nwo
stringlengths 5
86
| sha
stringlengths 40
40
| path
stringlengths 4
189
| language
stringclasses 1
value | identifier
stringlengths 1
94
| parameters
stringlengths 2
4.03k
| argument_list
stringclasses 1
value | return_statement
stringlengths 0
11.5k
| docstring
stringlengths 1
33.2k
| docstring_summary
stringlengths 0
5.15k
| docstring_tokens
sequence | function
stringlengths 34
151k
| function_tokens
sequence | url
stringlengths 90
278
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
gromacs/gromacs | 7dec3a3f99993cf5687a122de3e12de31c21c399 | python_packaging/src/gmxapi/operation.py | python | function_wrapper | (output: dict = None) | return decorator | Generate a decorator for wrapped functions with signature manipulation.
New function accepts the same arguments, with additional arguments required by
the API.
The new function returns an object with an ``output`` attribute containing the named outputs.
Example:
>>> @function_wrapper(output={'spam': str, 'foo': str})
... def myfunc(parameter: str = None, output=None):
... output.spam = parameter
... output.foo = parameter + ' ' + parameter
...
>>> operation1 = myfunc(parameter='spam spam')
>>> assert operation1.output.spam.result() == 'spam spam'
>>> assert operation1.output.foo.result() == 'spam spam spam spam'
Arguments:
output (dict): output names and types
If ``output`` is provided to the wrapper, a data structure will be passed to
the wrapped functions with the named attributes so that the function can easily
publish multiple named results. Otherwise, the ``output`` of the generated operation
will just capture the return value of the wrapped function.
.. todo:: gmxapi typing stub file(s).
The way this wrapper uses parameter annotations is not completely
compatible with static type checking (PEP 484). If we decide to
keep the convenience functionality by which operation details are
inferred from parameter annotations, we should provide a separate
stub file (.pyi) to support static type checking of the API. | Generate a decorator for wrapped functions with signature manipulation. | [
"Generate",
"a",
"decorator",
"for",
"wrapped",
"functions",
"with",
"signature",
"manipulation",
"."
] | def function_wrapper(output: dict = None):
# Suppress warnings in the example code.
# noinspection PyUnresolvedReferences
"""Generate a decorator for wrapped functions with signature manipulation.
New function accepts the same arguments, with additional arguments required by
the API.
The new function returns an object with an ``output`` attribute containing the named outputs.
Example:
>>> @function_wrapper(output={'spam': str, 'foo': str})
... def myfunc(parameter: str = None, output=None):
... output.spam = parameter
... output.foo = parameter + ' ' + parameter
...
>>> operation1 = myfunc(parameter='spam spam')
>>> assert operation1.output.spam.result() == 'spam spam'
>>> assert operation1.output.foo.result() == 'spam spam spam spam'
Arguments:
output (dict): output names and types
If ``output`` is provided to the wrapper, a data structure will be passed to
the wrapped functions with the named attributes so that the function can easily
publish multiple named results. Otherwise, the ``output`` of the generated operation
will just capture the return value of the wrapped function.
.. todo:: gmxapi typing stub file(s).
The way this wrapper uses parameter annotations is not completely
compatible with static type checking (PEP 484). If we decide to
keep the convenience functionality by which operation details are
inferred from parameter annotations, we should provide a separate
stub file (.pyi) to support static type checking of the API.
"""
if output is not None and not isinstance(output, collections.abc.Mapping):
raise exceptions.TypeError(
'If provided, `output` argument must be a mapping of data names to types.')
# TODO: (FR5+) gmxapi operations need to allow a context-dependent way to generate an implementation with input.
# This function wrapper reproduces the wrapped function's kwargs, but does not allow chaining a
# dynamic `input` kwarg and does not dispatch according to a `context` kwarg. We should allow
# a default implementation and registration of alternate implementations. We don't have to do that
# with functools.singledispatch, but we could, if we add yet another layer to generate a wrapper
# that takes the context as the first argument. (`singledispatch` inspects the first argument rather
# that a named argument)
# Implementation note: The closure of the current function is used to
# dynamically define several classes that support the operation to be
# created by the returned decorator.
def decorator(function) -> typing.Callable:
# Explicitly capture `function` and `output` references.
provided_output_map = output
# Note: Allow operations to be defined entirely in template headers to facilitate
# compile-time optimization of fused operations. Consider what distinction, if any,
# exists between a fused operation and a more basic operation. Probably it amounts
# to aspects related to interaction with the Context that get combined in a fused
# operation, such as the resource director, builder, etc.
class OperationDetails(OperationDetailsBase):
# Warning: function.__qualname__ is not rigorous since function may be in a local scope.
# TODO: Improve base identifier.
# Suggest registering directly in the Context instead of in this local class definition.
__basename = '.'.join((str(function.__module__), function.__qualname__))
__last_uid = 0
_input_signature_description = InputCollectionDescription.from_function(function)
