text
stringlengths
0
1.73k
source
stringlengths
35
119
category
stringclasses
2 values
hop_length (int, optional) -- the distance between neighboring sliding window frames. Default: "None" (treated as equal to "floor(n_fft / 4)") win_length (int, optional) -- the size of window frame and STFT filter. Default: "None" (treated as equal to "n_fft") window (Tensor, optional) -- the optional window function. Default: "None" (treated as window of all 1 s) center (bool, optional) -- whether to pad "input" on both sides so that the t-th frame is centered at time t \times \text{hop_length}. Default: "True" pad_mode (str, optional) -- controls the padding method used when "center" is "True". Default: ""reflect"" normalized (bool, optional) -- controls whether to return the normalized STFT results Default: "False" onesided (bool, optional) -- controls whether to
https://pytorch.org/docs/stable/generated/torch.stft.html
pytorch docs
return half of results to avoid redundancy for real inputs. Default: "True" for real "input" and "window", "False" otherwise. * **return_complex** (*bool**, **optional*) -- whether to return a complex tensor, or a real tensor with an extra last dimension for the real and imaginary components. Changed in version 2.0: "return_complex" is now a required argument for real inputs, as the default is being transitioned to "True". Deprecated since version 2.0: "return_complex=False" is deprecated, instead use "return_complex=True" Note that calling "torch.view_as_real()" on the output will recover the deprecated output format. Returns: A tensor containing the STFT result with shape described above Return type: Tensor
https://pytorch.org/docs/stable/generated/torch.stft.html
pytorch docs
upsample_nearest class torch.ao.nn.quantized.functional.upsample_nearest(input, size=None, scale_factor=None) Upsamples the input, using nearest neighbours' pixel values. Warning: This function is deprecated in favor of "torch.nn.quantized.functional.interpolate()". This is equivalent with "nn.quantized.functional.interpolate(..., mode='nearest')". Note: The input quantization parameters propagate to the output. Note: Only 2D inputs are supported Parameters: * input (Tensor) -- quantized input * **size** (*int** or **Tuple**[**int**, **int**] or **Tuple**[**int**, **int**, **int**]*) -- output spatial size. * **scale_factor** (*int*) -- multiplier for spatial size. Has to be an integer.
https://pytorch.org/docs/stable/generated/torch.ao.nn.quantized.functional.upsample_nearest.html
pytorch docs
torch.addmm torch.addmm(input, mat1, mat2, *, beta=1, alpha=1, out=None) -> Tensor Performs a matrix multiplication of the matrices "mat1" and "mat2". The matrix "input" is added to the final result. If "mat1" is a (n \times m) tensor, "mat2" is a (m \times p) tensor, then "input" must be broadcastable with a (n \times p) tensor and "out" will be a (n \times p) tensor. "alpha" and "beta" are scaling factors on matrix-vector product between "mat1" and "mat2" and the added matrix "input" respectively. \text{out} = \beta\ \text{input} + \alpha\ (\text{mat1}_i \mathbin{@} \text{mat2}_i) If "beta" is 0, then "input" will be ignored, and nan and inf in it will not be propagated. For inputs of type FloatTensor or DoubleTensor, arguments "beta" and "alpha" must be real numbers, otherwise they should be integers. This operation has support for arguments with sparse layouts. If
https://pytorch.org/docs/stable/generated/torch.addmm.html
pytorch docs
"input" is sparse the result will have the same layout and if "out" is provided it must have the same layout as "input". Warning: Sparse support is a beta feature and some layout(s)/dtype/device combinations may not be supported, or may not have autograd support. If you notice missing functionality please open a feature request. This operator supports TensorFloat32. On certain ROCm devices, when using float16 inputs this module will use different precision for backward. Parameters: * input (Tensor) -- matrix to be added * **mat1** (*Tensor*) -- the first matrix to be matrix multiplied * **mat2** (*Tensor*) -- the second matrix to be matrix multiplied Keyword Arguments: * beta (Number, optional) -- multiplier for "input" (\beta) * **alpha** (*Number**, **optional*) -- multiplier for mat1 @ mat2 (\alpha) * **out** (*Tensor**, **optional*) -- the output tensor. Example:
https://pytorch.org/docs/stable/generated/torch.addmm.html
pytorch docs
Example: >>> M = torch.randn(2, 3) >>> mat1 = torch.randn(2, 3) >>> mat2 = torch.randn(3, 3) >>> torch.addmm(M, mat1, mat2) tensor([[-4.8716, 1.4671, -1.3746], [ 0.7573, -3.9555, -2.8681]])
https://pytorch.org/docs/stable/generated/torch.addmm.html
pytorch docs
torch.Tensor.subtract_ Tensor.subtract_(other, *, alpha=1) -> Tensor In-place version of "subtract()".
https://pytorch.org/docs/stable/generated/torch.Tensor.subtract_.html
pytorch docs
torch.Tensor.arcsin Tensor.arcsin() -> Tensor See "torch.arcsin()"
https://pytorch.org/docs/stable/generated/torch.Tensor.arcsin.html
pytorch docs
torch.quantized_max_pool2d torch.quantized_max_pool2d(input, kernel_size, stride=[], padding=0, dilation=1, ceil_mode=False) -> Tensor Applies a 2D max pooling over an input quantized tensor composed of several input planes. Parameters: * input (Tensor) -- quantized tensor * **kernel_size** ("list of int") -- the size of the sliding window * **stride** ("list of int", optional) -- the stride of the sliding window * **padding** ("list of int", optional) -- padding to be added on both sides, must be >= 0 and <= kernel_size / 2 * **dilation** ("list of int", optional) -- The stride between elements within a sliding window, must be > 0. Default 1 * **ceil_mode** (*bool**, **optional*) -- If True, will use ceil instead of floor to compute the output shape. Defaults to False. Returns: A quantized tensor with max_pool2d applied. Return type: Tensor Example:
https://pytorch.org/docs/stable/generated/torch.quantized_max_pool2d.html
pytorch docs
Return type: Tensor Example: >>> qx = torch.quantize_per_tensor(torch.rand(2, 2, 2, 2), 1.5, 3, torch.quint8) >>> torch.quantized_max_pool2d(qx, [2,2]) tensor([[[[1.5000]], [[1.5000]]], [[[0.0000]], [[0.0000]]]], size=(2, 2, 1, 1), dtype=torch.quint8, quantization_scheme=torch.per_tensor_affine, scale=1.5, zero_point=3)
https://pytorch.org/docs/stable/generated/torch.quantized_max_pool2d.html
pytorch docs
ReLU class torch.nn.ReLU(inplace=False) Applies the rectified linear unit function element-wise: \text{ReLU}(x) = (x)^+ = \max(0, x) Parameters: inplace (bool) -- can optionally do the operation in- place. Default: "False" Shape: * Input: (*), where * means any number of dimensions. * Output: (*), same shape as the input. [image] Examples: >>> m = nn.ReLU() >>> input = torch.randn(2) >>> output = m(input) An implementation of CReLU - https://arxiv.org/abs/1603.05201 >>> m = nn.ReLU() >>> input = torch.randn(2).unsqueeze(0) >>> output = torch.cat((m(input), m(-input)))
https://pytorch.org/docs/stable/generated/torch.nn.ReLU.html
pytorch docs
hardtanh class torch.ao.nn.quantized.functional.hardtanh(input, min_val=- 1.0, max_val=1.0, inplace=False) This is the quantized version of "hardtanh()". Return type: Tensor
https://pytorch.org/docs/stable/generated/torch.ao.nn.quantized.functional.hardtanh.html
pytorch docs
torch.Tensor.put_ Tensor.put_(index, source, accumulate=False) -> Tensor Copies the elements from "source" into the positions specified by "index". For the purpose of indexing, the "self" tensor is treated as if it were a 1-D tensor. "index" and "source" need to have the same number of elements, but not necessarily the same shape. If "accumulate" is "True", the elements in "source" are added to "self". If accumulate is "False", the behavior is undefined if "index" contain duplicate elements. Parameters: * index (LongTensor) -- the indices into self * **source** (*Tensor*) -- the tensor containing values to copy from * **accumulate** (*bool*) -- whether to accumulate into self Example: >>> src = torch.tensor([[4, 3, 5], ... [6, 7, 8]]) >>> src.put_(torch.tensor([1, 3]), torch.tensor([9, 10])) tensor([[ 4, 9, 5], [ 10, 7, 8]])
https://pytorch.org/docs/stable/generated/torch.Tensor.put_.html
pytorch docs
torch._foreach_trunc torch._foreach_trunc(self: List[Tensor]) -> List[Tensor] Apply "torch.trunc()" to each Tensor of the input list.
