer.m
9,902
utf_8
7ed5acd925808fde342fc72bd62ebc4d
function stem = porterStemmer(inString) % Applies the Porter Stemming algorithm as presented in the following % paper: % Porter, 1980, An algorithm for suffix stripping, Program, Vol. 14, % no. 3, pp 130-137 % Original code modeled after the C version provided at: % http://www.tartarus.org/~martin/PorterStemmer/c.txt % The main part of the stemming algorithm starts here. b is an array of % characters, holding the word to be stemmed. The letters are in b[k0], % b[k0+1] ending at b[k]. In fact k0 = 1 in this demo program (since % matlab begins indexing by 1 instead of 0). k is readjusted downwards as % the stemming progresses. Zero termination is not in fact used in the % algorithm. % To call this function, use the string to be stemmed as the input % argument. This function returns the stemmed word as a string. % Lower-case string inString = lower(inString); global j; b = inString; k = length(b); k0 = 1; j = k; % With this if statement, strings of length 1 or 2 don't go through the % stemming process. Remove this conditional to match the published % algorithm. stem = b; if k > 2 % Output displays per step are commented out. %disp(sprintf('Word to stem: %s', b)); x = step1ab(b, k, k0); %disp(sprintf('Steps 1A and B yield: %s', x{1})); x = step1c(x{1}, x{2}, k0); %disp(sprintf('Step 1C yields: %s', x{1})); x = step2(x{1}, x{2}, k0); %disp(sprintf('Step 2 yields: %s', x{1})); x = step3(x{1}, x{2}, k0); %disp(sprintf('Step 3 yields: %s', x{1})); x = step4(x{1}, x{2}, k0); %disp(sprintf('Step 4 yields: %s', x{1})); x = step5(x{1}, x{2}, k0); %disp(sprintf('Step 5 yields: %s', x{1})); stem = x{1}; end % cons(j) is TRUE <=> b[j] is a consonant. function c = cons(i, b, k0) c = true; switch(b(i)) case {'a', 'e', 'i', 'o', 'u'} c = false; case 'y' if i == k0 c = true; else c = ~cons(i - 1, b, k0); end end % mseq() measures the number of consonant sequences between k0 and j. If % c is a consonant sequence and v a vowel sequence, and <..> indicates % arbitrary presence, % <c><v> gives 0 % <c>vc<v> gives 1 % <c>vcvc<v> gives 2 % <c>vcvcvc<v> gives 3 % .... function n = measure(b, k0) global j; n = 0; i = k0; while true if i > j return end if ~cons(i, b, k0) break; end i = i + 1; end i = i + 1; while true while true if i > j return end if cons(i, b, k0) break; end i = i + 1; end i = i + 1; n = n + 1; while true if i > j return end if ~cons(i, b, k0) break; end i = i + 1; end i = i + 1; end % vowelinstem() is TRUE <=> k0,...j contains a vowel function vis = vowelinstem(b, k0) global j; for i = k0:j, if ~cons(i, b, k0) vis = true; return end end vis = false; %doublec(i) is TRUE <=> i,(i-1) contain a double consonant. function dc = doublec(i, b, k0) if i < k0+1 dc = false; return end if b(i) ~= b(i-1) dc = false; return end dc = cons(i, b, k0); % cvc(j) is TRUE <=> j-2,j-1,j has the form consonant - vowel - consonant % and also if the second c is not w,x or y. this is used when trying to % restore an e at the end of a short word. e.g. % % cav(e), lov(e), hop(e), crim(e), but % snow, box, tray. function c1 = cvc(i, b, k0) if ((i < (k0+2)) || ~cons(i, b, k0) || cons(i-1, b, k0) || ~cons(i-2, b, k0)) c1 = false; else if (b(i) == 'w' || b(i) == 'x' || b(i) == 'y') c1 = false; return end c1 = true; end % ends(s) is TRUE <=> k0,...k ends with the string s. function s = ends(str, b, k) global j; if (str(length(str)) ~= b(k)) s = false; return end % tiny speed-up if (length(str) > k) s = false; return end if strcmp(b(k-length(str)+1:k), str) s = true; j = k - length(str); return else s = false; end % setto(s) sets (j+1),...k to the characters in the string s, readjusting % k accordingly. function so = setto(s, b, k) global j; for i = j+1:(j+length(s)) b(i) = s(i-j); end