plateform
stringclasses
1 value
repo_name
stringlengths
13
113
name
stringlengths
3
74
ext
stringclasses
1 value
path
stringlengths
12
229
size
int64
23
843k
source_encoding
stringclasses
9 values
md5
stringlengths
32
32
text
stringlengths
23
843k
github
philippboehmsturm/antx-master
gencode.m
.m
antx-master/freiburgLight/matlab/spm8/matlabbatch/gencode.m
8,368
utf_8
bdf69ad199b1ccbc06171e39793faa4e
function [str, tag, cind] = gencode(item, tag, tagctx) % GENCODE Generate code to recreate any MATLAB struct/cell variable. % For any MATLAB variable, this function generates a .m file that % can be run to recreate it. Classes can implement their class specific % equivalent of gencode with the same calling syntax. By default, classes % are treated similar to struct variables. % % [str, tag, cind] = gencode(item, tag, tagctx) % Input arguments: % item - MATLAB variable to generate code for (the variable itself, not its % name) % tag - optional: name of the variable, i.e. what will be displayed left % of the '=' sign. This can also be a valid struct/cell array % reference, like 'x(2).y'. If not provided, inputname(1) will be % used. % tagctx - optional: variable names not to be used (e.g. keywords, % reserved variables). A cell array of strings. % Output arguments: % str - cellstr containing code lines to reproduce the input variable % tag - name of the generated variable (equal to input tag) % cind - index into str to the line where the variable assignment is coded % (usually 1st line for non-object variables) % % See also GENCODE_RVALUE, GENCODE_SUBSTRUCT, GENCODE_SUBSTRUCTCODE. % % This code has been developed as part of a batch job configuration % system for MATLAB. See % http://sourceforge.net/projects/matlabbatch % for details about the original project. %_______________________________________________________________________ % Copyright (C) 2007 Freiburg Brain Imaging % Volkmar Glauche % $Id: gencode.m 410 2009-06-23 11:47:26Z glauche $ rev = '$Rev: 410 $'; %#ok if nargin < 2 tag = inputname(1); end; if nargin < 3 tagctx = {}; end if isempty(tag) tag = genvarname('val', tagctx); end; % Item count cind = 1; % try to generate rvalue code [rstr sts] = gencode_rvalue(item); if sts lvaleq = sprintf('%s = ', tag); if numel(rstr) == 1 str{1} = sprintf('%s%s;', lvaleq, rstr{1}); else str = cell(size(rstr)); indent = {repmat(' ', 1, numel(lvaleq)+1)}; str{1} = sprintf('%s%s', lvaleq, rstr{1}); str(2:end-1) = strcat(indent, rstr(2:end-1)); str{end} = sprintf('%s%s;', indent{1}, rstr{end}); if numel(str) > 10 % add cell mode comment to structure longer output str = [{'%%'} str(:)' {'%%'}]; end end else switch class(item) case 'char' str = {}; szitem = size(item); subs = gensubs('()', {':',':'}, szitem(3:end)); for k = 1:numel(subs) substag = gencode_substruct(subs{k}, tag); str1 = gencode(subsref(item, subs{k}), substag{1}, tagctx); str = [str(:)' str1(:)']; end case 'cell' str = {}; szitem = size(item); subs = gensubs('{}', {}, szitem); for k = 1:numel(subs) substag = gencode_substruct(subs{k}, tag); str1 = gencode(subsref(item, subs{k}), substag{1}, tagctx); str = [str(:)' str1(:)']; end case 'struct' str = gencode_structobj(item, tag, tagctx); otherwise if isobject(item) || ~(isnumeric(item) || islogical(item)) % This branch is hit for objects without a gencode method try % try to generate code in a struct-like fashion str = gencode_structobj(item, tag, tagctx); catch % failed - generate a warning in generated code and % warn directly str = {sprintf('warning(''%s: No code generated for object of class %s.'')', tag, class(item))}; if any(exist('cfg_message') == 2:6) cfg_message('matlabbatch:gencode:unknown', ... '%s: Code generation for objects of class ''%s'' must be implemented as object method.', tag, class(item)); else warning('gencode:unknown', ... '%s: Code generation for objects of class ''%s'' must be implemented as object method.', tag, class(item)); end end elseif issparse(item) % recreate sparse matrix from indices [tmpi tmpj tmps] = find(item); [stri tagi cindi] = gencode(tmpi); [strj tagj cindj] = gencode(tmpj); [strs tags cinds] = gencode(tmps); str = [stri(:)' strj(:)' strs(:)']; cind = cind + cindi + cindj + cinds; str{end+1} = sprintf('%s = sparse(tmpi, tmpj, tmps);', tag); else str = {}; szitem = size(item); subs = gensubs('()', {':',':'}, szitem(3:end)); for k = 1:numel(subs) substag = gencode_substruct(subs{k}, tag); str1 = gencode(subsref(item, subs{k}), substag{1}, tagctx); str = [str(:)' str1(:)']; end end end end function subs = gensubs(type, initdims, sz) % generate a cell array of subscripts into trailing dimensions of % n-dimensional arrays. Type is the subscript type (either '()' or '{}'), % initdims is a cell array of leading subscripts that will be prepended to % the generated subscripts and sz contains the size of the remaining % dimensions. % deal with special case of row vectors - only add one subscript in this % case if numel(sz) == 2 && sz(1) == 1 && isempty(initdims) ind = 1:sz(2); else % generate index array, rightmost index varying fastest ind = 1:sz(1); for k = 2:numel(sz) ind = [kron(ind, ones(1,sz(k))); kron(ones(1,size(ind,2)), 1:sz(k))]; end; end; subs = cell(1,size(ind,2)); % for each column of ind, generate a separate subscript structure for k = 1:size(ind,2) cellind = num2cell(ind(:,k)); subs{k} = substruct(type, [initdims(:)' cellind(:)']); end; function str = gencode_structobj(item, tag, tagctx) % Create code for a struct array. Also used as fallback for object % arrays, if the object does not provide its own gencode implementation. citem = class(item); % try to figure out fields/properties that can be set if isobject(item) && exist('metaclass','builtin') mobj = metaclass(item); % Only create code for properties which are % * not dependent or dependent and have a SetMethod % * not constant % * not abstract % * have public SetAccess sel = cellfun(@(cProp)(~cProp.Constant && ... ~cProp.Abstract && ... (~cProp.Dependent || ... (cProp.Dependent && ... ~isempty(cProp.SetMethod))) && ... strcmp(cProp.SetAccess,'public')),mobj.Properties); fn = cellfun(@(cProp)subsref(cProp,substruct('.','Name')),mobj.Properties(sel),'uniformoutput',false); else % best guess fn = fieldnames(item); end if isempty(fn) if isstruct(item) str{1} = sprintf('%s = struct([]);', tag); else str{1} = sprintf('%s = %s;', tag, citem); end elseif isempty(item) if isstruct(item) fn = strcat('''', fn, '''', ', {}'); str{1} = sprintf('%s = struct(', tag); for k = 1:numel(fn)-1 str{1} = sprintf('%s%s, ', str{1}, fn{k}); end str{1} = sprintf('%s%s);', str{1}, fn{end}); else str{1} = sprintf('%s = %s.empty;', tag, citem); end elseif numel(item) == 1 if isstruct(item) str = {}; else str{1} = sprintf('%s = %s;', tag, citem); end for l = 1:numel(fn) str1 = gencode(item.(fn{l}), sprintf('%s.%s', tag, fn{l}), tagctx); str = [str(:)' str1(:)']; end else str = {}; szitem = size(item); subs = gensubs('()', {}, szitem); for k = 1:numel(subs) if ~isstruct(item) str{end+1} = sprintf('%s = %s;', gencode_substruct(subs{k}, tag), citem); end for l = 1:numel(fn) csubs = [subs{k} substruct('.', fn{l})]; substag = gencode_substruct(csubs, tag); str1 = gencode(subsref(item, csubs), substag{1}, tagctx); str = [str(:)' str1(:)']; end end end
github
philippboehmsturm/antx-master
cfg_message.m
.m
antx-master/freiburgLight/matlab/spm8/matlabbatch/cfg_message.m
9,875
utf_8
8d66022211a225ece4067413b1b99ed7
function varargout = cfg_message(varargin) % function cfg_message(msgid, msgfmt, varargin) % Display a message. The message identifier msgid will be looked up in a % message database to decide how to treat this message. This database is % a struct array with fields: % .identifier - message id % .level - message severity level. One of % 'info' - print message % 'warning' - print message, raise a warning % 'error' - print message, throw an error % .destination - output destination. One of % 'none' - silently ignore this message % 'stdout' - standard output % 'stderr' - standard error output % 'syslog' - (UNIX) syslog % Warnings and errors will always be logged to the command % window and to syslog, if destination == 'syslog'. All % other messages will only be logged to the specified location. % .verbose % .backtrace - control verbosity and backtrace, one of 'on' or 'off' % % function [oldsts msgids] = cfg_message('on'|'off', 'verbose'|'backtrace', msgidregexp) % Set verbosity and backtrace display for all messages where msgid % matches msgidregexp. To match a message id exactly, use the regexp % '^msgid$'. % % function [olddest msgids] = cfg_message('none'|'stdout'|'stderr'|'syslog', 'destination', msgidregexp) % Set destination for all messages matching msgidregexp. % % function [oldlvl msgids] = cfg_message('info'|'warning'|'error', 'level', msgidregexp) % Set severity level for all messages matching msgidregexp. % % For all matching message ids and message templates, the old value and % the id are returned as cell strings. These can be used to restore % previous settings one-by-one. % % This code is part of a batch job configuration system for MATLAB. See % help matlabbatch % for a general overview. %_______________________________________________________________________ % Copyright (C) 2007 Freiburg Brain Imaging % Volkmar Glauche % $Id: cfg_message.m 4863 2012-08-27 08:09:23Z volkmar $ rev = '$Rev: 4863 $'; %#ok if nargin < 1 || isempty(varargin{1}) return; end % Get message settings msgcfg = cfg_get_defaults('msgcfg'); msgtpl = cfg_get_defaults('msgtpl'); msgdef = cfg_get_defaults('msgdef'); % Helper inline functions ismsgid = inline('~isempty(regexp(msgidstr,''^([a-zA-Z]\w*:)+[a-zA-Z]\w*$'',''once''))',... 'msgidstr'); findcfg = inline('~cellfun(@isempty,regexp({msgcfg.identifier},msgregexp,''once''))', ... 'msgcfg','msgregexp'); % Input checks if ~(ischar(varargin{1}) && size(varargin{1},1) == 1) && ... ~(isstruct(varargin{1}) && numel(varargin{1}) == 1 && ... all(isfield(varargin{1}, {'message', 'identifier'}))) cfg_message('matlabbatch:cfg_message', ... 'First argument must be a one-line character string or an errorstruct.'); return; end if any(strcmpi(varargin{1}, {'on', 'off', 'none', 'stdout', 'stderr', ... 'syslog', 'info', 'warning', 'error'})) % Set message properties if nargin ~= 3 cfg_message('matlabbatch:cfg_message', ... 'Must specify status, property and msgidregexp.'); return; end if any(strcmpi(varargin{1}, {'on', 'off'})) && ~any(strcmpi(varargin{2}, ... {'verbose', 'backtrace'})) cfg_message('matlabbatch:cfg_message', ... ['Message property must be one of ''verbose'' or ' ... '''backtrace''.']); return; elseif any(strcmpi(varargin{1}, {'none', 'stdout', 'stderr', 'syslog'})) && ... ~strcmpi(varargin{2}, 'destination') cfg_message('matlabbatch:cfg_message', ... 'Message property must be ''destination''.'); return; elseif any(strcmpi(varargin{1}, {'info', 'warning', 'error'})) && ... ~strcmpi(varargin{2}, 'level') cfg_message('matlabbatch:cfg_message', ... 'Message property must be ''level''.'); return; end if ~ischar(varargin{3}) || size(varargin{3},1) ~= 1 cfg_message('matlabbatch:cfg_message', ... 'Third argument must be a one-line character string.'); return; end msgstate = lower(varargin{1}); msgprop = lower(varargin{2}); msgregexp = varargin{3}; sel = findcfg(msgcfg, msgregexp); % Save properties and matching ids oldmsgprops = {msgcfg(sel).(msgprop)}; mchmsgids = {msgcfg(sel).identifier}; if any(sel) % Set property on all matching messages [msgcfg(sel).(msgprop)] = deal(msgstate); cfg_get_defaults('msgcfg',msgcfg); elseif ismsgid(msgregexp) % Add new rule, if msgregexp is a valid id msgcfg(end+1) = msgdef; msgcfg(end).identifier = msgregexp; msgcfg(end).(msgprop) = msgstate; cfg_get_defaults('msgcfg',msgcfg); end if ~ismsgid(msgregexp) % Update templates sel = strcmp(msgregexp, {msgtpl.identifier}); % Save properties and matching ids oldtplprops = {msgtpl(sel).(msgprop)}; mchtplids = {msgtpl(sel).identifier}; if any(sel) % Update literally matching regexps [msgtpl(sel).(msgprop)] = deal(msgstate); else % Add new template rule msgtpl(end+1) = msgdef; msgtpl(end).identifier = msgregexp; msgtpl(end).(msgprop) = msgstate; end cfg_get_defaults('msgtpl',msgtpl); else oldtplprops = {}; mchtplids = {}; end varargout{1} = [oldmsgprops(:); oldtplprops(:)]'; varargout{2} = [mchmsgids(:); mchtplids(:)]'; else % Issue message if isstruct(varargin{1}) msgid = varargin{1}.identifier; msgfmt = varargin{1}.message; extras = {}; if isfield(varargin{1},'stack') stack = varargin{1}.stack; else stack = dbstack(2); end % discard other fields else if nargin < 2 cfg_message('matlabbatch:cfg_message', ... 'Must specify msgid and message.'); end if ~ischar(varargin{2}) || size(varargin{2},1) ~= 1 cfg_message('matlabbatch:cfg_message', ... 'Second argument must be a one-line character string.'); end msgid = varargin{1}; msgfmt = varargin{2}; extras = varargin(3:end); stack = dbstack(2); end % find msgcfg entry for msgid sel = strcmp(msgid, {msgcfg.identifier}); if any(sel) cmsgcfg = msgcfg; else % no identity match found, match against regexp templates sel = ~cellfun(@isempty, regexp(msgid, {msgtpl.identifier})); cmsgcfg = msgtpl; [cmsgcfg(sel).identifier] = deal(msgid); end switch nnz(sel) case 0 % no matching id (or invalid msgid), use default setting cmsgcfg = msgdef; cmsgcfg.identifier = msgid; issuemsg(cmsgcfg, msgfmt, extras); case 1 % exact match issuemsg(cmsgcfg(sel), msgfmt, extras); otherwise % multiple matches, use last match (i.e. least recently added rule) is = find(sel); issuemsg(cmsgcfg(is(end)), msgfmt, extras); end end function issuemsg(msgcfg, msgfmt, extras) if strcmp(msgcfg.level,'error') || ~strcmp(msgcfg.destination, 'none') switch msgcfg.destination case 'none' fid = -1; case 'stdout' fid = 1; case 'stderr' fid = 2; case 'syslog' if isunix fid = '/usr/bin/logger'; else fid = -1; end end msg = sprintf(msgfmt, extras{:}); switch msgcfg.level case 'info' if ischar(fid) unix(sprintf('%s -t [MATLAB] %s: %s', fid, msgcfg.identifier, ... msg)); elseif ~ischar(fid) && fid > 0 % only display, if destination is neither syslog nor none fprintf(fid, '%s\n', msg); if strcmp(msgcfg.backtrace, 'on') dbstack(2) % This will ignore fid end if strcmp(msgcfg.verbose, 'on') fprintf(fid, 'To turn off this message, type %s(''none'', ''destination'', ''%s'').\n',... mfilename, msgcfg.identifier); end end case 'warning' if ischar(fid) unix(sprintf('%s -t [MATLAB] %s: %s', fid, msgcfg.identifier, ... msg)); elseif ~ischar(fid) && fid > 0 % only display, if destination is neither syslog nor none bsts = warning('query','backtrace'); vsts = warning('query','verbose'); warning('off', 'backtrace'); warning('off', 'verbose'); warning(msgcfg.identifier, msg); if strcmp(msgcfg.backtrace, 'on') dbstack(2) end if strcmp(msgcfg.verbose, 'on') fprintf('To turn off this message, type %s(''none'', ''destination'', ''%s'').\n',... mfilename, msgcfg.identifier); end warning(bsts); warning(vsts); end case 'error' if ischar(fid) unix(sprintf('%s -t [MATLAB] %s: %s', fid, msgcfg.identifier, ... msg)); end le.identifier = msgcfg.identifier; le.message = msg; le.stack = dbstack(2); error(le); end end
github
philippboehmsturm/antx-master
initialise.m
.m
antx-master/freiburgLight/matlab/spm8/matlabbatch/@cfg_branch/initialise.m
1,880
utf_8
ae5ccc5390fd36b56d02f477649f8a28
function item = initialise(item, val, dflag) % function item = initialise(item, val, dflag) % Initialise a configuration tree with values. If val is a job % struct/cell, only the parts of the configuration that are present in % this job will be initialised. % If val has the special value '<DEFAULTS>', the entire configuration % will be updated with values from .def fields. If a .def field is % present in a cfg_leaf item, the current default value will be inserted, % possibly replacing a previously entered (default) value. % dflag is ignored in a cfg_branch. % % This code is part of a batch job configuration system for MATLAB. See % help matlabbatch % for a general overview. %_______________________________________________________________________ % Copyright (C) 2007 Freiburg Brain Imaging % Volkmar Glauche % $Id: initialise.m 326 2008-09-16 14:00:57Z glauche $ rev = '$Rev: 326 $'; %#ok if strcmp(val,'<DEFAULTS>') item = initialise_def(item, val, dflag); elseif isstruct(val) item = initialise_job(item, val, dflag); else cfg_message('matlabbatch:initialise', ... 'Can not initialise %s: job is not a struct.', ... gettag(item)); end; function item = initialise_def(item, val, dflag) citem = subsref(item, substruct('.','val')); for k = 1:numel(citem) citem{k} = initialise(citem{k}, val, dflag); end; item = subsasgn(item, substruct('.','val'), citem); function item = initialise_job(item, val, dflag) % Determine possible tags vtags = fieldnames(val); for k = 1:numel(item.cfg_item.val) % find field in val that corresponds to one of the branch vals vi = strcmp(gettag(item.cfg_item.val{k}), vtags); if any(vi) % field names are unique, so there will be at most one match item.cfg_item.val{k} = initialise(item.cfg_item.val{k}, ... val.(vtags{vi}), dflag); end; end;
github
philippboehmsturm/antx-master
cfg_run_subsrefvar.m
.m
antx-master/freiburgLight/matlab/spm8/matlabbatch/cfg_basicio/cfg_run_subsrefvar.m
6,684
utf_8
e989b483543339da73d1dfadd792a91e
function varargout = cfg_run_subsrefvar(cmd, varargin) % Template function to implement callbacks for an cfg_exbranch. The calling % syntax is % varargout = cfg_run_subsrefvar(cmd, varargin) % where cmd is one of % 'run' - out = cfg_run_subsrefvar('run', job) % Run a job, and return its output argument % 'vout' - dep = cfg_run_subsrefvar('vout', job) % Examine a job structure with all leafs present and return an % array of cfg_dep objects. % 'check' - str = cfg_run_subsrefvar('check', subcmd, subjob) % Examine a part of a fully filled job structure. Return an empty % string if everything is ok, or a string describing the check % error. subcmd should be a string that identifies the part of % the configuration to be checked. % 'defaults' - defval = cfg_run_subsrefvar('defaults', key) % Retrieve defaults value. key must be a sequence of dot % delimited field names into the internal def struct which is % kept in function local_def. An error is returned if no % matching field is found. % cfg_run_subsrefvar('defaults', key, newval) % Set the specified field in the internal def struct to a new % value. % Application specific code needs to be inserted at the following places: % 'run' - main switch statement: code to compute the results, based on % a filled job % 'vout' - main switch statement: code to compute cfg_dep array, based % on a job structure that has all leafs, but not necessarily % any values filled in % 'check' - create and populate switch subcmd switchyard % 'defaults' - modify initialisation of defaults in subfunction local_defs % Callbacks can be constructed using anonymous function handles like this: % 'run' - @(job)cfg_run_subsrefvar('run', job) % 'vout' - @(job)cfg_run_subsrefvar('vout', job) % 'check' - @(job)cfg_run_subsrefvar('check', 'subcmd', job) % 'defaults' - @(val)cfg_run_subsrefvar('defaults', 'defstr', val{:}) % Note the list expansion val{:} - this is used to emulate a % varargin call in this function handle. % % This code is part of a batch job configuration system for MATLAB. See % help matlabbatch % for a general overview. %_______________________________________________________________________ % Copyright (C) 2007 Freiburg Brain Imaging % Volkmar Glauche % $Id: cfg_run_subsrefvar.m 485 2010-06-25 09:45:10Z glauche $ rev = '$Rev: 485 $'; %#ok if ischar(cmd) switch lower(cmd) case 'run' job = local_getjob(varargin{1}); % do computation, return results in variable out subs = local_getsubs(job, true); out.output = subsref(job.input, subs); if nargout > 0 varargout{1} = out; end case 'vout' job = local_getjob(varargin{1}); subscode = char(gencode_substruct(local_getsubs(job, false))); dep = cfg_dep; if isempty(subscode) dep.sname = 'Referenced part of variable'; else dep.sname = sprintf('val%s', subscode); end dep.src_output = substruct('.','output'); if isequal(job.tgt_spec,'<UNKNOWN>') dep.tgt_spec = cfg_findspec({{'strtype','e'}}); else fn = fieldnames(job.tgt_spec); dep.tgt_spec = job.tgt_spec.(fn{1}); end varargout{1} = dep; case 'check' if ischar(varargin{1}) subcmd = lower(varargin{1}); subjob = varargin{2}; str = ''; switch subcmd % implement checks, return status string in variable str case 'subsind' if (ischar(subjob) && isequal(subjob, ':')) || ... (isnumeric(subjob) && isequal(subjob, round(subjob)) && all(subjob > 0)) str = ''; else str = 'Subscript index must be either a vector of natural numbers or the character '':''.'; end otherwise cfg_message('unknown:check', ... 'Unknown check subcmd ''%s''.', subcmd); end varargout{1} = str; else cfg_message('ischar:check', 'Subcmd must be a string.'); end case 'defaults' if nargin == 2 varargout{1} = local_defs(varargin{1}); else local_defs(varargin{1:2}); end otherwise cfg_message('unknown:cmd', 'Unknown command ''%s''.', cmd); end else cfg_message('ischar:cmd', 'Cmd must be a string.'); end function subs = local_getsubs(job, cwarn) % generate subscript structure % generate warning for cell references if requested subs = struct('type',{},'subs',{}); for k = 1:numel(job.subsreference) switch char(fieldnames(job.subsreference{k})) case 'subsfield' subs(k).type = '.'; subs(k).subs = job.subsreference{k}.subsfield; case 'subsinda' subs(k).type = '()'; subs(k).subs = job.subsreference{k}.subsinda; case 'subsindc' subs(k).type = '{}'; subs(k).subs = job.subsreference{k}.subsindc; if cwarn && any(cellfun(@(x)(isequal(x,':')||numel(x)>1), ... job.subsreference{k}.subsindc)) cfg_message('cfg_basicio:subsrefvar', ... 'Trying to access multiple cell elements - only returning first one.'); end end end function varargout = local_defs(defstr, defval) persistent defs; if isempty(defs) % initialise defaults end if ischar(defstr) % construct subscript reference struct from dot delimited tag string tags = textscan(defstr,'%s', 'delimiter','.'); subs = struct('type','.','subs',tags{1}'); try cdefval = subsref(local_def, subs); catch cdefval = []; cfg_message('defaults:noval', ... 'No matching defaults value ''%s'' found.', defstr); end if nargin == 1 varargout{1} = cdefval; else defs = subsasgn(defs, subs, defval); end else cfg_message('ischar:defstr', 'Defaults key must be a string.'); end function job = local_getjob(job) if ~isstruct(job) cfg_message('isstruct:job', 'Job must be a struct.'); end
github
philippboehmsturm/antx-master
cfg_run_call_matlab.m
.m
antx-master/freiburgLight/matlab/spm8/matlabbatch/cfg_basicio/cfg_run_call_matlab.m
5,993
utf_8
6c951c26ab12e11978df562f45ad4152
function varargout = cfg_run_call_matlab(cmd, varargin) % A generic interface to call any MATLAB function through the batch system % and make its output arguments available as dependencies. % varargout = cfg_run_call_matlab(cmd, varargin) % where cmd is one of % 'run' - out = cfg_run_call_matlab('run', job) % Run the function, and return the specified output arguments % 'vout' - dep = cfg_run_call_matlab('vout', job) % Return dependencies as specified via the output cfg_repeat. % 'check' - str = cfg_run_call_matlab('check', subcmd, subjob) % Examine a part of a fully filled job structure. Return an empty % string if everything is ok, or a string describing the check % error. subcmd should be a string that identifies the part of % the configuration to be checked. % 'defaults' - defval = cfg_run_call_matlab('defaults', key) % Retrieve defaults value. key must be a sequence of dot % delimited field names into the internal def struct which is % kept in function local_def. An error is returned if no % matching field is found. % cfg_run_call_matlab('defaults', key, newval) % Set the specified field in the internal def struct to a new % value. % Application specific code needs to be inserted at the following places: % 'run' - main switch statement: code to compute the results, based on % a filled job % 'vout' - main switch statement: code to compute cfg_dep array, based % on a job structure that has all leafs, but not necessarily % any values filled in % 'check' - create and populate switch subcmd switchyard % 'defaults' - modify initialisation of defaults in subfunction local_defs % Callbacks can be constructed using anonymous function handles like this: % 'run' - @(job)cfg_run_call_matlab('run', job) % 'vout' - @(job)cfg_run_call_matlab('vout', job) % 'check' - @(job)cfg_run_call_matlab('check', 'subcmd', job) % 'defaults' - @(val)cfg_run_call_matlab('defaults', 'defstr', val{:}) % Note the list expansion val{:} - this is used to emulate a % varargin call in this function handle. % % This code is part of a batch job configuration system for MATLAB. See % help matlabbatch % for a general overview. %_______________________________________________________________________ % Copyright (C) 2007 Freiburg Brain Imaging % Volkmar Glauche % $Id: cfg_run_call_matlab.m 479 2010-04-07 12:40:26Z glauche $ rev = '$Rev: 479 $'; %#ok if ischar(cmd) switch lower(cmd) case 'run' job = local_getjob(varargin{1}); % do computation, return results in variable out in = cell(size(job.inputs)); for k = 1:numel(in) in{k} = job.inputs{k}.(char(fieldnames(job.inputs{k}))); end out.outputs = cell(size(job.outputs)); [out.outputs{:}] = feval(job.fun, in{:}); % make sure output filenames are cellstr arrays, not char % arrays for k = 1:numel(out.outputs) if isfield(job.outputs{k},'filter') && isa(out.outputs{k},'char') out.outputs{k} = cellstr(out.outputs{k}); end end if nargout > 0 varargout{1} = out; end case 'vout' job = local_getjob(varargin{1}); % initialise empty cfg_dep array dep = cfg_dep; dep = dep(false); % determine outputs, return cfg_dep array in variable dep for k = 1:numel(job.outputs) dep(k) = cfg_dep; dep(k).sname = sprintf('Call MATLAB: output %d - %s %s', k, char(fieldnames(job.outputs{k})), char(fieldnames(job.outputs{k}.(char(fieldnames(job.outputs{k})))))); dep(k).src_output = substruct('.','outputs','{}',{k}); dep(k).tgt_spec = cfg_findspec({{'strtype','e', char(fieldnames(job.outputs{k})), char(fieldnames(job.outputs{k}.(char(fieldnames(job.outputs{k})))))}}); end varargout{1} = dep; case 'check' if ischar(varargin{1}) subcmd = lower(varargin{1}); subjob = varargin{2}; str = ''; switch subcmd % implement checks, return status string in variable str otherwise cfg_message('unknown:check', ... 'Unknown check subcmd ''%s''.', subcmd); end varargout{1} = str; else cfg_message('ischar:check', 'Subcmd must be a string.'); end case 'defaults' if nargin == 2 varargout{1} = local_defs(varargin{1}); else local_defs(varargin{1:2}); end otherwise cfg_message('unknown:cmd', 'Unknown command ''%s''.', cmd); end else cfg_message('ischar:cmd', 'Cmd must be a string.'); end function varargout = local_defs(defstr, defval) persistent defs; if isempty(defs) % initialise defaults end if ischar(defstr) % construct subscript reference struct from dot delimited tag string tags = textscan(defstr,'%s', 'delimiter','.'); subs = struct('type','.','subs',tags{1}'); try cdefval = subsref(local_def, subs); catch cdefval = []; cfg_message('defaults:noval', ... 'No matching defaults value ''%s'' found.', defstr); end if nargin == 1 varargout{1} = cdefval; else defs = subsasgn(defs, subs, defval); end else cfg_message('ischar:defstr', 'Defaults key must be a string.'); end function job = local_getjob(job) if ~isstruct(job) cfg_message('isstruct:job', 'Job must be a struct.'); end
github
philippboehmsturm/antx-master
cfg_load_vars.m
.m
antx-master/freiburgLight/matlab/spm8/matlabbatch/cfg_basicio/cfg_load_vars.m
5,290
utf_8
d9fea1c27279512bee3dd9f1724a21a0
function varargout = cfg_load_vars(cmd, varargin) % Load a .mat file, and return its contents via output dependencies. % varargout = cfg_load_vars(cmd, varargin) % where cmd is one of % 'run' - out = cfg_load_vars('run', job) % Run a job, and return its output argument % 'vout' - dep = cfg_load_vars('vout', job) % Create a virtual output for each requested variable. If % "all variables" are requested, only one output will be % generated. % 'check' - str = cfg_load_vars('check', subcmd, subjob) % 'isvarname' - check whether the entered string is a valid % MATLAB variable name. This does not check % whether the variable is present in the .mat file. % 'defaults' - defval = cfg_load_vars('defaults', key) % No defaults. % % This code is part of a batch job configuration system for MATLAB. See % help matlabbatch % for a general overview. %_______________________________________________________________________ % Copyright (C) 2007 Freiburg Brain Imaging % Volkmar Glauche % $Id: cfg_load_vars.m 484 2010-06-23 08:51:04Z glauche $ rev = '$Rev: 484 $'; %#ok if ischar(cmd) switch lower(cmd) case 'run' job = local_getjob(varargin{1}); % do computation, return results in variable out var = load(job.matname{1}); if isfield(job.loadvars,'allvars') out{1} = var; else out = cell(size(job.loadvars.varname)); for k = 1:numel(job.loadvars.varname) try out{k} = var.(job.loadvars.varname{k}); catch error(['Variable ''%s'' could not be loaded from ' ... 'file ''%s''.'], job.loadvars.varname{k}, ... job.matname{1}); end end end if nargout > 0 varargout{1} = out; end case 'vout' job = local_getjob(varargin{1}); % initialise empty cfg_dep array if isfield(job.loadvars,'allvars') dep = cfg_dep; dep(1).sname = 'Loaded Variables (struct)'; dep(1).src_output = substruct('{}',{1}); dep(1).tgt_spec = cfg_findspec({{'class','cfg_entry'}}); else for k = 1:numel(job.loadvars.varname) dep(k) = cfg_dep; if ~isempty(job.loadvars.varname{k}) && ... ischar(job.loadvars.varname{k}) && ~ ... strcmpi(job.loadvars.varname{k}, ... '<UNDEFINED>') dep(k).sname = sprintf('Loaded Variable ''%s''', ... job.loadvars.varname{k}); else dep(k).sname = sprintf('Loaded Variable #%d', k); end dep(k).src_output = substruct('{}',{k}); dep(k).tgt_spec = cfg_findspec({{'class','cfg_entry'}}); end end % determine outputs, return cfg_dep array in variable dep varargout{1} = dep; case 'check' if ischar(varargin{1}) subcmd = lower(varargin{1}); subjob = varargin{2}; str = ''; switch subcmd case 'isvarname' if ~isvarname(subjob) str = sprintf(['''%s'' is not a valid MATLAB ' ... 'variable name'], subjob); end otherwise cfg_message('unknown:check', ... 'Unknown check subcmd ''%s''.', subcmd); end varargout{1} = str; else cfg_message('ischar:check', 'Subcmd must be a string.'); end case 'defaults' if nargin == 2 varargout{1} = local_defs(varargin{1}); else local_defs(varargin{1:2}); end otherwise cfg_message('unknown:cmd', 'Unknown command ''%s''.', cmd); end else cfg_message('ischar:cmd', 'Cmd must be a string.'); end function varargout = local_defs(defstr, defval) persistent defs; if isempty(defs) % initialise defaults end if ischar(defstr) % construct subscript reference struct from dot delimited tag string tags = textscan(defstr,'%s', 'delimiter','.'); subs = struct('type','.','subs',tags{1}'); try cdefval = subsref(local_def, subs); catch cdefval = []; cfg_message('defaults:noval', ... 'No matching defaults value ''%s'' found.', defstr); end if nargin == 1 varargout{1} = cdefval; else defs = subsasgn(defs, subs, defval); end else cfg_message('ischar:defstr', 'Defaults key must be a string.'); end function job = local_getjob(job) if ~isstruct(job) cfg_message('isstruct:job', 'Job must be a struct.'); end
github
philippboehmsturm/antx-master
initialise.m
.m
antx-master/freiburgLight/matlab/spm8/matlabbatch/@cfg_choice/initialise.m
3,001
utf_8
0224d7c84c0e3a40bfb09279d56bc0e7
function item = initialise(item, val, dflag) % function item = initialise(item, val, dflag) % Initialise a configuration tree with values. If val is a job % struct/cell, only the parts of the configuration that are present in % this job will be initialised. If dflag is true, then matching items % from item.values will be initialised. If dflag is false, the matching % item from item.values will be added to item.val and initialised after % copying. % If val has the special value '<DEFAULTS>', the entire configuration % will be updated with values from .def fields. If a .def field is % present in a cfg_leaf item, the current default value will be inserted, % possibly replacing a previously entered (default) value. If dflag is % true, defaults will only be set in item.values. If dflag is false, % defaults will be set for both item.val and item.values. % % This code is part of a batch job configuration system for MATLAB. See % help matlabbatch % for a general overview. %_______________________________________________________________________ % Copyright (C) 2007 Freiburg Brain Imaging % Volkmar Glauche % $Id: initialise.m 568 2012-06-20 12:30:00Z glauche $ rev = '$Rev: 568 $'; %#ok if strcmp(val,'<UNDEFINED>') val = struct([]); end if strcmp(val,'<DEFAULTS>') item = initialise_def(item, val, dflag); elseif isstruct(val) item = initialise_job(item, val, dflag); elseif iscell(val) && numel(val) == 1 && isstruct(val{1}) item = initialise_job(item, val{1}, dflag); else cfg_message('matlabbatch:initialise', ... 'Can not initialise %s: job is not a struct.', ... gettag(item)); end; function item = initialise_def(item, val, dflag) if ~dflag % initialise defaults both in current job and in defaults citem = subsref(item, substruct('.','val')); for k = 1:numel(citem) citem{k} = initialise(citem{k}, val, dflag); end; item = subsasgn(item, substruct('.','val'), citem); end; for k = 1:numel(item.values) item.values{k} = initialise(item.values{k}, val, dflag); end; function item = initialise_job(item, val, dflag) vtags = fieldnames(val); if dflag % set defaults for k = 1:numel(item.values) % find field in values that corresponds to one of the branch vals vi = strcmp(gettag(item.values{k}), vtags); if any(vi) % field names are unique, so there will be at most one match item.values{k} = initialise(item.values{k}, ... val.(vtags{vi}), dflag); end; end; else % select matching values struct, initialise and assign it to val % field item.cfg_item.val = {}; if ~isempty(vtags) for k = 1:numel(item.values) if strcmp(gettag(item.values{k}), vtags{1}) item.cfg_item.val{1} = initialise(item.values{k}, ... val.(vtags{1}), dflag); break; end; end; end; end;
github
philippboehmsturm/antx-master
subsasgn.m
.m
antx-master/freiburgLight/matlab/spm8/matlabbatch/@cfg_dep/subsasgn.m
4,222
utf_8
a6857a9c1bd09dc62c519bbf634712b6
function dep = subsasgn(dep, subs, varargin) % function dep = subsasgn(dep, subs, varargin) % subscript references we have to deal with are: % one level % dep.(field) - i.e. struct('type',{'.'} ,'subs',{field}) % dep(idx) - i.e. struct('type',{'()'},'subs',{idx}) % two levels % dep(idx).(field) % % to be dealt with elsewhere % dep.(field){fidx} % three levels % dep(idx).(field){fidx} % % This code is part of a batch job configuration system for MATLAB. See % help matlabbatch % for a general overview. %_______________________________________________________________________ % Copyright (C) 2007 Freiburg Brain Imaging % Volkmar Glauche % $Id: subsasgn.m 4863 2012-08-27 08:09:23Z volkmar $ rev = '$Rev: 4863 $'; %#ok persistent my_cfg_dep sflag = false; if strcmpi(subs(1).type, '()') % check array boundaries, extend if necessary if (numel(subs(1).subs) == 1 && numel(dep) < max(subs(1).subs{1})) || ... (numel(subs(1).subs) > ndims(dep)) || ... (numel(subs(1).subs) == ndims(dep) && any(cellfun(@max, subs(1).subs) > size(dep))) if isempty(my_cfg_dep) my_cfg_dep = cfg_dep; end if isempty(dep) dep = my_cfg_dep; end [dep(subs(1).subs{:})] = deal(my_cfg_dep); end if numel(subs) == 1 [dep(subs(1).subs{:})] = deal(varargin{:}); return; else % select referenced objects from input array, run subsasgn on them an % put results back into input array odep = dep; osubs = subs(1); dep = dep(subs(1).subs{:}); subs = subs(2:end); sflag = true; end end if strcmpi(subs(1).type, '.') % field assignment if numel(subs) > 1 % Only part of field value(s) assigned. Get old field value(s), % assign values to it. val = {dep.(subs(1).subs)}; if nargin == 3 % Same value to assign to all field values. val = cellfun(@(cval)subsasgn(cval,subs(2:end),varargin{1}), val, 'UniformOutput', false); else % Different values to assign to each field value. val = cellfun(@(cval,cin)subsasgn(cval,subs(2:end),cin), val, varargin, 'UniformOutput', false); end else % Field values to assign val = varargin; end % Assign to fields [ok val] = valcheck(subs(1).subs, val); if ok if isempty(dep) dep = repmat(cfg_dep,size(val)); end [dep.(subs(1).subs)] = deal(val{:}); end else cfg_message('matlabbatch:subsref:unknowntype', 'Bad subscript type ''%s''.',subs(1).type); end if sflag odep(osubs.subs{:}) = dep; dep = odep; end function [ok val] = valcheck(subs, val) persistent local_mysubs_fields; if ~iscell(local_mysubs_fields) local_mysubs_fields = mysubs_fields; end ok = true; switch subs case {'tname','sname'} if ~all(cellfun(@ischar,val)) cfg_message('matlabbatch:subsasgn:name', 'Value for field ''%s'' must be a string.', ... subs); ok = false; end case {'tgt_spec'} sel = cellfun(@isempty,val); if any(sel) [val{sel}] = deal(cfg_findspec); end ok = all(cellfun(@is_cfg_findspec,val)); case local_mysubs_fields, sel = cellfun(@isempty,val); if any(sel) [val{sel}] = deal(struct('type',{}, 'subs',{})); end ok = all(cellfun(@(cval)(isstruct(cval) && all(isfield(cval,{'type','subs'}))),val)); if ~ok cfg_message('matlabbatch:subsasgn:subs', ['Value for field ''%s'' must be a struct with' ... ' fields ''type'' and ''subs''.'], subs); end otherwise cfg_message('matlabbatch:subsasgn:unknownfield', 'Reference to unknown field ''%s''.', subs); end function ok = is_cfg_findspec(fs) ok = iscell(fs) && ... all(cellfun(@(cs)(isstruct(cs) && ... ((numel(fieldnames(cs))==1 && any(isfield(cs,{'name','value'}))) || ... (numel(fieldnames(cs))==2 && all(isfield(cs,{'name','value'}))))),fs)); if ~ok cfg_message('matlabbatch:ok_subsasgn:tgt_spec', ... 'Target specification must be a cfg_findspec.'); end
github
philippboehmsturm/antx-master
cfg_example_cumsum1.m
.m
antx-master/freiburgLight/matlab/spm8/matlabbatch/examples/cfg_example_cumsum1.m
2,889
utf_8
f5dc70e6d60661de3c6bf62d8ea9487b
function cumsum = cfg_example_cumsum1 % Example script that creates an cfg_exbranch to sum two numbers. The % inputs are entered as vector, the output is a vector containing the % cumulative sums. This function differs from cfg_example_sum (except from % names) only in the specification of the output subscript. % % This code is part of a batch job configuration system for MATLAB. See % help matlabbatch % for a general overview. %_______________________________________________________________________ % Copyright (C) 2007 Freiburg Brain Imaging % Volkmar Glauche % $Id: cfg_example_cumsum1.m 269 2008-05-23 07:15:10Z glauche $ rev = '$Rev: 269 $'; %#ok %% Input Item input1 = cfg_entry; % This is the generic data entry item input1.name = 'Input a'; % The displayed name input1.tag = 'a'; % The name appearing in the harvested job structure. This name must be unique among all items in the val field of the superior node input1.strtype = 'e'; % No restriction on what type of data is entered. This could be used to restrict input to real numbers, integers ... input1.num = [1 Inf]; % Number of inputs required (2D-array with exactly one row and two column) input1.help = {'This is the input vector.','The elements will be added together.'}; % help text displayed %% Executable Branch cumsum = cfg_exbranch; % This is the branch that has information about how to run this module cumsum.name = 'cumsum1'; % The display name cumsum.tag = 'cfg_example_cumsum1'; % The name appearing in the harvested job structure. This name must be unique among all items in the val field of the superior node cumsum.val = {input1}; % The items that belong to this branch. All items must be filled before this branch can run or produce virtual outputs cumsum.prog = @cfg_example_run_cumsum1; % A function handle that will be called with the harvested job to run the computation cumsum.vout = @cfg_example_vout_cumsum1; % A function handle that will be called with the harvested job to determine virtual outputs cumsum.help = {'Compute the cumulative sum of two numbers.'}; %% Local Functions % The cfg_example_vout_cumsum1 function can go here, it is not useful outside % the batch environment. function vout = cfg_example_vout_cumsum1(job) % Determine what outputs will be present if this job is run. In this case, % the structure of the inputs is fixed, and the output is always a single % number. Note that input items may not be numbers, they can also be % dependencies. vout = cfg_dep; % The dependency object vout.sname = 'cumsum(a)'; % Displayed dependency name vout.src_output = substruct('.','cs'); % The output subscript reference. The length of the output vector depends on the unknown length of the input vector. Therefore, the vector output needs to be assigned to a struct field.
github
philippboehmsturm/antx-master
cfg_example_div.m
.m
antx-master/freiburgLight/matlab/spm8/matlabbatch/examples/cfg_example_div.m
3,310
utf_8
902c541dac987ad9bb5ebf031e4f5180
function div = cfg_example_div % Example script that creates an cfg_exbranch to compute mod and rem of two % natural numbers. The inputs are entered as two single numbers, the output % is a struct with two fields 'mod' and 'rem'. % % This code is part of a batch job configuration system for MATLAB. See % help matlabbatch % for a general overview. %_______________________________________________________________________ % Copyright (C) 2007 Freiburg Brain Imaging % Volkmar Glauche % $Id: cfg_example_div.m 269 2008-05-23 07:15:10Z glauche $ rev = '$Rev: 269 $'; %#ok %% Input Items % Input a input1 = cfg_entry; % This is the generic data entry item input1.name = 'Input a'; % The displayed name input1.tag = 'a'; % The name appearing in the harvested job structure. This name must be unique among all items in the val field of the superior node input1.strtype = 'n'; % Natural number required input1.num = [1 1]; % Number of inputs required (2D-array with exactly one row and one column) input1.help = {'This is input a.','This input will be divided by the other input.'}; % help text displayed % Input b input2 = cfg_entry; % This is the generic data entry item input2.name = 'Input b'; % The displayed name input2.tag = 'b'; % The name appearing in the harvested job structure. This name must be unique among all items in the val field of the superior node input2.strtype = 'n'; % Natural number required input2.num = [1 1]; % Number of inputs required (2D-array with exactly one row and one column) input2.help = {'This is input b.','The other input will be divided by this input.'}; % help text displayed %% Executable Branch div = cfg_exbranch; % This is the branch that has information about how to run this module div.name = 'div'; % The display name div.tag = 'cfg_example_div'; % The name appearing in the harvested job structure. This name must be unique among all items in the val field of the superior node div.val = {input1 input2}; % The items that belong to this branch. All items must be filled before this branch can run or produce virtual outputs div.prog = @cfg_example_run_div; % A function handle that will be called with the harvested job to run the computation div.vout = @cfg_example_vout_div; % A function handle that will be called with the harvested job to determine virtual outputs div.help = {'Compute mod and rem of two numbers.'}; %% Local Functions % The cfg_example_vout_div function can go here, it is not useful outside % the batch environment. function vout = cfg_example_vout_div(job) % Determine what outputs will be present if this job is run. In this case, % the structure of the inputs is fixed, and the output is always a single % number. Note that input items may not be numbers, they can also be % dependencies. vout(1) = cfg_dep; % The dependency object vout(1).sname = 'a div b: mod'; % Displayed dependency name vout(1).src_output = substruct('.','mod'); % The output subscript reference. vout(2) = cfg_dep; % The dependency object vout(2).sname = 'a div b: rem'; % Displayed dependency name vout(2).src_output = substruct('.','rem'); % The output subscript reference.
github
philippboehmsturm/antx-master
cfg_example_add2.m
.m
antx-master/freiburgLight/matlab/spm8/matlabbatch/examples/cfg_example_add2.m
2,620
utf_8
46feab1277369d412b219fc3988a1392
function add2 = cfg_example_add2 % Example script that creates an cfg_exbranch to sum two numbers. The % inputs are entered as 2-vector, the output is just a single % number. % % This code is part of a batch job configuration system for MATLAB. See % help matlabbatch % for a general overview. %_______________________________________________________________________ % Copyright (C) 2007 Freiburg Brain Imaging % Volkmar Glauche % $Id: cfg_example_add2.m 269 2008-05-23 07:15:10Z glauche $ rev = '$Rev: 269 $'; %#ok %% Input Item input1 = cfg_entry; % This is the generic data entry item input1.name = 'Input a'; % The displayed name input1.tag = 'a'; % The name appearing in the harvested job structure. This name must be unique among all items in the val field of the superior node input1.strtype = 'e'; % No restriction on what type of data is entered. This could be used to restrict input to real numbers, integers ... input1.num = [1 2]; % Number of inputs required (2D-array with exactly one row and two column) input1.help = {'This is the input vector.','The elements will be added together.'}; % help text displayed %% Executable Branch add2 = cfg_exbranch; % This is the branch that has information about how to run this module add2.name = 'Add2'; % The display name add2.tag = 'cfg_example_add2'; % The name appearing in the harvested job structure. This name must be unique among all items in the val field of the superior node add2.val = {input1}; % The items that belong to this branch. All items must be filled before this branch can run or produce virtual outputs add2.prog = @cfg_example_run_add2; % A function handle that will be called with the harvested job to run the computation add2.vout = @cfg_example_vout_add2; % A function handle that will be called with the harvested job to determine virtual outputs add2.help = {'Add two numbers.'}; %% Local Functions % The cfg_example_vout_add2 function can go here, it is not useful outside % the batch environment. function vout = cfg_example_vout_add2(job) % Determine what outputs will be present if this job is run. In this case, % the structure of the inputs is fixed, and the output is always a single % number. Note that input items may not be numbers, they can also be % dependencies. vout = cfg_dep; % The dependency object vout.sname = 'Add2: a + b'; % Displayed dependency name vout.src_output = substruct('()',{1}); % The output subscript reference. This could be any reference into the output variable created during computation
github
philippboehmsturm/antx-master
cfg_example_add1.m
.m
antx-master/freiburgLight/matlab/spm8/matlabbatch/examples/cfg_example_add1.m
3,289
utf_8
e1eb2aaadbb170eb366a96d03a8661e8
function add1 = cfg_example_add1 % Example script that creates an cfg_exbranch to sum two numbers. The % inputs are entered as two single numbers, the output is just a single % number. % % This code is part of a batch job configuration system for MATLAB. See % help matlabbatch % for a general overview. %_______________________________________________________________________ % Copyright (C) 2007 Freiburg Brain Imaging % Volkmar Glauche % $Id: cfg_example_add1.m 269 2008-05-23 07:15:10Z glauche $ rev = '$Rev: 269 $'; %#ok %% Input Items % Input a input1 = cfg_entry; % This is the generic data entry item input1.name = 'Input a'; % The displayed name input1.tag = 'a'; % The name appearing in the harvested job structure. This name must be unique among all items in the val field of the superior node input1.strtype = 'e'; % No restriction on what type of data is entered. This could be used to restrict input to real numbers, integers ... input1.num = [1 1]; % Number of inputs required (2D-array with exactly one row and one column) input1.help = {'This is input a.','This input will be added to the other input.'}; % help text displayed % Input b input2 = cfg_entry; % This is the generic data entry item input2.name = 'Input b'; % The displayed name input2.tag = 'b'; % The name appearing in the harvested job structure. This name must be unique among all items in the val field of the superior node input2.strtype = 'e'; % No restriction on what type of data is entered. This could be used to restrict input to real numbers, integers ... input2.num = [1 1]; % Number of inputs required (2D-array with exactly one row and one column) input2.help = {'This is input b.','This input will be added to the other input.'}; % help text displayed %% Executable Branch add1 = cfg_exbranch; % This is the branch that has information about how to run this module add1.name = 'Add1'; % The display name add1.tag = 'cfg_example_add1'; % The name appearing in the harvested job structure. This name must be unique among all items in the val field of the superior node add1.val = {input1 input2}; % The items that belong to this branch. All items must be filled before this branch can run or produce virtual outputs add1.prog = @cfg_example_run_add1; % A function handle that will be called with the harvested job to run the computation add1.vout = @cfg_example_vout_add1; % A function handle that will be called with the harvested job to determine virtual outputs add1.help = {'Add two numbers.'}; %% Local Functions % The cfg_example_vout_add1 function can go here, it is not useful outside % the batch environment. function vout = cfg_example_vout_add1(job) % Determine what outputs will be present if this job is run. In this case, % the structure of the inputs is fixed, and the output is always a single % number. Note that input items may not be numbers, they can also be % dependencies. vout = cfg_dep; % The dependency object vout.sname = 'Add1: a + b'; % Displayed dependency name vout.src_output = substruct('()',{1}); % The output subscript reference. This could be any reference into the output variable created during computation
github
philippboehmsturm/antx-master
cfg_example_cumsum2.m
.m
antx-master/freiburgLight/matlab/spm8/matlabbatch/examples/cfg_example_cumsum2.m
3,390
utf_8
2db3649cdb98840abf80534956cbdeed
function cumsum = cfg_example_cumsum2 % Example script that creates an cfg_exbranch to sum two numbers. The % inputs are entered as vector, the output is a vector containing the % cumulative sums. This function differs from cfg_example_sum (except from % names) only in the specification of the output subscript. % % This code is part of a batch job configuration system for MATLAB. See % help matlabbatch % for a general overview. %_______________________________________________________________________ % Copyright (C) 2007 Freiburg Brain Imaging % Volkmar Glauche % $Id: cfg_example_cumsum2.m 269 2008-05-23 07:15:10Z glauche $ rev = '$Rev: 269 $'; %#ok %% Input Item input1 = cfg_entry; % This is the generic data entry item input1.name = 'Input a'; % The displayed name input1.tag = 'a'; % The name appearing in the harvested job structure. This name must be unique among all items in the val field of the superior node input1.strtype = 'e'; % No restriction on what type of data is entered. This could be used to restrict input to real numbers, integers ... input1.num = [1 1]; % Number of inputs required (2D-array with exactly one row and two column) input1.help = {'This is a vector element.'}; % help text displayed %% Collect Single Numbers to Vector invec = cfg_repeat; invec.name = 'Vector'; invec.tag = 'unused'; % According to the harvest rules for cfg_repeat, this tag will never appear in the output, because there is only one cfg_item to repeat and forcestruct is false invec.values = {input1}; invec.num = [1 Inf]; % At least one input should be there invec.help = {'Enter a vector element by element.'}; %% Executable Branch cumsum = cfg_exbranch; % This is the branch that has information about how to run this module cumsum.name = 'cumsum2'; % The display name cumsum.tag = 'cfg_example_cumsum2'; % The name appearing in the harvested job structure. This name must be unique among all items in the val field of the superior node cumsum.val = {invec}; % The items that belong to this branch. All items must be filled before this branch can run or produce virtual outputs cumsum.prog = @cfg_example_run_cumsum2; % A function handle that will be called with the harvested job to run the computation cumsum.vout = @cfg_example_vout_cumsum2; % A function handle that will be called with the harvested job to determine virtual outputs cumsum.help = {'Compute the cumulative sum of a vector.'}; %% Local Functions % The cfg_example_vout_cumsum2 function can go here, it is not useful outside % the batch environment. function vout = cfg_example_vout_cumsum2(job) % Determine what outputs will be present if this job is run. In this case, % the structure of the inputs is fixed, and the output is always a single % number. Note that input items may not be numbers, they can also be % dependencies. for k = 1:numel(job.a) % Create a subscript reference for each element of the cumsum vector vout(k) = cfg_dep; % The dependency object vout(k).sname = sprintf('cumsum(a(1:%d))', k); % Displayed dependency name vout(k).src_output = substruct('.','cs','()',{k}); % The output subscript reference. The length of the output vector depends on the unknown length of the input vector. Therefore, the generic ':' subscript is needed. end;
github
philippboehmsturm/antx-master
cfg_example_sum.m
.m
antx-master/freiburgLight/matlab/spm8/matlabbatch/examples/cfg_example_sum.m
2,704
utf_8
ded78850aa3b7a740bb1d79cbcdccbc4
function sum = cfg_example_sum % Example script that creates an cfg_exbranch to sum two numbers. The % inputs are entered as vector, the output is just a single % number. This function differs from cfg_example_add2 (except from names) % only in the specification of input1.num. % % This code is part of a batch job configuration system for MATLAB. See % help matlabbatch % for a general overview. %_______________________________________________________________________ % Copyright (C) 2007 Freiburg Brain Imaging % Volkmar Glauche % $Id: cfg_example_sum.m 269 2008-05-23 07:15:10Z glauche $ rev = '$Rev: 269 $'; %#ok %% Input Item input1 = cfg_entry; % This is the generic data entry item input1.name = 'Input a'; % The displayed name input1.tag = 'a'; % The name appearing in the harvested job structure. This name must be unique among all items in the val field of the superior node input1.strtype = 'e'; % No restriction on what type of data is entered. This could be used to restrict input to real numbers, integers ... input1.num = [1 Inf]; % Number of inputs required (2D-array with exactly one row and two column) input1.help = {'This is the input vector.','The elements will be added together.'}; % help text displayed %% Executable Branch sum = cfg_exbranch; % This is the branch that has information about how to run this module sum.name = 'sum'; % The display name sum.tag = 'cfg_example_sum'; % The name appearing in the harvested job structure. This name must be unique among all items in the val field of the superior node sum.val = {input1}; % The items that belong to this branch. All items must be filled before this branch can run or produce virtual outputs sum.prog = @cfg_example_run_sum; % A function handle that will be called with the harvested job to run the computation sum.vout = @cfg_example_vout_sum; % A function handle that will be called with the harvested job to determine virtual outputs sum.help = {'Add two numbers.'}; %% Local Functions % The cfg_example_vout_sum function can go here, it is not useful outside % the batch environment. function vout = cfg_example_vout_sum(job) % Determine what outputs will be present if this job is run. In this case, % the structure of the inputs is fixed, and the output is always a single % number. Note that input items may not be numbers, they can also be % dependencies. vout = cfg_dep; % The dependency object vout.sname = 'sum(a)'; % Displayed dependency name vout.src_output = substruct('()',{1}); % The output subscript reference. This could be any reference into the output variable created during computation
github
philippboehmsturm/antx-master
num2str.m
.m
antx-master/freiburgLight/matlab/spm8/matlabbatch/private/num2str.m
6,229
utf_8
35ba81d9ba6b78d182aa2136612ac3b2
function s = num2str(x, f) %NUM2STR Convert numbers to a string. % T = NUM2STR(X) converts the matrix X into a string representation T % with about 4 digits and an exponent if required. This is useful for % labeling plots with the TITLE, XLABEL, YLABEL, and TEXT commands. % % T = NUM2STR(X,N) converts the matrix X into a string representation % with a maximum N digits of precision. The default number of digits is % based on the magnitude of the elements of X. % % T = NUM2STR(X,FORMAT) uses the format string FORMAT (see SPRINTF for % details). % % If the input array is integer-valued, num2str returns the exact string % representation of that integer. The term integer-valued includes large % floating-point numbers that lose precision due to limitations of the % hardware. % % Example: % num2str(randn(2,2),3) produces the string matrix % % '-0.433 0.125' % ' -1.67 0.288' % % See also INT2STR, SPRINTF, FPRINTF, MAT2STR. % Copyright 1984-2005 The MathWorks, Inc. % $Revision: 299 $ $Date: 2006/11/11 22:45:08 $ %------------------------------------------------------------------------------ % if input does not exist or is empty, throw an exception if nargin<1 cfg_message('MATLAB:num2str:NumericArrayUnspecified',... 'Numeric array is unspecified') end % If input is a string, return this string. if ischar(x) s = x; return end if isempty(x) s = ''; return end if issparse(x) x = full(x); end maxDigitsOfPrecision = 256; floatFieldExtra = 7; intFieldExtra = 2; maxFieldWidth = 12; floatWidthOffset = 4; % Compose sprintf format string of numeric array. if nargin < 2 && ~isempty(x) && isequalwithequalnans(x, fix(x)) if isreal(x) % The precision is unspecified; the numeric array contains whole numbers. s = int2str(x); return; else %Complex case % maximum field width is 12 digits xmax = double(max(abs(x(:)))); if xmax == 0 d = 1; else d = min(maxFieldWidth, floor(log10(xmax)) + 1); end % Create ANSI C print format string. f = ['%' sprintf('%d',d+intFieldExtra) 'd']; % real numbers fi = ['%-' sprintf('%d',d+intFieldExtra) 's']; % imaginary numbers end elseif nargin < 2 % The precision is unspecified; the numeric array contains floating point % numbers. xmax = double(max(abs(x(:)))); if xmax == 0 d = 1; else d = min(maxFieldWidth, max(1, floor(log10(xmax))+1))+floatWidthOffset; end % Create ANSI C print format string. % real numbers f = sprintf('%%%.0f.%.0fg', d+floatFieldExtra, d); % imaginary numbers fi = sprintf('%%-%.0fs',d+floatFieldExtra); elseif ~ischar(f) % Precision is specified, not as ANSI C format string, but as a number. % Windows gets a segmentation fault at around 512 digits of precision, % as if it had an internal buffer that cannot handle more than 512 digits % to the RIGHT of the decimal point. Thus, allow half of the windows buffer % of digits of precision, as it should be enough for most computations. % Large numbers of digits to the LEFT of the decimal point seem to be allowed. if f > maxDigitsOfPrecision cfg_message('MATLAB:num2str:exceededMaxDigitsOfPrecision', ... 'Exceeded maximum %d digits of precision.',maxDigitsOfPrecision); end % Create ANSI C print format string fi = ['%-' sprintf('%.0f',f+floatFieldExtra) 's']; f = ['%' sprintf('%.0f',f+floatFieldExtra) '.' int2str(f) 'g']; else % Precistion is specified as an ANSI C print format string. % Validate format string k = strfind(f,'%'); if isempty(k), cfg_message('MATLAB:num2str:fmtInvalid', ... '''%s'' is an invalid format.',f); end % If digits of precision to the right of the decimal point are specified, % make sure it will not cause a segmentation fault under Windows. dotPositions = strfind(f,'.'); if ~isempty(dotPositions) decimalPosition = find(dotPositions > k(1)); % dot to the right of '%' if ~isempty(decimalPosition) digitsOfPrecision = sscanf(f(dotPositions(decimalPosition(1))+1:end),'%d'); if digitsOfPrecision > maxDigitsOfPrecision cfg_message('MATLAB:num2str:exceededMaxDigitsOfPrecision', ... 'Exceeded maximum %d digits of precision.',maxDigitsOfPrecision); end end end d = sscanf(f(k(1)+1:end),'%f'); fi = ['%-' int2str(d) 's']; end %------------------------------------------------------------------------------- % Print numeric array as a string image of itself. [m,n] = size(x); scell = cell(1,m); xIsReal = isreal(x); t = cell(n,1); pads = logical([]); for i = 1:m if xIsReal && (max(x(i,:)) < 2^31-1) scell{i} = sprintf(f,x(i,:)); if n > 1 && (min(x(i,:)) < 0) pads(regexp(scell{i}, '([^\sEe])-')) = true; end else for j = 1:n u0 = sprintf(f,real(x(i,j))); % we add a space infront of the negative sign % because Win32 version of sprintf does not. if (j>1) && u0(1)=='-' pads(length(u)) = true; end u = u0; % If we are printing integers and have overflowed, then % add in an extra space. if (real(x(i,j)) > 2^31-1) && (~isempty(strfind(f,'d'))) u = [' ' u];%#ok end if ~xIsReal if imag(x(i,j)) < 0 u = [u '-' formatimag(f,fi,-imag(x(i,j)))];%#ok else u = [u '+' formatimag(f,fi,imag(x(i,j)))];%#ok end end t{j} = u; end scell{i} = horzcat(t{:}); end end if m > 1 s = strvcat(scell{:});%#ok else s = scell{1}; end pads = find(pads); if ~isempty(pads) pads = fliplr(pads); spacecol = char(ones(m,1)*' '); for pad = pads s = [s(:,1:pad) spacecol s(:,pad+1:end)]; end end s = strtrim(s); %------------------------------------------------------------------------------ function v = formatimag(f,fi,x) % Format imaginary part v = [sprintf(f,x) 'i']; v = fliplr(deblank(fliplr(v))); v = sprintf(fi,v);
github
philippboehmsturm/antx-master
inputdlg.m
.m
antx-master/freiburgLight/matlab/spm8/matlabbatch/private/inputdlg.m
12,680
utf_8
3b9117e7e6d82e331df98e955c8f1203
function Answer=inputdlg(Prompt, Title, NumLines, DefAns, Resize) %INPUTDLG Input dialog box. % ANSWER = INPUTDLG(PROMPT) creates a modal dialog box that returns user % input for multiple prompts in the cell array ANSWER. PROMPT is a cell % array containing the PROMPT strings. % % INPUTDLG uses UIWAIT to suspend execution until the user responds. % % ANSWER = INPUTDLG(PROMPT,NAME) specifies the title for the dialog. % % ANSWER = INPUTDLG(PROMPT,NAME,NUMLINES) specifies the number of lines for % each answer in NUMLINES. NUMLINES may be a constant value or a column % vector having one element per PROMPT that specifies how many lines per % input field. NUMLINES may also be a matrix where the first column % specifies how many rows for the input field and the second column % specifies how many columns wide the input field should be. % % ANSWER = INPUTDLG(PROMPT,NAME,NUMLINES,DEFAULTANSWER) specifies the % default answer to display for each PROMPT. DEFAULTANSWER must contain % the same number of elements as PROMPT and must be a cell array of % strings. % % ANSWER = INPUTDLG(PROMPT,NAME,NUMLINES,DEFAULTANSWER,OPTIONS) specifies % additional options. If OPTIONS is the string 'on', the dialog is made % resizable. If OPTIONS is a structure, the fields Resize, WindowStyle, and % Interpreter are recognized. Resize can be either 'on' or % 'off'. WindowStyle can be either 'normal' or 'modal'. Interpreter can be % either 'none' or 'tex'. If Interpreter is 'tex', the prompt strings are % rendered using LaTeX. % % Examples: % % prompt={'Enter the matrix size for x^2:','Enter the colormap name:'}; % name='Input for Peaks function'; % numlines=1; % defaultanswer={'20','hsv'}; % % answer=inputdlg(prompt,name,numlines,defaultanswer); % % options.Resize='on'; % options.WindowStyle='normal'; % options.Interpreter='tex'; % % answer=inputdlg(prompt,name,numlines,defaultanswer,options); % % See also DIALOG, ERRORDLG, HELPDLG, LISTDLG, MSGBOX, % QUESTDLG, TEXTWRAP, UIWAIT, WARNDLG . % Copyright 1994-2007 The MathWorks, Inc. % $Revision: 311 $ %%%%%%%%%%%%%%%%%%%% %%% Nargin Check %%% %%%%%%%%%%%%%%%%%%%% cfg_message(nargchk(0,5,nargin,'struct')); cfg_message(nargoutchk(0,1,nargout,'struct')); %%%%%%%%%%%%%%%%%%%%%%%%% %%% Handle Input Args %%% %%%%%%%%%%%%%%%%%%%%%%%%% if nargin<1 Prompt='Input:'; end if ~iscell(Prompt) Prompt={Prompt}; end NumQuest=numel(Prompt); if nargin<2, Title=' '; end if nargin<3 NumLines=1; end if nargin<4 DefAns=cell(NumQuest,1); for lp=1:NumQuest DefAns{lp}=''; end end if nargin<5 Resize = 'off'; end WindowStyle='modal'; Interpreter='none'; Options = struct([]); %#ok if nargin==5 && isstruct(Resize) Options = Resize; Resize = 'off'; if isfield(Options,'Resize'), Resize=Options.Resize; end if isfield(Options,'WindowStyle'), WindowStyle=Options.WindowStyle; end if isfield(Options,'Interpreter'), Interpreter=Options.Interpreter; end end [rw,cl]=size(NumLines); OneVect = ones(NumQuest,1); if (rw == 1 & cl == 2) %#ok Handle [] NumLines=NumLines(OneVect,:); elseif (rw == 1 & cl == 1) %#ok NumLines=NumLines(OneVect); elseif (rw == 1 & cl == NumQuest) %#ok NumLines = NumLines'; elseif (rw ~= NumQuest | cl > 2) %#ok cfg_message('MATLAB:inputdlg:IncorrectSize', 'NumLines size is incorrect.') end if ~iscell(DefAns), cfg_message('MATLAB:inputdlg:InvalidDefaultAnswer', 'Default Answer must be a cell array of strings.'); end %%%%%%%%%%%%%%%%%%%%%%% %%% Create InputFig %%% %%%%%%%%%%%%%%%%%%%%%%% FigWidth=175; FigHeight=100; FigPos(3:4)=[FigWidth FigHeight]; %#ok FigColor=get(0,'DefaultUicontrolBackgroundcolor'); InputFig=dialog( ... 'Visible' ,'off' , ... 'KeyPressFcn' ,@doFigureKeyPress, ... 'Name' ,Title , ... 'Pointer' ,'arrow' , ... 'Units' ,'pixels' , ... 'UserData' ,'Cancel' , ... 'Tag' ,Title , ... 'HandleVisibility' ,'callback' , ... 'Color' ,FigColor , ... 'NextPlot' ,'add' , ... 'WindowStyle' ,WindowStyle, ... 'DoubleBuffer' ,'on' , ... 'Resize' ,Resize ... ); %%%%%%%%%%%%%%%%%%%%% %%% Set Positions %%% %%%%%%%%%%%%%%%%%%%%% DefOffset = 5; DefBtnWidth = 53; DefBtnHeight = 23; TextInfo.Units = 'pixels' ; TextInfo.FontSize = get(0,'FactoryUIControlFontSize'); TextInfo.FontWeight = get(InputFig,'DefaultTextFontWeight'); TextInfo.HorizontalAlignment= 'left' ; TextInfo.HandleVisibility = 'callback' ; StInfo=TextInfo; StInfo.Style = 'text' ; StInfo.BackgroundColor = FigColor; EdInfo=StInfo; EdInfo.FontWeight = get(InputFig,'DefaultUicontrolFontWeight'); EdInfo.Style = 'edit'; EdInfo.BackgroundColor = 'white'; BtnInfo=StInfo; BtnInfo.FontWeight = get(InputFig,'DefaultUicontrolFontWeight'); BtnInfo.Style = 'pushbutton'; BtnInfo.HorizontalAlignment = 'center'; % Add VerticalAlignment here as it is not applicable to the above. TextInfo.VerticalAlignment = 'bottom'; TextInfo.Color = get(0,'FactoryUIControlForegroundColor'); % adjust button height and width btnMargin=1.4; ExtControl=uicontrol(InputFig ,BtnInfo , ... 'String' ,'OK' , ... 'Visible' ,'off' ... ); % BtnYOffset = DefOffset; BtnExtent = get(ExtControl,'Extent'); BtnWidth = max(DefBtnWidth,BtnExtent(3)+8); BtnHeight = max(DefBtnHeight,BtnExtent(4)*btnMargin); delete(ExtControl); % Determine # of lines for all Prompts TxtWidth=FigWidth-2*DefOffset; ExtControl=uicontrol(InputFig ,StInfo , ... 'String' ,'' , ... 'Position' ,[ DefOffset DefOffset 0.96*TxtWidth BtnHeight ] , ... 'Visible' ,'off' ... ); WrapQuest=cell(NumQuest,1); QuestPos=zeros(NumQuest,4); for ExtLp=1:NumQuest if size(NumLines,2)==2 [WrapQuest{ExtLp},QuestPos(ExtLp,1:4)]= ... textwrap(ExtControl,Prompt(ExtLp),NumLines(ExtLp,2)); else [WrapQuest{ExtLp},QuestPos(ExtLp,1:4)]= ... textwrap(ExtControl,Prompt(ExtLp),80); end end % for ExtLp delete(ExtControl); QuestWidth =QuestPos(:,3); QuestHeight=QuestPos(:,4); TxtHeight=QuestHeight(1)/size(WrapQuest{1,1},1); EditHeight=TxtHeight*NumLines(:,1); EditHeight(NumLines(:,1)==1)=EditHeight(NumLines(:,1)==1)+4; FigHeight=(NumQuest+2)*DefOffset + ... BtnHeight+sum(EditHeight) + ... sum(QuestHeight); TxtXOffset=DefOffset; QuestYOffset=zeros(NumQuest,1); EditYOffset=zeros(NumQuest,1); QuestYOffset(1)=FigHeight-DefOffset-QuestHeight(1); EditYOffset(1)=QuestYOffset(1)-EditHeight(1); for YOffLp=2:NumQuest, QuestYOffset(YOffLp)=EditYOffset(YOffLp-1)-QuestHeight(YOffLp)-DefOffset; EditYOffset(YOffLp)=QuestYOffset(YOffLp)-EditHeight(YOffLp); end % for YOffLp QuestHandle=[]; %#ok EditHandle=[]; AxesHandle=axes('Parent',InputFig,'Position',[0 0 1 1],'Visible','off'); inputWidthSpecified = false; lfont = cfg_get_defaults('cfg_ui.lfont'); fn = fieldnames(lfont); fs = struct2cell(lfont); lfont = [fn'; fs']; for lp=1:NumQuest, if ~ischar(DefAns{lp}), delete(InputFig); %cfg_message('Default Answer must be a cell array of strings.'); cfg_message('MATLAB:inputdlg:InvalidInput', 'Default Answer must be a cell array of strings.'); end EditHandle(lp)=uicontrol(InputFig , ... EdInfo , ... 'Max' ,NumLines(lp,1) , ... 'Position' ,[ TxtXOffset EditYOffset(lp) TxtWidth EditHeight(lp) ], ... 'String' ,DefAns{lp} , ... 'Tag' ,'Edit' , ... lfont{:}); QuestHandle(lp)=text('Parent' ,AxesHandle, ... TextInfo , ... 'Position' ,[ TxtXOffset QuestYOffset(lp)], ... 'String' ,WrapQuest{lp} , ... 'Interpreter',Interpreter , ... 'Tag' ,'Quest' ... ); MinWidth = max(QuestWidth(:)); if (size(NumLines,2) == 2) % input field width has been specified. inputWidthSpecified = true; EditWidth = setcolumnwidth(EditHandle(lp), NumLines(lp,1), NumLines(lp,2)); MinWidth = max(MinWidth, EditWidth); end FigWidth=max(FigWidth, MinWidth+2*DefOffset); end % for lp % fig width may have changed, update the edit fields if they dont have user specified widths. if ~inputWidthSpecified TxtWidth=FigWidth-2*DefOffset; for lp=1:NumQuest set(EditHandle(lp), 'Position', [TxtXOffset EditYOffset(lp) TxtWidth EditHeight(lp)]); end end FigPos=get(InputFig,'Position'); FigWidth=max(FigWidth,2*(BtnWidth+DefOffset)+DefOffset); FigPos(1)=0; FigPos(2)=0; FigPos(3)=FigWidth; FigPos(4)=FigHeight; set(InputFig,'Position',getnicedialoglocation(FigPos,get(InputFig,'Units'))); OKHandle=uicontrol(InputFig , ... BtnInfo , ... 'Position' ,[ FigWidth-2*BtnWidth-2*DefOffset DefOffset BtnWidth BtnHeight ] , ... 'KeyPressFcn',@doControlKeyPress , ... 'String' ,'OK' , ... 'Callback' ,@doCallback , ... 'Tag' ,'OK' , ... 'UserData' ,'OK' ... ); setdefaultbutton(InputFig, OKHandle); CancelHandle=uicontrol(InputFig , ... BtnInfo , ... 'Position' ,[ FigWidth-BtnWidth-DefOffset DefOffset BtnWidth BtnHeight ] , ... 'KeyPressFcn',@doControlKeyPress , ... 'String' ,'Cancel' , ... 'Callback' ,@doCallback , ... 'Tag' ,'Cancel' , ... 'UserData' ,'Cancel' ... ); %#ok handles = guihandles(InputFig); handles.MinFigWidth = FigWidth; handles.FigHeight = FigHeight; handles.TextMargin = 2*DefOffset; guidata(InputFig,handles); set(InputFig,'ResizeFcn', {@doResize, inputWidthSpecified}); % make sure we are on screen movegui(InputFig) % if there is a figure out there and it's modal, we need to be modal too if ~isempty(gcbf) && strcmp(get(gcbf,'WindowStyle'),'modal') set(InputFig,'WindowStyle','modal'); end set(InputFig,'Visible','on'); drawnow; if ~isempty(EditHandle) uicontrol(EditHandle(1)); end if ishandle(InputFig) % Go into uiwait if the figure handle is still valid. % This is mostly the case during regular use. uiwait(InputFig); end % Check handle validity again since we may be out of uiwait because the % figure was deleted. if ishandle(InputFig) Answer={}; if strcmp(get(InputFig,'UserData'),'OK'), Answer=cell(NumQuest,1); for lp=1:NumQuest, Answer(lp)=get(EditHandle(lp),{'String'}); end end delete(InputFig); else Answer={}; end function doFigureKeyPress(obj, evd) %#ok switch(evd.Key) case {'return','space'} set(gcbf,'UserData','OK'); uiresume(gcbf); case {'escape'} delete(gcbf); end function doControlKeyPress(obj, evd) %#ok switch(evd.Key) case {'return'} if ~strcmp(get(obj,'UserData'),'Cancel') set(gcbf,'UserData','OK'); uiresume(gcbf); else delete(gcbf) end case 'escape' delete(gcbf) end function doCallback(obj, evd) %#ok if ~strcmp(get(obj,'UserData'),'Cancel') set(gcbf,'UserData','OK'); uiresume(gcbf); else delete(gcbf) end function doResize(FigHandle, evd, multicolumn) %#ok % TBD: Check difference in behavior w/ R13. May need to implement % additional resize behavior/clean up. Data=guidata(FigHandle); resetPos = false; FigPos = get(FigHandle,'Position'); FigWidth = FigPos(3); FigHeight = FigPos(4); if FigWidth < Data.MinFigWidth FigWidth = Data.MinFigWidth; FigPos(3) = Data.MinFigWidth; resetPos = true; end % make sure edit fields use all available space if % number of columns is not specified in dialog creation. if ~multicolumn for lp = 1:length(Data.Edit) EditPos = get(Data.Edit(lp),'Position'); EditPos(3) = FigWidth - Data.TextMargin; set(Data.Edit(lp),'Position',EditPos); end end if FigHeight ~= Data.FigHeight FigPos(4) = Data.FigHeight; resetPos = true; end if resetPos set(FigHandle,'Position',FigPos); end % set pixel width given the number of columns function EditWidth = setcolumnwidth(object, rows, cols) % Save current Units and String. old_units = get(object, 'Units'); old_string = get(object, 'String'); old_position = get(object, 'Position'); set(object, 'Units', 'pixels') set(object, 'String', char(ones(1,cols)*'x')); new_extent = get(object,'Extent'); if (rows > 1) % For multiple rows, allow space for the scrollbar new_extent = new_extent + 19; % Width of the scrollbar end new_position = old_position; new_position(3) = new_extent(3) + 1; set(object, 'Position', new_position); % reset string and units set(object, 'String', old_string, 'Units', old_units); EditWidth = new_extent(3);
github
philippboehmsturm/antx-master
cfg_justify.m
.m
antx-master/freiburgLight/matlab/spm8/matlabbatch/private/cfg_justify.m
4,780
utf_8
e63deba1ef91c37883c9de58f6f99344
function out = cfg_justify(varargin) % CFG_JUSTIFY Justifies a text string % OUT = CFG_JUSTIFY(N,TXT) justifies text string TXT to % the length specified by N. % % OUT = CFG_JUSTIFY(OBJ,TXT), where OBJ is a handle to a 'listbox' style % uicontrol, justifies text string TXT to the width of the OBJ in % characters - 1. % % If TXT is a cell array, then each element is treated % as a paragraph and justified, otherwise the string is % treated as a paragraph and is justified. % Non a-z or A-Z characters at the start of a paragraph % are used to define any indentation required (such as % for enumeration, bullets etc. If less than one line % of text is returned, then no formatting is done. % % Example: % out = cfg_justify(40,{['Statistical Parametric ',... % 'Mapping refers to the construction and ',... % 'assessment of spatially extended ',... % 'statistical process used to test hypotheses ',... % 'about [neuro]imaging data from SPECT/PET & ',... % 'fMRI. These ideas have been instantiated ',... % 'in software that is called SPM']}); % strvcat(out{:}) % %__________________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % John Ashburner % $Id: cfg_justify.m 484 2010-06-23 08:51:04Z glauche $ out = {}; if nargin < 2 cfg_message('matlabbatch:usage','Incorrect usage of cfg_justify.') end n = varargin{1}; if ishandle(n) % estimate extent of a space char and scrollbar width TempObj=copyobj(n,get(n,'Parent')); set(TempObj,'Visible','off','Max',100); spext = cfg_maxextent(TempObj,{repmat(' ',1,100)})/100; % try to work out slider size pos = get(TempObj,'Position'); oldun = get(TempObj,'units'); set(TempObj,'units','points'); ppos = get(TempObj,'Position'); set(TempObj,'units',oldun); sc = pos(3)/ppos(3); % assume slider width of 15 points swidth=15*sc; else % dummy constants spext = 1; swidth = 0; TempObj = n; end for i=2:nargin, if iscell(varargin{i}), for j=1:numel(varargin{i}), para = justify_paragraph(TempObj,spext,swidth,varargin{i}{j}); out = [out(:);para(:)]'; end else para = justify_paragraph(TempObj,spext,swidth,varargin{i}); out = [out(:);para(:)]'; end end if ishandle(TempObj) delete(TempObj); end function out = justify_paragraph(n,spext,swidth,txt) if numel(txt)>1 && txt(1)=='%', txt = txt(2:end); end; %txt = regexprep(txt,'/\*([^(/\*)]*)\*/',''); st1 = strfind(txt,'/*'); en1 = strfind(txt,'*/'); st = []; en = []; for i=1:numel(st1), en1 = en1(en1>st1(i)); if ~isempty(en1), st = [st st1(i)]; en = [en en1(1)]; en1 = en1(2:end); end; end; str = []; pen = 1; for i=1:numel(st), str = [str txt(pen:st(i)-1)]; pen = en(i)+2; end; str = [str txt(pen:numel(txt))]; txt = str; off = find((txt'>='a' & txt'<='z') | (txt'>='A' & txt'<='Z')); if isempty(off), out{1} = txt; else off = off(1); para = justify_para(n,off,spext,swidth,txt(off:end)); out = cell(numel(para),1); if numel(para)>1, out{1} = [txt(1:(off-1)) para{1}]; for j=2:numel(para), out{j} = [repmat(' ',1,off-1) para{j}]; end; else out{1} = txt; end; end; return; function out = justify_para(n,off,spext,swidth,varargin) % Collect varargs into a single string str = varargin{1}; for i=2:length(varargin), str = [str ' ' varargin{i}]; end; if isempty(str), out = {''}; return; end; if ishandle(n) % new size: at least 20 spaces wide, max widget width less offset % space and scrollbar width pos = get(n,'position'); opos = pos; pos(3) = max(pos(3)-off*spext-swidth,20*spext); set(n,'position',pos); % wrap text out = textwrap(n,{str}); cext = cfg_maxextent(n,out); % fill with spaces to produce (roughly) block output for k = 1:numel(out)-1 out{k} = justify_line(out{k}, pos(3), cext(k), spext); end; % reset position set(n,'Position',opos); else cols = max(n-off,20); out = textwrap({str},cols); for k = 1:numel(out)-1 out{k} = justify_line(out{k}, cols, length(out{k}), 1); end; end; function out = justify_line(str, width, cext, spext) ind = strfind(str,' '); if isempty(ind) out = str; else % #spaces to insert nsp = floor((width-cext)/spext); % #spaces per existing space ins(1:numel(ind)) = floor(nsp/numel(ind)); ins(1:mod(nsp,numel(ind))) = floor(nsp/numel(ind))+1; % insert spaces beginning at the end of the string for k = numel(ind):-1:1 str = [str(1:ind(k)) repmat(' ',1,ins(k)) str(ind(k)+1:end)]; end; out = str; end;
github
philippboehmsturm/antx-master
listdlg.m
.m
antx-master/freiburgLight/matlab/spm8/matlabbatch/private/listdlg.m
8,510
utf_8
1f4fe8c262a7bb4801e0b8abe2014870
function [selection,value] = listdlg(varargin) %LISTDLG List selection dialog box. % [SELECTION,OK] = LISTDLG('ListString',S) creates a modal dialog box % which allows you to select a string or multiple strings from a list. % SELECTION is a vector of indices of the selected strings (length 1 in % the single selection mode). This will be [] when OK is 0. OK is 1 if % you push the OK button, or 0 if you push the Cancel button or close the % figure. % % Double-clicking on an item or pressing <CR> when multiple items are % selected has the same effect as clicking the OK button. Pressing <CR> % is the same as clicking the OK button. Pressing <ESC> is the same as % clicking the Cancel button. % % Inputs are in parameter,value pairs: % % Parameter Description % 'ListString' cell array of strings for the list box. % 'SelectionMode' string; can be 'single' or 'multiple'; defaults to % 'multiple'. % 'ListSize' minimum [width height] of listbox in pixels; defaults % to [160 300]. The maximum [width height] is fixed to % [800 600]. % 'InitialValue' vector of indices of which items of the list box % are initially selected; defaults to the first item. % 'Name' String for the figure's title; defaults to ''. % 'PromptString' string matrix or cell array of strings which appears % as text above the list box; defaults to {}. % 'OKString' string for the OK button; defaults to 'OK'. % 'CancelString' string for the Cancel button; defaults to 'Cancel'. % % A 'Select all' button is provided in the multiple selection case. % % Example: % d = dir; % str = {d.name}; % [s,v] = listdlg('PromptString','Select a file:',... % 'SelectionMode','single',... % 'ListString',str) % % See also DIALOG, ERRORDLG, HELPDLG, INPUTDLG, % MSGBOX, QUESTDLG, WARNDLG. % Copyright 1984-2005 The MathWorks, Inc. % $Revision: 328 $ $Date: 2005/10/28 15:54:55 $ % 'uh' uicontrol button height, in pixels; default = 22. % 'fus' frame/uicontrol spacing, in pixels; default = 8. % 'ffs' frame/figure spacing, in pixels; default = 8. % simple test: % % d = dir; [s,v] = listdlg('PromptString','Select a file:','ListString',{d.name}); % cfg_message(nargchk(1,inf,nargin,'struct')) figname = ''; smode = 2; % (multiple) promptstring = {}; liststring = []; listsize = [160 300]; initialvalue = []; okstring = 'OK'; cancelstring = 'Cancel'; fus = 8; ffs = 8; uh = 22; if mod(length(varargin),2) ~= 0 % input args have not com in pairs, woe is me cfg_message('MATLAB:listdlg:InvalidArgument', 'Arguments to LISTDLG must come param/value in pairs.') end for i=1:2:length(varargin) switch lower(varargin{i}) case 'name' figname = varargin{i+1}; case 'promptstring' promptstring = varargin{i+1}; case 'selectionmode' switch lower(varargin{i+1}) case 'single' smode = 1; case 'multiple' smode = 2; end case 'listsize' listsize = varargin{i+1}; case 'liststring' liststring = varargin{i+1}; case 'initialvalue' initialvalue = varargin{i+1}; case 'uh' uh = varargin{i+1}; case 'fus' fus = varargin{i+1}; case 'ffs' ffs = varargin{i+1}; case 'okstring' okstring = varargin{i+1}; case 'cancelstring' cancelstring = varargin{i+1}; otherwise cfg_message('MATLAB:listdlg:UnknownParameter', ['Unknown parameter name passed to LISTDLG. Name was ' varargin{i}]) end end if ischar(promptstring) promptstring = cellstr(promptstring); end if isempty(initialvalue) initialvalue = 1; end if isempty(liststring) cfg_message('MATLAB:listdlg:NeedParameter', 'ListString parameter is required.') end liststring=cellstr(liststring); lfont = cfg_get_defaults('cfg_ui.lfont'); bfont = cfg_get_defaults('cfg_ui.bfont'); tmpObj = uicontrol('style','listbox',... 'max',100,... 'Visible','off',... lfont); lext = cfg_maxextent(tmpObj, liststring); ex = get(tmpObj,'Extent'); ex = ex(4); delete(tmpObj); listsize = min([800 600],max(listsize, [max(lext)+16, ex*numel(liststring)])); fp = get(0,'defaultfigureposition'); w = 2*(fus+ffs)+listsize(1); h = 2*ffs+6*fus+ex*length(promptstring)+listsize(2)+uh+(smode==2)*(fus+uh); fp = [fp(1) fp(2)+fp(4)-h w h]; % keep upper left corner fixed fig_props = { ... 'name' figname ... 'color' get(0,'defaultUicontrolBackgroundColor') ... 'resize' 'off' ... 'numbertitle' 'off' ... 'menubar' 'none' ... 'windowstyle' 'modal' ... 'visible' 'off' ... 'createfcn' '' ... 'position' fp ... 'closerequestfcn' 'delete(gcbf)' ... }; fig = figure(fig_props{:}); if ~isempty(promptstring) prompt_text = uicontrol('style','text','string',promptstring,... 'horizontalalignment','left',... 'position',[ffs+fus fp(4)-(ffs+fus+ex*length(promptstring)) ... listsize(1) ex*length(promptstring)]); %#ok end btn_wid = (fp(3)-2*(ffs+fus)-fus)/2; listbox = uicontrol('style','listbox',... 'position',[ffs+fus ffs+uh+4*fus+(smode==2)*(fus+uh) listsize],... 'string',liststring,... 'backgroundcolor','w',... 'max',smode,... 'tag','listbox',... 'value',initialvalue, ... 'callback', {@doListboxClick}, ... lfont); ok_btn = uicontrol('style','pushbutton',... 'string',okstring,... 'position',[ffs+fus ffs+fus btn_wid uh],... 'callback',{@doOK,listbox},... bfont); cancel_btn = uicontrol('style','pushbutton',... 'string',cancelstring,... 'position',[ffs+2*fus+btn_wid ffs+fus btn_wid uh],... 'callback',{@doCancel,listbox},... bfont); if smode == 2 selectall_btn = uicontrol('style','pushbutton',... 'string','Select all',... 'position',[ffs+fus 4*fus+ffs+uh listsize(1) uh],... 'tag','selectall_btn',... 'callback',{@doSelectAll, listbox}); if length(initialvalue) == length(liststring) set(selectall_btn,'enable','off') end set(listbox,'callback',{@doListboxClick, selectall_btn}) end set([fig, ok_btn, cancel_btn, listbox], 'keypressfcn', {@doKeypress, listbox}); set(fig,'position',getnicedialoglocation(fp, get(fig,'Units'))); % Make ok_btn the default button. setdefaultbutton(fig, ok_btn); % make sure we are on screen movegui(fig) set(fig, 'visible','on'); drawnow; try % Give default focus to the listbox *after* the figure is made visible uicontrol(listbox); uiwait(fig); catch if ishandle(fig) delete(fig) end end if isappdata(0,'ListDialogAppData__') ad = getappdata(0,'ListDialogAppData__'); selection = ad.selection; value = ad.value; rmappdata(0,'ListDialogAppData__') else % figure was deleted selection = []; value = 0; end %% figure, OK and Cancel KeyPressFcn function doKeypress(src, evd, listbox) %#ok switch evd.Key case 'escape' doCancel([],[],listbox); end %% OK callback function doOK(ok_btn, evd, listbox) %#ok if (~isappdata(0, 'ListDialogAppData__')) ad.value = 1; ad.selection = get(listbox,'value'); setappdata(0,'ListDialogAppData__',ad); delete(gcbf); end %% Cancel callback function doCancel(cancel_btn, evd, listbox) %#ok ad.value = 0; ad.selection = []; setappdata(0,'ListDialogAppData__',ad) delete(gcbf); %% SelectAll callback function doSelectAll(selectall_btn, evd, listbox) %#ok set(selectall_btn,'enable','off') set(listbox,'value',1:length(get(listbox,'string'))); %% Listbox callback function doListboxClick(listbox, evd, selectall_btn) %#ok % if this is a doubleclick, doOK if strcmp(get(gcbf,'SelectionType'),'open') doOK([],[],listbox); elseif nargin == 3 if length(get(listbox,'string'))==length(get(listbox,'value')) set(selectall_btn,'enable','off') else set(selectall_btn,'enable','on') end end
github
philippboehmsturm/antx-master
initialise.m
.m
antx-master/freiburgLight/matlab/spm8/matlabbatch/@cfg_mchoice/initialise.m
3,150
utf_8
0f2df3f6db6f05985b97b4c89357cb92
function item = initialise(item, val, dflag) % function item = initialise(item, val, dflag) % Initialise a configuration tree with values. If val is a job % struct/cell, only the parts of the configuration that are present in % this job will be initialised. If dflag is true, then matching items % from item.values will be initialised. If dflag is false, the matching % item from item.values will be added to item.val and initialised after % copying. % If val has the special value '<DEFAULTS>', the entire configuration % will be updated with values from .def fields. If a .def field is % present in a cfg_leaf item, the current default value will be inserted, % possibly replacing a previously entered (default) value. If dflag is % true, defaults will only be set in item.values. If dflag is false, % defaults will be set for both item.val and item.values. % % This code is part of a batch job configuration system for MATLAB. See % help matlabbatch % for a general overview. %_______________________________________________________________________ % Copyright (C) 2007 Freiburg Brain Imaging % Volkmar Glauche % $Id: initialise.m 574 2012-06-20 13:39:53Z glauche $ rev = '$Rev: 574 $'; %#ok if strcmp(val,'<UNDEFINED>') val = struct([]); end if strcmp(val,'<DEFAULTS>') item = initialise_def(item, val, dflag); elseif isstruct(val) item = initialise_job(item, val, dflag); elseif iscell(val) && numel(val) == 1 && isstruct(val{1}) item = initialise_job(item, val{1}, dflag); else cfg_message('matlabbatch:initialise', ... 'Can not initialise %s: job is not a struct.', ... gettag(item)); end; function item = initialise_def(item, val, dflag) if ~dflag % initialise defaults both in current job and in defaults citem = subsref(item, substruct('.','val')); for k = 1:numel(citem) citem{k} = initialise(citem{k}, val, dflag); end; item = subsasgn(item, substruct('.','val'), citem); end; for k = 1:numel(item.values) item.values{k} = initialise(item.values{k}, val, dflag); end; function item = initialise_job(item, val, dflag) vtags = fieldnames(val); if dflag % set defaults for k = 1:numel(item.values) % find field in values that corresponds to one of the branch vals vi = strcmp(gettag(item.values{k}), vtags); if any(vi) % field names are unique, so there will be at most one match item.values{k} = initialise(item.values{k}, ... val.(vtags{vi}), dflag); end; end; else % select matching values struct, initialise and assign it to val % field item.cfg_item.val = {}; if ~isempty(vtags) for k = 1:numel(item.values) % find fields in values that corresponds to one of the branch vals vi = strcmp(gettag(item.values{k}), vtags); if any(vi) % field names are unique, so there will be at most one match item.cfg_item.val{end+1} = initialise(item.values{k}, ... val.(vtags{vi}), dflag); end; end; end; end;
github
philippboehmsturm/antx-master
cfg_confgui.m
.m
antx-master/freiburgLight/matlab/spm8/matlabbatch/cfg_confgui/cfg_confgui.m
31,063
utf_8
c3ac1e274d0982450821448a622318a6
function menu_cfg = cfg_confgui % This function describes the user defined fields for each kind of % cfg_item and their layout in terms of cfg_items. Thus, the % configuration system can be used to generate code for new configuration % files itself. % % This code is part of a batch job configuration system for MATLAB. See % help matlabbatch % for a general overview. %_______________________________________________________________________ % Copyright (C) 2007 Freiburg Brain Imaging % Volkmar Glauche % $Id: cfg_confgui.m 483 2010-06-17 13:20:16Z glauche $ rev = '$Rev: 483 $'; %#ok %% Declaration of fields % Name %----------------------------------------------------------------------- conf_name = cfg_entry; conf_name.name = 'Name'; conf_name.tag = 'name'; conf_name.strtype = 's'; conf_name.num = [1 Inf]; conf_name.help = {'Display name of configuration item.'}; % Tag %----------------------------------------------------------------------- conf_tag = cfg_entry; conf_tag.name = 'Tag'; conf_tag.tag = 'tag'; conf_tag.strtype = 's'; conf_tag.num = [1 Inf]; conf_tag.help = {['Tag of configuration item.', 'This will be used as tag' ... ' of the generated output and (depending on item class)' ... ' appear in the input structure to the computation' ... ' function.']}; % Val Item %----------------------------------------------------------------------- conf_val_item = cfg_entry; conf_val_item.name = 'Val Item'; conf_val_item.tag = 'val'; conf_val_item.strtype = 'e'; conf_val_item.num = [1 1]; conf_val_item.help = {'Val of configuration item.', 'This should be a dependency to another cfg_item object.'}; % Val %----------------------------------------------------------------------- conf_val = cfg_repeat; conf_val.name = 'Val'; conf_val.tag = 'val'; conf_val.values = {conf_val_item}; conf_val.num = [1 Inf]; conf_val.help = {'Val of configuration item.', 'A collection of cfg_item objects to be assembled in a cfg_(ex)branch. Each item in this list needs to have a unique tag.'}; % Val with exactly one element %----------------------------------------------------------------------- conf_val_single = conf_val; conf_val_single.val = {conf_val_item}; conf_val_single.num = [1 1]; % Check %----------------------------------------------------------------------- conf_check = cfg_entry; conf_check.name = 'Check'; conf_check.tag = 'check'; conf_check.strtype = 'f'; conf_check.num = [0 Inf]; conf_check.help = {'Check function (handle).', ... ['This function will be called during all_set, before a job can be run. ', ... 'It receives the harvested configuration tree rooted at the current item as input. ', ... 'If the input is ok, it should return an empty string. Otherwise, ', ... 'its output should be a string that describes why input is not correct or consistent.'], ... ['Note that the check function will be called only if all dependencies are resolved. ', ... 'This will usually be at the time just before the job is actually run.']}; % Help paragraph %----------------------------------------------------------------------- conf_help_par = cfg_entry; conf_help_par.name = 'Paragraph'; conf_help_par.val = {''}; conf_help_par.tag = 'help'; conf_help_par.strtype = 's'; conf_help_par.num = [0 Inf]; conf_help_par.help = {'Help paragraph.', 'Enter a string which will be formatted as a separate paragraph.'}; % Help %----------------------------------------------------------------------- conf_help = cfg_repeat; conf_help.name = 'Help'; conf_help.tag = 'help'; conf_help.values = {conf_help_par}; conf_help.num = [0 Inf]; conf_help.help = {'Help text.', 'Each help text consists of a number of paragraphs.'}; % Def %----------------------------------------------------------------------- conf_def = cfg_entry; conf_def.name = 'Def'; conf_def.tag = 'def'; conf_def.strtype = 'f'; conf_def.num = [0 1]; conf_def.help = {'Default settings for configuration item.', ... ['This should be a function handle to a function accepting '... 'both zero and one free argument. It will be called by setval ' ... 'with zero free arguments to retrieve a default value and with ' ... 'one argument to set a default.'], ... ['If the default function has a registry like call ' ... 'syntax '], ... 'defval = get_defaults(''some.key'')', ... 'get_defaults(''some.key'', defval)', ... 'then the function handle should look like this', ... '@(defval)get_defaults(''some.key'', defval{:})', ... ['Matlabbatch will wrap the second argument in a cell ' ... 'when calling this handle, thereby effectively passing ' ... 'no second argument to retrieve a value and passing ' ... 'the default value when setting it.']}; % Hidden %----------------------------------------------------------------------- conf_hidden = cfg_menu; conf_hidden.name = 'Hidden'; conf_hidden.tag = 'hidden'; conf_hidden.labels = {'False', 'True'}; conf_hidden.values = {false, true}; conf_hidden.help = {'''Hidden'' status of configuration item.', 'If you want to hide an item to the user, set this to true. However, the item will be harvested, and a job can only run if this item is all_set. To hide an item is mostly useful for constants, that do not need to be changed by the user.'}; % Forcestruct %----------------------------------------------------------------------- conf_forcestruct = cfg_menu; conf_forcestruct.name = 'Forcestruct'; conf_forcestruct.tag = 'forcestruct'; conf_forcestruct.labels = {'False', 'True'}; conf_forcestruct.values = {false, true}; conf_forcestruct.help = {'Forcestruct flag.', 'Sometimes the default harvest behaviour of a cfg_repeat object is not what one wants to have: if there is only one repeatable item, it returns a cell and discards its own tag. If one adds a new configuration to this repeat, then suddenly the harvested cfg_repeat has the tag of the repeat item and a cell with struct arrays as members. If you want to force this latter behaviour also if there is only one item in the ''values'' field, then set this flag to ''true''.'}; % Values Item %----------------------------------------------------------------------- conf_values_item = cfg_entry; conf_values_item.name = 'Values Item'; conf_values_item.tag = 'values'; conf_values_item.strtype = 'e'; conf_values_item.num = [1 Inf]; conf_values_item.help = {'Value of configuration item.', 'For cfg_menus, this is an arbitrary value, for cfg_repeat/cfg_choice items, this should be a dependency to another cfg_item object.'}; % Values %----------------------------------------------------------------------- conf_values = cfg_repeat; conf_values.name = 'Values'; conf_values.tag = 'values'; conf_values.values = {conf_values_item}; conf_values.num = [1 Inf]; conf_values.help = {'Values of configuration item. If this is a cfg_repeat/cfg_choice and there is more than one item in this list, each item needs to have a unique tag.'}; % Label Item %----------------------------------------------------------------------- conf_labels_item = cfg_entry; conf_labels_item.name = 'Label'; conf_labels_item.tag = 'labels'; conf_labels_item.strtype = 's'; conf_labels_item.num = [1 Inf]; conf_labels_item.help = {'Label of menu item.', 'This is a string which will become a label entry.'}; % Labels %----------------------------------------------------------------------- conf_labels = cfg_repeat; conf_labels.name = 'Labels'; conf_labels.tag = 'labels'; conf_labels.values = {conf_labels_item}; conf_labels.num = [1 Inf]; conf_labels.help = {'Labels of configuration item.', 'This is a collection of strings - each string will become a label entry.'}; % Filter %----------------------------------------------------------------------- conf_filter = cfg_entry; conf_filter.name = 'Filter'; conf_filter.tag = 'filter'; conf_filter.strtype = 's'; conf_filter.num = [0 Inf]; conf_filter.help = {'Filter for files.', ... ['This filter will not display in the file selector filter field, '... 'it will be used prior to displaying files. The following special '... 'types are supported:'], ... '* ''any''', ... '* ''batch''', ... '* ''dir''', ... '* ''image''', ... '* ''mat''', ... '* ''mesh''', ... '* ''nifti''', ... '* ''xml''', ... '* any regular expression filter.'}; % Ufilter %----------------------------------------------------------------------- conf_ufilter = cfg_entry; conf_ufilter.name = 'Ufilter'; conf_ufilter.tag = 'ufilter'; conf_ufilter.strtype = 's'; conf_ufilter.num = [0 Inf]; conf_ufilter.help = {'Filter for files.', 'This filter is a regexp to filter filenames that survive .filter field.'}; % Dir %----------------------------------------------------------------------- conf_dir = cfg_entry; conf_dir.name = 'Dir'; conf_dir.tag = 'dir'; conf_dir.strtype = 'e'; % TODO: This should really be a cell string type conf_dir.num = [0 Inf]; conf_dir.help = {'Dir field.', 'Initial directory for file selector.'}; % Num %----------------------------------------------------------------------- conf_num_any = cfg_entry; conf_num_any.name = 'Num'; conf_num_any.tag = 'num'; conf_num_any.strtype = 'w'; conf_num_any.num = [0 Inf]; conf_num_any.help = {'Num field.', ... ['Specify how many dimensions this ' ... 'item must have and the size of each dimension. An ' ... 'empty num field means no restriction on number of ' ... 'dimensions. Inf in any dimension means no upper limit ' ... 'on size of this dimension.'], ... ['Note that for strtype ''s'' inputs, num is interpreted ' ... 'as a 2-vector [min max], allowing for a 1-by-min...max ' ... 'string to be entered.']}; % Num %----------------------------------------------------------------------- conf_num = cfg_entry; conf_num.name = 'Num'; conf_num.tag = 'num'; conf_num.strtype = 'w'; conf_num.num = [1 2]; conf_num.help = {'Num field.', 'Specify how many items (min and max) must be entered to yield a valid input. min = 0 means zero or more, max = Inf means no upper limit on number.'}; % Strtype %----------------------------------------------------------------------- conf_strtype = cfg_menu; conf_strtype.name = 'Strtype'; conf_strtype.tag = 'strtype'; conf_strtype.labels = {'String (s)', ... 'Evaluated (e)', ... 'Natural number (1..n) (n)', ... 'Whole number (0..n) (w)', ... 'Integer (i)', ... 'Real number (r)', ... 'Function handle (f)', ... 'Condition vector (c)', ... 'Contrast matrix (x)', ... 'Permutation (p)'}; conf_strtype.values = {'s','e','n','w','i','r','f','c','x','p'}; conf_strtype.help = {'Strtype field.', 'This type describes how an evaluated input should be treated. Type checking against this type will be performed during subscript assignment.'}; % Extras %----------------------------------------------------------------------- conf_extras = cfg_entry; conf_extras.name = 'Extras'; conf_extras.tag = 'extras'; conf_extras.strtype = 'e'; conf_extras.num = [0 Inf]; conf_extras.help = {'Extras field.', 'Extra information that may be used to evaluate ''strtype''.'}; % Prog %----------------------------------------------------------------------- conf_prog = cfg_entry; conf_prog.name = 'Prog'; conf_prog.tag = 'prog'; conf_prog.strtype = 'f'; conf_prog.num = [1 Inf]; conf_prog.help = {'Prog function (handle).', 'This function will be called to run a job. It receives the harvested configuration tree rooted at the current item as input. If it produces output, this should be a single variable. This variable can be a struct, cell or whatever is appropriate. To pass references to it a ''vout'' function has to be implemented that describes the virtual outputs.'}; % Vout %----------------------------------------------------------------------- conf_vout = cfg_entry; conf_vout.name = 'Vout'; conf_vout.tag = 'vout'; conf_vout.strtype = 'f'; conf_vout.num = [0 Inf]; conf_vout.help = {'Vout function (handle).', 'This function will be called during harvest, if all inputs to a job are set. It receives the harvested configuration tree rooted at the current item as input. Its output should be an array of cfg_dep objects, containing subscript indices into the output variable that would result when running this job. Note that no dependencies are resolved here.'}; %% Declaration of item classes % Branch %----------------------------------------------------------------------- conf_class_branch = cfg_const; conf_class_branch.name = 'Branch'; conf_class_branch.tag = 'type'; conf_class_branch.val = {'cfg_branch'}; conf_class_branch.hidden = true; conf_class_branch.help = {'Hidden field that gives the hint to cfg_struct2cfg which class to create.'}; % Choice %----------------------------------------------------------------------- conf_class_choice = cfg_const; conf_class_choice.name = 'Choice'; conf_class_choice.tag = 'type'; conf_class_choice.val = {'cfg_choice'}; conf_class_choice.hidden = true; conf_class_choice.help = {'Hidden field that gives the hint to cfg_struct2cfg which class to create.'}; % Const %----------------------------------------------------------------------- conf_class_const = cfg_const; conf_class_const.name = 'Const'; conf_class_const.tag = 'type'; conf_class_const.val = {'cfg_const'}; conf_class_const.hidden = true; conf_class_const.help = {'Hidden field that gives the hint to cfg_struct2cfg which class to create.'}; % Entry %----------------------------------------------------------------------- conf_class_entry = cfg_const; conf_class_entry.name = 'Entry'; conf_class_entry.tag = 'type'; conf_class_entry.val = {'cfg_entry'}; conf_class_entry.hidden = true; conf_class_entry.help = {'Hidden field that gives the hint to cfg_struct2cfg which class to create.'}; % Exbranch %----------------------------------------------------------------------- conf_class_exbranch = cfg_const; conf_class_exbranch.name = 'Exbranch'; conf_class_exbranch.tag = 'type'; conf_class_exbranch.val = {'cfg_exbranch'}; conf_class_exbranch.hidden = true; conf_class_exbranch.help = {'Hidden field that gives the hint to cfg_struct2cfg which class to create.'}; % Files %----------------------------------------------------------------------- conf_class_files = cfg_const; conf_class_files.name = 'Files'; conf_class_files.tag = 'type'; conf_class_files.val = {'cfg_files'}; conf_class_files.hidden = true; conf_class_files.help = {'Hidden field that gives the hint to cfg_struct2cfg which class to create.'}; % Menu %----------------------------------------------------------------------- conf_class_menu = cfg_const; conf_class_menu.name = 'Menu'; conf_class_menu.tag = 'type'; conf_class_menu.val = {'cfg_menu'}; conf_class_menu.hidden = true; conf_class_menu.help = {'Hidden field that gives the hint to cfg_struct2cfg which class to create.'}; % Repeat %----------------------------------------------------------------------- conf_class_repeat = cfg_const; conf_class_repeat.name = 'Repeat'; conf_class_repeat.tag = 'type'; conf_class_repeat.val = {'cfg_repeat'}; conf_class_repeat.hidden = true; conf_class_repeat.help = {'Hidden field that gives the hint to cfg_struct2cfg which class to create.'}; %% Item generators % Branch %----------------------------------------------------------------------- conf_branch = cfg_exbranch; conf_branch.name = 'Branch'; conf_branch.tag = 'conf_branch'; conf_branch.val = {conf_class_branch, conf_name, conf_tag, conf_val, conf_check, conf_help}; conf_branch.help = help2cell('cfg_branch'); conf_branch.prog = @cfg_cfg_pass; conf_branch.vout = @cfg_cfg_vout; % Choice %----------------------------------------------------------------------- conf_choice = cfg_exbranch; conf_choice.name = 'Choice'; conf_choice.tag = 'conf_choice'; conf_choice.val = {conf_class_choice, conf_name, conf_tag, conf_values, conf_check, conf_help}; conf_choice.help = help2cell('cfg_choice'); conf_choice.prog = @cfg_cfg_pass; conf_choice.vout = @cfg_cfg_vout; % Const %----------------------------------------------------------------------- conf_const = cfg_exbranch; conf_const.name = 'Const'; conf_const.tag = 'conf_const'; conf_const.val = {conf_class_const, conf_name, conf_tag, conf_val_single, ... conf_check, conf_help, conf_def}; conf_const.help = help2cell('cfg_const'); conf_const.prog = @cfg_cfg_pass; conf_const.vout = @cfg_cfg_vout; % Entry %----------------------------------------------------------------------- conf_entry = cfg_exbranch; conf_entry.name = 'Entry'; conf_entry.tag = 'conf_entry'; conf_entry.val = {conf_class_entry, conf_name, conf_tag, conf_strtype, ... conf_extras, conf_num_any, conf_check, conf_help, conf_def}; conf_entry.help = help2cell('cfg_entry'); conf_entry.prog = @cfg_cfg_pass; conf_entry.vout = @cfg_cfg_vout; % Exbranch %----------------------------------------------------------------------- conf_exbranch = cfg_exbranch; conf_exbranch.name = 'Exbranch'; conf_exbranch.tag = 'conf_exbranch'; conf_exbranch.val = {conf_class_exbranch, conf_name, conf_tag, conf_val, ... conf_prog, conf_vout, conf_check, conf_help}; conf_exbranch.help = help2cell('cfg_exbranch'); conf_exbranch.prog = @cfg_cfg_pass; conf_exbranch.vout = @cfg_cfg_vout; % Files %----------------------------------------------------------------------- conf_files = cfg_exbranch; conf_files.name = 'Files'; conf_files.tag = 'conf_files'; conf_files.val = {conf_class_files, conf_name, conf_tag, conf_filter, ... conf_ufilter, conf_dir, conf_num, conf_check, conf_help, conf_def}; conf_files.help = help2cell('cfg_files'); conf_files.prog = @cfg_cfg_pass; conf_files.vout = @cfg_cfg_vout; % Menu %----------------------------------------------------------------------- conf_menu = cfg_exbranch; conf_menu.name = 'Menu'; conf_menu.tag = 'conf_menu'; conf_menu.val = {conf_class_menu, conf_name, conf_tag, conf_labels, ... conf_values, conf_check, conf_help, conf_def}; conf_menu.help = help2cell('cfg_menu'); conf_menu.prog = @cfg_cfg_pass; conf_menu.vout = @cfg_cfg_vout; conf_menu.check = @cfg_cfg_labels_values; % repeat %----------------------------------------------------------------------- conf_repeat = cfg_exbranch; conf_repeat.name = 'Repeat'; conf_repeat.tag = 'conf_repeat'; conf_repeat.val = {conf_class_repeat, conf_name, conf_tag, conf_values, ... conf_num, conf_forcestruct, conf_check, conf_help}; conf_repeat.help = help2cell('cfg_repeat'); conf_repeat.prog = @cfg_cfg_pass; conf_repeat.vout = @cfg_cfg_vout; %% Output nodes % Generate code %----------------------------------------------------------------------- gencode_fname = cfg_entry; gencode_fname.name = 'Output filename'; gencode_fname.tag = 'gencode_fname'; gencode_fname.strtype = 's'; gencode_fname.num = [1 Inf]; gencode_fname.help = {'Filename for generated .m File.'}; gencode_dir = cfg_files; gencode_dir.name = 'Output directory'; gencode_dir.tag = 'gencode_dir'; gencode_dir.filter = 'dir'; gencode_dir.num = [1 1]; gencode_dir.help = {'Output directory for generated .m File.'}; gencode_var = cfg_entry; gencode_var.name = 'Root node of config'; gencode_var.tag = 'gencode_var'; gencode_var.strtype = 'e'; gencode_var.num = [1 1]; gencode_var.help = {['This should be a dependency input from the root ' ... 'node of the application''s configuration tree. Use ' ... 'the output of the root configuration item directly, ' ... 'it is not necessary to run "Generate object tree" first.']}; gencode_o_def = cfg_menu; gencode_o_def.name = 'Create Defaults File'; gencode_o_def.tag = 'gencode_o_def'; gencode_o_def.labels= {'No', 'Yes'}; gencode_o_def.values= {false, true}; gencode_o_def.help = {'The defaults file can be used to document all possible job structures. Its use to set all defaults is deprecated, .def function handles should be used instead.'}; gencode_o_mlb = cfg_menu; gencode_o_mlb.name = 'Create mlbatch_appcfg File'; gencode_o_mlb.tag = 'gencode_o_mlb'; gencode_o_mlb.labels= {'No', 'Yes'}; gencode_o_mlb.values= {false, true}; gencode_o_mlb.help = {'The cfg_mlbatch_appcfg file can be used if the toolbox should be found by MATLABBATCH automatically.'}; gencode_o_path = cfg_menu; gencode_o_path.name = 'Create Code for addpath()'; gencode_o_path.tag = 'gencode_o_path'; gencode_o_path.labels= {'No', 'Yes'}; gencode_o_path.values= {false, true}; gencode_o_path.help = {'If the toolbox resides in a non-MATLAB path, code can be generated to automatically add the configuration file to MATLAB path.'}; gencode_opts = cfg_branch; gencode_opts.name = 'Options'; gencode_opts.tag = 'gencode_opts'; gencode_opts.val = {gencode_o_def gencode_o_mlb gencode_o_path}; gencode_opts.help = {'Code generation options.'}; gencode_gen = cfg_exbranch; gencode_gen.name = 'Generate code'; gencode_gen.tag = 'gencode_gen'; gencode_gen.val = {gencode_fname, gencode_dir, gencode_var, gencode_opts}; gencode_gen.help = {['Generate code from a cfg_item tree. This tree can ' ... 'be either a struct (as returned from the ConfGUI ' ... 'modules) or a cfg_item object tree.']}; gencode_gen.prog = @cfg_cfg_gencode; gencode_gen.vout = @vout_cfg_gencode; % Generate object tree without code generation %----------------------------------------------------------------------- genobj_var = cfg_entry; genobj_var.name = 'Root node of config'; genobj_var.tag = 'genobj_var'; genobj_var.strtype = 'e'; genobj_var.num = [1 1]; genobj_var.help = {'This should be a dependency input from the root node of the application''s configuration tree.'}; genobj_gen = cfg_exbranch; genobj_gen.name = 'Generate object tree'; genobj_gen.tag = 'genobj_gen'; genobj_gen.val = {genobj_var}; genobj_gen.help = {['Generate a cfg_item tree as a variable. This can ' ... 'be useful to test a configuration before it is saved ' ... 'into files.']}; genobj_gen.prog = @cfg_cfg_genobj; genobj_gen.vout = @vout_cfg_genobj; %% Assemble Menu % Data entry nodes %----------------------------------------------------------------------- menu_entry = cfg_choice; menu_entry.name = 'Data entry items'; menu_entry.tag = 'menu_entry'; menu_entry.values = {conf_entry, conf_files, conf_menu, conf_const}; menu_entry.help = {'These items are used to enter data that will be passed to the computation code.'}; % Tree structuring nodes %----------------------------------------------------------------------- menu_struct = cfg_choice; menu_struct.name = 'Tree structuring items'; menu_struct.tag = 'menu_struct'; menu_struct.values = {conf_branch, conf_exbranch, conf_choice, conf_repeat}; menu_struct.help = {'These items collect data entry items and build a menu structure.'}; % Root node %----------------------------------------------------------------------- menu_cfg = cfg_choice; menu_cfg.name = 'ConfGUI'; menu_cfg.tag = 'menu_cfg'; menu_cfg.values = {menu_entry, menu_struct, gencode_gen, genobj_gen}; menu_cfg.help = help2cell(mfilename); %% Helper functions function out = cfg_cfg_genobj(varargin) if isa(varargin{1}.genobj_var, 'cfg_item') % use object tree "as is" out.c0 = varargin{1}.gencode_var; else % Transform struct into class based tree out.c0 = cfg_struct2cfg(varargin{1}.genobj_var); end [u1 out.djob] = harvest(out.c0, out.c0, true, true); function out = cfg_cfg_gencode(varargin) if isa(varargin{1}.gencode_var, 'cfg_item') % use object tree "as is" out.c0 = varargin{1}.gencode_var; else % Transform struct into class based tree out.c0 = cfg_struct2cfg(varargin{1}.gencode_var); end % Generate code [str tag] = gencode(out.c0,'',{}); [p n e] = fileparts(varargin{1}.gencode_fname); out.cfg_file{1} = fullfile(varargin{1}.gencode_dir{1}, [n '.m']); fid = fopen(out.cfg_file{1}, 'wt'); fprintf(fid, 'function %s = %s\n', tag, n); fprintf(fid, ... ['%% ''%s'' - MATLABBATCH configuration\n' ... '%% This MATLABBATCH configuration file has been generated automatically\n' ... '%% by MATLABBATCH using ConfGUI. It describes menu structure, validity\n' ... '%% constraints and links to run time code.\n' ... '%% Changes to this file will be overwritten if the ConfGUI batch is executed again.\n' ... '%% Created at %s.\n'], out.c0.name, datestr(now, 31)); fprintf(fid, '%s\n', str{:}); if varargin{1}.gencode_opts.gencode_o_path fprintf(fid, '%% ---------------------------------------------------------------------\n'); fprintf(fid, '%% add path to this mfile\n'); fprintf(fid, '%% ---------------------------------------------------------------------\n'); fprintf(fid, 'addpath(fileparts(mfilename(''fullpath'')));\n'); end fclose(fid); if varargin{1}.gencode_opts.gencode_o_def % Generate defaults file [u1 out.djob] = harvest(out.c0, out.c0, true, true); [str dtag] = gencode(out.djob, sprintf('%s_def', tag)); dn = sprintf('%s_def', n); out.def_file{1} = fullfile(varargin{1}.gencode_dir{1}, sprintf('%s.m', dn)); fid = fopen(out.def_file{1}, 'wt'); fprintf(fid, 'function %s = %s\n', dtag, dn); fprintf(fid, ... ['%% ''%s'' - MATLABBATCH defaults\n' ... '%% This MATLABBATCH defaults file has been generated automatically\n' ... '%% by MATLABBATCH using ConfGUI. It contains all pre-defined values for\n' ... '%% menu items and provides a full documentation of all fields that may\n' ... '%% be present in a job variable for this application.\n' ... '%% Changes to this file will be overwritten if the ConfGUI batch is executed again.\n' ... '%% Created at %s.\n'], out.c0.name, datestr(now, 31)); fprintf(fid, '%s\n', str{:}); fclose(fid); end if varargin{1}.gencode_opts.gencode_o_mlb % Generate cfg_util initialisation file out.mlb_file{1} = fullfile(varargin{1}.gencode_dir{1}, 'cfg_mlbatch_appcfg.m'); fid = fopen(out.mlb_file{1}, 'wt'); fprintf(fid, 'function [cfg, def] = cfg_mlbatch_appcfg(varargin)\n'); fprintf(fid, ... ['%% ''%s'' - MATLABBATCH cfg_util initialisation\n' ... '%% This MATLABBATCH initialisation file can be used to load application\n' ... '%% ''%s''\n' ... '%% into cfg_util. This can be done manually by running this file from\n' ... '%% MATLAB command line or automatically when cfg_util is initialised.\n' ... '%% The directory containing this file and the configuration file\n' ... '%% ''%s''\n' ... '%% must be in MATLAB''s path variable.\n' ... '%% Created at %s.\n\n'], ... out.c0.name, out.c0.name, n, datestr(now, 31)); fprintf(fid, 'if ~isdeployed\n'); fprintf(fid, ' %% Get path to this file and add it to MATLAB path.\n'); fprintf(fid, [' %% If the configuration file is stored in another place, the ' ... 'path must be adjusted here.\n']); fprintf(fid, ' p = fileparts(mfilename(''fullpath''));\n'); fprintf(fid, ' addpath(p);\n'); fprintf(fid, 'end\n'); fprintf(fid, '%% run configuration main & def function, return output\n'); fprintf(fid, 'cfg = %s;\n', n); if varargin{1}.gencode_opts.gencode_o_def fprintf(fid, 'def = %s;\n', dn); else fprintf(fid, 'def = [];\n'); end fclose(fid); end function out = cfg_cfg_pass(varargin) % just pass input to output out = varargin{1}; function str = cfg_cfg_labels_values(varargin) % Check whether a menu has the same number of labels and values items if numel(varargin{1}.labels) == numel(varargin{1}.values) str = ''; else str = 'Number of labels must match number of values.'; end function vout = cfg_cfg_vout(varargin) % cfg_struct2cfg returns its output immediately, so a subscript '(1)' is % appropriate. vout = cfg_dep; vout.sname = sprintf('%s (%s)', varargin{1}.name, varargin{1}.type); vout.src_output = substruct('()', {1}); function vout = vout_cfg_genobj(varargin) vout(1) = cfg_dep; vout(1).sname = 'Configuration Object Tree'; vout(1).src_output = substruct('.','c0'); vout(1).tgt_spec = cfg_findspec({{'strtype','e'}}); vout(2) = cfg_dep; vout(2).sname = 'Configuration Defaults Variable'; vout(2).src_output = substruct('.','djob'); vout(2).tgt_spec = cfg_findspec({{'strtype','e'}}); function vout = vout_cfg_gencode(varargin) vout(1) = cfg_dep; vout(1).sname = 'Generated Configuration File'; vout(1).src_output = substruct('.', 'cfg_file'); vout(1).tgt_spec = cfg_findspec({{'class','cfg_files','strtype','e'}}); vout(2) = cfg_dep; vout(2).sname = 'Configuration Object Tree'; vout(2).src_output = substruct('.','c0'); vout(2).tgt_spec = cfg_findspec({{'strtype','e'}}); if islogical(varargin{1}.gencode_opts.gencode_o_def) && varargin{1}.gencode_opts.gencode_o_def vout(3) = cfg_dep; vout(3).sname = 'Generated Defaults File'; vout(3).src_output = substruct('.', 'def_file'); vout(3).tgt_spec = cfg_findspec({{'class','cfg_files','strtype','e'}}); vout(4) = cfg_dep; vout(4).sname = 'Configuration Defaults Variable'; vout(4).src_output = substruct('.','djob'); vout(4).tgt_spec = cfg_findspec({{'strtype','e'}}); end if islogical(varargin{1}.gencode_opts.gencode_o_mlb) && varargin{1}.gencode_opts.gencode_o_mlb vout(end+1) = cfg_dep; vout(end).sname = 'Generated Initialisation File'; vout(end).src_output = substruct('.', 'mlb_file'); vout(end).tgt_spec = cfg_findspec({{'class','cfg_files','strtype','e'}}); end
github
philippboehmsturm/antx-master
cfg_run_template.m
.m
antx-master/freiburgLight/matlab/spm8/matlabbatch/cfg_confgui/cfg_run_template.m
4,820
utf_8
6b3abdb5d1a9cfd4401faaf597385d30
function varargout = cfg_run_template(cmd, varargin) % Template function to implement callbacks for an cfg_exbranch. The calling % syntax is % varargout = cfg_run_template(cmd, varargin) % where cmd is one of % 'run' - out = cfg_run_template('run', job) % Run a job, and return its output argument % 'vout' - dep = cfg_run_template('vout', job) % Examine a job structure with all leafs present and return an % array of cfg_dep objects. % 'check' - str = cfg_run_template('check', subcmd, subjob) % Examine a part of a fully filled job structure. Return an empty % string if everything is ok, or a string describing the check % error. subcmd should be a string that identifies the part of % the configuration to be checked. % 'defaults' - defval = cfg_run_template('defaults', key) % Retrieve defaults value. key must be a sequence of dot % delimited field names into the internal def struct which is % kept in function local_def. An error is returned if no % matching field is found. % cfg_run_template('defaults', key, newval) % Set the specified field in the internal def struct to a new % value. % Application specific code needs to be inserted at the following places: % 'run' - main switch statement: code to compute the results, based on % a filled job % 'vout' - main switch statement: code to compute cfg_dep array, based % on a job structure that has all leafs, but not necessarily % any values filled in % 'check' - create and populate switch subcmd switchyard % 'defaults' - modify initialisation of defaults in subfunction local_defs % Callbacks can be constructed using anonymous function handles like this: % 'run' - @(job)cfg_run_template('run', job) % 'vout' - @(job)cfg_run_template('vout', job) % 'check' - @(job)cfg_run_template('check', 'subcmd', job) % 'defaults' - @(val)cfg_run_template('defaults', 'defstr', val{:}) % Note the list expansion val{:} - this is used to emulate a % varargin call in this function handle. % % This code is part of a batch job configuration system for MATLAB. See % help matlabbatch % for a general overview. %_______________________________________________________________________ % Copyright (C) 2007 Freiburg Brain Imaging % Volkmar Glauche % $Id: cfg_run_template.m 466 2010-01-28 11:26:47Z glauche $ rev = '$Rev: 466 $'; %#ok if ischar(cmd) switch lower(cmd) case 'run' job = local_getjob(varargin{1}); % do computation, return results in variable out if nargout > 0 varargout{1} = out; end case 'vout' job = local_getjob(varargin{1}); % initialise empty cfg_dep array dep = cfg_dep; dep = dep(false); % determine outputs, return cfg_dep array in variable dep varargout{1} = dep; case 'check' if ischar(varargin{1}) subcmd = lower(varargin{1}); subjob = varargin{2}; str = ''; switch subcmd % implement checks, return status string in variable str otherwise cfg_message('unknown:check', ... 'Unknown check subcmd ''%s''.', subcmd); end varargout{1} = str; else cfg_message('ischar:check', 'Subcmd must be a string.'); end case 'defaults' if nargin == 2 varargout{1} = local_defs(varargin{1}); else local_defs(varargin{1:2}); end otherwise cfg_message('unknown:cmd', 'Unknown command ''%s''.', cmd); end else cfg_message('ischar:cmd', 'Cmd must be a string.'); end function varargout = local_defs(defstr, defval) persistent defs; if isempty(defs) % initialise defaults end if ischar(defstr) % construct subscript reference struct from dot delimited tag string tags = textscan(defstr,'%s', 'delimiter','.'); subs = struct('type','.','subs',tags{1}'); try cdefval = subsref(defs, subs); catch cdefval = []; cfg_message('defaults:noval', ... 'No matching defaults value ''%s'' found.', defstr); end if nargin == 1 varargout{1} = cdefval; else defs = subsasgn(defs, subs, defval); end else cfg_message('ischar:defstr', 'Defaults key must be a string.'); end function job = local_getjob(job) if ~isstruct(job) cfg_message('isstruct:job', 'Job must be a struct.'); end
github
philippboehmsturm/antx-master
subsasgn_check.m
.m
antx-master/freiburgLight/matlab/spm8/matlabbatch/@cfg_entry/subsasgn_check.m
8,352
utf_8
c0c07054289df61d4ca469b59de16097
function [sts, val] = subsasgn_check(item,subs,val) % function [sts, val] = subsasgn_check(item,subs,val) % Perform validity checks for cfg_entry inputs. Does not yet support % evaluation of inputs. % % This code is part of a batch job configuration system for MATLAB. See % help matlabbatch % for a general overview. %_______________________________________________________________________ % Copyright (C) 2007 Freiburg Brain Imaging % Volkmar Glauche % $Id: subsasgn_check.m 560 2012-06-20 11:49:38Z glauche $ rev = '$Rev: 560 $'; %#ok sts = true; switch subs(1).subs case {'num'} % special num treatment - num does describe the dimensions of % input in cfg_entry items, not a min/max number sts = isnumeric(val) && (isempty(val) || numel(val)>=2 && all(val(:) >= 0)); if ~sts cfg_message('matlabbatch:check:num', ... '%s: Value must be empty or a vector of non-negative numbers with at least 2 elements', ... subsasgn_checkstr(item,subs)); end case {'val'} % perform validity checks - subsasgn_check should be called with % a cell containing one item if ~iscell(val) cfg_message('matlabbatch:checkval', ... '%s: Value must be a cell.', subsasgn_checkstr(item,subs)); sts = false; return; end if isempty(val) val = {}; else % check whether val{1} is a valid element [sts vtmp] = valcheck(item,val{1}); val = {vtmp}; end case {'strtype'} strtypes = {'s','e','f','n','w','i','r','c','x','p'}; sts = isempty(val) || (ischar(val) && ... any(strcmp(val, strtypes))); if ~sts cfg_message('matlabbatch:check:strtype', ... '%s: Value must be a valid strtype.', subsasgn_checkstr(item,subs)); end end function [sts, val] = valcheck(item,val) % taken from spm_jobman/stringval % spm_eeval goes into GUI sts = true; % check for reserved words if ischar(val) && any(strcmp(val, {'<UNDEFINED>','<DEFAULTS>'})) cfg_message('matlabbatch:checkval', ... ['%s: Item must not be one of the reserved words ''<UNDEFINED>'' ' ... 'or ''<DEFAULTS>''.'], subsasgn_checkstr(item,substruct('.','val'))); sts = false; return; end if isa(val,'cfg_dep') % Check dependency match sts2 = cellfun(@(cspec)match(item,cspec),{val.tgt_spec}); if ~all(sts2) cfg_message('matlabbatch:checkval', ... '%s: Dependency does not match.', subsasgn_checkstr(item,subs)); end val = val(sts2); sts = any(sts2); else switch item.strtype case {'s'} if ~ischar(val) cfg_message('matlabbatch:checkval:strtype', ... '%s: Item must be a string.', subsasgn_checkstr(item,substruct('.','val'))); sts = false; else [sts val] = numcheck(item,val); if sts && ~isempty(item.extras) && (ischar(item.extras) || iscellstr(item.extras)) pats = cellstr(item.extras); mch = regexp(val, pats); sts = any(~cellfun(@isempty, mch)); if ~sts cfg_message('matlabbatch:checkval:strtype', ... '%s: Item must match one of these patterns:\n%s', subsasgn_checkstr(item,substruct('.','val')), sprintf('%s\n', pats{:})); sts = false; end end end case {'s+'} cfg_message('matlabbatch:checkval:strtype', ... '%s: FAILURE: Cant do s+ yet', subsasgn_checkstr(item,substruct('.','val'))); case {'f'} % test whether val is a function handle or a name of an % existing function sts = subsasgn_check_funhandle(val); if ~sts cfg_message('matlabbatch:checkval:strtype', ... '%s: Item must be a function handle or function name.', ... subsasgn_checkstr(item,substruct('.','val'))); end case {'n'} tol = 4*eps; sts = isempty(val) || (isnumeric(val) && all(val(:) >= 1) && ... all(abs(round(val(isfinite(val(:))))-val(isfinite(val(:)))) <= tol)); if ~sts cfg_message('matlabbatch:checkval:strtype', ... '%s: Item must be an array of natural numbers.', subsasgn_checkstr(item,substruct('.','val'))); return; end [sts val] = numcheck(item,val); case {'i'} tol = 4*eps; sts = isempty(val) || (isnumeric(val) && ... all(abs(round(val(isfinite(val(:))))-val(isfinite(val(:)))) <= tol)); if ~sts cfg_message('matlabbatch:checkval:strtype', ... '%s: Item must be an array of integers.', subsasgn_checkstr(item,substruct('.','val'))); return; end [sts val] = numcheck(item,val); case {'r'} sts = isempty(val) || (isnumeric(val) && all(isreal(val(:)))); if ~sts cfg_message('matlabbatch:checkval:strtype', ... '%s: Item must be an array of real numbers.', subsasgn_checkstr(item,substruct('.','val'))); return; end [sts val] = numcheck(item,val); case {'w'} tol = 4*eps; sts = isempty(val) || (isnumeric(val) && all(val(:) >= 0) && ... all(abs(round(val(isfinite(val(:))))-val(isfinite(val(:)))) <= tol)); if ~sts cfg_message('matlabbatch:checkval:strtype', ... '%s: Item must be an array of whole numbers.', subsasgn_checkstr(item,substruct('.','val'))); return; end [sts val] = numcheck(item,val); case {'e'} if ~isempty(item.extras) && subsasgn_check_funhandle(item.extras) [sts val] = feval(item.extras, val, item.num); else [sts val] = numcheck(item,val); end otherwise % only do size check for other strtypes [sts val] = numcheck(item,val); end end function [sts, val] = numcheck(item,val) % allow arbitrary size, if num field is empty sts = true; csz = size(val); if ~isempty(item.num) if item.strtype == 's' && numel(item.num) == 2 % interpret num field as [min max] # elements sts = item.num(1) <= numel(val) && numel(val) <= item.num(2); if ~sts cfg_message('matlabbatch:checkval:numcheck:mismatch', ... '%s: Size mismatch (required [%s], present [%s]).', ... subsasgn_checkstr(item,substruct('.','val')), num2str(item.num), num2str(csz)); end else ind = item.num>0 & isfinite(item.num); if numel(csz) == 2 % also try transpose for 2D arrays cszt = size(val'); else cszt = csz; end if numel(item.num) ~= numel(csz) cfg_message('matlabbatch:checkval:numcheck:mismatch', ... '%s: Dimension mismatch (required %d, present %d).', subsasgn_checkstr(item,substruct('.','val')), numel(item.num), numel(csz)); sts = false; return; end if any(item.num(ind)-csz(ind)) if any(item.num(ind)-cszt(ind)) cfg_message('matlabbatch:checkval:numcheck:mismatch', ... '%s: Size mismatch (required [%s], present [%s]).', ... subsasgn_checkstr(item,substruct('.','val')), num2str(item.num), num2str(csz)); sts = false; return else val = val'; cfg_message('matlabbatch:checkval:numcheck:transposed', ... '%s: Value transposed to match required size [%s].', ... subsasgn_checkstr(item,substruct('.','val')), num2str(item.num)); end end end end
github
philippboehmsturm/antx-master
showdoc.m
.m
antx-master/freiburgLight/matlab/spm8/matlabbatch/@cfg_entry/showdoc.m
1,961
utf_8
4470b2abb40c7db525283b910ac13664
function str = showdoc(item, indent) % function str = showdoc(item, indent) % Display help text for a cfg_entry item. % % This code is part of a batch job configuration system for MATLAB. See % help matlabbatch % for a general overview. %_______________________________________________________________________ % Copyright (C) 2007 Freiburg Brain Imaging % Volkmar Glauche % $Id: showdoc.m 269 2008-05-23 07:15:10Z glauche $ rev = '$Rev: 269 $'; %#ok str = showdoc(item.cfg_item, indent); switch item.strtype case {'e'}, str{end+1} = 'Evaluated statements are entered.'; str{end+1} = shownum(item.num); case {'n'}, str{end+1} = 'Natural numbers are entered.'; str{end+1} = shownum(item.num); case {'r'}, str{end+1} = 'Real numbers are entered.'; str{end+1} = shownum(item.num); case {'w'}, str{end+1} = 'Whole numbers are entered.'; str{end+1} = shownum(item.num); case {'s'}, str{end+1} = 'A String is entered.'; if isempty(item.num) str{end+1} = 'The character array may have arbitrary size.'; elseif isfinite(item.num(2)) str{end+1} = sprintf(['The string must have between %d and %d ' ... 'characters.'], item.num(1), ... item.num(2)); else str{end+1} = sprintf(['The string must have at least %d ' ... 'characters.'], item.num(1)); end; end; function numstr = shownum(num) if isempty(num) numstr = ['The entered data may have an arbitrary number of dimensions ' ... 'and elements.']; else for k=1:numel(num) if isfinite(num(k)) numstr1{k} = sprintf('%d',num(k)); else numstr1{k} = 'X'; end; end; numstr = sprintf('%s-by-', numstr1{:}); numstr = sprintf('An %s array must be entered.', numstr(1:end-4)); end;
github
philippboehmsturm/antx-master
resolve_deps.m
.m
antx-master/freiburgLight/matlab/spm8/matlabbatch/@cfg_item/resolve_deps.m
3,620
utf_8
3ed76ebe16ad02f135f4a83f428654f3
function [val, sts] = resolve_deps(item, cj) % function [val, sts] = resolve_deps(item, cj) % Resolve dependencies for an cfg item. This is a generic function that % returns the contents of item.val{1} if it is an array of cfg_deps. If % there is more than one dependency, they will be resolved in order of % appearance. The returned val will be the concatenation of the values of % all dependencies. A warning will be issued if this concatenation fails % (which would happen if resolved dependencies contain incompatible % values). % If any of the dependencies cannot be resolved, val will be empty and sts % false. % % This code is part of a batch job configuration system for MATLAB. See % help matlabbatch % for a general overview. %_______________________________________________________________________ % Copyright (C) 2007 Freiburg Brain Imaging % Volkmar Glauche % $Id: resolve_deps.m 484 2010-06-23 08:51:04Z glauche $ rev = '$Rev: 484 $'; %#ok val1 = cell(size(item.val{1})); for k = 1:numel(item.val{1}) % Outputs are stored in .jout field of cfg_exbranch, which is % not included in .src_exbranch substruct out = subsref(cj, [item.val{1}(k).src_exbranch, ... substruct('.','jout')]); sts = ~isa(out,'cfg_inv_out'); if ~sts % dependency not yet computed, fail silently val = []; return; end try val1{k} = subsref(out, item.val{1}(k).src_output); catch %#ok % dependency can't be resolved, even though it should be there l = lasterror; %#ok % display source output to diagnose problems val1{k} = out; dstr = disp_deps(item, val1); cfg_message('matlabbatch:resolve_deps:missing', ... 'Dependency source available, but is missing required output.\n%s',... l.message); cfg_message('matlabbatch:resolve_deps:missing', '%s\n', dstr{:}); val = []; sts = false; return; end end if sts % All items resolved, try concatenation try % try concatenation along 1st dim val = cat(1, val1{:}); catch %#ok % try concatenation along 2nd dim try val = cat(2, val1{:}); catch %#ok % all concatenations failed, display warning l = lasterror; %#ok dstr = disp_deps(item, val1); cfg_message('matlabbatch:resolve_deps:incompatible',... 'Dependencies resolved, but incompatible values.\n%s', ... l.message); cfg_message('matlabbatch:resolve_deps:incompatible', '%s\n', dstr{:}); % reset val and sts val = []; sts = false; return; end end end % all collected, check subsasgn validity if sts % subsasgn_check only accepts single subscripts [sts val] = subsasgn_check(item, substruct('.','val'), {val}); end; if sts % dereference val after subsasgn_check val = val{1}; else dstr = disp_deps(item, val1); dstr = [{'Dependencies resolved, but not suitable for this item.'}, ... dstr(:)']; cfg_message('matlabbatch:subsasgn:val',... '%s\n', dstr{:}); return; end function dstr = disp_deps(item, val1) %#ok dstr = cell(numel(item.val{1})+1,1); dstr{1} = sprintf('In item %s:', subsref(item, substruct('.','name'))); for k = 1:numel(item.val{1}) substr = gencode_substruct(item.val{1}(k).src_output); dstr{k+1} = sprintf('Dependency %d: %s (out%s)\n%s', ... k, item.val{1}(k).sname, substr{1}, evalc('disp(val1{k})')); end
github
philippboehmsturm/antx-master
initialise.m
.m
antx-master/freiburgLight/matlab/spm8/matlabbatch/@cfg_repeat/initialise.m
4,833
utf_8
318adce123a9102e6369cf2d4f428e3f
function item = initialise(item, val, dflag) % function item = initialise(item, val, dflag) % Initialise a configuration tree with values. If val is a job % struct/cell, only the parts of the configuration that are present in % this job will be initialised. If dflag is true, then matching items % from item.values will be initialised. If dflag is false, matching items % from item.values will be added to item.val and initialised after % copying. % If val has the special value '<DEFAULTS>', the entire configuration % will be updated with values from .def fields. If a .def field is % present in a cfg_leaf item, the current default value will be inserted, % possibly replacing a previously entered (default) value. If dflag is % true, defaults will only be set in item.values. If dflag is false, % defaults will be set for both item.val and item.values. % % This code is part of a batch job configuration system for MATLAB. See % help matlabbatch % for a general overview. %_______________________________________________________________________ % Copyright (C) 2007 Freiburg Brain Imaging % Volkmar Glauche % $Id: initialise.m 490 2010-09-20 13:14:03Z glauche $ rev = '$Rev: 490 $'; %#ok if strcmp(val,'<DEFAULTS>') item = initialise_def(item, val, dflag); else item = initialise_job(item, val, dflag); end; function item = initialise_def(item, val, dflag) if ~dflag % initialise defaults both in current job and in defaults citem = subsref(item, substruct('.','val')); for k = 1:numel(citem) citem{k} = initialise(citem{k}, val, dflag); end; item = subsasgn(item, substruct('.','val'), citem); end; for k = 1:numel(item.values) item.values{k} = initialise(item.values{k}, val, dflag); end; function item = initialise_job(item, val, dflag) if numel(item.values)==1 && isa(item.values{1},'cfg_branch') ... && ~item.forcestruct, if isstruct(val) if dflag item.values{1} = initialise(item.values{1}, val, dflag); else citem = cell(1,numel(val)); for k = 1:numel(val) citem{k} = initialise(item.values{1}, val(k), dflag); end; item.cfg_item.val = citem; end; else cfg_message('matlabbatch:initialise', ... 'Can not initialise %s value(s): job is not a struct.', ... gettag(item)); return; end; else if dflag if numel(item.values) > 1 || item.forcestruct % val should be either a cell array containing structs with a % single field (a harvested job), or a struct with multiple % fields (a harvested defaults tree). In the latter case, % convert val to a cell array before proceeding. if isstruct(val) vtag = fieldnames(val); val1 = cell(size(vtag)); for k = 1:numel(vtag) val1{k} = struct(vtag{k}, {val.(vtag{k})}); end; val = val1; elseif iscell(val) && all(cellfun(@isstruct,val)) vtag = cell(size(val)); for k = 1:numel(val) vtag(k) = fieldnames(val{k}); end; else cfg_message('matlabbatch:initialise', ... 'Can not initialise %s value(s): job is not a cell array of struct items.', ... gettag(item)); return; end; for k = 1:numel(item.values) % use first match for defaults initialisation sel = find(strcmp(gettag(item.values{k}), vtag)); if ~isempty(sel) item.values{k} = initialise(item.values{k}, ... val{sel(1)}.(vtag{sel(1)}), ... dflag); end; end; else item.values{1} = initialise(item.values{1}, val{1}, dflag); end; else citem = cell(1,numel(val)); if numel(item.values) > 1 || item.forcestruct for l = 1:numel(val) % val{l} should be a struct with a single field vtag = fieldnames(val{l}); for k = 1:numel(item.values) if strcmp(gettag(item.values{k}), vtag{1}) citem{l} = initialise(item.values{k}, ... val{l}.(vtag{1}), ... dflag); end; end; end; else for l = 1:numel(val) citem{l} = initialise(item.values{1}, ... val{l}, dflag); end; end; item.cfg_item.val = citem; end; end;
