text
stringlengths
0
1.73k
source
stringlengths
35
119
category
stringclasses
2 values
torch._foreach_round torch._foreach_round(self: List[Tensor]) -> List[Tensor] Apply "torch.round()" to each Tensor of the input list.
https://pytorch.org/docs/stable/generated/torch._foreach_round.html
pytorch docs
LeakyReLU class torch.nn.LeakyReLU(negative_slope=0.01, inplace=False) Applies the element-wise function: \text{LeakyReLU}(x) = \max(0, x) + \text{negative\_slope} * \min(0, x) or \text{LeakyReLU}(x) = \begin{cases} x, & \text{ if } x \geq 0 \\ \text{negative\_slope} \times x, & \text{ otherwise } \end{cases} Parameters: * negative_slope (float) -- Controls the angle of the negative slope. Default: 1e-2 * **inplace** (*bool*) -- can optionally do the operation in- place. Default: "False" Shape: * Input: (*) where *** means, any number of additional dimensions * Output: (*), same shape as the input [image] Examples: >>> m = nn.LeakyReLU(0.1) >>> input = torch.randn(2) >>> output = m(input)
https://pytorch.org/docs/stable/generated/torch.nn.LeakyReLU.html
pytorch docs
torch.Tensor.isreal Tensor.isreal() -> Tensor See "torch.isreal()"
https://pytorch.org/docs/stable/generated/torch.Tensor.isreal.html
pytorch docs
torch.nn.functional.leaky_relu torch.nn.functional.leaky_relu(input, negative_slope=0.01, inplace=False) -> Tensor Applies element-wise, \text{LeakyReLU}(x) = \max(0, x) + \text{negative_slope} * \min(0, x) See "LeakyReLU" for more details. Return type: Tensor
https://pytorch.org/docs/stable/generated/torch.nn.functional.leaky_relu.html
pytorch docs
torch.Tensor.fill_diagonal_ Tensor.fill_diagonal_(fill_value, wrap=False) -> Tensor Fill the main diagonal of a tensor that has at least 2-dimensions. When dims>2, all dimensions of input must be of equal length. This function modifies the input tensor in-place, and returns the input tensor. Parameters: * fill_value (Scalar) -- the fill value * **wrap** (*bool*) -- the diagonal 'wrapped' after N columns for tall matrices. Example: >>> a = torch.zeros(3, 3) >>> a.fill_diagonal_(5) tensor([[5., 0., 0.], [0., 5., 0.], [0., 0., 5.]]) >>> b = torch.zeros(7, 3) >>> b.fill_diagonal_(5) tensor([[5., 0., 0.], [0., 5., 0.], [0., 0., 5.], [0., 0., 0.], [0., 0., 0.], [0., 0., 0.], [0., 0., 0.]]) >>> c = torch.zeros(7, 3) >>> c.fill_diagonal_(5, wrap=True) tensor([[5., 0., 0.],
https://pytorch.org/docs/stable/generated/torch.Tensor.fill_diagonal_.html
pytorch docs
tensor([[5., 0., 0.], [0., 5., 0.], [0., 0., 5.], [0., 0., 0.], [5., 0., 0.], [0., 5., 0.], [0., 0., 5.]])
https://pytorch.org/docs/stable/generated/torch.Tensor.fill_diagonal_.html
pytorch docs
torch.Tensor.acos Tensor.acos() -> Tensor See "torch.acos()"
https://pytorch.org/docs/stable/generated/torch.Tensor.acos.html
pytorch docs
ConstantLR class torch.optim.lr_scheduler.ConstantLR(optimizer, factor=0.3333333333333333, total_iters=5, last_epoch=- 1, verbose=False) Decays the learning rate of each parameter group by a small constant factor until the number of epoch reaches a pre-defined milestone: total_iters. Notice that such decay can happen simultaneously with other changes to the learning rate from outside this scheduler. When last_epoch=-1, sets initial lr as lr. Parameters: * optimizer (Optimizer) -- Wrapped optimizer. * **factor** (*float*) -- The number we multiply learning rate until the milestone. Default: 1./3. * **total_iters** (*int*) -- The number of steps that the scheduler decays the learning rate. Default: 5. * **last_epoch** (*int*) -- The index of the last epoch. Default: -1. * **verbose** (*bool*) -- If "True", prints a message to stdout for each update. Default: "False". -[ Example ]-
https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ConstantLR.html
pytorch docs
-[ Example ]- Assuming optimizer uses lr = 0.05 for all groups lr = 0.025 if epoch == 0 lr = 0.025 if epoch == 1 lr = 0.025 if epoch == 2 lr = 0.025 if epoch == 3 lr = 0.05 if epoch >= 4 scheduler = ConstantLR(self.opt, factor=0.5, total_iters=4) for epoch in range(100): train(...) validate(...) scheduler.step() get_last_lr() Return last computed learning rate by current scheduler. load_state_dict(state_dict) Loads the schedulers state. Parameters: **state_dict** (*dict*) -- scheduler state. Should be an object returned from a call to "state_dict()". print_lr(is_verbose, group, lr, epoch=None) Display the current learning rate. state_dict() Returns the state of the scheduler as a "dict". It contains an entry for every variable in self.__dict__ which is not the optimizer.
https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ConstantLR.html
pytorch docs
BNReLU2d class torch.ao.nn.intrinsic.quantized.BNReLU2d(num_features, eps=1e-05, momentum=0.1, device=None, dtype=None) A BNReLU2d module is a fused module of BatchNorm2d and ReLU We adopt the same interface as "torch.ao.nn.quantized.BatchNorm2d". Variables: torch.ao.nn.quantized.BatchNorm2d (Same as) --
https://pytorch.org/docs/stable/generated/torch.ao.nn.intrinsic.quantized.BNReLU2d.html
pytorch docs
freeze_bn_stats class torch.ao.nn.intrinsic.qat.freeze_bn_stats(mod)
https://pytorch.org/docs/stable/generated/torch.ao.nn.intrinsic.qat.freeze_bn_stats.html
pytorch docs
ConvertCustomConfig class torch.ao.quantization.fx.custom_config.ConvertCustomConfig Custom configuration for "convert_fx()". Example usage: convert_custom_config = ConvertCustomConfig() .set_observed_to_quantized_mapping(ObservedCustomModule, QuantizedCustomModule) .set_preserved_attributes(["attr1", "attr2"]) classmethod from_dict(convert_custom_config_dict) Create a "ConvertCustomConfig" from a dictionary with the following items: "observed_to_quantized_custom_module_class": a nested dictionary mapping from quantization mode to an inner mapping from observed module classes to quantized module classes, e.g.:: { "static": {FloatCustomModule: ObservedCustomModule}, "dynamic": {FloatCustomModule: ObservedCustomModule}, "weight_only": {FloatCustomModule: ObservedCustomModule} } "preserved_attributes": a list of attributes that persist
https://pytorch.org/docs/stable/generated/torch.ao.quantization.fx.custom_config.ConvertCustomConfig.html
pytorch docs
even if they are not used in "forward" This function is primarily for backward compatibility and may be removed in the future. Return type: *ConvertCustomConfig* set_observed_to_quantized_mapping(observed_class, quantized_class, quant_type=QuantType.STATIC) Set the mapping from a custom observed module class to a custom quantized module class. The quantized module class must have a "from_observed" class method that converts the observed module class to the quantized module class. Return type: *ConvertCustomConfig* set_preserved_attributes(attributes) Set the names of the attributes that will persist in the graph module even if they are not used in the model's "forward" method. Return type: *ConvertCustomConfig* to_dict() Convert this "ConvertCustomConfig" to a dictionary with the items described in "from_dict()". Return type: *Dict*[str, *Any*]
https://pytorch.org/docs/stable/generated/torch.ao.quantization.fx.custom_config.ConvertCustomConfig.html
pytorch docs
torch.Tensor.angle Tensor.angle() -> Tensor See "torch.angle()"
https://pytorch.org/docs/stable/generated/torch.Tensor.angle.html
pytorch docs
torch.set_default_tensor_type torch.set_default_tensor_type(t) Sets the default "torch.Tensor" type to floating point tensor type "t". This type will also be used as default floating point type for type inference in "torch.tensor()". The default floating point tensor type is initially "torch.FloatTensor". Parameters: t (type or string) -- the floating point tensor type or its name Example: >>> torch.tensor([1.2, 3]).dtype # initial default for floating point is torch.float32 torch.float32 >>> torch.set_default_tensor_type(torch.DoubleTensor) >>> torch.tensor([1.2, 3]).dtype # a new floating point tensor torch.float64
https://pytorch.org/docs/stable/generated/torch.set_default_tensor_type.html
pytorch docs