if k > j+length(s) b((j+length(s)+1):k) = ''; end k = length(b); so = {b, k}; % rs(s) is used further down. % [Note: possible null/value for r if rs is called] function r = rs(str, b, k, k0) r = {b, k}; if measure(b, k0) > 0 r = setto(str, b, k); end % step1ab() gets rid of plurals and -ed or -ing. e.g. % caresses -> caress % ponies -> poni % ties -> ti % caress -> caress % cats -> cat % feed -> feed % agreed -> agree % disabled -> disable % matting -> mat % mating -> mate % meeting -> meet % milling -> mill % messing -> mess % meetings -> meet function s1ab = step1ab(b, k, k0) global j; if b(k) == 's' if ends('sses', b, k) k = k-2; elseif ends('ies', b, k) retVal = setto('i', b, k); b = retVal{1}; k = retVal{2}; elseif (b(k-1) ~= 's') k = k-1; end end if ends('eed', b, k) if measure(b, k0) > 0; k = k-1; end elseif (ends('ed', b, k) || ends('ing', b, k)) && vowelinstem(b, k0) k = j; retVal = {b, k}; if ends('at', b, k) retVal = setto('ate', b(k0:k), k); elseif ends('bl', b, k) retVal = setto('ble', b(k0:k), k); elseif ends('iz', b, k) retVal = setto('ize', b(k0:k), k); elseif doublec(k, b, k0) retVal = {b, k-1}; if b(retVal{2}) == 'l' || b(retVal{2}) == 's' || ... b(retVal{2}) == 'z' retVal = {retVal{1}, retVal{2}+1}; end elseif measure(b, k0) == 1 && cvc(k, b, k0) retVal = setto('e', b(k0:k), k); end k = retVal{2}; b = retVal{1}(k0:k); end j = k; s1ab = {b(k0:k), k}; % step1c() turns terminal y to i when there is another vowel in the stem. function s1c = step1c(b, k, k0) global j; if ends('y', b, k) && vowelinstem(b, k0) b(k) = 'i'; end j = k; s1c = {b, k}; % step2() maps double suffices to single ones. so -ization ( = -ize plus % -ation) maps to -ize etc. note that the string before the suffix must give % m() > 0. function s2 = step2(b, k, k0) global j; s2 = {b, k}; switch b(k-1) case {'a'} if ends('ational', b, k) s2 = rs('ate', b, k, k0); elseif ends('tional', b, k) s2 = rs('tion', b, k, k0); end; case {'c'} if ends('enci', b, k) s2 = rs('ence', b, k, k0); elseif ends('anci', b, k) s2 = rs('ance', b, k, k0); end; case {'e'} if ends('izer', b, k) s2 = rs('ize', b, k, k0); end; case {'l'} if ends('bli', b, k) s2 = rs('ble', b, k, k0); elseif ends('alli', b, k) s2 = rs('al', b, k, k0); elseif ends('entli', b, k) s2 = rs('ent', b, k, k0); elseif ends('eli', b, k) s2 = rs('e', b, k, k0); elseif ends('ousli', b, k) s2 = rs('ous', b, k, k0); end; case {'o'} if ends('ization', b, k) s2 = rs('ize', b, k, k0); elseif ends('ation', b, k) s2 = rs('ate', b, k, k0); elseif ends('ator', b, k) s2 = rs('ate', b, k, k0); end; case {'s'} if ends('alism', b, k) s2 = rs('al', b, k, k0); elseif ends('iveness', b, k) s2 = rs('ive', b, k, k0); elseif ends('fulness', b, k) s2 = rs('ful', b, k, k0); elseif ends('ousness', b, k) s2 = rs('ous', b, k, k0); end; case {'t'} if ends('aliti', b, k) s2 = rs('al', b, k, k0); elseif ends('iviti', b, k) s2 = rs('ive', b, k, k0); elseif ends('biliti', b, k) s2 = rs('ble', b, k, k0); end; case {'g'} if ends('logi', b, k) s2 = rs('log', b, k, k0); end; end j = s2{2}; % step3() deals with -ic-, -full, -ness etc. similar strategy to step2. function s3 = step3(b, k, k0) global j; s3 = {b, k}; switch b(k) case {'e'} if ends('icate', b, k) s3 = rs('ic', b, k, k0); elseif ends('ative', b, k) s3 = rs('', b, k, k0); elseif ends('alize', b, k) s3 = rs('al', b, k, k0); end; case {'i'} if ends('iciti', b, k) s3 = rs('ic', b, k, k0); end; case {'l'} if ends('ical', b, k) s3 = rs('ic', b, k, k0); elseif ends('ful', b, k) s3 = rs('', b, k, k0); end; case {'s'} if ends('ness', b, k) s3 = rs('', b, k, k0); end; end j = s3{2}; % step4() takes off -ant, -ence etc., in context <c>vcvc<v>. function s4 = step4(b, k, k0) global j; switch b(k-1) case {'a'} if ends('al', b, k) end; case {'c'} if