https://pytorch.org/docs/stable/generated/torch._foreach_trunc.html
pytorch docs
torch.Tensor.acosh Tensor.acosh() -> Tensor See "torch.acosh()"
https://pytorch.org/docs/stable/generated/torch.Tensor.acosh.html
pytorch docs
torch.Tensor.backward Tensor.backward(gradient=None, retain_graph=None, create_graph=False, inputs=None) Computes the gradient of current tensor w.r.t. graph leaves. The graph is differentiated using the chain rule. If the tensor is non-scalar (i.e. its data has more than one element) and requires gradient, the function additionally requires specifying "gradient". It should be a tensor of matching type and location, that contains the gradient of the differentiated function w.r.t. "self". This function accumulates gradients in the leaves - you might need to zero ".grad" attributes or set them to "None" before calling it. See Default gradient layouts for details on the memory layout of accumulated gradients. Note: If you run any forward ops, create "gradient", and/or call "backward" in a user-specified CUDA stream context, see Stream semantics of backward passes. Note:
https://pytorch.org/docs/stable/generated/torch.Tensor.backward.html
pytorch docs
semantics of backward passes. Note: When "inputs" are provided and a given input is not a leaf, the current implementation will call its grad_fn (though it is not strictly needed to get this gradients). It is an implementation detail on which the user should not rely. See https://github.com /pytorch/pytorch/pull/60521#issuecomment-867061780 for more details. Parameters: * gradient (Tensor or None) -- Gradient w.r.t. the tensor. If it is a tensor, it will be automatically converted to a Tensor that does not require grad unless "create_graph" is True. None values can be specified for scalar Tensors or ones that don't require grad. If a None value would be acceptable then this argument is optional. * **retain_graph** (*bool**, **optional*) -- If "False", the graph used to compute the grads will be freed. Note that in nearly all cases setting this option to True is not needed and
https://pytorch.org/docs/stable/generated/torch.Tensor.backward.html
pytorch docs
often can be worked around in a much more efficient way. Defaults to the value of "create_graph". * **create_graph** (*bool**, **optional*) -- If "True", graph of the derivative will be constructed, allowing to compute higher order derivative products. Defaults to "False". * **inputs** (*sequence of Tensor*) -- Inputs w.r.t. which the gradient will be accumulated into ".grad". All other Tensors will be ignored. If not provided, the gradient is accumulated into all the leaf Tensors that were used to compute the attr::tensors.
https://pytorch.org/docs/stable/generated/torch.Tensor.backward.html
pytorch docs
torch.pinverse torch.pinverse(input, rcond=1e-15) -> Tensor Alias for "torch.linalg.pinv()"
https://pytorch.org/docs/stable/generated/torch.pinverse.html
pytorch docs
torch.Tensor.reshape_as Tensor.reshape_as(other) -> Tensor Returns this tensor as the same shape as "other". "self.reshape_as(other)" is equivalent to "self.reshape(other.sizes())". This method returns a view if "other.sizes()" is compatible with the current shape. See "torch.Tensor.view()" on when it is possible to return a view. Please see "reshape()" for more information about "reshape". Parameters: other ("torch.Tensor") -- The result tensor has the same shape as "other".
https://pytorch.org/docs/stable/generated/torch.Tensor.reshape_as.html
pytorch docs
torch.nn.modules.module.register_module_forward_pre_hook torch.nn.modules.module.register_module_forward_pre_hook(hook) Registers a forward pre-hook common to all modules. Warning: This adds global state to the *nn.module* module and it is only intended for debugging/profiling purposes. The hook will be called every time before "forward()" is invoked. It should have the following signature: hook(module, input) -> None or modified input The input contains only the positional arguments given to the module. Keyword arguments won't be passed to the hooks and only to the "forward". The hook can modify the input. User can either return a tuple or a single modified value in the hook. We will wrap the value into a tuple if a single value is returned(unless that value is already a tuple). This hook has precedence over the specific module hooks registered with "register_forward_pre_hook". Returns:
https://pytorch.org/docs/stable/generated/torch.nn.modules.module.register_module_forward_pre_hook.html
pytorch docs
with "register_forward_pre_hook". Returns: a handle that can be used to remove the added hook by calling "handle.remove()" Return type: "torch.utils.hooks.RemovableHandle"
https://pytorch.org/docs/stable/generated/torch.nn.modules.module.register_module_forward_pre_hook.html
pytorch docs
torch.nn.functional.prelu torch.nn.functional.prelu(input, weight) -> Tensor Applies element-wise the function \text{PReLU}(x) = \max(0,x) + \text{weight} * \min(0,x) where weight is a learnable parameter. Note: *weight* is expected to be a scalar or 1-D tensor. If *weight* is 1-D, its size must match the number of input channels, determined by *input.size(1)* when *input.dim() >= 2*, otherwise 1. In the 1-D case, note that when *input* has dim > 2, *weight* can be expanded to the shape of *input* in a way that is not possible using normal broadcasting semantics. See "PReLU" for more details.
https://pytorch.org/docs/stable/generated/torch.nn.functional.prelu.html
pytorch docs
default_per_channel_weight_fake_quant torch.quantization.fake_quantize.default_per_channel_weight_fake_quant alias of functools.partial(, observer=, quant_min=-128, quant_max=127, dtype=torch.qint8, qscheme=torch.per_channel_symmetric, reduce_range=False, ch_axis=0){}
https://pytorch.org/docs/stable/generated/torch.quantization.fake_quantize.default_per_channel_weight_fake_quant.html
pytorch docs
torch.fft.irfft torch.fft.irfft(input, n=None, dim=- 1, norm=None, *, out=None) -> Tensor Computes the inverse of "rfft()". "input" is interpreted as a one-sided Hermitian signal in the Fourier domain, as produced by "rfft()". By the Hermitian property, the output will be real-valued. Note: Some input frequencies must be real-valued to satisfy the Hermitian property. In these cases the imaginary component will be ignored. For example, any imaginary component in the zero- frequency term cannot be represented in a real output and so will always be ignored. Note: The correct interpretation of the Hermitian input depends on the length of the original data, as given by "n". This is because each input shape could correspond to either an odd or even length signal. By default, the signal is assumed to be even length and odd signals will not round-trip properly. So, it is recommended to always pass the signal length "n".
