text
stringlengths
938
1.05M
/* Legal Notice: (C)2009 Altera Corporation. All rights reserved. Your use of Altera Corporation's design tools, logic functions and other software and tools, and its AMPP partner logic functions, and any output files any of the foregoing (including device programming or simulation files), and any associated documentation or information are expressly subject to the terms and conditions of the Altera Program License Subscription Agreement or other applicable license agreement, including, without limitation, that your use is for the sole purpose of programming logic devices manufactured by Altera and sold by Altera or its authorized distributors. Please refer to the applicable agreement for further details. */ /* Author: JCJB Date: 06/29/2009 This block is responsible for accepting 128/256 bit descriptors and buffering them in descriptor FIFOs. Each bytelane of the descriptor can be written to individually and writing ot the descriptor 'go' bit commits the data into the FIFO. Reading that data out of the FIFO occurs two cycles after the read is asserted as the FIFOs do not support lookahead mode. This block must keep local copies of per descriptor information like the optional sequence number or interrupt masks. When parked mode is set in the descriptor the same will transfer multiple times when the descriptor FIFO only contains one descriptor (and this descriptor will not be popped). Parked mode is useful for video frame buffering. 1.0 - The on-chip memory in the FIFOs are not inferred so there may be some extra unused bits. In a later Quartus II release the on-chip memory will be replaced with inferred memory. 1.1 - Shifted all descriptor registers into this block (from the dispatcher block). Added breakout blocks responsible for re-packing the information for use by each master. 1.2 - Added the read_early_done_enable bit to the breakout (for debug) */ // synthesis translate_off `timescale 1ns / 1ps // synthesis translate_on // turn off superfluous verilog processor warnings // altera message_level Level1 // altera message_off 10034 10035 10036 10037 10230 10240 10030 module descriptor_buffers ( clk, reset, writedata, write, byteenable, waitrequest, read_command_valid, read_command_ready, read_command_data, read_command_empty, read_command_full, read_command_used, write_command_valid, write_command_ready, write_command_data, write_command_empty, write_command_full, write_command_used, stop_issuing_commands, stop, sw_reset, sequence_number, transfer_complete_IRQ_mask, early_termination_IRQ_mask, error_IRQ_mask ); parameter MODE = 0; parameter DATA_WIDTH = 256; parameter BYTE_ENABLE_WIDTH = 32; parameter FIFO_DEPTH = 128; parameter FIFO_DEPTH_LOG2 = 7; // top level module can figure this out input clk; input reset; input [DATA_WIDTH-1:0] writedata; input write; input [BYTE_ENABLE_WIDTH-1:0] byteenable; output wire waitrequest; output wire read_command_valid; input read_command_ready; output wire [255:0] read_command_data; output wire read_command_empty; output wire read_command_full; output wire [FIFO_DEPTH_LOG2:0] read_command_used; output wire write_command_valid; input write_command_ready; output wire [255:0] write_command_data; output wire write_command_empty; output wire write_command_full; output wire [FIFO_DEPTH_LOG2:0] write_command_used; input stop_issuing_commands; input stop; input sw_reset; output wire [31:0] sequence_number; output wire transfer_complete_IRQ_mask; output wire early_termination_IRQ_mask; output wire [7:0] error_IRQ_mask; /* Internal wires and registers */ reg write_command_empty_d1; reg write_command_empty_d2; reg read_command_empty_d1; reg read_command_empty_d2; wire push_write_fifo; wire pop_write_fifo; wire push_read_fifo; wire pop_read_fifo; wire go_bit; wire read_park; wire read_park_enable; // park is enabled when read_park is enabled and the read FIFO is empty wire write_park; wire write_park_enable; // park is enabled when write_park is enabled and the write FIFO is empty wire [DATA_WIDTH-1:0] write_fifo_output; wire [DATA_WIDTH-1:0] read_fifo_output; wire [15:0] write_sequence_number; reg [15:0] write_sequence_number_d1; wire [15:0] read_sequence_number; reg [15:0] read_sequence_number_d1; wire read_transfer_complete_IRQ_mask; reg read_transfer_complete_IRQ_mask_d1; wire write_transfer_complete_IRQ_mask; reg write_transfer_complete_IRQ_mask_d1; wire write_early_termination_IRQ_mask; reg write_early_termination_IRQ_mask_d1; wire [7:0] write_error_IRQ_mask; reg [7:0] write_error_IRQ_mask_d1; wire issue_write_descriptor; // one cycle strobe used to indicate when there is a valid write descriptor ready to be sent to the write master wire issue_read_descriptor; // one cycle strobe used to indicate when there is a valid write descriptor ready to be sent to the write master /* Unused signals that are provided for debug convenience */ wire [31:0] read_address; wire [31:0] read_length; wire [7:0] read_transmit_channel; wire read_generate_sop; wire read_generate_eop; wire [7:0] read_burst_count; wire [15:0] read_stride; wire [7:0] read_transmit_error; wire read_early_done_enable; wire [31:0] write_address; wire [31:0] write_length; wire write_end_on_eop; wire [7:0] write_burst_count; wire [15:0] write_stride; /************************************************* Registers *******************************************************/ always @ (posedge clk or posedge reset) begin if (reset) begin write_sequence_number_d1 <= 0; write_transfer_complete_IRQ_mask_d1 <= 0; write_early_termination_IRQ_mask_d1 <= 0; write_error_IRQ_mask_d1 <= 0; end else if (issue_write_descriptor) // if parked mode is enabled and there are no more descriptors buffered then this will not fire when the command is sent out begin write_sequence_number_d1 <= write_sequence_number; write_transfer_complete_IRQ_mask_d1 <= write_transfer_complete_IRQ_mask; write_early_termination_IRQ_mask_d1 <= write_early_termination_IRQ_mask; write_error_IRQ_mask_d1 <= write_error_IRQ_mask; end end always @ (posedge clk or posedge reset) begin if (reset) begin read_sequence_number_d1 <= 0; read_transfer_complete_IRQ_mask_d1 <= 0; end else if (issue_read_descriptor) // if parked mode is enabled and there are no more descriptors buffered then this will not fire when the command is sent out begin read_sequence_number_d1 <= read_sequence_number; read_transfer_complete_IRQ_mask_d1 <= read_transfer_complete_IRQ_mask; end end // need to use a delayed valid signal since the commmand buffers have two cycles of latency always @ (posedge clk or posedge reset) begin if (reset) begin write_command_empty_d1 <= 0; write_command_empty_d2 <= 0; read_command_empty_d1 <= 0; read_command_empty_d2 <= 0; end else begin write_command_empty_d1 <= write_command_empty; write_command_empty_d2 <= write_command_empty_d1; read_command_empty_d1 <= read_command_empty; read_command_empty_d2 <= read_command_empty_d1; end end /*********************************************** End Registers *****************************************************/ /****************************************** Module Instantiations **************************************************/ /* the write_signal_break module simply takes the output of the descriptor buffer and reformats the data * to be sent in the command format needed by the master command port. If new features are added to the * descriptor format then add it to this block. This block also provides the descriptor information * using a naming convention isn't of bit indexes in a 256 bit wide command signal. */ write_signal_breakout the_write_signal_breakout ( .write_command_data_in (write_fifo_output), .write_command_data_out (write_command_data), .write_address (write_address), .write_length (write_length), .write_park (write_park), .write_end_on_eop (write_end_on_eop), .write_transfer_complete_IRQ_mask (write_transfer_complete_IRQ_mask), .write_early_termination_IRQ_mask (write_early_termination_IRQ_mask), .write_error_IRQ_mask (write_error_IRQ_mask), .write_burst_count (write_burst_count), .write_stride (write_stride), .write_sequence_number (write_sequence_number), .write_stop (stop), .write_sw_reset (sw_reset) ); defparam the_write_signal_breakout.DATA_WIDTH = DATA_WIDTH; /* the read_signal_break module simply takes the output of the descriptor buffer and reformats the data * to be sent in the command format needed by the master command port. If new features are added to the * descriptor format then add it to this block. This block also provides the descriptor information * using a naming convention isn't of bit indexes in a 256 bit wide command signal. */ read_signal_breakout the_read_signal_breakout ( .read_command_data_in (read_fifo_output), .read_command_data_out (read_command_data), .read_address (read_address), .read_length (read_length), .read_transmit_channel (read_transmit_channel), .read_generate_sop (read_generate_sop), .read_generate_eop (read_generate_eop), .read_park (read_park), .read_transfer_complete_IRQ_mask (read_transfer_complete_IRQ_mask), .read_burst_count (read_burst_count), .read_stride (read_stride), .read_sequence_number (read_sequence_number), .read_transmit_error (read_transmit_error), .read_early_done_enable (read_early_done_enable), .read_stop (stop), .read_sw_reset (sw_reset) ); defparam the_read_signal_breakout.DATA_WIDTH = DATA_WIDTH; // Descriptor FIFO allows for each byte lane to be written to and the data is not committed to the FIFO until the 'push' signal is asserted. // This differs from scfifo which commits the data any time the write signal is asserted. fifo_with_byteenables the_read_command_FIFO ( .clk (clk), .areset (reset), .sreset (sw_reset), .write_data (writedata), .write_byteenables (byteenable), .write (write), .push (push_read_fifo), .read_data (read_fifo_output), .pop (pop_read_fifo), .used (read_command_used), // this is a 'true used' signal with the full bit accounted for .full (read_command_full), .empty (read_command_empty) ); defparam the_read_command_FIFO.DATA_WIDTH = DATA_WIDTH; // we are not actually going to use all these bits and byte lanes left unconnected at the output will get optimized away defparam the_read_command_FIFO.FIFO_DEPTH = FIFO_DEPTH; defparam the_read_command_FIFO.FIFO_DEPTH_LOG2 = FIFO_DEPTH_LOG2; defparam the_read_command_FIFO.LATENCY = 2; // Descriptor FIFO allows for each byte lane to be written to and the data is not committed to the FIFO until the 'push' signal is asserted. // This differs from scfifo which commits the data any time the write signal is asserted. fifo_with_byteenables the_write_command_FIFO ( .clk (clk), .areset (reset), .sreset (sw_reset), .write_data (writedata), .write_byteenables (byteenable), .write (write), .push (push_write_fifo), .read_data (write_fifo_output), .pop (pop_write_fifo), .used (write_command_used), // this is a 'true used' signal with the full bit accounted for .full (write_command_full), .empty (write_command_empty) ); defparam the_write_command_FIFO.DATA_WIDTH = DATA_WIDTH; // we are not actually going to use all these bits and byte lanes left unconnected at the output will get optimized away defparam the_write_command_FIFO.FIFO_DEPTH = FIFO_DEPTH; defparam the_write_command_FIFO.FIFO_DEPTH_LOG2 = FIFO_DEPTH_LOG2; defparam the_write_command_FIFO.LATENCY = 2; /**************************************** End Module Instantiations ************************************************/ /****************************************** Combinational Signals **************************************************/ generate // all unnecessary signals and drivers will be optimized away if (MODE == 0) // MM-->MM begin assign waitrequest = (read_command_full == 1) | (write_command_full == 1); // information for the CSR or response blocks to use assign sequence_number = {write_sequence_number_d1, read_sequence_number_d1}; assign transfer_complete_IRQ_mask = write_transfer_complete_IRQ_mask_d1; assign early_termination_IRQ_mask = 1'b0; assign error_IRQ_mask = 8'h00; // read buffer flow control assign push_read_fifo = go_bit; assign read_park_enable = (read_park == 1) & (read_command_used == 1); // we want to keep the descriptor in the FIFO when the park bit is set assign read_command_valid = (stop == 0) & (sw_reset == 0) & (stop_issuing_commands == 0) & (read_command_empty == 0) & (read_command_empty_d1 == 0) & (read_command_empty_d2 == 0); // command buffer has two cycles of latency so the empty deassertion need to delayed two cycles but asserted in zero cycles, the time between commands will be at least 2 cycles so this delay is only needed coming out of the empty condition assign issue_read_descriptor = (read_command_valid == 1) & (read_command_ready == 1); assign pop_read_fifo = (issue_read_descriptor == 1) & (read_park_enable == 0); // don't want to pop the fifo if we are in parked mode // write buffer flow control assign push_write_fifo = go_bit; assign write_park_enable = (write_park == 1) & (write_command_used == 1); // we want to keep the descriptor in the FIFO when the park bit is set assign write_command_valid = (stop == 0) & (sw_reset == 0) & (stop_issuing_commands == 0) & (write_command_empty == 0) & (write_command_empty_d1 == 0) & (write_command_empty_d2 == 0); // command buffer has two cycles of latency so the empty deassertion need to delayed two cycles but asserted in zero cycles, the time between commands will be at least 2 cycles so this delay is only needed coming out of the empty condition assign issue_write_descriptor = (write_command_valid == 1) & (write_command_ready == 1); assign pop_write_fifo = (issue_write_descriptor == 1) & (write_park_enable == 0); // don't want to pop the fifo if we are in parked mode end else if (MODE == 1) // MM-->ST begin // information for the CSR or response blocks to use assign sequence_number = {16'h0000, read_sequence_number_d1}; assign transfer_complete_IRQ_mask = read_transfer_complete_IRQ_mask_d1; assign early_termination_IRQ_mask = 1'b0; assign error_IRQ_mask = 8'h00; assign waitrequest = (read_command_full == 1); // read buffer flow control assign push_read_fifo = go_bit; assign read_park_enable = (read_park == 1) & (read_command_used == 1); // we want to keep the descriptor in the FIFO when the park bit is set assign read_command_valid = (stop == 0) & (sw_reset == 0) & (stop_issuing_commands == 0) & (read_command_empty == 0) & (read_command_empty_d1 == 0) & (read_command_empty_d2 == 0); // command buffer has two cycles of latency so the empty deassertion need to delayed two cycles but asserted in zero cycles, the time between commands will be at least 2 cycles so this delay is only needed coming out of the empty condition assign issue_read_descriptor = (read_command_valid == 1) & (read_command_ready == 1); assign pop_read_fifo = (issue_read_descriptor == 1) & (read_park_enable == 0); // don't want to pop the fifo if we are in parked mode // write buffer flow control assign push_write_fifo = 0; assign write_park_enable = 0; assign write_command_valid = 0; assign issue_write_descriptor = 0; assign pop_write_fifo = 0; end else // ST-->MM begin // information for the CSR or response blocks to use assign sequence_number = {write_sequence_number_d1, 16'h0000}; assign transfer_complete_IRQ_mask = write_transfer_complete_IRQ_mask_d1; assign early_termination_IRQ_mask = write_early_termination_IRQ_mask_d1; assign error_IRQ_mask = write_error_IRQ_mask_d1; assign waitrequest = (write_command_full == 1); // read buffer flow control assign push_read_fifo = 0; assign read_park_enable = 0; assign read_command_valid = 0; assign issue_read_descriptor = 0; assign pop_read_fifo = 0; // write buffer flow control assign push_write_fifo = go_bit; assign write_park_enable = (write_park == 1) & (write_command_used == 1); // we want to keep the descriptor in the FIFO when the park bit is set assign write_command_valid = (stop == 0) & (sw_reset == 0) & (stop_issuing_commands == 0) & (write_command_empty == 0) & (write_command_empty_d1 == 0) & (write_command_empty_d2 == 0); // command buffer has two cycles of latency so the empty deassertion need to delayed two cycles but asserted in zero cycles, the time between commands will be at least 2 cycles so this delay is only needed coming out of the empty condition assign issue_write_descriptor = (write_command_valid == 1) & (write_command_ready == 1); assign pop_write_fifo = (issue_write_descriptor == 1) & (write_park_enable == 0); // don't want to pop the fifo if we are in parked mode end endgenerate generate // go bit is in a different location depending on the width of the slave port if (DATA_WIDTH == 256) begin assign go_bit = (writedata[255] == 1) & (write == 1) & (byteenable[31] == 1) & (waitrequest == 0); end else begin assign go_bit = (writedata[127] == 1) & (write == 1) & (byteenable[15] == 1) & (waitrequest == 0); end endgenerate /**************************************** End Combinational Signals ************************************************/ endmodule
/* Legal Notice: (C)2009 Altera Corporation. All rights reserved. Your use of Altera Corporation's design tools, logic functions and other software and tools, and its AMPP partner logic functions, and any output files any of the foregoing (including device programming or simulation files), and any associated documentation or information are expressly subject to the terms and conditions of the Altera Program License Subscription Agreement or other applicable license agreement, including, without limitation, that your use is for the sole purpose of programming logic devices manufactured by Altera and sold by Altera or its authorized distributors. Please refer to the applicable agreement for further details. */ /* Author: JCJB Date: 06/29/2009 This block is responsible for accepting 128/256 bit descriptors and buffering them in descriptor FIFOs. Each bytelane of the descriptor can be written to individually and writing ot the descriptor 'go' bit commits the data into the FIFO. Reading that data out of the FIFO occurs two cycles after the read is asserted as the FIFOs do not support lookahead mode. This block must keep local copies of per descriptor information like the optional sequence number or interrupt masks. When parked mode is set in the descriptor the same will transfer multiple times when the descriptor FIFO only contains one descriptor (and this descriptor will not be popped). Parked mode is useful for video frame buffering. 1.0 - The on-chip memory in the FIFOs are not inferred so there may be some extra unused bits. In a later Quartus II release the on-chip memory will be replaced with inferred memory. 1.1 - Shifted all descriptor registers into this block (from the dispatcher block). Added breakout blocks responsible for re-packing the information for use by each master. 1.2 - Added the read_early_done_enable bit to the breakout (for debug) */ // synthesis translate_off `timescale 1ns / 1ps // synthesis translate_on // turn off superfluous verilog processor warnings // altera message_level Level1 // altera message_off 10034 10035 10036 10037 10230 10240 10030 module descriptor_buffers ( clk, reset, writedata, write, byteenable, waitrequest, read_command_valid, read_command_ready, read_command_data, read_command_empty, read_command_full, read_command_used, write_command_valid, write_command_ready, write_command_data, write_command_empty, write_command_full, write_command_used, stop_issuing_commands, stop, sw_reset, sequence_number, transfer_complete_IRQ_mask, early_termination_IRQ_mask, error_IRQ_mask ); parameter MODE = 0; parameter DATA_WIDTH = 256; parameter BYTE_ENABLE_WIDTH = 32; parameter FIFO_DEPTH = 128; parameter FIFO_DEPTH_LOG2 = 7; // top level module can figure this out input clk; input reset; input [DATA_WIDTH-1:0] writedata; input write; input [BYTE_ENABLE_WIDTH-1:0] byteenable; output wire waitrequest; output wire read_command_valid; input read_command_ready; output wire [255:0] read_command_data; output wire read_command_empty; output wire read_command_full; output wire [FIFO_DEPTH_LOG2:0] read_command_used; output wire write_command_valid; input write_command_ready; output wire [255:0] write_command_data; output wire write_command_empty; output wire write_command_full; output wire [FIFO_DEPTH_LOG2:0] write_command_used; input stop_issuing_commands; input stop; input sw_reset; output wire [31:0] sequence_number; output wire transfer_complete_IRQ_mask; output wire early_termination_IRQ_mask; output wire [7:0] error_IRQ_mask; /* Internal wires and registers */ reg write_command_empty_d1; reg write_command_empty_d2; reg read_command_empty_d1; reg read_command_empty_d2; wire push_write_fifo; wire pop_write_fifo; wire push_read_fifo; wire pop_read_fifo; wire go_bit; wire read_park; wire read_park_enable; // park is enabled when read_park is enabled and the read FIFO is empty wire write_park; wire write_park_enable; // park is enabled when write_park is enabled and the write FIFO is empty wire [DATA_WIDTH-1:0] write_fifo_output; wire [DATA_WIDTH-1:0] read_fifo_output; wire [15:0] write_sequence_number; reg [15:0] write_sequence_number_d1; wire [15:0] read_sequence_number; reg [15:0] read_sequence_number_d1; wire read_transfer_complete_IRQ_mask; reg read_transfer_complete_IRQ_mask_d1; wire write_transfer_complete_IRQ_mask; reg write_transfer_complete_IRQ_mask_d1; wire write_early_termination_IRQ_mask; reg write_early_termination_IRQ_mask_d1; wire [7:0] write_error_IRQ_mask; reg [7:0] write_error_IRQ_mask_d1; wire issue_write_descriptor; // one cycle strobe used to indicate when there is a valid write descriptor ready to be sent to the write master wire issue_read_descriptor; // one cycle strobe used to indicate when there is a valid write descriptor ready to be sent to the write master /* Unused signals that are provided for debug convenience */ wire [31:0] read_address; wire [31:0] read_length; wire [7:0] read_transmit_channel; wire read_generate_sop; wire read_generate_eop; wire [7:0] read_burst_count; wire [15:0] read_stride; wire [7:0] read_transmit_error; wire read_early_done_enable; wire [31:0] write_address; wire [31:0] write_length; wire write_end_on_eop; wire [7:0] write_burst_count; wire [15:0] write_stride; /************************************************* Registers *******************************************************/ always @ (posedge clk or posedge reset) begin if (reset) begin write_sequence_number_d1 <= 0; write_transfer_complete_IRQ_mask_d1 <= 0; write_early_termination_IRQ_mask_d1 <= 0; write_error_IRQ_mask_d1 <= 0; end else if (issue_write_descriptor) // if parked mode is enabled and there are no more descriptors buffered then this will not fire when the command is sent out begin write_sequence_number_d1 <= write_sequence_number; write_transfer_complete_IRQ_mask_d1 <= write_transfer_complete_IRQ_mask; write_early_termination_IRQ_mask_d1 <= write_early_termination_IRQ_mask; write_error_IRQ_mask_d1 <= write_error_IRQ_mask; end end always @ (posedge clk or posedge reset) begin if (reset) begin read_sequence_number_d1 <= 0; read_transfer_complete_IRQ_mask_d1 <= 0; end else if (issue_read_descriptor) // if parked mode is enabled and there are no more descriptors buffered then this will not fire when the command is sent out begin read_sequence_number_d1 <= read_sequence_number; read_transfer_complete_IRQ_mask_d1 <= read_transfer_complete_IRQ_mask; end end // need to use a delayed valid signal since the commmand buffers have two cycles of latency always @ (posedge clk or posedge reset) begin if (reset) begin write_command_empty_d1 <= 0; write_command_empty_d2 <= 0; read_command_empty_d1 <= 0; read_command_empty_d2 <= 0; end else begin write_command_empty_d1 <= write_command_empty; write_command_empty_d2 <= write_command_empty_d1; read_command_empty_d1 <= read_command_empty; read_command_empty_d2 <= read_command_empty_d1; end end /*********************************************** End Registers *****************************************************/ /****************************************** Module Instantiations **************************************************/ /* the write_signal_break module simply takes the output of the descriptor buffer and reformats the data * to be sent in the command format needed by the master command port. If new features are added to the * descriptor format then add it to this block. This block also provides the descriptor information * using a naming convention isn't of bit indexes in a 256 bit wide command signal. */ write_signal_breakout the_write_signal_breakout ( .write_command_data_in (write_fifo_output), .write_command_data_out (write_command_data), .write_address (write_address), .write_length (write_length), .write_park (write_park), .write_end_on_eop (write_end_on_eop), .write_transfer_complete_IRQ_mask (write_transfer_complete_IRQ_mask), .write_early_termination_IRQ_mask (write_early_termination_IRQ_mask), .write_error_IRQ_mask (write_error_IRQ_mask), .write_burst_count (write_burst_count), .write_stride (write_stride), .write_sequence_number (write_sequence_number), .write_stop (stop), .write_sw_reset (sw_reset) ); defparam the_write_signal_breakout.DATA_WIDTH = DATA_WIDTH; /* the read_signal_break module simply takes the output of the descriptor buffer and reformats the data * to be sent in the command format needed by the master command port. If new features are added to the * descriptor format then add it to this block. This block also provides the descriptor information * using a naming convention isn't of bit indexes in a 256 bit wide command signal. */ read_signal_breakout the_read_signal_breakout ( .read_command_data_in (read_fifo_output), .read_command_data_out (read_command_data), .read_address (read_address), .read_length (read_length), .read_transmit_channel (read_transmit_channel), .read_generate_sop (read_generate_sop), .read_generate_eop (read_generate_eop), .read_park (read_park), .read_transfer_complete_IRQ_mask (read_transfer_complete_IRQ_mask), .read_burst_count (read_burst_count), .read_stride (read_stride), .read_sequence_number (read_sequence_number), .read_transmit_error (read_transmit_error), .read_early_done_enable (read_early_done_enable), .read_stop (stop), .read_sw_reset (sw_reset) ); defparam the_read_signal_breakout.DATA_WIDTH = DATA_WIDTH; // Descriptor FIFO allows for each byte lane to be written to and the data is not committed to the FIFO until the 'push' signal is asserted. // This differs from scfifo which commits the data any time the write signal is asserted. fifo_with_byteenables the_read_command_FIFO ( .clk (clk), .areset (reset), .sreset (sw_reset), .write_data (writedata), .write_byteenables (byteenable), .write (write), .push (push_read_fifo), .read_data (read_fifo_output), .pop (pop_read_fifo), .used (read_command_used), // this is a 'true used' signal with the full bit accounted for .full (read_command_full), .empty (read_command_empty) ); defparam the_read_command_FIFO.DATA_WIDTH = DATA_WIDTH; // we are not actually going to use all these bits and byte lanes left unconnected at the output will get optimized away defparam the_read_command_FIFO.FIFO_DEPTH = FIFO_DEPTH; defparam the_read_command_FIFO.FIFO_DEPTH_LOG2 = FIFO_DEPTH_LOG2; defparam the_read_command_FIFO.LATENCY = 2; // Descriptor FIFO allows for each byte lane to be written to and the data is not committed to the FIFO until the 'push' signal is asserted. // This differs from scfifo which commits the data any time the write signal is asserted. fifo_with_byteenables the_write_command_FIFO ( .clk (clk), .areset (reset), .sreset (sw_reset), .write_data (writedata), .write_byteenables (byteenable), .write (write), .push (push_write_fifo), .read_data (write_fifo_output), .pop (pop_write_fifo), .used (write_command_used), // this is a 'true used' signal with the full bit accounted for .full (write_command_full), .empty (write_command_empty) ); defparam the_write_command_FIFO.DATA_WIDTH = DATA_WIDTH; // we are not actually going to use all these bits and byte lanes left unconnected at the output will get optimized away defparam the_write_command_FIFO.FIFO_DEPTH = FIFO_DEPTH; defparam the_write_command_FIFO.FIFO_DEPTH_LOG2 = FIFO_DEPTH_LOG2; defparam the_write_command_FIFO.LATENCY = 2; /**************************************** End Module Instantiations ************************************************/ /****************************************** Combinational Signals **************************************************/ generate // all unnecessary signals and drivers will be optimized away if (MODE == 0) // MM-->MM begin assign waitrequest = (read_command_full == 1) | (write_command_full == 1); // information for the CSR or response blocks to use assign sequence_number = {write_sequence_number_d1, read_sequence_number_d1}; assign transfer_complete_IRQ_mask = write_transfer_complete_IRQ_mask_d1; assign early_termination_IRQ_mask = 1'b0; assign error_IRQ_mask = 8'h00; // read buffer flow control assign push_read_fifo = go_bit; assign read_park_enable = (read_park == 1) & (read_command_used == 1); // we want to keep the descriptor in the FIFO when the park bit is set assign read_command_valid = (stop == 0) & (sw_reset == 0) & (stop_issuing_commands == 0) & (read_command_empty == 0) & (read_command_empty_d1 == 0) & (read_command_empty_d2 == 0); // command buffer has two cycles of latency so the empty deassertion need to delayed two cycles but asserted in zero cycles, the time between commands will be at least 2 cycles so this delay is only needed coming out of the empty condition assign issue_read_descriptor = (read_command_valid == 1) & (read_command_ready == 1); assign pop_read_fifo = (issue_read_descriptor == 1) & (read_park_enable == 0); // don't want to pop the fifo if we are in parked mode // write buffer flow control assign push_write_fifo = go_bit; assign write_park_enable = (write_park == 1) & (write_command_used == 1); // we want to keep the descriptor in the FIFO when the park bit is set assign write_command_valid = (stop == 0) & (sw_reset == 0) & (stop_issuing_commands == 0) & (write_command_empty == 0) & (write_command_empty_d1 == 0) & (write_command_empty_d2 == 0); // command buffer has two cycles of latency so the empty deassertion need to delayed two cycles but asserted in zero cycles, the time between commands will be at least 2 cycles so this delay is only needed coming out of the empty condition assign issue_write_descriptor = (write_command_valid == 1) & (write_command_ready == 1); assign pop_write_fifo = (issue_write_descriptor == 1) & (write_park_enable == 0); // don't want to pop the fifo if we are in parked mode end else if (MODE == 1) // MM-->ST begin // information for the CSR or response blocks to use assign sequence_number = {16'h0000, read_sequence_number_d1}; assign transfer_complete_IRQ_mask = read_transfer_complete_IRQ_mask_d1; assign early_termination_IRQ_mask = 1'b0; assign error_IRQ_mask = 8'h00; assign waitrequest = (read_command_full == 1); // read buffer flow control assign push_read_fifo = go_bit; assign read_park_enable = (read_park == 1) & (read_command_used == 1); // we want to keep the descriptor in the FIFO when the park bit is set assign read_command_valid = (stop == 0) & (sw_reset == 0) & (stop_issuing_commands == 0) & (read_command_empty == 0) & (read_command_empty_d1 == 0) & (read_command_empty_d2 == 0); // command buffer has two cycles of latency so the empty deassertion need to delayed two cycles but asserted in zero cycles, the time between commands will be at least 2 cycles so this delay is only needed coming out of the empty condition assign issue_read_descriptor = (read_command_valid == 1) & (read_command_ready == 1); assign pop_read_fifo = (issue_read_descriptor == 1) & (read_park_enable == 0); // don't want to pop the fifo if we are in parked mode // write buffer flow control assign push_write_fifo = 0; assign write_park_enable = 0; assign write_command_valid = 0; assign issue_write_descriptor = 0; assign pop_write_fifo = 0; end else // ST-->MM begin // information for the CSR or response blocks to use assign sequence_number = {write_sequence_number_d1, 16'h0000}; assign transfer_complete_IRQ_mask = write_transfer_complete_IRQ_mask_d1; assign early_termination_IRQ_mask = write_early_termination_IRQ_mask_d1; assign error_IRQ_mask = write_error_IRQ_mask_d1; assign waitrequest = (write_command_full == 1); // read buffer flow control assign push_read_fifo = 0; assign read_park_enable = 0; assign read_command_valid = 0; assign issue_read_descriptor = 0; assign pop_read_fifo = 0; // write buffer flow control assign push_write_fifo = go_bit; assign write_park_enable = (write_park == 1) & (write_command_used == 1); // we want to keep the descriptor in the FIFO when the park bit is set assign write_command_valid = (stop == 0) & (sw_reset == 0) & (stop_issuing_commands == 0) & (write_command_empty == 0) & (write_command_empty_d1 == 0) & (write_command_empty_d2 == 0); // command buffer has two cycles of latency so the empty deassertion need to delayed two cycles but asserted in zero cycles, the time between commands will be at least 2 cycles so this delay is only needed coming out of the empty condition assign issue_write_descriptor = (write_command_valid == 1) & (write_command_ready == 1); assign pop_write_fifo = (issue_write_descriptor == 1) & (write_park_enable == 0); // don't want to pop the fifo if we are in parked mode end endgenerate generate // go bit is in a different location depending on the width of the slave port if (DATA_WIDTH == 256) begin assign go_bit = (writedata[255] == 1) & (write == 1) & (byteenable[31] == 1) & (waitrequest == 0); end else begin assign go_bit = (writedata[127] == 1) & (write == 1) & (byteenable[15] == 1) & (waitrequest == 0); end endgenerate /**************************************** End Combinational Signals ************************************************/ endmodule
/* Legal Notice: (C)2009 Altera Corporation. All rights reserved. Your use of Altera Corporation's design tools, logic functions and other software and tools, and its AMPP partner logic functions, and any output files any of the foregoing (including device programming or simulation files), and any associated documentation or information are expressly subject to the terms and conditions of the Altera Program License Subscription Agreement or other applicable license agreement, including, without limitation, that your use is for the sole purpose of programming logic devices manufactured by Altera and sold by Altera or its authorized distributors. Please refer to the applicable agreement for further details. */ /* Author: JCJB Date: 06/29/2009 This block is responsible for accepting 128/256 bit descriptors and buffering them in descriptor FIFOs. Each bytelane of the descriptor can be written to individually and writing ot the descriptor 'go' bit commits the data into the FIFO. Reading that data out of the FIFO occurs two cycles after the read is asserted as the FIFOs do not support lookahead mode. This block must keep local copies of per descriptor information like the optional sequence number or interrupt masks. When parked mode is set in the descriptor the same will transfer multiple times when the descriptor FIFO only contains one descriptor (and this descriptor will not be popped). Parked mode is useful for video frame buffering. 1.0 - The on-chip memory in the FIFOs are not inferred so there may be some extra unused bits. In a later Quartus II release the on-chip memory will be replaced with inferred memory. 1.1 - Shifted all descriptor registers into this block (from the dispatcher block). Added breakout blocks responsible for re-packing the information for use by each master. 1.2 - Added the read_early_done_enable bit to the breakout (for debug) */ // synthesis translate_off `timescale 1ns / 1ps // synthesis translate_on // turn off superfluous verilog processor warnings // altera message_level Level1 // altera message_off 10034 10035 10036 10037 10230 10240 10030 module descriptor_buffers ( clk, reset, writedata, write, byteenable, waitrequest, read_command_valid, read_command_ready, read_command_data, read_command_empty, read_command_full, read_command_used, write_command_valid, write_command_ready, write_command_data, write_command_empty, write_command_full, write_command_used, stop_issuing_commands, stop, sw_reset, sequence_number, transfer_complete_IRQ_mask, early_termination_IRQ_mask, error_IRQ_mask ); parameter MODE = 0; parameter DATA_WIDTH = 256; parameter BYTE_ENABLE_WIDTH = 32; parameter FIFO_DEPTH = 128; parameter FIFO_DEPTH_LOG2 = 7; // top level module can figure this out input clk; input reset; input [DATA_WIDTH-1:0] writedata; input write; input [BYTE_ENABLE_WIDTH-1:0] byteenable; output wire waitrequest; output wire read_command_valid; input read_command_ready; output wire [255:0] read_command_data; output wire read_command_empty; output wire read_command_full; output wire [FIFO_DEPTH_LOG2:0] read_command_used; output wire write_command_valid; input write_command_ready; output wire [255:0] write_command_data; output wire write_command_empty; output wire write_command_full; output wire [FIFO_DEPTH_LOG2:0] write_command_used; input stop_issuing_commands; input stop; input sw_reset; output wire [31:0] sequence_number; output wire transfer_complete_IRQ_mask; output wire early_termination_IRQ_mask; output wire [7:0] error_IRQ_mask; /* Internal wires and registers */ reg write_command_empty_d1; reg write_command_empty_d2; reg read_command_empty_d1; reg read_command_empty_d2; wire push_write_fifo; wire pop_write_fifo; wire push_read_fifo; wire pop_read_fifo; wire go_bit; wire read_park; wire read_park_enable; // park is enabled when read_park is enabled and the read FIFO is empty wire write_park; wire write_park_enable; // park is enabled when write_park is enabled and the write FIFO is empty wire [DATA_WIDTH-1:0] write_fifo_output; wire [DATA_WIDTH-1:0] read_fifo_output; wire [15:0] write_sequence_number; reg [15:0] write_sequence_number_d1; wire [15:0] read_sequence_number; reg [15:0] read_sequence_number_d1; wire read_transfer_complete_IRQ_mask; reg read_transfer_complete_IRQ_mask_d1; wire write_transfer_complete_IRQ_mask; reg write_transfer_complete_IRQ_mask_d1; wire write_early_termination_IRQ_mask; reg write_early_termination_IRQ_mask_d1; wire [7:0] write_error_IRQ_mask; reg [7:0] write_error_IRQ_mask_d1; wire issue_write_descriptor; // one cycle strobe used to indicate when there is a valid write descriptor ready to be sent to the write master wire issue_read_descriptor; // one cycle strobe used to indicate when there is a valid write descriptor ready to be sent to the write master /* Unused signals that are provided for debug convenience */ wire [31:0] read_address; wire [31:0] read_length; wire [7:0] read_transmit_channel; wire read_generate_sop; wire read_generate_eop; wire [7:0] read_burst_count; wire [15:0] read_stride; wire [7:0] read_transmit_error; wire read_early_done_enable; wire [31:0] write_address; wire [31:0] write_length; wire write_end_on_eop; wire [7:0] write_burst_count; wire [15:0] write_stride; /************************************************* Registers *******************************************************/ always @ (posedge clk or posedge reset) begin if (reset) begin write_sequence_number_d1 <= 0; write_transfer_complete_IRQ_mask_d1 <= 0; write_early_termination_IRQ_mask_d1 <= 0; write_error_IRQ_mask_d1 <= 0; end else if (issue_write_descriptor) // if parked mode is enabled and there are no more descriptors buffered then this will not fire when the command is sent out begin write_sequence_number_d1 <= write_sequence_number; write_transfer_complete_IRQ_mask_d1 <= write_transfer_complete_IRQ_mask; write_early_termination_IRQ_mask_d1 <= write_early_termination_IRQ_mask; write_error_IRQ_mask_d1 <= write_error_IRQ_mask; end end always @ (posedge clk or posedge reset) begin if (reset) begin read_sequence_number_d1 <= 0; read_transfer_complete_IRQ_mask_d1 <= 0; end else if (issue_read_descriptor) // if parked mode is enabled and there are no more descriptors buffered then this will not fire when the command is sent out begin read_sequence_number_d1 <= read_sequence_number; read_transfer_complete_IRQ_mask_d1 <= read_transfer_complete_IRQ_mask; end end // need to use a delayed valid signal since the commmand buffers have two cycles of latency always @ (posedge clk or posedge reset) begin if (reset) begin write_command_empty_d1 <= 0; write_command_empty_d2 <= 0; read_command_empty_d1 <= 0; read_command_empty_d2 <= 0; end else begin write_command_empty_d1 <= write_command_empty; write_command_empty_d2 <= write_command_empty_d1; read_command_empty_d1 <= read_command_empty; read_command_empty_d2 <= read_command_empty_d1; end end /*********************************************** End Registers *****************************************************/ /****************************************** Module Instantiations **************************************************/ /* the write_signal_break module simply takes the output of the descriptor buffer and reformats the data * to be sent in the command format needed by the master command port. If new features are added to the * descriptor format then add it to this block. This block also provides the descriptor information * using a naming convention isn't of bit indexes in a 256 bit wide command signal. */ write_signal_breakout the_write_signal_breakout ( .write_command_data_in (write_fifo_output), .write_command_data_out (write_command_data), .write_address (write_address), .write_length (write_length), .write_park (write_park), .write_end_on_eop (write_end_on_eop), .write_transfer_complete_IRQ_mask (write_transfer_complete_IRQ_mask), .write_early_termination_IRQ_mask (write_early_termination_IRQ_mask), .write_error_IRQ_mask (write_error_IRQ_mask), .write_burst_count (write_burst_count), .write_stride (write_stride), .write_sequence_number (write_sequence_number), .write_stop (stop), .write_sw_reset (sw_reset) ); defparam the_write_signal_breakout.DATA_WIDTH = DATA_WIDTH; /* the read_signal_break module simply takes the output of the descriptor buffer and reformats the data * to be sent in the command format needed by the master command port. If new features are added to the * descriptor format then add it to this block. This block also provides the descriptor information * using a naming convention isn't of bit indexes in a 256 bit wide command signal. */ read_signal_breakout the_read_signal_breakout ( .read_command_data_in (read_fifo_output), .read_command_data_out (read_command_data), .read_address (read_address), .read_length (read_length), .read_transmit_channel (read_transmit_channel), .read_generate_sop (read_generate_sop), .read_generate_eop (read_generate_eop), .read_park (read_park), .read_transfer_complete_IRQ_mask (read_transfer_complete_IRQ_mask), .read_burst_count (read_burst_count), .read_stride (read_stride), .read_sequence_number (read_sequence_number), .read_transmit_error (read_transmit_error), .read_early_done_enable (read_early_done_enable), .read_stop (stop), .read_sw_reset (sw_reset) ); defparam the_read_signal_breakout.DATA_WIDTH = DATA_WIDTH; // Descriptor FIFO allows for each byte lane to be written to and the data is not committed to the FIFO until the 'push' signal is asserted. // This differs from scfifo which commits the data any time the write signal is asserted. fifo_with_byteenables the_read_command_FIFO ( .clk (clk), .areset (reset), .sreset (sw_reset), .write_data (writedata), .write_byteenables (byteenable), .write (write), .push (push_read_fifo), .read_data (read_fifo_output), .pop (pop_read_fifo), .used (read_command_used), // this is a 'true used' signal with the full bit accounted for .full (read_command_full), .empty (read_command_empty) ); defparam the_read_command_FIFO.DATA_WIDTH = DATA_WIDTH; // we are not actually going to use all these bits and byte lanes left unconnected at the output will get optimized away defparam the_read_command_FIFO.FIFO_DEPTH = FIFO_DEPTH; defparam the_read_command_FIFO.FIFO_DEPTH_LOG2 = FIFO_DEPTH_LOG2; defparam the_read_command_FIFO.LATENCY = 2; // Descriptor FIFO allows for each byte lane to be written to and the data is not committed to the FIFO until the 'push' signal is asserted. // This differs from scfifo which commits the data any time the write signal is asserted. fifo_with_byteenables the_write_command_FIFO ( .clk (clk), .areset (reset), .sreset (sw_reset), .write_data (writedata), .write_byteenables (byteenable), .write (write), .push (push_write_fifo), .read_data (write_fifo_output), .pop (pop_write_fifo), .used (write_command_used), // this is a 'true used' signal with the full bit accounted for .full (write_command_full), .empty (write_command_empty) ); defparam the_write_command_FIFO.DATA_WIDTH = DATA_WIDTH; // we are not actually going to use all these bits and byte lanes left unconnected at the output will get optimized away defparam the_write_command_FIFO.FIFO_DEPTH = FIFO_DEPTH; defparam the_write_command_FIFO.FIFO_DEPTH_LOG2 = FIFO_DEPTH_LOG2; defparam the_write_command_FIFO.LATENCY = 2; /**************************************** End Module Instantiations ************************************************/ /****************************************** Combinational Signals **************************************************/ generate // all unnecessary signals and drivers will be optimized away if (MODE == 0) // MM-->MM begin assign waitrequest = (read_command_full == 1) | (write_command_full == 1); // information for the CSR or response blocks to use assign sequence_number = {write_sequence_number_d1, read_sequence_number_d1}; assign transfer_complete_IRQ_mask = write_transfer_complete_IRQ_mask_d1; assign early_termination_IRQ_mask = 1'b0; assign error_IRQ_mask = 8'h00; // read buffer flow control assign push_read_fifo = go_bit; assign read_park_enable = (read_park == 1) & (read_command_used == 1); // we want to keep the descriptor in the FIFO when the park bit is set assign read_command_valid = (stop == 0) & (sw_reset == 0) & (stop_issuing_commands == 0) & (read_command_empty == 0) & (read_command_empty_d1 == 0) & (read_command_empty_d2 == 0); // command buffer has two cycles of latency so the empty deassertion need to delayed two cycles but asserted in zero cycles, the time between commands will be at least 2 cycles so this delay is only needed coming out of the empty condition assign issue_read_descriptor = (read_command_valid == 1) & (read_command_ready == 1); assign pop_read_fifo = (issue_read_descriptor == 1) & (read_park_enable == 0); // don't want to pop the fifo if we are in parked mode // write buffer flow control assign push_write_fifo = go_bit; assign write_park_enable = (write_park == 1) & (write_command_used == 1); // we want to keep the descriptor in the FIFO when the park bit is set assign write_command_valid = (stop == 0) & (sw_reset == 0) & (stop_issuing_commands == 0) & (write_command_empty == 0) & (write_command_empty_d1 == 0) & (write_command_empty_d2 == 0); // command buffer has two cycles of latency so the empty deassertion need to delayed two cycles but asserted in zero cycles, the time between commands will be at least 2 cycles so this delay is only needed coming out of the empty condition assign issue_write_descriptor = (write_command_valid == 1) & (write_command_ready == 1); assign pop_write_fifo = (issue_write_descriptor == 1) & (write_park_enable == 0); // don't want to pop the fifo if we are in parked mode end else if (MODE == 1) // MM-->ST begin // information for the CSR or response blocks to use assign sequence_number = {16'h0000, read_sequence_number_d1}; assign transfer_complete_IRQ_mask = read_transfer_complete_IRQ_mask_d1; assign early_termination_IRQ_mask = 1'b0; assign error_IRQ_mask = 8'h00; assign waitrequest = (read_command_full == 1); // read buffer flow control assign push_read_fifo = go_bit; assign read_park_enable = (read_park == 1) & (read_command_used == 1); // we want to keep the descriptor in the FIFO when the park bit is set assign read_command_valid = (stop == 0) & (sw_reset == 0) & (stop_issuing_commands == 0) & (read_command_empty == 0) & (read_command_empty_d1 == 0) & (read_command_empty_d2 == 0); // command buffer has two cycles of latency so the empty deassertion need to delayed two cycles but asserted in zero cycles, the time between commands will be at least 2 cycles so this delay is only needed coming out of the empty condition assign issue_read_descriptor = (read_command_valid == 1) & (read_command_ready == 1); assign pop_read_fifo = (issue_read_descriptor == 1) & (read_park_enable == 0); // don't want to pop the fifo if we are in parked mode // write buffer flow control assign push_write_fifo = 0; assign write_park_enable = 0; assign write_command_valid = 0; assign issue_write_descriptor = 0; assign pop_write_fifo = 0; end else // ST-->MM begin // information for the CSR or response blocks to use assign sequence_number = {write_sequence_number_d1, 16'h0000}; assign transfer_complete_IRQ_mask = write_transfer_complete_IRQ_mask_d1; assign early_termination_IRQ_mask = write_early_termination_IRQ_mask_d1; assign error_IRQ_mask = write_error_IRQ_mask_d1; assign waitrequest = (write_command_full == 1); // read buffer flow control assign push_read_fifo = 0; assign read_park_enable = 0; assign read_command_valid = 0; assign issue_read_descriptor = 0; assign pop_read_fifo = 0; // write buffer flow control assign push_write_fifo = go_bit; assign write_park_enable = (write_park == 1) & (write_command_used == 1); // we want to keep the descriptor in the FIFO when the park bit is set assign write_command_valid = (stop == 0) & (sw_reset == 0) & (stop_issuing_commands == 0) & (write_command_empty == 0) & (write_command_empty_d1 == 0) & (write_command_empty_d2 == 0); // command buffer has two cycles of latency so the empty deassertion need to delayed two cycles but asserted in zero cycles, the time between commands will be at least 2 cycles so this delay is only needed coming out of the empty condition assign issue_write_descriptor = (write_command_valid == 1) & (write_command_ready == 1); assign pop_write_fifo = (issue_write_descriptor == 1) & (write_park_enable == 0); // don't want to pop the fifo if we are in parked mode end endgenerate generate // go bit is in a different location depending on the width of the slave port if (DATA_WIDTH == 256) begin assign go_bit = (writedata[255] == 1) & (write == 1) & (byteenable[31] == 1) & (waitrequest == 0); end else begin assign go_bit = (writedata[127] == 1) & (write == 1) & (byteenable[15] == 1) & (waitrequest == 0); end endgenerate /**************************************** End Combinational Signals ************************************************/ endmodule
/* Legal Notice: (C)2009 Altera Corporation. All rights reserved. Your use of Altera Corporation's design tools, logic functions and other software and tools, and its AMPP partner logic functions, and any output files any of the foregoing (including device programming or simulation files), and any associated documentation or information are expressly subject to the terms and conditions of the Altera Program License Subscription Agreement or other applicable license agreement, including, without limitation, that your use is for the sole purpose of programming logic devices manufactured by Altera and sold by Altera or its authorized distributors. Please refer to the applicable agreement for further details. */ /* Author: JCJB Date: 06/29/2009 This block is responsible for accepting 128/256 bit descriptors and buffering them in descriptor FIFOs. Each bytelane of the descriptor can be written to individually and writing ot the descriptor 'go' bit commits the data into the FIFO. Reading that data out of the FIFO occurs two cycles after the read is asserted as the FIFOs do not support lookahead mode. This block must keep local copies of per descriptor information like the optional sequence number or interrupt masks. When parked mode is set in the descriptor the same will transfer multiple times when the descriptor FIFO only contains one descriptor (and this descriptor will not be popped). Parked mode is useful for video frame buffering. 1.0 - The on-chip memory in the FIFOs are not inferred so there may be some extra unused bits. In a later Quartus II release the on-chip memory will be replaced with inferred memory. 1.1 - Shifted all descriptor registers into this block (from the dispatcher block). Added breakout blocks responsible for re-packing the information for use by each master. 1.2 - Added the read_early_done_enable bit to the breakout (for debug) */ // synthesis translate_off `timescale 1ns / 1ps // synthesis translate_on // turn off superfluous verilog processor warnings // altera message_level Level1 // altera message_off 10034 10035 10036 10037 10230 10240 10030 module descriptor_buffers ( clk, reset, writedata, write, byteenable, waitrequest, read_command_valid, read_command_ready, read_command_data, read_command_empty, read_command_full, read_command_used, write_command_valid, write_command_ready, write_command_data, write_command_empty, write_command_full, write_command_used, stop_issuing_commands, stop, sw_reset, sequence_number, transfer_complete_IRQ_mask, early_termination_IRQ_mask, error_IRQ_mask ); parameter MODE = 0; parameter DATA_WIDTH = 256; parameter BYTE_ENABLE_WIDTH = 32; parameter FIFO_DEPTH = 128; parameter FIFO_DEPTH_LOG2 = 7; // top level module can figure this out input clk; input reset; input [DATA_WIDTH-1:0] writedata; input write; input [BYTE_ENABLE_WIDTH-1:0] byteenable; output wire waitrequest; output wire read_command_valid; input read_command_ready; output wire [255:0] read_command_data; output wire read_command_empty; output wire read_command_full; output wire [FIFO_DEPTH_LOG2:0] read_command_used; output wire write_command_valid; input write_command_ready; output wire [255:0] write_command_data; output wire write_command_empty; output wire write_command_full; output wire [FIFO_DEPTH_LOG2:0] write_command_used; input stop_issuing_commands; input stop; input sw_reset; output wire [31:0] sequence_number; output wire transfer_complete_IRQ_mask; output wire early_termination_IRQ_mask; output wire [7:0] error_IRQ_mask; /* Internal wires and registers */ reg write_command_empty_d1; reg write_command_empty_d2; reg read_command_empty_d1; reg read_command_empty_d2; wire push_write_fifo; wire pop_write_fifo; wire push_read_fifo; wire pop_read_fifo; wire go_bit; wire read_park; wire read_park_enable; // park is enabled when read_park is enabled and the read FIFO is empty wire write_park; wire write_park_enable; // park is enabled when write_park is enabled and the write FIFO is empty wire [DATA_WIDTH-1:0] write_fifo_output; wire [DATA_WIDTH-1:0] read_fifo_output; wire [15:0] write_sequence_number; reg [15:0] write_sequence_number_d1; wire [15:0] read_sequence_number; reg [15:0] read_sequence_number_d1; wire read_transfer_complete_IRQ_mask; reg read_transfer_complete_IRQ_mask_d1; wire write_transfer_complete_IRQ_mask; reg write_transfer_complete_IRQ_mask_d1; wire write_early_termination_IRQ_mask; reg write_early_termination_IRQ_mask_d1; wire [7:0] write_error_IRQ_mask; reg [7:0] write_error_IRQ_mask_d1; wire issue_write_descriptor; // one cycle strobe used to indicate when there is a valid write descriptor ready to be sent to the write master wire issue_read_descriptor; // one cycle strobe used to indicate when there is a valid write descriptor ready to be sent to the write master /* Unused signals that are provided for debug convenience */ wire [31:0] read_address; wire [31:0] read_length; wire [7:0] read_transmit_channel; wire read_generate_sop; wire read_generate_eop; wire [7:0] read_burst_count; wire [15:0] read_stride; wire [7:0] read_transmit_error; wire read_early_done_enable; wire [31:0] write_address; wire [31:0] write_length; wire write_end_on_eop; wire [7:0] write_burst_count; wire [15:0] write_stride; /************************************************* Registers *******************************************************/ always @ (posedge clk or posedge reset) begin if (reset) begin write_sequence_number_d1 <= 0; write_transfer_complete_IRQ_mask_d1 <= 0; write_early_termination_IRQ_mask_d1 <= 0; write_error_IRQ_mask_d1 <= 0; end else if (issue_write_descriptor) // if parked mode is enabled and there are no more descriptors buffered then this will not fire when the command is sent out begin write_sequence_number_d1 <= write_sequence_number; write_transfer_complete_IRQ_mask_d1 <= write_transfer_complete_IRQ_mask; write_early_termination_IRQ_mask_d1 <= write_early_termination_IRQ_mask; write_error_IRQ_mask_d1 <= write_error_IRQ_mask; end end always @ (posedge clk or posedge reset) begin if (reset) begin read_sequence_number_d1 <= 0; read_transfer_complete_IRQ_mask_d1 <= 0; end else if (issue_read_descriptor) // if parked mode is enabled and there are no more descriptors buffered then this will not fire when the command is sent out begin read_sequence_number_d1 <= read_sequence_number; read_transfer_complete_IRQ_mask_d1 <= read_transfer_complete_IRQ_mask; end end // need to use a delayed valid signal since the commmand buffers have two cycles of latency always @ (posedge clk or posedge reset) begin if (reset) begin write_command_empty_d1 <= 0; write_command_empty_d2 <= 0; read_command_empty_d1 <= 0; read_command_empty_d2 <= 0; end else begin write_command_empty_d1 <= write_command_empty; write_command_empty_d2 <= write_command_empty_d1; read_command_empty_d1 <= read_command_empty; read_command_empty_d2 <= read_command_empty_d1; end end /*********************************************** End Registers *****************************************************/ /****************************************** Module Instantiations **************************************************/ /* the write_signal_break module simply takes the output of the descriptor buffer and reformats the data * to be sent in the command format needed by the master command port. If new features are added to the * descriptor format then add it to this block. This block also provides the descriptor information * using a naming convention isn't of bit indexes in a 256 bit wide command signal. */ write_signal_breakout the_write_signal_breakout ( .write_command_data_in (write_fifo_output), .write_command_data_out (write_command_data), .write_address (write_address), .write_length (write_length), .write_park (write_park), .write_end_on_eop (write_end_on_eop), .write_transfer_complete_IRQ_mask (write_transfer_complete_IRQ_mask), .write_early_termination_IRQ_mask (write_early_termination_IRQ_mask), .write_error_IRQ_mask (write_error_IRQ_mask), .write_burst_count (write_burst_count), .write_stride (write_stride), .write_sequence_number (write_sequence_number), .write_stop (stop), .write_sw_reset (sw_reset) ); defparam the_write_signal_breakout.DATA_WIDTH = DATA_WIDTH; /* the read_signal_break module simply takes the output of the descriptor buffer and reformats the data * to be sent in the command format needed by the master command port. If new features are added to the * descriptor format then add it to this block. This block also provides the descriptor information * using a naming convention isn't of bit indexes in a 256 bit wide command signal. */ read_signal_breakout the_read_signal_breakout ( .read_command_data_in (read_fifo_output), .read_command_data_out (read_command_data), .read_address (read_address), .read_length (read_length), .read_transmit_channel (read_transmit_channel), .read_generate_sop (read_generate_sop), .read_generate_eop (read_generate_eop), .read_park (read_park), .read_transfer_complete_IRQ_mask (read_transfer_complete_IRQ_mask), .read_burst_count (read_burst_count), .read_stride (read_stride), .read_sequence_number (read_sequence_number), .read_transmit_error (read_transmit_error), .read_early_done_enable (read_early_done_enable), .read_stop (stop), .read_sw_reset (sw_reset) ); defparam the_read_signal_breakout.DATA_WIDTH = DATA_WIDTH; // Descriptor FIFO allows for each byte lane to be written to and the data is not committed to the FIFO until the 'push' signal is asserted. // This differs from scfifo which commits the data any time the write signal is asserted. fifo_with_byteenables the_read_command_FIFO ( .clk (clk), .areset (reset), .sreset (sw_reset), .write_data (writedata), .write_byteenables (byteenable), .write (write), .push (push_read_fifo), .read_data (read_fifo_output), .pop (pop_read_fifo), .used (read_command_used), // this is a 'true used' signal with the full bit accounted for .full (read_command_full), .empty (read_command_empty) ); defparam the_read_command_FIFO.DATA_WIDTH = DATA_WIDTH; // we are not actually going to use all these bits and byte lanes left unconnected at the output will get optimized away defparam the_read_command_FIFO.FIFO_DEPTH = FIFO_DEPTH; defparam the_read_command_FIFO.FIFO_DEPTH_LOG2 = FIFO_DEPTH_LOG2; defparam the_read_command_FIFO.LATENCY = 2; // Descriptor FIFO allows for each byte lane to be written to and the data is not committed to the FIFO until the 'push' signal is asserted. // This differs from scfifo which commits the data any time the write signal is asserted. fifo_with_byteenables the_write_command_FIFO ( .clk (clk), .areset (reset), .sreset (sw_reset), .write_data (writedata), .write_byteenables (byteenable), .write (write), .push (push_write_fifo), .read_data (write_fifo_output), .pop (pop_write_fifo), .used (write_command_used), // this is a 'true used' signal with the full bit accounted for .full (write_command_full), .empty (write_command_empty) ); defparam the_write_command_FIFO.DATA_WIDTH = DATA_WIDTH; // we are not actually going to use all these bits and byte lanes left unconnected at the output will get optimized away defparam the_write_command_FIFO.FIFO_DEPTH = FIFO_DEPTH; defparam the_write_command_FIFO.FIFO_DEPTH_LOG2 = FIFO_DEPTH_LOG2; defparam the_write_command_FIFO.LATENCY = 2; /**************************************** End Module Instantiations ************************************************/ /****************************************** Combinational Signals **************************************************/ generate // all unnecessary signals and drivers will be optimized away if (MODE == 0) // MM-->MM begin assign waitrequest = (read_command_full == 1) | (write_command_full == 1); // information for the CSR or response blocks to use assign sequence_number = {write_sequence_number_d1, read_sequence_number_d1}; assign transfer_complete_IRQ_mask = write_transfer_complete_IRQ_mask_d1; assign early_termination_IRQ_mask = 1'b0; assign error_IRQ_mask = 8'h00; // read buffer flow control assign push_read_fifo = go_bit; assign read_park_enable = (read_park == 1) & (read_command_used == 1); // we want to keep the descriptor in the FIFO when the park bit is set assign read_command_valid = (stop == 0) & (sw_reset == 0) & (stop_issuing_commands == 0) & (read_command_empty == 0) & (read_command_empty_d1 == 0) & (read_command_empty_d2 == 0); // command buffer has two cycles of latency so the empty deassertion need to delayed two cycles but asserted in zero cycles, the time between commands will be at least 2 cycles so this delay is only needed coming out of the empty condition assign issue_read_descriptor = (read_command_valid == 1) & (read_command_ready == 1); assign pop_read_fifo = (issue_read_descriptor == 1) & (read_park_enable == 0); // don't want to pop the fifo if we are in parked mode // write buffer flow control assign push_write_fifo = go_bit; assign write_park_enable = (write_park == 1) & (write_command_used == 1); // we want to keep the descriptor in the FIFO when the park bit is set assign write_command_valid = (stop == 0) & (sw_reset == 0) & (stop_issuing_commands == 0) & (write_command_empty == 0) & (write_command_empty_d1 == 0) & (write_command_empty_d2 == 0); // command buffer has two cycles of latency so the empty deassertion need to delayed two cycles but asserted in zero cycles, the time between commands will be at least 2 cycles so this delay is only needed coming out of the empty condition assign issue_write_descriptor = (write_command_valid == 1) & (write_command_ready == 1); assign pop_write_fifo = (issue_write_descriptor == 1) & (write_park_enable == 0); // don't want to pop the fifo if we are in parked mode end else if (MODE == 1) // MM-->ST begin // information for the CSR or response blocks to use assign sequence_number = {16'h0000, read_sequence_number_d1}; assign transfer_complete_IRQ_mask = read_transfer_complete_IRQ_mask_d1; assign early_termination_IRQ_mask = 1'b0; assign error_IRQ_mask = 8'h00; assign waitrequest = (read_command_full == 1); // read buffer flow control assign push_read_fifo = go_bit; assign read_park_enable = (read_park == 1) & (read_command_used == 1); // we want to keep the descriptor in the FIFO when the park bit is set assign read_command_valid = (stop == 0) & (sw_reset == 0) & (stop_issuing_commands == 0) & (read_command_empty == 0) & (read_command_empty_d1 == 0) & (read_command_empty_d2 == 0); // command buffer has two cycles of latency so the empty deassertion need to delayed two cycles but asserted in zero cycles, the time between commands will be at least 2 cycles so this delay is only needed coming out of the empty condition assign issue_read_descriptor = (read_command_valid == 1) & (read_command_ready == 1); assign pop_read_fifo = (issue_read_descriptor == 1) & (read_park_enable == 0); // don't want to pop the fifo if we are in parked mode // write buffer flow control assign push_write_fifo = 0; assign write_park_enable = 0; assign write_command_valid = 0; assign issue_write_descriptor = 0; assign pop_write_fifo = 0; end else // ST-->MM begin // information for the CSR or response blocks to use assign sequence_number = {write_sequence_number_d1, 16'h0000}; assign transfer_complete_IRQ_mask = write_transfer_complete_IRQ_mask_d1; assign early_termination_IRQ_mask = write_early_termination_IRQ_mask_d1; assign error_IRQ_mask = write_error_IRQ_mask_d1; assign waitrequest = (write_command_full == 1); // read buffer flow control assign push_read_fifo = 0; assign read_park_enable = 0; assign read_command_valid = 0; assign issue_read_descriptor = 0; assign pop_read_fifo = 0; // write buffer flow control assign push_write_fifo = go_bit; assign write_park_enable = (write_park == 1) & (write_command_used == 1); // we want to keep the descriptor in the FIFO when the park bit is set assign write_command_valid = (stop == 0) & (sw_reset == 0) & (stop_issuing_commands == 0) & (write_command_empty == 0) & (write_command_empty_d1 == 0) & (write_command_empty_d2 == 0); // command buffer has two cycles of latency so the empty deassertion need to delayed two cycles but asserted in zero cycles, the time between commands will be at least 2 cycles so this delay is only needed coming out of the empty condition assign issue_write_descriptor = (write_command_valid == 1) & (write_command_ready == 1); assign pop_write_fifo = (issue_write_descriptor == 1) & (write_park_enable == 0); // don't want to pop the fifo if we are in parked mode end endgenerate generate // go bit is in a different location depending on the width of the slave port if (DATA_WIDTH == 256) begin assign go_bit = (writedata[255] == 1) & (write == 1) & (byteenable[31] == 1) & (waitrequest == 0); end else begin assign go_bit = (writedata[127] == 1) & (write == 1) & (byteenable[15] == 1) & (waitrequest == 0); end endgenerate /**************************************** End Combinational Signals ************************************************/ endmodule
/* Legal Notice: (C)2009 Altera Corporation. All rights reserved. Your use of Altera Corporation's design tools, logic functions and other software and tools, and its AMPP partner logic functions, and any output files any of the foregoing (including device programming or simulation files), and any associated documentation or information are expressly subject to the terms and conditions of the Altera Program License Subscription Agreement or other applicable license agreement, including, without limitation, that your use is for the sole purpose of programming logic devices manufactured by Altera and sold by Altera or its authorized distributors. Please refer to the applicable agreement for further details. */ /* Author: JCJB Date: 06/29/2009 This block is responsible for accepting 128/256 bit descriptors and buffering them in descriptor FIFOs. Each bytelane of the descriptor can be written to individually and writing ot the descriptor 'go' bit commits the data into the FIFO. Reading that data out of the FIFO occurs two cycles after the read is asserted as the FIFOs do not support lookahead mode. This block must keep local copies of per descriptor information like the optional sequence number or interrupt masks. When parked mode is set in the descriptor the same will transfer multiple times when the descriptor FIFO only contains one descriptor (and this descriptor will not be popped). Parked mode is useful for video frame buffering. 1.0 - The on-chip memory in the FIFOs are not inferred so there may be some extra unused bits. In a later Quartus II release the on-chip memory will be replaced with inferred memory. 1.1 - Shifted all descriptor registers into this block (from the dispatcher block). Added breakout blocks responsible for re-packing the information for use by each master. 1.2 - Added the read_early_done_enable bit to the breakout (for debug) */ // synthesis translate_off `timescale 1ns / 1ps // synthesis translate_on // turn off superfluous verilog processor warnings // altera message_level Level1 // altera message_off 10034 10035 10036 10037 10230 10240 10030 module descriptor_buffers ( clk, reset, writedata, write, byteenable, waitrequest, read_command_valid, read_command_ready, read_command_data, read_command_empty, read_command_full, read_command_used, write_command_valid, write_command_ready, write_command_data, write_command_empty, write_command_full, write_command_used, stop_issuing_commands, stop, sw_reset, sequence_number, transfer_complete_IRQ_mask, early_termination_IRQ_mask, error_IRQ_mask ); parameter MODE = 0; parameter DATA_WIDTH = 256; parameter BYTE_ENABLE_WIDTH = 32; parameter FIFO_DEPTH = 128; parameter FIFO_DEPTH_LOG2 = 7; // top level module can figure this out input clk; input reset; input [DATA_WIDTH-1:0] writedata; input write; input [BYTE_ENABLE_WIDTH-1:0] byteenable; output wire waitrequest; output wire read_command_valid; input read_command_ready; output wire [255:0] read_command_data; output wire read_command_empty; output wire read_command_full; output wire [FIFO_DEPTH_LOG2:0] read_command_used; output wire write_command_valid; input write_command_ready; output wire [255:0] write_command_data; output wire write_command_empty; output wire write_command_full; output wire [FIFO_DEPTH_LOG2:0] write_command_used; input stop_issuing_commands; input stop; input sw_reset; output wire [31:0] sequence_number; output wire transfer_complete_IRQ_mask; output wire early_termination_IRQ_mask; output wire [7:0] error_IRQ_mask; /* Internal wires and registers */ reg write_command_empty_d1; reg write_command_empty_d2; reg read_command_empty_d1; reg read_command_empty_d2; wire push_write_fifo; wire pop_write_fifo; wire push_read_fifo; wire pop_read_fifo; wire go_bit; wire read_park; wire read_park_enable; // park is enabled when read_park is enabled and the read FIFO is empty wire write_park; wire write_park_enable; // park is enabled when write_park is enabled and the write FIFO is empty wire [DATA_WIDTH-1:0] write_fifo_output; wire [DATA_WIDTH-1:0] read_fifo_output; wire [15:0] write_sequence_number; reg [15:0] write_sequence_number_d1; wire [15:0] read_sequence_number; reg [15:0] read_sequence_number_d1; wire read_transfer_complete_IRQ_mask; reg read_transfer_complete_IRQ_mask_d1; wire write_transfer_complete_IRQ_mask; reg write_transfer_complete_IRQ_mask_d1; wire write_early_termination_IRQ_mask; reg write_early_termination_IRQ_mask_d1; wire [7:0] write_error_IRQ_mask; reg [7:0] write_error_IRQ_mask_d1; wire issue_write_descriptor; // one cycle strobe used to indicate when there is a valid write descriptor ready to be sent to the write master wire issue_read_descriptor; // one cycle strobe used to indicate when there is a valid write descriptor ready to be sent to the write master /* Unused signals that are provided for debug convenience */ wire [31:0] read_address; wire [31:0] read_length; wire [7:0] read_transmit_channel; wire read_generate_sop; wire read_generate_eop; wire [7:0] read_burst_count; wire [15:0] read_stride; wire [7:0] read_transmit_error; wire read_early_done_enable; wire [31:0] write_address; wire [31:0] write_length; wire write_end_on_eop; wire [7:0] write_burst_count; wire [15:0] write_stride; /************************************************* Registers *******************************************************/ always @ (posedge clk or posedge reset) begin if (reset) begin write_sequence_number_d1 <= 0; write_transfer_complete_IRQ_mask_d1 <= 0; write_early_termination_IRQ_mask_d1 <= 0; write_error_IRQ_mask_d1 <= 0; end else if (issue_write_descriptor) // if parked mode is enabled and there are no more descriptors buffered then this will not fire when the command is sent out begin write_sequence_number_d1 <= write_sequence_number; write_transfer_complete_IRQ_mask_d1 <= write_transfer_complete_IRQ_mask; write_early_termination_IRQ_mask_d1 <= write_early_termination_IRQ_mask; write_error_IRQ_mask_d1 <= write_error_IRQ_mask; end end always @ (posedge clk or posedge reset) begin if (reset) begin read_sequence_number_d1 <= 0; read_transfer_complete_IRQ_mask_d1 <= 0; end else if (issue_read_descriptor) // if parked mode is enabled and there are no more descriptors buffered then this will not fire when the command is sent out begin read_sequence_number_d1 <= read_sequence_number; read_transfer_complete_IRQ_mask_d1 <= read_transfer_complete_IRQ_mask; end end // need to use a delayed valid signal since the commmand buffers have two cycles of latency always @ (posedge clk or posedge reset) begin if (reset) begin write_command_empty_d1 <= 0; write_command_empty_d2 <= 0; read_command_empty_d1 <= 0; read_command_empty_d2 <= 0; end else begin write_command_empty_d1 <= write_command_empty; write_command_empty_d2 <= write_command_empty_d1; read_command_empty_d1 <= read_command_empty; read_command_empty_d2 <= read_command_empty_d1; end end /*********************************************** End Registers *****************************************************/ /****************************************** Module Instantiations **************************************************/ /* the write_signal_break module simply takes the output of the descriptor buffer and reformats the data * to be sent in the command format needed by the master command port. If new features are added to the * descriptor format then add it to this block. This block also provides the descriptor information * using a naming convention isn't of bit indexes in a 256 bit wide command signal. */ write_signal_breakout the_write_signal_breakout ( .write_command_data_in (write_fifo_output), .write_command_data_out (write_command_data), .write_address (write_address), .write_length (write_length), .write_park (write_park), .write_end_on_eop (write_end_on_eop), .write_transfer_complete_IRQ_mask (write_transfer_complete_IRQ_mask), .write_early_termination_IRQ_mask (write_early_termination_IRQ_mask), .write_error_IRQ_mask (write_error_IRQ_mask), .write_burst_count (write_burst_count), .write_stride (write_stride), .write_sequence_number (write_sequence_number), .write_stop (stop), .write_sw_reset (sw_reset) ); defparam the_write_signal_breakout.DATA_WIDTH = DATA_WIDTH; /* the read_signal_break module simply takes the output of the descriptor buffer and reformats the data * to be sent in the command format needed by the master command port. If new features are added to the * descriptor format then add it to this block. This block also provides the descriptor information * using a naming convention isn't of bit indexes in a 256 bit wide command signal. */ read_signal_breakout the_read_signal_breakout ( .read_command_data_in (read_fifo_output), .read_command_data_out (read_command_data), .read_address (read_address), .read_length (read_length), .read_transmit_channel (read_transmit_channel), .read_generate_sop (read_generate_sop), .read_generate_eop (read_generate_eop), .read_park (read_park), .read_transfer_complete_IRQ_mask (read_transfer_complete_IRQ_mask), .read_burst_count (read_burst_count), .read_stride (read_stride), .read_sequence_number (read_sequence_number), .read_transmit_error (read_transmit_error), .read_early_done_enable (read_early_done_enable), .read_stop (stop), .read_sw_reset (sw_reset) ); defparam the_read_signal_breakout.DATA_WIDTH = DATA_WIDTH; // Descriptor FIFO allows for each byte lane to be written to and the data is not committed to the FIFO until the 'push' signal is asserted. // This differs from scfifo which commits the data any time the write signal is asserted. fifo_with_byteenables the_read_command_FIFO ( .clk (clk), .areset (reset), .sreset (sw_reset), .write_data (writedata), .write_byteenables (byteenable), .write (write), .push (push_read_fifo), .read_data (read_fifo_output), .pop (pop_read_fifo), .used (read_command_used), // this is a 'true used' signal with the full bit accounted for .full (read_command_full), .empty (read_command_empty) ); defparam the_read_command_FIFO.DATA_WIDTH = DATA_WIDTH; // we are not actually going to use all these bits and byte lanes left unconnected at the output will get optimized away defparam the_read_command_FIFO.FIFO_DEPTH = FIFO_DEPTH; defparam the_read_command_FIFO.FIFO_DEPTH_LOG2 = FIFO_DEPTH_LOG2; defparam the_read_command_FIFO.LATENCY = 2; // Descriptor FIFO allows for each byte lane to be written to and the data is not committed to the FIFO until the 'push' signal is asserted. // This differs from scfifo which commits the data any time the write signal is asserted. fifo_with_byteenables the_write_command_FIFO ( .clk (clk), .areset (reset), .sreset (sw_reset), .write_data (writedata), .write_byteenables (byteenable), .write (write), .push (push_write_fifo), .read_data (write_fifo_output), .pop (pop_write_fifo), .used (write_command_used), // this is a 'true used' signal with the full bit accounted for .full (write_command_full), .empty (write_command_empty) ); defparam the_write_command_FIFO.DATA_WIDTH = DATA_WIDTH; // we are not actually going to use all these bits and byte lanes left unconnected at the output will get optimized away defparam the_write_command_FIFO.FIFO_DEPTH = FIFO_DEPTH; defparam the_write_command_FIFO.FIFO_DEPTH_LOG2 = FIFO_DEPTH_LOG2; defparam the_write_command_FIFO.LATENCY = 2; /**************************************** End Module Instantiations ************************************************/ /****************************************** Combinational Signals **************************************************/ generate // all unnecessary signals and drivers will be optimized away if (MODE == 0) // MM-->MM begin assign waitrequest = (read_command_full == 1) | (write_command_full == 1); // information for the CSR or response blocks to use assign sequence_number = {write_sequence_number_d1, read_sequence_number_d1}; assign transfer_complete_IRQ_mask = write_transfer_complete_IRQ_mask_d1; assign early_termination_IRQ_mask = 1'b0; assign error_IRQ_mask = 8'h00; // read buffer flow control assign push_read_fifo = go_bit; assign read_park_enable = (read_park == 1) & (read_command_used == 1); // we want to keep the descriptor in the FIFO when the park bit is set assign read_command_valid = (stop == 0) & (sw_reset == 0) & (stop_issuing_commands == 0) & (read_command_empty == 0) & (read_command_empty_d1 == 0) & (read_command_empty_d2 == 0); // command buffer has two cycles of latency so the empty deassertion need to delayed two cycles but asserted in zero cycles, the time between commands will be at least 2 cycles so this delay is only needed coming out of the empty condition assign issue_read_descriptor = (read_command_valid == 1) & (read_command_ready == 1); assign pop_read_fifo = (issue_read_descriptor == 1) & (read_park_enable == 0); // don't want to pop the fifo if we are in parked mode // write buffer flow control assign push_write_fifo = go_bit; assign write_park_enable = (write_park == 1) & (write_command_used == 1); // we want to keep the descriptor in the FIFO when the park bit is set assign write_command_valid = (stop == 0) & (sw_reset == 0) & (stop_issuing_commands == 0) & (write_command_empty == 0) & (write_command_empty_d1 == 0) & (write_command_empty_d2 == 0); // command buffer has two cycles of latency so the empty deassertion need to delayed two cycles but asserted in zero cycles, the time between commands will be at least 2 cycles so this delay is only needed coming out of the empty condition assign issue_write_descriptor = (write_command_valid == 1) & (write_command_ready == 1); assign pop_write_fifo = (issue_write_descriptor == 1) & (write_park_enable == 0); // don't want to pop the fifo if we are in parked mode end else if (MODE == 1) // MM-->ST begin // information for the CSR or response blocks to use assign sequence_number = {16'h0000, read_sequence_number_d1}; assign transfer_complete_IRQ_mask = read_transfer_complete_IRQ_mask_d1; assign early_termination_IRQ_mask = 1'b0; assign error_IRQ_mask = 8'h00; assign waitrequest = (read_command_full == 1); // read buffer flow control assign push_read_fifo = go_bit; assign read_park_enable = (read_park == 1) & (read_command_used == 1); // we want to keep the descriptor in the FIFO when the park bit is set assign read_command_valid = (stop == 0) & (sw_reset == 0) & (stop_issuing_commands == 0) & (read_command_empty == 0) & (read_command_empty_d1 == 0) & (read_command_empty_d2 == 0); // command buffer has two cycles of latency so the empty deassertion need to delayed two cycles but asserted in zero cycles, the time between commands will be at least 2 cycles so this delay is only needed coming out of the empty condition assign issue_read_descriptor = (read_command_valid == 1) & (read_command_ready == 1); assign pop_read_fifo = (issue_read_descriptor == 1) & (read_park_enable == 0); // don't want to pop the fifo if we are in parked mode // write buffer flow control assign push_write_fifo = 0; assign write_park_enable = 0; assign write_command_valid = 0; assign issue_write_descriptor = 0; assign pop_write_fifo = 0; end else // ST-->MM begin // information for the CSR or response blocks to use assign sequence_number = {write_sequence_number_d1, 16'h0000}; assign transfer_complete_IRQ_mask = write_transfer_complete_IRQ_mask_d1; assign early_termination_IRQ_mask = write_early_termination_IRQ_mask_d1; assign error_IRQ_mask = write_error_IRQ_mask_d1; assign waitrequest = (write_command_full == 1); // read buffer flow control assign push_read_fifo = 0; assign read_park_enable = 0; assign read_command_valid = 0; assign issue_read_descriptor = 0; assign pop_read_fifo = 0; // write buffer flow control assign push_write_fifo = go_bit; assign write_park_enable = (write_park == 1) & (write_command_used == 1); // we want to keep the descriptor in the FIFO when the park bit is set assign write_command_valid = (stop == 0) & (sw_reset == 0) & (stop_issuing_commands == 0) & (write_command_empty == 0) & (write_command_empty_d1 == 0) & (write_command_empty_d2 == 0); // command buffer has two cycles of latency so the empty deassertion need to delayed two cycles but asserted in zero cycles, the time between commands will be at least 2 cycles so this delay is only needed coming out of the empty condition assign issue_write_descriptor = (write_command_valid == 1) & (write_command_ready == 1); assign pop_write_fifo = (issue_write_descriptor == 1) & (write_park_enable == 0); // don't want to pop the fifo if we are in parked mode end endgenerate generate // go bit is in a different location depending on the width of the slave port if (DATA_WIDTH == 256) begin assign go_bit = (writedata[255] == 1) & (write == 1) & (byteenable[31] == 1) & (waitrequest == 0); end else begin assign go_bit = (writedata[127] == 1) & (write == 1) & (byteenable[15] == 1) & (waitrequest == 0); end endgenerate /**************************************** End Combinational Signals ************************************************/ endmodule
/****************************************************************************** -- (c) Copyright 2006 - 2013 Xilinx, Inc. All rights reserved. -- -- This file contains confidential and proprietary information -- of Xilinx, Inc. and is protected under U.S. and -- international copyright and other intellectual property -- laws. -- -- DISCLAIMER -- This disclaimer is not a license and does not grant any -- rights to the materials distributed herewith. Except as -- otherwise provided in a valid license issued to you by -- Xilinx, and to the maximum extent permitted by applicable -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and -- (2) Xilinx shall not be liable (whether in contract or tort, -- including negligence, or under any other theory of -- liability) for any loss or damage of any kind or nature -- related to, arising under or in connection with these -- materials, including for any direct, or any indirect, -- special, incidental, or consequential loss or damage -- (including loss of data, profits, goodwill, or any type of -- loss or damage suffered as a result of any action brought -- by a third party) even if such damage or loss was -- reasonably foreseeable or Xilinx had been advised of the -- possibility of the same. -- -- CRITICAL APPLICATIONS -- Xilinx products are not designed or intended to be fail- -- safe, or for use in any application requiring fail-safe -- performance, such as life-support or safety devices or -- systems, Class III medical devices, nuclear facilities, -- applications related to the deployment of airbags, or any -- other applications that could lead to death, personal -- injury, or severe property or environmental damage -- (individually and collectively, "Critical -- Applications"). Customer assumes the sole risk and -- liability of any use of Xilinx products in Critical -- Applications, subject only to applicable laws and -- regulations governing limitations on product liability. -- -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS -- PART OF THIS FILE AT ALL TIMES. -- ***************************************************************************** * * Filename: BLK_MEM_GEN_v8_2.v * * Description: * This file is the Verilog behvarial model for the * Block Memory Generator Core. * ***************************************************************************** * Author: Xilinx * * History: Jan 11, 2006 Initial revision * Jun 11, 2007 Added independent register stages for * Port A and Port B (IP1_Jm/v2.5) * Aug 28, 2007 Added mux pipeline stages feature (IP2_Jm/v2.6) * Mar 13, 2008 Behavioral model optimizations * April 07, 2009 : Added support for Spartan-6 and Virtex-6 * features, including the following: * (i) error injection, detection and/or correction * (ii) reset priority * (iii) special reset behavior * *****************************************************************************/ `timescale 1ps/1ps module STATE_LOGIC_v8_2 (O, I0, I1, I2, I3, I4, I5); parameter INIT = 64'h0000000000000000; input I0, I1, I2, I3, I4, I5; output O; reg O; reg tmp; always @( I5 or I4 or I3 or I2 or I1 or I0 ) begin tmp = I0 ^ I1 ^ I2 ^ I3 ^ I4 ^ I5; if ( tmp == 0 || tmp == 1) O = INIT[{I5, I4, I3, I2, I1, I0}]; end endmodule module beh_vlog_muxf7_v8_2 (O, I0, I1, S); output O; reg O; input I0, I1, S; always @(I0 or I1 or S) if (S) O = I1; else O = I0; endmodule module beh_vlog_ff_clr_v8_2 (Q, C, CLR, D); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, CLR, D; reg Q; initial Q= 1'b0; always @(posedge C ) if (CLR) Q<= 1'b0; else Q<= #FLOP_DELAY D; endmodule module beh_vlog_ff_pre_v8_2 (Q, C, D, PRE); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, D, PRE; reg Q; initial Q= 1'b0; always @(posedge C ) if (PRE) Q <= 1'b1; else Q <= #FLOP_DELAY D; endmodule module beh_vlog_ff_ce_clr_v8_2 (Q, C, CE, CLR, D); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, CE, CLR, D; reg Q; initial Q= 1'b0; always @(posedge C ) if (CLR) Q <= 1'b0; else if (CE) Q <= #FLOP_DELAY D; endmodule module write_netlist_v8_2 #( parameter C_AXI_TYPE = 0 ) ( S_ACLK, S_ARESETN, S_AXI_AWVALID, S_AXI_WVALID, S_AXI_BREADY, w_last_c, bready_timeout_c, aw_ready_r, S_AXI_WREADY, S_AXI_BVALID, S_AXI_WR_EN, addr_en_c, incr_addr_c, bvalid_c ); input S_ACLK; input S_ARESETN; input S_AXI_AWVALID; input S_AXI_WVALID; input S_AXI_BREADY; input w_last_c; input bready_timeout_c; output aw_ready_r; output S_AXI_WREADY; output S_AXI_BVALID; output S_AXI_WR_EN; output addr_en_c; output incr_addr_c; output bvalid_c; //------------------------------------------------------------------------- //AXI LITE //------------------------------------------------------------------------- generate if (C_AXI_TYPE == 0 ) begin : gbeh_axi_lite_sm wire w_ready_r_7; wire w_ready_c; wire aw_ready_c; wire NlwRenamedSignal_bvalid_c; wire NlwRenamedSignal_incr_addr_c; wire present_state_FSM_FFd3_13; wire present_state_FSM_FFd2_14; wire present_state_FSM_FFd1_15; wire present_state_FSM_FFd4_16; wire present_state_FSM_FFd4_In; wire present_state_FSM_FFd3_In; wire present_state_FSM_FFd2_In; wire present_state_FSM_FFd1_In; wire present_state_FSM_FFd4_In1_21; wire [0:0] Mmux_aw_ready_c ; begin assign S_AXI_WREADY = w_ready_r_7, S_AXI_BVALID = NlwRenamedSignal_incr_addr_c, S_AXI_WR_EN = NlwRenamedSignal_bvalid_c, incr_addr_c = NlwRenamedSignal_incr_addr_c, bvalid_c = NlwRenamedSignal_bvalid_c; assign NlwRenamedSignal_incr_addr_c = 1'b0; beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) aw_ready_r_2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( aw_ready_c), .Q ( aw_ready_r) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) w_ready_r ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( w_ready_c), .Q ( w_ready_r_7) ); beh_vlog_ff_pre_v8_2 #( .INIT (1'b1)) present_state_FSM_FFd4 ( .C ( S_ACLK), .D ( present_state_FSM_FFd4_In), .PRE ( S_ARESETN), .Q ( present_state_FSM_FFd4_16) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd3 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd3_In), .Q ( present_state_FSM_FFd3_13) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_14) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd1_In), .Q ( present_state_FSM_FFd1_15) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000055554440)) present_state_FSM_FFd3_In1 ( .I0 ( S_AXI_WVALID), .I1 ( S_AXI_AWVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd4_16), .I4 ( present_state_FSM_FFd3_13), .I5 (1'b0), .O ( present_state_FSM_FFd3_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000088880800)) present_state_FSM_FFd2_In1 ( .I0 ( S_AXI_AWVALID), .I1 ( S_AXI_WVALID), .I2 ( bready_timeout_c), .I3 ( present_state_FSM_FFd2_14), .I4 ( present_state_FSM_FFd4_16), .I5 (1'b0), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000AAAA2000)) Mmux_addr_en_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd2_14), .I3 ( S_AXI_WVALID), .I4 ( present_state_FSM_FFd4_16), .I5 (1'b0), .O ( addr_en_c) ); STATE_LOGIC_v8_2 #( .INIT (64'hF5F07570F5F05500)) Mmux_w_ready_c_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_13), .I4 ( present_state_FSM_FFd4_16), .I5 ( present_state_FSM_FFd2_14), .O ( w_ready_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h88808880FFFF8880)) present_state_FSM_FFd1_In1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd3_13), .I3 ( present_state_FSM_FFd2_14), .I4 ( present_state_FSM_FFd1_15), .I5 ( S_AXI_BREADY), .O ( present_state_FSM_FFd1_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000000000A8)) Mmux_S_AXI_WR_EN_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd2_14), .I2 ( present_state_FSM_FFd3_13), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( NlwRenamedSignal_bvalid_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h2F0F27072F0F2200)) present_state_FSM_FFd4_In1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_13), .I4 ( present_state_FSM_FFd4_16), .I5 ( present_state_FSM_FFd2_14), .O ( present_state_FSM_FFd4_In1_21) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000000000F8)) present_state_FSM_FFd4_In2 ( .I0 ( present_state_FSM_FFd1_15), .I1 ( S_AXI_BREADY), .I2 ( present_state_FSM_FFd4_In1_21), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd4_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h7535753575305500)) Mmux_aw_ready_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_WVALID), .I3 ( present_state_FSM_FFd4_16), .I4 ( present_state_FSM_FFd3_13), .I5 ( present_state_FSM_FFd2_14), .O ( Mmux_aw_ready_c[0]) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000000000F8)) Mmux_aw_ready_c_0_2 ( .I0 ( present_state_FSM_FFd1_15), .I1 ( S_AXI_BREADY), .I2 ( Mmux_aw_ready_c[0]), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( aw_ready_c) ); end end endgenerate //--------------------------------------------------------------------- // AXI FULL //--------------------------------------------------------------------- generate if (C_AXI_TYPE == 1 ) begin : gbeh_axi_full_sm wire w_ready_r_8; wire w_ready_c; wire aw_ready_c; wire NlwRenamedSig_OI_bvalid_c; wire present_state_FSM_FFd1_16; wire present_state_FSM_FFd4_17; wire present_state_FSM_FFd3_18; wire present_state_FSM_FFd2_19; wire present_state_FSM_FFd4_In; wire present_state_FSM_FFd3_In; wire present_state_FSM_FFd2_In; wire present_state_FSM_FFd1_In; wire present_state_FSM_FFd2_In1_24; wire present_state_FSM_FFd4_In1_25; wire N2; wire N4; begin assign S_AXI_WREADY = w_ready_r_8, bvalid_c = NlwRenamedSig_OI_bvalid_c, S_AXI_BVALID = 1'b0; beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) aw_ready_r_2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( aw_ready_c), .Q ( aw_ready_r) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) w_ready_r ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( w_ready_c), .Q ( w_ready_r_8) ); beh_vlog_ff_pre_v8_2 #( .INIT (1'b1)) present_state_FSM_FFd4 ( .C ( S_ACLK), .D ( present_state_FSM_FFd4_In), .PRE ( S_ARESETN), .Q ( present_state_FSM_FFd4_17) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd3 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd3_In), .Q ( present_state_FSM_FFd3_18) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_19) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd1_In), .Q ( present_state_FSM_FFd1_16) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000005540)) present_state_FSM_FFd3_In1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd4_17), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd3_In) ); STATE_LOGIC_v8_2 #( .INIT (64'hBF3FBB33AF0FAA00)) Mmux_aw_ready_c_0_2 ( .I0 ( S_AXI_BREADY), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd1_16), .I4 ( present_state_FSM_FFd4_17), .I5 ( NlwRenamedSig_OI_bvalid_c), .O ( aw_ready_c) ); STATE_LOGIC_v8_2 #( .INIT (64'hAAAAAAAA20000000)) Mmux_addr_en_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( S_AXI_WVALID), .I4 ( w_last_c), .I5 ( present_state_FSM_FFd4_17), .O ( addr_en_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000000000A8)) Mmux_S_AXI_WR_EN_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd2_19), .I2 ( present_state_FSM_FFd3_18), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( S_AXI_WR_EN) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000002220)) Mmux_incr_addr_c_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( w_last_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( incr_addr_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000008880)) Mmux_aw_ready_c_0_11 ( .I0 ( S_AXI_WVALID), .I1 ( w_last_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( NlwRenamedSig_OI_bvalid_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h000000000000D5C0)) present_state_FSM_FFd2_In1 ( .I0 ( w_last_c), .I1 ( S_AXI_AWVALID), .I2 ( present_state_FSM_FFd4_17), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd2_In1_24) ); STATE_LOGIC_v8_2 #( .INIT (64'hFFFFAAAA08AAAAAA)) present_state_FSM_FFd2_In2 ( .I0 ( present_state_FSM_FFd2_19), .I1 ( S_AXI_AWVALID), .I2 ( bready_timeout_c), .I3 ( w_last_c), .I4 ( S_AXI_WVALID), .I5 ( present_state_FSM_FFd2_In1_24), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h00C0004000C00000)) present_state_FSM_FFd4_In1 ( .I0 ( S_AXI_AWVALID), .I1 ( w_last_c), .I2 ( S_AXI_WVALID), .I3 ( bready_timeout_c), .I4 ( present_state_FSM_FFd3_18), .I5 ( present_state_FSM_FFd2_19), .O ( present_state_FSM_FFd4_In1_25) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000FFFF88F8)) present_state_FSM_FFd4_In2 ( .I0 ( present_state_FSM_FFd1_16), .I1 ( S_AXI_BREADY), .I2 ( present_state_FSM_FFd4_17), .I3 ( S_AXI_AWVALID), .I4 ( present_state_FSM_FFd4_In1_25), .I5 (1'b0), .O ( present_state_FSM_FFd4_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000000007)) Mmux_w_ready_c_0_SW0 ( .I0 ( w_last_c), .I1 ( S_AXI_WVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( N2) ); STATE_LOGIC_v8_2 #( .INIT (64'hFABAFABAFAAAF000)) Mmux_w_ready_c_0_Q ( .I0 ( N2), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd4_17), .I4 ( present_state_FSM_FFd3_18), .I5 ( present_state_FSM_FFd2_19), .O ( w_ready_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000000008)) Mmux_aw_ready_c_0_11_SW0 ( .I0 ( bready_timeout_c), .I1 ( S_AXI_WVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( N4) ); STATE_LOGIC_v8_2 #( .INIT (64'h88808880FFFF8880)) present_state_FSM_FFd1_In1 ( .I0 ( w_last_c), .I1 ( N4), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 ( present_state_FSM_FFd1_16), .I5 ( S_AXI_BREADY), .O ( present_state_FSM_FFd1_In) ); end end endgenerate endmodule module read_netlist_v8_2 #( parameter C_AXI_TYPE = 1, parameter C_ADDRB_WIDTH = 12 ) ( S_AXI_R_LAST_INT, S_ACLK, S_ARESETN, S_AXI_ARVALID, S_AXI_RREADY,S_AXI_INCR_ADDR,S_AXI_ADDR_EN, S_AXI_SINGLE_TRANS,S_AXI_MUX_SEL, S_AXI_R_LAST, S_AXI_ARREADY, S_AXI_RLAST, S_AXI_RVALID, S_AXI_RD_EN, S_AXI_ARLEN); input S_AXI_R_LAST_INT; input S_ACLK; input S_ARESETN; input S_AXI_ARVALID; input S_AXI_RREADY; output S_AXI_INCR_ADDR; output S_AXI_ADDR_EN; output S_AXI_SINGLE_TRANS; output S_AXI_MUX_SEL; output S_AXI_R_LAST; output S_AXI_ARREADY; output S_AXI_RLAST; output S_AXI_RVALID; output S_AXI_RD_EN; input [7:0] S_AXI_ARLEN; wire present_state_FSM_FFd1_13 ; wire present_state_FSM_FFd2_14 ; wire gaxi_full_sm_outstanding_read_r_15 ; wire gaxi_full_sm_ar_ready_r_16 ; wire gaxi_full_sm_r_last_r_17 ; wire NlwRenamedSig_OI_gaxi_full_sm_r_valid_r ; wire gaxi_full_sm_r_valid_c ; wire S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o ; wire gaxi_full_sm_ar_ready_c ; wire gaxi_full_sm_outstanding_read_c ; wire NlwRenamedSig_OI_S_AXI_R_LAST ; wire S_AXI_ARLEN_7_GND_8_o_equal_1_o ; wire present_state_FSM_FFd2_In ; wire present_state_FSM_FFd1_In ; wire Mmux_S_AXI_R_LAST13 ; wire N01 ; wire N2 ; wire Mmux_gaxi_full_sm_ar_ready_c11 ; wire N4 ; wire N8 ; wire N9 ; wire N10 ; wire N11 ; wire N12 ; wire N13 ; assign S_AXI_R_LAST = NlwRenamedSig_OI_S_AXI_R_LAST, S_AXI_ARREADY = gaxi_full_sm_ar_ready_r_16, S_AXI_RLAST = gaxi_full_sm_r_last_r_17, S_AXI_RVALID = NlwRenamedSig_OI_gaxi_full_sm_r_valid_r; beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) gaxi_full_sm_outstanding_read_r ( .C (S_ACLK), .CLR(S_ARESETN), .D(gaxi_full_sm_outstanding_read_c), .Q(gaxi_full_sm_outstanding_read_r_15) ); beh_vlog_ff_ce_clr_v8_2 #( .INIT (1'b0)) gaxi_full_sm_r_valid_r ( .C (S_ACLK), .CE (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .CLR (S_ARESETN), .D (gaxi_full_sm_r_valid_c), .Q (NlwRenamedSig_OI_gaxi_full_sm_r_valid_r) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) gaxi_full_sm_ar_ready_r ( .C (S_ACLK), .CLR (S_ARESETN), .D (gaxi_full_sm_ar_ready_c), .Q (gaxi_full_sm_ar_ready_r_16) ); beh_vlog_ff_ce_clr_v8_2 #( .INIT(1'b0)) gaxi_full_sm_r_last_r ( .C (S_ACLK), .CE (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .CLR (S_ARESETN), .D (NlwRenamedSig_OI_S_AXI_R_LAST), .Q (gaxi_full_sm_r_last_r_17) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_14) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C (S_ACLK), .CLR (S_ARESETN), .D (present_state_FSM_FFd1_In), .Q (present_state_FSM_FFd1_13) ); STATE_LOGIC_v8_2 #( .INIT (64'h000000000000000B)) S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o1 ( .I0 ( S_AXI_RREADY), .I1 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000000008)) Mmux_S_AXI_SINGLE_TRANS11 ( .I0 (S_AXI_ARVALID), .I1 (S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_SINGLE_TRANS) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000000004)) Mmux_S_AXI_ADDR_EN11 ( .I0 (present_state_FSM_FFd1_13), .I1 (S_AXI_ARVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_ADDR_EN) ); STATE_LOGIC_v8_2 #( .INIT (64'hECEE2022EEEE2022)) present_state_FSM_FFd2_In1 ( .I0 ( S_AXI_ARVALID), .I1 ( present_state_FSM_FFd1_13), .I2 ( S_AXI_RREADY), .I3 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I4 ( present_state_FSM_FFd2_14), .I5 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000044440444)) Mmux_S_AXI_R_LAST131 ( .I0 ( present_state_FSM_FFd1_13), .I1 ( S_AXI_ARVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( S_AXI_RREADY), .I5 (1'b0), .O ( Mmux_S_AXI_R_LAST13) ); STATE_LOGIC_v8_2 #( .INIT (64'h4000FFFF40004000)) Mmux_S_AXI_INCR_ADDR11 ( .I0 ( S_AXI_R_LAST_INT), .I1 ( S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd1_13), .I4 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I5 ( Mmux_S_AXI_R_LAST13), .O ( S_AXI_INCR_ADDR) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000000000FE)) S_AXI_ARLEN_7_GND_8_o_equal_1_o_7_SW0 ( .I0 ( S_AXI_ARLEN[2]), .I1 ( S_AXI_ARLEN[1]), .I2 ( S_AXI_ARLEN[0]), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N01) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000000001)) S_AXI_ARLEN_7_GND_8_o_equal_1_o_7_Q ( .I0 ( S_AXI_ARLEN[7]), .I1 ( S_AXI_ARLEN[6]), .I2 ( S_AXI_ARLEN[5]), .I3 ( S_AXI_ARLEN[4]), .I4 ( S_AXI_ARLEN[3]), .I5 ( N01), .O ( S_AXI_ARLEN_7_GND_8_o_equal_1_o) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000000007)) Mmux_gaxi_full_sm_outstanding_read_c1_SW0 ( .I0 ( S_AXI_ARVALID), .I1 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I2 ( 1'b0), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N2) ); STATE_LOGIC_v8_2 #( .INIT (64'h0020000002200200)) Mmux_gaxi_full_sm_outstanding_read_c1 ( .I0 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd1_13), .I3 ( present_state_FSM_FFd2_14), .I4 ( gaxi_full_sm_outstanding_read_r_15), .I5 ( N2), .O ( gaxi_full_sm_outstanding_read_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000004555)) Mmux_gaxi_full_sm_ar_ready_c12 ( .I0 ( S_AXI_ARVALID), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( 1'b0), .I5 ( 1'b0), .O ( Mmux_gaxi_full_sm_ar_ready_c11) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000000000EF)) Mmux_S_AXI_R_LAST11_SW0 ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_RREADY), .I2 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N4) ); STATE_LOGIC_v8_2 #( .INIT (64'hFCAAFC0A00AA000A)) Mmux_S_AXI_R_LAST11 ( .I0 ( S_AXI_ARVALID), .I1 ( gaxi_full_sm_outstanding_read_r_15), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd1_13), .I4 ( N4), .I5 ( S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .O ( gaxi_full_sm_r_valid_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000AAAAAA08)) S_AXI_MUX_SEL1 ( .I0 (present_state_FSM_FFd1_13), .I1 (NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 (S_AXI_RREADY), .I3 (present_state_FSM_FFd2_14), .I4 (gaxi_full_sm_outstanding_read_r_15), .I5 (1'b0), .O (S_AXI_MUX_SEL) ); STATE_LOGIC_v8_2 #( .INIT (64'hF3F3F755A2A2A200)) Mmux_S_AXI_RD_EN11 ( .I0 ( present_state_FSM_FFd1_13), .I1 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 ( S_AXI_RREADY), .I3 ( gaxi_full_sm_outstanding_read_r_15), .I4 ( present_state_FSM_FFd2_14), .I5 ( S_AXI_ARVALID), .O ( S_AXI_RD_EN) ); beh_vlog_muxf7_v8_2 present_state_FSM_FFd1_In3 ( .I0 ( N8), .I1 ( N9), .S ( present_state_FSM_FFd1_13), .O ( present_state_FSM_FFd1_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h000000005410F4F0)) present_state_FSM_FFd1_In3_F ( .I0 ( S_AXI_RREADY), .I1 ( present_state_FSM_FFd2_14), .I2 ( S_AXI_ARVALID), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I5 ( 1'b0), .O ( N8) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000072FF7272)) present_state_FSM_FFd1_In3_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( S_AXI_R_LAST_INT), .I2 ( gaxi_full_sm_outstanding_read_r_15), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N9) ); beh_vlog_muxf7_v8_2 Mmux_gaxi_full_sm_ar_ready_c14 ( .I0 ( N10), .I1 ( N11), .S ( present_state_FSM_FFd1_13), .O ( gaxi_full_sm_ar_ready_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000FFFF88A8)) Mmux_gaxi_full_sm_ar_ready_c14_F ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( Mmux_gaxi_full_sm_ar_ready_c11), .I5 ( 1'b0), .O ( N10) ); STATE_LOGIC_v8_2 #( .INIT (64'h000000008D008D8D)) Mmux_gaxi_full_sm_ar_ready_c14_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( S_AXI_R_LAST_INT), .I2 ( gaxi_full_sm_outstanding_read_r_15), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N11) ); beh_vlog_muxf7_v8_2 Mmux_S_AXI_R_LAST1 ( .I0 ( N12), .I1 ( N13), .S ( present_state_FSM_FFd1_13), .O ( NlwRenamedSig_OI_S_AXI_R_LAST) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000088088888)) Mmux_S_AXI_R_LAST1_F ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_ARVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N12) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000E400E4E4)) Mmux_S_AXI_R_LAST1_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( gaxi_full_sm_outstanding_read_r_15), .I2 ( S_AXI_R_LAST_INT), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N13) ); endmodule module blk_mem_axi_write_wrapper_beh_v8_2 # ( // AXI Interface related parameters start here parameter C_INTERFACE_TYPE = 0, // 0: Native Interface; 1: AXI Interface parameter C_AXI_TYPE = 0, // 0: AXI Lite; 1: AXI Full; parameter C_AXI_SLAVE_TYPE = 0, // 0: MEMORY SLAVE; 1: PERIPHERAL SLAVE; parameter C_MEMORY_TYPE = 0, // 0: SP-RAM, 1: SDP-RAM; 2: TDP-RAM; 3: DP-ROM; parameter C_WRITE_DEPTH_A = 0, parameter C_AXI_AWADDR_WIDTH = 32, parameter C_ADDRA_WIDTH = 12, parameter C_AXI_WDATA_WIDTH = 32, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, // AXI OUTSTANDING WRITES parameter C_AXI_OS_WR = 2 ) ( // AXI Global Signals input S_ACLK, input S_ARESETN, // AXI Full/Lite Slave Write Channel (write side) input [C_AXI_ID_WIDTH-1:0] S_AXI_AWID, input [C_AXI_AWADDR_WIDTH-1:0] S_AXI_AWADDR, input [8-1:0] S_AXI_AWLEN, input [2:0] S_AXI_AWSIZE, input [1:0] S_AXI_AWBURST, input S_AXI_AWVALID, output S_AXI_AWREADY, input S_AXI_WVALID, output S_AXI_WREADY, output reg [C_AXI_ID_WIDTH-1:0] S_AXI_BID = 0, output S_AXI_BVALID, input S_AXI_BREADY, // Signals for BMG interface output [C_ADDRA_WIDTH-1:0] S_AXI_AWADDR_OUT, output S_AXI_WR_EN ); localparam FLOP_DELAY = 100; // 100 ps localparam C_RANGE = ((C_AXI_WDATA_WIDTH == 8)?0: ((C_AXI_WDATA_WIDTH==16)?1: ((C_AXI_WDATA_WIDTH==32)?2: ((C_AXI_WDATA_WIDTH==64)?3: ((C_AXI_WDATA_WIDTH==128)?4: ((C_AXI_WDATA_WIDTH==256)?5:0)))))); wire bvalid_c ; reg bready_timeout_c = 0; wire [1:0] bvalid_rd_cnt_c; reg bvalid_r = 0; reg [2:0] bvalid_count_r = 0; reg [((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? C_AXI_AWADDR_WIDTH:C_ADDRA_WIDTH)-1:0] awaddr_reg = 0; reg [1:0] bvalid_wr_cnt_r = 0; reg [1:0] bvalid_rd_cnt_r = 0; wire w_last_c ; wire addr_en_c ; wire incr_addr_c ; wire aw_ready_r ; wire dec_alen_c ; reg bvalid_d1_c = 0; reg [7:0] awlen_cntr_r = 0; reg [7:0] awlen_int = 0; reg [1:0] awburst_int = 0; integer total_bytes = 0; integer wrap_boundary = 0; integer wrap_base_addr = 0; integer num_of_bytes_c = 0; integer num_of_bytes_r = 0; // Array to store BIDs reg [C_AXI_ID_WIDTH-1:0] axi_bid_array[3:0] ; wire S_AXI_BVALID_axi_wr_fsm; //------------------------------------- //AXI WRITE FSM COMPONENT INSTANTIATION //------------------------------------- write_netlist_v8_2 #(.C_AXI_TYPE(C_AXI_TYPE)) axi_wr_fsm ( .S_ACLK(S_ACLK), .S_ARESETN(S_ARESETN), .S_AXI_AWVALID(S_AXI_AWVALID), .aw_ready_r(aw_ready_r), .S_AXI_WVALID(S_AXI_WVALID), .S_AXI_WREADY(S_AXI_WREADY), .S_AXI_BREADY(S_AXI_BREADY), .S_AXI_WR_EN(S_AXI_WR_EN), .w_last_c(w_last_c), .bready_timeout_c(bready_timeout_c), .addr_en_c(addr_en_c), .incr_addr_c(incr_addr_c), .bvalid_c(bvalid_c), .S_AXI_BVALID (S_AXI_BVALID_axi_wr_fsm) ); //Wrap Address boundary calculation always@(*) begin num_of_bytes_c = 2**((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_AWSIZE:0); total_bytes = (num_of_bytes_r)*(awlen_int+1); wrap_base_addr = ((awaddr_reg)/((total_bytes==0)?1:total_bytes))*(total_bytes); wrap_boundary = wrap_base_addr+total_bytes; end //------------------------------------------------------------------------- // BMG address generation //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin awaddr_reg <= 0; num_of_bytes_r <= 0; awburst_int <= 0; end else begin if (addr_en_c == 1'b1) begin awaddr_reg <= #FLOP_DELAY S_AXI_AWADDR ; num_of_bytes_r <= num_of_bytes_c; awburst_int <= ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_AWBURST:2'b01); end else if (incr_addr_c == 1'b1) begin if (awburst_int == 2'b10) begin if(awaddr_reg == (wrap_boundary-num_of_bytes_r)) begin awaddr_reg <= wrap_base_addr; end else begin awaddr_reg <= awaddr_reg + num_of_bytes_r; end end else if (awburst_int == 2'b01 || awburst_int == 2'b11) begin awaddr_reg <= awaddr_reg + num_of_bytes_r; end end end end assign S_AXI_AWADDR_OUT = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? awaddr_reg[C_AXI_AWADDR_WIDTH-1:C_RANGE]:awaddr_reg); //------------------------------------------------------------------------- // AXI wlast generation //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin awlen_cntr_r <= 0; awlen_int <= 0; end else begin if (addr_en_c == 1'b1) begin awlen_int <= #FLOP_DELAY (C_AXI_TYPE == 0?0:S_AXI_AWLEN) ; awlen_cntr_r <= #FLOP_DELAY (C_AXI_TYPE == 0?0:S_AXI_AWLEN) ; end else if (dec_alen_c == 1'b1) begin awlen_cntr_r <= #FLOP_DELAY awlen_cntr_r - 1 ; end end end assign w_last_c = (awlen_cntr_r == 0 && S_AXI_WVALID == 1'b1)?1'b1:1'b0; assign dec_alen_c = (incr_addr_c | w_last_c); //------------------------------------------------------------------------- // Generation of bvalid counter for outstanding transactions //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_count_r <= 0; end else begin // bvalid_count_r generation if (bvalid_c == 1'b1 && bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r ; end else if (bvalid_c == 1'b1) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r + 1 ; end else if (bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1 && bvalid_count_r != 0) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r - 1 ; end end end //------------------------------------------------------------------------- // Generation of bvalid when BID is used //------------------------------------------------------------------------- generate if (C_HAS_AXI_ID == 1) begin:gaxi_bvalid_id_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_r <= 0; bvalid_d1_c <= 0; end else begin // Delay the generation o bvalid_r for generation for BID bvalid_d1_c <= bvalid_c; //external bvalid signal generation if (bvalid_d1_c == 1'b1) begin bvalid_r <= #FLOP_DELAY 1'b1 ; end else if (bvalid_count_r <= 1 && S_AXI_BREADY == 1'b1) begin bvalid_r <= #FLOP_DELAY 0 ; end end end end endgenerate //------------------------------------------------------------------------- // Generation of bvalid when BID is not used //------------------------------------------------------------------------- generate if(C_HAS_AXI_ID == 0) begin:gaxi_bvalid_noid_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_r <= 0; end else begin //external bvalid signal generation if (bvalid_c == 1'b1) begin bvalid_r <= #FLOP_DELAY 1'b1 ; end else if (bvalid_count_r <= 1 && S_AXI_BREADY == 1'b1) begin bvalid_r <= #FLOP_DELAY 0 ; end end end end endgenerate //------------------------------------------------------------------------- // Generation of Bready timeout //------------------------------------------------------------------------- always @(bvalid_count_r) begin // bready_timeout_c generation if(bvalid_count_r == C_AXI_OS_WR-1) begin bready_timeout_c <= 1'b1; end else begin bready_timeout_c <= 1'b0; end end //------------------------------------------------------------------------- // Generation of BID //------------------------------------------------------------------------- generate if(C_HAS_AXI_ID == 1) begin:gaxi_bid_gen always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_wr_cnt_r <= 0; bvalid_rd_cnt_r <= 0; end else begin // STORE AWID IN AN ARRAY if(bvalid_c == 1'b1) begin bvalid_wr_cnt_r <= bvalid_wr_cnt_r + 1; end // generate BID FROM AWID ARRAY bvalid_rd_cnt_r <= #FLOP_DELAY bvalid_rd_cnt_c ; S_AXI_BID <= axi_bid_array[bvalid_rd_cnt_c]; end end assign bvalid_rd_cnt_c = (bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1)?bvalid_rd_cnt_r+1:bvalid_rd_cnt_r; //------------------------------------------------------------------------- // Storing AWID for generation of BID //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if(S_ARESETN == 1'b1) begin axi_bid_array[0] = 0; axi_bid_array[1] = 0; axi_bid_array[2] = 0; axi_bid_array[3] = 0; end else if(aw_ready_r == 1'b1 && S_AXI_AWVALID == 1'b1) begin axi_bid_array[bvalid_wr_cnt_r] <= S_AXI_AWID; end end end endgenerate assign S_AXI_BVALID = bvalid_r; assign S_AXI_AWREADY = aw_ready_r; endmodule module blk_mem_axi_read_wrapper_beh_v8_2 # ( //// AXI Interface related parameters start here parameter C_INTERFACE_TYPE = 0, parameter C_AXI_TYPE = 0, parameter C_AXI_SLAVE_TYPE = 0, parameter C_MEMORY_TYPE = 0, parameter C_WRITE_WIDTH_A = 4, parameter C_WRITE_DEPTH_A = 32, parameter C_ADDRA_WIDTH = 12, parameter C_AXI_PIPELINE_STAGES = 0, parameter C_AXI_ARADDR_WIDTH = 12, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, parameter C_ADDRB_WIDTH = 12 ) ( //// AXI Global Signals input S_ACLK, input S_ARESETN, //// AXI Full/Lite Slave Read (Read side) input [C_AXI_ARADDR_WIDTH-1:0] S_AXI_ARADDR, input [7:0] S_AXI_ARLEN, input [2:0] S_AXI_ARSIZE, input [1:0] S_AXI_ARBURST, input S_AXI_ARVALID, output S_AXI_ARREADY, output S_AXI_RLAST, output S_AXI_RVALID, input S_AXI_RREADY, input [C_AXI_ID_WIDTH-1:0] S_AXI_ARID, output reg [C_AXI_ID_WIDTH-1:0] S_AXI_RID = 0, //// AXI Full/Lite Read Address Signals to BRAM output [C_ADDRB_WIDTH-1:0] S_AXI_ARADDR_OUT, output S_AXI_RD_EN ); localparam FLOP_DELAY = 100; // 100 ps localparam C_RANGE = ((C_WRITE_WIDTH_A == 8)?0: ((C_WRITE_WIDTH_A==16)?1: ((C_WRITE_WIDTH_A==32)?2: ((C_WRITE_WIDTH_A==64)?3: ((C_WRITE_WIDTH_A==128)?4: ((C_WRITE_WIDTH_A==256)?5:0)))))); reg [C_AXI_ID_WIDTH-1:0] ar_id_r=0; wire addr_en_c; wire rd_en_c; wire incr_addr_c; wire single_trans_c; wire dec_alen_c; wire mux_sel_c; wire r_last_c; wire r_last_int_c; wire [C_ADDRB_WIDTH-1 : 0] araddr_out; reg [7:0] arlen_int_r=0; reg [7:0] arlen_cntr=8'h01; reg [1:0] arburst_int_c=0; reg [1:0] arburst_int_r=0; reg [((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? C_AXI_ARADDR_WIDTH:C_ADDRA_WIDTH)-1:0] araddr_reg =0; integer num_of_bytes_c = 0; integer total_bytes = 0; integer num_of_bytes_r = 0; integer wrap_base_addr_r = 0; integer wrap_boundary_r = 0; reg [7:0] arlen_int_c=0; integer total_bytes_c = 0; integer wrap_base_addr_c = 0; integer wrap_boundary_c = 0; assign dec_alen_c = incr_addr_c | r_last_int_c; read_netlist_v8_2 #(.C_AXI_TYPE (1), .C_ADDRB_WIDTH (C_ADDRB_WIDTH)) axi_read_fsm ( .S_AXI_INCR_ADDR(incr_addr_c), .S_AXI_ADDR_EN(addr_en_c), .S_AXI_SINGLE_TRANS(single_trans_c), .S_AXI_MUX_SEL(mux_sel_c), .S_AXI_R_LAST(r_last_c), .S_AXI_R_LAST_INT(r_last_int_c), //// AXI Global Signals .S_ACLK(S_ACLK), .S_ARESETN(S_ARESETN), //// AXI Full/Lite Slave Read (Read side) .S_AXI_ARLEN(S_AXI_ARLEN), .S_AXI_ARVALID(S_AXI_ARVALID), .S_AXI_ARREADY(S_AXI_ARREADY), .S_AXI_RLAST(S_AXI_RLAST), .S_AXI_RVALID(S_AXI_RVALID), .S_AXI_RREADY(S_AXI_RREADY), //// AXI Full/Lite Read Address Signals to BRAM .S_AXI_RD_EN(rd_en_c) ); always@(*) begin num_of_bytes_c = 2**((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARSIZE:0); total_bytes = (num_of_bytes_r)*(arlen_int_r+1); wrap_base_addr_r = ((araddr_reg)/(total_bytes==0?1:total_bytes))*(total_bytes); wrap_boundary_r = wrap_base_addr_r+total_bytes; //////// combinatorial from interface arlen_int_c = (C_AXI_TYPE == 0?0:S_AXI_ARLEN); total_bytes_c = (num_of_bytes_c)*(arlen_int_c+1); wrap_base_addr_c = ((S_AXI_ARADDR)/(total_bytes_c==0?1:total_bytes_c))*(total_bytes_c); wrap_boundary_c = wrap_base_addr_c+total_bytes_c; arburst_int_c = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARBURST:1); end ////------------------------------------------------------------------------- //// BMG address generation ////------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin araddr_reg <= 0; arburst_int_r <= 0; num_of_bytes_r <= 0; end else begin if (incr_addr_c == 1'b1 && addr_en_c == 1'b1 && single_trans_c == 1'b0) begin arburst_int_r <= arburst_int_c; num_of_bytes_r <= num_of_bytes_c; if (arburst_int_c == 2'b10) begin if(S_AXI_ARADDR == (wrap_boundary_c-num_of_bytes_c)) begin araddr_reg <= wrap_base_addr_c; end else begin araddr_reg <= S_AXI_ARADDR + num_of_bytes_c; end end else if (arburst_int_c == 2'b01 || arburst_int_c == 2'b11) begin araddr_reg <= S_AXI_ARADDR + num_of_bytes_c; end end else if (addr_en_c == 1'b1) begin araddr_reg <= S_AXI_ARADDR; num_of_bytes_r <= num_of_bytes_c; arburst_int_r <= arburst_int_c; end else if (incr_addr_c == 1'b1) begin if (arburst_int_r == 2'b10) begin if(araddr_reg == (wrap_boundary_r-num_of_bytes_r)) begin araddr_reg <= wrap_base_addr_r; end else begin araddr_reg <= araddr_reg + num_of_bytes_r; end end else if (arburst_int_r == 2'b01 || arburst_int_r == 2'b11) begin araddr_reg <= araddr_reg + num_of_bytes_r; end end end end assign araddr_out = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?araddr_reg[C_AXI_ARADDR_WIDTH-1:C_RANGE]:araddr_reg); ////----------------------------------------------------------------------- //// Counter to generate r_last_int_c from registered ARLEN - AXI FULL FSM ////----------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin arlen_cntr <= 8'h01; arlen_int_r <= 0; end else begin if (addr_en_c == 1'b1 && dec_alen_c == 1'b1 && single_trans_c == 1'b0) begin arlen_int_r <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; arlen_cntr <= S_AXI_ARLEN - 1'b1; end else if (addr_en_c == 1'b1) begin arlen_int_r <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; arlen_cntr <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; end else if (dec_alen_c == 1'b1) begin arlen_cntr <= arlen_cntr - 1'b1 ; end else begin arlen_cntr <= arlen_cntr; end end end assign r_last_int_c = (arlen_cntr == 0 && S_AXI_RREADY == 1'b1)?1'b1:1'b0; ////------------------------------------------------------------------------ //// AXI FULL FSM //// Mux Selection of ARADDR //// ARADDR is driven out from the read fsm based on the mux_sel_c //// Based on mux_sel either ARADDR is given out or the latched ARADDR is //// given out to BRAM ////------------------------------------------------------------------------ assign S_AXI_ARADDR_OUT = (mux_sel_c == 1'b0)?((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARADDR[C_AXI_ARADDR_WIDTH-1:C_RANGE]:S_AXI_ARADDR):araddr_out; ////------------------------------------------------------------------------ //// Assign output signals - AXI FULL FSM ////------------------------------------------------------------------------ assign S_AXI_RD_EN = rd_en_c; generate if (C_HAS_AXI_ID == 1) begin:gaxi_bvalid_id_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin S_AXI_RID <= 0; ar_id_r <= 0; end else begin if (addr_en_c == 1'b1 && rd_en_c == 1'b1) begin S_AXI_RID <= S_AXI_ARID; ar_id_r <= S_AXI_ARID; end else if (addr_en_c == 1'b1 && rd_en_c == 1'b0) begin ar_id_r <= S_AXI_ARID; end else if (rd_en_c == 1'b1) begin S_AXI_RID <= ar_id_r; end end end end endgenerate endmodule module blk_mem_axi_regs_fwd_v8_2 #(parameter C_DATA_WIDTH = 8 )( input ACLK, input ARESET, input S_VALID, output S_READY, input [C_DATA_WIDTH-1:0] S_PAYLOAD_DATA, output M_VALID, input M_READY, output reg [C_DATA_WIDTH-1:0] M_PAYLOAD_DATA ); reg [C_DATA_WIDTH-1:0] STORAGE_DATA; wire S_READY_I; reg M_VALID_I; reg [1:0] ARESET_D; //assign local signal to its output signal assign S_READY = S_READY_I; assign M_VALID = M_VALID_I; always @(posedge ACLK) begin ARESET_D <= {ARESET_D[0], ARESET}; end //Save payload data whenever we have a transaction on the slave side always @(posedge ACLK or ARESET) begin if (ARESET == 1'b1) begin STORAGE_DATA <= 0; end else begin if(S_VALID == 1'b1 && S_READY_I == 1'b1 ) begin STORAGE_DATA <= S_PAYLOAD_DATA; end end end always @(posedge ACLK) begin M_PAYLOAD_DATA = STORAGE_DATA; end //M_Valid set to high when we have a completed transfer on slave side //Is removed on a M_READY except if we have a new transfer on the slave side always @(posedge ACLK or ARESET_D) begin if (ARESET_D != 2'b00) begin M_VALID_I <= 1'b0; end else begin if (S_VALID == 1'b1) begin //Always set M_VALID_I when slave side is valid M_VALID_I <= 1'b1; end else if (M_READY == 1'b1 ) begin //Clear (or keep) when no slave side is valid but master side is ready M_VALID_I <= 1'b0; end end end //Slave Ready is either when Master side drives M_READY or we have space in our storage data assign S_READY_I = (M_READY || (!M_VALID_I)) && !(|(ARESET_D)); endmodule //***************************************************************************** // Output Register Stage module // // This module builds the output register stages of the memory. This module is // instantiated in the main memory module (BLK_MEM_GEN_v8_2) which is // declared/implemented further down in this file. //***************************************************************************** module BLK_MEM_GEN_v8_2_output_stage #(parameter C_FAMILY = "virtex7", parameter C_XDEVICEFAMILY = "virtex7", parameter C_RST_TYPE = "SYNC", parameter C_HAS_RST = 0, parameter C_RSTRAM = 0, parameter C_RST_PRIORITY = "CE", parameter C_INIT_VAL = "0", parameter C_HAS_EN = 0, parameter C_HAS_REGCE = 0, parameter C_DATA_WIDTH = 32, parameter C_ADDRB_WIDTH = 10, parameter C_HAS_MEM_OUTPUT_REGS = 0, parameter C_USE_SOFTECC = 0, parameter C_USE_ECC = 0, parameter NUM_STAGES = 1, parameter C_EN_ECC_PIPE = 0, parameter FLOP_DELAY = 100 ) ( input CLK, input RST, input EN, input REGCE, input [C_DATA_WIDTH-1:0] DIN_I, output reg [C_DATA_WIDTH-1:0] DOUT, input SBITERR_IN_I, input DBITERR_IN_I, output reg SBITERR, output reg DBITERR, input [C_ADDRB_WIDTH-1:0] RDADDRECC_IN_I, input ECCPIPECE, output reg [C_ADDRB_WIDTH-1:0] RDADDRECC ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following // options are available - "spartan3", "spartan6", // "virtex4", "virtex5", "virtex6" and "virtex6l". // C_RST_TYPE : Type of reset - Synchronous or Asynchronous // C_HAS_RST : Determines the presence of the RST port // C_RSTRAM : Determines if special reset behavior is used // C_RST_PRIORITY : Determines the priority between CE and SR // C_INIT_VAL : Initialization value // C_HAS_EN : Determines the presence of the EN port // C_HAS_REGCE : Determines the presence of the REGCE port // C_DATA_WIDTH : Memory write/read width // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_MEM_OUTPUT_REGS : Designates the use of a register at the output // of the RAM primitive // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // C_USE_ECC : Determines if the ECC feature is used or // not. Only applicable for V5 and V6 // NUM_STAGES : Determines the number of output stages // FLOP_DELAY : Constant delay for register assignments ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLK : Clock to synchronize all read and write operations // RST : Reset input to reset memory outputs to a user-defined // reset state // EN : Enable all read and write operations // REGCE : Register Clock Enable to control each pipeline output // register stages // DIN : Data input to the Output stage. // DOUT : Final Data output // SBITERR_IN : SBITERR input signal to the Output stage. // SBITERR : Final SBITERR Output signal. // DBITERR_IN : DBITERR input signal to the Output stage. // DBITERR : Final DBITERR Output signal. // RDADDRECC_IN : RDADDRECC input signal to the Output stage. // RDADDRECC : Final RDADDRECC Output signal. ////////////////////////////////////////////////////////////////////////// // Fix for CR-509792 localparam REG_STAGES = (NUM_STAGES < 2) ? 1 : NUM_STAGES-1; // Declare the pipeline registers // (includes mem output reg, mux pipeline stages, and mux output reg) reg [C_DATA_WIDTH*REG_STAGES-1:0] out_regs; reg [C_ADDRB_WIDTH*REG_STAGES-1:0] rdaddrecc_regs; reg [REG_STAGES-1:0] sbiterr_regs; reg [REG_STAGES-1:0] dbiterr_regs; reg [C_DATA_WIDTH*8-1:0] init_str = C_INIT_VAL; reg [C_DATA_WIDTH-1:0] init_val ; //********************************************* // Wire off optional inputs based on parameters //********************************************* wire en_i; wire regce_i; wire rst_i; // Internal signals reg [C_DATA_WIDTH-1:0] DIN; reg [C_ADDRB_WIDTH-1:0] RDADDRECC_IN; reg SBITERR_IN; reg DBITERR_IN; // Internal enable for output registers is tied to user EN or '1' depending // on parameters assign en_i = (C_HAS_EN==0 || EN); // Internal register enable for output registers is tied to user REGCE, EN or // '1' depending on parameters // For V4 ECC, REGCE is always 1 // Virtex-4 ECC Not Yet Supported assign regce_i = ((C_HAS_REGCE==1) && REGCE) || ((C_HAS_REGCE==0) && (C_HAS_EN==0 || EN)); //Internal SRR is tied to user RST or '0' depending on parameters assign rst_i = (C_HAS_RST==1) && RST; //**************************************************** // Power on: load up the output registers and latches //**************************************************** initial begin if (!