github
philippboehmsturm/antx-master
spm_hrf_timeshift_demo.m
.m
antx-master/freiburgLight/matlab/spm8/demo/spm_hrf_timeshift_demo.m
7,324
utf_8
f198b9d5ad85ad5f98540f291c660b4f
function spm_hrf_timeshift_demo %% Modelling time shifts in hemodynamic responses % In some situations, the time course of the canonical hrf might not fit % the observed time course. In particular, the observed time-to-peak might % vary between different areas of the brain (or different event types in % the same brain area). % % This demo shows the strengths and limitations of the commonly used basis % function sets in capturing time-shifted responses. %% General timing constants % dt is the time resolution (in seconds) of the generated hrf. dt = .05; %% Create response % A canonical HRF response is created and shifted in time. xBFr.name = 'hrf'; xBFr.dt = dt; xBFr = spm_get_bf(xBFr); %% Create shifted responses % maximum shift (in +/- sec) mxshift = 5; ts = -mxshift:dt:mxshift; npad = mxshift/dt; lresp = npad+size(xBFr.bf,1); sresp = zeros(lresp,2*npad+1); for k = 1:(2*npad+1) bflen = min(size(xBFr.bf,1), lresp-k); sresp(k:(k-1+bflen),k) = xBFr.bf(1:bflen,1); end %% Get basis function set % SPM uses spm_get_bf to obtain a basis function set for a single, zero % length event. This basis function set is then used to create the expected % response time courses. In this demo, we assume a single, zero length % event at t = 0. We want to model faster and slower responses, therefore % internal demo time is running from -2 sec to 32 sec (the length of the % canonical hrf). Plots always start at t = 0, however. SPM.xBF.dt = dt; SPM.xBF = spm_get_bf(SPM.xBF); % pad canonical basis function with zeros for time before event pbf = zeros(lresp, size(SPM.xBF.bf,2)); pbf(npad+(1:size(SPM.xBF.bf,1)),:) = SPM.xBF.bf; % truncate to length of shifted response pbf = pbf(1:lresp,:); ishrftime = ~isempty(regexpi(SPM.xBF.name, '^hrf.*time')); % post-event time t = 0:SPM.xBF.dt:(lresp-npad-1)*SPM.xBF.dt; %% Solve % solve for regression weights wrt basis set - in real SPM, this would be % done in spm_spm. betas = pbf\sresp; % fitted response and error of full model fresp = pbf*betas; err = fresp - sresp; ssq = sum(err.^2); if ishrftime % fitted response of HRF only fresp1 = pbf(:,1)*betas(1,:); end %% Time to peak and amplitude % For the shifted response, this is a the same as the time shift % introduced. For the fitted response, it depends on the basis set used. % For hrf+derivative, it is similar to the real time shift only in a small % interval around zero time shift. [samp stmx] = max(sresp); [famp ftmx] = max(fresp); if ishrftime [famp1 tmp] = max(fresp1); end sttp = t(stmx-npad); fttp = t(ftmx-npad); %% Interpretation of parameters for hrf+derivative % The parameters of the hrf basis set can be interpreted as \Delta t and be % used to fit a time shift function. if ishrftime %% dt % This is the ratio between beta2 and beta1. dt = betas(2,:)./betas(1,:); %% Fit parameters for function fttp = f(dt) % To be able to estimate ttp from the fitted betas, a sigmoid function is % fitted to the simulated ttp of the fitted responses. l = fminsearch(@(x)ttpfit(x,dt,fttp),[1 1 1]); fttpfit=l(1)./(1+exp(l(2)*ts))+l(3); end %% Set up figure figname = sprintf('%s - %s', mfilename, SPM.xBF.name); f = findobj(0,'tag',figname); if isempty(f) f = figure('tag',figname,'name',figname,'Numbertitle','off'); end clf(f); set(f,'position',get(0,'ScreenSize')); % current time step cs = 100; % legend handles and legends hleg = []; hlstr = {}; %% Plot betas axbetas = axes('parent',f, 'position',[.01 .05 .23 .26]); bar(betas(:,cs),'parent',axbetas) set(axbetas,'tag','axbetas'); %% Plot time to peak over timeshift axttp = axes('parent',f, 'position',[.26 .05 .23 .26]); plot(axttp,ts,[sttp;fttp]); if ishrftime hold(axttp, 'on'); hleg(end+1) = plot(axttp,dt,fttpfit,'r'); hlstr{end+1} = sprintf('%0.2f./exp(%0.2f*ts))+%0.2f',l(1),l(2),l(3)); end axlim = axis(axttp); line([ts(cs) ts(cs)],axlim([3 4]),'parent',axttp,'color','k','tag','tsline'); xlabel(axttp,'Real response - time shift'); ylabel(axttp,'Time to peak'); % set update function, hit test set(axttp,'ButtonDownFcn',@update_lines); set(allchild(axttp),'HitTest','off'); %% Plot dt over timeshift if ishrftime axdt = axes('parent',f, 'position',[.51 .05 .23 .26]); plot(axdt,ts, [-ts; dt]); axlim = axis(axdt); line([ts(cs) ts(cs)],axlim([3 4]),'parent',axdt,'color','k','tag','tsline'); xlabel(axdt,'Real response - time shift'); ylabel(axdt,'\Delta t'); % set update function, hit test set(axdt,'ButtonDownFcn',@update_lines); set(allchild(axdt),'HitTest','off'); else axdt = []; end %% Plot fitted amplitudes over timeshift axamp = axes('parent',f,'position',[.76 .05 .23 .26]); if ishrftime set(axamp,'colororder',[0 0 1; 0 .5 0;0 .5 0]); hold(axamp, 'on'); tmp = plot(axamp,ts,samp,'-',ts,famp,'-',ts,famp1,'--'); hold(axamp, 'off'); hleg(end+1) = tmp(3); hlstr{end+1} = 'Fitted response HRF only'; else plot(axamp,ts,[samp;famp]); end axlim = axis(axamp); line([ts(cs) ts(cs)],axlim([3 4]),'parent',axamp,'color','k','tag','tsline'); xlabel(axamp,'Real response - Time shift'); ylabel(axamp,'Peak amplitude'); % set update function, hit test set(axamp,'ButtonDownFcn',@update_lines); set(allchild(axamp),'HitTest','off'); %% plot fitted response - coloured with error axfit = axes('parent',f,'position',[.05 .4 .47 .47]); hfresp = surf(axfit,t,ts,fresp(npad+1:end,:)',abs(err(npad+1:end,:)'),'linestyle','none'); colormap(axfit,'gray') xlabel(axfit,'Post-event time') ylabel(axfit,'Time shift') zlabel(axfit,'Response') title(axfit,'Fitted response') % add canonical response hold(axfit, 'on'); hleg(end+1) = line(t,ts(cs)*ones(size(t)),sresp(npad+1:end,cs),'parent',axfit,'color','b','linewidth',5,'tag','lsresp'); hlstr{end+1} = 'Real HRF'; %% plot real response - coloured with error axreal = axes('parent',f,'position',[.53 .4 .47 .47]); hsresp = surf(axreal,t,ts,sresp(npad+1:end,:)',abs(err(npad+1:end,:)'),'linestyle','none'); colormap(axreal,'gray') xlabel(axreal,'Post-event time') ylabel(axreal,'Time shift') zlabel(axreal,'Response') title(axreal,'Real response') % add fitted response hold(axreal, 'on'); hleg(end+1) = line(t,ts(cs)*ones(size(t)),fresp(npad+1:end,cs),'parent',axreal,'color',[0 .5 0],'linewidth',5,'tag','lfresp'); hlstr{end+1} = 'Fitted HRF'; % set legend, let MATLAB figure out its size legend(hleg(end:-1:1),hlstr(end:-1:1),'position', [0.5 0.9 0 0]) hl=linkprop([axfit axreal],'View'); set(f,'userdata',struct('links',hl,'t',t,'npad',npad,'ts',ts,'fresp',fresp,'sresp',sresp,'betas',betas)) function update_lines(ob,ev) ud = get(gcbf, 'userdata'); cp = get(ob, 'CurrentPoint'); [tmp cs] = min(abs(ud.ts-cp(1,1))); tslines = findobj(gcbf, 'tag','tsline'); set(tslines,'xdata',[ud.ts(cs),ud.ts(cs)]); lfresp = findobj(gcbf, 'tag','lfresp'); set(lfresp,'ydata',ud.ts(cs)*ones(size(ud.t)),'zdata',ud.fresp(ud.npad+1:end,cs)); lsresp = findobj(gcbf, 'tag','lsresp'); set(lsresp,'ydata',ud.ts(cs)*ones(size(ud.t)),'zdata',ud.sresp(ud.npad+1:end,cs)); axbetas = findobj(gcbf,'tag','axbetas'); bar(ud.betas(:,cs),'parent',axbetas) set(axbetas,'tag','axbetas'); function err = ttpfit(l,t,y) % This function computes the error between data y and a sigmoid function % parameterised by l(1:3). y1 = l(1)./(1+exp(l(2)*t))+l(3); err = norm(y1-y);
github
philippboehmsturm/antx-master
spm_conv_demo.m
.m
antx-master/freiburgLight/matlab/spm8/demo/spm_conv_demo.m
804
utf_8
dc62d248d1d683bf767fa551bf708054
function spm_conv_demo global defaults; defaults.stats.fmri.t=16; RT=.1; [hrf phrf]=spm_hrf(RT); hrf=hrf/max(hrf); t=0:1/defaults.stats.fmri.t:500; scans=zeros(size(t)); scans(1:defaults.stats.fmri.t:end)=1; f=figure(2); clf; axscans=axes('position',[.3 .1 .6 .2]); axons=axes('position',[.3 .4 .6 .2]); axconv=axes('position',[.3 .7 .6 .2]); plot_sticks(axscans,t,scans); title('Scan time points'); for k=200:-2:40 ons=zeros(size(t)); ons(50+(1:k:20*k))=1; plot_sticks(axons,t,ons); chrf=conv(ons,hrf); chrf=chrf(1:numel(t)); chrf=chrf/max(chrf); plot(axconv,t,chrf); pause(.1); end function h=plot_sticks(ax,t,x) x1=find(x); tn=kron(t(x1),[1 1 1]); xn=kron(x(x1),[0 1 0]); h=plot(ax,tn,xn); axis(ax,[min(t) max(t) min(x) max(x)]);
github
philippboehmsturm/antx-master
spm_ovhelper_3Dreg.m
.m
antx-master/freiburgLight/matlab/spm8/spm_orthviews/spm_ovhelper_3Dreg.m
3,534
utf_8
1820adca26f6de47595faa8162381cda
function spm_ovhelper_3Dreg(cmd, varargin) % Helper function to register spm_orthviews plugins via spm_XYZreg % FORMAT spm_ovhelper_3Dreg('register', h, V) % Register a (3D) graphics with the main spm_orthviews display. This will % draw 3D crosshairs at the current spm_orthviews position and update % them whenever the spm_orthviews cursor moves. % h - a graphics handle or a tag of graphics handle to register % V - a volume handle (or equivalent) containing dimensions and % voxel-to-world mapping information % FORMAT spm_ovhelper_3Dreg('unregister', h) % h - a graphics handle or a tag of graphics handle to unregister % FORMAT spm_ovhelper_3Dreg('setcoords', xyz, h) % Update position of crosshairs in 3D display % xyz - new crosshair coordinates (in mm) % h - a graphics handle or a tag of graphics handle to update % FORMAT spm_ovhelper_3Dreg('xhairson', h) % FORMAT spm_ovhelper_3Dreg('xhairsoff', h) % Toggle display of crosshairs in 3D display. % h - a graphics handle or a tag of graphics handle %_______________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % Volkmar Glauche % $Id: spm_ovhelper_3Dreg.m 3756 2010-03-05 18:43:37Z guillaume $ if ishandle(varargin{1}) h = varargin{1}; elseif ischar(varargin{1}) h = findobj(0, 'Tag',varargin{1}); if ~ishandle(h) warning([mfilename ':InvalidHandle'], ... 'No valid graphics handle found'); return; else h = get(h(ishandle(h)),'parent'); end; end; switch lower(cmd) case 'register' register(h,varargin{2:end}); return; case 'setcoords' setcoords(varargin{1:end}); return; case 'unregister', unregister(h,varargin{2:end}); return; case 'xhairson' xhairs(h,'on',varargin{2:end}); return; case 'xhairsoff' xhairs(h,'off',varargin{2:end}); return; end; function register(h,V,varargin) try global st; if isstruct(st) xyz=spm_orthviews('pos'); if isfield(st,'registry') hreg = st.registry.hReg; else [hreg xyz]=spm_XYZreg('InitReg', h, V.mat, ... V.dim(1:3)',xyz); spm_orthviews('register',hreg); end; spm_XYZreg('Add2Reg',hreg,h,mfilename); feval(mfilename,'setcoords',xyz,h); set(h, 'DeleteFcn', ... sprintf('%s(''unregister'',%f);', mfilename, h)); end; catch warning([mfilename ':XYZreg'],... 'Unable to register to spm_orthviews display'); disp(lasterror); end; return; function setcoords(xyz,h,varargin) spm('pointer','watch'); Xh = findobj(h,'Tag', 'Xhairs'); if ishandle(Xh) vis = get(Xh(1),'Visible'); delete(Xh); else vis = 'on'; end; axes(findobj(h,'Type','axes')); lim = axis; Xh = line([xyz(1), xyz(1), lim(1);... xyz(1), xyz(1), lim(2)],... [lim(3), xyz(2), xyz(2);... lim(4), xyz(2), xyz(2)],... [xyz(3), lim(5), xyz(3);... xyz(3), lim(6), xyz(3)],... 'Color','b', 'Tag','Xhairs', 'Visible',vis,... 'Linewidth',2, 'HitTest','off'); spm('pointer','arrow'); return; function xhairs(h,val,varargin) Xh = findobj(h, 'Tag', 'Xhairs'); if ~isempty(Xh) set(Xh,'Visible',val); end; function unregister(h,varargin) try global st; if isfield(st,'registry') hreg = st.registry.hReg; else hreg = findobj(0,'Tag','hReg'); end; if h == hreg spm_XYZreg('UnInitReg',hreg); st = rmfield(st, 'registry'); else spm_XYZreg('Del2Reg',hreg,h); end; catch warning([mfilename ':XYZreg'],... 'Unable to unregister'); disp(lasterror); end; return;
github
philippboehmsturm/antx-master
spm_ov_title.m
.m
antx-master/freiburgLight/matlab/spm8/spm_orthviews/spm_ov_title.m
2,474
utf_8
dbb8c641fb8dfe619909aac75fa7deb5
function spm_ov_title(varargin) global st; if isempty(st) error(sprintf('spm:%s', mfilename), '%s: This routine can only be called as a plugin for spm_orthviews!', mfilename); end; if nargin < 2 error(sprintf('spm:%s', mfilename), '%: Wrong number of arguments. Usage: spm_orthviews(''title'', cmd, volhandle, varargin)', mfilename); end; cmd = lower(varargin{1}); volhandle = varargin{2}; switch cmd %---------------------------------------------------------------------- % Context menu and callbacks case 'context_menu' item0 = uimenu(varargin{3}, 'Label', 'Add title', 'Callback', ... sprintf('%s(''context_init'', %d);', mfilename, volhandle), ... 'Tag',['TITLE_0_', num2str(volhandle)]); case 'context_init' Finter = spm_figure('FindWin', 'Interactive'); spm_input('!DeleteInputObj', Finter); if isfield(st.vols{volhandle}, 'title') titlestr = st.vols{volhandle}.title.str; else titlestr = ''; end st.vols{volhandle}.title.str = spm_input('Title', '!+1', 's', titlestr); set_title; case 'addtitle' st.vols{volhandle}.title.str = varargin{3}; set_title(volhandle); case 'rmtitle' st.vols{volhandle}.title.str = ''; set_title(volhandle); case 'redraw' % Do nothing otherwise fprintf('spm_orthviews(''rgb'', ...): Unknown action %s', cmd); end function set_title(volhandle) global st if isempty(st.vols{volhandle}.title.str) if isfield(st.vols{volhandle}.title, 'ax') delete(st.vols{volhandle}.title.ax); end st.vols{volhandle} = rmfield(st.vols{volhandle}, 'title'); else if isfield(st.vols{volhandle}.title, 't') set(st.vols{volhandle}.title.t, 'String', st.vols{volhandle}.title.str); else axpos = zeros(3,4); for k = 1:3 axpos(k,:) = get(st.vols{volhandle}.ax{k}.ax, 'Position'); end axul = [min(axpos(:,1)), max(axpos(:,2)+axpos(:,4))+.1*(st.vols{volhandle}.area(2)+st.vols{volhandle}.area(4)-max(axpos(:,2)+axpos(:,4)))]; axsz = [st.vols{volhandle}.area(3) st.vols{volhandle}.area(2)+st.vols{volhandle}.area(4) - axul(2)]; st.vols{volhandle}.title.ax = axes('Position', [axul axsz], 'Visible', 'off'); st.vols{volhandle}.title.t = text(.5, 0, st.vols{volhandle}.title.str, 'HorizontalAlignment', 'Center'); end end
github
philippboehmsturm/antx-master
spm_ov_roi.m
.m
antx-master/freiburgLight/matlab/spm8/spm_orthviews/spm_ov_roi.m
36,776
utf_8
aeb54afe2f51c5c9e637c2e3b31f8e18
function ret = spm_ov_roi(varargin) % ROI tool - plugin for spm_orthviews % % With ROI tool it is possible to create new or modify existing mask images % interactively. ROI tool can be launched via the spm_orthviews image % context menu. % While ROI tool is active, mouse buttons have the following functions: % left Reposition crosshairs % middle Perform ROI tool box selection according to selected edit mode at % crosshair position % right context menu % % Menu options and prompts explained: % Launch Initialise ROI tool in current image % 'Load existing ROI image? (yes/no)' % If you want to modify an existing mask image (e.g. mask.img from % a fMRI analysis), press 'yes'. You will then be prompted to % 'Select ROI image' % This is the image that will be loaded as initial ROI. % If you want to create a new ROI image, you will first be % prompted to % 'Select image defining ROI space' % The image dimensions, voxel sizes and slice orientation will % be read from this image. Thus you can edit a ROI based on a % image with a resolution and slice orientation different from % the underlying displayed image. % % Once ROI tool is active, the menu consists of three parts: settings, % edit operations and load/save operations. % Settings % -------- % Selection Operation performed when pressing the middle mouse button or % mode by clustering operations. % 'Set selection' % The selection made with the following commands will % be included in your ROI. % 'Clear selection' % The selection made with the following commands will % be excluded from your ROI. % Box size Set size of box to be (de)selected when pressing the % middle mouse button. % Polygon Set number of adjacent slices selected by one polygon % slices drawing. % Cluster Set minimum cluster size for "Cleanup clusters" and % size "Connected cluster" operations. % Erosion/ During erosion/dilation operations, the binary mask will be % dilation smoothed. At boundaries, this will result in mask values % threshold that are not exactly zero or one, but somewhere in % between. Whether a mask will be eroded (i.e. be smaller than % the original) or dilated (i.e. grow) depends on this % threshold. A threshold below 0.5 dilates, above 0.5 erodes a % mask. % Edit actions % ------------ % Polygon Draw an outline on one of the 3 section images. Voxels % within the outline will be added to the ROI. The same % outline can be applied to a user-defined number of % consecutive slices around the current crosshair position. % Threshold You will be prompted to enter a [min max] threshold. Only % those voxels in the ROI image where the intensities of the % underlying image are within the [min max] range will survive % this operation. % Connected Select only voxels that are connected to the voxel at % cluster current crosshair position through the ROI. % Cleanup Keep only clusters that are larger than a specified cluster % clusters size. % Erode/ Erode or dilate a mask, using the current erosion/dilation % Dilate threshold. % Invert Invert currently defined ROI % Clear Clear ROI, but keep ROI space information % Add ROI from file(s) % Add ROIs from file(s) into current ROI set. According to the % current edit mode voxels unequal zero will be set or % cleared. The image files will be resampled and thus do not % need to have the same orientation or voxel size as the % original ROI. % Save actions % ------------ % Save Save ROI image % Save As Save ROI image under a new file name % The images will be rescaled to 0 (out of mask) and 1 (in % mask). % Quit Quit ROI tool % % This routine is a plugin to spm_orthviews for SPM8. For general help about % spm_orthviews and plugins type % help spm_orthviews % at the matlab prompt. %_____________________________________________________________________________ % $Id: spm_ov_roi.m 3920 2010-06-11 12:08:13Z volkmar $ % Note: This plugin depends on the blobs set by spm_orthviews('addblobs',...) % They should not be removed while ROI tool is active and no other blobs be % added. This restriction may be removed when using the 'alpha' property % to overlay blobs onto images. rev = '$Revision: 3920 $'; global st; if isempty(st) error('roi: This routine can only be called as a plugin for spm_orthviews!'); end; if nargin < 2 error('roi: Wrong number of arguments. Usage: spm_orthviews(''roi'', cmd, volhandle, varargin)'); end; cmd = lower(varargin{1}); volhandle = varargin{2}; toset = []; toclear = []; tochange = []; update_roi = false; switch cmd case 'init' % spm_ov_roi('init', volhandle, Vroi, loadasroi, xyz) spm('pointer','watch'); Vroi = spm_vol(varargin{3}); switch varargin{4} % loadasroi case 1, roi = spm_read_vols(Vroi)>0; [x y z] = ndgrid(1:Vroi.dim(1),1:Vroi.dim(2),1:Vroi.dim(3)); xyz = [x(roi(:))'; y(roi(:))'; z(roi(:))']; case {0,2} % ROI space image or SPM mat Vroi = rmfield(Vroi,'private'); roi = false(Vroi.dim(1:3)); Vroi.fname = fileparts(Vroi.fname); % save path xyz = varargin{5}; if ~isempty(xyz) ind = sub2ind(Vroi.dim(1:3),xyz(1,:),xyz(2,:),xyz(3,:)); roi(ind) = true; end; end; % reset data type to save disk space Vroi.dt(1) = spm_type('uint8'); % reset scaling factor of Vroi handle Vroi.pinfo(1:2) = Inf; clear x y z % draw a frame only if ROI volume different from underlying GM volume if any(Vroi.dim(1:3)-st.vols{volhandle}.dim(1:3))|| ... any(Vroi.mat(:)-st.vols{volhandle}.mat(:)) [xx1 yx1 zx1] = ndgrid(1 , 1:Vroi.dim(2), 1:Vroi.dim(3)); [xx2 yx2 zx2] = ndgrid(Vroi.dim(1) , 1:Vroi.dim(2), 1:Vroi.dim(3)); [xy1 yy1 zy1] = ndgrid(1:Vroi.dim(1), 1 , 1:Vroi.dim(3)); [xy2 yy2 zy2] = ndgrid(1:Vroi.dim(1), Vroi.dim(2) , 1:Vroi.dim(3)); [xz1 yz1 zz1] = ndgrid(1:Vroi.dim(1), 1:Vroi.dim(2), 1); [xz2 yz2 zz2] = ndgrid(1:Vroi.dim(1), 1:Vroi.dim(2), Vroi.dim(3)); fxyz = [xx1(:)' xx2(:)' xy1(:)' xy2(:)' xz1(:)' xz2(:)'; ... yx1(:)' yx2(:)' yy1(:)' yy2(:)' yz1(:)' yz2(:)'; ... zx1(:)' zx2(:)' zy1(:)' zy2(:)' zz1(:)' zz2(:)']; clear xx1 yx1 zx1 xx2 yx2 zx2 xy1 yy1 zy1 xy2 yy2 zy2 xz1 yz1 zz1 xz2 yz2 zz2 hframe = 1; else hframe = []; fxyz = []; end; cb = cell(1,3); for k=1:3 cb{k}=get(st.vols{volhandle}.ax{k}.ax,'ButtonDownFcn'); set(st.vols{volhandle}.ax{k}.ax,... 'ButtonDownFcn',... @(ob,ev)spm_ov_roi('bdfcn',volhandle,ob,ev)); end; st.vols{volhandle}.roi = struct('Vroi',Vroi, 'xyz',xyz, 'roi',roi,... 'hroi',1, 'fxyz',fxyz,... 'hframe',hframe, 'mode','set',... 'tool', 'box', ... 'thresh',[60 140], 'box',[4 4 4],... 'cb',[], 'polyslices',1, 'csize',5,... 'erothresh',.5); st.vols{volhandle}.roi.cb = cb; if ~isempty(st.vols{volhandle}.roi.fxyz) if isfield(st.vols{volhandle}, 'blobs') st.vols{volhandle}.roi.hframe = numel(st.vols{volhandle}.blobs)+1; end; spm_orthviews('addcolouredblobs',volhandle, ... st.vols{volhandle}.roi.fxyz,... ones(size(st.vols{volhandle}.roi.fxyz,2),1), ... st.vols{volhandle}.roi.Vroi.mat,[1 .5 .5]); st.vols{volhandle}.blobs{st.vols{volhandle}.roi.hframe}.max=1.3; end; update_roi=1; obj = findobj(0, 'Tag', sprintf('ROI_1_%d', volhandle)); set(obj, 'Visible', 'on'); obj = findobj(0, 'Tag', sprintf('ROI_0_%d', volhandle)); set(obj, 'Visible', 'off'); case 'edit' switch st.vols{volhandle}.roi.tool case 'box' spm('pointer','watch'); pos = round(inv(st.vols{volhandle}.roi.Vroi.mat)* ... [spm_orthviews('pos'); 1]); tmp = round((st.vols{volhandle}.roi.box-1)/2); [sx sy sz] = meshgrid(-tmp(1):tmp(1), -tmp(2):tmp(2), -tmp(3):tmp(3)); sel = [sx(:)';sy(:)';sz(:)']+repmat(pos(1:3), 1,prod(2*tmp+1)); tochange = sel(:, (all(sel>0) &... sel(1,:)<=st.vols{volhandle}.roi.Vroi.dim(1) & ... sel(2,:)<=st.vols{volhandle}.roi.Vroi.dim(2) & ... sel(3,:)<=st.vols{volhandle}.roi.Vroi.dim(3))); update_roi = 1; case 'connect' spm_ov_roi('connect', volhandle) case 'poly' % @COPYRIGHT : % Copyright 1993,1994 Mark Wolforth and Greg Ward, McConnell % Brain Imaging Centre, Montreal Neurological Institute, McGill % University. % Permission to use, copy, modify, and distribute this software % and its documentation for any purpose and without fee is % hereby granted, provided that the above copyright notice % appear in all copies. The authors and McGill University make % no representations about the suitability of this software for % any purpose. It is provided "as is" without express or % implied warranty. for k = 1:3 if st.vols{volhandle}.ax{k}.ax == gca axhandle = k; break; end; end; line_color = [1 1 0]; axes(st.vols{volhandle}.ax{axhandle}.ax); hold on; Xlimits = get (st.vols{volhandle}.ax{axhandle}.ax,'XLim'); Ylimits = get (st.vols{volhandle}.ax{axhandle}.ax,'YLim'); XLimMode = get(st.vols{volhandle}.ax{axhandle}.ax,'XLimMode'); set(st.vols{volhandle}.ax{axhandle}.ax,'XLimMode','manual'); YLimMode = get(st.vols{volhandle}.ax{axhandle}.ax,'YLimMode'); set(st.vols{volhandle}.ax{axhandle}.ax,'YLimMode','manual'); ButtonDownFcn = get(st.vols{volhandle}.ax{axhandle}.ax,'ButtonDownFcn'); set(st.vols{volhandle}.ax{axhandle}.ax,'ButtonDownFcn',''); UIContextMenu = get(st.vols{volhandle}.ax{axhandle}.ax,'UIContextMenu'); set(st.vols{volhandle}.ax{axhandle}.ax,'UIContextMenu',[]); set(st.vols{volhandle}.ax{axhandle}.ax,'Selected','on'); disp (['Please mark the ROI outline in the highlighted image' ... ' display.']); disp ('Points outside the ROI image area will be clipped to'); disp ('the image boundaries.'); disp ('Left-Click on the vertices of the ROI...'); disp ('Middle-Click to finish ROI selection...'); disp ('Right-Click to cancel...'); x=Xlimits(1); y=Ylimits(1); i=1; lineHandle = []; xc = 0; yc = 0; bc = 0; while ~isempty(bc) [xc,yc,bc] = ginput(1); if isempty(xc) || bc > 1 if bc == 3 x = []; y=[]; end; if bc == 2 || bc == 3 bc = []; break; end; else if xc > Xlimits(2) xc = Xlimits(2); elseif xc < Xlimits(1) xc = Xlimits(1); end; if yc > Ylimits(2) yc = Ylimits(2); elseif yc < Ylimits(1) yc = Ylimits(1); end; x(i) = xc; y(i) = yc; i=i+1; if ishandle(lineHandle) delete(lineHandle); end; lineHandle = line (x,y,ones(1,length(x)), ... 'Color',line_color,... 'parent',st.vols{volhandle}.ax{axhandle}.ax,... 'HitTest','off'); end; end if ishandle(lineHandle) delete(lineHandle); end; if ~isempty(x) spm('pointer','watch'); x(i)=x(1); y(i)=y(1); prms=spm_imatrix(st.vols{volhandle}.roi.Vroi.mat); % Code from spm_orthviews('redraw') for determining image % positions is = inv(st.Space); cent = is(1:3,1:3)*st.centre(:) + is(1:3,4); polyoff = [0 0 0]; switch axhandle case 1, M0 = [ 1 0 0 -st.bb(1,1)+1 0 1 0 -st.bb(1,2)+1 0 0 1 -cent(3) 0 0 0 1]; polyoff(3) = st.vols{volhandle}.roi.polyslices/2; polythick = prms(9); case 2, M0 = [ 1 0 0 -st.bb(1,1)+1 0 0 1 -st.bb(1,3)+1 0 1 0 -cent(2) 0 0 0 1]; polyoff(2) = st.vols{volhandle}.roi.polyslices/2; polythick = prms(8); case 3, if st.mode ==0, M0 = [ 0 0 1 -st.bb(1,3)+1 0 1 0 -st.bb(1,2)+1 1 0 0 -cent(1) 0 0 0 1]; else M0 = [ 0 -1 0 +st.bb(2,2)+1 0 0 1 -st.bb(1,3)+1 1 0 0 -cent(1) 0 0 0 1]; end; polyoff(1) = st.vols{volhandle}.roi.polyslices/2; polythick = abs(prms(7)); end; polvx = inv(st.vols{volhandle}.roi.Vroi.mat)*st.Space*inv(M0)*... [x(:)';y(:)'; zeros(size(x(:)')); ones(size(x(:)'))]; % Bounding volume for polygon in ROI voxel space [xbox ybox zbox] = ndgrid(max(min(floor(polvx(1,:)-polyoff(1))),1):... min(max(ceil(polvx(1,:)+polyoff(1))),... st.vols{volhandle}.roi.Vroi.dim(1)),... max(min(floor(polvx(2,:)-polyoff(2))),1):... min(max(ceil(polvx(2,:)+polyoff(2))),... st.vols{volhandle}.roi.Vroi.dim(2)),... max(min(floor(polvx(3,:)-polyoff(3))),1):... min(max(ceil(polvx(3,:)+polyoff(3))),... st.vols{volhandle}.roi.Vroi.dim(3))); % re-transform in polygon plane xyzbox = M0*is*st.vols{volhandle}.roi.Vroi.mat*[xbox(:)';ybox(:)';zbox(:)';... ones(size(xbox(:)'))]; xyzbox = xyzbox(:,abs(xyzbox(3,:))<=.6*polythick*... st.vols{volhandle}.roi.polyslices); % nearest neighbour to polygon sel = logical(inpolygon(xyzbox(1,:),xyzbox(2,:),x,y)); xyz = inv(st.vols{volhandle}.roi.Vroi.mat)*st.Space*inv(M0)*xyzbox(:,sel); if ~isempty(xyz) tochange = round(xyz(1:3,:)); update_roi = 1; end; end; set(st.vols{volhandle}.ax{axhandle}.ax,... 'Selected','off', 'XLimMode',XLimMode, 'YLimMode',YLimMode,... 'ButtonDownFcn',ButtonDownFcn, 'UIContextMenu',UIContextMenu); end; case 'thresh' spm('pointer','watch'); rind = find(st.vols{volhandle}.roi.roi); [x y z]=ind2sub(st.vols{volhandle}.roi.Vroi.dim(1:3),rind); tmp = round(inv(st.vols{volhandle}.mat) * ... st.vols{volhandle}.roi.Vroi.mat*[x'; y'; z'; ones(size(x'))]); dat = spm_sample_vol(st.vols{volhandle}, ... tmp(1,:), tmp(2,:), tmp(3,:), 0); sel = ~((st.vols{volhandle}.roi.thresh(1) < dat) & ... (dat < st.vols{volhandle}.roi.thresh(2))); if strcmp(st.vols{volhandle}.roi.mode,'set') toclear = [x(sel)'; y(sel)'; z(sel)']; else toset = [x(sel)'; y(sel)'; z(sel)']; toclear = st.vols{volhandle}.roi.xyz; end; update_roi = 1; case 'erodilate' spm('pointer','watch'); V = zeros(size(st.vols{volhandle}.roi.roi)); spm_smooth(double(st.vols{volhandle}.roi.roi), V, 2); [ero(1,:) ero(2,:) ero(3,:)] = ind2sub(st.vols{volhandle}.roi.Vroi.dim(1:3),... find(V(:)>st.vols{volhandle}.roi.erothresh)); if strcmp(st.vols{volhandle}.roi.mode,'set') toset = ero; toclear = st.vols{volhandle}.roi.xyz; else toclear = ero; end; update_roi = 1; case {'connect', 'cleanup'} spm('pointer','watch'); [V L] = spm_bwlabel(double(st.vols{volhandle}.roi.roi),6); sel = []; switch cmd case 'connect' pos = round(inv(st.vols{volhandle}.roi.Vroi.mat)* ... [spm_orthviews('pos'); 1]); sel = V(pos(1),pos(2),pos(3)); if sel == 0 sel = []; end; case 'cleanup' numV = zeros(1,L); for k = 1:L numV(k) = sum(V(:)==k); end; sel = find(numV>st.vols{volhandle}.roi.csize); end; if ~isempty(sel) ind1 = cell(1,numel(sel)); for k=1:numel(sel) ind1{k} = find(V(:) == sel(k)); end; ind = cat(1,ind1{:}); conn = zeros(3,numel(ind)); [conn(1,:) conn(2,:) conn(3,:)] = ... ind2sub(st.vols{volhandle}.roi.Vroi.dim(1:3),ind); if strcmp(st.vols{volhandle}.roi.mode,'set') toset = conn; toclear = st.vols{volhandle}.roi.xyz; else toclear = conn; end; end; update_roi = 1; case 'invert' spm('pointer','watch'); st.vols{volhandle}.roi.roi = ~st.vols{volhandle}.roi.roi; ind = find(st.vols{volhandle}.roi.roi); st.vols{volhandle}.roi.xyz = zeros(3,numel(ind)); [st.vols{volhandle}.roi.xyz(1,:), ... st.vols{volhandle}.roi.xyz(2,:), ... st.vols{volhandle}.roi.xyz(3,:)] = ind2sub(st.vols{volhandle}.roi.Vroi.dim(1:3),ind); update_roi = 1; case 'clear' spm('pointer','watch'); st.vols{volhandle}.roi.roi = false(size(st.vols{volhandle}.roi.roi)); st.vols{volhandle}.roi.xyz=[]; update_roi = 1; case 'addfile' V = spm_vol(spm_select([1 Inf],'image','Image(s) to add')); [x y z] = ndgrid(1:st.vols{volhandle}.roi.Vroi.dim(1),... 1:st.vols{volhandle}.roi.Vroi.dim(2),... 1:st.vols{volhandle}.roi.Vroi.dim(3)); xyzmm = st.vols{volhandle}.roi.Vroi.mat*[x(:)';y(:)';z(:)'; ... ones(1, prod(st.vols{volhandle}.roi.Vroi.dim(1:3)))]; msk = false(1,prod(st.vols{volhandle}.roi.Vroi.dim(1:3))); for k = 1:numel(V) xyzvx = inv(V(k).mat)*xyzmm; dat = spm_sample_vol(V(k), xyzvx(1,:), xyzvx(2,:), xyzvx(3,:), 0); dat(~isfinite(dat)) = 0; msk = msk | logical(dat); end; [tochange(1,:) tochange(2,:) tochange(3,:)] = ind2sub(st.vols{volhandle}.roi.Vroi.dim(1:3),find(msk)); clear xyzmm xyzvx msk update_roi = 1; case {'save','saveas'} if strcmp(cmd,'saveas') || ... exist(st.vols{volhandle}.roi.Vroi.fname, 'dir') flt = {'*.nii','NIfTI (1 file)';'*.img','NIfTI (2 files)'}; [name pth idx] = uiputfile(flt, 'Output image'); if ~ischar(pth) warning('spm:spm_ov_roi','Save cancelled'); return; end; [p n e v] = spm_fileparts(fullfile(pth,name)); if isempty(e) e = flt{idx,1}(2:end); end; st.vols{volhandle}.roi.Vroi.fname = fullfile(p, [n e v]); end; spm('pointer','watch'); spm_write_vol(st.vols{volhandle}.roi.Vroi, ... st.vols{volhandle}.roi.roi); spm('pointer','arrow'); return; case 'redraw' % do nothing return; %------------------------------------------------------------------------- % Context menu and callbacks case 'context_menu' item0 = uimenu(varargin{3}, 'Label', 'ROI tool'); item1 = uimenu(item0, 'Label', 'Launch', 'Callback', ... sprintf('%s(''context_init'', %d);', mfilename, volhandle), ... 'Tag',sprintf('ROI_0_%d', volhandle)); item2 = uimenu(item0, 'Label', 'Selection mode', ... 'Visible', 'off', 'Tag', ['ROI_1_', num2str(volhandle)]); item2_1a = uimenu(item2, 'Label', 'Set selection', 'Callback', ... sprintf('%s(''context_selection'', %d, ''set'');', ... mfilename, volhandle), ... 'Tag',sprintf('ROI_SELECTION_%d', volhandle), ... 'Checked','on'); item2_1b = uimenu(item2, 'Label', 'Clear selection', 'Callback', ... sprintf('%s(''context_selection'', %d,''clear'');', ... mfilename, volhandle), ... 'Tag', sprintf('ROI_SELECTION_%d', volhandle)); item3 = uimenu(item0, 'Label', 'Box size', 'Callback', ... sprintf('%s(''context_box'', %d);', mfilename, volhandle), ... 'Visible', 'off', 'Tag',sprintf('ROI_1_%d', volhandle)); item4 = uimenu(item0, 'Label', 'Polygon slices', 'Callback', ... sprintf('%s(''context_polyslices'', %d);', mfilename, volhandle), ... 'Visible','off', 'Tag', sprintf('ROI_1_%d', volhandle)); item5 = uimenu(item0, 'Label', 'Cluster size', 'Callback', ... sprintf('%s(''context_csize'', %d);', mfilename, volhandle), ... 'Visible','off', 'Tag',sprintf('ROI_1_%d', volhandle)); item6 = uimenu(item0, 'Label', 'Erosion/Dilation threshold', 'Callback', ... sprintf('%s(''context_erothresh'', %d);', mfilename, volhandle), ... 'Visible', 'off', 'Tag', sprintf('ROI_1_%d', volhandle)); item7 = uimenu(item0, 'Label', 'Edit tool', ... 'Visible','off', 'Tag',sprintf('ROI_1_%d', volhandle), ... 'Separator','on'); item7_1a = uimenu(item7, 'Label', 'Box tool', 'Callback', ... sprintf('%s(''context_edit'', %d,''box'');', mfilename, volhandle), ... 'Tag',sprintf('ROI_EDIT_%d', volhandle), 'Checked','on'); item7_1b = uimenu(item7, 'Label', 'Polygon tool', 'Callback', ... sprintf('%s(''context_edit'', %d,''poly'');', mfilename, volhandle), ... 'Tag',sprintf('ROI_EDIT_%d', volhandle)); item7_1c = uimenu(item7, 'Label', 'Connected cluster', 'Callback', ... sprintf('%s(''context_edit'', %d,''connect'');', mfilename, volhandle), ... 'Tag',sprintf('ROI_EDIT_%d', volhandle)); item8 = uimenu(item0, 'Label', 'Threshold', 'Callback', ... sprintf('%s(''context_thresh'', %d);', mfilename, volhandle), ... 'Visible','off', 'Tag',sprintf('ROI_1_%d', volhandle)); item10 = uimenu(item0, 'Label', 'Cleanup clusters', 'Callback', ... sprintf('%s(''cleanup'', %d);', mfilename, volhandle), ... 'Visible','off', 'Tag',sprintf('ROI_1_%d', volhandle)); item11 = uimenu(item0, 'Label', 'Erode/Dilate', 'Callback', ... sprintf('%s(''erodilate'', %d);', mfilename, volhandle), ... 'Visible','off', 'Tag',sprintf('ROI_1_%d', volhandle)); item12 = uimenu(item0, 'Label', 'Invert', 'Callback', ... sprintf('%s(''invert'', %d);', mfilename, volhandle), ... 'Visible','off', 'Tag',sprintf('ROI_1_%d', volhandle)); item13 = uimenu(item0, 'Label', 'Clear', 'Callback', ... sprintf('%s(''clear'', %d);', mfilename, volhandle), ... 'Visible','off', 'Tag',sprintf('ROI_1_%d', volhandle)); item14 = uimenu(item0, 'Label', 'Add ROI from file(s)', 'Callback', ... sprintf('%s(''addfile'', %d);', mfilename, volhandle), ... 'Visible','off', 'Tag',sprintf('ROI_1_%d', volhandle)); item15 = uimenu(item0, 'Label', 'Save', 'Callback', ... sprintf('%s(''save'', %d);', mfilename, volhandle), ... 'Visible','off', 'Tag',sprintf('ROI_1_%d', volhandle),... 'Separator','on'); item16 = uimenu(item0, 'Label', 'Save As', 'Callback', ... sprintf('%s(''saveas'', %d);', mfilename, volhandle), ... 'Visible','off', 'Tag',sprintf('ROI_1_%d', volhandle)); item17 = uimenu(item0, 'Label', 'Quit', 'Callback', ... sprintf('%s(''context_quit'', %d);', mfilename, volhandle), ... 'Visible','off', 'Tag',sprintf('ROI_1_%d', volhandle)); item18 = uimenu(item0, 'Label', 'Help', 'Callback', ... sprintf('spm_help(''%s'');', mfilename)); % add some stuff outside ROI tool menu iorient = findobj(st.vols{volhandle}.ax{1}.cm, 'Label', 'Orientation'); item19 = uimenu(iorient, 'Label', 'ROI Space', 'Callback', ... sprintf('%s(''context_space'', %d);', mfilename, volhandle), ... 'Visible','off', 'Tag',sprintf('ROI_1_%d', volhandle)); return; case 'context_init' Finter = spm_figure('FindWin', 'Interactive'); spm_input('!DeleteInputObj',Finter); loadasroi = spm_input('Initial ROI','!+1','m',{'ROI image',... 'ROI space definition', 'SPM result'},[1 0 2],1); xyz = []; switch loadasroi case 1, imfname = spm_select(1, 'image', 'Select ROI image'); case 0, imfname = spm_select(1, 'image', 'Select image defining ROI space'); case 2, [SPM, xSPM] = spm_getSPM; xyz = xSPM.XYZ; imfname = SPM.Vbeta(1).fname; end; spm_input('!DeleteInputObj',Finter); feval('spm_ov_roi','init',volhandle,imfname,loadasroi,xyz); return; case 'context_selection' st.vols{volhandle}.roi.mode = varargin{3}; obj = findobj(0, 'Tag', ['ROI_SELECTION_', num2str(volhandle)]); set(obj, 'Checked', 'off'); set(gcbo, 'Checked', 'on'); return; case 'context_edit' st.vols{volhandle}.roi.tool = varargin{3}; obj = findobj(0, 'Tag', ['ROI_EDIT_', num2str(volhandle)]); set(obj, 'Checked', 'off'); set(gcbo, 'Checked', 'on'); return; case 'context_box' Finter = spm_figure('FindWin', 'Interactive'); spm_input('!DeleteInputObj',Finter); box = spm_input('Selection size {vx vy vz}','!+1','e', ... num2str(st.vols{volhandle}.roi.box), [1 3]); spm_input('!DeleteInputObj',Finter); st.vols{volhandle}.roi.box = box; return; case 'context_polyslices' Finter = spm_figure('FindWin', 'Interactive'); spm_input('!DeleteInputObj',Finter); polyslices = spm_input('Polygon: slices around current slice','!+1','e', ... num2str(st.vols{volhandle}.roi.polyslices), [1 1]); spm_input('!DeleteInputObj',Finter); st.vols{volhandle}.roi.polyslices = polyslices; return; case 'context_csize' Finter = spm_figure('FindWin', 'Interactive'); spm_input('!DeleteInputObj',Finter); csize = spm_input('Minimum cluster size (#vx)','!+1','e', ... num2str(st.vols{volhandle}.roi.csize), [1 1]); spm_input('!DeleteInputObj',Finter); st.vols{volhandle}.roi.csize = csize; return; case 'context_erothresh' Finter = spm_figure('FindWin', 'Interactive'); spm_input('!DeleteInputObj',Finter); erothresh = spm_input('Erosion/Dilation threshold','!+1','e', ... num2str(st.vols{volhandle}.roi.erothresh), [1 1]); spm_input('!DeleteInputObj',Finter); st.vols{volhandle}.roi.erothresh = erothresh; return; case 'context_space' spm_orthviews('space', volhandle, ... st.vols{volhandle}.roi.Vroi.mat, ... st.vols{volhandle}.roi.Vroi.dim(1:3)); iorient = get(findobj(0,'Label','Orientation'),'children'); if iscell(iorient) iorient = cell2mat(iorient); end; set(iorient, 'Checked', 'Off'); ioroi = findobj(iorient, 'Label','ROI space'); set(ioroi, 'Checked', 'On'); return; case 'context_thresh' Finter = spm_figure('FindWin', 'Interactive'); spm_input('!DeleteInputObj',Finter); thresh = spm_input('Threshold {min max}','!+1','e', ... num2str(st.vols{volhandle}.roi.thresh), [1 2]); spm_input('!DeleteInputObj',Finter); st.vols{volhandle}.roi.thresh = thresh; feval('spm_ov_roi', 'thresh', volhandle); return; case 'context_quit' obj = findobj(0, 'Tag', sprintf('ROI_1_%d', volhandle)); set(obj, 'Visible', 'off'); obj = findobj(0, 'Tag', sprintf('ROI_0_%d', volhandle)); set(obj, 'Visible', 'on'); spm_orthviews('rmblobs', volhandle); for k=1:3 set(st.vols{volhandle}.ax{k}.ax,'ButtonDownFcn', st.vols{volhandle}.roi.cb{k}); end; st.vols{volhandle} = rmfield(st.vols{volhandle}, 'roi'); spm_orthviews('redraw'); return; case 'bdfcn' if strcmpi(get(gcf,'SelectionType'), 'extend') spm_orthviews('roi','edit',volhandle); else for k=1:3 if isequal(st.vols{volhandle}.ax{k}.ax, gca) break; end end feval(st.vols{volhandle}.roi.cb{k}); end otherwise fprintf('spm_orthviews(''roi'', ...): Unknown action %s', cmd); return; end; if update_roi if ~isempty(tochange) % change state according to mode if strcmp(st.vols{volhandle}.roi.mode,'set') toset = tochange; else toclear = tochange; end; end; % clear first, then set (needed for connect operation) if ~isempty(toclear) itoclear = sub2ind(st.vols{volhandle}.roi.Vroi.dim(1:3), ... toclear(1,:), toclear(2,:), toclear(3,:)); st.vols{volhandle}.roi.roi(itoclear) = false; if ~isempty(st.vols{volhandle}.roi.xyz) st.vols{volhandle}.roi.xyz = setdiff(st.vols{volhandle}.roi.xyz',toclear','rows')'; else st.vols{volhandle}.roi.xyz = []; end; end; if ~isempty(toset) % why do we need this round()?? I don't know, but Matlab thinks % it is necessary itoset = round(sub2ind(st.vols{volhandle}.roi.Vroi.dim(1:3), ... toset(1,:), toset(2,:), toset(3,:))); st.vols{volhandle}.roi.roi(itoset) = true; if ~isempty(st.vols{volhandle}.roi.xyz) st.vols{volhandle}.roi.xyz = union(st.vols{volhandle}.roi.xyz',toset','rows')'; else st.vols{volhandle}.roi.xyz = toset; end; end; if isfield(st.vols{volhandle}, 'blobs') nblobs=length(st.vols{volhandle}.blobs); if nblobs>1 blobstmp(1:st.vols{volhandle}.roi.hroi-1) = st.vols{volhandle}.blobs(1:st.vols{volhandle}.roi.hroi-1); blobstmp(st.vols{volhandle}.roi.hroi:nblobs-1) = st.vols{volhandle}.blobs(st.vols{volhandle}.roi.hroi+1:nblobs); st.vols{volhandle}.blobs=blobstmp; else if isempty(st.vols{volhandle}.roi.hframe) % save frame st.vols{volhandle}=rmfield(st.vols{volhandle},'blobs'); end; end; end; if isfield(st.vols{volhandle}, 'blobs') st.vols{volhandle}.roi.hroi = numel(st.vols{volhandle}.blobs)+1; else st.vols{volhandle}.roi.hroi = 1; end; if isempty(st.vols{volhandle}.roi.xyz) % initialised with empty roi spm_orthviews('addcolouredblobs', volhandle, ... [1; 1; 1], 0, st.vols{volhandle}.roi.Vroi.mat,[1 3 1]); else spm_orthviews('addcolouredblobs', volhandle, ... st.vols{volhandle}.roi.xyz, ones(size(st.vols{volhandle}.roi.xyz,2),1), ... st.vols{volhandle}.roi.Vroi.mat,[1 3 1]); % use color that is more intense than standard rgb range end; st.vols{volhandle}.blobs{st.vols{volhandle}.roi.hroi}.max=2; spm_orthviews('redraw'); end; spm('pointer','arrow'); function varargout = stack(cmd, varargin) switch cmd case 'init' varargout{1}.st = cell(varargin{1},1); varargout{1}.top= 0; case 'isempty' varargout{1} = (varargin{1}.top==0); case 'push' stck = varargin{1}; if (stck.top < size(stck.st,1)) stck.top = stck.top + 1; stck.st{stck.top} = varargin{2}; varargout{1}=stck; else error('Stack overflow\n'); end; case 'pop' if stack('isempty',varargin{1}) error('Stack underflow\n'); else varargout{2} = varargin{1}.st{varargin{1}.top}; varargin{1}.top = varargin{1}.top - 1; varargout{1} = varargin{1}; end; end;
github
philippboehmsturm/antx-master
spm_cfg_sendmail.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/spm_cfg_sendmail.m
5,377
utf_8
202a73a362717243076b2289fd67484c
function sendmail = spm_cfg_sendmail % SPM Configuration file for sendmail %_______________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % $Id: spm_cfg_sendmail.m 2923 2009-03-23 18:34:51Z guillaume $ % --------------------------------------------------------------------- % Recipient % --------------------------------------------------------------------- recipient = cfg_entry; recipient.tag = 'recipient'; recipient.name = 'Recipient'; recipient.help = {'User to receive mail.'}; recipient.strtype = 's'; recipient.num = [1 Inf]; % --------------------------------------------------------------------- % Subject % --------------------------------------------------------------------- subject = cfg_entry; subject.tag = 'subject'; subject.name = 'Subject'; subject.val = {['[SPM] [%DATE%] On behalf of ' spm('Ver')]}; subject.help = {'The subject line of the message. %DATE% will be replaced by a string containing the time and date when the email is sent.'}; subject.strtype = 's'; subject.num = [1 Inf]; % --------------------------------------------------------------------- % Message % --------------------------------------------------------------------- message = cfg_entry; message.tag = 'message'; message.name = 'Message'; message.val = {'Hello from SPM!'}; message.help = {'A string containing the message to send.'}; message.strtype = 's'; message.num = [1 Inf]; % --------------------------------------------------------------------- % Attachments % --------------------------------------------------------------------- attachments = cfg_files; attachments.tag = 'attachments'; attachments.name = 'Attachments'; attachments.val{1} = {}; attachments.help = {'List of files to attach and send along with the message.'}; attachments.filter = '.*'; attachments.ufilter = '.*'; attachments.num = [0 Inf]; % --------------------------------------------------------------------- % SMTP Server % --------------------------------------------------------------------- smtp = cfg_entry; smtp.tag = 'smtp'; smtp.name = 'SMTP Server'; smtp.help = {'Your SMTP server. If not specified, look for sendmail help.'}; smtp.strtype = 's'; try smtp.val = {getpref('Internet','SMTP_Server')}; end smtp.num = [1 Inf]; % --------------------------------------------------------------------- % E-mail % --------------------------------------------------------------------- email = cfg_entry; email.tag = 'email'; email.name = 'E-mail'; email.help = {'Your e-mail address. Look in sendmail help how to store it.'}; email.strtype = 's'; try email.val = {getpref('Internet','E_mail')}; end email.num = [1 Inf]; % --------------------------------------------------------------------- % Zip attachments % --------------------------------------------------------------------- zip = cfg_menu; zip.tag = 'zip'; zip.name = 'Zip attachments'; zip.val = {'No'}; zip.help = {'Zip attachments before being sent along with the message.'}; zip.labels = {'Yes' 'No'}'; zip.values = {'Yes' 'No'}'; % --------------------------------------------------------------------- % Parameters % --------------------------------------------------------------------- params = cfg_branch; params.tag = 'params'; params.name = 'Parameters'; params.val = { smtp email zip}; params.help = {'Preferences for your e-mail server (Internet SMTP server) and your e-mail address. MATLAB tries to read the SMTP mail server from your system registry. This should work flawlessly. If you encounter any error, identify the outgoing mail server for your electronic mail application, which is usually listed in the application''s preferences, or, consult your e-mail system administrator, and update the parameters. Note that this function does not support e-mail servers that require authentication.'}; % --------------------------------------------------------------------- % Sendmail % --------------------------------------------------------------------- sendmail = cfg_exbranch; sendmail.tag = 'sendmail'; sendmail.name = 'Sendmail'; sendmail.val = { recipient subject message attachments params}; sendmail.help = {'Send a mail message (attachments optionals) to an address.'}; sendmail.prog = @spm_sendmail; %_______________________________________________________________________ %_______________________________________________________________________ function spm_sendmail(job) try setpref('Internet','SMTP_Server',job.params.smtp); setpref('Internet','E_mail',job.params.email); subj = strrep(job.subject,'%DATE%',datestr(now)); mesg = strrep(job.message,'%DATE%',datestr(now)); mesg = [mesg 10 10 '-- ' 10 10 'Statistical Parametric Mapping']; if ~isempty(job.attachments) if strcmpi(job.params.zip,'Yes') zipfile = fullfile(tempdir,'spm_sendmail.zip'); zip(zipfile,job.attachments); job.attachments = {zipfile}; end sendmail(job.recipient,subj,mesg,job.attachments); else sendmail(job.recipient,subj,mesg); end catch %- not an error to prevent an analysis to crash because of just that... fprintf('Sendmail failed...\n'); end
github
philippboehmsturm/antx-master
Neural_demo.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/Neural_Models/Neural_demo.m
4,316
utf_8
1266d6ca90e707c689e0ad1c471d8909
function varargout = Neural_demo(varargin) % NEURAL_DEMO M-file for Neural_demo.fig % NEURAL_DEMO, by itself, creates a new NEURAL_DEMO or raises the existing % singleton*. % % H = NEURAL_DEMO returns the handle to a new NEURAL_DEMO or the handle to % the existing singleton*. % % NEURAL_DEMO('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in NEURAL_DEMO.M with the given input arguments. % % NEURAL_DEMO('Property','Value',...) creates a new NEURAL_DEMO or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before Neural_demo_OpeningFunction gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to Neural_demo_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help Neural_demo % Last Modified by GUIDE v2.5 09-Apr-2008 14:15:32 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @Neural_demo_OpeningFcn, ... 'gui_OutputFcn', @Neural_demo_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before Neural_demo is made visible. function Neural_demo_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to Neural_demo (see VARARGIN) % Choose default command line output for Neural_demo handles.output = hObject; % Update handles structure guidata(hObject, handles); % UIWAIT makes Neural_demo wait for user response (see UIRESUME) % uiwait(handles.figure1); % --- Outputs from this function are returned to the command line. function varargout = Neural_demo_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; function run_demo_Callback(hObject, handles, file) h = help(file); str{1} = [file ':']; str{2} = '______________________________________________________________ '; str{2} = ' '; str{3} = h; set(handles.help,'String',str); drawnow % get graphics handle spm_figure('GetWin','MFM'); clf eval(file) % --- Executes on button press in pushbutton1. function pushbutton1_Callback(hObject, eventdata, handles) run_demo_Callback(hObject, handles, 'spm_lfp_demo') % --- Executes on button press in pushbutton15. function pushbutton15_Callback(hObject, eventdata, handles) run_demo_Callback(hObject, handles, 'spm_ind_demo') % --- Executes on button press in pushbutton16. function pushbutton16_Callback(hObject, eventdata, handles) run_demo_Callback(hObject, handles, 'spm_mtf_demo') % --- Executes on button press in pushbutton17. function pushbutton17_Callback(hObject, eventdata, handles) run_demo_Callback(hObject, handles, 'spm_csd_demo') % --- Executes on button press in pushbutton18. function pushbutton18_Callback(hObject, eventdata, handles) run_demo_Callback(hObject, handles, 'spm_sigmoid_demo') % --- Executes on button press in pushbutton19. function pushbutton19_Callback(hObject, eventdata, handles) run_demo_Callback(hObject, handles, 'spm_mfm_demo') % --- Executes on button press in pushbutton20. function pushbutton20_Callback(hObject, eventdata, handles) run_demo_Callback(hObject, handles, 'spm_nested_oscillations_demo')
github
philippboehmsturm/antx-master
spm_freqs.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/Neural_Models/spm_freqs.m
3,737
utf_8
62139edd7cd9d8687d5af3ac86f25027
function [h,ww] = freqs(b,a,w) %FREQS Laplace-transform (s-domain) frequency response. % H = FREQS(B,A,W) returns the complex frequency response vector H % of the filter B/A: % nb-1 nb-2 % B(s) b(1)s + b(2)s + ... + b(nb) % H(s) = ---- = ------------------------------------- % na-1 na-2 % A(s) a(1)s + a(2)s + ... + a(na) % % given the numerator and denominator coefficients in vectors B and A. % The frequency response is evaluated at the points specified in % vector W (in rad/s). The magnitude and phase can be graphed by % calling FREQS(B,A,W) with no output arguments. % % [H,W] = FREQS(B,A) automatically picks a set of 200 frequencies W on % which the frequency response is computed. FREQS(B,A,N) picks N % frequencies. % % See also LOGSPACE, POLYVAL, INVFREQS, and FREQZ. % Author(s): J.N. Little, 6-26-86 % T. Krauss, 3-19-93, default plots and frequency vector % Copyright 1988-2004 The MathWorks, Inc. % $Revision: 1.12.4.2 $ $Date: 2004/12/26 22:15:54 $ error(nargchk(2,3,nargin)); error(nargoutchk(0,2,nargout)); if ~any(size(b)<=1) || ~any(size(a)<=1), error('The numerator and denominator must be vectors.'); end if nargin == 2, w = 200; end if length(w) == 1, wlen = w; w_long = freqint(b,a,wlen); % need to interpolate long frequency vector: xi = linspace(1,length(w_long),wlen).'; w = 10.^interp1(1:length(w_long),log10(w_long),xi,'linear'); end s = j*w; hh = polyval(b,s) ./ polyval(a,s); if nargout == 0, newplot; mag = abs(hh); phase = angle(hh)*180/pi; subplot(211),loglog(w,mag),set(gca,'xgrid','on','ygrid','on') set(gca,'xlim',[w(1) w(length(w))]) xlabel('Frequency (rad/s)') ylabel('Magnitude') ax = gca; subplot(212), semilogx(w,phase),set(gca,'xgrid','on','ygrid','on') set(gca,'xlim',[w(1) w(length(w))]) xlabel('Frequency (rad/s)') ylabel('Phase (degrees)') axes(ax) elseif nargout == 1, h = hh; elseif nargout == 2, h = hh; ww = w; end % end freqs function w=freqint(a,b,c,d,npts) %FREQINT Auto-ranging algorithm for Bode frequency response % W=FREQINT(A,B,C,D,Npts) % W=FREQINT(NUM,DEN,Npts) % Andy Grace 7-6-90 % Was Revision: 1.9, Date: 1996/07/25 16:43:37 % Generate more points where graph is changing rapidly. % Calculate points based on eigenvalues and transmission zeros. na = size(a, 1); if (nargin==3) && (na==1), % Transfer function form. npts=c; ep=roots(b); tz=roots(a); else % State space form if nargin==3, npts=c; [a,b,c,d] = spm_tf2ss(a,b); end ep=eig(a); tz=tzero(a,b,c,d); end if isempty(ep), ep=-1000; end % Note: this algorithm does not handle zeros greater than 1e5 ez=[ep(find(imag(ep)>=0));tz(find(abs(tz)<1e5&imag(tz)>=0))]; % Round first and last frequencies to nearest decade integ = abs(ez)<1e-10; % Cater for systems with pure integrators highfreq=round(log10(max(3*abs(real(ez)+integ)+1.5*imag(ez)))+0.5); lowfreq=round(log10(0.1*min(abs(real(ez+integ))+2*imag(ez)))-0.5); % Define a base range of frequencies diffzp=length(ep)-length(tz); w=logspace(lowfreq,highfreq,npts+diffzp+10*(sum(abs(imag(tz))<abs(real(tz)))>0)); ez=ez(imag(ez)>abs(real(ez))); % Oscillatory poles and zeros if ~isempty(ez) f=w; npts2=2+8/ceil(abs((diffzp+eps)/10)); [dum,ind]=sort(-abs(real(ez))); %#ok z=[]; for i=ind' r1=max([0.8*imag(ez(i))-3*abs(real(ez(i))),10^lowfreq]); r2=1.2*imag(ez(i))+4*abs(real(ez(i))); z=z(z>r2|z<r1); f=f(f>r2|f<r1); z=[z,logspace(log10(r1),log10(r2),sum(w<=r2&w>=r1)+npts2)]; end w=sort([f,z]); end w = w(:); % end freqint
github
philippboehmsturm/antx-master
spm_shoot_update.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/Shoot/spm_shoot_update.m
4,384
utf_8
effbd61be58eeeacba046cd940be6612
function [u0,ll1, ll2,grad_norm] = spm_shoot_update(g,f,u0,phi,dt,prm,int_args, bs_args,scale) % Shooting Of Diffeomorphisms (Spawn Of Dartel). % FORMAT u0 = spm_shoot_update(g,f,u0,phi,dt,prm,int_args, bs_args) % g - template % f - individual % u0 - initial velocity % phi - deformation % dt - Jacobian determinants % prm - Parameters of differential operator % int_args - integration settings % bs_args - interpolation settings % scale - scaling of the update step % % u0 - updated initial velocity % ll1 - matching part of objective function % ll2 - regularisation part of objective function % grad_norm - Norm of the 1st derivatives % % The easiest way to figure out what this function does is to read the code. %________________________________________________________ % (c) Wellcome Trust Centre for NeuroImaging (2009) % John Ashburner % $Id: spm_shoot_update.m 4103 2010-10-28 15:43:16Z john $ if nargin<9, scale = 1.0; end scale = max(min(scale,1.0),0.0); d = [size(g{1}),1,1]; d = d(1:3); if isempty(u0) u0 = zeros([d,3],'single'); end [ll1,b,A] = mnom_derivs(g,f,phi,dt, bs_args); m0 = dartel3('vel2mom',u0,prm); ll2 = 0.5*sum(sum(sum(sum(m0.*u0)))); var1 = sum(sum(sum(sum(b.^2)))); b = b + m0; var2 = sum(sum(sum(sum(b.^2)))); grad_norm = sqrt(var2/prod(d)); fprintf('%-10.5g %-10.5g %-10.5g %-10.5g %-10.5g\n',... ll1/prod(d), ll2/prod(d), (ll1+ll2)/prod(d),... var2/(var1+eps), grad_norm); u0 = u0 - scale*dartel3('fmg',A, b, [prm 3 2]); clear A b %======================================================================= %======================================================================= function [ll,b,A] = mnom_derivs(g,f,phi,dt, bs_args) % Compute log-likelihood, first and second derivatives for multi-nomial matching % FORMAT [ll,b,A] = mnom_derivs(g,f,phi,dt,bs_args) % g - cell array of template B-spline coefficients % f - cell array of individual subject data % phi - deformation field % dt - Jacobian determinants % bs_args - B-spline arguments for sampling g. Defaults to [2 2 2 1 1 1] if % not supplied. % % ll - log-likelihood % b - first derivatives % A - (approx) second derivatives (Fisher information) % %_______________________________________________________________________ % Copyright (C) 2009 Wellcome Trust Centre for Neuroimaging if nargin<4, bs_args = [2 2 2 1 1 1]; end d = [size(g{1}),1,1]; d = d(1:3); ll = 0; b = zeros([d,3],'single'); A = zeros([d,6],'single'); [id{1},id{2},id{3}] = ndgrid(1:d(1),1:d(2),ceil(bs_args(3)/2)+1); for z=1:d(3), ind = z+(-ceil(bs_args(3)/2):ceil(bs_args(3)/2)); if bs_args(6), ind = rem(ind-1+d(3),d(3))+1; end f1 = cell(size(f)); for k=1:numel(g), % Note the fudge with the indexing because spm_bsplins only works for double. [g1,d1,d2,d3] = spm_bsplins(double(g{k}(:,:,ind)),id{:},bs_args); slice(k) = struct('mu',exp(g1),'d1',d1,'d2',d2,'d3',d3); if isempty(phi) f1{k} = f{k}(:,:,z); else f1{k} = dartel3('samp',f{k},phi(:,:,z,:)); end end s = zeros(d(1:2)); for k=1:numel(g), s = s + slice(k).mu; end for k=1:numel(g), slice(k).mu = slice(k).mu./s; end b(:,:,z,:) = 0; A(:,:,z,:) = 0; for k=1:numel(g), tmp = f1{k}.*log(slice(k).mu); ll = ll - sum(tmp(:)); tmp = f1{k} - slice(k).mu.*dt(:,:,z); b(:,:,z,1) = b(:,:,z,1) + tmp.*slice(k).d1; b(:,:,z,2) = b(:,:,z,2) + tmp.*slice(k).d2; b(:,:,z,3) = b(:,:,z,3) + tmp.*slice(k).d3; for k1=1:numel(g), if k1~=k, tmp = -slice(k).mu.*slice(k1).mu.*dt(:,:,z); else tmp = max(slice(k).mu.*(1-slice(k1).mu),0).*dt(:,:,z); end A(:,:,z,1) = A(:,:,z,1) + tmp.*slice(k).d1.*slice(k1).d1; A(:,:,z,2) = A(:,:,z,2) + tmp.*slice(k).d2.*slice(k1).d2; A(:,:,z,3) = A(:,:,z,3) + tmp.*slice(k).d3.*slice(k1).d3; A(:,:,z,4) = A(:,:,z,4) + tmp.*slice(k).d1.*slice(k1).d2; A(:,:,z,5) = A(:,:,z,5) + tmp.*slice(k).d1.*slice(k1).d3; A(:,:,z,6) = A(:,:,z,6) + tmp.*slice(k).d2.*slice(k1).d3; end end end
github
philippboehmsturm/antx-master
spm_shoot3di.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/Shoot/spm_shoot3di.m
6,901
utf_8
4db8d50018ee6679cfb375dc8e01c81c
function varargout = spm_shoot3di(v0,prm,args) % Geodesic shooting % FORMAT [theta,Jtheta,v1,phi,Jphi] = spm_shoot3di(v0,prm,args) % v0 - Initial velocity field n1*n2*n3*3 (single prec. float) % prm - 7 Differential operator parameter settings % - [1] Regularisation type (ie the form of the differential % operator), can take values of % - 0 Linear elasticity % - 1 Membrane energy % - 2 Bending energy % - [2][3][4] Voxel sizes % - [5][6][7] Regularisation parameters % - For "membrane energy", the parameters are % lambda, unused and id. % - For "linear elasticity", the parameters are % mu, lambda, and id % - For "bending energy", the parameters are % lambda, id1 and id2. % args - Integration parameters % - [1] Num time steps % - [2][3] Multigrid parameters (cycles and iterations) % for generating velocities from momentum % % theta - Inverse deformation field n1*n2*n3*3 (single prec. float) % Jtheta - Inverse Jacobian tensors n1*n2*n3 (single prec. float) % v1 - Final velocity field n1*n2*n3*3 (single prec. float) % phi - Forward deformation field n1*n2*n3*3 (single prec. float) % Jphi - Forward Jacobian tensors n1*n2*n3 (single prec. float) % % This code generates deformations and their Jacobian determinans from % initial velocity fields by gedesic shooting. See the work of Miller, % Younes and others. % % LDDMM (Beg et al) uses the following evolution equation: % d\phi/dt = v_t(\phi_t) % where a variational procedure is used to find the stationary solution % for the time varying velocity field. % In principle though, once the initial velocity is known, then the % velocity at subsequent time points can be computed. This requires % initial momentum (m_0), computed (using differential operator L) by: % m_0 = L v_0 % Then (Ad_{\phi_t})^* m_0 is computed: % m_t = |d \phi_t| (d\phi_t)^T m_0(\phi_t) % The velocity field at this time point is then obtained by using % multigrid to solve: % v_t = L^{-1} m_t % % These equations can be found in: % Younes (2007). "Jacobi fields in groups of diffeomorphisms and % applications". Quarterly of Applied Mathematics, vol LXV, % number 1, pages 113-134 (2007). % % Multigrid is currently used to obtain v_t = L^{-1} m_t, but % this could also be done by convolution with the Greens function % N = L^{-1} (see e.g. Bro-Nielson). % %________________________________________________________ % (c) Wellcome Trust Centre for NeuroImaging (2009) % John Ashburner % $Id: spm_shoot3di.m 4026 2010-07-29 13:45:50Z john $ args0 = [8 4 4]; if nargin<3, args = args0; else if numel(args)<numel(args0), args = [args args0((numel(args)+1):end)]; end end verb = false; N = args(1); % # Time steps fmg_args = args(2:3); % Multigrid params d = size(v0); d = d(1:3); vt = v0; if ~isfinite(N), % Number of time steps from an educated guess about how far to move N = double(floor(sqrt(max(max(max(v0(:,:,:,1).^2+v0(:,:,:,2).^2+v0(:,:,:,3).^2)))))+1); end if verb, fprintf('N=%g:', N); end m0 = dartel3('vel2mom',v0,prm); % Initial momentum (m_0 = L v_0) if verb, fprintf('\t%g', 0.5*sum(v0(:).*m0(:))/prod(d)); end % Compute initial small deformation and Jacobian matrices from the velocity. % The overall deformation and its Jacobian tensor field is generated by % composing a series of small deformations. [theta,Jtheta] = dartel3('smalldef', vt,-1/N); % If required, also compute the forward and possibly also its Jacobian % tensor field. Note that the order of the compositions will be the % reverse of those for building the forward deformation. if nargout>=5, [ phi, Jphi] = dartel3('smalldef', vt,1/N); elseif nargout>=4, phi = dartel3('smalldef', vt,1/N); end for t=2:abs(N), mt = pullg(m0,theta,Jtheta); vt = mom2vel(mt,prm,fmg_args,vt); if verb, fprintf('\t%g', 0.5*sum(vt(:).*mt(:))/prod(d)); end [ dp, dJ] = dartel3('smalldef', vt,-1/N); % Small deformation [theta,Jtheta] = dartel3('comp', theta,dp, Jtheta,dJ); % Build up large def. from small defs clear dp dJ % If required, build up forward deformation and its Jacobian tensor field from % small deformations if nargout>=5, [ dp,dJ] = dartel3('smalldef', vt,1/N); % Small deformation [phi, Jphi] = dartel3('comp', dp, phi, dJ, Jphi); % Build up large def. from small defs clear dp dJ elseif nargout>=4, dp = dartel3('smalldef', vt,1/N); % Small deformation phi = dartel3('comp', dp, phi); % Build up large def. from small defs clear dp end drawnow end if verb, fprintf('\n'); end varargout{1} = theta; varargout{2} = Jtheta; if nargout>=3, mt = pullg(m0,theta,Jtheta); varargout{3} = mom2vel(mt,prm,fmg_args,vt); end if nargout>=4, varargout{4} = phi; end if nargout>=5, varargout{5} = Jphi; end %__________________________________________________________________________________ %__________________________________________________________________________________ function vt = mom2vel(mt,prm,fmg_args,vt) % L^{-1} m_t r = dartel3('vel2mom',vt,prm); vt = dartel3('mom2vel', mt-r, [prm fmg_args])+vt; if false, % Go for machine precision r = dartel3('vel2mom',vt,prm); ss = sum(sum(sum(sum((mt-r).^2)))); for i=1:8, oss = ss; vt = dartel3('mom2vel', mt-r, [prm fmg_args])+vt; r = dartel3('vel2mom',vt,prm); ss = sum(sum(sum(sum((mt-r).^2)))); if ss/oss>0.9, break; end end end %__________________________________________________________________________________ %__________________________________________________________________________________ function mt = pullg(m0,phi,J) % The Ad* operation mt = zeros(size(m0),'single'); for i=1:size(m0,3), phii = phi(:,:,i,:); mr1 = dartel3('samp',m0(:,:,:,1), phii); mr2 = dartel3('samp',m0(:,:,:,2), phii); mr3 = dartel3('samp',m0(:,:,:,3), phii); dj = J(:,:,i,1,1).*(J(:,:,i,2,2).*J(:,:,i,3,3)-J(:,:,i,2,3).*J(:,:,i,3,2))... +J(:,:,i,2,1).*(J(:,:,i,1,3).*J(:,:,i,3,2)-J(:,:,i,1,2).*J(:,:,i,3,3))... +J(:,:,i,3,1).*(J(:,:,i,1,2).*J(:,:,i,2,3)-J(:,:,i,1,3).*J(:,:,i,2,2)); mt(:,:,i,1) = (J(:,:,i,1,1).*mr1 + J(:,:,i,2,1).*mr2 + J(:,:,i,3,1).*mr3).*dj; mt(:,:,i,2) = (J(:,:,i,1,2).*mr1 + J(:,:,i,2,2).*mr2 + J(:,:,i,3,2).*mr3).*dj; mt(:,:,i,3) = (J(:,:,i,1,3).*mr1 + J(:,:,i,2,3).*mr2 + J(:,:,i,3,3).*mr3).*dj; end %__________________________________________________________________________________ %__________________________________________________________________________________
github
philippboehmsturm/antx-master
spm_shoot_template.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/Shoot/spm_shoot_template.m
11,515
utf_8
a1f2b9608195d776adafa0fdb535d298
function out = spm_shoot_template(job) % Iteratively compute a template with mean shape and intensities % format spm_shoot_template(job) % Fields of job: % job.images{1} first set of images (eg rc1*.nii) % job.images{2} second set of images (eg rc2*.nii) % etc % % Other settings are defined in spm_shoot_defaults.m % % The outputs are flow fields (v*.nii), deformation fields (y*.nii) % and a series of Template images. %_______________________________________________________________________ % Copyright (C) Wellcome Trust Centre for Neuroimaging (2009) % John Ashburner % $Id: spm_shoot_template.m 4324 2011-05-06 11:29:30Z john $ %_______________________________________________________________________ d = spm_shoot_defaults; tname = d.tname; % Base file name for templates issym = d.issym; % Use a symmetric template cyc_its = d.cyc_its; % No. multigrid cycles and inerations smits = d.smits; % No. smoothing iterations sched = d.sched; % Schedule for coarse to fine nits = numel(sched)-1; rparam = d.rparam; % Regularisation parameters for deformation sparam = d.sparam; % Regularisation parameters for blurring eul_its = d.eul_its; % Start with fewer steps bs_args = d.bs_args; % B-spline settings for interpolation %_______________________________________________________________________ % Sort out handles to images n1 = numel(job.images); n2 = numel(job.images{1}); NF = struct('NI',[],'vn',[1 1]); NF(n1,n2) = struct('NI',[],'vn',[1 1]); % Pick out individual volumes within NIfTI files for i=1:n1, if numel(job.images{i}) ~= n2, error('Incompatible number of images'); end; for j=1:n2, [pth,nam,ext,num] = spm_fileparts(job.images{i}{j}); NF(i,j).NI = nifti(fullfile(pth,[nam ext])); num = [str2num(num) 1 1]; NF(i,j).vn = num(1:2); end; end; spm_progress_bar('Init',n2,'Initial mean','Subjects done'); dm = [size(NF(1,1).NI.dat) 1]; dm = dm(1:3); NU = nifti; NU(n2) = nifti; NY = nifti; NY(n2) = nifti; NJ = nifti; NJ(n2) = nifti; t = zeros([dm n1+1],'single'); for i=1:n2, % Generate files for flow fields, deformations and Jacobian determinants. [pth,nam,ext] = fileparts(NF(1,i).NI.dat.fname); NU(i) = nifti; NY(i) = nifti; NJ(i) = nifti; offs = 352; if ~isempty(tname), NU(i).dat = file_array(fullfile(pth,['v_' nam '_' tname '.nii']),... [dm 1 3], 'float32-le', 352, 1, 0); NY(i).dat = file_array(fullfile(pth,['y_' nam '_' tname '.nii']),... [dm 1 3], 'float32-le', 352, 1, 0); NJ(i).dat = file_array(fullfile(pth,['j_' nam '_' tname '.nii']),... [dm 1 1], 'float32-le', 352, 1, 0); else NU(i).dat = file_array(fullfile(pth,['v_' nam '.nii']),... [dm 1 3], 'float32-le', 352, 1, 0); NY(i).dat = file_array(fullfile(pth,['y_' nam '.nii']),... [dm 1 3], 'float32-le', 352, 1, 0); NJ(i).dat = file_array(fullfile(pth,['y_' nam '.nii']),... [dm 1 1], 'float32-le', 352, 1, 0); end NU(i).descrip = sprintf('Velocity (%d %.4g %.4g %.4g)', rparam(1), rparam(2), rparam(3), rparam(4)); NU(i).mat = NF(1,i).NI.mat; NU(i).mat0 = NF(1,i).NI.mat0; NY(i).descrip = 'Deformation (templ. to. ind.)'; NY(i).mat = NF(1,i).NI.mat; NJ(i).descrip = 'Jacobian det (templ. to. ind.)'; NJ(i).mat = NF(1,i).NI.mat; create(NU(i)); NU(i).dat(:,:,:,:,:) = 0; create(NY(i)); NY(i).dat(:,:,:,:,:) = reshape(affind(dartel3('Exp',zeros([dm,3],'single'),[0 1]),NU(i).mat0),[dm,1,3]); create(NJ(i)); NJ(i).dat(:,:,:) = 1; % Add to sufficient statistics for generating initial template for j=1:n1, vn = NF(j,i).vn; dat = NF(j,i).NI.dat(:,:,:,vn(1),vn(2)); msk = isfinite(dat); dat(~msk) = 0; t(:,:,:,j) = t(:,:,:,j) + dat; end; t(:,:,:,end) = t(:,:,:,end) + msk; clear tmp msk spm_progress_bar('Set',i); end; spm_progress_bar('Clear'); % Make symmetric (if necessary) if issym, t = t + t(end:-1:1,:,:,:); end % Generate template from sufficient statistics tmp = t(:,:,:,end); msk = tmp<=0; for j=1:n1, tmp = tmp - t(:,:,:,j); end tmp(msk) = 0.01; % Most NaNs are likely to be background t(:,:,:,end) = tmp; clear tmp msk M = NF(1,1).NI.mat; vx = sqrt(sum(M(1:3,1:3).^2)); t = max(t,0); g = cell(n1+1,1); %%%%%%%%%%%%%%% % save SuffStats0.mat t sparam vx sched smits %%%%%%%%%%%%%%% if ~isempty(sparam), g0 = spm_shoot_blur(t,[sparam(1), vx, sched(1)*sparam(2) sparam(3:4)],smits); for j=1:n1+1, g{j} = max(g0(:,:,:,j),1e-4); end clear g0 else sumt = max(sum(t,4),0)+eps; for j=1:n1+1, g{j} = (t(:,:,:,j)+0.1)./(sumt+0.1*(n1+1)); end clear sumt end if ~isempty(tname), % Write template NG = NF(1,1).NI; NG.descrip = sprintf('Avg of %d', n2); [tdir,nam,ext] = fileparts(job.images{1}{1}); NG.dat.fname = fullfile(tdir,[tname, '_0.nii']); NG.dat.dim = [dm n1+1]; NG.dat.dtype = 'float32-le'; NG.dat.scl_slope = 1; NG.dat.scl_inter = 0; NG.mat0 = NG.mat; create(NG); for j=1:n1+1, NG.dat(:,:,:,j) = g{j}; end end for j=1:n1+1, g{j} = spm_bsplinc(log(g{j}), bs_args); end vx = sqrt(sum(NG.mat(1:3,1:3).^2)); ok = true(n2,1); % The actual work for it=1:nits, % More regularisation in the early iterations, as well as a % a less accurate approximation in the integration. prm = [rparam(1), vx, rparam(2:3)*sched(it+1), rparam(4)]; int_args = [eul_its(it), cyc_its]; drawnow t = zeros([dm n1+1],'single'); su = zeros([dm 3]); % Update velocities spm_progress_bar('Init',n2,sprintf('Update velocities (%d)',it),'Subjects done'); for i=1:n2, % Loop over subjects if ok(i) fprintf(' %-3d %-5d\t| ',it,i); % Load image data for this subject f = loadimage(NF(:,i)); % Load this subject's flow field and deformation u = squeeze(single(NU(i).dat(:,:,:,:,:))); y = affind(squeeze(single(NY(i).dat(:,:,:,:,:))),inv(NU(i).mat0)); dt = squeeze(single(NJ(i).dat(:,:,:))); drawnow % Gauss-Newton iteration to re-estimate deformations for this subject u = spm_shoot_update(g,f,u,y,dt,prm,int_args,bs_args); clear f y drawnow NU(i).dat(:,:,:,:,:) = reshape(u,[dm 1 3]); su = su + u; clear u spm_progress_bar('Set',i); end end spm_progress_bar('Clear'); if issym su(:,:,:,1) = (su(:,:,:,1) - su(end:-1:1,:,:,1) )/(sum(ok)*2); su(:,:,:,2:3) = (su(:,:,:,2:3) + su(end:-1:1,:,:,2:3))/(sum(ok)*2); else su = su/sum(ok); end % Update template sufficient statistics spm_progress_bar('Init',n2,sprintf('Update deformations and template (%d)',it),'Subjects done'); for i=1:n2, % Loop over subjects if ok(i) % Load velocity, mean adjust and re-save u = squeeze(single(NU(i).dat(:,:,:,:,:))); u = u - su; % Subtract mean NU(i).dat(:,:,:,:,:) = reshape(u,[dm 1 3]); % Generate inverse deformation and save [y,J] = spm_shoot3d(u,prm,int_args); clear u dt = dartel3('det',J); clear J if any(~isfinite(dt(:)) | dt(:)>100 | dt(:)<1/100) ok(i) = false; fprintf('Problem with %s (dets: %g .. %g)\n', NU(i).dat.fname, min(dt(:)), max(dt(:))); clear dt end end if ok(i) NY(i).dat(:,:,:,:,:) = reshape(affind(y,NU(i).mat0),[dm 1 3]); NJ(i).dat(:,:,:) = dt; drawnow; % Load image data for this subject f = loadimage(NF(:,i)); % Increment sufficient statistic for template for j=1:n1+1, tmp = dartel3('samp',f{j},y); t(:,:,:,j) = t(:,:,:,j) + tmp.*dt; drawnow end; clear f y dt fprintf('.'); spm_progress_bar('Set',i); end end clear su fprintf('\n'); spm_progress_bar('Clear'); % Make symmetric (if necessary) if issym, t = t + t(end:-1:1,:,:,:); end %%%%%%%%%%%%%%% % save(['SuffStats' num2str(it) '.mat'],'t', 'sparam', 'vx', 'sched', 'smits', 'g'); %%%%%%%%%%%%%%% % Re-generate template data from sufficient statistics if ~isempty(sparam), g0 = reconv(g,bs_args); g0 = spm_shoot_blur(t,[sparam(1), vx, sched(it+1)*sparam(2) sparam(3:4)],smits,g0); g = cell(n1+1,1); for j=1:n1+1, g{j} = max(g0(:,:,:,j),1e-4); end clear g0 else sumt = max(sum(t,4),0)+eps; for j=1:n1+1, g{j} = (t(:,:,:,j)+0.1)./(sumt+0.1*(n1+1)); end clear sumt end clear t % Write template if ~isempty(tname), NG.dat.fname = fullfile(tdir,[tname '_' num2str(ceil(it/6)) '.nii']); create(NG); for j=1:n1+1, NG.dat(:,:,:,j) = g{j}; end end % Compute template's B-spline coefficients for j=1:n1+1, g{j} = spm_bsplinc(log(g{j}), bs_args); end drawnow end if any(~ok) fprintf('Problems with:\n'); for i=find(~ok)', fprintf('\t%s\n', NU(i).dat.fname); end end % Finish off [tdir,nam,ext] = fileparts(job.images{1}{1}); out.template = cell(floor(nits/3)+1,1); if ~isempty(tname), for it=0:floor(nits/3), fname = fullfile(tdir,[tname '_' num2str(it) '.nii']); out.template{it+1} = fname; end end out.vel = cell(n2,1); out.def = cell(n2,1); out.jac = cell(n2,1); for i=1:n2, out.vel{i} = NU(i).dat.fname; out.def{i} = NY(i).dat.fname; out.jac{i} = NJ(i).dat.fname; end %======================================================================= %======================================================================= function y1 = affind(y0,M) % Affine transform of deformation y1 = zeros(size(y0),'single'); for d=1:3, y1(:,:,:,d) = y0(:,:,:,1)*M(d,1) + y0(:,:,:,2)*M(d,2) + y0(:,:,:,3)*M(d,3) + M(d,4); end %======================================================================= %======================================================================= function g0 = reconv(g,bs_args) d = [size(g{1}), 1]; [i1,i2,i3]=ndgrid(1:d(1),1:d(2),1:d(3)); g0 = zeros([d,numel(g)],'single'); for k=1:numel(g), g0(:,:,:,k) = max(exp(spm_bsplins(g{k},i1,i2,i3,bs_args)),1e-4); end %======================================================================= %======================================================================= function f = loadimage(NF) n1 = size(NF,1); f = cell(n1+1,1); dm = [NF(1).NI.dat.dim 1 1 1]; dm = dm(1:3); f{n1+1} = ones(dm,'single'); for j=1:n1, vn = NF(j,1).vn; f{j} = single(NF(j,1).NI.dat(:,:,:,vn(1),vn(2))); msk = ~isfinite(f{j}); f{j}(msk) = 0; f{n1+1} = f{n1+1} - f{j}; drawnow end f{n1+1}(msk) = 0.00001; %======================================================================= %=======================================================================
github
philippboehmsturm/antx-master
spm_shoot_blur.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/Shoot/spm_shoot_blur.m
6,581
utf_8
44fc0c3ca2a43f6ffcd3af5a35660c45
function [sig,a] = spm_shoot_blur(t,prm,its,sig) % A function for blurring ("smoothing") tissue probability maps % FORMAT [sig,a_new] = spm_shoot_blur(t,prm,its,sig) % t - sufficient statistics % prm - regularisation parameters (2, 1,1,1, 1,0.01,0.01) % its - max no. iterations (12) % sig - optional starting estimates % % sig - "smoothed" average % a - parameters % % The core of this procedure is described in: % John Ashburner & Karl J. Friston. % "Computing Average Shaped Tissue Probability Templates" % NeuroImage, In Press, Accepted Manuscript, Available online 24 December 2008 % % However, there is an additional modification such that the the null space % of the parameters is rotated out. %________________________________________________________ % (c) Wellcome Trust Centre for NeuroImaging (2009) % John Ashburner % $Id: spm_shoot_blur.m 4174 2011-01-26 13:33:13Z john $ d = [size(t),1,1,1]; if nargin<3, its = 16; end; % Maximum no. iterations if nargin<2, prm = [2, 1,1,1, 1,0.01,0.01]; end; % Default regularisation rits = [1 1]; % No. cycles and no. relaxation iterations W = zeros([d(1:3) round(((d(4)-1)*d(4))/2)],'single'); % 2nd derivatives gr = zeros([d(1:3),d(4)-1],'single'); % 1st derivatives % Re-organise sufficient statistics to a form that is easier to work with t = max(t,eps('single')*1000); s = sum(t,4); for k=1:d(4), t(:,:,:,k) = t(:,:,:,k)./s; end maxs = max(s(:)); % Used for scaling the regularisation prm(end) = prm(end)+maxs*d(4)*1e-3; % Only d(4)-1 fields need to be estimated because sum(a,4) = 0. This matrix % is used to rotate out the null space R = null(ones(1,d(4))); % Initial starting estimates (if sig is passed) a = zeros([d(1:3),d(4)-1],'single'); if nargin>=4, for z=1:d(3), % Loop over planes sz = sig(:,:,z,:); sz = min(max(sig,0),1); sz(~isfinite(sz)) = 1/d(4); sz = squeeze(log(double(sz*(1-d(4)*1e-3)+1e-3))); for j1=1:(d(4)-1), az = zeros(d(1:2)); for j2=1:d(4), az = az + R(j2,j1)*sz(:,:,j2); % Note the rotation end a(:,:,z,j1) = az; end clear sz az end end for i=1:its, ll = 0; for z=1:d(3), % Loop over planes % Compute softmax for this plane sig = double(reshape(sftmax(a(:,:,z,:),R),[d(1:2),d(4)])); % -ve log likelihood of the likelihood ll = ll - sum(sum(sum(log(sig).*reshape(t(:,:,z,:),[d(1:2),d(4)]),3).*s(:,:,z))); % Compute first derivatives (d(4)-1) x 1 grz = sig - double(reshape(t(:,:,z,:),[d(1:2),d(4)])); for j1=1:(d(4)-1), gr(:,:,z,j1) = 0; for j2=1:d(4), gr(:,:,z,j1) = gr(:,:,z,j1) + R(j2,j1)*grz(:,:,j2); % Note the rotation end gr(:,:,z,j1) = gr(:,:,z,j1).*s(:,:,z); end % Compute d(4) x d(4) matrix of second derivatives at each voxel. % These should be positive definate, but rounding errors may prevent this. % Regularisation is included to enforce +ve definateness. wz = zeros([d(1:2),d(4),d(4)]); for j1=1:d(4), wz(:,:,j1,j1) = (1-sig(:,:,j1)).*sig(:,:,j1).*s(:,:,z); for j2=1:(j1-1), wz(:,:,j1,j2) = -sig(:,:,j1) .*sig(:,:,j2).*s(:,:,z); wz(:,:,j2,j1) = wz(:,:,j1,j2); end end % First step of rotating 2nd derivatives to (d(4)-1) x (d(4)-1) % by R'*W*R wz1 = zeros([d(1:2),d(4),d(4)-1]); for j1=1:d(4), for j2=1:(d(4)-1), tmp = zeros(d(1:2)); for j3=1:d(4), tmp = tmp + wz(:,:,j1,j3)*R(j3,j2); end wz1(:,:,j1,j2) = tmp; end end % Second step of rotating 2nd derivatives to (d(4)-1) x (d(4)-1) % by R'*W*R wz = zeros([d(1:2),d(4)-1,d(4)-1]); for j1=1:(d(4)-1), for j2=1:(d(4)-1), tmp = zeros(d(1:2)); for j3=1:d(4), tmp = tmp + R(j3,j1)*wz1(:,:,j3,j2); end wz(:,:,j1,j2) = tmp; end end % First pull out the diagonal of the 2nd derivs for j1=1:d(4)-1, W(:,:,z,j1) = wz(:,:,j1,j1);% + maxs*sqrt(eps('single'))*d(4)^2; end % Then pull out the off diagonal parts (note that matrices are symmetric) jj = d(4); for j1=1:d(4)-1, for j2=(j1+1):(d(4)-1), W(:,:,z,jj) = wz(:,:,j2,j1); jj = jj+1; end end end % ss1 and ss2 are for examining how close the 1st derivatives are to zero. % At convergence, the derivatives from the likelihood term should match those % from the prior (regularisation) term. ss1 = sum(sum(sum(sum(gr.^2)))); gr1 = optimN('vel2mom',a,prm); % 1st derivative of the prior term ll1 = 0.5*sum(sum(sum(sum(gr1.*a)))); % -ve log probability of the prior term gr = gr + gr1; % Combine the derivatives of the two terms ss2 = sum(sum(sum(sum(gr.^2)))); % This should approach zero at convergence mx = max(max(max(sum(gr.^2,4)))); fprintf('%d\t%g\t%g\t%g\t%g\t%g\t%g\n', i, ll/prod(d(1:3)),ll1/prod(d(1:3)), (ll+ll1)/prod(d(1:3)), ss2/ss1, mx, ss2/prod(d(1:3))); reg = double(0.1*sqrt(mx)*d(4)); %reg = double(0.1*sqrt(ss2/prod(d(1:3)))); a = a - optimN(W,gr,[prm(1:6) prm(7)+reg rits]); % Gauss-Newton update if ss2/ss1<1e-4, break; end % Converged? end sig = sftmax(a,R); %________________________________________________________ %________________________________________________________ function sig = sftmax(a,R) % Softmax function d = [size(a) 1 1 1]; sig = zeros([d(1:3),d(4)+1],'single'); trunc = log(realmax('single')*(1-eps('single'))/(d(4)+1)); for j=1:size(a,3), % Loop over planes % Rotate the null-space back in to the data aj = double(reshape(a(:,:,j,:),[d(1:2),d(4)])); sj = zeros([d(1:2),d(4)+1]); for j1=1:d(4)+1, sj(:,:,j1) = 0; for j2=1:d(4), sj(:,:,j1) = sj(:,:,j1) + R(j1,j2)*aj(:,:,j2); end end % Compute softmax sj = min(max(sj,-trunc),trunc); sj = exp(sj)+eps('single')*(d(4)+1); s = sum(sj,3); for i=1:d(4)+1, sig(:,:,j,i) = single(sj(:,:,i)./s); end end %________________________________________________________
github
philippboehmsturm/antx-master
spm_shoot3d.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/Shoot/spm_shoot3d.m
6,488
utf_8
7f1ca5842f35b820190834c523353944
function varargout = spm_shoot3d(v0,prm,args) % Geodesic shooting % FORMAT [phi,Jphi,v1,theta,Jtheta] = spm_shoot3d(v0,prm,args) % v0 - Initial velocity field n1*n2*n3*3 (single prec. float) % prm - Differential operator parameters % prm - 7 parameters (settings) % - [1] Regularisation type (ie the form of the differential % operator), can take values of % - 0 Linear elasticity % - 1 Membrane energy % - 2 Bending energy % - [2][3][4] Voxel sizes % - [5][6][7] Regularisation parameters % - For "membrane energy", the parameters are % lambda, unused and id. % - For "linear elasticity", the parameters are % mu, lambda, and id % - For "bending energy", the parameters are % lambda, id1 and id2. % args - Integration parameters % - [1] Num time steps % - [2][3] Multigrid parameters (cycles and iterations) % for generating velocities from momentum % % phi - Forward deformation field n1*n2*n3*3 (single prec. float) % Jphi - Forward Jacobian tensors n1*n2*n3 (single prec. float) % v1 - Final velocity field n1*n2*n3*3 (single prec. float) % theta - Inverse deformation field n1*n2*n3*3 (single prec. float) % Jtheta - Inverse Jacobian tensors n1*n2*n3 (single prec. float) % % This code generates deformations and their Jacobian determinans from % initial velocity fields by gedesic shooting. See the work of Miller, % Younes and others. % % LDDMM (Beg et al) uses the following evolution equation: % d\phi/dt = v_t(\phi_t) % where a variational procedure is used to find the stationary solution % for the time varying velocity field. % In principle though, once the initial velocity is known, then the % velocity at subsequent time points can be computed. This requires % initial momentum (m_0), computed (using differential operator L) by: % m_0 = L v_0 % Then (Ad_{\phi_t})^* m_0 is computed: % m_t = |d \phi_t| (d\phi_t)^T m_0(\phi_t) % The velocity field at this time point is then obtained by using % multigrid to solve: % v_t = L^{-1} m_t % % These equations can be found in: % Younes (2007). "Jacobi fields in groups of diffeomorphisms and % applications". Quarterly of Applied Mathematics, vol LXV, % number 1, pages 113-134 (2007). % % Note that in practice, (Ad_{\phi_t})^* m_0 is computed differently, % by multiplying the initial momentum by the inverse of the Jacobian % matrices of the inverse warp, and pushing the values to their new % location by the inverse warp (see the "pushg" code of dartel3). % Multigrid is currently used to obtain v_t = L^{-1} m_t, but % this could also be done by convolution with the Greens function % K = L^{-1} (see e.g. Bro-Nielson). % %________________________________________________________ % (c) Wellcome Trust Centre for NeuroImaging (2009) % John Ashburner % $Id: spm_shoot3d.m 4026 2010-07-29 13:45:50Z john $ args0 = [8 4 4]; if nargin<3, args = args0; else if numel(args)<numel(args0), args = [args args0((numel(args)+1):end)]; end end verb = false; N = args(1); % # Time steps fmg_args = args(2:3); % Multigrid params d = size(v0); d = d(1:3); vt = v0; if ~isfinite(N), % Number of time steps from an educated guess about how far to move N = double(floor(sqrt(max(max(max(v0(:,:,:,1).^2+v0(:,:,:,2).^2+v0(:,:,:,3).^2)))))+1); end if verb, fprintf('N=%g:', N); end m0 = dartel3('vel2mom',v0,prm); % Initial momentum (m_0 = L v_0) if verb, fprintf('\t%g', 0.5*sum(v0(:).*m0(:))/prod(d)); end % Compute initial small deformation and Jacobian matrices from the velocity. % The overall deformation and its Jacobian tensor field is generated by % composing a series of small deformations. [ phi, Jphi] = dartel3('smalldef', vt,1/N); % If required, also compute the forward and possibly also its Jacobian % tensor field. Note that the order of the compositions will be the % reverse of those for building the forward deformation. if nargout>=5, [theta,Jtheta] = dartel3('smalldef', vt,-1/N); elseif nargout>=4, theta = dartel3('smalldef', vt,-1/N); end for t=2:abs(N), mt = dartel3('pushg',m0,phi,Jphi); vt = mom2vel(mt,prm,fmg_args,vt); if verb, fprintf('\t%g', 0.5*sum(vt(:).*mt(:))/prod(d)); end [ dp, dJ] = dartel3('smalldef', vt,1/N); % Small deformation [ phi, Jphi] = dartel3('comp', dp, phi, dJ, Jphi); % Build up large def. from small defs clear dp dJ % If required, build up forward deformation and its Jacobian tensor field from % small deformations if nargout>=5, [ dp, dJ] = dartel3('smalldef', vt,-1/N); % Small deformation [theta,Jtheta] = dartel3('comp', theta,dp, Jtheta,dJ); % Build up large def. from small defs clear dp dJ elseif nargout>=4, dp = dartel3('smalldef', vt,-1/N); % Small deformation theta = dartel3('comp', theta, dp); % Build up large def. from small defs clear dp end drawnow end if verb, fprintf('\n'); end varargout{1} = phi; varargout{2} = Jphi; if nargout>=3, mt = dartel3('pushg',m0,phi,Jphi); varargout{3} = mom2vel(mt,prm,fmg_args,vt); end if nargout>=4, varargout{4} = theta; end if nargout>=5, varargout{5} = Jtheta; end %__________________________________________________________________________________ %__________________________________________________________________________________ function vt = mom2vel(mt,prm,fmg_args,vt) % L^{-1} m_t r = dartel3('vel2mom',vt,prm); if prm(1) == 0, % This option has been coded up in C vt = dartel3('mom2vel', mt-r, [prm fmg_args])+vt; else % This option has not been coded in C yet, so needs to be % done in a less efficient way dm = size(mt); H = zeros([dm(1:3),6],'single'); vt = dartel3('fmg',H,mt-r, [prm fmg_args])+vt; end if false, % Go for machine precision r = dartel3('vel2mom',vt,prm); ss = sum(sum(sum(sum((mt-r).^2)))); for i=1:8, oss = ss; vt = dartel3('mom2vel', mt-r, [prm fmg_args])+vt; r = dartel3('vel2mom',vt,prm); ss = sum(sum(sum(sum((mt-r).^2)))); if ss/oss>0.9, break; end end end %__________________________________________________________________________________ %__________________________________________________________________________________
github
philippboehmsturm/antx-master
tbx_cfg_shoot.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/Shoot/tbx_cfg_shoot.m
38,664
utf_8
0fd083d5d34a604dfcaeb7f4cd3568d1
function shoot = tbx_cfg_shoot % MATLABBATCH Configuration file for toolbox 'Shoot Tools' % $Id: tbx_cfg_shoot.m 4136 2010-12-09 22:22:28Z guillaume $ addpath(fullfile(spm('dir'),'toolbox','DARTEL')); addpath(fullfile(spm('dir'),'toolbox','Shoot')); % --------------------------------------------------------------------- % images Images % --------------------------------------------------------------------- images1 = cfg_files; images1.tag = 'images'; images1.name = 'Images'; images1.help = {'Select a set of imported images of the same type to be registered by minimising a measure of difference from the template.'}; images1.filter = 'image'; images1.ufilter = '^r.*'; images1.num = [1 Inf]; % --------------------------------------------------------------------- % images Images % --------------------------------------------------------------------- images = cfg_repeat; images.tag = 'images'; images.name = 'Images'; images.help = {'Select the images to be warped together. Multiple sets of images can be simultaneously registered. For example, the first set may be a bunch of grey matter images, and the second set may be the white matter images of the same subjects.'}; images.values = {images1}; images.val = {images1}; images.num = [1 Inf]; % --------------------------------------------------------------------- % warp Run Shoot (create Templates) % --------------------------------------------------------------------- warp = cfg_exbranch; warp.tag = 'warp'; warp.name = 'Run Shooting (create Templates)'; warp.val = {images }; warp.help = {'Run the geodesic shooting nonlinear image registration procedure. This involves iteratively matching all the selected images to a template generated from their own mean. A series of Template*.nii files are generated, which become increasingly crisp as the registration proceeds.'}; warp.prog = @spm_shoot_template; % --------------------------------------------------------------------- % images Images % --------------------------------------------------------------------- images1 = cfg_files; images1.tag = 'images'; images1.name = 'Images'; images1.help = {'Select a set of imported images of the same type to be registered by minimising a measure of difference from the template.'}; images1.filter = 'image'; images1.ufilter = '^r.*'; images1.num = [1 Inf]; % --------------------------------------------------------------------- % images Images % --------------------------------------------------------------------- images = cfg_repeat; images.tag = 'images'; images.name = 'Images'; images.help = {'Select the images to be warped together. Multiple sets of images can be simultaneously registered. For example, the first set may be a bunch of grey matter images, and the second set may be the white matter images of the same subjects.'}; images.values = {images1 }; images.num = [1 Inf]; % --------------------------------------------------------------------- % rform Regularisation Form % --------------------------------------------------------------------- rform = cfg_menu; rform.tag = 'rform'; rform.name = 'Regularisation Form'; rform.val = {0}; rform.help = {'The registration is penalised by some ``energy'''' term. Here, the form of this energy term is specified. Three different forms of regularisation can currently be used.'}; rform.labels = { 'Linear Elastic Energy' 'Membrane Energy' 'Bending Energy' }'; rform.values = {0 1 2}; % --------------------------------------------------------------------- % template Template % --------------------------------------------------------------------- template = cfg_files; template.tag = 'templates'; template.name = 'Templates'; template.help = {'Select templates. Smoother templates should be used for the early iterations. Note that the template should be a 4D file, with the 4th dimension equal to the number of sets of images.'}; template.filter = 'nifti'; template.ufilter = '.*'; template.num = [1 Inf]; % --------------------------------------------------------------------- % warp1 Run Shooting (existing Templates) % --------------------------------------------------------------------- warp1 = cfg_exbranch; warp1.tag = 'warp1'; warp1.name = 'Run Shoot (existing Templates)'; warp1.val = {images template }; warp1.check = @check_shoot_template; warp1.help = {'Run the Shoot nonlinear image registration procedure to match individual images to pre-existing template data. Start out with smooth templates, and select crisp templates for the later iterations.'}; %warp1.prog = @spm_shoot_warp; %warp1.vout = @vout_shoot_warp; % --------------------------------------------------------------------- % velocities Velocity fields % --------------------------------------------------------------------- velocities = cfg_files; velocities.tag = 'velocities'; velocities.name = 'Velocity fields'; velocities.help = {'The velocity fields store the deformation information. The same fields can be used for both forward or backward deformations (or even, in principle, half way or exaggerated deformations).'}; velocities.filter = 'nifti'; velocities.ufilter = '^v_.*'; velocities.num = [1 Inf]; % --------------------------------------------------------------------- % images Images % --------------------------------------------------------------------- images1 = cfg_files; images1.tag = 'images'; images1.name = 'Images'; images1.help = {'Select images to be warped. Note that there should be the same number of images as there are velocity fields, such that each velocity field warps one image.'}; images1.filter = 'nifti'; images1.ufilter = '.*'; images1.num = [1 Inf]; % --------------------------------------------------------------------- % images Images % --------------------------------------------------------------------- images = cfg_repeat; images.tag = 'images'; images.name = 'Images'; images.help = {'The velocity field deformations can be applied to multiple images. At this point, you are choosing how many images each velocity field should be applied to.'}; images.values = {images1 }; images.num = [1 Inf]; % --------------------------------------------------------------------- % See later % --------------------------------------------------------------------- many_subj = cfg_branch; many_subj.tag = 'subjs'; many_subj.name = 'Many Subjects'; many_subj.val = {velocities,images}; many_subj.help = {[... 'Select this option if you have many subjects to spatially normalise, ',... 'but there are a small and fixed number of scans for each subject.']}; % --------------------------------------------------------------------- % jactransf Modulation % --------------------------------------------------------------------- jactransf = cfg_menu; jactransf.tag = 'jactransf'; jactransf.name = 'Modulation'; jactransf.val = {0}; jactransf.help = {'This allows the spatially normalised images to be rescaled by the Jacobian determinants of the deformations. Note that the rescaling is only approximate for deformations generated using smaller numbers of time steps.'}; jactransf.labels = { 'Pres. Concentration (No "modulation")' 'Pres. Amount ("Modulation")' }'; jactransf.values = {0 1}; % --------------------------------------------------------------------- % interp Interpolation % --------------------------------------------------------------------- interp = cfg_menu; interp.tag = 'interp'; interp.name = 'Interpolation'; interp.val = {1}; interp.help = { 'The method by which the images are sampled when being written in a different space.' ' Nearest Neighbour: - Fastest, but not normally recommended.' ' Bilinear Interpolation: - OK for PET, or realigned fMRI.' ' B-spline Interpolation: - Better quality (but slower) interpolation/* \cite{thevenaz00a}*/, especially with higher degree splines. Do not use B-splines when there is any region of NaN or Inf in the images. ' }'; interp.labels = { 'Nearest neighbour' 'Trilinear' '2nd Degree B-spline' '3rd Degree B-Spline ' '4th Degree B-Spline ' '5th Degree B-Spline' '6th Degree B-Spline' '7th Degree B-Spline' }'; interp.values = {0 1 2 3 4 5 6 7}; % --------------------------------------------------------------------- % crt_warped Create Warped % --------------------------------------------------------------------- crt_warped = cfg_exbranch; crt_warped.tag = 'crt_warped'; crt_warped.name = 'Create Warped'; crt_warped.val = {velocities images jactransf interp }; crt_warped.check = @check_norm; crt_warped.help = {'This allows spatially normalised images to be generated. Note that voxel sizes and bounding boxes can not be adjusted, and that there may be strange effects due to the boundary conditions used by the warping. Also note that the warped images are not in Talairach or MNI space. The coordinate system is that of the average shape and size of the subjects to which Shoot was applied. In order to have MNI-space normalised images, then the Deformations Utility can be used to compose the individual Shoot warps, with a deformation field that matches (e.g.) the Template grey matter generated by Shoot, with one of the grey matter volumes released with SPM.'}; %crt_warped.prog = @spm_shoot_norm; %crt_warped.vout = @vout_norm; % --------------------------------------------------------------------- % velocities Velocity fields % --------------------------------------------------------------------- velocities = cfg_files; velocities.tag = 'velocities'; velocities.name = 'Velocity fields'; velocities.help = {'The velocity fields store the deformation information. The same fields can be used for both forward or backward deformations (or even, in principle, half way or exaggerated deformations).'}; velocities.filter = 'nifti'; velocities.ufilter = '^v_.*'; velocities.num = [1 Inf]; % --------------------------------------------------------------------- % jacdet Jacobian determinants % --------------------------------------------------------------------- jacdet = cfg_exbranch; jacdet.tag = 'jacdet'; jacdet.name = 'Jacobian determinants'; jacdet.val = {velocities}; jacdet.help = {'Create Jacobian determinant fields from velocities.'}; %jacdet.prog = @spm_shoot_jacobian; %jacdet.vout = @vout_jacdet; % --------------------------------------------------------------------- % velocities Velocity fields % --------------------------------------------------------------------- velocities = cfg_files; velocities.tag = 'velocities'; velocities.name = 'Velocity fields'; velocities.help = {'The velocity fields store the deformation information. The same fields can be used for both forward or backward deformations (or even, in principle, half way or exaggerated deformations).'}; velocities.filter = 'nifti'; velocities.ufilter = '^v_.*'; velocities.num = [1 Inf]; % --------------------------------------------------------------------- % images Images % --------------------------------------------------------------------- images = cfg_files; images.tag = 'images'; images.name = 'Images'; images.help = {'Select the image(s) to be inverse normalised. These should be in alignment with the template image generated by the warping procedure.'}; images.filter = 'nifti'; images.ufilter = '.*'; images.num = [1 Inf]; % --------------------------------------------------------------------- % interp Interpolation % --------------------------------------------------------------------- interp = cfg_menu; interp.tag = 'interp'; interp.name = 'Interpolation'; interp.val{1} = double(1); interp.help = { 'The method by which the images are sampled when being written in a different space.' ' Nearest Neighbour: - Fastest, but not normally recommended.' ' Bilinear Interpolation: - OK for PET, or realigned fMRI.' ' B-spline Interpolation: - Better quality (but slower) interpolation/* \cite{thevenaz00a}*/, especially with higher degree splines. Do not use B-splines when there is any region of NaN or Inf in the images. ' }'; interp.labels = { 'Nearest neighbour' 'Trilinear' '2nd Degree B-spline' '3rd Degree B-Spline ' '4th Degree B-Spline ' '5th Degree B-Spline' '6th Degree B-Spline' '7th Degree B-Spline' }'; interp.values = {0 1 2 3 4 5 6 7}; % --------------------------------------------------------------------- % crt_iwarped Create Inverse Warped % --------------------------------------------------------------------- crt_iwarped = cfg_exbranch; crt_iwarped.tag = 'crt_iwarped'; crt_iwarped.name = 'Create Inverse Warped'; crt_iwarped.val = {velocities images interp }; crt_iwarped.help = {'Create inverse normalised versions of some image(s). The image that is inverse-normalised should be in alignment with the template (generated during the warping procedure). Note that the results have the same dimensions as the ``velocity fields'''', but are mapped to the original images via the affine transformations in their headers.'}; %crt_iwarped.prog = @spm_shoot_invnorm; %crt_iwarped.vout = @vout_invnorm; % --------------------------------------------------------------------- % % --------------------------------------------------------------------- velocityfield = cfg_files; velocityfield.tag = 'velocityfield'; velocityfield.name = 'Flow Field'; velocityfield.filter = 'nifti'; velocityfield.ufilter = '^v_.*\.nii$'; velocityfield.num = [1 1]; velocityfield.help = {'Shoot velocity field for this subject.'}; % --------------------------------------------------------------------- % % --------------------------------------------------------------------- images = cfg_files; images.tag = 'images'; images.name = 'Images'; images.filter = 'nifti'; images.num = [1 Inf]; images.help = {'Images for this subject to spatially normalise.'}; % --------------------------------------------------------------------- % % --------------------------------------------------------------------- subj = cfg_branch; subj.tag = 'subj'; subj.name = 'Subject'; subj.val = {velocityfield,images}; subj.help = {'Subject to be spatially normalized.'}; % --------------------------------------------------------------------- % % --------------------------------------------------------------------- few_subj = cfg_repeat; few_subj.tag = 'few_subj'; few_subj.name = 'Few Subjects'; few_subj.values = {subj}; few_subj.help = {[... 'Select this option if there are only a few subjects, each with many or ',... 'a variable number of scans each. You will then need to specify a series of subjects, and the velocity field and images of each of them.']}; % --------------------------------------------------------------------- % % --------------------------------------------------------------------- way = cfg_choice; way.tag = 'data'; way.name = 'Select according to'; way.values = {few_subj,many_subj}; way.help = {... ['You may wish to spatially normalise only a few subjects, '... 'but have many scans per subject (eg for fMRI), '... 'or you may have lots of subjects, but with a small and fixed number '... 'of scans for each of them (eg for VBM). The idea is to chose the way of '... 'selecting files that is easier.']}; % --------------------------------------------------------------------- % % --------------------------------------------------------------------- template = cfg_files; template.tag = 'template'; template.name = 'Shoot Template'; template.filter = 'nifti'; template.num = [0 1]; template.help = {... ['Select the final Template file generated by Shoot. This will be affine '... 'registered with a TPM file, such that the resulting spatially normalised '... 'images are closer aligned to MNI space. Leave empty if you do not wish to '... 'incorporate a transform to MNI space '... '(ie just click ``done'' on the file selector, without selecting any images).']}; % --------------------------------------------------------------------- % % --------------------------------------------------------------------- fwhm = cfg_entry; fwhm.tag = 'fwhm'; fwhm.name = 'Gaussian FWHM'; fwhm.val = {[8 8 8]}; fwhm.strtype = 'e'; fwhm.num = [1 3]; fwhm.help = {'Specify the full-width at half maximum (FWHM) of the Gaussian blurring kernel in mm. Three values should be entered, denoting the FWHM in the x, y and z directions. Note that you can also specify [0 0 0], but any ``modulated'' data will show aliasing (see eg Wikipedia), which occurs because of the way the warped images are generated.'}; % --------------------------------------------------------------------- % % --------------------------------------------------------------------- preserve = cfg_menu; preserve.tag = 'preserve'; preserve.name = 'Preserve'; preserve.help = { 'Preserve Concentrations: Smoothed spatially normalised images (sw*) represent weighted averages of the signal under the smoothing kernel, approximately preserving the intensities of the original images. This option is currently suggested for eg fMRI.' '' 'Preserve Total: Smoothed and spatially normalised images preserve the total amount of signal from each region in the images (smw*). Areas that are expanded during warping are correspondingly reduced in intensity. This option is suggested for VBM.' }'; preserve.labels = { 'Preserve Concentrations (no "modulation")' 'Preserve Amount ("modulation")' }'; preserve.values = {0 1}; preserve.val = {0}; % --------------------------------------------------------------------- % % --------------------------------------------------------------------- vox = cfg_entry; vox.tag = 'vox'; vox.name = 'Voxel sizes'; vox.num = [1 3]; vox.strtype = 'e'; vox.def = @(val)spm_get_defaults('defs.vox',val{:}); vox.help = {[... 'Specify the voxel sizes of the deformation field to be produced. ',... 'Non-finite values will default to the voxel sizes of the template image',... 'that was originally used to estimate the deformation.']}; % --------------------------------------------------------------------- % % --------------------------------------------------------------------- bb = cfg_entry; bb.tag = 'bb'; bb.name = 'Bounding box'; bb.strtype = 'e'; bb.num = [2 3]; bb.def = @(val)spm_get_defaults('defs.bb',val{:}); bb.help = {[... 'Specify the bounding box of the deformation field to be produced. ',... 'Non-finite values will default to the bounding box of the template image',... 'that was originally used to estimate the deformation.']}; % --------------------------------------------------------------------- % % --------------------------------------------------------------------- nrm = cfg_exbranch; nrm.tag = 'mni_norm'; nrm.name = 'Normalise to MNI Space'; nrm.val = {template,way,vox,bb,preserve,fwhm}; %nrm.prog = @spm_shoot_norm_fun; %nrm.vout = @vout_norm_fun; %nrm.check = @check_norm_fun; nrm.help = {[... 'Normally, Shoot generates warped images that align with the average-shaped template. ',... 'This routine includes an initial affine regisration of the template (the final one ',... 'generated by Shoot), with the TPM data released with SPM.'],[... '``Smoothed'''' (blurred) spatially normalised images are generated in such a ',... 'way that the original signal is preserved. Normalised images are ',... 'generated by a ``pushing'''' rather than a ``pulling'''' (the usual) procedure. ',... 'Note that trilinear interpolation is used, and no masking is done. It ',... 'is therefore essential that the images are realigned and resliced ',... 'before they are spatially normalised. Alternatively, contrast images ',... 'generated from unsmoothed native-space fMRI/PET data can be spatially ',... 'normalised for a 2nd level analysis.'],[... 'Two ``preserve'''' options are provided. One of them should do the ',... 'equavalent of generating smoothed ``modulated'''' spatially normalised ',... 'images. The other does the equivalent of smoothing the modulated ',... 'normalised fMRI/PET, and dividing by the smoothed Jacobian determinants.']}; % --------------------------------------------------------------------- % images Images % --------------------------------------------------------------------- images1 = cfg_files; images1.tag = 'images'; images1.name = 'Images'; images1.help = {'Select tissue class images (one per subject).'}; images1.filter = 'nifti'; images1.ufilter = '^r.*c'; images1.num = [1 Inf]; % --------------------------------------------------------------------- % images Images % --------------------------------------------------------------------- images = cfg_repeat; images.tag = 'images'; images.name = 'Images'; images.help = {'Multiple sets of images are used here. For example, the first set may be a bunch of grey matter images, and the second set may be the white matter images of the same subjects. The number of sets of images must be the same as was used to generate the template.'}; images.values = {images1 }; images.num = [1 Inf]; % --------------------------------------------------------------------- % velocities Velocity fields % --------------------------------------------------------------------- velocities = cfg_files; velocities.tag = 'velocities'; velocities.name = 'Velocity fields'; velocities.help = {'Select the velocity fields for each subject.'}; velocities.filter = 'nifti'; velocities.ufilter = '^v_.*'; velocities.num = [1 Inf]; % --------------------------------------------------------------------- % template Template % --------------------------------------------------------------------- template = cfg_files; template.tag = 'template'; template.name = 'Template'; template.help = {'Residual differences are computed between the warped images and template.'}; template.filter = 'nifti'; template.ufilter = '^Template.*'; template.num = [0 1]; % --------------------------------------------------------------------- % fwhm Smoothing % --------------------------------------------------------------------- fwhm = cfg_menu; fwhm.tag = 'fwhm'; fwhm.name = 'Smoothing'; fwhm.val = {4}; fwhm.help = {'The residuals can be smoothed with a Gaussian to reduce dimensionality. More smoothing is recommended if there are fewer training images.'}; fwhm.labels = { 'None' ' 2mm' ' 4mm' ' 6mm' ' 8mm' '10mm' '12mm' '14mm' '16mm' }'; fwhm.values = {0 2 4 6 8 10 12 14 16}; % --------------------------------------------------------------------- % resids Generate Residuals % --------------------------------------------------------------------- resids = cfg_exbranch; resids.tag = 'resids'; resids.name = 'Generate Residuals'; resids.val = {images velocities template fwhm }; resids.check = @check_resids; resids.help = {'Generate residual images in a form suitable for computing a Fisher kernel. In principle, a Gaussian Process model can be used to determine the optimal (positive) linear combination of kernel matrices. The idea would be to combine the kernel from the residuals, with a kernel derived from the velocity-fields. Such a combined kernel should then encode more relevant information than the individual kernels alone.'}; %resids.prog = @spm_shoot_resids; %resids.vout = @vout_resids; % --------------------------------------------------------------------- % images Data % --------------------------------------------------------------------- images = cfg_files; images.tag = 'images'; images.name = 'Data'; images.help = {'Select images to generate dot-products from.'}; images.filter = 'nifti'; images.ufilter = '.*'; images.num = [1 Inf]; % --------------------------------------------------------------------- % weight Weighting image % --------------------------------------------------------------------- weight = cfg_files; weight.tag = 'weight'; weight.name = 'Weighting image'; weight.val = {{}}; weight.help = {'The kernel can be generated so that some voxels contribute to the similarity measures more than others. This is achieved by supplying a weighting image, which each of the component images are multiplied before the dot-products are computed. This image needs to have the same dimensions as the component images, but orientation information (encoded by matrices in the headers) is ignored. If left empty, then all voxels are weighted equally.'}; weight.filter = 'image'; weight.ufilter = '.*'; weight.num = [0 1]; % --------------------------------------------------------------------- % dotprod Dot-product Filename % --------------------------------------------------------------------- dotprod = cfg_entry; dotprod.tag = 'dotprod'; dotprod.name = 'Dot-product Filename'; dotprod.help = {'Enter a filename for results (it will be prefixed by ``dp_'''' and saved in the current directory).'}; dotprod.strtype = 's'; dotprod.num = [1 Inf]; % --------------------------------------------------------------------- % reskern Kernel from Resids % --------------------------------------------------------------------- reskern = cfg_exbranch; reskern.tag = 'reskern'; reskern.name = 'Kernel from Images'; reskern.val = {images weight dotprod }; reskern.help = {'Generate a kernel matrix from images. In principle, this same function could be used for generating kernels from any image data (e.g. ``modulated'''' grey matter). If there is prior knowledge about some region providing more predictive information (e.g. the hippocampi for AD), then it is possible to weight the generation of the kernel accordingly. The matrix of dot-products is saved in a variable ``Phi'''', which can be loaded from the dp_*.mat file. The ``kernel trick'''' can be used to convert these dot-products into distance measures for e.g. radial basis-function approaches.'}; %reskern.prog = @spm_shoot_dotprods; % --------------------------------------------------------------------- % velocities Velocity fields % --------------------------------------------------------------------- velocities = cfg_files; velocities.tag = 'velocities'; velocities.name = 'Velocity fields'; velocities.help = {'Select the velocity fields for each subject.'}; velocities.filter = 'nifti'; velocities.ufilter = '^v_.*'; velocities.num = [1 Inf]; % --------------------------------------------------------------------- % dotprod Dot-product Filename % --------------------------------------------------------------------- dotprod = cfg_entry; dotprod.tag = 'dotprod'; dotprod.name = 'Dot-product Filename'; dotprod.help = {'Enter a filename for results (it will be prefixed by ``dp_'''' and saved in the current directory.'}; dotprod.strtype = 's'; dotprod.num = [1 Inf]; % --------------------------------------------------------------------- % velkern Kernel from Flows % --------------------------------------------------------------------- velkern = cfg_exbranch; velkern.tag = 'velkern'; velkern.name = 'Kernel from velocities'; velkern.val = {velocities dotprod}; velkern.help = {'Generate a kernel from velocity fields. The dot-products are saved in a variable ``Phi'''' in the resulting dp_*.mat file.'}; velkern.prog = @spm_shoot_kernel; % --------------------------------------------------------------------- % kernfun Kernel Utilities % --------------------------------------------------------------------- kernfun = cfg_choice; kernfun.tag = 'kernfun'; kernfun.name = 'Kernel Utilities'; kernfun.help = { 'Shoot can be used for generating matrices of dot-products for various kernel pattern-recognition procedures.' 'The idea of applying pattern-recognition procedures is to obtain a multi-variate characterisation of the anatomical differences among groups of subjects. These characterisations can then be used to separate (eg) healthy individuals from particular patient populations. There is still a great deal of methodological work to be done, so the types of kernel that can be generated here are unlikely to be the definitive ways of proceeding. They are only just a few ideas that may be worth trying out. The idea is simply to attempt a vaguely principled way to combine generative models with discriminative models (see the ``Pattern Recognition and Machine Learning'''' book by Chris Bishop for more ideas). Better ways (higher predictive accuracy) will eventually emerge.' 'Various pattern recognition algorithms are available freely over the Internet. Possible approaches include Support-Vector Machines, Relevance-Vector machines and Gaussian Process Models. Gaussian Process Models probably give the most accurate probabilistic predictions, and allow kernels generated from different pieces of data to be most easily combined.' }'; kernfun.values = {velkern}; % --------------------------------------------------------------------- % shoot Shoot Tools % --------------------------------------------------------------------- shoot = cfg_choice; shoot.tag = 'shoot'; shoot.name = 'Shoot Tools'; shoot.help = { 'This toolbox is based around the ``Diffeomorphic Registration using Geodesic Shooting and Gauss-Newton Optimisation'''' paper, which has been submitted to NeuroImage. The idea is to register images by estimating an initial velocity field, which can then be integrated to generate both forward and backward deformations. Currently, the software only works with images that have isotropic voxels, identical dimensions and which are in approximate alignment with each other. One of the reasons for this is that the approach assumes circulant boundary conditions, which makes modelling global rotations impossible. Because of these limitations, the registration should be based on images that have first been ``imported'''' via the New Segment toolbox.' 'The next step is the registration itself, which involves the simultaneous registration of e.g. GM with GM, WM with WM and 1-(GM+WM) with 1-(GM+WM) (when needed, the 1-(GM+WM) class is generated implicitly, so there is no need to include this class yourself). This procedure begins by creating a mean of all the images, which is used as an initial template. Deformations from this template to each of the individual images are computed, and the template is then re-generated by applying the inverses of the deformations to the images and averaging. This procedure is repeated a number of times.' '' 'This toolbox should be considered as only a beta (trial) version, and will include a number of (as yet unspecified) extensions in future updates. Please report any bugs or problems to the SPM mailing list.' }'; shoot.values = {warp kernfun}; %_______________________________________________________________________ % %_______________________________________________________________________ function dep = vout_initial_import(job) cls = {'GM', 'WM', 'CSF'}; kk = 1; for k=1:3, if isnumeric(job.(cls{k})) && job.(cls{k}) dep(kk) = cfg_dep; dep(kk).sname = sprintf('Imported Tissue (%s)', cls{k}); dep(kk).src_output = substruct('.','cfiles','()',{':',k}); dep(kk).tgt_spec = cfg_findspec({{'filter','nifti'}}); kk = kk + 1; end end if isnumeric(job.image) && job.image dep(kk) = cfg_dep; dep(kk).sname = sprintf('Resliced Original Images'); dep(kk).src_output = substruct('.','files'); dep(kk).tgt_spec = cfg_findspec({{'filter','nifti'}}); end %_______________________________________________________________________ %_______________________________________________________________________ function chk = check_shoot_template(job) n1 = numel(job.images); n2 = numel(job.images{1}); chk = ''; for i=1:n1, if numel(job.images{i}) ~= n2, chk = 'Incompatible number of images'; break; end; end; %_______________________________________________________________________ %_______________________________________________________________________ function dep = vout_shoot_template(job) if isa(job.template,'cfg_dep') || ~ ... isempty(deblank(job.template)) for it=0:numel(job.param), tdep(it+1) = cfg_dep; tdep(it+1).sname = sprintf('Template (Iteration %d)', it); tdep(it+1).src_output = substruct('.','template','()',{it+1}); tdep(it+1).tgt_spec = cfg_findspec({{'filter','nifti'}}); end else tdep = cfg_dep; tdep = tdep(false); end fdep = cfg_dep; fdep.sname = 'Flow Fields'; fdep.src_output = substruct('.','files','()',{':'}); fdep.tgt_spec = cfg_findspec({{'filter','nifti'}}); dep = [tdep fdep]; %_______________________________________________________________________ %_______________________________________________________________________ function dep = vout_shoot_warp(job) dep = cfg_dep; dep.sname = 'Flow Fields'; dep.src_output = substruct('.','files','()',{':'}); dep.tgt_spec = cfg_findspec({{'filter','nifti'}}); %_______________________________________________________________________ %_______________________________________________________________________ function chk = check_norm(job) chk = ''; PU = job.velocities; PI = job.images; n1 = numel(PU); for i=1:numel(PI), if numel(PI{i}) ~= n1, chk = 'Incompatible number of images'; break; end end %_______________________________________________________________________ %_______________________________________________________________________ function chk = check_norm_fun(job) chk = ''; if isfield(job.data,'subjs') PU = job.data.subjs.velocities; PI = job.data.subjs.images; n1 = numel(PU); for i=1:numel(PI), if numel(PI{i}) ~= n1, chk = 'Incompatible number of images'; break; end end end %_______________________________________________________________________ %_______________________________________________________________________ function dep = vout_norm(job) if job.jactransf, sname = 'Warped Images - Jacobian Transformed'; else sname = 'Warped Images'; end PU = job.velocities; PI = job.images; for m=1:numel(PI), dep(m) = cfg_dep; dep(m).sname = sprintf('%s (Image %d)',sname,m); dep(m).src_output = substruct('.','files','()',{':',m}); dep(m).tgt_spec = cfg_findspec({{'filter','nifti'}}); end n = numel(PI); for m=1:numel(PU), dep(m+n) = cfg_dep; dep(m+n).sname = sprintf('%s (Deformation %d)',sname,m); dep(m+n).src_output = substruct('.','files','()',{m,':'}); dep(m+n).tgt_spec = cfg_findspec({{'filter','nifti'}}); end %_______________________________________________________________________ %_______________________________________________________________________ function dep = vout_invnorm(job) PU = job.velocities; PI = job.images; for m=1:numel(PI), dep(m) = cfg_dep; dep(m).sname = sprintf('Inverse Warped Images (Image %d)',m); dep(m).src_output = substruct('.','files','()',{':',m}); dep(m).tgt_spec = cfg_findspec({{'filter','nifti'}}); end n = numel(PI); for m=1:numel(PU), dep(m+n) = cfg_dep; dep(m+n).sname = sprintf('Inverse Warped Images (Deformation %d)',m); dep(m+n).src_output = substruct('.','files','()',{m,':'}); dep(m+n).tgt_spec = cfg_findspec({{'filter','nifti'}}); end %_______________________________________________________________________ %_______________________________________________________________________ function dep = vout_jacdet(job) dep = cfg_dep; dep.sname = 'Jacobian Determinant Fields'; dep.src_output = substruct('.','files','()',{':'}); dep.tgt_spec = cfg_findspec({{'filter','nifti'}}); %_______________________________________________________________________ %_______________________________________________________________________ function dep = vout_norm_fun(job) if job.preserve, sname = 'MNI Smo. Warped - Amount'; else sname = 'MNI Smo. Warped - Concentrations'; end dep = cfg_dep; if isfield(job.data,'subj') for m=1:numel(job.data.subj) dep(m) = cfg_dep; dep(m).sname = sprintf('%s (Deformation %d)',sname,m); dep(m).src_output = substruct('{}',{m},'()',{':'}); dep(m).tgt_spec = cfg_findspec({{'filter','nifti'}}); end end if isfield(job.data,'subjs') for m=1:numel(job.data.subjs.images), dep(m) = cfg_dep; dep(m).sname = sprintf('%s (Image %d)',sname,m); dep(m).src_output = substruct('()',{':',m}); dep(m).tgt_spec = cfg_findspec({{'filter','nifti'}}); end end %_______________________________________________________________________ %_______________________________________________________________________ function chk = check_resids(job) chk = ''; PU = job.velocities; PI = job.images; n1 = numel(PU); for i=1:numel(PI), if numel(PI{i}) ~= n1, chk = 'Incompatible number of images'; break; end end %_______________________________________________________________________ %_______________________________________________________________________ function dep = vout_resids(job) dep = cfg_dep; dep.sname = 'Residual Files'; dep.src_output = substruct('.','files','()',{':'}); dep.tgt_spec = cfg_findspec({{'filter','nifti'}}); %_______________________________________________________________________
github
philippboehmsturm/antx-master
ArtRepair.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/ArtRepair/ArtRepair.m
4,284
utf_8
30332ef73082be065bb6166cb5330bd2
function varargout = spm_artifactrepair(varargin) % SPM_ARTIFACTREPAIR M-file for spm_artifactrepair.fig % SPM_ARTIFACTREPAIR, by itself, creates a new SPM_ARTIFACTREPAIR or raises the existing % singleton*. % % H = SPM_ARTIFACTREPAIR returns the handle to a new SPM_ARTIFACTREPAIR or the handle to % the existing singleton*. % % SPM_ARTIFACTREPAIR('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in SPM_ARTIFACTREPAIR.M with the given input arguments. % % SPM_ARTIFACTREPAIR('Property','Value',...) creates a new SPM_ARTIFACTREPAIR or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before spm_artifactrepair_OpeningFunction gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to spm_artifactrepair_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Copyright 2002-2003 The MathWorks, Inc. % Edit the above text to modify the response to help spm_artifactrepair % Last Modified by GUIDE v2.5 26-Mar-2009 10:52:25 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @spm_artifactrepair_OpeningFcn, ... 'gui_OutputFcn', @spm_artifactrepair_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before spm_artifactrepair is made visible. function spm_artifactrepair_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to spm_artifactrepair (see VARARGIN) % Choose default command line output for spm_artifactrepair handles.output = hObject; % Update handles structure guidata(hObject, handles); % UIWAIT makes spm_artifactrepair wait for user response (see UIRESUME) % uiwait(handles.figure1); % --- Outputs from this function are returned to the command line. function varargout = spm_artifactrepair_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; % --- Executes on button press in pushbutton6. function pushbutton6_Callback(hObject, eventdata, handles) % hObject handle to pushbutton6 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in pushbutton7. function pushbutton7_Callback(hObject, eventdata, handles) % hObject handle to pushbutton7 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in pushbutton8. function pushbutton8_Callback(hObject, eventdata, handles) % hObject handle to pushbutton8 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- Executes on button press in pushbutton9. function pushbutton9_Callback(hObject, eventdata, handles) % hObject handle to pushbutton9 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA)
github
philippboehmsturm/antx-master
art_summary.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/ArtRepair/art_summary.m
13,264
utf_8
f92ca4faeb9ae93562b3fd58332e3ccd
function [GQout,GQmean,Resout] = art_summary(ImageFullName,MaskFullName,OutputFolder,Figname,Fignum,AutoParams); % FUNCTION art_summary (v3) FEB 2009 % For manual GUI: % >>art_summary will use GUI to ask for images % % SUMMARY % Summarizes the overall quality of estimates produced during GLM % estimation for a single subject. Finds a histogram of all the % estimates over the whole head measured in percent signal change, % and calculates the model residual averaged over the whole head. % % Accurate estimates of percent signal change require that the user % know specific design information on the peak of the design regressor % and definition of the contrast. The program suggests a peak value % and user may override it. The suggestion is pretty reliable. % % GUI INPUTS if no arguments are supplied % User chooses con (or beta) results image(s) from an SPM Results folder. % User enters peak value of design regressor (a value will be suggested) % The peak value can be found by SPM->Review Design->Explore. % Observe the peak value in the upper left graphics image. For ER designs % where events overlap, select the value that matches a single event. % User chooses a mask image (usually in the same Results folder) % IMPORTANT: To compare accuracies between different Results folders, % be sure to use the same mask for all cases. % Program assumes the SPM.mat, ResMS and constant-term beta image are in % the same Results folder. % OutputFolder is for GlobalMeasure text summary is set % automatically to the SPM Results folder. % OUTPUTS % [ GQout, GQmean, Resout ] are the Global Quality scores and the mean % of sqrt(ResMS) over all the voxels in the brain, % in units of percent signal change. % For multiple con image inputs, GQout is for the last one. % Writes an output text file 'GlobalMeasure.txt' in the OutputFolder, % with mean, std, and RMS value of each image. % Plots a histogram of estimated results (in percent signal change) % for each input image. % If the Matlab/Statistics toolbox is installed, and the code % at the end of this program is uncommented: % Plots a cumulative distribution of estimate/residual for all % the voxels in the image. % % ARGUMENT INPUTS for calling from another function % [GQout,GQmean,Resout] = art_summary(ImageFullName, MaskFullName, OutputFolder,Figname,Fignum,AutoParams); % Program is called by art_redo and art_groupoutlier % Additional inputs are required when called from another function. % Figname specifies name of histogram image % In GUI mode, set to the name of Results folder. % Fignum specifies the first figure number to be plotted. % In GUI mode, it is set to 50. % AutoParams: a 1x3 array, % peak_value: peak value of the design regressor % contrast_value: sum of positive parts of contrast definition. % bmean: mean of constant term image from last beta % % FUNCTIONS % Program normalizes to percent, by using the average value of % the last beta image within the specified mask.This value is scaled by % P/C, where P is the peak value of the design regressor, and C is the % sum of positive coefficients in the contrast definition. % Makes an inner mask, and outer mask from head mask by finding % a shell at the boundary of the mask, approx. 10 mm thick % (1 voxel thick when voxel size is > 2.5 mm, 2 voxels thick % when voxel size is < 2.5 mm.). % % Paul Mazaika, Sept. 2006. % v2.1 added GQout and Resout function outputs. pkm Jan 2007 % small read changes for SPM5 % v2.2 added scaling by peak value and contrast RMS, % added those parameters as inputs for automatic mode.. % removed dependency on Matlab Statistics Toolbox. pkm july07 % v2.3 scale GQ for nargin > 0. Constrain peak to be positive. % v3 call art_percentscale for scaling, pkm feb09 spm('defaults','fmri'); spmv = spm('Ver'); spm_ver = 'spm2'; if (strcmp(spmv,'SPM5') | strcmp(spmv,'SPM8b') | strcmp(spmv,'SPM8') ) spm_ver = 'spm5'; end if nargin > 0 % Assumed to handle one image at a time. Rimages = ImageFullName; imgmask = MaskFullName; [ResultsFolder, temp ] = fileparts(Rimages(1,:)); % Art_redo and art_groupoutlier only send one contrast image to check. elseif nargin == 0 % GUI interface if no arguments if strcmp(spm_ver,'spm5') Rimages = spm_select(Inf,'image','select con image(s)'); %Rimages = spm_get(Inf,'.img','select con image(s)'); spm2 [ResultsFolder, temp ] = fileparts(Rimages(1,:)); imgmask = spm_select(Inf,'image','select Mask image',[],ResultsFolder,'^mask.*'); else % spm2 Rimages = spm_get(Inf,'.img','select con image(s)'); spm2 [ResultsFolder, temp ] = fileparts(Rimages(1,:)); imgmask = spm_get(Inf,'mask.img','select Mask image'); end OutputFolder = ResultsFolder; [temp, ResultsName ] = fileparts(ResultsFolder); Fignum = 50; Figname = ResultsName; %imgmask = spm_select(Inf,'image','select Mask image',[],ResultsFolder,'^mask.*'); end Maska = spm_vol(imgmask); Mask = spm_read_vols(Maska); Mask = round(Mask); % sometimes computed masks have roundoff error if nargin == 0 % find the scale factors automatically for jj = 1:size(Rimages,1) ScaleFactors = art_percentscale(Rimages(1,:),imgmask); contrast_value(jj) = ScaleFactors(2); end jpeakmode = ScaleFactors(1); bmean = ScaleFactors(3); % User can override peak value. peak_value = spm_input('Enter peak value of design regressor',1,'e',num2str(jpeakmode,3),1); spm_input('!DeleteInputObj'); else % AutoParams were passed in as arguments ScaleFactors = AutoParams; peak_value = AutoParams(1); contrast_value(1) = AutoParams(2); bmean = AutoParams(3); end % Find the ResMS and last beta image in Results folder with the Images R = spm_vol(Rimages); nimages = size(R,1); Resimage = fullfile(ResultsFolder,'ResMS.img'); % Find inner region (imask) and shell region (smask) of Mask. % Want the shell to be about 10mm, so erode the mask by a step % or two depending on the voxel size if Maska.mat(2,2) < 2.5 SHELL = 2; else SHELL = 1; end % Shell is the number of voxels thickness in the shell. % Shell = 1 seems to produce a two voxel thick shell. if SHELL == 1 imask = floor(smooth3(Mask)+0.02); smask = Mask & (1-imask); else % case SHELL = 2 iimask = floor(smooth3(Mask)+0.02); imask = floor(smooth3(iimask)+0.02); smask = Mask & (1-imask); end ilisti = find(imask==1); ilists = find(smask==1); ilista = find(Mask==1); clear Mask smask imask % Find the estimated residual stdev on each voxel % Undo the MeanSquare for ResMS PRes = spm_vol(Resimage); Yres = spm_read_vols(PRes); Yres = 100*sqrt(Yres)/bmean; % Compute stats on the images for i = 1:nimages+1 if (i < nimages+1) % Scale the images into percentage. P = spm_vol(Rimages(i,:)); X = spm_read_vols(P); X = 100*X/bmean; X = (peak_value/contrast_value(i))*X; % v2.2 change %X = (peak_value/contrast_value)*X; % v2.2 change disp(Rimages(i,:)); else % (i == nimages+1) X = Yres; disp(Resimage); end % Find mean and standard deviation of inner, shell, and total regions. %ilist = find(imask==1); isize = length(ilisti); imean = mean(X(ilisti)); istd = std(X(ilisti)); %itrim = trimmean(X(ilisti),10); % clips high 5% and low 5% [ itrim, i90 ] = clipstats10(X(ilisti)); imax = max(abs(X(ilisti))); %i90 = prctile(X(ilisti),90)-itrim; % dist of 90th percentile from mean ilarge = 100*length(find(abs(X(ilisti)>1)))/length(ilisti); % percent voxels > 1 in size irms = sqrt(istd*istd + imean*imean); %ilist = find(smask==1); ssize = length(ilists); smean = mean(X(ilists)); sstd = std(X(ilists)); srms = sqrt(sstd*sstd + smean*smean); %strim = trimmean(X(ilists),10); % clips high 5% and low 5% [ strim, s90 ] = clipstats10(X(ilists)); smax = max(abs(X(ilists))); %s90 = prctile(X(ilists),90)-strim; % dist of 90th percentile from mean slarge = 100*length(find(abs(X(ilists)>1)))/length(ilists); % percent voxels > 1 in size %ilist = find(Mask==1); tsize = length(ilista); tmean = mean(X(ilista)); tstd = std(X(ilista)); trms = sqrt(tstd*tstd + tmean*tmean); %ttrim = trimmean(X(ilista),10); % clips high 5% and low 5% [ ttrim, t90 ] = clipstats10(X(ilista)); tmax = max(abs(X(ilista))); %t90 = prctile(X(ilista),90)-ttrim; % dist of 90th percentile from mean tlarge = 100*length(find(abs(X(ilista)>1)))/length(ilista); % percent voxels > 1 in size %totinout = [ tsize/1000 tmean tstd trms;... % isize/1000 imean istd irms; ssize/1000 smean sstd srms]; %totals2 = [ tlarge ttrim t90 tmax; ilarge itrim i90 imax; slarge strim s90 smax ]; %disp(' %Vox > 1% Trimmean 90%ile AbsMax, for total, inner, and outer regions') %disp(totals2) disp(' Statistics for Total, Inner and Outer Regions') if i < nimages+1 scalewords = [ ' Uses peak value ',num2str(peak_value),', contrast sum of ',num2str(contrast_value(i)),... ' and mean value over mask of ',num2str(bmean,3) ]; elseif i == nimages+1 scalewords = [ ' Calculated for sqrt(ResMS) divided by mean value over mask of ',num2str(bmean,3) ]; end disp(scalewords) disp(' Voxels/1000 Mean Std RMS Trimmean 90%ile %Vox > 1% AbsMax') %disp(' Voxels/1000 Mean Std RMS, for total, inner, and outer regions') %disp(totinout) totalstat = [tsize/1000 tmean tstd trms ttrim t90 tlarge tmax;... isize/1000 imean istd irms itrim i90 ilarge imax;... ssize/1000 smean sstd srms strim s90 slarge smax]; disp(totalstat) fid = fopen(fullfile(OutputFolder,'GlobalQuality.txt'),'at'); if i < nimages+1 fprintf(fid,'\n%s\n',Rimages(i,:)); fprintf(fid,'%s\n',scalewords); else fprintf(fid,'%s\n',Resimage); fprintf(fid,'%s\n',scalewords); end %fprintf(fid,'%s\n',' %Vox > 1% Trimmean 90ile AbsMax'); %fprintf(fid,'%9.4f %9.4f %9.4f %9.4f\n',totals2'); %fprintf(fid,'%s\n',' Voxels/1000 Mean Std RMS'); %fprintf(fid,'%9.4f %9.4f %9.4f %9.4f\n',totinout'); fprintf(fid,'%s\n',' Voxels/1000 Mean Std RMS Trimmean 90ile %Vox > 1% AbsMax'); fprintf(fid,'%9.4f %9.4f %9.4f %9.4f%9.4f %9.4f %9.4f %9.4f\n',totalstat'); fclose(fid); % Make histogram and cumulative distribution for image if i < nimages+1 GQout = tstd; vec = [ -3:0.05:3 ]; figure(Fignum + 2*(i - 1)); uu = X(ilisti); uup = hist(uu,vec); uus = X(ilists); uups = hist(uus,vec); vecp2 = [ tmean tmean+0.001 ]; pv(1) = 0; pv(2) = max(uup); plot(vec,uup,'b-',vec,uups,'b--',vecp2,pv,'r--'); currname = R(i,:); [ temp1, temp2 ] = fileparts(currname.fname); xtitle = [ 'Histogram of Estimated Results for ' temp2 ' ' Figname ]; title(xtitle) widthval = [ 'StDev = ' num2str(tstd,3) ]; xlabela = ['Estimated Result (Pct signal change) ' widthval]; xlabel(xlabela) ylabel('Number of voxels') meanval = [ 'Mean ' num2str(tmean,3) ]; legend('Inner region','Outer region', meanval); hold off; % % Matlab function normplot is in Statistics Toolbox. % % To plot distribution relative to normal, use this code. % figure(Fignum +2*i-1); % Z = X(ilista)./Yres(ilista); % normplot(Z); % xtitle = ['Distribution of Observed Estimate/Residual for ' temp2 ' ' Figname ]; % title(xtitle) % xlabela = ['Arbitrary Units']; % xlabel(xlabela) % ylabel('Cumulative Probability') % % ----------------------------------- end if i == nimages % Values to return GQmean = tmean; %Exceed = tlarge; GQout = tstd; end end % Third value to return Resout = tmean; % Mean of sqrt(ResMS) image, which was last one processed. function [ trim10, dist90 ] = clipstats10(YY); % Finds trimmean and 90th percentile of data without Statistics toolbox. % Likely slower and less robust, but this is a simple application. % Hard-coded for 10% clip. Not worrying about roundoff for large datasets. zz = sort(YY); lz = length(zz); lz90 = zz(round(lz*0.9)); % 90th percentile point lim5 = round(lz*0.05); % 5th percentile point lim95 = lz -lim5 +1; % symmetric clipping for 95%ile point trim10 = mean(zz(lim5:lim95)); % trimmed mean dist90 = lz90 - trim10; % distance between 90%ile and trimmean.