ends('ance', b, k) elseif ends('ence', b, k) end; case {'e'} if ends('er', b, k) end; case {'i'} if ends('ic', b, k) end; case {'l'} if ends('able', b, k) elseif ends('ible', b, k) end; case {'n'} if ends('ant', b, k) elseif ends('ement', b, k) elseif ends('ment', b, k) elseif ends('ent', b, k) end; case {'o'} if ends('ion', b, k) if j == 0 elseif ~(strcmp(b(j),'s') || strcmp(b(j),'t')) j = k; end elseif ends('ou', b, k) end; case {'s'} if ends('ism', b, k) end; case {'t'} if ends('ate', b, k) elseif ends('iti', b, k) end; case {'u'} if ends('ous', b, k) end; case {'v'} if ends('ive', b, k) end; case {'z'} if ends('ize', b, k) end; end if measure(b, k0) > 1 s4 = {b(k0:j), j}; else s4 = {b(k0:k), k}; end % step5() removes a final -e if m() > 1, and changes -ll to -l if m() > 1. function s5 = step5(b, k, k0) global j; j = k; if b(k) == 'e' a = measure(b, k0); if (a > 1) || ((a == 1) && ~cvc(k-1, b, k0)) k = k-1; end end if (b(k) == 'l') && doublec(k, b, k0) && (measure(b, k0) > 1) k = k-1; end s5 = {b(k0:k), k};
github
Bladefidz/machine-learning-master
submit.m
.m
machine-learning-master/coursera/machine-learning-standford-univerity/machine-learning-ex7/ex7/submit.m
1,438
utf_8
665ea5906aad3ccfd94e33a40c58e2ce
function submit() addpath('./lib'); conf.assignmentSlug = 'k-means-clustering-and-pca'; conf.itemName = 'K-Means Clustering and PCA'; conf.partArrays = { ... { ... '1', ... { 'findClosestCentroids.m' }, ... 'Find Closest Centroids (k-Means)', ... }, ... { ... '2', ... { 'computeCentroids.m' }, ... 'Compute Centroid Means (k-Means)', ... }, ... { ... '3', ... { 'pca.m' }, ... 'PCA', ... }, ... { ... '4', ... { 'projectData.m' }, ... 'Project Data (PCA)', ... }, ... { ... '5', ... { 'recoverData.m' }, ... 'Recover Data (PCA)', ... }, ... }; conf.output = @output; submitWithConfiguration(conf); end function out = output(partId, auxstring) % Random Test Cases X = reshape(sin(1:165), 15, 11); Z = reshape(cos(1:121), 11, 11); C = Z(1:5, :); idx = (1 + mod(1:15, 3))'; if partId == '1' idx = findClosestCentroids(X, C); out = sprintf('%0.5f ', idx(:)); elseif partId == '2' centroids = computeCentroids(X, idx, 3); out = sprintf('%0.5f ', centroids(:)); elseif partId == '3' [U, S] = pca(X); out = sprintf('%0.5f ', abs([U(:); S(:)])); elseif partId == '4' X_proj = projectData(X, Z, 5); out = sprintf('%0.5f ', X_proj(:)); elseif partId == '5' X_rec = recoverData(X(:,1:5), Z, 5); out = sprintf('%0.5f ', X_rec(:)); end end
github
Bladefidz/machine-learning-master
submit.m
.m
machine-learning-master/coursera/machine-learning-standford-univerity/machine-learning-ex5/ex5/submit.m
1,765
utf_8
b1804fe5854d9744dca981d250eda251
function submit() addpath('./lib'); conf.assignmentSlug = 'regularized-linear-regression-and-bias-variance'; conf.itemName = 'Regularized Linear Regression and Bias/Variance'; conf.partArrays = { ... { ... '1', ... { 'linearRegCostFunction.m' }, ... 'Regularized Linear Regression Cost Function', ... }, ... { ... '2', ... { 'linearRegCostFunction.m' }, ... 'Regularized Linear Regression Gradient', ... }, ... { ... '3', ... { 'learningCurve.m' }, ... 'Learning Curve', ... }, ... { ... '4', ... { 'polyFeatures.m' }, ... 'Polynomial Feature Mapping', ... }, ... { ... '5', ... { 'validationCurve.m' }, ... 'Validation Curve', ... }, ... }; conf.output = @output; submitWithConfiguration(conf); end function out = output(partId, auxstring) % Random Test Cases X = [ones(10,1) sin(1:1.5:15)' cos(1:1.5:15)']; y = sin(1:3:30)'; Xval = [ones(10,1) sin(0:1.5:14)' cos(0:1.5:14)']; yval = sin(1:10)'; if partId == '1' [J] = linearRegCostFunction(X, y, [0.1 0.2 0.3]', 0.5); out = sprintf('%0.5f ', J); elseif partId == '2' [J, grad] = linearRegCostFunction(X, y, [0.1 0.2 0.3]', 0.5); out = sprintf('%0.5f ', grad); elseif partId == '3' [error_train, error_val] = ... learningCurve(X, y, Xval, yval, 1); out = sprintf('%0.5f ', [error_train(:); error_val(:)]); elseif partId == '4' [X_poly] = polyFeatures(X(2,:)', 8); out = sprintf('%0.5f ', X_poly); elseif partId == '5' [lambda_vec, error_train, error_val] = ... validationCurve(X, y, Xval, yval); out = sprintf('%0.5f ', ... [lambda_vec(:); error_train(:); error_val(:)]); end end