PairwiseDistance class torch.nn.PairwiseDistance(p=2.0, eps=1e-06, keepdim=False) Computes the pairwise distance between input vectors, or between columns of input matrices. Distances are computed using "p"-norm, with constant "eps" added to avoid division by zero if "p" is negative, i.e.: \mathrm{dist}\left(x, y\right) = \left\Vert x-y + \epsilon e \right\Vert_p, where e is the vector of ones and the "p"-norm is given by. \Vert x \Vert _p = \left( \sum_{i=1}^n \vert x_i \vert ^ p \right) ^ {1/p}. Parameters: * p (real, optional) -- the norm degree. Can be negative. Default: 2 * **eps** (*float**, **optional*) -- Small value to avoid division by zero. Default: 1e-6 * **keepdim** (*bool**, **optional*) -- Determines whether or not to keep the vector dimension. Default: False Shape: * Input1: (N, D) or (D) where N = batch dimension and D = vector dimension
https://pytorch.org/docs/stable/generated/torch.nn.PairwiseDistance.html
pytorch docs
vector dimension* * Input2: (N, D) or (D), same shape as the Input1 * Output: (N) or () based on input dimension. If "keepdim" is "True", then (N, 1) or (1) based on input dimension. Examples:: >>> pdist = nn.PairwiseDistance(p=2) >>> input1 = torch.randn(100, 128) >>> input2 = torch.randn(100, 128) >>> output = pdist(input1, input2)
https://pytorch.org/docs/stable/generated/torch.nn.PairwiseDistance.html
pytorch docs
torch.fft.ifftn torch.fft.ifftn(input, s=None, dim=None, norm=None, *, out=None) -> Tensor Computes the N dimensional inverse discrete Fourier transform of "input". Note: Supports torch.half and torch.chalf on CUDA with GPU Architecture SM53 or greater. However it only supports powers of 2 signal length in every transformed dimensions. Parameters: * input (Tensor) -- the input tensor * **s** (*Tuple**[**int**]**, **optional*) -- Signal size in the transformed dimensions. If given, each dimension "dim[i]" will either be zero-padded or trimmed to the length "s[i]" before computing the IFFT. If a length "-1" is specified, no padding is done in that dimension. Default: "s = [input.size(d) for d in dim]" * **dim** (*Tuple**[**int**]**, **optional*) -- Dimensions to be transformed. Default: all dimensions, or the last "len(s)" dimensions if "s" is given.
https://pytorch.org/docs/stable/generated/torch.fft.ifftn.html
pytorch docs
dimensions if "s" is given. * **norm** (*str**, **optional*) -- Normalization mode. For the backward transform ("ifftn()"), these correspond to: * ""forward"" - no normalization * ""backward"" - normalize by "1/n" * ""ortho"" - normalize by "1/sqrt(n)" (making the IFFT orthonormal) Where "n = prod(s)" is the logical IFFT size. Calling the forward transform ("fftn()") with the same normalization mode will apply an overall normalization of "1/n" between the two transforms. This is required to make "ifftn()" the exact inverse. Default is ""backward"" (normalize by "1/n"). Keyword Arguments: out (Tensor, optional) -- the output tensor. -[ Example ]- x = torch.rand(10, 10, dtype=torch.complex64) ifftn = torch.fft.ifftn(x) The discrete Fourier transform is separable, so "ifftn()" here is equivalent to two one-dimensional "ifft()" calls:
https://pytorch.org/docs/stable/generated/torch.fft.ifftn.html
pytorch docs
two_iffts = torch.fft.ifft(torch.fft.ifft(x, dim=0), dim=1) torch.testing.assert_close(ifftn, two_iffts, check_stride=False)
https://pytorch.org/docs/stable/generated/torch.fft.ifftn.html
pytorch docs
torch.Tensor.ldexp Tensor.ldexp(other) -> Tensor See "torch.ldexp()"
https://pytorch.org/docs/stable/generated/torch.Tensor.ldexp.html
pytorch docs
torch.nn.functional.lp_pool1d torch.nn.functional.lp_pool1d(input, norm_type, kernel_size, stride=None, ceil_mode=False) Applies a 1D power-average pooling over an input signal composed of several input planes. If the sum of all inputs to the power of p is zero, the gradient is set to zero as well. See "LPPool1d" for details. Return type: Tensor
https://pytorch.org/docs/stable/generated/torch.nn.functional.lp_pool1d.html
pytorch docs
torch.frexp torch.frexp(input, *, out=None) -> (Tensor mantissa, Tensor exponent) Decomposes "input" into mantissa and exponent tensors such that \text{input} = \text{mantissa} \times 2^{\text{exponent}}. The range of mantissa is the open interval (-1, 1). Supports float inputs. Parameters: input (Tensor) -- the input tensor Keyword Arguments: out (tuple, optional) -- the output tensors Example: >>> x = torch.arange(9.) >>> mantissa, exponent = torch.frexp(x) >>> mantissa tensor([0.0000, 0.5000, 0.5000, 0.7500, 0.5000, 0.6250, 0.7500, 0.8750, 0.5000]) >>> exponent tensor([0, 1, 2, 2, 3, 3, 3, 3, 4], dtype=torch.int32) >>> torch.ldexp(mantissa, exponent) tensor([0., 1., 2., 3., 4., 5., 6., 7., 8.])
https://pytorch.org/docs/stable/generated/torch.frexp.html
pytorch docs
torch.vsplit torch.vsplit(input, indices_or_sections) -> List of Tensors Splits "input", a tensor with two or more dimensions, into multiple tensors vertically according to "indices_or_sections". Each split is a view of "input". This is equivalent to calling torch.tensor_split(input, indices_or_sections, dim=0) (the split dimension is 0), except that if "indices_or_sections" is an integer it must evenly divide the split dimension or a runtime error will be thrown. This function is based on NumPy's "numpy.vsplit()". Parameters: * input (Tensor) -- tensor to split. * **indices_or_sections** (*int** or **list** or **tuple of ints*) -- See argument in "torch.tensor_split()". Example:: >>> t = torch.arange(16.0).reshape(4,4) >>> t tensor([[ 0., 1., 2., 3.], [ 4., 5., 6., 7.], [ 8., 9., 10., 11.], [12., 13., 14., 15.]]) >>> torch.vsplit(t, 2)
https://pytorch.org/docs/stable/generated/torch.vsplit.html
pytorch docs
torch.vsplit(t, 2) (tensor([[0., 1., 2., 3.], [4., 5., 6., 7.]]), tensor([[ 8., 9., 10., 11.], [12., 13., 14., 15.]])) >>> torch.vsplit(t, [3, 6]) (tensor([[ 0., 1., 2., 3.], [ 4., 5., 6., 7.], [ 8., 9., 10., 11.]]), tensor([[12., 13., 14., 15.]]), tensor([], size=(0, 4)))
https://pytorch.org/docs/stable/generated/torch.vsplit.html
pytorch docs
no_grad class torch.no_grad Context-manager that disabled gradient calculation. Disabling gradient calculation is useful for inference, when you are sure that you will not call "Tensor.backward()". It will reduce memory consumption for computations that would otherwise have requires_grad=True. In this mode, the result of every computation will have requires_grad=False, even when the inputs have requires_grad=True. This context manager is thread local; it will not affect computation in other threads. Also functions as a decorator. (Make sure to instantiate with parenthesis.) Note: No-grad is one of several mechanisms that can enable or disable gradients locally see Locally disabling gradient computation for more information on how they compare. Note: This API does not apply to forward-mode AD. If you want to disable forward AD for a computation, you can unpack your dual tensors. Example::
https://pytorch.org/docs/stable/generated/torch.no_grad.html
pytorch docs
tensors. Example:: >>> x = torch.tensor([1.], requires_grad=True) >>> with torch.no_grad(): ... y = x * 2 >>> y.requires_grad False >>> @torch.no_grad() ... def doubler(x): ... return x * 2 >>> z = doubler(x) >>> z.requires_grad False
https://pytorch.org/docs/stable/generated/torch.no_grad.html
pytorch docs
ConvReLU1d class torch.ao.nn.intrinsic.quantized.ConvReLU1d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None) A ConvReLU1d module is a fused module of Conv1d and ReLU We adopt the same interface as "torch.ao.nn.quantized.Conv1d". Variables: torch.ao.nn.quantized.Conv1d (Same as) --
https://pytorch.org/docs/stable/generated/torch.ao.nn.intrinsic.quantized.ConvReLU1d.html
pytorch docs
torch.nn.functional.rrelu torch.nn.functional.rrelu(input, lower=1. / 8, upper=1. / 3, training=False, inplace=False) -> Tensor Randomized leaky ReLU. See "RReLU" for more details. Return type: Tensor
https://pytorch.org/docs/stable/generated/torch.nn.functional.rrelu.html
pytorch docs
InstanceNorm1d class torch.ao.nn.quantized.InstanceNorm1d(num_features, weight, bias, scale, zero_point, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False, device=None, dtype=None) This is the quantized version of "InstanceNorm1d". Additional args: * scale - quantization scale of the output, type: double. * **zero_point** - quantization zero point of the output, type: long.