github
philippboehmsturm/antx-master
art_groupcheck.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/ArtRepair/art_groupcheck.m
30,844
utf_8
9668b36f736e66de0d687cde18c8b60c
function art_groupcheck(Action) % FUNCTION art_groupcheck - v4 % % FUNCTIONS: % Allows a user to perform visual quality checks on contrast images % associated with a user-supplied group level SPM.mat file. These checks % can compare con and ResMS values for all subjects on a voxel, or % view contrast estimates over all voxels for every subject, or % run Global Quality scores to help detect outlier subjects. % % INPUTS % Choose group level SPM.mat file % If files at the full path name no longer exist, program prompts for the % current location of the con file of the first image. Program assumes % this same path change applies to all files in the group design. % These con files will be used for the analysis. % Input the scale factor to percent signal change if you wish to override % the program suggestion. (See below for the method.) The suggestion % is pretty reliable. % Choose method of viewing: % 1. All subjects on one voxel of interest % 2. Contrast image for every subject, same format as art_movie, % but with scale range from -2% to +2%. % 3. Identify subject outliers with the art_groupoutlier program. % If viewing by images: % Choose Orientation: Transverse, Sagittal, or Coronal % Select All slices (Recommended), or 25 close-up slices % In close-up mode, about 20-25 consecutive slices are shown in a % montage at twice the image size per slice. Select the desired % center slice of the montage. % Select ResMS weighting option: Yes or No. % No: Shows contrast images for each subject. Helpful to % see if a normalization were peculiar for a subject. % Yes: Each contrast image is masked by the group ResMS, and % each voxel is weighted according to both the % single subject and group ResMS values at the voxel, % This highlights voxel areas more likely to have high % group activations because of low variance. % If viewing by voxel: % Input voxel coordinates (in mm) in the format: X Y Z % % PERCENT SIGNAL CHANGE CONVERSION % The contrast image itself would be in percent signal change, IF % 1.the mean image over the mask were 100, and % 2.the peak of the design regressor were 1, and. % 3.there were only one session included.(contrast sum = 1) % The user can find these values from the result for a single % subject using art_percentscale. Use the same con image as will be used % in the group analysis. The peak and contrast sum are the same for % all subjects. The mean value varies a bit from subject to subject, % and is often 145-160 for Lucas Center scans. An average value will do here. % The scale factor to convert the con images to percent is: % percentscale = (peak/(constrast sum))*(100/(meanvalue)) % Then % con (in percent sig change) = percentscale*con(image) % This scales the groupcheck results for con images into percent signal change. % % OUTPUTS % If viewed by images: % - An interactive slider display with all frames of the montage movie, % where each frame shows the contrast image from one subject. % If viewed by voxel: % Overlayed bar graphs of the contrast and sqrt(ResMS) values for each % subject at the user-specified voxel, with the contrast values in the % top 3/4 of the graph and the resMS values in the bottom 1/4. There is % also an editable text field from which the user can select new % mm coordinates. % If viewed by Global Quality scores, type >>help art_groupoutlier % for more information. % % Jenny Drexler, August 2007. % pkm, v.4, Mar 2009 adds scaling, and option for art_groupoutlier %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % SIZE LIMIT - This parameter can be adjusted for a particular computer. % Matlab data is read as type double, then compressed to 8 bits. % 400 volumes of (64x64x30) is 50 MB stored as type uint8. % An experiment session may contain 300-600 volumes. % The number of volumes affects the loading speed. MAXSIZE = 510340; % About 50 MB is allowed into program storage. spm('defaults','fmri'); % IMAGE GRAPH LIMIT. - Max and min of contrast image display is 2%. GRAPHSCALE = 75; % Identify spm version spmv = spm('Ver'); spm_ver = 'spm2'; if (strcmp(spmv,'SPM5') | strcmp(spmv,'SPM8b') | strcmp(spmv,'SPM8') ) spm_ver = 'spm5'; end % GET THE USER'S INPUTS if (nargin==0) % For calling in line with arguments % prompt user to select SPM design if strcmp(spm_ver,'spm5') origSPM = spm_select(1,'SPM.mat','Select SPM group design'); else % spm2 version origSPM = spm_get(1,'SPM.mat','Select SPM group design'); end dirSPM = fileparts(origSPM); cd(dirSPM); load SPM; % load contrast image names for(i=1:SPM.nscan(1)) F{i} = SPM.xY.P{i}; end nFsize = size(F,2); % STORE DESIGN MATRIX groupdesign = SPM.xX.X; if ~exist(F{1},'file') % if contrast images cannot be found, they have been moved disp('Image file paths have changed since SPM.mat was created.') disp(['Please select replacement image for ' F{1}]) % prompt user to select new path of first scan askstring = ['Path has changed. Select con file to replace the one displayed.']; if strcmp(spm_ver,'spm5') Pnew = spm_select(1, 'image', askstring); else % spm2 version Pnew = spm_get(1,'*img', askstring ); end Pold = F{1}; % Remove comma in names (sometimes occurs in SPM5) Pnew = strtok(Pnew,','); Pold = strtok(Pold,','); S = char(Pnew, Pold); S(1,:) = strjust(S(1,:), 'right'); S(2,:) = strjust(S(2,:), 'right'); % compare paths to find new path prefix for(i=1:size(S,2)) if strcmp(S(1, i:size(S, 2)), S(2, i:size(S, 2))) PnewPrefix = strtrim(S(1, 1:i)); PoldPrefix = strtrim(S(2, 1:i)); break; end end % find new paths for all images for(j=1:nFsize) F{j} = strrep(F{j}, PoldPrefix, PnewPrefix); end end for(i=1:nFsize) % if path updates didn't work, prompt user for each image that % could not be found if ~exist(F{i}) disp([F{i} ' does not exist. Please select new image path.']); askstring = ['Select replacement image']; if strcmp(spm_ver,'spm5') F = cellstr(spm_select(1, 'image', askstring)); else % spm2 version F = cellstr(spm_get(1, '*img', askstring)); end end end % Find the percent scaling factors automatically. % Set the mask by the group level 'mask.img,1' image GroupMaskName = fullfile(dirSPM,'mask.img'); ScaleFactors1 = art_percentscale(char(F{1}),GroupMaskName); ScaleFactors2 = art_percentscale(char(F{2}),GroupMaskName); bmeanavg = 0.5*(ScaleFactors1(3) + ScaleFactors2(3)); suggestscale = (ScaleFactors1(1)/ScaleFactors1(2))*100/bmeanavg; % Give user a chance to fix it. disp(' ') disp('A suggested scaling into percent signal change is shown.') disp('User may change the value to override the suggestion.'); percentscale = 1; percentscale = spm_input('Enter (peak/constrast)*100/bmean',1,'e',num2str(suggestscale),1); % prompt user for viewing option View = spm_input('View by:', ... 1, 'm', ' Con and ResMS values for all subjects at one voxel location | Image of contrast result for every subject | Global Quality scores and suggested subject outliers', [1, 0, 2]); if (View == 1) % voxel of interest % load single subject resMS image names for(i=1:nFsize) [Path, ConImg] = fileparts(F{i}); subjResMS{i} = spm_vol([Path '/ResMS.img']); end % get image dimensions Q = spm_vol(F{1}); Q1 = spm_read_vols(Q); [ NX, NY, NZ ] = size(Q1); dim(1) = NX; dim(2) =NY; dim(3) = NZ; % prompt user for voxel coordinates in mm xyz = spm_input('Enter X Y Z coords in mm',1,'e',[],3); x_mm=xyz(1); y_mm=xyz(2); z_mm=xyz(3); % Read the images and extract the information on a voxel intensity=zeros(nFsize,1); intensityRes=zeros(nFsize,1); for filenumber=1:nFsize Q2 = spm_vol(F{filenumber}); Q1 = spm_read_vols(Q2); % find transformation for converting to voxel coordinates transformation(1, :) = Q2.mat(1, 1:3); transformation(2, :) = Q2.mat(2, 1:3); transformation(3, :) = Q2.mat(3, 1:3); translation = [Q2.mat(1, 4); Q2.mat(2, 4); Q2.mat(3, 4);]; % convert user input from mm to voxel coordinates mmcoord = [x_mm; y_mm; z_mm;] - translation; voxcoord = transformation\mmcoord; x = round(voxcoord(1)); y = round(voxcoord(2)); z = round(voxcoord(3)); % get contrast and ResMS values intensity(filenumber) = Q1(x,y,z); if isnan(Q1(x,y,z)) disp('WARNING: NaN voxel in Contrast image') words = [ F{filenumber} ]; disp(words); end QRes1 = spm_read_vols(spm_vol(subjResMS{filenumber})); intensityRes(filenumber) = sqrt(QRes1(x,y,z)); if isnan(QRes1(x,y,z)) disp('WARNING: NaN voxel in ResMS image') words = [ F{filenumber} ]; disp(words); end end % Scale information to percent signal change intensity = percentscale*intensity; intensityRes = percentscale*intensityRes; % HAVE INFORMATION WE NEED. intensity and groupdesign. dummy = 1; %Display Figure contrastplot = figure('Position', [360,500,650,400]); subplot('Position', [.1, .3, .8, .6]); xx = [1:nFsize]; K = 0.75; % variable for bar sizing % produce ResMS bar graph barResMS = bar(xx, intensityRes, 'FaceColor', [.6 .9 1], 'EdgeColor', [.2 .5 .6]); set(barResMS, 'BarWidth', K/4); axesResMS = gca; set(axesResMS, 'YAxisLocation', 'right', 'YColor', [.2 .5 .6], 'TickDir', 'out', 'TickLength', [0 1]); ylabel('Subject sqrt(ResMS) (% signal change)'); xlabel('Subject Number'); %title('Contrast and ResMS Values by Subject'); titlewords = ['Contrast and sqrt(ResMS) Values by Subject, Location ',num2str(x_mm,2),' ',num2str(y_mm,2),' ',num2str(z_mm,2) ]; title(titlewords) % produce Contrast bar graph axesContrast = axes('Position', get(axesResMS, 'Position')); barContrast = bar(xx, intensity, 'FaceColor', [.4 .8 .6], 'EdgeColor', [.2 .6 .4]); set(barContrast, 'BarWidth', K); set(axesContrast, 'Color', 'none', 'XTickLabel',[], 'YColor', [.2 .6 .4]); ylabel('Contrast Value (% signal change)'); set(axesContrast, 'XLim', get(axesResMS, 'XLim')); % expand Contrast Y-axis by 1/3 on the bottom (so that the bottom % 1/4 of the contrast graph is empty space) axesContrastLims = get(axesContrast, 'YLim'); axesContrastrange = axesContrastLims(2) - axesContrastLims(1); newLims = [(axesContrastLims(1) - axesContrastrange/3) axesContrastLims(2)]; set(axesContrast, 'YLim', newLims); % expland ResMS Y-axis by a factor of 4, so that the bars are all % contained in the bottom 1/4 of the figure set(axesResMS, 'YLim', (4.2*get(axesResMS, 'YLim'))) % create editable text box hnewvoxel = uicontrol('Units', 'normalized',... 'Style','edit',... 'Max', 1, 'Min', 1,... 'String', 'Select New Coordinates',... 'Position', [.3,.05,.4,.1],... 'Callback', {@newvoxel_Callback, F, subjResMS,percentscale}); Action = 'voxel'; elseif View == 0 % view by image for each subject f = deblank(F{1}); V = spm_vol(f); Y = spm_read_vols(V); sdims = size(Y); % Get the image dimensions. Set bounds on the number of scans allowed. [ sy, si ] = sort(sdims); % si(1) is the minimum dimension sor = 1; % default preference for axial. if ( sy(2)==sy(3) & (sy(2) == 64 | sy(2) == 128 )) disp('Looks like a raw image!') if ( si(1) == 1 ) disp(' Sagittal slices'); sor = 2; end if ( si(1) == 2 ) disp(' Coronal slices'); sor = 3; end if ( si(1) == 3 ) disp(' Axial slices'); sor = 1; end end Orient= spm_input('Select slice orientation',... 1,'m','axial|sagittal|coronal',[ 1 2 3], sor); % Orient=1 for transverse, etc. if ( Orient == 1 ) slnum = sdims(3); end if ( Orient == 2 ) slnum = sdims(1); end if ( Orient == 3 ) slnum = sdims(2); end mdims = prod(sdims); mxscans = round(MAXSIZE/mdims) * 100; MAXSCAN = mxscans; % Get the images and define the viewing montage. CloseUp = 0; % Usually want all slices for results. % if slnum > 9 % 9 is for the HiResolution case. % CloseUp = spm_input('All Slices or ~20 close-up slices',1, ' All | Close-up', [ 0 1 ], 1 ); % else % No need to ask if there are fewer than 25 slices total. % CloseUp = 1; % end if CloseUp == 1 centerslice = round(slnum/2); slicesel = spm_input([num2str(slnum) ' slices. Pick montage center' ],1,'n',num2str(centerslice)); % array of integers slicesel = max(1,slicesel - 12); % slicesel is now the first slice. else slicesel = 1; % Start at first slice for All slice case end %resMSweighting= spm_input('ResMS weighting?',1, ' No | Yes ', [ 0 1 ] ); resMSweighting = 0; % residual weighted images are not helpful yet. if(resMSweighting) %load group ResMS image ResMS_img = spm_read_vols(spm_vol(SPM.VResMS.fname)); %load single subject ResMS images for(i=1:nFsize) [Path, ConImg] = fileparts(F{i}); img1 = spm_vol([Path '/ResMS.img']); subjResMS{i} = spm_read_vols(img1); end end mode = 1; export = 0; f = deblank(F{1}); V = spm_vol(f); nFsize = size(F,2); Action = 'Load'; nnnn = 6; elseif View == 2 % Global Quality scores % Note user override scaling is NOT available here. Groupscale(1) = ScaleFactors1(1); % peak Groupscale(2) = ScaleFactors1(2); Groupscale(3) = bmeanavg; OutputDir = dirSPM; % write output diagnostics to group results folder disp('Output diagnostics will be written to folder with SPM.mat.') art_groupoutlier(F, GroupMaskName, Groupscale, OutputDir); %groupoutlier5(sjDirX, ResultsFolder,ConImageName, dirSPM,Groupscale, OutputDir); % F is cell array of contrast images % ResultsFolder is folder in subject path with con image and mask image. % GroupMaskNameMask is the conjunction group mask % OutputDir specifies where output images and files will be written. Action = 'groupoutlier'; end end spm_input('!DeleteInputObj'); switch lower(Action) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% case('load') if(View==0) % view by scan % INITIALIZE ARRAYS, REFERENCE IMAGE, AND COLORMAP % Adjust for number of scans and size limit % Last scan is minimum of size limited or end of group. firstscan = 1; lastscanM = firstscan + MAXSCAN - 1; % Size limit for memory and program speed lastscanF = nFsize; % Size limit by end of available files. lastscan = min( [ lastscanM lastscanF ] ); Slimit = lastscan - firstscan + 1; % Number of scans that will be processed. % Display the ResMS images % Use second contrast image as reference for sizing and scaling % purposes nbase = round(firstscan + 1); fref = deblank(F{nbase}); V = spm_vol(fref); gap = 0; % No space allowed between image slices in the montage. % Read and draw the preview image. Yref = spm_read_vols(V); % Y is type double, size 4MB for (79,95,68); Yref = percentscale*Yref; % Scale reference to percent signal change. n = isnan(Yref); Yref(n)=0; if(resMSweighting) % replace NaNs with zeroes in group ResMS image n = isnan(ResMS_img); ResMS_img(n)=0; % replace NaNs with zeroes in single subject ResMS images for(i=1:nFsize) x = isnan(subjResMS{i}); subjResMS{i}(x) = 0; end % Calculate average (i.e. RMS) single subject ResMS on a voxel % by voxel basis for(i=1:size(subjResMS{1}, 3)) for(j=1:size(subjResMS{1}, 2)) for(k=1:size(subjResMS{1},1)) x=[]; for(n=size(subjResMS, 2)) x=[x; subjResMS{n}(k,j,i)]; end avgsubjResMS(k, j, i) = norm(x)/sqrt(nFsize); end end end % ResMask is the combination of the group ResMS and average % single subject ResMS ResMask = sqrt(ResMS_img + avgsubjResMS); % Divide the reference image by the ResMask for(i=1:size(Yref, 3)) for(j=1:size(Yref, 2)) for(k=1:size(Yref,1)) if(ResMask(k,j,i)==0) Yref(k,j,i) = 0; else Yref(k,j,i)=Yref(k,j,i)/ResMask(k,j,i); end end end end % set up montage displays for ResMS image [layoutrms, nil] = art_montage(ResMask, Orient, slicesel, CloseUp); Resmax = max(max(layoutrms)); Resmin = min(min(layoutrms)); % replace zeroes in the display of the ResMask with high values % so that the image displayed shows the effect of the ResMS % weighting (darker voxels in the ResMask are emphasized in the % weighted contrasts) for(i=1:size(layoutrms, 1)) for(j=1:size(layoutrms, 2)) if(layoutrms(i,j) == 0) layoutrms(i,j) = Resmax; end end end %figure 1 is the ResMask figure(1); clf; imagesc(layoutrms,[ Resmin Resmax]); colormap(gray) drawnow; disp('Total ResMS image has been read and displayed.') end % set up display of reference image in order to determine max and % min values for scaling purposes. [layout,nil] = art_montage(Yref,Orient,slicesel,CloseUp); Yrmax=max(max(layout)); Yrmin=min(min(layout)); % Set up the arrays. Size of the image was determined in function art_montage. [ xs, ys ] = size(layout); % Dimension imageblock on the fly, else "zeros" command makes type double. imageblock = uint8(zeros(xs,ys,Slimit)); % Size is 50MB for 100 scans of uint8 data. temp = uint16(zeros(xs,ys)); temp1 = zeros(xs,ys); layout8 = uint8(zeros(xs,ys)); history = zeros(lastscan,4); % Track some global properties % Set the colormap cmap = colormap(gray); % Size cmap is 64, so must map imageblock values to 0-63. if(resMSweighting) cmap = art_activationmap3(1); %else cmap = art_blue2yellowmap(1); end % cmap = colormap(cool) is also pretty good. %else cmap = art_activationmap2(1); end % cmap = colormap(cool) is also pretty good. else cmap = art_activationmap3(1); end % cmap = colormap(cool) is also pretty good. % LOAD A SINGLE VOLUME AT A TIME AND CONVERT TO UINT8 FOR STORAGE % Reads a scan at a time, and sets up a uint8 image, or a movie frame, for it. disp('Loading data - this may take a few minutes for a lot of scans') scale = 510/(Yrmax-Yrmin + 1); scale = GRAPHSCALE; %75; % DISABLED AUTO SCALING. EXTREMES OF GRAPH ARE 2%. scale_str = sprintf('Colormap display range is [-2,+2] using scale factor of %3g', scale); disp(scale_str); % Scale the reference image to baseline intensities [ 0 510 ]. for iscan = firstscan:lastscan nscan = iscan - firstscan + 1; % load contrast image f =deblank(F{iscan}); V = spm_vol(f); Y = spm_read_vols(V); % Replace all NaNs in contrast image with zeroes n = isnan(Y); Y(n)=0; % Divide contrast image by the ResMask. Ignore (i.e. set to % zero) the contrast image where the ResMask is zero if(resMSweighting) for(i=1:size(Y, 3)) for(j=1:size(Y, 2)) for(k=1:size(Y,1)) if(ResMask(k,j,i)==0) Y(k,j,i) = 0; else Y(k,j,i)=Y(k,j,i)/ResMask(k,j,i); end end end end end %scale contrast image and convert to 2D montage % Scale in percent signal change. Y=Y*scale*percentscale; history(iscan,1:4) = art_centroid(Y); % Collect time histories [temp1,nil] = art_montage(Y,Orient,slicesel,CloseUp); % temp is double %temp1 = round(tempz); % convert values to fit 0-64 colormap scale % Range [ -150, +150 ] -> [ 1, 63 ] temp = uint16(max(1.6*(temp1)+254,0)); % clips the bottom temp = min(temp,510); % clips the top imageblock(:,:,nscan) = uint8( bitshift(temp,-3)); % Range -150 to +150 -> 1-63. if export == 1 % Write out contrast volumes in AnalyzeFormat Y = Y - Yref + 512; Y = max(1,Y); % Prepare the header for the filtered volume. %V = spm_vol(P(i-1).fname); v = V; [dirname, sname, sext ] = fileparts(V.fname); sfname = [ 'c', sname ]; % c pre-pended for contrast. filtname = fullfile(dirname,[sfname sext]); v.fname = filtname; spm_write_vol(v,Y); end end % Display slider figure ha =figure('Position',[100 100 830 830]); % Create the slider figure. figure(ha); colormap(cmap); if Slimit == 1 % Slimit is number of scans processed. min_step=0.5; max_step=1; min_slide=0; max_slide=0.5; elseif Slimit == 2 min_step=0.5; max_step=1; min_slide=0; max_slide = Slimit - 1; elseif Slimit < 10 min_step=1/(Slimit-1); max_step=1; min_slide=0; max_slide = Slimit - 1; else min_step=1/(Slimit-1); max_step=10/(Slimit-1); min_slide = 0; max_slide = Slimit - 1; end h=findobj('Tag','ToDelete'); if ~isempty(h) delete(h); end; figwin = ha; % set up fields for slider callback m_struct=struct('movie',imageblock,'filename',struct('names',F),'first',firstscan,... 'orient',Orient); s=uicontrol('Style','slider','Parent',figwin,... 'Position',[245 80 338 30],... 'Min',min_slide,'Max',max_slide,... 'SliderStep',[min_step max_step],... 'Callback','art_groupcheck(''Scroll'');',... 'Userdata',m_struct,'String','Frame number'); figbar = axes('position',[ 0.93 0.3 0.03 0.4]); darray = [63:-1:0]; image(darray'); %set(figbar,'Ytick',[1 17 33 48 64],'YTickLabel',[+160 +80 0 -80 -160],'XTickLabel',[]); set(figbar,'Ytick',[1 17 33 48 64],'YTickLabel',[+2 +1 0 -1 -2],'Xtick',1,'XTickLabel','PERCENT'); set(0,'CurrentFigure',figwin); set(0,'ShowHiddenHandles','on') fig = axes('position',[0.07 0.15 0.8 0.8],'Parent',figwin); I = imageblock(:,:,1); image(I,'Parent',fig,'Tag','ToDelete'); axis image; axis off; frame=sprintf('%s',deblank(F{firstscan})); % Gets the path and file name t=title('x','FontSize',14,'Interpreter','none','Tag','ToDelete'); %sets Interpreter t=title(frame,'FontSize',14,'Interpreter','none','Tag','ToDelete'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% case('scroll') % if user clicks on slider global PRINTSTR if isempty(PRINTSTR) PRINTSTR='print -dpsc2 -append spm.ps'; end; g=get(gcbo,'Value'); m_struct=get(gcbo,'Userdata'); imageblock = m_struct.movie; Or=m_struct.orient; firstscan=m_struct.first; F = m_struct.filename; [ htemp, currfig ] = gcbo; figwin= figure(currfig); % spm_figure('FindWin','Graphics'); figbar = axes('position',[ 0.93 0.3 0.03 0.4]); darray = [63:-1:0]; image(darray'); %set(figbar,'Ytick',[1 17 33 48 64],'YTickLabel',[+160 +80 0 -80 -160],'XTickLabel',[]); set(figbar,'Ytick',[1 17 33 48 64],'YTickLabel',[+2 +1 0 -1 -2],'XTickLabel',[]); fig = axes('position',[0.07 0.15 0.8 0.8],'Parent',figwin); h=findobj('Tag','ToDelete'); if ~isempty(h) delete(h); end; figure(currfig); nscan = size(imageblock,3); gscan = 1 + floor(g+0.5); if (gscan > nscan) gscan = nscan; end I=imageblock(:,:,gscan); image(I,'Tag','ToDelete'); axis image; g2scan = gscan + firstscan - 1; framename = deblank(F(g2scan).names); t=title('y','FontSize',14,'Interpreter','none','Tag','ToDelete'); %sets Interpreter t=title(framename,'FontSize',14,'Interpreter','none','Tag','ToDelete'); axis off; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% case('voxel') % if in voxel mode, callback doesn't need to do anything %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% case('groupoutlier') % callback doesn't need to do anything %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% otherwise warning('Unknown action string') end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % function newvoxel_Callback is called when the user inputs new coordinates % in the voxel display function newvoxel_Callback(hObject,eventdata,F, subjResMS,percentscale) user_input = get(hObject,'String'); Q1 = spm_read_vols(spm_vol(F{1})); nFsize = size(F, 2); % convert user input to coordinates [ NX, NY, NZ ] = size(Q1); dim(1) = NX; dim(2) =NY; dim(3) = NZ; [xstr, remain]=strtok(user_input, ' '); x_mm=str2double(xstr); [ystr, remain]=strtok(remain, ' '); y_mm=str2double(ystr); z_mm=str2double(strtok(remain, ' ')); % Read the images and extract the information on a voxel intensity=zeros(nFsize,1); %length(SPM.xY.P)); intensityRes=zeros(nFsize,1); for filenumber=1:nFsize %length(SPM.xY.P) Q2 = spm_vol(F{filenumber}); Q1 = spm_read_vols(Q2); %get transformation to convert mm input to voxel coordinates transformation(1, :) = Q2.mat(1, 1:3); transformation(2, :) = Q2.mat(2, 1:3); transformation(3, :) = Q2.mat(3, 1:3); translation = [Q2.mat(1, 4); Q2.mat(2, 4); Q2.mat(3, 4);]; % convert user input to voxel coordinates mmcoord = [x_mm; y_mm; z_mm;] - translation; voxcoord = transformation\mmcoord; x = round(voxcoord(1)); y = round(voxcoord(2)); z = round(voxcoord(3)); intensity(filenumber) = Q1(x,y,z); if isnan(Q1(x,y,z)) disp('WARNING: NaN voxel in Contrast image') words = [ F{filenumber} ]; disp(words); end QRes1 = spm_read_vols(spm_vol(subjResMS{filenumber})); intensityRes(filenumber) = sqrt(QRes1(x,y,z)); if isnan(QRes1(x,y,z)) disp('WARNING: NaN voxel in ResMS image') words = [ F{filenumber} ]; disp(words); end end % HAVE THE VALUES WE NEED in intensity(1:nFsize).and groupdesign. % Scale information to percent signal change intensity = percentscale*intensity; intensityRes = percentscale*intensityRes; dummy = 1; % Display figure clf; subplot('Position', [.1, .3, .8, .6]); title(['Voxel coordinates ' user_input]); xx = [1:nFsize]; K = 0.75; barResMS = bar(xx, intensityRes, 'FaceColor', [.6 .9 1], 'EdgeColor', [.2 .5 .6]); set(barResMS, 'BarWidth', K/4); axesResMS = gca; set(axesResMS, 'YAxisLocation', 'right', 'YColor', [.2 .5 .6], 'TickDir', 'out', 'TickLength', [0 1]); ylabel('Subject ResMS StdDev'); xlabel('Subject Number'); titlewords = ['Contrast and ResMS Values by Subject, Location ',num2str(x_mm,2),' ',num2str(y_mm,2),' ',num2str(z_mm,2) ]; title(titlewords) %title('Contrast and ResMS Values by Subject'); axesContrast = axes('Position', get(axesResMS, 'Position')); barContrast = bar(xx, intensity, 'FaceColor', [.4 .8 .6], 'EdgeColor', [.2 .6 .4]); set(barContrast, 'BarWidth', K); set(axesContrast, 'Color', 'none', 'XTickLabel',[], 'YColor', [.2 .6 .4]); ylabel('Contrast Value (% signal change)'); set(axesContrast, 'XLim', get(axesResMS, 'XLim')); axesContrastLims = get(axesContrast, 'YLim'); axesContrastrange = axesContrastLims(2) - axesContrastLims(1); newLims = [(axesContrastLims(1) - axesContrastrange/3) axesContrastLims(2)]; set(axesContrast, 'YLim', newLims); set(axesResMS, 'YLim', (4.2*get(axesResMS, 'YLim'))); hnewvoxel = uicontrol('Units', 'normalized',... 'Style','edit',... 'Max', 1, 'Min', 1,... 'String', 'Select New Coordinates',... 'Position', [.3,.05,.4,.1],... 'Callback', {@newvoxel_Callback, F, subjResMS,percentscale}); Action = 'voxel'; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
github
philippboehmsturm/antx-master
art_groupsummary.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/ArtRepair/art_groupsummary.m
13,707
utf_8
7f3f9b92ccadf33ed0ed88767af8aab2
function [GQout,GQmean, Resout] = art_groupsummary(ImageFullName,MaskFullName,OutputFolder,Figname,Fignum,AutoParams); % FUNCTION art_groupsummary (v1) % For manual GUI: % >>art_groupsummary will use GUI to ask for images % % SUMMARY % Summarizes the overall quality of estimates produced during group level % GLM. Finds a histogram over all the voxels in the brain of the group mean % estimates on each voxel. Finds the mean and standard deviation of the % histogram (the Global Quality scores). Calculates the mean of sqrt(ResMS) % averaged over all the voxels in the brain. Results % are expressed in percent signal change, % % This program is similar to art_summary for single subjects, except % it must ask for a scale factor including a mean since there is no % constant term in a group study. Another difference is that % residuals at the group level are scaled into percent signal change % with the same conversion as the con images themselves, since these % group level residuals represent variance between subject estimates % that were produced with that scaling. % % GUI INPUTS if no arguments are supplied % User chooses con results image(s) from an SPM Group Results folder. % User enters scale factor: peak/contrastsum)*100/bmean % Find this using art_percentscale on a single subject. % User chooses a mask image (usually in the same Results folder) % Program assumes the SPM.mat, ResMS and constant-term beta image are in % the same Results folder. % OutputFolder is for GlobalMeasure text summary is set % automatically to the SPM Results folder. % % OUTPUTS % [ GQout, GQmean, Resout ] are Global Quality standard deviation and % mean, and the mean of sqrt(ResMS) over the brain., % For multiple con image inputs, GQout is for the last one. % Writes an output text file 'GlobalGroupQuality.txt' in OutputFolder, % with mean, std, and RMS value of each image. % Plots a histogram of estimated results (in percent signal change) % for each input image. % If the Matlab/Statistics toolbox is installed, and the code % at the end of this program is uncommented: % Plots a cumulative distribution of estimate/residual for all % the voxels in the image. % % FUNCTIONS % Program normalizes to percent, by using the average value of % the last beta image within the specified mask.This value is scaled by % P/C, where P is the peak value of the design regressor, and C is the % RMS of nonzero coefficients in the contrast definition. % Makes an inner mask, and outer mask from head mask by finding % a shell at the boundary of the mask, approx. 10 mm thick % (1 voxel thick when voxel size is > 2.5 mm, 2 voxels thick % when voxel size is < 2.5 mm.). % % Paul Mazaika, Jan. 2009. adapted from art_summary. % For calling from another function (not currently used) % [GQout,GQmean,Resout]=art_groupsummary(ImageFullName, MaskFullName, OutputFolder,Figname,Fignum,AutoParams); % Required inputs % Figname specifies name of histogram image % In GUI mode, set to the name of Results folder. % Fignum specifies the first figure number to be plotted. % In GUI mode, set to 50. % AutoParams: a 1x2 array, % Hopefully, set correctly from SPM.mat using art_redo. % peak_value: peak value of the design regressor % contrast_value: sum of positive parts of contrast definition. % Identify spm version spmv = spm('Ver'); spm_ver = 'spm2'; %if (spmv == 'SPM5' | spmv == 'SPM8b' | spmv == 'SPM8') spm_ver = 'spm5'; end if (strcmp(spmv,'SPM5') | strcmp(spmv,'SPM8b') | strcmp(spmv,'SPM8') ) spm_ver = 'spm5'; end spm('defaults','fmri'); if nargin > 0 Rimages = ImageFullName; imgmask = MaskFullName; [ResultsFolder, temp ] = fileparts(Rimages(1,:)); % Art_redo only sends one contrast image to check. % But this is not relevant for group case. peak_value = 1; contrast_value(1) = 1; if exist('AutoParams') peak_value = AutoParams(1); contrast_value(1) = AutoParams(2); end elseif nargin == 0 % GUI interface if no arguments if strcmp(spm_ver,'spm5') Rimages = spm_select(Inf,'image','select group level con image(s)'); else % spm2 Rimages = spm_get(Inf,'.img','select group level con image(s)'); end [ResultsFolder, temp ] = fileparts(Rimages(1,:)); % Mask may be the SPM generated mask, or could be a user mask. if strcmp(spm_ver,'spm5') imgmask = spm_select(Inf,'image','select Mask image'); % ' ',ResultsFolder); else % spm2 imgmask = spm_get(Inf,'mask.img','select Mask image'); end peak_value = spm_input('Enter peak/constrast*100/bmean ',1); [ResultsFolder, temp ] = fileparts(Rimages(1,:)); OutputFolder = ResultsFolder; [temp, ResultsName ] = fileparts(ResultsFolder); Fignum = 50; Figname = ResultsName; spm_input('!DeleteInputObj'); end % Find the ResMS and last beta image in Results folder with the Images R = spm_vol(Rimages); nimages = size(R,1); Resimage = fullfile(ResultsFolder,'ResMS.img'); % betaimages = spm_get('files',ResultsFolder,'beta*.img'); % lastbeta = size(betaimages,1); % Normimage = betaimages(lastbeta,:); %words = [' Normalizing by ', Normimage]; disp(words); % Group case does not scale by last beta, so this is irrelevant. % The last beta image in the Results folder is the SPM-estimated % constant term. Scale all images by the average value of the last % beta image with the head mask to get percentage. % Find the normalization coefficient % Pb = spm_vol(Normimage); Maska = spm_vol(imgmask); % Xb = spm_read_vols(Pb); Mask = spm_read_vols(Maska); Mask = round(Mask); % sometimes computed masks have roundoff error % Find the global mean within the mask % bmean = sum(Xb(find(Mask==1))); bvox = length(find(Mask==1)); % number of voxels in mask % bmean = bmean/bvox; % mean of beta in the mask %words = ['Mean value of last beta: ', num2str(bmean,3) ]; %disp(words); % clear Xb % Find inner region (imask) and shell region (smask) of Mask. % Want the shell to be about 10mm, so erode the mask by a step % or two depending on the voxel size if Maska.mat(2,2) < 2.5 SHELL = 2; else SHELL = 1; end % Shell is the number of voxels thickness in the shell. % Shell = 1 seems to produce a two voxel thick shell. if SHELL == 1 imask = floor(smooth3(Mask)+0.02); imask = Mask & imask; % in case a hole was filled smask = Mask & (1-imask); else % case SHELL = 2 iimask = floor(smooth3(Mask)+0.02); imask = floor(smooth3(iimask)+0.02); imask = Mask & imask; % in case a hole was filled smask = Mask & (1-imask); end ilisti = find(imask==1); ilists = find(smask==1); ilista = find(Mask==1); clear Mask smask imask % Find the estimated residual stdev on each voxel % Undo the MeanSquare for ResMS PRes = spm_vol(Resimage); Yres = spm_read_vols(PRes); Yres = sqrt(Yres)*peak_value; % was 100/bmean for single subject; % Compute stats on the images for i = 1:nimages+1 if (i < nimages+1) % Scale the images into percentage. P = spm_vol(Rimages(i,:)); X = spm_read_vols(P); X = peak_value*X; %100*X/bmean; %X = (peak_value/contrast_value(i))*X; % v2.2 change disp(Rimages(i,:)); else % (i == nimages+1) X = Yres; disp(Resimage); end % Find mean and standard deviation of inner, shell, and total regions. %ilist = find(imask==1); isize = length(ilisti); imean = mean(X(ilisti)); istd = std(X(ilisti)); %itrim = trimmean(X(ilisti),10); % clips high 5% and low 5% [ itrim, i90 ] = clipstats10(X(ilisti)); imax = max(abs(X(ilisti))); %i90 = prctile(X(ilisti),90)-itrim; % dist of 90th percentile from mean ilarge = 100*length(find(abs(X(ilisti)>1)))/length(ilisti); % percent voxels > 1 in size irms = sqrt(istd*istd + imean*imean); %ilist = find(smask==1); ssize = length(ilists); smean = mean(X(ilists)); sstd = std(X(ilists)); srms = sqrt(sstd*sstd + smean*smean); %strim = trimmean(X(ilists),10); % clips high 5% and low 5% [ strim, s90 ] = clipstats10(X(ilists)); smax = max(abs(X(ilists))); %s90 = prctile(X(ilists),90)-strim; % dist of 90th percentile from mean slarge = 100*length(find(abs(X(ilists)>1)))/length(ilists); % percent voxels > 1 in size %ilist = find(Mask==1); tsize = length(ilista); tmean = mean(X(ilista)); tstd = std(X(ilista)); trms = sqrt(tstd*tstd + tmean*tmean); %ttrim = trimmean(X(ilista),10); % clips high 5% and low 5% [ ttrim, t90 ] = clipstats10(X(ilista)); tmax = max(abs(X(ilista))); %t90 = prctile(X(ilista),90)-ttrim; % dist of 90th percentile from mean tlarge = 100*length(find(abs(X(ilista)>1)))/length(ilista); % percent voxels > 1 in size %totinout = [ tsize/1000 tmean tstd trms;... % isize/1000 imean istd irms; ssize/1000 smean sstd srms]; %totals2 = [ tlarge ttrim t90 tmax; ilarge itrim i90 imax; slarge strim s90 smax ]; %disp(' %Vox > 1% Trimmean 90%ile AbsMax, for total, inner, and outer regions') %disp(totals2) disp(' Statistics for Total, Inner and Outer Regions') %if i < nimages+1 scalewords = [ ' Uses scale value of (peak value/contrast_sum)*100/bmean = ',num2str(peak_value) ]; disp(scalewords) if i == nimages + 1 disp(' Statistics of sqrt(ResMS)/(scale value) averaged over the image.') end disp(' Voxels/1000 Mean Std RMS Trimmean 90%ile %Vox > 1% AbsMax') %disp(' Voxels/1000 Mean Std RMS, for total, inner, and outer regions') %disp(totinout) totalstat = [tsize/1000 tmean tstd trms ttrim t90 tlarge tmax;... isize/1000 imean istd irms itrim i90 ilarge imax;... ssize/1000 smean sstd srms strim s90 slarge smax]; disp(totalstat) fid = fopen(fullfile(OutputFolder,'GlobalGroupQuality.txt'),'at'); if i < nimages+1 fprintf(fid,'\n%s\n',Rimages(i,:)); fprintf(fid,'%s\n',scalewords); else fprintf(fid,'%s\n',Resimage); end %fprintf(fid,'%s\n',' %Vox > 1% Trimmean 90ile AbsMax'); %fprintf(fid,'%9.4f %9.4f %9.4f %9.4f\n',totals2'); %fprintf(fid,'%s\n',' Voxels/1000 Mean Std RMS'); %fprintf(fid,'%9.4f %9.4f %9.4f %9.4f\n',totinout'); fprintf(fid,'%s\n',' Voxels/1000 Mean Std RMS Trimmean 90ile %Vox > 1% AbsMax'); fprintf(fid,'%9.4f %9.4f %9.4f %9.4f%9.4f %9.4f %9.4f %9.4f\n',totalstat'); fclose(fid); % Make histogram and cumulative distribution for image if i < nimages+1 GQout = tstd; vec = [ -3:0.05:3 ]; figure(Fignum + 2*(i - 1)); uu = X(ilisti); uup = hist(uu,vec); uus = X(ilists); uups = hist(uus,vec); vecp2 = [ tmean tmean+0.001 ]; pv(1) = 0; pv(2) = max(uup); plot(vec,uup,'b-',vec,uups,'b--',vecp2,pv,'r--'); currname = R(i,:); [ temp1, temp2 ] = fileparts(currname.fname); xtitle = [ 'Histogram of Estimated Results for ' temp2 ' ' Figname ]; title(xtitle) widthval = [ 'StDev = ' num2str(tstd,3) ]; xlabela = ['Estimated Result (Pct signal change) ' widthval]; xlabel(xlabela) ylabel('Number of voxels') meanval = [ 'Mean ' num2str(tmean,3) ]; legend('Inner region','Outer region', meanval); hold off; % %To draw an image with only the total statistics % figure(200) % uua = X(ilista); % uupa = hist(uua,vec); % plot(vec,uupa,'b-',vecp2,pv,'r--'); % currname = R(i,:); % [ temp1, temp2 ] = fileparts(currname.fname); % xtitle = [ 'Histogram of Estimated Results for ' temp2 ' ' Figname ]; % title(xtitle) % widthval = [ 'StDev = ' num2str(tstd,3) ]; % xlabela = ['Estimated Result (Pct signal change) ' widthval]; % xlabel(xlabela) % ylabel('Number of voxels') % meanval = [ 'Mean ' num2str(tmean,3) ]; % legend('All voxels', meanval); % % Matlab function normplot is in Statistics Toolbox. % % To plot distribution relative to normal, use this code. % figure(Fignum +2*i-1); % Z = X(ilista)./Yres(ilista); % normplot(Z); % xtitle = ['Distribution of Observed Estimate/Residual for ' temp2 ' ' Figname ]; % title(xtitle) % xlabela = ['Arbitrary Units']; % xlabel(xlabela) % ylabel('Cumulative Probability') % % ----------------------------------- end if i == nimages GQmean = tmean; Exceed = tlarge; GQout = tstd; end end % For compare_repair script, return two values % GQout = tstd; % Standard Deviation was saved for last non-Res image. Resout = tmean; % Mean of Res image, which was last one processed. function [ trim10, dist90 ] = clipstats10(YY); % Finds trimmean and 90th percentile of data without Statistics toolbox. % Likely slower and less robust, but this is a simple application. % Hard-coded for 10% clip. Not worrying about roundoff for large datasets. zz = sort(YY); lz = length(zz); lz90 = zz(round(lz*0.9)); % 90th percentile point lim5 = round(lz*0.05); % 5th percentile point lim95 = lz -lim5 +1; % symmetric clipping for 95%ile point trim10 = mean(zz(lim5:lim95)); % trimmed mean dist90 = lz90 - trim10; % distance between 90%ile and trimmean.
github
philippboehmsturm/antx-master
art_addmargin.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/ArtRepair/art_addmargin.m
7,400
utf_8
677f4d80c4296d3358e74d0486c2d1a8
function art_addmargin % Function art_addmargin % % Helper function for art_global. For a set of indices to be repaired, % returns a list of indices to be deweighted. The list is % returned as outdw_idx. The list will be written to file when the % art_global REPAIR button is pushed. % The logic is: % 1. All repaired scans will be deweighted. % 2. If a sequence of repaired scans leaves very uneven values % at each end, then a margin of scans (up to 7) on each side % is listed for deweighting. % 3. If a sequence of repair indices has the same motion and global % intensity values at each end, then no margin is added. % The function draws deweighting bars in green on the top figure, % and returns outdw_idx. % ----------------------------- % Paul Mazaika, Aug. 2006 % v2.3 May 2009. Bug fix if all!! scans repaired. % ------------------- % Default tolerance level for margins % ------------------- % Rough analysis: Consider the overlap of dip in HPfilter onto % the repair region. Its signal contribution is (1/6)*M*d*s*(1-i^2/s^2), % where M is %signal change on voxel over the repair, d is the depth % of the whitening function, s is its length (assume s=8), and i is % margin distance from end of repair. The usual noise contribution is % d*2*sqrt(s), assuming single voxel noise is 2%. We need to add margin % when M > 4/(1-i^2/s^2), to keep the repair region from dominating. % % Roughly, M varies 8%/mm for transition of grey to white voxel, % assuming a 4mm voxel and 30% difference in grey and white signals. % This sets a mm threshold for expected clutter signal on a voxel from % repair region. Roughly, M varies 10X(??) the global signal variation % during a physiology event. We'll start with these estimates (i.e. % equivalet to setting ydiffmove = 1 and ydiffg = 1) for the % margin tests, and provide two scaling factors to tune them. ydiffmove = 1.3; % try 1.0 for subjects with intervals of low noise % try 2.0 for severely noisy subjects ydiffg = 1.3; % was 1 % scales the global intensity test % Case 4555 likes 2, while 7910 likes 1. % ------------------- % Interrogate GUI % ------------------- handles = guihandles; g = guidata(gcf); curr_thresh = str2num(get(handles.threshnum, 'String')); curr_threshmv = str2num(get(handles.threshnummv, 'String')); nscans = size(g,1); delta = squeeze(g(:,2)); mv_data(:,1:6) = g(:,3:8); gx = squeeze(g(:,1)); %repair1_flag = getappdata(gcbo,'data2'); out_idx = round(str2num(get(handles.indexedit, 'String'))); % Derive the current proposed repairs; % zscoreA = (gx - mean(gx))./std(gx); % in case Matlab zscore is not available % glout_idx = (find(abs(zscoreA) > curr_thresh))'; % mvout_idx = (find(delta > curr_threshmv))'; % % Current set of scans to be repaired. % out_idx = unique([glout_idx mvout_idx]); % if (repair1_flag == 1) out_idx = unique([1 out_idx]); end % Find reasonable margins xout = zeros(1,nscans); xout(out_idx) = 2; % Determine whether ends are to be repaired if xout(1) == 2 repL = 1; else repL = 0; end if xout(nscans) == 2 repR = 1; else repR = 0; end % Find sets of consecutive scans to be repaired j = repL; k = 0; xendL(1) = 0; xendR(1) = 0; for i = 1:nscans-1 if xout(i) == 0 & xout(i+1) == 2 j = j+1; xendL(j) = i; end if xout(i) == 2 & xout(i+1) == 0 k=k+1; xendR(k) = i+1; end end % Number of central clusters nclust = k; % if repR == 0 and repL == 0 nclust = k - repR - repL; % if repR == 1 % For each cluster not at the end, if end values are close, % then no margins are needed. for iclust = repL+1:nclust+repL for imarg = 0:7 if xendL(iclust)-imarg < 1 | xendR(iclust)+imarg > nscans break elseif xout(xendL(iclust)-imarg) > 0 | xout(xendR(iclust)+imarg) > 0 break end [ ta, tb ] = posdiff(xendL(iclust)-imarg,xendR(iclust)+imarg,mv_data,gx,imarg); if ta < ydiffmove & tb < ydiffg; break else % mark for deweighting xout(xendL(iclust)-imarg) = 1; xout(xendR(iclust)+imarg) = 1; end end end % Case when Left End is repaired if repL == 1 for imarg = 0:7 if xendR(1)+imarg > nscans break elseif xendR(1)+imarg < 1 break elseif xout(xendR(1)+imarg) > 0 break end [ ta, tb ] = posdiff(1,xendR(1)+imarg,mv_data,gx,imarg); % NOT CORRECT if ta < ydiffmove & tb < ydiffg; break else % mark for deweighting xout(xendR(1)+imarg) = 1; end end end % Case when Right End is repaired if repR == 1 for imarg = 0:7 if xendL(length(xendL))-imarg < 0 break elseif xout(xendL(length(xendL))-imarg) > 0 break end [ ta, tb ] = posdiff(xendL(length(xendL))-imarg,nscans,mv_data,gx,imarg); % NOT CORRECT if ta < ydiffmove & tb < ydiffg; break else % mark for deweighting xout(xendL(iclust)-imarg) = 1; end end end % Fill in singleton openings for i = 2:nscans-1 if xout(i-1) > 0 & xout(i+1) > 0 xout(i) = 1; end end % Update deweightlist (which is not shown in a text box) outdw_idx = find(xout > 0); set(handles.deweightlist, 'String', int2str(outdw_idx)); % Update top chart for deweighting indices subplot(5,1,1) outerase = [1:nscans]; axes_lim = get(gca, 'YLim'); axes_height = [axes_lim(1) axes_lim(2)]; for i = 1:nscans line((outerase(i)*ones(1, 2)), axes_height, 'Color', 'w'); end % Refresh the global intensity plot plot(gx,'b'); ylabel('Global Avg. Signal'); xlabel('Red vertical lines are to repair. Green vertical lines are to deweight.'); title('ArtifactRepair GUI to repair outliers and identify scans to deweight'); % Draw the scans recommended for deweighting for i = 1:length(outdw_idx) line((outdw_idx(i)*ones(1, 2)), axes_height, 'Color', 'g'); end % Draw the scans recommended for repairing for i = 1:length(out_idx) line((out_idx(i)*ones(1, 2)), axes_height, 'Color', 'r'); end %--------------------------------------------------------------- function [ mvpx, gp ] = posdiff(m,n,mv_data,gx,imarg); % Returns clutter estimates of how the HPfilter interacts with repair region. % First, finds ~mm displacement and percent global intensity difference % between the ends of the repair region. % Then, it estimates the clutter overlap factor of the whitening dip % onto the strength of the abnormal region that will be repaired. % Finally, those numbers in mm and global percent are scaled into a % percent noise value on a voxel, relative to thermal noise. % Rotational mv_data is in degrees, assumes 65 mm radius. yd = (mv_data(m,1) - mv_data(n,1))^2 +... (mv_data(m,2) - mv_data(n,2))^2 +... (mv_data(m,3) - mv_data(n,3))^2 +... 1.28*(mv_data(m,4) - mv_data(n,4))^2 +... 1.28*(mv_data(m,5) - mv_data(n,5))^2 +... 1.28*(mv_data(m,6) - mv_data(n,6))^2; yd = sqrt(yd); % Overlap interaction term (assumed s=9, single voxel noise is 2%) odiff = ( 1 - imarg^2/80)/4; mvpx = 8*yd*odiff; % assumes 8% change in intensity/mm. gpct = abs(gx(m) - gx(n))/(gx(n)); gp = 10*gpct*odiff; % assumes 10% change in voxel/global intensity.
github
philippboehmsturm/antx-master
art_motionregress.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/ArtRepair/art_motionregress.m
18,338
utf_8
239207e5377f255eec3cc544d5b3f778
function art_motionregress(ReslicedDir,ReslicedImages,RealignDir,RealignImages) % function art_motionregress % >> art_motionregress for use by GUI % See below for batch. % % FUNCTIONS % Remove residual interpolation errors after the realign and reslice % operations (see Grootoonk 2000 for theory). % It is an alternative to adding motion regressors to the design matrix. % More fractional variation is removed on edge voxels with high variation, % while little variation is removed on non-edge voxels. The function % should be applied after realign and reslice, but before normalization. % WARNING! This function will crash or run very slow on normalized % images. % % INPUT by GUI % Select realigned and resliced images, eg. 'rI*'. % Select realigned, unresliced images, e.g. 'I*img' where there % are associated .mat files. The .mat files describe the realignment % calculation, and give the x,y,z displacement of every voxel in % an image from realignment. % OUTPUT % Writes new image files with prefix 'm', that are the corrections of % the input images after motion adjustment. % Writes maprior image, showing logarithm of regularization value. % Small values indicate more regression signal is removed, e.g. % most is removed when log = -5.2, none when log = 2.3. % Writes six mgamma images files containing motion regressors. % Writes file art_motion.txt listing files omitted during calculation % of regression parameters. % % BATCH FORM % art_motionregress( ReslicedDir, ReslicedImages, RealignDir, RealignImages) % ReslicedDir - folder with resliced images, e.g. '/net/fraX/subj1' % ReslicedImages - image names, e.g. 'rI*img' or 'sr*img' % RealignDir - folder with realigned, but not resliced images. % The .mat files will be used from these images. % RealignImages - image names, e.g. 'I*img' % % This program keeps 63 images in memory, but runs well for fMRI images of % size 64x64x18 on computers with 512MB of RAM. It may crash for lack of % memory on normalized images which are usually much larger. % % Paul Mazaika, May 2009 % ALGORITHM % Algorithm finds the x,y,z equivalent translational motion on each voxel, % assuming that small rotations are broken down into two translations. % The motion adjustment uses the regressors % [ sin x 1-cos x sin y 1-cos y sin z 1-cos z 1 ] % which are different for every voxel. The regressors % are computed from the .mat data of unresliced images. Images with fast % variation are omitted from this calculation, although all images will % be corrected by it. % Regressors are applied more strongly near edges in the image ( brain % boundary and ventricles ) where interpolation effects are largest. % Strength of application is determined using a regularization R that % depends on an heuristic function of the RMS variation on a voxel. % Algorithm proceeds in two passes. First pass estimates the six % regressors for every voxel, and writes these regressors as six images % named mgamma. Estimation is done b = inv(R+A'A)*A'y, where all values in the % A' and A'A matrices are accumulated by rolling through all the images. % Second pass uses the regressors to find the residuals after motion % correction. The residual images are written out with the prefix 'm'. % Calls the art_motionadjust function. This pass rolls through the % input images one more time to apply motion adjustment. % This program accumulates all cross-products for the matrix inversion, % storing the equivalent of 63 3D-images. This works only for % the smaller fMRI images before normalization. % Identify spm version spmv = spm('Ver'); spm_ver = 'spm2'; if (strcmp(spmv,'SPM5') | strcmp(spmv,'SPM8b') | strcmp(spmv,'SPM8') ) spm_ver = 'spm5'; end; % DATA, REALIGNMENT, AND REPAIR LOCATIONS if nargin == 0 if strcmp(spm_ver,'spm5') Pimages = spm_select(Inf,'image','Select resliced images to adjust'); Rmats = spm_select(Inf,'image','Select unresliced images (no r in name)'); else % spm2 Pimages = spm_get(Inf,'.img','Select resliced images to adjust'); Rmats = spm_get(Inf,'.img','Select unresliced images (no r in name)'); end elseif nargin > 0 if strcmp(spm_ver,'spm5') Pimages = spm_select('FPList',ReslicedDir, ReslicedImages); Rmats = spm_select('FPList',RealignDir, RealignImages); else % spm2 Pimages = spm_get('files', ReslicedDir, ReslicedImages); Rmats = spm_get('files', RealignDir, RealignImages); end end P = spm_vol(Pimages); R = spm_vol(Rmats); [imagedir, imagename ] = fileparts(P(1).fname); motiondir = imagedir; resdir = imagedir; % Get image size and voxel size. Flip x-voxel size to positive. % Imagesize are the images to be motion adjusted. % Voxelsize is the voxel size of image that was scanned. nscan = size(P,1); imagesize = P(1).dim; dx = imagesize(1); dy = imagesize(2); dz = imagesize(3); imagedim = [ dx dy dz ]; voxelsize = R(1).mat; vx = abs(voxelsize(1,1)); vy = voxelsize(2,2); vz = voxelsize(3,3); Y1 = spm_read_vols(P(1)); %meanY1 = 0.75*max(max(max(Y1))); % a guess! disp('Generated mask image is written to file ArtifactMask.img.') %Pnames = P{1}; Automask = art_automask(P(1,:),-1,1); maskcount = sum(sum(sum(Automask))); % Number of voxels in mask. voxelcount = prod(size(Automask)); % Number of voxels in 3D volume. Y1 = Y1.*Automask; meanY1 = mean(mean(mean(Y1)))*voxelcount/maskcount; % ------------------------ % Use art_global to find time points with rapid scan-to-scan movement % Scans with these indices should be removed from motion regression % calculation because the realignment parameters may have errors. % One could try to fix these realignment values here, but instead we will % use art_repair later to smooth the intensities on the same images. % ------------------------ mv_thresh = 0.5; % perhaps 0.3 for good subjects disp('Detect scans to remove from motion calculation using art_global'); nsess = 1; %realname = [ '^' prefix{6} '.*\.img$' ]; mvname = [ '^rp_' '.*\.txt$']; % same prefix as realignment.]; for i = 1:nsess mvfile = spm_select('FPList',[ imagedir ], mvname); % Make list of bad scans %c5_art_global(Pimages, mvfile, 4,0); % fixed, no clipmvmt art_global(Pimages, mvfile, 4,0); % fixed, no clipmvmt %b5_art_global(imgFile, mvfile, 4,2); outnames = textread([ imagedir '/art_suspects.txt']); mvout_idx = outnames; end numberout = length(mvout_idx); numberst = ['Excluding ' num2str(numberout) ' volumes from motion adjustment estimation.']; disp(numberst) delta(1:nscan,1) = 0; delta(mvout_idx) = 1; % Save list of scans excluded from estimation of motion temppwd = pwd; cd(fileparts(P(1).fname)); save art_motion.txt mvout_idx -ascii cd(temppwd); % Initialize accumulation arrays and first image % This repetitive code uses 3D arrays because % 4D arrays can be slow depending on subscript order. disp('Reading image files to solve regression on all voxels.'); mbeta01 = zeros(dx,dy,dz); mbeta02 = zeros(dx,dy,dz); mbeta03 = zeros(dx,dy,dz); mbeta04 = zeros(dx,dy,dz); mbeta05 = zeros(dx,dy,dz); mbeta06 = zeros(dx,dy,dz); mbeta07 = zeros(dx,dy,dz); mbeta08 = zeros(dx,dy,dz); mbeta09 = zeros(dx,dy,dz); mbeta10 = zeros(dx,dy,dz); mbeta11 = zeros(dx,dy,dz); mbeta12 = zeros(dx,dy,dz); mbetaab = zeros(dx,dy,dz); mbetaac = zeros(dx,dy,dz); mbetaap = zeros(dx,dy,dz); mbetaaq = zeros(dx,dy,dz); mbetaar = zeros(dx,dy,dz); mbetabc = zeros(dx,dy,dz); mbetabp = zeros(dx,dy,dz); mbetabq = zeros(dx,dy,dz); mbetabr = zeros(dx,dy,dz); mbetacp = zeros(dx,dy,dz); mbetacq = zeros(dx,dy,dz); mbetacr = zeros(dx,dy,dz); mbetapq = zeros(dx,dy,dz); mbetapr = zeros(dx,dy,dz); mbetaqr = zeros(dx,dy,dz); mbeta00 = zeros(dx,dy,dz); % difference of first from the mean. mbetac1 = zeros(dx,dy,dz); mbetac2 = zeros(dx,dy,dz); mbetac3 = zeros(dx,dy,dz); mbetac4 = zeros(dx,dy,dz); mbetac5 = zeros(dx,dy,dz); mbetac6 = zeros(dx,dy,dz); msumsq = zeros(dx,dy,dz); % % Accumulate the correlations % ------------------------------------------------------------ for i = 1:nscan if (delta(i) == 1) continue; end Y = spm_read_vols(P(i)); [ Xp, Yp, Zp ] = rmove(R(i).mat, imagedim, R(1).mat); Y = Y - Y1; %difference from the baseline. mbeta00 = Y + mbeta00; msumsq = Y.*Y + msumsq; ax = sin(Xp*2*pi/vx); % ax should be a matrix mbeta01 = Y.*ax + mbeta01; mbeta07 = ax.*ax + mbeta07; mbetac1 = ax + mbetac1; bx = (1-cos(Xp*2*pi/vx)); mbeta02 = Y.*bx + mbeta02; mbeta08 = bx.*bx + mbeta08; mbetac2 = bx + mbetac2; cx = sin(Yp*2*pi/vy); mbeta03 = Y.*cx + mbeta03; mbeta09 = cx.*cx + mbeta09; mbetac3 = cx + mbetac3; px = (1-cos(Yp*2*pi/vy)); mbeta04 = Y.*px + mbeta04; mbeta10 = px.*px + mbeta10; mbetac4 = px + mbetac4; qx = sin(Zp*2*pi/vz); mbeta05 = Y.*qx + mbeta05; mbeta11 = qx.*qx + mbeta11; mbetac5 = qx + mbetac5; rx = (1-cos(Zp*2*pi/vz)); mbeta06 = Y.*rx + mbeta06; mbeta12 = rx.*rx + mbeta12; mbetac6 = rx + mbetac6; mbetaab = ax.*bx + mbetaab; mbetaac = ax.*cx + mbetaac; mbetaap = ax.*px + mbetaap; mbetaaq = ax.*qx + mbetaaq; mbetaar = ax.*rx + mbetaar; mbetabc = bx.*cx + mbetabc; mbetabp = bx.*px + mbetabp; mbetabq = bx.*qx + mbetabq; mbetabr = bx.*rx + mbetabr; mbetacp = cx.*px + mbetacp; mbetacq = cx.*qx + mbetacq; mbetacr = cx.*rx + mbetacr; mbetapq = px.*qx + mbetapq; mbetapr = px.*rx + mbetapr; mbetaqr = qx.*rx + mbetaqr; end % Divide by nscan and save these intermediate results. disp('Storing variances and cross-correlations') tempnscan = nscan; nscan = nscan - numberout; mbeta01 = mbeta01/nscan; mbeta02 = mbeta02/nscan; mbeta03 = mbeta03/nscan; mbeta04 = mbeta04/nscan; mbeta05 = mbeta05/nscan; mbeta06 = mbeta06/nscan; mbeta07 = mbeta07/nscan; mbeta08 = mbeta08/nscan; mbeta09 = mbeta09/nscan; mbeta10 = mbeta10/nscan; mbeta11 = mbeta11/nscan; mbeta12 = mbeta12/nscan; mbetaab = mbetaab/nscan; mbetaac = mbetaac/nscan; mbetaap = mbetaap/nscan; mbetaaq = mbetaaq/nscan; mbetaar = mbetaar/nscan; mbetabc = mbetabc/nscan; mbetabp = mbetabp/nscan; mbetabq = mbetabq/nscan; mbetabr = mbetabr/nscan; mbetacp = mbetacp/nscan; mbetacq = mbetacq/nscan; mbetacr = mbetacr/nscan; mbetapq = mbetapq/nscan; mbetapr = mbetapr/nscan; mbetaqr = mbetaqr/nscan; mbeta00 = mbeta00/nscan; mbetac1 = mbetac1/nscan; mbetac2 = mbetac2/nscan; mbetac3 = mbetac3/nscan; mbetac4 = mbetac4/nscan; mbetac5 = mbetac5/nscan; mbetac6 = mbetac6/nscan; nscan = tempnscan; % undo the hack clear Xp Yp Zp Y Y1 ax bx cx px qx rx; % % REGULARIZATION FOR MATRIX INVERSION % % Vary limit on each voxel depending on RMS variation to remove more % when variation is larger. % % Find RMS variation on voxel scansused = nscan-numberout; msumsq = msumsq/scansused; msumsq = msumsq - mbeta00.*mbeta00; % estimates variance msumsq = sqrt(msumsq)/meanY1; % fractional variation on the voxel msumsq(1,:,:) =1; msumsq(64,:,:) = 1; msumsq(:,1,:)=1; msumsq(:,64,:)=1; % NOW ASSUME SOME HEURISTIC VALUES FOR INVERSION... % Best performance used 0.005 and 0.0025 for edges in the Phantom Data % % Pretty good values for phantom were 0.01 and 0.001 % Smooth this msumsq array? Not in this version. % SECOND GUESS % Fractional variation > 0.05, set to less than 0.0037 % Fractional variation < 0.01, set to more than 5 ( a guess) apriorarray = 50*exp(-200*msumsq); % NEXT SET MINIMUM LIMIT ON REGULARIZATION TO MAINTAIN STABILITY % Matlab gives no inversion warnings, even for 0.0001, or 0.001 fixed everywhere. % Regressors are clipped in a few ventral posterior edge at 0.005 fixed, while % % clipping also occurs in ventral anterior, and top at 0.0001. apriorlimit = 0.0025; apriorhigh = 6; apriorarray = max(apriorarray, apriorlimit); apriorarray = min(apriorarray, apriorhigh); % prevents Matlab warning mbetaones = ones(dx,dy,dz); % FULL MATRIX INVERSE ON EVERY VOXEL for in = 1:dx for jn = 1:dy for kn = 1:dz M = [ mbeta07(in,jn,kn) mbetaab(in,jn,kn) mbetaac(in,jn,kn) mbetaap(in,jn,kn) mbetaaq(in,jn,kn) mbetaar(in,jn,kn) mbetac1(in,jn,kn); ... mbetaab(in,jn,kn) mbeta08(in,jn,kn) mbetabc(in,jn,kn) mbetabp(in,jn,kn) mbetabq(in,jn,kn) mbetabr(in,jn,kn) mbetac2(in,jn,kn); ... mbetaac(in,jn,kn) mbetabc(in,jn,kn) mbeta09(in,jn,kn) mbetacp(in,jn,kn) mbetacq(in,jn,kn) mbetacr(in,jn,kn) mbetac3(in,jn,kn); ... mbetaap(in,jn,kn) mbetabp(in,jn,kn) mbetacp(in,jn,kn) mbeta10(in,jn,kn) mbetapq(in,jn,kn) mbetapr(in,jn,kn) mbetac4(in,jn,kn); ... mbetaaq(in,jn,kn) mbetabq(in,jn,kn) mbetacq(in,jn,kn) mbetapq(in,jn,kn) mbeta11(in,jn,kn) mbetaqr(in,jn,kn) mbetac5(in,jn,kn); ... mbetaar(in,jn,kn) mbetabr(in,jn,kn) mbetacr(in,jn,kn) mbetapr(in,jn,kn) mbetaqr(in,jn,kn) mbeta12(in,jn,kn) mbetac6(in,jn,kn); ... mbetac1(in,jn,kn) mbetac2(in,jn,kn) mbetac3(in,jn,kn) mbetac4(in,jn,kn) mbetac5(in,jn,kn) mbetac6(in,jn,kn) mbetaones(in,jn,kn) ]; % aacond(in,jn,kn) = cond(M); % maximum condition number is 9000000 in phantom data! % M = M + aprior(in,jn,kn)*eye(7) regularizes everything. % Only regularize singular locations aprior = max(apriorlimit,apriorarray(in,jn,kn)); for nn = 1:6 M(nn,nn) = max(M(nn,nn), aprior); end % apcond(in,jn,kn) = cond(M); % With regularization, condition number has range 100000 in % phantom data. Could use pinv(M) here, but not needed. MM = inv(M); bvec = [ mbeta01(in,jn,kn) mbeta02(in,jn,kn) mbeta03(in,jn,kn) mbeta04(in,jn,kn) mbeta05(in,jn,kn) mbeta06(in,jn,kn) mbeta00(in,jn,kn) ]'; mgamma01(in,jn,kn) = MM(1,1:7)*bvec; mgamma02(in,jn,kn) = MM(2,1:7)*bvec; mgamma03(in,jn,kn) = MM(3,1:7)*bvec; mgamma04(in,jn,kn) = MM(4,1:7)*bvec; mgamma05(in,jn,kn) = MM(5,1:7)*bvec; mgamma06(in,jn,kn) = MM(6,1:7)*bvec; % Better to also estimate and write out mgamma00, the difference between mean and baseline value. end end end % % TEST CODE for ONLY Z COMPONENT MATRIX INVERSE ON EVERY VOXEL % for in = 1:dx % for jn = 1:dy % for kn = 1:dz % M = [ mbeta11(in,jn,kn) mbetaqr(in,jn,kn) mbetac5(in,jn,kn); ... % mbetaqr(in,jn,kn) mbeta12(in,jn,kn) mbetac6(in,jn,kn);... % mbetac5(in,jn,kn) mbetac6(in,jn,kn) 1 ]; % aacond(in,jn,kn) = cond(M); % % condition numbers are from 2.4 - 3.5 for 1D phantom data! % %M = M + aprior(in,jn,kn)*eye(2); % M = M + [ 0.05 0 0; 0 0.05 0; 0 0 0 ]; % *eye(3); % %apcond(in,jn,kn) = cond(M); % % No regularization needed in 1D algorithm for phantom. % % phantom data % MM = inv(M); % bvec = [ mbeta05(in,jn,kn) mbeta06(in,jn,kn) mbeta00(in,jn,kn) ]'; % mgamma01(in,jn,kn) = 0; % mgamma02(in,jn,kn) = 0; % mgamma03(in,jn,kn) = 0; % mgamma04(in,jn,kn) = 0; % mgamma05(in,jn,kn) = MM(1,1:3)*bvec; % mgamma06(in,jn,kn) = MM(2,1:3)*bvec; % end % end % end % Prevent runaway large values clear mbeta* disp('Clipping regressors that are too large') acap = 0.21; % correction from any one term < 5% of mean image % phantom data had max of 21%. maxgamma = acap*meanY1; mingamma = - maxgamma; mgamma01 = min(mgamma01,maxgamma); mgamma02 = min(mgamma02,maxgamma); mgamma03 = min(mgamma03,maxgamma); mgamma04 = min(mgamma04,maxgamma); mgamma05 = min(mgamma05,maxgamma); mgamma06 = min(mgamma06,maxgamma); mgamma01 = max(mgamma01,mingamma); mgamma02 = max(mgamma02,mingamma); mgamma03 = max(mgamma03,mingamma); mgamma04 = max(mgamma04,mingamma); mgamma05 = max(mgamma05,mingamma); mgamma06 = max(mgamma06,mingamma); disp('Writing mgamma images with motion regressors for each voxel.') %V = spm_vol(P(1).fname); v = P(1); % was V; [dirname, sname, sext ] = fileparts(P(1).fname); v = rmfield(v,'pinfo'); % Allows SPM5 to scale images. sfname = 'mgamma01'; filtname = fullfile(dirname,[sfname sext]); v.fname = filtname; spm_write_vol(v,mgamma01); sfname = 'mgamma02'; filtname = fullfile(dirname,[sfname sext]); v.fname = filtname; spm_write_vol(v,mgamma02); sfname = 'mgamma03'; filtname = fullfile(dirname,[sfname sext]); v.fname = filtname; spm_write_vol(v,mgamma03); sfname = 'mgamma04'; filtname = fullfile(dirname,[sfname sext]); v.fname = filtname; spm_write_vol(v,mgamma04); sfname = 'mgamma05'; filtname = fullfile(dirname,[sfname sext]); v.fname = filtname; spm_write_vol(v,mgamma05); sfname = 'mgamma06'; filtname = fullfile(dirname,[sfname sext]); v.fname = filtname; spm_write_vol(v,mgamma06); sfname = 'maprior'; logaprior = log(apriorarray); % natural log % To read the apriorarray later... % Note log .005 is -5.2, and log 10 is 2.3. filtname = fullfile(dirname,[sfname sext]); v.fname = filtname; spm_write_vol(v,logaprior); clear mgamma*; % Estimate motion adjusted images disp('Write images after motion adjustment'); if strcmp(spm_ver,'spm5') mgams = spm_select('FPList',imagedir, '^mgamma.*\.img$'); else % spm2 mgams = spm_get('files',imagedir, 'mgamma*img'); end %cd(motiondir) art_motionadjust(P, mgams, R); %b_motionadjust(P, mgams, R); %-------------------------------------------------------------- function [ Xp, Yp, Zp ] = rmove(New,imagedim,Baseline); % P.mat transforms voxel coordinates to x,y,z position in mm. % New is P.mat for image, Baseline is P(1).mat for baseline image % dim is 3D vector of image size. % Output is change in (x,y,z) position for every voxel on this image. Mf = New - Baseline; for i = 1:imagedim(1) for j = 1:imagedim(2) for k = 1:imagedim(3) Xp(i,j,k) = Mf(1,1)*i+Mf(1,2)*j+Mf(1,3)*k+Mf(1,4); Yp(i,j,k) = Mf(2,1)*i+Mf(2,2)*j+Mf(2,3)*k+Mf(2,4); Zp(i,j,k) = Mf(3,1)*i+Mf(3,2)*j+Mf(3,3)*k+Mf(3,4); end end end
github
philippboehmsturm/antx-master
art_motionadjust.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/ArtRepair/art_motionadjust.m
2,638
utf_8
a618fe5bcfdfdec770bc4ef563572143
function art_motionadjust(Images, Mgammas, Regressors) % FORMAT art_motionadjust % Support function for art_motionregress % SUMMARY % Reads a set of images to motion adjust % Reads six mgamma images to use for regressors. % Reads a set of images to get their realignment .mat files. % Writes a set of motion adjusted images, with the letter 'm' % prepended to the file names. % No original data is removed- the old images are all preserved. % % NOTES % Use art_movie to compare the input and adjusted images. % Use art_rms to find RMS voxel variations over time series. % Compatible with SPM5 and SPM2 % Paul Mazaika, May 2007 % PARAMETERS spm('defaults','fmri'); P = Images; % spm_vol(Images); A = spm_vol(Mgammas); R = Regressors; % may be an alternate way. % Read in the six motion adjustment images. A1 = spm_read_vols(A(1)); A2 = spm_read_vols(A(2)); A3 = spm_read_vols(A(3)); A4 = spm_read_vols(A(4)); A5 = spm_read_vols(A(5)); A6 = spm_read_vols(A(6)); % Main Loop - Adjust each image. nscans = size(P,1); voxelsize = R(1).mat; vx = abs(voxelsize(1,1)); vy = voxelsize(2,2); vz = voxelsize(3,3); imagedim = size(A1); for k = 1:nscans Y4 = spm_read_vols(P(k)); % WOULD BE GREAT IF P.MAT HAD THE INFORMATION HERE. % Get the voxel displacement for every voxel [ Xp, Yp, Zp ] = rmove(R(k).mat, imagedim, R(1).mat); % Apply corrections Y4 = Y4 - sin(Xp*2*pi/vx).*A1 - (1-cos(Xp*2*pi/vx)).*A2; Y4 = Y4 - sin(Yp*2*pi/vy).*A3 - (1-cos(Yp*2*pi/vy)).*A4; Y4 = Y4 - sin(Zp*2*pi/vz).*A5 - (1-cos(Zp*2*pi/vz)).*A6; % Prepare the header for the filtered volume. prechar ='m'; V = spm_vol(P(k).fname); v = V; [dirname, sname, sext ] = fileparts(V.fname); sfname = [ prechar, sname ]; filtname = fullfile(dirname,[sfname sext]); v.fname = filtname; spm_write_vol(v,Y4); showprog = [' 3D Motion adjusted volume ', sname, sext ]; %disp(showprog); end disp('Done with motion adjustment!') function [ Xp, Yp, Zp ] = rmove(New,imagedim,Baseline); % P.mat transforms voxel coordinates to x,y,z position in mm. % New is P.mat for image, Baseline is P(1).mat for baseline image % dim is 3D vector of image size. Mf = New - Baseline; for i = 1:imagedim(1) for j = 1:imagedim(2) for k = 1:imagedim(3) Xp(i,j,k) = Mf(1,1)*i+Mf(1,2)*j+Mf(1,3)*k+Mf(1,4); Yp(i,j,k) = Mf(2,1)*i+Mf(2,2)*j+Mf(2,3)*k+Mf(2,4); Zp(i,j,k) = Mf(3,1)*i+Mf(3,2)*j+Mf(3,3)*k+Mf(3,4); end end end
github
philippboehmsturm/antx-master
art_automask.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/ArtRepair/art_automask.m
8,663
utf_8
00761162b94e9340128d2fb96852aab6
function Y = art_automask(Image,Threshold,WriteVol); % Y = art_automask( Image, Threshold, WriteVol ) (v2.2) % art_automask; % % Calculates a pretty good mask image from an input full-head Image % in order to detect artifacts in the data. The threshold % is higher than usual for SPM because the spiral scan generates more % noise outside the head. When called with one % or no arguments, the mask is adapted for the input image, and the mask is % written to "ArtifactMask.img" for later user review. The adaptation % sets a threshold level, removes speckle, and removes corner artifacts. % The adaptive mask is usually a bit larger than the head. % The GUI version allows a user to select a threshold,e.g. by looking at % an SPM display of the image to estimate a value. The program will fill % in small holes in the mask, so you can pick slightly high values to % suppress noise and still obtain a mask without gaps. % % GUI INPUT % Image - select the image to use % Threshold - Select a threshold to use. % UserMask - Select a name for the derived mask file. % BATCH INPUT: % Image - full path name of an image file, e.g. 'C:\test\V002.img' % Threshold- measured as a FRACTION of the range of Image % If > 0, applies that threshold. Values from 0.10 to 0.30 are typical. % e.g. if the Image range is [0,2000] and Threshold = 0.15, % then a fixed threshold of 300 is applied. % If not supplied, threshold is set adaptively to a value that is % 0.2 to 0.4 of the max range of the smoothed image. % WriteVol = 0 does not write a mask file. % If not supplied, mask file is written. %OUTPUT: % Y 3D mask array, with 1's and 0's. % ArtifactMask.img, written to the image directory, if WriteVol = 1. % UserMaskname.img, written to the image directory in GUI maode. % % Paul Mazaika April 2004. % V.2 adapts to different mean image levels. Paul Mazaika Aug. 2006. % V2.1 write maskvalue=1. get/write changes for SPM5. (2/07) % v2.2 better GUI for user to set a mask threshold % Adaptive Threshold Logic depends on estimated error rate outside the head. % Fraction of points outside the head that pass the threshold must be small. % For each slice, set the slice to zero if the fraction of mask points on % the slice is smaller than parameter FMR. FMR = 0.015; % False Mask Percentage. spmv = spm('Ver');spm_ver = 'spm2'; if (strcmp(spmv,'SPM5') | strcmp(spmv,'SPM8b') | strcmp(spmv,'SPM8') ) spm_ver = 'spm5'; end if nargin == 0 if strcmp(spm_ver,'spm5') Image = spm_select(1,'image','Select image as source for automask.'); else % spm2 version Image = spm_get(1,'.img','Select image as source for automask.'); end %Image = spm_select(1,'image','Select image as source for automask.'); %Threshold = -1; % Adaptive mask by default Threshold = spm_input('Select threshold value' ,1,'r'); MaskName = spm_input('Select name for calculated mask file' ,1,'s','UserMask'); WriteVol = 1; % Writes the mask out for inspection. elseif nargin == 1 Threshold = -1; % Adaptive mask by default. WriteVol = 1; % Writes the mask out for inspection. end % Get the image data. V = spm_vol(Image(:,:)); % Input could be a matrix; only need one image. n = prod(size(V)); Y = spm_read_vols(V); % Fill in the small holes and reduce the noise spikes. Y = smooth3(Y); % default 3x3x3 box smoothing. Yr = max(max(max(Y))) - min(min(min(Y))); % previously used range. % User defined mask threshold if Threshold > 0 % Make the mask directly % Array temp is logical array with 1's and 0's temp(:,:,:) = (Y(:,:,:)>Threshold); end % Adaptive Mask Threshold if ( Threshold == -1 ) % Find a threshold that discards three outer faces. % Use gray matter density as lower limit- count is 400. Tlow = fix(0.2*Yr); Thigh = fix(0.4*Yr); Tskip = max(fix(Tlow/20),1); for Tbar = Tlow:Tskip:Thigh % 400:20:800 temp(:,:,:) = (Y(:,:,:) > Tbar); % Count the number of mask points in the far faces of the volume xdim = size(Y); count1 = sum(sum(temp(:,:,1))); count2 = sum(sum(temp(:,:,xdim(3)))); count3 = sum(sum(temp(:,1,:))); count4 = sum(sum(temp(:,xdim(2),:))); count5 = sum(sum(temp(1,:,:))); count6 = sum(sum(temp(xdim(1),:,:))); % Always have one face with large counts, sometimes have 2 such faces. countA = count1+count2+count3+count4+count5+count6; Xbar = [ count1 count2 count3 count4 count5 count6 ]; Ybar = sort(Xbar); countC = Ybar(1) + Ybar(2); % the two smallest face counts countB = Ybar(1) + Ybar(2) + Ybar(3); % three smallest face counts % Number of voxels on 3 faces is approximately: nvox = xdim(1)*xdim(2) + xdim(2)*xdim(3) + xdim(1)*xdim(3); if ( countC < FMR*nvox ) break; % Exit the For loop, current Tbar is good enough. end % iter = iter + 1; % ygraph(1,iter) = countA; % ygraph(2,iter) = countB; % ygraph(3,iter) = countC; end disp('Adaptive Mask Threshold') disp(Tbar) %disp(countC) %disp(ygraph') end if Threshold == -1 if Tbar >= Thigh-Tskip disp('Automask program failed. Try choosing a mean image,') disp(' or manually set a threshold. Type help art_automask.') return end end % Clean up the corner alias artifact sometimes evident in the spiral data. % If the edge of a plane has much more data than the center, delete the % edge. Then if any plane has too few data points (meaning close to noise level) % then set the entire plane in the mask image to zero. Note for spiral scans % a better idea might be to determine the orientation of the spiral, and just % remove the potential alias effects at those four edges corners. xdim = size(Y); iedge = floor(max(5,0.2*xdim(1))); jedge = floor(max(5,0.2*xdim(2))); kedge = floor(max(5,0.2*xdim(3))); % Clear out the edges, and then check the planes. for i = 1:xdim(1) % If edges are bigger than center, then delete edges. fmaski = sum(sum(temp(i,jedge:xdim(2)-jedge,kedge:xdim(3)-kedge))); mo1 = sum(sum(temp(i,1:jedge,:))); if ( mo1 > 2*fmaski ) temp(i,1:5,:) = 0; end mo2 = sum(sum(temp(i,xdim(2)-jedge:xdim(2),:))); if (mo2 > 2*fmaski) temp(i,xdim(2)-4:xdim(2),:) = 0; end mo3 = sum(sum(temp(i,:,1:kedge))); if (mo3 > 2*fmaski) temp(i,:,1:5) = 0; end mo4 = sum(sum(temp(i,:,xdim(3)-kedge:xdim(3)))); if (mo4 > 2*fmaski) temp(i,:,xdim(3)-4:xdim(3)) = 0; end % If face is about the noise level, then delete the face. fmaski = sum(sum(temp(i,:,:))); if fmaski < 2*FMR*xdim(2)*xdim(3) temp(i,:,:) = 0; end end for j = 1:xdim(2) fmaskj = sum(sum(temp(iedge:xdim(1)-iedge,j,kedge:xdim(3)-kedge))); mo1 = sum(sum(temp(1:iedge,j,:))); if ( mo1 > 2*fmaskj ) temp(1:5,j,:) = 0; end mo2 = sum(sum(temp(xdim(1)-iedge:xdim(1),j,:))); if (mo2 > 2*fmaskj) temp(xdim(1)-4:xdim(1),j,:) = 0; end mo3 = sum(sum(temp(:,j,1:kedge))); if (mo3> 2*fmaskj) temp(:,j,1:5) = 0; end mo4 = sum(sum(temp(:,j,xdim(3)-kedge:xdim(3)))); if (mo4 > 2*fmaskj) temp(:,j,xdim(3)-4:xdim(3)) = 0; end fmaskj = sum(sum(temp(:,j,:))); if fmaskj < 2*FMR*xdim(1)*xdim(3) temp(i,:,:) = 0; end end for k = 1:xdim(3) fmaskk = sum(sum(temp(:,:,k))); if fmaskk < 2*FMR*xdim(2)*xdim(1) temp(i,:,:) = 0; end end % Outputs Y = temp; if ( WriteVol == 1 ) v = V; % preserves the header structure [dirname, xname, xext ] = fileparts(V.fname); artifname = ['ArtifactMask' xext]; if nargin == 0 artifname = [MaskName xext]; end artifpath = fullfile(dirname,artifname); v.fname = artifpath; noscale_write_vol(v,Y); end %--------------------------------------------------------------- % Create and write image without the scale and offset steps % This function is spm_write_vol without error checking and scaling. function noscale_write_vol(V,Y); V = spm_create_vol(V); for p=1:V.dim(3), V = spm_write_plane(V,Y(:,:,p),p); end; %V = spm_close_vol(V); % not for SPM5
github
philippboehmsturm/antx-master
art_groupoutlier.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/ArtRepair/art_groupoutlier.m
18,950
utf_8
2d22a294e3de9362486a0b535eb4b591
function art_groupoutlier(ConImageNames, GroupMaskName,Groupscale, OutputDir) % FUNCTION art_groupoutlier % >> art_groupoutlier to run by GUI % % Program runs the global quality metrics for a contrast image from all % subjects. Creates a summary over all subjects of GQ scores per % per subject, visually displays scores of all subjects, and % recommends good subgroups for group analyses. % % User MUST specify (peak/contrast_sum) to make the scaling correct! % Find this value by running >>art_percentscale on a single subject. % % GUI INPUTS % Select a set of single subject con images. Use same syntax as making an SPM group study. % Enter peak/contrast sum. Get this by running art_precentscale on one subject. % It is usually the same for all regressors, for all subjects. % OUTPUT is written to current working directory, and displayed. % This text file and jpg image files summarize all subjects together. % % BATCH INPUT (as called from art_groupcheck) % art_groupoutlier(ConImageNames, GroupMaskName,Groupscale, OutputDir) % ConImageNames is cell array of contrast images names % GroupMaskName is full path name of one mask image for all subjects. % Usually this is the mask image of the group result. % If GroupMaskName = 0, each subject uses its own mask. % Groupscale is 3 element vector with peak, contrastsum, and bmean. % OutputDir specifies where output images and files will be written. % % BUG: Sometimes the figure legend will cover a data point. % Compatible with SPM5 and SPM2. % paul mazaika - added SPM8, May 2009 % Set some reference guides for assumed single subject values % Values are in percent signal change % We'll learn more about these values in the future. % REFERENCE values are used to draw the reference box REFW = 0.07; % for block GoNoGo design REFM = 0.07; % for exec control contrast experiment REFSTD = 0.25; % for 1% noise, difference of 50 sample estimates. % Cluster center of data (ROBUSTM, ROBUSTW) is estimated in the code. % Set high intersubject variability, used only in Figures. UNIFHIGH = 0.2; % was 0.17 % Identify spm version spmv = spm('Ver'); spm_ver = 'spm2'; if (strcmp(spmv,'SPM5') | strcmp(spmv,'SPM8b') | strcmp(spmv,'SPM8') ) spm_ver = 'spm5'; end if nargin == 0 %clear all; OutputDir = pwd; % Get user's current working directory if strcmp(spm_ver,'spm5') Rimages = spm_select(Inf,'image','Select single subject con images' ); else % spm2 Rimages = spm_get(Inf,'.img','Select single subject con images'); end % pk_con value is the peak/contrast sum for the regressor of interest. pkcon_value = spm_input('Enter peak/(contrast_sum)',1,'e');%,1.13,1); [temp1, ConImageName,cext ] = fileparts(Rimages(1,:)); [temp, ResultsFolder ] = fileparts(temp1); %MaskPath = ResultsFolder; UseGroupMask = 0; for i = 1:size(Rimages,1) temp = fileparts(Rimages(i,:)); sjResults{i} = temp; temp2 = fileparts(temp); sjDirX{i}=temp2; end %ConImageName = [ ConImageName cext]; ScaleFactor(1) = pkcon_value; ScaleFactor(2) = 1; % art_summary only needs ratio to be right. % ScaleFactor(3) =bmean is found for each image elseif nargin > 0 % inputs for groupoutlier5 %Rimages = char(sjDirX); %Maskpath = ResultsFolder; % other variables are passed as arguments Rimages = char(ConImageNames); % ConImageNames is a cell array if GroupMaskName == 0 UseGroupMask = 0; % each single subj. contrast uses its own mask else UseGroupMask = 1; % group mask is applied to each contrast disp('Using same group mask for all contrasts.') end [temp1, ConImageName,cext ] = fileparts(char(ConImageNames{1})); [temp, ResultsFolder ] = fileparts(temp1); %MaskPath = ResultsFolder; for i = 1:length(ConImageNames) temp = fileparts(char(ConImageNames{i})); sjResults{i} = temp; temp2 = fileparts(temp); sjDirX{i}=temp2; end %ConImageName = [ ConImageName cext]; pkcon_value = Groupscale(1); ScaleFactor(1) = Groupscale(1); ScaleFactor(2) = Groupscale(2); % only use is send to art_summary ScaleFactor(3) = Groupscale(3); % other variables are passed as arguments end X = zeros(length(sjDirX), 5); NumSubj = length(sjDirX); % Global Quality of Estimates for i = 1:length(sjDirX) %Resultspath = fullfile(sjDirX{i},ResultsFolder); if UseGroupMask == 0 %Maskpath = fullfile(sjDirX{i},ResultsFolder); Maskpath = char(sjResults{i}); if strcmp(spm_ver,'spm5') MaskImage = spm_select('FPList',Maskpath,'^mask.*\.img$'); else % spm2 logic MaskImage = fullfile(Maskpath,'mask.img'); end elseif UseGroupMask == 1 MaskImage = GroupMaskName; end if nargin == 0 ConImage = Rimages(i,:);% fullfile(Resultspath, ConImageName); elseif nargin > 0 ConImage = char(ConImageNames{i}); end if nargin == 0 & i == 1 % Use first one to scale all (approximation). ScaleFactorX = art_percentscale(ConImage,MaskImage); ScaleFactor(3) = ScaleFactorX(3); end OutputPath = sjDirX{i}; % Last two arguments write Figure 71 with title 'GroupSelect'. [g,r, s] = art_summary(ConImage,MaskImage,OutputPath,'GroupSelect',71,ScaleFactor); X(i,2) = g; % width (stdev) X(i,3) = r; % mean X(i,4) = s; % Resout, Mean of sqrt(ResMS)number % for art_redo/art_summary, it is mean of Res image. X(i,1) = i; % an index number end % Get the NAME of the subject for i = 1:NumSubj [ a, b, c ] = fileparts(sjDirX{i}); [ a1, b1, c1 ] = fileparts(a); [ a2, b2, c2 ] = fileparts(a1); Y{i} = [ b2 '/' b1 '/' b ]; end % Find two robust measures of GQmean groupmean = mean(X(:,3)); medianofgroup = median(X(:,3)); trim50 = trimmean(X(:,3),50); ROBUSTM = 0.5*(medianofgroup + trim50); % Find a measure of the horizontal location of the main cluster allwidths = X(:,2); allsort = sort(allwidths); ROBUSTW = allsort(round(length(allsort)/4)); % Estimate the standard deviation of confound score. Add variances % for distance of mean from zero, and the boost in variance relative % to the variance ROBUSTW for an estimated single subject. %. ASSUMES SINGLE SUBJECT has true mean of zero. for i = 1:NumSubj % Currently, not used. Assumes that zero is correct. X(i,5) = sqrt(X(i,3)^2 + max(0,(X(i,2)^2 - ROBUSTW^2))); end % Estimate the confound score, using an assumed mean from robust estimate. for i = 1:NumSubj %X(i,6) = sqrt((X(i,3)-ROBUSTM)^2 + max(0,(X(i,2))^2 - ROBUSTW^2)); % total variance includes intersubject, est, and confound X(i,6) = sqrt((X(i,3)-ROBUSTM)^2 + max(0,(X(i,2))^2 )); end % Print a TABLE of subject results disp('Output images and text file will be written to this folder:') disp(OutputDir) disp(' ') pkconwords = ['User entered value for peak/contrast_sum: ',num2str(pkcon_value)]; disp(pkconwords) disp(' ') disp(' INDIVIDUAL SUBJECT PROPERTIES (ordered as input)') disp(' Index GQwidth GQmean RESavg GQrms') %disp(X); for i = 1:NumSubj fprintf(1,'\n%5d %8.4f %8.4f %8.4f %8.4f', round(X(i,1)),X(i,2),... X(i,3),X(i,4),X(i,6)); end disp(' ') subj.GQdata = X; subj.name = Y; %save subjectsummarystruct subj % Find and display two robust measures of bias. disp(' ') disp(' ESTIMATES OF GQmean averaged over the Group') disp(' Mean, Median and 50% trimmed mean of subject GQmeans ') disp(groupmean) disp(medianofgroup) disp(trim50) disp('Robust mean = average of median and trimmed mean') disp(ROBUSTM) % Define ideal point and GQmean = 0 line. cnormm = [ -REFM REFM ]; cnormw = [ REFW REFW ]; didealstdev = [ REFSTD REFW REFW REFSTD ]; didealmean = [ -REFM -REFM REFM REFM ]; % Draw GQ figure for subject figure(72); ahcw = X(:,2); ahcm = X(:,3); robw = [ 0 max(ahcw+0.1)]; robm = [ ROBUSTM ROBUSTM ]; %plot(ahcm,ahcw,'kd',... % robm,robw,'k:',cnormm,cnormw,'r--',didealmean,didealstdev,'r-.'); h11=plot(ahcm,ahcw,'kd'); hold on; plot(robm,robw,'k:',cnormm,cnormw,'r--',didealmean,didealstdev,'r-.'); set(h11,'LineStyle','none'); set(h11,'Marker','o','MarkerFaceColor',[0 0 0],'MarkerEdgeColor',[0 0 0],'MarkerSize',8.0); legend('Subjects','Robust mean','Ref. subject variability','Ref. lack of power','Location','Best','boxoff'); %plot(ahcm,ahcw,'rd',cnormm,cnormw,'gs',csinglem,csinglew,'bs'); %legend('Subjects','"Ideal"','No confounds','Location','Best'); ylim([ 0 max(ahcw+0.1)]); %axes_lim = get(gca, 'YLim'); %axes_height = [ axes_lim(1) axes_lim(2)]; axis equal; %line([0 0], [ROBUSTM max(ahcw+0.1)], 'Color', 'k','LineStyle',':'); title('Global Quality scatterplot, by subject') xlabel('Global Mean: Mean of histogram (percent signal change)'); ylabel('Global Quality: Stdev of histogram (percent signal change)'); hold off; % Make a Pretty Figure fh = figure(82); ylim([ 0 max(ahcw+0.1)]); h1 = plot(ahcm,ahcw); hold on; h2 = plot(robm,robw); h4 = plot(cnormm,cnormw); h3 = plot(didealmean,didealstdev); % set background white set(fh,'color','white'); set(h1,'LineStyle','none'); set(h1,'Marker','o','MarkerFaceColor',[0 0 0],'MarkerEdgeColor',[0 0 0],'MarkerSize',8.0); set(h3,'LineStyle','-.','LineWidth',1.0,'Color','Red'); set(h3,'Marker','none'); set(h2,'LineStyle',':','Color','Black'); set(h2,'Marker','none'); set(h4,'LineStyle','--','LineWidth',1.0,'Color','Red'); set(h4,'Marker','none'); % remove plot box set(gca,'Box','off'); axis equal; h5=legend('Subjects','Robust mean','Ref. subject variability','Ref. lack of power','Location','Best'); set(h5,'Location','Best','FontSize',12); %set(gca,'TickDir','out','XTick',[0:10],'YTick',[1:5]); set(gca,'TickDir','out'); xlabel('Global Mean (percent signal change)','FontSize',14); ylabel('Global Standard Deviation of Histogram (pct sig ch)','FontSize',14,'Rotation',90); title('Global Quality scatterplot, by subject','FontSize',16) % save for LateX. Mac converts postscript to pdf % This looks much cleaner than .jpg. %saveas(fh,'FruitflyPopulation','epsc'); % save for Word %saveas(fh,'FruitflyPopulationWord','jpg'); hold off cd(OutputDir); % prints images to this folder figname = ['SubjectGQScatterplot.jpg']; saveas(gcf,figname); % Try two sorts: One by variance alone. % The second also tries to keep the subgroup bias zero. % Both sorts use ROBUSTM as the reference mean value. for sortmethod = 1:2 if sortmethod == 1 % SORT the subjects by GQ magnitude, Assuming ROBUST mean. sqvar = X(:,6); [svar, isort ] = sort(sqvar); elseif sortmethod == 2 % Order subjects by mean square error, Assuming ZERO mean. % and resort the means along with the variances sqvar = X(:,6); % 6 is ROBUST MEAN, 5 IS ZERO mean isort = dualsort(sqvar,X(:,3)); svar = sqvar(isort); end cc = X(isort,3); % keep track of biases on sorted subjects NumSubj = size(X,1); xax = [ 1: NumSubj ]; % Make a low and high uniform variable, in stdev unif2 = svar(1)*ones(NumSubj,1); % Starts with GQ scores unifhi = UNIFHIGH*ones(NumSubj,1); combo2 = sqrt(svar.*svar+unif2.*unif2); combohi = sqrt(svar.*svar+unifhi.*unifhi); limhi = ROBUSTM + REFW*ones(NumSubj,1); limlo = ROBUSTM - REFW*ones(NumSubj,1); % Next consider the effects of bias per subject. % The observed bias from group to group is 0.012 or so. zeroline = zeros(NumSubj+1,1); zax = [0:NumSubj]; if sortmethod == 1; figure(73); end if sortmethod == 2; figure(75); end clf; h22 = plot(xax,svar,'ro-'); hold on; plot( xax,combohi,'k-'); h23 = plot(xax,cc,'bo-'); plot( ... xax,limlo,'b:',xax,limhi,'b:',zax,zeroline,'k-'); set(h22,'LineStyle','-','Color','Red'); set(h22,'Marker','o','MarkerFaceColor',[0.8 0 0],'MarkerEdgeColor',[0.8 0 0],'MarkerSize',6.0); set(h23,'LineStyle','-','Color','Blue'); set(h23,'Marker','o','MarkerFaceColor',[0 0 0.8],'MarkerEdgeColor',[0 0 0.8],'MarkerSize',6.0); title('Each Subjects Global Quality scores, sorted by total variance') if sortmethod == 2 title('Each Subjects Global Quality scores, sorted keeping bias near zero') end xlabel('Subject ID sorted') legend('GQ Total Stdev','Plus high intersubject','GQMean',... '2-sigma limit on mean','Location','NorthWest'); figname = ['SubjectsSortedbyGQ.jpg']; saveas(gcf,figname); % Find variance of mean, for each subgroup size, N sumvar(1) = svar(1)^2; sumbar(1) = cc(1); sumunif(1) = unif2(1)^2; sumhi(1) = unifhi(1)^2; sumchi(1) = sumvar(1)+sumhi(1); for i = 2:NumSubj sumvar(i) = sumvar(i-1) + svar(i)^2; sumbar(i) = sumbar(i-1) + cc(i); sumunif(i)= sumunif(i-1) + unif2(i)^2; sumhi(i) = sumhi(i-1) + unifhi(i)^2; sumchi(i) = sumvar(i) + sumhi(i); end for i = 1:NumSubj stdmean(i) = sqrt(sumvar(i)/(i*i)); subgpmean(i) = sumbar(i)/i; stdunif2mean(i) = sqrt(sumunif(i)/(i*i)); stdchi(i) = sqrt(sumchi(i)/(i*i)); end % Find subgroups, over half the group in size, % with means within 2-sigma of target value ROBUSTM if sortmethod == 1 | 2 % target value is robust mean subgpmean1 = subgpmean - ROBUSTM; bias2mean = sqrt(subgpmean1.*subgpmean1); end groupchoice(1:NumSubj) = 0; for i = round(NumSubj/2):NumSubj if bias2mean(i) < (REFW)/sqrt(i); groupchoice(i) = 1; end end gc = find(groupchoice == 1); lengc = zeros(length(gc),1); % Draw limits of reasonable values for group mean (within 2-sigma) biashi(1,2:NumSubj) = ROBUSTM + REFW./sqrt(xax(2:NumSubj)); biaslo(1,2:NumSubj) = ROBUSTM - REFW./sqrt(xax(2:NumSubj)); if sortmethod == 1; figure(74); end if sortmethod == 2; figure(76); end clf; plot(xax(2:NumSubj),stdmean(2:NumSubj),'r',xax(2:NumSubj),stdchi(2:NumSubj),'k-',... xax(2:NumSubj),stdunif2mean(2:NumSubj),'g--',... xax,subgpmean,'b-',xax(2:NumSubj),biashi(2:NumSubj),'b:',xax(2:NumSubj),biaslo(2:NumSubj),'b:',zax,zeroline,'k-'); title('Predicted Subgroup Performance: Global StdErr ordered by variance only'); if sortmethod == 2 title('Predicted Subgroup Performance: Global StdErr while forcing zero bias') end xlabel('Number of subjects in subgroup'); ylabel('Expected standard error of the mean'); legend('GQ Total','Plus high intersubject',... 'Uniform Only','SubGroup Mean','2-sigma limits on mean'); % Add good subgroup choices and a best choice based on min stdev [ dummy,index ] = min(stdmean); gbest = index; hold on; if sortmethod == 1 | 2 for i = 1:length(gc) line((gc(i)*ones(1, 2)), [ subgpmean(gc(i)) stdmean(gc(i)) ], ... 'Color','k','Marker','o','LineStyle',':'); end line((gbest*ones(1, 2)), [ subgpmean(gbest) stdmean(gbest) ], ... 'Color','k','Marker','o','LineStyle','-'); end hold off; figname = ['PredictedGroupAccuracy.jpg']; saveas(gcf,figname); % Make a TABLE of sorted subjects, number in group, expected performance for i = 1:NumSubj gpsel.id(i) = isort(i); gpsel.name(i) = Y(isort(i)); gpsel.GQ1(i) = stdmean(i); gpsel.GQ3(i) = stdchi(i); gpsel.GQ2(i) = subgpmean(i); end gpsel.select(1:NumSubj) = 0; for i = 1:length(gc) gpsel.select(gc(i)) = gc(i); end gpsel.select(gbest) = gbest; gptable = [ gpsel.select', gpsel.GQ1' gpsel.GQ3'... gpsel.GQ2' gpsel.id' ]; disp(' ') disp(' PREDICTED SUBGROUP PERFORMANCE') if sortmethod == 1 disp(' SUBGROUP SELECTIONS BASED ON MINIMUM VARIANCE ONLY') elseif sortmethod == 2 disp(' RECOMMENDED: SUBGROUP SELECTIONS WITH MEAN NEAR ROBUST MEAN') end disp(' Group Group Group Group Individual') disp(' Size StdErr StdEHi Mean Index Subject') for i = 1:NumSubj fprintf(1,'\n%5d %8.4f %8.4f %8.4f %5d %s', gptable(i,1),gptable(i,2),... gptable(i,3),gptable(i,4),gptable(i,5),gpsel.name{i}); end disp(' ') % DETECT, COUNT, AND LOG THE ARTIFACTS if sortmethod == 1 %disp('Writing results file to current directory') tstamp = clock; filen = ['OutlierSubjects',date,'Time',num2str(tstamp(4)),num2str(tstamp(5)),'.txt']; logname = fullfile(OutputDir,filen); logID = fopen(logname,'wt'); fprintf(logID,'Outlier Subjects Analysis from art_groupoutlier program (feb09): \n %s\n'); % Print a LIST of con images for this analysis fprintf(logID,'\n LIST OF INPUTS (Single Subject Images)'); for i = 1:size(Rimages,1) fprintf(logID,'\n%3d %s',i, Rimages(i,:)); end fprintf(logID,'\n %s',pkconwords) % Print a TABLE of subject results fprintf(logID,'\n\n INDIVIDUAL SUBJECT PROPERTIES (ordered as input)'); fprintf(logID,'\n Index GQwidth GQmean RESavg GQrms'); for i = 1:NumSubj fprintf(logID,'\n%5d %8.4f %8.4f %8.4f %8.4f ', round(X(i,1)),X(i,2),... X(i,3),X(i,4),X(i,6)); end % Print the robust estimates of the global mean fprintf(logID,'\n\n ROBUST ESTIMATES of the GLOBAL MEAN '); fprintf(logID,'\n Mean Median 50% Trimmean RobustMean'); fprintf(logID,'\n %8.4f %8.4f %8.4f %12.4f', ... groupmean, medianofgroup, trim50, ROBUSTM); fprintf(logID,'\n Robust mean is average of median and 50 pct trimmemd mean'); end % Print a table of recommended subgroups fprintf(logID,'\n\n PREDICTED SUBGROUP PERFORMANCE'); if sortmethod == 1 fprintf(logID,'\n Subgroups chosen with minimum variance only '); elseif sortmethod == 2 fprintf(logID,'\n Subgroups chosen to prefer group mean near robust mean '); end fprintf(logID,'\n Groups with small group means show the group size.'); fprintf(logID,'\n Group Group Group Group Individual'); fprintf(logID,'\n Size StdErr StdEHi Mean Index Subject') ; for i = 1:NumSubj fprintf(logID,'\n%5d %8.4f %8.4f %8.4f %5d %s', gptable(i,1),gptable(i,2),... gptable(i,3),gptable(i,4),gptable(i,5),gpsel.name{i}); end if sortmethod == 2 fclose(logID); end end % sortmethod loop %------------------------------------------------------------------ function G = dualsort(A,B) % Balances choosing smaller variances with maintaining zero mean % A is vector of variances (always positive) % B is vector of means. % G is vector of index numbers for the dualsort order % Set a balancing parameter % BAL = 1 means Ordinary sort on variance alone % BAL = 1000 means just zero bias is considered BAL = 1.4; n = length(A); C = zeros(1,n); meansum = 0; for i = 1:n y = find(C==0); ymin = min(A(y)); ylim = ymin*BAL + 0.00001; z = zeros(1,n); for j = 1:length(y) z(y(j)) = abs(meansum + B(y(j))); end meantemp = 1000; for j = 1:length(y) if A(y(j)) < ylim & z(y(j)) < meantemp jtemp = y(j); meantemp = z(y(j)); end end C(jtemp) = i; meansum = meansum + B(jtemp); end [ gt, G ] = sort(C);
github
philippboehmsturm/antx-master
art_despike.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/ArtRepair/art_despike.m
11,589
utf_8
5e3e7b11e4139268b7cdbae79a22893f
function zout = art_despike(Images,FiltType,Despike) % FUNCTION art_despike(Images,FiltType,Despike) % >> art_despike to run by GUI % % Removes spikes and slow variations using clipping and a high pass filter. % Generally, these functions remove large noise at the expense of slightly % reducing the contrast between conditions. % WARNING! FOR UNNORMALIZED IMAGES ONLY. The large size of normalized % images may cause this program to crash or go very slow. % % The user can choose a despike threshold and the type of filter. % The DESPIKE function clips all values further than DESPIKE % from a % rolling mean to exactly a DESPIKE % deviation. For example, if DESPIKE=4, % a spike of size 6% will be reduced to size 4. Despiking is performed % voxel-wise, since spikes may occur only on some voxels. Despike can be % turned off by setting Despike=0. % % The high pass filter removes slow variations on each voxel with an AC-coupled % filter, and adds the mean input image to write the output images. The % GUI allows two high pass filter choices and a smoothing filter. The ends % of the dataset are padded by reflection for the filter process. If both % despike and filtering are chosen, images will be despiked before % entering the high pass filter. % % INPUTS % Images is a list of images, in a single session. % Images must all have the same orientation and size. % FiltType has 4 options: % 1. 17-tap filter, aggressive high pass filter. % 2. 37-tap filter, long filter for block designs. SPM high pass % filter may be better since it preserves gain. % 3. No high pass filtering is done. Despiking is done based % on a 17-point moving average of unfiltered data. % 4. Matched filter for single events using temporal smoothing. % Perhaps useful for movies of ER fMRI % Clip Threshold is used to despike the data, in units of percentage % signal change computed relative to the mean image. % If Despike = 0, no clipping is done. Despike=4 is the default. % OUTPUTS % Images with a prefix "d" (for despike or detrend) in the same directory. % The filtered images have the same mean as the original series. % Mean input image, named meenINPUT.img, where INPUT is input image % name. Misspelling of mean is deliberately different from mean % image produced by spm realignment. % All input images are preserved. % % Clips and filters about 1 volume per second with default settings. % SPM high-pass filtering is OK, but not required after this filter. % Note these filters are applied to only the data, so there is a filter % gain to try to preserve a quantitative amplitude information. This works % OK for ER designs, but not as well for block designs. The SPM high pass % filter applies to the data and design matrix, and is better for blocks. % Runs through all the images sequentially like a pipeline. % % Compatible with SPM5, SPM8 and SPM2. % Compatible with AnalyzeFormat and Nifti images. % v.1 July 2008 Paul Mazaika % v.2 May 2009 pkm despike output works off centered mean. % Identify spm version spmv = spm('Ver'); spm_ver = 'spm2'; if (strcmp(spmv,'SPM5') | strcmp(spmv,'SPM8b') | strcmp(spmv,'SPM8') ) spm_ver = 'spm5'; end; spm('defaults','fmri'); if nargin == 0 CLIP = 1; % 1 to despike, 0 to not despike which is a bit faster. % DE-SPIKE CLIP PERCENTAGE. Default is 4%. Despikedef = 4; Despike = spm_input('Enter clip threshold (pct sig chg)',1,'e',Despikedef); if Despike == 0; CLIP = 0; end FiltType = spm_input('Select high pass filter',... 1,'m','17-tap, Robust filter for noisy images |37-tap, Better for block designs in clean images |No high pass filter.|Matched filter for isolated ER designs',[ 1 2 3 4], 1); if (Despike == 0 & FiltType == 3) disp('Error: Conflict in inputs.'); return; end; if strcmp(spm_ver,'spm5') Pimages = spm_select(Inf,'image','Select images to filter'); else % spm2 Pimages = spm_get(Inf,'.img','select images to filter'); end else Pimages = Images; %afilt = HPFilter; if Despike == 0 & FiltType ~= 3 CLIP = 0 elseif Despike > 0 CLIP = 1; elseif Despike == 0 & FiltType == 3 disp('Error: Conflict in art_despike inputs.'); return; end end % Set up filter coefficients % HPFilter is a filter vector (1,N) where N must be ODD in length % and the sum of the coefficients is zero. if FiltType == 1 % 17-tap high pass filter with the coefficients sum of zero afilt = [ -1 -1 -1 -1 -1.5 -1.5 -2 -2 22 -2 -2 -1.5 -1.5 -1 -1 -1 -1]; gain = 1.1/22; % gain is set for small bias for HRF shape elseif FiltType == 2 % 37-tap high pass filter, Takes about 2 sec per image. afilt = [ -ones(1,18) 36 -ones(1,18) ]; gain = 1/36; % gain is set for small avg. bias to block length 11. elseif FiltType == 3 % Skip filtering step. nfilt =17 for clipping baseline. afilt = [ -ones(1,7) 0 14 0 -ones(1,7) ]; % dummy values used only to set nfilt. gain = 1/14; elseif FiltType == 4 % Movie filter, to possibly see single HRFs in art_movie % Filter is matched to HRF shape, assuming TR=2 sec. afilt = [ -1 -1 -1.2 -1.2 -1.2 -1.2 -1 -1 2.5 6.3 6.3 2.5 0 -1 -1 -1.2 -1.2 -1.2 -1.2 -1 -1]; gain = 1/14; end % Filter characterization nfilt = length(afilt); if mod(nfilt,2) == 0 % check that filter length is odd. disp('Warning from art_despike: Filter length must be odd') return end if abs(mean(afilt)) > 0.000001 disp('Warning from art_despike: Filter coefficients must sum to zero.') return end lag = (nfilt-1)/2; % filtered value at 9 corresponds to a peak at 5. % Convert despike threshold in percent to fractional mulitplier limits spikeup = 1 + 0.01*Despike; spikedn = 1 - 0.01*Despike; fprintf('\n NEW IMAGE FILES WILL BE CREATED'); fprintf('\n The filtered scan data will be saved in the same directory'); fprintf('\n with "d" (for despike or detrend) pre-pended to their filenames.\n'); prechar = 'd'; if CLIP == 1 disp('Spikes are clipped before high pass filtering') disp('Spikes beyond this percentage value are clipped.') disp(Despike) else disp('No despiking will be done.'); end if FiltType ~= 3 disp('The high pass filter is:'); disp(afilt); wordsgain = [ 'With gain =' num2str(gain) ]; disp(wordsgain); else disp('No filtering will be done.'); end % FILTER AND DESPIKE IMAGES % Process all the scans sequentially % Start and End are padded by reflection, e.g. sets data(-1) = data(3). % Initialize lagged values for filtering with reflected values % Near the end, create forward values for filtering with reflected values. % Find mean image P = spm_vol(Pimages); startdir = pwd; cd(fileparts(Pimages(1,:))); [ xaa, xab, xac ] = fileparts(Pimages(1,:)); xaab = strtok(xab,'_'); % trim off the volume number %meanimagename = [ 'mean' xaab xac ]; meanimagename = [ 'meen' xaab '.img' ]; local_mean_ui(P,meanimagename); Pmean = spm_vol(meanimagename); Vmean = spm_read_vols(Pmean); nscans = size(Pimages,1); % Initialize arrays with reflected values. Y4 = zeros(nfilt,size(Vmean,1),size(Vmean,2),size(Vmean,3)); Y4s = zeros(1,size(Vmean,1),size(Vmean,2),size(Vmean,3)); disp('Initializing filter inputs for starting data') for i = 1:(nfilt+1)/2 i2 = i + (nfilt-1)/2; Y4(i2,:,:,:) = spm_read_vols(P(i)); i3 = (nfilt+1) - i2; if i > 1 % i=1 then i3 = i2. Y4(i3,:,:,:) = Y4(i2,:,:,:); end end % Start up clipping is done here if CLIP ==1 movmean = squeeze(mean(Y4,1)); for i = 1:nfilt Y4s = squeeze(Y4(i,:,:,:)); Y4s = min(Y4s,spikeup*movmean); Y4s = max(Y4s,spikedn*movmean); Y4(i,:,:,:) = Y4s; end end % Main Loop % Speed Note: Use Y4(1,:,:,:) = spm_read_vols(P(1)); % rows vary fastest disp('Starting Main Loop') for i = (nfilt+1)/2:nscans+(nfilt-1)/2 if i <= nscans Y4(nfilt,:,:,:) = spm_read_vols(P(i)); else % Must pad the end data with reflected values. i2 = i - nscans; Y4(nfilt,:,:,:) = spm_read_vols(P(nscans-i2)); % Y4(i2,:,:,:); end % Incremental clipping is done here if CLIP == 1 & FiltType == 3 % only despiking movmean2 = mean(Y4,1); movmean = squeeze(movmean2); % just a speed thing. % This lag is from FiltType = 3 Y4s = squeeze(Y4(nfilt-lag,:,:,:)); % centered for despike only Y4s = min(Y4s,spikeup*movmean); Y4s = max(Y4s,spikedn*movmean); Yn2 = squeeze(Y4s); elseif CLIP == 1 & FiltType ~= 3 % combined despike and filter movmean2 = mean(Y4,1); movmean = squeeze(movmean2); % just a speed thing. Y4s = squeeze(Y4(nfilt,:,:,:)); % predictive despike to use in filter Y4s = min(Y4s,spikeup*movmean); Y4s = max(Y4s,spikedn*movmean); Y4(nfilt,:,:,:) = Y4s; end if FiltType ~= 3 % apply filter to original or despiked data Yn = filter(afilt,1,Y4,[],1); Yn2 = squeeze(Yn(nfilt,:,:,:)); Yn2 = gain*Yn2 + Vmean; end % Prepare the header for the filtered volume, with lag removed. V = spm_vol(P(i-lag).fname); v = V; [dirname, sname, sext ] = fileparts(V.fname); sfname = [ prechar, sname ]; filtname = fullfile(dirname,[sfname sext]); v.fname = filtname; spm_write_vol(v,Yn2); % Slide the read volumes window up. showprog = [' Filtered volume ', sname, sext ]; disp(showprog); for js = 1:nfilt-1 Y4(js,:,:,:) = Y4(js+1,:,:,:); end end zout = 1; fprintf('\nDone with despike and high pass filter!\n'); cd(startdir) % Plot a sample voxel demovoxel = round( size(Vmean)/3 ); xin = art_plottimeseries(Pimages ,demovoxel); SubjectDir = fileparts(Pimages(1,:)); if strcmp(spm_ver,'spm5') realname = [ '^d' '.*\.img$' ]; Qimages = spm_select('FPList',[SubjectDir ], realname); else % spm2 realname = ['d' '*.img']; Qimages = spm_get('files',[SubjectDir ], realname); end xhi = art_plottimeseries( Qimages ,demovoxel); xscanin = [ 1:nscans]; xscanout = [ 1:size(Qimages,1) ]; figure(99) plot(xscanin,xin,'r',xscanout,xhi,'b'); titlewords = ['Timeseries before (red) and after (blue) for Voxel ' num2str(demovoxel)]; title(titlewords) %------------------------------------------------ function local_mean_ui(P,meanimagename) % Batch adaptation of spm_mean_ui, with image name added. % meanimagename is a character string, e.g. 'meansr.img' % FORMAT spm_mean_ui % Copyright (C) 2005 Wellcome Department of Imaging Neuroscience % John Ashburner, Andrew Holmes % $Id: art_despike.m 16 2010-06-07 12:19:40Z volkmar $ Vi = spm_vol(P); n = prod(size(Vi)); spm_check_orientations(Vi); %-Compute mean and write headers etc. %----------------------------------------------------------------------- fprintf(' ...computing') Vo = struct( 'fname', meanimagename,... 'dim', Vi(1).dim(1:3),... 'dt', [4, spm_platform('bigend')],... 'mat', Vi(1).mat,... 'pinfo', [1.0,0,0]',... 'descrip', 'spm - mean image'); %-Adjust scalefactors by 1/n to effect mean by summing for i=1:prod(size(Vi)) Vi(i).pinfo(1:2,:) = Vi(i).pinfo(1:2,:)/n; end; Vo = spm_create_vol(Vo); Vo.pinfo(1,1) = spm_add(Vi,Vo); Vo = spm_create_vol(Vo); %-End - report back %----------------------------------------------------------------------- fprintf(' ...done\n') fprintf('\tMean image written to file ''%s'' in current directory\n\n',Vo.fname)
github
philippboehmsturm/antx-master
art_slice.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/ArtRepair/art_slice.m
14,002
utf_8
f6d5e310ed66a7afb86a5318abe94963
function art_slice % FORMAT art_slice (v2.3) % % SUMMARY % Reads a set of images and writes a new set of images % after filtering the data for noise. User is asked to choose the % repair method or methods. This program is best applied % to the raw images, so the cleaned output images can be fed into % slicetiming or realignment algorithms. % % V.2 uses the scale factor of input images for the output images % to improve compatibility when output is used by external programs % % To automatically screen an image data set for bad slices, use the % Detect and Repair Bad Slices option which writes a BadSliceLog % of all the bad slices detected and repaired. % % No original data is removed- the old images are all preserved. % % User is asked via GUI to supply: % - Set of images % - A repair method % - If repairing bad slices, user can choose a threshold. % POSSIBLE REPAIRS % 1. Filter all the images with a 3-point median filter in time. An % excellent filter for TR=2 or less. If TR > 2 sec., or for Rapid Event % experiments where events are separated by 2 TR's or less, this filter % may clobber activations in event-related experiments. % Adds a prefix "f" to the cleaned output images. % 2. Detect and repair bad slices. Derives new values for the bad slice % using linear interpolation of the before and after volumes. % Bad slices are detected when the amount of data scattered outside % the head is at least T above the usual amount for the slice. (The usual % amount is determined as the average of the best two of the first three % volumes. It differs for each slice.) The default % value of T is 5, which the user can adjust. A preview estimate % of the amount of repaired data at T=5 is shown in the Matlab window. % This filter removes outliers, but may reduce activations, so it's % safest when fewer than 5% of the slices are cleaned up. % Adds a prefix "g" to the cleaned output images. % Writes a text file BadSliceLog of all bad slices detected. % 3. Eliminate data outside the head. Generates a head mask automatically, % and writes it as ArtifactMask.img. Sets voxels outside the head % to zero. This process may help realignment to be more accurate. % Adds a prefix "h" to the cleaned output images. % 4. Combinations of methods 1 and 3, or 2 and 3. % % NOTES % 1. Use art_movie to compare the input and repaired images. % 2. First and last volumes will not be filtered. % Paul Mazaika - December 2004. V.2 August 2006, % v2.2 allows user to specify a head mask instead of automatic. July 2007 % v2.3 compatible with multiple spm versions. Mar09 spmv = spm('Ver'); spm_ver = 'spm2'; if (strcmp(spmv,'SPM5') | strcmp(spmv,'SPM8b') | strcmp(spmv,'SPM8') ) spm_ver = 'spm5'; end % PARAMETERS spm('defaults','fmri'); OUTSLICEdef = 5; % Threshold above sample means to filter slices % 15 is very visible on contrast image. 8 is slightly visible. % THREEE CONTROL OPTIONS % Mask the images - Set amask = 1. % Median filter all the images - Set allfilt = 1. % Detect and repair bad slices - Set slicefilt = 1. if strcmp(spm_ver,'spm5') %mask = spm_select(1, 'image', 'Select mask image in functional space'); Pimages = spm_select(Inf,'image','select images'); else % spm2 version %mask = spm_get(1, '.img', 'Select mask image in functional space'); Pimages = spm_get(Inf,'image','select images'); end P = spm_vol(Pimages); repair_flag = spm_input('Which repair methods to use?', 1, 'm', ... ' Repair Bad Slices and Write BadSliceLog ( repairs only the bad slices ) | Median Filter All Data ( aggressive filter for very noisy data ) | Eliminate data outside head | Repair Bad Slices and Eliminate data outside head | Median Filter All Data and Eliminate data outside head',... [1 2 3 4 5], 1); if ( repair_flag == 3 ) amask = 1; allfilt = 0; slicefilt = 0; end if ( repair_flag == 1 ) amask = 0; allfilt = 0; slicefilt = 1; end if ( repair_flag == 2 ) amask = 0; allfilt = 1; slicefilt = 0; end if ( repair_flag == 4 ) amask = 1; allfilt = 0; slicefilt = 1; end if ( repair_flag == 5 ) amask = 1; allfilt = 1; slicefilt = 0; end % Set the prefix correctly on the written files if ( amask ==1 & allfilt == 0 & slicefilt == 0 ) prechar = 'h'; end if ( amask ==1 & allfilt == 1 & slicefilt == 0 ) prechar = 'fh'; end if ( amask ==1 & allfilt == 0 & slicefilt == 1 ) prechar = 'gh'; end if ( amask ==0 & allfilt == 1 & slicefilt == 0 ) prechar = 'f'; end if ( amask ==0 & allfilt == 0 & slicefilt == 1 ) prechar = 'g'; end fprintf('\n NEW IMAGE FILES WILL BE CREATED'); fprintf('\n The filtered scan data will be saved in the same directory'); fprintf('\n with %s pre-pended to their filenames.\n',prechar); if amask == 1 | slicefilt == 1 % Automask options mask_flag = spm_input('Which mask image to use?', 1, 'm', ... 'Automatic ( will generate ArtifactMask image ) | User specified mask ',... [1 2], 1); if mask_flag == 2 if strcmp(spm_ver,'spm5') maskimg = spm_select(1, '.img', 'Select mask image in functional space'); else % spm2 version maskimg = spm_get(1, '.img', 'Select mask image in functional space'); end Automask = spm_read_vols(spm_vol(maskimg)); maskcount = sum(sum(sum(Automask))); % Number of voxels in mask. voxelcount = prod(size(Automask)); % Number of voxels in 3D volume. else % mask_flag == 1 fprintf('\n Generated mask image is written to file ArtifactMask.img.\n'); fprintf('\n'); Pnames = P(1).fname; Automask = art_automask(Pnames(1,:),-1,1); maskcount = sum(sum(sum(Automask))); % Number of voxels in mask. voxelcount = prod(size(Automask)); % Number of voxels in 3D volume. end end if amask == 1 fprintf('\n ELIMINATE DATA OUTSIDE HEAD'); fprintf('\n All scans will have voxels outside the head set to zero.\n'); end if slicefilt == 1 % Prepare some thresholds for slice testing. fprintf('\n INTERPOLATE THROUGH BAD SLICES\n'); % Find the slice orientation used to collect the data [ vx, vy, vz ] = size(Automask); orient = 0; if ( vx < vy & vx < vz ) orient = 1; disp(' Remove bad Sagittal slices'); end if ( vy < vx & vy < vz ) orient = 2; disp(' Remove bad Coronal slices'); end if ( vz < vx & vz < vy ) orient = 3; disp(' Remove bad Axial slices'); end nslice = min([vx vy vz]); if ( orient == 0 ) disp('Cannot determine slice orientation for bad slice filtering.') return; end % Find 3 samples of slice baseline activity outside the head. p = zeros(3,nslice); for i = 1:3 Y1 = spm_read_vols(P(i)); Y1 = ( 1 - Automask ).*Y1; % Get the plane sums perpendicular to orient direction if ( orient == 1 ) p(i,:) = mean(mean(Y1,3),2); end if ( orient == 2 ) p(i,:) = mean(mean(Y1,1),3); end if ( orient == 3 ) p(i,:) = mean(mean(Y1,1),2); end end % Select a low value for each plane, and set threshold a bit above it. pq = 0.5*( min(p) + median(p,1)); % Preview estimate of bad slice fraction... prebad = length(find(p(1,:) > pq + OUTSLICEdef)); prebad = length(find(p(2,:) > pq + OUTSLICEdef)) + prebad; prebad = length(find(p(3,:) > pq + OUTSLICEdef)) + prebad; percentbad = round(prebad*100/(3*nslice)); disp('Estimated percent bad slices at default threshold') disp(percentbad) % User Input Threshold, and default suggestion. OUTSLICE = spm_input(['Select threshold (default is shown)' ],1,'n',OUTSLICEdef); pq = pq + OUTSLICE; % pq array is the threshold test for bad slices. fprintf('\n Interpolating new values for bad slices when '); fprintf('\n average value outside head is %3d counts over baseline.\n',OUTSLICE); fprintf('\n Bad slice log will be written.'); fprintf('\n'); % DETECT, COUNT, AND LOG THE ARTIFACTS disp('Writing Artifact Log to location of image set') [ dirname, sname ] = fileparts(P(1).fname); % XXXXXX tstamp = clock; filen = ['BadSliceLog',date,'Time',num2str(tstamp(4)),num2str(tstamp(5)),'.txt']; logname = fullfile(dirname,filen); logID = fopen(logname,'wt'); fprintf(logID,'Bad Slice Log, Image Set first file is: \n %s\n', sname); fprintf(logID,'Test Criteria for Artifacts'); fprintf(logID,'\n Outslice (counts) = %4.1f' , OUTSLICE); fprintf(logID,'\n Slice Artifact List (Vol 1 = First File)\n'); BadError = 0; % Counts bad slices end if allfilt == 1 fprintf('\n MEDIAN FILTER ALL THE DATA'); fprintf('\n All scans are being filtered by median 3-point time filter.'); fprintf('\n This is safe to do when TR = 2. Otherwise, use the'); fprintf('\n Remove Bad Slices option instead.\n'); fprintf('\n'); end spm_input('!DeleteInputObj'); % Main Loop - Filter everything but the first and last volumes. nscans = size(P,1); Y4(1,:,:,:) = spm_read_vols(P(1)); % rows vary fastest Y4(2,:,:,:) = spm_read_vols(P(2)); for i = 3:nscans Y4(3,:,:,:) = spm_read_vols(P(i)); if allfilt == 1 % Filter all data by median. Yn = median(Y4,1); Yn2 = squeeze(Yn); end if slicefilt == 1 % Repair bad slices by linear interpolation. % Check if outside head value is over pq. If so, filter. Yn2 = squeeze(Y4(2,:,:,:)); Y = ( 1 - Automask).*Yn2; if ( orient == 1 ) py = mean(mean(Y,3),2); for j = 1:vx if py(j) > pq(j) % slice needs to be filtered. Yn2(j,:,:) = squeeze((Y4(1,j,:,:) + Y4(3,j,:,:))/2.0); fprintf(' Fixed sagittal. Vol. %d, Slice %d.\n',i-1,j); fprintf(logID,' Fixed sagittal. Vol %d, Slice %d.\n',i-1,j); BadError = BadError + 1; end end end if ( orient == 2 ) py = mean(mean(Y,1),3); for j = 1:vy if py(j) > pq(j) % slice needs to be filtered. Yn2(:,j,:) = squeeze((Y4(1,:,j,:) + Y4(3,:,j,:))/2.0); fprintf(' Fixed coronal. Vol %d, Slice %d.\n',i-1,j); fprintf(logID,' Fixed coronal. Vol %d, Slice %d.\n',i-1,j); BadError = BadError + 1; end end end if ( orient == 3 ) py = mean(mean(Y,1),2); for j = 1:vz if py(j) > pq(j) % slice needs to be filtered. Yn2(:,:,j) = squeeze((Y4(1,:,:,j) + Y4(3,:,:,j))/2.0); fprintf(' Fixed axial. Vol %d, Slice %d.\n',i-1,j); fprintf(logID,' Fixed axial. Vol %d, Slice %d.\n',i-1,j); BadError = BadError + 1; end end end end if ( allfilt == 0 & slicefilt == 0 ) % Head mask only. Yn2 = squeeze(Y4(2,:,:,:)); end % Yn is a 4D file including the smoothed Y2 now. if ( amask ) Yn2 = Yn2.*Automask; end % Prepare the header for the filtered volume. V = spm_vol(P(i-1).fname); v = V; [dirname, sname, sext ] = fileparts(V.fname); sfname = [ prechar, sname ]; filtname = fullfile(dirname,[sfname sext]); v.fname = filtname; %spm_write_vol(v,Yn2); noscale_write_vol(v,Yn2); showprog = [' Corrected volume ', sname, sext ]; disp(showprog); if i == 3 % Write unfiltered first scan Yn1 = squeeze(Y4(1,:,:,:)); if ( amask ) Yn1 = Yn1.*Automask; end [dirname, sname, sext ] = fileparts(P(1).fname); sfname = [ prechar, sname ]; filtname = fullfile(dirname,[sfname sext]); v.fname = filtname; %spm_write_vol(v,Yn1); noscale_write_vol(v,Yn1); showprog = [' Corrected volume ', sname, sext ]; disp(showprog); end if i == nscans % Write unfiltered last scan. Yn1 = squeeze(Y4(3,:,:,:)); if ( amask ) Yn1 = Yn1.*Automask; end Vlast = spm_vol(P(nscans).fname); [dirname, sname, sext ] = fileparts(P(nscans).fname); sfname = [ prechar, sname ]; filtname = fullfile(dirname,[sfname sext]); v.fname = filtname; %spm_write_vol(v,Yn1); noscale_write_vol(v,Yn1); showprog = [' Corrected volume ', sname, sext ]; disp(showprog); end % Slide the read volumes window up. Y4(1,:,:,:) = Y4(2,:,:,:); Y4(2,:,:,:) = Y4(3,:,:,:); end % Summarize the slice errors, in the bad slice case. if slicefilt == 1 totalslices = nscans*nslice; ArtifactCount = BadError; % Number of unique bad slices with artifacts badpercent = BadError*100.0/totalslices; if ( ArtifactCount == 0 ) disp(' CLEAN DATA! No bad slices detected'); fprintf(logID, '\n\nCLEAN DATA. No bad slices detected.'); end if ArtifactCount > 0 fprintf(logID,'\n\n Number of slices repaired = %4.0d',ArtifactCount); fprintf(logID,'\n\n Percentage of slices repaired = %5.1f',badpercent); end fclose(logID); end disp('Done!') %--------------------------------------------------------------- % Create and write image without the scale and offset steps % This function is spm_write_vol without error checking and scaling. function noscale_write_vol(V,Y); V = spm_create_vol(V); for p=1:V.dim(3), V = spm_write_plane(V,Y(:,:,p),p); end; %V = spm_close_vol(V); % not for SPM5
github
philippboehmsturm/antx-master
tbx_cfg_render.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/SRender/tbx_cfg_render.m
19,186
utf_8
52ec82ded599415d96ecaba3b38013d5
function render = tbx_cfg_render % Configuration file for toolbox 'Rendering' %_______________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % John Ashburner % $Id: tbx_cfg_render.m 3802 2010-03-29 13:07:15Z john $ % --------------------------------------------------------------------- % images Input Images % --------------------------------------------------------------------- images = cfg_files; images.tag = 'images'; images.name = 'Input Images'; images.help = {'These are the images that are used by the calculator. They are referred to as i1, i2, i3, etc in the order that they are specified.'}; images.filter = 'image'; images.ufilter = '.*'; images.num = [1 Inf]; % --------------------------------------------------------------------- % expression Expression % --------------------------------------------------------------------- expression = cfg_entry; expression.tag = 'expression'; expression.name = 'Expression'; expression.help = { 'Example expressions (f):' ' * Mean of six images (select six images)' ' f = ''(i1+i2+i3+i4+i5+i6)/6''' ' * Make a binary mask image at threshold of 100' ' f = ''i1>100''' ' * Make a mask from one image and apply to another' ' f = ''i2.*(i1>100)''' ' - here the first image is used to make the mask, which is applied to the second image' ' * Sum of n images' ' f = ''i1 + i2 + i3 + i4 + i5 + ...''' }'; expression.strtype = 's'; expression.num = [2 Inf]; expression.val = {'i1'}; % --------------------------------------------------------------------- % thresh Surface isovalue(s) % --------------------------------------------------------------------- thresh = cfg_entry; thresh.tag = 'thresh'; thresh.name = 'Surface isovalue(s)'; thresh.help = {'Enter the value at which isosurfaces through the resulting image is to be computed.'}; thresh.strtype = 'e'; thresh.num = [1 1]; thresh.val = {0.5}; % --------------------------------------------------------------------- % surface Surface % --------------------------------------------------------------------- surface = cfg_branch; surface.tag = 'surface'; surface.name = 'Surface'; surface.val = {expression thresh }; surface.help = {'An expression and threshold for each of the surfaces to be generated.'}; % --------------------------------------------------------------------- % Surfaces Surfaces % --------------------------------------------------------------------- Surfaces = cfg_repeat; Surfaces.tag = 'Surfaces'; Surfaces.name = 'Surfaces'; Surfaces.help = {'Multiple surfaces can be created from the same image data.'}; Surfaces.values = {surface }; Surfaces.num = [0 Inf]; % --------------------------------------------------------------------- % SExtract Surface Extraction % --------------------------------------------------------------------- SExtract = cfg_exbranch; SExtract.tag = 'SExtract'; SExtract.name = 'Surface Extraction'; SExtract.val = {images Surfaces }; SExtract.help = {'User-specified algebraic manipulations are performed on a set of images, with the result being used to generate a surface file. The user is prompted to supply images to work on and a number of expressions to evaluate, along with some thresholds. The expression should be a standard matlab expression, within which the images should be referred to as i1, i2, i3,... etc. An isosurface file is created from the results at the user-specified threshold.'}; SExtract.prog = @spm_local_sextract; %SExtract.vfiles = @filessurf; SExtract.vout = @vout_sextract; % --------------------------------------------------------------------- % SurfaceFile Surface File % --------------------------------------------------------------------- SurfaceFile = cfg_files; SurfaceFile.tag = 'SurfaceFile'; SurfaceFile.name = 'Surface File'; SurfaceFile.help = {'Filename of the surf_*.gii file containing the rendering information. This can be generated via the surface extraction routine in SPM. Normally, a surface is extracted from grey and white matter tissue class images, but it is also possible to threshold e.g. an spmT image so that activations can be displayed.'}; SurfaceFile.filter = 'mesh'; SurfaceFile.ufilter = '.*'; SurfaceFile.num = [1 1]; % --------------------------------------------------------------------- % Red Red % --------------------------------------------------------------------- Red = cfg_menu; Red.tag = 'Red'; Red.name = 'Red'; Red.help = {'The intensity of the red colouring (0 to 1).'}; Red.labels = { '0.0' '0.2' '0.4' '0.6' '0.8' '1.0' }'; Red.values = { 0 0.2 0.4 0.6 0.8 1 }'; Red.val = {1}; % --------------------------------------------------------------------- % Green Green % --------------------------------------------------------------------- Green = cfg_menu; Green.tag = 'Green'; Green.name = 'Green'; Green.help = {'The intensity of the green colouring (0 to 1).'}; Green.labels = { '0.0' '0.2' '0.4' '0.6' '0.8' '1.0' }'; Green.values = { 0 0.2 0.4 0.6 0.8 1 }'; Green.val = {1}; % --------------------------------------------------------------------- % Blue Blue % --------------------------------------------------------------------- Blue = cfg_menu; Blue.tag = 'Blue'; Blue.name = 'Blue'; Blue.help = {'The intensity of the blue colouring (0 to 1).'}; Blue.labels = { '0.0' '0.2' '0.4' '0.6' '0.8' '1.0' }'; Blue.values = { 0 0.2 0.4 0.6 0.8 1 }'; Blue.val = {1}; % --------------------------------------------------------------------- % Color Color % --------------------------------------------------------------------- Color = cfg_branch; Color.tag = 'Color'; Color.name = 'Color'; Color.val = {Red Green Blue }; Color.help = {'Specify the colour using a mixture of red, green and blue. For example, white is specified by 1,1,1, black is by 0,0,0 and purple by 1,0,1.'}; % --------------------------------------------------------------------- % DiffuseStrength Diffuse Strength % --------------------------------------------------------------------- DiffuseStrength = cfg_menu; DiffuseStrength.tag = 'DiffuseStrength'; DiffuseStrength.name = 'Diffuse Strength'; DiffuseStrength.help = {'The strength with which the object diffusely reflects light. Mat surfaces reflect light diffusely, whereas shiny surfaces reflect speculatively.'}; DiffuseStrength.labels = { '0.0' '0.2' '0.4' '0.6' '0.8' '1.0' }'; DiffuseStrength.values = { 0 0.2 0.4 0.6 0.8 1 }'; DiffuseStrength.val = {0.8}; % --------------------------------------------------------------------- % AmbientStrength Ambient Strength % --------------------------------------------------------------------- AmbientStrength = cfg_menu; AmbientStrength.tag = 'AmbientStrength'; AmbientStrength.name = 'Ambient Strength'; AmbientStrength.help = {'The strength with which the object reflects ambient (non-directional) lighting.'}; AmbientStrength.labels = { '0.0' '0.2' '0.4' '0.6' '0.8' '1.0' }'; AmbientStrength.values = { 0 0.2 0.4 0.6 0.8 1 }'; AmbientStrength.val = {0.2}; % --------------------------------------------------------------------- % SpecularStrength Specular Strength % --------------------------------------------------------------------- SpecularStrength = cfg_menu; SpecularStrength.tag = 'SpecularStrength'; SpecularStrength.name = 'Specular Strength'; SpecularStrength.help = {'The strength with which the object specularly reflects light (i.e. how shiny it is). Mat surfaces reflect light diffusely, whereas shiny surfaces reflect speculatively.'}; SpecularStrength.labels = { '0.0' '0.2' '0.4' '0.6' '0.8' '1.0' }'; SpecularStrength.values = { 0 0.2 0.4 0.6 0.8 1 }'; SpecularStrength.val = {0.2}; % --------------------------------------------------------------------- % SpecularExponent Specular Exponent % --------------------------------------------------------------------- SpecularExponent = cfg_menu; SpecularExponent.tag = 'SpecularExponent'; SpecularExponent.name = 'Specular Exponent'; SpecularExponent.help = {'A parameter describing the specular reflectance behaviour. It relates to the size of the high-lights.'}; SpecularExponent.labels = { '0.01' '0.1' '10' '100' }'; SpecularExponent.values = { 0.01 0.1 10 100 }'; SpecularExponent.val = {10}; % --------------------------------------------------------------------- % SpecularColorReflectance Specular Color Reflectance % --------------------------------------------------------------------- SpecularColorReflectance = cfg_menu; SpecularColorReflectance.tag = 'SpecularColorReflectance'; SpecularColorReflectance.name = 'Specular Color Reflectance'; SpecularColorReflectance.help = {'Another parameter describing the specular reflectance behaviour.'}; SpecularColorReflectance.labels = { '0.0' '0.2' '0.4' '0.6' '0.8' '1.0' }'; SpecularColorReflectance.values = { 0 0.2 0.4 0.6 0.8 1 }'; SpecularColorReflectance.val = {0.8}; % --------------------------------------------------------------------- % FaceAlpha Face Alpha % --------------------------------------------------------------------- FaceAlpha = cfg_menu; FaceAlpha.tag = 'FaceAlpha'; FaceAlpha.name = 'Face Alpha'; FaceAlpha.help = {'The opaqueness of the surface. A value of 1 means it is opaque, whereas a value of 0 means it is transparent.'}; FaceAlpha.labels = { '0.0' '0.2' '0.4' '0.6' '0.8' '1.0' }'; FaceAlpha.values = { 0 0.2 0.4 0.6 0.8 1 }'; FaceAlpha.val = {1}; % --------------------------------------------------------------------- % Object Object % --------------------------------------------------------------------- Object = cfg_branch; Object.tag = 'Object'; Object.name = 'Object'; Object.val = {SurfaceFile Color DiffuseStrength AmbientStrength SpecularStrength SpecularExponent SpecularColorReflectance FaceAlpha }; Object.help = {'Each object is a surface (from a surf_*.gii file), which may have a number of light-reflecting qualities, such as colour and shinyness.'}; % --------------------------------------------------------------------- % Objects Objects % --------------------------------------------------------------------- Objects = cfg_repeat; Objects.tag = 'Objects'; Objects.name = 'Objects'; Objects.help = {'Several surface objects can be displayed together in different colours and with different reflective properties.'}; Objects.values = {Object }; Objects.num = [0 Inf]; % --------------------------------------------------------------------- % Position Position % --------------------------------------------------------------------- Position = cfg_entry; Position.tag = 'Position'; Position.name = 'Position'; Position.help = {'The position of the light in 3D.'}; Position.strtype = 'e'; Position.num = [1 3]; Position.val = {[100 100 100]}; % --------------------------------------------------------------------- % Red Red % --------------------------------------------------------------------- Red = cfg_menu; Red.tag = 'Red'; Red.name = 'Red'; Red.help = {'The intensity of the red colouring (0 to 1).'}; Red.labels = { '0.0' '0.2' '0.4' '0.6' '0.8' '1.0' }'; Red.values = { 0 0.2 0.4 0.6 0.8 1 }'; Red.val = {1}; % --------------------------------------------------------------------- % Green Green % --------------------------------------------------------------------- Green = cfg_menu; Green.tag = 'Green'; Green.name = 'Green'; Green.help = {'The intensity of the green colouring (0 to 1).'}; Green.labels = { '0.0' '0.2' '0.4' '0.6' '0.8' '1.0' }'; Green.values = { 0 0.2 0.4 0.6 0.8 1 }'; Green.val = {1}; % --------------------------------------------------------------------- % Blue Blue % --------------------------------------------------------------------- Blue = cfg_menu; Blue.tag = 'Blue'; Blue.name = 'Blue'; Blue.help = {'The intensity of the blue colouring (0 to 1).'}; Blue.labels = { '0.0' '0.2' '0.4' '0.6' '0.8' '1.0' }'; Blue.values = { 0 0.2 0.4 0.6 0.8 1 }'; Blue.val = {1}; % --------------------------------------------------------------------- % Color Color % --------------------------------------------------------------------- Color = cfg_branch; Color.tag = 'Color'; Color.name = 'Color'; Color.val = {Red Green Blue }; Color.help = {'Specify the colour using a mixture of red, green and blue. For example, white is specified by 1,1,1, black is by 0,0,0 and purple by 1,0,1.'}; % --------------------------------------------------------------------- % Light Light % --------------------------------------------------------------------- Light = cfg_branch; Light.tag = 'Light'; Light.name = 'Light'; Light.val = {Position Color }; Light.help = {'Specification of a light source in terms of position and colour.'}; % --------------------------------------------------------------------- % Lights Lights % --------------------------------------------------------------------- Lights = cfg_repeat; Lights.tag = 'Lights'; Lights.name = 'Lights'; Lights.help = {'There should be at least one light specified so that the objects can be clearly seen.'}; Lights.values = {Light }; Lights.num = [0 Inf]; % --------------------------------------------------------------------- % SRender Surface Rendering % --------------------------------------------------------------------- SRender = cfg_exbranch; SRender.tag = 'SRender'; SRender.name = 'Surface Rendering'; SRender.val = {Objects Lights }; SRender.help = {'This utility is for visualising surfaces. Surfaces first need to be extracted and saved in surf_*.gii files using the surface extraction routine.'}; SRender.prog = @spm_local_srender; % --------------------------------------------------------------------- % render Rendering % --------------------------------------------------------------------- render = cfg_choice; render.tag = 'render'; render.name = 'Rendering'; render.help = {'This is a toolbox that provides a limited range of surface rendering options. The idea is to first extract surfaces from image data, which are saved in rend_*.mat files. These can then be loaded and displayed as surfaces. Note that OpenGL rendering is used, which can be problematic on some computers. The tools are limited - and they do what they do.'}; render.values = {SExtract SRender }; %render.num = [0 Inf]; %====================================================================== function spm_local_srender(job) if ~isdeployed, addpath(fullfile(spm('dir'),'toolbox','SRender')); end spm_srender(job); %====================================================================== function out=spm_local_sextract(job) if ~isdeployed, addpath(fullfile(spm('dir'),'toolbox','SRender')); end out=spm_sextract(job); %====================================================================== function dep = vout_sextract(job) dep = cfg_dep; for k=1:numel(job.surface), dep(k) = cfg_dep; dep(k).sname = ['Surface File ' num2str(k)]; dep(k).src_output = substruct('.','SurfaceFile','()',{k}); % dep(k).tgt_spec = cfg_findspec({{'filter','.*\.gii$'}}); dep(k).tgt_spec = cfg_findspec({{'filter','any'}}); end
github
philippboehmsturm/antx-master
spm_sextract.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/SRender/spm_sextract.m
2,032
utf_8
4a45ee93e484bacd762c3aa2c4cc0003
function out = spm_sextract(job) % Surface extraction %_______________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % John Ashburner % $Id: spm_sextract.m 2210 2008-09-26 20:14:13Z john $ images = job.images; Vi = spm_vol(strvcat(images)); n = numel(Vi); %-#images if n==0, error('no input images specified'), end [pth,nam,ext] = fileparts(images{1}); for k=1:numel(job.surface), expression = job.surface(k).expression; thresh = job.surface(k).thresh; y = zeros(Vi(1).dim(1:3),'single'); spm_progress_bar('Init',Vi(1).dim(3),expression,'planes completed'); for p = 1:Vi(1).dim(3), B = spm_matrix([0 0 -p 0 0 0 1 1 1]); im = cell(1,n); for i=1:n, M = inv(B*inv(Vi(1).mat)*Vi(i).mat); im{i} = spm_slice_vol(Vi(i),M,Vi(1).dim(1:2),[0,NaN]); end try y(:,:,p) = real(single(efun(im,expression))); catch error(['Can not evaluate "' expression '".']); end spm_progress_bar('Set',p); end spm_smooth(y,y,[1.5,1.5,1.5]); [faces,vertices] = isosurface(y,thresh); % Swap around x and y because isosurface does for some % wierd and wonderful reason. Mat = Vi(1).mat(1:3,:)*[0 1 0 0;1 0 0 0;0 0 1 0; 0 0 0 1]; vertices = (Mat*[vertices' ; ones(1,size(vertices,1))])'; %matname = fullfile(pth,sprintf('surf_%s_%.3d.mat',nam,k)); %save(matname,'-V6','faces','vertices','expression','thresh','images'); matname = fullfile(pth,sprintf('surf_%s_%.3d.gii',nam,k)); save(gifti(struct('faces',faces,'vertices',vertices)),matname); out.SurfaceFile{k} = matname; spm_progress_bar('Clear'); end return %_______________________________________________________________________ %_______________________________________________________________________ function y = efun(im,f) for i=1:numel(im), eval(['i' num2str(i) '= im{i};']); end y = eval(f); return
github
philippboehmsturm/antx-master
spm_eeg_ft_beamformer_cva.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/Beamforming/spm_eeg_ft_beamformer_cva.m
40,809
utf_8
83ce46ca11b2e5c61aa5660790a64ae5