# TODO: Separate the class and instance logic for the runner.
# Logically, the runner is a detail of a context-specific implementation class,
# though the output is not generally fully knowable until an instance is initialized
# for a certain input fingerprint.
# Note: We are almost at a point where this class can be subsumed into two
# possible return types for wrapped_function_runner, acting as an operation helper.
_runner = wrapped_function_runner(function, provided_output_map)
_output_description = _runner.output_description
_output_data_proxy_type = define_output_data_proxy(_output_description)
_publishing_data_proxy_type = define_publishing_data_proxy(_output_description)
_SourceResource = SourceResource[_output_data_proxy_type, _publishing_data_proxy_type]
@classmethod
def name(cls) -> str:
return cls.__basename.split('.')[-1]
@classmethod
def namespace(cls) -> str:
suffix = '.' + cls.name()
try:
index = cls.__basename.rindex(suffix)
except ValueError:
index = None
return cls.__basename[:index]
@classmethod
def director(cls, context: _Context):
return cls.operation_director
@classmethod
def signature(cls) -> InputCollectionDescription:
"""Mapping of named inputs and input type.
Used to determine valid inputs before an Operation node is created.
Overrides OperationDetailsBase.signature() to provide an
implementation for the bound operation.
"""
return cls._input_signature_description
def output_description(self) -> OutputCollectionDescription:
"""Mapping of available outputs and types for an existing Operation node.
Overrides OperationDetailsBase.output_description() to provide an
implementation for the bound operation.
"""
return self._output_description
def publishing_data_proxy(self, *,
instance: _SourceResource,
client_id: int
) -> _publishing_data_proxy_type:
"""Factory for Operation output publishing resources.
Used internally when the operation is run with resources provided by instance.
Overrides OperationDetailsBase.publishing_data_proxy() to provide an
implementation for the bound operation.
"""
assert isinstance(instance, ResourceManager)
return self._publishing_data_proxy_type(instance=instance, client_id=client_id)
def output_data_proxy(self, instance: _SourceResource) -> _output_data_proxy_type:
assert isinstance(instance, ResourceManager)
return self._output_data_proxy_type(instance=instance)
def __call__(self, resources: PyFunctionRunnerResources):
"""Execute the operation with provided resources.
Resources are prepared in an execution context with aid of resource_director()
After the first call, output data has been published and is trivially
available through the output_data_proxy()
Overrides OperationDetailsBase.__call__().
"""
self._runner(resources)
@classmethod
def make_uid(cls, input):
"""The unique identity of an operation node tags the output with respect to the input.
Combines information on the Operation details and the input to uniquely
identify the Operation node.
Arguments:
input : A (collection of) data source(s) that can provide Fingerprints.
Used internally by the Context to manage ownership of data sources, to
locate resources for nodes in work graphs, and to manage serialization,
deserialization, and checkpointing of the work graph.
The UID is a detail of the generic Operation that _should_ be independent
of the Context details to allow the framework to manage when and where
an operation is executed.
Note:
This implementation creates a new identifier with every call, even if *input*
is the same, because we have not developed our Fingerprinting scheme in gmxapi 0.1+.
Design notes on further refinement:
TODO: Operations should not single-handedly determine their own uniqueness
(but they should participate in the determination with the Context).
Context implementations should be allowed to optimize handling of
equivalent operations in different sessions or work graphs, but we do not
yet TODO: guarantee that UIDs are globally unique!
The UID should uniquely indicate an operation node based on that node's input.
We need input fingerprinting to identify equivalent nodes in a work graph
or distinguish nodes across work graphs.
"""
uid = str(cls.__basename) + str(cls.__last_uid)
cls.__last_uid += 1
return uid
@classmethod
def resource_director(cls, *, input=None,
output: _publishing_data_proxy_type = None) -> PyFunctionRunnerResources:
"""a Director factory that helps build the Session Resources for the function.
The Session launcher provides the director with all of the resources previously
requested/negotiated/registered by the Operation. The director uses details of
the operation to build the resources object required by the operation runner.
For the Python Context, the protocol is for the Context to call the
resource_director instance method, passing input and output containers.
Raises:
exceptions.TypeError if provided resource type does not match input signature.
"""
resources = PyFunctionRunnerResources()
resources.update(input.kwargs)
resources.update({'output': output})
# TODO: Remove this hack when we can better handle Futures of Containers and Future slicing.
for name in resources:
if isinstance(resources[name], (list, tuple)):
resources[name] = datamodel.ndarray(resources[name])
# Check data compatibility
for name, value in resources.items():
if name != 'output':
expected = cls.signature()[name]
got = type(value)
if got != expected:
raise exceptions.TypeError(
'Expected {} but got {} for {} resource {}.'.format(expected,
got,
cls.__basename,
name))
return resources
# TODO: (FR4) Update annotations with gmxapi data types. E.g. return -> Future.
@functools.wraps(function)
def helper(*args, context=None, **kwargs):
# Description of the Operation input (and output) occurs in the
# decorator closure. By the time this factory is (dynamically) defined,
# the OperationDetails and ResourceManager are well defined, but not
# yet instantiated.
# Inspection of the offered input occurs when this factory is called,
# and OperationDetails, ResourceManager, and Operation are instantiated.
# This operation factory is specialized for the default package Context.
if context is None:
context = current_context()
else:
raise exceptions.ApiError('Non-default context handling not implemented.')
