text
stringlengths
0
1.73k
source
stringlengths
35
119
category
stringclasses
2 values
torch.Tensor.bitwise_right_shift Tensor.bitwise_right_shift(other) -> Tensor See "torch.bitwise_right_shift()"
https://pytorch.org/docs/stable/generated/torch.Tensor.bitwise_right_shift.html
pytorch docs
StreamContext class torch.cuda.StreamContext(stream) Context-manager that selects a given stream. All CUDA kernels queued within its context will be enqueued on a selected stream. Parameters: Stream (Stream) -- selected stream. This manager is a no- op if it's "None". Note: Streams are per-device.
https://pytorch.org/docs/stable/generated/torch.cuda.StreamContext.html
pytorch docs
torch.Tensor.sgn Tensor.sgn() -> Tensor See "torch.sgn()"
https://pytorch.org/docs/stable/generated/torch.Tensor.sgn.html
pytorch docs
torch.fft.ifft torch.fft.ifft(input, n=None, dim=- 1, norm=None, *, out=None) -> Tensor Computes the one dimensional inverse discrete Fourier transform of "input". Note: Supports torch.half and torch.chalf on CUDA with GPU Architecture SM53 or greater. However it only supports powers of 2 signal length in every transformed dimension. Parameters: * input (Tensor) -- the input tensor * **n** (*int**, **optional*) -- Signal length. If given, the input will either be zero-padded or trimmed to this length before computing the IFFT. * **dim** (*int**, **optional*) -- The dimension along which to take the one dimensional IFFT. * **norm** (*str**, **optional*) -- Normalization mode. For the backward transform ("ifft()"), these correspond to: * ""forward"" - no normalization * ""backward"" - normalize by "1/n" * ""ortho"" - normalize by "1/sqrt(n)" (making the IFFT
https://pytorch.org/docs/stable/generated/torch.fft.ifft.html
pytorch docs
orthonormal) Calling the forward transform ("fft()") with the same normalization mode will apply an overall normalization of "1/n" between the two transforms. This is required to make "ifft()" the exact inverse. Default is ""backward"" (normalize by "1/n"). Keyword Arguments: out (Tensor, optional) -- the output tensor. -[ Example ]- t = torch.tensor([ 6.+0.j, -2.+2.j, -2.+0.j, -2.-2.j]) torch.fft.ifft(t) tensor([0.+0.j, 1.+0.j, 2.+0.j, 3.+0.j])
https://pytorch.org/docs/stable/generated/torch.fft.ifft.html
pytorch docs
torch.Tensor.frac_ Tensor.frac_() -> Tensor In-place version of "frac()"
https://pytorch.org/docs/stable/generated/torch.Tensor.frac_.html
pytorch docs
InstanceNorm1d class torch.nn.InstanceNorm1d(num_features, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False, device=None, dtype=None) Applies Instance Normalization over a 2D (unbatched) or 3D (batched) input as described in the paper Instance Normalization: The Missing Ingredient for Fast Stylization. y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta The mean and standard-deviation are calculated per-dimension separately for each object in a mini-batch. \gamma and \beta are learnable parameter vectors of size C (where C is the number of features or channels of the input) if "affine" is "True". The standard-deviation is calculated via the biased estimator, equivalent to torch.var(input, unbiased=False). By default, this layer uses instance statistics computed from input data in both training and evaluation modes. If "track_running_stats" is set to "True", during training this
https://pytorch.org/docs/stable/generated/torch.nn.InstanceNorm1d.html
pytorch docs
layer keeps running estimates of its computed mean and variance, which are then used for normalization during evaluation. The running estimates are kept with a default "momentum" of 0.1. Note: This "momentum" argument is different from one used in optimizer classes and the conventional notion of momentum. Mathematically, the update rule for running statistics here is \hat{x}_\text{new} = (1 - \text{momentum}) \times \hat{x} + \text{momentum} \times x_t, where \hat{x} is the estimated statistic and x_t is the new observed value. Note: "InstanceNorm1d" and "LayerNorm" are very similar, but have some subtle differences. "InstanceNorm1d" is applied on each channel of channeled data like multidimensional time series, but "LayerNorm" is usually applied on entire sample and often in NLP tasks. Additionally, "LayerNorm" applies elementwise affine transform, while "InstanceNorm1d" usually don't apply affine transform. Parameters:
https://pytorch.org/docs/stable/generated/torch.nn.InstanceNorm1d.html
pytorch docs
transform. Parameters: * num_features (int) -- number of features or channels C of the input * **eps** (*float*) -- a value added to the denominator for numerical stability. Default: 1e-5 * **momentum** (*float*) -- the value used for the running_mean and running_var computation. Default: 0.1 * **affine** (*bool*) -- a boolean value that when set to "True", this module has learnable affine parameters, initialized the same way as done for batch normalization. Default: "False". * **track_running_stats** (*bool*) -- a boolean value that when set to "True", this module tracks the running mean and variance, and when set to "False", this module does not track such statistics and always uses batch statistics in both training and eval modes. Default: "False" Shape: * Input: (N, C, L) or (C, L) * Output: (N, C, L) or (C, L) (same shape as input) Examples:
https://pytorch.org/docs/stable/generated/torch.nn.InstanceNorm1d.html
pytorch docs
Examples: >>> # Without Learnable Parameters >>> m = nn.InstanceNorm1d(100) >>> # With Learnable Parameters >>> m = nn.InstanceNorm1d(100, affine=True) >>> input = torch.randn(20, 100, 40) >>> output = m(input)
https://pytorch.org/docs/stable/generated/torch.nn.InstanceNorm1d.html
pytorch docs
TransformerEncoder class torch.nn.TransformerEncoder(encoder_layer, num_layers, norm=None, enable_nested_tensor=True, mask_check=True) TransformerEncoder is a stack of N encoder layers. Users can build the BERT(https://arxiv.org/abs/1810.04805) model with corresponding parameters. Parameters: * encoder_layer -- an instance of the TransformerEncoderLayer() class (required). * **num_layers** -- the number of sub-encoder-layers in the encoder (required). * **norm** -- the layer normalization component (optional). * **enable_nested_tensor** -- if True, input will automatically convert to nested tensor (and convert back on output). This will improve the overall performance of TransformerEncoder when padding rate is high. Default: "True" (enabled). Examples:: >>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8)
https://pytorch.org/docs/stable/generated/torch.nn.TransformerEncoder.html
pytorch docs
transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=6) >>> src = torch.rand(10, 32, 512) >>> out = transformer_encoder(src) forward(src, mask=None, src_key_padding_mask=None, is_causal=None) Pass the input through the encoder layers in turn. Parameters: * **src** (*Tensor*) -- the sequence to the encoder (required). * **mask** (*Optional**[**Tensor**]*) -- the mask for the src sequence (optional). * **is_causal** (*Optional**[**bool**]*) -- If specified, applies a causal mask as mask (optional) and ignores attn_mask for computing scaled dot product attention. Default: "False". * **src_key_padding_mask** (*Optional**[**Tensor**]*) -- the mask for the src keys per batch (optional). Return type: *Tensor* Shape: see the docs in Transformer class.