function [stats,talpositions,gridpositions,grid,fftnewdata,alllf,allepochdata]=spm_eeg_ft_beamformer_cva(S) % Computes power-based beamformer image % FORMAT [outfilenames,ctf_inside,ctf_weights]=spm_eeg_ft_beamformer_cva (S) % % S MEEG object where coregistration has been performed. % % % Outputs (1) normalised power, (2) t-stat and (3) multivarariate % (Hotellings)images. Uses Sekihara eigenval approach to choose optimal % direction. % % outfilenames Output filenames (for 1,2,3) % % The following fields are returned if you set % S.return_weights=1: % % ctf_inside CTF locations inside head % ctf_weights Corresponding beamformer weight matrices % fftnewdata is fft of data in trial order % _______________________________________________________________________ % Copyright (C) 2009 Institute of Neurology, UCL % Gareth Barnes % $Id: spm_eeg_ft_beamformer_cva.m 4377 2011-06-27 09:54:33Z gareth $ [Finter,Fgraph] = spm('FnUIsetup','Multivariate LCMV beamformer for power', 0); %% %% ============ Load SPM EEG file and verify consistency if nargin == 0 S = []; end try D = S.D; catch D = spm_select(1, '\.mat$', 'Select EEG mat file'); S.D = D; end if ischar(D) try D = spm_eeg_load(D); catch error(sprintf('Trouble reading file %s', D)); end end [ok, D] = check(D, 'sensfid'); if ~ok if check(D, 'basic') errordlg(['The requested file is not ready for source reconstruction.'... 'Use prep to specify sensors and fiducials.']); else errordlg('The meeg file is corrupt or incomplete'); end return end modality = spm_eeg_modality_ui(D, 1, 1); %try channel_labels = D.chanlabels(strmatch(modality, D.chantype))'; %catch % warning('ASSUMING ALL CHANNELS ARE MEG CHANNELS'); % channel_labels=D.chanlabels; %end; if isfield(S, 'refchan') && ~isempty(S.refchan) refchan = S.refchan; else refchan = []; end if ~isfield(S,'CorrectPvals'), S.CorrectPvals=[]; end; if isempty(S.CorrectPvals), S.CorrectPvals=1; disp('outputing whole volume corrected p vals by default'); end; %% ============ Find or prepare head model if ~isfield(D, 'val') D.val = 1; end if ~isfield(S,'filenamestr'), S.filenamestr=[]; end;% %D.inv{1}.forward(1).voltype try vol = D.inv{D.val}.forward.vol; datareg = D.inv{D.val}.datareg; catch D = spm_eeg_inv_mesh_ui(D, D.val, [], 1); D = spm_eeg_inv_datareg_ui(D, D.val); datareg = D.inv{D.val}.datareg; end for m = 1:numel(D.inv{D.val}.forward) if strncmp(modality, D.inv{D.val}.forward(m).modality, 3) vol = D.inv{D.val}.forward(m).vol; if isa(vol, 'char') vol = fileio_read_vol(vol); end datareg = D.inv{D.val}.datareg(m); %% NEED TO KNOW HOW TO HANDLE DATAREG disp('USING LAST FORWARD MODEL !'); end end % Return beamformer weights if ~isfield(S,'return_weights') ctf_weights=[]; S.return_weights=0; alllf=[]; end if ~isfield(S,'compUV') S.compUV=[]; end; % if if isempty(S.compUV), S.compUV=0; end; if ~isfield(S,'Niter') S.Niter=[]; end; % if if isempty(S.Niter), S.Niter=1; end; % if if ~isfield(S,'design'), error('Design matrix required'); end; % if X=S.design.X; c=S.design.contrast; %% c is contrast eg [ 0 1 -1] compare columns 2,3 of X if ~isfield(S,'ttest'), S.ttest=[]; end; % if if S.ttest, TWOSAMPLETEST=1 else TWOSAMPLETEST=0 end; if size(S.design.X(:,1),1)~=size(S.design.Xtrials,1) error('Design windows missepcified'); end; if size(S.design.X(:,1),1)~=size(S.design.Xstartlatencies,1) error('Design windows missepcified'); end; X0 = X - X*c*pinv(c); %% make sure X0 is orthogonal to X Xdesign = full(X*c); X0 = spm_svd(X0); %% X0 is null space i.e. everything that is happening in other columns of X outfilenames=''; freqbands=[]; if ~isfield(S, 'freqbands') for i = 1:spm_input('Number of frequency bands:', '+1', 'r', '1', 1) outstr=sprintf('Band %d [st end] in Hz ',i); S.freqbands{i} = spm_input(outstr, '+1', 'r', '', 2); freqbands =[freqbands;S.freqbands{i}']; end else freqbands=cell2mat(S.freqbands'); end if ~isfield(S,'testbands'), S.testbands=[]; end; if isempty(S.testbands), S.testbands=S.freqbands; %% bands to do the test on end; % if Nbands=numel(S.freqbands); if ~isfield(S,'weightspect'), S.weightspect=[]; end; if ~isfield(S,'weightttest'), S.weightttest=[]; end; if ~isfield(S,'gridpos'), if ~isfield(S,'gridstep'); S.gridstep = spm_input('Grid step (mm):', '+1', 'r', '5'); end; end; % if if ~isfield(S,'rankflag'), S.rankflag=[]; end; % if if isempty(S.rankflag), S.rankflag=0; end; % if if ~isfield(S,'detrend'), S.detrend=[]; end; if isempty(S.detrend), disp('detrending data by default'); S.detrend=1; end; % if ~isfield(S,'hanning'), S.hanning=[]; end; if isempty(S.hanning), disp('windowing data by default'); S.hanning=1; end; % if ~isfield(S,'logflag'), S.logflag=[]; end; % if if isempty(S.logflag), S.logflag=0; end; % if % if ~isfield(S,'regpc'), S.regpc=[]; end; % if if isempty(S.regpc), S.regpc=0; end; % if %% now read in the first trial of data just to get sizes of variables right Ntrials=size(S.design.X,1); Isamples = D.indsample([S.design.Xstartlatencies(1) S.design.Xstartlatencies(1)+S.design.Xwindowduration]); Nsamples= diff(Isamples)+1; %channel_labels = D.chanlabels(D.meegchannels(modality)); Nchans=length(channel_labels); dfe=Ntrials-rank(X); if S.hanning, fftwindow=hamming(Nsamples); else disp('not windowing'); fftwindow=ones(Nsamples,1); end; allfftwindow=repmat(fftwindow,1,Nchans); NumUniquePts = ceil((Nsamples+1)/2); %% data is real so fft is symmetric fftnewdata=zeros(Ntrials,NumUniquePts,Nchans); allepochdata=zeros(Ntrials,Nchans,Nsamples); %% for loading in data quickly %fftnewdata=zeros(Ntrials,Nsamples,Nchans); fHz = (0:NumUniquePts-1)*D.fsample/Nsamples; if ~isfield(S,'Nfeatures'), S.Nfeatures=[]; end; if isempty(S.Nfeatures), Nfeatures=floor(Ntrials/3); else Nfeatures=S.Nfeatures; end; if ~isfield(S,'write_epochs'), S.write_epochs=[]; end; %% now read in all trialtype and hold them as windowed fourier transforms [uniquewindows]=unique(S.design.Xstartlatencies); Nwindows=length(uniquewindows); %% GET DATA- put each trial in allepochdata in same order as design matrix (i.e. remove dependence on Xtrials and Xstartlatencies) %TtofT=1e15; %% tesla to femto tesla %disp('rescaling from tesla to fT !!'); TtofT=1; %% tesla to femto tesla - turned off %disp('rescaling from tesla to fT !!'); for i=1:Nwindows, %% puts trials into epoch data according to order of design.X structures Isamples = D.indsample([uniquewindows(i) uniquewindows(i)+S.design.Xwindowduration]); useind=find(uniquewindows(i)==S.design.Xstartlatencies); Itrials =S.design.Xtrials(useind); %% indices into design.X structures allepochdata(useind,:,:)=permute(TtofT.*squeeze(D(D.indchannel(channel_labels), Isamples(1):Isamples(2), Itrials)), [3 1 2]); %% get an epoch of data with channels in columns end; % for i % Was this- before cfg.latency was removed from ft_timelockanalysis % TtofT=1e15; %% tesla to femto tesla % disp('rescaling from tesla to fT !!'); % for i=1:Nwindows, %% puts trials into epoch data according to order of design.X structures % winstart=uniquewindows(i); %% window start % cfg=[]; % cfg.keeptrials='yes'; % cfg.channel=channel_labels; % cfg.feedback='off'; % useind=find(winstart==S.design.Xstartlatencies); %% indices into design.X structures % cfg.trials=S.design.Xtrials(useind); %% trials starting at these times % cfg.latency=[winstart winstart+S.design.Xwindowduration]; % subdata=ft_timelockanalysis(cfg,data); % subset of original data % allepochdata(useind,:,:)=TtofT.*squeeze(subdata.trial); %% get an epoch of data with channels in columns % end; % for i for i=1:Ntrials, %% read in all individual trial types epochdata=squeeze(allepochdata(i,:,:))'; %% get an epoch of data with channels in columns if S.detrend==1 dtepochdata=detrend(epochdata); %% detrend epoch data, this includes removind dc level. NB. This will have an effect on specific evoked response components ! else dtepochdata=epochdata; %% no dc removal, no detrend : this will have effect on accuracy of fourier estimate at non dc bins end; % detrend wdtepochfft=dtepochdata.*allfftwindow; %% windowed epochfft=fft(wdtepochfft); fftnewdata(i,:,:)=epochfft(1:NumUniquePts,:); % .*filtervect'; end; if size(fftnewdata,3)~=Nchans, size(fftnewdata) error('Data dimension mismatch'); end; %% now have an fft for each channel in each condition % %% cfg = []; if strcmp('EEG', modality) cfg.elec = D.inv{D.val}.datareg.sensors; cfg.reducerank=3; else cfg.grad = D.sensors('MEG'); cfg.reducerank=2; disp('Reducing possible source orientations to a tangential plane for MEG'); end cfg.channel = channel_labels; cfg.vol = vol; if ~isfield(S,'gridpos'), S.gridpos=[]; end; if ~isfield(S,'gridori'), S.gridori=[]; end; if ~isfield(S,'maskgrid'), S.maskgrid=[]; end; if ~isfield(S,'dimauto'), S.dimauto=[]; end; if ~isfield(S,'maskfile'), S.maskfile=[]; end; if ~isfield(S,'randomweight'), S.randomweight=0; end; if ~isfield(S,'fixedweights'), S.fixedweights=[]; end; if isempty(S.gridpos), %cfg.resolution = S.gridstep; mnigrid.xgrid = -100:S.gridstep:100; mnigrid.ygrid = -120:S.gridstep:100; mnigrid.zgrid = -50:S.gridstep:110; mnigrid.dim = [length(mnigrid.xgrid) length(mnigrid.ygrid) length(mnigrid.zgrid)]; [X, Y, Z] = ndgrid(mnigrid.xgrid, mnigrid.ygrid, mnigrid.zgrid); mnigrid.pos = [X(:) Y(:) Z(:)]; cfg.grid.dim = mnigrid.dim; cfg.grid.pos = spm_eeg_inv_transform_points(datareg.fromMNI, mnigrid.pos); else disp('USING pre-specified gridpoints'); cfg.grid.pos=S.gridpos; %% predefined grid cfg.grid.inside=[1:size(S.gridpos,1)]; %% assume all in head cfg.grid.outside=[]; end; if ~isfield(S,'bootstrap'), S.bootstrap=[]; else Nboot=S.bootstrap; end; if isempty(S.bootstrap), S.bootstrap=0; Nboot=1; end; cfg.feedback='off'; cfg.inwardshift = -S.gridstep; % mm if ~isfield(S,'grid'), disp('preparing leadfield'); grid = ft_prepare_leadfield(cfg); else disp('Using precomputed leadfield'); grid=S.grid; end; % if maskedgrid_inside_ind=[1:length(grid.inside)]; if ~isempty(S.maskgrid), if length(S.maskgrid)~=length(grid.inside), error('mask and grid points must be of same size'); end; maskedgrid_inside_ind=find(S.maskgrid==1); %% indices into grid.inside end; if ~isempty(S.maskfile), if ~isempty(S.maskgrid), error('cannot have two masks defined'); end; alltalpositions = spm_eeg_inv_transform_points(datareg.toMNI, grid.pos(grid.inside,:)); V_aal = spm_vol(S.maskfile); [Y_aal,XYZ]=spm_read_vols(V_aal); mask_coords=XYZ(:,find(Y_aal>0)); %% now express mni grid and mesh grid at same coarse scale to get %% intersection coarse_mm=10; mask_coarse=unique(round(mask_coords'/coarse_mm)*coarse_mm,'rows'); grid_coarse= round(alltalpositions/coarse_mm)*coarse_mm; [overlap_pos,maskedgrid_inside_ind]=intersect(grid_coarse,mask_coarse,'rows'); %% mesh_vert_ind are mesh points in this mask maskedgrid_inside_ind=sort(maskedgrid_inside_ind); end; % if if cfg.reducerank, %% follow up rank reduction and remove redundant dimension from lead fields for i=1:length(maskedgrid_inside_ind), %% 81 lf1=cell2mat(grid.leadfield(grid.inside(maskedgrid_inside_ind(i)))); [u1,s1,v1]=svd(lf1'*lf1); grid.leadfield(grid.inside(maskedgrid_inside_ind(i)))={lf1*u1(:,1:cfg.reducerank)}; %normlf(i)=std(dot(lfnew',lfnew')); end; end; % if reduce rank if ~isempty(S.fixedweights), disp('NB USING SUPPLIED FIXED WEIGHTS'); if size(S.fixedweights,1)~=length(maskedgrid_inside_ind), error('Suppied weights are the wrong size for grid'); end; end; %% prepare to write images talpositions = spm_eeg_inv_transform_points(datareg.toMNI, grid.pos(grid.inside,:)); %% MADE DATAREG STAND ALONE sMRI = fullfile(spm('dir'), 'canonical', 'single_subj_T1.nii'); if S.write_epochs, if (S.Nfeatures>1) || (S.Niter>1), error('cannot write epochs for more than one permutation or one feature'); end; disp('storing all data in memory'); allY=zeros(length(grid.inside),Ntrials,2); epochdirname='Epoch_cvaBf_images'; if S.logflag, epochdirname=[epochdirname '_log']; end; res = mkdir(D.path, epochdirname); end; %% Now have all lead fields and all data %% Now do actual beamforming %% decide on the covariance matrix we need %% construct covariance matrix within frequency range of interest disp('now running through freq bands and constructing t stat images'); origfftnewdata=fftnewdata; for boot=1:Nboot, bttrials=randi(Ntrials,Ntrials,1); if boot==1, bttrials=1:Ntrials; else disp(['Bootstrap run' num2str(boot)]); end; % if boot fftnewdata=origfftnewdata(bttrials,:,:); for fband=1:Nbands, freqrange=freqbands(fband,:); freq_ind=intersect(find(fHz>=freqrange(1)),find(fHz<freqrange(2))); freqrangetest=cell2mat(S.testbands(fband)); Ntestbands=length(freqrangetest)/2; if floor(Ntestbands)~=Ntestbands, error('Need pairs of values in testband'); end; freq_indtest=[]; freq_teststr=''; for k=1:Ntestbands newtestind=intersect(find(fHz>=freqrangetest(k*2-1)),find(fHz<freqrangetest(k*2))); freq_indtest=[freq_indtest newtestind]; freq_teststr=sprintf('%s %3.2f-%3.2fHz,',freq_teststr,fHz(min(newtestind)),fHz(max(newtestind))); end; % for k if length(setdiff(freq_indtest,freq_ind))>0, error('Bands in test band are not within covariance band') end; covtrial=zeros(Nchans,Nchans); if ~isempty(S.weightspect), [fweighted,weightspectind]=intersect(fHz,S.weightspect(fband).fHz); if abs(max(fHz(freq_ind)-S.weightspect(fband).fHz))>0, error('weight spect vector wrong length'); end; % filtervect=S.weightspect(fband).fAmp; %% arb filter else filtervect=ones(length(freq_ind),1); end; % weightspect if ~isempty(S.weightttest), [fweightedt,weightspectindt]=intersect(fHz,S.weightttest(fband).fHz); if abs(max(fHz(freq_ind)-S.weightttest(fband).fHz))>0, error('weight ttest vector wrong length'); end; % tfiltervect=S.weightttest(fband).vect; %% weighted by previous mv analysis else tfiltervect=ones(length(freq_indtest),1); end; % weightspect Allfiltervect=repmat(filtervect,1,Nchans); for i=1:Ntrials, %% read in all individual trial types ffttrial=squeeze(fftnewdata(i,freq_ind,:)).*Allfiltervect; covtrial=covtrial+real(cov(ffttrial)); end; % for i covtrial=covtrial/Ntrials; allsvd = svd(covtrial); cumpower=cumsum(allsvd)./sum(allsvd); nmodes99=min(find(cumpower>0.99)); disp(sprintf('99 percent of the power in this data is in the first %d principal components of the cov matrix',nmodes99)); disp(sprintf('largest/smallest eigenvalue=%3.2f',allsvd(1)/allsvd(end))); disp(sprintf('\nFrequency resolution %3.2fHz',mean(diff(fHz)))); noise = allsvd(end); %% use smallest eigenvalue redNfeatures=[Nfeatures*2 Nfeatures]; %% NB major change if S.dimauto, %% only do this flag set if nmodes99<redNfeatures, redNfeatures=nmodes99+1; disp(sprintf('reducing number of features to those describing 99 percent of data (from %d to %d)',Nfeatures,redNfeatures)); end; % end; % if S.dimauto if redNfeatures(2)>length(freq_indtest), disp(sprintf('reducing number of power features to match bandwidth (from %d to %d) !!',redNfeatures(2),length(freq_indtest))); redNfeatures(2)=length(freq_indtest); end; if redNfeatures(1)>length(freq_indtest)*2, % more features in evoked case disp(sprintf('reducing number of evoked features to match bandwidth (from %d to %d) !!',redNfeatures(1),2*length(freq_indtest))); redNfeatures(1)=length(freq_indtest)*2; end; if S.compUV disp('Computing a pseudo stat based on UV estimate of covariance between signals'); end; disp(sprintf('covariance band from %3.2f to %3.2fHz (%d bins), test band %s (%d bins)',fHz(freq_ind(1)),fHz(freq_ind(end)),length(freq_ind),freq_teststr,length(freq_indtest))) disp(sprintf('Using %d and %d features for power and amplitude tests respectively',redNfeatures(2),redNfeatures(1))); lambda = (S.regpc/100) * sum(allsvd)/size(covtrial,1); %% scale lambda relative mean eigenvalue disp(sprintf('regularisation =%3.2f percent',S.regpc)); cinv=pinv(covtrial+eye(size(covtrial,1))*lambda); %% get inverse - if N features has been reduced should maybe think of sorting this out too. CVA_maxstat=zeros(length(grid.inside),2,S.Niter); roymax=zeros(size(CVA_maxstat)); tstat=zeros(length(grid.inside),2,S.Niter); maxcva=zeros(2,S.Niter); power_trial=zeros(Ntrials,length(freq_indtest)); evoked_trial=zeros(Ntrials,length(freq_indtest)); TrueIter=1; %% no permutation for this iteration for j=1:S.Niter, %% set up permutations in advance- so perms across grid points are identical randind(j,:)=randperm(Ntrials); if j==TrueIter, randind(j,:)=1:Ntrials; % don't permute first run end; end; for i=1:length(maskedgrid_inside_ind), %% 81 lf=cell2mat(grid.leadfield(grid.inside(maskedgrid_inside_ind(i)))); %% get optimal orientation- direct copy from Robert's beamformer_lcmv.m projpower_vect=pinv(lf'*cinv*lf); if isempty(S.gridori), [u, s, v] = svd(real(projpower_vect)); %% MAY NOT BE POWER WE NEED TO OPTIMISE eta = u(:,1); else eta=S.gridori(grid.inside(maskedgrid_inside_ind(i)),:)'; end; lf = lf * eta; %% now have got the lead field at this voxel, compute some contrast weights=(lf'*cinv*lf)\lf'*cinv; %% no regularisation for now normweights=sqrt(weights*weights'); if S.fixedweights, weights=S.fixedweights(i,:); end; if S.randomweight, disp('RANDOM WEIGHT !'); weights=randn(size(weights)); end; stats(fband).ctf_weights(maskedgrid_inside_ind(i),:)=weights; alllf(maskedgrid_inside_ind(i),:)=lf; for j=1:Ntrials, %% this non-linear step (power estimation) has to be done at each location fdata=squeeze(fftnewdata(j,freq_indtest,:)); if length(freq_indtest)==1, fdata=fdata'; end; % if length fdatatrial=fdata*weights'; evoked_trial(j,:)=fdatatrial; if S.logflag, power_trial(j,:)=log(fdatatrial.*conj(fdatatrial)); else power_trial(j,:)=fdatatrial.*conj(fdatatrial); %% end; % i end; % for j for power_flag=0:1, if power_flag, Yfull=power_trial; else Yfull=[real(evoked_trial), imag(evoked_trial)]; %% split into sin and cos parts end; % if power_fla Y = Yfull - X0*(X0'*Yfull); %% eg remove DC level or drift terms from all of Y %[u s v] = spm_svd(Y,-1,-1); % ,1/4); %% get largest variance in Y -1s make sure nothing is removed %% reduce dimensions to Nfeatures [u,s,v]=svd(Y'*Y); %% reduce dimensions of useful signal U=u(:,1:redNfeatures(power_flag+1)); Y = Y*U; if S.write_epochs, nfact=normweights.^(power_flag+1); %% normalise for amplitude or power allY(i,:,power_flag+1)=Y./nfact; %% normalise the Ys by the depth end; %% Now permute the rows of X if necessary for iter=1:S.Niter, X=Xdesign(randind(iter,:),:); %% randind(1,:)=1, i.e. unpermuted if boot>1, %% have to also shuffle design matrix with data in bootstrap tmp=X; X=tmp(bttrials,:); end; %-Canonical Variates Analysis % ========================================================================== % remove null space of contrast %-------------------------------------------------------------------------- Y = Y - X0*(X0'*Y); %% eg remove DC level or drift terms from all of Y X = X - X0*(X0'*X); P = pinv(X); if TWOSAMPLETEST, Ym=mean(Y,2); B = pinv(X)*Ym; RSS = sum((Ym - X*B).^2); MRSS = RSS / dfe; SE = sqrt(MRSS*(pinv(X'*X))); tstat(maskedgrid_inside_ind(i),power_flag+1,iter)=B./SE; Ftstat=(B./SE).^2; end; % if TWOSAMPLETEST [n,b] = size(X); [n,m] = size(Y); %% n is number of epochs, m is number of features b = rank(X); h = min(b,m); %% either number of features or rank of X f = n - b - size(X0,2); %% number of epochs- rank(X) - number of confounds UVTEST=(1-power_flag)*S.compUV; if UVTEST, flatX=reshape(X,prod(size(X)),1); flatY=reshape(X,prod(size(X)),1); uvB = pinv(flatX)*flatY; %% uv coeff Tuv=flatX*uvB; %% uv prediction SSTuv=Tuv'*Tuv; Ruv=(flatY - Tuv); %% uv error RSSuv=Ruv'*Ruv; Tmuv=X*U*uvB; SSTmuv=Tmuv'*Tmuv; end; % generalised eigensolution for treatment and residual sum of squares %-------------------------------------------------------------------------- T = X*(P*Y); %% predticon of Y based on X (P*Y is the coefficient) SST = T'*T; SSR = Y - T; %% residuals in Y (unexplained by X) SSR = SSR'*SSR; lastwarn('') [v,d] = eig(SSR\SST); %% explained/unexplained variance [lastmsg, LASTID] = lastwarn; if ~isempty(lastmsg), disp('rank problem, zeroing eigenvals'); d=zeros(size(d)); end; [q,r] = sort(-real(diag(d))); r = r(1:h); d = real(d(r,r)); v = real(v(:,r)); V = U*v; % canonical vectors (data) v = Y*v; % canonical variates (data) W = P*v; % canonical vectors (design) w = X*W; % canonical variates (design) C = c*W; % canonical contrast (design) % inference on dimensionality - p(i) test of D >= i; Wilk's Lambda := p(1) %-------------------------------------------------------------------------- roymax(maskedgrid_inside_ind(i),power_flag+1,iter)=d(1,1); %% maximum root is the first one Roy2F=(f+m-max(b,m))/max(b,m); %% conversion from Roy's max root to F cval = log(diag(d) + 1); chi=[];df=[];p=[];p05thresh=[]; for i1 = 1:h chi(i1) = (f - (m - b + 1)/2)*sum(cval(i1:h)); df(i1) = (m - i1 + 1)*(b - i1 + 1); % m is the number of features, b is the rank of the design matrix p(i1) = 1 - spm_Xcdf(chi(i1),df(i1)); p05thresh(i1) = spm_invXcdf(1-0.05,df(i1)); end CVA_maxstat(maskedgrid_inside_ind(i),power_flag+1,iter)=chi(1); %% get wilk's lambda stat CVA_otherdim(maskedgrid_inside_ind(i),power_flag+1,iter,1:h-1)=chi(2:h); %% tests on other dimensions % if power_flag, % allw_pw(maskedgrid_inside_ind(i),power_flag+1,iter,:,:)=W; % else % allw_ev(maskedgrid_inside_ind(i),power_flag+1,iter,:,:)=W; % end; % if CVA_maxstat(maskedgrid_inside_ind(i),power_flag+1,iter)>maxcva(power_flag+1,iter), stats(fband).bestchi(power_flag+1,1:h,iter)=chi; if power_flag, stats(fband).bestVpw(1:h,iter,:)=V'; stats(fband).bestvpw(1:h,iter,:)=v'; stats(fband).bestUpw=U; stats(fband).maxw_pw=w; stats(fband).maxW_pw=W; else stats(fband).bestVev(1:h,iter,:)=complex(V(1:size(evoked_trial,2),:),V(size(evoked_trial,2)+1:end,:))'; stats(fband).bestvev(1:h,iter,:)=v'; stats(fband).bestUev=U; stats(fband).maxw_ev=w; stats(fband).maxW_ev=W; end; stats(fband).pval(power_flag+1,1:h,iter)=p; stats(fband).df(power_flag+1,1:h,iter)=df; stats(fband).p05alyt(power_flag+1,1:h)=p05thresh; stats(fband).maxind(power_flag+1,iter)=maskedgrid_inside_ind(i); stats(fband).freqHz=fHz(freq_indtest); stats(fband).freq_indtest=freq_indtest; stats(fband).freq_ind=freq_ind; maxcva(power_flag+1,iter)=CVA_maxstat(maskedgrid_inside_ind(i),power_flag+1,iter); end; % if CVA_Stat if (iter==TrueIter) && (length(V)>1), if power_flag, stats(fband).allVpw(1:h,i,:)=V'; else stats(fband).allVev(1:h,i,:)=complex(V(1:size(evoked_trial,2),:),V(size(evoked_trial,2)+1:end,:))'; end; end;% if iter end; % for Niter end; % for power_flag if i/100==floor(i/100) disp(sprintf('done CVA stats for %3.2f percent of freq band %d of %d, log=%d, rank=%d',100*i/length(maskedgrid_inside_ind),fband,Nbands,S.logflag,S.rankflag)); end; % if end; % for grid points %% GET NUMBER OF UNIQUE EXTREMA- ONLY WORKS FOR SPECIFIC GRAD TYPES (mag or axial) alpha=0.05; %% for display only %[alyt_thresh_Chi,Nu_extrema,overlap_ind,overlap_pos]=correction_for_ROI(roi_str,talpositions,alllf,alpha,redNfeatures(1)*b) [maxvals,maxind]=max(alllf'); [minvals,minind]=max(-alllf'); lead_extrema=[maxind' minind']; lead_extrema=sort(lead_extrema')'; %% doesn't matter if extrema are reversed u_extrema=unique(lead_extrema,'rows'); Nu_extrema=size(u_extrema,1) stats(fband).maskedgrid_inside_ind=maskedgrid_inside_ind; stats(fband).CVAmax=CVA_maxstat; stats(fband).CVAotherdim=CVA_otherdim; stats(fband).roymax=roymax; stats(fband).Roy2F=Roy2F; %stats(fband).allw=allw; stats(fband).tstat=tstat.^2; stats(fband).fHz=fHz; stats(fband).dfmisc=[b h m]; dispthresh_mv=max(stats(fband).CVAmax)/2; % default display thresholds max_mv=max(stats(fband).CVAmax); % default display thresholds if S.Niter>1, %% get corrected p values for CVA allglobalmax=squeeze(max(stats(fband).CVAmax(:,:,1:end))); [sortglobalmax,sortglobalmaxind]=sort(allglobalmax','descend'); allglobalmax_roy=squeeze(max(stats(fband).roymax(:,:,1:end))); [sortglobalmax_roy,sortglobalmaxind_roy]=sort(allglobalmax_roy','descend'); for k=1:2, stats(fband).corrpmax_cva(k)=find(sortglobalmaxind(:,k)==TrueIter)/length(sortglobalmaxind); stats(fband).corrpmax_roy(k)=find(sortglobalmaxind_roy(:,k)==TrueIter)/length(sortglobalmaxind_roy); end; stats(fband).thresh05globalmax_cva=sortglobalmax(round(length(sortglobalmaxind)*5/100),:); stats(fband).thresh05globalmax_roy=sortglobalmax_roy(round(length(sortglobalmaxind)*5/100),:); dispthresh_mv=stats(fband).thresh05globalmax_cva; % display only significant effects end; % if % csource=grid; %% only plot and write out unpermuted iteration gridpositions=csource.pos(csource.inside,:); csource.pow_maxchi(csource.inside) = CVA_maxstat(:,2,TrueIter); %power log_pvals_corr_pow=log(1-spm_Xcdf(CVA_maxstat(:,2,TrueIter),redNfeatures(2)*b)); if S.CorrectPvals, log_pvals_corr_pow=log_pvals_corr_pow+log(Nu_extrema); %% multiply by number of comparisons log_pvals_corr_pow(find(log_pvals_corr_pow>0))=0; end; % if csource.logp_power(csource.inside) = -log_pvals_corr_pow; %% write negative log so that largest image values have high significance %spm_Xcdf(1-alpha/(stats(fband).Nu_extrema),redNfeatures(1)*b) csource.evoked_maxchi(csource.inside) = CVA_maxstat(:,1,TrueIter); % evoked log_pvals_corr_evoked=log(1-spm_Xcdf(CVA_maxstat(:,1,TrueIter),redNfeatures(1)*b)); if S.CorrectPvals, log_pvals_corr_evoked=log_pvals_corr_evoked+log(Nu_extrema); %% multiply by number of comparisons log_pvals_corr_evoked(find(log_pvals_corr_evoked>0))=0; end; % if csource.logp_evoked(csource.inside) = -log_pvals_corr_evoked; csource.pow_maxchi(csource.outside)=0; csource.evoked_maxchi(csource.outside)=0; csource.logp_evoked(csource.outside)=0; csource.logp_power(csource.outside)=0; csource.pos = spm_eeg_inv_transform_points(datareg.toMNI, csource.pos); if isempty(S.gridpos), %% only write images if they use whole volume cfg1 = []; cfg1.sourceunits = 'mm'; cfg1.parameter = 'pow_maxchi'; cfg1.downsample = 1; sourceint_pow_maxchi = ft_sourceinterpolate(cfg1, csource, sMRI); cfg1 = []; cfg1.sourceunits = 'mm'; cfg1.parameter = 'evoked_maxchi'; cfg1.downsample = 1; sourceint_evoked_maxchi = ft_sourceinterpolate(cfg1, csource, sMRI); cfg1 = []; cfg1.sourceunits = 'mm'; cfg1.parameter = 'logp_power'; cfg1.downsample = 1; sourceint_logp_pow = ft_sourceinterpolate(cfg1, csource, sMRI); cfg1 = []; cfg1.sourceunits = 'mm'; cfg1.parameter = 'logp_evoked'; cfg1.downsample = 1; sourceint_logp_evoked = ft_sourceinterpolate(cfg1, csource, sMRI); stats(fband).Nu_extrema=Nu_extrema; stats(fband).alyt_thresh_Chi_05(1)=spm_invXcdf(1-alpha/(stats(fband).Nu_extrema),redNfeatures(1)*b); %% estimate of volumetric threshold for evoked stats(fband).alyt_thresh_Chi_05(2)=spm_invXcdf(1-alpha/(stats(fband).Nu_extrema),redNfeatures(2)*b); %% estimate of volumetric thres for induced %% else %% write out the data sets disp('writing images'); cfg = []; cfg.sourceunits = 'mm'; cfg.parameter = 'pow'; cfg.downsample = 1; dirname='cvaBf_images'; if S.logflag, dirname=[dirname '_log']; end; res = mkdir(D.path, dirname); outvol = spm_vol(sMRI); outvol.dt(1) = spm_type('float32'); featurestr=[S.filenamestr 'Nf' num2str(redNfeatures(2))] ; if S.bootstrap, featurestr=sprintf('%s_bt%03d_',featurestr,boot); end; % if outvol.fname= fullfile(D.path, dirname, ['chi_pw_' spm_str_manip(D.fname, 'r') '_' num2str(freqbands(fband,1)) '-' num2str(freqbands(fband,2)) 'Hz' featurestr '.nii']); stats(fband).outfile_chi_pw=outvol.fname; outvol = spm_create_vol(outvol); spm_write_vol(outvol, sourceint_pow_maxchi.pow_maxchi); cmap=colormap; jetmap=colormap('jet'); if (isfield(S, 'preview') && S.preview) spm_check_registration(sMRI) prop=0.4; colourmap=jetmap; spm_orthviews('Addtruecolourimage',1,outvol.fname,colourmap,prop,max_mv(2),dispthresh_mv(2)); disp(sprintf('Chi pw image. Est thresh for p<0.05 (corr) is %3.2f. Press any key to continue..',stats(fband).alyt_thresh_Chi_05(2))); pause; end; % if preview colormap(cmap); featurestr=[S.filenamestr 'Nf' num2str(redNfeatures(1))] ; outvol.fname= fullfile(D.path, dirname, ['chi_ev_' spm_str_manip(D.fname, 'r') '_' num2str(freqbands(fband,1)) '-' num2str(freqbands(fband,2)) 'Hz' featurestr '.nii']); stats(fband).outfile_chi_ev=outvol.fname; outvol = spm_create_vol(outvol); spm_write_vol(outvol, sourceint_evoked_maxchi.evoked_maxchi); if (isfield(S, 'preview') && S.preview) spm_check_registration(sMRI) prop=0.4; colourmap=jetmap; spm_orthviews('Addtruecolourimage',1,outvol.fname,colourmap,prop,max_mv(1),dispthresh_mv(1)); disp(sprintf('Chi ev image. Est thresh for p<0.05 (corr) is %3.2f. Press any key to continue..',stats(fband).alyt_thresh_Chi_05(1))); pause; end; % if preview outvals=CVA_maxstat(:,1,TrueIter); % prefix='testrun'; %[outvol]=write_trial_image(0,0,talpositions,datareg,sMRI,D,dirname,csource,outvals,prefix,freqbands(fband,:)) colormap(cmap); featurestr=[S.filenamestr 'Nf' num2str(redNfeatures(2))] ; outvol.fname= fullfile(D.path, dirname, ['logp_pow_' spm_str_manip(D.fname, 'r') '_' num2str(freqbands(fband,1)) '-' num2str(freqbands(fband,2)) 'Hz' featurestr S.filenamestr '.nii']); stats(fband).outfile_logp_pow=outvol.fname; outvol = spm_create_vol(outvol); spm_write_vol(outvol, sourceint_logp_pow.logp_power); featurestr=[S.filenamestr 'Nf' num2str(redNfeatures(1))] ; outvol.fname= fullfile(D.path, dirname, ['logp_evoked_' spm_str_manip(D.fname, 'r') '_' num2str(freqbands(fband,1)) '-' num2str(freqbands(fband,2)) 'Hz' featurestr S.filenamestr '.nii']); stats(fband).outfile_logp_evoked=outvol.fname; outvol = spm_create_vol(outvol); spm_write_vol(outvol, sourceint_logp_evoked.logp_evoked); % %% now write all trials of data out if S.write_epochs, permnum=1; outfilenames_pw=[]; outfilenames_ev=[]; for trialnum=1:Ntrials, prefix='ev';outvals=allY(:,trialnum,1); %% evoked first [outvolev]=write_trial_image(trialnum,permnum,talpositions,datareg,sMRI,D,epochdirname,csource,outvals,prefix,freqbands(fband,:)); outfilenames_ev=strvcat(outfilenames_ev,outvolev.fname); prefix='pow';outvals=allY(:,trialnum,2); %% then power [outvolpw]=write_trial_image(trialnum,permnum,talpositions,datareg,sMRI,D,epochdirname,csource,outvals,prefix,freqbands(fband,:)); outfilenames_pw=strvcat(outfilenames_pw,outvolpw.fname); end; % for trialnum stats(fband).outfile_pw_epochs=outfilenames_pw; stats(fband).outfile_ev_epochs=outfilenames_ev; end; end; % if ~S.gridpos end; % for fband=1:Nbands end; %% bootstrap bootlist= fullfile(D.path, dirname, ['bootlist_' spm_str_manip(D.fname, 'r') '_' num2str(freqbands(fband,1)) '-' num2str(freqbands(fband,2)) 'Hz' featurestr '.mat']); save(bootlist,'bttrials'); end % function function [soutvol]=write_trial_image(trialnum,permnum,talpositions,datareg,sMRI,D,dirname,csource,outvals,prefix,freqband) %outvals=outvals./1e12; %outvals=outvals.*0; %outvals(715)=trialnum; csource.pow_maxchi(csource.inside) = outvals; csource.pow_maxchi(csource.outside)=0; cfg1 = []; cfg1.sourceunits = 'mm'; cfg1.parameter = 'pow_maxchi'; cfg1.downsample = 1; sourceint_pow_maxchi = ft_sourceinterpolate(cfg1, csource, sMRI); cfg = []; cfg.sourceunits = 'mm'; cfg.parameter = 'pow'; cfg.downsample = 1; outvol = spm_vol(sMRI); outvol.dt(1) = spm_type('float32'); featurestr=['Nf1'] ; %% only for 1 feature outvol.fname= fullfile(D.path, dirname, [sprintf('Trial%04d_Perm%04d_%s',trialnum,permnum,prefix) spm_str_manip(D.fname, 'r') '_' num2str(freqband(1)) '-' num2str(freqband(2)) 'Hz' featurestr '.nii']); outvol = spm_create_vol(outvol); spm_write_vol(outvol, sourceint_pow_maxchi.pow_maxchi); soutvol=outvol; mmsampling=min(abs(diag(soutvol.mat(1:3,1:3)))); %% get sampling of the output image Sfwhm=mmsampling*3; %% smooth by 3* this to get sufficiently sampled output image soutvol.fname= fullfile(D.path, dirname, [sprintf('S%dmmTrial%04d_Perm%04d_%s',Sfwhm,trialnum,permnum,prefix) spm_str_manip(D.fname, 'r') '_' num2str(freqband(1)) '-' num2str(freqband(2)) 'Hz' featurestr '.nii']); spm_smooth(outvol,soutvol,Sfwhm); end
github
philippboehmsturm/antx-master
tbx_cfg_tbx_Icc.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/icc/tbx_cfg_tbx_Icc.m
3,628
utf_8
164fe7ffc0377b56b9330df0aae45f34
function tbx_Icc = tbx_cfg_tbx_Icc % Russ Poldrack and Volkmar Glauche % $Id: tbx_cfg_tbx_Icc.m,v 1.1 2008-04-14 08:53:10 vglauche Exp $ %_______________________________________________________________________ rev='$Revision: 1.1 $'; addpath(fullfile(spm('dir'),'toolbox','icc')); % see how we are called - if no output argument, then start spm_jobman UI if nargout == 0 spm_jobman('interactive'); return; end; % MATLABBATCH Configuration file for toolbox 'Icc Calculation' % This code has been automatically generated. % --------------------------------------------------------------------- % srcimgs Source Images % --------------------------------------------------------------------- srcimgs = cfg_files; srcimgs.tag = 'srcimgs'; srcimgs.name = 'Source Images'; srcimgs.help = {'Enter all images from the same observation. Subject ordering must be consistent over all observations.'}; srcimgs.filter = 'image'; srcimgs.ufilter = '.*'; srcimgs.num = [1 Inf]; % --------------------------------------------------------------------- % obs Observations % --------------------------------------------------------------------- obs = cfg_repeat; obs.tag = 'obs'; obs.name = 'Observations'; obs.help = {'Enter images from at least two observations for the same sample of subjects.'}; obs.values = {srcimgs }; obs.num = [2 Inf]; obs.check = @check_obs; % --------------------------------------------------------------------- % tbx_Icc Icc Calculation % --------------------------------------------------------------------- tbx_Icc = cfg_exbranch; tbx_Icc.tag = 'tbx_Icc'; tbx_Icc.name = 'Icc Calculation'; tbx_Icc.val = {obs }; tbx_Icc.help = {''}; tbx_Icc.prog = @comp_icc; tbx_Icc.vout = @vout_icc; % --------------------------------------------------------------------- % local functions % --------------------------------------------------------------------- function out = comp_icc(job) nobs = numel(job.srcimgs); nsub = numel(job.srcimgs{1}); V = spm_vol(job.srcimgs); spm_check_orientations(cat(1,subsref(cat(1,V{:}),... struct('type','{}','subs',{{':'}})))); iccm = zeros(V{1}{1}.dim(1:3)); spm_progress_bar('init', V{1}{1}.dim(3), 'Icc computation', 'Planes completed'); for z=1:V{1}{1}.dim(3) M = spm_matrix([0 0 z 0 0 0 1 1 1]); dat = zeros([nsub,nobs,V{1}{1}.dim(1:2)]); for cs = 1:nsub for co = 1:nobs dat(cs,co,:,:) = spm_slice_vol(V{co}{cs},M,V{1}{1}.dim(1:2),[0,NaN]); end; end; for x = 1:V{1}{1}.dim(1) for y = 1:V{1}{1}.dim(2) iccm(x,y,z)=icc(dat(:,:,x,y)); end end spm_progress_bar('Set',z); end iccm(isnan(iccm)) = 0; Vo = rmfield(V{1}{1},'private'); [p n e v] = spm_fileparts(Vo.fname); Vo.fname = fullfile(p,['icc_' n e]); spm_write_vol(Vo,iccm); spm_progress_bar('clear'); out.iccfile = {Vo.fname}; return function dep = vout_icc(job) dep = cfg_dep; dep.sname = 'ICC volume'; dep.src_output = substruct('.','iccfile'); dep.tgt_spec = cfg_findspec({{'filter','image','strtype','e'}}); return; function cstr = check_obs(srcimgs) cstr = ''; nobs = numel(srcimgs); nsub1 = numel(srcimgs{1}); for k = 1:nobs if numel(srcimgs{k}) ~= nsub1 cstr = sprintf(['Number of subjects in observation 1 and %d differ ' ... '(%d/%d)'], k, nsub1, numel(srcimgs{k})); return; end; end; V = spm_vol(srcimgs); try spm_check_orientations(cat(1,subsref(cat(1,V{:}),... struct('type','{}','subs',{{':'}})))); catch cstr = 'Images do not all have same orientation or voxel size.'; end;
github
philippboehmsturm/antx-master
tbx_config_icc.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/icc/tbx_config_icc.m
2,243
utf_8
e395073628088e0bc7895a43bb0073d9
function opts = spm_config_Icc %_______________________________________________________________________ % Copyright (C) 2005 Wellcome Department of Imaging Neuroscience % Russ Poldrack and Volkmar Glauche % $Id: tbx_config_icc.m,v 1.2 2007-03-30 07:58:52 glauche Exp $ %_______________________________________________________________________ rev='$Revision: 1.2 $'; addpath(fullfile(spm('dir'),'toolbox','icc')); % see how we are called - if no output argument, then start spm_jobman UI if nargout == 0 spm_jobman('interactive','','jobs.tools.tbx_Icc'); return; end; srcimgs.type = 'files'; srcimgs.name = 'Source Images'; srcimgs.tag = 'srcimgs'; srcimgs.filter = 'image'; srcimgs.num = [1 Inf]; srcimgs.help = {['Enter all images from the same observation. Subject' ... ' ordering must be consistent over all observations.']}; obs.type = 'repeat'; obs.name = 'Observations'; obs.tag = 'obs'; obs.num = [2 Inf]; obs.values = {srcimgs}; obs.help = {['Enter images from at least two observations for the same sample' ... ' of subjects.']}; opts.type = 'branch'; opts.name = 'Icc Calculation'; opts.tag = 'tbx_Icc'; opts.val = {obs}; opts.prog = @comp_icc; %opts.vfiles = @vfiles; return; function comp_icc(job) nobs = numel(job.srcimgs); nsub = numel(job.srcimgs{1}); V = spm_vol(job.srcimgs); spm_check_orientations(cat(1,subsref(cat(1,V{:}),... struct('type','{}','subs',{{':'}})))); iccm = zeros(V{1}{1}.dim(1:3)); spm_progress_bar('init', V{1}{1}.dim(3), 'Icc computation', 'Planes completed'); for z=1:V{1}{1}.dim(3) M = spm_matrix([0 0 z 0 0 0 1 1 1]); dat = zeros([nsub,nobs,V{1}{1}.dim(1:2)]); for cs = 1:nsub for co = 1:nobs dat(cs,co,:,:) = spm_slice_vol(V{co}{cs},M,V{1}{1}.dim(1:2),[0,NaN]); end; end; for x = 1:V{1}{1}.dim(1) for y = 1:V{1}{1}.dim(2) iccm(x,y,z)=icc(dat(:,:,x,y)); end end spm_progress_bar('Set',z); end iccm(isnan(iccm)) = 0; Vo = rmfield(V{1}{1},'private'); [p n e v] = spm_fileparts(Vo.fname); Vo.fname = fullfile(p,['icc_' n e]); spm_write_vol(Vo,iccm); spm_progress_bar('clear'); return function vf = vfiles(job) [p n e v] = spm_fileparts(job.srcimgs{1}{1}); vf{1} = fullfile(p,['icc_' n e]); return;
github
philippboehmsturm/antx-master
timediff.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/tsdiffana/timediff.m
3,340
utf_8
1cc63d946f7f8d629436d4357c2a419d
function [imdiff, g, slicediff] = timediff(imgs, flags) % Analyses slice by slice variance across time series % FORMAT [imdiff, g, slicediff] = timediff(imgs, flags) % % imgs - string or cell or spm_vol list of images % flags - specify options; if contains: % m - create mean var image (vmean*), max slice var image % (vsmax*) and scan to scan variance image (vscmean*) % v - create variance image for between each time point % % imdiff - mean variance between each image in time series % g - mean voxel signal intensity for each image % slicediff - slice by slice variance between each image % % Matthew Brett 17/7/00 imgs = spm_vol(char(imgs)); V1 = imgs(1); Vr = imgs(2:end); ndimgs = numel(imgs)-1; Hold = 0; if any(flags == 'v') % create variance images for i = 1:ndimgs vVr(i) = makevol(Vr(i),'v',16); % float end end if any(flags == 'm') % mean /max variance mVr = makevol(V1,'vmean',16); sVr = makevol(V1,'vscmean',16); xVr = makevol(V1,'vsmax',16); end [xydim zno] = deal(V1.dim(1:2),V1.dim(3)); p1 = spm_read_vols(V1); slicediff = zeros(ndimgs,zno); g = zeros(ndimgs,1); for z = 1:zno % across slices M = spm_matrix([0 0 z]); pr = p1(:,:,z); % this slice from first volume if any(flags == 'm') [mv sx2 sx mxvs] = deal(zeros(size(pr))); end % SVD is squared voxel difference (usually a slice of same) % MSVD is the mean of this measure across voxels (one value) % DTP is a difference time point (1:T-1) cmax = 0; % counter for which slice has the largest MSVD % note that Vr contains volumes 2:T (not the first) for i = 1:ndimgs % across DTPs c = spm_slice_vol(Vr(i),M,xydim,Hold); % get slice from this time point v = (c - pr).^2; % SVD from this slice to last slicediff(i,z) = mean(v(:)); % MSVD for this slice g(i) = g(i) + mean(c(:)); % simple mean of data if slicediff(i,z)>cmax % if this slice has larger MSVD, keep mxvs = v; cmax = slicediff(i,z); end pr = c; % set current slice data as previous, for next iteration of loop if any(flags == 'v') % write individual SVD slice for DTP vVr(i) = spm_write_plane(vVr(i),v,z); end if any(flags == 'm') mv = mv + v; % sum up SVDs for mean SVD (across time points) sx = sx + c; % sum up data for simple variance calculation sx2 = sx2 + c.^2; % sum up squared data for simple variance % calculation end end if any(flags == 'm') % mean variance etc sVr = spm_write_plane(sVr,mv/(ndimgs),z); % write mean of SVDs % across time xVr = spm_write_plane(xVr,mxvs,z); % write maximum SVD mVr = spm_write_plane(mVr,(sx2-((sx.^2)/ndimgs))./(ndimgs-1),z); % (above) this is the one-pass simple variance formula end end g = [mean(p1(:)); g/zno]; imdiff = mean(slicediff,2); return function Vo = makevol(Vi, prefix, datatype) Vo = Vi; fn = Vi.fname; [p f e] = fileparts(fn); Vo.fname = fullfile(p, [prefix f e]); switch lower(spm('ver')) case {'spm5','spm8','spm8b','spm12','spm12b'} Vo.dt = [datatype 0]; Vo = spm_create_vol(Vo, 'noopen'); otherwise error('What ees thees version "%s"', spm('ver')); end return
github
philippboehmsturm/antx-master
run_tsdiffana.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/tsdiffana/run_tsdiffana.m
2,148
utf_8
f201c026bb24af7be0e0ffc49ac908b8
function varargout = run_tsdiffana(cmd, varargin) % Wrapper function for tsdiffana routines switch cmd, case 'run' subfun = varargin{1}; job = varargin{2}; switch subfun case 'timediff' for k = 1:numel(job.imgs) [p f e] = spm_fileparts(job.imgs{k}{1}); if job.vf flags = 'mv'; else flags = 'm'; end imgs = char(job.imgs{k}); [td globals slicediff] = timediff(imgs,flags); out.tdfn{k} = fullfile(p,'timediff.mat'); save(out.tdfn{k}, 'imgs', 'td', 'globals', 'slicediff'); end varargout{1} = out; case 'tsdiffplot' fg = spm_figure('GetWin', 'Graphics'); spm_figure('Clear'); for k = 1:numel(job.tdfn) h = tsdiffplot(job.tdfn{k}, fg); spm_figure('NewPage', h); end if job.doprint spm_figure('Print'); end end case 'vout' subfun = varargin{1}; job = varargin{2}; switch subfun case 'timediff' for k = 1:numel(job.imgs) dep(k) = cfg_dep; dep(k).sname = sprintf('Timeseries Analysis Data File (%d)', k); dep(k).src_output = substruct('.','tdfn','()',{k}); dep(k).tgt_spec = cfg_findspec({{'filter','mat', ... 'strtype','e'}}); end varargout{1} = dep; case 'tsdiffplot' end case 'defaults' if nargin == 2 varargout{1} = local_defs(varargin{1}); else local_defs(varargin{1:2}); end end function varargout = local_defs(defstr, defval) persistent defs; if isempty(defs) defs.vf = false; defs.doprint = true; end if nargin == 1 varargout{1} = defs.(defstr); else defs.(defstr) = defval; end
github
philippboehmsturm/antx-master
moh_unified_segmentation.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/ALI/moh_unified_segmentation.m
10,685
utf_8
3bd937b04b9b19314f52a21a31907abc
function moh_unified_segmentation(V, c4prior) % based on spm segmentation routines % V: volume structure to be segmented % c4prior: image that defines the spatial priors for the extra class % % Mohamed Seghier 05.08.2008 % ======================================= % if ~isstruct(V), V = spm_vol(V) ; end [pth,nam,ext,toto] = spm_fileparts(V.fname) ; % define options (can be modified) % opts0: options for the unified segmentation routine opts0.tpm = char(fullfile(spm('Dir'), 'tpm', 'grey.nii'),... fullfile(spm('Dir'), 'tpm', 'white.nii'),... fullfile(spm('Dir'), 'tpm', 'csf.nii'),... c4prior); opts0.ngaus = [2 2 2 2 4]; opts0.warpreg = 1; opts0.warpco = 25; opts0.biasreg = 0.01; opts0.biasfwhm = 75; opts0.regtype = 'mni'; opts0.fudge = 5; opts0.samp = 3; opts0.msk = ''; % segmentation in [4 + 1] classes (with different Gaussians per class) if length(opts0.ngaus)~= size(opts0.tpm,1)+1, error('Number of Gaussians is not compatible with number of classes'); end; % opts1: options for writing segmented classes opts1.biascor = 0 ; opts1.GM = [0 1 0] ; opts1.WM = [0 1 0] ; opts1.CSF = [0 1 0] ; opts1.EXTRA1 = [0 1 0] ; opts1.cleanup = 1 ; % to write 4 classes per segmentation run if length(fieldnames(opts1))~= size(opts0.tpm,1)+2, error('Number of written classes is not compatible with segm. classes'); end; % unified segmentation steps % -------------------------- % -------------------------- % run the combined segmentation-normalisation procedure % ----------------------------------------------------- Res = spm_preproc(V, opts0) ; disp('###### Combined Segmentation and Spatial Normalisation..........OK'); % convert preproc output to a format for writing classes % ------------------------------------------------------ PO = spm_prep2sn(Res) ; disp('###### Convert the output to an sn.mat (parameters).............OK'); % save the transformation/parameters files % ---------------------------------------- VG = PO.VG ; VF = PO.VF ; Tr = PO.Tr ; Affine = PO.Affine ; flags = PO.flags ; fnam = fullfile(pth,[nam '_seg_sn.mat']); if spm_matlab_version_chk('7') >= 0, save(fnam,'-V6','VG','VF','Tr','Affine','flags'); else save(fnam,'VG','VF','Tr','Affine','flags'); end; disp('###### Write transformation/paramters into an *_seg_sn.mat .....OK'); % write segmented classes (see original function spm_preproc_write) % ----------------------- b0 = spm_load_priors(PO(1).VG); for i=1:numel(PO), preproc_apply(PO(i) ,opts1, b0); end; disp('###### Write out segmented classes (one per tissue/prior).......OK'); return; %======================================================================= %======================================================================= % for more datails, see original function spm_preproc_write function preproc_apply(p,opts,b0) nclasses = size(fieldnames(opts),1) - 2 ; switch nclasses case 3 sopts = [opts.GM ; opts.WM ; opts.CSF]; case 4 sopts = [opts.GM ; opts.WM ; opts.CSF ; opts.EXTRA1]; case 5 sopts = [opts.GM ; opts.WM ; opts.CSF ; opts.EXTRA1 ; opts.EXTRA2]; otherwise error('######## unsupported number of classes....!!!') end [pth,nam,ext]=fileparts(p.VF.fname); T = p.flags.Twarp; bsol = p.flags.Tbias; d2 = [size(T) 1]; d = p.VF.dim(1:3); [x1,x2,o] = ndgrid(1:d(1),1:d(2),1); x3 = 1:d(3); d3 = [size(bsol) 1]; B1 = spm_dctmtx(d(1),d2(1)); B2 = spm_dctmtx(d(2),d2(2)); B3 = spm_dctmtx(d(3),d2(3)); bB3 = spm_dctmtx(d(3),d3(3),x3); bB2 = spm_dctmtx(d(2),d3(2),x2(1,:)'); bB1 = spm_dctmtx(d(1),d3(1),x1(:,1)); mg = p.flags.mg; mn = p.flags.mn; vr = p.flags.vr; K = length(p.flags.mg); Kb = length(p.flags.ngaus); for k1=1:size(sopts,1), %dat{k1} = zeros(d(1:3),'uint8'); dat{k1} = uint8(0); dat{k1}(d(1),d(2),d(3)) = 0; if sopts(k1,3), Vt = struct('fname', fullfile(pth,['c', num2str(k1), nam, ext]),... 'dim', p.VF.dim,... 'dt', [spm_type('uint8') spm_platform('bigend')],... 'pinfo', [1/255 0 0]',... 'mat', p.VF.mat,... 'n', [1 1],... 'descrip', ['Tissue class ' num2str(k1)]); Vt = spm_create_vol(Vt); VO(k1) = Vt; end; end; if opts.biascor, VB = struct('fname', fullfile(pth,['m', nam, ext]),... 'dim', p.VF.dim(1:3),... 'dt', [spm_type('float32') spm_platform('bigend')],... 'pinfo', [1 0 0]',... 'mat', p.VF.mat,... 'n', [1 1],... 'descrip', 'Bias Corrected'); VB = spm_create_vol(VB); end; lkp = []; for k=1:Kb, lkp = [lkp ones(1,p.flags.ngaus(k))*k]; end; spm_progress_bar('init',length(x3),['Working on ' nam],'Planes completed'); M = p.VG(1).mat\p.flags.Affine*p.VF.mat; for z=1:length(x3), % Bias corrected image f = spm_sample_vol(p.VF,x1,x2,o*x3(z),0); cr = exp(transf(bB1,bB2,bB3(z,:),bsol)).*f; if opts.biascor, % Write a plane of bias corrected data VB = spm_write_plane(VB,cr,z); end; if any(sopts(:)), msk = find(f<p.flags.thresh); [t1,t2,t3] = defs(T,z,B1,B2,B3,x1,x2,x3,M); q = zeros([d(1:2) Kb]); bt = zeros([d(1:2) Kb]); for k1=1:Kb, bt(:,:,k1) = spm_sample_priors(b0{k1},t1,t2,t3,k1==Kb); end; b = zeros([d(1:2) K]); for k=1:K, b(:,:,k) = bt(:,:,lkp(k))*mg(k); end; s = sum(b,3); for k=1:K, p1 = exp((cr-mn(k)).^2/(-2*vr(k)))/sqrt(2*pi*vr(k)+eps); q(:,:,lkp(k)) = q(:,:,lkp(k)) + p1.*b(:,:,k)./s; end; sq = sum(q,3)+eps; warning off for k1=1:size(sopts,1), tmp = q(:,:,k1); tmp(msk) = 0; tmp = tmp./sq; dat{k1}(:,:,z) = uint8(round(255 * tmp)); end; warning on end; spm_progress_bar('set',z); end; spm_progress_bar('clear'); if opts.cleanup > 0, [dat{1},dat{2},dat{3}] = clean_gwc(dat{1},dat{2},dat{3}, opts.cleanup); end; if any(sopts(:,3)), for z=1:length(x3), for k1=1:size(sopts,1), if sopts(k1,3), tmp = double(dat{k1}(:,:,z))/255; spm_write_plane(VO(k1),tmp,z); end; end; end; end; for k1=1:size(sopts,1), if any(sopts(k1,1:2)), so = struct('wrap',[0 0 0],'interp',1,'vox',[NaN NaN NaN],... 'bb',ones(2,3)*NaN,'preserve',0); ovx = abs(det(p.VG(1).mat(1:3,1:3)))^(1/3); fwhm = max(ovx./sqrt(sum(p.VF.mat(1:3,1:3).^2))-1,0.1); dat{k1} = decimate(dat{k1},fwhm); fn = fullfile(pth,['c', num2str(k1), nam, ext]); dim = [size(dat{k1}) 1]; VT = struct('fname',fn,'dim',dim(1:3),... 'dt', [spm_type('uint8') spm_platform('bigend')],... 'pinfo',[1/255 0]','mat',p.VF.mat,'dat',dat{k1}); if sopts(k1,2), spm_write_sn(VT,p,so); end; so.preserve = 1; if sopts(k1,1), VN = spm_write_sn(VT,p,so); VN.fname = fullfile(pth,['mwc', num2str(k1), nam, ext]); spm_write_vol(VN,VN.dat); end; end; end; return; %======================================================================= %======================================================================= function [x1,y1,z1] = defs(sol,z,B1,B2,B3,x0,y0,z0,M) x1a = x0 + transf(B1,B2,B3(z,:),sol(:,:,:,1)); y1a = y0 + transf(B1,B2,B3(z,:),sol(:,:,:,2)); z1a = z0(z) + transf(B1,B2,B3(z,:),sol(:,:,:,3)); x1 = M(1,1)*x1a + M(1,2)*y1a + M(1,3)*z1a + M(1,4); y1 = M(2,1)*x1a + M(2,2)*y1a + M(2,3)*z1a + M(2,4); z1 = M(3,1)*x1a + M(3,2)*y1a + M(3,3)*z1a + M(3,4); return; %======================================================================= %======================================================================= function t = transf(B1,B2,B3,T) if ~isempty(T) d2 = [size(T) 1]; t1 = reshape(reshape(T, d2(1)*d2(2),d2(3))*B3', d2(1), d2(2)); t = B1*t1*B2'; else t = zeros(size(B1,1),size(B2,1),size(B3,1)); end; return; %======================================================================= %======================================================================= function dat = decimate(dat,fwhm) % Convolve the volume in memory (fwhm in voxels). lim = ceil(2*fwhm); x = -lim(1):lim(1); x = spm_smoothkern(fwhm(1),x); x = x/sum(x); y = -lim(2):lim(2); y = spm_smoothkern(fwhm(2),y); y = y/sum(y); z = -lim(3):lim(3); z = spm_smoothkern(fwhm(3),z); z = z/sum(z); i = (length(x) - 1)/2; j = (length(y) - 1)/2; k = (length(z) - 1)/2; spm_conv_vol(dat,dat,x,y,z,-[i j k]); return; %======================================================================= %======================================================================= function [g,w,c] = clean_gwc(g,w,c, level) if nargin<4, level = 1; end; b = w; b(1) = w(1); % Build a 3x3x3 seperable smoothing kernel %----------------------------------------------------------------------- kx=[0.75 1 0.75]; ky=[0.75 1 0.75]; kz=[0.75 1 0.75]; sm=sum(kron(kron(kz,ky),kx))^(1/3); kx=kx/sm; ky=ky/sm; kz=kz/sm; th1 = 0.15; if level==2, th1 = 0.2; end; % Erosions and conditional dilations %----------------------------------------------------------------------- niter = 32; spm_progress_bar('Init',niter,'Extracting Brain','Iterations completed'); for j=1:niter, if j>2, th=th1; else th=0.6; end; % Dilate after two its of erosion. for i=1:size(b,3), gp = double(g(:,:,i)); wp = double(w(:,:,i)); bp = double(b(:,:,i))/255; bp = (bp>th).*(wp+gp); b(:,:,i) = uint8(round(bp)); end; spm_conv_vol(b,b,kx,ky,kz,-[1 1 1]); spm_progress_bar('Set',j); end; th = 0.05; for i=1:size(b,3), gp = double(g(:,:,i))/255; wp = double(w(:,:,i))/255; cp = double(c(:,:,i))/255; bp = double(b(:,:,i))/255; bp = ((bp>th).*(wp+gp))>th; g(:,:,i) = uint8(round(255*gp.*bp./(gp+wp+cp+eps))); w(:,:,i) = uint8(round(255*wp.*bp./(gp+wp+cp+eps))); c(:,:,i) = uint8(round(255*(cp.*bp./(gp+wp+cp+eps)+cp.*(1-bp)))); end; spm_progress_bar('Clear'); return; %======================================================================= %=======================================================================
github
philippboehmsturm/antx-master
moh_config_ALI.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/ALI/moh_config_ALI.m
18,900
utf_8
b23f41a3961164c0d0deb0b12c729b63
function job = moh_config_ALI % Configuration file for the Automatic Lesion Identification (ALI) %_______________________________________________________________________ % Copyright (C) 2009 Wellcome Trust Centre for Neuroimaging % % Mohamed Seghier, 28.05.2009 % ========================= entry = inline(['struct(''type'',''entry'',''name'',name,'... '''tag'',tag,''strtype'',strtype,''num'',num)'],... 'name','tag','strtype','num'); files = inline(['struct(''type'',''files'',''name'',name,'... '''tag'',tag,''filter'',fltr,''num'',num)'],... 'name','tag','fltr','num'); mnu = inline(['struct(''type'',''menu'',''name'',name,'... '''tag'',tag,''labels'',{labels},''values'',{values})'],... 'name','tag','labels','values'); branch = inline(['struct(''type'',''branch'',''name'',name,'... '''tag'',tag,''val'',{val})'],... 'name','tag','val'); repeat = inline(['struct(''type'',''repeat'',''name'',name,''tag'',tag,'... '''values'',{values})'],'name','tag','values'); choice = inline(['struct(''type'',''choice'',''name'',name,''tag'',tag,'... '''values'',{values})'],'name','tag','values'); %______________________________________________________________________ %______________________________________________________________________ addpath(fullfile(spm('dir'),'toolbox','ALI')); % ------------------------------------------------------------------------- % configuation for STEP 1: iterative unified segmentation-normalisation % ------------------------------------------------------------------------- step1data.type = 'files'; step1data.tag = 'step1data'; step1data.name = 'Images to segment'; step1data.filter = 'image'; step1data.ufilter = '.*'; step1data.num = [0 Inf]; step1data.help = {[... 'Specify the input images for the unified segmentation. ',... 'This should be your anatomical/structural images (e.g. T1 images)',... ' of all your patients...']}; prior_filename = fullfile(spm('Dir'), 'toolbox',... 'ALI', 'Priors_extraClass', 'wc4prior0.img') ; step1prior.type = 'files'; step1prior.tag = 'step1prior'; step1prior.name = 'Prior EXTRA class'; step1prior.filter = 'image'; step1prior.ufilter = '.*'; step1prior.num = [1 1]; step1prior.val{1} = {prior_filename}; step1prior.help = {[... 'Select the prior (1st guess) for the EXTRA class. ',... 'This prior will be combined with (by default) GM, WM, and CSF priors ',... ' for the iterative unified segmentation routine. In the absence of any ',... ' hypothesis, this prior is empirically set to 05*(CSF + WM). In the ',... ' presence of abnormality, this prior will be updated at every iteration ',... ' of the segmentation procedure so it will then approximate the location ',... ' of the lesion for next segmentation runs. However, users can modify the ',... ' definition of the prior of the EXTRA class (used at iteration 1 as a ',... ' first guess) and include more constrained spatial priors. For instance, ',... ' this prior can be limited to left hemisphere only if all lesions are ',... ' located in the LH...etc. ']}; step1niti.type = 'entry'; step1niti.name = 'Number of iterations'; step1niti.tag = 'step1niti'; step1niti.strtype = 'r'; step1niti.num = [1 1]; step1niti.val = {2}; step1niti.help = {[... 'Specify the number of iterations for the new iterative unified ',... ' segmentation-normalisation procedure. This number will define the number',... ' of segmentation runs. The updated EXTRA class of run (n-1) will be used ',... ' as prior for the EXTRA class of run (n).']}; step1thr_prob.type = 'entry'; step1thr_prob.name = 'Threshold probability'; step1thr_prob.tag = 'step1thr_prob'; step1thr_prob.strtype = 'r'; step1thr_prob.num = [1 1]; step1thr_prob.val = {1/3}; step1thr_prob.help = {[... 'Specify the thershold for the probability of the EXTRA class: ', ... ' at each iteration, the EXTRA class will be cleaned up before ',... ' used as a prior for the next segmentation run. This step will ',... ' help to limit the serach for abnormality for only voxels with ',... ' high probability in the EXTRA class (i.e. voxels with high prob ',... ' are those that cannot be fully explained by the expected GM, WM, ',... ' and CSF classes.']}; step1thr_size.type = 'entry'; step1thr_size.name = 'Threshold size'; step1thr_size.tag = 'step1thr_size'; step1thr_size.strtype = 'r'; step1thr_size.num = [1 1]; step1thr_size.val = {100}; step1thr_size.help = {[... 'Specify the thershold for the size (nb voxels) of the EXTRA class: ', ... ' at each iteration, the EXTRA class will be cleaned up. Only abnornal ',... ' regions with a relatively big size (> thershold) will considered for ',... ' the definition of the prior for the EXTRA class.']}; step1coregister.type = 'menu'; step1coregister.tag = 'step1coregister'; step1coregister.name = 'Coregister to MNI space'; step1coregister.labels = {'YES', 'NO'} ; step1coregister.values = {1 0} ; step1coregister.val = {1} ; step1coregister.help = {['you can coregister your anatomical images ',... 'to MNI space (e.g. target=T1_template). This would help the ', ... 'accuracy of the segmentation algorithm (e.g. avoid having input ',... ' images with abherant centres/locations).']}; unified_segmentation.type = 'branch'; unified_segmentation.tag = 'unified_segmentation'; unified_segmentation.name = 'Unified segmentation'; unified_segmentation.val = {step1data step1prior step1niti ... step1thr_prob step1thr_size step1coregister}; unified_segmentation.help = {... 'STEP 1: segment in 4 classes all structural T1 images.'}; unified_segmentation.prog = @segment_unified ; % ------------------------------------------------------------------------- % configuation for STEP 2: spatial smoothing of segmented GM/WM classes % ------------------------------------------------------------------------- step2data.type = 'files'; step2data.tag = 'step2data'; step2data.name = 'Images to smooth'; step2data.filter = 'image'; step2data.ufilter = '.*'; step2data.num = [0 Inf]; step2data.help = {[... 'Select your segmented GM and WM images: ',... ' all images will be spatially smoothed. Both patients and controls images',... ' can be selected.']}; step2fwhm.type = 'entry'; step2fwhm.name = 'FWHM'; step2fwhm.tag = 'step2fwhm'; step2fwhm.strtype = 'e'; step2fwhm.num = [1 3]; step2fwhm.val = {[8 8 8]}; step2fwhm.help = {[... 'Specify the full-width at half maximum (FWHM) of the Gaussian smoothing ',... 'kernel [in mm]: three values denoting the FWHM in the ',... 'x, y and z directions.']}; spatial_smoothing.type = 'branch'; spatial_smoothing.tag = 'spatial_smoothing'; spatial_smoothing.name = 'Spatial smoothing'; spatial_smoothing.val = {step2data step2fwhm}; spatial_smoothing.help = {... 'STEP 2: spatial smoothing of segmented gray and white matter images.'}; spatial_smoothing.prog = @smooth_spatial ; % ------------------------------------------------------------------------- % configuation for STEP 3: outliers detection (detection of abnormality) % ------------------------------------------------------------------------- step3directory.type = 'files'; step3directory.tag = 'step3directory'; step3directory.name = 'Select a directory'; step3directory.help = {'Select a directory where to save the results.'}; step3directory.filter = 'dir'; step3directory.num = 1; step3patientGM.type = 'files'; step3patientGM.tag = 'step3patientGM'; step3patientGM.name = 'Patients: sGM images'; step3patientGM.filter = 'image'; step3patientGM.ufilter = '.*'; step3patientGM.num = [0 Inf]; step3patientGM.help = {[... 'Specify the smoothed gray matter (GM) images of your patients. ',... 'These images will then be compared, voxel by voxel, to the smoothed ',... 'gray matter (GM) images of all your controls. Any voxel in the patient GM ',... 'that deviates from the normal range will be considered as an outlier, and ',... 'thus included in the lesion. By definition, lesion = set of ',... 'abnornal/outlier voxels.']}; step3patientWM.type = 'files'; step3patientWM.tag = 'step3patientWM'; step3patientWM.name = 'Patients: sWM images'; step3patientWM.filter = 'image'; step3patientWM.ufilter = '.*'; step3patientWM.num = [0 Inf]; step3patientWM.help = {[... 'Specify the smoothed white matter (WM) images of your patients. ',... 'These images will then be compared, voxel by voxel, to the smoothed ',... 'white matter (WM) images of all your controls. Any voxel in the patient WM ',... 'that deviates from the normal range will be considered as an outlier, and ',... 'thus included in the lesion. By definition, lesion = set of ',... 'abnornal/outlier voxels.']}; step3controlGM.type = 'files'; step3controlGM.tag = 'step3controlGM'; step3controlGM.name = 'Controls: sGM images'; step3controlGM.filter = 'image'; step3controlGM.ufilter = '.*'; step3controlGM.num = [0 Inf]; step3controlGM.help = {[... 'Specify the smoothed gray matter (GM) images of your controls. ',... 'These images are used to assess the dergee of "normality" at each voxel ',... '(e.g. what is the "normal" variability of the healthy tissue?)... ']}; step3controlWM.type = 'files'; step3controlWM.tag = 'step3controlWM'; step3controlWM.name = 'Controls: sWM images'; step3controlWM.filter = 'image'; step3controlWM.ufilter = '.*'; step3controlWM.num = [0 Inf]; step3controlWM.help = {[... 'Specify the smoothed white matter (WM) images of your controls. ',... 'These images are used to assess the dergee of "normality" at each voxel ',... '(e.g. what is the "normal" variability of the healthy tissue?)... ']}; mask_filename = fullfile(spm('Dir'), 'toolbox',... 'ALI', 'Mask_image', 'mask_controls.img') ; step3mask.type = 'files'; step3mask.tag = 'step3mask'; step3mask.name = 'Mask (regions of interest)'; step3mask.filter = 'image'; step3mask.ufilter = '.*'; step3mask.num = [1 1]; step3mask.val{1} = {mask_filename}; step3mask.help = {[... 'Select the image mask for your lesion detection analysis: ',... 'the mask can be any image and it is used to limit the lesion detection ',... 'within a the meaningful voxels (e.g. in-brain voxels). By default, ',... 'the mask = whole brain (no assumption about the expected locations).']}; step3mask_thr.type = 'entry'; step3mask_thr.name = 'Threshold for the mask'; step3mask_thr.tag = 'step3mask_thr'; step3mask_thr.strtype = 'r'; step3mask_thr.num = [1 1]; step3mask_thr.val = {0}; step3mask_thr.help = {[... 'Specify the threshold: all voxels of the mask image that have a signal ', ... 'less than the threshold are excluded from the lesion detection.']}; step3Lambda.type = 'entry'; step3Lambda.name = 'Lambda parameter'; step3Lambda.tag = 'step3Lambda'; step3Lambda.strtype = 'r'; step3Lambda.num = [1 1]; step3Lambda.val = {-4}; step3Lambda.help = {[... 'Specify the value of Lambda: equivalent to the fuzziness index "m" in ',... 'standard FCM algorithm (m=1-2/Lambda). By default, Lambda = -4.']}; step3Alpha.type = 'entry'; step3Alpha.name = 'Alpha parameter'; step3Alpha.tag = 'step3Alpha'; step3Alpha.strtype = 'r'; step3Alpha.num = [1 1]; step3Alpha.val = {0.5}; step3Alpha.help = {[... 'Specify the value of Alpha: this is the factor of sensitivity ',... '(tunning factor), equal here to 0.5 (half the probability interval). ']}; outliers_detection.type = 'branch'; outliers_detection.tag = 'outliers_detection'; outliers_detection.name = 'Abnormality detection (FCP)'; outliers_detection.val = {step3directory step3patientGM step3patientWM ... step3controlGM step3controlWM step3mask ... step3mask_thr step3Lambda step3Alpha}; outliers_detection.help = {[... 'STEP 3: outliers detection (lesion = abnormal/outliers voxels) ',... 'from both GM and WM classes (using FCP algorithm). ']}; outliers_detection.prog = @detect_outliers; % ------------------------------------------------------------------------- % configuation for STEP 4: lesion definition (fuzzy, binary and contour) % ------------------------------------------------------------------------- step4directory.type = 'files'; step4directory.tag = 'step4directory'; step4directory.name = 'Select a directory'; step4directory.help = {'Select a directory where to save the results'}; step4directory.filter = 'dir'; step4directory.num = 1; step4fcpGM.type = 'files'; step4fcpGM.tag = 'step4fcpGM'; step4fcpGM.name = 'Negative FCP_GM images'; step4fcpGM.filter = 'image'; step4fcpGM.ufilter = '.*'; step4fcpGM.num = [0 Inf]; step4fcpGM.help = {[... 'Select the FCP_negative of the gray matter images of your patients: ',... 'these images represent where the GM of a given patient is abnormally ',... 'low compared to GM of the controls. These images are those computed ',... 'in the previous step.']}; step4fcpWM.type = 'files'; step4fcpWM.tag = 'step4fcpWM'; step4fcpWM.name = 'Negative FCP_WM images'; step4fcpWM.filter = 'image'; step4fcpWM.ufilter = '.*'; step4fcpWM.num = [0 Inf]; step4fcpWM.help = {[... 'Select the FCP_negative of the white matter images of your patients. ',... 'SELECTED IN THE SAME ORDER AS THOSE OF THE GM IMAGES...!!!! ',... 'These images represent where the WM of a given patient is abnormally ',... 'low compared to WM of the controls. These images are those computed ',... 'in the previous step.']}; step4binary_thr.type = 'entry'; step4binary_thr.name = 'Binary lesion: threshold U'; step4binary_thr.tag = 'step4binary_thr'; step4binary_thr.strtype = 'r'; step4binary_thr.num = [1 1]; step4binary_thr.val = {0.3}; step4binary_thr.help = {[... 'Specify the threshold: all voxels with a degree of abonormality (U) ',... 'bigger than the thereshold will be considered as a lesion. Useful for',... ' the generation of the binary/contour definition of the lesion.']}; step4binary_size.type = 'entry'; step4binary_size.name = 'Binary lesion: minimum size'; step4binary_size.tag = 'step4binary_size'; step4binary_size.strtype = 'r'; step4binary_size.num = [1 1]; step4binary_size.val = {100}; step4binary_size.help = {[... 'Specify the minimum size (nb vox): all abnormal clusters with less than the ',... 'threshold size will be excluded (e.g. tiny/small clusters) will be ',... 'removed for the lesion volume.']}; lesion_definition.type = 'branch'; lesion_definition.tag = 'lesion_definition'; lesion_definition.name = 'Lesion definition (grouping)'; lesion_definition.val = {step4directory step4fcpGM step4fcpWM ... step4binary_thr step4binary_size}; lesion_definition.help = {[... 'STEP 4: group abnormal (GM and WM) images as a lesion ',... ' (three images generated: fuzzy, binary and contour).']}; lesion_definition.prog = @define_lesion; % ------------------------------------------------------------------------- % generate lesion overlap maps (LOM): useful for group analysis % ------------------------------------------------------------------------- step5directory.type = 'files'; step5directory.tag = 'step5directory'; step5directory.name = 'Select a directory'; step5directory.help = {'Select a directory where to save the results'}; step5directory.filter = 'dir'; step5directory.num = 1; step5LOM.type = 'files'; step5LOM.tag = 'step5LOM'; step5LOM.name = 'Select Binary (lesion) images'; step5LOM.filter = 'image'; step5LOM.ufilter = '.*'; step5LOM.num = [0 Inf]; step5LOM.help = {[... 'Select the binary definition of the lesions of all your patients. ',... 'These binary images are those created in the previous step.']}; lesion_overlap.type = 'branch'; lesion_overlap.tag = 'lesion_overlap'; lesion_overlap.name = 'Lesion Overlap Map (LOM)'; lesion_overlap.val = {step5directory step5LOM}; lesion_overlap.help = {... 'STEP 5: generate lesion overlap maps (LOM): overlap over patients.'}; lesion_overlap.prog = @generate_LOM; % ------------------------------------------------------------------------- % explore the LOM maps: useful for group analysis % ------------------------------------------------------------------------- step6LOM_file.type = 'files'; step6LOM_file.tag = 'step6LOM_file'; step6LOM_file.name = 'LOM file'; step6LOM_file.filter = 'mat'; step6LOM_file.ufilter = '.*'; step6LOM_file.num = [1 1]; step6LOM_file.help = {[... 'Select the LOM*.mat that contains all the details of the generated ',... 'lesion overalp map (LOM) from the previous step. The LOM images will ',... 'refelct how many patients do have a lesion at a particular location.']}; step6thr_nb.type = 'entry'; step6thr_nb.name = 'LOM threshold'; step6thr_nb.tag = 'step6thr_nb'; step6thr_nb.strtype = 'e'; step6thr_nb.num = [1 1]; step6thr_nb.val = {1}; step6thr_nb.help = {... 'Specify the threshold of the LOM: minimum overlap to be displayed. '}; lesion_overlap_explore.type = 'branch'; lesion_overlap_explore.tag = 'lesion_overlap_explore'; lesion_overlap_explore.name = 'Explore the LOM'; lesion_overlap_explore.val = {step6LOM_file step6thr_nb}; lesion_overlap_explore.help = {... 'STEP 6: explore the generated lesion overlap maps (LOM).'}; lesion_overlap_explore.prog = @explore_LOM; %-------------------------------------------------------------------------- % Define ALI job %-------------------------------------------------------------------------- job.type = 'choice'; job.name = 'ALI'; job.tag = 'ali'; job.values = {unified_segmentation,spatial_smoothing,outliers_detection,... lesion_definition,lesion_overlap,lesion_overlap_explore}; job.help = {'Automatic Lesion Identification (ALI)'}; %------------------------------------------------------------------------ %------------------------------------------------------------------------ function segment_unified(job) moh_run_ALI(job); %------------------------------------------------------------------------ function smooth_spatial(job) moh_run_ALI(job); %------------------------------------------------------------------------ function detect_outliers(job) moh_run_ALI(job); %------------------------------------------------------------------------ function define_lesion(job) moh_run_ALI(job); %------------------------------------------------------------------------ function generate_LOM(job) moh_run_ALI(job); %------------------------------------------------------------------------ function explore_LOM(job) moh_run_ALI(job);
github
philippboehmsturm/antx-master
tbx_fbi_bruker2nifti.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/FBIBruker/tbx_fbi_bruker2nifti.m
6,253
utf_8
448d1d0132da5c52633a2902758bfc18
function varargout = tbx_fbi_bruker2nifti(cmd, varargin) % Convert bruker 2dseq files to NIfTI. The calling % syntax is % varargout = tbx_fbi_bruker2nifti(cmd, varargin) % where cmd is one of % 'run' - out = tbx_fbi_bruker2nifti('run', job) % Convert data. % 'vout' - dep = tbx_fbi_bruker2nifti('vout', job) % Return virtual output objects. For each 2dseq file, a % separate output will be created. This output will contain % the list of NIfTI files converted from the 2dseq file. % 'check' - str = tbx_fbi_bruker2nifti('check', subcmd, subjob) % 'defaults' - defval = tbx_fbi_bruker2nifti('defaults', key) % not implemented % % This code is part of a toolbox for SPM. It requires bruker read routines % and mrstruct read/write routines from MedPhys. %_______________________________________________________________________ % Copyright (C) 2007 Freiburg Brain Imaging % Volkmar Glauche % $Id: tbx_fbi_bruker2nifti.m 1 2011-01-19 13:04:16Z volkmar $ rev = '$Rev: 1 $'; %#ok if ischar(cmd) switch lower(cmd) case 'run' job = local_getjob(varargin{1}); out.images = cell(size(job.infiles)); % do computation, return results in variable out for ci = 1:numel(job.infiles) dirStr = fileparts(job.infiles{ci}); dirStr = sprintf('%s%s', dirStr, filesep); % read_*_bruker assumes filesep at end of dirStr % read bruker data into mrstruct - see bruker_read_model % 255ff try infoStruct = read_info_bruker(dirStr); catch error('tbx_fbi_bruker2nifti:read_info_bruker',... 'Could not read header information for file ''%s''.',job.infiles{ci}); end if isempty(infoStruct) error('tbx_fbi_bruker2nifti:read_info_bruker',... 'Could not read header information for file ''%s''.',job.infiles{ci}); end [mrStruct, errStr] = read_bruker(dirStr, infoStruct.byte_order); if ~isempty(errStr) error('tbx_fbi_bruker2nifti:read_bruker', 'File ''%s'': error ''%s''.', job.infiles{ci}, errStr); end if isempty(mrStruct) error('tbx_fbi_bruker2nifti:read_bruker',... 'No data found in file ''%s''.',job.infiles{ci}); end switch char(fieldnames(job.createsubdir)) case 'useoutdir' outdir = job.outdir{1}; case 'usefilepath' % assume [<subject>]/<seq#>/pdata/<seq1#>/2dseq path str = textscan(job.infiles{ci},'%s','delimiter',filesep); if numel(str{1}) >= 5 outdir = fullfile(job.outdir{1}, sprintf('%s_%s_%s', str{1}{end-4}, str{1}{end-3}, str{1}{end-1})); else outdir = fullfile(job.outdir{1}, sprintf('%s_%s', str{1}{end-3}, str{1}{end-1})); end case 'newsubdir' outdir = fullfile(job.outdir{1}, sprintf('%s%0*d', job.createsubdir.newsubdir, floor(log10(numel(job.infiles)))+1, ci)); end if ~exist(outdir,'dir') mkdir(outdir); end [imgs errstr] = mrstruct_to_nifti(mrStruct, fullfile(outdir,'image.nii'), job.dt); if ~isempty(errstr) error('tbx_fbi_bruker2nifti:mrstruct_to_nifti',errstr); end imgs = [imgs{:}]; out.images{ci} = {imgs.fname}'; end if nargout > 0 varargout{1} = out; end case 'vout' job = local_getjob(varargin{1}); % initialise empty cfg_dep array dep = repmat(cfg_dep,size(job.infiles)); % determine outputs, return cfg_dep array in variable dep for ci = 1:numel(job.infiles) dep(ci).sname = sprintf('Converted Images - Source File %d', ci); dep(ci).src_output = substruct('.','images','{}',{ci}); dep(ci).tgt_spec = cfg_findspec({{'filter','image','strtype','e'}}); end varargout{1} = dep; case 'check' if ischar(varargin{1}) subcmd = lower(varargin{1}); subjob = varargin{2}; str = ''; switch subcmd % implement checks, return status string in variable str otherwise cfg_message('unknown:check', ... 'Unknown check subcmd ''%s''.', subcmd); end varargout{1} = str; else cfg_message('ischar:check', 'Subcmd must be a string.'); end case 'defaults' if nargin == 2 varargout{1} = local_defs(varargin{1}); else local_defs(varargin{1:2}); end otherwise cfg_message('unknown:cmd', 'Unknown command ''%s''.', cmd); end else cfg_message('ischar:cmd', 'Cmd must be a string.'); end function varargout = local_defs(defstr, defval) persistent defs; if isempty(defs) % initialise defaults end if ischar(defstr) % construct subscript reference struct from dot delimited tag string tags = textscan(defstr,'%s', 'delimiter','.'); subs = struct('type','.','subs',tags{1}'); try cdefval = subsref(defs, subs); catch cdefval = []; cfg_message('defaults:noval', ... 'No matching defaults value ''%s'' found.', defstr); end if nargin == 1 varargout{1} = cdefval; else defs = subsasgn(defs, subs, defval); end else cfg_message('ischar:defstr', 'Defaults key must be a string.'); end function job = local_getjob(job) if ~isstruct(job) cfg_message('isstruct:job', 'Job must be a struct.'); end
github
philippboehmsturm/antx-master
vgtbx_config_Volumes.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/Volumes/vgtbx_config_Volumes.m
45,782
utf_8
2f279a3167e39ed2d3d812e69e9093c5
function opt = vgtbx_config_Volumes % Volumes toolbox %_______________________________________________________________________ % % This toolbox contains various helper functions to make image % manipulation within SPM5 more convenient. Help on each individual item % can be obtained by selecting the corresponding entry in the help menu. % % This toolbox is free but copyright software, distributed under the % terms of the GNU General Public Licence as published by the Free % Software Foundation (either version 2, as given in file % spm_LICENCE.man, or at your option, any later version). Further details % on "copyleft" can be found at http://www.gnu.org/copyleft/. % The toolbox consists of the files listed in its Contents.m file. % % The source code of this toolbox is available at % % http://sourceforge.net/projects/spmtools % % Please use the SourceForge forum and tracker system for comments, % suggestions, bug reports etc. regarding this toolbox. %_______________________________________________________________________ % % @(#) $Id: vgtbx_config_Volumes.m 539 2007-12-06 17:31:12Z glauche $ % This is the main config file for the SPM5 job management system. It % resides in fullfile(spm('dir'),'toolbox','Volumes'). rev='$Revision: 539 $'; addpath(fullfile(spm('dir'),'toolbox','Volumes')); % see how we are called - if no output argument, then start spm_jobman UI if nargout == 0 spm_jobman('interactive','','jobs.tools.vgtbx_Volumes'); return; end; %-Some input elements common to many functions %======================================================================= interp.type = 'menu'; interp.name = 'Interpolation'; interp.tag = 'interp'; interp.labels = {'Nearest neighbour','Trilinear','2nd Degree b-Spline',... '3rd Degree b-Spline','4th Degree b-Spline','5th Degree b-Spline',... '6th Degree b-Spline','7th Degree b-Spline','2nd Degree Sinc',... '3rd Degree Sinc','4th Degree Sinc','5th Degree Sinc',... '6th Degree Sinc','7th Degree Sinc'}; interp.values = {0,1,2,3,4,5,6,7,-2,-3,-4,-5,-6,-7}; interp.def = 'tools.vgtbx_Volumes.interp'; overwrite.type = 'menu'; overwrite.name = 'Overwrite existing Input/Output Files'; overwrite.tag = 'overwrite'; overwrite.labels = {'Yes', 'No'}; overwrite.values = {1, 0}; overwrite.def = 'tools.vgtbx_Volumes.overwrite'; graphics.type = 'menu'; graphics.name = 'Graphics output'; graphics.tag = 'graphics'; graphics.labels = {'Yes', 'No'}; graphics.values = {1, 0}; graphics.def = 'tools.vgtbx_Volumes.graphics'; %-input and output files %----------------------------------------------------------------------- swd.type = 'files'; swd.name = 'Output directory'; swd.tag = 'swd'; swd.filter = 'dir'; swd.num = [1 1]; swd.help = {['Files produced by this function will be written into this ' ... 'output directory']}; srcimgs.type = 'files'; srcimgs.name = 'Source Images'; srcimgs.tag = 'srcimgs'; srcimgs.filter = 'image'; srcimgs.num = [1 Inf]; srcimg.type = 'files'; srcimg.name = 'Source Image'; srcimg.tag = 'srcimg'; srcimg.filter = 'image'; srcimg.num = [1 1]; fname.type = 'entry'; fname.name = 'Output Filename'; fname.tag = 'fname'; fname.strtype = 's'; fname.num = [1 Inf]; fname.val = {'output.img'}; fname.help = {[... 'The output image is written to the selected working directory.']}; outimg.type = 'branch'; outimg.name = 'Output File & Directory'; outimg.tag = 'outimg'; outimg.val = {swd, fname}; outimg.help = {[... 'Specify a output filename and target directory.']}; prefix.type = 'entry'; prefix.name = 'Output Filename Prefix'; prefix.tag = 'prefix'; prefix.strtype = 's'; prefix.num = [1 Inf]; prefix.help = {['The output filename is constructed by prefixing the original filename ' ... 'with this prefix.']}; srcspm.type = 'files'; srcspm.name = 'Source SPM.mat'; srcspm.tag = 'srcspm'; srcspm.filter = 'mat'; srcspm.ufilter = '.*SPM.*\.mat'; srcspm.num = [1 1]; dtype.type = 'menu'; dtype.name = 'Data Type'; dtype.tag = 'dtype'; dtype.labels = {'SAME','UINT8 - unsigned char','INT16 - signed short','INT32 - signed int',... 'FLOAT - single prec. float','DOUBLE - double prec. float'}; dtype.values = {0,spm_type('uint8'),spm_type('int16'),spm_type('int32'),... spm_type('float32'),spm_type('float64')}; dtype.val = {0}; dtype.help = {'Data-type of output images. SAME indicates the same datatype as the original images.'}; %-Stats tools sub-menu %======================================================================= addpath(fullfile(spm('dir'),'toolbox','Volumes','Stats_Tools')); %-tbxvol_changeSPM %----------------------------------------------------------------------- oldpath.type = 'menu'; oldpath.name = 'Path Component to be replaced'; oldpath.tag = 'oldpath'; oldpath.labels = {'Determine and replace', 'Ask before replacing'}; oldpath.values = {'auto','ask'}; oldpath.help = {['The tool tries to guess which parts of the path names ' ... 'need to be replaced by comparing the path stored in ' ... 'SPM.swd with the current path to the SPM.mat file. '], ... ['This does not always work as expected, confirmation ' ... 'before replacement is strongly advised.']}; newpath.type = 'menu'; newpath.name = 'Path Component to be inserted'; newpath.tag = 'newpath'; newpath.labels = {'Determine and insert', 'Ask before inserting'}; newpath.values = {'auto','ask'}; newpath.help = {['The tool tries to quess which parts of the path names ' ... 'need to be replaced by comparing the path stored in ' ... 'SPM.swd with the current path to the SPM.mat file. '], ... ['This does not always work as expected, confirmation ' ... 'before replacement is strongly advised.']}; dpaths.type = 'branch'; dpaths.name = 'Data Files'; dpaths.tag = 'dpaths'; dpaths.val = {newpath,oldpath}; apaths.type = 'branch'; apaths.name = 'Analysis Files'; apaths.tag = 'apaths'; apaths.val = {newpath,oldpath}; bpaths.type = 'branch'; bpaths.name = 'Data&Analysis Files'; bpaths.tag = 'bpaths'; bpaths.val = {newpath,oldpath}; npaths.type = 'const'; npaths.name = 'None'; npaths.tag = 'npaths'; npaths.val = {0}; chpaths.type = 'choice'; chpaths.name = 'Paths to change'; chpaths.tag = 'chpaths'; chpaths.values ={dpaths, apaths, bpaths, npaths}; swap.type = 'menu'; swap.name = 'Change Byte Order Information for Mapped Images?'; swap.tag = 'swap'; swap.labels = {'Yes', 'No'}; swap.values ={1, 0}; swap.help = {['This option may be obsolete for SPM5. With SPM2-style ' ... 'analyses, byte order of an image was stored at the time ' ... 'statistics were run. If one later moved the SPM.mat and ' ... 'analysis files to a machine with different byte order, this ' ... 'was not realised by SPM.']}; changeSPM.type = 'branch'; changeSPM.name = 'Change SPM.mat Image Information'; changeSPM.tag = 'tbxvol_changeSPM'; changeSPM.prog = @tbxvol_changeSPM; changeSPM.val = {srcspm, chpaths, swap}; changeSPM.help = vgtbx_help2cell('tbxvol_changeSPM'); %-Correct error covariance components %----------------------------------------------------------------------- nfactor.type = 'menu'; nfactor.name = '# of Factor with unequal Variance'; nfactor.tag = 'nfactor'; nfactor.labels = {'Factor 1','Factor 2','Factor 3'}; nfactor.values = {2,3,4}; correct_ec_SPM.type = 'branch'; correct_ec_SPM.name = 'Correct Error Covariance components'; correct_ec_SPM.tag = 'tbxvol_correct_ec_SPM'; correct_ec_SPM.prog = @tbxvol_correct_ec_SPM; correct_ec_SPM.val = {srcspm nfactor}; correct_ec_SPM.help = vgtbx_help2cell('tbxvol_correct_ec_SPM'); %-Transform t maps %----------------------------------------------------------------------- option.type = 'menu'; option.name = 'Select output map'; option.tag = 'option'; option.labels = {'1-p', '-log(1-p)', ... 'correlation coefficient cc', 'effect size d'}; option.values = {1,2,3,4}; transform_t2x.type = 'branch'; transform_t2x.name = 'Transform t maps'; transform_t2x.tag = 'tbxvol_transform_t2x'; transform_t2x.prog = @tbxvol_transform_t2x; transform_t2x.vfiles = @vfiles_tbxvol_transform_t2x; transform_t2x.val = {srcimgs option}; transform_t2x.help = vgtbx_help2cell('tbxvol_transform_t2x'); %-Compute laterality index %----------------------------------------------------------------------- prefix.val = {'li_'}; laterality.type = 'branch'; laterality.name = 'Compute Laterality index'; laterality.tag = 'tbxvol_laterality'; laterality.prog = @tbxvol_laterality; laterality.vfiles = @vfiles_tbxvol_laterality; laterality.val = {srcimgs interp dtype prefix}; laterality.help = vgtbx_help2cell('tbxvol_laterality'); %-Analyse ResMS image and compute SNR for regions with different quality % of fit %----------------------------------------------------------------------- optsrcimg = srcimg; optsrcimg.num = [0 1]; optsrcimg.name = 'Brain mask image (optional)'; optsrcimg.tag = 'maskimg'; optsrcimg.val = {''}; dist.type = 'entry'; dist.name = 'Distance from mean'; dist.tag = 'dist'; dist.strtype = 'e'; dist.num = [1 1]; dist.def = 'tools.vgtbx_Volumes.analyse_resms.dist'; analyse_resms.type = 'branch'; analyse_resms.name = 'Analyse goodness of fit'; analyse_resms.tag = 'tbxvol_analyse_resms'; analyse_resms.prog = @tbxvol_analyse_resms; analyse_resms.vfiles = @vfiles_tbxvol_analyse_resms; analyse_resms.val = {srcspm optsrcimg dist graphics}; analyse_resms.help = vgtbx_help2cell('tbxvol_analyse_resms'); % Histogramm summary %----------------------------------------------------------------------- maskimgs = srcimgs; maskimgs.name = 'Mask image(s)'; maskimgs.tag = 'maskimgs'; subject.type = 'branch'; subject.name = 'Subject'; subject.tag = 'subjects'; subject.val = {srcimgs, maskimgs}; subjects.type = 'repeat'; subjects.name = 'Subjects'; subjects.tag = 'subjects'; subjects.num = [1 Inf]; subjects.values = {subject}; bins.type = 'entry'; bins.name = 'Edges of histogramm bins'; bins.tag = 'bins'; bins.strtype = 'e'; bins.num = [1 Inf]; bins.help = {['Enter the edges of histogramm bins. See ''help histc'' '... 'for details.']}; hist_summary.type = 'branch'; hist_summary.name = 'Histogramm summary'; hist_summary.tag = 'tbxvol_hist_summary'; hist_summary.prog = @tbxvol_hist_summary; hist_summary.val = {subjects bins}; hist_summary.help = vgtbx_help2cell('tbxvol_hist_summary'); %-assemble choice for Stats Tools %----------------------------------------------------------------------- Stats_Tools.type = 'choice'; Stats_Tools.name = 'Stats Tools'; Stats_Tools.tag = 'Stats_Tools'; Stats_Tools.values = {changeSPM correct_ec_SPM transform_t2x laterality ... analyse_resms hist_summary}; %-Multiple Volumes sub-menu %======================================================================= addpath(fullfile(spm('dir'),'toolbox','Volumes','Multiple_Volumes')); % Taken from spm_config_norm %_______________________________________________________________________ smosrc.type = 'entry'; smosrc.name = 'Source Image Smoothing'; smosrc.tag = 'smosrc'; smosrc.strtype = 'e'; smosrc.num = [1 1]; smosrc.def = 'normalise.estimate.smosrc'; smosrc.help = {[... 'Smoothing to apply to a copy of the source image. ',... 'The template and source images should have approximately ',... 'the same smoothness. Remember that the templates supplied ',... 'with SPM have been smoothed by 8mm, and that smoothnesses ',... 'combine by Pythagoras'' rule.']}; %------------------------------------------------------------------------ smoref.type = 'entry'; smoref.name = 'Template Image Smoothing'; smoref.tag = 'smoref'; smoref.strtype = 'e'; smoref.num = [1 1]; smoref.def = 'normalise.estimate.smoref'; smoref.help = {[... 'Smoothing to apply to a copy of the template image. ',... 'The template and source images should have approximately ',... 'the same smoothness. Remember that the templates supplied ',... 'with SPM have been smoothed by 8mm, and that smoothnesses ',... 'combine by Pythagoras'' rule.']}; %------------------------------------------------------------------------ regtype.type = 'menu'; regtype.name = 'Affine Regularisation'; regtype.tag = 'regtype'; regtype.labels = {'ICBM space template', 'Average sized template','No regularisation'}; regtype.values = {'mni','subj','none'}; regtype.def = 'normalise.estimate.regtype'; regtype.help = {[... 'Affine registration into a standard space can be made more robust by ',... 'regularisation (penalising excessive stretching or shrinking). The ',... 'best solutions can be obtained by knowing the approximate amount of ',... 'stretching that is needed (e.g. ICBM templates are slightly bigger ',... 'than typical brains, so greater zooms are likely to be needed). ',... 'If registering to an image in ICBM/MNI space, then choose the first ',... 'option. If registering to a template that is close in size, then ',... 'select the second option. If you do not want to regularise, then ',... 'choose the third.']}; %------------------------------------------------------------------------ sparams.type = 'files'; sparams.name = 'Initial normalisation params'; sparams.tag = 'sparams'; sparams.filter = 'mat'; sparams.ufilter = '.*sn.mat$'; sparams.num = [0 Inf]; %------------------------------------------------------------------------ template.type = 'files'; template.name = 'Template Image'; template.tag = 'template'; template.filter = 'image'; template.num = [1 Inf]; p1 = [... 'Specify a template image to match the source image with. ',... 'The contrast in the template must be similar to that of the ',... 'source image in order to achieve a good registration. It is ',... 'also possible to select more than one template, in which case ',... 'the registration algorithm will try to find the best linear ',... 'combination of these images in order to best model the intensities ',... 'in the source image.']; p2 = ['The template(s) will be used for the first iteration of within-group' ... ' normalisation. Further iterations will use an average version of' ... ' the normalised images as template.']; template.help = {p1, '', p2}; %------------------------------------------------------------------------ weight.type = 'files'; weight.name = 'Template Weighting Image'; weight.tag = 'weight'; weight.filter = 'image'; weight.num = [0 1]; weight.def = 'normalise.estimate.weight'; p1 = [... 'Applies a weighting mask to the template(s) during the parameter ',... 'estimation. With the default brain mask, weights in and around the ',... 'brain have values of one whereas those clearly outside the brain are ',... 'zero. This is an attempt to base the normalization purely upon ',... 'the shape of the brain, rather than the shape of the head (since ',... 'low frequency basis functions can not really cope with variations ',... 'in skull thickness).']; p2 = [... 'The option is now available for a user specified weighting image. ',... 'This should have the same dimensions and mat file as the template ',... 'images, with values in the range of zero to one.']; weight.help = {p1,'',p2}; %------------------------------------------------------------------------ stempl.type = 'branch'; stempl.name = 'Initial normalisation template'; stempl.tag = 'stempl'; stempl.val = {template, weight}; %------------------------------------------------------------------------ cutoff.type = 'entry'; cutoff.name = 'Nonlinear Frequency Cutoff'; cutoff.tag = 'cutoff'; cutoff.strtype = 'e'; cutoff.num = [1 1]; cutoff.def = 'normalise.estimate.cutoff'; cutoff.help = {[... 'Cutoff of DCT bases. Only DCT bases of periods longer than the ',... 'cutoff are used to describe the warps. The number used will ',... 'depend on the cutoff and the field of view of the template image(s).']}; %------------------------------------------------------------------------ nits.type = 'entry'; nits.name = 'Nonlinear Iterations'; nits.tag = 'nits'; nits.strtype = 'w'; nits.num = [1 1]; nits.def = 'normalise.estimate.nits'; nits.help = {'Number of iterations of nonlinear warping performed.'}; %------------------------------------------------------------------------ reg.type = 'entry'; reg.name = 'Nonlinear Regularisation'; reg.tag = 'reg'; reg.strtype = 'e'; reg.num = [1 1]; reg.def = 'normalise.estimate.reg'; reg.help = {[... 'The amount of regularisation for the nonlinear part of the spatial ',... 'normalisation. ',... 'Pick a value around one. However, if your normalized images appear ',... 'distorted, then it may be an idea to increase the amount of ',... 'regularization (by an order of magnitude) - or even just use an affine ',... 'normalization. ',... 'The regularization influences the smoothness of the deformation ',... 'fields.']}; %------------------------------------------------------------------------ wtsrc.type = 'files'; wtsrc.name = 'Source Weighting Image'; wtsrc.tag = 'wtsrc'; wtsrc.filter = 'image'; wtsrc.num = [0 1]; wtsrc.val = {{}}; wtsrc.help = {[... 'Optional weighting images (consisting of pixel ',... 'values between the range of zero to one) to be used for registering ',... 'abnormal or lesioned brains. These images should match the dimensions ',... 'of the image from which the parameters are estimated, and should contain ',... 'zeros corresponding to regions of abnormal tissue.']}; %------------------------------------------------------------------------ iteration.type = 'branch'; iteration.name = 'Iteration Options'; iteration.tag = 'iteration'; iteration.val = {smosrc,smoref,regtype,cutoff,nits,reg}; iteration.help = {'Various settings for estimating warps.'}; %------------------------------------------------------------------------ iterations.type = 'repeat'; iterations.name = 'Estimation Iterations'; iterations.tag = 'iterations'; iterations.values = {iteration}; iterations.num = [1 Inf]; %------------------------------------------------------------------------ starting.type = 'choice'; starting.name = 'Initial Normalisation'; starting.tag = 'starting'; starting.values = {stempl, sparams}; %------------------------------------------------------------------------ eoptions.type = 'branch'; eoptions.name = 'Estimation Options'; eoptions.tag = 'eoptions'; eoptions.val = {starting,iterations}; %------------------------------------------------------------------------ source.type = 'files'; source.name = 'Source Images'; source.tag = 'source'; source.num = [1 Inf]; source.filter = 'image'; source.help = {[... 'The images that are warped to match the template(s). The result is ',... 'a set of warps, which can be applied to this image, or any other ',... 'image that is in register with it.']}; %------------------------------------------------------------------------ subj.type = 'branch'; subj.name = 'Subjects'; subj.tag = 'subj'; subj.val = {source, wtsrc}; subj.help = {'Data for all subjects. The same parameters are used within subject.'}; %------------------------------------------------------------------------ normalise.type = 'branch'; normalise.name = 'Group Normalise'; normalise.tag = 'tbxvol_normalise'; normalise.val = {subj,eoptions}; normalise.prog = @tbxvol_normalise; normalise.vfiles = @vfiles_tbxvol_normalise; normalise.modality = {'FMRI','PET','VBM'}; p1 = [... 'This module spatially (stereotactically) normalizes MRI, PET or SPECT ',... 'images into a standard space defined by some ideal model or template ',... 'image[s]. The template images supplied with SPM conform to the space ',... 'defined by the ICBM, NIH P-20 project, and approximate that of the ',... 'the space described in the atlas of Talairach and Tournoux (1988). ',... 'The transformation can also be applied to any other image that has ',... 'been coregistered with these scans.']; p2 = [... 'Generally, the algorithms work by minimising the sum of squares ',... 'difference between the image which is to be normalised, and a linear ',... 'combination of one or more template images. For the least squares ',... 'registration to produce an unbiased estimate of the spatial ',... 'transformation, the image contrast in the templates (or linear ',... 'combination of templates) should be similar to that of the image from ',... 'which the spatial normalization is derived. The registration simply ',... 'searches for an optimum solution. If the starting estimates are not ',... 'good, then the optimum it finds may not find the global optimum.']; p3 = [... 'The first step of the normalization is to determine the optimum ',... '12-parameter affine transformation. Initially, the registration is ',... 'performed by matching the whole of the head (including the scalp) to ',... 'the template. Following this, the registration proceeded by only ',... 'matching the brains together, by appropriate weighting of the template ',... 'voxels. This is a completely automated procedure (that does not ',... 'require ``scalp editing'') that discounts the confounding effects of ',... 'skull and scalp differences. A Bayesian framework is used, such that ',... 'the registration searches for the solution that maximizes the a ',... 'posteriori probability of it being correct /* \cite{ashburner97b} */. i.e., it maximizes the ',... 'product of the likelihood function (derived from the residual squared ',... 'difference) and the prior function (which is based on the probability ',... 'of obtaining a particular set of zooms and shears).']; p4 = [... 'The affine registration is followed by estimating nonlinear deformations, ',... 'whereby the deformations are defined by a linear combination of three ',... 'dimensional discrete cosine transform (DCT) basis functions /* \cite{ashburner99a} */. The default ',... 'options result in each of the deformation fields being described by 1176',... 'parameters, where these represent the coefficients of the deformations in ',... 'three orthogonal directions. The matching involved simultaneously ',... 'minimizing the membrane energies of the deformation fields and the ',... 'residual squared difference between the images and template(s).']; p5 = [... 'The primarily use is for stereotactic normalization to facilitate inter-subject ',... 'averaging and precise characterization of functional anatomy /* \cite{ashburner97bir} */. It is ',... 'not necessary to spatially normalise the data (this is only a ',... 'pre-requisite for intersubject averaging or reporting in the ',... 'Talairach space). If you wish to circumnavigate this step (e.g. if ',... 'you have single slice data or do not have an appropriate high ',... 'resolution MRI scan) simply specify where you think the anterior ',... 'commissure is with the ORIGIN in the header of the first scan ',... '(using the ''Display'' facility) and proceed directly to ''Smoothing''',... 'or ''Statistics''.']; p6 = [... 'All normalized *.img scans are written to the same subdirectory as ',... 'the original *.img, prefixed with a ''w'' (i.e. w*.img). The details ',... 'of the transformations are displayed in the results window, and the ',... 'parameters are saved in the "*_sn.mat" file.']; opts.help = {p1,'',... p2,'',p3,'',p4,'',... p5,'',... p6}; %------------------------------------------------------------------------ %-tbxvol_combine %----------------------------------------------------------------------- voxsz.type = 'entry'; voxsz.name = 'Output Image Voxel Size'; voxsz.tag = 'voxsz'; voxsz.strtype = 'e'; voxsz.num = [1 3]; prefix.val = {'C'}; combine.type = 'branch'; combine.name = 'Combine Volumes'; combine.tag = 'tbxvol_combine'; combine.prog = @tbxvol_combine; combine.val = {srcimgs, voxsz, interp, dtype, prefix}; combine.help = vgtbx_help2cell('tbxvol_combine'); %-Create/Apply masks %----------------------------------------------------------------------- maskand.type = 'const'; maskand.name = 'AND'; maskand.tag = 'maskpredef'; maskand.val = {'and'}; maskand.help = {'Mask expression ''(i1~=0) & ... & (iN ~= 0)'''}; maskor.type = 'const'; maskor.name = 'OR'; maskor.tag = 'maskpredef'; maskor.val = {'or'}; maskor.help = {'Mask expression ''(i1~=0) | ... | (iN ~= 0)'''}; masknand.type = 'const'; masknand.name = 'NAND'; masknand.tag = 'maskpredef'; masknand.val = {'nand'}; masknand.help = {'Mask expression ''~((i1~=0) & ... & (iN ~= 0))'''}; masknor.type = 'const'; masknor.name = 'NOR'; masknor.tag = 'maskpredef'; masknor.val = {'nor'}; masknor.help = {'Mask expression ''~((i1~=0) | ... | (iN ~= 0))'''}; maskcustom.type = 'entry'; maskcustom.name = 'Custom Mask Expression'; maskcustom.tag = 'maskcustom'; maskcustom.strtype = 's'; maskcustom.num = [1 Inf]; maskcustom.help = {'Enter a valid expression for spm_imcalc.'}; mtype.type = 'choice'; mtype.name = 'Mask Type'; mtype.tag = 'mtype'; mtype.values = {maskand maskor masknand masknor maskcustom}; msrcimgs = srcimgs; msrcimgs.name = 'Source Images for New Mask'; msrcimgs.num = [1 Inf]; moutimg = outimg; moutimg.name = 'Mask Image Name & Directory'; maskdef.type = 'branch'; maskdef.name = 'Create New Mask'; maskdef.tag = 'maskdef'; maskdef.val = {msrcimgs mtype moutimg}; msrcimg = srcimg; msrcimg.name = 'Mask Image'; maskspec.type = 'choice'; maskspec.name = 'Mask Specification'; maskspec.tag = 'maskspec'; maskspec.values = {msrcimg maskdef}; maskspec.help = {'Specify an existing mask image or a set of images ' ... 'that will be used to create a mask image.'}; scope.type = 'menu'; scope.name = 'Scope of Mask'; scope.tag = 'scope'; scope.labels = {'Inclusive','Exclusive'}; scope.values = {'i','e'}; scope.help = {['Specify which parts of the images should be kept: parts ' ... 'where the mask image is different from zero (inclusive) ' ... 'or parts where the mask image is zero (exclusive).']}; space.type = 'menu'; space.name = 'Space of Masked Images'; space.tag = 'space'; space.labels = {'Object','Mask'}; space.values = {'object','mask'}; space.help = {['Specify whether the masked images should be written with ' ... 'orientation and voxel size of the original images or of ' ... 'the mask image.']}; prefix.val = {'M'}; nanmask.type = 'menu'; nanmask.name = 'Zero/NaN Masking'; nanmask.tag = 'nanmask'; nanmask.labels = {'No implicit zero mask','Implicit zero mask','NaNs should be zeroed'}; nanmask.values = {0,1,-1}; nanmask.def = 'imcalc.mask'; %nanmask.val = {0}; nanmask.help = {[... 'For data types without a representation of NaN, implicit zero masking ',... 'assummes that all zero voxels are to be treated as missing, and ',... 'treats them as NaN. NaN''s are written as zero (by spm_write_plane), ',... 'for data types without a representation of NaN.']}; maskthresh.type = 'entry'; maskthresh.name = 'Threshold for masking'; maskthresh.tag = 'maskthresh'; maskthresh.strtype = 'e'; maskthresh.num = [1 1]; maskthresh.def = 'tools.vgtbx_Volumes.create_mask.maskthresh'; maskthresh.help = {['Sometimes zeroes are represented as non-zero values ' ... 'due to rounding errors (especially in binary masks). Specify a small non-zero ' ... 'value for zero masking in this case.']}; srcspec.type = 'branch'; srcspec.name = 'Apply Created Mask'; srcspec.tag = 'srcspec'; srcspec.val = {srcimgs, scope, space, prefix, interp, nanmask, maskthresh, ... overwrite}; srcspec.help = {'Specify images which are to be masked.'}; srcspecs.type = 'repeat'; srcspecs.name = 'Apply Masks'; srcspecs.tag = 'unused'; srcspecs.values = {srcspec}; create_mask.type = 'branch'; create_mask.name = 'Create and Apply Masks'; create_mask.tag = 'tbxvol_create_mask'; create_mask.prog = @tbxvol_create_mask; create_mask.vfiles = @vfiles_tbxvol_create_mask; create_mask.val = {maskspec, srcspecs}; create_mask.help = vgtbx_help2cell('tbxvol_create_mask'); %-Split volumes %----------------------------------------------------------------------- sliceorder.type = 'menu'; sliceorder.name = 'Slice/Volume Order'; sliceorder.tag = 'sliceorder'; sliceorder.labels = {'Vol1 Slice1..N,...VolM Slice1..N',... 'VolM Slice1..N,...Vol1 Slice1..N',... 'Slice1 Vol1..M,...SliceN Vol1..M',... 'Slice1 VolM..1,...SliceN VolM..1'}; sliceorder.values = {'volume','volume_vrev','slice','slice_vrev'}; noutput.type = 'entry'; noutput.name = '#Output Images'; noutput.tag = 'noutput'; noutput.num = [1 1]; noutput.strtype = 'i'; thickcorr.type = 'menu'; thickcorr.name = 'Correct Slice Thickness'; thickcorr.tag = 'thickcorr'; thickcorr.labels = {'Yes',... 'No' }; thickcorr.values = {1,0}; thickcorr.help = {['If set to ''yes'', the slice thickness is ' ... 'multiplied by the #output images.']}; split.type = 'branch'; split.name = 'Split Volumes'; split.tag = 'tbxvol_split'; split.prog = @tbxvol_split; split.vfiles=@vfiles_tbxvol_split; split.val = {srcimgs sliceorder noutput thickcorr}; split.help = vgtbx_help2cell('tbxvol_split'); %-Spike detection %----------------------------------------------------------------------- spikethr.type = 'entry'; spikethr.name = 'Threshold (in standard deviations)'; spikethr.tag = 'spikethr'; spikethr.num = [1 1]; spikethr.strtype = 'e'; spike.type = 'branch'; spike.name = 'Detect abnormal slices'; spike.tag = 'tbxvol_spike'; spike.prog = @tbxvol_spike; spike.val = {srcimgs spikethr}; spike.help = vgtbx_help2cell('tbxvol_spike'); %-Extract subvolume %----------------------------------------------------------------------- bbox.type = 'entry'; bbox.name = 'Bounding Box for Extracted Image'; bbox.tag = 'bbox'; bbox.num = [1 6]; bbox.strtype = 'i'; bbox.help = {'Specify the bounding box in voxel coordinates of ' ... 'the original image: X1 X2 Y1 Y2 Z1 Z2.'}; prefix.val = {'E'}; extract_subvol.type = 'branch'; extract_subvol.name = 'Extract Subvolume'; extract_subvol.tag = 'tbxvol_extract_subvol'; extract_subvol.prog = @tbxvol_extract_subvol; extract_subvol.val = {srcimgs bbox prefix}; extract_subvol.help = vgtbx_help2cell('tbxvol_extract_subvol'); %-assemble choice for Multiple Volumes %----------------------------------------------------------------------- Multiple_Volumes.type = 'choice'; Multiple_Volumes.name = 'Multiple Volumes'; Multiple_Volumes.tag = 'Multiple_Volumes'; % leave correct_ec_SPM here for historical reasons Multiple_Volumes.values = {correct_ec_SPM combine create_mask extract_subvol ... normalise split spike}; %-Single Volumes sub-menu %======================================================================= addpath(fullfile(spm('dir'),'toolbox','Volumes','Single_Volumes')); %-Extract data %----------------------------------------------------------------------- src.type = 'choice'; src.name = 'Data Source'; src.tag = 'src'; src.values = {srcspm srcimgs}; src.help = {['Data can be sampled from raw images, or from an SPM analysis. ' ... 'In case of an SPM analysis, both fitted and raw data will ' ... 'be sampled.']}; avg.type = 'menu'; avg.name = 'Average'; avg.tag = 'avg'; avg.labels = {'No averaging',... 'Average over voxels' }; avg.values = {'none','vox'}; avg.help = {['If set to ''yes'', only averages over the voxel values ' ... 'of each image are returned.']}; avg.def = 'defaults.tools.vgtbx_Volumes.extract.avg'; roistart.type = 'entry'; roistart.name = 'Start Point (in mm)'; roistart.tag = 'roistart'; roistart.num = [3 1]; roistart.strtype = 'e'; roiend.type = 'entry'; roiend.name = 'End Point (in mm)'; roiend.tag = 'roiend'; roiend.num = [3 1]; roiend.strtype = 'e'; roistep.type = 'entry'; roistep.name = 'Sampling Distance along Line (in mm)'; roistep.tag = 'roistep'; roistep.num = [1 1]; roistep.strtype = 'e'; roiline.type = 'branch'; roiline.name = 'Line (Start and End Point)'; roiline.tag = 'roiline'; roiline.val = {roistart roiend roistep}; roiline.help = {['Specify a line in 3D space from a start point to an ' ... 'end point. The image is sampled along this line according ' ... 'to the specified sampling distance.'], ['Note that the sampling ' ... 'positions are computed in mm space and then transformed ' ... 'into the voxel space of the image. This may result in a ' ... 'sparse sampling of the image, if the voxel size is smaller ' ... 'than the sampling distance.'] }; roilinep1.type = 'entry'; roilinep1.name = 'First Point (in mm)'; roilinep1.tag = 'roilinep1'; roilinep1.num = [3 1]; roilinep1.strtype = 'e'; roilinep2.type = 'entry'; roilinep2.name = 'Second Point (in mm)'; roilinep2.tag = 'roilinep2'; roilinep2.num = [3 1]; roilinep2.strtype = 'e'; roilinecoords.type = 'entry'; roilinecoords.name = 'Point List of Line Coordinates'; roilinecoords.tag = 'roilinecoords'; roilinecoords.num = [1 Inf]; roilinecoords.strtype = 'e'; roilineparam.type = 'branch'; roilineparam.name = 'Line (2 Points on Line and Parameters in Line Coords)'; roilineparam.tag = 'roilineparam'; roilineparam.val = {roilinep1 roilinep2 roilinecoords}; roilineparam.help = {['Specify a line in 3D space going through 2 points. ' ... 'The image is sampled along this line according ' ... 'to the specified line coordinates, starting with zero '... 'at the first point. Spacing between line coordinates '... 'can be variable.'],... ['The convention for line coordinates is that negative ' ... 'values run from P1 towards P2, while positive values ' ... 'run from P1 away from P2.'],... ['Note that the sampling ' ... 'positions are computed in mm space and then transformed ' ... 'into the voxel space of the image. This may result in a ' ... 'sparse sampling of the image, if the voxel size is smaller ' ... 'than the sampling distance.'] }; roicent.type = 'entry'; roicent.name = 'Centre Point (in mm)'; roicent.tag = 'roicent'; roicent.num = [3 1]; roicent.strtype = 'e'; roirad.type = 'entry'; roirad.name = 'Radius (in mm)'; roirad.tag = 'roirad'; roirad.num = [1 1]; roirad.strtype = 'e'; roisphere.type = 'branch'; roisphere.name = 'Sphere'; roisphere.tag = 'roisphere'; roisphere.val = {roicent roirad}; roisphere.help = {['Specify a sphere with centre and radius in mm coordinates.' ... 'The actual sampling positions are computed in voxel ' ... 'space, and therefore a contiguous sampling of the ' ... 'specified sphere is guaranteed.']}; roilist.type = 'entry'; roilist.name = 'Point List (in mm)'; roilist.tag = 'roilist'; roilist.num = [3 Inf]; roilist.strtype = 'e'; roilist.help = {['Specify a list of mm positions to be sampled. Note, that ' ... 'this may sample a volume in a non-contiguous way, if the ' ... 'positions do not correspond 1-to-1 to voxel positions.']}; roispec.type = 'repeat'; roispec.name = 'ROI Specification'; roispec.tag = 'roispec'; roispec.values = {srcimg roiline roilineparam roisphere roilist}; roispec.num = [1 Inf]; roispec.help = {['A region of interest can be specified by an image file or ' ... 'a list of (mm)-positions. If an image file is given, data ' ... 'is extracted for all non-zero voxels in the region of ' ... 'interest.']}; extract.type = 'branch'; extract.name = 'Extract Data from ROI'; extract.tag = 'tbxvol_extract'; extract.prog = @tbxvol_extract; extract.val = {src roispec avg interp}; extract.help = vgtbx_help2cell('tbxvol_extract'); %-Flip volumes %----------------------------------------------------------------------- flipdir.type = 'menu'; flipdir.name = 'Flip Direction (Voxel Space)'; flipdir.tag = 'flipdir'; flipdir.labels = {'X', 'Y', 'Z'}; flipdir.values = {1, 2, 3}; prefix.val = {'F'}; flip.type = 'branch'; flip.name = 'Flip Volumes'; flip.tag = 'tbxvol_flip'; flip.prog = @tbxvol_flip; flip.val = {srcimgs flipdir prefix overwrite}; flip.vfiles = @vfiles_tbxvol_flip; flip.help = vgtbx_help2cell('tbxvol_flip'); %-Image integrals %----------------------------------------------------------------------- get_integrals.type = 'branch'; get_integrals.name = 'Image integrals'; get_integrals.tag = 'tbxvol_get_integrals'; get_integrals.prog = @tbxvol_get_integrals; get_integrals.val = {srcimgs}; get_integrals.help = vgtbx_help2cell('tbxvol_get_integrals'); %-Intensity histogram %----------------------------------------------------------------------- prefix.val = {'H'}; histogramm.type = 'branch'; histogramm.name = 'Histogramm Thresholding'; histogramm.tag = 'tbxvol_histogramm'; histogramm.prog = @tbxvol_histogramm; histogramm.val = {srcimg prefix overwrite}; histogramm.help = vgtbx_help2cell('tbxvol_histogramm'); %-(De)interleave volumes %----------------------------------------------------------------------- interleaved.type = 'const'; interleaved.name = 'Interleaved'; interleaved.tag = 'interleaved'; interleaved.val = {0}; userdef.type = 'entry'; userdef.name = 'User Defined'; userdef.tag = 'userdef'; userdef.num = [1 Inf]; userdef.strtype = 'i'; sliceorder = []; % clear previous instance sliceorder.type = 'choice'; sliceorder.name = 'Slice Order'; sliceorder.tag = 'sliceorder'; sliceorder.values = {interleaved userdef}; prefix.val = {'I'}; interleave.type = 'branch'; interleave.name = '(De)Interleave Volumes'; interleave.tag = 'tbxvol_interleave'; interleave.prog = @tbxvol_interleave; interleave.val = {srcimgs sliceorder prefix overwrite}; interleave.help = vgtbx_help2cell('tbxvol_interleave'); %-Replace slice %----------------------------------------------------------------------- repslice.type = 'entry'; repslice.name = 'Slice to Replace'; repslice.tag = 'repslice'; repslice.num = [1 1]; repslice.strtype = 'i'; prefix.val = {'R'}; replace_slice.type = 'branch'; replace_slice.name = 'Replace Slice'; replace_slice.tag = 'tbxvol_replace_slice'; replace_slice.prog = @tbxvol_replace_slice; replace_slice.val = {srcimg repslice prefix overwrite}; replace_slice.help = vgtbx_help2cell('tbxvol_replace_slice'); %-Rescale images %----------------------------------------------------------------------- scale.type = 'entry'; scale.name = 'New Scaling Factor'; scale.tag = 'scale'; scale.num = [1 1]; scale.strtype = 'e'; scale.help = {['Set the new scaling factor. To determine this value from ' ... 'your image series, set this field to NaN.']}; offset.type = 'entry'; offset.name = 'New Intensity Offset'; offset.tag = 'offset'; offset.num = [1 1]; offset.strtype = 'e'; offset.def = 'tools.vgtbx_Volumes.tbxvol_rescale.offset'; prefix.val = {'S'}; rescale.type = 'branch'; rescale.name = 'Rescale Images'; rescale.tag = 'tbxvol_rescale'; rescale.prog = @tbxvol_rescale; rescale.val = {srcimgs scale offset dtype prefix overwrite}; rescale.help = vgtbx_help2cell('tbxvol_rescale'); %-Rescale images %----------------------------------------------------------------------- oldscale.type = 'entry'; oldscale.name = 'Old intensity range'; oldscale.tag = 'oldscale'; oldscale.num = [1 2]; oldscale.strtype = 'e'; oldscale.help = {['Original data intensity scaling. To derive min/max' ... ' from the data, set the first or second entry to Inf.']}; newscale.type = 'entry'; newscale.name = 'New intensity range'; newscale.tag = 'newscale'; newscale.num = [1 2]; newscale.strtype = 'e'; newscale.help = {'Set min/max value for new intensity range.'}; prefix.val = {'S'}; rescale_min_max.type = 'branch'; rescale_min_max.name = 'Rescale Images to [min max]'; rescale_min_max.tag = 'tbxvol_rescale_min_max'; rescale_min_max.prog = @tbxvol_rescale_min_max; rescale_min_max.vfiles = @vfiles_tbxvol_rescale_min_max; rescale_min_max.val = {srcimgs oldscale newscale prefix}; rescale_min_max.help = vgtbx_help2cell('tbxvol_rescale_min_max'); %-Unwrap volumes %----------------------------------------------------------------------- npix.type = 'entry'; npix.name = '#pixels to Unwrap'; npix.tag = 'npix'; npix.num = [1 1]; npix.strtype = 'i'; wrapdir.type = 'menu'; wrapdir.name = 'Wrap Direction (Voxel Space)'; wrapdir.tag = 'wrapdir'; wrapdir.labels = {'X', 'Y', 'Z'}; wrapdir.values = {1, 2, 3}; cor_orig.type = 'menu'; cor_orig.name = 'Correct Origin of Wrapped Images'; cor_orig.tag = 'cor_orig'; cor_orig.labels = {'Yes', 'No'}; cor_orig.values = {1, 0}; cor_orig.def = 'tools.vgtbx_Volumes.tbxvol_unwrap.cor_orig'; prefix.val = {'U'}; unwrap.type = 'branch'; unwrap.name = 'Unwrap Volumes'; unwrap.tag = 'tbxvol_unwrap'; unwrap.prog = @tbxvol_unwrap; unwrap.val = {srcimgs cor_orig npix wrapdir prefix overwrite}; unwrap.help = vgtbx_help2cell('tbxvol_unwrap'); %-assemble choice for Single Volumes %----------------------------------------------------------------------- Single_Volumes.type = 'choice'; Single_Volumes.name = 'Single Volumes'; Single_Volumes.tag = 'Single_Volumes'; Single_Volumes.values = {extract flip get_integrals histogramm interleave replace_slice ... rescale rescale_min_max unwrap}; %-Main menu level %======================================================================= opt.type = 'repeat'; opt.name = 'Volume handling utilities'; opt.tag = 'vgtbx_Volumes'; opt.values = {Single_Volumes Multiple_Volumes Stats_Tools}; opt.num = [0 Inf]; opt.help = vgtbx_help2cell(mfilename); %-Add defaults %======================================================================= global defaults; % Overwrite images %----------------------------------------------------------------------- defaults.tools.vgtbx_Volumes.overwrite = 1; % Graphics output %----------------------------------------------------------------------- defaults.tools.vgtbx_Volumes.graphics = 1; % Nearest Neighbour interpolation %----------------------------------------------------------------------- defaults.tools.vgtbx_Volumes.interp = 0; % Distance from ResMS mean %----------------------------------------------------------------------- defaults.tools.vgtbx_Volumes.analyse_resms.dist = .1; % Average extracted data %----------------------------------------------------------------------- defaults.tools.vgtbx_Volumes.extract.avg = 'none'; % Rescale offset %----------------------------------------------------------------------- defaults.tools.vgtbx_Volumes.tbxvol_rescale.offset = 0; % Correct origin when unwrapping %----------------------------------------------------------------------- defaults.tools.vgtbx_Volumes.tbxvol_unwrap.cor_orig = 1; % Correct origin when unwrapping %----------------------------------------------------------------------- defaults.tools.vgtbx_Volumes.create_mask.maskthresh = eps; function vfiles = vfiles_tbxvol_split(job) vfiles = {}; for l = 1:numel(job.srcimgs) [p n e v] = fileparts(job.srcimgs{l}); c = findstr(e, ','); if ~isempty(c) e = e(1:c-1); end; fs = sprintf('_%%0%dd',ceil(log10(job.noutput))); for k = 1:job.noutput vfiles{end+1} = fullfile(p,[n sprintf(fs,k) e ',1' v]); end; end; function vfiles = vfiles_tbxvol_create_mask(job) vfiles = {}; if isfield(job.maskspec,'maskdef') [p n e v] = fileparts(job.maskspec.maskdef.outimg.fname); c = findstr(e, ','); if ~isempty(c) e = e(1:c-1); end; vfiles{end+1} = fullfile(job.maskspec.maskdef.outimg.swd{1}, [n e ',1' v]); end; for l=1:numel(job.srcspec) for k=1:numel(job.srcspec(l).srcimgs); [p n e v] = fileparts(job.srcspec(l).srcimgs{k}); c = findstr(e, ','); if ~isempty(c) e = e(1:c-1); end; vfiles{end+1} = fullfile(p,[job.srcspec(l).prefix ... lower(job.srcspec(l).scope) n e ',1' v]); end; end; function vfiles = vfiles_tbxvol_transform_t2x(job) for k = 1:numel(job.srcimgs) [pth nm xt vr] = spm_fileparts(job.srcimgs{k}); switch job.option case 1 nm2 = 'P'; case 2 nm2 = 'logP'; case 3 nm2 = 'R'; case 4 nm2 = 'D'; end % name should follow convention spm?_0*.img if strcmp(nm(1:3),'spm') & strcmp(nm(4:6),'T_0') num = str2num(nm(length(nm)-2:length(nm))); vfiles{k} = fullfile(pth,[nm(1:3) nm2 nm(5:end) xt ',1']); else vfiles{k} = fullfile(pth,['spm' nm2 '_' nm xt ',1']); end end; function vfiles = vfiles_tbxvol_laterality(job) for k = 1:numel(job.srcimgs) [pth nm xt vr] = spm_fileparts(job.srcimgs{k}); vfiles{k} = fullfile(pth, [job.prefix nm xt ',1']); end; function vfiles = vfiles_tbxvol_rescale_min_max(job) for k = 1:numel(job.srcimgs) [pth nm xt vr] = spm_fileparts(job.srcimgs{k}); vfiles{k} = fullfile(pth, [job.prefix nm xt ',1']); end; function vfiles = vfiles_tbxvol_flip(job) vfiles = job.srcimgs; if ~job.overwrite dirs = 'XYZ'; for k=1:numel(job.srcimgs) [p n e v] = fileparts(job.srcimgs{k}); vfiles{k} = fullfile(p,[job.prefix dirs(job.flipdir) n e v]); end; end; function vf = vfiles_tbxvol_normalise(varargin) job = varargin{1}; vf = cell(numel(job.subj.source)); for i=1:numel(job.subj.source), [pth,nam,ext,num] = spm_fileparts(deblank(job.subj.source{i})); vf{i} = fullfile(pth,[nam,'_gr_sn.mat']); end;
github
philippboehmsturm/antx-master
tbx_cfg_vgtbx_Volumes.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/Volumes/tbx_cfg_vgtbx_Volumes.m
103,487
utf_8
0e4f45d959bdbdd19f162cff91b351de