https://pytorch.org/docs/stable/generated/torch.fft.irfft.html
pytorch docs
to always pass the signal length "n". Note: Supports torch.half and torch.chalf on CUDA with GPU Architecture SM53 or greater. However it only supports powers of 2 signal length in every transformed dimension. With default arguments, size of the transformed dimension should be (2^n + 1) as argument *n* defaults to even output size = 2 * (transformed_dim_size - 1) Parameters: * input (Tensor) -- the input tensor representing a half- Hermitian signal * **n** (*int**, **optional*) -- Output signal length. This determines the length of the output signal. If given, the input will either be zero-padded or trimmed to this length before computing the real IFFT. Defaults to even output: "n=2*(input.size(dim) - 1)". * **dim** (*int**, **optional*) -- The dimension along which to take the one dimensional real IFFT. * **norm** (*str**, **optional*) --
https://pytorch.org/docs/stable/generated/torch.fft.irfft.html
pytorch docs
norm (str, optional) --Normalization mode. For the backward transform ("irfft()"), these correspond to: * ""forward"" - no normalization * ""backward"" - normalize by "1/n" * ""ortho"" - normalize by "1/sqrt(n)" (making the real IFFT orthonormal) Calling the forward transform ("rfft()") with the same normalization mode will apply an overall normalization of "1/n" between the two transforms. This is required to make "irfft()" the exact inverse. Default is ""backward"" (normalize by "1/n"). Keyword Arguments: out (Tensor, optional) -- the output tensor. -[ Example ]- t = torch.linspace(0, 1, 5) t tensor([0.0000, 0.2500, 0.5000, 0.7500, 1.0000]) T = torch.fft.rfft(t) T tensor([ 2.5000+0.0000j, -0.6250+0.8602j, -0.6250+0.2031j]) Without specifying the output length to "irfft()", the output will
https://pytorch.org/docs/stable/generated/torch.fft.irfft.html
pytorch docs
not round-trip properly because the input is odd-length: torch.fft.irfft(T) tensor([0.1562, 0.3511, 0.7812, 1.2114]) So, it is recommended to always pass the signal length "n": roundtrip = torch.fft.irfft(T, t.numel()) torch.testing.assert_close(roundtrip, t, check_stride=False)
https://pytorch.org/docs/stable/generated/torch.fft.irfft.html
pytorch docs
torch.hamming_window torch.hamming_window(window_length, periodic=True, alpha=0.54, beta=0.46, *, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor Hamming window function. w[n] = \alpha - \beta\ \cos \left( \frac{2 \pi n}{N - 1} \right), where N is the full window size. The input "window_length" is a positive integer controlling the returned window size. "periodic" flag determines whether the returned window trims off the last duplicate value from the symmetric window and is ready to be used as a periodic window with functions like "torch.stft()". Therefore, if "periodic" is true, the N in above formula is in fact \text{window_length} + 1. Also, we always have "torch.hamming_window(L, periodic=True)" equal to "torch.hamming_window(L + 1, periodic=False)[:-1])". Note: If "window_length" =1, the returned window contains a single value 1. Note:
https://pytorch.org/docs/stable/generated/torch.hamming_window.html
pytorch docs
value 1. Note: This is a generalized version of "torch.hann_window()". Parameters: * window_length (int) -- the size of returned window * **periodic** (*bool**, **optional*) -- If True, returns a window to be used as periodic function. If False, return a symmetric window. * **alpha** (*float**, **optional*) -- The coefficient \alpha in the equation above * **beta** (*float**, **optional*) -- The coefficient \beta in the equation above Keyword Arguments: * dtype ("torch.dtype", optional) -- the desired data type of returned tensor. Default: if "None", uses a global default (see "torch.set_default_tensor_type()"). Only floating point types are supported. * **layout** ("torch.layout", optional) -- the desired layout of returned window tensor. Only "torch.strided" (dense layout) is supported. * **device** ("torch.device", optional) -- the desired device of
https://pytorch.org/docs/stable/generated/torch.hamming_window.html
pytorch docs
returned tensor. Default: if "None", uses the current device for the default tensor type (see "torch.set_default_tensor_type()"). "device" will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. * **requires_grad** (*bool**, **optional*) -- If autograd should record operations on the returned tensor. Default: "False". Returns: A 1-D tensor of size (\text{window_length},) containing the window. Return type: Tensor
https://pytorch.org/docs/stable/generated/torch.hamming_window.html
pytorch docs
torch.Tensor.matrix_power Tensor.matrix_power(n) -> Tensor Note: "matrix_power()" is deprecated, use "torch.linalg.matrix_power()" instead. Alias for "torch.linalg.matrix_power()"
https://pytorch.org/docs/stable/generated/torch.Tensor.matrix_power.html
pytorch docs
BackendConfig class torch.ao.quantization.backend_config.BackendConfig(name='') Config that defines the set of patterns that can be quantized on a given backend, and how reference quantized models can be produced from these patterns. A pattern in this context refers to a module, a functional, an operator, or a directed acyclic graph of the above. Each pattern supported on the target backend can be individually configured through "BackendPatternConfig" in terms of: The supported input/output activation, weight, and bias data types How observers and quant/dequant ops are inserted in order to construct the reference pattern, and (Optionally) Fusion, QAT, and reference module mappings. The format of the patterns is described in: https://github.com/pyt orch/pytorch/blob/master/torch/ao/quantization/backend_config/READ ME.md Example usage: import torch from torch.ao.quantization.backend_config import (
https://pytorch.org/docs/stable/generated/torch.ao.quantization.backend_config.BackendConfig.html
pytorch docs
BackendConfig, BackendPatternConfig, DTypeConfig, ObservationType, ) weighted_int8_dtype_config = DTypeConfig( input_dtype=torch.quint8, output_dtype=torch.quint8, weight_dtype=torch.qint8, bias_dtype=torch.float) def fuse_conv2d_relu(is_qat, conv, relu): return torch.ao.nn.intrinsic.ConvReLU2d(conv, relu) # For quantizing Linear linear_config = BackendPatternConfig(torch.nn.Linear) .set_observation_type(ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT) .add_dtype_config(weighted_int8_dtype_config) .set_root_module(torch.nn.Linear) .set_qat_module(torch.ao.nn.qat.Linear) .set_reference_quantized_module(torch.ao.nn.quantized.reference.Linear) # For fusing Conv2d + ReLU into ConvReLU2d
https://pytorch.org/docs/stable/generated/torch.ao.quantization.backend_config.BackendConfig.html
pytorch docs
For fusing Conv2d + ReLU into ConvReLU2d conv_relu_config = BackendPatternConfig((torch.nn.Conv2d, torch.nn.ReLU)) .set_observation_type(ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT) .add_dtype_config(weighted_int8_dtype_config) .set_fused_module(torch.ao.nn.intrinsic.ConvReLU2d) .set_fuser_method(fuse_conv2d_relu) # For quantizing ConvReLU2d fused_conv_relu_config = BackendPatternConfig(torch.ao.nn.intrinsic.ConvReLU2d) .set_observation_type(ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT) .add_dtype_config(weighted_int8_dtype_config) .set_root_module(torch.nn.Conv2d) .set_qat_module(torch.ao.nn.intrinsic.qat.ConvReLU2d) .set_reference_quantized_module(torch.ao.nn.quantized.reference.Conv2d)
https://pytorch.org/docs/stable/generated/torch.ao.quantization.backend_config.BackendConfig.html
pytorch docs
backend_config = BackendConfig("my_backend") .set_backend_pattern_config(linear_config) .set_backend_pattern_config(conv_relu_config) .set_backend_pattern_config(fused_conv_relu_config) property configs: List[BackendPatternConfig] Return a copy of the list of configs set in this *BackendConfig*. classmethod from_dict(backend_config_dict) Create a "BackendConfig" from a dictionary with the following items: "name": the name of the target backend "configs": a list of dictionaries that each represents a *BackendPatternConfig* Return type: *BackendConfig* set_backend_pattern_config(config) Set the config for an pattern that can be run on the target backend. This overrides any existing config for the given pattern. Return type: *BackendConfig* set_backend_pattern_configs(configs) Set the configs for patterns that can be run on the target
https://pytorch.org/docs/stable/generated/torch.ao.quantization.backend_config.BackendConfig.html
pytorch docs
backend. This overrides any existing config for a given pattern if it was previously registered already. Return type: *BackendConfig* set_name(name) Set the name of the target backend. Return type: *BackendConfig* to_dict() Convert this "BackendConfig" to a dictionary with the items described in "from_dict()". Return type: *Dict*[str, *Any*]
https://pytorch.org/docs/stable/generated/torch.ao.quantization.backend_config.BackendConfig.html
pytorch docs
torch.Tensor.as_subclass Tensor.as_subclass(cls) -> Tensor Makes a "cls" instance with the same data pointer as "self". Changes in the output mirror changes in "self", and the output stays attached to the autograd graph. "cls" must be a subclass of "Tensor".
