text
stringlengths
0
1.73k
source
stringlengths
35
119
category
stringclasses
2 values
LD, pivots = torch.linalg.ldl_factor(A) >>> LD tensor([[ 7.2079, 0.0000, 0.0000], [ 0.5884, 0.9595, 0.0000], [ 0.2695, -0.8513, 0.1633]]) >>> pivots tensor([1, 2, 3], dtype=torch.int32)
https://pytorch.org/docs/stable/generated/torch.linalg.ldl_factor.html
pytorch docs
torch.cuda.change_current_allocator torch.cuda.change_current_allocator(allocator) Changes the currently used memory allocator to be the one provided. If the current allocator has already been used/initialized, this function will error. Parameters: allocator (torch.cuda.memory._CUDAAllocator) -- allocator to be set as the active one. Note: See Memory management for details on creating and using a custom allocator
https://pytorch.org/docs/stable/generated/torch.cuda.change_current_allocator.html
pytorch docs
torch.bitwise_not torch.bitwise_not(input, *, out=None) -> Tensor Computes the bitwise NOT of the given input tensor. The input tensor must be of integral or Boolean types. For bool tensors, it computes the logical NOT. Parameters: input (Tensor) -- the input tensor. Keyword Arguments: out (Tensor, optional) -- the output tensor. Example: >>> torch.bitwise_not(torch.tensor([-1, -2, 3], dtype=torch.int8)) tensor([ 0, 1, -4], dtype=torch.int8)
https://pytorch.org/docs/stable/generated/torch.bitwise_not.html
pytorch docs
torch.nn.functional.hardshrink torch.nn.functional.hardshrink(input, lambd=0.5) -> Tensor Applies the hard shrinkage function element-wise See "Hardshrink" for more details.
https://pytorch.org/docs/stable/generated/torch.nn.functional.hardshrink.html
pytorch docs
torch.atleast_2d torch.atleast_2d(*tensors) Returns a 2-dimensional view of each input tensor with zero dimensions. Input tensors with two or more dimensions are returned as-is. Parameters: input (Tensor or list of Tensors) -- Returns: output (Tensor or tuple of Tensors) Example: >>> x = torch.tensor(1.) >>> x tensor(1.) >>> torch.atleast_2d(x) tensor([[1.]]) >>> x = torch.arange(4).view(2, 2) >>> x tensor([[0, 1], [2, 3]]) >>> torch.atleast_2d(x) tensor([[0, 1], [2, 3]]) >>> x = torch.tensor(0.5) >>> y = torch.tensor(1.) >>> torch.atleast_2d((x, y)) (tensor([[0.5000]]), tensor([[1.]]))
https://pytorch.org/docs/stable/generated/torch.atleast_2d.html
pytorch docs
torch.nn.functional.dropout1d torch.nn.functional.dropout1d(input, p=0.5, training=True, inplace=False) Randomly zero out entire channels (a channel is a 1D feature map, e.g., the j-th channel of the i-th sample in the batched input is a 1D tensor \text{input}[i, j]) of the input tensor). Each channel will be zeroed out independently on every forward call with probability "p" using samples from a Bernoulli distribution. See "Dropout1d" for details. Parameters: * p (float) -- probability of a channel to be zeroed. Default: 0.5 * **training** (*bool*) -- apply dropout if is "True". Default: "True" * **inplace** (*bool*) -- If set to "True", will do this operation in-place. Default: "False" Return type: Tensor
https://pytorch.org/docs/stable/generated/torch.nn.functional.dropout1d.html
pytorch docs
torch.signal.windows.exponential torch.signal.windows.exponential(M, *, center=None, tau=1.0, sym=True, dtype=None, layout=torch.strided, device=None, requires_grad=False) Computes a window with an exponential waveform. Also known as Poisson window. The exponential window is defined as follows: w_n = \exp{\left(-\frac{|n - c|}{\tau}\right)} where c is the "center" of the window. The window is normalized to 1 (maximum value is 1). However, the 1 doesn't appear if "M" is even and "sym" is True. Parameters: M (int) -- the length of the window. In other words, the number of points of the returned window. Keyword Arguments: * center (float, optional) -- where the center of the window will be located. Default: M / 2 if sym is False, else (M - 1) / 2. * **tau** (*float**, **optional*) -- the decay value. Tau is generally associated with a percentage, that means, that the
https://pytorch.org/docs/stable/generated/torch.signal.windows.exponential.html
pytorch docs
value should vary within the interval (0, 100]. If tau is 100, it is considered the uniform window. Default: 1.0. * **sym** (*bool**, **optional*) -- If *False*, returns a periodic window suitable for use in spectral analysis. If *True*, returns a symmetric window suitable for use in filter design. Default: *True*. * **dtype** ("torch.dtype", optional) -- the desired data type of returned tensor. Default: if "None", uses a global default (see "torch.set_default_tensor_type()"). * **layout** ("torch.layout", optional) -- the desired layout of returned Tensor. Default: "torch.strided". * **device** ("torch.device", optional) -- the desired device of returned tensor. Default: if "None", uses the current device for the default tensor type (see "torch.set_default_tensor_type()"). "device" will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.
https://pytorch.org/docs/stable/generated/torch.signal.windows.exponential.html
pytorch docs
tensor types. * **requires_grad** (*bool**, **optional*) -- If autograd should record operations on the returned tensor. Default: "False". Return type: Tensor Examples: >>> # Generates a symmetric exponential window of size 10 and with a decay value of 1.0. >>> # The center will be at (M - 1) / 2, where M is 10. >>> torch.signal.windows.exponential(10) tensor([0.0111, 0.0302, 0.0821, 0.2231, 0.6065, 0.6065, 0.2231, 0.0821, 0.0302, 0.0111]) >>> # Generates a periodic exponential window and decay factor equal to .5 >>> torch.signal.windows.exponential(10, sym=False,tau=.5) tensor([4.5400e-05, 3.3546e-04, 2.4788e-03, 1.8316e-02, 1.3534e-01, 1.0000e+00, 1.3534e-01, 1.8316e-02, 2.4788e-03, 3.3546e-04])
https://pytorch.org/docs/stable/generated/torch.signal.windows.exponential.html
pytorch docs
torch.ne torch.ne(input, other, *, out=None) -> Tensor Computes \text{input} \neq \text{other} element-wise. The second argument can be a number or a tensor whose shape is broadcastable with the first argument. Parameters: * input (Tensor) -- the tensor to compare * **other** (*Tensor** or **float*) -- the tensor or value to compare Keyword Arguments: out (Tensor, optional) -- the output tensor. Returns: A boolean tensor that is True where "input" is not equal to "other" and False elsewhere Example: >>> torch.ne(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]])) tensor([[False, True], [True, False]])
https://pytorch.org/docs/stable/generated/torch.ne.html
pytorch docs
torch.Tensor.logcumsumexp Tensor.logcumsumexp(dim) -> Tensor See "torch.logcumsumexp()"
https://pytorch.org/docs/stable/generated/torch.Tensor.logcumsumexp.html
pytorch docs
default_activation_only_qconfig torch.quantization.qconfig.default_activation_only_qconfig alias of QConfig(activation=functools.partial(, observer=, quant_min=0, quant_max=255, dtype=torch.quint8, qscheme=torch.per_tensor_affine, reduce_range=True){}, weight=)
https://pytorch.org/docs/stable/generated/torch.quantization.qconfig.default_activation_only_qconfig.html
pytorch docs
torch.set_float32_matmul_precision torch.set_float32_matmul_precision(precision) Sets the internal precision of float32 matrix multiplications. Running float32 matrix multiplications in lower precision may significantly increase performance, and in some programs the loss of precision has a negligible impact. Supports three settings: * "highest", float32 matrix multiplications use the float32 datatype for internal computations. * "high", float32 matrix multiplications use the TensorFloat32 or bfloat16_3x datatypes for internal computations, if fast matrix multiplication algorithms using those datatypes internally are available. Otherwise float32 matrix multiplications are computed as if the precision is "highest". * "medium", float32 matrix multiplications use the bfloat16 datatype for internal computations, if a fast matrix
https://pytorch.org/docs/stable/generated/torch.set_float32_matmul_precision.html
pytorch docs
multiplication algorithm using that datatype internally is available. Otherwise float32 matrix multiplications are computed as if the precision is "high". Note: This does not change the output dtype of float32 matrix multiplications, it controls how the internal computation of the matrix multiplication is performed. Note: This does not change the precision of convolution operations. Other flags, like *torch.backends.cudnn.allow_tf32*, may control the precision of convolution operations. Note: This flag currently only affects one native device type: CUDA. If "high" or "medium" are set then the TensorFloat32 datatype will be used when computing float32 matrix multiplications, equivalent to setting *torch.backends.cuda.matmul.allow_tf32 = True*. When "highest" (the default) is set then the float32 datatype is used for internal computations, equivalent to setting *torch.backends.cuda.matmul.allow_tf32 = False*.
