text
stringlengths
0
1.73k
source
stringlengths
35
119
category
stringclasses
2 values
torch.autograd.profiler.profile.key_averages profile.key_averages(group_by_input_shape=False, group_by_stack_n=0) Averages all function events over their keys. Parameters: * group_by_input_shapes -- group entries by (event name, input shapes) rather than just event name. This is useful to see which input shapes contribute to the runtime the most and may help with size-specific optimizations or choosing the best candidates for quantization (aka fitting a roof line) * **group_by_stack_n** -- group by top n stack trace entries Returns: An EventList containing FunctionEventAvg objects.
https://pytorch.org/docs/stable/generated/torch.autograd.profiler.profile.key_averages.html
pytorch docs
Hardsigmoid class torch.nn.Hardsigmoid(inplace=False) Applies the Hardsigmoid function element-wise. Hardsigmoid is defined as: \text{Hardsigmoid}(x) = \begin{cases} 0 & \text{if~} x \le -3, \\ 1 & \text{if~} x \ge +3, \\ x / 6 + 1 / 2 & \text{otherwise} \end{cases} Parameters: inplace (bool) -- can optionally do the operation in- place. Default: "False" Shape: * Input: (*), where * means any number of dimensions. * Output: (*), same shape as the input. [image] Examples: >>> m = nn.Hardsigmoid() >>> input = torch.randn(2) >>> output = m(input)
https://pytorch.org/docs/stable/generated/torch.nn.Hardsigmoid.html
pytorch docs
torch._foreach_sqrt torch._foreach_sqrt(self: List[Tensor]) -> List[Tensor] Apply "torch.sqrt()" to each Tensor of the input list.
https://pytorch.org/docs/stable/generated/torch._foreach_sqrt.html
pytorch docs
torch.linalg.vander torch.linalg.vander(x, N=None) -> Tensor Generates a Vandermonde matrix. Returns the Vandermonde matrix V V = \begin{pmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{N-1}\\ 1 & x_2 & x_2^2 & \dots & x_2^{N-1}\\ 1 & x_3 & x_3^2 & \dots & x_3^{N-1}\\ \vdots & \vdots & \vdots & \ddots &\vdots \\ 1 & x_n & x_n^2 & \dots & x_n^{N-1} \end{pmatrix}. for N > 1. If "N"= None, then N = x.size(-1) so that the output is a square matrix. Supports inputs of float, double, cfloat, cdouble, and integral dtypes. Also supports batches of vectors, and if "x" is a batch of vectors then the output has the same batch dimensions. Differences with numpy.vander: Unlike numpy.vander, this function returns the powers of "x" in ascending order. To get them in the reverse order call "linalg.vander(x, N).flip(-1)". Parameters:
https://pytorch.org/docs/stable/generated/torch.linalg.vander.html
pytorch docs
Parameters: x (Tensor) -- tensor of shape (, n)* where *** is zero or more batch dimensions consisting of vectors. Keyword Arguments: N (int, optional) -- Number of columns in the output. Default: x.size(-1) Example: >>> x = torch.tensor([1, 2, 3, 5]) >>> linalg.vander(x) tensor([[ 1, 1, 1, 1], [ 1, 2, 4, 8], [ 1, 3, 9, 27], [ 1, 5, 25, 125]]) >>> linalg.vander(x, N=3) tensor([[ 1, 1, 1], [ 1, 2, 4], [ 1, 3, 9], [ 1, 5, 25]])
https://pytorch.org/docs/stable/generated/torch.linalg.vander.html
pytorch docs
torch.nn.functional.silu torch.nn.functional.silu(input, inplace=False) Applies the Sigmoid Linear Unit (SiLU) function, element-wise. The SiLU function is also known as the swish function. \text{silu}(x) = x * \sigma(x), \text{where } \sigma(x) \text{ is the logistic sigmoid.} Note: See Gaussian Error Linear Units (GELUs) where the SiLU (Sigmoid Linear Unit) was originally coined, and see Sigmoid-Weighted Linear Units for Neural Network Function Approximation in Reinforcement Learning and Swish: a Self-Gated Activation Function where the SiLU was experimented with later. See "SiLU" for more details. Return type: Tensor
https://pytorch.org/docs/stable/generated/torch.nn.functional.silu.html
pytorch docs
torch.clone torch.clone(input, *, memory_format=torch.preserve_format) -> Tensor Returns a copy of "input". Note: This function is differentiable, so gradients will flow back from the result of this operation to "input". To create a tensor without an autograd relationship to "input" see "detach()". Parameters: input (Tensor) -- the input tensor. Keyword Arguments: memory_format ("torch.memory_format", optional) -- the desired memory format of returned tensor. Default: "torch.preserve_format".
https://pytorch.org/docs/stable/generated/torch.clone.html
pytorch docs
LinearReLU class torch.ao.nn.intrinsic.qat.LinearReLU(in_features, out_features, bias=True, qconfig=None) A LinearReLU module fused from Linear and ReLU modules, attached with FakeQuantize modules for weight, used in quantization aware training. We adopt the same interface as "torch.nn.Linear". Similar to torch.nn.intrinsic.LinearReLU, with FakeQuantize modules initialized to default. Variables: weight (torch.Tensor) -- fake quant module for weight Examples: >>> m = nn.qat.LinearReLU(20, 30) >>> input = torch.randn(128, 20) >>> output = m(input) >>> print(output.size()) torch.Size([128, 30])
https://pytorch.org/docs/stable/generated/torch.ao.nn.intrinsic.qat.LinearReLU.html
pytorch docs
torch.foreach_cosh torch.foreach_cosh(self: List[Tensor]) -> None Apply "torch.cosh()" to each Tensor of the input list.
https://pytorch.org/docs/stable/generated/torch._foreach_cosh_.html
pytorch docs
torch.imag torch.imag(input) -> Tensor Returns a new tensor containing imaginary values of the "self" tensor. The returned tensor and "self" share the same underlying storage. Warning: "imag()" is only supported for tensors with complex dtypes. Parameters: input (Tensor) -- the input tensor. Example: >>> x=torch.randn(4, dtype=torch.cfloat) >>> x tensor([(0.3100+0.3553j), (-0.5445-0.7896j), (-1.6492-0.0633j), (-0.0638-0.8119j)]) >>> x.imag tensor([ 0.3553, -0.7896, -0.0633, -0.8119])
https://pytorch.org/docs/stable/generated/torch.imag.html
pytorch docs
RMSprop class torch.optim.RMSprop(params, lr=0.01, alpha=0.99, eps=1e-08, weight_decay=0, momentum=0, centered=False, foreach=None, maximize=False, differentiable=False) Implements RMSprop algorithm. \begin{aligned} &\rule{110mm}{0.4pt} \\ &\textbf{input} : \alpha \text{ (alpha)},\: \gamma \text{ (lr)}, \: \theta_0 \text{ (params)}, \: f(\theta) \text{ (objective)} \\ &\hspace{13mm} \lambda \text{ (weight decay)},\: \mu \text{ (momentum)},\: centered\\ &\textbf{initialize} : v_0 \leftarrow 0 \text{ (square average)}, \: \textbf{b}_0 \leftarrow 0 \text{ (buffer)}, \: g^{ave}_0 \leftarrow 0 \\[-1.ex] &\rule{110mm}{0.4pt} \\ &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\ &\hspace{5mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\ &\hspace{5mm}if \: \lambda \neq 0
https://pytorch.org/docs/stable/generated/torch.optim.RMSprop.html
pytorch docs
&\hspace{5mm}if \: \lambda \neq 0 \ &\hspace{10mm} g_t \leftarrow g_t + \lambda \theta_{t-1} \ &\hspace{5mm}v_t \leftarrow \alpha v_{t-1} + (1 - \alpha) g^2_t \hspace{8mm} \ &\hspace{5mm} \tilde{v_t} \leftarrow v_t \ &\hspace{5mm}if \: centered \ &\hspace{10mm} g^{ave}t \leftarrow g^{ave} \alpha + (1-\alpha) g_t \ &\hspace{10mm} \tilde{v_t} \leftarrow \tilde{v_t} - \big(g^{ave}{t} \big)^2 \ &\hspace{5mm}if \: \mu > 0 \ &\hspace{10mm} \textbf{b}_t\leftarrow \mu \textbf{b} + g_t/ \big(\sqrt{\tilde{v_t}} + \epsilon \big) \ &\hspace{10mm} \theta_t \leftarrow \theta_{t-1} - \gamma \textbf{b}t \ &\hspace{5mm} else \ &\hspace{10mm}\theta_t \leftarrow \theta - \gamma g_t/ \big(\sqrt{\tilde{v_t}} + \epsilon \big)
https://pytorch.org/docs/stable/generated/torch.optim.RMSprop.html
pytorch docs
\hspace{3mm} \ &\rule{110mm}{0.4pt} \[-1.ex] &\bf{return} \: \theta_t \[-1.ex] &\rule{110mm}{0.4pt} \[-1.ex] \end{aligned} For further details regarding the algorithm we refer to lecture notes by G. Hinton. and centered version Generating Sequences With Recurrent Neural Networks. The implementation here takes the square root of the gradient average before adding epsilon (note that TensorFlow interchanges these two operations). The effective learning rate is thus \gamma/(\sqrt{v} + \epsilon) where \gamma is the scheduled learning rate and v is the weighted moving average of the squared gradient. Parameters: * params (iterable) -- iterable of parameters to optimize or dicts defining parameter groups * **lr** (*float**, **optional*) -- learning rate (default: 1e-2) * **momentum** (*float**, **optional*) -- momentum factor (default: 0)
https://pytorch.org/docs/stable/generated/torch.optim.RMSprop.html