function vgtbx_Volumes = tbx_cfg_vgtbx_Volumes % Volumes toolbox %_______________________________________________________________________ % % This toolbox contains various helper functions to make image % manipulation within SPM5 more convenient. Help on each individual item % can be obtained by selecting the corresponding entry in the help menu. % % This toolbox is free but copyright software, distributed under the % terms of the GNU General Public Licence as published by the Free % Software Foundation (either version 2, as given in file % spm_LICENCE.man, or at your option, any later version). Further details % on "copyleft" can be found at http://www.gnu.org/copyleft/. % The toolbox consists of the files listed in its Contents.m file. % % The source code of this toolbox is available at % % http://sourceforge.net/projects/spmtools % % Please use the SourceForge forum and tracker system for comments, % suggestions, bug reports etc. regarding this toolbox. %_______________________________________________________________________ % % @(#) $Id: vgtbx_config_Volumes.m 539 2007-12-06 17:31:12Z glauche $ rev='$Revision: 539 $'; addpath(fullfile(spm('dir'),'toolbox','Volumes')); % MATLABBATCH Configuration file for toolbox 'Volume handling utilities' % This code has been automatically generated. % --------------------------------------------------------------------- % Toolbox paths - added manually % --------------------------------------------------------------------- tbxdir = fileparts(mfilename('fullpath')); addpath(tbxdir); addpath(fullfile(tbxdir, 'Single_Volumes')); addpath(fullfile(tbxdir, 'Multiple_Volumes')); addpath(fullfile(tbxdir, 'Stats_Tools')); % --------------------------------------------------------------------- % srcspm Source SPM.mat % --------------------------------------------------------------------- srcspm = cfg_files; srcspm.tag = 'srcspm'; srcspm.name = 'Source SPM.mat'; srcspm.help = {''}; srcspm.filter = 'mat'; srcspm.ufilter = '.*SPM.*\.mat'; srcspm.num = [1 1]; % --------------------------------------------------------------------- % srcimgs Source Images % --------------------------------------------------------------------- srcimgs = cfg_files; srcimgs.tag = 'srcimgs'; srcimgs.name = 'Source Images'; srcimgs.help = {''}; srcimgs.filter = 'image'; srcimgs.ufilter = '.*'; srcimgs.num = [1 Inf]; % --------------------------------------------------------------------- % src Data Source % --------------------------------------------------------------------- src = cfg_choice; src.tag = 'src'; src.name = 'Data Source'; src.help = {'Data can be sampled from raw images, or from an SPM analysis. In case of an SPM analysis, both fitted and raw data will be sampled.'}; src.values = {srcspm srcimgs }; % --------------------------------------------------------------------- % srcimg Source Image % --------------------------------------------------------------------- srcimg = cfg_files; srcimg.tag = 'srcimg'; srcimg.name = 'Source Image'; srcimg.help = {''}; srcimg.filter = 'image'; srcimg.ufilter = '.*'; srcimg.num = [1 1]; % --------------------------------------------------------------------- % roistart Start Point (in mm) % --------------------------------------------------------------------- roistart = cfg_entry; roistart.tag = 'roistart'; roistart.name = 'Start Point (in mm)'; roistart.help = {''}; roistart.strtype = 'e'; roistart.num = [3 1]; % --------------------------------------------------------------------- % roiend End Point (in mm) % --------------------------------------------------------------------- roiend = cfg_entry; roiend.tag = 'roiend'; roiend.name = 'End Point (in mm)'; roiend.help = {''}; roiend.strtype = 'e'; roiend.num = [3 1]; % --------------------------------------------------------------------- % roistep Sampling Distance along Line (in mm) % --------------------------------------------------------------------- roistep = cfg_entry; roistep.tag = 'roistep'; roistep.name = 'Sampling Distance along Line (in mm)'; roistep.help = {''}; roistep.strtype = 'e'; roistep.num = [1 1]; % --------------------------------------------------------------------- % roiline Line (Start and End Point) % --------------------------------------------------------------------- roiline = cfg_branch; roiline.tag = 'roiline'; roiline.name = 'Line (Start and End Point)'; roiline.val = {roistart roiend roistep }; roiline.help = { 'Specify a line in 3D space from a start point to an end point. The image is sampled along this line according to the specified sampling distance.' 'Note that the sampling positions are computed in mm space and then transformed into the voxel space of the image. This may result in a sparse sampling of the image, if the voxel size is smaller than the sampling distance.' }'; % --------------------------------------------------------------------- % roilinep1 First Point (in mm) % --------------------------------------------------------------------- roilinep1 = cfg_entry; roilinep1.tag = 'roilinep1'; roilinep1.name = 'First Point (in mm)'; roilinep1.help = {''}; roilinep1.strtype = 'e'; roilinep1.num = [3 1]; % --------------------------------------------------------------------- % roilinep2 Second Point (in mm) % --------------------------------------------------------------------- roilinep2 = cfg_entry; roilinep2.tag = 'roilinep2'; roilinep2.name = 'Second Point (in mm)'; roilinep2.help = {''}; roilinep2.strtype = 'e'; roilinep2.num = [3 1]; % --------------------------------------------------------------------- % roilinecoords Point List of Line Coordinates % --------------------------------------------------------------------- roilinecoords = cfg_entry; roilinecoords.tag = 'roilinecoords'; roilinecoords.name = 'Point List of Line Coordinates'; roilinecoords.help = {''}; roilinecoords.strtype = 'e'; roilinecoords.num = [1 Inf]; % --------------------------------------------------------------------- % roilineparam Line (2 Points on Line and Parameters in Line Coords) % --------------------------------------------------------------------- roilineparam = cfg_branch; roilineparam.tag = 'roilineparam'; roilineparam.name = 'Line (2 Points on Line and Parameters in Line Coords)'; roilineparam.val = {roilinep1 roilinep2 roilinecoords }; roilineparam.help = { 'Specify a line in 3D space going through 2 points. The image is sampled along this line according to the specified line coordinates, starting with zero at the first point. Spacing between line coordinates can be variable.' 'The convention for line coordinates is that negative values run from P1 towards P2, while positive values run from P1 away from P2.' 'Note that the sampling positions are computed in mm space and then transformed into the voxel space of the image. This may result in a sparse sampling of the image, if the voxel size is smaller than the sampling distance.' }'; % --------------------------------------------------------------------- % roicent Centre Point (in mm) % --------------------------------------------------------------------- roicent = cfg_entry; roicent.tag = 'roicent'; roicent.name = 'Centre Point (in mm)'; roicent.help = {''}; roicent.strtype = 'e'; roicent.num = [3 1]; % --------------------------------------------------------------------- % roirad Radius (in mm) % --------------------------------------------------------------------- roirad = cfg_entry; roirad.tag = 'roirad'; roirad.name = 'Radius (in mm)'; roirad.help = {''}; roirad.strtype = 'e'; roirad.num = [1 1]; % --------------------------------------------------------------------- % roisphere Sphere % --------------------------------------------------------------------- roisphere = cfg_branch; roisphere.tag = 'roisphere'; roisphere.name = 'Sphere'; roisphere.val = {roicent roirad }; roisphere.help = {'Specify a sphere with centre and radius in mm coordinates.The actual sampling positions are computed in voxel space, and therefore a contiguous sampling of the specified sphere is guaranteed.'}; % --------------------------------------------------------------------- % roilist Point List (in mm) % --------------------------------------------------------------------- roilist = cfg_entry; roilist.tag = 'roilist'; roilist.name = 'Point List (in mm)'; roilist.help = {'Specify a list of mm positions to be sampled. Note, that this may sample a volume in a non-contiguous way, if the positions do not correspond 1-to-1 to voxel positions.'}; roilist.strtype = 'e'; roilist.num = [3 Inf]; % --------------------------------------------------------------------- % roispec ROI Specification % --------------------------------------------------------------------- roispec = cfg_repeat; roispec.tag = 'roispec'; roispec.name = 'ROI Specification'; roispec.help = {'A region of interest can be specified by an image file or a list of (mm)-positions. If an image file is given, data is extracted for all non-zero voxels in the region of interest.'}; roispec.values = {srcimg roiline roilineparam roisphere roilist }; roispec.num = [1 Inf]; % --------------------------------------------------------------------- % avg Average % --------------------------------------------------------------------- avg = cfg_menu; avg.tag = 'avg'; avg.name = 'Average'; avg.help = {'If set to ''yes'', only averages over the voxel values of each image are returned.'}; avg.labels = { 'No averaging' 'Average over voxels' }'; avg.values = { 'none' 'vox' }'; % --------------------------------------------------------------------- % interp Interpolation % --------------------------------------------------------------------- interp = cfg_menu; interp.tag = 'interp'; interp.name = 'Interpolation'; interp.help = {''}; interp.labels = { 'Nearest neighbour' 'Trilinear' '2nd Degree b-Spline' '3rd Degree b-Spline' '4th Degree b-Spline' '5th Degree b-Spline' '6th Degree b-Spline' '7th Degree b-Spline' '2nd Degree Sinc' '3rd Degree Sinc' '4th Degree Sinc' '5th Degree Sinc' '6th Degree Sinc' '7th Degree Sinc' }'; interp.values = {0 1 2 3 4 5 6 7 -2 -3 -4 -5 -6 -7}; % --------------------------------------------------------------------- % tbxvol_extract Extract Data from ROI % --------------------------------------------------------------------- cfg_tbxvol_extract = cfg_exbranch; cfg_tbxvol_extract.tag = 'tbxvol_extract'; cfg_tbxvol_extract.name = 'Extract Data from ROI'; cfg_tbxvol_extract.val = {src roispec avg interp }; cfg_tbxvol_extract.help = vgtbx_help2cell('tbxvol_extract'); cfg_tbxvol_extract.prog = @tbxvol_extract; cfg_tbxvol_extract.vout = @vout_tbxvol_extract; % --------------------------------------------------------------------- % srcimgs Source Images % --------------------------------------------------------------------- srcimgs = cfg_files; srcimgs.tag = 'srcimgs'; srcimgs.name = 'Source Images'; srcimgs.help = {''}; srcimgs.filter = 'image'; srcimgs.ufilter = '.*'; srcimgs.num = [1 Inf]; % --------------------------------------------------------------------- % flipdir Flip Direction (Voxel Space) % --------------------------------------------------------------------- flipdir = cfg_menu; flipdir.tag = 'flipdir'; flipdir.name = 'Flip Direction (Voxel Space)'; flipdir.help = {''}; flipdir.labels = { 'X' 'Y' 'Z' }'; flipdir.values = {1 2 3}; % --------------------------------------------------------------------- % prefix Output Filename Prefix % --------------------------------------------------------------------- prefix = cfg_entry; prefix.tag = 'prefix'; prefix.name = 'Output Filename Prefix'; prefix.val = {'F'}; prefix.help = {'The output filename is constructed by prefixing the original filename with this prefix.'}; prefix.strtype = 's'; prefix.num = [1 Inf]; % --------------------------------------------------------------------- % overwrite Overwrite existing Input/Output Files % --------------------------------------------------------------------- overwrite = cfg_menu; overwrite.tag = 'overwrite'; overwrite.name = 'Overwrite existing Input/Output Files'; overwrite.help = {''}; overwrite.labels = { 'Yes' 'No' }'; overwrite.values = {true false}; % --------------------------------------------------------------------- % tbxvol_flip Flip Volumes % --------------------------------------------------------------------- cfg_tbxvol_flip = cfg_exbranch; cfg_tbxvol_flip.tag = 'tbxvol_flip'; cfg_tbxvol_flip.name = 'Flip Volumes'; cfg_tbxvol_flip.val = {srcimgs flipdir prefix overwrite }; cfg_tbxvol_flip.help = {'No help available for topic ''tbxvol_flip''.'}; cfg_tbxvol_flip.prog = @tbxvol_flip; cfg_tbxvol_flip.vfiles = @vfiles_tbxvol_flip; % --------------------------------------------------------------------- % srcimgs Source Images % --------------------------------------------------------------------- srcimgs = cfg_files; srcimgs.tag = 'srcimgs'; srcimgs.name = 'Source Images'; srcimgs.help = {''}; srcimgs.filter = 'image'; srcimgs.ufilter = '.*'; srcimgs.num = [1 Inf]; % --------------------------------------------------------------------- % tbxvol_get_integrals Image integrals % --------------------------------------------------------------------- cfg_tbxvol_get_integrals = cfg_exbranch; cfg_tbxvol_get_integrals.tag = 'tbxvol_get_integrals'; cfg_tbxvol_get_integrals.name = 'Image integrals'; cfg_tbxvol_get_integrals.val = {srcimgs }; cfg_tbxvol_get_integrals.help = {'No help available for topic ''tbxvol_get_integrals''.'}; cfg_tbxvol_get_integrals.prog = @(job)tbxvol_get_integrals('run',job); cfg_tbxvol_get_integrals.vout = @(job)tbxvol_get_integrals('vout',job); % --------------------------------------------------------------------- % srcimg Source Image % --------------------------------------------------------------------- srcimg = cfg_files; srcimg.tag = 'srcimg'; srcimg.name = 'Source Image'; srcimg.help = {''}; srcimg.filter = 'image'; srcimg.ufilter = '.*'; srcimg.num = [1 1]; % --------------------------------------------------------------------- % prefix Output Filename Prefix % --------------------------------------------------------------------- prefix = cfg_entry; prefix.tag = 'prefix'; prefix.name = 'Output Filename Prefix'; prefix.val = {'H'}; prefix.help = {'The output filename is constructed by prefixing the original filename with this prefix.'}; prefix.strtype = 's'; prefix.num = [1 Inf]; % --------------------------------------------------------------------- % overwrite Overwrite existing Input/Output Files % --------------------------------------------------------------------- overwrite = cfg_menu; overwrite.tag = 'overwrite'; overwrite.name = 'Overwrite existing Input/Output Files'; overwrite.help = {''}; overwrite.labels = { 'Yes' 'No' }'; overwrite.values = {true false}; % --------------------------------------------------------------------- % tbxvol_histogramm Histogramm Thresholding % --------------------------------------------------------------------- cfg_tbxvol_histogramm = cfg_exbranch; cfg_tbxvol_histogramm.tag = 'tbxvol_histogramm'; cfg_tbxvol_histogramm.name = 'Histogramm Thresholding'; cfg_tbxvol_histogramm.val = {srcimg prefix overwrite }; cfg_tbxvol_histogramm.help = {'No help available for topic ''tbxvol_histogramm''.'}; cfg_tbxvol_histogramm.prog = @tbxvol_histogramm; % --------------------------------------------------------------------- % srcimgs Source Images % --------------------------------------------------------------------- srcimgs = cfg_files; srcimgs.tag = 'srcimgs'; srcimgs.name = 'Source Images'; srcimgs.help = {''}; srcimgs.filter = 'image'; srcimgs.ufilter = '.*'; srcimgs.num = [1 Inf]; % --------------------------------------------------------------------- % interleaved Interleaved % --------------------------------------------------------------------- interleaved = cfg_const; interleaved.tag = 'interleaved'; interleaved.name = 'Interleaved'; interleaved.val{1} = double(0); interleaved.help = {''}; % --------------------------------------------------------------------- % userdef User Defined % --------------------------------------------------------------------- userdef = cfg_entry; userdef.tag = 'userdef'; userdef.name = 'User Defined'; userdef.help = {''}; userdef.strtype = 'i'; userdef.num = [1 Inf]; % --------------------------------------------------------------------- % sliceorder Slice Order % --------------------------------------------------------------------- sliceorder = cfg_choice; sliceorder.tag = 'sliceorder'; sliceorder.name = 'Slice Order'; sliceorder.help = {''}; sliceorder.values = {interleaved userdef }; % --------------------------------------------------------------------- % prefix Output Filename Prefix % --------------------------------------------------------------------- prefix = cfg_entry; prefix.tag = 'prefix'; prefix.name = 'Output Filename Prefix'; prefix.val = {'I'}; prefix.help = {'The output filename is constructed by prefixing the original filename with this prefix.'}; prefix.strtype = 's'; prefix.num = [1 Inf]; % --------------------------------------------------------------------- % overwrite Overwrite existing Input/Output Files % --------------------------------------------------------------------- overwrite = cfg_menu; overwrite.tag = 'overwrite'; overwrite.name = 'Overwrite existing Input/Output Files'; overwrite.help = {''}; overwrite.labels = { 'Yes' 'No' }'; overwrite.values = {true false}; % --------------------------------------------------------------------- % tbxvol_interleave (De)Interleave Volumes % --------------------------------------------------------------------- cfg_tbxvol_interleave = cfg_exbranch; cfg_tbxvol_interleave.tag = 'tbxvol_interleave'; cfg_tbxvol_interleave.name = '(De)Interleave Volumes'; cfg_tbxvol_interleave.val = {srcimgs sliceorder prefix overwrite }; cfg_tbxvol_interleave.help = {'No help available for topic ''tbxvol_interleave''.'}; cfg_tbxvol_interleave.prog = @tbxvol_interleave; % --------------------------------------------------------------------- % srcimg Source Image % --------------------------------------------------------------------- srcimg = cfg_files; srcimg.tag = 'srcimg'; srcimg.name = 'Source Image'; srcimg.help = {''}; srcimg.filter = 'image'; srcimg.ufilter = '.*'; srcimg.num = [1 1]; % --------------------------------------------------------------------- % repslice Slice to Replace % --------------------------------------------------------------------- repslice = cfg_entry; repslice.tag = 'repslice'; repslice.name = 'Slice to Replace'; repslice.help = {''}; repslice.strtype = 'i'; repslice.num = [1 1]; % --------------------------------------------------------------------- % prefix Output Filename Prefix % --------------------------------------------------------------------- prefix = cfg_entry; prefix.tag = 'prefix'; prefix.name = 'Output Filename Prefix'; prefix.val = {'R'}; prefix.help = {'The output filename is constructed by prefixing the original filename with this prefix.'}; prefix.strtype = 's'; prefix.num = [1 Inf]; % --------------------------------------------------------------------- % overwrite Overwrite existing Input/Output Files % --------------------------------------------------------------------- overwrite = cfg_menu; overwrite.tag = 'overwrite'; overwrite.name = 'Overwrite existing Input/Output Files'; overwrite.help = {''}; overwrite.labels = { 'Yes' 'No' }'; overwrite.values = {true false}; % --------------------------------------------------------------------- % tbxvol_replace_slice Replace Slice % --------------------------------------------------------------------- cfg_tbxvol_replace_slice = cfg_exbranch; cfg_tbxvol_replace_slice.tag = 'tbxvol_replace_slice'; cfg_tbxvol_replace_slice.name = 'Replace Slice'; cfg_tbxvol_replace_slice.val = {srcimg repslice prefix overwrite }; cfg_tbxvol_replace_slice.help = {'No help available for topic ''tbxvol_replace_slice''.'}; cfg_tbxvol_replace_slice.prog = @tbxvol_replace_slice; % --------------------------------------------------------------------- % srcimgs Source Images % --------------------------------------------------------------------- srcimgs = cfg_files; srcimgs.tag = 'srcimgs'; srcimgs.name = 'Source Images'; srcimgs.help = {''}; srcimgs.filter = 'image'; srcimgs.ufilter = '.*'; srcimgs.num = [1 Inf]; % --------------------------------------------------------------------- % scale New Scaling Factor % --------------------------------------------------------------------- scale = cfg_entry; scale.tag = 'scale'; scale.name = 'New Scaling Factor'; scale.help = {'Set the new scaling factor. To determine this value from your image series, set this field to NaN.'}; scale.strtype = 'e'; scale.num = [1 1]; % --------------------------------------------------------------------- % offset New Intensity Offset % --------------------------------------------------------------------- offset = cfg_entry; offset.tag = 'offset'; offset.name = 'New Intensity Offset'; offset.help = {''}; offset.strtype = 'e'; offset.num = [1 1]; % --------------------------------------------------------------------- % dtype Data Type % --------------------------------------------------------------------- dtype = cfg_menu; dtype.tag = 'dtype'; dtype.name = 'Data Type'; dtype.val{1} = double(0); dtype.help = {'Data-type of output images. SAME indicates the same datatype as the original images.'}; dtype.labels = cellstr(char('SAME',spm_type(spm_type))); dtype.values = num2cell([0 spm_type]); % --------------------------------------------------------------------- % prefix Output Filename Prefix % --------------------------------------------------------------------- prefix = cfg_entry; prefix.tag = 'prefix'; prefix.name = 'Output Filename Prefix'; prefix.val = {'S'}; prefix.help = {'The output filename is constructed by prefixing the original filename with this prefix.'}; prefix.strtype = 's'; prefix.num = [1 Inf]; % --------------------------------------------------------------------- % overwrite Overwrite existing Input/Output Files % --------------------------------------------------------------------- overwrite = cfg_menu; overwrite.tag = 'overwrite'; overwrite.name = 'Overwrite existing Input/Output Files'; overwrite.help = {''}; overwrite.labels = { 'Yes' 'No' }'; overwrite.values = {true false}; % --------------------------------------------------------------------- % tbxvol_rescale Rescale Images % --------------------------------------------------------------------- cfg_tbxvol_rescale = cfg_exbranch; cfg_tbxvol_rescale.tag = 'tbxvol_rescale'; cfg_tbxvol_rescale.name = 'Rescale Images'; cfg_tbxvol_rescale.val = {srcimgs scale offset dtype prefix overwrite }; cfg_tbxvol_rescale.help = {'No help available for topic ''tbxvol_rescale''.'}; cfg_tbxvol_rescale.prog = @tbxvol_rescale; cfg_tbxvol_rescale.vout = @vout_tbxvol_rescale; % --------------------------------------------------------------------- % srcimgs Source Images % --------------------------------------------------------------------- srcimgs = cfg_files; srcimgs.tag = 'srcimgs'; srcimgs.name = 'Source Images'; srcimgs.help = {''}; srcimgs.filter = 'image'; srcimgs.ufilter = '.*'; srcimgs.num = [1 Inf]; % --------------------------------------------------------------------- % oldscale Old intensity range % --------------------------------------------------------------------- oldscale = cfg_entry; oldscale.tag = 'oldscale'; oldscale.name = 'Old intensity range'; oldscale.help = {'Original data intensity scaling. To derive min/max from the data, set the first or second entry to Inf.'}; oldscale.strtype = 'e'; oldscale.num = [1 2]; % --------------------------------------------------------------------- % newscale New intensity range % --------------------------------------------------------------------- newscale = cfg_entry; newscale.tag = 'newscale'; newscale.name = 'New intensity range'; newscale.help = {'Set min/max value for new intensity range.'}; newscale.strtype = 'e'; newscale.num = [1 2]; % --------------------------------------------------------------------- % prefix Output Filename Prefix % --------------------------------------------------------------------- prefix = cfg_entry; prefix.tag = 'prefix'; prefix.name = 'Output Filename Prefix'; prefix.val = {'S'}; prefix.help = {'The output filename is constructed by prefixing the original filename with this prefix.'}; prefix.strtype = 's'; prefix.num = [1 Inf]; % --------------------------------------------------------------------- % tbxvol_rescale_min_max Rescale Images to [min max] % --------------------------------------------------------------------- cfg_tbxvol_rescale_min_max = cfg_exbranch; cfg_tbxvol_rescale_min_max.tag = 'tbxvol_rescale_min_max'; cfg_tbxvol_rescale_min_max.name = 'Rescale Images to [min max]'; cfg_tbxvol_rescale_min_max.val = {srcimgs oldscale newscale prefix }; cfg_tbxvol_rescale_min_max.help = {'No help available for topic ''tbxvol_rescale_min_max''.'}; cfg_tbxvol_rescale_min_max.prog = @tbxvol_rescale_min_max; cfg_tbxvol_rescale_min_max.vout = @vout_tbxvol_rescale_min_max; % --------------------------------------------------------------------- % srcimgs Source Images % --------------------------------------------------------------------- srcimgs = cfg_files; srcimgs.tag = 'srcimgs'; srcimgs.name = 'Source Images'; srcimgs.help = {''}; srcimgs.filter = 'image'; srcimgs.ufilter = '.*'; srcimgs.num = [1 Inf]; % --------------------------------------------------------------------- % cor_orig Correct Origin of Wrapped Images % --------------------------------------------------------------------- cor_orig = cfg_menu; cor_orig.tag = 'cor_orig'; cor_orig.name = 'Correct Origin of Wrapped Images'; cor_orig.help = {''}; cor_orig.labels = { 'Yes' 'No' }'; cor_orig.values = {true false}; % --------------------------------------------------------------------- % npix #pixels to Unwrap % --------------------------------------------------------------------- npix = cfg_entry; npix.tag = 'npix'; npix.name = '#pixels to Unwrap'; npix.help = {''}; npix.strtype = 'i'; npix.num = [1 1]; % --------------------------------------------------------------------- % wrapdir Wrap Direction (Voxel Space) % --------------------------------------------------------------------- wrapdir = cfg_menu; wrapdir.tag = 'wrapdir'; wrapdir.name = 'Wrap Direction (Voxel Space)'; wrapdir.help = {''}; wrapdir.labels = { 'X' 'Y' 'Z' }'; wrapdir.values = {1 2 3}; % --------------------------------------------------------------------- % prefix Output Filename Prefix % --------------------------------------------------------------------- prefix = cfg_entry; prefix.tag = 'prefix'; prefix.name = 'Output Filename Prefix'; prefix.val = {'U'}; prefix.help = {'The output filename is constructed by prefixing the original filename with this prefix.'}; prefix.strtype = 's'; prefix.num = [1 Inf]; % --------------------------------------------------------------------- % overwrite Overwrite existing Input/Output Files % --------------------------------------------------------------------- overwrite = cfg_menu; overwrite.tag = 'overwrite'; overwrite.name = 'Overwrite existing Input/Output Files'; overwrite.help = {''}; overwrite.labels = { 'Yes' 'No' }'; overwrite.values = {true false}; % --------------------------------------------------------------------- % tbxvol_unwrap Unwrap Volumes % --------------------------------------------------------------------- cfg_tbxvol_unwrap = cfg_exbranch; cfg_tbxvol_unwrap.tag = 'tbxvol_unwrap'; cfg_tbxvol_unwrap.name = 'Unwrap Volumes'; cfg_tbxvol_unwrap.val = {srcimgs cor_orig npix wrapdir prefix overwrite }; cfg_tbxvol_unwrap.help = {'No help available for topic ''tbxvol_unwrap''.'}; cfg_tbxvol_unwrap.prog = @tbxvol_unwrap; % --------------------------------------------------------------------- % tbxvol_list_max List Local Maxima % --------------------------------------------------------------------- cfg_tbxvol_list_max = cfg_exbranch; cfg_tbxvol_list_max.tag = 'tbxvol_list_max'; cfg_tbxvol_list_max.name = 'List Local Maxima'; cfg_tbxvol_list_max.val = {srcimgs }; cfg_tbxvol_list_max.help = {'No help available for topic ''tbxvol_list_max''.'}; cfg_tbxvol_list_max.prog = @tbxvol_list_max; % --------------------------------------------------------------------- % interp Interpolation % --------------------------------------------------------------------- interp = cfg_menu; interp.tag = 'interp'; interp.name = 'Interpolation'; interp.help = {''}; interp.labels = { 'Integrate (Downsampling only)' 'Nearest neighbour' 'Trilinear' '2nd Degree b-Spline' '3rd Degree b-Spline' '4th Degree b-Spline' '5th Degree b-Spline' '6th Degree b-Spline' '7th Degree b-Spline' '2nd Degree Sinc' '3rd Degree Sinc' '4th Degree Sinc' '5th Degree Sinc' '6th Degree Sinc' '7th Degree Sinc' }'; interp.values = {NaN 0 1 2 3 4 5 6 7 -2 -3 -4 -5 -6 -7}; % --------------------------------------------------------------------- % ndim New Image Dimensions % --------------------------------------------------------------------- ndim = cfg_entry; ndim.tag = 'ndim'; ndim.name = 'New Image Dimensions (voxels)'; ndim.help = {'The new image will have the specified matrix size and number of slices.'}; ndim.strtype = 'i'; ndim.num = [1 3]; % --------------------------------------------------------------------- % vxsz New Voxel Size % --------------------------------------------------------------------- vxsz = cfg_entry; vxsz.tag = 'vxsz'; vxsz.name = 'New Voxel Size (mm)'; vxsz.help = {'The new image will have the specified voxel size.'}; vxsz.strtype = 'r'; vxsz.num = [1 3]; % --------------------------------------------------------------------- % vxsc Voxel Size Scaling % --------------------------------------------------------------------- vxsc = cfg_entry; vxsc.tag = 'vxsc'; vxsc.name = 'Voxel Size Scaling'; vxsc.help = {'The voxel size in the new image will be the original size multiplied by these scaling factors.'}; vxsc.strtype = 'r'; vxsc.num = [1 3]; % --------------------------------------------------------------------- % sctype Resampling Specification % --------------------------------------------------------------------- sctype = cfg_choice; sctype.tag = 'sctype'; sctype.name = 'Resampling Specification'; sctype.help = {''}; sctype.values = {ndim vxsz vxsc}; % --------------------------------------------------------------------- % prefix Output Filename Prefix % --------------------------------------------------------------------- prefix = cfg_entry; prefix.tag = 'prefix'; prefix.name = 'Output Filename Prefix'; prefix.val = {'r'}; prefix.help = {'The output filename is constructed by prefixing the original filename with this prefix.'}; prefix.strtype = 's'; prefix.num = [1 Inf]; % --------------------------------------------------------------------- % tbxvol_regrid Regrid Volumes % --------------------------------------------------------------------- cfg_tbxvol_regrid = cfg_exbranch; cfg_tbxvol_regrid.tag = 'tbxvol_regrid'; cfg_tbxvol_regrid.name = 'Regrid Volumes'; cfg_tbxvol_regrid.val = {srcimgs interp sctype dtype prefix}; cfg_tbxvol_regrid.help = {'No help available for topic ''tbxvol_regrid''.'}; cfg_tbxvol_regrid.prog = @tbxvol_regrid; cfg_tbxvol_regrid.vout = @vout_tbxvol_regrid; % --------------------------------------------------------------------- % Single_Volumes Single Volumes % --------------------------------------------------------------------- Single_Volumes = cfg_choice; Single_Volumes.tag = 'Single_Volumes'; Single_Volumes.name = 'Single Volumes'; Single_Volumes.help = {''}; Single_Volumes.values = {cfg_tbxvol_extract cfg_tbxvol_flip cfg_tbxvol_get_integrals cfg_tbxvol_histogramm cfg_tbxvol_interleave cfg_tbxvol_replace_slice cfg_tbxvol_rescale cfg_tbxvol_rescale_min_max cfg_tbxvol_unwrap cfg_tbxvol_list_max cfg_tbxvol_regrid}; % --------------------------------------------------------------------- % srcspm Source SPM.mat % --------------------------------------------------------------------- srcspm = cfg_files; srcspm.tag = 'srcspm'; srcspm.name = 'Source SPM.mat'; srcspm.help = {''}; srcspm.filter = 'mat'; srcspm.ufilter = '.*SPM.*\.mat'; srcspm.num = [1 1]; % --------------------------------------------------------------------- % nfactor # of Factor with unequal Variance % --------------------------------------------------------------------- nfactor = cfg_menu; nfactor.tag = 'nfactor'; nfactor.name = '# of Factor with unequal Variance'; nfactor.help = {''}; nfactor.labels = { 'Factor 1' 'Factor 2' 'Factor 3' }'; nfactor.values = {2 3 4}; % --------------------------------------------------------------------- % tbxvol_correct_ec_SPM Correct Error Covariance components % --------------------------------------------------------------------- cfg_tbxvol_correct_ec_SPM = cfg_exbranch; cfg_tbxvol_correct_ec_SPM.tag = 'tbxvol_correct_ec_SPM'; cfg_tbxvol_correct_ec_SPM.name = 'Correct Error Covariance components'; cfg_tbxvol_correct_ec_SPM.val = {srcspm nfactor }; cfg_tbxvol_correct_ec_SPM.help = {'No help available for topic ''tbxvol_correct_ec_SPM''.'}; cfg_tbxvol_correct_ec_SPM.prog = @tbxvol_correct_ec_SPM; % --------------------------------------------------------------------- % srcimgs Source Images % --------------------------------------------------------------------- srcimgs = cfg_files; srcimgs.tag = 'srcimgs'; srcimgs.name = 'Source Images'; srcimgs.help = {''}; srcimgs.filter = 'image'; srcimgs.ufilter = '.*'; srcimgs.num = [1 Inf]; % --------------------------------------------------------------------- % voxsz Output Image Voxel Size % --------------------------------------------------------------------- voxsz = cfg_entry; voxsz.tag = 'voxsz'; voxsz.name = 'Output Image Voxel Size'; voxsz.help = {''}; voxsz.strtype = 'e'; voxsz.num = [1 3]; % --------------------------------------------------------------------- % interp Interpolation % --------------------------------------------------------------------- interp = cfg_menu; interp.tag = 'interp'; interp.name = 'Interpolation'; interp.help = {''}; interp.labels = { 'Nearest neighbour' 'Trilinear' '2nd Degree b-Spline' '3rd Degree b-Spline' '4th Degree b-Spline' '5th Degree b-Spline' '6th Degree b-Spline' '7th Degree b-Spline' '2nd Degree Sinc' '3rd Degree Sinc' '4th Degree Sinc' '5th Degree Sinc' '6th Degree Sinc' '7th Degree Sinc' }'; interp.values = {0 1 2 3 4 5 6 7 -2 -3 -4 -5 -6 -7}; % --------------------------------------------------------------------- % dtype Data Type % --------------------------------------------------------------------- dtype = cfg_menu; dtype.tag = 'dtype'; dtype.name = 'Data Type'; dtype.val{1} = double(0); dtype.help = {'Data-type of output images. SAME indicates the same datatype as the original images.'}; dtype.labels = cellstr(char('SAME',spm_type(spm_type))); dtype.values = num2cell([0 spm_type]); % --------------------------------------------------------------------- % prefix Output Filename Prefix % --------------------------------------------------------------------- prefix = cfg_entry; prefix.tag = 'prefix'; prefix.name = 'Output Filename Prefix'; prefix.val = {'C'}; prefix.help = {'The output filename is constructed by prefixing the original filename with this prefix.'}; prefix.strtype = 's'; prefix.num = [1 Inf]; % --------------------------------------------------------------------- % tbxvol_combine Combine Volumes % --------------------------------------------------------------------- cfg_tbxvol_combine = cfg_exbranch; cfg_tbxvol_combine.tag = 'tbxvol_combine'; cfg_tbxvol_combine.name = 'Combine Volumes'; cfg_tbxvol_combine.val = {srcimgs voxsz interp dtype prefix }; cfg_tbxvol_combine.help = {'No help available for topic ''tbxvol_combine''.'}; cfg_tbxvol_combine.prog = @tbxvol_combine; % --------------------------------------------------------------------- % srcimg Mask Image % --------------------------------------------------------------------- srcimg = cfg_files; srcimg.tag = 'srcimg'; srcimg.name = 'Mask Image'; srcimg.help = {''}; srcimg.filter = 'image'; srcimg.ufilter = '.*'; srcimg.num = [1 1]; % --------------------------------------------------------------------- % srcimgs Source Images for New Mask % --------------------------------------------------------------------- srcimgs = cfg_files; srcimgs.tag = 'srcimgs'; srcimgs.name = 'Source Images for New Mask'; srcimgs.help = {''}; srcimgs.filter = 'image'; srcimgs.ufilter = '.*'; srcimgs.num = [1 Inf]; % --------------------------------------------------------------------- % maskpredef AND % --------------------------------------------------------------------- maskpredef = cfg_const; maskpredef.tag = 'maskpredef'; maskpredef.name = 'AND'; maskpredef.val = {'and'}; maskpredef.help = {'Mask expression ''(i1~=0) & ... & (iN ~= 0)'''}; % --------------------------------------------------------------------- % maskpredef OR % --------------------------------------------------------------------- maskpredef1 = cfg_const; maskpredef1.tag = 'maskpredef'; maskpredef1.name = 'OR'; maskpredef1.val = {'or'}; maskpredef1.help = {'Mask expression ''(i1~=0) | ... | (iN ~= 0)'''}; % --------------------------------------------------------------------- % maskpredef NAND % --------------------------------------------------------------------- maskpredef2 = cfg_const; maskpredef2.tag = 'maskpredef'; maskpredef2.name = 'NAND'; maskpredef2.val = {'nand'}; maskpredef2.help = {'Mask expression ''~((i1~=0) & ... & (iN ~= 0))'''}; % --------------------------------------------------------------------- % maskpredef NOR % --------------------------------------------------------------------- maskpredef3 = cfg_const; maskpredef3.tag = 'maskpredef'; maskpredef3.name = 'NOR'; maskpredef3.val = {'nor'}; maskpredef3.help = {'Mask expression ''~((i1~=0) | ... | (iN ~= 0))'''}; % --------------------------------------------------------------------- % maskcustom Custom Mask Expression % --------------------------------------------------------------------- maskcustom = cfg_entry; maskcustom.tag = 'maskcustom'; maskcustom.name = 'Custom Mask Expression'; maskcustom.help = {'Enter a valid expression for spm_imcalc.'}; maskcustom.strtype = 's'; maskcustom.num = [1 Inf]; % --------------------------------------------------------------------- % mtype Mask Type % --------------------------------------------------------------------- mtype = cfg_choice; mtype.tag = 'mtype'; mtype.name = 'Mask Type'; mtype.help = {''}; mtype.values = {maskpredef maskpredef1 maskpredef2 maskpredef3 maskcustom }; % --------------------------------------------------------------------- % swd Output directory % --------------------------------------------------------------------- swd = cfg_files; swd.tag = 'swd'; swd.name = 'Output directory'; swd.help = {'Files produced by this function will be written into this output directory'}; swd.filter = 'dir'; swd.ufilter = '.*'; swd.num = [1 1]; % --------------------------------------------------------------------- % fname Output Filename % --------------------------------------------------------------------- fname = cfg_entry; fname.tag = 'fname'; fname.name = 'Output Filename'; fname.val = {'output.img'}; fname.help = {'The output image is written to the selected working directory.'}; fname.strtype = 's'; fname.num = [1 Inf]; % --------------------------------------------------------------------- % outimg Mask Image Name & Directory % --------------------------------------------------------------------- outimg = cfg_branch; outimg.tag = 'outimg'; outimg.name = 'Mask Image Name & Directory'; outimg.val = {swd fname }; outimg.help = {'Specify a output filename and target directory.'}; % --------------------------------------------------------------------- % maskdef Create New Mask % --------------------------------------------------------------------- maskdef = cfg_branch; maskdef.tag = 'maskdef'; maskdef.name = 'Create New Mask'; maskdef.val = {srcimgs mtype outimg }; maskdef.help = {''}; % --------------------------------------------------------------------- % centers Sphere Centers % --------------------------------------------------------------------- centers = cfg_entry; centers.tag = 'centers'; centers.name = 'Sphere Centers'; centers.help = {['Enter the coordinates of the ROI centers in voxel ' ... 'space of the reference image.']}; centers.strtype = 'e'; centers.num = [Inf 3]; % --------------------------------------------------------------------- % radii Radii % --------------------------------------------------------------------- radii = cfg_entry; radii.tag = 'radii'; radii.name = 'Radii'; radii.help = {['Enter the radii (in mm). ' ... 'Enter either one radius for all spheres or one per ROI.']}; radii.strtype = 'e'; radii.num = [Inf 1]; % --------------------------------------------------------------------- % refimg Mask Image % --------------------------------------------------------------------- refimg = cfg_files; refimg.tag = 'refimg'; refimg.name = 'Reference Image'; refimg.help = {['The masks will be created with orientation and voxel ' ... 'size of this image.']}; refimg.filter = 'image'; refimg.ufilter = '.*'; refimg.num = [1 1]; % --------------------------------------------------------------------- % spheres Create Masks from Coordinates % --------------------------------------------------------------------- spheres = cfg_branch; spheres.tag = 'spheres'; spheres.name = 'Create Masks from Coordinates'; spheres.val = {centers radii refimg outimg}; spheres.check = @(job)tbxvol_create_mask('check',job,'spheres'); % --------------------------------------------------------------------- % maskspec Mask Specification % --------------------------------------------------------------------- maskspec = cfg_choice; maskspec.tag = 'maskspec'; maskspec.name = 'Mask Specification'; maskspec.help = { 'Specify an existing mask image or a set of images ' 'that will be used to create a mask image.' }'; maskspec.values = {srcimg maskdef spheres }; % --------------------------------------------------------------------- % srcimgs Source Images % --------------------------------------------------------------------- srcimgs = cfg_files; srcimgs.tag = 'srcimgs'; srcimgs.name = 'Source Images'; srcimgs.help = {''}; srcimgs.filter = 'image'; srcimgs.ufilter = '.*'; srcimgs.num = [1 Inf]; % --------------------------------------------------------------------- % scope Scope of Mask % --------------------------------------------------------------------- scope = cfg_menu; scope.tag = 'scope'; scope.name = 'Scope of Mask'; scope.help = {'Specify which parts of the images should be kept: parts where the mask image is different from zero (inclusive) or parts where the mask image is zero (exclusive).'}; scope.labels = { 'Inclusive' 'Exclusive' }'; scope.values = { 'i' 'e' }'; % --------------------------------------------------------------------- % space Space of Masked Images % --------------------------------------------------------------------- space = cfg_menu; space.tag = 'space'; space.name = 'Space of Masked Images'; space.help = {'Specify whether the masked images should be written with orientation and voxel size of the original images or of the mask image.'}; space.labels = { 'Object' 'Mask' }'; space.values = { 'object' 'mask' }'; % --------------------------------------------------------------------- % prefix Output Filename Prefix % --------------------------------------------------------------------- prefix = cfg_entry; prefix.tag = 'prefix'; prefix.name = 'Output Filename Prefix'; prefix.val = {'M'}; prefix.help = {'The output filename is constructed by prefixing the original filename with this prefix.'}; prefix.strtype = 's'; prefix.num = [1 Inf]; % --------------------------------------------------------------------- % interp Interpolation % --------------------------------------------------------------------- interp = cfg_menu; interp.tag = 'interp'; interp.name = 'Interpolation'; interp.help = {''}; interp.labels = { 'Nearest neighbour' 'Trilinear' '2nd Degree b-Spline' '3rd Degree b-Spline' '4th Degree b-Spline' '5th Degree b-Spline' '6th Degree b-Spline' '7th Degree b-Spline' '2nd Degree Sinc' '3rd Degree Sinc' '4th Degree Sinc' '5th Degree Sinc' '6th Degree Sinc' '7th Degree Sinc' }'; interp.values = {0 1 2 3 4 5 6 7 -2 -3 -4 -5 -6 -7}; % --------------------------------------------------------------------- % nanmask Zero/NaN Masking % --------------------------------------------------------------------- nanmask = cfg_menu; nanmask.tag = 'nanmask'; nanmask.name = 'Zero/NaN Masking'; nanmask.help = {'For data types without a representation of NaN, implicit zero masking assummes that all zero voxels are to be treated as missing, and treats them as NaN. NaN''s are written as zero (by spm_write_plane), for data types without a representation of NaN.'}; nanmask.labels = { 'No implicit zero mask' 'Implicit zero mask' 'NaNs should be zeroed' }'; nanmask.values = {0 1 -1}; % --------------------------------------------------------------------- % maskthresh Threshold for masking % --------------------------------------------------------------------- maskthresh = cfg_entry; maskthresh.tag = 'maskthresh'; maskthresh.name = 'Threshold for masking'; maskthresh.help = {'Sometimes zeroes are represented as non-zero values due to rounding errors (especially in binary masks). Specify a small non-zero value for zero masking in this case.'}; maskthresh.strtype = 'e'; maskthresh.num = [1 1]; % --------------------------------------------------------------------- % overwrite Overwrite existing Input/Output Files % --------------------------------------------------------------------- overwrite = cfg_menu; overwrite.tag = 'overwrite'; overwrite.name = 'Overwrite existing Input/Output Files'; overwrite.help = {''}; overwrite.labels = { 'Yes' 'No' }'; overwrite.values = {true false}; % --------------------------------------------------------------------- % srcspec Apply Created Mask % --------------------------------------------------------------------- srcspec = cfg_branch; srcspec.tag = 'srcspec'; srcspec.name = 'Apply Created Mask'; srcspec.val = {srcimgs scope space prefix interp nanmask maskthresh overwrite }; srcspec.help = {'Specify images which are to be masked.'}; % --------------------------------------------------------------------- % unused Apply Masks % --------------------------------------------------------------------- unused = cfg_repeat; unused.tag = 'unused'; unused.name = 'Apply Masks'; unused.help = {''}; unused.values = {srcspec }; unused.num = [0 Inf]; % --------------------------------------------------------------------- % tbxvol_create_mask Create and Apply Masks % --------------------------------------------------------------------- cfg_tbxvol_create_mask = cfg_exbranch; cfg_tbxvol_create_mask.tag = 'tbxvol_create_mask'; cfg_tbxvol_create_mask.name = 'Create and Apply Masks'; cfg_tbxvol_create_mask.val = {maskspec unused }; cfg_tbxvol_create_mask.help = {'No help available for topic ''tbxvol_create_mask''.'}; cfg_tbxvol_create_mask.prog = @(job)tbxvol_create_mask('run',job); cfg_tbxvol_create_mask.vout = @(job)tbxvol_create_mask('vout',job); % --------------------------------------------------------------------- % srcimgs Source Images % --------------------------------------------------------------------- srcimgs = cfg_files; srcimgs.tag = 'srcimgs'; srcimgs.name = 'Source Images'; srcimgs.help = {''}; srcimgs.filter = 'image'; srcimgs.ufilter = '.*'; srcimgs.num = [1 Inf]; % --------------------------------------------------------------------- % bbox Bounding Box for Extracted Image % --------------------------------------------------------------------- bbox = cfg_entry; bbox.tag = 'bbox'; bbox.name = 'Bounding Box for Extracted Image'; bbox.help = { 'Specify the bounding box in voxel coordinates of ' 'the original image: X1 X2 Y1 Y2 Z1 Z2.' }'; bbox.strtype = 'i'; bbox.num = [1 6]; % --------------------------------------------------------------------- % prefix Output Filename Prefix % --------------------------------------------------------------------- prefix = cfg_entry; prefix.tag = 'prefix'; prefix.name = 'Output Filename Prefix'; prefix.val = {'E'}; prefix.help = {'The output filename is constructed by prefixing the original filename with this prefix.'}; prefix.strtype = 's'; prefix.num = [1 Inf]; % --------------------------------------------------------------------- % tbxvol_extract_subvol Extract Subvolume % --------------------------------------------------------------------- cfg_tbxvol_extract_subvol = cfg_exbranch; cfg_tbxvol_extract_subvol.tag = 'tbxvol_extract_subvol'; cfg_tbxvol_extract_subvol.name = 'Extract Subvolume'; cfg_tbxvol_extract_subvol.val = {srcimgs bbox prefix }; cfg_tbxvol_extract_subvol.help = {'No help available for topic ''tbxvol_extract_subvol''.'}; cfg_tbxvol_extract_subvol.prog = @tbxvol_extract_subvol; % --------------------------------------------------------------------- % source Source Images % --------------------------------------------------------------------- source = cfg_files; source.tag = 'source'; source.name = 'Source Images'; source.help = {'The images that are warped to match the template(s). The result is a set of warps, which can be applied to this image, or any other image that is in register with it.'}; source.filter = 'image'; source.ufilter = '.*'; source.num = [1 Inf]; % --------------------------------------------------------------------- % wtsrc Source Weighting Image % --------------------------------------------------------------------- wtsrc = cfg_files; wtsrc.tag = 'wtsrc'; wtsrc.name = 'Source Weighting Image'; wtsrc.val{1} = {}; wtsrc.help = {'Optional weighting images (consisting of pixel values between the range of zero to one) to be used for registering abnormal or lesioned brains. These images should match the dimensions of the image from which the parameters are estimated, and should contain zeros corresponding to regions of abnormal tissue.'}; wtsrc.filter = 'image'; wtsrc.ufilter = '.*'; wtsrc.num = [0 1]; % --------------------------------------------------------------------- % subj Subjects % --------------------------------------------------------------------- subj = cfg_branch; subj.tag = 'subj'; subj.name = 'Subjects'; subj.val = {source wtsrc }; subj.help = {'Data for all subjects. The same parameters are used within subject.'}; % --------------------------------------------------------------------- % template Template Image % --------------------------------------------------------------------- template = cfg_files; template.tag = 'template'; template.name = 'Template Image'; template.help = { 'Specify a template image to match the source image with. The contrast in the template must be similar to that of the source image in order to achieve a good registration. It is also possible to select more than one template, in which case the registration algorithm will try to find the best linear combination of these images in order to best model the intensities in the source image.' '' 'The template(s) will be used for the first iteration of within-group normalisation. Further iterations will use an average version of the normalised images as template.' }'; template.filter = 'image'; template.ufilter = '.*'; template.num = [1 Inf]; % --------------------------------------------------------------------- % weight Template Weighting Image % --------------------------------------------------------------------- weight = cfg_files; weight.tag = 'weight'; weight.name = 'Template Weighting Image'; weight.help = { 'Applies a weighting mask to the template(s) during the parameter estimation. With the default brain mask, weights in and around the brain have values of one whereas those clearly outside the brain are zero. This is an attempt to base the normalization purely upon the shape of the brain, rather than the shape of the head (since low frequency basis functions can not really cope with variations in skull thickness).' '' 'The option is now available for a user specified weighting image. This should have the same dimensions and mat file as the template images, with values in the range of zero to one.' }'; weight.filter = 'image'; weight.ufilter = '.*'; weight.num = [0 1]; % --------------------------------------------------------------------- % stempl Initial normalisation template % --------------------------------------------------------------------- stempl = cfg_branch; stempl.tag = 'stempl'; stempl.name = 'Initial normalisation template'; stempl.val = {template weight }; stempl.help = {''}; % --------------------------------------------------------------------- % sparams Initial normalisation params % --------------------------------------------------------------------- sparams = cfg_files; sparams.tag = 'sparams'; sparams.name = 'Initial normalisation params'; sparams.help = {''}; sparams.filter = 'mat'; sparams.ufilter = '.*sn.mat$'; sparams.num = [0 Inf]; % --------------------------------------------------------------------- % starting Initial Normalisation % --------------------------------------------------------------------- starting = cfg_choice; starting.tag = 'starting'; starting.name = 'Initial Normalisation'; starting.help = {''}; starting.values = {stempl sparams }; % --------------------------------------------------------------------- % smosrc Source Image Smoothing % --------------------------------------------------------------------- smosrc = cfg_entry; smosrc.tag = 'smosrc'; smosrc.name = 'Source Image Smoothing'; smosrc.help = {'Smoothing to apply to a copy of the source image. The template and source images should have approximately the same smoothness. Remember that the templates supplied with SPM have been smoothed by 8mm, and that smoothnesses combine by Pythagoras'' rule.'}; smosrc.strtype = 'e'; smosrc.num = [1 1]; % --------------------------------------------------------------------- % smoref Template Image Smoothing % --------------------------------------------------------------------- smoref = cfg_entry; smoref.tag = 'smoref'; smoref.name = 'Template Image Smoothing'; smoref.help = {'Smoothing to apply to a copy of the template image. The template and source images should have approximately the same smoothness. Remember that the templates supplied with SPM have been smoothed by 8mm, and that smoothnesses combine by Pythagoras'' rule.'}; smoref.strtype = 'e'; smoref.num = [1 1]; % --------------------------------------------------------------------- % regtype Affine Regularisation % --------------------------------------------------------------------- regtype = cfg_menu; regtype.tag = 'regtype'; regtype.name = 'Affine Regularisation'; regtype.help = {'Affine registration into a standard space can be made more robust by regularisation (penalising excessive stretching or shrinking). The best solutions can be obtained by knowing the approximate amount of stretching that is needed (e.g. ICBM templates are slightly bigger than typical brains, so greater zooms are likely to be needed). If registering to an image in ICBM/MNI space, then choose the first option. If registering to a template that is close in size, then select the second option. If you do not want to regularise, then choose the third.'}; regtype.labels = { 'ICBM space template' 'Average sized template' 'No regularisation' }'; regtype.values = { 'mni' 'subj' 'none' }'; % --------------------------------------------------------------------- % cutoff Nonlinear Frequency Cutoff % --------------------------------------------------------------------- cutoff = cfg_entry; cutoff.tag = 'cutoff'; cutoff.name = 'Nonlinear Frequency Cutoff'; cutoff.help = {'Cutoff of DCT bases. Only DCT bases of periods longer than the cutoff are used to describe the warps. The number used will depend on the cutoff and the field of view of the template image(s).'}; cutoff.strtype = 'e'; cutoff.num = [1 1]; % --------------------------------------------------------------------- % nits Nonlinear Iterations % --------------------------------------------------------------------- nits = cfg_entry; nits.tag = 'nits'; nits.name = 'Nonlinear Iterations'; nits.help = {'Number of iterations of nonlinear warping performed.'}; nits.strtype = 'w'; nits.num = [1 1]; % --------------------------------------------------------------------- % reg Nonlinear Regularisation % --------------------------------------------------------------------- reg = cfg_entry; reg.tag = 'reg'; reg.name = 'Nonlinear Regularisation'; reg.help = {'The amount of regularisation for the nonlinear part of the spatial normalisation. Pick a value around one. However, if your normalized images appear distorted, then it may be an idea to increase the amount of regularization (by an order of magnitude) - or even just use an affine normalization. The regularization influences the smoothness of the deformation fields.'}; reg.strtype = 'e'; reg.num = [1 1]; % --------------------------------------------------------------------- % iteration Iteration Options % --------------------------------------------------------------------- iteration = cfg_branch; iteration.tag = 'iteration'; iteration.name = 'Iteration Options'; iteration.val = {smosrc smoref regtype cutoff nits reg }; iteration.help = {'Various settings for estimating warps.'}; % --------------------------------------------------------------------- % iterations Estimation Iterations % --------------------------------------------------------------------- iterations = cfg_repeat; iterations.tag = 'iterations'; iterations.name = 'Estimation Iterations'; iterations.help = {''}; iterations.values = {iteration }; iterations.num = [1 Inf]; % --------------------------------------------------------------------- % eoptions Estimation Options % --------------------------------------------------------------------- eoptions = cfg_branch; eoptions.tag = 'eoptions'; eoptions.name = 'Estimation Options'; eoptions.val = {starting iterations }; eoptions.help = {''}; % --------------------------------------------------------------------- % tbxvol_normalise Group Normalise % --------------------------------------------------------------------- cfg_tbxvol_normalise = cfg_exbranch; cfg_tbxvol_normalise.tag = 'tbxvol_normalise'; cfg_tbxvol_normalise.name = 'Group Normalise'; cfg_tbxvol_normalise.val = {subj eoptions }; cfg_tbxvol_normalise.help = {''}; cfg_tbxvol_normalise.prog = @tbxvol_normalise; cfg_tbxvol_normalise.vfiles = @vfiles_tbxvol_normalise; cfg_tbxvol_normalise.modality = { 'FMRI' 'PET' 'VBM' }'; % --------------------------------------------------------------------- % srcimgs Source Images % --------------------------------------------------------------------- srcimgs = cfg_files; srcimgs.tag = 'srcimgs'; srcimgs.name = 'Source Images'; srcimgs.help = {''}; srcimgs.filter = 'image'; srcimgs.ufilter = '.*'; srcimgs.num = [1 Inf]; % --------------------------------------------------------------------- % sliceorder Slice/Volume Order % --------------------------------------------------------------------- sliceorder = cfg_menu; sliceorder.tag = 'sliceorder'; sliceorder.name = 'Slice/Volume Order'; sliceorder.help = {''}; sliceorder.labels = { 'Vol1 Slice1..N,...VolM Slice1..N' 'VolM Slice1..N,...Vol1 Slice1..N' 'Slice1 Vol1..M,...SliceN Vol1..M' 'Slice1 VolM..1,...SliceN VolM..1' }'; sliceorder.values = { 'volume' 'volume_vrev' 'slice' 'slice_vrev' }'; % --------------------------------------------------------------------- % noutput #Output Images % --------------------------------------------------------------------- noutput = cfg_entry; noutput.tag = 'noutput'; noutput.name = '#Output Images'; noutput.help = {''}; noutput.strtype = 'i'; noutput.num = [1 1]; % --------------------------------------------------------------------- % thickcorr Correct Slice Thickness % --------------------------------------------------------------------- thickcorr = cfg_menu; thickcorr.tag = 'thickcorr'; thickcorr.name = 'Correct Slice Thickness'; thickcorr.help = {'If set to ''yes'', the slice thickness is multiplied by the #output images.'}; thickcorr.labels = { 'Yes' 'No' }'; thickcorr.values = {true false}; % --------------------------------------------------------------------- % tbxvol_split Split Volumes % --------------------------------------------------------------------- cfg_tbxvol_split = cfg_exbranch; cfg_tbxvol_split.tag = 'tbxvol_split'; cfg_tbxvol_split.name = 'Split Volumes'; cfg_tbxvol_split.val = {srcimgs sliceorder noutput thickcorr }; cfg_tbxvol_split.help = {'No help available for topic ''tbxvol_split''.'}; cfg_tbxvol_split.prog = @tbxvol_split; cfg_tbxvol_split.vfiles = @vfiles_tbxvol_split; % --------------------------------------------------------------------- % srcimgs Source Images % --------------------------------------------------------------------- srcimgs = cfg_files; srcimgs.tag = 'srcimgs'; srcimgs.name = 'Source Images'; srcimgs.help = {''}; srcimgs.filter = 'image'; srcimgs.ufilter = '.*'; srcimgs.num = [1 Inf]; % --------------------------------------------------------------------- % spikethr Threshold (in standard deviations) % --------------------------------------------------------------------- spikethr = cfg_entry; spikethr.tag = 'spikethr'; spikethr.name = 'Threshold (in standard deviations)'; spikethr.help = {''}; spikethr.strtype = 'e'; spikethr.num = [1 1]; % --------------------------------------------------------------------- % tbxvol_spike Detect abnormal slices % --------------------------------------------------------------------- cfg_tbxvol_spike = cfg_exbranch; cfg_tbxvol_spike.tag = 'tbxvol_spike'; cfg_tbxvol_spike.name = 'Detect abnormal slices'; cfg_tbxvol_spike.val = {srcimgs spikethr }; cfg_tbxvol_spike.help = {'No help available for topic ''tbxvol_spike''.'}; cfg_tbxvol_spike.prog = @tbxvol_spike; % --------------------------------------------------------------------- % srcimgs - Source Images % --------------------------------------------------------------------- srcimgs = cfg_files; srcimgs.tag = 'srcimgs'; srcimgs.name = 'Source Images'; srcimgs.help = {'A list of images to be analysed. The computed selection indices will refer to this list of images.'}; srcimgs.filter = 'image'; srcimgs.ufilter = '.*'; srcimgs.num = [1 Inf]; % --------------------------------------------------------------------- % maskimg - Mask Image % --------------------------------------------------------------------- maskimg = cfg_files; maskimg.tag = 'maskimg'; maskimg.name = 'Mask Image'; maskimg.help = {'Each source image will be weighted by this mask image before thresholding.' 'The mask image should have values between 0 (voxel does not belong to ROI) and 1 (voxel does belong to ROI). Fractional values are allowed.'}; maskimg.filter = 'image'; maskimg.ufilter = '.*'; maskimg.num = [1 1]; % --------------------------------------------------------------------- % invert - Invert Mask % --------------------------------------------------------------------- invert = cfg_menu; invert.tag = 'invert'; invert.name = 'Invert Mask'; invert.help = {'Yes: source images will be masked with (1-mask value).' 'No: source images will be masked with (mask value).'}; invert.labels = {'Yes'; 'No'}; invert.values = {true; false}; % --------------------------------------------------------------------- % masking - Mask Specification % --------------------------------------------------------------------- masking = cfg_branch; masking.tag = 'masking'; masking.name = 'Mask Specification'; masking.val = {maskimg invert}; % --------------------------------------------------------------------- % thresh - Threshold % --------------------------------------------------------------------- thresh = cfg_entry; thresh.tag = 'thresh'; thresh.name = 'Intensity Threshold'; thresh.help = {'Voxels with a value higher than this threshold will be counted as ''bad''.'}; thresh.strtype = 'r'; thresh.num = [1 1]; % --------------------------------------------------------------------- % ratio - Bad Voxels per Slice Ratio % --------------------------------------------------------------------- ratio = cfg_entry; ratio.tag = 'ratio'; ratio.name = 'Bad Voxels per Slice Ratio'; ratio.help = {'If the ratio of ''bad'' voxels to inmask volume exceeds this ratio a slice will be marked ''bad'' and the volume will be discarded.'}; ratio.strtype = 'r'; ratio.num = [1 1]; % --------------------------------------------------------------------- % crit - Exclusion Criteria % --------------------------------------------------------------------- crit = cfg_branch; crit.tag = 'crit'; crit.name = 'Exclusion Criteria'; crit.val = {thresh ratio}; % --------------------------------------------------------------------- % cfg_tbxvol_spike_mask - Detect Spikes in Mask % --------------------------------------------------------------------- cfg_tbxvol_spike_mask = cfg_exbranch; cfg_tbxvol_spike_mask.tag = 'tbxvol_spike_mask'; cfg_tbxvol_spike_mask.name = 'Detect Spikes in Mask'; cfg_tbxvol_spike_mask.val = {srcimgs masking crit}; cfg_tbxvol_spike_mask.help = {'A very crude method to detect spikes.' ['Images will be weighted by the mask image or its inverse (1-mask). ', ... 'Afterwards, for each slice the number of voxels exceeding the ', ... 'specified threshold will be counted. Images will be marked ''bad'' ', ... 'if more than a specified percentage of voxels per slice exceed the threshold.'] 'This method is useful to detect rare spikes on a set of e.g. ' 'standard deviation images of a time series.'}; cfg_tbxvol_spike_mask.prog = @(job)tbxvol_spike_mask('run', job); cfg_tbxvol_spike_mask.vout = @(job)tbxvol_spike_mask('vout', job); % --------------------------------------------------------------------- % srcimgs Images % --------------------------------------------------------------------- srcimgs = cfg_files; srcimgs.tag = 'srcimgs'; srcimgs.name = 'Images'; srcimgs.help = {'These images will be read and their histogramms displayed.'}; srcimgs.filter = 'image'; srcimgs.ufilter = '.*'; srcimgs.num = [1 Inf]; % --------------------------------------------------------------------- % int Intensity Range % --------------------------------------------------------------------- int = cfg_entry; int.tag = 'int'; int.name = 'Intensity Range'; int.help = {'The histogramm will only be created from voxels with intensities in this range.'}; int.strtype = 'r'; int.num = [1 2]; % --------------------------------------------------------------------- % hstart Image #s % --------------------------------------------------------------------- hstart = cfg_entry; hstart.tag = 'hstart'; hstart.name = 'Image #s'; hstart.help = {'Image numbers (in the input image list) for which histogramms should be created.'}; hstart.strtype = 'n'; hstart.num = [1 Inf]; % --------------------------------------------------------------------- % hnum #Averages % --------------------------------------------------------------------- hnum = cfg_entry; hnum.tag = 'hnum'; hnum.name = '#Averages'; hnum.help = {'The number of consecutive image to average in one histogramm.'}; hnum.strtype = 'n'; hnum.num = [1 1]; % --------------------------------------------------------------------- % nbins Histogramm timebins % --------------------------------------------------------------------- nbins = cfg_entry; nbins.tag = 'nbins'; nbins.name = 'Histogramm timebins'; nbins.strtype = 'n'; nbins.num = [1 1]; % --------------------------------------------------------------------- % holdhist Reference Histogramms % --------------------------------------------------------------------- holdhist = cfg_menu; holdhist.tag = 'holdhist'; holdhist.name = 'Reference Histogramms'; holdhist.labels = { 'First' 'Last' 'Both' 'None' }'; holdhist.values = { 'first' 'last' 'both' 'none' }'; % --------------------------------------------------------------------- % cfg_tbxvol_histogramm_movie Histogramm movie % --------------------------------------------------------------------- cfg_tbxvol_histogramm_movie = cfg_exbranch; cfg_tbxvol_histogramm_movie.tag = 'cfg_tbxvol_histogramm_movie'; cfg_tbxvol_histogramm_movie.name = 'Histogramm movie'; cfg_tbxvol_histogramm_movie.val = {srcimgs int hstart hnum nbins holdhist }; cfg_tbxvol_histogramm_movie.check = @(job)tbxvol_histogramm_movie('check',job); cfg_tbxvol_histogramm_movie.prog = @(job)tbxvol_histogramm_movie('run',job); cfg_tbxvol_histogramm_movie.vout = @(job)tbxvol_histogramm_movie('vout',job); % --------------------------------------------------------------------- % Multiple_Volumes Multiple Volumes % --------------------------------------------------------------------- Multiple_Volumes = cfg_choice; Multiple_Volumes.tag = 'Multiple_Volumes'; Multiple_Volumes.name = 'Multiple Volumes'; Multiple_Volumes.help = {''}; Multiple_Volumes.values = {cfg_tbxvol_correct_ec_SPM cfg_tbxvol_combine cfg_tbxvol_create_mask cfg_tbxvol_extract_subvol cfg_tbxvol_normalise cfg_tbxvol_split cfg_tbxvol_spike cfg_tbxvol_spike_mask cfg_tbxvol_histogramm_movie cfg_tbxvol_gw_boundary}; % --------------------------------------------------------------------- % srcspm Source SPM.mat % --------------------------------------------------------------------- srcspm = cfg_files; srcspm.tag = 'srcspm'; srcspm.name = 'Source SPM.mat'; srcspm.help = {''}; srcspm.filter = 'mat'; srcspm.ufilter = '.*SPM.*\.mat'; srcspm.num = [1 1]; % --------------------------------------------------------------------- % newpath Path Component to be inserted % --------------------------------------------------------------------- newpath = cfg_menu; newpath.tag = 'newpath'; newpath.name = 'Path Component to be inserted'; newpath.help = { 'The tool tries to quess which parts of the path names need to be replaced by comparing the path stored in SPM.swd with the current path to the SPM.mat file. ' 'This does not always work as expected, confirmation before replacement is strongly advised.' }'; newpath.labels = { 'Determine and insert' 'Ask before inserting' }'; newpath.values = { 'auto' 'ask' }'; % --------------------------------------------------------------------- % oldpath Path Component to be replaced % --------------------------------------------------------------------- oldpath = cfg_menu; oldpath.tag = 'oldpath'; oldpath.name = 'Path Component to be replaced'; oldpath.help = { 'The tool tries to guess which parts of the path names need to be replaced by comparing the path stored in SPM.swd with the current path to the SPM.mat file. ' 'This does not always work as expected, confirmation before replacement is strongly advised.' }'; oldpath.labels = { 'Determine and replace' 'Ask before replacing' }'; oldpath.values = { 'auto' 'ask' }'; % --------------------------------------------------------------------- % dpaths Data Files % --------------------------------------------------------------------- dpaths = cfg_branch; dpaths.tag = 'dpaths'; dpaths.name = 'Data Files'; dpaths.val = {newpath oldpath }; dpaths.help = {''}; % --------------------------------------------------------------------- % newpath Path Component to be inserted % --------------------------------------------------------------------- newpath = cfg_menu; newpath.tag = 'newpath'; newpath.name = 'Path Component to be inserted'; newpath.help = { 'The tool tries to quess which parts of the path names need to be replaced by comparing the path stored in SPM.swd with the current path to the SPM.mat file. ' 'This does not always work as expected, confirmation before replacement is strongly advised.' }'; newpath.labels = { 'Determine and insert' 'Ask before inserting' }'; newpath.values = { 'auto' 'ask' }'; % --------------------------------------------------------------------- % oldpath Path Component to be replaced % --------------------------------------------------------------------- oldpath = cfg_menu; oldpath.tag = 'oldpath'; oldpath.name = 'Path Component to be replaced'; oldpath.help = { 'The tool tries to guess which parts of the path names need to be replaced by comparing the path stored in SPM.swd with the current path to the SPM.mat file. ' 'This does not always work as expected, confirmation before replacement is strongly advised.' }'; oldpath.labels = { 'Determine and replace' 'Ask before replacing' }'; oldpath.values = { 'auto' 'ask' }'; % --------------------------------------------------------------------- % apaths Analysis Files % --------------------------------------------------------------------- apaths = cfg_branch; apaths.tag = 'apaths'; apaths.name = 'Analysis Files'; apaths.val = {newpath oldpath }; apaths.help = {''}; % --------------------------------------------------------------------- % newpath Path Component to be inserted % --------------------------------------------------------------------- newpath = cfg_menu; newpath.tag = 'newpath'; newpath.name = 'Path Component to be inserted'; newpath.help = { 'The tool tries to quess which parts of the path names need to be replaced by comparing the path stored in SPM.swd with the current path to the SPM.mat file. ' 'This does not always work as expected, confirmation before replacement is strongly advised.' }'; newpath.labels = { 'Determine and insert' 'Ask before inserting' }'; newpath.values = { 'auto' 'ask' }'; % --------------------------------------------------------------------- % oldpath Path Component to be replaced % --------------------------------------------------------------------- oldpath = cfg_menu; oldpath.tag = 'oldpath'; oldpath.name = 'Path Component to be replaced'; oldpath.help = { 'The tool tries to guess which parts of the path names need to be replaced by comparing the path stored in SPM.swd with the current path to the SPM.mat file. ' 'This does not always work as expected, confirmation before replacement is strongly advised.' }'; oldpath.labels = { 'Determine and replace' 'Ask before replacing' }'; oldpath.values = { 'auto' 'ask' }'; % --------------------------------------------------------------------- % bpaths Data&Analysis Files % --------------------------------------------------------------------- bpaths = cfg_branch; bpaths.tag = 'bpaths'; bpaths.name = 'Data&Analysis Files'; bpaths.val = {newpath oldpath }; bpaths.help = {''}; % --------------------------------------------------------------------- % npaths None % --------------------------------------------------------------------- npaths = cfg_const; npaths.tag = 'npaths'; npaths.name = 'None'; npaths.val{1} = double(0); npaths.help = {''}; % --------------------------------------------------------------------- % chpaths Paths to change % --------------------------------------------------------------------- chpaths = cfg_choice; chpaths.tag = 'chpaths'; chpaths.name = 'Paths to change'; chpaths.help = {''}; chpaths.values = {dpaths apaths bpaths npaths }; % --------------------------------------------------------------------- % swap Change Byte Order Information for Mapped Images? % --------------------------------------------------------------------- swap = cfg_menu; swap.tag = 'swap'; swap.name = 'Change Byte Order Information for Mapped Images?'; swap.help = {'This option may be obsolete for SPM5. With SPM2-style analyses, byte order of an image was stored at the time statistics were run. If one later moved the SPM.mat and analysis files to a machine with different byte order, this was not realised by SPM.'}; swap.labels = { 'Yes' 'No' }'; swap.values = {true false}; % --------------------------------------------------------------------- % tbxvol_changeSPM Change SPM.mat Image Information % --------------------------------------------------------------------- cfg_tbxvol_changeSPM = cfg_exbranch; cfg_tbxvol_changeSPM.tag = 'tbxvol_changeSPM'; cfg_tbxvol_changeSPM.name = 'Change SPM.mat Image Information'; cfg_tbxvol_changeSPM.val = {srcspm chpaths swap }; cfg_tbxvol_changeSPM.help = {'No help available for topic ''tbxvol_changeSPM''.'}; cfg_tbxvol_changeSPM.prog = @tbxvol_changeSPM; % --------------------------------------------------------------------- % srcspm Source SPM.mat % --------------------------------------------------------------------- srcspm = cfg_files; srcspm.tag = 'srcspm'; srcspm.name = 'Source SPM.mat'; srcspm.help = {''}; srcspm.filter = 'mat'; srcspm.ufilter = '.*SPM.*\.mat'; srcspm.num = [1 1]; % --------------------------------------------------------------------- % nfactor # of Factor with unequal Variance % --------------------------------------------------------------------- nfactor = cfg_menu; nfactor.tag = 'nfactor'; nfactor.name = '# of Factor with unequal Variance'; nfactor.help = {''}; nfactor.labels = { 'Factor 1' 'Factor 2' 'Factor 3' }'; nfactor.values = {2 3 4}; % --------------------------------------------------------------------- % tbxvol_correct_ec_SPM Correct Error Covariance components % --------------------------------------------------------------------- cfg_tbxvol_correct_ec_SPM = cfg_exbranch; cfg_tbxvol_correct_ec_SPM.tag = 'tbxvol_correct_ec_SPM'; cfg_tbxvol_correct_ec_SPM.name = 'Correct Error Covariance components'; cfg_tbxvol_correct_ec_SPM.val = {srcspm nfactor }; cfg_tbxvol_correct_ec_SPM.help = {'No help available for topic ''tbxvol_correct_ec_SPM''.'}; cfg_tbxvol_correct_ec_SPM.prog = @tbxvol_correct_ec_SPM; % --------------------------------------------------------------------- % srcimgs Source Images % --------------------------------------------------------------------- srcimgs = cfg_files; srcimgs.tag = 'srcimgs'; srcimgs.name = 'Source Images'; srcimgs.help = {''}; srcimgs.filter = 'image'; srcimgs.ufilter = '.*'; srcimgs.num = [1 Inf]; % --------------------------------------------------------------------- % option Select output map % --------------------------------------------------------------------- option = cfg_menu; option.tag = 'option'; option.name = 'Select output map'; option.help = {''}; option.labels = { 'p' '-log(1-p)' 'correlation coefficient cc' 'effect size d' }'; option.values = {1 2 3 4}; % --------------------------------------------------------------------- % tbxvol_transform_t2x Transform t maps % --------------------------------------------------------------------- cfg_tbxvol_transform_t2x = cfg_exbranch; cfg_tbxvol_transform_t2x.tag = 'tbxvol_transform_t2x'; cfg_tbxvol_transform_t2x.name = 'Transform t maps'; cfg_tbxvol_transform_t2x.val = {srcimgs option }; cfg_tbxvol_transform_t2x.help = {'No help available for topic ''tbxvol_transform_t2x''.'}; cfg_tbxvol_transform_t2x.prog = @tbxvol_transform_t2x; cfg_tbxvol_transform_t2x.vfiles = @vfiles_tbxvol_transform_t2x; % --------------------------------------------------------------------- % srcimgs Source Images % --------------------------------------------------------------------- srcimgs = cfg_files; srcimgs.tag = 'srcimgs'; srcimgs.name = 'Source Images'; srcimgs.help = {''}; srcimgs.filter = 'image'; srcimgs.ufilter = '.*'; srcimgs.num = [1 Inf]; % --------------------------------------------------------------------- % interp Interpolation % --------------------------------------------------------------------- interp = cfg_menu; interp.tag = 'interp'; interp.name = 'Interpolation'; interp.help = {''}; interp.labels = { 'Nearest neighbour' 'Trilinear' '2nd Degree b-Spline' '3rd Degree b-Spline' '4th Degree b-Spline' '5th Degree b-Spline' '6th Degree b-Spline' '7th Degree b-Spline' '2nd Degree Sinc' '3rd Degree Sinc' '4th Degree Sinc' '5th Degree Sinc' '6th Degree Sinc' '7th Degree Sinc' }'; interp.values = {0 1 2 3 4 5 6 7 -2 -3 -4 -5 -6 -7}; % --------------------------------------------------------------------- % dtype Data Type % --------------------------------------------------------------------- dtype = cfg_menu; dtype.tag = 'dtype'; dtype.name = 'Data Type'; dtype.val{1} = double(0); dtype.help = {'Data-type of output images. SAME indicates the same datatype as the original images.'}; dtype.labels = cellstr(char('SAME',spm_type(spm_type))); dtype.values = num2cell([0 spm_type]); % --------------------------------------------------------------------- % prefix Output Filename Prefix % --------------------------------------------------------------------- prefix = cfg_entry; prefix.tag = 'prefix'; prefix.name = 'Output Filename Prefix'; prefix.val = {'li_'}; prefix.help = {'The output filename is constructed by prefixing the original filename with this prefix.'}; prefix.strtype = 's'; prefix.num = [1 Inf]; % --------------------------------------------------------------------- % tbxvol_laterality Compute Laterality index % --------------------------------------------------------------------- cfg_tbxvol_laterality = cfg_exbranch; cfg_tbxvol_laterality.tag = 'tbxvol_laterality'; cfg_tbxvol_laterality.name = 'Compute Laterality index'; cfg_tbxvol_laterality.val = {srcimgs interp dtype prefix }; cfg_tbxvol_laterality.help = {'No help available for topic ''tbxvol_laterality''.'}; cfg_tbxvol_laterality.prog = @tbxvol_laterality; cfg_tbxvol_laterality.vfiles = @vfiles_tbxvol_laterality; % --------------------------------------------------------------------- % srcspm Source SPM.mat % --------------------------------------------------------------------- srcspm = cfg_files; srcspm.tag = 'srcspm'; srcspm.name = 'Source SPM.mat'; srcspm.help = {''}; srcspm.filter = 'mat'; srcspm.ufilter = '.*SPM.*\.mat'; srcspm.num = [1 1]; % --------------------------------------------------------------------- % maskimg Brain mask image (optional) % --------------------------------------------------------------------- maskimg = cfg_files; maskimg.tag = 'maskimg'; maskimg.name = 'Brain mask image (optional)'; maskimg.val = {''}; maskimg.help = {''}; maskimg.filter = 'image'; maskimg.ufilter = '.*'; maskimg.num = [0 1]; % --------------------------------------------------------------------- % dist Distance from mean % --------------------------------------------------------------------- dist = cfg_entry; dist.tag = 'dist'; dist.name = 'Distance from mean'; dist.help = {''}; dist.strtype = 'e'; dist.num = [1 1]; % --------------------------------------------------------------------- % graphics Graphics output % --------------------------------------------------------------------- graphics = cfg_menu; graphics.tag = 'graphics'; graphics.name = 'Graphics output'; graphics.help = {''}; graphics.labels = { 'Yes' 'No' }'; graphics.values = {true false}; % --------------------------------------------------------------------- % tbxvol_analyse_resms Analyse goodness of fit % --------------------------------------------------------------------- cfg_tbxvol_analyse_resms = cfg_exbranch; cfg_tbxvol_analyse_resms.tag = 'tbxvol_analyse_resms'; cfg_tbxvol_analyse_resms.name = 'Analyse goodness of fit'; cfg_tbxvol_analyse_resms.val = {srcspm maskimg dist graphics }; cfg_tbxvol_analyse_resms.help = {'No help available for topic ''tbxvol_analyse_resms''.'}; cfg_tbxvol_analyse_resms.prog = @tbxvol_analyse_resms; %cfg_tbxvol_analyse_resms.vfiles = @vfiles_tbxvol_analyse_resms; % --------------------------------------------------------------------- % srcimgs Source Images % --------------------------------------------------------------------- srcimgs = cfg_files; srcimgs.tag = 'srcimgs'; srcimgs.name = 'Source Images'; srcimgs.help = {''}; srcimgs.filter = 'image'; srcimgs.ufilter = '.*'; srcimgs.num = [1 Inf]; % --------------------------------------------------------------------- % maskimgs Mask image(s) % --------------------------------------------------------------------- maskimgs = cfg_files; maskimgs.tag = 'maskimgs'; maskimgs.name = 'Mask image(s)'; maskimgs.help = {''}; maskimgs.filter = 'image'; maskimgs.ufilter = '.*'; maskimgs.num = [1 Inf]; % --------------------------------------------------------------------- % subjects Subject % --------------------------------------------------------------------- subjects1 = cfg_branch; subjects1.tag = 'subjects'; subjects1.name = 'Subject'; subjects1.val = {srcimgs maskimgs }; subjects1.help = {''}; % --------------------------------------------------------------------- % subjects Subjects % --------------------------------------------------------------------- subjects = cfg_repeat; subjects.tag = 'subjects'; subjects.name = 'Subjects'; subjects.help = {''}; subjects.values = {subjects1 }; subjects.num = [1 Inf]; % --------------------------------------------------------------------- % bins Edges of histogramm bins % --------------------------------------------------------------------- bins = cfg_entry; bins.tag = 'bins'; bins.name = 'Edges of histogramm bins'; bins.help = {'Enter the edges of histogramm bins. See ''help histc'' for details.'}; bins.strtype = 'e'; bins.num = [1 Inf]; % --------------------------------------------------------------------- % tbxvol_hist_summary Histogramm summary % --------------------------------------------------------------------- cfg_tbxvol_hist_summary = cfg_exbranch; cfg_tbxvol_hist_summary.tag = 'tbxvol_hist_summary'; cfg_tbxvol_hist_summary.name = 'Histogramm summary'; cfg_tbxvol_hist_summary.val = {subjects bins }; cfg_tbxvol_hist_summary.help = {'No help available for topic ''tbxvol_hist_summary''.'}; cfg_tbxvol_hist_summary.prog = @(job)tbxvol_hist_summary('run',job); cfg_tbxvol_hist_summary.vout = @(job)tbxvol_hist_summary('vout',job); % --------------------------------------------------------------------- % num Session # % --------------------------------------------------------------------- num = cfg_entry; num.tag = 'num'; num.name = 'Session #'; num.strtype = 'n'; num.num = [1 1]; num.help = {['Orthogonalisation will be performed per Session. Enter ' ... 'the number of the session to be orthogonalised.']}; % --------------------------------------------------------------------- % c Conditions % --------------------------------------------------------------------- c = cfg_entry; c.tag = 'c'; c.name = 'Conditions'; c.strtype = 'n'; c.num = [1 Inf]; c.help = {['Enter the condition numbers to orthogonalise. The order of ' ... 'conditions is important, orthogonalisation will be performed from ' ... 'to right.']}; % --------------------------------------------------------------------- % Sess % --------------------------------------------------------------------- Sess = cfg_branch; Sess.tag = 'Sess'; Sess.name = 'Session'; Sess.val = {num c}; % --------------------------------------------------------------------- % Sessrep Sessions % --------------------------------------------------------------------- Sessrep = cfg_repeat; Sessrep.tag = 'Sessrep'; Sessrep.name = 'Sessions'; Sessrep.num = [1 Inf]; Sessrep.values = {Sess}; % --------------------------------------------------------------------- % cfg_tbxvol_orth_conditions Orthogonalise conditions % --------------------------------------------------------------------- cfg_tbxvol_orth_conditions = cfg_exbranch; cfg_tbxvol_orth_conditions.tag = 'tbxvol_orth_conditions'; cfg_tbxvol_orth_conditions.name = 'Orthogonalise conditions'; cfg_tbxvol_orth_conditions.val = {srcspm Sessrep}; cfg_tbxvol_orth_conditions.prog = @(job)tbxvol_orth_conditions('run',job); cfg_tbxvol_orth_conditions.vout = @(job)tbxvol_orth_conditions('vout',job); cfg_tbxvol_orth_conditions.help = vgtbx_help2cell('tbxvol_orth_conditions'); % --------------------------------------------------------------------- % Latency computation - modified copy of spm_cfg_imcalc % --------------------------------------------------------------------- cfg_tbxvol_latency = spm_cfg_imcalc; cfg_tbxvol_latency.tag = 'tbxvol_latency'; cfg_tbxvol_latency.name = 'Latency (Image Calculator)'; cfg_tbxvol_latency.val{1}.name = 'HRF+Derivative con images'; cfg_tbxvol_latency.val{1}.num = [2 2]; cfg_tbxvol_latency.val{4}.val = {'2*1.78/(1+exp(3.10*i2/i1))-1.78)'}; % --------------------------------------------------------------------- % Stats_Tools Stats Tools % --------------------------------------------------------------------- Stats_Tools = cfg_choice; Stats_Tools.tag = 'Stats_Tools'; Stats_Tools.name = 'Stats Tools'; Stats_Tools.help = {''}; Stats_Tools.values = {cfg_tbxvol_changeSPM cfg_tbxvol_correct_ec_SPM cfg_tbxvol_transform_t2x cfg_tbxvol_laterality cfg_tbxvol_analyse_resms cfg_tbxvol_hist_summary cfg_tbxvol_orth_conditions cfg_tbxvol_latency}; % --------------------------------------------------------------------- % vgtbx_Volumes Volume handling utilities % --------------------------------------------------------------------- vgtbx_Volumes = cfg_choice; vgtbx_Volumes.tag = 'vgtbx_Volumes'; vgtbx_Volumes.name = 'Volume handling utilities'; vgtbx_Volumes.help = { 'Volumes toolbox' '_______________________________________________________________________' '' 'This toolbox contains various helper functions to make image manipulation within SPM5 more convenient. Help on each individual item can be obtained by selecting the corresponding entry in the help menu.' '' 'This toolbox is free but copyright software, distributed under the terms of the GNU General Public Licence as published by the Free Software Foundation (either version 2, as given in file spm_LICENCE.man, or at your option, any later version). Further details on "copyleft" can be found at http://www.gnu.org/copyleft/.' 'The toolbox consists of the files listed in its Contents.m file.' '' 'The source code of this toolbox is available at' '' 'http://sourceforge.net/projects/spmtools' '' 'Please use the SourceForge forum and tracker system for comments, suggestions, bug reports etc. regarding this toolbox.' '_______________________________________________________________________' '' '@(#) $Id: vgtbx_config_Volumes.m 539 2007-12-06 17:31:12Z glauche $' }'; vgtbx_Volumes.values = {Single_Volumes Multiple_Volumes Stats_Tools }; % --------------------------------------------------------------------- % Virtual outputs/files % --------------------------------------------------------------------- function dep = vout_tbxvol_extract(job) dep = cfg_dep; dep.sname = 'Extract Data (All)'; dep.src_output = substruct('()',{':',1:numel(job.roispec)}); dep.tgt_spec = cfg_findspec({{'strtype','e'}}); if numel(job.roispec) > 1 for l = 1:numel(job.roispec) dep(l+1) = cfg_dep; dep(l+1).sname = sprintf('Extract Data (ROI %d)', l); dep(l+1).src_output = substruct('()', {':',l}); dep(l+1).tgt_spec = cfg_findspec({{'strtype','e'}}); end; end; function dep = vout_tbxvol_rescale(job) dep = cfg_dep; dep.sname = 'Rescaled Images'; dep.src_output = substruct('.','rimgs'); dep.tgt_spec = cfg_findspec({{'filter','image','strtype','e'}}); function vfiles = vfiles_tbxvol_split(job) vfiles = {}; for l = 1:numel(job.srcimgs) [p n e] = spm_fileparts(job.srcimgs{l}); fs = sprintf('_%%0%dd',ceil(log10(job.noutput))); for k = 1:job.noutput vfiles{end+1} = fullfile(p,[n sprintf(fs,k) e]); end; end; function vfiles = vfiles_tbxvol_transform_t2x(job) for k = 1:numel(job.srcimgs) [pth nm xt] = spm_fileparts(job.srcimgs{k}); switch job.option case 1 nm2 = 'P'; case 2 nm2 = 'logP'; case 3 nm2 = 'R'; case 4 nm2 = 'D'; end % name should follow convention spm?_0*.img if strcmp(nm(1:3),'spm') && strcmp(nm(4:6),'T_0') vfiles{k} = fullfile(pth,[nm(1:3) nm2 nm(5:end) xt ',1']); else vfiles{k} = fullfile(pth,['spm' nm2 '_' nm xt ',1']); end end; function vfiles = vfiles_tbxvol_laterality(job) for k = 1:numel(job.srcimgs) [pth nm xt] = spm_fileparts(job.srcimgs{k}); vfiles{k} = fullfile(pth, [job.prefix nm xt ',1']); end; function vout = vout_tbxvol_rescale_min_max(job) vout = cfg_dep; vout.sname = 'Rescaled Images'; vout.src_output = substruct('.','scimgs'); vout.tgt_spec = cfg_findspec({{'filter','image','strtype','e'}}); function vout = vout_tbxvol_regrid(job) vout = cfg_dep; vout.sname = 'Regridded Images'; vout.src_output = substruct('.','outimgs'); vout.tgt_spec = cfg_findspec({{'filter','image','strtype','e'}}); function vfiles = vfiles_tbxvol_flip(job) vfiles = job.srcimgs; if ~job.overwrite dirs = 'XYZ'; for k=1:numel(job.srcimgs) [p n e v] = spm_fileparts(job.srcimgs{k}); vfiles{k} = fullfile(p,[job.prefix dirs(job.flipdir) n e v]); end; end; function vf = vfiles_tbxvol_normalise(varargin) job = varargin{1}; vf = cell(numel(job.subj.source)); for i=1:numel(job.subj.source), [pth,nam,ext,num] = spm_fileparts(deblank(job.subj.source{i})); vf{i} = fullfile(pth,[nam,'_gr_sn.mat']); end;
github
philippboehmsturm/antx-master
tbxvol_normalise.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/Volumes/Multiple_Volumes/tbxvol_normalise.m
16,914
utf_8
b6240c42997c1004290a795f609a7858
function tbxvol_normalise(varargin) job = varargin{1}; eflags = job.eoptions.iteration; for i=1:numel(job.subj.source), [pth,nam,ext,ind] = spm_fileparts(char(job.subj.source{i})); matname{i} = fullfile(pth,[nam '_gr_sn.mat']); end; if isfield(job.eoptions.starting,'stempl') VG = char(job.eoptions.starting.stempl.template{:}); VWG = char(job.eoptions.starting.stempl.weight{:}); sparams = ''; else VG = ''; VWG = ''; sparams = job.eoptions.starting.sparams; end; vg_normalise(VG,... char(job.subj.source{:}), matname,... VWG, char(job.subj.wtsrc{:}), ... eflags, sparams); return; function params = vg_normalise(VG,VF,matname,VWG,VWF,flags,starting) % Spatial (stereotactic) normalization % % FORMAT params = spm_normalise(VG,VF,matname,VWG,VWF,flags) % VG - template handle(s) % VF - handle of image to estimate params from % matname - name of file to store deformation definitions % VWG - template weighting image % VWF - source weighting image % flags - flags. If any field is not passed, then defaults are assumed. % smosrc - smoothing of source image (FWHM of Gaussian in mm). % Defaults to 8. % smoref - smoothing of template image (defaults to 0). % regtype - regularisation type for affine registration % See spm_affreg.m (default = 'mni'). % cutoff - Cutoff of the DCT bases. Lower values mean more % basis functions are used (default = 30mm). % nits - number of nonlinear iterations (default=16). % reg - amount of regularisation (default=0.1) % starting - (optional) list of parameters for initial normalisation % step - e.g. obtained from segmentation - one file per VF image % ___________________________________________________________________________ % % This module spatially (stereotactically) normalizes MRI, PET or SPECT % images into a standard space defined by some ideal model or template % image[s]. The template images supplied with SPM conform to the space % defined by the ICBM, NIH P-20 project, and approximate that of the % the space described in the atlas of Talairach and Tournoux (1988). % The transformation can also be applied to any other image that has % been coregistered with these scans. % % % Mechanism % Generally, the algorithms work by minimising the sum of squares % difference between the image which is to be normalised, and a linear % combination of one or more template images. For the least squares % registration to produce an unbiased estimate of the spatial % transformation, the image contrast in the templates (or linear % combination of templates) should be similar to that of the image from % which the spatial normalization is derived. The registration simply % searches for an optimum solution. If the starting estimates are not % good, then the optimum it finds may not find the global optimum. % % The first step of the normalization is to determine the optimum % 12-parameter affine transformation. Initially, the registration is % performed by matching the whole of the head (including the scalp) to % the template. Following this, the registration proceeded by only % matching the brains together, by appropriate weighting of the template % voxels. This is a completely automated procedure (that does not % require ``scalp editing'') that discounts the confounding effects of % skull and scalp differences. A Bayesian framework is used, such that % the registration searches for the solution that maximizes the a % posteriori probability of it being correct. i.e., it maximizes the % product of the likelihood function (derived from the residual squared % difference) and the prior function (which is based on the probability % of obtaining a particular set of zooms and shears). % % The affine registration is followed by estimating nonlinear deformations, % whereby the deformations are defined by a linear combination of three % dimensional discrete cosine transform (DCT) basis functions. % The parameters represent coefficients of the deformations in % three orthogonal directions. The matching involved simultaneously % minimizing the bending energies of the deformation fields and the % residual squared difference between the images and template(s). % % An option is provided for allowing weighting images (consisting of pixel % values between the range of zero to one) to be used for registering % abnormal or lesioned brains. These images should match the dimensions % of the image from which the parameters are estimated, and should contain % zeros corresponding to regions of abnormal tissue. % % % Uses % Primarily for stereotactic normalization to facilitate inter-subject % averaging and precise characterization of functional anatomy. It is % not necessary to spatially normalise the data (this is only a % pre-requisite for intersubject averaging or reporting in the % Talairach space). % % Inputs % The first input is the image which is to be normalised. This image % should be of the same modality (and MRI sequence etc) as the template % which is specified. The same spatial transformation can then be % applied to any other images of the same subject. These files should % conform to the SPM data format (See 'Data Format'). Many subjects can % be entered at once, and there is no restriction on image dimensions % or voxel size. % % Providing that the images have a correct ".mat" file associated with % them, which describes the spatial relationship between them, it is % possible to spatially normalise the images without having first % resliced them all into the same space. The ".mat" files are generated % by "spm_realign" or "spm_coregister". % % Default values of parameters pertaining to the extent and sampling of % the standard space can be changed, including the model or template % image[s]. % % % Outputs % All normalized *.img scans are written to the same subdirectory as % the original *.img, prefixed with a 'n' (i.e. n*.img). The details % of the transformations are displayed in the results window, and the % parameters are saved in the "*_sn.mat" file. % % %____________________________________________________________________________ % Refs: % K.J. Friston, J. Ashburner, C.D. Frith, J.-B. Poline, % J.D. Heather, and R.S.J. Frackowiak % Spatial Registration and Normalization of Images. % Human Brain Mapping 2:165-189(1995) % % J. Ashburner, P. Neelin, D.L. Collins, A.C. Evans and K. J. Friston % Incorporating Prior Knowledge into Image Registration. % NeuroImage 6:344-352 (1997) % % J. Ashburner and K. J. Friston % Nonlinear Spatial Normalization using Basis Functions. % Human Brain Mapping 7(4):in press (1999) %_______________________________________________________________________ % Copyright (C) 2005 Wellcome Department of Imaging Neuroscience % John Ashburner % $Id: tbxvol_normalise.m 712 2010-06-30 14:20:19Z glauche $ if nargin<2, error('Incorrect usage.'); end; if ischar(VF), VF = spm_vol(VF); end; if ischar(VG), VG = spm_vol(VG); end; if nargin<3, if nargout==0, for k = 1:numel(VF) [pth,nm,xt,vr] = spm_fileparts(deblank(VF(k).fname)); matname{k} = fullfile(pth,[nm '_sn.mat']); end; else matname = ''; end; end; if nargin<4, VWG = ''; end; if nargin<5, VWF = ''; end; if ischar(VWG), VWG=spm_vol(VWG); end; if ischar(VWF), VWF=spm_vol(VWF); end; def_flags = struct('smosrc',4,'smoref',4,'regtype','mni',... 'cutoff',15,'nits',16,'reg',0.01,'graphics',0); if nargin < 6, flags = def_flags; else fnms = fieldnames(def_flags); for i=1:length(fnms), if ~isfield(flags,fnms{i}), for k = 1:numel(flags) flags(k).(fnms{i}) = def_flags.(fnms{i}); end; end; end; end; fprintf('Smoothing by %g & %gmm..\n', flags(1).smoref, flags(1).smosrc); for k = 1:numel(VF) VF1(k) = spm_smoothto8bit(VF(k),flags(1).smosrc); % Rescale images so that globals are better conditioned VF1(k).pinfo(1:2,:) = VF1(k).pinfo(1:2,:)/spm_global(VF1(k)); end; if (nargin < 7) || isempty(starting) % use specified template for i=1:numel(VG), VG1(i) = spm_smoothto8bit(VG(i),flags(1).smoref); VG1(i).pinfo(1:2,:) = VG1(i).pinfo(1:2,:)/spm_global(VG(i)); end; % Affine Normalisation %----------------------------------------------------------------------- for k = 1:numel(VF1) fprintf('Coarse Affine Registration..\n'); aflags = struct('sep',max(flags(1).smoref,flags(1).smosrc), 'regtype',flags(1).regtype,... 'WG',[],'WF',[],'globnorm',0); aflags.sep = max(aflags.sep,max(sqrt(sum(VG(1).mat(1:3,1:3).^2)))); aflags.sep = max(aflags.sep,max(sqrt(sum(VF(k).mat(1:3,1:3).^2)))); M = eye(4); %spm_matrix(prms'); spm_chi2_plot('Init','Affine Registration','Mean squared difference','Iteration'); [M,scal] = spm_affreg(VG1, VF1(k), aflags, M); fprintf('Fine Affine Registration..\n'); aflags.WG = VWG; aflags.WF = VWF; aflags.sep = aflags.sep/2; [M,scal] = spm_affreg(VG1, VF1(k), aflags, M,scal); Affine{k} = inv(VG(1).mat\M*VF1(k).mat); spm_chi2_plot('Clear'); end; Tr(1:numel(VF1)) = {[]}; bb = Inf*ones(2,3); vox = Inf*ones(1,3); else for k = 1:numel(VF1) prm = load(starting{k}); Affine{k} = prm.Affine; Tr{k} = prm.Tr; VGtmp(k) = prm.VG(1); end; try spm_check_orientations(VGtmp); catch error(['Templates for initial normalisation step do not have same' ... ' orientation and voxel size.\n']); end; [bb vox] = bbvox_from_V(VGtmp(1)); fprintf('Computing template image for iteration 1.\n'); for k = 1:numel(VF1) VN(k) = spm_write_sn(VF(k),starting{k},... struct('interp',4,... 'bb',bb,... 'vox',vox)); end; VGnew = rmfield(VN(1),'dat'); [p n e v] = spm_fileparts(VGnew.fname); VGnew.fname = fullfile(p,sprintf('mean%d%s%s',1,n,e)); VGnew = spm_imcalc(VN,VGnew,'mean(X)',{1,0,-4}); VG1 = spm_smoothto8bit(VGnew,flags(1).smoref); VG1.pinfo(1:2,:) = VG1.pinfo(1:2,:)/spm_global(VGnew); end; % Basis function Normalisation %----------------------------------------------------------------------- spm_progress_bar('init', 100, 'Parameter Estimation', '% completed'); for it = 1:numel(flags) for k = 1:numel(VF1) fov = VF1(k).dim(1:3).*sqrt(sum(VF1(k).mat(1:3,1:3).^2)); if any(fov<15*flags(it).smosrc/2 & VF1(k).dim(1:3)<15), fprintf('Field of view too small for nonlinear registration\n'); Tr{k} = []; elseif isfinite(flags(it).cutoff) && flags(it).nits && ~isinf(flags(it).reg), fprintf('3D CT Norm...\n'); Tr{k} = snbasis(VG1,VF1(k),VWG,VWF,Affine{k},... max(flags(it).smoref,flags(it).smosrc),flags(it).cutoff, ... flags(it).nits,flags(it).reg, Tr{k}); else Tr{k} = []; end; params = struct('Affine',Affine{k}, 'Tr',Tr{k}, 'VF',VF(k), 'VG',VG, ... 'flags',flags(it)); VN(k) = spm_write_sn(VF(k),params,struct('interp',4,... 'bb',bb,... 'vox',vox)); spm_progress_bar('set', 100*((it-1)*numel(VF1)+k)/ ... (numel(flags)*numel(VF1))); end; if it < numel(flags) fprintf('Computing template image for iteration %d.\n',it+1); VWF = []; VWG = []; VGnew = rmfield(VN(1),'dat'); [p n e v] = spm_fileparts(VGnew.fname); VGnew.fname = fullfile(p,sprintf('mean%d%s%s',it+1,n,e)); VGnew = spm_imcalc(VN,VGnew,'mean(X)',{1,0,-4}); VG1 = spm_smoothto8bit(VGnew,flags(it+1).smoref); VG1.pinfo(1:2,:) = VG1.pinfo(1:2,:)/spm_global(VGnew); end; end; clear VF1 VG1 % Remove dat fields before saving %----------------------------------------------------------------------- if isfield(VF,'dat'), VF = rmfield(VF,'dat'); end; if isfield(VG,'dat'), VG = rmfield(VG,'dat'); end; if ~isempty(matname), AffineList = Affine; TrList = Tr; VFList = VF; spm_progress_bar('init', numel(VFList), 'Saving Parameters'); for k = 1:numel(VFList) fprintf('Saving Parameters..\n'); Affine = AffineList{k}; Tr = TrList{k}; VF = VFList(k); if spm_matlab_version_chk('7') >= 0, save(matname{k},'-V6','Affine','Tr','VF','VG','flags'); else save(matname{k},'Affine','Tr','VF','VG','flags'); end; spm_progress_bar('set', k); end; end; spm_progress_bar('clear'); return; %_______________________________________________________________________ %_______________________________________________________________________ function Tr = snbasis(VG,VF,VWG,VWF,Affine,fwhm,cutoff,nits,reg,Tr) % 3D Basis Function Normalization % FORMAT Tr = snbasis(VG,VF,VWG,VWF,Affine,fwhm,cutoff,nits,reg) % VG - Template volumes (see spm_vol). % VF - Volume to normalize. % VWG - weighting Volume - for template. % VWF - weighting Volume - for object. % Affine - A 4x4 transformation (in voxel space). % fwhm - smoothness of images. % cutoff - frequency cutoff of basis functions. % nits - number of iterations. % reg - regularisation. % Tr - Discrete cosine transform of the warps in X, Y & Z. % % snbasis performs a spatial normalization based upon a 3D % discrete cosine transform. % %______________________________________________________________________ fwhm = [fwhm 30]; % Number of basis functions for x, y & z %----------------------------------------------------------------------- tmp = sqrt(sum(VG(1).mat(1:3,1:3).^2)); k = max(round((VG(1).dim(1:3).*tmp)/cutoff),[1 1 1]); if ~isempty(Tr) % take at least same number of parameters as before, set % uninitialised parameters to zero k1 = size(Tr); k = max(k,k1(1:3)); Tr((end+1):k(1),(end+1):k(2),(end+1):k(3),:) = 0; end; % Scaling is to improve stability. %----------------------------------------------------------------------- stabilise = 8; basX = spm_dctmtx(VG(1).dim(1),k(1))*stabilise; basY = spm_dctmtx(VG(1).dim(2),k(2))*stabilise; basZ = spm_dctmtx(VG(1).dim(3),k(3))*stabilise; dbasX = spm_dctmtx(VG(1).dim(1),k(1),'diff')*stabilise; dbasY = spm_dctmtx(VG(1).dim(2),k(2),'diff')*stabilise; dbasZ = spm_dctmtx(VG(1).dim(3),k(3),'diff')*stabilise; vx1 = sqrt(sum(VG(1).mat(1:3,1:3).^2)); vx2 = vx1; kx = (pi*((1:k(1))'-1)/VG(1).dim(1)/vx1(1)).^2; ox=ones(k(1),1); ky = (pi*((1:k(2))'-1)/VG(1).dim(2)/vx1(2)).^2; oy=ones(k(2),1); kz = (pi*((1:k(3))'-1)/VG(1).dim(3)/vx1(3)).^2; oz=ones(k(3),1); if 1, % BENDING ENERGY REGULARIZATION % Estimate a suitable sparse diagonal inverse covariance matrix for % the parameters (IC0). %----------------------------------------------------------------------- IC0 = (1*kron(kz.^2,kron(ky.^0,kx.^0)) +... 1*kron(kz.^0,kron(ky.^2,kx.^0)) +... 1*kron(kz.^0,kron(ky.^0,kx.^2)) +... 2*kron(kz.^1,kron(ky.^1,kx.^0)) +... 2*kron(kz.^1,kron(ky.^0,kx.^1)) +... 2*kron(kz.^0,kron(ky.^1,kx.^1)) ); IC0 = reg*IC0*stabilise^6; IC0 = [IC0*vx2(1)^4 ; IC0*vx2(2)^4 ; IC0*vx2(3)^4 ; zeros(numel(VG)*4,1)]; IC0 = sparse(1:length(IC0),1:length(IC0),IC0,length(IC0),length(IC0)); else % MEMBRANE ENERGY (LAPLACIAN) REGULARIZATION %----------------------------------------------------------------------- IC0 = kron(kron(oz,oy),kx) + kron(kron(oz,ky),ox) + kron(kron(kz,oy),ox); IC0 = reg*IC0*stabilise^6; IC0 = [IC0*vx2(1)^2 ; IC0*vx2(2)^2 ; IC0*vx2(3)^2 ; zeros(prod(size(VG))*4,1)]; IC0 = sparse(1:length(IC0),1:length(IC0),IC0,length(IC0),length(IC0)); end; % Generate starting estimates. %----------------------------------------------------------------------- s1 = 3*prod(k); s2 = s1 + numel(VG)*4; T = zeros(s2,1); T(s1+(1:4:numel(VG)*4)) = 1; if exist('Tr','var') && ~isempty(Tr) T(1:s1) = Tr(:)/stabilise.^3; end; pVar = Inf; for iter=1:nits, fprintf(' iteration %2d: ', iter); [Alpha,Beta,Var,fw] = spm_brainwarp(VG,VF,Affine,basX,basY,basZ,dbasX,dbasY,dbasZ,T,fwhm,VWG, VWF); if Var>pVar, scal = pVar/Var ; Var = pVar; else scal = 1; end; pVar = Var; T = (Alpha + IC0*scal)\(Alpha*T + Beta); fwhm(2) = min([fw fwhm(2)]); fprintf(' FWHM = %6.4g Var = %g\n', fw,Var); end; % Values of the 3D-DCT - for some bizarre reason, this needs to be done % as two seperate statements in Matlab 6.5... %----------------------------------------------------------------------- Tr = reshape(T(1:s1),[k 3]); drawnow; Tr = Tr*stabilise.^3; return; %_______________________________________________________________________ %_______________________________________________________________________ function [bb,vx] = bbvox_from_V(V) vx = sqrt(sum(V.mat(1:3,1:3).^2)); if det(V.mat(1:3,1:3))<0, vx(1) = -vx(1); end; o = V.mat\[0 0 0 1]'; o = o(1:3)'; bb = [-vx.*(o-1) ; vx.*(V.dim(1:3)-o)]; return;
github
philippboehmsturm/antx-master
tbxvol_spike_mask.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/Volumes/Multiple_Volumes/tbxvol_spike_mask.m
6,666
utf_8
6653019fed50774babb90f080393b12e
function varargout = tbxvol_spike_mask(cmd, varargin) % Template function to implement callbacks for an cfg_exbranch. The calling % syntax is % varargout = tbxvol_spike_mask(cmd, varargin) % where cmd is one of % 'run' - out = tbxvol_spike_mask('run', job) % Run a job, and return its output argument % 'vout' - dep = tbxvol_spike_mask('vout', job) % Examine a job structure with all leafs present and return an % array of cfg_dep objects. % 'check' - str = tbxvol_spike_mask('check', subcmd, subjob) % Examine a part of a fully filled job structure. Return an empty % string if everything is ok, or a string describing the check % error. subcmd should be a string that identifies the part of % the configuration to be checked. % 'defaults' - defval = tbxvol_spike_mask('defaults', key) % Retrieve defaults value. key must be a sequence of dot % delimited field names into the internal def struct which is % kept in function local_def. An error is returned if no % matching field is found. % tbxvol_spike_mask('defaults', key, newval) % Set the specified field in the internal def struct to a new % value. % Application specific code needs to be inserted at the following places: % 'run' - main switch statement: code to compute the results, based on % a filled job % 'vout' - main switch statement: code to compute cfg_dep array, based % on a job structure that has all leafs, but not necessarily % any values filled in % 'check' - create and populate switch subcmd switchyard % 'defaults' - modify initialisation of defaults in subfunction local_defs % Callbacks can be constructed using anonymous function handles like this: % 'run' - @(job)tbxvol_spike_mask('run', job) % 'vout' - @(job)tbxvol_spike_mask('vout', job) % 'check' - @(job)tbxvol_spike_mask('check', 'subcmd', job) % 'defaults' - @(val)tbxvol_spike_mask('defaults', 'defstr', val{:}) % Note the list expansion val{:} - this is used to emulate a % varargin call in this function handle. % % This code is part of a batch job configuration system for MATLAB. See % help matlabbatch % for a general overview. %_______________________________________________________________________ % Copyright (C) 2007 Freiburg Brain Imaging % Volkmar Glauche % $Id: tbxvol_spike_mask.m 720 2011-09-27 05:11:51Z glauche $ rev = '$Rev: 720 $'; %#ok if ischar(cmd) switch lower(cmd) case 'run' job = local_getjob(varargin{1}); % do computation, return results in variable out spm_progress_bar('Init',numel(job.srcimgs),'','images completed'); VM = spm_vol(job.masking.maskimg{1}); sel = true(size(job.srcimgs)); for ci = 1:numel(job.srcimgs) Vi = [spm_vol(job.srcimgs{ci}) VM]; %-Loop over planes %----------------------------------------------------------------------- for p = 1:Vi(1).dim(3), B = spm_matrix([0 0 -p 0 0 0 1 1 1]); X=zeros(2,prod(Vi(1).dim(1:2))); for i = 1:2 M = inv(B*inv(Vi(1).mat)*Vi(i).mat); d = spm_slice_vol(Vi(i),M,Vi(1).dim(1:2),[0,NaN]); d(isnan(d))=0; X(i,:) = d(:)'; end if job.masking.invert sel(ci) = sum(X(1,:).*(1-X(2,:)) > job.crit.thresh)./sum(1-X(2,:)) < job.crit.ratio; else sel(ci) = sum(X(1,:).*X(2,:) > job.crit.thresh)./sum(X(2,:)) < job.crit.ratio; end if ~sel(ci) % found a bad slice break end end spm_progress_bar('set',ci); end spm_progress_bar('clear'); out.goodimgs = job.srcimgs(sel); out.badimgs = job.srcimgs(~sel); if nargout > 0 varargout{1} = out; end case 'vout' job = local_getjob(varargin{1}); % initialise empty cfg_dep array dep(1) = cfg_dep; dep(1).sname = '''Good'' images'; dep(1).src_output = substruct('.','goodimgs'); dep(1).tgt_spec = cfg_findspec({{'filter','image'}}); dep(2) = cfg_dep; dep(2).sname = '''Bad'' images'; dep(2).src_output = substruct('.','badimgs'); dep(2).tgt_spec = cfg_findspec({{'filter','image'}}); % determine outputs, return cfg_dep array in variable dep varargout{1} = dep; case 'check' if ischar(varargin{1}) subcmd = lower(varargin{1}); subjob = varargin{2}; str = ''; switch subcmd % implement checks, return status string in variable str otherwise cfg_message('unknown:check', ... 'Unknown check subcmd ''%s''.', subcmd); end varargout{1} = str; else cfg_message('ischar:check', 'Subcmd must be a string.'); end case 'defaults' if nargin == 2 varargout{1} = local_defs(varargin{1}); else local_defs(varargin{1:2}); end otherwise cfg_message('unknown:cmd', 'Unknown command ''%s''.', cmd); end else cfg_message('ischar:cmd', 'Cmd must be a string.'); end function varargout = local_defs(defstr, defval) persistent defs; if isempty(defs) % initialise defaults end if ischar(defstr) % construct subscript reference struct from dot delimited tag string tags = textscan(defstr,'%s', 'delimiter','.'); subs = struct('type','.','subs',tags{1}'); try cdefval = subsref(defs, subs); catch cdefval = []; cfg_message('defaults:noval', ... 'No matching defaults value ''%s'' found.', defstr); end if nargin == 1 varargout{1} = cdefval; else defs = subsasgn(defs, subs, defval); end else cfg_message('ischar:defstr', 'Defaults key must be a string.'); end function job = local_getjob(job) if ~isstruct(job) cfg_message('isstruct:job', 'Job must be a struct.'); end
github
philippboehmsturm/antx-master
tbxvol_spike.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/Volumes/Multiple_Volumes/tbxvol_spike.m
3,212
utf_8
2008e72d56a97eef2685b07a7f2f3083
function tbxvol_spike(bch) % Detect slices with abnormal intensities or standard deviations % FORMAT tbxvol_spike(bch) % ====== % For each volume, normalised mean signal and standard deviation are computed per % slice. These values are then compared to their mean over all volumes, % and slices that deviate from these means by more than a given threshold % are reported a suspicious. % This function is part of the volumes toolbox for SPM. For general help % about this toolbox, bug reports, licensing etc. type % spm_help vgtbx_config_Volumes % in the matlab command window after the toolbox has been launched. %_______________________________________________________________________ % % @(#) $Id: tbxvol_spike.m 714 2010-07-30 14:28:55Z glauche $ rev = '$Revision: 714 $'; funcname = 'Spike detection'; % function preliminaries Finter=spm_figure('GetWin','Interactive'); Fgraph=spm_figure('GetWin','Graphics'); Finter=spm('FigName',funcname,Finter); SPMid = spm('FnBanner',mfilename,rev); % function code starts here spm('pointer','watch'); % map image files into memory Vin = spm_vol(char(bch.srcimgs)); nimg = numel(bch.srcimgs); Mean_result = zeros(Vin(1).dim(3),nimg); Std_result = zeros(Vin(1).dim(3),nimg); spm_progress_bar('Init',nimg,'Images',' '); for m=1:nimg, d = spm_read_vols(Vin(m)); Mean_result(:,m) = squeeze(mean(mean(d))); Std_result(:,m) = squeeze(std(std(d))); spm_progress_bar('Set',m); end; spm_progress_bar('Clear'); %Normalize to mean = 0, std = 1 %--------------------- Nmean = normit(Mean_result'); Nstd = normit(Std_result'); MNmean = repmat(mean(Nmean),nimg,1); MNstd = repmat(mean(Nstd),nimg,1); Gt_MNmean = abs(Nmean-MNmean) > bch.spikethr; Gt_MNstd = abs(Nstd-MNstd) > bch.spikethr; GtMask_MNmean = zeros(size(Nmean)); GtMask_MNstd = zeros(size(Nstd)); GtMask_MNmean(Gt_MNmean) = 1; GtMask_MNstd(Gt_MNstd) = 1; %display results %-------------------------------------- %Mean %---- figure(Fgraph); spm_clf; colormap hot; subplot(4,1,1); imagesc(Nmean'); caxis([-bch.spikethr bch.spikethr]); colorbar; xlabel('scan'); ylabel('slice'); title('Mean'); %Std %--- subplot(4,1,2); imagesc(Nstd'); caxis([-bch.spikethr bch.spikethr]); colorbar; xlabel('scan'); ylabel('slice'); title('Std'); %Nmean-MNmean %---- subplot(4,1,3); imagesc(Nmean'-MNmean'); caxis([-bch.spikethr bch.spikethr]); colorbar; xlabel('scan'); ylabel('slice'); title('Mean-Mean(Mean) per slice'); %NStd-MNstd %--- subplot(4,1,4); imagesc(Nstd'-MNstd'); caxis([-bch.spikethr bch.spikethr]); colorbar; xlabel('scan'); ylabel('slice'); title('Std-Mean(Std) per slice'); cs = 0; spikes = struct('fnames',{{}}, 'slices',{[]}); for j = 1:nimg if any(GtMask_MNmean(j,:)) || any(GtMask_MNstd(j,:)) cs = cs+1; spikes.fnames{cs} = bch.srcimgs{j}; spikes.slices{cs} = find(GtMask_MNmean(j,:) | GtMask_MNstd(j,:)); end end disp('Information about suspicious scans and slices has been saved to workspace variable ''spikes'':'); disp(spikes); assignin('base','spikes',spikes); spm('pointer','arrow'); function ret = normit(in) szin = size(in); meanin = in - repmat(mean(in,2),1,szin(2)); ret = meanin./repmat(std(meanin,[],2),1,szin(2));
github
philippboehmsturm/antx-master
spm_ov_extract.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/Volumes/spm_orthviews/spm_ov_extract.m
15,182
utf_8
375359110bf9079b2bb1552b44279cf7
function ret = spm_ov_extract(varargin) % Wrapper for tbxvol_extract % This function provides an interface to tbxvol_extract from % an spm_orthviews display. The main features include: % ROI selection alternatives % - cross hair selection for start and end point of a profile line % (after selection, the line will be added as a yellow blob to the % displayed image) % - ROI specification based on displayed blobs (1 ROI per blob set) % - ROI specification from active ROI tool % - ROI specification from saved files (1 ROI per file) % - Current crosshair position % - Sphere at current crosshair position % Extraction alternatives % - Raw and adjusted data from SPM analysis (SPM.mat) % - Raw data from image series % - Raw data from current image only % Plotting alternatives % - no plot (just save extracted data) % - plot over voxels (1 line per image) % - plot over images (1 line per voxel) % - average over voxels/images (average line and scatter plot of % individual values) % - if DTI toolbox installed: average over voxels and diffusion % weighting % If data is extracted from the current image, then only plotting % over voxels is available. % % This routine is a plugin to spm_orthviews for SPM5. For general help about % spm_orthviews and plugins type % help spm_orthviews % at the matlab prompt. %_______________________________________________________________________ % % @(#) $Id: spm_ov_extract.m 660 2009-06-29 07:12:45Z glauche $ rev = '$Revision: 660 $'; global st; if isempty(st) error(['%s: This routine can only be called as a plugin for' ... ' spm_orthviews!'], mfilename); end; if nargin < 2 error(['%s: Wrong number of arguments. Usage:' ... ' spm_orthviews(''extract'', cmd, volhandle, varargin)'], ... mfilename); end; cmd = lower(varargin{1}); volhandle = varargin{2}; switch cmd %------------------------------------------------------------------------- % Context menu and callbacks case 'context_menu' if exist(fullfile(spm('dir'),'toolbox','Volumes', ... 'Single_Volumes'),'dir') addpath(fullfile(spm('dir'),'toolbox','Volumes', ... 'Single_Volumes')); else return; end; if ~any(exist('tbxvol_extract')==2:6) warning([mfilename ':init'], 'function tbxvol_extract not found!'); return; end; item0 = uimenu(varargin{3}, 'Label', 'Extract+Plot Data', ... 'Tag', sprintf('%s_0_%d', upper(mfilename),... num2str(volhandle))); item1 = uimenu(item0, 'Label','Time Series (SPM): - Raw and Fitted Data',... 'Callback', sprintf(... ['feval(''%s'',''context_init'', %d,'... ' ''SPMboth'', ''ser'');'], ... mfilename, volhandle),... 'Tag', sprintf('%s_0_%d', upper(mfilename),... num2str(volhandle))); item1 = uimenu(item0, 'Label','Image Series: - Raw Data',... 'Callback', sprintf(... ['feval(''%s'',''context_init'', %d,'... ' ''ROIfiles'',''ser'');'], ... mfilename, volhandle),... 'Tag', sprintf('%s_0_%d', upper(mfilename),... num2str(volhandle))); item1 = uimenu(item0, 'Label','Current Image: - Raw Data',... 'Callback', sprintf(... ['feval(''%s'',''context_init'', %d,'... ' ''ROIfiles'',''cur'');'], ... mfilename, volhandle),... 'Tag', sprintf('%s_0_%d', upper(mfilename),... num2str(volhandle))); item10 = uimenu(item0, 'Label', 'Help', 'Callback', ... ['feval(''spm_help'',''' mfilename ''');']); case 'context_init' mode = lower(varargin{3}); possel = {'Sphere at Current Point','Current Point','ROI file(s)'}; posselsrc = {'sphere','point','froi'}; if isfield(st.vols{volhandle},'roi') possel{end+1} = 'Current ROI'; posselsrc{end+1} = 'croi'; elseif isfield(st.vols{volhandle},'blobs') possel{end+1} = 'Current blobs'; posselsrc{end+1} = 'blobs'; end; if strcmp(mode,'roifiles') possel{end+1} = 'Trajectory through image'; posselsrc{end+1} = 'line'; end; if strcmp(varargin{4},'cur') bch.src.srcimgs = {st.vols{volhandle}.fname}; plotsel = {'Don''t plot', 'Plot over voxels - no averaging'}; else if strcmp(mode,'roifiles') bch.src.srcimgs = cellstr(spm_select([1 inf],'image', ... 'Images to Extract Data from')); else bch.src.srcspm = {spm_select([1 1],'.*SPM.*\.mat', ... 'SPM Analysis to Extract Data from')}; end; plotsel = {'Don''t plot', 'Plot over voxels - no averaging',... 'Plot over images - no averaging',... 'Plot over voxels - Average over images'... 'Plot over images - Average over voxels'}; if (exist(fullfile(spm('dir'),'toolbox',... 'Diffusion','Helpers','dti_extract_dirs.m'),'file')||... exist('dti_extract_dirs')) addpath(fullfile(spm('dir'),'toolbox','Diffusion','Helpers')) plotsel{end+1} = 'DTI: Average over voxels and diffusion weighting'; end; end; possel = char(spm_input('Voxels to extract from', '+1', 'm', possel, ... posselsrc)); plotsel = spm_input('Plot data','!+1','m',... plotsel, 0:(numel(plotsel)-1), 0); bch.interp = spm_input('Interpolation hold','+1','m',... ['Nearest Neighbour|Trilinear|2nd Degree B-Spline|'... '3rd Degree B-Spline|4th Degree B-Spline|5th Degree B-Spline|'... '6th Degree B-Spline|7th Degree B-Spline'],... [0 1 2 3 4 5 6 7],0); switch possel case 'croi' bch.roispec{1}.roilist = st.vols{volhandle}.roi.Vroi.mat*... [st.vols{volhandle}.roi.xyz; ... ones(1,size(st.vols{volhandle}.roi.xyz,2))]; bch.roispec{1}.roilist = bch.roispec{1}.roilist(1:3,:); case 'froi' [froiname sts] = spm_select([1 Inf], 'image', 'Select ROI file(s)'); if ~sts warning('%s: No ROI file selected - exiting\n', mfilename); return; end; for k = 1:size(froiname,1) bch.roispec{k}.srcimg = {froiname(k,:)}; end; case 'blobs' nroi = numel(st.vols{volhandle}.blobs); for k = 1:nroi if isstruct(st.vols{volhandle}.blobs{k}.vol) dat=spm_read_vols(st.vols{volhandle}.blobs{k}.vol); else dat=st.vols{volhandle}.blobs{k}.vol; end; dat(isnan(dat))=0; [x y z] = ind2sub(size(dat), find(dat)); bch.roispec{k}.roilist = st.vols{volhandle}.blobs{k}.mat*... [x(:)'; y(:)'; z(:)'; ones(size(x(:)'))]; bch.roispec{k}.roilist = bch.roispec{k}.roilist(1:3,:); end; case 'point', bch.roispec{1}.roilist = spm_orthviews('pos'); case 'sphere', bch.roispec{1}.roisphere.roicent = spm_orthviews('pos'); bch.roispec{1}.roisphere.roirad = spm_input(... 'Radius of sphere (mm)', '!+1', 'e', '10', [1 1]); case 'line' msgbox(['Place cross hair at start position and press middle mouse' ... ' button'],'Extract data'); st.vols{volhandle}.extract=struct('cb',[], 'plotsel',plotsel,... 'bch',bch, 'mode',mode); clear bch; for k = 1:3 st.vols{volhandle}.extract.cb{k} = ... get(st.vols{volhandle}.ax{k}.ax, 'ButtonDownFcn'); set(st.vols{volhandle}.ax{k}.ax,... 'ButtonDownFcn',... ['switch get(gcf,''SelectionType'')',... 'case ''normal'', spm_orthviews(''Reposition'');',... 'case ''extend'', spm_orthviews(''extract'',''getline'',', ... num2str(volhandle), ');',... 'case ''alt'', spm_orthviews(''context_menu'',''ts'',1);',... 'end;']); end; end; case 'getline' if ~isfield(st.vols{volhandle}.extract,'start') st.vols{volhandle}.extract.start = spm_orthviews('pos'); msgbox(['Place cross hair at end position and press middle mouse' ... ' button'],'Extract data'); else bch = st.vols{volhandle}.extract.bch; bch.roispec{1}.roiline.roistart = st.vols{volhandle}.extract.start; bch.roispec{1}.roiline.roiend = spm_orthviews('pos'); bch.roispec{1}.roiline.roistep = spm_input('Sampling Distance (mm)', ... '!+1', 'e', '1', [1 1]); for k = 1:3 set(st.vols{volhandle}.ax{k}.ax, 'ButtonDownFcn',... st.vols{volhandle}.extract.cb{k}); end; plotsel = st.vols{volhandle}.extract.plotsel; st.vols{volhandle} = rmfield(st.vols{volhandle},'extract'); end; case 'redraw' % do nothing otherwise fprintf('spm_orthviews(''extract'', ...): Unknown action %s', cmd); end; if exist('bch','var') bch.avg = 'none'; ext=tbxvol_extract(bch); assignin('base','ext',ext); disp('extracted data saved to workspace variable ''ext'''); disp(ext); if strcmp(cmd,'getline') spm_orthviews('addcolouredblobs', volhandle, ... st.vols{volhandle}.mat\... [ext.posmm;ones(1, size(ext.posmm,2))],... ones(1,size(ext.posmm,2)), st.vols{volhandle}.mat,... [1 1 0]); spm_orthviews('redraw'); end; for sub = 1:size(ext,2) switch plotsel case 1, dirs.dirsel='voxno'; case 2, dirs.dirsel='imgno'; case 3, dirs.dirsel='voxavg'; case 4, dirs.dirsel='imgavg'; case 5, dirsbch{1}.spm.tools.vgtbx_Diffusion.dti_extract_dirs.saveinf = 0; dirsbch{1}.spm.tools.vgtbx_Diffusion.dti_extract_dirs.ref.refscanner = 1; dirsbch{1}.spm.tools.vgtbx_Diffusion.dti_extract_dirs.sep = 1; dirsbch{1}.spm.tools.vgtbx_Diffusion.dti_extract_dirs.dtol = .95; dirsbch{1}.spm.tools.vgtbx_Diffusion.dti_extract_dirs.ltol = 10; try load(bch.src.srcspm{1}); dirsbch{1}.spm.tools.vgtbx_Diffusion.dti_extract_dirs.srcimgs=SPM.xY.P; dirs = spm_jobman('run',dirsbch); catch try dirsbch{1}.spm.tools.vgtbx_Diffusion.dti_extract_dirs.srcimgs = bch.src.srcimgs; dirs = spm_jobman('run',dirsbch); catch error('Cannot extract DTI information for plotting.'); end; end; dirs = dirs{1}; end; if plotsel if ~isempty(ext(1,sub).raw) try data = cat(1,ext(:,sub).raw); catch fprintf(['Can not plot data from ' ... 'images with different ' ... 'voxel sizes and orientations.\n']); error(lasterr); end; extract_fig(data,dirs, sprintf('ROI %d: Raw data',sub)); end; if ~isempty(ext(1,sub).adj) % in this case, we only have one ext % struct per ROI extract_fig(ext(1,sub).adj,dirs, sprintf('ROI %d: Fitted data',sub)); end; end; end; end; spm('pointer','arrow'); function extract_fig(data,dirres,titlestr) figure; axp = axes; hold on; title(titlestr); if ischar(dirres.dirsel) if strcmp(dirres.dirsel(1:3),'vox') data = data'; end, switch dirres.dirsel(4:end) case 'no' l = plot(data); case 'avg' plot(data,'rd'); lmean=plot(mean(data,2)); end; set(axp,'Xgrid','on', 'Xtick',1:size(data,1)); ax = axis; axis([.5 size(data,1)+.5 ax(3:4)]) else % DTI plot cmean = zeros(1,size(dirres.dirsel,1)); for k=1:size(dirres.dirsel,1) cind= dirres.dirsel(k,:) ~= 0; cdata=data(cind,:); cmean(k)=mean(cdata(:)); plot(k,cdata(:),'rd'); end; lmean=plot(cmean); set(axp,'Xgrid','on', 'Xtick',1:size(cmean,2)); ax = axis; axis([.5 size(cmean,2)+.5 ax(3:4)]) if isfield(dirres,'b') lmeanb0=plot([1 size(dirres.dirsel,1)],cmean([1 1]),'r'); set(axp,'Position',[.13 .31 .775 .615]) axb=axes('Position',[.13 .21 .775 .05],... 'Xtick',.5:size(dirres.dirsel,1)+.5, 'XTickLabel',[],... 'Ytick',[], 'box','on'); hold on; imagesc(dirres.b'); colormap gray; axis tight; axd=axes('Position',[.13 .16 .775 .05],... 'Xtick',.5:size(dirres.dirsel,1)+.5, 'XTickLabel',[],... 'Ytick',[],'box','on'); hold on; imagesc(dirres.g',[-1 1]); axis tight; end; end;
github
philippboehmsturm/antx-master
tbxvol_laterality.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/Volumes/Stats_Tools/tbxvol_laterality.m
1,709
utf_8
21c27d2d5e1d04f27ceebbe0b9334c1f
function varargout = tbxvol_laterality(bch) % Compute laterality index of images with range [0,1] % FORMAT tbxvol_laterality(bch) % ====== % Input arguments: % bch.srcimg - file name of input image % % This routine computes the laterality index for images with positive % data range as (normal-flipped)./(normal+flipped) using spm_imcalc. % % This function is part of the volumes toolbox for SPM5. For general help % about this toolbox, bug reports, licensing etc. type % spm_help vgtbx_config_Volumes % in the matlab command window after the toolbox has been launched. %_______________________________________________________________________ % % @(#) $Id: tbxvol_laterality.m 724 2012-01-24 13:26:05Z glauche $ rev = '$Revision: 724 $'; funcname = 'Compute laterality index'; % function preliminaries Finter=spm_figure('GetWin','Interactive'); Finter=spm('FigName',funcname,Finter); SPMid = spm('FnBanner',mfilename,rev); % function code starts here out.files = cellfun(@(src)prepend(src, bch.prefix), bch.srcimgs, 'UniformOutput', false); cellfun(@(srcimg,oimg)comp_laterality(srcimg, oimg, bch.dtype, bch.interp), bch.srcimgs, out.files); if nargout > 0 varargout{1} = out; end end function comp_laterality(srcimg, oimg, dtype, interp) Vo = rmfield(spm_vol(srcimg),'private'); V = [Vo Vo]; % flip 2nd image by pre-multiplying its coordinate transformation V(2).mat = diag([-1 1 1 1])*V(2).mat; % create output filename Vo.fname = oimg; Vo.n = [1 1]; if dtype ~= 0 Vo.dt(1) = dtype; end; Vo.pinfo = [Inf; 0; 0]; spm_imcalc(V, Vo, '(i1-i2)./(i1+i2)', {0, 0, interp}); end function ofile = prepend(ifile, prefix) [p n e v] = spm_fileparts(ifile); ofile = fullfile(p,[prefix n e]); end
github
philippboehmsturm/antx-master
tbxvol_orth_conditions.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/Volumes/Stats_Tools/tbxvol_orth_conditions.m
5,935
utf_8
2aaafa037ff5edeefe25805fee8b3a71
function varargout = tbxvol_orth_conditions(cmd, varargin) % Orthogonalise conditions in an SPM design matrix. % By default, SPM does not orthogonalise timeseries of different % conditions. Under some conditions two conditions may be highly correlated % (usually due to an imperfect experimental design). If only one of them is % of interest, then the remaining ones can be orthogonalised with respect % to this condition. The regressors of the orthogonalised conditions are % no longer meaningful in itself, they only describe extra variance not % caught by the regressors for the condition of interest. % % varargout = tbxvol_orth_conditions(cmd, varargin) % where cmd is one of % 'run' - out = tbxvol_orth_conditions('run', job) % Run a job, and return its output argument % 'vout' - dep = tbxvol_orth_conditions('vout', job) % Examine a job structure with all leafs present and return an % array of cfg_dep objects. % 'check' - str = tbxvol_orth_conditions('check', subcmd, subjob) % Examine a part of a fully filled job structure. Return an empty % string if everything is ok, or a string describing the check % error. subcmd should be a string that identifies the part of % the configuration to be checked. % 'defaults' - defval = tbxvol_orth_conditions('defaults', key) % Retrieve defaults value. key must be a sequence of dot % delimited field names into the internal def struct which is % kept in function local_def. An error is returned if no % matching field is found. % tbxvol_orth_conditions('defaults', key, newval) % Set the specified field in the internal def struct to a new % value. % Application specific code needs to be inserted at the following places: % 'run' - main switch statement: code to compute the results, based on % a filled job % 'vout' - main switch statement: code to compute cfg_dep array, based % on a job structure that has all leafs, but not necessarily % any values filled in % 'check' - create and populate switch subcmd switchyard % 'defaults' - modify initialisation of defaults in subfunction local_defs % Callbacks can be constructed using anonymous function handles like this: % 'run' - @(job)tbxvol_orth_conditions('run', job) % 'vout' - @(job)tbxvol_orth_conditions('vout', job) % 'check' - @(job)tbxvol_orth_conditions('check', 'subcmd', job) % 'defaults' - @(val)tbxvol_orth_conditions('defaults', 'defstr', val{:}) % Note the list expansion val{:} - this is used to emulate a % varargin call in this function handle. % % This code is part of a batch job configuration system for MATLAB. See % help matlabbatch % for a general overview. %_______________________________________________________________________ % Copyright (C) 2007 Freiburg Brain Imaging % Volkmar Glauche % $Id: tbxvol_orth_conditions.m 631 2008-09-02 12:18:36Z glauche $ rev = '$Rev: 631 $'; %#ok if ischar(cmd) switch lower(cmd) case 'run' job = local_getjob(varargin{1}); % do computation, return results in variable out load(job.srcspm{1}); for k=1:numel(job.Sess) Fcind = SPM.Sess(job.Sess(k).num).col(cat(2,SPM.Sess(job.Sess(k).num).Fc(job.Sess(k).c).i)); SPM.xX.X(:,Fcind) = spm_orth(SPM.xX.X(:,Fcind)); end out.outspm = job.srcspm; copyfile(job.srcspm{1}, sprintf('%s.save',job.srcspm{1})); save(out.outspm{1},'SPM','-v7') if nargout > 0 varargout{1} = out; end case 'vout' job = local_getjob(varargin{1}); % initialise empty cfg_dep array dep = cfg_dep; % determine outputs, return cfg_dep array in variable dep dep(1).sname = 'SPM.mat (orthogonalised)'; dep(1).src_output = substruct('.','outspm'); dep(1).tgt_spec = cfg_findspec({{'strtype','e','filter','mat'}}); varargout{1} = dep; case 'check' if ischar(varargin{1}) subcmd = lower(varargin{1}); subjob = varargin{2}; str = ''; switch subcmd % implement checks, return status string in variable str otherwise cfg_message('unknown:check', ... 'Unknown check subcmd ''%s''.', subcmd); end varargout{1} = str; else cfg_message('ischar:check', 'Subcmd must be a string.'); end case 'defaults' if nargin == 2 varargout{1} = local_defs(varargin{1}); else local_defs(varargin{1:2}); end otherwise cfg_message('unknown:cmd', 'Unknown command ''%s''.', cmd); end else cfg_message('ischar:cmd', 'Cmd must be a string.'); end function varargout = local_defs(defstr, defval) persistent defs; if isempty(defs) % initialise defaults end if ischar(defstr) % construct subscript reference struct from dot delimited tag string tags = textscan(defstr,'%s', 'delimiter','.'); subs = struct('type','.','subs',tags{1}'); try cdefval = subsref(local_def, subs); catch cdefval = []; cfg_message('defaults:noval', ... 'No matching defaults value ''%s'' found.', defstr); end if nargin == 1 varargout{1} = cdefval; else defs = subsasgn(defs, subs, defval); end else cfg_message('ischar:defstr', 'Defaults key must be a string.'); end function job = local_getjob(job) if ~isstruct(job) cfg_message('isstruct:job', 'Job must be a struct.'); end
github
philippboehmsturm/antx-master
tbxvol_hist_summary.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/Volumes/Stats_Tools/tbxvol_hist_summary.m
4,425
utf_8
bda66ed96d74109d394c178884a9f31e
function varargout = tbxvol_hist_summary(cmd, varargin) % Compute histogramm summary % FORMAT tbxvol_hist_summary(bch) % ====== % % This function is part of the volumes toolbox for SPM5. For general help % about this toolbox, bug reports, licensing etc. type % spm_help vgtbx_config_Volumes % in the matlab command window after the toolbox has been launched. %_______________________________________________________________________ % % @(#) $Id: tbxvol_hist_summary.m 712 2010-06-30 14:20:19Z glauche $ rev = '$Revision: 712 $'; if ischar(cmd) switch lower(cmd) case 'run' job = local_getjob(varargin{1}); out = local_hist_summary(job); % do computation, return results in variable out if nargout > 0 varargout{1} = out; end case 'vout' job = local_getjob(varargin{1}); % initialise empty cfg_dep array dep = cfg_dep; dep = dep(false); % determine outputs, return cfg_dep array in variable dep for k = 1:numel(job.subjects) dep(k) = cfg_dep; dep(k).sname = sprintf('Extracted histogramm data - Subject %d',k); dep(k).src_output = substruct('{}', {k}); dep(k).tgt_spec = cfg_findspec({{'strtype','e'}}); end varargout{1} = dep; % case 'check' % if ischar(varargin{1}) % subcmd = lower(varargin{1}); % subjob = varargin{2}; % str = ''; % switch subcmd % % implement checks, return status string in variable str % otherwise % cfg_message('unknown:check', ... % 'Unknown check subcmd ''%s''.', subcmd); % end % varargout{1} = str; % else % cfg_message('ischar:check', 'Subcmd must be a string.'); % end % case 'defaults' % if nargin == 2 % varargout{1} = local_defs(varargin{1}); % else % local_defs(varargin{1:2}); % end otherwise cfg_message('unknown:cmd', 'Unknown command ''%s''.', cmd); end else cfg_message('ischar:cmd', 'Cmd must be a string.'); end function job = local_getjob(job) if ~isstruct(job) cfg_message('isstruct:job', 'Job must be a struct.'); end function varargout = local_hist_summary(bch) % test, whether statistics toolbox is installed stats = license('test','statistics_toolbox'); spm_progress_bar('init',numel(bch.subjects),'Subjects completed') ext = cell(size(bch.subjects)); for k = 1:numel(bch.subjects) for m = 1:numel(bch.subjects(k).maskimgs) Vm = spm_vol(bch.subjects(k).maskimgs{m}); for l = 1:numel(bch.subjects(k).srcimgs) Vi = spm_vol(bch.subjects(k).srcimgs{l}); dat = []; nvx = 0; %-Loop over planes computing result Y %----------------------------------------------------------------------- for p = 1:Vi.dim(3), B = spm_matrix([0 0 -p 0 0 0 1 1 1]); M = inv(B/Vi.mat*Vm.mat); msk = logical(spm_slice_vol(Vm,M,Vi.dim(1:2),[0,0])); tmp = spm_slice_vol(Vi,inv(B),Vi.dim(1:2),[0,NaN]); msk = msk & isfinite(tmp); dat = [dat; tmp(msk(:))]; nvx = nvx + nnz(msk(:)); end; cext.volvx = nvx; cext.volmm3 = prod(sqrt(sum(Vi.mat(1:3,1:3).^2)))*nvx; cext.median = median(dat); cext.mean = mean(dat); if stats cext.skewness = skewness(dat); cext.kurtosis = kurtosis(dat); else cext.skewness = []; cext.kurtosis = []; end; cext.std = std(dat); cext.hist = histc(dat,bch.bins); cext.low = sum(dat<min(bch.bins)); cext.high = sum(dat>max(bch.bins)); ext{k}{m,l} = cext; end; end; spm_progress_bar('set',k); end; spm_progress_bar('clear'); spm_input('!DeleteInputObj'); if nargout > 0 varargout{1}=ext; else assignin('base','ext',ext); fprintf('extracted data saved to workspace variable ''ext''\n'); disp(ext); end;
github
philippboehmsturm/antx-master
tbxvol_changeSPM.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/Volumes/Stats_Tools/tbxvol_changeSPM.m
6,862
utf_8
ecf4e78064941de74e69f7a0bfd78cf5
function varargout = tbxvol_changeSPM(bch) % Change path names or byte order of image files in SPM structure % FORMAT tbxvol_changeSPM(bch) % ====== % Input arguments: % bch.srcspm - file name of SPM.mat files to change % bch.chpaths - which paths to change: one of % - .dpaths - data files % - .apaths - analysis files % - .bpaths - both % - .npaths - none % .{d,a,b}paths.oldpath - path component to be replaced OR % - "auto" automatically determine component % - "ask" automatically determine component, but ask before % replacing % - .{d,a,b}paths.newpath - path component to be inserted OR % - "auto" automatically determine component % - "ask" automatically determine component, but ask before % replacing % bch.swap - swap byte order code of volume datatypes % % For all absolute references in SPM.xY occurences of oldpath are % replaced by newpath (using Matlab strrep). This will only work if the % overall structure of the file tree has not changed (i.e. moving an % entire analysis dir will work, but not renaming each individual % subject). In addition, byte order information of mapped files can be % changed without touching other file information (such as scaling, % dimensions etc). % The new SPM struct is saved to the original SPM.mat file. A copy of the % original SPM.mat is kept in the same directory under the filename % SPM.mat.save. % Multiple SPM.mat file names can be given, and the same string % replacement will be done for all of them. % % This function is part of the volumes toolbox for SPM5. For general help % about this toolbox, bug reports, licensing etc. type % spm_help vgtbx_config_Volumes % in the matlab command window after the toolbox has been launched. %_______________________________________________________________________ % % @(#) $Id: tbxvol_changeSPM.m 714 2010-07-30 14:28:55Z glauche $ rev = '$Revision: 714 $'; funcname = 'Change SPM.mat paths'; % function preliminaries Finter=spm_figure('GetWin','Interactive'); Finter=spm('FigName',funcname,Finter); SPMid = spm('FnBanner',mfilename,rev); % function code starts here load(bch.srcspm{1}); % save a copy [newp n e] = fileparts(bch.srcspm{1}); save_cfg=fullfile(newp, [n e '.save']); if spm_matlab_version_chk('7') < 0 save(save_cfg, '-mat', 'SPM'); else save(save_cfg, '-mat', '-V6', 'SPM'); end; chpaths = fieldnames(bch.chpaths); if ~strcmp(chpaths{1},'npaths') if isfield(SPM,'swd') oldp = SPM.swd; else if iscell(SPM.xY.P) [oldp n e v] = spm_fileparts(SPM.xY.P{1}); else [oldp n e v] = spm_fileparts(SPM.xY.P(1,:)); end; end; % try to be smart in finding leading path differences % first, tokenise paths ot={}; [op ot{end+1}] = fileparts(oldp); while ~isempty(ot{end}) [op ot{end+1}] = fileparts(op); end; ot=ot(1:end-1); nt={}; [np nt{end+1}] = fileparts(newp); while ~isempty(nt{end}) [np nt{end+1}] = fileparts(np); end; nt=nt(1:end-1); commp=''; for k=1:min(numel(nt),numel(ot)) if strcmp(nt{k},ot{k}) commp=fullfile(nt{k},commp); else break; end; end; oldp = strrep(oldp,commp,''); newp = strrep(newp,commp,''); switch bch.chpaths.(chpaths{1}).oldpath case 'ask', bch.chpaths.(chpaths{1}).oldpath = spm_input('Replace path component','!+1','s',oldp); case 'auto', bch.chpaths.(chpaths{1}).oldpath = oldp; end; switch bch.chpaths.(chpaths{1}).newpath case 'ask', bch.chpaths.(chpaths{1}).newpath = spm_input('Insert path component','!+1','s',newp); case 'auto', bch.chpaths.(chpaths{1}).newpath = newp; end; if strcmp(chpaths{1},'dpaths')||strcmp(chpaths{1},'bpaths') if iscell(SPM.xY.P) oldP=SPM.xY.P; else oldP=cellstr(SPM.xY.P); end; newP = cell(size(oldP)); for k=1:numel(oldP) fprintf('Old file name: %s\n', oldP{k}); newP{k}=strrep(oldP{k},bch.chpaths.(chpaths{1}).oldpath,... bch.chpaths.(chpaths{1}).newpath); SPM.xY.VY(k).fname=strrep(SPM.xY.VY(k).fname,... bch.chpaths.(chpaths{1}).oldpath,... bch.chpaths.(chpaths{1}).newpath); fprintf('New file name: %s\n', newP{k}); end if iscell(SPM.xY.P) SPM.xY.P=newP; else SPM.xY.P=char(newP); end; end; if strcmp(chpaths{1},'apaths')||strcmp(chpaths{1},'bpaths') % strip paths from SPM analysis files try [p n e v] = spm_fileparts(SPM.xVol.VRpv.fname); SPM.xVol.VRpv.fname = [n e v]; end; for cb = 1:numel(SPM.Vbeta) try [p n e v] = spm_fileparts(SPM.Vbeta(cb).fname); SPM.Vbeta(cb).fname = [n e v]; end; end; try [p n e v] = spm_fileparts(SPM.VResMS.fname); SPM.VResMS.fname = [n e v]; end; try [p n e v] = spm_fileparts(SPM.xM.VM.fname); SPM.xM.VM.fname = [n e v]; end; for cc = 1:numel(SPM.xCon) try [p n e v] = spm_fileparts(SPM.xCon(cc).Vcon.fname); SPM.xCon(cc).Vcon.fname = [n e v]; end try [p n e v] = spm_fileparts(SPM.xCon(cc).Vspm.fname); SPM.xCon(cc).Vspm.fname = [n e v]; end end; % replace SPM.swd with path to SPM.mat [p n e v] = spm_fileparts(bch.srcspm{1}); SPM.swd = p; end; end; if bch.swap try SPM.xVol.VRpv = swaporder(SPM.xVol.VRpv); end; try SPM.Vbeta = swaporder(SPM.Vbeta); end; try SPM.VResMS = swaporder(SPM.VResMS); end; try SPM.xM.VM = swaporder(SPM.xM.VM); end try for cc = 1:numel(SPM.xCon) try SPM.xCon(cc).Vcon = swaporder(SPM.xCon(cc).Vcon); end; try SPM.xCon(cc).Vspm = swaporder(SPM.xCon(cc).Vspm); end; end; end; for k = 1:numel(SPM.xY.VY) SPM.xY.VY(k) = swaporder(SPM.xY.VY(k)); end; end; if spm_matlab_version_chk('7') < 0 save(bch.srcspm{1},'SPM','-append'); else save(bch.srcspm{1},'SPM','-append','-V6'); end; function Vo=swaporder(V) Vo=V; for k=1:numel(V) if isfield(Vo,'dt') Vo.dt(2) = ~Vo.dt(2); else warning(['File %s:\n Pre-SPM5-style SPM.mat. No byte ' ... 'swapping applied.\n'], Vo.fname); end; end;
github
philippboehmsturm/antx-master
tbxvol_extract.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/Volumes/Single_Volumes/tbxvol_extract.m
8,179
utf_8
27680807150f62c0c527f5fe5638f7a9