# This calls a dispatching function that may not be able to reconcile the input
# and Context capabilities. This is the place to handle various exceptions for
# whatever reasons this reconciliation cannot occur.
handle = OperationDetails.operation_director(*args,
context=context,
label=None,
**kwargs)
# TODO: NOW: The input fingerprint describes the provided input
# as (a) ensemble input, (b) static, (c) future. By the time the
# operation is instantiated, the topology of the node is known.
# When compared to the InputCollectionDescription, the data compatibility
# can be determined.
return handle
# to do: The factory itself needs to be able to register a factory with
# the context that will be responsible for the Operation handle.
# The factories need to be able to serve as dispatchers for themselves,
# since an operation in one context may need to be reconstituted in a
# different context.
# The dispatching factory produces a director for a Context,
# which will register a factory with the operation in that context.
# The factory function has a DirectorFactory. Director instances talk to a NodeBuilder for a Context to
# get handles to new operation nodes managed by the context. Part of that process includes registering
# a DirectorFactory with the Context.
return helper
return decorator | [
"def",
"function_wrapper",
"(",
"output",
":",
"dict",
"=",
"None",
")",
":",
"# Suppress warnings in the example code.",
"# noinspection PyUnresolvedReferences",
"if",
"output",
"is",
"not",
"None",
"and",
"not",
"isinstance",
"(",
"output",
",",
"collections",
".",
"abc",
".",
"Mapping",
")",
":",
"raise",
"exceptions",
".",
"TypeError",
"(",
"'If provided, `output` argument must be a mapping of data names to types.'",
")",
"# TODO: (FR5+) gmxapi operations need to allow a context-dependent way to generate an implementation with input.",
"# This function wrapper reproduces the wrapped function's kwargs, but does not allow chaining a",
"# dynamic `input` kwarg and does not dispatch according to a `context` kwarg. We should allow",
"# a default implementation and registration of alternate implementations. We don't have to do that",
"# with functools.singledispatch, but we could, if we add yet another layer to generate a wrapper",
"# that takes the context as the first argument. (`singledispatch` inspects the first argument rather",
"# that a named argument)",
"# Implementation note: The closure of the current function is used to",
"# dynamically define several classes that support the operation to be",
"# created by the returned decorator.",
"def",
"decorator",
"(",
"function",
")",
"->",
"typing",
".",
"Callable",
":",
"# Explicitly capture `function` and `output` references.",
"provided_output_map",
"=",
"output",
"# Note: Allow operations to be defined entirely in template headers to facilitate",
"# compile-time optimization of fused operations. Consider what distinction, if any,",
"# exists between a fused operation and a more basic operation. Probably it amounts",
"# to aspects related to interaction with the Context that get combined in a fused",
"# operation, such as the resource director, builder, etc.",
"class",
"OperationDetails",
"(",
"OperationDetailsBase",
")",
":",
"# Warning: function.__qualname__ is not rigorous since function may be in a local scope.",
"# TODO: Improve base identifier.",
"# Suggest registering directly in the Context instead of in this local class definition.",
"__basename",
"=",
"'.'",
".",
"join",
"(",
"(",
"str",
"(",
"function",
".",
"__module__",
")",
",",
"function",
".",
"__qualname__",
")",
")",
"__last_uid",
"=",
"0",
"_input_signature_description",
"=",
"InputCollectionDescription",
".",
"from_function",
"(",
"function",
")",
"# TODO: Separate the class and instance logic for the runner.",
"# Logically, the runner is a detail of a context-specific implementation class,",
"# though the output is not generally fully knowable until an instance is initialized",
"# for a certain input fingerprint.",
"# Note: We are almost at a point where this class can be subsumed into two",
"# possible return types for wrapped_function_runner, acting as an operation helper.",
"_runner",
"=",
"wrapped_function_runner",
"(",
"function",
",",
"provided_output_map",
")",
"_output_description",
"=",
"_runner",
".",
"output_description",
"_output_data_proxy_type",
"=",
"define_output_data_proxy",
"(",
"_output_description",
")",
"_publishing_data_proxy_type",
"=",
"define_publishing_data_proxy",
"(",
"_output_description",
")",
"_SourceResource",
"=",
"SourceResource",
"[",
"_output_data_proxy_type",
",",
"_publishing_data_proxy_type",
"]",
"@",
"classmethod",