https://pytorch.org/docs/stable/generated/torch.Tensor.as_subclass.html
pytorch docs
torch.Tensor.cumprod_ Tensor.cumprod_(dim, dtype=None) -> Tensor In-place version of "cumprod()"
https://pytorch.org/docs/stable/generated/torch.Tensor.cumprod_.html
pytorch docs
torch.Tensor.flipud Tensor.flipud() -> Tensor See "torch.flipud()"
https://pytorch.org/docs/stable/generated/torch.Tensor.flipud.html
pytorch docs
torch.zeros torch.zeros(size, , out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor Returns a tensor filled with the scalar value 0, with the shape defined by the variable argument "size". Parameters: size (int...) -- a sequence of integers defining the shape of the output tensor. Can be a variable number of arguments or a collection like a list or tuple. Keyword Arguments: * out (Tensor, optional) -- the output tensor. * **dtype** ("torch.dtype", optional) -- the desired data type of returned tensor. Default: if "None", uses a global default (see "torch.set_default_tensor_type()"). * **layout** ("torch.layout", optional) -- the desired layout of returned Tensor. Default: "torch.strided". * **device** ("torch.device", optional) -- the desired device of returned tensor. Default: if "None", uses the current device
https://pytorch.org/docs/stable/generated/torch.zeros.html
pytorch docs
for the default tensor type (see "torch.set_default_tensor_type()"). "device" will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. * **requires_grad** (*bool**, **optional*) -- If autograd should record operations on the returned tensor. Default: "False". Example: >>> torch.zeros(2, 3) tensor([[ 0., 0., 0.], [ 0., 0., 0.]]) >>> torch.zeros(5) tensor([ 0., 0., 0., 0., 0.])
https://pytorch.org/docs/stable/generated/torch.zeros.html
pytorch docs
torch.Tensor.swapaxes Tensor.swapaxes(axis0, axis1) -> Tensor See "torch.swapaxes()"
https://pytorch.org/docs/stable/generated/torch.Tensor.swapaxes.html
pytorch docs
torch.jit.save torch.jit.save(m, f, _extra_files=None) Save an offline version of this module for use in a separate process. The saved module serializes all of the methods, submodules, parameters, and attributes of this module. It can be loaded into the C++ API using "torch::jit::load(filename)" or into the Python API with "torch.jit.load". To be able to save a module, it must not make any calls to native Python functions. This means that all submodules must be subclasses of "ScriptModule" as well. Danger: All modules, no matter their device, are always loaded onto the CPU during loading. This is different from "torch.load()"'s semantics and may change in the future. Parameters: * m -- A "ScriptModule" to save. * **f** -- A file-like object (has to implement write and flush) or a string containing a file name. * **_extra_files** -- Map from filename to contents which will be stored as part of *f*.
https://pytorch.org/docs/stable/generated/torch.jit.save.html
pytorch docs
be stored as part of f. Note: torch.jit.save attempts to preserve the behavior of some operators across versions. For example, dividing two integer tensors in PyTorch 1.5 performed floor division, and if the module containing that code is saved in PyTorch 1.5 and loaded in PyTorch 1.6 its division behavior will be preserved. The same module saved in PyTorch 1.6 will fail to load in PyTorch 1.5, however, since the behavior of division changed in 1.6, and 1.5 does not know how to replicate the 1.6 behavior. Example: import torch import io class MyModule(torch.nn.Module): def forward(self, x): return x + 10 m = torch.jit.script(MyModule()) # Save to file torch.jit.save(m, 'scriptmodule.pt') # This line is equivalent to the previous m.save("scriptmodule.pt") # Save to io.BytesIO buffer buffer = io.BytesIO() torch.jit.save(m, buffer)
https://pytorch.org/docs/stable/generated/torch.jit.save.html
pytorch docs
torch.jit.save(m, buffer) # Save with extra files extra_files = {'foo.txt': b'bar'} torch.jit.save(m, 'scriptmodule.pt', _extra_files=extra_files)
https://pytorch.org/docs/stable/generated/torch.jit.save.html
pytorch docs
Sequential class torch.nn.Sequential(*args: Module) class torch.nn.Sequential(arg: OrderedDict[str, Module]) A sequential container. Modules will be added to it in the order they are passed in the constructor. Alternatively, an "OrderedDict" of modules can be passed in. The "forward()" method of "Sequential" accepts any input and forwards it to the first module it contains. It then "chains" outputs to inputs sequentially for each subsequent module, finally returning the output of the last module. The value a "Sequential" provides over manually calling a sequence of modules is that it allows treating the whole container as a single module, such that performing a transformation on the "Sequential" applies to each of the modules it stores (which are each a registered submodule of the "Sequential"). What's the difference between a "Sequential" and a "torch.nn.ModuleList"? A "ModuleList" is exactly what it sounds
https://pytorch.org/docs/stable/generated/torch.nn.Sequential.html
pytorch docs
like--a list for storing "Module" s! On the other hand, the layers in a "Sequential" are connected in a cascading way. Example: # Using Sequential to create a small model. When `model` is run, # input will first be passed to `Conv2d(1,20,5)`. The output of # `Conv2d(1,20,5)` will be used as the input to the first # `ReLU`; the output of the first `ReLU` will become the input # for `Conv2d(20,64,5)`. Finally, the output of # `Conv2d(20,64,5)` will be used as input to the second `ReLU` model = nn.Sequential( nn.Conv2d(1,20,5), nn.ReLU(), nn.Conv2d(20,64,5), nn.ReLU() ) # Using Sequential with OrderedDict. This is functionally the # same as the above code model = nn.Sequential(OrderedDict([ ('conv1', nn.Conv2d(1,20,5)), ('relu1', nn.ReLU()), ('conv2', nn.Conv2d(20,64,5)), ('relu2', nn.ReLU())
https://pytorch.org/docs/stable/generated/torch.nn.Sequential.html
pytorch docs
('relu2', nn.ReLU()) ])) append(module) Appends a given module to the end. Parameters: **module** (*nn.Module*) -- module to append Return type: *Sequential*
https://pytorch.org/docs/stable/generated/torch.nn.Sequential.html
pytorch docs
torch.ones torch.ones(size, , out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor Returns a tensor filled with the scalar value 1, with the shape defined by the variable argument "size". Parameters: size (int...) -- a sequence of integers defining the shape of the output tensor. Can be a variable number of arguments or a collection like a list or tuple. Keyword Arguments: * out (Tensor, optional) -- the output tensor. * **dtype** ("torch.dtype", optional) -- the desired data type of returned tensor. Default: if "None", uses a global default (see "torch.set_default_tensor_type()"). * **layout** ("torch.layout", optional) -- the desired layout of returned Tensor. Default: "torch.strided". * **device** ("torch.device", optional) -- the desired device of returned tensor. Default: if "None", uses the current device for the default tensor type (see
https://pytorch.org/docs/stable/generated/torch.ones.html
pytorch docs
for the default tensor type (see "torch.set_default_tensor_type()"). "device" will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. * **requires_grad** (*bool**, **optional*) -- If autograd should record operations on the returned tensor. Default: "False". Example: >>> torch.ones(2, 3) tensor([[ 1., 1., 1.], [ 1., 1., 1.]]) >>> torch.ones(5) tensor([ 1., 1., 1., 1., 1.])
https://pytorch.org/docs/stable/generated/torch.ones.html
pytorch docs
torch.arcsin torch.arcsin(input, *, out=None) -> Tensor Alias for "torch.asin()".
https://pytorch.org/docs/stable/generated/torch.arcsin.html
pytorch docs
torch.mean torch.mean(input, *, dtype=None) -> Tensor Returns the mean value of all elements in the "input" tensor. Parameters: input (Tensor) -- the input tensor. Keyword Arguments: dtype ("torch.dtype", optional) -- the desired data type of returned tensor. If specified, the input tensor is casted to "dtype" before the operation is performed. This is useful for preventing data type overflows. Default: None. Example: >>> a = torch.randn(1, 3) >>> a tensor([[ 0.2294, -0.5481, 1.3288]]) >>> torch.mean(a) tensor(0.3367) torch.mean(input, dim, keepdim=False, *, dtype=None, out=None) -> Tensor Returns the mean value of each row of the "input" tensor in the given dimension "dim". If "dim" is a list of dimensions, reduce over all of them. If "keepdim" is "True", the output tensor is of the same size as "input" except in the dimension(s) "dim" where it is of size 1.