https://pytorch.org/docs/stable/generated/torch.set_float32_matmul_precision.html
pytorch docs
Parameters: precision (str) -- can be set to "highest" (default), "high", or "medium" (see above).
https://pytorch.org/docs/stable/generated/torch.set_float32_matmul_precision.html
pytorch docs
Linear class torch.ao.nn.qat.Linear(in_features, out_features, bias=True, qconfig=None, device=None, dtype=None) A linear module attached with FakeQuantize modules for weight, used for quantization aware training. We adopt the same interface as torch.nn.Linear, please see https://pytorch.org/docs/stable/nn.html#torch.nn.Linear for documentation. Similar to torch.nn.Linear, with FakeQuantize modules initialized to default. Variables: weight (torch.Tensor) -- fake quant module for weight classmethod from_float(mod) Create a qat module from a float module or qparams_dict Args: *mod* a float module, either produced by torch.ao.quantization utilities or directly from user
https://pytorch.org/docs/stable/generated/torch.ao.nn.qat.Linear.html
pytorch docs
LazyModuleMixin class torch.nn.modules.lazy.LazyModuleMixin(args, *kwargs) A mixin for modules that lazily initialize parameters, also known as "lazy modules." Modules that lazily initialize parameters, or "lazy modules", derive the shapes of their parameters from the first input(s) to their forward method. Until that first forward they contain "torch.nn.UninitializedParameter" s that should not be accessed or used, and afterward they contain regular "torch.nn.Parameter" s. Lazy modules are convenient since they don't require computing some module arguments, like the "in_features" argument of a typical "torch.nn.Linear". After construction, networks with lazy modules should first be converted to the desired dtype and placed on the expected device. This is because lazy modules only perform shape inference so the usual dtype and device placement behavior applies. The lazy modules should then perform "dry runs" to initialize all the components in
https://pytorch.org/docs/stable/generated/torch.nn.modules.lazy.LazyModuleMixin.html
pytorch docs
the module. These "dry runs" send inputs of the correct size, dtype, and device through the network and to each one of its lazy modules. After this the network can be used as usual. class LazyMLP(torch.nn.Module): ... def init(self): ... super().init() ... self.fc1 = torch.nn.LazyLinear(10) ... self.relu1 = torch.nn.ReLU() ... self.fc2 = torch.nn.LazyLinear(1) ... self.relu2 = torch.nn.ReLU() ... ... def forward(self, input): ... x = self.relu1(self.fc1(input)) ... y = self.relu2(self.fc2(x)) ... return y constructs a network with lazy modules lazy_mlp = LazyMLP() transforms the network's device and dtype NOTE: these transforms can and should be applied after construction and before any 'dry runs' lazy_mlp = lazy_mlp.cuda().double() lazy_mlp LazyMLP( (fc1): LazyLinear(in_features=0, out_features=10, bias=True) (relu1): ReLU()
https://pytorch.org/docs/stable/generated/torch.nn.modules.lazy.LazyModuleMixin.html
pytorch docs
(relu1): ReLU() (fc2): LazyLinear(in_features=0, out_features=1, bias=True) (relu2): ReLU() ) performs a dry run to initialize the network's lazy modules lazy_mlp(torch.ones(10,10).cuda()) after initialization, LazyLinear modules become regular Linear modules lazy_mlp LazyMLP( (fc1): Linear(in_features=10, out_features=10, bias=True) (relu1): ReLU() (fc2): Linear(in_features=10, out_features=1, bias=True) (relu2): ReLU() ) attaches an optimizer, since parameters can now be used as usual optim = torch.optim.SGD(mlp.parameters(), lr=0.01) A final caveat when using lazy modules is that the order of initialization of a network's parameters may change, since the lazy modules are always initialized after other modules. For example, if the LazyMLP class defined above had a "torch.nn.LazyLinear" module first and then a regular "torch.nn.Linear" second, the second
https://pytorch.org/docs/stable/generated/torch.nn.modules.lazy.LazyModuleMixin.html
pytorch docs
module would be initialized on construction and the first module would be initialized during the first dry run. This can cause the parameters of a network using lazy modules to be initialized differently than the parameters of a network without lazy modules as the order of parameter initializations, which often depends on a stateful random number generator, is different. Check Reproducibility for more details. Lazy modules can be serialized with a state dict like other modules. For example: lazy_mlp = LazyMLP() The state dict shows the uninitialized parameters lazy_mlp.state_dict() OrderedDict([('fc1.weight', Uninitialized parameter), ('fc1.bias', tensor([-1.8832e+25, 4.5636e-41, -1.8832e+25, 4.5636e-41, -6.1598e-30, 4.5637e-41, -1.8788e+22, 4.5636e-41, -2.0042e-31, 4.5637e-41])), ('fc2.weight', Uninitialized parameter), ('fc2.bias', tensor([0.0019]))])
https://pytorch.org/docs/stable/generated/torch.nn.modules.lazy.LazyModuleMixin.html
pytorch docs
('fc2.bias', tensor([0.0019]))]) Lazy modules can load regular "torch.nn.Parameter" s (i.e. you can serialize/deserialize initialized LazyModules and they will remain initialized) full_mlp = LazyMLP() Dry run to initialize another module full_mlp.forward(torch.ones(10, 1)) Load an initialized state into a lazy module lazy_mlp.load_state_dict(full_mlp.state_dict()) The state dict now holds valid values lazy_mlp.state_dict() OrderedDict([('fc1.weight', tensor([[-0.3837], [ 0.0907], [ 0.6708], [-0.5223], [-0.9028], [ 0.2851], [-0.4537], [ 0.6813], [ 0.5766], [-0.8678]])), ('fc1.bias', tensor([-1.8832e+25, 4.5636e-41, -1.8832e+25, 4.5636e-41, -6.1598e-30,
https://pytorch.org/docs/stable/generated/torch.nn.modules.lazy.LazyModuleMixin.html
pytorch docs
4.5637e-41, -1.8788e+22, 4.5636e-41, -2.0042e-31, 4.5637e-41])), ('fc2.weight', tensor([[ 0.1320, 0.2938, 0.0679, 0.2793, 0.1088, -0.1795, -0.2301, 0.2807, 0.2479, 0.1091]])), ('fc2.bias', tensor([0.0019]))]) Note, however, that the loaded parameters will not be replaced when doing a "dry run" if they are initialized when the state is loaded. This prevents using initialized modules in different contexts. has_uninitialized_params() Check if a module has parameters that are not initialized initialize_parameters(args, *kwargs) Initialize parameters according to the input batch properties. This adds an interface to isolate parameter initialization from the forward pass when doing parameter shape inference.
https://pytorch.org/docs/stable/generated/torch.nn.modules.lazy.LazyModuleMixin.html
pytorch docs
torch.fft.rfft torch.fft.rfft(input, n=None, dim=- 1, norm=None, *, out=None) -> Tensor Computes the one dimensional Fourier transform of real-valued "input". The FFT of a real signal is Hermitian-symmetric, "X[i] = conj(X[-i])" so the output contains only the positive frequencies below the Nyquist frequency. To compute the full output, use "fft()" Note: Supports torch.half on CUDA with GPU Architecture SM53 or greater. However it only supports powers of 2 signal length in every transformed dimension. Parameters: * input (Tensor) -- the real input tensor * **n** (*int**, **optional*) -- Signal length. If given, the input will either be zero-padded or trimmed to this length before computing the real FFT. * **dim** (*int**, **optional*) -- The dimension along which to take the one dimensional real FFT. * **norm** (*str**, **optional*) --
https://pytorch.org/docs/stable/generated/torch.fft.rfft.html
pytorch docs
norm (str, optional) --Normalization mode. For the forward transform ("rfft()"), these correspond to: * ""forward"" - normalize by "1/n" * ""backward"" - no normalization * ""ortho"" - normalize by "1/sqrt(n)" (making the FFT orthonormal) Calling the backward transform ("irfft()") with the same normalization mode will apply an overall normalization of "1/n" between the two transforms. This is required to make "irfft()" the exact inverse. Default is ""backward"" (no normalization). Keyword Arguments: out (Tensor, optional) -- the output tensor. -[ Example ]- t = torch.arange(4) t tensor([0, 1, 2, 3]) torch.fft.rfft(t) tensor([ 6.+0.j, -2.+2.j, -2.+0.j]) Compare against the full output from "fft()": torch.fft.fft(t) tensor([ 6.+0.j, -2.+2.j, -2.+0.j, -2.-2.j]) Notice that the symmetric element "T[-1] == T[1].conj()" is
https://pytorch.org/docs/stable/generated/torch.fft.rfft.html
pytorch docs
omitted. At the Nyquist frequency "T[-2] == T[2]" is it's own symmetric pair, and therefore must always be real-valued.