function varargout=tbxvol_extract(bch) % read an intensity profile along a given trajectory % FORMAT extr=tbxvol_extract(bch) % ====== % Read intensity values from a set of images within one or more given % regions of interest. The images to be sampled can be specified by an % SPM.mat or a list of images. % Multiple ROIs can be defined on the same image set. ROIs can be % specified as images (all voxels of the mask image with intensities % other than 0 will be included), sphere around a certain point, % pointlist, or a line through the image defined by start point, end % point and sampling distance. % Note, that all coordinates need to be given in mm coordinates. However, % for mask images and spheres the sampled coordinates will be determined % in each image's voxel space (such that all voxels within the scope of % the mask or sphere will be sampled exactly once), whereas for point % lists and trajectories the given mm coordinates will be translated into % voxel coordinates, regardless of whether two of them specify the same % voxel or the sampling will miss out voxels in between the specified % points. % % If an SPM.mat is given, the extracted data will be saved in an % 1-by-#ROI struct array with fields % .posmm - mm positions sampled in ROI % .posvx - voxel positions sampled in ROI % .raw - raw data, read from images (scaled as in the SPM.mat) % .adj - SPM.xX.X*beta fitted data % If images are given as a list of filenames, the extracted data will be % saved as a #imgs-by-#ROI struct array as described above, but with an % empty .adj field. % % If no output argument is given, extracted data will be saved into % Matlab's standard workspace and can be treatead as any other Matlab % variable. % To access the extracted data in a SPM batch job, use "Pass Output to % Workspace" or "Save Variables" from BasicIO. % % This function is part of the volumes toolbox for SPM. For general help % about this toolbox, bug reports, licensing etc. type % spm_help vgtbx_config_Volumes % in the matlab command window after the toolbox has been launched. %_______________________________________________________________________ % % @(#) $Id: tbxvol_extract.m 722 2011-10-18 12:21:24Z glauche $ rev = '$Revision: 722 $'; funcname = 'Extract Trajectory/ROI'; % function preliminaries Finter=spm_figure('GetWin','Interactive'); Finter=spm('FigName',funcname,Finter); SPMid = spm('FnBanner',mfilename,rev); % function code starts here res = struct('raw',[], 'adj',[], 'posmm',[], 'Vspace',[]); if isfield(bch.src, 'srcspm') opwd = pwd; p = fileparts(bch.src.srcspm{1}); cd(p); load(bch.src.srcspm{1}); for l = 1:numel(bch.roispec) spm_progress_bar('init', numel(SPM.Vbeta),... 'ROI - Fitted data',... 'Volumes sampled'); % assume all images of one analysis are in the same space res(1,l).Vspace = rmfield(SPM.Vbeta(1),{'fname','private'}); [res(1,l).posmm res(1,l).posvx] = get_pos(bch.roispec{l}, res(1,l).Vspace); beta = zeros(numel(SPM.Vbeta),size(res(1,l).posvx,2)); for k = 1:numel(SPM.Vbeta) beta(k,:) = spm_sample_vol(SPM.Vbeta(k), ... res(1,l).posvx(1,:),res(1,l).posvx(2,:),res(1,l).posvx(3,:), bch.interp); spm_progress_bar('set',k); end; adj = SPM.xX.X*beta; clear beta; switch bch.avg case 'none' res(1,l).adj = adj; case 'vox' res(1,l).adj.mean = zeros(size(adj,1),1); res(1,l).adj.std = zeros(size(adj,1),1); spm_progress_bar('init', size(adj,1), 'ROI - Adjusted data',... 'Averaging'); for k = 1:size(adj,1) res(1,l).adj.mean(k) = mean(adj(k,:)); res(1,l).adj.std(k) = std(adj(k,:)); spm_progress_bar('set',k); end; end; clear adj; spm_progress_bar('init', numel(SPM.xY.VY), 'ROI - Raw data',... 'Volumes sampled'); switch bch.avg case 'none' res(1,l).raw = zeros(numel(SPM.xY.VY),size(res(1,l).posvx, ... 2)); case 'vox' res(1,l).raw.mean = zeros(numel(SPM.xY.VY),1); res(1,l).raw.std = zeros(numel(SPM.xY.VY),1); end; for k = 1:numel(SPM.xY.VY) raw = spm_sample_vol(SPM.xY.VY(k),... res(1,l).posvx(1,:),res(1,l).posvx(2,:),res(1,l).posvx(3,:), ... bch.interp); switch bch.avg case 'none' res(1,l).raw(k,:) = raw; case 'vox', res(1,l).raw.mean(k) = mean(raw); res(1,l).raw.std(k) = std(raw); spm_progress_bar('set',k); end; end; end; cd(opwd); else spm_progress_bar('init', numel(bch.src.srcimgs), ... 'Trajectory/ROI', 'volumes completed'); for k=1:numel(bch.src.srcimgs) V = spm_vol(bch.src.srcimgs{k}); for l = 1:numel(bch.roispec) res(k,l).Vspace = rmfield(V,{'fname','private'}); [res(k,l).posmm res(k,l).posvx] = get_pos(bch.roispec{l},V); raw = spm_sample_vol(V, res(k,l).posvx(1,:), ... res(k,l).posvx(2,:), res(k,l).posvx(3,:), ... bch.interp); switch bch.avg case 'none' res(k,l).raw = raw; case 'vox' res(k,l).raw.mean = mean(raw); res(k,l).raw.std = std(raw); end; end; spm_progress_bar('set',k); end; end; spm_progress_bar('clear'); if nargout > 0 varargout{1}=res; else assignin('base','ext',res); fprintf('extracted data saved to workspace variable ''ext''\n'); disp(res); end; function [posmm, posvx] = get_pos(roispec, V) if isfield(roispec, 'roiline') % get points in mm space, then convert to voxel space dt = roispec.roiline.roiend-roispec.roiline.roistart; ldt = sqrt(sum(dt.^2)); posmm = dt*(0:roispec.roiline.roistep/ldt:1) +... repmat(roispec.roiline.roistart, [1 length(0:roispec.roiline.roistep:ldt)]); posvx = V.mat\[posmm; ones(1,size(posmm,2))]; posvx = posvx(1:3,:); elseif isfield(roispec, 'roilineparam') % get points in mm space, then convert to voxel space dt = roispec.roilineparam.roilinep1-roispec.roilineparam.roilinep2; ldt = sqrt(sum(dt.^2)); posmm = (dt/ldt)*roispec.roilineparam.roilinecoords + ... repmat(roispec.roilineparam.roilinep1, ... size(roispec.roilineparam.roilinecoords)); posvx = V.mat\[posmm; ones(1,size(posmm,2))]; posvx = posvx(1:3,:); elseif isfield(roispec, 'srcimg') % resample mask VM in space of current image V VM = spm_vol(roispec.srcimg{1}); x = []; y = []; z = []; [x1 y1] = ndgrid(1:V.dim(1),1:V.dim(2)); for p = 1:V.dim(3) B = spm_matrix([0 0 -p 0 0 0 1 1 1]); M = VM.mat\(V.mat/B); msk = find(spm_slice_vol(VM,M,V.dim(1:2),0)); if ~isempty(msk) z1 = p*ones(size(msk(:))); x = [x; x1(msk(:))]; y = [y; y1(msk(:))]; z = [z; z1]; end; end; posvx = [x'; y'; z']; xyzmm = V.mat*[posvx;ones(1,size(posvx,2))]; posmm = xyzmm(1:3,:); elseif isfield(roispec, 'roisphere') cent = round(V.mat\[roispec.roisphere.roicent; 1]); tmp = spm_imatrix(V.mat); vdim = tmp(7:9); vxrad = ceil((roispec.roisphere.roirad*ones(1,3))./ ... vdim)'; [x y z] = ndgrid(-vxrad(1):sign(vdim(1)):vxrad(1), ... -vxrad(2):sign(vdim(2)):vxrad(2), ... -vxrad(3):sign(vdim(3)):vxrad(3)); sel = (x./vxrad(1)).^2 + (y./vxrad(2)).^2 + (z./vxrad(3)).^2 <= 1; x = cent(1)+x(sel(:)); y = cent(2)+y(sel(:)); z = cent(3)+z(sel(:)); posvx = [x y z]'; xyzmm = V.mat*[posvx;ones(1,size(posvx,2))]; posmm = xyzmm(1:3,:); elseif isfield(roispec, 'roilist') posmm = roispec.roilist; posvx = V.mat\[posmm; ones(1,size(posmm,2))]; posvx = posvx(1:3,:); end;
github
philippboehmsturm/antx-master
tbxvol_extract2image.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/Volumes/Single_Volumes/tbxvol_extract2image.m
6,869
utf_8
7503acd7ed22a4ca14ae4dfb97f9ae1e
function varargout = tbxvol_extract2image(cmd, varargin) % Place output from tbxvol_extract back into an image % varargout = tbxvol_extract2image(cmd, varargin) % where cmd is one of % 'run' - out = tbxvol_extract2image('run', job) % Run a job, and return its output argument % job has the following fields % .outdir % .outfilename % .dtype % .extsrc % either .extspec or .extvar. extvar is a extraction % variable, .extspec is a struct with fields % .fname file name of image defining reference space % .raw data % .posvx position of voxels in voxel space % 'vout' - dep = tbxvol_extract2image('vout', job) % Examine a job structure with all leafs present and return an % array of cfg_dep objects. % 'check' - str = tbxvol_extract2image('check', subcmd, subjob) % Examine a part of a fully filled job structure. Return an empty % string if everything is ok, or a string describing the check % error. subcmd should be a string that identifies the part of % the configuration to be checked. % 'defaults' - defval = tbxvol_extract2image('defaults', key) % Retrieve defaults value. key must be a sequence of dot % delimited field names into the internal def struct which is % kept in function local_def. An error is returned if no % matching field is found. % tbxvol_extract2image('defaults', key, newval) % Set the specified field in the internal def struct to a new % value. % Application specific code needs to be inserted at the following places: % 'run' - main switch statement: code to compute the results, based on % a filled job % 'vout' - main switch statement: code to compute cfg_dep array, based % on a job structure that has all leafs, but not necessarily % any values filled in % 'check' - create and populate switch subcmd switchyard % 'defaults' - modify initialisation of defaults in subfunction local_defs % Callbacks can be constructed using anonymous function handles like this: % 'run' - @(job)tbxvol_extract2image('run', job) % 'vout' - @(job)tbxvol_extract2image('vout', job) % 'check' - @(job)tbxvol_extract2image('check', 'subcmd', job) % 'defaults' - @(val)tbxvol_extract2image('defaults', 'defstr', val{:}) % Note the list expansion val{:} - this is used to emulate a % varargin call in this function handle. % % This code is part of a batch job configuration system for MATLAB. See % help matlabbatch % for a general overview. %_______________________________________________________________________ % Copyright (C) 2007 Freiburg Brain Imaging % Volkmar Glauche % $Id: tbxvol_extract2image.m 680 2009-09-15 12:56:30Z glauche $ rev = '$Rev: 680 $'; %#ok if ischar(cmd) switch lower(cmd) case 'run' job = local_getjob(varargin{1}); % do computation, return results in variable out % get volume information for output image - must be the same % orientation and voxel size as the extraction space if isfield(job.extsrc,'extspec') ext = job.extsrc.extspec; ext.Vspace = rmfield(spm_vol(job.extsrc.extspec.fspace),'private'); elseif isfield(job.extsrc,'extvar') ext = job.extsrc.extvar; end % set new filename and scaling [p n e v] = spm_fileparts(job.outfilename); if ~any(strcmpi(e,{'.img','.nii'})) e = '.nii'; end if job.dtype > 0 ext.Vspace.dt(1) = job.dtype; end ext.Vspace.fname = fullfile(job.outdir{1}, [n e v]); ext.Vspace.pinfo(1:2) = inf; % create output array dat = zeros(ext.Vspace.dim); % ext is the extraction structure - use its position % information to get a linear index into the data array ind = sub2ind(ext.Vspace.dim(1:3), round(ext.posvx(1,:)), ... round(ext.posvx(:,2)), round(ext.posvx(:,3))); % put back all raw data - this will work only for single-volume % extracted data dat(ind) = ext.raw; % write the image spm_create_vol(ext.Vspace); spm_write_vol(ext.Vspace,dat); out.image = {ext.Vspace.fname}; if nargout > 0 varargout{1} = out; end case 'vout' job = local_getjob(varargin{1}); % initialise empty cfg_dep array dep = cfg_dep; dep.sname = 'Exported image'; dep.src_output = substruct('.','image'); dep.tgt_spec = cfg_findspec({{'filter','image','strtype','e'}}); % determine outputs, return cfg_dep array in variable dep varargout{1} = dep; case 'check' if ischar(varargin{1}) subcmd = lower(varargin{1}); subjob = varargin{2}; str = ''; switch subcmd % implement checks, return status string in variable str otherwise cfg_message('unknown:check', ... 'Unknown check subcmd ''%s''.', subcmd); end varargout{1} = str; else cfg_message('ischar:check', 'Subcmd must be a string.'); end case 'defaults' if nargin == 2 varargout{1} = local_defs(varargin{1}); else local_defs(varargin{1:2}); end otherwise cfg_message('unknown:cmd', 'Unknown command ''%s''.', cmd); end else cfg_message('ischar:cmd', 'Cmd must be a string.'); end function varargout = local_defs(defstr, defval) persistent defs; if isempty(defs) % initialise defaults end if ischar(defstr) % construct subscript reference struct from dot delimited tag string tags = textscan(defstr,'%s', 'delimiter','.'); subs = struct('type','.','subs',tags{1}'); try cdefval = subsref(local_def, subs); catch cdefval = []; cfg_message('defaults:noval', ... 'No matching defaults value ''%s'' found.', defstr); end if nargin == 1 varargout{1} = cdefval; else defs = subsasgn(defs, subs, defval); end else cfg_message('ischar:defstr', 'Defaults key must be a string.'); end function job = local_getjob(job) if ~isstruct(job) cfg_message('isstruct:job', 'Job must be a struct.'); end
github
philippboehmsturm/antx-master
amr_test_fit.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/Perfusion/amr_test_fit.m
3,362
utf_8
02b23187c24963f7c81571e691674dc2
function [fitfunc] = amr_test_fit(base, tail, rcbv,at,alpha,beta,method); % % function [fitfunc] = amr_test_fit(base, tail, rcbv,at,alpha,beta,method); % % method: 'ge' or 'se'; default is 'ge' % % Examples: % for ge: % [fitfunc_ge] = amr_test_fit(base_ge, tail_ge, rcbv_ge,at_ge,alpha_ge,beta_ge,'ge'); % for se: % [fitfunc_se] = amr_test_fit(base_se, tail_se, rcbv_se,at_se,alpha_se,beta_se,'se'); % if mrstruct_istype(base,'volume') [size_x,size_y,size_z] = size(base.dataAy); n_slices = size_z; fitfunc = mrstruct_init('series3D'); elseif mrstruct_istype(base,'image') [size_x,size_y] = size(base.dataAy); size_z=1; fitfunc = mrstruct_init('series2D'); end amr_global if (nargin >= 7) if strcmp(method,'ge') amr_init_ge; elseif strcmp(method,'se') amr_init_se; end else amr_init_ge; end TE = base.te/1000; skip = DEFAULT_POWELL(1); kon = 1; default_powell = [DEFAULT_POWELL TE]; size_t = rcbv.user; t = 1:size_t; S0_start = DEFAULT_POWELL(1); S0_stop = DEFAULT_POWELL(2); SE_int = DEFAULT_POWELL(3); dil_rate = 10; im_size = size_x*size_y; % slice = 7; for slice=1:size_z; %data = squeeze(reshape(in.dataAy(:,:,slice,:),im_size,size_t)); if mrstruct_query(alpha,'size_z')==1 slice=1 end alpha1 = alpha.dataAy(:,:,slice); beta1 = beta.dataAy(:,:,slice); rcbv1 = rcbv.dataAy(:,:,slice); at1 = at.dataAy(:,:,slice); base1 = base.dataAy(:,:,slice); tail1 = tail.dataAy(:,:,slice); alpha1 = alpha1(:); beta1 = beta1(:); rcbv1 = rcbv1(:); at1 = at1(:); base1 = base1(:); tail1 = tail1(:); if length(at1)~=im_size error('Image size of data and parameter maps do not fit!'); end; mask = zeros(im_size,1); at1 = at1+ 1; % t0 in matlab= 1, in real. aber t0= 0; mask = find(beta1 ~=0); mask_size = length(mask); out = zeros(im_size,size_t); alpha1 = alpha1(mask); beta1 = beta1(mask); rcbv1 = rcbv1(mask); at1 = at1(mask); base1 = base1(mask); tail1 = tail1(mask); %for k=1:mask_size tat = ones([1 mask_size])'*t; tat = tat- (at1*ones([1 size_t])); ind = find(tat<0); tat(ind)= 0; rcbv1 = rcbv1 * ones([1 size_t]); Ct = rcbv1.*gammafunc(tat,alpha1,beta1,size_t); rbf_S0 = base1; rbf_SE = tail1; rbf_SS = rbf_S0 - rbf_SE; rbf_S0 = rbf_S0 * ones([1 size_t]); y = rbf_S0.* exp(-kon.*TE.*Ct); rbf_SS = rbf_SS * ones([1 size_t]); dil = (1- exp(-tat./dil_rate)).* rbf_SS; % y = y-dil; out(mask,:)=y; %end; out = reshape(out,size_x,size_y,size_t); fitfunc.dataAy(:,:,slice,:) = out; end; fitfunc.vox = base.vox; fitfunc.patient = base.patient; fitfunc.te = base.te; fitfunc.tr = base.tr; fitfunc.method = base.method; clear A tmp A_min_max mi ma mask mask_size im_size slice i; clear alpha1 beta1 rcbv1 base1 rcbf1; function f = gammafunc(x,alpha,beta,size_t); alpha = alpha * ones([1 size_t]); beta = beta * ones([1 size_t]); f = x.^alpha.*exp(-x./beta)./gamma(alpha+1)./beta.^(alpha+1);
github
philippboehmsturm/antx-master
tbxrend_nifti_to_df3.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/Render3D/tbxrend_nifti_to_df3.m
1,912
utf_8
b2c969d334a35385f40a16d7579aa38a
function tbxrend_nifti_to_df3(bch) % export NIfTI image to POVray df3 format % produces the df3 file itself and a coordinate transform from unit cube % to NIfTI world space % bch.srcimg % bch.outimg.fname % bch.outimg.swd % bch.outres - 'uint8','uint16','uint32' % data will be scaled to fit range, non-finite values set to minimum of data. A mask % df3 will be written which contains 1 for valid data, 0 for non-finite data V = spm_vol(bch.srcimg{1}); [ps ns e v] = spm_fileparts(bch.srcimg{1}); if isempty(bch.outimg.swd{1}) po = ps; else po = bch.outimg.swd{1}; end; if isempty(bch.outimg.fname) no = ns; else no = bch.outimg.fname; end; out.dfile{1} = fullfile(po,[ns '.df3']); out.mfile{1} = fullfile(po,[ns '_msk.df3']); out.dinclude{1} = fullfile(po,[ns '.inc']); out.minclude{1} = fullfile(po,[ns '_msk.inc']); X = spm_read_vols(V); msk = uint8(isfinite(X)); mn = min(X(logical(msk(:)))); mx = max(X(logical(msk(:)))); X(~logical(msk)) = mn; switch bch.outres case 'uint8' mxval = 2^8-1; case 'uint16' mxval = 2^16-1; case 'uint32' mxval = 2^32-1; end; dat = eval(sprintf('%s(round((X-mn)/(mx-mn)*mxval))',bch.outres)); fid = fopen(out.dfile{1},'w','ieee-be'); fwrite(fid,uint16(V.dim(1:3)),'uint16'); fwrite(fid,dat,bch.outres); fclose(fid); fid = fopen(out.mfile{1},'w','ieee-be'); fwrite(fid,uint16(V.dim(1:3)),'uint16'); fwrite(fid,msk,'uint8'); fclose(fid); % transformation from unit cube to mm via voxels M = V.mat*[diag(V.dim(1:3)-1) ones(3,1); 0 0 0 1]; write_include(out.dinclude{1}, out.dfile{1}, M); write_include(out.minclude{1}, out.mfile{1}, M); function write_include(iname, dname, M) fid = fopen(iname,'w'); fprintf(fid,'{\n density_file df3 "%s"\n', dname); fprintf(fid,' matrix < %.02f, %.02f, %.02f,\n %.02f, %.02f, %.02f,\n %.02f, %.02f, %.02f,\n %.02f, %.02f, %.02f >\n', M(1:3,:)); fprintf(fid,'}\n'); fclose(fid);
github
philippboehmsturm/antx-master
tbxrend_export_surf.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/Render3D/tbxrend_export_surf.m
1,692
utf_8
2ddd5ddf94e98d9dd38aa20da08a4f47
function tbxvol_export_surf(srf) % export surfaces to blender format % can handle either patch structures or patch graphics objects % in the latter case, colouring will be approximately translated % (blender does not seem to allow for vertex colouring, so colours need % to be interpolated per face) for cs=1:numel(srf) switch surftype(srf{cs}), case 'handle', vertices = get(srf{cs}, 'Vertices')'; faces = get(srf{cs}, 'Faces')'-1; facecol = squeeze(get(srf{cs}, 'CData')); if ndims(facecol)==3 % we have vertex colours and need to compute face colours warning(['Vertex colouring not supported, using mean colour value ' ... 'per surface']); facecol = squeeze(mean(facecol)); end; facesstr=sprintf('%d%s\\t0x%%02x%%02x%%02x\\n', ... size(faces,1), repmat('\t%d', 1,size(faces,1))); faces = [faces; round(facecol'*255)]; faces = faces(:,all(isfinite(faces))); case 'struct', vertices=srf{cs}.vertices'; faces=srf{cs}.faces'-1; facecol = [128 128 128]; facesstr=sprintf('%d%s\\t0x%02x%02x%02x\\n', ... size(faces,1), repmat('\t%d', 1,size(faces,1)), ... facecol); end; fid=fopen(sprintf('surf-%d.obj',cs),'w'); fprintf(fid,'3DG1\n%d\n',size(vertices,2)); fprintf(fid,'%.3f\t%.3f\t%.3f\n',vertices); fprintf(fid,facesstr,faces); fclose(fid); end; return; function t=surftype(srf) if isstruct(srf) if isfield(srf,'vertices') && isfield(srf,'faces') t='struct'; return; end; elseif ishandle(srf) && strcmp(get(srf,'type'),'patch') t='handle'; return; else error('Don''t know how to handle this surface'); end;
github
philippboehmsturm/antx-master
tbxrend_multi_cmip.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/Render3D/tbxrend_multi_cmip.m
9,147
utf_8
b2e36164911fe0ffc5edd6c198f2c8f6
function varargout = tbxrend_multi_cmip(cmd, varargin) % Template function to implement callbacks for an cfg_exbranch. The calling % syntax is % varargout = tbxrend_multi_cmip(cmd, varargin) % where cmd is one of % 'run' - out = tbxrend_multi_cmip('run', job) % Run a job, return an object handle for each mip. % 'vout' - dep = tbxrend_multi_cmip('vout', job) % Examine a job structure, return a cfg_dep object for each % mip. % 'check' - str = tbxrend_multi_cmip('check', subcmd, subjob) % Valid subcmd % 'spmmip' - check whether subjob.XYZ and subjob.Z have the % same length % 'defaults' - defval = tbxrend_multi_cmip('defaults', key) % Valid key % 'colour' - colour for new mip % % This code is part of a batch job configuration system for MATLAB. See % help matlabbatch % for a general overview. %_______________________________________________________________________ % Copyright (C) 2007 Freiburg Brain Imaging % Volkmar Glauche % $Id: tbxrend_multi_cmip.m 728 2012-05-31 07:52:56Z glauche $ rev = '$Rev: 728 $'; %#ok if ischar(cmd) switch lower(cmd) case 'run' job = local_getjob(varargin{1}); % do computation, return results in variable out out = zeros(1,numel(job.mips)+1); %-Display format %========================================================================== load(spm_get_defaults('stats.results.mipmat')); %-Single slice case %-------------------------------------------------------------------------- if isempty(job.units{3}) %-2d case %---------------------------------------------------------------------- if ~job.bgopts.grid grid_trans = zeros(size(grid_trans)); %#ok<NODEF> end if ~job.bgopts.outline mask_trans = zeros(size(mask_trans)); %#ok<NODEF> end mip = 4*grid_trans + mask_trans; elseif job.units{3} == '%' %-3d case: Space-time %---------------------------------------------------------------------- if ~job.bgopts.grid grid_time = zeros(size(grid_time)); %#ok<NODEF> end if ~job.bgopts.outline mask_trans = zeros(size(mask_trans)); %#ok<NODEF> end mip = 4*grid_time + mask_trans; else %-3d case: Space %---------------------------------------------------------------------- if ~job.bgopts.grid grid_all = zeros(size(grid_all)); %#ok<NODEF> end if ~job.bgopts.outline mask_all = zeros(size(grid_all)); end mip = 4*grid_all + mask_all; end % Load mip and create maximum intensity projection %-------------------------------------------------------------------------- szmip = size(mip); mip = rot90(mip/max(mip(:))); figure('color','white'); out(end) = image('cdata',zeros([size(mip) 3]), 'alphadata',.5*mip); axis tight; axis off;daspect([1 1 1]); set(gca, 'YDir','reverse'); hold on; for k = 1:numel(job.mips) switch char(fieldnames(job.mips(k).mip)) case 'filemip', V = spm_vol(job.mips(k).mip.filemip{1}); [Z XYZ] = spm_read_vols(V); if min(Z(:)) >= 0 sel = ~isnan(Z(:)) & Z(:) > 0; else sel = ~isnan(Z(:)); end sel = sel & Z(:) >= job.mips(k).range(1) & Z(:) <= job.mips(k).range(2); Z = Z(sel); XYZ = XYZ(:,sel(:)); M = V.mat; case 'spmmip', Z = job.mips(k).mip.spmmip.Z; XYZ = job.mips(k).mip.spmmip.XYZ; M = job.mips(k).mip.spmmip.M; end sel = XYZ(1,:) >= job.mips(k).bbox(1,1) & XYZ(1,:) <= job.mips(k).bbox(2,1) & ... XYZ(2,:) >= job.mips(k).bbox(1,2) & XYZ(2,:) <= job.mips(k).bbox(2,2) & ... XYZ(3,:) >= job.mips(k).bbox(1,3) & XYZ(3,:) <= job.mips(k).bbox(2,3); out(k) = local_mip(Z(sel), XYZ(:,sel), M, job.mips(k).colour, job.mips(k).alpha, job.mips(k).invert, szmip); end if nargout > 0 varargout{1} = out; end case 'vout' job = local_getjob(varargin{1}); % initialise empty cfg_dep array dep = cfg_dep; dep = dep(false); % determine outputs, return cfg_dep array in variable dep for k = 1:numel(job.mips) dep(k) = cfg_dep; dep(k).sname = sprintf('Graphics handle (MIP %d)', k); dep(k).src_output = substruct('()',{k}); dep(k).tgt_spec = cfg_findspec({{'strtype','e'}}); end dep(numel(job.mips)+1) = cfg_dep; dep(numel(job.mips)+1).sname = 'Graphics handle (MIP outline)'; dep(numel(job.mips)+1).src_output = substruct('()',{numel(job.mips)+1}); dep(numel(job.mips)+1).tgt_spec = cfg_findspec({{'strtype','e'}}); varargout{1} = dep; case 'check' if ischar(varargin{1}) subcmd = lower(varargin{1}); subjob = varargin{2}; str = ''; switch subcmd % implement checks, return status string in variable str case 'spmmip' if size(subjob.Z, 2) ~= size(subjob.XYZ, 2) str = sprintf('Size mismatch: size(Z,2) = %d does not match size(XYZ,2) = %d', ... size(subjob.Z,1), size(subjob.XYZ, 1)); end case 'units' if ~iscellstr(subjob) str = sprintf('Value for ''units'' must be a cellstr.'); end otherwise cfg_message('unknown:check', ... 'Unknown check subcmd ''%s''.', subcmd); end varargout{1} = str; else cfg_message('ischar:check', 'Subcmd must be a string.'); end case 'defaults' if nargin == 2 varargout{1} = local_defs(varargin{1}); else local_defs(varargin{1:2}); end otherwise cfg_message('unknown:cmd', 'Unknown command ''%s''.', cmd); end else cfg_message('ischar:cmd', 'Cmd must be a string.'); end function varargout = local_defs(defstr, defval) persistent defs; if isempty(defs) % initialise defaults defs.colour = [1 0 0]'; defs.alpha = [.25 .9]; defs.units = {'mm' 'mm' 'mm'}; defs.range = [-Inf Inf]; defs.bbox = [-Inf -Inf -Inf; Inf Inf Inf]; defs.grid = true; defs.outline= true; defs.invert = false; end if ischar(defstr) % construct subscript reference struct from dot delimited tag string tags = textscan(defstr,'%s', 'delimiter','.'); subs = struct('type','.','subs',tags{1}'); try cdefval = subsref(defs, subs); catch %#ok<CTCH> cdefval = []; cfg_message('defaults:noval', ... 'No matching defaults value ''%s'' found.', defstr); end if nargin == 1 varargout{1} = cdefval; else defs = subsasgn(defs, subs, defval); end else cfg_message('ischar:defstr', 'Defaults key must be a string.'); end function job = local_getjob(job) if ~isstruct(job) cfg_message('isstruct:job', 'Job must be a struct.'); end function h = local_mip(Z, XYZ, M, col, alpha, invert, szmip) Z = Z - min(Z); mx = max(Z); if invert Z = mx - Z; end if isempty(mx), Z = []; elseif isfinite(mx) && (numel(Z) ~= 1), Z = (alpha(2)-alpha(1))*Z/max(Z) + alpha(1); else Z = alpha(2)*ones(1,length(Z)); end % Create maximum intensity projection %-------------------------------------------------------------------------- c = [0 0 0 ; 0 0 1 ; 0 1 0 ; 0 1 1 ; 1 0 0 ; 1 0 1 ; 1 1 0 ; 1 1 1 ] - 0.5; c = c*M(1:3,1:3); dim = [(max(c) - min(c)) szmip]; adata = rot90(spm_project(Z,round(XYZ),dim)); cdata = cat(3, col(1)*ones(size(adata)), col(2)*ones(size(adata)), ... col(3)*ones(size(adata))); h = image('cdata',cdata, 'alphadata',adata);
github
philippboehmsturm/antx-master
tbxrend_fancy_render.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/Render3D/tbxrend_fancy_render.m
37,531
utf_8
ffbbc76d528fbc3c3bcfd24be5437ee9
function varargout = tbxrend_fancy_render(varargin) % Fancy rendering of intensities of one brain superimposed on surface % FORMAT fr = tbxrend_fancy_render(cmd, ...) % ====== % Commands are % 'init' - Initialise rendering % 'load' - Load rendering from fr*.mat file % 'save' - Save information about used data, slices and cuts into % fr_<name of structural image>.mat % 'addblobs' - Select new SPM/image set for colouring % 'addsurf' - Add another surface patch given as % - gifti file % - filename for a .mat file with a struct FV % - Matlab struct with faces and vertices from the workspace % - image file to be spm_surf'ed. The image will be resliced % to space and resolution of the brain mask (if present). The % surface will be created on a slightly smoothed image at % threshold 0.5 % - thresholded SPM, saved and resliced to the space of the % brain mask (if present) % 'addline' - Add lines as streamtubes given as % - filename for a .mat file with variables "vertices" (cell % array of lines in xyz mm coordinates) and optionally "width" % - Matlab struct with vertices and width fields from the workspace % - widths can alternatively be sampled from a file (e.g. FA) % See MATLABs streamtube command for details % 'redraw' - Redraw the figure % 'render' - Re-render the surface patch % 'slice' - Add a "slice" through the structural image % the slice must be given as a function sfunc(x, y, z) % the resulting slice is at sfunc(x, y, z) = 0 % examples: % 'x-20' produces a slice at x = 20 (x-20 = 0) % 'x.^2 + y.^2 - r.^2' produces a slice on a cylinder with % radius r along the z axis % a slice sub-volume can be specified as a range of x, % y, z where the slice function should be evaluated % (in most cases, this will be the inverse of the % corresponding cut expression) % enter '1' or 'none' if no sub-volume needed % 'cut' - Cut a piece of surface and slices % the cut expression must specify the range of x, y, z % which should be cut away % 'axison' - Turn axis labels on (useful to determine cut coordinates) % 'axisoff' - Turn axis labels off % 'relight' - Reset lighting after rotation of the figure % % This function is part of the volumes toolbox for SPM2. For general help % about this toolbox, bug reports, licensing etc. type % spm_help vgtbx_config_Volumes % in the matlab command window after the toolbox has been launched. %_______________________________________________________________________ % % @(#) $Id: tbxrend_fancy_render.m 721 2011-09-27 11:30:49Z glauche $ % core code taken from fancy_rendering by John Ashburner rev='$Revision: 721 $'; %#ok<NASGU> funcname = 'Fancy render'; if nargin == 0, fr = tbxrend_fancy_render('init'); if nargout > 0 varargout{1} = fr; end; return; end; % defaults mydefaults = struct('camcolour',[1 1 1], 'slicecolour',[.7 .7 .7], ... 'indper',.6, 'colfunc','colrgb', 'slicescuts',{{}}, ... 'VM',[], 'VV',[], 'blobs',{{}}, 'surf',{{}}, 'line',{{}},... 'slicepatch',[], 'x',[], 'y',[], 'z',[]); mydefaultssurf = struct('data',[], 'quality',.3, 'colour',[.8 .8 .9], 'tcol',1, 'cut',1, ... 'patch',[], 'alpha',1, 'cutalpha',0.3, 'specularstrength',.2); mydefaultsline = struct('vertices',[], 'width',1, 'colour',[.8 .8 .9], 'alpha',1,... 'N',20, 'specularstrength',.2); % menu setup if nargin==2 if ischar(varargin{1}) && ishandle(varargin{2}) if strcmpi(varargin{1},'menu') VMfancy = uimenu(varargin{2},'Label',funcname, 'Tag', 'VMFANCY'); VMfancyinit = uimenu(VMfancy,'Label','Init',... 'Callback',[mfilename '(''menuinit'');' ],... 'Tag','VMFANCY0'); VMfancyload = uimenu(VMfancy,'Label','Load',... 'Callback',[mfilename '(''menuload'');' ],... 'Tag','VMFANCY0'); VMfancycut = uimenu(VMfancy, 'Label', 'Cut',... 'Callback',[mfilename '(''addcut'');' ],... 'Tag','VMFANCY1','Visible','off'); VMfancyslice = uimenu(VMfancy, 'Label', 'Slice',... 'Callback',[mfilename '(''addslice'');' ],... 'Tag','VMFANCY1','Visible','off'); VMfancyaddsurf = uimenu(VMfancy, 'Label', 'Add surface',... 'Callback',[mfilename '(''addsurf'');' ],... 'Tag','VMFANCY1','Visible','off'); VMfancyrelight = uimenu(VMfancy, 'Label', 'Relight',... 'Callback',[mfilename '(''relight'');' ],... 'Tag','VMFANCY1','Visible','off'); VMfancyblobs = uimenu(VMfancy, 'Label', 'New blobs',... 'Callback',[mfilename '(''addblobs'');' ],... 'Tag','VMFANCY1','Visible','off'); VMfancyax = uimenu(VMfancy, 'Label', 'Axis',... 'Tag','VMFANCY1','Visible','off'); VMfancyaxison = uimenu(VMfancyax, 'Label', 'On',... 'Callback',[mfilename '(''menuaxison'');' ],... 'Tag','VMFANCY1_AXISON'); VMfancyaxisoff = uimenu(VMfancyax, 'Label', 'Off', 'Checked','on',... 'Callback',[mfilename '(''menuaxisoff'');' ],... 'Tag','VMFANCY1_AXISOFF'); VMfancysave = uimenu(VMfancy, 'Label', 'Save',... 'Callback',[mfilename '(''save'');' ],... 'Tag','VMFANCY1','Visible','off'); VMfancyexp = uimenu(VMfancy, 'Label', 'Export to Workspace',... 'Callback',[mfilename '(''export'');' ],... 'Tag','VMFANCY1','Visible','off'); VMfancyimp = uimenu(VMfancy, 'Label', 'Import from Workspace',... 'Callback',[mfilename '(''import'');' ],... 'Tag','VMFANCY1','Visible','off'); VMfancyclear = uimenu(VMfancy, 'Label', 'Clear',... 'Callback',[mfilename '(''menuclear'');' ],... 'Tag','VMFANCY1','Visible','off'); if nargout > 0 varargout{1} = VMfancy; end; return; end; if strcmpi(varargin{1},'hmenu') Menu = uimenu(varargin{2},'Label',['Help on ' funcname],... 'Callback',['spm_help(''' mfilename ''')']); if nargout > 0 varargout{1} = Menu; end; return; end; end; end; switch lower(varargin{1}) %======================================================================= % menu functions %======================================================================= case 'defaults' varargout{1} = mydefaults; varargout{2} = mydefaultssurf; return; case {'menuinit', 'menuload'} spm_input('!DeleteInputObj'); fr = feval(mfilename,varargin{1}(5:end), varargin{2:end}); set(findobj(get(gcbo,'Parent'),'Tag','VMFANCY0'),'Visible','off'); set(findobj(get(gcbo,'Parent'),'Tag','VMFANCY1'),'Visible','on'); if nargout > 0 varargout{1} = fr; end; return; case 'menuclear', shh = get(0,'ShowHiddenHandles'); set(0,'ShowHiddenHandles','on'); set(findobj(0, 'Tag','VMFANCY0'), 'Visible','on'); set(findobj(0, 'Tag','VMFANCY1'), 'Visible','off'); set(0,'ShowHiddenHandles',shh); if nargin == 1 FGraph=get(findobj(0,'Tag',mfilename),'Parent'); else FGraph=varargin{2}; end; delete(FGraph); return; case 'menuaxison' spm('pointer','watch'); set(findobj(get(gcbo,'Parent'),'Tag','VMFANCY1_AXISON'),'Checked','on'); set(findobj(get(gcbo,'Parent'),'Tag','VMFANCY1_AXISOFF'),'Checked','off'); feval(mfilename,varargin{1}(5:end), varargin{2:end}); spm('pointer','arrow'); return; case 'menuaxisoff' spm('pointer','watch'); set(findobj(get(gcbo,'Parent'),'Tag','VMFANCY1_AXISON'),'Checked','off'); set(findobj(get(gcbo,'Parent'),'Tag','VMFANCY1_AXISOFF'),'Checked','on'); feval(mfilename,varargin{1}(5:end), varargin{2:end}); spm('pointer','arrow'); return; %======================================================================= % data specification functions %======================================================================= % tbxrend_fancy_render('init') %======================================================================= case ('init') if nargin > 1 fr = fillstruct(mydefaults, varargin{2}); if ~isempty(fr.surf) fr.surf{1} = fillstruct(mydefaultssurf, fr.surf{1}); end; else fr = mydefaults; end; if isempty(fr.surf) fr = tbxrend_fancy_render('addsurf',fr); end; if isempty(fr.VV) fr.VV = spm_vol(spm_select(1, 'image', 'Volume Data')); end; if isempty(fr.VM) tmp = spm_vol(spm_select([0 1], 'image', 'Volume Mask (opt.)')); if ~isempty(tmp) fr.VM = tmp; tmp = spm_input('mask threshold [min max]','+1','e','0 1',2); fr.VM.min = tmp(1); fr.VM.max = tmp(2); end; end; if isempty(fr.blobs) fr=tbxrend_fancy_render('addblobs',fr); end; % create meshgrid on x y z coordinates at voxel edges st = fr.VV.mat*[1 1 1 1]'; en = fr.VV.mat*[fr.VV.dim(1:3) 1]'; tmp = spm_imatrix(fr.VV.mat); step= (en-st)./abs(spm_matrix([0 0 0 tmp(4:6)])*[(fr.VV.dim(1:3)-1) 1]'); FV = get_faces_vertices(fr.surf{1}); x = st(1):step(1):en(1); x = x((x>=min(FV.vertices(:,1)-step(1))) &... (x<=max(FV.vertices(:,1)+step(1)))); y = st(2):step(2):en(2); y = y((y>=min(FV.vertices(:,2)-step(2))) &... (y<=max(FV.vertices(:,2)+step(2)))); z = st(3):step(3):en(3); z = z((z>=min(FV.vertices(:,3)-step(3))) &... (z<=max(FV.vertices(:,3)+step(3)))); clear FV; [fr.x fr.y fr.z]=meshgrid(x,y,z); fr=tbxrend_fancy_render('redraw',fr); if nargout > 0 varargout{1} = fr; end; return; % tbxrend_fancy_render('load') %======================================================================= case('load') var = load(spm_select(1,'fr.*\.mat', 'Rendering Description')); fr = var.fr; % convert to new fr struct, if necessary if isfield(fr,'VR') fr.blobs={}; for k=1:numel(fr.VR) fr.blobs{k} = fr.VR(k); fr.blobs{k}.min = -Inf; fr.blobs{k}.max = Inf; end; end; for k=1:numel(fr.blobs) if ~isfield(fr.blobs{k},'scaling') fr.blobs{k}.scaling = 'rel'; end; end; if isfield(fr,'surfname') if ischar(fr.surfname) fr.surf{1} = mydefaultssurf; fr.surf{1}.data = fr.surfname; else for k=1:numel(fr.surfname) fr.surf{k} = mydefaultssurf; fr.surf{k}.data = fr.surfname{k}; if size(fr.surfcolour,1)<=k fr.surf{k}.colour = fr.surfcolour(k,:); end; if length(fr.surftcol)<=k fr.surf{k}.tcol = fr.surftcol(k); end; if length(fr.surfcut)<=k fr.surf{k}.cut = fr.surfcut(k); end; end; end; end; if isfield(fr,'reshold') && isfield(fr, 'blobs') for k = 1:numel(fr.blobs) fr.blobs{k}.interp = fr.reshold; end; end; if isfield(fr,'VM') if ~isfield(fr.VM, 'min') fr.VM.min = eps; end; if ~isfield(fr.VM, 'max') fr.VM.max = Inf; end; end; fr = fillstruct(mydefaults, fr); fr = tbxrend_fancy_render('redraw',fr); if nargout > 0 varargout{1} = fr; end; return; % tbxrend_fancy_render('save') %======================================================================= case('save') ax = findobj(0,'Tag',mfilename); fr = get(ax,'UserData'); if ischar(fr.surf{1}.data) [p n e]=fileparts(fr.surf{1}.data); fn = fullfile(p,['fr_' n e]); else [p n] = uiputfile([], 'select filename'); if n == 0 return; end; fn = fullfile(p,n); end; save(fn,'fr'); return; % tbxrend_fancy_render('export') %======================================================================= case('export') ax = findobj(0,'Tag',mfilename); fr = get(ax,'UserData'); assignin('base','fr',fr); evalin('base','disp(fr)'); % tbxrend_fancy_render('import') %======================================================================= case('import') fr = evalin('base','fr'); ax = findobj(0,'Tag',mfilename); set(ax,'Userdata',fr); tbxrend_fancy_render('redraw'); % tbxrend_fancy_render('addblobs') %======================================================================= case('addblobs') % Possible argument: fr-structure, update it and return it if nargin==2 fr = varargin{2}; else ax = findobj(0,'Tag',mfilename); axes(ax); fr = get(ax,'UserData'); end; fr.blobs = {}; nblobs = spm_input('# blob sets','+1','b',{'none','1','2','3'}, ... 0:3); if nblobs==1 % only 1 results image fr.colfunc = spm_input('Colour mode', '+1', 'm', 'RGB|Indexed', ... ['colrgb';'colind']); else fr.colfunc = 'colrgb'; end; for k = 1:nblobs if spm_input(sprintf('Add blob set #%d from', k), '+1', 'b', ... {'SPM', 'image'},[1 2]) == 1 opwd = pwd; % work around spm_getSPM's "cd" behaviour [SPM VOL] = spm_getSPM; rcp = round(VOL.XYZ); dim = max(rcp,[],2)'; off = rcp(1,:) + dim(1)*(rcp(2,:)-1 + dim(2)*(rcp(3,:)-1)); vol = zeros(dim)+NaN; vol(off) = VOL.Z; fr.blobs{k}.vol = reshape(vol,dim); fr.blobs{k}.mat = VOL.M; cd(opwd); else fr.blobs{k} = spm_vol(spm_select(1,'image',... sprintf('Results Image #%d',k))); end; fr.blobs{k}.interp = spm_input('Interpolation of results', '+1', ... 'm', 'Nearest Neighbour|Trilinear|Sinc',[0;1;-7],1); fr.blobs{k}.min = -Inf; fr.blobs{k}.max = Inf; fr.blobs{k}.scaling = 'rel'; end; if nargin==1 set(ax,'UserData',fr); fr = tbxrend_fancy_render('redraw'); end; if nargout > 0 varargout{1} = fr; end; return; % tbxrend_fancy_render('addcut') %======================================================================= case 'addcut', if nargin==2 fr = varargin{2}; else ax = findobj(0,'Tag',mfilename); axes(ax); fr = get(ax,'UserData'); end; ind = size(fr.slicescuts,2)+1; fr.slicescuts{ind}.type='cut'; ok = 0; x = 0; y=0; z=0; %#ok<NASGU> used in cut expression while ~ok fr.slicescuts{ind}.val = spm_input('Cut expression','+1', ... 's'); eval(sprintf('ok=islogical(%s);',fr.slicescuts{ind}.val),... 'ok=0;'); if ~ok uiwait(msgbox(sprintf(['Invalid cut expression '... '''%s'''], fr.slicescuts{ind}.val),... funcname,'modal')); end; end; if nargin==1 set(ax,'UserData',fr); fr = tbxrend_fancy_render('redraw'); end; if nargout > 0 varargout{1} = fr; end; return; % tbxrend_fancy_render('addslice') %======================================================================= case 'addslice', if nargin==2 fr = varargin{2}; else ax = findobj(0,'Tag',mfilename); axes(ax); fr = get(ax,'UserData'); end; ind = size(fr.slicescuts,2)+1; fr.slicescuts{ind}.type='slice'; fr.slicescuts{ind}.val = spm_input('Slice expression', '+1', 's'); fr.slicescuts{ind}.bounds = spm_input('Slice sub-volume', ... '+1', 's', 'none'); if strcmpi(fr.slicescuts{ind}.bounds,'none') fr.slicescuts{ind}.bounds = '1'; end; if nargin==1 set(ax,'UserData',fr); fr = tbxrend_fancy_render('redraw'); end; if nargout > 0 varargout{1} = fr; end; return; % tbxrend_fancy_render('addsurf') %======================================================================= case('addsurf') % Possible argument: fr-structure, update it and return it if nargin==2 fr = varargin{2}; else ax = findobj(0,'Tag',mfilename); axes(ax); fr = get(ax,'UserData'); end; cs = numel(fr.surf)+1; fr.surf{cs} = mydefaultssurf; fr.surf{cs}.colour = uisetcolor(fr.surf{cs}.colour,'Surface colour'); fr.surf{cs}.tcol = spm_input('Overlay results onto this surface',... '+1', 'b', {'Yes', 'No'},[1 0]); fr.surf{cs}.cut = spm_input('Cut this surface',... '+1', 'b', {'Yes', 'No'},[1 0]); src= spm_input('Add surface from?', '+1', 'm',... {'GIFTI mesh', 'surf*.mat', 'matlab variable', 'image file',... 'SPM result'}, {'gifti', 'mat','var','img','SPM'}); switch char(src), case 'gifti', fr.surf{cs}.data=spm_select(1, 'mesh', ... 'Select surface data'); case 'mat', fr.surf{cs}.data=spm_select(1, 'surf_.*\.mat', ... 'Select surface data'); case 'var', ok = 0; while ~ok tmp = spm_input('Variable name', '+1', 'e'); if isstruct(tmp) if isfield(tmp, 'faces') && isfield(tmp, 'vertices') fr.surf{cs}.data = tmp; ok = 1; end; end; if ~ok msgbox(funcname,... ['Please give a name for a struct containing ' ... 'the fields ''faces'' and ''vertices''.\n'... 'See ''help patch'' for details.']); end; end; case {'img','SPM'} if strcmp(src,'img') V = spm_vol(spm_select([1 1], 'image',... 'Image to create surface from')); slevels = spm_input('Add surfaces at image intensity levels','+1',... 'e', .5); else [SPM xSPM] = spm_getSPM; slevels = spm_input('Add surfaces at Stats levels','+1','e', ... num2str([min(xSPM.Z) max(xSPM.Z)])); V = xSPM.Vspm; end; if ~isempty(fr.VM) msk = spm_input('Apply brain mask for surface creation?',... '+1', 'b', {'Yes', 'No'},[1 0]); else msk = 0; end; if msk for k=1:numel(V) Vmtmp = fr.VM; [p n e v] = spm_fileparts(V(k).fname); Vmtmp.fname = fullfile(p, ['fr_' n e v]); Vm(k) = spm_imcalc([orderfields(rmfield(fr.VM,{'min','max'}),... V(k)), V(k)],Vmtmp, ... sprintf('i2.*((i1>=%f)&(i1<=%f))',... fr.VM.min,fr.VM.max)); end; else Vm = V; end; if numel(slevels) > 1 slevels = sort(slevels); col2 = uisetcolor(fr.surf{cs}.colour,... 'Surface colour for maximum intensity'); else col2 = fr.surf{cs}.colour; end; out = spm_surf(struct('data',{{Vm.fname}},'mode',2,'thresh',slevels)); if numel(slevels) == 1 fr.surf{cs}.data = out.surffile{1}; else for k=1:numel(slevels) clevel = (slevels(k)-min(slevels))/(max(slevels)-min(slevels)); fr.surf{cs+k-1} = fr.surf{cs}; fr.surf{cs+k-1}.alpha = .3+.7*clevel; fr.surf{cs+k-1}.data = out.surffile{k}; fr.surf{cs+k-1}.colour = fr.surf{cs}.colour + ... clevel*(col2 - fr.surf{cs}.colour); end; end; end; if nargin==1 set(ax,'UserData',fr); fr = tbxrend_fancy_render('redraw'); end; if nargout > 0 varargout{1} = fr; end; return; % tbxrend_fancy_render('addline') %======================================================================= case('addline') % Possible argument: fr-structure, update it and return it if nargin==2 fr = varargin{2}; else ax = findobj(0,'Tag',mfilename); axes(ax); fr = get(ax,'UserData'); end; cl = numel(fr.line)+1; fr.line{cl} = mydefaultsline; src= spm_input('Add lines from?', '+1', 'm',... {'line*.mat', 'matlab variable'}, {'mat','var'}); ok = 0; while ~ok switch char(src), case 'mat', tmp = load(spm_select(1, 'line_.*\.mat', ... 'Select line data')); case 'var', tmp = spm_input('Variable name', '+1', 'e'); end; if isstruct(tmp) if isfield(tmp, 'vertices') && iscell(tmp.vertices) fr.line{cl}.vertices = tmp.vertices; ok = 1; end elseif iscell(tmp) fr.line{cl}.vertices = tmp; ok = 1; end; if ~ok msgbox(funcname,... ['Please give a name for a cell or a file containing ' ... 'the variable ''vertices''.']); end; end; src= spm_input('Line Colour Specification', '+1', 'm',... {'Select colour', 'matlab variable', 'images'}, {'ui','var','img'}); switch char(src), case 'img', tmp = spm_vol(spm_select(3, 'image', ... 'Select line colour images (R,G,B)')); for k = 1:numel(fr.line{cl}.vertices) col = zeros(size(fr.line{cl}.vertices{k},1),3); for c = 1:3 xyz = inv(tmp(c).mat)*... [fr.line{cl}.vertices{k} ... ones(size(fr.line{cl}.vertices{k},1),1)]'; col(:,c) = spm_sample_vol(tmp(c),xyz(1,:), xyz(2,:), ... xyz(3,:),0); end; fr.line{cl}.colour{k} = col; end; case 'var', fr.line{cl}.colour = spm_input('Colour', '+1', 'e'); case 'ui' fr.line{cl}.colour = uisetcolor('Line Colour'); end; src= spm_input('Line Width Specification', '+1', 'm',... {'matlab variable', 'images'}, {'var','img'}); switch char(src), case 'img', tmp = spm_vol(spm_select(1, 'image', ... 'Select line width images')); for k = 1:numel(fr.line{cl}.vertices) xyz = inv(tmp.mat)*... [fr.line{cl}.vertices{k} ... ones(size(fr.line{cl}.vertices{k},1),1)]'; fr.line{cl}.width{k} = ... spm_sample_vol(tmp(c),xyz(1,:), xyz(2,:), ... xyz(3,:),0); end; case 'var', fr.line{cl}.width = spm_input('Line Width', '+1', 'e'); end; src= spm_input('Line Alpha Specification', '+1', 'm',... {'matlab variable', 'images'}, {'var','img'}); switch char(src), case 'img', tmp = spm_vol(spm_select(1, 'image', ... 'Select line alpha images')); for k = 1:numel(fr.line{cl}.vertices) xyz = inv(tmp.mat)*... [fr.line{cl}.vertices{k} ... ones(size(fr.line{cl}.vertices{k},1),1)]'; fr.line{cl}.alpha{k} = ... spm_sample_vol(tmp(c),xyz(1,:), xyz(2,:), ... xyz(3,:),0); end; case 'var', fr.line{cl}.alpha = spm_input('Line Alpha', '+1', 'e'); end; if nargin==1 set(ax,'UserData',fr); fr = tbxrend_fancy_render('redraw'); end; if nargout > 0 varargout{1} = fr; end; return; %======================================================================= % drawing callbacks %======================================================================= % tbxrend_fancy_render('axison') %======================================================================= case('axison') ax = findobj(0,'Tag',mfilename); axes(ax); axis image on; xlabel('X'); ylabel('Y'); zlabel('Z'); return; % tbxrend_fancy_render('axisoff') %======================================================================= case('axisoff') ax = findobj(0,'Tag',mfilename); axes(ax); axis image off; return; % tbxrend_fancy_render('cut') %======================================================================= case ('cut') if nargin == 2 ax = findobj(0,'Tag',mfilename); axes(ax); fr = get(ax,'UserData'); ind=varargin{2}; else fr = varargin{2}; ind = varargin{3}; end; % cut surfaces for cs = 1:numel(fr.surf) if fr.surf{cs}.cut, v = get(fr.surf{cs}.patch,'Vertices'); x=v(:,1); %#ok<NASGU> used in cut expression y=v(:,2); %#ok<NASGU> z=v(:,3); %#ok<NASGU> fva = get(fr.surf{cs}.patch,'FaceVertexAlphaData'); if isempty(fva) fva = fr.surf{cs}.alpha*ones(size(v,1),1); end; fva(eval(fr.slicescuts{ind}.val)) = fr.surf{cs}.cutalpha; set(fr.surf{cs}.patch,'FaceVertexAlphaData',fva); end; end; % cut slices for cs = 1:numel(fr.slicepatch) v = get(fr.slicepatch(cs),'Vertices'); x=v(:,1); %#ok<NASGU> used in cut expression y=v(:,2); %#ok<NASGU> z=v(:,3); %#ok<NASGU> col = get(fr.slicepatch(cs),'FaceVertexCData'); col(eval(fr.slicescuts{ind}.val)) = NaN; if any(~isnan(col(:))) set(fr.slicepatch(cs),'FaceVertexCData',col); else if ishandle(fr.slicepatch(cs)) delete(fr.slicepatch(cs)); end; end; end; if nargin == 2 set(ax,'UserData',fr); end; if nargout > 0 varargout{1} = fr; end; return; % tbxrend_fancy_render('render') %======================================================================= case('render') ax = findobj(0,'Tag',mfilename); axes(ax); fr = get(ax,'UserData'); for cs = 1:numel(fr.surf) FV = get_faces_vertices(fr.surf{cs}); col = ones(size(FV.vertices,1),3).*... repmat(fr.surf{cs}.colour, [size(FV.vertices,1) 1]); if fr.surf{cs}.tcol tcol = feval(fr.colfunc,FV,fr); col = repmat(1-max(tcol,[],2),[1 3]).*col + tcol; end; fr.surf{cs}.patch = patch(FV, 'Parent',ax,... 'AlphaDataMapping', 'none',... 'FaceVertexAlphaData',... fr.surf{cs}.alpha*ones(size(FV.vertices,1),1),... 'FaceAlpha', 'interp',... 'FaceColor', 'interp',... 'FaceVertexCData', col,... 'EdgeColor', 'none',... 'FaceLighting', 'phong',... 'SpecularStrength' , fr.surf{cs}.specularstrength,... 'AmbientStrength', 0.1,... 'DiffuseStrength', 0.7,... 'SpecularExponent', 10,... 'Tag',sprintf('%s_surf',mfilename)); end; set(ax,'UserData',fr); return; %======================================================================= % tbxrend_fancy_render('relight') case ('relight') ax = findobj(0,'Tag',mfilename); axes(ax); fr = get(ax,'UserData'); l = findobj(get(ax,'Children'), 'Type', 'light'); if isempty(l) l = camlight(-20, 10); else l = camlight(l, -20, 10); end; set(l,'Color',fr.camcolour); return; %======================================================================= % tbxrend_fancy_render('redraw') case('redraw') % Possible argument: fr-structure, draw and set it as UserData if nargin==2 fr = varargin{2}; fg = figure; ax = axes('Parent',fg,'Clipping','off','tag',mfilename); set(0,'CurrentFigure',fg); set(fg,'CurrentAxes',ax,... 'CloseRequestFcn',[mfilename '(''menuclear'',',num2str(fg),')']); set(ax,'UserData',fr); view(3); [az el] = view; daspect([1 1 1]); axis image off; box on; rotate3d on; else ax = findobj(0,'Tag',mfilename); axes(ax); [az el] = view; fr = get(ax,'UserData'); end; delete(findobj(ax,'tag',sprintf('%s_surf',mfilename))); delete(findobj(ax,'tag',sprintf('%s_slice',mfilename))); for cs = 1:numel(fr.surf) fr.surf{cs}.patch=[]; end; fr.slicepatch=[]; set(ax,'Userdata',fr); tbxrend_fancy_render render; for k=1:size(fr.slicescuts,2) tbxrend_fancy_render(fr.slicescuts{k}.type,k); end; view(az,el); axis tight; tbxrend_fancy_render relight; if nargout >0 varargout{1} = fr; end; return; %======================================================================= % tbxrend_fancy_render('slice') case ('slice') ax = findobj(0,'Tag',mfilename); axes(ax); fr = get(ax,'UserData'); ind = varargin{2}; if isempty(findstr(fr.slicescuts{ind}.val,'fr.')) tmp = strrep(fr.slicescuts{ind}.val,'x','fr.x'); tmp = strrep(tmp,'y','fr.y'); tmp = strrep(tmp,'z','fr.z'); else % compatibility with old fr structs tmp = fr.slicescuts{ind}.val; end; sel = round(eval(tmp)); if isfield(fr.slicescuts{ind},'bounds') tmp = strrep(fr.slicescuts{ind}.bounds,'x','fr.x'); tmp = strrep(tmp,'y','fr.y'); tmp = strrep(tmp,'z','fr.z'); sel(~eval(tmp))=NaN; end; s = isosurface(fr.x,fr.y,fr.z,sel,0); clear sel; if isempty(s.vertices) warning([mfilename ':emptySlice'],... 'Empty slice after evaluating isosurface\n ''%s''\n',... fr.slicescuts{ind}.val); return; end; M = inv(fr.VV.mat); xyz = (M(1:3,:)*[s.vertices' ; ones(1, size(s.vertices,1))])'; col1 = spm_sample_vol(fr.VV,xyz(:,1), xyz(:,2), xyz(:,3), -4); if ~isempty(fr.VM) M = inv(fr.VM.mat); xyz = (M(1:3,:)*[s.vertices' ; ones(1, size(s.vertices, ... 1))])'; msk = spm_sample_vol(fr.VM, xyz(:,1), xyz(:,2), xyz(:,3), 0); col1((msk<fr.VM.min)|(msk>fr.VM.max)|isnan(msk))=0; else % we do not have an explicit mask, use non-interpolated volume data instead msk = spm_sample_vol(fr.VV,xyz(:,1), xyz(:,2), xyz(:,3), 0); col1(isnan(msk))=0; end; cmap=contrast(col1(col1~=0),1024); cmax=max(col1(isfinite(col1))); cmin=min(col1((col1~=0)&isfinite(col1))); if isempty(cmin) cmin = cmax-1; end; % use only first row of cmap (grayscale cmap!) col=repmat(interp1(cmin:(cmax-cmin)/1023:cmax,cmap(:,1),col1),[1 3]); col(col1==0)=NaN; % zero masking according to original data col = col.*repmat(fr.slicecolour,[size(col,1) 1]); % apply color shade tcol = feval(fr.colfunc,s,fr); col = repmat(1-max(tcol,[],2),[1 3]).*col + tcol; axes(ax); fr.slicepatch(end+1) = patch(s,... 'FaceColor', 'interp', 'FaceVertexCData', col,... 'EdgeColor', 'none',... 'FaceLighting', 'phong',... 'SpecularStrength' ,0.7, 'AmbientStrength', 0.1,... 'DiffuseStrength', 0.7, 'SpecularExponent', 10,... 'Tag',sprintf('%s_slice',mfilename)); set(ax,'UserData',fr); return; end function tcol=colrgb(FV,fr) tcol=zeros(size(FV.vertices,1),3); for l=1:numel(fr.blobs) tcol(:,l) = samplecol(FV,fr.blobs{l}); end; function tcol=colind(FV,fr) tcol=zeros(size(FV.vertices,1),3); if numel(fr.blobs) ~= 1 error('Can only handle 1 results image in indexed mode'); end; t = samplecol(FV,fr.blobs{1}); t = ceil(t*1024); cmap = hsv(1024); tcol(t~=0,:) = cmap(t(t~=0),:)*fr.indper; function t = samplecol(FV,V) M = inv(V.mat); xyz = (M(1:3,:)*[FV.vertices' ; ... ones(1, size(FV.vertices, 1))])'; if isfield(V,'vol') t = spm_sample_vol(V.vol, xyz(:,1), xyz(:,2), xyz(:,3), ... V.interp); else t = spm_sample_vol(V, xyz(:,1), xyz(:,2), xyz(:,3), ... V.interp); end; imean = zeros(size(t)); if isfield(V,'VMean') M = inv(V.VMean.mat); xyz = (M(1:3,:)*[FV.vertices' ; ... ones(1, size(FV.vertices, 1))])'; if isfield(V.VMean,'vol') imean = spm_sample_vol(V.VMean.vol, ... xyz(:,1), xyz(:,2), xyz(:,3), ... V.interp); else imean = spm_sample_vol(V.VMean, ... xyz(:,1), xyz(:,2), xyz(:,3), ... V.interp); end; end; t = t-imean; imsk = ones(size(t)); if isfield(V,'VM') M = inv(V.VM.mat); xyz = (M(1:3,:)*[FV.vertices' ; ... ones(1, size(FV.vertices, 1))])'; if isfield(V.VM,'vol') imsk = spm_sample_vol(V.VM.vol, ... xyz(:,1), xyz(:,2), xyz(:,3), ... V.interp); else imsk = spm_sample_vol(V.VM, ... xyz(:,1), xyz(:,2), xyz(:,3), ... V.interp); end; end; t(t<V.min) = V.min; t(t>V.max) = V.max; t(~isfinite(t) | ~imsk) = 0; switch V.scaling case 'rel' mx = max([eps max(t)]); case 'abs' mx = V.max; case 'minmax' mx = V.max-V.min; t = t - V.min; end; t = t/mx; % do the masking again t(~isfinite(t) | ~imsk) = 0; function FV = get_faces_vertices(source) if isstruct(source.data) FV=source.data; else [p n e] = fileparts(source.data); switch e case '.mat' FV = load(source.data); case '.gii' FV = gifti(source.data); FV = export(FV,'patch'); % reducepatch does not work single precision vertices FV.vertices = double(FV.vertices); end end; FV = reducepatch(FV,source.quality);
github
philippboehmsturm/antx-master
pm_segment.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/FieldMap/pm_segment.m
25,512
utf_8
37ff3bd4d9d649e61cc402f3b114c256
function [VO,M] = pm_segment(VF,PG,flags) % Segment an MR image into Gray, White & CSF. % % FORMAT VO = pm_segment(PF,PG,flags) % PF - name(s) of image(s) to segment (must have same dimensions). % PG - name(s) of template image(s) for realignment. % - or a 4x4 transformation matrix which maps from the image to % the set of templates. % flags - a structure normally based on defaults.segment % VO - optional output volume % M - affine transformation between template and image to segment % % The algorithm is four step: % % 1) Determine the affine transform which best matches the image with a % template image. If the name of more than one image is passed, then % the first image is used in this step. This step is not performed if % no template images are specified. % % 2) Perform Cluster Analysis with a modified Mixture Model and a-priori % information about the likelihoods of each voxel being one of a % number of different tissue types. If more than one image is passed, % then they they are all assumed to be in register, and the voxel % values are fitted to multi-normal distributions. % % 3) Perform morphometric operations on the grey and white partitions % in order to more accurately identify brain tissue. This is then used % to clean up the grey and white matter segments. % % 4) If no or 2 output arguments is/are specified, then the segmented % images are written to disk. The names of these images have "c1", % "c2" & "c3" appended to the name of the first image passed. The % 'brainmask' is also created with "BrMsk_" as an appendix. % %_______________________________________________________________________ % Refs: % % Ashburner J & Friston KJ (1997) Multimodal Image Coregistration and % Partitioning - a Unified Framework. NeuroImage 6:209-217 % %_______________________________________________________________________ % % The template image, and a-priori likelihood images are modified % versions of those kindly supplied by Alan Evans, MNI, Canada % (ICBM, NIH P-20 project, Principal Investigator John Mazziotta). %_______________________________________________________________________ % % This is a renamed version of the original spm_segment which has been % removed from the main spm distribution, but copied into the FieldMap % toolbox where it is still used. %_______________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % John Ashburner % $Id: pm_segment.m 4148 2011-01-04 16:49:23Z guillaume $ % Create some suitable default values %----------------------------------------------------------------------- def_flags.estimate.priors = char(... fullfile(spm('Dir'),'apriori','grey.nii'),... fullfile(spm('Dir'),'apriori','white.nii'),... fullfile(spm('Dir'),'apriori','csf.nii')); def_flags.estimate.reg = 0.01; def_flags.estimate.cutoff = 30; def_flags.estimate.samp = 3; def_flags.estimate.bb = [[-88 88]' [-122 86]' [-60 95]']; def_flags.estimate.affreg.smosrc = 8; def_flags.estimate.affreg.regtype = 'mni'; def_flags.estimate.affreg.weight = ''; def_flags.write.cleanup = 1; def_flags.write.wrt_cor = 1; def_flags.write.wrt_brV = 0; def_flags.graphics = 1; if nargin<3, flags = def_flags; end; if ~isfield(flags,'estimate'), flags.estimate = def_flags.estimate; end; if ~isfield(flags.estimate,'priors'), flags.estimate.priors = def_flags.estimate.priors; end; if ~isfield(flags.estimate,'reg'), flags.estimate.reg = def_flags.estimate.reg; end; if ~isfield(flags.estimate,'cutoff'), flags.estimate.cutoff = def_flags.estimate.cutoff; end; if ~isfield(flags.estimate,'samp'), flags.estimate.samp = def_flags.estimate.samp; end; if ~isfield(flags.estimate,'bb'), flags.estimate.bb = def_flags.estimate.bb; end; if ~isfield(flags.estimate,'affreg'), flags.estimate.affreg = def_flags.estimate.affreg; end; if ~isfield(flags.estimate.affreg,'smosrc'), flags.estimate.affreg.smosrc = def_flags.estimate.affreg.smosrc; end; if ~isfield(flags.estimate.affreg,'regtype'), flags.estimate.affreg.regtype = def_flags.estimate.affreg.regtype; end; if ~isfield(flags.estimate.affreg,'weight'), flags.estimate.affreg.weight = def_flags.estimate.affreg.weight; end; if ~isfield(flags,'write'), flags.write = def_flags.write; end; if ~isfield(flags.write,'cleanup'), flags.write.cleanup = def_flags.write.cleanup; end; if ~isfield(flags.write,'wrt_cor'), flags.write.wrt_cor = def_flags.write.wrt_cor; end; if ~isfield(flags.write,'wrt_brV'), flags.write.wrt_brV = def_flags.write.wrt_brV; end; if ~isfield(flags,'graphics'), flags.graphics = def_flags.graphics; end; %----------------------------------------------------------------------- if ischar(VF), VF= spm_vol(VF); end; SP = init_sp(flags.estimate,VF,PG); [x1,x2,x3] = get_sampling(SP.MM,VF,flags.estimate.samp,flags.estimate.bb); BP = init_bp(VF, flags.estimate.cutoff, flags.estimate.reg); CP = init_cp(VF,x3); sums = zeros(8,1); for pp=1:length(x3), [raw,msk] = get_raw(VF,x1,x2,x3(pp)); s = get_sp(SP,x1,x2,x3(pp)); CP = update_cp_est(CP,s,raw,msk,pp); sums = sums + reshape(sum(sum(s,1),2),8,1); end; sums = sums/sum(sums); CP = shake_cp(CP); [CP,BP,SP] = run_segment(CP,BP,SP,VF,sums,x1,x2,x3); %save segmentation_results.mat CP BP SP VF sums [g,w,c] = get_gwc(VF,BP,SP,CP,sums,flags.write.wrt_cor); if flags.write.cleanup, [g,w,c,b] = clean_gwc(g,w,c); end; % Create the segmented images + the brain mask. %----------------------------------------------------------------------- %offs = cumsum(repmat(prod(VF(1).dim(1:2)),1,VF(1).dim(3)))-prod(VF(1).dim(1:2)); %pinfo = [repmat([1/255 0]',1,VF(1).dim(3)) ; offs]; [pth,nm,xt] = fileparts(deblank(VF(1).fname)); if flags.write.wrt_brV Nwrt = 4; else Nwrt = 3; end for j=1:Nwrt, tmp = fullfile(pth,['c', num2str(j), nm, xt]); if j==4, tmp = fullfile(pth,['BrMsk_', nm xt]); end VO(j) = struct(... 'fname',tmp,... 'dim', VF(1).dim(1:3),... 'dt', [spm_type('uint8'), spm_platform('bigend')],... 'mat', VF(1).mat,... 'pinfo', [1/255 0 0]',... 'descrip','Segmented image'); end; if nargout==0 || nargout==2, VO = spm_create_vol(VO); spm_progress_bar('Init',VF(1).dim(3),'Writing Segmented','planes completed'); for pp=1:VF(1).dim(3), VO(1) = spm_write_plane(VO(1),double(g(:,:,pp))/255,pp); VO(2) = spm_write_plane(VO(2),double(w(:,:,pp))/255,pp); VO(3) = spm_write_plane(VO(3),double(c(:,:,pp))/255,pp); if flags.write.wrt_brV VO(4) = spm_write_plane(VO(4),double(b(:,:,pp))/255,pp); end spm_progress_bar('Set',pp); end; spm_progress_bar('Clear'); end; VO(1).dat = g; VO(1).pinfo = VO(1).pinfo(1:2,:); VO(2).dat = w; VO(2).pinfo = VO(2).pinfo(1:2,:); VO(3).dat = c; VO(3).pinfo = VO(3).pinfo(1:2,:); if flags.write.wrt_brV VO(4).dat = b; VO(4).pinfo = VO(4).pinfo(1:2,:); end if nargout==2 M = SP.MM/VF(1).mat; end if flags.graphics, display_graphics(VF,VO,CP.mn,CP.cv,CP.mg); end; return; %======================================================================= %======================================================================= function [y1,y2,y3] = affine_transform(x1,x2,x3,M) y1 = M(1,1)*x1 + M(1,2)*x2 + M(1,3)*x3 + M(1,4); y2 = M(2,1)*x1 + M(2,2)*x2 + M(2,3)*x3 + M(2,4); y3 = M(3,1)*x1 + M(3,2)*x2 + M(3,3)*x3 + M(3,4); return; %======================================================================= %======================================================================= function display_graphics(VF,VS,mn,cv,mg) % Do the graphics nb = 3; spm_figure('Clear','Graphics'); fg = spm_figure('FindWin','Graphics'); if ~isempty(fg), % Show some text %----------------------------------------------------------------------- ax = axes('Position',[0.05 0.8 0.9 0.2],'Visible','off','Parent',fg); text(0.5,0.80, 'Segmentation','FontSize',16,'FontWeight','Bold',... 'HorizontalAlignment','center','Parent',ax); text(0,0.65, ['Image: ' spm_str_manip(VF(1).fname,'k50d')],... 'FontSize',14,'FontWeight','Bold','Parent',ax); text(0,0.40, 'Means:','FontSize',12,'FontWeight','Bold','Parent',ax); text(0,0.30, 'Std devs:' ,'FontSize',12,'FontWeight','Bold','Parent',ax); text(0,0.20, 'N vox:','FontSize',12,'FontWeight','Bold','Parent',ax); for j=1:nb, text((j+0.5)/(nb+1),0.40, num2str(mn(1,j)),... 'FontSize',12,'FontWeight','Bold',... 'HorizontalAlignment','center','Parent',ax); text((j+0.5)/(nb+1),0.30, num2str(sqrt(cv(1,1,j))),... 'FontSize',12,'FontWeight','Bold',... 'HorizontalAlignment','center','Parent',ax); text((j+0.5)/(nb+1),0.20, num2str(mg(1,j)/sum(mg(1,:))),... 'FontSize',12,'FontWeight','Bold',... 'HorizontalAlignment','center','Parent',ax); end; if length(VF) > 1, text(0,0.10,... 'Note: only means and variances for the first image are shown',... 'Parent',ax,'FontSize',12); end; M1 = VS(1).mat; M2 = VF(1).mat; for i=1:5, M = spm_matrix([0 0 i*VF(1).dim(3)/6]); img = spm_slice_vol(VF(1),M,VF(1).dim(1:2),1); img(1,1) = eps; ax = axes('Position',... [0.05 0.75*(1-i/5)+0.05 0.9/(nb+1) 0.75/5],... 'Visible','off','Parent',fg); imagesc(rot90(img), 'Parent', ax); set(ax,'Visible','off','DataAspectRatio',[1 1 1]); for j=1:3, img = spm_slice_vol(VS(j),M2\M1*M,VF(1).dim(1:2),1); ax = axes('Position',... [0.05+j*0.9/(nb+1) 0.75*(1-i/5)+0.05 0.9/(nb+1) 0.75/5],... 'Visible','off','Parent',fg); image(rot90(img*64), 'Parent', ax); set(ax,'Visible','off','DataAspectRatio',[1 1 1]); end; end; spm_print; drawnow; end; return; %======================================================================= %======================================================================= function M = get_affine_mapping(VF,VG,aflags) if ~isempty(VG) && ischar(VG), VG = spm_vol(VG); end; if ~isempty(VG) && isstruct(VG), % Affine registration so that a priori images match the image to % be segmented. %----------------------------------------------------------------------- VFS = spm_smoothto8bit(VF(1),aflags.smosrc); % Scale all images approximately equally % --------------------------------------------------------------- for i=1:length(VG), VG(i).pinfo(1:2,:) = VG(i).pinfo(1:2,:)/spm_global(VG(i)); end; VFS(1).pinfo(1:2,:) = VFS(1).pinfo(1:2,:)/spm_global(VFS(1)); spm_plot_convergence('Init','Affine Registration','Mean squared difference','Iteration'); flags = struct('sep',aflags.smosrc, 'regtype',aflags.regtype,'WG',[],'globnorm',0,'debug',0); M = eye(4); [M,scal] = spm_affreg(VG, VFS, flags, M); if ~isempty(aflags.weight), flags.WG = spm_vol(aflags.weight); end; flags.sep = aflags.smosrc/2; M = spm_affreg(VG, VFS, flags, M,scal); spm_plot_convergence('Clear'); elseif all(size(VG) == [4 4]) % Assume that second argument is a matrix that will do the job %----------------------------------------------------------------------- M = VG; else % Assume that image is normalized %----------------------------------------------------------------------- M = eye(4); end return; %======================================================================= %======================================================================= function [x1,x2,x3] = get_sampling(MM,VF,samp,bb1) % Voxels to sample during the cluster analysis %----------------------------------------------------------------------- % A bounding box for the brain in Talairach space. %bb = [ [-88 88]' [-122 86]' [-60 95]']; %c = [bb(1,1) bb(1,2) bb(1,3) 1 % bb(1,1) bb(1,2) bb(2,3) 1 % bb(1,1) bb(2,2) bb(1,3) 1 % bb(1,1) bb(2,2) bb(2,3) 1 % bb(2,1) bb(1,2) bb(1,3) 1 % bb(2,1) bb(1,2) bb(2,3) 1 % bb(2,1) bb(2,2) bb(1,3) 1 % bb(2,1) bb(2,2) bb(2,3) 1]'; %tc = MM\c; %tc = tc(1:3,:)'; %mx = max(tc); %mn = min(tc); %bb = [mn ; mx]; %vx = sqrt(sum(VF(1).mat(1:3,1:3).^2)); %samp = round(max(abs([4 4 4]./vx), [1 1 1])); %x1 = bb(1,1):samp(1):bb(2,1); %x2 = bb(1,2):samp(2):bb(2,2); %x3 = bb(1,3):samp(3):bb(2,3); %return; % A bounding box for the brain in Talairach space. if nargin<4, bb1 = [ [-88 88]' [-122 86]' [-60 95]']; end; % A mapping from a unit radius sphere to a hyper-ellipse % that is just enclosed by the bounding box in Talairach % space. M0 = [diag(diff(bb1)/2) mean(bb1)';[0 0 0 1]]; % The mapping from voxels to Talairach space is MM, % so the ellipse in the space of the image becomes: M0 = MM\M0; % So to work out the bounding box in the space of the % image that just encloses the hyper-ellipse. tmp = M0(1:3,1:3); tmp = diag(tmp*tmp'/diag(sqrt(diag(tmp*tmp')))); bb = round([M0(1:3,4)-tmp M0(1:3,4)+tmp])'; bb = min(max(bb,[1 1 1 ; 1 1 1]),[VF(1).dim(1:3) ; VF(1).dim(1:3)]); % Want to sample about every 3mm tmp = sqrt(sum(VF(1).mat(1:3,1:3).^2))'; samp = round(max(abs(tmp.^(-1)*samp), [1 1 1]')); x1 = bb(1,1):samp(1):bb(2,1); x2 = bb(1,2):samp(2):bb(2,2); x3 = bb(1,3):samp(3):bb(2,3); return; %======================================================================= %======================================================================= function [CP,BP,SP] = run_segment(CP,BP,SP,VF,sums,x1,x2,x3) oll = -Inf; spm_plot_convergence('Init','Segmenting','Log-likelihood','Iteration #'); for iter = 1:64, ll= 0; for pp = 1:length(x3), % Loop over planes bf = get_bp(BP,x1,x2,x3(pp)); [raw,msk] = get_raw(VF,x1,x2,x3(pp)); s = get_sp(SP,x1,x2,x3(pp)); cor = bf.*raw; [P,ll0] = get_p(cor,msk,s,sums,CP,bf); ll = ll + ll0; CP = update_cp_est(CP,P,cor,msk,pp); BP = update_bp_est(BP,P,cor,CP,msk,x1,x2,x3(pp)); end; BP = update_bp(BP); if iter>1, spm_plot_convergence('Set',ll); end; %fprintf('\t%g\n', ll); % Stopping criterion %----------------------------------------------------------------------- if iter == 2, ll2 = ll; elseif iter > 2 && abs((ll-oll)/(ll-ll2)) < 0.0001 break; end; oll = ll; end; spm_plot_convergence('Clear'); return; %======================================================================= %======================================================================= function BP = init_bp(VF,co,reg) m = length(VF); tmp = sqrt(sum(VF(1).mat(1:3,1:3).^2)); BP.nbas = max(round((VF(1).dim(1:3).*tmp)/co),[1 1 1]); BP.B1 = spm_dctmtx(VF(1).dim(1),BP.nbas(1)); BP.B2 = spm_dctmtx(VF(1).dim(2),BP.nbas(2)); BP.B3 = spm_dctmtx(VF(1).dim(3),BP.nbas(3)); nbas = BP.nbas; if prod(BP.nbas)>1, % Set up a priori covariance matrix vx = sqrt(sum(VF(1).mat(1:3,1:3).^2)); kx=(pi*((1:nbas(1))'-1)*pi/vx(1)/VF(1).dim(1)*10).^2; ky=(pi*((1:nbas(2))'-1)*pi/vx(2)/VF(1).dim(2)*10).^2; kz=(pi*((1:nbas(3))'-1)*pi/vx(3)/VF(1).dim(3)*10).^2; % Cost function based on sum of squares of 4th derivatives IC0 = (1*kron(kz.^4,kron(ky.^0,kx.^0)) +... 1*kron(kz.^0,kron(ky.^4,kx.^0)) +... 1*kron(kz.^0,kron(ky.^0,kx.^4)) +... 4*kron(kz.^3,kron(ky.^1,kx.^0)) +... 4*kron(kz.^3,kron(ky.^0,kx.^1)) +... 4*kron(kz.^1,kron(ky.^3,kx.^0)) +... 4*kron(kz.^0,kron(ky.^3,kx.^1)) +... 4*kron(kz.^1,kron(ky.^0,kx.^3)) +... 4*kron(kz.^0,kron(ky.^1,kx.^3)) +... 6*kron(kz.^2,kron(ky.^2,kx.^0)) +... 6*kron(kz.^2,kron(ky.^0,kx.^2)) +... 6*kron(kz.^0,kron(ky.^2,kx.^2)) +... 12*kron(kz.^2,kron(ky.^1,kx.^1)) +... 12*kron(kz.^1,kron(ky.^2,kx.^1)) +... 12*kron(kz.^1,kron(ky.^1,kx.^2)) )*reg; %IC0(1) = max(IC0); BP.IC0 = diag(IC0(2:end)); % Initial estimate for intensity modulation field BP.T = zeros(nbas(1),nbas(2),nbas(3),length(VF)); %----------------------------------------------------------------------- else BP.T = zeros([1 1 1 length(VF)]); BP.IC0 = []; end; BP.Alpha = zeros(prod(BP.nbas(1:3)),prod(BP.nbas(1:3)),m); BP.Beta = zeros(prod(BP.nbas(1:3)),m); return; %======================================================================= %======================================================================= function BP = update_bp_est(BP,p,cor,CP,msk,x1,x2,x3) if prod(BP.nbas)<=1, return; end; B1 = BP.B1(x1,:); B2 = BP.B2(x2,:); B3 = BP.B3(x3,:); for j=1:size(BP.Alpha,3), cr = cor(:,:,j); w1 = zeros(size(cr)); w2 = zeros(size(cr)); for i=[1 2 3 4 5 6 7 8], tmp = p(:,:,i)*CP.cv(j,j,i)^(-1); w1 = w1 + tmp.*(CP.mn(j,i) - cr); w2 = w2 + tmp; end; wt1 = 1 + cr.*w1; wt2 = cr.*(cr.*w2 - w1); wt1(~msk) = 0; wt2(~msk) = 0; BP.Beta(:,j) = BP.Beta(:,j) + kron(B3',spm_krutil(wt1,B1,B2,0)); BP.Alpha(:,:,j) = BP.Alpha(:,:,j) + kron(B3'*B3,spm_krutil(wt2,B1,B2,1)); end; return; %======================================================================= %======================================================================= function BP = update_bp(BP) if prod(BP.nbas)<=1, return; end; for j=1:size(BP.Alpha,3), x = BP.T(:,:,:,j); x = x(:); x = x(2:end); Alpha = BP.Alpha(2:end,2:end,j); Beta = BP.Beta(2:end,j); x = (Alpha + BP.IC0)\(Alpha*x + Beta); BP.T(:,:,:,j) = reshape([0 ; x],BP.nbas(1:3)); BP.Alpha = zeros(size(BP.Alpha)); BP.Beta = zeros(size(BP.Beta)); end; return; %======================================================================= %======================================================================= function bf = get_bp(BP,x1,x2,x3) bf = ones(length(x1),length(x2),size(BP.Alpha,3)); if prod(BP.nbas)<=1, return; end; B1 = BP.B1(x1,:); B2 = BP.B2(x2,:); B3 = BP.B3(x3,:); for i=1:size(BP.Alpha,3), t = reshape(reshape(BP.T(:,:,:,i),... BP.nbas(1)*BP.nbas(2),BP.nbas(3))*B3', BP.nbas(1), BP.nbas(2)); bf(:,:,i) = exp(B1*t*B2'); end; return; %======================================================================= %======================================================================= function [dat,msk] = get_raw(VF,x1,x2,x3) [X1,X2,X3] = ndgrid(x1,x2,x3); for i=1:length(VF), [Y1,Y2,Y3] = affine_transform(X1,X2,X3,VF(i).mat\VF(1).mat); dat(:,:,i) = spm_sample_vol(VF(i),Y1,Y2,Y3,1); end; msk = all(dat,3) & all(isfinite(double(dat)),3); return; %======================================================================= %======================================================================= function CP = init_cp(VF,x3) n = 8; m = length(VF); p = length(x3); CP.mom0 = zeros(1,n,p)+eps; CP.mom1 = zeros(m,n,p); CP.mom2 = zeros(m,m,n,p)+eps; % Occasionally the dynamic range of the images is such that many voxels % all have the same intensity. Adding cv0 is an attempt to improve the % stability of the algorithm if this occurs. The value 0.083 was obtained % from var(rand(1000000,1)). It prbably isn't the best way of doing % things, but it appears to work. CP.cv0 = zeros(m,m); for i=1:m, if spm_type(VF(i).dt(1),'intt'), CP.cv0(i,i)=0.083*mean(VF(i).pinfo(1,:)); end; end; return; %======================================================================= %======================================================================= function CP = shake_cp(CP) CP.mom0(:,5,:) = CP.mom0(:,1,:); CP.mom0(:,6,:) = CP.mom0(:,2,:); CP.mom0(:,7,:) = CP.mom0(:,3,:); CP.mom1(:,5,:) = CP.mom1(:,1,:); CP.mom1(:,6,:) = CP.mom1(:,2,:); CP.mom1(:,7,:) = CP.mom1(:,3,:); CP.mom1(:,8,:) = 0; CP.mom2(:,:,5,:) = CP.mom2(:,:,1,:); CP.mom2(:,:,6,:) = CP.mom2(:,:,2,:); CP.mom2(:,:,7,:) = CP.mom2(:,:,3,:); return; %======================================================================= %======================================================================= function CP = update_cp_est(CP,P,dat,msk,p) m = size(dat,3); d = size(P); P = reshape(P,[d(1)*d(2),d(3)]); dat = reshape(dat,[d(1)*d(2),m]); P(~msk(:),:) = []; dat(~msk(:),:) = []; for i=1:size(CP.mom0,2), CP.mom0(1,i,p) = sum(P(:,i)); CP.mom1(:,i,p) = sum((P(:,i)*ones(1,m)).*dat)'; CP.mom2(:,:,i,p) = ((P(:,i)*ones(1,m)).*dat)'*dat; end; for i=1:size(CP.mom0,2), CP.mg(1,i) = sum(CP.mom0(1,i,:),3); CP.mn(:,i) = sum(CP.mom1(:,i,:),3)/CP.mg(1,i); tmp = (CP.mg(1,i).*CP.mn(:,i))*CP.mn(:,i)'; tmp = tmp-eye(size(tmp))*eps*1e6; CP.cv(:,:,i) = (sum(CP.mom2(:,:,i,:),4) - tmp)/CP.mg(1,i) + CP.cv0; end; CP.mg = CP.mg/sum(CP.mg); return; %======================================================================= %======================================================================= function [p,ll] = get_p(cor,msk,s,sums,CP,bf) d = [size(cor) 1 1]; n = size(CP.mg,2); cor = reshape(cor,d(1)*d(2),d(3)); cor = cor(msk,:); p = zeros(d(1)*d(2),n); if ~any(msk), p = reshape(p,d(1),d(2),n); ll=0; return; end; for i=1:n, amp = 1/sqrt((2*pi)^d(3) * det(CP.cv(:,:,i))); dst = (cor-ones(size(cor,1),1)*CP.mn(:,i)')/sqrtm(CP.cv(:,:,i)); dst = sum(dst.*dst,2); tmp = s(:,:,i); p(msk,i) = (amp*CP.mg(1,i)/sums(i))*exp(-0.5*dst).*tmp(msk) +eps; end; sp = sum(p,2); ll = sum(log(sp(msk).*bf(msk)+eps)); sp(~msk) = Inf; for i=1:n, p(:,i) = p(:,i)./sp; end; p = reshape(p,d(1),d(2),n); return; %======================================================================= %======================================================================= function SP = init_sp(flags,VF,PG) SP.VB = spm_vol(flags.priors); MM = get_affine_mapping(VF,PG,flags.affreg); %VF = spm_vol(PF); SP.MM = MM*VF(1).mat; SP.w = 0.98; return; %======================================================================= %======================================================================= function s = get_sp(SP,x1,x2,x3) [X1,X2,X3] = ndgrid(x1,x2,x3); [Y1,Y2,Y3] = affine_transform(X1,X2,X3,SP.VB(1).mat\SP.MM); w1 = SP.w; w2 = (1-w1)/2; s = zeros([size(Y1),4]); for i=1:3, s(:,:,i) = spm_sample_vol(SP.VB(i),Y1,Y2,Y3,1)*w1+w2; end; s(:,:,4:8) = repmat(abs(1-sum(s(:,:,1:3),3))/5,[1 1 5]); return; %======================================================================= %======================================================================= function [g,w,c] = get_gwc(VF,BP,SP,CP,sums,wc) if wc, VC = VF; for j=1:length(VF), [pth,nm,xt,vr] = spm_fileparts(deblank(VF(j).fname)); VC(j).fname = fullfile(pth,['m' nm xt vr]); VC(j).descrip = 'Bias corrected image'; end; VC = spm_create_vol(VC); end; spm_progress_bar('Init',VF(1).dim(3),'Creating Segmented','planes completed'); x1 = 1:VF(1).dim(1); x2 = 1:VF(1).dim(2); x3 = 1:VF(1).dim(3); g = uint8(0); g(VF(1).dim(1),VF(1).dim(2),VF(1).dim(3)) = 0; w = uint8(0); w(VF(1).dim(1),VF(1).dim(2),VF(1).dim(3)) = 0; c = uint8(0); c(VF(1).dim(1),VF(1).dim(2),VF(1).dim(3)) = 0; for pp=1:length(x3), bf = get_bp(BP,x1,x2,x3(pp)); [raw,msk] = get_raw(VF,x1,x2,x3(pp)); cor = raw.*bf; if wc, for j=1:length(VC), VC(j) = spm_write_plane(VC(j),cor(:,:,j),pp); end; end; s = get_sp(SP,x1,x2,x3(pp)); p = get_p(cor,msk,s,sums,CP,bf); g(:,:,pp) = uint8(round(p(:,:,1)*255)); w(:,:,pp) = uint8(round(p(:,:,2)*255)); c(:,:,pp) = uint8(round(p(:,:,3)*255)); spm_progress_bar('Set',pp); end; spm_progress_bar('Clear'); return; %======================================================================= %======================================================================= function [g,w,c,b] = clean_gwc(g,w,c) b = w; b(1) = w(1); % Build a 3x3x3 seperable smoothing kernel %----------------------------------------------------------------------- kx=[0.75 1 0.75]; ky=[0.75 1 0.75]; kz=[0.75 1 0.75]; sm=sum(kron(kron(kz,ky),kx))^(1/3); kx=kx/sm; ky=ky/sm; kz=kz/sm; % Erosions and conditional dilations %----------------------------------------------------------------------- niter = 32; spm_progress_bar('Init',niter,'Extracting Brain','Iterations completed'); for j=1:niter, if j>2, th=0.15; else th=0.6; end; % Dilate after two its of erosion. for i=1:size(b,3), gp = double(g(:,:,i)); wp = double(w(:,:,i)); bp = double(b(:,:,i))/255; bp = (bp>th).*(wp+gp); b(:,:,i) = uint8(round(bp)); end; spm_conv_vol(b,b,kx,ky,kz,-[1 1 1]); spm_progress_bar('Set',j); end; th = 0.05; for i=1:size(b,3), gp = double(g(:,:,i))/255; wp = double(w(:,:,i))/255; cp = double(c(:,:,i))/255; bp = double(b(:,:,i))/255; bp = ((bp>th).*(wp+gp))>th; g(:,:,i) = uint8(round(255*gp.*bp./(gp+wp+cp+eps))); w(:,:,i) = uint8(round(255*wp.*bp./(gp+wp+cp+eps))); c(:,:,i) = uint8(round(255*(cp.*bp./(gp+wp+cp+eps)+cp.*(1-bp)))); b(:,:,i) = uint8(round(255*bp)); end; spm_progress_bar('Clear'); return;
github
philippboehmsturm/antx-master
FieldMap_applyvdm.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/FieldMap/FieldMap_applyvdm.m
8,720
utf_8
9761a5b5d2184cd48650ef88da884109
function out = FieldMap_applyvdm(job) % Apply VDM and reslice images % FORMAT FieldMap_applyvdm(job) % job.data(sessnum).scans - images for session/run sessnum % job.data(sessnum).vdmfile - VDM file for session/run sessnum % job.roptions.rinterp - interpolation method % job.roptions.wrap - perform warp around in specified dimensions % job.roptions.mask - perform masking % job.roptions.which(1) - reslice images in time series only % job.roptions.which(2) - reslice images in time series and mean % job.roptions.prefix - prefix for vdm applied files % job.roptions.pedir - phase encode direction (i.e. aplly vdm file along % this dimension %__________________________________________________________________________ % % A VDM (voxel displacement map) created using the FieldMap toolbox % can be used to resample and reslice realigned images to the original % subdirectory with the same (prefixed) filename. % % Voxels in the images will be shifted according to the values in the VDM % file along the direction specified by job.roptions.pedir (i.e. this is % usually the phase encode direction) and resliced to the space of the % first image in the time series. % % Inputs: % A job structure containing fields for the input data and the processing % options. The input data contains the series of images conforming to % SPM data format (see 'Data Format'), the relative displacement of the images % is stored in their header and a VDM which has (probably) been created % using the FieldMap toolbox and matched to the first image in the time % series (this can also be done via the FieldMap toolbox). % % Outputs: % The resmapled and resliced images resliced to the same subdirectory with a prefix. %__________________________________________________________________________ % Copyright (C) 2011 Wellcome Trust Centre for Neuroimaging % Chloe Hutton % $Id: FieldMap_applyvdm.m 4228 2011-03-04 15:00:15Z chloe $ tiny = 5e-2; % assemble roptions %----------------------------------------------------------------------- flags.interp = job.roptions.rinterp; flags.wrap = job.roptions.wrap; flags.mask = job.roptions.mask; flags.which = job.roptions.which(1); flags.mean = job.roptions.which(2); flags.prefix = job.roptions.prefix; flags.pedir = job.roptions.pedir; hold = [repmat(flags.interp,1,3) flags.wrap]; % Determine dimension along which to apply vdm applydim=flags.pedir; if applydim~=1 & applydim~=2 & applydim~=3 applydim=2; end % Gather up data into ds structure which holds images and vdm file %----------------------------------------------------------------------- P = {}; for i = 1:numel(job.data) P{i} = strvcat(job.data(i).scans{:}); ds(i).P=spm_vol(P{i}); if ~isempty(job.data(i).vdmfile) sfP{i} = job.data(i).vdmfile{1}; ds(i).sfP=spm_vol(sfP{i}); else sfP{i} = []; end ds(i).hold = [1 1 1 0 1 0]; end ntot = 0; for i=1:length(ds) ntot = ntot + length(ds(i).P); end % Set up x y z for resampling %----------------------------------------------------------------------- [x,y,z] = ndgrid(1:ds(1).P(1).dim(1),1:ds(1).P(1).dim(2),1:ds(1).P(1).dim(3)); xyz = [x(:) y(:) z(:) ones(prod(ds(1).P(1).dim(1:3)),1)]; clear x y z; % Create mask if required (usually default and required to create mean) %----------------------------------------------------------------------- if flags.mask || flags.mean, spm_progress_bar('Init',ntot,'Computing available voxels',... 'volumes completed'); if flags.mean Count = zeros(prod(ds(1).P(1).dim(1:3)),1); Integral = zeros(prod(ds(1).P(1).dim(1:3)),1); end % if flags.mask msk = zeros(prod(ds(1).P(1).dim(1:3)),1); % end % To create mean, read each session specific vdmfile in % to the space of the first image of first session tv = 1; for s=1:length(ds) T = ds(s).sfP.mat\ds(1).P(1).mat; txyz = xyz * T'; c = spm_bsplinc(ds(s).sfP,ds(1).hold); ds(s).sfield = spm_bsplins(c,txyz(:,1),txyz(:,2),txyz(:,3),ds(1).hold); ds(s).sfield = ds(s).sfield(:); clear c txyz; sess_msk = zeros(prod(ds(s).P(1).dim(1:3)),1); % Read in each images in space of first image of first session for i = 1:numel(ds(s).P) T = inv(ds(s).P(i).mat) * ds(1).P(1).mat; txyz = xyz * T'; txyz(:,applydim) = txyz(:,applydim) + ds(s).sfield; tmp = false(size(txyz,1),1); if ~flags.wrap(1), tmp = tmp | txyz(:,1) < (1-tiny) | txyz(:,1) > (ds(s).P(i).dim(1)+tiny); end if ~flags.wrap(2), tmp = tmp | txyz(:,2) < (1-tiny) | txyz(:,2) > (ds(s).P(i).dim(2)+tiny); end if ~flags.wrap(3), tmp = tmp | txyz(:,3) < (1-tiny) | txyz(:,3) > (ds(s).P(i).dim(3)+tiny); end sess_msk = sess_msk + real(tmp); spm_progress_bar('Set',tv); tv = tv+1; end msk = msk + sess_msk; if flags.mean, Count = Count + repmat(length(ds(s).P),prod(ds(s).P(1).dim(1:3)),1) - sess_msk; end % % Include static field in estmation of mask. % if isfield(ds(s),'sfP') && ~isempty(ds(s).sfP) T = inv(ds(1).sfP.mat) * ds(1).P(1).mat; txyz = xyz * T'; tmp = false(size(txyz,1),1); if ~flags.wrap(1), tmp = tmp | txyz(:,1) < (1-tiny) | txyz(:,1) > (ds(1).sfP.dim(1)+tiny); end if ~flags.wrap(2), tmp = tmp | txyz(:,2) < (1-tiny) | txyz(:,2) > (ds(1).sfP.dim(2)+tiny); end if ~flags.wrap(3), tmp = tmp | txyz(:,3) < (1-tiny) | txyz(:,3) > (ds(1).sfP.dim(3)+tiny); end msk = msk + real(tmp); end if isfield(ds(1),'sfield') && ~isempty(ds(1).sfield) ds(1).sfield = []; end end if flags.mask, msk = find(msk ~= 0); end end % Apply fieldmap to all files, looping through sessions %----------------------------------------------------------------------- spm_progress_bar('Init',ntot,'Reslicing','volumes completed'); tv = 1; for s = 1:numel(ds) % Get transformation between distortion field and first image T = ds(s).sfP.mat\ds(1).P(1).mat; txyz = xyz * T'; c = spm_bsplinc(ds(s).sfP,ds(1).hold); ds(s).sfield = spm_bsplins(c,txyz(:,1),txyz(:,2),txyz(:,3),ds(1).hold); ds(s).sfield = ds(s).sfield(:); % Read in each images in space of first image of first session for i = 1:numel(ds(s).P) T = inv(ds(s).P(i).mat) * ds(1).P(1).mat; txyz = xyz * T'; txyz(:,applydim) = txyz(:,applydim) + ds(s).sfield; c = spm_bsplinc(ds(s).P(i),hold); ima = spm_bsplins(c,txyz(:,1),txyz(:,2),txyz(:,3),hold); % % Write out resliced images % if flags.which PO = ds(s).P(i); [pth,nm,xt,vr] = spm_fileparts(deblank(PO.fname)); PO.fname = fullfile(pth,[flags.prefix nm xt vr]); PO.mat = ds(1).P(1).mat; PO.descrip = sprintf('spm - applied vdm'); ivol = ima; if flags.mask ivol(msk) = NaN; end ivol = reshape(ivol,PO.dim(1:3)); PO = spm_create_vol(PO); spm_write_vol(PO,ivol); if nargout > 0 out.sess(s).rfiles{i} = PO.fname; end end % % Build up mean image if so required. % if flags.mean Integral = Integral + nan2zero(ima); end spm_progress_bar('Set',tv); tv = tv+1; end if isfield(ds(s),'sfield') && ~isempty(ds(s).sfield) ds(s).sfield = []; end end % Write mean image %----------------------------------------------------------- if flags.mean % Write integral image (16 bit signed) %----------------------------------------------------------- sw = warning('off','MATLAB:divideByZero'); Integral = Integral./Count; warning(sw); PO = ds(1).P(1); [pth,nm,xt,vr] = spm_fileparts(deblank(ds(1).P(1).fname)); PO.fname = fullfile(pth,['mean' flags.prefix nm xt vr]); PO.pinfo = [max(max(max(Integral)))/32767 0 0]'; PO.descrip = 'spm - mean applied vdm image'; PO.dt = [spm_type('int16') spm_platform('bigend')]; ivol = reshape(Integral,PO.dim); spm_write_vol(PO,ivol); end if nargout > 0 out.rmean{1} = PO.fname; end spm_figure('Clear','Interactive'); %_______________________________________________________________________ function vo = nan2zero(vi) vo = vi; vo(~isfinite(vo)) = 0; return; %_______________________________________________________________________
github
philippboehmsturm/antx-master
pm_brain_mask.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/FieldMap/pm_brain_mask.m
4,163
utf_8
1c73d1378400faa40089ab34da5760d1
function bmask = pm_brain_mask(P,flags) % Calculate a brain mask % FORMAT bmask = pm_brain_mask(P,flags) % % P - is a single pointer to a single image % % flags - structure containing various options % template - which template for segmentation % fwhm - fwhm of smoothing kernel for generating mask % nerode - number of erosions % thresh - threshold for smoothed mask % ndilate - number of dilations % %__________________________________________________________________________ % % Inputs % A single *.img conforming to SPM data format (see 'Data Format'). % % Outputs % Brain mask in a matrix %__________________________________________________________________________ % % The brain mask is generated by segmenting the image into GM, WM and CSF, % adding these components together then thresholding above zero. % A morphological opening is performed to get rid of stuff left outside of % the brain. Any leftover holes are filled. %_______________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % Chloe Hutton % $Id: pm_brain_mask.m 2616 2009-01-19 16:49:42Z chloe $ if nargin < 2 | isempty(flags) flags.template=fullfile(spm('Dir'),'templates','T1.nii'); flags.fwhm=5; flags.nerode=2; flags.ndilate=4; flags.thresh=0.5; flags.reg = 0.02; flags.graphics=0; end disp('Segmenting and extracting brain...'); seg_flags.estimate.reg=flags.reg; seg_flags.graphics = flags.graphics; % Updated to use renamed version of spm_segment VO=pm_segment(P.fname,flags.template,seg_flags); bmask=double(VO(1).dat)+double(VO(2).dat)+double(VO(3).dat)>0; %bmask=open_it(bmask,flags.nerode,flags.ndilate); % Do opening to get rid of scalp bmask=open_it(bmask,flags.nerode,flags.ndilate); % Do opening to get rid of scalp % Calculate kernel in voxels: vxs = sqrt(sum(P.mat(1:3,1:3).^2)); fwhm = repmat(flags.fwhm,1,3)./vxs; bmask=fill_it(bmask,fwhm,flags.thresh); % Do fill to fill holes OP=P; brain_mask = [spm_str_manip(P.fname,'h') '/bmask',... spm_str_manip(P.fname,'t')]; OP.fname=brain_mask; OP.descrip=sprintf('Mask:erode=%d,dilate=%d,fwhm=%d,thresh=%1.1f',flags.nerode,flags.ndilate,flags.fwhm,flags.thresh); spm_write_vol(OP,bmask); %__________________________________________________________________________ function ovol=open_it(vol,ne,nd) % Do a morphological opening. This consists of an erosion, followed by % finding the largest connected component, followed by a dilation. % Do an erosion then a connected components then a dilation % to get rid of stuff outside brain. for i=1:ne nvol=spm_erode(double(vol)); vol=nvol; end nvol=connect_it(vol); vol=nvol; for i=1:nd nvol=spm_dilate(double(vol)); vol=nvol; end ovol=nvol; %__________________________________________________________________________ %__________________________________________________________________________ function ovol=fill_it(vol,k,thresh) % Do morpholigical fill. This consists of finding the largest connected % component and assuming that is outside of the head. All the other % components are set to 1 (in the mask). The result is then smoothed by k % and thresholded by thresh. ovol=vol; % Need to find connected components of negative volume vol=~vol; [vol,NUM]=spm_bwlabel(double(vol),26); % Now get biggest component and assume this is outside head.. pnc=0; maxnc=1; for i=1:NUM nc=size(find(vol==i),1); if nc>pnc maxnc=i; pnc=nc; end end % We know maxnc is largest cluster outside brain, so lets make all the % others = 1. for i=1:NUM if i~=maxnc nc=find(vol==i); ovol(nc)=1; end end spm_smooth(ovol,ovol,k); ovol=ovol>thresh; %_______________________________________________________________________ %_______________________________________________________________________ function ovol=connect_it(vol) % Find connected components and return the largest one. [vol,NUM]=spm_bwlabel(double(vol),26); % Get biggest component pnc=0; maxnc=1; for i=1:NUM nc=size(find(vol==i),1); if nc>pnc maxnc=i; pnc=nc; end end ovol=(vol==maxnc);
github
philippboehmsturm/antx-master
FieldMap.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/FieldMap/FieldMap.m
83,497
utf_8
26a90d75ac07852199822d233d5c731a
function varargout=FieldMap(varargin) % % FieldMap is an SPM8 Toolbox for creating field maps and unwarping EPI. % A full description of the toolbox and a usage manual can be found in % FieldMap.man. This can launched by the toolbox help button or using % spm_help FieldMap.man.The theoretical and practical principles behind % the toolbox are described in principles.man. % % FORMAT FieldMap % % FieldMap launches the gui-based toolbox. Help is available via the % help button (which calls spm_help FieldMap.man). FieldMap is a multi % function function so that the toolbox routines can also be accessed % without using the gui. A description of how to do this can be found % in FieldMap_ngui.m % % Input parameters and the mode in which the toolbox works can be % customised using the defaults file called pm_defaults.m. % % Main data structure: % % IP.P : 4x1 cell array containing real part short TE, % imaginary part short TE, real part long TE and % imaginary part long TE. % IP.pP : Cell containing pre-calculated phase map. N.B. % IP.P and IP.pP are mutually exclusive. % IP.epiP : Cell containing EPI image used to demonstrate % effects of unwarping. % IP.fmagP : Cell containing fieldmap magnitude image used for % coregistration % IP.wfmagP : Cell containing forward warped fieldmap magnitude % image used for coregistration % IP.uepiP : Cell containing unwarped EPI image. % IP.nwarp : Cell containing non-distorted image. % IP.vdmP : Cell containing the voxel displacement map (VDM) % IP.et : 2x1 Cell array with short and long echo-time (ms). % IP.epifm : Flag indicating EPI based field map (1) or not (0). % IP.blipdir : Direction of phase-encode blips for k-space traversal % (1 = positive or -1 = negative) % IP.ajm : Flag indicating if Jacobian modulation should be applied % (1) or not (0). % IP.tert : Total epi readout time (ms). % IP.maskbrain : Flag indicating whether to mask the brain for fieldmap creation % IP.uflags : Struct containing parameters guiding the unwrapping. % Further explanations of these parameters are in % FieldMap.man and pm_make_fieldmap.m % .iformat : 'RI' or 'PM' % .method : 'Huttonish', 'Mark3D' or 'Mark2D' % .fwhm : FWHM (mm) of Gaussian filter for field map smoothing % .pad : Size (in-plane voxels) of padding kernel. % .etd : Echo time difference (ms). % .bmask % % IP.mflags : Struct containing parameters for brain maskin % .template : Name of template for segmentation. % .fwhm : fwhm of smoothing kernel for generating mask. % .nerode : number of erosions % .ndilate : number of dilations % .thresh : threshold for smoothed mask. % .reg : bias field regularisation % .graphics : display or not % % IP.fm : Struct containing field map information % IP.fm.upm : Phase-unwrapped field map (Hz). % IP.fm.mask : Binary mask excluding the noise in the phase map. % IP.fm.opm : "Raw" field map (Hz) (not unwrapped). % IP.fm.fpm : Phase-unwrapped, regularised field map (Hz). % IP.fm.jac : Partial derivative of field map in y-direction. % % IP.vdm : Struct with voxel displacement map information % IP.vdm.vdm : Voxel displacement map (scaled version of IP.fm.fpm). % IP.vdm.jac : Jacobian-1 of forward transform. % IP.vdm.ivdm : Inverse transform of voxel displacement % (used to unwarp EPI image if field map is EPI based) % (used to warp flash image prior to coregistration when % field map is flash based (or other T2 weighting). % IP.vdm.ijac : Jacobian-1 of inverse transform. % IP.jim : Jacobian sampled in space of EPI. % % IP.cflags : Struct containing flags for coregistration % (these are the default SPM coregistration flags - % defaults.coreg). % .cost_fun % .sep % .tol % .fwhm % %_______________________________________________________________________ % Refs and Background reading: % % Jezzard P & Balaban RS. 1995. Correction for geometric distortion in % echo planar images from Bo field variations. MRM 34:65-73. % % Hutton C et al. 2002. Image Distortion Correction in fMRI: A Quantitative % Evaluation, NeuroImage 16:217-240. % % Cusack R & Papadakis N. 2002. New robust 3-D phase unwrapping % algorithms: Application to magnetic field mapping and % undistorting echoplanar images. NeuroImage 16:754-764. % % Jenkinson M. 2003. Fast, automated, N-dimensional phase- % unwrapping algorithm. MRM 49:193-197. % %_______________________________________________________________________ % Acknowledegments % % Wellcome Trust and IBIM Consortium %_______________________________________________________________________ % UPDATE 02/07 % Updated version of FieldMap for SPM5. % % UPDATE 27/01/05 %_______________________________________________________________________ % Copyright (C) 2006 Wellcome Department of Imaging Neuroscience % Jesper Andersson and Chloe Hutton % $Id: FieldMap.m 4571 2011-11-23 17:34:12Z chloe $ %_______________________________________________________________________ persistent PF FS WS PM % GUI related constants persistent ID % Image display persistent IP % Input and results persistent DGW % Delete Graphics Window (if we created it) global st % Global for spm_orthviews if nargin == 0 Action = 'welcome'; else Action = varargin{1}; end % % We have tried to divide the Actions into 3 categories: % 1) Functions that can be called directly from the GUI are at the % beginning. % 2) Next come other GUI-related 'utility' functions - ie those that % care of the GUI behind the scenes. % 3) Finally, call-back functions that are not GUI dependent and can % be called from a script are situated towards the end. % See FieldMap_ngui.m for details on how to use these. % switch lower(Action) %======================================================================= % % Create and initialise GUI for FieldMap toolbox % %======================================================================= case 'welcome' % Unless specified, set visibility to on if nargin==2 if ~strcmp(varargin{2},'off') & ~strcmp(varargin{2},'Off') visibility = 'On'; else visibility = 'Off'; end else visibility = 'On'; end DGW = 0; % Get all default values (these may effect GUI) IP = FieldMap('Initialise'); % % Since we are using persistent variables we better make sure % there is no-one else out there. % if ~isempty(PM) figure(PM); set(PM,'Visible',visibility); return end S0 = spm('WinSize','0',1); WS = spm('WinScale'); FS = spm('FontSizes'); PF = spm_platform('fonts'); rect = [100 100 510 520].*WS; PM = figure('IntegerHandle','off',... 'Name',sprintf('%s%s','FieldMap Toolbox, ver.2.1',... spm('GetUser',' (%s)')),... 'NumberTitle','off',... 'Tag','FieldMap',... 'Position',[S0(1),S0(2),0,0] + rect,... 'Resize','off',... 'Pointer','Arrow',... 'Color',[1 1 1]*.8,... 'MenuBar','none',... 'DefaultTextFontName',PF.helvetica,... 'DefaultTextFontSize',FS(10),... 'DefaultUicontrolFontName',PF.helvetica,... 'DefaultUicontrolFontSize',FS(10),... 'HandleVisibility','on',... 'Visible',visibility,... 'DeleteFcn','FieldMap(''Quit'');'); %-Create phase map controls %-Frames and text uicontrol(PM,'Style','Frame','BackgroundColor',spm('Colour'),... 'Position',[10 270 490 240].*WS); uicontrol(PM,'Style','Text','String','Create field map in Hz',... 'Position',[100 480 300 020].*WS,... 'ForegroundColor','k','BackgroundColor',spm('Colour'),... 'FontName',PF.times,'FontAngle','Italic') uicontrol(PM,'Style','Text','String','Short TE',... 'Position',[25 452 60 20].*WS,... 'ForegroundColor','k','BackgroundColor',spm('Colour'),... 'FontName',PF.times) uicontrol(PM,'Style','Text','String','ms',... 'Position',[78 430 30 20].*WS,... 'ForegroundColor','k','BackgroundColor',spm('Colour'),... 'FontName',PF.times) uicontrol(PM,'Style','Text','String','Long TE',... 'Position',[25 392 60 20].*WS,... 'ForegroundColor','k','BackgroundColor',spm('Colour'),... 'FontName',PF.times) uicontrol(PM,'Style','Text','String','ms',... 'Position',[78 370 30 20].*WS,... 'ForegroundColor','k','BackgroundColor',spm('Colour'),... 'FontName',PF.times) uicontrol(PM,'Style','Text','String',{'Mask brain:'},... 'Position',[30 310 80 35].*WS,... 'ForegroundColor','k','BackgroundColor',spm('Colour'),... 'FontName',PF.times) uicontrol(PM,'Style','Text','String',{'Precalculated','field map:'},... 'Position',[30 275 80 35].*WS,... 'ForegroundColor','k','BackgroundColor',spm('Colour'),... 'FontName',PF.times) uicontrol(PM,'Style','Text','String',{'Field map value:'},... 'Position',[240 280 100 20].*WS,... 'ForegroundColor','k','BackgroundColor',spm('Colour'),... 'FontName',PF.times) uicontrol(PM,'Style','Text','String',{'Hz'},... 'Position',[403 280 20 20].*WS,... 'ForegroundColor','k','BackgroundColor',spm('Colour'),... 'FontName',PF.times) %-Objects with Callbacks uicontrol(PM,'Style','radiobutton',... 'String','RI',... 'Position',[30 480 44 022].*WS,... 'ToolTipString','Select Real/Imaginary input images',... 'CallBack','FieldMap(''InputFormat'');',... 'UserData',1,... 'Tag','IFormat'); uicontrol(PM,'Style','radiobutton',... 'String','PM',... 'Position',[76 480 44 022].*WS,... 'ToolTipString','Select phase/magnitude input images',... 'CallBack','FieldMap(''InputFormat'');',... 'UserData',2,... 'Tag','IFormat'); uicontrol(PM,'Style','Edit',... 'Position',[30 430 50 024].*WS,... 'ToolTipString','Give shortest echo-time in ms',... 'CallBack','FieldMap(''EchoTime'');',... 'UserData',1,... 'Tag','ShortTime'); uicontrol(PM,'Style','Edit',... 'Position',[30 370 50 024].*WS,... 'ToolTipString','Give longest echo-time in ms',... 'CallBack','FieldMap(''EchoTime'');',... 'UserData',2,... 'Tag','LongTime'); % Here we set up appropriate gui FieldMap('IFormat_Gui'); uicontrol(PM,'String','Calculate',... 'Position',[265 337 90 022].*WS,... 'Enable','Off',... 'ToolTipString','Go ahead and create unwrapped field map (in Hz)',... 'CallBack','FieldMap(''CreateFieldmap_Gui'');',... 'Tag','CreateFieldMap'); uicontrol(PM,'String','Write',... 'Position',[370 337 90 022].*WS,... 'Enable','Off',... 'ToolTipString','Write Analyze image containing fininshed field map (in Hz)',... 'CallBack','FieldMap(''WriteFieldMap_Gui'');',... 'Tag','WriteFieldMap'); uicontrol(PM,'String','Load',... 'Position',[125 280 90 022].*WS,... 'ToolTipString','Load Analyze image containing finished field map (in Hz)',... 'CallBack','FieldMap(''LoadFieldMap_Gui'');',... 'Tag','LoadFieldMap'); % Empty string written to Fieldmap value box uicontrol(PM,'Style','Text',... 'Position',[340 280 50 020].*WS,... 'HorizontalAlignment','left',... 'String',''); %-Create voxel-displacement-map controls %-Frames and text uicontrol(PM,'Style','Frame','BackgroundColor',spm('Colour'),... 'Position',[10 10 490 250].*WS); uicontrol(PM,'Style','Text',... 'String','Create voxel displacement map (VDM) and unwarp EPI',... 'Position',[70 235 350 020].*WS,... 'ForegroundColor','k','BackgroundColor',spm('Colour'),... 'FontName',PF.times,'FontAngle','Italic') uicontrol(PM,'Style','Text',... 'String','EPI-based field map',... 'Position',[50 200 200 020].*WS,... 'ForegroundColor','k','BackgroundColor',spm('Colour'),... 'FontName',PF.times) uicontrol(PM,'Style','Text',... 'String','Polarity of phase-encode blips',... 'Position',[50 170 200 020].*WS,... 'ForegroundColor','k','BackgroundColor',spm('Colour'),... 'FontName',PF.times) uicontrol(PM,'Style','Text',... 'String','Apply Jacobian modulation',... 'Position',[50 140 200 020].*WS,... 'ForegroundColor','k','BackgroundColor',spm('Colour'),... 'FontName',PF.times) uicontrol(PM,'Style','Text',... 'String','Total EPI readout time',... 'Position',[50 110 200 020].*WS,... 'ForegroundColor','k','BackgroundColor',spm('Colour'),... 'FontName',PF.times) uicontrol(PM,'Style','Text',... 'String','ms',... 'Position',[370 110 30 020].*WS,... 'ForegroundColor','k','BackgroundColor',spm('Colour'),... 'FontName',PF.times) %-Objects with Callbacks uicontrol(PM,'style','RadioButton',... 'String','Yes',... 'Position',[300 200 60 022].*WS,... 'ToolTipString','Field map is based on EPI data and needs inverting before use',... 'CallBack','FieldMap(''RadioButton'');',... 'Tag','EPI',... 'UserData',1); uicontrol(PM,'style','RadioButton',... 'String','No',... 'Position',[370 200 60 022].*WS,... 'ToolTipString','Phase-map is based on non-EPI (Flash) data and can be used directly',... 'CallBack','FieldMap(''RadioButton'');',... 'Tag','EPI',... 'UserData',2); uicontrol(PM,'style','RadioButton',... 'String','+ve',... 'Position',[370 170 60 022].*WS,... 'ToolTipString','K-space is traversed using positive phase-encode blips',... 'CallBack','FieldMap(''RadioButton'');',... 'Tag','BlipDir',... 'UserData',1); uicontrol(PM,'style','RadioButton',... 'String','-ve',... 'Position',[300 170 60 022].*WS,... 'ToolTipString','K-space is traversed using negative phase-encode blips',... 'CallBack','FieldMap(''RadioButton'');',... 'Tag','BlipDir',... 'UserData',2); uicontrol(PM,'style','RadioButton',... 'String','Yes',... 'Position',[300 140 60 022].*WS,... 'ToolTipString','Do Jacobian intensity modulation to compensate for compression/stretching',... 'CallBack','FieldMap(''RadioButton'');',... 'Tag','Jacobian',... 'UserData',1); uicontrol(PM,'style','RadioButton',... 'String','No',... 'Position',[370 140 60 022].*WS,... 'ToolTipString','Don''t do Jacobian intensity modulation to compensate for compression/stretching',... 'CallBack','FieldMap(''RadioButton'');',... 'Tag','Jacobian',... 'UserData',2); uicontrol(PM,'Style','Edit',... 'Position',[300 110 70 024].*WS,... 'ToolTipString','Give total time for readout of EPI echo train ms',... 'CallBack','FieldMap(''ReadOutTime'');',... 'Tag','ReadTime'); uicontrol(PM,'String','Load EPI image',... 'Position',[30 70 120 022].*WS,... 'ToolTipString','Load sample modulus EPI Analyze image',... 'CallBack','FieldMap(''LoadEpi_Gui'');',... 'Tag','LoadEpi'); uicontrol(PM,'String','Match VDM to EPI',... 'Position',[165 70 120 022].*WS,... 'ToolTipString','Match vdm to EPI (but only if you want to...)',... 'CallBack','FieldMap(''MatchVDM_gui'');',... 'Tag','MatchVDM'); uicontrol(PM,'String','Write unwarped',... 'Position',[300 70 120 022].*WS,... 'ToolTipString','Write unwarped EPI Analyze image',... 'CallBack','FieldMap(''WriteUnwarped_Gui'');',... 'Tag','WriteUnwarped'); uicontrol(PM,'String','Load structural',... 'Position',[30 30 120 022].*WS,... 'ToolTipString','Load structural image (but only if you want to...)',... 'CallBack','FieldMap(''LoadStructural_Gui'');',... 'Tag','LoadStructural'); uicontrol(PM,'String','Match structural',... 'Position',[164 30 120 022].*WS,... 'ToolTipString','Match structural image to EPI (but only if you want to...)',... 'CallBack','FieldMap(''MatchStructural_Gui'');',... 'Tag','MatchStructural'); uicontrol(PM,'String','Help',... 'Position',[320 30 80 022].*WS,... 'ToolTipString','Help',... 'CallBack','FieldMap(''Help_Gui'');',... 'ForegroundColor','g',... 'Tag','Help'); uicontrol(PM,'String','Quit',... 'Position',[420 30 60 022].*WS,... 'Enable','On',... 'ToolTipString','Exit toolbox',... 'CallBack','FieldMap(''Quit'');',... 'ForegroundColor','r',... 'Tag','Quit'); uicontrol(PM,'style','RadioButton',... 'String','Yes',... 'Position',[123 330 48 022].*WS,... 'ToolTipString','Mask brain using magnitude image before processing',... 'CallBack','FieldMap(''MaskBrain'');',... 'Tag','MaskBrain',... 'UserData',1); uicontrol(PM,'style','RadioButton',... 'String','No',... 'Position',[173 330 46 022].*WS,... 'ToolTipString','Do not mask brain using magnitude image before processing',... 'CallBack','FieldMap(''MaskBrain'');',... 'Tag','MaskBrain',... 'UserData',2); % Find list of default files and set up menu accordingly def_files = FieldMap('GetDefaultFiles'); menu_items = FieldMap('DefFiles2MenuItems',def_files); if length(menu_items)==1 uicontrol(PM,'String',menu_items{1},... 'Enable','Off',... 'ToolTipString','Site specific default files',... 'Position',[400 480 60 22].*WS); else uicontrol(PM,'Style','PopUp',... 'String',menu_items,... 'Enable','On',... 'ToolTipString','Site specific default files',... 'Position',[390 480 90 22].*WS,... 'callback','FieldMap(''DefaultFile_Gui'');',... 'UserData',def_files); end %-Apply defaults to buttons FieldMap('SynchroniseButtons'); % % Disable necessary buttons and parameters until phase-map is finished. % FieldMap('Reset_Gui'); %======================================================================= % % Make sure buttons reflect current parameter values % %======================================================================= case 'synchronisebuttons' % Set input format if ~isempty(IP.uflags.iformat) if strcmp(IP.uflags.iformat,'RI'); h = findobj(get(PM,'Children'),'Tag','IFormat','UserData',1); FieldMap('RadioOn',h); IP.uflags.iformat = 'RI'; else h = findobj(get(PM,'Children'),'Tag','IFormat','UserData',2); FieldMap('RadioOn',h); IP.uflags.iformat = 'PM'; end else % Default to RI h = findobj(get(PM,'Children'),'Tag','IFormat','UserData',1); FieldMap('RadioOn',h); IP.uflags.iformat = 'RI'; end % Set brain masking defaults if ~isempty(IP.maskbrain) if IP.maskbrain == 1 h = findobj(get(PM,'Children'),'Tag','MaskBrain','UserData',1); FieldMap('RadioOn',h); IP.maskbrain = 1; else h = findobj(get(PM,'Children'),'Tag','MaskBrain','UserData',2); FieldMap('RadioOn',h); IP.maskbrain = 0; end else % Default to no h = findobj(get(PM,'Children'),'Tag','MaskBrain','UserData',2); FieldMap('RadioOn',h); IP.maskbrain = 0; end % Set echo Times if ~isempty(IP.et{1}) h = findobj(get(PM,'Children'),'Tag','ShortTime'); set(h,'String',sprintf('%2.2f',IP.et{1})); end if ~isempty(IP.et{2}) h = findobj(get(PM,'Children'),'Tag','LongTime'); set(h,'String',sprintf('%2.2f',IP.et{2})); end % Set EPI field map if ~isempty(IP.epifm) if IP.epifm h = findobj(get(PM,'Children'),'Tag','EPI','UserData',1); FieldMap('RadioOn',h); IP.epifm = 1; else h = findobj(get(PM,'Children'),'Tag','EPI','UserData',2); FieldMap('RadioOn',h); IP.epifm = 0; end else % Default to yes h = findobj(get(PM,'Children'),'Tag','EPI','UserData',1); FieldMap('RadioOn',h); IP.epifm = 1; end % Set apply jacobian if ~isempty(IP.ajm) if IP.ajm h = findobj(get(PM,'Children'),'Tag','Jacobian','UserData',1); FieldMap('RadioOn',h); IP.ajm = 1; else h = findobj(get(PM,'Children'),'Tag','Jacobian','UserData',2); FieldMap('RadioOn',h); IP.ajm = 0; end else % Default to no h = findobj(get(PM,'Children'),'Tag','Jacobian','UserData',2); FieldMap('RadioOn',h); IP.ajm = 0; end % Set blip direction if ~isempty(IP.blipdir) if IP.blipdir == 1 h = findobj(get(PM,'Children'),'Tag','BlipDir','UserData',1); FieldMap('RadioOn',h); IP.blipdir = 1; elseif IP.blipdir == -1 h = findobj(get(PM,'Children'),'Tag','BlipDir','UserData',2); FieldMap('RadioOn',h); IP.blipdir = -1; else error('Invalid phase-encode direction'); end else % Default to -1 = negative h = findobj(get(PM,'Children'),'Tag','BlipDir','UserData',1); FieldMap('RadioOn',h); IP.blipdir = -1; end % Set total readout time if ~isempty(IP.tert) h = findobj(get(PM,'Children'),'Tag','ReadTime'); set(h,'String',sprintf('%2.2f',IP.tert)); end %======================================================================= % % Input format was changed % %======================================================================= case 'inputformat' % % Enforce radio behaviour. % index = get(gcbo,'UserData'); if index==1 partner = 2; IP.uflags.iformat = 'RI'; else partner = 1; IP.uflags.iformat = 'PM'; end h = findobj(get(PM,'Children'),'Tag','IFormat','UserData',partner); maxv = get(gcbo,'Max'); value = get(gcbo,'Value'); if value == maxv set(h,'Value',get(h,'Min')); else set(h,'Value',get(h,'Max')); end FieldMap('IFormat_Gui'); %======================================================================= % % A new default file has been chosen from the popup menu - gui version. % %======================================================================= case 'defaultfile_gui' m_file = get(gcbo,'UserData'); m_file = m_file(get(gcbo,'Value')); m_file = m_file{1}(1:end-2); IP = FieldMap('SetParams',m_file); FieldMap('IFormat_Gui'); FieldMap('SynchroniseButtons'); %======================================================================= % % Load real or imaginary part of dual echo-time data - gui version. % %======================================================================= case 'loadfile_gui' FieldMap('Reset_Gui'); % % File selection using gui % index = get(gcbo,'UserData'); FieldMap('LoadFile',index); ypos = [445 420 385 360]; uicontrol(PM,'Style','Text','String',spm_str_manip(IP.P{index}.fname,['l',num2str(50)]),... 'Position',[220 ypos(index) 260 20].*WS,... 'ForegroundColor','k','BackgroundColor',spm('Colour'),... 'FontName',PF.times,... 'FontSize',FS(8)); FieldMap('Assert'); %======================================================================= % % Load phase and magnitude images - gui version. % %======================================================================= case 'loadfilepm_gui' FieldMap('Reset_Gui'); % % File selection using gui % index = get(gcbo,'UserData'); FieldMap('LoadFilePM',index); ypos = [445 420 385 360]; uicontrol(PM,'Style','Text','String',spm_str_manip(IP.P{index}.fname,['l',num2str(50)]),... 'Position',[220 ypos(index) 260 20].*WS,... 'ForegroundColor','k','BackgroundColor',spm('Colour'),... 'FontName',PF.times,... 'FontSize',FS(8)); FieldMap('Assert'); %======================================================================= % % Create unwrapped phase-map - gui version % %======================================================================= case 'createfieldmap_gui' % % Create fieldmap from complex images... % status=FieldMap('CreateFieldMap',IP); if ~isempty(status) FieldMap('DisplayImage',FieldMap('MakedP'),[.05 .75 .95 .2],1); % Toggle relevant buttons FieldMap('ToggleGUI','Off','CreateFieldMap'); FieldMap('ToggleGUI','On',char('LoadFieldMap','WriteFieldMap')); % % Check that have correct parameters ready before allowing % an image to be loaded for unwarping and hence conversion of % fieldmap to voxel shift map. % if (FieldMap('GatherVDMData')) FieldMap('FM2VDM',IP); FieldMap('ToggleGUI','On',char('LoadEpi','EPI',... 'BlipDir','Jacobian','ReadTime')); end end %======================================================================= % % Load already prepared fieldmap (in Hz). % %======================================================================= case 'loadfieldmap_gui' % % Reset all previously loaded field maps and images to unwarp % FieldMap('Reset_gui'); % % Select a precalculated phase map % FieldMap('LoadFieldMap'); uicontrol(PM,'Style','Text','String',spm_str_manip(IP.pP.fname,['l',num2str(50)]),... 'Position',[220 307 260 20].*WS,... 'ForegroundColor','k','BackgroundColor',spm('Colour'),... 'FontName',PF.times,... 'FontSize',FS(8)); FieldMap('DisplayImage',FieldMap('MakedP'),[.05 .75 .95 .2],1); FieldMap('ToggleGUI','Off',char('CreateFieldMap','WriteFieldMap',... 'MatchVDM','WriteUnwarped',... 'LoadStructural', 'MatchStructural')); % Check that have correct parameters ready before allowing % an image to be loaded for unwarping and hence conversion of % fieldmap to voxel shift map. % if (FieldMap('GatherVDMData')) FieldMap('FM2VDM',IP); FieldMap('ToggleGUI','On',char('LoadEpi','EPI',... 'BlipDir','Jacobian','ReadTime')); end %======================================================================= % % Write out field map in Hz - using GUI % %======================================================================= case 'writefieldmap_gui' FieldMap('Write',IP.P{1},IP.fm.fpm,'fpm_',64,'Fitted phase map in Hz'); %======================================================================= % % Load sample EPI image using gui, unwarp and display result % %======================================================================= case 'loadepi_gui' % % Select and display EPI image % FieldMap('LoadEPI'); FieldMap('DisplayImage',IP.epiP,[.05 .5 .95 .2],2); % The fm2vdm parameters may have been changed so must calculate % the voxel shift map with current parameters. if (FieldMap('GatherVDMData')) FieldMap('FM2VDM',IP); FieldMap('UnwarpEPI',IP); FieldMap('DisplayImage',IP.uepiP,[.05 .25 .95 .2],3); % Once EPI has been unwarped can enable unwarp checks and structural stuff FieldMap('ToggleGUI','On',char('MatchVDM','WriteUnwarped','LoadStructural')); end % % Redisplay phasemap in case .mat file associated with % EPI image different from images that filadmap was % estimated from. % FieldMap('DisplayImage',FieldMap('MakedP'),[.05 .75 .95 .2],1); %======================================================================= % % Coregister fieldmap magnitude image to EPI to unwarp using GUI % %======================================================================= case 'matchvdm_gui' if (FieldMap('GatherVDMData')) FieldMap('MatchVDM',IP); FieldMap('DisplayImage',FieldMap('MakedP'),[.05 .75 .95 .2],1) FieldMap('UnwarpEPI',IP); FieldMap('DisplayImage',IP.epiP,[.05 .5 .95 .2],2); FieldMap('DisplayImage',IP.uepiP,[.05 .25 .95 .2],3); % Once EPI has been unwarped can enable unwarp checks FieldMap('ToggleGUI','On',char('MatchVDM','WriteUnwarped','LoadStructural')); end %======================================================================= % % Load structural image % %======================================================================= case 'loadstructural_gui' FieldMap('LoadStructural'); FieldMap('DisplayImage',IP.nwarp,[.05 0.0 .95 .2],4); % % Redisplay the other images to allow for recalculation % of size of display. % FieldMap('DisplayImage',FieldMap('MakedP'),[.05 .75 .95 .2],1); FieldMap('DisplayImage',IP.epiP,[.05 .5 .95 .2],2); FieldMap('DisplayImage',IP.uepiP,[.05 .25 .95 .2],3); FieldMap('ToggleGUI','On','MatchStructural'); %======================================================================= % % Match structural image to unwarped EPI % %======================================================================= case 'matchstructural_gui' FieldMap('MatchStructural',IP); FieldMap('DisplayImage',IP.nwarp,[.05 0.0 .95 .2],4); %======================================================================= % % Write out unwarped EPI % %======================================================================= case 'writeunwarped_gui' unwarp_info=sprintf('Unwarped EPI:echo time difference=%2.2fms, EPI readout time=%2.2fms, Jacobian=%d',IP.uflags.etd, IP.tert,IP.ajm); IP.uepiP = FieldMap('Write',IP.epiP,IP.uepiP.dat,'u',IP.epiP.dt(1),unwarp_info); FieldMap('ToggleGUI','On', 'LoadStructural'); FieldMap('ToggleGUI','Off', 'WriteUnwarped'); %======================================================================= % % Help using spm_help % %======================================================================= case 'help_gui' FieldMap('help'); %======================================================================= % % Quit Toolbox % %======================================================================= case 'quit' Fgraph=spm_figure('FindWin','Graphics'); if ~isempty(Fgraph) if DGW delete(Fgraph); Fgraph=[]; DGW = 0; else spm_figure('Clear','Graphics'); end end PM=spm_figure('FindWin','FieldMap'); if ~isempty(PM) delete(PM); PM=[]; end %======================================================================= % % The following functions are GUI related functions that go on behind % the scenes. %======================================================================= % %======================================================================= % % Reset gui inputs when a new field map is to be calculated % %======================================================================= case 'reset_gui' % Clear any precalculated fieldmap name string uicontrol(PM,'Style','Text','String','',... 'Position',[230 307 260 20].*WS,... 'ForegroundColor','k','BackgroundColor',spm('Colour')); % Clear Fieldmap values uicontrol(PM,'Style','Text',... 'Position',[350 280 50 020].*WS,... 'HorizontalAlignment','left',... 'String',''); % Disable input routes to make sure % a new fieldmap is calculated. % FieldMap('ToggleGUI','Off',char('CreateFieldMap','WriteFieldMap',... 'LoadEpi','WriteUnwarped','MatchVDM',... 'LoadStructural','MatchStructural',... 'EPI','BlipDir',... 'Jacobian','ReadTime')); % % A new input image implies all processed data is void. % IP.fm = []; IP.vdm = []; IP.jim = []; IP.pP = []; IP.epiP = []; IP.uepiP = []; IP.vdmP = []; IP.fmagP = []; IP.wfmagP = []; ID = cell(4,1); spm_orthviews('Reset'); spm_figure('Clear','Graphics'); %======================================================================= % % Use gui for Real and Imaginary or Phase and Magnitude. % %======================================================================= case 'iformat_gui' FieldMap('Reset_Gui'); % Load Real and Imaginary or Phase and Magnitude Buttons if IP.uflags.iformat=='PM' h=findobj('Tag','LoadRI'); set(h,'Visible','Off'); uicontrol(PM,'String','Load Phase',... 'Position',[125 450 90 022].*WS,... 'ToolTipString','Load Analyze image containing first phase image',... 'CallBack','FieldMap(''LoadFilePM_Gui'');',... 'UserData',1,... 'Tag','LoadPM'); uicontrol(PM,'String','Load Mag.',... 'Position',[125 425 90 022].*WS,... 'ToolTipString','Load Analyze image containing first magnitude image',... 'CallBack','FieldMap(''LoadFilePM_Gui'');',... 'UserData',2,... 'Tag','LoadPM'); uicontrol(PM,'String','Load Phase',... 'Position',[125 390 90 022].*WS,... 'ToolTipString','Load Analyze image containing second phase image',... 'CallBack','FieldMap(''LoadFilePM_Gui'');',... 'UserData',3,... 'Tag','LoadPM'); uicontrol(PM,'String','Load Mag.',... 'Position',[125 365 90 022].*WS,... 'ToolTipString','Load Analyze image containing second magnitudeimage',... 'CallBack','FieldMap(''LoadFilePM_Gui'');',... 'UserData',4,... 'Tag','LoadPM'); else % make the objects we don't want invisible h=findobj('Tag','LoadPM'); set(h,'Visible','Off'); uicontrol(PM,'String','Load Real',... 'Position',[125 450 90 022].*WS,... 'ToolTipString','Load Analyze image containing real part of short echo-time image',... 'CallBack','FieldMap(''LoadFile_Gui'');',... 'UserData',1,... 'Tag','LoadRI'); uicontrol(PM,'String','Load Imag',... 'Position',[125 425 90 022].*WS,... 'ToolTipString','Load Analyze image containing imaginary part of short echo-time image',... 'CallBack','FieldMap(''LoadFile_Gui'');',... 'UserData',2,... 'Tag','LoadRI'); uicontrol(PM,'String','Load Real',... 'Position',[125 390 90 022].*WS,... 'ToolTipString','Load Analyze image containing real part of long echo-time image',... 'CallBack','FieldMap(''LoadFile_Gui'');',... 'UserData',3,... 'Tag','LoadRI'); uicontrol(PM,'String','Load Imag',... 'Position',[125 365 90 022].*WS,... 'ToolTipString','Load Analyze image containing imaginary part of long echo-time image',... 'CallBack','FieldMap(''LoadFile_Gui'');',... 'UserData',4,... 'Tag','LoadRI'); end %======================================================================= % % Brain masking or not % %======================================================================= case 'maskbrain' FieldMap('Reset_Gui'); % % Enforce radio behaviour. % index = get(gcbo,'UserData'); if index==1 partner=2; IP.maskbrain=1; else partner=1; IP.maskbrain=0; end tag = get(gcbo,'Tag'); value = get(gcbo,'Value'); maxv = get(gcbo,'Max'); h = findobj(get(PM,'Children'),'Tag',tag,'UserData',partner); if value == maxv set(h,'Value',get(h,'Min')); else set(h,'Value',get(h,'Max')); end FieldMap('Assert'); %======================================================================= % % Echo time was changed or entered % %======================================================================= case 'echotime' FieldMap('Assert'); %======================================================================= % % Check if inputs are correct for calculating new phase map % %======================================================================= case 'assert' if ~isempty(IP.pP) % If we're using precalculated fieldmap. go = 0; else go = 1; for i=1:2 if isempty(IP.P{i}) go = 0; end end for i=3:4 if (isempty(IP.P{i}) & IP.uflags.iformat=='RI') go = 0; end end h = findobj(get(PM,'Children'),'Tag','ShortTime'); IP.et{1} = str2num(get(h,'String')); h = findobj(get(PM,'Children'),'Tag','LongTime'); IP.et{2} = str2num(get(h,'String')); if isempty(IP.et{1}) | isempty(IP.et{2}) | IP.et{2} < IP.et{1} go = 0; end end if go FieldMap('ToggleGui','On','CreateFieldMap'); else % Switch off fieldmap creation FieldMap('ToggleGui','Off','CreateFieldMap'); end %======================================================================= % % Enable or disable specified buttons or parameters in GUI % %======================================================================= case 'togglegui' h = get(PM,'Children'); tags=varargin{3}; for n=1:size(varargin{3},1) set(findobj(h,'Tag',deblank(tags(n,:))),'Enable',varargin{2}); end %======================================================================= % % A radiobutton was pressed. % %======================================================================= case 'radiobutton' % % Enforce radio behaviour. % index = get(gcbo,'UserData'); if index==1 partner=2; else partner=1; end tag = get(gcbo,'Tag'); value = get(gcbo,'Value'); maxv = get(gcbo,'Max'); h = findobj(get(PM,'Children'),'Tag',tag,'UserData',partner); if value == maxv set(h,'Value',get(h,'Min')); else set(h,'Value',get(h,'Max')); end % Update Hz to voxel displacement map if the input parameters are ok if (FieldMap('GatherVDMData')) FieldMap('FM2VDM',IP); % % Update unwarped EPI if one is loaded % if ~isempty(IP.epiP) IP.uepiP = FieldMap('UnwarpEPI',IP); FieldMap('DisplayImage',IP.uepiP,[.05 .25 .95 .2],3); FieldMap('ToggleGUI','On',char('WriteUnwarped')); end end %======================================================================= % % Enforce radio-button behaviour % %======================================================================= case 'radioon' my_gcbo = varargin{2}; index = get(my_gcbo,'UserData'); if index==1 partner=2; else partner=1; end set(my_gcbo,'Value',get(my_gcbo,'Max')); h = findobj(get(PM,'Children'),'Tag',get(my_gcbo,'Tag'),'UserData',partner); set(h,'Value',get(h,'Min')); %======================================================================= % % Total readout-time was changed or entered % %======================================================================= case 'readouttime' % % Update unwarped EPI % % This means the transformation phase-map to voxel displacement-map % has changed, which means the inversion will have to be redone, % which means (in the case of flash-based field map) coregistration % between field-map and sample EPI image should be redone. Phew! % if (FieldMap('GatherVDMData')) FieldMap('FM2VDM',IP); % Update unwarped EPI if one is loaded if ~isempty(IP.epiP) IP.uepiP = FieldMap('UnwarpEPI',IP); FieldMap('DisplayImage',IP.uepiP,[.05 .25 .95 .2],3); FieldMap('ToggleGUI','On',char('WriteUnwarped',... 'LoadStructural')); end FieldMap('ToggleGUI','On',char('LoadEpi','EPI','BlipDir',... 'Jacobian','ReadTime')); else % If readtime is missing switch everything off... FieldMap('ToggleGUI','Off',char('LoadEpi','EPI',... 'BlipDir','Jacobian',... 'WriteUnwarped','LoadStructural',... 'MatchStructural', 'MatchVDM')); end %======================================================================= % % Sample UIControls pertaining to information needed for transformation % phase-map -> voxel displacement-map % %======================================================================= case 'gathervdmdata' h = findobj(get(PM,'Children'),'Tag','EPI','UserData',1); v = get(h,{'Value','Max'}); if v{1} == 1 IP.epifm = 1; else IP.epifm = 0; end h = findobj(get(PM,'Children'),'Tag','BlipDir','UserData',1); v = get(h,{'Value','Max'}); if v{1} == 1 %% CHLOE: Changed IP.blipdir = 1; else IP.blipdir = -1; end h = findobj(get(PM,'Children'),'Tag','Jacobian','UserData',1); v = get(h,{'Value','Max'}); if v{1} == 1 %% CHLOE: Changed IP.ajm = 1; else IP.ajm = 0; end h = findobj(get(PM,'Children'),'Tag','ReadTime'); IP.tert = str2num(get(h,'String')); if isempty(IP.tert) | isempty(IP.fm) | isempty(IP.fm.fpm) varargout{1} = 0; FieldMap('ToggleGui','On','ReadTime'); else varargout{1} = 1; end %======================================================================= % % Draw transversal and sagittal image. % %======================================================================= case 'redrawimages' global curpos; for i=1:length(ID) if ~isempty(ID{i}) & ~isempty(st.vols{i}) set(st.vols{i}.ax{2}.ax,'Visible','Off'); % Disable event delivery in Coronal set(st.vols{i}.ax{2}.d,'Visible','Off'); % Make Coronal invisible set(st.vols{i}.ax{1}.ax,'Position',ID{i}.tra_pos); set(st.vols{i}.ax{1}.ax,'ButtonDownFcn',['FieldMap(''Orthviews'');']); set(get(st.vols{i}.ax{1}.ax,'YLabel'),'String',ID{i}.label); set(st.vols{i}.ax{3}.ax,'Position',ID{i}.sag_pos); set(st.vols{i}.ax{3}.ax,'ButtonDownFcn',['FieldMap(''Orthviews'');']); end end %======================================================================= % % Callback for orthviews % %======================================================================= case 'orthviews' if strcmp(get(gcf,'SelectionType'),'normal') spm_orthviews('Reposition');,... %spm_orthviews('set_pos2cm');,... elseif strcmp(get(gcf,'SelectionType'),'extend') spm_orthviews('Reposition');,... %spm_orthviews('set_pos2cm');,... spm_orthviews('context_menu','ts',1); end; curpos = spm_orthviews('pos',1); set(st.in, 'String',sprintf('%3.3f',spm_sample_vol(st.vols{1},curpos(1),curpos(2),curpos(3),st.hld))); %======================================================================= % % Display image. % %======================================================================= case 'displayimage' Fgraph=spm_figure('FindWin','Graphics'); % if isempty(Fgraph) % st.fig=spm_figure('Create','Graphics','Graphics'); % DGW = 1; % end % Only open Graphics window if one has been found if isempty(Fgraph) return; else if ~isempty(ID{varargin{4}}) spm_orthviews('Delete',ID{varargin{4}}.h); ID{varargin{4}} = []; end h = spm_orthviews('Image',varargin{2},[.01 .01 .01 .01]); % Set bounding box to allow display of all images spm_orthviews('MaxBB'); % Put everything in space of original EPI image. if varargin{4} == 2 %spm_orthviews('Space',h); % This was deleted for some reason end % % Get best possible positioning and scaling for % transversal and sagittal views. % tra_pos = get(st.vols{varargin{4}}.ax{1}.ax,'Position'); sag_pos = get(st.vols{varargin{4}}.ax{3}.ax,'Position'); field_pos = varargin{3}; x_scale = field_pos(3) / (tra_pos(3) + sag_pos(3)); height = max([tra_pos(4) sag_pos(4)]); y_scale = field_pos(4) / height; if x_scale > y_scale % Height limiting scale = y_scale; dx = (field_pos(3) - scale*(tra_pos(3) + sag_pos(3))) / 3; dy = 0; else % Width limiting scale = x_scale; dx = 0; dy = (field_pos(4) - scale*height) / 2; end tra_pos = [field_pos(1)+dx field_pos(2)+dy scale*tra_pos([3 4])]; sag_pos = [field_pos(1)+tra_pos(3)+2*dx field_pos(2)+dy scale*sag_pos([3 4])]; label = {'Fieldmap in Hz',... 'Warped EPI',... 'Unwarped EPI',... 'Structural'}; ID{varargin{4}} = struct('tra_pos', tra_pos,... 'sag_pos', sag_pos,... 'h', h,... 'label', label{varargin{4}}); FieldMap('RedrawImages'); st.in = uicontrol(PM,'Style','Text',... 'Position',[340 280 50 020].*WS,... 'HorizontalAlignment','left',... 'String',''); end %======================================================================= %======================================================================= % % The functions below are called by the various gui buttons but are % not dependent on the gui to work. These functions can therefore also % be called from a script bypassing the gui and can return updated % variables. % %======================================================================= %======================================================================= % %======================================================================= % % Create and initialise parameters for FieldMap toolbox % %======================================================================= case 'initialise' % % Initialise parameters % ID = cell(4,1); IP.P = cell(1,4); IP.pP = []; IP.fmagP = []; IP.wfmagP = []; IP.epiP = []; IP.uepiP = []; IP.nwarp = []; IP.fm = []; IP.vdm = []; IP.et = cell(1,2); IP.epifm = []; IP.blipdir = []; IP.ajm = []; IP.tert = []; IP.vdmP = []; %% Check that this should be there %% IP.maskbrain = []; IP.uflags = struct('iformat','','method','','fwhm',[],'bmask',[],'pad',[],'etd',[],'ws',[]); IP.mflags = struct('template',[],'fwhm',[],'nerode',[],'ndilate',[],'thresh',[],'reg',[],'graphics',0); % Initially set brain mask to be empty IP.uflags.bmask = []; % Set parameter values according to defaults FieldMap('SetParams'); varargout{1}= IP; %======================================================================= % % Sets parameters according to the defaults file that is being passed % %======================================================================= case 'setparams' if nargin == 1 pm_defaults; % "Default" default file else %eval(varargin{2}); % Scanner or sequence specific default file run(varargin{2}); % Scanner or sequence specific default file end % Define parameters for fieldmap creation IP.et{1} = pm_def.SHORT_ECHO_TIME; IP.et{2} = pm_def.LONG_ECHO_TIME; IP.maskbrain = pm_def.MASKBRAIN; % Set parameters for unwrapping IP.uflags.iformat = pm_def.INPUT_DATA_FORMAT; IP.uflags.method = pm_def.UNWRAPPING_METHOD; IP.uflags.fwhm = pm_def.FWHM; IP.uflags.pad = pm_def.PAD; IP.uflags.ws = pm_def.WS; IP.uflags.etd = pm_def.LONG_ECHO_TIME - pm_def.SHORT_ECHO_TIME; % Set parameters for brain masking IP.mflags.template = pm_def.MFLAGS.TEMPLATE; IP.mflags.fwhm = pm_def.MFLAGS.FWHM; IP.mflags.nerode = pm_def.MFLAGS.NERODE; IP.mflags.ndilate = pm_def.MFLAGS.NDILATE; IP.mflags.thresh = pm_def.MFLAGS.THRESH; IP.mflags.reg = pm_def.MFLAGS.REG; IP.mflags.graphics = pm_def.MFLAGS.GRAPHICS; % Set parameters for unwarping IP.ajm = pm_def.DO_JACOBIAN_MODULATION; IP.blipdir = pm_def.K_SPACE_TRAVERSAL_BLIP_DIR; IP.tert = pm_def.TOTAL_EPI_READOUT_TIME; IP.epifm = pm_def.EPI_BASED_FIELDMAPS; varargout{1}= IP; %======================================================================= % % Get a list of all the default files that are present % %======================================================================= case 'getdefaultfiles' fmdir = fullfile(spm('Dir'),'toolbox','FieldMap'); defdir = dir(fullfile(fmdir,'pm_defaults*.m')); for i=1:length(defdir) if defdir(i).name(12) ~= '.' & defdir(i).name(12) ~= '_' error(sprintf('Error in default file spec: %s',defdir(i).name)); end defnames{i} = defdir(i).name; end varargout{1} = defnames; %======================================================================= % % Get list of menuitems from list of default files % %======================================================================= case 'deffiles2menuitems' for i=1:length(varargin{2}) if strcmp(varargin{2}{i},'pm_defaults.m'); menit{i} = 'Default'; else endindx = strfind(varargin{2}{i},'.m'); menit{i} = varargin{2}{i}(13:(endindx-1)); end end varargout{1} = menit; %======================================================================= % % Scale a phase map so that max = pi and min =-pi radians. % %======================================================================= case 'scale' F=varargin{2}; V=spm_vol(F); vol=spm_read_vols(V); mn=min(vol(:)); mx=max(vol(:)); vol=-pi+(vol-mn)*2*pi/(mx-mn); V.dt(1)=4; varargout{1} = FieldMap('Write',V,vol,'sc',V.dt(1),V.descrip); %======================================================================= % % Load real or imaginary part of dual echo-time data - NO gui. % %======================================================================= case 'loadfile' index=varargin{2}; prompt_string = {'Select short echo-time real',... 