text
stringlengths 0
1.73k
| source
stringlengths 35
119
| category
stringclasses 2
values |
---|---|---|
torch.hsplit
torch.hsplit(input, indices_or_sections) -> List of Tensors
Splits "input", a tensor with one or more dimensions, into multiple
tensors horizontally according to "indices_or_sections". Each split
is a view of "input".
If "input" is one dimensional this is equivalent to calling
torch.tensor_split(input, indices_or_sections, dim=0) (the split
dimension is zero), and if "input" has two or more dimensions it's
equivalent to calling torch.tensor_split(input,
indices_or_sections, dim=1) (the split dimension is 1), except that
if "indices_or_sections" is an integer it must evenly divide the
split dimension or a runtime error will be thrown.
This function is based on NumPy's "numpy.hsplit()".
Parameters:
* input (Tensor) -- tensor to split.
* **indices_or_sections** (*int** or **list** or **tuple of
ints*) -- See argument in "torch.tensor_split()".
Example::
>>> t = torch.arange(16.0).reshape(4,4)
>>> t | https://pytorch.org/docs/stable/generated/torch.hsplit.html | pytorch docs |
t
tensor([[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.],
[12., 13., 14., 15.]])
>>> torch.hsplit(t, 2)
(tensor([[ 0., 1.],
[ 4., 5.],
[ 8., 9.],
[12., 13.]]),
tensor([[ 2., 3.],
[ 6., 7.],
[10., 11.],
[14., 15.]]))
>>> torch.hsplit(t, [3, 6])
(tensor([[ 0., 1., 2.],
[ 4., 5., 6.],
[ 8., 9., 10.],
[12., 13., 14.]]),
tensor([[ 3.],
[ 7.],
[11.],
[15.]]),
tensor([], size=(4, 0)))
| https://pytorch.org/docs/stable/generated/torch.hsplit.html | pytorch docs |
torch.Tensor.aminmax
Tensor.aminmax(*, dim=None, keepdim=False) -> (Tensor min, Tensor max)
See "torch.aminmax()" | https://pytorch.org/docs/stable/generated/torch.Tensor.aminmax.html | pytorch docs |
ConvBn3d
class torch.ao.nn.intrinsic.qat.ConvBn3d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=None, padding_mode='zeros', eps=1e-05, momentum=0.1, freeze_bn=False, qconfig=None)
A ConvBn3d module is a module fused from Conv3d and BatchNorm3d,
attached with FakeQuantize modules for weight, used in quantization
aware training.
We combined the interface of "torch.nn.Conv3d" and
"torch.nn.BatchNorm3d".
Similar to "torch.nn.Conv3d", with FakeQuantize modules initialized
to default.
Variables:
* freeze_bn --
* **weight_fake_quant** -- fake quant module for weight
| https://pytorch.org/docs/stable/generated/torch.ao.nn.intrinsic.qat.ConvBn3d.html | pytorch docs |
torch.Tensor.retain_grad
Tensor.retain_grad() -> None
Enables this Tensor to have their "grad" populated during
"backward()". This is a no-op for leaf tensors. | https://pytorch.org/docs/stable/generated/torch.Tensor.retain_grad.html | pytorch docs |
BCELoss
class torch.nn.BCELoss(weight=None, size_average=None, reduce=None, reduction='mean')
Creates a criterion that measures the Binary Cross Entropy between
the target and the input probabilities:
The unreduced (i.e. with "reduction" set to "'none'") loss can be
described as:
\ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad l_n = - w_n
\left[ y_n \cdot \log x_n + (1 - y_n) \cdot \log (1 - x_n)
\right],
where N is the batch size. If "reduction" is not "'none'" (default
"'mean'"), then
\ell(x, y) = \begin{cases} \operatorname{mean}(L), &
\text{if reduction} = \text{`mean';}\\
\operatorname{sum}(L), & \text{if reduction} = \text{`sum'.}
\end{cases}
This is used for measuring the error of a reconstruction in for
example an auto-encoder. Note that the targets y should be numbers
between 0 and 1.
Notice that if x_n is either 0 or 1, one of the log terms would be | https://pytorch.org/docs/stable/generated/torch.nn.BCELoss.html | pytorch docs |
mathematically undefined in the above loss equation. PyTorch
chooses to set \log (0) = -\infty, since \lim_{x\to 0} \log (x) =
-\infty. However, an infinite term in the loss equation is not
desirable for several reasons.
For one, if either y_n = 0 or (1 - y_n) = 0, then we would be
multiplying 0 with infinity. Secondly, if we have an infinite loss
value, then we would also have an infinite term in our gradient,
since \lim_{x\to 0} \frac{d}{dx} \log (x) = \infty. This would make
BCELoss's backward method nonlinear with respect to x_n, and using
it for things like linear regression would not be straight-forward.
Our solution is that BCELoss clamps its log function outputs to be
greater than or equal to -100. This way, we can always have a
finite loss value and a linear backward method.
Parameters:
* weight (Tensor, optional) -- a manual rescaling
weight given to the loss of each batch element. If given, has | https://pytorch.org/docs/stable/generated/torch.nn.BCELoss.html | pytorch docs |
to be a Tensor of size nbatch.
* **size_average** (*bool**, **optional*) -- Deprecated (see
"reduction"). By default, the losses are averaged over each
loss element in the batch. Note that for some losses, there
are multiple elements per sample. If the field "size_average"
is set to "False", the losses are instead summed for each
minibatch. Ignored when "reduce" is "False". Default: "True"
* **reduce** (*bool**, **optional*) -- Deprecated (see
"reduction"). By default, the losses are averaged or summed
over observations for each minibatch depending on
"size_average". When "reduce" is "False", returns a loss per
batch element instead and ignores "size_average". Default:
"True"
* **reduction** (*str**, **optional*) -- Specifies the reduction
to apply to the output: "'none'" | "'mean'" | "'sum'".
"'none'": no reduction will be applied, "'mean'": the sum of
| https://pytorch.org/docs/stable/generated/torch.nn.BCELoss.html | pytorch docs |
the output will be divided by the number of elements in the
output, "'sum'": the output will be summed. Note:
"size_average" and "reduce" are in the process of being
deprecated, and in the meantime, specifying either of those
two args will override "reduction". Default: "'mean'"
Shape:
* Input: (*), where * means any number of dimensions.
* Target: (*), same shape as the input.
* Output: scalar. If "reduction" is "'none'", then (*), same
shape as input.
Examples:
>>> m = nn.Sigmoid()
>>> loss = nn.BCELoss()
>>> input = torch.randn(3, requires_grad=True)
>>> target = torch.empty(3).random_(2)
>>> output = loss(m(input), target)
>>> output.backward()
| https://pytorch.org/docs/stable/generated/torch.nn.BCELoss.html | pytorch docs |
torch.Tensor.outer
Tensor.outer(vec2) -> Tensor
See "torch.outer()". | https://pytorch.org/docs/stable/generated/torch.Tensor.outer.html | pytorch docs |
torch.Tensor.clip
Tensor.clip(min=None, max=None) -> Tensor
Alias for "clamp()". | https://pytorch.org/docs/stable/generated/torch.Tensor.clip.html | pytorch docs |
torch.Tensor.square
Tensor.square() -> Tensor
See "torch.square()" | https://pytorch.org/docs/stable/generated/torch.Tensor.square.html | pytorch docs |
torch.hann_window
torch.hann_window(window_length, periodic=True, *, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor
Hann window function.
w[n] = \frac{1}{2}\ \left[1 - \cos \left( \frac{2 \pi n}{N - 1}
\right)\right] = \sin^2 \left( \frac{\pi n}{N - 1}
\right),
where N is the full window size.
The input "window_length" is a positive integer controlling the
returned window size. "periodic" flag determines whether the
returned window trims off the last duplicate value from the
symmetric window and is ready to be used as a periodic window with
functions like "torch.stft()". Therefore, if "periodic" is true,
the N in above formula is in fact \text{window_length} + 1. Also,
we always have "torch.hann_window(L, periodic=True)" equal to
"torch.hann_window(L + 1, periodic=False)[:-1])".
Note:
If "window_length" =1, the returned window contains a single
value 1.
Parameters: | https://pytorch.org/docs/stable/generated/torch.hann_window.html | pytorch docs |
value 1.
Parameters:
* window_length (int) -- the size of returned window
* **periodic** (*bool**, **optional*) -- If True, returns a
window to be used as periodic function. If False, return a
symmetric window.
Keyword Arguments:
* dtype ("torch.dtype", optional) -- the desired data type
of returned tensor. Default: if "None", uses a global default
(see "torch.set_default_tensor_type()"). Only floating point
types are supported.
* **layout** ("torch.layout", optional) -- the desired layout of
returned window tensor. Only "torch.strided" (dense layout) is
supported.
* **device** ("torch.device", optional) -- the desired device of
returned tensor. Default: if "None", uses the current device
for the default tensor type (see
"torch.set_default_tensor_type()"). "device" will be the CPU
for CPU tensor types and the current CUDA device for CUDA
tensor types.
| https://pytorch.org/docs/stable/generated/torch.hann_window.html | pytorch docs |
tensor types.
* **requires_grad** (*bool**, **optional*) -- If autograd should
record operations on the returned tensor. Default: "False".