https://pytorch.org/docs/stable/generated/torch.ao.nn.quantized.InstanceNorm1d.html
pytorch docs
torch.cuda.max_memory_reserved torch.cuda.max_memory_reserved(device=None) Returns the maximum GPU memory managed by the caching allocator in bytes for a given device. By default, this returns the peak cached memory since the beginning of this program. "reset_peak_memory_stats()" can be used to reset the starting point in tracking this metric. For example, these two functions can measure the peak cached memory amount of each iteration in a training loop. Parameters: device (torch.device or int, optional) -- selected device. Returns statistic for the current device, given by "current_device()", if "device" is "None" (default). Return type: int Note: See Memory management for more details about GPU memory management.
https://pytorch.org/docs/stable/generated/torch.cuda.max_memory_reserved.html
pytorch docs
torch.nn.functional.affine_grid torch.nn.functional.affine_grid(theta, size, align_corners=None) Generates a 2D or 3D flow field (sampling grid), given a batch of affine matrices "theta". Note: This function is often used in conjunction with "grid_sample()" to build Spatial Transformer Networks . Parameters: * theta (Tensor) -- input batch of affine matrices with shape (N \times 2 \times 3) for 2D or (N \times 3 \times 4) for 3D * **size** (*torch.Size*) -- the target output image size. (N \times C \times H \times W for 2D or N \times C \times D \times H \times W for 3D) Example: torch.Size((32, 3, 24, 24)) * **align_corners** (*bool**, **optional*) -- if "True", consider "-1" and "1" to refer to the centers of the corner pixels rather than the image corners. Refer to "grid_sample()" for a more complete description. A grid generated by
https://pytorch.org/docs/stable/generated/torch.nn.functional.affine_grid.html
pytorch docs
"affine_grid()" should be passed to "grid_sample()" with the same setting for this option. Default: "False" Returns: output Tensor of size (N \times H \times W \times 2) Return type: output (Tensor) Warning: When "align_corners = True", the grid positions depend on the pixel size relative to the input image size, and so the locations sampled by "grid_sample()" will differ for the same input given at different resolutions (that is, after being upsampled or downsampled). The default behavior up to version 1.2.0 was "align_corners = True". Since then, the default behavior has been changed to "align_corners = False", in order to bring it in line with the default for "interpolate()". Warning: When "align_corners = True", 2D affine transforms on 1D data and 3D affine transforms on 2D data (that is, when one of the spatial dimensions has unit size) are ill-defined, and not an intended
https://pytorch.org/docs/stable/generated/torch.nn.functional.affine_grid.html
pytorch docs
use case. This is not a problem when "align_corners = False". Up to version 1.2.0, all grid points along a unit dimension were considered arbitrarily to be at "-1". From version 1.3.0, under "align_corners = True" all grid points along a unit dimension are considered to be at "0" (the center of the input image).
https://pytorch.org/docs/stable/generated/torch.nn.functional.affine_grid.html
pytorch docs
torch.Tensor.to_sparse_coo Tensor.to_sparse_coo() Convert a tensor to coordinate format. Examples: >>> dense = torch.randn(5, 5) >>> sparse = dense.to_sparse_coo() >>> sparse._nnz() 25
https://pytorch.org/docs/stable/generated/torch.Tensor.to_sparse_coo.html
pytorch docs
torch.Tensor.negative_ Tensor.negative_() -> Tensor In-place version of "negative()"
https://pytorch.org/docs/stable/generated/torch.Tensor.negative_.html
pytorch docs
torch.Tensor.expand_as Tensor.expand_as(other) -> Tensor Expand this tensor to the same size as "other". "self.expand_as(other)" is equivalent to "self.expand(other.size())". Please see "expand()" for more information about "expand". Parameters: other ("torch.Tensor") -- The result tensor has the same size as "other".
https://pytorch.org/docs/stable/generated/torch.Tensor.expand_as.html
pytorch docs
torch.erf torch.erf(input, *, out=None) -> Tensor Alias for "torch.special.erf()".
https://pytorch.org/docs/stable/generated/torch.erf.html
pytorch docs
torch.cuda.get_rng_state torch.cuda.get_rng_state(device='cuda') Returns the random number generator state of the specified GPU as a ByteTensor. Parameters: device (torch.device or int, optional) -- The device to return the RNG state of. Default: "'cuda'" (i.e., "torch.device('cuda')", the current CUDA device). Return type: Tensor Warning: This function eagerly initializes CUDA.