($sscanf(init_str, "%h", init_val))) begin init_val = 0; end DOUT = init_val; RDADDRECC = 0; SBITERR = 1'b0; DBITERR = 1'b0; DIN = {(C_DATA_WIDTH){1'b0}}; RDADDRECC_IN = 0; SBITERR_IN = 0; DBITERR_IN = 0; // This will be one wider than need, but 0 is an error out_regs = {(REG_STAGES+1){init_val}}; rdaddrecc_regs = 0; sbiterr_regs = {(REG_STAGES+1){1'b0}}; dbiterr_regs = {(REG_STAGES+1){1'b0}}; end //*********************************************** // NUM_STAGES = 0 (No output registers. RAM only) //*********************************************** generate if (NUM_STAGES == 0) begin : zero_stages always @* begin DOUT = DIN; RDADDRECC = RDADDRECC_IN; SBITERR = SBITERR_IN; DBITERR = DBITERR_IN; end end endgenerate generate if (C_EN_ECC_PIPE == 0) begin : no_ecc_pipe_reg always @* begin DIN = DIN_I; SBITERR_IN = SBITERR_IN_I; DBITERR_IN = DBITERR_IN_I; RDADDRECC_IN = RDADDRECC_IN_I; end end endgenerate generate if (C_EN_ECC_PIPE == 1) begin : with_ecc_pipe_reg always @(posedge CLK) begin if(ECCPIPECE == 1) begin DIN <= #FLOP_DELAY DIN_I; SBITERR_IN <= #FLOP_DELAY SBITERR_IN_I; DBITERR_IN <= #FLOP_DELAY DBITERR_IN_I; RDADDRECC_IN <= #FLOP_DELAY RDADDRECC_IN_I; end end end endgenerate //*********************************************** // NUM_STAGES = 1 // (Mem Output Reg only or Mux Output Reg only) //*********************************************** // Possible valid combinations: // Note: C_HAS_MUX_OUTPUT_REGS_*=0 when (C_RSTRAM_*=1) // +-----------------------------------------+ // | C_RSTRAM_* | Reset Behavior | // +----------------+------------------------+ // | 0 | Normal Behavior | // +----------------+------------------------+ // | 1 | Special Behavior | // +----------------+------------------------+ // // Normal = REGCE gates reset, as in the case of all families except S3ADSP. // Special = EN gates reset, as in the case of S3ADSP. generate if (NUM_STAGES == 1 && (C_RSTRAM == 0 || (C_RSTRAM == 1 && (C_XDEVICEFAMILY != "spartan3adsp" && C_XDEVICEFAMILY != "aspartan3adsp" )) || C_HAS_MEM_OUTPUT_REGS == 0 || C_HAS_RST == 0)) begin : one_stages_norm always @(posedge CLK) begin if (C_RST_PRIORITY == "CE") begin //REGCE has priority if (regce_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY DIN; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY SBITERR_IN; DBITERR <= #FLOP_DELAY DBITERR_IN; end //Output signal assignments end else begin //RST has priority if (rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY DIN; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY SBITERR_IN; DBITERR <= #FLOP_DELAY DBITERR_IN; end //Output signal assignments end //end Priority conditions end //end RST Type conditions end //end one_stages_norm generate statement endgenerate // Special Reset Behavior for S3ADSP generate if (NUM_STAGES == 1 && C_RSTRAM == 1 && (C_XDEVICEFAMILY =="spartan3adsp" || C_XDEVICEFAMILY =="aspartan3adsp")) begin : one_stage_splbhv always @(posedge CLK) begin if (en_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; end else if (regce_i && !rst_i) begin DOUT <= #FLOP_DELAY DIN; end //Output signal assignments end //end CLK end //end one_stage_splbhv generate statement endgenerate //************************************************************ // NUM_STAGES > 1 // Mem Output Reg + Mux Output Reg // or // Mem Output Reg + Mux Pipeline Stages (>0) + Mux Output Reg // or // Mux Pipeline Stages (>0) + Mux Output Reg //************************************************************* generate if (NUM_STAGES > 1) begin : multi_stage //Asynchronous Reset always @(posedge CLK) begin if (C_RST_PRIORITY == "CE") begin //REGCE has priority if (regce_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY out_regs[C_DATA_WIDTH*(NUM_STAGES-2)+:C_DATA_WIDTH]; RDADDRECC <= #FLOP_DELAY rdaddrecc_regs[C_ADDRB_WIDTH*(NUM_STAGES-2)+:C_ADDRB_WIDTH]; SBITERR <= #FLOP_DELAY sbiterr_regs[NUM_STAGES-2]; DBITERR <= #FLOP_DELAY dbiterr_regs[NUM_STAGES-2]; end //Output signal assignments end else begin //RST has priority if (rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY out_regs[C_DATA_WIDTH*(NUM_STAGES-2)+:C_DATA_WIDTH]; RDADDRECC <= #FLOP_DELAY rdaddrecc_regs[C_ADDRB_WIDTH*(NUM_STAGES-2)+:C_ADDRB_WIDTH]; SBITERR <= #FLOP_DELAY sbiterr_regs[NUM_STAGES-2]; DBITERR <= #FLOP_DELAY dbiterr_regs[NUM_STAGES-2]; end //Output signal assignments end //end Priority conditions // Shift the data through the output stages if (en_i) begin out_regs <= #FLOP_DELAY (out_regs << C_DATA_WIDTH) | DIN; rdaddrecc_regs <= #FLOP_DELAY (rdaddrecc_regs << C_ADDRB_WIDTH) | RDADDRECC_IN; sbiterr_regs <= #FLOP_DELAY (sbiterr_regs << 1) | SBITERR_IN; dbiterr_regs <= #FLOP_DELAY (dbiterr_regs << 1) | DBITERR_IN; end end //end CLK end //end multi_stage generate statement endgenerate endmodule module BLK_MEM_GEN_v8_2_softecc_output_reg_stage #(parameter C_DATA_WIDTH = 32, parameter C_ADDRB_WIDTH = 10, parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0, parameter C_USE_SOFTECC = 0, parameter FLOP_DELAY = 100 ) ( input CLK, input [C_DATA_WIDTH-1:0] DIN, output reg [C_DATA_WIDTH-1:0] DOUT, input SBITERR_IN, input DBITERR_IN, output reg SBITERR, output reg DBITERR, input [C_ADDRB_WIDTH-1:0] RDADDRECC_IN, output reg [C_ADDRB_WIDTH-1:0] RDADDRECC ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_DATA_WIDTH : Memory write/read width // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_SOFTECC_OUTPUT_REGS_B : Designates the use of a register at the output // of the RAM primitive // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // FLOP_DELAY : Constant delay for register assignments ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLK : Clock to synchronize all read and write operations // DIN : Data input to the Output stage. // DOUT : Final Data output // SBITERR_IN : SBITERR input signal to the Output stage. // SBITERR : Final SBITERR Output signal. // DBITERR_IN : DBITERR input signal to the Output stage. // DBITERR : Final DBITERR Output signal. // RDADDRECC_IN : RDADDRECC input signal to the Output stage. // RDADDRECC : Final RDADDRECC Output signal. ////////////////////////////////////////////////////////////////////////// reg [C_DATA_WIDTH-1:0] dout_i = 0; reg sbiterr_i = 0; reg dbiterr_i = 0; reg [C_ADDRB_WIDTH-1:0] rdaddrecc_i = 0; //*********************************************** // NO OUTPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_OUTPUT_REGS_B==0) begin : no_output_stage always @* begin DOUT = DIN; RDADDRECC = RDADDRECC_IN; SBITERR = SBITERR_IN; DBITERR = DBITERR_IN; end end endgenerate //*********************************************** // WITH OUTPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_OUTPUT_REGS_B==1) begin : has_output_stage always @(posedge CLK) begin dout_i <= #FLOP_DELAY DIN; rdaddrecc_i <= #FLOP_DELAY RDADDRECC_IN; sbiterr_i <= #FLOP_DELAY SBITERR_IN; dbiterr_i <= #FLOP_DELAY DBITERR_IN; end always @* begin DOUT = dout_i; RDADDRECC = rdaddrecc_i; SBITERR = sbiterr_i; DBITERR = dbiterr_i; end //end always end //end in_or_out_stage generate statement endgenerate endmodule //***************************************************************************** // Main Memory module // // This module is the top-level behavioral model and this implements the RAM //***************************************************************************** module BLK_MEM_GEN_v8_2_mem_module #(parameter C_CORENAME = "blk_mem_gen_v8_2", parameter C_FAMILY = "virtex7", parameter C_XDEVICEFAMILY = "virtex7", parameter C_MEM_TYPE = 2, parameter C_BYTE_SIZE = 9, parameter C_USE_BRAM_BLOCK = 0, parameter C_ALGORITHM = 1, parameter C_PRIM_TYPE = 3, parameter C_LOAD_INIT_FILE = 0, parameter C_INIT_FILE_NAME = "", parameter C_INIT_FILE = "", parameter C_USE_DEFAULT_DATA = 0, parameter C_DEFAULT_DATA = "0", parameter C_RST_TYPE = "SYNC", parameter C_HAS_RSTA = 0, parameter C_RST_PRIORITY_A = "CE", parameter C_RSTRAM_A = 0, parameter C_INITA_VAL = "0", parameter C_HAS_ENA = 1, parameter C_HAS_REGCEA = 0, parameter C_USE_BYTE_WEA = 0, parameter C_WEA_WIDTH = 1, parameter C_WRITE_MODE_A = "WRITE_FIRST", parameter C_WRITE_WIDTH_A = 32, parameter C_READ_WIDTH_A = 32, parameter C_WRITE_DEPTH_A = 64, parameter C_READ_DEPTH_A = 64, parameter C_ADDRA_WIDTH = 5, parameter C_HAS_RSTB = 0, parameter C_RST_PRIORITY_B = "CE", parameter C_RSTRAM_B = 0, parameter C_INITB_VAL = "", parameter C_HAS_ENB = 1, parameter C_HAS_REGCEB = 0, parameter C_USE_BYTE_WEB = 0, parameter C_WEB_WIDTH = 1, parameter C_WRITE_MODE_B = "WRITE_FIRST", parameter C_WRITE_WIDTH_B = 32, parameter C_READ_WIDTH_B = 32, parameter C_WRITE_DEPTH_B = 64, parameter C_READ_DEPTH_B = 64, parameter C_ADDRB_WIDTH = 5, parameter C_HAS_MEM_OUTPUT_REGS_A = 0, parameter C_HAS_MEM_OUTPUT_REGS_B = 0, parameter C_HAS_MUX_OUTPUT_REGS_A = 0, parameter C_HAS_MUX_OUTPUT_REGS_B = 0, parameter C_HAS_SOFTECC_INPUT_REGS_A = 0, parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0, parameter C_MUX_PIPELINE_STAGES = 0, parameter C_USE_SOFTECC = 0, parameter C_USE_ECC = 0, parameter C_HAS_INJECTERR = 0, parameter C_SIM_COLLISION_CHECK = "NONE", parameter C_COMMON_CLK = 1, parameter FLOP_DELAY = 100, parameter C_DISABLE_WARN_BHV_COLL = 0, parameter C_EN_ECC_PIPE = 0, parameter C_DISABLE_WARN_BHV_RANGE = 0 ) (input CLKA, input RSTA, input ENA, input REGCEA, input [C_WEA_WIDTH-1:0] WEA, input [C_ADDRA_WIDTH-1:0] ADDRA, input [C_WRITE_WIDTH_A-1:0] DINA, output [C_READ_WIDTH_A-1:0] DOUTA, input CLKB, input RSTB, input ENB, input REGCEB, input [C_WEB_WIDTH-1:0] WEB, input [C_ADDRB_WIDTH-1:0] ADDRB, input [C_WRITE_WIDTH_B-1:0] DINB, output [C_READ_WIDTH_B-1:0] DOUTB, input INJECTSBITERR, input INJECTDBITERR, input ECCPIPECE, input SLEEP, output SBITERR, output DBITERR, output [C_ADDRB_WIDTH-1:0] RDADDRECC ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_CORENAME : Instance name of the Block Memory Generator core // C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following // options are available - "spartan3", "spartan6", // "virtex4", "virtex5", "virtex6" and "virtex6l". // C_MEM_TYPE : Designates memory type. // It can be // 0 - Single Port Memory // 1 - Simple Dual Port Memory // 2 - True Dual Port Memory // 3 - Single Port Read Only Memory // 4 - Dual Port Read Only Memory // C_BYTE_SIZE : Size of a byte (8 or 9 bits) // C_ALGORITHM : Designates the algorithm method used // for constructing the memory. // It can be Fixed_Primitives, Minimum_Area or // Low_Power // C_PRIM_TYPE : Designates the user selected primitive used to // construct the memory. // // C_LOAD_INIT_FILE : Designates the use of an initialization file to // initialize memory contents. // C_INIT_FILE_NAME : Memory initialization file name. // C_USE_DEFAULT_DATA : Designates whether to fill remaining // initialization space with default data // C_DEFAULT_DATA : Default value of all memory locations // not initialized by the memory // initialization file. // C_RST_TYPE : Type of reset - Synchronous or Asynchronous // C_HAS_RSTA : Determines the presence of the RSTA port // C_RST_PRIORITY_A : Determines the priority between CE and SR for // Port A. // C_RSTRAM_A : Determines if special reset behavior is used for // Port A // C_INITA_VAL : The initialization value for Port A // C_HAS_ENA : Determines the presence of the ENA port // C_HAS_REGCEA : Determines the presence of the REGCEA port // C_USE_BYTE_WEA : Determines if the Byte Write is used or not. // C_WEA_WIDTH : The width of the WEA port // C_WRITE_MODE_A : Configurable write mode for Port A. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_A : Memory write width for Port A. // C_READ_WIDTH_A : Memory read width for Port A. // C_WRITE_DEPTH_A : Memory write depth for Port A. // C_READ_DEPTH_A : Memory read depth for Port A. // C_ADDRA_WIDTH : Width of the ADDRA input port // C_HAS_RSTB : Determines the presence of the RSTB port // C_RST_PRIORITY_B : Determines the priority between CE and SR for // Port B. // C_RSTRAM_B : Determines if special reset behavior is used for // Port B // C_INITB_VAL : The initialization value for Port B // C_HAS_ENB : Determines the presence of the ENB port // C_HAS_REGCEB : Determines the presence of the REGCEB port // C_USE_BYTE_WEB : Determines if the Byte Write is used or not. // C_WEB_WIDTH : The width of the WEB port // C_WRITE_MODE_B : Configurable write mode for Port B. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_B : Memory write width for Port B. // C_READ_WIDTH_B : Memory read width for Port B. // C_WRITE_DEPTH_B : Memory write depth for Port B. // C_READ_DEPTH_B : Memory read depth for Port B. // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_MEM_OUTPUT_REGS_A : Designates the use of a register at the output // of the RAM primitive for Port A. // C_HAS_MEM_OUTPUT_REGS_B : Designates the use of a register at the output // of the RAM primitive for Port B. // C_HAS_MUX_OUTPUT_REGS_A : Designates the use of a register at the output // of the MUX for Port A. // C_HAS_MUX_OUTPUT_REGS_B : Designates the use of a register at the output // of the MUX for Port B. // C_MUX_PIPELINE_STAGES : Designates the number of pipeline stages in // between the muxes. // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // C_USE_ECC : Determines if the ECC feature is used or // not. Only applicable for V5 and V6 // C_HAS_INJECTERR : Determines if the error injection pins // are present or not. If the ECC feature // is not used, this value is defaulted to // 0, else the following are the allowed // values: // 0 : No INJECTSBITERR or INJECTDBITERR pins // 1 : Only INJECTSBITERR pin exists // 2 : Only INJECTDBITERR pin exists // 3 : Both INJECTSBITERR and INJECTDBITERR pins exist // C_SIM_COLLISION_CHECK : Controls the disabling of Unisim model collision // warnings. It can be "ALL", "NONE", // "Warnings_Only" or "Generate_X_Only". // C_COMMON_CLK : Determins if the core has a single CLK input. // C_DISABLE_WARN_BHV_COLL : Controls the Behavioral Model Collision warnings // C_DISABLE_WARN_BHV_RANGE: Controls the Behavioral Model Out of Range // warnings ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLKA : Clock to synchronize all read and write operations of Port A. // RSTA : Reset input to reset memory outputs to a user-defined // reset state for Port A. // ENA : Enable all read and write operations of Port A. // REGCEA : Register Clock Enable to control each pipeline output // register stages for Port A. // WEA : Write Enable to enable all write operations of Port A. // ADDRA : Address of Port A. // DINA : Data input of Port A. // DOUTA : Data output of Port A. // CLKB : Clock to synchronize all read and write operations of Port B. // RSTB : Reset input to reset memory outputs to a user-defined // reset state for Port B. // ENB : Enable all read and write operations of Port B. // REGCEB : Register Clock Enable to control each pipeline output // register stages for Port B. // WEB : Write Enable to enable all write operations of Port B. // ADDRB : Address of Port B. // DINB : Data input of Port B. // DOUTB : Data output of Port B. // INJECTSBITERR : Single Bit ECC Error Injection Pin. // INJECTDBITERR : Double Bit ECC Error Injection Pin. // SBITERR : Output signal indicating that a Single Bit ECC Error has been // detected and corrected. // DBITERR : Output signal indicating that a Double Bit ECC Error has been // detected. // RDADDRECC : Read Address Output signal indicating address at which an // ECC error has occurred. ////////////////////////////////////////////////////////////////////////// // Note: C_CORENAME parameter is hard-coded to "blk_mem_gen_v8_2" and it is // only used by this module to print warning messages. It is neither passed // down from blk_mem_gen_v8_2_xst.v nor present in the instantiation template // coregen generates //*************************************************************************** // constants for the core behavior //*************************************************************************** // file handles for logging //-------------------------------------------------- localparam ADDRFILE = 32'h8000_0001; //stdout for addr out of range localparam COLLFILE = 32'h8000_0001; //stdout for coll detection localparam ERRFILE = 32'h8000_0001; //stdout for file I/O errors // other constants //-------------------------------------------------- localparam COLL_DELAY = 100; // 100 ps // locally derived parameters to determine memory shape //----------------------------------------------------- localparam CHKBIT_WIDTH = (C_WRITE_WIDTH_A>57 ? 8 : (C_WRITE_WIDTH_A>26 ? 7 : (C_WRITE_WIDTH_A>11 ? 6 : (C_WRITE_WIDTH_A>4 ? 5 : (C_WRITE_WIDTH_A<5 ? 4 :0))))); localparam MIN_WIDTH_A = (C_WRITE_WIDTH_A < C_READ_WIDTH_A) ? C_WRITE_WIDTH_A : C_READ_WIDTH_A; localparam MIN_WIDTH_B = (C_WRITE_WIDTH_B < C_READ_WIDTH_B) ? C_WRITE_WIDTH_B : C_READ_WIDTH_B; localparam MIN_WIDTH = (MIN_WIDTH_A < MIN_WIDTH_B) ? MIN_WIDTH_A : MIN_WIDTH_B; localparam MAX_DEPTH_A = (C_WRITE_DEPTH_A > C_READ_DEPTH_A) ? C_WRITE_DEPTH_A : C_READ_DEPTH_A; localparam MAX_DEPTH_B = (C_WRITE_DEPTH_B > C_READ_DEPTH_B) ? C_WRITE_DEPTH_B : C_READ_DEPTH_B; localparam MAX_DEPTH = (MAX_DEPTH_A > MAX_DEPTH_B) ? MAX_DEPTH_A : MAX_DEPTH_B; // locally derived parameters to assist memory access //---------------------------------------------------- // Calculate the width ratios of each port with respect to the narrowest // port localparam WRITE_WIDTH_RATIO_A = C_WRITE_WIDTH_A/MIN_WIDTH; localparam READ_WIDTH_RATIO_A = C_READ_WIDTH_A/MIN_WIDTH; localparam WRITE_WIDTH_RATIO_B = C_WRITE_WIDTH_B/MIN_WIDTH; localparam READ_WIDTH_RATIO_B = C_READ_WIDTH_B/MIN_WIDTH; // To modify the LSBs of the 'wider' data to the actual // address value //---------------------------------------------------- localparam WRITE_ADDR_A_DIV = C_WRITE_WIDTH_A/MIN_WIDTH_A; localparam READ_ADDR_A_DIV = C_READ_WIDTH_A/MIN_WIDTH_A; localparam WRITE_ADDR_B_DIV = C_WRITE_WIDTH_B/MIN_WIDTH_B; localparam READ_ADDR_B_DIV = C_READ_WIDTH_B/MIN_WIDTH_B; // If byte writes aren't being used, make sure BYTE_SIZE is not // wider than the memory elements to avoid compilation warnings localparam BYTE_SIZE = (C_BYTE_SIZE < MIN_WIDTH) ? C_BYTE_SIZE : MIN_WIDTH; // The memory reg [MIN_WIDTH-1:0] memory [0:MAX_DEPTH-1]; reg [MIN_WIDTH-1:0] temp_mem_array [0:MAX_DEPTH-1]; reg [C_WRITE_WIDTH_A+CHKBIT_WIDTH-1:0] doublebit_error = 3; // ECC error arrays reg sbiterr_arr [0:MAX_DEPTH-1]; reg dbiterr_arr [0:MAX_DEPTH-1]; reg softecc_sbiterr_arr [0:MAX_DEPTH-1]; reg softecc_dbiterr_arr [0:MAX_DEPTH-1]; // Memory output 'latches' reg [C_READ_WIDTH_A-1:0] memory_out_a; reg [C_READ_WIDTH_B-1:0] memory_out_b; // ECC error inputs and outputs from output_stage module: reg sbiterr_in; wire sbiterr_sdp; reg dbiterr_in; wire dbiterr_sdp; wire [C_READ_WIDTH_B-1:0] dout_i; wire dbiterr_i; wire sbiterr_i; wire [C_ADDRB_WIDTH-1:0] rdaddrecc_i; reg [C_ADDRB_WIDTH-1:0] rdaddrecc_in; wire [C_ADDRB_WIDTH-1:0] rdaddrecc_sdp; // Reset values reg [C_READ_WIDTH_A-1:0] inita_val; reg [C_READ_WIDTH_B-1:0] initb_val; // Collision detect reg is_collision; reg is_collision_a, is_collision_delay_a; reg is_collision_b, is_collision_delay_b; // Temporary variables for initialization //--------------------------------------- integer status; integer initfile; integer meminitfile; // data input buffer reg [C_WRITE_WIDTH_A-1:0] mif_data; reg [C_WRITE_WIDTH_A-1:0] mem_data; // string values in hex reg [C_READ_WIDTH_A*8-1:0] inita_str = C_INITA_VAL; reg [C_READ_WIDTH_B*8-1:0] initb_str = C_INITB_VAL; reg [C_WRITE_WIDTH_A*8-1:0] default_data_str = C_DEFAULT_DATA; // initialization filename reg [1023*8-1:0] init_file_str = C_INIT_FILE_NAME; reg [1023*8-1:0] mem_init_file_str = C_INIT_FILE; //Constants used to calculate the effective address widths for each of the //four ports. integer cnt = 1; integer write_addr_a_width, read_addr_a_width; integer write_addr_b_width, read_addr_b_width; localparam C_FAMILY_LOCALPARAM = (C_FAMILY=="virtexu"?"virtex7":(C_FAMILY=="kintexu" ? "virtex7":(C_FAMILY=="virtex7" ? "virtex7" : (C_FAMILY=="virtex7l" ? "virtex7" : (C_FAMILY=="qvirtex7" ? "virtex7" : (C_FAMILY=="qvirtex7l" ? "virtex7" : (C_FAMILY=="kintex7" ? "virtex7" : (C_FAMILY=="kintex7l" ? "virtex7" : (C_FAMILY=="qkintex7" ? "virtex7" : (C_FAMILY=="qkintex7l" ? "virtex7" : (C_FAMILY=="artix7" ? "virtex7" : (C_FAMILY=="artix7l" ? "virtex7" : (C_FAMILY=="qartix7" ? "virtex7" : (C_FAMILY=="qartix7l" ? "virtex7" : (C_FAMILY=="aartix7" ? "virtex7" : (C_FAMILY=="zynq" ? "virtex7" : (C_FAMILY=="azynq" ? "virtex7" : (C_FAMILY=="qzynq" ? "virtex7" : C_FAMILY)))))))))))))))))); // Internal configuration parameters //--------------------------------------------- localparam SINGLE_PORT = (C_MEM_TYPE==0 || C_MEM_TYPE==3); localparam IS_ROM = (C_MEM_TYPE==3 || C_MEM_TYPE==4); localparam HAS_A_WRITE = (!IS_ROM); localparam HAS_B_WRITE = (C_MEM_TYPE==2); localparam HAS_A_READ = (C_MEM_TYPE!=1); localparam HAS_B_READ = (!SINGLE_PORT); localparam HAS_B_PORT = (HAS_B_READ || HAS_B_WRITE); // Calculate the mux pipeline register stages for Port A and Port B //------------------------------------------------------------------ localparam MUX_PIPELINE_STAGES_A = (C_HAS_MUX_OUTPUT_REGS_A) ? C_MUX_PIPELINE_STAGES : 0; localparam MUX_PIPELINE_STAGES_B = (C_HAS_MUX_OUTPUT_REGS_B) ? C_MUX_PIPELINE_STAGES : 0; // Calculate total number of register stages in the core // ----------------------------------------------------- localparam NUM_OUTPUT_STAGES_A = (C_HAS_MEM_OUTPUT_REGS_A+MUX_PIPELINE_STAGES_A+C_HAS_MUX_OUTPUT_REGS_A); localparam NUM_OUTPUT_STAGES_B = (C_HAS_MEM_OUTPUT_REGS_B+MUX_PIPELINE_STAGES_B+C_HAS_MUX_OUTPUT_REGS_B); wire ena_i; wire enb_i; wire reseta_i; wire resetb_i; wire [C_WEA_WIDTH-1:0] wea_i; wire [C_WEB_WIDTH-1:0] web_i; wire rea_i; wire reb_i; wire rsta_outp_stage; wire rstb_outp_stage; // ECC SBITERR/DBITERR Outputs // The ECC Behavior is modeled by the behavioral models only for Virtex-6. // For Virtex-5, these outputs will be tied to 0. assign SBITERR = ((C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?sbiterr_sdp:0; assign DBITERR = ((C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?dbiterr_sdp:0; assign RDADDRECC = (((C_FAMILY_LOCALPARAM == "virtex7") && C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?rdaddrecc_sdp:0; // This effectively wires off optional inputs assign ena_i = (C_HAS_ENA==0) || ENA; assign enb_i = ((C_HAS_ENB==0) || ENB) && HAS_B_PORT; assign wea_i = (HAS_A_WRITE && ena_i) ? WEA : 'b0; assign web_i = (HAS_B_WRITE && enb_i) ? WEB : 'b0; assign rea_i = (HAS_A_READ) ? ena_i : 'b0; assign reb_i = (HAS_B_READ) ? enb_i : 'b0; // These signals reset the memory latches assign reseta_i = ((C_HAS_RSTA==1 && RSTA && NUM_OUTPUT_STAGES_A==0) || (C_HAS_RSTA==1 && RSTA && C_RSTRAM_A==1)); assign resetb_i = ((C_HAS_RSTB==1 && RSTB && NUM_OUTPUT_STAGES_B==0) || (C_HAS_RSTB==1 && RSTB && C_RSTRAM_B==1)); // Tasks to access the memory //--------------------------- //************** // write_a //************** task write_a (input reg [C_ADDRA_WIDTH-1:0] addr, input reg [C_WEA_WIDTH-1:0] byte_en, input reg [C_WRITE_WIDTH_A-1:0] data, input inj_sbiterr, input inj_dbiterr); reg [C_WRITE_WIDTH_A-1:0] current_contents; reg [C_ADDRA_WIDTH-1:0] address; integer i; begin // Shift the address by the ratio address = (addr/WRITE_ADDR_A_DIV); if (address >= C_WRITE_DEPTH_A) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for A Write", C_CORENAME, addr); end // valid address end else begin // Combine w/ byte writes if (C_USE_BYTE_WEA) begin // Get the current memory contents if (WRITE_WIDTH_RATIO_A == 1) begin // Workaround for IUS 5.5 part-select issue current_contents = memory[address]; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_A; i = i + 1) begin current_contents[MIN_WIDTH*i+:MIN_WIDTH] = memory[address*WRITE_WIDTH_RATIO_A + i]; end end // Apply incoming bytes if (C_WEA_WIDTH == 1) begin // Workaround for IUS 5.5 part-select issue if (byte_en[0]) begin current_contents = data; end end else begin for (i = 0; i < C_WEA_WIDTH; i = i + 1) begin if (byte_en[i]) begin current_contents[BYTE_SIZE*i+:BYTE_SIZE] = data[BYTE_SIZE*i+:BYTE_SIZE]; end end end // No byte-writes, overwrite the whole word end else begin current_contents = data; end // Insert double bit errors: if (C_USE_ECC == 1) begin if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin current_contents[0] = !(current_contents[0]); current_contents[1] = !(current_contents[1]); end end // Insert softecc double bit errors: if (C_USE_SOFTECC == 1) begin if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-1:2] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-3:0]; doublebit_error[0] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-1]; doublebit_error[1] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-2]; current_contents = current_contents ^ doublebit_error[C_WRITE_WIDTH_A-1:0]; end end // Write data to memory if (WRITE_WIDTH_RATIO_A == 1) begin // Workaround for IUS 5.5 part-select issue memory[address*WRITE_WIDTH_RATIO_A] = current_contents; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_A; i = i + 1) begin memory[address*WRITE_WIDTH_RATIO_A + i] = current_contents[MIN_WIDTH*i+:MIN_WIDTH]; end end // Store the address at which error is injected: if ((C_FAMILY_LOCALPARAM == "virtex7") && C_USE_ECC == 1) begin if ((C_HAS_INJECTERR == 1 && inj_sbiterr == 1'b1) || (C_HAS_INJECTERR == 3 && inj_sbiterr == 1'b1 && inj_dbiterr != 1'b1)) begin sbiterr_arr[addr] = 1; end else begin sbiterr_arr[addr] = 0; end if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin dbiterr_arr[addr] = 1; end else begin dbiterr_arr[addr] = 0; end end // Store the address at which softecc error is injected: if (C_USE_SOFTECC == 1) begin if ((C_HAS_INJECTERR == 1 && inj_sbiterr == 1'b1) || (C_HAS_INJECTERR == 3 && inj_sbiterr == 1'b1 && inj_dbiterr != 1'b1)) begin softecc_sbiterr_arr[addr] = 1; end else begin softecc_sbiterr_arr[addr] = 0; end if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin softecc_dbiterr_arr[addr] = 1; end else begin softecc_dbiterr_arr[addr] = 0; end end end end endtask //************** // write_b //************** task write_b (input reg [C_ADDRB_WIDTH-1:0] addr, input reg [C_WEB_WIDTH-1:0] byte_en, input reg [C_WRITE_WIDTH_B-1:0] data); reg [C_WRITE_WIDTH_B-1:0] current_contents; reg [C_ADDRB_WIDTH-1:0] address; integer i; begin // Shift the address by the ratio address = (addr/WRITE_ADDR_B_DIV); if (address >= C_WRITE_DEPTH_B) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for B Write", C_CORENAME, addr); end // valid address end else begin // Combine w/ byte writes if (C_USE_BYTE_WEB) begin // Get the current memory contents if (WRITE_WIDTH_RATIO_B == 1) begin // Workaround for IUS 5.5 part-select issue current_contents = memory[address]; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_B; i = i + 1) begin current_contents[MIN_WIDTH*i+:MIN_WIDTH] = memory[address*WRITE_WIDTH_RATIO_B + i]; end end // Apply incoming bytes if (C_WEB_WIDTH == 1) begin // Workaround for IUS 5.5 part-select issue if (byte_en[0]) begin current_contents = data; end end else begin for (i = 0; i < C_WEB_WIDTH; i = i + 1) begin if (byte_en[i]) begin current_contents[BYTE_SIZE*i+:BYTE_SIZE] = data[BYTE_SIZE*i+:BYTE_SIZE]; end end end // No byte-writes, overwrite the whole word end else begin current_contents = data; end // Write data to memory if (WRITE_WIDTH_RATIO_B == 1) begin // Workaround for IUS 5.5 part-select issue memory[address*WRITE_WIDTH_RATIO_B] = current_contents; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_B; i = i + 1) begin memory[address*WRITE_WIDTH_RATIO_B + i] = current_contents[MIN_WIDTH*i+:MIN_WIDTH]; end end end end endtask //************** // read_a //************** task read_a (input reg [C_ADDRA_WIDTH-1:0] addr, input reg reset); reg [C_ADDRA_WIDTH-1:0] address; integer i; begin if (reset) begin memory_out_a <= #FLOP_DELAY inita_val; end else begin // Shift the address by the ratio address = (addr/READ_ADDR_A_DIV); if (address >= C_READ_DEPTH_A) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for A Read", C_CORENAME, addr); end memory_out_a <= #FLOP_DELAY 'bX; // valid address end else begin if (READ_WIDTH_RATIO_A==1) begin memory_out_a <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_A]; end else begin // Increment through the 'partial' words in the memory for (i = 0; i < READ_WIDTH_RATIO_A; i = i + 1) begin memory_out_a[MIN_WIDTH*i+:MIN_WIDTH] <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_A + i]; end end //end READ_WIDTH_RATIO_A==1 loop end //end valid address loop end //end reset-data assignment loops end endtask //************** // read_b //************** task read_b (input reg [C_ADDRB_WIDTH-1:0] addr, input reg reset); reg [C_ADDRB_WIDTH-1:0] address; integer i; begin if (reset) begin memory_out_b <= #FLOP_DELAY initb_val; sbiterr_in <= #FLOP_DELAY 1'b0; dbiterr_in <= #FLOP_DELAY 1'b0; rdaddrecc_in <= #FLOP_DELAY 0; end else begin // Shift the address address = (addr/READ_ADDR_B_DIV); if (address >= C_READ_DEPTH_B) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for B Read", C_CORENAME, addr); end memory_out_b <= #FLOP_DELAY 'bX; sbiterr_in <= #FLOP_DELAY 1'bX; dbiterr_in <= #FLOP_DELAY 1'bX; rdaddrecc_in <= #FLOP_DELAY 'bX; // valid address end else begin if (READ_WIDTH_RATIO_B==1) begin memory_out_b <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_B]; end else begin // Increment through the 'partial' words in the memory for (i = 0; i < READ_WIDTH_RATIO_B; i = i + 1) begin memory_out_b[MIN_WIDTH*i+:MIN_WIDTH] <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_B + i]; end end if ((C_FAMILY_LOCALPARAM == "virtex7") && C_USE_ECC == 1) begin rdaddrecc_in <= #FLOP_DELAY addr; if (sbiterr_arr[addr] == 1) begin sbiterr_in <= #FLOP_DELAY 1'b1; end else begin sbiterr_in <= #FLOP_DELAY 1'b0; end if (dbiterr_arr[addr] == 1) begin dbiterr_in <= #FLOP_DELAY 1'b1; end else begin dbiterr_in <= #FLOP_DELAY 1'b0; end end else if (C_USE_SOFTECC == 1) begin rdaddrecc_in <= #FLOP_DELAY addr; if (softecc_sbiterr_arr[addr] == 1) begin sbiterr_in <= #FLOP_DELAY 1'b1; end else begin sbiterr_in <= #FLOP_DELAY 1'b0; end if (softecc_dbiterr_arr[addr] == 1) begin dbiterr_in <= #FLOP_DELAY 1'b1; end else begin dbiterr_in <= #FLOP_DELAY 1'b0; end end else begin rdaddrecc_in <= #FLOP_DELAY 0; dbiterr_in <= #FLOP_DELAY 1'b0; sbiterr_in <= #FLOP_DELAY 1'b0; end //end SOFTECC Loop end //end Valid address loop end //end reset-data assignment loops end endtask //************** // reset_a //************** task reset_a (input reg reset); begin if (reset) memory_out_a <= #FLOP_DELAY inita_val; end endtask //************** // reset_b //************** task reset_b (input reg reset); begin if (reset) memory_out_b <= #FLOP_DELAY initb_val; end endtask //************** // init_memory //************** task init_memory; integer i, j, addr_step; integer status; reg [C_WRITE_WIDTH_A-1:0] default_data; begin default_data = 0; //Display output message indicating that the behavioral model is being //initialized if (C_USE_DEFAULT_DATA || C_LOAD_INIT_FILE) $display(" Block Memory Generator module loading initial data..."); // Convert the default to hex if (C_USE_DEFAULT_DATA) begin if (default_data_str == "") begin $fdisplay(ERRFILE, "%0s ERROR: C_DEFAULT_DATA is empty!", C_CORENAME); $finish; end else begin status = $sscanf(default_data_str, "%h", default_data); if (status == 0) begin $fdisplay(ERRFILE, {"%0s ERROR: Unsuccessful hexadecimal read", "from C_DEFAULT_DATA: %0s"}, C_CORENAME, C_DEFAULT_DATA); $finish; end end end // Step by WRITE_ADDR_A_DIV through the memory via the // Port A write interface to hit every location once addr_step = WRITE_ADDR_A_DIV; // 'write' to every location with default (or 0) for (i = 0; i < C_WRITE_DEPTH_A*addr_step; i = i + addr_step) begin write_a(i, {C_WEA_WIDTH{1'b1}}, default_data, 1'b0, 1'b0); end // Get specialized data from the MIF file if (C_LOAD_INIT_FILE) begin if (init_file_str == "") begin $fdisplay(ERRFILE, "%0s ERROR: C_INIT_FILE_NAME is empty!", C_CORENAME); $finish; end else begin initfile = $fopen(init_file_str, "r"); if (initfile == 0) begin $fdisplay(ERRFILE, {"%0s, ERROR: Problem opening", "C_INIT_FILE_NAME: %0s!"}, C_CORENAME, init_file_str); $finish; end else begin // loop through the mif file, loading in the data for (i = 0; i < C_WRITE_DEPTH_A*addr_step; i = i + addr_step) begin status = $fscanf(initfile, "%b", mif_data); if (status > 0) begin write_a(i, {C_WEA_WIDTH{1'b1}}, mif_data, 1'b0, 1'b0); end end $fclose(initfile); end //initfile end //init_file_str end //C_LOAD_INIT_FILE if (C_USE_BRAM_BLOCK) begin // Get specialized data from the MIF file if (C_INIT_FILE != "NONE") begin if (mem_init_file_str == "") begin $fdisplay(ERRFILE, "%0s ERROR: C_INIT_FILE is empty!", C_CORENAME); $finish; end else begin meminitfile = $fopen(mem_init_file_str, "r"); if (meminitfile == 0) begin $fdisplay(ERRFILE, {"%0s, ERROR: Problem opening", "C_INIT_FILE: %0s!"}, C_CORENAME, mem_init_file_str); $finish; end else begin // loop through the mif file, loading in the data $readmemh(mem_init_file_str, memory ); for (j = 0; j < MAX_DEPTH-1 ; j = j + 1) begin end $fclose(meminitfile); end //meminitfile end //mem_init_file_str end //C_INIT_FILE end //C_USE_BRAM_BLOCK //Display output message indicating that the behavioral model is done //initializing if (C_USE_DEFAULT_DATA || C_LOAD_INIT_FILE) $display(" Block Memory Generator data initialization complete."); end endtask //************** // log2roundup //************** function integer log2roundup (input integer data_value); integer width; integer cnt; begin width = 0; if (data_value > 1) begin for(cnt=1 ; cnt < data_value ; cnt = cnt * 2) begin width = width + 1; end //loop end //if log2roundup = width; end //log2roundup endfunction //******************* // collision_check //******************* function integer collision_check (input reg [C_ADDRA_WIDTH-1:0] addr_a, input integer iswrite_a, input reg [C_ADDRB_WIDTH-1:0] addr_b, input integer iswrite_b); reg c_aw_bw, c_aw_br, c_ar_bw; integer scaled_addra_to_waddrb_width; integer scaled_addrb_to_waddrb_width; integer scaled_addra_to_waddra_width; integer scaled_addrb_to_waddra_width; integer scaled_addra_to_raddrb_width; integer scaled_addrb_to_raddrb_width; integer scaled_addra_to_raddra_width; integer scaled_addrb_to_raddra_width; begin c_aw_bw = 0; c_aw_br = 0; c_ar_bw = 0; //If write_addr_b_width is smaller, scale both addresses to that width for //comparing write_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to write_addr_b_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to write_addr_b_width. Once both are scaled to //write_addr_b_width, compare. scaled_addra_to_waddrb_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-write_addr_b_width)); scaled_addrb_to_waddrb_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-write_addr_b_width)); //If write_addr_a_width is smaller, scale both addresses to that width for //comparing write_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to write_addr_a_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to write_addr_a_width. Once both are scaled to //write_addr_a_width, compare. scaled_addra_to_waddra_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-write_addr_a_width)); scaled_addrb_to_waddra_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-write_addr_a_width)); //If read_addr_b_width is smaller, scale both addresses to that width for //comparing write_addr_a and read_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to read_addr_b_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to read_addr_b_width. Once both are scaled to //read_addr_b_width, compare. scaled_addra_to_raddrb_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-read_addr_b_width)); scaled_addrb_to_raddrb_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-read_addr_b_width)); //If read_addr_a_width is smaller, scale both addresses to that width for //comparing read_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to read_addr_a_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to read_addr_a_width. Once both are scaled to //read_addr_a_width, compare. scaled_addra_to_raddra_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-read_addr_a_width)); scaled_addrb_to_raddra_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-read_addr_a_width)); //Look for a write-write collision. In order for a write-write //collision to exist, both ports must have a write transaction. if (iswrite_a && iswrite_b) begin if (write_addr_a_width > write_addr_b_width) begin if (scaled_addra_to_waddrb_width == scaled_addrb_to_waddrb_width) begin c_aw_bw = 1; end else begin c_aw_bw = 0; end end else begin if (scaled_addrb_to_waddra_width == scaled_addra_to_waddra_width) begin c_aw_bw = 1; end else begin c_aw_bw = 0; end end //width end //iswrite_a and iswrite_b //If the B port is reading (which means it is enabled - so could be //a TX_WRITE or TX_READ), then check for a write-read collision). //This could happen whether or not a write-write collision exists due //to asymmetric write/read ports. if (iswrite_a) begin if (write_addr_a_width > read_addr_b_width) begin if (scaled_addra_to_raddrb_width == scaled_addrb_to_raddrb_width) begin c_aw_br = 1; end else begin c_aw_br = 0; end end else begin if (scaled_addrb_to_waddra_width == scaled_addra_to_waddra_width) begin c_aw_br = 1; end else begin c_aw_br = 0; end end //width end //iswrite_a //If the A port is reading (which means it is enabled - so could be // a TX_WRITE or TX_READ), then check for a write-read collision). //This could happen whether or not a write-write collision exists due // to asymmetric write/read ports. if (iswrite_b) begin if (read_addr_a_width > write_addr_b_width) begin if (scaled_addra_to_waddrb_width == scaled_addrb_to_waddrb_width) begin c_ar_bw = 1; end else begin c_ar_bw = 0; end end else begin if (scaled_addrb_to_raddra_width == scaled_addra_to_raddra_width) begin c_ar_bw = 1; end else begin c_ar_bw = 0; end end //width end //iswrite_b collision_check = c_aw_bw | c_aw_br | c_ar_bw; end endfunction //******************************* // power on values //******************************* initial begin // Load up the memory init_memory; // Load up the output registers and latches if ($sscanf(inita_str, "%h", inita_val)) begin memory_out_a = inita_val; end else begin memory_out_a = 0; end if ($sscanf(initb_str, "%h", initb_val)) begin memory_out_b = initb_val; end else begin memory_out_b = 0; end sbiterr_in = 1'b0; dbiterr_in = 1'b0; rdaddrecc_in = 0; // Determine the effective address widths for each of the 4 ports write_addr_a_width = C_ADDRA_WIDTH - log2roundup(WRITE_ADDR_A_DIV); read_addr_a_width = C_ADDRA_WIDTH - log2roundup(READ_ADDR_A_DIV); write_addr_b_width = C_ADDRB_WIDTH - log2roundup(WRITE_ADDR_B_DIV); read_addr_b_width = C_ADDRB_WIDTH - log2roundup(READ_ADDR_B_DIV); $display("Block Memory Generator module %m is using a behavioral model for simulation which will not precisely model memory collision behavior."); end //*************************************************************************** // These are the main blocks which schedule read and write operations // Note that the reset priority feature at the latch stage is only supported // for Spartan-6. For other families, the default priority at the latch stage // is "CE" //*************************************************************************** // Synchronous clocks: schedule port operations with respect to // both write operating modes generate if(C_COMMON_CLK && (C_WRITE_MODE_A == "WRITE_FIRST") && (C_WRITE_MODE_B == "WRITE_FIRST")) begin : com_clk_sched_wf_wf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A == "READ_FIRST") && (C_WRITE_MODE_B == "WRITE_FIRST")) begin : com_clk_sched_rf_wf always @(posedge CLKA) begin //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read B if (reb_i) read_b(ADDRB, resetb_i); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A == "WRITE_FIRST") && (C_WRITE_MODE_B == "READ_FIRST")) begin : com_clk_sched_wf_rf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A == "READ_FIRST") && (C_WRITE_MODE_B == "READ_FIRST")) begin : com_clk_sched_rf_rf always @(posedge CLKA) begin //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="WRITE_FIRST") && (C_WRITE_MODE_B == "NO_CHANGE")) begin : com_clk_sched_wf_nc always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="READ_FIRST") && (C_WRITE_MODE_B == "NO_CHANGE")) begin : com_clk_sched_rf_nc always @(posedge CLKA) begin //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B == "WRITE_FIRST")) begin : com_clk_sched_nc_wf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B == "READ_FIRST")) begin : com_clk_sched_nc_rf always @(posedge CLKA) begin //Read B if (reb_i) read_b(ADDRB, resetb_i); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B == "NO_CHANGE")) begin : com_clk_sched_nc_nc always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); end end else if(C_COMMON_CLK) begin: com_clk_sched_default always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end endgenerate // Asynchronous clocks: port operation is independent generate if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "WRITE_FIRST")) begin : async_clk_sched_clka_wf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i) read_a(ADDRA, reseta_i); end end else if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "READ_FIRST")) begin : async_clk_sched_clka_rf always @(posedge CLKA) begin //Read A if (rea_i) read_a(ADDRA, reseta_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); end end else if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "NO_CHANGE")) begin : async_clk_sched_clka_nc always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); end end endgenerate generate if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "WRITE_FIRST")) begin: async_clk_sched_clkb_wf always @(posedge CLKB) begin //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end else if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "READ_FIRST")) begin: async_clk_sched_clkb_rf always @(posedge CLKB) begin //Read B if (reb_i) read_b(ADDRB, resetb_i); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "NO_CHANGE")) begin: async_clk_sched_clkb_nc always @(posedge CLKB) begin //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); end end endgenerate //*************************************************************** // Instantiate the variable depth output register stage module //*************************************************************** // Port A assign rsta_outp_stage = RSTA & (~SLEEP); BLK_MEM_GEN_v8_2_output_stage #(.C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_RST_TYPE ("SYNC"), .C_HAS_RST (C_HAS_RSTA), .C_RSTRAM (C_RSTRAM_A), .C_RST_PRIORITY (C_RST_PRIORITY_A), .C_INIT_VAL (C_INITA_VAL), .C_HAS_EN (C_HAS_ENA), .C_HAS_REGCE (C_HAS_REGCEA), .C_DATA_WIDTH (C_READ_WIDTH_A), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS (C_HAS_MEM_OUTPUT_REGS_A), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .NUM_STAGES (NUM_OUTPUT_STAGES_A), .C_EN_ECC_PIPE (0), .FLOP_DELAY (FLOP_DELAY)) reg_a (.CLK (CLKA), .RST (rsta_outp_stage),//(RSTA), .EN (ENA), .REGCE (REGCEA), .DIN_I (memory_out_a), .DOUT (DOUTA), .SBITERR_IN_I (1'b0), .DBITERR_IN_I (1'b0), .SBITERR (), .DBITERR (), .RDADDRECC_IN_I ({C_ADDRB_WIDTH{1'b0}}), .ECCPIPECE (1'b0), .RDADDRECC () ); assign rstb_outp_stage = RSTB & (~SLEEP); // Port B BLK_MEM_GEN_v8_2_output_stage #(.C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_RST_TYPE ("SYNC"), .C_HAS_RST (C_HAS_RSTB), .C_RSTRAM (C_RSTRAM_B), .C_RST_PRIORITY (C_RST_PRIORITY_B), .C_INIT_VAL (C_INITB_VAL), .C_HAS_EN (C_HAS_ENB), .C_HAS_REGCE (C_HAS_REGCEB), .C_DATA_WIDTH (C_READ_WIDTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS (C_HAS_MEM_OUTPUT_REGS_B), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .NUM_STAGES (NUM_OUTPUT_STAGES_B), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .FLOP_DELAY (FLOP_DELAY)) reg_b (.CLK (CLKB), .RST (rstb_outp_stage),//(RSTB), .EN (ENB), .REGCE (REGCEB), .DIN_I (memory_out_b), .DOUT (dout_i), .SBITERR_IN_I (sbiterr_in), .DBITERR_IN_I (dbiterr_in), .SBITERR (sbiterr_i), .DBITERR (dbiterr_i), .RDADDRECC_IN_I (rdaddrecc_in), .ECCPIPECE (ECCPIPECE), .RDADDRECC (rdaddrecc_i) ); //*************************************************************** // Instantiate the Input and Output register stages //*************************************************************** BLK_MEM_GEN_v8_2_softecc_output_reg_stage #(.C_DATA_WIDTH (C_READ_WIDTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_USE_SOFTECC (C_USE_SOFTECC), .FLOP_DELAY (FLOP_DELAY)) has_softecc_output_reg_stage (.CLK (CLKB), .DIN (dout_i), .DOUT (DOUTB), .SBITERR_IN (sbiterr_i), .DBITERR_IN (dbiterr_i), .SBITERR (sbiterr_sdp), .DBITERR (dbiterr_sdp), .RDADDRECC_IN (rdaddrecc_i), .RDADDRECC (rdaddrecc_sdp) ); //**************************************************** // Synchronous collision checks //**************************************************** // CR 780544 : To make verilog model's collison warnings in consistant with // vhdl model, the non-blocking assignments are replaced with blocking // assignments. generate if (!C_DISABLE_WARN_BHV_COLL && C_COMMON_CLK) begin : sync_coll always @(posedge CLKA) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision = 0; end end else begin is_collision = 0; end // If the write port is in READ_FIRST mode, there is no collision if (C_WRITE_MODE_A=="READ_FIRST" && wea_i && !web_i) begin is_collision = 0; end if (C_WRITE_MODE_B=="READ_FIRST" && web_i && !wea_i) begin is_collision = 0; end // Only flag if one of the accesses is a write if (is_collision && (wea_i || web_i)) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B %0s address: %0h\n", wea_i ? "write" : "read", ADDRA, web_i ? "write" : "read", ADDRB); end end //**************************************************** // Asynchronous collision checks //**************************************************** end else if (!C_DISABLE_WARN_BHV_COLL && !C_COMMON_CLK) begin : async_coll // Delay A and B addresses in order to mimic setup/hold times wire [C_ADDRA_WIDTH-1:0] #COLL_DELAY addra_delay = ADDRA; wire [0:0] #COLL_DELAY wea_delay = wea_i; wire #COLL_DELAY ena_delay = ena_i; wire [C_ADDRB_WIDTH-1:0] #COLL_DELAY addrb_delay = ADDRB; wire [0:0] #COLL_DELAY web_delay = web_i; wire #COLL_DELAY enb_delay = enb_i; // Do the checks w/rt A always @(posedge CLKA) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision_a = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision_a = 0; end end else begin is_collision_a = 0; end if (ena_i && enb_delay) begin if(wea_i || web_delay) begin is_collision_delay_a = collision_check(ADDRA, wea_i, addrb_delay, web_delay); end else begin is_collision_delay_a = 0; end end else begin is_collision_delay_a = 0; end // Only flag if B access is a write if (is_collision_a && web_i) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B write address: %0h\n", wea_i ? "write" : "read", ADDRA, ADDRB); end else if (is_collision_delay_a && web_delay) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B write address: %0h\n", wea_i ? "write" : "read", ADDRA, addrb_delay); end end // Do the checks w/rt B always @(posedge CLKB) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision_b = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision_b = 0; end end else begin is_collision_b = 0; end if (ena_delay && enb_i) begin if (wea_delay || web_i) begin is_collision_delay_b = collision_check(addra_delay, wea_delay, ADDRB, web_i); end else begin is_collision_delay_b = 0; end end else begin is_collision_delay_b = 0; end // Only flag if A access is a write if (is_collision_b && wea_i) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A write address: %0h, B %s address: %0h\n", ADDRA, web_i ? "write" : "read", ADDRB); end else if (is_collision_delay_b && wea_delay) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A write address: %0h, B %s address: %0h\n", addra_delay, web_i ? "write" : "read", ADDRB); end end end endgenerate endmodule //***************************************************************************** // Top module wraps Input register and Memory module // // This module is the top-level behavioral model and this implements the memory // module and the input registers //***************************************************************************** module blk_mem_gen_v8_2 #(parameter C_CORENAME = "blk_mem_gen_v8_2", parameter C_FAMILY = "virtex7", parameter C_XDEVICEFAMILY = "virtex7", parameter C_ELABORATION_DIR = "", parameter C_INTERFACE_TYPE = 0, parameter C_USE_BRAM_BLOCK = 0, parameter C_CTRL_ECC_ALGO = "NONE", parameter C_ENABLE_32BIT_ADDRESS = 0, parameter C_AXI_TYPE = 0, parameter C_AXI_SLAVE_TYPE = 0, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, parameter C_MEM_TYPE = 2, parameter C_BYTE_SIZE = 9, parameter C_ALGORITHM = 1, parameter C_PRIM_TYPE = 3, parameter C_LOAD_INIT_FILE = 0, parameter C_INIT_FILE_NAME = "", parameter C_INIT_FILE = "", parameter C_USE_DEFAULT_DATA = 0, parameter C_DEFAULT_DATA = "0", //parameter C_RST_TYPE = "SYNC", parameter C_HAS_RSTA = 0, parameter C_RST_PRIORITY_A = "CE", parameter C_RSTRAM_A = 0, parameter C_INITA_VAL = "0", parameter C_HAS_ENA = 1, parameter C_HAS_REGCEA = 0, parameter C_USE_BYTE_WEA = 0, parameter C_WEA_WIDTH = 1, parameter C_WRITE_MODE_A = "WRITE_FIRST", parameter C_WRITE_WIDTH_A = 32, parameter C_READ_WIDTH_A = 32, parameter C_WRITE_DEPTH_A = 64, parameter C_READ_DEPTH_A = 64, parameter C_ADDRA_WIDTH = 5, parameter C_HAS_RSTB = 0, parameter C_RST_PRIORITY_B = "CE", parameter C_RSTRAM_B = 0, parameter C_INITB_VAL = "", parameter C_HAS_ENB = 1, parameter C_HAS_REGCEB = 0, parameter C_USE_BYTE_WEB = 0, parameter C_WEB_WIDTH = 1, parameter C_WRITE_MODE_B = "WRITE_FIRST", parameter C_WRITE_WIDTH_B = 32, parameter C_READ_WIDTH_B = 32, parameter C_WRITE_DEPTH_B = 64, parameter C_READ_DEPTH_B = 64, parameter C_ADDRB_WIDTH = 5, parameter C_HAS_MEM_OUTPUT_REGS_A = 0, parameter C_HAS_MEM_OUTPUT_REGS_B = 0, parameter C_HAS_MUX_OUTPUT_REGS_A = 0, parameter C_HAS_MUX_OUTPUT_REGS_B = 0, parameter C_HAS_SOFTECC_INPUT_REGS_A = 0, parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0, parameter C_MUX_PIPELINE_STAGES = 0, parameter C_USE_SOFTECC = 0, parameter C_USE_ECC = 0, parameter C_EN_ECC_PIPE = 0, parameter C_HAS_INJECTERR = 0, parameter C_SIM_COLLISION_CHECK = "NONE", parameter C_COMMON_CLK = 1, parameter C_DISABLE_WARN_BHV_COLL = 0, parameter C_EN_SLEEP_PIN = 0, parameter C_DISABLE_WARN_BHV_RANGE = 0, parameter C_COUNT_36K_BRAM = "", parameter C_COUNT_18K_BRAM = "", parameter C_EST_POWER_SUMMARY = "" ) (input clka, input rsta, input ena, input regcea, input [C_WEA_WIDTH-1:0] wea, input [C_ADDRA_WIDTH-1:0] addra, input [C_WRITE_WIDTH_A-1:0] dina, output [C_READ_WIDTH_A-1:0] douta, input clkb, input rstb, input enb, input regceb, input [C_WEB_WIDTH-1:0] web, input [C_ADDRB_WIDTH-1:0] addrb, input [C_WRITE_WIDTH_B-1:0] dinb, output [C_READ_WIDTH_B-1:0] doutb, input injectsbiterr, input injectdbiterr, output sbiterr, output dbiterr, output [C_ADDRB_WIDTH-1:0] rdaddrecc, input eccpipece, input sleep, //AXI BMG Input and Output Port Declarations //AXI Global Signals input s_aclk, input s_aresetn, //AXI Full/lite slave write (write side) input [C_AXI_ID_WIDTH-1:0] s_axi_awid, input [31:0] s_axi_awaddr, input [7:0] s_axi_awlen, input [2:0] s_axi_awsize, input [1:0] s_axi_awburst, input s_axi_awvalid, output s_axi_awready, input [C_WRITE_WIDTH_A-1:0] s_axi_wdata, input [C_WEA_WIDTH-1:0] s_axi_wstrb, input s_axi_wlast, input s_axi_wvalid, output s_axi_wready, output [C_AXI_ID_WIDTH-1:0] s_axi_bid, output [1:0] s_axi_bresp, output s_axi_bvalid, input s_axi_bready, //AXI Full/lite slave read (write side) input [C_AXI_ID_WIDTH-1:0] s_axi_arid, input [31:0] s_axi_araddr, input [7:0] s_axi_arlen, input [2:0] s_axi_arsize, input [1:0] s_axi_arburst, input s_axi_arvalid, output s_axi_arready, output [C_AXI_ID_WIDTH-1:0] s_axi_rid, output [C_WRITE_WIDTH_B-1:0] s_axi_rdata, output [1:0] s_axi_rresp, output s_axi_rlast, output s_axi_rvalid, input s_axi_rready, //AXI Full/lite sideband signals input s_axi_injectsbiterr, input s_axi_injectdbiterr, output s_axi_sbiterr, output s_axi_dbiterr, output [C_ADDRB_WIDTH-1:0] s_axi_rdaddrecc ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_CORENAME : Instance name of the Block Memory Generator core // C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following // options are available - "spartan3", "spartan6", // "virtex4", "virtex5", "virtex6" and "virtex6l". // C_MEM_TYPE : Designates memory type. // It can be // 0 - Single Port Memory // 1 - Simple Dual Port Memory // 2 - True Dual Port Memory // 3 - Single Port Read Only Memory // 4 - Dual Port Read Only Memory // C_BYTE_SIZE : Size of a byte (8 or 9 bits) // C_ALGORITHM : Designates the algorithm method used // for constructing the memory. // It can be Fixed_Primitives, Minimum_Area or // Low_Power // C_PRIM_TYPE : Designates the user selected primitive used to // construct the memory. // // C_LOAD_INIT_FILE : Designates the use of an initialization file to // initialize memory contents. // C_INIT_FILE_NAME : Memory initialization file name. // C_USE_DEFAULT_DATA : Designates whether to fill remaining // initialization space with default data // C_DEFAULT_DATA : Default value of all memory locations // not initialized by the memory // initialization file. // C_RST_TYPE : Type of reset - Synchronous or Asynchronous // C_HAS_RSTA : Determines the presence of the RSTA port // C_RST_PRIORITY_A : Determines the priority between CE and SR for // Port A. // C_RSTRAM_A : Determines if special reset behavior is used for // Port A // C_INITA_VAL : The initialization value for Port A // C_HAS_ENA : Determines the presence of the ENA port // C_HAS_REGCEA : Determines the presence of the REGCEA port // C_USE_BYTE_WEA : Determines if the Byte Write is used or not. // C_WEA_WIDTH : The width of the WEA port // C_WRITE_MODE_A : Configurable write mode for Port A. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_A : Memory write width for Port A. // C_READ_WIDTH_A : Memory read width for Port A. // C_WRITE_DEPTH_A : Memory write depth for Port A. // C_READ_DEPTH_A : Memory read depth for Port A. // C_ADDRA_WIDTH : Width of the ADDRA input port // C_HAS_RSTB : Determines the presence of the RSTB port // C_RST_PRIORITY_B : Determines the priority between CE and SR for // Port B. // C_RSTRAM_B : Determines if special reset behavior is used for // Port B // C_INITB_VAL : The initialization value for Port B // C_HAS_ENB : Determines the presence of the ENB port // C_HAS_REGCEB : Determines the presence of the REGCEB port // C_USE_BYTE_WEB : Determines if the Byte Write is used or not. // C_WEB_WIDTH : The width of the WEB port // C_WRITE_MODE_B : Configurable write mode for Port B. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_B : Memory write width for Port B. // C_READ_WIDTH_B : Memory read width for Port B. // C_WRITE_DEPTH_B : Memory write depth for Port B. // C_READ_DEPTH_B : Memory read depth for Port B. // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_MEM_OUTPUT_REGS_A : Designates the use of a register at the output // of the RAM primitive for Port A. // C_HAS_MEM_OUTPUT_REGS_B : Designates the use of a register at the output // of the RAM primitive for Port B. // C_HAS_MUX_OUTPUT_REGS_A : Designates the use of a register at the output // of the MUX for Port A. // C_HAS_MUX_OUTPUT_REGS_B : Designates the use of a register at the output // of the MUX for Port B. // C_HAS_SOFTECC_INPUT_REGS_A : // C_HAS_SOFTECC_OUTPUT_REGS_B : // C_MUX_PIPELINE_STAGES : Designates the number of pipeline stages in // between the muxes. // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // C_USE_ECC : Determines if the ECC feature is used or // not. Only applicable for V5 and V6 // C_HAS_INJECTERR : Determines if the error injection pins // are present or not. If the ECC feature // is not used, this value is defaulted to // 0, else the following are the allowed // values: // 0 : No INJECTSBITERR or INJECTDBITERR pins // 1 : Only INJECTSBITERR pin exists // 2 : Only INJECTDBITERR pin exists // 3 : Both INJECTSBITERR and INJECTDBITERR pins exist // C_SIM_COLLISION_CHECK : Controls the disabling of Unisim model collision // warnings. It can be "ALL", "NONE", // "Warnings_Only" or "Generate_X_Only". // C_COMMON_CLK : Determins if the core has a single CLK input. // C_DISABLE_WARN_BHV_COLL : Controls the Behavioral Model Collision warnings // C_DISABLE_WARN_BHV_RANGE: Controls the Behavioral Model Out of Range // warnings ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLKA : Clock to synchronize all read and write operations of Port A. // RSTA : Reset input to reset memory outputs to a user-defined // reset state for Port A. // ENA : Enable all read and write operations of Port A. // REGCEA : Register Clock Enable to control each pipeline output // register stages for Port A. // WEA : Write Enable to enable all write operations of Port A. // ADDRA : Address of Port A. // DINA : Data input of Port A. // DOUTA : Data output of Port A. // CLKB : Clock to synchronize all read and write operations of Port B. // RSTB : Reset input to reset memory outputs to a user-defined // reset state for Port B. // ENB : Enable all read and write operations of Port B. // REGCEB : Register Clock Enable to control each pipeline output // register stages for Port B. // WEB : Write Enable to enable all write operations of Port B. // ADDRB : Address of Port B. // DINB : Data input of Port B. // DOUTB : Data output of Port B. // INJECTSBITERR : Single Bit ECC Error Injection Pin. // INJECTDBITERR : Double Bit ECC Error Injection Pin. // SBITERR : Output signal indicating that a Single Bit ECC Error has been // detected and corrected. // DBITERR : Output signal indicating that a Double Bit ECC Error has been // detected. // RDADDRECC : Read Address Output signal indicating address at which an // ECC error has occurred. ////////////////////////////////////////////////////////////////////////// wire SBITERR; wire DBITERR; wire S_AXI_AWREADY; wire S_AXI_WREADY; wire S_AXI_BVALID; wire S_AXI_ARREADY; wire S_AXI_RLAST; wire S_AXI_RVALID; wire S_AXI_SBITERR; wire S_AXI_DBITERR; wire [C_WEA_WIDTH-1:0] WEA = wea; wire [C_ADDRA_WIDTH-1:0] ADDRA = addra; wire [C_WRITE_WIDTH_A-1:0] DINA = dina; wire [C_READ_WIDTH_A-1:0] DOUTA; wire [C_WEB_WIDTH-1:0] WEB = web; wire [C_ADDRB_WIDTH-1:0] ADDRB = addrb; wire [C_WRITE_WIDTH_B-1:0] DINB = dinb; wire [C_READ_WIDTH_B-1:0] DOUTB; wire [C_ADDRB_WIDTH-1:0] RDADDRECC; wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID = s_axi_awid; wire [31:0] S_AXI_AWADDR = s_axi_awaddr; wire [7:0] S_AXI_AWLEN = s_axi_awlen; wire [2:0] S_AXI_AWSIZE = s_axi_awsize; wire [1:0] S_AXI_AWBURST = s_axi_awburst; wire [C_WRITE_WIDTH_A-1:0] S_AXI_WDATA = s_axi_wdata; wire [C_WEA_WIDTH-1:0] S_AXI_WSTRB = s_axi_wstrb; wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID; wire [1:0] S_AXI_BRESP; wire [C_AXI_ID_WIDTH-1:0] S_AXI_ARID = s_axi_arid; wire [31:0] S_AXI_ARADDR = s_axi_araddr; wire [7:0] S_AXI_ARLEN = s_axi_arlen; wire [2:0] S_AXI_ARSIZE = s_axi_arsize; wire [1:0] S_AXI_ARBURST = s_axi_arburst; wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID; wire [C_WRITE_WIDTH_B-1:0] S_AXI_RDATA; wire [1:0] S_AXI_RRESP; wire [C_ADDRB_WIDTH-1:0] S_AXI_RDADDRECC; // Added to fix the simulation warning #CR731605 wire [C_WEB_WIDTH-1:0] WEB_parameterized = 0; wire ECCPIPECE; wire SLEEP; assign CLKA = clka; assign RSTA = rsta; assign ENA = ena; assign REGCEA = regcea; assign CLKB = clkb; assign RSTB = rstb; assign ENB = enb; assign REGCEB = regceb; assign INJECTSBITERR = injectsbiterr; assign INJECTDBITERR = injectdbiterr; assign ECCPIPECE = eccpipece; assign SLEEP = sleep; assign sbiterr = SBITERR; assign dbiterr = DBITERR; assign S_ACLK = s_aclk; assign S_ARESETN = s_aresetn; assign S_AXI_AWVALID = s_axi_awvalid; assign s_axi_awready = S_AXI_AWREADY; assign S_AXI_WLAST = s_axi_wlast; assign S_AXI_WVALID = s_axi_wvalid; assign s_axi_wready = S_AXI_WREADY; assign s_axi_bvalid = S_AXI_BVALID; assign S_AXI_BREADY = s_axi_bready; assign S_AXI_ARVALID = s_axi_arvalid; assign s_axi_arready = S_AXI_ARREADY; assign s_axi_rlast = S_AXI_RLAST; assign s_axi_rvalid = S_AXI_RVALID; assign S_AXI_RREADY = s_axi_rready; assign S_AXI_INJECTSBITERR = s_axi_injectsbiterr; assign S_AXI_INJECTDBITERR = s_axi_injectdbiterr; assign s_axi_sbiterr = S_AXI_SBITERR; assign s_axi_dbiterr = S_AXI_DBITERR; assign doutb = DOUTB; assign douta = DOUTA; assign rdaddrecc = RDADDRECC; assign s_axi_bid = S_AXI_BID; assign s_axi_bresp = S_AXI_BRESP; assign s_axi_rid = S_AXI_RID; assign s_axi_rdata = S_AXI_RDATA; assign s_axi_rresp = S_AXI_RRESP; assign s_axi_rdaddrecc = S_AXI_RDADDRECC; localparam FLOP_DELAY = 100; // 100 ps reg injectsbiterr_in; reg injectdbiterr_in; reg rsta_in; reg ena_in; reg regcea_in; reg [C_WEA_WIDTH-1:0] wea_in; reg [C_ADDRA_WIDTH-1:0] addra_in; reg [C_WRITE_WIDTH_A-1:0] dina_in; wire [C_ADDRA_WIDTH-1:0] s_axi_awaddr_out_c; wire [C_ADDRB_WIDTH-1:0] s_axi_araddr_out_c; wire s_axi_wr_en_c; wire s_axi_rd_en_c; wire s_aresetn_a_c; wire [7:0] s_axi_arlen_c ; wire [C_AXI_ID_WIDTH-1 : 0] s_axi_rid_c; wire [C_WRITE_WIDTH_B-1 : 0] s_axi_rdata_c; wire [1:0] s_axi_rresp_c; wire s_axi_rlast_c; wire s_axi_rvalid_c; wire s_axi_rready_c; wire regceb_c; localparam C_AXI_PAYLOAD = (C_HAS_MUX_OUTPUT_REGS_B == 1)?C_WRITE_WIDTH_B+C_AXI_ID_WIDTH+3:C_AXI_ID_WIDTH+3; wire [C_AXI_PAYLOAD-1 : 0] s_axi_payload_c; wire [C_AXI_PAYLOAD-1 : 0] m_axi_payload_c; //************** // log2roundup //************** function integer log2roundup (input integer data_value); integer width; integer cnt; begin width = 0; if (data_value > 1) begin for(cnt=1 ; cnt < data_value ; cnt = cnt * 2) begin width = width + 1; end //loop end //if log2roundup = width; end //log2roundup endfunction //************** // log2int //************** function integer log2int (input integer data_value); integer width; integer cnt; begin width = 0; cnt= data_value; for(cnt=data_value ; cnt >1 ; cnt = cnt / 2) begin width = width + 1; end //loop log2int = width; end //log2int endfunction //************************************************************************** // FUNCTION : divroundup // Returns the ceiling value of the division // Data_value - the quantity to be divided, dividend // Divisor - the value to divide the data_value by //************************************************************************** function integer divroundup (input integer data_value,input integer divisor); integer div; begin div = data_value/divisor; if ((data_value % divisor) != 0) begin div = div+1; end //if divroundup = div; end //if endfunction localparam AXI_FULL_MEMORY_SLAVE = ((C_AXI_SLAVE_TYPE == 0 && C_AXI_TYPE == 1)?1:0); localparam C_AXI_ADDR_WIDTH_MSB = C_ADDRA_WIDTH+log2roundup(C_WRITE_WIDTH_A/8); localparam C_AXI_ADDR_WIDTH = C_AXI_ADDR_WIDTH_MSB; //Data Width Number of LSB address bits to be discarded //1 to 16 1 //17 to 32 2 //33 to 64 3 //65 to 128 4 //129 to 256 5 //257 to 512 6 //513 to 1024 7 // The following two constants determine this. localparam LOWER_BOUND_VAL = (log2roundup(divroundup(C_WRITE_WIDTH_A,8) == 0))?0:(log2roundup(divroundup(C_WRITE_WIDTH_A,8))); localparam C_AXI_ADDR_WIDTH_LSB = ((AXI_FULL_MEMORY_SLAVE == 1)?0:LOWER_BOUND_VAL); localparam C_AXI_OS_WR = 2; //*********************************************** // INPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_INPUT_REGS_A==0) begin : no_softecc_input_reg_stage always @* begin injectsbiterr_in = INJECTSBITERR; injectdbiterr_in = INJECTDBITERR; rsta_in = RSTA; ena_in = ENA; regcea_in = REGCEA; wea_in = WEA; addra_in = ADDRA; dina_in = DINA; end //end always end //end no_softecc_input_reg_stage endgenerate generate if (C_HAS_SOFTECC_INPUT_REGS_A==1) begin : has_softecc_input_reg_stage always @(posedge CLKA) begin injectsbiterr_in <= #FLOP_DELAY INJECTSBITERR; injectdbiterr_in <= #FLOP_DELAY INJECTDBITERR; rsta_in <= #FLOP_DELAY RSTA; ena_in <= #FLOP_DELAY ENA; regcea_in <= #FLOP_DELAY REGCEA; wea_in <= #FLOP_DELAY WEA; addra_in <= #FLOP_DELAY ADDRA; dina_in <= #FLOP_DELAY DINA; end //end always end //end input_reg_stages generate statement endgenerate generate if ((C_INTERFACE_TYPE == 0) && (C_ENABLE_32BIT_ADDRESS == 0)) begin : native_mem_module BLK_MEM_GEN_v8_2_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_ALGORITHM (C_ALGORITHM), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (C_HAS_ENA), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (C_USE_BYTE_WEA), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (C_HAS_ENB), .C_HAS_REGCEB (C_HAS_REGCEB), .C_USE_BYTE_WEB (C_USE_BYTE_WEB), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS_A (C_HAS_MEM_OUTPUT_REGS_A), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (C_HAS_MUX_OUTPUT_REGS_A), .C_HAS_MUX_OUTPUT_REGS_B (C_HAS_MUX_OUTPUT_REGS_B), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_2_inst (.CLKA (CLKA), .RSTA (rsta_in), .ENA (ena_in), .REGCEA (regcea_in), .WEA (wea_in), .ADDRA (addra_in), .DINA (dina_in), .DOUTA (DOUTA), .CLKB (CLKB), .RSTB (RSTB), .ENB (ENB), .REGCEB (REGCEB), .WEB (WEB), .ADDRB (ADDRB), .DINB (DINB), .DOUTB (DOUTB), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .ECCPIPECE (ECCPIPECE), .SLEEP (SLEEP), .SBITERR (SBITERR), .DBITERR (DBITERR), .RDADDRECC (RDADDRECC) ); end endgenerate generate if((C_INTERFACE_TYPE == 0) && (C_ENABLE_32BIT_ADDRESS == 1)) begin : native_mem_mapped_module localparam C_ADDRA_WIDTH_ACTUAL = log2roundup(C_WRITE_DEPTH_A); localparam C_ADDRB_WIDTH_ACTUAL = log2roundup(C_WRITE_DEPTH_B); localparam C_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_ACTUAL+log2int(C_WRITE_WIDTH_A/8); localparam C_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_ACTUAL+log2int(C_WRITE_WIDTH_B/8); // localparam C_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_ACTUAL+log2roundup(C_WRITE_WIDTH_A/8); // localparam C_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_ACTUAL+log2roundup(C_WRITE_WIDTH_B/8); localparam C_MEM_MAP_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_MSB; localparam C_MEM_MAP_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_MSB; // Data Width Number of LSB address bits to be discarded // 1 to 16 1 // 17 to 32 2 // 33 to 64 3 // 65 to 128 4 // 129 to 256 5 // 257 to 512 6 // 513 to 1024 7 // The following two constants determine this. localparam MEM_MAP_LOWER_BOUND_VAL_A = (log2int(divroundup(C_WRITE_WIDTH_A,8)==0)) ? 0:(log2int(divroundup(C_WRITE_WIDTH_A,8))); localparam MEM_MAP_LOWER_BOUND_VAL_B = (log2int(divroundup(C_WRITE_WIDTH_A,8)==0)) ? 0:(log2int(divroundup(C_WRITE_WIDTH_A,8))); localparam C_MEM_MAP_ADDRA_WIDTH_LSB = MEM_MAP_LOWER_BOUND_VAL_A; localparam C_MEM_MAP_ADDRB_WIDTH_LSB = MEM_MAP_LOWER_BOUND_VAL_B; wire [C_ADDRB_WIDTH_ACTUAL-1 :0] rdaddrecc_i; wire [C_ADDRB_WIDTH-1:C_MEM_MAP_ADDRB_WIDTH_MSB] msb_zero_i; wire [C_MEM_MAP_ADDRB_WIDTH_LSB-1:0] lsb_zero_i; assign msb_zero_i = 0; assign lsb_zero_i = 0; assign RDADDRECC = {msb_zero_i,rdaddrecc_i,lsb_zero_i}; BLK_MEM_GEN_v8_2_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_ALGORITHM (C_ALGORITHM), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (C_HAS_ENA), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (C_USE_BYTE_WEA), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH_ACTUAL), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (C_HAS_ENB), .C_HAS_REGCEB (C_HAS_REGCEB), .C_USE_BYTE_WEB (C_USE_BYTE_WEB), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH_ACTUAL), .C_HAS_MEM_OUTPUT_REGS_A (C_HAS_MEM_OUTPUT_REGS_A), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (C_HAS_MUX_OUTPUT_REGS_A), .C_HAS_MUX_OUTPUT_REGS_B (C_HAS_MUX_OUTPUT_REGS_B), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_2_inst (.CLKA (CLKA), .RSTA (rsta_in), .ENA (ena_in), .REGCEA (regcea_in), .WEA (wea_in), .ADDRA (addra_in[C_MEM_MAP_ADDRA_WIDTH_MSB-1:C_MEM_MAP_ADDRA_WIDTH_LSB]), .DINA (dina_in), .DOUTA (DOUTA), .CLKB (CLKB), .RSTB (RSTB), .ENB (ENB), .REGCEB (REGCEB), .WEB (WEB), .ADDRB (ADDRB[C_MEM_MAP_ADDRB_WIDTH_MSB-1:C_MEM_MAP_ADDRB_WIDTH_LSB]), .DINB (DINB), .DOUTB (DOUTB), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .ECCPIPECE (ECCPIPECE), .SLEEP (SLEEP), .SBITERR (SBITERR), .DBITERR (DBITERR), .RDADDRECC (rdaddrecc_i) ); end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 0 && C_HAS_MUX_OUTPUT_REGS_B == 0 ) begin : no_regs assign S_AXI_RDATA = s_axi_rdata_c; assign S_AXI_RLAST = s_axi_rlast_c; assign S_AXI_RVALID = s_axi_rvalid_c; assign S_AXI_RID = s_axi_rid_c; assign S_AXI_RRESP = s_axi_rresp_c; assign s_axi_rready_c = S_AXI_RREADY; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 1) begin : has_regceb assign regceb_c = s_axi_rvalid_c && s_axi_rready_c; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 0) begin : no_regceb assign regceb_c = REGCEB; end endgenerate generate if (C_HAS_MUX_OUTPUT_REGS_B == 1) begin : only_core_op_regs assign s_axi_payload_c = {s_axi_rid_c,s_axi_rdata_c,s_axi_rresp_c,s_axi_rlast_c}; assign S_AXI_RID = m_axi_payload_c[C_AXI_PAYLOAD-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH]; assign S_AXI_RDATA = m_axi_payload_c[C_AXI_PAYLOAD-C_AXI_ID_WIDTH-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH-C_WRITE_WIDTH_B]; assign S_AXI_RRESP = m_axi_payload_c[2:1]; assign S_AXI_RLAST = m_axi_payload_c[0]; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 1) begin : only_emb_op_regs assign s_axi_payload_c = {s_axi_rid_c,s_axi_rresp_c,s_axi_rlast_c}; assign S_AXI_RDATA = s_axi_rdata_c; assign S_AXI_RID = m_axi_payload_c[C_AXI_PAYLOAD-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH]; assign S_AXI_RRESP = m_axi_payload_c[2:1]; assign S_AXI_RLAST = m_axi_payload_c[0]; end endgenerate generate if (C_HAS_MUX_OUTPUT_REGS_B == 1 || C_HAS_MEM_OUTPUT_REGS_B == 1) begin : has_regs_fwd blk_mem_axi_regs_fwd_v8_2 #(.C_DATA_WIDTH (C_AXI_PAYLOAD)) axi_regs_inst ( .ACLK (S_ACLK), .ARESET (s_aresetn_a_c), .S_VALID (s_axi_rvalid_c), .S_READY (s_axi_rready_c), .S_PAYLOAD_DATA (s_axi_payload_c), .M_VALID (S_AXI_RVALID), .M_READY (S_AXI_RREADY), .M_PAYLOAD_DATA (m_axi_payload_c) ); end endgenerate generate if (C_INTERFACE_TYPE == 1) begin : axi_mem_module assign s_aresetn_a_c = !S_ARESETN; assign S_AXI_BRESP = 2'b00; assign s_axi_rresp_c = 2'b00; assign s_axi_arlen_c = (C_AXI_TYPE == 1)?S_AXI_ARLEN:8'h0; blk_mem_axi_write_wrapper_beh_v8_2 #(.C_INTERFACE_TYPE (C_INTERFACE_TYPE), .C_AXI_TYPE (C_AXI_TYPE), .C_AXI_SLAVE_TYPE (C_AXI_SLAVE_TYPE), .C_MEMORY_TYPE (C_MEM_TYPE), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_AXI_AWADDR_WIDTH ((AXI_FULL_MEMORY_SLAVE == 1)?C_AXI_ADDR_WIDTH:C_AXI_ADDR_WIDTH-C_AXI_ADDR_WIDTH_LSB), .C_HAS_AXI_ID (C_HAS_AXI_ID), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_AXI_WDATA_WIDTH (C_WRITE_WIDTH_A), .C_AXI_OS_WR (C_AXI_OS_WR)) axi_wr_fsm ( // AXI Global Signals .S_ACLK (S_ACLK), .S_ARESETN (s_aresetn_a_c), // AXI Full/Lite Slave Write interface .S_AXI_AWADDR (S_AXI_AWADDR[C_AXI_ADDR_WIDTH_MSB-1:C_AXI_ADDR_WIDTH_LSB]), .S_AXI_AWLEN (S_AXI_AWLEN), .S_AXI_AWID (S_AXI_AWID), .S_AXI_AWSIZE (S_AXI_AWSIZE), .S_AXI_AWBURST (S_AXI_AWBURST), .S_AXI_AWVALID (S_AXI_AWVALID), .S_AXI_AWREADY (S_AXI_AWREADY), .S_AXI_WVALID (S_AXI_WVALID), .S_AXI_WREADY (S_AXI_WREADY), .S_AXI_BVALID (S_AXI_BVALID), .S_AXI_BREADY (S_AXI_BREADY), .S_AXI_BID (S_AXI_BID), // Signals for BRAM interfac( .S_AXI_AWADDR_OUT (s_axi_awaddr_out_c), .S_AXI_WR_EN (s_axi_wr_en_c) ); blk_mem_axi_read_wrapper_beh_v8_2 #(.C_INTERFACE_TYPE (C_INTERFACE_TYPE), .C_AXI_TYPE (C_AXI_TYPE), .C_AXI_SLAVE_TYPE (C_AXI_SLAVE_TYPE), .C_MEMORY_TYPE (C_MEM_TYPE), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_AXI_PIPELINE_STAGES (1), .C_AXI_ARADDR_WIDTH ((AXI_FULL_MEMORY_SLAVE == 1)?C_AXI_ADDR_WIDTH:C_AXI_ADDR_WIDTH-C_AXI_ADDR_WIDTH_LSB), .C_HAS_AXI_ID (C_HAS_AXI_ID), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_ADDRB_WIDTH (C_ADDRB_WIDTH)) axi_rd_sm( //AXI Global Signals .S_ACLK (S_ACLK), .S_ARESETN (s_aresetn_a_c), //AXI Full/Lite Read Side .S_AXI_ARADDR (S_AXI_ARADDR[C_AXI_ADDR_WIDTH_MSB-1:C_AXI_ADDR_WIDTH_LSB]), .S_AXI_ARLEN (s_axi_arlen_c), .S_AXI_ARSIZE (S_AXI_ARSIZE), .S_AXI_ARBURST (S_AXI_ARBURST), .S_AXI_ARVALID (S_AXI_ARVALID), .S_AXI_ARREADY (S_AXI_ARREADY), .S_AXI_RLAST (s_axi_rlast_c), .S_AXI_RVALID (s_axi_rvalid_c), .S_AXI_RREADY (s_axi_rready_c), .S_AXI_ARID (S_AXI_ARID), .S_AXI_RID (s_axi_rid_c), //AXI Full/Lite Read FSM Outputs .S_AXI_ARADDR_OUT (s_axi_araddr_out_c), .S_AXI_RD_EN (s_axi_rd_en_c) ); BLK_MEM_GEN_v8_2_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_ALGORITHM (C_ALGORITHM), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (1), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (1), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (1), .C_HAS_REGCEB (C_HAS_MEM_OUTPUT_REGS_B), .C_USE_BYTE_WEB (1), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS_A (0), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (0), .C_HAS_MUX_OUTPUT_REGS_B (0), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (0), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_2_inst (.CLKA (S_ACLK), .RSTA (s_aresetn_a_c), .ENA (s_axi_wr_en_c), .REGCEA (regcea_in), .WEA (S_AXI_WSTRB), .ADDRA (s_axi_awaddr_out_c), .DINA (S_AXI_WDATA), .DOUTA (DOUTA), .CLKB (S_ACLK), .RSTB (s_aresetn_a_c), .ENB (s_axi_rd_en_c), .REGCEB (regceb_c), .WEB (WEB_parameterized), .ADDRB (s_axi_araddr_out_c), .DINB (DINB), .DOUTB (s_axi_rdata_c), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .SBITERR (SBITERR), .DBITERR (DBITERR), .ECCPIPECE (1'b0), .SLEEP (1'b0), .RDADDRECC (RDADDRECC) ); end endgenerate endmodule
/****************************************************************************** -- (c) Copyright 2006 - 2013 Xilinx, Inc. All rights reserved. -- -- This file contains confidential and proprietary information -- of Xilinx, Inc. and is protected under U.S. and -- international copyright and other intellectual property -- laws. -- -- DISCLAIMER -- This disclaimer is not a license and does not grant any -- rights to the materials distributed herewith. Except as -- otherwise provided in a valid license issued to you by -- Xilinx, and to the maximum extent permitted by applicable -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and -- (2) Xilinx shall not be liable (whether in contract or tort, -- including negligence, or under any other theory of -- liability) for any loss or damage of any kind or nature -- related to, arising under or in connection with these -- materials, including for any direct, or any indirect, -- special, incidental, or consequential loss or damage -- (including loss of data, profits, goodwill, or any type of -- loss or damage suffered as a result of any action brought -- by a third party) even if such damage or loss was -- reasonably foreseeable or Xilinx had been advised of the -- possibility of the same. -- -- CRITICAL APPLICATIONS -- Xilinx products are not designed or intended to be fail- -- safe, or for use in any application requiring fail-safe -- performance, such as life-support or safety devices or -- systems, Class III medical devices, nuclear facilities, -- applications related to the deployment of airbags, or any -- other applications that could lead to death, personal -- injury, or severe property or environmental damage -- (individually and collectively, "Critical -- Applications"). Customer assumes the sole risk and -- liability of any use of Xilinx products in Critical -- Applications, subject only to applicable laws and -- regulations governing limitations on product liability. -- -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS -- PART OF THIS FILE AT ALL TIMES. -- ***************************************************************************** * * Filename: BLK_MEM_GEN_v8_2.v * * Description: * This file is the Verilog behvarial model for the * Block Memory Generator Core. * ***************************************************************************** * Author: Xilinx * * History: Jan 11, 2006 Initial revision * Jun 11, 2007 Added independent register stages for * Port A and Port B (IP1_Jm/v2.5) * Aug 28, 2007 Added mux pipeline stages feature (IP2_Jm/v2.6) * Mar 13, 2008 Behavioral model optimizations * April 07, 2009 : Added support for Spartan-6 and Virtex-6 * features, including the following: * (i) error injection, detection and/or correction * (ii) reset priority * (iii) special reset behavior * *****************************************************************************/ `timescale 1ps/1ps module STATE_LOGIC_v8_2 (O, I0, I1, I2, I3, I4, I5); parameter INIT = 64'h0000000000000000; input I0, I1, I2, I3, I4, I5; output O; reg O; reg tmp; always @( I5 or I4 or I3 or I2 or I1 or I0 ) begin tmp = I0 ^ I1 ^ I2 ^ I3 ^ I4 ^ I5; if ( tmp == 0 || tmp == 1) O = INIT[{I5, I4, I3, I2, I1, I0}]; end endmodule module beh_vlog_muxf7_v8_2 (O, I0, I1, S); output O; reg O; input I0, I1, S; always @(I0 or I1 or S) if (S) O = I1; else O = I0; endmodule module beh_vlog_ff_clr_v8_2 (Q, C, CLR, D); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, CLR, D; reg Q; initial Q= 1'b0; always @(posedge C ) if (CLR) Q<= 1'b0; else Q<= #FLOP_DELAY D; endmodule module beh_vlog_ff_pre_v8_2 (Q, C, D, PRE); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, D, PRE; reg Q; initial Q= 1'b0; always @(posedge C ) if (PRE) Q <= 1'b1; else Q <= #FLOP_DELAY D; endmodule module beh_vlog_ff_ce_clr_v8_2 (Q, C, CE, CLR, D); parameter INIT = 0; localparam FLOP_DELAY = 100; output Q; input C, CE, CLR, D; reg Q; initial Q= 1'b0; always @(posedge C ) if (CLR) Q <= 1'b0; else if (CE) Q <= #FLOP_DELAY D; endmodule module write_netlist_v8_2 #( parameter C_AXI_TYPE = 0 ) ( S_ACLK, S_ARESETN, S_AXI_AWVALID, S_AXI_WVALID, S_AXI_BREADY, w_last_c, bready_timeout_c, aw_ready_r, S_AXI_WREADY, S_AXI_BVALID, S_AXI_WR_EN, addr_en_c, incr_addr_c, bvalid_c ); input S_ACLK; input S_ARESETN; input S_AXI_AWVALID; input S_AXI_WVALID; input S_AXI_BREADY; input w_last_c; input bready_timeout_c; output aw_ready_r; output S_AXI_WREADY; output S_AXI_BVALID; output S_AXI_WR_EN; output addr_en_c; output incr_addr_c; output bvalid_c; //------------------------------------------------------------------------- //AXI LITE //------------------------------------------------------------------------- generate if (C_AXI_TYPE == 0 ) begin : gbeh_axi_lite_sm wire w_ready_r_7; wire w_ready_c; wire aw_ready_c; wire NlwRenamedSignal_bvalid_c; wire NlwRenamedSignal_incr_addr_c; wire present_state_FSM_FFd3_13; wire present_state_FSM_FFd2_14; wire present_state_FSM_FFd1_15; wire present_state_FSM_FFd4_16; wire present_state_FSM_FFd4_In; wire present_state_FSM_FFd3_In; wire present_state_FSM_FFd2_In; wire present_state_FSM_FFd1_In; wire present_state_FSM_FFd4_In1_21; wire [0:0] Mmux_aw_ready_c ; begin assign S_AXI_WREADY = w_ready_r_7, S_AXI_BVALID = NlwRenamedSignal_incr_addr_c, S_AXI_WR_EN = NlwRenamedSignal_bvalid_c, incr_addr_c = NlwRenamedSignal_incr_addr_c, bvalid_c = NlwRenamedSignal_bvalid_c; assign NlwRenamedSignal_incr_addr_c = 1'b0; beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) aw_ready_r_2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( aw_ready_c), .Q ( aw_ready_r) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) w_ready_r ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( w_ready_c), .Q ( w_ready_r_7) ); beh_vlog_ff_pre_v8_2 #( .INIT (1'b1)) present_state_FSM_FFd4 ( .C ( S_ACLK), .D ( present_state_FSM_FFd4_In), .PRE ( S_ARESETN), .Q ( present_state_FSM_FFd4_16) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd3 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd3_In), .Q ( present_state_FSM_FFd3_13) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_14) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd1_In), .Q ( present_state_FSM_FFd1_15) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000055554440)) present_state_FSM_FFd3_In1 ( .I0 ( S_AXI_WVALID), .I1 ( S_AXI_AWVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd4_16), .I4 ( present_state_FSM_FFd3_13), .I5 (1'b0), .O ( present_state_FSM_FFd3_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000088880800)) present_state_FSM_FFd2_In1 ( .I0 ( S_AXI_AWVALID), .I1 ( S_AXI_WVALID), .I2 ( bready_timeout_c), .I3 ( present_state_FSM_FFd2_14), .I4 ( present_state_FSM_FFd4_16), .I5 (1'b0), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000AAAA2000)) Mmux_addr_en_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd2_14), .I3 ( S_AXI_WVALID), .I4 ( present_state_FSM_FFd4_16), .I5 (1'b0), .O ( addr_en_c) ); STATE_LOGIC_v8_2 #( .INIT (64'hF5F07570F5F05500)) Mmux_w_ready_c_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_13), .I4 ( present_state_FSM_FFd4_16), .I5 ( present_state_FSM_FFd2_14), .O ( w_ready_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h88808880FFFF8880)) present_state_FSM_FFd1_In1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd3_13), .I3 ( present_state_FSM_FFd2_14), .I4 ( present_state_FSM_FFd1_15), .I5 ( S_AXI_BREADY), .O ( present_state_FSM_FFd1_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000000000A8)) Mmux_S_AXI_WR_EN_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd2_14), .I2 ( present_state_FSM_FFd3_13), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( NlwRenamedSignal_bvalid_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h2F0F27072F0F2200)) present_state_FSM_FFd4_In1 ( .I0 ( S_AXI_WVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_13), .I4 ( present_state_FSM_FFd4_16), .I5 ( present_state_FSM_FFd2_14), .O ( present_state_FSM_FFd4_In1_21) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000000000F8)) present_state_FSM_FFd4_In2 ( .I0 ( present_state_FSM_FFd1_15), .I1 ( S_AXI_BREADY), .I2 ( present_state_FSM_FFd4_In1_21), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd4_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h7535753575305500)) Mmux_aw_ready_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( S_AXI_WVALID), .I3 ( present_state_FSM_FFd4_16), .I4 ( present_state_FSM_FFd3_13), .I5 ( present_state_FSM_FFd2_14), .O ( Mmux_aw_ready_c[0]) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000000000F8)) Mmux_aw_ready_c_0_2 ( .I0 ( present_state_FSM_FFd1_15), .I1 ( S_AXI_BREADY), .I2 ( Mmux_aw_ready_c[0]), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( aw_ready_c) ); end end endgenerate //--------------------------------------------------------------------- // AXI FULL //--------------------------------------------------------------------- generate if (C_AXI_TYPE == 1 ) begin : gbeh_axi_full_sm wire w_ready_r_8; wire w_ready_c; wire aw_ready_c; wire NlwRenamedSig_OI_bvalid_c; wire present_state_FSM_FFd1_16; wire present_state_FSM_FFd4_17; wire present_state_FSM_FFd3_18; wire present_state_FSM_FFd2_19; wire present_state_FSM_FFd4_In; wire present_state_FSM_FFd3_In; wire present_state_FSM_FFd2_In; wire present_state_FSM_FFd1_In; wire present_state_FSM_FFd2_In1_24; wire present_state_FSM_FFd4_In1_25; wire N2; wire N4; begin assign S_AXI_WREADY = w_ready_r_8, bvalid_c = NlwRenamedSig_OI_bvalid_c, S_AXI_BVALID = 1'b0; beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) aw_ready_r_2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( aw_ready_c), .Q ( aw_ready_r) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) w_ready_r ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( w_ready_c), .Q ( w_ready_r_8) ); beh_vlog_ff_pre_v8_2 #( .INIT (1'b1)) present_state_FSM_FFd4 ( .C ( S_ACLK), .D ( present_state_FSM_FFd4_In), .PRE ( S_ARESETN), .Q ( present_state_FSM_FFd4_17) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd3 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd3_In), .Q ( present_state_FSM_FFd3_18) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_19) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd1_In), .Q ( present_state_FSM_FFd1_16) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000005540)) present_state_FSM_FFd3_In1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd4_17), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd3_In) ); STATE_LOGIC_v8_2 #( .INIT (64'hBF3FBB33AF0FAA00)) Mmux_aw_ready_c_0_2 ( .I0 ( S_AXI_BREADY), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd1_16), .I4 ( present_state_FSM_FFd4_17), .I5 ( NlwRenamedSig_OI_bvalid_c), .O ( aw_ready_c) ); STATE_LOGIC_v8_2 #( .INIT (64'hAAAAAAAA20000000)) Mmux_addr_en_c_0_1 ( .I0 ( S_AXI_AWVALID), .I1 ( bready_timeout_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( S_AXI_WVALID), .I4 ( w_last_c), .I5 ( present_state_FSM_FFd4_17), .O ( addr_en_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000000000A8)) Mmux_S_AXI_WR_EN_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( present_state_FSM_FFd2_19), .I2 ( present_state_FSM_FFd3_18), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( S_AXI_WR_EN) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000002220)) Mmux_incr_addr_c_0_1 ( .I0 ( S_AXI_WVALID), .I1 ( w_last_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( incr_addr_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000008880)) Mmux_aw_ready_c_0_11 ( .I0 ( S_AXI_WVALID), .I1 ( w_last_c), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( NlwRenamedSig_OI_bvalid_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h000000000000D5C0)) present_state_FSM_FFd2_In1 ( .I0 ( w_last_c), .I1 ( S_AXI_AWVALID), .I2 ( present_state_FSM_FFd4_17), .I3 ( present_state_FSM_FFd3_18), .I4 (1'b0), .I5 (1'b0), .O ( present_state_FSM_FFd2_In1_24) ); STATE_LOGIC_v8_2 #( .INIT (64'hFFFFAAAA08AAAAAA)) present_state_FSM_FFd2_In2 ( .I0 ( present_state_FSM_FFd2_19), .I1 ( S_AXI_AWVALID), .I2 ( bready_timeout_c), .I3 ( w_last_c), .I4 ( S_AXI_WVALID), .I5 ( present_state_FSM_FFd2_In1_24), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h00C0004000C00000)) present_state_FSM_FFd4_In1 ( .I0 ( S_AXI_AWVALID), .I1 ( w_last_c), .I2 ( S_AXI_WVALID), .I3 ( bready_timeout_c), .I4 ( present_state_FSM_FFd3_18), .I5 ( present_state_FSM_FFd2_19), .O ( present_state_FSM_FFd4_In1_25) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000FFFF88F8)) present_state_FSM_FFd4_In2 ( .I0 ( present_state_FSM_FFd1_16), .I1 ( S_AXI_BREADY), .I2 ( present_state_FSM_FFd4_17), .I3 ( S_AXI_AWVALID), .I4 ( present_state_FSM_FFd4_In1_25), .I5 (1'b0), .O ( present_state_FSM_FFd4_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000000007)) Mmux_w_ready_c_0_SW0 ( .I0 ( w_last_c), .I1 ( S_AXI_WVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( N2) ); STATE_LOGIC_v8_2 #( .INIT (64'hFABAFABAFAAAF000)) Mmux_w_ready_c_0_Q ( .I0 ( N2), .I1 ( bready_timeout_c), .I2 ( S_AXI_AWVALID), .I3 ( present_state_FSM_FFd4_17), .I4 ( present_state_FSM_FFd3_18), .I5 ( present_state_FSM_FFd2_19), .O ( w_ready_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000000008)) Mmux_aw_ready_c_0_11_SW0 ( .I0 ( bready_timeout_c), .I1 ( S_AXI_WVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O ( N4) ); STATE_LOGIC_v8_2 #( .INIT (64'h88808880FFFF8880)) present_state_FSM_FFd1_In1 ( .I0 ( w_last_c), .I1 ( N4), .I2 ( present_state_FSM_FFd2_19), .I3 ( present_state_FSM_FFd3_18), .I4 ( present_state_FSM_FFd1_16), .I5 ( S_AXI_BREADY), .O ( present_state_FSM_FFd1_In) ); end end endgenerate endmodule module read_netlist_v8_2 #( parameter C_AXI_TYPE = 1, parameter C_ADDRB_WIDTH = 12 ) ( S_AXI_R_LAST_INT, S_ACLK, S_ARESETN, S_AXI_ARVALID, S_AXI_RREADY,S_AXI_INCR_ADDR,S_AXI_ADDR_EN, S_AXI_SINGLE_TRANS,S_AXI_MUX_SEL, S_AXI_R_LAST, S_AXI_ARREADY, S_AXI_RLAST, S_AXI_RVALID, S_AXI_RD_EN, S_AXI_ARLEN); input S_AXI_R_LAST_INT; input S_ACLK; input S_ARESETN; input S_AXI_ARVALID; input S_AXI_RREADY; output S_AXI_INCR_ADDR; output S_AXI_ADDR_EN; output S_AXI_SINGLE_TRANS; output S_AXI_MUX_SEL; output S_AXI_R_LAST; output S_AXI_ARREADY; output S_AXI_RLAST; output S_AXI_RVALID; output S_AXI_RD_EN; input [7:0] S_AXI_ARLEN; wire present_state_FSM_FFd1_13 ; wire present_state_FSM_FFd2_14 ; wire gaxi_full_sm_outstanding_read_r_15 ; wire gaxi_full_sm_ar_ready_r_16 ; wire gaxi_full_sm_r_last_r_17 ; wire NlwRenamedSig_OI_gaxi_full_sm_r_valid_r ; wire gaxi_full_sm_r_valid_c ; wire S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o ; wire gaxi_full_sm_ar_ready_c ; wire gaxi_full_sm_outstanding_read_c ; wire NlwRenamedSig_OI_S_AXI_R_LAST ; wire S_AXI_ARLEN_7_GND_8_o_equal_1_o ; wire present_state_FSM_FFd2_In ; wire present_state_FSM_FFd1_In ; wire Mmux_S_AXI_R_LAST13 ; wire N01 ; wire N2 ; wire Mmux_gaxi_full_sm_ar_ready_c11 ; wire N4 ; wire N8 ; wire N9 ; wire N10 ; wire N11 ; wire N12 ; wire N13 ; assign S_AXI_R_LAST = NlwRenamedSig_OI_S_AXI_R_LAST, S_AXI_ARREADY = gaxi_full_sm_ar_ready_r_16, S_AXI_RLAST = gaxi_full_sm_r_last_r_17, S_AXI_RVALID = NlwRenamedSig_OI_gaxi_full_sm_r_valid_r; beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) gaxi_full_sm_outstanding_read_r ( .C (S_ACLK), .CLR(S_ARESETN), .D(gaxi_full_sm_outstanding_read_c), .Q(gaxi_full_sm_outstanding_read_r_15) ); beh_vlog_ff_ce_clr_v8_2 #( .INIT (1'b0)) gaxi_full_sm_r_valid_r ( .C (S_ACLK), .CE (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .CLR (S_ARESETN), .D (gaxi_full_sm_r_valid_c), .Q (NlwRenamedSig_OI_gaxi_full_sm_r_valid_r) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) gaxi_full_sm_ar_ready_r ( .C (S_ACLK), .CLR (S_ARESETN), .D (gaxi_full_sm_ar_ready_c), .Q (gaxi_full_sm_ar_ready_r_16) ); beh_vlog_ff_ce_clr_v8_2 #( .INIT(1'b0)) gaxi_full_sm_r_last_r ( .C (S_ACLK), .CE (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .CLR (S_ARESETN), .D (NlwRenamedSig_OI_S_AXI_R_LAST), .Q (gaxi_full_sm_r_last_r_17) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd2 ( .C ( S_ACLK), .CLR ( S_ARESETN), .D ( present_state_FSM_FFd2_In), .Q ( present_state_FSM_FFd2_14) ); beh_vlog_ff_clr_v8_2 #( .INIT (1'b0)) present_state_FSM_FFd1 ( .C (S_ACLK), .CLR (S_ARESETN), .D (present_state_FSM_FFd1_In), .Q (present_state_FSM_FFd1_13) ); STATE_LOGIC_v8_2 #( .INIT (64'h000000000000000B)) S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o1 ( .I0 ( S_AXI_RREADY), .I1 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000000008)) Mmux_S_AXI_SINGLE_TRANS11 ( .I0 (S_AXI_ARVALID), .I1 (S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_SINGLE_TRANS) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000000004)) Mmux_S_AXI_ADDR_EN11 ( .I0 (present_state_FSM_FFd1_13), .I1 (S_AXI_ARVALID), .I2 (1'b0), .I3 (1'b0), .I4 (1'b0), .I5 (1'b0), .O (S_AXI_ADDR_EN) ); STATE_LOGIC_v8_2 #( .INIT (64'hECEE2022EEEE2022)) present_state_FSM_FFd2_In1 ( .I0 ( S_AXI_ARVALID), .I1 ( present_state_FSM_FFd1_13), .I2 ( S_AXI_RREADY), .I3 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I4 ( present_state_FSM_FFd2_14), .I5 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .O ( present_state_FSM_FFd2_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000044440444)) Mmux_S_AXI_R_LAST131 ( .I0 ( present_state_FSM_FFd1_13), .I1 ( S_AXI_ARVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( S_AXI_RREADY), .I5 (1'b0), .O ( Mmux_S_AXI_R_LAST13) ); STATE_LOGIC_v8_2 #( .INIT (64'h4000FFFF40004000)) Mmux_S_AXI_INCR_ADDR11 ( .I0 ( S_AXI_R_LAST_INT), .I1 ( S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd1_13), .I4 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I5 ( Mmux_S_AXI_R_LAST13), .O ( S_AXI_INCR_ADDR) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000000000FE)) S_AXI_ARLEN_7_GND_8_o_equal_1_o_7_SW0 ( .I0 ( S_AXI_ARLEN[2]), .I1 ( S_AXI_ARLEN[1]), .I2 ( S_AXI_ARLEN[0]), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N01) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000000001)) S_AXI_ARLEN_7_GND_8_o_equal_1_o_7_Q ( .I0 ( S_AXI_ARLEN[7]), .I1 ( S_AXI_ARLEN[6]), .I2 ( S_AXI_ARLEN[5]), .I3 ( S_AXI_ARLEN[4]), .I4 ( S_AXI_ARLEN[3]), .I5 ( N01), .O ( S_AXI_ARLEN_7_GND_8_o_equal_1_o) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000000007)) Mmux_gaxi_full_sm_outstanding_read_c1_SW0 ( .I0 ( S_AXI_ARVALID), .I1 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I2 ( 1'b0), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N2) ); STATE_LOGIC_v8_2 #( .INIT (64'h0020000002200200)) Mmux_gaxi_full_sm_outstanding_read_c1 ( .I0 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd1_13), .I3 ( present_state_FSM_FFd2_14), .I4 ( gaxi_full_sm_outstanding_read_r_15), .I5 ( N2), .O ( gaxi_full_sm_outstanding_read_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000000004555)) Mmux_gaxi_full_sm_ar_ready_c12 ( .I0 ( S_AXI_ARVALID), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( 1'b0), .I5 ( 1'b0), .O ( Mmux_gaxi_full_sm_ar_ready_c11) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000000000EF)) Mmux_S_AXI_R_LAST11_SW0 ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_RREADY), .I2 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I3 ( 1'b0), .I4 ( 1'b0), .I5 ( 1'b0), .O ( N4) ); STATE_LOGIC_v8_2 #( .INIT (64'hFCAAFC0A00AA000A)) Mmux_S_AXI_R_LAST11 ( .I0 ( S_AXI_ARVALID), .I1 ( gaxi_full_sm_outstanding_read_r_15), .I2 ( present_state_FSM_FFd2_14), .I3 ( present_state_FSM_FFd1_13), .I4 ( N4), .I5 ( S_AXI_RREADY_gaxi_full_sm_r_valid_r_OR_9_o), .O ( gaxi_full_sm_r_valid_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000AAAAAA08)) S_AXI_MUX_SEL1 ( .I0 (present_state_FSM_FFd1_13), .I1 (NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 (S_AXI_RREADY), .I3 (present_state_FSM_FFd2_14), .I4 (gaxi_full_sm_outstanding_read_r_15), .I5 (1'b0), .O (S_AXI_MUX_SEL) ); STATE_LOGIC_v8_2 #( .INIT (64'hF3F3F755A2A2A200)) Mmux_S_AXI_RD_EN11 ( .I0 ( present_state_FSM_FFd1_13), .I1 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I2 ( S_AXI_RREADY), .I3 ( gaxi_full_sm_outstanding_read_r_15), .I4 ( present_state_FSM_FFd2_14), .I5 ( S_AXI_ARVALID), .O ( S_AXI_RD_EN) ); beh_vlog_muxf7_v8_2 present_state_FSM_FFd1_In3 ( .I0 ( N8), .I1 ( N9), .S ( present_state_FSM_FFd1_13), .O ( present_state_FSM_FFd1_In) ); STATE_LOGIC_v8_2 #( .INIT (64'h000000005410F4F0)) present_state_FSM_FFd1_In3_F ( .I0 ( S_AXI_RREADY), .I1 ( present_state_FSM_FFd2_14), .I2 ( S_AXI_ARVALID), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I5 ( 1'b0), .O ( N8) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000072FF7272)) present_state_FSM_FFd1_In3_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( S_AXI_R_LAST_INT), .I2 ( gaxi_full_sm_outstanding_read_r_15), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N9) ); beh_vlog_muxf7_v8_2 Mmux_gaxi_full_sm_ar_ready_c14 ( .I0 ( N10), .I1 ( N11), .S ( present_state_FSM_FFd1_13), .O ( gaxi_full_sm_ar_ready_c) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000FFFF88A8)) Mmux_gaxi_full_sm_ar_ready_c14_F ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_RREADY), .I2 ( present_state_FSM_FFd2_14), .I3 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I4 ( Mmux_gaxi_full_sm_ar_ready_c11), .I5 ( 1'b0), .O ( N10) ); STATE_LOGIC_v8_2 #( .INIT (64'h000000008D008D8D)) Mmux_gaxi_full_sm_ar_ready_c14_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( S_AXI_R_LAST_INT), .I2 ( gaxi_full_sm_outstanding_read_r_15), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N11) ); beh_vlog_muxf7_v8_2 Mmux_S_AXI_R_LAST1 ( .I0 ( N12), .I1 ( N13), .S ( present_state_FSM_FFd1_13), .O ( NlwRenamedSig_OI_S_AXI_R_LAST) ); STATE_LOGIC_v8_2 #( .INIT (64'h0000000088088888)) Mmux_S_AXI_R_LAST1_F ( .I0 ( S_AXI_ARLEN_7_GND_8_o_equal_1_o), .I1 ( S_AXI_ARVALID), .I2 ( present_state_FSM_FFd2_14), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N12) ); STATE_LOGIC_v8_2 #( .INIT (64'h00000000E400E4E4)) Mmux_S_AXI_R_LAST1_G ( .I0 ( present_state_FSM_FFd2_14), .I1 ( gaxi_full_sm_outstanding_read_r_15), .I2 ( S_AXI_R_LAST_INT), .I3 ( S_AXI_RREADY), .I4 ( NlwRenamedSig_OI_gaxi_full_sm_r_valid_r), .I5 ( 1'b0), .O ( N13) ); endmodule module blk_mem_axi_write_wrapper_beh_v8_2 # ( // AXI Interface related parameters start here parameter C_INTERFACE_TYPE = 0, // 0: Native Interface; 1: AXI Interface parameter C_AXI_TYPE = 0, // 0: AXI Lite; 1: AXI Full; parameter C_AXI_SLAVE_TYPE = 0, // 0: MEMORY SLAVE; 1: PERIPHERAL SLAVE; parameter C_MEMORY_TYPE = 0, // 0: SP-RAM, 1: SDP-RAM; 2: TDP-RAM; 3: DP-ROM; parameter C_WRITE_DEPTH_A = 0, parameter C_AXI_AWADDR_WIDTH = 32, parameter C_ADDRA_WIDTH = 12, parameter C_AXI_WDATA_WIDTH = 32, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, // AXI OUTSTANDING WRITES parameter C_AXI_OS_WR = 2 ) ( // AXI Global Signals input S_ACLK, input S_ARESETN, // AXI Full/Lite Slave Write Channel (write side) input [C_AXI_ID_WIDTH-1:0] S_AXI_AWID, input [C_AXI_AWADDR_WIDTH-1:0] S_AXI_AWADDR, input [8-1:0] S_AXI_AWLEN, input [2:0] S_AXI_AWSIZE, input [1:0] S_AXI_AWBURST, input S_AXI_AWVALID, output S_AXI_AWREADY, input S_AXI_WVALID, output S_AXI_WREADY, output reg [C_AXI_ID_WIDTH-1:0] S_AXI_BID = 0, output S_AXI_BVALID, input S_AXI_BREADY, // Signals for BMG interface output [C_ADDRA_WIDTH-1:0] S_AXI_AWADDR_OUT, output S_AXI_WR_EN ); localparam FLOP_DELAY = 100; // 100 ps localparam C_RANGE = ((C_AXI_WDATA_WIDTH == 8)?0: ((C_AXI_WDATA_WIDTH==16)?1: ((C_AXI_WDATA_WIDTH==32)?2: ((C_AXI_WDATA_WIDTH==64)?3: ((C_AXI_WDATA_WIDTH==128)?4: ((C_AXI_WDATA_WIDTH==256)?5:0)))))); wire bvalid_c ; reg bready_timeout_c = 0; wire [1:0] bvalid_rd_cnt_c; reg bvalid_r = 0; reg [2:0] bvalid_count_r = 0; reg [((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? C_AXI_AWADDR_WIDTH:C_ADDRA_WIDTH)-1:0] awaddr_reg = 0; reg [1:0] bvalid_wr_cnt_r = 0; reg [1:0] bvalid_rd_cnt_r = 0; wire w_last_c ; wire addr_en_c ; wire incr_addr_c ; wire aw_ready_r ; wire dec_alen_c ; reg bvalid_d1_c = 0; reg [7:0] awlen_cntr_r = 0; reg [7:0] awlen_int = 0; reg [1:0] awburst_int = 0; integer total_bytes = 0; integer wrap_boundary = 0; integer wrap_base_addr = 0; integer num_of_bytes_c = 0; integer num_of_bytes_r = 0; // Array to store BIDs reg [C_AXI_ID_WIDTH-1:0] axi_bid_array[3:0] ; wire S_AXI_BVALID_axi_wr_fsm; //------------------------------------- //AXI WRITE FSM COMPONENT INSTANTIATION //------------------------------------- write_netlist_v8_2 #(.C_AXI_TYPE(C_AXI_TYPE)) axi_wr_fsm ( .S_ACLK(S_ACLK), .S_ARESETN(S_ARESETN), .S_AXI_AWVALID(S_AXI_AWVALID), .aw_ready_r(aw_ready_r), .S_AXI_WVALID(S_AXI_WVALID), .S_AXI_WREADY(S_AXI_WREADY), .S_AXI_BREADY(S_AXI_BREADY), .S_AXI_WR_EN(S_AXI_WR_EN), .w_last_c(w_last_c), .bready_timeout_c(bready_timeout_c), .addr_en_c(addr_en_c), .incr_addr_c(incr_addr_c), .bvalid_c(bvalid_c), .S_AXI_BVALID (S_AXI_BVALID_axi_wr_fsm) ); //Wrap Address boundary calculation always@(*) begin num_of_bytes_c = 2**((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_AWSIZE:0); total_bytes = (num_of_bytes_r)*(awlen_int+1); wrap_base_addr = ((awaddr_reg)/((total_bytes==0)?1:total_bytes))*(total_bytes); wrap_boundary = wrap_base_addr+total_bytes; end //------------------------------------------------------------------------- // BMG address generation //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin awaddr_reg <= 0; num_of_bytes_r <= 0; awburst_int <= 0; end else begin if (addr_en_c == 1'b1) begin awaddr_reg <= #FLOP_DELAY S_AXI_AWADDR ; num_of_bytes_r <= num_of_bytes_c; awburst_int <= ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_AWBURST:2'b01); end else if (incr_addr_c == 1'b1) begin if (awburst_int == 2'b10) begin if(awaddr_reg == (wrap_boundary-num_of_bytes_r)) begin awaddr_reg <= wrap_base_addr; end else begin awaddr_reg <= awaddr_reg + num_of_bytes_r; end end else if (awburst_int == 2'b01 || awburst_int == 2'b11) begin awaddr_reg <= awaddr_reg + num_of_bytes_r; end end end end assign S_AXI_AWADDR_OUT = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? awaddr_reg[C_AXI_AWADDR_WIDTH-1:C_RANGE]:awaddr_reg); //------------------------------------------------------------------------- // AXI wlast generation //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin awlen_cntr_r <= 0; awlen_int <= 0; end else begin if (addr_en_c == 1'b1) begin awlen_int <= #FLOP_DELAY (C_AXI_TYPE == 0?0:S_AXI_AWLEN) ; awlen_cntr_r <= #FLOP_DELAY (C_AXI_TYPE == 0?0:S_AXI_AWLEN) ; end else if (dec_alen_c == 1'b1) begin awlen_cntr_r <= #FLOP_DELAY awlen_cntr_r - 1 ; end end end assign w_last_c = (awlen_cntr_r == 0 && S_AXI_WVALID == 1'b1)?1'b1:1'b0; assign dec_alen_c = (incr_addr_c | w_last_c); //------------------------------------------------------------------------- // Generation of bvalid counter for outstanding transactions //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_count_r <= 0; end else begin // bvalid_count_r generation if (bvalid_c == 1'b1 && bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r ; end else if (bvalid_c == 1'b1) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r + 1 ; end else if (bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1 && bvalid_count_r != 0) begin bvalid_count_r <= #FLOP_DELAY bvalid_count_r - 1 ; end end end //------------------------------------------------------------------------- // Generation of bvalid when BID is used //------------------------------------------------------------------------- generate if (C_HAS_AXI_ID == 1) begin:gaxi_bvalid_id_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_r <= 0; bvalid_d1_c <= 0; end else begin // Delay the generation o bvalid_r for generation for BID bvalid_d1_c <= bvalid_c; //external bvalid signal generation if (bvalid_d1_c == 1'b1) begin bvalid_r <= #FLOP_DELAY 1'b1 ; end else if (bvalid_count_r <= 1 && S_AXI_BREADY == 1'b1) begin bvalid_r <= #FLOP_DELAY 0 ; end end end end endgenerate //------------------------------------------------------------------------- // Generation of bvalid when BID is not used //------------------------------------------------------------------------- generate if(C_HAS_AXI_ID == 0) begin:gaxi_bvalid_noid_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_r <= 0; end else begin //external bvalid signal generation if (bvalid_c == 1'b1) begin bvalid_r <= #FLOP_DELAY 1'b1 ; end else if (bvalid_count_r <= 1 && S_AXI_BREADY == 1'b1) begin bvalid_r <= #FLOP_DELAY 0 ; end end end end endgenerate //------------------------------------------------------------------------- // Generation of Bready timeout //------------------------------------------------------------------------- always @(bvalid_count_r) begin // bready_timeout_c generation if(bvalid_count_r == C_AXI_OS_WR-1) begin bready_timeout_c <= 1'b1; end else begin bready_timeout_c <= 1'b0; end end //------------------------------------------------------------------------- // Generation of BID //------------------------------------------------------------------------- generate if(C_HAS_AXI_ID == 1) begin:gaxi_bid_gen always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin bvalid_wr_cnt_r <= 0; bvalid_rd_cnt_r <= 0; end else begin // STORE AWID IN AN ARRAY if(bvalid_c == 1'b1) begin bvalid_wr_cnt_r <= bvalid_wr_cnt_r + 1; end // generate BID FROM AWID ARRAY bvalid_rd_cnt_r <= #FLOP_DELAY bvalid_rd_cnt_c ; S_AXI_BID <= axi_bid_array[bvalid_rd_cnt_c]; end end assign bvalid_rd_cnt_c = (bvalid_r == 1'b1 && S_AXI_BREADY == 1'b1)?bvalid_rd_cnt_r+1:bvalid_rd_cnt_r; //------------------------------------------------------------------------- // Storing AWID for generation of BID //------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if(S_ARESETN == 1'b1) begin axi_bid_array[0] = 0; axi_bid_array[1] = 0; axi_bid_array[2] = 0; axi_bid_array[3] = 0; end else if(aw_ready_r == 1'b1 && S_AXI_AWVALID == 1'b1) begin axi_bid_array[bvalid_wr_cnt_r] <= S_AXI_AWID; end end end endgenerate assign S_AXI_BVALID = bvalid_r; assign S_AXI_AWREADY = aw_ready_r; endmodule module blk_mem_axi_read_wrapper_beh_v8_2 # ( //// AXI Interface related parameters start here parameter C_INTERFACE_TYPE = 0, parameter C_AXI_TYPE = 0, parameter C_AXI_SLAVE_TYPE = 0, parameter C_MEMORY_TYPE = 0, parameter C_WRITE_WIDTH_A = 4, parameter C_WRITE_DEPTH_A = 32, parameter C_ADDRA_WIDTH = 12, parameter C_AXI_PIPELINE_STAGES = 0, parameter C_AXI_ARADDR_WIDTH = 12, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, parameter C_ADDRB_WIDTH = 12 ) ( //// AXI Global Signals input S_ACLK, input S_ARESETN, //// AXI Full/Lite Slave Read (Read side) input [C_AXI_ARADDR_WIDTH-1:0] S_AXI_ARADDR, input [7:0] S_AXI_ARLEN, input [2:0] S_AXI_ARSIZE, input [1:0] S_AXI_ARBURST, input S_AXI_ARVALID, output S_AXI_ARREADY, output S_AXI_RLAST, output S_AXI_RVALID, input S_AXI_RREADY, input [C_AXI_ID_WIDTH-1:0] S_AXI_ARID, output reg [C_AXI_ID_WIDTH-1:0] S_AXI_RID = 0, //// AXI Full/Lite Read Address Signals to BRAM output [C_ADDRB_WIDTH-1:0] S_AXI_ARADDR_OUT, output S_AXI_RD_EN ); localparam FLOP_DELAY = 100; // 100 ps localparam C_RANGE = ((C_WRITE_WIDTH_A == 8)?0: ((C_WRITE_WIDTH_A==16)?1: ((C_WRITE_WIDTH_A==32)?2: ((C_WRITE_WIDTH_A==64)?3: ((C_WRITE_WIDTH_A==128)?4: ((C_WRITE_WIDTH_A==256)?5:0)))))); reg [C_AXI_ID_WIDTH-1:0] ar_id_r=0; wire addr_en_c; wire rd_en_c; wire incr_addr_c; wire single_trans_c; wire dec_alen_c; wire mux_sel_c; wire r_last_c; wire r_last_int_c; wire [C_ADDRB_WIDTH-1 : 0] araddr_out; reg [7:0] arlen_int_r=0; reg [7:0] arlen_cntr=8'h01; reg [1:0] arburst_int_c=0; reg [1:0] arburst_int_r=0; reg [((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)? C_AXI_ARADDR_WIDTH:C_ADDRA_WIDTH)-1:0] araddr_reg =0; integer num_of_bytes_c = 0; integer total_bytes = 0; integer num_of_bytes_r = 0; integer wrap_base_addr_r = 0; integer wrap_boundary_r = 0; reg [7:0] arlen_int_c=0; integer total_bytes_c = 0; integer wrap_base_addr_c = 0; integer wrap_boundary_c = 0; assign dec_alen_c = incr_addr_c | r_last_int_c; read_netlist_v8_2 #(.C_AXI_TYPE (1), .C_ADDRB_WIDTH (C_ADDRB_WIDTH)) axi_read_fsm ( .S_AXI_INCR_ADDR(incr_addr_c), .S_AXI_ADDR_EN(addr_en_c), .S_AXI_SINGLE_TRANS(single_trans_c), .S_AXI_MUX_SEL(mux_sel_c), .S_AXI_R_LAST(r_last_c), .S_AXI_R_LAST_INT(r_last_int_c), //// AXI Global Signals .S_ACLK(S_ACLK), .S_ARESETN(S_ARESETN), //// AXI Full/Lite Slave Read (Read side) .S_AXI_ARLEN(S_AXI_ARLEN), .S_AXI_ARVALID(S_AXI_ARVALID), .S_AXI_ARREADY(S_AXI_ARREADY), .S_AXI_RLAST(S_AXI_RLAST), .S_AXI_RVALID(S_AXI_RVALID), .S_AXI_RREADY(S_AXI_RREADY), //// AXI Full/Lite Read Address Signals to BRAM .S_AXI_RD_EN(rd_en_c) ); always@(*) begin num_of_bytes_c = 2**((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARSIZE:0); total_bytes = (num_of_bytes_r)*(arlen_int_r+1); wrap_base_addr_r = ((araddr_reg)/(total_bytes==0?1:total_bytes))*(total_bytes); wrap_boundary_r = wrap_base_addr_r+total_bytes; //////// combinatorial from interface arlen_int_c = (C_AXI_TYPE == 0?0:S_AXI_ARLEN); total_bytes_c = (num_of_bytes_c)*(arlen_int_c+1); wrap_base_addr_c = ((S_AXI_ARADDR)/(total_bytes_c==0?1:total_bytes_c))*(total_bytes_c); wrap_boundary_c = wrap_base_addr_c+total_bytes_c; arburst_int_c = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARBURST:1); end ////------------------------------------------------------------------------- //// BMG address generation ////------------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin araddr_reg <= 0; arburst_int_r <= 0; num_of_bytes_r <= 0; end else begin if (incr_addr_c == 1'b1 && addr_en_c == 1'b1 && single_trans_c == 1'b0) begin arburst_int_r <= arburst_int_c; num_of_bytes_r <= num_of_bytes_c; if (arburst_int_c == 2'b10) begin if(S_AXI_ARADDR == (wrap_boundary_c-num_of_bytes_c)) begin araddr_reg <= wrap_base_addr_c; end else begin araddr_reg <= S_AXI_ARADDR + num_of_bytes_c; end end else if (arburst_int_c == 2'b01 || arburst_int_c == 2'b11) begin araddr_reg <= S_AXI_ARADDR + num_of_bytes_c; end end else if (addr_en_c == 1'b1) begin araddr_reg <= S_AXI_ARADDR; num_of_bytes_r <= num_of_bytes_c; arburst_int_r <= arburst_int_c; end else if (incr_addr_c == 1'b1) begin if (arburst_int_r == 2'b10) begin if(araddr_reg == (wrap_boundary_r-num_of_bytes_r)) begin araddr_reg <= wrap_base_addr_r; end else begin araddr_reg <= araddr_reg + num_of_bytes_r; end end else if (arburst_int_r == 2'b01 || arburst_int_r == 2'b11) begin araddr_reg <= araddr_reg + num_of_bytes_r; end end end end assign araddr_out = ((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?araddr_reg[C_AXI_ARADDR_WIDTH-1:C_RANGE]:araddr_reg); ////----------------------------------------------------------------------- //// Counter to generate r_last_int_c from registered ARLEN - AXI FULL FSM ////----------------------------------------------------------------------- always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin arlen_cntr <= 8'h01; arlen_int_r <= 0; end else begin if (addr_en_c == 1'b1 && dec_alen_c == 1'b1 && single_trans_c == 1'b0) begin arlen_int_r <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; arlen_cntr <= S_AXI_ARLEN - 1'b1; end else if (addr_en_c == 1'b1) begin arlen_int_r <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; arlen_cntr <= (C_AXI_TYPE == 0?0:S_AXI_ARLEN) ; end else if (dec_alen_c == 1'b1) begin arlen_cntr <= arlen_cntr - 1'b1 ; end else begin arlen_cntr <= arlen_cntr; end end end assign r_last_int_c = (arlen_cntr == 0 && S_AXI_RREADY == 1'b1)?1'b1:1'b0; ////------------------------------------------------------------------------ //// AXI FULL FSM //// Mux Selection of ARADDR //// ARADDR is driven out from the read fsm based on the mux_sel_c //// Based on mux_sel either ARADDR is given out or the latched ARADDR is //// given out to BRAM ////------------------------------------------------------------------------ assign S_AXI_ARADDR_OUT = (mux_sel_c == 1'b0)?((C_AXI_TYPE == 1 && C_AXI_SLAVE_TYPE == 0)?S_AXI_ARADDR[C_AXI_ARADDR_WIDTH-1:C_RANGE]:S_AXI_ARADDR):araddr_out; ////------------------------------------------------------------------------ //// Assign output signals - AXI FULL FSM ////------------------------------------------------------------------------ assign S_AXI_RD_EN = rd_en_c; generate if (C_HAS_AXI_ID == 1) begin:gaxi_bvalid_id_r always @(posedge S_ACLK or S_ARESETN) begin if (S_ARESETN == 1'b1) begin S_AXI_RID <= 0; ar_id_r <= 0; end else begin if (addr_en_c == 1'b1 && rd_en_c == 1'b1) begin S_AXI_RID <= S_AXI_ARID; ar_id_r <= S_AXI_ARID; end else if (addr_en_c == 1'b1 && rd_en_c == 1'b0) begin ar_id_r <= S_AXI_ARID; end else if (rd_en_c == 1'b1) begin S_AXI_RID <= ar_id_r; end end end end endgenerate endmodule module blk_mem_axi_regs_fwd_v8_2 #(parameter C_DATA_WIDTH = 8 )( input ACLK, input ARESET, input S_VALID, output S_READY, input [C_DATA_WIDTH-1:0] S_PAYLOAD_DATA, output M_VALID, input M_READY, output reg [C_DATA_WIDTH-1:0] M_PAYLOAD_DATA ); reg [C_DATA_WIDTH-1:0] STORAGE_DATA; wire S_READY_I; reg M_VALID_I; reg [1:0] ARESET_D; //assign local signal to its output signal assign S_READY = S_READY_I; assign M_VALID = M_VALID_I; always @(posedge ACLK) begin ARESET_D <= {ARESET_D[0], ARESET}; end //Save payload data whenever we have a transaction on the slave side always @(posedge ACLK or ARESET) begin if (ARESET == 1'b1) begin STORAGE_DATA <= 0; end else begin if(S_VALID == 1'b1 && S_READY_I == 1'b1 ) begin STORAGE_DATA <= S_PAYLOAD_DATA; end end end always @(posedge ACLK) begin M_PAYLOAD_DATA = STORAGE_DATA; end //M_Valid set to high when we have a completed transfer on slave side //Is removed on a M_READY except if we have a new transfer on the slave side always @(posedge ACLK or ARESET_D) begin if (ARESET_D != 2'b00) begin M_VALID_I <= 1'b0; end else begin if (S_VALID == 1'b1) begin //Always set M_VALID_I when slave side is valid M_VALID_I <= 1'b1; end else if (M_READY == 1'b1 ) begin //Clear (or keep) when no slave side is valid but master side is ready M_VALID_I <= 1'b0; end end end //Slave Ready is either when Master side drives M_READY or we have space in our storage data assign S_READY_I = (M_READY || (!M_VALID_I)) && !(|(ARESET_D)); endmodule //***************************************************************************** // Output Register Stage module // // This module builds the output register stages of the memory. This module is // instantiated in the main memory module (BLK_MEM_GEN_v8_2) which is // declared/implemented further down in this file. //***************************************************************************** module BLK_MEM_GEN_v8_2_output_stage #(parameter C_FAMILY = "virtex7", parameter C_XDEVICEFAMILY = "virtex7", parameter C_RST_TYPE = "SYNC", parameter C_HAS_RST = 0, parameter C_RSTRAM = 0, parameter C_RST_PRIORITY = "CE", parameter C_INIT_VAL = "0", parameter C_HAS_EN = 0, parameter C_HAS_REGCE = 0, parameter C_DATA_WIDTH = 32, parameter C_ADDRB_WIDTH = 10, parameter C_HAS_MEM_OUTPUT_REGS = 0, parameter C_USE_SOFTECC = 0, parameter C_USE_ECC = 0, parameter NUM_STAGES = 1, parameter C_EN_ECC_PIPE = 0, parameter FLOP_DELAY = 100 ) ( input CLK, input RST, input EN, input REGCE, input [C_DATA_WIDTH-1:0] DIN_I, output reg [C_DATA_WIDTH-1:0] DOUT, input SBITERR_IN_I, input DBITERR_IN_I, output reg SBITERR, output reg DBITERR, input [C_ADDRB_WIDTH-1:0] RDADDRECC_IN_I, input ECCPIPECE, output reg [C_ADDRB_WIDTH-1:0] RDADDRECC ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following // options are available - "spartan3", "spartan6", // "virtex4", "virtex5", "virtex6" and "virtex6l". // C_RST_TYPE : Type of reset - Synchronous or Asynchronous // C_HAS_RST : Determines the presence of the RST port // C_RSTRAM : Determines if special reset behavior is used // C_RST_PRIORITY : Determines the priority between CE and SR // C_INIT_VAL : Initialization value // C_HAS_EN : Determines the presence of the EN port // C_HAS_REGCE : Determines the presence of the REGCE port // C_DATA_WIDTH : Memory write/read width // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_MEM_OUTPUT_REGS : Designates the use of a register at the output // of the RAM primitive // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // C_USE_ECC : Determines if the ECC feature is used or // not. Only applicable for V5 and V6 // NUM_STAGES : Determines the number of output stages // FLOP_DELAY : Constant delay for register assignments ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLK : Clock to synchronize all read and write operations // RST : Reset input to reset memory outputs to a user-defined // reset state // EN : Enable all read and write operations // REGCE : Register Clock Enable to control each pipeline output // register stages // DIN : Data input to the Output stage. // DOUT : Final Data output // SBITERR_IN : SBITERR input signal to the Output stage. // SBITERR : Final SBITERR Output signal. // DBITERR_IN : DBITERR input signal to the Output stage. // DBITERR : Final DBITERR Output signal. // RDADDRECC_IN : RDADDRECC input signal to the Output stage. // RDADDRECC : Final RDADDRECC Output signal. ////////////////////////////////////////////////////////////////////////// // Fix for CR-509792 localparam REG_STAGES = (NUM_STAGES < 2) ? 1 : NUM_STAGES-1; // Declare the pipeline registers // (includes mem output reg, mux pipeline stages, and mux output reg) reg [C_DATA_WIDTH*REG_STAGES-1:0] out_regs; reg [C_ADDRB_WIDTH*REG_STAGES-1:0] rdaddrecc_regs; reg [REG_STAGES-1:0] sbiterr_regs; reg [REG_STAGES-1:0] dbiterr_regs; reg [C_DATA_WIDTH*8-1:0] init_str = C_INIT_VAL; reg [C_DATA_WIDTH-1:0] init_val ; //********************************************* // Wire off optional inputs based on parameters //********************************************* wire en_i; wire regce_i; wire rst_i; // Internal signals reg [C_DATA_WIDTH-1:0] DIN; reg [C_ADDRB_WIDTH-1:0] RDADDRECC_IN; reg SBITERR_IN; reg DBITERR_IN; // Internal enable for output registers is tied to user EN or '1' depending // on parameters assign en_i = (C_HAS_EN==0 || EN); // Internal register enable for output registers is tied to user REGCE, EN or // '1' depending on parameters // For V4 ECC, REGCE is always 1 // Virtex-4 ECC Not Yet Supported assign regce_i = ((C_HAS_REGCE==1) && REGCE) || ((C_HAS_REGCE==0) && (C_HAS_EN==0 || EN)); //Internal SRR is tied to user RST or '0' depending on parameters assign rst_i = (C_HAS_RST==1) && RST; //**************************************************** // Power on: load up the output registers and latches //**************************************************** initial begin if (!($sscanf(init_str, "%h", init_val))) begin init_val = 0; end DOUT = init_val; RDADDRECC = 0; SBITERR = 1'b0; DBITERR = 1'b0; DIN = {(C_DATA_WIDTH){1'b0}}; RDADDRECC_IN = 0; SBITERR_IN = 0; DBITERR_IN = 0; // This will be one wider than need, but 0 is an error out_regs = {(REG_STAGES+1){init_val}}; rdaddrecc_regs = 0; sbiterr_regs = {(REG_STAGES+1){1'b0}}; dbiterr_regs = {(REG_STAGES+1){1'b0}}; end //*********************************************** // NUM_STAGES = 0 (No output registers. RAM only) //*********************************************** generate if (NUM_STAGES == 0) begin : zero_stages always @* begin DOUT = DIN; RDADDRECC = RDADDRECC_IN; SBITERR = SBITERR_IN; DBITERR = DBITERR_IN; end end endgenerate generate if (C_EN_ECC_PIPE == 0) begin : no_ecc_pipe_reg always @* begin DIN = DIN_I; SBITERR_IN = SBITERR_IN_I; DBITERR_IN = DBITERR_IN_I; RDADDRECC_IN = RDADDRECC_IN_I; end end endgenerate generate if (C_EN_ECC_PIPE == 1) begin : with_ecc_pipe_reg always @(posedge CLK) begin if(ECCPIPECE == 1) begin DIN <= #FLOP_DELAY DIN_I; SBITERR_IN <= #FLOP_DELAY SBITERR_IN_I; DBITERR_IN <= #FLOP_DELAY DBITERR_IN_I; RDADDRECC_IN <= #FLOP_DELAY RDADDRECC_IN_I; end end end endgenerate //*********************************************** // NUM_STAGES = 1 // (Mem Output Reg only or Mux Output Reg only) //*********************************************** // Possible valid combinations: // Note: C_HAS_MUX_OUTPUT_REGS_*=0 when (C_RSTRAM_*=1) // +-----------------------------------------+ // | C_RSTRAM_* | Reset Behavior | // +----------------+------------------------+ // | 0 | Normal Behavior | // +----------------+------------------------+ // | 1 | Special Behavior | // +----------------+------------------------+ // // Normal = REGCE gates reset, as in the case of all families except S3ADSP. // Special = EN gates reset, as in the case of S3ADSP. generate if (NUM_STAGES == 1 && (C_RSTRAM == 0 || (C_RSTRAM == 1 && (C_XDEVICEFAMILY != "spartan3adsp" && C_XDEVICEFAMILY != "aspartan3adsp" )) || C_HAS_MEM_OUTPUT_REGS == 0 || C_HAS_RST == 0)) begin : one_stages_norm always @(posedge CLK) begin if (C_RST_PRIORITY == "CE") begin //REGCE has priority if (regce_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY DIN; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY SBITERR_IN; DBITERR <= #FLOP_DELAY DBITERR_IN; end //Output signal assignments end else begin //RST has priority if (rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY DIN; RDADDRECC <= #FLOP_DELAY RDADDRECC_IN; SBITERR <= #FLOP_DELAY SBITERR_IN; DBITERR <= #FLOP_DELAY DBITERR_IN; end //Output signal assignments end //end Priority conditions end //end RST Type conditions end //end one_stages_norm generate statement endgenerate // Special Reset Behavior for S3ADSP generate if (NUM_STAGES == 1 && C_RSTRAM == 1 && (C_XDEVICEFAMILY =="spartan3adsp" || C_XDEVICEFAMILY =="aspartan3adsp")) begin : one_stage_splbhv always @(posedge CLK) begin if (en_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; end else if (regce_i && !rst_i) begin DOUT <= #FLOP_DELAY DIN; end //Output signal assignments end //end CLK end //end one_stage_splbhv generate statement endgenerate //************************************************************ // NUM_STAGES > 1 // Mem Output Reg + Mux Output Reg // or // Mem Output Reg + Mux Pipeline Stages (>0) + Mux Output Reg // or // Mux Pipeline Stages (>0) + Mux Output Reg //************************************************************* generate if (NUM_STAGES > 1) begin : multi_stage //Asynchronous Reset always @(posedge CLK) begin if (C_RST_PRIORITY == "CE") begin //REGCE has priority if (regce_i && rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY out_regs[C_DATA_WIDTH*(NUM_STAGES-2)+:C_DATA_WIDTH]; RDADDRECC <= #FLOP_DELAY rdaddrecc_regs[C_ADDRB_WIDTH*(NUM_STAGES-2)+:C_ADDRB_WIDTH]; SBITERR <= #FLOP_DELAY sbiterr_regs[NUM_STAGES-2]; DBITERR <= #FLOP_DELAY dbiterr_regs[NUM_STAGES-2]; end //Output signal assignments end else begin //RST has priority if (rst_i) begin DOUT <= #FLOP_DELAY init_val; RDADDRECC <= #FLOP_DELAY 0; SBITERR <= #FLOP_DELAY 1'b0; DBITERR <= #FLOP_DELAY 1'b0; end else if (regce_i) begin DOUT <= #FLOP_DELAY out_regs[C_DATA_WIDTH*(NUM_STAGES-2)+:C_DATA_WIDTH]; RDADDRECC <= #FLOP_DELAY rdaddrecc_regs[C_ADDRB_WIDTH*(NUM_STAGES-2)+:C_ADDRB_WIDTH]; SBITERR <= #FLOP_DELAY sbiterr_regs[NUM_STAGES-2]; DBITERR <= #FLOP_DELAY dbiterr_regs[NUM_STAGES-2]; end //Output signal assignments end //end Priority conditions // Shift the data through the output stages if (en_i) begin out_regs <= #FLOP_DELAY (out_regs << C_DATA_WIDTH) | DIN; rdaddrecc_regs <= #FLOP_DELAY (rdaddrecc_regs << C_ADDRB_WIDTH) | RDADDRECC_IN; sbiterr_regs <= #FLOP_DELAY (sbiterr_regs << 1) | SBITERR_IN; dbiterr_regs <= #FLOP_DELAY (dbiterr_regs << 1) | DBITERR_IN; end end //end CLK end //end multi_stage generate statement endgenerate endmodule module BLK_MEM_GEN_v8_2_softecc_output_reg_stage #(parameter C_DATA_WIDTH = 32, parameter C_ADDRB_WIDTH = 10, parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0, parameter C_USE_SOFTECC = 0, parameter FLOP_DELAY = 100 ) ( input CLK, input [C_DATA_WIDTH-1:0] DIN, output reg [C_DATA_WIDTH-1:0] DOUT, input SBITERR_IN, input DBITERR_IN, output reg SBITERR, output reg DBITERR, input [C_ADDRB_WIDTH-1:0] RDADDRECC_IN, output reg [C_ADDRB_WIDTH-1:0] RDADDRECC ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_DATA_WIDTH : Memory write/read width // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_SOFTECC_OUTPUT_REGS_B : Designates the use of a register at the output // of the RAM primitive // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // FLOP_DELAY : Constant delay for register assignments ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLK : Clock to synchronize all read and write operations // DIN : Data input to the Output stage. // DOUT : Final Data output // SBITERR_IN : SBITERR input signal to the Output stage. // SBITERR : Final SBITERR Output signal. // DBITERR_IN : DBITERR input signal to the Output stage. // DBITERR : Final DBITERR Output signal. // RDADDRECC_IN : RDADDRECC input signal to the Output stage. // RDADDRECC : Final RDADDRECC Output signal. ////////////////////////////////////////////////////////////////////////// reg [C_DATA_WIDTH-1:0] dout_i = 0; reg sbiterr_i = 0; reg dbiterr_i = 0; reg [C_ADDRB_WIDTH-1:0] rdaddrecc_i = 0; //*********************************************** // NO OUTPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_OUTPUT_REGS_B==0) begin : no_output_stage always @* begin DOUT = DIN; RDADDRECC = RDADDRECC_IN; SBITERR = SBITERR_IN; DBITERR = DBITERR_IN; end end endgenerate //*********************************************** // WITH OUTPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_OUTPUT_REGS_B==1) begin : has_output_stage always @(posedge CLK) begin dout_i <= #FLOP_DELAY DIN; rdaddrecc_i <= #FLOP_DELAY RDADDRECC_IN; sbiterr_i <= #FLOP_DELAY SBITERR_IN; dbiterr_i <= #FLOP_DELAY DBITERR_IN; end always @* begin DOUT = dout_i; RDADDRECC = rdaddrecc_i; SBITERR = sbiterr_i; DBITERR = dbiterr_i; end //end always end //end in_or_out_stage generate statement endgenerate endmodule //***************************************************************************** // Main Memory module // // This module is the top-level behavioral model and this implements the RAM //***************************************************************************** module BLK_MEM_GEN_v8_2_mem_module #(parameter C_CORENAME = "blk_mem_gen_v8_2", parameter C_FAMILY = "virtex7", parameter C_XDEVICEFAMILY = "virtex7", parameter C_MEM_TYPE = 2, parameter C_BYTE_SIZE = 9, parameter C_USE_BRAM_BLOCK = 0, parameter C_ALGORITHM = 1, parameter C_PRIM_TYPE = 3, parameter C_LOAD_INIT_FILE = 0, parameter C_INIT_FILE_NAME = "", parameter C_INIT_FILE = "", parameter C_USE_DEFAULT_DATA = 0, parameter C_DEFAULT_DATA = "0", parameter C_RST_TYPE = "SYNC", parameter C_HAS_RSTA = 0, parameter C_RST_PRIORITY_A = "CE", parameter C_RSTRAM_A = 0, parameter C_INITA_VAL = "0", parameter C_HAS_ENA = 1, parameter C_HAS_REGCEA = 0, parameter C_USE_BYTE_WEA = 0, parameter C_WEA_WIDTH = 1, parameter C_WRITE_MODE_A = "WRITE_FIRST", parameter C_WRITE_WIDTH_A = 32, parameter C_READ_WIDTH_A = 32, parameter C_WRITE_DEPTH_A = 64, parameter C_READ_DEPTH_A = 64, parameter C_ADDRA_WIDTH = 5, parameter C_HAS_RSTB = 0, parameter C_RST_PRIORITY_B = "CE", parameter C_RSTRAM_B = 0, parameter C_INITB_VAL = "", parameter C_HAS_ENB = 1, parameter C_HAS_REGCEB = 0, parameter C_USE_BYTE_WEB = 0, parameter C_WEB_WIDTH = 1, parameter C_WRITE_MODE_B = "WRITE_FIRST", parameter C_WRITE_WIDTH_B = 32, parameter C_READ_WIDTH_B = 32, parameter C_WRITE_DEPTH_B = 64, parameter C_READ_DEPTH_B = 64, parameter C_ADDRB_WIDTH = 5, parameter C_HAS_MEM_OUTPUT_REGS_A = 0, parameter C_HAS_MEM_OUTPUT_REGS_B = 0, parameter C_HAS_MUX_OUTPUT_REGS_A = 0, parameter C_HAS_MUX_OUTPUT_REGS_B = 0, parameter C_HAS_SOFTECC_INPUT_REGS_A = 0, parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0, parameter C_MUX_PIPELINE_STAGES = 0, parameter C_USE_SOFTECC = 0, parameter C_USE_ECC = 0, parameter C_HAS_INJECTERR = 0, parameter C_SIM_COLLISION_CHECK = "NONE", parameter C_COMMON_CLK = 1, parameter FLOP_DELAY = 100, parameter C_DISABLE_WARN_BHV_COLL = 0, parameter C_EN_ECC_PIPE = 0, parameter C_DISABLE_WARN_BHV_RANGE = 0 ) (input CLKA, input RSTA, input ENA, input REGCEA, input [C_WEA_WIDTH-1:0] WEA, input [C_ADDRA_WIDTH-1:0] ADDRA, input [C_WRITE_WIDTH_A-1:0] DINA, output [C_READ_WIDTH_A-1:0] DOUTA, input CLKB, input RSTB, input ENB, input REGCEB, input [C_WEB_WIDTH-1:0] WEB, input [C_ADDRB_WIDTH-1:0] ADDRB, input [C_WRITE_WIDTH_B-1:0] DINB, output [C_READ_WIDTH_B-1:0] DOUTB, input INJECTSBITERR, input INJECTDBITERR, input ECCPIPECE, input SLEEP, output SBITERR, output DBITERR, output [C_ADDRB_WIDTH-1:0] RDADDRECC ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_CORENAME : Instance name of the Block Memory Generator core // C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following // options are available - "spartan3", "spartan6", // "virtex4", "virtex5", "virtex6" and "virtex6l". // C_MEM_TYPE : Designates memory type. // It can be // 0 - Single Port Memory // 1 - Simple Dual Port Memory // 2 - True Dual Port Memory // 3 - Single Port Read Only Memory // 4 - Dual Port Read Only Memory // C_BYTE_SIZE : Size of a byte (8 or 9 bits) // C_ALGORITHM : Designates the algorithm method used // for constructing the memory. // It can be Fixed_Primitives, Minimum_Area or // Low_Power // C_PRIM_TYPE : Designates the user selected primitive used to // construct the memory. // // C_LOAD_INIT_FILE : Designates the use of an initialization file to // initialize memory contents. // C_INIT_FILE_NAME : Memory initialization file name. // C_USE_DEFAULT_DATA : Designates whether to fill remaining // initialization space with default data // C_DEFAULT_DATA : Default value of all memory locations // not initialized by the memory // initialization file. // C_RST_TYPE : Type of reset - Synchronous or Asynchronous // C_HAS_RSTA : Determines the presence of the RSTA port // C_RST_PRIORITY_A : Determines the priority between CE and SR for // Port A. // C_RSTRAM_A : Determines if special reset behavior is used for // Port A // C_INITA_VAL : The initialization value for Port A // C_HAS_ENA : Determines the presence of the ENA port // C_HAS_REGCEA : Determines the presence of the REGCEA port // C_USE_BYTE_WEA : Determines if the Byte Write is used or not. // C_WEA_WIDTH : The width of the WEA port // C_WRITE_MODE_A : Configurable write mode for Port A. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_A : Memory write width for Port A. // C_READ_WIDTH_A : Memory read width for Port A. // C_WRITE_DEPTH_A : Memory write depth for Port A. // C_READ_DEPTH_A : Memory read depth for Port A. // C_ADDRA_WIDTH : Width of the ADDRA input port // C_HAS_RSTB : Determines the presence of the RSTB port // C_RST_PRIORITY_B : Determines the priority between CE and SR for // Port B. // C_RSTRAM_B : Determines if special reset behavior is used for // Port B // C_INITB_VAL : The initialization value for Port B // C_HAS_ENB : Determines the presence of the ENB port // C_HAS_REGCEB : Determines the presence of the REGCEB port // C_USE_BYTE_WEB : Determines if the Byte Write is used or not. // C_WEB_WIDTH : The width of the WEB port // C_WRITE_MODE_B : Configurable write mode for Port B. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_B : Memory write width for Port B. // C_READ_WIDTH_B : Memory read width for Port B. // C_WRITE_DEPTH_B : Memory write depth for Port B. // C_READ_DEPTH_B : Memory read depth for Port B. // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_MEM_OUTPUT_REGS_A : Designates the use of a register at the output // of the RAM primitive for Port A. // C_HAS_MEM_OUTPUT_REGS_B : Designates the use of a register at the output // of the RAM primitive for Port B. // C_HAS_MUX_OUTPUT_REGS_A : Designates the use of a register at the output // of the MUX for Port A. // C_HAS_MUX_OUTPUT_REGS_B : Designates the use of a register at the output // of the MUX for Port B. // C_MUX_PIPELINE_STAGES : Designates the number of pipeline stages in // between the muxes. // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // C_USE_ECC : Determines if the ECC feature is used or // not. Only applicable for V5 and V6 // C_HAS_INJECTERR : Determines if the error injection pins // are present or not. If the ECC feature // is not used, this value is defaulted to // 0, else the following are the allowed // values: // 0 : No INJECTSBITERR or INJECTDBITERR pins // 1 : Only INJECTSBITERR pin exists // 2 : Only INJECTDBITERR pin exists // 3 : Both INJECTSBITERR and INJECTDBITERR pins exist // C_SIM_COLLISION_CHECK : Controls the disabling of Unisim model collision // warnings. It can be "ALL", "NONE", // "Warnings_Only" or "Generate_X_Only". // C_COMMON_CLK : Determins if the core has a single CLK input. // C_DISABLE_WARN_BHV_COLL : Controls the Behavioral Model Collision warnings // C_DISABLE_WARN_BHV_RANGE: Controls the Behavioral Model Out of Range // warnings ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLKA : Clock to synchronize all read and write operations of Port A. // RSTA : Reset input to reset memory outputs to a user-defined // reset state for Port A. // ENA : Enable all read and write operations of Port A. // REGCEA : Register Clock Enable to control each pipeline output // register stages for Port A. // WEA : Write Enable to enable all write operations of Port A. // ADDRA : Address of Port A. // DINA : Data input of Port A. // DOUTA : Data output of Port A. // CLKB : Clock to synchronize all read and write operations of Port B. // RSTB : Reset input to reset memory outputs to a user-defined // reset state for Port B. // ENB : Enable all read and write operations of Port B. // REGCEB : Register Clock Enable to control each pipeline output // register stages for Port B. // WEB : Write Enable to enable all write operations of Port B. // ADDRB : Address of Port B. // DINB : Data input of Port B. // DOUTB : Data output of Port B. // INJECTSBITERR : Single Bit ECC Error Injection Pin. // INJECTDBITERR : Double Bit ECC Error Injection Pin. // SBITERR : Output signal indicating that a Single Bit ECC Error has been // detected and corrected. // DBITERR : Output signal indicating that a Double Bit ECC Error has been // detected. // RDADDRECC : Read Address Output signal indicating address at which an // ECC error has occurred. ////////////////////////////////////////////////////////////////////////// // Note: C_CORENAME parameter is hard-coded to "blk_mem_gen_v8_2" and it is // only used by this module to print warning messages. It is neither passed // down from blk_mem_gen_v8_2_xst.v nor present in the instantiation template // coregen generates //*************************************************************************** // constants for the core behavior //*************************************************************************** // file handles for logging //-------------------------------------------------- localparam ADDRFILE = 32'h8000_0001; //stdout for addr out of range localparam COLLFILE = 32'h8000_0001; //stdout for coll detection localparam ERRFILE = 32'h8000_0001; //stdout for file I/O errors // other constants //-------------------------------------------------- localparam COLL_DELAY = 100; // 100 ps // locally derived parameters to determine memory shape //----------------------------------------------------- localparam CHKBIT_WIDTH = (C_WRITE_WIDTH_A>57 ? 8 : (C_WRITE_WIDTH_A>26 ? 7 : (C_WRITE_WIDTH_A>11 ? 6 : (C_WRITE_WIDTH_A>4 ? 5 : (C_WRITE_WIDTH_A<5 ? 4 :0))))); localparam MIN_WIDTH_A = (C_WRITE_WIDTH_A < C_READ_WIDTH_A) ? C_WRITE_WIDTH_A : C_READ_WIDTH_A; localparam MIN_WIDTH_B = (C_WRITE_WIDTH_B < C_READ_WIDTH_B) ? C_WRITE_WIDTH_B : C_READ_WIDTH_B; localparam MIN_WIDTH = (MIN_WIDTH_A < MIN_WIDTH_B) ? MIN_WIDTH_A : MIN_WIDTH_B; localparam MAX_DEPTH_A = (C_WRITE_DEPTH_A > C_READ_DEPTH_A) ? C_WRITE_DEPTH_A : C_READ_DEPTH_A; localparam MAX_DEPTH_B = (C_WRITE_DEPTH_B > C_READ_DEPTH_B) ? C_WRITE_DEPTH_B : C_READ_DEPTH_B; localparam MAX_DEPTH = (MAX_DEPTH_A > MAX_DEPTH_B) ? MAX_DEPTH_A : MAX_DEPTH_B; // locally derived parameters to assist memory access //---------------------------------------------------- // Calculate the width ratios of each port with respect to the narrowest // port localparam WRITE_WIDTH_RATIO_A = C_WRITE_WIDTH_A/MIN_WIDTH; localparam READ_WIDTH_RATIO_A = C_READ_WIDTH_A/MIN_WIDTH; localparam WRITE_WIDTH_RATIO_B = C_WRITE_WIDTH_B/MIN_WIDTH; localparam READ_WIDTH_RATIO_B = C_READ_WIDTH_B/MIN_WIDTH; // To modify the LSBs of the 'wider' data to the actual // address value //---------------------------------------------------- localparam WRITE_ADDR_A_DIV = C_WRITE_WIDTH_A/MIN_WIDTH_A; localparam READ_ADDR_A_DIV = C_READ_WIDTH_A/MIN_WIDTH_A; localparam WRITE_ADDR_B_DIV = C_WRITE_WIDTH_B/MIN_WIDTH_B; localparam READ_ADDR_B_DIV = C_READ_WIDTH_B/MIN_WIDTH_B; // If byte writes aren't being used, make sure BYTE_SIZE is not // wider than the memory elements to avoid compilation warnings localparam BYTE_SIZE = (C_BYTE_SIZE < MIN_WIDTH) ? C_BYTE_SIZE : MIN_WIDTH; // The memory reg [MIN_WIDTH-1:0] memory [0:MAX_DEPTH-1]; reg [MIN_WIDTH-1:0] temp_mem_array [0:MAX_DEPTH-1]; reg [C_WRITE_WIDTH_A+CHKBIT_WIDTH-1:0] doublebit_error = 3; // ECC error arrays reg sbiterr_arr [0:MAX_DEPTH-1]; reg dbiterr_arr [0:MAX_DEPTH-1]; reg softecc_sbiterr_arr [0:MAX_DEPTH-1]; reg softecc_dbiterr_arr [0:MAX_DEPTH-1]; // Memory output 'latches' reg [C_READ_WIDTH_A-1:0] memory_out_a; reg [C_READ_WIDTH_B-1:0] memory_out_b; // ECC error inputs and outputs from output_stage module: reg sbiterr_in; wire sbiterr_sdp; reg dbiterr_in; wire dbiterr_sdp; wire [C_READ_WIDTH_B-1:0] dout_i; wire dbiterr_i; wire sbiterr_i; wire [C_ADDRB_WIDTH-1:0] rdaddrecc_i; reg [C_ADDRB_WIDTH-1:0] rdaddrecc_in; wire [C_ADDRB_WIDTH-1:0] rdaddrecc_sdp; // Reset values reg [C_READ_WIDTH_A-1:0] inita_val; reg [C_READ_WIDTH_B-1:0] initb_val; // Collision detect reg is_collision; reg is_collision_a, is_collision_delay_a; reg is_collision_b, is_collision_delay_b; // Temporary variables for initialization //--------------------------------------- integer status; integer initfile; integer meminitfile; // data input buffer reg [C_WRITE_WIDTH_A-1:0] mif_data; reg [C_WRITE_WIDTH_A-1:0] mem_data; // string values in hex reg [C_READ_WIDTH_A*8-1:0] inita_str = C_INITA_VAL; reg [C_READ_WIDTH_B*8-1:0] initb_str = C_INITB_VAL; reg [C_WRITE_WIDTH_A*8-1:0] default_data_str = C_DEFAULT_DATA; // initialization filename reg [1023*8-1:0] init_file_str = C_INIT_FILE_NAME; reg [1023*8-1:0] mem_init_file_str = C_INIT_FILE; //Constants used to calculate the effective address widths for each of the //four ports. integer cnt = 1; integer write_addr_a_width, read_addr_a_width; integer write_addr_b_width, read_addr_b_width; localparam C_FAMILY_LOCALPARAM = (C_FAMILY=="virtexu"?"virtex7":(C_FAMILY=="kintexu" ? "virtex7":(C_FAMILY=="virtex7" ? "virtex7" : (C_FAMILY=="virtex7l" ? "virtex7" : (C_FAMILY=="qvirtex7" ? "virtex7" : (C_FAMILY=="qvirtex7l" ? "virtex7" : (C_FAMILY=="kintex7" ? "virtex7" : (C_FAMILY=="kintex7l" ? "virtex7" : (C_FAMILY=="qkintex7" ? "virtex7" : (C_FAMILY=="qkintex7l" ? "virtex7" : (C_FAMILY=="artix7" ? "virtex7" : (C_FAMILY=="artix7l" ? "virtex7" : (C_FAMILY=="qartix7" ? "virtex7" : (C_FAMILY=="qartix7l" ? "virtex7" : (C_FAMILY=="aartix7" ? "virtex7" : (C_FAMILY=="zynq" ? "virtex7" : (C_FAMILY=="azynq" ? "virtex7" : (C_FAMILY=="qzynq" ? "virtex7" : C_FAMILY)))))))))))))))))); // Internal configuration parameters //--------------------------------------------- localparam SINGLE_PORT = (C_MEM_TYPE==0 || C_MEM_TYPE==3); localparam IS_ROM = (C_MEM_TYPE==3 || C_MEM_TYPE==4); localparam HAS_A_WRITE = (!IS_ROM); localparam HAS_B_WRITE = (C_MEM_TYPE==2); localparam HAS_A_READ = (C_MEM_TYPE!=1); localparam HAS_B_READ = (!SINGLE_PORT); localparam HAS_B_PORT = (HAS_B_READ || HAS_B_WRITE); // Calculate the mux pipeline register stages for Port A and Port B //------------------------------------------------------------------ localparam MUX_PIPELINE_STAGES_A = (C_HAS_MUX_OUTPUT_REGS_A) ? C_MUX_PIPELINE_STAGES : 0; localparam MUX_PIPELINE_STAGES_B = (C_HAS_MUX_OUTPUT_REGS_B) ? C_MUX_PIPELINE_STAGES : 0; // Calculate total number of register stages in the core // ----------------------------------------------------- localparam NUM_OUTPUT_STAGES_A = (C_HAS_MEM_OUTPUT_REGS_A+MUX_PIPELINE_STAGES_A+C_HAS_MUX_OUTPUT_REGS_A); localparam NUM_OUTPUT_STAGES_B = (C_HAS_MEM_OUTPUT_REGS_B+MUX_PIPELINE_STAGES_B+C_HAS_MUX_OUTPUT_REGS_B); wire ena_i; wire enb_i; wire reseta_i; wire resetb_i; wire [C_WEA_WIDTH-1:0] wea_i; wire [C_WEB_WIDTH-1:0] web_i; wire rea_i; wire reb_i; wire rsta_outp_stage; wire rstb_outp_stage; // ECC SBITERR/DBITERR Outputs // The ECC Behavior is modeled by the behavioral models only for Virtex-6. // For Virtex-5, these outputs will be tied to 0. assign SBITERR = ((C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?sbiterr_sdp:0; assign DBITERR = ((C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?dbiterr_sdp:0; assign RDADDRECC = (((C_FAMILY_LOCALPARAM == "virtex7") && C_MEM_TYPE == 1 && C_USE_ECC == 1) || C_USE_SOFTECC == 1)?rdaddrecc_sdp:0; // This effectively wires off optional inputs assign ena_i = (C_HAS_ENA==0) || ENA; assign enb_i = ((C_HAS_ENB==0) || ENB) && HAS_B_PORT; assign wea_i = (HAS_A_WRITE && ena_i) ? WEA : 'b0; assign web_i = (HAS_B_WRITE && enb_i) ? WEB : 'b0; assign rea_i = (HAS_A_READ) ? ena_i : 'b0; assign reb_i = (HAS_B_READ) ? enb_i : 'b0; // These signals reset the memory latches assign reseta_i = ((C_HAS_RSTA==1 && RSTA && NUM_OUTPUT_STAGES_A==0) || (C_HAS_RSTA==1 && RSTA && C_RSTRAM_A==1)); assign resetb_i = ((C_HAS_RSTB==1 && RSTB && NUM_OUTPUT_STAGES_B==0) || (C_HAS_RSTB==1 && RSTB && C_RSTRAM_B==1)); // Tasks to access the memory //--------------------------- //************** // write_a //************** task write_a (input reg [C_ADDRA_WIDTH-1:0] addr, input reg [C_WEA_WIDTH-1:0] byte_en, input reg [C_WRITE_WIDTH_A-1:0] data, input inj_sbiterr, input inj_dbiterr); reg [C_WRITE_WIDTH_A-1:0] current_contents; reg [C_ADDRA_WIDTH-1:0] address; integer i; begin // Shift the address by the ratio address = (addr/WRITE_ADDR_A_DIV); if (address >= C_WRITE_DEPTH_A) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for A Write", C_CORENAME, addr); end // valid address end else begin // Combine w/ byte writes if (C_USE_BYTE_WEA) begin // Get the current memory contents if (WRITE_WIDTH_RATIO_A == 1) begin // Workaround for IUS 5.5 part-select issue current_contents = memory[address]; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_A; i = i + 1) begin current_contents[MIN_WIDTH*i+:MIN_WIDTH] = memory[address*WRITE_WIDTH_RATIO_A + i]; end end // Apply incoming bytes if (C_WEA_WIDTH == 1) begin // Workaround for IUS 5.5 part-select issue if (byte_en[0]) begin current_contents = data; end end else begin for (i = 0; i < C_WEA_WIDTH; i = i + 1) begin if (byte_en[i]) begin current_contents[BYTE_SIZE*i+:BYTE_SIZE] = data[BYTE_SIZE*i+:BYTE_SIZE]; end end end // No byte-writes, overwrite the whole word end else begin current_contents = data; end // Insert double bit errors: if (C_USE_ECC == 1) begin if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin current_contents[0] = !(current_contents[0]); current_contents[1] = !(current_contents[1]); end end // Insert softecc double bit errors: if (C_USE_SOFTECC == 1) begin if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-1:2] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-3:0]; doublebit_error[0] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-1]; doublebit_error[1] = doublebit_error[C_WRITE_WIDTH_A+CHKBIT_WIDTH-2]; current_contents = current_contents ^ doublebit_error[C_WRITE_WIDTH_A-1:0]; end end // Write data to memory if (WRITE_WIDTH_RATIO_A == 1) begin // Workaround for IUS 5.5 part-select issue memory[address*WRITE_WIDTH_RATIO_A] = current_contents; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_A; i = i + 1) begin memory[address*WRITE_WIDTH_RATIO_A + i] = current_contents[MIN_WIDTH*i+:MIN_WIDTH]; end end // Store the address at which error is injected: if ((C_FAMILY_LOCALPARAM == "virtex7") && C_USE_ECC == 1) begin if ((C_HAS_INJECTERR == 1 && inj_sbiterr == 1'b1) || (C_HAS_INJECTERR == 3 && inj_sbiterr == 1'b1 && inj_dbiterr != 1'b1)) begin sbiterr_arr[addr] = 1; end else begin sbiterr_arr[addr] = 0; end if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin dbiterr_arr[addr] = 1; end else begin dbiterr_arr[addr] = 0; end end // Store the address at which softecc error is injected: if (C_USE_SOFTECC == 1) begin if ((C_HAS_INJECTERR == 1 && inj_sbiterr == 1'b1) || (C_HAS_INJECTERR == 3 && inj_sbiterr == 1'b1 && inj_dbiterr != 1'b1)) begin softecc_sbiterr_arr[addr] = 1; end else begin softecc_sbiterr_arr[addr] = 0; end if ((C_HAS_INJECTERR == 2 || C_HAS_INJECTERR == 3) && inj_dbiterr == 1'b1) begin softecc_dbiterr_arr[addr] = 1; end else begin softecc_dbiterr_arr[addr] = 0; end end end end endtask //************** // write_b //************** task write_b (input reg [C_ADDRB_WIDTH-1:0] addr, input reg [C_WEB_WIDTH-1:0] byte_en, input reg [C_WRITE_WIDTH_B-1:0] data); reg [C_WRITE_WIDTH_B-1:0] current_contents; reg [C_ADDRB_WIDTH-1:0] address; integer i; begin // Shift the address by the ratio address = (addr/WRITE_ADDR_B_DIV); if (address >= C_WRITE_DEPTH_B) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for B Write", C_CORENAME, addr); end // valid address end else begin // Combine w/ byte writes if (C_USE_BYTE_WEB) begin // Get the current memory contents if (WRITE_WIDTH_RATIO_B == 1) begin // Workaround for IUS 5.5 part-select issue current_contents = memory[address]; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_B; i = i + 1) begin current_contents[MIN_WIDTH*i+:MIN_WIDTH] = memory[address*WRITE_WIDTH_RATIO_B + i]; end end // Apply incoming bytes if (C_WEB_WIDTH == 1) begin // Workaround for IUS 5.5 part-select issue if (byte_en[0]) begin current_contents = data; end end else begin for (i = 0; i < C_WEB_WIDTH; i = i + 1) begin if (byte_en[i]) begin current_contents[BYTE_SIZE*i+:BYTE_SIZE] = data[BYTE_SIZE*i+:BYTE_SIZE]; end end end // No byte-writes, overwrite the whole word end else begin current_contents = data; end // Write data to memory if (WRITE_WIDTH_RATIO_B == 1) begin // Workaround for IUS 5.5 part-select issue memory[address*WRITE_WIDTH_RATIO_B] = current_contents; end else begin for (i = 0; i < WRITE_WIDTH_RATIO_B; i = i + 1) begin memory[address*WRITE_WIDTH_RATIO_B + i] = current_contents[MIN_WIDTH*i+:MIN_WIDTH]; end end end end endtask //************** // read_a //************** task read_a (input reg [C_ADDRA_WIDTH-1:0] addr, input reg reset); reg [C_ADDRA_WIDTH-1:0] address; integer i; begin if (reset) begin memory_out_a <= #FLOP_DELAY inita_val; end else begin // Shift the address by the ratio address = (addr/READ_ADDR_A_DIV); if (address >= C_READ_DEPTH_A) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for A Read", C_CORENAME, addr); end memory_out_a <= #FLOP_DELAY 'bX; // valid address end else begin if (READ_WIDTH_RATIO_A==1) begin memory_out_a <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_A]; end else begin // Increment through the 'partial' words in the memory for (i = 0; i < READ_WIDTH_RATIO_A; i = i + 1) begin memory_out_a[MIN_WIDTH*i+:MIN_WIDTH] <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_A + i]; end end //end READ_WIDTH_RATIO_A==1 loop end //end valid address loop end //end reset-data assignment loops end endtask //************** // read_b //************** task read_b (input reg [C_ADDRB_WIDTH-1:0] addr, input reg reset); reg [C_ADDRB_WIDTH-1:0] address; integer i; begin if (reset) begin memory_out_b <= #FLOP_DELAY initb_val; sbiterr_in <= #FLOP_DELAY 1'b0; dbiterr_in <= #FLOP_DELAY 1'b0; rdaddrecc_in <= #FLOP_DELAY 0; end else begin // Shift the address address = (addr/READ_ADDR_B_DIV); if (address >= C_READ_DEPTH_B) begin if (!C_DISABLE_WARN_BHV_RANGE) begin $fdisplay(ADDRFILE, "%0s WARNING: Address %0h is outside range for B Read", C_CORENAME, addr); end memory_out_b <= #FLOP_DELAY 'bX; sbiterr_in <= #FLOP_DELAY 1'bX; dbiterr_in <= #FLOP_DELAY 1'bX; rdaddrecc_in <= #FLOP_DELAY 'bX; // valid address end else begin if (READ_WIDTH_RATIO_B==1) begin memory_out_b <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_B]; end else begin // Increment through the 'partial' words in the memory for (i = 0; i < READ_WIDTH_RATIO_B; i = i + 1) begin memory_out_b[MIN_WIDTH*i+:MIN_WIDTH] <= #FLOP_DELAY memory[address*READ_WIDTH_RATIO_B + i]; end end if ((C_FAMILY_LOCALPARAM == "virtex7") && C_USE_ECC == 1) begin rdaddrecc_in <= #FLOP_DELAY addr; if (sbiterr_arr[addr] == 1) begin sbiterr_in <= #FLOP_DELAY 1'b1; end else begin sbiterr_in <= #FLOP_DELAY 1'b0; end if (dbiterr_arr[addr] == 1) begin dbiterr_in <= #FLOP_DELAY 1'b1; end else begin dbiterr_in <= #FLOP_DELAY 1'b0; end end else if (C_USE_SOFTECC == 1) begin rdaddrecc_in <= #FLOP_DELAY addr; if (softecc_sbiterr_arr[addr] == 1) begin sbiterr_in <= #FLOP_DELAY 1'b1; end else begin sbiterr_in <= #FLOP_DELAY 1'b0; end if (softecc_dbiterr_arr[addr] == 1) begin dbiterr_in <= #FLOP_DELAY 1'b1; end else begin dbiterr_in <= #FLOP_DELAY 1'b0; end end else begin rdaddrecc_in <= #FLOP_DELAY 0; dbiterr_in <= #FLOP_DELAY 1'b0; sbiterr_in <= #FLOP_DELAY 1'b0; end //end SOFTECC Loop end //end Valid address loop end //end reset-data assignment loops end endtask //************** // reset_a //************** task reset_a (input reg reset); begin if (reset) memory_out_a <= #FLOP_DELAY inita_val; end endtask //************** // reset_b //************** task reset_b (input reg reset); begin if (reset) memory_out_b <= #FLOP_DELAY initb_val; end endtask //************** // init_memory //************** task init_memory; integer i, j, addr_step; integer status; reg [C_WRITE_WIDTH_A-1:0] default_data; begin default_data = 0; //Display output message indicating that the behavioral model is being //initialized if (C_USE_DEFAULT_DATA || C_LOAD_INIT_FILE) $display(" Block Memory Generator module loading initial data..."); // Convert the default to hex if (C_USE_DEFAULT_DATA) begin if (default_data_str == "") begin $fdisplay(ERRFILE, "%0s ERROR: C_DEFAULT_DATA is empty!", C_CORENAME); $finish; end else begin status = $sscanf(default_data_str, "%h", default_data); if (status == 0) begin $fdisplay(ERRFILE, {"%0s ERROR: Unsuccessful hexadecimal read", "from C_DEFAULT_DATA: %0s"}, C_CORENAME, C_DEFAULT_DATA); $finish; end end end // Step by WRITE_ADDR_A_DIV through the memory via the // Port A write interface to hit every location once addr_step = WRITE_ADDR_A_DIV; // 'write' to every location with default (or 0) for (i = 0; i < C_WRITE_DEPTH_A*addr_step; i = i + addr_step) begin write_a(i, {C_WEA_WIDTH{1'b1}}, default_data, 1'b0, 1'b0); end // Get specialized data from the MIF file if (C_LOAD_INIT_FILE) begin if (init_file_str == "") begin $fdisplay(ERRFILE, "%0s ERROR: C_INIT_FILE_NAME is empty!", C_CORENAME); $finish; end else begin initfile = $fopen(init_file_str, "r"); if (initfile == 0) begin $fdisplay(ERRFILE, {"%0s, ERROR: Problem opening", "C_INIT_FILE_NAME: %0s!"}, C_CORENAME, init_file_str); $finish; end else begin // loop through the mif file, loading in the data for (i = 0; i < C_WRITE_DEPTH_A*addr_step; i = i + addr_step) begin status = $fscanf(initfile, "%b", mif_data); if (status > 0) begin write_a(i, {C_WEA_WIDTH{1'b1}}, mif_data, 1'b0, 1'b0); end end $fclose(initfile); end //initfile end //init_file_str end //C_LOAD_INIT_FILE if (C_USE_BRAM_BLOCK) begin // Get specialized data from the MIF file if (C_INIT_FILE != "NONE") begin if (mem_init_file_str == "") begin $fdisplay(ERRFILE, "%0s ERROR: C_INIT_FILE is empty!", C_CORENAME); $finish; end else begin meminitfile = $fopen(mem_init_file_str, "r"); if (meminitfile == 0) begin $fdisplay(ERRFILE, {"%0s, ERROR: Problem opening", "C_INIT_FILE: %0s!"}, C_CORENAME, mem_init_file_str); $finish; end else begin // loop through the mif file, loading in the data $readmemh(mem_init_file_str, memory ); for (j = 0; j < MAX_DEPTH-1 ; j = j + 1) begin end $fclose(meminitfile); end //meminitfile end //mem_init_file_str end //C_INIT_FILE end //C_USE_BRAM_BLOCK //Display output message indicating that the behavioral model is done //initializing if (C_USE_DEFAULT_DATA || C_LOAD_INIT_FILE) $display(" Block Memory Generator data initialization complete."); end endtask //************** // log2roundup //************** function integer log2roundup (input integer data_value); integer width; integer cnt; begin width = 0; if (data_value > 1) begin for(cnt=1 ; cnt < data_value ; cnt = cnt * 2) begin width = width + 1; end //loop end //if log2roundup = width; end //log2roundup endfunction //******************* // collision_check //******************* function integer collision_check (input reg [C_ADDRA_WIDTH-1:0] addr_a, input integer iswrite_a, input reg [C_ADDRB_WIDTH-1:0] addr_b, input integer iswrite_b); reg c_aw_bw, c_aw_br, c_ar_bw; integer scaled_addra_to_waddrb_width; integer scaled_addrb_to_waddrb_width; integer scaled_addra_to_waddra_width; integer scaled_addrb_to_waddra_width; integer scaled_addra_to_raddrb_width; integer scaled_addrb_to_raddrb_width; integer scaled_addra_to_raddra_width; integer scaled_addrb_to_raddra_width; begin c_aw_bw = 0; c_aw_br = 0; c_ar_bw = 0; //If write_addr_b_width is smaller, scale both addresses to that width for //comparing write_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to write_addr_b_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to write_addr_b_width. Once both are scaled to //write_addr_b_width, compare. scaled_addra_to_waddrb_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-write_addr_b_width)); scaled_addrb_to_waddrb_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-write_addr_b_width)); //If write_addr_a_width is smaller, scale both addresses to that width for //comparing write_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to write_addr_a_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to write_addr_a_width. Once both are scaled to //write_addr_a_width, compare. scaled_addra_to_waddra_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-write_addr_a_width)); scaled_addrb_to_waddra_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-write_addr_a_width)); //If read_addr_b_width is smaller, scale both addresses to that width for //comparing write_addr_a and read_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to read_addr_b_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to read_addr_b_width. Once both are scaled to //read_addr_b_width, compare. scaled_addra_to_raddrb_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-read_addr_b_width)); scaled_addrb_to_raddrb_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-read_addr_b_width)); //If read_addr_a_width is smaller, scale both addresses to that width for //comparing read_addr_a and write_addr_b; addr_a starts as C_ADDRA_WIDTH, //scale it down to read_addr_a_width. addr_b starts as C_ADDRB_WIDTH, //scale it down to read_addr_a_width. Once both are scaled to //read_addr_a_width, compare. scaled_addra_to_raddra_width = ((addr_a)/ 2**(C_ADDRA_WIDTH-read_addr_a_width)); scaled_addrb_to_raddra_width = ((addr_b)/ 2**(C_ADDRB_WIDTH-read_addr_a_width)); //Look for a write-write collision. In order for a write-write //collision to exist, both ports must have a write transaction. if (iswrite_a && iswrite_b) begin if (write_addr_a_width > write_addr_b_width) begin if (scaled_addra_to_waddrb_width == scaled_addrb_to_waddrb_width) begin c_aw_bw = 1; end else begin c_aw_bw = 0; end end else begin if (scaled_addrb_to_waddra_width == scaled_addra_to_waddra_width) begin c_aw_bw = 1; end else begin c_aw_bw = 0; end end //width end //iswrite_a and iswrite_b //If the B port is reading (which means it is enabled - so could be //a TX_WRITE or TX_READ), then check for a write-read collision). //This could happen whether or not a write-write collision exists due //to asymmetric write/read ports. if (iswrite_a) begin if (write_addr_a_width > read_addr_b_width) begin if (scaled_addra_to_raddrb_width == scaled_addrb_to_raddrb_width) begin c_aw_br = 1; end else begin c_aw_br = 0; end end else begin if (scaled_addrb_to_waddra_width == scaled_addra_to_waddra_width) begin c_aw_br = 1; end else begin c_aw_br = 0; end end //width end //iswrite_a //If the A port is reading (which means it is enabled - so could be // a TX_WRITE or TX_READ), then check for a write-read collision). //This could happen whether or not a write-write collision exists due // to asymmetric write/read ports. if (iswrite_b) begin if (read_addr_a_width > write_addr_b_width) begin if (scaled_addra_to_waddrb_width == scaled_addrb_to_waddrb_width) begin c_ar_bw = 1; end else begin c_ar_bw = 0; end end else begin if (scaled_addrb_to_raddra_width == scaled_addra_to_raddra_width) begin c_ar_bw = 1; end else begin c_ar_bw = 0; end end //width end //iswrite_b collision_check = c_aw_bw | c_aw_br | c_ar_bw; end endfunction //******************************* // power on values //******************************* initial begin // Load up the memory init_memory; // Load up the output registers and latches if ($sscanf(inita_str, "%h", inita_val)) begin memory_out_a = inita_val; end else begin memory_out_a = 0; end if ($sscanf(initb_str, "%h", initb_val)) begin memory_out_b = initb_val; end else begin memory_out_b = 0; end sbiterr_in = 1'b0; dbiterr_in = 1'b0; rdaddrecc_in = 0; // Determine the effective address widths for each of the 4 ports write_addr_a_width = C_ADDRA_WIDTH - log2roundup(WRITE_ADDR_A_DIV); read_addr_a_width = C_ADDRA_WIDTH - log2roundup(READ_ADDR_A_DIV); write_addr_b_width = C_ADDRB_WIDTH - log2roundup(WRITE_ADDR_B_DIV); read_addr_b_width = C_ADDRB_WIDTH - log2roundup(READ_ADDR_B_DIV); $display("Block Memory Generator module %m is using a behavioral model for simulation which will not precisely model memory collision behavior."); end //*************************************************************************** // These are the main blocks which schedule read and write operations // Note that the reset priority feature at the latch stage is only supported // for Spartan-6. For other families, the default priority at the latch stage // is "CE" //*************************************************************************** // Synchronous clocks: schedule port operations with respect to // both write operating modes generate if(C_COMMON_CLK && (C_WRITE_MODE_A == "WRITE_FIRST") && (C_WRITE_MODE_B == "WRITE_FIRST")) begin : com_clk_sched_wf_wf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A == "READ_FIRST") && (C_WRITE_MODE_B == "WRITE_FIRST")) begin : com_clk_sched_rf_wf always @(posedge CLKA) begin //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read B if (reb_i) read_b(ADDRB, resetb_i); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A == "WRITE_FIRST") && (C_WRITE_MODE_B == "READ_FIRST")) begin : com_clk_sched_wf_rf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A == "READ_FIRST") && (C_WRITE_MODE_B == "READ_FIRST")) begin : com_clk_sched_rf_rf always @(posedge CLKA) begin //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="WRITE_FIRST") && (C_WRITE_MODE_B == "NO_CHANGE")) begin : com_clk_sched_wf_nc always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="READ_FIRST") && (C_WRITE_MODE_B == "NO_CHANGE")) begin : com_clk_sched_rf_nc always @(posedge CLKA) begin //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B == "WRITE_FIRST")) begin : com_clk_sched_nc_wf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B == "READ_FIRST")) begin : com_clk_sched_nc_rf always @(posedge CLKA) begin //Read B if (reb_i) read_b(ADDRB, resetb_i); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if(C_COMMON_CLK && (C_WRITE_MODE_A =="NO_CHANGE") && (C_WRITE_MODE_B == "NO_CHANGE")) begin : com_clk_sched_nc_nc always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); end end else if(C_COMMON_CLK) begin: com_clk_sched_default always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read A if (rea_i) read_a(ADDRA, reseta_i); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end endgenerate // Asynchronous clocks: port operation is independent generate if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "WRITE_FIRST")) begin : async_clk_sched_clka_wf always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i) read_a(ADDRA, reseta_i); end end else if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "READ_FIRST")) begin : async_clk_sched_clka_rf always @(posedge CLKA) begin //Read A if (rea_i) read_a(ADDRA, reseta_i); //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); end end else if((!C_COMMON_CLK) && (C_WRITE_MODE_A == "NO_CHANGE")) begin : async_clk_sched_clka_nc always @(posedge CLKA) begin //Write A if (wea_i) write_a(ADDRA, wea_i, DINA, INJECTSBITERR, INJECTDBITERR); //Read A if (rea_i && (!wea_i || reseta_i)) read_a(ADDRA, reseta_i); end end endgenerate generate if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "WRITE_FIRST")) begin: async_clk_sched_clkb_wf always @(posedge CLKB) begin //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read B if (reb_i) read_b(ADDRB, resetb_i); end end else if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "READ_FIRST")) begin: async_clk_sched_clkb_rf always @(posedge CLKB) begin //Read B if (reb_i) read_b(ADDRB, resetb_i); //Write B if (web_i) write_b(ADDRB, web_i, DINB); end end else if ((!C_COMMON_CLK) && (C_WRITE_MODE_B == "NO_CHANGE")) begin: async_clk_sched_clkb_nc always @(posedge CLKB) begin //Write B if (web_i) write_b(ADDRB, web_i, DINB); //Read B if (reb_i && (!web_i || resetb_i)) read_b(ADDRB, resetb_i); end end endgenerate //*************************************************************** // Instantiate the variable depth output register stage module //*************************************************************** // Port A assign rsta_outp_stage = RSTA & (~SLEEP); BLK_MEM_GEN_v8_2_output_stage #(.C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_RST_TYPE ("SYNC"), .C_HAS_RST (C_HAS_RSTA), .C_RSTRAM (C_RSTRAM_A), .C_RST_PRIORITY (C_RST_PRIORITY_A), .C_INIT_VAL (C_INITA_VAL), .C_HAS_EN (C_HAS_ENA), .C_HAS_REGCE (C_HAS_REGCEA), .C_DATA_WIDTH (C_READ_WIDTH_A), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS (C_HAS_MEM_OUTPUT_REGS_A), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .NUM_STAGES (NUM_OUTPUT_STAGES_A), .C_EN_ECC_PIPE (0), .FLOP_DELAY (FLOP_DELAY)) reg_a (.CLK (CLKA), .RST (rsta_outp_stage),//(RSTA), .EN (ENA), .REGCE (REGCEA), .DIN_I (memory_out_a), .DOUT (DOUTA), .SBITERR_IN_I (1'b0), .DBITERR_IN_I (1'b0), .SBITERR (), .DBITERR (), .RDADDRECC_IN_I ({C_ADDRB_WIDTH{1'b0}}), .ECCPIPECE (1'b0), .RDADDRECC () ); assign rstb_outp_stage = RSTB & (~SLEEP); // Port B BLK_MEM_GEN_v8_2_output_stage #(.C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_RST_TYPE ("SYNC"), .C_HAS_RST (C_HAS_RSTB), .C_RSTRAM (C_RSTRAM_B), .C_RST_PRIORITY (C_RST_PRIORITY_B), .C_INIT_VAL (C_INITB_VAL), .C_HAS_EN (C_HAS_ENB), .C_HAS_REGCE (C_HAS_REGCEB), .C_DATA_WIDTH (C_READ_WIDTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS (C_HAS_MEM_OUTPUT_REGS_B), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .NUM_STAGES (NUM_OUTPUT_STAGES_B), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .FLOP_DELAY (FLOP_DELAY)) reg_b (.CLK (CLKB), .RST (rstb_outp_stage),//(RSTB), .EN (ENB), .REGCE (REGCEB), .DIN_I (memory_out_b), .DOUT (dout_i), .SBITERR_IN_I (sbiterr_in), .DBITERR_IN_I (dbiterr_in), .SBITERR (sbiterr_i), .DBITERR (dbiterr_i), .RDADDRECC_IN_I (rdaddrecc_in), .ECCPIPECE (ECCPIPECE), .RDADDRECC (rdaddrecc_i) ); //*************************************************************** // Instantiate the Input and Output register stages //*************************************************************** BLK_MEM_GEN_v8_2_softecc_output_reg_stage #(.C_DATA_WIDTH (C_READ_WIDTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_USE_SOFTECC (C_USE_SOFTECC), .FLOP_DELAY (FLOP_DELAY)) has_softecc_output_reg_stage (.CLK (CLKB), .DIN (dout_i), .DOUT (DOUTB), .SBITERR_IN (sbiterr_i), .DBITERR_IN (dbiterr_i), .SBITERR (sbiterr_sdp), .DBITERR (dbiterr_sdp), .RDADDRECC_IN (rdaddrecc_i), .RDADDRECC (rdaddrecc_sdp) ); //**************************************************** // Synchronous collision checks //**************************************************** // CR 780544 : To make verilog model's collison warnings in consistant with // vhdl model, the non-blocking assignments are replaced with blocking // assignments. generate if (!C_DISABLE_WARN_BHV_COLL && C_COMMON_CLK) begin : sync_coll always @(posedge CLKA) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision = 0; end end else begin is_collision = 0; end // If the write port is in READ_FIRST mode, there is no collision if (C_WRITE_MODE_A=="READ_FIRST" && wea_i && !web_i) begin is_collision = 0; end if (C_WRITE_MODE_B=="READ_FIRST" && web_i && !wea_i) begin is_collision = 0; end // Only flag if one of the accesses is a write if (is_collision && (wea_i || web_i)) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B %0s address: %0h\n", wea_i ? "write" : "read", ADDRA, web_i ? "write" : "read", ADDRB); end end //**************************************************** // Asynchronous collision checks //**************************************************** end else if (!C_DISABLE_WARN_BHV_COLL && !C_COMMON_CLK) begin : async_coll // Delay A and B addresses in order to mimic setup/hold times wire [C_ADDRA_WIDTH-1:0] #COLL_DELAY addra_delay = ADDRA; wire [0:0] #COLL_DELAY wea_delay = wea_i; wire #COLL_DELAY ena_delay = ena_i; wire [C_ADDRB_WIDTH-1:0] #COLL_DELAY addrb_delay = ADDRB; wire [0:0] #COLL_DELAY web_delay = web_i; wire #COLL_DELAY enb_delay = enb_i; // Do the checks w/rt A always @(posedge CLKA) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision_a = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision_a = 0; end end else begin is_collision_a = 0; end if (ena_i && enb_delay) begin if(wea_i || web_delay) begin is_collision_delay_a = collision_check(ADDRA, wea_i, addrb_delay, web_delay); end else begin is_collision_delay_a = 0; end end else begin is_collision_delay_a = 0; end // Only flag if B access is a write if (is_collision_a && web_i) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B write address: %0h\n", wea_i ? "write" : "read", ADDRA, ADDRB); end else if (is_collision_delay_a && web_delay) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A %0s address: %0h, B write address: %0h\n", wea_i ? "write" : "read", ADDRA, addrb_delay); end end // Do the checks w/rt B always @(posedge CLKB) begin // Possible collision if both are enabled and the addresses match if (ena_i && enb_i) begin if (wea_i || web_i) begin is_collision_b = collision_check(ADDRA, wea_i, ADDRB, web_i); end else begin is_collision_b = 0; end end else begin is_collision_b = 0; end if (ena_delay && enb_i) begin if (wea_delay || web_i) begin is_collision_delay_b = collision_check(addra_delay, wea_delay, ADDRB, web_i); end else begin is_collision_delay_b = 0; end end else begin is_collision_delay_b = 0; end // Only flag if A access is a write if (is_collision_b && wea_i) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A write address: %0h, B %s address: %0h\n", ADDRA, web_i ? "write" : "read", ADDRB); end else if (is_collision_delay_b && wea_delay) begin $fwrite(COLLFILE, "%0s collision detected at time: %0d, ", C_CORENAME, $time); $fwrite(COLLFILE, "A write address: %0h, B %s address: %0h\n", addra_delay, web_i ? "write" : "read", ADDRB); end end end endgenerate endmodule //***************************************************************************** // Top module wraps Input register and Memory module // // This module is the top-level behavioral model and this implements the memory // module and the input registers //***************************************************************************** module blk_mem_gen_v8_2 #(parameter C_CORENAME = "blk_mem_gen_v8_2", parameter C_FAMILY = "virtex7", parameter C_XDEVICEFAMILY = "virtex7", parameter C_ELABORATION_DIR = "", parameter C_INTERFACE_TYPE = 0, parameter C_USE_BRAM_BLOCK = 0, parameter C_CTRL_ECC_ALGO = "NONE", parameter C_ENABLE_32BIT_ADDRESS = 0, parameter C_AXI_TYPE = 0, parameter C_AXI_SLAVE_TYPE = 0, parameter C_HAS_AXI_ID = 0, parameter C_AXI_ID_WIDTH = 4, parameter C_MEM_TYPE = 2, parameter C_BYTE_SIZE = 9, parameter C_ALGORITHM = 1, parameter C_PRIM_TYPE = 3, parameter C_LOAD_INIT_FILE = 0, parameter C_INIT_FILE_NAME = "", parameter C_INIT_FILE = "", parameter C_USE_DEFAULT_DATA = 0, parameter C_DEFAULT_DATA = "0", //parameter C_RST_TYPE = "SYNC", parameter C_HAS_RSTA = 0, parameter C_RST_PRIORITY_A = "CE", parameter C_RSTRAM_A = 0, parameter C_INITA_VAL = "0", parameter C_HAS_ENA = 1, parameter C_HAS_REGCEA = 0, parameter C_USE_BYTE_WEA = 0, parameter C_WEA_WIDTH = 1, parameter C_WRITE_MODE_A = "WRITE_FIRST", parameter C_WRITE_WIDTH_A = 32, parameter C_READ_WIDTH_A = 32, parameter C_WRITE_DEPTH_A = 64, parameter C_READ_DEPTH_A = 64, parameter C_ADDRA_WIDTH = 5, parameter C_HAS_RSTB = 0, parameter C_RST_PRIORITY_B = "CE", parameter C_RSTRAM_B = 0, parameter C_INITB_VAL = "", parameter C_HAS_ENB = 1, parameter C_HAS_REGCEB = 0, parameter C_USE_BYTE_WEB = 0, parameter C_WEB_WIDTH = 1, parameter C_WRITE_MODE_B = "WRITE_FIRST", parameter C_WRITE_WIDTH_B = 32, parameter C_READ_WIDTH_B = 32, parameter C_WRITE_DEPTH_B = 64, parameter C_READ_DEPTH_B = 64, parameter C_ADDRB_WIDTH = 5, parameter C_HAS_MEM_OUTPUT_REGS_A = 0, parameter C_HAS_MEM_OUTPUT_REGS_B = 0, parameter C_HAS_MUX_OUTPUT_REGS_A = 0, parameter C_HAS_MUX_OUTPUT_REGS_B = 0, parameter C_HAS_SOFTECC_INPUT_REGS_A = 0, parameter C_HAS_SOFTECC_OUTPUT_REGS_B= 0, parameter C_MUX_PIPELINE_STAGES = 0, parameter C_USE_SOFTECC = 0, parameter C_USE_ECC = 0, parameter C_EN_ECC_PIPE = 0, parameter C_HAS_INJECTERR = 0, parameter C_SIM_COLLISION_CHECK = "NONE", parameter C_COMMON_CLK = 1, parameter C_DISABLE_WARN_BHV_COLL = 0, parameter C_EN_SLEEP_PIN = 0, parameter C_DISABLE_WARN_BHV_RANGE = 0, parameter C_COUNT_36K_BRAM = "", parameter C_COUNT_18K_BRAM = "", parameter C_EST_POWER_SUMMARY = "" ) (input clka, input rsta, input ena, input regcea, input [C_WEA_WIDTH-1:0] wea, input [C_ADDRA_WIDTH-1:0] addra, input [C_WRITE_WIDTH_A-1:0] dina, output [C_READ_WIDTH_A-1:0] douta, input clkb, input rstb, input enb, input regceb, input [C_WEB_WIDTH-1:0] web, input [C_ADDRB_WIDTH-1:0] addrb, input [C_WRITE_WIDTH_B-1:0] dinb, output [C_READ_WIDTH_B-1:0] doutb, input injectsbiterr, input injectdbiterr, output sbiterr, output dbiterr, output [C_ADDRB_WIDTH-1:0] rdaddrecc, input eccpipece, input sleep, //AXI BMG Input and Output Port Declarations //AXI Global Signals input s_aclk, input s_aresetn, //AXI Full/lite slave write (write side) input [C_AXI_ID_WIDTH-1:0] s_axi_awid, input [31:0] s_axi_awaddr, input [7:0] s_axi_awlen, input [2:0] s_axi_awsize, input [1:0] s_axi_awburst, input s_axi_awvalid, output s_axi_awready, input [C_WRITE_WIDTH_A-1:0] s_axi_wdata, input [C_WEA_WIDTH-1:0] s_axi_wstrb, input s_axi_wlast, input s_axi_wvalid, output s_axi_wready, output [C_AXI_ID_WIDTH-1:0] s_axi_bid, output [1:0] s_axi_bresp, output s_axi_bvalid, input s_axi_bready, //AXI Full/lite slave read (write side) input [C_AXI_ID_WIDTH-1:0] s_axi_arid, input [31:0] s_axi_araddr, input [7:0] s_axi_arlen, input [2:0] s_axi_arsize, input [1:0] s_axi_arburst, input s_axi_arvalid, output s_axi_arready, output [C_AXI_ID_WIDTH-1:0] s_axi_rid, output [C_WRITE_WIDTH_B-1:0] s_axi_rdata, output [1:0] s_axi_rresp, output s_axi_rlast, output s_axi_rvalid, input s_axi_rready, //AXI Full/lite sideband signals input s_axi_injectsbiterr, input s_axi_injectdbiterr, output s_axi_sbiterr, output s_axi_dbiterr, output [C_ADDRB_WIDTH-1:0] s_axi_rdaddrecc ); //****************************** // Port and Generic Definitions //****************************** ////////////////////////////////////////////////////////////////////////// // Generic Definitions ////////////////////////////////////////////////////////////////////////// // C_CORENAME : Instance name of the Block Memory Generator core // C_FAMILY,C_XDEVICEFAMILY: Designates architecture targeted. The following // options are available - "spartan3", "spartan6", // "virtex4", "virtex5", "virtex6" and "virtex6l". // C_MEM_TYPE : Designates memory type. // It can be // 0 - Single Port Memory // 1 - Simple Dual Port Memory // 2 - True Dual Port Memory // 3 - Single Port Read Only Memory // 4 - Dual Port Read Only Memory // C_BYTE_SIZE : Size of a byte (8 or 9 bits) // C_ALGORITHM : Designates the algorithm method used // for constructing the memory. // It can be Fixed_Primitives, Minimum_Area or // Low_Power // C_PRIM_TYPE : Designates the user selected primitive used to // construct the memory. // // C_LOAD_INIT_FILE : Designates the use of an initialization file to // initialize memory contents. // C_INIT_FILE_NAME : Memory initialization file name. // C_USE_DEFAULT_DATA : Designates whether to fill remaining // initialization space with default data // C_DEFAULT_DATA : Default value of all memory locations // not initialized by the memory // initialization file. // C_RST_TYPE : Type of reset - Synchronous or Asynchronous // C_HAS_RSTA : Determines the presence of the RSTA port // C_RST_PRIORITY_A : Determines the priority between CE and SR for // Port A. // C_RSTRAM_A : Determines if special reset behavior is used for // Port A // C_INITA_VAL : The initialization value for Port A // C_HAS_ENA : Determines the presence of the ENA port // C_HAS_REGCEA : Determines the presence of the REGCEA port // C_USE_BYTE_WEA : Determines if the Byte Write is used or not. // C_WEA_WIDTH : The width of the WEA port // C_WRITE_MODE_A : Configurable write mode for Port A. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_A : Memory write width for Port A. // C_READ_WIDTH_A : Memory read width for Port A. // C_WRITE_DEPTH_A : Memory write depth for Port A. // C_READ_DEPTH_A : Memory read depth for Port A. // C_ADDRA_WIDTH : Width of the ADDRA input port // C_HAS_RSTB : Determines the presence of the RSTB port // C_RST_PRIORITY_B : Determines the priority between CE and SR for // Port B. // C_RSTRAM_B : Determines if special reset behavior is used for // Port B // C_INITB_VAL : The initialization value for Port B // C_HAS_ENB : Determines the presence of the ENB port // C_HAS_REGCEB : Determines the presence of the REGCEB port // C_USE_BYTE_WEB : Determines if the Byte Write is used or not. // C_WEB_WIDTH : The width of the WEB port // C_WRITE_MODE_B : Configurable write mode for Port B. It can be // WRITE_FIRST, READ_FIRST or NO_CHANGE. // C_WRITE_WIDTH_B : Memory write width for Port B. // C_READ_WIDTH_B : Memory read width for Port B. // C_WRITE_DEPTH_B : Memory write depth for Port B. // C_READ_DEPTH_B : Memory read depth for Port B. // C_ADDRB_WIDTH : Width of the ADDRB input port // C_HAS_MEM_OUTPUT_REGS_A : Designates the use of a register at the output // of the RAM primitive for Port A. // C_HAS_MEM_OUTPUT_REGS_B : Designates the use of a register at the output // of the RAM primitive for Port B. // C_HAS_MUX_OUTPUT_REGS_A : Designates the use of a register at the output // of the MUX for Port A. // C_HAS_MUX_OUTPUT_REGS_B : Designates the use of a register at the output // of the MUX for Port B. // C_HAS_SOFTECC_INPUT_REGS_A : // C_HAS_SOFTECC_OUTPUT_REGS_B : // C_MUX_PIPELINE_STAGES : Designates the number of pipeline stages in // between the muxes. // C_USE_SOFTECC : Determines if the Soft ECC feature is used or // not. Only applicable Spartan-6 // C_USE_ECC : Determines if the ECC feature is used or // not. Only applicable for V5 and V6 // C_HAS_INJECTERR : Determines if the error injection pins // are present or not. If the ECC feature // is not used, this value is defaulted to // 0, else the following are the allowed // values: // 0 : No INJECTSBITERR or INJECTDBITERR pins // 1 : Only INJECTSBITERR pin exists // 2 : Only INJECTDBITERR pin exists // 3 : Both INJECTSBITERR and INJECTDBITERR pins exist // C_SIM_COLLISION_CHECK : Controls the disabling of Unisim model collision // warnings. It can be "ALL", "NONE", // "Warnings_Only" or "Generate_X_Only". // C_COMMON_CLK : Determins if the core has a single CLK input. // C_DISABLE_WARN_BHV_COLL : Controls the Behavioral Model Collision warnings // C_DISABLE_WARN_BHV_RANGE: Controls the Behavioral Model Out of Range // warnings ////////////////////////////////////////////////////////////////////////// // Port Definitions ////////////////////////////////////////////////////////////////////////// // CLKA : Clock to synchronize all read and write operations of Port A. // RSTA : Reset input to reset memory outputs to a user-defined // reset state for Port A. // ENA : Enable all read and write operations of Port A. // REGCEA : Register Clock Enable to control each pipeline output // register stages for Port A. // WEA : Write Enable to enable all write operations of Port A. // ADDRA : Address of Port A. // DINA : Data input of Port A. // DOUTA : Data output of Port A. // CLKB : Clock to synchronize all read and write operations of Port B. // RSTB : Reset input to reset memory outputs to a user-defined // reset state for Port B. // ENB : Enable all read and write operations of Port B. // REGCEB : Register Clock Enable to control each pipeline output // register stages for Port B. // WEB : Write Enable to enable all write operations of Port B. // ADDRB : Address of Port B. // DINB : Data input of Port B. // DOUTB : Data output of Port B. // INJECTSBITERR : Single Bit ECC Error Injection Pin. // INJECTDBITERR : Double Bit ECC Error Injection Pin. // SBITERR : Output signal indicating that a Single Bit ECC Error has been // detected and corrected. // DBITERR : Output signal indicating that a Double Bit ECC Error has been // detected. // RDADDRECC : Read Address Output signal indicating address at which an // ECC error has occurred. ////////////////////////////////////////////////////////////////////////// wire SBITERR; wire DBITERR; wire S_AXI_AWREADY; wire S_AXI_WREADY; wire S_AXI_BVALID; wire S_AXI_ARREADY; wire S_AXI_RLAST; wire S_AXI_RVALID; wire S_AXI_SBITERR; wire S_AXI_DBITERR; wire [C_WEA_WIDTH-1:0] WEA = wea; wire [C_ADDRA_WIDTH-1:0] ADDRA = addra; wire [C_WRITE_WIDTH_A-1:0] DINA = dina; wire [C_READ_WIDTH_A-1:0] DOUTA; wire [C_WEB_WIDTH-1:0] WEB = web; wire [C_ADDRB_WIDTH-1:0] ADDRB = addrb; wire [C_WRITE_WIDTH_B-1:0] DINB = dinb; wire [C_READ_WIDTH_B-1:0] DOUTB; wire [C_ADDRB_WIDTH-1:0] RDADDRECC; wire [C_AXI_ID_WIDTH-1:0] S_AXI_AWID = s_axi_awid; wire [31:0] S_AXI_AWADDR = s_axi_awaddr; wire [7:0] S_AXI_AWLEN = s_axi_awlen; wire [2:0] S_AXI_AWSIZE = s_axi_awsize; wire [1:0] S_AXI_AWBURST = s_axi_awburst; wire [C_WRITE_WIDTH_A-1:0] S_AXI_WDATA = s_axi_wdata; wire [C_WEA_WIDTH-1:0] S_AXI_WSTRB = s_axi_wstrb; wire [C_AXI_ID_WIDTH-1:0] S_AXI_BID; wire [1:0] S_AXI_BRESP; wire [C_AXI_ID_WIDTH-1:0] S_AXI_ARID = s_axi_arid; wire [31:0] S_AXI_ARADDR = s_axi_araddr; wire [7:0] S_AXI_ARLEN = s_axi_arlen; wire [2:0] S_AXI_ARSIZE = s_axi_arsize; wire [1:0] S_AXI_ARBURST = s_axi_arburst; wire [C_AXI_ID_WIDTH-1:0] S_AXI_RID; wire [C_WRITE_WIDTH_B-1:0] S_AXI_RDATA; wire [1:0] S_AXI_RRESP; wire [C_ADDRB_WIDTH-1:0] S_AXI_RDADDRECC; // Added to fix the simulation warning #CR731605 wire [C_WEB_WIDTH-1:0] WEB_parameterized = 0; wire ECCPIPECE; wire SLEEP; assign CLKA = clka; assign RSTA = rsta; assign ENA = ena; assign REGCEA = regcea; assign CLKB = clkb; assign RSTB = rstb; assign ENB = enb; assign REGCEB = regceb; assign INJECTSBITERR = injectsbiterr; assign INJECTDBITERR = injectdbiterr; assign ECCPIPECE = eccpipece; assign SLEEP = sleep; assign sbiterr = SBITERR; assign dbiterr = DBITERR; assign S_ACLK = s_aclk; assign S_ARESETN = s_aresetn; assign S_AXI_AWVALID = s_axi_awvalid; assign s_axi_awready = S_AXI_AWREADY; assign S_AXI_WLAST = s_axi_wlast; assign S_AXI_WVALID = s_axi_wvalid; assign s_axi_wready = S_AXI_WREADY; assign s_axi_bvalid = S_AXI_BVALID; assign S_AXI_BREADY = s_axi_bready; assign S_AXI_ARVALID = s_axi_arvalid; assign s_axi_arready = S_AXI_ARREADY; assign s_axi_rlast = S_AXI_RLAST; assign s_axi_rvalid = S_AXI_RVALID; assign S_AXI_RREADY = s_axi_rready; assign S_AXI_INJECTSBITERR = s_axi_injectsbiterr; assign S_AXI_INJECTDBITERR = s_axi_injectdbiterr; assign s_axi_sbiterr = S_AXI_SBITERR; assign s_axi_dbiterr = S_AXI_DBITERR; assign doutb = DOUTB; assign douta = DOUTA; assign rdaddrecc = RDADDRECC; assign s_axi_bid = S_AXI_BID; assign s_axi_bresp = S_AXI_BRESP; assign s_axi_rid = S_AXI_RID; assign s_axi_rdata = S_AXI_RDATA; assign s_axi_rresp = S_AXI_RRESP; assign s_axi_rdaddrecc = S_AXI_RDADDRECC; localparam FLOP_DELAY = 100; // 100 ps reg injectsbiterr_in; reg injectdbiterr_in; reg rsta_in; reg ena_in; reg regcea_in; reg [C_WEA_WIDTH-1:0] wea_in; reg [C_ADDRA_WIDTH-1:0] addra_in; reg [C_WRITE_WIDTH_A-1:0] dina_in; wire [C_ADDRA_WIDTH-1:0] s_axi_awaddr_out_c; wire [C_ADDRB_WIDTH-1:0] s_axi_araddr_out_c; wire s_axi_wr_en_c; wire s_axi_rd_en_c; wire s_aresetn_a_c; wire [7:0] s_axi_arlen_c ; wire [C_AXI_ID_WIDTH-1 : 0] s_axi_rid_c; wire [C_WRITE_WIDTH_B-1 : 0] s_axi_rdata_c; wire [1:0] s_axi_rresp_c; wire s_axi_rlast_c; wire s_axi_rvalid_c; wire s_axi_rready_c; wire regceb_c; localparam C_AXI_PAYLOAD = (C_HAS_MUX_OUTPUT_REGS_B == 1)?C_WRITE_WIDTH_B+C_AXI_ID_WIDTH+3:C_AXI_ID_WIDTH+3; wire [C_AXI_PAYLOAD-1 : 0] s_axi_payload_c; wire [C_AXI_PAYLOAD-1 : 0] m_axi_payload_c; //************** // log2roundup //************** function integer log2roundup (input integer data_value); integer width; integer cnt; begin width = 0; if (data_value > 1) begin for(cnt=1 ; cnt < data_value ; cnt = cnt * 2) begin width = width + 1; end //loop end //if log2roundup = width; end //log2roundup endfunction //************** // log2int //************** function integer log2int (input integer data_value); integer width; integer cnt; begin width = 0; cnt= data_value; for(cnt=data_value ; cnt >1 ; cnt = cnt / 2) begin width = width + 1; end //loop log2int = width; end //log2int endfunction //************************************************************************** // FUNCTION : divroundup // Returns the ceiling value of the division // Data_value - the quantity to be divided, dividend // Divisor - the value to divide the data_value by //************************************************************************** function integer divroundup (input integer data_value,input integer divisor); integer div; begin div = data_value/divisor; if ((data_value % divisor) != 0) begin div = div+1; end //if divroundup = div; end //if endfunction localparam AXI_FULL_MEMORY_SLAVE = ((C_AXI_SLAVE_TYPE == 0 && C_AXI_TYPE == 1)?1:0); localparam C_AXI_ADDR_WIDTH_MSB = C_ADDRA_WIDTH+log2roundup(C_WRITE_WIDTH_A/8); localparam C_AXI_ADDR_WIDTH = C_AXI_ADDR_WIDTH_MSB; //Data Width Number of LSB address bits to be discarded //1 to 16 1 //17 to 32 2 //33 to 64 3 //65 to 128 4 //129 to 256 5 //257 to 512 6 //513 to 1024 7 // The following two constants determine this. localparam LOWER_BOUND_VAL = (log2roundup(divroundup(C_WRITE_WIDTH_A,8) == 0))?0:(log2roundup(divroundup(C_WRITE_WIDTH_A,8))); localparam C_AXI_ADDR_WIDTH_LSB = ((AXI_FULL_MEMORY_SLAVE == 1)?0:LOWER_BOUND_VAL); localparam C_AXI_OS_WR = 2; //*********************************************** // INPUT REGISTERS. //*********************************************** generate if (C_HAS_SOFTECC_INPUT_REGS_A==0) begin : no_softecc_input_reg_stage always @* begin injectsbiterr_in = INJECTSBITERR; injectdbiterr_in = INJECTDBITERR; rsta_in = RSTA; ena_in = ENA; regcea_in = REGCEA; wea_in = WEA; addra_in = ADDRA; dina_in = DINA; end //end always end //end no_softecc_input_reg_stage endgenerate generate if (C_HAS_SOFTECC_INPUT_REGS_A==1) begin : has_softecc_input_reg_stage always @(posedge CLKA) begin injectsbiterr_in <= #FLOP_DELAY INJECTSBITERR; injectdbiterr_in <= #FLOP_DELAY INJECTDBITERR; rsta_in <= #FLOP_DELAY RSTA; ena_in <= #FLOP_DELAY ENA; regcea_in <= #FLOP_DELAY REGCEA; wea_in <= #FLOP_DELAY WEA; addra_in <= #FLOP_DELAY ADDRA; dina_in <= #FLOP_DELAY DINA; end //end always end //end input_reg_stages generate statement endgenerate generate if ((C_INTERFACE_TYPE == 0) && (C_ENABLE_32BIT_ADDRESS == 0)) begin : native_mem_module BLK_MEM_GEN_v8_2_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_ALGORITHM (C_ALGORITHM), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (C_HAS_ENA), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (C_USE_BYTE_WEA), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (C_HAS_ENB), .C_HAS_REGCEB (C_HAS_REGCEB), .C_USE_BYTE_WEB (C_USE_BYTE_WEB), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS_A (C_HAS_MEM_OUTPUT_REGS_A), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (C_HAS_MUX_OUTPUT_REGS_A), .C_HAS_MUX_OUTPUT_REGS_B (C_HAS_MUX_OUTPUT_REGS_B), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_2_inst (.CLKA (CLKA), .RSTA (rsta_in), .ENA (ena_in), .REGCEA (regcea_in), .WEA (wea_in), .ADDRA (addra_in), .DINA (dina_in), .DOUTA (DOUTA), .CLKB (CLKB), .RSTB (RSTB), .ENB (ENB), .REGCEB (REGCEB), .WEB (WEB), .ADDRB (ADDRB), .DINB (DINB), .DOUTB (DOUTB), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .ECCPIPECE (ECCPIPECE), .SLEEP (SLEEP), .SBITERR (SBITERR), .DBITERR (DBITERR), .RDADDRECC (RDADDRECC) ); end endgenerate generate if((C_INTERFACE_TYPE == 0) && (C_ENABLE_32BIT_ADDRESS == 1)) begin : native_mem_mapped_module localparam C_ADDRA_WIDTH_ACTUAL = log2roundup(C_WRITE_DEPTH_A); localparam C_ADDRB_WIDTH_ACTUAL = log2roundup(C_WRITE_DEPTH_B); localparam C_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_ACTUAL+log2int(C_WRITE_WIDTH_A/8); localparam C_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_ACTUAL+log2int(C_WRITE_WIDTH_B/8); // localparam C_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_ACTUAL+log2roundup(C_WRITE_WIDTH_A/8); // localparam C_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_ACTUAL+log2roundup(C_WRITE_WIDTH_B/8); localparam C_MEM_MAP_ADDRA_WIDTH_MSB = C_ADDRA_WIDTH_MSB; localparam C_MEM_MAP_ADDRB_WIDTH_MSB = C_ADDRB_WIDTH_MSB; // Data Width Number of LSB address bits to be discarded // 1 to 16 1 // 17 to 32 2 // 33 to 64 3 // 65 to 128 4 // 129 to 256 5 // 257 to 512 6 // 513 to 1024 7 // The following two constants determine this. localparam MEM_MAP_LOWER_BOUND_VAL_A = (log2int(divroundup(C_WRITE_WIDTH_A,8)==0)) ? 0:(log2int(divroundup(C_WRITE_WIDTH_A,8))); localparam MEM_MAP_LOWER_BOUND_VAL_B = (log2int(divroundup(C_WRITE_WIDTH_A,8)==0)) ? 0:(log2int(divroundup(C_WRITE_WIDTH_A,8))); localparam C_MEM_MAP_ADDRA_WIDTH_LSB = MEM_MAP_LOWER_BOUND_VAL_A; localparam C_MEM_MAP_ADDRB_WIDTH_LSB = MEM_MAP_LOWER_BOUND_VAL_B; wire [C_ADDRB_WIDTH_ACTUAL-1 :0] rdaddrecc_i; wire [C_ADDRB_WIDTH-1:C_MEM_MAP_ADDRB_WIDTH_MSB] msb_zero_i; wire [C_MEM_MAP_ADDRB_WIDTH_LSB-1:0] lsb_zero_i; assign msb_zero_i = 0; assign lsb_zero_i = 0; assign RDADDRECC = {msb_zero_i,rdaddrecc_i,lsb_zero_i}; BLK_MEM_GEN_v8_2_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_ALGORITHM (C_ALGORITHM), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (C_HAS_ENA), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (C_USE_BYTE_WEA), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH_ACTUAL), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (C_HAS_ENB), .C_HAS_REGCEB (C_HAS_REGCEB), .C_USE_BYTE_WEB (C_USE_BYTE_WEB), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH_ACTUAL), .C_HAS_MEM_OUTPUT_REGS_A (C_HAS_MEM_OUTPUT_REGS_A), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (C_HAS_MUX_OUTPUT_REGS_A), .C_HAS_MUX_OUTPUT_REGS_B (C_HAS_MUX_OUTPUT_REGS_B), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (C_EN_ECC_PIPE), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_2_inst (.CLKA (CLKA), .RSTA (rsta_in), .ENA (ena_in), .REGCEA (regcea_in), .WEA (wea_in), .ADDRA (addra_in[C_MEM_MAP_ADDRA_WIDTH_MSB-1:C_MEM_MAP_ADDRA_WIDTH_LSB]), .DINA (dina_in), .DOUTA (DOUTA), .CLKB (CLKB), .RSTB (RSTB), .ENB (ENB), .REGCEB (REGCEB), .WEB (WEB), .ADDRB (ADDRB[C_MEM_MAP_ADDRB_WIDTH_MSB-1:C_MEM_MAP_ADDRB_WIDTH_LSB]), .DINB (DINB), .DOUTB (DOUTB), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .ECCPIPECE (ECCPIPECE), .SLEEP (SLEEP), .SBITERR (SBITERR), .DBITERR (DBITERR), .RDADDRECC (rdaddrecc_i) ); end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 0 && C_HAS_MUX_OUTPUT_REGS_B == 0 ) begin : no_regs assign S_AXI_RDATA = s_axi_rdata_c; assign S_AXI_RLAST = s_axi_rlast_c; assign S_AXI_RVALID = s_axi_rvalid_c; assign S_AXI_RID = s_axi_rid_c; assign S_AXI_RRESP = s_axi_rresp_c; assign s_axi_rready_c = S_AXI_RREADY; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 1) begin : has_regceb assign regceb_c = s_axi_rvalid_c && s_axi_rready_c; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 0) begin : no_regceb assign regceb_c = REGCEB; end endgenerate generate if (C_HAS_MUX_OUTPUT_REGS_B == 1) begin : only_core_op_regs assign s_axi_payload_c = {s_axi_rid_c,s_axi_rdata_c,s_axi_rresp_c,s_axi_rlast_c}; assign S_AXI_RID = m_axi_payload_c[C_AXI_PAYLOAD-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH]; assign S_AXI_RDATA = m_axi_payload_c[C_AXI_PAYLOAD-C_AXI_ID_WIDTH-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH-C_WRITE_WIDTH_B]; assign S_AXI_RRESP = m_axi_payload_c[2:1]; assign S_AXI_RLAST = m_axi_payload_c[0]; end endgenerate generate if (C_HAS_MEM_OUTPUT_REGS_B == 1) begin : only_emb_op_regs assign s_axi_payload_c = {s_axi_rid_c,s_axi_rresp_c,s_axi_rlast_c}; assign S_AXI_RDATA = s_axi_rdata_c; assign S_AXI_RID = m_axi_payload_c[C_AXI_PAYLOAD-1 : C_AXI_PAYLOAD-C_AXI_ID_WIDTH]; assign S_AXI_RRESP = m_axi_payload_c[2:1]; assign S_AXI_RLAST = m_axi_payload_c[0]; end endgenerate generate if (C_HAS_MUX_OUTPUT_REGS_B == 1 || C_HAS_MEM_OUTPUT_REGS_B == 1) begin : has_regs_fwd blk_mem_axi_regs_fwd_v8_2 #(.C_DATA_WIDTH (C_AXI_PAYLOAD)) axi_regs_inst ( .ACLK (S_ACLK), .ARESET (s_aresetn_a_c), .S_VALID (s_axi_rvalid_c), .S_READY (s_axi_rready_c), .S_PAYLOAD_DATA (s_axi_payload_c), .M_VALID (S_AXI_RVALID), .M_READY (S_AXI_RREADY), .M_PAYLOAD_DATA (m_axi_payload_c) ); end endgenerate generate if (C_INTERFACE_TYPE == 1) begin : axi_mem_module assign s_aresetn_a_c = !S_ARESETN; assign S_AXI_BRESP = 2'b00; assign s_axi_rresp_c = 2'b00; assign s_axi_arlen_c = (C_AXI_TYPE == 1)?S_AXI_ARLEN:8'h0; blk_mem_axi_write_wrapper_beh_v8_2 #(.C_INTERFACE_TYPE (C_INTERFACE_TYPE), .C_AXI_TYPE (C_AXI_TYPE), .C_AXI_SLAVE_TYPE (C_AXI_SLAVE_TYPE), .C_MEMORY_TYPE (C_MEM_TYPE), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_AXI_AWADDR_WIDTH ((AXI_FULL_MEMORY_SLAVE == 1)?C_AXI_ADDR_WIDTH:C_AXI_ADDR_WIDTH-C_AXI_ADDR_WIDTH_LSB), .C_HAS_AXI_ID (C_HAS_AXI_ID), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_AXI_WDATA_WIDTH (C_WRITE_WIDTH_A), .C_AXI_OS_WR (C_AXI_OS_WR)) axi_wr_fsm ( // AXI Global Signals .S_ACLK (S_ACLK), .S_ARESETN (s_aresetn_a_c), // AXI Full/Lite Slave Write interface .S_AXI_AWADDR (S_AXI_AWADDR[C_AXI_ADDR_WIDTH_MSB-1:C_AXI_ADDR_WIDTH_LSB]), .S_AXI_AWLEN (S_AXI_AWLEN), .S_AXI_AWID (S_AXI_AWID), .S_AXI_AWSIZE (S_AXI_AWSIZE), .S_AXI_AWBURST (S_AXI_AWBURST), .S_AXI_AWVALID (S_AXI_AWVALID), .S_AXI_AWREADY (S_AXI_AWREADY), .S_AXI_WVALID (S_AXI_WVALID), .S_AXI_WREADY (S_AXI_WREADY), .S_AXI_BVALID (S_AXI_BVALID), .S_AXI_BREADY (S_AXI_BREADY), .S_AXI_BID (S_AXI_BID), // Signals for BRAM interfac( .S_AXI_AWADDR_OUT (s_axi_awaddr_out_c), .S_AXI_WR_EN (s_axi_wr_en_c) ); blk_mem_axi_read_wrapper_beh_v8_2 #(.C_INTERFACE_TYPE (C_INTERFACE_TYPE), .C_AXI_TYPE (C_AXI_TYPE), .C_AXI_SLAVE_TYPE (C_AXI_SLAVE_TYPE), .C_MEMORY_TYPE (C_MEM_TYPE), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_AXI_PIPELINE_STAGES (1), .C_AXI_ARADDR_WIDTH ((AXI_FULL_MEMORY_SLAVE == 1)?C_AXI_ADDR_WIDTH:C_AXI_ADDR_WIDTH-C_AXI_ADDR_WIDTH_LSB), .C_HAS_AXI_ID (C_HAS_AXI_ID), .C_AXI_ID_WIDTH (C_AXI_ID_WIDTH), .C_ADDRB_WIDTH (C_ADDRB_WIDTH)) axi_rd_sm( //AXI Global Signals .S_ACLK (S_ACLK), .S_ARESETN (s_aresetn_a_c), //AXI Full/Lite Read Side .S_AXI_ARADDR (S_AXI_ARADDR[C_AXI_ADDR_WIDTH_MSB-1:C_AXI_ADDR_WIDTH_LSB]), .S_AXI_ARLEN (s_axi_arlen_c), .S_AXI_ARSIZE (S_AXI_ARSIZE), .S_AXI_ARBURST (S_AXI_ARBURST), .S_AXI_ARVALID (S_AXI_ARVALID), .S_AXI_ARREADY (S_AXI_ARREADY), .S_AXI_RLAST (s_axi_rlast_c), .S_AXI_RVALID (s_axi_rvalid_c), .S_AXI_RREADY (s_axi_rready_c), .S_AXI_ARID (S_AXI_ARID), .S_AXI_RID (s_axi_rid_c), //AXI Full/Lite Read FSM Outputs .S_AXI_ARADDR_OUT (s_axi_araddr_out_c), .S_AXI_RD_EN (s_axi_rd_en_c) ); BLK_MEM_GEN_v8_2_mem_module #(.C_CORENAME (C_CORENAME), .C_FAMILY (C_FAMILY), .C_XDEVICEFAMILY (C_XDEVICEFAMILY), .C_MEM_TYPE (C_MEM_TYPE), .C_BYTE_SIZE (C_BYTE_SIZE), .C_USE_BRAM_BLOCK (C_USE_BRAM_BLOCK), .C_ALGORITHM (C_ALGORITHM), .C_PRIM_TYPE (C_PRIM_TYPE), .C_LOAD_INIT_FILE (C_LOAD_INIT_FILE), .C_INIT_FILE_NAME (C_INIT_FILE_NAME), .C_INIT_FILE (C_INIT_FILE), .C_USE_DEFAULT_DATA (C_USE_DEFAULT_DATA), .C_DEFAULT_DATA (C_DEFAULT_DATA), .C_RST_TYPE ("SYNC"), .C_HAS_RSTA (C_HAS_RSTA), .C_RST_PRIORITY_A (C_RST_PRIORITY_A), .C_RSTRAM_A (C_RSTRAM_A), .C_INITA_VAL (C_INITA_VAL), .C_HAS_ENA (1), .C_HAS_REGCEA (C_HAS_REGCEA), .C_USE_BYTE_WEA (1), .C_WEA_WIDTH (C_WEA_WIDTH), .C_WRITE_MODE_A (C_WRITE_MODE_A), .C_WRITE_WIDTH_A (C_WRITE_WIDTH_A), .C_READ_WIDTH_A (C_READ_WIDTH_A), .C_WRITE_DEPTH_A (C_WRITE_DEPTH_A), .C_READ_DEPTH_A (C_READ_DEPTH_A), .C_ADDRA_WIDTH (C_ADDRA_WIDTH), .C_HAS_RSTB (C_HAS_RSTB), .C_RST_PRIORITY_B (C_RST_PRIORITY_B), .C_RSTRAM_B (C_RSTRAM_B), .C_INITB_VAL (C_INITB_VAL), .C_HAS_ENB (1), .C_HAS_REGCEB (C_HAS_MEM_OUTPUT_REGS_B), .C_USE_BYTE_WEB (1), .C_WEB_WIDTH (C_WEB_WIDTH), .C_WRITE_MODE_B (C_WRITE_MODE_B), .C_WRITE_WIDTH_B (C_WRITE_WIDTH_B), .C_READ_WIDTH_B (C_READ_WIDTH_B), .C_WRITE_DEPTH_B (C_WRITE_DEPTH_B), .C_READ_DEPTH_B (C_READ_DEPTH_B), .C_ADDRB_WIDTH (C_ADDRB_WIDTH), .C_HAS_MEM_OUTPUT_REGS_A (0), .C_HAS_MEM_OUTPUT_REGS_B (C_HAS_MEM_OUTPUT_REGS_B), .C_HAS_MUX_OUTPUT_REGS_A (0), .C_HAS_MUX_OUTPUT_REGS_B (0), .C_HAS_SOFTECC_INPUT_REGS_A (C_HAS_SOFTECC_INPUT_REGS_A), .C_HAS_SOFTECC_OUTPUT_REGS_B (C_HAS_SOFTECC_OUTPUT_REGS_B), .C_MUX_PIPELINE_STAGES (C_MUX_PIPELINE_STAGES), .C_USE_SOFTECC (C_USE_SOFTECC), .C_USE_ECC (C_USE_ECC), .C_HAS_INJECTERR (C_HAS_INJECTERR), .C_SIM_COLLISION_CHECK (C_SIM_COLLISION_CHECK), .C_COMMON_CLK (C_COMMON_CLK), .FLOP_DELAY (FLOP_DELAY), .C_DISABLE_WARN_BHV_COLL (C_DISABLE_WARN_BHV_COLL), .C_EN_ECC_PIPE (0), .C_DISABLE_WARN_BHV_RANGE (C_DISABLE_WARN_BHV_RANGE)) blk_mem_gen_v8_2_inst (.CLKA (S_ACLK), .RSTA (s_aresetn_a_c), .ENA (s_axi_wr_en_c), .REGCEA (regcea_in), .WEA (S_AXI_WSTRB), .ADDRA (s_axi_awaddr_out_c), .DINA (S_AXI_WDATA), .DOUTA (DOUTA), .CLKB (S_ACLK), .RSTB (s_aresetn_a_c), .ENB (s_axi_rd_en_c), .REGCEB (regceb_c), .WEB (WEB_parameterized), .ADDRB (s_axi_araddr_out_c), .DINB (DINB), .DOUTB (s_axi_rdata_c), .INJECTSBITERR (injectsbiterr_in), .INJECTDBITERR (injectdbiterr_in), .SBITERR (SBITERR), .DBITERR (DBITERR), .ECCPIPECE (1'b0), .SLEEP (1'b0), .RDADDRECC (RDADDRECC) ); end endgenerate endmodule
/* Legal Notice: (C)2009 Altera Corporation. All rights reserved. Your use of Altera Corporation's design tools, logic functions and other software and tools, and its AMPP partner logic functions, and any output files any of the foregoing (including device programming or simulation files), and any associated documentation or information are expressly subject to the terms and conditions of the Altera Program License Subscription Agreement or other applicable license agreement, including, without limitation, that your use is for the sole purpose of programming logic devices manufactured by Altera and sold by Altera or its authorized distributors. Please refer to the applicable agreement for further details. */ /* Author: JCJB Date: 06/23/2009 Version 2.1 This logic recieves Avalon Memory Mapped read data and translates it into the Avalon Streaming format. The ST format requires all data to be packed until the final transfer when packet support is enabled. As a result when you enable unaligned acceses the data from two sucessive reads must be combined to form a single word of data. If you disable packet support and unaligned access support this block will synthesize into wires. This block does not provide any read throttling as it simply acts as a format adapter between the read master port and the read master FIFO. All throttling should be provided by the read master to prevent overflow. Since this logic sits on the MM side of the FIFO the bytes are in 'little endian' format and will get swapped around on the other side of the FIFO (symbol size can be adjusted there too). Revision History: 1.0 Initial version 2.0 Removed 'bytes_to_next_boundary' and using the address and length signals instead to determine how much out of alignment the master begins. 2.1 Changed the extra last access logic to be based on the descriptor address and length as apposed to the counter values. Created a new 'length_counter' input to determine when the last read has arrived. */ // synthesis translate_off `timescale 1ns / 1ps // synthesis translate_on // turn off superfluous verilog processor warnings // altera message_level Level1 // altera message_off 10034 10035 10036 10037 10230 10240 10030 module MM_to_ST_Adapter ( clk, reset, length, length_counter, address, reads_pending, start, readdata, readdatavalid, fifo_data, fifo_write, fifo_empty, fifo_sop, fifo_eop ); parameter DATA_WIDTH = 32; // 8, 16, 32, 64, 128, or 256 are valid values (if 8 is used then disable unaligned accesses and turn on full word only accesses) parameter LENGTH_WIDTH = 32; parameter ADDRESS_WIDTH = 32; parameter BYTE_ADDRESS_WIDTH = 2; // log2(DATA_WIDTH/8) parameter READS_PENDING_WIDTH = 5; parameter EMPTY_WIDTH = 2; // log2(DATA_WIDTH/8) parameter PACKET_SUPPORT = 1; // when set to 1 eop, sop, and empty will be driven, otherwise they will be grounded // only set one of these at a time parameter UNALIGNED_ACCESS_ENABLE = 1; // when set to 1 this block will support packets and starting/ending on any boundary, do not use this if DATA_WIDTH is 8 (use 'FULL_WORD_ACCESS_ONLY') parameter FULL_WORD_ACCESS_ONLY = 0; // when set to 1 this block will assume only full words are arriving (must start and stop on a word boundary). input clk; input reset; input [LENGTH_WIDTH-1:0] length; input [LENGTH_WIDTH-1:0] length_counter; input [ADDRESS_WIDTH-1:0] address; input [READS_PENDING_WIDTH-1:0] reads_pending; input start; // one cycle strobe at the start of a transfer used to capture bytes_to_transfer input [DATA_WIDTH-1:0] readdata; input readdatavalid; output wire [DATA_WIDTH-1:0] fifo_data; output wire fifo_write; output wire [EMPTY_WIDTH-1:0] fifo_empty; output wire fifo_sop; output wire fifo_eop; // internal registers and wires reg [DATA_WIDTH-1:0] readdata_d1; reg readdatavalid_d1; wire [DATA_WIDTH-1:0] data_in; // data_in will either be readdata or a pipelined copy of readdata depending on whether unaligned access support is enabled wire valid_in; // valid in will either be readdatavalid or a pipelined copy of readdatavalid depending on whether unaligned access support is enabled reg valid_in_d1; wire [DATA_WIDTH-1:0] barrelshifter_A; // shifted current read data wire [DATA_WIDTH-1:0] barrelshifter_B; reg [DATA_WIDTH-1:0] barrelshifter_B_d1; // shifted previously read data wire [DATA_WIDTH-1:0] combined_word; // bitwise OR between barrelshifter_A and barrelshifter_B (each has zero padding so that bytelanes don't overlap) wire [DATA_WIDTH-1:0] barrelshifter_input_A [0:((DATA_WIDTH/8)-1)]; // will be used to create barrelshifter_A inputs wire [DATA_WIDTH-1:0] barrelshifter_input_B [0:((DATA_WIDTH/8)-1)]; // will be used to create barrelshifter_B inputs wire extra_access_enable; reg extra_access; wire last_unaligned_fifo_write; reg first_access_seen; reg second_access_seen; wire first_access_seen_rising_edge; wire second_access_seen_rising_edge; reg [BYTE_ADDRESS_WIDTH-1:0] byte_address; reg [EMPTY_WIDTH-1:0] last_empty; // only the last word written into the FIFO can have empty bytes reg start_and_end_same_cycle; // when the amount of data to transfer is only a full word or less generate if (UNALIGNED_ACCESS_ENABLE == 1) // unaligned so using a pipelined input begin assign data_in = readdata_d1; assign valid_in = readdatavalid_d1; end else begin assign data_in = readdata; // no barrelshifters in this case so pipelining is not necessary assign valid_in = readdatavalid; end endgenerate always @ (posedge clk or posedge reset) begin if (reset) begin readdata_d1 <= 0; end else begin if (readdatavalid == 1) begin readdata_d1 <= readdata; end end end always @ (posedge clk or posedge reset) begin if (reset) begin readdatavalid_d1 <= 0; valid_in_d1 <= 0; end else begin readdatavalid_d1 <= readdatavalid; valid_in_d1 <= valid_in; // used to flush the pipeline (extra fifo write) and prolong eop for one additional clock cycle end end always @ (posedge clk or posedge reset) begin if (reset == 1) begin barrelshifter_B_d1 <= 0; end else begin if (valid_in == 1) begin barrelshifter_B_d1 <= barrelshifter_B; end end end always @ (posedge clk or posedge reset) begin if (reset) begin first_access_seen <= 0; end else begin if (start == 1) begin first_access_seen <= 0; end else if (valid_in == 1) begin first_access_seen <= 1; end end end always @ (posedge clk or posedge reset) begin if (reset) begin second_access_seen <= 0; end else begin if (start == 1) begin second_access_seen <= 0; end else if ((first_access_seen == 1) & (valid_in == 1)) begin second_access_seen <= 1; end end end always @ (posedge clk or posedge reset) begin if (reset) begin byte_address <= 0; end else if (start == 1) begin byte_address <= address[BYTE_ADDRESS_WIDTH-1:0]; end end always @ (posedge clk or posedge reset) begin if (reset) begin last_empty <= 0; end else if (start == 1) begin last_empty <= ((DATA_WIDTH/8) - length[EMPTY_WIDTH-1:0]) & {EMPTY_WIDTH{1'b1}}; // if length isn't a multiple of the word size then we'll have some empty symbols/bytes during the last fifo write end end always @ (posedge clk or posedge reset) begin if (reset) begin extra_access <= 0; end else if (start == 1) begin extra_access <= extra_access_enable; // when set the number of reads and fifo writes are equal, otherwise there will be 1 less fifo write than reads (unaligned accesses only) end end always @ (posedge clk or posedge reset) begin if (reset) begin start_and_end_same_cycle <= 0; end else if (start == 1) begin start_and_end_same_cycle <= (length <= (DATA_WIDTH/8)); end end /* These barrelshifters will take the unaligned data coming into this block and shift the byte lanes appropriately to form a single packed word. Zeros are shifted into the byte lanes that do not contain valid data for the combined word that will be buffered. This allows both barrelshifters to be logically OR'ed together to form a single packed word. Shifter A is used to shift the current read data towards the upper bytes of the combined word (since those are the upper addresses of the combined word). Shifter B after the pipeline stage called 'barrelshifter_B_d1' contains the previously read data shifted towards the lower bytes (since those are the lower addresses of the combined word). */ generate genvar input_offset; for(input_offset = 0; input_offset < (DATA_WIDTH/8); input_offset = input_offset + 1) begin: barrel_shifter_inputs assign barrelshifter_input_A[input_offset] = data_in << (8 * ((DATA_WIDTH/8) - input_offset)); assign barrelshifter_input_B[input_offset] = data_in >> (8 * input_offset); end endgenerate assign barrelshifter_A = barrelshifter_input_A[byte_address]; // upper portion of the packed word assign barrelshifter_B = barrelshifter_input_B[byte_address]; // lower portion of the packed word (will be pipelined so it will be the previous word read by the master) assign combined_word = (barrelshifter_A | barrelshifter_B_d1); // barrelshifters shift in zeros so we can just OR the words together here to create a packed word assign first_access_seen_rising_edge = (valid_in == 1) & (first_access_seen == 0); assign second_access_seen_rising_edge = ((first_access_seen == 1) & (valid_in == 1)) & (second_access_seen == 0); assign extra_access_enable = (((DATA_WIDTH/8) - length[EMPTY_WIDTH-1:0]) & {EMPTY_WIDTH{1'b1}}) >= address[BYTE_ADDRESS_WIDTH-1:0]; // enable when empty >= byte address /* Need to keep track of the last write to the FIFO so that we can fire EOP correctly as well as flush the pipeline when unaligned accesses is enabled. The first read is filtered since it is considered to be only a partial word to be written into the FIFO but there are cases when there is extra data that is buffered in 'barrelshifter_B_d1' but the transfer is done so we need to issue an additional write. In general for every 'N' Avalon-MM reads 'N-1' writes to the FIFO will occur unless there is data still buffered in which one more write to the FIFO will immediately follow the last read. */ assign last_unaligned_fifo_write = (reads_pending == 0) & (length_counter == 0) & ( ((extra_access == 0) & (valid_in == 1)) | // don't need a pipeline flush ((extra_access == 1) & (valid_in_d1 == 1) & (valid_in == 0)) ); // last write to flush the pipeline (need to make sure valid_in isn't asserted to make sure the last data is indeed coming since valid_in is pipelined) // This block should be optimized down depending on the packet support or access type settings. In the case where packet support is off // and only full accesses are used this block should become zero logic elements. generate if (PACKET_SUPPORT == 1) begin if (UNALIGNED_ACCESS_ENABLE == 1) begin assign fifo_sop = (second_access_seen_rising_edge == 1) | ((start_and_end_same_cycle == 1) & (last_unaligned_fifo_write == 1)); assign fifo_eop = last_unaligned_fifo_write; assign fifo_empty = (fifo_eop == 1)? last_empty : 0; // always full accesses until the last word end else begin assign fifo_sop = first_access_seen_rising_edge; assign fifo_eop = (length_counter == 0) & (reads_pending == 1) & (valid_in == 1); // not using last_unaligned_fifo_write since it's pipelined and when unaligned accesses are disabled the input is not pipelined if (FULL_WORD_ACCESS_ONLY == 1) begin assign fifo_empty = 0; // full accesses so no empty symbols throughout the transfer end else begin assign fifo_empty = (fifo_eop == 1)? last_empty : 0; // always full accesses until the last word end end end else begin assign fifo_eop = 0; assign fifo_sop = 0; assign fifo_empty = 0; end if (UNALIGNED_ACCESS_ENABLE == 1) begin assign fifo_data = combined_word; assign fifo_write = (first_access_seen == 1) & ((valid_in == 1) | (last_unaligned_fifo_write == 1)); // last_unaligned_fifo_write will inject an extra pulse right after the last read occurs when flushing of the pipeline is needed end else begin // don't need to pipeline since the data will not go through the barrel shifters assign fifo_data = data_in; // don't need to barrelshift when aligned accesses are used assign fifo_write = valid_in; // the number of writes to the fifo needs to always equal the number of reads from memory end endgenerate endmodule
/* Legal Notice: (C)2009 Altera Corporation. All rights reserved. Your use of Altera Corporation's design tools, logic functions and other software and tools, and its AMPP partner logic functions, and any output files any of the foregoing (including device programming or simulation files), and any associated documentation or information are expressly subject to the terms and conditions of the Altera Program License Subscription Agreement or other applicable license agreement, including, without limitation, that your use is for the sole purpose of programming logic devices manufactured by Altera and sold by Altera or its authorized distributors. Please refer to the applicable agreement for further details. */ /* Author: JCJB Date: 06/23/2009 Version 2.1 This logic recieves Avalon Memory Mapped read data and translates it into the Avalon Streaming format. The ST format requires all data to be packed until the final transfer when packet support is enabled. As a result when you enable unaligned acceses the data from two sucessive reads must be combined to form a single word of data. If you disable packet support and unaligned access support this block will synthesize into wires. This block does not provide any read throttling as it simply acts as a format adapter between the read master port and the read master FIFO. All throttling should be provided by the read master to prevent overflow. Since this logic sits on the MM side of the FIFO the bytes are in 'little endian' format and will get swapped around on the other side of the FIFO (symbol size can be adjusted there too). Revision History: 1.0 Initial version 2.0 Removed 'bytes_to_next_boundary' and using the address and length signals instead to determine how much out of alignment the master begins. 2.1 Changed the extra last access logic to be based on the descriptor address and length as apposed to the counter values. Created a new 'length_counter' input to determine when the last read has arrived. */ // synthesis translate_off `timescale 1ns / 1ps // synthesis translate_on // turn off superfluous verilog processor warnings // altera message_level Level1 // altera message_off 10034 10035 10036 10037 10230 10240 10030 module MM_to_ST_Adapter ( clk, reset, length, length_counter, address, reads_pending, start, readdata, readdatavalid, fifo_data, fifo_write, fifo_empty, fifo_sop, fifo_eop ); parameter DATA_WIDTH = 32; // 8, 16, 32, 64, 128, or 256 are valid values (if 8 is used then disable unaligned accesses and turn on full word only accesses) parameter LENGTH_WIDTH = 32; parameter ADDRESS_WIDTH = 32; parameter BYTE_ADDRESS_WIDTH = 2; // log2(DATA_WIDTH/8) parameter READS_PENDING_WIDTH = 5; parameter EMPTY_WIDTH = 2; // log2(DATA_WIDTH/8) parameter PACKET_SUPPORT = 1; // when set to 1 eop, sop, and empty will be driven, otherwise they will be grounded // only set one of these at a time parameter UNALIGNED_ACCESS_ENABLE = 1; // when set to 1 this block will support packets and starting/ending on any boundary, do not use this if DATA_WIDTH is 8 (use 'FULL_WORD_ACCESS_ONLY') parameter FULL_WORD_ACCESS_ONLY = 0; // when set to 1 this block will assume only full words are arriving (must start and stop on a word boundary). input clk; input reset; input [LENGTH_WIDTH-1:0] length; input [LENGTH_WIDTH-1:0] length_counter; input [ADDRESS_WIDTH-1:0] address; input [READS_PENDING_WIDTH-1:0] reads_pending; input start; // one cycle strobe at the start of a transfer used to capture bytes_to_transfer input [DATA_WIDTH-1:0] readdata; input readdatavalid; output wire [DATA_WIDTH-1:0] fifo_data; output wire fifo_write; output wire [EMPTY_WIDTH-1:0] fifo_empty; output wire fifo_sop; output wire fifo_eop; // internal registers and wires reg [DATA_WIDTH-1:0] readdata_d1; reg readdatavalid_d1; wire [DATA_WIDTH-1:0] data_in; // data_in will either be readdata or a pipelined copy of readdata depending on whether unaligned access support is enabled wire valid_in; // valid in will either be readdatavalid or a pipelined copy of readdatavalid depending on whether unaligned access support is enabled reg valid_in_d1; wire [DATA_WIDTH-1:0] barrelshifter_A; // shifted current read data wire [DATA_WIDTH-1:0] barrelshifter_B; reg [DATA_WIDTH-1:0] barrelshifter_B_d1; // shifted previously read data wire [DATA_WIDTH-1:0] combined_word; // bitwise OR between barrelshifter_A and barrelshifter_B (each has zero padding so that bytelanes don't overlap) wire [DATA_WIDTH-1:0] barrelshifter_input_A [0:((DATA_WIDTH/8)-1)]; // will be used to create barrelshifter_A inputs wire [DATA_WIDTH-1:0] barrelshifter_input_B [0:((DATA_WIDTH/8)-1)]; // will be used to create barrelshifter_B inputs wire extra_access_enable; reg extra_access; wire last_unaligned_fifo_write; reg first_access_seen; reg second_access_seen; wire first_access_seen_rising_edge; wire second_access_seen_rising_edge; reg [BYTE_ADDRESS_WIDTH-1:0] byte_address; reg [EMPTY_WIDTH-1:0] last_empty; // only the last word written into the FIFO can have empty bytes reg start_and_end_same_cycle; // when the amount of data to transfer is only a full word or less generate if (UNALIGNED_ACCESS_ENABLE == 1) // unaligned so using a pipelined input begin assign data_in = readdata_d1; assign valid_in = readdatavalid_d1; end else begin assign data_in = readdata; // no barrelshifters in this case so pipelining is not necessary assign valid_in = readdatavalid; end endgenerate always @ (posedge clk or posedge reset) begin if (reset) begin readdata_d1 <= 0; end else begin if (readdatavalid == 1) begin readdata_d1 <= readdata; end end end always @ (posedge clk or posedge reset) begin if (reset) begin readdatavalid_d1 <= 0; valid_in_d1 <= 0; end else begin readdatavalid_d1 <= readdatavalid; valid_in_d1 <= valid_in; // used to flush the pipeline (extra fifo write) and prolong eop for one additional clock cycle end end always @ (posedge clk or posedge reset) begin if (reset == 1) begin barrelshifter_B_d1 <= 0; end else begin if (valid_in == 1) begin barrelshifter_B_d1 <= barrelshifter_B; end end end always @ (posedge clk or posedge reset) begin if (reset) begin first_access_seen <= 0; end else begin if (start == 1) begin first_access_seen <= 0; end else if (valid_in == 1) begin first_access_seen <= 1; end end end always @ (posedge clk or posedge reset) begin if (reset) begin second_access_seen <= 0; end else begin if (start == 1) begin second_access_seen <= 0; end else if ((first_access_seen == 1) & (valid_in == 1)) begin second_access_seen <= 1; end end end always @ (posedge clk or posedge reset) begin if (reset) begin byte_address <= 0; end else if (start == 1) begin byte_address <= address[BYTE_ADDRESS_WIDTH-1:0]; end end always @ (posedge clk or posedge reset) begin if (reset) begin last_empty <= 0; end else if (start == 1) begin last_empty <= ((DATA_WIDTH/8) - length[EMPTY_WIDTH-1:0]) & {EMPTY_WIDTH{1'b1}}; // if length isn't a multiple of the word size then we'll have some empty symbols/bytes during the last fifo write end end always @ (posedge clk or posedge reset) begin if (reset) begin extra_access <= 0; end else if (start == 1) begin extra_access <= extra_access_enable; // when set the number of reads and fifo writes are equal, otherwise there will be 1 less fifo write than reads (unaligned accesses only) end end always @ (posedge clk or posedge reset) begin if (reset) begin start_and_end_same_cycle <= 0; end else if (start == 1) begin start_and_end_same_cycle <= (length <= (DATA_WIDTH/8)); end end /* These barrelshifters will take the unaligned data coming into this block and shift the byte lanes appropriately to form a single packed word. Zeros are shifted into the byte lanes that do not contain valid data for the combined word that will be buffered. This allows both barrelshifters to be logically OR'ed together to form a single packed word. Shifter A is used to shift the current read data towards the upper bytes of the combined word (since those are the upper addresses of the combined word). Shifter B after the pipeline stage called 'barrelshifter_B_d1' contains the previously read data shifted towards the lower bytes (since those are the lower addresses of the combined word). */ generate genvar input_offset; for(input_offset = 0; input_offset < (DATA_WIDTH/8); input_offset = input_offset + 1) begin: barrel_shifter_inputs assign barrelshifter_input_A[input_offset] = data_in << (8 * ((DATA_WIDTH/8) - input_offset)); assign barrelshifter_input_B[input_offset] = data_in >> (8 * input_offset); end endgenerate assign barrelshifter_A = barrelshifter_input_A[byte_address]; // upper portion of the packed word assign barrelshifter_B = barrelshifter_input_B[byte_address]; // lower portion of the packed word (will be pipelined so it will be the previous word read by the master) assign combined_word = (barrelshifter_A | barrelshifter_B_d1); // barrelshifters shift in zeros so we can just OR the words together here to create a packed word assign first_access_seen_rising_edge = (valid_in == 1) & (first_access_seen == 0); assign second_access_seen_rising_edge = ((first_access_seen == 1) & (valid_in == 1)) & (second_access_seen == 0); assign extra_access_enable = (((DATA_WIDTH/8) - length[EMPTY_WIDTH-1:0]) & {EMPTY_WIDTH{1'b1}}) >= address[BYTE_ADDRESS_WIDTH-1:0]; // enable when empty >= byte address /* Need to keep track of the last write to the FIFO so that we can fire EOP correctly as well as flush the pipeline when unaligned accesses is enabled. The first read is filtered since it is considered to be only a partial word to be written into the FIFO but there are cases when there is extra data that is buffered in 'barrelshifter_B_d1' but the transfer is done so we need to issue an additional write. In general for every 'N' Avalon-MM reads 'N-1' writes to the FIFO will occur unless there is data still buffered in which one more write to the FIFO will immediately follow the last read. */ assign last_unaligned_fifo_write = (reads_pending == 0) & (length_counter == 0) & ( ((extra_access == 0) & (valid_in == 1)) | // don't need a pipeline flush ((extra_access == 1) & (valid_in_d1 == 1) & (valid_in == 0)) ); // last write to flush the pipeline (need to make sure valid_in isn't asserted to make sure the last data is indeed coming since valid_in is pipelined) // This block should be optimized down depending on the packet support or access type settings. In the case where packet support is off // and only full accesses are used this block should become zero logic elements. generate if (PACKET_SUPPORT == 1) begin if (UNALIGNED_ACCESS_ENABLE == 1) begin assign fifo_sop = (second_access_seen_rising_edge == 1) | ((start_and_end_same_cycle == 1) & (last_unaligned_fifo_write == 1)); assign fifo_eop = last_unaligned_fifo_write; assign fifo_empty = (fifo_eop == 1)? last_empty : 0; // always full accesses until the last word end else begin assign fifo_sop = first_access_seen_rising_edge; assign fifo_eop = (length_counter == 0) & (reads_pending == 1) & (valid_in == 1); // not using last_unaligned_fifo_write since it's pipelined and when unaligned accesses are disabled the input is not pipelined if (FULL_WORD_ACCESS_ONLY == 1) begin assign fifo_empty = 0; // full accesses so no empty symbols throughout the transfer end else begin assign fifo_empty = (fifo_eop == 1)? last_empty : 0; // always full accesses until the last word end end end else begin assign fifo_eop = 0; assign fifo_sop = 0; assign fifo_empty = 0; end if (UNALIGNED_ACCESS_ENABLE == 1) begin assign fifo_data = combined_word; assign fifo_write = (first_access_seen == 1) & ((valid_in == 1) | (last_unaligned_fifo_write == 1)); // last_unaligned_fifo_write will inject an extra pulse right after the last read occurs when flushing of the pipeline is needed end else begin // don't need to pipeline since the data will not go through the barrel shifters assign fifo_data = data_in; // don't need to barrelshift when aligned accesses are used assign fifo_write = valid_in; // the number of writes to the fifo needs to always equal the number of reads from memory end endgenerate endmodule
/* Legal Notice: (C)2009 Altera Corporation. All rights reserved. Your use of Altera Corporation's design tools, logic functions and other software and tools, and its AMPP partner logic functions, and any output files any of the foregoing (including device programming or simulation files), and any associated documentation or information are expressly subject to the terms and conditions of the Altera Program License Subscription Agreement or other applicable license agreement, including, without limitation, that your use is for the sole purpose of programming logic devices manufactured by Altera and sold by Altera or its authorized distributors. Please refer to the applicable agreement for further details. */ /* Author: JCJB Date: 06/23/2009 Version 2.1 This logic recieves Avalon Memory Mapped read data and translates it into the Avalon Streaming format. The ST format requires all data to be packed until the final transfer when packet support is enabled. As a result when you enable unaligned acceses the data from two sucessive reads must be combined to form a single word of data. If you disable packet support and unaligned access support this block will synthesize into wires. This block does not provide any read throttling as it simply acts as a format adapter between the read master port and the read master FIFO. All throttling should be provided by the read master to prevent overflow. Since this logic sits on the MM side of the FIFO the bytes are in 'little endian' format and will get swapped around on the other side of the FIFO (symbol size can be adjusted there too). Revision History: 1.0 Initial version 2.0 Removed 'bytes_to_next_boundary' and using the address and length signals instead to determine how much out of alignment the master begins. 2.1 Changed the extra last access logic to be based on the descriptor address and length as apposed to the counter values. Created a new 'length_counter' input to determine when the last read has arrived. */ // synthesis translate_off `timescale 1ns / 1ps // synthesis translate_on // turn off superfluous verilog processor warnings // altera message_level Level1 // altera message_off 10034 10035 10036 10037 10230 10240 10030 module MM_to_ST_Adapter ( clk, reset, length, length_counter, address, reads_pending, start, readdata, readdatavalid, fifo_data, fifo_write, fifo_empty, fifo_sop, fifo_eop ); parameter DATA_WIDTH = 32; // 8, 16, 32, 64, 128, or 256 are valid values (if 8 is used then disable unaligned accesses and turn on full word only accesses) parameter LENGTH_WIDTH = 32; parameter ADDRESS_WIDTH = 32; parameter BYTE_ADDRESS_WIDTH = 2; // log2(DATA_WIDTH/8) parameter READS_PENDING_WIDTH = 5; parameter EMPTY_WIDTH = 2; // log2(DATA_WIDTH/8) parameter PACKET_SUPPORT = 1; // when set to 1 eop, sop, and empty will be driven, otherwise they will be grounded // only set one of these at a time parameter UNALIGNED_ACCESS_ENABLE = 1; // when set to 1 this block will support packets and starting/ending on any boundary, do not use this if DATA_WIDTH is 8 (use 'FULL_WORD_ACCESS_ONLY') parameter FULL_WORD_ACCESS_ONLY = 0; // when set to 1 this block will assume only full words are arriving (must start and stop on a word boundary). input clk; input reset; input [LENGTH_WIDTH-1:0] length; input [LENGTH_WIDTH-1:0] length_counter; input [ADDRESS_WIDTH-1:0] address; input [READS_PENDING_WIDTH-1:0] reads_pending; input start; // one cycle strobe at the start of a transfer used to capture bytes_to_transfer input [DATA_WIDTH-1:0] readdata; input readdatavalid; output wire [DATA_WIDTH-1:0] fifo_data; output wire fifo_write; output wire [EMPTY_WIDTH-1:0] fifo_empty; output wire fifo_sop; output wire fifo_eop; // internal registers and wires reg [DATA_WIDTH-1:0] readdata_d1; reg readdatavalid_d1; wire [DATA_WIDTH-1:0] data_in; // data_in will either be readdata or a pipelined copy of readdata depending on whether unaligned access support is enabled wire valid_in; // valid in will either be readdatavalid or a pipelined copy of readdatavalid depending on whether unaligned access support is enabled reg valid_in_d1; wire [DATA_WIDTH-1:0] barrelshifter_A; // shifted current read data wire [DATA_WIDTH-1:0] barrelshifter_B; reg [DATA_WIDTH-1:0] barrelshifter_B_d1; // shifted previously read data wire [DATA_WIDTH-1:0] combined_word; // bitwise OR between barrelshifter_A and barrelshifter_B (each has zero padding so that bytelanes don't overlap) wire [DATA_WIDTH-1:0] barrelshifter_input_A [0:((DATA_WIDTH/8)-1)]; // will be used to create barrelshifter_A inputs wire [DATA_WIDTH-1:0] barrelshifter_input_B [0:((DATA_WIDTH/8)-1)]; // will be used to create barrelshifter_B inputs wire extra_access_enable; reg extra_access; wire last_unaligned_fifo_write; reg first_access_seen; reg second_access_seen; wire first_access_seen_rising_edge; wire second_access_seen_rising_edge; reg [BYTE_ADDRESS_WIDTH-1:0] byte_address; reg [EMPTY_WIDTH-1:0] last_empty; // only the last word written into the FIFO can have empty bytes reg start_and_end_same_cycle; // when the amount of data to transfer is only a full word or less generate if (UNALIGNED_ACCESS_ENABLE == 1) // unaligned so using a pipelined input begin assign data_in = readdata_d1; assign valid_in = readdatavalid_d1; end else begin assign data_in = readdata; // no barrelshifters in this case so pipelining is not necessary assign valid_in = readdatavalid; end endgenerate always @ (posedge clk or posedge reset) begin if (reset) begin readdata_d1 <= 0; end else begin if (readdatavalid == 1) begin readdata_d1 <= readdata; end end end always @ (posedge clk or posedge reset) begin if (reset) begin readdatavalid_d1 <= 0; valid_in_d1 <= 0; end else begin readdatavalid_d1 <= readdatavalid; valid_in_d1 <= valid_in; // used to flush the pipeline (extra fifo write) and prolong eop for one additional clock cycle end end always @ (posedge clk or posedge reset) begin if (reset == 1) begin barrelshifter_B_d1 <= 0; end else begin if (valid_in == 1) begin barrelshifter_B_d1 <= barrelshifter_B; end end end always @ (posedge clk or posedge reset) begin if (reset) begin first_access_seen <= 0; end else begin if (start == 1) begin first_access_seen <= 0; end else if (valid_in == 1) begin first_access_seen <= 1; end end end always @ (posedge clk or posedge reset) begin if (reset) begin second_access_seen <= 0; end else begin if (start == 1) begin second_access_seen <= 0; end else if ((first_access_seen == 1) & (valid_in == 1)) begin second_access_seen <= 1; end end end always @ (posedge clk or posedge reset) begin if (reset) begin byte_address <= 0; end else if (start == 1) begin byte_address <= address[BYTE_ADDRESS_WIDTH-1:0]; end end always @ (posedge clk or posedge reset) begin if (reset) begin last_empty <= 0; end else if (start == 1) begin last_empty <= ((DATA_WIDTH/8) - length[EMPTY_WIDTH-1:0]) & {EMPTY_WIDTH{1'b1}}; // if length isn't a multiple of the word size then we'll have some empty symbols/bytes during the last fifo write end end always @ (posedge clk or posedge reset) begin if (reset) begin extra_access <= 0; end else if (start == 1) begin extra_access <= extra_access_enable; // when set the number of reads and fifo writes are equal, otherwise there will be 1 less fifo write than reads (unaligned accesses only) end end always @ (posedge clk or posedge reset) begin if (reset) begin start_and_end_same_cycle <= 0; end else if (start == 1) begin start_and_end_same_cycle <= (length <= (DATA_WIDTH/8)); end end /* These barrelshifters will take the unaligned data coming into this block and shift the byte lanes appropriately to form a single packed word. Zeros are shifted into the byte lanes that do not contain valid data for the combined word that will be buffered. This allows both barrelshifters to be logically OR'ed together to form a single packed word. Shifter A is used to shift the current read data towards the upper bytes of the combined word (since those are the upper addresses of the combined word). Shifter B after the pipeline stage called 'barrelshifter_B_d1' contains the previously read data shifted towards the lower bytes (since those are the lower addresses of the combined word). */ generate genvar input_offset; for(input_offset = 0; input_offset < (DATA_WIDTH/8); input_offset = input_offset + 1) begin: barrel_shifter_inputs assign barrelshifter_input_A[input_offset] = data_in << (8 * ((DATA_WIDTH/8) - input_offset)); assign barrelshifter_input_B[input_offset] = data_in >> (8 * input_offset); end endgenerate assign barrelshifter_A = barrelshifter_input_A[byte_address]; // upper portion of the packed word assign barrelshifter_B = barrelshifter_input_B[byte_address]; // lower portion of the packed word (will be pipelined so it will be the previous word read by the master) assign combined_word = (barrelshifter_A | barrelshifter_B_d1); // barrelshifters shift in zeros so we can just OR the words together here to create a packed word assign first_access_seen_rising_edge = (valid_in == 1) & (first_access_seen == 0); assign second_access_seen_rising_edge = ((first_access_seen == 1) & (valid_in == 1)) & (second_access_seen == 0); assign extra_access_enable = (((DATA_WIDTH/8) - length[EMPTY_WIDTH-1:0]) & {EMPTY_WIDTH{1'b1}}) >= address[BYTE_ADDRESS_WIDTH-1:0]; // enable when empty >= byte address /* Need to keep track of the last write to the FIFO so that we can fire EOP correctly as well as flush the pipeline when unaligned accesses is enabled. The first read is filtered since it is considered to be only a partial word to be written into the FIFO but there are cases when there is extra data that is buffered in 'barrelshifter_B_d1' but the transfer is done so we need to issue an additional write. In general for every 'N' Avalon-MM reads 'N-1' writes to the FIFO will occur unless there is data still buffered in which one more write to the FIFO will immediately follow the last read. */ assign last_unaligned_fifo_write = (reads_pending == 0) & (length_counter == 0) & ( ((extra_access == 0) & (valid_in == 1)) | // don't need a pipeline flush ((extra_access == 1) & (valid_in_d1 == 1) & (valid_in == 0)) ); // last write to flush the pipeline (need to make sure valid_in isn't asserted to make sure the last data is indeed coming since valid_in is pipelined) // This block should be optimized down depending on the packet support or access type settings. In the case where packet support is off // and only full accesses are used this block should become zero logic elements. generate if (PACKET_SUPPORT == 1) begin if (UNALIGNED_ACCESS_ENABLE == 1) begin assign fifo_sop = (second_access_seen_rising_edge == 1) | ((start_and_end_same_cycle == 1) & (last_unaligned_fifo_write == 1)); assign fifo_eop = last_unaligned_fifo_write; assign fifo_empty = (fifo_eop == 1)? last_empty : 0; // always full accesses until the last word end else begin assign fifo_sop = first_access_seen_rising_edge; assign fifo_eop = (length_counter == 0) & (reads_pending == 1) & (valid_in == 1); // not using last_unaligned_fifo_write since it's pipelined and when unaligned accesses are disabled the input is not pipelined if (FULL_WORD_ACCESS_ONLY == 1) begin assign fifo_empty = 0; // full accesses so no empty symbols throughout the transfer end else begin assign fifo_empty = (fifo_eop == 1)? last_empty : 0; // always full accesses until the last word end end end else begin assign fifo_eop = 0; assign fifo_sop = 0; assign fifo_empty = 0; end if (UNALIGNED_ACCESS_ENABLE == 1) begin assign fifo_data = combined_word; assign fifo_write = (first_access_seen == 1) & ((valid_in == 1) | (last_unaligned_fifo_write == 1)); // last_unaligned_fifo_write will inject an extra pulse right after the last read occurs when flushing of the pipeline is needed end else begin // don't need to pipeline since the data will not go through the barrel shifters assign fifo_data = data_in; // don't need to barrelshift when aligned accesses are used assign fifo_write = valid_in; // the number of writes to the fifo needs to always equal the number of reads from memory end endgenerate endmodule
// (C) 1992-2012 Altera Corporation. All rights reserved. // Your use of Altera Corporation's design tools, logic functions and other // software and tools, and its AMPP partner logic functions, and any output // files any of the foregoing (including device programming or simulation // files), and any associated documentation or information are expressly subject // to the terms and conditions of the Altera Program License Subscription // Agreement, Altera MegaCore Function License Agreement, or other applicable // license agreement, including, without limitation, that your use is for the // sole purpose of programming logic devices manufactured by Altera and sold by // Altera or its authorized distributors. Please refer to the applicable // agreement for further details. // Low latency FIFO // One cycle latency from all inputs to all outputs // Storage implemented in registers, not memory. module acl_iface_ll_fifo(clk, reset, data_in, write, data_out, read, empty, full); /* Parameters */ parameter WIDTH = 32; parameter DEPTH = 32; /* Ports */ input clk; input reset; input [WIDTH-1:0] data_in; input write; output [WIDTH-1:0] data_out; input read; output empty; output full; /* Architecture */ // One-hot write-pointer bit (indicates next position to write at), // last bit indicates the FIFO is full reg [DEPTH:0] wptr; // Replicated copy of the stall / valid logic reg [DEPTH:0] wptr_copy /* synthesis dont_merge */; // FIFO data registers reg [DEPTH-1:0][WIDTH-1:0] data; // Write pointer updates: wire wptr_hold; // Hold the value wire wptr_dir; // Direction to shift // Data register updates: wire [DEPTH-1:0] data_hold; // Hold the value wire [DEPTH-1:0] data_new; // Write the new data value in // Write location is constant unless the occupancy changes assign wptr_hold = !(read ^ write); assign wptr_dir = read; // Hold the value unless we are reading, or writing to this // location genvar i; generate for(i = 0; i < DEPTH; i++) begin : data_mux assign data_hold[i] = !(read | (write & wptr[i])); assign data_new[i] = !read | wptr[i+1]; end endgenerate // The data registers generate for(i = 0; i < DEPTH-1; i++) begin : data_reg always@(posedge clk or posedge reset) begin if(reset == 1'b1) data[i] <= {WIDTH{1'b0}}; else data[i] <= data_hold[i] ? data[i] : data_new[i] ? data_in : data[i+1]; end end endgenerate always@(posedge clk or posedge reset) begin if(reset == 1'b1) data[DEPTH-1] <= {WIDTH{1'b0}}; else data[DEPTH-1] <= data_hold[DEPTH-1] ? data[DEPTH-1] : data_in; end // The write pointer always@(posedge clk or posedge reset) begin if(reset == 1'b1) begin wptr <= {{DEPTH{1'b0}}, 1'b1}; wptr_copy <= {{DEPTH{1'b0}}, 1'b1}; end else begin wptr <= wptr_hold ? wptr : wptr_dir ? {1'b0, wptr[DEPTH:1]} : {wptr[DEPTH-1:0], 1'b0}; wptr_copy <= wptr_hold ? wptr_copy : wptr_dir ? {1'b0, wptr_copy[DEPTH:1]} : {wptr_copy[DEPTH-1:0], 1'b0}; end end // Outputs assign empty = wptr_copy[0]; assign full = wptr_copy[DEPTH]; assign data_out = data[0]; endmodule
// (C) 1992-2012 Altera Corporation. All rights reserved. // Your use of Altera Corporation's design tools, logic functions and other // software and tools, and its AMPP partner logic functions, and any output // files any of the foregoing (including device programming or simulation // files), and any associated documentation or information are expressly subject // to the terms and conditions of the Altera Program License Subscription // Agreement, Altera MegaCore Function License Agreement, or other applicable // license agreement, including, without limitation, that your use is for the // sole purpose of programming logic devices manufactured by Altera and sold by // Altera or its authorized distributors. Please refer to the applicable // agreement for further details. // Low latency FIFO // One cycle latency from all inputs to all outputs // Storage implemented in registers, not memory. module acl_iface_ll_fifo(clk, reset, data_in, write, data_out, read, empty, full); /* Parameters */ parameter WIDTH = 32; parameter DEPTH = 32; /* Ports */ input clk; input reset; input [WIDTH-1:0] data_in; input write; output [WIDTH-1:0] data_out; input read; output empty; output full; /* Architecture */ // One-hot write-pointer bit (indicates next position to write at), // last bit indicates the FIFO is full reg [DEPTH:0] wptr; // Replicated copy of the stall / valid logic reg [DEPTH:0] wptr_copy /* synthesis dont_merge */; // FIFO data registers reg [DEPTH-1:0][WIDTH-1:0] data; // Write pointer updates: wire wptr_hold; // Hold the value wire wptr_dir; // Direction to shift // Data register updates: wire [DEPTH-1:0] data_hold; // Hold the value wire [DEPTH-1:0] data_new; // Write the new data value in // Write location is constant unless the occupancy changes assign wptr_hold = !(read ^ write); assign wptr_dir = read; // Hold the value unless we are reading, or writing to this // location genvar i; generate for(i = 0; i < DEPTH; i++) begin : data_mux assign data_hold[i] = !(read | (write & wptr[i])); assign data_new[i] = !read | wptr[i+1]; end endgenerate // The data registers generate for(i = 0; i < DEPTH-1; i++) begin : data_reg always@(posedge clk or posedge reset) begin if(reset == 1'b1) data[i] <= {WIDTH{1'b0}}; else data[i] <= data_hold[i] ? data[i] : data_new[i] ? data_in : data[i+1]; end end endgenerate always@(posedge clk or posedge reset) begin if(reset == 1'b1) data[DEPTH-1] <= {WIDTH{1'b0}}; else data[DEPTH-1] <= data_hold[DEPTH-1] ? data[DEPTH-1] : data_in; end // The write pointer always@(posedge clk or posedge reset) begin if(reset == 1'b1) begin wptr <= {{DEPTH{1'b0}}, 1'b1}; wptr_copy <= {{DEPTH{1'b0}}, 1'b1}; end else begin wptr <= wptr_hold ? wptr : wptr_dir ? {1'b0, wptr[DEPTH:1]} : {wptr[DEPTH-1:0], 1'b0}; wptr_copy <= wptr_hold ? wptr_copy : wptr_dir ? {1'b0, wptr_copy[DEPTH:1]} : {wptr_copy[DEPTH-1:0], 1'b0}; end end // Outputs assign empty = wptr_copy[0]; assign full = wptr_copy[DEPTH]; assign data_out = data[0]; endmodule
// (C) 1992-2012 Altera Corporation. All rights reserved. // Your use of Altera Corporation's design tools, logic functions and other // software and tools, and its AMPP partner logic functions, and any output // files any of the foregoing (including device programming or simulation // files), and any associated documentation or information are expressly subject // to the terms and conditions of the Altera Program License Subscription // Agreement, Altera MegaCore Function License Agreement, or other applicable // license agreement, including, without limitation, that your use is for the // sole purpose of programming logic devices manufactured by Altera and sold by // Altera or its authorized distributors. Please refer to the applicable // agreement for further details. // Low latency FIFO // One cycle latency from all inputs to all outputs // Storage implemented in registers, not memory. module acl_iface_ll_fifo(clk, reset, data_in, write, data_out, read, empty, full); /* Parameters */ parameter WIDTH = 32; parameter DEPTH = 32; /* Ports */ input clk; input reset; input [WIDTH-1:0] data_in; input write; output [WIDTH-1:0] data_out; input read; output empty; output full; /* Architecture */ // One-hot write-pointer bit (indicates next position to write at), // last bit indicates the FIFO is full reg [DEPTH:0] wptr; // Replicated copy of the stall / valid logic reg [DEPTH:0] wptr_copy /* synthesis dont_merge */; // FIFO data registers reg [DEPTH-1:0][WIDTH-1:0] data; // Write pointer updates: wire wptr_hold; // Hold the value wire wptr_dir; // Direction to shift // Data register updates: wire [DEPTH-1:0] data_hold; // Hold the value wire [DEPTH-1:0] data_new; // Write the new data value in // Write location is constant unless the occupancy changes assign wptr_hold = !(read ^ write); assign wptr_dir = read; // Hold the value unless we are reading, or writing to this // location genvar i; generate for(i = 0; i < DEPTH; i++) begin : data_mux assign data_hold[i] = !(read | (write & wptr[i])); assign data_new[i] = !read | wptr[i+1]; end endgenerate // The data registers generate for(i = 0; i < DEPTH-1; i++) begin : data_reg always@(posedge clk or posedge reset) begin if(reset == 1'b1) data[i] <= {WIDTH{1'b0}}; else data[i] <= data_hold[i] ? data[i] : data_new[i] ? data_in : data[i+1]; end end endgenerate always@(posedge clk or posedge reset) begin if(reset == 1'b1) data[DEPTH-1] <= {WIDTH{1'b0}}; else data[DEPTH-1] <= data_hold[DEPTH-1] ? data[DEPTH-1] : data_in; end // The write pointer always@(posedge clk or posedge reset) begin if(reset == 1'b1) begin wptr <= {{DEPTH{1'b0}}, 1'b1}; wptr_copy <= {{DEPTH{1'b0}}, 1'b1}; end else begin wptr <= wptr_hold ? wptr : wptr_dir ? {1'b0, wptr[DEPTH:1]} : {wptr[DEPTH-1:0], 1'b0}; wptr_copy <= wptr_hold ? wptr_copy : wptr_dir ? {1'b0, wptr_copy[DEPTH:1]} : {wptr_copy[DEPTH-1:0], 1'b0}; end end // Outputs assign empty = wptr_copy[0]; assign full = wptr_copy[DEPTH]; assign data_out = data[0]; endmodule
module snoop_adapter ( clk, reset, kernel_clk, kernel_reset, address, read, readdata, readdatavalid, write, writedata, burstcount, byteenable, waitrequest, burstbegin, snoop_data, snoop_valid, snoop_ready, export_address, export_read, export_readdata, export_readdatavalid, export_write, export_writedata, export_burstcount, export_burstbegin, export_byteenable, export_waitrequest ); parameter NUM_BYTES = 4; parameter BYTE_ADDRESS_WIDTH = 32; parameter WORD_ADDRESS_WIDTH = 32; parameter BURSTCOUNT_WIDTH = 1; localparam DATA_WIDTH = NUM_BYTES * 8; localparam ADDRESS_SHIFT = BYTE_ADDRESS_WIDTH - WORD_ADDRESS_WIDTH; localparam DEVICE_BLOCKRAM_MIN_DEPTH = 256; //Stratix IV M9Ks localparam FIFO_SIZE = DEVICE_BLOCKRAM_MIN_DEPTH; localparam LOG2_FIFO_SIZE =$clog2(FIFO_SIZE); input clk; input reset; input kernel_clk; input kernel_reset; input [WORD_ADDRESS_WIDTH-1:0] address; input read; output [DATA_WIDTH-1:0] readdata; output readdatavalid; input write; input [DATA_WIDTH-1:0] writedata; input [BURSTCOUNT_WIDTH-1:0] burstcount; input burstbegin; input [NUM_BYTES-1:0] byteenable; output waitrequest; output [1+WORD_ADDRESS_WIDTH+BURSTCOUNT_WIDTH-1:0] snoop_data; output snoop_valid; input snoop_ready; output [BYTE_ADDRESS_WIDTH-1:0] export_address; output export_read; input [DATA_WIDTH-1:0] export_readdata; input export_readdatavalid; output export_write; output [DATA_WIDTH-1:0] export_writedata; output [BURSTCOUNT_WIDTH-1:0] export_burstcount; output export_burstbegin; output [NUM_BYTES-1:0] export_byteenable; input export_waitrequest; reg snoop_overflow; // Register snoop data first reg [WORD_ADDRESS_WIDTH+BURSTCOUNT_WIDTH-1:0] snoop_data_r; //word-address reg snoop_valid_r; wire snoop_fifo_empty; wire overflow; wire [ LOG2_FIFO_SIZE-1 : 0 ] rdusedw; always@(posedge clk) begin snoop_data_r<={address,export_burstcount}; snoop_valid_r<=export_write && !export_waitrequest; end // 1) Fifo to store snooped accesses from host dcfifo dcfifo_component ( .wrclk (clk), .data (snoop_data_r), .wrreq (snoop_valid_r), .rdclk (kernel_clk), .rdreq (snoop_valid & snoop_ready), .q (snoop_data[WORD_ADDRESS_WIDTH+BURSTCOUNT_WIDTH-1:0]), .rdempty (snoop_fifo_empty), .rdfull (overflow), .aclr (1'b0), .rdusedw (rdusedw), .wrempty (), .wrfull (), .wrusedw ()); defparam dcfifo_component.intended_device_family = "Stratix IV", dcfifo_component.lpm_numwords = FIFO_SIZE, dcfifo_component.lpm_showahead = "ON", dcfifo_component.lpm_type = "dcfifo", dcfifo_component.lpm_width = WORD_ADDRESS_WIDTH+BURSTCOUNT_WIDTH, dcfifo_component.lpm_widthu = LOG2_FIFO_SIZE, dcfifo_component.overflow_checking = "ON", dcfifo_component.rdsync_delaypipe = 4, dcfifo_component.underflow_checking = "ON", dcfifo_component.use_eab = "ON", dcfifo_component.wrsync_delaypipe = 4; assign snoop_valid=~snoop_fifo_empty; always@(posedge kernel_clk) snoop_overflow = ( rdusedw >= ( FIFO_SIZE - 12 ) ); // Overflow piggy backed onto MSB of stream. Since overflow guarantees // there is something to be read out, we can be sure that this will reach // the cache. assign snoop_data[WORD_ADDRESS_WIDTH+BURSTCOUNT_WIDTH] = snoop_overflow; assign export_address = address << ADDRESS_SHIFT; assign export_read = read; assign readdata = export_readdata; assign readdatavalid = export_readdatavalid; assign export_write = write; assign export_writedata = writedata; assign export_burstcount = burstcount; assign export_burstbegin = burstbegin; assign export_byteenable = byteenable; assign waitrequest = export_waitrequest; endmodule
module snoop_adapter ( clk, reset, kernel_clk, kernel_reset, address, read, readdata, readdatavalid, write, writedata, burstcount, byteenable, waitrequest, burstbegin, snoop_data, snoop_valid, snoop_ready, export_address, export_read, export_readdata, export_readdatavalid, export_write, export_writedata, export_burstcount, export_burstbegin, export_byteenable, export_waitrequest ); parameter NUM_BYTES = 4; parameter BYTE_ADDRESS_WIDTH = 32; parameter WORD_ADDRESS_WIDTH = 32; parameter BURSTCOUNT_WIDTH = 1; localparam DATA_WIDTH = NUM_BYTES * 8; localparam ADDRESS_SHIFT = BYTE_ADDRESS_WIDTH - WORD_ADDRESS_WIDTH; localparam DEVICE_BLOCKRAM_MIN_DEPTH = 256; //Stratix IV M9Ks localparam FIFO_SIZE = DEVICE_BLOCKRAM_MIN_DEPTH; localparam LOG2_FIFO_SIZE =$clog2(FIFO_SIZE); input clk; input reset; input kernel_clk; input kernel_reset; input [WORD_ADDRESS_WIDTH-1:0] address; input read; output [DATA_WIDTH-1:0] readdata; output readdatavalid; input write; input [DATA_WIDTH-1:0] writedata; input [BURSTCOUNT_WIDTH-1:0] burstcount; input burstbegin; input [NUM_BYTES-1:0] byteenable; output waitrequest; output [1+WORD_ADDRESS_WIDTH+BURSTCOUNT_WIDTH-1:0] snoop_data; output snoop_valid; input snoop_ready; output [BYTE_ADDRESS_WIDTH-1:0] export_address; output export_read; input [DATA_WIDTH-1:0] export_readdata; input export_readdatavalid; output export_write; output [DATA_WIDTH-1:0] export_writedata; output [BURSTCOUNT_WIDTH-1:0] export_burstcount; output export_burstbegin; output [NUM_BYTES-1:0] export_byteenable; input export_waitrequest; reg snoop_overflow; // Register snoop data first reg [WORD_ADDRESS_WIDTH+BURSTCOUNT_WIDTH-1:0] snoop_data_r; //word-address reg snoop_valid_r; wire snoop_fifo_empty; wire overflow; wire [ LOG2_FIFO_SIZE-1 : 0 ] rdusedw; always@(posedge clk) begin snoop_data_r<={address,export_burstcount}; snoop_valid_r<=export_write && !export_waitrequest; end // 1) Fifo to store snooped accesses from host dcfifo dcfifo_component ( .wrclk (clk), .data (snoop_data_r), .wrreq (snoop_valid_r), .rdclk (kernel_clk), .rdreq (snoop_valid & snoop_ready), .q (snoop_data[WORD_ADDRESS_WIDTH+BURSTCOUNT_WIDTH-1:0]), .rdempty (snoop_fifo_empty), .rdfull (overflow), .aclr (1'b0), .rdusedw (rdusedw), .wrempty (), .wrfull (), .wrusedw ()); defparam dcfifo_component.intended_device_family = "Stratix IV", dcfifo_component.lpm_numwords = FIFO_SIZE, dcfifo_component.lpm_showahead = "ON", dcfifo_component.lpm_type = "dcfifo", dcfifo_component.lpm_width = WORD_ADDRESS_WIDTH+BURSTCOUNT_WIDTH, dcfifo_component.lpm_widthu = LOG2_FIFO_SIZE, dcfifo_component.overflow_checking = "ON", dcfifo_component.rdsync_delaypipe = 4, dcfifo_component.underflow_checking = "ON", dcfifo_component.use_eab = "ON", dcfifo_component.wrsync_delaypipe = 4; assign snoop_valid=~snoop_fifo_empty; always@(posedge kernel_clk) snoop_overflow = ( rdusedw >= ( FIFO_SIZE - 12 ) ); // Overflow piggy backed onto MSB of stream. Since overflow guarantees // there is something to be read out, we can be sure that this will reach // the cache. assign snoop_data[WORD_ADDRESS_WIDTH+BURSTCOUNT_WIDTH] = snoop_overflow; assign export_address = address << ADDRESS_SHIFT; assign export_read = read; assign readdata = export_readdata; assign readdatavalid = export_readdatavalid; assign export_write = write; assign export_writedata = writedata; assign export_burstcount = burstcount; assign export_burstbegin = burstbegin; assign export_byteenable = byteenable; assign waitrequest = export_waitrequest; endmodule
module snoop_adapter ( clk, reset, kernel_clk, kernel_reset, address, read, readdata, readdatavalid, write, writedata, burstcount, byteenable, waitrequest, burstbegin, snoop_data, snoop_valid, snoop_ready, export_address, export_read, export_readdata, export_readdatavalid, export_write, export_writedata, export_burstcount, export_burstbegin, export_byteenable, export_waitrequest ); parameter NUM_BYTES = 4; parameter BYTE_ADDRESS_WIDTH = 32; parameter WORD_ADDRESS_WIDTH = 32; parameter BURSTCOUNT_WIDTH = 1; localparam DATA_WIDTH = NUM_BYTES * 8; localparam ADDRESS_SHIFT = BYTE_ADDRESS_WIDTH - WORD_ADDRESS_WIDTH; localparam DEVICE_BLOCKRAM_MIN_DEPTH = 256; //Stratix IV M9Ks localparam FIFO_SIZE = DEVICE_BLOCKRAM_MIN_DEPTH; localparam LOG2_FIFO_SIZE =$clog2(FIFO_SIZE); input clk; input reset; input kernel_clk; input kernel_reset; input [WORD_ADDRESS_WIDTH-1:0] address; input read; output [DATA_WIDTH-1:0] readdata; output readdatavalid; input write; input [DATA_WIDTH-1:0] writedata; input [BURSTCOUNT_WIDTH-1:0] burstcount; input burstbegin; input [NUM_BYTES-1:0] byteenable; output waitrequest; output [1+WORD_ADDRESS_WIDTH+BURSTCOUNT_WIDTH-1:0] snoop_data; output snoop_valid; input snoop_ready; output [BYTE_ADDRESS_WIDTH-1:0] export_address; output export_read; input [DATA_WIDTH-1:0] export_readdata; input export_readdatavalid; output export_write; output [DATA_WIDTH-1:0] export_writedata; output [BURSTCOUNT_WIDTH-1:0] export_burstcount; output export_burstbegin; output [NUM_BYTES-1:0] export_byteenable; input export_waitrequest; reg snoop_overflow; // Register snoop data first reg [WORD_ADDRESS_WIDTH+BURSTCOUNT_WIDTH-1:0] snoop_data_r; //word-address reg snoop_valid_r; wire snoop_fifo_empty; wire overflow; wire [ LOG2_FIFO_SIZE-1 : 0 ] rdusedw; always@(posedge clk) begin snoop_data_r<={address,export_burstcount}; snoop_valid_r<=export_write && !export_waitrequest; end // 1) Fifo to store snooped accesses from host dcfifo dcfifo_component ( .wrclk (clk), .data (snoop_data_r), .wrreq (snoop_valid_r), .rdclk (kernel_clk), .rdreq (snoop_valid & snoop_ready), .q (snoop_data[WORD_ADDRESS_WIDTH+BURSTCOUNT_WIDTH-1:0]), .rdempty (snoop_fifo_empty), .rdfull (overflow), .aclr (1'b0), .rdusedw (rdusedw), .wrempty (), .wrfull (), .wrusedw ()); defparam dcfifo_component.intended_device_family = "Stratix IV", dcfifo_component.lpm_numwords = FIFO_SIZE, dcfifo_component.lpm_showahead = "ON", dcfifo_component.lpm_type = "dcfifo", dcfifo_component.lpm_width = WORD_ADDRESS_WIDTH+BURSTCOUNT_WIDTH, dcfifo_component.lpm_widthu = LOG2_FIFO_SIZE, dcfifo_component.overflow_checking = "ON", dcfifo_component.rdsync_delaypipe = 4, dcfifo_component.underflow_checking = "ON", dcfifo_component.use_eab = "ON", dcfifo_component.wrsync_delaypipe = 4; assign snoop_valid=~snoop_fifo_empty; always@(posedge kernel_clk) snoop_overflow = ( rdusedw >= ( FIFO_SIZE - 12 ) ); // Overflow piggy backed onto MSB of stream. Since overflow guarantees // there is something to be read out, we can be sure that this will reach // the cache. assign snoop_data[WORD_ADDRESS_WIDTH+BURSTCOUNT_WIDTH] = snoop_overflow; assign export_address = address << ADDRESS_SHIFT; assign export_read = read; assign readdata = export_readdata; assign readdatavalid = export_readdatavalid; assign export_write = write; assign export_writedata = writedata; assign export_burstcount = burstcount; assign export_burstbegin = burstbegin; assign export_byteenable = byteenable; assign waitrequest = export_waitrequest; endmodule
module snoop_adapter ( clk, reset, kernel_clk, kernel_reset, address, read, readdata, readdatavalid, write, writedata, burstcount, byteenable, waitrequest, burstbegin, snoop_data, snoop_valid, snoop_ready, export_address, export_read, export_readdata, export_readdatavalid, export_write, export_writedata, export_burstcount, export_burstbegin, export_byteenable, export_waitrequest ); parameter NUM_BYTES = 4; parameter BYTE_ADDRESS_WIDTH = 32; parameter WORD_ADDRESS_WIDTH = 32; parameter BURSTCOUNT_WIDTH = 1; localparam DATA_WIDTH = NUM_BYTES * 8; localparam ADDRESS_SHIFT = BYTE_ADDRESS_WIDTH - WORD_ADDRESS_WIDTH; localparam DEVICE_BLOCKRAM_MIN_DEPTH = 256; //Stratix IV M9Ks localparam FIFO_SIZE = DEVICE_BLOCKRAM_MIN_DEPTH; localparam LOG2_FIFO_SIZE =$clog2(FIFO_SIZE); input clk; input reset; input kernel_clk; input kernel_reset; input [WORD_ADDRESS_WIDTH-1:0] address; input read; output [DATA_WIDTH-1:0] readdata; output readdatavalid; input write; input [DATA_WIDTH-1:0] writedata; input [BURSTCOUNT_WIDTH-1:0] burstcount; input burstbegin; input [NUM_BYTES-1:0] byteenable; output waitrequest; output [1+WORD_ADDRESS_WIDTH+BURSTCOUNT_WIDTH-1:0] snoop_data; output snoop_valid; input snoop_ready; output [BYTE_ADDRESS_WIDTH-1:0] export_address; output export_read; input [DATA_WIDTH-1:0] export_readdata; input export_readdatavalid; output export_write; output [DATA_WIDTH-1:0] export_writedata; output [BURSTCOUNT_WIDTH-1:0] export_burstcount; output export_burstbegin; output [NUM_BYTES-1:0] export_byteenable; input export_waitrequest; reg snoop_overflow; // Register snoop data first reg [WORD_ADDRESS_WIDTH+BURSTCOUNT_WIDTH-1:0] snoop_data_r; //word-address reg snoop_valid_r; wire snoop_fifo_empty; wire overflow; wire [ LOG2_FIFO_SIZE-1 : 0 ] rdusedw; always@(posedge clk) begin snoop_data_r<={address,export_burstcount}; snoop_valid_r<=export_write && !export_waitrequest; end // 1) Fifo to store snooped accesses from host dcfifo dcfifo_component ( .wrclk (clk), .data (snoop_data_r), .wrreq (snoop_valid_r), .rdclk (kernel_clk), .rdreq (snoop_valid & snoop_ready), .q (snoop_data[WORD_ADDRESS_WIDTH+BURSTCOUNT_WIDTH-1:0]), .rdempty (snoop_fifo_empty), .rdfull (overflow), .aclr (1'b0), .rdusedw (rdusedw), .wrempty (), .wrfull (), .wrusedw ()); defparam dcfifo_component.intended_device_family = "Stratix IV", dcfifo_component.lpm_numwords = FIFO_SIZE, dcfifo_component.lpm_showahead = "ON", dcfifo_component.lpm_type = "dcfifo", dcfifo_component.lpm_width = WORD_ADDRESS_WIDTH+BURSTCOUNT_WIDTH, dcfifo_component.lpm_widthu = LOG2_FIFO_SIZE, dcfifo_component.overflow_checking = "ON", dcfifo_component.rdsync_delaypipe = 4, dcfifo_component.underflow_checking = "ON", dcfifo_component.use_eab = "ON", dcfifo_component.wrsync_delaypipe = 4; assign snoop_valid=~snoop_fifo_empty; always@(posedge kernel_clk) snoop_overflow = ( rdusedw >= ( FIFO_SIZE - 12 ) ); // Overflow piggy backed onto MSB of stream. Since overflow guarantees // there is something to be read out, we can be sure that this will reach // the cache. assign snoop_data[WORD_ADDRESS_WIDTH+BURSTCOUNT_WIDTH] = snoop_overflow; assign export_address = address << ADDRESS_SHIFT; assign export_read = read; assign readdata = export_readdata; assign readdatavalid = export_readdatavalid; assign export_write = write; assign export_writedata = writedata; assign export_burstcount = burstcount; assign export_burstbegin = burstbegin; assign export_byteenable = byteenable; assign waitrequest = export_waitrequest; endmodule
module snoop_adapter ( clk, reset, kernel_clk, kernel_reset, address, read, readdata, readdatavalid, write, writedata, burstcount, byteenable, waitrequest, burstbegin, snoop_data, snoop_valid, snoop_ready, export_address, export_read, export_readdata, export_readdatavalid, export_write, export_writedata, export_burstcount, export_burstbegin, export_byteenable, export_waitrequest ); parameter NUM_BYTES = 4; parameter BYTE_ADDRESS_WIDTH = 32; parameter WORD_ADDRESS_WIDTH = 32; parameter BURSTCOUNT_WIDTH = 1; localparam DATA_WIDTH = NUM_BYTES * 8; localparam ADDRESS_SHIFT = BYTE_ADDRESS_WIDTH - WORD_ADDRESS_WIDTH; localparam DEVICE_BLOCKRAM_MIN_DEPTH = 256; //Stratix IV M9Ks localparam FIFO_SIZE = DEVICE_BLOCKRAM_MIN_DEPTH; localparam LOG2_FIFO_SIZE =$clog2(FIFO_SIZE); input clk; input reset; input kernel_clk; input kernel_reset; input [WORD_ADDRESS_WIDTH-1:0] address; input read; output [DATA_WIDTH-1:0] readdata; output readdatavalid; input write; input [DATA_WIDTH-1:0] writedata; input [BURSTCOUNT_WIDTH-1:0] burstcount; input burstbegin; input [NUM_BYTES-1:0] byteenable; output waitrequest; output [1+WORD_ADDRESS_WIDTH+BURSTCOUNT_WIDTH-1:0] snoop_data; output snoop_valid; input snoop_ready; output [BYTE_ADDRESS_WIDTH-1:0] export_address; output export_read; input [DATA_WIDTH-1:0] export_readdata; input export_readdatavalid; output export_write; output [DATA_WIDTH-1:0] export_writedata; output [BURSTCOUNT_WIDTH-1:0] export_burstcount; output export_burstbegin; output [NUM_BYTES-1:0] export_byteenable; input export_waitrequest; reg snoop_overflow; // Register snoop data first reg [WORD_ADDRESS_WIDTH+BURSTCOUNT_WIDTH-1:0] snoop_data_r; //word-address reg snoop_valid_r; wire snoop_fifo_empty; wire overflow; wire [ LOG2_FIFO_SIZE-1 : 0 ] rdusedw; always@(posedge clk) begin snoop_data_r<={address,export_burstcount}; snoop_valid_r<=export_write && !export_waitrequest; end // 1) Fifo to store snooped accesses from host dcfifo dcfifo_component ( .wrclk (clk), .data (snoop_data_r), .wrreq (snoop_valid_r), .rdclk (kernel_clk), .rdreq (snoop_valid & snoop_ready), .q (snoop_data[WORD_ADDRESS_WIDTH+BURSTCOUNT_WIDTH-1:0]), .rdempty (snoop_fifo_empty), .rdfull (overflow), .aclr (1'b0), .rdusedw (rdusedw), .wrempty (), .wrfull (), .wrusedw ()); defparam dcfifo_component.intended_device_family = "Stratix IV", dcfifo_component.lpm_numwords = FIFO_SIZE, dcfifo_component.lpm_showahead = "ON", dcfifo_component.lpm_type = "dcfifo", dcfifo_component.lpm_width = WORD_ADDRESS_WIDTH+BURSTCOUNT_WIDTH, dcfifo_component.lpm_widthu = LOG2_FIFO_SIZE, dcfifo_component.overflow_checking = "ON", dcfifo_component.rdsync_delaypipe = 4, dcfifo_component.underflow_checking = "ON", dcfifo_component.use_eab = "ON", dcfifo_component.wrsync_delaypipe = 4; assign snoop_valid=~snoop_fifo_empty; always@(posedge kernel_clk) snoop_overflow = ( rdusedw >= ( FIFO_SIZE - 12 ) ); // Overflow piggy backed onto MSB of stream. Since overflow guarantees // there is something to be read out, we can be sure that this will reach // the cache. assign snoop_data[WORD_ADDRESS_WIDTH+BURSTCOUNT_WIDTH] = snoop_overflow; assign export_address = address << ADDRESS_SHIFT; assign export_read = read; assign readdata = export_readdata; assign readdatavalid = export_readdatavalid; assign export_write = write; assign export_writedata = writedata; assign export_burstcount = burstcount; assign export_burstbegin = burstbegin; assign export_byteenable = byteenable; assign waitrequest = export_waitrequest; endmodule