Returns:
A 1-D tensor of size (\text{window_length},) containing the
window
Return type:
Tensor | https://pytorch.org/docs/stable/generated/torch.hann_window.html | pytorch docs |
fuse_fx
class torch.quantization.quantize_fx.fuse_fx(model, fuse_custom_config=None, backend_config=None)
Fuse modules like conv+bn, conv+bn+relu etc, model must be in eval
mode. Fusion rules are defined in
torch.quantization.fx.fusion_pattern.py
Parameters:
* model (***) -- a torch.nn.Module model
* **fuse_custom_config** (***) -- custom configurations for
fuse_fx. See "FuseCustomConfig" for more details
Return type:
GraphModule
Example:
from torch.ao.quantization import fuse_fx
m = Model().eval()
m = fuse_fx(m)
| https://pytorch.org/docs/stable/generated/torch.quantization.quantize_fx.fuse_fx.html | pytorch docs |
torch.linalg.solve
torch.linalg.solve(A, B, *, left=True, out=None) -> Tensor
Computes the solution of a square system of linear equations with a
unique solution.
Letting \mathbb{K} be \mathbb{R} or \mathbb{C}, this function
computes the solution X \in \mathbb{K}^{n \times k} of the linear
system associated to A \in \mathbb{K}^{n \times n}, B \in
\mathbb{K}^{n \times k}, which is defined as
AX = B
If "left"= False, this function returns the matrix X \in
\mathbb{K}^{n \times k} that solves the system
XA = B\mathrlap{\qquad A \in \mathbb{K}^{k \times k}, B \in
\mathbb{K}^{n \times k}.}
This system of linear equations has one solution if and only if A
is invertible. This function assumes that A is invertible.
Supports inputs of float, double, cfloat and cdouble dtypes. Also
supports batches of matrices, and if the inputs are batches of
matrices then the output has the same batch dimensions. | https://pytorch.org/docs/stable/generated/torch.linalg.solve.html | pytorch docs |
Letting *** be zero or more batch dimensions,
If "A" has shape (, n, n) and "B" has shape (, n) (a batch
of vectors) or shape (, n, k) (a batch of matrices or
"multiple right-hand sides"), this function returns X of shape
(, n) or (, n, k)* respectively.
Otherwise, if "A" has shape (, n, n) and "B" has shape (n,)
or (n, k), "B" is broadcasted to have shape (, n) or (, n,
k)* respectively. This function then returns the solution of the
resulting batch of systems of linear equations.
Note:
This function computes *X = *"A"*.inverse() @ *"B" in a faster
and more numerically stable way than performing the computations
separately.
Note:
It is possible to compute the solution of the system XA = B by
passing the inputs "A" and "B" transposed and transposing the
output returned by this function.
Note:
When inputs are on a CUDA device, this function synchronizes that
device with the CPU.
| https://pytorch.org/docs/stable/generated/torch.linalg.solve.html | pytorch docs |
device with the CPU.
See also:
"torch.linalg.solve_triangular()" computes the solution of a
triangular system of linear equations with a unique solution.
Parameters:
* A (Tensor) -- tensor of shape (, n, n)* where *** is
zero or more batch dimensions.
* **B** (*Tensor*) -- right-hand side tensor of shape *(*, n)*
or *(*, n, k)* or *(n,)* or *(n, k)* according to the rules
described above
Keyword Arguments:
* left (bool, optional) -- whether to solve the system
AX=B or XA = B. Default: True.
* **out** (*Tensor**, **optional*) -- output tensor. Ignored if
*None*. Default: *None*.
Raises:
RuntimeError -- if the "A" matrix is not invertible or any
matrix in a batched "A" is not invertible.
Examples:
>>> A = torch.randn(3, 3)
>>> b = torch.randn(3)
>>> x = torch.linalg.solve(A, b)
>>> torch.allclose(A @ x, b)
True
| https://pytorch.org/docs/stable/generated/torch.linalg.solve.html | pytorch docs |
torch.allclose(A @ x, b)
True
>>> A = torch.randn(2, 3, 3)
>>> B = torch.randn(2, 3, 4)
>>> X = torch.linalg.solve(A, B)
>>> X.shape
torch.Size([2, 3, 4])
>>> torch.allclose(A @ X, B)
True
>>> A = torch.randn(2, 3, 3)
>>> b = torch.randn(3, 1)
>>> x = torch.linalg.solve(A, b) # b is broadcasted to size (2, 3, 1)
>>> x.shape
torch.Size([2, 3, 1])
>>> torch.allclose(A @ x, b)
True
>>> b = torch.randn(3)
>>> x = torch.linalg.solve(A, b) # b is broadcasted to size (2, 3)
>>> x.shape
torch.Size([2, 3])
>>> Ax = A @ x.unsqueeze(-1)
>>> torch.allclose(Ax, b.unsqueeze(-1).expand_as(Ax))
True
| https://pytorch.org/docs/stable/generated/torch.linalg.solve.html | pytorch docs |
torch.polar
torch.polar(abs, angle, *, out=None) -> Tensor
Constructs a complex tensor whose elements are Cartesian
coordinates corresponding to the polar coordinates with absolute
value "abs" and angle "angle".
\text{out} = \text{abs} \cdot \cos(\text{angle}) + \text{abs}
\cdot \sin(\text{angle}) \cdot j
Note:
*torch.polar* is similar to std::polar and does not compute the
polar decomposition of a complex tensor like Python's
*cmath.polar* and SciPy's *linalg.polar* do. The behavior of this
function is undefined if *abs* is negative or NaN, or if *angle*
is infinite.
Parameters:
* abs (Tensor) -- The absolute value the complex tensor.
Must be float or double.
* **angle** (*Tensor*) -- The angle of the complex tensor. Must
be same dtype as "abs".
Keyword Arguments:
out (Tensor) -- If the inputs are "torch.float32", must be
"torch.complex64". If the inputs are "torch.float64", must be | https://pytorch.org/docs/stable/generated/torch.polar.html | pytorch docs |
"torch.complex128".
Example:
>>> import numpy as np
>>> abs = torch.tensor([1, 2], dtype=torch.float64)
>>> angle = torch.tensor([np.pi / 2, 5 * np.pi / 4], dtype=torch.float64)
>>> z = torch.polar(abs, angle)
>>> z
tensor([(0.0000+1.0000j), (-1.4142-1.4142j)], dtype=torch.complex128)
| https://pytorch.org/docs/stable/generated/torch.polar.html | pytorch docs |
torch.foreach_sqrt
torch.foreach_sqrt(self: List[Tensor]) -> None
Apply "torch.sqrt()" to each Tensor of the input list. | https://pytorch.org/docs/stable/generated/torch._foreach_sqrt_.html | pytorch docs |
torch.numel
torch.numel(input) -> int
Returns the total number of elements in the "input" tensor.
Parameters:
input (Tensor) -- the input tensor.
Example:
>>> a = torch.randn(1, 2, 3, 4, 5)
>>> torch.numel(a)
120
>>> a = torch.zeros(4,4)
>>> torch.numel(a)
16
| https://pytorch.org/docs/stable/generated/torch.numel.html | pytorch docs |
torch.Tensor.igammac
Tensor.igammac(other) -> Tensor
See "torch.igammac()" | https://pytorch.org/docs/stable/generated/torch.Tensor.igammac.html | pytorch docs |
torch.lt
torch.lt(input, other, *, out=None) -> Tensor
Computes \text{input} < \text{other} element-wise.
The second argument can be a number or a tensor whose shape is
broadcastable with the first argument.
Parameters:
* input (Tensor) -- the tensor to compare
* **other** (*Tensor** or **float*) -- the tensor or value to
compare
Keyword Arguments:
out (Tensor, optional) -- the output tensor.
Returns:
A boolean tensor that is True where "input" is less than "other"
and False elsewhere
Example:
>>> torch.lt(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]]))
tensor([[False, False], [True, False]])
| https://pytorch.org/docs/stable/generated/torch.lt.html | pytorch docs |
torch.triu_indices
torch.triu_indices(row, col, offset=0, *, dtype=torch.long, device='cpu', layout=torch.strided) -> Tensor
Returns the indices of the upper triangular part of a "row" by
"col" matrix in a 2-by-N Tensor, where the first row contains row
coordinates of all indices and the second row contains column
coordinates. Indices are ordered based on rows and then columns.
The upper triangular part of the matrix is defined as the elements
on and above the diagonal.
The argument "offset" controls which diagonal to consider. If
"offset" = 0, all elements on and above the main diagonal are
retained. A positive value excludes just as many diagonals above
the main diagonal, and similarly a negative value includes just as
many diagonals below the main diagonal. The main diagonal are the
set of indices \lbrace (i, i) \rbrace for i \in [0, \min{d_{1},
d_{2}} - 1] where d_{1}, d_{2} are the dimensions of the matrix.
Note: | https://pytorch.org/docs/stable/generated/torch.triu_indices.html | pytorch docs |
Note:
When running on CUDA, "row * col" must be less than 2^{59} to
prevent overflow during calculation.
Parameters:
* row ("int") -- number of rows in the 2-D matrix.
* **col** ("int") -- number of columns in the 2-D matrix.
* **offset** ("int") -- diagonal offset from the main diagonal.
Default: if not provided, 0.