github
Bladefidz/machine-learning-master
submit.m
.m
machine-learning-master/coursera/machine-learning-standford-univerity/machine-learning-ex3/ex3/submit.m
1,567
utf_8
1dba733a05282b2db9f2284548483b81
function submit() addpath('./lib'); conf.assignmentSlug = 'multi-class-classification-and-neural-networks'; conf.itemName = 'Multi-class Classification and Neural Networks'; conf.partArrays = { ... { ... '1', ... { 'lrCostFunction.m' }, ... 'Regularized Logistic Regression', ... }, ... { ... '2', ... { 'oneVsAll.m' }, ... 'One-vs-All Classifier Training', ... }, ... { ... '3', ... { 'predictOneVsAll.m' }, ... 'One-vs-All Classifier Prediction', ... }, ... { ... '4', ... { 'predict.m' }, ... 'Neural Network Prediction Function' ... }, ... }; conf.output = @output; submitWithConfiguration(conf); end function out = output(partId, auxdata) % Random Test Cases X = [ones(20,1) (exp(1) * sin(1:1:20))' (exp(0.5) * cos(1:1:20))']; y = sin(X(:,1) + X(:,2)) > 0; Xm = [ -1 -1 ; -1 -2 ; -2 -1 ; -2 -2 ; ... 1 1 ; 1 2 ; 2 1 ; 2 2 ; ... -1 1 ; -1 2 ; -2 1 ; -2 2 ; ... 1 -1 ; 1 -2 ; -2 -1 ; -2 -2 ]; ym = [ 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 ]'; t1 = sin(reshape(1:2:24, 4, 3)); t2 = cos(reshape(1:2:40, 4, 5)); if partId == '1' [J, grad] = lrCostFunction([0.25 0.5 -0.5]', X, y, 0.1); out = sprintf('%0.5f ', J); out = [out sprintf('%0.5f ', grad)]; elseif partId == '2' out = sprintf('%0.5f ', oneVsAll(Xm, ym, 4, 0.1)); elseif partId == '3' out = sprintf('%0.5f ', predictOneVsAll(t1, Xm)); elseif partId == '4' out = sprintf('%0.5f ', predict(t1, t2, Xm)); end end
github
Bladefidz/machine-learning-master
submit.m
.m
machine-learning-master/coursera/machine-learning-standford-univerity/machine-learning-ex8/ex8/submit.m
2,135
utf_8
eebb8c0a1db5a4df20b4c858603efad6
function submit() addpath('./lib'); conf.assignmentSlug = 'anomaly-detection-and-recommender-systems'; conf.itemName = 'Anomaly Detection and Recommender Systems'; conf.partArrays = { ... { ... '1', ... { 'estimateGaussian.m' }, ... 'Estimate Gaussian Parameters', ... }, ... { ... '2', ... { 'selectThreshold.m' }, ... 'Select Threshold', ... }, ... { ... '3', ... { 'cofiCostFunc.m' }, ... 'Collaborative Filtering Cost', ... }, ... { ... '4', ... { 'cofiCostFunc.m' }, ... 'Collaborative Filtering Gradient', ... }, ... { ... '5', ... { 'cofiCostFunc.m' }, ... 'Regularized Cost', ... }, ... { ... '6', ... { 'cofiCostFunc.m' }, ... 'Regularized Gradient', ... }, ... }; conf.output = @output; submitWithConfiguration(conf); end function out = output(partId, auxstring) % Random Test Cases n_u = 3; n_m = 4; n = 5; X = reshape(sin(1:n_m*n), n_m, n); Theta = reshape(cos(1:n_u*n), n_u, n); Y = reshape(sin(1:2:2*n_m*n_u), n_m, n_u); R = Y > 0.5; pval = [abs(Y(:)) ; 0.001; 1]; Y = (Y .* double(R)); % set 'Y' values to 0 for movies not reviewed yval = [R(:) ; 1; 0]; params = [X(:); Theta(:)]; if partId == '1' [mu sigma2] = estimateGaussian(X); out = sprintf('%0.5f ', [mu(:); sigma2(:)]); elseif partId == '2' [bestEpsilon bestF1] = selectThreshold(yval, pval); out = sprintf('%0.5f ', [bestEpsilon(:); bestF1(:)]); elseif partId == '3' [J] = cofiCostFunc(params, Y, R, n_u, n_m, ... n, 0); out = sprintf('%0.5f ', J(:)); elseif partId == '4' [J, grad] = cofiCostFunc(params, Y, R, n_u, n_m, ... n, 0); out = sprintf('%0.5f ', grad(:)); elseif partId == '5' [J] = cofiCostFunc(params, Y, R, n_u, n_m, ... n, 1.5); out = sprintf('%0.5f ', J(:)); elseif partId == '6' [J, grad] = cofiCostFunc(params, Y, R, n_u, n_m, ... n, 1.5); out = sprintf('%0.5f ', grad(:)); end end