'Select short echo-time imaginary',... 'Select long echo-time real',... 'Select long echo-time imaginary'}; %IP.P{index} = spm_vol(spm_get(1,'*.img',prompt_string{index})); % SPM IP.P{index} = spm_vol(spm_select(1,'image',prompt_string{index})); if isfield(IP,'pP') & ~isempty(IP.pP) IP.pP = []; end varargout{1} = IP.P{index}; %======================================================================= % % Load phase or magnitude part of dual (possibly) echo-time data - NO gui. % %======================================================================= case 'loadfilepm' index=varargin{2}; prompt_string = {'Select phase image',... 'Select magnitude image',... 'Select second phase image or press done',... 'Select magnitude image or press done'}; if index<3 %IP.P{index} = spm_vol(spm_get(1,'*.img',prompt_string{index})); % SPM5 Update IP.P{index} = spm_vol(spm_select(1,'image',prompt_string{index})); if index==1 do=spm_input('Scale this to radians?',1,'b','Yes|No',[1,0]); Finter=spm_figure('FindWin','Interactive'); close(Finter); if do==1 tmp=FieldMap('Scale',IP.P{index}.fname); IP.P{index} = spm_vol(tmp.fname); end end else %IP.P{index} = spm_vol(spm_get([0 1],'*.img',prompt_string{index})); % SPM5 Update IP.P{index} = spm_vol(spm_select([0 1],'image',prompt_string{index})); if index==3 & ~isempty(IP.P{index}) do=spm_input('Scale this to radians?',1,'b','Yes|No',[1,0]); Finter=spm_figure('FindWin','Interactive'); close(Finter); if do==1 tmp=FieldMap('Scale',IP.P{index}.fname); IP.P{index} = spm_vol(tmp.fname); end end end if isfield(IP,'pP') & ~isempty(IP.pP) IP.pP = []; end varargout{1} = IP.P{index}; %======================================================================= % % Load already prepared fieldmap (in Hz) - no gui % %======================================================================= case 'loadfieldmap' % % Select field map % % 24/03/04 - Chloe change below to spm_get(1,'fpm_*.img')... % IP.pP = spm_vol(spm_get(1,'fpm_*.img','Select field map')); % SPM5 Update IP.pP = spm_vol(spm_select(1,'^fpm.*\.img$','Select field map')); IP.fm.fpm = spm_read_vols(IP.pP); IP.fm.jac = pm_diff(IP.fm.fpm,2); if isfield(IP,'P') & ~isempty(IP.P{1}) IP.P = cell(1,4); end varargout{1} = IP.fm; varargout{2} = IP.pP; %======================================================================= % % Create unwrapped phase-map - NO gui % %======================================================================= case 'createfieldmap' IP=varargin{2}; % First check that images are in same space if size([IP.P{1} IP.P{2} IP.P{3} IP.P{4}],2)==4 ip_dim=cat(1,[IP.P{1}.dim' IP.P{2}.dim' IP.P{3}.dim' IP.P{4}.dim']'); %ip_mat=cat(2,[IP.P{1}.mat(:) IP.P{2}.mat(:) IP.P{3}.mat(:) IP.P{4}.mat(:)]'); ip_mat=cat(2,single([IP.P{1}.mat(:) IP.P{2}.mat(:) IP.P{3}.mat(:) IP.P{4}.mat(:)]')); else ip_dim=cat(1,[IP.P{1}.dim' IP.P{2}.dim']'); %ip_mat=cat(2,[IP.P{1}.mat(:) IP.P{2}.mat(:)]'); ip_mat=cat(2,single([IP.P{1}.mat(:) IP.P{2}.mat(:)]')); end if any(any(diff(ip_dim,1,1),1)&[1,1,1]) errordlg({'Images don''t all have same dimensions'}); drawnow; varargout{1}=[]; elseif any(any(diff(ip_mat,1,1),1)) errordlg({'Images don''t all have same orientation & voxel size'}); drawnow; varargout{1}=[]; else % Update flags for unwarping (in case TEs have been adjusted IP.uflags.etd = IP.et{2}-IP.et{1}; % Clear any brain mask IP.uflags.bmask = []; % SPM5 Update % If flag selected to mask brain and the field map is not based on EPI if IP.maskbrain==1 IP.fmagP = FieldMap('Magnitude',IP); IP.uflags.bmask = pm_brain_mask(IP.fmagP,IP.mflags); varargout{2} = IP.fmagP; end IP.fm = pm_make_fieldmap([IP.P{1} IP.P{2} IP.P{3} IP.P{4}],IP.uflags); varargout{1} = IP.fm; end %======================================================================= % % Convert field map to voxel displacement map and % do necessary inversions of displacement fields. % %======================================================================= case 'fm2vdm' IP=varargin{2}; % % If we already have memory mapped image pointer to voxel % displacement map let's reuse it (so not to void possible % realignment). If field-map is non-EPI based the previous % realignment (based on different parameters) will be non- % optimal and we should advice user to redo it. % % If no pointer already exist we'll make one. % if isfield(IP,'vdmP') & ~isempty(IP.vdmP) msgbox({'Changing this parameter means that if previously',... 'you matched VDM to EPI, this result may no longer',... 'be optimal. In this case we recommend you redo the',... 'Match VDM to EPI.'},... 'Coregistration notice','warn','modal'); else if ~isempty(IP.pP) IP.vdmP = struct('dim', IP.pP.dim(1:3),... 'dt',[4 spm_platform('bigend')],... 'mat', IP.pP.mat); IP.vdmP.fname=fullfile(spm_str_manip(IP.pP.fname, 'h'),['vdm5_' deblank(spm_str_manip(IP.pP.fname,'t'))]); else IP.vdmP = struct('dim', IP.P{1}.dim(1:3),... 'dt',[4 spm_platform('bigend')],... 'mat', IP.P{1}.mat); IP.vdmP.fname=fullfile(spm_str_manip(IP.P{1}.fname, 'h'),['vdm5_' deblank(spm_str_manip(IP.P{1}.fname,'t'))]); end end % Scale field map and jacobian by total EPI readout time IP.vdm.vdm = IP.blipdir*IP.tert*1e-3*IP.fm.fpm; IP.vdm.jac = IP.blipdir*IP.tert*1e-3*IP.fm.jac; % Chloe added this: 26/02/05 % Put fieldmap parameters in descrip field of vdm vdm_info=sprintf('Voxel Displacement Map:echo time difference=%2.2fms, EPI readout time=%2.2fms',IP.uflags.etd, IP.tert); if IP.epifm ==1 spm_progress_bar('Init',3,'Inverting displacement map',''); spm_progress_bar('Set',1); % Invert voxel shift map and multiply by -1... IP.vdm.ivdm = pm_invert_phasemap(-1*IP.vdm.vdm); IP.vdm.ijac = pm_diff(IP.vdm.ivdm,2); spm_progress_bar('Set',2); spm_progress_bar('Clear'); FieldMap('Write',IP.vdmP,IP.vdm.ivdm,'',IP.vdmP.dt(1),vdm_info); else FieldMap('Write',IP.vdmP,IP.vdm.vdm,'',IP.vdmP.dt(1),vdm_info); end varargout{1} = IP.vdm; varargout{2} = IP.vdmP; %======================================================================= % % Write out image % %======================================================================= case 'write' V=varargin{2}; vol=varargin{3}; name=varargin{4}; % Write out image img=struct('dim', V.dim(1:3),... 'dt', [varargin{5} spm_platform('bigend')],... 'mat', V.mat); img.fname=fullfile(spm_str_manip(V.fname, 'h'),[name deblank(spm_str_manip(V.fname,'t'))]); img.descrip=varargin{6}; img=spm_write_vol(img,vol); varargout{1}=img; %======================================================================= % % Create fieldmap (Hz) struct for use when displaying image. % %======================================================================= case 'makedp' if isfield(IP,'vdmP') & ~isempty(IP.vdmP); dP = struct('dim', IP.vdmP.dim,... 'dt',[64 spm_platform('bigend')],... 'pinfo', [1 0]',... 'mat', IP.vdmP.mat,... 'dat', reshape(IP.fm.fpm,IP.vdmP.dim),... 'fname', 'display_image'); else if isfield(IP,'P') & ~isempty(IP.P{1}) dP = struct('dim', IP.P{1}.dim,... 'dt',[64 spm_platform('bigend')],... 'pinfo', [1 0]',... 'mat', IP.P{1}.mat,... 'dat', reshape(IP.fm.fpm,IP.P{1}.dim),... 'fname', 'display_image'); elseif isfield(IP,'pP') & ~isempty(IP.pP) dP = struct('dim', IP.pP.dim,... 'dt',[64 spm_platform('bigend')],... 'pinfo', [1 0]',... 'mat', IP.pP.mat,... 'dat', reshape(IP.fm.fpm,IP.pP.dim),... 'fname', 'display_image'); end end varargout{1} = dP; %======================================================================= % % Load sample EPI image - NO gui % %======================================================================= case 'loadepi' % % Select EPI % %IP.epiP = spm_vol(spm_get(1,'*.img','Select sample EPI image')); % SPM5 Update IP.epiP = spm_vol(spm_select(1,'image','Select sample EPI image')); varargout{1} = IP.epiP; %======================================================================= % % Create unwarped epi - NO gui % %======================================================================= case 'unwarpepi' % % Update unwarped EPI % IP=varargin{2}; IP.uepiP = struct('fname', 'Image in memory',... 'dim', IP.epiP.dim,... 'dt',[64 spm_platform('bigend')],... 'pinfo', IP.epiP.pinfo(1:2),... 'mat', IP.epiP.mat); % Need to sample EPI and voxel shift map in space of EPI... [x,y,z] = ndgrid(1:IP.epiP.dim(1),1:IP.epiP.dim(2),1:IP.epiP.dim(3)); xyz = [x(:) y(:) z(:)]; % Space of EPI is IP.epiP{1}.mat and space of % voxel shift map is IP.vdmP{1}.mat tM = inv(IP.epiP.mat\IP.vdmP.mat); x2 = tM(1,1)*x + tM(1,2)*y + tM(1,3)*z + tM(1,4); y2 = tM(2,1)*x + tM(2,2)*y + tM(2,3)*z + tM(2,4); z2 = tM(3,1)*x + tM(3,2)*y + tM(3,3)*z + tM(3,4); xyz2 = [x2(:) y2(:) z2(:)]; % % Make mask since it is only meaningful to calculate undistorted % image in areas where we have information about distortions. % msk = reshape(double(xyz2(:,1)>=1 & xyz2(:,1)<=IP.vdmP.dim(1) &... xyz2(:,2)>=1 & xyz2(:,2)<=IP.vdmP.dim(2) &... xyz2(:,3)>=1 & xyz2(:,3)<=IP.vdmP.dim(3)),IP.epiP.dim(1:3)); % Read in voxel displacement map in correct space tvdm = reshape(spm_sample_vol(spm_vol(IP.vdmP.fname),xyz2(:,1),... xyz2(:,2),xyz2(:,3),1),IP.epiP.dim(1:3)); % Voxel shift map must be added to the y-coordinates. uepi = reshape(spm_sample_vol(IP.epiP,xyz(:,1),... xyz(:,2)+tvdm(:),xyz(:,3),1),IP.epiP.dim(1:3));% TEMP CHANGE % Sample Jacobian in correct space and apply if required if IP.ajm==1 if IP.epifm==1 % If EPI, use inverted jacobian IP.jim = reshape(spm_sample_vol(IP.vdm.ijac,xyz2(:,1),... xyz2(:,2),xyz2(:,3),1),IP.epiP.dim(1:3)); else IP.jim = reshape(spm_sample_vol(IP.vdm.jac,xyz2(:,1),... xyz2(:,2),xyz2(:,3),1),IP.epiP.dim(1:3)); end uepi = uepi.*(1+IP.jim); end IP.uepiP.dat=uepi.*msk; varargout{1}=IP.uepiP; %======================================================================= % % Create unwarped epi - NO gui ***FOR XY*** % %======================================================================= case 'unwarpepixy' % % Update unwarped EPI % IP=varargin{2}; IP.uepiP = struct('fname', 'Image in memory',... 'dim', IP.epiP.dim,... 'dt',[64 spm_platform('bigend')],... 'pinfo', IP.epiP.pinfo(1:2),... 'mat', IP.epiP.mat); % Need to sample EPI and voxel shift map in space of EPI... [x,y,z] = ndgrid(1:IP.epiP.dim(1),1:IP.epiP.dim(2),1:IP.epiP.dim(3)); xyz = [x(:) y(:) z(:)]; % Space of EPI is IP.epiP{1}.mat and space of % voxel shift map is IP.vdmP{1}.mat tM = inv(IP.epiP.mat\IP.vdmP.mat); x2 = tM(1,1)*x + tM(1,2)*y + tM(1,3)*z + tM(1,4); y2 = tM(2,1)*x + tM(2,2)*y + tM(2,3)*z + tM(2,4); z2 = tM(3,1)*x + tM(3,2)*y + tM(3,3)*z + tM(3,4); xyz2 = [x2(:) y2(:) z2(:)]; % % Make mask since it is only meaningful to calculate undistorted % image in areas where we have information about distortions. % msk = reshape(double(xyz2(:,1)>=1 & xyz2(:,1)<=IP.vdmP.dim(1) &... xyz2(:,2)>=1 & xyz2(:,2)<=IP.vdmP.dim(2) &... xyz2(:,3)>=1 & xyz2(:,3)<=IP.vdmP.dim(3)),IP.epiP.dim(1:3)); % Read in voxel displacement map in correct space tvdm = reshape(spm_sample_vol(spm_vol(IP.vdmP.fname),xyz2(:,1),... xyz2(:,2),xyz2(:,3),1),IP.epiP.dim(1:3)); % Voxel shift map must be added to the x-coordinates. uepi = reshape(spm_sample_vol(IP.epiP,xyz(:,1)+tvdm(:),... xyz(:,2),xyz(:,3),1),IP.epiP.dim(1:3));% TEMP CHANGE % Sample Jacobian in correct space and apply if required if IP.ajm==1 if IP.epifm==1 % If EPI, use inverted jacobian IP.jim = reshape(spm_sample_vol(IP.vdm.ijac,xyz2(:,1),... xyz2(:,2),xyz2(:,3),1),IP.epiP.dim(1:3)); else IP.jim = reshape(spm_sample_vol(IP.vdm.jac,xyz2(:,1),... xyz2(:,2),xyz2(:,3),1),IP.epiP.dim(1:3)); end uepi = uepi.*(1+IP.jim); end IP.uepiP.dat=uepi.*msk; varargout{1}=IP.uepiP; %======================================================================= % % Coregister fieldmap magnitude image to EPI to unwarp % %======================================================================= case 'matchvdm' IP=varargin{2}; % % Need a fieldmap magnitude image % if isempty(IP.pP) & ~isempty(IP.P{1}) IP.fmagP=struct('dim', IP.P{1}.dim,... 'dt',IP.P{1}.dt,... 'pinfo', IP.P{1}.pinfo,... 'mat', IP.P{1}.mat); IP.fmagP.fname=fullfile(spm_str_manip(IP.P{1}.fname, 'h'),['mag_' deblank(spm_str_manip(IP.P{1}.fname,'t'))]); % If using real and imaginary data, calculate using sqrt(i1.^2 + i2.^2). % If using phase and magnitude, use magnitude image. if IP.uflags.iformat=='RI' IP.fmagP = spm_imcalc(spm_vol([IP.P{1}.fname;IP.P{2}.fname]),IP.fmagP,'sqrt(i1.^2 + i2.^2)'); else IP.fmagP = IP.P{2}; end elseif ~isempty(IP.pP) & ~isempty(IP.fmagP) msg=sprintf('Using %s for matching\n',IP.fmagP.fname); disp(msg); else %IP.fmagP = spm_vol(spm_get(1,'*.img','Select field map magnitude image')); % SPM5 Update IP.fmagP = spm_vol(spm_select(1,'image','Select field map magnitude image')); end % Now we have field map magnitude image, we want to coregister it to the % EPI to be unwarped. % If using an EPI field map: % 1) Coregister magnitude image to EPI. % 2) Apply resulting transformation matrix to voxel shift map % If using a non-EPI field map: % 1) Forward warp magnitude image % 2) Coregister warped magnitude image to EPI. % 3) Apply resulting transformation matrix to voxel shift map if IP.epifm==1 [mi,M] = FieldMap('Coregister',IP.epiP,IP.fmagP); MM = IP.fmagP.mat; else % Need to sample magnitude image in space of EPI to be unwarped... [x,y,z] = ndgrid(1:IP.epiP.dim(1),1:IP.epiP.dim(2),1:IP.epiP.dim(3)); xyz = [x(:) y(:) z(:)]; % Space of EPI is IP.epiP{1}.mat and space of fmagP is IP.fmagP.mat tM = inv(IP.epiP.mat\IP.fmagP.mat); x2 = tM(1,1)*x + tM(1,2)*y + tM(1,3)*z + tM(1,4); y2 = tM(2,1)*x + tM(2,2)*y + tM(2,3)*z + tM(2,4); z2 = tM(3,1)*x + tM(3,2)*y + tM(3,3)*z + tM(3,4); xyz2 = [x2(:) y2(:) z2(:)]; wfmag = reshape(spm_sample_vol(IP.fmagP,xyz2(:,1),... xyz2(:,2),xyz2(:,3),1),IP.epiP.dim(1:3)); % Need to sample voxel shift map in space of EPI to be unwarped tvdm = reshape(spm_sample_vol(IP.vdm.vdm,xyz2(:,1),... xyz2(:,2),xyz2(:,3),0),IP.epiP.dim(1:3)); % Now apply warps to resampled forward warped magnitude image... wfmag = reshape(spm_sample_vol(wfmag,xyz(:,1),xyz(:,2)-tvdm(:),... xyz(:,3),1),IP.epiP.dim(1:3)); % Write out forward warped magnitude image IP.wfmagP = struct('dim', IP.epiP.dim,... 'dt',[64 spm_platform('bigend')],... 'pinfo', IP.epiP.pinfo,... 'mat', IP.epiP.mat); IP.wfmagP = FieldMap('Write',IP.epiP,wfmag,'wfmag_',4,'Voxel shift map'); % Now coregister warped magnitude field map to EPI [mi,M] = FieldMap('Coregister',IP.epiP,IP.wfmagP); % Update the .mat file of the forward warped mag image spm_get_space(deblank(IP.wfmagP.fname),M*IP.wfmagP.mat); % Get the original space of the fmap magnitude MM = IP.fmagP.mat; end % Update .mat file for voxel displacement map IP.vdmP.mat=M*MM; spm_get_space(deblank(IP.vdmP.fname),M*MM); varargout{1} = IP.vdmP; %======================================================================= % % Coregister fieldmap magnitude image to EPI to do unwarpxy % %======================================================================= case 'matchvdmxy' IP=varargin{2}; % % Need a fieldmap magnitude image % if isempty(IP.pP) & ~isempty(IP.P{1}) IP.fmagP=struct('dim', IP.P{1}.dim,... 'dt',IP.P{1}.dt,... 'pinfo', IP.P{1}.pinfo,... 'mat', IP.P{1}.mat); IP.fmagP.fname=fullfile(spm_str_manip(IP.P{1}.fname, 'h'),['mag_' deblank(spm_str_manip(IP.P{1}.fname,'t'))]); % If using real and imaginary data, calculate using sqrt(i1.^2 + i2.^2). % If using phase and magnitude, use magnitude image. if IP.uflags.iformat=='RI' IP.fmagP = spm_imcalc(spm_vol([IP.P{1}.fname;IP.P{2}.fname]),IP.fmagP,'sqrt(i1.^2 + i2.^2)'); else IP.fmagP = IP.P{2}; end elseif ~isempty(IP.pP) & ~isempty(IP.fmagP) msg=sprintf('Using %s for matching\n',IP.fmagP.fname); disp(msg); else %IP.fmagP = spm_vol(spm_get(1,'*.img','Select field map magnitude image')); % SPM5 Update IP.fmagP = spm_vol(spm_select(1,'image','Select field map magnitude image')); end % Now we have field map magnitude image, we want to coregister it to the % EPI to be unwarped. % If using an EPI field map: % 1) Coregister magnitude image to EPI. % 2) Apply resulting transformation matrix to voxel shift map % If using a non-EPI field map: % 1) Forward warp magnitude image % 2) Coregister warped magnitude image to EPI. % 3) Apply resulting transformation matrix to voxel shift map if IP.epifm==1 [mi,M] = FieldMap('Coregister',IP.epiP,IP.fmagP); MM = IP.fmagP.mat; else % Need to sample magnitude image in space of EPI to be unwarped... [x,y,z] = ndgrid(1:IP.epiP.dim(1),1:IP.epiP.dim(2),1:IP.epiP.dim(3)); xyz = [x(:) y(:) z(:)]; % Space of EPI is IP.epiP{1}.mat and space of fmagP is IP.fmagP.mat tM = inv(IP.epiP.mat\IP.fmagP.mat); x2 = tM(1,1)*x + tM(1,2)*y + tM(1,3)*z + tM(1,4); y2 = tM(2,1)*x + tM(2,2)*y + tM(2,3)*z + tM(2,4); z2 = tM(3,1)*x + tM(3,2)*y + tM(3,3)*z + tM(3,4); xyz2 = [x2(:) y2(:) z2(:)]; wfmag = reshape(spm_sample_vol(IP.fmagP,xyz2(:,1),... xyz2(:,2),xyz2(:,3),1),IP.epiP.dim(1:3)); % Need to sample voxel shift map in space of EPI to be unwarped tvdm = reshape(spm_sample_vol(IP.vdm.vdm,xyz2(:,1),... xyz2(:,2),xyz2(:,3),0),IP.epiP.dim(1:3)); % Now apply warps to resampled forward warped magnitude image... wfmag = reshape(spm_sample_vol(wfmag,xyz(:,1)-tvdm(:),xyz(:,2),... xyz(:,3),1),IP.epiP.dim(1:3)); % Write out forward warped magnitude image IP.wfmagP = struct('dim', IP.epiP.dim,... 'dt',[64 spm_platform('bigend')],... 'pinfo', IP.epiP.pinfo,... 'mat', IP.epiP.mat); IP.wfmagP = FieldMap('Write',IP.epiP,wfmag,'wfmag_',4,'Voxel shift map'); % Now coregister warped magnitude field map to EPI [mi,M] = FieldMap('Coregister',IP.epiP,IP.wfmagP); % Update the .mat file of the forward warped mag image spm_get_space(deblank(IP.wfmagP.fname),M*IP.wfmagP.mat); % Get the original space of the fmap magnitude MM = IP.fmagP.mat; end % Update .mat file for voxel displacement map IP.vdmP.mat=M*MM; spm_get_space(deblank(IP.vdmP.fname),M*MM); varargout{1} = IP.vdmP; %======================================================================= % % Invert voxel displacement map % %======================================================================= case 'invert' vdm = pm_invert_phasemap(IP.vdm.vdm); varargout{1} = vdm; %======================================================================= % % Get fieldmap magnitude image % %======================================================================= case 'magnitude' IP=varargin{2}; if isempty(IP.fmagP) % % Get fieldmap magnitude image % if isempty(IP.pP) & ~isempty(IP.P{1}) IP.fmagP=struct('dim', IP.P{1}.dim,... 'dt', IP.P{1}.dt,... 'pinfo', IP.P{1}.pinfo,... 'mat', IP.P{1}.mat); IP.fmagP.fname=fullfile(spm_str_manip(IP.P{1}.fname, 'h'),['mag_' deblank(spm_str_manip(IP.P{1}.fname,'t'))]); % If using real and imaginary data, calculate using sqrt(i1.^2 + i2.^2). % If using phase and magnitude, use magnitude image. if IP.uflags.iformat=='RI' IP.fmagP = spm_imcalc(spm_vol([IP.P{1}.fname;IP.P{2}.fname]),IP.fmagP,'sqrt(i1.^2 + i2.^2)'); else IP.fmagP = IP.P{2}; end % else % IP.fmagP = spm_vol(spm_get(1,'*.img','Select field map magnitude image')); else do_f = ~isfield(IP, 'fmagP'); if ~do_f, do_f = isempty(IP.fmagP); end if do_f IP.fmagP = spm_vol(spm_select(1,'image','Select field map magnitude image')); end end end varargout{1} = IP.fmagP; %======================================================================= % % Load structural image % %======================================================================= case 'loadstructural' %IP.nwarp = spm_vol(spm_get(1,'*.img','Select structural image')); % SPM5 Update IP.nwarp = spm_vol(spm_select(1,'image','Select structural image')); varargout{1} = IP.nwarp; %======================================================================= % % Coregister structural image to unwarped EPI % %======================================================================= case 'matchstructural' IP = varargin{2}; [mi,M] = FieldMap('Coregister',IP.uepiP,IP.nwarp); MM = IP.nwarp.mat; IP.nwarp.mat=M*MM; spm_get_space(deblank(IP.nwarp.fname),IP.nwarp.mat); varargout{1}=mi; %======================================================================= % % Coregister two images - NO gui % %======================================================================= case 'coregister' % % Coregisters image VF to image VG (use VF and VG like in SPM code) % VG = varargin{2}; VF = varargin{3}; % Define flags for coregistration... IP.cflags.cost_fun = spm_get_defaults('coreg.estimate.cost_fun'); IP.cflags.sep = spm_get_defaults('coreg.estimate.sep'); IP.cflags.tol = spm_get_defaults('coreg.estimate.tol'); IP.cflags.fwhm = spm_get_defaults('coreg.estimate.fwhm'); IP.cflags.graphics = 0; % Voxel sizes (mm) vxg = sqrt(sum(VG.mat(1:3,1:3).^2)); vxf = sqrt(sum(VF.mat(1:3,1:3).^2)); % Smoothnesses fwhmg = sqrt(max([1 1 1]*IP.cflags.sep(end)^2 - vxg.^2, [0 0 0]))./vxg; fwhmf = sqrt(max([1 1 1]*IP.cflags.sep(end)^2 - vxf.^2, [0 0 0]))./vxf; % Need to load data smoothed in unit8 format (as in spm_coreg_ui) % if isfield(VG,'dat') % VG=rmfield(VG,'dat'); % end if ~isfield(VG,'uint8') VG.uint8 = loaduint8(VG); VG = smooth_uint8(VG,fwhmg); % Note side effects end % if isfield(VF,'dat') % VF=rmfield(VF,'dat'); % end if ~isfield(VF,'uint8') VF.uint8 = loaduint8(VF); VF = smooth_uint8(VF,fwhmf); % Note side effects end x=spm_coreg(VG,VF,IP.cflags); M = inv(spm_matrix(x)); MM = spm_get_space(deblank(VF.fname)); varargout{1}=spm_coreg(x,VG,VF,2,IP.cflags.cost_fun,IP.cflags.fwhm); varargout{2}=M; %======================================================================= % % Use spm_help to display help for FieldMap toolbox % %======================================================================= case 'help' spm_help('FieldMap.man'); return end %======================================================================= % % Smoothing functions required for spm_coreg % %======================================================================= function V = smooth_uint8(V,fwhm) % Convolve the volume in memory (fwhm in voxels). lim = ceil(2*fwhm); s = fwhm/sqrt(8*log(2)); x = [-lim(1):lim(1)]; x = smoothing_kernel(fwhm(1),x); x = x/sum(x); y = [-lim(2):lim(2)]; y = smoothing_kernel(fwhm(2),y); y = y/sum(y); z = [-lim(3):lim(3)]; z = smoothing_kernel(fwhm(3),z); z = z/sum(z); i = (length(x) - 1)/2; j = (length(y) - 1)/2; k = (length(z) - 1)/2; spm_conv_vol(V.uint8,V.uint8,x,y,z,-[i j k]); return; %_______________________________________________________________________ %_______________________________________________________________________ function krn = smoothing_kernel(fwhm,x) % Variance from FWHM s = (fwhm/sqrt(8*log(2)))^2+eps; % The simple way to do it. Not good for small FWHM % krn = (1/sqrt(2*pi*s))*exp(-(x.^2)/(2*s)); % For smoothing images, one should really convolve a Gaussian % with a sinc function. For smoothing histograms, the % kernel should be a Gaussian convolved with the histogram % basis function used. This function returns a Gaussian % convolved with a triangular (1st degree B-spline) basis % function. % Gaussian convolved with 0th degree B-spline % int(exp(-((x+t))^2/(2*s))/sqrt(2*pi*s),t= -0.5..0.5) % w1 = 1/sqrt(2*s); % krn = 0.5*(erf(w1*(x+0.5))-erf(w1*(x-0.5))); % Gaussian convolved with 1st degree B-spline % int((1-t)*exp(-((x+t))^2/(2*s))/sqrt(2*pi*s),t= 0..1) % +int((t+1)*exp(-((x+t))^2/(2*s))/sqrt(2*pi*s),t=-1..0) w1 = 0.5*sqrt(2/s); w2 = -0.5/s; w3 = sqrt(s/2/pi); krn = 0.5*(erf(w1*(x+1)).*(x+1) + erf(w1*(x-1)).*(x-1) - 2*erf(w1*x ).* x)... +w3*(exp(w2*(x+1).^2) + exp(w2*(x-1).^2) - 2*exp(w2*x.^2)); krn(krn<0) = 0; return; %======================================================================= % % Load data function required for spm_coreg % %======================================================================= function udat = loaduint8(V) % Load data from file indicated by V into an array of unsigned bytes. if size(V.pinfo,2)==1 & V.pinfo(1) == 2, mx = 255*V.pinfo(1) + V.pinfo(2); mn = V.pinfo(2); else, spm_progress_bar('Init',V.dim(3),... ['Computing max/min of ' spm_str_manip(V.fname,'t')],... 'Planes complete'); mx = -Inf; mn = Inf; for p=1:V.dim(3), img = spm_slice_vol(V,spm_matrix([0 0 p]),V.dim(1:2),1); mx = max([max(img(:))+paccuracy(V,p) mx]); mn = min([min(img(:)) mn]); spm_progress_bar('Set',p); end; end; spm_progress_bar('Init',V.dim(3),... ['Loading ' spm_str_manip(V.fname,'t')],... 'Planes loaded'); udat = uint8(0); udat(V.dim(1),V.dim(2),V.dim(3))=0; rand('state',100); for p=1:V.dim(3), img = spm_slice_vol(V,spm_matrix([0 0 p]),V.dim(1:2),1); acc = paccuracy(V,p); if acc==0, udat(:,:,p) = uint8(round((img-mn)*(255/(mx-mn)))); else, % Add random numbers before rounding to reduce aliasing artifact r = rand(size(img))*acc; udat(:,:,p) = uint8(round((img+r-mn)*(255/(mx-mn)))); end; spm_progress_bar('Set',p); end; spm_progress_bar('Clear'); return; function acc = paccuracy(V,p) if ~spm_type(V.dt(1),'intt'), acc = 0; else, if size(V.pinfo,2)==1, acc = abs(V.pinfo(1,1)); else, acc = abs(V.pinfo(1,p)); end; end; %_______________________________________________________________________
github
philippboehmsturm/antx-master
tbx_cfg_fieldmap.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/FieldMap/tbx_cfg_fieldmap.m
42,259
utf_8
8319c4da246db18dcc1d188a72a84d01
function fieldmap = tbx_cfg_fieldmap % MATLABBATCH Configuration file for toolbox 'FieldMap' %_______________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % $Id: tbx_cfg_fieldmap.m 4571 2011-11-23 17:34:12Z chloe $ addpath(fullfile(spm('dir'),'toolbox','FieldMap')); % --------------------------------------------------------------------- % --------------------------------------------------------------------- % Default values that are common to all fieldmap jobs % --------------------------------------------------------------------- % % --------------------------------------------------------------------- % et Echo times [short TE long TE] % --------------------------------------------------------------------- et = cfg_entry; et.tag = 'et'; et.name = 'Echo times [short TE long TE]'; et.help = {'Enter the short and long echo times (in ms) of the data used to acquire the field map.'}; et.strtype = 'e'; et.num = [1 2]; % --------------------------------------------------------------------- % maskbrain Mask brain % --------------------------------------------------------------------- maskbrain = cfg_menu; maskbrain.tag = 'maskbrain'; maskbrain.name = 'Mask brain'; maskbrain.help = { 'Select masking or no masking of the brain. If masking is selected,' 'the magnitude image is used to generate a mask of the brain.' }'; maskbrain.labels = { 'Mask brain' 'No brain masking' }'; maskbrain.values{1} = 1; maskbrain.values{2} = 0; % --------------------------------------------------------------------- % blipdir Blip direction % --------------------------------------------------------------------- blipdir = cfg_menu; blipdir.tag = 'blipdir'; blipdir.name = 'Blip direction'; blipdir.help = {'Enter the blip direction. This is the polarity of the phase-encode blips describing the direction in which k-space is traversed along the y-axis during EPI acquisition with respect to the coordinate system used in SPM. In this coordinate system, the phase encode direction corresponds with the y-direction and is defined as positive from the posterior to the anterior of the head.'}; blipdir.labels = { '-1' '1' }'; blipdir.values{1} = -1; blipdir.values{2} = 1; % --------------------------------------------------------------------- % tert Total EPI readout time % --------------------------------------------------------------------- tert = cfg_entry; tert.tag = 'tert'; tert.name = 'Total EPI readout time'; tert.help = { 'Enter the total EPI readout time (in ms). This is the time taken to ' 'acquire all of the phase encode steps required to cover k-space (ie one image slice). ' 'For example, if the EPI sequence has 64 phase encode steps, the total readout time is ' 'the time taken to acquire 64 echoes, e.g. ' 'total readout time = number of echoes × echo spacing. ' 'This time does not include i) the duration of the excitation, ii) the delay between, ' 'the excitation and the start of the acquisition or iii) time for fat saturation etc.' }'; tert.strtype = 'e'; tert.num = [1 1]; % --------------------------------------------------------------------- % epifm EPI-based field map? % --------------------------------------------------------------------- epifm = cfg_menu; epifm.tag = 'epifm'; epifm.name = 'EPI-based field map?'; epifm.help = {'Select non-EPI or EPI based field map. The field map data may be acquired using a non-EPI sequence (typically a gradient echo sequence) or an EPI sequence. The processing will be slightly different for the two cases. If using an EPI-based field map, the resulting Voxel Displacement Map will be inverted since the field map was acquired in distorted space.'}; epifm.labels = { 'non-EPI' 'EPI' }'; epifm.values{1} = 0; epifm.values{2} = 1; % --------------------------------------------------------------------- % ajm Jacobian modulation? % --------------------------------------------------------------------- ajm = cfg_menu; ajm.tag = 'ajm'; ajm.name = 'Jacobian modulation?'; ajm.help = {'Select whether or not to use Jacobian modulation. This will adjust the intensities of voxels that have been stretched or compressed but in general is not recommended for EPI distortion correction'}; ajm.labels = { 'Do not use' 'Use' }'; ajm.values{1} = 0; ajm.values{2} = 1; ajm.def = @(val)pm_get_defaults('DO_JACOBIAN_MODULATION', val{:}); % --------------------------------------------------------------------- % method Unwrapping method % --------------------------------------------------------------------- method = cfg_menu; method.tag = 'method'; method.name = 'Unwrapping method'; method.help = {'Select method for phase unwrapping'}; method.labels = { 'Mark3D' 'Mark2D' 'Huttonish' }'; method.values = { 'Mark3D' 'Mark2D' 'Huttonish' }'; method.def = @(val)pm_get_defaults('UNWRAPPING_METHOD', val{:}); % --------------------------------------------------------------------- % fwhm FWHM % --------------------------------------------------------------------- fwhm = cfg_entry; fwhm.tag = 'fwhm'; fwhm.name = 'FWHM'; fwhm.help = {'FWHM of Gaussian filter used to implement weighted smoothing of unwrapped maps.'}; fwhm.strtype = 'e'; fwhm.num = [1 1]; fwhm.def = @(val)pm_get_defaults('FWHM', val{:}); % --------------------------------------------------------------------- % pad pad % --------------------------------------------------------------------- pad = cfg_entry; pad.tag = 'pad'; pad.name = 'pad'; pad.help = {'Size of padding kernel if required.'}; pad.strtype = 'e'; pad.num = [1 1]; pad.def = @(val)pm_get_defaults('PAD', val{:}); % --------------------------------------------------------------------- % ws Weighted smoothing % --------------------------------------------------------------------- ws = cfg_menu; ws.tag = 'ws'; ws.name = 'Weighted smoothing'; ws.help = {'Select normal or weighted smoothing.'}; ws.labels = { 'Weighted Smoothing' 'No weighted smoothing' }'; ws.values{1} = 1; ws.values{2} = 0; ws.def = @(val)pm_get_defaults('WS', val{:}); % --------------------------------------------------------------------- % uflags uflags % --------------------------------------------------------------------- uflags = cfg_branch; uflags.tag = 'uflags'; uflags.name = 'uflags'; uflags.val = {method fwhm pad ws }; uflags.help = {'Different options for phase unwrapping and field map processing'}; % --------------------------------------------------------------------- % template Template image for brain masking % --------------------------------------------------------------------- template = cfg_files; template.tag = 'template'; template.name = 'Template image for brain masking'; template.help = {'Select template file for segmentation to create brain mask'}; template.filter = 'nii'; template.ufilter = '.*'; template.num = [1 1]; template.def = @(val)pm_get_defaults('MFLAGS.TEMPLATE', val{:}); % --------------------------------------------------------------------- % fwhm FWHM % --------------------------------------------------------------------- fwhm = cfg_entry; fwhm.tag = 'fwhm'; fwhm.name = 'FWHM'; fwhm.help = {'FWHM of Gaussian filter for smoothing brain mask.'}; fwhm.strtype = 'e'; fwhm.num = [1 1]; fwhm.def = @(val)pm_get_defaults('MFLAGS.FWHM', val{:}); % --------------------------------------------------------------------- % nerode Number of erosions % --------------------------------------------------------------------- nerode = cfg_entry; nerode.tag = 'nerode'; nerode.name = 'Number of erosions'; nerode.help = {'Number of erosions used to create brain mask.'}; nerode.strtype = 'e'; nerode.num = [1 1]; nerode.def = @(val)pm_get_defaults('MFLAGS.NERODE', val{:}); % --------------------------------------------------------------------- % ndilate Number of dilations % --------------------------------------------------------------------- ndilate = cfg_entry; ndilate.tag = 'ndilate'; ndilate.name = 'Number of dilations'; ndilate.help = {'Number of dilations used to create brain mask.'}; ndilate.strtype = 'e'; ndilate.num = [1 1]; ndilate.def = @(val)pm_get_defaults('MFLAGS.NDILATE', val{:}); % --------------------------------------------------------------------- % thresh Threshold % --------------------------------------------------------------------- thresh = cfg_entry; thresh.tag = 'thresh'; thresh.name = 'Threshold'; thresh.help = {'Threshold used to create brain mask from segmented data.'}; thresh.strtype = 'e'; thresh.num = [1 1]; thresh.def = @(val)pm_get_defaults('MFLAGS.THRESH', val{:}); % --------------------------------------------------------------------- % reg Regularization % --------------------------------------------------------------------- reg = cfg_entry; reg.tag = 'reg'; reg.name = 'Regularization'; reg.help = {'Regularization value used in the segmentation. A larger value helps the segmentation to converge.'}; reg.strtype = 'e'; reg.num = [1 1]; reg.def = @(val)pm_get_defaults('MFLAGS.REG', val{:}); % --------------------------------------------------------------------- % mflags mflags % --------------------------------------------------------------------- mflags = cfg_branch; mflags.tag = 'mflags'; mflags.name = 'mflags'; mflags.val = {template fwhm nerode ndilate thresh reg }; mflags.help = {'Different options used for the segmentation and creation of the brain mask.'}; % --------------------------------------------------------------------- % defaultsval Defaults values % --------------------------------------------------------------------- defaultsval = cfg_branch; defaultsval.tag = 'defaultsval'; defaultsval.name = 'Defaults values'; defaultsval.val = {et maskbrain blipdir tert epifm ajm uflags mflags }; defaultsval.help = {'Defaults values'}; % --------------------------------------------------------------------- % defaultsfile Defaults File % --------------------------------------------------------------------- defaultsfile = cfg_files; defaultsfile.tag = 'defaultsfile'; defaultsfile.name = 'Defaults File'; defaultsfile.help = {'Select the ''pm_defaults*.m'' file containing the parameters for the field map data. Please make sure that the parameters defined in the defaults file are correct for your field map and EPI sequence. To create your own customised defaults file, either edit the distributed version and/or save it with the name ''pm_defaults_yourname.m''.'}; defaultsfile.filter = 'm'; [deffilepath, tmp] = fileparts(mfilename('fullpath')); defaultsfile.dir = deffilepath; defaultsfile.ufilter = '^pm_defaults.*\.m$'; defaultsfile.num = [1 1]; defaultsfile.def = @(val)pm_get_defaults('defaultsfilename', val{:}); % --------------------------------------------------------------------- % defaults FieldMap defaults % --------------------------------------------------------------------- defaults = cfg_choice; defaults.tag = 'defaults'; defaults.name = 'FieldMap defaults'; defaults.help = {'FieldMap default values can be entered as a file or set of values.'}; defaults.values = {defaultsval defaultsfile }; % --------------------------------------------------------------------- % epi Select EPI to Unwarp % --------------------------------------------------------------------- epi = cfg_files; epi.tag = 'epi'; epi.name = 'Select EPI to Unwarp'; epi.help = {'Select a single image to distortion correct. The corrected image will be saved with the prefix u. Note that this option is mainly for quality control of correction so that the original and distortion corrected images can be displayed for comparison. To unwarp multiple images please use either Realign & Unwarp or Apply VDM.'}; epi.filter = 'image'; epi.ufilter = '.*'; epi.num = [1 1]; % --------------------------------------------------------------------- % session Session % --------------------------------------------------------------------- session = cfg_branch; session.tag = 'session'; session.name = 'Session'; session.val = {epi }; session.help = {'Data for this session.'}; % --------------------------------------------------------------------- % generic EPI Sessions % --------------------------------------------------------------------- generic1 = cfg_repeat; generic1.tag = 'generic1'; generic1.name = 'EPI Sessions'; generic1.help = {'If a single set of field map data will be used for multiple EPI runs/sessions, select the first EPI in each run/session. A VDM file will created for each run/session, matched to the first EPI in each run/session and saved with a unique name extension.'}; generic1.values = {session }; generic1.num = [1 Inf]; % --------------------------------------------------------------------- % matchvdm Match VDM to EPI? % --------------------------------------------------------------------- matchvdm = cfg_menu; matchvdm.tag = 'matchvdm'; matchvdm.name = 'Match VDM to EPI?'; matchvdm.help = {'Match VDM file to EPI image. This will coregister the field map data to the selected EPI for each run/session.'}; matchvdm.labels = { 'match VDM' 'none' }'; matchvdm.values{1} = 1; matchvdm.values{2} = 0; % --------------------------------------------------------------------- % sessname Name extension for session specific vdm files % --------------------------------------------------------------------- sessname = cfg_entry; sessname.tag = 'sessname'; sessname.name = 'VDM filename extension'; sessname.help = {'Filename extension for run/session specific VDM files. The extension will be followed by an incremented integer for run/session number.'}; sessname.strtype = 's'; sessname.num = [1 Inf]; sessname.def = @(val)pm_get_defaults('sessname', val{:}); % --------------------------------------------------------------------- % writeunwarped Write unwarped EPI? % --------------------------------------------------------------------- writeunwarped = cfg_menu; writeunwarped.tag = 'writeunwarped'; writeunwarped.name = 'Write unwarped EPI?'; writeunwarped.help = {'Write out distortion corrected EPI image. The image is saved with the prefix u. Note that this option is mainly for quality control of correction so that the original and distortion corrected images can be displayed for comparison. To unwarp multiple images please use either Realign & Unwarp or Apply VDM.'}; writeunwarped.labels = { 'write unwarped EPI' 'none' }'; writeunwarped.values{1} = 1; writeunwarped.values{2} = 0; % --------------------------------------------------------------------- % anat Select anatomical image for comparison % --------------------------------------------------------------------- anat = cfg_files; anat.tag = 'anat'; anat.name = 'Select anatomical image for comparison'; anat.help = {'Select an anatomical image for comparison with the distortion corrected EPI or leave empty. Note that this option is mainly for quality control of correction.'}; anat.filter = 'image'; anat.ufilter = '.*'; anat.num = [0 1]; anat.val = {''}; % --------------------------------------------------------------------- % matchanat Match anatomical image to EPI? % --------------------------------------------------------------------- matchanat = cfg_menu; matchanat.tag = 'matchanat'; matchanat.name = 'Match anatomical image to EPI?'; matchanat.help = {'Match the anatomical image to the distortion corrected EPI. Note that this option is mainly for quality control of correction allowing for visual inspection and comparison of the distortion corrected EPI.'}; matchanat.labels = { 'none' 'match anat' }'; matchanat.values{1} = 0; matchanat.values{2} = 1; % --------------------------------------------------------------------- % --------------------------------------------------------------------- % Different kinds of input jobs % --------------------------------------------------------------------- % --------------------------------------------------------------------- % 1) Presubtracted phase and magnitude data % --------------------------------------------------------------------- % phase Phase Image % --------------------------------------------------------------------- phase = cfg_files; phase.tag = 'phase'; phase.name = 'Phase Image'; phase.help = {'Select a single phase image. This should be the result from the subtraction of two phase images (where the subtraction is usually done automatically by the scanner software). The phase image will be scaled between +/- PI.'}; phase.filter = 'image'; phase.ufilter = '.*'; phase.num = [1 1]; % --------------------------------------------------------------------- % magnitude Magnitude Image % --------------------------------------------------------------------- magnitude = cfg_files; magnitude.tag = 'magnitude'; magnitude.name = 'Magnitude Image'; magnitude.help = {'Select a single magnitude image. This is used for masking the phase information and coregistration with the EPI data. If two magnitude images are available, select the one acquired at the shorter echo time because it will have greater signal'}; magnitude.filter = 'image'; magnitude.ufilter = '.*'; magnitude.num = [1 1]; % --------------------------------------------------------------------- % subj Subject % --------------------------------------------------------------------- subj = cfg_branch; subj.tag = 'subj'; subj.name = 'Subject'; subj.val = {phase magnitude defaults generic1 matchvdm sessname writeunwarped anat matchanat }; subj.help = {'Data for this subject or field map session.'}; % --------------------------------------------------------------------- % generic Data % --------------------------------------------------------------------- generic = cfg_repeat; generic.tag = 'generic'; generic.name = 'Data'; generic.help = {'Subjects or sessions for which individual field map data has been acquired.'}; generic.values = {subj }; generic.num = [1 Inf]; % --------------------------------------------------------------------- % presubphasemag Presubtracted Phase and Magnitude Data % --------------------------------------------------------------------- presubphasemag = cfg_exbranch; presubphasemag.tag = 'presubphasemag'; presubphasemag.name = 'Presubtracted Phase and Magnitude Data'; presubphasemag.val = {generic }; presubphasemag.help = {'Calculate a voxel displacement map (VDM) from presubtracted phase and magnitude field map data. This option expects a single magnitude image and a single phase image resulting from the subtraction of two phase images (where the subtraction is usually done automatically by the scanner software). The phase image will be scaled between +/- PI.'}; presubphasemag.prog = @fieldmap_presubphasemag; presubphasemag.vout = @vout; % --------------------------------------------------------------------- % 2) Real and imaginary data % --------------------------------------------------------------------- % shortreal Short Echo Real Image % --------------------------------------------------------------------- shortreal = cfg_files; shortreal.tag = 'shortreal'; shortreal.name = 'Short Echo Real Image'; shortreal.help = {'Select short echo real image'}; shortreal.filter = 'image'; shortreal.ufilter = '.*'; shortreal.num = [1 1]; % --------------------------------------------------------------------- % shortimag Short Echo Imaginary Image % --------------------------------------------------------------------- shortimag = cfg_files; shortimag.tag = 'shortimag'; shortimag.name = 'Short Echo Imaginary Image'; shortimag.help = {'Select short echo imaginary image'}; shortimag.filter = 'image'; shortimag.ufilter = '.*'; shortimag.num = [1 1]; % --------------------------------------------------------------------- % longreal Long Echo Real Image % --------------------------------------------------------------------- longreal = cfg_files; longreal.tag = 'longreal'; longreal.name = 'Long Echo Real Image'; longreal.help = {'Select long echo real image'}; longreal.filter = 'image'; longreal.ufilter = '.*'; longreal.num = [1 1]; % --------------------------------------------------------------------- % longimag Long Echo Imaginary Image % --------------------------------------------------------------------- longimag = cfg_files; longimag.tag = 'longimag'; longimag.name = 'Long Echo Imaginary Image'; longimag.help = {'Select long echo imaginary image'}; longimag.filter = 'image'; longimag.ufilter = '.*'; longimag.num = [1 1]; % --------------------------------------------------------------------- % subj Subject % --------------------------------------------------------------------- subj = cfg_branch; subj.tag = 'subj'; subj.name = 'Subject'; subj.val = {shortreal shortimag longreal longimag defaults generic1 matchvdm sessname writeunwarped anat matchanat }; subj.help = {'Data for this subject or field map session.'}; % --------------------------------------------------------------------- % generic Data % --------------------------------------------------------------------- generic = cfg_repeat; generic.tag = 'generic'; generic.name = 'Data'; generic.help = {'Subjects or sessions for which individual field map data has been acquired.'}; generic.values = {subj }; generic.num = [1 Inf]; % --------------------------------------------------------------------- % realimag Real and Imaginary Data % --------------------------------------------------------------------- realimag = cfg_exbranch; realimag.tag = 'realimag'; realimag.name = 'Real and Imaginary Data'; realimag.val = {generic }; realimag.help = {'Calculate a voxel displacement map (VDM) from real and imaginary field map data. This option expects two real and imaginary pairs of data of two different echo times. The phase images will be scaled between +/- PI.'}; realimag.prog = @fieldmap_realimag; realimag.vout = @vout; % --------------------------------------------------------------------- % 3) Phase and magnitude (4 files) % --------------------------------------------------------------------- % shortphase Short Echo Phase Image % --------------------------------------------------------------------- shortphase = cfg_files; shortphase.tag = 'shortphase'; shortphase.name = 'Short Echo Phase Image'; shortphase.help = {'Select short echo phase image'}; shortphase.filter = 'image'; shortphase.ufilter = '.*'; shortphase.num = [1 1]; % --------------------------------------------------------------------- % shortmag Short Echo Magnitude Image % --------------------------------------------------------------------- shortmag = cfg_files; shortmag.tag = 'shortmag'; shortmag.name = 'Short Echo Magnitude Image'; shortmag.help = {'Select short echo magnitude image'}; shortmag.filter = 'image'; shortmag.ufilter = '.*'; shortmag.num = [1 1]; % --------------------------------------------------------------------- % longphase Long Echo Phase Image % --------------------------------------------------------------------- longphase = cfg_files; longphase.tag = 'longphase'; longphase.name = 'Long Echo Phase Image'; longphase.help = {'Select long echo phase image'}; longphase.filter = 'image'; longphase.ufilter = '.*'; longphase.num = [1 1]; % --------------------------------------------------------------------- % longmag Long Echo Magnitude Image % --------------------------------------------------------------------- longmag = cfg_files; longmag.tag = 'longmag'; longmag.name = 'Long Echo Magnitude Image'; longmag.help = {'Select long echo magnitude image'}; longmag.filter = 'image'; longmag.ufilter = '.*'; longmag.num = [1 1]; % --------------------------------------------------------------------- % subj Subject % --------------------------------------------------------------------- subj = cfg_branch; subj.tag = 'subj'; subj.name = 'Subject'; subj.val = {shortphase shortmag longphase longmag defaults generic1 matchvdm sessname writeunwarped anat matchanat }; subj.help = {'Data for this subject or field map session.'}; % --------------------------------------------------------------------- % generic Data % --------------------------------------------------------------------- generic = cfg_repeat; generic.tag = 'generic'; generic.name = 'Data'; generic.help = {'Subjects or sessions for which individual field map data has been acquired.'}; generic.values = {subj }; generic.num = [1 Inf]; % --------------------------------------------------------------------- % phasemag Phase and Magnitude Data % --------------------------------------------------------------------- phasemag = cfg_exbranch; phasemag.tag = 'phasemag'; phasemag.name = 'Phase and Magnitude Data'; phasemag.val = {generic }; phasemag.help = {'Calculate a voxel displacement map (VDM) from double phase and magnitude field map data. This option expects two phase and magnitude pairs of data of two different echo times.'}; phasemag.prog = @fieldmap_phasemag; phasemag.vout = @vout; % --------------------------------------------------------------------- % 4) Precalculated fieldmap % --------------------------------------------------------------------- % precalcfieldmap Precalculated field map % --------------------------------------------------------------------- precalcfieldmap1 = cfg_files; precalcfieldmap1.tag = 'precalcfieldmap'; precalcfieldmap1.name = 'Precalculated field map'; precalcfieldmap1.help = {'Select a precalculated field map. This should be a processed field map (ie phase unwrapped, masked if necessary and scaled to Hz) , for example as generated by the FieldMap toolbox and are stored with fpm_* prefix.'}; precalcfieldmap1.filter = 'image'; precalcfieldmap1.ufilter = '.*'; precalcfieldmap1.num = [1 1]; % --------------------------------------------------------------------- % magfieldmap Select magnitude image in same space as fieldmap % --------------------------------------------------------------------- magfieldmap = cfg_files; magfieldmap.tag = 'magfieldmap'; magfieldmap.name = 'Select magnitude image in same space as fieldmap'; magfieldmap.help = {'Select magnitude image which is in the same space as the field map to do matching to EPI.'}; magfieldmap.filter = 'image'; magfieldmap.ufilter = '.*'; magfieldmap.num = [0 1]; % --------------------------------------------------------------------- % subj Subject % --------------------------------------------------------------------- subj = cfg_branch; subj.tag = 'subj'; subj.name = 'Subject'; subj.val = {precalcfieldmap1 magfieldmap defaults generic1 matchvdm sessname writeunwarped anat matchanat }; subj.help = {'Data for this subject or field map session.'}; % --------------------------------------------------------------------- % generic Data % --------------------------------------------------------------------- generic = cfg_repeat; generic.tag = 'generic'; generic.name = 'Data'; generic.help = {'Subjects or sessions for which individual field map data has been acquired.'}; generic.values = {subj }; generic.num = [1 Inf]; % --------------------------------------------------------------------- % precalcfieldmap Precalculated FieldMap (in Hz) % --------------------------------------------------------------------- precalcfieldmap = cfg_exbranch; precalcfieldmap.tag = 'precalcfieldmap'; precalcfieldmap.name = 'Precalculated FieldMap (in Hz)'; precalcfieldmap.val = {generic }; precalcfieldmap.help = {'Calculate a voxel displacement map (VDM) from a precalculated field map. This option expects a processed field map (ie phase unwrapped, masked if necessary and scaled to Hz). Precalculated field maps can be generated by the FieldMap toolbox and stored as fpm_* files.'}; precalcfieldmap.prog = @fieldmap_precalcfieldmap; precalcfieldmap.vout = @vout; % --------------------------------------------------------------------- % 5) Apply vdm* file % --------------------------------------------------------------------- % scans Images % --------------------------------------------------------------------- scans = cfg_files; scans.tag = 'scans'; scans.name = 'Images'; scans.help = { 'Select scans for this session. These are assumed to be realigned to the first in the time series (e.g. using Realign: Estimate) but do not need to be resliced' }; scans.filter = 'image'; scans.ufilter = '.*'; scans.num = [1 Inf]; % --------------------------------------------------------------------- % vdmfile selected vdm files % --------------------------------------------------------------------- vdmfile = cfg_files; vdmfile.tag = 'vdmfile'; vdmfile.name = 'Fieldmap (vdm* file)'; vdmfile.help = {'Select VDM (voxel displacement map) for this session (e.g. created via FieldMap toolbox). This is assumed to be in alignment with the images selected for resampling (note this can be achieved via the FieldMap toolbox).'}; vdmfile.filter = 'image'; vdmfile.ufilter = '.*'; vdmfile.num = [1 1]; % --------------------------------------------------------------------- % vdmapply session Session % --------------------------------------------------------------------- data = cfg_branch; data.tag = 'data'; data.name = 'Session'; data.val = {scans vdmfile}; data.help = {'Data for this session.'}; % --------------------------------------------------------------------- % generic Data % --------------------------------------------------------------------- generic2 = cfg_repeat; generic2.tag = 'generic2'; generic2.name = 'Data'; generic2.help = {'Subjects or sessions for which VDM file is being applied to images.'}; generic2.values = {data}; generic2.num = [1 Inf]; % --------------------------------------------------------------------- % Reslice options for applyvdm % --------------------------------------------------------------------- % --------------------------------------------------------------------- % wrap Wrapping % --------------------------------------------------------------------- pedir = cfg_menu; pedir.tag = 'pedir'; pedir.name = 'Distortion direction'; pedir.help = { 'In which direction are the distortions? Any single dimension can be corrected therefore input data may have been acquired with phase encode directions in Y (most typical), X or Z'}; pedir.labels = { 'Posterior-Anterior (Y)' 'Right-Left (X)' 'Foot-Head (Z)'}'; pedir.values = {[2] [1] [3]}; pedir.def = @(val)pm_get_defaults('pedir', val{:}); % --------------------------------------------------------------------- % Which images to reslice? % --------------------------------------------------------------------- applyvdmwhich = cfg_menu; applyvdmwhich.tag = 'which'; applyvdmwhich.name = 'Reslice which images ?'; applyvdmwhich.help = { 'All Images (1..n) ' ' This applies the VDM and reslices all the images. ' 'All Images + Mean Image ' ' This applies the VDM reslices all the images and creates a mean of the resliced images.' }'; applyvdmwhich.labels = { ' All Images (1..n)' ' All Images + Mean Image' }'; applyvdmwhich.values = {[2 0] [2 1]}; applyvdmwhich.def = @(val)spm_get_defaults('realign.write.which', val{:}); % --------------------------------------------------------------------- % rinterp Interpolation % --------------------------------------------------------------------- rinterp = cfg_menu; rinterp.tag = 'rinterp'; rinterp.name = 'Interpolation'; rinterp.help = {'The method by which the images are sampled when being written in a different space. Nearest Neighbour is fastest, but not recommended for image realignment. Bilinear Interpolation is probably OK for PET, but not so suitable for fMRI because higher degree interpolation generally gives better results/* \cite{thevenaz00a,unser93a,unser93b}*/. Although higher degree methods provide better interpolation, but they are slower because they use more neighbouring voxels.'}; rinterp.labels = { 'Nearest neighbour' 'Trilinear' '2nd Degree B-spline ' '3rd Degree B-Spline' '4th Degree B-Spline' '5th Degree B-Spline ' '6th Degree B-Spline' '7th Degree B-Spline' }'; rinterp.values = {0 1 2 3 4 5 6 7}; rinterp.def = @(val)spm_get_defaults('realign.write.interp', val{:}); % --------------------------------------------------------------------- % wrap Wrapping % --------------------------------------------------------------------- wrap = cfg_menu; wrap.tag = 'wrap'; wrap.name = 'Wrapping'; wrap.help = { 'This indicates which directions in the volumes the values should wrap around in. For example, in MRI scans, the images wrap around in the phase encode direction, so (e.g.) the subject''s nose may poke into the back of the subject''s head. These are typically:' ' No wrapping - for PET or images that have already been spatially transformed. Also the recommended option if you are not really sure.' ' Wrap in Y - for (un-resliced) MRI where phase encoding is in the Y direction (voxel space) etc.' }'; wrap.labels = { 'No wrap' 'Wrap X' 'Wrap Y' 'Wrap X & Y' 'Wrap Z ' 'Wrap X & Z' 'Wrap Y & Z' 'Wrap X, Y & Z' }'; wrap.values = {[0 0 0] [1 0 0] [0 1 0] [1 1 0] [0 0 1] [1 0 1] [0 1 1]... [1 1 1]}; wrap.def = @(val)spm_get_defaults('realign.write.wrap', val{:}); % --------------------------------------------------------------------- % mask Masking % --------------------------------------------------------------------- mask = cfg_menu; mask.tag = 'mask'; mask.name = 'Masking'; mask.help = {'Because of subject motion, different images are likely to have different patterns of zeros from where it was not possible to sample data. With masking enabled, the program searches through the whole time series looking for voxels which need to be sampled from outside the original images. Where this occurs, that voxel is set to zero for the whole set of images (unless the image format can represent NaN, in which case NaNs are used where possible).'}; mask.labels = { 'Mask images' 'Dont mask images' }'; mask.values = {1 0}; mask.def = @(val)spm_get_defaults('realign.write.mask', val{:}); % --------------------------------------------------------------------- % prefix Filename Prefix % --------------------------------------------------------------------- prefix = cfg_entry; prefix.tag = 'prefix'; prefix.name = 'Filename Prefix'; prefix.help = {'Specify the string to be prepended to the filenames of the distortion corrected image file(s). Default prefix is ''u''.'}; prefix.strtype = 's'; prefix.num = [1 Inf]; prefix.def = @(val)spm_get_defaults('unwarp.write.prefix', val{:}); % --------------------------------------------------------------------- % applyvdmroptions Reslicing Options % --------------------------------------------------------------------- applyvdmroptions = cfg_branch; applyvdmroptions.tag = 'roptions'; applyvdmroptions.name = 'Reslice Options'; applyvdmroptions.val = {pedir applyvdmwhich rinterp wrap mask prefix }; applyvdmroptions.help = {'Apply VDM reslice options'}; % --------------------------------------------------------------------- % applyvdm Apply vdm* file to EPI files % --------------------------------------------------------------------- applyvdm = cfg_exbranch; applyvdm.tag = 'applyvdm'; applyvdm.name = 'Apply VDM '; applyvdm.val = {generic2 applyvdmroptions}; applyvdm.help = {'Apply VDM (voxel displacement map) to resample voxel values in selected image(s). This allows a VDM to be applied to any images which are assumed to be already realigned (e.g. including EPI fMRI time series and DTI data).' 'The VDM can be been created from a field map acquisition using the FieldMap toolbox and comprises voxel shift values which describe geometric distortions occuring as a result of magnetic susceptbility artefacts. Distortions along any single dimension can be corrected therefore input data may have been acquired with phase encode directions in X, Y (most typical) and Z.' 'The selected images are assumed to be realigned to the first in the time series (e.g. using Realign: Estimate) but do not need to be resliced. The VDM is assumed to be in alignment with the images selected for resampling (note this can be achieved via the FieldMap toolbox). The resampled images are written to the input subdirectory with the same (prefixed) filename.' 'e.g. The typical processing steps for fMRI time series would be 1) Realign: Estimate, 2) FieldMap to create VDM, 3) Apply VDM.' 'Note that this routine is a general alternative to using the VDM in combination with Realign & Unwarp which estimates and corrects for the combined effects of static and movement-related susceptibility induced distortions. Apply VDM can be used when dynamic distortions are not (well) modelled by Realign & Unwarp (e.g. for fMRI data acquired with R->L phase-encoding direction, high field fMRI data or DTI data).' }'; applyvdm.prog = @fieldmap_applyvdm; applyvdm.vout = @vout_applyvdm; % --------------------------------------------------------------------- % fieldmap FieldMap % --------------------------------------------------------------------- fieldmap = cfg_choice; fieldmap.tag = 'fieldmap'; fieldmap.name = 'FieldMap'; fieldmap.help = { 'The FieldMap toolbox generates unwrapped field maps which are converted to voxel displacement maps (VDM) that can be used to unwarp geometrically distorted EPI images. For references and an explantion of the theory behind the field map based unwarping, see FieldMap_principles.man. The resulting VDM files are saved with the prefix vdm and can be applied to images using Apply VDM or in combination with Realign & Unwarp to calculate and correct for the combined effects of static and movement-related susceptibility induced distortions.' '' }'; fieldmap.values = {presubphasemag realimag phasemag precalcfieldmap applyvdm}; %------------------------------------------------------------------------ function out=fieldmap_presubphasemag(job) for i=1:numel(job.subj), out(i)=FieldMap_Run(job.subj(i)); end %------------------------------------------------------------------------ function out=fieldmap_realimag(job) for i=1:numel(job.subj), out(i)=FieldMap_Run(job.subj(i)); end %------------------------------------------------------------------------ function out=fieldmap_phasemag(job) for i=1:numel(job.subj), out(i)=FieldMap_Run(job.subj(i)); end %------------------------------------------------------------------------ function out=fieldmap_precalcfieldmap(job) for i=1:numel(job.subj), out(i)=FieldMap_Run(job.subj(i)); end %------------------------------------------------------------------------ function out=fieldmap_applyvdm(job) out=FieldMap_applyvdm(job); %------------------------------------------------------------------------ function dep = vout(job) depnum=1; for k=1:numel(job.subj) for l=1:numel(job.subj(k).session) dep(depnum) = cfg_dep; dep(depnum).sname = sprintf('Voxel displacement map (Subj %d, Session %d)',k,l); dep(depnum).src_output = substruct('()',{k},'.','vdmfile','{}',{l}); dep(depnum).tgt_spec = cfg_findspec({{'filter','image','strtype','e'}}); depnum=depnum+1; end end; %------------------------------------------------------------------------ function dep = vout_applyvdm(job) for k=1:numel(job.data) if job.roptions.which(1) > 0 cdep(1) = cfg_dep; cdep(1).sname = sprintf('VDM corrected images (Sess %d)', k); cdep(1).src_output = substruct('.','sess', '()',{k}, '.','rfiles'); cdep(1).tgt_spec = cfg_findspec({{'filter','image','strtype','e'}}); end; if k == 1 dep = cdep; else dep = [dep cdep]; end; end if ~strcmp(job.roptions.which,'<UNDEFINED>') && job.roptions.which(2), if exist('dep','var') dep(end+1) = cfg_dep; else dep = cfg_dep; end; dep(end).sname = 'Mean Image'; dep(end).src_output = substruct('.','rmean'); dep(end).tgt_spec = cfg_findspec({{'filter','image','strtype','e'}}); end;
github
philippboehmsturm/antx-master
spmmouse.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/spmmouse/spmmouse.m
14,273
utf_8
d9d85092bf19b02c78ec7c433004ca7b
function spmmouse(varargin) %SPMMouse - toolbox for SPM for animal brains %Stephen Sawiak - http://www.wbic.cam.ac.uk/~sjs80/spmmouse.html global spmmouseset fg = spm_figure('FindWin','Menu'); if isempty(fg) spm('PET'); end % what should we do if nargin == 0 showinfo; return; end str = varargin{1}; switch lower(str) case {'load','loadpreset'} loadpreset(varargin{2:end}); case 'unload' unload; case 'createpreset' createpreset; case 'loadimage' loadimage; case 'autochk' autochk; case 'slideru' slideru; case 'sliderl' sliderl; case 'slidert' slidert; case 'createmip' createmip; case 'priors' priors; case 'savepreset' savepreset; case 'applypreset' applypreset; end %------------------------------ function initspmmouseset global spmmouseset mypath = mfilename('fullpath'); spmmouseset.oldpath = path; spmmouseset.path = fileparts(mypath); spmmouseset.title = 'SPMMouse v1.0'; spmmouseset.margin = 15; spmmouseset.size = [400 364]; %------------------------------ function showinfo global spmmouseset; if isempty(spmmouseset) initspmmouseset; end; try gfig = spm_figure('FindWin','Graphics'); figure(gfig); catch fprintf(1,'Could not find SPM graphics window ! Is SPM loaded ?\n'); return; end % clear everything visible from graphics window delete(findobj(get(gfig,'Children'),'flat','HandleVisibility','on')); % clear callbacks set(gfig,'KeyPressFcn','','WindowButtonDownFcn','','WindowButtonMotionFcn','','WindowButtonUpFcn',''); winscale = spm('WinScale'); tTitle = uicontrol(gfig,'Style','Text','Position',[20 800 560 40].*winscale,'String',spmmouseset.title,'FontSize',24,'BackgroundColor','w'); tInfo = uicontrol(gfig,'Style','Edit','Position',[20 180 560 560].*winscale,... 'FontSize',14,'FontWeight','normal','BackgroundColor',[1 1 0.5],'Min',0,'Max',2,'Enable','on','Value',0,'Enable','inactive'); newl = sprintf('\n'); set(tInfo,'String', ... {'SPMMouse is a series of modifications to SPM making it easy to use non-human brains. It includes templates for the mouse brain but is generally applicable, and an interface is provided to make a ''glass brain'' from any brain-extracted image.',newl,... 'Modifications to default settings allow realign, coregister, normalise, segment, etc to work with non-human images. A new option appears in Display allowing an overlay to be displayed on the image, easing initial manual registration.',newl,... 'Use of VBM in the mouse brain is described in',... 'S.J. Sawiak et al. "Voxel-based Morphometry Reveals Changes Not Seen with Manual 2D Volumetry in the R6/2 Huntingdon''s disease mouse brain. Neurobiol. Dis. (2009) 33(1) p20-27',newl,... 'Please cite this paper if you use this toolbox. Sample data, updates and tutorials are available from',... ' http://www.wbic.cam.ac.uk/~sjs80/spmmouse.html','',... 'Bug reports and suggestions should be sent to','','Stephen Sawiak','[email protected]'}); set(tInfo,'Listboxtop',1) uicontrol('Position',[20 760 148 30].*winscale,'String','Load Animal Preset',... 'Callback','spmmouse(''loadpreset'');'); uicontrol('Position',[180 760 148 30].*winscale,'String','Create Animal Preset',... 'Callback','spmmouse(''createpreset'');'); uicontrol('Position',[340 760 148 30].*winscale,'String','Unload SPMMouse',... 'Callback','spmmouse(''unload'');'); try im=imread('mouse.jpg'); axes('Position',[0.8 0.01 0.2 0.2]); imagesc(im);axis image off; catch % it doesn't matter if the mouse can't be displayed ;) end %-------------------------- function unload global spmmouseset if ~isempty(spmmouseset) adjustdefaults('unset'); spmmouseset=[]; end %-------------------------- function loadpreset(filename) % If no filename given, use GUI to ask for details & print summary. With % a filename, work silently. global spmmouseset; if isempty(spmmouseset) initspmmouseset; end; if nargin == 0 % % ask user for a preset file filename = spm_select(1,'mat','Select preset...',[], ... spmmouseset.path); end try preset = load(char(filename)); catch fprintf(1,'Couldn''t open file, or file is corrupt / not preset file! Aborting.\n'); return; end %load things about the glass brain and scaling factors try spmmouseset.animal.name = preset.name; spmmouseset.animal.mipmat= preset.mipmat; load(char(preset.mipmat),'scale'); spmmouseset.animal.scale = 1./scale(1); catch fprintf(1,'Critical fields missing from preset file - aborting\n.'); return; end if(isfield(preset,'isig')) % does the file have any priors in it? % will be read by replaced/spm_affine_priors.m spmmouseset.animal.isig = preset.isig; spmmouseset.animal.mu = preset.mu(:); end if(isfield(preset,'grey')) % can we open the file? if ~spm_existfile(preset.grey) % no - is it in the spmmouse tpm directory? [gpth,gnm,gext,gfr] = spm_fileparts(preset.grey); [wpth,wnm,wext,wfr] = spm_fileparts(preset.white); [cpth,cnm,cext,cfr] = spm_fileparts(preset.csf); % best just pretend we have nothing preset = rmfield(preset,{'grey','white','csf'}); % try to find tpms if spm_existfile(fullfile(spmmouseset.path,'tpm',[gnm gext])) % yes - let's just update it preset.grey = fullfile(spmmouseset.path,'tpm',[gnm gext gfr]); % white and csf files probably in same place, let's % take a chance ... preset.white= fullfile(spmmouseset.path,'tpm',[wnm wext wfr]); preset.csf = fullfile(spmmouseset.path,'tpm',[cnm cext cfr]); elseif nargin == 0 % no - ask the user if strcmpi(questdlg(sprintf('Couldn''t find \n"%s"\n\nWould you like to locate tissue probability maps now?', preset.grey), preset.name, 'Yes', 'No', 'Yes'),'yes') [files,sts] = spm_select(3,'image','Select grey, white, csf TPMs'); if sts preset.grey = deblank(files(1,:)); preset.white = deblank(files(2,:)); preset.csf = deblank(files(3,:)); % user will probably want to save this, % let's just do it try save(filename, '-v6', '-struct', 'preset'); catch warning('Couldn''t save amended preset file'); end end end end end end if isfield(preset,'grey') spmmouseset.animal.tpm = char(... preset.grey,... preset.white,... preset.csf); % Prior probability maps end adjustdefaults; if nargin == 0 try gfig = findobj('Tag','Graphics'); figure(gfig); catch fprintf(1,'Could not find SPM graphics window ! Is SPM loaded ?\n'); return; end % clear everything visible from graphics window delete(findobj(get(gfig,'Children'),'flat','HandleVisibility','on')); % clear callbacks set(gfig,'KeyPressFcn','','WindowButtonDownFcn','','WindowButtonMotionFcn','','WindowButtonUpFcn',''); winscale = spm('WinScale'); tTitle = uicontrol(gfig,'Style','Text','Position',[20 800 560 40].*winscale,'String',spmmouseset.title,'FontSize',24,'BackgroundColor','w'); tName = uicontrol(gfig,'Style','Text','Position',[20 700 560 40].*winscale,'String',spmmouseset.animal.name,'FontSize',14,'BackgroundColor','w','FontWeight','bold','ForegroundColor','b'); uicontrol('Position',[20 760 148 30].*winscale,'String','Show Welcome Screen',... 'Callback','spmmouse;'); %uicontrol('Position',[180 760 148 30].*winscale,'String','Edit Preset',... % 'Callback','spmmouse(''editpreset'');'); % display details of the loaded preset axmip = axes('Position',[0.1 0.4 0.4 0.4]); mip=load(char(preset.mipmat)); imagesc(rot90(mip.mask_all)); axis image off; colormap gray; title('Preview of MIP template'); if(isfield(preset,'grey')) strtpms = sprintf('TPMs:\n%s\n%s\n%s\n',preset.grey,preset.white,preset.csf); else strtpms = sprintf('No TPMs specified in preset.\n'); end tInfo = uicontrol(gfig,'Style','Text','Position',[20 50 560 250].*winscale,'String','','FontSize',12,'BackgroundColor','w','FontWeight','bold'); set(tInfo, 'String', ... {sprintf('CX %i CY %i CZ %i DX %i DY %i DZ %i scale %f %f %f', ... mip.CXYZ, mip.DXYZ, mip.scale), ... '',strtpms,'','preset file:',filename,'','Ready to go, use SPM as normal.',''}); end %---------------------------------- function adjustdefaults(cmd) % Set and unset small animal specific defaults for spatial processing % FORMAT adjustdefaults('set') % Override SPM (human brain sized) defaults with values suitable for % images with smaller FOV. Previous defaults will be saved. % FORMAT adjustdefaults('unset') % Reset defaults to values before the last call to % adjustdefaults('set'). Usually, this will be human brain sized % defaults, except if adjustdefaults('set') has been called more than % once. persistent olddefs global spmmouseset; if nargin == 0 cmd = 'set'; end % Defaults sections to be modified %======================================================================= defnames = {'realign','unwarp','coreg','normalise','preproc','smooth','stats'}; switch cmd, case 'set' try for cdef = 1:numel(defnames) olddefs.(defnames{cdef}) = spm_get_defaults(defnames{cdef}); end newdefs = olddefs; animal = spmmouseset.animal; % now adjust all settings based on scale - all these numbers can be % adjusted in the particular interfaces for each function, they are % reasonable enough but not really worth adding a further fudge-factor % modifying interface... fixedscale = 0.01 * round(animal.scale * 100); newdefs.realign.estimate.sep = 3*fixedscale; newdefs.realign.estimate.fwhm = 4*fixedscale; newdefs.unwarp.estimate.fwhm = 4*fixedscale; newdefs.unwarp.estimate.basfcn = [12 12]*fixedscale; newdefs.coreg.estimate.sep = fixedscale*[4 2]; newdefs.coreg.estimate.tol = [0.02 0.02 0.02 0.001 0.001 0.001 0.01 0.01 0.01 0.001 0.001 0.001]; newdefs.coreg.estimate.fwhm = 7*[fixedscale fixedscale]; % bug fix 22/7/09 newdefs.normalise.estimate.smosrc = 8*fixedscale; newdefs.normalise.estimate.smoref = 0; newdefs.normalise.estimate.regtype = 'none'; newdefs.normalise.estimate.cutoff = 25*fixedscale; newdefs.normalise.write.bb = [[-6 -10 -10];[6 7 1]]; newdefs.normalise.write.vox = fixedscale*[2 2 2]; % for bias correction allowedvals = [1,2,5,10,20,30,40,50,60,70,80,90,100,110,120,130,140,150,Inf]; newdefs.preproc.ngaus = [3 2 2 4]'; % Gaussians per class newdefs.preproc.warpco = 25*fixedscale; newdefs.preproc.biasfwhm = allowedvals(find(allowedvals>=(60*fixedscale),1,'first')); newdefs.preproc.fudge = .5; newdefs.preproc.samp = 3*fixedscale; newdefs.preproc.regtype = 'animal'; if(isfield(animal,'tpm')) newdefs.preproc.tpm = cellstr(animal.tpm); end newdefs.smooth.fwhm = [8 8 8].*fixedscale; newdefs.stats.results.volume.distmin = 8*fixedscale; newdefs.stats.results.svc.distmin = 4*fixedscale; newdefs.stats.results.mipmat = animal.mipmat; catch fprintf(1,'Error occured setting defaults in spmmouse :(\n'); return; end spm_get_defaults('animal', spmmouseset.animal); for cdef = 1:numel(defnames) spm_get_defaults(defnames{cdef},newdefs.(defnames{cdef})); end % Zoom defaults %=============================================================== [olddefs.orthviews.zoom.fov olddefs.orthviews.zoom.res] = ... spm_orthviews('ZoomMenu'); newdefs.orthviews.zoom.fov = [Inf 20 10 5 2 1]; newdefs.orthviews.zoom.res = [ .1 .05 .05 .025 .01 .01]; spm_orthviews('ZoomMenu',newdefs.orthviews.zoom.fov, newdefs.orthviews.zoom.res); % VBM8 defaults %=============================================================== try olddefs.vbm8.opts = cg_vbm8_get_defaults('opts'); newdefs.vbm8.opts = olddefs.vbm8.opts; newdefs.vbm8.opts.tpm = {fullfile(spm('dir'),'toolbox','Seg','TPM.nii')}; % TPM.nii newdefs.vbm8.opts.ngaus = [3 2 2 3 4 2]; % Gaussians per class newdefs.vbm8.opts.affreg = 'animal'; % Affine regularisation newdefs.vbm8.opts.biasfwhm = allowedvals(find(allowedvals>=(60*fixedscale),1,'first')); % Bias FWHM newdefs.vbm8.opts.samp = 3*fixedscale; % Sampling distance cg_vbm8_get_defaults('opts',newdefs.vbm8.opts); end addpath(fullfile(spmmouseset.path,'replaced'),'-begin'); case 'unset', if ~isempty(olddefs) for cdef = 1:numel(defnames) spm_get_defaults(defnames{cdef},olddefs.(defnames{cdef})); end spm_orthviews('ZoomMenu',olddefs.orthviews.zoom.fov, olddefs.orthviews.zoom.res); if isfield(olddefs,'vbm8') cg_vbm8_get_defaults('opts',olddefs.vbm8.opts); end end spm_get_defaults('animal',[]); rmpath(fullfile(spmmouseset.path,'replaced')); end
github
philippboehmsturm/antx-master
tbx_cfg_spmmouse.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/spmmouse/tbx_cfg_spmmouse.m
4,675
utf_8
b22be77a04d0c4a276ccaf167b8ddb45
function cfg = tbx_cfg_spmmouse % Adapted GUI for SPM Segment, New Segment and VBM8 including modified % choices for bias regularisation and affine registration options. Although % computation is done by standard SPM functions and the defaults are % changed in the global defaults variable, the cfg_menu GUIs can not % be altered in-place. % No configurable defaults or paths will be adjusted here. This has to be % done manually after SPM is started by calling spmmouse from MATLAB. cfg = cfg_choice; cfg.tag = 'animal'; cfg.name = 'Spatial processing (animals)'; cfg.help = {'This toolbox contains modified GUIs for SPM spatial processing of animal sized brains.' 'SPM functions that are not listed in this toolbox can be used from the normal menu.'}; % SPM Segment cpreproc = spm_cfg_preproc; cpreproc = cfg_menu_replace(cpreproc, 'biasfwhm',{... '1mm cutoff', '2mm cutoff', '5mm cutoff', '10mm cutoff', '20mm cutoff',... '30mm cutoff','40mm cutoff','50mm cutoff','60mm cutoff','70mm cutoff',... '80mm cutoff','90mm cutoff','100mm cutoff','110mm cutoff','120mm cutoff',... '130mm cutoff','140mm cutoff','150mm cutoff','No correction'},... {1,2,5,10,20,30,40,50,60,70,80,90,100,110,120,130,140,150,Inf}); cpreproc = cfg_menu_replace(cpreproc, 'regtype', ... { 'No Affine Registration' 'ICBM space template - European brains' 'ICBM space template - East Asian brains' 'Average sized template' 'Animal template' 'No regularisation' }', ... { '' 'mni' 'eastern' 'subj' 'animal' 'none' }'); cfg.values = {cpreproc}; % try New Segment % Note: New Segment does not (yet) have configurable defaults if exist(fullfile(spm('dir'),'toolbox','Seg'),'dir') opwd = pwd; try cd(fullfile(spm('dir'),'toolbox','Seg')); cpreproc8 = tbx_cfg_preproc8; cpreproc8 = cfg_menu_replace(cpreproc8, 'biasfwhm',{... '1mm cutoff', '2mm cutoff', '5mm cutoff', '10mm cutoff', '20mm cutoff',... '30mm cutoff','40mm cutoff','50mm cutoff','60mm cutoff','70mm cutoff',... '80mm cutoff','90mm cutoff','100mm cutoff','110mm cutoff','120mm cutoff',... '130mm cutoff','140mm cutoff','150mm cutoff','No correction'},... {1,2,5,10,20,30,40,50,60,70,80,90,100,110,120,130,140,150,Inf}); cpreproc8 = cfg_menu_replace(cpreproc8, 'affreg', ... { 'No Affine Registration' 'ICBM space template - European brains' 'ICBM space template - East Asian brains' 'Average sized template' 'Animal template' 'No regularisation' }', ... { '' 'mni' 'eastern' 'subj' 'animal' 'none' }'); cfg.values = [cfg.values {cpreproc8}]; end cd(opwd); end % try VBM8 New Segment if exist(fullfile(spm('dir'),'toolbox','vbm8'),'dir') opwd = pwd; try cd(fullfile(spm('dir'),'toolbox','Seg')); cvbm8 = tbx_cfg_vbm8; % Only want to copy estwrite branch tropts = cfg_tropts([], 0, inf, 0, inf, true); id = list(cvbm8,cfg_findspec({{'tag','estwrite'}}),tropts); cvbm8 = subsref(cvbm8,id{1}); cvbm8 = cfg_menu_replace(cvbm8, 'biasfwhm',{... '1mm cutoff', '2mm cutoff', '5mm cutoff', '10mm cutoff', '20mm cutoff',... '30mm cutoff','40mm cutoff','50mm cutoff','60mm cutoff','70mm cutoff',... '80mm cutoff','90mm cutoff','100mm cutoff','110mm cutoff','120mm cutoff',... '130mm cutoff','140mm cutoff','150mm cutoff','No correction'},... {1,2,5,10,20,30,40,50,60,70,80,90,100,110,120,130,140,150,Inf}); cvbm8 = cfg_menu_replace(cvbm8, 'affreg', ... { 'No Affine Registration' 'ICBM space template - European brains' 'ICBM space template - East Asian brains' 'Average sized template' 'Animal template' 'No regularisation' }', ... { '' 'mni' 'eastern' 'subj' 'animal' 'none' }'); cfg.values = [cfg.values {cvbm8}]; end cd(opwd); end function cfg = cfg_menu_replace(cfg, tag, labels, values) tropts = cfg_tropts([], 0, inf, 0, inf, true); id = list(cfg,cfg_findspec({{'tag',tag}}),tropts); citem = subsref(cfg,id{1}); citem.labels = labels; citem.values = values; cfg = subsasgn(cfg, id{1}, citem);
github
philippboehmsturm/antx-master
spm_klaff.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/DARTEL/spm_klaff.m
8,314
utf_8
0f0299ab4f49e2fbfa31b23c2f939ae1
function M = spm_klaff(Nf, Ng) % Affine registration by minimising Kullback-Leibler Divergence % FORMAT M = spm_klaff(Nf,Ng) % Nf - NIfTI handle for one image % Ng - Nifti handle for the other. If not passed, then % spm*/toolbox/Seg/TPM.nii is used. % M - The voxel-for-voxel affine transform % % The images that are matched are tissue probability maps, in the % same form as spm/toolbox/Seg/TPM.nii or the Template files % generated by DARTEL. To save some memory, no more than three % (GM, WM and other) classes are matched together. % % Note that the code is very memory hungry because it stores a % load of image gradients. If it doesn't work because of this, % the recommandation is to buy a more powerful computer. %________________________________________________________ % (c) Wellcome Trust Centre for NeuroImaging (2009) % John Ashburner % $Id: spm_klaff.m 4148 2011-01-04 16:49:23Z guillaume $ if nargin<2, Ng = fullfile(spm('Dir'),'toolbox','Seg','TPM.nii'); end if ischar(Nf), Nf = nifti(Nf); end if ischar(Ng), Ng = nifti(Ng); end deg = [2 2 2 1 1 1]; % Degree of interpolation to use df = [size(Nf.dat),1,1]; % Dimensions of data dg = [size(Ng.dat),1,1]; % Dimensions of data nd = min([df(4)+1,dg(4)]); % Use the first nd volumes. nd = min(nd,3); % Just use GM, WM & other g0 = loaddat(Ng,nd); % Data structure for template c = cell(1,nd); for k=1:nd, c{k} = zeros(dg(1:3),'single'); end g = struct('g',c,'dx',c,'dy',c,'dz',c); clear c [x,y,zz] = ndgrid(1:dg(1),1:dg(2),0); for k=1:nd, c = spm_bsplinc(g0{k},deg); for z=1:dg(3), [tmp,dx,dy,dz] = spm_bsplins(c,x,y,z+zz,deg); g(k).g(:,:,z) = single(exp(tmp)); g(k).dx(:,:,z) = single(dx); g(k).dy(:,:,z) = single(dy); g(k).dz(:,:,z) = single(dz); end clear c tmp dx dy dz end clear g0 % Compute derivatives (see Eqn 12 of Ashburner & Friston (2009)). for z=1:dg(3), sx = zeros(dg(1:2),'single'); sy = zeros(dg(1:2),'single'); sz = zeros(dg(1:2),'single'); for k=1:nd, tmp = g(k).g(:,:,z); sx = sx + g(k).dx(:,:,z).*tmp; sy = sy + g(k).dy(:,:,z).*tmp; sz = sz + g(k).dz(:,:,z).*tmp; end for k=1:nd, tmp = g(k).g(:,:,z); g(k).dx(:,:,z) = (g(k).dx(:,:,z) - sx).*tmp; g(k).dy(:,:,z) = (g(k).dy(:,:,z) - sy).*tmp; g(k).dz(:,:,z) = (g(k).dz(:,:,z) - sz).*tmp; end clear tmp sx sy sz drawnow end f = loaddat(Nf,nd); for k=1:nd, f{k} = spm_bsplinc(double(f{k}),deg); end M = Nf.mat\Ng.mat; spm_plot_convergence('Init','KL Divergence Affine Registration',... 'RMS Change', 'Iteration'); for it=1:64, % if it==1, AA = zeros(12); % Fisher Information matrix % end Ab = zeros(12,1); % 1st derivatives kl = 0; nv = 0; for z=1:dg(3), % Loop over slices % Coordinates to sample f from x1 = M(1,1)*x + M(1,2)*y + M(1,3)*z + M(1,4); y1 = M(2,1)*x + M(2,2)*y + M(2,3)*z + M(2,4); z1 = M(3,1)*x + M(3,2)*y + M(3,3)*z + M(3,4); % These need to be in range, so create a mask msk = x1>=1 & x1<=df(1) &... y1>=1 & y1<=df(2) &... z1>=1 & z1<=df(3); if any(msk(:)), x1 = x1(msk); y1 = y1(msk); z1 = z1(msk); % Original coordinates, for use later X = {x(msk);y(msk);z*ones(size(x1));ones(size(x1))}; G = cell(nd,1); % Masked g D = cell(nd,3); % Masked gradients of g F = cell(nd,1); % Masked f for k=1:nd, F{k} = exp(spm_bsplins(f{k},x1,y1,z1,deg)); tmp = g(k).g(:,:,z); G{k} = tmp(msk); tmp = g(k).dx(:,:,z); D{k,1} = tmp(msk); tmp = g(k).dy(:,:,z); D{k,2} = tmp(msk); tmp = g(k).dz(:,:,z); D{k,3} = tmp(msk); end % Re-normalise so that values sum to 1. sf = zeros(size(F{1})); for k=1:nd, sf = sf + F{k}; end for k=1:nd, F{k} = F{k}./sf; end for k=1:nd, DG = cell(3,4); % dg/dm = dg/dx * dx/dm for i=1:3, for j=1:4, DG{i,j} = X{j}.*D{k,i}; end end DG = DG(:); % Derivatives were derived using MATLAB symbolic toolbox. % First derivatives: % maple diff(f1(x1,x2)*log(f1(x1,x2)/g1) + g1*log(g1/f1(x1,x2)),x1) % This gives... % diff(f1(x1,x2),x1)*log(f1(x1,x2)/g1) % +diff(f1(x1,x2),x1) % -g1*diff(f1(x1,x2),x1)/f1(x1,x2) % Because the gradients sum to zero at each point, the first % derivatives can be simplified to... % -diff(f1(x1,x2),x1)*(log(g1/f1(x1,x2))+g1/f1(x1,x2)) % % Expectation of second derivatives: % maple diff(f1(x1,x2)*log(f1(x1,x2)/g1) + g1*log(g1/f1(x1,x2)),x1,x2) % This gives... % diff(f1(x1,x2),x1,x2)*log(f1(x1,x2)/g1)... % +diff(f1(x1,x2),x1)*diff(f1(x1,x2),x2)/f1(x1,x2)... % +diff(f1(x1,x2),x1,x2)... % -g1*diff(f1(x1,x2),x1,x2)/f1(x1,x2)... % +g1*diff(f1(x1,x2),x1)/f1(x1,x2)^2*diff(f1(x1,x2),x2) % For computing expectations, g1/f1(x1,x2) was set to 1. % This simplification loses terms requiring diff(f1(x1,x2),x1,x2) % giving nicely positive definite second derivatives. % 2*diff(f1(x1,x2),x1)*diff(f1(x1,x2),x2)/f1(x1,x2) % % Note that the workings in maple swapped around g and f. tmp = F{k}./G{k}; ltmp = log(tmp); tmp = -(ltmp + tmp); kl = kl + sum((F{k}-G{k}).*ltmp); nv = nv + numel(ltmp); for i=1:12, Ab(i) = Ab(i) + sum(DG{i}.*tmp); % if it==1, % Fisher information matrix could use the same data % (irrespective of iteration number), so theoretically % only needs to be computed the once. However, the % amount of overlap changes from iteration to iteration % so I have chosen to recompute it each time. for j=1:12, AA(i,j) = AA(i,j) + 2*sum(DG{i}.*DG{j}./G{k}); end % end drawnow; end end end end % The derivatives are for an optimisation that minimises % D_{KL}(g(M x))||f'(x)) + D_{KL}(f'(x)||g(M x))) % The actual transform update we want is to match % f'(M^{-1} x)) with g(x), so an inverse is needed. % That was for the increment, whereby f'(x) = f(M_o x). % Therefore, for the whole thing, we are matching % f(M_o M^{-1} x) with g(x), so M_n = M_o M^{-1}, where % M = I - dM. In the MATLAB code, M_n = M_o (I-dM) is % by M = M/(eye(4) - dM); dM = [reshape(AA\Ab,[3,4]); 0 0 0 0]; %M = M/(eye(4) - dM); % Theoretically correct according to LM-algorithm %M = M*(eye(4) + dM); % Another possibility M = M*real(expm(dM)); % Forces the transform to have non-neg Jacobian fprintf('%3d %15g %15g\n', it, sqrt(sum(dM(:).^2)), kl/nv); spm_plot_convergence('Set', sqrt(sum(dM(:).^2))); if sum(dM(:).^2) < 1e-7, break; end end spm_plot_convergence('Clear'); %________________________________________________________ %________________________________________________________ function f = loaddat(N,d4) % Load the first nd-1 volumes of the image, and create the % last volume by subtracting the sum of the others from 1. % Then take the logarithm. d = size(N.dat); d(4) = d4; f = cell(1,d4); fe = ones(d(1:3),'single'); tol = 1e-6; for k=1:d(4)-1, tmp = single(N.dat(:,:,:,k)); tmp = max(tmp,tol); fe = fe - tmp; f{k} = tmp; end fe = max(fe,tol); f{end} = fe; for k=1:d(4)-1, fe = fe + f{k}; end for k=1:d(4), f{k} = log(f{k}./fe); end %________________________________________________________
github
philippboehmsturm/antx-master
spm_dartel_norm_fun.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/DARTEL/spm_dartel_norm_fun.m
10,295
utf_8
63e79a297027d2f2790b757b50bede30
function out = spm_dartel_norm_fun(job) % Spatially normalise and smooth fMRI/PET data to MNI space, using DARTEL flow fields % FORMAT out = spm_dartel_norm_fun(job) % job - a structure generated by the configuration file % job.template - DARTEL template for aligning to MNI space % job.subj(n) - Subject n % subj(n).flowfield - DARTEL flow field % subj(n).images - Images for this subject % job.vox - Voxel sizes for spatially normalised images % job.bb - Bounding box for spatially normalised images % job.preserve - How to transform % 0 = preserve concentrations % 1 = preserve integral (cf "modulation") % % Normally, DARTEL generates warped images that align with the average- % shaped template. This routine includes an initial affine regisration % of the template (the final one generated by DARTEL), with the TPM data % released with SPM. % % "Smoothed" (blurred) spatially normalised images are generated in such a % way that the original signal is preserved. Normalised images are % generated by a "pushing" rather than a "pulling" (the usual) procedure. % Note that trilinear interpolation is used, and no masking is done. It % is therefore essential that the images are realigned and resliced % before they are spatially normalised. Alternatively, contrast images % generated from unsmoothed native-space fMRI/PET data can be spatially % normalised for a 2nd level analysis. % % Two "preserve" options are provided. One of them should do the % equavalent of generating smoothed "modulated" spatially normalised % images. The other does the equivalent of smoothing the modulated % normalised fMRI/PET, and dividing by the smoothed Jacobian determinants. % %__________________________________________________________________________ % Copyright (C) 2009 Wellcome Trust Centre for Neuroimaging % John Ashburner % $Id: spm_dartel_norm_fun.m 4194 2011-02-05 18:08:06Z ged $ % Hard coded stuff, that should maybe be customisable K = 6; tpm = fullfile(spm('Dir'),'toolbox','Seg','TPM.nii'); Mmni = spm_get_space(tpm); % DARTEL template if ~isempty(job.template{1}) Nt = nifti(job.template{1}); do_aff = true; else Nt = nifti(tpm); do_aff = false; end % Deal with desired bounding box and voxel sizes. %-------------------------------------------------------------------------- bb = job.bb; vox = job.vox; Mt = Nt.mat; dimt = size(Nt.dat); if any(isfinite(bb(:))) || any(isfinite(vox)), [bb0 vox0] = spm_get_bbox(Nt, 'old'); msk = ~isfinite(vox); vox(msk) = vox0(msk); msk = ~isfinite(bb); bb(msk) = bb0(msk); bb = sort(bb); vox = abs(vox); % Adjust bounding box slightly - so it rounds to closest voxel. bb(:,1) = round(bb(:,1)/vox(1))*vox(1); bb(:,2) = round(bb(:,2)/vox(2))*vox(2); bb(:,3) = round(bb(:,3)/vox(3))*vox(3); dim = round(diff(bb)./vox+1); of = -vox.*(round(-bb(1,:)./vox)+1); mat = [vox(1) 0 0 of(1) ; 0 vox(2) 0 of(2) ; 0 0 vox(3) of(3) ; 0 0 0 1]; if det(Mt(1:3,1:3)) < 0, mat = mat*[-1 0 0 dim(1)+1; 0 1 0 0; 0 0 1 0; 0 0 0 1]; end else dim = dimt(1:3); mat = Mt; end if isfield(job.data,'subj') || isfield(job.data,'subjs'), if do_aff [pth,nam,ext] = fileparts(Nt.dat.fname); if exist(fullfile(pth,[nam '_2mni.mat'])) load(fullfile(pth,[nam '_2mni.mat']),'mni'); else % Affine registration of DARTEL Template with MNI space. %-------------------------------------------------------------------------- fprintf('** Affine registering "%s" with MNI space **\n', nam); clear mni mni.affine = Mmni/spm_klaff(Nt,tpm); mni.code = 'MNI152'; save(fullfile(pth,[nam '_2mni.mat']),'mni'); end M = mat\mni.affine/Mt; %M = mat\Mmni*inv(spm_klaff(Nt,tpm))*inv(Mt); mat_intent = mni.code; else M = mat\eye(4); mat_intent = 'Aligned'; end fprintf('\n'); if isfield(job.data,'subjs') % Re-order data %-------------------------------------------------------------------------- subjs = job.data.subjs; subj = struct('flowfield',cell(numel(subjs.flowfields),1),... 'images', cell(numel(subjs.flowfields),1)); for i=1:numel(subj) subj(i).flowfield = {subjs.flowfields{i}}; subj(i).images = cell(numel(subjs.images),1); for j=1:numel(subjs.images), subj(i).images{j} = subjs.images{j}{i}; end end else subj = job.data.subj; end % Loop over subjects %-------------------------------------------------------------------------- out = cell(1,numel(subj)); for i=1:numel(subj), % Spatially normalise data from this subject [pth,nam,ext] = fileparts(subj(i).flowfield{1}); fprintf('** "%s" **\n', nam); out{i} = deal_with_subject(subj(i).flowfield,subj(i).images,K, mat,dim,M,job.preserve,job.fwhm,mat_intent); end if isfield(job.data,'subjs'), out1 = out; out = cell(numel(subj),numel(subjs.images)); for i=1:numel(subj), for j=1:numel(subjs.images), out{i,j} = out1{i}{j}; end end end end %__________________________________________________________________________ %__________________________________________________________________________ function out = deal_with_subject(Pu,PI,K,mat,dim,M,jactransf,fwhm,mat_intent) % Generate deformation, which is the inverse of the usual one (it is for "pushing" % rather than the usual "pulling"). This deformation is affine transformed to % allow for different voxel sizes and bounding boxes, and also to incorporate % the affine mapping between MNI space and the population average shape. %-------------------------------------------------------------------------- NU = nifti(Pu{1}); M = M*NU.mat; y0 = spm_dartel_integrate(NU.dat,[0 1], K); y = zeros(size(y0),'single'); y(:,:,:,1) = M(1,1)*y0(:,:,:,1) + M(1,2)*y0(:,:,:,2) + M(1,3)*y0(:,:,:,3) + M(1,4); y(:,:,:,2) = M(2,1)*y0(:,:,:,1) + M(2,2)*y0(:,:,:,2) + M(2,3)*y0(:,:,:,3) + M(2,4); y(:,:,:,3) = M(3,1)*y0(:,:,:,1) + M(3,2)*y0(:,:,:,2) + M(3,3)*y0(:,:,:,3) + M(3,4); y0 = y; clear y odm = zeros(1,3); oM = zeros(4,4); out = cell(1,numel(PI)); for m=1:numel(PI), % Generate headers etc for output images %---------------------------------------------------------------------- [pth,nam,ext,num] = spm_fileparts(PI{m}); NI = nifti(fullfile(pth,[nam ext])); NO = NI; if jactransf, if fwhm==0, NO.dat.fname=fullfile(pth,['mw' nam ext]); else NO.dat.fname=fullfile(pth,['smw' nam ext]); end NO.dat.scl_slope = 1.0; NO.dat.scl_inter = 0.0; NO.dat.dtype = 'float32-le'; else if fwhm==0, NO.dat.fname=fullfile(pth,['w' nam ext]); else NO.dat.fname=fullfile(pth,['sw' nam ext]); end end NO.dat.dim = [dim NI.dat.dim(4:end)]; NO.mat = mat; NO.mat0 = mat; NO.mat_intent = mat_intent; NO.mat0_intent = mat_intent; if fwhm==0, NO.descrip = 'DARTEL normed'; else NO.descrip = sprintf('Smoothed (%gx%gx%g) DARTEL normed',fwhm); end out{m} = NO.dat.fname; NO.extras = []; create(NO); % Smoothing settings vx = sqrt(sum(mat(1:3,1:3).^2)); krn = max(fwhm./vx,0.1); % Loop over volumes within the file %---------------------------------------------------------------------- fprintf('%s',nam); drawnow; for j=1:size(NI.dat,4), % Check if it is a DARTEL "imported" image to normalise if sum(sum((NI.mat - NU.mat ).^2)) < 0.0001 && ... sum(sum((NI.mat0 - NU.mat0).^2)) < 0.0001, % No affine transform necessary M = eye(4); dm = [size(NI.dat),1,1,1,1]; y = y0; else % Need to resample the mapping by an affine transform % so that it maps from voxels in the native space image % to voxels in the spatially normalised image. %-------------------------------------------------------------- M0 = NI.mat; if isfield(NI,'extras') && isfield(NI.extras,'mat'), M1 = NI.extras.mat; if size(M1,3) >= j && sum(sum(M1(:,:,j).^2)) ~=0, M0 = M1(:,:,j); end end M = NU.mat0\M0; dm = [size(NI.dat),1,1,1,1]; if ~all(dm(1:3)==odm) || ~all(M(:)==oM(:)), % Generate new deformation (if needed) y = zeros([dm(1:3),3],'single'); for d=1:3, yd = y0(:,:,:,d); for x3=1:size(y,3), y(:,:,x3,d) = single(spm_slice_vol(yd,M*spm_matrix([0 0 x3]),dm(1:2),[1 NaN])); end end end end odm = dm(1:3); oM = M; % Write the warped data for this time point. %------------------------------------------------------------------ for k=1:size(NI.dat,5), for l=1:size(NI.dat,6), f = single(NI.dat(:,:,:,j,k,l)); if ~jactransf, % Unmodulated - note the slightly novel procedure [f,c] = dartel3('push',f,y,dim); spm_smooth(f,f,krn); % Side effects spm_smooth(c,c,krn); % Side effects f = f./(c+0.001); % I don't like it, but it may stop a few emails. else % Modulated, by pushing scal = abs(det(NI.mat(1:3,1:3))/det(NO.mat(1:3,1:3))); % Account for vox sizes f = dartel3('push',f,y,dim)*scal; spm_smooth(f,f,krn); % Side effects end NO.dat(:,:,:,j,k,l) = f; fprintf('\t%d,%d,%d', j,k,l); drawnow; end end end fprintf('\n'); drawnow; end %__________________________________________________________________________
github
philippboehmsturm/antx-master
tbx_cfg_dartel.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/DARTEL/tbx_cfg_dartel.m
65,076
utf_8
da29ad1825a2e216ba03f7c83d417021
function dartel = tbx_cfg_dartel % Configuration file for toolbox 'DARTEL Tools' %_______________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % John Ashburner % $Id: tbx_cfg_dartel.m 4650 2012-02-09 08:14:54Z volkmar $ if ~isdeployed, addpath(fullfile(spm('dir'),'toolbox','DARTEL')); end % --------------------------------------------------------------------- % matnames Parameter Files % --------------------------------------------------------------------- matnames = cfg_files; matnames.tag = 'matnames'; matnames.name = 'Parameter Files'; matnames.help = {'Select ''_sn.mat'' files containing the spatial transformation and segmentation parameters. Rigidly aligned versions of the image that was segmented will be generated. The image files used by the segmentation may have moved. If they have, then (so the import can find them) ensure that they are either in the output directory, or the current working directory.'}; matnames.filter = 'mat'; matnames.ufilter = '.*seg_sn\.mat$'; matnames.num = [1 Inf]; % --------------------------------------------------------------------- % odir Output Directory % --------------------------------------------------------------------- odir = cfg_files; odir.tag = 'odir'; odir.name = 'Output Directory'; odir.help = {'Select the directory where the resliced files should be written.'}; odir.filter = 'dir'; odir.ufilter = '.*'; odir.num = [1 1]; % --------------------------------------------------------------------- % bb Bounding box % --------------------------------------------------------------------- bb = cfg_entry; bb.tag = 'bb'; bb.name = 'Bounding box'; bb.val = {[NaN NaN NaN NaN NaN NaN]}; bb.help = {'The bounding box (in mm) of the volume that is to be written (relative to the anterior commissure). Non-finite values will be replaced by the bounding box of the tissue probability maps used in the segmentation.'}; bb.strtype = 'e'; bb.num = [2 3]; % --------------------------------------------------------------------- % vox Voxel size % --------------------------------------------------------------------- vox = cfg_entry; vox.tag = 'vox'; vox.name = 'Voxel size'; vox.val = {1.5}; vox.help = {'The (isotropic) voxel sizes of the written images. A non-finite value will be replaced by the average voxel size of the tissue probability maps used by the segmentation.'}; vox.strtype = 'e'; vox.num = [1 1]; % --------------------------------------------------------------------- % image Image option % --------------------------------------------------------------------- image = cfg_menu; image.tag = 'image'; image.name = 'Image option'; image.val = {0}; image.help = {'A resliced version of the original image can be produced, which may have various procedures applied to it. All options will rescale the images so that the mean of the white matter intensity is set to one. The ``skull stripped'''' versions are the images simply scaled by the sum of the grey and white matter probabilities.'}; image.labels = { 'Original' 'Bias Corrected' 'Skull-Stripped' 'Bias Corrected and Skull-stripped' 'None' }'; image.values = {1 3 5 7 0}; % --------------------------------------------------------------------- % GM Grey Matter % --------------------------------------------------------------------- GM = cfg_menu; GM.tag = 'GM'; GM.name = 'Grey Matter'; GM.val = {1}; GM.help = {'Produce a resliced version of this tissue class?'}; GM.labels = { 'Yes' 'No' }'; GM.values = {1 0}; % --------------------------------------------------------------------- % WM White Matter % --------------------------------------------------------------------- WM = cfg_menu; WM.tag = 'WM'; WM.name = 'White Matter'; WM.val = {1}; WM.help = {'Produce a resliced version of this tissue class?'}; WM.labels = { 'Yes' 'No' }'; WM.values = {1 0}; % --------------------------------------------------------------------- % CSF CSF % --------------------------------------------------------------------- CSF = cfg_menu; CSF.tag = 'CSF'; CSF.name = 'CSF'; CSF.val = {0}; CSF.help = {'Produce a resliced version of this tissue class?'}; CSF.labels = { 'Yes' 'No' }'; CSF.values = {1 0}; % --------------------------------------------------------------------- % initial Initial Import % --------------------------------------------------------------------- initial = cfg_exbranch; initial.tag = 'initial'; initial.name = 'Initial Import'; initial.val = {matnames odir bb vox image GM WM CSF }; initial.help = {'Images first need to be imported into a form that DARTEL can work with. If the default segmentation is used (ie the Segment button), then this involves taking the results of the segmentation (*_seg_sn.mat)/* \cite{ashburner05} */, in order to have rigidly aligned tissue class images. Typically, there would be imported grey matter and white matter images, but CSF images can also be included. The subsequent DARTEL alignment will then attempt to nonlinearly register these tissue class images together. If the new segmentation routine is used (from the toolbox), then this includes the option to generate ``imported'''' tissue class images. This means that a seperate importing step is not needed for it.'}; initial.prog = @spm_dartel_import; initial.vout = @vout_initial_import; % --------------------------------------------------------------------- % images Images % --------------------------------------------------------------------- images1 = cfg_files; images1.tag = 'images'; images1.name = 'Images'; images1.help = {'Select a set of imported images of the same type to be registered by minimising a measure of difference from the template.'}; images1.filter = 'image'; images1.ufilter = '^r.*'; images1.num = [1 Inf]; % --------------------------------------------------------------------- % images Images % --------------------------------------------------------------------- images = cfg_repeat; images.tag = 'images'; images.name = 'Images'; images.help = {'Select the images to be warped together. Multiple sets of images can be simultaneously registered. For example, the first set may be a bunch of grey matter images, and the second set may be the white matter images of the same subjects.'}; images.values = {images1 }; images.num = [1 Inf]; % --------------------------------------------------------------------- % template Template basename % --------------------------------------------------------------------- template = cfg_entry; template.tag = 'template'; template.name = 'Template basename'; template.val = {'Template'}; template.help = {'Enter the base for the template name. Templates generated at each outer iteration of the procedure will be basename_1.nii, basename_2.nii etc. If empty, then no template will be saved. Similarly, the estimated flow-fields will have the basename appended to them.'}; template.strtype = 's'; template.num = [1 Inf]; % --------------------------------------------------------------------- % rform Regularisation Form % --------------------------------------------------------------------- rform = cfg_menu; rform.tag = 'rform'; rform.name = 'Regularisation Form'; rform.val = {0}; rform.help = {'The registration is penalised by some ``energy'''' term. Here, the form of this energy term is specified. Three different forms of regularisation can currently be used.'}; rform.labels = { 'Linear Elastic Energy' 'Membrane Energy' 'Bending Energy' }'; rform.values = {0 1 2}; % --------------------------------------------------------------------- % its Inner Iterations % --------------------------------------------------------------------- its = cfg_menu; its.tag = 'its'; its.name = 'Inner Iterations'; its.val = {3}; its.help = {'The number of Gauss-Newton iterations to be done within this outer iteration. After this, new average(s) are created, which the individual images are warped to match.'}; its.labels = { '1' '2' '3' '4' '5' '6' '7' '8' '9' '10' }'; its.values = {1 2 3 4 5 6 7 8 9 10}; % --------------------------------------------------------------------- % rparam Reg params % --------------------------------------------------------------------- rparam = cfg_entry; rparam.tag = 'rparam'; rparam.name = 'Reg params'; rparam.val = {[0.1 0.01 0.001]}; rparam.help = { 'For linear elasticity, the parameters are mu, lambda and id. For membrane energy, the parameters are lambda, unused and id.id is a term for penalising absolute displacements, and should therefore be small. For bending energy, the parameters are lambda, id1 and id2, and the regularisation is by (-lambda*Laplacian + id1)^2 + id2.' 'Use more regularisation for the early iterations so that the deformations are smooth, and then use less for the later ones so that the details can be better matched.' }'; rparam.strtype = 'e'; rparam.num = [1 3]; % --------------------------------------------------------------------- % K Time Steps % --------------------------------------------------------------------- K = cfg_menu; K.tag = 'K'; K.name = 'Time Steps'; K.val = {6}; K.help = {'The number of time points used for solving the partial differential equations. A single time point would be equivalent to a small deformation model. Smaller values allow faster computations, but are less accurate in terms of inverse consistency and may result in the one-to-one mapping breaking down. Earlier iteration could use fewer time points, but later ones should use about 64 (or fewer if the deformations are very smooth).'}; K.labels = { '1' '2' '4' '8' '16' '32' '64' '128' '256' '512' }'; K.values = {0 1 2 3 4 5 6 7 8 9}; % --------------------------------------------------------------------- % slam Smoothing Parameter % --------------------------------------------------------------------- slam = cfg_menu; slam.tag = 'slam'; slam.name = 'Smoothing Parameter'; slam.val = {1}; slam.help = {'A LogOdds parameterisation of the template is smoothed using a multi-grid scheme. The amount of smoothing is determined by this parameter.'}; slam.labels = { 'None' '0.5' '1' '2' '4' '8' '16' '32' }'; slam.values = {0 0.5 1 2 4 8 16 32}; % --------------------------------------------------------------------- % param Outer Iteration % --------------------------------------------------------------------- param1 = cfg_branch; param1.tag = 'param'; param1.name = 'Outer Iteration'; param1.val = {its rparam K slam }; param1.help = {'Different parameters can be specified for each outer iteration. Each of them warps the images to the template, and then regenerates the template from the average of the warped images. Multiple outer iterations should be used for more accurate results, beginning with a more coarse registration (more regularisation) then ending with the more detailed registration (less regularisation).'}; val = cell(1,6); param = param1; param.val{1}.val{1} = 3; % iits param.val{2}.val{1} = [4 2 1e-6]; % rparam param.val{3}.val{1} = 0; % K param.val{4}.val{1} = 16; val{1} = param; param.val{1}.val{1} = 3; % iits param.val{2}.val{1} = [2 1 1e-6]; % rparam param.val{3}.val{1} = 0; % K param.val{4}.val{1} = 8; val{2} = param; param.val{1}.val{1} = 3; % iits param.val{2}.val{1} = [1 0.5 1e-6]; % rparam param.val{3}.val{1} = 1; % K param.val{4}.val{1} = 4; val{3} = param; param.val{1}.val{1} = 3; % iits param.val{2}.val{1} = [0.5 0.25 1e-6]; % rparam param.val{3}.val{1} = 2; % K param.val{4}.val{1} = 2; val{4} = param; param.val{1}.val{1} = 3; % iits param.val{2}.val{1} = [0.25 0.125 1e-6]; % rparam param.val{3}.val{1} = 4; % K param.val{4}.val{1} = 1; val{5} = param; param.val{1}.val{1} = 3; % iits param.val{2}.val{1} = [0.25 0.125 1e-6]; % rparam param.val{3}.val{1} = 6; % K param.val{4}.val{1} = 0.5; val{6} = param; % --------------------------------------------------------------------- % param Outer Iterations % --------------------------------------------------------------------- param = cfg_repeat; param.tag = 'param'; param.name = 'Outer Iterations'; param.val = val; param.help = {'The images are averaged, and each individual image is warped to match this average. This is repeated a number of times.'}; param.values = {param1}; param.num = [1 Inf]; % --------------------------------------------------------------------- % lmreg LM Regularisation % --------------------------------------------------------------------- lmreg = cfg_entry; lmreg.tag = 'lmreg'; lmreg.name = 'LM Regularisation'; lmreg.val = {0.01}; lmreg.help = {'Levenberg-Marquardt regularisation. Larger values increase the the stability of the optimisation, but slow it down. A value of zero results in a Gauss-Newton strategy, but this is not recommended as it may result in instabilities in the FMG.'}; lmreg.strtype = 'e'; lmreg.num = [1 1]; % --------------------------------------------------------------------- % cyc Cycles % --------------------------------------------------------------------- cyc = cfg_menu; cyc.tag = 'cyc'; cyc.name = 'Cycles'; cyc.val = {3}; cyc.help = {'Number of cycles used by the full multi-grid matrix solver. More cycles result in higher accuracy, but slow down the algorithm. See Numerical Recipes for more information on multi-grid methods.'}; cyc.labels = { '1' '2' '3' '4' '5' '6' '7' '8' }'; cyc.values = {1 2 3 4 5 6 7 8}; % --------------------------------------------------------------------- % its Iterations % --------------------------------------------------------------------- its = cfg_menu; its.tag = 'its'; its.name = 'Iterations'; its.val = {3}; its.help = {'Number of relaxation iterations performed in each multi-grid cycle. More iterations are needed if using ``bending energy'''' regularisation, because the relaxation scheme only runs very slowly. See the chapter on solving partial differential equations in Numerical Recipes for more information about relaxation methods.'}; its.labels = { '1' '2' '3' '4' '5' '6' '7' '8' }'; its.values = {1 2 3 4 5 6 7 8}; % --------------------------------------------------------------------- % optim Optimisation Settings % --------------------------------------------------------------------- optim = cfg_branch; optim.tag = 'optim'; optim.name = 'Optimisation Settings'; optim.val = {lmreg cyc its }; optim.help = {'Settings for the optimisation. If you are unsure about them, then leave them at the default values. Optimisation is by repeating a number of Levenberg-Marquardt iterations, in which the equations are solved using a full multi-grid (FMG) scheme. FMG and Levenberg-Marquardt are both described in Numerical Recipes (2nd edition).'}; % --------------------------------------------------------------------- % settings Settings % --------------------------------------------------------------------- settings = cfg_branch; settings.tag = 'settings'; settings.name = 'Settings'; settings.val = {template rform param optim }; settings.help = {'Various settings for the optimisation. The default values should work reasonably well for aligning tissue class images together.'}; % --------------------------------------------------------------------- % warp Run DARTEL (create Templates) % --------------------------------------------------------------------- warp = cfg_exbranch; warp.tag = 'warp'; warp.name = 'Run DARTEL (create Templates)'; warp.val = {images settings }; warp.check = @check_dartel_template; warp.help = {'Run the DARTEL nonlinear image registration procedure. This involves iteratively matching all the selected images to a template generated from their own mean. A series of Template*.nii files are generated, which become increasingly crisp as the registration proceeds.'}; warp.prog = @spm_dartel_template; warp.vout = @vout_dartel_template; % --------------------------------------------------------------------- % images Images % --------------------------------------------------------------------- images1 = cfg_files; images1.tag = 'images'; images1.name = 'Images'; images1.help = {'Select a set of imported images of the same type to be registered by minimising a measure of difference from the template.'}; images1.filter = 'image'; images1.ufilter = '^r.*'; images1.num = [1 Inf]; % --------------------------------------------------------------------- % images Images % --------------------------------------------------------------------- images = cfg_repeat; images.tag = 'images'; images.name = 'Images'; images.help = {'Select the images to be warped together. Multiple sets of images can be simultaneously registered. For example, the first set may be a bunch of grey matter images, and the second set may be the white matter images of the same subjects.'}; images.values = {images1 }; images.num = [1 Inf]; % --------------------------------------------------------------------- % rform Regularisation Form % --------------------------------------------------------------------- rform = cfg_menu; rform.tag = 'rform'; rform.name = 'Regularisation Form'; rform.val = {0}; rform.help = {'The registration is penalised by some ``energy'''' term. Here, the form of this energy term is specified. Three different forms of regularisation can currently be used.'}; rform.labels = { 'Linear Elastic Energy' 'Membrane Energy' 'Bending Energy' }'; rform.values = {0 1 2}; % --------------------------------------------------------------------- % its Inner Iterations % --------------------------------------------------------------------- its = cfg_menu; its.tag = 'its'; its.name = 'Inner Iterations'; its.val = {3}; its.help = {'The number of Gauss-Newton iterations to be done within this outer iteration.'}; its.labels = { '1' '2' '3' '4' '5' '6' '7' '8' '9' '10' }'; its.values = {1 2 3 4 5 6 7 8 9 10}; % --------------------------------------------------------------------- % rparam Reg params % --------------------------------------------------------------------- rparam = cfg_entry; rparam.tag = 'rparam'; rparam.name = 'Reg params'; rparam.val = {[0.1 0.01 0.001]}; rparam.help = { 'For linear elasticity, the parameters are mu, lambda and id. For membrane energy, the parameters are lambda, unused and id.id is a term for penalising absolute displacements, and should therefore be small. For bending energy, the parameters are lambda, id1 and id2, and the regularisation is by (-lambda*Laplacian + id1)^2 + id2.' 'Use more regularisation for the early iterations so that the deformations are smooth, and then use less for the later ones so that the details can be better matched.' }'; rparam.strtype = 'e'; rparam.num = [1 3]; % --------------------------------------------------------------------- % K Time Steps % --------------------------------------------------------------------- K = cfg_menu; K.tag = 'K'; K.name = 'Time Steps'; K.val = {6}; K.help = {'The number of time points used for solving the partial differential equations. A single time point would be equivalent to a small deformation model. Smaller values allow faster computations, but are less accurate in terms of inverse consistency and may result in the one-to-one mapping breaking down. Earlier iteration could use fewer time points, but later ones should use about 64 (or fewer if the deformations are very smooth).'}; K.labels = { '1' '2' '4' '8' '16' '32' '64' '128' '256' '512' }'; K.values = {0 1 2 3 4 5 6 7 8 9}; % --------------------------------------------------------------------- % template Template % --------------------------------------------------------------------- template = cfg_files; template.tag = 'template'; template.name = 'Template'; template.help = {'Select template. Smoother templates should be used for the early iterations. Note that the template should be a 4D file, with the 4th dimension equal to the number of sets of images.'}; template.filter = 'nifti'; template.ufilter = '.*'; template.num = [1 1]; % --------------------------------------------------------------------- % param Outer Iteration % --------------------------------------------------------------------- param1 = cfg_branch; param1.tag = 'param'; param1.name = 'Outer Iteration'; param1.val = {its rparam K template }; param1.help = {'Different parameters and templates can be specified for each outer iteration.'}; val = cell(1,6); param = param1; param.val{1}.val{1} = 3; % iits param.val{2}.val{1} = [4 2 1e-6]; % rparam param.val{3}.val{1} = 0; % K val{1} = param; param.val{1}.val{1} = 3; % iits param.val{2}.val{1} = [2 1 1e-6]; % rparam param.val{3}.val{1} = 0; % K val{2} = param; param.val{1}.val{1} = 3; % iits param.val{2}.val{1} = [1 0.5 1e-6]; % rparam param.val{3}.val{1} = 1; % K val{3} = param; param.val{1}.val{1} = 3; % iits param.val{2}.val{1} = [0.5 0.25 1e-6]; % rparam param.val{3}.val{1} = 2; % K val{4} = param; param.val{1}.val{1} = 3; % iits param.val{2}.val{1} = [0.25 0.125 1e-6]; % rparam param.val{3}.val{1} = 4; % K val{5} = param; param.val{1}.val{1} = 3; % iits param.val{2}.val{1} = [0.25 0.125 1e-6]; % rparam param.val{3}.val{1} = 6; % K val{6} = param; % --------------------------------------------------------------------- % param Outer Iterations % --------------------------------------------------------------------- param = cfg_repeat; param.tag = 'param'; param.name = 'Outer Iterations'; param.val = val; param.help = {'The images are warped to match a sequence of templates. Early iterations should ideally use smoother templates and more regularisation than later iterations.'}; param.values = {param1}; param.num = [1 Inf]; % --------------------------------------------------------------------- % lmreg LM Regularisation % --------------------------------------------------------------------- lmreg = cfg_entry; lmreg.tag = 'lmreg'; lmreg.name = 'LM Regularisation'; lmreg.val = {0.01}; lmreg.help = {'Levenberg-Marquardt regularisation. Larger values increase the the stability of the optimisation, but slow it down. A value of zero results in a Gauss-Newton strategy, but this is not recommended as it may result in instabilities in the FMG.'}; lmreg.strtype = 'e'; lmreg.num = [1 1]; % --------------------------------------------------------------------- % cyc Cycles % --------------------------------------------------------------------- cyc = cfg_menu; cyc.tag = 'cyc'; cyc.name = 'Cycles'; cyc.val = {3}; cyc.help = {'Number of cycles used by the full multi-grid matrix solver. More cycles result in higher accuracy, but slow down the algorithm. See Numerical Recipes for more information on multi-grid methods.'}; cyc.labels = { '1' '2' '3' '4' '5' '6' '7' '8' }'; cyc.values = {1 2 3 4 5 6 7 8}; % --------------------------------------------------------------------- % its Iterations % --------------------------------------------------------------------- its = cfg_menu; its.tag = 'its'; its.name = 'Iterations'; its.val = {3}; its.help = {'Number of relaxation iterations performed in each multi-grid cycle. More iterations are needed if using ``bending energy'''' regularisation, because the relaxation scheme only runs very slowly. See the chapter on solving partial differential equations in Numerical Recipes for more information about relaxation methods.'}; its.labels = { '1' '2' '3' '4' '5' '6' '7' '8' }'; its.values = {1 2 3 4 5 6 7 8}; % --------------------------------------------------------------------- % optim Optimisation Settings % --------------------------------------------------------------------- optim = cfg_branch; optim.tag = 'optim'; optim.name = 'Optimisation Settings'; optim.val = {lmreg cyc its }; optim.help = {'Settings for the optimisation. If you are unsure about them, then leave them at the default values. Optimisation is by repeating a number of Levenberg-Marquardt iterations, in which the equations are solved using a full multi-grid (FMG) scheme. FMG and Levenberg-Marquardt are both described in Numerical Recipes (2nd edition).'}; % --------------------------------------------------------------------- % settings Settings % --------------------------------------------------------------------- settings = cfg_branch; settings.tag = 'settings'; settings.name = 'Settings'; settings.val = {rform param optim }; settings.help = {'Various settings for the optimisation. The default values should work reasonably well for aligning tissue class images together.'}; % --------------------------------------------------------------------- % warp1 Run DARTEL (existing Templates) % --------------------------------------------------------------------- warp1 = cfg_exbranch; warp1.tag = 'warp1'; warp1.name = 'Run DARTEL (existing Templates)'; warp1.val = {images settings }; warp1.check = @check_dartel_template; warp1.help = {'Run the DARTEL nonlinear image registration procedure to match individual images to pre-existing template data. Start out with smooth templates, and select crisp templates for the later iterations.'}; warp1.prog = @spm_dartel_warp; warp1.vout = @vout_dartel_warp; % --------------------------------------------------------------------- % flowfields Flow fields % --------------------------------------------------------------------- flowfields = cfg_files; flowfields.tag = 'flowfields'; flowfields.name = 'Flow fields'; flowfields.help = {'The flow fields store the deformation information. The same fields can be used for both forward or backward deformations (or even, in principle, half way or exaggerated deformations).'}; flowfields.filter = 'nifti'; flowfields.ufilter = '^u_.*'; flowfields.num = [1 Inf]; % --------------------------------------------------------------------- % images Images % --------------------------------------------------------------------- images1 = cfg_files; images1.tag = 'images'; images1.name = 'Images'; images1.help = {'Select images to be warped. Note that there should be the same number of images as there are flow fields, such that each flow field warps one image.'}; images1.filter = 'nifti'; images1.ufilter = '.*'; images1.num = [1 Inf]; % --------------------------------------------------------------------- % images Images % --------------------------------------------------------------------- images = cfg_repeat; images.tag = 'images'; images.name = 'Images'; images.help = {'The flow field deformations can be applied to multiple images. At this point, you are choosing how many images each flow field should be applied to.'}; images.values = {images1 }; images.num = [1 Inf]; % --------------------------------------------------------------------- % See later % --------------------------------------------------------------------- many_subj = cfg_branch; many_subj.tag = 'subjs'; many_subj.name = 'Many Subjects'; many_subj.val = {flowfields,images}; many_subj.help = {[... 'Select this option if you have many subjects to spatially normalise, ',... 'but there are a small and fixed number of scans for each subject.']}; % --------------------------------------------------------------------- % jactransf Modulation % --------------------------------------------------------------------- jactransf = cfg_menu; jactransf.tag = 'jactransf'; jactransf.name = 'Modulation'; jactransf.val = {0}; jactransf.help = {'This allows the spatially normalised images to be rescaled by the Jacobian determinants of the deformations. Note that the rescaling is only approximate for deformations generated using smaller numbers of time steps.'}; jactransf.labels = { 'Pres. Concentration (No "modulation")' 'Pres. Amount ("Modulation")' }'; jactransf.values = {0 1}; % --------------------------------------------------------------------- % K Time Steps % --------------------------------------------------------------------- K = cfg_menu; K.tag = 'K'; K.name = 'Time Steps'; K.val = {6}; K.help = {'The number of time points used for solving the partial differential equations. Note that Jacobian determinants are not very accurate for very small numbers of time steps (less than about 16).'}; K.labels = { '1' '2' '4' '8' '16' '32' '64' '128' '256' '512' }'; K.values = {0 1 2 3 4 5 6 7 8 9}; % --------------------------------------------------------------------- % interp Interpolation % --------------------------------------------------------------------- interp = cfg_menu; interp.tag = 'interp'; interp.name = 'Interpolation'; interp.val = {1}; interp.help = { ['The method by which the images are sampled when ',... 'being written in a different space. ',... '(Note that Inf or NaN values are treated as zero, ',... 'rather than as missing data)'] ' Nearest Neighbour:' ' - Fastest, but not normally recommended.' ' Bilinear Interpolation:' ' - OK for PET, realigned fMRI, or segmentations' ' B-spline Interpolation:' [' - Better quality (but slower) interpolation',... '/* \cite{thevenaz00a}*/, especially with higher ',... 'degree splines. Can produce values outside the ',... 'original range (e.g. small negative values from an ',... 'originally all positive image).'] }'; interp.labels = { 'Nearest neighbour' 'Trilinear' '2nd Degree B-spline' '3rd Degree B-Spline ' '4th Degree B-Spline ' '5th Degree B-Spline' '6th Degree B-Spline' '7th Degree B-Spline' }'; interp.values = {0 1 2 3 4 5 6 7}; % --------------------------------------------------------------------- % crt_warped Create Warped % --------------------------------------------------------------------- crt_warped = cfg_exbranch; crt_warped.tag = 'crt_warped'; crt_warped.name = 'Create Warped'; crt_warped.val = {flowfields images jactransf K interp }; crt_warped.check = @check_norm; crt_warped.help = {'This allows spatially normalised images to be generated. Note that voxel sizes and bounding boxes can not be adjusted, and that there may be strange effects due to the boundary conditions used by the warping. Also note that the warped images are not in Talairach or MNI space. The coordinate system is that of the average shape and size of the subjects to which DARTEL was applied. In order to have MNI-space normalised images, then the Deformations Utility can be used to compose the individual DARTEL warps, with a deformation field that matches (e.g.) the Template grey matter generated by DARTEL, with one of the grey matter volumes released with SPM.'}; crt_warped.prog = @spm_dartel_norm; crt_warped.vout = @vout_norm; % --------------------------------------------------------------------- % flowfields Flow fields % --------------------------------------------------------------------- flowfields = cfg_files; flowfields.tag = 'flowfields'; flowfields.name = 'Flow fields'; flowfields.help = {'The flow fields store the deformation information. The same fields can be used for both forward or backward deformations (or even, in principle, half way or exaggerated deformations).'}; flowfields.filter = 'nifti'; flowfields.ufilter = '^u_.*'; flowfields.num = [1 Inf]; % --------------------------------------------------------------------- % K Time Steps % --------------------------------------------------------------------- K = cfg_menu; K.tag = 'K'; K.name = 'Time Steps'; K.val = {6}; K.help = {'The number of time points used for solving the partial differential equations. Note that Jacobian determinants are not very accurate for very small numbers of time steps (less than about 16).'}; K.labels = { '1' '2' '4' '8' '16' '32' '64' '128' '256' '512' }'; K.values = {0 1 2 3 4 5 6 7 8 9}; % --------------------------------------------------------------------- % jacdet Jacobian determinants % --------------------------------------------------------------------- jacdet = cfg_exbranch; jacdet.tag = 'jacdet'; jacdet.name = 'Jacobian determinants'; jacdet.val = {flowfields K }; jacdet.help = {'Create Jacobian determinant fields from flowfields.'}; jacdet.prog = @spm_dartel_jacobian; jacdet.vout = @vout_jacdet; % --------------------------------------------------------------------- % flowfields Flow fields % --------------------------------------------------------------------- flowfields = cfg_files; flowfields.tag = 'flowfields'; flowfields.name = 'Flow fields'; flowfields.help = {'The flow fields store the deformation information. The same fields can be used for both forward or backward deformations (or even, in principle, half way or exaggerated deformations).'}; flowfields.filter = 'nifti'; flowfields.ufilter = '^u_.*'; flowfields.num = [1 Inf]; % --------------------------------------------------------------------- % images Images % --------------------------------------------------------------------- images = cfg_files; images.tag = 'images'; images.name = 'Images'; images.help = {'Select the image(s) to be inverse normalised. These should be in alignment with the template image generated by the warping procedure.'}; images.filter = 'nifti'; images.ufilter = '.*'; images.num = [1 Inf]; % --------------------------------------------------------------------- % K Time Steps % --------------------------------------------------------------------- K = cfg_menu; K.tag = 'K'; K.name = 'Time Steps'; K.val = {6}; K.help = {'The number of time points used for solving the partial differential equations. Note that Jacobian determinants are not very accurate for very small numbers of time steps (less than about 16).'