https://pytorch.org/docs/stable/generated/torch.mean.html
pytorch docs
Otherwise, "dim" is squeezed (see "torch.squeeze()"), resulting in the output tensor having 1 (or "len(dim)") fewer dimension(s). Parameters: * input (Tensor) -- the input tensor. * **dim** (*int** or **tuple of ints*) -- the dimension or dimensions to reduce. * **keepdim** (*bool*) -- whether the output tensor has "dim" retained or not. Keyword Arguments: * dtype ("torch.dtype", optional) -- the desired data type of returned tensor. If specified, the input tensor is casted to "dtype" before the operation is performed. This is useful for preventing data type overflows. Default: None. * **out** (*Tensor**, **optional*) -- the output tensor. See also: "torch.nanmean()" computes the mean value of *non-NaN* elements. Example: >>> a = torch.randn(4, 4) >>> a tensor([[-0.3841, 0.6320, 0.4254, -0.7384], [-0.9644, 1.0131, -0.6549, -1.4279],
https://pytorch.org/docs/stable/generated/torch.mean.html
pytorch docs
[-0.2951, -1.3350, -0.7694, 0.5600], [ 1.0842, -0.9580, 0.3623, 0.2343]]) >>> torch.mean(a, 1) tensor([-0.0163, -0.5085, -0.4599, 0.1807]) >>> torch.mean(a, 1, True) tensor([[-0.0163], [-0.5085], [-0.4599], [ 0.1807]])
https://pytorch.org/docs/stable/generated/torch.mean.html
pytorch docs
torch.fft.fft torch.fft.fft(input, n=None, dim=- 1, norm=None, *, out=None) -> Tensor Computes the one dimensional discrete Fourier transform of "input". Note: The Fourier domain representation of any real signal satisfies the Hermitian property: *X[i] = conj(X[-i])*. This function always returns both the positive and negative frequency terms even though, for real inputs, the negative frequencies are redundant. "rfft()" returns the more compact one-sided representation where only the positive frequencies are returned. Note: Supports torch.half and torch.chalf on CUDA with GPU Architecture SM53 or greater. However it only supports powers of 2 signal length in every transformed dimension. Parameters: * input (Tensor) -- the input tensor * **n** (*int**, **optional*) -- Signal length. If given, the input will either be zero-padded or trimmed to this length before computing the FFT.
https://pytorch.org/docs/stable/generated/torch.fft.fft.html
pytorch docs
before computing the FFT. * **dim** (*int**, **optional*) -- The dimension along which to take the one dimensional FFT. * **norm** (*str**, **optional*) -- Normalization mode. For the forward transform ("fft()"), these correspond to: * ""forward"" - normalize by "1/n" * ""backward"" - no normalization * ""ortho"" - normalize by "1/sqrt(n)" (making the FFT orthonormal) Calling the backward transform ("ifft()") with the same normalization mode will apply an overall normalization of "1/n" between the two transforms. This is required to make "ifft()" the exact inverse. Default is ""backward"" (no normalization). Keyword Arguments: out (Tensor, optional) -- the output tensor. -[ Example ]- t = torch.arange(4) t tensor([0, 1, 2, 3]) torch.fft.fft(t) tensor([ 6.+0.j, -2.+2.j, -2.+0.j, -2.-2.j])
https://pytorch.org/docs/stable/generated/torch.fft.fft.html
pytorch docs
tensor([ 6.+0.j, -2.+2.j, -2.+0.j, -2.-2.j]) t = torch.tensor([0.+1.j, 2.+3.j, 4.+5.j, 6.+7.j]) torch.fft.fft(t) tensor([12.+16.j, -8.+0.j, -4.-4.j, 0.-8.j])
https://pytorch.org/docs/stable/generated/torch.fft.fft.html
pytorch docs
torch.Tensor.var Tensor.var(dim=None, *, correction=1, keepdim=False) -> Tensor See "torch.var()"
https://pytorch.org/docs/stable/generated/torch.Tensor.var.html
pytorch docs
torch.erfc torch.erfc(input, *, out=None) -> Tensor Alias for "torch.special.erfc()".
https://pytorch.org/docs/stable/generated/torch.erfc.html
pytorch docs
torch.nn.functional.one_hot torch.nn.functional.one_hot(tensor, num_classes=- 1) -> LongTensor Takes LongTensor with index values of shape "()" and returns a tensor of shape "(, num_classes)" that have zeros everywhere except where the index of last dimension matches the corresponding value of the input tensor, in which case it will be 1. See also One-hot on Wikipedia . Parameters: * tensor (LongTensor) -- class values of any shape. * **num_classes** (*int*) -- Total number of classes. If set to -1, the number of classes will be inferred as one greater than the largest class value in the input tensor. Returns: LongTensor that has one more dimension with 1 values at the index of last dimension indicated by the input, and 0 everywhere else. -[ Examples ]- F.one_hot(torch.arange(0, 5) % 3) tensor([[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 0, 0],
https://pytorch.org/docs/stable/generated/torch.nn.functional.one_hot.html
pytorch docs
[0, 0, 1], [1, 0, 0], [0, 1, 0]]) F.one_hot(torch.arange(0, 5) % 3, num_classes=5) tensor([[1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 1, 0, 0], [1, 0, 0, 0, 0], [0, 1, 0, 0, 0]]) F.one_hot(torch.arange(0, 6).view(3,2) % 3) tensor([[[1, 0, 0], [0, 1, 0]], [[0, 0, 1], [1, 0, 0]], [[0, 1, 0], [0, 0, 1]]])
https://pytorch.org/docs/stable/generated/torch.nn.functional.one_hot.html
pytorch docs
torch.Tensor.tile Tensor.tile(*reps) -> Tensor See "torch.tile()"
https://pytorch.org/docs/stable/generated/torch.Tensor.tile.html
pytorch docs
torch.Tensor.log2 Tensor.log2() -> Tensor See "torch.log2()"
https://pytorch.org/docs/stable/generated/torch.Tensor.log2.html
pytorch docs
torch.Tensor.lcm_ Tensor.lcm_(other) -> Tensor In-place version of "lcm()"
https://pytorch.org/docs/stable/generated/torch.Tensor.lcm_.html
pytorch docs
torch.cholesky_solve torch.cholesky_solve(input, input2, upper=False, *, out=None) -> Tensor Solves a linear system of equations with a positive semidefinite matrix to be inverted given its Cholesky factor matrix u. If "upper" is "False", u is and lower triangular and c is returned such that: c = (u u^T)^{{-1}} b If "upper" is "True" or not provided, u is upper triangular and c is returned such that: c = (u^T u)^{{-1}} b torch.cholesky_solve(b, u) can take in 2D inputs b, u or inputs that are batches of 2D matrices. If the inputs are batches, then returns batched outputs c Supports real-valued and complex-valued inputs. For the complex- valued inputs the transpose operator above is the conjugate transpose. Parameters: * input (Tensor) -- input matrix b of size (*, m, k), where * is zero or more batch dimensions * **input2** (*Tensor*) -- input matrix u of size (*, m, m),
https://pytorch.org/docs/stable/generated/torch.cholesky_solve.html
pytorch docs
where * is zero of more batch dimensions composed of upper or lower triangular Cholesky factor * **upper** (*bool**, **optional*) -- whether to consider the Cholesky factor as a lower or upper triangular matrix. Default: "False". Keyword Arguments: out (Tensor, optional) -- the output tensor for c Example: >>> a = torch.randn(3, 3) >>> a = torch.mm(a, a.t()) # make symmetric positive definite >>> u = torch.linalg.cholesky(a) >>> a tensor([[ 0.7747, -1.9549, 1.3086], [-1.9549, 6.7546, -5.4114], [ 1.3086, -5.4114, 4.8733]]) >>> b = torch.randn(3, 2) >>> b tensor([[-0.6355, 0.9891], [ 0.1974, 1.4706], [-0.4115, -0.6225]]) >>> torch.cholesky_solve(b, u) tensor([[ -8.1625, 19.6097], [ -5.8398, 14.2387], [ -4.3771, 10.4173]]) >>> torch.mm(a.inverse(), b) tensor([[ -8.1626, 19.6097],