pytorch docs
(default: 0) * **alpha** (*float**, **optional*) -- smoothing constant (default: 0.99) * **eps** (*float**, **optional*) -- term added to the denominator to improve numerical stability (default: 1e-8) * **centered** (*bool**, **optional*) -- if "True", compute the centered RMSProp, the gradient is normalized by an estimation of its variance * **weight_decay** (*float**, **optional*) -- weight decay (L2 penalty) (default: 0) * **foreach** (*bool**, **optional*) -- whether foreach implementation of optimizer is used. If unspecified by the user (so foreach is None), we will try to use foreach over the for-loop implementation on CUDA, since it is usually significantly more performant. (default: None) * **maximize** (*bool**, **optional*) -- maximize the params based on the objective, instead of minimizing (default: False)
https://pytorch.org/docs/stable/generated/torch.optim.RMSprop.html
pytorch docs
differentiable (bool, optional) -- whether autograd should occur through the optimizer step in training. Otherwise, the step() function runs in a torch.no_grad() context. Setting to True can impair performance, so leave it False if you don't intend to run autograd through this instance (default: False) add_param_group(param_group) Add a param group to the "Optimizer" s *param_groups*. This can be useful when fine tuning a pre-trained network as frozen layers can be made trainable and added to the "Optimizer" as training progresses. Parameters: **param_group** (*dict*) -- Specifies what Tensors should be optimized along with group specific optimization options. load_state_dict(state_dict) Loads the optimizer state. Parameters: **state_dict** (*dict*) -- optimizer state. Should be an object returned from a call to "state_dict()". register_step_post_hook(hook)
https://pytorch.org/docs/stable/generated/torch.optim.RMSprop.html
pytorch docs
register_step_post_hook(hook) Register an optimizer step post hook which will be called after optimizer step. It should have the following signature: hook(optimizer, args, kwargs) -> None The "optimizer" argument is the optimizer instance being used. Parameters: **hook** (*Callable*) -- The user defined hook to be registered. Returns: a handle that can be used to remove the added hook by calling "handle.remove()" Return type: "torch.utils.hooks.RemoveableHandle" register_step_pre_hook(hook) Register an optimizer step pre hook which will be called before optimizer step. It should have the following signature: hook(optimizer, args, kwargs) -> None or modified args and kwargs The "optimizer" argument is the optimizer instance being used. If args and kwargs are modified by the pre-hook, then the transformed values are returned as a tuple containing the
https://pytorch.org/docs/stable/generated/torch.optim.RMSprop.html
pytorch docs
new_args and new_kwargs. Parameters: **hook** (*Callable*) -- The user defined hook to be registered. Returns: a handle that can be used to remove the added hook by calling "handle.remove()" Return type: "torch.utils.hooks.RemoveableHandle" state_dict() Returns the state of the optimizer as a "dict". It contains two entries: * state - a dict holding current optimization state. Its content differs between optimizer classes. * param_groups - a list containing all parameter groups where each parameter group is a dict zero_grad(set_to_none=False) Sets the gradients of all optimized "torch.Tensor" s to zero. Parameters: **set_to_none** (*bool*) -- instead of setting to zero, set the grads to None. This will in general have lower memory footprint, and can modestly improve performance. However, it
https://pytorch.org/docs/stable/generated/torch.optim.RMSprop.html
pytorch docs
changes certain behaviors. For example: 1. When the user tries to access a gradient and perform manual ops on it, a None attribute or a Tensor full of 0s will behave differently. 2. If the user requests "zero_grad(set_to_none=True)" followed by a backward pass, ".grad"s are guaranteed to be None for params that did not receive a gradient. 3. "torch.optim" optimizers have a different behavior if the gradient is 0 or None (in one case it does the step with a gradient of 0 and in the other it skips the step altogether).
https://pytorch.org/docs/stable/generated/torch.optim.RMSprop.html
pytorch docs
torch.qr torch.qr(input, some=True, *, out=None) Computes the QR decomposition of a matrix or a batch of matrices "input", and returns a namedtuple (Q, R) of tensors such that \text{input} = Q R with Q being an orthogonal matrix or batch of orthogonal matrices and R being an upper triangular matrix or batch of upper triangular matrices. If "some" is "True", then this function returns the thin (reduced) QR factorization. Otherwise, if "some" is "False", this function returns the complete QR factorization. Warning: "torch.qr()" is deprecated in favor of "torch.linalg.qr()" and will be removed in a future PyTorch release. The boolean parameter "some" has been replaced with a string parameter "mode"."Q, R = torch.qr(A)" should be replaced with Q, R = torch.linalg.qr(A) "Q, R = torch.qr(A, some=False)" should be replaced with Q, R = torch.linalg.qr(A, mode="complete") Warning:
https://pytorch.org/docs/stable/generated/torch.qr.html
pytorch docs
Warning: If you plan to backpropagate through QR, note that the current backward implementation is only well-defined when the first \min(input.size(-1), input.size(-2)) columns of "input" are linearly independent. This behavior will probably change once QR supports pivoting. Note: This function uses LAPACK for CPU inputs and MAGMA for CUDA inputs, and may produce different (valid) decompositions on different device types or different platforms. Parameters: * input (Tensor) -- the input tensor of size (*, m, n) where *** is zero or more batch dimensions consisting of matrices of dimension m \times n. * **some** (*bool**, **optional*) -- Set to "True" for reduced QR decomposition and "False" for complete QR decomposition. If *k = min(m, n)* then: * "some=True" : returns *(Q, R)* with dimensions (m, k), (k, n) (default)
https://pytorch.org/docs/stable/generated/torch.qr.html
pytorch docs
(k, n) (default) * "'some=False'": returns *(Q, R)* with dimensions (m, m), (m, n) Keyword Arguments: out (tuple, optional) -- tuple of Q and R tensors. The dimensions of Q and R are detailed in the description of "some" above. Example: >>> a = torch.tensor([[12., -51, 4], [6, 167, -68], [-4, 24, -41]]) >>> q, r = torch.qr(a) >>> q tensor([[-0.8571, 0.3943, 0.3314], [-0.4286, -0.9029, -0.0343], [ 0.2857, -0.1714, 0.9429]]) >>> r tensor([[ -14.0000, -21.0000, 14.0000], [ 0.0000, -175.0000, 70.0000], [ 0.0000, 0.0000, -35.0000]]) >>> torch.mm(q, r).round() tensor([[ 12., -51., 4.], [ 6., 167., -68.], [ -4., 24., -41.]]) >>> torch.mm(q.t(), q).round() tensor([[ 1., 0., 0.], [ 0., 1., -0.], [ 0., -0., 1.]])
https://pytorch.org/docs/stable/generated/torch.qr.html
pytorch docs
[ 0., -0., 1.]]) >>> a = torch.randn(3, 4, 5) >>> q, r = torch.qr(a, some=False) >>> torch.allclose(torch.matmul(q, r), a) True >>> torch.allclose(torch.matmul(q.mT, q), torch.eye(5)) True
https://pytorch.org/docs/stable/generated/torch.qr.html
pytorch docs
torch.linalg.lu_factor_ex torch.linalg.lu_factor_ex(A, *, pivot=True, check_errors=False, out=None) This is a version of "lu_factor()" that does not perform error checks unless "check_errors"= True. It also returns the "info" tensor returned by LAPACK's getrf. Note: When the inputs are on a CUDA device, this function synchronizes only when "check_errors"*= True*. Warning: This function is "experimental" and it may change in a future PyTorch release. Parameters: A (Tensor) -- tensor of shape (, m, n)* where *** is zero or more batch dimensions. Keyword Arguments: * pivot (bool, optional) -- Whether to compute the LU decomposition with partial pivoting, or the regular LU decomposition. "pivot"= False not supported on CPU. Default: True. * **check_errors** (*bool**, **optional*) -- controls whether to
https://pytorch.org/docs/stable/generated/torch.linalg.lu_factor_ex.html
pytorch docs
check the content of "infos" and raise an error if it is non- zero. Default: False. * **out** (*tuple**, **optional*) -- tuple of three tensors to write the output to. Ignored if *None*. Default: *None*. Returns: A named tuple (LU, pivots, info).