module snoop_adapter ( clk, reset, kernel_clk, kernel_reset, address, read, readdata, readdatavalid, write, writedata, burstcount, byteenable, waitrequest, burstbegin, snoop_data, snoop_valid, snoop_ready, export_address, export_read, export_readdata, export_readdatavalid, export_write, export_writedata, export_burstcount, export_burstbegin, export_byteenable, export_waitrequest ); parameter NUM_BYTES = 4; parameter BYTE_ADDRESS_WIDTH = 32; parameter WORD_ADDRESS_WIDTH = 32; parameter BURSTCOUNT_WIDTH = 1; localparam DATA_WIDTH = NUM_BYTES * 8; localparam ADDRESS_SHIFT = BYTE_ADDRESS_WIDTH - WORD_ADDRESS_WIDTH; localparam DEVICE_BLOCKRAM_MIN_DEPTH = 256; //Stratix IV M9Ks localparam FIFO_SIZE = DEVICE_BLOCKRAM_MIN_DEPTH; localparam LOG2_FIFO_SIZE =$clog2(FIFO_SIZE); input clk; input reset; input kernel_clk; input kernel_reset; input [WORD_ADDRESS_WIDTH-1:0] address; input read; output [DATA_WIDTH-1:0] readdata; output readdatavalid; input write; input [DATA_WIDTH-1:0] writedata; input [BURSTCOUNT_WIDTH-1:0] burstcount; input burstbegin; input [NUM_BYTES-1:0] byteenable; output waitrequest; output [1+WORD_ADDRESS_WIDTH+BURSTCOUNT_WIDTH-1:0] snoop_data; output snoop_valid; input snoop_ready; output [BYTE_ADDRESS_WIDTH-1:0] export_address; output export_read; input [DATA_WIDTH-1:0] export_readdata; input export_readdatavalid; output export_write; output [DATA_WIDTH-1:0] export_writedata; output [BURSTCOUNT_WIDTH-1:0] export_burstcount; output export_burstbegin; output [NUM_BYTES-1:0] export_byteenable; input export_waitrequest; reg snoop_overflow; // Register snoop data first reg [WORD_ADDRESS_WIDTH+BURSTCOUNT_WIDTH-1:0] snoop_data_r; //word-address reg snoop_valid_r; wire snoop_fifo_empty; wire overflow; wire [ LOG2_FIFO_SIZE-1 : 0 ] rdusedw; always@(posedge clk) begin snoop_data_r<={address,export_burstcount}; snoop_valid_r<=export_write && !export_waitrequest; end // 1) Fifo to store snooped accesses from host dcfifo dcfifo_component ( .wrclk (clk), .data (snoop_data_r), .wrreq (snoop_valid_r), .rdclk (kernel_clk), .rdreq (snoop_valid & snoop_ready), .q (snoop_data[WORD_ADDRESS_WIDTH+BURSTCOUNT_WIDTH-1:0]), .rdempty (snoop_fifo_empty), .rdfull (overflow), .aclr (1'b0), .rdusedw (rdusedw), .wrempty (), .wrfull (), .wrusedw ()); defparam dcfifo_component.intended_device_family = "Stratix IV", dcfifo_component.lpm_numwords = FIFO_SIZE, dcfifo_component.lpm_showahead = "ON", dcfifo_component.lpm_type = "dcfifo", dcfifo_component.lpm_width = WORD_ADDRESS_WIDTH+BURSTCOUNT_WIDTH, dcfifo_component.lpm_widthu = LOG2_FIFO_SIZE, dcfifo_component.overflow_checking = "ON", dcfifo_component.rdsync_delaypipe = 4, dcfifo_component.underflow_checking = "ON", dcfifo_component.use_eab = "ON", dcfifo_component.wrsync_delaypipe = 4; assign snoop_valid=~snoop_fifo_empty; always@(posedge kernel_clk) snoop_overflow = ( rdusedw >= ( FIFO_SIZE - 12 ) ); // Overflow piggy backed onto MSB of stream. Since overflow guarantees // there is something to be read out, we can be sure that this will reach // the cache. assign snoop_data[WORD_ADDRESS_WIDTH+BURSTCOUNT_WIDTH] = snoop_overflow; assign export_address = address << ADDRESS_SHIFT; assign export_read = read; assign readdata = export_readdata; assign readdatavalid = export_readdatavalid; assign export_write = write; assign export_writedata = writedata; assign export_burstcount = burstcount; assign export_burstbegin = burstbegin; assign export_byteenable = byteenable; assign waitrequest = export_waitrequest; endmodule
module snoop_adapter ( clk, reset, kernel_clk, kernel_reset, address, read, readdata, readdatavalid, write, writedata, burstcount, byteenable, waitrequest, burstbegin, snoop_data, snoop_valid, snoop_ready, export_address, export_read, export_readdata, export_readdatavalid, export_write, export_writedata, export_burstcount, export_burstbegin, export_byteenable, export_waitrequest ); parameter NUM_BYTES = 4; parameter BYTE_ADDRESS_WIDTH = 32; parameter WORD_ADDRESS_WIDTH = 32; parameter BURSTCOUNT_WIDTH = 1; localparam DATA_WIDTH = NUM_BYTES * 8; localparam ADDRESS_SHIFT = BYTE_ADDRESS_WIDTH - WORD_ADDRESS_WIDTH; localparam DEVICE_BLOCKRAM_MIN_DEPTH = 256; //Stratix IV M9Ks localparam FIFO_SIZE = DEVICE_BLOCKRAM_MIN_DEPTH; localparam LOG2_FIFO_SIZE =$clog2(FIFO_SIZE); input clk; input reset; input kernel_clk; input kernel_reset; input [WORD_ADDRESS_WIDTH-1:0] address; input read; output [DATA_WIDTH-1:0] readdata; output readdatavalid; input write; input [DATA_WIDTH-1:0] writedata; input [BURSTCOUNT_WIDTH-1:0] burstcount; input burstbegin; input [NUM_BYTES-1:0] byteenable; output waitrequest; output [1+WORD_ADDRESS_WIDTH+BURSTCOUNT_WIDTH-1:0] snoop_data; output snoop_valid; input snoop_ready; output [BYTE_ADDRESS_WIDTH-1:0] export_address; output export_read; input [DATA_WIDTH-1:0] export_readdata; input export_readdatavalid; output export_write; output [DATA_WIDTH-1:0] export_writedata; output [BURSTCOUNT_WIDTH-1:0] export_burstcount; output export_burstbegin; output [NUM_BYTES-1:0] export_byteenable; input export_waitrequest; reg snoop_overflow; // Register snoop data first reg [WORD_ADDRESS_WIDTH+BURSTCOUNT_WIDTH-1:0] snoop_data_r; //word-address reg snoop_valid_r; wire snoop_fifo_empty; wire overflow; wire [ LOG2_FIFO_SIZE-1 : 0 ] rdusedw; always@(posedge clk) begin snoop_data_r<={address,export_burstcount}; snoop_valid_r<=export_write && !export_waitrequest; end // 1) Fifo to store snooped accesses from host dcfifo dcfifo_component ( .wrclk (clk), .data (snoop_data_r), .wrreq (snoop_valid_r), .rdclk (kernel_clk), .rdreq (snoop_valid & snoop_ready), .q (snoop_data[WORD_ADDRESS_WIDTH+BURSTCOUNT_WIDTH-1:0]), .rdempty (snoop_fifo_empty), .rdfull (overflow), .aclr (1'b0), .rdusedw (rdusedw), .wrempty (), .wrfull (), .wrusedw ()); defparam dcfifo_component.intended_device_family = "Stratix IV", dcfifo_component.lpm_numwords = FIFO_SIZE, dcfifo_component.lpm_showahead = "ON", dcfifo_component.lpm_type = "dcfifo", dcfifo_component.lpm_width = WORD_ADDRESS_WIDTH+BURSTCOUNT_WIDTH, dcfifo_component.lpm_widthu = LOG2_FIFO_SIZE, dcfifo_component.overflow_checking = "ON", dcfifo_component.rdsync_delaypipe = 4, dcfifo_component.underflow_checking = "ON", dcfifo_component.use_eab = "ON", dcfifo_component.wrsync_delaypipe = 4; assign snoop_valid=~snoop_fifo_empty; always@(posedge kernel_clk) snoop_overflow = ( rdusedw >= ( FIFO_SIZE - 12 ) ); // Overflow piggy backed onto MSB of stream. Since overflow guarantees // there is something to be read out, we can be sure that this will reach // the cache. assign snoop_data[WORD_ADDRESS_WIDTH+BURSTCOUNT_WIDTH] = snoop_overflow; assign export_address = address << ADDRESS_SHIFT; assign export_read = read; assign readdata = export_readdata; assign readdatavalid = export_readdatavalid; assign export_write = write; assign export_writedata = writedata; assign export_burstcount = burstcount; assign export_burstbegin = burstbegin; assign export_byteenable = byteenable; assign waitrequest = export_waitrequest; endmodule
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: // Optimized COMPARATOR with generic_baseblocks_v2_1_0_carry logic. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module generic_baseblocks_v2_1_0_comparator_sel_mask # ( parameter C_FAMILY = "virtex6", // FPGA Family. Current version: virtex6 or spartan6. parameter integer C_DATA_WIDTH = 4 // Data width for comparator. ) ( input wire CIN, input wire S, input wire [C_DATA_WIDTH-1:0] A, input wire [C_DATA_WIDTH-1:0] B, input wire [C_DATA_WIDTH-1:0] M, input wire [C_DATA_WIDTH-1:0] V, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for bit vector. genvar lut_cnt; ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Bits per LUT for this architecture. localparam integer C_BITS_PER_LUT = 1; // Constants for packing levels. localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT; // localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT : C_DATA_WIDTH; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// wire [C_FIX_DATA_WIDTH-1:0] a_local; wire [C_FIX_DATA_WIDTH-1:0] b_local; wire [C_FIX_DATA_WIDTH-1:0] m_local; wire [C_FIX_DATA_WIDTH-1:0] v_local; wire [C_NUM_LUT-1:0] sel; wire [C_NUM_LUT:0] carry_local; ///////////////////////////////////////////////////////////////////////////// // ///////////////////////////////////////////////////////////////////////////// generate // Assign input to local vectors. assign carry_local[0] = CIN; // Extend input data to fit. if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign m_local = {M, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign v_local = {V, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; end else begin : NO_EXTENDED_DATA assign a_local = A; assign b_local = B; assign m_local = M; assign v_local = V; end // Instantiate one generic_baseblocks_v2_1_0_carry and per level. for (lut_cnt = 0; lut_cnt < C_NUM_LUT ; lut_cnt = lut_cnt + 1) begin : LUT_LEVEL // Create the local select signal assign sel[lut_cnt] = ( ( ( a_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) == ( v_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ) & ( S == 1'b0 ) ) | ( ( ( b_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) == ( v_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ) & ( S == 1'b1 ) ); // Instantiate each LUT level. generic_baseblocks_v2_1_0_carry_and # ( .C_FAMILY(C_FAMILY) ) compare_inst ( .COUT (carry_local[lut_cnt+1]), .CIN (carry_local[lut_cnt]), .S (sel[lut_cnt]) ); end // end for lut_cnt // Assign output from local vector. assign COUT = carry_local[C_NUM_LUT]; endgenerate endmodule
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: // Optimized COMPARATOR with generic_baseblocks_v2_1_0_carry logic. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module generic_baseblocks_v2_1_0_comparator_sel_mask # ( parameter C_FAMILY = "virtex6", // FPGA Family. Current version: virtex6 or spartan6. parameter integer C_DATA_WIDTH = 4 // Data width for comparator. ) ( input wire CIN, input wire S, input wire [C_DATA_WIDTH-1:0] A, input wire [C_DATA_WIDTH-1:0] B, input wire [C_DATA_WIDTH-1:0] M, input wire [C_DATA_WIDTH-1:0] V, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for bit vector. genvar lut_cnt; ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Bits per LUT for this architecture. localparam integer C_BITS_PER_LUT = 1; // Constants for packing levels. localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT; // localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT : C_DATA_WIDTH; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// wire [C_FIX_DATA_WIDTH-1:0] a_local; wire [C_FIX_DATA_WIDTH-1:0] b_local; wire [C_FIX_DATA_WIDTH-1:0] m_local; wire [C_FIX_DATA_WIDTH-1:0] v_local; wire [C_NUM_LUT-1:0] sel; wire [C_NUM_LUT:0] carry_local; ///////////////////////////////////////////////////////////////////////////// // ///////////////////////////////////////////////////////////////////////////// generate // Assign input to local vectors. assign carry_local[0] = CIN; // Extend input data to fit. if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign m_local = {M, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign v_local = {V, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; end else begin : NO_EXTENDED_DATA assign a_local = A; assign b_local = B; assign m_local = M; assign v_local = V; end // Instantiate one generic_baseblocks_v2_1_0_carry and per level. for (lut_cnt = 0; lut_cnt < C_NUM_LUT ; lut_cnt = lut_cnt + 1) begin : LUT_LEVEL // Create the local select signal assign sel[lut_cnt] = ( ( ( a_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) == ( v_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ) & ( S == 1'b0 ) ) | ( ( ( b_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) == ( v_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ) & ( S == 1'b1 ) ); // Instantiate each LUT level. generic_baseblocks_v2_1_0_carry_and # ( .C_FAMILY(C_FAMILY) ) compare_inst ( .COUT (carry_local[lut_cnt+1]), .CIN (carry_local[lut_cnt]), .S (sel[lut_cnt]) ); end // end for lut_cnt // Assign output from local vector. assign COUT = carry_local[C_NUM_LUT]; endgenerate endmodule
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: // Optimized COMPARATOR with generic_baseblocks_v2_1_0_carry logic. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module generic_baseblocks_v2_1_0_comparator_sel_mask # ( parameter C_FAMILY = "virtex6", // FPGA Family. Current version: virtex6 or spartan6. parameter integer C_DATA_WIDTH = 4 // Data width for comparator. ) ( input wire CIN, input wire S, input wire [C_DATA_WIDTH-1:0] A, input wire [C_DATA_WIDTH-1:0] B, input wire [C_DATA_WIDTH-1:0] M, input wire [C_DATA_WIDTH-1:0] V, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for bit vector. genvar lut_cnt; ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Bits per LUT for this architecture. localparam integer C_BITS_PER_LUT = 1; // Constants for packing levels. localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT; // localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT : C_DATA_WIDTH; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// wire [C_FIX_DATA_WIDTH-1:0] a_local; wire [C_FIX_DATA_WIDTH-1:0] b_local; wire [C_FIX_DATA_WIDTH-1:0] m_local; wire [C_FIX_DATA_WIDTH-1:0] v_local; wire [C_NUM_LUT-1:0] sel; wire [C_NUM_LUT:0] carry_local; ///////////////////////////////////////////////////////////////////////////// // ///////////////////////////////////////////////////////////////////////////// generate // Assign input to local vectors. assign carry_local[0] = CIN; // Extend input data to fit. if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign m_local = {M, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign v_local = {V, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; end else begin : NO_EXTENDED_DATA assign a_local = A; assign b_local = B; assign m_local = M; assign v_local = V; end // Instantiate one generic_baseblocks_v2_1_0_carry and per level. for (lut_cnt = 0; lut_cnt < C_NUM_LUT ; lut_cnt = lut_cnt + 1) begin : LUT_LEVEL // Create the local select signal assign sel[lut_cnt] = ( ( ( a_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) == ( v_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ) & ( S == 1'b0 ) ) | ( ( ( b_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) == ( v_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ) & ( S == 1'b1 ) ); // Instantiate each LUT level. generic_baseblocks_v2_1_0_carry_and # ( .C_FAMILY(C_FAMILY) ) compare_inst ( .COUT (carry_local[lut_cnt+1]), .CIN (carry_local[lut_cnt]), .S (sel[lut_cnt]) ); end // end for lut_cnt // Assign output from local vector. assign COUT = carry_local[C_NUM_LUT]; endgenerate endmodule
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: // Optimized COMPARATOR with generic_baseblocks_v2_1_0_carry logic. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module generic_baseblocks_v2_1_0_comparator_sel_mask # ( parameter C_FAMILY = "virtex6", // FPGA Family. Current version: virtex6 or spartan6. parameter integer C_DATA_WIDTH = 4 // Data width for comparator. ) ( input wire CIN, input wire S, input wire [C_DATA_WIDTH-1:0] A, input wire [C_DATA_WIDTH-1:0] B, input wire [C_DATA_WIDTH-1:0] M, input wire [C_DATA_WIDTH-1:0] V, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for bit vector. genvar lut_cnt; ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Bits per LUT for this architecture. localparam integer C_BITS_PER_LUT = 1; // Constants for packing levels. localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT; // localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT : C_DATA_WIDTH; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// wire [C_FIX_DATA_WIDTH-1:0] a_local; wire [C_FIX_DATA_WIDTH-1:0] b_local; wire [C_FIX_DATA_WIDTH-1:0] m_local; wire [C_FIX_DATA_WIDTH-1:0] v_local; wire [C_NUM_LUT-1:0] sel; wire [C_NUM_LUT:0] carry_local; ///////////////////////////////////////////////////////////////////////////// // ///////////////////////////////////////////////////////////////////////////// generate // Assign input to local vectors. assign carry_local[0] = CIN; // Extend input data to fit. if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign m_local = {M, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign v_local = {V, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; end else begin : NO_EXTENDED_DATA assign a_local = A; assign b_local = B; assign m_local = M; assign v_local = V; end // Instantiate one generic_baseblocks_v2_1_0_carry and per level. for (lut_cnt = 0; lut_cnt < C_NUM_LUT ; lut_cnt = lut_cnt + 1) begin : LUT_LEVEL // Create the local select signal assign sel[lut_cnt] = ( ( ( a_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) == ( v_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ) & ( S == 1'b0 ) ) | ( ( ( b_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) == ( v_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] & m_local[lut_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) ) & ( S == 1'b1 ) ); // Instantiate each LUT level. generic_baseblocks_v2_1_0_carry_and # ( .C_FAMILY(C_FAMILY) ) compare_inst ( .COUT (carry_local[lut_cnt+1]), .CIN (carry_local[lut_cnt]), .S (sel[lut_cnt]) ); end // end for lut_cnt // Assign output from local vector. assign COUT = carry_local[C_NUM_LUT]; endgenerate endmodule
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: // Optimized COMPARATOR with generic_baseblocks_v2_1_0_carry logic. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module generic_baseblocks_v2_1_0_comparator_sel # ( parameter C_FAMILY = "virtex6", // FPGA Family. Current version: virtex6 or spartan6. parameter integer C_DATA_WIDTH = 4 // Data width for comparator. ) ( input wire CIN, input wire S, input wire [C_DATA_WIDTH-1:0] A, input wire [C_DATA_WIDTH-1:0] B, input wire [C_DATA_WIDTH-1:0] V, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for bit vector. genvar bit_cnt; ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Bits per LUT for this architecture. localparam integer C_BITS_PER_LUT = 1; // Constants for packing levels. localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT; // localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT : C_DATA_WIDTH; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// wire [C_FIX_DATA_WIDTH-1:0] a_local; wire [C_FIX_DATA_WIDTH-1:0] b_local; wire [C_FIX_DATA_WIDTH-1:0] v_local; wire [C_NUM_LUT-1:0] sel; wire [C_NUM_LUT:0] carry_local; ///////////////////////////////////////////////////////////////////////////// // ///////////////////////////////////////////////////////////////////////////// generate // Assign input to local vectors. assign carry_local[0] = CIN; // Extend input data to fit. if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign v_local = {V, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; end else begin : NO_EXTENDED_DATA assign a_local = A; assign b_local = B; assign v_local = V; end // Instantiate one generic_baseblocks_v2_1_0_carry and per level. for (bit_cnt = 0; bit_cnt < C_NUM_LUT ; bit_cnt = bit_cnt + 1) begin : LUT_LEVEL // Create the local select signal assign sel[bit_cnt] = ( ( a_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] == v_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) & ( S == 1'b0 ) ) | ( ( b_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] == v_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) & ( S == 1'b1 ) ); // Instantiate each LUT level. generic_baseblocks_v2_1_0_carry_and # ( .C_FAMILY(C_FAMILY) ) compare_inst ( .COUT (carry_local[bit_cnt+1]), .CIN (carry_local[bit_cnt]), .S (sel[bit_cnt]) ); end // end for bit_cnt // Assign output from local vector. assign COUT = carry_local[C_NUM_LUT]; endgenerate endmodule
/* Legal Notice: (C)2009 Altera Corporation. All rights reserved. Your use of Altera Corporation's design tools, logic functions and other software and tools, and its AMPP partner logic functions, and any output files any of the foregoing (including device programming or simulation files), and any associated documentation or information are expressly subject to the terms and conditions of the Altera Program License Subscription Agreement or other applicable license agreement, including, without limitation, that your use is for the sole purpose of programming logic devices manufactured by Altera and sold by Altera or its authorized distributors. Please refer to the applicable agreement for further details. */ /* Author: JCJB Date: 08/21/2009 Version 1.3 This logic recieves a potentially unsupported byte enable combination and breaks it down into supported byte enable combinations to the fabric. For example if a 64-bit write master wants to write to addresses 0x1 and beyond, this maps to address 0x0 with byte enables "11111110" asserted. This does not contain a power of two of neighbooring asserted bits. Instead this block will convert this into three writes all of which are supported: "00000010", "00001100", and "11110000". When this block breaks a transfer down it asserts stall so that the rest of the master logic will keep the outputs constant. Revision History: 1.0 Initial version - Used a word distance to calculate which lanes to enable. 1.1 Re-encoded version - Uses byte enables directly to calculate which lanes to enable. This allows byte enables in the middle of a word to be supported as well such as '0110'. 1.2 Bug fix to include the waitrequest for state transitions when the byte enable width is greater than 2. 1.3 Added support for 64 and 128-bit byte enables (for 512/1024 bit data paths) */ // synthesis translate_off `timescale 1ns / 1ps // synthesis translate_on // turn off superfluous verilog processor warnings // altera message_level Level1 // altera message_off 10034 10035 10036 10037 10230 10240 10030 module byte_enable_generator ( clk, reset, // master side write_in, byteenable_in, waitrequest_out, // fabric side byteenable_out, waitrequest_in ); parameter BYTEENABLE_WIDTH = 4; // valid byteenable widths are 1, 2, 4, 8, 16, 32, 64, and 128 input clk; input reset; input write_in; // will enable state machine logic input [BYTEENABLE_WIDTH-1:0] byteenable_in; // byteenables from master which contain unsupported groupings of byte lanes to be converted output wire waitrequest_out; // used to stall the master when fabric asserts waitrequest or access needs to be broken down output wire [BYTEENABLE_WIDTH-1:0] byteenable_out; // supported byte enables to the fabric input waitrequest_in; // waitrequest from the fabric generate if (BYTEENABLE_WIDTH == 1) // for completeness... begin assign byteenable_out = byteenable_in; assign waitrequest_out = waitrequest_in; end else if (BYTEENABLE_WIDTH == 2) begin sixteen_bit_byteenable_FSM the_sixteen_bit_byteenable_FSM ( // pass through for the most part like the 1 bit case, has it's own module since the 4 bit module uses it .write_in (write_in), .byteenable_in (byteenable_in), .waitrequest_out (waitrequest_out), .byteenable_out (byteenable_out), .waitrequest_in (waitrequest_in) ); end else if (BYTEENABLE_WIDTH == 4) begin thirty_two_bit_byteenable_FSM the_thirty_two_bit_byteenable_FSM( .clk (clk), .reset (reset), .write_in (write_in), .byteenable_in (byteenable_in), .waitrequest_out (waitrequest_out), .byteenable_out (byteenable_out), .waitrequest_in (waitrequest_in) ); end else if (BYTEENABLE_WIDTH == 8) begin sixty_four_bit_byteenable_FSM the_sixty_four_bit_byteenable_FSM( .clk (clk), .reset (reset), .write_in (write_in), .byteenable_in (byteenable_in), .waitrequest_out (waitrequest_out), .byteenable_out (byteenable_out), .waitrequest_in (waitrequest_in) ); end else if (BYTEENABLE_WIDTH == 16) begin one_hundred_twenty_eight_bit_byteenable_FSM the_one_hundred_twenty_eight_bit_byteenable_FSM( .clk (clk), .reset (reset), .write_in (write_in), .byteenable_in (byteenable_in), .waitrequest_out (waitrequest_out), .byteenable_out (byteenable_out), .waitrequest_in (waitrequest_in) ); end else if (BYTEENABLE_WIDTH == 32) begin two_hundred_fifty_six_bit_byteenable_FSM the_two_hundred_fifty_six_bit_byteenable_FSM( .clk (clk), .reset (reset), .write_in (write_in), .byteenable_in (byteenable_in), .waitrequest_out (waitrequest_out), .byteenable_out (byteenable_out), .waitrequest_in (waitrequest_in) ); end else if (BYTEENABLE_WIDTH == 64) begin five_hundred_twelve_bit_byteenable_FSM the_five_hundred_twelve_bit_byteenable_FSM ( .clk (clk), .reset (reset), .write_in (write_in), .byteenable_in (byteenable_in), .waitrequest_out (waitrequest_out), .byteenable_out (byteenable_out), .waitrequest_in (waitrequest_in) ); end else if (BYTEENABLE_WIDTH == 128) begin one_thousand_twenty_four_byteenable_FSM the_one_thousand_twenty_four_byteenable_FSM ( .clk (clk), .reset (reset), .write_in (write_in), .byteenable_in (byteenable_in), .waitrequest_out (waitrequest_out), .byteenable_out (byteenable_out), .waitrequest_in (waitrequest_in) ); end endgenerate endmodule module one_thousand_twenty_four_byteenable_FSM ( clk, reset, write_in, byteenable_in, waitrequest_out, byteenable_out, waitrequest_in ); input clk; input reset; input write_in; input [127:0] byteenable_in; output wire waitrequest_out; output wire [127:0] byteenable_out; input waitrequest_in; // internal statemachine signals wire partial_lower_half_transfer; wire full_lower_half_transfer; wire partial_upper_half_transfer; wire full_upper_half_transfer; wire full_word_transfer; reg state_bit; wire transfer_done; wire advance_to_next_state; wire lower_enable; wire upper_enable; wire lower_stall; wire upper_stall; wire two_stage_transfer; always @ (posedge clk or posedge reset) begin if (reset) begin state_bit <= 0; end else begin if (transfer_done == 1) begin state_bit <= 0; end else if (advance_to_next_state == 1) begin state_bit <= 1; end end end assign partial_lower_half_transfer = (byteenable_in[63:0] != 0); assign full_lower_half_transfer = (byteenable_in[63:0] == 64'hFFFFFFFFFFFFFFFF); assign partial_upper_half_transfer = (byteenable_in[127:64] != 0); assign full_upper_half_transfer = (byteenable_in[127:64] == 64'hFFFFFFFFFFFFFFFF); assign full_word_transfer = (full_lower_half_transfer == 1) & (full_upper_half_transfer == 1); assign two_stage_transfer = (full_word_transfer == 0) & (partial_lower_half_transfer == 1) & (partial_upper_half_transfer == 1); assign advance_to_next_state = (two_stage_transfer == 1) & (lower_stall == 0) & (write_in == 1) & (state_bit == 0) & (waitrequest_in == 0); // partial lower half transfer completed and there are bytes in the upper half that need to go out still assign transfer_done = ((full_word_transfer == 1) & (waitrequest_in == 0) & (write_in == 1)) | // full word transfer complete ((two_stage_transfer == 0) & (lower_stall == 0) & (upper_stall == 0) & (write_in == 1) & (waitrequest_in == 0)) | // partial upper or lower half transfer complete ((two_stage_transfer == 1) & (state_bit == 1) & (upper_stall == 0) & (write_in == 1) & (waitrequest_in == 0)); // partial upper and lower half transfers complete assign lower_enable = ((write_in == 1) & (full_word_transfer == 1)) | // full word transfer ((write_in == 1) & (two_stage_transfer == 0) & (partial_lower_half_transfer == 1)) | // only a partial lower half transfer ((write_in == 1) & (two_stage_transfer == 1) & (partial_lower_half_transfer == 1) & (state_bit == 0)); // partial lower half transfer (to be followed by an upper half transfer) assign upper_enable = ((write_in == 1) & (full_word_transfer == 1)) | // full word transfer ((write_in == 1) & (two_stage_transfer == 0) & (partial_upper_half_transfer == 1)) | // only a partial upper half transfer ((write_in == 1) & (two_stage_transfer == 1) & (partial_upper_half_transfer == 1) & (state_bit == 1)); // partial upper half transfer (after the lower half transfer) five_hundred_twelve_bit_byteenable_FSM lower_five_hundred_twelve_bit_byteenable_FSM ( .clk (clk), .reset (reset), .write_in (lower_enable), .byteenable_in (byteenable_in[63:0]), .waitrequest_out (lower_stall), .byteenable_out (byteenable_out[63:0]), .waitrequest_in (waitrequest_in) ); five_hundred_twelve_bit_byteenable_FSM upper_five_hundred_twelve_bit_byteenable_FSM ( .clk (clk), .reset (reset), .write_in (upper_enable), .byteenable_in (byteenable_in[127:64]), .waitrequest_out (upper_stall), .byteenable_out (byteenable_out[127:64]), .waitrequest_in (waitrequest_in) ); assign waitrequest_out = (waitrequest_in == 1) | ((transfer_done == 0) & (write_in == 1)); endmodule module five_hundred_twelve_bit_byteenable_FSM ( clk, reset, write_in, byteenable_in, waitrequest_out, byteenable_out, waitrequest_in ); input clk; input reset; input write_in; input [63:0] byteenable_in; output wire waitrequest_out; output wire [63:0] byteenable_out; input waitrequest_in; // internal statemachine signals wire partial_lower_half_transfer; wire full_lower_half_transfer; wire partial_upper_half_transfer; wire full_upper_half_transfer; wire full_word_transfer; reg state_bit; wire transfer_done; wire advance_to_next_state; wire lower_enable; wire upper_enable; wire lower_stall; wire upper_stall; wire two_stage_transfer; always @ (posedge clk or posedge reset) begin if (reset) begin state_bit <= 0; end else begin if (transfer_done == 1) begin state_bit <= 0; end else if (advance_to_next_state == 1) begin state_bit <= 1; end end end assign partial_lower_half_transfer = (byteenable_in[31:0] != 0); assign full_lower_half_transfer = (byteenable_in[31:0] == 32'hFFFFFFFF); assign partial_upper_half_transfer = (byteenable_in[63:32] != 0); assign full_upper_half_transfer = (byteenable_in[63:32] == 32'hFFFFFFFF); assign full_word_transfer = (full_lower_half_transfer == 1) & (full_upper_half_transfer == 1); assign two_stage_transfer = (full_word_transfer == 0) & (partial_lower_half_transfer == 1) & (partial_upper_half_transfer == 1); assign advance_to_next_state = (two_stage_transfer == 1) & (lower_stall == 0) & (write_in == 1) & (state_bit == 0) & (waitrequest_in == 0); // partial lower half transfer completed and there are bytes in the upper half that need to go out still assign transfer_done = ((full_word_transfer == 1) & (waitrequest_in == 0) & (write_in == 1)) | // full word transfer complete ((two_stage_transfer == 0) & (lower_stall == 0) & (upper_stall == 0) & (write_in == 1) & (waitrequest_in == 0)) | // partial upper or lower half transfer complete ((two_stage_transfer == 1) & (state_bit == 1) & (upper_stall == 0) & (write_in == 1) & (waitrequest_in == 0)); // partial upper and lower half transfers complete assign lower_enable = ((write_in == 1) & (full_word_transfer == 1)) | // full word transfer ((write_in == 1) & (two_stage_transfer == 0) & (partial_lower_half_transfer == 1)) | // only a partial lower half transfer ((write_in == 1) & (two_stage_transfer == 1) & (partial_lower_half_transfer == 1) & (state_bit == 0)); // partial lower half transfer (to be followed by an upper half transfer) assign upper_enable = ((write_in == 1) & (full_word_transfer == 1)) | // full word transfer ((write_in == 1) & (two_stage_transfer == 0) & (partial_upper_half_transfer == 1)) | // only a partial upper half transfer ((write_in == 1) & (two_stage_transfer == 1) & (partial_upper_half_transfer == 1) & (state_bit == 1)); // partial upper half transfer (after the lower half transfer) two_hundred_fifty_six_bit_byteenable_FSM lower_two_hundred_fifty_six_bit_byteenable_FSM ( .clk (clk), .reset (reset), .write_in (lower_enable), .byteenable_in (byteenable_in[31:0]), .waitrequest_out (lower_stall), .byteenable_out (byteenable_out[31:0]), .waitrequest_in (waitrequest_in) ); two_hundred_fifty_six_bit_byteenable_FSM upper_two_hundred_fifty_six_bit_byteenable_FSM ( .clk (clk), .reset (reset), .write_in (upper_enable), .byteenable_in (byteenable_in[63:32]), .waitrequest_out (upper_stall), .byteenable_out (byteenable_out[63:32]), .waitrequest_in (waitrequest_in) ); assign waitrequest_out = (waitrequest_in == 1) | ((transfer_done == 0) & (write_in == 1)); endmodule module two_hundred_fifty_six_bit_byteenable_FSM ( clk, reset, write_in, byteenable_in, waitrequest_out, byteenable_out, waitrequest_in ); input clk; input reset; input write_in; input [31:0] byteenable_in; output wire waitrequest_out; output wire [31:0] byteenable_out; input waitrequest_in; // internal statemachine signals wire partial_lower_half_transfer; wire full_lower_half_transfer; wire partial_upper_half_transfer; wire full_upper_half_transfer; wire full_word_transfer; reg state_bit; wire transfer_done; wire advance_to_next_state; wire lower_enable; wire upper_enable; wire lower_stall; wire upper_stall; wire two_stage_transfer; always @ (posedge clk or posedge reset) begin if (reset) begin state_bit <= 0; end else begin if (transfer_done == 1) begin state_bit <= 0; end else if (advance_to_next_state == 1) begin state_bit <= 1; end end end assign partial_lower_half_transfer = (byteenable_in[15:0] != 0); assign full_lower_half_transfer = (byteenable_in[15:0] == 16'hFFFF); assign partial_upper_half_transfer = (byteenable_in[31:16] != 0); assign full_upper_half_transfer = (byteenable_in[31:16] == 16'hFFFF); assign full_word_transfer = (full_lower_half_transfer == 1) & (full_upper_half_transfer == 1); assign two_stage_transfer = (full_word_transfer == 0) & (partial_lower_half_transfer == 1) & (partial_upper_half_transfer == 1); assign advance_to_next_state = (two_stage_transfer == 1) & (lower_stall == 0) & (write_in == 1) & (state_bit == 0) & (waitrequest_in == 0); // partial lower half transfer completed and there are bytes in the upper half that need to go out still assign transfer_done = ((full_word_transfer == 1) & (waitrequest_in == 0) & (write_in == 1)) | // full word transfer complete ((two_stage_transfer == 0) & (lower_stall == 0) & (upper_stall == 0) & (write_in == 1) & (waitrequest_in == 0)) | // partial upper or lower half transfer complete ((two_stage_transfer == 1) & (state_bit == 1) & (upper_stall == 0) & (write_in == 1) & (waitrequest_in == 0)); // partial upper and lower half transfers complete assign lower_enable = ((write_in == 1) & (full_word_transfer == 1)) | // full word transfer ((write_in == 1) & (two_stage_transfer == 0) & (partial_lower_half_transfer == 1)) | // only a partial lower half transfer ((write_in == 1) & (two_stage_transfer == 1) & (partial_lower_half_transfer == 1) & (state_bit == 0)); // partial lower half transfer (to be followed by an upper half transfer) assign upper_enable = ((write_in == 1) & (full_word_transfer == 1)) | // full word transfer ((write_in == 1) & (two_stage_transfer == 0) & (partial_upper_half_transfer == 1)) | // only a partial upper half transfer ((write_in == 1) & (two_stage_transfer == 1) & (partial_upper_half_transfer == 1) & (state_bit == 1)); // partial upper half transfer (after the lower half transfer) one_hundred_twenty_eight_bit_byteenable_FSM lower_one_hundred_twenty_eight_bit_byteenable_FSM ( .clk (clk), .reset (reset), .write_in (lower_enable), .byteenable_in (byteenable_in[15:0]), .waitrequest_out (lower_stall), .byteenable_out (byteenable_out[15:0]), .waitrequest_in (waitrequest_in) ); one_hundred_twenty_eight_bit_byteenable_FSM upper_one_hundred_twenty_eight_bit_byteenable_FSM ( .clk (clk), .reset (reset), .write_in (upper_enable), .byteenable_in (byteenable_in[31:16]), .waitrequest_out (upper_stall), .byteenable_out (byteenable_out[31:16]), .waitrequest_in (waitrequest_in) ); assign waitrequest_out = (waitrequest_in == 1) | ((transfer_done == 0) & (write_in == 1)); endmodule module one_hundred_twenty_eight_bit_byteenable_FSM ( clk, reset, write_in, byteenable_in, waitrequest_out, byteenable_out, waitrequest_in ); input clk; input reset; input write_in; input [15:0] byteenable_in; output wire waitrequest_out; output wire [15:0] byteenable_out; input waitrequest_in; // internal statemachine signals wire partial_lower_half_transfer; wire full_lower_half_transfer; wire partial_upper_half_transfer; wire full_upper_half_transfer; wire full_word_transfer; reg state_bit; wire transfer_done; wire advance_to_next_state; wire lower_enable; wire upper_enable; wire lower_stall; wire upper_stall; wire two_stage_transfer; always @ (posedge clk or posedge reset) begin if (reset) begin state_bit <= 0; end else begin if (transfer_done == 1) begin state_bit <= 0; end else if (advance_to_next_state == 1) begin state_bit <= 1; end end end assign partial_lower_half_transfer = (byteenable_in[7:0] != 0); assign full_lower_half_transfer = (byteenable_in[7:0] == 8'hFF); assign partial_upper_half_transfer = (byteenable_in[15:8] != 0); assign full_upper_half_transfer = (byteenable_in[15:8] == 8'hFF); assign full_word_transfer = (full_lower_half_transfer == 1) & (full_upper_half_transfer == 1); assign two_stage_transfer = (full_word_transfer == 0) & (partial_lower_half_transfer == 1) & (partial_upper_half_transfer == 1); assign advance_to_next_state = (two_stage_transfer == 1) & (lower_stall == 0) & (write_in == 1) & (state_bit == 0) & (waitrequest_in == 0); // partial lower half transfer completed and there are bytes in the upper half that need to go out still assign transfer_done = ((full_word_transfer == 1) & (waitrequest_in == 0) & (write_in == 1)) | // full word transfer complete ((two_stage_transfer == 0) & (lower_stall == 0) & (upper_stall == 0) & (write_in == 1) & (waitrequest_in == 0)) | // partial upper or lower half transfer complete ((two_stage_transfer == 1) & (state_bit == 1) & (upper_stall == 0) & (write_in == 1) & (waitrequest_in == 0)); // partial upper and lower half transfers complete assign lower_enable = ((write_in == 1) & (full_word_transfer == 1)) | // full word transfer ((write_in == 1) & (two_stage_transfer == 0) & (partial_lower_half_transfer == 1)) | // only a partial lower half transfer ((write_in == 1) & (two_stage_transfer == 1) & (partial_lower_half_transfer == 1) & (state_bit == 0)); // partial lower half transfer (to be followed by an upper half transfer) assign upper_enable = ((write_in == 1) & (full_word_transfer == 1)) | // full word transfer ((write_in == 1) & (two_stage_transfer == 0) & (partial_upper_half_transfer == 1)) | // only a partial upper half transfer ((write_in == 1) & (two_stage_transfer == 1) & (partial_upper_half_transfer == 1) & (state_bit == 1)); // partial upper half transfer (after the lower half transfer) sixty_four_bit_byteenable_FSM lower_sixty_four_bit_byteenable_FSM ( .clk (clk), .reset (reset), .write_in (lower_enable), .byteenable_in (byteenable_in[7:0]), .waitrequest_out (lower_stall), .byteenable_out (byteenable_out[7:0]), .waitrequest_in (waitrequest_in) ); sixty_four_bit_byteenable_FSM upper_sixty_four_bit_byteenable_FSM ( .clk (clk), .reset (reset), .write_in (upper_enable), .byteenable_in (byteenable_in[15:8]), .waitrequest_out (upper_stall), .byteenable_out (byteenable_out[15:8]), .waitrequest_in (waitrequest_in) ); assign waitrequest_out = (waitrequest_in == 1) | ((transfer_done == 0) & (write_in == 1)); endmodule module sixty_four_bit_byteenable_FSM ( clk, reset, write_in, byteenable_in, waitrequest_out, byteenable_out, waitrequest_in ); input clk; input reset; input write_in; input [7:0] byteenable_in; output wire waitrequest_out; output wire [7:0] byteenable_out; input waitrequest_in; // internal statemachine signals wire partial_lower_half_transfer; wire full_lower_half_transfer; wire partial_upper_half_transfer; wire full_upper_half_transfer; wire full_word_transfer; reg state_bit; wire transfer_done; wire advance_to_next_state; wire lower_enable; wire upper_enable; wire lower_stall; wire upper_stall; wire two_stage_transfer; always @ (posedge clk or posedge reset) begin if (reset) begin state_bit <= 0; end else begin if (transfer_done == 1) begin state_bit <= 0; end else if (advance_to_next_state == 1) begin state_bit <= 1; end end end assign partial_lower_half_transfer = (byteenable_in[3:0] != 0); assign full_lower_half_transfer = (byteenable_in[3:0] == 4'hF); assign partial_upper_half_transfer = (byteenable_in[7:4] != 0); assign full_upper_half_transfer = (byteenable_in[7:4] == 4'hF); assign full_word_transfer = (full_lower_half_transfer == 1) & (full_upper_half_transfer == 1); assign two_stage_transfer = (full_word_transfer == 0) & (partial_lower_half_transfer == 1) & (partial_upper_half_transfer == 1); assign advance_to_next_state = (two_stage_transfer == 1) & (lower_stall == 0) & (write_in == 1) & (state_bit == 0) & (waitrequest_in == 0); // partial lower half transfer completed and there are bytes in the upper half that need to go out still assign transfer_done = ((full_word_transfer == 1) & (waitrequest_in == 0) & (write_in == 1)) | // full word transfer complete ((two_stage_transfer == 0) & (lower_stall == 0) & (upper_stall == 0) & (write_in == 1) & (waitrequest_in == 0)) | // partial upper or lower half transfer complete ((two_stage_transfer == 1) & (state_bit == 1) & (upper_stall == 0) & (write_in == 1) & (waitrequest_in == 0)); // partial upper and lower half transfers complete assign lower_enable = ((write_in == 1) & (full_word_transfer == 1)) | // full word transfer ((write_in == 1) & (two_stage_transfer == 0) & (partial_lower_half_transfer == 1)) | // only a partial lower half transfer ((write_in == 1) & (two_stage_transfer == 1) & (partial_lower_half_transfer == 1) & (state_bit == 0)); // partial lower half transfer (to be followed by an upper half transfer) assign upper_enable = ((write_in == 1) & (full_word_transfer == 1)) | // full word transfer ((write_in == 1) & (two_stage_transfer == 0) & (partial_upper_half_transfer == 1)) | // only a partial upper half transfer ((write_in == 1) & (two_stage_transfer == 1) & (partial_upper_half_transfer == 1) & (state_bit == 1)); // partial upper half transfer (after the lower half transfer) thirty_two_bit_byteenable_FSM lower_thirty_two_bit_byteenable_FSM ( .clk (clk), .reset (reset), .write_in (lower_enable), .byteenable_in (byteenable_in[3:0]), .waitrequest_out (lower_stall), .byteenable_out (byteenable_out[3:0]), .waitrequest_in (waitrequest_in) ); thirty_two_bit_byteenable_FSM upper_thirty_two_bit_byteenable_FSM ( .clk (clk), .reset (reset), .write_in (upper_enable), .byteenable_in (byteenable_in[7:4]), .waitrequest_out (upper_stall), .byteenable_out (byteenable_out[7:4]), .waitrequest_in (waitrequest_in) ); assign waitrequest_out = (waitrequest_in == 1) | ((transfer_done == 0) & (write_in == 1)); endmodule module thirty_two_bit_byteenable_FSM ( clk, reset, write_in, byteenable_in, waitrequest_out, byteenable_out, waitrequest_in ); input clk; input reset; input write_in; input [3:0] byteenable_in; output wire waitrequest_out; output wire [3:0] byteenable_out; input waitrequest_in; // internal statemachine signals wire partial_lower_half_transfer; wire full_lower_half_transfer; wire partial_upper_half_transfer; wire full_upper_half_transfer; wire full_word_transfer; reg state_bit; wire transfer_done; wire advance_to_next_state; wire lower_enable; wire upper_enable; wire lower_stall; wire upper_stall; wire two_stage_transfer; always @ (posedge clk or posedge reset) begin if (reset) begin state_bit <= 0; end else begin if (transfer_done == 1) begin state_bit <= 0; end else if (advance_to_next_state == 1) begin state_bit <= 1; end end end assign partial_lower_half_transfer = (byteenable_in[1:0] != 0); assign full_lower_half_transfer = (byteenable_in[1:0] == 2'h3); assign partial_upper_half_transfer = (byteenable_in[3:2] != 0); assign full_upper_half_transfer = (byteenable_in[3:2] == 2'h3); assign full_word_transfer = (full_lower_half_transfer == 1) & (full_upper_half_transfer == 1); assign two_stage_transfer = (full_word_transfer == 0) & (partial_lower_half_transfer == 1) & (partial_upper_half_transfer == 1); assign advance_to_next_state = (two_stage_transfer == 1) & (lower_stall == 0) & (write_in == 1) & (state_bit == 0) & (waitrequest_in == 0); // partial lower half transfer completed and there are bytes in the upper half that need to go out still assign transfer_done = ((full_word_transfer == 1) & (waitrequest_in == 0) & (write_in == 1)) | // full word transfer complete ((two_stage_transfer == 0) & (lower_stall == 0) & (upper_stall == 0) & (write_in == 1) & (waitrequest_in == 0)) | // partial upper or lower half transfer complete ((two_stage_transfer == 1) & (state_bit == 1) & (upper_stall == 0) & (write_in == 1) & (waitrequest_in == 0)); // partial upper and lower half transfers complete assign lower_enable = ((write_in == 1) & (full_word_transfer == 1)) | // full word transfer ((write_in == 1) & (two_stage_transfer == 0) & (partial_lower_half_transfer == 1)) | // only a partial lower half transfer ((write_in == 1) & (two_stage_transfer == 1) & (partial_lower_half_transfer == 1) & (state_bit == 0)); // partial lower half transfer (to be followed by an upper half transfer) assign upper_enable = ((write_in == 1) & (full_word_transfer == 1)) | // full word transfer ((write_in == 1) & (two_stage_transfer == 0) & (partial_upper_half_transfer == 1)) | // only a partial upper half transfer ((write_in == 1) & (two_stage_transfer == 1) & (partial_upper_half_transfer == 1) & (state_bit == 1)); // partial upper half transfer (after the lower half transfer) sixteen_bit_byteenable_FSM lower_sixteen_bit_byteenable_FSM ( .write_in (lower_enable), .byteenable_in (byteenable_in[1:0]), .waitrequest_out (lower_stall), .byteenable_out (byteenable_out[1:0]), .waitrequest_in (waitrequest_in) ); sixteen_bit_byteenable_FSM upper_sixteen_bit_byteenable_FSM ( .write_in (upper_enable), .byteenable_in (byteenable_in[3:2]), .waitrequest_out (upper_stall), .byteenable_out (byteenable_out[3:2]), .waitrequest_in (waitrequest_in) ); assign waitrequest_out = (waitrequest_in == 1) | ((transfer_done == 0) & (write_in == 1)); endmodule /************************************************************************************************** Fundament byte enable state machine for which 32, 64, 128, 256, 512, and 1024 bit byte enable statemachines will use to operate on groups of two byte enables. ***************************************************************************************************/ module sixteen_bit_byteenable_FSM ( write_in, byteenable_in, waitrequest_out, byteenable_out, waitrequest_in ); input write_in; input [1:0] byteenable_in; output wire waitrequest_out; output wire [1:0] byteenable_out; input waitrequest_in; assign byteenable_out = byteenable_in & {2{write_in}}; // all 2 bit byte enable pairs are supported, masked with write in to turn the byte lanes off when writing is disabled assign waitrequest_out = (write_in == 1) & (waitrequest_in == 1); // transfer always completes on the first cycle unless waitrequest is asserted endmodule
/* Legal Notice: (C)2009 Altera Corporation. All rights reserved. Your use of Altera Corporation's design tools, logic functions and other software and tools, and its AMPP partner logic functions, and any output files any of the foregoing (including device programming or simulation files), and any associated documentation or information are expressly subject to the terms and conditions of the Altera Program License Subscription Agreement or other applicable license agreement, including, without limitation, that your use is for the sole purpose of programming logic devices manufactured by Altera and sold by Altera or its authorized distributors. Please refer to the applicable agreement for further details. */ /* Author: JCJB Date: 08/21/2009 Version 1.3 This logic recieves a potentially unsupported byte enable combination and breaks it down into supported byte enable combinations to the fabric. For example if a 64-bit write master wants to write to addresses 0x1 and beyond, this maps to address 0x0 with byte enables "11111110" asserted. This does not contain a power of two of neighbooring asserted bits. Instead this block will convert this into three writes all of which are supported: "00000010", "00001100", and "11110000". When this block breaks a transfer down it asserts stall so that the rest of the master logic will keep the outputs constant. Revision History: 1.0 Initial version - Used a word distance to calculate which lanes to enable. 1.1 Re-encoded version - Uses byte enables directly to calculate which lanes to enable. This allows byte enables in the middle of a word to be supported as well such as '0110'. 1.2 Bug fix to include the waitrequest for state transitions when the byte enable width is greater than 2. 1.3 Added support for 64 and 128-bit byte enables (for 512/1024 bit data paths) */ // synthesis translate_off `timescale 1ns / 1ps // synthesis translate_on // turn off superfluous verilog processor warnings // altera message_level Level1 // altera message_off 10034 10035 10036 10037 10230 10240 10030 module byte_enable_generator ( clk, reset, // master side write_in, byteenable_in, waitrequest_out, // fabric side byteenable_out, waitrequest_in ); parameter BYTEENABLE_WIDTH = 4; // valid byteenable widths are 1, 2, 4, 8, 16, 32, 64, and 128 input clk; input reset; input write_in; // will enable state machine logic input [BYTEENABLE_WIDTH-1:0] byteenable_in; // byteenables from master which contain unsupported groupings of byte lanes to be converted output wire waitrequest_out; // used to stall the master when fabric asserts waitrequest or access needs to be broken down output wire [BYTEENABLE_WIDTH-1:0] byteenable_out; // supported byte enables to the fabric input waitrequest_in; // waitrequest from the fabric generate if (BYTEENABLE_WIDTH == 1) // for completeness... begin assign byteenable_out = byteenable_in; assign waitrequest_out = waitrequest_in; end else if (BYTEENABLE_WIDTH == 2) begin sixteen_bit_byteenable_FSM the_sixteen_bit_byteenable_FSM ( // pass through for the most part like the 1 bit case, has it's own module since the 4 bit module uses it .write_in (write_in), .byteenable_in (byteenable_in), .waitrequest_out (waitrequest_out), .byteenable_out (byteenable_out), .waitrequest_in (waitrequest_in) ); end else if (BYTEENABLE_WIDTH == 4) begin thirty_two_bit_byteenable_FSM the_thirty_two_bit_byteenable_FSM( .clk (clk), .reset (reset), .write_in (write_in), .byteenable_in (byteenable_in), .waitrequest_out (waitrequest_out), .byteenable_out (byteenable_out), .waitrequest_in (waitrequest_in) ); end else if (BYTEENABLE_WIDTH == 8) begin sixty_four_bit_byteenable_FSM the_sixty_four_bit_byteenable_FSM( .clk (clk), .reset (reset), .write_in (write_in), .byteenable_in (byteenable_in), .waitrequest_out (waitrequest_out), .byteenable_out (byteenable_out), .waitrequest_in (waitrequest_in) ); end else if (BYTEENABLE_WIDTH == 16) begin one_hundred_twenty_eight_bit_byteenable_FSM the_one_hundred_twenty_eight_bit_byteenable_FSM( .clk (clk), .reset (reset), .write_in (write_in), .byteenable_in (byteenable_in), .waitrequest_out (waitrequest_out), .byteenable_out (byteenable_out), .waitrequest_in (waitrequest_in) ); end else if (BYTEENABLE_WIDTH == 32) begin two_hundred_fifty_six_bit_byteenable_FSM the_two_hundred_fifty_six_bit_byteenable_FSM( .clk (clk), .reset (reset), .write_in (write_in), .byteenable_in (byteenable_in), .waitrequest_out (waitrequest_out), .byteenable_out (byteenable_out), .waitrequest_in (waitrequest_in) ); end else if (BYTEENABLE_WIDTH == 64) begin five_hundred_twelve_bit_byteenable_FSM the_five_hundred_twelve_bit_byteenable_FSM ( .clk (clk), .reset (reset), .write_in (write_in), .byteenable_in (byteenable_in), .waitrequest_out (waitrequest_out), .byteenable_out (byteenable_out), .waitrequest_in (waitrequest_in) ); end else if (BYTEENABLE_WIDTH == 128) begin one_thousand_twenty_four_byteenable_FSM the_one_thousand_twenty_four_byteenable_FSM ( .clk (clk), .reset (reset), .write_in (write_in), .byteenable_in (byteenable_in), .waitrequest_out (waitrequest_out), .byteenable_out (byteenable_out), .waitrequest_in (waitrequest_in) ); end endgenerate endmodule module one_thousand_twenty_four_byteenable_FSM ( clk, reset, write_in, byteenable_in, waitrequest_out, byteenable_out, waitrequest_in ); input clk; input reset; input write_in; input [127:0] byteenable_in; output wire waitrequest_out; output wire [127:0] byteenable_out; input waitrequest_in; // internal statemachine signals wire partial_lower_half_transfer; wire full_lower_half_transfer; wire partial_upper_half_transfer; wire full_upper_half_transfer; wire full_word_transfer; reg state_bit; wire transfer_done; wire advance_to_next_state; wire lower_enable; wire upper_enable; wire lower_stall; wire upper_stall; wire two_stage_transfer; always @ (posedge clk or posedge reset) begin if (reset) begin state_bit <= 0; end else begin if (transfer_done == 1) begin state_bit <= 0; end else if (advance_to_next_state == 1) begin state_bit <= 1; end end end assign partial_lower_half_transfer = (byteenable_in[63:0] != 0); assign full_lower_half_transfer = (byteenable_in[63:0] == 64'hFFFFFFFFFFFFFFFF); assign partial_upper_half_transfer = (byteenable_in[127:64] != 0); assign full_upper_half_transfer = (byteenable_in[127:64] == 64'hFFFFFFFFFFFFFFFF); assign full_word_transfer = (full_lower_half_transfer == 1) & (full_upper_half_transfer == 1); assign two_stage_transfer = (full_word_transfer == 0) & (partial_lower_half_transfer == 1) & (partial_upper_half_transfer == 1); assign advance_to_next_state = (two_stage_transfer == 1) & (lower_stall == 0) & (write_in == 1) & (state_bit == 0) & (waitrequest_in == 0); // partial lower half transfer completed and there are bytes in the upper half that need to go out still assign transfer_done = ((full_word_transfer == 1) & (waitrequest_in == 0) & (write_in == 1)) | // full word transfer complete ((two_stage_transfer == 0) & (lower_stall == 0) & (upper_stall == 0) & (write_in == 1) & (waitrequest_in == 0)) | // partial upper or lower half transfer complete ((two_stage_transfer == 1) & (state_bit == 1) & (upper_stall == 0) & (write_in == 1) & (waitrequest_in == 0)); // partial upper and lower half transfers complete assign lower_enable = ((write_in == 1) & (full_word_transfer == 1)) | // full word transfer ((write_in == 1) & (two_stage_transfer == 0) & (partial_lower_half_transfer == 1)) | // only a partial lower half transfer ((write_in == 1) & (two_stage_transfer == 1) & (partial_lower_half_transfer == 1) & (state_bit == 0)); // partial lower half transfer (to be followed by an upper half transfer) assign upper_enable = ((write_in == 1) & (full_word_transfer == 1)) | // full word transfer ((write_in == 1) & (two_stage_transfer == 0) & (partial_upper_half_transfer == 1)) | // only a partial upper half transfer ((write_in == 1) & (two_stage_transfer == 1) & (partial_upper_half_transfer == 1) & (state_bit == 1)); // partial upper half transfer (after the lower half transfer) five_hundred_twelve_bit_byteenable_FSM lower_five_hundred_twelve_bit_byteenable_FSM ( .clk (clk), .reset (reset), .write_in (lower_enable), .byteenable_in (byteenable_in[63:0]), .waitrequest_out (lower_stall), .byteenable_out (byteenable_out[63:0]), .waitrequest_in (waitrequest_in) ); five_hundred_twelve_bit_byteenable_FSM upper_five_hundred_twelve_bit_byteenable_FSM ( .clk (clk), .reset (reset), .write_in (upper_enable), .byteenable_in (byteenable_in[127:64]), .waitrequest_out (upper_stall), .byteenable_out (byteenable_out[127:64]), .waitrequest_in (waitrequest_in) ); assign waitrequest_out = (waitrequest_in == 1) | ((transfer_done == 0) & (write_in == 1)); endmodule module five_hundred_twelve_bit_byteenable_FSM ( clk, reset, write_in, byteenable_in, waitrequest_out, byteenable_out, waitrequest_in ); input clk; input reset; input write_in; input [63:0] byteenable_in; output wire waitrequest_out; output wire [63:0] byteenable_out; input waitrequest_in; // internal statemachine signals wire partial_lower_half_transfer; wire full_lower_half_transfer; wire partial_upper_half_transfer; wire full_upper_half_transfer; wire full_word_transfer; reg state_bit; wire transfer_done; wire advance_to_next_state; wire lower_enable; wire upper_enable; wire lower_stall; wire upper_stall; wire two_stage_transfer; always @ (posedge clk or posedge reset) begin if (reset) begin state_bit <= 0; end else begin if (transfer_done == 1) begin state_bit <= 0; end else if (advance_to_next_state == 1) begin state_bit <= 1; end end end assign partial_lower_half_transfer = (byteenable_in[31:0] != 0); assign full_lower_half_transfer = (byteenable_in[31:0] == 32'hFFFFFFFF); assign partial_upper_half_transfer = (byteenable_in[63:32] != 0); assign full_upper_half_transfer = (byteenable_in[63:32] == 32'hFFFFFFFF); assign full_word_transfer = (full_lower_half_transfer == 1) & (full_upper_half_transfer == 1); assign two_stage_transfer = (full_word_transfer == 0) & (partial_lower_half_transfer == 1) & (partial_upper_half_transfer == 1); assign advance_to_next_state = (two_stage_transfer == 1) & (lower_stall == 0) & (write_in == 1) & (state_bit == 0) & (waitrequest_in == 0); // partial lower half transfer completed and there are bytes in the upper half that need to go out still assign transfer_done = ((full_word_transfer == 1) & (waitrequest_in == 0) & (write_in == 1)) | // full word transfer complete ((two_stage_transfer == 0) & (lower_stall == 0) & (upper_stall == 0) & (write_in == 1) & (waitrequest_in == 0)) | // partial upper or lower half transfer complete ((two_stage_transfer == 1) & (state_bit == 1) & (upper_stall == 0) & (write_in == 1) & (waitrequest_in == 0)); // partial upper and lower half transfers complete assign lower_enable = ((write_in == 1) & (full_word_transfer == 1)) | // full word transfer ((write_in == 1) & (two_stage_transfer == 0) & (partial_lower_half_transfer == 1)) | // only a partial lower half transfer ((write_in == 1) & (two_stage_transfer == 1) & (partial_lower_half_transfer == 1) & (state_bit == 0)); // partial lower half transfer (to be followed by an upper half transfer) assign upper_enable = ((write_in == 1) & (full_word_transfer == 1)) | // full word transfer ((write_in == 1) & (two_stage_transfer == 0) & (partial_upper_half_transfer == 1)) | // only a partial upper half transfer ((write_in == 1) & (two_stage_transfer == 1) & (partial_upper_half_transfer == 1) & (state_bit == 1)); // partial upper half transfer (after the lower half transfer) two_hundred_fifty_six_bit_byteenable_FSM lower_two_hundred_fifty_six_bit_byteenable_FSM ( .clk (clk), .reset (reset), .write_in (lower_enable), .byteenable_in (byteenable_in[31:0]), .waitrequest_out (lower_stall), .byteenable_out (byteenable_out[31:0]), .waitrequest_in (waitrequest_in) ); two_hundred_fifty_six_bit_byteenable_FSM upper_two_hundred_fifty_six_bit_byteenable_FSM ( .clk (clk), .reset (reset), .write_in (upper_enable), .byteenable_in (byteenable_in[63:32]), .waitrequest_out (upper_stall), .byteenable_out (byteenable_out[63:32]), .waitrequest_in (waitrequest_in) ); assign waitrequest_out = (waitrequest_in == 1) | ((transfer_done == 0) & (write_in == 1)); endmodule module two_hundred_fifty_six_bit_byteenable_FSM ( clk, reset, write_in, byteenable_in, waitrequest_out, byteenable_out, waitrequest_in ); input clk; input reset; input write_in; input [31:0] byteenable_in; output wire waitrequest_out; output wire [31:0] byteenable_out; input waitrequest_in; // internal statemachine signals wire partial_lower_half_transfer; wire full_lower_half_transfer; wire partial_upper_half_transfer; wire full_upper_half_transfer; wire full_word_transfer; reg state_bit; wire transfer_done; wire advance_to_next_state; wire lower_enable; wire upper_enable; wire lower_stall; wire upper_stall; wire two_stage_transfer; always @ (posedge clk or posedge reset) begin if (reset) begin state_bit <= 0; end else begin if (transfer_done == 1) begin state_bit <= 0; end else if (advance_to_next_state == 1) begin state_bit <= 1; end end end assign partial_lower_half_transfer = (byteenable_in[15:0] != 0); assign full_lower_half_transfer = (byteenable_in[15:0] == 16'hFFFF); assign partial_upper_half_transfer = (byteenable_in[31:16] != 0); assign full_upper_half_transfer = (byteenable_in[31:16] == 16'hFFFF); assign full_word_transfer = (full_lower_half_transfer == 1) & (full_upper_half_transfer == 1); assign two_stage_transfer = (full_word_transfer == 0) & (partial_lower_half_transfer == 1) & (partial_upper_half_transfer == 1); assign advance_to_next_state = (two_stage_transfer == 1) & (lower_stall == 0) & (write_in == 1) & (state_bit == 0) & (waitrequest_in == 0); // partial lower half transfer completed and there are bytes in the upper half that need to go out still assign transfer_done = ((full_word_transfer == 1) & (waitrequest_in == 0) & (write_in == 1)) | // full word transfer complete ((two_stage_transfer == 0) & (lower_stall == 0) & (upper_stall == 0) & (write_in == 1) & (waitrequest_in == 0)) | // partial upper or lower half transfer complete ((two_stage_transfer == 1) & (state_bit == 1) & (upper_stall == 0) & (write_in == 1) & (waitrequest_in == 0)); // partial upper and lower half transfers complete assign lower_enable = ((write_in == 1) & (full_word_transfer == 1)) | // full word transfer ((write_in == 1) & (two_stage_transfer == 0) & (partial_lower_half_transfer == 1)) | // only a partial lower half transfer ((write_in == 1) & (two_stage_transfer == 1) & (partial_lower_half_transfer == 1) & (state_bit == 0)); // partial lower half transfer (to be followed by an upper half transfer) assign upper_enable = ((write_in == 1) & (full_word_transfer == 1)) | // full word transfer ((write_in == 1) & (two_stage_transfer == 0) & (partial_upper_half_transfer == 1)) | // only a partial upper half transfer ((write_in == 1) & (two_stage_transfer == 1) & (partial_upper_half_transfer == 1) & (state_bit == 1)); // partial upper half transfer (after the lower half transfer) one_hundred_twenty_eight_bit_byteenable_FSM lower_one_hundred_twenty_eight_bit_byteenable_FSM ( .clk (clk), .reset (reset), .write_in (lower_enable), .byteenable_in (byteenable_in[15:0]), .waitrequest_out (lower_stall), .byteenable_out (byteenable_out[15:0]), .waitrequest_in (waitrequest_in) ); one_hundred_twenty_eight_bit_byteenable_FSM upper_one_hundred_twenty_eight_bit_byteenable_FSM ( .clk (clk), .reset (reset), .write_in (upper_enable), .byteenable_in (byteenable_in[31:16]), .waitrequest_out (upper_stall), .byteenable_out (byteenable_out[31:16]), .waitrequest_in (waitrequest_in) ); assign waitrequest_out = (waitrequest_in == 1) | ((transfer_done == 0) & (write_in == 1)); endmodule module one_hundred_twenty_eight_bit_byteenable_FSM ( clk, reset, write_in, byteenable_in, waitrequest_out, byteenable_out, waitrequest_in ); input clk; input reset; input write_in; input [15:0] byteenable_in; output wire waitrequest_out; output wire [15:0] byteenable_out; input waitrequest_in; // internal statemachine signals wire partial_lower_half_transfer; wire full_lower_half_transfer; wire partial_upper_half_transfer; wire full_upper_half_transfer; wire full_word_transfer; reg state_bit; wire transfer_done; wire advance_to_next_state; wire lower_enable; wire upper_enable; wire lower_stall; wire upper_stall; wire two_stage_transfer; always @ (posedge clk or posedge reset) begin if (reset) begin state_bit <= 0; end else begin if (transfer_done == 1) begin state_bit <= 0; end else if (advance_to_next_state == 1) begin state_bit <= 1; end end end assign partial_lower_half_transfer = (byteenable_in[7:0] != 0); assign full_lower_half_transfer = (byteenable_in[7:0] == 8'hFF); assign partial_upper_half_transfer = (byteenable_in[15:8] != 0); assign full_upper_half_transfer = (byteenable_in[15:8] == 8'hFF); assign full_word_transfer = (full_lower_half_transfer == 1) & (full_upper_half_transfer == 1); assign two_stage_transfer = (full_word_transfer == 0) & (partial_lower_half_transfer == 1) & (partial_upper_half_transfer == 1); assign advance_to_next_state = (two_stage_transfer == 1) & (lower_stall == 0) & (write_in == 1) & (state_bit == 0) & (waitrequest_in == 0); // partial lower half transfer completed and there are bytes in the upper half that need to go out still assign transfer_done = ((full_word_transfer == 1) & (waitrequest_in == 0) & (write_in == 1)) | // full word transfer complete ((two_stage_transfer == 0) & (lower_stall == 0) & (upper_stall == 0) & (write_in == 1) & (waitrequest_in == 0)) | // partial upper or lower half transfer complete ((two_stage_transfer == 1) & (state_bit == 1) & (upper_stall == 0) & (write_in == 1) & (waitrequest_in == 0)); // partial upper and lower half transfers complete assign lower_enable = ((write_in == 1) & (full_word_transfer == 1)) | // full word transfer ((write_in == 1) & (two_stage_transfer == 0) & (partial_lower_half_transfer == 1)) | // only a partial lower half transfer ((write_in == 1) & (two_stage_transfer == 1) & (partial_lower_half_transfer == 1) & (state_bit == 0)); // partial lower half transfer (to be followed by an upper half transfer) assign upper_enable = ((write_in == 1) & (full_word_transfer == 1)) | // full word transfer ((write_in == 1) & (two_stage_transfer == 0) & (partial_upper_half_transfer == 1)) | // only a partial upper half transfer ((write_in == 1) & (two_stage_transfer == 1) & (partial_upper_half_transfer == 1) & (state_bit == 1)); // partial upper half transfer (after the lower half transfer) sixty_four_bit_byteenable_FSM lower_sixty_four_bit_byteenable_FSM ( .clk (clk), .reset (reset), .write_in (lower_enable), .byteenable_in (byteenable_in[7:0]), .waitrequest_out (lower_stall), .byteenable_out (byteenable_out[7:0]), .waitrequest_in (waitrequest_in) ); sixty_four_bit_byteenable_FSM upper_sixty_four_bit_byteenable_FSM ( .clk (clk), .reset (reset), .write_in (upper_enable), .byteenable_in (byteenable_in[15:8]), .waitrequest_out (upper_stall), .byteenable_out (byteenable_out[15:8]), .waitrequest_in (waitrequest_in) ); assign waitrequest_out = (waitrequest_in == 1) | ((transfer_done == 0) & (write_in == 1)); endmodule module sixty_four_bit_byteenable_FSM ( clk, reset, write_in, byteenable_in, waitrequest_out, byteenable_out, waitrequest_in ); input clk; input reset; input write_in; input [7:0] byteenable_in; output wire waitrequest_out; output wire [7:0] byteenable_out; input waitrequest_in; // internal statemachine signals wire partial_lower_half_transfer; wire full_lower_half_transfer; wire partial_upper_half_transfer; wire full_upper_half_transfer; wire full_word_transfer; reg state_bit; wire transfer_done; wire advance_to_next_state; wire lower_enable; wire upper_enable; wire lower_stall; wire upper_stall; wire two_stage_transfer; always @ (posedge clk or posedge reset) begin if (reset) begin state_bit <= 0; end else begin if (transfer_done == 1) begin state_bit <= 0; end else if (advance_to_next_state == 1) begin state_bit <= 1; end end end assign partial_lower_half_transfer = (byteenable_in[3:0] != 0); assign full_lower_half_transfer = (byteenable_in[3:0] == 4'hF); assign partial_upper_half_transfer = (byteenable_in[7:4] != 0); assign full_upper_half_transfer = (byteenable_in[7:4] == 4'hF); assign full_word_transfer = (full_lower_half_transfer == 1) & (full_upper_half_transfer == 1); assign two_stage_transfer = (full_word_transfer == 0) & (partial_lower_half_transfer == 1) & (partial_upper_half_transfer == 1); assign advance_to_next_state = (two_stage_transfer == 1) & (lower_stall == 0) & (write_in == 1) & (state_bit == 0) & (waitrequest_in == 0); // partial lower half transfer completed and there are bytes in the upper half that need to go out still assign transfer_done = ((full_word_transfer == 1) & (waitrequest_in == 0) & (write_in == 1)) | // full word transfer complete ((two_stage_transfer == 0) & (lower_stall == 0) & (upper_stall == 0) & (write_in == 1) & (waitrequest_in == 0)) | // partial upper or lower half transfer complete ((two_stage_transfer == 1) & (state_bit == 1) & (upper_stall == 0) & (write_in == 1) & (waitrequest_in == 0)); // partial upper and lower half transfers complete assign lower_enable = ((write_in == 1) & (full_word_transfer == 1)) | // full word transfer ((write_in == 1) & (two_stage_transfer == 0) & (partial_lower_half_transfer == 1)) | // only a partial lower half transfer ((write_in == 1) & (two_stage_transfer == 1) & (partial_lower_half_transfer == 1) & (state_bit == 0)); // partial lower half transfer (to be followed by an upper half transfer) assign upper_enable = ((write_in == 1) & (full_word_transfer == 1)) | // full word transfer ((write_in == 1) & (two_stage_transfer == 0) & (partial_upper_half_transfer == 1)) | // only a partial upper half transfer ((write_in == 1) & (two_stage_transfer == 1) & (partial_upper_half_transfer == 1) & (state_bit == 1)); // partial upper half transfer (after the lower half transfer) thirty_two_bit_byteenable_FSM lower_thirty_two_bit_byteenable_FSM ( .clk (clk), .reset (reset), .write_in (lower_enable), .byteenable_in (byteenable_in[3:0]), .waitrequest_out (lower_stall), .byteenable_out (byteenable_out[3:0]), .waitrequest_in (waitrequest_in) ); thirty_two_bit_byteenable_FSM upper_thirty_two_bit_byteenable_FSM ( .clk (clk), .reset (reset), .write_in (upper_enable), .byteenable_in (byteenable_in[7:4]), .waitrequest_out (upper_stall), .byteenable_out (byteenable_out[7:4]), .waitrequest_in (waitrequest_in) ); assign waitrequest_out = (waitrequest_in == 1) | ((transfer_done == 0) & (write_in == 1)); endmodule module thirty_two_bit_byteenable_FSM ( clk, reset, write_in, byteenable_in, waitrequest_out, byteenable_out, waitrequest_in ); input clk; input reset; input write_in; input [3:0] byteenable_in; output wire waitrequest_out; output wire [3:0] byteenable_out; input waitrequest_in; // internal statemachine signals wire partial_lower_half_transfer; wire full_lower_half_transfer; wire partial_upper_half_transfer; wire full_upper_half_transfer; wire full_word_transfer; reg state_bit; wire transfer_done; wire advance_to_next_state; wire lower_enable; wire upper_enable; wire lower_stall; wire upper_stall; wire two_stage_transfer; always @ (posedge clk or posedge reset) begin if (reset) begin state_bit <= 0; end else begin if (transfer_done == 1) begin state_bit <= 0; end else if (advance_to_next_state == 1) begin state_bit <= 1; end end end assign partial_lower_half_transfer = (byteenable_in[1:0] != 0); assign full_lower_half_transfer = (byteenable_in[1:0] == 2'h3); assign partial_upper_half_transfer = (byteenable_in[3:2] != 0); assign full_upper_half_transfer = (byteenable_in[3:2] == 2'h3); assign full_word_transfer = (full_lower_half_transfer == 1) & (full_upper_half_transfer == 1); assign two_stage_transfer = (full_word_transfer == 0) & (partial_lower_half_transfer == 1) & (partial_upper_half_transfer == 1); assign advance_to_next_state = (two_stage_transfer == 1) & (lower_stall == 0) & (write_in == 1) & (state_bit == 0) & (waitrequest_in == 0); // partial lower half transfer completed and there are bytes in the upper half that need to go out still assign transfer_done = ((full_word_transfer == 1) & (waitrequest_in == 0) & (write_in == 1)) | // full word transfer complete ((two_stage_transfer == 0) & (lower_stall == 0) & (upper_stall == 0) & (write_in == 1) & (waitrequest_in == 0)) | // partial upper or lower half transfer complete ((two_stage_transfer == 1) & (state_bit == 1) & (upper_stall == 0) & (write_in == 1) & (waitrequest_in == 0)); // partial upper and lower half transfers complete assign lower_enable = ((write_in == 1) & (full_word_transfer == 1)) | // full word transfer ((write_in == 1) & (two_stage_transfer == 0) & (partial_lower_half_transfer == 1)) | // only a partial lower half transfer ((write_in == 1) & (two_stage_transfer == 1) & (partial_lower_half_transfer == 1) & (state_bit == 0)); // partial lower half transfer (to be followed by an upper half transfer) assign upper_enable = ((write_in == 1) & (full_word_transfer == 1)) | // full word transfer ((write_in == 1) & (two_stage_transfer == 0) & (partial_upper_half_transfer == 1)) | // only a partial upper half transfer ((write_in == 1) & (two_stage_transfer == 1) & (partial_upper_half_transfer == 1) & (state_bit == 1)); // partial upper half transfer (after the lower half transfer) sixteen_bit_byteenable_FSM lower_sixteen_bit_byteenable_FSM ( .write_in (lower_enable), .byteenable_in (byteenable_in[1:0]), .waitrequest_out (lower_stall), .byteenable_out (byteenable_out[1:0]), .waitrequest_in (waitrequest_in) ); sixteen_bit_byteenable_FSM upper_sixteen_bit_byteenable_FSM ( .write_in (upper_enable), .byteenable_in (byteenable_in[3:2]), .waitrequest_out (upper_stall), .byteenable_out (byteenable_out[3:2]), .waitrequest_in (waitrequest_in) ); assign waitrequest_out = (waitrequest_in == 1) | ((transfer_done == 0) & (write_in == 1)); endmodule /************************************************************************************************** Fundament byte enable state machine for which 32, 64, 128, 256, 512, and 1024 bit byte enable statemachines will use to operate on groups of two byte enables. ***************************************************************************************************/ module sixteen_bit_byteenable_FSM ( write_in, byteenable_in, waitrequest_out, byteenable_out, waitrequest_in ); input write_in; input [1:0] byteenable_in; output wire waitrequest_out; output wire [1:0] byteenable_out; input waitrequest_in; assign byteenable_out = byteenable_in & {2{write_in}}; // all 2 bit byte enable pairs are supported, masked with write in to turn the byte lanes off when writing is disabled assign waitrequest_out = (write_in == 1) & (waitrequest_in == 1); // transfer always completes on the first cycle unless waitrequest is asserted endmodule
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: // Optimized 16/32 word deep FIFO. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module generic_baseblocks_v2_1_0_command_fifo # ( parameter C_FAMILY = "virtex6", parameter integer C_ENABLE_S_VALID_CARRY = 0, parameter integer C_ENABLE_REGISTERED_OUTPUT = 0, parameter integer C_FIFO_DEPTH_LOG = 5, // FIFO depth = 2**C_FIFO_DEPTH_LOG // Range = [4:5]. parameter integer C_FIFO_WIDTH = 64 // Width of payload [1:512] ) ( // Global inputs input wire ACLK, // Clock input wire ARESET, // Reset // Information output wire EMPTY, // FIFO empty (all stages) // Slave Port input wire [C_FIFO_WIDTH-1:0] S_MESG, // Payload (may be any set of channel signals) input wire S_VALID, // FIFO push output wire S_READY, // FIFO not full // Master Port output wire [C_FIFO_WIDTH-1:0] M_MESG, // Payload output wire M_VALID, // FIFO not empty input wire M_READY // FIFO pop ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for data vector. genvar addr_cnt; genvar bit_cnt; integer index; ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// wire [C_FIFO_DEPTH_LOG-1:0] addr; wire buffer_Full; wire buffer_Empty; wire next_Data_Exists; reg data_Exists_I; wire valid_Write; wire new_write; wire [C_FIFO_DEPTH_LOG-1:0] hsum_A; wire [C_FIFO_DEPTH_LOG-1:0] sum_A; wire [C_FIFO_DEPTH_LOG-1:0] addr_cy; wire buffer_full_early; wire [C_FIFO_WIDTH-1:0] M_MESG_I; // Payload wire M_VALID_I; // FIFO not empty wire M_READY_I; // FIFO pop ///////////////////////////////////////////////////////////////////////////// // Create Flags ///////////////////////////////////////////////////////////////////////////// assign buffer_full_early = ( (addr == {{C_FIFO_DEPTH_LOG-1{1'b1}}, 1'b0}) & valid_Write & ~M_READY_I ) | ( buffer_Full & ~M_READY_I ); assign S_READY = ~buffer_Full; assign buffer_Empty = (addr == {C_FIFO_DEPTH_LOG{1'b0}}); assign next_Data_Exists = (data_Exists_I & ~buffer_Empty) | (buffer_Empty & S_VALID) | (data_Exists_I & ~(M_READY_I & data_Exists_I)); always @ (posedge ACLK) begin if (ARESET) begin data_Exists_I <= 1'b0; end else begin data_Exists_I <= next_Data_Exists; end end assign M_VALID_I = data_Exists_I; // Select RTL or FPGA optimized instatiations for critical parts. generate if ( C_FAMILY == "rtl" || C_ENABLE_S_VALID_CARRY == 0 ) begin : USE_RTL_VALID_WRITE reg buffer_Full_q; assign valid_Write = S_VALID & ~buffer_Full; assign new_write = (S_VALID | ~buffer_Empty); assign addr_cy[0] = valid_Write; always @ (posedge ACLK) begin if (ARESET) begin buffer_Full_q <= 1'b0; end else if ( data_Exists_I ) begin buffer_Full_q <= buffer_full_early; end end assign buffer_Full = buffer_Full_q; end else begin : USE_FPGA_VALID_WRITE wire s_valid_dummy1; wire s_valid_dummy2; wire sel_s_valid; wire sel_new_write; wire valid_Write_dummy1; wire valid_Write_dummy2; assign sel_s_valid = ~buffer_Full; generic_baseblocks_v2_1_0_carry_and # ( .C_FAMILY(C_FAMILY) ) s_valid_dummy_inst1 ( .CIN(S_VALID), .S(1'b1), .COUT(s_valid_dummy1) ); generic_baseblocks_v2_1_0_carry_and # ( .C_FAMILY(C_FAMILY) ) s_valid_dummy_inst2 ( .CIN(s_valid_dummy1), .S(1'b1), .COUT(s_valid_dummy2) ); generic_baseblocks_v2_1_0_carry_and # ( .C_FAMILY(C_FAMILY) ) valid_write_inst ( .CIN(s_valid_dummy2), .S(sel_s_valid), .COUT(valid_Write) ); assign sel_new_write = ~buffer_Empty; generic_baseblocks_v2_1_0_carry_latch_or # ( .C_FAMILY(C_FAMILY) ) new_write_inst ( .CIN(valid_Write), .I(sel_new_write), .O(new_write) ); generic_baseblocks_v2_1_0_carry_and # ( .C_FAMILY(C_FAMILY) ) valid_write_dummy_inst1 ( .CIN(valid_Write), .S(1'b1), .COUT(valid_Write_dummy1) ); generic_baseblocks_v2_1_0_carry_and # ( .C_FAMILY(C_FAMILY) ) valid_write_dummy_inst2 ( .CIN(valid_Write_dummy1), .S(1'b1), .COUT(valid_Write_dummy2) ); generic_baseblocks_v2_1_0_carry_and # ( .C_FAMILY(C_FAMILY) ) valid_write_dummy_inst3 ( .CIN(valid_Write_dummy2), .S(1'b1), .COUT(addr_cy[0]) ); FDRE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) FDRE_I1 ( .Q(buffer_Full), // Data output .C(ACLK), // Clock input .CE(data_Exists_I), // Clock enable input .R(ARESET), // Synchronous reset input .D(buffer_full_early) // Data input ); end endgenerate ///////////////////////////////////////////////////////////////////////////// // Create address pointer ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" ) begin : USE_RTL_ADDR reg [C_FIFO_DEPTH_LOG-1:0] addr_q; always @ (posedge ACLK) begin if (ARESET) begin addr_q <= {C_FIFO_DEPTH_LOG{1'b0}}; end else if ( data_Exists_I ) begin if ( valid_Write & ~(M_READY_I & data_Exists_I) ) begin addr_q <= addr_q + 1'b1; end else if ( ~valid_Write & (M_READY_I & data_Exists_I) & ~buffer_Empty ) begin addr_q <= addr_q - 1'b1; end else begin addr_q <= addr_q; end end else begin addr_q <= addr_q; end end assign addr = addr_q; end else begin : USE_FPGA_ADDR for (addr_cnt = 0; addr_cnt < C_FIFO_DEPTH_LOG ; addr_cnt = addr_cnt + 1) begin : ADDR_GEN assign hsum_A[addr_cnt] = ((M_READY_I & data_Exists_I) ^ addr[addr_cnt]) & new_write; // Don't need the last muxcy, addr_cy(last) is not used anywhere if ( addr_cnt < C_FIFO_DEPTH_LOG - 1 ) begin : USE_MUXCY MUXCY MUXCY_inst ( .DI(addr[addr_cnt]), .CI(addr_cy[addr_cnt]), .S(hsum_A[addr_cnt]), .O(addr_cy[addr_cnt+1]) ); end else begin : NO_MUXCY end XORCY XORCY_inst ( .LI(hsum_A[addr_cnt]), .CI(addr_cy[addr_cnt]), .O(sum_A[addr_cnt]) ); FDRE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) FDRE_inst ( .Q(addr[addr_cnt]), // Data output .C(ACLK), // Clock input .CE(data_Exists_I), // Clock enable input .R(ARESET), // Synchronous reset input .D(sum_A[addr_cnt]) // Data input ); end // end for bit_cnt end // C_FAMILY endgenerate ///////////////////////////////////////////////////////////////////////////// // Data storage ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" ) begin : USE_RTL_FIFO reg [C_FIFO_WIDTH-1:0] data_srl[2 ** C_FIFO_DEPTH_LOG-1:0]; always @ (posedge ACLK) begin if ( valid_Write ) begin for (index = 0; index < 2 ** C_FIFO_DEPTH_LOG-1 ; index = index + 1) begin data_srl[index+1] <= data_srl[index]; end data_srl[0] <= S_MESG; end end assign M_MESG_I = data_srl[addr]; end else begin : USE_FPGA_FIFO for (bit_cnt = 0; bit_cnt < C_FIFO_WIDTH ; bit_cnt = bit_cnt + 1) begin : DATA_GEN if ( C_FIFO_DEPTH_LOG == 5 ) begin : USE_32 SRLC32E # ( .INIT(32'h00000000) // Initial Value of Shift Register ) SRLC32E_inst ( .Q(M_MESG_I[bit_cnt]), // SRL data output .Q31(), // SRL cascade output pin .A(addr), // 5-bit shift depth select input .CE(valid_Write), // Clock enable input .CLK(ACLK), // Clock input .D(S_MESG[bit_cnt]) // SRL data input ); end else begin : USE_16 SRLC16E # ( .INIT(32'h00000000) // Initial Value of Shift Register ) SRLC16E_inst ( .Q(M_MESG_I[bit_cnt]), // SRL data output .Q15(), // SRL cascade output pin .A0(addr[0]), // 4-bit shift depth select input 0 .A1(addr[1]), // 4-bit shift depth select input 1 .A2(addr[2]), // 4-bit shift depth select input 2 .A3(addr[3]), // 4-bit shift depth select input 3 .CE(valid_Write), // Clock enable input .CLK(ACLK), // Clock input .D(S_MESG[bit_cnt]) // SRL data input ); end // C_FIFO_DEPTH_LOG end // end for bit_cnt end // C_FAMILY endgenerate ///////////////////////////////////////////////////////////////////////////// // Pipeline stage ///////////////////////////////////////////////////////////////////////////// generate if ( C_ENABLE_REGISTERED_OUTPUT != 0 ) begin : USE_FF_OUT wire [C_FIFO_WIDTH-1:0] M_MESG_FF; // Payload wire M_VALID_FF; // FIFO not empty // Select RTL or FPGA optimized instatiations for critical parts. if ( C_FAMILY == "rtl" ) begin : USE_RTL_OUTPUT_PIPELINE reg [C_FIFO_WIDTH-1:0] M_MESG_Q; // Payload reg M_VALID_Q; // FIFO not empty always @ (posedge ACLK) begin if (ARESET) begin M_MESG_Q <= {C_FIFO_WIDTH{1'b0}}; M_VALID_Q <= 1'b0; end else begin if ( M_READY_I ) begin M_MESG_Q <= M_MESG_I; M_VALID_Q <= M_VALID_I; end end end assign M_MESG_FF = M_MESG_Q; assign M_VALID_FF = M_VALID_Q; end else begin : USE_FPGA_OUTPUT_PIPELINE reg [C_FIFO_WIDTH-1:0] M_MESG_CMB; // Payload reg M_VALID_CMB; // FIFO not empty always @ * begin if ( M_READY_I ) begin M_MESG_CMB <= M_MESG_I; M_VALID_CMB <= M_VALID_I; end else begin M_MESG_CMB <= M_MESG_FF; M_VALID_CMB <= M_VALID_FF; end end for (bit_cnt = 0; bit_cnt < C_FIFO_WIDTH ; bit_cnt = bit_cnt + 1) begin : DATA_GEN FDRE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) FDRE_inst ( .Q(M_MESG_FF[bit_cnt]), // Data output .C(ACLK), // Clock input .CE(1'b1), // Clock enable input .R(ARESET), // Synchronous reset input .D(M_MESG_CMB[bit_cnt]) // Data input ); end // end for bit_cnt FDRE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) FDRE_inst ( .Q(M_VALID_FF), // Data output .C(ACLK), // Clock input .CE(1'b1), // Clock enable input .R(ARESET), // Synchronous reset input .D(M_VALID_CMB) // Data input ); end assign EMPTY = ~M_VALID_I & ~M_VALID_FF; assign M_MESG = M_MESG_FF; assign M_VALID = M_VALID_FF; assign M_READY_I = ( M_READY & M_VALID_FF ) | ~M_VALID_FF; end else begin : NO_FF_OUT assign EMPTY = ~M_VALID_I; assign M_MESG = M_MESG_I; assign M_VALID = M_VALID_I; assign M_READY_I = M_READY; end endgenerate endmodule
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: // Optimized 16/32 word deep FIFO. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module generic_baseblocks_v2_1_0_command_fifo # ( parameter C_FAMILY = "virtex6", parameter integer C_ENABLE_S_VALID_CARRY = 0, parameter integer C_ENABLE_REGISTERED_OUTPUT = 0, parameter integer C_FIFO_DEPTH_LOG = 5, // FIFO depth = 2**C_FIFO_DEPTH_LOG // Range = [4:5]. parameter integer C_FIFO_WIDTH = 64 // Width of payload [1:512] ) ( // Global inputs input wire ACLK, // Clock input wire ARESET, // Reset // Information output wire EMPTY, // FIFO empty (all stages) // Slave Port input wire [C_FIFO_WIDTH-1:0] S_MESG, // Payload (may be any set of channel signals) input wire S_VALID, // FIFO push output wire S_READY, // FIFO not full // Master Port output wire [C_FIFO_WIDTH-1:0] M_MESG, // Payload output wire M_VALID, // FIFO not empty input wire M_READY // FIFO pop ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for data vector. genvar addr_cnt; genvar bit_cnt; integer index; ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// wire [C_FIFO_DEPTH_LOG-1:0] addr; wire buffer_Full; wire buffer_Empty; wire next_Data_Exists; reg data_Exists_I; wire valid_Write; wire new_write; wire [C_FIFO_DEPTH_LOG-1:0] hsum_A; wire [C_FIFO_DEPTH_LOG-1:0] sum_A; wire [C_FIFO_DEPTH_LOG-1:0] addr_cy; wire buffer_full_early; wire [C_FIFO_WIDTH-1:0] M_MESG_I; // Payload wire M_VALID_I; // FIFO not empty wire M_READY_I; // FIFO pop ///////////////////////////////////////////////////////////////////////////// // Create Flags ///////////////////////////////////////////////////////////////////////////// assign buffer_full_early = ( (addr == {{C_FIFO_DEPTH_LOG-1{1'b1}}, 1'b0}) & valid_Write & ~M_READY_I ) | ( buffer_Full & ~M_READY_I ); assign S_READY = ~buffer_Full; assign buffer_Empty = (addr == {C_FIFO_DEPTH_LOG{1'b0}}); assign next_Data_Exists = (data_Exists_I & ~buffer_Empty) | (buffer_Empty & S_VALID) | (data_Exists_I & ~(M_READY_I & data_Exists_I)); always @ (posedge ACLK) begin if (ARESET) begin data_Exists_I <= 1'b0; end else begin data_Exists_I <= next_Data_Exists; end end assign M_VALID_I = data_Exists_I; // Select RTL or FPGA optimized instatiations for critical parts. generate if ( C_FAMILY == "rtl" || C_ENABLE_S_VALID_CARRY == 0 ) begin : USE_RTL_VALID_WRITE reg buffer_Full_q; assign valid_Write = S_VALID & ~buffer_Full; assign new_write = (S_VALID | ~buffer_Empty); assign addr_cy[0] = valid_Write; always @ (posedge ACLK) begin if (ARESET) begin buffer_Full_q <= 1'b0; end else if ( data_Exists_I ) begin buffer_Full_q <= buffer_full_early; end end assign buffer_Full = buffer_Full_q; end else begin : USE_FPGA_VALID_WRITE wire s_valid_dummy1; wire s_valid_dummy2; wire sel_s_valid; wire sel_new_write; wire valid_Write_dummy1; wire valid_Write_dummy2; assign sel_s_valid = ~buffer_Full; generic_baseblocks_v2_1_0_carry_and # ( .C_FAMILY(C_FAMILY) ) s_valid_dummy_inst1 ( .CIN(S_VALID), .S(1'b1), .COUT(s_valid_dummy1) ); generic_baseblocks_v2_1_0_carry_and # ( .C_FAMILY(C_FAMILY) ) s_valid_dummy_inst2 ( .CIN(s_valid_dummy1), .S(1'b1), .COUT(s_valid_dummy2) ); generic_baseblocks_v2_1_0_carry_and # ( .C_FAMILY(C_FAMILY) ) valid_write_inst ( .CIN(s_valid_dummy2), .S(sel_s_valid), .COUT(valid_Write) ); assign sel_new_write = ~buffer_Empty; generic_baseblocks_v2_1_0_carry_latch_or # ( .C_FAMILY(C_FAMILY) ) new_write_inst ( .CIN(valid_Write), .I(sel_new_write), .O(new_write) ); generic_baseblocks_v2_1_0_carry_and # ( .C_FAMILY(C_FAMILY) ) valid_write_dummy_inst1 ( .CIN(valid_Write), .S(1'b1), .COUT(valid_Write_dummy1) ); generic_baseblocks_v2_1_0_carry_and # ( .C_FAMILY(C_FAMILY) ) valid_write_dummy_inst2 ( .CIN(valid_Write_dummy1), .S(1'b1), .COUT(valid_Write_dummy2) ); generic_baseblocks_v2_1_0_carry_and # ( .C_FAMILY(C_FAMILY) ) valid_write_dummy_inst3 ( .CIN(valid_Write_dummy2), .S(1'b1), .COUT(addr_cy[0]) ); FDRE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) FDRE_I1 ( .Q(buffer_Full), // Data output .C(ACLK), // Clock input .CE(data_Exists_I), // Clock enable input .R(ARESET), // Synchronous reset input .D(buffer_full_early) // Data input ); end endgenerate ///////////////////////////////////////////////////////////////////////////// // Create address pointer ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" ) begin : USE_RTL_ADDR reg [C_FIFO_DEPTH_LOG-1:0] addr_q; always @ (posedge ACLK) begin if (ARESET) begin addr_q <= {C_FIFO_DEPTH_LOG{1'b0}}; end else if ( data_Exists_I ) begin if ( valid_Write & ~(M_READY_I & data_Exists_I) ) begin addr_q <= addr_q + 1'b1; end else if ( ~valid_Write & (M_READY_I & data_Exists_I) & ~buffer_Empty ) begin addr_q <= addr_q - 1'b1; end else begin addr_q <= addr_q; end end else begin addr_q <= addr_q; end end assign addr = addr_q; end else begin : USE_FPGA_ADDR for (addr_cnt = 0; addr_cnt < C_FIFO_DEPTH_LOG ; addr_cnt = addr_cnt + 1) begin : ADDR_GEN assign hsum_A[addr_cnt] = ((M_READY_I & data_Exists_I) ^ addr[addr_cnt]) & new_write; // Don't need the last muxcy, addr_cy(last) is not used anywhere if ( addr_cnt < C_FIFO_DEPTH_LOG - 1 ) begin : USE_MUXCY MUXCY MUXCY_inst ( .DI(addr[addr_cnt]), .CI(addr_cy[addr_cnt]), .S(hsum_A[addr_cnt]), .O(addr_cy[addr_cnt+1]) ); end else begin : NO_MUXCY end XORCY XORCY_inst ( .LI(hsum_A[addr_cnt]), .CI(addr_cy[addr_cnt]), .O(sum_A[addr_cnt]) ); FDRE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) FDRE_inst ( .Q(addr[addr_cnt]), // Data output .C(ACLK), // Clock input .CE(data_Exists_I), // Clock enable input .R(ARESET), // Synchronous reset input .D(sum_A[addr_cnt]) // Data input ); end // end for bit_cnt end // C_FAMILY endgenerate ///////////////////////////////////////////////////////////////////////////// // Data storage ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" ) begin : USE_RTL_FIFO reg [C_FIFO_WIDTH-1:0] data_srl[2 ** C_FIFO_DEPTH_LOG-1:0]; always @ (posedge ACLK) begin if ( valid_Write ) begin for (index = 0; index < 2 ** C_FIFO_DEPTH_LOG-1 ; index = index + 1) begin data_srl[index+1] <= data_srl[index]; end data_srl[0] <= S_MESG; end end assign M_MESG_I = data_srl[addr]; end else begin : USE_FPGA_FIFO for (bit_cnt = 0; bit_cnt < C_FIFO_WIDTH ; bit_cnt = bit_cnt + 1) begin : DATA_GEN if ( C_FIFO_DEPTH_LOG == 5 ) begin : USE_32 SRLC32E # ( .INIT(32'h00000000) // Initial Value of Shift Register ) SRLC32E_inst ( .Q(M_MESG_I[bit_cnt]), // SRL data output .Q31(), // SRL cascade output pin .A(addr), // 5-bit shift depth select input .CE(valid_Write), // Clock enable input .CLK(ACLK), // Clock input .D(S_MESG[bit_cnt]) // SRL data input ); end else begin : USE_16 SRLC16E # ( .INIT(32'h00000000) // Initial Value of Shift Register ) SRLC16E_inst ( .Q(M_MESG_I[bit_cnt]), // SRL data output .Q15(), // SRL cascade output pin .A0(addr[0]), // 4-bit shift depth select input 0 .A1(addr[1]), // 4-bit shift depth select input 1 .A2(addr[2]), // 4-bit shift depth select input 2 .A3(addr[3]), // 4-bit shift depth select input 3 .CE(valid_Write), // Clock enable input .CLK(ACLK), // Clock input .D(S_MESG[bit_cnt]) // SRL data input ); end // C_FIFO_DEPTH_LOG end // end for bit_cnt end // C_FAMILY endgenerate ///////////////////////////////////////////////////////////////////////////// // Pipeline stage ///////////////////////////////////////////////////////////////////////////// generate if ( C_ENABLE_REGISTERED_OUTPUT != 0 ) begin : USE_FF_OUT wire [C_FIFO_WIDTH-1:0] M_MESG_FF; // Payload wire M_VALID_FF; // FIFO not empty // Select RTL or FPGA optimized instatiations for critical parts. if ( C_FAMILY == "rtl" ) begin : USE_RTL_OUTPUT_PIPELINE reg [C_FIFO_WIDTH-1:0] M_MESG_Q; // Payload reg M_VALID_Q; // FIFO not empty always @ (posedge ACLK) begin if (ARESET) begin M_MESG_Q <= {C_FIFO_WIDTH{1'b0}}; M_VALID_Q <= 1'b0; end else begin if ( M_READY_I ) begin M_MESG_Q <= M_MESG_I; M_VALID_Q <= M_VALID_I; end end end assign M_MESG_FF = M_MESG_Q; assign M_VALID_FF = M_VALID_Q; end else begin : USE_FPGA_OUTPUT_PIPELINE reg [C_FIFO_WIDTH-1:0] M_MESG_CMB; // Payload reg M_VALID_CMB; // FIFO not empty always @ * begin if ( M_READY_I ) begin M_MESG_CMB <= M_MESG_I; M_VALID_CMB <= M_VALID_I; end else begin M_MESG_CMB <= M_MESG_FF; M_VALID_CMB <= M_VALID_FF; end end for (bit_cnt = 0; bit_cnt < C_FIFO_WIDTH ; bit_cnt = bit_cnt + 1) begin : DATA_GEN FDRE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) FDRE_inst ( .Q(M_MESG_FF[bit_cnt]), // Data output .C(ACLK), // Clock input .CE(1'b1), // Clock enable input .R(ARESET), // Synchronous reset input .D(M_MESG_CMB[bit_cnt]) // Data input ); end // end for bit_cnt FDRE #( .INIT(1'b0) // Initial value of register (1'b0 or 1'b1) ) FDRE_inst ( .Q(M_VALID_FF), // Data output .C(ACLK), // Clock input .CE(1'b1), // Clock enable input .R(ARESET), // Synchronous reset input .D(M_VALID_CMB) // Data input ); end assign EMPTY = ~M_VALID_I & ~M_VALID_FF; assign M_MESG = M_MESG_FF; assign M_VALID = M_VALID_FF; assign M_READY_I = ( M_READY & M_VALID_FF ) | ~M_VALID_FF; end else begin : NO_FF_OUT assign EMPTY = ~M_VALID_I; assign M_MESG = M_MESG_I; assign M_VALID = M_VALID_I; assign M_READY_I = M_READY; end endgenerate endmodule
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: // Optimized AND with generic_baseblocks_v2_1_0_carry logic. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module generic_baseblocks_v2_1_0_carry_latch_and # ( parameter C_FAMILY = "virtex6" // FPGA Family. Current version: virtex6 or spartan6. ) ( input wire CIN, input wire I, output wire O ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Instantiate or use RTL code ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" ) begin : USE_RTL assign O = CIN & ~I; end else begin : USE_FPGA wire I_n; assign I_n = ~I; AND2B1L and2b1l_inst ( .O(O), .DI(CIN), .SRI(I_n) ); end endgenerate endmodule
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: // Optimized AND with generic_baseblocks_v2_1_0_carry logic. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module generic_baseblocks_v2_1_0_carry_latch_and # ( parameter C_FAMILY = "virtex6" // FPGA Family. Current version: virtex6 or spartan6. ) ( input wire CIN, input wire I, output wire O ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Instantiate or use RTL code ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" ) begin : USE_RTL assign O = CIN & ~I; end else begin : USE_FPGA wire I_n; assign I_n = ~I; AND2B1L and2b1l_inst ( .O(O), .DI(CIN), .SRI(I_n) ); end endgenerate endmodule
module uniphy_status #( parameter WIDTH=32, parameter NUM_UNIPHYS=2 ) ( input clk, input resetn, // Slave port input slave_read, output [WIDTH-1:0] slave_readdata, // hw.tcl won't let me index into a bit vector :( input mem0_local_cal_success, input mem0_local_cal_fail, input mem0_local_init_done, input mem1_local_cal_success, input mem1_local_cal_fail, input mem1_local_init_done, input mem2_local_cal_success, input mem2_local_cal_fail, input mem2_local_init_done, input mem3_local_cal_success, input mem3_local_cal_fail, input mem3_local_init_done, input mem4_local_cal_success, input mem4_local_cal_fail, input mem4_local_init_done, input mem5_local_cal_success, input mem5_local_cal_fail, input mem5_local_init_done, input mem6_local_cal_success, input mem6_local_cal_fail, input mem6_local_init_done, input mem7_local_cal_success, input mem7_local_cal_fail, input mem7_local_init_done, output export_local_cal_success, output export_local_cal_fail, output export_local_init_done ); reg [WIDTH-1:0] aggregate_uniphy_status; wire local_cal_success; wire local_cal_fail; wire local_init_done; wire [NUM_UNIPHYS-1:0] not_init_done; wire [7:0] mask; assign mask = (NUM_UNIPHYS < 1) ? 0 : ~(8'hff << NUM_UNIPHYS); assign local_cal_success = &( ~mask | {mem7_local_cal_success, mem6_local_cal_success, mem5_local_cal_success, mem4_local_cal_success, mem3_local_cal_success, mem2_local_cal_success, mem1_local_cal_success, mem0_local_cal_success}); assign local_cal_fail = mem0_local_cal_fail | mem1_local_cal_fail | mem2_local_cal_fail | mem3_local_cal_fail | mem4_local_cal_fail | mem5_local_cal_fail | mem6_local_cal_fail | mem7_local_cal_fail; assign local_init_done = &( ~mask |{mem7_local_init_done, mem6_local_init_done, mem5_local_init_done, mem4_local_init_done, mem3_local_init_done, mem2_local_init_done, mem1_local_init_done, mem0_local_init_done}); assign not_init_done = mask & ~{ mem7_local_init_done, mem6_local_init_done, mem5_local_init_done, mem4_local_init_done, mem3_local_init_done, mem2_local_init_done, mem1_local_init_done, mem0_local_init_done}; // Desire status==0 to imply success - may cause false positives, but the // alternative is headaches for non-uniphy memories. // Status MSB-LSB: not_init_done, 0, !calsuccess, calfail, !initdone always@(posedge clk or negedge resetn) if (!resetn) aggregate_uniphy_status <= {WIDTH{1'b0}}; else aggregate_uniphy_status <= { not_init_done, 1'b0, {~local_cal_success,local_cal_fail,~local_init_done} }; assign slave_readdata = aggregate_uniphy_status; assign export_local_cal_success = local_cal_success; assign export_local_cal_fail = local_cal_fail; assign export_local_init_done = local_init_done; endmodule
// (c) Copyright 2012 Xilinx, Inc. All rights reserved. // // This file contains confidential and proprietary information // of Xilinx, Inc. and is protected under U.S. and // international copyright and other intellectual property // laws. // // DISCLAIMER // This disclaimer is not a license and does not grant any // rights to the materials distributed herewith. Except as // otherwise provided in a valid license issued to you by // Xilinx, and to the maximum extent permitted by applicable // law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // (2) Xilinx shall not be liable (whether in contract or tort, // including negligence, or under any other theory of // liability) for any loss or damage of any kind or nature // related to, arising under or in connection with these // materials, including for any direct, or any indirect, // special, incidental, or consequential loss or damage // (including loss of data, profits, goodwill, or any type of // loss or damage suffered as a result of any action brought // by a third party) even if such damage or loss was // reasonably foreseeable or Xilinx had been advised of the // possibility of the same. // // CRITICAL APPLICATIONS // Xilinx products are not designed or intended to be fail- // safe, or for use in any application requiring fail-safe // performance, such as life-support or safety devices or // systems, Class III medical devices, nuclear facilities, // applications related to the deployment of airbags, or any // other applications that could lead to death, personal // injury, or severe property or environmental damage // (individually and collectively, "Critical // Applications"). Customer assumes the sole risk and // liability of any use of Xilinx products in Critical // Applications, subject only to applicable laws and // regulations governing limitations on product liability. // // THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // axi to vector // A generic module to merge all axi signals into one signal called payload. // This is strictly wires, so no clk, reset, aclken, valid/ready are required. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // `timescale 1ps/1ps `default_nettype none (* DowngradeIPIdentifiedWarnings="yes" *) module axi_infrastructure_v1_1_0_vector2axi # ( /////////////////////////////////////////////////////////////////////////////// // Parameter Definitions /////////////////////////////////////////////////////////////////////////////// parameter integer C_AXI_PROTOCOL = 0, parameter integer C_AXI_ID_WIDTH = 4, parameter integer C_AXI_ADDR_WIDTH = 32, parameter integer C_AXI_DATA_WIDTH = 32, parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0, parameter integer C_AXI_SUPPORTS_REGION_SIGNALS = 0, parameter integer C_AXI_AWUSER_WIDTH = 1, parameter integer C_AXI_WUSER_WIDTH = 1, parameter integer C_AXI_BUSER_WIDTH = 1, parameter integer C_AXI_ARUSER_WIDTH = 1, parameter integer C_AXI_RUSER_WIDTH = 1, parameter integer C_AWPAYLOAD_WIDTH = 61, parameter integer C_WPAYLOAD_WIDTH = 73, parameter integer C_BPAYLOAD_WIDTH = 6, parameter integer C_ARPAYLOAD_WIDTH = 61, parameter integer C_RPAYLOAD_WIDTH = 69 ) ( /////////////////////////////////////////////////////////////////////////////// // Port Declarations /////////////////////////////////////////////////////////////////////////////// // Slave Interface Write Address Ports output wire [C_AXI_ID_WIDTH-1:0] m_axi_awid, output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_awaddr, output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_awlen, output wire [3-1:0] m_axi_awsize, output wire [2-1:0] m_axi_awburst, output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_awlock, output wire [4-1:0] m_axi_awcache, output wire [3-1:0] m_axi_awprot, output wire [4-1:0] m_axi_awregion, output wire [4-1:0] m_axi_awqos, output wire [C_AXI_AWUSER_WIDTH-1:0] m_axi_awuser, // Slave Interface Write Data Ports output wire [C_AXI_ID_WIDTH-1:0] m_axi_wid, output wire [C_AXI_DATA_WIDTH-1:0] m_axi_wdata, output wire [C_AXI_DATA_WIDTH/8-1:0] m_axi_wstrb, output wire m_axi_wlast, output wire [C_AXI_WUSER_WIDTH-1:0] m_axi_wuser, // Slave Interface Write Response Ports input wire [C_AXI_ID_WIDTH-1:0] m_axi_bid, input wire [2-1:0] m_axi_bresp, input wire [C_AXI_BUSER_WIDTH-1:0] m_axi_buser, // Slave Interface Read Address Ports output wire [C_AXI_ID_WIDTH-1:0] m_axi_arid, output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_araddr, output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_arlen, output wire [3-1:0] m_axi_arsize, output wire [2-1:0] m_axi_arburst, output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_arlock, output wire [4-1:0] m_axi_arcache, output wire [3-1:0] m_axi_arprot, output wire [4-1:0] m_axi_arregion, output wire [4-1:0] m_axi_arqos, output wire [C_AXI_ARUSER_WIDTH-1:0] m_axi_aruser, // Slave Interface Read Data Ports input wire [C_AXI_ID_WIDTH-1:0] m_axi_rid, input wire [C_AXI_DATA_WIDTH-1:0] m_axi_rdata, input wire [2-1:0] m_axi_rresp, input wire m_axi_rlast, input wire [C_AXI_RUSER_WIDTH-1:0] m_axi_ruser, // payloads input wire [C_AWPAYLOAD_WIDTH-1:0] m_awpayload, input wire [C_WPAYLOAD_WIDTH-1:0] m_wpayload, output wire [C_BPAYLOAD_WIDTH-1:0] m_bpayload, input wire [C_ARPAYLOAD_WIDTH-1:0] m_arpayload, output wire [C_RPAYLOAD_WIDTH-1:0] m_rpayload ); //////////////////////////////////////////////////////////////////////////////// // Functions //////////////////////////////////////////////////////////////////////////////// `include "axi_infrastructure_v1_1_0_header.vh" //////////////////////////////////////////////////////////////////////////////// // Local parameters //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // Wires/Reg declarations //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// // AXI4, AXI4LITE, AXI3 packing assign m_axi_awaddr = m_awpayload[G_AXI_AWADDR_INDEX+:G_AXI_AWADDR_WIDTH]; assign m_axi_awprot = m_awpayload[G_AXI_AWPROT_INDEX+:G_AXI_AWPROT_WIDTH]; assign m_axi_wdata = m_wpayload[G_AXI_WDATA_INDEX+:G_AXI_WDATA_WIDTH]; assign m_axi_wstrb = m_wpayload[G_AXI_WSTRB_INDEX+:G_AXI_WSTRB_WIDTH]; assign m_bpayload[G_AXI_BRESP_INDEX+:G_AXI_BRESP_WIDTH] = m_axi_bresp; assign m_axi_araddr = m_arpayload[G_AXI_ARADDR_INDEX+:G_AXI_ARADDR_WIDTH]; assign m_axi_arprot = m_arpayload[G_AXI_ARPROT_INDEX+:G_AXI_ARPROT_WIDTH]; assign m_rpayload[G_AXI_RDATA_INDEX+:G_AXI_RDATA_WIDTH] = m_axi_rdata; assign m_rpayload[G_AXI_RRESP_INDEX+:G_AXI_RRESP_WIDTH] = m_axi_rresp; generate if (C_AXI_PROTOCOL == 0 || C_AXI_PROTOCOL == 1) begin : gen_axi4_or_axi3_packing assign m_axi_awsize = m_awpayload[G_AXI_AWSIZE_INDEX+:G_AXI_AWSIZE_WIDTH] ; assign m_axi_awburst = m_awpayload[G_AXI_AWBURST_INDEX+:G_AXI_AWBURST_WIDTH]; assign m_axi_awcache = m_awpayload[G_AXI_AWCACHE_INDEX+:G_AXI_AWCACHE_WIDTH]; assign m_axi_awlen = m_awpayload[G_AXI_AWLEN_INDEX+:G_AXI_AWLEN_WIDTH] ; assign m_axi_awlock = m_awpayload[G_AXI_AWLOCK_INDEX+:G_AXI_AWLOCK_WIDTH] ; assign m_axi_awid = m_awpayload[G_AXI_AWID_INDEX+:G_AXI_AWID_WIDTH] ; assign m_axi_awqos = m_awpayload[G_AXI_AWQOS_INDEX+:G_AXI_AWQOS_WIDTH] ; assign m_axi_wlast = m_wpayload[G_AXI_WLAST_INDEX+:G_AXI_WLAST_WIDTH] ; if (C_AXI_PROTOCOL == 1) begin : gen_axi3_wid_packing assign m_axi_wid = m_wpayload[G_AXI_WID_INDEX+:G_AXI_WID_WIDTH] ; end else begin : gen_no_axi3_wid_packing assign m_axi_wid = 1'b0; end assign m_bpayload[G_AXI_BID_INDEX+:G_AXI_BID_WIDTH] = m_axi_bid; assign m_axi_arsize = m_arpayload[G_AXI_ARSIZE_INDEX+:G_AXI_ARSIZE_WIDTH] ; assign m_axi_arburst = m_arpayload[G_AXI_ARBURST_INDEX+:G_AXI_ARBURST_WIDTH]; assign m_axi_arcache = m_arpayload[G_AXI_ARCACHE_INDEX+:G_AXI_ARCACHE_WIDTH]; assign m_axi_arlen = m_arpayload[G_AXI_ARLEN_INDEX+:G_AXI_ARLEN_WIDTH] ; assign m_axi_arlock = m_arpayload[G_AXI_ARLOCK_INDEX+:G_AXI_ARLOCK_WIDTH] ; assign m_axi_arid = m_arpayload[G_AXI_ARID_INDEX+:G_AXI_ARID_WIDTH] ; assign m_axi_arqos = m_arpayload[G_AXI_ARQOS_INDEX+:G_AXI_ARQOS_WIDTH] ; assign m_rpayload[G_AXI_RLAST_INDEX+:G_AXI_RLAST_WIDTH] = m_axi_rlast; assign m_rpayload[G_AXI_RID_INDEX+:G_AXI_RID_WIDTH] = m_axi_rid ; if (C_AXI_SUPPORTS_REGION_SIGNALS == 1 && G_AXI_AWREGION_WIDTH > 0) begin : gen_region_signals assign m_axi_awregion = m_awpayload[G_AXI_AWREGION_INDEX+:G_AXI_AWREGION_WIDTH]; assign m_axi_arregion = m_arpayload[G_AXI_ARREGION_INDEX+:G_AXI_ARREGION_WIDTH]; end else begin : gen_no_region_signals assign m_axi_awregion = 'b0; assign m_axi_arregion = 'b0; end if (C_AXI_SUPPORTS_USER_SIGNALS == 1 && C_AXI_PROTOCOL != 2) begin : gen_user_signals assign m_axi_awuser = m_awpayload[G_AXI_AWUSER_INDEX+:G_AXI_AWUSER_WIDTH]; assign m_axi_wuser = m_wpayload[G_AXI_WUSER_INDEX+:G_AXI_WUSER_WIDTH] ; assign m_bpayload[G_AXI_BUSER_INDEX+:G_AXI_BUSER_WIDTH] = m_axi_buser ; assign m_axi_aruser = m_arpayload[G_AXI_ARUSER_INDEX+:G_AXI_ARUSER_WIDTH]; assign m_rpayload[G_AXI_RUSER_INDEX+:G_AXI_RUSER_WIDTH] = m_axi_ruser ; end else begin : gen_no_user_signals assign m_axi_awuser = 'b0; assign m_axi_wuser = 'b0; assign m_axi_aruser = 'b0; end end else begin : gen_axi4lite_packing assign m_axi_awsize = (C_AXI_DATA_WIDTH == 32) ? 3'd2 : 3'd3; assign m_axi_awburst = 'b0; assign m_axi_awcache = 'b0; assign m_axi_awlen = 'b0; assign m_axi_awlock = 'b0; assign m_axi_awid = 'b0; assign m_axi_awqos = 'b0; assign m_axi_wlast = 1'b1; assign m_axi_wid = 'b0; assign m_axi_arsize = (C_AXI_DATA_WIDTH == 32) ? 3'd2 : 3'd3; assign m_axi_arburst = 'b0; assign m_axi_arcache = 'b0; assign m_axi_arlen = 'b0; assign m_axi_arlock = 'b0; assign m_axi_arid = 'b0; assign m_axi_arqos = 'b0; assign m_axi_awregion = 'b0; assign m_axi_arregion = 'b0; assign m_axi_awuser = 'b0; assign m_axi_wuser = 'b0; assign m_axi_aruser = 'b0; end endgenerate endmodule `default_nettype wire
// (c) Copyright 2012 Xilinx, Inc. All rights reserved. // // This file contains confidential and proprietary information // of Xilinx, Inc. and is protected under U.S. and // international copyright and other intellectual property // laws. // // DISCLAIMER // This disclaimer is not a license and does not grant any // rights to the materials distributed herewith. Except as // otherwise provided in a valid license issued to you by // Xilinx, and to the maximum extent permitted by applicable // law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // (2) Xilinx shall not be liable (whether in contract or tort, // including negligence, or under any other theory of // liability) for any loss or damage of any kind or nature // related to, arising under or in connection with these // materials, including for any direct, or any indirect, // special, incidental, or consequential loss or damage // (including loss of data, profits, goodwill, or any type of // loss or damage suffered as a result of any action brought // by a third party) even if such damage or loss was // reasonably foreseeable or Xilinx had been advised of the // possibility of the same. // // CRITICAL APPLICATIONS // Xilinx products are not designed or intended to be fail- // safe, or for use in any application requiring fail-safe // performance, such as life-support or safety devices or // systems, Class III medical devices, nuclear facilities, // applications related to the deployment of airbags, or any // other applications that could lead to death, personal // injury, or severe property or environmental damage // (individually and collectively, "Critical // Applications"). Customer assumes the sole risk and // liability of any use of Xilinx products in Critical // Applications, subject only to applicable laws and // regulations governing limitations on product liability. // // THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // axis to vector // A generic module to merge all axi signals into one signal called payload. // This is strictly wires, so no clk, reset, aclken, valid/ready are required. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // `timescale 1ps/1ps `default_nettype none (* DowngradeIPIdentifiedWarnings="yes" *) module axi_infrastructure_v1_1_0_axi2vector # ( /////////////////////////////////////////////////////////////////////////////// // Parameter Definitions /////////////////////////////////////////////////////////////////////////////// parameter integer C_AXI_PROTOCOL = 0, parameter integer C_AXI_ID_WIDTH = 4, parameter integer C_AXI_ADDR_WIDTH = 32, parameter integer C_AXI_DATA_WIDTH = 32, parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0, parameter integer C_AXI_SUPPORTS_REGION_SIGNALS = 0, parameter integer C_AXI_AWUSER_WIDTH = 1, parameter integer C_AXI_WUSER_WIDTH = 1, parameter integer C_AXI_BUSER_WIDTH = 1, parameter integer C_AXI_ARUSER_WIDTH = 1, parameter integer C_AXI_RUSER_WIDTH = 1, parameter integer C_AWPAYLOAD_WIDTH = 61, parameter integer C_WPAYLOAD_WIDTH = 73, parameter integer C_BPAYLOAD_WIDTH = 6, parameter integer C_ARPAYLOAD_WIDTH = 61, parameter integer C_RPAYLOAD_WIDTH = 69 ) ( /////////////////////////////////////////////////////////////////////////////// // Port Declarations /////////////////////////////////////////////////////////////////////////////// // Slave Interface Write Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_awid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_awlen, input wire [3-1:0] s_axi_awsize, input wire [2-1:0] s_axi_awburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_awlock, input wire [4-1:0] s_axi_awcache, input wire [3-1:0] s_axi_awprot, input wire [4-1:0] s_axi_awregion, input wire [4-1:0] s_axi_awqos, input wire [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser, // Slave Interface Write Data Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_wid, input wire [C_AXI_DATA_WIDTH-1:0] s_axi_wdata, input wire [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb, input wire s_axi_wlast, input wire [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser, // Slave Interface Write Response Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_bid, output wire [2-1:0] s_axi_bresp, output wire [C_AXI_BUSER_WIDTH-1:0] s_axi_buser, // Slave Interface Read Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_arid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_arlen, input wire [3-1:0] s_axi_arsize, input wire [2-1:0] s_axi_arburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_arlock, input wire [4-1:0] s_axi_arcache, input wire [3-1:0] s_axi_arprot, input wire [4-1:0] s_axi_arregion, input wire [4-1:0] s_axi_arqos, input wire [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser, // Slave Interface Read Data Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_rid, output wire [C_AXI_DATA_WIDTH-1:0] s_axi_rdata, output wire [2-1:0] s_axi_rresp, output wire s_axi_rlast, output wire [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser, // payloads output wire [C_AWPAYLOAD_WIDTH-1:0] s_awpayload, output wire [C_WPAYLOAD_WIDTH-1:0] s_wpayload, input wire [C_BPAYLOAD_WIDTH-1:0] s_bpayload, output wire [C_ARPAYLOAD_WIDTH-1:0] s_arpayload, input wire [C_RPAYLOAD_WIDTH-1:0] s_rpayload ); //////////////////////////////////////////////////////////////////////////////// // Functions //////////////////////////////////////////////////////////////////////////////// `include "axi_infrastructure_v1_1_0_header.vh" //////////////////////////////////////////////////////////////////////////////// // Local parameters //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // Wires/Reg declarations //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// // AXI4, AXI4LITE, AXI3 packing assign s_awpayload[G_AXI_AWADDR_INDEX+:G_AXI_AWADDR_WIDTH] = s_axi_awaddr; assign s_awpayload[G_AXI_AWPROT_INDEX+:G_AXI_AWPROT_WIDTH] = s_axi_awprot; assign s_wpayload[G_AXI_WDATA_INDEX+:G_AXI_WDATA_WIDTH] = s_axi_wdata; assign s_wpayload[G_AXI_WSTRB_INDEX+:G_AXI_WSTRB_WIDTH] = s_axi_wstrb; assign s_axi_bresp = s_bpayload[G_AXI_BRESP_INDEX+:G_AXI_BRESP_WIDTH]; assign s_arpayload[G_AXI_ARADDR_INDEX+:G_AXI_ARADDR_WIDTH] = s_axi_araddr; assign s_arpayload[G_AXI_ARPROT_INDEX+:G_AXI_ARPROT_WIDTH] = s_axi_arprot; assign s_axi_rdata = s_rpayload[G_AXI_RDATA_INDEX+:G_AXI_RDATA_WIDTH]; assign s_axi_rresp = s_rpayload[G_AXI_RRESP_INDEX+:G_AXI_RRESP_WIDTH]; generate if (C_AXI_PROTOCOL == 0 || C_AXI_PROTOCOL == 1) begin : gen_axi4_or_axi3_packing assign s_awpayload[G_AXI_AWSIZE_INDEX+:G_AXI_AWSIZE_WIDTH] = s_axi_awsize; assign s_awpayload[G_AXI_AWBURST_INDEX+:G_AXI_AWBURST_WIDTH] = s_axi_awburst; assign s_awpayload[G_AXI_AWCACHE_INDEX+:G_AXI_AWCACHE_WIDTH] = s_axi_awcache; assign s_awpayload[G_AXI_AWLEN_INDEX+:G_AXI_AWLEN_WIDTH] = s_axi_awlen; assign s_awpayload[G_AXI_AWLOCK_INDEX+:G_AXI_AWLOCK_WIDTH] = s_axi_awlock; assign s_awpayload[G_AXI_AWID_INDEX+:G_AXI_AWID_WIDTH] = s_axi_awid; assign s_awpayload[G_AXI_AWQOS_INDEX+:G_AXI_AWQOS_WIDTH] = s_axi_awqos; assign s_wpayload[G_AXI_WLAST_INDEX+:G_AXI_WLAST_WIDTH] = s_axi_wlast; if (C_AXI_PROTOCOL == 1) begin : gen_axi3_wid_packing assign s_wpayload[G_AXI_WID_INDEX+:G_AXI_WID_WIDTH] = s_axi_wid; end else begin : gen_no_axi3_wid_packing end assign s_axi_bid = s_bpayload[G_AXI_BID_INDEX+:G_AXI_BID_WIDTH]; assign s_arpayload[G_AXI_ARSIZE_INDEX+:G_AXI_ARSIZE_WIDTH] = s_axi_arsize; assign s_arpayload[G_AXI_ARBURST_INDEX+:G_AXI_ARBURST_WIDTH] = s_axi_arburst; assign s_arpayload[G_AXI_ARCACHE_INDEX+:G_AXI_ARCACHE_WIDTH] = s_axi_arcache; assign s_arpayload[G_AXI_ARLEN_INDEX+:G_AXI_ARLEN_WIDTH] = s_axi_arlen; assign s_arpayload[G_AXI_ARLOCK_INDEX+:G_AXI_ARLOCK_WIDTH] = s_axi_arlock; assign s_arpayload[G_AXI_ARID_INDEX+:G_AXI_ARID_WIDTH] = s_axi_arid; assign s_arpayload[G_AXI_ARQOS_INDEX+:G_AXI_ARQOS_WIDTH] = s_axi_arqos; assign s_axi_rlast = s_rpayload[G_AXI_RLAST_INDEX+:G_AXI_RLAST_WIDTH]; assign s_axi_rid = s_rpayload[G_AXI_RID_INDEX+:G_AXI_RID_WIDTH]; if (C_AXI_SUPPORTS_REGION_SIGNALS == 1 && G_AXI_AWREGION_WIDTH > 0) begin : gen_region_signals assign s_awpayload[G_AXI_AWREGION_INDEX+:G_AXI_AWREGION_WIDTH] = s_axi_awregion; assign s_arpayload[G_AXI_ARREGION_INDEX+:G_AXI_ARREGION_WIDTH] = s_axi_arregion; end else begin : gen_no_region_signals end if (C_AXI_SUPPORTS_USER_SIGNALS == 1 && C_AXI_PROTOCOL != 2) begin : gen_user_signals assign s_awpayload[G_AXI_AWUSER_INDEX+:G_AXI_AWUSER_WIDTH] = s_axi_awuser; assign s_wpayload[G_AXI_WUSER_INDEX+:G_AXI_WUSER_WIDTH] = s_axi_wuser; assign s_axi_buser = s_bpayload[G_AXI_BUSER_INDEX+:G_AXI_BUSER_WIDTH]; assign s_arpayload[G_AXI_ARUSER_INDEX+:G_AXI_ARUSER_WIDTH] = s_axi_aruser; assign s_axi_ruser = s_rpayload[G_AXI_RUSER_INDEX+:G_AXI_RUSER_WIDTH]; end else begin : gen_no_user_signals assign s_axi_buser = 'b0; assign s_axi_ruser = 'b0; end end else begin : gen_axi4lite_packing assign s_axi_bid = 'b0; assign s_axi_buser = 'b0; assign s_axi_rlast = 1'b1; assign s_axi_rid = 'b0; assign s_axi_ruser = 'b0; end endgenerate endmodule `default_nettype wire
// (c) Copyright 2012 Xilinx, Inc. All rights reserved. // // This file contains confidential and proprietary information // of Xilinx, Inc. and is protected under U.S. and // international copyright and other intellectual property // laws. // // DISCLAIMER // This disclaimer is not a license and does not grant any // rights to the materials distributed herewith. Except as // otherwise provided in a valid license issued to you by // Xilinx, and to the maximum extent permitted by applicable // law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // (2) Xilinx shall not be liable (whether in contract or tort, // including negligence, or under any other theory of // liability) for any loss or damage of any kind or nature // related to, arising under or in connection with these // materials, including for any direct, or any indirect, // special, incidental, or consequential loss or damage // (including loss of data, profits, goodwill, or any type of // loss or damage suffered as a result of any action brought // by a third party) even if such damage or loss was // reasonably foreseeable or Xilinx had been advised of the // possibility of the same. // // CRITICAL APPLICATIONS // Xilinx products are not designed or intended to be fail- // safe, or for use in any application requiring fail-safe // performance, such as life-support or safety devices or // systems, Class III medical devices, nuclear facilities, // applications related to the deployment of airbags, or any // other applications that could lead to death, personal // injury, or severe property or environmental damage // (individually and collectively, "Critical // Applications"). Customer assumes the sole risk and // liability of any use of Xilinx products in Critical // Applications, subject only to applicable laws and // regulations governing limitations on product liability. // // THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // axis to vector // A generic module to merge all axi signals into one signal called payload. // This is strictly wires, so no clk, reset, aclken, valid/ready are required. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // `timescale 1ps/1ps `default_nettype none (* DowngradeIPIdentifiedWarnings="yes" *) module axi_infrastructure_v1_1_0_axi2vector # ( /////////////////////////////////////////////////////////////////////////////// // Parameter Definitions /////////////////////////////////////////////////////////////////////////////// parameter integer C_AXI_PROTOCOL = 0, parameter integer C_AXI_ID_WIDTH = 4, parameter integer C_AXI_ADDR_WIDTH = 32, parameter integer C_AXI_DATA_WIDTH = 32, parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0, parameter integer C_AXI_SUPPORTS_REGION_SIGNALS = 0, parameter integer C_AXI_AWUSER_WIDTH = 1, parameter integer C_AXI_WUSER_WIDTH = 1, parameter integer C_AXI_BUSER_WIDTH = 1, parameter integer C_AXI_ARUSER_WIDTH = 1, parameter integer C_AXI_RUSER_WIDTH = 1, parameter integer C_AWPAYLOAD_WIDTH = 61, parameter integer C_WPAYLOAD_WIDTH = 73, parameter integer C_BPAYLOAD_WIDTH = 6, parameter integer C_ARPAYLOAD_WIDTH = 61, parameter integer C_RPAYLOAD_WIDTH = 69 ) ( /////////////////////////////////////////////////////////////////////////////// // Port Declarations /////////////////////////////////////////////////////////////////////////////// // Slave Interface Write Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_awid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_awlen, input wire [3-1:0] s_axi_awsize, input wire [2-1:0] s_axi_awburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_awlock, input wire [4-1:0] s_axi_awcache, input wire [3-1:0] s_axi_awprot, input wire [4-1:0] s_axi_awregion, input wire [4-1:0] s_axi_awqos, input wire [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser, // Slave Interface Write Data Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_wid, input wire [C_AXI_DATA_WIDTH-1:0] s_axi_wdata, input wire [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb, input wire s_axi_wlast, input wire [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser, // Slave Interface Write Response Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_bid, output wire [2-1:0] s_axi_bresp, output wire [C_AXI_BUSER_WIDTH-1:0] s_axi_buser, // Slave Interface Read Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_arid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_arlen, input wire [3-1:0] s_axi_arsize, input wire [2-1:0] s_axi_arburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_arlock, input wire [4-1:0] s_axi_arcache, input wire [3-1:0] s_axi_arprot, input wire [4-1:0] s_axi_arregion, input wire [4-1:0] s_axi_arqos, input wire [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser, // Slave Interface Read Data Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_rid, output wire [C_AXI_DATA_WIDTH-1:0] s_axi_rdata, output wire [2-1:0] s_axi_rresp, output wire s_axi_rlast, output wire [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser, // payloads output wire [C_AWPAYLOAD_WIDTH-1:0] s_awpayload, output wire [C_WPAYLOAD_WIDTH-1:0] s_wpayload, input wire [C_BPAYLOAD_WIDTH-1:0] s_bpayload, output wire [C_ARPAYLOAD_WIDTH-1:0] s_arpayload, input wire [C_RPAYLOAD_WIDTH-1:0] s_rpayload ); //////////////////////////////////////////////////////////////////////////////// // Functions //////////////////////////////////////////////////////////////////////////////// `include "axi_infrastructure_v1_1_0_header.vh" //////////////////////////////////////////////////////////////////////////////// // Local parameters //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // Wires/Reg declarations //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// // AXI4, AXI4LITE, AXI3 packing assign s_awpayload[G_AXI_AWADDR_INDEX+:G_AXI_AWADDR_WIDTH] = s_axi_awaddr; assign s_awpayload[G_AXI_AWPROT_INDEX+:G_AXI_AWPROT_WIDTH] = s_axi_awprot; assign s_wpayload[G_AXI_WDATA_INDEX+:G_AXI_WDATA_WIDTH] = s_axi_wdata; assign s_wpayload[G_AXI_WSTRB_INDEX+:G_AXI_WSTRB_WIDTH] = s_axi_wstrb; assign s_axi_bresp = s_bpayload[G_AXI_BRESP_INDEX+:G_AXI_BRESP_WIDTH]; assign s_arpayload[G_AXI_ARADDR_INDEX+:G_AXI_ARADDR_WIDTH] = s_axi_araddr; assign s_arpayload[G_AXI_ARPROT_INDEX+:G_AXI_ARPROT_WIDTH] = s_axi_arprot; assign s_axi_rdata = s_rpayload[G_AXI_RDATA_INDEX+:G_AXI_RDATA_WIDTH]; assign s_axi_rresp = s_rpayload[G_AXI_RRESP_INDEX+:G_AXI_RRESP_WIDTH]; generate if (C_AXI_PROTOCOL == 0 || C_AXI_PROTOCOL == 1) begin : gen_axi4_or_axi3_packing assign s_awpayload[G_AXI_AWSIZE_INDEX+:G_AXI_AWSIZE_WIDTH] = s_axi_awsize; assign s_awpayload[G_AXI_AWBURST_INDEX+:G_AXI_AWBURST_WIDTH] = s_axi_awburst; assign s_awpayload[G_AXI_AWCACHE_INDEX+:G_AXI_AWCACHE_WIDTH] = s_axi_awcache; assign s_awpayload[G_AXI_AWLEN_INDEX+:G_AXI_AWLEN_WIDTH] = s_axi_awlen; assign s_awpayload[G_AXI_AWLOCK_INDEX+:G_AXI_AWLOCK_WIDTH] = s_axi_awlock; assign s_awpayload[G_AXI_AWID_INDEX+:G_AXI_AWID_WIDTH] = s_axi_awid; assign s_awpayload[G_AXI_AWQOS_INDEX+:G_AXI_AWQOS_WIDTH] = s_axi_awqos; assign s_wpayload[G_AXI_WLAST_INDEX+:G_AXI_WLAST_WIDTH] = s_axi_wlast; if (C_AXI_PROTOCOL == 1) begin : gen_axi3_wid_packing assign s_wpayload[G_AXI_WID_INDEX+:G_AXI_WID_WIDTH] = s_axi_wid; end else begin : gen_no_axi3_wid_packing end assign s_axi_bid = s_bpayload[G_AXI_BID_INDEX+:G_AXI_BID_WIDTH]; assign s_arpayload[G_AXI_ARSIZE_INDEX+:G_AXI_ARSIZE_WIDTH] = s_axi_arsize; assign s_arpayload[G_AXI_ARBURST_INDEX+:G_AXI_ARBURST_WIDTH] = s_axi_arburst; assign s_arpayload[G_AXI_ARCACHE_INDEX+:G_AXI_ARCACHE_WIDTH] = s_axi_arcache; assign s_arpayload[G_AXI_ARLEN_INDEX+:G_AXI_ARLEN_WIDTH] = s_axi_arlen; assign s_arpayload[G_AXI_ARLOCK_INDEX+:G_AXI_ARLOCK_WIDTH] = s_axi_arlock; assign s_arpayload[G_AXI_ARID_INDEX+:G_AXI_ARID_WIDTH] = s_axi_arid; assign s_arpayload[G_AXI_ARQOS_INDEX+:G_AXI_ARQOS_WIDTH] = s_axi_arqos; assign s_axi_rlast = s_rpayload[G_AXI_RLAST_INDEX+:G_AXI_RLAST_WIDTH]; assign s_axi_rid = s_rpayload[G_AXI_RID_INDEX+:G_AXI_RID_WIDTH]; if (C_AXI_SUPPORTS_REGION_SIGNALS == 1 && G_AXI_AWREGION_WIDTH > 0) begin : gen_region_signals assign s_awpayload[G_AXI_AWREGION_INDEX+:G_AXI_AWREGION_WIDTH] = s_axi_awregion; assign s_arpayload[G_AXI_ARREGION_INDEX+:G_AXI_ARREGION_WIDTH] = s_axi_arregion; end else begin : gen_no_region_signals end if (C_AXI_SUPPORTS_USER_SIGNALS == 1 && C_AXI_PROTOCOL != 2) begin : gen_user_signals assign s_awpayload[G_AXI_AWUSER_INDEX+:G_AXI_AWUSER_WIDTH] = s_axi_awuser; assign s_wpayload[G_AXI_WUSER_INDEX+:G_AXI_WUSER_WIDTH] = s_axi_wuser; assign s_axi_buser = s_bpayload[G_AXI_BUSER_INDEX+:G_AXI_BUSER_WIDTH]; assign s_arpayload[G_AXI_ARUSER_INDEX+:G_AXI_ARUSER_WIDTH] = s_axi_aruser; assign s_axi_ruser = s_rpayload[G_AXI_RUSER_INDEX+:G_AXI_RUSER_WIDTH]; end else begin : gen_no_user_signals assign s_axi_buser = 'b0; assign s_axi_ruser = 'b0; end end else begin : gen_axi4lite_packing assign s_axi_bid = 'b0; assign s_axi_buser = 'b0; assign s_axi_rlast = 1'b1; assign s_axi_rid = 'b0; assign s_axi_ruser = 'b0; end endgenerate endmodule `default_nettype wire
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: // Optimized COMPARATOR (against constant) with generic_baseblocks_v2_1_0_carry logic. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module generic_baseblocks_v2_1_0_comparator_sel_static # ( parameter C_FAMILY = "virtex6", // FPGA Family. Current version: virtex6 or spartan6. parameter C_VALUE = 4'b0, // Static value to compare against. parameter integer C_DATA_WIDTH = 4 // Data width for comparator. ) ( input wire CIN, input wire S, input wire [C_DATA_WIDTH-1:0] A, input wire [C_DATA_WIDTH-1:0] B, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for bit vector. genvar bit_cnt; ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Bits per LUT for this architecture. localparam integer C_BITS_PER_LUT = 2; // Constants for packing levels. localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT; // localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT : C_DATA_WIDTH; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// wire [C_FIX_DATA_WIDTH-1:0] a_local; wire [C_FIX_DATA_WIDTH-1:0] b_local; wire [C_FIX_DATA_WIDTH-1:0] v_local; wire [C_NUM_LUT-1:0] sel; wire [C_NUM_LUT:0] carry_local; ///////////////////////////////////////////////////////////////////////////// // ///////////////////////////////////////////////////////////////////////////// generate // Assign input to local vectors. assign carry_local[0] = CIN; // Extend input data to fit. if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign v_local = {C_VALUE, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; end else begin : NO_EXTENDED_DATA assign a_local = A; assign b_local = B; assign v_local = C_VALUE; end // Instantiate one generic_baseblocks_v2_1_0_carry and per level. for (bit_cnt = 0; bit_cnt < C_NUM_LUT ; bit_cnt = bit_cnt + 1) begin : LUT_LEVEL // Create the local select signal assign sel[bit_cnt] = ( ( a_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] == v_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) & ( S == 1'b0 ) ) | ( ( b_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] == v_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) & ( S == 1'b1 ) ); // Instantiate each LUT level. generic_baseblocks_v2_1_0_carry_and # ( .C_FAMILY(C_FAMILY) ) compare_inst ( .COUT (carry_local[bit_cnt+1]), .CIN (carry_local[bit_cnt]), .S (sel[bit_cnt]) ); end // end for bit_cnt // Assign output from local vector. assign COUT = carry_local[C_NUM_LUT]; endgenerate endmodule
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: // Optimized COMPARATOR (against constant) with generic_baseblocks_v2_1_0_carry logic. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module generic_baseblocks_v2_1_0_comparator_sel_static # ( parameter C_FAMILY = "virtex6", // FPGA Family. Current version: virtex6 or spartan6. parameter C_VALUE = 4'b0, // Static value to compare against. parameter integer C_DATA_WIDTH = 4 // Data width for comparator. ) ( input wire CIN, input wire S, input wire [C_DATA_WIDTH-1:0] A, input wire [C_DATA_WIDTH-1:0] B, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for bit vector. genvar bit_cnt; ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Bits per LUT for this architecture. localparam integer C_BITS_PER_LUT = 2; // Constants for packing levels. localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT; // localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT : C_DATA_WIDTH; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// wire [C_FIX_DATA_WIDTH-1:0] a_local; wire [C_FIX_DATA_WIDTH-1:0] b_local; wire [C_FIX_DATA_WIDTH-1:0] v_local; wire [C_NUM_LUT-1:0] sel; wire [C_NUM_LUT:0] carry_local; ///////////////////////////////////////////////////////////////////////////// // ///////////////////////////////////////////////////////////////////////////// generate // Assign input to local vectors. assign carry_local[0] = CIN; // Extend input data to fit. if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign v_local = {C_VALUE, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; end else begin : NO_EXTENDED_DATA assign a_local = A; assign b_local = B; assign v_local = C_VALUE; end // Instantiate one generic_baseblocks_v2_1_0_carry and per level. for (bit_cnt = 0; bit_cnt < C_NUM_LUT ; bit_cnt = bit_cnt + 1) begin : LUT_LEVEL // Create the local select signal assign sel[bit_cnt] = ( ( a_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] == v_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) & ( S == 1'b0 ) ) | ( ( b_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] == v_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) & ( S == 1'b1 ) ); // Instantiate each LUT level. generic_baseblocks_v2_1_0_carry_and # ( .C_FAMILY(C_FAMILY) ) compare_inst ( .COUT (carry_local[bit_cnt+1]), .CIN (carry_local[bit_cnt]), .S (sel[bit_cnt]) ); end // end for bit_cnt // Assign output from local vector. assign COUT = carry_local[C_NUM_LUT]; endgenerate endmodule