https://pytorch.org/docs/stable/generated/torch.cuda.get_rng_state.html
pytorch docs
torch.Tensor.diff Tensor.diff(n=1, dim=- 1, prepend=None, append=None) -> Tensor See "torch.diff()"
https://pytorch.org/docs/stable/generated/torch.Tensor.diff.html
pytorch docs
torch.range torch.range(start=0, end, step=1, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor Returns a 1-D tensor of size \left\lfloor \frac{\text{end} - \text{start}}{\text{step}} \right\rfloor + 1 with values from "start" to "end" with step "step". Step is the gap between two values in the tensor. \text{out}_{i+1} = \text{out}_i + \text{step}. Warning: This function is deprecated and will be removed in a future release because its behavior is inconsistent with Python's range builtin. Instead, use "torch.arange()", which produces values in [start, end). Parameters: * start (float) -- the starting value for the set of points. Default: "0". * **end** (*float*) -- the ending value for the set of points * **step** (*float*) -- the gap between each pair of adjacent points. Default: "1". Keyword Arguments:
https://pytorch.org/docs/stable/generated/torch.range.html
pytorch docs
Keyword Arguments: * out (Tensor, optional) -- the output tensor. * **dtype** ("torch.dtype", optional) -- the desired data type of returned tensor. Default: if "None", uses a global default (see "torch.set_default_tensor_type()"). If *dtype* is not given, infer the data type from the other input arguments. If any of *start*, *end*, or *stop* are floating-point, the *dtype* is inferred to be the default dtype, see "get_default_dtype()". Otherwise, the *dtype* is inferred to be *torch.int64*. * **layout** ("torch.layout", optional) -- the desired layout of returned Tensor. Default: "torch.strided". * **device** ("torch.device", optional) -- the desired device of returned tensor. Default: if "None", uses the current device for the default tensor type (see "torch.set_default_tensor_type()"). "device" will be the CPU for CPU tensor types and the current CUDA device for CUDA
https://pytorch.org/docs/stable/generated/torch.range.html
pytorch docs
tensor types. * **requires_grad** (*bool**, **optional*) -- If autograd should record operations on the returned tensor. Default: "False". Example: >>> torch.range(1, 4) tensor([ 1., 2., 3., 4.]) >>> torch.range(1, 4, 0.5) tensor([ 1.0000, 1.5000, 2.0000, 2.5000, 3.0000, 3.5000, 4.0000])
https://pytorch.org/docs/stable/generated/torch.range.html
pytorch docs
ConvBnReLU1d class torch.ao.nn.intrinsic.qat.ConvBnReLU1d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=None, padding_mode='zeros', eps=1e-05, momentum=0.1, freeze_bn=False, qconfig=None) A ConvBnReLU1d module is a module fused from Conv1d, BatchNorm1d and ReLU, attached with FakeQuantize modules for weight, used in quantization aware training. We combined the interface of "torch.nn.Conv1d" and "torch.nn.BatchNorm1d" and "torch.nn.ReLU". Similar to torch.nn.Conv1d, with FakeQuantize modules initialized to default. Variables: weight_fake_quant -- fake quant module for weight
https://pytorch.org/docs/stable/generated/torch.ao.nn.intrinsic.qat.ConvBnReLU1d.html
pytorch docs
torch.rand_like torch.rand_like(input, *, dtype=None, layout=None, device=None, requires_grad=False, memory_format=torch.preserve_format) -> Tensor Returns a tensor with the same size as "input" that is filled with random numbers from a uniform distribution on the interval [0, 1). "torch.rand_like(input)" is equivalent to "torch.rand(input.size(), dtype=input.dtype, layout=input.layout, device=input.device)". Parameters: input (Tensor) -- the size of "input" will determine size of the output tensor. Keyword Arguments: * dtype ("torch.dtype", optional) -- the desired data type of returned Tensor. Default: if "None", defaults to the dtype of "input". * **layout** ("torch.layout", optional) -- the desired layout of returned tensor. Default: if "None", defaults to the layout of "input". * **device** ("torch.device", optional) -- the desired device of
https://pytorch.org/docs/stable/generated/torch.rand_like.html
pytorch docs
returned tensor. Default: if "None", defaults to the device of "input". * **requires_grad** (*bool**, **optional*) -- If autograd should record operations on the returned tensor. Default: "False". * **memory_format** ("torch.memory_format", optional) -- the desired memory format of returned Tensor. Default: "torch.preserve_format".
https://pytorch.org/docs/stable/generated/torch.rand_like.html
pytorch docs
torch.orgqr torch.orgqr(input, tau) -> Tensor Alias for "torch.linalg.householder_product()".
https://pytorch.org/docs/stable/generated/torch.orgqr.html
pytorch docs
torch.Tensor.detach Tensor.detach() Returns a new Tensor, detached from the current graph. The result will never require gradient. This method also affects forward mode AD gradients and the result will never have forward mode AD gradients. Note: Returned Tensor shares the same storage with the original one. In-place modifications on either of them will be seen, and may trigger errors in correctness checks. IMPORTANT NOTE: Previously, in-place size / stride / storage changes (such as *resize_* / *resize_as_* / *set_* / *transpose_*) to the returned tensor also update the original tensor. Now, these in-place changes will not update the original tensor anymore, and will instead trigger an error. For sparse tensors: In-place indices / values changes (such as *zero_* / *copy_* / *add_*) to the returned tensor will not update the original tensor anymore, and will instead trigger an error.
https://pytorch.org/docs/stable/generated/torch.Tensor.detach.html
pytorch docs
torch.clip torch.clip(input, min=None, max=None, *, out=None) -> Tensor Alias for "torch.clamp()".
https://pytorch.org/docs/stable/generated/torch.clip.html
pytorch docs
torch.Tensor.histogram Tensor.histogram(input, bins, *, range=None, weight=None, density=False) See "torch.histogram()"
https://pytorch.org/docs/stable/generated/torch.Tensor.histogram.html
pytorch docs
CUDAGraph class torch.cuda.CUDAGraph Wrapper around a CUDA graph. Warning: This API is in beta and may change in future releases. capture_begin(pool=None) Begins capturing CUDA work on the current stream. Typically, you shouldn't call "capture_begin" yourself. Use "graph" or "make_graphed_callables()", which call "capture_begin" internally. Parameters: **pool** (*optional*) -- Token (returned by "graph_pool_handle()" or "other_Graph_instance.pool()") that hints this graph may share memory with the indicated pool. See Graph memory management. capture_end() Ends CUDA graph capture on the current stream. After "capture_end", "replay" may be called on this instance. Typically, you shouldn't call "capture_end" yourself. Use "graph" or "make_graphed_callables()", which call "capture_end" internally. debug_dump(debug_path) Parameters:
https://pytorch.org/docs/stable/generated/torch.cuda.CUDAGraph.html
pytorch docs
debug_dump(debug_path) Parameters: **debug_path** (*required*) -- Path to dump the graph to. Calls a debugging function to dump the graph if the debugging is enabled via CUDAGraph.enable_debug_mode() enable_debug_mode() Enables debugging mode for CUDAGraph.debug_dump. pool() Returns an opaque token representing the id of this graph's memory pool. This id can optionally be passed to another graph's "capture_begin", which hints the other graph may share the same memory pool. replay() Replays the CUDA work captured by this graph. reset() Deletes the graph currently held by this instance.
https://pytorch.org/docs/stable/generated/torch.cuda.CUDAGraph.html
pytorch docs
torch.are_deterministic_algorithms_enabled torch.are_deterministic_algorithms_enabled() Returns True if the global deterministic flag is turned on. Refer to "torch.use_deterministic_algorithms()" documentation for more details.
https://pytorch.org/docs/stable/generated/torch.are_deterministic_algorithms_enabled.html
pytorch docs
torch.Tensor.squeeze Tensor.squeeze(dim=None) -> Tensor See "torch.squeeze()"
https://pytorch.org/docs/stable/generated/torch.Tensor.squeeze.html
pytorch docs
Softmax2d class torch.nn.Softmax2d Applies SoftMax over features to each spatial location. When given an image of "Channels x Height x Width", it will apply Softmax to each location (Channels, h_i, w_j) Shape: * Input: (N, C, H, W) or (C, H, W). * Output: (N, C, H, W) or (C, H, W) (same shape as input) Returns: a Tensor of the same dimension and shape as the input with values in the range [0, 1] Return type: None Examples: >>> m = nn.Softmax2d() >>> # you softmax over the 2nd dimension >>> input = torch.randn(2, 3, 12, 13) >>> output = m(input)
https://pytorch.org/docs/stable/generated/torch.nn.Softmax2d.html