https://pytorch.org/docs/stable/generated/torch.linalg.lu_factor_ex.html
pytorch docs
torch.Tensor.sum_to_size Tensor.sum_to_size(*size) -> Tensor Sum "this" tensor to "size". "size" must be broadcastable to "this" tensor size. Parameters: size (int...) -- a sequence of integers defining the shape of the output tensor.
https://pytorch.org/docs/stable/generated/torch.Tensor.sum_to_size.html
pytorch docs
torch.logcumsumexp torch.logcumsumexp(input, dim, *, out=None) -> Tensor Returns the logarithm of the cumulative summation of the exponentiation of elements of "input" in the dimension "dim". For summation index j given by dim and other indices i, the result is \text{logcumsumexp}(x)_{ij} = \log \sum\limits_{j=0}^{i} \exp(x_{ij}) Parameters: * input (Tensor) -- the input tensor. * **dim** (*int*) -- the dimension to do the operation over Keyword Arguments: out (Tensor, optional) -- the output tensor. Example: >>> a = torch.randn(10) >>> torch.logcumsumexp(a, dim=0) tensor([-0.42296738, -0.04462666, 0.86278635, 0.94622083, 1.05277811, 1.39202815, 1.83525007, 1.84492621, 2.06084887, 2.06844475]))
https://pytorch.org/docs/stable/generated/torch.logcumsumexp.html
pytorch docs
torch.Tensor.conj_physical Tensor.conj_physical() -> Tensor See "torch.conj_physical()"
https://pytorch.org/docs/stable/generated/torch.Tensor.conj_physical.html
pytorch docs
torch.Tensor.unsqueeze Tensor.unsqueeze(dim) -> Tensor See "torch.unsqueeze()"
https://pytorch.org/docs/stable/generated/torch.Tensor.unsqueeze.html
pytorch docs
device class torch.cuda.device(device) Context-manager that changes the selected device. Parameters: device (torch.device or int) -- device index to select. It's a no-op if this argument is a negative integer or "None".
https://pytorch.org/docs/stable/generated/torch.cuda.device.html
pytorch docs
torch.Tensor.fmod_ Tensor.fmod_(divisor) -> Tensor In-place version of "fmod()"
https://pytorch.org/docs/stable/generated/torch.Tensor.fmod_.html
pytorch docs
torch.diagonal torch.diagonal(input, offset=0, dim1=0, dim2=1) -> Tensor Returns a partial view of "input" with the its diagonal elements with respect to "dim1" and "dim2" appended as a dimension at the end of the shape. The argument "offset" controls which diagonal to consider: If "offset" = 0, it is the main diagonal. If "offset" > 0, it is above the main diagonal. If "offset" < 0, it is below the main diagonal. Applying "torch.diag_embed()" to the output of this function with the same arguments yields a diagonal matrix with the diagonal entries of the input. However, "torch.diag_embed()" has different default dimensions, so those need to be explicitly specified. Parameters: * input (Tensor) -- the input tensor. Must be at least 2-dimensional. * **offset** (*int**, **optional*) -- which diagonal to consider. Default: 0 (main diagonal). * **dim1** (*int**, **optional*) -- first dimension with respect
https://pytorch.org/docs/stable/generated/torch.diagonal.html
pytorch docs
to which to take diagonal. Default: 0. * **dim2** (*int**, **optional*) -- second dimension with respect to which to take diagonal. Default: 1. Note: To take a batch diagonal, pass in dim1=-2, dim2=-1. Examples: >>> a = torch.randn(3, 3) >>> a tensor([[-1.0854, 1.1431, -0.1752], [ 0.8536, -0.0905, 0.0360], [ 0.6927, -0.3735, -0.4945]]) >>> torch.diagonal(a, 0) tensor([-1.0854, -0.0905, -0.4945]) >>> torch.diagonal(a, 1) tensor([ 1.1431, 0.0360]) >>> x = torch.randn(2, 5, 4, 2) >>> torch.diagonal(x, offset=-1, dim1=1, dim2=2) tensor([[[-1.2631, 0.3755, -1.5977, -1.8172], [-1.1065, 1.0401, -0.2235, -0.7938]], [[-1.7325, -0.3081, 0.6166, 0.2335], [ 1.0500, 0.7336, -0.3836, -1.1015]]])
https://pytorch.org/docs/stable/generated/torch.diagonal.html
pytorch docs
MultiLabelMarginLoss class torch.nn.MultiLabelMarginLoss(size_average=None, reduce=None, reduction='mean') Creates a criterion that optimizes a multi-class multi- classification hinge loss (margin-based loss) between input x (a 2D mini-batch Tensor) and output y (which is a 2D Tensor of target class indices). For each sample in the mini-batch: \text{loss}(x, y) = \sum_{ij}\frac{\max(0, 1 - (x[y[j]] - x[i]))}{\text{x.size}(0)} where x \in \left{0, \; \cdots , \; \text{x.size}(0) - 1\right}, y \in \left{0, \; \cdots , \; \text{y.size}(0) - 1\right}, 0 \leq y[j] \leq \text{x.size}(0)-1, and i \neq y[j] for all i and j. y and x must have the same size. The criterion only considers a contiguous block of non-negative targets that starts at the front. This allows for different samples to have variable amounts of target classes. Parameters: * size_average (bool, optional) -- Deprecated (see
https://pytorch.org/docs/stable/generated/torch.nn.MultiLabelMarginLoss.html
pytorch docs
"reduction"). By default, the losses are averaged over each loss element in the batch. Note that for some losses, there are multiple elements per sample. If the field "size_average" is set to "False", the losses are instead summed for each minibatch. Ignored when "reduce" is "False". Default: "True" * **reduce** (*bool**, **optional*) -- Deprecated (see "reduction"). By default, the losses are averaged or summed over observations for each minibatch depending on "size_average". When "reduce" is "False", returns a loss per batch element instead and ignores "size_average". Default: "True" * **reduction** (*str**, **optional*) -- Specifies the reduction to apply to the output: "'none'" | "'mean'" | "'sum'". "'none'": no reduction will be applied, "'mean'": the sum of the output will be divided by the number of elements in the output, "'sum'": the output will be summed. Note:
https://pytorch.org/docs/stable/generated/torch.nn.MultiLabelMarginLoss.html
pytorch docs
"size_average" and "reduce" are in the process of being deprecated, and in the meantime, specifying either of those two args will override "reduction". Default: "'mean'" Shape: * Input: (C) or (N, C) where N is the batch size and C is the number of classes. * Target: (C) or (N, C), label targets padded by -1 ensuring same shape as the input. * Output: scalar. If "reduction" is "'none'", then (N). Examples: >>> loss = nn.MultiLabelMarginLoss() >>> x = torch.FloatTensor([[0.1, 0.2, 0.4, 0.8]]) >>> # for target y, only consider labels 3 and 0, not after label -1 >>> y = torch.LongTensor([[3, 0, -1, 1]]) >>> # 0.25 * ((1-(0.1-0.2)) + (1-(0.1-0.4)) + (1-(0.8-0.2)) + (1-(0.8-0.4))) >>> loss(x, y) tensor(0.85...)