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: // Optimized COMPARATOR (against constant) with generic_baseblocks_v2_1_0_carry logic. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module generic_baseblocks_v2_1_0_comparator_sel_static # ( parameter C_FAMILY = "virtex6", // FPGA Family. Current version: virtex6 or spartan6. parameter C_VALUE = 4'b0, // Static value to compare against. parameter integer C_DATA_WIDTH = 4 // Data width for comparator. ) ( input wire CIN, input wire S, input wire [C_DATA_WIDTH-1:0] A, input wire [C_DATA_WIDTH-1:0] B, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for bit vector. genvar bit_cnt; ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Bits per LUT for this architecture. localparam integer C_BITS_PER_LUT = 2; // Constants for packing levels. localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT; // localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT : C_DATA_WIDTH; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// wire [C_FIX_DATA_WIDTH-1:0] a_local; wire [C_FIX_DATA_WIDTH-1:0] b_local; wire [C_FIX_DATA_WIDTH-1:0] v_local; wire [C_NUM_LUT-1:0] sel; wire [C_NUM_LUT:0] carry_local; ///////////////////////////////////////////////////////////////////////////// // ///////////////////////////////////////////////////////////////////////////// generate // Assign input to local vectors. assign carry_local[0] = CIN; // Extend input data to fit. if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign b_local = {B, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign v_local = {C_VALUE, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; end else begin : NO_EXTENDED_DATA assign a_local = A; assign b_local = B; assign v_local = C_VALUE; end // Instantiate one generic_baseblocks_v2_1_0_carry and per level. for (bit_cnt = 0; bit_cnt < C_NUM_LUT ; bit_cnt = bit_cnt + 1) begin : LUT_LEVEL // Create the local select signal assign sel[bit_cnt] = ( ( a_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] == v_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) & ( S == 1'b0 ) ) | ( ( b_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] == v_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ) & ( S == 1'b1 ) ); // Instantiate each LUT level. generic_baseblocks_v2_1_0_carry_and # ( .C_FAMILY(C_FAMILY) ) compare_inst ( .COUT (carry_local[bit_cnt+1]), .CIN (carry_local[bit_cnt]), .S (sel[bit_cnt]) ); end // end for bit_cnt // Assign output from local vector. assign COUT = carry_local[C_NUM_LUT]; endgenerate endmodule
// (c) Copyright 2012 Xilinx, Inc. All rights reserved. // // This file contains confidential and proprietary information // of Xilinx, Inc. and is protected under U.S. and // international copyright and other intellectual property // laws. // // DISCLAIMER // This disclaimer is not a license and does not grant any // rights to the materials distributed herewith. Except as // otherwise provided in a valid license issued to you by // Xilinx, and to the maximum extent permitted by applicable // law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // (2) Xilinx shall not be liable (whether in contract or tort, // including negligence, or under any other theory of // liability) for any loss or damage of any kind or nature // related to, arising under or in connection with these // materials, including for any direct, or any indirect, // special, incidental, or consequential loss or damage // (including loss of data, profits, goodwill, or any type of // loss or damage suffered as a result of any action brought // by a third party) even if such damage or loss was // reasonably foreseeable or Xilinx had been advised of the // possibility of the same. // // CRITICAL APPLICATIONS // Xilinx products are not designed or intended to be fail- // safe, or for use in any application requiring fail-safe // performance, such as life-support or safety devices or // systems, Class III medical devices, nuclear facilities, // applications related to the deployment of airbags, or any // other applications that could lead to death, personal // injury, or severe property or environmental damage // (individually and collectively, "Critical // Applications"). Customer assumes the sole risk and // liability of any use of Xilinx products in Critical // Applications, subject only to applicable laws and // regulations governing limitations on product liability. // // THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // axis to vector // A generic module to merge all axi signals into one signal called payload. // This is strictly wires, so no clk, reset, aclken, valid/ready are required. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // `timescale 1ps/1ps `default_nettype none (* DowngradeIPIdentifiedWarnings="yes" *) module axi_infrastructure_v1_1_0_axi2vector # ( /////////////////////////////////////////////////////////////////////////////// // Parameter Definitions /////////////////////////////////////////////////////////////////////////////// parameter integer C_AXI_PROTOCOL = 0, parameter integer C_AXI_ID_WIDTH = 4, parameter integer C_AXI_ADDR_WIDTH = 32, parameter integer C_AXI_DATA_WIDTH = 32, parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0, parameter integer C_AXI_SUPPORTS_REGION_SIGNALS = 0, parameter integer C_AXI_AWUSER_WIDTH = 1, parameter integer C_AXI_WUSER_WIDTH = 1, parameter integer C_AXI_BUSER_WIDTH = 1, parameter integer C_AXI_ARUSER_WIDTH = 1, parameter integer C_AXI_RUSER_WIDTH = 1, parameter integer C_AWPAYLOAD_WIDTH = 61, parameter integer C_WPAYLOAD_WIDTH = 73, parameter integer C_BPAYLOAD_WIDTH = 6, parameter integer C_ARPAYLOAD_WIDTH = 61, parameter integer C_RPAYLOAD_WIDTH = 69 ) ( /////////////////////////////////////////////////////////////////////////////// // Port Declarations /////////////////////////////////////////////////////////////////////////////// // Slave Interface Write Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_awid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_awlen, input wire [3-1:0] s_axi_awsize, input wire [2-1:0] s_axi_awburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_awlock, input wire [4-1:0] s_axi_awcache, input wire [3-1:0] s_axi_awprot, input wire [4-1:0] s_axi_awregion, input wire [4-1:0] s_axi_awqos, input wire [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser, // Slave Interface Write Data Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_wid, input wire [C_AXI_DATA_WIDTH-1:0] s_axi_wdata, input wire [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb, input wire s_axi_wlast, input wire [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser, // Slave Interface Write Response Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_bid, output wire [2-1:0] s_axi_bresp, output wire [C_AXI_BUSER_WIDTH-1:0] s_axi_buser, // Slave Interface Read Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_arid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_arlen, input wire [3-1:0] s_axi_arsize, input wire [2-1:0] s_axi_arburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_arlock, input wire [4-1:0] s_axi_arcache, input wire [3-1:0] s_axi_arprot, input wire [4-1:0] s_axi_arregion, input wire [4-1:0] s_axi_arqos, input wire [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser, // Slave Interface Read Data Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_rid, output wire [C_AXI_DATA_WIDTH-1:0] s_axi_rdata, output wire [2-1:0] s_axi_rresp, output wire s_axi_rlast, output wire [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser, // payloads output wire [C_AWPAYLOAD_WIDTH-1:0] s_awpayload, output wire [C_WPAYLOAD_WIDTH-1:0] s_wpayload, input wire [C_BPAYLOAD_WIDTH-1:0] s_bpayload, output wire [C_ARPAYLOAD_WIDTH-1:0] s_arpayload, input wire [C_RPAYLOAD_WIDTH-1:0] s_rpayload ); //////////////////////////////////////////////////////////////////////////////// // Functions //////////////////////////////////////////////////////////////////////////////// `include "axi_infrastructure_v1_1_0.vh" //////////////////////////////////////////////////////////////////////////////// // Local parameters //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // Wires/Reg declarations //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// // AXI4, AXI4LITE, AXI3 packing assign s_awpayload[G_AXI_AWADDR_INDEX+:G_AXI_AWADDR_WIDTH] = s_axi_awaddr; assign s_awpayload[G_AXI_AWPROT_INDEX+:G_AXI_AWPROT_WIDTH] = s_axi_awprot; assign s_wpayload[G_AXI_WDATA_INDEX+:G_AXI_WDATA_WIDTH] = s_axi_wdata; assign s_wpayload[G_AXI_WSTRB_INDEX+:G_AXI_WSTRB_WIDTH] = s_axi_wstrb; assign s_axi_bresp = s_bpayload[G_AXI_BRESP_INDEX+:G_AXI_BRESP_WIDTH]; assign s_arpayload[G_AXI_ARADDR_INDEX+:G_AXI_ARADDR_WIDTH] = s_axi_araddr; assign s_arpayload[G_AXI_ARPROT_INDEX+:G_AXI_ARPROT_WIDTH] = s_axi_arprot; assign s_axi_rdata = s_rpayload[G_AXI_RDATA_INDEX+:G_AXI_RDATA_WIDTH]; assign s_axi_rresp = s_rpayload[G_AXI_RRESP_INDEX+:G_AXI_RRESP_WIDTH]; generate if (C_AXI_PROTOCOL == 0 || C_AXI_PROTOCOL == 1) begin : gen_axi4_or_axi3_packing assign s_awpayload[G_AXI_AWSIZE_INDEX+:G_AXI_AWSIZE_WIDTH] = s_axi_awsize; assign s_awpayload[G_AXI_AWBURST_INDEX+:G_AXI_AWBURST_WIDTH] = s_axi_awburst; assign s_awpayload[G_AXI_AWCACHE_INDEX+:G_AXI_AWCACHE_WIDTH] = s_axi_awcache; assign s_awpayload[G_AXI_AWLEN_INDEX+:G_AXI_AWLEN_WIDTH] = s_axi_awlen; assign s_awpayload[G_AXI_AWLOCK_INDEX+:G_AXI_AWLOCK_WIDTH] = s_axi_awlock; assign s_awpayload[G_AXI_AWID_INDEX+:G_AXI_AWID_WIDTH] = s_axi_awid; assign s_awpayload[G_AXI_AWQOS_INDEX+:G_AXI_AWQOS_WIDTH] = s_axi_awqos; assign s_wpayload[G_AXI_WLAST_INDEX+:G_AXI_WLAST_WIDTH] = s_axi_wlast; if (C_AXI_PROTOCOL == 1) begin : gen_axi3_wid_packing assign s_wpayload[G_AXI_WID_INDEX+:G_AXI_WID_WIDTH] = s_axi_wid; end else begin : gen_no_axi3_wid_packing end assign s_axi_bid = s_bpayload[G_AXI_BID_INDEX+:G_AXI_BID_WIDTH]; assign s_arpayload[G_AXI_ARSIZE_INDEX+:G_AXI_ARSIZE_WIDTH] = s_axi_arsize; assign s_arpayload[G_AXI_ARBURST_INDEX+:G_AXI_ARBURST_WIDTH] = s_axi_arburst; assign s_arpayload[G_AXI_ARCACHE_INDEX+:G_AXI_ARCACHE_WIDTH] = s_axi_arcache; assign s_arpayload[G_AXI_ARLEN_INDEX+:G_AXI_ARLEN_WIDTH] = s_axi_arlen; assign s_arpayload[G_AXI_ARLOCK_INDEX+:G_AXI_ARLOCK_WIDTH] = s_axi_arlock; assign s_arpayload[G_AXI_ARID_INDEX+:G_AXI_ARID_WIDTH] = s_axi_arid; assign s_arpayload[G_AXI_ARQOS_INDEX+:G_AXI_ARQOS_WIDTH] = s_axi_arqos; assign s_axi_rlast = s_rpayload[G_AXI_RLAST_INDEX+:G_AXI_RLAST_WIDTH]; assign s_axi_rid = s_rpayload[G_AXI_RID_INDEX+:G_AXI_RID_WIDTH]; if (C_AXI_SUPPORTS_REGION_SIGNALS == 1 && G_AXI_AWREGION_WIDTH > 0) begin : gen_region_signals assign s_awpayload[G_AXI_AWREGION_INDEX+:G_AXI_AWREGION_WIDTH] = s_axi_awregion; assign s_arpayload[G_AXI_ARREGION_INDEX+:G_AXI_ARREGION_WIDTH] = s_axi_arregion; end else begin : gen_no_region_signals end if (C_AXI_SUPPORTS_USER_SIGNALS == 1 && C_AXI_PROTOCOL != 2) begin : gen_user_signals assign s_awpayload[G_AXI_AWUSER_INDEX+:G_AXI_AWUSER_WIDTH] = s_axi_awuser; assign s_wpayload[G_AXI_WUSER_INDEX+:G_AXI_WUSER_WIDTH] = s_axi_wuser; assign s_axi_buser = s_bpayload[G_AXI_BUSER_INDEX+:G_AXI_BUSER_WIDTH]; assign s_arpayload[G_AXI_ARUSER_INDEX+:G_AXI_ARUSER_WIDTH] = s_axi_aruser; assign s_axi_ruser = s_rpayload[G_AXI_RUSER_INDEX+:G_AXI_RUSER_WIDTH]; end else begin : gen_no_user_signals assign s_axi_buser = 'b0; assign s_axi_ruser = 'b0; end end else begin : gen_axi4lite_packing assign s_axi_bid = 'b0; assign s_axi_buser = 'b0; assign s_axi_rlast = 1'b1; assign s_axi_rid = 'b0; assign s_axi_ruser = 'b0; end endgenerate endmodule `default_nettype wire // (c) Copyright 2012-2013 Xilinx, Inc. All rights reserved. // // This file contains confidential and proprietary information // of Xilinx, Inc. and is protected under U.S. and // international copyright and other intellectual property // laws. // // DISCLAIMER // This disclaimer is not a license and does not grant any // rights to the materials distributed herewith. Except as // otherwise provided in a valid license issued to you by // Xilinx, and to the maximum extent permitted by applicable // law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // (2) Xilinx shall not be liable (whether in contract or tort, // including negligence, or under any other theory of // liability) for any loss or damage of any kind or nature // related to, arising under or in connection with these // materials, including for any direct, or any indirect, // special, incidental, or consequential loss or damage // (including loss of data, profits, goodwill, or any type of // loss or damage suffered as a result of any action brought // by a third party) even if such damage or loss was // reasonably foreseeable or Xilinx had been advised of the // possibility of the same. // // CRITICAL APPLICATIONS // Xilinx products are not designed or intended to be fail- // safe, or for use in any application requiring fail-safe // performance, such as life-support or safety devices or // systems, Class III medical devices, nuclear facilities, // applications related to the deployment of airbags, or any // other applications that could lead to death, personal // injury, or severe property or environmental damage // (individually and collectively, "Critical // Applications"). Customer assumes the sole risk and // liability of any use of Xilinx products in Critical // Applications, subject only to applicable laws and // regulations governing limitations on product liability. // // THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // Description: SRL based FIFO for AXIS/AXI Channels. //-------------------------------------------------------------------------- `timescale 1ps/1ps `default_nettype none (* DowngradeIPIdentifiedWarnings="yes" *) module axi_infrastructure_v1_1_0_axic_srl_fifo #( /////////////////////////////////////////////////////////////////////////////// // Parameter Definitions /////////////////////////////////////////////////////////////////////////////// parameter C_FAMILY = "virtex7", parameter integer C_PAYLOAD_WIDTH = 1, parameter integer C_FIFO_DEPTH = 16 // Range: 4-16. ) ( /////////////////////////////////////////////////////////////////////////////// // Port Declarations /////////////////////////////////////////////////////////////////////////////// input wire aclk, // Clock input wire aresetn, // Reset input wire [C_PAYLOAD_WIDTH-1:0] s_payload, // Input data input wire s_valid, // Input data valid output reg s_ready, // Input data ready output wire [C_PAYLOAD_WIDTH-1:0] m_payload, // Output data output reg m_valid, // Output data valid input wire m_ready // Output data ready ); //////////////////////////////////////////////////////////////////////////////// // Functions //////////////////////////////////////////////////////////////////////////////// // ceiling logb2 function integer f_clogb2 (input integer size); integer s; begin s = size; s = s - 1; for (f_clogb2=1; s>1; f_clogb2=f_clogb2+1) s = s >> 1; end endfunction // clogb2 //////////////////////////////////////////////////////////////////////////////// // Local parameters //////////////////////////////////////////////////////////////////////////////// localparam integer LP_LOG_FIFO_DEPTH = f_clogb2(C_FIFO_DEPTH); //////////////////////////////////////////////////////////////////////////////// // Wires/Reg declarations //////////////////////////////////////////////////////////////////////////////// reg [LP_LOG_FIFO_DEPTH-1:0] fifo_index; wire [4-1:0] fifo_addr; wire push; wire pop ; reg areset_r1; //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// always @(posedge aclk) begin areset_r1 <= ~aresetn; end always @(posedge aclk) begin if (~aresetn) begin fifo_index <= {LP_LOG_FIFO_DEPTH{1'b1}}; end else begin fifo_index <= push & ~pop ? fifo_index + 1'b1 : ~push & pop ? fifo_index - 1'b1 : fifo_index; end end assign push = s_valid & s_ready; always @(posedge aclk) begin if (~aresetn) begin s_ready <= 1'b0; end else begin s_ready <= areset_r1 ? 1'b1 : push & ~pop && (fifo_index == (C_FIFO_DEPTH - 2'd2)) ? 1'b0 : ~push & pop ? 1'b1 : s_ready; end end assign pop = m_valid & m_ready; always @(posedge aclk) begin if (~aresetn) begin m_valid <= 1'b0; end else begin m_valid <= ~push & pop && (fifo_index == {LP_LOG_FIFO_DEPTH{1'b0}}) ? 1'b0 : push & ~pop ? 1'b1 : m_valid; end end generate if (LP_LOG_FIFO_DEPTH < 4) begin : gen_pad_fifo_addr assign fifo_addr[0+:LP_LOG_FIFO_DEPTH] = fifo_index[LP_LOG_FIFO_DEPTH-1:0]; assign fifo_addr[LP_LOG_FIFO_DEPTH+:(4-LP_LOG_FIFO_DEPTH)] = {4-LP_LOG_FIFO_DEPTH{1'b0}}; end else begin : gen_fifo_addr assign fifo_addr[LP_LOG_FIFO_DEPTH-1:0] = fifo_index[LP_LOG_FIFO_DEPTH-1:0]; end endgenerate generate genvar i; for (i = 0; i < C_PAYLOAD_WIDTH; i = i + 1) begin : gen_data_bit SRL16E u_srl_fifo( .Q ( m_payload[i] ) , .A0 ( fifo_addr[0] ) , .A1 ( fifo_addr[1] ) , .A2 ( fifo_addr[2] ) , .A3 ( fifo_addr[3] ) , .CE ( push ) , .CLK ( aclk ) , .D ( s_payload[i] ) ); end endgenerate endmodule `default_nettype wire // (c) Copyright 2012 Xilinx, Inc. All rights reserved. // // This file contains confidential and proprietary information // of Xilinx, Inc. and is protected under U.S. and // international copyright and other intellectual property // laws. // // DISCLAIMER // This disclaimer is not a license and does not grant any // rights to the materials distributed herewith. Except as // otherwise provided in a valid license issued to you by // Xilinx, and to the maximum extent permitted by applicable // law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // (2) Xilinx shall not be liable (whether in contract or tort, // including negligence, or under any other theory of // liability) for any loss or damage of any kind or nature // related to, arising under or in connection with these // materials, including for any direct, or any indirect, // special, incidental, or consequential loss or damage // (including loss of data, profits, goodwill, or any type of // loss or damage suffered as a result of any action brought // by a third party) even if such damage or loss was // reasonably foreseeable or Xilinx had been advised of the // possibility of the same. // // CRITICAL APPLICATIONS // Xilinx products are not designed or intended to be fail- // safe, or for use in any application requiring fail-safe // performance, such as life-support or safety devices or // systems, Class III medical devices, nuclear facilities, // applications related to the deployment of airbags, or any // other applications that could lead to death, personal // injury, or severe property or environmental damage // (individually and collectively, "Critical // Applications"). Customer assumes the sole risk and // liability of any use of Xilinx products in Critical // Applications, subject only to applicable laws and // regulations governing limitations on product liability. // // THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // axi to vector // A generic module to merge all axi signals into one signal called payload. // This is strictly wires, so no clk, reset, aclken, valid/ready are required. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // `timescale 1ps/1ps `default_nettype none (* DowngradeIPIdentifiedWarnings="yes" *) module axi_infrastructure_v1_1_0_vector2axi # ( /////////////////////////////////////////////////////////////////////////////// // Parameter Definitions /////////////////////////////////////////////////////////////////////////////// parameter integer C_AXI_PROTOCOL = 0, parameter integer C_AXI_ID_WIDTH = 4, parameter integer C_AXI_ADDR_WIDTH = 32, parameter integer C_AXI_DATA_WIDTH = 32, parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0, parameter integer C_AXI_SUPPORTS_REGION_SIGNALS = 0, parameter integer C_AXI_AWUSER_WIDTH = 1, parameter integer C_AXI_WUSER_WIDTH = 1, parameter integer C_AXI_BUSER_WIDTH = 1, parameter integer C_AXI_ARUSER_WIDTH = 1, parameter integer C_AXI_RUSER_WIDTH = 1, parameter integer C_AWPAYLOAD_WIDTH = 61, parameter integer C_WPAYLOAD_WIDTH = 73, parameter integer C_BPAYLOAD_WIDTH = 6, parameter integer C_ARPAYLOAD_WIDTH = 61, parameter integer C_RPAYLOAD_WIDTH = 69 ) ( /////////////////////////////////////////////////////////////////////////////// // Port Declarations /////////////////////////////////////////////////////////////////////////////// // Slave Interface Write Address Ports output wire [C_AXI_ID_WIDTH-1:0] m_axi_awid, output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_awaddr, output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_awlen, output wire [3-1:0] m_axi_awsize, output wire [2-1:0] m_axi_awburst, output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_awlock, output wire [4-1:0] m_axi_awcache, output wire [3-1:0] m_axi_awprot, output wire [4-1:0] m_axi_awregion, output wire [4-1:0] m_axi_awqos, output wire [C_AXI_AWUSER_WIDTH-1:0] m_axi_awuser, // Slave Interface Write Data Ports output wire [C_AXI_ID_WIDTH-1:0] m_axi_wid, output wire [C_AXI_DATA_WIDTH-1:0] m_axi_wdata, output wire [C_AXI_DATA_WIDTH/8-1:0] m_axi_wstrb, output wire m_axi_wlast, output wire [C_AXI_WUSER_WIDTH-1:0] m_axi_wuser, // Slave Interface Write Response Ports input wire [C_AXI_ID_WIDTH-1:0] m_axi_bid, input wire [2-1:0] m_axi_bresp, input wire [C_AXI_BUSER_WIDTH-1:0] m_axi_buser, // Slave Interface Read Address Ports output wire [C_AXI_ID_WIDTH-1:0] m_axi_arid, output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_araddr, output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_arlen, output wire [3-1:0] m_axi_arsize, output wire [2-1:0] m_axi_arburst, output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_arlock, output wire [4-1:0] m_axi_arcache, output wire [3-1:0] m_axi_arprot, output wire [4-1:0] m_axi_arregion, output wire [4-1:0] m_axi_arqos, output wire [C_AXI_ARUSER_WIDTH-1:0] m_axi_aruser, // Slave Interface Read Data Ports input wire [C_AXI_ID_WIDTH-1:0] m_axi_rid, input wire [C_AXI_DATA_WIDTH-1:0] m_axi_rdata, input wire [2-1:0] m_axi_rresp, input wire m_axi_rlast, input wire [C_AXI_RUSER_WIDTH-1:0] m_axi_ruser, // payloads input wire [C_AWPAYLOAD_WIDTH-1:0] m_awpayload, input wire [C_WPAYLOAD_WIDTH-1:0] m_wpayload, output wire [C_BPAYLOAD_WIDTH-1:0] m_bpayload, input wire [C_ARPAYLOAD_WIDTH-1:0] m_arpayload, output wire [C_RPAYLOAD_WIDTH-1:0] m_rpayload ); //////////////////////////////////////////////////////////////////////////////// // Functions //////////////////////////////////////////////////////////////////////////////// `include "axi_infrastructure_v1_1_0.vh" //////////////////////////////////////////////////////////////////////////////// // Local parameters //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // Wires/Reg declarations //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// // AXI4, AXI4LITE, AXI3 packing assign m_axi_awaddr = m_awpayload[G_AXI_AWADDR_INDEX+:G_AXI_AWADDR_WIDTH]; assign m_axi_awprot = m_awpayload[G_AXI_AWPROT_INDEX+:G_AXI_AWPROT_WIDTH]; assign m_axi_wdata = m_wpayload[G_AXI_WDATA_INDEX+:G_AXI_WDATA_WIDTH]; assign m_axi_wstrb = m_wpayload[G_AXI_WSTRB_INDEX+:G_AXI_WSTRB_WIDTH]; assign m_bpayload[G_AXI_BRESP_INDEX+:G_AXI_BRESP_WIDTH] = m_axi_bresp; assign m_axi_araddr = m_arpayload[G_AXI_ARADDR_INDEX+:G_AXI_ARADDR_WIDTH]; assign m_axi_arprot = m_arpayload[G_AXI_ARPROT_INDEX+:G_AXI_ARPROT_WIDTH]; assign m_rpayload[G_AXI_RDATA_INDEX+:G_AXI_RDATA_WIDTH] = m_axi_rdata; assign m_rpayload[G_AXI_RRESP_INDEX+:G_AXI_RRESP_WIDTH] = m_axi_rresp; generate if (C_AXI_PROTOCOL == 0 || C_AXI_PROTOCOL == 1) begin : gen_axi4_or_axi3_packing assign m_axi_awsize = m_awpayload[G_AXI_AWSIZE_INDEX+:G_AXI_AWSIZE_WIDTH] ; assign m_axi_awburst = m_awpayload[G_AXI_AWBURST_INDEX+:G_AXI_AWBURST_WIDTH]; assign m_axi_awcache = m_awpayload[G_AXI_AWCACHE_INDEX+:G_AXI_AWCACHE_WIDTH]; assign m_axi_awlen = m_awpayload[G_AXI_AWLEN_INDEX+:G_AXI_AWLEN_WIDTH] ; assign m_axi_awlock = m_awpayload[G_AXI_AWLOCK_INDEX+:G_AXI_AWLOCK_WIDTH] ; assign m_axi_awid = m_awpayload[G_AXI_AWID_INDEX+:G_AXI_AWID_WIDTH] ; assign m_axi_awqos = m_awpayload[G_AXI_AWQOS_INDEX+:G_AXI_AWQOS_WIDTH] ; assign m_axi_wlast = m_wpayload[G_AXI_WLAST_INDEX+:G_AXI_WLAST_WIDTH] ; if (C_AXI_PROTOCOL == 1) begin : gen_axi3_wid_packing assign m_axi_wid = m_wpayload[G_AXI_WID_INDEX+:G_AXI_WID_WIDTH] ; end else begin : gen_no_axi3_wid_packing assign m_axi_wid = 1'b0; end assign m_bpayload[G_AXI_BID_INDEX+:G_AXI_BID_WIDTH] = m_axi_bid; assign m_axi_arsize = m_arpayload[G_AXI_ARSIZE_INDEX+:G_AXI_ARSIZE_WIDTH] ; assign m_axi_arburst = m_arpayload[G_AXI_ARBURST_INDEX+:G_AXI_ARBURST_WIDTH]; assign m_axi_arcache = m_arpayload[G_AXI_ARCACHE_INDEX+:G_AXI_ARCACHE_WIDTH]; assign m_axi_arlen = m_arpayload[G_AXI_ARLEN_INDEX+:G_AXI_ARLEN_WIDTH] ; assign m_axi_arlock = m_arpayload[G_AXI_ARLOCK_INDEX+:G_AXI_ARLOCK_WIDTH] ; assign m_axi_arid = m_arpayload[G_AXI_ARID_INDEX+:G_AXI_ARID_WIDTH] ; assign m_axi_arqos = m_arpayload[G_AXI_ARQOS_INDEX+:G_AXI_ARQOS_WIDTH] ; assign m_rpayload[G_AXI_RLAST_INDEX+:G_AXI_RLAST_WIDTH] = m_axi_rlast; assign m_rpayload[G_AXI_RID_INDEX+:G_AXI_RID_WIDTH] = m_axi_rid ; if (C_AXI_SUPPORTS_REGION_SIGNALS == 1 && G_AXI_AWREGION_WIDTH > 0) begin : gen_region_signals assign m_axi_awregion = m_awpayload[G_AXI_AWREGION_INDEX+:G_AXI_AWREGION_WIDTH]; assign m_axi_arregion = m_arpayload[G_AXI_ARREGION_INDEX+:G_AXI_ARREGION_WIDTH]; end else begin : gen_no_region_signals assign m_axi_awregion = 'b0; assign m_axi_arregion = 'b0; end if (C_AXI_SUPPORTS_USER_SIGNALS == 1 && C_AXI_PROTOCOL != 2) begin : gen_user_signals assign m_axi_awuser = m_awpayload[G_AXI_AWUSER_INDEX+:G_AXI_AWUSER_WIDTH]; assign m_axi_wuser = m_wpayload[G_AXI_WUSER_INDEX+:G_AXI_WUSER_WIDTH] ; assign m_bpayload[G_AXI_BUSER_INDEX+:G_AXI_BUSER_WIDTH] = m_axi_buser ; assign m_axi_aruser = m_arpayload[G_AXI_ARUSER_INDEX+:G_AXI_ARUSER_WIDTH]; assign m_rpayload[G_AXI_RUSER_INDEX+:G_AXI_RUSER_WIDTH] = m_axi_ruser ; end else begin : gen_no_user_signals assign m_axi_awuser = 'b0; assign m_axi_wuser = 'b0; assign m_axi_aruser = 'b0; end end else begin : gen_axi4lite_packing assign m_axi_awsize = (C_AXI_DATA_WIDTH == 32) ? 3'd2 : 3'd3; assign m_axi_awburst = 'b0; assign m_axi_awcache = 'b0; assign m_axi_awlen = 'b0; assign m_axi_awlock = 'b0; assign m_axi_awid = 'b0; assign m_axi_awqos = 'b0; assign m_axi_wlast = 1'b1; assign m_axi_wid = 'b0; assign m_axi_arsize = (C_AXI_DATA_WIDTH == 32) ? 3'd2 : 3'd3; assign m_axi_arburst = 'b0; assign m_axi_arcache = 'b0; assign m_axi_arlen = 'b0; assign m_axi_arlock = 'b0; assign m_axi_arid = 'b0; assign m_axi_arqos = 'b0; assign m_axi_awregion = 'b0; assign m_axi_arregion = 'b0; assign m_axi_awuser = 'b0; assign m_axi_wuser = 'b0; assign m_axi_aruser = 'b0; end endgenerate endmodule `default_nettype wire
// (c) Copyright 2012 Xilinx, Inc. All rights reserved. // // This file contains confidential and proprietary information // of Xilinx, Inc. and is protected under U.S. and // international copyright and other intellectual property // laws. // // DISCLAIMER // This disclaimer is not a license and does not grant any // rights to the materials distributed herewith. Except as // otherwise provided in a valid license issued to you by // Xilinx, and to the maximum extent permitted by applicable // law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // (2) Xilinx shall not be liable (whether in contract or tort, // including negligence, or under any other theory of // liability) for any loss or damage of any kind or nature // related to, arising under or in connection with these // materials, including for any direct, or any indirect, // special, incidental, or consequential loss or damage // (including loss of data, profits, goodwill, or any type of // loss or damage suffered as a result of any action brought // by a third party) even if such damage or loss was // reasonably foreseeable or Xilinx had been advised of the // possibility of the same. // // CRITICAL APPLICATIONS // Xilinx products are not designed or intended to be fail- // safe, or for use in any application requiring fail-safe // performance, such as life-support or safety devices or // systems, Class III medical devices, nuclear facilities, // applications related to the deployment of airbags, or any // other applications that could lead to death, personal // injury, or severe property or environmental damage // (individually and collectively, "Critical // Applications"). Customer assumes the sole risk and // liability of any use of Xilinx products in Critical // Applications, subject only to applicable laws and // regulations governing limitations on product liability. // // THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // axis to vector // A generic module to merge all axi signals into one signal called payload. // This is strictly wires, so no clk, reset, aclken, valid/ready are required. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // `timescale 1ps/1ps `default_nettype none (* DowngradeIPIdentifiedWarnings="yes" *) module axi_infrastructure_v1_1_0_axi2vector # ( /////////////////////////////////////////////////////////////////////////////// // Parameter Definitions /////////////////////////////////////////////////////////////////////////////// parameter integer C_AXI_PROTOCOL = 0, parameter integer C_AXI_ID_WIDTH = 4, parameter integer C_AXI_ADDR_WIDTH = 32, parameter integer C_AXI_DATA_WIDTH = 32, parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0, parameter integer C_AXI_SUPPORTS_REGION_SIGNALS = 0, parameter integer C_AXI_AWUSER_WIDTH = 1, parameter integer C_AXI_WUSER_WIDTH = 1, parameter integer C_AXI_BUSER_WIDTH = 1, parameter integer C_AXI_ARUSER_WIDTH = 1, parameter integer C_AXI_RUSER_WIDTH = 1, parameter integer C_AWPAYLOAD_WIDTH = 61, parameter integer C_WPAYLOAD_WIDTH = 73, parameter integer C_BPAYLOAD_WIDTH = 6, parameter integer C_ARPAYLOAD_WIDTH = 61, parameter integer C_RPAYLOAD_WIDTH = 69 ) ( /////////////////////////////////////////////////////////////////////////////// // Port Declarations /////////////////////////////////////////////////////////////////////////////// // Slave Interface Write Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_awid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_awlen, input wire [3-1:0] s_axi_awsize, input wire [2-1:0] s_axi_awburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_awlock, input wire [4-1:0] s_axi_awcache, input wire [3-1:0] s_axi_awprot, input wire [4-1:0] s_axi_awregion, input wire [4-1:0] s_axi_awqos, input wire [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser, // Slave Interface Write Data Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_wid, input wire [C_AXI_DATA_WIDTH-1:0] s_axi_wdata, input wire [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb, input wire s_axi_wlast, input wire [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser, // Slave Interface Write Response Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_bid, output wire [2-1:0] s_axi_bresp, output wire [C_AXI_BUSER_WIDTH-1:0] s_axi_buser, // Slave Interface Read Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_arid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_arlen, input wire [3-1:0] s_axi_arsize, input wire [2-1:0] s_axi_arburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_arlock, input wire [4-1:0] s_axi_arcache, input wire [3-1:0] s_axi_arprot, input wire [4-1:0] s_axi_arregion, input wire [4-1:0] s_axi_arqos, input wire [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser, // Slave Interface Read Data Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_rid, output wire [C_AXI_DATA_WIDTH-1:0] s_axi_rdata, output wire [2-1:0] s_axi_rresp, output wire s_axi_rlast, output wire [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser, // payloads output wire [C_AWPAYLOAD_WIDTH-1:0] s_awpayload, output wire [C_WPAYLOAD_WIDTH-1:0] s_wpayload, input wire [C_BPAYLOAD_WIDTH-1:0] s_bpayload, output wire [C_ARPAYLOAD_WIDTH-1:0] s_arpayload, input wire [C_RPAYLOAD_WIDTH-1:0] s_rpayload ); //////////////////////////////////////////////////////////////////////////////// // Functions //////////////////////////////////////////////////////////////////////////////// `include "axi_infrastructure_v1_1_0.vh" //////////////////////////////////////////////////////////////////////////////// // Local parameters //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // Wires/Reg declarations //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// // AXI4, AXI4LITE, AXI3 packing assign s_awpayload[G_AXI_AWADDR_INDEX+:G_AXI_AWADDR_WIDTH] = s_axi_awaddr; assign s_awpayload[G_AXI_AWPROT_INDEX+:G_AXI_AWPROT_WIDTH] = s_axi_awprot; assign s_wpayload[G_AXI_WDATA_INDEX+:G_AXI_WDATA_WIDTH] = s_axi_wdata; assign s_wpayload[G_AXI_WSTRB_INDEX+:G_AXI_WSTRB_WIDTH] = s_axi_wstrb; assign s_axi_bresp = s_bpayload[G_AXI_BRESP_INDEX+:G_AXI_BRESP_WIDTH]; assign s_arpayload[G_AXI_ARADDR_INDEX+:G_AXI_ARADDR_WIDTH] = s_axi_araddr; assign s_arpayload[G_AXI_ARPROT_INDEX+:G_AXI_ARPROT_WIDTH] = s_axi_arprot; assign s_axi_rdata = s_rpayload[G_AXI_RDATA_INDEX+:G_AXI_RDATA_WIDTH]; assign s_axi_rresp = s_rpayload[G_AXI_RRESP_INDEX+:G_AXI_RRESP_WIDTH]; generate if (C_AXI_PROTOCOL == 0 || C_AXI_PROTOCOL == 1) begin : gen_axi4_or_axi3_packing assign s_awpayload[G_AXI_AWSIZE_INDEX+:G_AXI_AWSIZE_WIDTH] = s_axi_awsize; assign s_awpayload[G_AXI_AWBURST_INDEX+:G_AXI_AWBURST_WIDTH] = s_axi_awburst; assign s_awpayload[G_AXI_AWCACHE_INDEX+:G_AXI_AWCACHE_WIDTH] = s_axi_awcache; assign s_awpayload[G_AXI_AWLEN_INDEX+:G_AXI_AWLEN_WIDTH] = s_axi_awlen; assign s_awpayload[G_AXI_AWLOCK_INDEX+:G_AXI_AWLOCK_WIDTH] = s_axi_awlock; assign s_awpayload[G_AXI_AWID_INDEX+:G_AXI_AWID_WIDTH] = s_axi_awid; assign s_awpayload[G_AXI_AWQOS_INDEX+:G_AXI_AWQOS_WIDTH] = s_axi_awqos; assign s_wpayload[G_AXI_WLAST_INDEX+:G_AXI_WLAST_WIDTH] = s_axi_wlast; if (C_AXI_PROTOCOL == 1) begin : gen_axi3_wid_packing assign s_wpayload[G_AXI_WID_INDEX+:G_AXI_WID_WIDTH] = s_axi_wid; end else begin : gen_no_axi3_wid_packing end assign s_axi_bid = s_bpayload[G_AXI_BID_INDEX+:G_AXI_BID_WIDTH]; assign s_arpayload[G_AXI_ARSIZE_INDEX+:G_AXI_ARSIZE_WIDTH] = s_axi_arsize; assign s_arpayload[G_AXI_ARBURST_INDEX+:G_AXI_ARBURST_WIDTH] = s_axi_arburst; assign s_arpayload[G_AXI_ARCACHE_INDEX+:G_AXI_ARCACHE_WIDTH] = s_axi_arcache; assign s_arpayload[G_AXI_ARLEN_INDEX+:G_AXI_ARLEN_WIDTH] = s_axi_arlen; assign s_arpayload[G_AXI_ARLOCK_INDEX+:G_AXI_ARLOCK_WIDTH] = s_axi_arlock; assign s_arpayload[G_AXI_ARID_INDEX+:G_AXI_ARID_WIDTH] = s_axi_arid; assign s_arpayload[G_AXI_ARQOS_INDEX+:G_AXI_ARQOS_WIDTH] = s_axi_arqos; assign s_axi_rlast = s_rpayload[G_AXI_RLAST_INDEX+:G_AXI_RLAST_WIDTH]; assign s_axi_rid = s_rpayload[G_AXI_RID_INDEX+:G_AXI_RID_WIDTH]; if (C_AXI_SUPPORTS_REGION_SIGNALS == 1 && G_AXI_AWREGION_WIDTH > 0) begin : gen_region_signals assign s_awpayload[G_AXI_AWREGION_INDEX+:G_AXI_AWREGION_WIDTH] = s_axi_awregion; assign s_arpayload[G_AXI_ARREGION_INDEX+:G_AXI_ARREGION_WIDTH] = s_axi_arregion; end else begin : gen_no_region_signals end if (C_AXI_SUPPORTS_USER_SIGNALS == 1 && C_AXI_PROTOCOL != 2) begin : gen_user_signals assign s_awpayload[G_AXI_AWUSER_INDEX+:G_AXI_AWUSER_WIDTH] = s_axi_awuser; assign s_wpayload[G_AXI_WUSER_INDEX+:G_AXI_WUSER_WIDTH] = s_axi_wuser; assign s_axi_buser = s_bpayload[G_AXI_BUSER_INDEX+:G_AXI_BUSER_WIDTH]; assign s_arpayload[G_AXI_ARUSER_INDEX+:G_AXI_ARUSER_WIDTH] = s_axi_aruser; assign s_axi_ruser = s_rpayload[G_AXI_RUSER_INDEX+:G_AXI_RUSER_WIDTH]; end else begin : gen_no_user_signals assign s_axi_buser = 'b0; assign s_axi_ruser = 'b0; end end else begin : gen_axi4lite_packing assign s_axi_bid = 'b0; assign s_axi_buser = 'b0; assign s_axi_rlast = 1'b1; assign s_axi_rid = 'b0; assign s_axi_ruser = 'b0; end endgenerate endmodule `default_nettype wire // (c) Copyright 2012-2013 Xilinx, Inc. All rights reserved. // // This file contains confidential and proprietary information // of Xilinx, Inc. and is protected under U.S. and // international copyright and other intellectual property // laws. // // DISCLAIMER // This disclaimer is not a license and does not grant any // rights to the materials distributed herewith. Except as // otherwise provided in a valid license issued to you by // Xilinx, and to the maximum extent permitted by applicable // law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // (2) Xilinx shall not be liable (whether in contract or tort, // including negligence, or under any other theory of // liability) for any loss or damage of any kind or nature // related to, arising under or in connection with these // materials, including for any direct, or any indirect, // special, incidental, or consequential loss or damage // (including loss of data, profits, goodwill, or any type of // loss or damage suffered as a result of any action brought // by a third party) even if such damage or loss was // reasonably foreseeable or Xilinx had been advised of the // possibility of the same. // // CRITICAL APPLICATIONS // Xilinx products are not designed or intended to be fail- // safe, or for use in any application requiring fail-safe // performance, such as life-support or safety devices or // systems, Class III medical devices, nuclear facilities, // applications related to the deployment of airbags, or any // other applications that could lead to death, personal // injury, or severe property or environmental damage // (individually and collectively, "Critical // Applications"). Customer assumes the sole risk and // liability of any use of Xilinx products in Critical // Applications, subject only to applicable laws and // regulations governing limitations on product liability. // // THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // Description: SRL based FIFO for AXIS/AXI Channels. //-------------------------------------------------------------------------- `timescale 1ps/1ps `default_nettype none (* DowngradeIPIdentifiedWarnings="yes" *) module axi_infrastructure_v1_1_0_axic_srl_fifo #( /////////////////////////////////////////////////////////////////////////////// // Parameter Definitions /////////////////////////////////////////////////////////////////////////////// parameter C_FAMILY = "virtex7", parameter integer C_PAYLOAD_WIDTH = 1, parameter integer C_FIFO_DEPTH = 16 // Range: 4-16. ) ( /////////////////////////////////////////////////////////////////////////////// // Port Declarations /////////////////////////////////////////////////////////////////////////////// input wire aclk, // Clock input wire aresetn, // Reset input wire [C_PAYLOAD_WIDTH-1:0] s_payload, // Input data input wire s_valid, // Input data valid output reg s_ready, // Input data ready output wire [C_PAYLOAD_WIDTH-1:0] m_payload, // Output data output reg m_valid, // Output data valid input wire m_ready // Output data ready ); //////////////////////////////////////////////////////////////////////////////// // Functions //////////////////////////////////////////////////////////////////////////////// // ceiling logb2 function integer f_clogb2 (input integer size); integer s; begin s = size; s = s - 1; for (f_clogb2=1; s>1; f_clogb2=f_clogb2+1) s = s >> 1; end endfunction // clogb2 //////////////////////////////////////////////////////////////////////////////// // Local parameters //////////////////////////////////////////////////////////////////////////////// localparam integer LP_LOG_FIFO_DEPTH = f_clogb2(C_FIFO_DEPTH); //////////////////////////////////////////////////////////////////////////////// // Wires/Reg declarations //////////////////////////////////////////////////////////////////////////////// reg [LP_LOG_FIFO_DEPTH-1:0] fifo_index; wire [4-1:0] fifo_addr; wire push; wire pop ; reg areset_r1; //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// always @(posedge aclk) begin areset_r1 <= ~aresetn; end always @(posedge aclk) begin if (~aresetn) begin fifo_index <= {LP_LOG_FIFO_DEPTH{1'b1}}; end else begin fifo_index <= push & ~pop ? fifo_index + 1'b1 : ~push & pop ? fifo_index - 1'b1 : fifo_index; end end assign push = s_valid & s_ready; always @(posedge aclk) begin if (~aresetn) begin s_ready <= 1'b0; end else begin s_ready <= areset_r1 ? 1'b1 : push & ~pop && (fifo_index == (C_FIFO_DEPTH - 2'd2)) ? 1'b0 : ~push & pop ? 1'b1 : s_ready; end end assign pop = m_valid & m_ready; always @(posedge aclk) begin if (~aresetn) begin m_valid <= 1'b0; end else begin m_valid <= ~push & pop && (fifo_index == {LP_LOG_FIFO_DEPTH{1'b0}}) ? 1'b0 : push & ~pop ? 1'b1 : m_valid; end end generate if (LP_LOG_FIFO_DEPTH < 4) begin : gen_pad_fifo_addr assign fifo_addr[0+:LP_LOG_FIFO_DEPTH] = fifo_index[LP_LOG_FIFO_DEPTH-1:0]; assign fifo_addr[LP_LOG_FIFO_DEPTH+:(4-LP_LOG_FIFO_DEPTH)] = {4-LP_LOG_FIFO_DEPTH{1'b0}}; end else begin : gen_fifo_addr assign fifo_addr[LP_LOG_FIFO_DEPTH-1:0] = fifo_index[LP_LOG_FIFO_DEPTH-1:0]; end endgenerate generate genvar i; for (i = 0; i < C_PAYLOAD_WIDTH; i = i + 1) begin : gen_data_bit SRL16E u_srl_fifo( .Q ( m_payload[i] ) , .A0 ( fifo_addr[0] ) , .A1 ( fifo_addr[1] ) , .A2 ( fifo_addr[2] ) , .A3 ( fifo_addr[3] ) , .CE ( push ) , .CLK ( aclk ) , .D ( s_payload[i] ) ); end endgenerate endmodule `default_nettype wire // (c) Copyright 2012 Xilinx, Inc. All rights reserved. // // This file contains confidential and proprietary information // of Xilinx, Inc. and is protected under U.S. and // international copyright and other intellectual property // laws. // // DISCLAIMER // This disclaimer is not a license and does not grant any // rights to the materials distributed herewith. Except as // otherwise provided in a valid license issued to you by // Xilinx, and to the maximum extent permitted by applicable // law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // (2) Xilinx shall not be liable (whether in contract or tort, // including negligence, or under any other theory of // liability) for any loss or damage of any kind or nature // related to, arising under or in connection with these // materials, including for any direct, or any indirect, // special, incidental, or consequential loss or damage // (including loss of data, profits, goodwill, or any type of // loss or damage suffered as a result of any action brought // by a third party) even if such damage or loss was // reasonably foreseeable or Xilinx had been advised of the // possibility of the same. // // CRITICAL APPLICATIONS // Xilinx products are not designed or intended to be fail- // safe, or for use in any application requiring fail-safe // performance, such as life-support or safety devices or // systems, Class III medical devices, nuclear facilities, // applications related to the deployment of airbags, or any // other applications that could lead to death, personal // injury, or severe property or environmental damage // (individually and collectively, "Critical // Applications"). Customer assumes the sole risk and // liability of any use of Xilinx products in Critical // Applications, subject only to applicable laws and // regulations governing limitations on product liability. // // THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // axi to vector // A generic module to merge all axi signals into one signal called payload. // This is strictly wires, so no clk, reset, aclken, valid/ready are required. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // `timescale 1ps/1ps `default_nettype none (* DowngradeIPIdentifiedWarnings="yes" *) module axi_infrastructure_v1_1_0_vector2axi # ( /////////////////////////////////////////////////////////////////////////////// // Parameter Definitions /////////////////////////////////////////////////////////////////////////////// parameter integer C_AXI_PROTOCOL = 0, parameter integer C_AXI_ID_WIDTH = 4, parameter integer C_AXI_ADDR_WIDTH = 32, parameter integer C_AXI_DATA_WIDTH = 32, parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0, parameter integer C_AXI_SUPPORTS_REGION_SIGNALS = 0, parameter integer C_AXI_AWUSER_WIDTH = 1, parameter integer C_AXI_WUSER_WIDTH = 1, parameter integer C_AXI_BUSER_WIDTH = 1, parameter integer C_AXI_ARUSER_WIDTH = 1, parameter integer C_AXI_RUSER_WIDTH = 1, parameter integer C_AWPAYLOAD_WIDTH = 61, parameter integer C_WPAYLOAD_WIDTH = 73, parameter integer C_BPAYLOAD_WIDTH = 6, parameter integer C_ARPAYLOAD_WIDTH = 61, parameter integer C_RPAYLOAD_WIDTH = 69 ) ( /////////////////////////////////////////////////////////////////////////////// // Port Declarations /////////////////////////////////////////////////////////////////////////////// // Slave Interface Write Address Ports output wire [C_AXI_ID_WIDTH-1:0] m_axi_awid, output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_awaddr, output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_awlen, output wire [3-1:0] m_axi_awsize, output wire [2-1:0] m_axi_awburst, output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_awlock, output wire [4-1:0] m_axi_awcache, output wire [3-1:0] m_axi_awprot, output wire [4-1:0] m_axi_awregion, output wire [4-1:0] m_axi_awqos, output wire [C_AXI_AWUSER_WIDTH-1:0] m_axi_awuser, // Slave Interface Write Data Ports output wire [C_AXI_ID_WIDTH-1:0] m_axi_wid, output wire [C_AXI_DATA_WIDTH-1:0] m_axi_wdata, output wire [C_AXI_DATA_WIDTH/8-1:0] m_axi_wstrb, output wire m_axi_wlast, output wire [C_AXI_WUSER_WIDTH-1:0] m_axi_wuser, // Slave Interface Write Response Ports input wire [C_AXI_ID_WIDTH-1:0] m_axi_bid, input wire [2-1:0] m_axi_bresp, input wire [C_AXI_BUSER_WIDTH-1:0] m_axi_buser, // Slave Interface Read Address Ports output wire [C_AXI_ID_WIDTH-1:0] m_axi_arid, output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_araddr, output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_arlen, output wire [3-1:0] m_axi_arsize, output wire [2-1:0] m_axi_arburst, output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_arlock, output wire [4-1:0] m_axi_arcache, output wire [3-1:0] m_axi_arprot, output wire [4-1:0] m_axi_arregion, output wire [4-1:0] m_axi_arqos, output wire [C_AXI_ARUSER_WIDTH-1:0] m_axi_aruser, // Slave Interface Read Data Ports input wire [C_AXI_ID_WIDTH-1:0] m_axi_rid, input wire [C_AXI_DATA_WIDTH-1:0] m_axi_rdata, input wire [2-1:0] m_axi_rresp, input wire m_axi_rlast, input wire [C_AXI_RUSER_WIDTH-1:0] m_axi_ruser, // payloads input wire [C_AWPAYLOAD_WIDTH-1:0] m_awpayload, input wire [C_WPAYLOAD_WIDTH-1:0] m_wpayload, output wire [C_BPAYLOAD_WIDTH-1:0] m_bpayload, input wire [C_ARPAYLOAD_WIDTH-1:0] m_arpayload, output wire [C_RPAYLOAD_WIDTH-1:0] m_rpayload ); //////////////////////////////////////////////////////////////////////////////// // Functions //////////////////////////////////////////////////////////////////////////////// `include "axi_infrastructure_v1_1_0.vh" //////////////////////////////////////////////////////////////////////////////// // Local parameters //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // Wires/Reg declarations //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// // AXI4, AXI4LITE, AXI3 packing assign m_axi_awaddr = m_awpayload[G_AXI_AWADDR_INDEX+:G_AXI_AWADDR_WIDTH]; assign m_axi_awprot = m_awpayload[G_AXI_AWPROT_INDEX+:G_AXI_AWPROT_WIDTH]; assign m_axi_wdata = m_wpayload[G_AXI_WDATA_INDEX+:G_AXI_WDATA_WIDTH]; assign m_axi_wstrb = m_wpayload[G_AXI_WSTRB_INDEX+:G_AXI_WSTRB_WIDTH]; assign m_bpayload[G_AXI_BRESP_INDEX+:G_AXI_BRESP_WIDTH] = m_axi_bresp; assign m_axi_araddr = m_arpayload[G_AXI_ARADDR_INDEX+:G_AXI_ARADDR_WIDTH]; assign m_axi_arprot = m_arpayload[G_AXI_ARPROT_INDEX+:G_AXI_ARPROT_WIDTH]; assign m_rpayload[G_AXI_RDATA_INDEX+:G_AXI_RDATA_WIDTH] = m_axi_rdata; assign m_rpayload[G_AXI_RRESP_INDEX+:G_AXI_RRESP_WIDTH] = m_axi_rresp; generate if (C_AXI_PROTOCOL == 0 || C_AXI_PROTOCOL == 1) begin : gen_axi4_or_axi3_packing assign m_axi_awsize = m_awpayload[G_AXI_AWSIZE_INDEX+:G_AXI_AWSIZE_WIDTH] ; assign m_axi_awburst = m_awpayload[G_AXI_AWBURST_INDEX+:G_AXI_AWBURST_WIDTH]; assign m_axi_awcache = m_awpayload[G_AXI_AWCACHE_INDEX+:G_AXI_AWCACHE_WIDTH]; assign m_axi_awlen = m_awpayload[G_AXI_AWLEN_INDEX+:G_AXI_AWLEN_WIDTH] ; assign m_axi_awlock = m_awpayload[G_AXI_AWLOCK_INDEX+:G_AXI_AWLOCK_WIDTH] ; assign m_axi_awid = m_awpayload[G_AXI_AWID_INDEX+:G_AXI_AWID_WIDTH] ; assign m_axi_awqos = m_awpayload[G_AXI_AWQOS_INDEX+:G_AXI_AWQOS_WIDTH] ; assign m_axi_wlast = m_wpayload[G_AXI_WLAST_INDEX+:G_AXI_WLAST_WIDTH] ; if (C_AXI_PROTOCOL == 1) begin : gen_axi3_wid_packing assign m_axi_wid = m_wpayload[G_AXI_WID_INDEX+:G_AXI_WID_WIDTH] ; end else begin : gen_no_axi3_wid_packing assign m_axi_wid = 1'b0; end assign m_bpayload[G_AXI_BID_INDEX+:G_AXI_BID_WIDTH] = m_axi_bid; assign m_axi_arsize = m_arpayload[G_AXI_ARSIZE_INDEX+:G_AXI_ARSIZE_WIDTH] ; assign m_axi_arburst = m_arpayload[G_AXI_ARBURST_INDEX+:G_AXI_ARBURST_WIDTH]; assign m_axi_arcache = m_arpayload[G_AXI_ARCACHE_INDEX+:G_AXI_ARCACHE_WIDTH]; assign m_axi_arlen = m_arpayload[G_AXI_ARLEN_INDEX+:G_AXI_ARLEN_WIDTH] ; assign m_axi_arlock = m_arpayload[G_AXI_ARLOCK_INDEX+:G_AXI_ARLOCK_WIDTH] ; assign m_axi_arid = m_arpayload[G_AXI_ARID_INDEX+:G_AXI_ARID_WIDTH] ; assign m_axi_arqos = m_arpayload[G_AXI_ARQOS_INDEX+:G_AXI_ARQOS_WIDTH] ; assign m_rpayload[G_AXI_RLAST_INDEX+:G_AXI_RLAST_WIDTH] = m_axi_rlast; assign m_rpayload[G_AXI_RID_INDEX+:G_AXI_RID_WIDTH] = m_axi_rid ; if (C_AXI_SUPPORTS_REGION_SIGNALS == 1 && G_AXI_AWREGION_WIDTH > 0) begin : gen_region_signals assign m_axi_awregion = m_awpayload[G_AXI_AWREGION_INDEX+:G_AXI_AWREGION_WIDTH]; assign m_axi_arregion = m_arpayload[G_AXI_ARREGION_INDEX+:G_AXI_ARREGION_WIDTH]; end else begin : gen_no_region_signals assign m_axi_awregion = 'b0; assign m_axi_arregion = 'b0; end if (C_AXI_SUPPORTS_USER_SIGNALS == 1 && C_AXI_PROTOCOL != 2) begin : gen_user_signals assign m_axi_awuser = m_awpayload[G_AXI_AWUSER_INDEX+:G_AXI_AWUSER_WIDTH]; assign m_axi_wuser = m_wpayload[G_AXI_WUSER_INDEX+:G_AXI_WUSER_WIDTH] ; assign m_bpayload[G_AXI_BUSER_INDEX+:G_AXI_BUSER_WIDTH] = m_axi_buser ; assign m_axi_aruser = m_arpayload[G_AXI_ARUSER_INDEX+:G_AXI_ARUSER_WIDTH]; assign m_rpayload[G_AXI_RUSER_INDEX+:G_AXI_RUSER_WIDTH] = m_axi_ruser ; end else begin : gen_no_user_signals assign m_axi_awuser = 'b0; assign m_axi_wuser = 'b0; assign m_axi_aruser = 'b0; end end else begin : gen_axi4lite_packing assign m_axi_awsize = (C_AXI_DATA_WIDTH == 32) ? 3'd2 : 3'd3; assign m_axi_awburst = 'b0; assign m_axi_awcache = 'b0; assign m_axi_awlen = 'b0; assign m_axi_awlock = 'b0; assign m_axi_awid = 'b0; assign m_axi_awqos = 'b0; assign m_axi_wlast = 1'b1; assign m_axi_wid = 'b0; assign m_axi_arsize = (C_AXI_DATA_WIDTH == 32) ? 3'd2 : 3'd3; assign m_axi_arburst = 'b0; assign m_axi_arcache = 'b0; assign m_axi_arlen = 'b0; assign m_axi_arlock = 'b0; assign m_axi_arid = 'b0; assign m_axi_arqos = 'b0; assign m_axi_awregion = 'b0; assign m_axi_arregion = 'b0; assign m_axi_awuser = 'b0; assign m_axi_wuser = 'b0; assign m_axi_aruser = 'b0; end endgenerate endmodule `default_nettype wire
// (c) Copyright 2012 Xilinx, Inc. All rights reserved. // // This file contains confidential and proprietary information // of Xilinx, Inc. and is protected under U.S. and // international copyright and other intellectual property // laws. // // DISCLAIMER // This disclaimer is not a license and does not grant any // rights to the materials distributed herewith. Except as // otherwise provided in a valid license issued to you by // Xilinx, and to the maximum extent permitted by applicable // law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // (2) Xilinx shall not be liable (whether in contract or tort, // including negligence, or under any other theory of // liability) for any loss or damage of any kind or nature // related to, arising under or in connection with these // materials, including for any direct, or any indirect, // special, incidental, or consequential loss or damage // (including loss of data, profits, goodwill, or any type of // loss or damage suffered as a result of any action brought // by a third party) even if such damage or loss was // reasonably foreseeable or Xilinx had been advised of the // possibility of the same. // // CRITICAL APPLICATIONS // Xilinx products are not designed or intended to be fail- // safe, or for use in any application requiring fail-safe // performance, such as life-support or safety devices or // systems, Class III medical devices, nuclear facilities, // applications related to the deployment of airbags, or any // other applications that could lead to death, personal // injury, or severe property or environmental damage // (individually and collectively, "Critical // Applications"). Customer assumes the sole risk and // liability of any use of Xilinx products in Critical // Applications, subject only to applicable laws and // regulations governing limitations on product liability. // // THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // axis to vector // A generic module to merge all axi signals into one signal called payload. // This is strictly wires, so no clk, reset, aclken, valid/ready are required. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // `timescale 1ps/1ps `default_nettype none (* DowngradeIPIdentifiedWarnings="yes" *) module axi_infrastructure_v1_1_0_axi2vector # ( /////////////////////////////////////////////////////////////////////////////// // Parameter Definitions /////////////////////////////////////////////////////////////////////////////// parameter integer C_AXI_PROTOCOL = 0, parameter integer C_AXI_ID_WIDTH = 4, parameter integer C_AXI_ADDR_WIDTH = 32, parameter integer C_AXI_DATA_WIDTH = 32, parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0, parameter integer C_AXI_SUPPORTS_REGION_SIGNALS = 0, parameter integer C_AXI_AWUSER_WIDTH = 1, parameter integer C_AXI_WUSER_WIDTH = 1, parameter integer C_AXI_BUSER_WIDTH = 1, parameter integer C_AXI_ARUSER_WIDTH = 1, parameter integer C_AXI_RUSER_WIDTH = 1, parameter integer C_AWPAYLOAD_WIDTH = 61, parameter integer C_WPAYLOAD_WIDTH = 73, parameter integer C_BPAYLOAD_WIDTH = 6, parameter integer C_ARPAYLOAD_WIDTH = 61, parameter integer C_RPAYLOAD_WIDTH = 69 ) ( /////////////////////////////////////////////////////////////////////////////// // Port Declarations /////////////////////////////////////////////////////////////////////////////// // Slave Interface Write Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_awid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_awaddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_awlen, input wire [3-1:0] s_axi_awsize, input wire [2-1:0] s_axi_awburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_awlock, input wire [4-1:0] s_axi_awcache, input wire [3-1:0] s_axi_awprot, input wire [4-1:0] s_axi_awregion, input wire [4-1:0] s_axi_awqos, input wire [C_AXI_AWUSER_WIDTH-1:0] s_axi_awuser, // Slave Interface Write Data Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_wid, input wire [C_AXI_DATA_WIDTH-1:0] s_axi_wdata, input wire [C_AXI_DATA_WIDTH/8-1:0] s_axi_wstrb, input wire s_axi_wlast, input wire [C_AXI_WUSER_WIDTH-1:0] s_axi_wuser, // Slave Interface Write Response Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_bid, output wire [2-1:0] s_axi_bresp, output wire [C_AXI_BUSER_WIDTH-1:0] s_axi_buser, // Slave Interface Read Address Ports input wire [C_AXI_ID_WIDTH-1:0] s_axi_arid, input wire [C_AXI_ADDR_WIDTH-1:0] s_axi_araddr, input wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] s_axi_arlen, input wire [3-1:0] s_axi_arsize, input wire [2-1:0] s_axi_arburst, input wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] s_axi_arlock, input wire [4-1:0] s_axi_arcache, input wire [3-1:0] s_axi_arprot, input wire [4-1:0] s_axi_arregion, input wire [4-1:0] s_axi_arqos, input wire [C_AXI_ARUSER_WIDTH-1:0] s_axi_aruser, // Slave Interface Read Data Ports output wire [C_AXI_ID_WIDTH-1:0] s_axi_rid, output wire [C_AXI_DATA_WIDTH-1:0] s_axi_rdata, output wire [2-1:0] s_axi_rresp, output wire s_axi_rlast, output wire [C_AXI_RUSER_WIDTH-1:0] s_axi_ruser, // payloads output wire [C_AWPAYLOAD_WIDTH-1:0] s_awpayload, output wire [C_WPAYLOAD_WIDTH-1:0] s_wpayload, input wire [C_BPAYLOAD_WIDTH-1:0] s_bpayload, output wire [C_ARPAYLOAD_WIDTH-1:0] s_arpayload, input wire [C_RPAYLOAD_WIDTH-1:0] s_rpayload ); //////////////////////////////////////////////////////////////////////////////// // Functions //////////////////////////////////////////////////////////////////////////////// `include "axi_infrastructure_v1_1_0.vh" //////////////////////////////////////////////////////////////////////////////// // Local parameters //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // Wires/Reg declarations //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// // AXI4, AXI4LITE, AXI3 packing assign s_awpayload[G_AXI_AWADDR_INDEX+:G_AXI_AWADDR_WIDTH] = s_axi_awaddr; assign s_awpayload[G_AXI_AWPROT_INDEX+:G_AXI_AWPROT_WIDTH] = s_axi_awprot; assign s_wpayload[G_AXI_WDATA_INDEX+:G_AXI_WDATA_WIDTH] = s_axi_wdata; assign s_wpayload[G_AXI_WSTRB_INDEX+:G_AXI_WSTRB_WIDTH] = s_axi_wstrb; assign s_axi_bresp = s_bpayload[G_AXI_BRESP_INDEX+:G_AXI_BRESP_WIDTH]; assign s_arpayload[G_AXI_ARADDR_INDEX+:G_AXI_ARADDR_WIDTH] = s_axi_araddr; assign s_arpayload[G_AXI_ARPROT_INDEX+:G_AXI_ARPROT_WIDTH] = s_axi_arprot; assign s_axi_rdata = s_rpayload[G_AXI_RDATA_INDEX+:G_AXI_RDATA_WIDTH]; assign s_axi_rresp = s_rpayload[G_AXI_RRESP_INDEX+:G_AXI_RRESP_WIDTH]; generate if (C_AXI_PROTOCOL == 0 || C_AXI_PROTOCOL == 1) begin : gen_axi4_or_axi3_packing assign s_awpayload[G_AXI_AWSIZE_INDEX+:G_AXI_AWSIZE_WIDTH] = s_axi_awsize; assign s_awpayload[G_AXI_AWBURST_INDEX+:G_AXI_AWBURST_WIDTH] = s_axi_awburst; assign s_awpayload[G_AXI_AWCACHE_INDEX+:G_AXI_AWCACHE_WIDTH] = s_axi_awcache; assign s_awpayload[G_AXI_AWLEN_INDEX+:G_AXI_AWLEN_WIDTH] = s_axi_awlen; assign s_awpayload[G_AXI_AWLOCK_INDEX+:G_AXI_AWLOCK_WIDTH] = s_axi_awlock; assign s_awpayload[G_AXI_AWID_INDEX+:G_AXI_AWID_WIDTH] = s_axi_awid; assign s_awpayload[G_AXI_AWQOS_INDEX+:G_AXI_AWQOS_WIDTH] = s_axi_awqos; assign s_wpayload[G_AXI_WLAST_INDEX+:G_AXI_WLAST_WIDTH] = s_axi_wlast; if (C_AXI_PROTOCOL == 1) begin : gen_axi3_wid_packing assign s_wpayload[G_AXI_WID_INDEX+:G_AXI_WID_WIDTH] = s_axi_wid; end else begin : gen_no_axi3_wid_packing end assign s_axi_bid = s_bpayload[G_AXI_BID_INDEX+:G_AXI_BID_WIDTH]; assign s_arpayload[G_AXI_ARSIZE_INDEX+:G_AXI_ARSIZE_WIDTH] = s_axi_arsize; assign s_arpayload[G_AXI_ARBURST_INDEX+:G_AXI_ARBURST_WIDTH] = s_axi_arburst; assign s_arpayload[G_AXI_ARCACHE_INDEX+:G_AXI_ARCACHE_WIDTH] = s_axi_arcache; assign s_arpayload[G_AXI_ARLEN_INDEX+:G_AXI_ARLEN_WIDTH] = s_axi_arlen; assign s_arpayload[G_AXI_ARLOCK_INDEX+:G_AXI_ARLOCK_WIDTH] = s_axi_arlock; assign s_arpayload[G_AXI_ARID_INDEX+:G_AXI_ARID_WIDTH] = s_axi_arid; assign s_arpayload[G_AXI_ARQOS_INDEX+:G_AXI_ARQOS_WIDTH] = s_axi_arqos; assign s_axi_rlast = s_rpayload[G_AXI_RLAST_INDEX+:G_AXI_RLAST_WIDTH]; assign s_axi_rid = s_rpayload[G_AXI_RID_INDEX+:G_AXI_RID_WIDTH]; if (C_AXI_SUPPORTS_REGION_SIGNALS == 1 && G_AXI_AWREGION_WIDTH > 0) begin : gen_region_signals assign s_awpayload[G_AXI_AWREGION_INDEX+:G_AXI_AWREGION_WIDTH] = s_axi_awregion; assign s_arpayload[G_AXI_ARREGION_INDEX+:G_AXI_ARREGION_WIDTH] = s_axi_arregion; end else begin : gen_no_region_signals end if (C_AXI_SUPPORTS_USER_SIGNALS == 1 && C_AXI_PROTOCOL != 2) begin : gen_user_signals assign s_awpayload[G_AXI_AWUSER_INDEX+:G_AXI_AWUSER_WIDTH] = s_axi_awuser; assign s_wpayload[G_AXI_WUSER_INDEX+:G_AXI_WUSER_WIDTH] = s_axi_wuser; assign s_axi_buser = s_bpayload[G_AXI_BUSER_INDEX+:G_AXI_BUSER_WIDTH]; assign s_arpayload[G_AXI_ARUSER_INDEX+:G_AXI_ARUSER_WIDTH] = s_axi_aruser; assign s_axi_ruser = s_rpayload[G_AXI_RUSER_INDEX+:G_AXI_RUSER_WIDTH]; end else begin : gen_no_user_signals assign s_axi_buser = 'b0; assign s_axi_ruser = 'b0; end end else begin : gen_axi4lite_packing assign s_axi_bid = 'b0; assign s_axi_buser = 'b0; assign s_axi_rlast = 1'b1; assign s_axi_rid = 'b0; assign s_axi_ruser = 'b0; end endgenerate endmodule `default_nettype wire // (c) Copyright 2012-2013 Xilinx, Inc. All rights reserved. // // This file contains confidential and proprietary information // of Xilinx, Inc. and is protected under U.S. and // international copyright and other intellectual property // laws. // // DISCLAIMER // This disclaimer is not a license and does not grant any // rights to the materials distributed herewith. Except as // otherwise provided in a valid license issued to you by // Xilinx, and to the maximum extent permitted by applicable // law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // (2) Xilinx shall not be liable (whether in contract or tort, // including negligence, or under any other theory of // liability) for any loss or damage of any kind or nature // related to, arising under or in connection with these // materials, including for any direct, or any indirect, // special, incidental, or consequential loss or damage // (including loss of data, profits, goodwill, or any type of // loss or damage suffered as a result of any action brought // by a third party) even if such damage or loss was // reasonably foreseeable or Xilinx had been advised of the // possibility of the same. // // CRITICAL APPLICATIONS // Xilinx products are not designed or intended to be fail- // safe, or for use in any application requiring fail-safe // performance, such as life-support or safety devices or // systems, Class III medical devices, nuclear facilities, // applications related to the deployment of airbags, or any // other applications that could lead to death, personal // injury, or severe property or environmental damage // (individually and collectively, "Critical // Applications"). Customer assumes the sole risk and // liability of any use of Xilinx products in Critical // Applications, subject only to applicable laws and // regulations governing limitations on product liability. // // THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // Description: SRL based FIFO for AXIS/AXI Channels. //-------------------------------------------------------------------------- `timescale 1ps/1ps `default_nettype none (* DowngradeIPIdentifiedWarnings="yes" *) module axi_infrastructure_v1_1_0_axic_srl_fifo #( /////////////////////////////////////////////////////////////////////////////// // Parameter Definitions /////////////////////////////////////////////////////////////////////////////// parameter C_FAMILY = "virtex7", parameter integer C_PAYLOAD_WIDTH = 1, parameter integer C_FIFO_DEPTH = 16 // Range: 4-16. ) ( /////////////////////////////////////////////////////////////////////////////// // Port Declarations /////////////////////////////////////////////////////////////////////////////// input wire aclk, // Clock input wire aresetn, // Reset input wire [C_PAYLOAD_WIDTH-1:0] s_payload, // Input data input wire s_valid, // Input data valid output reg s_ready, // Input data ready output wire [C_PAYLOAD_WIDTH-1:0] m_payload, // Output data output reg m_valid, // Output data valid input wire m_ready // Output data ready ); //////////////////////////////////////////////////////////////////////////////// // Functions //////////////////////////////////////////////////////////////////////////////// // ceiling logb2 function integer f_clogb2 (input integer size); integer s; begin s = size; s = s - 1; for (f_clogb2=1; s>1; f_clogb2=f_clogb2+1) s = s >> 1; end endfunction // clogb2 //////////////////////////////////////////////////////////////////////////////// // Local parameters //////////////////////////////////////////////////////////////////////////////// localparam integer LP_LOG_FIFO_DEPTH = f_clogb2(C_FIFO_DEPTH); //////////////////////////////////////////////////////////////////////////////// // Wires/Reg declarations //////////////////////////////////////////////////////////////////////////////// reg [LP_LOG_FIFO_DEPTH-1:0] fifo_index; wire [4-1:0] fifo_addr; wire push; wire pop ; reg areset_r1; //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// always @(posedge aclk) begin areset_r1 <= ~aresetn; end always @(posedge aclk) begin if (~aresetn) begin fifo_index <= {LP_LOG_FIFO_DEPTH{1'b1}}; end else begin fifo_index <= push & ~pop ? fifo_index + 1'b1 : ~push & pop ? fifo_index - 1'b1 : fifo_index; end end assign push = s_valid & s_ready; always @(posedge aclk) begin if (~aresetn) begin s_ready <= 1'b0; end else begin s_ready <= areset_r1 ? 1'b1 : push & ~pop && (fifo_index == (C_FIFO_DEPTH - 2'd2)) ? 1'b0 : ~push & pop ? 1'b1 : s_ready; end end assign pop = m_valid & m_ready; always @(posedge aclk) begin if (~aresetn) begin m_valid <= 1'b0; end else begin m_valid <= ~push & pop && (fifo_index == {LP_LOG_FIFO_DEPTH{1'b0}}) ? 1'b0 : push & ~pop ? 1'b1 : m_valid; end end generate if (LP_LOG_FIFO_DEPTH < 4) begin : gen_pad_fifo_addr assign fifo_addr[0+:LP_LOG_FIFO_DEPTH] = fifo_index[LP_LOG_FIFO_DEPTH-1:0]; assign fifo_addr[LP_LOG_FIFO_DEPTH+:(4-LP_LOG_FIFO_DEPTH)] = {4-LP_LOG_FIFO_DEPTH{1'b0}}; end else begin : gen_fifo_addr assign fifo_addr[LP_LOG_FIFO_DEPTH-1:0] = fifo_index[LP_LOG_FIFO_DEPTH-1:0]; end endgenerate generate genvar i; for (i = 0; i < C_PAYLOAD_WIDTH; i = i + 1) begin : gen_data_bit SRL16E u_srl_fifo( .Q ( m_payload[i] ) , .A0 ( fifo_addr[0] ) , .A1 ( fifo_addr[1] ) , .A2 ( fifo_addr[2] ) , .A3 ( fifo_addr[3] ) , .CE ( push ) , .CLK ( aclk ) , .D ( s_payload[i] ) ); end endgenerate endmodule `default_nettype wire // (c) Copyright 2012 Xilinx, Inc. All rights reserved. // // This file contains confidential and proprietary information // of Xilinx, Inc. and is protected under U.S. and // international copyright and other intellectual property // laws. // // DISCLAIMER // This disclaimer is not a license and does not grant any // rights to the materials distributed herewith. Except as // otherwise provided in a valid license issued to you by // Xilinx, and to the maximum extent permitted by applicable // law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // (2) Xilinx shall not be liable (whether in contract or tort, // including negligence, or under any other theory of // liability) for any loss or damage of any kind or nature // related to, arising under or in connection with these // materials, including for any direct, or any indirect, // special, incidental, or consequential loss or damage // (including loss of data, profits, goodwill, or any type of // loss or damage suffered as a result of any action brought // by a third party) even if such damage or loss was // reasonably foreseeable or Xilinx had been advised of the // possibility of the same. // // CRITICAL APPLICATIONS // Xilinx products are not designed or intended to be fail- // safe, or for use in any application requiring fail-safe // performance, such as life-support or safety devices or // systems, Class III medical devices, nuclear facilities, // applications related to the deployment of airbags, or any // other applications that could lead to death, personal // injury, or severe property or environmental damage // (individually and collectively, "Critical // Applications"). Customer assumes the sole risk and // liability of any use of Xilinx products in Critical // Applications, subject only to applicable laws and // regulations governing limitations on product liability. // // THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // axi to vector // A generic module to merge all axi signals into one signal called payload. // This is strictly wires, so no clk, reset, aclken, valid/ready are required. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // `timescale 1ps/1ps `default_nettype none (* DowngradeIPIdentifiedWarnings="yes" *) module axi_infrastructure_v1_1_0_vector2axi # ( /////////////////////////////////////////////////////////////////////////////// // Parameter Definitions /////////////////////////////////////////////////////////////////////////////// parameter integer C_AXI_PROTOCOL = 0, parameter integer C_AXI_ID_WIDTH = 4, parameter integer C_AXI_ADDR_WIDTH = 32, parameter integer C_AXI_DATA_WIDTH = 32, parameter integer C_AXI_SUPPORTS_USER_SIGNALS = 0, parameter integer C_AXI_SUPPORTS_REGION_SIGNALS = 0, parameter integer C_AXI_AWUSER_WIDTH = 1, parameter integer C_AXI_WUSER_WIDTH = 1, parameter integer C_AXI_BUSER_WIDTH = 1, parameter integer C_AXI_ARUSER_WIDTH = 1, parameter integer C_AXI_RUSER_WIDTH = 1, parameter integer C_AWPAYLOAD_WIDTH = 61, parameter integer C_WPAYLOAD_WIDTH = 73, parameter integer C_BPAYLOAD_WIDTH = 6, parameter integer C_ARPAYLOAD_WIDTH = 61, parameter integer C_RPAYLOAD_WIDTH = 69 ) ( /////////////////////////////////////////////////////////////////////////////// // Port Declarations /////////////////////////////////////////////////////////////////////////////// // Slave Interface Write Address Ports output wire [C_AXI_ID_WIDTH-1:0] m_axi_awid, output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_awaddr, output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_awlen, output wire [3-1:0] m_axi_awsize, output wire [2-1:0] m_axi_awburst, output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_awlock, output wire [4-1:0] m_axi_awcache, output wire [3-1:0] m_axi_awprot, output wire [4-1:0] m_axi_awregion, output wire [4-1:0] m_axi_awqos, output wire [C_AXI_AWUSER_WIDTH-1:0] m_axi_awuser, // Slave Interface Write Data Ports output wire [C_AXI_ID_WIDTH-1:0] m_axi_wid, output wire [C_AXI_DATA_WIDTH-1:0] m_axi_wdata, output wire [C_AXI_DATA_WIDTH/8-1:0] m_axi_wstrb, output wire m_axi_wlast, output wire [C_AXI_WUSER_WIDTH-1:0] m_axi_wuser, // Slave Interface Write Response Ports input wire [C_AXI_ID_WIDTH-1:0] m_axi_bid, input wire [2-1:0] m_axi_bresp, input wire [C_AXI_BUSER_WIDTH-1:0] m_axi_buser, // Slave Interface Read Address Ports output wire [C_AXI_ID_WIDTH-1:0] m_axi_arid, output wire [C_AXI_ADDR_WIDTH-1:0] m_axi_araddr, output wire [((C_AXI_PROTOCOL == 1) ? 4 : 8)-1:0] m_axi_arlen, output wire [3-1:0] m_axi_arsize, output wire [2-1:0] m_axi_arburst, output wire [((C_AXI_PROTOCOL == 1) ? 2 : 1)-1:0] m_axi_arlock, output wire [4-1:0] m_axi_arcache, output wire [3-1:0] m_axi_arprot, output wire [4-1:0] m_axi_arregion, output wire [4-1:0] m_axi_arqos, output wire [C_AXI_ARUSER_WIDTH-1:0] m_axi_aruser, // Slave Interface Read Data Ports input wire [C_AXI_ID_WIDTH-1:0] m_axi_rid, input wire [C_AXI_DATA_WIDTH-1:0] m_axi_rdata, input wire [2-1:0] m_axi_rresp, input wire m_axi_rlast, input wire [C_AXI_RUSER_WIDTH-1:0] m_axi_ruser, // payloads input wire [C_AWPAYLOAD_WIDTH-1:0] m_awpayload, input wire [C_WPAYLOAD_WIDTH-1:0] m_wpayload, output wire [C_BPAYLOAD_WIDTH-1:0] m_bpayload, input wire [C_ARPAYLOAD_WIDTH-1:0] m_arpayload, output wire [C_RPAYLOAD_WIDTH-1:0] m_rpayload ); //////////////////////////////////////////////////////////////////////////////// // Functions //////////////////////////////////////////////////////////////////////////////// `include "axi_infrastructure_v1_1_0.vh" //////////////////////////////////////////////////////////////////////////////// // Local parameters //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // Wires/Reg declarations //////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// // AXI4, AXI4LITE, AXI3 packing assign m_axi_awaddr = m_awpayload[G_AXI_AWADDR_INDEX+:G_AXI_AWADDR_WIDTH]; assign m_axi_awprot = m_awpayload[G_AXI_AWPROT_INDEX+:G_AXI_AWPROT_WIDTH]; assign m_axi_wdata = m_wpayload[G_AXI_WDATA_INDEX+:G_AXI_WDATA_WIDTH]; assign m_axi_wstrb = m_wpayload[G_AXI_WSTRB_INDEX+:G_AXI_WSTRB_WIDTH]; assign m_bpayload[G_AXI_BRESP_INDEX+:G_AXI_BRESP_WIDTH] = m_axi_bresp; assign m_axi_araddr = m_arpayload[G_AXI_ARADDR_INDEX+:G_AXI_ARADDR_WIDTH]; assign m_axi_arprot = m_arpayload[G_AXI_ARPROT_INDEX+:G_AXI_ARPROT_WIDTH]; assign m_rpayload[G_AXI_RDATA_INDEX+:G_AXI_RDATA_WIDTH] = m_axi_rdata; assign m_rpayload[G_AXI_RRESP_INDEX+:G_AXI_RRESP_WIDTH] = m_axi_rresp; generate if (C_AXI_PROTOCOL == 0 || C_AXI_PROTOCOL == 1) begin : gen_axi4_or_axi3_packing assign m_axi_awsize = m_awpayload[G_AXI_AWSIZE_INDEX+:G_AXI_AWSIZE_WIDTH] ; assign m_axi_awburst = m_awpayload[G_AXI_AWBURST_INDEX+:G_AXI_AWBURST_WIDTH]; assign m_axi_awcache = m_awpayload[G_AXI_AWCACHE_INDEX+:G_AXI_AWCACHE_WIDTH]; assign m_axi_awlen = m_awpayload[G_AXI_AWLEN_INDEX+:G_AXI_AWLEN_WIDTH] ; assign m_axi_awlock = m_awpayload[G_AXI_AWLOCK_INDEX+:G_AXI_AWLOCK_WIDTH] ; assign m_axi_awid = m_awpayload[G_AXI_AWID_INDEX+:G_AXI_AWID_WIDTH] ; assign m_axi_awqos = m_awpayload[G_AXI_AWQOS_INDEX+:G_AXI_AWQOS_WIDTH] ; assign m_axi_wlast = m_wpayload[G_AXI_WLAST_INDEX+:G_AXI_WLAST_WIDTH] ; if (C_AXI_PROTOCOL == 1) begin : gen_axi3_wid_packing assign m_axi_wid = m_wpayload[G_AXI_WID_INDEX+:G_AXI_WID_WIDTH] ; end else begin : gen_no_axi3_wid_packing assign m_axi_wid = 1'b0; end assign m_bpayload[G_AXI_BID_INDEX+:G_AXI_BID_WIDTH] = m_axi_bid; assign m_axi_arsize = m_arpayload[G_AXI_ARSIZE_INDEX+:G_AXI_ARSIZE_WIDTH] ; assign m_axi_arburst = m_arpayload[G_AXI_ARBURST_INDEX+:G_AXI_ARBURST_WIDTH]; assign m_axi_arcache = m_arpayload[G_AXI_ARCACHE_INDEX+:G_AXI_ARCACHE_WIDTH]; assign m_axi_arlen = m_arpayload[G_AXI_ARLEN_INDEX+:G_AXI_ARLEN_WIDTH] ; assign m_axi_arlock = m_arpayload[G_AXI_ARLOCK_INDEX+:G_AXI_ARLOCK_WIDTH] ; assign m_axi_arid = m_arpayload[G_AXI_ARID_INDEX+:G_AXI_ARID_WIDTH] ; assign m_axi_arqos = m_arpayload[G_AXI_ARQOS_INDEX+:G_AXI_ARQOS_WIDTH] ; assign m_rpayload[G_AXI_RLAST_INDEX+:G_AXI_RLAST_WIDTH] = m_axi_rlast; assign m_rpayload[G_AXI_RID_INDEX+:G_AXI_RID_WIDTH] = m_axi_rid ; if (C_AXI_SUPPORTS_REGION_SIGNALS == 1 && G_AXI_AWREGION_WIDTH > 0) begin : gen_region_signals assign m_axi_awregion = m_awpayload[G_AXI_AWREGION_INDEX+:G_AXI_AWREGION_WIDTH]; assign m_axi_arregion = m_arpayload[G_AXI_ARREGION_INDEX+:G_AXI_ARREGION_WIDTH]; end else begin : gen_no_region_signals assign m_axi_awregion = 'b0; assign m_axi_arregion = 'b0; end if (C_AXI_SUPPORTS_USER_SIGNALS == 1 && C_AXI_PROTOCOL != 2) begin : gen_user_signals assign m_axi_awuser = m_awpayload[G_AXI_AWUSER_INDEX+:G_AXI_AWUSER_WIDTH]; assign m_axi_wuser = m_wpayload[G_AXI_WUSER_INDEX+:G_AXI_WUSER_WIDTH] ; assign m_bpayload[G_AXI_BUSER_INDEX+:G_AXI_BUSER_WIDTH] = m_axi_buser ; assign m_axi_aruser = m_arpayload[G_AXI_ARUSER_INDEX+:G_AXI_ARUSER_WIDTH]; assign m_rpayload[G_AXI_RUSER_INDEX+:G_AXI_RUSER_WIDTH] = m_axi_ruser ; end else begin : gen_no_user_signals assign m_axi_awuser = 'b0; assign m_axi_wuser = 'b0; assign m_axi_aruser = 'b0; end end else begin : gen_axi4lite_packing assign m_axi_awsize = (C_AXI_DATA_WIDTH == 32) ? 3'd2 : 3'd3; assign m_axi_awburst = 'b0; assign m_axi_awcache = 'b0; assign m_axi_awlen = 'b0; assign m_axi_awlock = 'b0; assign m_axi_awid = 'b0; assign m_axi_awqos = 'b0; assign m_axi_wlast = 1'b1; assign m_axi_wid = 'b0; assign m_axi_arsize = (C_AXI_DATA_WIDTH == 32) ? 3'd2 : 3'd3; assign m_axi_arburst = 'b0; assign m_axi_arcache = 'b0; assign m_axi_arlen = 'b0; assign m_axi_arlock = 'b0; assign m_axi_arid = 'b0; assign m_axi_arqos = 'b0; assign m_axi_awregion = 'b0; assign m_axi_arregion = 'b0; assign m_axi_awuser = 'b0; assign m_axi_wuser = 'b0; assign m_axi_aruser = 'b0; end endgenerate endmodule `default_nettype wire
/* Legal Notice: (C)2009 Altera Corporation. All rights reserved. Your use of Altera Corporation's design tools, logic functions and other software and tools, and its AMPP partner logic functions, and any output files any of the foregoing (including device programming or simulation files), and any associated documentation or information are expressly subject to the terms and conditions of the Altera Program License Subscription Agreement or other applicable license agreement, including, without limitation, that your use is for the sole purpose of programming logic devices manufactured by Altera and sold by Altera or its authorized distributors. Please refer to the applicable agreement for further details. */ /* Author: JCJB Date: 08/13/2010 Version 2.5 This write master module is responsible for taking in streaming data and writing the contents out to memory. It is controlled by a streaming sink port called the 'command port'. Any information that must be communicated back to a host such as an error in transfer is made available by the streaming source port called the 'response port'. There are various parameters to control the synthesis of this hardware either for functionality changes or speed/resource optimizations. Some of the parameters will be hidden in the component GUI since they are derived from some other parameters. When this master module is used in a MM to MM transfer disable the packet support since the packet hardware is not needed. In order to increase the Fmax you should enable only full accesses so that the unaligned access and byte enable blocks can be reduced to wires. Also only configure the length width to be as wide as you need as it will typically be the critical path of this module. Revision History: 1.0 Initial version which used a simple exported hand shake control scheme. 2.0 Added support for unaligned accesses, stride, and streaming. 2.1 Fixed control logic and removed the early termination enable logic (it's always on now so for packet transfers make sure the length register is programmed accordingly. 2.2 Added burst support. 2.3 Added additional conditional code for 8-bit case to avoid synthesis issues. 2.4 Corrected burst bug that prevented full bursts from being presented to the fabric. Corrected the stop/reset logic to ensure masters can be stopped or reset while idle. 2.5 Corrected a packet problem where EOP wasn't qualified by ready and valid. Added 64-bit addressing. */ // synthesis translate_off `timescale 1ns / 1ps // synthesis translate_on // turn off superfluous verilog processor warnings // altera message_level Level1 // altera message_off 10034 10035 10036 10037 10230 10240 10030 module write_master ( clk, reset, // descriptor commands sink port snk_command_data, snk_command_valid, snk_command_ready, // response source port src_response_data, src_response_valid, src_response_ready, // data path sink port snk_data, snk_valid, snk_ready, snk_sop, snk_eop, snk_empty, snk_error, // data path master port master_address, master_write, master_byteenable, master_writedata, master_waitrequest, master_burstcount ); parameter UNALIGNED_ACCESSES_ENABLE = 0; // when enabled allows transfers to begin from off word boundaries parameter ONLY_FULL_ACCESS_ENABLE = 0; // when enabled allows transfers to end with partial access, master achieve a much higher fmax when this is enabled parameter STRIDE_ENABLE = 0; // stride support can only be enabled when unaligned accesses is disabled parameter STRIDE_WIDTH = 1; // when stride support is enabled this value controls the rate in which the address increases (in words), the stride width + log2(byte enable width) + 1 cannot exceed address width parameter PACKET_ENABLE = 0; parameter ERROR_ENABLE = 0; parameter ERROR_WIDTH = 8; // must be between 1-8, this will only be enabled in the GUI when error enable is turned on parameter DATA_WIDTH = 32; parameter BYTE_ENABLE_WIDTH = 4; // set by the .tcl file (hidden in GUI) parameter BYTE_ENABLE_WIDTH_LOG2 = 2; // set by the .tcl file (hidden in GUI) parameter ADDRESS_WIDTH = 32; // set in the .tcl file (hidden in GUI) by the address span of the master parameter LENGTH_WIDTH = 32; // GUI setting with warning if ADDRESS_WIDTH < LENGTH_WIDTH (waste of logic for the length counter) parameter ACTUAL_BYTES_TRANSFERRED_WIDTH = 32; // GUI setting which can only be set when packet support is enabled (otherwise it'll be set to 32). A warning will be issued if overrun protection is enabled and this setting is less than the length width. parameter FIFO_DEPTH = 32; parameter FIFO_DEPTH_LOG2 = 5; // set by the .tcl file (hidden in GUI) parameter FIFO_SPEED_OPTIMIZATION = 1; // set by the .tcl file (hidden in GUI) The default will be on since it only impacts the latency of the entire transfer by 1 clock cycle and adds very little additional logic. parameter SYMBOL_WIDTH = 8; // set by the .tcl file (hidden in GUI) parameter NUMBER_OF_SYMBOLS = 4; // set by the .tcl file (hidden in GUI) parameter NUMBER_OF_SYMBOLS_LOG2 = 2; // set by the .tcl file (hidden in GUI) parameter BURST_ENABLE = 0; parameter MAX_BURST_COUNT = 2; // must be a power of 2, when BURST_ENABLE = 0 set the maximum burst count to 1 (automatically done in the .tcl file) parameter MAX_BURST_COUNT_WIDTH = 2; // set by the .tcl file (hidden in GUI) = log2(MAX_BURST_COUNT) + 1 parameter PROGRAMMABLE_BURST_ENABLE = 0; // when enabled the user must set the burst count, if 0 is set then the value MAX_BURST_COUNT will be used instead parameter BURST_WRAPPING_SUPPORT = 1; // will only be used when bursting is enabled. This cannot be enabled with programmable burst capabilities. Enabling it will make sure the master gets back into burst alignment (data width in bytes * maximum burst count alignment) localparam FIFO_USE_MEMORY = 1; // set to 0 to use LEs instead, not exposed since FPGAs have a lot of memory these days localparam BIG_ENDIAN_ACCESS = 0; // hiding this since it can blow your foot off if you are not careful and it's not tested. It's big endian with respect to the write master width and not necessarily to the width of the data type used by a host CPU. // handy mask for seperating the word address from the byte address bits, so for 32 bit masters this mask is 0x3, for 64 bit masters it'll be 0x7 localparam LSB_MASK = {BYTE_ENABLE_WIDTH_LOG2{1'b1}}; //need to buffer the empty, eop, sop, and error bits. If these are not needed then the logic will be synthesized away localparam FIFO_WIDTH = (DATA_WIDTH + 2 + NUMBER_OF_SYMBOLS_LOG2 + ERROR_WIDTH); // data, sop, eop, empty, and error bits localparam ADDRESS_INCREMENT_WIDTH = (BYTE_ENABLE_WIDTH_LOG2 + MAX_BURST_COUNT_WIDTH + STRIDE_WIDTH); localparam FIXED_STRIDE = 1'b1; // when stride isn't supported this will be the stride value used (i.e. sequential incrementing of the address) input clk; input reset; // descriptor commands sink port input [255:0] snk_command_data; input snk_command_valid; output reg snk_command_ready; // response source port output wire [255:0] src_response_data; output reg src_response_valid; input src_response_ready; // data path sink port input [DATA_WIDTH-1:0] snk_data; input snk_valid; output wire snk_ready; input snk_sop; input snk_eop; input [NUMBER_OF_SYMBOLS_LOG2-1:0] snk_empty; input [ERROR_WIDTH-1:0] snk_error; // master inputs and outputs input master_waitrequest; output wire [ADDRESS_WIDTH-1:0] master_address; output wire master_write; output wire [BYTE_ENABLE_WIDTH-1:0] master_byteenable; output wire [DATA_WIDTH-1:0] master_writedata; output wire [MAX_BURST_COUNT_WIDTH-1:0] master_burstcount; // internal wires and registers wire [63:0] descriptor_address; wire [31:0] descriptor_length; wire [15:0] descriptor_stride; wire descriptor_end_on_eop_enable; wire [7:0] descriptor_programmable_burst_count; reg [ADDRESS_WIDTH-1:0] address_counter; wire [ADDRESS_WIDTH-1:0] address; // unfiltered version of master_address wire write; // unfiltered version of master_write reg [LENGTH_WIDTH-1:0] length_counter; reg [STRIDE_WIDTH-1:0] stride_d1; wire [STRIDE_WIDTH-1:0] stride_amount; // either set to be stride_d1 or hardcoded to 1 depending on the parameterization reg descriptor_end_on_eop_enable_d1; reg [MAX_BURST_COUNT_WIDTH-1:0] programmable_burst_count_d1; wire [MAX_BURST_COUNT_WIDTH-1:0] maximum_burst_count; reg [BYTE_ENABLE_WIDTH_LOG2-1:0] start_byte_address; // used to determine how far out of alignement the master started reg first_access; // used to prevent extra writes when the unaligned access starts and ends during the same write wire first_word_boundary_not_reached; // set when the first access doesn't reach the next word boundary reg first_word_boundary_not_reached_d1; wire increment_address; // enable the address incrementing wire [ADDRESS_INCREMENT_WIDTH-1:0] address_increment; // amount of bytes to increment the address wire [ADDRESS_INCREMENT_WIDTH-1:0] bytes_to_transfer; wire short_first_access_enable; // when starting unaligned and the amount of data to transfer reaches the next word boundary wire short_last_access_enable; // when address is aligned (can be an unaligned buffer transfer) but the amount of data doesn't reach the next word boundary wire short_first_and_last_access_enable; // when starting unaligned and the amount of data to transfer doesn't reach the next word boundary wire [ADDRESS_INCREMENT_WIDTH-1:0] short_first_access_size; wire [ADDRESS_INCREMENT_WIDTH-1:0] short_last_access_size; wire [ADDRESS_INCREMENT_WIDTH-1:0] short_first_and_last_access_size; reg [ADDRESS_INCREMENT_WIDTH-1:0] bytes_to_transfer_mux; wire [FIFO_WIDTH-1:0] fifo_write_data; wire [FIFO_WIDTH-1:0] fifo_read_data; wire [FIFO_DEPTH_LOG2-1:0] fifo_used; wire fifo_write; wire fifo_read; wire fifo_empty; wire fifo_full; wire [DATA_WIDTH-1:0] fifo_read_data_rearranged; // if big endian support is enabled then this signal has the FIFO output byte lanes reversed wire go; wire done; reg done_d1; wire done_strobe; wire [DATA_WIDTH-1:0] buffered_data; wire [NUMBER_OF_SYMBOLS_LOG2-1:0] buffered_empty; wire buffered_eop; wire buffered_sop; // not wired to anything so synthesized away, included for debug purposes wire [ERROR_WIDTH-1:0] buffered_error; wire length_sync_reset; // syncronous reset for the length counter for eop support reg [ACTUAL_BYTES_TRANSFERRED_WIDTH-1:0] actual_bytes_transferred_counter; // width will be in the range of 1-32 wire [31:0] response_actual_bytes_transferred; wire early_termination; reg early_termination_d1; wire eop_enable; reg [ERROR_WIDTH-1:0] error; // SRFF so that we don't loose any errors if EOP doesn't arrive right away wire [7:0] response_error; // need to pad upper error bits with zeros if they are not present at the data streaming port wire sw_stop_in; wire sw_reset_in; reg stopped; // SRFF to make sure we don't attempt to stop in the middle of a transfer reg reset_taken; // FF to make sure we don't attempt to reset the master in the middle of a transfer wire reset_taken_from_write_burst_control; // in the middle of a burst greater than one, the burst control block will assert this signal after the burst copmletes, 'reset_taken' will use this signal wire stopped_from_write_burst_control; // in the middle of a burst greater than one, the burst control block will assert this signal after the burst completes, 'stopped' will use this signal wire stop_state; wire reset_delayed; wire write_complete; // handy signal for determining when a write has occured and completed wire write_stall_from_byte_enable_generator; // partial word access occuring which might take multiple write cycles to complete (or waitrequest has been asserted) wire write_stall_from_write_burst_control; // when there isn't enough data buffered to start a burst this signal will be asserted wire [BYTE_ENABLE_WIDTH-1:0] byteenable_masks [0:BYTE_ENABLE_WIDTH-1]; // a bunch of masks that will be provided to unsupported_byteenable wire [BYTE_ENABLE_WIDTH-1:0] unsupported_byteenable; // input into the byte enable generation block which will take the unsupported byte enable and chop it up into supported transfers wire [BYTE_ENABLE_WIDTH-1:0] supported_byteenable; // output from the byte enable generation block wire extra_write; // when asserted master_write will be asserted but the FIFO will not be popped since it will not contain any more data for the transfer wire st_to_mm_adapter_enable; wire [BYTE_ENABLE_WIDTH_LOG2:0] packet_beat_size; // number of bytes coming in from the data stream when packet support is enabled wire [BYTE_ENABLE_WIDTH_LOG2:0] packet_bytes_buffered; reg [BYTE_ENABLE_WIDTH_LOG2:0] packet_bytes_buffered_d1; // represents the number of bytes buffered in the ST to MM adapter (only applicable for unaligned accesses) reg eop_seen; // when the beat containing EOP has been popped from the fifo this bit will be set, it will be reset when done is asserted. It is used to determine if an extra write must occur (unaligned accesses only) /********************************************* REGISTERS ****************************************************************************************/ // registering the stride control bit always @ (posedge clk or posedge reset) begin if (reset) begin stride_d1 <= 0; end else if (go == 1) begin stride_d1 <= descriptor_stride[STRIDE_WIDTH-1:0]; end end // registering the end on eop bit (will be optimized away if packet support is disabled) always @ (posedge clk or posedge reset) begin if (reset) begin descriptor_end_on_eop_enable_d1 <= 1'b0; end else if (go == 1) begin descriptor_end_on_eop_enable_d1 <= descriptor_end_on_eop_enable; end end // registering the programmable burst count (will be optimized away if this support is disabled) always @ (posedge clk or posedge reset) begin if (reset) begin programmable_burst_count_d1 <= 0; end else if (go == 1) begin programmable_burst_count_d1 <= (descriptor_programmable_burst_count == 0)? MAX_BURST_COUNT : descriptor_programmable_burst_count; end end // master address increment counter always @ (posedge clk or posedge reset) begin if (reset) begin address_counter <= 0; end else begin if (go == 1) begin address_counter <= descriptor_address[ADDRESS_WIDTH-1:0]; end else if (increment_address == 1) begin address_counter <= address_counter + address_increment; end end end // master byte address, used to determine how far out of alignment the master began transfering data always @ (posedge clk or posedge reset) begin if (reset) begin start_byte_address <= 0; end else if (go == 1) begin start_byte_address <= descriptor_address[BYTE_ENABLE_WIDTH_LOG2-1:0]; end end // first_access will be asserted only for the first write of a transaction, this will be used to filter 'extra_write' for unaligned accesses always @ (posedge clk or posedge reset) begin if (reset) begin first_access <= 0; end else begin if (go == 1) begin first_access <= 1; end else if ((first_access == 1) & (increment_address == 1)) begin first_access <= 0; end end end // this register is used to determine if the first word boundary will be reached always @ (posedge clk or posedge reset) begin if (reset) begin first_word_boundary_not_reached_d1 <= 0; end else if (go == 1) begin first_word_boundary_not_reached_d1 <= first_word_boundary_not_reached; end end // master length logic, this will typically be the critical path followed by the FIFO always @ (posedge clk or posedge reset) begin if (reset) begin length_counter <= 0; end else begin if (length_sync_reset == 1) // when packet support is enabled the length register might roll over so this sync reset will prevent that from happening (it's also used when a soft reset is triggered) begin length_counter <= 0; // when EOP arrives need to stop counting, length=0 is the done condition end else if (go == 1) begin length_counter <= descriptor_length[LENGTH_WIDTH-1:0]; end else if (increment_address == 1) begin length_counter <= length_counter - bytes_to_transfer; // not using address_increment because stride might be enabled end end end // master actual bytes transferred logic, this will only be used when packet support is enabled, otherwise the value will be 0 always @ (posedge clk or posedge reset) begin if (reset) begin actual_bytes_transferred_counter <= 0; end else begin if ((go == 1) | (reset_taken == 1)) begin actual_bytes_transferred_counter <= 0; end else if(increment_address == 1) begin actual_bytes_transferred_counter <= actual_bytes_transferred_counter + bytes_to_transfer; end end end always @ (posedge clk or posedge reset) begin if (reset) begin done_d1 <= 1; // out of reset the master needs to be 'done' so that the done_strobe doesn't fire end else begin done_d1 <= done; end end always @ (posedge clk or posedge reset) begin if (reset) begin early_termination_d1 <= 0; end else begin early_termination_d1 <= early_termination; end end generate genvar l; for(l = 0; l < ERROR_WIDTH; l = l + 1) begin: error_SRFF always @ (posedge clk or posedge reset) begin if (reset) begin error[l] <= 0; end else begin if ((go == 1) | (reset_taken == 1)) begin error[l] <= 0; end else if ((buffered_error[l] == 1) & (done == 0)) begin error[l] <= 1; end end end end endgenerate always @ (posedge clk or posedge reset) begin if (reset) begin snk_command_ready <= 1; // have to start ready to take commands end else begin if (go == 1) begin snk_command_ready <= 0; end else if (((done == 1) & (src_response_valid == 0)) | (reset_taken == 1)) // need to make sure the response is popped before accepting more commands begin snk_command_ready <= 1; end end end always @ (posedge clk or posedge reset) begin if (reset) begin src_response_valid <= 0; end else begin if (reset_taken == 1) begin src_response_valid <= 0; end else if (done_strobe == 1) begin src_response_valid <= 1; // will be set only once end else if ((src_response_valid == 1) & (src_response_ready == 1)) begin src_response_valid <= 0; // will be reset only once when the dispatcher captures the data end end end always @ (posedge clk or posedge reset) begin if (reset) begin stopped <= 0; end else begin if ((sw_stop_in == 0) | (reset_taken == 1)) begin stopped <= 0; end else if ((sw_stop_in == 1) & (((write_complete == 1) & (stopped_from_write_burst_control == 1)) | ((snk_command_ready == 1) | (master_write == 0)))) begin stopped <= 1; end end end always @ (posedge clk or posedge reset) begin if (reset) begin reset_taken <= 0; end else begin reset_taken <= (sw_reset_in == 1) & (((write_complete == 1) & (reset_taken_from_write_burst_control == 1)) | ((snk_command_ready == 1) | (master_write == 0))); end end // eop_seen will be set when the last beat of a packet transfer has been popped from the fifo for ST to MM block flushing purposes (extra write) always @ (posedge clk or posedge reset) begin if (reset) begin eop_seen <= 0; end else begin if (done == 1) begin eop_seen <= 0; end else if ((buffered_eop == 1) & (write_complete == 1)) begin eop_seen <= 1; end end end // when unaligned accesses are enabled packet_bytes_buffered_d1 is the number of bytes buffered in the ST to MM block from the previous beat always @ (posedge clk or posedge reset) begin if (reset) begin packet_bytes_buffered_d1 <= 0; end else begin if (go == 1) begin packet_bytes_buffered_d1 <= 0; end else if (write_complete == 1) begin packet_bytes_buffered_d1 <= packet_bytes_buffered; end end end /********************************************* END REGISTERS ************************************************************************************/ /********************************************* MODULE INSTANTIATIONS ****************************************************************************/ /* buffered sop, eop, empty, error, data (in that order). sop, eop, and empty are only used when packet support is enabled, likewise error is only used when error support is enabled */ scfifo the_st_to_master_fifo ( .aclr (reset), .clock (clk), .data (fifo_write_data), .full (fifo_full), .empty (fifo_empty), .q (fifo_read_data), .rdreq (fifo_read), .usedw (fifo_used), .wrreq (fifo_write) ); defparam the_st_to_master_fifo.lpm_width = FIFO_WIDTH; defparam the_st_to_master_fifo.lpm_widthu = FIFO_DEPTH_LOG2; defparam the_st_to_master_fifo.lpm_numwords = FIFO_DEPTH; defparam the_st_to_master_fifo.lpm_showahead = "ON"; // slower but doesn't require complex control logic to time with waitrequest defparam the_st_to_master_fifo.use_eab = (FIFO_USE_MEMORY == 1)? "ON" : "OFF"; defparam the_st_to_master_fifo.add_ram_output_register = (FIFO_SPEED_OPTIMIZATION == 1)? "ON" : "OFF"; defparam the_st_to_master_fifo.underflow_checking = "OFF"; defparam the_st_to_master_fifo.overflow_checking = "OFF"; /* This module will barrelshift the data from the FIFO when unaligned accesses is enabled (we are using part of the FIFO word when off boundary). When unaligned accesses is disabled then the data passes as wires. The byte enable generator might require multiple cycles to perform partial accesses so a 'stall' bit is used (triggers a stall like waitrequest) */ ST_to_MM_Adapter the_ST_to_MM_Adapter ( .clk (clk), .reset (reset), .enable (st_to_mm_adapter_enable), .address (descriptor_address[ADDRESS_WIDTH-1:0]), .start (go), .waitrequest (master_waitrequest), .stall (write_stall_from_byte_enable_generator | write_stall_from_write_burst_control), .write_data (master_writedata), .fifo_data (buffered_data), .fifo_empty (fifo_empty), .fifo_readack (fifo_read) ); defparam the_ST_to_MM_Adapter.DATA_WIDTH = DATA_WIDTH; defparam the_ST_to_MM_Adapter.BYTEENABLE_WIDTH_LOG2 = BYTE_ENABLE_WIDTH_LOG2; defparam the_ST_to_MM_Adapter.ADDRESS_WIDTH = ADDRESS_WIDTH; defparam the_ST_to_MM_Adapter.UNALIGNED_ACCESS_ENABLE = UNALIGNED_ACCESSES_ENABLE; /* this block is responsible for presenting the fabric with supported byte enable combinations which can take multiple cycles, if full word only support is enabled this block will reduce to wires during synthesis */ byte_enable_generator the_byte_enable_generator ( .clk (clk), .reset (reset), .write_in (write), .byteenable_in (unsupported_byteenable), .waitrequest_out (write_stall_from_byte_enable_generator), .byteenable_out (supported_byteenable), .waitrequest_in (master_waitrequest | write_stall_from_write_burst_control) ); defparam the_byte_enable_generator.BYTEENABLE_WIDTH = BYTE_ENABLE_WIDTH; // this block will be used to drive write, address, and burstcount to the fabric write_burst_control the_write_burst_control ( .clk (clk), .reset (reset), .sw_reset (sw_reset_in), .sw_stop (sw_stop_in), .length (length_counter), .eop_enabled (descriptor_end_on_eop_enable_d1), .eop (snk_eop), .ready (snk_ready), .valid (snk_valid), .early_termination (early_termination), .address_in (address), .write_in (write), .max_burst_count (maximum_burst_count), .write_fifo_used ({fifo_full,fifo_used}), .waitrequest (master_waitrequest), .short_first_access_enable (short_first_access_enable), .short_last_access_enable (short_last_access_enable), .short_first_and_last_access_enable (short_first_and_last_access_enable), .address_out (master_address), .write_out (master_write), // filtered version of 'write' .burst_count (master_burstcount), .stall (write_stall_from_write_burst_control), .reset_taken (reset_taken_from_write_burst_control), .stopped (stopped_from_write_burst_control) ); defparam the_write_burst_control.BURST_ENABLE = BURST_ENABLE; defparam the_write_burst_control.BURST_COUNT_WIDTH = MAX_BURST_COUNT_WIDTH; defparam the_write_burst_control.WORD_SIZE = BYTE_ENABLE_WIDTH; defparam the_write_burst_control.WORD_SIZE_LOG2 = (DATA_WIDTH == 8)? 0 : BYTE_ENABLE_WIDTH_LOG2; // need to make sure log2(word size) is 0 instead of 1 here when the data width is 8 bits defparam the_write_burst_control.ADDRESS_WIDTH = ADDRESS_WIDTH; defparam the_write_burst_control.LENGTH_WIDTH = LENGTH_WIDTH; defparam the_write_burst_control.WRITE_FIFO_USED_WIDTH = FIFO_DEPTH_LOG2; defparam the_write_burst_control.BURST_WRAPPING_SUPPORT = BURST_WRAPPING_SUPPORT; /********************************************* END MODULE INSTANTIATIONS ************************************************************************/ /********************************************* CONTROL AND COMBINATIONAL SIGNALS ****************************************************************/ // breakout the descriptor information into more manageable names assign descriptor_address = {snk_command_data[123:92], snk_command_data[31:0]}; // 64-bit addressing support assign descriptor_length = snk_command_data[63:32]; assign descriptor_programmable_burst_count = snk_command_data[75:68]; assign descriptor_stride = snk_command_data[91:76]; assign descriptor_end_on_eop_enable = snk_command_data[64]; assign sw_stop_in = snk_command_data[66]; assign sw_reset_in = snk_command_data[67]; assign stride_amount = (STRIDE_ENABLE == 1)? stride_d1[STRIDE_WIDTH-1:0] : FIXED_STRIDE; // hardcoding to FIXED_STRIDE when stride capabilities are disabled assign maximum_burst_count = (PROGRAMMABLE_BURST_ENABLE == 1)? programmable_burst_count_d1 : MAX_BURST_COUNT; assign eop_enable = (PACKET_ENABLE == 1)? descriptor_end_on_eop_enable_d1 : 1'b0; // no eop or early termination support when packet support is disabled assign done_strobe = (done == 1) & (done_d1 == 0) & (reset_taken == 0); // set_done asserts the done register so this strobe fires when the last write completes assign response_error = (ERROR_ENABLE == 1)? error : 8'b00000000; assign response_actual_bytes_transferred = (PACKET_ENABLE == 1)? actual_bytes_transferred_counter : 32'h00000000; // transfer size amounts for special cases (starting unaligned, ending with a partial word, starting unaligned and ending with a partial word on the same write) assign short_first_access_size = BYTE_ENABLE_WIDTH - start_byte_address; assign short_last_access_size = (eop_enable == 1)? (packet_beat_size + packet_bytes_buffered_d1) : (length_counter & LSB_MASK); assign short_first_and_last_access_size = (eop_enable == 1)? (BYTE_ENABLE_WIDTH - buffered_empty) : (length_counter & LSB_MASK); /* special case transfer enables and counter increment values (address_counter, length_counter, and actual_bytes_transferred) short_first_access_enable is for transfers that start aligned but reach the next word boundary short_last_access_enable is for transfers that are not the first transfer but don't end with on a word boundary short_first_and_last_access_enable is for transfers that start and end with a single transfer and don't end on a word boundary (may or may not be aligned) */ generate if (UNALIGNED_ACCESSES_ENABLE == 1) begin // all three enables are mutually exclusive to provide one-hot encoding for the bytes to transfer mux assign short_first_access_enable = (start_byte_address != 0) & (first_access == 1) & ((eop_enable == 1)? ((start_byte_address + BYTE_ENABLE_WIDTH - buffered_empty) >= BYTE_ENABLE_WIDTH) : (first_word_boundary_not_reached_d1 == 0)); assign short_last_access_enable = (first_access == 0) & ((eop_enable == 1)? ((packet_beat_size + packet_bytes_buffered_d1) < BYTE_ENABLE_WIDTH): (length_counter < BYTE_ENABLE_WIDTH)); assign short_first_and_last_access_enable = (first_access == 1) & ((eop_enable == 1)? ((start_byte_address + BYTE_ENABLE_WIDTH - buffered_empty) < BYTE_ENABLE_WIDTH) : (first_word_boundary_not_reached_d1 == 1)); assign bytes_to_transfer = bytes_to_transfer_mux; assign address_increment = bytes_to_transfer_mux; // can't use stride when unaligned accesses are enabled end else if (ONLY_FULL_ACCESS_ENABLE == 1) begin assign short_first_access_enable = 0; assign short_last_access_enable = 0; assign short_first_and_last_access_enable = 0; assign bytes_to_transfer = BYTE_ENABLE_WIDTH; if (STRIDE_ENABLE == 1) begin assign address_increment = BYTE_ENABLE_WIDTH * stride_amount; // the byte address portion of the address_counter is grounded to make sure the address presented to the fabric is aligned end else begin assign address_increment = BYTE_ENABLE_WIDTH; // the byte address portion of the address_counter is grounded to make sure the address presented to the fabric is aligned end end else // must be aligned but can end with any number of bytes begin assign short_first_access_enable = 0; assign short_last_access_enable = (eop_enable == 1)? (buffered_eop == 1) : (length_counter < BYTE_ENABLE_WIDTH); // less than a word to transfer assign short_first_and_last_access_enable = 0; assign bytes_to_transfer = bytes_to_transfer_mux; if (STRIDE_ENABLE == 1) begin assign address_increment = BYTE_ENABLE_WIDTH * stride_amount; end else begin assign address_increment = BYTE_ENABLE_WIDTH; end end endgenerate // the control logic ensures this mux is one-hot with the fall through being the typical full word aligned access always @ (short_first_access_enable or short_last_access_enable or short_first_and_last_access_enable or short_first_access_size or short_last_access_size or short_first_and_last_access_size) begin case ({short_first_and_last_access_enable, short_last_access_enable, short_first_access_enable}) 3'b001: bytes_to_transfer_mux = short_first_access_size; // unaligned and reaches the next word boundary 3'b010: bytes_to_transfer_mux = short_last_access_size; // aligned and does not reach the next word boundary 3'b100: bytes_to_transfer_mux = short_first_and_last_access_size; // unaligned and does not reach the next word boundary default: bytes_to_transfer_mux = BYTE_ENABLE_WIDTH; // aligned and reaches the next word boundary (i.e. a full word transfer) endcase end // Avalon-ST is network order (a.k.a. big endian) so we need to reverse the symbols before jamming them into the FIFO, changing the symbol width to something other than 8 might break something... generate genvar i; for(i = 0; i < DATA_WIDTH; i = i + SYMBOL_WIDTH) // the data width is always a multiple of the symbol width begin: symbol_swap assign fifo_write_data[i +SYMBOL_WIDTH -1: i] = snk_data[DATA_WIDTH -i -1: DATA_WIDTH -i - SYMBOL_WIDTH]; end endgenerate // sticking the error, empty, eop, and eop bits at the top of the FIFO write data, flooring empty to zero when eop is not asserted (empty is only valid on eop cycles) assign fifo_write_data[FIFO_WIDTH-1:DATA_WIDTH] = {snk_error, (snk_eop == 1)? snk_empty:0, snk_sop, snk_eop}; // swap the bytes if big endian is enabled (remember that this isn't tested so use at your own risk and make sure you understand the software impact this has) generate if(BIG_ENDIAN_ACCESS == 1) begin genvar j; for(j=0; j < DATA_WIDTH; j = j + 8) begin: byte_swap assign fifo_read_data_rearranged[j +8 -1: j] = fifo_read_data[DATA_WIDTH -j -1: DATA_WIDTH -j - 8]; assign master_byteenable[j/8] = supported_byteenable[(DATA_WIDTH -j -1)/8]; end end else begin assign fifo_read_data_rearranged = fifo_read_data[DATA_WIDTH-1:0]; // little endian so no byte swapping necessary assign master_byteenable = supported_byteenable; // dito end endgenerate // fifo read data is in the format of {error, empty, sop, eop, data} with the following widths {ERROR_WIDTH, NUMBER_OF_SYMBOLS_LOG2, 1, 1, DATA_WIDTH} assign buffered_data = fifo_read_data_rearranged; assign buffered_error = fifo_read_data[DATA_WIDTH +2 +NUMBER_OF_SYMBOLS_LOG2 + ERROR_WIDTH -1: DATA_WIDTH +2 +NUMBER_OF_SYMBOLS_LOG2]; generate if (PACKET_ENABLE == 1) begin assign buffered_eop = fifo_read_data[DATA_WIDTH]; assign buffered_sop = fifo_read_data[DATA_WIDTH +1]; if (ONLY_FULL_ACCESS_ENABLE == 1) begin assign buffered_empty = 0; // ignore the empty signal and assume it was a full beat end else begin assign buffered_empty = fifo_read_data[DATA_WIDTH +2 +NUMBER_OF_SYMBOLS_LOG2 -1: DATA_WIDTH +2]; // empty is packed into the upper FIFO bits end end else begin assign buffered_empty = 0; assign buffered_eop = 0; assign buffered_sop = 0; end endgenerate /* Generating mask bits based on the size of the transfer before the unaligned access adjustment. This is based on the transfer size to determine how many byte enables would be asserted in the aligned case. Afterwards the byte enables will be shifted left based on how far out of alignment the address counter is (should only happen for the first transfer). If the data path is 32 bits wide then the following masks are generated: Transfer Size Index Mask 1 0 0001 2 1 0011 3 2 0111 4 3 1111 Note that the index is just the transfer size minus one */ generate if (BYTE_ENABLE_WIDTH > 1) begin genvar k; for (k = 0; k < BYTE_ENABLE_WIDTH; k = k + 1) begin: byte_enable_loop assign byteenable_masks[k] = { {(BYTE_ENABLE_WIDTH-k-1){1'b0}}, {(k+1){1'b1}} }; // Byte enable width - k zeros followed by k ones end end else begin assign byteenable_masks[0] = 1'b1; // will be stubbed at top level end endgenerate /* byteenable_mask is based on an aligned access determined by the transfer size. This value is then shifted to the left by the unaligned offset (first transfer only) to compensate for the unaligned offset so that the correct byte enables are enabled. When the accesses are aligned then no barrelshifting is needed and when full accesses are used then all byte enables will be asserted always. */ generate if (ONLY_FULL_ACCESS_ENABLE == 1) begin assign unsupported_byteenable = {BYTE_ENABLE_WIDTH{1'b1}}; // always full accesses so the byte enables are all ones end else if (UNALIGNED_ACCESSES_ENABLE == 0) begin assign unsupported_byteenable = byteenable_masks[bytes_to_transfer_mux - 1]; // aligned so no unaligned adjustment required end else // unaligned case begin assign unsupported_byteenable = byteenable_masks[bytes_to_transfer_mux - 1] << (address_counter & LSB_MASK); // barrelshift adjusts for unaligned start address end endgenerate generate if (BYTE_ENABLE_WIDTH > 1) begin assign address = address_counter & { {(ADDRESS_WIDTH-BYTE_ENABLE_WIDTH_LOG2){1'b1}}, {BYTE_ENABLE_WIDTH_LOG2{1'b0}} }; // masking LSBs (byte offsets) since the address counter might not be aligned for the first transfer end else begin assign address = address_counter; // don't need to mask any bits as the address will only advance one byte at a time end endgenerate assign done = (length_counter == 0) | ((PACKET_ENABLE == 1) & (eop_enable == 1) & (eop_seen == 1) & (extra_write == 0)); assign packet_beat_size = (eop_seen == 1) ? 0 : (BYTE_ENABLE_WIDTH - buffered_empty); // when the eop arrives we can't add more to packet_bytes_buffered_d1 assign packet_bytes_buffered = packet_beat_size + packet_bytes_buffered_d1 - bytes_to_transfer; // extra_write is only applicable when unaligned accesses are performed. This extra access gets the remaining data buffered in the ST to MM adapter block written to memory assign extra_write = (UNALIGNED_ACCESSES_ENABLE == 1) & (((PACKET_ENABLE == 1) & (eop_enable == 1))? ((eop_seen == 1) & (packet_bytes_buffered_d1 != 0)) : // when packets are used if there are left over bytes buffered after eop is seen perform an extra write ((first_access == 0) & (start_byte_address != 0) & (short_last_access_enable == 1) & (start_byte_address >= length_counter[BYTE_ENABLE_WIDTH_LOG2-1:0]))); // non-packet transfer and there are extra bytes buffered so performing an extra access assign first_word_boundary_not_reached = (descriptor_length < BYTE_ENABLE_WIDTH) & // length is less than the word size (((descriptor_length & LSB_MASK) + (descriptor_address & LSB_MASK)) < BYTE_ENABLE_WIDTH); // start address + length doesn't reach the next word boundary (not used for packet transfers) assign write = ((fifo_empty == 0) | (extra_write == 1)) & (done == 0) & (stopped == 0); assign st_to_mm_adapter_enable = (done == 0) & (extra_write == 0); assign write_complete = (write == 1) & (master_waitrequest == 0) & (write_stall_from_byte_enable_generator == 0) & (write_stall_from_write_burst_control == 0); // writing still occuring and no reasons to prevent the write cycle from completing assign increment_address = ((write == 1) & (write_complete == 1)) & (stopped == 0); assign go = (snk_command_valid == 1) & (snk_command_ready == 1); // go with be one cycle since done will be set to 0 on the next cycle (length will be non-zero) assign snk_ready = (fifo_full == 0) & // need to make sure more streaming data doesn't come in when the FIFO is full (((PACKET_ENABLE == 1) & (snk_sop == 1) & (fifo_empty == 0)) != 1); // need to make sure that only one packet is buffered at any given time (sop will continue to be asserted until the buffer is written out) assign length_sync_reset = (((reset_taken == 1) | (early_termination_d1 == 1)) & (done == 0)) | (done_strobe == 1); // abrupt stop cases or packet transfer just completed (otherwise the length register will reach 0 by itself) assign fifo_write = (snk_ready == 1) & (snk_valid == 1); assign early_termination = (eop_enable == 1) & (write_complete == 1) & (length_counter < bytes_to_transfer); // packet transfer and the length counter is about to roll over so stop transfering assign stop_state = stopped; assign reset_delayed = (reset_taken == 0) & (sw_reset_in == 1); assign src_response_data = {{212{1'b0}}, done_strobe, early_termination_d1, response_error, stop_state, reset_delayed, response_actual_bytes_transferred}; /********************************************* END CONTROL AND COMBINATIONAL SIGNALS ************************************************************/ endmodule