github
Bladefidz/machine-learning-master
submit.m
.m
machine-learning-master/coursera/machine-learning-standford-univerity/machine-learning-ex1/ex1/submit.m
1,876
utf_8
8d1c467b830a89c187c05b121cb8fbfd
function submit() addpath('./lib'); conf.assignmentSlug = 'linear-regression'; conf.itemName = 'Linear Regression with Multiple Variables'; conf.partArrays = { ... { ... '1', ... { 'warmUpExercise.m' }, ... 'Warm-up Exercise', ... }, ... { ... '2', ... { 'computeCost.m' }, ... 'Computing Cost (for One Variable)', ... }, ... { ... '3', ... { 'gradientDescent.m' }, ... 'Gradient Descent (for One Variable)', ... }, ... { ... '4', ... { 'featureNormalize.m' }, ... 'Feature Normalization', ... }, ... { ... '5', ... { 'computeCostMulti.m' }, ... 'Computing Cost (for Multiple Variables)', ... }, ... { ... '6', ... { 'gradientDescentMulti.m' }, ... 'Gradient Descent (for Multiple Variables)', ... }, ... { ... '7', ... { 'normalEqn.m' }, ... 'Normal Equations', ... }, ... }; conf.output = @output; submitWithConfiguration(conf); end function out = output(partId) % Random Test Cases X1 = [ones(20,1) (exp(1) + exp(2) * (0.1:0.1:2))']; Y1 = X1(:,2) + sin(X1(:,1)) + cos(X1(:,2)); X2 = [X1 X1(:,2).^0.5 X1(:,2).^0.25]; Y2 = Y1.^0.5 + Y1; if partId == '1' out = sprintf('%0.5f ', warmUpExercise()); elseif partId == '2' out = sprintf('%0.5f ', computeCost(X1, Y1, [0.5 -0.5]')); elseif partId == '3' out = sprintf('%0.5f ', gradientDescent(X1, Y1, [0.5 -0.5]', 0.01, 10)); elseif partId == '4' out = sprintf('%0.5f ', featureNormalize(X2(:,2:4))); elseif partId == '5' out = sprintf('%0.5f ', computeCostMulti(X2, Y2, [0.1 0.2 0.3 0.4]')); elseif partId == '6' out = sprintf('%0.5f ', gradientDescentMulti(X2, Y2, [-0.1 -0.2 -0.3 -0.4]', 0.01, 10)); elseif partId == '7' out = sprintf('%0.5f ', normalEqn(X2, Y2)); end end
github
fuenwang/BiomedicalSound-master
saveFig.m
.m
BiomedicalSound-master/hw02/submit/saveFig.m
225
utf_8
1e79a8c1f6d13a39941aa0d64550e925
% % EE6265 Fu-En Wang 106061531 HW2 11/14/2017 % function saveFig(fig, path) fig.PaperPositionMode = 'auto'; fig_pos = fig.PaperPosition; fig.PaperSize = [fig_pos(3) fig_pos(4)]; print(fig, path, '-dpdf') end
github
fuenwang/BiomedicalSound-master
cyst_phantom.m
.m
BiomedicalSound-master/hw02/submit/cyst_phantom.m
1,094
utf_8
bb73536838617945fa437e231968c9b4
% % EE6265 Fu-En Wang 106061531 HW2 11/14/2017 % function [pos, amp] = cyst_phantom (N, C) x_size = 15/1000; % Width of phantom [mm] y_size = 0; % Transverse width of phantom [mm] z_size = 20/1000; % Height of phantom [mm] z_start = 30/1000; % Start of phantom surface [mm]; % Creat the general scatterers lambda = 4.2286e-04; % in m ggg = 2 * lambda; grid_x = 0:(ggg):x_size; grid_y = grid_x; grid_z = 0:(ggg):z_size; x = (randsample(grid_x, N, true) / x_size - 0.5)' * x_size; y = (randsample(grid_y, N, true) - 0.5)' * y_size; z = (randsample(grid_z, N, true)' / z_size)*z_size + z_start; %{ rand('state',12345); x = (rand (N,1)-0.5)*x_size; y = (rand (N,1)-0.5)*y_size; z = rand (N,1)*z_size + z_start; %} pos=[x y z]; % Generate the amplitudes with a Gaussian distribution randn('state',45678); amp=randn(N,1); % Make the cyst and set the amplitudes to zero inside % 5 mm cyst r=2.5/1000; % Radius of cyst [mm] %r=2.7/1000; zc=40/1000; xc=0/1000; % Place of cyst [mm] inside = find(((x-xc).^2 + (z-zc).^2) < r^2) ; amp(inside) = amp(inside)*(10^(C/20));
github
fuenwang/BiomedicalSound-master
getNewArray.m
.m
BiomedicalSound-master/hw02/submit/getNewArray.m
306
utf_8
0ed688092474e37118bd3155e3545c62