https://pytorch.org/docs/stable/generated/torch.nn.MultiLabelMarginLoss.html
pytorch docs
BatchNorm3d class torch.nn.BatchNorm3d(num_features, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True, device=None, dtype=None) Applies Batch Normalization over a 5D input (a mini-batch of 3D inputs with additional channel dimension) as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift . y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta The mean and standard-deviation are calculated per-dimension over the mini-batches and \gamma and \beta are learnable parameter vectors of size C (where C is the input size). By default, the elements of \gamma are set to 1 and the elements of \beta are set to 0. The standard-deviation is calculated via the biased estimator, equivalent to torch.var(input, unbiased=False). Also by default, during training this layer keeps running estimates of its computed mean and variance, which are then used for
https://pytorch.org/docs/stable/generated/torch.nn.BatchNorm3d.html
pytorch docs
normalization during evaluation. The running estimates are kept with a default "momentum" of 0.1. If "track_running_stats" is set to "False", this layer then does not keep running estimates, and batch statistics are instead used during evaluation time as well. Note: This "momentum" argument is different from one used in optimizer classes and the conventional notion of momentum. Mathematically, the update rule for running statistics here is \hat{x}_\text{new} = (1 - \text{momentum}) \times \hat{x} + \text{momentum} \times x_t, where \hat{x} is the estimated statistic and x_t is the new observed value. Because the Batch Normalization is done over the C dimension, computing statistics on (N, D, H, W) slices, it's common terminology to call this Volumetric Batch Normalization or Spatio- temporal Batch Normalization. Parameters: * num_features (int) -- C from an expected input of size (N, C, D, H, W)
https://pytorch.org/docs/stable/generated/torch.nn.BatchNorm3d.html
pytorch docs
(N, C, D, H, W) * **eps** (*float*) -- a value added to the denominator for numerical stability. Default: 1e-5 * **momentum** (*float*) -- the value used for the running_mean and running_var computation. Can be set to "None" for cumulative moving average (i.e. simple average). Default: 0.1 * **affine** (*bool*) -- a boolean value that when set to "True", this module has learnable affine parameters. Default: "True" * **track_running_stats** (*bool*) -- a boolean value that when set to "True", this module tracks the running mean and variance, and when set to "False", this module does not track such statistics, and initializes statistics buffers "running_mean" and "running_var" as "None". When these buffers are "None", this module always uses batch statistics. in both training and eval modes. Default: "True" Shape: * Input: (N, C, D, H, W)
https://pytorch.org/docs/stable/generated/torch.nn.BatchNorm3d.html
pytorch docs
Shape: * Input: (N, C, D, H, W) * Output: (N, C, D, H, W) (same shape as input) Examples: >>> # With Learnable Parameters >>> m = nn.BatchNorm3d(100) >>> # Without Learnable Parameters >>> m = nn.BatchNorm3d(100, affine=False) >>> input = torch.randn(20, 100, 35, 45, 10) >>> output = m(input)
https://pytorch.org/docs/stable/generated/torch.nn.BatchNorm3d.html
pytorch docs
Softshrink class torch.nn.Softshrink(lambd=0.5) Applies the soft shrinkage function elementwise: \text{SoftShrinkage}(x) = \begin{cases} x - \lambda, & \text{ if } x > \lambda \\ x + \lambda, & \text{ if } x < -\lambda \\ 0, & \text{ otherwise } \end{cases} Parameters: lambd (float) -- the \lambda (must be no less than zero) value for the Softshrink formulation. Default: 0.5 Shape: * Input: (*), where * means any number of dimensions. * Output: (*), same shape as the input. [image] Examples: >>> m = nn.Softshrink() >>> input = torch.randn(2) >>> output = m(input)
https://pytorch.org/docs/stable/generated/torch.nn.Softshrink.html
pytorch docs
torch.Tensor.slogdet Tensor.slogdet() See "torch.slogdet()"
https://pytorch.org/docs/stable/generated/torch.Tensor.slogdet.html
pytorch docs
torch.foreach_sigmoid torch.foreach_sigmoid(self: List[Tensor]) -> None Apply "torch.sigmoid()" to each Tensor of the input list.
https://pytorch.org/docs/stable/generated/torch._foreach_sigmoid_.html
pytorch docs
torch.scatter_reduce torch.scatter_reduce(input, dim, index, src, reduce, *, include_self=True) -> Tensor Out-of-place version of "torch.Tensor.scatter_reduce_()"
https://pytorch.org/docs/stable/generated/torch.scatter_reduce.html
pytorch docs
torch.cross torch.cross(input, other, dim=None, *, out=None) -> Tensor Returns the cross product of vectors in dimension "dim" of "input" and "other". Supports input of float, double, cfloat and cdouble dtypes. Also supports batches of vectors, for which it computes the product along the dimension "dim". In this case, the output has the same batch dimensions as the inputs. If "dim" is not given, it defaults to the first dimension found with the size 3. Note that this might be unexpected. See also: "torch.linalg.cross()" which requires specifying dim (defaulting to -1). Warning: This function may change in a future PyTorch release to match the default behaviour in "torch.linalg.cross()". We recommend using "torch.linalg.cross()". Parameters: * input (Tensor) -- the input tensor. * **other** (*Tensor*) -- the second input tensor * **dim** (*int**, **optional*) -- the dimension to take the
https://pytorch.org/docs/stable/generated/torch.cross.html
pytorch docs
cross-product in. Keyword Arguments: out (Tensor, optional) -- the output tensor. Example: >>> a = torch.randn(4, 3) >>> a tensor([[-0.3956, 1.1455, 1.6895], [-0.5849, 1.3672, 0.3599], [-1.1626, 0.7180, -0.0521], [-0.1339, 0.9902, -2.0225]]) >>> b = torch.randn(4, 3) >>> b tensor([[-0.0257, -1.4725, -1.2251], [-1.1479, -0.7005, -1.9757], [-1.3904, 0.3726, -1.1836], [-0.9688, -0.7153, 0.2159]]) >>> torch.cross(a, b, dim=1) tensor([[ 1.0844, -0.5281, 0.6120], [-2.4490, -1.5687, 1.9792], [-0.8304, -1.3037, 0.5650], [-1.2329, 1.9883, 1.0551]]) >>> torch.cross(a, b) tensor([[ 1.0844, -0.5281, 0.6120], [-2.4490, -1.5687, 1.9792], [-0.8304, -1.3037, 0.5650], [-1.2329, 1.9883, 1.0551]])
https://pytorch.org/docs/stable/generated/torch.cross.html
pytorch docs
torch.Tensor.sinc_ Tensor.sinc_() -> Tensor In-place version of "sinc()"
https://pytorch.org/docs/stable/generated/torch.Tensor.sinc_.html
pytorch docs
torch.is_inference_mode_enabled torch.is_inference_mode_enabled() Returns True if inference mode is currently enabled.
https://pytorch.org/docs/stable/generated/torch.is_inference_mode_enabled.html
pytorch docs
torch.Tensor.lerp_ Tensor.lerp_(end, weight) -> Tensor In-place version of "lerp()"
https://pytorch.org/docs/stable/generated/torch.Tensor.lerp_.html
pytorch docs
torch.Tensor.nanquantile Tensor.nanquantile(q, dim=None, keepdim=False, *, interpolation='linear') -> Tensor See "torch.nanquantile()"
https://pytorch.org/docs/stable/generated/torch.Tensor.nanquantile.html
pytorch docs
torch.cuda.nvtx.range_pop torch.cuda.nvtx.range_pop() Pops a range off of a stack of nested range spans. Returns the zero-based depth of the range that is ended.
https://pytorch.org/docs/stable/generated/torch.cuda.nvtx.range_pop.html
pytorch docs
torch.dequantize torch.dequantize(tensor) -> Tensor Returns an fp32 Tensor by dequantizing a quantized Tensor Parameters: tensor (Tensor) -- A quantized Tensor torch.dequantize(tensors) -> sequence of Tensors Given a list of quantized Tensors, dequantize them and return a list of fp32 Tensors Parameters: tensors (sequence of Tensors) -- A list of quantized Tensors
https://pytorch.org/docs/stable/generated/torch.dequantize.html
pytorch docs
torch.Tensor.bitwise_left_shift Tensor.bitwise_left_shift(other) -> Tensor See "torch.bitwise_left_shift()"
https://pytorch.org/docs/stable/generated/torch.Tensor.bitwise_left_shift.html
pytorch docs
LinearReLU class torch.ao.nn.intrinsic.quantized.LinearReLU(in_features, out_features, bias=True, dtype=torch.qint8) A LinearReLU module fused from Linear and ReLU modules We adopt the same interface as "torch.ao.nn.quantized.Linear". Variables: torch.ao.nn.quantized.Linear (Same as) -- Examples: >>> m = nn.intrinsic.LinearReLU(20, 30) >>> input = torch.randn(128, 20) >>> output = m(input) >>> print(output.size()) torch.Size([128, 30])
https://pytorch.org/docs/stable/generated/torch.ao.nn.intrinsic.quantized.LinearReLU.html
pytorch docs
FakeQuantizeBase class torch.quantization.fake_quantize.FakeQuantizeBase Base fake quantize module Any fake quantize implementation should derive from this class. Concrete fake quantize module should follow the same API. In forward, they will update the statistics of the observed Tensor and fake quantize the input. They should also provide a calculate_qparams function that computes the quantization parameters given the collected statistics.
https://pytorch.org/docs/stable/generated/torch.quantization.fake_quantize.FakeQuantizeBase.html
pytorch docs
torch.optim.Optimizer.add_param_group Optimizer.add_param_group(param_group) Add a param group to the "Optimizer" s param_groups. This can be useful when fine tuning a pre-trained network as frozen layers can be made trainable and added to the "Optimizer" as training progresses. Parameters: param_group (dict) -- Specifies what Tensors should be optimized along with group specific optimization options.