/* Legal Notice: (C)2009 Altera Corporation. All rights reserved. Your use of Altera Corporation's design tools, logic functions and other software and tools, and its AMPP partner logic functions, and any output files any of the foregoing (including device programming or simulation files), and any associated documentation or information are expressly subject to the terms and conditions of the Altera Program License Subscription Agreement or other applicable license agreement, including, without limitation, that your use is for the sole purpose of programming logic devices manufactured by Altera and sold by Altera or its authorized distributors. Please refer to the applicable agreement for further details. */ /* Author: JCJB Date: 08/13/2010 Version 2.5 This write master module is responsible for taking in streaming data and writing the contents out to memory. It is controlled by a streaming sink port called the 'command port'. Any information that must be communicated back to a host such as an error in transfer is made available by the streaming source port called the 'response port'. There are various parameters to control the synthesis of this hardware either for functionality changes or speed/resource optimizations. Some of the parameters will be hidden in the component GUI since they are derived from some other parameters. When this master module is used in a MM to MM transfer disable the packet support since the packet hardware is not needed. In order to increase the Fmax you should enable only full accesses so that the unaligned access and byte enable blocks can be reduced to wires. Also only configure the length width to be as wide as you need as it will typically be the critical path of this module. Revision History: 1.0 Initial version which used a simple exported hand shake control scheme. 2.0 Added support for unaligned accesses, stride, and streaming. 2.1 Fixed control logic and removed the early termination enable logic (it's always on now so for packet transfers make sure the length register is programmed accordingly. 2.2 Added burst support. 2.3 Added additional conditional code for 8-bit case to avoid synthesis issues. 2.4 Corrected burst bug that prevented full bursts from being presented to the fabric. Corrected the stop/reset logic to ensure masters can be stopped or reset while idle. 2.5 Corrected a packet problem where EOP wasn't qualified by ready and valid. Added 64-bit addressing. */ // synthesis translate_off `timescale 1ns / 1ps // synthesis translate_on // turn off superfluous verilog processor warnings // altera message_level Level1 // altera message_off 10034 10035 10036 10037 10230 10240 10030 module write_master ( clk, reset, // descriptor commands sink port snk_command_data, snk_command_valid, snk_command_ready, // response source port src_response_data, src_response_valid, src_response_ready, // data path sink port snk_data, snk_valid, snk_ready, snk_sop, snk_eop, snk_empty, snk_error, // data path master port master_address, master_write, master_byteenable, master_writedata, master_waitrequest, master_burstcount ); parameter UNALIGNED_ACCESSES_ENABLE = 0; // when enabled allows transfers to begin from off word boundaries parameter ONLY_FULL_ACCESS_ENABLE = 0; // when enabled allows transfers to end with partial access, master achieve a much higher fmax when this is enabled parameter STRIDE_ENABLE = 0; // stride support can only be enabled when unaligned accesses is disabled parameter STRIDE_WIDTH = 1; // when stride support is enabled this value controls the rate in which the address increases (in words), the stride width + log2(byte enable width) + 1 cannot exceed address width parameter PACKET_ENABLE = 0; parameter ERROR_ENABLE = 0; parameter ERROR_WIDTH = 8; // must be between 1-8, this will only be enabled in the GUI when error enable is turned on parameter DATA_WIDTH = 32; parameter BYTE_ENABLE_WIDTH = 4; // set by the .tcl file (hidden in GUI) parameter BYTE_ENABLE_WIDTH_LOG2 = 2; // set by the .tcl file (hidden in GUI) parameter ADDRESS_WIDTH = 32; // set in the .tcl file (hidden in GUI) by the address span of the master parameter LENGTH_WIDTH = 32; // GUI setting with warning if ADDRESS_WIDTH < LENGTH_WIDTH (waste of logic for the length counter) parameter ACTUAL_BYTES_TRANSFERRED_WIDTH = 32; // GUI setting which can only be set when packet support is enabled (otherwise it'll be set to 32). A warning will be issued if overrun protection is enabled and this setting is less than the length width. parameter FIFO_DEPTH = 32; parameter FIFO_DEPTH_LOG2 = 5; // set by the .tcl file (hidden in GUI) parameter FIFO_SPEED_OPTIMIZATION = 1; // set by the .tcl file (hidden in GUI) The default will be on since it only impacts the latency of the entire transfer by 1 clock cycle and adds very little additional logic. parameter SYMBOL_WIDTH = 8; // set by the .tcl file (hidden in GUI) parameter NUMBER_OF_SYMBOLS = 4; // set by the .tcl file (hidden in GUI) parameter NUMBER_OF_SYMBOLS_LOG2 = 2; // set by the .tcl file (hidden in GUI) parameter BURST_ENABLE = 0; parameter MAX_BURST_COUNT = 2; // must be a power of 2, when BURST_ENABLE = 0 set the maximum burst count to 1 (automatically done in the .tcl file) parameter MAX_BURST_COUNT_WIDTH = 2; // set by the .tcl file (hidden in GUI) = log2(MAX_BURST_COUNT) + 1 parameter PROGRAMMABLE_BURST_ENABLE = 0; // when enabled the user must set the burst count, if 0 is set then the value MAX_BURST_COUNT will be used instead parameter BURST_WRAPPING_SUPPORT = 1; // will only be used when bursting is enabled. This cannot be enabled with programmable burst capabilities. Enabling it will make sure the master gets back into burst alignment (data width in bytes * maximum burst count alignment) localparam FIFO_USE_MEMORY = 1; // set to 0 to use LEs instead, not exposed since FPGAs have a lot of memory these days localparam BIG_ENDIAN_ACCESS = 0; // hiding this since it can blow your foot off if you are not careful and it's not tested. It's big endian with respect to the write master width and not necessarily to the width of the data type used by a host CPU. // handy mask for seperating the word address from the byte address bits, so for 32 bit masters this mask is 0x3, for 64 bit masters it'll be 0x7 localparam LSB_MASK = {BYTE_ENABLE_WIDTH_LOG2{1'b1}}; //need to buffer the empty, eop, sop, and error bits. If these are not needed then the logic will be synthesized away localparam FIFO_WIDTH = (DATA_WIDTH + 2 + NUMBER_OF_SYMBOLS_LOG2 + ERROR_WIDTH); // data, sop, eop, empty, and error bits localparam ADDRESS_INCREMENT_WIDTH = (BYTE_ENABLE_WIDTH_LOG2 + MAX_BURST_COUNT_WIDTH + STRIDE_WIDTH); localparam FIXED_STRIDE = 1'b1; // when stride isn't supported this will be the stride value used (i.e. sequential incrementing of the address) input clk; input reset; // descriptor commands sink port input [255:0] snk_command_data; input snk_command_valid; output reg snk_command_ready; // response source port output wire [255:0] src_response_data; output reg src_response_valid; input src_response_ready; // data path sink port input [DATA_WIDTH-1:0] snk_data; input snk_valid; output wire snk_ready; input snk_sop; input snk_eop; input [NUMBER_OF_SYMBOLS_LOG2-1:0] snk_empty; input [ERROR_WIDTH-1:0] snk_error; // master inputs and outputs input master_waitrequest; output wire [ADDRESS_WIDTH-1:0] master_address; output wire master_write; output wire [BYTE_ENABLE_WIDTH-1:0] master_byteenable; output wire [DATA_WIDTH-1:0] master_writedata; output wire [MAX_BURST_COUNT_WIDTH-1:0] master_burstcount; // internal wires and registers wire [63:0] descriptor_address; wire [31:0] descriptor_length; wire [15:0] descriptor_stride; wire descriptor_end_on_eop_enable; wire [7:0] descriptor_programmable_burst_count; reg [ADDRESS_WIDTH-1:0] address_counter; wire [ADDRESS_WIDTH-1:0] address; // unfiltered version of master_address wire write; // unfiltered version of master_write reg [LENGTH_WIDTH-1:0] length_counter; reg [STRIDE_WIDTH-1:0] stride_d1; wire [STRIDE_WIDTH-1:0] stride_amount; // either set to be stride_d1 or hardcoded to 1 depending on the parameterization reg descriptor_end_on_eop_enable_d1; reg [MAX_BURST_COUNT_WIDTH-1:0] programmable_burst_count_d1; wire [MAX_BURST_COUNT_WIDTH-1:0] maximum_burst_count; reg [BYTE_ENABLE_WIDTH_LOG2-1:0] start_byte_address; // used to determine how far out of alignement the master started reg first_access; // used to prevent extra writes when the unaligned access starts and ends during the same write wire first_word_boundary_not_reached; // set when the first access doesn't reach the next word boundary reg first_word_boundary_not_reached_d1; wire increment_address; // enable the address incrementing wire [ADDRESS_INCREMENT_WIDTH-1:0] address_increment; // amount of bytes to increment the address wire [ADDRESS_INCREMENT_WIDTH-1:0] bytes_to_transfer; wire short_first_access_enable; // when starting unaligned and the amount of data to transfer reaches the next word boundary wire short_last_access_enable; // when address is aligned (can be an unaligned buffer transfer) but the amount of data doesn't reach the next word boundary wire short_first_and_last_access_enable; // when starting unaligned and the amount of data to transfer doesn't reach the next word boundary wire [ADDRESS_INCREMENT_WIDTH-1:0] short_first_access_size; wire [ADDRESS_INCREMENT_WIDTH-1:0] short_last_access_size; wire [ADDRESS_INCREMENT_WIDTH-1:0] short_first_and_last_access_size; reg [ADDRESS_INCREMENT_WIDTH-1:0] bytes_to_transfer_mux; wire [FIFO_WIDTH-1:0] fifo_write_data; wire [FIFO_WIDTH-1:0] fifo_read_data; wire [FIFO_DEPTH_LOG2-1:0] fifo_used; wire fifo_write; wire fifo_read; wire fifo_empty; wire fifo_full; wire [DATA_WIDTH-1:0] fifo_read_data_rearranged; // if big endian support is enabled then this signal has the FIFO output byte lanes reversed wire go; wire done; reg done_d1; wire done_strobe; wire [DATA_WIDTH-1:0] buffered_data; wire [NUMBER_OF_SYMBOLS_LOG2-1:0] buffered_empty; wire buffered_eop; wire buffered_sop; // not wired to anything so synthesized away, included for debug purposes wire [ERROR_WIDTH-1:0] buffered_error; wire length_sync_reset; // syncronous reset for the length counter for eop support reg [ACTUAL_BYTES_TRANSFERRED_WIDTH-1:0] actual_bytes_transferred_counter; // width will be in the range of 1-32 wire [31:0] response_actual_bytes_transferred; wire early_termination; reg early_termination_d1; wire eop_enable; reg [ERROR_WIDTH-1:0] error; // SRFF so that we don't loose any errors if EOP doesn't arrive right away wire [7:0] response_error; // need to pad upper error bits with zeros if they are not present at the data streaming port wire sw_stop_in; wire sw_reset_in; reg stopped; // SRFF to make sure we don't attempt to stop in the middle of a transfer reg reset_taken; // FF to make sure we don't attempt to reset the master in the middle of a transfer wire reset_taken_from_write_burst_control; // in the middle of a burst greater than one, the burst control block will assert this signal after the burst copmletes, 'reset_taken' will use this signal wire stopped_from_write_burst_control; // in the middle of a burst greater than one, the burst control block will assert this signal after the burst completes, 'stopped' will use this signal wire stop_state; wire reset_delayed; wire write_complete; // handy signal for determining when a write has occured and completed wire write_stall_from_byte_enable_generator; // partial word access occuring which might take multiple write cycles to complete (or waitrequest has been asserted) wire write_stall_from_write_burst_control; // when there isn't enough data buffered to start a burst this signal will be asserted wire [BYTE_ENABLE_WIDTH-1:0] byteenable_masks [0:BYTE_ENABLE_WIDTH-1]; // a bunch of masks that will be provided to unsupported_byteenable wire [BYTE_ENABLE_WIDTH-1:0] unsupported_byteenable; // input into the byte enable generation block which will take the unsupported byte enable and chop it up into supported transfers wire [BYTE_ENABLE_WIDTH-1:0] supported_byteenable; // output from the byte enable generation block wire extra_write; // when asserted master_write will be asserted but the FIFO will not be popped since it will not contain any more data for the transfer wire st_to_mm_adapter_enable; wire [BYTE_ENABLE_WIDTH_LOG2:0] packet_beat_size; // number of bytes coming in from the data stream when packet support is enabled wire [BYTE_ENABLE_WIDTH_LOG2:0] packet_bytes_buffered; reg [BYTE_ENABLE_WIDTH_LOG2:0] packet_bytes_buffered_d1; // represents the number of bytes buffered in the ST to MM adapter (only applicable for unaligned accesses) reg eop_seen; // when the beat containing EOP has been popped from the fifo this bit will be set, it will be reset when done is asserted. It is used to determine if an extra write must occur (unaligned accesses only) /********************************************* REGISTERS ****************************************************************************************/ // registering the stride control bit always @ (posedge clk or posedge reset) begin if (reset) begin stride_d1 <= 0; end else if (go == 1) begin stride_d1 <= descriptor_stride[STRIDE_WIDTH-1:0]; end end // registering the end on eop bit (will be optimized away if packet support is disabled) always @ (posedge clk or posedge reset) begin if (reset) begin descriptor_end_on_eop_enable_d1 <= 1'b0; end else if (go == 1) begin descriptor_end_on_eop_enable_d1 <= descriptor_end_on_eop_enable; end end // registering the programmable burst count (will be optimized away if this support is disabled) always @ (posedge clk or posedge reset) begin if (reset) begin programmable_burst_count_d1 <= 0; end else if (go == 1) begin programmable_burst_count_d1 <= (descriptor_programmable_burst_count == 0)? MAX_BURST_COUNT : descriptor_programmable_burst_count; end end // master address increment counter always @ (posedge clk or posedge reset) begin if (reset) begin address_counter <= 0; end else begin if (go == 1) begin address_counter <= descriptor_address[ADDRESS_WIDTH-1:0]; end else if (increment_address == 1) begin address_counter <= address_counter + address_increment; end end end // master byte address, used to determine how far out of alignment the master began transfering data always @ (posedge clk or posedge reset) begin if (reset) begin start_byte_address <= 0; end else if (go == 1) begin start_byte_address <= descriptor_address[BYTE_ENABLE_WIDTH_LOG2-1:0]; end end // first_access will be asserted only for the first write of a transaction, this will be used to filter 'extra_write' for unaligned accesses always @ (posedge clk or posedge reset) begin if (reset) begin first_access <= 0; end else begin if (go == 1) begin first_access <= 1; end else if ((first_access == 1) & (increment_address == 1)) begin first_access <= 0; end end end // this register is used to determine if the first word boundary will be reached always @ (posedge clk or posedge reset) begin if (reset) begin first_word_boundary_not_reached_d1 <= 0; end else if (go == 1) begin first_word_boundary_not_reached_d1 <= first_word_boundary_not_reached; end end // master length logic, this will typically be the critical path followed by the FIFO always @ (posedge clk or posedge reset) begin if (reset) begin length_counter <= 0; end else begin if (length_sync_reset == 1) // when packet support is enabled the length register might roll over so this sync reset will prevent that from happening (it's also used when a soft reset is triggered) begin length_counter <= 0; // when EOP arrives need to stop counting, length=0 is the done condition end else if (go == 1) begin length_counter <= descriptor_length[LENGTH_WIDTH-1:0]; end else if (increment_address == 1) begin length_counter <= length_counter - bytes_to_transfer; // not using address_increment because stride might be enabled end end end // master actual bytes transferred logic, this will only be used when packet support is enabled, otherwise the value will be 0 always @ (posedge clk or posedge reset) begin if (reset) begin actual_bytes_transferred_counter <= 0; end else begin if ((go == 1) | (reset_taken == 1)) begin actual_bytes_transferred_counter <= 0; end else if(increment_address == 1) begin actual_bytes_transferred_counter <= actual_bytes_transferred_counter + bytes_to_transfer; end end end always @ (posedge clk or posedge reset) begin if (reset) begin done_d1 <= 1; // out of reset the master needs to be 'done' so that the done_strobe doesn't fire end else begin done_d1 <= done; end end always @ (posedge clk or posedge reset) begin if (reset) begin early_termination_d1 <= 0; end else begin early_termination_d1 <= early_termination; end end generate genvar l; for(l = 0; l < ERROR_WIDTH; l = l + 1) begin: error_SRFF always @ (posedge clk or posedge reset) begin if (reset) begin error[l] <= 0; end else begin if ((go == 1) | (reset_taken == 1)) begin error[l] <= 0; end else if ((buffered_error[l] == 1) & (done == 0)) begin error[l] <= 1; end end end end endgenerate always @ (posedge clk or posedge reset) begin if (reset) begin snk_command_ready <= 1; // have to start ready to take commands end else begin if (go == 1) begin snk_command_ready <= 0; end else if (((done == 1) & (src_response_valid == 0)) | (reset_taken == 1)) // need to make sure the response is popped before accepting more commands begin snk_command_ready <= 1; end end end always @ (posedge clk or posedge reset) begin if (reset) begin src_response_valid <= 0; end else begin if (reset_taken == 1) begin src_response_valid <= 0; end else if (done_strobe == 1) begin src_response_valid <= 1; // will be set only once end else if ((src_response_valid == 1) & (src_response_ready == 1)) begin src_response_valid <= 0; // will be reset only once when the dispatcher captures the data end end end always @ (posedge clk or posedge reset) begin if (reset) begin stopped <= 0; end else begin if ((sw_stop_in == 0) | (reset_taken == 1)) begin stopped <= 0; end else if ((sw_stop_in == 1) & (((write_complete == 1) & (stopped_from_write_burst_control == 1)) | ((snk_command_ready == 1) | (master_write == 0)))) begin stopped <= 1; end end end always @ (posedge clk or posedge reset) begin if (reset) begin reset_taken <= 0; end else begin reset_taken <= (sw_reset_in == 1) & (((write_complete == 1) & (reset_taken_from_write_burst_control == 1)) | ((snk_command_ready == 1) | (master_write == 0))); end end // eop_seen will be set when the last beat of a packet transfer has been popped from the fifo for ST to MM block flushing purposes (extra write) always @ (posedge clk or posedge reset) begin if (reset) begin eop_seen <= 0; end else begin if (done == 1) begin eop_seen <= 0; end else if ((buffered_eop == 1) & (write_complete == 1)) begin eop_seen <= 1; end end end // when unaligned accesses are enabled packet_bytes_buffered_d1 is the number of bytes buffered in the ST to MM block from the previous beat always @ (posedge clk or posedge reset) begin if (reset) begin packet_bytes_buffered_d1 <= 0; end else begin if (go == 1) begin packet_bytes_buffered_d1 <= 0; end else if (write_complete == 1) begin packet_bytes_buffered_d1 <= packet_bytes_buffered; end end end /********************************************* END REGISTERS ************************************************************************************/ /********************************************* MODULE INSTANTIATIONS ****************************************************************************/ /* buffered sop, eop, empty, error, data (in that order). sop, eop, and empty are only used when packet support is enabled, likewise error is only used when error support is enabled */ scfifo the_st_to_master_fifo ( .aclr (reset), .clock (clk), .data (fifo_write_data), .full (fifo_full), .empty (fifo_empty), .q (fifo_read_data), .rdreq (fifo_read), .usedw (fifo_used), .wrreq (fifo_write) ); defparam the_st_to_master_fifo.lpm_width = FIFO_WIDTH; defparam the_st_to_master_fifo.lpm_widthu = FIFO_DEPTH_LOG2; defparam the_st_to_master_fifo.lpm_numwords = FIFO_DEPTH; defparam the_st_to_master_fifo.lpm_showahead = "ON"; // slower but doesn't require complex control logic to time with waitrequest defparam the_st_to_master_fifo.use_eab = (FIFO_USE_MEMORY == 1)? "ON" : "OFF"; defparam the_st_to_master_fifo.add_ram_output_register = (FIFO_SPEED_OPTIMIZATION == 1)? "ON" : "OFF"; defparam the_st_to_master_fifo.underflow_checking = "OFF"; defparam the_st_to_master_fifo.overflow_checking = "OFF"; /* This module will barrelshift the data from the FIFO when unaligned accesses is enabled (we are using part of the FIFO word when off boundary). When unaligned accesses is disabled then the data passes as wires. The byte enable generator might require multiple cycles to perform partial accesses so a 'stall' bit is used (triggers a stall like waitrequest) */ ST_to_MM_Adapter the_ST_to_MM_Adapter ( .clk (clk), .reset (reset), .enable (st_to_mm_adapter_enable), .address (descriptor_address[ADDRESS_WIDTH-1:0]), .start (go), .waitrequest (master_waitrequest), .stall (write_stall_from_byte_enable_generator | write_stall_from_write_burst_control), .write_data (master_writedata), .fifo_data (buffered_data), .fifo_empty (fifo_empty), .fifo_readack (fifo_read) ); defparam the_ST_to_MM_Adapter.DATA_WIDTH = DATA_WIDTH; defparam the_ST_to_MM_Adapter.BYTEENABLE_WIDTH_LOG2 = BYTE_ENABLE_WIDTH_LOG2; defparam the_ST_to_MM_Adapter.ADDRESS_WIDTH = ADDRESS_WIDTH; defparam the_ST_to_MM_Adapter.UNALIGNED_ACCESS_ENABLE = UNALIGNED_ACCESSES_ENABLE; /* this block is responsible for presenting the fabric with supported byte enable combinations which can take multiple cycles, if full word only support is enabled this block will reduce to wires during synthesis */ byte_enable_generator the_byte_enable_generator ( .clk (clk), .reset (reset), .write_in (write), .byteenable_in (unsupported_byteenable), .waitrequest_out (write_stall_from_byte_enable_generator), .byteenable_out (supported_byteenable), .waitrequest_in (master_waitrequest | write_stall_from_write_burst_control) ); defparam the_byte_enable_generator.BYTEENABLE_WIDTH = BYTE_ENABLE_WIDTH; // this block will be used to drive write, address, and burstcount to the fabric write_burst_control the_write_burst_control ( .clk (clk), .reset (reset), .sw_reset (sw_reset_in), .sw_stop (sw_stop_in), .length (length_counter), .eop_enabled (descriptor_end_on_eop_enable_d1), .eop (snk_eop), .ready (snk_ready), .valid (snk_valid), .early_termination (early_termination), .address_in (address), .write_in (write), .max_burst_count (maximum_burst_count), .write_fifo_used ({fifo_full,fifo_used}), .waitrequest (master_waitrequest), .short_first_access_enable (short_first_access_enable), .short_last_access_enable (short_last_access_enable), .short_first_and_last_access_enable (short_first_and_last_access_enable), .address_out (master_address), .write_out (master_write), // filtered version of 'write' .burst_count (master_burstcount), .stall (write_stall_from_write_burst_control), .reset_taken (reset_taken_from_write_burst_control), .stopped (stopped_from_write_burst_control) ); defparam the_write_burst_control.BURST_ENABLE = BURST_ENABLE; defparam the_write_burst_control.BURST_COUNT_WIDTH = MAX_BURST_COUNT_WIDTH; defparam the_write_burst_control.WORD_SIZE = BYTE_ENABLE_WIDTH; defparam the_write_burst_control.WORD_SIZE_LOG2 = (DATA_WIDTH == 8)? 0 : BYTE_ENABLE_WIDTH_LOG2; // need to make sure log2(word size) is 0 instead of 1 here when the data width is 8 bits defparam the_write_burst_control.ADDRESS_WIDTH = ADDRESS_WIDTH; defparam the_write_burst_control.LENGTH_WIDTH = LENGTH_WIDTH; defparam the_write_burst_control.WRITE_FIFO_USED_WIDTH = FIFO_DEPTH_LOG2; defparam the_write_burst_control.BURST_WRAPPING_SUPPORT = BURST_WRAPPING_SUPPORT; /********************************************* END MODULE INSTANTIATIONS ************************************************************************/ /********************************************* CONTROL AND COMBINATIONAL SIGNALS ****************************************************************/ // breakout the descriptor information into more manageable names assign descriptor_address = {snk_command_data[123:92], snk_command_data[31:0]}; // 64-bit addressing support assign descriptor_length = snk_command_data[63:32]; assign descriptor_programmable_burst_count = snk_command_data[75:68]; assign descriptor_stride = snk_command_data[91:76]; assign descriptor_end_on_eop_enable = snk_command_data[64]; assign sw_stop_in = snk_command_data[66]; assign sw_reset_in = snk_command_data[67]; assign stride_amount = (STRIDE_ENABLE == 1)? stride_d1[STRIDE_WIDTH-1:0] : FIXED_STRIDE; // hardcoding to FIXED_STRIDE when stride capabilities are disabled assign maximum_burst_count = (PROGRAMMABLE_BURST_ENABLE == 1)? programmable_burst_count_d1 : MAX_BURST_COUNT; assign eop_enable = (PACKET_ENABLE == 1)? descriptor_end_on_eop_enable_d1 : 1'b0; // no eop or early termination support when packet support is disabled assign done_strobe = (done == 1) & (done_d1 == 0) & (reset_taken == 0); // set_done asserts the done register so this strobe fires when the last write completes assign response_error = (ERROR_ENABLE == 1)? error : 8'b00000000; assign response_actual_bytes_transferred = (PACKET_ENABLE == 1)? actual_bytes_transferred_counter : 32'h00000000; // transfer size amounts for special cases (starting unaligned, ending with a partial word, starting unaligned and ending with a partial word on the same write) assign short_first_access_size = BYTE_ENABLE_WIDTH - start_byte_address; assign short_last_access_size = (eop_enable == 1)? (packet_beat_size + packet_bytes_buffered_d1) : (length_counter & LSB_MASK); assign short_first_and_last_access_size = (eop_enable == 1)? (BYTE_ENABLE_WIDTH - buffered_empty) : (length_counter & LSB_MASK); /* special case transfer enables and counter increment values (address_counter, length_counter, and actual_bytes_transferred) short_first_access_enable is for transfers that start aligned but reach the next word boundary short_last_access_enable is for transfers that are not the first transfer but don't end with on a word boundary short_first_and_last_access_enable is for transfers that start and end with a single transfer and don't end on a word boundary (may or may not be aligned) */ generate if (UNALIGNED_ACCESSES_ENABLE == 1) begin // all three enables are mutually exclusive to provide one-hot encoding for the bytes to transfer mux assign short_first_access_enable = (start_byte_address != 0) & (first_access == 1) & ((eop_enable == 1)? ((start_byte_address + BYTE_ENABLE_WIDTH - buffered_empty) >= BYTE_ENABLE_WIDTH) : (first_word_boundary_not_reached_d1 == 0)); assign short_last_access_enable = (first_access == 0) & ((eop_enable == 1)? ((packet_beat_size + packet_bytes_buffered_d1) < BYTE_ENABLE_WIDTH): (length_counter < BYTE_ENABLE_WIDTH)); assign short_first_and_last_access_enable = (first_access == 1) & ((eop_enable == 1)? ((start_byte_address + BYTE_ENABLE_WIDTH - buffered_empty) < BYTE_ENABLE_WIDTH) : (first_word_boundary_not_reached_d1 == 1)); assign bytes_to_transfer = bytes_to_transfer_mux; assign address_increment = bytes_to_transfer_mux; // can't use stride when unaligned accesses are enabled end else if (ONLY_FULL_ACCESS_ENABLE == 1) begin assign short_first_access_enable = 0; assign short_last_access_enable = 0; assign short_first_and_last_access_enable = 0; assign bytes_to_transfer = BYTE_ENABLE_WIDTH; if (STRIDE_ENABLE == 1) begin assign address_increment = BYTE_ENABLE_WIDTH * stride_amount; // the byte address portion of the address_counter is grounded to make sure the address presented to the fabric is aligned end else begin assign address_increment = BYTE_ENABLE_WIDTH; // the byte address portion of the address_counter is grounded to make sure the address presented to the fabric is aligned end end else // must be aligned but can end with any number of bytes begin assign short_first_access_enable = 0; assign short_last_access_enable = (eop_enable == 1)? (buffered_eop == 1) : (length_counter < BYTE_ENABLE_WIDTH); // less than a word to transfer assign short_first_and_last_access_enable = 0; assign bytes_to_transfer = bytes_to_transfer_mux; if (STRIDE_ENABLE == 1) begin assign address_increment = BYTE_ENABLE_WIDTH * stride_amount; end else begin assign address_increment = BYTE_ENABLE_WIDTH; end end endgenerate // the control logic ensures this mux is one-hot with the fall through being the typical full word aligned access always @ (short_first_access_enable or short_last_access_enable or short_first_and_last_access_enable or short_first_access_size or short_last_access_size or short_first_and_last_access_size) begin case ({short_first_and_last_access_enable, short_last_access_enable, short_first_access_enable}) 3'b001: bytes_to_transfer_mux = short_first_access_size; // unaligned and reaches the next word boundary 3'b010: bytes_to_transfer_mux = short_last_access_size; // aligned and does not reach the next word boundary 3'b100: bytes_to_transfer_mux = short_first_and_last_access_size; // unaligned and does not reach the next word boundary default: bytes_to_transfer_mux = BYTE_ENABLE_WIDTH; // aligned and reaches the next word boundary (i.e. a full word transfer) endcase end // Avalon-ST is network order (a.k.a. big endian) so we need to reverse the symbols before jamming them into the FIFO, changing the symbol width to something other than 8 might break something... generate genvar i; for(i = 0; i < DATA_WIDTH; i = i + SYMBOL_WIDTH) // the data width is always a multiple of the symbol width begin: symbol_swap assign fifo_write_data[i +SYMBOL_WIDTH -1: i] = snk_data[DATA_WIDTH -i -1: DATA_WIDTH -i - SYMBOL_WIDTH]; end endgenerate // sticking the error, empty, eop, and eop bits at the top of the FIFO write data, flooring empty to zero when eop is not asserted (empty is only valid on eop cycles) assign fifo_write_data[FIFO_WIDTH-1:DATA_WIDTH] = {snk_error, (snk_eop == 1)? snk_empty:0, snk_sop, snk_eop}; // swap the bytes if big endian is enabled (remember that this isn't tested so use at your own risk and make sure you understand the software impact this has) generate if(BIG_ENDIAN_ACCESS == 1) begin genvar j; for(j=0; j < DATA_WIDTH; j = j + 8) begin: byte_swap assign fifo_read_data_rearranged[j +8 -1: j] = fifo_read_data[DATA_WIDTH -j -1: DATA_WIDTH -j - 8]; assign master_byteenable[j/8] = supported_byteenable[(DATA_WIDTH -j -1)/8]; end end else begin assign fifo_read_data_rearranged = fifo_read_data[DATA_WIDTH-1:0]; // little endian so no byte swapping necessary assign master_byteenable = supported_byteenable; // dito end endgenerate // fifo read data is in the format of {error, empty, sop, eop, data} with the following widths {ERROR_WIDTH, NUMBER_OF_SYMBOLS_LOG2, 1, 1, DATA_WIDTH} assign buffered_data = fifo_read_data_rearranged; assign buffered_error = fifo_read_data[DATA_WIDTH +2 +NUMBER_OF_SYMBOLS_LOG2 + ERROR_WIDTH -1: DATA_WIDTH +2 +NUMBER_OF_SYMBOLS_LOG2]; generate if (PACKET_ENABLE == 1) begin assign buffered_eop = fifo_read_data[DATA_WIDTH]; assign buffered_sop = fifo_read_data[DATA_WIDTH +1]; if (ONLY_FULL_ACCESS_ENABLE == 1) begin assign buffered_empty = 0; // ignore the empty signal and assume it was a full beat end else begin assign buffered_empty = fifo_read_data[DATA_WIDTH +2 +NUMBER_OF_SYMBOLS_LOG2 -1: DATA_WIDTH +2]; // empty is packed into the upper FIFO bits end end else begin assign buffered_empty = 0; assign buffered_eop = 0; assign buffered_sop = 0; end endgenerate /* Generating mask bits based on the size of the transfer before the unaligned access adjustment. This is based on the transfer size to determine how many byte enables would be asserted in the aligned case. Afterwards the byte enables will be shifted left based on how far out of alignment the address counter is (should only happen for the first transfer). If the data path is 32 bits wide then the following masks are generated: Transfer Size Index Mask 1 0 0001 2 1 0011 3 2 0111 4 3 1111 Note that the index is just the transfer size minus one */ generate if (BYTE_ENABLE_WIDTH > 1) begin genvar k; for (k = 0; k < BYTE_ENABLE_WIDTH; k = k + 1) begin: byte_enable_loop assign byteenable_masks[k] = { {(BYTE_ENABLE_WIDTH-k-1){1'b0}}, {(k+1){1'b1}} }; // Byte enable width - k zeros followed by k ones end end else begin assign byteenable_masks[0] = 1'b1; // will be stubbed at top level end endgenerate /* byteenable_mask is based on an aligned access determined by the transfer size. This value is then shifted to the left by the unaligned offset (first transfer only) to compensate for the unaligned offset so that the correct byte enables are enabled. When the accesses are aligned then no barrelshifting is needed and when full accesses are used then all byte enables will be asserted always. */ generate if (ONLY_FULL_ACCESS_ENABLE == 1) begin assign unsupported_byteenable = {BYTE_ENABLE_WIDTH{1'b1}}; // always full accesses so the byte enables are all ones end else if (UNALIGNED_ACCESSES_ENABLE == 0) begin assign unsupported_byteenable = byteenable_masks[bytes_to_transfer_mux - 1]; // aligned so no unaligned adjustment required end else // unaligned case begin assign unsupported_byteenable = byteenable_masks[bytes_to_transfer_mux - 1] << (address_counter & LSB_MASK); // barrelshift adjusts for unaligned start address end endgenerate generate if (BYTE_ENABLE_WIDTH > 1) begin assign address = address_counter & { {(ADDRESS_WIDTH-BYTE_ENABLE_WIDTH_LOG2){1'b1}}, {BYTE_ENABLE_WIDTH_LOG2{1'b0}} }; // masking LSBs (byte offsets) since the address counter might not be aligned for the first transfer end else begin assign address = address_counter; // don't need to mask any bits as the address will only advance one byte at a time end endgenerate assign done = (length_counter == 0) | ((PACKET_ENABLE == 1) & (eop_enable == 1) & (eop_seen == 1) & (extra_write == 0)); assign packet_beat_size = (eop_seen == 1) ? 0 : (BYTE_ENABLE_WIDTH - buffered_empty); // when the eop arrives we can't add more to packet_bytes_buffered_d1 assign packet_bytes_buffered = packet_beat_size + packet_bytes_buffered_d1 - bytes_to_transfer; // extra_write is only applicable when unaligned accesses are performed. This extra access gets the remaining data buffered in the ST to MM adapter block written to memory assign extra_write = (UNALIGNED_ACCESSES_ENABLE == 1) & (((PACKET_ENABLE == 1) & (eop_enable == 1))? ((eop_seen == 1) & (packet_bytes_buffered_d1 != 0)) : // when packets are used if there are left over bytes buffered after eop is seen perform an extra write ((first_access == 0) & (start_byte_address != 0) & (short_last_access_enable == 1) & (start_byte_address >= length_counter[BYTE_ENABLE_WIDTH_LOG2-1:0]))); // non-packet transfer and there are extra bytes buffered so performing an extra access assign first_word_boundary_not_reached = (descriptor_length < BYTE_ENABLE_WIDTH) & // length is less than the word size (((descriptor_length & LSB_MASK) + (descriptor_address & LSB_MASK)) < BYTE_ENABLE_WIDTH); // start address + length doesn't reach the next word boundary (not used for packet transfers) assign write = ((fifo_empty == 0) | (extra_write == 1)) & (done == 0) & (stopped == 0); assign st_to_mm_adapter_enable = (done == 0) & (extra_write == 0); assign write_complete = (write == 1) & (master_waitrequest == 0) & (write_stall_from_byte_enable_generator == 0) & (write_stall_from_write_burst_control == 0); // writing still occuring and no reasons to prevent the write cycle from completing assign increment_address = ((write == 1) & (write_complete == 1)) & (stopped == 0); assign go = (snk_command_valid == 1) & (snk_command_ready == 1); // go with be one cycle since done will be set to 0 on the next cycle (length will be non-zero) assign snk_ready = (fifo_full == 0) & // need to make sure more streaming data doesn't come in when the FIFO is full (((PACKET_ENABLE == 1) & (snk_sop == 1) & (fifo_empty == 0)) != 1); // need to make sure that only one packet is buffered at any given time (sop will continue to be asserted until the buffer is written out) assign length_sync_reset = (((reset_taken == 1) | (early_termination_d1 == 1)) & (done == 0)) | (done_strobe == 1); // abrupt stop cases or packet transfer just completed (otherwise the length register will reach 0 by itself) assign fifo_write = (snk_ready == 1) & (snk_valid == 1); assign early_termination = (eop_enable == 1) & (write_complete == 1) & (length_counter < bytes_to_transfer); // packet transfer and the length counter is about to roll over so stop transfering assign stop_state = stopped; assign reset_delayed = (reset_taken == 0) & (sw_reset_in == 1); assign src_response_data = {{212{1'b0}}, done_strobe, early_termination_d1, response_error, stop_state, reset_delayed, response_actual_bytes_transferred}; /********************************************* END CONTROL AND COMBINATIONAL SIGNALS ************************************************************/ endmodule
// (c) Copyright 2012-2013 Xilinx, Inc. All rights reserved. // // This file contains confidential and proprietary information // of Xilinx, Inc. and is protected under U.S. and // international copyright and other intellectual property // laws. // // DISCLAIMER // This disclaimer is not a license and does not grant any // rights to the materials distributed herewith. Except as // otherwise provided in a valid license issued to you by // Xilinx, and to the maximum extent permitted by applicable // law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // (2) Xilinx shall not be liable (whether in contract or tort, // including negligence, or under any other theory of // liability) for any loss or damage of any kind or nature // related to, arising under or in connection with these // materials, including for any direct, or any indirect, // special, incidental, or consequential loss or damage // (including loss of data, profits, goodwill, or any type of // loss or damage suffered as a result of any action brought // by a third party) even if such damage or loss was // reasonably foreseeable or Xilinx had been advised of the // possibility of the same. // // CRITICAL APPLICATIONS // Xilinx products are not designed or intended to be fail- // safe, or for use in any application requiring fail-safe // performance, such as life-support or safety devices or // systems, Class III medical devices, nuclear facilities, // applications related to the deployment of airbags, or any // other applications that could lead to death, personal // injury, or severe property or environmental damage // (individually and collectively, "Critical // Applications"). Customer assumes the sole risk and // liability of any use of Xilinx products in Critical // Applications, subject only to applicable laws and // regulations governing limitations on product liability. // // THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // Description: SRL based FIFO for AXIS/AXI Channels. //-------------------------------------------------------------------------- `timescale 1ps/1ps `default_nettype none (* DowngradeIPIdentifiedWarnings="yes" *) module axi_infrastructure_v1_1_0_axic_srl_fifo #( /////////////////////////////////////////////////////////////////////////////// // Parameter Definitions /////////////////////////////////////////////////////////////////////////////// parameter C_FAMILY = "virtex7", parameter integer C_PAYLOAD_WIDTH = 1, parameter integer C_FIFO_DEPTH = 16 // Range: 4-16. ) ( /////////////////////////////////////////////////////////////////////////////// // Port Declarations /////////////////////////////////////////////////////////////////////////////// input wire aclk, // Clock input wire aresetn, // Reset input wire [C_PAYLOAD_WIDTH-1:0] s_payload, // Input data input wire s_valid, // Input data valid output reg s_ready, // Input data ready output wire [C_PAYLOAD_WIDTH-1:0] m_payload, // Output data output reg m_valid, // Output data valid input wire m_ready // Output data ready ); //////////////////////////////////////////////////////////////////////////////// // Functions //////////////////////////////////////////////////////////////////////////////// // ceiling logb2 function integer f_clogb2 (input integer size); integer s; begin s = size; s = s - 1; for (f_clogb2=1; s>1; f_clogb2=f_clogb2+1) s = s >> 1; end endfunction // clogb2 //////////////////////////////////////////////////////////////////////////////// // Local parameters //////////////////////////////////////////////////////////////////////////////// localparam integer LP_LOG_FIFO_DEPTH = f_clogb2(C_FIFO_DEPTH); //////////////////////////////////////////////////////////////////////////////// // Wires/Reg declarations //////////////////////////////////////////////////////////////////////////////// reg [LP_LOG_FIFO_DEPTH-1:0] fifo_index; wire [4-1:0] fifo_addr; wire push; wire pop ; reg areset_r1; //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// always @(posedge aclk) begin areset_r1 <= ~aresetn; end always @(posedge aclk) begin if (~aresetn) begin fifo_index <= {LP_LOG_FIFO_DEPTH{1'b1}}; end else begin fifo_index <= push & ~pop ? fifo_index + 1'b1 : ~push & pop ? fifo_index - 1'b1 : fifo_index; end end assign push = s_valid & s_ready; always @(posedge aclk) begin if (~aresetn) begin s_ready <= 1'b0; end else begin s_ready <= areset_r1 ? 1'b1 : push & ~pop && (fifo_index == (C_FIFO_DEPTH - 2'd2)) ? 1'b0 : ~push & pop ? 1'b1 : s_ready; end end assign pop = m_valid & m_ready; always @(posedge aclk) begin if (~aresetn) begin m_valid <= 1'b0; end else begin m_valid <= ~push & pop && (fifo_index == {LP_LOG_FIFO_DEPTH{1'b0}}) ? 1'b0 : push & ~pop ? 1'b1 : m_valid; end end generate if (LP_LOG_FIFO_DEPTH < 4) begin : gen_pad_fifo_addr assign fifo_addr[0+:LP_LOG_FIFO_DEPTH] = fifo_index[LP_LOG_FIFO_DEPTH-1:0]; assign fifo_addr[LP_LOG_FIFO_DEPTH+:(4-LP_LOG_FIFO_DEPTH)] = {4-LP_LOG_FIFO_DEPTH{1'b0}}; end else begin : gen_fifo_addr assign fifo_addr[LP_LOG_FIFO_DEPTH-1:0] = fifo_index[LP_LOG_FIFO_DEPTH-1:0]; end endgenerate generate genvar i; for (i = 0; i < C_PAYLOAD_WIDTH; i = i + 1) begin : gen_data_bit SRL16E u_srl_fifo( .Q ( m_payload[i] ) , .A0 ( fifo_addr[0] ) , .A1 ( fifo_addr[1] ) , .A2 ( fifo_addr[2] ) , .A3 ( fifo_addr[3] ) , .CE ( push ) , .CLK ( aclk ) , .D ( s_payload[i] ) ); end endgenerate endmodule `default_nettype wire
// (c) Copyright 2012-2013 Xilinx, Inc. All rights reserved. // // This file contains confidential and proprietary information // of Xilinx, Inc. and is protected under U.S. and // international copyright and other intellectual property // laws. // // DISCLAIMER // This disclaimer is not a license and does not grant any // rights to the materials distributed herewith. Except as // otherwise provided in a valid license issued to you by // Xilinx, and to the maximum extent permitted by applicable // law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // (2) Xilinx shall not be liable (whether in contract or tort, // including negligence, or under any other theory of // liability) for any loss or damage of any kind or nature // related to, arising under or in connection with these // materials, including for any direct, or any indirect, // special, incidental, or consequential loss or damage // (including loss of data, profits, goodwill, or any type of // loss or damage suffered as a result of any action brought // by a third party) even if such damage or loss was // reasonably foreseeable or Xilinx had been advised of the // possibility of the same. // // CRITICAL APPLICATIONS // Xilinx products are not designed or intended to be fail- // safe, or for use in any application requiring fail-safe // performance, such as life-support or safety devices or // systems, Class III medical devices, nuclear facilities, // applications related to the deployment of airbags, or any // other applications that could lead to death, personal // injury, or severe property or environmental damage // (individually and collectively, "Critical // Applications"). Customer assumes the sole risk and // liability of any use of Xilinx products in Critical // Applications, subject only to applicable laws and // regulations governing limitations on product liability. // // THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // Description: SRL based FIFO for AXIS/AXI Channels. //-------------------------------------------------------------------------- `timescale 1ps/1ps `default_nettype none (* DowngradeIPIdentifiedWarnings="yes" *) module axi_infrastructure_v1_1_0_axic_srl_fifo #( /////////////////////////////////////////////////////////////////////////////// // Parameter Definitions /////////////////////////////////////////////////////////////////////////////// parameter C_FAMILY = "virtex7", parameter integer C_PAYLOAD_WIDTH = 1, parameter integer C_FIFO_DEPTH = 16 // Range: 4-16. ) ( /////////////////////////////////////////////////////////////////////////////// // Port Declarations /////////////////////////////////////////////////////////////////////////////// input wire aclk, // Clock input wire aresetn, // Reset input wire [C_PAYLOAD_WIDTH-1:0] s_payload, // Input data input wire s_valid, // Input data valid output reg s_ready, // Input data ready output wire [C_PAYLOAD_WIDTH-1:0] m_payload, // Output data output reg m_valid, // Output data valid input wire m_ready // Output data ready ); //////////////////////////////////////////////////////////////////////////////// // Functions //////////////////////////////////////////////////////////////////////////////// // ceiling logb2 function integer f_clogb2 (input integer size); integer s; begin s = size; s = s - 1; for (f_clogb2=1; s>1; f_clogb2=f_clogb2+1) s = s >> 1; end endfunction // clogb2 //////////////////////////////////////////////////////////////////////////////// // Local parameters //////////////////////////////////////////////////////////////////////////////// localparam integer LP_LOG_FIFO_DEPTH = f_clogb2(C_FIFO_DEPTH); //////////////////////////////////////////////////////////////////////////////// // Wires/Reg declarations //////////////////////////////////////////////////////////////////////////////// reg [LP_LOG_FIFO_DEPTH-1:0] fifo_index; wire [4-1:0] fifo_addr; wire push; wire pop ; reg areset_r1; //////////////////////////////////////////////////////////////////////////////// // BEGIN RTL //////////////////////////////////////////////////////////////////////////////// always @(posedge aclk) begin areset_r1 <= ~aresetn; end always @(posedge aclk) begin if (~aresetn) begin fifo_index <= {LP_LOG_FIFO_DEPTH{1'b1}}; end else begin fifo_index <= push & ~pop ? fifo_index + 1'b1 : ~push & pop ? fifo_index - 1'b1 : fifo_index; end end assign push = s_valid & s_ready; always @(posedge aclk) begin if (~aresetn) begin s_ready <= 1'b0; end else begin s_ready <= areset_r1 ? 1'b1 : push & ~pop && (fifo_index == (C_FIFO_DEPTH - 2'd2)) ? 1'b0 : ~push & pop ? 1'b1 : s_ready; end end assign pop = m_valid & m_ready; always @(posedge aclk) begin if (~aresetn) begin m_valid <= 1'b0; end else begin m_valid <= ~push & pop && (fifo_index == {LP_LOG_FIFO_DEPTH{1'b0}}) ? 1'b0 : push & ~pop ? 1'b1 : m_valid; end end generate if (LP_LOG_FIFO_DEPTH < 4) begin : gen_pad_fifo_addr assign fifo_addr[0+:LP_LOG_FIFO_DEPTH] = fifo_index[LP_LOG_FIFO_DEPTH-1:0]; assign fifo_addr[LP_LOG_FIFO_DEPTH+:(4-LP_LOG_FIFO_DEPTH)] = {4-LP_LOG_FIFO_DEPTH{1'b0}}; end else begin : gen_fifo_addr assign fifo_addr[LP_LOG_FIFO_DEPTH-1:0] = fifo_index[LP_LOG_FIFO_DEPTH-1:0]; end endgenerate generate genvar i; for (i = 0; i < C_PAYLOAD_WIDTH; i = i + 1) begin : gen_data_bit SRL16E u_srl_fifo( .Q ( m_payload[i] ) , .A0 ( fifo_addr[0] ) , .A1 ( fifo_addr[1] ) , .A2 ( fifo_addr[2] ) , .A3 ( fifo_addr[3] ) , .CE ( push ) , .CLK ( aclk ) , .D ( s_payload[i] ) ); end endgenerate endmodule `default_nettype wire
module reset_and_status #( parameter PIO_WIDTH=32 ) ( input clk, input resetn, output reg [PIO_WIDTH-1 : 0 ] pio_in, input [PIO_WIDTH-1 : 0 ] pio_out, input lock_kernel_pll, input fixedclk_locked, // pcie fixedclk lock input mem0_local_cal_success, input mem0_local_cal_fail, input mem0_local_init_done, input mem1_local_cal_success, input mem1_local_cal_fail, input mem1_local_init_done, output reg [1:0] mem_organization, output [1:0] mem_organization_export, output pll_reset, output reg sw_reset_n_out ); reg [1:0] pio_out_ddr_mode; reg pio_out_pll_reset; reg pio_out_sw_reset; reg [9:0] reset_count; always@(posedge clk or negedge resetn) if (!resetn) reset_count <= 10'b0; else if (pio_out_sw_reset) reset_count <= 10'b0; else if (!reset_count[9]) reset_count <= reset_count + 2'b01; // false paths set for pio_out_* (* altera_attribute = "-name SDC_STATEMENT \"set_false_path -to [get_registers *pio_out_*]\"" *) always@(posedge clk) begin pio_out_ddr_mode = pio_out[9:8]; pio_out_pll_reset = pio_out[30]; pio_out_sw_reset = pio_out[31]; end // false paths for pio_in - these are asynchronous (* altera_attribute = "-name SDC_STATEMENT \"set_false_path -to [get_registers *pio_in*]\"" *) always@(posedge clk) begin pio_in = { lock_kernel_pll, fixedclk_locked, 1'b0, 1'b0, mem1_local_cal_fail, mem0_local_cal_fail, mem1_local_cal_success, mem1_local_init_done, mem0_local_cal_success, mem0_local_init_done}; end (* altera_attribute = "-name SDC_STATEMENT \"set_false_path -from [get_registers *mem_organization*]\"" *) always@(posedge clk) mem_organization = pio_out_ddr_mode; assign mem_organization_export = mem_organization; assign pll_reset = pio_out_pll_reset; // Export sw kernel reset out of iface to connect to kernel always@(posedge clk) sw_reset_n_out = !(!reset_count[9] && (reset_count[8:0] != 0)); endmodule
module reset_and_status #( parameter PIO_WIDTH=32 ) ( input clk, input resetn, output reg [PIO_WIDTH-1 : 0 ] pio_in, input [PIO_WIDTH-1 : 0 ] pio_out, input lock_kernel_pll, input fixedclk_locked, // pcie fixedclk lock input mem0_local_cal_success, input mem0_local_cal_fail, input mem0_local_init_done, input mem1_local_cal_success, input mem1_local_cal_fail, input mem1_local_init_done, output reg [1:0] mem_organization, output [1:0] mem_organization_export, output pll_reset, output reg sw_reset_n_out ); reg [1:0] pio_out_ddr_mode; reg pio_out_pll_reset; reg pio_out_sw_reset; reg [9:0] reset_count; always@(posedge clk or negedge resetn) if (!resetn) reset_count <= 10'b0; else if (pio_out_sw_reset) reset_count <= 10'b0; else if (!reset_count[9]) reset_count <= reset_count + 2'b01; // false paths set for pio_out_* (* altera_attribute = "-name SDC_STATEMENT \"set_false_path -to [get_registers *pio_out_*]\"" *) always@(posedge clk) begin pio_out_ddr_mode = pio_out[9:8]; pio_out_pll_reset = pio_out[30]; pio_out_sw_reset = pio_out[31]; end // false paths for pio_in - these are asynchronous (* altera_attribute = "-name SDC_STATEMENT \"set_false_path -to [get_registers *pio_in*]\"" *) always@(posedge clk) begin pio_in = { lock_kernel_pll, fixedclk_locked, 1'b0, 1'b0, mem1_local_cal_fail, mem0_local_cal_fail, mem1_local_cal_success, mem1_local_init_done, mem0_local_cal_success, mem0_local_init_done}; end (* altera_attribute = "-name SDC_STATEMENT \"set_false_path -from [get_registers *mem_organization*]\"" *) always@(posedge clk) mem_organization = pio_out_ddr_mode; assign mem_organization_export = mem_organization; assign pll_reset = pio_out_pll_reset; // Export sw kernel reset out of iface to connect to kernel always@(posedge clk) sw_reset_n_out = !(!reset_count[9] && (reset_count[8:0] != 0)); endmodule
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: // Optimized Mux from 2:1 upto 16:1. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module generic_baseblocks_v2_1_0_mux # ( parameter C_FAMILY = "rtl", // FPGA Family. Current version: virtex6 or spartan6. parameter integer C_SEL_WIDTH = 4, // Data width for comparator. parameter integer C_DATA_WIDTH = 2 // Data width for comparator. ) ( input wire [C_SEL_WIDTH-1:0] S, input wire [(2**C_SEL_WIDTH)*C_DATA_WIDTH-1:0] A, output wire [C_DATA_WIDTH-1:0] O ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for bit vector. genvar bit_cnt; ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Instantiate or use RTL code ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" || C_SEL_WIDTH < 3 ) begin : USE_RTL assign O = A[(S)*C_DATA_WIDTH +: C_DATA_WIDTH]; end else begin : USE_FPGA wire [C_DATA_WIDTH-1:0] C; wire [C_DATA_WIDTH-1:0] D; // Lower half recursively. generic_baseblocks_v2_1_0_mux # ( .C_FAMILY (C_FAMILY), .C_SEL_WIDTH (C_SEL_WIDTH-1), .C_DATA_WIDTH (C_DATA_WIDTH) ) mux_c_inst ( .S (S[C_SEL_WIDTH-2:0]), .A (A[(2**(C_SEL_WIDTH-1))*C_DATA_WIDTH-1 : 0]), .O (C) ); // Upper half recursively. generic_baseblocks_v2_1_0_mux # ( .C_FAMILY (C_FAMILY), .C_SEL_WIDTH (C_SEL_WIDTH-1), .C_DATA_WIDTH (C_DATA_WIDTH) ) mux_d_inst ( .S (S[C_SEL_WIDTH-2:0]), .A (A[(2**C_SEL_WIDTH)*C_DATA_WIDTH-1 : (2**(C_SEL_WIDTH-1))*C_DATA_WIDTH]), .O (D) ); // Generate instantiated generic_baseblocks_v2_1_0_mux components as required. for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : NUM if ( C_SEL_WIDTH == 4 ) begin : USE_F8 MUXF8 muxf8_inst ( .I0 (C[bit_cnt]), .I1 (D[bit_cnt]), .S (S[C_SEL_WIDTH-1]), .O (O[bit_cnt]) ); end else if ( C_SEL_WIDTH == 3 ) begin : USE_F7 MUXF7 muxf7_inst ( .I0 (C[bit_cnt]), .I1 (D[bit_cnt]), .S (S[C_SEL_WIDTH-1]), .O (O[bit_cnt]) ); end // C_SEL_WIDTH end // end for bit_cnt end endgenerate endmodule
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: // Optimized Mux from 2:1 upto 16:1. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module generic_baseblocks_v2_1_0_mux # ( parameter C_FAMILY = "rtl", // FPGA Family. Current version: virtex6 or spartan6. parameter integer C_SEL_WIDTH = 4, // Data width for comparator. parameter integer C_DATA_WIDTH = 2 // Data width for comparator. ) ( input wire [C_SEL_WIDTH-1:0] S, input wire [(2**C_SEL_WIDTH)*C_DATA_WIDTH-1:0] A, output wire [C_DATA_WIDTH-1:0] O ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for bit vector. genvar bit_cnt; ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Instantiate or use RTL code ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" || C_SEL_WIDTH < 3 ) begin : USE_RTL assign O = A[(S)*C_DATA_WIDTH +: C_DATA_WIDTH]; end else begin : USE_FPGA wire [C_DATA_WIDTH-1:0] C; wire [C_DATA_WIDTH-1:0] D; // Lower half recursively. generic_baseblocks_v2_1_0_mux # ( .C_FAMILY (C_FAMILY), .C_SEL_WIDTH (C_SEL_WIDTH-1), .C_DATA_WIDTH (C_DATA_WIDTH) ) mux_c_inst ( .S (S[C_SEL_WIDTH-2:0]), .A (A[(2**(C_SEL_WIDTH-1))*C_DATA_WIDTH-1 : 0]), .O (C) ); // Upper half recursively. generic_baseblocks_v2_1_0_mux # ( .C_FAMILY (C_FAMILY), .C_SEL_WIDTH (C_SEL_WIDTH-1), .C_DATA_WIDTH (C_DATA_WIDTH) ) mux_d_inst ( .S (S[C_SEL_WIDTH-2:0]), .A (A[(2**C_SEL_WIDTH)*C_DATA_WIDTH-1 : (2**(C_SEL_WIDTH-1))*C_DATA_WIDTH]), .O (D) ); // Generate instantiated generic_baseblocks_v2_1_0_mux components as required. for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : NUM if ( C_SEL_WIDTH == 4 ) begin : USE_F8 MUXF8 muxf8_inst ( .I0 (C[bit_cnt]), .I1 (D[bit_cnt]), .S (S[C_SEL_WIDTH-1]), .O (O[bit_cnt]) ); end else if ( C_SEL_WIDTH == 3 ) begin : USE_F7 MUXF7 muxf7_inst ( .I0 (C[bit_cnt]), .I1 (D[bit_cnt]), .S (S[C_SEL_WIDTH-1]), .O (O[bit_cnt]) ); end // C_SEL_WIDTH end // end for bit_cnt end endgenerate endmodule
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: // Optimized Mux from 2:1 upto 16:1. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module generic_baseblocks_v2_1_0_mux # ( parameter C_FAMILY = "rtl", // FPGA Family. Current version: virtex6 or spartan6. parameter integer C_SEL_WIDTH = 4, // Data width for comparator. parameter integer C_DATA_WIDTH = 2 // Data width for comparator. ) ( input wire [C_SEL_WIDTH-1:0] S, input wire [(2**C_SEL_WIDTH)*C_DATA_WIDTH-1:0] A, output wire [C_DATA_WIDTH-1:0] O ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for bit vector. genvar bit_cnt; ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Instantiate or use RTL code ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" || C_SEL_WIDTH < 3 ) begin : USE_RTL assign O = A[(S)*C_DATA_WIDTH +: C_DATA_WIDTH]; end else begin : USE_FPGA wire [C_DATA_WIDTH-1:0] C; wire [C_DATA_WIDTH-1:0] D; // Lower half recursively. generic_baseblocks_v2_1_0_mux # ( .C_FAMILY (C_FAMILY), .C_SEL_WIDTH (C_SEL_WIDTH-1), .C_DATA_WIDTH (C_DATA_WIDTH) ) mux_c_inst ( .S (S[C_SEL_WIDTH-2:0]), .A (A[(2**(C_SEL_WIDTH-1))*C_DATA_WIDTH-1 : 0]), .O (C) ); // Upper half recursively. generic_baseblocks_v2_1_0_mux # ( .C_FAMILY (C_FAMILY), .C_SEL_WIDTH (C_SEL_WIDTH-1), .C_DATA_WIDTH (C_DATA_WIDTH) ) mux_d_inst ( .S (S[C_SEL_WIDTH-2:0]), .A (A[(2**C_SEL_WIDTH)*C_DATA_WIDTH-1 : (2**(C_SEL_WIDTH-1))*C_DATA_WIDTH]), .O (D) ); // Generate instantiated generic_baseblocks_v2_1_0_mux components as required. for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : NUM if ( C_SEL_WIDTH == 4 ) begin : USE_F8 MUXF8 muxf8_inst ( .I0 (C[bit_cnt]), .I1 (D[bit_cnt]), .S (S[C_SEL_WIDTH-1]), .O (O[bit_cnt]) ); end else if ( C_SEL_WIDTH == 3 ) begin : USE_F7 MUXF7 muxf7_inst ( .I0 (C[bit_cnt]), .I1 (D[bit_cnt]), .S (S[C_SEL_WIDTH-1]), .O (O[bit_cnt]) ); end // C_SEL_WIDTH end // end for bit_cnt end endgenerate endmodule
/* Legal Notice: (C)2009 Altera Corporation. All rights reserved. Your use of Altera Corporation's design tools, logic functions and other software and tools, and its AMPP partner logic functions, and any output files any of the foregoing (including device programming or simulation files), and any associated documentation or information are expressly subject to the terms and conditions of the Altera Program License Subscription Agreement or other applicable license agreement, including, without limitation, that your use is for the sole purpose of programming logic devices manufactured by Altera and sold by Altera or its authorized distributors. Please refer to the applicable agreement for further details. */ /* Author: JCJB Date: 06/29/2009 This block is used to breakout the 256 bit streaming ports to and from the write master. The information sent through the streaming ports is a bundle of wires and buses so it's fairly inconvenient to constantly refer to them by their position amungst the 256 lines. This block also provides a layer of abstraction since the descriptor buffers block has no clue what format the descriptors are in except that the 'go' bit is written to. This means that using this block you could move descriptor information around without affecting the top level dispatcher logic. 1.0 06/29/2009 - First version of this block of wires 1.1 02/15/2011 - Added read_early_done_enable to the wire breakout 1.2 11/15/2012 - Added in an additional 32 bits of address for extended descriptors */ // synthesis translate_off `timescale 1ns / 1ps // synthesis translate_on // turn off superfluous verilog processor warnings // altera message_level Level1 // altera message_off 10034 10035 10036 10037 10230 10240 10030 module read_signal_breakout ( read_command_data_in, // descriptor from the read FIFO read_command_data_out, // reformated descriptor to the read master // breakout of command information read_address, read_length, read_transmit_channel, read_generate_sop, read_generate_eop, read_park, read_transfer_complete_IRQ_mask, read_burst_count, // when 'ENHANCED_FEATURES' is 0 this will be driven to ground read_stride, // when 'ENHANCED_FEATURES' is 0 this will be driven to ground read_sequence_number, // when 'ENHANCED_FEATURES' is 0 this will be driven to ground read_transmit_error, read_early_done_enable, // additional control information that needs to go out asynchronously with the command data read_stop, read_sw_reset ); parameter DATA_WIDTH = 256; // 256 bits when enhanced settings are enabled otherwise 128 bits input [DATA_WIDTH-1:0] read_command_data_in; output wire [255:0] read_command_data_out; output wire [63:0] read_address; output wire [31:0] read_length; output wire [7:0] read_transmit_channel; output wire read_generate_sop; output wire read_generate_eop; output wire read_park; output wire read_transfer_complete_IRQ_mask; output wire [7:0] read_burst_count; output wire [15:0] read_stride; output wire [15:0] read_sequence_number; output wire [7:0] read_transmit_error; output wire read_early_done_enable; input read_stop; input read_sw_reset; assign read_address[31:0] = read_command_data_in[31:0]; assign read_length = read_command_data_in[95:64]; generate if (DATA_WIDTH == 256) begin assign read_early_done_enable = read_command_data_in[248]; assign read_transmit_error = read_command_data_in[247:240]; assign read_transmit_channel = read_command_data_in[231:224]; assign read_generate_sop = read_command_data_in[232]; assign read_generate_eop = read_command_data_in[233]; assign read_park = read_command_data_in[234]; assign read_transfer_complete_IRQ_mask = read_command_data_in[238]; assign read_burst_count = read_command_data_in[119:112]; assign read_stride = read_command_data_in[143:128]; assign read_sequence_number = read_command_data_in[111:96]; assign read_address[63:32] = read_command_data_in[191:160]; end else begin assign read_early_done_enable = read_command_data_in[120]; assign read_transmit_error = read_command_data_in[119:112]; assign read_transmit_channel = read_command_data_in[103:96]; assign read_generate_sop = read_command_data_in[104]; assign read_generate_eop = read_command_data_in[105]; assign read_park = read_command_data_in[106]; assign read_transfer_complete_IRQ_mask = read_command_data_in[110]; assign read_burst_count = 8'h00; assign read_stride = 16'h0000; assign read_sequence_number = 16'h0000; assign read_address[63:32] = 32'h00000000; end endgenerate // big concat statement to glue all the signals back together to go out to the read master (MSBs to LSBs) assign read_command_data_out = {{115{1'b0}}, // zero pad the upper 115 bits read_address[63:32], read_early_done_enable, read_transmit_error, read_stride, read_burst_count, read_sw_reset, read_stop, read_generate_eop, read_generate_sop, read_transmit_channel, read_length, read_address[31:0]}; endmodule
/* Legal Notice: (C)2009 Altera Corporation. All rights reserved. Your use of Altera Corporation's design tools, logic functions and other software and tools, and its AMPP partner logic functions, and any output files any of the foregoing (including device programming or simulation files), and any associated documentation or information are expressly subject to the terms and conditions of the Altera Program License Subscription Agreement or other applicable license agreement, including, without limitation, that your use is for the sole purpose of programming logic devices manufactured by Altera and sold by Altera or its authorized distributors. Please refer to the applicable agreement for further details. */ /* Author: JCJB Date: 06/29/2009 This block is used to breakout the 256 bit streaming ports to and from the write master. The information sent through the streaming ports is a bundle of wires and buses so it's fairly inconvenient to constantly refer to them by their position amungst the 256 lines. This block also provides a layer of abstraction since the descriptor buffers block has no clue what format the descriptors are in except that the 'go' bit is written to. This means that using this block you could move descriptor information around without affecting the top level dispatcher logic. 1.0 06/29/2009 - First version of this block of wires 1.1 02/15/2011 - Added read_early_done_enable to the wire breakout 1.2 11/15/2012 - Added in an additional 32 bits of address for extended descriptors */ // synthesis translate_off `timescale 1ns / 1ps // synthesis translate_on // turn off superfluous verilog processor warnings // altera message_level Level1 // altera message_off 10034 10035 10036 10037 10230 10240 10030 module read_signal_breakout ( read_command_data_in, // descriptor from the read FIFO read_command_data_out, // reformated descriptor to the read master // breakout of command information read_address, read_length, read_transmit_channel, read_generate_sop, read_generate_eop, read_park, read_transfer_complete_IRQ_mask, read_burst_count, // when 'ENHANCED_FEATURES' is 0 this will be driven to ground read_stride, // when 'ENHANCED_FEATURES' is 0 this will be driven to ground read_sequence_number, // when 'ENHANCED_FEATURES' is 0 this will be driven to ground read_transmit_error, read_early_done_enable, // additional control information that needs to go out asynchronously with the command data read_stop, read_sw_reset ); parameter DATA_WIDTH = 256; // 256 bits when enhanced settings are enabled otherwise 128 bits input [DATA_WIDTH-1:0] read_command_data_in; output wire [255:0] read_command_data_out; output wire [63:0] read_address; output wire [31:0] read_length; output wire [7:0] read_transmit_channel; output wire read_generate_sop; output wire read_generate_eop; output wire read_park; output wire read_transfer_complete_IRQ_mask; output wire [7:0] read_burst_count; output wire [15:0] read_stride; output wire [15:0] read_sequence_number; output wire [7:0] read_transmit_error; output wire read_early_done_enable; input read_stop; input read_sw_reset; assign read_address[31:0] = read_command_data_in[31:0]; assign read_length = read_command_data_in[95:64]; generate if (DATA_WIDTH == 256) begin assign read_early_done_enable = read_command_data_in[248]; assign read_transmit_error = read_command_data_in[247:240]; assign read_transmit_channel = read_command_data_in[231:224]; assign read_generate_sop = read_command_data_in[232]; assign read_generate_eop = read_command_data_in[233]; assign read_park = read_command_data_in[234]; assign read_transfer_complete_IRQ_mask = read_command_data_in[238]; assign read_burst_count = read_command_data_in[119:112]; assign read_stride = read_command_data_in[143:128]; assign read_sequence_number = read_command_data_in[111:96]; assign read_address[63:32] = read_command_data_in[191:160]; end else begin assign read_early_done_enable = read_command_data_in[120]; assign read_transmit_error = read_command_data_in[119:112]; assign read_transmit_channel = read_command_data_in[103:96]; assign read_generate_sop = read_command_data_in[104]; assign read_generate_eop = read_command_data_in[105]; assign read_park = read_command_data_in[106]; assign read_transfer_complete_IRQ_mask = read_command_data_in[110]; assign read_burst_count = 8'h00; assign read_stride = 16'h0000; assign read_sequence_number = 16'h0000; assign read_address[63:32] = 32'h00000000; end endgenerate // big concat statement to glue all the signals back together to go out to the read master (MSBs to LSBs) assign read_command_data_out = {{115{1'b0}}, // zero pad the upper 115 bits read_address[63:32], read_early_done_enable, read_transmit_error, read_stride, read_burst_count, read_sw_reset, read_stop, read_generate_eop, read_generate_sop, read_transmit_channel, read_length, read_address[31:0]}; endmodule
/* Legal Notice: (C)2009 Altera Corporation. All rights reserved. Your use of Altera Corporation's design tools, logic functions and other software and tools, and its AMPP partner logic functions, and any output files any of the foregoing (including device programming or simulation files), and any associated documentation or information are expressly subject to the terms and conditions of the Altera Program License Subscription Agreement or other applicable license agreement, including, without limitation, that your use is for the sole purpose of programming logic devices manufactured by Altera and sold by Altera or its authorized distributors. Please refer to the applicable agreement for further details. */ /* Author: JCJB Date: 06/29/2009 This block is used to breakout the 256 bit streaming ports to and from the write master. The information sent through the streaming ports is a bundle of wires and buses so it's fairly inconvenient to constantly refer to them by their position amungst the 256 lines. This block also provides a layer of abstraction since the descriptor buffers block has no clue what format the descriptors are in except that the 'go' bit is written to. This means that using this block you could move descriptor information around without affecting the top level dispatcher logic. 1.0 06/29/2009 - First version of this block of wires 1.1 02/15/2011 - Added read_early_done_enable to the wire breakout 1.2 11/15/2012 - Added in an additional 32 bits of address for extended descriptors */ // synthesis translate_off `timescale 1ns / 1ps // synthesis translate_on // turn off superfluous verilog processor warnings // altera message_level Level1 // altera message_off 10034 10035 10036 10037 10230 10240 10030 module read_signal_breakout ( read_command_data_in, // descriptor from the read FIFO read_command_data_out, // reformated descriptor to the read master // breakout of command information read_address, read_length, read_transmit_channel, read_generate_sop, read_generate_eop, read_park, read_transfer_complete_IRQ_mask, read_burst_count, // when 'ENHANCED_FEATURES' is 0 this will be driven to ground read_stride, // when 'ENHANCED_FEATURES' is 0 this will be driven to ground read_sequence_number, // when 'ENHANCED_FEATURES' is 0 this will be driven to ground read_transmit_error, read_early_done_enable, // additional control information that needs to go out asynchronously with the command data read_stop, read_sw_reset ); parameter DATA_WIDTH = 256; // 256 bits when enhanced settings are enabled otherwise 128 bits input [DATA_WIDTH-1:0] read_command_data_in; output wire [255:0] read_command_data_out; output wire [63:0] read_address; output wire [31:0] read_length; output wire [7:0] read_transmit_channel; output wire read_generate_sop; output wire read_generate_eop; output wire read_park; output wire read_transfer_complete_IRQ_mask; output wire [7:0] read_burst_count; output wire [15:0] read_stride; output wire [15:0] read_sequence_number; output wire [7:0] read_transmit_error; output wire read_early_done_enable; input read_stop; input read_sw_reset; assign read_address[31:0] = read_command_data_in[31:0]; assign read_length = read_command_data_in[95:64]; generate if (DATA_WIDTH == 256) begin assign read_early_done_enable = read_command_data_in[248]; assign read_transmit_error = read_command_data_in[247:240]; assign read_transmit_channel = read_command_data_in[231:224]; assign read_generate_sop = read_command_data_in[232]; assign read_generate_eop = read_command_data_in[233]; assign read_park = read_command_data_in[234]; assign read_transfer_complete_IRQ_mask = read_command_data_in[238]; assign read_burst_count = read_command_data_in[119:112]; assign read_stride = read_command_data_in[143:128]; assign read_sequence_number = read_command_data_in[111:96]; assign read_address[63:32] = read_command_data_in[191:160]; end else begin assign read_early_done_enable = read_command_data_in[120]; assign read_transmit_error = read_command_data_in[119:112]; assign read_transmit_channel = read_command_data_in[103:96]; assign read_generate_sop = read_command_data_in[104]; assign read_generate_eop = read_command_data_in[105]; assign read_park = read_command_data_in[106]; assign read_transfer_complete_IRQ_mask = read_command_data_in[110]; assign read_burst_count = 8'h00; assign read_stride = 16'h0000; assign read_sequence_number = 16'h0000; assign read_address[63:32] = 32'h00000000; end endgenerate // big concat statement to glue all the signals back together to go out to the read master (MSBs to LSBs) assign read_command_data_out = {{115{1'b0}}, // zero pad the upper 115 bits read_address[63:32], read_early_done_enable, read_transmit_error, read_stride, read_burst_count, read_sw_reset, read_stop, read_generate_eop, read_generate_sop, read_transmit_channel, read_length, read_address[31:0]}; endmodule
/* Legal Notice: (C)2009 Altera Corporation. All rights reserved. Your use of Altera Corporation's design tools, logic functions and other software and tools, and its AMPP partner logic functions, and any output files any of the foregoing (including device programming or simulation files), and any associated documentation or information are expressly subject to the terms and conditions of the Altera Program License Subscription Agreement or other applicable license agreement, including, without limitation, that your use is for the sole purpose of programming logic devices manufactured by Altera and sold by Altera or its authorized distributors. Please refer to the applicable agreement for further details. */ /* Author: JCJB Date: 06/29/2009 This block is used to breakout the 256 bit streaming ports to and from the write master. The information sent through the streaming ports is a bundle of wires and buses so it's fairly inconvenient to constantly refer to them by their position amungst the 256 lines. This block also provides a layer of abstraction since the descriptor buffers block has no clue what format the descriptors are in except that the 'go' bit is written to. This means that using this block you could move descriptor information around without affecting the top level dispatcher logic. 1.0 06/29/2009 - First version of this block of wires 1.1 02/15/2011 - Added read_early_done_enable to the wire breakout 1.2 11/15/2012 - Added in an additional 32 bits of address for extended descriptors */ // synthesis translate_off `timescale 1ns / 1ps // synthesis translate_on // turn off superfluous verilog processor warnings // altera message_level Level1 // altera message_off 10034 10035 10036 10037 10230 10240 10030 module read_signal_breakout ( read_command_data_in, // descriptor from the read FIFO read_command_data_out, // reformated descriptor to the read master // breakout of command information read_address, read_length, read_transmit_channel, read_generate_sop, read_generate_eop, read_park, read_transfer_complete_IRQ_mask, read_burst_count, // when 'ENHANCED_FEATURES' is 0 this will be driven to ground read_stride, // when 'ENHANCED_FEATURES' is 0 this will be driven to ground read_sequence_number, // when 'ENHANCED_FEATURES' is 0 this will be driven to ground read_transmit_error, read_early_done_enable, // additional control information that needs to go out asynchronously with the command data read_stop, read_sw_reset ); parameter DATA_WIDTH = 256; // 256 bits when enhanced settings are enabled otherwise 128 bits input [DATA_WIDTH-1:0] read_command_data_in; output wire [255:0] read_command_data_out; output wire [63:0] read_address; output wire [31:0] read_length; output wire [7:0] read_transmit_channel; output wire read_generate_sop; output wire read_generate_eop; output wire read_park; output wire read_transfer_complete_IRQ_mask; output wire [7:0] read_burst_count; output wire [15:0] read_stride; output wire [15:0] read_sequence_number; output wire [7:0] read_transmit_error; output wire read_early_done_enable; input read_stop; input read_sw_reset; assign read_address[31:0] = read_command_data_in[31:0]; assign read_length = read_command_data_in[95:64]; generate if (DATA_WIDTH == 256) begin assign read_early_done_enable = read_command_data_in[248]; assign read_transmit_error = read_command_data_in[247:240]; assign read_transmit_channel = read_command_data_in[231:224]; assign read_generate_sop = read_command_data_in[232]; assign read_generate_eop = read_command_data_in[233]; assign read_park = read_command_data_in[234]; assign read_transfer_complete_IRQ_mask = read_command_data_in[238]; assign read_burst_count = read_command_data_in[119:112]; assign read_stride = read_command_data_in[143:128]; assign read_sequence_number = read_command_data_in[111:96]; assign read_address[63:32] = read_command_data_in[191:160]; end else begin assign read_early_done_enable = read_command_data_in[120]; assign read_transmit_error = read_command_data_in[119:112]; assign read_transmit_channel = read_command_data_in[103:96]; assign read_generate_sop = read_command_data_in[104]; assign read_generate_eop = read_command_data_in[105]; assign read_park = read_command_data_in[106]; assign read_transfer_complete_IRQ_mask = read_command_data_in[110]; assign read_burst_count = 8'h00; assign read_stride = 16'h0000; assign read_sequence_number = 16'h0000; assign read_address[63:32] = 32'h00000000; end endgenerate // big concat statement to glue all the signals back together to go out to the read master (MSBs to LSBs) assign read_command_data_out = {{115{1'b0}}, // zero pad the upper 115 bits read_address[63:32], read_early_done_enable, read_transmit_error, read_stride, read_burst_count, read_sw_reset, read_stop, read_generate_eop, read_generate_sop, read_transmit_channel, read_length, read_address[31:0]}; endmodule
/* Legal Notice: (C)2009 Altera Corporation. All rights reserved. Your use of Altera Corporation's design tools, logic functions and other software and tools, and its AMPP partner logic functions, and any output files any of the foregoing (including device programming or simulation files), and any associated documentation or information are expressly subject to the terms and conditions of the Altera Program License Subscription Agreement or other applicable license agreement, including, without limitation, that your use is for the sole purpose of programming logic devices manufactured by Altera and sold by Altera or its authorized distributors. Please refer to the applicable agreement for further details. */ /* Author: JCJB Date: 07/01/2009 This block is responsible for communicating with the host processor/ descriptor prefetching master block. It uses FIFOs to buffer descriptors to keep the read and write masters operating without intervention from a host processor. This block is comprised of three main blocks: 1) Descriptor buffer 2) CSR 3) Response The descriptor buffer recieves descriptors from a host/prefetcher and registers the incoming byte lanes. When the descriptor 'go' bit has been written, the descriptor is committed to the read/write descriptor buffers. From there the descriptors are exposed to the read and write masters without intervention from the host. The descriptor port is either 128 or 256 bits wide depending on whether or not the enhanced features setting has been enabled. Since the port is write only minimial logic will be created in the fabric to adapt the byte enables for narrow masters connecting to this port. This port contains a single address so address bits are exposed to the fabric. The CSR (control-status register) block is used to provide information back to the host as well as allow the SGDMA to be controlled on a non-descriptor basis. The host driver should be written to mostly interact with this port as interrupts and status information is accessible from this block. The optional response block is used to feed information on a per descriptor basis back to the host or prefetching descriptor master. In most cases the port will be used for sharing infomation about ST->MM transfers. Communication between this block and the masters is performed using pairs of Avalon-ST port connections. When the SGDMA is setup for MM->ST then the write master port connections are removed and visa vera for ST->MM and the read master. For more detailed information refer to "SGDMA_dispatcher_ug.pdf" for more details. Author: JCJB Date: 08/13/2010 1.0 - Initial release 1.1 - Changed the stopped and resetting logic to correctly reflect the state of the hardware (this block and the masters). 1.2 - Added stop descriptors logic */ // synthesis translate_off `timescale 1ns / 1ps // synthesis translate_on // turn off superfluous verilog processor warnings // altera message_level Level1 // altera message_off 10034 10035 10036 10037 10230 10240 10030 module dispatcher ( clk, reset, // 128/256 bit write only port for feeding the dispatcher descriptors, no address since it's only one word wide, blocking when too many descriptors are buffered descriptor_writedata, descriptor_byteenable, descriptor_write, descriptor_waitrequest, // control and status port, 32 bits wide with a read latency of 2 and non-blocking csr_writedata, csr_byteenable, csr_write, csr_readdata, csr_read, csr_address, // 4 addresses when ENHANCED_FEATURES is off (zero) otherwise 8 addresses are available csr_irq, // only available if the response port is not an ST source (in that case the SGDMA pre-fetching block will issue interrupts) // response slave port (when "RESPONSE_PORT" is set to 0), 32 bits wide, read only, and a read latency of 3 cycles mm_response_readdata, mm_response_read, mm_response_address, // only two addresses mm_response_byteenable, // last byte read pops the response FIFO mm_response_waitrequest, // response source port (when "RESPONSE_PORT" is set to 1), src_response_data, src_response_valid, src_response_ready, // write master source port (sends commands to write master) src_write_master_data, src_write_master_valid, src_write_master_ready, // write master sink port (recieves response from write master) snk_write_master_data, snk_write_master_valid, snk_write_master_ready, // read master source port (sends commands to read master) src_read_master_data, src_read_master_valid, src_read_master_ready, // read master sink port (recieves response from the read master) snk_read_master_data, snk_read_master_valid, snk_read_master_ready ); // y = log2(x) function integer log2; input integer x; begin x = x-1; for(log2=0; x>0; log2=log2+1) x = x>>1; end endfunction parameter MODE = 0; // 0 for MM->MM, 1 for MM->ST, 2 for ST->MM parameter RESPONSE_PORT = 0; // 0 for MM, 1 for ST, 2 for Disabled // normally disabled for all but ST->MM transfers parameter DESCRIPTOR_FIFO_DEPTH = 128; // 16-1024 in powers of 2 parameter ENHANCED_FEATURES = 1; // 1 for Enabled, 0 for Disabled parameter DESCRIPTOR_WIDTH = 256; // 256 when enhanced mode is on, 128 for off (needs to be controlled by callback since it influences data width) parameter DESCRIPTOR_BYTEENABLE_WIDTH = 32; // 32 when enhanced mode is on, 16 for off (needs to be controlled by callback since it influences byte enable width) parameter CSR_ADDRESS_WIDTH = 3; // always 3 bits wide localparam RESPONSE_FIFO_DEPTH = 2 * DESCRIPTOR_FIFO_DEPTH; localparam DESCRIPTOR_FIFO_DEPTH_LOG2 = log2(DESCRIPTOR_FIFO_DEPTH); localparam RESPONSE_FIFO_DEPTH_LOG2 = log2(RESPONSE_FIFO_DEPTH); input clk; input reset; input [DESCRIPTOR_WIDTH-1:0] descriptor_writedata; input [DESCRIPTOR_BYTEENABLE_WIDTH-1:0] descriptor_byteenable; input descriptor_write; output wire descriptor_waitrequest; input [31:0] csr_writedata; input [3:0] csr_byteenable; input csr_write; output wire [31:0] csr_readdata; input csr_read; input [CSR_ADDRESS_WIDTH-1:0] csr_address; output wire csr_irq; // Used by a host with a master (like Nios II) output wire [31:0] mm_response_readdata; input mm_response_read; input mm_response_address; input [3:0] mm_response_byteenable; output wire mm_response_waitrequest; // Used by a pre-fetching master output wire [255:0] src_response_data; // making wide in case we need to jam more signals in here, unnecessary bits will be grounded/optimized away output wire src_response_valid; input src_response_ready; output wire [255:0] src_write_master_data; // don't know how many bits the master will use, unnecessary bits will be grounded/optimized away output wire src_write_master_valid; input src_write_master_ready; input [255:0] snk_write_master_data; // might need to jam more bits in...... input snk_write_master_valid; output wire snk_write_master_ready; output wire [255:0] src_read_master_data; // don't know how many bits the master will use, unnecessary bits will be grounded/optimized away output wire src_read_master_valid; input src_read_master_ready; input [255:0] snk_read_master_data; // might need to jam more bits in...... input snk_read_master_valid; output wire snk_read_master_ready; /* Internal wires and registers */ // descriptor information wire read_command_valid; wire read_command_ready; wire [255:0] read_command_data; wire read_command_empty; wire read_command_full; wire [DESCRIPTOR_FIFO_DEPTH_LOG2:0] read_command_used; // true used signal so extra MSB is included wire write_command_valid; wire write_command_ready; wire [255:0] write_command_data; wire write_command_empty; wire write_command_full; wire [DESCRIPTOR_FIFO_DEPTH_LOG2:0] write_command_used; // true used signal so extra MSB is included wire [31:0] sequence_number; wire transfer_complete_IRQ_mask; wire early_termination_IRQ_mask; wire [7:0] error_IRQ_mask; wire descriptor_buffer_empty; wire descriptor_buffer_full; wire [15:0] write_descriptor_watermark; wire [15:0] read_descriptor_watermark; wire [31:0] descriptor_watermark; wire busy; wire done; wire done_strobe; wire stop_issuing_commands; wire stop; wire sw_reset; wire stop_on_error; wire stop_on_early_termination; wire stop_descriptors; wire reset_stalled; wire master_stop_state; wire descriptors_stop_state; wire stop_state; wire stopped_on_error; wire stopped_on_early_termination; wire response_fifo_full; wire response_fifo_empty; wire [15:0] response_watermark; wire [7:0] response_error; wire response_early_termination; wire [31:0] response_actual_bytes_transferred; /************************************************ REGISTERS *******************************************************/ /********************************************** END REGISTERS *****************************************************/ /******************************************* MODULE DECLERATIONS **************************************************/ // the descriptor buffers block instantiates the descriptor FIFOs and handshaking logic with the master command ports descriptor_buffers the_descriptor_buffers ( .clk (clk), .reset (reset), .writedata (descriptor_writedata), .write (descriptor_write), .byteenable (descriptor_byteenable), .waitrequest (descriptor_waitrequest), .read_command_valid (read_command_valid), .read_command_ready (read_command_ready), .read_command_data (read_command_data), .read_command_empty (read_command_empty), .read_command_full (read_command_full), .read_command_used (read_command_used), .write_command_valid (write_command_valid), .write_command_ready (write_command_ready), .write_command_data (write_command_data), .write_command_empty (write_command_empty), .write_command_full (write_command_full), .write_command_used (write_command_used), .stop_issuing_commands (stop_issuing_commands), .stop (stop), .sw_reset (sw_reset), .sequence_number (sequence_number), .transfer_complete_IRQ_mask (transfer_complete_IRQ_mask), .early_termination_IRQ_mask (early_termination_IRQ_mask), .error_IRQ_mask (error_IRQ_mask) ); defparam the_descriptor_buffers.MODE = MODE; defparam the_descriptor_buffers.DATA_WIDTH = DESCRIPTOR_WIDTH; defparam the_descriptor_buffers.BYTE_ENABLE_WIDTH = DESCRIPTOR_WIDTH/8; defparam the_descriptor_buffers.FIFO_DEPTH = DESCRIPTOR_FIFO_DEPTH; defparam the_descriptor_buffers.FIFO_DEPTH_LOG2 = DESCRIPTOR_FIFO_DEPTH_LOG2; // Control and status registers (and interrupts when a host connects directly to this block) csr_block the_csr_block ( .clk (clk), .reset (reset), .csr_writedata (csr_writedata), .csr_write (csr_write), .csr_byteenable (csr_byteenable), .csr_readdata (csr_readdata), .csr_read (csr_read), .csr_address (csr_address), .csr_irq (csr_irq), .done_strobe (done_strobe), .busy (busy), .descriptor_buffer_empty (descriptor_buffer_empty), .descriptor_buffer_full (descriptor_buffer_full), .stop_state (stop_state), .stopped_on_error (stopped_on_error), .stopped_on_early_termination (stopped_on_early_termination), .stop_descriptors (stop_descriptors), .reset_stalled (reset_stalled), // from the master(s) to tell the CSR block that it's still resetting .stop (stop), .sw_reset (sw_reset), .stop_on_error (stop_on_error), .stop_on_early_termination (stop_on_early_termination), .sequence_number (sequence_number), .descriptor_watermark (descriptor_watermark), .response_watermark (response_watermark), .response_buffer_empty (response_fifo_empty), .response_buffer_full (response_fifo_full), .transfer_complete_IRQ_mask (transfer_complete_IRQ_mask), .error_IRQ_mask (error_IRQ_mask), .early_termination_IRQ_mask (early_termination_IRQ_mask), .error (response_error), .early_termination (response_early_termination) ); defparam the_csr_block.ADDRESS_WIDTH = CSR_ADDRESS_WIDTH; // Optional response port. When using a directly connected host it'll be a slave port and using a pre-fetching descriptor master it will be a streaming source port. response_block the_response_block ( .clk (clk), .reset (reset), .mm_response_readdata (mm_response_readdata), .mm_response_read (mm_response_read), .mm_response_address (mm_response_address), .mm_response_byteenable (mm_response_byteenable), .mm_response_waitrequest (mm_response_waitrequest), .src_response_data (src_response_data), .src_response_valid (src_response_valid), .src_response_ready (src_response_ready), .sw_reset (sw_reset), .response_watermark (response_watermark), .response_fifo_full (response_fifo_full), .response_fifo_empty (response_fifo_empty), .done_strobe (done_strobe), .actual_bytes_transferred (response_actual_bytes_transferred), .error (response_error), .early_termination (response_early_termination), .transfer_complete_IRQ_mask (transfer_complete_IRQ_mask), .error_IRQ_mask (error_IRQ_mask), .early_termination_IRQ_mask (early_termination_IRQ_mask), .descriptor_buffer_full (descriptor_buffer_full) ); defparam the_response_block.RESPONSE_PORT = RESPONSE_PORT; defparam the_response_block.FIFO_DEPTH = RESPONSE_FIFO_DEPTH; defparam the_response_block.FIFO_DEPTH_LOG2 = RESPONSE_FIFO_DEPTH_LOG2; /***************************************** END MODULE DECLERATIONS ************************************************/ /****************************************** COMBINATIONAL SIGNALS *************************************************/ // this block issues the commands so it's always ready for a response. The response FIFO fill level will be used to // make sure additional ST-->MM commands are not issued if there is no room to catch the response. assign snk_write_master_ready = 1'b1; assign snk_read_master_ready = 1'b1; assign done = (MODE == 1)? snk_read_master_ready : snk_write_master_ready; assign done_strobe = (MODE == 1)? (snk_read_master_ready & snk_read_master_valid) : (snk_write_master_ready & snk_write_master_valid); assign stop_issuing_commands = (response_fifo_full == 1) | (stop_descriptors == 1); assign src_write_master_valid = write_command_valid; assign write_command_ready = src_write_master_ready; assign src_write_master_data = write_command_data; assign src_read_master_valid = read_command_valid; assign read_command_ready = src_read_master_ready; assign src_read_master_data = read_command_data; assign busy = (read_command_empty == 0) | (write_command_empty == 0) | // still have descriptors buffered in the FIFOs (done == 0); // current transfer is still occuring assign descriptor_buffer_empty = (read_command_empty == 1) & (write_command_empty == 1); assign descriptor_buffer_full = (read_command_full == 1) | (write_command_full == 1); assign write_descriptor_watermark = 16'h0000 | write_command_used; // zero padding the upper unused bits assign read_descriptor_watermark = 16'h0000 | read_command_used; // zero padding the upper unused bits assign descriptor_watermark = {write_descriptor_watermark, read_descriptor_watermark}; assign reset_stalled = snk_read_master_data[0] | snk_write_master_data[32]; assign master_stop_state = ((MODE == 0)? (snk_read_master_data[1] & snk_write_master_data[33]) : (MODE == 1)? snk_read_master_data[1] : snk_write_master_data[33]); assign descriptors_stop_state = (stop_descriptors == 1) & ((MODE == 0)? ((src_read_master_ready == 1) & (src_write_master_ready == 1)) : (MODE == 1)? (src_read_master_ready == 1) : (src_write_master_ready == 1)); assign stop_state = (master_stop_state == 1) | (descriptors_stop_state == 1); assign response_actual_bytes_transferred = snk_write_master_data[31:0]; assign response_error = snk_write_master_data[41:34]; assign response_early_termination = snk_write_master_data[42]; /**************************************** END COMBINATIONAL SIGNALS ***********************************************/ endmodule
/* Legal Notice: (C)2009 Altera Corporation. All rights reserved. Your use of Altera Corporation's design tools, logic functions and other software and tools, and its AMPP partner logic functions, and any output files any of the foregoing (including device programming or simulation files), and any associated documentation or information are expressly subject to the terms and conditions of the Altera Program License Subscription Agreement or other applicable license agreement, including, without limitation, that your use is for the sole purpose of programming logic devices manufactured by Altera and sold by Altera or its authorized distributors. Please refer to the applicable agreement for further details. */ /* Author: JCJB Date: 07/01/2009 This block is responsible for communicating with the host processor/ descriptor prefetching master block. It uses FIFOs to buffer descriptors to keep the read and write masters operating without intervention from a host processor. This block is comprised of three main blocks: 1) Descriptor buffer 2) CSR 3) Response The descriptor buffer recieves descriptors from a host/prefetcher and registers the incoming byte lanes. When the descriptor 'go' bit has been written, the descriptor is committed to the read/write descriptor buffers. From there the descriptors are exposed to the read and write masters without intervention from the host. The descriptor port is either 128 or 256 bits wide depending on whether or not the enhanced features setting has been enabled. Since the port is write only minimial logic will be created in the fabric to adapt the byte enables for narrow masters connecting to this port. This port contains a single address so address bits are exposed to the fabric. The CSR (control-status register) block is used to provide information back to the host as well as allow the SGDMA to be controlled on a non-descriptor basis. The host driver should be written to mostly interact with this port as interrupts and status information is accessible from this block. The optional response block is used to feed information on a per descriptor basis back to the host or prefetching descriptor master. In most cases the port will be used for sharing infomation about ST->MM transfers. Communication between this block and the masters is performed using pairs of Avalon-ST port connections. When the SGDMA is setup for MM->ST then the write master port connections are removed and visa vera for ST->MM and the read master. For more detailed information refer to "SGDMA_dispatcher_ug.pdf" for more details. Author: JCJB Date: 08/13/2010 1.0 - Initial release 1.1 - Changed the stopped and resetting logic to correctly reflect the state of the hardware (this block and the masters). 1.2 - Added stop descriptors logic */ // synthesis translate_off `timescale 1ns / 1ps // synthesis translate_on // turn off superfluous verilog processor warnings // altera message_level Level1 // altera message_off 10034 10035 10036 10037 10230 10240 10030 module dispatcher ( clk, reset, // 128/256 bit write only port for feeding the dispatcher descriptors, no address since it's only one word wide, blocking when too many descriptors are buffered descriptor_writedata, descriptor_byteenable, descriptor_write, descriptor_waitrequest, // control and status port, 32 bits wide with a read latency of 2 and non-blocking csr_writedata, csr_byteenable, csr_write, csr_readdata, csr_read, csr_address, // 4 addresses when ENHANCED_FEATURES is off (zero) otherwise 8 addresses are available csr_irq, // only available if the response port is not an ST source (in that case the SGDMA pre-fetching block will issue interrupts) // response slave port (when "RESPONSE_PORT" is set to 0), 32 bits wide, read only, and a read latency of 3 cycles mm_response_readdata, mm_response_read, mm_response_address, // only two addresses mm_response_byteenable, // last byte read pops the response FIFO mm_response_waitrequest, // response source port (when "RESPONSE_PORT" is set to 1), src_response_data, src_response_valid, src_response_ready, // write master source port (sends commands to write master) src_write_master_data, src_write_master_valid, src_write_master_ready, // write master sink port (recieves response from write master) snk_write_master_data, snk_write_master_valid, snk_write_master_ready, // read master source port (sends commands to read master) src_read_master_data, src_read_master_valid, src_read_master_ready, // read master sink port (recieves response from the read master) snk_read_master_data, snk_read_master_valid, snk_read_master_ready ); // y = log2(x) function integer log2; input integer x; begin x = x-1; for(log2=0; x>0; log2=log2+1) x = x>>1; end endfunction parameter MODE = 0; // 0 for MM->MM, 1 for MM->ST, 2 for ST->MM parameter RESPONSE_PORT = 0; // 0 for MM, 1 for ST, 2 for Disabled // normally disabled for all but ST->MM transfers parameter DESCRIPTOR_FIFO_DEPTH = 128; // 16-1024 in powers of 2 parameter ENHANCED_FEATURES = 1; // 1 for Enabled, 0 for Disabled parameter DESCRIPTOR_WIDTH = 256; // 256 when enhanced mode is on, 128 for off (needs to be controlled by callback since it influences data width) parameter DESCRIPTOR_BYTEENABLE_WIDTH = 32; // 32 when enhanced mode is on, 16 for off (needs to be controlled by callback since it influences byte enable width) parameter CSR_ADDRESS_WIDTH = 3; // always 3 bits wide localparam RESPONSE_FIFO_DEPTH = 2 * DESCRIPTOR_FIFO_DEPTH; localparam DESCRIPTOR_FIFO_DEPTH_LOG2 = log2(DESCRIPTOR_FIFO_DEPTH); localparam RESPONSE_FIFO_DEPTH_LOG2 = log2(RESPONSE_FIFO_DEPTH); input clk; input reset; input [DESCRIPTOR_WIDTH-1:0] descriptor_writedata; input [DESCRIPTOR_BYTEENABLE_WIDTH-1:0] descriptor_byteenable; input descriptor_write; output wire descriptor_waitrequest; input [31:0] csr_writedata; input [3:0] csr_byteenable; input csr_write; output wire [31:0] csr_readdata; input csr_read; input [CSR_ADDRESS_WIDTH-1:0] csr_address; output wire csr_irq; // Used by a host with a master (like Nios II) output wire [31:0] mm_response_readdata; input mm_response_read; input mm_response_address; input [3:0] mm_response_byteenable; output wire mm_response_waitrequest; // Used by a pre-fetching master output wire [255:0] src_response_data; // making wide in case we need to jam more signals in here, unnecessary bits will be grounded/optimized away output wire src_response_valid; input src_response_ready; output wire [255:0] src_write_master_data; // don't know how many bits the master will use, unnecessary bits will be grounded/optimized away output wire src_write_master_valid; input src_write_master_ready; input [255:0] snk_write_master_data; // might need to jam more bits in...... input snk_write_master_valid; output wire snk_write_master_ready; output wire [255:0] src_read_master_data; // don't know how many bits the master will use, unnecessary bits will be grounded/optimized away output wire src_read_master_valid; input src_read_master_ready; input [255:0] snk_read_master_data; // might need to jam more bits in...... input snk_read_master_valid; output wire snk_read_master_ready; /* Internal wires and registers */ // descriptor information wire read_command_valid; wire read_command_ready; wire [255:0] read_command_data; wire read_command_empty; wire read_command_full; wire [DESCRIPTOR_FIFO_DEPTH_LOG2:0] read_command_used; // true used signal so extra MSB is included wire write_command_valid; wire write_command_ready; wire [255:0] write_command_data; wire write_command_empty; wire write_command_full; wire [DESCRIPTOR_FIFO_DEPTH_LOG2:0] write_command_used; // true used signal so extra MSB is included wire [31:0] sequence_number; wire transfer_complete_IRQ_mask; wire early_termination_IRQ_mask; wire [7:0] error_IRQ_mask; wire descriptor_buffer_empty; wire descriptor_buffer_full; wire [15:0] write_descriptor_watermark; wire [15:0] read_descriptor_watermark; wire [31:0] descriptor_watermark; wire busy; wire done; wire done_strobe; wire stop_issuing_commands; wire stop; wire sw_reset; wire stop_on_error; wire stop_on_early_termination; wire stop_descriptors; wire reset_stalled; wire master_stop_state; wire descriptors_stop_state; wire stop_state; wire stopped_on_error; wire stopped_on_early_termination; wire response_fifo_full; wire response_fifo_empty; wire [15:0] response_watermark; wire [7:0] response_error; wire response_early_termination; wire [31:0] response_actual_bytes_transferred; /************************************************ REGISTERS *******************************************************/ /********************************************** END REGISTERS *****************************************************/ /******************************************* MODULE DECLERATIONS **************************************************/ // the descriptor buffers block instantiates the descriptor FIFOs and handshaking logic with the master command ports descriptor_buffers the_descriptor_buffers ( .clk (clk), .reset (reset), .writedata (descriptor_writedata), .write (descriptor_write), .byteenable (descriptor_byteenable), .waitrequest (descriptor_waitrequest), .read_command_valid (read_command_valid), .read_command_ready (read_command_ready), .read_command_data (read_command_data), .read_command_empty (read_command_empty), .read_command_full (read_command_full), .read_command_used (read_command_used), .write_command_valid (write_command_valid), .write_command_ready (write_command_ready), .write_command_data (write_command_data), .write_command_empty (write_command_empty), .write_command_full (write_command_full), .write_command_used (write_command_used), .stop_issuing_commands (stop_issuing_commands), .stop (stop), .sw_reset (sw_reset), .sequence_number (sequence_number), .transfer_complete_IRQ_mask (transfer_complete_IRQ_mask), .early_termination_IRQ_mask (early_termination_IRQ_mask), .error_IRQ_mask (error_IRQ_mask) ); defparam the_descriptor_buffers.MODE = MODE; defparam the_descriptor_buffers.DATA_WIDTH = DESCRIPTOR_WIDTH; defparam the_descriptor_buffers.BYTE_ENABLE_WIDTH = DESCRIPTOR_WIDTH/8; defparam the_descriptor_buffers.FIFO_DEPTH = DESCRIPTOR_FIFO_DEPTH; defparam the_descriptor_buffers.FIFO_DEPTH_LOG2 = DESCRIPTOR_FIFO_DEPTH_LOG2; // Control and status registers (and interrupts when a host connects directly to this block) csr_block the_csr_block ( .clk (clk), .reset (reset), .csr_writedata (csr_writedata), .csr_write (csr_write), .csr_byteenable (csr_byteenable), .csr_readdata (csr_readdata), .csr_read (csr_read), .csr_address (csr_address), .csr_irq (csr_irq), .done_strobe (done_strobe), .busy (busy), .descriptor_buffer_empty (descriptor_buffer_empty), .descriptor_buffer_full (descriptor_buffer_full), .stop_state (stop_state), .stopped_on_error (stopped_on_error), .stopped_on_early_termination (stopped_on_early_termination), .stop_descriptors (stop_descriptors), .reset_stalled (reset_stalled), // from the master(s) to tell the CSR block that it's still resetting .stop (stop), .sw_reset (sw_reset), .stop_on_error (stop_on_error), .stop_on_early_termination (stop_on_early_termination), .sequence_number (sequence_number), .descriptor_watermark (descriptor_watermark), .response_watermark (response_watermark), .response_buffer_empty (response_fifo_empty), .response_buffer_full (response_fifo_full), .transfer_complete_IRQ_mask (transfer_complete_IRQ_mask), .error_IRQ_mask (error_IRQ_mask), .early_termination_IRQ_mask (early_termination_IRQ_mask), .error (response_error), .early_termination (response_early_termination) ); defparam the_csr_block.ADDRESS_WIDTH = CSR_ADDRESS_WIDTH; // Optional response port. When using a directly connected host it'll be a slave port and using a pre-fetching descriptor master it will be a streaming source port. response_block the_response_block ( .clk (clk), .reset (reset), .mm_response_readdata (mm_response_readdata), .mm_response_read (mm_response_read), .mm_response_address (mm_response_address), .mm_response_byteenable (mm_response_byteenable), .mm_response_waitrequest (mm_response_waitrequest), .src_response_data (src_response_data), .src_response_valid (src_response_valid), .src_response_ready (src_response_ready), .sw_reset (sw_reset), .response_watermark (response_watermark), .response_fifo_full (response_fifo_full), .response_fifo_empty (response_fifo_empty), .done_strobe (done_strobe), .actual_bytes_transferred (response_actual_bytes_transferred), .error (response_error), .early_termination (response_early_termination), .transfer_complete_IRQ_mask (transfer_complete_IRQ_mask), .error_IRQ_mask (error_IRQ_mask), .early_termination_IRQ_mask (early_termination_IRQ_mask), .descriptor_buffer_full (descriptor_buffer_full) ); defparam the_response_block.RESPONSE_PORT = RESPONSE_PORT; defparam the_response_block.FIFO_DEPTH = RESPONSE_FIFO_DEPTH; defparam the_response_block.FIFO_DEPTH_LOG2 = RESPONSE_FIFO_DEPTH_LOG2; /***************************************** END MODULE DECLERATIONS ************************************************/ /****************************************** COMBINATIONAL SIGNALS *************************************************/ // this block issues the commands so it's always ready for a response. The response FIFO fill level will be used to // make sure additional ST-->MM commands are not issued if there is no room to catch the response. assign snk_write_master_ready = 1'b1; assign snk_read_master_ready = 1'b1; assign done = (MODE == 1)? snk_read_master_ready : snk_write_master_ready; assign done_strobe = (MODE == 1)? (snk_read_master_ready & snk_read_master_valid) : (snk_write_master_ready & snk_write_master_valid); assign stop_issuing_commands = (response_fifo_full == 1) | (stop_descriptors == 1); assign src_write_master_valid = write_command_valid; assign write_command_ready = src_write_master_ready; assign src_write_master_data = write_command_data; assign src_read_master_valid = read_command_valid; assign read_command_ready = src_read_master_ready; assign src_read_master_data = read_command_data; assign busy = (read_command_empty == 0) | (write_command_empty == 0) | // still have descriptors buffered in the FIFOs (done == 0); // current transfer is still occuring assign descriptor_buffer_empty = (read_command_empty == 1) & (write_command_empty == 1); assign descriptor_buffer_full = (read_command_full == 1) | (write_command_full == 1); assign write_descriptor_watermark = 16'h0000 | write_command_used; // zero padding the upper unused bits assign read_descriptor_watermark = 16'h0000 | read_command_used; // zero padding the upper unused bits assign descriptor_watermark = {write_descriptor_watermark, read_descriptor_watermark}; assign reset_stalled = snk_read_master_data[0] | snk_write_master_data[32]; assign master_stop_state = ((MODE == 0)? (snk_read_master_data[1] & snk_write_master_data[33]) : (MODE == 1)? snk_read_master_data[1] : snk_write_master_data[33]); assign descriptors_stop_state = (stop_descriptors == 1) & ((MODE == 0)? ((src_read_master_ready == 1) & (src_write_master_ready == 1)) : (MODE == 1)? (src_read_master_ready == 1) : (src_write_master_ready == 1)); assign stop_state = (master_stop_state == 1) | (descriptors_stop_state == 1); assign response_actual_bytes_transferred = snk_write_master_data[31:0]; assign response_error = snk_write_master_data[41:34]; assign response_early_termination = snk_write_master_data[42]; /**************************************** END COMBINATIONAL SIGNALS ***********************************************/ endmodule
/* Legal Notice: (C)2009 Altera Corporation. All rights reserved. Your use of Altera Corporation's design tools, logic functions and other software and tools, and its AMPP partner logic functions, and any output files any of the foregoing (including device programming or simulation files), and any associated documentation or information are expressly subject to the terms and conditions of the Altera Program License Subscription Agreement or other applicable license agreement, including, without limitation, that your use is for the sole purpose of programming logic devices manufactured by Altera and sold by Altera or its authorized distributors. Please refer to the applicable agreement for further details. */ /* Author: JCJB Date: 07/01/2009 This block is responsible for communicating with the host processor/ descriptor prefetching master block. It uses FIFOs to buffer descriptors to keep the read and write masters operating without intervention from a host processor. This block is comprised of three main blocks: 1) Descriptor buffer 2) CSR 3) Response The descriptor buffer recieves descriptors from a host/prefetcher and registers the incoming byte lanes. When the descriptor 'go' bit has been written, the descriptor is committed to the read/write descriptor buffers. From there the descriptors are exposed to the read and write masters without intervention from the host. The descriptor port is either 128 or 256 bits wide depending on whether or not the enhanced features setting has been enabled. Since the port is write only minimial logic will be created in the fabric to adapt the byte enables for narrow masters connecting to this port. This port contains a single address so address bits are exposed to the fabric. The CSR (control-status register) block is used to provide information back to the host as well as allow the SGDMA to be controlled on a non-descriptor basis. The host driver should be written to mostly interact with this port as interrupts and status information is accessible from this block. The optional response block is used to feed information on a per descriptor basis back to the host or prefetching descriptor master. In most cases the port will be used for sharing infomation about ST->MM transfers. Communication between this block and the masters is performed using pairs of Avalon-ST port connections. When the SGDMA is setup for MM->ST then the write master port connections are removed and visa vera for ST->MM and the read master. For more detailed information refer to "SGDMA_dispatcher_ug.pdf" for more details. Author: JCJB Date: 08/13/2010 1.0 - Initial release 1.1 - Changed the stopped and resetting logic to correctly reflect the state of the hardware (this block and the masters). 1.2 - Added stop descriptors logic */ // synthesis translate_off `timescale 1ns / 1ps // synthesis translate_on // turn off superfluous verilog processor warnings // altera message_level Level1 // altera message_off 10034 10035 10036 10037 10230 10240 10030 module dispatcher ( clk, reset, // 128/256 bit write only port for feeding the dispatcher descriptors, no address since it's only one word wide, blocking when too many descriptors are buffered descriptor_writedata, descriptor_byteenable, descriptor_write, descriptor_waitrequest, // control and status port, 32 bits wide with a read latency of 2 and non-blocking csr_writedata, csr_byteenable, csr_write, csr_readdata, csr_read, csr_address, // 4 addresses when ENHANCED_FEATURES is off (zero) otherwise 8 addresses are available csr_irq, // only available if the response port is not an ST source (in that case the SGDMA pre-fetching block will issue interrupts) // response slave port (when "RESPONSE_PORT" is set to 0), 32 bits wide, read only, and a read latency of 3 cycles mm_response_readdata, mm_response_read, mm_response_address, // only two addresses mm_response_byteenable, // last byte read pops the response FIFO mm_response_waitrequest, // response source port (when "RESPONSE_PORT" is set to 1), src_response_data, src_response_valid, src_response_ready, // write master source port (sends commands to write master) src_write_master_data, src_write_master_valid, src_write_master_ready, // write master sink port (recieves response from write master) snk_write_master_data, snk_write_master_valid, snk_write_master_ready, // read master source port (sends commands to read master) src_read_master_data, src_read_master_valid, src_read_master_ready, // read master sink port (recieves response from the read master) snk_read_master_data, snk_read_master_valid, snk_read_master_ready ); // y = log2(x) function integer log2; input integer x; begin x = x-1; for(log2=0; x>0; log2=log2+1) x = x>>1; end endfunction parameter MODE = 0; // 0 for MM->MM, 1 for MM->ST, 2 for ST->MM parameter RESPONSE_PORT = 0; // 0 for MM, 1 for ST, 2 for Disabled // normally disabled for all but ST->MM transfers parameter DESCRIPTOR_FIFO_DEPTH = 128; // 16-1024 in powers of 2 parameter ENHANCED_FEATURES = 1; // 1 for Enabled, 0 for Disabled parameter DESCRIPTOR_WIDTH = 256; // 256 when enhanced mode is on, 128 for off (needs to be controlled by callback since it influences data width) parameter DESCRIPTOR_BYTEENABLE_WIDTH = 32; // 32 when enhanced mode is on, 16 for off (needs to be controlled by callback since it influences byte enable width) parameter CSR_ADDRESS_WIDTH = 3; // always 3 bits wide localparam RESPONSE_FIFO_DEPTH = 2 * DESCRIPTOR_FIFO_DEPTH; localparam DESCRIPTOR_FIFO_DEPTH_LOG2 = log2(DESCRIPTOR_FIFO_DEPTH); localparam RESPONSE_FIFO_DEPTH_LOG2 = log2(RESPONSE_FIFO_DEPTH); input clk; input reset; input [DESCRIPTOR_WIDTH-1:0] descriptor_writedata; input [DESCRIPTOR_BYTEENABLE_WIDTH-1:0] descriptor_byteenable; input descriptor_write; output wire descriptor_waitrequest; input [31:0] csr_writedata; input [3:0] csr_byteenable; input csr_write; output wire [31:0] csr_readdata; input csr_read; input [CSR_ADDRESS_WIDTH-1:0] csr_address; output wire csr_irq; // Used by a host with a master (like Nios II) output wire [31:0] mm_response_readdata; input mm_response_read; input mm_response_address; input [3:0] mm_response_byteenable; output wire mm_response_waitrequest; // Used by a pre-fetching master output wire [255:0] src_response_data; // making wide in case we need to jam more signals in here, unnecessary bits will be grounded/optimized away output wire src_response_valid; input src_response_ready; output wire [255:0] src_write_master_data; // don't know how many bits the master will use, unnecessary bits will be grounded/optimized away output wire src_write_master_valid; input src_write_master_ready; input [255:0] snk_write_master_data; // might need to jam more bits in...... input snk_write_master_valid; output wire snk_write_master_ready; output wire [255:0] src_read_master_data; // don't know how many bits the master will use, unnecessary bits will be grounded/optimized away output wire src_read_master_valid; input src_read_master_ready; input [255:0] snk_read_master_data; // might need to jam more bits in...... input snk_read_master_valid; output wire snk_read_master_ready; /* Internal wires and registers */ // descriptor information wire read_command_valid; wire read_command_ready; wire [255:0] read_command_data; wire read_command_empty; wire read_command_full; wire [DESCRIPTOR_FIFO_DEPTH_LOG2:0] read_command_used; // true used signal so extra MSB is included wire write_command_valid; wire write_command_ready; wire [255:0] write_command_data; wire write_command_empty; wire write_command_full; wire [DESCRIPTOR_FIFO_DEPTH_LOG2:0] write_command_used; // true used signal so extra MSB is included wire [31:0] sequence_number; wire transfer_complete_IRQ_mask; wire early_termination_IRQ_mask; wire [7:0] error_IRQ_mask; wire descriptor_buffer_empty; wire descriptor_buffer_full; wire [15:0] write_descriptor_watermark; wire [15:0] read_descriptor_watermark; wire [31:0] descriptor_watermark; wire busy; wire done; wire done_strobe; wire stop_issuing_commands; wire stop; wire sw_reset; wire stop_on_error; wire stop_on_early_termination; wire stop_descriptors; wire reset_stalled; wire master_stop_state; wire descriptors_stop_state; wire stop_state; wire stopped_on_error; wire stopped_on_early_termination; wire response_fifo_full; wire response_fifo_empty; wire [15:0] response_watermark; wire [7:0] response_error; wire response_early_termination; wire [31:0] response_actual_bytes_transferred; /************************************************ REGISTERS *******************************************************/ /********************************************** END REGISTERS *****************************************************/ /******************************************* MODULE DECLERATIONS **************************************************/ // the descriptor buffers block instantiates the descriptor FIFOs and handshaking logic with the master command ports descriptor_buffers the_descriptor_buffers ( .clk (clk), .reset (reset), .writedata (descriptor_writedata), .write (descriptor_write), .byteenable (descriptor_byteenable), .waitrequest (descriptor_waitrequest), .read_command_valid (read_command_valid), .read_command_ready (read_command_ready), .read_command_data (read_command_data), .read_command_empty (read_command_empty), .read_command_full (read_command_full), .read_command_used (read_command_used), .write_command_valid (write_command_valid), .write_command_ready (write_command_ready), .write_command_data (write_command_data), .write_command_empty (write_command_empty), .write_command_full (write_command_full), .write_command_used (write_command_used), .stop_issuing_commands (stop_issuing_commands), .stop (stop), .sw_reset (sw_reset), .sequence_number (sequence_number), .transfer_complete_IRQ_mask (transfer_complete_IRQ_mask), .early_termination_IRQ_mask (early_termination_IRQ_mask), .error_IRQ_mask (error_IRQ_mask) ); defparam the_descriptor_buffers.MODE = MODE; defparam the_descriptor_buffers.DATA_WIDTH = DESCRIPTOR_WIDTH; defparam the_descriptor_buffers.BYTE_ENABLE_WIDTH = DESCRIPTOR_WIDTH/8; defparam the_descriptor_buffers.FIFO_DEPTH = DESCRIPTOR_FIFO_DEPTH; defparam the_descriptor_buffers.FIFO_DEPTH_LOG2 = DESCRIPTOR_FIFO_DEPTH_LOG2; // Control and status registers (and interrupts when a host connects directly to this block) csr_block the_csr_block ( .clk (clk), .reset (reset), .csr_writedata (csr_writedata), .csr_write (csr_write), .csr_byteenable (csr_byteenable), .csr_readdata (csr_readdata), .csr_read (csr_read), .csr_address (csr_address), .csr_irq (csr_irq), .done_strobe (done_strobe), .busy (busy), .descriptor_buffer_empty (descriptor_buffer_empty), .descriptor_buffer_full (descriptor_buffer_full), .stop_state (stop_state), .stopped_on_error (stopped_on_error), .stopped_on_early_termination (stopped_on_early_termination), .stop_descriptors (stop_descriptors), .reset_stalled (reset_stalled), // from the master(s) to tell the CSR block that it's still resetting .stop (stop), .sw_reset (sw_reset), .stop_on_error (stop_on_error), .stop_on_early_termination (stop_on_early_termination), .sequence_number (sequence_number), .descriptor_watermark (descriptor_watermark), .response_watermark (response_watermark), .response_buffer_empty (response_fifo_empty), .response_buffer_full (response_fifo_full), .transfer_complete_IRQ_mask (transfer_complete_IRQ_mask), .error_IRQ_mask (error_IRQ_mask), .early_termination_IRQ_mask (early_termination_IRQ_mask), .error (response_error), .early_termination (response_early_termination) ); defparam the_csr_block.ADDRESS_WIDTH = CSR_ADDRESS_WIDTH; // Optional response port. When using a directly connected host it'll be a slave port and using a pre-fetching descriptor master it will be a streaming source port. response_block the_response_block ( .clk (clk), .reset (reset), .mm_response_readdata (mm_response_readdata), .mm_response_read (mm_response_read), .mm_response_address (mm_response_address), .mm_response_byteenable (mm_response_byteenable), .mm_response_waitrequest (mm_response_waitrequest), .src_response_data (src_response_data), .src_response_valid (src_response_valid), .src_response_ready (src_response_ready), .sw_reset (sw_reset), .response_watermark (response_watermark), .response_fifo_full (response_fifo_full), .response_fifo_empty (response_fifo_empty), .done_strobe (done_strobe), .actual_bytes_transferred (response_actual_bytes_transferred), .error (response_error), .early_termination (response_early_termination), .transfer_complete_IRQ_mask (transfer_complete_IRQ_mask), .error_IRQ_mask (error_IRQ_mask), .early_termination_IRQ_mask (early_termination_IRQ_mask), .descriptor_buffer_full (descriptor_buffer_full) ); defparam the_response_block.RESPONSE_PORT = RESPONSE_PORT; defparam the_response_block.FIFO_DEPTH = RESPONSE_FIFO_DEPTH; defparam the_response_block.FIFO_DEPTH_LOG2 = RESPONSE_FIFO_DEPTH_LOG2; /***************************************** END MODULE DECLERATIONS ************************************************/ /****************************************** COMBINATIONAL SIGNALS *************************************************/ // this block issues the commands so it's always ready for a response. The response FIFO fill level will be used to // make sure additional ST-->MM commands are not issued if there is no room to catch the response. assign snk_write_master_ready = 1'b1; assign snk_read_master_ready = 1'b1; assign done = (MODE == 1)? snk_read_master_ready : snk_write_master_ready; assign done_strobe = (MODE == 1)? (snk_read_master_ready & snk_read_master_valid) : (snk_write_master_ready & snk_write_master_valid); assign stop_issuing_commands = (response_fifo_full == 1) | (stop_descriptors == 1); assign src_write_master_valid = write_command_valid; assign write_command_ready = src_write_master_ready; assign src_write_master_data = write_command_data; assign src_read_master_valid = read_command_valid; assign read_command_ready = src_read_master_ready; assign src_read_master_data = read_command_data; assign busy = (read_command_empty == 0) | (write_command_empty == 0) | // still have descriptors buffered in the FIFOs (done == 0); // current transfer is still occuring assign descriptor_buffer_empty = (read_command_empty == 1) & (write_command_empty == 1); assign descriptor_buffer_full = (read_command_full == 1) | (write_command_full == 1); assign write_descriptor_watermark = 16'h0000 | write_command_used; // zero padding the upper unused bits assign read_descriptor_watermark = 16'h0000 | read_command_used; // zero padding the upper unused bits assign descriptor_watermark = {write_descriptor_watermark, read_descriptor_watermark}; assign reset_stalled = snk_read_master_data[0] | snk_write_master_data[32]; assign master_stop_state = ((MODE == 0)? (snk_read_master_data[1] & snk_write_master_data[33]) : (MODE == 1)? snk_read_master_data[1] : snk_write_master_data[33]); assign descriptors_stop_state = (stop_descriptors == 1) & ((MODE == 0)? ((src_read_master_ready == 1) & (src_write_master_ready == 1)) : (MODE == 1)? (src_read_master_ready == 1) : (src_write_master_ready == 1)); assign stop_state = (master_stop_state == 1) | (descriptors_stop_state == 1); assign response_actual_bytes_transferred = snk_write_master_data[31:0]; assign response_error = snk_write_master_data[41:34]; assign response_early_termination = snk_write_master_data[42]; /**************************************** END COMBINATIONAL SIGNALS ***********************************************/ endmodule
/* Legal Notice: (C)2009 Altera Corporation. All rights reserved. Your use of Altera Corporation's design tools, logic functions and other software and tools, and its AMPP partner logic functions, and any output files any of the foregoing (including device programming or simulation files), and any associated documentation or information are expressly subject to the terms and conditions of the Altera Program License Subscription Agreement or other applicable license agreement, including, without limitation, that your use is for the sole purpose of programming logic devices manufactured by Altera and sold by Altera or its authorized distributors. Please refer to the applicable agreement for further details. */ /* Author: JCJB Date: 07/01/2009 This optional block is used for two purposes: 1) Relay response information back to the host typically in ST->MM mode. This information is 'actual bytes transferred', 'error', and 'early termination'. 2) Relay response and interrupt information back to a prefetching master block that will write the contents back to memory. Interrupt information is also passed since the interrupt needs to occur when the prefetching master block overwrites the descriptor in main memory and not when the event occurs. The host needs to read the interrupt condition out of memory so it could potentially get out of sync if the interrupt information wasn't buffered and delayed. This block has three response port options: MM slave, ST source, and disabled. When you don't need access to response information (MM->MM or MM->ST) or interrupts in the case of a prefetching descriptor master then you can safely disable the port. By disabling the port you will not consume any logic resources or on-chip memory blocks. When the source port is enabled bit 52 of the data stream represents the "descriptor full" condition. The descriptor prefetching master can use this signal to perform pipelined reads without having to worry about flow control (since there is room for an entire descriptor to be written). This is benefical as apposed to performing descriptor reads, buffering the data, then writting it out to the descriptor buffer block. Version 1.0 1.0 - If you attempt to use the wrong response port type you will be issued a warning but allowed to generate. This is because in some cases you may not need the typical behavior. For example if you perform MM->MM transfers with some streaming IP between the read and write masters you still might need access to error bits. Likewise if you don't enable the streaming sink port while using a descriptor pre-fetching block you may not care if you get interrupted early and want to use the CSR block for interrupts instead. */ // synthesis translate_off `timescale 1ns / 1ps // synthesis translate_on // turn off superfluous verilog processor warnings // altera message_level Level1 // altera message_off 10034 10035 10036 10037 10230 10240 10030 module response_block ( clk, reset, mm_response_readdata, mm_response_read, mm_response_address, mm_response_byteenable, mm_response_waitrequest, src_response_data, src_response_valid, src_response_ready, sw_reset, response_watermark, response_fifo_full, response_fifo_empty, done_strobe, actual_bytes_transferred, error, early_termination, transfer_complete_IRQ_mask, error_IRQ_mask, early_termination_IRQ_mask, descriptor_buffer_full ); parameter RESPONSE_PORT = 0; // when disabled all the outputs will be disconnected by the component wrapper parameter FIFO_DEPTH = 256; // needs to be double the descriptor FIFO depth parameter FIFO_DEPTH_LOG2 = 8; localparam FIFO_WIDTH = (RESPONSE_PORT == 0)? 41 : 51; // when 'RESPONSE_PORT' is 1 then the response port is set to streaming and must pass the interrupt masks as well input clk; input reset; output wire [31:0] mm_response_readdata; input mm_response_read; input mm_response_address; // only have 2 addresses input [3:0] mm_response_byteenable; output wire mm_response_waitrequest; output wire [255:0] src_response_data; // not going to use all these bits, the remainder will be grounded output wire src_response_valid; input src_response_ready; input sw_reset; output wire [15:0] response_watermark; output wire response_fifo_full; output wire response_fifo_empty; input done_strobe; input [31:0] actual_bytes_transferred; input [7:0] error; input early_termination; // all of these signals are only used the ST source response port since the pre-fetching master component will handle the interrupt generation as apposed to the CSR block input transfer_complete_IRQ_mask; input [7:0] error_IRQ_mask; input early_termination_IRQ_mask; input descriptor_buffer_full; // handy signal for the prefetching master to use so that it known when to blast a new descriptor into the dispatcher /* internal signals and registers */ wire [FIFO_DEPTH_LOG2-1:0] fifo_used; wire fifo_full; wire fifo_empty; wire fifo_read; wire [FIFO_WIDTH-1:0] fifo_input; wire [FIFO_WIDTH-1:0] fifo_output; generate if (RESPONSE_PORT == 0) // slave port used for response data begin assign fifo_input = {early_termination, error, actual_bytes_transferred}; assign fifo_read = (mm_response_read == 1) & (fifo_empty == 0) & (mm_response_address == 1) & (mm_response_byteenable[3] == 1); // reading from the upper byte (byte offset 7) pops the fifo scfifo the_response_FIFO ( .clock (clk), .aclr (reset), .sclr (sw_reset), .data (fifo_input), .wrreq (done_strobe), .rdreq (fifo_read), .q (fifo_output), .full (fifo_full), .empty (fifo_empty), .usedw (fifo_used) ); defparam the_response_FIFO.lpm_width = FIFO_WIDTH; defparam the_response_FIFO.lpm_numwords = FIFO_DEPTH; defparam the_response_FIFO.lpm_widthu = FIFO_DEPTH_LOG2; defparam the_response_FIFO.lpm_showahead = "ON"; defparam the_response_FIFO.use_eab = "ON"; defparam the_response_FIFO.overflow_checking = "OFF"; defparam the_response_FIFO.underflow_checking = "OFF"; defparam the_response_FIFO.add_ram_output_register = "ON"; defparam the_response_FIFO.lpm_type = "scfifo"; // either actual bytes transfered when address == 0 or {zero padding, early_termination, error[7:0]} when address = 1 assign mm_response_readdata = (mm_response_address == 0)? fifo_output[31:0] : {{23{1'b0}}, fifo_output[40:32]}; assign mm_response_waitrequest = fifo_empty; assign response_watermark = {{(16-(FIFO_DEPTH_LOG2+1)){1'b0}}, fifo_full, fifo_used}; // zero padding plus the 'true used' FIFO amount assign response_fifo_full = fifo_full; assign response_fifo_empty = fifo_empty; // no streaming port so ground all of its outputs assign src_response_data = 0; assign src_response_valid = 0; end else if (RESPONSE_PORT == 1) // streaming source port used for response data (prefetcher will catch this data) begin assign fifo_input = {early_termination_IRQ_mask, error_IRQ_mask, transfer_complete_IRQ_mask, early_termination, error, actual_bytes_transferred}; assign fifo_read = (fifo_empty == 0) & (src_response_ready == 1); scfifo the_response_FIFO ( .clock (clk), .aclr (reset | sw_reset), .data (fifo_input), .wrreq (done_strobe), .rdreq (fifo_read), .q (fifo_output), .full (fifo_full), .empty (fifo_empty), .usedw (fifo_used) ); defparam the_response_FIFO.lpm_width = FIFO_WIDTH; defparam the_response_FIFO.lpm_numwords = FIFO_DEPTH; defparam the_response_FIFO.lpm_widthu = FIFO_DEPTH_LOG2; defparam the_response_FIFO.lpm_showahead = "ON"; defparam the_response_FIFO.use_eab = "ON"; defparam the_response_FIFO.overflow_checking = "OFF"; defparam the_response_FIFO.underflow_checking = "OFF"; defparam the_response_FIFO.add_ram_output_register = "ON"; defparam the_response_FIFO.lpm_type = "scfifo"; assign src_response_data = {{204{1'b0}}, descriptor_buffer_full, fifo_output}; // zero padding the upper bits, also sending out the descriptor buffer full signal to simplify the throttling in the prefetching master (bit 52) assign src_response_valid = (fifo_empty == 0); assign response_watermark = {{(16-(FIFO_DEPTH_LOG2+1)){1'b0}}, fifo_full, fifo_used}; // zero padding plus the 'true used' FIFO amount; assign response_fifo_full = fifo_full; assign response_fifo_empty = fifo_empty; // no slave port so ground all of its outputs assign mm_response_readdata = 0; assign mm_response_waitrequest = 0; end else // no response port so grounding all outputs begin assign fifo_input = 0; assign fifo_output = 0; assign mm_response_readdata = 0; assign mm_response_waitrequest = 0; assign src_response_data = 0; assign src_response_valid = 0; assign response_watermark = 0; assign response_fifo_full = 0; assign response_fifo_empty = 0; end endgenerate endmodule
/* Legal Notice: (C)2009 Altera Corporation. All rights reserved. Your use of Altera Corporation's design tools, logic functions and other software and tools, and its AMPP partner logic functions, and any output files any of the foregoing (including device programming or simulation files), and any associated documentation or information are expressly subject to the terms and conditions of the Altera Program License Subscription Agreement or other applicable license agreement, including, without limitation, that your use is for the sole purpose of programming logic devices manufactured by Altera and sold by Altera or its authorized distributors. Please refer to the applicable agreement for further details. */ /* Author: JCJB Date: 07/01/2009 This optional block is used for two purposes: 1) Relay response information back to the host typically in ST->MM mode. This information is 'actual bytes transferred', 'error', and 'early termination'. 2) Relay response and interrupt information back to a prefetching master block that will write the contents back to memory. Interrupt information is also passed since the interrupt needs to occur when the prefetching master block overwrites the descriptor in main memory and not when the event occurs. The host needs to read the interrupt condition out of memory so it could potentially get out of sync if the interrupt information wasn't buffered and delayed. This block has three response port options: MM slave, ST source, and disabled. When you don't need access to response information (MM->MM or MM->ST) or interrupts in the case of a prefetching descriptor master then you can safely disable the port. By disabling the port you will not consume any logic resources or on-chip memory blocks. When the source port is enabled bit 52 of the data stream represents the "descriptor full" condition. The descriptor prefetching master can use this signal to perform pipelined reads without having to worry about flow control (since there is room for an entire descriptor to be written). This is benefical as apposed to performing descriptor reads, buffering the data, then writting it out to the descriptor buffer block. Version 1.0 1.0 - If you attempt to use the wrong response port type you will be issued a warning but allowed to generate. This is because in some cases you may not need the typical behavior. For example if you perform MM->MM transfers with some streaming IP between the read and write masters you still might need access to error bits. Likewise if you don't enable the streaming sink port while using a descriptor pre-fetching block you may not care if you get interrupted early and want to use the CSR block for interrupts instead. */ // synthesis translate_off `timescale 1ns / 1ps // synthesis translate_on // turn off superfluous verilog processor warnings // altera message_level Level1 // altera message_off 10034 10035 10036 10037 10230 10240 10030 module response_block ( clk, reset, mm_response_readdata, mm_response_read, mm_response_address, mm_response_byteenable, mm_response_waitrequest, src_response_data, src_response_valid, src_response_ready, sw_reset, response_watermark, response_fifo_full, response_fifo_empty, done_strobe, actual_bytes_transferred, error, early_termination, transfer_complete_IRQ_mask, error_IRQ_mask, early_termination_IRQ_mask, descriptor_buffer_full ); parameter RESPONSE_PORT = 0; // when disabled all the outputs will be disconnected by the component wrapper parameter FIFO_DEPTH = 256; // needs to be double the descriptor FIFO depth parameter FIFO_DEPTH_LOG2 = 8; localparam FIFO_WIDTH = (RESPONSE_PORT == 0)? 41 : 51; // when 'RESPONSE_PORT' is 1 then the response port is set to streaming and must pass the interrupt masks as well input clk; input reset; output wire [31:0] mm_response_readdata; input mm_response_read; input mm_response_address; // only have 2 addresses input [3:0] mm_response_byteenable; output wire mm_response_waitrequest; output wire [255:0] src_response_data; // not going to use all these bits, the remainder will be grounded output wire src_response_valid; input src_response_ready; input sw_reset; output wire [15:0] response_watermark; output wire response_fifo_full; output wire response_fifo_empty; input done_strobe; input [31:0] actual_bytes_transferred; input [7:0] error; input early_termination; // all of these signals are only used the ST source response port since the pre-fetching master component will handle the interrupt generation as apposed to the CSR block input transfer_complete_IRQ_mask; input [7:0] error_IRQ_mask; input early_termination_IRQ_mask; input descriptor_buffer_full; // handy signal for the prefetching master to use so that it known when to blast a new descriptor into the dispatcher /* internal signals and registers */ wire [FIFO_DEPTH_LOG2-1:0] fifo_used; wire fifo_full; wire fifo_empty; wire fifo_read; wire [FIFO_WIDTH-1:0] fifo_input; wire [FIFO_WIDTH-1:0] fifo_output; generate if (RESPONSE_PORT == 0) // slave port used for response data begin assign fifo_input = {early_termination, error, actual_bytes_transferred}; assign fifo_read = (mm_response_read == 1) & (fifo_empty == 0) & (mm_response_address == 1) & (mm_response_byteenable[3] == 1); // reading from the upper byte (byte offset 7) pops the fifo scfifo the_response_FIFO ( .clock (clk), .aclr (reset), .sclr (sw_reset), .data (fifo_input), .wrreq (done_strobe), .rdreq (fifo_read), .q (fifo_output), .full (fifo_full), .empty (fifo_empty), .usedw (fifo_used) ); defparam the_response_FIFO.lpm_width = FIFO_WIDTH; defparam the_response_FIFO.lpm_numwords = FIFO_DEPTH; defparam the_response_FIFO.lpm_widthu = FIFO_DEPTH_LOG2; defparam the_response_FIFO.lpm_showahead = "ON"; defparam the_response_FIFO.use_eab = "ON"; defparam the_response_FIFO.overflow_checking = "OFF"; defparam the_response_FIFO.underflow_checking = "OFF"; defparam the_response_FIFO.add_ram_output_register = "ON"; defparam the_response_FIFO.lpm_type = "scfifo"; // either actual bytes transfered when address == 0 or {zero padding, early_termination, error[7:0]} when address = 1 assign mm_response_readdata = (mm_response_address == 0)? fifo_output[31:0] : {{23{1'b0}}, fifo_output[40:32]}; assign mm_response_waitrequest = fifo_empty; assign response_watermark = {{(16-(FIFO_DEPTH_LOG2+1)){1'b0}}, fifo_full, fifo_used}; // zero padding plus the 'true used' FIFO amount assign response_fifo_full = fifo_full; assign response_fifo_empty = fifo_empty; // no streaming port so ground all of its outputs assign src_response_data = 0; assign src_response_valid = 0; end else if (RESPONSE_PORT == 1) // streaming source port used for response data (prefetcher will catch this data) begin assign fifo_input = {early_termination_IRQ_mask, error_IRQ_mask, transfer_complete_IRQ_mask, early_termination, error, actual_bytes_transferred}; assign fifo_read = (fifo_empty == 0) & (src_response_ready == 1); scfifo the_response_FIFO ( .clock (clk), .aclr (reset | sw_reset), .data (fifo_input), .wrreq (done_strobe), .rdreq (fifo_read), .q (fifo_output), .full (fifo_full), .empty (fifo_empty), .usedw (fifo_used) ); defparam the_response_FIFO.lpm_width = FIFO_WIDTH; defparam the_response_FIFO.lpm_numwords = FIFO_DEPTH; defparam the_response_FIFO.lpm_widthu = FIFO_DEPTH_LOG2; defparam the_response_FIFO.lpm_showahead = "ON"; defparam the_response_FIFO.use_eab = "ON"; defparam the_response_FIFO.overflow_checking = "OFF"; defparam the_response_FIFO.underflow_checking = "OFF"; defparam the_response_FIFO.add_ram_output_register = "ON"; defparam the_response_FIFO.lpm_type = "scfifo"; assign src_response_data = {{204{1'b0}}, descriptor_buffer_full, fifo_output}; // zero padding the upper bits, also sending out the descriptor buffer full signal to simplify the throttling in the prefetching master (bit 52) assign src_response_valid = (fifo_empty == 0); assign response_watermark = {{(16-(FIFO_DEPTH_LOG2+1)){1'b0}}, fifo_full, fifo_used}; // zero padding plus the 'true used' FIFO amount; assign response_fifo_full = fifo_full; assign response_fifo_empty = fifo_empty; // no slave port so ground all of its outputs assign mm_response_readdata = 0; assign mm_response_waitrequest = 0; end else // no response port so grounding all outputs begin assign fifo_input = 0; assign fifo_output = 0; assign mm_response_readdata = 0; assign mm_response_waitrequest = 0; assign src_response_data = 0; assign src_response_valid = 0; assign response_watermark = 0; assign response_fifo_full = 0; assign response_fifo_empty = 0; end endgenerate endmodule