https://pytorch.org/docs/stable/generated/torch.nn.TransformerEncoder.html
pytorch docs
torch.atan torch.atan(input, *, out=None) -> Tensor Returns a new tensor with the arctangent of the elements of "input". \text{out}_{i} = \tan^{-1}(\text{input}_{i}) Parameters: input (Tensor) -- the input tensor. Keyword Arguments: out (Tensor, optional) -- the output tensor. Example: >>> a = torch.randn(4) >>> a tensor([ 0.2341, 0.2539, -0.6256, -0.6448]) >>> torch.atan(a) tensor([ 0.2299, 0.2487, -0.5591, -0.5727])
https://pytorch.org/docs/stable/generated/torch.atan.html
pytorch docs
LayerNorm class torch.ao.nn.quantized.LayerNorm(normalized_shape, weight, bias, scale, zero_point, eps=1e-05, elementwise_affine=True, device=None, dtype=None) This is the quantized version of "LayerNorm". Additional args: * scale - quantization scale of the output, type: double. * **zero_point** - quantization zero point of the output, type: long.
https://pytorch.org/docs/stable/generated/torch.ao.nn.quantized.LayerNorm.html
pytorch docs
torch.nn.functional.embedding_bag torch.nn.functional.embedding_bag(input, weight, offsets=None, max_norm=None, norm_type=2, scale_grad_by_freq=False, mode='mean', sparse=False, per_sample_weights=None, include_last_offset=False, padding_idx=None) Computes sums, means or maxes of bags of embeddings, without instantiating the intermediate embeddings. See "torch.nn.EmbeddingBag" for more details. Note: This operation may produce nondeterministic gradients when given tensors on a CUDA device. See Reproducibility for more information. Parameters: * input (LongTensor) -- Tensor containing bags of indices into the embedding matrix * **weight** (*Tensor*) -- The embedding matrix with number of rows equal to the maximum possible index + 1, and number of columns equal to the embedding size * **offsets** (*LongTensor**, **optional*) -- Only used when
https://pytorch.org/docs/stable/generated/torch.nn.functional.embedding_bag.html
pytorch docs
"input" is 1D. "offsets" determines the starting index position of each bag (sequence) in "input". * **max_norm** (*float**, **optional*) -- If given, each embedding vector with norm larger than "max_norm" is renormalized to have norm "max_norm". Note: this will modify "weight" in-place. * **norm_type** (*float**, **optional*) -- The "p" in the "p"-norm to compute for the "max_norm" option. Default "2". * **scale_grad_by_freq** (*bool**, **optional*) -- if given, this will scale gradients by the inverse of frequency of the words in the mini-batch. Default "False". Note: this option is not supported when "mode="max"". * **mode** (*str**, **optional*) -- ""sum"", ""mean"" or ""max"". Specifies the way to reduce the bag. Default: ""mean"" * **sparse** (*bool**, **optional*) -- if "True", gradient w.r.t. "weight" will be a sparse tensor. See Notes under
https://pytorch.org/docs/stable/generated/torch.nn.functional.embedding_bag.html
pytorch docs
"torch.nn.Embedding" for more details regarding sparse gradients. Note: this option is not supported when "mode="max"". * **per_sample_weights** (*Tensor**, **optional*) -- a tensor of float / double weights, or None to indicate all weights should be taken to be 1. If specified, "per_sample_weights" must have exactly the same shape as input and is treated as having the same "offsets", if those are not None. * **include_last_offset** (*bool**, **optional*) -- if "True", the size of offsets is equal to the number of bags + 1. The last element is the size of the input, or the ending index position of the last bag (sequence). * **padding_idx** (*int**, **optional*) -- If specified, the entries at "padding_idx" do not contribute to the gradient; therefore, the embedding vector at "padding_idx" is not updated during training, i.e. it remains as a fixed "pad".
https://pytorch.org/docs/stable/generated/torch.nn.functional.embedding_bag.html
pytorch docs
Note that the embedding vector at "padding_idx" is excluded from the reduction. Return type: Tensor Shape: * "input" (LongTensor) and "offsets" (LongTensor, optional) * If "input" is 2D of shape *(B, N)*, it will be treated as "B" bags (sequences) each of fixed length "N", and this will return "B" values aggregated in a way depending on the "mode". "offsets" is ignored and required to be "None" in this case. * If "input" is 1D of shape *(N)*, it will be treated as a concatenation of multiple bags (sequences). "offsets" is required to be a 1D tensor containing the starting index positions of each bag in "input". Therefore, for "offsets" of shape *(B)*, "input" will be viewed as having "B" bags. Empty bags (i.e., having 0-length) will have returned vectors filled by zeros. * "weight" (Tensor): the learnable weights of the module of
https://pytorch.org/docs/stable/generated/torch.nn.functional.embedding_bag.html
pytorch docs
shape (num_embeddings, embedding_dim) * "per_sample_weights" (Tensor, optional). Has the same shape as "input". * "output": aggregated embedding values of shape *(B, embedding_dim)* Examples: >>> # an Embedding module containing 10 tensors of size 3 >>> embedding_matrix = torch.rand(10, 3) >>> # a batch of 2 samples of 4 indices each >>> input = torch.tensor([1, 2, 4, 5, 4, 3, 2, 9]) >>> offsets = torch.tensor([0, 4]) >>> F.embedding_bag(input, embedding_matrix, offsets) tensor([[ 0.3397, 0.3552, 0.5545], [ 0.5893, 0.4386, 0.5882]]) >>> # example with padding_idx >>> embedding_matrix = torch.rand(10, 3) >>> input = torch.tensor([2, 2, 2, 2, 4, 3, 2, 9]) >>> offsets = torch.tensor([0, 4]) >>> F.embedding_bag(input, embedding_matrix, offsets, padding_idx=2, mode='sum') tensor([[ 0.0000, 0.0000, 0.0000], [-0.7082, 3.2145, -2.6251]])
https://pytorch.org/docs/stable/generated/torch.nn.functional.embedding_bag.html
pytorch docs
torch.Tensor.cos_ Tensor.cos_() -> Tensor In-place version of "cos()"
https://pytorch.org/docs/stable/generated/torch.Tensor.cos_.html
pytorch docs
torch.Tensor.logaddexp2 Tensor.logaddexp2(other) -> Tensor See "torch.logaddexp2()"
https://pytorch.org/docs/stable/generated/torch.Tensor.logaddexp2.html
pytorch docs
Identity class torch.nn.Identity(args, *kwargs) A placeholder identity operator that is argument-insensitive. Parameters: * args (Any) -- any argument (unused) * **kwargs** (*Any*) -- any keyword argument (unused) Shape: * Input: (*), where * means any number of dimensions. * Output: (*), same shape as the input. Examples: >>> m = nn.Identity(54, unused_argument1=0.1, unused_argument2=False) >>> input = torch.randn(128, 20) >>> output = m(input) >>> print(output.size()) torch.Size([128, 20])
https://pytorch.org/docs/stable/generated/torch.nn.Identity.html
pytorch docs
torch.Tensor.positive Tensor.positive() -> Tensor See "torch.positive()"
https://pytorch.org/docs/stable/generated/torch.Tensor.positive.html
pytorch docs
torch.Tensor.logit_ Tensor.logit_() -> Tensor In-place version of "logit()"
https://pytorch.org/docs/stable/generated/torch.Tensor.logit_.html
pytorch docs
torch.jit.script_if_tracing torch.jit.script_if_tracing(fn) Compiles "fn" when it is first called during tracing. "torch.jit.script" has a non-negligible start up time when it is first called due to lazy-initializations of many compiler builtins. Therefore you should not use it in library code. However, you may want to have parts of your library work in tracing even if they use control flow. In these cases, you should use "@torch.jit.script_if_tracing" to substitute for "torch.jit.script". Parameters: fn -- A function to compile. Returns: If called during tracing, a "ScriptFunction" created by torch.jit.script is returned. Otherwise, the original function fn is returned.