Keyword Arguments:
* dtype ("torch.dtype", optional) -- the desired data type
of returned tensor. Default: if "None", "torch.long".
* **device** ("torch.device", optional) -- the desired device of
returned tensor. Default: if "None", uses the current device
for the default tensor type (see
"torch.set_default_tensor_type()"). "device" will be the CPU
for CPU tensor types and the current CUDA device for CUDA
tensor types.
* **layout** ("torch.layout", optional) -- currently only
support "torch.strided".
Example:
>>> a = torch.triu_indices(3, 3)
| https://pytorch.org/docs/stable/generated/torch.triu_indices.html | pytorch docs |
a = torch.triu_indices(3, 3)
>>> a
tensor([[0, 0, 0, 1, 1, 2],
[0, 1, 2, 1, 2, 2]])
>>> a = torch.triu_indices(4, 3, -1)
>>> a
tensor([[0, 0, 0, 1, 1, 1, 2, 2, 3],
[0, 1, 2, 0, 1, 2, 1, 2, 2]])
>>> a = torch.triu_indices(4, 3, 1)
>>> a
tensor([[0, 0, 1],
[1, 2, 2]])
| https://pytorch.org/docs/stable/generated/torch.triu_indices.html | pytorch docs |
LazyInstanceNorm1d
class torch.nn.LazyInstanceNorm1d(eps=1e-05, momentum=0.1, affine=True, track_running_stats=True, device=None, dtype=None)
A "torch.nn.InstanceNorm1d" module with lazy initialization of the
"num_features" argument of the "InstanceNorm1d" that is inferred
from the "input.size(1)". The attributes that will be lazily
initialized are weight, bias, running_mean and running_var.
Check the "torch.nn.modules.lazy.LazyModuleMixin" for further
documentation on lazy modules and their limitations.
Parameters:
* num_features -- C from an expected input of size (N, C, L)
or (C, L)
* **eps** (*float*) -- a value added to the denominator for
numerical stability. Default: 1e-5
* **momentum** (*float*) -- the value used for the running_mean
and running_var computation. Default: 0.1
* **affine** (*bool*) -- a boolean value that when set to
"True", this module has learnable affine parameters,
| https://pytorch.org/docs/stable/generated/torch.nn.LazyInstanceNorm1d.html | pytorch docs |
initialized the same way as done for batch normalization.
Default: "False".
* **track_running_stats** (*bool*) -- a boolean value that when
set to "True", this module tracks the running mean and
variance, and when set to "False", this module does not track
such statistics and always uses batch statistics in both
training and eval modes. Default: "False"
Shape:
* Input: (N, C, L) or (C, L)
* Output: (N, C, L) or (C, L) (same shape as input)
cls_to_become
alias of "InstanceNorm1d"
| https://pytorch.org/docs/stable/generated/torch.nn.LazyInstanceNorm1d.html | pytorch docs |
enable_observer
class torch.quantization.fake_quantize.enable_observer(mod)
Enable observation for this module, if applicable. Example usage:
# model is any PyTorch model
model.apply(torch.ao.quantization.enable_observer)
| https://pytorch.org/docs/stable/generated/torch.quantization.fake_quantize.enable_observer.html | pytorch docs |
torch.fake_quantize_per_channel_affine
torch.fake_quantize_per_channel_affine(input, scale, zero_point, quant_min, quant_max) -> Tensor
Returns a new tensor with the data in "input" fake quantized per
channel using "scale", "zero_point", "quant_min" and "quant_max",
across the channel specified by "axis".
\text{output} = min( \text{quant\_max}, max(
\text{quant\_min}, \text{std::nearby\_int}(\text{input}
/ \text{scale}) + \text{zero\_point} ) )
Parameters:
* input (Tensor) -- the input value(s), in "torch.float32"
* **scale** (*Tensor*) -- quantization scale, per channel in
"torch.float32"
* **zero_point** (*Tensor*) -- quantization zero_point, per
channel in "torch.int32" or "torch.half" or "torch.float32"
* **axis** (*int32*) -- channel axis
* **quant_min** (*int64*) -- lower bound of the quantized domain
| https://pytorch.org/docs/stable/generated/torch.fake_quantize_per_channel_affine.html | pytorch docs |
quant_max (int64) -- upper bound of the quantized domain
Returns:
A newly fake_quantized per channel "torch.float32" tensor
Return type:
Tensor
Example:
>>> x = torch.randn(2, 2, 2)
>>> x
tensor([[[-0.2525, -0.0466],
[ 0.3491, -0.2168]],
[[-0.5906, 1.6258],
[ 0.6444, -0.0542]]])
>>> scales = (torch.randn(2) + 1) * 0.05
>>> scales
tensor([0.0475, 0.0486])
>>> zero_points = torch.zeros(2).to(torch.int32)
>>> zero_points
tensor([0, 0])
>>> torch.fake_quantize_per_channel_affine(x, scales, zero_points, 1, 0, 255)
tensor([[[0.0000, 0.0000],
[0.3405, 0.0000]],
[[0.0000, 1.6134],
[0.6323, 0.0000]]])
| https://pytorch.org/docs/stable/generated/torch.fake_quantize_per_channel_affine.html | pytorch docs |
torch.Tensor.subtract
Tensor.subtract(other, *, alpha=1) -> Tensor
See "torch.subtract()". | https://pytorch.org/docs/stable/generated/torch.Tensor.subtract.html | pytorch docs |
torch.nn.functional.instance_norm
torch.nn.functional.instance_norm(input, running_mean=None, running_var=None, weight=None, bias=None, use_input_stats=True, momentum=0.1, eps=1e-05)
Applies Instance Normalization for each channel in each data sample
in a batch.
See "InstanceNorm1d", "InstanceNorm2d", "InstanceNorm3d" for
details.
Return type:
Tensor | https://pytorch.org/docs/stable/generated/torch.nn.functional.instance_norm.html | pytorch docs |
torch.Tensor.random_
Tensor.random_(from=0, to=None, *, generator=None) -> Tensor
Fills "self" tensor with numbers sampled from the discrete uniform
distribution over "[from, to - 1]". If not specified, the values
are usually only bounded by "self" tensor's data type. However, for
floating point types, if unspecified, range will be "[0,
2^mantissa]" to ensure that every value is representable. For
example, torch.tensor(1, dtype=torch.double).random_() will be
uniform in "[0, 2^53]". | https://pytorch.org/docs/stable/generated/torch.Tensor.random_.html | pytorch docs |
per_channel_dynamic_qconfig
torch.quantization.qconfig.per_channel_dynamic_qconfig
alias of QConfig(activation=functools.partial(,
dtype=torch.quint8, quant_min=0, quant_max=255, is_dynamic=True){},
weight=functools.partial(,
dtype=torch.qint8, qscheme=torch.per_channel_symmetric){}) | https://pytorch.org/docs/stable/generated/torch.quantization.qconfig.per_channel_dynamic_qconfig.html | pytorch docs |
torch.fft.ihfftn
torch.fft.ihfftn(input, s=None, dim=None, norm=None, *, out=None) -> Tensor
Computes the N-dimensional inverse discrete Fourier transform of
real "input".
"input" must be a real-valued signal, interpreted in the Fourier
domain. The n-dimensional IFFT of a real signal is Hermitian-
symmetric, "X[i, j, ...] = conj(X[-i, -j, ...])". "ihfftn()"
represents this in the one-sided form where only the positive
frequencies below the Nyquist frequency are included in the last
signal dimension. To compute the full output, use "ifftn()".
Note:
Supports torch.half on CUDA with GPU Architecture SM53 or
greater. However it only supports powers of 2 signal length in
every transformed dimensions.
Parameters:
* input (Tensor) -- the input tensor
* **s** (*Tuple**[**int**]**, **optional*) -- Signal size in the
transformed dimensions. If given, each dimension "dim[i]" will
| https://pytorch.org/docs/stable/generated/torch.fft.ihfftn.html | pytorch docs |
either be zero-padded or trimmed to the length "s[i]" before
computing the Hermitian IFFT. If a length "-1" is specified,
no padding is done in that dimension. Default: "s =
[input.size(d) for d in dim]"
* **dim** (*Tuple**[**int**]**, **optional*) -- Dimensions to be
transformed. Default: all dimensions, or the last "len(s)"
dimensions if "s" is given.
* **norm** (*str**, **optional*) --
Normalization mode. For the backward transform ("ihfftn()"),
these correspond to:
* ""forward"" - no normalization
* ""backward"" - normalize by "1/n"
* ""ortho"" - normalize by "1/sqrt(n)" (making the Hermitian
IFFT orthonormal)
Where "n = prod(s)" is the logical IFFT size. Calling the
forward transform ("hfftn()") with the same normalization mode
will apply an overall normalization of "1/n" between the two
transforms. This is required to make "ihfftn()" the exact
| https://pytorch.org/docs/stable/generated/torch.fft.ihfftn.html | pytorch docs |
inverse.
Default is ""backward"" (normalize by "1/n").
Keyword Arguments:
out (Tensor, optional) -- the output tensor.