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: // Optimized Mux using MUXF7/8. // Any generic_baseblocks_v2_1_0_mux ratio. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // mux_enc // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module generic_baseblocks_v2_1_0_mux_enc # ( parameter C_FAMILY = "rtl", // FPGA Family. Current version: virtex6 or spartan6. parameter integer C_RATIO = 4, // Mux select ratio. Can be any binary value (>= 1) parameter integer C_SEL_WIDTH = 2, // Log2-ceiling of C_RATIO (>= 1) parameter integer C_DATA_WIDTH = 1 // Data width for generic_baseblocks_v2_1_0_comparator (>= 1) ) ( input wire [C_SEL_WIDTH-1:0] S, input wire [C_RATIO*C_DATA_WIDTH-1:0] A, output wire [C_DATA_WIDTH-1:0] O, input wire OE ); wire [C_DATA_WIDTH-1:0] o_i; genvar bit_cnt; function [C_DATA_WIDTH-1:0] f_mux ( input [C_SEL_WIDTH-1:0] s, input [C_RATIO*C_DATA_WIDTH-1:0] a ); integer i; reg [C_RATIO*C_DATA_WIDTH-1:0] carry; begin carry[C_DATA_WIDTH-1:0] = {C_DATA_WIDTH{(s==0)?1'b1:1'b0}} & a[C_DATA_WIDTH-1:0]; for (i=1;i<C_RATIO;i=i+1) begin : gen_carrychain_enc carry[i*C_DATA_WIDTH +: C_DATA_WIDTH] = carry[(i-1)*C_DATA_WIDTH +: C_DATA_WIDTH] | ({C_DATA_WIDTH{(s==i)?1'b1:1'b0}} & a[i*C_DATA_WIDTH +: C_DATA_WIDTH]); end f_mux = carry[C_DATA_WIDTH*C_RATIO-1:C_DATA_WIDTH*(C_RATIO-1)]; end endfunction function [C_DATA_WIDTH-1:0] f_mux4 ( input [1:0] s, input [4*C_DATA_WIDTH-1:0] a ); integer i; reg [4*C_DATA_WIDTH-1:0] carry; begin carry[C_DATA_WIDTH-1:0] = {C_DATA_WIDTH{(s==0)?1'b1:1'b0}} & a[C_DATA_WIDTH-1:0]; for (i=1;i<4;i=i+1) begin : gen_carrychain_enc carry[i*C_DATA_WIDTH +: C_DATA_WIDTH] = carry[(i-1)*C_DATA_WIDTH +: C_DATA_WIDTH] | ({C_DATA_WIDTH{(s==i)?1'b1:1'b0}} & a[i*C_DATA_WIDTH +: C_DATA_WIDTH]); end f_mux4 = carry[C_DATA_WIDTH*4-1:C_DATA_WIDTH*3]; end endfunction assign O = o_i & {C_DATA_WIDTH{OE}}; // OE is gated AFTER any MUXF7/8 (can only optimize forward into downstream logic) generate if ( C_RATIO < 2 ) begin : gen_bypass assign o_i = A; end else if ( C_FAMILY == "rtl" || C_RATIO < 5 ) begin : gen_rtl assign o_i = f_mux(S, A); end else begin : gen_fpga wire [C_DATA_WIDTH-1:0] l; wire [C_DATA_WIDTH-1:0] h; wire [C_DATA_WIDTH-1:0] ll; wire [C_DATA_WIDTH-1:0] lh; wire [C_DATA_WIDTH-1:0] hl; wire [C_DATA_WIDTH-1:0] hh; case (C_RATIO) 1, 5, 9, 13: assign hh = A[(C_RATIO-1)*C_DATA_WIDTH +: C_DATA_WIDTH]; 2, 6, 10, 14: assign hh = S[0] ? A[(C_RATIO-1)*C_DATA_WIDTH +: C_DATA_WIDTH] : A[(C_RATIO-2)*C_DATA_WIDTH +: C_DATA_WIDTH] ; 3, 7, 11, 15: assign hh = S[1] ? A[(C_RATIO-1)*C_DATA_WIDTH +: C_DATA_WIDTH] : (S[0] ? A[(C_RATIO-2)*C_DATA_WIDTH +: C_DATA_WIDTH] : A[(C_RATIO-3)*C_DATA_WIDTH +: C_DATA_WIDTH] ); 4, 8, 12, 16: assign hh = S[1] ? (S[0] ? A[(C_RATIO-1)*C_DATA_WIDTH +: C_DATA_WIDTH] : A[(C_RATIO-2)*C_DATA_WIDTH +: C_DATA_WIDTH] ) : (S[0] ? A[(C_RATIO-3)*C_DATA_WIDTH +: C_DATA_WIDTH] : A[(C_RATIO-4)*C_DATA_WIDTH +: C_DATA_WIDTH] ); 17: assign hh = S[1] ? (S[0] ? A[15*C_DATA_WIDTH +: C_DATA_WIDTH] : A[14*C_DATA_WIDTH +: C_DATA_WIDTH] ) : (S[0] ? A[13*C_DATA_WIDTH +: C_DATA_WIDTH] : A[12*C_DATA_WIDTH +: C_DATA_WIDTH] ); default: assign hh = 0; endcase case (C_RATIO) 5, 6, 7, 8: begin assign l = f_mux4(S[1:0], A[0 +: 4*C_DATA_WIDTH]); for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : gen_mux_5_8 MUXF7 mux_s2_inst ( .I0 (l[bit_cnt]), .I1 (hh[bit_cnt]), .S (S[2]), .O (o_i[bit_cnt]) ); end end 9, 10, 11, 12: begin assign ll = f_mux4(S[1:0], A[0 +: 4*C_DATA_WIDTH]); assign lh = f_mux4(S[1:0], A[4*C_DATA_WIDTH +: 4*C_DATA_WIDTH]); for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : gen_mux_9_12 MUXF7 muxf_s2_low_inst ( .I0 (ll[bit_cnt]), .I1 (lh[bit_cnt]), .S (S[2]), .O (l[bit_cnt]) ); MUXF8 muxf_s3_inst ( .I0 (l[bit_cnt]), .I1 (hh[bit_cnt]), .S (S[3]), .O (o_i[bit_cnt]) ); end end 13,14,15,16: begin assign ll = f_mux4(S[1:0], A[0 +: 4*C_DATA_WIDTH]); assign lh = f_mux4(S[1:0], A[4*C_DATA_WIDTH +: 4*C_DATA_WIDTH]); assign hl = f_mux4(S[1:0], A[8*C_DATA_WIDTH +: 4*C_DATA_WIDTH]); for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : gen_mux_13_16 MUXF7 muxf_s2_low_inst ( .I0 (ll[bit_cnt]), .I1 (lh[bit_cnt]), .S (S[2]), .O (l[bit_cnt]) ); MUXF7 muxf_s2_hi_inst ( .I0 (hl[bit_cnt]), .I1 (hh[bit_cnt]), .S (S[2]), .O (h[bit_cnt]) ); MUXF8 muxf_s3_inst ( .I0 (l[bit_cnt]), .I1 (h[bit_cnt]), .S (S[3]), .O (o_i[bit_cnt]) ); end end 17: begin assign ll = S[4] ? A[16*C_DATA_WIDTH +: C_DATA_WIDTH] : f_mux4(S[1:0], A[0 +: 4*C_DATA_WIDTH]); // 5-input mux assign lh = f_mux4(S[1:0], A[4*C_DATA_WIDTH +: 4*C_DATA_WIDTH]); assign hl = f_mux4(S[1:0], A[8*C_DATA_WIDTH +: 4*C_DATA_WIDTH]); for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : gen_mux_17 MUXF7 muxf_s2_low_inst ( .I0 (ll[bit_cnt]), .I1 (lh[bit_cnt]), .S (S[2]), .O (l[bit_cnt]) ); MUXF7 muxf_s2_hi_inst ( .I0 (hl[bit_cnt]), .I1 (hh[bit_cnt]), .S (S[2]), .O (h[bit_cnt]) ); MUXF8 muxf_s3_inst ( .I0 (l[bit_cnt]), .I1 (h[bit_cnt]), .S (S[3]), .O (o_i[bit_cnt]) ); end end default: // If RATIO > 17, use RTL assign o_i = f_mux(S, A); endcase end // gen_fpga endgenerate endmodule
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: // Optimized Mux using MUXF7/8. // Any generic_baseblocks_v2_1_0_mux ratio. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // mux_enc // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module generic_baseblocks_v2_1_0_mux_enc # ( parameter C_FAMILY = "rtl", // FPGA Family. Current version: virtex6 or spartan6. parameter integer C_RATIO = 4, // Mux select ratio. Can be any binary value (>= 1) parameter integer C_SEL_WIDTH = 2, // Log2-ceiling of C_RATIO (>= 1) parameter integer C_DATA_WIDTH = 1 // Data width for generic_baseblocks_v2_1_0_comparator (>= 1) ) ( input wire [C_SEL_WIDTH-1:0] S, input wire [C_RATIO*C_DATA_WIDTH-1:0] A, output wire [C_DATA_WIDTH-1:0] O, input wire OE ); wire [C_DATA_WIDTH-1:0] o_i; genvar bit_cnt; function [C_DATA_WIDTH-1:0] f_mux ( input [C_SEL_WIDTH-1:0] s, input [C_RATIO*C_DATA_WIDTH-1:0] a ); integer i; reg [C_RATIO*C_DATA_WIDTH-1:0] carry; begin carry[C_DATA_WIDTH-1:0] = {C_DATA_WIDTH{(s==0)?1'b1:1'b0}} & a[C_DATA_WIDTH-1:0]; for (i=1;i<C_RATIO;i=i+1) begin : gen_carrychain_enc carry[i*C_DATA_WIDTH +: C_DATA_WIDTH] = carry[(i-1)*C_DATA_WIDTH +: C_DATA_WIDTH] | ({C_DATA_WIDTH{(s==i)?1'b1:1'b0}} & a[i*C_DATA_WIDTH +: C_DATA_WIDTH]); end f_mux = carry[C_DATA_WIDTH*C_RATIO-1:C_DATA_WIDTH*(C_RATIO-1)]; end endfunction function [C_DATA_WIDTH-1:0] f_mux4 ( input [1:0] s, input [4*C_DATA_WIDTH-1:0] a ); integer i; reg [4*C_DATA_WIDTH-1:0] carry; begin carry[C_DATA_WIDTH-1:0] = {C_DATA_WIDTH{(s==0)?1'b1:1'b0}} & a[C_DATA_WIDTH-1:0]; for (i=1;i<4;i=i+1) begin : gen_carrychain_enc carry[i*C_DATA_WIDTH +: C_DATA_WIDTH] = carry[(i-1)*C_DATA_WIDTH +: C_DATA_WIDTH] | ({C_DATA_WIDTH{(s==i)?1'b1:1'b0}} & a[i*C_DATA_WIDTH +: C_DATA_WIDTH]); end f_mux4 = carry[C_DATA_WIDTH*4-1:C_DATA_WIDTH*3]; end endfunction assign O = o_i & {C_DATA_WIDTH{OE}}; // OE is gated AFTER any MUXF7/8 (can only optimize forward into downstream logic) generate if ( C_RATIO < 2 ) begin : gen_bypass assign o_i = A; end else if ( C_FAMILY == "rtl" || C_RATIO < 5 ) begin : gen_rtl assign o_i = f_mux(S, A); end else begin : gen_fpga wire [C_DATA_WIDTH-1:0] l; wire [C_DATA_WIDTH-1:0] h; wire [C_DATA_WIDTH-1:0] ll; wire [C_DATA_WIDTH-1:0] lh; wire [C_DATA_WIDTH-1:0] hl; wire [C_DATA_WIDTH-1:0] hh; case (C_RATIO) 1, 5, 9, 13: assign hh = A[(C_RATIO-1)*C_DATA_WIDTH +: C_DATA_WIDTH]; 2, 6, 10, 14: assign hh = S[0] ? A[(C_RATIO-1)*C_DATA_WIDTH +: C_DATA_WIDTH] : A[(C_RATIO-2)*C_DATA_WIDTH +: C_DATA_WIDTH] ; 3, 7, 11, 15: assign hh = S[1] ? A[(C_RATIO-1)*C_DATA_WIDTH +: C_DATA_WIDTH] : (S[0] ? A[(C_RATIO-2)*C_DATA_WIDTH +: C_DATA_WIDTH] : A[(C_RATIO-3)*C_DATA_WIDTH +: C_DATA_WIDTH] ); 4, 8, 12, 16: assign hh = S[1] ? (S[0] ? A[(C_RATIO-1)*C_DATA_WIDTH +: C_DATA_WIDTH] : A[(C_RATIO-2)*C_DATA_WIDTH +: C_DATA_WIDTH] ) : (S[0] ? A[(C_RATIO-3)*C_DATA_WIDTH +: C_DATA_WIDTH] : A[(C_RATIO-4)*C_DATA_WIDTH +: C_DATA_WIDTH] ); 17: assign hh = S[1] ? (S[0] ? A[15*C_DATA_WIDTH +: C_DATA_WIDTH] : A[14*C_DATA_WIDTH +: C_DATA_WIDTH] ) : (S[0] ? A[13*C_DATA_WIDTH +: C_DATA_WIDTH] : A[12*C_DATA_WIDTH +: C_DATA_WIDTH] ); default: assign hh = 0; endcase case (C_RATIO) 5, 6, 7, 8: begin assign l = f_mux4(S[1:0], A[0 +: 4*C_DATA_WIDTH]); for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : gen_mux_5_8 MUXF7 mux_s2_inst ( .I0 (l[bit_cnt]), .I1 (hh[bit_cnt]), .S (S[2]), .O (o_i[bit_cnt]) ); end end 9, 10, 11, 12: begin assign ll = f_mux4(S[1:0], A[0 +: 4*C_DATA_WIDTH]); assign lh = f_mux4(S[1:0], A[4*C_DATA_WIDTH +: 4*C_DATA_WIDTH]); for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : gen_mux_9_12 MUXF7 muxf_s2_low_inst ( .I0 (ll[bit_cnt]), .I1 (lh[bit_cnt]), .S (S[2]), .O (l[bit_cnt]) ); MUXF8 muxf_s3_inst ( .I0 (l[bit_cnt]), .I1 (hh[bit_cnt]), .S (S[3]), .O (o_i[bit_cnt]) ); end end 13,14,15,16: begin assign ll = f_mux4(S[1:0], A[0 +: 4*C_DATA_WIDTH]); assign lh = f_mux4(S[1:0], A[4*C_DATA_WIDTH +: 4*C_DATA_WIDTH]); assign hl = f_mux4(S[1:0], A[8*C_DATA_WIDTH +: 4*C_DATA_WIDTH]); for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : gen_mux_13_16 MUXF7 muxf_s2_low_inst ( .I0 (ll[bit_cnt]), .I1 (lh[bit_cnt]), .S (S[2]), .O (l[bit_cnt]) ); MUXF7 muxf_s2_hi_inst ( .I0 (hl[bit_cnt]), .I1 (hh[bit_cnt]), .S (S[2]), .O (h[bit_cnt]) ); MUXF8 muxf_s3_inst ( .I0 (l[bit_cnt]), .I1 (h[bit_cnt]), .S (S[3]), .O (o_i[bit_cnt]) ); end end 17: begin assign ll = S[4] ? A[16*C_DATA_WIDTH +: C_DATA_WIDTH] : f_mux4(S[1:0], A[0 +: 4*C_DATA_WIDTH]); // 5-input mux assign lh = f_mux4(S[1:0], A[4*C_DATA_WIDTH +: 4*C_DATA_WIDTH]); assign hl = f_mux4(S[1:0], A[8*C_DATA_WIDTH +: 4*C_DATA_WIDTH]); for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : gen_mux_17 MUXF7 muxf_s2_low_inst ( .I0 (ll[bit_cnt]), .I1 (lh[bit_cnt]), .S (S[2]), .O (l[bit_cnt]) ); MUXF7 muxf_s2_hi_inst ( .I0 (hl[bit_cnt]), .I1 (hh[bit_cnt]), .S (S[2]), .O (h[bit_cnt]) ); MUXF8 muxf_s3_inst ( .I0 (l[bit_cnt]), .I1 (h[bit_cnt]), .S (S[3]), .O (o_i[bit_cnt]) ); end end default: // If RATIO > 17, use RTL assign o_i = f_mux(S, A); endcase end // gen_fpga endgenerate endmodule
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: // Optimized Mux using MUXF7/8. // Any generic_baseblocks_v2_1_0_mux ratio. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // mux_enc // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module generic_baseblocks_v2_1_0_mux_enc # ( parameter C_FAMILY = "rtl", // FPGA Family. Current version: virtex6 or spartan6. parameter integer C_RATIO = 4, // Mux select ratio. Can be any binary value (>= 1) parameter integer C_SEL_WIDTH = 2, // Log2-ceiling of C_RATIO (>= 1) parameter integer C_DATA_WIDTH = 1 // Data width for generic_baseblocks_v2_1_0_comparator (>= 1) ) ( input wire [C_SEL_WIDTH-1:0] S, input wire [C_RATIO*C_DATA_WIDTH-1:0] A, output wire [C_DATA_WIDTH-1:0] O, input wire OE ); wire [C_DATA_WIDTH-1:0] o_i; genvar bit_cnt; function [C_DATA_WIDTH-1:0] f_mux ( input [C_SEL_WIDTH-1:0] s, input [C_RATIO*C_DATA_WIDTH-1:0] a ); integer i; reg [C_RATIO*C_DATA_WIDTH-1:0] carry; begin carry[C_DATA_WIDTH-1:0] = {C_DATA_WIDTH{(s==0)?1'b1:1'b0}} & a[C_DATA_WIDTH-1:0]; for (i=1;i<C_RATIO;i=i+1) begin : gen_carrychain_enc carry[i*C_DATA_WIDTH +: C_DATA_WIDTH] = carry[(i-1)*C_DATA_WIDTH +: C_DATA_WIDTH] | ({C_DATA_WIDTH{(s==i)?1'b1:1'b0}} & a[i*C_DATA_WIDTH +: C_DATA_WIDTH]); end f_mux = carry[C_DATA_WIDTH*C_RATIO-1:C_DATA_WIDTH*(C_RATIO-1)]; end endfunction function [C_DATA_WIDTH-1:0] f_mux4 ( input [1:0] s, input [4*C_DATA_WIDTH-1:0] a ); integer i; reg [4*C_DATA_WIDTH-1:0] carry; begin carry[C_DATA_WIDTH-1:0] = {C_DATA_WIDTH{(s==0)?1'b1:1'b0}} & a[C_DATA_WIDTH-1:0]; for (i=1;i<4;i=i+1) begin : gen_carrychain_enc carry[i*C_DATA_WIDTH +: C_DATA_WIDTH] = carry[(i-1)*C_DATA_WIDTH +: C_DATA_WIDTH] | ({C_DATA_WIDTH{(s==i)?1'b1:1'b0}} & a[i*C_DATA_WIDTH +: C_DATA_WIDTH]); end f_mux4 = carry[C_DATA_WIDTH*4-1:C_DATA_WIDTH*3]; end endfunction assign O = o_i & {C_DATA_WIDTH{OE}}; // OE is gated AFTER any MUXF7/8 (can only optimize forward into downstream logic) generate if ( C_RATIO < 2 ) begin : gen_bypass assign o_i = A; end else if ( C_FAMILY == "rtl" || C_RATIO < 5 ) begin : gen_rtl assign o_i = f_mux(S, A); end else begin : gen_fpga wire [C_DATA_WIDTH-1:0] l; wire [C_DATA_WIDTH-1:0] h; wire [C_DATA_WIDTH-1:0] ll; wire [C_DATA_WIDTH-1:0] lh; wire [C_DATA_WIDTH-1:0] hl; wire [C_DATA_WIDTH-1:0] hh; case (C_RATIO) 1, 5, 9, 13: assign hh = A[(C_RATIO-1)*C_DATA_WIDTH +: C_DATA_WIDTH]; 2, 6, 10, 14: assign hh = S[0] ? A[(C_RATIO-1)*C_DATA_WIDTH +: C_DATA_WIDTH] : A[(C_RATIO-2)*C_DATA_WIDTH +: C_DATA_WIDTH] ; 3, 7, 11, 15: assign hh = S[1] ? A[(C_RATIO-1)*C_DATA_WIDTH +: C_DATA_WIDTH] : (S[0] ? A[(C_RATIO-2)*C_DATA_WIDTH +: C_DATA_WIDTH] : A[(C_RATIO-3)*C_DATA_WIDTH +: C_DATA_WIDTH] ); 4, 8, 12, 16: assign hh = S[1] ? (S[0] ? A[(C_RATIO-1)*C_DATA_WIDTH +: C_DATA_WIDTH] : A[(C_RATIO-2)*C_DATA_WIDTH +: C_DATA_WIDTH] ) : (S[0] ? A[(C_RATIO-3)*C_DATA_WIDTH +: C_DATA_WIDTH] : A[(C_RATIO-4)*C_DATA_WIDTH +: C_DATA_WIDTH] ); 17: assign hh = S[1] ? (S[0] ? A[15*C_DATA_WIDTH +: C_DATA_WIDTH] : A[14*C_DATA_WIDTH +: C_DATA_WIDTH] ) : (S[0] ? A[13*C_DATA_WIDTH +: C_DATA_WIDTH] : A[12*C_DATA_WIDTH +: C_DATA_WIDTH] ); default: assign hh = 0; endcase case (C_RATIO) 5, 6, 7, 8: begin assign l = f_mux4(S[1:0], A[0 +: 4*C_DATA_WIDTH]); for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : gen_mux_5_8 MUXF7 mux_s2_inst ( .I0 (l[bit_cnt]), .I1 (hh[bit_cnt]), .S (S[2]), .O (o_i[bit_cnt]) ); end end 9, 10, 11, 12: begin assign ll = f_mux4(S[1:0], A[0 +: 4*C_DATA_WIDTH]); assign lh = f_mux4(S[1:0], A[4*C_DATA_WIDTH +: 4*C_DATA_WIDTH]); for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : gen_mux_9_12 MUXF7 muxf_s2_low_inst ( .I0 (ll[bit_cnt]), .I1 (lh[bit_cnt]), .S (S[2]), .O (l[bit_cnt]) ); MUXF8 muxf_s3_inst ( .I0 (l[bit_cnt]), .I1 (hh[bit_cnt]), .S (S[3]), .O (o_i[bit_cnt]) ); end end 13,14,15,16: begin assign ll = f_mux4(S[1:0], A[0 +: 4*C_DATA_WIDTH]); assign lh = f_mux4(S[1:0], A[4*C_DATA_WIDTH +: 4*C_DATA_WIDTH]); assign hl = f_mux4(S[1:0], A[8*C_DATA_WIDTH +: 4*C_DATA_WIDTH]); for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : gen_mux_13_16 MUXF7 muxf_s2_low_inst ( .I0 (ll[bit_cnt]), .I1 (lh[bit_cnt]), .S (S[2]), .O (l[bit_cnt]) ); MUXF7 muxf_s2_hi_inst ( .I0 (hl[bit_cnt]), .I1 (hh[bit_cnt]), .S (S[2]), .O (h[bit_cnt]) ); MUXF8 muxf_s3_inst ( .I0 (l[bit_cnt]), .I1 (h[bit_cnt]), .S (S[3]), .O (o_i[bit_cnt]) ); end end 17: begin assign ll = S[4] ? A[16*C_DATA_WIDTH +: C_DATA_WIDTH] : f_mux4(S[1:0], A[0 +: 4*C_DATA_WIDTH]); // 5-input mux assign lh = f_mux4(S[1:0], A[4*C_DATA_WIDTH +: 4*C_DATA_WIDTH]); assign hl = f_mux4(S[1:0], A[8*C_DATA_WIDTH +: 4*C_DATA_WIDTH]); for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : gen_mux_17 MUXF7 muxf_s2_low_inst ( .I0 (ll[bit_cnt]), .I1 (lh[bit_cnt]), .S (S[2]), .O (l[bit_cnt]) ); MUXF7 muxf_s2_hi_inst ( .I0 (hl[bit_cnt]), .I1 (hh[bit_cnt]), .S (S[2]), .O (h[bit_cnt]) ); MUXF8 muxf_s3_inst ( .I0 (l[bit_cnt]), .I1 (h[bit_cnt]), .S (S[3]), .O (o_i[bit_cnt]) ); end end default: // If RATIO > 17, use RTL assign o_i = f_mux(S, A); endcase end // gen_fpga endgenerate endmodule
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: // Optimized Mux using MUXF7/8. // Any generic_baseblocks_v2_1_0_mux ratio. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // mux_enc // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module generic_baseblocks_v2_1_0_mux_enc # ( parameter C_FAMILY = "rtl", // FPGA Family. Current version: virtex6 or spartan6. parameter integer C_RATIO = 4, // Mux select ratio. Can be any binary value (>= 1) parameter integer C_SEL_WIDTH = 2, // Log2-ceiling of C_RATIO (>= 1) parameter integer C_DATA_WIDTH = 1 // Data width for generic_baseblocks_v2_1_0_comparator (>= 1) ) ( input wire [C_SEL_WIDTH-1:0] S, input wire [C_RATIO*C_DATA_WIDTH-1:0] A, output wire [C_DATA_WIDTH-1:0] O, input wire OE ); wire [C_DATA_WIDTH-1:0] o_i; genvar bit_cnt; function [C_DATA_WIDTH-1:0] f_mux ( input [C_SEL_WIDTH-1:0] s, input [C_RATIO*C_DATA_WIDTH-1:0] a ); integer i; reg [C_RATIO*C_DATA_WIDTH-1:0] carry; begin carry[C_DATA_WIDTH-1:0] = {C_DATA_WIDTH{(s==0)?1'b1:1'b0}} & a[C_DATA_WIDTH-1:0]; for (i=1;i<C_RATIO;i=i+1) begin : gen_carrychain_enc carry[i*C_DATA_WIDTH +: C_DATA_WIDTH] = carry[(i-1)*C_DATA_WIDTH +: C_DATA_WIDTH] | ({C_DATA_WIDTH{(s==i)?1'b1:1'b0}} & a[i*C_DATA_WIDTH +: C_DATA_WIDTH]); end f_mux = carry[C_DATA_WIDTH*C_RATIO-1:C_DATA_WIDTH*(C_RATIO-1)]; end endfunction function [C_DATA_WIDTH-1:0] f_mux4 ( input [1:0] s, input [4*C_DATA_WIDTH-1:0] a ); integer i; reg [4*C_DATA_WIDTH-1:0] carry; begin carry[C_DATA_WIDTH-1:0] = {C_DATA_WIDTH{(s==0)?1'b1:1'b0}} & a[C_DATA_WIDTH-1:0]; for (i=1;i<4;i=i+1) begin : gen_carrychain_enc carry[i*C_DATA_WIDTH +: C_DATA_WIDTH] = carry[(i-1)*C_DATA_WIDTH +: C_DATA_WIDTH] | ({C_DATA_WIDTH{(s==i)?1'b1:1'b0}} & a[i*C_DATA_WIDTH +: C_DATA_WIDTH]); end f_mux4 = carry[C_DATA_WIDTH*4-1:C_DATA_WIDTH*3]; end endfunction assign O = o_i & {C_DATA_WIDTH{OE}}; // OE is gated AFTER any MUXF7/8 (can only optimize forward into downstream logic) generate if ( C_RATIO < 2 ) begin : gen_bypass assign o_i = A; end else if ( C_FAMILY == "rtl" || C_RATIO < 5 ) begin : gen_rtl assign o_i = f_mux(S, A); end else begin : gen_fpga wire [C_DATA_WIDTH-1:0] l; wire [C_DATA_WIDTH-1:0] h; wire [C_DATA_WIDTH-1:0] ll; wire [C_DATA_WIDTH-1:0] lh; wire [C_DATA_WIDTH-1:0] hl; wire [C_DATA_WIDTH-1:0] hh; case (C_RATIO) 1, 5, 9, 13: assign hh = A[(C_RATIO-1)*C_DATA_WIDTH +: C_DATA_WIDTH]; 2, 6, 10, 14: assign hh = S[0] ? A[(C_RATIO-1)*C_DATA_WIDTH +: C_DATA_WIDTH] : A[(C_RATIO-2)*C_DATA_WIDTH +: C_DATA_WIDTH] ; 3, 7, 11, 15: assign hh = S[1] ? A[(C_RATIO-1)*C_DATA_WIDTH +: C_DATA_WIDTH] : (S[0] ? A[(C_RATIO-2)*C_DATA_WIDTH +: C_DATA_WIDTH] : A[(C_RATIO-3)*C_DATA_WIDTH +: C_DATA_WIDTH] ); 4, 8, 12, 16: assign hh = S[1] ? (S[0] ? A[(C_RATIO-1)*C_DATA_WIDTH +: C_DATA_WIDTH] : A[(C_RATIO-2)*C_DATA_WIDTH +: C_DATA_WIDTH] ) : (S[0] ? A[(C_RATIO-3)*C_DATA_WIDTH +: C_DATA_WIDTH] : A[(C_RATIO-4)*C_DATA_WIDTH +: C_DATA_WIDTH] ); 17: assign hh = S[1] ? (S[0] ? A[15*C_DATA_WIDTH +: C_DATA_WIDTH] : A[14*C_DATA_WIDTH +: C_DATA_WIDTH] ) : (S[0] ? A[13*C_DATA_WIDTH +: C_DATA_WIDTH] : A[12*C_DATA_WIDTH +: C_DATA_WIDTH] ); default: assign hh = 0; endcase case (C_RATIO) 5, 6, 7, 8: begin assign l = f_mux4(S[1:0], A[0 +: 4*C_DATA_WIDTH]); for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : gen_mux_5_8 MUXF7 mux_s2_inst ( .I0 (l[bit_cnt]), .I1 (hh[bit_cnt]), .S (S[2]), .O (o_i[bit_cnt]) ); end end 9, 10, 11, 12: begin assign ll = f_mux4(S[1:0], A[0 +: 4*C_DATA_WIDTH]); assign lh = f_mux4(S[1:0], A[4*C_DATA_WIDTH +: 4*C_DATA_WIDTH]); for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : gen_mux_9_12 MUXF7 muxf_s2_low_inst ( .I0 (ll[bit_cnt]), .I1 (lh[bit_cnt]), .S (S[2]), .O (l[bit_cnt]) ); MUXF8 muxf_s3_inst ( .I0 (l[bit_cnt]), .I1 (hh[bit_cnt]), .S (S[3]), .O (o_i[bit_cnt]) ); end end 13,14,15,16: begin assign ll = f_mux4(S[1:0], A[0 +: 4*C_DATA_WIDTH]); assign lh = f_mux4(S[1:0], A[4*C_DATA_WIDTH +: 4*C_DATA_WIDTH]); assign hl = f_mux4(S[1:0], A[8*C_DATA_WIDTH +: 4*C_DATA_WIDTH]); for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : gen_mux_13_16 MUXF7 muxf_s2_low_inst ( .I0 (ll[bit_cnt]), .I1 (lh[bit_cnt]), .S (S[2]), .O (l[bit_cnt]) ); MUXF7 muxf_s2_hi_inst ( .I0 (hl[bit_cnt]), .I1 (hh[bit_cnt]), .S (S[2]), .O (h[bit_cnt]) ); MUXF8 muxf_s3_inst ( .I0 (l[bit_cnt]), .I1 (h[bit_cnt]), .S (S[3]), .O (o_i[bit_cnt]) ); end end 17: begin assign ll = S[4] ? A[16*C_DATA_WIDTH +: C_DATA_WIDTH] : f_mux4(S[1:0], A[0 +: 4*C_DATA_WIDTH]); // 5-input mux assign lh = f_mux4(S[1:0], A[4*C_DATA_WIDTH +: 4*C_DATA_WIDTH]); assign hl = f_mux4(S[1:0], A[8*C_DATA_WIDTH +: 4*C_DATA_WIDTH]); for (bit_cnt = 0; bit_cnt < C_DATA_WIDTH ; bit_cnt = bit_cnt + 1) begin : gen_mux_17 MUXF7 muxf_s2_low_inst ( .I0 (ll[bit_cnt]), .I1 (lh[bit_cnt]), .S (S[2]), .O (l[bit_cnt]) ); MUXF7 muxf_s2_hi_inst ( .I0 (hl[bit_cnt]), .I1 (hh[bit_cnt]), .S (S[2]), .O (h[bit_cnt]) ); MUXF8 muxf_s3_inst ( .I0 (l[bit_cnt]), .I1 (h[bit_cnt]), .S (S[3]), .O (o_i[bit_cnt]) ); end end default: // If RATIO > 17, use RTL assign o_i = f_mux(S, A); endcase end // gen_fpga endgenerate endmodule
// megafunction wizard: %ALTTEMP_SENSE% // GENERATION: STANDARD // VERSION: WM1.0 // MODULE: ALTTEMP_SENSE // ============================================================ // File Name: temp_sense.v // Megafunction Name(s): // ALTTEMP_SENSE // // Simulation Library Files(s): // // ============================================================ // ************************************************************ // THIS IS A WIZARD-GENERATED FILE. DO NOT EDIT THIS FILE! // // 12.0 Build 263 08/02/2012 SP 2 SJ Full Version // ************************************************************ //Copyright (C) 1991-2012 Altera Corporation //Your use of Altera Corporation's design tools, logic functions //and other software and tools, and its AMPP partner logic //functions, and any output files from any of the foregoing //(including device programming or simulation files), and any //associated documentation or information are expressly subject //to the terms and conditions of the Altera Program License //Subscription Agreement, Altera MegaCore Function License //Agreement, or other applicable license agreement, including, //without limitation, that your use is for the sole purpose of //programming logic devices manufactured by Altera and sold by //Altera or its authorized distributors. Please refer to the //applicable agreement for further details. //alttemp_sense CBX_AUTO_BLACKBOX="ALL" CLK_FREQUENCY="50.0" CLOCK_DIVIDER_ENABLE="on" CLOCK_DIVIDER_VALUE=80 DEVICE_FAMILY="Stratix V" NUMBER_OF_SAMPLES=128 POI_CAL_TEMPERATURE=85 SIM_TSDCALO=0 USE_WYS="on" USER_OFFSET_ENABLE="off" ce clk clr tsdcaldone tsdcalo ALTERA_INTERNAL_OPTIONS=SUPPRESS_DA_RULE_INTERNAL=C106 //VERSION_BEGIN 12.0SP2 cbx_alttemp_sense 2012:08:02:15:11:11:SJ cbx_cycloneii 2012:08:02:15:11:11:SJ cbx_lpm_add_sub 2012:08:02:15:11:11:SJ cbx_lpm_compare 2012:08:02:15:11:11:SJ cbx_lpm_counter 2012:08:02:15:11:11:SJ cbx_lpm_decode 2012:08:02:15:11:11:SJ cbx_mgl 2012:08:02:15:40:54:SJ cbx_stratix 2012:08:02:15:11:11:SJ cbx_stratixii 2012:08:02:15:11:11:SJ cbx_stratixiii 2012:08:02:15:11:11:SJ cbx_stratixv 2012:08:02:15:11:11:SJ VERSION_END // synthesis VERILOG_INPUT_VERSION VERILOG_2001 // altera message_off 10463 //synthesis_resources = stratixv_tsdblock 1 //synopsys translate_off `timescale 1 ps / 1 ps //synopsys translate_on (* ALTERA_ATTRIBUTE = {"SUPPRESS_DA_RULE_INTERNAL=C106"} *) module temp_sense_alttemp_sense_v8t ( ce, clk, clr, tsdcaldone, tsdcalo) /* synthesis synthesis_clearbox=2 */; input ce; input clk; input clr; output tsdcaldone; output [7:0] tsdcalo; `ifndef ALTERA_RESERVED_QIS // synopsys translate_off `endif tri1 ce; tri0 clr; `ifndef ALTERA_RESERVED_QIS // synopsys translate_on `endif wire wire_sd1_tsdcaldone; wire [7:0] wire_sd1_tsdcalo; stratixv_tsdblock sd1 ( .ce(ce), .clk(clk), .clr(clr), .tsdcaldone(wire_sd1_tsdcaldone), .tsdcalo(wire_sd1_tsdcalo)); defparam sd1.clock_divider_enable = "true", sd1.clock_divider_value = 80, sd1.sim_tsdcalo = 0, sd1.lpm_type = "stratixv_tsdblock"; assign tsdcaldone = wire_sd1_tsdcaldone, tsdcalo = wire_sd1_tsdcalo; endmodule //temp_sense_alttemp_sense_v8t //VALID FILE // synopsys translate_off `timescale 1 ps / 1 ps // synopsys translate_on module temp_sense ( ce, clk, clr, tsdcaldone, tsdcalo)/* synthesis synthesis_clearbox = 2 */; input ce; input clk; input clr; output tsdcaldone; output [7:0] tsdcalo; wire [7:0] sub_wire0; wire sub_wire1; wire [7:0] tsdcalo = sub_wire0[7:0]; wire tsdcaldone = sub_wire1; temp_sense_alttemp_sense_v8t temp_sense_alttemp_sense_v8t_component ( .ce (ce), .clk (clk), .clr (clr), .tsdcalo (sub_wire0), .tsdcaldone (sub_wire1))/* synthesis synthesis_clearbox=2 clearbox_macroname = ALTTEMP_SENSE clearbox_defparam = "clk_frequency=50.0;clock_divider_enable=ON;clock_divider_value=80;intended_device_family=Stratix V;lpm_hint=UNUSED;lpm_type=alttemp_sense;number_of_samples=128;poi_cal_temperature=85;sim_tsdcalo=0;user_offset_enable=off;use_wys=on;" */; endmodule // ============================================================ // CNX file retrieval info // ============================================================ // Retrieval info: LIBRARY: altera_mf altera_mf.altera_mf_components.all // Retrieval info: PRIVATE: INTENDED_DEVICE_FAMILY STRING "Stratix V" // Retrieval info: CONSTANT: CLK_FREQUENCY STRING "50.0" // Retrieval info: CONSTANT: CLOCK_DIVIDER_ENABLE STRING "ON" // Retrieval info: CONSTANT: CLOCK_DIVIDER_VALUE NUMERIC "80" // Retrieval info: CONSTANT: INTENDED_DEVICE_FAMILY STRING "Stratix V" // Retrieval info: CONSTANT: LPM_HINT STRING "UNUSED" // Retrieval info: CONSTANT: LPM_TYPE STRING "alttemp_sense" // Retrieval info: CONSTANT: NUMBER_OF_SAMPLES NUMERIC "128" // Retrieval info: CONSTANT: POI_CAL_TEMPERATURE NUMERIC "85" // Retrieval info: CONSTANT: SIM_TSDCALO NUMERIC "0" // Retrieval info: CONSTANT: USER_OFFSET_ENABLE STRING "off" // Retrieval info: CONSTANT: USE_WYS STRING "on" // Retrieval info: USED_PORT: ce 0 0 0 0 INPUT NODEFVAL "ce" // Retrieval info: CONNECT: @ce 0 0 0 0 ce 0 0 0 0 // Retrieval info: USED_PORT: clk 0 0 0 0 INPUT NODEFVAL "clk" // Retrieval info: CONNECT: @clk 0 0 0 0 clk 0 0 0 0 // Retrieval info: USED_PORT: clr 0 0 0 0 INPUT NODEFVAL "clr" // Retrieval info: CONNECT: @clr 0 0 0 0 clr 0 0 0 0 // Retrieval info: USED_PORT: tsdcaldone 0 0 0 0 OUTPUT NODEFVAL "tsdcaldone" // Retrieval info: CONNECT: tsdcaldone 0 0 0 0 @tsdcaldone 0 0 0 0 // Retrieval info: USED_PORT: tsdcalo 0 0 8 0 OUTPUT NODEFVAL "tsdcalo[7..0]" // Retrieval info: CONNECT: tsdcalo 0 0 8 0 @tsdcalo 0 0 8 0 // Retrieval info: GEN_FILE: TYPE_NORMAL temp_sense.v TRUE FALSE // Retrieval info: GEN_FILE: TYPE_NORMAL temp_sense.qip TRUE FALSE // Retrieval info: GEN_FILE: TYPE_NORMAL temp_sense.bsf FALSE TRUE // Retrieval info: GEN_FILE: TYPE_NORMAL temp_sense_inst.v FALSE TRUE // Retrieval info: GEN_FILE: TYPE_NORMAL temp_sense_bb.v FALSE TRUE // Retrieval info: GEN_FILE: TYPE_NORMAL temp_sense.inc FALSE TRUE // Retrieval info: GEN_FILE: TYPE_NORMAL temp_sense.cmp FALSE TRUE
// megafunction wizard: %ALTTEMP_SENSE% // GENERATION: STANDARD // VERSION: WM1.0 // MODULE: ALTTEMP_SENSE // ============================================================ // File Name: temp_sense.v // Megafunction Name(s): // ALTTEMP_SENSE // // Simulation Library Files(s): // // ============================================================ // ************************************************************ // THIS IS A WIZARD-GENERATED FILE. DO NOT EDIT THIS FILE! // // 12.0 Build 263 08/02/2012 SP 2 SJ Full Version // ************************************************************ //Copyright (C) 1991-2012 Altera Corporation //Your use of Altera Corporation's design tools, logic functions //and other software and tools, and its AMPP partner logic //functions, and any output files from any of the foregoing //(including device programming or simulation files), and any //associated documentation or information are expressly subject //to the terms and conditions of the Altera Program License //Subscription Agreement, Altera MegaCore Function License //Agreement, or other applicable license agreement, including, //without limitation, that your use is for the sole purpose of //programming logic devices manufactured by Altera and sold by //Altera or its authorized distributors. Please refer to the //applicable agreement for further details. //alttemp_sense CBX_AUTO_BLACKBOX="ALL" CLK_FREQUENCY="50.0" CLOCK_DIVIDER_ENABLE="on" CLOCK_DIVIDER_VALUE=80 DEVICE_FAMILY="Stratix V" NUMBER_OF_SAMPLES=128 POI_CAL_TEMPERATURE=85 SIM_TSDCALO=0 USE_WYS="on" USER_OFFSET_ENABLE="off" ce clk clr tsdcaldone tsdcalo ALTERA_INTERNAL_OPTIONS=SUPPRESS_DA_RULE_INTERNAL=C106 //VERSION_BEGIN 12.0SP2 cbx_alttemp_sense 2012:08:02:15:11:11:SJ cbx_cycloneii 2012:08:02:15:11:11:SJ cbx_lpm_add_sub 2012:08:02:15:11:11:SJ cbx_lpm_compare 2012:08:02:15:11:11:SJ cbx_lpm_counter 2012:08:02:15:11:11:SJ cbx_lpm_decode 2012:08:02:15:11:11:SJ cbx_mgl 2012:08:02:15:40:54:SJ cbx_stratix 2012:08:02:15:11:11:SJ cbx_stratixii 2012:08:02:15:11:11:SJ cbx_stratixiii 2012:08:02:15:11:11:SJ cbx_stratixv 2012:08:02:15:11:11:SJ VERSION_END // synthesis VERILOG_INPUT_VERSION VERILOG_2001 // altera message_off 10463 //synthesis_resources = stratixv_tsdblock 1 //synopsys translate_off `timescale 1 ps / 1 ps //synopsys translate_on (* ALTERA_ATTRIBUTE = {"SUPPRESS_DA_RULE_INTERNAL=C106"} *) module temp_sense_alttemp_sense_v8t ( ce, clk, clr, tsdcaldone, tsdcalo) /* synthesis synthesis_clearbox=2 */; input ce; input clk; input clr; output tsdcaldone; output [7:0] tsdcalo; `ifndef ALTERA_RESERVED_QIS // synopsys translate_off `endif tri1 ce; tri0 clr; `ifndef ALTERA_RESERVED_QIS // synopsys translate_on `endif wire wire_sd1_tsdcaldone; wire [7:0] wire_sd1_tsdcalo; stratixv_tsdblock sd1 ( .ce(ce), .clk(clk), .clr(clr), .tsdcaldone(wire_sd1_tsdcaldone), .tsdcalo(wire_sd1_tsdcalo)); defparam sd1.clock_divider_enable = "true", sd1.clock_divider_value = 80, sd1.sim_tsdcalo = 0, sd1.lpm_type = "stratixv_tsdblock"; assign tsdcaldone = wire_sd1_tsdcaldone, tsdcalo = wire_sd1_tsdcalo; endmodule //temp_sense_alttemp_sense_v8t //VALID FILE // synopsys translate_off `timescale 1 ps / 1 ps // synopsys translate_on module temp_sense ( ce, clk, clr, tsdcaldone, tsdcalo)/* synthesis synthesis_clearbox = 2 */; input ce; input clk; input clr; output tsdcaldone; output [7:0] tsdcalo; wire [7:0] sub_wire0; wire sub_wire1; wire [7:0] tsdcalo = sub_wire0[7:0]; wire tsdcaldone = sub_wire1; temp_sense_alttemp_sense_v8t temp_sense_alttemp_sense_v8t_component ( .ce (ce), .clk (clk), .clr (clr), .tsdcalo (sub_wire0), .tsdcaldone (sub_wire1))/* synthesis synthesis_clearbox=2 clearbox_macroname = ALTTEMP_SENSE clearbox_defparam = "clk_frequency=50.0;clock_divider_enable=ON;clock_divider_value=80;intended_device_family=Stratix V;lpm_hint=UNUSED;lpm_type=alttemp_sense;number_of_samples=128;poi_cal_temperature=85;sim_tsdcalo=0;user_offset_enable=off;use_wys=on;" */; endmodule // ============================================================ // CNX file retrieval info // ============================================================ // Retrieval info: LIBRARY: altera_mf altera_mf.altera_mf_components.all // Retrieval info: PRIVATE: INTENDED_DEVICE_FAMILY STRING "Stratix V" // Retrieval info: CONSTANT: CLK_FREQUENCY STRING "50.0" // Retrieval info: CONSTANT: CLOCK_DIVIDER_ENABLE STRING "ON" // Retrieval info: CONSTANT: CLOCK_DIVIDER_VALUE NUMERIC "80" // Retrieval info: CONSTANT: INTENDED_DEVICE_FAMILY STRING "Stratix V" // Retrieval info: CONSTANT: LPM_HINT STRING "UNUSED" // Retrieval info: CONSTANT: LPM_TYPE STRING "alttemp_sense" // Retrieval info: CONSTANT: NUMBER_OF_SAMPLES NUMERIC "128" // Retrieval info: CONSTANT: POI_CAL_TEMPERATURE NUMERIC "85" // Retrieval info: CONSTANT: SIM_TSDCALO NUMERIC "0" // Retrieval info: CONSTANT: USER_OFFSET_ENABLE STRING "off" // Retrieval info: CONSTANT: USE_WYS STRING "on" // Retrieval info: USED_PORT: ce 0 0 0 0 INPUT NODEFVAL "ce" // Retrieval info: CONNECT: @ce 0 0 0 0 ce 0 0 0 0 // Retrieval info: USED_PORT: clk 0 0 0 0 INPUT NODEFVAL "clk" // Retrieval info: CONNECT: @clk 0 0 0 0 clk 0 0 0 0 // Retrieval info: USED_PORT: clr 0 0 0 0 INPUT NODEFVAL "clr" // Retrieval info: CONNECT: @clr 0 0 0 0 clr 0 0 0 0 // Retrieval info: USED_PORT: tsdcaldone 0 0 0 0 OUTPUT NODEFVAL "tsdcaldone" // Retrieval info: CONNECT: tsdcaldone 0 0 0 0 @tsdcaldone 0 0 0 0 // Retrieval info: USED_PORT: tsdcalo 0 0 8 0 OUTPUT NODEFVAL "tsdcalo[7..0]" // Retrieval info: CONNECT: tsdcalo 0 0 8 0 @tsdcalo 0 0 8 0 // Retrieval info: GEN_FILE: TYPE_NORMAL temp_sense.v TRUE FALSE // Retrieval info: GEN_FILE: TYPE_NORMAL temp_sense.qip TRUE FALSE // Retrieval info: GEN_FILE: TYPE_NORMAL temp_sense.bsf FALSE TRUE // Retrieval info: GEN_FILE: TYPE_NORMAL temp_sense_inst.v FALSE TRUE // Retrieval info: GEN_FILE: TYPE_NORMAL temp_sense_bb.v FALSE TRUE // Retrieval info: GEN_FILE: TYPE_NORMAL temp_sense.inc FALSE TRUE // Retrieval info: GEN_FILE: TYPE_NORMAL temp_sense.cmp FALSE TRUE
// megafunction wizard: %ALTTEMP_SENSE% // GENERATION: STANDARD // VERSION: WM1.0 // MODULE: ALTTEMP_SENSE // ============================================================ // File Name: temp_sense.v // Megafunction Name(s): // ALTTEMP_SENSE // // Simulation Library Files(s): // // ============================================================ // ************************************************************ // THIS IS A WIZARD-GENERATED FILE. DO NOT EDIT THIS FILE! // // 12.0 Build 263 08/02/2012 SP 2 SJ Full Version // ************************************************************ //Copyright (C) 1991-2012 Altera Corporation //Your use of Altera Corporation's design tools, logic functions //and other software and tools, and its AMPP partner logic //functions, and any output files from any of the foregoing //(including device programming or simulation files), and any //associated documentation or information are expressly subject //to the terms and conditions of the Altera Program License //Subscription Agreement, Altera MegaCore Function License //Agreement, or other applicable license agreement, including, //without limitation, that your use is for the sole purpose of //programming logic devices manufactured by Altera and sold by //Altera or its authorized distributors. Please refer to the //applicable agreement for further details. //alttemp_sense CBX_AUTO_BLACKBOX="ALL" CLK_FREQUENCY="50.0" CLOCK_DIVIDER_ENABLE="on" CLOCK_DIVIDER_VALUE=80 DEVICE_FAMILY="Stratix V" NUMBER_OF_SAMPLES=128 POI_CAL_TEMPERATURE=85 SIM_TSDCALO=0 USE_WYS="on" USER_OFFSET_ENABLE="off" ce clk clr tsdcaldone tsdcalo ALTERA_INTERNAL_OPTIONS=SUPPRESS_DA_RULE_INTERNAL=C106 //VERSION_BEGIN 12.0SP2 cbx_alttemp_sense 2012:08:02:15:11:11:SJ cbx_cycloneii 2012:08:02:15:11:11:SJ cbx_lpm_add_sub 2012:08:02:15:11:11:SJ cbx_lpm_compare 2012:08:02:15:11:11:SJ cbx_lpm_counter 2012:08:02:15:11:11:SJ cbx_lpm_decode 2012:08:02:15:11:11:SJ cbx_mgl 2012:08:02:15:40:54:SJ cbx_stratix 2012:08:02:15:11:11:SJ cbx_stratixii 2012:08:02:15:11:11:SJ cbx_stratixiii 2012:08:02:15:11:11:SJ cbx_stratixv 2012:08:02:15:11:11:SJ VERSION_END // synthesis VERILOG_INPUT_VERSION VERILOG_2001 // altera message_off 10463 //synthesis_resources = stratixv_tsdblock 1 //synopsys translate_off `timescale 1 ps / 1 ps //synopsys translate_on (* ALTERA_ATTRIBUTE = {"SUPPRESS_DA_RULE_INTERNAL=C106"} *) module temp_sense_alttemp_sense_v8t ( ce, clk, clr, tsdcaldone, tsdcalo) /* synthesis synthesis_clearbox=2 */; input ce; input clk; input clr; output tsdcaldone; output [7:0] tsdcalo; `ifndef ALTERA_RESERVED_QIS // synopsys translate_off `endif tri1 ce; tri0 clr; `ifndef ALTERA_RESERVED_QIS // synopsys translate_on `endif wire wire_sd1_tsdcaldone; wire [7:0] wire_sd1_tsdcalo; stratixv_tsdblock sd1 ( .ce(ce), .clk(clk), .clr(clr), .tsdcaldone(wire_sd1_tsdcaldone), .tsdcalo(wire_sd1_tsdcalo)); defparam sd1.clock_divider_enable = "true", sd1.clock_divider_value = 80, sd1.sim_tsdcalo = 0, sd1.lpm_type = "stratixv_tsdblock"; assign tsdcaldone = wire_sd1_tsdcaldone, tsdcalo = wire_sd1_tsdcalo; endmodule //temp_sense_alttemp_sense_v8t //VALID FILE // synopsys translate_off `timescale 1 ps / 1 ps // synopsys translate_on module temp_sense ( ce, clk, clr, tsdcaldone, tsdcalo)/* synthesis synthesis_clearbox = 2 */; input ce; input clk; input clr; output tsdcaldone; output [7:0] tsdcalo; wire [7:0] sub_wire0; wire sub_wire1; wire [7:0] tsdcalo = sub_wire0[7:0]; wire tsdcaldone = sub_wire1; temp_sense_alttemp_sense_v8t temp_sense_alttemp_sense_v8t_component ( .ce (ce), .clk (clk), .clr (clr), .tsdcalo (sub_wire0), .tsdcaldone (sub_wire1))/* synthesis synthesis_clearbox=2 clearbox_macroname = ALTTEMP_SENSE clearbox_defparam = "clk_frequency=50.0;clock_divider_enable=ON;clock_divider_value=80;intended_device_family=Stratix V;lpm_hint=UNUSED;lpm_type=alttemp_sense;number_of_samples=128;poi_cal_temperature=85;sim_tsdcalo=0;user_offset_enable=off;use_wys=on;" */; endmodule // ============================================================ // CNX file retrieval info // ============================================================ // Retrieval info: LIBRARY: altera_mf altera_mf.altera_mf_components.all // Retrieval info: PRIVATE: INTENDED_DEVICE_FAMILY STRING "Stratix V" // Retrieval info: CONSTANT: CLK_FREQUENCY STRING "50.0" // Retrieval info: CONSTANT: CLOCK_DIVIDER_ENABLE STRING "ON" // Retrieval info: CONSTANT: CLOCK_DIVIDER_VALUE NUMERIC "80" // Retrieval info: CONSTANT: INTENDED_DEVICE_FAMILY STRING "Stratix V" // Retrieval info: CONSTANT: LPM_HINT STRING "UNUSED" // Retrieval info: CONSTANT: LPM_TYPE STRING "alttemp_sense" // Retrieval info: CONSTANT: NUMBER_OF_SAMPLES NUMERIC "128" // Retrieval info: CONSTANT: POI_CAL_TEMPERATURE NUMERIC "85" // Retrieval info: CONSTANT: SIM_TSDCALO NUMERIC "0" // Retrieval info: CONSTANT: USER_OFFSET_ENABLE STRING "off" // Retrieval info: CONSTANT: USE_WYS STRING "on" // Retrieval info: USED_PORT: ce 0 0 0 0 INPUT NODEFVAL "ce" // Retrieval info: CONNECT: @ce 0 0 0 0 ce 0 0 0 0 // Retrieval info: USED_PORT: clk 0 0 0 0 INPUT NODEFVAL "clk" // Retrieval info: CONNECT: @clk 0 0 0 0 clk 0 0 0 0 // Retrieval info: USED_PORT: clr 0 0 0 0 INPUT NODEFVAL "clr" // Retrieval info: CONNECT: @clr 0 0 0 0 clr 0 0 0 0 // Retrieval info: USED_PORT: tsdcaldone 0 0 0 0 OUTPUT NODEFVAL "tsdcaldone" // Retrieval info: CONNECT: tsdcaldone 0 0 0 0 @tsdcaldone 0 0 0 0 // Retrieval info: USED_PORT: tsdcalo 0 0 8 0 OUTPUT NODEFVAL "tsdcalo[7..0]" // Retrieval info: CONNECT: tsdcalo 0 0 8 0 @tsdcalo 0 0 8 0 // Retrieval info: GEN_FILE: TYPE_NORMAL temp_sense.v TRUE FALSE // Retrieval info: GEN_FILE: TYPE_NORMAL temp_sense.qip TRUE FALSE // Retrieval info: GEN_FILE: TYPE_NORMAL temp_sense.bsf FALSE TRUE // Retrieval info: GEN_FILE: TYPE_NORMAL temp_sense_inst.v FALSE TRUE // Retrieval info: GEN_FILE: TYPE_NORMAL temp_sense_bb.v FALSE TRUE // Retrieval info: GEN_FILE: TYPE_NORMAL temp_sense.inc FALSE TRUE // Retrieval info: GEN_FILE: TYPE_NORMAL temp_sense.cmp FALSE TRUE
module usb_packet_fifo ( input reset, input clock_in, input clock_out, input [15:0]ram_data_in, input write_enable, output reg [15:0]ram_data_out, output reg pkt_waiting, output reg have_space, input read_enable, input skip_packet ) ; /* Some parameters for usage later on */ parameter DATA_WIDTH = 16 ; parameter NUM_PACKETS = 4 ; /* Create the RAM here */ reg [DATA_WIDTH-1:0] usb_ram [256*NUM_PACKETS-1:0] ; /* Create the address signals */ reg [7-2+NUM_PACKETS:0] usb_ram_ain ; reg [7:0] usb_ram_offset ; reg [1:0] usb_ram_packet ; wire [7-2+NUM_PACKETS:0] usb_ram_aout ; reg isfull; assign usb_ram_aout = {usb_ram_packet,usb_ram_offset} ; // Check if there is one full packet to process always @(usb_ram_ain, usb_ram_aout) begin if (reset) pkt_waiting <= 0; else if (usb_ram_ain == usb_ram_aout) pkt_waiting <= isfull; else if (usb_ram_ain > usb_ram_aout) pkt_waiting <= (usb_ram_ain - usb_ram_aout) >= 256; else pkt_waiting <= (usb_ram_ain + 10'b1111111111 - usb_ram_aout) >= 256; end // Check if there is room always @(usb_ram_ain, usb_ram_aout) begin if (reset) have_space <= 1; else if (usb_ram_ain == usb_ram_aout) have_space <= ~isfull; else if (usb_ram_ain > usb_ram_aout) have_space <= (usb_ram_ain - usb_ram_aout) <= 256 * (NUM_PACKETS - 1); else have_space <= (usb_ram_aout - usb_ram_ain) >= 256; end /* RAM Write Address process */ always @(posedge clock_in) begin if( reset ) usb_ram_ain <= 0 ; else if( write_enable ) begin usb_ram_ain <= usb_ram_ain + 1 ; if (usb_ram_ain + 1 == usb_ram_aout) isfull <= 1; end end /* RAM Writing process */ always @(posedge clock_in) begin if( write_enable ) begin usb_ram[usb_ram_ain] <= ram_data_in ; end end /* RAM Read Address process */ always @(posedge clock_out) begin if( reset ) begin usb_ram_packet <= 0 ; usb_ram_offset <= 0 ; isfull <= 0; end else if( skip_packet ) begin usb_ram_packet <= usb_ram_packet + 1 ; usb_ram_offset <= 0 ; end else if(read_enable) if( usb_ram_offset == 8'b11111111 ) begin usb_ram_offset <= 0 ; usb_ram_packet <= usb_ram_packet + 1 ; end else usb_ram_offset <= usb_ram_offset + 1 ; if (usb_ram_ain == usb_ram_aout) isfull <= 0; end /* RAM Reading Process */ always @(posedge clock_out) begin ram_data_out <= usb_ram[usb_ram_aout] ; end endmodule
module usb_packet_fifo ( input reset, input clock_in, input clock_out, input [15:0]ram_data_in, input write_enable, output reg [15:0]ram_data_out, output reg pkt_waiting, output reg have_space, input read_enable, input skip_packet ) ; /* Some parameters for usage later on */ parameter DATA_WIDTH = 16 ; parameter NUM_PACKETS = 4 ; /* Create the RAM here */ reg [DATA_WIDTH-1:0] usb_ram [256*NUM_PACKETS-1:0] ; /* Create the address signals */ reg [7-2+NUM_PACKETS:0] usb_ram_ain ; reg [7:0] usb_ram_offset ; reg [1:0] usb_ram_packet ; wire [7-2+NUM_PACKETS:0] usb_ram_aout ; reg isfull; assign usb_ram_aout = {usb_ram_packet,usb_ram_offset} ; // Check if there is one full packet to process always @(usb_ram_ain, usb_ram_aout) begin if (reset) pkt_waiting <= 0; else if (usb_ram_ain == usb_ram_aout) pkt_waiting <= isfull; else if (usb_ram_ain > usb_ram_aout) pkt_waiting <= (usb_ram_ain - usb_ram_aout) >= 256; else pkt_waiting <= (usb_ram_ain + 10'b1111111111 - usb_ram_aout) >= 256; end // Check if there is room always @(usb_ram_ain, usb_ram_aout) begin if (reset) have_space <= 1; else if (usb_ram_ain == usb_ram_aout) have_space <= ~isfull; else if (usb_ram_ain > usb_ram_aout) have_space <= (usb_ram_ain - usb_ram_aout) <= 256 * (NUM_PACKETS - 1); else have_space <= (usb_ram_aout - usb_ram_ain) >= 256; end /* RAM Write Address process */ always @(posedge clock_in) begin if( reset ) usb_ram_ain <= 0 ; else if( write_enable ) begin usb_ram_ain <= usb_ram_ain + 1 ; if (usb_ram_ain + 1 == usb_ram_aout) isfull <= 1; end end /* RAM Writing process */ always @(posedge clock_in) begin if( write_enable ) begin usb_ram[usb_ram_ain] <= ram_data_in ; end end /* RAM Read Address process */ always @(posedge clock_out) begin if( reset ) begin usb_ram_packet <= 0 ; usb_ram_offset <= 0 ; isfull <= 0; end else if( skip_packet ) begin usb_ram_packet <= usb_ram_packet + 1 ; usb_ram_offset <= 0 ; end else if(read_enable) if( usb_ram_offset == 8'b11111111 ) begin usb_ram_offset <= 0 ; usb_ram_packet <= usb_ram_packet + 1 ; end else usb_ram_offset <= usb_ram_offset + 1 ; if (usb_ram_ain == usb_ram_aout) isfull <= 0; end /* RAM Reading Process */ always @(posedge clock_out) begin ram_data_out <= usb_ram[usb_ram_aout] ; end endmodule
module unpipeline # ( parameter WIDTH_D = 256, parameter S_WIDTH_A = 26, parameter M_WIDTH_A = S_WIDTH_A+$clog2(WIDTH_D/8), parameter BURSTCOUNT_WIDTH = 1, parameter BYTEENABLE_WIDTH = WIDTH_D, parameter MAX_PENDING_READS = 64 ) ( input clk, input resetn, // Slave port input [S_WIDTH_A-1:0] slave_address, // Word address input [WIDTH_D-1:0] slave_writedata, input slave_read, input slave_write, input [BURSTCOUNT_WIDTH-1:0] slave_burstcount, input [BYTEENABLE_WIDTH-1:0] slave_byteenable, output slave_waitrequest, output [WIDTH_D-1:0] slave_readdata, output slave_readdatavalid, output [M_WIDTH_A-1:0] master_address, // Byte address output [WIDTH_D-1:0] master_writedata, output master_read, output master_write, output [BYTEENABLE_WIDTH-1:0] master_byteenable, input master_waitrequest, input [WIDTH_D-1:0] master_readdata ); assign master_read = slave_read; assign master_write = slave_write; assign master_writedata = slave_writedata; assign master_address = {slave_address,{$clog2(WIDTH_D/8){1'b0}}}; //byteaddr assign master_byteenable = slave_byteenable; assign slave_waitrequest = master_waitrequest; assign slave_readdatavalid = slave_read & ~master_waitrequest; assign slave_readdata = master_readdata; endmodule
module unpipeline # ( parameter WIDTH_D = 256, parameter S_WIDTH_A = 26, parameter M_WIDTH_A = S_WIDTH_A+$clog2(WIDTH_D/8), parameter BURSTCOUNT_WIDTH = 1, parameter BYTEENABLE_WIDTH = WIDTH_D, parameter MAX_PENDING_READS = 64 ) ( input clk, input resetn, // Slave port input [S_WIDTH_A-1:0] slave_address, // Word address input [WIDTH_D-1:0] slave_writedata, input slave_read, input slave_write, input [BURSTCOUNT_WIDTH-1:0] slave_burstcount, input [BYTEENABLE_WIDTH-1:0] slave_byteenable, output slave_waitrequest, output [WIDTH_D-1:0] slave_readdata, output slave_readdatavalid, output [M_WIDTH_A-1:0] master_address, // Byte address output [WIDTH_D-1:0] master_writedata, output master_read, output master_write, output [BYTEENABLE_WIDTH-1:0] master_byteenable, input master_waitrequest, input [WIDTH_D-1:0] master_readdata ); assign master_read = slave_read; assign master_write = slave_write; assign master_writedata = slave_writedata; assign master_address = {slave_address,{$clog2(WIDTH_D/8){1'b0}}}; //byteaddr assign master_byteenable = slave_byteenable; assign slave_waitrequest = master_waitrequest; assign slave_readdatavalid = slave_read & ~master_waitrequest; assign slave_readdata = master_readdata; endmodule
/* Legal Notice: (C)2009 Altera Corporation. All rights reserved. Your use of Altera Corporation's design tools, logic functions and other software and tools, and its AMPP partner logic functions, and any output files any of the foregoing (including device programming or simulation files), and any associated documentation or information are expressly subject to the terms and conditions of the Altera Program License Subscription Agreement or other applicable license agreement, including, without limitation, that your use is for the sole purpose of programming logic devices manufactured by Altera and sold by Altera or its authorized distributors. Please refer to the applicable agreement for further details. */ /* Author: JCJB Date: 06/30/2009 This block is used to communicate information back and forth between the SGDMA and the host. When the response port is not set to streaming then this block will be used to generate interrupts for the host. The address span of this block differs depending on whether the enhanced features are enabled. The enhanced features enables sequence number readback capabilties. The address map is as follows: Enhanced features off: Bytes Access Type Description ----- ----------- ----------- 0-3 R Status(1) 4-7 R/W Control(2) 8-12 R Descriptor Watermark (write watermark[15:0],read watermark [15:0]) 13-15 R Response Watermark 16-31 N/A <Reserved> Enhanced features on: Bytes Access Type Description ----- ----------- ----------- 0-3 R Status(1) 4-7 R/W Control(2) 8-12 R Descriptor Watermark (write watermark[15:0],read watermark [15:0]) 13-15 R Response Watermark 16-20 R Sequence Number (write sequence[15:0],read sequence[15:0]) 21-31 N/A <Reserved> (1) Writing to the interrupt bit of the status register clears the interrupt bit (when applicable) (2) Writing to the software reset bit will clear the entire register (as well as all the registers for the entire SGDMA) Status Register: Bits Description ---- ----------- 0 Busy 1 Descriptor Buffer Empty 2 Descriptor Buffer Full 3 Response Buffer Empty 4 Response Buffer Full 5 Stop State 6 Reset State 7 Stopped on Error 8 Stopped on Early Termination 9 IRQ 10-15 <Reserved> 15-31 Done count (JSF: Added 06/13/2011) Control Register: Bits Description ---- ----------- 0 Stop (will also be set if a stop on error/early termination condition occurs) 1 Software Reset 2 Stop on Error 3 Stop on Early Termination 4 Global Interrupt Enable Mask 5 Stop descriptors (stops the dispatcher from issuing more read/write commands) 6-31 <Reserved> Author: JCJB Date: 08/18/2010 1.0 - Initial release 1.1 - Removed delayed reset, added set and hold sw_reset 1.2 - Updated the sw_reset register to be set when control[1] is set instead of one cycle after. This will prevent the read or write masters from starting back up when reset while in the stop state. 1.3 - Added the stop dispatcher bit (5) to the control register */ // synthesis translate_off `timescale 1ns / 1ps // synthesis translate_on // turn off superfluous verilog processor warnings // altera message_level Level1 // altera message_off 10034 10035 10036 10037 10230 10240 10030 module csr_block ( clk, reset, csr_writedata, csr_write, csr_byteenable, csr_readdata, csr_read, csr_address, csr_irq, done_strobe, busy, descriptor_buffer_empty, descriptor_buffer_full, stop_state, stopped_on_error, stopped_on_early_termination, reset_stalled, stop, sw_reset, stop_on_error, stop_on_early_termination, stop_descriptors, sequence_number, descriptor_watermark, response_watermark, response_buffer_empty, response_buffer_full, transfer_complete_IRQ_mask, error_IRQ_mask, early_termination_IRQ_mask, error, early_termination ); parameter ADDRESS_WIDTH = 3; localparam CONTROL_REGISTER_ADDRESS = 3'b001; input clk; input reset; input [31:0] csr_writedata; input csr_write; input [3:0] csr_byteenable; output wire [31:0] csr_readdata; input csr_read; input [ADDRESS_WIDTH-1:0] csr_address; output wire csr_irq; input done_strobe; input busy; input descriptor_buffer_empty; input descriptor_buffer_full; input stop_state; // when the DMA runs into some error condition and you have enabled the stop on error (or when the stop control bit is written to) input reset_stalled; // the read or write master could be in the middle of a transfer/burst so it might take a while to flush the buffers output wire stop; output reg stopped_on_error; output reg stopped_on_early_termination; output reg sw_reset; output wire stop_on_error; output wire stop_on_early_termination; output wire stop_descriptors; input [31:0] sequence_number; input [31:0] descriptor_watermark; input [15:0] response_watermark; input response_buffer_empty; input response_buffer_full; input transfer_complete_IRQ_mask; input [7:0] error_IRQ_mask; input early_termination_IRQ_mask; input [7:0] error; input early_termination; /* Internal wires and registers */ wire [31:0] status; reg [31:0] control; reg [31:0] readdata; reg [31:0] readdata_d1; reg irq; // writing to the status register clears the irq bit wire set_irq; wire clear_irq; reg [15:0] irq_count; // writing to bit 0 clears the counter wire clear_irq_count; wire incr_irq_count; wire set_stopped_on_error; wire set_stopped_on_early_termination; wire set_stop; wire clear_stop; wire global_interrupt_enable; wire sw_reset_strobe; // this strobe will be one cycle earlier than sw_reset wire set_sw_reset; wire clear_sw_reset; /********************************************** Registers ***************************************************/ // read latency is 1 cycle always @ (posedge clk or posedge reset) begin if (reset) begin readdata_d1 <= 0; end else if (csr_read == 1) begin readdata_d1 <= readdata; end end always @ (posedge clk or posedge reset) begin if (reset) begin control[31:1] <= 0; end else begin if (sw_reset_strobe == 1) // reset strobe is a strobe due to this sync reset begin control[31:1] <= 0; end else begin if ((csr_address == CONTROL_REGISTER_ADDRESS) & (csr_write == 1) & (csr_byteenable[0] == 1)) begin control[7:1] <= csr_writedata[7:1]; // stop bit will be handled seperately since it can be set by the csr slave port access or the SGDMA hitting an error condition end if ((csr_address == CONTROL_REGISTER_ADDRESS) & (csr_write == 1) & (csr_byteenable[1] == 1)) begin control[15:8] <= csr_writedata[15:8]; end if ((csr_address == CONTROL_REGISTER_ADDRESS) & (csr_write == 1) & (csr_byteenable[2] == 1)) begin control[23:16] <= csr_writedata[23:16]; end if ((csr_address == CONTROL_REGISTER_ADDRESS) & (csr_write == 1) & (csr_byteenable[3] == 1)) begin control[31:24] <= csr_writedata[31:24]; end end end end // control bit 0 (stop) is set by different sources so handling it seperately always @ (posedge clk or posedge reset) begin if (reset) begin control[0] <= 0; end else begin if (sw_reset_strobe == 1) begin control[0] <= 0; end else begin case ({set_stop, clear_stop}) 2'b00: control[0] <= control[0]; 2'b01: control[0] <= 1'b0; 2'b10: control[0] <= 1'b1; 2'b11: control[0] <= 1'b1; // setting will win, this case happens control[0] is being set to 0 (resume) at the same time an error/early termination stop condition occurs endcase end end end always @ (posedge clk or posedge reset) begin if (reset) begin sw_reset <= 0; end else begin if (set_sw_reset == 1) begin sw_reset <= 1; end else if (clear_sw_reset == 1) begin sw_reset <= 0; end end end always @ (posedge clk or posedge reset) begin if (reset) begin stopped_on_error <= 0; end else begin case ({set_stopped_on_error, clear_stop}) 2'b00: stopped_on_error <= stopped_on_error; 2'b01: stopped_on_error <= 1'b0; 2'b10: stopped_on_error <= 1'b1; 2'b11: stopped_on_error <= 1'b0; endcase end end always @ (posedge clk or posedge reset) begin if (reset) begin stopped_on_early_termination <= 0; end else begin case ({set_stopped_on_early_termination, clear_stop}) 2'b00: stopped_on_early_termination <= stopped_on_early_termination; 2'b01: stopped_on_early_termination <= 1'b0; 2'b10: stopped_on_early_termination <= 1'b1; 2'b11: stopped_on_early_termination <= 1'b0; endcase end end always @ (posedge clk or posedge reset) begin if (reset) begin irq <= 0; end else begin if (sw_reset_strobe == 1) begin irq <= 0; end else begin case ({clear_irq, set_irq}) 2'b00: irq <= irq; 2'b01: irq <= 1'b1; 2'b10: irq <= 1'b0; 2'b11: irq <= 1'b1; // setting will win over a clear endcase end end end always @ (posedge clk or posedge reset) begin if (reset) begin irq_count <= {16{1'b0}}; end else begin if (sw_reset_strobe == 1) begin irq_count <= {16{1'b0}}; end else begin case ({clear_irq_count, incr_irq_count}) 2'b00: irq_count <= irq_count; 2'b01: irq_count <= irq_count + 1; 2'b10: irq_count <= {16{1'b0}}; 2'b11: irq_count <= {{15{1'b0}}, 1'b1}; endcase end end end /******************************************** End Registers *************************************************/ /**************************************** Combinational Signals *********************************************/ generate if (ADDRESS_WIDTH == 3) begin always @ (csr_address or status or control or descriptor_watermark or response_watermark or sequence_number) begin case (csr_address) 3'b000: readdata = status; 3'b001: readdata = control; 3'b010: readdata = descriptor_watermark; 3'b011: readdata = response_watermark; default: readdata = sequence_number; // all other addresses will decode to the sequence number endcase end end else begin always @ (csr_address or status or control or descriptor_watermark or response_watermark) begin case (csr_address) 3'b000: readdata = status; 3'b001: readdata = control; 3'b010: readdata = descriptor_watermark; default: readdata = response_watermark; // all other addresses will decode to the response watermark endcase end end endgenerate assign clear_irq = (csr_address == 0) & (csr_write == 1) & (csr_byteenable[1] == 1) & (csr_writedata[9] == 1); // this is the IRQ bit assign set_irq = (global_interrupt_enable == 1) & (done_strobe == 1) & // transfer ended and interrupts are enabled ((transfer_complete_IRQ_mask == 1) | // transfer ended and the transfer complete IRQ is enabled ((error & error_IRQ_mask) != 0) | // transfer ended with an error and this IRQ is enabled ((early_termination & early_termination_IRQ_mask) == 1)); // transfer ended early due to early termination and this IRQ is enabled assign csr_irq = irq; // Done count assign incr_irq_count = set_irq; // Done count just counts the number of interrupts since the last reset assign clear_irq_count = (csr_address == 0) & (csr_write == 1) & (csr_byteenable[2] == 1) & (csr_writedata[16] == 1); // the LSB irq_count bit assign clear_stop = (csr_address == CONTROL_REGISTER_ADDRESS) & (csr_write == 1) & (csr_byteenable[0] == 1) & (csr_writedata[0] == 0); assign set_stopped_on_error = (done_strobe == 1) & (stop_on_error == 1) & (error != 0); // when clear_stop is set then the stopped_on_error register will be cleared assign set_stopped_on_early_termination = (done_strobe == 1) & (stop_on_early_termination == 1) & (early_termination == 1); // when clear_stop is set then the stopped_on_early_termination register will be cleared assign set_stop = ((csr_address == CONTROL_REGISTER_ADDRESS) & (csr_write == 1) & (csr_byteenable[0] == 1) & (csr_writedata[0] == 1)) | // host set the stop bit (set_stopped_on_error == 1) | // SGDMA setup to stop when an error occurs from the write master (set_stopped_on_early_termination == 1) ; // SGDMA setup to stop when the write master overflows assign stop = control[0]; assign set_sw_reset = (csr_address == CONTROL_REGISTER_ADDRESS) & (csr_write == 1) & (csr_byteenable[0] == 1) & (csr_writedata[1] == 1); assign clear_sw_reset = (sw_reset == 1) & (reset_stalled == 0); assign sw_reset_strobe = control[1]; assign stop_on_error = control[2]; assign stop_on_early_termination = control[3]; assign global_interrupt_enable = control[4]; assign stop_descriptors = control[5]; assign csr_readdata = readdata_d1; assign status = {irq_count, {6{1'b0}}, irq, stopped_on_early_termination, stopped_on_error, sw_reset, stop_state, response_buffer_full, response_buffer_empty, descriptor_buffer_full, descriptor_buffer_empty, busy}; // writing to the lower byte of the status register clears the irq bit /**************************************** Combinational Signals *********************************************/ endmodule
/* Legal Notice: (C)2009 Altera Corporation. All rights reserved. Your use of Altera Corporation's design tools, logic functions and other software and tools, and its AMPP partner logic functions, and any output files any of the foregoing (including device programming or simulation files), and any associated documentation or information are expressly subject to the terms and conditions of the Altera Program License Subscription Agreement or other applicable license agreement, including, without limitation, that your use is for the sole purpose of programming logic devices manufactured by Altera and sold by Altera or its authorized distributors. Please refer to the applicable agreement for further details. */ /* Author: JCJB Date: 06/30/2009 This block is used to communicate information back and forth between the SGDMA and the host. When the response port is not set to streaming then this block will be used to generate interrupts for the host. The address span of this block differs depending on whether the enhanced features are enabled. The enhanced features enables sequence number readback capabilties. The address map is as follows: Enhanced features off: Bytes Access Type Description ----- ----------- ----------- 0-3 R Status(1) 4-7 R/W Control(2) 8-12 R Descriptor Watermark (write watermark[15:0],read watermark [15:0]) 13-15 R Response Watermark 16-31 N/A <Reserved> Enhanced features on: Bytes Access Type Description ----- ----------- ----------- 0-3 R Status(1) 4-7 R/W Control(2) 8-12 R Descriptor Watermark (write watermark[15:0],read watermark [15:0]) 13-15 R Response Watermark 16-20 R Sequence Number (write sequence[15:0],read sequence[15:0]) 21-31 N/A <Reserved> (1) Writing to the interrupt bit of the status register clears the interrupt bit (when applicable) (2) Writing to the software reset bit will clear the entire register (as well as all the registers for the entire SGDMA) Status Register: Bits Description ---- ----------- 0 Busy 1 Descriptor Buffer Empty 2 Descriptor Buffer Full 3 Response Buffer Empty 4 Response Buffer Full 5 Stop State 6 Reset State 7 Stopped on Error 8 Stopped on Early Termination 9 IRQ 10-15 <Reserved> 15-31 Done count (JSF: Added 06/13/2011) Control Register: Bits Description ---- ----------- 0 Stop (will also be set if a stop on error/early termination condition occurs) 1 Software Reset 2 Stop on Error 3 Stop on Early Termination 4 Global Interrupt Enable Mask 5 Stop descriptors (stops the dispatcher from issuing more read/write commands) 6-31 <Reserved> Author: JCJB Date: 08/18/2010 1.0 - Initial release 1.1 - Removed delayed reset, added set and hold sw_reset 1.2 - Updated the sw_reset register to be set when control[1] is set instead of one cycle after. This will prevent the read or write masters from starting back up when reset while in the stop state. 1.3 - Added the stop dispatcher bit (5) to the control register */ // synthesis translate_off `timescale 1ns / 1ps // synthesis translate_on // turn off superfluous verilog processor warnings // altera message_level Level1 // altera message_off 10034 10035 10036 10037 10230 10240 10030 module csr_block ( clk, reset, csr_writedata, csr_write, csr_byteenable, csr_readdata, csr_read, csr_address, csr_irq, done_strobe, busy, descriptor_buffer_empty, descriptor_buffer_full, stop_state, stopped_on_error, stopped_on_early_termination, reset_stalled, stop, sw_reset, stop_on_error, stop_on_early_termination, stop_descriptors, sequence_number, descriptor_watermark, response_watermark, response_buffer_empty, response_buffer_full, transfer_complete_IRQ_mask, error_IRQ_mask, early_termination_IRQ_mask, error, early_termination ); parameter ADDRESS_WIDTH = 3; localparam CONTROL_REGISTER_ADDRESS = 3'b001; input clk; input reset; input [31:0] csr_writedata; input csr_write; input [3:0] csr_byteenable; output wire [31:0] csr_readdata; input csr_read; input [ADDRESS_WIDTH-1:0] csr_address; output wire csr_irq; input done_strobe; input busy; input descriptor_buffer_empty; input descriptor_buffer_full; input stop_state; // when the DMA runs into some error condition and you have enabled the stop on error (or when the stop control bit is written to) input reset_stalled; // the read or write master could be in the middle of a transfer/burst so it might take a while to flush the buffers output wire stop; output reg stopped_on_error; output reg stopped_on_early_termination; output reg sw_reset; output wire stop_on_error; output wire stop_on_early_termination; output wire stop_descriptors; input [31:0] sequence_number; input [31:0] descriptor_watermark; input [15:0] response_watermark; input response_buffer_empty; input response_buffer_full; input transfer_complete_IRQ_mask; input [7:0] error_IRQ_mask; input early_termination_IRQ_mask; input [7:0] error; input early_termination; /* Internal wires and registers */ wire [31:0] status; reg [31:0] control; reg [31:0] readdata; reg [31:0] readdata_d1; reg irq; // writing to the status register clears the irq bit wire set_irq; wire clear_irq; reg [15:0] irq_count; // writing to bit 0 clears the counter wire clear_irq_count; wire incr_irq_count; wire set_stopped_on_error; wire set_stopped_on_early_termination; wire set_stop; wire clear_stop; wire global_interrupt_enable; wire sw_reset_strobe; // this strobe will be one cycle earlier than sw_reset wire set_sw_reset; wire clear_sw_reset; /********************************************** Registers ***************************************************/ // read latency is 1 cycle always @ (posedge clk or posedge reset) begin if (reset) begin readdata_d1 <= 0; end else if (csr_read == 1) begin readdata_d1 <= readdata; end end always @ (posedge clk or posedge reset) begin if (reset) begin control[31:1] <= 0; end else begin if (sw_reset_strobe == 1) // reset strobe is a strobe due to this sync reset begin control[31:1] <= 0; end else begin if ((csr_address == CONTROL_REGISTER_ADDRESS) & (csr_write == 1) & (csr_byteenable[0] == 1)) begin control[7:1] <= csr_writedata[7:1]; // stop bit will be handled seperately since it can be set by the csr slave port access or the SGDMA hitting an error condition end if ((csr_address == CONTROL_REGISTER_ADDRESS) & (csr_write == 1) & (csr_byteenable[1] == 1)) begin control[15:8] <= csr_writedata[15:8]; end if ((csr_address == CONTROL_REGISTER_ADDRESS) & (csr_write == 1) & (csr_byteenable[2] == 1)) begin control[23:16] <= csr_writedata[23:16]; end if ((csr_address == CONTROL_REGISTER_ADDRESS) & (csr_write == 1) & (csr_byteenable[3] == 1)) begin control[31:24] <= csr_writedata[31:24]; end end end end // control bit 0 (stop) is set by different sources so handling it seperately always @ (posedge clk or posedge reset) begin if (reset) begin control[0] <= 0; end else begin if (sw_reset_strobe == 1) begin control[0] <= 0; end else begin case ({set_stop, clear_stop}) 2'b00: control[0] <= control[0]; 2'b01: control[0] <= 1'b0; 2'b10: control[0] <= 1'b1; 2'b11: control[0] <= 1'b1; // setting will win, this case happens control[0] is being set to 0 (resume) at the same time an error/early termination stop condition occurs endcase end end end always @ (posedge clk or posedge reset) begin if (reset) begin sw_reset <= 0; end else begin if (set_sw_reset == 1) begin sw_reset <= 1; end else if (clear_sw_reset == 1) begin sw_reset <= 0; end end end always @ (posedge clk or posedge reset) begin if (reset) begin stopped_on_error <= 0; end else begin case ({set_stopped_on_error, clear_stop}) 2'b00: stopped_on_error <= stopped_on_error; 2'b01: stopped_on_error <= 1'b0; 2'b10: stopped_on_error <= 1'b1; 2'b11: stopped_on_error <= 1'b0; endcase end end always @ (posedge clk or posedge reset) begin if (reset) begin stopped_on_early_termination <= 0; end else begin case ({set_stopped_on_early_termination, clear_stop}) 2'b00: stopped_on_early_termination <= stopped_on_early_termination; 2'b01: stopped_on_early_termination <= 1'b0; 2'b10: stopped_on_early_termination <= 1'b1; 2'b11: stopped_on_early_termination <= 1'b0; endcase end end always @ (posedge clk or posedge reset) begin if (reset) begin irq <= 0; end else begin if (sw_reset_strobe == 1) begin irq <= 0; end else begin case ({clear_irq, set_irq}) 2'b00: irq <= irq; 2'b01: irq <= 1'b1; 2'b10: irq <= 1'b0; 2'b11: irq <= 1'b1; // setting will win over a clear endcase end end end always @ (posedge clk or posedge reset) begin if (reset) begin irq_count <= {16{1'b0}}; end else begin if (sw_reset_strobe == 1) begin irq_count <= {16{1'b0}}; end else begin case ({clear_irq_count, incr_irq_count}) 2'b00: irq_count <= irq_count; 2'b01: irq_count <= irq_count + 1; 2'b10: irq_count <= {16{1'b0}}; 2'b11: irq_count <= {{15{1'b0}}, 1'b1}; endcase end end end /******************************************** End Registers *************************************************/ /**************************************** Combinational Signals *********************************************/ generate if (ADDRESS_WIDTH == 3) begin always @ (csr_address or status or control or descriptor_watermark or response_watermark or sequence_number) begin case (csr_address) 3'b000: readdata = status; 3'b001: readdata = control; 3'b010: readdata = descriptor_watermark; 3'b011: readdata = response_watermark; default: readdata = sequence_number; // all other addresses will decode to the sequence number endcase end end else begin always @ (csr_address or status or control or descriptor_watermark or response_watermark) begin case (csr_address) 3'b000: readdata = status; 3'b001: readdata = control; 3'b010: readdata = descriptor_watermark; default: readdata = response_watermark; // all other addresses will decode to the response watermark endcase end end endgenerate assign clear_irq = (csr_address == 0) & (csr_write == 1) & (csr_byteenable[1] == 1) & (csr_writedata[9] == 1); // this is the IRQ bit assign set_irq = (global_interrupt_enable == 1) & (done_strobe == 1) & // transfer ended and interrupts are enabled ((transfer_complete_IRQ_mask == 1) | // transfer ended and the transfer complete IRQ is enabled ((error & error_IRQ_mask) != 0) | // transfer ended with an error and this IRQ is enabled ((early_termination & early_termination_IRQ_mask) == 1)); // transfer ended early due to early termination and this IRQ is enabled assign csr_irq = irq; // Done count assign incr_irq_count = set_irq; // Done count just counts the number of interrupts since the last reset assign clear_irq_count = (csr_address == 0) & (csr_write == 1) & (csr_byteenable[2] == 1) & (csr_writedata[16] == 1); // the LSB irq_count bit assign clear_stop = (csr_address == CONTROL_REGISTER_ADDRESS) & (csr_write == 1) & (csr_byteenable[0] == 1) & (csr_writedata[0] == 0); assign set_stopped_on_error = (done_strobe == 1) & (stop_on_error == 1) & (error != 0); // when clear_stop is set then the stopped_on_error register will be cleared assign set_stopped_on_early_termination = (done_strobe == 1) & (stop_on_early_termination == 1) & (early_termination == 1); // when clear_stop is set then the stopped_on_early_termination register will be cleared assign set_stop = ((csr_address == CONTROL_REGISTER_ADDRESS) & (csr_write == 1) & (csr_byteenable[0] == 1) & (csr_writedata[0] == 1)) | // host set the stop bit (set_stopped_on_error == 1) | // SGDMA setup to stop when an error occurs from the write master (set_stopped_on_early_termination == 1) ; // SGDMA setup to stop when the write master overflows assign stop = control[0]; assign set_sw_reset = (csr_address == CONTROL_REGISTER_ADDRESS) & (csr_write == 1) & (csr_byteenable[0] == 1) & (csr_writedata[1] == 1); assign clear_sw_reset = (sw_reset == 1) & (reset_stalled == 0); assign sw_reset_strobe = control[1]; assign stop_on_error = control[2]; assign stop_on_early_termination = control[3]; assign global_interrupt_enable = control[4]; assign stop_descriptors = control[5]; assign csr_readdata = readdata_d1; assign status = {irq_count, {6{1'b0}}, irq, stopped_on_early_termination, stopped_on_error, sw_reset, stop_state, response_buffer_full, response_buffer_empty, descriptor_buffer_full, descriptor_buffer_empty, busy}; // writing to the lower byte of the status register clears the irq bit /**************************************** Combinational Signals *********************************************/ endmodule
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: // Optimized OR with generic_baseblocks_v2_1_0_carry logic. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module generic_baseblocks_v2_1_0_carry_or # ( parameter C_FAMILY = "virtex6" // FPGA Family. Current version: virtex6 or spartan6. ) ( input wire CIN, input wire S, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Instantiate or use RTL code ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" ) begin : USE_RTL assign COUT = CIN | S; end else begin : USE_FPGA wire S_n; assign S_n = ~S; MUXCY and_inst ( .O (COUT), .CI (CIN), .DI (1'b1), .S (S_n) ); end endgenerate endmodule
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: // Optimized OR with generic_baseblocks_v2_1_0_carry logic. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module generic_baseblocks_v2_1_0_carry_or # ( parameter C_FAMILY = "virtex6" // FPGA Family. Current version: virtex6 or spartan6. ) ( input wire CIN, input wire S, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Instantiate or use RTL code ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" ) begin : USE_RTL assign COUT = CIN | S; end else begin : USE_FPGA wire S_n; assign S_n = ~S; MUXCY and_inst ( .O (COUT), .CI (CIN), .DI (1'b1), .S (S_n) ); end endgenerate endmodule
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: // Optimized OR with generic_baseblocks_v2_1_0_carry logic. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module generic_baseblocks_v2_1_0_carry_or # ( parameter C_FAMILY = "virtex6" // FPGA Family. Current version: virtex6 or spartan6. ) ( input wire CIN, input wire S, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Instantiate or use RTL code ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" ) begin : USE_RTL assign COUT = CIN | S; end else begin : USE_FPGA wire S_n; assign S_n = ~S; MUXCY and_inst ( .O (COUT), .CI (CIN), .DI (1'b1), .S (S_n) ); end endgenerate endmodule
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: // Optimized OR with generic_baseblocks_v2_1_0_carry logic. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module generic_baseblocks_v2_1_0_carry_or # ( parameter C_FAMILY = "virtex6" // FPGA Family. Current version: virtex6 or spartan6. ) ( input wire CIN, input wire S, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Instantiate or use RTL code ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" ) begin : USE_RTL assign COUT = CIN | S; end else begin : USE_FPGA wire S_n; assign S_n = ~S; MUXCY and_inst ( .O (COUT), .CI (CIN), .DI (1'b1), .S (S_n) ); end endgenerate endmodule
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: // Carry logic. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module generic_baseblocks_v2_1_0_carry # ( parameter C_FAMILY = "virtex6" // FPGA Family. Current version: virtex6 or spartan6. ) ( input wire CIN, input wire S, input wire DI, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Instantiate or use RTL code ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" ) begin : USE_RTL assign COUT = (CIN & S) | (DI & ~S); end else begin : USE_FPGA MUXCY and_inst ( .O (COUT), .CI (CIN), .DI (DI), .S (S) ); end endgenerate endmodule
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: // Carry logic. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module generic_baseblocks_v2_1_0_carry # ( parameter C_FAMILY = "virtex6" // FPGA Family. Current version: virtex6 or spartan6. ) ( input wire CIN, input wire S, input wire DI, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Instantiate or use RTL code ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" ) begin : USE_RTL assign COUT = (CIN & S) | (DI & ~S); end else begin : USE_FPGA MUXCY and_inst ( .O (COUT), .CI (CIN), .DI (DI), .S (S) ); end endgenerate endmodule
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: // Carry logic. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module generic_baseblocks_v2_1_0_carry # ( parameter C_FAMILY = "virtex6" // FPGA Family. Current version: virtex6 or spartan6. ) ( input wire CIN, input wire S, input wire DI, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Instantiate or use RTL code ///////////////////////////////////////////////////////////////////////////// generate if ( C_FAMILY == "rtl" ) begin : USE_RTL assign COUT = (CIN & S) | (DI & ~S); end else begin : USE_FPGA MUXCY and_inst ( .O (COUT), .CI (CIN), .DI (DI), .S (S) ); end endgenerate endmodule
/* Legal Notice: (C)2009 Altera Corporation. All rights reserved. Your use of Altera Corporation's design tools, logic functions and other software and tools, and its AMPP partner logic functions, and any output files any of the foregoing (including device programming or simulation files), and any associated documentation or information are expressly subject to the terms and conditions of the Altera Program License Subscription Agreement or other applicable license agreement, including, without limitation, that your use is for the sole purpose of programming logic devices manufactured by Altera and sold by Altera or its authorized distributors. Please refer to the applicable agreement for further details. */ /* Author: JCJB Date: 05/11/2009 Version 2.0 This logic recieves registers the byte address of the master when 'start' is asserted. This block then barrelshifts the write data based on the byte address to make sure that the input data (from the FIFO) is reformatted to line up with memory properly. The only throttling mechanism in this block is the FIFO not empty signal as well as waitreqeust from the fabric. Revision History: 1.0 Initial version 2.0 Removed 'bytes_to_next_boundary' and using the address to determine how much out of alignment the master begins. */ // synthesis translate_off `timescale 1ns / 1ps // synthesis translate_on // turn off superfluous verilog processor warnings // altera message_level Level1 // altera message_off 10034 10035 10036 10037 10230 10240 10030 module ST_to_MM_Adapter ( clk, reset, enable, address, start, waitrequest, stall, write_data, fifo_data, fifo_empty, fifo_readack ); parameter DATA_WIDTH = 32; parameter BYTEENABLE_WIDTH_LOG2 = 2; parameter ADDRESS_WIDTH = 32; parameter UNALIGNED_ACCESS_ENABLE = 0; // when set to 0 this block will be a pass through (save on resources when unaligned accesses are not needed) localparam BYTES_TO_NEXT_BOUNDARY_WIDTH = BYTEENABLE_WIDTH_LOG2 + 1; // 2, 3, 4, 5, 6 for byte enable widths of 2, 4, 8, 16, 32 input clk; input reset; input enable; // must make sure that the adapter doesn't accept data when a transfer it doesn't know what "bytes_to_transfer" is yet input [ADDRESS_WIDTH-1:0] address; input start; // one cycle strobe at the start of a transfer used to determine bytes_to_transfer input waitrequest; input stall; output wire [DATA_WIDTH-1:0] write_data; input [DATA_WIDTH-1:0] fifo_data; input fifo_empty; output wire fifo_readack; wire [BYTES_TO_NEXT_BOUNDARY_WIDTH-1:0] bytes_to_next_boundary; wire [DATA_WIDTH-1:0] barrelshifter_A; wire [DATA_WIDTH-1:0] barrelshifter_B; reg [DATA_WIDTH-1:0] barrelshifter_B_d1; wire [DATA_WIDTH-1:0] combined_word; // bitwise OR between barrelshifter_A and barrelshifter_B (each has zero padding so that bytelanes don't overlap) wire [BYTES_TO_NEXT_BOUNDARY_WIDTH-2:0] bytes_to_next_boundary_minus_one; // simplifies barrelshifter select logic reg [BYTES_TO_NEXT_BOUNDARY_WIDTH-2:0] bytes_to_next_boundary_minus_one_d1; wire [DATA_WIDTH-1:0] barrelshifter_input_A [0:((DATA_WIDTH/8)-1)]; // will be used to create barrelshifter_A inputs wire [DATA_WIDTH-1:0] barrelshifter_input_B [0:((DATA_WIDTH/8)-1)]; // will be used to create barrelshifter_B inputs always @ (posedge clk or posedge reset) begin if (reset) begin bytes_to_next_boundary_minus_one_d1 <= 0; end else if (start) begin bytes_to_next_boundary_minus_one_d1 <= bytes_to_next_boundary_minus_one; end end always @ (posedge clk or posedge reset) begin if (reset) begin barrelshifter_B_d1 <= 0; end else begin if (start == 1) begin barrelshifter_B_d1 <= 0; end else if (fifo_readack == 1) begin barrelshifter_B_d1 <= barrelshifter_B; end end end assign bytes_to_next_boundary = (DATA_WIDTH/8) - address[BYTEENABLE_WIDTH_LOG2-1:0]; // bytes per word - unaligned byte offset = distance to next boundary assign bytes_to_next_boundary_minus_one = bytes_to_next_boundary - 1; assign combined_word = barrelshifter_A | barrelshifter_B_d1; generate genvar input_offset; for(input_offset = 0; input_offset < (DATA_WIDTH/8); input_offset = input_offset + 1) begin: barrel_shifter_inputs assign barrelshifter_input_A[input_offset] = fifo_data << (8 * ((DATA_WIDTH/8)-(input_offset+1))); assign barrelshifter_input_B[input_offset] = fifo_data >> (8 * (input_offset + 1)); end endgenerate assign barrelshifter_A = barrelshifter_input_A[bytes_to_next_boundary_minus_one_d1]; assign barrelshifter_B = barrelshifter_input_B[bytes_to_next_boundary_minus_one_d1]; generate if (UNALIGNED_ACCESS_ENABLE == 1) begin assign fifo_readack = (fifo_empty == 0) & (stall == 0) & (waitrequest == 0) & (enable == 1) & (start == 0); assign write_data = combined_word; end else begin assign fifo_readack = (fifo_empty == 0) & (stall == 0) & (waitrequest == 0) & (enable == 1); assign write_data = fifo_data; end endgenerate endmodule
/* Legal Notice: (C)2009 Altera Corporation. All rights reserved. Your use of Altera Corporation's design tools, logic functions and other software and tools, and its AMPP partner logic functions, and any output files any of the foregoing (including device programming or simulation files), and any associated documentation or information are expressly subject to the terms and conditions of the Altera Program License Subscription Agreement or other applicable license agreement, including, without limitation, that your use is for the sole purpose of programming logic devices manufactured by Altera and sold by Altera or its authorized distributors. Please refer to the applicable agreement for further details. */ /* Author: JCJB Date: 05/11/2009 Version 2.0 This logic recieves registers the byte address of the master when 'start' is asserted. This block then barrelshifts the write data based on the byte address to make sure that the input data (from the FIFO) is reformatted to line up with memory properly. The only throttling mechanism in this block is the FIFO not empty signal as well as waitreqeust from the fabric. Revision History: 1.0 Initial version 2.0 Removed 'bytes_to_next_boundary' and using the address to determine how much out of alignment the master begins. */ // synthesis translate_off `timescale 1ns / 1ps // synthesis translate_on // turn off superfluous verilog processor warnings // altera message_level Level1 // altera message_off 10034 10035 10036 10037 10230 10240 10030 module ST_to_MM_Adapter ( clk, reset, enable, address, start, waitrequest, stall, write_data, fifo_data, fifo_empty, fifo_readack ); parameter DATA_WIDTH = 32; parameter BYTEENABLE_WIDTH_LOG2 = 2; parameter ADDRESS_WIDTH = 32; parameter UNALIGNED_ACCESS_ENABLE = 0; // when set to 0 this block will be a pass through (save on resources when unaligned accesses are not needed) localparam BYTES_TO_NEXT_BOUNDARY_WIDTH = BYTEENABLE_WIDTH_LOG2 + 1; // 2, 3, 4, 5, 6 for byte enable widths of 2, 4, 8, 16, 32 input clk; input reset; input enable; // must make sure that the adapter doesn't accept data when a transfer it doesn't know what "bytes_to_transfer" is yet input [ADDRESS_WIDTH-1:0] address; input start; // one cycle strobe at the start of a transfer used to determine bytes_to_transfer input waitrequest; input stall; output wire [DATA_WIDTH-1:0] write_data; input [DATA_WIDTH-1:0] fifo_data; input fifo_empty; output wire fifo_readack; wire [BYTES_TO_NEXT_BOUNDARY_WIDTH-1:0] bytes_to_next_boundary; wire [DATA_WIDTH-1:0] barrelshifter_A; wire [DATA_WIDTH-1:0] barrelshifter_B; reg [DATA_WIDTH-1:0] barrelshifter_B_d1; wire [DATA_WIDTH-1:0] combined_word; // bitwise OR between barrelshifter_A and barrelshifter_B (each has zero padding so that bytelanes don't overlap) wire [BYTES_TO_NEXT_BOUNDARY_WIDTH-2:0] bytes_to_next_boundary_minus_one; // simplifies barrelshifter select logic reg [BYTES_TO_NEXT_BOUNDARY_WIDTH-2:0] bytes_to_next_boundary_minus_one_d1; wire [DATA_WIDTH-1:0] barrelshifter_input_A [0:((DATA_WIDTH/8)-1)]; // will be used to create barrelshifter_A inputs wire [DATA_WIDTH-1:0] barrelshifter_input_B [0:((DATA_WIDTH/8)-1)]; // will be used to create barrelshifter_B inputs always @ (posedge clk or posedge reset) begin if (reset) begin bytes_to_next_boundary_minus_one_d1 <= 0; end else if (start) begin bytes_to_next_boundary_minus_one_d1 <= bytes_to_next_boundary_minus_one; end end always @ (posedge clk or posedge reset) begin if (reset) begin barrelshifter_B_d1 <= 0; end else begin if (start == 1) begin barrelshifter_B_d1 <= 0; end else if (fifo_readack == 1) begin barrelshifter_B_d1 <= barrelshifter_B; end end end assign bytes_to_next_boundary = (DATA_WIDTH/8) - address[BYTEENABLE_WIDTH_LOG2-1:0]; // bytes per word - unaligned byte offset = distance to next boundary assign bytes_to_next_boundary_minus_one = bytes_to_next_boundary - 1; assign combined_word = barrelshifter_A | barrelshifter_B_d1; generate genvar input_offset; for(input_offset = 0; input_offset < (DATA_WIDTH/8); input_offset = input_offset + 1) begin: barrel_shifter_inputs assign barrelshifter_input_A[input_offset] = fifo_data << (8 * ((DATA_WIDTH/8)-(input_offset+1))); assign barrelshifter_input_B[input_offset] = fifo_data >> (8 * (input_offset + 1)); end endgenerate assign barrelshifter_A = barrelshifter_input_A[bytes_to_next_boundary_minus_one_d1]; assign barrelshifter_B = barrelshifter_input_B[bytes_to_next_boundary_minus_one_d1]; generate if (UNALIGNED_ACCESS_ENABLE == 1) begin assign fifo_readack = (fifo_empty == 0) & (stall == 0) & (waitrequest == 0) & (enable == 1) & (start == 0); assign write_data = combined_word; end else begin assign fifo_readack = (fifo_empty == 0) & (stall == 0) & (waitrequest == 0) & (enable == 1); assign write_data = fifo_data; end endgenerate endmodule
/* Legal Notice: (C)2009 Altera Corporation. All rights reserved. Your use of Altera Corporation's design tools, logic functions and other software and tools, and its AMPP partner logic functions, and any output files any of the foregoing (including device programming or simulation files), and any associated documentation or information are expressly subject to the terms and conditions of the Altera Program License Subscription Agreement or other applicable license agreement, including, without limitation, that your use is for the sole purpose of programming logic devices manufactured by Altera and sold by Altera or its authorized distributors. Please refer to the applicable agreement for further details. */ /* Author: JCJB Date: 05/11/2009 Version 2.0 This logic recieves registers the byte address of the master when 'start' is asserted. This block then barrelshifts the write data based on the byte address to make sure that the input data (from the FIFO) is reformatted to line up with memory properly. The only throttling mechanism in this block is the FIFO not empty signal as well as waitreqeust from the fabric. Revision History: 1.0 Initial version 2.0 Removed 'bytes_to_next_boundary' and using the address to determine how much out of alignment the master begins. */ // synthesis translate_off `timescale 1ns / 1ps // synthesis translate_on // turn off superfluous verilog processor warnings // altera message_level Level1 // altera message_off 10034 10035 10036 10037 10230 10240 10030 module ST_to_MM_Adapter ( clk, reset, enable, address, start, waitrequest, stall, write_data, fifo_data, fifo_empty, fifo_readack ); parameter DATA_WIDTH = 32; parameter BYTEENABLE_WIDTH_LOG2 = 2; parameter ADDRESS_WIDTH = 32; parameter UNALIGNED_ACCESS_ENABLE = 0; // when set to 0 this block will be a pass through (save on resources when unaligned accesses are not needed) localparam BYTES_TO_NEXT_BOUNDARY_WIDTH = BYTEENABLE_WIDTH_LOG2 + 1; // 2, 3, 4, 5, 6 for byte enable widths of 2, 4, 8, 16, 32 input clk; input reset; input enable; // must make sure that the adapter doesn't accept data when a transfer it doesn't know what "bytes_to_transfer" is yet input [ADDRESS_WIDTH-1:0] address; input start; // one cycle strobe at the start of a transfer used to determine bytes_to_transfer input waitrequest; input stall; output wire [DATA_WIDTH-1:0] write_data; input [DATA_WIDTH-1:0] fifo_data; input fifo_empty; output wire fifo_readack; wire [BYTES_TO_NEXT_BOUNDARY_WIDTH-1:0] bytes_to_next_boundary; wire [DATA_WIDTH-1:0] barrelshifter_A; wire [DATA_WIDTH-1:0] barrelshifter_B; reg [DATA_WIDTH-1:0] barrelshifter_B_d1; wire [DATA_WIDTH-1:0] combined_word; // bitwise OR between barrelshifter_A and barrelshifter_B (each has zero padding so that bytelanes don't overlap) wire [BYTES_TO_NEXT_BOUNDARY_WIDTH-2:0] bytes_to_next_boundary_minus_one; // simplifies barrelshifter select logic reg [BYTES_TO_NEXT_BOUNDARY_WIDTH-2:0] bytes_to_next_boundary_minus_one_d1; wire [DATA_WIDTH-1:0] barrelshifter_input_A [0:((DATA_WIDTH/8)-1)]; // will be used to create barrelshifter_A inputs wire [DATA_WIDTH-1:0] barrelshifter_input_B [0:((DATA_WIDTH/8)-1)]; // will be used to create barrelshifter_B inputs always @ (posedge clk or posedge reset) begin if (reset) begin bytes_to_next_boundary_minus_one_d1 <= 0; end else if (start) begin bytes_to_next_boundary_minus_one_d1 <= bytes_to_next_boundary_minus_one; end end always @ (posedge clk or posedge reset) begin if (reset) begin barrelshifter_B_d1 <= 0; end else begin if (start == 1) begin barrelshifter_B_d1 <= 0; end else if (fifo_readack == 1) begin barrelshifter_B_d1 <= barrelshifter_B; end end end assign bytes_to_next_boundary = (DATA_WIDTH/8) - address[BYTEENABLE_WIDTH_LOG2-1:0]; // bytes per word - unaligned byte offset = distance to next boundary assign bytes_to_next_boundary_minus_one = bytes_to_next_boundary - 1; assign combined_word = barrelshifter_A | barrelshifter_B_d1; generate genvar input_offset; for(input_offset = 0; input_offset < (DATA_WIDTH/8); input_offset = input_offset + 1) begin: barrel_shifter_inputs assign barrelshifter_input_A[input_offset] = fifo_data << (8 * ((DATA_WIDTH/8)-(input_offset+1))); assign barrelshifter_input_B[input_offset] = fifo_data >> (8 * (input_offset + 1)); end endgenerate assign barrelshifter_A = barrelshifter_input_A[bytes_to_next_boundary_minus_one_d1]; assign barrelshifter_B = barrelshifter_input_B[bytes_to_next_boundary_minus_one_d1]; generate if (UNALIGNED_ACCESS_ENABLE == 1) begin assign fifo_readack = (fifo_empty == 0) & (stall == 0) & (waitrequest == 0) & (enable == 1) & (start == 0); assign write_data = combined_word; end else begin assign fifo_readack = (fifo_empty == 0) & (stall == 0) & (waitrequest == 0) & (enable == 1); assign write_data = fifo_data; end endgenerate endmodule
// megafunction wizard: %FIFO% // GENERATION: STANDARD // VERSION: WM1.0 // MODULE: dcfifo // ============================================================ // File Name: fifo_4k_18.v // Megafunction Name(s): // dcfifo // // Simulation Library Files(s): // altera_mf // ============================================================ // ************************************************************ // THIS IS A WIZARD-GENERATED FILE. DO NOT EDIT THIS FILE! // // 7.1 Build 178 06/25/2007 SP 1 SJ Web Edition // ************************************************************ //Copyright (C) 1991-2007 Altera Corporation //Your use of Altera Corporation's design tools, logic functions //and other software and tools, and its AMPP partner logic //functions, and any output files from any of the foregoing //(including device programming or simulation files), and any //associated documentation or information are expressly subject //to the terms and conditions of the Altera Program License //Subscription Agreement, Altera MegaCore Function License //Agreement, or other applicable license agreement, including, //without limitation, that your use is for the sole purpose of //programming logic devices manufactured by Altera and sold by //Altera or its authorized distributors. Please refer to the //applicable agreement for further details. // synopsys translate_off `timescale 1 ps / 1 ps // synopsys translate_on module fifo_4k_18 ( aclr, data, rdclk, rdreq, wrclk, wrreq, q, rdempty, rdusedw, wrfull, wrusedw); input aclr; input [17:0] data; input rdclk; input rdreq; input wrclk; input wrreq; output [17:0] q; output rdempty; output [11:0] rdusedw; output wrfull; output [11:0] wrusedw; wire sub_wire0; wire [11:0] sub_wire1; wire sub_wire2; wire [17:0] sub_wire3; wire [11:0] sub_wire4; wire rdempty = sub_wire0; wire [11:0] wrusedw = sub_wire1[11:0]; wire wrfull = sub_wire2; wire [17:0] q = sub_wire3[17:0]; wire [11:0] rdusedw = sub_wire4[11:0]; dcfifo dcfifo_component ( .wrclk (wrclk), .rdreq (rdreq), .aclr (aclr), .rdclk (rdclk), .wrreq (wrreq), .data (data), .rdempty (sub_wire0), .wrusedw (sub_wire1), .wrfull (sub_wire2), .q (sub_wire3), .rdusedw (sub_wire4) // synopsys translate_off , .rdfull (), .wrempty () // synopsys translate_on ); defparam dcfifo_component.add_ram_output_register = "OFF", dcfifo_component.clocks_are_synchronized = "FALSE", dcfifo_component.intended_device_family = "Cyclone", dcfifo_component.lpm_numwords = 4096, dcfifo_component.lpm_showahead = "ON", dcfifo_component.lpm_type = "dcfifo", dcfifo_component.lpm_width = 18, dcfifo_component.lpm_widthu = 12, dcfifo_component.overflow_checking = "OFF", dcfifo_component.underflow_checking = "OFF", dcfifo_component.use_eab = "ON"; endmodule // ============================================================ // CNX file retrieval info // ============================================================ // Retrieval info: PRIVATE: AlmostEmpty NUMERIC "0" // Retrieval info: PRIVATE: AlmostEmptyThr NUMERIC "-1" // Retrieval info: PRIVATE: AlmostFull NUMERIC "0" // Retrieval info: PRIVATE: AlmostFullThr NUMERIC "-1" // Retrieval info: PRIVATE: CLOCKS_ARE_SYNCHRONIZED NUMERIC "0" // Retrieval info: PRIVATE: Clock NUMERIC "4" // Retrieval info: PRIVATE: Depth NUMERIC "4096" // Retrieval info: PRIVATE: Empty NUMERIC "1" // Retrieval info: PRIVATE: Full NUMERIC "1" // Retrieval info: PRIVATE: INTENDED_DEVICE_FAMILY STRING "Cyclone" // Retrieval info: PRIVATE: LE_BasedFIFO NUMERIC "0" // Retrieval info: PRIVATE: LegacyRREQ NUMERIC "0" // Retrieval info: PRIVATE: MAX_DEPTH_BY_9 NUMERIC "0" // Retrieval info: PRIVATE: OVERFLOW_CHECKING NUMERIC "1" // Retrieval info: PRIVATE: Optimize NUMERIC "2" // Retrieval info: PRIVATE: RAM_BLOCK_TYPE NUMERIC "0" // Retrieval info: PRIVATE: SYNTH_WRAPPER_GEN_POSTFIX STRING "0" // Retrieval info: PRIVATE: UNDERFLOW_CHECKING NUMERIC "1" // Retrieval info: PRIVATE: UsedW NUMERIC "1" // Retrieval info: PRIVATE: Width NUMERIC "18" // Retrieval info: PRIVATE: dc_aclr NUMERIC "1" // Retrieval info: PRIVATE: diff_widths NUMERIC "0" // Retrieval info: PRIVATE: msb_usedw NUMERIC "0" // Retrieval info: PRIVATE: output_width NUMERIC "18" // Retrieval info: PRIVATE: rsEmpty NUMERIC "1" // Retrieval info: PRIVATE: rsFull NUMERIC "0" // Retrieval info: PRIVATE: rsUsedW NUMERIC "1" // Retrieval info: PRIVATE: sc_aclr NUMERIC "0" // Retrieval info: PRIVATE: sc_sclr NUMERIC "0" // Retrieval info: PRIVATE: wsEmpty NUMERIC "0" // Retrieval info: PRIVATE: wsFull NUMERIC "1" // Retrieval info: PRIVATE: wsUsedW NUMERIC "1" // Retrieval info: CONSTANT: ADD_RAM_OUTPUT_REGISTER STRING "OFF" // Retrieval info: CONSTANT: CLOCKS_ARE_SYNCHRONIZED STRING "FALSE" // Retrieval info: CONSTANT: INTENDED_DEVICE_FAMILY STRING "Cyclone" // Retrieval info: CONSTANT: LPM_NUMWORDS NUMERIC "4096" // Retrieval info: CONSTANT: LPM_SHOWAHEAD STRING "ON" // Retrieval info: CONSTANT: LPM_TYPE STRING "dcfifo" // Retrieval info: CONSTANT: LPM_WIDTH NUMERIC "18" // Retrieval info: CONSTANT: LPM_WIDTHU NUMERIC "12" // Retrieval info: CONSTANT: OVERFLOW_CHECKING STRING "OFF" // Retrieval info: CONSTANT: UNDERFLOW_CHECKING STRING "OFF" // Retrieval info: CONSTANT: USE_EAB STRING "ON" // Retrieval info: USED_PORT: aclr 0 0 0 0 INPUT GND aclr // Retrieval info: USED_PORT: data 0 0 18 0 INPUT NODEFVAL data[17..0] // Retrieval info: USED_PORT: q 0 0 18 0 OUTPUT NODEFVAL q[17..0] // Retrieval info: USED_PORT: rdclk 0 0 0 0 INPUT NODEFVAL rdclk // Retrieval info: USED_PORT: rdempty 0 0 0 0 OUTPUT NODEFVAL rdempty // Retrieval info: USED_PORT: rdreq 0 0 0 0 INPUT NODEFVAL rdreq // Retrieval info: USED_PORT: rdusedw 0 0 12 0 OUTPUT NODEFVAL rdusedw[11..0] // Retrieval info: USED_PORT: wrclk 0 0 0 0 INPUT NODEFVAL wrclk // Retrieval info: USED_PORT: wrfull 0 0 0 0 OUTPUT NODEFVAL wrfull // Retrieval info: USED_PORT: wrreq 0 0 0 0 INPUT NODEFVAL wrreq // Retrieval info: USED_PORT: wrusedw 0 0 12 0 OUTPUT NODEFVAL wrusedw[11..0] // Retrieval info: CONNECT: @data 0 0 18 0 data 0 0 18 0 // Retrieval info: CONNECT: q 0 0 18 0 @q 0 0 18 0 // Retrieval info: CONNECT: @wrreq 0 0 0 0 wrreq 0 0 0 0 // Retrieval info: CONNECT: @rdreq 0 0 0 0 rdreq 0 0 0 0 // Retrieval info: CONNECT: @rdclk 0 0 0 0 rdclk 0 0 0 0 // Retrieval info: CONNECT: @wrclk 0 0 0 0 wrclk 0 0 0 0 // Retrieval info: CONNECT: rdempty 0 0 0 0 @rdempty 0 0 0 0 // Retrieval info: CONNECT: rdusedw 0 0 12 0 @rdusedw 0 0 12 0 // Retrieval info: CONNECT: wrfull 0 0 0 0 @wrfull 0 0 0 0 // Retrieval info: CONNECT: wrusedw 0 0 12 0 @wrusedw 0 0 12 0 // Retrieval info: CONNECT: @aclr 0 0 0 0 aclr 0 0 0 0 // Retrieval info: LIBRARY: altera_mf altera_mf.altera_mf_components.all // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4k_18.v TRUE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4k_18.inc FALSE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4k_18.cmp FALSE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4k_18.bsf FALSE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4k_18_inst.v FALSE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4k_18_bb.v FALSE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4k_18_waveforms.html FALSE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4k_18_wave*.jpg FALSE // Retrieval info: LIB_FILE: altera_mf
// megafunction wizard: %FIFO% // GENERATION: STANDARD // VERSION: WM1.0 // MODULE: dcfifo // ============================================================ // File Name: fifo_4k_18.v // Megafunction Name(s): // dcfifo // // Simulation Library Files(s): // altera_mf // ============================================================ // ************************************************************ // THIS IS A WIZARD-GENERATED FILE. DO NOT EDIT THIS FILE! // // 7.1 Build 178 06/25/2007 SP 1 SJ Web Edition // ************************************************************ //Copyright (C) 1991-2007 Altera Corporation //Your use of Altera Corporation's design tools, logic functions //and other software and tools, and its AMPP partner logic //functions, and any output files from any of the foregoing //(including device programming or simulation files), and any //associated documentation or information are expressly subject //to the terms and conditions of the Altera Program License //Subscription Agreement, Altera MegaCore Function License //Agreement, or other applicable license agreement, including, //without limitation, that your use is for the sole purpose of //programming logic devices manufactured by Altera and sold by //Altera or its authorized distributors. Please refer to the //applicable agreement for further details. // synopsys translate_off `timescale 1 ps / 1 ps // synopsys translate_on module fifo_4k_18 ( aclr, data, rdclk, rdreq, wrclk, wrreq, q, rdempty, rdusedw, wrfull, wrusedw); input aclr; input [17:0] data; input rdclk; input rdreq; input wrclk; input wrreq; output [17:0] q; output rdempty; output [11:0] rdusedw; output wrfull; output [11:0] wrusedw; wire sub_wire0; wire [11:0] sub_wire1; wire sub_wire2; wire [17:0] sub_wire3; wire [11:0] sub_wire4; wire rdempty = sub_wire0; wire [11:0] wrusedw = sub_wire1[11:0]; wire wrfull = sub_wire2; wire [17:0] q = sub_wire3[17:0]; wire [11:0] rdusedw = sub_wire4[11:0]; dcfifo dcfifo_component ( .wrclk (wrclk), .rdreq (rdreq), .aclr (aclr), .rdclk (rdclk), .wrreq (wrreq), .data (data), .rdempty (sub_wire0), .wrusedw (sub_wire1), .wrfull (sub_wire2), .q (sub_wire3), .rdusedw (sub_wire4) // synopsys translate_off , .rdfull (), .wrempty () // synopsys translate_on ); defparam dcfifo_component.add_ram_output_register = "OFF", dcfifo_component.clocks_are_synchronized = "FALSE", dcfifo_component.intended_device_family = "Cyclone", dcfifo_component.lpm_numwords = 4096, dcfifo_component.lpm_showahead = "ON", dcfifo_component.lpm_type = "dcfifo", dcfifo_component.lpm_width = 18, dcfifo_component.lpm_widthu = 12, dcfifo_component.overflow_checking = "OFF", dcfifo_component.underflow_checking = "OFF", dcfifo_component.use_eab = "ON"; endmodule // ============================================================ // CNX file retrieval info // ============================================================ // Retrieval info: PRIVATE: AlmostEmpty NUMERIC "0" // Retrieval info: PRIVATE: AlmostEmptyThr NUMERIC "-1" // Retrieval info: PRIVATE: AlmostFull NUMERIC "0" // Retrieval info: PRIVATE: AlmostFullThr NUMERIC "-1" // Retrieval info: PRIVATE: CLOCKS_ARE_SYNCHRONIZED NUMERIC "0" // Retrieval info: PRIVATE: Clock NUMERIC "4" // Retrieval info: PRIVATE: Depth NUMERIC "4096" // Retrieval info: PRIVATE: Empty NUMERIC "1" // Retrieval info: PRIVATE: Full NUMERIC "1" // Retrieval info: PRIVATE: INTENDED_DEVICE_FAMILY STRING "Cyclone" // Retrieval info: PRIVATE: LE_BasedFIFO NUMERIC "0" // Retrieval info: PRIVATE: LegacyRREQ NUMERIC "0" // Retrieval info: PRIVATE: MAX_DEPTH_BY_9 NUMERIC "0" // Retrieval info: PRIVATE: OVERFLOW_CHECKING NUMERIC "1" // Retrieval info: PRIVATE: Optimize NUMERIC "2" // Retrieval info: PRIVATE: RAM_BLOCK_TYPE NUMERIC "0" // Retrieval info: PRIVATE: SYNTH_WRAPPER_GEN_POSTFIX STRING "0" // Retrieval info: PRIVATE: UNDERFLOW_CHECKING NUMERIC "1" // Retrieval info: PRIVATE: UsedW NUMERIC "1" // Retrieval info: PRIVATE: Width NUMERIC "18" // Retrieval info: PRIVATE: dc_aclr NUMERIC "1" // Retrieval info: PRIVATE: diff_widths NUMERIC "0" // Retrieval info: PRIVATE: msb_usedw NUMERIC "0" // Retrieval info: PRIVATE: output_width NUMERIC "18" // Retrieval info: PRIVATE: rsEmpty NUMERIC "1" // Retrieval info: PRIVATE: rsFull NUMERIC "0" // Retrieval info: PRIVATE: rsUsedW NUMERIC "1" // Retrieval info: PRIVATE: sc_aclr NUMERIC "0" // Retrieval info: PRIVATE: sc_sclr NUMERIC "0" // Retrieval info: PRIVATE: wsEmpty NUMERIC "0" // Retrieval info: PRIVATE: wsFull NUMERIC "1" // Retrieval info: PRIVATE: wsUsedW NUMERIC "1" // Retrieval info: CONSTANT: ADD_RAM_OUTPUT_REGISTER STRING "OFF" // Retrieval info: CONSTANT: CLOCKS_ARE_SYNCHRONIZED STRING "FALSE" // Retrieval info: CONSTANT: INTENDED_DEVICE_FAMILY STRING "Cyclone" // Retrieval info: CONSTANT: LPM_NUMWORDS NUMERIC "4096" // Retrieval info: CONSTANT: LPM_SHOWAHEAD STRING "ON" // Retrieval info: CONSTANT: LPM_TYPE STRING "dcfifo" // Retrieval info: CONSTANT: LPM_WIDTH NUMERIC "18" // Retrieval info: CONSTANT: LPM_WIDTHU NUMERIC "12" // Retrieval info: CONSTANT: OVERFLOW_CHECKING STRING "OFF" // Retrieval info: CONSTANT: UNDERFLOW_CHECKING STRING "OFF" // Retrieval info: CONSTANT: USE_EAB STRING "ON" // Retrieval info: USED_PORT: aclr 0 0 0 0 INPUT GND aclr // Retrieval info: USED_PORT: data 0 0 18 0 INPUT NODEFVAL data[17..0] // Retrieval info: USED_PORT: q 0 0 18 0 OUTPUT NODEFVAL q[17..0] // Retrieval info: USED_PORT: rdclk 0 0 0 0 INPUT NODEFVAL rdclk // Retrieval info: USED_PORT: rdempty 0 0 0 0 OUTPUT NODEFVAL rdempty // Retrieval info: USED_PORT: rdreq 0 0 0 0 INPUT NODEFVAL rdreq // Retrieval info: USED_PORT: rdusedw 0 0 12 0 OUTPUT NODEFVAL rdusedw[11..0] // Retrieval info: USED_PORT: wrclk 0 0 0 0 INPUT NODEFVAL wrclk // Retrieval info: USED_PORT: wrfull 0 0 0 0 OUTPUT NODEFVAL wrfull // Retrieval info: USED_PORT: wrreq 0 0 0 0 INPUT NODEFVAL wrreq // Retrieval info: USED_PORT: wrusedw 0 0 12 0 OUTPUT NODEFVAL wrusedw[11..0] // Retrieval info: CONNECT: @data 0 0 18 0 data 0 0 18 0 // Retrieval info: CONNECT: q 0 0 18 0 @q 0 0 18 0 // Retrieval info: CONNECT: @wrreq 0 0 0 0 wrreq 0 0 0 0 // Retrieval info: CONNECT: @rdreq 0 0 0 0 rdreq 0 0 0 0 // Retrieval info: CONNECT: @rdclk 0 0 0 0 rdclk 0 0 0 0 // Retrieval info: CONNECT: @wrclk 0 0 0 0 wrclk 0 0 0 0 // Retrieval info: CONNECT: rdempty 0 0 0 0 @rdempty 0 0 0 0 // Retrieval info: CONNECT: rdusedw 0 0 12 0 @rdusedw 0 0 12 0 // Retrieval info: CONNECT: wrfull 0 0 0 0 @wrfull 0 0 0 0 // Retrieval info: CONNECT: wrusedw 0 0 12 0 @wrusedw 0 0 12 0 // Retrieval info: CONNECT: @aclr 0 0 0 0 aclr 0 0 0 0 // Retrieval info: LIBRARY: altera_mf altera_mf.altera_mf_components.all // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4k_18.v TRUE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4k_18.inc FALSE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4k_18.cmp FALSE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4k_18.bsf FALSE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4k_18_inst.v FALSE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4k_18_bb.v FALSE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4k_18_waveforms.html FALSE // Retrieval info: GEN_FILE: TYPE_NORMAL fifo_4k_18_wave*.jpg FALSE // Retrieval info: LIB_FILE: altera_mf
module fake_nonburstboundary # ( parameter WIDTH_D = 256, parameter S_WIDTH_A = 26, parameter M_WIDTH_A = S_WIDTH_A+$clog2(WIDTH_D/8), parameter BURSTCOUNT_WIDTH = 6, parameter BYTEENABLE_WIDTH = WIDTH_D, parameter MAX_PENDING_READS = 64 ) ( input clk, input resetn, // Slave port input [S_WIDTH_A-1:0] slave_address, // Word address input [WIDTH_D-1:0] slave_writedata, input slave_read, input slave_write, input [BURSTCOUNT_WIDTH-1:0] slave_burstcount, input [BYTEENABLE_WIDTH-1:0] slave_byteenable, output slave_waitrequest, output [WIDTH_D-1:0] slave_readdata, output slave_readdatavalid, output [M_WIDTH_A-1:0] master_address, // Byte address output [WIDTH_D-1:0] master_writedata, output master_read, output master_write, output [BURSTCOUNT_WIDTH-1:0] master_burstcount, output [BYTEENABLE_WIDTH-1:0] master_byteenable, input master_waitrequest, input [WIDTH_D-1:0] master_readdata, input master_readdatavalid ); assign master_read = slave_read; assign master_write = slave_write; assign master_writedata = slave_writedata; assign master_burstcount = slave_burstcount; assign master_address = {slave_address,{$clog2(WIDTH_D/8){1'b0}}}; //byteaddr assign master_byteenable = slave_byteenable; assign slave_waitrequest = master_waitrequest; assign slave_readdatavalid = master_readdatavalid; assign slave_readdata = master_readdata; endmodule
module fake_nonburstboundary # ( parameter WIDTH_D = 256, parameter S_WIDTH_A = 26, parameter M_WIDTH_A = S_WIDTH_A+$clog2(WIDTH_D/8), parameter BURSTCOUNT_WIDTH = 6, parameter BYTEENABLE_WIDTH = WIDTH_D, parameter MAX_PENDING_READS = 64 ) ( input clk, input resetn, // Slave port input [S_WIDTH_A-1:0] slave_address, // Word address input [WIDTH_D-1:0] slave_writedata, input slave_read, input slave_write, input [BURSTCOUNT_WIDTH-1:0] slave_burstcount, input [BYTEENABLE_WIDTH-1:0] slave_byteenable, output slave_waitrequest, output [WIDTH_D-1:0] slave_readdata, output slave_readdatavalid, output [M_WIDTH_A-1:0] master_address, // Byte address output [WIDTH_D-1:0] master_writedata, output master_read, output master_write, output [BURSTCOUNT_WIDTH-1:0] master_burstcount, output [BYTEENABLE_WIDTH-1:0] master_byteenable, input master_waitrequest, input [WIDTH_D-1:0] master_readdata, input master_readdatavalid ); assign master_read = slave_read; assign master_write = slave_write; assign master_writedata = slave_writedata; assign master_burstcount = slave_burstcount; assign master_address = {slave_address,{$clog2(WIDTH_D/8){1'b0}}}; //byteaddr assign master_byteenable = slave_byteenable; assign slave_waitrequest = master_waitrequest; assign slave_readdatavalid = master_readdatavalid; assign slave_readdata = master_readdata; endmodule
// -- (c) Copyright 2010 - 2011 Xilinx, Inc. All rights reserved. // -- // -- This file contains confidential and proprietary information // -- of Xilinx, Inc. and is protected under U.S. and // -- international copyright and other intellectual property // -- laws. // -- // -- DISCLAIMER // -- This disclaimer is not a license and does not grant any // -- rights to the materials distributed herewith. Except as // -- otherwise provided in a valid license issued to you by // -- Xilinx, and to the maximum extent permitted by applicable // -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // -- (2) Xilinx shall not be liable (whether in contract or tort, // -- including negligence, or under any other theory of // -- liability) for any loss or damage of any kind or nature // -- related to, arising under or in connection with these // -- materials, including for any direct, or any indirect, // -- special, incidental, or consequential loss or damage // -- (including loss of data, profits, goodwill, or any type of // -- loss or damage suffered as a result of any action brought // -- by a third party) even if such damage or loss was // -- reasonably foreseeable or Xilinx had been advised of the // -- possibility of the same. // -- // -- CRITICAL APPLICATIONS // -- Xilinx products are not designed or intended to be fail- // -- safe, or for use in any application requiring fail-safe // -- performance, such as life-support or safety devices or // -- systems, Class III medical devices, nuclear facilities, // -- applications related to the deployment of airbags, or any // -- other applications that could lead to death, personal // -- injury, or severe property or environmental damage // -- (individually and collectively, "Critical // -- Applications"). Customer assumes the sole risk and // -- liability of any use of Xilinx products in Critical // -- Applications, subject only to applicable laws and // -- regulations governing limitations on product liability. // -- // -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // -- PART OF THIS FILE AT ALL TIMES. //----------------------------------------------------------------------------- // // Description: // Optimized COMPARATOR (against constant) with generic_baseblocks_v2_1_0_carry logic. // // Verilog-standard: Verilog 2001 //-------------------------------------------------------------------------- // // Structure: // // //-------------------------------------------------------------------------- `timescale 1ps/1ps (* DowngradeIPIdentifiedWarnings="yes" *) module generic_baseblocks_v2_1_0_comparator_static # ( parameter C_FAMILY = "virtex6", // FPGA Family. Current version: virtex6 or spartan6. parameter C_VALUE = 4'b0, // Static value to compare against. parameter integer C_DATA_WIDTH = 4 // Data width for comparator. ) ( input wire CIN, input wire [C_DATA_WIDTH-1:0] A, output wire COUT ); ///////////////////////////////////////////////////////////////////////////// // Variables for generating parameter controlled instances. ///////////////////////////////////////////////////////////////////////////// // Generate variable for bit vector. genvar bit_cnt; ///////////////////////////////////////////////////////////////////////////// // Local params ///////////////////////////////////////////////////////////////////////////// // Bits per LUT for this architecture. localparam integer C_BITS_PER_LUT = 6; // Constants for packing levels. localparam integer C_NUM_LUT = ( C_DATA_WIDTH + C_BITS_PER_LUT - 1 ) / C_BITS_PER_LUT; // localparam integer C_FIX_DATA_WIDTH = ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) ? C_NUM_LUT * C_BITS_PER_LUT : C_DATA_WIDTH; ///////////////////////////////////////////////////////////////////////////// // Functions ///////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////// // Internal signals ///////////////////////////////////////////////////////////////////////////// wire [C_FIX_DATA_WIDTH-1:0] a_local; wire [C_FIX_DATA_WIDTH-1:0] b_local; wire [C_NUM_LUT-1:0] sel; wire [C_NUM_LUT:0] carry_local; ///////////////////////////////////////////////////////////////////////////// // ///////////////////////////////////////////////////////////////////////////// generate // Assign input to local vectors. assign carry_local[0] = CIN; // Extend input data to fit. if ( C_NUM_LUT * C_BITS_PER_LUT > C_DATA_WIDTH ) begin : USE_EXTENDED_DATA assign a_local = {A, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; assign b_local = {C_VALUE, {C_NUM_LUT * C_BITS_PER_LUT - C_DATA_WIDTH{1'b0}}}; end else begin : NO_EXTENDED_DATA assign a_local = A; assign b_local = C_VALUE; end // Instantiate one generic_baseblocks_v2_1_0_carry and per level. for (bit_cnt = 0; bit_cnt < C_NUM_LUT ; bit_cnt = bit_cnt + 1) begin : LUT_LEVEL // Create the local select signal assign sel[bit_cnt] = ( a_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] == b_local[bit_cnt*C_BITS_PER_LUT +: C_BITS_PER_LUT] ); // Instantiate each LUT level. generic_baseblocks_v2_1_0_carry_and # ( .C_FAMILY(C_FAMILY) ) compare_inst ( .COUT (carry_local[bit_cnt+1]), .CIN (carry_local[bit_cnt]), .S (sel[bit_cnt]) ); end // end for bit_cnt // Assign output from local vector. assign COUT = carry_local[C_NUM_LUT]; endgenerate endmodule
//***************************************************************************** // (c) Copyright 2009 - 2013 Xilinx, Inc. All rights reserved. // // This file contains confidential and proprietary information // of Xilinx, Inc. and is protected under U.S. and // international copyright and other intellectual property // laws. // // DISCLAIMER // This disclaimer is not a license and does not grant any // rights to the materials distributed herewith. Except as // otherwise provided in a valid license issued to you by // Xilinx, and to the maximum extent permitted by applicable // law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // (2) Xilinx shall not be liable (whether in contract or tort, // including negligence, or under any other theory of // liability) for any loss or damage of any kind or nature // related to, arising under or in connection with these // materials, including for any direct, or any indirect, // special, incidental, or consequential loss or damage // (including loss of data, profits, goodwill, or any type of // loss or damage suffered as a result of any action brought // by a third party) even if such damage or loss was // reasonably foreseeable or Xilinx had been advised of the // possibility of the same. // // CRITICAL APPLICATIONS // Xilinx products are not designed or intended to be fail- // safe, or for use in any application requiring fail-safe // performance, such as life-support or safety devices or // systems, Class III medical devices, nuclear facilities, // applications related to the deployment of airbags, or any // other applications that could lead to death, personal // injury, or severe property or environmental damage // (individually and collectively, "Critical // Applications"). Customer assumes the sole risk and // liability of any use of Xilinx products in Critical // Applications, subject only to applicable laws and // regulations governing limitations on product liability. // // THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // PART OF THIS FILE AT ALL TIMES. // //***************************************************************************** // ____ ____ // / /\/ / // /___/ \ / Vendor: Xilinx // \ \ \/ Version: %version // \ \ Application: MIG // / / Filename: ddr_phy_wrlvl.v // /___/ /\ Date Last Modified: $Date: 2011/06/24 14:49:00 $ // \ \ / \ Date Created: Mon Jun 23 2008 // \___\/\___\ // //Device: 7 Series //Design Name: DDR3 SDRAM //Purpose: // Memory initialization and overall master state control during // initialization and calibration. Specifically, the following functions // are performed: // 1. Memory initialization (initial AR, mode register programming, etc.) // 2. Initiating write leveling // 3. Generate training pattern writes for read leveling. Generate // memory readback for read leveling. // This module has a DFI interface for providing control/address and write // data to the rest of the PHY datapath during initialization/calibration. // Once initialization is complete, control is passed to the MC. // NOTES: // 1. Multiple CS (multi-rank) not supported // 2. DDR2 not supported // 3. ODT not supported //Reference: //Revision History: //***************************************************************************** /****************************************************************************** **$Id: ddr_phy_wrlvl.v,v 1.3 2011/06/24 14:49:00 mgeorge Exp $ **$Date: 2011/06/24 14:49:00 $ **$Author: mgeorge $ **$Revision: 1.3 $ **$Source: /devl/xcs/repo/env/Databases/ip/src2/O/mig_7series_v1_3/data/dlib/7series/ddr3_sdram/verilog/rtl/phy/ddr_phy_wrlvl.v,v $ ******************************************************************************/ `timescale 1ps/1ps module mig_7series_v1_9_ddr_phy_wrlvl # ( parameter TCQ = 100, parameter DQS_CNT_WIDTH = 3, parameter DQ_WIDTH = 64, parameter DQS_WIDTH = 2, parameter DRAM_WIDTH = 8, parameter RANKS = 1, parameter nCK_PER_CLK = 4, parameter CLK_PERIOD = 4, parameter SIM_CAL_OPTION = "NONE" ) ( input clk, input rst, input phy_ctl_ready, input wr_level_start, input wl_sm_start, input wrlvl_final, input wrlvl_byte_redo, input [DQS_CNT_WIDTH:0] wrcal_cnt, input early1_data, input early2_data, input [DQS_CNT_WIDTH:0] oclkdelay_calib_cnt, input oclkdelay_calib_done, input [(DQ_WIDTH)-1:0] rd_data_rise0, output reg wrlvl_byte_done, (* keep = "true", max_fanout = 2 *) output reg dqs_po_dec_done /* synthesis syn_maxfan = 2 */, output phy_ctl_rdy_dly, (* keep = "true", max_fanout = 2 *) output reg wr_level_done /* synthesis syn_maxfan = 2 */, // to phy_init for cs logic output wrlvl_rank_done, output done_dqs_tap_inc, output [DQS_CNT_WIDTH:0] po_stg2_wl_cnt, // Fine delay line used only during write leveling // Inc/dec Phaser_Out fine delay line output reg dqs_po_stg2_f_incdec, // Enable Phaser_Out fine delay inc/dec output reg dqs_po_en_stg2_f, // Coarse delay line used during write leveling // only if 64 taps of fine delay line were not // sufficient to detect a 0->1 transition // Inc Phaser_Out coarse delay line output reg dqs_wl_po_stg2_c_incdec, // Enable Phaser_Out coarse delay inc/dec output reg dqs_wl_po_en_stg2_c, // Read Phaser_Out delay value input [8:0] po_counter_read_val, // output reg dqs_wl_po_stg2_load, // output reg [8:0] dqs_wl_po_stg2_reg_l, // CK edge undetected output reg wrlvl_err, output reg [3*DQS_WIDTH-1:0] wl_po_coarse_cnt, output reg [6*DQS_WIDTH-1:0] wl_po_fine_cnt, // Debug ports output [5:0] dbg_wl_tap_cnt, output dbg_wl_edge_detect_valid, output [(DQS_WIDTH)-1:0] dbg_rd_data_edge_detect, output [DQS_CNT_WIDTH:0] dbg_dqs_count, output [4:0] dbg_wl_state, output [6*DQS_WIDTH-1:0] dbg_wrlvl_fine_tap_cnt, output [3*DQS_WIDTH-1:0] dbg_wrlvl_coarse_tap_cnt, output [255:0] dbg_phy_wrlvl ); localparam WL_IDLE = 5'h0; localparam WL_INIT = 5'h1; localparam WL_INIT_FINE_INC = 5'h2; localparam WL_INIT_FINE_INC_WAIT1= 5'h3; localparam WL_INIT_FINE_INC_WAIT = 5'h4; localparam WL_INIT_FINE_DEC = 5'h5; localparam WL_INIT_FINE_DEC_WAIT = 5'h6; localparam WL_FINE_INC = 5'h7; localparam WL_WAIT = 5'h8; localparam WL_EDGE_CHECK = 5'h9; localparam WL_DQS_CHECK = 5'hA; localparam WL_DQS_CNT = 5'hB; localparam WL_2RANK_TAP_DEC = 5'hC; localparam WL_2RANK_DQS_CNT = 5'hD; localparam WL_FINE_DEC = 5'hE; localparam WL_FINE_DEC_WAIT = 5'hF; localparam WL_CORSE_INC = 5'h10; localparam WL_CORSE_INC_WAIT = 5'h11; localparam WL_CORSE_INC_WAIT1 = 5'h12; localparam WL_CORSE_INC_WAIT2 = 5'h13; localparam WL_CORSE_DEC = 5'h14; localparam WL_CORSE_DEC_WAIT = 5'h15; localparam WL_CORSE_DEC_WAIT1 = 5'h16; localparam WL_FINE_INC_WAIT = 5'h17; localparam WL_2RANK_FINAL_TAP = 5'h18; localparam WL_INIT_FINE_DEC_WAIT1= 5'h19; localparam WL_FINE_DEC_WAIT1 = 5'h1A; localparam WL_CORSE_INC_WAIT_TMP = 5'h1B; localparam COARSE_TAPS = 7; localparam FAST_CAL_FINE = (CLK_PERIOD/nCK_PER_CLK <= 2500) ? 45 : 48; localparam FAST_CAL_COARSE = (CLK_PERIOD/nCK_PER_CLK <= 2500) ? 1 : 2; localparam REDO_COARSE = (CLK_PERIOD/nCK_PER_CLK <= 2500) ? 2 : 5; integer i, j, k, l, p, q, r, s, t, m, n, u, v, w, x,y; reg phy_ctl_ready_r1; reg phy_ctl_ready_r2; reg phy_ctl_ready_r3; reg phy_ctl_ready_r4; reg phy_ctl_ready_r5; reg phy_ctl_ready_r6; reg [DQS_CNT_WIDTH:0] dqs_count_r; reg [1:0] rank_cnt_r; reg [DQS_WIDTH-1:0] rd_data_rise_wl_r; reg [DQS_WIDTH-1:0] rd_data_previous_r; reg [DQS_WIDTH-1:0] rd_data_edge_detect_r; reg wr_level_done_r; reg wrlvl_rank_done_r; reg wr_level_start_r; reg [4:0] wl_state_r, wl_state_r1; reg inhibit_edge_detect_r; reg wl_edge_detect_valid_r; reg [5:0] wl_tap_count_r; reg [5:0] fine_dec_cnt; reg [5:0] fine_inc[0:DQS_WIDTH-1]; // DQS_WIDTH number of counters 6-bit each reg [2:0] corse_dec[0:DQS_WIDTH-1]; reg [2:0] corse_inc[0:DQS_WIDTH-1]; reg dq_cnt_inc; reg [3:0] stable_cnt; reg flag_ck_negedge; //reg past_negedge; reg flag_init; reg [2:0] corse_cnt[0:DQS_WIDTH-1]; reg [3*DQS_WIDTH-1:0] corse_cnt_dbg; reg [2:0] wl_corse_cnt[0:RANKS-1][0:DQS_WIDTH-1]; //reg [3*DQS_WIDTH-1:0] coarse_tap_inc; reg [2:0] final_coarse_tap[0:DQS_WIDTH-1]; reg [5:0] add_smallest[0:DQS_WIDTH-1]; reg [5:0] add_largest[0:DQS_WIDTH-1]; //reg [6*DQS_WIDTH-1:0] fine_tap_inc; //reg [6*DQS_WIDTH-1:0] fine_tap_dec; reg wr_level_done_r1; reg wr_level_done_r2; reg wr_level_done_r3; reg wr_level_done_r4; reg wr_level_done_r5; reg [5:0] wl_dqs_tap_count_r[0:RANKS-1][0:DQS_WIDTH-1]; reg [5:0] smallest[0:DQS_WIDTH-1]; reg [5:0] largest[0:DQS_WIDTH-1]; reg [5:0] final_val[0:DQS_WIDTH-1]; reg [5:0] po_dec_cnt[0:DQS_WIDTH-1]; reg done_dqs_dec; reg [8:0] po_rdval_cnt; reg po_cnt_dec; reg po_dec_done; reg dual_rnk_dec; wire [DQS_CNT_WIDTH+2:0] dqs_count_w; reg [5:0] fast_cal_fine_cnt; reg [2:0] fast_cal_coarse_cnt; reg wrlvl_byte_redo_r; reg [2:0] wrlvl_redo_corse_inc; reg wrlvl_final_r; reg final_corse_dec; wire [DQS_CNT_WIDTH+2:0] oclk_count_w; reg wrlvl_tap_done_r ; reg [3:0] wait_cnt; reg [3:0] incdec_wait_cnt; // Debug ports assign dbg_wl_edge_detect_valid = wl_edge_detect_valid_r; assign dbg_rd_data_edge_detect = rd_data_edge_detect_r; assign dbg_wl_tap_cnt = wl_tap_count_r; assign dbg_dqs_count = dqs_count_r; assign dbg_wl_state = wl_state_r; assign dbg_wrlvl_fine_tap_cnt = wl_po_fine_cnt; assign dbg_wrlvl_coarse_tap_cnt = wl_po_coarse_cnt; always @(*) begin for (v = 0; v < DQS_WIDTH; v = v + 1) corse_cnt_dbg[3*v+:3] = corse_cnt[v]; end assign dbg_phy_wrlvl[0+:27] = corse_cnt_dbg; assign dbg_phy_wrlvl[27+:5] = wl_state_r; assign dbg_phy_wrlvl[32+:4] = dqs_count_r; assign dbg_phy_wrlvl[36+:9] = rd_data_rise_wl_r; assign dbg_phy_wrlvl[45+:9] = rd_data_previous_r; assign dbg_phy_wrlvl[54+:4] = stable_cnt; assign dbg_phy_wrlvl[58] = 'd0; assign dbg_phy_wrlvl[59] = flag_ck_negedge; assign dbg_phy_wrlvl [60] = wl_edge_detect_valid_r; assign dbg_phy_wrlvl [61+:6] = wl_tap_count_r; assign dbg_phy_wrlvl [67+:9] = rd_data_edge_detect_r; assign dbg_phy_wrlvl [76+:54] = wl_po_fine_cnt; assign dbg_phy_wrlvl [130+:27] = wl_po_coarse_cnt; //************************************************************************** // DQS count to hard PHY during write leveling using Phaser_OUT Stage2 delay //************************************************************************** assign po_stg2_wl_cnt = dqs_count_r; assign wrlvl_rank_done = wrlvl_rank_done_r; assign done_dqs_tap_inc = done_dqs_dec; assign phy_ctl_rdy_dly = phy_ctl_ready_r6; always @(posedge clk) begin phy_ctl_ready_r1 <= #TCQ phy_ctl_ready; phy_ctl_ready_r2 <= #TCQ phy_ctl_ready_r1; phy_ctl_ready_r3 <= #TCQ phy_ctl_ready_r2; phy_ctl_ready_r4 <= #TCQ phy_ctl_ready_r3; phy_ctl_ready_r5 <= #TCQ phy_ctl_ready_r4; phy_ctl_ready_r6 <= #TCQ phy_ctl_ready_r5; wrlvl_byte_redo_r <= #TCQ wrlvl_byte_redo; wrlvl_final_r <= #TCQ wrlvl_final; if ((wrlvl_byte_redo && ~wrlvl_byte_redo_r) || (wrlvl_final && ~wrlvl_final_r)) wr_level_done <= #TCQ 1'b0; else wr_level_done <= #TCQ done_dqs_dec; end // Status signal that will be asserted once the first // pass of write leveling is done. always @(posedge clk) begin if(rst) begin wrlvl_tap_done_r <= #TCQ 1'b0 ; end else begin if(wrlvl_tap_done_r == 1'b0) begin if(oclkdelay_calib_done) begin wrlvl_tap_done_r <= #TCQ 1'b1 ; end end end end always @(posedge clk) begin if (rst || po_cnt_dec) wait_cnt <= #TCQ 'd8; else if (phy_ctl_ready_r6 && (wait_cnt > 'd0)) wait_cnt <= #TCQ wait_cnt - 1; end always @(posedge clk) begin if (rst) begin po_rdval_cnt <= #TCQ 'd0; end else if (phy_ctl_ready_r5 && ~phy_ctl_ready_r6) begin po_rdval_cnt <= #TCQ po_counter_read_val; end else if (po_rdval_cnt > 'd0) begin if (po_cnt_dec) po_rdval_cnt <= #TCQ po_rdval_cnt - 1; else po_rdval_cnt <= #TCQ po_rdval_cnt; end else if (po_rdval_cnt == 'd0) begin po_rdval_cnt <= #TCQ po_rdval_cnt; end end always @(posedge clk) begin if (rst || (po_rdval_cnt == 'd0)) po_cnt_dec <= #TCQ 1'b0; else if (phy_ctl_ready_r6 && (po_rdval_cnt > 'd0) && (wait_cnt == 'd1)) po_cnt_dec <= #TCQ 1'b1; else po_cnt_dec <= #TCQ 1'b0; end always @(posedge clk) begin if (rst) po_dec_done <= #TCQ 1'b0; else if (((po_cnt_dec == 'd1) && (po_rdval_cnt == 'd1)) || (phy_ctl_ready_r6 && (po_rdval_cnt == 'd0))) begin po_dec_done <= #TCQ 1'b1; end end always @(posedge clk) begin dqs_po_dec_done <= #TCQ po_dec_done; wr_level_done_r1 <= #TCQ wr_level_done_r; wr_level_done_r2 <= #TCQ wr_level_done_r1; wr_level_done_r3 <= #TCQ wr_level_done_r2; wr_level_done_r4 <= #TCQ wr_level_done_r3; wr_level_done_r5 <= #TCQ wr_level_done_r4; for (l = 0; l < DQS_WIDTH; l = l + 1) begin wl_po_coarse_cnt[3*l+:3] <= #TCQ final_coarse_tap[l]; if ((RANKS == 1) || ~oclkdelay_calib_done) wl_po_fine_cnt[6*l+:6] <= #TCQ smallest[l]; else wl_po_fine_cnt[6*l+:6] <= #TCQ final_val[l]; end end generate if (RANKS == 2) begin: dual_rank always @(posedge clk) begin if (rst || (wrlvl_byte_redo && ~wrlvl_byte_redo_r) || (wrlvl_final && ~wrlvl_final_r)) done_dqs_dec <= #TCQ 1'b0; else if ((SIM_CAL_OPTION == "FAST_CAL") || ~oclkdelay_calib_done) done_dqs_dec <= #TCQ wr_level_done_r; else if (wr_level_done_r5 && (wl_state_r == WL_IDLE)) done_dqs_dec <= #TCQ 1'b1; end end else begin: single_rank always @(posedge clk) begin if (rst || (wrlvl_byte_redo && ~wrlvl_byte_redo_r) || (wrlvl_final && ~wrlvl_final_r)) done_dqs_dec <= #TCQ 1'b0; else if (~oclkdelay_calib_done) done_dqs_dec <= #TCQ wr_level_done_r; else if (wr_level_done_r3 && ~wr_level_done_r4) done_dqs_dec <= #TCQ 1'b1; end end endgenerate always @(posedge clk) if (rst || (wrlvl_byte_redo && ~wrlvl_byte_redo_r)) wrlvl_byte_done <= #TCQ 1'b0; else if (wrlvl_byte_redo && wr_level_done_r3 && ~wr_level_done_r4) wrlvl_byte_done <= #TCQ 1'b1; // Storing DQS tap values at the end of each DQS write leveling always @(posedge clk) begin if (rst) begin for (k = 0; k < RANKS; k = k + 1) begin: rst_wl_dqs_tap_count_loop for (n = 0; n < DQS_WIDTH; n = n + 1) begin wl_corse_cnt[k][n] <= #TCQ 'b0; wl_dqs_tap_count_r[k][n] <= #TCQ 'b0; end end end else if ((wl_state_r == WL_DQS_CNT) | (wl_state_r == WL_WAIT) | (wl_state_r == WL_FINE_DEC_WAIT1) | (wl_state_r == WL_2RANK_TAP_DEC)) begin wl_dqs_tap_count_r[rank_cnt_r][dqs_count_r] <= #TCQ wl_tap_count_r; wl_corse_cnt[rank_cnt_r][dqs_count_r] <= #TCQ corse_cnt[dqs_count_r]; end else if ((SIM_CAL_OPTION == "FAST_CAL") & (wl_state_r == WL_DQS_CHECK)) begin for (p = 0; p < RANKS; p = p +1) begin: dqs_tap_rank_cnt for(q = 0; q < DQS_WIDTH; q = q +1) begin: dqs_tap_dqs_cnt wl_dqs_tap_count_r[p][q] <= #TCQ wl_tap_count_r; wl_corse_cnt[p][q] <= #TCQ corse_cnt[0]; end end end end // Convert coarse delay to fine taps in case of unequal number of coarse // taps between ranks. Assuming a difference of 1 coarse tap counts // between ranks. A common fine and coarse tap value must be used for both ranks // because Phaser_Out has only one rank register. // Coarse tap1 = period(ps)*93/360 = 34 fine taps // Other coarse taps = period(ps)*103/360 = 38 fine taps generate genvar cnt; if (RANKS == 2) begin // Dual rank for(cnt = 0; cnt < DQS_WIDTH; cnt = cnt +1) begin: coarse_dqs_cnt always @(posedge clk) begin if (rst) begin //coarse_tap_inc[3*cnt+:3] <= #TCQ 'b0; add_smallest[cnt] <= #TCQ 'd0; add_largest[cnt] <= #TCQ 'd0; final_coarse_tap[cnt] <= #TCQ 'd0; end else if (wr_level_done_r1 & ~wr_level_done_r2) begin if (~oclkdelay_calib_done) begin for(y = 0 ; y < DQS_WIDTH; y = y+1) begin final_coarse_tap[y] <= #TCQ wl_corse_cnt[0][y]; add_smallest[y] <= #TCQ 'd0; add_largest[y] <= #TCQ 'd0; end end else if (wl_corse_cnt[0][cnt] == wl_corse_cnt[1][cnt]) begin // Both ranks have use the same number of coarse delay taps. // No conversion of coarse tap to fine taps required. //coarse_tap_inc[3*cnt+:3] <= #TCQ wl_corse_cnt[1][3*cnt+:3]; final_coarse_tap[cnt] <= #TCQ wl_corse_cnt[1][cnt]; add_smallest[cnt] <= #TCQ 'd0; add_largest[cnt] <= #TCQ 'd0; end else if (wl_corse_cnt[0][cnt] < wl_corse_cnt[1][cnt]) begin // Rank 0 uses fewer coarse delay taps than rank1. // conversion of coarse tap to fine taps required for rank1. // The final coarse count will the smaller value. //coarse_tap_inc[3*cnt+:3] <= #TCQ wl_corse_cnt[1][3*cnt+:3] - 1; final_coarse_tap[cnt] <= #TCQ wl_corse_cnt[1][cnt] - 1; if (|wl_corse_cnt[0][cnt]) // Coarse tap 2 or higher being converted to fine taps // This will be added to 'largest' value in final_val // computation add_largest[cnt] <= #TCQ 'd38; else // Coarse tap 1 being converted to fine taps // This will be added to 'largest' value in final_val // computation add_largest[cnt] <= #TCQ 'd34; end else if (wl_corse_cnt[0][cnt] > wl_corse_cnt[1][cnt]) begin // This may be an unlikely scenario in a real system. // Rank 0 uses more coarse delay taps than rank1. // conversion of coarse tap to fine taps required. //coarse_tap_inc[3*cnt+:3] <= #TCQ 'd0; final_coarse_tap[cnt] <= #TCQ wl_corse_cnt[1][cnt]; if (|wl_corse_cnt[1][cnt]) // Coarse tap 2 or higher being converted to fine taps // This will be added to 'smallest' value in final_val // computation add_smallest[cnt] <= #TCQ 'd38; else // Coarse tap 1 being converted to fine taps // This will be added to 'smallest' value in // final_val computation add_smallest[cnt] <= #TCQ 'd34; end end end end end else begin // Single rank always @(posedge clk) begin //coarse_tap_inc <= #TCQ 'd0; for(w = 0; w < DQS_WIDTH; w = w + 1) begin final_coarse_tap[w] <= #TCQ wl_corse_cnt[0][w]; add_smallest[w] <= #TCQ 'd0; add_largest[w] <= #TCQ 'd0; end end end endgenerate // Determine delay value for DQS in multirank system // Assuming delay value is the smallest for rank 0 DQS // and largest delay value for rank 4 DQS // Set to smallest + ((largest-smallest)/2) always @(posedge clk) begin if (rst) begin for(x = 0; x < DQS_WIDTH; x = x +1) begin smallest[x] <= #TCQ 'b0; largest[x] <= #TCQ 'b0; end end else if ((wl_state_r == WL_DQS_CNT) & wrlvl_byte_redo) begin smallest[dqs_count_r] <= #TCQ wl_dqs_tap_count_r[0][dqs_count_r]; largest[dqs_count_r] <= #TCQ wl_dqs_tap_count_r[0][dqs_count_r]; end else if ((wl_state_r == WL_DQS_CNT) | (wl_state_r == WL_2RANK_TAP_DEC)) begin smallest[dqs_count_r] <= #TCQ wl_dqs_tap_count_r[0][dqs_count_r]; largest[dqs_count_r] <= #TCQ wl_dqs_tap_count_r[RANKS-1][dqs_count_r]; end else if (((SIM_CAL_OPTION == "FAST_CAL") | (~oclkdelay_calib_done & ~wrlvl_byte_redo)) & wr_level_done_r1 & ~wr_level_done_r2) begin for(i = 0; i < DQS_WIDTH; i = i +1) begin: smallest_dqs smallest[i] <= #TCQ wl_dqs_tap_count_r[0][i]; largest[i] <= #TCQ wl_dqs_tap_count_r[0][i]; end end end // final_val to be used for all DQSs in all ranks genvar wr_i; generate for (wr_i = 0; wr_i < DQS_WIDTH; wr_i = wr_i +1) begin: gen_final_tap always @(posedge clk) begin if (rst) final_val[wr_i] <= #TCQ 'b0; else if (wr_level_done_r2 && ~wr_level_done_r3) begin if (~oclkdelay_calib_done) final_val[wr_i] <= #TCQ (smallest[wr_i] + add_smallest[wr_i]); else if ((smallest[wr_i] + add_smallest[wr_i]) < (largest[wr_i] + add_largest[wr_i])) final_val[wr_i] <= #TCQ ((smallest[wr_i] + add_smallest[wr_i]) + (((largest[wr_i] + add_largest[wr_i]) - (smallest[wr_i] + add_smallest[wr_i]))/2)); else if ((smallest[wr_i] + add_smallest[wr_i]) > (largest[wr_i] + add_largest[wr_i])) final_val[wr_i] <= #TCQ ((largest[wr_i] + add_largest[wr_i]) + (((smallest[wr_i] + add_smallest[wr_i]) - (largest[wr_i] + add_largest[wr_i]))/2)); else if ((smallest[wr_i] + add_smallest[wr_i]) == (largest[wr_i] + add_largest[wr_i])) final_val[wr_i] <= #TCQ (largest[wr_i] + add_largest[wr_i]); end end end endgenerate // // fine tap inc/dec value for all DQSs in all ranks // genvar dqs_i; // generate // for (dqs_i = 0; dqs_i < DQS_WIDTH; dqs_i = dqs_i +1) begin: gen_fine_tap // always @(posedge clk) begin // if (rst) // fine_tap_inc[6*dqs_i+:6] <= #TCQ 'd0; // //fine_tap_dec[6*dqs_i+:6] <= #TCQ 'd0; // else if (wr_level_done_r3 && ~wr_level_done_r4) begin // fine_tap_inc[6*dqs_i+:6] <= #TCQ final_val[6*dqs_i+:6]; // //fine_tap_dec[6*dqs_i+:6] <= #TCQ 'd0; // end // end // endgenerate // Inc/Dec Phaser_Out stage 2 fine delay line always @(posedge clk) begin if (rst) begin // Fine delay line used only during write leveling dqs_po_stg2_f_incdec <= #TCQ 1'b0; dqs_po_en_stg2_f <= #TCQ 1'b0; // Dec Phaser_Out fine delay (1)before write leveling, // (2)if no 0 to 1 transition detected with 63 fine delay taps, or // (3)dual rank case where fine taps for the first rank need to be 0 end else if (po_cnt_dec || (wl_state_r == WL_INIT_FINE_DEC) || (wl_state_r == WL_FINE_DEC)) begin dqs_po_stg2_f_incdec <= #TCQ 1'b0; dqs_po_en_stg2_f <= #TCQ 1'b1; // Inc Phaser_Out fine delay during write leveling end else if ((wl_state_r == WL_INIT_FINE_INC) || (wl_state_r == WL_FINE_INC)) begin dqs_po_stg2_f_incdec <= #TCQ 1'b1; dqs_po_en_stg2_f <= #TCQ 1'b1; end else begin dqs_po_stg2_f_incdec <= #TCQ 1'b0; dqs_po_en_stg2_f <= #TCQ 1'b0; end end // Inc Phaser_Out stage 2 Coarse delay line always @(posedge clk) begin if (rst) begin // Coarse delay line used during write leveling // only if no 0->1 transition undetected with 64 // fine delay line taps dqs_wl_po_stg2_c_incdec <= #TCQ 1'b0; dqs_wl_po_en_stg2_c <= #TCQ 1'b0; end else if (wl_state_r == WL_CORSE_INC) begin // Inc Phaser_Out coarse delay during write leveling dqs_wl_po_stg2_c_incdec <= #TCQ 1'b1; dqs_wl_po_en_stg2_c <= #TCQ 1'b1; end else begin dqs_wl_po_stg2_c_incdec <= #TCQ 1'b0; dqs_wl_po_en_stg2_c <= #TCQ 1'b0; end end // only storing the rise data for checking. The data comming back during // write leveling will be a static value. Just checking for rise data is // enough. genvar rd_i; generate for(rd_i = 0; rd_i < DQS_WIDTH; rd_i = rd_i +1)begin: gen_rd always @(posedge clk) rd_data_rise_wl_r[rd_i] <= #TCQ |rd_data_rise0[(rd_i*DRAM_WIDTH)+DRAM_WIDTH-1:rd_i*DRAM_WIDTH]; end endgenerate // storing the previous data for checking later. always @(posedge clk)begin if ((wl_state_r == WL_INIT) || //(wl_state_r == WL_INIT_FINE_INC_WAIT) || //(wl_state_r == WL_INIT_FINE_INC_WAIT1) || ((wl_state_r1 == WL_INIT_FINE_INC_WAIT) & (wl_state_r == WL_INIT_FINE_INC)) || (wl_state_r == WL_FINE_DEC) || (wl_state_r == WL_FINE_DEC_WAIT1) || (wl_state_r == WL_FINE_DEC_WAIT) || (wl_state_r == WL_CORSE_INC) || (wl_state_r == WL_CORSE_INC_WAIT) || (wl_state_r == WL_CORSE_INC_WAIT_TMP) || (wl_state_r == WL_CORSE_INC_WAIT1) || (wl_state_r == WL_CORSE_INC_WAIT2) || ((wl_state_r == WL_EDGE_CHECK) & (wl_edge_detect_valid_r))) rd_data_previous_r <= #TCQ rd_data_rise_wl_r; end // changed stable count from 3 to 7 because of fine tap resolution always @(posedge clk)begin if (rst | (wl_state_r == WL_DQS_CNT) | (wl_state_r == WL_2RANK_TAP_DEC) | (wl_state_r == WL_FINE_DEC) | (rd_data_previous_r[dqs_count_r] != rd_data_rise_wl_r[dqs_count_r]) | (wl_state_r1 == WL_INIT_FINE_DEC)) stable_cnt <= #TCQ 'd0; else if ((wl_tap_count_r > 6'd0) & (((wl_state_r == WL_EDGE_CHECK) & (wl_edge_detect_valid_r)) | ((wl_state_r1 == WL_INIT_FINE_INC_WAIT) & (wl_state_r == WL_INIT_FINE_INC)))) begin if ((rd_data_previous_r[dqs_count_r] == rd_data_rise_wl_r[dqs_count_r]) & (stable_cnt < 'd14)) stable_cnt <= #TCQ stable_cnt + 1; end end // Signal to ensure that flag_ck_negedge does not incorrectly assert // when DQS is very close to CK rising edge //always @(posedge clk) begin // if (rst | (wl_state_r == WL_DQS_CNT) | // (wl_state_r == WL_DQS_CHECK) | wr_level_done_r) // past_negedge <= #TCQ 1'b0; // else if (~flag_ck_negedge && ~rd_data_previous_r[dqs_count_r] && // (stable_cnt == 'd0) && ((wl_state_r == WL_CORSE_INC_WAIT1) | // (wl_state_r == WL_CORSE_INC_WAIT2))) // past_negedge <= #TCQ 1'b1; //end // Flag to indicate negedge of CK detected and ignore 0->1 transitions // in this region always @(posedge clk)begin if (rst | (wl_state_r == WL_DQS_CNT) | (wl_state_r == WL_DQS_CHECK) | wr_level_done_r | (wl_state_r1 == WL_INIT_FINE_DEC)) flag_ck_negedge <= #TCQ 1'd0; else if ((rd_data_previous_r[dqs_count_r] && ((stable_cnt > 'd0) | (wl_state_r == WL_FINE_DEC) | (wl_state_r == WL_FINE_DEC_WAIT) | (wl_state_r == WL_FINE_DEC_WAIT1))) | (wl_state_r == WL_CORSE_INC)) flag_ck_negedge <= #TCQ 1'd1; else if (~rd_data_previous_r[dqs_count_r] && (stable_cnt == 'd14)) //&& flag_ck_negedge) flag_ck_negedge <= #TCQ 1'd0; end // Flag to inhibit rd_data_edge_detect_r before stable DQ always @(posedge clk) begin if (rst) flag_init <= #TCQ 1'b1; else if ((wl_state_r == WL_WAIT) && ((wl_state_r1 == WL_INIT_FINE_INC_WAIT) || (wl_state_r1 == WL_INIT_FINE_DEC_WAIT))) flag_init <= #TCQ 1'b0; end //checking for transition from 0 to 1 always @(posedge clk)begin if (rst | flag_ck_negedge | flag_init | (wl_tap_count_r < 'd1) | inhibit_edge_detect_r) rd_data_edge_detect_r <= #TCQ {DQS_WIDTH{1'b0}}; else if (rd_data_edge_detect_r[dqs_count_r] == 1'b1) begin if ((wl_state_r == WL_FINE_DEC) || (wl_state_r == WL_FINE_DEC_WAIT) || (wl_state_r == WL_FINE_DEC_WAIT1) || (wl_state_r == WL_CORSE_INC) || (wl_state_r == WL_CORSE_INC_WAIT) || (wl_state_r == WL_CORSE_INC_WAIT_TMP) || (wl_state_r == WL_CORSE_INC_WAIT1) || (wl_state_r == WL_CORSE_INC_WAIT2)) rd_data_edge_detect_r <= #TCQ {DQS_WIDTH{1'b0}}; else rd_data_edge_detect_r <= #TCQ rd_data_edge_detect_r; end else if (rd_data_previous_r[dqs_count_r] && (stable_cnt < 'd14)) rd_data_edge_detect_r <= #TCQ {DQS_WIDTH{1'b0}}; else rd_data_edge_detect_r <= #TCQ (~rd_data_previous_r & rd_data_rise_wl_r); end // registring the write level start signal always@(posedge clk) begin wr_level_start_r <= #TCQ wr_level_start; end // Assign dqs_count_r to dqs_count_w to perform the shift operation // instead of multiply operation assign dqs_count_w = {2'b00, dqs_count_r}; assign oclk_count_w = {2'b00, oclkdelay_calib_cnt}; always @(posedge clk) begin if (rst) incdec_wait_cnt <= #TCQ 'd0; else if ((wl_state_r == WL_FINE_DEC_WAIT1) || (wl_state_r == WL_INIT_FINE_DEC_WAIT1) || (wl_state_r == WL_CORSE_INC_WAIT_TMP)) incdec_wait_cnt <= #TCQ incdec_wait_cnt + 1; else incdec_wait_cnt <= #TCQ 'd0; end // state machine to initiate the write leveling sequence // The state machine operates on one byte at a time. // It will increment the delays to the DQS OSERDES // and sample the DQ from the memory. When it detects // a transition from 1 to 0 then the write leveling is considered // done. always @(posedge clk) begin if(rst)begin wrlvl_err <= #TCQ 1'b0; wr_level_done_r <= #TCQ 1'b0; wrlvl_rank_done_r <= #TCQ 1'b0; dqs_count_r <= #TCQ {DQS_CNT_WIDTH+1{1'b0}}; dq_cnt_inc <= #TCQ 1'b1; rank_cnt_r <= #TCQ 2'b00; wl_state_r <= #TCQ WL_IDLE; wl_state_r1 <= #TCQ WL_IDLE; inhibit_edge_detect_r <= #TCQ 1'b1; wl_edge_detect_valid_r <= #TCQ 1'b0; wl_tap_count_r <= #TCQ 6'd0; fine_dec_cnt <= #TCQ 6'd0; for (r = 0; r < DQS_WIDTH; r = r + 1) begin fine_inc[r] <= #TCQ 6'b0; corse_dec[r] <= #TCQ 3'b0; corse_inc[r] <= #TCQ 3'b0; corse_cnt[r] <= #TCQ 3'b0; end dual_rnk_dec <= #TCQ 1'b0; fast_cal_fine_cnt <= #TCQ FAST_CAL_FINE; fast_cal_coarse_cnt <= #TCQ FAST_CAL_COARSE; final_corse_dec <= #TCQ 1'b0; //zero_tran_r <= #TCQ 1'b0; wrlvl_redo_corse_inc <= #TCQ 'd0; end else begin wl_state_r1 <= #TCQ wl_state_r; case (wl_state_r) WL_IDLE: begin wrlvl_rank_done_r <= #TCQ 1'd0; inhibit_edge_detect_r <= #TCQ 1'b1; if (wrlvl_byte_redo && ~wrlvl_byte_redo_r) begin wr_level_done_r <= #TCQ 1'b0; dqs_count_r <= #TCQ wrcal_cnt; corse_cnt[wrcal_cnt] <= #TCQ final_coarse_tap[wrcal_cnt]; wl_tap_count_r <= #TCQ smallest[wrcal_cnt]; if (early1_data && (((final_coarse_tap[wrcal_cnt] < 'd6) && (CLK_PERIOD/nCK_PER_CLK <= 2500)) || ((final_coarse_tap[wrcal_cnt] < 'd3) && (CLK_PERIOD/nCK_PER_CLK > 2500)))) wrlvl_redo_corse_inc <= #TCQ REDO_COARSE; else if (early2_data && (final_coarse_tap[wrcal_cnt] < 'd2)) wrlvl_redo_corse_inc <= #TCQ 3'd6; else begin wl_state_r <= #TCQ WL_IDLE; wrlvl_err <= #TCQ 1'b1; end end else if (wrlvl_final && ~wrlvl_final_r) begin wr_level_done_r <= #TCQ 1'b0; dqs_count_r <= #TCQ 'd0; end if(!wr_level_done_r & wr_level_start_r & wl_sm_start) begin if (SIM_CAL_OPTION == "FAST_CAL") wl_state_r <= #TCQ WL_FINE_INC; else wl_state_r <= #TCQ WL_INIT; end end WL_INIT: begin wl_edge_detect_valid_r <= #TCQ 1'b0; inhibit_edge_detect_r <= #TCQ 1'b1; wrlvl_rank_done_r <= #TCQ 1'd0; //zero_tran_r <= #TCQ 1'b0; if (wrlvl_final) corse_cnt[dqs_count_w ] <= #TCQ final_coarse_tap[dqs_count_w ]; if (wrlvl_byte_redo) begin if (|wl_tap_count_r) begin wl_state_r <= #TCQ WL_FINE_DEC; fine_dec_cnt <= #TCQ wl_tap_count_r; end else if ((corse_cnt[dqs_count_w] + wrlvl_redo_corse_inc) <= 'd7) wl_state_r <= #TCQ WL_CORSE_INC; else begin wl_state_r <= #TCQ WL_IDLE; wrlvl_err <= #TCQ 1'b1; end end else if(wl_sm_start) wl_state_r <= #TCQ WL_INIT_FINE_INC; end // Initially Phaser_Out fine delay taps incremented // until stable_cnt=14. A stable_cnt of 14 indicates // that rd_data_rise_wl_r=rd_data_previous_r for 14 fine // tap increments. This is done to inhibit false 0->1 // edge detection when DQS is initially aligned to the // negedge of CK WL_INIT_FINE_INC: begin wl_state_r <= #TCQ WL_INIT_FINE_INC_WAIT1; wl_tap_count_r <= #TCQ wl_tap_count_r + 1'b1; final_corse_dec <= #TCQ 1'b0; end WL_INIT_FINE_INC_WAIT1: begin if (wl_sm_start) wl_state_r <= #TCQ WL_INIT_FINE_INC_WAIT; end // Case1: stable value of rd_data_previous_r=0 then // proceed to 0->1 edge detection. // Case2: stable value of rd_data_previous_r=1 then // decrement fine taps to '0' and proceed to 0->1 // edge detection. Need to decrement in this case to // make sure a valid 0->1 transition was not left // undetected. WL_INIT_FINE_INC_WAIT: begin if (wl_sm_start) begin if (stable_cnt < 'd14) wl_state_r <= #TCQ WL_INIT_FINE_INC; else if (~rd_data_previous_r[dqs_count_r]) begin wl_state_r <= #TCQ WL_WAIT; inhibit_edge_detect_r <= #TCQ 1'b0; end else begin wl_state_r <= #TCQ WL_INIT_FINE_DEC; fine_dec_cnt <= #TCQ wl_tap_count_r; end end end // Case2: stable value of rd_data_previous_r=1 then // decrement fine taps to '0' and proceed to 0->1 // edge detection. Need to decrement in this case to // make sure a valid 0->1 transition was not left // undetected. WL_INIT_FINE_DEC: begin wl_tap_count_r <= #TCQ 'd0; wl_state_r <= #TCQ WL_INIT_FINE_DEC_WAIT1; if (fine_dec_cnt > 6'd0) fine_dec_cnt <= #TCQ fine_dec_cnt - 1; else fine_dec_cnt <= #TCQ fine_dec_cnt; end WL_INIT_FINE_DEC_WAIT1: begin if (incdec_wait_cnt == 'd8) wl_state_r <= #TCQ WL_INIT_FINE_DEC_WAIT; end WL_INIT_FINE_DEC_WAIT: begin if (fine_dec_cnt > 6'd0) begin wl_state_r <= #TCQ WL_INIT_FINE_DEC; inhibit_edge_detect_r <= #TCQ 1'b1; end else begin wl_state_r <= #TCQ WL_WAIT; inhibit_edge_detect_r <= #TCQ 1'b0; end end // Inc DQS Phaser_Out Stage2 Fine Delay line WL_FINE_INC: begin wl_edge_detect_valid_r <= #TCQ 1'b0; if (SIM_CAL_OPTION == "FAST_CAL") begin wl_state_r <= #TCQ WL_FINE_INC_WAIT; if (fast_cal_fine_cnt > 'd0) fast_cal_fine_cnt <= #TCQ fast_cal_fine_cnt - 1; else fast_cal_fine_cnt <= #TCQ fast_cal_fine_cnt; end else if (wr_level_done_r5) begin wl_tap_count_r <= #TCQ 'd0; wl_state_r <= #TCQ WL_FINE_INC_WAIT; if (|fine_inc[dqs_count_w]) fine_inc[dqs_count_w] <= #TCQ fine_inc[dqs_count_w] - 1; end else begin wl_state_r <= #TCQ WL_WAIT; wl_tap_count_r <= #TCQ wl_tap_count_r + 1'b1; end end WL_FINE_INC_WAIT: begin if (SIM_CAL_OPTION == "FAST_CAL") begin if (fast_cal_fine_cnt > 'd0) wl_state_r <= #TCQ WL_FINE_INC; else if (fast_cal_coarse_cnt > 'd0) wl_state_r <= #TCQ WL_CORSE_INC; else wl_state_r <= #TCQ WL_DQS_CNT; end else if (|fine_inc[dqs_count_w]) wl_state_r <= #TCQ WL_FINE_INC; else if (dqs_count_r == (DQS_WIDTH-1)) wl_state_r <= #TCQ WL_IDLE; else begin wl_state_r <= #TCQ WL_2RANK_FINAL_TAP; dqs_count_r <= #TCQ dqs_count_r + 1; end end WL_FINE_DEC: begin wl_edge_detect_valid_r <= #TCQ 1'b0; wl_tap_count_r <= #TCQ 'd0; wl_state_r <= #TCQ WL_FINE_DEC_WAIT1; if (fine_dec_cnt > 6'd0) fine_dec_cnt <= #TCQ fine_dec_cnt - 1; else fine_dec_cnt <= #TCQ fine_dec_cnt; end WL_FINE_DEC_WAIT1: begin if (incdec_wait_cnt == 'd8) wl_state_r <= #TCQ WL_FINE_DEC_WAIT; end WL_FINE_DEC_WAIT: begin if (fine_dec_cnt > 6'd0) wl_state_r <= #TCQ WL_FINE_DEC; //else if (zero_tran_r) // wl_state_r <= #TCQ WL_DQS_CNT; else if (dual_rnk_dec) begin if (|corse_dec[dqs_count_r]) wl_state_r <= #TCQ WL_CORSE_DEC; else wl_state_r <= #TCQ WL_2RANK_DQS_CNT; end else if (wrlvl_byte_redo) begin if ((corse_cnt[dqs_count_w] + wrlvl_redo_corse_inc) <= 'd7) wl_state_r <= #TCQ WL_CORSE_INC; else begin wl_state_r <= #TCQ WL_IDLE; wrlvl_err <= #TCQ 1'b1; end end else wl_state_r <= #TCQ WL_CORSE_INC; end WL_CORSE_DEC: begin wl_state_r <= #TCQ WL_CORSE_DEC_WAIT; dual_rnk_dec <= #TCQ 1'b0; if (|corse_dec[dqs_count_r]) corse_dec[dqs_count_r] <= #TCQ corse_dec[dqs_count_r] - 1; else corse_dec[dqs_count_r] <= #TCQ corse_dec[dqs_count_r]; end WL_CORSE_DEC_WAIT: begin if (wl_sm_start) begin //if (|corse_dec[dqs_count_r]) // wl_state_r <= #TCQ WL_CORSE_DEC; if (|corse_dec[dqs_count_r]) wl_state_r <= #TCQ WL_CORSE_DEC_WAIT1; else wl_state_r <= #TCQ WL_2RANK_DQS_CNT; end end WL_CORSE_DEC_WAIT1: begin if (wl_sm_start) wl_state_r <= #TCQ WL_CORSE_DEC; end WL_CORSE_INC: begin wl_state_r <= #TCQ WL_CORSE_INC_WAIT_TMP; if (SIM_CAL_OPTION == "FAST_CAL") begin if (fast_cal_coarse_cnt > 'd0) fast_cal_coarse_cnt <= #TCQ fast_cal_coarse_cnt - 1; else fast_cal_coarse_cnt <= #TCQ fast_cal_coarse_cnt; end else if (wrlvl_byte_redo) begin corse_cnt[dqs_count_w] <= #TCQ corse_cnt[dqs_count_w] + 1; if (|wrlvl_redo_corse_inc) wrlvl_redo_corse_inc <= #TCQ wrlvl_redo_corse_inc - 1; end else if (~wr_level_done_r5) corse_cnt[dqs_count_r] <= #TCQ corse_cnt[dqs_count_r] + 1; else if (|corse_inc[dqs_count_w]) corse_inc[dqs_count_w] <= #TCQ corse_inc[dqs_count_w] - 1; end WL_CORSE_INC_WAIT_TMP: begin if (incdec_wait_cnt == 'd8) wl_state_r <= #TCQ WL_CORSE_INC_WAIT; end WL_CORSE_INC_WAIT: begin if (SIM_CAL_OPTION == "FAST_CAL") begin if (fast_cal_coarse_cnt > 'd0) wl_state_r <= #TCQ WL_CORSE_INC; else wl_state_r <= #TCQ WL_DQS_CNT; end else if (wrlvl_byte_redo) begin if (|wrlvl_redo_corse_inc) wl_state_r <= #TCQ WL_CORSE_INC; else begin wl_state_r <= #TCQ WL_INIT_FINE_INC; inhibit_edge_detect_r <= #TCQ 1'b1; end end else if (~wr_level_done_r5 && wl_sm_start) wl_state_r <= #TCQ WL_CORSE_INC_WAIT1; else if (wr_level_done_r5) begin if (|corse_inc[dqs_count_r]) wl_state_r <= #TCQ WL_CORSE_INC; else if (|fine_inc[dqs_count_w]) wl_state_r <= #TCQ WL_FINE_INC; else if (dqs_count_r == (DQS_WIDTH-1)) wl_state_r <= #TCQ WL_IDLE; else begin wl_state_r <= #TCQ WL_2RANK_FINAL_TAP; dqs_count_r <= #TCQ dqs_count_r + 1; end end end WL_CORSE_INC_WAIT1: begin if (wl_sm_start) wl_state_r <= #TCQ WL_CORSE_INC_WAIT2; end WL_CORSE_INC_WAIT2: begin if (wl_sm_start) wl_state_r <= #TCQ WL_WAIT; end WL_WAIT: begin if (wl_sm_start) wl_state_r <= #TCQ WL_EDGE_CHECK; end WL_EDGE_CHECK: begin // Look for the edge if (wl_edge_detect_valid_r == 1'b0) begin wl_state_r <= #TCQ WL_WAIT; wl_edge_detect_valid_r <= #TCQ 1'b1; end // 0->1 transition detected with DQS else if(rd_data_edge_detect_r[dqs_count_r] && wl_edge_detect_valid_r) begin wl_tap_count_r <= #TCQ wl_tap_count_r; if ((SIM_CAL_OPTION == "FAST_CAL") || (RANKS < 2) || ~oclkdelay_calib_done) wl_state_r <= #TCQ WL_DQS_CNT; else wl_state_r <= #TCQ WL_2RANK_TAP_DEC; end // For initial writes check only upto 56 taps. Reserving the // remaining taps for OCLK calibration. else if((~wrlvl_tap_done_r) && (wl_tap_count_r > 6'd55)) begin if (corse_cnt[dqs_count_r] < COARSE_TAPS) begin wl_state_r <= #TCQ WL_FINE_DEC; fine_dec_cnt <= #TCQ wl_tap_count_r; end else begin wrlvl_err <= #TCQ 1'b1; wl_state_r <= #TCQ WL_IDLE; end end else begin if (wl_tap_count_r < 6'd63) wl_state_r <= #TCQ WL_FINE_INC; else if (corse_cnt[dqs_count_r] < COARSE_TAPS) begin wl_state_r <= #TCQ WL_FINE_DEC; fine_dec_cnt <= #TCQ wl_tap_count_r; end else begin wrlvl_err <= #TCQ 1'b1; wl_state_r <= #TCQ WL_IDLE; end end end WL_2RANK_TAP_DEC: begin wl_state_r <= #TCQ WL_FINE_DEC; fine_dec_cnt <= #TCQ wl_tap_count_r; for (m = 0; m < DQS_WIDTH; m = m + 1) corse_dec[m] <= #TCQ corse_cnt[m]; wl_edge_detect_valid_r <= #TCQ 1'b0; dual_rnk_dec <= #TCQ 1'b1; end WL_DQS_CNT: begin if ((SIM_CAL_OPTION == "FAST_CAL") || (dqs_count_r == (DQS_WIDTH-1)) || wrlvl_byte_redo) begin dqs_count_r <= #TCQ dqs_count_r; dq_cnt_inc <= #TCQ 1'b0; end else begin dqs_count_r <= #TCQ dqs_count_r + 1'b1; dq_cnt_inc <= #TCQ 1'b1; end wl_state_r <= #TCQ WL_DQS_CHECK; wl_edge_detect_valid_r <= #TCQ 1'b0; end WL_2RANK_DQS_CNT: begin if ((SIM_CAL_OPTION == "FAST_CAL") || (dqs_count_r == (DQS_WIDTH-1))) begin dqs_count_r <= #TCQ dqs_count_r; dq_cnt_inc <= #TCQ 1'b0; end else begin dqs_count_r <= #TCQ dqs_count_r + 1'b1; dq_cnt_inc <= #TCQ 1'b1; end wl_state_r <= #TCQ WL_DQS_CHECK; wl_edge_detect_valid_r <= #TCQ 1'b0; dual_rnk_dec <= #TCQ 1'b0; end WL_DQS_CHECK: begin // check if all DQS have been calibrated wl_tap_count_r <= #TCQ 'd0; if (dq_cnt_inc == 1'b0)begin wrlvl_rank_done_r <= #TCQ 1'd1; for (t = 0; t < DQS_WIDTH; t = t + 1) corse_cnt[t] <= #TCQ 3'b0; if ((SIM_CAL_OPTION == "FAST_CAL") || (RANKS < 2) || ~oclkdelay_calib_done) begin wl_state_r <= #TCQ WL_IDLE; if (wrlvl_byte_redo) dqs_count_r <= #TCQ dqs_count_r; else dqs_count_r <= #TCQ 'd0; end else if (rank_cnt_r == RANKS-1) begin dqs_count_r <= #TCQ dqs_count_r; if (RANKS > 1) wl_state_r <= #TCQ WL_2RANK_FINAL_TAP; else wl_state_r <= #TCQ WL_IDLE; end else begin wl_state_r <= #TCQ WL_INIT; dqs_count_r <= #TCQ 'd0; end if ((SIM_CAL_OPTION == "FAST_CAL") || (rank_cnt_r == RANKS-1)) begin wr_level_done_r <= #TCQ 1'd1; rank_cnt_r <= #TCQ 2'b00; end else begin wr_level_done_r <= #TCQ 1'd0; rank_cnt_r <= #TCQ rank_cnt_r + 1'b1; end end else wl_state_r <= #TCQ WL_INIT; end WL_2RANK_FINAL_TAP: begin if (wr_level_done_r4 && ~wr_level_done_r5) begin for(u = 0; u < DQS_WIDTH; u = u + 1) begin corse_inc[u] <= #TCQ final_coarse_tap[u]; fine_inc[u] <= #TCQ final_val[u]; end dqs_count_r <= #TCQ 'd0; end else if (wr_level_done_r5) begin if (|corse_inc[dqs_count_r]) wl_state_r <= #TCQ WL_CORSE_INC; else if (|fine_inc[dqs_count_w]) wl_state_r <= #TCQ WL_FINE_INC; end end endcase end end // always @ (posedge clk) endmodule