https://pytorch.org/docs/stable/generated/torch.fft.rfft.html
pytorch docs
torch.nanmean torch.nanmean(input, dim=None, keepdim=False, *, dtype=None, out=None) -> Tensor Computes the mean of all non-NaN elements along the specified dimensions. This function is identical to "torch.mean()" when there are no NaN values in the "input" tensor. In the presence of NaN, "torch.mean()" will propagate the NaN to the output whereas "torch.nanmean()" will ignore the NaN values (torch.nanmean(a) is equivalent to torch.mean(a[~a.isnan()])). If "keepdim" is "True", the output tensor is of the same size as "input" except in the dimension(s) "dim" where it is of size 1. Otherwise, "dim" is squeezed (see "torch.squeeze()"), resulting in the output tensor having 1 (or "len(dim)") fewer dimension(s). Parameters: * input (Tensor) -- the input tensor. * **dim** (*int** or **tuple of ints**, **optional*) -- the dimension or dimensions to reduce. If "None", all dimensions are reduced.
https://pytorch.org/docs/stable/generated/torch.nanmean.html
pytorch docs
are reduced. * **keepdim** (*bool*) -- whether the output tensor has "dim" retained or not. Keyword Arguments: * dtype ("torch.dtype", optional) -- the desired data type of returned tensor. If specified, the input tensor is casted to "dtype" before the operation is performed. This is useful for preventing data type overflows. Default: None. * **out** (*Tensor**, **optional*) -- the output tensor. See also: "torch.mean()" computes the mean value, propagating *NaN*. Example: >>> x = torch.tensor([[torch.nan, 1, 2], [1, 2, 3]]) >>> x.mean() tensor(nan) >>> x.nanmean() tensor(1.8000) >>> x.mean(dim=0) tensor([ nan, 1.5000, 2.5000]) >>> x.nanmean(dim=0) tensor([1.0000, 1.5000, 2.5000]) # If all elements in the reduced dimensions are NaN then the result is NaN >>> torch.tensor([torch.nan]).nanmean() tensor(nan)
https://pytorch.org/docs/stable/generated/torch.nanmean.html
pytorch docs
Identity class torch.nn.utils.prune.Identity Utility pruning method that does not prune any units but generates the pruning parametrization with a mask of ones. classmethod apply(module, name) Adds the forward pre-hook that enables pruning on the fly and the reparametrization of a tensor in terms of the original tensor and the pruning mask. Parameters: * **module** (*nn.Module*) -- module containing the tensor to prune * **name** (*str*) -- parameter name within "module" on which pruning will act. apply_mask(module) Simply handles the multiplication between the parameter being pruned and the generated mask. Fetches the mask and the original tensor from the module and returns the pruned version of the tensor. Parameters: **module** (*nn.Module*) -- module containing the tensor to prune Returns: pruned version of the input tensor Return type:
https://pytorch.org/docs/stable/generated/torch.nn.utils.prune.Identity.html
pytorch docs
Return type: pruned_tensor (torch.Tensor) prune(t, default_mask=None, importance_scores=None) Computes and returns a pruned version of input tensor "t" according to the pruning rule specified in "compute_mask()". Parameters: * **t** (*torch.Tensor*) -- tensor to prune (of same dimensions as "default_mask"). * **importance_scores** (*torch.Tensor*) -- tensor of importance scores (of same shape as "t") used to compute mask for pruning "t". The values in this tensor indicate the importance of the corresponding elements in the "t" that is being pruned. If unspecified or None, the tensor "t" will be used in its place. * **default_mask** (*torch.Tensor**, **optional*) -- mask from previous pruning iteration, if any. To be considered when determining what portion of the tensor that pruning should act on. If None, default to a mask of ones.
https://pytorch.org/docs/stable/generated/torch.nn.utils.prune.Identity.html
pytorch docs
Returns: pruned version of tensor "t". remove(module) Removes the pruning reparameterization from a module. The pruned parameter named "name" remains permanently pruned, and the parameter named "name+'_orig'" is removed from the parameter list. Similarly, the buffer named "name+'_mask'" is removed from the buffers. Note: Pruning itself is NOT undone or reversed!
https://pytorch.org/docs/stable/generated/torch.nn.utils.prune.Identity.html
pytorch docs
torch.kthvalue torch.kthvalue(input, k, dim=None, keepdim=False, *, out=None) Returns a namedtuple "(values, indices)" where "values" is the "k" th smallest element of each row of the "input" tensor in the given dimension "dim". And "indices" is the index location of each element found. If "dim" is not given, the last dimension of the input is chosen. If "keepdim" is "True", both the "values" and "indices" tensors are the same size as "input", except in the dimension "dim" where they are of size 1. Otherwise, "dim" is squeezed (see "torch.squeeze()"), resulting in both the "values" and "indices" tensors having 1 fewer dimension than the "input" tensor. Note: When "input" is a CUDA tensor and there are multiple valid "k" th values, this function may nondeterministically return "indices" for any of them. Parameters: * input (Tensor) -- the input tensor. * **k** (*int*) -- k for the k-th smallest element
https://pytorch.org/docs/stable/generated/torch.kthvalue.html
pytorch docs
dim (int, optional) -- the dimension to find the kth value along keepdim (bool) -- whether the output tensor has "dim" retained or not. Keyword Arguments: out (tuple, optional) -- the output tuple of (Tensor, LongTensor) can be optionally given to be used as output buffers Example: >>> x = torch.arange(1., 6.) >>> x tensor([ 1., 2., 3., 4., 5.]) >>> torch.kthvalue(x, 4) torch.return_types.kthvalue(values=tensor(4.), indices=tensor(3)) >>> x=torch.arange(1.,7.).resize_(2,3) >>> x tensor([[ 1., 2., 3.], [ 4., 5., 6.]]) >>> torch.kthvalue(x, 2, 0, True) torch.return_types.kthvalue(values=tensor([[4., 5., 6.]]), indices=tensor([[1, 1, 1]]))
https://pytorch.org/docs/stable/generated/torch.kthvalue.html
pytorch docs
torch.foreach_sinh torch.foreach_sinh(self: List[Tensor]) -> None Apply "torch.sinh()" to each Tensor of the input list.