https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.add_param_group.html
pytorch docs
ConvBnReLU2d class torch.ao.nn.intrinsic.ConvBnReLU2d(conv, bn, relu) This is a sequential container which calls the Conv 2d, Batch Norm 2d, and ReLU modules. During quantization this will be replaced with the corresponding fused module.
https://pytorch.org/docs/stable/generated/torch.ao.nn.intrinsic.ConvBnReLU2d.html
pytorch docs
torch.Tensor.new_ones Tensor.new_ones(size, *, dtype=None, device=None, requires_grad=False, layout=torch.strided, pin_memory=False) -> Tensor Returns a Tensor of size "size" filled with "1". By default, the returned Tensor has the same "torch.dtype" and "torch.device" as this tensor. Parameters: size (int...) -- a list, tuple, or "torch.Size" of integers defining the shape of the output tensor. Keyword Arguments: * dtype ("torch.dtype", optional) -- the desired type of returned tensor. Default: if None, same "torch.dtype" as this tensor. * **device** ("torch.device", optional) -- the desired device of returned tensor. Default: if None, same "torch.device" as this tensor. * **requires_grad** (*bool**, **optional*) -- If autograd should record operations on the returned tensor. Default: "False". * **layout** ("torch.layout", optional) -- the desired layout of
https://pytorch.org/docs/stable/generated/torch.Tensor.new_ones.html
pytorch docs
returned Tensor. Default: "torch.strided". * **pin_memory** (*bool**, **optional*) -- If set, returned tensor would be allocated in the pinned memory. Works only for CPU tensors. Default: "False". Example: >>> tensor = torch.tensor((), dtype=torch.int32) >>> tensor.new_ones((2, 3)) tensor([[ 1, 1, 1], [ 1, 1, 1]], dtype=torch.int32)
https://pytorch.org/docs/stable/generated/torch.Tensor.new_ones.html
pytorch docs
AdaptiveMaxPool3d class torch.nn.AdaptiveMaxPool3d(output_size, return_indices=False) Applies a 3D adaptive max pooling over an input signal composed of several input planes. The output is of size D_{out} \times H_{out} \times W_{out}, for any input size. The number of output features is equal to the number of input planes. Parameters: * output_size (Union[int, None, Tuple[Optional[int], Optional[int], Optional[int]]]) -- the target output size of the image of the form D_{out} \times H_{out} \times W_{out}. Can be a tuple (D_{out}, H_{out}, W_{out}) or a single D_{out} for a cube D_{out} \times D_{out} \times D_{out}. D_{out}, H_{out} and W_{out} can be either a "int", or "None" which means the size will be the same as that of the input. * **return_indices** (*bool*) -- if "True", will return the
https://pytorch.org/docs/stable/generated/torch.nn.AdaptiveMaxPool3d.html
pytorch docs
indices along with the outputs. Useful to pass to nn.MaxUnpool3d. Default: "False" Shape: * Input: (N, C, D_{in}, H_{in}, W_{in}) or (C, D_{in}, H_{in}, W_{in}). * Output: (N, C, D_{out}, H_{out}, W_{out}) or (C, D_{out}, H_{out}, W_{out}), where (D_{out}, H_{out}, W_{out})=\text{output\_size}. -[ Examples ]- target output size of 5x7x9 m = nn.AdaptiveMaxPool3d((5, 7, 9)) input = torch.randn(1, 64, 8, 9, 10) output = m(input) target output size of 7x7x7 (cube) m = nn.AdaptiveMaxPool3d(7) input = torch.randn(1, 64, 10, 9, 8) output = m(input) target output size of 7x9x8 m = nn.AdaptiveMaxPool3d((7, None, None)) input = torch.randn(1, 64, 10, 9, 8) output = m(input)
https://pytorch.org/docs/stable/generated/torch.nn.AdaptiveMaxPool3d.html
pytorch docs
torch.optim.Optimizer.zero_grad Optimizer.zero_grad(set_to_none=False) Sets the gradients of all optimized "torch.Tensor" s to zero. Parameters: set_to_none (bool) -- instead of setting to zero, set the grads to None. This will in general have lower memory footprint, and can modestly improve performance. However, it changes certain behaviors. For example: 1. When the user tries to access a gradient and perform manual ops on it, a None attribute or a Tensor full of 0s will behave differently. 2. If the user requests "zero_grad(set_to_none=True)" followed by a backward pass, ".grad"s are guaranteed to be None for params that did not receive a gradient. 3. "torch.optim" optimizers have a different behavior if the gradient is 0 or None (in one case it does the step with a gradient of 0 and in the other it skips the step altogether).
https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html
pytorch docs
torch.nn.modules.module.register_module_backward_hook torch.nn.modules.module.register_module_backward_hook(hook) Registers a backward hook common to all the modules. This function is deprecated in favor of "torch.nn.modules.module.register_module_full_backward_hook()" and the behavior of this function will change in future versions. Returns: a handle that can be used to remove the added hook by calling "handle.remove()" Return type: "torch.utils.hooks.RemovableHandle"
https://pytorch.org/docs/stable/generated/torch.nn.modules.module.register_module_backward_hook.html
pytorch docs
torch._foreach_cosh torch._foreach_cosh(self: List[Tensor]) -> List[Tensor] Apply "torch.cosh()" to each Tensor of the input list.
https://pytorch.org/docs/stable/generated/torch._foreach_cosh.html
pytorch docs
ConstantPad3d class torch.nn.ConstantPad3d(padding, value) Pads the input tensor boundaries with a constant value. For N-dimensional padding, use "torch.nn.functional.pad()". Parameters: padding (int, tuple) -- the size of the padding. If is int, uses the same padding in all boundaries. If a 6-tuple, uses (\text{padding_left}, \text{padding_right}, \text{padding_top}, \text{padding_bottom}, \text{padding_front}, \text{padding_back}) Shape: * Input: (N, C, D_{in}, H_{in}, W_{in}) or (C, D_{in}, H_{in}, W_{in}). * Output: (N, C, D_{out}, H_{out}, W_{out}) or (C, D_{out}, H_{out}, W_{out}), where D_{out} = D_{in} + \text{padding\_front} + \text{padding\_back} H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom} W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right} Examples: >>> m = nn.ConstantPad3d(3, 3.5)
https://pytorch.org/docs/stable/generated/torch.nn.ConstantPad3d.html
pytorch docs
m = nn.ConstantPad3d(3, 3.5) >>> input = torch.randn(16, 3, 10, 20, 30) >>> output = m(input) >>> # using different paddings for different sides >>> m = nn.ConstantPad3d((3, 3, 6, 6, 0, 1), 3.5) >>> output = m(input)
https://pytorch.org/docs/stable/generated/torch.nn.ConstantPad3d.html
pytorch docs
torch.nn.utils.weight_norm torch.nn.utils.weight_norm(module, name='weight', dim=0) Applies weight normalization to a parameter in the given module. \mathbf{w} = g \dfrac{\mathbf{v}}{\|\mathbf{v}\|} Weight normalization is a reparameterization that decouples the magnitude of a weight tensor from its direction. This replaces the parameter specified by "name" (e.g. "'weight'") with two parameters: one specifying the magnitude (e.g. "'weight_g'") and one specifying the direction (e.g. "'weight_v'"). Weight normalization is implemented via a hook that recomputes the weight tensor from the magnitude and direction before every "forward()" call. By default, with "dim=0", the norm is computed independently per output channel/plane. To compute a norm over the entire weight tensor, use "dim=None". See https://arxiv.org/abs/1602.07868 Parameters: * module (Module) -- containing module
https://pytorch.org/docs/stable/generated/torch.nn.utils.weight_norm.html
pytorch docs
name (str, optional) -- name of weight parameter dim (int, optional) -- dimension over which to compute the norm Returns: The original module with the weight norm hook Return type: T_module Example: >>> m = weight_norm(nn.Linear(20, 40), name='weight') >>> m Linear(in_features=20, out_features=40, bias=True) >>> m.weight_g.size() torch.Size([40, 1]) >>> m.weight_v.size() torch.Size([40, 20])
https://pytorch.org/docs/stable/generated/torch.nn.utils.weight_norm.html
pytorch docs
torch.cuda.make_graphed_callables torch.cuda.make_graphed_callables(callables, sample_args, num_warmup_iters=3, allow_unused_input=False) Accepts callables (functions or "nn.Module"s) and returns graphed versions. Each graphed callable's forward pass runs its source callable's forward CUDA work as a CUDA graph inside a single autograd node. The graphed callable's forward pass also appends a backward node to the autograd graph. During backward, this node runs the callable's backward work as a CUDA graph. Therefore, each graphed callable should be a drop-in replacement for its source callable in an autograd-enabled training loop. See Partial-network capture for detailed use and constraints. If you pass a tuple of several callables, their captures will use the same memory pool. See Graph memory management for when this is appropriate. Parameters: * callables (torch.nn.Module or Python function*, or
https://pytorch.org/docs/stable/generated/torch.cuda.make_graphed_callables.html
pytorch docs
*tuple of these) -- Callable or callables to graph. See Graph memory management for when passing a tuple of callables is appropriate. If you pass a tuple of callables, their order in the tuple must be the same order they'll run in the live workload. * **sample_args** (*tuple of Tensors**, or **tuple of tuples of Tensors*) -- Samples args for each callable. If a single callable was passed, "sample_args" must be a single tuple of argument Tensors. If a tuple of callables was passed, "sample_args" must be tuple of tuples of argument Tensors. * **num_warmup_iters** (*int*) -- The number of warmup iterations. Currently, "DataDistributedParallel" needs 11 iterations for warm up. Default: "3". * **allow_unused_input** (*bool*) -- If False, specifying inputs that were not used when computing outputs (and therefore their grad is always zero) is an error. Defaults to False. Note:
https://pytorch.org/docs/stable/generated/torch.cuda.make_graphed_callables.html
pytorch docs
Note: The "requires_grad" state of each Tensor in "sample_args" must match the state that's expected for the corresponding real input in the training loop. Warning: This API is in beta and may change in future releases. Warning: "sample_args" for each callable must contain only Tensors. Other types are not allowed. Warning: Returned callables do not support higher order differentiation (e.g., double backward). Warning: In any "Module" passed to "make_graphed_callables()", only parameters may be trainable. Buffers must have "requires_grad=False". Warning: After you pass a "torch.nn.Module" through "make_graphed_callables()", you may not add or remove any of that Module's parameters or buffers. Warning: "torch.nn.Module"s passed to "make_graphed_callables()" must not have module hooks registered on them at the time they are passed. However, registering hooks on modules *after* passing them
https://pytorch.org/docs/stable/generated/torch.cuda.make_graphed_callables.html
pytorch docs
through "make_graphed_callables()" is allowed. Warning: When running a graphed callable, you must pass its arguments in the same order and format they appeared in that callable's "sample_args". Warning: The automatic mixed precision is supported in "make_graphed_callables()" only with disabled caching. The context manager *torch.cuda.amp.autocast()* must have *cache_enabled=False*.