pytorch docs
torch.chunk torch.chunk(input, chunks, dim=0) -> List of Tensors Attempts to split a tensor into the specified number of chunks. Each chunk is a view of the input tensor. Note: This function may return fewer than the specified number of chunks! See also: "torch.tensor_split()" a function that always returns exactly the specified number of chunks If the tensor size along the given dimension "dim" is divisible by "chunks", all returned chunks will be the same size. If the tensor size along the given dimension "dim" is not divisible by "chunks", all returned chunks will be the same size, except the last one. If such division is not possible, this function may return fewer than the specified number of chunks. Parameters: * input (Tensor) -- the tensor to split * **chunks** (*int*) -- number of chunks to return * **dim** (*int*) -- dimension along which to split the tensor -[ Example ]-
https://pytorch.org/docs/stable/generated/torch.chunk.html
pytorch docs
-[ Example ]- torch.arange(11).chunk(6) (tensor([0, 1]), tensor([2, 3]), tensor([4, 5]), tensor([6, 7]), tensor([8, 9]), tensor([10])) torch.arange(12).chunk(6) (tensor([0, 1]), tensor([2, 3]), tensor([4, 5]), tensor([6, 7]), tensor([8, 9]), tensor([10, 11])) torch.arange(13).chunk(6) (tensor([0, 1, 2]), tensor([3, 4, 5]), tensor([6, 7, 8]), tensor([ 9, 10, 11]), tensor([12]))
https://pytorch.org/docs/stable/generated/torch.chunk.html
pytorch docs
torch.nn.functional.group_norm torch.nn.functional.group_norm(input, num_groups, weight=None, bias=None, eps=1e-05) Applies Group Normalization for last certain number of dimensions. See "GroupNorm" for details. Return type: Tensor
https://pytorch.org/docs/stable/generated/torch.nn.functional.group_norm.html
pytorch docs
SGD class torch.optim.SGD(params, lr=, momentum=0, dampening=0, weight_decay=0, nesterov=False, *, maximize=False, foreach=None, differentiable=False) Implements stochastic gradient descent (optionally with momentum). \begin{aligned} &\rule{110mm}{0.4pt} \\ &\textbf{input} : \gamma \text{ (lr)}, \: \theta_0 \text{ (params)}, \: f(\theta) \text{ (objective)}, \: \lambda \text{ (weight decay)}, \\ &\hspace{13mm} \:\mu \text{ (momentum)}, \:\tau \text{ (dampening)}, \:\textit{ nesterov,}\:\textit{ maximize} \\[-1.ex] &\rule{110mm}{0.4pt} \\ &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\ &\hspace{5mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\ &\hspace{5mm}\textbf{if} \: \lambda \neq 0 \\ &\hspace{10mm} g_t \leftarrow g_t + \lambda \theta_{t-1} \\
https://pytorch.org/docs/stable/generated/torch.optim.SGD.html
pytorch docs
\theta_{t-1} \ &\hspace{5mm}\textbf{if} \: \mu \neq 0 \ &\hspace{10mm}\textbf{if} \: t > 1 \ &\hspace{15mm} \textbf{b}t \leftarrow \mu \textbf{b} + (1-\tau) g_t \ &\hspace{10mm}\textbf{else} \ &\hspace{15mm} \textbf{b}t \leftarrow g_t \ &\hspace{10mm}\textbf{if} \: \textit{nesterov} \ &\hspace{15mm} g_t \leftarrow g + \mu \textbf{b}t \ &\hspace{10mm}\textbf{else} \[-1.ex] &\hspace{15mm} g_t \leftarrow \textbf{b}_t \ &\hspace{5mm}\textbf{if} \: \textit{maximize} \ &\hspace{10mm}\theta_t \leftarrow \theta + \gamma g_t \[-1.ex] &\hspace{5mm}\textbf{else} \[-1.ex] &\hspace{10mm}\theta_t \leftarrow \theta_{t-1} - \gamma g_t \[-1.ex] &\rule{110mm}{0.4pt} \[-1.ex] &\bf{return} \: \theta_t \[-1.ex] &\rule{110mm}{0.4pt}
https://pytorch.org/docs/stable/generated/torch.optim.SGD.html
pytorch docs
\[-1.ex] &\rule{110mm}{0.4pt} \[-1.ex] \end{aligned} Nesterov momentum is based on the formula from On the importance of initialization and momentum in deep learning. Parameters: * params (iterable) -- iterable of parameters to optimize or dicts defining parameter groups * **lr** (*float*) -- learning rate * **momentum** (*float**, **optional*) -- momentum factor (default: 0) * **weight_decay** (*float**, **optional*) -- weight decay (L2 penalty) (default: 0) * **dampening** (*float**, **optional*) -- dampening for momentum (default: 0) * **nesterov** (*bool**, **optional*) -- enables Nesterov momentum (default: False) * **maximize** (*bool**, **optional*) -- maximize the params based on the objective, instead of minimizing (default: False) * **foreach** (*bool**, **optional*) -- whether foreach implementation of optimizer is used (default: None)
https://pytorch.org/docs/stable/generated/torch.optim.SGD.html
pytorch docs
differentiable (bool, optional) -- whether autograd should occur through the optimizer step in training. Otherwise, the step() function runs in a torch.no_grad() context. Setting to True can impair performance, so leave it False if you don't intend to run autograd through this instance (default: False) -[ Example ]- optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9) optimizer.zero_grad() loss_fn(model(input), target).backward() optimizer.step() Note: The implementation of SGD with Momentum/Nesterov subtly differs from Sutskever et. al. and implementations in some other frameworks.Considering the specific case of Momentum, the update can be written as \begin{aligned} v_{t+1} & = \mu * v_{t} + g_{t+1}, \\ p_{t+1} & = p_{t} - \text{lr} * v_{t+1}, \end{aligned} where p, g, v and \mu denote the parameters, gradient, velocity,
https://pytorch.org/docs/stable/generated/torch.optim.SGD.html
pytorch docs
and momentum respectively.This is in contrast to Sutskever et. al. and other frameworks which employ an update of the form \begin{aligned} v_{t+1} & = \mu * v_{t} + \text{lr} * g_{t+1}, \\ p_{t+1} & = p_{t} - v_{t+1}. \end{aligned} The Nesterov version is analogously modified.Moreover, the initial value of the momentum buffer is set to the gradient value at the first step. This is in contrast to some other frameworks that initialize it to all zeros. add_param_group(param_group) Add a param group to the "Optimizer" s *param_groups*. This can be useful when fine tuning a pre-trained network as frozen layers can be made trainable and added to the "Optimizer" as training progresses. Parameters: **param_group** (*dict*) -- Specifies what Tensors should be optimized along with group specific optimization options. load_state_dict(state_dict) Loads the optimizer state. Parameters:
https://pytorch.org/docs/stable/generated/torch.optim.SGD.html
pytorch docs
Parameters: state_dict (dict) -- optimizer state. Should be an object returned from a call to "state_dict()". register_step_post_hook(hook) Register an optimizer step post hook which will be called after optimizer step. It should have the following signature: hook(optimizer, args, kwargs) -> None The "optimizer" argument is the optimizer instance being used. Parameters: **hook** (*Callable*) -- The user defined hook to be registered. Returns: a handle that can be used to remove the added hook by calling "handle.remove()" Return type: "torch.utils.hooks.RemoveableHandle" register_step_pre_hook(hook) Register an optimizer step pre hook which will be called before optimizer step. It should have the following signature: hook(optimizer, args, kwargs) -> None or modified args and kwargs The "optimizer" argument is the optimizer instance being used.
https://pytorch.org/docs/stable/generated/torch.optim.SGD.html
pytorch docs
If args and kwargs are modified by the pre-hook, then the transformed values are returned as a tuple containing the new_args and new_kwargs. Parameters: **hook** (*Callable*) -- The user defined hook to be registered. Returns: a handle that can be used to remove the added hook by calling "handle.remove()" Return type: "torch.utils.hooks.RemoveableHandle" state_dict() Returns the state of the optimizer as a "dict". It contains two entries: * state - a dict holding current optimization state. Its content differs between optimizer classes. * param_groups - a list containing all parameter groups where each parameter group is a dict zero_grad(set_to_none=False) Sets the gradients of all optimized "torch.Tensor" s to zero. Parameters: **set_to_none** (*bool*) -- instead of setting to zero, set
https://pytorch.org/docs/stable/generated/torch.optim.SGD.html
pytorch docs
the grads to None. This will in general have lower memory footprint, and can modestly improve performance. However, it changes certain behaviors. For example: 1. When the user tries to access a gradient and perform manual ops on it, a None attribute or a Tensor full of 0s will behave differently. 2. If the user requests "zero_grad(set_to_none=True)" followed by a backward pass, ".grad"s are guaranteed to be None for params that did not receive a gradient. 3. "torch.optim" optimizers have a different behavior if the gradient is 0 or None (in one case it does the step with a gradient of 0 and in the other it skips the step altogether).