"def",
"name",
"(",
"cls",
")",
"->",
"str",
":",
"return",
"cls",
".",
"__basename",
".",
"split",
"(",
"'.'",
")",
"[",
"-",
"1",
"]",
"@",
"classmethod",
"def",
"namespace",
"(",
"cls",
")",
"->",
"str",
":",
"suffix",
"=",
"'.'",
"+",
"cls",
".",
"name",
"(",
")",
"try",
":",
"index",
"=",
"cls",
".",
"__basename",
".",
"rindex",
"(",
"suffix",
")",
"except",
"ValueError",
":",
"index",
"=",
"None",
"return",
"cls",
".",
"__basename",
"[",
":",
"index",
"]",
"@",
"classmethod",
"def",
"director",
"(",
"cls",
",",
"context",
":",
"_Context",
")",
":",
"return",
"cls",
".",
"operation_director",
"@",
"classmethod",
"def",
"signature",
"(",
"cls",
")",
"->",
"InputCollectionDescription",
":",
"\"\"\"Mapping of named inputs and input type.\n\n Used to determine valid inputs before an Operation node is created.\n\n Overrides OperationDetailsBase.signature() to provide an\n implementation for the bound operation.\n \"\"\"",
"return",
"cls",
".",
"_input_signature_description",
"def",
"output_description",
"(",
"self",
")",
"->",
"OutputCollectionDescription",
":",
"\"\"\"Mapping of available outputs and types for an existing Operation node.\n\n Overrides OperationDetailsBase.output_description() to provide an\n implementation for the bound operation.\n \"\"\"",
"return",
"self",
".",
"_output_description",
"def",
"publishing_data_proxy",
"(",
"self",
",",
"*",
",",
"instance",
":",
"_SourceResource",
",",
"client_id",
":",
"int",
")",
"->",
"_publishing_data_proxy_type",
":",
"\"\"\"Factory for Operation output publishing resources.\n\n Used internally when the operation is run with resources provided by instance.\n\n Overrides OperationDetailsBase.publishing_data_proxy() to provide an\n implementation for the bound operation.\n \"\"\"",
"assert",
"isinstance",
"(",
"instance",
",",
"ResourceManager",
")",
"return",
"self",
".",
"_publishing_data_proxy_type",
"(",
"instance",
"=",
"instance",
",",
"client_id",
"=",
"client_id",
")",
"def",
"output_data_proxy",
"(",
"self",
",",
"instance",
":",
"_SourceResource",
")",
"->",
"_output_data_proxy_type",
":",
"assert",
"isinstance",
"(",
"instance",
",",
"ResourceManager",
")",
"return",
"self",
".",
"_output_data_proxy_type",
"(",
"instance",
"=",
"instance",
")",
"def",
"__call__",
"(",
"self",
",",
"resources",
":",
"PyFunctionRunnerResources",
")",
":",
"\"\"\"Execute the operation with provided resources.\n\n Resources are prepared in an execution context with aid of resource_director()\n\n After the first call, output data has been published and is trivially\n available through the output_data_proxy()\n\n Overrides OperationDetailsBase.__call__().\n \"\"\"",
"self",
".",
"_runner",
"(",
"resources",
")",
"@",
"classmethod",
"def",
"make_uid",
"(",
"cls",
",",
"input",
")",
":",
"\"\"\"The unique identity of an operation node tags the output with respect to the input.\n\n Combines information on the Operation details and the input to uniquely\n identify the Operation node.\n\n Arguments:\n input : A (collection of) data source(s) that can provide Fingerprints.\n\n Used internally by the Context to manage ownership of data sources, to\n locate resources for nodes in work graphs, and to manage serialization,\n deserialization, and checkpointing of the work graph.\n\n The UID is a detail of the generic Operation that _should_ be independent\n of the Context details to allow the framework to manage when and where\n an operation is executed.\n\n Note:\n This implementation creates a new identifier with every call, even if *input*\n is the same, because we have not developed our Fingerprinting scheme in gmxapi 0.1+.\n\n Design notes on further refinement:\n TODO: Operations should not single-handedly determine their own uniqueness\n (but they should participate in the determination with the Context).\n\n Context implementations should be allowed to optimize handling of\n equivalent operations in different sessions or work graphs, but we do not\n yet TODO: guarantee that UIDs are globally unique!\n\n The UID should uniquely indicate an operation node based on that node's input.\n We need input fingerprinting to identify equivalent nodes in a work graph\n or distinguish nodes across work graphs.\n\n \"\"\"",
"uid",
"=",
"str",
"(",
"cls",
".",
"__basename",
")",
"+",
"str",
"(",
"cls",
".",
"__last_uid",
")",
"cls",
".",
"__last_uid",
"+=",
"1",
"return",
"uid",
"@",
"classmethod",
"def",
"resource_director",
"(",
"cls",
",",
"*",
",",
"input",
"=",
"None",
",",
"output",
":",
"_publishing_data_proxy_type",
"=",
"None",
")",
"->",
"PyFunctionRunnerResources",
":",