-[ Example ]-
T = torch.rand(10, 10)
ihfftn = torch.fft.ihfftn(T)
ihfftn.size()
torch.Size([10, 6])
Compared against the full output from "ifftn()", we have all
elements up to the Nyquist frequency.
ifftn = torch.fft.ifftn(t)
torch.allclose(ifftn[..., :6], ihfftn)
True
The discrete Fourier transform is separable, so "ihfftn()" here is
equivalent to a combination of "ihfft()" and "ifft()":
two_iffts = torch.fft.ifft(torch.fft.ihfft(t, dim=1), dim=0)
torch.allclose(ihfftn, two_iffts)
True
| https://pytorch.org/docs/stable/generated/torch.fft.ihfftn.html | pytorch docs |
torch.isnan
torch.isnan(input) -> Tensor
Returns a new tensor with boolean elements representing if each
element of "input" is NaN or not. Complex values are considered NaN
when either their real and/or imaginary part is NaN.
Parameters:
input (Tensor) -- the input tensor.
Returns:
A boolean tensor that is True where "input" is NaN and False
elsewhere
Example:
>>> torch.isnan(torch.tensor([1, float('nan'), 2]))
tensor([False, True, False])
| https://pytorch.org/docs/stable/generated/torch.isnan.html | pytorch docs |
torch.linalg.eigvals
torch.linalg.eigvals(A, *, out=None) -> Tensor
Computes the eigenvalues of a square matrix.
Letting \mathbb{K} be \mathbb{R} or \mathbb{C}, the eigenvalues
of a square matrix A \in \mathbb{K}^{n \times n} are defined as the
roots (counted with multiplicity) of the polynomial p of degree
n given by
p(\lambda) = \operatorname{det}(A - \lambda
\mathrm{I}_n)\mathrlap{\qquad \lambda \in \mathbb{C}}
where \mathrm{I}_n is the n-dimensional identity matrix.
Supports input of float, double, cfloat and cdouble dtypes. Also
supports batches of matrices, and if "A" is a batch of matrices
then the output has the same batch dimensions.
Note:
The eigenvalues of a real matrix may be complex, as the roots of
a real polynomial may be complex.The eigenvalues of a matrix are
always well-defined, even when the matrix is not diagonalizable.
Note: | https://pytorch.org/docs/stable/generated/torch.linalg.eigvals.html | pytorch docs |
Note:
When inputs are on a CUDA device, this function synchronizes that
device with the CPU.
See also:
"torch.linalg.eig()" computes the full eigenvalue decomposition.
Parameters:
A (Tensor) -- tensor of shape (, n, n)* where *** is
zero or more batch dimensions.
Keyword Arguments:
out (Tensor, optional) -- output tensor. Ignored if
None. Default: None.
Returns:
A complex-valued tensor containing the eigenvalues even when "A"
is real.
Examples:
>>> A = torch.randn(2, 2, dtype=torch.complex128)
>>> L = torch.linalg.eigvals(A)
>>> L
tensor([ 1.1226+0.5738j, -0.7537-0.1286j], dtype=torch.complex128)
>>> torch.dist(L, torch.linalg.eig(A).eigenvalues)
tensor(2.4576e-07)
| https://pytorch.org/docs/stable/generated/torch.linalg.eigvals.html | pytorch docs |
disable_fake_quant
class torch.quantization.fake_quantize.disable_fake_quant(mod)
Disable fake quantization for this module, if applicable. Example
usage:
# model is any PyTorch model
model.apply(torch.ao.quantization.disable_fake_quant)
| https://pytorch.org/docs/stable/generated/torch.quantization.fake_quantize.disable_fake_quant.html | pytorch docs |
torch.Tensor.clip_
Tensor.clip_(min=None, max=None) -> Tensor
Alias for "clamp_()". | https://pytorch.org/docs/stable/generated/torch.Tensor.clip_.html | pytorch docs |
torch.amin
torch.amin(input, dim, keepdim=False, *, out=None) -> Tensor
Returns the minimum value of each slice of the "input" tensor in
the given dimension(s) "dim".
Note:
The difference between "max"/"min" and "amax"/"amin" is:
* "amax"/"amin" supports reducing on multiple dimensions,
* "amax"/"amin" does not return indices,
* "amax"/"amin" evenly distributes gradient between equal
values, while "max(dim)"/"min(dim)" propagates gradient only
to a single index in the source tensor.
If "keepdim" is "True", the output tensor is of the same size as
"input" except in the dimension(s) "dim" where it is of size 1.
Otherwise, "dim" is squeezed (see "torch.squeeze()"), resulting in
the output tensor having 1 (or "len(dim)") fewer dimension(s).
Parameters:
* input (Tensor) -- the input tensor.
* **dim** (*int** or **tuple of ints*) -- the dimension or
dimensions to reduce.
| https://pytorch.org/docs/stable/generated/torch.amin.html | pytorch docs |
dimensions to reduce.
* **keepdim** (*bool*) -- whether the output tensor has "dim"
retained or not.
Keyword Arguments:
out (Tensor, optional) -- the output tensor.
Example:
>>> a = torch.randn(4, 4)
>>> a
tensor([[ 0.6451, -0.4866, 0.2987, -1.3312],
[-0.5744, 1.2980, 1.8397, -0.2713],
[ 0.9128, 0.9214, -1.7268, -0.2995],
[ 0.9023, 0.4853, 0.9075, -1.6165]])
>>> torch.amin(a, 1)
tensor([-1.3312, -0.5744, -1.7268, -1.6165])
| https://pytorch.org/docs/stable/generated/torch.amin.html | pytorch docs |
torch.ones_like
torch.ones_like(input, *, dtype=None, layout=None, device=None, requires_grad=False, memory_format=torch.preserve_format) -> Tensor
Returns a tensor filled with the scalar value 1, with the same
size as "input". "torch.ones_like(input)" is equivalent to
"torch.ones(input.size(), dtype=input.dtype, layout=input.layout,
device=input.device)".
Warning:
As of 0.4, this function does not support an "out" keyword. As an
alternative, the old "torch.ones_like(input, out=output)" is
equivalent to "torch.ones(input.size(), out=output)".
Parameters:
input (Tensor) -- the size of "input" will determine size
of the output tensor.
Keyword Arguments:
* dtype ("torch.dtype", optional) -- the desired data type
of returned Tensor. Default: if "None", defaults to the dtype
of "input".
* **layout** ("torch.layout", optional) -- the desired layout of
| https://pytorch.org/docs/stable/generated/torch.ones_like.html | pytorch docs |
returned tensor. Default: if "None", defaults to the layout of
"input".
* **device** ("torch.device", optional) -- the desired device of
returned tensor. Default: if "None", defaults to the device of
"input".
* **requires_grad** (*bool**, **optional*) -- If autograd should
record operations on the returned tensor. Default: "False".
* **memory_format** ("torch.memory_format", optional) -- the
desired memory format of returned Tensor. Default:
"torch.preserve_format".
Example:
>>> input = torch.empty(2, 3)
>>> torch.ones_like(input)
tensor([[ 1., 1., 1.],
[ 1., 1., 1.]])
| https://pytorch.org/docs/stable/generated/torch.ones_like.html | pytorch docs |
torch.sub
torch.sub(input, other, *, alpha=1, out=None) -> Tensor
Subtracts "other", scaled by "alpha", from "input".
\text{{out}}_i = \text{{input}}_i - \text{{alpha}} \times
\text{{other}}_i
Supports broadcasting to a common shape, type promotion, and
integer, float, and complex inputs.
Parameters:
* input (Tensor) -- the input tensor.
* **other** (*Tensor** or **Number*) -- the tensor or number to
subtract from "input".
Keyword Arguments:
* alpha (Number) -- the multiplier for "other".
* **out** (*Tensor**, **optional*) -- the output tensor.
Example:
>>> a = torch.tensor((1, 2))
>>> b = torch.tensor((0, 1))
>>> torch.sub(a, b, alpha=2)
tensor([1, 0])
| https://pytorch.org/docs/stable/generated/torch.sub.html | pytorch docs |
QConfigMapping
class torch.ao.quantization.qconfig_mapping.QConfigMapping
Mapping from model ops to "torch.ao.quantization.QConfig" s.
The user can specify QConfigs using the following methods (in
increasing match priority):
"set_global" : sets the global (default) QConfig
"set_object_type" : sets the QConfig for a given module type,
function, or method name
"set_module_name_regex" : sets the QConfig for modules matching
the given regex string
"set_module_name" : sets the QConfig for modules matching the
given module name
"set_module_name_object_type_order" : sets the QConfig for
modules matching a combination of the given module name, object
type, and the index at which the module appears
Example usage:
qconfig_mapping = QConfigMapping()
.set_global(global_qconfig)
.set_object_type(torch.nn.Linear, qconfig1)
.set_object_type(torch.nn.ReLU, qconfig1)
| https://pytorch.org/docs/stable/generated/torch.ao.quantization.qconfig_mapping.QConfigMapping.html | pytorch docs |
.set_module_name_regex("foo.bar.conv[0-9]+", qconfig1)
.set_module_name_regex("foo.*", qconfig2)
.set_module_name("module1", qconfig1)
.set_module_name("module2", qconfig2)
.set_module_name_object_type_order("foo.bar", torch.nn.functional.linear, 0, qconfig3)
classmethod from_dict(qconfig_dict)
Create a "QConfigMapping" from a dictionary with the following
keys (all optional):
"" (for global QConfig)
"object_type"
"module_name_regex"
"module_name"
"module_name_object_type_order"
The values of this dictionary are expected to be lists of
tuples.