https://pytorch.org/docs/stable/generated/torch.optim.SGD.html
pytorch docs
torch.std torch.std(input, dim=None, *, correction=1, keepdim=False, out=None) -> Tensor Calculates the standard deviation over the dimensions specified by "dim". "dim" can be a single dimension, list of dimensions, or "None" to reduce over all dimensions. The standard deviation (\sigma) is calculated as \sigma = \sqrt{\frac{1}{N - \delta N}\sum_{i=0}^{N-1}(x_i-\bar{x})^2} where x is the sample set of elements, \bar{x} is the sample mean, N is the number of samples and \delta N is the "correction". If "keepdim" is "True", the output tensor is of the same size as "input" except in the dimension(s) "dim" where it is of size 1. Otherwise, "dim" is squeezed (see "torch.squeeze()"), resulting in the output tensor having 1 (or "len(dim)") fewer dimension(s). Parameters: * input (Tensor) -- the input tensor. * **dim** (*int** or **tuple of ints*) -- the dimension or dimensions to reduce. Keyword Arguments:
https://pytorch.org/docs/stable/generated/torch.std.html
pytorch docs
Keyword Arguments: * correction (int) -- difference between the sample size and sample degrees of freedom. Defaults to Bessel's correction, "correction=1". Changed in version 2.0: Previously this argument was called "unbiased" and was a boolean with "True" corresponding to "correction=1" and "False" being "correction=0". * **keepdim** (*bool*) -- whether the output tensor has "dim" retained or not. * **out** (*Tensor**, **optional*) -- the output tensor. -[ Example ]- a = torch.tensor( ... [[ 0.2035, 1.2959, 1.8101, -0.4644], ... [ 1.5027, -0.3270, 0.5905, 0.6538], ... [-1.5745, 1.3330, -0.5596, -0.6548], ... [ 0.1264, -0.5080, 1.6420, 0.1992]]) torch.std(a, dim=1, keepdim=True) tensor([[1.0311], [0.7477], [1.2204], [0.9087]])
https://pytorch.org/docs/stable/generated/torch.std.html
pytorch docs
torch.linalg.inv torch.linalg.inv(A, *, out=None) -> Tensor Computes the inverse of a square matrix if it exists. Throws a RuntimeError if the matrix is not invertible. Letting \mathbb{K} be \mathbb{R} or \mathbb{C}, for a matrix A \in \mathbb{K}^{n \times n}, its inverse matrix A^{-1} \in \mathbb{K}^{n \times n} (if it exists) is defined as A^{-1}A = AA^{-1} = \mathrm{I}_n where \mathrm{I}_n is the n-dimensional identity matrix. The inverse matrix exists if and only if A is invertible. In this case, the inverse is unique. Supports input of float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if "A" is a batch of matrices then the output has the same batch dimensions. Note: When inputs are on a CUDA device, this function synchronizes that device with the CPU. Note: Consider using "torch.linalg.solve()" if possible for multiplying a matrix on the left by the inverse, as:
https://pytorch.org/docs/stable/generated/torch.linalg.inv.html
pytorch docs
a matrix on the left by the inverse, as: linalg.solve(A, B) == linalg.inv(A) @ B # When B is a matrix It is always preferred to use "solve()" when possible, as it is faster and more numerically stable than computing the inverse explicitly. See also: "torch.linalg.pinv()" computes the pseudoinverse (Moore-Penrose inverse) of matrices of any shape. "torch.linalg.solve()" computes "A"*.inv() @ *"B" with a numerically stable algorithm. Parameters: A (Tensor) -- tensor of shape (, n, n)* where *** is zero or more batch dimensions consisting of invertible matrices. Keyword Arguments: out (Tensor, optional) -- output tensor. Ignored if None. Default: None. Raises: RuntimeError -- if the matrix "A" or any matrix in the batch of matrices "A" is not invertible. Examples: >>> A = torch.randn(4, 4) >>> Ainv = torch.linalg.inv(A) >>> torch.dist(A @ Ainv, torch.eye(4))
https://pytorch.org/docs/stable/generated/torch.linalg.inv.html
pytorch docs
torch.dist(A @ Ainv, torch.eye(4)) tensor(1.1921e-07) >>> A = torch.randn(2, 3, 4, 4) # Batch of matrices >>> Ainv = torch.linalg.inv(A) >>> torch.dist(A @ Ainv, torch.eye(4)) tensor(1.9073e-06) >>> A = torch.randn(4, 4, dtype=torch.complex128) # Complex matrix >>> Ainv = torch.linalg.inv(A) >>> torch.dist(A @ Ainv, torch.eye(4)) tensor(7.5107e-16, dtype=torch.float64)
https://pytorch.org/docs/stable/generated/torch.linalg.inv.html
pytorch docs
ChannelShuffle class torch.nn.ChannelShuffle(groups) Divide the channels in a tensor of shape (, C , H, W) into g groups and rearrange them as (, C \frac g, g, H, W), while keeping the original tensor shape. Parameters: groups (int) -- number of groups to divide channels in. Examples: >>> channel_shuffle = nn.ChannelShuffle(2) >>> input = torch.randn(1, 4, 2, 2) >>> print(input) [[[[1, 2], [3, 4]], [[5, 6], [7, 8]], [[9, 10], [11, 12]], [[13, 14], [15, 16]], ]] >>> output = channel_shuffle(input) >>> print(output) [[[[1, 2], [3, 4]], [[9, 10], [11, 12]], [[5, 6], [7, 8]], [[13, 14], [15, 16]], ]]
https://pytorch.org/docs/stable/generated/torch.nn.ChannelShuffle.html
pytorch docs
torch.gt torch.gt(input, other, *, out=None) -> Tensor Computes \text{input} > \text{other} element-wise. The second argument can be a number or a tensor whose shape is broadcastable with the first argument. Parameters: * input (Tensor) -- the tensor to compare * **other** (*Tensor** or **float*) -- the tensor or value to compare Keyword Arguments: out (Tensor, optional) -- the output tensor. Returns: A boolean tensor that is True where "input" is greater than "other" and False elsewhere Example: >>> torch.gt(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]])) tensor([[False, True], [False, False]])
https://pytorch.org/docs/stable/generated/torch.gt.html
pytorch docs
Bilinear class torch.nn.Bilinear(in1_features, in2_features, out_features, bias=True, device=None, dtype=None) Applies a bilinear transformation to the incoming data: y = x_1^T A x_2 + b Parameters: * in1_features (int) -- size of each first input sample * **in2_features** (*int*) -- size of each second input sample * **out_features** (*int*) -- size of each output sample * **bias** (*bool*) -- If set to False, the layer will not learn an additive bias. Default: "True" Shape: * Input1: (*, H_{in1}) where H_{in1}=\text{in1_features} and * means any number of additional dimensions including none. All but the last dimension of the inputs should be the same. * Input2: (*, H_{in2}) where H_{in2}=\text{in2\_features}. * Output: (*, H_{out}) where H_{out}=\text{out\_features} and all but the last dimension are the same shape as the input. Variables:
https://pytorch.org/docs/stable/generated/torch.nn.Bilinear.html
pytorch docs
Variables: * weight (torch.Tensor) -- the learnable weights of the module of shape (\text{out_features}, \text{in1_features}, \text{in2_features}). The values are initialized from \mathcal{U}(-\sqrt{k}, \sqrt{k}), where k = \frac{1}{\text{in1_features}} * **bias** -- the learnable bias of the module of shape (\text{out\_features}). If "bias" is "True", the values are initialized from \mathcal{U}(-\sqrt{k}, \sqrt{k}), where k = \frac{1}{\text{in1\_features}} Examples: >>> m = nn.Bilinear(20, 30, 40) >>> input1 = torch.randn(128, 20) >>> input2 = torch.randn(128, 30) >>> output = m(input1, input2) >>> print(output.size()) torch.Size([128, 40])
https://pytorch.org/docs/stable/generated/torch.nn.Bilinear.html
pytorch docs
torch.Tensor.logical_and_ Tensor.logical_and_() -> Tensor In-place version of "logical_and()"
https://pytorch.org/docs/stable/generated/torch.Tensor.logical_and_.html
pytorch docs
torch.arange torch.arange(start=0, end, step=1, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor Returns a 1-D tensor of size \left\lceil \frac{\text{end} - \text{start}}{\text{step}} \right\rceil with values from the interval "[start, end)" taken with common difference "step" beginning from start. Note that non-integer "step" is subject to floating point rounding errors when comparing against "end"; to avoid inconsistency, we advise adding a small epsilon to "end" in such cases. \text{out}_{{i+1}} = \text{out}_{i} + \text{step} Parameters: * start (Number) -- the starting value for the set of points. Default: "0". * **end** (*Number*) -- the ending value for the set of points * **step** (*Number*) -- the gap between each pair of adjacent points. Default: "1". Keyword Arguments: * out (Tensor, optional) -- the output tensor.