"\"\"\"a Director factory that helps build the Session Resources for the function.\n\n The Session launcher provides the director with all of the resources previously\n requested/negotiated/registered by the Operation. The director uses details of\n the operation to build the resources object required by the operation runner.\n\n For the Python Context, the protocol is for the Context to call the\n resource_director instance method, passing input and output containers.\n\n Raises:\n exceptions.TypeError if provided resource type does not match input signature.\n \"\"\"",
"resources",
"=",
"PyFunctionRunnerResources",
"(",
")",
"resources",
".",
"update",
"(",
"input",
".",
"kwargs",
")",
"resources",
".",
"update",
"(",
"{",
"'output'",
":",
"output",
"}",
")",
"# TODO: Remove this hack when we can better handle Futures of Containers and Future slicing.",
"for",
"name",
"in",
"resources",
":",
"if",
"isinstance",
"(",
"resources",
"[",
"name",
"]",
",",
"(",
"list",
",",
"tuple",
")",
")",
":",
"resources",
"[",
"name",
"]",
"=",
"datamodel",
".",
"ndarray",
"(",
"resources",
"[",
"name",
"]",
")",
"# Check data compatibility",
"for",
"name",
",",
"value",
"in",
"resources",
".",
"items",
"(",
")",
":",
"if",
"name",
"!=",
"'output'",
":",
"expected",
"=",
"cls",
".",
"signature",
"(",
")",
"[",
"name",
"]",
"got",
"=",
"type",
"(",
"value",
")",
"if",
"got",
"!=",
"expected",
":",
"raise",
"exceptions",
".",
"TypeError",
"(",
"'Expected {} but got {} for {} resource {}.'",
".",
"format",
"(",
"expected",
",",
"got",
",",
"cls",
".",
"__basename",
",",
"name",
")",
")",
"return",
"resources",
"# TODO: (FR4) Update annotations with gmxapi data types. E.g. return -> Future.",
"@",
"functools",
".",
"wraps",
"(",
"function",
")",
"def",
"helper",
"(",
"*",
"args",
",",
"context",
"=",
"None",
",",
"*",
"*",
"kwargs",
")",
":",
"# Description of the Operation input (and output) occurs in the",
"# decorator closure. By the time this factory is (dynamically) defined,",
"# the OperationDetails and ResourceManager are well defined, but not",
"# yet instantiated.",
"# Inspection of the offered input occurs when this factory is called,",
"# and OperationDetails, ResourceManager, and Operation are instantiated.",
"# This operation factory is specialized for the default package Context.",
"if",
"context",
"is",
"None",
":",
"context",
"=",
"current_context",
"(",
")",
"else",
":",
"raise",
"exceptions",
".",
"ApiError",
"(",
"'Non-default context handling not implemented.'",
")",
"# This calls a dispatching function that may not be able to reconcile the input",
"# and Context capabilities. This is the place to handle various exceptions for",
"# whatever reasons this reconciliation cannot occur.",
"handle",
"=",
"OperationDetails",
".",
"operation_director",
"(",
"*",
"args",
",",
"context",
"=",
"context",
",",
"label",
"=",
"None",
",",
"*",
"*",
"kwargs",
")",
"# TODO: NOW: The input fingerprint describes the provided input",
"# as (a) ensemble input, (b) static, (c) future. By the time the",
"# operation is instantiated, the topology of the node is known.",
"# When compared to the InputCollectionDescription, the data compatibility",
"# can be determined.",
"return",
"handle",
"# to do: The factory itself needs to be able to register a factory with",
"# the context that will be responsible for the Operation handle.",
"# The factories need to be able to serve as dispatchers for themselves,",
"# since an operation in one context may need to be reconstituted in a",
"# different context.",
"# The dispatching factory produces a director for a Context,",
"# which will register a factory with the operation in that context.",
"# The factory function has a DirectorFactory. Director instances talk to a NodeBuilder for a Context to",
"# get handles to new operation nodes managed by the context. Part of that process includes registering",
"# a DirectorFactory with the Context.",
"return",
"helper",
"return",
"decorator"
] | https://github.com/gromacs/gromacs/blob/7dec3a3f99993cf5687a122de3e12de31c21c399/python_packaging/src/gmxapi/operation.py#L2960-L3228 |
|
weolar/miniblink49 | 1c4678db0594a4abde23d3ebbcc7cd13c3170777 | third_party/WebKit/Tools/Scripts/webkitpy/thirdparty/autopep8.py | python | multiline_string_lines | (source, include_docstrings=False) | return line_numbers | Return line numbers that are within multiline strings.
The line numbers are indexed at 1.
Docstrings are ignored. | Return line numbers that are within multiline strings. | [
"Return",
"line",
"numbers",
"that",
"are",
"within",
"multiline",
"strings",
"."
] | def multiline_string_lines(source, include_docstrings=False):
"""Return line numbers that are within multiline strings.