https://pytorch.org/docs/stable/generated/torch.jit.script_if_tracing.html
pytorch docs
torch._foreach_sigmoid torch._foreach_sigmoid(self: List[Tensor]) -> List[Tensor] Apply "torch.sigmoid()" to each Tensor of the input list.
https://pytorch.org/docs/stable/generated/torch._foreach_sigmoid.html
pytorch docs
torch.Tensor.eq Tensor.eq(other) -> Tensor See "torch.eq()"
https://pytorch.org/docs/stable/generated/torch.Tensor.eq.html
pytorch docs
torch.Tensor.zero_ Tensor.zero_() -> Tensor Fills "self" tensor with zeros.
https://pytorch.org/docs/stable/generated/torch.Tensor.zero_.html
pytorch docs
torch.Tensor.split Tensor.split(split_size, dim=0) See "torch.split()"
https://pytorch.org/docs/stable/generated/torch.Tensor.split.html
pytorch docs
Dropout3d class torch.nn.Dropout3d(p=0.5, inplace=False) Randomly zero out entire channels (a channel is a 3D feature map, e.g., the j-th channel of the i-th sample in the batched input is a 3D tensor \text{input}[i, j]). Each channel will be zeroed out independently on every forward call with probability "p" using samples from a Bernoulli distribution. Usually the input comes from "nn.Conv3d" modules. As described in the paper Efficient Object Localization Using Convolutional Networks , if adjacent pixels within feature maps are strongly correlated (as is normally the case in early convolution layers) then i.i.d. dropout will not regularize the activations and will otherwise just result in an effective learning rate decrease. In this case, "nn.Dropout3d()" will help promote independence between feature maps and should be used instead. Parameters: * p (float, optional) -- probability of an element to be zeroed.
https://pytorch.org/docs/stable/generated/torch.nn.Dropout3d.html
pytorch docs
be zeroed. * **inplace** (*bool**, **optional*) -- If set to "True", will do this operation in-place Shape: * Input: (N, C, D, H, W) or (C, D, H, W). * Output: (N, C, D, H, W) or (C, D, H, W) (same shape as input). Examples: >>> m = nn.Dropout3d(p=0.2) >>> input = torch.randn(20, 16, 4, 32, 32) >>> output = m(input)
https://pytorch.org/docs/stable/generated/torch.nn.Dropout3d.html
pytorch docs
ASGD class torch.optim.ASGD(params, lr=0.01, lambd=0.0001, alpha=0.75, t0=1000000.0, weight_decay=0, foreach=None, maximize=False, differentiable=False) Implements Averaged Stochastic Gradient Descent. It has been proposed in Acceleration of stochastic approximation by averaging. Parameters: * params (iterable) -- iterable of parameters to optimize or dicts defining parameter groups * **lr** (*float**, **optional*) -- learning rate (default: 1e-2) * **lambd** (*float**, **optional*) -- decay term (default: 1e-4) * **alpha** (*float**, **optional*) -- power for eta update (default: 0.75) * **t0** (*float**, **optional*) -- point at which to start averaging (default: 1e6) * **weight_decay** (*float**, **optional*) -- weight decay (L2 penalty) (default: 0) * **foreach** (*bool**, **optional*) -- whether foreach implementation of optimizer is used. If unspecified by the
https://pytorch.org/docs/stable/generated/torch.optim.ASGD.html
pytorch docs
user (so foreach is None), we will try to use foreach over the for-loop implementation on CUDA, since it is usually significantly more performant. (default: None) * **maximize** (*bool**, **optional*) -- maximize the params based on the objective, instead of minimizing (default: False) * **differentiable** (*bool**, **optional*) -- whether autograd should occur through the optimizer step in training. Otherwise, the step() function runs in a torch.no_grad() context. Setting to True can impair performance, so leave it False if you don't intend to run autograd through this instance (default: False) add_param_group(param_group) Add a param group to the "Optimizer" s *param_groups*. This can be useful when fine tuning a pre-trained network as frozen layers can be made trainable and added to the "Optimizer" as training progresses. Parameters:
https://pytorch.org/docs/stable/generated/torch.optim.ASGD.html
pytorch docs
as training progresses. Parameters: **param_group** (*dict*) -- Specifies what Tensors should be optimized along with group specific optimization options. load_state_dict(state_dict) Loads the optimizer state. Parameters: **state_dict** (*dict*) -- optimizer state. Should be an object returned from a call to "state_dict()". register_step_post_hook(hook) Register an optimizer step post hook which will be called after optimizer step. It should have the following signature: hook(optimizer, args, kwargs) -> None The "optimizer" argument is the optimizer instance being used. Parameters: **hook** (*Callable*) -- The user defined hook to be registered. Returns: a handle that can be used to remove the added hook by calling "handle.remove()" Return type: "torch.utils.hooks.RemoveableHandle" register_step_pre_hook(hook)
https://pytorch.org/docs/stable/generated/torch.optim.ASGD.html
pytorch docs
register_step_pre_hook(hook) Register an optimizer step pre hook which will be called before optimizer step. It should have the following signature: hook(optimizer, args, kwargs) -> None or modified args and kwargs The "optimizer" argument is the optimizer instance being used. If args and kwargs are modified by the pre-hook, then the transformed values are returned as a tuple containing the new_args and new_kwargs. Parameters: **hook** (*Callable*) -- The user defined hook to be registered. Returns: a handle that can be used to remove the added hook by calling "handle.remove()" Return type: "torch.utils.hooks.RemoveableHandle" state_dict() Returns the state of the optimizer as a "dict". It contains two entries: * state - a dict holding current optimization state. Its content differs between optimizer classes.