https://pytorch.org/docs/stable/generated/torch.cuda.make_graphed_callables.html
pytorch docs
torch.nn.utils.spectral_norm torch.nn.utils.spectral_norm(module, name='weight', n_power_iterations=1, eps=1e-12, dim=None) Applies spectral normalization to a parameter in the given module. \mathbf{W}_{SN} = \dfrac{\mathbf{W}}{\sigma(\mathbf{W})}, \sigma(\mathbf{W}) = \max_{\mathbf{h}: \mathbf{h} \ne 0} \dfrac{\|\mathbf{W} \mathbf{h}\|_2}{\|\mathbf{h}\|_2} Spectral normalization stabilizes the training of discriminators (critics) in Generative Adversarial Networks (GANs) by rescaling the weight tensor with spectral norm \sigma of the weight matrix calculated using power iteration method. If the dimension of the weight tensor is greater than 2, it is reshaped to 2D in power iteration method to get spectral norm. This is implemented via a hook that calculates spectral norm and rescales weight before every "forward()" call. See Spectral Normalization for Generative Adversarial Networks . Parameters:
https://pytorch.org/docs/stable/generated/torch.nn.utils.spectral_norm.html
pytorch docs
Parameters: * module (nn.Module) -- containing module * **name** (*str**, **optional*) -- name of weight parameter * **n_power_iterations** (*int**, **optional*) -- number of power iterations to calculate spectral norm * **eps** (*float**, **optional*) -- epsilon for numerical stability in calculating norms * **dim** (*int**, **optional*) -- dimension corresponding to number of outputs, the default is "0", except for modules that are instances of ConvTranspose{1,2,3}d, when it is "1" Returns: The original module with the spectral norm hook Return type: T_module Note: This function has been reimplemented as "torch.nn.utils.parametrizations.spectral_norm()" using the new parametrization functionality in "torch.nn.utils.parametrize.register_parametrization()". Please use the newer version. This function will be deprecated in a future version of PyTorch. Example:
https://pytorch.org/docs/stable/generated/torch.nn.utils.spectral_norm.html
pytorch docs
future version of PyTorch. Example: >>> m = spectral_norm(nn.Linear(20, 40)) >>> m Linear(in_features=20, out_features=40, bias=True) >>> m.weight_u.size() torch.Size([40])
https://pytorch.org/docs/stable/generated/torch.nn.utils.spectral_norm.html
pytorch docs
torch.roll torch.roll(input, shifts, dims=None) -> Tensor Roll the tensor "input" along the given dimension(s). Elements that are shifted beyond the last position are re-introduced at the first position. If "dims" is None, the tensor will be flattened before rolling and then restored to the original shape. Parameters: * input (Tensor) -- the input tensor. * **shifts** (*int** or **tuple of ints*) -- The number of places by which the elements of the tensor are shifted. If shifts is a tuple, dims must be a tuple of the same size, and each dimension will be rolled by the corresponding value * **dims** (*int** or **tuple of ints*) -- Axis along which to roll Example: >>> x = torch.tensor([1, 2, 3, 4, 5, 6, 7, 8]).view(4, 2) >>> x tensor([[1, 2], [3, 4], [5, 6], [7, 8]]) >>> torch.roll(x, 1) tensor([[8, 1], [2, 3], [4, 5],
https://pytorch.org/docs/stable/generated/torch.roll.html
pytorch docs
[2, 3], [4, 5], [6, 7]]) >>> torch.roll(x, 1, 0) tensor([[7, 8], [1, 2], [3, 4], [5, 6]]) >>> torch.roll(x, -1, 0) tensor([[3, 4], [5, 6], [7, 8], [1, 2]]) >>> torch.roll(x, shifts=(2, 1), dims=(0, 1)) tensor([[6, 5], [8, 7], [2, 1], [4, 3]])
https://pytorch.org/docs/stable/generated/torch.roll.html
pytorch docs
torch.Tensor.new_tensor Tensor.new_tensor(data, *, dtype=None, device=None, requires_grad=False, layout=torch.strided, pin_memory=False) -> Tensor Returns a new Tensor with "data" as the tensor data. By default, the returned Tensor has the same "torch.dtype" and "torch.device" as this tensor. Warning: "new_tensor()" always copies "data". If you have a Tensor "data" and want to avoid a copy, use "torch.Tensor.requires_grad_()" or "torch.Tensor.detach()". If you have a numpy array and want to avoid a copy, use "torch.from_numpy()". Warning: When data is a tensor *x*, "new_tensor()" reads out 'the data' from whatever it is passed, and constructs a leaf variable. Therefore "tensor.new_tensor(x)" is equivalent to "x.clone().detach()" and "tensor.new_tensor(x, requires_grad=True)" is equivalent to "x.clone().detach().requires_grad_(True)". The equivalents using "clone()" and "detach()" are recommended.