The line numbers are indexed at 1.
Docstrings are ignored.
"""
line_numbers = set()
previous_token_type = ''
try:
for t in generate_tokens(source):
token_type = t[0]
start_row = t[2][0]
end_row = t[3][0]
if token_type == tokenize.STRING and start_row != end_row:
if (
include_docstrings or
previous_token_type != tokenize.INDENT
):
# We increment by one since we want the contents of the
# string.
line_numbers |= set(range(1 + start_row, 1 + end_row))
previous_token_type = token_type
except (SyntaxError, tokenize.TokenError):
pass
return line_numbers | [
"def",
"multiline_string_lines",
"(",
"source",
",",
"include_docstrings",
"=",
"False",
")",
":",
"line_numbers",
"=",
"set",
"(",
")",
"previous_token_type",
"=",
"''",
"try",
":",
"for",
"t",
"in",
"generate_tokens",
"(",
"source",
")",
":",
"token_type",
"=",
"t",
"[",
"0",
"]",
"start_row",
"=",
"t",
"[",
"2",
"]",
"[",
"0",
"]",
"end_row",
"=",
"t",
"[",
"3",
"]",
"[",
"0",
"]",
"if",
"token_type",
"==",
"tokenize",
".",
"STRING",
"and",
"start_row",
"!=",
"end_row",
":",
"if",
"(",
"include_docstrings",
"or",
"previous_token_type",
"!=",
"tokenize",
".",
"INDENT",
")",
":",
"# We increment by one since we want the contents of the",
"# string.",
"line_numbers",
"|=",
"set",
"(",
"range",
"(",
"1",
"+",
"start_row",
",",
"1",
"+",
"end_row",
")",
")",
"previous_token_type",
"=",
"token_type",
"except",
"(",
"SyntaxError",
",",
"tokenize",
".",
"TokenError",
")",
":",
"pass",
"return",
"line_numbers"
] | https://github.com/weolar/miniblink49/blob/1c4678db0594a4abde23d3ebbcc7cd13c3170777/third_party/WebKit/Tools/Scripts/webkitpy/thirdparty/autopep8.py#L2685-L2714 |
|
ptrkrysik/gr-gsm | 2de47e28ce1fb9a518337bfc0add36c8e3cff5eb | python/misc_utils/arfcn.py | python | is_valid_uplink | (freq) | return result | Returns True if the given frequency is a valid uplink frequency in the given band | Returns True if the given frequency is a valid uplink frequency in the given band | [
"Returns",
"True",
"if",
"the",
"given",
"frequency",
"is",
"a",
"valid",
"uplink",
"frequency",
"in",
"the",
"given",
"band"
] | def is_valid_uplink(freq):
"""
Returns True if the given frequency is a valid uplink frequency in the given band
"""
result = False
band = uplink2band(freq)
if band is not None:
result = True
return result | [
"def",
"is_valid_uplink",
"(",
"freq",
")",
":",
"result",
"=",
"False",
"band",
"=",
"uplink2band",
"(",
"freq",
")",
"if",
"band",
"is",
"not",
"None",
":",
"result",
"=",
"True",
"return",
"result"
] | https://github.com/ptrkrysik/gr-gsm/blob/2de47e28ce1fb9a518337bfc0add36c8e3cff5eb/python/misc_utils/arfcn.py#L96-L105 |
|
wxWidgets/wxPython-Classic | 19571e1ae65f1ac445f5491474121998c97a1bf0 | src/gtk/_controls.py | python | ToggleButton.Create | (*args, **kwargs) | return _controls_.ToggleButton_Create(*args, **kwargs) | Create(self, Window parent, int id=-1, String label=EmptyString,
Point pos=DefaultPosition, Size size=DefaultSize,
long style=0, Validator validator=DefaultValidator,
String name=ToggleButtonNameStr) -> bool | Create(self, Window parent, int id=-1, String label=EmptyString,
Point pos=DefaultPosition, Size size=DefaultSize,
long style=0, Validator validator=DefaultValidator,
String name=ToggleButtonNameStr) -> bool | [
"Create",
"(",
"self",
"Window",
"parent",
"int",
"id",
"=",
"-",
"1",
"String",
"label",
"=",
"EmptyString",
"Point",
"pos",
"=",
"DefaultPosition",
"Size",
"size",
"=",
"DefaultSize",
"long",
"style",
"=",
"0",
"Validator",
"validator",
"=",
"DefaultValidator",
"String",
"name",
"=",
"ToggleButtonNameStr",
")",
"-",
">",
"bool"
] | def Create(*args, **kwargs):
"""
Create(self, Window parent, int id=-1, String label=EmptyString,
Point pos=DefaultPosition, Size size=DefaultSize,
long style=0, Validator validator=DefaultValidator,
String name=ToggleButtonNameStr) -> bool
"""
return _controls_.ToggleButton_Create(*args, **kwargs) | [
"def",
"Create",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"return",
"_controls_",
".",
"ToggleButton_Create",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")"
] | https://github.com/wxWidgets/wxPython-Classic/blob/19571e1ae65f1ac445f5491474121998c97a1bf0/src/gtk/_controls.py#L2998-L3005 |
|
etotheipi/BitcoinArmory | 2a6fc5355bb0c6fe26e387ccba30a5baafe8cd98 | armoryengine/ArmoryUtils.py | python | uriReservedToPercent | (theStr) | return theStr | Convert from a regular string to a percent-encoded string | Convert from a regular string to a percent-encoded string | [
"Convert",
"from",
"a",
"regular",
"string",
"to",
"a",
"percent",
"-",
"encoded",
"string"
] | def uriReservedToPercent(theStr):
"""
Convert from a regular string to a percent-encoded string
"""
#Must replace '%' first, to avoid recursive (and incorrect) replacement!