https://pytorch.org/docs/stable/generated/torch.optim.ASGD.html
pytorch docs
differs between optimizer classes. * param_groups - a list containing all parameter groups where each parameter group is a dict zero_grad(set_to_none=False) Sets the gradients of all optimized "torch.Tensor" s to zero. Parameters: **set_to_none** (*bool*) -- instead of setting to zero, set the grads to None. This will in general have lower memory footprint, and can modestly improve performance. However, it changes certain behaviors. For example: 1. When the user tries to access a gradient and perform manual ops on it, a None attribute or a Tensor full of 0s will behave differently. 2. If the user requests "zero_grad(set_to_none=True)" followed by a backward pass, ".grad"s are guaranteed to be None for params that did not receive a gradient. 3. "torch.optim" optimizers have a different behavior if the gradient is 0 or None (in one case
https://pytorch.org/docs/stable/generated/torch.optim.ASGD.html
pytorch docs
it does the step with a gradient of 0 and in the other it skips the step altogether).
https://pytorch.org/docs/stable/generated/torch.optim.ASGD.html
pytorch docs
torch.squeeze torch.squeeze(input, dim=None) -> Tensor Returns a tensor with all specified dimensions of "input" of size 1 removed. For example, if input is of shape: (A \times 1 \times B \times C \times 1 \times D) then the input.squeeze() will be of shape: (A \times B \times C \times D). When "dim" is given, a squeeze operation is done only in the given dimension(s). If input is of shape: (A \times 1 \times B), "squeeze(input, 0)" leaves the tensor unchanged, but "squeeze(input, 1)" will squeeze the tensor to the shape (A \times B). Note: The returned tensor shares the storage with the input tensor, so changing the contents of one will change the contents of the other. Warning: If the tensor has a batch dimension of size 1, then *squeeze(input)* will also remove the batch dimension, which can lead to unexpected errors. Consider specifying only the dims you wish to be squeezed. Parameters:
https://pytorch.org/docs/stable/generated/torch.squeeze.html
pytorch docs
wish to be squeezed. Parameters: * input (Tensor) -- the input tensor. * **dim** (*int** or **tuple of ints**, **optional*) -- if given, the input will be squeezed only in the specified dimensions. Changed in version 2.0: "dim" now accepts tuples of dimensions. Example: >>> x = torch.zeros(2, 1, 2, 1, 2) >>> x.size() torch.Size([2, 1, 2, 1, 2]) >>> y = torch.squeeze(x) >>> y.size() torch.Size([2, 2, 2]) >>> y = torch.squeeze(x, 0) >>> y.size() torch.Size([2, 1, 2, 1, 2]) >>> y = torch.squeeze(x, 1) >>> y.size() torch.Size([2, 2, 1, 2]) >>> y = torch.squeeze(x, (1, 2, 3)) torch.Size([2, 2, 2])
https://pytorch.org/docs/stable/generated/torch.squeeze.html
pytorch docs
torch.cuda.empty_cache torch.cuda.empty_cache() Releases all unoccupied cached memory currently held by the caching allocator so that those can be used in other GPU application and visible in nvidia-smi. Note: "empty_cache()" doesn't increase the amount of GPU memory available for PyTorch. However, it may help reduce fragmentation of GPU memory in certain cases. See Memory management for more details about GPU memory management.
https://pytorch.org/docs/stable/generated/torch.cuda.empty_cache.html
pytorch docs
torch.is_deterministic_algorithms_warn_only_enabled torch.is_deterministic_algorithms_warn_only_enabled() Returns True if the global deterministic flag is set to warn only. Refer to "torch.use_deterministic_algorithms()" documentation for more details.
https://pytorch.org/docs/stable/generated/torch.is_deterministic_algorithms_warn_only_enabled.html
pytorch docs
torch.Tensor.sub_ Tensor.sub_(other, *, alpha=1) -> Tensor In-place version of "sub()"
https://pytorch.org/docs/stable/generated/torch.Tensor.sub_.html
pytorch docs
torch.nn.utils.rnn.pack_sequence torch.nn.utils.rnn.pack_sequence(sequences, enforce_sorted=True) Packs a list of variable length Tensors Consecutive call of the next functions: "pad_sequence", "pack_padded_sequence". "sequences" should be a list of Tensors of size "L x ", where L* is the length of a sequence and *** is any number of trailing dimensions, including zero. For unsorted sequences, use enforce_sorted = False. If "enforce_sorted" is "True", the sequences should be sorted in the order of decreasing length. "enforce_sorted = True" is only necessary for ONNX export. -[ Example ]- from torch.nn.utils.rnn import pack_sequence a = torch.tensor([1, 2, 3]) b = torch.tensor([4, 5]) c = torch.tensor([6]) pack_sequence([a, b, c]) PackedSequence(data=tensor([1, 4, 6, 2, 5, 3]), batch_sizes=tensor([3, 2, 1]), sorted_indices=None, unsorted_indices=None) Parameters:
https://pytorch.org/docs/stable/generated/torch.nn.utils.rnn.pack_sequence.html
pytorch docs
Parameters: * sequences (list[Tensor]) -- A list of sequences of decreasing length. * **enforce_sorted** (*bool**, **optional*) -- if "True", checks that the input contains sequences sorted by length in a decreasing order. If "False", this condition is not checked. Default: "True". Returns: a "PackedSequence" object Return type: PackedSequence
https://pytorch.org/docs/stable/generated/torch.nn.utils.rnn.pack_sequence.html
pytorch docs
Sigmoid class torch.ao.nn.quantized.Sigmoid(output_scale, output_zero_point) This is the quantized equivalent of "Sigmoid". Parameters: * scale -- quantization scale of the output tensor * **zero_point** -- quantization zero point of the output tensor
https://pytorch.org/docs/stable/generated/torch.ao.nn.quantized.Sigmoid.html
pytorch docs
torch.Tensor.moveaxis Tensor.moveaxis(source, destination) -> Tensor See "torch.moveaxis()"
https://pytorch.org/docs/stable/generated/torch.Tensor.moveaxis.html
pytorch docs
torch.Tensor.gcd_ Tensor.gcd_(other) -> Tensor In-place version of "gcd()"
https://pytorch.org/docs/stable/generated/torch.Tensor.gcd_.html
pytorch docs
torch.Tensor.mean Tensor.mean(dim=None, keepdim=False, *, dtype=None) -> Tensor See "torch.mean()"
https://pytorch.org/docs/stable/generated/torch.Tensor.mean.html
pytorch docs
torch.Tensor.resize_as_ Tensor.resize_as_(tensor, memory_format=torch.contiguous_format) -> Tensor Resizes the "self" tensor to be the same size as the specified "tensor". This is equivalent to "self.resize_(tensor.size())". Parameters: memory_format ("torch.memory_format", optional) -- the desired memory format of Tensor. Default: "torch.contiguous_format". Note that memory format of "self" is going to be unaffected if "self.size()" matches "tensor.size()".