https://pytorch.org/docs/stable/generated/torch.arange.html
pytorch docs
dtype ("torch.dtype", optional) -- the desired data type of returned tensor. Default: if "None", uses a global default (see "torch.set_default_tensor_type()"). If dtype is not given, infer the data type from the other input arguments. If any of start, end, or stop are floating-point, the dtype is inferred to be the default dtype, see "get_default_dtype()". Otherwise, the dtype is inferred to be torch.int64. layout ("torch.layout", optional) -- the desired layout of returned Tensor. Default: "torch.strided". device ("torch.device", optional) -- the desired device of returned tensor. Default: if "None", uses the current device for the default tensor type (see "torch.set_default_tensor_type()"). "device" will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.
https://pytorch.org/docs/stable/generated/torch.arange.html
pytorch docs
tensor types. * **requires_grad** (*bool**, **optional*) -- If autograd should record operations on the returned tensor. Default: "False". Example: >>> torch.arange(5) tensor([ 0, 1, 2, 3, 4]) >>> torch.arange(1, 4) tensor([ 1, 2, 3]) >>> torch.arange(1, 2.5, 0.5) tensor([ 1.0000, 1.5000, 2.0000])
https://pytorch.org/docs/stable/generated/torch.arange.html
pytorch docs
torch.signal.windows.hann torch.signal.windows.hann(M, *, sym=True, dtype=None, layout=torch.strided, device=None, requires_grad=False) Computes the Hann window. The Hann window is defined as follows: w_n = \frac{1}{2}\ \left[1 - \cos \left( \frac{2 \pi n}{M - 1} \right)\right] = \sin^2 \left( \frac{\pi n}{M - 1} \right) The window is normalized to 1 (maximum value is 1). However, the 1 doesn't appear if "M" is even and "sym" is True. Parameters: M (int) -- the length of the window. In other words, the number of points of the returned window. Keyword Arguments: * sym (bool, optional) -- If False, returns a periodic window suitable for use in spectral analysis. If True, returns a symmetric window suitable for use in filter design. Default: True. * **dtype** ("torch.dtype", optional) -- the desired data type of returned tensor. Default: if "None", uses a global default
https://pytorch.org/docs/stable/generated/torch.signal.windows.hann.html
pytorch docs
(see "torch.set_default_tensor_type()"). * **layout** ("torch.layout", optional) -- the desired layout of returned Tensor. Default: "torch.strided". * **device** ("torch.device", optional) -- the desired device of returned tensor. Default: if "None", uses the current device for the default tensor type (see "torch.set_default_tensor_type()"). "device" will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. * **requires_grad** (*bool**, **optional*) -- If autograd should record operations on the returned tensor. Default: "False". Return type: Tensor Examples: >>> # Generates a symmetric Hann window. >>> torch.signal.windows.hann(10) tensor([0.0000, 0.1170, 0.4132, 0.7500, 0.9698, 0.9698, 0.7500, 0.4132, 0.1170, 0.0000]) >>> # Generates a periodic Hann window. >>> torch.signal.windows.hann(10, sym=False)
https://pytorch.org/docs/stable/generated/torch.signal.windows.hann.html
pytorch docs
torch.signal.windows.hann(10, sym=False) tensor([0.0000, 0.0955, 0.3455, 0.6545, 0.9045, 1.0000, 0.9045, 0.6545, 0.3455, 0.0955])
https://pytorch.org/docs/stable/generated/torch.signal.windows.hann.html
pytorch docs
torch.maximum torch.maximum(input, other, *, out=None) -> Tensor Computes the element-wise maximum of "input" and "other". Note: If one of the elements being compared is a NaN, then that element is returned. "maximum()" is not supported for tensors with complex dtypes. Parameters: * input (Tensor) -- the input tensor. * **other** (*Tensor*) -- the second input tensor Keyword Arguments: out (Tensor, optional) -- the output tensor. Example: >>> a = torch.tensor((1, 2, -1)) >>> b = torch.tensor((3, 0, 4)) >>> torch.maximum(a, b) tensor([3, 2, 4])
https://pytorch.org/docs/stable/generated/torch.maximum.html
pytorch docs
strict_fusion class torch.jit.strict_fusion This class errors if not all nodes have been fused in inference, or symbolically differentiated in training. Example: Forcing fusion of additions. @torch.jit.script def foo(x): with torch.jit.strict_fusion(): return x + x + x
https://pytorch.org/docs/stable/generated/torch.jit.strict_fusion.html
pytorch docs
Linear class torch.nn.Linear(in_features, out_features, bias=True, device=None, dtype=None) Applies a linear transformation to the incoming data: y = xA^T + b This module supports TensorFloat32. On certain ROCm devices, when using float16 inputs this module will use different precision for backward. Parameters: * in_features (int) -- size of each input sample * **out_features** (*int*) -- size of each output sample * **bias** (*bool*) -- If set to "False", the layer will not learn an additive bias. Default: "True" Shape: * Input: (*, H_{in}) where * means any number of dimensions including none and H_{in} = \text{in_features}. * Output: (*, H_{out}) where all but the last dimension are the same shape as the input and H_{out} = \text{out\_features}. Variables: * weight (torch.Tensor) -- the learnable weights of the module of shape (\text{out_features}, \text{in_features}).
https://pytorch.org/docs/stable/generated/torch.nn.Linear.html
pytorch docs
The values are initialized from \mathcal{U}(-\sqrt{k}, \sqrt{k}), where k = \frac{1}{\text{in_features}} * **bias** -- the learnable bias of the module of shape (\text{out\_features}). If "bias" is "True", the values are initialized from \mathcal{U}(-\sqrt{k}, \sqrt{k}) where k = \frac{1}{\text{in\_features}} Examples: >>> m = nn.Linear(20, 30) >>> input = torch.randn(128, 20) >>> output = m(input) >>> print(output.size()) torch.Size([128, 30])
https://pytorch.org/docs/stable/generated/torch.nn.Linear.html
pytorch docs
torch.cumulative_trapezoid torch.cumulative_trapezoid(y, x=None, *, dx=None, dim=- 1) -> Tensor Cumulatively computes the trapezoidal rule along "dim". By default the spacing between elements is assumed to be 1, but "dx" can be used to specify a different constant spacing, and "x" can be used to specify arbitrary spacing along "dim". For more details, please read "torch.trapezoid()". The difference between "torch.trapezoid()" and this function is that, "torch.trapezoid()" returns a value for each integration, where as this function returns a cumulative value for every spacing within the integration. This is analogous to how .sum returns a value and .cumsum returns a cumulative sum. Parameters: * y (Tensor) -- Values to use when computing the trapezoidal rule. * **x** (*Tensor*) -- If specified, defines spacing between values as specified above. Keyword Arguments:
https://pytorch.org/docs/stable/generated/torch.cumulative_trapezoid.html
pytorch docs
Keyword Arguments: * dx (float) -- constant spacing between values. If neither "x" or "dx" are specified then this defaults to 1. Effectively multiplies the result by its value. * **dim** (*int*) -- The dimension along which to compute the trapezoidal rule. The last (inner-most) dimension by default. Examples: >>> # Cumulatively computes the trapezoidal rule in 1D, spacing is implicitly 1. >>> y = torch.tensor([1, 5, 10]) >>> torch.cumulative_trapezoid(y) tensor([3., 10.5]) >>> # Computes the same trapezoidal rule directly up to each element to verify >>> (1 + 5) / 2 3.0 >>> (1 + 10 + 10) / 2 10.5 >>> # Cumulatively computes the trapezoidal rule in 1D with constant spacing of 2 >>> # NOTE: the result is the same as before, but multiplied by 2 >>> torch.cumulative_trapezoid(y, dx=2) tensor([6., 21.])