//***************************************************************************** // (c) Copyright 2009 - 2013 Xilinx, Inc. All rights reserved. // // This file contains confidential and proprietary information // of Xilinx, Inc. and is protected under U.S. and // international copyright and other intellectual property // laws. // // DISCLAIMER // This disclaimer is not a license and does not grant any // rights to the materials distributed herewith. Except as // otherwise provided in a valid license issued to you by // Xilinx, and to the maximum extent permitted by applicable // law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND // WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES // AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING // BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- // INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and // (2) Xilinx shall not be liable (whether in contract or tort, // including negligence, or under any other theory of // liability) for any loss or damage of any kind or nature // related to, arising under or in connection with these // materials, including for any direct, or any indirect, // special, incidental, or consequential loss or damage // (including loss of data, profits, goodwill, or any type of // loss or damage suffered as a result of any action brought // by a third party) even if such damage or loss was // reasonably foreseeable or Xilinx had been advised of the // possibility of the same. // // CRITICAL APPLICATIONS // Xilinx products are not designed or intended to be fail- // safe, or for use in any application requiring fail-safe // performance, such as life-support or safety devices or // systems, Class III medical devices, nuclear facilities, // applications related to the deployment of airbags, or any // other applications that could lead to death, personal // injury, or severe property or environmental damage // (individually and collectively, "Critical // Applications"). Customer assumes the sole risk and // liability of any use of Xilinx products in Critical // Applications, subject only to applicable laws and // regulations governing limitations on product liability. // // THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS // PART OF THIS FILE AT ALL TIMES. // //***************************************************************************** // ____ ____ // / /\/ / // /___/ \ / Vendor: Xilinx // \ \ \/ Version: %version // \ \ Application: MIG // / / Filename: ddr_phy_wrlvl.v // /___/ /\ Date Last Modified: $Date: 2011/06/24 14:49:00 $ // \ \ / \ Date Created: Mon Jun 23 2008 // \___\/\___\ // //Device: 7 Series //Design Name: DDR3 SDRAM //Purpose: // Memory initialization and overall master state control during // initialization and calibration. Specifically, the following functions // are performed: // 1. Memory initialization (initial AR, mode register programming, etc.) // 2. Initiating write leveling // 3. Generate training pattern writes for read leveling. Generate // memory readback for read leveling. // This module has a DFI interface for providing control/address and write // data to the rest of the PHY datapath during initialization/calibration. // Once initialization is complete, control is passed to the MC. // NOTES: // 1. Multiple CS (multi-rank) not supported // 2. DDR2 not supported // 3. ODT not supported //Reference: //Revision History: //***************************************************************************** /****************************************************************************** **$Id: ddr_phy_wrlvl.v,v 1.3 2011/06/24 14:49:00 mgeorge Exp $ **$Date: 2011/06/24 14:49:00 $ **$Author: mgeorge $ **$Revision: 1.3 $ **$Source: /devl/xcs/repo/env/Databases/ip/src2/O/mig_7series_v1_3/data/dlib/7series/ddr3_sdram/verilog/rtl/phy/ddr_phy_wrlvl.v,v $ ******************************************************************************/ `timescale 1ps/1ps module mig_7series_v1_9_ddr_phy_wrlvl # ( parameter TCQ = 100, parameter DQS_CNT_WIDTH = 3, parameter DQ_WIDTH = 64, parameter DQS_WIDTH = 2, parameter DRAM_WIDTH = 8, parameter RANKS = 1, parameter nCK_PER_CLK = 4, parameter CLK_PERIOD = 4, parameter SIM_CAL_OPTION = "NONE" ) ( input clk, input rst, input phy_ctl_ready, input wr_level_start, input wl_sm_start, input wrlvl_final, input wrlvl_byte_redo, input [DQS_CNT_WIDTH:0] wrcal_cnt, input early1_data, input early2_data, input [DQS_CNT_WIDTH:0] oclkdelay_calib_cnt, input oclkdelay_calib_done, input [(DQ_WIDTH)-1:0] rd_data_rise0, output reg wrlvl_byte_done, (* keep = "true", max_fanout = 2 *) output reg dqs_po_dec_done /* synthesis syn_maxfan = 2 */, output phy_ctl_rdy_dly, (* keep = "true", max_fanout = 2 *) output reg wr_level_done /* synthesis syn_maxfan = 2 */, // to phy_init for cs logic output wrlvl_rank_done, output done_dqs_tap_inc, output [DQS_CNT_WIDTH:0] po_stg2_wl_cnt, // Fine delay line used only during write leveling // Inc/dec Phaser_Out fine delay line output reg dqs_po_stg2_f_incdec, // Enable Phaser_Out fine delay inc/dec output reg dqs_po_en_stg2_f, // Coarse delay line used during write leveling // only if 64 taps of fine delay line were not // sufficient to detect a 0->1 transition // Inc Phaser_Out coarse delay line output reg dqs_wl_po_stg2_c_incdec, // Enable Phaser_Out coarse delay inc/dec output reg dqs_wl_po_en_stg2_c, // Read Phaser_Out delay value input [8:0] po_counter_read_val, // output reg dqs_wl_po_stg2_load, // output reg [8:0] dqs_wl_po_stg2_reg_l, // CK edge undetected output reg wrlvl_err, output reg [3*DQS_WIDTH-1:0] wl_po_coarse_cnt, output reg [6*DQS_WIDTH-1:0] wl_po_fine_cnt, // Debug ports output [5:0] dbg_wl_tap_cnt, output dbg_wl_edge_detect_valid, output [(DQS_WIDTH)-1:0] dbg_rd_data_edge_detect, output [DQS_CNT_WIDTH:0] dbg_dqs_count, output [4:0] dbg_wl_state, output [6*DQS_WIDTH-1:0] dbg_wrlvl_fine_tap_cnt, output [3*DQS_WIDTH-1:0] dbg_wrlvl_coarse_tap_cnt, output [255:0] dbg_phy_wrlvl ); localparam WL_IDLE = 5'h0; localparam WL_INIT = 5'h1; localparam WL_INIT_FINE_INC = 5'h2; localparam WL_INIT_FINE_INC_WAIT1= 5'h3; localparam WL_INIT_FINE_INC_WAIT = 5'h4; localparam WL_INIT_FINE_DEC = 5'h5; localparam WL_INIT_FINE_DEC_WAIT = 5'h6; localparam WL_FINE_INC = 5'h7; localparam WL_WAIT = 5'h8; localparam WL_EDGE_CHECK = 5'h9; localparam WL_DQS_CHECK = 5'hA; localparam WL_DQS_CNT = 5'hB; localparam WL_2RANK_TAP_DEC = 5'hC; localparam WL_2RANK_DQS_CNT = 5'hD; localparam WL_FINE_DEC = 5'hE; localparam WL_FINE_DEC_WAIT = 5'hF; localparam WL_CORSE_INC = 5'h10; localparam WL_CORSE_INC_WAIT = 5'h11; localparam WL_CORSE_INC_WAIT1 = 5'h12; localparam WL_CORSE_INC_WAIT2 = 5'h13; localparam WL_CORSE_DEC = 5'h14; localparam WL_CORSE_DEC_WAIT = 5'h15; localparam WL_CORSE_DEC_WAIT1 = 5'h16; localparam WL_FINE_INC_WAIT = 5'h17; localparam WL_2RANK_FINAL_TAP = 5'h18; localparam WL_INIT_FINE_DEC_WAIT1= 5'h19; localparam WL_FINE_DEC_WAIT1 = 5'h1A; localparam WL_CORSE_INC_WAIT_TMP = 5'h1B; localparam COARSE_TAPS = 7; localparam FAST_CAL_FINE = (CLK_PERIOD/nCK_PER_CLK <= 2500) ? 45 : 48; localparam FAST_CAL_COARSE = (CLK_PERIOD/nCK_PER_CLK <= 2500) ? 1 : 2; localparam REDO_COARSE = (CLK_PERIOD/nCK_PER_CLK <= 2500) ? 2 : 5; integer i, j, k, l, p, q, r, s, t, m, n, u, v, w, x,y; reg phy_ctl_ready_r1; reg phy_ctl_ready_r2; reg phy_ctl_ready_r3; reg phy_ctl_ready_r4; reg phy_ctl_ready_r5; reg phy_ctl_ready_r6; reg [DQS_CNT_WIDTH:0] dqs_count_r; reg [1:0] rank_cnt_r; reg [DQS_WIDTH-1:0] rd_data_rise_wl_r; reg [DQS_WIDTH-1:0] rd_data_previous_r; reg [DQS_WIDTH-1:0] rd_data_edge_detect_r; reg wr_level_done_r; reg wrlvl_rank_done_r; reg wr_level_start_r; reg [4:0] wl_state_r, wl_state_r1; reg inhibit_edge_detect_r; reg wl_edge_detect_valid_r; reg [5:0] wl_tap_count_r; reg [5:0] fine_dec_cnt; reg [5:0] fine_inc[0:DQS_WIDTH-1]; // DQS_WIDTH number of counters 6-bit each reg [2:0] corse_dec[0:DQS_WIDTH-1]; reg [2:0] corse_inc[0:DQS_WIDTH-1]; reg dq_cnt_inc; reg [3:0] stable_cnt; reg flag_ck_negedge; //reg past_negedge; reg flag_init; reg [2:0] corse_cnt[0:DQS_WIDTH-1]; reg [3*DQS_WIDTH-1:0] corse_cnt_dbg; reg [2:0] wl_corse_cnt[0:RANKS-1][0:DQS_WIDTH-1]; //reg [3*DQS_WIDTH-1:0] coarse_tap_inc; reg [2:0] final_coarse_tap[0:DQS_WIDTH-1]; reg [5:0] add_smallest[0:DQS_WIDTH-1]; reg [5:0] add_largest[0:DQS_WIDTH-1]; //reg [6*DQS_WIDTH-1:0] fine_tap_inc; //reg [6*DQS_WIDTH-1:0] fine_tap_dec; reg wr_level_done_r1; reg wr_level_done_r2; reg wr_level_done_r3; reg wr_level_done_r4; reg wr_level_done_r5; reg [5:0] wl_dqs_tap_count_r[0:RANKS-1][0:DQS_WIDTH-1]; reg [5:0] smallest[0:DQS_WIDTH-1]; reg [5:0] largest[0:DQS_WIDTH-1]; reg [5:0] final_val[0:DQS_WIDTH-1]; reg [5:0] po_dec_cnt[0:DQS_WIDTH-1]; reg done_dqs_dec; reg [8:0] po_rdval_cnt; reg po_cnt_dec; reg po_dec_done; reg dual_rnk_dec; wire [DQS_CNT_WIDTH+2:0] dqs_count_w; reg [5:0] fast_cal_fine_cnt; reg [2:0] fast_cal_coarse_cnt; reg wrlvl_byte_redo_r; reg [2:0] wrlvl_redo_corse_inc; reg wrlvl_final_r; reg final_corse_dec; wire [DQS_CNT_WIDTH+2:0] oclk_count_w; reg wrlvl_tap_done_r ; reg [3:0] wait_cnt; reg [3:0] incdec_wait_cnt; // Debug ports assign dbg_wl_edge_detect_valid = wl_edge_detect_valid_r; assign dbg_rd_data_edge_detect = rd_data_edge_detect_r; assign dbg_wl_tap_cnt = wl_tap_count_r; assign dbg_dqs_count = dqs_count_r; assign dbg_wl_state = wl_state_r; assign dbg_wrlvl_fine_tap_cnt = wl_po_fine_cnt; assign dbg_wrlvl_coarse_tap_cnt = wl_po_coarse_cnt; always @(*) begin for (v = 0; v < DQS_WIDTH; v = v + 1) corse_cnt_dbg[3*v+:3] = corse_cnt[v]; end assign dbg_phy_wrlvl[0+:27] = corse_cnt_dbg; assign dbg_phy_wrlvl[27+:5] = wl_state_r; assign dbg_phy_wrlvl[32+:4] = dqs_count_r; assign dbg_phy_wrlvl[36+:9] = rd_data_rise_wl_r; assign dbg_phy_wrlvl[45+:9] = rd_data_previous_r; assign dbg_phy_wrlvl[54+:4] = stable_cnt; assign dbg_phy_wrlvl[58] = 'd0; assign dbg_phy_wrlvl[59] = flag_ck_negedge; assign dbg_phy_wrlvl [60] = wl_edge_detect_valid_r; assign dbg_phy_wrlvl [61+:6] = wl_tap_count_r; assign dbg_phy_wrlvl [67+:9] = rd_data_edge_detect_r; assign dbg_phy_wrlvl [76+:54] = wl_po_fine_cnt; assign dbg_phy_wrlvl [130+:27] = wl_po_coarse_cnt; //************************************************************************** // DQS count to hard PHY during write leveling using Phaser_OUT Stage2 delay //************************************************************************** assign po_stg2_wl_cnt = dqs_count_r; assign wrlvl_rank_done = wrlvl_rank_done_r; assign done_dqs_tap_inc = done_dqs_dec; assign phy_ctl_rdy_dly = phy_ctl_ready_r6; always @(posedge clk) begin phy_ctl_ready_r1 <= #TCQ phy_ctl_ready; phy_ctl_ready_r2 <= #TCQ phy_ctl_ready_r1; phy_ctl_ready_r3 <= #TCQ phy_ctl_ready_r2; phy_ctl_ready_r4 <= #TCQ phy_ctl_ready_r3; phy_ctl_ready_r5 <= #TCQ phy_ctl_ready_r4; phy_ctl_ready_r6 <= #TCQ phy_ctl_ready_r5; wrlvl_byte_redo_r <= #TCQ wrlvl_byte_redo; wrlvl_final_r <= #TCQ wrlvl_final; if ((wrlvl_byte_redo && ~wrlvl_byte_redo_r) || (wrlvl_final && ~wrlvl_final_r)) wr_level_done <= #TCQ 1'b0; else wr_level_done <= #TCQ done_dqs_dec; end // Status signal that will be asserted once the first // pass of write leveling is done. always @(posedge clk) begin if(rst) begin wrlvl_tap_done_r <= #TCQ 1'b0 ; end else begin if(wrlvl_tap_done_r == 1'b0) begin if(oclkdelay_calib_done) begin wrlvl_tap_done_r <= #TCQ 1'b1 ; end end end end always @(posedge clk) begin if (rst || po_cnt_dec) wait_cnt <= #TCQ 'd8; else if (phy_ctl_ready_r6 && (wait_cnt > 'd0)) wait_cnt <= #TCQ wait_cnt - 1; end always @(posedge clk) begin if (rst) begin po_rdval_cnt <= #TCQ 'd0; end else if (phy_ctl_ready_r5 && ~phy_ctl_ready_r6) begin po_rdval_cnt <= #TCQ po_counter_read_val; end else if (po_rdval_cnt > 'd0) begin if (po_cnt_dec) po_rdval_cnt <= #TCQ po_rdval_cnt - 1; else po_rdval_cnt <= #TCQ po_rdval_cnt; end else if (po_rdval_cnt == 'd0) begin po_rdval_cnt <= #TCQ po_rdval_cnt; end end always @(posedge clk) begin if (rst || (po_rdval_cnt == 'd0)) po_cnt_dec <= #TCQ 1'b0; else if (phy_ctl_ready_r6 && (po_rdval_cnt > 'd0) && (wait_cnt == 'd1)) po_cnt_dec <= #TCQ 1'b1; else po_cnt_dec <= #TCQ 1'b0; end always @(posedge clk) begin if (rst) po_dec_done <= #TCQ 1'b0; else if (((po_cnt_dec == 'd1) && (po_rdval_cnt == 'd1)) || (phy_ctl_ready_r6 && (po_rdval_cnt == 'd0))) begin po_dec_done <= #TCQ 1'b1; end end always @(posedge clk) begin dqs_po_dec_done <= #TCQ po_dec_done; wr_level_done_r1 <= #TCQ wr_level_done_r; wr_level_done_r2 <= #TCQ wr_level_done_r1; wr_level_done_r3 <= #TCQ wr_level_done_r2; wr_level_done_r4 <= #TCQ wr_level_done_r3; wr_level_done_r5 <= #TCQ wr_level_done_r4; for (l = 0; l < DQS_WIDTH; l = l + 1) begin wl_po_coarse_cnt[3*l+:3] <= #TCQ final_coarse_tap[l]; if ((RANKS == 1) || ~oclkdelay_calib_done) wl_po_fine_cnt[6*l+:6] <= #TCQ smallest[l]; else wl_po_fine_cnt[6*l+:6] <= #TCQ final_val[l]; end end generate if (RANKS == 2) begin: dual_rank always @(posedge clk) begin if (rst || (wrlvl_byte_redo && ~wrlvl_byte_redo_r) || (wrlvl_final && ~wrlvl_final_r)) done_dqs_dec <= #TCQ 1'b0; else if ((SIM_CAL_OPTION == "FAST_CAL") || ~oclkdelay_calib_done) done_dqs_dec <= #TCQ wr_level_done_r; else if (wr_level_done_r5 && (wl_state_r == WL_IDLE)) done_dqs_dec <= #TCQ 1'b1; end end else begin: single_rank always @(posedge clk) begin if (rst || (wrlvl_byte_redo && ~wrlvl_byte_redo_r) || (wrlvl_final && ~wrlvl_final_r)) done_dqs_dec <= #TCQ 1'b0; else if (~oclkdelay_calib_done) done_dqs_dec <= #TCQ wr_level_done_r; else if (wr_level_done_r3 && ~wr_level_done_r4) done_dqs_dec <= #TCQ 1'b1; end end endgenerate always @(posedge clk) if (rst || (wrlvl_byte_redo && ~wrlvl_byte_redo_r)) wrlvl_byte_done <= #TCQ 1'b0; else if (wrlvl_byte_redo && wr_level_done_r3 && ~wr_level_done_r4) wrlvl_byte_done <= #TCQ 1'b1; // Storing DQS tap values at the end of each DQS write leveling always @(posedge clk) begin if (rst) begin for (k = 0; k < RANKS; k = k + 1) begin: rst_wl_dqs_tap_count_loop for (n = 0; n < DQS_WIDTH; n = n + 1) begin wl_corse_cnt[k][n] <= #TCQ 'b0; wl_dqs_tap_count_r[k][n] <= #TCQ 'b0; end end end else if ((wl_state_r == WL_DQS_CNT) | (wl_state_r == WL_WAIT) | (wl_state_r == WL_FINE_DEC_WAIT1) | (wl_state_r == WL_2RANK_TAP_DEC)) begin wl_dqs_tap_count_r[rank_cnt_r][dqs_count_r] <= #TCQ wl_tap_count_r; wl_corse_cnt[rank_cnt_r][dqs_count_r] <= #TCQ corse_cnt[dqs_count_r]; end else if ((SIM_CAL_OPTION == "FAST_CAL") & (wl_state_r == WL_DQS_CHECK)) begin for (p = 0; p < RANKS; p = p +1) begin: dqs_tap_rank_cnt for(q = 0; q < DQS_WIDTH; q = q +1) begin: dqs_tap_dqs_cnt wl_dqs_tap_count_r[p][q] <= #TCQ wl_tap_count_r; wl_corse_cnt[p][q] <= #TCQ corse_cnt[0]; end end end end // Convert coarse delay to fine taps in case of unequal number of coarse // taps between ranks. Assuming a difference of 1 coarse tap counts // between ranks. A common fine and coarse tap value must be used for both ranks // because Phaser_Out has only one rank register. // Coarse tap1 = period(ps)*93/360 = 34 fine taps // Other coarse taps = period(ps)*103/360 = 38 fine taps generate genvar cnt; if (RANKS == 2) begin // Dual rank for(cnt = 0; cnt < DQS_WIDTH; cnt = cnt +1) begin: coarse_dqs_cnt always @(posedge clk) begin if (rst) begin //coarse_tap_inc[3*cnt+:3] <= #TCQ 'b0; add_smallest[cnt] <= #TCQ 'd0; add_largest[cnt] <= #TCQ 'd0; final_coarse_tap[cnt] <= #TCQ 'd0; end else if (wr_level_done_r1 & ~wr_level_done_r2) begin if (~oclkdelay_calib_done) begin for(y = 0 ; y < DQS_WIDTH; y = y+1) begin final_coarse_tap[y] <= #TCQ wl_corse_cnt[0][y]; add_smallest[y] <= #TCQ 'd0; add_largest[y] <= #TCQ 'd0; end end else if (wl_corse_cnt[0][cnt] == wl_corse_cnt[1][cnt]) begin // Both ranks have use the same number of coarse delay taps. // No conversion of coarse tap to fine taps required. //coarse_tap_inc[3*cnt+:3] <= #TCQ wl_corse_cnt[1][3*cnt+:3]; final_coarse_tap[cnt] <= #TCQ wl_corse_cnt[1][cnt]; add_smallest[cnt] <= #TCQ 'd0; add_largest[cnt] <= #TCQ 'd0; end else if (wl_corse_cnt[0][cnt] < wl_corse_cnt[1][cnt]) begin // Rank 0 uses fewer coarse delay taps than rank1. // conversion of coarse tap to fine taps required for rank1. // The final coarse count will the smaller value. //coarse_tap_inc[3*cnt+:3] <= #TCQ wl_corse_cnt[1][3*cnt+:3] - 1; final_coarse_tap[cnt] <= #TCQ wl_corse_cnt[1][cnt] - 1; if (|wl_corse_cnt[0][cnt]) // Coarse tap 2 or higher being converted to fine taps // This will be added to 'largest' value in final_val // computation add_largest[cnt] <= #TCQ 'd38; else // Coarse tap 1 being converted to fine taps // This will be added to 'largest' value in final_val // computation add_largest[cnt] <= #TCQ 'd34; end else if (wl_corse_cnt[0][cnt] > wl_corse_cnt[1][cnt]) begin // This may be an unlikely scenario in a real system. // Rank 0 uses more coarse delay taps than rank1. // conversion of coarse tap to fine taps required. //coarse_tap_inc[3*cnt+:3] <= #TCQ 'd0; final_coarse_tap[cnt] <= #TCQ wl_corse_cnt[1][cnt]; if (|wl_corse_cnt[1][cnt]) // Coarse tap 2 or higher being converted to fine taps // This will be added to 'smallest' value in final_val // computation add_smallest[cnt] <= #TCQ 'd38; else // Coarse tap 1 being converted to fine taps // This will be added to 'smallest' value in // final_val computation add_smallest[cnt] <= #TCQ 'd34; end end end end end else begin // Single rank always @(posedge clk) begin //coarse_tap_inc <= #TCQ 'd0; for(w = 0; w < DQS_WIDTH; w = w + 1) begin final_coarse_tap[w] <= #TCQ wl_corse_cnt[0][w]; add_smallest[w] <= #TCQ 'd0; add_largest[w] <= #TCQ 'd0; end end end endgenerate // Determine delay value for DQS in multirank system // Assuming delay value is the smallest for rank 0 DQS // and largest delay value for rank 4 DQS // Set to smallest + ((largest-smallest)/2) always @(posedge clk) begin if (rst) begin for(x = 0; x < DQS_WIDTH; x = x +1) begin smallest[x] <= #TCQ 'b0; largest[x] <= #TCQ 'b0; end end else if ((wl_state_r == WL_DQS_CNT) & wrlvl_byte_redo) begin smallest[dqs_count_r] <= #TCQ wl_dqs_tap_count_r[0][dqs_count_r]; largest[dqs_count_r] <= #TCQ wl_dqs_tap_count_r[0][dqs_count_r]; end else if ((wl_state_r == WL_DQS_CNT) | (wl_state_r == WL_2RANK_TAP_DEC)) begin smallest[dqs_count_r] <= #TCQ wl_dqs_tap_count_r[0][dqs_count_r]; largest[dqs_count_r] <= #TCQ wl_dqs_tap_count_r[RANKS-1][dqs_count_r]; end else if (((SIM_CAL_OPTION == "FAST_CAL") | (~oclkdelay_calib_done & ~wrlvl_byte_redo)) & wr_level_done_r1 & ~wr_level_done_r2) begin for(i = 0; i < DQS_WIDTH; i = i +1) begin: smallest_dqs smallest[i] <= #TCQ wl_dqs_tap_count_r[0][i]; largest[i] <= #TCQ wl_dqs_tap_count_r[0][i]; end end end // final_val to be used for all DQSs in all ranks genvar wr_i; generate for (wr_i = 0; wr_i < DQS_WIDTH; wr_i = wr_i +1) begin: gen_final_tap always @(posedge clk) begin if (rst) final_val[wr_i] <= #TCQ 'b0; else if (wr_level_done_r2 && ~wr_level_done_r3) begin if (~oclkdelay_calib_done) final_val[wr_i] <= #TCQ (smallest[wr_i] + add_smallest[wr_i]); else if ((smallest[wr_i] + add_smallest[wr_i]) < (largest[wr_i] + add_largest[wr_i])) final_val[wr_i] <= #TCQ ((smallest[wr_i] + add_smallest[wr_i]) + (((largest[wr_i] + add_largest[wr_i]) - (smallest[wr_i] + add_smallest[wr_i]))/2)); else if ((smallest[wr_i] + add_smallest[wr_i]) > (largest[wr_i] + add_largest[wr_i])) final_val[wr_i] <= #TCQ ((largest[wr_i] + add_largest[wr_i]) + (((smallest[wr_i] + add_smallest[wr_i]) - (largest[wr_i] + add_largest[wr_i]))/2)); else if ((smallest[wr_i] + add_smallest[wr_i]) == (largest[wr_i] + add_largest[wr_i])) final_val[wr_i] <= #TCQ (largest[wr_i] + add_largest[wr_i]); end end end endgenerate // // fine tap inc/dec value for all DQSs in all ranks // genvar dqs_i; // generate // for (dqs_i = 0; dqs_i < DQS_WIDTH; dqs_i = dqs_i +1) begin: gen_fine_tap // always @(posedge clk) begin // if (rst) // fine_tap_inc[6*dqs_i+:6] <= #TCQ 'd0; // //fine_tap_dec[6*dqs_i+:6] <= #TCQ 'd0; // else if (wr_level_done_r3 && ~wr_level_done_r4) begin // fine_tap_inc[6*dqs_i+:6] <= #TCQ final_val[6*dqs_i+:6]; // //fine_tap_dec[6*dqs_i+:6] <= #TCQ 'd0; // end // end // endgenerate // Inc/Dec Phaser_Out stage 2 fine delay line always @(posedge clk) begin if (rst) begin // Fine delay line used only during write leveling dqs_po_stg2_f_incdec <= #TCQ 1'b0; dqs_po_en_stg2_f <= #TCQ 1'b0; // Dec Phaser_Out fine delay (1)before write leveling, // (2)if no 0 to 1 transition detected with 63 fine delay taps, or // (3)dual rank case where fine taps for the first rank need to be 0 end else if (po_cnt_dec || (wl_state_r == WL_INIT_FINE_DEC) || (wl_state_r == WL_FINE_DEC)) begin dqs_po_stg2_f_incdec <= #TCQ 1'b0; dqs_po_en_stg2_f <= #TCQ 1'b1; // Inc Phaser_Out fine delay during write leveling end else if ((wl_state_r == WL_INIT_FINE_INC) || (wl_state_r == WL_FINE_INC)) begin dqs_po_stg2_f_incdec <= #TCQ 1'b1; dqs_po_en_stg2_f <= #TCQ 1'b1; end else begin dqs_po_stg2_f_incdec <= #TCQ 1'b0; dqs_po_en_stg2_f <= #TCQ 1'b0; end end // Inc Phaser_Out stage 2 Coarse delay line always @(posedge clk) begin if (rst) begin // Coarse delay line used during write leveling // only if no 0->1 transition undetected with 64 // fine delay line taps dqs_wl_po_stg2_c_incdec <= #TCQ 1'b0; dqs_wl_po_en_stg2_c <= #TCQ 1'b0; end else if (wl_state_r == WL_CORSE_INC) begin // Inc Phaser_Out coarse delay during write leveling dqs_wl_po_stg2_c_incdec <= #TCQ 1'b1; dqs_wl_po_en_stg2_c <= #TCQ 1'b1; end else begin dqs_wl_po_stg2_c_incdec <= #TCQ 1'b0; dqs_wl_po_en_stg2_c <= #TCQ 1'b0; end end // only storing the rise data for checking. The data comming back during // write leveling will be a static value. Just checking for rise data is // enough. genvar rd_i; generate for(rd_i = 0; rd_i < DQS_WIDTH; rd_i = rd_i +1)begin: gen_rd always @(posedge clk) rd_data_rise_wl_r[rd_i] <= #TCQ |rd_data_rise0[(rd_i*DRAM_WIDTH)+DRAM_WIDTH-1:rd_i*DRAM_WIDTH]; end endgenerate // storing the previous data for checking later. always @(posedge clk)begin if ((wl_state_r == WL_INIT) || //(wl_state_r == WL_INIT_FINE_INC_WAIT) || //(wl_state_r == WL_INIT_FINE_INC_WAIT1) || ((wl_state_r1 == WL_INIT_FINE_INC_WAIT) & (wl_state_r == WL_INIT_FINE_INC)) || (wl_state_r == WL_FINE_DEC) || (wl_state_r == WL_FINE_DEC_WAIT1) || (wl_state_r == WL_FINE_DEC_WAIT) || (wl_state_r == WL_CORSE_INC) || (wl_state_r == WL_CORSE_INC_WAIT) || (wl_state_r == WL_CORSE_INC_WAIT_TMP) || (wl_state_r == WL_CORSE_INC_WAIT1) || (wl_state_r == WL_CORSE_INC_WAIT2) || ((wl_state_r == WL_EDGE_CHECK) & (wl_edge_detect_valid_r))) rd_data_previous_r <= #TCQ rd_data_rise_wl_r; end // changed stable count from 3 to 7 because of fine tap resolution always @(posedge clk)begin if (rst | (wl_state_r == WL_DQS_CNT) | (wl_state_r == WL_2RANK_TAP_DEC) | (wl_state_r == WL_FINE_DEC) | (rd_data_previous_r[dqs_count_r] != rd_data_rise_wl_r[dqs_count_r]) | (wl_state_r1 == WL_INIT_FINE_DEC)) stable_cnt <= #TCQ 'd0; else if ((wl_tap_count_r > 6'd0) & (((wl_state_r == WL_EDGE_CHECK) & (wl_edge_detect_valid_r)) | ((wl_state_r1 == WL_INIT_FINE_INC_WAIT) & (wl_state_r == WL_INIT_FINE_INC)))) begin if ((rd_data_previous_r[dqs_count_r] == rd_data_rise_wl_r[dqs_count_r]) & (stable_cnt < 'd14)) stable_cnt <= #TCQ stable_cnt + 1; end end // Signal to ensure that flag_ck_negedge does not incorrectly assert // when DQS is very close to CK rising edge //always @(posedge clk) begin // if (rst | (wl_state_r == WL_DQS_CNT) | // (wl_state_r == WL_DQS_CHECK) | wr_level_done_r) // past_negedge <= #TCQ 1'b0; // else if (~flag_ck_negedge && ~rd_data_previous_r[dqs_count_r] && // (stable_cnt == 'd0) && ((wl_state_r == WL_CORSE_INC_WAIT1) | // (wl_state_r == WL_CORSE_INC_WAIT2))) // past_negedge <= #TCQ 1'b1; //end // Flag to indicate negedge of CK detected and ignore 0->1 transitions // in this region always @(posedge clk)begin if (rst | (wl_state_r == WL_DQS_CNT) | (wl_state_r == WL_DQS_CHECK) | wr_level_done_r | (wl_state_r1 == WL_INIT_FINE_DEC)) flag_ck_negedge <= #TCQ 1'd0; else if ((rd_data_previous_r[dqs_count_r] && ((stable_cnt > 'd0) | (wl_state_r == WL_FINE_DEC) | (wl_state_r == WL_FINE_DEC_WAIT) | (wl_state_r == WL_FINE_DEC_WAIT1))) | (wl_state_r == WL_CORSE_INC)) flag_ck_negedge <= #TCQ 1'd1; else if (~rd_data_previous_r[dqs_count_r] && (stable_cnt == 'd14)) //&& flag_ck_negedge) flag_ck_negedge <= #TCQ 1'd0; end // Flag to inhibit rd_data_edge_detect_r before stable DQ always @(posedge clk) begin if (rst) flag_init <= #TCQ 1'b1; else if ((wl_state_r == WL_WAIT) && ((wl_state_r1 == WL_INIT_FINE_INC_WAIT) || (wl_state_r1 == WL_INIT_FINE_DEC_WAIT))) flag_init <= #TCQ 1'b0; end //checking for transition from 0 to 1 always @(posedge clk)begin if (rst | flag_ck_negedge | flag_init | (wl_tap_count_r < 'd1) | inhibit_edge_detect_r) rd_data_edge_detect_r <= #TCQ {DQS_WIDTH{1'b0}}; else if (rd_data_edge_detect_r[dqs_count_r] == 1'b1) begin if ((wl_state_r == WL_FINE_DEC) || (wl_state_r == WL_FINE_DEC_WAIT) || (wl_state_r == WL_FINE_DEC_WAIT1) || (wl_state_r == WL_CORSE_INC) || (wl_state_r == WL_CORSE_INC_WAIT) || (wl_state_r == WL_CORSE_INC_WAIT_TMP) || (wl_state_r == WL_CORSE_INC_WAIT1) || (wl_state_r == WL_CORSE_INC_WAIT2)) rd_data_edge_detect_r <= #TCQ {DQS_WIDTH{1'b0}}; else rd_data_edge_detect_r <= #TCQ rd_data_edge_detect_r; end else if (rd_data_previous_r[dqs_count_r] && (stable_cnt < 'd14)) rd_data_edge_detect_r <= #TCQ {DQS_WIDTH{1'b0}}; else rd_data_edge_detect_r <= #TCQ (~rd_data_previous_r & rd_data_rise_wl_r); end // registring the write level start signal always@(posedge clk) begin wr_level_start_r <= #TCQ wr_level_start; end // Assign dqs_count_r to dqs_count_w to perform the shift operation // instead of multiply operation assign dqs_count_w = {2'b00, dqs_count_r}; assign oclk_count_w = {2'b00, oclkdelay_calib_cnt}; always @(posedge clk) begin if (rst) incdec_wait_cnt <= #TCQ 'd0; else if ((wl_state_r == WL_FINE_DEC_WAIT1) || (wl_state_r == WL_INIT_FINE_DEC_WAIT1) || (wl_state_r == WL_CORSE_INC_WAIT_TMP)) incdec_wait_cnt <= #TCQ incdec_wait_cnt + 1; else incdec_wait_cnt <= #TCQ 'd0; end // state machine to initiate the write leveling sequence // The state machine operates on one byte at a time. // It will increment the delays to the DQS OSERDES // and sample the DQ from the memory. When it detects // a transition from 1 to 0 then the write leveling is considered // done. always @(posedge clk) begin if(rst)begin wrlvl_err <= #TCQ 1'b0; wr_level_done_r <= #TCQ 1'b0; wrlvl_rank_done_r <= #TCQ 1'b0; dqs_count_r <= #TCQ {DQS_CNT_WIDTH+1{1'b0}}; dq_cnt_inc <= #TCQ 1'b1; rank_cnt_r <= #TCQ 2'b00; wl_state_r <= #TCQ WL_IDLE; wl_state_r1 <= #TCQ WL_IDLE; inhibit_edge_detect_r <= #TCQ 1'b1; wl_edge_detect_valid_r <= #TCQ 1'b0; wl_tap_count_r <= #TCQ 6'd0; fine_dec_cnt <= #TCQ 6'd0; for (r = 0; r < DQS_WIDTH; r = r + 1) begin fine_inc[r] <= #TCQ 6'b0; corse_dec[r] <= #TCQ 3'b0; corse_inc[r] <= #TCQ 3'b0; corse_cnt[r] <= #TCQ 3'b0; end dual_rnk_dec <= #TCQ 1'b0; fast_cal_fine_cnt <= #TCQ FAST_CAL_FINE; fast_cal_coarse_cnt <= #TCQ FAST_CAL_COARSE; final_corse_dec <= #TCQ 1'b0; //zero_tran_r <= #TCQ 1'b0; wrlvl_redo_corse_inc <= #TCQ 'd0; end else begin wl_state_r1 <= #TCQ wl_state_r; case (wl_state_r) WL_IDLE: begin wrlvl_rank_done_r <= #TCQ 1'd0; inhibit_edge_detect_r <= #TCQ 1'b1; if (wrlvl_byte_redo && ~wrlvl_byte_redo_r) begin wr_level_done_r <= #TCQ 1'b0; dqs_count_r <= #TCQ wrcal_cnt; corse_cnt[wrcal_cnt] <= #TCQ final_coarse_tap[wrcal_cnt]; wl_tap_count_r <= #TCQ smallest[wrcal_cnt]; if (early1_data && (((final_coarse_tap[wrcal_cnt] < 'd6) && (CLK_PERIOD/nCK_PER_CLK <= 2500)) || ((final_coarse_tap[wrcal_cnt] < 'd3) && (CLK_PERIOD/nCK_PER_CLK > 2500)))) wrlvl_redo_corse_inc <= #TCQ REDO_COARSE; else if (early2_data && (final_coarse_tap[wrcal_cnt] < 'd2)) wrlvl_redo_corse_inc <= #TCQ 3'd6; else begin wl_state_r <= #TCQ WL_IDLE; wrlvl_err <= #TCQ 1'b1; end end else if (wrlvl_final && ~wrlvl_final_r) begin wr_level_done_r <= #TCQ 1'b0; dqs_count_r <= #TCQ 'd0; end if(!wr_level_done_r & wr_level_start_r & wl_sm_start) begin if (SIM_CAL_OPTION == "FAST_CAL") wl_state_r <= #TCQ WL_FINE_INC; else wl_state_r <= #TCQ WL_INIT; end end WL_INIT: begin wl_edge_detect_valid_r <= #TCQ 1'b0; inhibit_edge_detect_r <= #TCQ 1'b1; wrlvl_rank_done_r <= #TCQ 1'd0; //zero_tran_r <= #TCQ 1'b0; if (wrlvl_final) corse_cnt[dqs_count_w ] <= #TCQ final_coarse_tap[dqs_count_w ]; if (wrlvl_byte_redo) begin if (|wl_tap_count_r) begin wl_state_r <= #TCQ WL_FINE_DEC; fine_dec_cnt <= #TCQ wl_tap_count_r; end else if ((corse_cnt[dqs_count_w] + wrlvl_redo_corse_inc) <= 'd7) wl_state_r <= #TCQ WL_CORSE_INC; else begin wl_state_r <= #TCQ WL_IDLE; wrlvl_err <= #TCQ 1'b1; end end else if(wl_sm_start) wl_state_r <= #TCQ WL_INIT_FINE_INC; end // Initially Phaser_Out fine delay taps incremented // until stable_cnt=14. A stable_cnt of 14 indicates // that rd_data_rise_wl_r=rd_data_previous_r for 14 fine // tap increments. This is done to inhibit false 0->1 // edge detection when DQS is initially aligned to the // negedge of CK WL_INIT_FINE_INC: begin wl_state_r <= #TCQ WL_INIT_FINE_INC_WAIT1; wl_tap_count_r <= #TCQ wl_tap_count_r + 1'b1; final_corse_dec <= #TCQ 1'b0; end WL_INIT_FINE_INC_WAIT1: begin if (wl_sm_start) wl_state_r <= #TCQ WL_INIT_FINE_INC_WAIT; end // Case1: stable value of rd_data_previous_r=0 then // proceed to 0->1 edge detection. // Case2: stable value of rd_data_previous_r=1 then // decrement fine taps to '0' and proceed to 0->1 // edge detection. Need to decrement in this case to // make sure a valid 0->1 transition was not left // undetected. WL_INIT_FINE_INC_WAIT: begin if (wl_sm_start) begin if (stable_cnt < 'd14) wl_state_r <= #TCQ WL_INIT_FINE_INC; else if (~rd_data_previous_r[dqs_count_r]) begin wl_state_r <= #TCQ WL_WAIT; inhibit_edge_detect_r <= #TCQ 1'b0; end else begin wl_state_r <= #TCQ WL_INIT_FINE_DEC; fine_dec_cnt <= #TCQ wl_tap_count_r; end end end // Case2: stable value of rd_data_previous_r=1 then // decrement fine taps to '0' and proceed to 0->1 // edge detection. Need to decrement in this case to // make sure a valid 0->1 transition was not left // undetected. WL_INIT_FINE_DEC: begin wl_tap_count_r <= #TCQ 'd0; wl_state_r <= #TCQ WL_INIT_FINE_DEC_WAIT1; if (fine_dec_cnt > 6'd0) fine_dec_cnt <= #TCQ fine_dec_cnt - 1; else fine_dec_cnt <= #TCQ fine_dec_cnt; end WL_INIT_FINE_DEC_WAIT1: begin if (incdec_wait_cnt == 'd8) wl_state_r <= #TCQ WL_INIT_FINE_DEC_WAIT; end WL_INIT_FINE_DEC_WAIT: begin if (fine_dec_cnt > 6'd0) begin wl_state_r <= #TCQ WL_INIT_FINE_DEC; inhibit_edge_detect_r <= #TCQ 1'b1; end else begin wl_state_r <= #TCQ WL_WAIT; inhibit_edge_detect_r <= #TCQ 1'b0; end end // Inc DQS Phaser_Out Stage2 Fine Delay line WL_FINE_INC: begin wl_edge_detect_valid_r <= #TCQ 1'b0; if (SIM_CAL_OPTION == "FAST_CAL") begin wl_state_r <= #TCQ WL_FINE_INC_WAIT; if (fast_cal_fine_cnt > 'd0) fast_cal_fine_cnt <= #TCQ fast_cal_fine_cnt - 1; else fast_cal_fine_cnt <= #TCQ fast_cal_fine_cnt; end else if (wr_level_done_r5) begin wl_tap_count_r <= #TCQ 'd0; wl_state_r <= #TCQ WL_FINE_INC_WAIT; if (|fine_inc[dqs_count_w]) fine_inc[dqs_count_w] <= #TCQ fine_inc[dqs_count_w] - 1; end else begin wl_state_r <= #TCQ WL_WAIT; wl_tap_count_r <= #TCQ wl_tap_count_r + 1'b1; end end WL_FINE_INC_WAIT: begin if (SIM_CAL_OPTION == "FAST_CAL") begin if (fast_cal_fine_cnt > 'd0) wl_state_r <= #TCQ WL_FINE_INC; else if (fast_cal_coarse_cnt > 'd0) wl_state_r <= #TCQ WL_CORSE_INC; else wl_state_r <= #TCQ WL_DQS_CNT; end else if (|fine_inc[dqs_count_w]) wl_state_r <= #TCQ WL_FINE_INC; else if (dqs_count_r == (DQS_WIDTH-1)) wl_state_r <= #TCQ WL_IDLE; else begin wl_state_r <= #TCQ WL_2RANK_FINAL_TAP; dqs_count_r <= #TCQ dqs_count_r + 1; end end WL_FINE_DEC: begin wl_edge_detect_valid_r <= #TCQ 1'b0; wl_tap_count_r <= #TCQ 'd0; wl_state_r <= #TCQ WL_FINE_DEC_WAIT1; if (fine_dec_cnt > 6'd0) fine_dec_cnt <= #TCQ fine_dec_cnt - 1; else fine_dec_cnt <= #TCQ fine_dec_cnt; end WL_FINE_DEC_WAIT1: begin if (incdec_wait_cnt == 'd8) wl_state_r <= #TCQ WL_FINE_DEC_WAIT; end WL_FINE_DEC_WAIT: begin if (fine_dec_cnt > 6'd0) wl_state_r <= #TCQ WL_FINE_DEC; //else if (zero_tran_r) // wl_state_r <= #TCQ WL_DQS_CNT; else if (dual_rnk_dec) begin if (|corse_dec[dqs_count_r]) wl_state_r <= #TCQ WL_CORSE_DEC; else wl_state_r <= #TCQ WL_2RANK_DQS_CNT; end else if (wrlvl_byte_redo) begin if ((corse_cnt[dqs_count_w] + wrlvl_redo_corse_inc) <= 'd7) wl_state_r <= #TCQ WL_CORSE_INC; else begin wl_state_r <= #TCQ WL_IDLE; wrlvl_err <= #TCQ 1'b1; end end else wl_state_r <= #TCQ WL_CORSE_INC; end WL_CORSE_DEC: begin wl_state_r <= #TCQ WL_CORSE_DEC_WAIT; dual_rnk_dec <= #TCQ 1'b0; if (|corse_dec[dqs_count_r]) corse_dec[dqs_count_r] <= #TCQ corse_dec[dqs_count_r] - 1; else corse_dec[dqs_count_r] <= #TCQ corse_dec[dqs_count_r]; end WL_CORSE_DEC_WAIT: begin if (wl_sm_start) begin //if (|corse_dec[dqs_count_r]) // wl_state_r <= #TCQ WL_CORSE_DEC; if (|corse_dec[dqs_count_r]) wl_state_r <= #TCQ WL_CORSE_DEC_WAIT1; else wl_state_r <= #TCQ WL_2RANK_DQS_CNT; end end WL_CORSE_DEC_WAIT1: begin if (wl_sm_start) wl_state_r <= #TCQ WL_CORSE_DEC; end WL_CORSE_INC: begin wl_state_r <= #TCQ WL_CORSE_INC_WAIT_TMP; if (SIM_CAL_OPTION == "FAST_CAL") begin if (fast_cal_coarse_cnt > 'd0) fast_cal_coarse_cnt <= #TCQ fast_cal_coarse_cnt - 1; else fast_cal_coarse_cnt <= #TCQ fast_cal_coarse_cnt; end else if (wrlvl_byte_redo) begin corse_cnt[dqs_count_w] <= #TCQ corse_cnt[dqs_count_w] + 1; if (|wrlvl_redo_corse_inc) wrlvl_redo_corse_inc <= #TCQ wrlvl_redo_corse_inc - 1; end else if (~wr_level_done_r5) corse_cnt[dqs_count_r] <= #TCQ corse_cnt[dqs_count_r] + 1; else if (|corse_inc[dqs_count_w]) corse_inc[dqs_count_w] <= #TCQ corse_inc[dqs_count_w] - 1; end WL_CORSE_INC_WAIT_TMP: begin if (incdec_wait_cnt == 'd8) wl_state_r <= #TCQ WL_CORSE_INC_WAIT; end WL_CORSE_INC_WAIT: begin if (SIM_CAL_OPTION == "FAST_CAL") begin if (fast_cal_coarse_cnt > 'd0) wl_state_r <= #TCQ WL_CORSE_INC; else wl_state_r <= #TCQ WL_DQS_CNT; end else if (wrlvl_byte_redo) begin if (|wrlvl_redo_corse_inc) wl_state_r <= #TCQ WL_CORSE_INC; else begin wl_state_r <= #TCQ WL_INIT_FINE_INC; inhibit_edge_detect_r <= #TCQ 1'b1; end end else if (~wr_level_done_r5 && wl_sm_start) wl_state_r <= #TCQ WL_CORSE_INC_WAIT1; else if (wr_level_done_r5) begin if (|corse_inc[dqs_count_r]) wl_state_r <= #TCQ WL_CORSE_INC; else if (|fine_inc[dqs_count_w]) wl_state_r <= #TCQ WL_FINE_INC; else if (dqs_count_r == (DQS_WIDTH-1)) wl_state_r <= #TCQ WL_IDLE; else begin wl_state_r <= #TCQ WL_2RANK_FINAL_TAP; dqs_count_r <= #TCQ dqs_count_r + 1; end end end WL_CORSE_INC_WAIT1: begin if (wl_sm_start) wl_state_r <= #TCQ WL_CORSE_INC_WAIT2; end WL_CORSE_INC_WAIT2: begin if (wl_sm_start) wl_state_r <= #TCQ WL_WAIT; end WL_WAIT: begin if (wl_sm_start) wl_state_r <= #TCQ WL_EDGE_CHECK; end WL_EDGE_CHECK: begin // Look for the edge if (wl_edge_detect_valid_r == 1'b0) begin wl_state_r <= #TCQ WL_WAIT; wl_edge_detect_valid_r <= #TCQ 1'b1; end // 0->1 transition detected with DQS else if(rd_data_edge_detect_r[dqs_count_r] && wl_edge_detect_valid_r) begin wl_tap_count_r <= #TCQ wl_tap_count_r; if ((SIM_CAL_OPTION == "FAST_CAL") || (RANKS < 2) || ~oclkdelay_calib_done) wl_state_r <= #TCQ WL_DQS_CNT; else wl_state_r <= #TCQ WL_2RANK_TAP_DEC; end // For initial writes check only upto 56 taps. Reserving the // remaining taps for OCLK calibration. else if((~wrlvl_tap_done_r) && (wl_tap_count_r > 6'd55)) begin if (corse_cnt[dqs_count_r] < COARSE_TAPS) begin wl_state_r <= #TCQ WL_FINE_DEC; fine_dec_cnt <= #TCQ wl_tap_count_r; end else begin wrlvl_err <= #TCQ 1'b1; wl_state_r <= #TCQ WL_IDLE; end end else begin if (wl_tap_count_r < 6'd63) wl_state_r <= #TCQ WL_FINE_INC; else if (corse_cnt[dqs_count_r] < COARSE_TAPS) begin wl_state_r <= #TCQ WL_FINE_DEC; fine_dec_cnt <= #TCQ wl_tap_count_r; end else begin wrlvl_err <= #TCQ 1'b1; wl_state_r <= #TCQ WL_IDLE; end end end WL_2RANK_TAP_DEC: begin wl_state_r <= #TCQ WL_FINE_DEC; fine_dec_cnt <= #TCQ wl_tap_count_r; for (m = 0; m < DQS_WIDTH; m = m + 1) corse_dec[m] <= #TCQ corse_cnt[m]; wl_edge_detect_valid_r <= #TCQ 1'b0; dual_rnk_dec <= #TCQ 1'b1; end WL_DQS_CNT: begin if ((SIM_CAL_OPTION == "FAST_CAL") || (dqs_count_r == (DQS_WIDTH-1)) || wrlvl_byte_redo) begin dqs_count_r <= #TCQ dqs_count_r; dq_cnt_inc <= #TCQ 1'b0; end else begin dqs_count_r <= #TCQ dqs_count_r + 1'b1; dq_cnt_inc <= #TCQ 1'b1; end wl_state_r <= #TCQ WL_DQS_CHECK; wl_edge_detect_valid_r <= #TCQ 1'b0; end WL_2RANK_DQS_CNT: begin if ((SIM_CAL_OPTION == "FAST_CAL") || (dqs_count_r == (DQS_WIDTH-1))) begin dqs_count_r <= #TCQ dqs_count_r; dq_cnt_inc <= #TCQ 1'b0; end else begin dqs_count_r <= #TCQ dqs_count_r + 1'b1; dq_cnt_inc <= #TCQ 1'b1; end wl_state_r <= #TCQ WL_DQS_CHECK; wl_edge_detect_valid_r <= #TCQ 1'b0; dual_rnk_dec <= #TCQ 1'b0; end WL_DQS_CHECK: begin // check if all DQS have been calibrated wl_tap_count_r <= #TCQ 'd0; if (dq_cnt_inc == 1'b0)begin wrlvl_rank_done_r <= #TCQ 1'd1; for (t = 0; t < DQS_WIDTH; t = t + 1) corse_cnt[t] <= #TCQ 3'b0; if ((SIM_CAL_OPTION == "FAST_CAL") || (RANKS < 2) || ~oclkdelay_calib_done) begin wl_state_r <= #TCQ WL_IDLE; if (wrlvl_byte_redo) dqs_count_r <= #TCQ dqs_count_r; else dqs_count_r <= #TCQ 'd0; end else if (rank_cnt_r == RANKS-1) begin dqs_count_r <= #TCQ dqs_count_r; if (RANKS > 1) wl_state_r <= #TCQ WL_2RANK_FINAL_TAP; else wl_state_r <= #TCQ WL_IDLE; end else begin wl_state_r <= #TCQ WL_INIT; dqs_count_r <= #TCQ 'd0; end if ((SIM_CAL_OPTION == "FAST_CAL") || (rank_cnt_r == RANKS-1)) begin wr_level_done_r <= #TCQ 1'd1; rank_cnt_r <= #TCQ 2'b00; end else begin wr_level_done_r <= #TCQ 1'd0; rank_cnt_r <= #TCQ rank_cnt_r + 1'b1; end end else wl_state_r <= #TCQ WL_INIT; end WL_2RANK_FINAL_TAP: begin if (wr_level_done_r4 && ~wr_level_done_r5) begin for(u = 0; u < DQS_WIDTH; u = u + 1) begin corse_inc[u] <= #TCQ final_coarse_tap[u]; fine_inc[u] <= #TCQ final_val[u]; end dqs_count_r <= #TCQ 'd0; end else if (wr_level_done_r5) begin if (|corse_inc[dqs_count_r]) wl_state_r <= #TCQ WL_CORSE_INC; else if (|fine_inc[dqs_count_w]) wl_state_r <= #TCQ WL_FINE_INC; end end endcase end end // always @ (posedge clk) endmodule
// (C) 1992-2014 Altera Corporation. All rights reserved. // Your use of Altera Corporation's design tools, logic functions and other // software and tools, and its AMPP partner logic functions, and any output // files any of the foregoing (including device programming or simulation // files), and any associated documentation or information are expressly subject // to the terms and conditions of the Altera Program License Subscription // Agreement, Altera MegaCore Function License Agreement, or other applicable // license agreement, including, without limitation, that your use is for the // sole purpose of programming logic devices manufactured by Altera and sold by // Altera or its authorized distributors. Please refer to the applicable // agreement for further details. // Terminate local memory bank router ports that aren't connected to memory. // Aside from tying return signals to zero, also provides a flag to indicate // whether an unexpected access was attempted on this bank. This flag should // be checked someday by an exception monitor. // There is currently no visibility into this module - intended for simulation // until new performance monitor complete. module acl_ic_local_mem_router_terminator #( parameter integer DATA_W = 256 ) ( input logic clock, input logic resetn, // To each bank input logic b_arb_request, input logic b_arb_read, input logic b_arb_write, output logic b_arb_stall, output logic b_wrp_ack, output logic b_rrp_datavalid, output logic [DATA_W-1:0] b_rrp_data, output logic b_invalid_access ); reg saw_unexpected_access; reg first_unexpected_was_read; assign b_arb_stall = 1'b0; assign b_wrp_ack = 1'b0; assign b_rrp_datavalid = 1'b0; assign b_rrp_data = '0; assign b_invalid_access = saw_unexpected_access; always@(posedge clock or negedge resetn) begin if (~resetn) begin saw_unexpected_access <= 1'b0; first_unexpected_was_read <= 1'b0; end else begin if (b_arb_request && ~saw_unexpected_access) begin saw_unexpected_access <= 1'b1; first_unexpected_was_read <= b_arb_read; // Simulation-only failure message // synthesis_off $fatal(0,"Local memory router: accessed bank that isn't connected. Hardware will hang."); // synthesis_on end end end endmodule
// (C) 1992-2014 Altera Corporation. All rights reserved. // Your use of Altera Corporation's design tools, logic functions and other // software and tools, and its AMPP partner logic functions, and any output // files any of the foregoing (including device programming or simulation // files), and any associated documentation or information are expressly subject // to the terms and conditions of the Altera Program License Subscription // Agreement, Altera MegaCore Function License Agreement, or other applicable // license agreement, including, without limitation, that your use is for the // sole purpose of programming logic devices manufactured by Altera and sold by // Altera or its authorized distributors. Please refer to the applicable // agreement for further details. // Terminate local memory bank router ports that aren't connected to memory. // Aside from tying return signals to zero, also provides a flag to indicate // whether an unexpected access was attempted on this bank. This flag should // be checked someday by an exception monitor. // There is currently no visibility into this module - intended for simulation // until new performance monitor complete. module acl_ic_local_mem_router_terminator #( parameter integer DATA_W = 256 ) ( input logic clock, input logic resetn, // To each bank input logic b_arb_request, input logic b_arb_read, input logic b_arb_write, output logic b_arb_stall, output logic b_wrp_ack, output logic b_rrp_datavalid, output logic [DATA_W-1:0] b_rrp_data, output logic b_invalid_access ); reg saw_unexpected_access; reg first_unexpected_was_read; assign b_arb_stall = 1'b0; assign b_wrp_ack = 1'b0; assign b_rrp_datavalid = 1'b0; assign b_rrp_data = '0; assign b_invalid_access = saw_unexpected_access; always@(posedge clock or negedge resetn) begin if (~resetn) begin saw_unexpected_access <= 1'b0; first_unexpected_was_read <= 1'b0; end else begin if (b_arb_request && ~saw_unexpected_access) begin saw_unexpected_access <= 1'b1; first_unexpected_was_read <= b_arb_read; // Simulation-only failure message // synthesis_off $fatal(0,"Local memory router: accessed bank that isn't connected. Hardware will hang."); // synthesis_on end end end endmodule
// soc_design_niosII_core.v // This file was auto-generated from altera_nios2_hw.tcl. If you edit it your changes // will probably be lost. // // Generated using ACDS version 16.0 211 `timescale 1 ps / 1 ps module soc_design_niosII_core ( input wire clk, // clk.clk input wire reset_n, // reset.reset_n input wire reset_req, // .reset_req output wire [26:0] d_address, // data_master.address output wire [3:0] d_byteenable, // .byteenable output wire d_read, // .read input wire [31:0] d_readdata, // .readdata input wire d_waitrequest, // .waitrequest output wire d_write, // .write output wire [31:0] d_writedata, // .writedata output wire [3:0] d_burstcount, // .burstcount input wire d_readdatavalid, // .readdatavalid output wire debug_mem_slave_debugaccess_to_roms, // .debugaccess output wire [26:0] i_address, // instruction_master.address output wire i_read, // .read input wire [31:0] i_readdata, // .readdata input wire i_waitrequest, // .waitrequest output wire [3:0] i_burstcount, // .burstcount input wire i_readdatavalid, // .readdatavalid input wire [31:0] irq, // irq.irq output wire debug_reset_request, // debug_reset_request.reset input wire [8:0] debug_mem_slave_address, // debug_mem_slave.address input wire [3:0] debug_mem_slave_byteenable, // .byteenable input wire debug_mem_slave_debugaccess, // .debugaccess input wire debug_mem_slave_read, // .read output wire [31:0] debug_mem_slave_readdata, // .readdata output wire debug_mem_slave_waitrequest, // .waitrequest input wire debug_mem_slave_write, // .write input wire [31:0] debug_mem_slave_writedata, // .writedata output wire dummy_ci_port // custom_instruction_master.readra ); soc_design_niosII_core_cpu cpu ( .clk (clk), // clk.clk .reset_n (reset_n), // reset.reset_n .reset_req (reset_req), // .reset_req .d_address (d_address), // data_master.address .d_byteenable (d_byteenable), // .byteenable .d_read (d_read), // .read .d_readdata (d_readdata), // .readdata .d_waitrequest (d_waitrequest), // .waitrequest .d_write (d_write), // .write .d_writedata (d_writedata), // .writedata .d_burstcount (d_burstcount), // .burstcount .d_readdatavalid (d_readdatavalid), // .readdatavalid .debug_mem_slave_debugaccess_to_roms (debug_mem_slave_debugaccess_to_roms), // .debugaccess .i_address (i_address), // instruction_master.address .i_read (i_read), // .read .i_readdata (i_readdata), // .readdata .i_waitrequest (i_waitrequest), // .waitrequest .i_burstcount (i_burstcount), // .burstcount .i_readdatavalid (i_readdatavalid), // .readdatavalid .irq (irq), // irq.irq .debug_reset_request (debug_reset_request), // debug_reset_request.reset .debug_mem_slave_address (debug_mem_slave_address), // debug_mem_slave.address .debug_mem_slave_byteenable (debug_mem_slave_byteenable), // .byteenable .debug_mem_slave_debugaccess (debug_mem_slave_debugaccess), // .debugaccess .debug_mem_slave_read (debug_mem_slave_read), // .read .debug_mem_slave_readdata (debug_mem_slave_readdata), // .readdata .debug_mem_slave_waitrequest (debug_mem_slave_waitrequest), // .waitrequest .debug_mem_slave_write (debug_mem_slave_write), // .write .debug_mem_slave_writedata (debug_mem_slave_writedata), // .writedata .dummy_ci_port (dummy_ci_port) // custom_instruction_master.readra ); endmodule
// ---------------------------------------------------------------------- // Copyright (c) 2016, The Regents of the University of California All // rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // // * Neither the name of The Regents of the University of California // nor the names of its contributors may be used to endorse or // promote products derived from this software without specific // prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL REGENTS OF THE // UNIVERSITY OF CALIFORNIA BE LIABLE FOR ANY DIRECT, INDIRECT, // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, // BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS // OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND // ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR // TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE // USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH // DAMAGE. // ---------------------------------------------------------------------- //---------------------------------------------------------------------------- // Filename: reorder_queue_input.v // Version: 1.00 // Verilog Standard: Verilog-2005 // Description: Input stage to the reorder-queue. // Author: Dustin Richmond (@darichmond) //----------------------------------------------------------------------------- `include "trellis.vh" `timescale 1ns / 1ps module reorder_queue_input #(parameter C_PCI_DATA_WIDTH = 9'd128, parameter C_TAG_WIDTH = 5, // Number of outstanding requests parameter C_TAG_DW_COUNT_WIDTH = 8,// Width of max count DWs per packet parameter C_DATA_ADDR_STRIDE_WIDTH = 5,// Width of max num stored data addr positions per tag parameter C_DATA_ADDR_WIDTH = 10, // Width of stored data address // Local parameters parameter C_PCI_DATA_WORD = C_PCI_DATA_WIDTH/32, parameter C_PCI_DATA_WORD_WIDTH = clog2s(C_PCI_DATA_WORD), parameter C_PCI_DATA_COUNT_WIDTH = clog2s(C_PCI_DATA_WORD+1), parameter C_NUM_TAGS = 2**C_TAG_WIDTH) (input CLK, // Clock input RST, // Synchronous reset input VALID, // Valid input packet input [C_PCI_DATA_WIDTH-1:0] DATA, // Input packet payload data enable input [(C_PCI_DATA_WIDTH/32)-1:0] DATA_EN, // Input packet payload data enable input DATA_START_FLAG, // Input packet payload input [clog2s(C_PCI_DATA_WIDTH/32)-1:0] DATA_START_OFFSET, // Input packet payload data enable count input DATA_END_FLAG, // Input packet payload input [clog2s(C_PCI_DATA_WIDTH/32)-1:0] DATA_END_OFFSET, // Input packet payload data enable count input DONE, // Input packet done input ERR, // Input packet has error input [C_TAG_WIDTH-1:0] TAG, // Input packet tag (external tag) output [C_NUM_TAGS-1:0] TAG_FINISH, // Bitmap of tags to finish input [C_NUM_TAGS-1:0] TAG_CLEAR, // Bitmap of tags to clear output [(C_DATA_ADDR_WIDTH*C_PCI_DATA_WORD)-1:0] STORED_DATA_ADDR, // Address of stored packet data for RAMs output [C_PCI_DATA_WIDTH-1:0] STORED_DATA, // Stored packet data for RAMs output [C_PCI_DATA_WORD-1:0] STORED_DATA_EN, // Stored packet data enable for RAMs output PKT_VALID, // Valid flag for packet data output [C_TAG_WIDTH-1:0] PKT_TAG, // Tag for stored packet data output [C_TAG_DW_COUNT_WIDTH-1:0] PKT_WORDS, // Total count of stored packet payload in DWs output PKT_WORDS_LTE1, // True if total count of stored packet payload is <= 4 DWs output PKT_WORDS_LTE2, // True if total count of stored packet payload is <= 8 DWs output PKT_DONE, // Stored packet done flag output PKT_ERR); // Stored packet error flag wire [C_PCI_DATA_COUNT_WIDTH-1:0] wDECount; wire [C_PCI_DATA_WORD-1:0] wDE; wire [C_PCI_DATA_WIDTH-1:0] wData; wire [C_PCI_DATA_WORD-1:0] wStartMask; wire [C_PCI_DATA_WORD-1:0] wEndMask; reg [5:0] rValid=0; reg [(C_PCI_DATA_WIDTH*5)-1:0] rData=0; reg [(C_PCI_DATA_WORD*3)-1:0] rDE=0; reg [(C_PCI_DATA_COUNT_WIDTH*2)-1:0] rDECount=0; reg [5:0] rDone=0; reg [5:0] rErr=0; reg [(C_TAG_WIDTH*6)-1:0] rTag=0; reg [C_PCI_DATA_WORD-1:0] rDEShift=0; reg [(C_PCI_DATA_WORD*2)-1:0] rDEShifted=0; reg rCountValid=0; reg [C_NUM_TAGS-1:0] rCountRst=0; reg [C_NUM_TAGS-1:0] rValidCount=0; reg rUseCurrCount=0; reg rUsePrevCount=0; reg [C_TAG_DW_COUNT_WIDTH-1:0] rPrevCount=0; reg [C_TAG_DW_COUNT_WIDTH-1:0] rCount=0; wire [C_TAG_DW_COUNT_WIDTH-1:0] wCount; wire [C_TAG_DW_COUNT_WIDTH-1:0] wCountClr = wCount & {C_TAG_DW_COUNT_WIDTH{rCountValid}}; reg [(C_TAG_DW_COUNT_WIDTH*3)-1:0] rWords=0; reg [C_PCI_DATA_WORD_WIDTH-1:0] rShift=0; reg [C_PCI_DATA_WORD_WIDTH-1:0] rShifted=0; reg rPosValid=0; reg [C_NUM_TAGS-1:0] rPosRst=0; reg [C_NUM_TAGS-1:0] rValidPos=0; reg rUseCurrPos=0; reg rUsePrevPos=0; reg [(C_DATA_ADDR_STRIDE_WIDTH*C_PCI_DATA_WORD)-1:0] rPrevPos=0; reg [(C_DATA_ADDR_STRIDE_WIDTH*C_PCI_DATA_WORD)-1:0] rPosNow=0; reg [(C_DATA_ADDR_STRIDE_WIDTH*C_PCI_DATA_WORD)-1:0] rPos=0; wire [(C_DATA_ADDR_STRIDE_WIDTH*C_PCI_DATA_WORD)-1:0] wPos; wire [(C_DATA_ADDR_STRIDE_WIDTH*C_PCI_DATA_WORD)-1:0] wPosClr = wPos & {C_DATA_ADDR_STRIDE_WIDTH*C_PCI_DATA_WORD{rPosValid}}; reg [(C_DATA_ADDR_WIDTH*C_PCI_DATA_WORD)-1:0] rAddr=0; reg [(C_PCI_DATA_WORD_WIDTH+5)-1:0] rShiftUp=0; reg [(C_PCI_DATA_WORD_WIDTH+5)-1:0] rShiftDown=0; reg [C_DATA_ADDR_WIDTH-1:0] rBaseAddr=0; reg [C_PCI_DATA_WIDTH-1:0] rDataShifted=0; reg rLTE1Pkt=0; reg rLTE2Pkt=0; reg [C_NUM_TAGS-1:0] rFinish=0; wire [31:0] wZero=32'd0; integer i; assign wDE = DATA_EN >> (DATA_START_FLAG ? DATA_START_OFFSET : 0);/* TODO: Could move this to the RX Engine*/ assign wData = DATA >> (DATA_START_FLAG ? {DATA_START_OFFSET,5'b0} : 0); generate if(C_PCI_DATA_WIDTH == 32) begin assign wDECount = VALID ? 1 : 0; end if(C_PCI_DATA_WIDTH == 64) begin assign wDECount = VALID ? DATA_EN[1] + DATA_EN[0] : 0; end if(C_PCI_DATA_WIDTH == 128) begin assign wDECount = VALID ? DATA_EN[3] + DATA_EN[2] + DATA_EN[1] + DATA_EN[0] : 0; end if(C_PCI_DATA_WIDTH == 256) begin assign wDECount = VALID ? DATA_EN[7] + DATA_EN[6] + DATA_EN[5] + DATA_EN[4] + DATA_EN[3] + DATA_EN[2] + DATA_EN[1] + DATA_EN[0] : 0; end endgenerate assign TAG_FINISH = rFinish; assign STORED_DATA_ADDR = rAddr; assign STORED_DATA = rDataShifted; assign STORED_DATA_EN = rDEShifted[1*C_PCI_DATA_WORD +:C_PCI_DATA_WORD]; assign PKT_VALID = rValid[5]; assign PKT_TAG = rTag[5*C_TAG_WIDTH +:C_TAG_WIDTH]; assign PKT_WORDS = rWords[2*C_TAG_DW_COUNT_WIDTH +:C_TAG_DW_COUNT_WIDTH]; assign PKT_WORDS_LTE1 = rLTE1Pkt; assign PKT_WORDS_LTE2 = rLTE2Pkt; assign PKT_DONE = rDone[5]; assign PKT_ERR = rErr[5]; // Pipeline the input and intermediate data always @ (posedge CLK) begin if (RST) begin rValid <= #1 0; rTag <= #1 0; end else begin rValid <= #1 (rValid<<1) | VALID; rTag <= #1 (rTag<<C_TAG_WIDTH) | TAG; end rData <= #1 (rData<<C_PCI_DATA_WIDTH) | wData; rDE <= #1 (rDE<<C_PCI_DATA_WORD) | wDE;//DATA_EN; rDECount <= #1 (rDECount<<C_PCI_DATA_COUNT_WIDTH) | wDECount;//DATA_EN_COUNT; rDone <= #1 (rDone<<1) | DONE; rErr <= #1 (rErr<<1) | ERR; rDEShifted <= #1 (rDEShifted<<C_PCI_DATA_WORD) | rDEShift; rWords <= #1 (rWords<<C_TAG_DW_COUNT_WIDTH) | rCount; rShifted <= #1 (rShifted<<C_PCI_DATA_WORD_WIDTH) | rShift; end // Input processing pipeline always @ (posedge CLK) begin // STAGE 0: Register the incoming data // STAGE 1: Request existing count from RAM // To cover the gap b/t reads and writes to RAM, next cycle we might need // to use the existing or even the previous rCount value if the tags match. rUseCurrCount <= #1 (rTag[0*C_TAG_WIDTH +:C_TAG_WIDTH] == rTag[1*C_TAG_WIDTH +:C_TAG_WIDTH] && rValid[1]); rUsePrevCount <= #1 (rTag[0*C_TAG_WIDTH +:C_TAG_WIDTH] == rTag[2*C_TAG_WIDTH +:C_TAG_WIDTH] && rValid[2]); rPrevCount <= #1 rCount; // See if we need to reset the count rCountValid <= #1 (RST ? 1'd0 : rCountRst>>rTag[0*C_TAG_WIDTH +:C_TAG_WIDTH]); rValidCount <= #1 (RST ? 0 : rValid[0]<<rTag[0*C_TAG_WIDTH +:C_TAG_WIDTH]); // STAGE 2: Calculate new count (saves next cycle) if (rUseCurrCount) begin rShift <= #1 rCount[0 +:C_PCI_DATA_WORD_WIDTH]; rCount <= #1 rCount + rDECount[1*C_PCI_DATA_COUNT_WIDTH +:C_PCI_DATA_COUNT_WIDTH]; end else if (rUsePrevCount) begin rShift <= #1 rPrevCount[0 +:C_PCI_DATA_WORD_WIDTH]; rCount <= #1 rPrevCount + rDECount[1*C_PCI_DATA_COUNT_WIDTH +:C_PCI_DATA_COUNT_WIDTH]; end else begin rShift <= #1 wCountClr[0 +:C_PCI_DATA_WORD_WIDTH]; rCount <= #1 wCountClr + rDECount[1*C_PCI_DATA_COUNT_WIDTH +:C_PCI_DATA_COUNT_WIDTH]; end // STAGE 3: Request existing positions from RAM // Barrel shift the DE rDEShift <= #1 (rDE[2*C_PCI_DATA_WORD +:C_PCI_DATA_WORD]<<rShift) | (rDE[2*C_PCI_DATA_WORD +:C_PCI_DATA_WORD]>>(C_PCI_DATA_WORD-rShift)); // To cover the gap b/t reads and writes to RAM, next cycle we might need // to use the existing or even the previous rPos values if the tags match. rUseCurrPos <= #1 (rTag[2*C_TAG_WIDTH +:C_TAG_WIDTH] == rTag[3*C_TAG_WIDTH +:C_TAG_WIDTH] && rValid[3]); rUsePrevPos <= #1 (rTag[2*C_TAG_WIDTH +:C_TAG_WIDTH] == rTag[4*C_TAG_WIDTH +:C_TAG_WIDTH] && rValid[4]); for (i = 0; i < C_PCI_DATA_WORD; i = i + 1) begin rPrevPos[C_DATA_ADDR_STRIDE_WIDTH*i +:C_DATA_ADDR_STRIDE_WIDTH] <= #1 (RST ? wZero[C_DATA_ADDR_STRIDE_WIDTH-1:0] : rPos[C_DATA_ADDR_STRIDE_WIDTH*i +:C_DATA_ADDR_STRIDE_WIDTH]); end // See if we need to reset the positions rPosValid <= #1 (RST ? 1'd0 : rPosRst>>rTag[2*C_TAG_WIDTH +:C_TAG_WIDTH]); rValidPos <= #1 (RST ? 0 : rValid[2]<<rTag[2*C_TAG_WIDTH +:C_TAG_WIDTH]); // STAGE 4: Calculate new positions (saves next cycle) if (rUseCurrPos) begin for (i = 0; i < C_PCI_DATA_WORD; i = i + 1) begin rPosNow[C_DATA_ADDR_STRIDE_WIDTH*i +:C_DATA_ADDR_STRIDE_WIDTH] <= #1 (RST ? wZero[C_DATA_ADDR_STRIDE_WIDTH-1:0] : rPos[C_DATA_ADDR_STRIDE_WIDTH*i +:C_DATA_ADDR_STRIDE_WIDTH]); rPos[C_DATA_ADDR_STRIDE_WIDTH*i +:C_DATA_ADDR_STRIDE_WIDTH] <= #1 (RST ? wZero[C_DATA_ADDR_STRIDE_WIDTH-1:0] : rPos[C_DATA_ADDR_STRIDE_WIDTH*i +:C_DATA_ADDR_STRIDE_WIDTH] + rDEShift[i]); end end else if (rUsePrevPos) begin for (i = 0; i < C_PCI_DATA_WORD; i = i + 1) begin rPosNow[C_DATA_ADDR_STRIDE_WIDTH*i +:C_DATA_ADDR_STRIDE_WIDTH] <= #1 (RST ? wZero[C_DATA_ADDR_STRIDE_WIDTH-1:0] : rPrevPos[C_DATA_ADDR_STRIDE_WIDTH*i +:C_DATA_ADDR_STRIDE_WIDTH]); rPos[C_DATA_ADDR_STRIDE_WIDTH*i +:C_DATA_ADDR_STRIDE_WIDTH] <= #1 (RST ? wZero[C_DATA_ADDR_STRIDE_WIDTH-1:0] : rPrevPos[C_DATA_ADDR_STRIDE_WIDTH*i +:C_DATA_ADDR_STRIDE_WIDTH] + rDEShift[i]); end end else begin for (i = 0; i < C_PCI_DATA_WORD; i = i + 1) begin rPosNow[C_DATA_ADDR_STRIDE_WIDTH*i +:C_DATA_ADDR_STRIDE_WIDTH] <= #1 (RST ? wZero[C_DATA_ADDR_STRIDE_WIDTH-1:0] : wPosClr[i*C_DATA_ADDR_STRIDE_WIDTH +:C_DATA_ADDR_STRIDE_WIDTH]); rPos[C_DATA_ADDR_STRIDE_WIDTH*i +:C_DATA_ADDR_STRIDE_WIDTH] <= #1 (RST ? wZero[C_DATA_ADDR_STRIDE_WIDTH-1:0] : wPosClr[i*C_DATA_ADDR_STRIDE_WIDTH +:C_DATA_ADDR_STRIDE_WIDTH] + rDEShift[i]); end end // Calculate the base address offset rBaseAddr <= #1 rTag[3*C_TAG_WIDTH +:C_TAG_WIDTH]<<C_DATA_ADDR_STRIDE_WIDTH; // Calculate the shift amounts for barrel shifting payload data rShiftUp <= #1 rShifted[0*C_PCI_DATA_WORD_WIDTH +:C_PCI_DATA_WORD_WIDTH]<<5; rShiftDown <= #1 (C_PCI_DATA_WORD[C_PCI_DATA_WORD_WIDTH:0] - rShifted[0*C_PCI_DATA_WORD_WIDTH +:C_PCI_DATA_WORD_WIDTH])<<5; // STAGE 5: Prepare to write data, final info for (i = 0; i < C_PCI_DATA_WORD; i = i + 1) begin rAddr[C_DATA_ADDR_WIDTH*i +:C_DATA_ADDR_WIDTH] <= #1 rPosNow[C_DATA_ADDR_STRIDE_WIDTH*i +:C_DATA_ADDR_STRIDE_WIDTH] + rBaseAddr; end rDataShifted <= #1 (rData[4*C_PCI_DATA_WIDTH +:C_PCI_DATA_WIDTH]<<rShiftUp) | (rData[4*C_PCI_DATA_WIDTH +:C_PCI_DATA_WIDTH]>>rShiftDown); rLTE1Pkt <= #1 (rWords[1*C_TAG_DW_COUNT_WIDTH +:C_TAG_DW_COUNT_WIDTH] <= C_PCI_DATA_WORD); rLTE2Pkt <= #1 (rWords[1*C_TAG_DW_COUNT_WIDTH +:C_TAG_DW_COUNT_WIDTH] <= (C_PCI_DATA_WORD*2)); rFinish <= #1 (rValid[4] & (rDone[4] | rErr[4]))<<rTag[4*C_TAG_WIDTH +:C_TAG_WIDTH]; // STAGE 6: Write data, final info end // Reset the count and positions when needed always @ (posedge CLK) begin if (RST) begin rCountRst <= #1 0; rPosRst <= #1 0; end else begin rCountRst <= #1 (rCountRst | rValidCount) & ~TAG_CLEAR; rPosRst <= #1 (rPosRst | rValidPos) & ~TAG_CLEAR; end end // RAM for counts (* RAM_STYLE="DISTRIBUTED" *) ram_1clk_1w_1r #( .C_RAM_WIDTH(C_TAG_DW_COUNT_WIDTH), .C_RAM_DEPTH(C_NUM_TAGS)) countRam ( .CLK(CLK), .ADDRA(rTag[2*C_TAG_WIDTH +:C_TAG_WIDTH]), .WEA(rValid[2]), .DINA(rCount), .ADDRB(rTag[0*C_TAG_WIDTH +:C_TAG_WIDTH]), .DOUTB(wCount) ); // RAM for positions (* RAM_STYLE="DISTRIBUTED" *) ram_1clk_1w_1r #( .C_RAM_WIDTH(C_PCI_DATA_WORD*C_DATA_ADDR_STRIDE_WIDTH), .C_RAM_DEPTH(C_NUM_TAGS)) posRam ( .CLK(CLK), .ADDRA(rTag[4*C_TAG_WIDTH +:C_TAG_WIDTH]), .WEA(rValid[4]), .DINA(rPos), .ADDRB(rTag[2*C_TAG_WIDTH +:C_TAG_WIDTH]), .DOUTB(wPos) ); endmodule // Local Variables: // verilog-library-directories:("." "registers/" "../common/") // End:
// ---------------------------------------------------------------------- // Copyright (c) 2016, The Regents of the University of California All // rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // // * Neither the name of The Regents of the University of California // nor the names of its contributors may be used to endorse or // promote products derived from this software without specific // prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL REGENTS OF THE // UNIVERSITY OF CALIFORNIA BE LIABLE FOR ANY DIRECT, INDIRECT, // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, // BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS // OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND // ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR // TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE // USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH // DAMAGE. // ---------------------------------------------------------------------- //---------------------------------------------------------------------------- // Filename: rxc_engine_128.v // Version: 1.0 // Verilog Standard: Verilog-2001 // Description: The RX Engine (Classic) takes a single stream of TLP // packets and provides the request packets on the RXR Interface, and the // completion packets on the RXC Interface. // This Engine is capable of operating at "line rate". // Author: Dustin Richmond (@darichmond) //----------------------------------------------------------------------------- `include "trellis.vh" `include "tlp.vh" module rxc_engine_128 #(parameter C_PCI_DATA_WIDTH = 128, parameter C_RX_PIPELINE_DEPTH=10) (// Interface: Clocks input CLK, // Interface: Resets input RST_BUS, // Replacement for generic RST_IN input RST_LOGIC, // Addition for RIFFA_RST output DONE_RXC_RST, // Interface: RX Classic input [C_PCI_DATA_WIDTH-1:0] RX_TLP, input RX_TLP_VALID, input RX_TLP_START_FLAG, input [`SIG_OFFSET_W-1:0] RX_TLP_START_OFFSET, input RX_TLP_END_FLAG, input [`SIG_OFFSET_W-1:0] RX_TLP_END_OFFSET, input [`SIG_BARDECODE_W-1:0] RX_TLP_BAR_DECODE, // Interface: RXC Engine output [C_PCI_DATA_WIDTH-1:0] RXC_DATA, output RXC_DATA_VALID, output [(C_PCI_DATA_WIDTH/32)-1:0] RXC_DATA_WORD_ENABLE, output RXC_DATA_START_FLAG, output [clog2s(C_PCI_DATA_WIDTH/32)-1:0] RXC_DATA_START_OFFSET, output RXC_DATA_END_FLAG, output [clog2s(C_PCI_DATA_WIDTH/32)-1:0] RXC_DATA_END_OFFSET, output [`SIG_LBE_W-1:0] RXC_META_LDWBE, output [`SIG_FBE_W-1:0] RXC_META_FDWBE, output [`SIG_TAG_W-1:0] RXC_META_TAG, output [`SIG_LOWADDR_W-1:0] RXC_META_ADDR, output [`SIG_TYPE_W-1:0] RXC_META_TYPE, output [`SIG_LEN_W-1:0] RXC_META_LENGTH, output [`SIG_BYTECNT_W-1:0] RXC_META_BYTES_REMAINING, output [`SIG_CPLID_W-1:0] RXC_META_COMPLETER_ID, output RXC_META_EP, // Interface: RX Shift Register input [(C_RX_PIPELINE_DEPTH+1)*C_PCI_DATA_WIDTH-1:0] RX_SR_DATA, input [C_RX_PIPELINE_DEPTH:0] RX_SR_EOP, input [(C_RX_PIPELINE_DEPTH+1)*`SIG_OFFSET_W-1:0] RX_SR_END_OFFSET, input [(C_RX_PIPELINE_DEPTH+1)*`SIG_OFFSET_W-1:0] RX_SR_START_OFFSET, input [C_RX_PIPELINE_DEPTH:0] RX_SR_SOP, input [C_RX_PIPELINE_DEPTH:0] RX_SR_VALID ); /*AUTOWIRE*/ ///*AUTOOUTPUT*/ localparam C_RX_BE_W = (`SIG_FBE_W+`SIG_LBE_W); localparam C_RX_INPUT_STAGES = 1; localparam C_RX_OUTPUT_STAGES = 1; localparam C_RX_COMPUTATION_STAGES = 1; localparam C_RX_HDR_STAGES = 1; // Specific to the Xilinx 128-bit RXC Engine localparam C_TOTAL_STAGES = C_RX_COMPUTATION_STAGES + C_RX_OUTPUT_STAGES + C_RX_INPUT_STAGES + C_RX_HDR_STAGES; localparam C_OFFSET_WIDTH = clog2s(C_PCI_DATA_WIDTH/32); localparam C_STRADDLE_W = 64; localparam C_HDR_NOSTRADDLE_I = C_RX_INPUT_STAGES * C_PCI_DATA_WIDTH; localparam C_OUTPUT_STAGE_WIDTH = (C_PCI_DATA_WIDTH/32) + 2 + clog2s(C_PCI_DATA_WIDTH/32) + 1 + `SIG_TAG_W + `SIG_TYPE_W + `SIG_LOWADDR_W + `SIG_REQID_W + `SIG_LEN_W + `SIG_BYTECNT_W; // Header Reg Inputs wire [`SIG_OFFSET_W-1:0] __wRxcStartOffset; wire [`SIG_OFFSET_W-1:0] __wRxcStraddledStartOffset; wire [`TLP_MAXHDR_W-1:0] __wRxcHdr; wire [`TLP_MAXHDR_W-1:0] __wRxcHdrStraddled; wire [`TLP_MAXHDR_W-1:0] __wRxcHdrNotStraddled; wire __wRxcHdrStraddle; wire __wRxcHdrValid; wire __wRxcHdrSOP; wire __wRxcHdrSOPStraddle; // Header Reg Outputs wire _wRxcHdrValid; wire _wRxcHdrStraddle; wire _wRxcHdrSOPStraddle; wire _wRxcHdrSOP; wire [`TLP_MAXHDR_W-1:0] _wRxcHdr; wire _wRxcHdrSF; wire [2:0] _wRxcHdrDataSoff; wire _wRxcHdrEF; wire [1:0] _wRxcHdrDataEoff; wire _wRxcHdrSCP; // Single Cycle Packet wire _wRxcHdrMCP; // Multi Cycle Packet wire _wRxcHdrRegSF; wire _wRxcHdrRegValid; wire _wRxcHdrStartFlag; wire _wRxcHdr3DWHSF; wire [3:0] _wRxcHdrStartMask; wire [3:0] _wRxcHdrEndMask; // Header Reg Outputs wire [`TLP_MAXHDR_W-1:0] wRxcHdr; wire wRxcHdrSF; wire wRxcHdrEF; wire wRxcHdrValid; wire [63:0] wRxcMetadata; wire [`TLP_TYPE_W-1:0] wRxcType; wire [`TLP_LEN_W-1:0] wRxcLength; wire [2:0] wRxcHdrLength;// TODO: wire [`SIG_OFFSET_W-1:0] wRxcHdrStartOffset;// TODO: wire wRxcHdrSCP; // Single Cycle Packet wire wRxcHdrMCP; // Multi Cycle Packet wire [1:0] wRxcHdrDataSoff; wire [3:0] wRxcHdrStartMask; wire [3:0] wRxcHdrEndMask; // Output Register Inputs wire [C_PCI_DATA_WIDTH-1:0] wRxcData; wire wRxcDataValid; wire [(C_PCI_DATA_WIDTH/32)-1:0] wRxcDataWordEnable; wire wRxcDataStartFlag; wire [clog2s(C_PCI_DATA_WIDTH/32)-1:0] wRxcDataStartOffset; wire wRxcDataEndFlag; wire [clog2s(C_PCI_DATA_WIDTH/32)-1:0] wRxcDataEndOffset; wire [`SIG_TAG_W-1:0] wRxcMetaTag; wire [`SIG_TYPE_W-1:0] wRxcMetaType; wire [`SIG_LOWADDR_W-1:0] wRxcMetaAddr; wire [`SIG_REQID_W-1:0] wRxcMetaCompleterId; wire [`SIG_LEN_W-1:0] wRxcMetaLength; wire wRxcMetaEP; wire [`SIG_BYTECNT_W-1:0] wRxcMetaBytesRemaining; reg rStraddledSOP; reg rStraddledSOPSplit; reg rRST; assign DONE_RXC_RST = ~rRST; // ----- Header Register ----- assign __wRxcHdrSOP = RX_SR_SOP[C_RX_INPUT_STAGES] & ~__wRxcStartOffset[1]; assign __wRxcHdrSOPStraddle = RX_SR_SOP[C_RX_INPUT_STAGES] & __wRxcStraddledStartOffset[1]; assign __wRxcHdrNotStraddled = RX_SR_DATA[C_HDR_NOSTRADDLE_I +: C_PCI_DATA_WIDTH]; assign __wRxcHdrStraddled = {RX_SR_DATA[C_RX_INPUT_STAGES*C_PCI_DATA_WIDTH +: C_STRADDLE_W], RX_SR_DATA[(C_RX_INPUT_STAGES+1)*C_PCI_DATA_WIDTH + C_STRADDLE_W +: C_STRADDLE_W ]}; assign __wRxcStartOffset = RX_SR_START_OFFSET[`SIG_OFFSET_W*C_RX_INPUT_STAGES +: `SIG_OFFSET_W]; assign __wRxcStraddledStartOffset = RX_SR_START_OFFSET[`SIG_OFFSET_W*(C_RX_INPUT_STAGES) +: `SIG_OFFSET_W]; assign __wRxcHdrValid = __wRxcHdrSOP | ((rStraddledSOP | rStraddledSOPSplit) & RX_SR_VALID[C_RX_INPUT_STAGES]); assign _wRxcHdrRegSF = RX_SR_SOP[C_RX_INPUT_STAGES + C_RX_HDR_STAGES] & _wRxcHdrValid; assign _wRxcHdrDataSoff = {1'b0,_wRxcHdrSOPStraddle,1'b0} + 3'd3; assign _wRxcHdrRegValid = RX_SR_VALID[C_RX_INPUT_STAGES + C_RX_HDR_STAGES]; assign _wRxcHdr3DWHSF = ~_wRxcHdr[`TLP_4DWHBIT_I] & _wRxcHdrSOP; assign _wRxcHdrSF = (_wRxcHdr3DWHSF | _wRxcHdrSOPStraddle); assign _wRxcHdrEF = RX_SR_EOP[C_RX_INPUT_STAGES + C_RX_HDR_STAGES]; assign _wRxcHdrDataEoff = RX_SR_END_OFFSET[(C_RX_INPUT_STAGES+C_RX_HDR_STAGES)*`SIG_OFFSET_W +: C_OFFSET_WIDTH]; assign _wRxcHdrSCP = _wRxcHdrSF & _wRxcHdrEF & (_wRxcHdr[`TLP_TYPE_R] == `TLP_TYPE_CPL); assign _wRxcHdrMCP = (_wRxcHdrSF & ~_wRxcHdrEF & (_wRxcHdr[`TLP_TYPE_R] == `TLP_TYPE_CPL)) | (wRxcHdrMCP & ~wRxcHdrEF); assign _wRxcHdrStartMask = 4'hf << (_wRxcHdrSF ? _wRxcHdrDataSoff[1:0] : 0); assign wRxcDataWordEnable = wRxcHdrEndMask & wRxcHdrStartMask & {4{wRxcDataValid}}; assign wRxcDataValid = wRxcHdrSCP | wRxcHdrMCP; assign wRxcDataStartFlag = wRxcHdrSF; assign wRxcDataEndFlag = wRxcHdrEF; assign wRxcDataStartOffset = wRxcHdrDataSoff; assign wRxcMetaBytesRemaining = wRxcHdr[`TLP_CPLBYTECNT_R]; assign wRxcMetaTag = wRxcHdr[`TLP_CPLTAG_R]; assign wRxcMetaAddr = wRxcHdr[`TLP_CPLADDR_R]; assign wRxcMetaCompleterId = wRxcHdr[`TLP_REQREQID_R]; assign wRxcMetaLength = wRxcHdr[`TLP_LEN_R]; assign wRxcMetaEP = wRxcHdr[`TLP_EP_R]; assign wRxcMetaType = tlp_to_trellis_type({wRxcHdr[`TLP_FMT_R],wRxcHdr[`TLP_TYPE_R]}); assign RXC_DATA = RX_SR_DATA[C_PCI_DATA_WIDTH*C_TOTAL_STAGES +: C_PCI_DATA_WIDTH]; assign RXC_DATA_END_OFFSET = RX_SR_END_OFFSET[`SIG_OFFSET_W*(C_TOTAL_STAGES) +: C_OFFSET_WIDTH]; always @(posedge CLK) begin rStraddledSOP <= RX_SR_SOP[C_RX_INPUT_STAGES] & __wRxcStraddledStartOffset[1]; // Set Straddled SOP Split when there is a straddled packet where the // header is not contiguous. (Not sure if this is ever possible, but // better safe than sorry assert Straddled SOP Split. See Virtex 6 PCIe // errata.) if(__wRxcHdrSOP) begin rStraddledSOPSplit <=0; end else begin rStraddledSOPSplit <= (rStraddledSOP | rStraddledSOPSplit) & ~RX_SR_VALID[C_RX_INPUT_STAGES]; end end always @(posedge CLK) begin rRST <= RST_BUS | RST_LOGIC; end mux #( // Parameters .C_NUM_INPUTS (2), .C_CLOG_NUM_INPUTS (1), .C_WIDTH (`TLP_MAXHDR_W), .C_MUX_TYPE ("SELECT") /*AUTOINSTPARAM*/) hdr_mux ( // Outputs .MUX_OUTPUT (__wRxcHdr[`TLP_MAXHDR_W-1:0]), // Inputs .MUX_INPUTS ({__wRxcHdrStraddled[`TLP_MAXHDR_W-1:0], __wRxcHdrNotStraddled[`TLP_MAXHDR_W-1:0]}), .MUX_SELECT (rStraddledSOP | rStraddledSOPSplit) /*AUTOINST*/); register #( // Parameters .C_WIDTH (64 + 1), .C_VALUE (0) /*AUTOINSTPARAM*/) hdr_register_63_0 ( // Outputs .RD_DATA ({_wRxcHdr[C_STRADDLE_W-1:0], _wRxcHdrValid}), // Inputs .WR_DATA ({__wRxcHdr[C_STRADDLE_W-1:0], __wRxcHdrValid}), .WR_EN (__wRxcHdrSOP | rStraddledSOP), .RST_IN (0), // TODO: Remove /*AUTOINST*/ // Inputs .CLK (CLK)); register #( // Parameters .C_WIDTH (64), .C_VALUE (0) /*AUTOINSTPARAM*/) hdr_register_127_64 ( // Outputs .RD_DATA (_wRxcHdr[`TLP_MAXHDR_W-1:C_STRADDLE_W]), // Inputs .WR_DATA (__wRxcHdr[`TLP_MAXHDR_W-1:C_STRADDLE_W]), .WR_EN (__wRxcHdrSOP | rStraddledSOP | rStraddledSOPSplit), // Non straddled start, Straddled, or straddled split .RST_IN (0), /*AUTOINST*/ // Inputs .CLK (CLK)); register #( // Parameters .C_WIDTH (2), .C_VALUE (0) /*AUTOINSTPARAM*/) sf4dwh// TODO: Rename ( // Outputs .RD_DATA ({_wRxcHdrSOPStraddle,_wRxcHdrSOP}), // Inputs .WR_DATA ({rStraddledSOP,__wRxcHdrSOP}), .WR_EN (1), .RST_IN (0), /*AUTOINST*/ // Inputs .CLK (CLK)); // ----- Computation Register ----- register #( // Parameters .C_WIDTH (128 + 4),/* TODO: TLP_METADATA_W*/ .C_VALUE (0) /*AUTOINSTPARAM*/) metadata (// Output .RD_DATA ({wRxcHdr, wRxcHdrSF, wRxcHdrDataSoff, wRxcHdrEF}), // Inputs .RST_IN (0), .WR_DATA ({_wRxcHdr, _wRxcHdrSF, _wRxcHdrDataSoff[1:0], _wRxcHdrEF}), .WR_EN (1), /*AUTOINST*/ // Inputs .CLK (CLK)); register #( // Parameters .C_WIDTH (3+8), .C_VALUE (0) /*AUTOINSTPARAM*/) metadata_valid (// Output .RD_DATA ({wRxcHdrValid, wRxcHdrSCP, wRxcHdrMCP, wRxcHdrEndMask, wRxcHdrStartMask}), // Inputs .RST_IN (rRST), .WR_DATA ({_wRxcHdrValid, _wRxcHdrSCP, _wRxcHdrMCP, _wRxcHdrEndMask, _wRxcHdrStartMask}), // Need to invert the start mask .WR_EN (1), /*AUTOINST*/ // Inputs .CLK (CLK)); offset_to_mask #(// Parameters .C_MASK_SWAP (0), .C_MASK_WIDTH (4) /*AUTOINSTPARAM*/) o2m_ef ( // Outputs .MASK (_wRxcHdrEndMask), // Inputs .OFFSET_ENABLE (_wRxcHdrEF), .OFFSET (_wRxcHdrDataEoff) /*AUTOINST*/); pipeline #( // Parameters .C_DEPTH (C_RX_OUTPUT_STAGES), .C_WIDTH (C_OUTPUT_STAGE_WIDTH), .C_USE_MEMORY (0) /*AUTOINSTPARAM*/) output_pipeline ( // Outputs .WR_DATA_READY (), // Pinned to 1 .RD_DATA ({RXC_DATA_WORD_ENABLE, RXC_DATA_START_FLAG, RXC_DATA_START_OFFSET, RXC_DATA_END_FLAG, RXC_META_TAG, RXC_META_TYPE, RXC_META_ADDR, RXC_META_COMPLETER_ID, RXC_META_BYTES_REMAINING, RXC_META_LENGTH, RXC_META_EP}), .RD_DATA_VALID (RXC_DATA_VALID), // Inputs .WR_DATA ({wRxcDataWordEnable, wRxcDataStartFlag, wRxcDataStartOffset, wRxcDataEndFlag, wRxcMetaTag, wRxcMetaType, wRxcMetaAddr, wRxcMetaCompleterId, wRxcMetaBytesRemaining, wRxcMetaLength, wRxcMetaEP}), .WR_DATA_VALID (wRxcDataValid), .RD_DATA_READY (1'b1), /*AUTOINST*/ // Inputs .CLK (CLK), .RST_IN (rRST)); endmodule // Local Variables: // verilog-library-directories:("." "../../../common") // End:
(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (************************************************************************) Require Import Nnat ZArith_base ROmega ZArithRing Zdiv Morphisms. Local Open Scope Z_scope. (** This file provides results about the Round-Toward-Zero Euclidean division [Z.quotrem], whose projections are [Z.quot] (noted ÷) and [Z.rem]. This division and [Z.div] agree only on positive numbers. Otherwise, [Z.div] performs Round-Toward-Bottom (a.k.a Floor). This [Z.quot] is compatible with the division of usual programming languages such as Ocaml. In addition, it has nicer properties with respect to opposite and other usual operations. The definition of this division is now in file [BinIntDef], while most of the results about here are now in the main module [BinInt.Z], thanks to the generic "Numbers" layer. Remain here: - some compatibility notation for old names. - some extra results with less preconditions (in particular exploiting the arbitrary value of division by 0). *) Notation Ndiv_Zquot := N2Z.inj_quot (compat "8.3"). Notation Nmod_Zrem := N2Z.inj_rem (compat "8.3"). Notation Z_quot_rem_eq := Z.quot_rem' (compat "8.3"). Notation Zrem_lt := Z.rem_bound_abs (compat "8.3"). Notation Zquot_unique := Z.quot_unique (compat "8.3"). Notation Zrem_unique := Z.rem_unique (compat "8.3"). Notation Zrem_1_r := Z.rem_1_r (compat "8.3"). Notation Zquot_1_r := Z.quot_1_r (compat "8.3"). Notation Zrem_1_l := Z.rem_1_l (compat "8.3"). Notation Zquot_1_l := Z.quot_1_l (compat "8.3"). Notation Z_quot_same := Z.quot_same (compat "8.3"). Notation Z_quot_mult := Z.quot_mul (compat "8.3"). Notation Zquot_small := Z.quot_small (compat "8.3"). Notation Zrem_small := Z.rem_small (compat "8.3"). Notation Zquot2_quot := Zquot2_quot (compat "8.3"). (** Particular values taken for [a÷0] and [(Z.rem a 0)]. We avise to not rely on these arbitrary values. *) Lemma Zquot_0_r a : a ÷ 0 = 0. Proof. now destruct a. Qed. Lemma Zrem_0_r a : Z.rem a 0 = a. Proof. now destruct a. Qed. (** The following results are expressed without the [b<>0] condition whenever possible. *) Lemma Zrem_0_l a : Z.rem 0 a = 0. Proof. now destruct a. Qed. Lemma Zquot_0_l a : 0÷a = 0. Proof. now destruct a. Qed. Hint Resolve Zrem_0_l Zrem_0_r Zquot_0_l Zquot_0_r Z.quot_1_r Z.rem_1_r : zarith. Ltac zero_or_not a := destruct (Z.eq_decidable a 0) as [->|?]; [rewrite ?Zquot_0_l, ?Zrem_0_l, ?Zquot_0_r, ?Zrem_0_r; auto with zarith|]. Lemma Z_rem_same a : Z.rem a a = 0. Proof. zero_or_not a. now apply Z.rem_same. Qed. Lemma Z_rem_mult a b : Z.rem (a*b) b = 0. Proof. zero_or_not b. now apply Z.rem_mul. Qed. (** * Division and Opposite *) (* The precise equalities that are invalid with "historic" Zdiv. *) Theorem Zquot_opp_l a b : (-a)÷b = -(a÷b). Proof. zero_or_not b. now apply Z.quot_opp_l. Qed. Theorem Zquot_opp_r a b : a÷(-b) = -(a÷b). Proof. zero_or_not b. now apply Z.quot_opp_r. Qed. Theorem Zrem_opp_l a b : Z.rem (-a) b = -(Z.rem a b). Proof. zero_or_not b. now apply Z.rem_opp_l. Qed. Theorem Zrem_opp_r a b : Z.rem a (-b) = Z.rem a b. Proof. zero_or_not b. now apply Z.rem_opp_r. Qed. Theorem Zquot_opp_opp a b : (-a)÷(-b) = a÷b. Proof. zero_or_not b. now apply Z.quot_opp_opp. Qed. Theorem Zrem_opp_opp a b : Z.rem (-a) (-b) = -(Z.rem a b). Proof. zero_or_not b. now apply Z.rem_opp_opp. Qed. (** The sign of the remainder is the one of [a]. Due to the possible nullity of [a], a general result is to be stated in the following form: *) Theorem Zrem_sgn a b : 0 <= Z.sgn (Z.rem a b) * Z.sgn a. Proof. zero_or_not b. - apply Z.square_nonneg. - zero_or_not (Z.rem a b). rewrite Z.rem_sign_nz; trivial. apply Z.square_nonneg. Qed. (** This can also be said in a simplier way: *) Theorem Zrem_sgn2 a b : 0 <= (Z.rem a b) * a. Proof. zero_or_not b. - apply Z.square_nonneg. - now apply Z.rem_sign_mul. Qed. (** Reformulation of [Z.rem_bound_abs] in 2 then 4 particular cases. *) Theorem Zrem_lt_pos a b : 0<=a -> b<>0 -> 0 <= Z.rem a b < Z.abs b. Proof. intros; generalize (Z.rem_nonneg a b) (Z.rem_bound_abs a b); romega with *. Qed. Theorem Zrem_lt_neg a b : a<=0 -> b<>0 -> -Z.abs b < Z.rem a b <= 0. Proof. intros; generalize (Z.rem_nonpos a b) (Z.rem_bound_abs a b); romega with *. Qed. Theorem Zrem_lt_pos_pos a b : 0<=a -> 0<b -> 0 <= Z.rem a b < b. Proof. intros; generalize (Zrem_lt_pos a b); romega with *. Qed. Theorem Zrem_lt_pos_neg a b : 0<=a -> b<0 -> 0 <= Z.rem a b < -b. Proof. intros; generalize (Zrem_lt_pos a b); romega with *. Qed. Theorem Zrem_lt_neg_pos a b : a<=0 -> 0<b -> -b < Z.rem a b <= 0. Proof. intros; generalize (Zrem_lt_neg a b); romega with *. Qed. Theorem Zrem_lt_neg_neg a b : a<=0 -> b<0 -> b < Z.rem a b <= 0. Proof. intros; generalize (Zrem_lt_neg a b); romega with *. Qed. (** * Unicity results *) Definition Remainder a b r := (0 <= a /\ 0 <= r < Z.abs b) \/ (a <= 0 /\ -Z.abs b < r <= 0). Definition Remainder_alt a b r := Z.abs r < Z.abs b /\ 0 <= r * a. Lemma Remainder_equiv : forall a b r, Remainder a b r <-> Remainder_alt a b r. Proof. unfold Remainder, Remainder_alt; intuition. - romega with *. - romega with *. - rewrite <-(Z.mul_opp_opp). apply Z.mul_nonneg_nonneg; romega. - assert (0 <= Z.sgn r * Z.sgn a). { rewrite <-Z.sgn_mul, Z.sgn_nonneg; auto. } destruct r; simpl Z.sgn in *; romega with *. Qed. Theorem Zquot_mod_unique_full a b q r : Remainder a b r -> a = b*q + r -> q = a÷b /\ r = Z.rem a b. Proof. destruct 1 as [(H,H0)|(H,H0)]; intros. apply Zdiv_mod_unique with b; auto. apply Zrem_lt_pos; auto. romega with *. rewrite <- H1; apply Z.quot_rem'. rewrite <- (Z.opp_involutive a). rewrite Zquot_opp_l, Zrem_opp_l. generalize (Zdiv_mod_unique b (-q) (-a÷b) (-r) (Z.rem (-a) b)). generalize (Zrem_lt_pos (-a) b). rewrite <-Z.quot_rem', Z.mul_opp_r, <-Z.opp_add_distr, <-H1. romega with *. Qed. Theorem Zquot_unique_full a b q r : Remainder a b r -> a = b*q + r -> q = a÷b. Proof. intros; destruct (Zquot_mod_unique_full a b q r); auto. Qed. Theorem Zrem_unique_full a b q r : Remainder a b r -> a = b*q + r -> r = Z.rem a b. Proof. intros; destruct (Zquot_mod_unique_full a b q r); auto. Qed. (** * Order results about Zrem and Zquot *) (* Division of positive numbers is positive. *) Lemma Z_quot_pos a b : 0 <= a -> 0 <= b -> 0 <= a÷b. Proof. intros. zero_or_not b. apply Z.quot_pos; auto with zarith. Qed. (** As soon as the divisor is greater or equal than 2, the division is strictly decreasing. *) Lemma Z_quot_lt a b : 0 < a -> 2 <= b -> a÷b < a. Proof. intros. apply Z.quot_lt; auto with zarith. Qed. (** [<=] is compatible with a positive division. *) Lemma Z_quot_monotone a b c : 0<=c -> a<=b -> a÷c <= b÷c. Proof. intros. zero_or_not c. apply Z.quot_le_mono; auto with zarith. Qed. (** With our choice of division, rounding of (a÷b) is always done toward 0: *) Lemma Z_mult_quot_le a b : 0 <= a -> 0 <= b*(a÷b) <= a. Proof. intros. zero_or_not b. apply Z.mul_quot_le; auto with zarith. Qed. Lemma Z_mult_quot_ge a b : a <= 0 -> a <= b*(a÷b) <= 0. Proof. intros. zero_or_not b. apply Z.mul_quot_ge; auto with zarith. Qed. (** The previous inequalities between [b*(a÷b)] and [a] are exact iff the modulo is zero. *) Lemma Z_quot_exact_full a b : a = b*(a÷b) <-> Z.rem a b = 0. Proof. intros. zero_or_not b. intuition. apply Z.quot_exact; auto. Qed. (** A modulo cannot grow beyond its starting point. *) Theorem Zrem_le a b : 0 <= a -> 0 <= b -> Z.rem a b <= a. Proof. intros. zero_or_not b. apply Z.rem_le; auto with zarith. Qed. (** Some additionnal inequalities about Zdiv. *) Theorem Zquot_le_upper_bound: forall a b q, 0 < b -> a <= q*b -> a÷b <= q. Proof. intros a b q; rewrite Z.mul_comm; apply Z.quot_le_upper_bound. Qed. Theorem Zquot_lt_upper_bound: forall a b q, 0 <= a -> 0 < b -> a < q*b -> a÷b < q. Proof. intros a b q; rewrite Z.mul_comm; apply Z.quot_lt_upper_bound. Qed. Theorem Zquot_le_lower_bound: forall a b q, 0 < b -> q*b <= a -> q <= a÷b. Proof. intros a b q; rewrite Z.mul_comm; apply Z.quot_le_lower_bound. Qed. Theorem Zquot_sgn: forall a b, 0 <= Z.sgn (a÷b) * Z.sgn a * Z.sgn b. Proof. destruct a as [ |a|a]; destruct b as [ |b|b]; simpl; auto with zarith; unfold Z.quot; simpl; destruct N.pos_div_eucl; simpl; destruct n; simpl; auto with zarith. Qed. (** * Relations between usual operations and Zmod and Zdiv *) (** First, a result that used to be always valid with Zdiv, but must be restricted here. For instance, now (9+(-5)*2) rem 2 = -1 <> 1 = 9 rem 2 *) Lemma Z_rem_plus : forall a b c:Z, 0 <= (a+b*c) * a -> Z.rem (a + b * c) c = Z.rem a c. Proof. intros. zero_or_not c. apply Z.rem_add; auto with zarith. Qed. Lemma Z_quot_plus : forall a b c:Z, 0 <= (a+b*c) * a -> c<>0 -> (a + b * c) ÷ c = a ÷ c + b. Proof. intros. apply Z.quot_add; auto with zarith. Qed. Theorem Z_quot_plus_l: forall a b c : Z, 0 <= (a*b+c)*c -> b<>0 -> b<>0 -> (a * b + c) ÷ b = a + c ÷ b. Proof. intros. apply Z.quot_add_l; auto with zarith. Qed. (** Cancellations. *) Lemma Zquot_mult_cancel_r : forall a b c:Z, c<>0 -> (a*c)÷(b*c) = a÷b. Proof. intros. zero_or_not b. apply Z.quot_mul_cancel_r; auto. Qed. Lemma Zquot_mult_cancel_l : forall a b c:Z, c<>0 -> (c*a)÷(c*b) = a÷b. Proof. intros. rewrite (Z.mul_comm c b). zero_or_not b. rewrite (Z.mul_comm b c). apply Z.quot_mul_cancel_l; auto. Qed. Lemma Zmult_rem_distr_l: forall a b c, Z.rem (c*a) (c*b) = c * (Z.rem a b). Proof. intros. zero_or_not c. rewrite (Z.mul_comm c b). zero_or_not b. rewrite (Z.mul_comm b c). apply Z.mul_rem_distr_l; auto. Qed. Lemma Zmult_rem_distr_r: forall a b c, Z.rem (a*c) (b*c) = (Z.rem a b) * c. Proof. intros. zero_or_not b. rewrite (Z.mul_comm b c). zero_or_not c. rewrite (Z.mul_comm c b). apply Z.mul_rem_distr_r; auto. Qed. (** Operations modulo. *) Theorem Zrem_rem: forall a n, Z.rem (Z.rem a n) n = Z.rem a n. Proof. intros. zero_or_not n. apply Z.rem_rem; auto. Qed. Theorem Zmult_rem: forall a b n, Z.rem (a * b) n = Z.rem (Z.rem a n * Z.rem b n) n. Proof. intros. zero_or_not n. apply Z.mul_rem; auto. Qed. (** addition and modulo Generally speaking, unlike with Zdiv, we don't have (a+b) rem n = (a rem n + b rem n) rem n for any a and b. For instance, take (8 + (-10)) rem 3 = -2 whereas (8 rem 3 + (-10 rem 3)) rem 3 = 1. *) Theorem Zplus_rem: forall a b n, 0 <= a * b -> Z.rem (a + b) n = Z.rem (Z.rem a n + Z.rem b n) n. Proof. intros. zero_or_not n. apply Z.add_rem; auto. Qed. Lemma Zplus_rem_idemp_l: forall a b n, 0 <= a * b -> Z.rem (Z.rem a n + b) n = Z.rem (a + b) n. Proof. intros. zero_or_not n. apply Z.add_rem_idemp_l; auto. Qed. Lemma Zplus_rem_idemp_r: forall a b n, 0 <= a*b -> Z.rem (b + Z.rem a n) n = Z.rem (b + a) n. Proof. intros. zero_or_not n. apply Z.add_rem_idemp_r; auto. rewrite Z.mul_comm; auto. Qed. Lemma Zmult_rem_idemp_l: forall a b n, Z.rem (Z.rem a n * b) n = Z.rem (a * b) n. Proof. intros. zero_or_not n. apply Z.mul_rem_idemp_l; auto. Qed. Lemma Zmult_rem_idemp_r: forall a b n, Z.rem (b * Z.rem a n) n = Z.rem (b * a) n. Proof. intros. zero_or_not n. apply Z.mul_rem_idemp_r; auto. Qed. (** Unlike with Zdiv, the following result is true without restrictions. *) Lemma Zquot_Zquot : forall a b c, (a÷b)÷c = a÷(b*c). Proof. intros. zero_or_not b. rewrite Z.mul_comm. zero_or_not c. rewrite Z.mul_comm. apply Z.quot_quot; auto. Qed. (** A last inequality: *) Theorem Zquot_mult_le: forall a b c, 0<=a -> 0<=b -> 0<=c -> c*(a÷b) <= (c*a)÷b. Proof. intros. zero_or_not b. apply Z.quot_mul_le; auto with zarith. Qed. (** Z.rem is related to divisibility (see more in Znumtheory) *) Lemma Zrem_divides : forall a b, Z.rem a b = 0 <-> exists c, a = b*c. Proof. intros. zero_or_not b. firstorder. rewrite Z.rem_divide; trivial. split; intros (c,Hc); exists c; subst; auto with zarith. Qed. (** Particular case : dividing by 2 is related with parity *) Lemma Zquot2_odd_remainder : forall a, Remainder a 2 (if Z.odd a then Z.sgn a else 0). Proof. intros [ |p|p]. simpl. left. simpl. auto with zarith. left. destruct p; simpl; auto with zarith. right. destruct p; simpl; split; now auto with zarith. Qed. Lemma Zrem_odd : forall a, Z.rem a 2 = if Z.odd a then Z.sgn a else 0. Proof. intros. symmetry. apply Zrem_unique_full with (Z.quot2 a). apply Zquot2_odd_remainder. apply Zquot2_odd_eqn. Qed. Lemma Zrem_even : forall a, Z.rem a 2 = if Z.even a then 0 else Z.sgn a. Proof. intros a. rewrite Zrem_odd, Zodd_even_bool. now destruct Z.even. Qed. Lemma Zeven_rem : forall a, Z.even a = Z.eqb (Z.rem a 2) 0. Proof. intros a. rewrite Zrem_even. destruct a as [ |p|p]; trivial; now destruct p. Qed. Lemma Zodd_rem : forall a, Z.odd a = negb (Z.eqb (Z.rem a 2) 0). Proof. intros a. rewrite Zrem_odd. destruct a as [ |p|p]; trivial; now destruct p. Qed. (** * Interaction with "historic" Zdiv *) (** They agree at least on positive numbers: *) Theorem Zquotrem_Zdiv_eucl_pos : forall a b:Z, 0 <= a -> 0 < b -> a÷b = a/b /\ Z.rem a b = a mod b. Proof. intros. apply Zdiv_mod_unique with b. apply Zrem_lt_pos; auto with zarith. rewrite Z.abs_eq; auto with *; apply Z_mod_lt; auto with *. rewrite <- Z_div_mod_eq; auto with *. symmetry; apply Z.quot_rem; auto with *. Qed. Theorem Zquot_Zdiv_pos : forall a b, 0 <= a -> 0 <= b -> a÷b = a/b. Proof. intros a b Ha Hb. Z.le_elim Hb. - generalize (Zquotrem_Zdiv_eucl_pos a b Ha Hb); intuition. - subst; now rewrite Zquot_0_r, Zdiv_0_r. Qed. Theorem Zrem_Zmod_pos : forall a b, 0 <= a -> 0 < b -> Z.rem a b = a mod b. Proof. intros a b Ha Hb; generalize (Zquotrem_Zdiv_eucl_pos a b Ha Hb); intuition. Qed. (** Modulos are null at the same places *) Theorem Zrem_Zmod_zero : forall a b, b<>0 -> (Z.rem a b = 0 <-> a mod b = 0). Proof. intros. rewrite Zrem_divides, Zmod_divides; intuition. Qed.
(** * ImpCEvalFun: Evaluation Function for Imp *) (* $Date: 2013-07-01 18:48:47 -0400 (Mon, 01 Jul 2013) $ *) (* #################################### *) (** ** Evaluation Function *) Require Import Imp. (** Here's a first try at an evaluation function for commands, omitting [WHILE]. *) Fixpoint ceval_step1 (st : state) (c : com) : state := match c with | SKIP => st | l ::= a1 => update st l (aeval st a1) | c1 ;; c2 => let st' := ceval_step1 st c1 in ceval_step1 st' c2 | IFB b THEN c1 ELSE c2 FI => if (beval st b) then ceval_step1 st c1 else ceval_step1 st c2 | WHILE b1 DO c1 END => st (* bogus *) end. (** In a traditional functional programming language like ML or Haskell we could write the WHILE case as follows: << | WHILE b1 DO c1 END => if (beval st b1) then ceval_step1 st (c1;; WHILE b1 DO c1 END) else st >> Coq doesn't accept such a definition ([Error: Cannot guess decreasing argument of fix]) because the function we want to define is not guaranteed to terminate. Indeed, the changed [ceval_step1] function applied to the [loop] program from [Imp.v] would never terminate. Since Coq is not just a functional programming language, but also a consistent logic, any potentially non-terminating function needs to be rejected. Here is an invalid(!) Coq program showing what would go wrong if Coq allowed non-terminating recursive functions: << Fixpoint loop_false (n : nat) : False := loop_false n. >> That is, propositions like [False] would become provable (e.g. [loop_false 0] would be a proof of [False]), which would be a disaster for Coq's logical consistency. Thus, because it doesn't terminate on all inputs, the full version of [ceval_step1] cannot be written in Coq -- at least not without one additional trick... *) (** Second try, using an extra numeric argument as a "step index" to ensure that evaluation always terminates. *) Fixpoint ceval_step2 (st : state) (c : com) (i : nat) : state := match i with | O => empty_state | S i' => match c with | SKIP => st | l ::= a1 => update st l (aeval st a1) | c1 ;; c2 => let st' := ceval_step2 st c1 i' in ceval_step2 st' c2 i' | IFB b THEN c1 ELSE c2 FI => if (beval st b) then ceval_step2 st c1 i' else ceval_step2 st c2 i' | WHILE b1 DO c1 END => if (beval st b1) then let st' := ceval_step2 st c1 i' in ceval_step2 st' c i' else st end end. (** _Note_: It is tempting to think that the index [i] here is counting the "number of steps of evaluation." But if you look closely you'll see that this is not the case: for example, in the rule for sequencing, the same [i] is passed to both recursive calls. Understanding the exact way that [i] is treated will be important in the proof of [ceval__ceval_step], which is given as an exercise below. *) (** Third try, returning an [option state] instead of just a [state] so that we can distinguish between normal and abnormal termination. *) Fixpoint ceval_step3 (st : state) (c : com) (i : nat) : option state := match i with | O => None | S i' => match c with | SKIP => Some st | l ::= a1 => Some (update st l (aeval st a1)) | c1 ;; c2 => match (ceval_step3 st c1 i') with | Some st' => ceval_step3 st' c2 i' | None => None end | IFB b THEN c1 ELSE c2 FI => if (beval st b) then ceval_step3 st c1 i' else ceval_step3 st c2 i' | WHILE b1 DO c1 END => if (beval st b1) then match (ceval_step3 st c1 i') with | Some st' => ceval_step3 st' c i' | None => None end else Some st end end. (** We can improve the readability of this definition by introducing a bit of auxiliary notation to hide the "plumbing" involved in repeatedly matching against optional states. *) Notation "'LETOPT' x <== e1 'IN' e2" := (match e1 with | Some x => e2 | None => None end) (right associativity, at level 60). Fixpoint ceval_step (st : state) (c : com) (i : nat) : option state := match i with | O => None | S i' => match c with | SKIP => Some st | l ::= a1 => Some (update st l (aeval st a1)) | c1 ;; c2 => LETOPT st' <== ceval_step st c1 i' IN ceval_step st' c2 i' | IFB b THEN c1 ELSE c2 FI => if (beval st b) then ceval_step st c1 i' else ceval_step st c2 i' | WHILE b1 DO c1 END => if (beval st b1) then LETOPT st' <== ceval_step st c1 i' IN ceval_step st' c i' else Some st end end. Definition test_ceval (st:state) (c:com) := match ceval_step st c 500 with | None => None | Some st => Some (st X, st Y, st Z) end. (* Eval compute in (test_ceval empty_state (X ::= ANum 2;; IFB BLe (AId X) (ANum 1) THEN Y ::= ANum 3 ELSE Z ::= ANum 4 FI)). ====> Some (2, 0, 4) *) (** **** Exercise: 2 stars (pup_to_n) *) (** Write an Imp program that sums the numbers from [1] to [X] (inclusive: [1 + 2 + ... + X]) in the variable [Y]. Make sure your solution satisfies the test that follows. *) Definition pup_to_n : com := (* FILL IN HERE *) admit. (* Example pup_to_n_1 : test_ceval (update empty_state X 5) pup_to_n = Some (0, 15, 0). Proof. reflexivity. Qed. *) (** [] *) (** **** Exercise: 2 stars, optional (peven) *) (** Write a [While] program that sets [Z] to [0] if [X] is even and sets [Z] to [1] otherwise. Use [ceval_test] to test your program. *) (* FILL IN HERE *) (** [] *) (* ################################################################ *) (** ** Equivalence of Relational and Step-Indexed Evaluation *) (** As with arithmetic and boolean expressions, we'd hope that the two alternative definitions of evaluation actually boil down to the same thing. This section shows that this is the case. Make sure you understand the statements of the theorems and can follow the structure of the proofs. *) Theorem ceval_step__ceval: forall c st st', (exists i, ceval_step st c i = Some st') -> c / st || st'. Proof. intros c st st' H. inversion H as [i E]. clear H. generalize dependent st'. generalize dependent st. generalize dependent c. induction i as [| i' ]. Case "i = 0 -- contradictory". intros c st st' H. inversion H. Case "i = S i'". intros c st st' H. com_cases (destruct c) SCase; simpl in H; inversion H; subst; clear H. SCase "SKIP". apply E_Skip. SCase "::=". apply E_Ass. reflexivity. SCase ";;". destruct (ceval_step st c1 i') eqn:Heqr1. SSCase "Evaluation of r1 terminates normally". apply E_Seq with s. apply IHi'. rewrite Heqr1. reflexivity. apply IHi'. simpl in H1. assumption. SSCase "Otherwise -- contradiction". inversion H1. SCase "IFB". destruct (beval st b) eqn:Heqr. SSCase "r = true". apply E_IfTrue. rewrite Heqr. reflexivity. apply IHi'. assumption. SSCase "r = false". apply E_IfFalse. rewrite Heqr. reflexivity. apply IHi'. assumption. SCase "WHILE". destruct (beval st b) eqn :Heqr. SSCase "r = true". destruct (ceval_step st c i') eqn:Heqr1. SSSCase "r1 = Some s". apply E_WhileLoop with s. rewrite Heqr. reflexivity. apply IHi'. rewrite Heqr1. reflexivity. apply IHi'. simpl in H1. assumption. SSSCase "r1 = None". inversion H1. SSCase "r = false". inversion H1. apply E_WhileEnd. rewrite <- Heqr. subst. reflexivity. Qed. (** **** Exercise: 4 stars (ceval_step__ceval_inf) *) (** Write an informal proof of [ceval_step__ceval], following the usual template. (The template for case analysis on an inductively defined value should look the same as for induction, except that there is no induction hypothesis.) Make your proof communicate the main ideas to a human reader; do not simply transcribe the steps of the formal proof. (* FILL IN HERE *) [] *) Theorem ceval_step_more: forall i1 i2 st st' c, i1 <= i2 -> ceval_step st c i1 = Some st' -> ceval_step st c i2 = Some st'. Proof. induction i1 as [|i1']; intros i2 st st' c Hle Hceval. Case "i1 = 0". simpl in Hceval. inversion Hceval. Case "i1 = S i1'". destruct i2 as [|i2']. inversion Hle. assert (Hle': i1' <= i2') by omega. com_cases (destruct c) SCase. SCase "SKIP". simpl in Hceval. inversion Hceval. reflexivity. SCase "::=". simpl in Hceval. inversion Hceval. reflexivity. SCase ";;". simpl in Hceval. simpl. destruct (ceval_step st c1 i1') eqn:Heqst1'o. SSCase "st1'o = Some". apply (IHi1' i2') in Heqst1'o; try assumption. rewrite Heqst1'o. simpl. simpl in Hceval. apply (IHi1' i2') in Hceval; try assumption. SSCase "st1'o = None". inversion Hceval. SCase "IFB". simpl in Hceval. simpl. destruct (beval st b); apply (IHi1' i2') in Hceval; assumption. SCase "WHILE". simpl in Hceval. simpl. destruct (beval st b); try assumption. destruct (ceval_step st c i1') eqn: Heqst1'o. SSCase "st1'o = Some". apply (IHi1' i2') in Heqst1'o; try assumption. rewrite -> Heqst1'o. simpl. simpl in Hceval. apply (IHi1' i2') in Hceval; try assumption. SSCase "i1'o = None". simpl in Hceval. inversion Hceval. Qed. (** **** Exercise: 3 stars (ceval__ceval_step) *) (** Finish the following proof. You'll need [ceval_step_more] in a few places, as well as some basic facts about [<=] and [plus]. *) Theorem ceval__ceval_step: forall c st st', c / st || st' -> exists i, ceval_step st c i = Some st'. Proof. intros c st st' Hce. ceval_cases (induction Hce) Case. (* FILL IN HERE *) Admitted. (** [] *) Theorem ceval_and_ceval_step_coincide: forall c st st', c / st || st' <-> exists i, ceval_step st c i = Some st'. Proof. intros c st st'. split. apply ceval__ceval_step. apply ceval_step__ceval. Qed. (* ####################################################### *) (** ** Determinism of Evaluation (Simpler Proof) *) (** Here's a slicker proof showing that the evaluation relation is deterministic, using the fact that the relational and step-indexed definition of evaluation are the same. *) Theorem ceval_deterministic' : forall c st st1 st2, c / st || st1 -> c / st || st2 -> st1 = st2. Proof. intros c st st1 st2 He1 He2. apply ceval__ceval_step in He1. apply ceval__ceval_step in He2. inversion He1 as [i1 E1]. inversion He2 as [i2 E2]. apply ceval_step_more with (i2 := i1 + i2) in E1. apply ceval_step_more with (i2 := i1 + i2) in E2. rewrite E1 in E2. inversion E2. reflexivity. omega. omega. Qed.
(** * ImpCEvalFun: Evaluation Function for Imp *) (* $Date: 2013-07-01 18:48:47 -0400 (Mon, 01 Jul 2013) $ *) (* #################################### *) (** ** Evaluation Function *) Require Import Imp. (** Here's a first try at an evaluation function for commands, omitting [WHILE]. *) Fixpoint ceval_step1 (st : state) (c : com) : state := match c with | SKIP => st | l ::= a1 => update st l (aeval st a1) | c1 ;; c2 => let st' := ceval_step1 st c1 in ceval_step1 st' c2 | IFB b THEN c1 ELSE c2 FI => if (beval st b) then ceval_step1 st c1 else ceval_step1 st c2 | WHILE b1 DO c1 END => st (* bogus *) end. (** In a traditional functional programming language like ML or Haskell we could write the WHILE case as follows: << | WHILE b1 DO c1 END => if (beval st b1) then ceval_step1 st (c1;; WHILE b1 DO c1 END) else st >> Coq doesn't accept such a definition ([Error: Cannot guess decreasing argument of fix]) because the function we want to define is not guaranteed to terminate. Indeed, the changed [ceval_step1] function applied to the [loop] program from [Imp.v] would never terminate. Since Coq is not just a functional programming language, but also a consistent logic, any potentially non-terminating function needs to be rejected. Here is an invalid(!) Coq program showing what would go wrong if Coq allowed non-terminating recursive functions: << Fixpoint loop_false (n : nat) : False := loop_false n. >> That is, propositions like [False] would become provable (e.g. [loop_false 0] would be a proof of [False]), which would be a disaster for Coq's logical consistency. Thus, because it doesn't terminate on all inputs, the full version of [ceval_step1] cannot be written in Coq -- at least not without one additional trick... *) (** Second try, using an extra numeric argument as a "step index" to ensure that evaluation always terminates. *) Fixpoint ceval_step2 (st : state) (c : com) (i : nat) : state := match i with | O => empty_state | S i' => match c with | SKIP => st | l ::= a1 => update st l (aeval st a1) | c1 ;; c2 => let st' := ceval_step2 st c1 i' in ceval_step2 st' c2 i' | IFB b THEN c1 ELSE c2 FI => if (beval st b) then ceval_step2 st c1 i' else ceval_step2 st c2 i' | WHILE b1 DO c1 END => if (beval st b1) then let st' := ceval_step2 st c1 i' in ceval_step2 st' c i' else st end end. (** _Note_: It is tempting to think that the index [i] here is counting the "number of steps of evaluation." But if you look closely you'll see that this is not the case: for example, in the rule for sequencing, the same [i] is passed to both recursive calls. Understanding the exact way that [i] is treated will be important in the proof of [ceval__ceval_step], which is given as an exercise below. *) (** Third try, returning an [option state] instead of just a [state] so that we can distinguish between normal and abnormal termination. *) Fixpoint ceval_step3 (st : state) (c : com) (i : nat) : option state := match i with | O => None | S i' => match c with | SKIP => Some st | l ::= a1 => Some (update st l (aeval st a1)) | c1 ;; c2 => match (ceval_step3 st c1 i') with | Some st' => ceval_step3 st' c2 i' | None => None end | IFB b THEN c1 ELSE c2 FI => if (beval st b) then ceval_step3 st c1 i' else ceval_step3 st c2 i' | WHILE b1 DO c1 END => if (beval st b1) then match (ceval_step3 st c1 i') with | Some st' => ceval_step3 st' c i' | None => None end else Some st end end. (** We can improve the readability of this definition by introducing a bit of auxiliary notation to hide the "plumbing" involved in repeatedly matching against optional states. *) Notation "'LETOPT' x <== e1 'IN' e2" := (match e1 with | Some x => e2 | None => None end) (right associativity, at level 60). Fixpoint ceval_step (st : state) (c : com) (i : nat) : option state := match i with | O => None | S i' => match c with | SKIP => Some st | l ::= a1 => Some (update st l (aeval st a1)) | c1 ;; c2 => LETOPT st' <== ceval_step st c1 i' IN ceval_step st' c2 i' | IFB b THEN c1 ELSE c2 FI => if (beval st b) then ceval_step st c1 i' else ceval_step st c2 i' | WHILE b1 DO c1 END => if (beval st b1) then LETOPT st' <== ceval_step st c1 i' IN ceval_step st' c i' else Some st end end. Definition test_ceval (st:state) (c:com) := match ceval_step st c 500 with | None => None | Some st => Some (st X, st Y, st Z) end. (* Eval compute in (test_ceval empty_state (X ::= ANum 2;; IFB BLe (AId X) (ANum 1) THEN Y ::= ANum 3 ELSE Z ::= ANum 4 FI)). ====> Some (2, 0, 4) *) (** **** Exercise: 2 stars (pup_to_n) *) (** Write an Imp program that sums the numbers from [1] to [X] (inclusive: [1 + 2 + ... + X]) in the variable [Y]. Make sure your solution satisfies the test that follows. *) Definition pup_to_n : com := (* FILL IN HERE *) admit. (* Example pup_to_n_1 : test_ceval (update empty_state X 5) pup_to_n = Some (0, 15, 0). Proof. reflexivity. Qed. *) (** [] *) (** **** Exercise: 2 stars, optional (peven) *) (** Write a [While] program that sets [Z] to [0] if [X] is even and sets [Z] to [1] otherwise. Use [ceval_test] to test your program. *) (* FILL IN HERE *) (** [] *) (* ################################################################ *) (** ** Equivalence of Relational and Step-Indexed Evaluation *) (** As with arithmetic and boolean expressions, we'd hope that the two alternative definitions of evaluation actually boil down to the same thing. This section shows that this is the case. Make sure you understand the statements of the theorems and can follow the structure of the proofs. *) Theorem ceval_step__ceval: forall c st st', (exists i, ceval_step st c i = Some st') -> c / st || st'. Proof. intros c st st' H. inversion H as [i E]. clear H. generalize dependent st'. generalize dependent st. generalize dependent c. induction i as [| i' ]. Case "i = 0 -- contradictory". intros c st st' H. inversion H. Case "i = S i'". intros c st st' H. com_cases (destruct c) SCase; simpl in H; inversion H; subst; clear H. SCase "SKIP". apply E_Skip. SCase "::=". apply E_Ass. reflexivity. SCase ";;". destruct (ceval_step st c1 i') eqn:Heqr1. SSCase "Evaluation of r1 terminates normally". apply E_Seq with s. apply IHi'. rewrite Heqr1. reflexivity. apply IHi'. simpl in H1. assumption. SSCase "Otherwise -- contradiction". inversion H1. SCase "IFB". destruct (beval st b) eqn:Heqr. SSCase "r = true". apply E_IfTrue. rewrite Heqr. reflexivity. apply IHi'. assumption. SSCase "r = false". apply E_IfFalse. rewrite Heqr. reflexivity. apply IHi'. assumption. SCase "WHILE". destruct (beval st b) eqn :Heqr. SSCase "r = true". destruct (ceval_step st c i') eqn:Heqr1. SSSCase "r1 = Some s". apply E_WhileLoop with s. rewrite Heqr. reflexivity. apply IHi'. rewrite Heqr1. reflexivity. apply IHi'. simpl in H1. assumption. SSSCase "r1 = None". inversion H1. SSCase "r = false". inversion H1. apply E_WhileEnd. rewrite <- Heqr. subst. reflexivity. Qed. (** **** Exercise: 4 stars (ceval_step__ceval_inf) *) (** Write an informal proof of [ceval_step__ceval], following the usual template. (The template for case analysis on an inductively defined value should look the same as for induction, except that there is no induction hypothesis.) Make your proof communicate the main ideas to a human reader; do not simply transcribe the steps of the formal proof. (* FILL IN HERE *) [] *) Theorem ceval_step_more: forall i1 i2 st st' c, i1 <= i2 -> ceval_step st c i1 = Some st' -> ceval_step st c i2 = Some st'. Proof. induction i1 as [|i1']; intros i2 st st' c Hle Hceval. Case "i1 = 0". simpl in Hceval. inversion Hceval. Case "i1 = S i1'". destruct i2 as [|i2']. inversion Hle. assert (Hle': i1' <= i2') by omega. com_cases (destruct c) SCase. SCase "SKIP". simpl in Hceval. inversion Hceval. reflexivity. SCase "::=". simpl in Hceval. inversion Hceval. reflexivity. SCase ";;". simpl in Hceval. simpl. destruct (ceval_step st c1 i1') eqn:Heqst1'o. SSCase "st1'o = Some". apply (IHi1' i2') in Heqst1'o; try assumption. rewrite Heqst1'o. simpl. simpl in Hceval. apply (IHi1' i2') in Hceval; try assumption. SSCase "st1'o = None". inversion Hceval. SCase "IFB". simpl in Hceval. simpl. destruct (beval st b); apply (IHi1' i2') in Hceval; assumption. SCase "WHILE". simpl in Hceval. simpl. destruct (beval st b); try assumption. destruct (ceval_step st c i1') eqn: Heqst1'o. SSCase "st1'o = Some". apply (IHi1' i2') in Heqst1'o; try assumption. rewrite -> Heqst1'o. simpl. simpl in Hceval. apply (IHi1' i2') in Hceval; try assumption. SSCase "i1'o = None". simpl in Hceval. inversion Hceval. Qed. (** **** Exercise: 3 stars (ceval__ceval_step) *) (** Finish the following proof. You'll need [ceval_step_more] in a few places, as well as some basic facts about [<=] and [plus]. *) Theorem ceval__ceval_step: forall c st st', c / st || st' -> exists i, ceval_step st c i = Some st'. Proof. intros c st st' Hce. ceval_cases (induction Hce) Case. (* FILL IN HERE *) Admitted. (** [] *) Theorem ceval_and_ceval_step_coincide: forall c st st', c / st || st' <-> exists i, ceval_step st c i = Some st'. Proof. intros c st st'. split. apply ceval__ceval_step. apply ceval_step__ceval. Qed. (* ####################################################### *) (** ** Determinism of Evaluation (Simpler Proof) *) (** Here's a slicker proof showing that the evaluation relation is deterministic, using the fact that the relational and step-indexed definition of evaluation are the same. *) Theorem ceval_deterministic' : forall c st st1 st2, c / st || st1 -> c / st || st2 -> st1 = st2. Proof. intros c st st1 st2 He1 He2. apply ceval__ceval_step in He1. apply ceval__ceval_step in He2. inversion He1 as [i1 E1]. inversion He2 as [i2 E2]. apply ceval_step_more with (i2 := i1 + i2) in E1. apply ceval_step_more with (i2 := i1 + i2) in E2. rewrite E1 in E2. inversion E2. reflexivity. omega. omega. Qed.
//----------------------------------------------------------------------------- //-- Divisor de frecuencia generico //-- (c) BQ. August 2015. written by Juan Gonzalez (obijuan) //----------------------------------------------------------------------------- //-- GPL license //----------------------------------------------------------------------------- `include "divider.vh" //-- Entrada: clk_in. Señal original //-- Salida: clk_out. Señal de frecuencia 1/M de la original module divider(input wire clk_in, output wire clk_out); //-- Valor por defecto del divisor //-- Lo ponemos a 1 Hz parameter M = `F_2KHz; //-- Numero de bits para almacenar el divisor //-- Se calculan con la funcion de verilog $clog2, que nos devuelve el //-- numero de bits necesarios para representar el numero M //-- Es un parametro local, que no se puede modificar al instanciar localparam N = $clog2(M); //-- Registro para implementar el contador modulo M reg [N-1:0] divcounter = 0; //-- Contador módulo M always @(posedge clk_in) divcounter <= (divcounter == M - 1) ? 0 : divcounter + 1; //-- Sacar el bit mas significativo por clk_out assign clk_out = divcounter[N-1]; endmodule //-- Contador módulo M: Otra manera de implementarlo /* always @(posedge clk_in) if (divcounter == M - 1) divcounter <= 0; else divcounter <= divcounter + 1; */
//----------------------------------------------------------------------------- //-- Divisor de frecuencia generico //-- (c) BQ. August 2015. written by Juan Gonzalez (obijuan) //----------------------------------------------------------------------------- //-- GPL license //----------------------------------------------------------------------------- `include "divider.vh" //-- Entrada: clk_in. Señal original //-- Salida: clk_out. Señal de frecuencia 1/M de la original module divider(input wire clk_in, output wire clk_out); //-- Valor por defecto del divisor //-- Lo ponemos a 1 Hz parameter M = `F_2KHz; //-- Numero de bits para almacenar el divisor //-- Se calculan con la funcion de verilog $clog2, que nos devuelve el //-- numero de bits necesarios para representar el numero M //-- Es un parametro local, que no se puede modificar al instanciar localparam N = $clog2(M); //-- Registro para implementar el contador modulo M reg [N-1:0] divcounter = 0; //-- Contador módulo M always @(posedge clk_in) divcounter <= (divcounter == M - 1) ? 0 : divcounter + 1; //-- Sacar el bit mas significativo por clk_out assign clk_out = divcounter[N-1]; endmodule //-- Contador módulo M: Otra manera de implementarlo /* always @(posedge clk_in) if (divcounter == M - 1) divcounter <= 0; else divcounter <= divcounter + 1; */
////////////////////////////////////////////////////////////////////////////////// // d_partial_FFM_gate_6b.v for Cosmos OpenSSD // Copyright (c) 2015 Hanyang University ENC Lab. // Contributed by Jinwoo Jeong <[email protected]> // Ilyong Jung <[email protected]> // Yong Ho Song <[email protected]> // // This file is part of Cosmos OpenSSD. // // Cosmos OpenSSD is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 3, or (at your option) // any later version. // // Cosmos OpenSSD is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. // See the GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with Cosmos OpenSSD; see the file COPYING. // If not, see <http://www.gnu.org/licenses/>. ////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////// // Company: ENC Lab. <http://enc.hanyang.ac.kr> // Engineer: Jinwoo Jeong <[email protected]> // Ilyong Jung <[email protected]> // // Project Name: Cosmos OpenSSD // Design Name: BCH Page Decoder // Module Name: d_partial_FFM_gate_6b // File Name: d_partial_FFM_gate_6b.v // // Version: v1.0.1-6b // // Description: // - parallel Finite Field Multiplier (FFM) module // - 2 polynomial form input, 1 polynomial form output ////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////// // Revision History: // // * v1.0.1 // - minor modification for releasing // // * v1.0.0 // - first draft ////////////////////////////////////////////////////////////////////////////////// `timescale 1ns / 1ps module d_partial_FFM_gate_6b ( input wire [5:0] i_a, // input term A input wire [5:0] i_b, // input term B output wire [10:0] o_r // output term result ); /////////////////////////////////////////////////////////// // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! // // // // ONLY FOR 6 BIT POLYNOMIAL MULTIPLICATION // // // // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! // /////////////////////////////////////////////////////////// // multiplication assign o_r[10] = (i_a[5]&i_b[5]); assign o_r[ 9] = (i_a[4]&i_b[5]) ^ (i_a[5]&i_b[4]); assign o_r[ 8] = (i_a[3]&i_b[5]) ^ (i_a[4]&i_b[4]) ^ (i_a[5]&i_b[3]); assign o_r[ 7] = (i_a[2]&i_b[5]) ^ (i_a[3]&i_b[4]) ^ (i_a[4]&i_b[3]) ^ (i_a[5]&i_b[2]); assign o_r[ 6] = (i_a[1]&i_b[5]) ^ (i_a[2]&i_b[4]) ^ (i_a[3]&i_b[3]) ^ (i_a[4]&i_b[2]) ^ (i_a[5]&i_b[1]); assign o_r[ 5] = (i_a[0]&i_b[5]) ^ (i_a[1]&i_b[4]) ^ (i_a[2]&i_b[3]) ^ (i_a[3]&i_b[2]) ^ (i_a[4]&i_b[1]) ^ (i_a[5]&i_b[0]); assign o_r[ 4] = (i_a[0]&i_b[4]) ^ (i_a[1]&i_b[3]) ^ (i_a[2]&i_b[2]) ^ (i_a[3]&i_b[1]) ^ (i_a[4]&i_b[0]); assign o_r[ 3] = (i_a[0]&i_b[3]) ^ (i_a[1]&i_b[2]) ^ (i_a[2]&i_b[1]) ^ (i_a[3]&i_b[0]); assign o_r[ 2] = (i_a[0]&i_b[2]) ^ (i_a[1]&i_b[1]) ^ (i_a[2]&i_b[0]); assign o_r[ 1] = (i_a[0]&i_b[1]) ^ (i_a[1]&i_b[0]); assign o_r[ 0] = (i_a[0]&i_b[0]); endmodule