https://pytorch.org/docs/stable/generated/torch.Tensor.resize_as_.html
pytorch docs
torch.Tensor.round Tensor.round(decimals=0) -> Tensor See "torch.round()"
https://pytorch.org/docs/stable/generated/torch.Tensor.round.html
pytorch docs
torch.empty_strided torch.empty_strided(size, stride, *, dtype=None, layout=None, device=None, requires_grad=False, pin_memory=False) -> Tensor Creates a tensor with the specified "size" and "stride" and filled with undefined data. Warning: If the constructed tensor is "overlapped" (with multiple indices referring to the same element in memory) its behavior is undefined. Parameters: * size (tuple of python:int) -- the shape of the output tensor * **stride** (*tuple of python:int*) -- the strides of the output tensor Keyword Arguments: * dtype ("torch.dtype", optional) -- the desired data type of returned tensor. Default: if "None", uses a global default (see "torch.set_default_tensor_type()"). * **layout** ("torch.layout", optional) -- the desired layout of returned Tensor. Default: "torch.strided". * **device** ("torch.device", optional) -- the desired device of
https://pytorch.org/docs/stable/generated/torch.empty_strided.html
pytorch docs
returned tensor. Default: if "None", uses the current device for the default tensor type (see "torch.set_default_tensor_type()"). "device" will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. * **requires_grad** (*bool**, **optional*) -- If autograd should record operations on the returned tensor. Default: "False". * **pin_memory** (*bool**, **optional*) -- If set, returned tensor would be allocated in the pinned memory. Works only for CPU tensors. Default: "False". Example: >>> a = torch.empty_strided((2, 3), (1, 2)) >>> a tensor([[8.9683e-44, 4.4842e-44, 5.1239e+07], [0.0000e+00, 0.0000e+00, 3.0705e-41]]) >>> a.stride() (1, 2) >>> a.size() torch.Size([2, 3])
https://pytorch.org/docs/stable/generated/torch.empty_strided.html
pytorch docs
torch.Tensor.absolute Tensor.absolute() -> Tensor Alias for "abs()"
https://pytorch.org/docs/stable/generated/torch.Tensor.absolute.html
pytorch docs
torch.nn.functional.ctc_loss torch.nn.functional.ctc_loss(log_probs, targets, input_lengths, target_lengths, blank=0, reduction='mean', zero_infinity=False) The Connectionist Temporal Classification loss. See "CTCLoss" for details. Note: In some circumstances when given tensors on a CUDA device and using CuDNN, this operator may select a nondeterministic algorithm to increase performance. If this is undesirable, you can try to make the operation deterministic (potentially at a performance cost) by setting "torch.backends.cudnn.deterministic = True". See Reproducibility for more information. Note: This operation may produce nondeterministic gradients when given tensors on a CUDA device. See Reproducibility for more information. Parameters: * log_probs (Tensor) -- (T, N, C) or (T, C) where C = number of characters in alphabet including blank, *T = input
https://pytorch.org/docs/stable/generated/torch.nn.functional.ctc_loss.html
pytorch docs
length, and N = batch size*. The logarithmized probabilities of the outputs (e.g. obtained with "torch.nn.functional.log_softmax()"). * **targets** (*Tensor*) -- (N, S) or *(sum(target_lengths))*. Targets cannot be blank. In the second form, the targets are assumed to be concatenated. * **input_lengths** (*Tensor*) -- (N) or (). Lengths of the inputs (must each be \leq T) * **target_lengths** (*Tensor*) -- (N) or (). Lengths of the targets * **blank** (*int**, **optional*) -- Blank label. Default 0. * **reduction** (*str**, **optional*) -- Specifies the reduction to apply to the output: "'none'" | "'mean'" | "'sum'". "'none'": no reduction will be applied, "'mean'": the output losses will be divided by the target lengths and then the mean over the batch is taken, "'sum'": the output will be summed. Default: "'mean'"
https://pytorch.org/docs/stable/generated/torch.nn.functional.ctc_loss.html
pytorch docs
Default: "'mean'" * **zero_infinity** (*bool**, **optional*) -- Whether to zero infinite losses and the associated gradients. Default: "False" Infinite losses mainly occur when the inputs are too short to be aligned to the targets. Return type: Tensor Example: >>> log_probs = torch.randn(50, 16, 20).log_softmax(2).detach().requires_grad_() >>> targets = torch.randint(1, 20, (16, 30), dtype=torch.long) >>> input_lengths = torch.full((16,), 50, dtype=torch.long) >>> target_lengths = torch.randint(10, 30, (16,), dtype=torch.long) >>> loss = F.ctc_loss(log_probs, targets, input_lengths, target_lengths) >>> loss.backward()
https://pytorch.org/docs/stable/generated/torch.nn.functional.ctc_loss.html
pytorch docs
torch.mm torch.mm(input, mat2, *, out=None) -> Tensor Performs a matrix multiplication of the matrices "input" and "mat2". If "input" is a (n \times m) tensor, "mat2" is a (m \times p) tensor, "out" will be a (n \times p) tensor. Note: This function does not broadcast. For broadcasting matrix products, see "torch.matmul()". Supports strided and sparse 2-D tensors as inputs, autograd with respect to strided inputs. This operation has support for arguments with sparse layouts. If "out" is provided it's layout will be used. Otherwise, the result layout will be deduced from that of "input". Warning: Sparse support is a beta feature and some layout(s)/dtype/device combinations may not be supported, or may not have autograd support. If you notice missing functionality please open a feature request. This operator supports TensorFloat32. On certain ROCm devices, when using float16 inputs this module will
https://pytorch.org/docs/stable/generated/torch.mm.html
pytorch docs
use different precision for backward. Parameters: * input (Tensor) -- the first matrix to be matrix multiplied * **mat2** (*Tensor*) -- the second matrix to be matrix multiplied Keyword Arguments: out (Tensor, optional) -- the output tensor. Example: >>> mat1 = torch.randn(2, 3) >>> mat2 = torch.randn(3, 3) >>> torch.mm(mat1, mat2) tensor([[ 0.4851, 0.5037, -0.3633], [-0.0760, -3.6705, 2.4784]])
https://pytorch.org/docs/stable/generated/torch.mm.html
pytorch docs
torch.le torch.le(input, other, *, out=None) -> Tensor Computes \text{input} \leq \text{other} element-wise. The second argument can be a number or a tensor whose shape is broadcastable with the first argument. Parameters: * input (Tensor) -- the tensor to compare * **other** (*Tensor** or **Scalar*) -- the tensor or value to compare Keyword Arguments: out (Tensor, optional) -- the output tensor. Returns: A boolean tensor that is True where "input" is less than or equal to "other" and False elsewhere Example: >>> torch.le(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]])) tensor([[True, False], [True, True]])
https://pytorch.org/docs/stable/generated/torch.le.html
pytorch docs
torch.Tensor.imag Tensor.imag Returns a new tensor containing imaginary values of the "self" tensor. The returned tensor and "self" share the same underlying storage. Warning: "imag()" is only supported for tensors with complex dtypes. Example:: >>> x=torch.randn(4, dtype=torch.cfloat) >>> x tensor([(0.3100+0.3553j), (-0.5445-0.7896j), (-1.6492-0.0633j), (-0.0638-0.8119j)]) >>> x.imag tensor([ 0.3553, -0.7896, -0.0633, -0.8119])
https://pytorch.org/docs/stable/generated/torch.Tensor.imag.html
pytorch docs
torch.nn.utils.prune.identity torch.nn.utils.prune.identity(module, name) Applies pruning reparametrization to the tensor corresponding to the parameter called "name" in "module" without actually pruning any units. Modifies module in place (and also return the modified module) by: adding a named buffer called "name+'_mask'" corresponding to the binary mask applied to the parameter "name" by the pruning method. replacing the parameter "name" by its pruned version, while the original (unpruned) parameter is stored in a new parameter named "name+'_orig'". Note: The mask is a tensor of ones. Parameters: * module (nn.Module) -- module containing the tensor to prune. * **name** (*str*) -- parameter name within "module" on which pruning will act. Returns: modified (i.e. pruned) version of the input module Return type: module (nn.Module) -[ Examples ]-
https://pytorch.org/docs/stable/generated/torch.nn.utils.prune.identity.html
pytorch docs
module (nn.Module) -[ Examples ]- m = prune.identity(nn.Linear(2, 3), 'bias') print(m.bias_mask) tensor([1., 1., 1.])