% % EE6265 Fu-En Wang 106061531 HW2 11/14/2017 % function [new_data] = getNewArray(origin, M, N) new_data = zeros(1, N); for i = 1:N if i * M <= 1000 index = (i-1)*M+1 : i*M; else index = (i-1)*M+1 : length(origin); end new_data(i) = sum(origin(index)); end end
github
fuenwang/BiomedicalSound-master
saveFig.m
.m
BiomedicalSound-master/hw02/code/saveFig.m
225
utf_8
1e79a8c1f6d13a39941aa0d64550e925
% % EE6265 Fu-En Wang 106061531 HW2 11/14/2017 % function saveFig(fig, path) fig.PaperPositionMode = 'auto'; fig_pos = fig.PaperPosition; fig.PaperSize = [fig_pos(3) fig_pos(4)]; print(fig, path, '-dpdf') end
github
fuenwang/BiomedicalSound-master
cyst_phantom.m
.m
BiomedicalSound-master/hw02/code/cyst_phantom.m
1,094
utf_8
bb73536838617945fa437e231968c9b4
% % EE6265 Fu-En Wang 106061531 HW2 11/14/2017 % function [pos, amp] = cyst_phantom (N, C) x_size = 15/1000; % Width of phantom [mm] y_size = 0; % Transverse width of phantom [mm] z_size = 20/1000; % Height of phantom [mm] z_start = 30/1000; % Start of phantom surface [mm]; % Creat the general scatterers lambda = 4.2286e-04; % in m ggg = 2 * lambda; grid_x = 0:(ggg):x_size; grid_y = grid_x; grid_z = 0:(ggg):z_size; x = (randsample(grid_x, N, true) / x_size - 0.5)' * x_size; y = (randsample(grid_y, N, true) - 0.5)' * y_size; z = (randsample(grid_z, N, true)' / z_size)*z_size + z_start; %{ rand('state',12345); x = (rand (N,1)-0.5)*x_size; y = (rand (N,1)-0.5)*y_size; z = rand (N,1)*z_size + z_start; %} pos=[x y z]; % Generate the amplitudes with a Gaussian distribution randn('state',45678); amp=randn(N,1); % Make the cyst and set the amplitudes to zero inside % 5 mm cyst r=2.5/1000; % Radius of cyst [mm] %r=2.7/1000; zc=40/1000; xc=0/1000; % Place of cyst [mm] inside = find(((x-xc).^2 + (z-zc).^2) < r^2) ; amp(inside) = amp(inside)*(10^(C/20));
github
fuenwang/BiomedicalSound-master
getNewArray.m
.m
BiomedicalSound-master/hw02/code/getNewArray.m
306
utf_8
0ed688092474e37118bd3155e3545c62
% % EE6265 Fu-En Wang 106061531 HW2 11/14/2017 % function [new_data] = getNewArray(origin, M, N) new_data = zeros(1, N); for i = 1:N if i * M <= 1000 index = (i-1)*M+1 : i*M; else index = (i-1)*M+1 : length(origin); end new_data(i) = sum(origin(index)); end end
github
fuenwang/BiomedicalSound-master
xdc_dynamic_focus.m
.m
BiomedicalSound-master/hw02/code/Field2/xdc_dynamic_focus.m
1,324
utf_8
5b19e1bc74874267f2480741a74b9a62
% Procedure for using dynamic focusing for an aperture % % Calling: xdc_dynamic_focus (Th, time, dir_zx,dir_zy); % % Parameters: Th - Pointer to the transducer aperture. % time - Time after which the dynamic focus is valid. % dir_zx - Direction (angle) in radians for the dynamic % focus. The direction is taken from the center for % the focus of the transducer in the z-x plane. % dir_zy - Direction (angle) in radians for the dynamic % focus. The direction is taken from the center for % the focus of the transducer in the z-y plane. % % Return: none. % % Version 1.02, March 19, 1998 by Joergen Arendt Jensen function res = xdc_dynamic_focus (Th,time,dir_zx,dir_zy) % Check the times vector [m1,n]=size(time); if ((n ~= 1) & (m1 ~= 1)) error ('Time must be a scalar'); end % Check the direction [m1,n]=size(dir_zx); if ((n ~= 1) & (m1 ~= 1)) error ('Direction must be a scalar'); end % Check the direction [m1,n]=size(dir_zy); if ((n ~= 1) & (m1 ~= 1)) error ('Direction must be a scalar'); end % Call the C-part of the program to insert focus Mat_field (1062,Th,time,dir_zx,dir_zy);
github
fuenwang/BiomedicalSound-master
xdc_focus.m
.m
BiomedicalSound-master/hw02/code/Field2/xdc_focus.m
974
utf_8
36043bd3d056fa7dd1245db340ed62d8