reserved = "%!*'();:@&=+$,/?#[]\" "
for c in reserved:
theStr = theStr.replace(c, '%%%s' % int_to_hex(ord(c)))
return theStr | [
"def",
"uriReservedToPercent",
"(",
"theStr",
")",
":",
"#Must replace '%' first, to avoid recursive (and incorrect) replacement!",
"reserved",
"=",
"\"%!*'();:@&=+$,/?#[]\\\" \"",
"for",
"c",
"in",
"reserved",
":",
"theStr",
"=",
"theStr",
".",
"replace",
"(",
"c",
",",
"'%%%s'",
"%",
"int_to_hex",
"(",
"ord",
"(",
"c",
")",
")",
")",
"return",
"theStr"
] | https://github.com/etotheipi/BitcoinArmory/blob/2a6fc5355bb0c6fe26e387ccba30a5baafe8cd98/armoryengine/ArmoryUtils.py#L2926-L2935 |
|
catboost/catboost | 167f64f237114a4d10b2b4ee42adb4569137debe | contrib/python/scipy/py3/scipy/signal/fir_filter_design.py | python | firwin | (numtaps, cutoff, width=None, window='hamming', pass_zero=True,
scale=True, nyq=None, fs=None) | return h | FIR filter design using the window method.
This function computes the coefficients of a finite impulse response
filter. The filter will have linear phase; it will be Type I if
`numtaps` is odd and Type II if `numtaps` is even.
Type II filters always have zero response at the Nyquist frequency, so a
ValueError exception is raised if firwin is called with `numtaps` even and
having a passband whose right end is at the Nyquist frequency.
Parameters
----------
numtaps : int
Length of the filter (number of coefficients, i.e. the filter
order + 1). `numtaps` must be odd if a passband includes the
Nyquist frequency.
cutoff : float or 1D array_like
Cutoff frequency of filter (expressed in the same units as `fs`)
OR an array of cutoff frequencies (that is, band edges). In the
latter case, the frequencies in `cutoff` should be positive and
monotonically increasing between 0 and `fs/2`. The values 0 and
`fs/2` must not be included in `cutoff`.
width : float or None, optional
If `width` is not None, then assume it is the approximate width
of the transition region (expressed in the same units as `fs`)
for use in Kaiser FIR filter design. In this case, the `window`
argument is ignored.
window : string or tuple of string and parameter values, optional
Desired window to use. See `scipy.signal.get_window` for a list
of windows and required parameters.
pass_zero : bool, optional
If True, the gain at the frequency 0 (i.e. the "DC gain") is 1.
Otherwise the DC gain is 0.
scale : bool, optional
Set to True to scale the coefficients so that the frequency
response is exactly unity at a certain frequency.
That frequency is either:
- 0 (DC) if the first passband starts at 0 (i.e. pass_zero
is True)
- `fs/2` (the Nyquist frequency) if the first passband ends at
`fs/2` (i.e the filter is a single band highpass filter);
center of first passband otherwise
nyq : float, optional
*Deprecated. Use `fs` instead.* This is the Nyquist frequency.
Each frequency in `cutoff` must be between 0 and `nyq`. Default
is 1.
fs : float, optional
The sampling frequency of the signal. Each frequency in `cutoff`
must be between 0 and ``fs/2``. Default is 2.
Returns
-------
h : (numtaps,) ndarray
Coefficients of length `numtaps` FIR filter.
Raises
------
ValueError
If any value in `cutoff` is less than or equal to 0 or greater
than or equal to ``fs/2``, if the values in `cutoff` are not strictly
monotonically increasing, or if `numtaps` is even but a passband
includes the Nyquist frequency.