https://pytorch.org/docs/stable/generated/torch.nn.utils.prune.identity.html
pytorch docs
torch.Tensor.not_equal Tensor.not_equal(other) -> Tensor See "torch.not_equal()".
https://pytorch.org/docs/stable/generated/torch.Tensor.not_equal.html
pytorch docs
Mish class torch.nn.Mish(inplace=False) Applies the Mish function, element-wise. Mish: A Self Regularized Non-Monotonic Neural Activation Function. \text{Mish}(x) = x * \text{Tanh}(\text{Softplus}(x)) Note: See Mish: A Self Regularized Non-Monotonic Neural Activation Function Shape: * Input: (*), where * means any number of dimensions. * Output: (*), same shape as the input. [image] Examples: >>> m = nn.Mish() >>> input = torch.randn(2) >>> output = m(input)
https://pytorch.org/docs/stable/generated/torch.nn.Mish.html
pytorch docs
torch.nn.functional.elu_ torch.nn.functional.elu_(input, alpha=1.) -> Tensor In-place version of "elu()".
https://pytorch.org/docs/stable/generated/torch.nn.functional.elu_.html
pytorch docs
torch.cos torch.cos(input, *, out=None) -> Tensor Returns a new tensor with the cosine of the elements of "input". \text{out}_{i} = \cos(\text{input}_{i}) Parameters: input (Tensor) -- the input tensor. Keyword Arguments: out (Tensor, optional) -- the output tensor. Example: >>> a = torch.randn(4) >>> a tensor([ 1.4309, 1.2706, -0.8562, 0.9796]) >>> torch.cos(a) tensor([ 0.1395, 0.2957, 0.6553, 0.5574])
https://pytorch.org/docs/stable/generated/torch.cos.html
pytorch docs
torch.Tensor.addr_ Tensor.addr_(vec1, vec2, *, beta=1, alpha=1) -> Tensor In-place version of "addr()"
https://pytorch.org/docs/stable/generated/torch.Tensor.addr_.html
pytorch docs
torch.logit torch.logit(input, eps=None, *, out=None) -> Tensor Alias for "torch.special.logit()".
https://pytorch.org/docs/stable/generated/torch.logit.html
pytorch docs
torch.Tensor.ne_ Tensor.ne_(other) -> Tensor In-place version of "ne()".
https://pytorch.org/docs/stable/generated/torch.Tensor.ne_.html
pytorch docs
torch.Tensor.renorm Tensor.renorm(p, dim, maxnorm) -> Tensor See "torch.renorm()"
https://pytorch.org/docs/stable/generated/torch.Tensor.renorm.html
pytorch docs
torch.nn.functional.l1_loss torch.nn.functional.l1_loss(input, target, size_average=None, reduce=None, reduction='mean') -> Tensor Function that takes the mean element-wise absolute value difference. See "L1Loss" for details. Return type: Tensor
https://pytorch.org/docs/stable/generated/torch.nn.functional.l1_loss.html
pytorch docs
torch.nn.functional.celu torch.nn.functional.celu(input, alpha=1., inplace=False) -> Tensor Applies element-wise, \text{CELU}(x) = \max(0,x) + \min(0, \alpha * (\exp(x/\alpha) - 1)). See "CELU" for more details. Return type: Tensor
https://pytorch.org/docs/stable/generated/torch.nn.functional.celu.html
pytorch docs
torch.cuda.jiterator._create_multi_output_jit_fn torch.cuda.jiterator._create_multi_output_jit_fn(code_string, num_outputs, **kwargs) Create a jiterator-generated cuda kernel for an elementwise op that supports returning one or more outputs. Parameters: * code_string (str) -- CUDA code string to be compiled by jiterator. The entry functor must return value by reference. * **num_outputs** (*int*) -- number of outputs return by the kernel * **kwargs** (*Dict**, **optional*) -- Keyword arguments for generated function Return type: Callable Example: code_string = "template <typename T> void my_kernel(T x, T y, T alpha, T& out) { out = -x + alpha * y; }" jitted_fn = create_jit_fn(code_string, alpha=1.0) a = torch.rand(3, device='cuda') b = torch.rand(3, device='cuda') # invoke jitted function like a regular python function
https://pytorch.org/docs/stable/generated/torch.cuda.jiterator._create_multi_output_jit_fn.html
pytorch docs
result = jitted_fn(a, b, alpha=3.14) Warning: This API is in beta and may change in future releases. Warning: This API only supports up to 8 inputs and 8 outputs
https://pytorch.org/docs/stable/generated/torch.cuda.jiterator._create_multi_output_jit_fn.html
pytorch docs
torch.Tensor.sin Tensor.sin() -> Tensor See "torch.sin()"
https://pytorch.org/docs/stable/generated/torch.Tensor.sin.html
pytorch docs
LazyConv3d class torch.nn.LazyConv3d(out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None) A "torch.nn.Conv3d" module with lazy initialization of the "in_channels" argument of the "Conv3d" that is inferred from the "input.size(1)". The attributes that will be lazily initialized are weight and bias. Check the "torch.nn.modules.lazy.LazyModuleMixin" for further documentation on lazy modules and their limitations. Parameters: * out_channels (int) -- Number of channels produced by the convolution * **kernel_size** (*int** or **tuple*) -- Size of the convolving kernel * **stride** (*int** or **tuple**, **optional*) -- Stride of the convolution. Default: 1 * **padding** (*int** or **tuple**, **optional*) -- Zero-padding added to both sides of the input. Default: 0 * **padding_mode** (*str**, **optional*) -- "'zeros'",
https://pytorch.org/docs/stable/generated/torch.nn.LazyConv3d.html
pytorch docs
"'reflect'", "'replicate'" or "'circular'". Default: "'zeros'" * **dilation** (*int** or **tuple**, **optional*) -- Spacing between kernel elements. Default: 1 * **groups** (*int**, **optional*) -- Number of blocked connections from input channels to output channels. Default: 1 * **bias** (*bool**, **optional*) -- If "True", adds a learnable bias to the output. Default: "True" See also: "torch.nn.Conv3d" and "torch.nn.modules.lazy.LazyModuleMixin" cls_to_become alias of "Conv3d"
https://pytorch.org/docs/stable/generated/torch.nn.LazyConv3d.html
pytorch docs
torch.ger torch.ger(input, vec2, *, out=None) -> Tensor Alias of "torch.outer()". Warning: This function is deprecated and will be removed in a future PyTorch release. Use "torch.outer()" instead.