https://pytorch.org/docs/stable/generated/torch._foreach_sinh_.html
pytorch docs
torch.Tensor.nanmedian Tensor.nanmedian(dim=None, keepdim=False) See "torch.nanmedian()"
https://pytorch.org/docs/stable/generated/torch.Tensor.nanmedian.html
pytorch docs
torch.Tensor.fix_ Tensor.fix_() -> Tensor In-place version of "fix()"
https://pytorch.org/docs/stable/generated/torch.Tensor.fix_.html
pytorch docs
torch.Tensor.nonzero Tensor.nonzero() -> LongTensor See "torch.nonzero()"
https://pytorch.org/docs/stable/generated/torch.Tensor.nonzero.html
pytorch docs
interpolate class torch.ao.nn.quantized.functional.interpolate(input, size=None, scale_factor=None, mode='nearest', align_corners=None) Down/up samples the input to either the given "size" or the given "scale_factor" See "torch.nn.functional.interpolate()" for implementation details. The input dimensions are interpreted in the form: mini-batch x channels x [optional depth] x [optional height] x width. Note: The input quantization parameters propagate to the output. Note: Only 2D/3D input is supported for quantized inputs Note: Only the following modes are supported for the quantized inputs: * *bilinear* * *nearest* Parameters: * input (Tensor) -- the input tensor * **size** (*int** or **Tuple**[**int**] or **Tuple**[**int**, **int**] or **Tuple**[**int**, **int**, **int**]*) -- output spatial size. * **scale_factor** (*float** or **Tuple**[**float**]*) --
https://pytorch.org/docs/stable/generated/torch.ao.nn.quantized.functional.interpolate.html
pytorch docs
multiplier for spatial size. Has to match input size if it is a tuple. * **mode** (*str*) -- algorithm used for upsampling: "'nearest'" | "'bilinear'" * **align_corners** (*bool**, **optional*) -- Geometrically, we consider the pixels of the input and output as squares rather than points. If set to "True", the input and output tensors are aligned by the center points of their corner pixels, preserving the values at the corner pixels. If set to "False", the input and output tensors are aligned by the corner points of their corner pixels, and the interpolation uses edge value padding for out-of-boundary values, making this operation *independent* of input size when "scale_factor" is kept the same. This only has an effect when "mode" is "'bilinear'". Default: "False"
https://pytorch.org/docs/stable/generated/torch.ao.nn.quantized.functional.interpolate.html
pytorch docs
torch.mul torch.mul(input, other, *, out=None) -> Tensor Multiplies "input" by "other". \text{out}_i = \text{input}_i \times \text{other}_i Supports broadcasting to a common shape, type promotion, and integer, float, and complex inputs. Parameters: * input (Tensor) -- the input tensor. * **other** (*Tensor** or **Number*) -- Keyword Arguments: out (Tensor, optional) -- the output tensor. Examples: >>> a = torch.randn(3) >>> a tensor([ 0.2015, -0.4255, 2.6087]) >>> torch.mul(a, 100) tensor([ 20.1494, -42.5491, 260.8663]) >>> b = torch.randn(4, 1) >>> b tensor([[ 1.1207], [-0.3137], [ 0.0700], [ 0.8378]]) >>> c = torch.randn(1, 4) >>> c tensor([[ 0.5146, 0.1216, -0.5244, 2.2382]]) >>> torch.mul(b, c) tensor([[ 0.5767, 0.1363, -0.5877, 2.5083], [-0.1614, -0.0382, 0.1645, -0.7021],
https://pytorch.org/docs/stable/generated/torch.mul.html
pytorch docs
[ 0.0360, 0.0085, -0.0367, 0.1567], [ 0.4312, 0.1019, -0.4394, 1.8753]])
https://pytorch.org/docs/stable/generated/torch.mul.html
pytorch docs
torch.nn.functional.adaptive_avg_pool3d torch.nn.functional.adaptive_avg_pool3d(input, output_size) Applies a 3D adaptive average pooling over an input signal composed of several input planes. See "AdaptiveAvgPool3d" for details and output shape. Parameters: output_size (None) -- the target output size (single integer or triple-integer tuple) Return type: Tensor
https://pytorch.org/docs/stable/generated/torch.nn.functional.adaptive_avg_pool3d.html
pytorch docs
torch.use_deterministic_algorithms torch.use_deterministic_algorithms(mode, *, warn_only=False) Sets whether PyTorch operations must use "deterministic" algorithms. That is, algorithms which, given the same input, and when run on the same software and hardware, always produce the same output. When enabled, operations will use deterministic algorithms when available, and if only nondeterministic algorithms are available they will throw a "RuntimeError" when called. Note: This setting alone is not always enough to make an application reproducible. Refer to Reproducibility for more information. Note: "torch.set_deterministic_debug_mode()" offers an alternative interface for this feature. The following normally-nondeterministic operations will act deterministically when "mode=True": * "torch.nn.Conv1d" when called on CUDA tensor * "torch.nn.Conv2d" when called on CUDA tensor
https://pytorch.org/docs/stable/generated/torch.use_deterministic_algorithms.html
pytorch docs
"torch.nn.Conv3d" when called on CUDA tensor "torch.nn.ConvTranspose1d" when called on CUDA tensor "torch.nn.ConvTranspose2d" when called on CUDA tensor "torch.nn.ConvTranspose3d" when called on CUDA tensor "torch.bmm()" when called on sparse-dense CUDA tensors "torch.Tensor.getitem()" when attempting to differentiate a CPU tensor and the index is a list of tensors "torch.Tensor.index_put()" with "accumulate=False" "torch.Tensor.index_put()" with "accumulate=True" when called on a CPU tensor "torch.Tensor.put_()" with "accumulate=True" when called on a CPU tensor "torch.Tensor.scatter_add_()" when called on a CUDA tensor "torch.gather()" when called on a CUDA tensor that requires grad "torch.index_add()" when called on CUDA tensor "torch.index_select()" when attempting to differentiate a CUDA tensor
https://pytorch.org/docs/stable/generated/torch.use_deterministic_algorithms.html
pytorch docs
tensor * "torch.repeat_interleave()" when attempting to differentiate a CUDA tensor * "torch.Tensor.index_copy()" when called on a CPU or CUDA tensor The following normally-nondeterministic operations will throw a "RuntimeError" when "mode=True": * "torch.nn.AvgPool3d" when attempting to differentiate a CUDA tensor * "torch.nn.AdaptiveAvgPool2d" when attempting to differentiate a CUDA tensor * "torch.nn.AdaptiveAvgPool3d" when attempting to differentiate a CUDA tensor * "torch.nn.MaxPool3d" when attempting to differentiate a CUDA tensor * "torch.nn.AdaptiveMaxPool2d" when attempting to differentiate a CUDA tensor * "torch.nn.FractionalMaxPool2d" when attempting to differentiate a CUDA tensor * "torch.nn.FractionalMaxPool3d" when attempting to differentiate a CUDA tensor * "torch.nn.MaxUnpool1d" * "torch.nn.MaxUnpool2d"
https://pytorch.org/docs/stable/generated/torch.use_deterministic_algorithms.html
pytorch docs
"torch.nn.MaxUnpool2d" "torch.nn.MaxUnpool3d" "torch.nn.functional.interpolate()" when attempting to differentiate a CUDA tensor and one of the following modes is used: "linear" "bilinear" "bicubic" "trilinear" "torch.nn.ReflectionPad1d" when attempting to differentiate a CUDA tensor "torch.nn.ReflectionPad2d" when attempting to differentiate a CUDA tensor "torch.nn.ReflectionPad3d" when attempting to differentiate a CUDA tensor "torch.nn.ReplicationPad1d" when attempting to differentiate a CUDA tensor "torch.nn.ReplicationPad2d" when attempting to differentiate a CUDA tensor "torch.nn.ReplicationPad3d" when attempting to differentiate a CUDA tensor "torch.nn.NLLLoss" when called on a CUDA tensor "torch.nn.CTCLoss" when attempting to differentiate a CUDA tensor
https://pytorch.org/docs/stable/generated/torch.use_deterministic_algorithms.html
pytorch docs
tensor * "torch.nn.EmbeddingBag" when attempting to differentiate a CUDA tensor when "mode='max'" * "torch.Tensor.put_()" when "accumulate=False" * "torch.Tensor.put_()" when "accumulate=True" and called on a CUDA tensor * "torch.histc()" when called on a CUDA tensor * "torch.bincount()" when called on a CUDA tensor * "torch.kthvalue()" with called on a CUDA tensor * "torch.median()" with indices output when called on a CUDA tensor * "torch.nn.functional.grid_sample()" when attempting to differentiate a CUDA tensor * "torch.cumsum()" when called on a CUDA tensor when dtype is floating point or complex A handful of CUDA operations are nondeterministic if the CUDA version is 10.2 or greater, unless the environment variable "CUBLAS_WORKSPACE_CONFIG=:4096:8" or "CUBLAS_WORKSPACE_CONFIG=:16:8" is set. See the CUDA documentation
https://pytorch.org/docs/stable/generated/torch.use_deterministic_algorithms.html
pytorch docs
for more details: https://docs.nvidia.com/cuda/cublas/index.html#c ublasApi_reproducibility If one of these environment variable configurations is not set, a "RuntimeError" will be raised from these operations when called with CUDA tensors: * "torch.mm()" * "torch.mv()" * "torch.bmm()" Note that deterministic operations tend to have worse performance than nondeterministic operations. Note: This flag does not detect or prevent nondeterministic behavior caused by calling an inplace operation on a tensor with an internal memory overlap or by giving such a tensor as the "out" argument for an operation. In these cases, multiple writes of different data may target a single memory location, and the order of writes is not guaranteed. Parameters: mode ("bool") -- If True, makes potentially nondeterministic operations switch to a deterministic algorithm or throw a
https://pytorch.org/docs/stable/generated/torch.use_deterministic_algorithms.html
pytorch docs
runtime error. If False, allows nondeterministic operations. Keyword Arguments: warn_only ("bool", optional) -- If True, operations that do not have a deterministic implementation will throw a warning instead of an error. Default: "False" Example: >>> torch.use_deterministic_algorithms(True) # Forward mode nondeterministic error >>> torch.randn(10, device='cuda').kthvalue(0) ... RuntimeError: kthvalue CUDA does not have a deterministic implementation... # Backward mode nondeterministic error >>> torch.nn.AvgPool3d(1)(torch.randn(3, 4, 5, 6, requires_grad=True).cuda()).sum().backward() ... RuntimeError: avg_pool3d_backward_cuda does not have a deterministic implementation...