% Procedure for creating a focus time line for an aperture % % Calling: xdc_focus (Th, times, points); % % Parameters: Th - Pointer to the transducer aperture. % times - Time after which the associated focus is valid. % points - Focus points. Vector with three columns (x,y,z) % and one row for each field point. % % Return: none. % % Version 1.0, November 28, 1995 by Joergen Arendt Jensen function res = xdc_focus (Th,times,points) % Check the times vector [m1,n]=size(times); if (n ~= 1) error ('Times vectors must have one columns'); end % Check the point array [m2,n]=size(points); if (n ~= 3) error ('Points array must have three columns'); end % Check both arrays if (m1 ~= m2) error ('There must be the same number of rows for times and focal points'); end % Call the C-part of the program to insert focus Mat_field (1060,Th,times,points);
github
fuenwang/BiomedicalSound-master
xdc_triangles.m
.m
BiomedicalSound-master/hw02/code/Field2/xdc_triangles.m
1,603
utf_8
540861e828a1f99427c7a46c07cbcb70
% Procedure for creating an aperture with a number % of physical elements consisting of triangles % % Calling: Th = xdc_triangles (data, center, focus); % % data - Information about the triangles. One row % for each triangle. The contents is: % % Index Variable Value % ----------------------------------------------------------------------- % 1 no The number for the physical aperture starting from one % 2-4 x1,y1,z1 First corner coordinate % 5-7 x2,y2,z2 Second corner coordinate % 8-10 x3,y3,z3 Third corner coordinate % 11 apo Apodization value for this element. % % The physical triangle number given must be in increasing order. % % center - The center of the physical elements. One line for % each element starting from 1. % % focus - The fixed focus for this aperture. % % All dimensions are in meters. % % Return: A handle Th as a pointer to this transducer aperture. % % Version 1.0, January 20, 1999 by Joergen Arendt Jensen function Th = xdc_triangles (data, center, focus) % Check that all parameters are valid [n,m] = size(data); if (m~=11) error ('Field error: Not sufficient coordinates for triangles') end [n,m] = size(center); if (m~=3) error ('Field error: Not correct size for center points') end [n,m] = size(focus); if (n~=1) | (m~=3) error ('Field error: Not correct size for focus point') end % Call the C-part of the program to create aperture Th = Mat_field (1023, data, center, focus);
github
fuenwang/BiomedicalSound-master
field_logo.m
.m
BiomedicalSound-master/hw02/code/Field2/field_logo.m
393
utf_8
74305dd23287025a2e56f3921eb0621a
% Function to display the logo for field % % Version 1.3, August 10, 2007 by Joergen Arendt Jensen % Error in loading filr fixed function res = field_logo % Create a window and display the Field II logo h=figure; axes('position',[0 0 1 1]); place=which ('logo_field.mat'); eval(['load ',place]) image(data1); axis off colormap(map); drawnow; pause(5) close(h);
github
fuenwang/BiomedicalSound-master
xdc_linear_multirow.m
.m
BiomedicalSound-master/hw02/code/Field2/xdc_linear_multirow.m
2,353
utf_8
18208adff504f9015f3174ab59d46a54
% Procedure for creating a linear array transducer % with an number of rows (1.5D array) % % Calling: Th = xdc_linear_multirow (no_elem_x, width, no_ele_y, heights, kerf_x, kerf_y, % no_sub_x, no_sub_y, focus); % % Parameters: no_elem_x - Number of physical elements in x-direction. % width - Width in x-direction of elements. % no_elem_y - Number of physical elements in y-direction. % heights - Heights of the element rows in the y-direction. % Vector with no_elem_y values. % kerf_x - Width in x-direction between elements. % kerf_y - Gap in y-direction between elements. % no_sub_x - Number of sub-divisions in x-direction of physical elements. % no_sub_y - Number of sub-divisions in y-direction of physical elements. % focus[] - Fixed focus for array (x,y,z). Vector