}; K.labels = { '1' '2' '4' '8' '16' '32' '64' '128' '256' '512' }'; K.values = {0 1 2 3 4 5 6 7 8 9}; % --------------------------------------------------------------------- % crt_iwarped Create Inverse Warped % --------------------------------------------------------------------- crt_iwarped = cfg_exbranch; crt_iwarped.tag = 'crt_iwarped'; crt_iwarped.name = 'Create Inverse Warped'; crt_iwarped.val = {flowfields images K interp }; crt_iwarped.help = {'Create inverse normalised versions of some image(s). The image that is inverse-normalised should be in alignment with the template (generated during the warping procedure). Note that the results have the same dimensions as the ``flow fields'''', but are mapped to the original images via the affine transformations in their headers.'}; crt_iwarped.prog = @spm_dartel_invnorm; crt_iwarped.vout = @vout_invnorm; % --------------------------------------------------------------------- % % --------------------------------------------------------------------- flowfield = cfg_files; flowfield.tag = 'flowfield'; flowfield.name = 'Flow Field'; flowfield.filter = 'nifti'; flowfield.ufilter = '^u_.*\.nii$'; flowfield.num = [1 1]; flowfield.help = {'DARTEL flow field for this subject.'}; % --------------------------------------------------------------------- % % --------------------------------------------------------------------- images = cfg_files; images.tag = 'images'; images.name = 'Images'; images.filter = 'nifti'; images.num = [1 Inf]; images.help = {'Images for this subject to spatially normalise.'}; % --------------------------------------------------------------------- % % --------------------------------------------------------------------- subj = cfg_branch; subj.tag = 'subj'; subj.name = 'Subject'; subj.val = {flowfield,images}; subj.help = {'Subject to be spatially normalized.'}; % --------------------------------------------------------------------- % % --------------------------------------------------------------------- few_subj = cfg_repeat; few_subj.tag = 'few_subj'; few_subj.name = 'Few Subjects'; few_subj.values = {subj}; few_subj.help = {[... 'Select this option if there are only a few subjects, each with many or ' ... 'a variable number of scans each. You will then need to specify a series of subjects, and the flow field and images of each of them.']}; % --------------------------------------------------------------------- % % --------------------------------------------------------------------- way = cfg_choice; way.tag = 'data'; way.name = 'Select according to'; way.values = {few_subj,many_subj}; way.help = {... ['You may wish to spatially normalise only a few subjects, '... 'but have many scans per subject (eg for fMRI), '... 'or you may have lots of subjects, but with a small and fixed number '... 'of scans for each of them (eg for VBM). The idea is to chose the way of '... 'selecting files that is easier.']}; % --------------------------------------------------------------------- % % --------------------------------------------------------------------- template = cfg_files; template.tag = 'template'; template.name = 'DARTEL Template'; template.filter = 'nifti'; template.num = [0 1]; template.help = {... ['Select the final Template file generated by DARTEL. This will be affine '... 'registered with a TPM file, such that the resulting spatially normalised '... 'images are closer aligned to MNI space. Leave empty if you do not wish to '... 'incorporate a transform to MNI space '... '(ie just click ``done'' on the file selector, without selecting any images).']}; % --------------------------------------------------------------------- % % --------------------------------------------------------------------- fwhm = cfg_entry; fwhm.tag = 'fwhm'; fwhm.name = 'Gaussian FWHM'; fwhm.val = {[8 8 8]}; fwhm.strtype = 'e'; fwhm.num = [1 3]; fwhm.help = {'Specify the full-width at half maximum (FWHM) of the Gaussian blurring kernel in mm. Three values should be entered, denoting the FWHM in the x, y and z directions. Note that you can also specify [0 0 0], but any ``modulated'' data will show aliasing (see eg Wikipedia), which occurs because of the way the warped images are generated.'}; % --------------------------------------------------------------------- % % --------------------------------------------------------------------- preserve = cfg_menu; preserve.tag = 'preserve'; preserve.name = 'Preserve'; preserve.help = { 'Preserve Concentrations (no "modulation"): Smoothed spatially normalised images (sw*) represent weighted averages of the signal under the smoothing kernel, approximately preserving the intensities of the original images. This option is currently suggested for eg fMRI.' '' 'Preserve Amount ("modulation"): Smoothed and spatially normalised images preserve the total amount of signal from each region in the images (smw*). Areas that are expanded during warping are correspondingly reduced in intensity. This option is suggested for VBM.' }'; preserve.labels = { 'Preserve Concentrations' 'Preserve Amount' }'; preserve.values = {0 1}; preserve.val = {0}; % --------------------------------------------------------------------- % % --------------------------------------------------------------------- vox = cfg_entry; vox.tag = 'vox'; vox.name = 'Voxel sizes'; vox.num = [1 3]; vox.strtype = 'e'; vox.val = {[NaN NaN NaN]}; vox.help = {[... 'Specify the voxel sizes of the deformation field to be produced. ',... 'Non-finite values will default to the voxel sizes of the template image',... 'that was originally used to estimate the deformation.']}; % --------------------------------------------------------------------- % % --------------------------------------------------------------------- bb = cfg_entry; bb.tag = 'bb'; bb.name = 'Bounding box'; bb.strtype = 'e'; bb.num = [2 3]; bb.val = {[NaN NaN NaN; NaN NaN NaN]}; bb.help = {[... 'Specify the bounding box of the deformation field to be produced. ',... 'Non-finite values will default to the bounding box of the template image',... 'that was originally used to estimate the deformation.']}; % --------------------------------------------------------------------- % % --------------------------------------------------------------------- nrm = cfg_exbranch; nrm.tag = 'mni_norm'; nrm.name = 'Normalise to MNI Space'; nrm.val = {template,way,vox,bb,preserve,fwhm}; nrm.prog = @spm_dartel_norm_fun; nrm.vout = @vout_norm_fun; nrm.check = @check_norm_fun; nrm.help = {[... 'Normally, DARTEL generates warped images that align with the average-shaped template. ',... 'This routine includes an initial affine regisration of the template (the final one ',... 'generated by DARTEL), with the TPM data released with SPM.'],[... '``Smoothed'''' (blurred) spatially normalised images are generated in such a ',... 'way that the original signal is preserved. Normalised images are ',... 'generated by a ``pushing'''' rather than a ``pulling'''' (the usual) procedure. ',... 'Note that a procedure related to trilinear interpolation is used, and no masking is done. It ',... 'is therefore recommended that the images are realigned and resliced ',... 'before they are spatially normalised, in order to benefit from motion correction using higher order interpolation. Alternatively, contrast images ',... 'generated from unsmoothed native-space fMRI/PET data can be spatially ',... 'normalised for a 2nd level analysis.'],[... 'Two ``preserve'''' options are provided. One of them should do the ',... 'equavalent of generating smoothed ``modulated'''' spatially normalised ',... 'images. The other does the equivalent of smoothing the modulated ',... 'normalised fMRI/PET, and dividing by the smoothed Jacobian determinants.']}; % --------------------------------------------------------------------- % images Images % --------------------------------------------------------------------- images1 = cfg_files; images1.tag = 'images'; images1.name = 'Images'; images1.help = {'Select tissue class images (one per subject).'}; images1.filter = 'nifti'; images1.ufilter = '^r.*c'; images1.num = [1 Inf]; % --------------------------------------------------------------------- % images Images % --------------------------------------------------------------------- images = cfg_repeat; images.tag = 'images'; images.name = 'Images'; images.help = {'Multiple sets of images are used here. For example, the first set may be a bunch of grey matter images, and the second set may be the white matter images of the same subjects. The number of sets of images must be the same as was used to generate the template.'}; images.values = {images1 }; images.num = [1 Inf]; % --------------------------------------------------------------------- % flowfields Flow fields % --------------------------------------------------------------------- flowfields = cfg_files; flowfields.tag = 'flowfields'; flowfields.name = 'Flow fields'; flowfields.help = {'Select the flow fields for each subject.'}; flowfields.filter = 'nifti'; flowfields.ufilter = '^u_.*'; flowfields.num = [1 Inf]; % --------------------------------------------------------------------- % template Template % --------------------------------------------------------------------- template = cfg_files; template.tag = 'template'; template.name = 'Template'; template.help = {'Residual differences are computed between the warped images and template.'}; template.filter = 'nifti'; template.ufilter = '^Template.*'; template.num = [0 1]; % --------------------------------------------------------------------- % K Time Steps % --------------------------------------------------------------------- K = cfg_menu; K.tag = 'K'; K.name = 'Time Steps'; K.val = {6}; K.help = {'The number of time points used for solving the partial differential equations. Note that Jacobian determinants are not very accurate for very small numbers of time steps (less than about 16).'}; K.labels = { '1' '2' '4' '8' '16' '32' '64' '128' '256' '512' }'; K.values = {0 1 2 3 4 5 6 7 8 9}; % --------------------------------------------------------------------- % fwhm Smoothing % --------------------------------------------------------------------- fwhm = cfg_menu; fwhm.tag = 'fwhm'; fwhm.name = 'Smoothing'; fwhm.val = {4}; fwhm.help = {'The residuals can be smoothed with a Gaussian to reduce dimensionality. More smoothing is recommended if there are fewer training images.'}; fwhm.labels = { 'None' ' 2mm' ' 4mm' ' 6mm' ' 8mm' '10mm' '12mm' '14mm' '16mm' }'; fwhm.values = {0 2 4 6 8 10 12 14 16}; % --------------------------------------------------------------------- % resids Generate Residuals % --------------------------------------------------------------------- resids = cfg_exbranch; resids.tag = 'resids'; resids.name = 'Generate Residuals'; resids.val = {images flowfields template K fwhm }; resids.check = @check_resids; resids.help = {'Generate residual images in a form suitable for computing a Fisher kernel. In principle, a Gaussian Process model can be used to determine the optimal (positive) linear combination of kernel matrices. The idea would be to combine the kernel from the residuals, with a kernel derived from the flow-fields. Such a combined kernel should then encode more relevant information than the individual kernels alone.'}; resids.prog = @spm_dartel_resids; resids.vout = @vout_resids; % --------------------------------------------------------------------- % images Data % --------------------------------------------------------------------- images = cfg_files; images.tag = 'images'; images.name = 'Data'; images.help = {'Select images to generate dot-products from.'}; images.filter = 'nifti'; images.ufilter = '.*'; images.num = [1 Inf]; % --------------------------------------------------------------------- % weight Weighting image % --------------------------------------------------------------------- weight = cfg_files; weight.tag = 'weight'; weight.name = 'Weighting image'; weight.val = {{}}; weight.help = {'The kernel can be generated so that some voxels contribute to the similarity measures more than others. This is achieved by supplying a weighting image, which each of the component images are multiplied before the dot-products are computed. This image needs to have the same dimensions as the component images, but orientation information (encoded by matrices in the headers) is ignored. If left empty, then all voxels are weighted equally.'}; weight.filter = 'image'; weight.ufilter = '.*'; weight.num = [0 1]; % --------------------------------------------------------------------- % dotprod Dot-product Filename % --------------------------------------------------------------------- dotprod = cfg_entry; dotprod.tag = 'dotprod'; dotprod.name = 'Dot-product Filename'; dotprod.help = {'Enter a filename for results (it will be prefixed by ``dp_'''' and saved in the current directory).'}; dotprod.strtype = 's'; dotprod.num = [1 Inf]; % --------------------------------------------------------------------- % reskern Kernel from Resids % --------------------------------------------------------------------- reskern = cfg_exbranch; reskern.tag = 'reskern'; reskern.name = 'Kernel from Images'; reskern.val = {images weight dotprod }; reskern.help = {'Generate a kernel matrix from images. In principle, this same function could be used for generating kernels from any image data (e.g. ``modulated'''' grey matter). If there is prior knowledge about some region providing more predictive information (e.g. the hippocampi for AD), then it is possible to weight the generation of the kernel accordingly. The matrix of dot-products is saved in a variable ``Phi'''', which can be loaded from the dp_*.mat file. The ``kernel trick'''' can be used to convert these dot-products into distance measures for e.g. radial basis-function approaches.'}; reskern.prog = @spm_dartel_dotprods; % --------------------------------------------------------------------- % flowfields Flow fields % --------------------------------------------------------------------- flowfields = cfg_files; flowfields.tag = 'flowfields'; flowfields.name = 'Flow fields'; flowfields.help = {'Select the flow fields for each subject.'}; flowfields.filter = 'nifti'; flowfields.ufilter = '^u_.*'; flowfields.num = [1 Inf]; % --------------------------------------------------------------------- % rform Regularisation Form % --------------------------------------------------------------------- rform = cfg_menu; rform.tag = 'rform'; rform.name = 'Regularisation Form'; rform.val = {0}; rform.help = {'The registration is penalised by some ``energy'''' term. Here, the form of this energy term is specified. Three different forms of regularisation can currently be used.'}; rform.labels = { 'Linear Elastic Energy' 'Membrane Energy' 'Bending Energy' }'; rform.values = {0 1 2}; % --------------------------------------------------------------------- % rparam Reg params % --------------------------------------------------------------------- rparam = cfg_entry; rparam.tag = 'rparam'; rparam.name = 'Reg params'; rparam.val = {[0.25 0.125 1e-06]}; rparam.help = {'For linear elasticity, the parameters are `mu'', `lambda'' and `id''. For membrane and bending energy, the parameters are `lambda'', unused and `id''. The term `id'' is for penalising absolute displacements, and should therefore be small.'}; rparam.strtype = 'e'; rparam.num = [1 3]; % --------------------------------------------------------------------- % dotprod Dot-product Filename % --------------------------------------------------------------------- dotprod = cfg_entry; dotprod.tag = 'dotprod'; dotprod.name = 'Dot-product Filename'; dotprod.help = {'Enter a filename for results (it will be prefixed by ``dp_'''' and saved in the current directory.'}; dotprod.strtype = 's'; dotprod.num = [1 Inf]; % --------------------------------------------------------------------- % flokern Kernel from Flows % --------------------------------------------------------------------- flokern = cfg_exbranch; flokern.tag = 'flokern'; flokern.name = 'Kernel from Flows'; flokern.val = {flowfields rform rparam dotprod }; flokern.help = {'Generate a kernel from flow fields. The dot-products are saved in a variable ``Phi'''' in the resulting dp_*.mat file.'}; flokern.prog = @spm_dartel_kernel; % --------------------------------------------------------------------- % kernfun Kernel Utilities % --------------------------------------------------------------------- kernfun = cfg_choice; kernfun.tag = 'kernfun'; kernfun.name = 'Kernel Utilities'; kernfun.help = { 'DARTEL can be used for generating matrices of dot-products for various kernel pattern-recognition procedures.' 'The idea of applying pattern-recognition procedures is to obtain a multi-variate characterisation of the anatomical differences among groups of subjects. These characterisations can then be used to separate (eg) healthy individuals from particular patient populations. There is still a great deal of methodological work to be done, so the types of kernel that can be generated here are unlikely to be the definitive ways of proceeding. They are only just a few ideas that may be worth trying out. The idea is simply to attempt a vaguely principled way to combine generative models with discriminative models (see the ``Pattern Recognition and Machine Learning'''' book by Chris Bishop for more ideas). Better ways (higher predictive accuracy) will eventually emerge.' 'Various pattern recognition algorithms are available freely over the Internet. Possible approaches include Support-Vector Machines, Relevance-Vector machines and Gaussian Process Models. Gaussian Process Models probably give the most accurate probabilistic predictions, and allow kernels generated from different pieces of data to be most easily combined.' }'; kernfun.values = {reskern flokern}; % --------------------------------------------------------------------- % dartel DARTEL Tools % --------------------------------------------------------------------- dartel = cfg_choice; dartel.tag = 'dartel'; dartel.name = 'DARTEL Tools'; dartel.help = { 'This toolbox is based around the ``A Fast Diffeomorphic Registration Algorithm'''' paper/* \cite{ashburner07} */. The idea is to register images by computing a ``flow field'''', which can then be ``exponentiated'''' to generate both forward and backward deformations. Currently, the software only works with images that have isotropic voxels, identical dimensions and which are in approximate alignment with each other. One of the reasons for this is that the approach assumes circulant boundary conditions, which makes modelling global rotations impossible. Another reason why the images should be approximately aligned is because there are interactions among the transformations that are minimised by beginning with images that are already almost in register. This problem could be alleviated by a time varying flow field, but this is currently computationally impractical.' 'Because of these limitations, images should first be imported. This involves taking the ``*_seg_sn.mat'''' files produced by the segmentation code of SPM5, and writing out rigidly transformed versions of the tissue class images, such that they are in as close alignment as possible with the tissue probability maps. Rigidly transformed original images can also be generated, with the option to have skull-stripped versions.' 'The next step is the registration itself. This can involve matching single images together, or it can involve the simultaneous registration of e.g. GM with GM, WM with WM and 1-(GM+WM) with 1-(GM+WM) (when needed, the 1-(GM+WM) class is generated implicitly, so there is no need to include this class yourself). This procedure begins by creating a mean of all the images, which is used as an initial template. Deformations from this template to each of the individual images are computed, and the template is then re-generated by applying the inverses of the deformations to the images and averaging. This procedure is repeated a number of times.' 'Finally, warped versions of the images (or other images that are in alignment with them) can be generated. ' '' 'This toolbox is not yet seamlessly integrated into the SPM package. Eventually, the plan is to use many of the ideas here as the default strategy for spatial normalisation. The toolbox may change with future updates. There will also be a number of other (as yet unspecified) extensions, which may include a variable velocity version (related to LDDMM). Note that the Fast Diffeomorphism paper only describes a sum of squares objective function. The multinomial objective function is an extension, based on a more appropriate model for aligning binary data to a template.' }'; dartel.values = {initial warp warp1 nrm crt_warped jacdet crt_iwarped kernfun }; %dartel.num = [0 Inf]; %_______________________________________________________________________ % %_______________________________________________________________________ function dep = vout_initial_import(job) cls = {'GM', 'WM', 'CSF'}; kk = 1; for k=1:3, if isnumeric(job.(cls{k})) && job.(cls{k}) dep(kk) = cfg_dep; dep(kk).sname = sprintf('Imported Tissue (%s)', cls{k}); dep(kk).src_output = substruct('.','cfiles','()',{':',k}); dep(kk).tgt_spec = cfg_findspec({{'filter','nifti'}}); kk = kk + 1; end end if isnumeric(job.image) && job.image dep(kk) = cfg_dep; dep(kk).sname = sprintf('Resliced Original Images'); dep(kk).src_output = substruct('.','files'); dep(kk).tgt_spec = cfg_findspec({{'filter','nifti'}}); end %_______________________________________________________________________ %_______________________________________________________________________ function chk = check_dartel_template(job) n1 = numel(job.images); n2 = numel(job.images{1}); chk = ''; for i=1:n1, if numel(job.images{i}) ~= n2, chk = 'Incompatible number of images'; break; end; end; %_______________________________________________________________________ %_______________________________________________________________________ function dep = vout_dartel_template(job) if isa(job.settings.template,'cfg_dep') || ~ ... isempty(deblank(job.settings.template)) for it=0:numel(job.settings.param), tdep(it+1) = cfg_dep; tdep(it+1).sname = sprintf('Template (Iteration %d)', it); tdep(it+1).src_output = substruct('.','template','()',{it+1}); tdep(it+1).tgt_spec = cfg_findspec({{'filter','nifti'}}); end else tdep = cfg_dep; tdep = tdep(false); end fdep = cfg_dep; fdep.sname = 'Flow Fields'; fdep.src_output = substruct('.','files','()',{':'}); fdep.tgt_spec = cfg_findspec({{'filter','nifti'}}); dep = [tdep fdep]; %_______________________________________________________________________ %_______________________________________________________________________ function dep = vout_dartel_warp(job) dep = cfg_dep; dep.sname = 'Flow Fields'; dep.src_output = substruct('.','files','()',{':'}); dep.tgt_spec = cfg_findspec({{'filter','nifti'}}); %_______________________________________________________________________ %_______________________________________________________________________ function chk = check_norm(job) chk = ''; PU = job.flowfields; PI = job.images; n1 = numel(PU); for i=1:numel(PI), if numel(PI{i}) ~= n1, chk = 'Incompatible number of images'; break; end end %_______________________________________________________________________ %_______________________________________________________________________ function chk = check_norm_fun(job) chk = ''; if isfield(job.data,'subjs') PU = job.data.subjs.flowfields; PI = job.data.subjs.images; n1 = numel(PU); for i=1:numel(PI), if numel(PI{i}) ~= n1, chk = 'Incompatible number of images'; break; end end end %_______________________________________________________________________ %_______________________________________________________________________ function dep = vout_norm(job) if job.jactransf, sname = 'Warped Images - Jacobian Transformed'; else sname = 'Warped Images'; end PU = job.flowfields; PI = job.images; for m=1:numel(PI), dep(m) = cfg_dep; dep(m).sname = sprintf('%s (Image %d)',sname,m); dep(m).src_output = substruct('.','files','()',{':',m}); dep(m).tgt_spec = cfg_findspec({{'filter','nifti'}}); end %_______________________________________________________________________ %_______________________________________________________________________ function dep = vout_invnorm(job) PU = job.flowfields; PI = job.images; for m=1:numel(PI), dep(m) = cfg_dep; dep(m).sname = sprintf('Inverse Warped Images (Image %d)',m); dep(m).src_output = substruct('.','files','()',{':',m}); dep(m).tgt_spec = cfg_findspec({{'filter','nifti'}}); end n = numel(PI); for m=1:numel(PU), dep(m+n) = cfg_dep; dep(m+n).sname = sprintf('Inverse Warped Images (Deformation %d)',m); dep(m+n).src_output = substruct('.','files','()',{m,':'}); dep(m+n).tgt_spec = cfg_findspec({{'filter','nifti'}}); end %_______________________________________________________________________ %_______________________________________________________________________ function dep = vout_jacdet(job) dep = cfg_dep; dep.sname = 'Jacobian Determinant Fields'; dep.src_output = substruct('.','files','()',{':'}); dep.tgt_spec = cfg_findspec({{'filter','nifti'}}); %_______________________________________________________________________ %_______________________________________________________________________ function dep = vout_norm_fun(job) if job.preserve, sname = 'MNI Smo. Warped - Amount'; else sname = 'MNI Smo. Warped - Concentrations'; end dep = cfg_dep; if isfield(job.data,'subj') for m=1:numel(job.data.subj) dep(m) = cfg_dep; dep(m).sname = sprintf('%s (Deformation %d)',sname,m); dep(m).src_output = substruct('{}',{m},'()',{':'}); dep(m).tgt_spec = cfg_findspec({{'filter','nifti'}}); end end if isfield(job.data,'subjs') for m=1:numel(job.data.subjs.images), dep(m) = cfg_dep; dep(m).sname = sprintf('%s (Image %d)',sname,m); dep(m).src_output = substruct('()',{':',m}); dep(m).tgt_spec = cfg_findspec({{'filter','nifti'}}); end end %_______________________________________________________________________ %_______________________________________________________________________ function chk = check_resids(job) chk = ''; PU = job.flowfields; PI = job.images; n1 = numel(PU); for i=1:numel(PI), if numel(PI{i}) ~= n1, chk = 'Incompatible number of images'; break; end end %_______________________________________________________________________ %_______________________________________________________________________ function dep = vout_resids(job) dep = cfg_dep; dep.sname = 'Residual Files'; dep.src_output = substruct('.','files','()',{':'}); dep.tgt_spec = cfg_findspec({{'filter','nifti'}}); %_______________________________________________________________________
github
philippboehmsturm/antx-master
spm_dartel_smooth.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/DARTEL/spm_dartel_smooth.m
1,773
utf_8
b7c32a058585a98c2722f80112a61f05
function [sig,a] = spm_dartel_smooth(t,lam,its,vx,a) % A function for smoothing tissue probability maps % FORMAT [sig,a_new] = spm_dartel_smooth(t,lam,its,vx,a_old) %________________________________________________________ % (c) Wellcome Centre for NeuroImaging (2007) % John Ashburner % $Id: spm_dartel_smooth.m 3102 2009-05-08 11:29:34Z john $ if nargin<5, a = zeros(size(t),'single'); end if nargin<4, vx = [1 1 1]; end; if nargin<3, its = 16; end; if nargin<2, lam = 1; end; d = size(t); W = zeros([d(1:3) round((d(4)*(d(4)+1))/2)],'single'); s = max(sum(t,4),eps('single')); for k=1:d(4), t(:,:,:,k) = max(min(t(:,:,:,k)./s,1-eps('single')),eps('single')); end for i=1:its, %trnc= -log(eps('single')); %a = max(min(a,trnc),-trnc); sig = softmax(a); gr = sig - t; for k=1:d(4), gr(:,:,:,k) = gr(:,:,:,k).*s; end gr = gr + optimNn('vel2mom',a,[2 vx lam lam*1e-4 0]); jj = d(4)+1; reg = 2*sqrt(eps('single'))*d(4)^2; for j1=1:d(4), W(:,:,:,j1) = (sig(:,:,:,j1).*(1-sig(:,:,:,j1)) + reg).*s; for j2=(j1+1):d(4), W(:,:,:,jj) = -sig(:,:,:,j1).*sig(:,:,:,j2).*s; jj = jj+1; end end a = a - optimNn(W,gr,[2 vx lam lam*1e-4 0 1 1]); %a = a - mean(a(:)); % unstable %a = a - sum(sum(sum(sum(a))))/numel(a); fprintf(' %g,', sum(gr(:).^2)/numel(gr)); drawnow end; fprintf('\n'); sig = softmax(a); return; function sig = softmax(a) sig = zeros(size(a),'single'); for j=1:size(a,3), aj = double(squeeze(a(:,:,j,:))); trunc = log(realmax*(1-eps)); aj = min(max(aj-mean(aj(:)),-trunc),trunc); sj = exp(aj); s = sum(sj,3); for i=1:size(a,4), sig(:,:,j,i) = single(sj(:,:,i)./s); end end;
github
philippboehmsturm/antx-master
spm_dartel_import.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/DARTEL/spm_dartel_import.m
11,025
utf_8
b77410a96c6ed6cad8a8077f59075ab7
function out = spm_dartel_import(job) % Import subjects' data for use with DARTEL % FORMAT spm_dartel_import(job) % job.matnames - Names of *_seg_sn.mat files to use % job.odir - Output directory % job.bb - Bounding box % job.vox - Voxel sizes % job.GM/WM/CSF - Options fo different tissue classes % job.image - Options for resliced original image % % Rigidly aligned images are generated using info from the seg_sn.mat % files. These can be resliced GM, WM or CSF, but also various resliced % forms of the original image (skull-stripped, bias corrected etc). %____________________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % John Ashburner % $Id: spm_dartel_import.m 4194 2011-02-05 18:08:06Z ged $ matnames = job.matnames; for i=1:numel(matnames), p(i) = load(matnames{i}); end; if numel(p)>0, tmp = strvcat(p(1).VG.fname); p(1).VG = spm_vol(tmp); b0 = spm_load_priors(p(1).VG); end; odir = job.odir{1}; bb = job.bb; vox = job.vox; iopt = job.image; opt = [job.GM, job.WM, job.CSF]; for i=1:numel(p), preproc_apply(p(i),odir,b0,bb,vox,iopt,opt,matnames{i}); end; out.cfiles = cell(numel(matnames),numel(opt)); if job.image, out.files = cell(numel(matnames),1); end for i=1:numel(matnames), [pth,nam,ext] = fileparts(matnames{i}); nam = nam(1:(numel(nam)-7)); if job.image, fname = fullfile(odir,['r',nam, '.nii']); out.files{i} = fname; end for k1=1:numel(opt), if opt(k1), fname = fullfile(odir,['r','c', num2str(k1), nam, '.nii']); out.cfiles{i,k1} = fname; end end end return; %======================================================================= %======================================================================= function preproc_apply(p,odir,b0,bb,vx,iopt,opt,matname) [pth0,nam,ext,num] = spm_fileparts(matname); [pth ,nam,ext,num] = spm_fileparts(p.VF(1).fname); P = path_search([nam,ext],{pth,odir,pwd,pth0}); if isempty(P), fprintf('Could not find "%s"\n', [nam,ext]); return; end; p.VF.fname = P; T = p.flags.Twarp; bsol = p.flags.Tbias; d2 = [size(T) 1]; d = p.VF.dim(1:3); [x1,x2,o] = ndgrid(1:d(1),1:d(2),1); x3 = 1:d(3); d3 = [size(bsol) 1]; B1 = spm_dctmtx(d(1),d2(1)); B2 = spm_dctmtx(d(2),d2(2)); B3 = spm_dctmtx(d(3),d2(3)); bB3 = spm_dctmtx(d(3),d3(3),x3); bB2 = spm_dctmtx(d(2),d3(2),x2(1,:)'); bB1 = spm_dctmtx(d(1),d3(1),x1(:,1)); mg = p.flags.mg; mn = p.flags.mn; vr = p.flags.vr; K = length(p.flags.mg); Kb = length(p.flags.ngaus); lkp = []; for k=1:Kb, lkp = [lkp ones(1,p.flags.ngaus(k))*k]; end; spm_progress_bar('init',length(x3),['Working on ' nam],'Planes completed'); M = p.VG(1).mat\p.flags.Affine*p.VF.mat; if iopt, idat = zeros(d(1:3),'single'); end; dat = {zeros(d(1:3),'uint8'),zeros(d(1:3),'uint8'),zeros(d(1:3),'uint8')}; for z=1:length(x3), % Bias corrected image f = spm_sample_vol(p.VF,x1,x2,o*x3(z),0); msk = (f==0) | ~isfinite(f); if ~isempty(bsol), cr = exp(transf(bB1,bB2,bB3(z,:),bsol)).*f; else cr = f; end if iopt, if bitand(iopt,2), idat(:,:,z) = cr; else idat(:,:,z) = f; end; end; [t1,t2,t3] = defs(T,z,B1,B2,B3,x1,x2,x3,M); q = zeros([d(1:2) Kb]); bg = ones(d(1:2)); bt = zeros([d(1:2) Kb]); for k1=1:Kb, bt(:,:,k1) = spm_sample_priors(b0{k1},t1,t2,t3,k1==Kb); end; b = zeros([d(1:2) K]); for k=1:K, b(:,:,k) = bt(:,:,lkp(k))*mg(k); end; s = sum(b,3); for k=1:K, p1 = exp((cr-mn(k)).^2/(-2*vr(k)))/sqrt(2*pi*vr(k)+eps); q(:,:,lkp(k)) = q(:,:,lkp(k)) + p1.*b(:,:,k)./s; end; sq = sum(q,3)+eps; for k1=1:3, tmp = q(:,:,k1); tmp = tmp./sq; tmp(msk) = 0; dat{k1}(:,:,z) = uint8(round(255 * tmp)); end; spm_progress_bar('set',z); end; spm_progress_bar('clear'); %[dat{1},dat{2},dat{3}] = clean_gwc(dat{1},dat{2},dat{3}, 2); if iopt, if bitand(iopt,2), nwm = 0; swm = 0; for z=1:numel(x3), nwm = nwm + sum(sum(double(dat{2}(:,:,z)))); swm = swm + sum(sum(double(dat{2}(:,:,z)).*idat(:,:,z))); end; idat = idat*(double(nwm)/double(swm)); end; if bitand(iopt,4), for z=1:numel(x3), %msk = double(dat{1}(:,:,z)) ... % + double(dat{2}(:,:,z)) ... % + 0.5*double(dat{3}(:,:,z)); %msk = msk<128; %tmp = idat(:,:,z); %tmp(msk) = 0; %idat(:,:,z) = tmp; wt = (double(dat{1}(:,:,z))+double(dat{2}(:,:,z)))/255; idat(:,:,z) = idat(:,:,z).*wt; end; end; for z=1:numel(x3), tmp = idat(:,:,z); tmp(~isfinite(double(tmp))) = 0; idat(:,:,z) = tmp; end; end; % Sort out bounding box etc [bb1,vx1] = spm_get_bbox(p.VG(1), 'old'); bb(~isfinite(bb)) = bb1(~isfinite(bb)); if ~isfinite(vx), vx = abs(prod(vx1))^(1/3); end; bb(1,:) = vx*ceil(bb(1,:)/vx); bb(2,:) = vx*floor(bb(2,:)/vx); % Figure out the mapping from the volumes to create to the original mm = [ bb(1,1) bb(1,2) bb(1,3) bb(2,1) bb(1,2) bb(1,3) bb(1,1) bb(2,2) bb(1,3) bb(2,1) bb(2,2) bb(1,3) bb(1,1) bb(1,2) bb(2,3) bb(2,1) bb(1,2) bb(2,3) bb(1,1) bb(2,2) bb(2,3) bb(2,1) bb(2,2) bb(2,3)]'; vx2 = inv(p.VG(1).mat)*[mm ; ones(1,8)]; odim = abs(round((bb(2,:)-bb(1,:))/vx))+1; %dimstr = sprintf('%dx%dx%d',odim); dimstr = ''; vx1 = [ 1 1 1 odim(1) 1 1 1 odim(2) 1 odim(1) odim(2) 1 1 1 odim(3) odim(1) 1 odim(3) 1 odim(2) odim(3) odim(1) odim(2) odim(3)]'; M = p.Affine*vx2/[vx1 ; ones(1,8)]; mat0 = p.VF.mat*M; mat = [mm ; ones(1,8)]/[vx1 ; ones(1,8)]; fwhm = max(vx./sqrt(sum(p.VF.mat(1:3,1:3).^2))-1,0.01); for k1=1:numel(opt), if opt(k1), dat{k1} = decimate(dat{k1},fwhm); VT = struct('fname',fullfile(odir,['r',dimstr,'c', num2str(k1), nam, '.nii']),... 'dim', odim,... 'dt', [spm_type('uint8') spm_platform('bigend')],... 'pinfo',[1/255 0]',... 'mat',mat); VT = spm_create_vol(VT); Ni = nifti(VT.fname); Ni.mat0 = mat0; Ni.mat_intent = 'Aligned'; Ni.mat0_intent = 'Aligned'; create(Ni); for i=1:odim(3), tmp = spm_slice_vol(dat{k1},M*spm_matrix([0 0 i]),odim(1:2),1)/255; VT = spm_write_plane(VT,tmp,i); end; end; end; if iopt, %idat = decimate(idat,fwhm); VT = struct('fname',fullfile(odir,['r',dimstr,nam, '.nii']),... 'dim', odim,... 'dt', [spm_type('float32') spm_platform('bigend')],... 'pinfo',[1 0]',... 'mat',mat); VT.descrip = 'Resliced'; if bitand(iopt,2), VT.descrip = [VT.descrip ', bias corrected']; end; if bitand(iopt,4), VT.descrip = [VT.descrip ', skull stripped']; end; VT = spm_create_vol(VT); Ni = nifti(VT.fname); Ni.mat0 = mat0; Ni.mat_intent = 'Aligned'; Ni.mat0_intent = 'Aligned'; create(Ni); for i=1:odim(3), tmp = spm_slice_vol(idat,M*spm_matrix([0 0 i]),odim(1:2),1); VT = spm_write_plane(VT,tmp,i); end; end; return; %======================================================================= %======================================================================= function [x1,y1,z1] = defs(sol,z,B1,B2,B3,x0,y0,z0,M) x1a = x0 + transf(B1,B2,B3(z,:),sol(:,:,:,1)); y1a = y0 + transf(B1,B2,B3(z,:),sol(:,:,:,2)); z1a = z0(z) + transf(B1,B2,B3(z,:),sol(:,:,:,3)); x1 = M(1,1)*x1a + M(1,2)*y1a + M(1,3)*z1a + M(1,4); y1 = M(2,1)*x1a + M(2,2)*y1a + M(2,3)*z1a + M(2,4); z1 = M(3,1)*x1a + M(3,2)*y1a + M(3,3)*z1a + M(3,4); return; %======================================================================= %======================================================================= function t = transf(B1,B2,B3,T) d2 = [size(T) 1]; t1 = reshape(reshape(T, d2(1)*d2(2),d2(3))*B3', d2(1), d2(2)); t = B1*t1*B2'; return; %======================================================================= %======================================================================= function dat = decimate(dat,fwhm) % Convolve the volume in memory (fwhm in voxels). lim = ceil(2*fwhm); s = fwhm/sqrt(8*log(2)); x = -lim(1):lim(1); x = spm_smoothkern(fwhm(1),x); x = x/sum(x); y = -lim(2):lim(2); y = spm_smoothkern(fwhm(2),y); y = y/sum(y); z = -lim(3):lim(3); z = spm_smoothkern(fwhm(3),z); z = z/sum(z); i = (length(x) - 1)/2; j = (length(y) - 1)/2; k = (length(z) - 1)/2; spm_conv_vol(dat,dat,x,y,z,-[i j k]); return; %======================================================================= %======================================================================= function [g,w,c] = clean_gwc(g,w,c, level) if nargin<4, level = 1; end; b = w; b(1) = w(1); % Build a 3x3x3 seperable smoothing kernel %----------------------------------------------------------------------- kx=[0.75 1 0.75]; ky=[0.75 1 0.75]; kz=[0.75 1 0.75]; sm=sum(kron(kron(kz,ky),kx))^(1/3); kx=kx/sm; ky=ky/sm; kz=kz/sm; th1 = 0.15; if level==2, th1 = 0.2; end; % Erosions and conditional dilations %----------------------------------------------------------------------- niter = 32; spm_progress_bar('Init',niter,'Extracting Brain','Iterations completed'); for j=1:niter, if j>2, th=th1; else th=0.6; end; % Dilate after two its of erosion. for i=1:size(b,3), gp = double(g(:,:,i)); wp = double(w(:,:,i)); bp = double(b(:,:,i))/255; bp = (bp>th).*(wp+gp); b(:,:,i) = uint8(round(bp)); end; spm_conv_vol(b,b,kx,ky,kz,-[1 1 1]); spm_progress_bar('Set',j); end; th = 0.05; for i=1:size(b,3), gp = double(g(:,:,i))/255; wp = double(w(:,:,i))/255; cp = double(c(:,:,i))/255; bp = double(b(:,:,i))/255; bp = ((bp>th).*(wp+gp))>th; g(:,:,i) = uint8(round(255*gp.*bp./(gp+wp+cp+eps))); w(:,:,i) = uint8(round(255*wp.*bp./(gp+wp+cp+eps))); c(:,:,i) = uint8(round(255*(cp.*bp./(gp+wp+cp+eps)+cp.*(1-bp)))); end; spm_progress_bar('Clear'); return; %======================================================================= %======================================================================= function pthnam = path_search(nam,pth) pthnam = ''; for i=1:numel(pth), if exist(fullfile(pth{i},nam),'file'), pthnam = fullfile(pth{i},nam); return; end; end;
github
philippboehmsturm/antx-master
stat_thresh.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/ns/stat_thresh.m
16,232
utf_8
d2613cd524b47b58778eae21cddbf866
function [peak_threshold, extent_threshold, peak_threshold_1, extent_threshold_1] = ... stat_thres(search_volume, num_voxels, fwhm, df, p_val_peak, ... cluster_threshold, p_val_extent, nconj, nvar, EC_file, expr) % % stat_thresh.m % Modified version of STAT_THRESHOLD function by Keith Worsley. The original % STAT_THRESHOLD function is part of the FMRISTAT packgage. The main use of the % original version is to calculate peak and cluster thresholds, both corrected % and uncorrected. Details on input and output arguments are found in the % original STAT_THRESHOLD function available from Keith Worsley's web site % at McGill University's Math & Stat department. % % This stat_thresh.m function is a customized version to be called by a function % spm_list_nS for non-stationarity correction of RFT-based cluster size test. % The input and output of this function is therefore modified for producing cluster % p-values (corrected) under non-stationarity. The modification includes: % -supressing the output from being displayed. % -the number of cluster p-values it can calculate has been increased to 500 clusters % (the default in the original version was 5). % -the p_val_extent is treated as extent, no matter how small it is. % % stat_thresh is called by spm_list_nS in the following format: % [PEAK_P CLUSTER_P PEAK_P_1 CLUSTER_P_1] = % stat_thresh(V_RESEL,NUM_VOX,1,[DF_ER;DF_RPV],ALPHA,CL_DEF_TH,CL_RESEL); % PARAMETERS: % V_RESEL: The seach volume in terms of resels. It is a 1x4 vector % describing the topological characteristic of the search % volume. % NUM_VOX: The number of voxels in the search volume. % DF_ER: Degrees of freedom of error % DF_RPV: Degrees of freedom of RPV image estimation. Usually the same % as the error df. % ALPHA: The significance level of the peak (arbitrarily set to 0.05) % CL_DEF_TH: The cluster defining threshold. Can be entered in terms of % a p-value (uncorrected) or a t-value. % CL_RESEL: The cluster size in terms of resel % % PEAK_P: Peak p-value (FWE corrected). Not used for our purpose. % PEAK_P_1: Peak p-value (uncorrected). Not used for our purpose. % CLUSTER_P: Cluster p-value (FWE corrected) % CLUSTER_P_1: Cluster p-value (uncorrected) % % ---------------- % % More etails on non-stationary cluster size test can be found in % % Worsley K J, Andermann M, Koulis T, MacDonald D and Evans A C % Detecting Changes in Nonisotropic Images % Human Brain Mapping 8: 98-101 (1999) % % Hayasaka S, Phan K L, Liberzon I, Worsley K J, and Nichols T E % Nonstationary cluster size inference with random-field and permutation methods % NeuroImage 22: 676-687 (2004) % % %----------------------------------------------------------------------------------- % Version 0.76b Feb 19, 2007 by Satoru Hayasaka % %############################################################################ % COPYRIGHT: Copyright 2003 K.J. Worsley % Department of Mathematics and Statistics, % McConnell Brain Imaging Center, % Montreal Neurological Institute, % McGill University, Montreal, Quebec, Canada. % [email protected] , www.math.mcgill.ca/keith % % Permission to use, copy, modify, and distribute this % software and its documentation for any purpose and without % fee is hereby granted, provided that this copyright % notice appears in all copies. The author and McGill University % make no representations about the suitability of this % software for any purpose. It is provided "as is" without % express or implied warranty. %############################################################################ %############################################################################ % UPDATES: % % Variable nvar is rounded so that it is recognized as an integer. % Feb 19, 2007 by Satoru Hayasaka %############################################################################ % Defaults: if nargin<1; search_volume=[]; end if nargin<2; num_voxels=[]; end if nargin<3; fwhm=[]; end if nargin<4; df=[]; end if nargin<5; p_val_peak=[]; end if nargin<6; cluster_threshold=[]; end if nargin<7; p_val_extent=[]; end if nargin<8; nconj=[]; end if nargin<9; nvar=[]; end if nargin<10; EC_file=[]; end if nargin<11; expr=[]; end if isempty(search_volume); search_volume=1000000; end if isempty(num_voxels); num_voxels=1000000; end if isempty(fwhm); fwhm=0.0; end if isempty(df); df=Inf; end if isempty(p_val_peak); p_val_peak=0.05; end if isempty(cluster_threshold); cluster_threshold=0.001; end if isempty(p_val_extent); p_val_extent=0.05; end if isempty(nconj); nconj=1; end if isempty(nvar); nvar=1; end if size(fwhm,1)==1; fwhm(2,:)=fwhm; end if size(fwhm,2)==1; scale=1; else scale=fwhm(1,2)/fwhm(1,1); fwhm=fwhm(:,1); end; isscale=(scale>1); if length(num_voxels)==1; num_voxels(2,1)=1; end if size(search_volume,2)==1 radius=(search_volume/(4/3*pi)).^(1/3); search_volume=[ones(length(radius),1) 4*radius 2*pi*radius.^2 search_volume]; end if size(search_volume,1)==1 search_volume=[search_volume; [1 zeros(1,size(search_volume,2)-1)]]; end lsv=size(search_volume,2); fwhm_inv=all(fwhm>0)./(fwhm+any(fwhm<=0)); resels=search_volume.*repmat(fwhm_inv,1,lsv).^repmat(0:lsv-1,2,1); invol=resels.*(4*log(2)).^(repmat(0:lsv-1,2,1)/2); for k=1:2 D(k,1)=max(find(invol(k,:)))-1; end % determines which method was used to estimate fwhm (see fmrilm or multistat): df_limit=4; % max number of pvalues or thresholds to print: % it can print out a ton of stuff! (the original default was 5) nprint=500; if length(df)==1; df=[df 0]; end if size(df,1)==1; df=[df; Inf Inf]; end if size(df,2)==1; df=[df [0; df(2,1)]]; end % is_tstat=1 if it is a t statistic is_tstat=(df(1,2)==0); if is_tstat df1=1; df2=df(1,1); else df1=df(1,1); df2=df(1,2); end if df2 >= 1000; df2=Inf; end df0=df1+df2; dfw1=df(2,1); dfw2=df(2,2); if dfw1 >= 1000; dfw1=Inf; end if dfw2 >= 1000; dfw2=Inf; end if length(nvar)==1; nvar(2,1)=df1; end nvar = round(nvar); %-to make sure that nvar is integer! if isscale & (D(2)>1 | nvar(1,1)>1 | df2<Inf) D nvar df2 fprintf('Cannot do scale space.'); return end Dlim=D+[scale>1; 0]; DD=Dlim+nvar-1; % Values of the F statistic: t=((1000:-1:1)'/100).^4; % Find the upper tail probs cumulating the F density using Simpson's rule: if df2==Inf u=df1*t; b=exp(-u/2-log(2*pi)/2+log(u)/4)*df1^(1/4)*4/100; else u=df1*t/df2; b=exp(-df0/2*log(1+u)+log(u)/4-betaln(1/2,(df0-1)/2))*(df1/df2)^(1/4)*4/100; end t=[t; 0]; b=[b; 0]; n=length(t); sb=cumsum(b); sb1=cumsum(b.*(-1).^(1:n)'); pt1=sb+sb1/3-b/3; pt2=sb-sb1/3-b/3; tau=zeros(n,DD(1)+1,DD(2)+1); tau(1:2:n,1,1)=pt1(1:2:n); tau(2:2:n,1,1)=pt2(2:2:n); tau(n,1,1)=1; tau(:,1,1)=min(tau(:,1,1),1); % Find the EC densities: u=df1*t; for d=1:max(DD) for e=0:min(min(DD),d) s1=0; cons=-((d+e)/2+1)*log(pi)+gammaln(d)+gammaln(e+1); for k=0:(d-1+e)/2 [i,j]=ndgrid(0:k,0:k); if df2==Inf q1=log(pi)/2-((d+e-1)/2+i+j)*log(2); else q1=(df0-1-d-e)*log(2)+gammaln((df0-d)/2+i)+gammaln((df0-e)/2+j) ... -gammalni(df0-d-e+i+j+k)-((d+e-1)/2-k)*log(df2); end q2=cons-gammalni(i+1)-gammalni(j+1)-gammalni(k-i-j+1) ... -gammalni(d-k-i+j)-gammalni(e-k-j+i+1); s2=sum(sum(exp(q1+q2))); if s2>0 s1=s1+(-1)^k*u.^((d+e-1)/2-k)*s2; end end if df2==Inf s1=s1.*exp(-u/2); else s1=s1.*exp(-(df0-2)/2*log(1+u/df2)); end if DD(1)>=DD(2) tau(:,d+1,e+1)=s1; if d<=min(DD) tau(:,e+1,d+1)=s1; end else tau(:,e+1,d+1)=s1; if d<=min(DD) tau(:,d+1,e+1)=s1; end end end end % For multivariate statistics, add a sphere to the search region: a=zeros(2,max(nvar)); for k=1:2 j=(nvar(k)-1):-2:0; a(k,j+1)=exp(j*log(2)+j/2*log(pi) ... +gammaln((nvar(k)+1)/2)-gammaln((nvar(k)+1-j)/2)-gammaln(j+1)); end rho=zeros(n,Dlim(1)+1,Dlim(2)+1); for k=1:nvar(1) for l=1:nvar(2) rho=rho+a(1,k)*a(2,l)*tau(:,(0:Dlim(1))+k,(0:Dlim(2))+l); end end if is_tstat t=[sqrt(t(1:(n-1))); -flipdim(sqrt(t),1)]; rho=[rho(1:(n-1),:,:); flipdim(rho,1)]/2; for i=0:D(1) for j=0:D(2) rho(n-1+(1:n),i+1,j+1)=-(-1)^(i+j)*rho(n-1+(1:n),i+1,j+1); end end rho(n-1+(1:n),1,1)=rho(n-1+(1:n),1,1)+1; n=2*n-1; end % For scale space: if scale>1 kappa=D(1)/2; tau=zeros(n,D(1)+1); for d=0:D(1) s1=0; for k=0:d/2 s1=s1+(-1)^k/(1-2*k)*exp(gammaln(d+1)-gammaln(k+1)-gammaln(d-2*k+1) ... +(1/2-k)*log(kappa)-k*log(4*pi))*rho(:,d+2-2*k,1); end if d==0 cons=log(scale); else cons=(1-1/scale^d)/d; end tau(:,d+1)=rho(:,d+1,1)*(1+1/scale^d)/2+s1*cons; end rho(:,1:(D(1)+1),1)=tau; end if D(2)==0 d=D(1); if nconj>1 % Conjunctions: b=gamma(((0:d)+1)/2)/gamma(1/2); for i=1:d+1 rho(:,i,1)=rho(:,i,1)/b(i); end m1=zeros(n,d+1,d+1); for i=1:d+1 j=i:d+1; m1(:,i,j)=rho(:,j-i+1,1); end for k=2:nconj for i=1:d+1 for j=1:d+1 m2(:,i,j)=sum(rho(:,1:d+2-i,1).*m1(:,i:d+1,j),2); end end m1=m2; end for i=1:d+1 rho(:,i,1)=m1(:,1,i)*b(i); end end if ~isempty(EC_file) if d<3 rho(:,(d+2):4,1)=zeros(n,4-d-2+1); end fid=fopen(EC_file,'w'); % first 3 are dimension sizes as 4-byte integers: fwrite(fid,[n max(d+2,5) 1],'int'); % next 6 are bounding box as 4-byte floats: fwrite(fid,[0 0 0; 1 1 1],'float'); % rest are the data as 4-byte floats: if ~isempty(expr) eval(expr); end fwrite(fid,t,'float'); fwrite(fid,rho,'float'); fclose(fid); end end if all(fwhm>0) pval_rf=zeros(n,1); for i=1:D(1)+1 for j=1:D(2)+1 pval_rf=pval_rf+invol(1,i)*invol(2,j)*rho(:,i,j); end end else pval_rf=Inf; end % Bonferroni pt=rho(:,1,1); pval_bon=abs(prod(num_voxels))*pt; % Minimum of the two: pval=min(pval_rf,pval_bon); tlim=1; if p_val_peak(1) <= tlim peak_threshold=minterp1(pval,t,p_val_peak); if length(p_val_peak)<=nprint peak_threshold; end else % p_val_peak is treated as a peak value: P_val_peak=interp1(t,pval,p_val_peak); peak_threshold=P_val_peak; if length(p_val_peak)<=nprint P_val_peak; end end if fwhm<=0 | any(num_voxels<0) peak_threshold_1=p_val_peak+NaN; extent_threshold=p_val_extent+NaN; extent_threshold_1=extent_threshold; return end % Cluster_threshold: %###-Changed so that cluster_threshold is considered as cluster extent no matter what. if cluster_threshold > eps tt=cluster_threshold; else % cluster_threshold is treated as a probability: tt=minterp1(pt,t,cluster_threshold); Cluster_threshold=tt; end d=D(1); rhoD=interp1(t,rho(:,d+1,1),tt); p=interp1(t,pt,tt); % Pre-selected peak: pval=rho(:,d+1,1)./rhoD; if p_val_peak(1) <= tlim peak_threshold_1=minterp1(pval,t, p_val_peak); if length(p_val_peak)<=nprint peak_threshold_1; end else % p_val_peak is treated as a peak value: P_val_peak_1=interp1(t,pval,p_val_peak); peak_threshold_1=P_val_peak_1; if length(p_val_peak)<=nprint P_val_peak_1; end end if D(1)==0 | nconj>1 | nvar(1)>1 | D(2)>0 | scale>1 extent_threshold=p_val_extent+NaN; extent_threshold_1=extent_threshold; if length(p_val_extent)<=nprint extent_threshold; extent_threshold_1; end return end % Expected number of clusters: %###-Change tlim to a small number so that p_val_extent is considered as cluster extent tlim = eps; EL=invol(1,d+1)*rhoD; cons=gamma(d/2+1)*(4*log(2))^(d/2)/fwhm(1)^d*rhoD/p; if df2==Inf & dfw1==Inf if p_val_extent(1) <= tlim pS=-log(1-p_val_extent)/EL; extent_threshold=(-log(pS)).^(d/2)/cons; pS=-log(1-p_val_extent); extent_threshold_1=(-log(pS)).^(d/2)/cons; if length(p_val_extent)<=nprint extent_threshold; extent_threshold_1; end else % p_val_extent is now treated as a spatial extent: pS=exp(-(p_val_extent*cons).^(2/d)); P_val_extent=1-exp(-pS*EL); extent_threshold=P_val_extent; P_val_extent_1=1-exp(-pS); extent_threshold_1=P_val_extent_1; if length(p_val_extent)<=nprint P_val_extent; P_val_extent_1; end end else % Find dbn of S by taking logs then using fft for convolution: ny=2^12; a=d/2; b2=a*10*max(sqrt(2/(min(df1+df2,dfw1))),1); if df2<Inf b1=a*log((1-(1-0.000001)^(2/(df2-d)))*df2/2); else b1=a*log(-log(1-0.000001)); end dy=(b2-b1)/ny; b1=round(b1/dy)*dy; y=((1:ny)'-1)*dy+b1; numrv=1+(d+1)*(df2<Inf)+d*(dfw1<Inf)+(dfw2<Inf); f=zeros(ny,numrv); mu=zeros(1,numrv); if df2<Inf % Density of log(Beta(1,(df2-d)/2)^(d/2)): yy=exp(y./a)/df2*2; yy=yy.*(yy<1); f(:,1)=(1-yy).^((df2-d)/2-1).*((df2-d)/2).*yy/a; mu(1)=exp(gammaln(a+1)+gammaln((df2-d+2)/2)-gammaln((df2+2)/2)+a*log(df2/2)); else % Density of log(exp(1)^(d/2)): yy=exp(y./a); f(:,1)=exp(-yy).*yy/a; mu(1)=exp(gammaln(a+1)); end nuv=[]; aav=[]; if df2<Inf nuv=[df1+df2-d df2+2-(1:d)]; aav=[a repmat(-1/2,1,d)]; end if dfw1<Inf if dfw1>df_limit nuv=[nuv dfw1-dfw1/dfw2-(0:(d-1))]; else nuv=[nuv repmat(dfw1-dfw1/dfw2,1,d)]; end aav=[aav repmat(1/2,1,d)]; end if dfw2<Inf nuv=[nuv dfw2]; aav=[aav -a]; end for i=1:(numrv-1) nu=nuv(i); aa=aav(i); yy=y/aa+log(nu); % Density of log((chi^2_nu/nu)^aa): f(:,i+1)=exp(nu/2*yy-exp(yy)/2-(nu/2)*log(2)-gammaln(nu/2))/abs(aa); mu(i+1)=exp(gammaln(nu/2+aa)-gammaln(nu/2)-aa*log(nu/2)); end % Check: plot(y,f); sum(f*dy,1) should be 1 omega=2*pi*((1:ny)'-1)/ny/dy; shift=complex(cos(-b1*omega),sin(-b1*omega))*dy; prodfft=prod(fft(f),2).*shift.^(numrv-1); % Density of Y=log(B^(d/2)*U^(d/2)/sqrt(det(Q))): ff=real(ifft(prodfft)); % Check: plot(y,ff); sum(ff*dy) should be 1 mu0=prod(mu); % Check: plot(y,ff.*exp(y)); sum(ff.*exp(y)*dy.*(y<10)) should equal mu0 alpha=p/rhoD/mu0*fwhm(1)^d/(4*log(2))^(d/2); % Integrate the density to get the p-value for one cluster: pS=cumsum(ff(ny:-1:1))*dy; pS=pS(ny:-1:1); % The number of clusters is Poisson with mean EL: pSmax=1-exp(-pS*EL); if p_val_extent(1) <= tlim yval=minterp1(-pSmax,y,-p_val_extent); % Spatial extent is alpha*exp(Y) -dy/2 correction for mid-point rule: extent_threshold=alpha*exp(yval-dy/2); % For a single cluster: yval=minterp1(-pS,y,-p_val_extent); extent_threshold_1=alpha*exp(yval-dy/2); if length(p_val_extent)<=nprint extent_threshold; extent_threshold_1; end else % p_val_extent is now treated as a spatial extent: P_val_extent=interp1(y,pSmax,log(p_val_extent/alpha)+dy/2); extent_threshold=P_val_extent; % For a single cluster: P_val_extent_1=interp1(y,pS,log(p_val_extent/alpha)+dy/2); extent_threshold_1=P_val_extent_1; if length(p_val_extent)<=nprint P_val_extent; P_val_extent_1; end end end return function x=gammalni(n); i=find(n>=0); x=Inf+n; if ~isempty(i) x(i)=gammaln(n(i)); end return function iy=minterp1(x,y,ix); % interpolates only the monotonically increasing values of x at ix n=length(x); mx=x(1); my=y(1); xx=x(1); for i=2:n if x(i)>xx xx=x(i); mx=[mx xx]; my=[my y(i)]; end end iy=interp1(mx,my,ix); return
github
philippboehmsturm/antx-master
tbx_cfg_hdw.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/HDW/tbx_cfg_hdw.m
9,492
utf_8
f45f5115b3ab70be34ef72399f52ff5d
function hdw = tbx_cfg_hdw % Configuration file for toolbox 'High-Dimensional Warping' %_______________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % John Ashburner % $Id: tbx_cfg_hdw.m 3960 2010-06-30 17:41:24Z ged $ % --------------------------------------------------------------------- % ref Reference Image % --------------------------------------------------------------------- ref = cfg_files; ref.tag = 'ref'; ref.name = 'Reference Image'; ref.help = {'This is the reference image, which remains stationary.'}; ref.filter = 'image'; ref.ufilter = '.*'; ref.num = [1 1]; % --------------------------------------------------------------------- % mov Moved Image % --------------------------------------------------------------------- mov = cfg_files; mov.tag = 'mov'; mov.name = 'Moved Image'; mov.help = {'This is the moved image, which is warped to match the reference.'}; mov.filter = 'image'; mov.ufilter = '.*'; mov.num = [1 1]; % --------------------------------------------------------------------- % data Subject % --------------------------------------------------------------------- data1 = cfg_branch; data1.tag = 'data'; data1.name = 'Subject'; data1.val = {ref mov}; data1.help = {'Two images of the same subject, which are to be registered together. Prior to nonlinear high-dimensional warping, the images should be rigidly registered with each other.'}; % --------------------------------------------------------------------- % data Subjects % --------------------------------------------------------------------- data = cfg_repeat; data.tag = 'data'; data.name = 'Subjects'; data.help = {'Specify pairs of images to match together.'}; data.values = {data1}; data.num = [0 Inf]; % --------------------------------------------------------------------- % nits Iterations % --------------------------------------------------------------------- nits = cfg_entry; nits.tag = 'nits'; nits.name = 'Iterations'; nits.help = {'Number of iterations for the bias correction'}; nits.val = {8}; nits.strtype = 'n'; nits.num = [1 1]; % --------------------------------------------------------------------- % fwhm Bias FWHM % --------------------------------------------------------------------- fwhm = cfg_menu; fwhm.tag = 'fwhm'; fwhm.name = 'Bias FWHM'; fwhm.help = {'FWHM of Gaussian smoothness of bias. If your intensity nonuniformity is very smooth, then choose a large FWHM. This will prevent the algorithm from trying to model out intensity variation due to different tissue types. The model for intensity nonuniformity is one of i.i.d. Gaussian noise that has been smoothed by some amount, before taking the exponential. Note also that smoother bias fields need fewer parameters to describe them. This means that the algorithm is faster for smoother intensity nonuniformities.'}; fwhm.val = {60}; fwhm.labels = {'30mm cutoff' '40mm cutoff' '50mm cutoff' '60mm cutoff' '70mm cutoff' '80mm cutoff' '90mm cutoff' '100mm cutoff' '110mm cutoff' '120mm cutoff' '130mm cutoff' '140mm cutoff' '150mm cutoff' 'No correction'}'; fwhm.values = {30 40 50 60 70 80 90 100 110 120 130 140 150 Inf}; % --------------------------------------------------------------------- % reg Bias regularisation % --------------------------------------------------------------------- reg = cfg_menu; reg.tag = 'reg'; reg.name = 'Bias regularisation'; reg.help = {'We know a priori that intensity variations due to MR physics tend to be spatially smooth, whereas those due to different tissue types tend to contain more high frequency information. A more accurate estimate of a bias field can be obtained by including prior knowledge about the distribution of the fields likely to be encountered by the correction algorithm. For example, if it is known that there is little or no intensity non-uniformity, then it would be wise to penalise large values for the intensity nonuniformity parameters. This regularisation can be placed within a Bayesian context, whereby the penalty incurred is the negative logarithm of a prior probability for any particular pattern of nonuniformity.'}; reg.val = {1e-6}; reg.labels = {'no regularisation' 'extremely light regularisation' 'very light regularisation' 'light regularisation' 'medium regularisation' 'heavy regularisation' 'very heavy regularisation' 'extremely heavy regularisation'}'; reg.values = {0, 1e-9, 1e-8, 1e-7, 1e-6, 1e-5, 1e-4, 1e-3}; % --------------------------------------------------------------------- % lmreg Levenberg-Marquardt regularisation % --------------------------------------------------------------------- lmreg = cfg_menu; lmreg.tag = 'lmreg'; lmreg.name = 'Levenberg-Marquardt regularisation'; lmreg.help = {'Levenberg-Marquardt regularisation keeps the bias correction part stable. Higher values means more stability, but slower convergence.'}; lmreg.val = {1e-6}; lmreg.labels ={'no regularisation' 'extremely light regularisation' 'very light regularisation' 'light regularisation' 'medium regularisation' 'heavy regularisation' 'very heavy regularisation' 'extremely heavy regularisation' }'; lmreg.values = {0, 1e-9, 1e-8, 1e-7, 1e-6, 1e-5, 1e-4, 1e-3}; % --------------------------------------------------------------------- % bias_opts Bias Correction Options % --------------------------------------------------------------------- bias_opts = cfg_branch; bias_opts.tag = 'bias_opts'; bias_opts.name = 'Bias Correction Options'; bias_opts.val = {nits fwhm reg lmreg }; bias_opts.help = {'MR images are usually corrupted by a smooth, spatially varying artifact that modulates the intensity of the image (bias). These artifacts, although not usually a problem for visual inspection, can impede automated processing of the images.' 'Before registering the images, an approximate bias correction is estimated for the moved image. This is based on minimising the difference between the images an a symmetric way. Prior to registering the images, they should be rigidly aligned together. The bias correction is estimated once for these aligned images.'}'; % --------------------------------------------------------------------- % nits Iterations % --------------------------------------------------------------------- nitsw = cfg_entry; nitsw.tag = 'nits'; nitsw.name = 'Iterations'; nitsw.help = {'Number of iterations for the warping.'}; nitsw.val = {8}; nitsw.strtype = 'n'; nitsw.num = [1 1]; % --------------------------------------------------------------------- % reg Warping regularisation % --------------------------------------------------------------------- regw = cfg_entry; regw.tag = 'reg'; regw.name = 'Warping regularisation'; regw.help = {'There is a tradeoff between the smoothness of the estimated warps, and the difference between the registered images. Higher values mean smoother warps, at the expense of a lower mean squared difference between the images.'}; regw.val = {4}; regw.strtype = 'e'; regw.num = [1 1]; % --------------------------------------------------------------------- % warp_opts Warping Options % --------------------------------------------------------------------- warp_opts = cfg_branch; warp_opts.tag = 'warp_opts'; warp_opts.name = 'Warping Options'; warp_opts.val = {nitsw regw}; warp_opts.help = {'There are a couple of user-customisable warping options.'}; % --------------------------------------------------------------------- % hdw High-Dimensional Warping % --------------------------------------------------------------------- hdw = cfg_exbranch; hdw.tag = 'hdw'; hdw.name = 'High-Dimensional Warping'; hdw.val = {data bias_opts warp_opts}; hdw.help = {'This toolbox is a Bayesian method for three dimensional registration of brain images/* \cite{ashburner00a} */. A finite element approach is used to obtain a maximum a posteriori (MAP) estimate of the deformation field at every voxel of a template volume. The priors used by the MAP estimate penalize unlikely deformations and enforce a continuous one-to-one mapping. The deformations are assumed to have some form of symmetry, in that priors describing the probability distribution of the deformations should be identical to those for the inverses (i.e., warping brain A to brain B should not be different probablistically from warping B to A). A gradient descent algorithm is used to estimate the optimum deformations.' 'Deformation fields are written with the same name as the moved image, but with "y_" prefixed on to the filename. Jacobian determinant images are also written (prefixed by "jy_").'}'; hdw.prog = @spm_local_hdw; %====================================================================== function spm_local_hdw(job) if ~isdeployed, addpath(fullfile(spm('Dir'),'toolbox','HDW')); end spm_hdw(job);
github
philippboehmsturm/antx-master
spm_hdw.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/HDW/spm_hdw.m
10,972
utf_8
40c05cd670bad0c86a761d18e32f7811
function spm_hdw(job) % Warp a pair of same subject images together % % Very little support can be provided for the warping routine, as it % involves optimising a very nonlinear objective function. % Also, don't ask what the best value for the regularisation is. %_______________________________________________________________________ % Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging % John Ashburner % $Id: spm_hdw.m 4148 2011-01-04 16:49:23Z guillaume $ for i=1:numel(job.data), run_warping(job.data(i).mov{1},job.data(i).ref{1},job.warp_opts,job.bias_opts); end; %_______________________________________________________________________ %_______________________________________________________________________ function run_warping(PF,PG,warp_opts,bias_opts) VG = spm_vol(PG); VF = spm_vol(PF); reg = warp_opts.reg; nit = warp_opts.nits; % Load the image pair as 8 bit. %----------------------------------------------------------------------- bo = bias_opts; [VG.uint8,sf] = loaduint8(VG); % Template VF.uint8 = bias_correction(VF,VG,bo.nits,bo.fwhm,bo.reg,bo.lmreg,sf); % Try loading pre-existing deformation fields. Otherwise, create % deformation fields from uniform affine transformations. %----------------------------------------------------------------------- [pth,nme,ext,num] = spm_fileparts(VF.fname); ofname = fullfile(pth,['y_' nme '.nii']); Def = cell(3,1); if exist(ofname)==2, P = [repmat(ofname,3,1), [',1,1';',1,2';',1,3']]; VT = spm_vol(P); if any(abs(VT(1).mat\VG.mat - eye(4))>0.00001), error('Incompatible affine transformation matrices.'); end; Def{1} = spm_load_float(VT(1)); Def{2} = spm_load_float(VT(2)); Def{3} = spm_load_float(VT(3)); spm_affdef(Def{:},inv(VF.mat)); else, fprintf('Generating uniform affine transformation field\n'); Def{1} = single(1:VG.dim(1))'; Def{1} = Def{1}(:,ones(VG.dim(2),1),ones(VG.dim(3),1)); Def{2} = single(1:VG.dim(2)); Def{2} = Def{2}(ones(VG.dim(1),1),:,ones(VG.dim(3),1)); Def{3} = reshape(single(1:VG.dim(3)),1,1,VG.dim(3)); Def{3} = Def{3}(ones(VG.dim(1),1),ones(VG.dim(2),1),:); spm_affdef(Def{:},VF.mat\VG.mat); end; % Voxel sizes %----------------------------------------------------------------------- vxg = sqrt(sum(VG.mat(1:3,1:3).^2))';if det(VG.mat(1:3,1:3))<0, vxg(1) = -vxg(1); end; vxf = sqrt(sum(VF.mat(1:3,1:3).^2))';if det(VF.mat(1:3,1:3))<0, vxf(1) = -vxf(1); end; % Do warping %----------------------------------------------------------------------- fprintf('Warping (iterations=%d regularisation=%g)\n', nit, reg); spm_warp(VG.uint8,VF.uint8,Def{:},[vxg vxf],[nit,reg,1,0]); % Convert mapping from voxels to mm %----------------------------------------------------------------------- spm_affdef(Def{:},VF.mat); % Write the deformations %----------------------------------------------------------------------- save_def(Def,VG.mat,ofname) return; %_______________________________________________________________________ %_______________________________________________________________________ function [udat,sf] = loaduint8(V) % Load data from file indicated by V into an array of unsigned bytes. spm_progress_bar('Init',V.dim(3),... ['Computing max/min of ' spm_str_manip(V.fname,'t')],... 'Planes complete'); mx = -Inf; for p=1:V.dim(3), img = spm_slice_vol(V,spm_matrix([0 0 p]),V.dim(1:2),1); mx = max([max(img(:)) mx]); spm_progress_bar('Set',p); end; spm_progress_bar('Init',V.dim(3),... ['Loading ' spm_str_manip(V.fname,'t')],... 'Planes loaded'); sf = 255/mx; udat = uint8(0); udat(V.dim(1),V.dim(2),V.dim(3))=0; for p=1:V.dim(3), img = spm_slice_vol(V,spm_matrix([0 0 p]),V.dim(1:2),1); udat(:,:,p) = round(max(min(img*sf,255),0)); spm_progress_bar('Set',p); end; spm_progress_bar('Clear'); return; %_______________________________________________________________________ %_______________________________________________________________________ function t = transf(B1,B2,B3,T) d2 = [size(T) 1]; t1 = reshape(reshape(T, d2(1)*d2(2),d2(3))*B3', d2(1), d2(2)); t = B1*t1*B2'; return; %_______________________________________________________________________ %_______________________________________________________________________ function udat = bias_correction(VF,VG,nits,fwhm,reg1,reg2,sf) % This function is intended for doing bias correction prior % to high-dimensional intra-subject registration. Begin by % coregistering, then run the bias correction, and then do % the high-dimensional warping. A version of the first image % is returned out, that has the same bias as that of the second % image. This allows warping of the corrected first image, to % match the uncorrected second image. % % Ideally, it would all be combined into the same model, but % that would require quite a lot of extra work. I should really % sort out a good convergence criterion, and make it a proper % Levenberg-Marquardt optimisation. vx = sqrt(sum(VF.mat(1:3,1:3).^2)); d = VF.dim(1:3); sd = vx(1)*VF.dim(1)/fwhm; d3(1) = ceil(sd*2); krn_x = exp(-(0:(d3(1)-1)).^2/sd.^2)/sqrt(vx(1)); sd = vx(2)*VF.dim(2)/fwhm; d3(2) = ceil(sd*2); krn_y = exp(-(0:(d3(2)-1)).^2/sd.^2)/sqrt(vx(2)); sd = vx(3)*VF.dim(3)/fwhm; d3(3) = ceil(sd*2); krn_z = exp(-(0:(d3(3)-1)).^2/sd.^2)/sqrt(vx(3)); Cbias = kron(krn_z,kron(krn_y,krn_x)).^(-2)*prod(d)*reg1; Cbias = sparse(1:length(Cbias),1:length(Cbias),Cbias,length(Cbias),length(Cbias)); B3bias = spm_dctmtx(d(3),d3(3)); B2bias = spm_dctmtx(d(2),d3(2)); B1bias = spm_dctmtx(d(1),d3(1)); lmRb = speye(size(Cbias))*prod(d)*reg2; Tbias = zeros(d3); ll = Inf; spm_plot_convergence('Init','Bias Correction','- Log-likelihood','Iteration'); for subit=1:nits, % Compute objective function and its 1st and second derivatives Alpha = zeros(prod(d3),prod(d3)); % Second derivatives Beta = zeros(prod(d3),1); % First derivatives oll = ll; ll = 0.5*Tbias(:)'*Cbias*Tbias(:); for z=1:VF.dim(3), M1 = spm_matrix([0 0 z]); M2 = VG.mat\VF.mat*M1; f1o = spm_slice_vol(VF,M1,VF.dim(1:2),0); f2o = spm_slice_vol(VG,M2,VF.dim(1:2),0); msk = (f1o==0) & (f2o==0); f1o(msk) = 0; f2o(msk) = 0; ro = transf(B1bias,B2bias,B3bias(z,:),Tbias); msk = abs(ro)>0.01; % false(d(1:2)); % Use the form based on an integral for bias that is % far from uniform. f1 = f1o(msk); f2 = f2o(msk); r = ro(msk); e = exp(r); t1 = (f2.*e-f1); t2 = (f1./e-f2); ll = ll + 1/4*sum(sum((t1.^2-t2.^2)./r)); wt1 = zeros(size(f1o)); wt2 = zeros(size(f1o)); wt1(msk) = (2*(t1.*f2.*e+t2.*f1./e)./r + (t2.^2-t1.^2)./r.^2)/4; wt2(msk) = ((f2.^2.*e.^2-f1.^2./e.^2+t1.*f2.*e-t2.*f1./e)./r/2 ... - (t1.*f2.*e+t2.*f1./e)./r.^2 + (t1.^2-t2.^2)./r.^3/2); % Use the simple symmetric form for bias close to uniform f1 = f1o(~msk); f2 = f2o(~msk); r = ro(~msk); e = exp(r); t1 = (f2.*e-f1); t2 = (f1./e-f2); ll = ll + (sum(t1.^2)+sum(t2.^2))/4; wt1(~msk) = (t1.*f2.*e-t2.*f1./e)/2; wt2(~msk) = ((f2.*e).^2+t1.*f2.*e + (f1./e).^2+t2.*f1./e)/2; b3 = B3bias(z,:)'; Beta = Beta + kron(b3,spm_krutil(wt1,B1bias,B2bias,0)); Alpha = Alpha + kron(b3*b3',spm_krutil(wt2,B1bias,B2bias,1)); end; spm_plot_convergence('Set',ll/prod(d)); if subit > 1 && ll>oll, % Hasn't improved, so go back to previous solution Tbias = oTbias; ll = oll; lmRb = lmRb*10; else % Accept new solution oTbias = Tbias; Tbias = Tbias(:); Tbias = Tbias - (Alpha + Cbias + lmRb)\(Beta + Cbias*Tbias); Tbias = reshape(Tbias,d3); end; end; udat = uint8(0); udat(VF.dim(1),VF.dim(2),VF.dim(3)) = 0; for z=1:VF.dim(3), M1 = spm_matrix([0 0 z]); f1 = spm_slice_vol(VF,M1,VF.dim(1:2),0); r = transf(B1bias,B2bias,B3bias(z,:),Tbias); f1 = f1./exp(r); udat(:,:,z) = round(max(min(f1*sf,255),0)); end; return; %_______________________________________________________________________ %_______________________________________________________________________ function save_def(Def,mat,fname) % Save a deformation field as an image dim = [size(Def{1},1) size(Def{1},2) size(Def{1},3) 1 3]; dtype = 'FLOAT32'; off = 0; scale = 1; inter = 0; dat = file_array(fname,dim,dtype,off,scale,inter); N = nifti; N.dat = dat; N.mat = mat; N.mat0 = mat; N.mat_intent = 'Aligned'; N.mat0_intent = 'Aligned'; N.intent.code = 'VECTOR'; N.intent.name = 'Mapping'; N.descrip = 'Deformation field'; create(N); N.dat(:,:,:,1,1) = Def{1}; N.dat(:,:,:,1,2) = Def{2}; N.dat(:,:,:,1,3) = Def{3}; % Write Jacobian determinants [pth,nme,ext,num] = spm_fileparts(fname); jfname = fullfile(pth,['j' nme '.nii']) dt = spm_def2det(Def{:},N.mat); dat = file_array(jfname,dim(1:3),dtype,off,scale,inter); N = nifti; N.dat = dat; N.mat = mat; N.mat0 = mat; N.mat_intent = 'Aligned'; N.mat0_intent = 'Aligned'; N.intent.code = 'NONE'; N.intent.name = 'Det'; N.descrip = 'Jacobian Determinant'; create(N); N.dat(:,:,:) = dt; return; %_______________________________________________________________________ %_______________________________________________________________________ function theory % This function is never called. It simply contains my derivation of the % objective function and its first and second derivatives for the LM % optimisation. Note that this would simply be summed over all voxels. % An estimate of the variance should maybe have been included, but I'll % leave that for a future version. % These will be used to simplify expressions r = x1*p1+x2*p2; e = exp(r); t1 = (f2*e-f1) t2 = (f1/e-f2) % This is the actual objective function maple int((exp(-(x1*p1+x2*p2)*(1-t))*f1-exp((x1*p1+x2*p2)*t)*f2)^2/2,t=0..1) f = 1/4*(t1^2-t2^2)/r % These are the first derivatives maple diff(1/4*((f1-f2*exp(x1*p1+x2*p2))^2-(f2-f1/exp(x1*p1+x2*p2))^2)/(x1*p1+x2*p2),x1) d1 = p1*1/4*(2*(t1*f2*e+t2*f1/e)/r + (t2^2-t1^2)/r^2) % These are the second derivatives maple diff(diff(1/4*((f1-f2*exp(x1*p1+x2*p2))^2-(f2-f1/exp(x1*p1+x2*p2))^2)/(x1*p1+x2*p2),x1),x2) d2 = p1*p2*(1/2*(f2^2*e^2-f1^2/e^2+t1*f2*e-t2*f1/e)/r - (t1*f2*e+t2*f1/e)/r^2 + 1/2*(t1^2-t2^2)/r^3) % However, the above formulation has problems in limiting case of zero bias, % so this objective function is used for these regions f = (t1^2+t2^2)/4 % First derivs maple diff((f1-exp(x1*p1+x2*p2)*f2)^2/4 + (f1/exp(x1*p1+x2*p2)-f2)^2/4,x1) d1 = (p1*t1*f2*e - p1*t2*f1/e)/2 % Second derivatives maple diff(diff((f1-exp(x1*p1+x2*p2)*f2)^2/4 + (f1/exp(x1*p1+x2*p2)-f2)^2/4,x1),x2) d2 = p1*p2*(f2^2*e^2+t1*f2*e + f1^2/e^2+t2*f1/e)/2
github
philippboehmsturm/antx-master
run_correction.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/physiotools/run_correction.m
6,131
utf_8
f3e5799b94a4622ea9d01182fc9c113d
function varargout = run_correction(cmd, varargin) % Template function to implement callbacks for an cfg_exbranch. The calling % syntax is % varargout = run_correction(cmd, varargin) % where cmd is one of % 'run' - out = run_correction('run', job) % Run a job, and return its output argument % 'vout' - dep = run_correction('vout', job) % Examine a job structure with all leafs present and return an % array of cfg_dep objects. % 'check' - str = run_correction('check', subcmd, subjob) % Examine a part of a fully filled job structure. Return an empty % string if everything is ok, or a string describing the check % error. subcmd should be a string that identifies the part of % the configuration to be checked. % 'defaults' - defval = run_correction('defaults', key) % Retrieve defaults value. key must be a sequence of dot % delimited field names into the internal def struct which is % kept in function local_def. An error is returned if no % matching field is found. % run_correction('defaults', key, newval) % Set the specified field in the internal def struct to a new % value. % Application specific code needs to be inserted at the following places: % 'run' - main switch statement: code to compute the results, based on % a filled job % 'vout' - main switch statement: code to compute cfg_dep array, based % on a job structure that has all leafs, but not necessarily % any values filled in % 'check' - create and populate switch subcmd switchyard % 'defaults' - modify initialisation of defaults in subfunction local_defs % Callbacks can be constructed using anonymous function handles like this: % 'run' - @(job)run_correction('run', job) % 'vout' - @(job)run_correction('vout', job) % 'check' - @(job)run_correction('check', 'subcmd', job) % 'defaults' - @(val)run_correction('defaults', 'defstr', val{:}) % Note the list expansion val{:} - this is used to emulate a % varargin call in this function handle. % % This code is part of a batch job configuration system for MATLAB. See % help matlabbatch % for a general overview. %_______________________________________________________________________ % Copyright (C) 2007 Freiburg Brain Imaging % Volkmar Glauche % $Id: run_correction.m 7 2009-07-31 07:34:19Z glauche $ rev = '$Rev: 7 $'; %#ok if ischar(cmd) switch lower(cmd) case 'run' job = local_getjob(varargin{1}); % Sort out input arguments if isfield(job.corrdata,'matfile') % read and merge saved estimation output var = load(job.corrdata.matfile{1}); job.corrdata.var = var; end WhichPhysioStr = char(fieldnames(job.corrdata.var.which)); switch WhichPhysioStr case 'cardiac' WhichPhysio = 0; case 'resp' WhichPhysio = 1; case 'pulse' WhichPhysio = 2; case 'respcard' WhichPhysio = 3; case 'cardresp' WhichPhysio = 4; case 'resppulse' WhichPhysio = 5; case 'pulseresp' WhichPhysio = 6; end % do computation, return results in variable out out.images = TimeSerieImagePhysioCorrection1(job.images, job.corrdata.var.PhasesOfSlices, job.corrdata.var.CyclesOfSlices, WhichPhysio, job.corrdata.var.which.(WhichPhysioStr).corr, job.fitmethod, job.fitorder, job.sorder, job.prefix); if nargout > 0 varargout{1} = out; end case 'vout' job = local_getjob(varargin{1}); dep = cfg_dep; dep.sname = 'Corrected Time Series'; dep.src_output = substruct('.','images'); dep.tgt_spec = cfg_findspec({{'filter','image'}}); % determine outputs, return cfg_dep array in variable dep varargout{1} = dep; case 'check' if ischar(varargin{1}) subcmd = lower(varargin{1}); subjob = varargin{2}; str = ''; switch subcmd % implement checks, return status string in variable str otherwise cfg_message('unknown:check', ... 'Unknown check subcmd ''%s''.', subcmd); end varargout{1} = str; else cfg_message('ischar:check', 'Subcmd must be a string.'); end case 'defaults' if nargin == 2 varargout{1} = local_defs(varargin{1}); else local_defs(varargin{1:2}); end otherwise cfg_message('unknown:cmd', 'Unknown command ''%s''.', cmd); end else cfg_message('ischar:cmd', 'Cmd must be a string.'); end function varargout = local_defs(defstr, defval) persistent defs; if isempty(defs) % initialise defaults end if ischar(defstr) % construct subscript reference struct from dot delimited tag string tags = textscan(defstr,'%s', 'delimiter','.'); subs = struct('type','.','subs',tags{1}'); try cdefval = subsref(local_def, subs); catch cdefval = []; cfg_message('defaults:noval', ... 'No matching defaults value ''%s'' found.', defstr); end if nargin == 1 varargout{1} = cdefval; else defs = subsasgn(defs, subs, defval); end else cfg_message('ischar:defstr', 'Defaults key must be a string.'); end function job = local_getjob(job) if ~isstruct(job) cfg_message('isstruct:job', 'Job must be a struct.'); end
github
philippboehmsturm/antx-master
run_phases_and_cycles.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/physiotools/run_phases_and_cycles.m
9,577
utf_8
1e141800f7c7283857f0e5c97d9643cd
function varargout = run_phases_and_cycles(cmd, varargin) % Run the physiotool functions from SPM8 batch system % varargout = run_phases_and_cycles(cmd, varargin) % where cmd is one of % 'run' - out = run_phases_and_cycles('run', job) % Run a job, and return its output argument % 'vout' - dep = run_phases_and_cycles('vout', job) % Examine a job structure with all leafs present and return an % array of cfg_dep objects. % 'check' - str = run_phases_and_cycles('check', subcmd, subjob) % Examine a part of a fully filled job structure. Return an empty % string if everything is ok, or a string describing the check % error. subcmd should be a string that identifies the part of % the configuration to be checked. % 'defaults' - defval = run_phases_and_cycles('defaults', key) % Retrieve defaults value. key must be a sequence of dot % delimited field names into the internal def struct which is % kept in function local_def. An error is returned if no % matching field is found. % run_phases_and_cycles('defaults', key, newval) % Set the specified field in the internal def struct to a new % value. % Application specific code needs to be inserted at the following places: % 'run' - main switch statement: code to compute the results, based on % a filled job % 'vout' - main switch statement: code to compute cfg_dep array, based % on a job structure that has all leafs, but not necessarily % any values filled in % 'check' - create and populate switch subcmd switchyard % 'defaults' - modify initialisation of defaults in subfunction local_defs % Callbacks can be constructed using anonymous function handles like this: % 'run' - @(job)run_phases_and_cycles('run', job) % 'vout' - @(job)run_phases_and_cycles('vout', job) % 'check' - @(job)run_phases_and_cycles('check', 'subcmd', job) % 'defaults' - @(val)run_phases_and_cycles('defaults', 'defstr', val{:}) % Note the list expansion val{:} - this is used to emulate a % varargin call in this function handle. % % This code is part of a batch job configuration system for MATLAB. See % help matlabbatch % for a general overview. %_______________________________________________________________________ % Copyright (C) 2007 Freiburg Brain Imaging % Volkmar Glauche % $Id: run_phases_and_cycles.m 7 2009-07-31 07:34:19Z glauche $ rev = '$Rev: 7 $'; %#ok if ischar(cmd) switch lower(cmd) case 'run' job = local_getjob(varargin{1}); % do computation, return results in variable out % combined estimation of phases&cycles and correction % estimation of phases&cycles out = struct('PhasesOfSlices', [], 'CyclesOfSlices', [], 'SIGNALS', [],'matfile',''); % Sort out input arguments WhichPhysioStr = char(fieldnames(job.which)); ChanNames = fieldnames(job.which.(WhichPhysioStr)); ChanNames = ChanNames(1:end-1); % skip 'corr' field physiofiles = cellfun(@(Chan)subsref(job.which.(WhichPhysioStr),substruct('.',Chan,'.','datafile')),ChanNames); bandwidth = cellfun(@(Chan)subsref(job.which.(WhichPhysioStr),substruct('.',Chan,'.','bandwidth')),ChanNames); signalyflip = cellfun(@(Chan)subsref(job.which.(WhichPhysioStr),substruct('.',Chan,'.','flip')),ChanNames); switch WhichPhysioStr case 'cardiac' WhichPhysio = 0; corrext = {'','Global','Cyclic'}; % dummy for corr == -1 channel = job.which.(WhichPhysioStr).cardiac.channel; case 'resp' WhichPhysio = 1; corrext = {'Hist','Global','Cyclic'}; channel = 1; % dummy case 'pulse' WhichPhysio = 2; corrext = {'','Global','Cyclic'}; % dummy for corr == -1 channel = 1; % dummy case 'respcard' WhichPhysio = 3; corrext = {'GlobalHist','GlobalGlobal','GlobalCyclic','CyclicCyclic'}; channel = job.which.(WhichPhysioStr).cardiac.channel; case 'cardresp' WhichPhysio = 4; corrext = {'HistGlobal','GlobalGlobal','CyclicGlobal','CyclicCyclic'}; channel = job.which.(WhichPhysioStr).cardiac.channel; case 'resppulse' WhichPhysio = 5; corrext = {'GlobalHist','GlobalGlobal','GlobalCyclic','CyclicCyclic'}; channel = 1; % dummy case 'pulseresp' WhichPhysio = 6; corrext = {'HistGlobal','GlobalGlobal','CyclicGlobal','CyclicCyclic'}; channel = 1; % dummy end % compute phases & cycles [out.PhasesOfSlices, out.CyclesOfSlices, out.SIGNALS] = PhysioSignal_Plot_PhasesAndCyclesOfSlices23(physiofiles, job.TR, job.nslices, [1 job.nscans], WhichPhysio, job.which.(WhichPhysioStr).corr, [0;0], [0;0], bandwidth, job.TR*job.ndummy, channel, signalyflip); % construct output filename based on input and correction % method and save results if numel(physiofiles) == 1 [p n e v] = fileparts(physiofiles{1}); else [p n1 e v] = fileparts(physiofiles{1}); [p n2 e v] = fileparts(physiofiles{2}); if isequal(n1,n2) n = n1; else n = [n1 n2]; end end out.which.(WhichPhysioStr).corr = job.which.(WhichPhysioStr).corr; % save info for reference during correction out.matfile = {fullfile(p, [n corrext{job.which.(WhichPhysioStr).corr+2} WhichPhysioStr '.mat'])}; save(out.matfile{1},'-struct','out'); if nargout > 0 varargout{1} = out; end case 'vout' job = local_getjob(varargin{1}); % initialise empty cfg_dep array dep = cfg_dep; dep = dep(false); % determine outputs, return cfg_dep array in variable dep % output structure % out.matfile = filename with correction parameters - cell % strings % out.PhasesOfSlices % out.CyclesOfSlices % out.Signals dep(1) = cfg_dep; dep(1).sname = 'Correction parameters'; dep(1).src_output = substruct('.','matfile'); dep(1).tgt_spec = cfg_findspec({{'type','mat','strtype','e'}}); WhichPhysioStr = char(fieldnames(job.which)); switch WhichPhysioStr case {'cardiac','pulse','resp'} dep(2) = cfg_dep; dep(2).sname = sprintf('PhasesOfSlices - %s(1)', WhichPhysioStr); dep(2).src_output = substruct('.','PhasesOfSlices','()',{1,':'}); dep(2).tgt_spec = cfg_findspec({{'strtype','r'}}); dep(3) = cfg_dep; dep(3).sname = sprintf('CyclesOfSlices - %s(1)', WhichPhysioStr); dep(3).src_output = substruct('.','PhasesOfSlices','()',{1,':'}); dep(3).tgt_spec = cfg_findspec({{'strtype','r'}}); end varargout{1} = dep; case 'check' if ischar(varargin{1}) subcmd = lower(varargin{1}); subjob = varargin{2}; str = ''; switch subcmd % implement checks, return status string in variable str otherwise cfg_message('unknown:check', ... 'Unknown check subcmd ''%s''.', subcmd); end varargout{1} = str; else cfg_message('ischar:check', 'Subcmd must be a string.'); end case 'defaults' if nargin == 2 varargout{1} = local_defs(varargin{1}); else local_defs(varargin{1:2}); end otherwise cfg_message('unknown:cmd', 'Unknown command ''%s''.', cmd); end else cfg_message('ischar:cmd', 'Cmd must be a string.'); end function varargout = local_defs(defstr, defval) persistent defs; if isempty(defs) % initialise defaults end if ischar(defstr) % construct subscript reference struct from dot delimited tag string tags = textscan(defstr,'%s', 'delimiter','.'); subs = struct('type','.','subs',tags{1}'); try cdefval = subsref(local_def, subs); catch cdefval = []; cfg_message('defaults:noval', ... 'No matching defaults value ''%s'' found.', defstr); end if nargin == 1 varargout{1} = cdefval; else defs = subsasgn(defs, subs, defval); end else cfg_message('ischar:defstr', 'Defaults key must be a string.'); end function job = local_getjob(job) if ~isstruct(job) cfg_message('isstruct:job', 'Job must be a struct.'); end
github
philippboehmsturm/antx-master
run_est_apply.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/physiotools/run_est_apply.m
5,573
utf_8
12e58502fd85bc798bfe0f7195391a9a
function varargout = run_est_apply(cmd, varargin) % Template function to implement callbacks for an cfg_exbranch. The calling % syntax is % varargout = run_est_apply(cmd, varargin) % where cmd is one of % 'run' - out = run_est_apply('run', job) % Run a job, and return its output argument % 'vout' - dep = run_est_apply('vout', job) % Examine a job structure with all leafs present and return an % array of cfg_dep objects. % 'check' - str = run_est_apply('check', subcmd, subjob) % Examine a part of a fully filled job structure. Return an empty % string if everything is ok, or a string describing the check % error. subcmd should be a string that identifies the part of % the configuration to be checked. % 'defaults' - defval = run_est_apply('defaults', key) % Retrieve defaults value. key must be a sequence of dot % delimited field names into the internal def struct which is % kept in function local_def. An error is returned if no % matching field is found. % run_est_apply('defaults', key, newval) % Set the specified field in the internal def struct to a new % value. % Application specific code needs to be inserted at the following places: % 'run' - main switch statement: code to compute the results, based on % a filled job % 'vout' - main switch statement: code to compute cfg_dep array, based % on a job structure that has all leafs, but not necessarily % any values filled in % 'check' - create and populate switch subcmd switchyard % 'defaults' - modify initialisation of defaults in subfunction local_defs % Callbacks can be constructed using anonymous function handles like this: % 'run' - @(job)run_est_apply('run', job) % 'vout' - @(job)run_est_apply('vout', job) % 'check' - @(job)run_est_apply('check', 'subcmd', job) % 'defaults' - @(val)run_est_apply('defaults', 'defstr', val{:}) % Note the list expansion val{:} - this is used to emulate a % varargin call in this function handle. % % This code is part of a batch job configuration system for MATLAB. See % help matlabbatch % for a general overview. %_______________________________________________________________________ % Copyright (C) 2007 Freiburg Brain Imaging % Volkmar Glauche % $Id: run_est_apply.m 7 2009-07-31 07:34:19Z glauche $ rev = '$Rev: 7 $'; %#ok if ischar(cmd) switch lower(cmd) case 'run' job = local_getjob(varargin{1}); % augment estimation job with information from job.images V = spm_vol(job.images{1}); job.nslices = V.dim(3); job.nscans = numel(job.images); % run estimation job out = run_phases_and_cycles('run',job); job.corrdata.var = out; % run correction job, add images to output out1 = run_correction('run',job); out.images = out1.images; if nargout > 0 varargout{1} = out; end case 'vout' job = local_getjob(varargin{1}); % augment estimation job with information from job.images if iscellstr(job.images) && ~isempty(job.images) V = spm_vol(job.images{1}); job.nslices = V.dim(3); job.nscans = numel(job.images); else job.nslices = '<UNDEFINED>'; job.nscans = '<UNDEFINED>'; end % get estimation outputs dep1 = run_phases_and_cycles('vout',job); % get correction outputs dep2 = run_correction('vout',job); varargout{1} = [dep1 dep2]; case 'check' if ischar(varargin{1}) subcmd = lower(varargin{1}); subjob = varargin{2}; str = ''; switch subcmd % implement checks, return status string in variable str otherwise cfg_message('unknown:check', ... 'Unknown check subcmd ''%s''.', subcmd); end varargout{1} = str; else cfg_message('ischar:check', 'Subcmd must be a string.'); end case 'defaults' if nargin == 2 varargout{1} = local_defs(varargin{1}); else local_defs(varargin{1:2}); end otherwise cfg_message('unknown:cmd', 'Unknown command ''%s''.', cmd); end else cfg_message('ischar:cmd', 'Cmd must be a string.'); end function varargout = local_defs(defstr, defval) persistent defs; if isempty(defs) % initialise defaults end if ischar(defstr) % construct subscript reference struct from dot delimited tag string tags = textscan(defstr,'%s', 'delimiter','.'); subs = struct('type','.','subs',tags{1}'); try cdefval = subsref(local_def, subs); catch cdefval = []; cfg_message('defaults:noval', ... 'No matching defaults value ''%s'' found.', defstr); end if nargin == 1 varargout{1} = cdefval; else defs = subsasgn(defs, subs, defval); end else cfg_message('ischar:defstr', 'Defaults key must be a string.'); end function job = local_getjob(job) if ~isstruct(job) cfg_message('isstruct:job', 'Job must be a struct.'); end
github
philippboehmsturm/antx-master
tbx_run_fbi_dicom.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/FBIDicom/tbx_run_fbi_dicom.m
4,924
utf_8
07da3d668a76b3d2908774b7c8e5f7ae
function out = tbx_run_fbi_dicom(job) % SPM job execution function % takes a harvested job data structure and call SPM functions to perform % computations on the data. % Input: % job - harvested job data structure (see matlabbatch help) % Output: % out - computation results, usually a struct variable. % tbx_run_fbi_dicom.m,v 1.3 2008/05/21 11:43:30 vglauche Exp %_______________________________________________________________________ % Copyright (C) 2007 Freiburg Brain Imaging % Volkmar Glauche % $Id: $ rev = '$Rev: 218 $'; %#ok<NASGU> switch char(fieldnames(job.data)) case 'files' files = {job.data.files}; case 'dirs' files1 = cell(size(job.data.dirs)); for k = 1:numel(job.data.dirs) files1{k} = recurse_dirs(deblank(job.data.dirs{k}),{}); end; files = [files1{:}]; if numel(files) == 0 dstr = sprintf('%s\n', job.data.dirs{:}); error('tbx_fbi_dicom:failed', ... ['DICOM import failed:\n' ... 'No files/directories to convert.\n' ... 'Check that you have read permissions on the directories.\n%s'], dstr); end; case 'dicomdirs' files1 = cell(size(job.data.dicomdirs)); for k = 1:numel(job.data.dicomdirs) files1{k} = read_dicomdirs(job.data.dicomdirs{k}); end; files = [files1{:}]; if numel(files) == 0 dstr = sprintf('%s\n', job.data.dirs{:}); error('tbx_fbi_dicom:failed', ... ['DICOM import failed:\n' ... 'No files/directories to convert.\n' ... 'Check that you have read permissions on the directories.\n%s'], dstr); end; end; out.files = {}; rjob = cell(size(files)); switch spm('ver') case 'SPM5' for k = 1:numel(files) rjob{k}.util{1}.dicom = job; rjob{k}.util{1}.dicom.data = files{k}; end % no detection of failed jobs spm_jobman('run',rjob); case {'SPM8','SPM8b'} for k = 1:numel(files) rjob{k}.spm.util.dicom = job; rjob{k}.spm.util.dicom.data = files{k}; end cjob = cfg_util('initjob', rjob); cfg_util('run', cjob); jout = cfg_util('getalloutputs', cjob); cfg_util('deljob', cjob); for k = 1:numel(jout) if isfield(jout{k},'files') out.files = [out.files(:); jout{k}.files(:)]; end end end %______________________________________________________________________ % Recursively get all files from a directory and all its subdirectories function pp = recurse_dirs(cdir,pp) pp1 = {}; if exist(cdir, 'dir') ad = dir(cdir); for i=1:length(ad) if ad(i).isdir if ~strcmp(ad(i).name,'.') && ~strcmp(ad(i).name,'..') pp = recurse_dirs([cdir filesep ad(i).name],pp); end; else pp1{end+1} = fullfile(cdir, ad(i).name); end; end; if ~isempty(pp1) pp{end+1} = pp1; end else warning('tbx_run_fbi_dicom:recurse_dirs', 'Can not access folder ''%s''. Data from this folder may be archived already.', cdir); end %______________________________________________________________________ % Read a dicomdirs file and parse its contents to get a series-wise list % of files function files = read_dicomdirs(dicomdirs) p = fileparts(dicomdirs); hdcmdirs = spm_dicom_headers(dicomdirs); drs = hdcmdirs{1}.DirectoryRecordSequence; % Get directory record types hdrt = deblank(cellfun(@(item)subsref(item,substruct('.','DirectoryRecordType')), ... drs,'UniformOutput', ... false)); % Get start and end of series lists % Assume that DirectoryRecordSequence is a linear listing of all items on % CD and no files are listed "outside" of a SERIES isseries = find(strcmp(hdrt, 'SERIES')); files = cell(size(isseries)); if ~isempty(isseries) ieseries = [isseries(2:end)-1 numel(hdrt)]; for cs = 1:numel(isseries) files{cs} = {}; for ce = isseries(cs):ieseries(cs) if isfield(drs{ce}, 'ReferencedFileID') % canonicalise file names, assume filenames relative to % dicomdir file location cf = fullfile(p, ... strrep(lower(deblank(drs{ce}.ReferencedFileID)),'\',filesep)); if exist(cf, 'file') files{cs}{end+1} = cf; else cf = fullfile(p, ... strrep(deblank(drs{ce}.ReferencedFileID),'\',filesep)); if exist(cf, 'file') files{cs}{end+1} = cf; end end end end end % prune empty series files = files(~cellfun(@isempty,files)); end
github
philippboehmsturm/antx-master
spm_dicom_query.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/FBIDicom/spm_dicom_query.m
19,806
utf_8
73257342ab7e797a1d6d9fdb52a49fb1
function spm_dicom_query f=findobj(0,'tag',mfilename); if ishandle(f) clf(f,'reset'); set(f,'units','normalized','tag',mfilename, 'position',[.1 .25 .8 .5]); else f=figure('units','normalized','tag',mfilename, 'position',[.1 .25 ... .8 .7], 'name',[spm('ver') ': DICOM query'], ... 'numbertitle','off', 'resize','off'); end; l=uicontrol('style','listbox', 'units','normalized', ... 'position',[.1 .55 .8 .4], 'tag',[mfilename 'patbox'], 'max',2,... 'fontname','bitstream vera sans mono', 'callback',@addto_selbox); l=uicontrol('style','text', 'string','PatName Filter', 'units','normalized', ... 'position',[.1 .50 .1 .04]); l=uicontrol('style','edit', 'string','.*', 'units','normalized', ... 'position',[.2 .50 .1 .04], 'tag',[mfilename 'PatNamefilt'], ... 'callback',@filter_fill_patbox); l=uicontrol('style','text', 'string','PatID Filter', 'units','normalized', ... 'position',[.3 .50 .1 .04]); l=uicontrol('style','edit', 'string','.*', 'units','normalized', ... 'position',[.4 .50 .1 .04], 'tag',[mfilename 'PatIDfilt'], ... 'callback',@filter_fill_patbox); l=uicontrol('style','text', 'string','StudyName Filter', 'units','normalized', ... 'position',[.1 .45 .1 .04]); l=uicontrol('style','edit', 'string','.*', 'units','normalized', ... 'position',[.2 .45 .1 .04], 'tag',[mfilename 'StuNamefilt'], 'enable','off', ... 'callback',@filter_fill_patbox); l=uicontrol('style','text', 'string','StudyDate Filter', 'units','normalized', ... 'position',[.3 .45 .1 .04]); l=uicontrol('style','edit', 'string','.*', 'units','normalized', ... 'position',[.4 .45 .1 .04], 'tag',[mfilename 'StuDatefilt'], 'enable','off', ... 'callback',@filter_fill_patbox); l=uicontrol('style','text', 'string','StudyTime Filter', 'units','normalized', ... 'position',[.5 .45 .1 .04]); l=uicontrol('style','edit', 'string','.*', 'units','normalized', ... 'position',[.6 .45 .1 .04], 'tag',[mfilename 'StuTimefilt'], 'enable','off', ... 'callback',@filter_fill_patbox); l=uicontrol('style','text', 'string','SequenceName Filter', 'units','normalized', ... 'position',[.1 .4 .1 .04]); l=uicontrol('style','edit', 'string','.*', 'units','normalized', ... 'position',[.2 .4 .1 .04], 'tag',[mfilename 'SeqNamefilt'], 'enable','off', ... 'callback',@filter_fill_patbox); l=uicontrol('style','text', 'string','ProtocolName Filter', 'units','normalized', ... 'position',[.3 .4 .1 .04]); l=uicontrol('style','edit', 'string','.*', 'units','normalized', ... 'position',[.4 .4 .1 .04], 'tag',[mfilename 'ProNamefilt'], 'enable','off', ... 'callback',@filter_fill_patbox); l=uibuttongroup('Title','Detail Level', 'units','normalized', ... 'position',[.1 .31 .6 .07], 'tag',[mfilename 'level'], ... 'SelectionChangeFcn',@update_fill_patbox); lpat=uicontrol('parent',l, 'style','radio', 'string','Subject/Project', ... 'units','normalized', 'position',[0 .05 1/3 .95]); lpat=uicontrol('parent',l, 'style','radio', 'string','Study/Examination', ... 'units','normalized', 'position',[1/3 .05 1/3 .95]); lpat=uicontrol('parent',l, 'style','radio', 'string','Series', ... 'units','normalized', 'position',[2/3 .05 1/3 .95]); l=uicontrol('style','pushbutton', 'string','Update List', 'callback', ... @update_fill_patbox, 'units','normalized', 'position',[.7 .31 .2 .07]); l=uicontrol('style','listbox', 'units','normalized', ... 'position',[.1 .1 .8 .2], 'tag',[mfilename 'selbox'], 'max',2,... 'fontname','bitstream vera sans mono', 'callback',@rmfrom_selbox, ... 'string',{}, 'userdata',{}); l=uicontrol('style','popup', 'string',{'SPM DICOM import (Fast)', 'SPM DICOM import (Expert)'}, 'callback', ... @get_selected_files, 'units','normalized', 'position',[.1 .05 ... .15 .05], 'tag',[mfilename 'button']); l=uicontrol('style','popup', 'string',{'DTI DICOM import (Fast)', 'DTI DICOM import (Expert)', 'DICOM Copy Tool'}, 'callback', ... @get_selected_files, 'units','normalized', 'position',[.3 .05 ... .15 .05], 'tag',[mfilename 'button']); l=uicontrol('style','pushbutton', 'string','Export dirnames', 'callback', ... @get_selected_files, 'units','normalized', 'position',[.5 .05 ... .15 .05], 'tag',[mfilename 'button']); l=uicontrol('style','pushbutton', 'string','Cancel', 'callback', ... @cancel, 'units','normalized', 'position',[.7 .05 ... .2 .05], 'tag',[mfilename 'button']); update_fill_patbox; function update_fill_patbox(varargin) spm('pointer','watch'); query_database; filter_patbox; fill_patbox; spm('pointer','arrow'); function filter_fill_patbox(varargin) spm('pointer','watch'); filter_patbox; fill_patbox; spm('pointer','arrow'); function filter_patbox(varargin) set(findobj(0, 'tag',[mfilename 'patbox']),'value',1, ... 'string',{'Filtering results', 'Please wait...'}); drawnow; ud =get(findobj(0, 'tag',[mfilename 'patbox']),'userdata'); lvls=get(get(findobj(0, 'tag',[mfilename 'level']),'children')); lvl =find(cat(1,lvls.Value)); hser = [findobj(0,'tag',[mfilename 'SeqNamefilt']),... findobj(0,'tag',[mfilename 'ProNamefilt'])]; hstu = [findobj(0,'tag',[mfilename 'StuNamefilt']),... findobj(0,'tag',[mfilename 'StuDatefilt']),... findobj(0,'tag',[mfilename 'StuTimefilt'])]; hpat = [findobj(0,'tag',[mfilename 'PatNamefilt']),... findobj(0,'tag',[mfilename 'PatIDfilt'])]; IDCOLS=ud.PATIDCOLS+ud.STUIDCOLS+ud.SERIDCOLS; ud.sel = ~cellfun(@isempty,regexp(ud.vals(:,IDCOLS+1),get(hpat(1),'string'),'once')) & ... ~cellfun(@isempty,regexp(ud.vals(:,IDCOLS+2),get(hpat(2),'string'),'once')); if lvl < 3 ud.sel = ud.sel & ... ~cellfun(@isempty,regexp(ud.vals(:,IDCOLS+ud.PATCOLS+1), get(hstu(1),'string'), 'once')) & ... ~cellfun(@isempty,regexp(ud.vals(:,IDCOLS+ud.PATCOLS+2), get(hstu(2),'string'), 'once')) & ... ~cellfun(@isempty,regexp(ud.vals(:,IDCOLS+ud.PATCOLS+3), get(hstu(3), 'string'),'once')); if lvl < 2 ud.sel = ud.sel & ... ~cellfun(@isempty,regexp(ud.vals(:,IDCOLS+ud.PATCOLS+ud.STUCOLS+2), get(hser(1),'string'), 'once')) & ... ~cellfun(@isempty,regexp(ud.vals(:,IDCOLS+ud.PATCOLS+ud.STUCOLS+3), get(hser(2),'string'), 'once')); end end set(findobj(0, 'tag',[mfilename 'patbox']),'userdata',ud); function query_database(varargin) set(findobj(0,'tag',[mfilename 'patbox']), 'value',1,... 'string',{'Database query in progress', 'Please wait...'}); drawnow; level={'--serieslevel','--studylevel','--patientlevel'}; % Level uis are read out in % order opposite to creation query_util='/apps/ctn-dicom/scripts/dicom_query'; lvls=get(get(findobj(0, 'tag',[mfilename 'level']),'children')); lvl = logical(cat(1,lvls.Value)); [s result]=system(sprintf('%s %s --all',query_util,level{lvl})); % get column numbers ud.PATIDCOLS=0; ud.PATCOLS=0; ud.STUIDCOLS=0; ud.STUCOLS=0; ud.SERIDCOLS=0; ud.SERCOLS=0; ud.IMACOLS=0; [tok result] = strtok(result,char(10)); while ~isempty(strfind(tok,'COLS=')) try eval(['ud.' tok ';']); [tok result] = strtok(result,char(10)); catch break; end end fmtstr=['|' repmat('%s',1,ud.PATIDCOLS+ud.PATCOLS+... ud.STUIDCOLS+ud.STUCOLS+ud.SERIDCOLS+ud.SERCOLS+ud.IMACOLS)]; [tok result] = strtok(result,char(10)); ud.vals = textscan(result, fmtstr, 'delimiter','|', 'whitespace',''); ud.vals = deblank(cat(2,ud.vals{:})); % trim vals to equal length per column for k = (ud.PATIDCOLS+ud.STUIDCOLS+ud.SERIDCOLS+1):size(ud.vals,2) tmp = strvcat(strcat(ud.vals(:,k),'.')); for l = 1:size(ud.vals,1) ud.vals{l,k} = strrep(tmp(l,:),' ','.'); end; end; ud.sel = true(size(ud.vals,1),1); set(findobj(0,'tag',[mfilename 'patbox']),'userdata',ud); function fill_patbox(varargin) set(findobj(0,'tag',[mfilename 'patbox']),... 'string',{'Formatting results', 'Please wait...'}); drawnow; stuindent='->'; serindent='--->'; imaindent='----->'; lvls=get(get(findobj(0, 'tag',[mfilename 'level']),'children')); lvl =find(cat(1,lvls.Value)); hser = [findobj(0,'tag',[mfilename 'SeqNamefilt']) findobj(0,'tag',[mfilename 'ProNamefilt'])]; hstu = [findobj(0,'tag',[mfilename 'StuNamefilt']),... findobj(0,'tag',[mfilename 'StuDatefilt']),... findobj(0,'tag',[mfilename 'StuTimefilt'])]; switch lvl case 1 set(hser,'enable','on'); set(hstu,'enable','on'); case 2 set(hser,'enable','off'); set(hstu,'enable','on'); case 3 set(hser,'enable','off'); set(hstu,'enable','off'); end; ud = get(findobj(0,'tag',[mfilename 'patbox']),'userdata'); set(findobj(0,'tag',[mfilename 'patbox']), 'value',[]); cstr = 1; patlast=0; stulast=0; serlast=0; vals = ud.vals(ud.sel,:); ud.str=cell(4*size(vals,1),1); ud.uid=cell(4*size(vals,1),1); ud.valind=zeros(4*size(vals,1),1); for k=1:size(vals,1) if patlast == 0 || ~all(cellfun(@isequal,... vals(k,ud.PATIDCOLS+ud.STUIDCOLS+ud.SERIDCOLS+(1:ud.PATCOLS)),... vals(patlast,ud.PATIDCOLS+ud.STUIDCOLS+ud.SERIDCOLS+(1:ud.PATCOLS)))) ud.str{cstr} = strrep(sprintf('%s ', vals{k,ud.PATIDCOLS+ud.STUIDCOLS+ud.SERIDCOLS+... (1:ud.PATCOLS)}),char(65533),'_'); ud.uid(cstr) = {vals(k,1:ud.PATIDCOLS)}; ud.valind(cstr) = k; patlast = k; cstr = cstr+1; end; if ud.STUCOLS if stulast == 0 || ~all(cellfun(@isequal,... vals(k,ud.PATIDCOLS+ud.STUIDCOLS+ud.SERIDCOLS+... ud.PATCOLS+(1:ud.STUCOLS)),... vals(stulast,ud.PATIDCOLS+ud.STUIDCOLS+ud.SERIDCOLS+... ud.PATCOLS+(1:ud.STUCOLS)))) cval = vals(k,:); timeval=str2double(regexprep(cval{ud.PATIDCOLS+ud.STUIDCOLS+ud.SERIDCOLS+... ud.PATCOLS+3},'^(\.*)([0-9].*[0-9])(\.*)$','$2')); timestr=sprintf('%02d:%02d',floor(timeval/3600),floor(rem(timeval/60,60))); cval{ud.PATIDCOLS+ud.STUIDCOLS+ud.SERIDCOLS+ud.PATCOLS+3}=timestr; ud.str{cstr} = strrep(sprintf('%s ', stuindent,... cval{ud.PATIDCOLS+ud.STUIDCOLS+ud.SERIDCOLS+... ud.PATCOLS+(1:ud.STUCOLS)}),char(65533),'_'); ud.uid(cstr) = {vals(k,1:(ud.PATIDCOLS+ud.STUIDCOLS))}; ud.valind(cstr) = k; stulast = k; cstr = cstr+1; end; end; if ud.SERCOLS if serlast == 0 || ~all(cellfun(@isequal,... vals(k,ud.PATIDCOLS+ud.STUIDCOLS+ud.SERIDCOLS+... ud.PATCOLS+ud.STUCOLS+(1:ud.SERCOLS)),... vals(serlast,ud.PATIDCOLS+ud.STUIDCOLS+ud.SERIDCOLS+... ud.PATCOLS+ud.STUCOLS+(1:ud.SERCOLS)))) ud.str{cstr} = strrep(sprintf('%s ', serindent,... vals{k,ud.PATIDCOLS+ud.STUIDCOLS+ud.SERIDCOLS+... ud.PATCOLS+ud.STUCOLS+(1:ud.SERCOLS)}),char(65533),'_'); ud.uid(cstr) = {vals(k,1:(ud.PATIDCOLS+ud.STUIDCOLS+ ... ud.SERIDCOLS))}; ud.valind(cstr) = k; serlast = k; cstr = cstr+1; end; end; if ud.IMACOLS tmpstr=sprintf('%s ', imaindent, ... vals{k,ud.PATIDCOLS+ud.STUIDCOLS+ud.SERIDCOLS+... ud.PATCOLS+ud.STUCOLS+ud.SERCOLS+(1:ud.IMACOLS)}); ud.str{cstr} = strrep(tmpstr,char(65533),'_'); ud.uid(cstr) = {vals(k,1:(ud.PATIDCOLS+ud.STUIDCOLS+ud.SERIDCOLS))}; ud.valind(cstr) = k; cstr = cstr+1; end; end; if cstr == 1 ud.str = {'No hits in database.'}; ud.uid = {}; ud.valind = []; else ud.str = ud.str(1:(cstr-1)); ud.uid = ud.uid(1:(cstr-1)); ud.valind = ud.valind(1:(cstr-1)); end set(findobj(0,'tag',[mfilename 'patbox']), 'string',ud.str,'userdata',ud); function addto_selbox(varargin) ud =get(findobj(0,'tag',[mfilename 'patbox']),'userdata'); sel2=get(findobj(0,'tag',[mfilename 'patbox']),'value'); uid1=get(findobj(0,'tag',[mfilename 'selbox']),'userdata'); str1=get(findobj(0,'tag',[mfilename 'selbox']),'string'); uid=[uid1(:); ud.uid(sel2)]'; str=[str1(:); ud.str(sel2)]'; set(findobj(0,'tag',[mfilename 'selbox']),'string',str, 'userdata',uid, 'value',[]); function rmfrom_selbox(varargin) sel=get(findobj(0,'tag',[mfilename 'selbox']),'value'); uid=get(findobj(0,'tag',[mfilename 'selbox']),'userdata'); str=get(findobj(0,'tag',[mfilename 'selbox']),'string'); set(findobj(0,'tag',[mfilename 'selbox']),'value',[]); nsel=setdiff(1:numel(uid),sel); if ~isempty(nsel) set(findobj(0,'tag',[mfilename 'selbox']),'userdata',uid(nsel), 'string',str(nsel)); else set(findobj(0,'tag',[mfilename 'selbox']),'userdata',{}, 'string',{}); end function get_selected_files(varargin) set(findobj(0,'tag',[mfilename 'button']),'Enable','off'); spm('pointer','watch'); uid=get(findobj(0,'tag',[mfilename 'selbox']),'userdata'); cmd = get(gcbo,'string'); if iscell(cmd) % popup menu cmd = cmd{get(gcbo, 'value')}; end; patidstr=''; stuinsuidstr=''; serinsuidstr=''; for k=1:numel(uid) switch numel(uid{k}) case 1, patidstr=sprintf('PatientLevel.PatID="%s" OR %s', ... deblank(uid{k}{1}), patidstr); case 2, stuinsuidstr=sprintf('StudyLevel.StuInsUID="%s" OR %s', ... deblank(uid{k}{2}), stuinsuidstr); case 3, serinsuidstr=sprintf('SeriesLevel.SerInsUID="%s" OR %s', ... deblank(uid{k}{3}), serinsuidstr); end; end; querystr = ['select distinct SerPath='... 'substring(InstanceTable.Path, 1, char_length(InstanceTable.Path) -'... ' charindex( ''/'', reverse(InstanceTable.Path))) from InstanceTable, ImageLevel, SeriesLevel ' ... '%s where SeriesLevel.SerInsUID = ImageLevel.SerParent and '... 'ImageLevel.SOPInsUID = InstanceTable.ImageUID and (%s)']; isqlstr = ['export LANG=C\n'... 'export LC_ALL=C\n'... 'export SYBASE=/apps/sybase\n'... 'cat <<EOF|/apps/sybase/OCS-12_5/bin/isql -U fbidicom -P fbidicom -S FBIDICOM -H fbidicom -w 10000 -D DicomImage\n'... 'set nocount on\n%s\ngo\nEOF\n']; dirs={}; if ~isempty(patidstr) patidstr=sprintf(['(%s) and StudyLevel.PatParent=PatientLevel.PatID and '... 'SeriesLevel.StuParent=StudyLevel.StuInsUID'],patidstr(1:end-3)); patidtables=', StudyLevel, PatientLevel'; querypatid=sprintf(querystr, patidtables, patidstr); [s w]=system(sprintf(isqlstr,querypatid)); tmp=textscan(w,'%s','delimiter',char(10)); dirs=[dirs(:); tmp{1}(3:end)]'; end; if ~isempty(stuinsuidstr) stuinsuidstr=sprintf(['(%s) and '... 'SeriesLevel.StuParent=' ... 'StudyLevel.StuInsUID'],stuinsuidstr(1:end-3)); stuinsuidtables=', StudyLevel'; querystuinsuid=sprintf(querystr, stuinsuidtables, stuinsuidstr); [s w]=system(sprintf(isqlstr,querystuinsuid)); tmp=textscan(w,'%s','delimiter',char(10)); dirs=[dirs(:); tmp{1}(3:end)]'; end; if ~isempty(serinsuidstr) queryserinsuid=sprintf(querystr,'',serinsuidstr(1:end-3)); [s w]=system(sprintf(isqlstr,queryserinsuid)); tmp=textscan(w,'%s','delimiter',char(10)); dirs=[dirs(:); tmp{1}(3:end)]'; end; dirs=deblank(dirs); close(findobj(0,'tag',mfilename)); spm('pointer','arrow'); switch lower(cmd) case {'spm dicom import (fast)','spm dicom import (expert)'} switch lower(spm('ver')) case {'spm5','spm8','spm8b'} jtmp.fbi_dicom=struct('data',struct('dirs',{dirs}), ... 'outdir','<UNDEFINED>'); jobs{1}.tools={jtmp}; fg = spm_figure('findwin','Graphics'); if ~isempty(fg) && ishandle(fg) figure(fg); end if strcmpi(cmd,'spm dicom import (fast)') == 1 && any(strcmpi(spm('ver'),{'spm8','spm8b'})) spm_jobman('serial',jobs); else spm_jobman('interactive',jobs); end; case 'spm2' addpath(fullfile(spm('dir'),'toolbox','DICOM')); fg = spm_figure('findwin','Interactive'); if ~isempty(fg) && ishandle(fg) figure(fg); end spm_DICOM(dirs); end; case {'dti dicom import (fast)','dti dicom import (expert)'} switch lower(spm('ver')) case {'spm8','spm8b'} jobs = cell(1,numel(dirs)+3); jobs{1}.cfg_basicio.cfg_named_dir.name = 'Output Directory'; jobs{1}.cfg_basicio.cfg_named_dir.dirs = {'<UNDEFINED>'}; jobs{2}.cfg_basicio.cfg_named_input.name = 'Save Hardi (1 = yes, 0 = no)'; jobs{2}.cfg_basicio.cfg_named_input.input = '<UNDEFINED>'; outdir(1) = cfg_dep; outdir(1).sname = 'Named Directory Selector: Output Directory(1)'; outdir(1).src_exbranch = substruct('.','val', '{}',{1}, '.','val', '{}',{1}); outdir(1).src_output = substruct('.','dirs', '{}',{1}); shardi(1) = cfg_dep; shardi(1).sname = 'Named Input: Save Hardi (1 = yes, 0 = no)'; shardi(1).src_exbranch = substruct('.','val', '{}',{2}, '.','val', '{}',{1}); shardi(1).src_output = substruct('.','input'); for k = 1:numel(dirs) jobs{2*k-1+2}.spm.tools.fbi_dicom_dti=struct('dirs',{dirs(k)}, ... 'outdir',outdir); rawdep(k) = cfg_dep; rawdep(k).src_exbranch = substruct('.','val', '{}',{2*k-1+2}, '.','val', '{}',{1}, '.','val', '{}',{1}); rawdep(k).src_output = substruct('.','files'); jobs{2*k+2}.dtijobs.tensor.filename = rawdep(k); jobs{2*k+2}.dtijobs.tensor.hardi = shardi; end jobs{end+1}.cfg_basicio.file_move.files = rawdep; jobs{end}.cfg_basicio.file_move.action.delete = false; if strcmpi(cmd,'dti dicom import (fast)') == 1 spm_jobman('serial',jobs); else spm_jobman('interactive',jobs); end; otherwise error('Unsupported SPM version'); end case 'dicom copy tool' % need to run one dicom_copy_tool per subject subj = cell(size(dirs)); stud = cell(size(dirs)); for k=1:numel(dirs) [subj{k} n e] = fileparts(dirs{k}); stud{k} = [n e]; end; [usubj unused ind] = unique(subj); if numel(usubj)>1 sts=questdlg(sprintf(['You have selected %d subjects. DICOM Copy Tool ' ... 'has to be called for each subject separately. ' ... 'Do you want to proceed?'],numel(usubj)), ... 'Multiple subjects selected', 'Copy', 'Cancel', 'Copy'); if strcmp(sts,'Cancel') assignin('base','dcmdirs',dirs); fprintf('\nNames of data directories saved into workspace variable ''dcmdirs''.\n'); fprintf('DICOM Copy Tool will not be started.\n'); return; end end; for k=1:numel(usubj) dicom_copy_tool; dicom_copy_model('set', 'makeDir', 1); dicom_copy_model('set', 'efilmDir', usubj{k}); cstud = stud(ind==k); for l=1:numel(cstud) dicom_copy_model('set', 'setSourceDir', cstud{l}) end; dicom_copy_model('set','ATsorting',1); waitfor(findobj('tag','dicom_copy_figure')); end; case 'export dirnames' assignin('base','dcmdirs',dirs); fprintf('\nNames of data directories saved into workspace variable ''dcmdirs''.\n'); end; function cancel(varargin) close(findobj(0,'tag',mfilename));
github
philippboehmsturm/antx-master
tbx_run_fbi_ima.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/FBIDicom/tbx_run_fbi_ima.m
8,880
UNKNOWN
6885a91a97bcd2487e1df40d70e9e9dc
function out = tbx_run_fbi_ima(cmd, job) % % (c) Sebastian Thees 17.2.2001, email: [email protected] % % Dept. of Neurologie, Charite, Berlin, Germany % switch lower(cmd) case 'run' params.file = detImaParams(job.imaFileList{1}); order = genSliceOrder( params.file.nSlices, job.interleaved); [p n e v] = spm_fileparts(job.imgFilename); if ~any(strcmp(e,{'.img','.nii'})) e = '.nii'; end if params.file.isMosaic == 0 imgFilename = [n e]; img = zeros(params.file.matrix(1), params.file.matrix(2), numel(job.imaFileList), ... 'uint16'); for i = 1 : numel(job.imaFileList) imaFid = fopen(job.imaFileList{order(i)}, 'r', 'ieee-be'); fseek( imaFid, 6144, 'bof'); [img(:,:,i), n]= fread( imaFid, params.file.matrix(1:2), 'uint16'); if n ~= params.file.imaSize fclose('all'); error('Unable to read image %s completely. %2.4f %% read => terminating !',... job.imaFileList{order(i)}, n/params.file.imaSize); end fclose( imaFid); end V = imaToImg_geometrie(imgFilename, job.odir{1}, params); spm_write_vol(V, double(img)); out.outimgs{1} = V.fname; else xSize = params.file.matrix(1); ySize = params.file.matrix(2); nX = params.file.nX; nY = params.file.nY; % mosaic-dimensions (1x1,2x2,4x4,8x8, ...) oimg = zeros( xSize, ySize, nX*nY, 'uint16'); for i = 1 : numel(job.imaFileList) imgFilename = sprintf('%s-%0*d%s', n, ceil(log10(numel(job.imaFileList)+1)), ... i, e); imaFid = fopen(job.imaFileList{i}, 'r', 'ieee-be'); fseek( imaFid, 6144, 'bof'); img = uint16( fread( imaFid, [nX*xSize nY*ySize], 'uint16')); if size( img, 1)*size(img,2) ~= nX*xSize*nY*ySize % check for possible error fclose('all'); error('Unable to read image completly. %2.4f %% read => terminating !\n\n', ... size( img, 1)*size(img,2)/nX*xSize*nY*ySize); end % % begin: image extraction for j = 0 : nY - 1 for k = 0 : nX - 1 oimg(:,:, 1+k+j*nX) = img( 1 + k*xSize : (k+1)*xSize, 1 + j*xSize : (j+1)*xSize); end end % end: image extraction fclose( imaFid); V = imaToImg_geometrie(imgFilename, job.odir{1}, params); spm_write_vol(V, double(oimg)); out.outimgs{i} = V.fname; end end case 'vout' out = cfg_dep; out.sname = 'Converted IMA images'; out.src_output = substruct('.','outimgs'); out.tgt_spec = cfg_findspec({{'filter','image','strtype','e'}}); end function V = imaToImg_geometrie( imgFilename, path, params) % % Sebastian Thees 17.2.2001, email: [email protected] % % Dept. of Neurologie, Charite, Berlin, Germany % % calculate the rotations / translations and fix them in a .mat file % % intro / remember: % coord in scanner: x => horizontal, to left is + % y => vertical, up is +, therefor: z => to the feets is + % % coord in spm (neurological world ...): rot about 180� versus y. % M = eye( 4); Tspm = eye( 3); % transformation from MRT Koord to SPM world. Tspm(1,1) = -1; Tspm(3,3) = -1; Zoom = zeros( 3); % scaling in row, col and norm direction (Units == [mm]). Zoom( 1, 1) = params.file.FoV(1) / params.file.matrix(1); Zoom( 2, 2) = params.file.FoV(2) / params.file.matrix(2); Zoom( 3, 3) = params.file.sliceThickness*(1+params.file.distFactor); Tmrt = zeros( 3); % tranformation from native to scanned plot-orientation in MRT-KoordSys Tmrt(1:3,1) = params.file.rowVect; Tmrt(1:3,2) = params.file.colVect; Tmrt(1:3,3) = params.file.normVect; M(1:3,1:3) = Tspm * Tmrt * Zoom; % total transformation % vector in MRT coord-sys to the voxel 1 1 1. MRT_BBorigin = params.file.centerPoint - Zoom( 3, 3)/2*params.file.normVect - ... (params.file.matrix(1)+1)/2*Zoom( 1, 1) * params.file.rowVect - ... (params.file.matrix(2)+1)/2*Zoom( 2, 2) * params.file.colVect; % this vector tells SPM where to locate the Voxel 1 1 1 (Units == [mm]). M(1:3,4) = Tspm * MRT_BBorigin; V.fname = fullfile(path, imgFilename); V.dim = [params.file.matrix params.file.nSlices]; V.dt = [spm_type('uint16') spm_platform('bigend')]; V.mat = M; V.pinfo = [Inf;Inf;0]; function order = genSliceOrder( n, type) % % Matthias Moosmann -Moosoft- % order = zeros(1,n); switch type case 1, %verschachtelt %n gerade if n/2==round(n/2), for i=1:n, if i/2==round(i/2), order(i)=(n-i+2)/2 ; else order(i)= (2*n-i+1)/2; end end %n ungerade else for i=1:n, if i/2==round(i/2), order(i)=(2*n-i+2)/2; else order(i)=(n-i+2)/2; end end end order = fliplr( order); case 0, % ascending( MRT: first slice top) order = 1 : n; end function params = detImaParams( filename) % % Sebastian Thees 17.2.2001, email: [email protected] % % Dept. of Neurologie, Charite, Berlin, Germany % % params = struct( % name: string % date: string % time: string % seqType: string % acquisitionTime: double % normVect: [3x1 double] % colVect: [3x1 double] % rowVect: [3x1 double] % centerPoint: [3x1 double] % distFromIsoCenter: double % FoV: [2x1 double] % sliceThickness: double % distFactor: double % repTime: double % scanIndex: double % angletype: [7x1 char] % angle: [4x1 char] % matrix: [2x1 douuble] % nSlices: double % isMosaic: int % imaSize: int % ) fid = fopen( filename, 'r', 's'); % who and when fseek( fid, 768, 'bof'); params.name = sscanf( fread( fid, 25, 'uchar=>char'), '%s'); fseek( fid, 12, 'bof'); date = fread( fid, 3, 'uint32'); params.date = sprintf( '%d.%d.%d', date(3),date(2),date(1)); fseek( fid, 52, 'bof'); time = fread( fid, 3, 'uint32'); params.time = sprintf( '%d:%d:%d', time(1),time(2),time(3)); %scan stuff fseek( fid, 3083, 'bof'); %sequenzeType params.seqType = sscanf( fread( fid, 8, 'uchar=>char'), '%s'); fseek( fid, 2048, 'bof'); % acquisition Time params.acquisitionTime = fread( fid, 1, 'double'); %geometrical stuff fseek( fid, 3792, 'bof'); params.normVect = fread( fid, 3, 'double'); fseek( fid, 3856, 'bof'); params.colVect = fread( fid, 3, 'double'); fseek( fid, 3832, 'bof'); params.rowVect = fread( fid, 3, 'double'); fseek( fid, 3768, 'bof'); params.centerPoint = fread( fid, 3, 'double'); fseek( fid, 3816, 'bof'); params.distFromIsoCenter = fread( fid, 1, 'double'); % sliceParams ... fseek( fid, 3744, 'bof'); params.FoV = fread( fid, 2, 'double'); %fseek( fid, 5000, 'bof'); %params.pixelSize = fread( fid, 2, 'double'); fseek( fid, 1544, 'bof'); params.sliceThickness = fread( fid, 1, 'double'); fseek( fid, 1560, 'bof'); params.repTime = fread( fid, 1, 'double'); fseek( fid, 5726, 'bof'); params.scanIndex = str2double( sscanf( fread( fid, 3, 'uchar=>char'), '%s')); fseek( fid, 5814, 'bof'); params.angletype = fread( fid, 7, 'uchar=>char'); fseek( fid, 5821, 'bof'); params.angle = fread( fid, 4, 'uchar=>char'); % % fourier transform MRI leeds to a squared image matrix: fseek(fid, 2864, 'bof'); params.matrix(1) = fread( fid, 1, 'uint32'); params.matrix(2) = params.matrix(1); % fseek(fid, 1948, 'bof'); params.imaSize=fread( fid, 1, 'int32')/2; % total imageSize fseek(fid, 4994, 'bof'); params.imaDim = fread( fid, 2, 'short'); fseek(fid, 3984, 'bof'); p=fread(fid, 1, 'uint32'); if p~=0 % number of partitions not zero (-> 3D dataset) params.nSlices=p; params.distFactor = 0; else fseek( fid, 4004, 'bof'); params.nSlices = fread( fid, 1, 'uint32'); fseek( fid, 4136, 'bof'); params.distFactor = fread( fid, 1, 'double'); end % estimate if file is mosaic or not params.isMosaic=0; params.nX=1; params.nY=1; % calculation of mosaic format assumes a "squared" format !!! n = sqrt( params.imaSize/(params.matrix(1)*params.matrix(2))); if (n>1) && (int32(n)==n) params.isMosaic=1; params.nX = params.imaDim(1)/params.matrix(1); params.nY = params.imaDim(2)/params.matrix(2); end fclose( fid);
github
philippboehmsturm/antx-master
tbx_cfg_fbi_dicom_dti.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/FBIDicom/tbx_cfg_fbi_dicom_dti.m
4,637
utf_8
175dcc76897ab728ac7945dc7dff3290
function dicom = tbx_cfg_fbi_dicom_dti % SPM Configuration file % automatically generated by the MATLABBATCH utility function GENCODE % Modified version for FBIDicom conversion for DTI data - needs to be % kept in sync with tbx_cfg_fbi_dicom.m %_______________________________________________________________________ % Copyright (C) 2008 Freiburg Brain Imaging % $Id: tbx_cfg_fbi_dicom_dti.m 20 2008-10-20 09:39:12Z volkmar $ rev = '$Rev: 20 $'; % add path to toolbox p = fileparts(mfilename('fullpath')); addpath(p); % --------------------------------------------------------------------- % dirs DICOM directorie(s) % --------------------------------------------------------------------- dirs = cfg_files; dirs.name = 'DICOM directorie(s)'; dirs.tag = 'dirs'; dirs.filter = 'dir'; dirs.num = [1 Inf]; dirs.help = {['Select the DICOM directory to convert. If multiple directories '... 'are specified, their data will be averaged into one DTD.mat.']}; % --------------------------------------------------------------------- % root Directory structure for converted files % --------------------------------------------------------------------- root = cfg_menu; root.tag = 'root'; root.name = 'Directory structure for converted files'; root.help = { 'Choose root directory of converted file tree. The options are:' '' '* /projects/<ProjectName>/<StudyDate-StudyTime>: Automatically determine the project name from the DICOM patient name and try to convert into the projects directory.' '' '* Output directory: ./<ProjectName>/<StudyDate-StudyTime>: Automatically determine the project name and try to convert into the output directory, starting with a ProjectName subdirectory.' '' '* Output directory: ./<StudyDate-StudyTime>: Automatically determine the project name and try to convert into the output directory, starting with a StudyDate-StudyTime subdirectory. This option is useful if automatic project recognition fails and one wants to convert data into a project directory.' '' '* Output directory: ./<PatientID>: Convert into the output directory, starting with a PatientID subdirectory.' '' '* Output directory: ./<PatientName>: Convert into the output directory, starting with a PatientName subdirectory.' '* No directory hierarchy: Convert all files into the output directory, without sequence/series subdirectories' }'; root.labels = { 'Output directory: ./<StudyDate-StudyTime>' 'Output directory: ./<PatientID>' 'Output directory: ./<PatientID>/<StudyDate-StudyTime>' 'Output directory: ./<PatientName>' 'No directory hierarchy' }'; root.values = { 'date_time' 'patid' 'patid_date' 'patname' 'flat' }'; root.def = @(val)spm_get_defaults('dicom.root', val{:}); % --------------------------------------------------------------------- % outdir Output directory % --------------------------------------------------------------------- outdir = cfg_files; outdir.tag = 'outdir'; outdir.name = 'Output directory'; outdir.help = {'Select a directory where files are written. Default is current directory.'}; outdir.filter = 'dir'; outdir.ufilter = '.*'; outdir.num = [1 1]; % --------------------------------------------------------------------- % dicom DICOM Import % --------------------------------------------------------------------- dicom = cfg_exbranch; dicom.tag = 'fbi_dicom_dti'; dicom.name = 'FBI DICOM Import (DTI)'; dicom.val = {dirs root outdir}; dicom.help = {'DICOM Conversion. Most scanners produce data in DICOM format. This routine attempts to convert DICOM files into SPM compatible image volumes, which are written into the current directory by default. Note that not all flavours of DICOM can be handled, as DICOM is a very complicated format, and some scanner manufacturers use their own fields, which are not in the official documentation at http://medical.nema.org/'}; dicom.prog = @tbx_run_fbi_dicom_dti; dicom.vout = @vout; % --------------------------------------------------------------------- % --------------------------------------------------------------------- function dep = vout(job) dep = cfg_dep; dep.sname = 'Raw diffusion binary file'; dep.src_output = substruct('.','files'); dep.tgt_spec = cfg_findspec({{'filter','image','strtype','e'}});
github
philippboehmsturm/antx-master
tbx_cfg_fbi_dicom.m
.m
antx-master/freiburgLight/matlab/spm8/toolbox/FBIDicom/tbx_cfg_fbi_dicom.m
10,299
utf_8
3cd48e1bd7669f5b1d12bfa4e8a3ff53
function dicom = tbx_cfg_fbi_dicom % SPM Configuration file % automatically generated by the MATLABBATCH utility function GENCODE % Modified version for FBIDicom conversion - needs to be kept in sync % with spm_cfg_dicom.m %_______________________________________________________________________ % Copyright (C) 2008 Freiburg Brain Imaging % $Id: tbx_cfg_fbi_dicom.m,v 1.8 2008-06-02 11:40:50 vglauche Exp $ rev = '$Rev: 1517 $'; % add path to toolbox p = fileparts(mfilename('fullpath')); addpath(p); % --------------------------------------------------------------------- % files DICOM files % --------------------------------------------------------------------- files = cfg_files; files.tag = 'files'; files.name = 'DICOM files'; files.help = {'Select the DICOM files to convert.'}; files.filter = '.*'; files.ufilter = '.*'; files.num = [1 Inf]; % --------------------------------------------------------------------- % dirs DICOM directory tree(s) % --------------------------------------------------------------------- dirs = cfg_files; dirs.name = 'DICOM directory tree(s)'; dirs.tag = 'dirs'; dirs.filter = 'dir'; dirs.num = [1 Inf]; dirs.help = {['Select the root(s) of the DICOM directory tree(s) to convert. '... 'The conversion will recursively search each directory for ' ... 'files to convert.']}; % --------------------------------------------------------------------- % dicomdirs DICOMDIR files % --------------------------------------------------------------------- dicomdirs = cfg_files; dicomdirs.tag = 'dicomdirs'; dicomdirs.name = 'DICOMDIR files'; dicomdirs.help = {'Select the DICOMDIR file(s) to read.'}; dicomdirs.filter = '.*'; dicomdirs.ufilter = '^dicomdir$'; dicomdirs.num = [1 Inf]; % --------------------------------------------------------------------- % data Select what (files or directories)? % --------------------------------------------------------------------- data = cfg_choice; data.name = 'Select what (files or directories)?'; data.tag = 'data'; data.values = {files dirs dicomdirs}; data.help = {['Choose ''DICOM directory tree(s)'' if your DICOM data is organised ' ... 'in a directory tree. The conversion will then look recursively ' ... 'in each subdirectory to collect the files.'],... 'Alternatively, select the individual DICOM files to convert.'}; % --------------------------------------------------------------------- % root Directory structure for converted files % --------------------------------------------------------------------- root = cfg_menu; root.tag = 'root'; root.name = 'Directory structure for converted files'; root.help = { 'Choose root directory of converted file tree. The options are:' '' '* /projects/<ProjectName>/<StudyDate-StudyTime>: Automatically determine the project name from the DICOM patient name and try to convert into the projects directory.' '' '* Output directory: ./<ProjectName>/<StudyDate-StudyTime>: Automatically determine the project name and try to convert into the output directory, starting with a ProjectName subdirectory.' '' '* Output directory: ./<StudyDate-StudyTime>: Automatically determine the project name and try to convert into the output directory, starting with a StudyDate-StudyTime subdirectory. This option is useful if automatic project recognition fails and one wants to convert data into a project directory.' '' '* Output directory: ./<PatientID>: Convert into the output directory, starting with a PatientID subdirectory.' '' '* Output directory: ./<PatientName>: Convert into the output directory, starting with a PatientName subdirectory.' '* No directory hierarchy: Convert all files into the output directory, without sequence/series subdirectories' }'; root.labels = { 'Output directory: ./<StudyDate-StudyTime>/<ProtocolName>' 'Output directory: ./<PatientID>/<ProtocolName>' 'Output directory: ./<PatientID>/<StudyDate-StudyTime>/<ProtocolName>' 'Output directory: ./<PatientName>/<ProtocolName>' 'Output directory: ./<ProtocolName>' 'No directory hierarchy' }'; root.values = { 'date_time' 'patid' 'patid_date' 'patname' 'series' 'flat' }'; root.def = @(val)spm_get_defaults('dicom.root', val{:}); % --------------------------------------------------------------------- % outdir Output directory % --------------------------------------------------------------------- outdir = cfg_files; outdir.tag = 'outdir'; outdir.name = 'Output directory'; outdir.help = {'Select a directory where files are written. Default is current directory.'}; outdir.filter = 'dir'; outdir.ufilter = '.*'; outdir.num = [1 1]; % --------------------------------------------------------------------- % protfilter Protocol name filter % --------------------------------------------------------------------- protfilter = cfg_entry; protfilter.tag = 'protfilter'; protfilter.name = 'Protocol name filter'; protfilter.help = {'A regular expression to filter protocol names. DICOM images whose protocol names do not match this filter will not be converted.'}; protfilter.strtype = 's'; protfilter.num = [0 Inf]; protfilter.val = {'.*'}; % --------------------------------------------------------------------- % format Output image format % --------------------------------------------------------------------- format = cfg_menu; format.tag = 'format'; format.name = 'Output image format'; format.help = { 'DICOM conversion can create separate img and hdr files or combine them in one file. The single file option will help you save space on your hard disk, but may be incompatible with programs that are not NIfTI-aware.' 'In any case, only 3D image files will be produced.' }'; format.labels = { 'Two file (img+hdr) NIfTI' 'Single file (nii) NIfTI' }'; format.values = { 'img' 'nii' }'; format.def = @(val)spm_get_defaults('images.format', val{:}); % --------------------------------------------------------------------- % icedims Use ICEDims in filename % --------------------------------------------------------------------- icedims = cfg_menu; icedims.tag = 'icedims'; icedims.name = 'Use ICEDims in filename'; icedims.help = {'If image sorting fails, one can try using the additional SIEMENS ICEDims information to create unique filenames. Use this only if there would be multiple volumes with exactly the same file names.'}; icedims.labels = { 'No' 'Yes' }'; icedims.values = {false true}; icedims.val = {false}; % --------------------------------------------------------------------- % convopts Conversion options % --------------------------------------------------------------------- convopts = cfg_branch; convopts.tag = 'convopts'; convopts.name = 'Conversion options'; convopts.val = {format icedims }; convopts.help = {''}; % --------------------------------------------------------------------- % dicom DICOM Import % --------------------------------------------------------------------- dicom = cfg_exbranch; dicom.tag = 'fbi_dicom'; dicom.name = 'FBI DICOM Import (SPM)'; dicom.val = {data root outdir protfilter convopts }; dicom.help = {'DICOM Conversion. Most scanners produce data in DICOM format. This routine attempts to convert DICOM files into SPM compatible image volumes, which are written into the current directory by default. Note that not all flavours of DICOM can be handled, as DICOM is a very complicated format, and some scanner manufacturers use their own fields, which are not in the official documentation at http://medical.nema.org/'}; dicom.prog = @tbx_run_fbi_dicom; dicom.vout = @vout; % --------------------------------------------------------------------- % --------------------------------------------------------------------- function dep = vout(job) dep = cfg_dep; dep.sname = 'Converted Images'; dep.src_output = substruct('.','files'); dep.tgt_spec = cfg_findspec({{'filter','image','strtype','e'}}); %% Currently unused configuration for tbxmp_convert_rp function unused % --------------------------------------------------------------------- % srcimg Text file with image comments % --------------------------------------------------------------------- srcimg = cfg_files; srcimg.tag = 'srcimg'; srcimg.name = 'Text file with image comments'; srcimg.help = {''}; srcimg.filter = '*.txt'; srcimg.ufilter = '.*'; srcimg.num = [1 1]; % --------------------------------------------------------------------- % convert_rp Convert realignment parameters % --------------------------------------------------------------------- convert_rp = cfg_exbranch; convert_rp.tag = 'convert_rp'; convert_rp.name = 'Convert realignment parameters'; convert_rp.val = {srcimg }; convert_rp.help = { 'Import realignment parameters documented by the Freiburg spm_dicom_convert' 'FORMAT tbxvol_import_rp(bch)' '======' 'Two input files are necessary: one listing the filenames, the other' 'listing the image comments' '' 'This function is part of the volumes toolbox for SPM5. For general help about this toolbox, bug reports, licensing etc. type' 'spm_help vgtbx_config_Volumes' 'in the matlab command window after the toolbox has been launched.' '_______________________________________________________________________' '' '@(#) $Id: tbx_cfg_vgtbx_MedPhysConvert.m,v 1.1 2008-04-14 08:53:15 vglauche Exp $' }'; convert_rp.prog = @tbxmp_convert_rp;