https://pytorch.org/docs/stable/generated/torch.use_deterministic_algorithms.html
pytorch docs
torch.as_strided torch.as_strided(input, size, stride, storage_offset=None) -> Tensor Create a view of an existing torch.Tensor "input" with specified "size", "stride" and "storage_offset". Warning: Prefer using other view functions, like "torch.Tensor.expand()", to setting a view's strides manually with *as_strided*, as this function's behavior depends on the implementation of a tensor's storage. The constructed view of the storage must only refer to elements within the storage or a runtime error will be thrown, and if the view is "overlapped" (with multiple indices referring to the same element in memory) its behavior is undefined. Parameters: * input (Tensor) -- the input tensor. * **size** (*tuple** or **ints*) -- the shape of the output tensor * **stride** (*tuple** or **ints*) -- the stride of the output tensor * **storage_offset** (*int**, **optional*) -- the offset in the
https://pytorch.org/docs/stable/generated/torch.as_strided.html
pytorch docs
underlying storage of the output tensor. If "None", the storage_offset of the output tensor will match the input tensor. Example: >>> x = torch.randn(3, 3) >>> x tensor([[ 0.9039, 0.6291, 1.0795], [ 0.1586, 2.1939, -0.4900], [-0.1909, -0.7503, 1.9355]]) >>> t = torch.as_strided(x, (2, 2), (1, 2)) >>> t tensor([[0.9039, 1.0795], [0.6291, 0.1586]]) >>> t = torch.as_strided(x, (2, 2), (1, 2), 1) tensor([[0.6291, 0.1586], [1.0795, 2.1939]])
https://pytorch.org/docs/stable/generated/torch.as_strided.html
pytorch docs
torch.einsum torch.einsum(equation, *operands) -> Tensor Sums the product of the elements of the input "operands" along dimensions specified using a notation based on the Einstein summation convention. Einsum allows computing many common multi-dimensional linear algebraic array operations by representing them in a short-hand format based on the Einstein summation convention, given by "equation". The details of this format are described below, but the general idea is to label every dimension of the input "operands" with some subscript and define which subscripts are part of the output. The output is then computed by summing the product of the elements of the "operands" along the dimensions whose subscripts are not part of the output. For example, matrix multiplication can be computed using einsum as torch.einsum("ij,jk->ik", A, B). Here, j is the summation subscript and i and k the output subscripts (see section below for more details on why).
https://pytorch.org/docs/stable/generated/torch.einsum.html
pytorch docs
Equation: The "equation" string specifies the subscripts (letters in *[a-zA-Z]*) for each dimension of the input "operands" in the same order as the dimensions, separating subscripts for each operand by a comma (','), e.g. *'ij,jk'* specify subscripts for two 2D operands. The dimensions labeled with the same subscript must be broadcastable, that is, their size must either match or be *1*. The exception is if a subscript is repeated for the same input operand, in which case the dimensions labeled with this subscript for this operand must match in size and the operand will be replaced by its diagonal along these dimensions. The subscripts that appear exactly once in the "equation" will be part of the output, sorted in increasing alphabetical order. The output is computed by multiplying the input "operands" element- wise, with their dimensions aligned based on the subscripts, and
https://pytorch.org/docs/stable/generated/torch.einsum.html
pytorch docs
then summing out the dimensions whose subscripts are not part of the output. Optionally, the output subscripts can be explicitly defined by adding an arrow ('->') at the end of the equation followed by the subscripts for the output. For instance, the following equation computes the transpose of a matrix multiplication: 'ij,jk->ki'. The output subscripts must appear at least once for some input operand and at most once for the output. Ellipsis ('...') can be used in place of subscripts to broadcast the dimensions covered by the ellipsis. Each input operand may contain at most one ellipsis which will cover the dimensions not covered by subscripts, e.g. for an input operand with 5 dimensions, the ellipsis in the equation *'ab...c'* cover the third and fourth dimensions. The ellipsis does not need to cover the same number of dimensions across the "operands" but the
https://pytorch.org/docs/stable/generated/torch.einsum.html
pytorch docs
'shape' of the ellipsis (the size of the dimensions covered by them) must broadcast together. If the output is not explicitly defined with the arrow ('->') notation, the ellipsis will come first in the output (left-most dimensions), before the subscript labels that appear exactly once for the input operands. e.g. the following equation implements batch matrix multiplication '...ij,...jk'. A few final notes: the equation may contain whitespaces between the different elements (subscripts, ellipsis, arrow and comma) but something like *'. . .'* is not valid. An empty string *''* is valid for scalar operands. Note: "torch.einsum" handles ellipsis ('...') differently from NumPy in that it allows dimensions covered by the ellipsis to be summed over, that is, ellipsis are not required to be part of the output. Note: This function uses opt_einsum (https://optimized-
https://pytorch.org/docs/stable/generated/torch.einsum.html
pytorch docs
einsum.readthedocs.io/en/stable/) to speed up computation or to consume less memory by optimizing contraction order. This optimization occurs when there are at least three inputs, since the order does not matter otherwise. Note that finding the optimal path is an NP-hard problem, thus, opt_einsum relies on different heuristics to achieve near-optimal results. If opt_einsum is not available, the default order is to contract from left to right.To bypass this default behavior, add the following line to disable the usage of opt_einsum and skip path calculation: torch.backends.opt_einsum.enabled = FalseTo specify which strategy you'd like for opt_einsum to compute the contraction path, add the following line: torch.backends.opt_einsum.strategy = 'auto'. The default strategy is 'auto', and we also support 'greedy' and 'optimal'. Disclaimer that the runtime of 'optimal' is factorial in the
https://pytorch.org/docs/stable/generated/torch.einsum.html
pytorch docs
number of inputs! See more details in the opt_einsum documentation (https://optimized- einsum.readthedocs.io/en/stable/path_finding.html). Note: As of PyTorch 1.10 "torch.einsum()" also supports the sublist format (see examples below). In this format, subscripts for each operand are specified by sublists, list of integers in the range [0, 52). These sublists follow their operands, and an extra sublist can appear at the end of the input to specify the output's subscripts., e.g. *torch.einsum(op1, sublist1, op2, sublist2, ..., [subslist_out])*. Python's *Ellipsis* object may be provided in a sublist to enable broadcasting as described in the Equation section above. Parameters: * equation (str) -- The subscripts for the Einstein summation. * **operands** (*List**[**Tensor**]*) -- The tensors to compute the Einstein summation of. Return type: Tensor Examples: >>> # trace
https://pytorch.org/docs/stable/generated/torch.einsum.html
pytorch docs
Tensor Examples: >>> # trace >>> torch.einsum('ii', torch.randn(4, 4)) tensor(-1.2104) >>> # diagonal >>> torch.einsum('ii->i', torch.randn(4, 4)) tensor([-0.1034, 0.7952, -0.2433, 0.4545]) >>> # outer product >>> x = torch.randn(5) >>> y = torch.randn(4) >>> torch.einsum('i,j->ij', x, y) tensor([[ 0.1156, -0.2897, -0.3918, 0.4963], [-0.3744, 0.9381, 1.2685, -1.6070], [ 0.7208, -1.8058, -2.4419, 3.0936], [ 0.1713, -0.4291, -0.5802, 0.7350], [ 0.5704, -1.4290, -1.9323, 2.4480]]) >>> # batch matrix multiplication >>> As = torch.randn(3, 2, 5) >>> Bs = torch.randn(3, 5, 4) >>> torch.einsum('bij,bjk->bik', As, Bs) tensor([[[-1.0564, -1.5904, 3.2023, 3.1271], [-1.6706, -0.8097, -0.8025, -2.1183]], [[ 4.2239, 0.3107, -0.5756, -0.2354], [-1.4558, -0.3460, 1.5087, -0.8530]],
https://pytorch.org/docs/stable/generated/torch.einsum.html
pytorch docs
[[ 2.8153, 1.8787, -4.3839, -1.2112], [ 0.3728, -2.1131, 0.0921, 0.8305]]]) >>> # with sublist format and ellipsis >>> torch.einsum(As, [..., 0, 1], Bs, [..., 1, 2], [..., 0, 2]) tensor([[[-1.0564, -1.5904, 3.2023, 3.1271], [-1.6706, -0.8097, -0.8025, -2.1183]], [[ 4.2239, 0.3107, -0.5756, -0.2354], [-1.4558, -0.3460, 1.5087, -0.8530]], [[ 2.8153, 1.8787, -4.3839, -1.2112], [ 0.3728, -2.1131, 0.0921, 0.8305]]]) >>> # batch permute >>> A = torch.randn(2, 3, 4, 5) >>> torch.einsum('...ij->...ji', A).shape torch.Size([2, 3, 5, 4]) >>> # equivalent to torch.nn.functional.bilinear >>> A = torch.randn(3, 5, 4) >>> l = torch.randn(2, 5) >>> r = torch.randn(2, 4) >>> torch.einsum('bn,anm,bm->ba', l, A, r) tensor([[-0.3430, -5.2405, 0.4494], [ 0.3311, 5.5201, -3.0356]])
https://pytorch.org/docs/stable/generated/torch.einsum.html
pytorch docs
torch.less_equal torch.less_equal(input, other, *, out=None) -> Tensor Alias for "torch.le()".