Return type:
*QConfigMapping*
set_global(global_qconfig)
Set the global (default) QConfig.
Return type:
*QConfigMapping*
set_module_name(module_name, qconfig)
Set the QConfig for modules matching the given module name. If
| https://pytorch.org/docs/stable/generated/torch.ao.quantization.qconfig_mapping.QConfigMapping.html | pytorch docs |
the QConfig for an existing module name was already set, the new
QConfig will override the old one.
Return type:
*QConfigMapping*
set_module_name_object_type_order(module_name, object_type, index, qconfig)
Set the QConfig for modules matching a combination of the given
module name, object type, and the index at which the module
appears.
If the QConfig for an existing (module name, object type, index)
was already set, the new QConfig will override the old one.
Return type:
*QConfigMapping*
set_module_name_regex(module_name_regex, qconfig)
Set the QConfig for modules matching the given regex string.
Regexes will be matched in the order in which they are
registered through this method. Thus, the caller should register
more specific patterns first, e.g.:
qconfig_mapping = QConfigMapping()
.set_module_name_regex("foo.*bar.*conv[0-9]+", qconfig1)
| https://pytorch.org/docs/stable/generated/torch.ao.quantization.qconfig_mapping.QConfigMapping.html | pytorch docs |
.set_module_name_regex("foo.bar.", qconfig2)
.set_module_name_regex("foo.*", qconfig3)
In this example, "foo.bar.conv0" would match qconfig1,
"foo.bar.linear" would match qconfig2, and "foo.baz.relu" would
match qconfig3.
If the QConfig for an existing module name regex was already
set, the new QConfig will override the old one while preserving
the order in which the regexes were originally registered.
Return type:
*QConfigMapping*
set_object_type(object_type, qconfig)
Set the QConfig for a given module type, function, or method
name. If the QConfig for an existing object type was already
set, the new QConfig will override the old one.
Return type:
*QConfigMapping*
to_dict()
Convert this "QConfigMapping" to a dictionary with the following
keys:
"" (for global QConfig)
"object_type"
"module_name_regex"
"module_name"
| https://pytorch.org/docs/stable/generated/torch.ao.quantization.qconfig_mapping.QConfigMapping.html | pytorch docs |
"module_name"
"module_name_object_type_order"
The values of this dictionary are lists of tuples.
Return type:
*Dict*[str, *Any*]
| https://pytorch.org/docs/stable/generated/torch.ao.quantization.qconfig_mapping.QConfigMapping.html | pytorch docs |
torch.var
torch.var(input, dim=None, *, correction=1, keepdim=False, out=None) -> Tensor
Calculates the variance over the dimensions specified by "dim".
"dim" can be a single dimension, list of dimensions, or "None" to
reduce over all dimensions.
The variance (\sigma^2) is calculated as
\sigma^2 = \frac{1}{N - \delta N}\sum_{i=0}^{N-1}(x_i-\bar{x})^2
where x is the sample set of elements, \bar{x} is the sample mean,
N is the number of samples and \delta N is the "correction".
If "keepdim" is "True", the output tensor is of the same size as
"input" except in the dimension(s) "dim" where it is of size 1.
Otherwise, "dim" is squeezed (see "torch.squeeze()"), resulting in
the output tensor having 1 (or "len(dim)") fewer dimension(s).
Parameters:
* input (Tensor) -- the input tensor.
* **dim** (*int** or **tuple of ints**, **optional*) -- the
dimension or dimensions to reduce. If "None", all dimensions
are reduced.
| https://pytorch.org/docs/stable/generated/torch.var.html | pytorch docs |
are reduced.
Keyword Arguments:
* correction (int) --
difference between the sample size and sample degrees of
freedom. Defaults to Bessel's correction, "correction=1".
Changed in version 2.0: Previously this argument was called
"unbiased" and was a boolean with "True" corresponding to
"correction=1" and "False" being "correction=0".
* **keepdim** (*bool*) -- whether the output tensor has "dim"
retained or not.
* **out** (*Tensor**, **optional*) -- the output tensor.
-[ Example ]-
a = torch.tensor(
... [[ 0.2035, 1.2959, 1.8101, -0.4644],
... [ 1.5027, -0.3270, 0.5905, 0.6538],
... [-1.5745, 1.3330, -0.5596, -0.6548],
... [ 0.1264, -0.5080, 1.6420, 0.1992]])
torch.var(a, dim=1, keepdim=True)
tensor([[1.0631],
[0.5590],
[1.4893],
[0.8258]])
| https://pytorch.org/docs/stable/generated/torch.var.html | pytorch docs |
torch.multinomial
torch.multinomial(input, num_samples, replacement=False, *, generator=None, out=None) -> LongTensor
Returns a tensor where each row contains "num_samples" indices
sampled from the multinomial probability distribution located in
the corresponding row of tensor "input".
Note:
The rows of "input" do not need to sum to one (in which case we
use the values as weights), but must be non-negative, finite and
have a non-zero sum.
Indices are ordered from left to right according to when each was
sampled (first samples are placed in first column).
If "input" is a vector, "out" is a vector of size "num_samples".
If "input" is a matrix with m rows, "out" is an matrix of shape
(m \times \text{num_samples}).
If replacement is "True", samples are drawn with replacement.
If not, they are drawn without replacement, which means that when a
sample index is drawn for a row, it cannot be drawn again for that
row.
Note: | https://pytorch.org/docs/stable/generated/torch.multinomial.html | pytorch docs |
row.
Note:
When drawn without replacement, "num_samples" must be lower than
number of non-zero elements in "input" (or the min number of non-
zero elements in each row of "input" if it is a matrix).
Parameters:
* input (Tensor) -- the input tensor containing
probabilities
* **num_samples** (*int*) -- number of samples to draw
* **replacement** (*bool**, **optional*) -- whether to draw with
replacement or not
Keyword Arguments:
* generator ("torch.Generator", optional) -- a pseudorandom
number generator for sampling
* **out** (*Tensor**, **optional*) -- the output tensor.
Example:
>>> weights = torch.tensor([0, 10, 3, 0], dtype=torch.float) # create a tensor of weights
>>> torch.multinomial(weights, 2)
tensor([1, 2])
>>> torch.multinomial(weights, 4) # ERROR!
RuntimeError: invalid argument 2: invalid multinomial distribution (with replacement=False,
| https://pytorch.org/docs/stable/generated/torch.multinomial.html | pytorch docs |
not enough non-negative category to sample) at ../aten/src/TH/generic/THTensorRandom.cpp:320
>>> torch.multinomial(weights, 4, replacement=True)
tensor([ 2, 1, 1, 1]) | https://pytorch.org/docs/stable/generated/torch.multinomial.html | pytorch docs |
torch.histogramdd
torch.histogramdd(input, bins, *, range=None, weight=None, density=False, out=None) -> (Tensor, Tensor[])
Computes a multi-dimensional histogram of the values in a tensor.
Interprets the elements of an input tensor whose innermost
dimension has size N as a collection of N-dimensional points. Maps
each of the points into a set of N-dimensional bins and returns the
number of points (or total weight) in each bin.
"input" must be a tensor with at least 2 dimensions. If input has
shape (M, N), each of its M rows defines a point in N-dimensional
space. If input has three or more dimensions, all but the last
dimension are flattened.
Each dimension is independently associated with its own strictly
increasing sequence of bin edges. Bin edges may be specified
explicitly by passing a sequence of 1D tensors. Alternatively, bin
edges may be constructed automatically by passing a sequence of | https://pytorch.org/docs/stable/generated/torch.histogramdd.html | pytorch docs |
integers specifying the number of equal-width bins in each
dimension.
For each N-dimensional point in input:
* Each of its coordinates is binned independently among the bin
edges
corresponding to its dimension
* Binning results are combined to identify the N-dimensional bin
(if any)
into which the point falls
* If the point falls into a bin, the bin's count (or total
weight) is incremented
* Points which do not fall into any bin do not contribute to the
output
"bins" can be a sequence of N 1D tensors, a sequence of N ints, or
a single int.
If "bins" is a sequence of N 1D tensors, it explicitly specifies
the N sequences of bin edges. Each 1D tensor should contain a
strictly increasing sequence with at least one element. A sequence
of K bin edges defines K-1 bins, explicitly specifying the left and
right edges of all bins. Every bin is exclusive of its left edge. | https://pytorch.org/docs/stable/generated/torch.histogramdd.html | pytorch docs |
Only the rightmost bin is inclusive of its right edge.
If "bins" is a sequence of N ints, it specifies the number of
equal-width bins in each dimension. By default, the leftmost and
rightmost bin edges in each dimension are determined by the minimum
and maximum elements of the input tensor in the corresponding
dimension. The "range" argument can be provided to manually specify
the leftmost and rightmost bin edges in each dimension.
If "bins" is an int, it specifies the number of equal-width bins
for all dimensions.
Note:
See also "torch.histogram()", which specifically computes 1D
histograms. While "torch.histogramdd()" infers the dimensionality
of its bins and binned values from the shape of "input",
"torch.histogram()" accepts and flattens "input" of any shape.
Parameters:
* input (Tensor) -- the input tensor.