https://pytorch.org/docs/stable/generated/torch.cholesky_solve.html
pytorch docs
tensor([[ -8.1626, 19.6097], [ -5.8398, 14.2387], [ -4.3771, 10.4173]])
https://pytorch.org/docs/stable/generated/torch.cholesky_solve.html
pytorch docs
torch.tensor_split torch.tensor_split(input, indices_or_sections, dim=0) -> List of Tensors Splits a tensor into multiple sub-tensors, all of which are views of "input", along dimension "dim" according to the indices or number of sections specified by "indices_or_sections". This function is based on NumPy's "numpy.array_split()". Parameters: * input (Tensor) -- the tensor to split * **indices_or_sections** (*Tensor**, **int** or **list** or **tuple of ints*) -- If "indices_or_sections" is an integer "n" or a zero dimensional long tensor with value "n", "input" is split into "n" sections along dimension "dim". If "input" is divisible by "n" along dimension "dim", each section will be of equal size, "input.size(dim) / n". If "input" is not divisible by "n", the sizes of the first "int(input.size(dim) % n)" sections will have size "int(input.size(dim) / n) + 1", and the rest will
https://pytorch.org/docs/stable/generated/torch.tensor_split.html
pytorch docs
have size "int(input.size(dim) / n)". If "indices_or_sections" is a list or tuple of ints, or a one- dimensional long tensor, then "input" is split along dimension "dim" at each of the indices in the list, tuple or tensor. For instance, "indices_or_sections=[2, 3]" and "dim=0" would result in the tensors "input[:2]", "input[2:3]", and "input[3:]". If "indices_or_sections" is a tensor, it must be a zero- dimensional or one-dimensional long tensor on the CPU. * **dim** (*int**, **optional*) -- dimension along which to split the tensor. Default: "0" Example: >>> x = torch.arange(8) >>> torch.tensor_split(x, 3) (tensor([0, 1, 2]), tensor([3, 4, 5]), tensor([6, 7])) >>> x = torch.arange(7) >>> torch.tensor_split(x, 3) (tensor([0, 1, 2]), tensor([3, 4]), tensor([5, 6])) >>> torch.tensor_split(x, (1, 6)) (tensor([0]), tensor([1, 2, 3, 4, 5]), tensor([6]))
https://pytorch.org/docs/stable/generated/torch.tensor_split.html
pytorch docs
x = torch.arange(14).reshape(2, 7) >>> x tensor([[ 0, 1, 2, 3, 4, 5, 6], [ 7, 8, 9, 10, 11, 12, 13]]) >>> torch.tensor_split(x, 3, dim=1) (tensor([[0, 1, 2], [7, 8, 9]]), tensor([[ 3, 4], [10, 11]]), tensor([[ 5, 6], [12, 13]])) >>> torch.tensor_split(x, (1, 6), dim=1) (tensor([[0], [7]]), tensor([[ 1, 2, 3, 4, 5], [ 8, 9, 10, 11, 12]]), tensor([[ 6], [13]]))
https://pytorch.org/docs/stable/generated/torch.tensor_split.html
pytorch docs
torch.fft.rfftn torch.fft.rfftn(input, s=None, dim=None, norm=None, *, out=None) -> Tensor Computes the N-dimensional discrete Fourier transform of real "input". The FFT of a real signal is Hermitian-symmetric, "X[i_1, ..., i_n] = conj(X[-i_1, ..., -i_n])" so the full "fftn()" output contains redundant information. "rfftn()" instead omits the negative frequencies in the last dimension. Note: Supports torch.half on CUDA with GPU Architecture SM53 or greater. However it only supports powers of 2 signal length in every transformed dimensions. Parameters: * input (Tensor) -- the input tensor * **s** (*Tuple**[**int**]**, **optional*) -- Signal size in the transformed dimensions. If given, each dimension "dim[i]" will either be zero-padded or trimmed to the length "s[i]" before computing the real FFT. If a length "-1" is specified, no padding is done in that dimension. Default: "s =
https://pytorch.org/docs/stable/generated/torch.fft.rfftn.html
pytorch docs
[input.size(d) for d in dim]" * **dim** (*Tuple**[**int**]**, **optional*) -- Dimensions to be transformed. Default: all dimensions, or the last "len(s)" dimensions if "s" is given. * **norm** (*str**, **optional*) -- Normalization mode. For the forward transform ("rfftn()"), these correspond to: * ""forward"" - normalize by "1/n" * ""backward"" - no normalization * ""ortho"" - normalize by "1/sqrt(n)" (making the real FFT orthonormal) Where "n = prod(s)" is the logical FFT size. Calling the backward transform ("irfftn()") with the same normalization mode will apply an overall normalization of "1/n" between the two transforms. This is required to make "irfftn()" the exact inverse. Default is ""backward"" (no normalization). Keyword Arguments: out (Tensor, optional) -- the output tensor. -[ Example ]- t = torch.rand(10, 10)
https://pytorch.org/docs/stable/generated/torch.fft.rfftn.html
pytorch docs
-[ Example ]- t = torch.rand(10, 10) rfftn = torch.fft.rfftn(t) rfftn.size() torch.Size([10, 6]) Compared against the full output from "fftn()", we have all elements up to the Nyquist frequency. fftn = torch.fft.fftn(t) torch.testing.assert_close(fftn[..., :6], rfftn, check_stride=False) The discrete Fourier transform is separable, so "rfftn()" here is equivalent to a combination of "fft()" and "rfft()": two_ffts = torch.fft.fft(torch.fft.rfft(t, dim=1), dim=0) torch.testing.assert_close(rfftn, two_ffts, check_stride=False)
https://pytorch.org/docs/stable/generated/torch.fft.rfftn.html
pytorch docs
torch.randperm torch.randperm(n, *, generator=None, out=None, dtype=torch.int64, layout=torch.strided, device=None, requires_grad=False, pin_memory=False) -> Tensor Returns a random permutation of integers from "0" to "n - 1". Parameters: n (int) -- the upper bound (exclusive) Keyword Arguments: * generator ("torch.Generator", optional) -- a pseudorandom number generator for sampling * **out** (*Tensor**, **optional*) -- the output tensor. * **dtype** ("torch.dtype", optional) -- the desired data type of returned tensor. Default: "torch.int64". * **layout** ("torch.layout", optional) -- the desired layout of returned Tensor. Default: "torch.strided". * **device** ("torch.device", optional) -- the desired device of returned tensor. Default: if "None", uses the current device for the default tensor type (see "torch.set_default_tensor_type()"). "device" will be the CPU
https://pytorch.org/docs/stable/generated/torch.randperm.html
pytorch docs
for CPU tensor types and the current CUDA device for CUDA tensor types. * **requires_grad** (*bool**, **optional*) -- If autograd should record operations on the returned tensor. Default: "False". * **pin_memory** (*bool**, **optional*) -- If set, returned tensor would be allocated in the pinned memory. Works only for CPU tensors. Default: "False". Example: >>> torch.randperm(4) tensor([2, 1, 0, 3])
https://pytorch.org/docs/stable/generated/torch.randperm.html
pytorch docs
torch.nn.functional.tanhshrink torch.nn.functional.tanhshrink(input) -> Tensor Applies element-wise, \text{Tanhshrink}(x) = x - \text{Tanh}(x) See "Tanhshrink" for more details.