https://pytorch.org/docs/stable/generated/torch.less_equal.html
pytorch docs
torch.nn.functional.margin_ranking_loss torch.nn.functional.margin_ranking_loss(input1, input2, target, margin=0, size_average=None, reduce=None, reduction='mean') -> Tensor See "MarginRankingLoss" for details. Return type: Tensor
https://pytorch.org/docs/stable/generated/torch.nn.functional.margin_ranking_loss.html
pytorch docs
torch.linalg.ldl_factor_ex torch.linalg.ldl_factor_ex(A, *, hermitian=False, check_errors=False, out=None) This is a version of "ldl_factor()" that does not perform error checks unless "check_errors"= True. It also returns the "info" tensor returned by LAPACK's sytrf. "info" stores integer error codes from the backend library. A positive integer indicates the diagonal element of D that is zero. Division by 0 will occur if the result is used for solving a system of linear equations. "info" filled with zeros indicates that the factorization was successful. If "check_errors=True" and "info" contains positive integers, then a RuntimeError is thrown. Note: When the inputs are on a CUDA device, this function synchronizes only when "check_errors"*= True*. Warning: This function is "experimental" and it may change in a future PyTorch release. Parameters: A (Tensor) -- tensor of shape (*, n, n) where * is zero or
https://pytorch.org/docs/stable/generated/torch.linalg.ldl_factor_ex.html
pytorch docs
more batch dimensions consisting of symmetric or Hermitian matrices. (*, n, n) where *** is one or more batch dimensions. Keyword Arguments: * hermitian (bool, optional) -- whether to consider the input to be Hermitian or symmetric. For real-valued matrices, this switch has no effect. Default: False. * **check_errors** (*bool**, **optional*) -- controls whether to check the content of "info" and raise an error if it is non- zero. Default: *False*. * **out** (*tuple**, **optional*) -- tuple of three tensors to write the output to. Ignored if *None*. Default: *None*. Returns: A named tuple (LD, pivots, info). Examples: >>> A = torch.randn(3, 3) >>> A = A @ A.mT # make symmetric >>> A tensor([[7.2079, 4.2414, 1.9428], [4.2414, 3.4554, 0.3264], [1.9428, 0.3264, 1.3823]]) >>> LD, pivots, info = torch.linalg.ldl_factor_ex(A) >>> LD
https://pytorch.org/docs/stable/generated/torch.linalg.ldl_factor_ex.html
pytorch docs
LD tensor([[ 7.2079, 0.0000, 0.0000], [ 0.5884, 0.9595, 0.0000], [ 0.2695, -0.8513, 0.1633]]) >>> pivots tensor([1, 2, 3], dtype=torch.int32) >>> info tensor(0, dtype=torch.int32)
https://pytorch.org/docs/stable/generated/torch.linalg.ldl_factor_ex.html
pytorch docs
torch.nn.utils.prune.random_unstructured torch.nn.utils.prune.random_unstructured(module, name, amount) Prunes tensor corresponding to parameter called "name" in "module" by removing the specified "amount" of (currently unpruned) units selected at random. Modifies module in place (and also return the modified module) by: adding a named buffer called "name+'_mask'" corresponding to the binary mask applied to the parameter "name" by the pruning method. replacing the parameter "name" by its pruned version, while the original (unpruned) parameter is stored in a new parameter named "name+'_orig'". Parameters: * module (nn.Module) -- module containing the tensor to prune * **name** (*str*) -- parameter name within "module" on which pruning will act. * **amount** (*int** or **float*) -- quantity of parameters to
https://pytorch.org/docs/stable/generated/torch.nn.utils.prune.random_unstructured.html
pytorch docs
prune. If "float", should be between 0.0 and 1.0 and represent the fraction of parameters to prune. If "int", it represents the absolute number of parameters to prune. Returns: modified (i.e. pruned) version of the input module Return type: module (nn.Module) -[ Examples ]- m = prune.random_unstructured(nn.Linear(2, 3), 'weight', amount=1) torch.sum(m.weight_mask == 0) tensor(1)
https://pytorch.org/docs/stable/generated/torch.nn.utils.prune.random_unstructured.html
pytorch docs
clamp class torch.ao.nn.quantized.functional.clamp(input, min_, max_) float(input, min_, max_) -> Tensor Applies the clamp function element-wise. See "clamp" for more details. Parameters: * input (Tensor) -- quantized input * **min** -- minimum value for clamping * **max** -- maximum value for clamping Return type: Tensor
https://pytorch.org/docs/stable/generated/torch.ao.nn.quantized.functional.clamp.html
pytorch docs
torch.Tensor.scatter_ Tensor.scatter_(dim, index, src, reduce=None) -> Tensor Writes all values from the tensor "src" into "self" at the indices specified in the "index" tensor. For each value in "src", its output index is specified by its index in "src" for "dimension != dim" and by the corresponding value in "index" for "dimension = dim". For a 3-D tensor, "self" is updated as: self[index[i][j][k]][j][k] = src[i][j][k] # if dim == 0 self[i][index[i][j][k]][k] = src[i][j][k] # if dim == 1 self[i][j][index[i][j][k]] = src[i][j][k] # if dim == 2 This is the reverse operation of the manner described in "gather()". "self", "index" and "src" (if it is a Tensor) should all have the same number of dimensions. It is also required that "index.size(d) <= src.size(d)" for all dimensions "d", and that "index.size(d) <= self.size(d)" for all dimensions "d != dim". Note that "index" and "src" do not broadcast.
https://pytorch.org/docs/stable/generated/torch.Tensor.scatter_.html
pytorch docs
"src" do not broadcast. Moreover, as for "gather()", the values of "index" must be between "0" and "self.size(dim) - 1" inclusive. Warning: When indices are not unique, the behavior is non-deterministic (one of the values from "src" will be picked arbitrarily) and the gradient will be incorrect (it will be propagated to all locations in the source that correspond to the same index)! Note: The backward pass is implemented only for "src.shape == index.shape". Additionally accepts an optional "reduce" argument that allows specification of an optional reduction operation, which is applied to all values in the tensor "src" into "self" at the indices specified in the "index". For each value in "src", the reduction operation is applied to an index in "self" which is specified by its index in "src" for "dimension != dim" and by the corresponding value in "index" for "dimension = dim". Given a 3-D tensor and reduction using the multiplication
https://pytorch.org/docs/stable/generated/torch.Tensor.scatter_.html
pytorch docs
operation, "self" is updated as: self[index[i][j][k]][j][k] *= src[i][j][k] # if dim == 0 self[i][index[i][j][k]][k] *= src[i][j][k] # if dim == 1 self[i][j][index[i][j][k]] *= src[i][j][k] # if dim == 2 Reducing with the addition operation is the same as using "scatter_add_()". Parameters: * dim (int) -- the axis along which to index * **index** (*LongTensor*) -- the indices of elements to scatter, can be either empty or of the same dimensionality as "src". When empty, the operation returns "self" unchanged. * **src** (*Tensor** or **float*) -- the source element(s) to scatter. * **reduce** (*str**, **optional*) -- reduction operation to apply, can be either "'add'" or "'multiply'". Example: >>> src = torch.arange(1, 11).reshape((2, 5)) >>> src tensor([[ 1, 2, 3, 4, 5], [ 6, 7, 8, 9, 10]]) >>> index = torch.tensor([[0, 1, 2, 0]])
https://pytorch.org/docs/stable/generated/torch.Tensor.scatter_.html
pytorch docs
index = torch.tensor([[0, 1, 2, 0]]) >>> torch.zeros(3, 5, dtype=src.dtype).scatter_(0, index, src) tensor([[1, 0, 0, 4, 0], [0, 2, 0, 0, 0], [0, 0, 3, 0, 0]]) >>> index = torch.tensor([[0, 1, 2], [0, 1, 4]]) >>> torch.zeros(3, 5, dtype=src.dtype).scatter_(1, index, src) tensor([[1, 2, 3, 0, 0], [6, 7, 0, 0, 8], [0, 0, 0, 0, 0]]) >>> torch.full((2, 4), 2.).scatter_(1, torch.tensor([[2], [3]]), ... 1.23, reduce='multiply') tensor([[2.0000, 2.0000, 2.4600, 2.0000], [2.0000, 2.0000, 2.0000, 2.4600]]) >>> torch.full((2, 4), 2.).scatter_(1, torch.tensor([[2], [3]]), ... 1.23, reduce='add') tensor([[2.0000, 2.0000, 3.2300, 2.0000], [2.0000, 2.0000, 2.0000, 3.2300]])
https://pytorch.org/docs/stable/generated/torch.Tensor.scatter_.html
pytorch docs
torch.ceil torch.ceil(input, *, out=None) -> Tensor Returns a new tensor with the ceil of the elements of "input", the smallest integer greater than or equal to each element. For integer inputs, follows the array-api convention of returning a copy of the input tensor. \text{out}_{i} = \left\lceil \text{input}_{i} \right\rceil Parameters: input (Tensor) -- the input tensor. Keyword Arguments: out (Tensor, optional) -- the output tensor. Example: >>> a = torch.randn(4) >>> a tensor([-0.6341, -1.4208, -1.0900, 0.5826]) >>> torch.ceil(a) tensor([-0., -1., -1., 1.])