https://pytorch.org/docs/stable/generated/torch.Tensor.new_tensor.html
pytorch docs
"clone()" and "detach()" are recommended. Parameters: data (array_like) -- The returned Tensor copies "data". Keyword Arguments: * dtype ("torch.dtype", optional) -- the desired type of returned tensor. Default: if None, same "torch.dtype" as this tensor. * **device** ("torch.device", optional) -- the desired device of returned tensor. Default: if None, same "torch.device" as this tensor. * **requires_grad** (*bool**, **optional*) -- If autograd should record operations on the returned tensor. Default: "False". * **layout** ("torch.layout", optional) -- the desired layout of returned Tensor. Default: "torch.strided". * **pin_memory** (*bool**, **optional*) -- If set, returned tensor would be allocated in the pinned memory. Works only for CPU tensors. Default: "False". Example: >>> tensor = torch.ones((2,), dtype=torch.int8) >>> data = [[0, 1], [2, 3]]
https://pytorch.org/docs/stable/generated/torch.Tensor.new_tensor.html
pytorch docs
data = [[0, 1], [2, 3]] >>> tensor.new_tensor(data) tensor([[ 0, 1], [ 2, 3]], dtype=torch.int8)
https://pytorch.org/docs/stable/generated/torch.Tensor.new_tensor.html
pytorch docs
torch.set_printoptions torch.set_printoptions(precision=None, threshold=None, edgeitems=None, linewidth=None, profile=None, sci_mode=None) Set options for printing. Items shamelessly taken from NumPy Parameters: * precision -- Number of digits of precision for floating point output (default = 4). * **threshold** -- Total number of array elements which trigger summarization rather than full *repr* (default = 1000). * **edgeitems** -- Number of array items in summary at beginning and end of each dimension (default = 3). * **linewidth** -- The number of characters per line for the purpose of inserting line breaks (default = 80). Thresholded matrices will ignore this parameter. * **profile** -- Sane defaults for pretty printing. Can override with any of the above options. (any one of *default*, *short*, *full*) * **sci_mode** -- Enable (True) or disable (False) scientific
https://pytorch.org/docs/stable/generated/torch.set_printoptions.html
pytorch docs
notation. If None (default) is specified, the value is defined by torch._tensor_str._Formatter. This value is automatically chosen by the framework. Example: >>> # Limit the precision of elements >>> torch.set_printoptions(precision=2) >>> torch.tensor([1.12345]) tensor([1.12]) >>> # Limit the number of elements shown >>> torch.set_printoptions(threshold=5) >>> torch.arange(10) tensor([0, 1, 2, ..., 7, 8, 9]) >>> # Restore defaults >>> torch.set_printoptions(profile='default') >>> torch.tensor([1.12345]) tensor([1.1235]) >>> torch.arange(10) tensor([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
https://pytorch.org/docs/stable/generated/torch.set_printoptions.html
pytorch docs
torch.jit.ignore torch.jit.ignore(drop=False, **kwargs) This decorator indicates to the compiler that a function or method should be ignored and left as a Python function. This allows you to leave code in your model that is not yet TorchScript compatible. If called from TorchScript, ignored functions will dispatch the call to the Python interpreter. Models with ignored functions cannot be exported; use "@torch.jit.unused" instead. Example (using "@torch.jit.ignore" on a method): import torch import torch.nn as nn class MyModule(nn.Module): @torch.jit.ignore def debugger(self, x): import pdb pdb.set_trace() def forward(self, x): x += 10 # The compiler would normally try to compile `debugger`, # but since it is `@ignore`d, it will be left as a call # to Python self.debugger(x) return x
https://pytorch.org/docs/stable/generated/torch.jit.ignore.html
pytorch docs
return x m = torch.jit.script(MyModule()) # Error! The call `debugger` cannot be saved since it calls into Python m.save("m.pt") Example (using "@torch.jit.ignore(drop=True)" on a method): import torch import torch.nn as nn class MyModule(nn.Module): @torch.jit.ignore(drop=True) def training_method(self, x): import pdb pdb.set_trace() def forward(self, x): if self.training: self.training_method(x) return x m = torch.jit.script(MyModule()) # This is OK since `training_method` is not saved, the call is replaced # with a `raise`. m.save("m.pt")
https://pytorch.org/docs/stable/generated/torch.jit.ignore.html
pytorch docs
torch.nn.functional.adaptive_avg_pool2d torch.nn.functional.adaptive_avg_pool2d(input, output_size) Applies a 2D adaptive average pooling over an input signal composed of several input planes. See "AdaptiveAvgPool2d" for details and output shape. Parameters: output_size (None) -- the target output size (single integer or double-integer tuple) Return type: Tensor
https://pytorch.org/docs/stable/generated/torch.nn.functional.adaptive_avg_pool2d.html
pytorch docs
torch.sparse_bsc_tensor torch.sparse_bsc_tensor(ccol_indices, row_indices, values, size=None, *, dtype=None, device=None, requires_grad=False, check_invariants=None) -> Tensor Constructs a sparse tensor in BSC (Block Compressed Sparse Column)) with specified 2-dimensional blocks at the given "ccol_indices" and "row_indices". Sparse matrix multiplication operations in BSC format are typically faster than that for sparse tensors in COO format. Make you have a look at the note on the data type of the indices. Note: If the "device" argument is not specified the device of the given "values" and indices tensor(s) must match. If, however, the argument is specified the input Tensors will be converted to the given device and in turn determine the device of the constructed sparse tensor. Parameters: * ccol_indices (array_like) -- (B+1)-dimensional array of size "(*batchsize, ncolblocks + 1)". The last element of each
https://pytorch.org/docs/stable/generated/torch.sparse_bsc_tensor.html
pytorch docs
batch is the number of non-zeros. This tensor encodes the index in values and row_indices depending on where the given column starts. Each successive number in the tensor subtracted by the number before it denotes the number of elements in a given column. * **row_indices** (*array_like*) -- Row block co-ordinates of each block in values. (B+1)-dimensional tensor with the same length as values. * **values** (*array_list*) -- Initial blocks for the tensor. Can be a list, tuple, NumPy "ndarray", and other types that represents a (1 + 2 + K)-dimensional tensor where "K" is the number of dense dimensions. * **size** (list, tuple, "torch.Size", optional) -- Size of the sparse tensor: "(*batchsize, nrows * blocksize[0], ncols * blocksize[1], *densesize)" If not provided, the size will be inferred as the minimum size big enough to hold all non-zero blocks. Keyword Arguments:
https://pytorch.org/docs/stable/generated/torch.sparse_bsc_tensor.html
pytorch docs
blocks. Keyword Arguments: * dtype ("torch.dtype", optional) -- the desired data type of returned tensor. Default: if None, infers data type from "values". * **device** ("torch.device", optional) -- the desired device of returned tensor. Default: if None, uses the current device for the default tensor type (see "torch.set_default_tensor_type()"). "device" will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. * **requires_grad** (*bool**, **optional*) -- If autograd should record operations on the returned tensor. Default: "False". * **check_invariants** (*bool**, **optional*) -- If sparse tensor invariants are checked. Default: as returned by "torch.sparse.check_sparse_tensor_invariants.is_enabled()", initially False. Example:: >>> ccol_indices = [0, 1, 2] >>> row_indices = [0, 1]
https://pytorch.org/docs/stable/generated/torch.sparse_bsc_tensor.html
pytorch docs
row_indices = [0, 1] >>> values = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]] >>> torch.sparse_bsc_tensor(torch.tensor(ccol_indices, dtype=torch.int64), ... torch.tensor(row_indices, dtype=torch.int64), ... torch.tensor(values), dtype=torch.double) tensor(ccol_indices=tensor([0, 1, 2]), row_indices=tensor([0, 1]), values=tensor([[[1., 2.], [3., 4.]], [[5., 6.], [7., 8.]]]), size=(2, 2), nnz=2, dtype=torch.float64, layout=torch.sparse_bsc)
https://pytorch.org/docs/stable/generated/torch.sparse_bsc_tensor.html
pytorch docs
LSTM class torch.nn.LSTM(args, *kwargs) Applies a multi-layer long short-term memory (LSTM) RNN to an input sequence. For each element in the input sequence, each layer computes the following function: \begin{array}{ll} \\ i_t = \sigma(W_{ii} x_t + b_{ii} + W_{hi} h_{t-1} + b_{hi}) \\ f_t = \sigma(W_{if} x_t + b_{if} + W_{hf} h_{t-1} + b_{hf}) \\ g_t = \tanh(W_{ig} x_t + b_{ig} + W_{hg} h_{t-1} + b_{hg}) \\ o_t = \sigma(W_{io} x_t + b_{io} + W_{ho} h_{t-1} + b_{ho}) \\ c_t = f_t \odot c_{t-1} + i_t \odot g_t \\ h_t = o_t \odot \tanh(c_t) \\ \end{array} where h_t is the hidden state at time t, c_t is the cell state at time t, x_t is the input at time t, h_{t-1} is the hidden state of the layer at time t-1 or the initial hidden state at time 0, and i_t, f_t, g_t, o_t are the input, forget, cell, and output gates, respectively. \sigma is the sigmoid function, and \odot is the Hadamard product.