* **bins** -- Tensor[], int[], or int. If Tensor[], defines the
| https://pytorch.org/docs/stable/generated/torch.histogramdd.html | pytorch docs |
sequences of bin edges. If int[], defines the number of equal-
width bins in each dimension. If int, defines the number of
equal-width bins for all dimensions.
Keyword Arguments:
* range (sequence of python:float) -- Defines the leftmost
and rightmost bin edges in each dimension.
* **weight** (*Tensor*) -- By default, each value in the input
has weight 1. If a weight tensor is passed, each N-dimensional
coordinate in input contributes its associated weight towards
its bin's result. The weight tensor should have the same shape
as the "input" tensor excluding its innermost dimension N.
* **density** (*bool*) -- If False (default), the result will
contain the count (or total weight) in each bin. If True, each
count (weight) is divided by the total count (total weight),
then divided by the volume of its associated bin.
Returns:
N-dimensional Tensor containing the values of the histogram. | https://pytorch.org/docs/stable/generated/torch.histogramdd.html | pytorch docs |
bin_edges(Tensor[]): sequence of N 1D Tensors containing the bin
edges.
Return type:
hist (Tensor)
Example::
>>> torch.histogramdd(torch.tensor([[0., 1.], [1., 0.], [2., 0.], [2., 2.]]), bins=[3, 3],
... weight=torch.tensor([1., 2., 4., 8.]))
torch.return_types.histogramdd(
hist=tensor([[0., 1., 0.],
[2., 0., 0.],
[4., 0., 8.]]),
bin_edges=(tensor([0.0000, 0.6667, 1.3333, 2.0000]),
tensor([0.0000, 0.6667, 1.3333, 2.0000])))
>>> torch.histogramdd(torch.tensor([[0., 0.], [1., 1.], [2., 2.]]), bins=[2, 2],
... range=[0., 1., 0., 1.], density=True)
torch.return_types.histogramdd(
hist=tensor([[2., 0.],
[0., 2.]]),
bin_edges=(tensor([0.0000, 0.5000, 1.0000]),
tensor([0.0000, 0.5000, 1.0000])))
| https://pytorch.org/docs/stable/generated/torch.histogramdd.html | pytorch docs |
torch.Tensor.logaddexp
Tensor.logaddexp(other) -> Tensor
See "torch.logaddexp()" | https://pytorch.org/docs/stable/generated/torch.Tensor.logaddexp.html | pytorch docs |
torch.row_stack
torch.row_stack(tensors, *, out=None) -> Tensor
Alias of "torch.vstack()". | https://pytorch.org/docs/stable/generated/torch.row_stack.html | pytorch docs |
torch.Tensor.is_conj
Tensor.is_conj() -> bool
Returns True if the conjugate bit of "self" is set to true. | https://pytorch.org/docs/stable/generated/torch.Tensor.is_conj.html | pytorch docs |
torch.empty
torch.empty(size, , out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False, memory_format=torch.contiguous_format) -> Tensor
Returns a tensor filled with uninitialized data. The shape of the
tensor is defined by the variable argument "size".
Parameters:
size (int...) -- a sequence of integers defining the
shape of the output tensor. Can be a variable number of
arguments or a collection like a list or tuple.
Keyword Arguments:
* out (Tensor, optional) -- the output tensor.
* **dtype** ("torch.dtype", optional) -- the desired data type
of returned tensor. Default: if "None", uses a global default
(see "torch.set_default_tensor_type()").
* **layout** ("torch.layout", optional) -- the desired layout of
returned Tensor. Default: "torch.strided".
* **device** ("torch.device", optional) -- the desired device of
| https://pytorch.org/docs/stable/generated/torch.empty.html | pytorch docs |
returned tensor. Default: if "None", uses the current device
for the default tensor type (see
"torch.set_default_tensor_type()"). "device" will be the CPU
for CPU tensor types and the current CUDA device for CUDA
tensor types.
* **requires_grad** (*bool**, **optional*) -- If autograd should
record operations on the returned tensor. Default: "False".
* **pin_memory** (*bool**, **optional*) -- If set, returned
tensor would be allocated in the pinned memory. Works only for
CPU tensors. Default: "False".
* **memory_format** ("torch.memory_format", optional) -- the
desired memory format of returned Tensor. Default:
"torch.contiguous_format".
Example:
>>> torch.empty((2,3), dtype=torch.int64)
tensor([[ 9.4064e+13, 2.8000e+01, 9.3493e+13],
[ 7.5751e+18, 7.1428e+18, 7.5955e+18]])
| https://pytorch.org/docs/stable/generated/torch.empty.html | pytorch docs |
torch.nn.functional.elu
torch.nn.functional.elu(input, alpha=1.0, inplace=False)
Applies the Exponential Linear Unit (ELU) function element-wise.
See "ELU" for more details.
Return type:
Tensor | https://pytorch.org/docs/stable/generated/torch.nn.functional.elu.html | pytorch docs |
ConvTranspose2d
class torch.ao.nn.quantized.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros', device=None, dtype=None)
Applies a 2D transposed convolution operator over an input image
composed of several input planes. For details on input arguments,
parameters, and implementation see "ConvTranspose2d".
For special notes, please, see "Conv2d"
Variables:
* weight (Tensor) -- packed tensor derived from the
learnable weight parameter.
* **scale** (*Tensor*) -- scalar for the output scale
* **zero_point** (*Tensor*) -- scalar for the output zero point
See "ConvTranspose2d" for other attributes.
Examples:
>>> # QNNPACK or FBGEMM as backend
>>> torch.backends.quantized.engine = 'qnnpack'
>>> # With square kernels and equal stride
>>> import torch.nn.quantized as nnq
| https://pytorch.org/docs/stable/generated/torch.ao.nn.quantized.ConvTranspose2d.html | pytorch docs |
import torch.nn.quantized as nnq
>>> m = nnq.ConvTranspose2d(16, 33, 3, stride=2)
>>> # non-square kernels and unequal stride and with padding
>>> m = nnq.ConvTranspose2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2))
>>> input = torch.randn(20, 16, 50, 100)
>>> q_input = torch.quantize_per_tensor(input, scale=1.0, zero_point=0, dtype=torch.quint8)
>>> output = m(q_input)
>>> # exact output size can be also specified as an argument
>>> input = torch.randn(1, 16, 12, 12)
>>> q_input = torch.quantize_per_tensor(input, scale=1.0, zero_point=0, dtype=torch.quint8)
>>> downsample = nnq.Conv2d(16, 16, 3, stride=2, padding=1)
>>> upsample = nnq.ConvTranspose2d(16, 16, 3, stride=2, padding=1)
>>> h = downsample(q_input)
>>> h.size()
torch.Size([1, 16, 6, 6])
>>> output = upsample(h, output_size=input.size())
>>> output.size()
torch.Size([1, 16, 12, 12])
| https://pytorch.org/docs/stable/generated/torch.ao.nn.quantized.ConvTranspose2d.html | pytorch docs |
torch.vdot
torch.vdot(input, other, *, out=None) -> Tensor
Computes the dot product of two 1D vectors along a dimension.
In symbols, this function computes
\sum_{i=1}^n \overline{x_i}y_i.
where \overline{x_i} denotes the conjugate for complex vectors, and
it is the identity for real vectors.
Note:
Unlike NumPy's vdot, torch.vdot intentionally only supports
computing the dot product of two 1D tensors with the same number
of elements.
See also:
"torch.linalg.vecdot()" computes the dot product of two batches
of vectors along a dimension.
Parameters:
* input (Tensor) -- first tensor in the dot product, must
be 1D. Its conjugate is used if it's complex.
* **other** (*Tensor*) -- second tensor in the dot product, must
be 1D.
Keyword args:
Note:
out (Tensor, optional): the output tensor.
Example:
>>> torch.vdot(torch.tensor([2, 3]), torch.tensor([2, 1]))
tensor(7)
| https://pytorch.org/docs/stable/generated/torch.vdot.html | pytorch docs |
tensor(7)
>>> a = torch.tensor((1 +2j, 3 - 1j))
>>> b = torch.tensor((2 +1j, 4 - 0j))
>>> torch.vdot(a, b)
tensor([16.+1.j])
>>> torch.vdot(b, a)
tensor([16.-1.j]) | https://pytorch.org/docs/stable/generated/torch.vdot.html | pytorch docs |
torch.nn.utils.vector_to_parameters
torch.nn.utils.vector_to_parameters(vec, parameters)
Convert one vector to the parameters
Parameters:
* vec (Tensor) -- a single vector represents the
parameters of a model.
* **parameters** (*Iterable**[**Tensor**]*) -- an iterator of
Tensors that are the parameters of a model.
| https://pytorch.org/docs/stable/generated/torch.nn.utils.vector_to_parameters.html | pytorch docs |
torch.svd
torch.svd(input, some=True, compute_uv=True, *, out=None)
Computes the singular value decomposition of either a matrix or
batch of matrices "input". The singular value decomposition is
represented as a namedtuple (U, S, V), such that "input" = U
\text{diag}(S) V^{\text{H}}. where V^{\text{H}} is the transpose of
V for real inputs, and the conjugate transpose of V for complex
inputs. If "input" is a batch of matrices, then U, S, and V
are also batched with the same batch dimensions as "input".
If "some" is True (default), the method returns the reduced
singular value decomposition. In this case, if the last two
dimensions of "input" are m and n, then the returned U and
V matrices will contain only min(n, m) orthonormal columns.