https://pytorch.org/docs/stable/generated/torch.ceil.html
pytorch docs
torch.Tensor.remainder_ Tensor.remainder_(divisor) -> Tensor In-place version of "remainder()"
https://pytorch.org/docs/stable/generated/torch.Tensor.remainder_.html
pytorch docs
torch.real torch.real(input) -> Tensor Returns a new tensor containing real values of the "self" tensor. The returned tensor and "self" share the same underlying storage. Parameters: input (Tensor) -- the input tensor. Example: >>> x=torch.randn(4, dtype=torch.cfloat) >>> x tensor([(0.3100+0.3553j), (-0.5445-0.7896j), (-1.6492-0.0633j), (-0.0638-0.8119j)]) >>> x.real tensor([ 0.3100, -0.5445, -1.6492, -0.0638])
https://pytorch.org/docs/stable/generated/torch.real.html
pytorch docs
torch.jit.isinstance torch.jit.isinstance(obj, target_type) This function provides for container type refinement in TorchScript. It can refine parameterized containers of the List, Dict, Tuple, and Optional types. E.g. "List[str]", "Dict[str, List[torch.Tensor]]", "Optional[Tuple[int,str,int]]". It can also refine basic types such as bools and ints that are available in TorchScript. Parameters: * obj -- object to refine the type of * **target_type** -- type to try to refine obj to Returns: True if obj was successfully refined to the type of target_type, False otherwise with no new type refinement Return type: "bool" Example (using "torch.jit.isinstance" for type refinement): .. testcode: import torch from typing import Any, Dict, List class MyModule(torch.nn.Module): def __init__(self): super(MyModule, self).__init__()
https://pytorch.org/docs/stable/generated/torch.jit.isinstance.html
pytorch docs
super(MyModule, self).init() def forward(self, input: Any): # note the Any type if torch.jit.isinstance(input, List[torch.Tensor]): for t in input: y = t.clamp(0, 0.5) elif torch.jit.isinstance(input, Dict[str, str]): for val in input.values(): print(val) m = torch.jit.script(MyModule()) x = [torch.rand(3,3), torch.rand(4,3)] m(x) y = {"key1":"val1","key2":"val2"} m(y)
https://pytorch.org/docs/stable/generated/torch.jit.isinstance.html
pytorch docs
torch.Tensor.index_fill_ Tensor.index_fill_(dim, index, value) -> Tensor Fills the elements of the "self" tensor with value "value" by selecting the indices in the order given in "index". Parameters: * dim (int) -- dimension along which to index * **index** (*LongTensor*) -- indices of "self" tensor to fill in * **value** (*float*) -- the value to fill with Example:: >>> x = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=torch.float) >>> index = torch.tensor([0, 2]) >>> x.index_fill_(1, index, -1) tensor([[-1., 2., -1.], [-1., 5., -1.], [-1., 8., -1.]])
https://pytorch.org/docs/stable/generated/torch.Tensor.index_fill_.html
pytorch docs
torch.Tensor.clone Tensor.clone(*, memory_format=torch.preserve_format) -> Tensor See "torch.clone()"
https://pytorch.org/docs/stable/generated/torch.Tensor.clone.html
pytorch docs
LPPool1d class torch.nn.LPPool1d(norm_type, kernel_size, stride=None, ceil_mode=False) Applies a 1D power-average pooling over an input signal composed of several input planes. On each window, the function computed is: f(X) = \sqrt[p]{\sum_{x \in X} x^{p}} At p = \infty, one gets Max Pooling At p = 1, one gets Sum Pooling (which is proportional to Average Pooling) Note: If the sum to the power of *p* is zero, the gradient of this function is not defined. This implementation will set the gradient to zero in this case. Parameters: * kernel_size (Union[int, Tuple[int]]) -- a single int, the size of the window * **stride** (*Union**[**int**, **Tuple**[**int**]**]*) -- a single int, the stride of the window. Default value is "kernel_size" * **ceil_mode** (*bool*) -- when True, will use *ceil* instead of *floor* to compute the output shape Shape:
https://pytorch.org/docs/stable/generated/torch.nn.LPPool1d.html
pytorch docs
Shape: * Input: (N, C, L_{in}) or (C, L_{in}). * Output: (N, C, L_{out}) or (C, L_{out}), where L_{out} = \left\lfloor\frac{L_{in} - \text{kernel\_size}}{\text{stride}} + 1\right\rfloor Examples:: >>> # power-2 pool of window of length 3, with stride 2. >>> m = nn.LPPool1d(2, 3, stride=2) >>> input = torch.randn(20, 16, 50) >>> output = m(input)
https://pytorch.org/docs/stable/generated/torch.nn.LPPool1d.html
pytorch docs
Embedding class torch.ao.nn.quantized.Embedding(num_embeddings, embedding_dim, padding_idx=None, max_norm=None, norm_type=2.0, scale_grad_by_freq=False, sparse=False, _weight=None, dtype=torch.quint8) A quantized Embedding module with quantized packed weights as inputs. We adopt the same interface as torch.nn.Embedding, please see https://pytorch.org/docs/stable/nn.html#torch.nn.Embedding for documentation. Similar to "Embedding", attributes will be randomly initialized at module creation time and will be overwritten later Variables: weight (Tensor) -- the non-learnable quantized weights of the module of shape (\text{num_embeddings}, \text{embedding_dim}). Examples:: >>> m = nn.quantized.Embedding(num_embeddings=10, embedding_dim=12) >>> indices = torch.tensor([9, 6, 5, 7, 8, 8, 9, 2, 8]) >>> output = m(indices) >>> print(output.size()) torch.Size([9, 12]) classmethod from_float(mod)
https://pytorch.org/docs/stable/generated/torch.ao.nn.quantized.Embedding.html
pytorch docs
classmethod from_float(mod) Create a quantized embedding module from a float module Parameters: **mod** (*Module*) -- a float module, either produced by torch.ao.quantization utilities or provided by user
https://pytorch.org/docs/stable/generated/torch.ao.nn.quantized.Embedding.html
pytorch docs
torch.multiply torch.multiply(input, other, *, out=None) Alias for "torch.mul()".