https://pytorch.org/docs/stable/generated/torch.ger.html
pytorch docs
torch.Tensor.expm1 Tensor.expm1() -> Tensor See "torch.expm1()"
https://pytorch.org/docs/stable/generated/torch.Tensor.expm1.html
pytorch docs
torch.nn.functional.conv_transpose2d torch.nn.functional.conv_transpose2d(input, weight, bias=None, stride=1, padding=0, output_padding=0, groups=1, dilation=1) -> Tensor Applies a 2D transposed convolution operator over an input image composed of several input planes, sometimes also called "deconvolution". This operator supports TensorFloat32. See "ConvTranspose2d" for details and output shape. Note: In some circumstances when given tensors on a CUDA device and using CuDNN, this operator may select a nondeterministic algorithm to increase performance. If this is undesirable, you can try to make the operation deterministic (potentially at a performance cost) by setting "torch.backends.cudnn.deterministic = True". See Reproducibility for more information. Parameters: * input -- input tensor of shape (\text{minibatch} , \text{in_channels} , iH , iW)
https://pytorch.org/docs/stable/generated/torch.nn.functional.conv_transpose2d.html
pytorch docs
\text{in_channels} , iH , iW) * **weight** -- filters of shape (\text{in\_channels} , \frac{\text{out\_channels}}{\text{groups}} , kH , kW) * **bias** -- optional bias of shape (\text{out\_channels}). Default: None * **stride** -- the stride of the convolving kernel. Can be a single number or a tuple "(sH, sW)". Default: 1 * **padding** -- "dilation * (kernel_size - 1) - padding" zero- padding will be added to both sides of each dimension in the input. Can be a single number or a tuple "(padH, padW)". Default: 0 * **output_padding** -- additional size added to one side of each dimension in the output shape. Can be a single number or a tuple "(out_padH, out_padW)". Default: 0 * **groups** -- split input into groups, \text{in\_channels} should be divisible by the number of groups. Default: 1 * **dilation** -- the spacing between kernel elements. Can be a
https://pytorch.org/docs/stable/generated/torch.nn.functional.conv_transpose2d.html
pytorch docs
single number or a tuple "(dH, dW)". Default: 1 Examples: >>> # With square kernels and equal stride >>> inputs = torch.randn(1, 4, 5, 5) >>> weights = torch.randn(4, 8, 3, 3) >>> F.conv_transpose2d(inputs, weights, padding=1)
https://pytorch.org/docs/stable/generated/torch.nn.functional.conv_transpose2d.html
pytorch docs
torch.nn.utils.parametrize.remove_parametrizations torch.nn.utils.parametrize.remove_parametrizations(module, tensor_name, leave_parametrized=True) Removes the parametrizations on a tensor in a module. If "leave_parametrized=True", "module[tensor_name]" will be set to its current output. In this case, the parametrization shall not change the "dtype" of the tensor. If "leave_parametrized=False", "module[tensor_name]" will be set to the unparametrised tensor in "module.parametrizations[tensor_name].original". This is only possible when the parametrization depends on just one tensor. Parameters: * module (nn.Module) -- module from which remove the parametrization * **tensor_name** (*str*) -- name of the parametrization to be removed * **leave_parametrized** (*bool**, **optional*) -- leave the attribute "tensor_name" parametrized. Default: "True" Returns:
https://pytorch.org/docs/stable/generated/torch.nn.utils.parametrize.remove_parametrizations.html
pytorch docs
Returns: module Return type: Module Raises: * ValueError -- if "module[tensor_name]" is not parametrized * **ValueError** -- if "leave_parametrized=False" and the parametrization depends on several tensors
https://pytorch.org/docs/stable/generated/torch.nn.utils.parametrize.remove_parametrizations.html
pytorch docs
torch.Tensor.q_per_channel_axis Tensor.q_per_channel_axis() -> int Given a Tensor quantized by linear (affine) per-channel quantization, returns the index of dimension on which per-channel quantization is applied.
https://pytorch.org/docs/stable/generated/torch.Tensor.q_per_channel_axis.html
pytorch docs
torch.Tensor.triu_ Tensor.triu_(diagonal=0) -> Tensor In-place version of "triu()"
https://pytorch.org/docs/stable/generated/torch.Tensor.triu_.html
pytorch docs
RandomUnstructured class torch.nn.utils.prune.RandomUnstructured(amount) Prune (currently unpruned) units in a tensor at random. Parameters: * name (str) -- parameter name within "module" on which pruning will act. * **amount** (*int** or **float*) -- quantity of parameters to prune. If "float", should be between 0.0 and 1.0 and represent the fraction of parameters to prune. If "int", it represents the absolute number of parameters to prune. classmethod apply(module, name, amount) Adds the forward pre-hook that enables pruning on the fly and the reparametrization of a tensor in terms of the original tensor and the pruning mask. Parameters: * **module** (*nn.Module*) -- module containing the tensor to prune * **name** (*str*) -- parameter name within "module" on which pruning will act. * **amount** (*int** or **float*) -- quantity of parameters
https://pytorch.org/docs/stable/generated/torch.nn.utils.prune.RandomUnstructured.html
pytorch docs
to prune. If "float", should be between 0.0 and 1.0 and represent the fraction of parameters to prune. If "int", it represents the absolute number of parameters to prune. apply_mask(module) Simply handles the multiplication between the parameter being pruned and the generated mask. Fetches the mask and the original tensor from the module and returns the pruned version of the tensor. Parameters: **module** (*nn.Module*) -- module containing the tensor to prune Returns: pruned version of the input tensor Return type: pruned_tensor (torch.Tensor) prune(t, default_mask=None, importance_scores=None) Computes and returns a pruned version of input tensor "t" according to the pruning rule specified in "compute_mask()". Parameters: * **t** (*torch.Tensor*) -- tensor to prune (of same dimensions as "default_mask").
https://pytorch.org/docs/stable/generated/torch.nn.utils.prune.RandomUnstructured.html
pytorch docs
dimensions as "default_mask"). * **importance_scores** (*torch.Tensor*) -- tensor of importance scores (of same shape as "t") used to compute mask for pruning "t". The values in this tensor indicate the importance of the corresponding elements in the "t" that is being pruned. If unspecified or None, the tensor "t" will be used in its place. * **default_mask** (*torch.Tensor**, **optional*) -- mask from previous pruning iteration, if any. To be considered when determining what portion of the tensor that pruning should act on. If None, default to a mask of ones. Returns: pruned version of tensor "t". remove(module) Removes the pruning reparameterization from a module. The pruned parameter named "name" remains permanently pruned, and the parameter named "name+'_orig'" is removed from the parameter
https://pytorch.org/docs/stable/generated/torch.nn.utils.prune.RandomUnstructured.html
pytorch docs
list. Similarly, the buffer named "name+'_mask'" is removed from the buffers. Note: Pruning itself is NOT undone or reversed!