If "compute_uv" is False, the returned U and V will be zero-
filled matrices of shape (m, m) and (n, n) respectively, and | https://pytorch.org/docs/stable/generated/torch.svd.html | pytorch docs |
the same device as "input". The argument "some" has no effect when
"compute_uv" is False.
Supports "input" of float, double, cfloat and cdouble data types.
The dtypes of U and V are the same as "input"'s. S will
always be real-valued, even if "input" is complex.
Warning:
"torch.svd()" is deprecated in favor of "torch.linalg.svd()" and
will be removed in a future PyTorch release."U, S, V =
torch.svd(A, some=some, compute_uv=True)" (default) should be
replaced with
U, S, Vh = torch.linalg.svd(A, full_matrices=not some)
V = Vh.mH
"_, S, _ = torch.svd(A, some=some, compute_uv=False)" should be
replaced with
S = torch.linalg.svdvals(A)
Note:
Differences with "torch.linalg.svd()":
* "some" is the opposite of "torch.linalg.svd()"'s
"full_matrices". Note that default value for both is *True*, so
the default behavior is effectively the opposite.
| https://pytorch.org/docs/stable/generated/torch.svd.html | pytorch docs |
"torch.svd()" returns V, whereas "torch.linalg.svd()" returns
Vh, that is, V^{\text{H}}.
If "compute_uv" is False, "torch.svd()" returns zero-filled
tensors for U and Vh, whereas "torch.linalg.svd()" returns
empty tensors.
Note:
The singular values are returned in descending order. If "input"
is a batch of matrices, then the singular values of each matrix
in the batch are returned in descending order.
Note:
The *S* tensor can only be used to compute gradients if
"compute_uv" is *True*.
Note:
When "some" is *False*, the gradients on *U[..., :, min(m, n):]*
and *V[..., :, min(m, n):]* will be ignored in the backward pass,
as those vectors can be arbitrary bases of the corresponding
subspaces.
Note:
The implementation of "torch.linalg.svd()" on CPU uses LAPACK's
routine *?gesdd* (a divide-and-conquer algorithm) instead of
*?gesvd* for speed. Analogously, on GPU, it uses cuSOLVER's
| https://pytorch.org/docs/stable/generated/torch.svd.html | pytorch docs |
routines gesvdj and gesvdjBatched on CUDA 10.1.243 and later,
and MAGMA's routine gesdd on earlier versions of CUDA.
Note:
The returned *U* will not be contiguous. The matrix (or batch of
matrices) will be represented as a column-major matrix (i.e.
Fortran-contiguous).
Warning:
The gradients with respect to *U* and *V* will only be finite
when the input does not have zero nor repeated singular values.
Warning:
If the distance between any two singular values is close to zero,
the gradients with respect to *U* and *V* will be numerically
unstable, as they depends on \frac{1}{\min_{i \neq j} \sigma_i^2
- \sigma_j^2}. The same happens when the matrix has small
singular values, as these gradients also depend on *Sâ»Â¹*.
Warning:
For complex-valued "input" the singular value decomposition is
not unique, as *U* and *V* may be multiplied by an arbitrary
phase factor e^{i \phi} on every column. The same happens when
| https://pytorch.org/docs/stable/generated/torch.svd.html | pytorch docs |
"input" has repeated singular values, where one may multiply the
columns of the spanning subspace in U and V by a rotation
matrix and the resulting vectors will span the same subspace.
Different platforms, like NumPy, or inputs on different device
types, may produce different U and V tensors.
Parameters:
* input (Tensor) -- the input tensor of size (, m, n)
where *** is zero or more batch dimensions consisting of (m,
n)* matrices.
* **some** (*bool**, **optional*) -- controls whether to compute
the reduced or full decomposition, and consequently, the shape
of returned *U* and *V*. Default: *True*.
* **compute_uv** (*bool**, **optional*) -- controls whether to
compute *U* and *V*. Default: *True*.
Keyword Arguments:
out (tuple, optional) -- the output tuple of tensors
Example:
>>> a = torch.randn(5, 3)
>>> a
tensor([[ 0.2364, -0.7752, 0.6372],
| https://pytorch.org/docs/stable/generated/torch.svd.html | pytorch docs |
tensor([[ 0.2364, -0.7752, 0.6372],
[ 1.7201, 0.7394, -0.0504],
[-0.3371, -1.0584, 0.5296],
[ 0.3550, -0.4022, 1.5569],
[ 0.2445, -0.0158, 1.1414]])
>>> u, s, v = torch.svd(a)
>>> u
tensor([[ 0.4027, 0.0287, 0.5434],
[-0.1946, 0.8833, 0.3679],
[ 0.4296, -0.2890, 0.5261],
[ 0.6604, 0.2717, -0.2618],
[ 0.4234, 0.2481, -0.4733]])
>>> s
tensor([2.3289, 2.0315, 0.7806])
>>> v
tensor([[-0.0199, 0.8766, 0.4809],
[-0.5080, 0.4054, -0.7600],
[ 0.8611, 0.2594, -0.4373]])
>>> torch.dist(a, torch.mm(torch.mm(u, torch.diag(s)), v.t()))
tensor(8.6531e-07)
>>> a_big = torch.randn(7, 5, 3)
>>> u, s, v = torch.svd(a_big)
>>> torch.dist(a_big, torch.matmul(torch.matmul(u, torch.diag_embed(s)), v.mT))
tensor(2.6503e-06) | https://pytorch.org/docs/stable/generated/torch.svd.html | pytorch docs |
RNNBase
class torch.nn.RNNBase(mode, input_size, hidden_size, num_layers=1, bias=True, batch_first=False, dropout=0.0, bidirectional=False, proj_size=0, device=None, dtype=None)
flatten_parameters()
Resets parameter data pointer so that they can use faster code
paths.
Right now, this works only if the module is on the GPU and cuDNN
is enabled. Otherwise, it's a no-op.
| https://pytorch.org/docs/stable/generated/torch.nn.RNNBase.html | pytorch docs |
torch.tril_indices
torch.tril_indices(row, col, offset=0, *, dtype=torch.long, device='cpu', layout=torch.strided) -> Tensor
Returns the indices of the lower triangular part of a "row"-by-
"col" matrix in a 2-by-N Tensor, where the first row contains row
coordinates of all indices and the second row contains column
coordinates. Indices are ordered based on rows and then columns.
The lower triangular part of the matrix is defined as the elements
on and below the diagonal.
The argument "offset" controls which diagonal to consider. If
"offset" = 0, all elements on and below the main diagonal are
retained. A positive value includes just as many diagonals above
the main diagonal, and similarly a negative value excludes just as
many diagonals below the main diagonal. The main diagonal are the
set of indices \lbrace (i, i) \rbrace for i \in [0, \min{d_{1},
d_{2}} - 1] where d_{1}, d_{2} are the dimensions of the matrix.
Note: | https://pytorch.org/docs/stable/generated/torch.tril_indices.html | pytorch docs |
Note:
When running on CUDA, "row * col" must be less than 2^{59} to
prevent overflow during calculation.
Parameters:
* row ("int") -- number of rows in the 2-D matrix.
* **col** ("int") -- number of columns in the 2-D matrix.
* **offset** ("int") -- diagonal offset from the main diagonal.
Default: if not provided, 0.
Keyword Arguments:
* dtype ("torch.dtype", optional) -- the desired data type
of returned tensor. Default: if "None", "torch.long".
* **device** ("torch.device", optional) -- the desired device of
returned tensor. Default: if "None", uses the current device
for the default tensor type (see
"torch.set_default_tensor_type()"). "device" will be the CPU
for CPU tensor types and the current CUDA device for CUDA
tensor types.
* **layout** ("torch.layout", optional) -- currently only
support "torch.strided".
Example:
>>> a = torch.tril_indices(3, 3)
| https://pytorch.org/docs/stable/generated/torch.tril_indices.html | pytorch docs |
a = torch.tril_indices(3, 3)
>>> a
tensor([[0, 1, 1, 2, 2, 2],
[0, 0, 1, 0, 1, 2]])
>>> a = torch.tril_indices(4, 3, -1)
>>> a
tensor([[1, 2, 2, 3, 3, 3],
[0, 0, 1, 0, 1, 2]])
>>> a = torch.tril_indices(4, 3, 1)
>>> a
tensor([[0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3],
[0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 2]])
| https://pytorch.org/docs/stable/generated/torch.tril_indices.html | pytorch docs |
torch.Tensor.copy_
Tensor.copy_(src, non_blocking=False) -> Tensor
Copies the elements from "src" into "self" tensor and returns
"self".
The "src" tensor must be broadcastable with the "self" tensor. It
may be of a different data type or reside on a different device.
Parameters:
* src (Tensor) -- the source tensor to copy from
* **non_blocking** (*bool*) -- if "True" and this copy is
between CPU and GPU, the copy may occur asynchronously with
respect to the host. For other cases, this argument has no
effect.
| https://pytorch.org/docs/stable/generated/torch.Tensor.copy_.html | pytorch docs |
torch.Tensor.chalf
Tensor.chalf(memory_format=torch.preserve_format) -> Tensor
"self.chalf()" is equivalent to "self.to(torch.complex32)". See
"to()".