https://pytorch.org/docs/stable/generated/torch.cumulative_trapezoid.html
pytorch docs
tensor([6., 21.]) >>> # Cumulatively computes the trapezoidal rule in 1D with arbitrary spacing >>> x = torch.tensor([1, 3, 6]) >>> torch.cumulative_trapezoid(y, x) tensor([6., 28.5]) >>> # Computes the same trapezoidal rule directly up to each element to verify >>> ((3 - 1) * (1 + 5)) / 2 6.0 >>> ((3 - 1) * (1 + 5) + (6 - 3) * (5 + 10)) / 2 28.5 >>> # Cumulatively computes the trapezoidal rule for each row of a 3x3 matrix >>> y = torch.arange(9).reshape(3, 3) tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) >>> torch.cumulative_trapezoid(y) tensor([[ 0.5, 2.], [ 3.5, 8.], [ 6.5, 14.]]) >>> # Cumulatively computes the trapezoidal rule for each column of the matrix >>> torch.cumulative_trapezoid(y, dim=0) tensor([[ 1.5, 2.5, 3.5], [ 6.0, 8.0, 10.0]])
https://pytorch.org/docs/stable/generated/torch.cumulative_trapezoid.html
pytorch docs
[ 6.0, 8.0, 10.0]]) >>> # Cumulatively computes the trapezoidal rule for each row of a 3x3 ones matrix >>> # with the same arbitrary spacing >>> y = torch.ones(3, 3) >>> x = torch.tensor([1, 3, 6]) >>> torch.cumulative_trapezoid(y, x) tensor([[2., 5.], [2., 5.], [2., 5.]]) >>> # Cumulatively computes the trapezoidal rule for each row of a 3x3 ones matrix >>> # with different arbitrary spacing per row >>> y = torch.ones(3, 3) >>> x = torch.tensor([[1, 2, 3], [1, 3, 5], [1, 4, 7]]) >>> torch.cumulative_trapezoid(y, x) tensor([[1., 2.], [2., 4.], [3., 6.]])
https://pytorch.org/docs/stable/generated/torch.cumulative_trapezoid.html
pytorch docs
BatchNorm2d class torch.ao.nn.quantized.BatchNorm2d(num_features, eps=1e-05, momentum=0.1, device=None, dtype=None) This is the quantized version of "BatchNorm2d".
https://pytorch.org/docs/stable/generated/torch.ao.nn.quantized.BatchNorm2d.html
pytorch docs
ParameterDict class torch.nn.ParameterDict(parameters=None) Holds parameters in a dictionary. ParameterDict can be indexed like a regular Python dictionary, but Parameters it contains are properly registered, and will be visible by all Module methods. Other objects are treated as would be done by a regular Python dictionary "ParameterDict" is an ordered dictionary. "update()" with other unordered mapping types (e.g., Python's plain "dict") does not preserve the order of the merged mapping. On the other hand, "OrderedDict" or another "ParameterDict" will preserve their ordering. Note that the constructor, assigning an element of the dictionary and the "update()" method will convert any "Tensor" into "Parameter". Parameters: values (iterable, optional) -- a mapping (dictionary) of (string : Any) or an iterable of key-value pairs of type (string, Any) Example: class MyModule(nn.Module):
https://pytorch.org/docs/stable/generated/torch.nn.ParameterDict.html
pytorch docs
Example: class MyModule(nn.Module): def __init__(self): super(MyModule, self).__init__() self.params = nn.ParameterDict({ 'left': nn.Parameter(torch.randn(5, 10)), 'right': nn.Parameter(torch.randn(5, 10)) }) def forward(self, x, choice): x = self.params[choice].mm(x) return x clear() Remove all items from the ParameterDict. copy() Returns a copy of this "ParameterDict" instance. Return type: *ParameterDict* fromkeys(keys, default=None) Return a new ParameterDict with the keys provided Parameters: * **keys** (*iterable**, **string*) -- keys to make the new ParameterDict from * **default** (*Parameter**, **optional*) -- value to set for all keys Return type: *ParameterDict* get(key, default=None)
https://pytorch.org/docs/stable/generated/torch.nn.ParameterDict.html
pytorch docs
get(key, default=None) Return the parameter associated with key if present. Otherwise return default if provided, None if not. Parameters: * **key** (*str*) -- key to get from the ParameterDict * **default** (*Parameter**, **optional*) -- value to return if key not present Return type: *Any* items() Return an iterable of the ParameterDict key/value pairs. Return type: *Iterable*[*Tuple*[str, *Any*]] keys() Return an iterable of the ParameterDict keys. Return type: *Iterable*[str] pop(key) Remove key from the ParameterDict and return its parameter. Parameters: **key** (*str*) -- key to pop from the ParameterDict Return type: *Any* popitem() Remove and return the last inserted *(key, parameter)* pair from the ParameterDict Return type: *Tuple*[str, *Any*] setdefault(key, default=None)
https://pytorch.org/docs/stable/generated/torch.nn.ParameterDict.html
pytorch docs
setdefault(key, default=None) If key is in the ParameterDict, return its value. If not, insert *key* with a parameter *default* and return *default*. *default* defaults to *None*. Parameters: * **key** (*str*) -- key to set default for * **default** (*Any*) -- the parameter set to the key Return type: *Any* update(parameters) Update the "ParameterDict" with the key-value pairs from a mapping or an iterable, overwriting existing keys. Note: If "parameters" is an "OrderedDict", a "ParameterDict", or an iterable of key-value pairs, the order of new elements in it is preserved. Parameters: **parameters** (*iterable*) -- a mapping (dictionary) from string to "Parameter", or an iterable of key-value pairs of type (string, "Parameter") values() Return an iterable of the ParameterDict values. Return type: *Iterable*[*Any*]
https://pytorch.org/docs/stable/generated/torch.nn.ParameterDict.html
pytorch docs
torch.bitwise_and torch.bitwise_and(input, other, *, out=None) -> Tensor Computes the bitwise AND of "input" and "other". The input tensor must be of integral or Boolean types. For bool tensors, it computes the logical AND. Parameters: * input -- the first input tensor * **other** -- the second input tensor Keyword Arguments: out (Tensor, optional) -- the output tensor. Example: >>> torch.bitwise_and(torch.tensor([-1, -2, 3], dtype=torch.int8), torch.tensor([1, 0, 3], dtype=torch.int8)) tensor([1, 0, 3], dtype=torch.int8) >>> torch.bitwise_and(torch.tensor([True, True, False]), torch.tensor([False, True, False])) tensor([ False, True, False])
https://pytorch.org/docs/stable/generated/torch.bitwise_and.html
pytorch docs
torch.nn.functional.selu torch.nn.functional.selu(input, inplace=False) -> Tensor Applies element-wise, \text{SELU}(x) = scale * (\max(0,x) + \min(0, \alpha * (\exp(x) - 1))), with \alpha=1.6732632423543772848170429916717 and scale=1.0507009873554804934193349852946. See "SELU" for more details. Return type: Tensor
https://pytorch.org/docs/stable/generated/torch.nn.functional.selu.html
pytorch docs
torch.view_as_real torch.view_as_real(input) -> Tensor Returns a view of "input" as a real tensor. For an input complex tensor of "size" m1, m2, \dots, mi, this function returns a new real tensor of size m1, m2, \dots, mi, 2, where the last dimension of size 2 represents the real and imaginary components of complex numbers. Warning: "view_as_real()" is only supported for tensors with "complex dtypes". Parameters: input (Tensor) -- the input tensor. Example: >>> x=torch.randn(4, dtype=torch.cfloat) >>> x tensor([(0.4737-0.3839j), (-0.2098-0.6699j), (0.3470-0.9451j), (-0.5174-1.3136j)]) >>> torch.view_as_real(x) tensor([[ 0.4737, -0.3839], [-0.2098, -0.6699], [ 0.3470, -0.9451], [-0.5174, -1.3136]])
https://pytorch.org/docs/stable/generated/torch.view_as_real.html
pytorch docs
torch.Tensor.sspaddmm Tensor.sspaddmm(mat1, mat2, *, beta=1, alpha=1) -> Tensor See "torch.sspaddmm()"
https://pytorch.org/docs/stable/generated/torch.Tensor.sspaddmm.html
pytorch docs
torch.less torch.less(input, other, *, out=None) -> Tensor Alias for "torch.lt()".
https://pytorch.org/docs/stable/generated/torch.less.html
pytorch docs