https://pytorch.org/docs/stable/generated/torch.nn.functional.tanhshrink.html
pytorch docs
torch.func.replace_all_batch_norm_modules_ torch.func.replace_all_batch_norm_modules_(root) In place updates "root" by setting the "running_mean" and "running_var" to be None and setting track_running_stats to be False for any nn.BatchNorm module in "root" Return type: Module
https://pytorch.org/docs/stable/generated/torch.func.replace_all_batch_norm_modules_.html
pytorch docs
hardswish class torch.ao.nn.quantized.functional.hardswish(input, scale, zero_point) This is the quantized version of "hardswish()". Parameters: * input (Tensor) -- quantized input * **scale** (*float*) -- quantization scale of the output tensor * **zero_point** (*int*) -- quantization zero point of the output tensor Return type: Tensor
https://pytorch.org/docs/stable/generated/torch.ao.nn.quantized.functional.hardswish.html
pytorch docs
Transformer class torch.nn.Transformer(d_model=512, nhead=8, num_encoder_layers=6, num_decoder_layers=6, dim_feedforward=2048, dropout=0.1, activation=, custom_encoder=None, custom_decoder=None, layer_norm_eps=1e-05, batch_first=False, norm_first=False, device=None, dtype=None) A transformer model. User is able to modify the attributes as needed. The architecture is based on the paper "Attention Is All You Need". Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information Processing Systems, pages 6000-6010. Parameters: * d_model (int) -- the number of expected features in the encoder/decoder inputs (default=512). * **nhead** (*int*) -- the number of heads in the multiheadattention models (default=8). * **num_encoder_layers** (*int*) -- the number of sub-encoder-
https://pytorch.org/docs/stable/generated/torch.nn.Transformer.html
pytorch docs
layers in the encoder (default=6). * **num_decoder_layers** (*int*) -- the number of sub-decoder- layers in the decoder (default=6). * **dim_feedforward** (*int*) -- the dimension of the feedforward network model (default=2048). * **dropout** (*float*) -- the dropout value (default=0.1). * **activation** (*Union**[**str**, **Callable**[**[**Tensor**]**, **Tensor**]**]*) -- the activation function of encoder/decoder intermediate layer, can be a string ("relu" or "gelu") or a unary callable. Default: relu * **custom_encoder** (*Optional**[**Any**]*) -- custom encoder (default=None). * **custom_decoder** (*Optional**[**Any**]*) -- custom decoder (default=None). * **layer_norm_eps** (*float*) -- the eps value in layer normalization components (default=1e-5). * **batch_first** (*bool*) -- If "True", then the input and
https://pytorch.org/docs/stable/generated/torch.nn.Transformer.html
pytorch docs
output tensors are provided as (batch, seq, feature). Default: "False" (seq, batch, feature). * **norm_first** (*bool*) -- if "True", encoder and decoder layers will perform LayerNorms before other attention and feedforward operations, otherwise after. Default: "False" (after). Examples:: >>> transformer_model = nn.Transformer(nhead=16, num_encoder_layers=12) >>> src = torch.rand((10, 32, 512)) >>> tgt = torch.rand((20, 32, 512)) >>> out = transformer_model(src, tgt) Note: A full example to apply nn.Transformer module for the word language model is available in https://github.com/pytorch/examples/tree/master/word_language_model forward(src, tgt, src_mask=None, tgt_mask=None, memory_mask=None, src_key_padding_mask=None, tgt_key_padding_mask=None, memory_key_padding_mask=None) Take in and process masked source/target sequences. Parameters: * **src** (*Tensor*) -- the sequence to the encoder
https://pytorch.org/docs/stable/generated/torch.nn.Transformer.html
pytorch docs
(required). * **tgt** (*Tensor*) -- the sequence to the decoder (required). * **src_mask** (*Optional**[**Tensor**]*) -- the additive mask for the src sequence (optional). * **tgt_mask** (*Optional**[**Tensor**]*) -- the additive mask for the tgt sequence (optional). * **memory_mask** (*Optional**[**Tensor**]*) -- the additive mask for the encoder output (optional). * **src_key_padding_mask** (*Optional**[**Tensor**]*) -- the ByteTensor mask for src keys per batch (optional). * **tgt_key_padding_mask** (*Optional**[**Tensor**]*) -- the ByteTensor mask for tgt keys per batch (optional). * **memory_key_padding_mask** (*Optional**[**Tensor**]*) -- the ByteTensor mask for memory keys per batch (optional). Return type: *Tensor* Shape: * src: (S, E) for unbatched input, (S, N, E) if
https://pytorch.org/docs/stable/generated/torch.nn.Transformer.html
pytorch docs
batch_first=False or (N, S, E) if batch_first=True. * tgt: (T, E) for unbatched input, (T, N, E) if *batch_first=False* or *(N, T, E)* if *batch_first=True*. * src_mask: (S, S) or (N\cdot\text{num\_heads}, S, S). * tgt_mask: (T, T) or (N\cdot\text{num\_heads}, T, T). * memory_mask: (T, S). * src_key_padding_mask: (S) for unbatched input otherwise (N, S). * tgt_key_padding_mask: (T) for unbatched input otherwise (N, T). * memory_key_padding_mask: (S) for unbatched input otherwise (N, S). Note: [src/tgt/memory]_mask ensures that position i is allowed to attend the unmasked positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend while the zero positions will be unchanged. If a BoolTensor is provided, positions with "True" are not allowed to attend
https://pytorch.org/docs/stable/generated/torch.nn.Transformer.html
pytorch docs
while "False" values will be unchanged. If a FloatTensor is provided, it will be added to the attention weight. [src/tgt/memory]_key_padding_mask provides specified elements in the key to be ignored by the attention. If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions will be unchanged. If a BoolTensor is provided, the positions with the value of "True" will be ignored while the position with the value of "False" will be unchanged. * output: (T, E) for unbatched input, (T, N, E) if *batch_first=False* or *(N, T, E)* if *batch_first=True*. Note: Due to the multi-head attention architecture in the transformer model, the output sequence length of a transformer is same as the input sequence (i.e. target) length of the decoder. where S is the source sequence length, T is the target
https://pytorch.org/docs/stable/generated/torch.nn.Transformer.html
pytorch docs
sequence length, N is the batch size, E is the feature number -[ Examples ]- >>> output = transformer_model(src, tgt, src_mask=src_mask, tgt_mask=tgt_mask) static generate_square_subsequent_mask(sz, device='cpu') Generate a square mask for the sequence. The masked positions are filled with float('-inf'). Unmasked positions are filled with float(0.0). Return type: *Tensor*
https://pytorch.org/docs/stable/generated/torch.nn.Transformer.html
pytorch docs
default_placeholder_observer torch.quantization.observer.default_placeholder_observer alias of "PlaceholderObserver"
https://pytorch.org/docs/stable/generated/torch.quantization.observer.default_placeholder_observer.html
pytorch docs
torch.sparse_csr_tensor torch.sparse_csr_tensor(crow_indices, col_indices, values, size=None, *, dtype=None, device=None, requires_grad=False, check_invariants=None) -> Tensor Constructs a sparse tensor in CSR (Compressed Sparse Row) with specified values at the given "crow_indices" and "col_indices". Sparse matrix multiplication operations in CSR format are typically faster than that for sparse tensors in COO format. Make you have a look at the note on the data type of the indices. Note: If the "device" argument is not specified the device of the given "values" and indices tensor(s) must match. If, however, the argument is specified the input Tensors will be converted to the given device and in turn determine the device of the constructed sparse tensor. Parameters: * crow_indices (array_like) -- (B+1)-dimensional array of size "(*batchsize, nrows + 1)". The last element of each