with three elements. % % Return: A handle Th as a pointer to this transducer aperture. % % Version 1.0, June 19, 1998 by Joergen Arendt Jensen function Th = xdc_linear_multirow (no_elem_x, width, no_elem_y, heights, kerf_x, kerf_y, no_sub_x, no_sub_y, focus) % Check that all parameters are valid if (no_elem_x<1) error ('Field error: Illegal number of physical transducer elements in x-direction') end if (width<=0) error ('Field error: Width of elements is negativ or zero') end if (no_elem_y<1) error ('Field error: Illegal number of physical transducer elements in y-direction') end for i=1:no_elem_y if (heights(i)<=0) error ('Field error: Height of elements is negativ or zero') end end if (kerf_x<0) error ('Field error: Kerf in x-direction is negativ') end if (kerf_y<0) error ('Field error: Kerf in y-direction is negativ') end if (no_sub_x<1) | (no_sub_y<1) error ('Field error: Number of mathematical elements must 1 or more') end if (min(size(focus))~=1) | (max(size(focus))~=3) error ('Field error: Focus must be a vector with three elements') end % Call the C-part of the program to create aperture Th = Mat_field (1012,no_elem_x, width, no_elem_y, heights, kerf_x, kerf_y, no_sub_x, no_sub_y, focus);
github
fuenwang/BiomedicalSound-master
calc_hhp.m
.m
BiomedicalSound-master/hw02/code/Field2/calc_hhp.m
846
utf_8
b3e9ab563d3bca28df72800ae37fff6d
% Procedure for calculating the pulse echo field. % % Calling: [hhp, start_time] = calc_hhp(Th1, Th2, points); % % Parameters: Th1 - Pointer to the transmit aperture. % Th2 - Pointer to the receive aperture. % points - Field points. Vector with three columns (x,y,z) % and one row for each field point. % % Return: hhp - Received voltage trace. % start_time - The time for the first sample in hhp. % % Version 1.0, November 22, 1995 by Joergen Arendt Jensen function [hhp, start_time] = calc_hhp (Th1, Th2, points) % Check the point array [m,n]=size(points); if (n ~= 3) error ('Points array must have three columns'); end % Call the C-part of the program to show aperture [hhp, start_time] = Mat_field (4003,Th1,Th2,points);
github
fuenwang/BiomedicalSound-master
field_debug.m
.m
BiomedicalSound-master/hw02/code/Field2/field_debug.m
417
utf_8
b8b796a2dc96f73d1e1cb36de01190f2
% Procedure for initialize the Field II debugging. This will print % out various information about the programs inner working. % % Calling: field_debug(state) % % Parameters: State - 1: debugging, 0: no debugging. % % Return: nothing. % % Version 1.0, November 20, 1995 by Joergen Arendt Jensen function res = field_debug (state) % Call the C-part of the program to debug it Mat_field (5010,state);
github
fuenwang/BiomedicalSound-master
ele_waveform.m
.m
BiomedicalSound-master/hw02/code/Field2/ele_waveform.m
1,143
utf_8
0573a5fbc90caa641825a0e8c53267e5
% Procedure for setting the waveform of individual % physical elements of the transducer % % Calling: ele_waveform (Th, element_no, samples); % % Parameters: Th - Pointer to the transducer aperture. % element_no - Column vector with one integer for each physical % element to set waveform for. % samples - Sample values for waveform. Matrix with one row for each % physical element and a number of columns equal to the % number of samples in the waveforms. % % Return: none. % % Version 1.0, July 1, 1998 by Joergen Arendt Jensen function res = ele_waveform (Th, element_no, samples) % Check the element number vector [m1,n]=size(element_no); if (n ~= 1) error ('Element_no vector must have one column'); end [m2,n]=size(samples); % Check both arrays if (m1 ~= m2) error ('There must be the same number of rows for element_no vector and samples matrix'); end % Call the C-part of the program to insert apodization Mat_field (1082, Th, element_no, samples);