https://pytorch.org/docs/stable/generated/torch.nn.utils.prune.RandomUnstructured.html
pytorch docs
RNNCell class torch.nn.RNNCell(input_size, hidden_size, bias=True, nonlinearity='tanh', device=None, dtype=None) An Elman RNN cell with tanh or ReLU non-linearity. h' = \tanh(W_{ih} x + b_{ih} + W_{hh} h + b_{hh}) If "nonlinearity" is 'relu', then ReLU is used in place of tanh. Parameters: * input_size (int) -- The number of expected features in the input x * **hidden_size** (*int*) -- The number of features in the hidden state *h* * **bias** (*bool*) -- If "False", then the layer does not use bias weights *b_ih* and *b_hh*. Default: "True" * **nonlinearity** (*str*) -- The non-linearity to use. Can be either "'tanh'" or "'relu'". Default: "'tanh'" Inputs: input, hidden * input: tensor containing input features * **hidden**: tensor containing the initial hidden state Defaults to zero if not provided. Outputs: h'
https://pytorch.org/docs/stable/generated/torch.nn.RNNCell.html
pytorch docs
Outputs: h' * h' of shape (batch, hidden_size): tensor containing the next hidden state for each element in the batch Shape: * input: (N, H_{in}) or (H_{in}) tensor containing input features where H_{in} = input_size. * hidden: (N, H_{out}) or (H_{out}) tensor containing the initial hidden state where H_{out} = *hidden_size*. Defaults to zero if not provided. * output: (N, H_{out}) or (H_{out}) tensor containing the next hidden state. Variables: * weight_ih (torch.Tensor) -- the learnable input-hidden weights, of shape (hidden_size, input_size) * **weight_hh** (*torch.Tensor*) -- the learnable hidden-hidden weights, of shape *(hidden_size, hidden_size)* * **bias_ih** -- the learnable input-hidden bias, of shape *(hidden_size)* * **bias_hh** -- the learnable hidden-hidden bias, of shape *(hidden_size)* Note:
https://pytorch.org/docs/stable/generated/torch.nn.RNNCell.html
pytorch docs
(hidden_size) Note: All the weights and biases are initialized from \mathcal{U}(-\sqrt{k}, \sqrt{k}) where k = \frac{1}{\text{hidden\_size}} Examples: >>> rnn = nn.RNNCell(10, 20) >>> input = torch.randn(6, 3, 10) >>> hx = torch.randn(3, 20) >>> output = [] >>> for i in range(6): ... hx = rnn(input[i], hx) ... output.append(hx)
https://pytorch.org/docs/stable/generated/torch.nn.RNNCell.html
pytorch docs
torch.Tensor.rsqrt Tensor.rsqrt() -> Tensor See "torch.rsqrt()"
https://pytorch.org/docs/stable/generated/torch.Tensor.rsqrt.html
pytorch docs
torch.diagonal_scatter torch.diagonal_scatter(input, src, offset=0, dim1=0, dim2=1) -> Tensor Embeds the values of the "src" tensor into "input" along the diagonal elements of "input", with respect to "dim1" and "dim2". This function returns a tensor with fresh storage; it does not return a view. The argument "offset" controls which diagonal to consider: If "offset" = 0, it is the main diagonal. If "offset" > 0, it is above the main diagonal. If "offset" < 0, it is below the main diagonal. Parameters: * input (Tensor) -- the input tensor. Must be at least 2-dimensional. * **src** (*Tensor*) -- the tensor to embed into "input". * **offset** (*int**, **optional*) -- which diagonal to consider. Default: 0 (main diagonal). * **dim1** (*int**, **optional*) -- first dimension with respect to which to take diagonal. Default: 0. * **dim2** (*int**, **optional*) -- second dimension with
https://pytorch.org/docs/stable/generated/torch.diagonal_scatter.html
pytorch docs
respect to which to take diagonal. Default: 1. Note: "src" must be of the proper size in order to be embedded into "input". Specifically, it should have the same shape as "torch.diagonal(input, offset, dim1, dim2)" Examples: >>> a = torch.zeros(3, 3) >>> a tensor([[0., 0., 0.], [0., 0., 0.], [0., 0., 0.]]) >>> torch.diagonal_scatter(a, torch.ones(3), 0) tensor([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]) >>> torch.diagonal_scatter(a, torch.ones(2), 1) tensor([[0., 1., 0.], [0., 0., 1.], [0., 0., 0.]])
https://pytorch.org/docs/stable/generated/torch.diagonal_scatter.html
pytorch docs
torch.nn.utils.prune.l1_unstructured torch.nn.utils.prune.l1_unstructured(module, name, amount, importance_scores=None) Prunes tensor corresponding to parameter called "name" in "module" by removing the specified amount of (currently unpruned) units with the lowest L1-norm. Modifies module in place (and also return the modified module) by: adding a named buffer called "name+'_mask'" corresponding to the binary mask applied to the parameter "name" by the pruning method. replacing the parameter "name" by its pruned version, while the original (unpruned) parameter is stored in a new parameter named "name+'_orig'". Parameters: * module (nn.Module) -- module containing the tensor to prune * **name** (*str*) -- parameter name within "module" on which pruning will act. * **amount** (*int** or **float*) -- quantity of parameters to
https://pytorch.org/docs/stable/generated/torch.nn.utils.prune.l1_unstructured.html
pytorch docs
prune. If "float", should be between 0.0 and 1.0 and represent the fraction of parameters to prune. If "int", it represents the absolute number of parameters to prune. * **importance_scores** (*torch.Tensor*) -- tensor of importance scores (of same shape as module parameter) used to compute mask for pruning. The values in this tensor indicate the importance of the corresponding elements in the parameter being pruned. If unspecified or None, the module parameter will be used in its place. Returns: modified (i.e. pruned) version of the input module Return type: module (nn.Module) -[ Examples ]- m = prune.l1_unstructured(nn.Linear(2, 3), 'weight', amount=0.2) m.state_dict().keys() odict_keys(['bias', 'weight_orig', 'weight_mask'])
https://pytorch.org/docs/stable/generated/torch.nn.utils.prune.l1_unstructured.html
pytorch docs
torch.Tensor.matrix_exp Tensor.matrix_exp() -> Tensor See "torch.matrix_exp()"
https://pytorch.org/docs/stable/generated/torch.Tensor.matrix_exp.html
pytorch docs
torch.lgamma torch.lgamma(input, *, out=None) -> Tensor Computes the natural logarithm of the absolute value of the gamma function on "input". \text{out}_{i} = \ln \Gamma(|\text{input}_{i}|) Parameters: input (Tensor) -- the input tensor. Keyword Arguments: out (Tensor, optional) -- the output tensor. Example: >>> a = torch.arange(0.5, 2, 0.5) >>> torch.lgamma(a) tensor([ 0.5724, 0.0000, -0.1208])
https://pytorch.org/docs/stable/generated/torch.lgamma.html
pytorch docs