https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html
pytorch docs
the Hadamard product. In a multilayer LSTM, the input x^{(l)}_t of the l -th layer (l >= 2) is the hidden state h^{(l-1)}_t of the previous layer multiplied by dropout \delta^{(l-1)}_t where each \delta^{(l-1)}_t is a Bernoulli random variable which is 0 with probability "dropout". If "proj_size > 0" is specified, LSTM with projections will be used. This changes the LSTM cell in the following way. First, the dimension of h_t will be changed from "hidden_size" to "proj_size" (dimensions of W_{hi} will be changed accordingly). Second, the output hidden state of each layer will be multiplied by a learnable projection matrix: h_t = W_{hr}h_t. Note that as a consequence of this, the output of LSTM network will be of different shape as well. See Inputs/Outputs sections below for exact dimensions of all variables. You can find more details in https://arxiv.org/abs/1402.1128. Parameters: * input_size -- The number of expected features in the input
https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html
pytorch docs
x * **hidden_size** -- The number of features in the hidden state *h* * **num_layers** -- Number of recurrent layers. E.g., setting "num_layers=2" would mean stacking two LSTMs together to form a *stacked LSTM*, with the second LSTM taking in outputs of the first LSTM and computing the final results. Default: 1 * **bias** -- If "False", then the layer does not use bias weights *b_ih* and *b_hh*. Default: "True" * **batch_first** -- If "True", then the input and output tensors are provided as *(batch, seq, feature)* instead of *(seq, batch, feature)*. Note that this does not apply to hidden or cell states. See the Inputs/Outputs sections below for details. Default: "False" * **dropout** -- If non-zero, introduces a *Dropout* layer on the outputs of each LSTM layer except the last layer, with dropout probability equal to "dropout". Default: 0
https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html
pytorch docs
bidirectional -- If "True", becomes a bidirectional LSTM. Default: "False" proj_size -- If "> 0", will use LSTM with projections of corresponding size. Default: 0 Inputs: input, (h_0, c_0) * input: tensor of shape (L, H_{in}) for unbatched input, (L, N, H_{in}) when "batch_first=False" or (N, L, H_{in}) when "batch_first=True" containing the features of the input sequence. The input can also be a packed variable length sequence. See "torch.nn.utils.rnn.pack_padded_sequence()" or "torch.nn.utils.rnn.pack_sequence()" for details. * **h_0**: tensor of shape (D * \text{num\_layers}, H_{out}) for unbatched input or (D * \text{num\_layers}, N, H_{out}) containing the initial hidden state for each element in the input sequence. Defaults to zeros if (h_0, c_0) is not provided. * **c_0**: tensor of shape (D * \text{num\_layers}, H_{cell})
https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html
pytorch docs
for unbatched input or (D * \text{num_layers}, N, H_{cell}) containing the initial cell state for each element in the input sequence. Defaults to zeros if (h_0, c_0) is not provided. where: \begin{aligned} N ={} & \text{batch size} \\ L ={} & \text{sequence length} \\ D ={} & 2 \text{ if bidirectional=True otherwise } 1 \\ H_{in} ={} & \text{input\_size} \\ H_{cell} ={} & \text{hidden\_size} \\ H_{out} ={} & \text{proj\_size if } \text{proj\_size}>0 \text{ otherwise hidden\_size} \\ \end{aligned} Outputs: output, (h_n, c_n) * output: tensor of shape (L, D * H_{out}) for unbatched input, (L, N, D * H_{out}) when "batch_first=False" or (N, L, D * H_{out}) when "batch_first=True" containing the output features (h_t) from the last layer of the LSTM, for each t. If a "torch.nn.utils.rnn.PackedSequence" has been given
https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html
pytorch docs
as the input, the output will also be a packed sequence. When "bidirectional=True", output will contain a concatenation of the forward and reverse hidden states at each time step in the sequence. * **h_n**: tensor of shape (D * \text{num\_layers}, H_{out}) for unbatched input or (D * \text{num\_layers}, N, H_{out}) containing the final hidden state for each element in the sequence. When "bidirectional=True", *h_n* will contain a concatenation of the final forward and reverse hidden states, respectively. * **c_n**: tensor of shape (D * \text{num\_layers}, H_{cell}) for unbatched input or (D * \text{num\_layers}, N, H_{cell}) containing the final cell state for each element in the sequence. When "bidirectional=True", *c_n* will contain a concatenation of the final forward and reverse cell states, respectively. Variables:
https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html
pytorch docs
respectively. Variables: * weight_ih_l[k] -- the learnable input-hidden weights of the \text{k}^{th} layer (W_ii|W_if|W_ig|W_io), of shape (4hidden_size, input_size) for k = 0. Otherwise, the shape is (4hidden_size, num_directions * hidden_size). If "proj_size > 0" was specified, the shape will be (4hidden_size, num_directions * proj_size) for k > 0* * **weight_hh_l[k]** -- the learnable hidden-hidden weights of the \text{k}^{th} layer *(W_hi|W_hf|W_hg|W_ho)*, of shape *(4*hidden_size, hidden_size)*. If "proj_size > 0" was specified, the shape will be *(4*hidden_size, proj_size)*. * **bias_ih_l[k]** -- the learnable input-hidden bias of the \text{k}^{th} layer *(b_ii|b_if|b_ig|b_io)*, of shape *(4*hidden_size)* * **bias_hh_l[k]** -- the learnable hidden-hidden bias of the \text{k}^{th} layer *(b_hi|b_hf|b_hg|b_ho)*, of shape *(4*hidden_size)*
https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html
pytorch docs
(4hidden_size)* * **weight_hr_l[k]** -- the learnable projection weights of the \text{k}^{th} layer of shape *(proj_size, hidden_size)*. Only present when "proj_size > 0" was specified. * **weight_ih_l[k]_reverse** -- Analogous to *weight_ih_l[k]* for the reverse direction. Only present when "bidirectional=True". * **weight_hh_l[k]_reverse** -- Analogous to *weight_hh_l[k]* for the reverse direction. Only present when "bidirectional=True". * **bias_ih_l[k]_reverse** -- Analogous to *bias_ih_l[k]* for the reverse direction. Only present when "bidirectional=True". * **bias_hh_l[k]_reverse** -- Analogous to *bias_hh_l[k]* for the reverse direction. Only present when "bidirectional=True". * **weight_hr_l[k]_reverse** -- Analogous to *weight_hr_l[k]* for the reverse direction. Only present when "bidirectional=True" and "proj_size > 0" was specified. Note:
https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html
pytorch docs
Note: All the weights and biases are initialized from \mathcal{U}(-\sqrt{k}, \sqrt{k}) where k = \frac{1}{\text{hidden\_size}} Note: For bidirectional LSTMs, forward and backward are directions 0 and 1 respectively. Example of splitting the output layers when "batch_first=False": "output.view(seq_len, batch, num_directions, hidden_size)". Note: For bidirectional LSTMs, *h_n* is not equivalent to the last element of *output*; the former contains the final forward and reverse hidden states, while the latter contains the final forward hidden state and the initial reverse hidden state. Note: "batch_first" argument is ignored for unbatched inputs. Warning: There are known non-determinism issues for RNN functions on some versions of cuDNN and CUDA. You can enforce deterministic behavior by setting the following environment variables:On CUDA 10.1, set environment variable "CUDA_LAUNCH_BLOCKING=1". This may
https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html
pytorch docs
affect performance.On CUDA 10.2 or later, set environment variable (note the leading colon symbol) "CUBLAS_WORKSPACE_CONFIG=:16:8" or "CUBLAS_WORKSPACE_CONFIG=:4096:2".See the cuDNN 8 Release Notes for more information. Note: If the following conditions are satisfied: 1) cudnn is enabled, 2) input data is on the GPU 3) input data has dtype "torch.float16" 4) V100 GPU is used, 5) input data is not in "PackedSequence" format persistent algorithm can be selected to improve performance. Examples: >>> rnn = nn.LSTM(10, 20, 2) >>> input = torch.randn(5, 3, 10) >>> h0 = torch.randn(2, 3, 20) >>> c0 = torch.randn(2, 3, 20) >>> output, (hn, cn) = rnn(input, (h0, c0))
https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html
pytorch docs
torch.zeros_like torch.zeros_like(input, *, dtype=None, layout=None, device=None, requires_grad=False, memory_format=torch.preserve_format) -> Tensor Returns a tensor filled with the scalar value 0, with the same size as "input". "torch.zeros_like(input)" is equivalent to "torch.zeros(input.size(), dtype=input.dtype, layout=input.layout, device=input.device)". Warning: As of 0.4, this function does not support an "out" keyword. As an alternative, the old "torch.zeros_like(input, out=output)" is equivalent to "torch.zeros(input.size(), out=output)". Parameters: input (Tensor) -- the size of "input" will determine size of the output tensor. Keyword Arguments: * dtype ("torch.dtype", optional) -- the desired data type of returned Tensor. Default: if "None", defaults to the dtype of "input". * **layout** ("torch.layout", optional) -- the desired layout of
https://pytorch.org/docs/stable/generated/torch.zeros_like.html
pytorch docs
returned tensor. Default: if "None", defaults to the layout of "input". * **device** ("torch.device", optional) -- the desired device of returned tensor. Default: if "None", defaults to the device of "input". * **requires_grad** (*bool**, **optional*) -- If autograd should record operations on the returned tensor. Default: "False". * **memory_format** ("torch.memory_format", optional) -- the desired memory format of returned Tensor. Default: "torch.preserve_format". Example: >>> input = torch.empty(2, 3) >>> torch.zeros_like(input) tensor([[ 0., 0., 0.], [ 0., 0., 0.]])
https://pytorch.org/docs/stable/generated/torch.zeros_like.html
pytorch docs