https://pytorch.org/docs/stable/generated/torch.sparse_csr_tensor.html
pytorch docs
batch is the number of non-zeros. This tensor encodes the index in values and col_indices depending on where the given row starts. Each successive number in the tensor subtracted by the number before it denotes the number of elements in a given row. * **col_indices** (*array_like*) -- Column co-ordinates of each element in values. (B+1)-dimensional tensor with the same length as values. * **values** (*array_list*) -- Initial values for the tensor. Can be a list, tuple, NumPy "ndarray", scalar, and other types that represents a (1+K)-dimensional tensor where "K" is the number of dense dimensions. * **size** (list, tuple, "torch.Size", optional) -- Size of the sparse tensor: "(*batchsize, nrows, ncols, *densesize)". If not provided, the size will be inferred as the minimum size big enough to hold all non-zero elements. Keyword Arguments:
https://pytorch.org/docs/stable/generated/torch.sparse_csr_tensor.html
pytorch docs
Keyword Arguments: * dtype ("torch.dtype", optional) -- the desired data type of returned tensor. Default: if None, infers data type from "values". * **device** ("torch.device", optional) -- the desired device of returned tensor. Default: if None, uses the current device for the default tensor type (see "torch.set_default_tensor_type()"). "device" will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. * **requires_grad** (*bool**, **optional*) -- If autograd should record operations on the returned tensor. Default: "False". * **check_invariants** (*bool**, **optional*) -- If sparse tensor invariants are checked. Default: as returned by "torch.sparse.check_sparse_tensor_invariants.is_enabled()", initially False. Example:: >>> crow_indices = [0, 2, 4] >>> col_indices = [0, 1, 0, 1] >>> values = [1, 2, 3, 4]
https://pytorch.org/docs/stable/generated/torch.sparse_csr_tensor.html
pytorch docs
values = [1, 2, 3, 4] >>> torch.sparse_csr_tensor(torch.tensor(crow_indices, dtype=torch.int64), ... torch.tensor(col_indices, dtype=torch.int64), ... torch.tensor(values), dtype=torch.double) tensor(crow_indices=tensor([0, 2, 4]), col_indices=tensor([0, 1, 0, 1]), values=tensor([1., 2., 3., 4.]), size=(2, 2), nnz=4, dtype=torch.float64, layout=torch.sparse_csr)
https://pytorch.org/docs/stable/generated/torch.sparse_csr_tensor.html
pytorch docs
torch.column_stack torch.column_stack(tensors, *, out=None) -> Tensor Creates a new tensor by horizontally stacking the tensors in "tensors". Equivalent to "torch.hstack(tensors)", except each zero or one dimensional tensor "t" in "tensors" is first reshaped into a "(t.numel(), 1)" column before being stacked horizontally. Parameters: tensors (sequence of Tensors) -- sequence of tensors to concatenate Keyword Arguments: out (Tensor, optional) -- the output tensor. Example: >>> a = torch.tensor([1, 2, 3]) >>> b = torch.tensor([4, 5, 6]) >>> torch.column_stack((a, b)) tensor([[1, 4], [2, 5], [3, 6]]) >>> a = torch.arange(5) >>> b = torch.arange(10).reshape(5, 2) >>> torch.column_stack((a, b, b)) tensor([[0, 0, 1, 0, 1], [1, 2, 3, 2, 3], [2, 4, 5, 4, 5], [3, 6, 7, 6, 7], [4, 8, 9, 8, 9]])
https://pytorch.org/docs/stable/generated/torch.column_stack.html
pytorch docs
torch.index_reduce torch.index_reduce(input, dim, index, source, reduce, *, include_self=True, out=None) -> Tensor See "index_reduce_()" for function description.
https://pytorch.org/docs/stable/generated/torch.index_reduce.html
pytorch docs
torch.Tensor.neg Tensor.neg() -> Tensor See "torch.neg()"
https://pytorch.org/docs/stable/generated/torch.Tensor.neg.html
pytorch docs
torch.Tensor.is_complex Tensor.is_complex() -> bool Returns True if the data type of "self" is a complex data type.
https://pytorch.org/docs/stable/generated/torch.Tensor.is_complex.html
pytorch docs
torch.nn.utils.parametrizations.orthogonal torch.nn.utils.parametrizations.orthogonal(module, name='weight', orthogonal_map=None, *, use_trivialization=True) Applies an orthogonal or unitary parametrization to a matrix or a batch of matrices. Letting \mathbb{K} be \mathbb{R} or \mathbb{C}, the parametrized matrix Q \in \mathbb{K}^{m \times n} is orthogonal as \begin{align*} Q^{\text{H}}Q &= \mathrm{I}_n \mathrlap{\qquad \text{if }m \geq n}\\ QQ^{\text{H}} &= \mathrm{I}_m \mathrlap{\qquad \text{if }m < n} \end{align*} where Q^{\text{H}} is the conjugate transpose when Q is complex and the transpose when Q is real-valued, and \mathrm{I}_n is the n-dimensional identity matrix. In plain words, Q will have orthonormal columns whenever m \geq n and orthonormal rows otherwise. If the tensor has more than two dimensions, we consider it as a batch of matrices of shape (..., m, n).
https://pytorch.org/docs/stable/generated/torch.nn.utils.parametrizations.orthogonal.html
pytorch docs
batch of matrices of shape (..., m, n). The matrix Q may be parametrized via three different "orthogonal_map" in terms of the original tensor: ""matrix_exp""/""cayley"": the "matrix_exp()" Q = \exp(A) and the Cayley map Q = (\mathrm{I}_n + A/2)(\mathrm{I}_n - A/2)^{-1} are applied to a skew-symmetric A to give an orthogonal matrix. ""householder"": computes a product of Householder reflectors ("householder_product()"). ""matrix_exp""/""cayley"" often make the parametrized weight converge faster than ""householder"", but they are slower to compute for very thin or very wide matrices. If "use_trivialization=True" (default), the parametrization implements the "Dynamic Trivialization Framework", where an extra matrix B \in \mathbb{K}^{n \times n} is stored under "module.parametrizations.weight[0].base". This helps the convergence of the parametrized layer at the expense of some extra
https://pytorch.org/docs/stable/generated/torch.nn.utils.parametrizations.orthogonal.html
pytorch docs
memory use. See Trivializations for Gradient-Based Optimization on Manifolds . Initial value of Q: If the original tensor is not parametrized and "use_trivialization=True" (default), the initial value of Q is that of the original tensor if it is orthogonal (or unitary in the complex case) and it is orthogonalized via the QR decomposition otherwise (see "torch.linalg.qr()"). Same happens when it is not parametrized and "orthogonal_map="householder"" even when "use_trivialization=False". Otherwise, the initial value is the result of the composition of all the registered parametrizations applied to the original tensor. Note: This function is implemented using the parametrization functionality in "register_parametrization()". Parameters: * module (nn.Module) -- module on which to register the parametrization. * **name** (*str**, **optional*) -- name of the tensor to make orthogonal. Default: ""weight"".
https://pytorch.org/docs/stable/generated/torch.nn.utils.parametrizations.orthogonal.html
pytorch docs
orthogonal. Default: ""weight"". * **orthogonal_map** (*str**, **optional*) -- One of the following: ""matrix_exp"", ""cayley"", ""householder"". Default: ""matrix_exp"" if the matrix is square or complex, ""householder"" otherwise. * **use_trivialization** (*bool**, **optional*) -- whether to use the dynamic trivialization framework. Default: "True". Returns: The original module with an orthogonal parametrization registered to the specified weight Return type: Module Example: >>> orth_linear = orthogonal(nn.Linear(20, 40)) >>> orth_linear ParametrizedLinear( in_features=20, out_features=40, bias=True (parametrizations): ModuleDict( (weight): ParametrizationList( (0): _Orthogonal() ) ) ) >>> Q = orth_linear.weight >>> torch.dist(Q.T @ Q, torch.eye(20)) tensor(4.9332e-07)
https://pytorch.org/docs/stable/generated/torch.nn.utils.parametrizations.orthogonal.html
pytorch docs
torch.Tensor.any Tensor.any(dim=None, keepdim=False) -> Tensor See "torch.any()"
https://pytorch.org/docs/stable/generated/torch.Tensor.any.html
pytorch docs