https://pytorch.org/docs/stable/generated/torch.multiply.html
pytorch docs
AlphaDropout class torch.nn.AlphaDropout(p=0.5, inplace=False) Applies Alpha Dropout over the input. Alpha Dropout is a type of Dropout that maintains the self- normalizing property. For an input with zero mean and unit standard deviation, the output of Alpha Dropout maintains the original mean and standard deviation of the input. Alpha Dropout goes hand-in- hand with SELU activation function, which ensures that the outputs have zero mean and unit standard deviation. During training, it randomly masks some of the elements of the input tensor with probability p using samples from a bernoulli distribution. The elements to masked are randomized on every forward call, and scaled and shifted to maintain zero mean and unit standard deviation. During evaluation the module simply computes an identity function. More details can be found in the paper Self-Normalizing Neural Networks . Parameters:
https://pytorch.org/docs/stable/generated/torch.nn.AlphaDropout.html
pytorch docs
Networks . Parameters: * p (float) -- probability of an element to be dropped. Default: 0.5 * **inplace** (*bool**, **optional*) -- If set to "True", will do this operation in-place Shape: * Input: (*). Input can be of any shape * Output: (*). Output is of the same shape as input Examples: >>> m = nn.AlphaDropout(p=0.2) >>> input = torch.randn(20, 16) >>> output = m(input)
https://pytorch.org/docs/stable/generated/torch.nn.AlphaDropout.html
pytorch docs
torch.logdet torch.logdet(input) -> Tensor Calculates log determinant of a square matrix or batches of square matrices. It returns "-inf" if the input has a determinant of zero, and "NaN" if it has a negative determinant. Note: Backward through "logdet()" internally uses SVD results when "input" is not invertible. In this case, double backward through "logdet()" will be unstable in when "input" doesn't have distinct singular values. See "torch.linalg.svd()" for details. See also: "torch.linalg.slogdet()" computes the sign (resp. angle) and natural logarithm of the absolute value of the determinant of real-valued (resp. complex) square matrices. Parameters: input (Tensor) -- the input tensor of size "(, n, n)" where "" is zero or more batch dimensions. Example: >>> A = torch.randn(3, 3) >>> torch.det(A) tensor(0.2611) >>> torch.logdet(A) tensor(-1.3430) >>> A
https://pytorch.org/docs/stable/generated/torch.logdet.html
pytorch docs
tensor(-1.3430) >>> A tensor([[[ 0.9254, -0.6213], [-0.5787, 1.6843]], [[ 0.3242, -0.9665], [ 0.4539, -0.0887]], [[ 1.1336, -0.4025], [-0.7089, 0.9032]]]) >>> A.det() tensor([1.1990, 0.4099, 0.7386]) >>> A.det().log() tensor([ 0.1815, -0.8917, -0.3031])
https://pytorch.org/docs/stable/generated/torch.logdet.html
pytorch docs
torch.Tensor.max Tensor.max(dim=None, keepdim=False) See "torch.max()"
https://pytorch.org/docs/stable/generated/torch.Tensor.max.html
pytorch docs
torch.abs torch.abs(input, *, out=None) -> Tensor Computes the absolute value of each element in "input". \text{out}_{i} = |\text{input}_{i}| Parameters: input (Tensor) -- the input tensor. Keyword Arguments: out (Tensor, optional) -- the output tensor. Example: >>> torch.abs(torch.tensor([-1, -2, 3])) tensor([ 1, 2, 3])
https://pytorch.org/docs/stable/generated/torch.abs.html
pytorch docs
torch.positive torch.positive(input) -> Tensor Returns "input". Throws a runtime error if "input" is a bool tensor. Parameters: input (Tensor) -- the input tensor. Example: >>> t = torch.randn(5) >>> t tensor([ 0.0090, -0.2262, -0.0682, -0.2866, 0.3940]) >>> torch.positive(t) tensor([ 0.0090, -0.2262, -0.0682, -0.2866, 0.3940])
https://pytorch.org/docs/stable/generated/torch.positive.html
pytorch docs
prepare_fx class torch.quantization.quantize_fx.prepare_fx(model, qconfig_mapping, example_inputs, prepare_custom_config=None, _equalization_config=None, backend_config=None) Prepare a model for post training static quantization Parameters: * model (***) -- torch.nn.Module model * **qconfig_mapping** (***) -- QConfigMapping object to configure how a model is quantized, see "QConfigMapping" for more details * **example_inputs** (***) -- Example inputs for forward function of the model, Tuple of positional args (keyword args can be passed as positional args as well) * **prepare_custom_config** (***) -- customization configuration for quantization tool. See "PrepareCustomConfig" for more details * **_equalization_config** (***) -- config for specifying how to perform equalization on the model * **backend_config** (***) -- config that specifies how
https://pytorch.org/docs/stable/generated/torch.quantization.quantize_fx.prepare_fx.html
pytorch docs
operators are quantized in a backend, this includes how the operators are observed, supported fusion patterns, how quantize/dequantize ops are inserted, supported dtypes etc. See "BackendConfig" for more details Returns: A GraphModule with observer (configured by qconfig_mapping), ready for calibration Return type: ObservedGraphModule Example: import torch from torch.ao.quantization import get_default_qconfig_mapping from torch.ao.quantization import prepare_fx class Submodule(torch.nn.Module): def __init__(self): super().__init__() self.linear = torch.nn.Linear(5, 5) def forward(self, x): x = self.linear(x) return x class M(torch.nn.Module): def __init__(self): super().__init__() self.linear = torch.nn.Linear(5, 5) self.sub = Submodule() def forward(self, x):
https://pytorch.org/docs/stable/generated/torch.quantization.quantize_fx.prepare_fx.html
pytorch docs
def forward(self, x): x = self.linear(x) x = self.sub(x) + x return x # initialize a floating point model float_model = M().eval() # define calibration function def calibrate(model, data_loader): model.eval() with torch.no_grad(): for image, target in data_loader: model(image) # qconfig is the configuration for how we insert observers for a particular # operator # qconfig = get_default_qconfig("fbgemm") # Example of customizing qconfig: # qconfig = torch.ao.quantization.QConfig( # activation=MinMaxObserver.with_args(dtype=torch.qint8), # weight=MinMaxObserver.with_args(dtype=torch.qint8)) # `activation` and `weight` are constructors of observer module # qconfig_mapping is a collection of quantization configurations, user can # set the qconfig for each operator (torch op calls, functional calls, module calls)
https://pytorch.org/docs/stable/generated/torch.quantization.quantize_fx.prepare_fx.html
pytorch docs
in the model through qconfig_mapping # the following call will get the qconfig_mapping that works best for models # that target "fbgemm" backend qconfig_mapping = get_default_qconfig_mapping("fbgemm") # We can customize qconfig_mapping in different ways. # e.g. set the global qconfig, which means we will use the same qconfig for # all operators in the model, this can be overwritten by other settings # qconfig_mapping = QConfigMapping().set_global(qconfig) # e.g. quantize the linear submodule with a specific qconfig # qconfig_mapping = QConfigMapping().set_module_name("linear", qconfig) # e.g. quantize all nn.Linear modules with a specific qconfig # qconfig_mapping = QConfigMapping().set_object_type(torch.nn.Linear, qconfig) # for a more complete list, please see the docstring for :class:`torch.ao.quantization.QConfigMapping` # argument # example_inputs is a tuple of inputs, that is used to infer the type of the
https://pytorch.org/docs/stable/generated/torch.quantization.quantize_fx.prepare_fx.html
pytorch docs
outputs in the model # currently it's not used, but please make sure model(*example_inputs) runs example_inputs = (torch.randn(1, 3, 224, 224),) # TODO: add backend_config after we split the backend_config for fbgemm and qnnpack # e.g. backend_config = get_default_backend_config("fbgemm") # `prepare_fx` inserts observers in the model based on qconfig_mapping and # backend_config. If the configuration for an operator in qconfig_mapping # is supported in the backend_config (meaning it's supported by the target # hardware), we'll insert observer modules according to the qconfig_mapping # otherwise the configuration in qconfig_mapping will be ignored # # Example: # in qconfig_mapping, user sets linear module to be quantized with quint8 for # activation and qint8 for weight: # qconfig = torch.ao.quantization.QConfig( # observer=MinMaxObserver.with_args(dtype=torch.quint8),
https://pytorch.org/docs/stable/generated/torch.quantization.quantize_fx.prepare_fx.html
pytorch docs
weight=MinMaxObserver.with-args(dtype=torch.qint8)) # Note: current qconfig api does not support setting output observer, but # we may extend this to support these more fine grained control in the # future # # qconfig_mapping = QConfigMapping().set_object_type(torch.nn.Linear, qconfig) # in backend config, linear module also supports in this configuration: # weighted_int8_dtype_config = DTypeConfig( # input_dtype=torch.quint8, # output_dtype=torch.quint8, # weight_dtype=torch.qint8, # bias_type=torch.float) # linear_pattern_config = BackendPatternConfig(torch.nn.Linear) \ # .set_observation_type(ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT) \ # .add_dtype_config(weighted_int8_dtype_config) \ # ... # backend_config = BackendConfig().set_backend_pattern_config(linear_pattern_config) # `prepare_fx` will check that the setting requested by suer in qconfig_mapping
https://pytorch.org/docs/stable/generated/torch.quantization.quantize_fx.prepare_fx.html
pytorch docs
is supported by the backend_config and insert observers and fake quant modules # in the model prepared_model = prepare_fx(float_model, qconfig_mapping, example_inputs) # Run calibration calibrate(prepared_model, sample_inference_data)
https://pytorch.org/docs/stable/generated/torch.quantization.quantize_fx.prepare_fx.html
pytorch docs
ExponentialLR class torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma, last_epoch=- 1, verbose=False) Decays the learning rate of each parameter group by gamma every epoch. When last_epoch=-1, sets initial lr as lr. Parameters: * optimizer (Optimizer) -- Wrapped optimizer. * **gamma** (*float*) -- Multiplicative factor of learning rate decay. * **last_epoch** (*int*) -- The index of last epoch. Default: -1. * **verbose** (*bool*) -- If "True", prints a message to stdout for each update. Default: "False". get_last_lr() Return last computed learning rate by current scheduler. load_state_dict(state_dict) Loads the schedulers state. Parameters: **state_dict** (*dict*) -- scheduler state. Should be an object returned from a call to "state_dict()". print_lr(is_verbose, group, lr, epoch=None) Display the current learning rate. state_dict()
https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ExponentialLR.html
pytorch docs
state_dict() Returns the state of the scheduler as a "dict". It contains an entry for every variable in self.__dict__ which is not the optimizer.
https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ExponentialLR.html
pytorch docs
torch.Tensor.logdet Tensor.logdet() -> Tensor See "torch.logdet()"
https://pytorch.org/docs/stable/generated/torch.Tensor.logdet.html
pytorch docs
torch.Tensor.log1p_ Tensor.log1p_() -> Tensor In-place version of "log1p()"
https://pytorch.org/docs/stable/generated/torch.Tensor.log1p_.html
pytorch docs