Parameters:
memory_format ("torch.memory_format", optional) -- the
desired memory format of returned Tensor. Default:
"torch.preserve_format". | https://pytorch.org/docs/stable/generated/torch.Tensor.chalf.html | pytorch docs |
torch.nn.functional.fractional_max_pool3d
torch.nn.functional.fractional_max_pool3d(args, *kwargs)
Applies 3D fractional max pooling over an input signal composed of
several input planes.
Fractional MaxPooling is described in detail in the paper
Fractional MaxPooling by Ben Graham
The max-pooling operation is applied in kT \times kH \times kW
regions by a stochastic step size determined by the target output
size. The number of output features is equal to the number of input
planes.
Parameters:
* kernel_size -- the size of the window to take a max over.
Can be a single number k (for a square kernel of k \times k
\times k) or a tuple (kT, kH, kW)
* **output_size** -- the target output size of the form oT
\times oH \times oW. Can be a tuple *(oT, oH, oW)* or a single
number oH for a cubic output oH \times oH \times oH
* **output_ratio** -- If one wants to have an output size as a
| https://pytorch.org/docs/stable/generated/torch.nn.functional.fractional_max_pool3d.html | pytorch docs |
ratio of the input size, this option can be given. This has to
be a number or tuple in the range (0, 1)
* **return_indices** -- if "True", will return the indices along
with the outputs. Useful to pass to "max_unpool3d()".
Shape:
* Input: (N, C, T_{in}, H_{in}, W_{in}) or (C, T_{in}, H_{in},
W_{in}).
* Output: (N, C, T_{out}, H_{out}, W_{out}) or (C, T_{out},
H_{out}, W_{out}), where (T_{out}, H_{out},
W_{out})=\text{output\_size} or (T_{out}, H_{out},
W_{out})=\text{output\_ratio} \times (T_{in}, H_{in}, W_{in})
Examples::
>>> input = torch.randn(20, 16, 50, 32, 16)
>>> # pool of cubic window of size=3, and target output size 13x12x11
>>> F.fractional_max_pool3d(input, 3, output_size=(13, 12, 11))
>>> # pool of cubic window and target output size being half of input size
>>> F.fractional_max_pool3d(input, 3, output_ratio=(0.5, 0.5, 0.5)) | https://pytorch.org/docs/stable/generated/torch.nn.functional.fractional_max_pool3d.html | pytorch docs |
ConvBnReLU2d
class torch.ao.nn.intrinsic.qat.ConvBnReLU2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=None, padding_mode='zeros', eps=1e-05, momentum=0.1, freeze_bn=False, qconfig=None)
A ConvBnReLU2d module is a module fused from Conv2d, BatchNorm2d
and ReLU, attached with FakeQuantize modules for weight, used in
quantization aware training.
We combined the interface of "torch.nn.Conv2d" and
"torch.nn.BatchNorm2d" and "torch.nn.ReLU".
Similar to torch.nn.Conv2d, with FakeQuantize modules initialized
to default.
Variables:
weight_fake_quant -- fake quant module for weight | https://pytorch.org/docs/stable/generated/torch.ao.nn.intrinsic.qat.ConvBnReLU2d.html | pytorch docs |
ParametrizationList
class torch.nn.utils.parametrize.ParametrizationList(modules, original, unsafe=False)
A sequential container that holds and manages the "original" or
"original0", "original1", ... parameters or buffers of a
parametrized "torch.nn.Module".
It is the type of "module.parametrizations[tensor_name]" when
"module[tensor_name]" has been parametrized with
"register_parametrization()".
If the first registered parametrization has a "right_inverse" that
returns one tensor or does not have a "right_inverse" (in which
case we assume that "right_inverse" is the identity), it will hold
the tensor under the name "original". If it has a "right_inverse"
that returns more than one tensor, these will be registered as
"original0", "original1", ...
Warning:
This class is used internally by "register_parametrization()". It
is documented here for completeness. It shall not be instantiated
by the user.
Parameters: | https://pytorch.org/docs/stable/generated/torch.nn.utils.parametrize.ParametrizationList.html | pytorch docs |
by the user.
Parameters:
* modules (sequence) -- sequence of modules representing
the parametrizations
* **original** (*Parameter** or **Tensor*) -- parameter or
buffer that is parametrized
* **unsafe** (*bool*) -- a boolean flag that denotes whether the
parametrization may change the dtype and shape of the tensor.
Default: *False* Warning: the parametrization is not checked
for consistency upon registration. Enable this flag at your
own risk.
right_inverse(value)
Calls the methods "right_inverse" (see
"register_parametrization()") of the parametrizations in the
inverse order they were registered in. Then, it stores the
result in "self.original" if "right_inverse" outputs one tensor
or in "self.original0", "self.original1", ... if it outputs
several.
Parameters:
**value** (*Tensor*) -- Value to which initialize the module
| https://pytorch.org/docs/stable/generated/torch.nn.utils.parametrize.ParametrizationList.html | pytorch docs |
torch.nn.functional.cosine_embedding_loss
torch.nn.functional.cosine_embedding_loss(input1, input2, target, margin=0, size_average=None, reduce=None, reduction='mean') -> Tensor
See "CosineEmbeddingLoss" for details.
Return type:
Tensor | https://pytorch.org/docs/stable/generated/torch.nn.functional.cosine_embedding_loss.html | pytorch docs |
torch._foreach_frac
torch._foreach_frac(self: List[Tensor]) -> List[Tensor]
Apply "torch.frac()" to each Tensor of the input list. | https://pytorch.org/docs/stable/generated/torch._foreach_frac.html | pytorch docs |
torch.stft
torch.stft(input, n_fft, hop_length=None, win_length=None, window=None, center=True, pad_mode='reflect', normalized=False, onesided=None, return_complex=None)
Short-time Fourier transform (STFT).
Warning:
From version 1.8.0, "return_complex" must always be given
explicitly for real inputs and *return_complex=False* has been
deprecated. Strongly prefer *return_complex=True* as in a future
pytorch release, this function will only return complex
tensors.Note that "torch.view_as_real()" can be used to recover a
real tensor with an extra last dimension for real and imaginary
components.
The STFT computes the Fourier transform of short overlapping
windows of the input. This giving frequency components of the
signal as they change over time. The interface of this function is
modeled after (but not a drop-in replacement for) librosa stft
function.
Ignoring the optional batch dimension, this method computes the | https://pytorch.org/docs/stable/generated/torch.stft.html | pytorch docs |
following expression:
X[\omega, m] = \sum_{k = 0}^{\text{win\_length-1}}%
\text{window}[k]\ \text{input}[m \times \text{hop\_length} + k]\
% \exp\left(- j \frac{2 \pi \cdot \omega
k}{\text{win\_length}}\right),
where m is the index of the sliding window, and \omega is the
frequency 0 \leq \omega < \text{n_fft} for "onesided=False", or 0
\leq \omega < \lfloor \text{n_fft} / 2 \rfloor + 1 for
"onesided=True".
"input" must be either a 1-D time sequence or a 2-D batch of time
sequences.
If "hop_length" is "None" (default), it is treated as equal to
"floor(n_fft / 4)".
If "win_length" is "None" (default), it is treated as equal to
"n_fft".
"window" can be a 1-D tensor of size "win_length", e.g., from
"torch.hann_window()". If "window" is "None" (default), it is
treated as if having 1 everywhere in the window. If
\text{win_length} < \text{n_fft}, "window" will be padded on
| https://pytorch.org/docs/stable/generated/torch.stft.html | pytorch docs |
both sides to length "n_fft" before being applied.
If "center" is "True" (default), "input" will be padded on both
sides so that the t-th frame is centered at time t \times
\text{hop_length}. Otherwise, the t-th frame begins at time t
\times \text{hop_length}.
"pad_mode" determines the padding method used on "input" when
"center" is "True". See "torch.nn.functional.pad()" for all
available options. Default is ""reflect"".
If "onesided" is "True" (default for real input), only values for
\omega in \left[0, 1, 2, \dots, \left\lfloor
\frac{\text{n_fft}}{2} \right\rfloor + 1\right] are returned
because the real-to-complex Fourier transform satisfies the
conjugate symmetry, i.e., X[m, \omega] = X[m, \text{n_fft} -
\omega]^*. Note if the input or window tensors are complex, then
"onesided" output is not possible.
If "normalized" is "True" (default is "False"), the function
| https://pytorch.org/docs/stable/generated/torch.stft.html | pytorch docs |
returns the normalized STFT results, i.e., multiplied by
(\text{frame_length})^{-0.5}.
If "return_complex" is "True" (default if input is complex), the
return is a "input.dim() + 1" dimensional complex tensor. If
"False", the output is a "input.dim() + 2" dimensional real
tensor where the last dimension represents the real and imaginary
components.
Returns either a complex tensor of size ( \times N \times T) if
"return_complex" is true, or a real tensor of size ( \times N
\times T \times 2). Where * is the optional batch size of "input",
N is the number of frequencies where STFT is applied and T is the
total number of frames used.
Warning:
This function changed signature at version 0.4.1. Calling with
the previous signature may cause error or return incorrect
result.
Parameters:
* input (Tensor) -- the input tensor
* **n_fft** (*int*) -- size of Fourier transform
| https://pytorch.org/docs/stable/generated/torch.stft.html | pytorch docs |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.