See Also
--------
firwin2
firls
minimum_phase
remez
Examples
--------
Low-pass from 0 to f:
>>> from scipy import signal
>>> numtaps = 3
>>> f = 0.1
>>> signal.firwin(numtaps, f)
array([ 0.06799017, 0.86401967, 0.06799017])
Use a specific window function:
>>> signal.firwin(numtaps, f, window='nuttall')
array([ 3.56607041e-04, 9.99286786e-01, 3.56607041e-04])
High-pass ('stop' from 0 to f):
>>> signal.firwin(numtaps, f, pass_zero=False)
array([-0.00859313, 0.98281375, -0.00859313])
Band-pass:
>>> f1, f2 = 0.1, 0.2
>>> signal.firwin(numtaps, [f1, f2], pass_zero=False)
array([ 0.06301614, 0.88770441, 0.06301614])
Band-stop:
>>> signal.firwin(numtaps, [f1, f2])
array([-0.00801395, 1.0160279 , -0.00801395])
Multi-band (passbands are [0, f1], [f2, f3] and [f4, 1]):
>>> f3, f4 = 0.3, 0.4
>>> signal.firwin(numtaps, [f1, f2, f3, f4])
array([-0.01376344, 1.02752689, -0.01376344])
Multi-band (passbands are [f1, f2] and [f3,f4]):
>>> signal.firwin(numtaps, [f1, f2, f3, f4], pass_zero=False)
array([ 0.04890915, 0.91284326, 0.04890915]) | FIR filter design using the window method. | [
"FIR",
"filter",
"design",
"using",
"the",
"window",
"method",
"."
] | def firwin(numtaps, cutoff, width=None, window='hamming', pass_zero=True,
scale=True, nyq=None, fs=None):
"""
FIR filter design using the window method.
This function computes the coefficients of a finite impulse response
filter. The filter will have linear phase; it will be Type I if
`numtaps` is odd and Type II if `numtaps` is even.
Type II filters always have zero response at the Nyquist frequency, so a
ValueError exception is raised if firwin is called with `numtaps` even and
having a passband whose right end is at the Nyquist frequency.
Parameters
----------
numtaps : int
Length of the filter (number of coefficients, i.e. the filter
order + 1). `numtaps` must be odd if a passband includes the
Nyquist frequency.
cutoff : float or 1D array_like
Cutoff frequency of filter (expressed in the same units as `fs`)
OR an array of cutoff frequencies (that is, band edges). In the
latter case, the frequencies in `cutoff` should be positive and
monotonically increasing between 0 and `fs/2`. The values 0 and
`fs/2` must not be included in `cutoff`.
width : float or None, optional
If `width` is not None, then assume it is the approximate width
of the transition region (expressed in the same units as `fs`)
for use in Kaiser FIR filter design. In this case, the `window`
argument is ignored.
window : string or tuple of string and parameter values, optional
Desired window to use. See `scipy.signal.get_window` for a list
of windows and required parameters.
pass_zero : bool, optional
If True, the gain at the frequency 0 (i.e. the "DC gain") is 1.
Otherwise the DC gain is 0.
scale : bool, optional
Set to True to scale the coefficients so that the frequency
response is exactly unity at a certain frequency.
That frequency is either:
- 0 (DC) if the first passband starts at 0 (i.e. pass_zero
is True)
- `fs/2` (the Nyquist frequency) if the first passband ends at
`fs/2` (i.e the filter is a single band highpass filter);
center of first passband otherwise
nyq : float, optional
*Deprecated. Use `fs` instead.* This is the Nyquist frequency.
Each frequency in `cutoff` must be between 0 and `nyq`. Default
is 1.
fs : float, optional
The sampling frequency of the signal. Each frequency in `cutoff`
must be between 0 and ``fs/2``. Default is 2.
Returns
-------
h : (numtaps,) ndarray
Coefficients of length `numtaps` FIR filter.
Raises
------
ValueError
If any value in `cutoff` is less than or equal to 0 or greater
than or equal to ``fs/2``, if the values in `cutoff` are not strictly
monotonically increasing, or if `numtaps` is even but a passband
includes the Nyquist frequency.
See Also
--------
firwin2
firls
minimum_phase
remez
Examples
--------
Low-pass from 0 to f:
>>> from scipy import signal
>>> numtaps = 3
>>> f = 0.1
>>> signal.firwin(numtaps, f)
array([ 0.06799017, 0.86401967, 0.06799017])
Use a specific window function:
>>> signal.firwin(numtaps, f, window='nuttall')
array([ 3.56607041e-04, 9.99286786e-01, 3.56607041e-04])
High-pass ('stop' from 0 to f):
>>> signal.firwin(numtaps, f, pass_zero=False)
array([-0.00859313, 0.98281375, -0.00859313])
Band-pass:
>>> f1, f2 = 0.1, 0.2
>>> signal.firwin(numtaps, [f1, f2], pass_zero=False)
array([ 0.06301614, 0.88770441, 0.06301614])
Band-stop:
>>> signal.firwin(numtaps, [f1, f2])
array([-0.00801395, 1.0160279 , -0.00801395])
Multi-band (passbands are [0, f1], [f2, f3] and [f4, 1]):
>>> f3, f4 = 0.3, 0.4
>>> signal.firwin(numtaps, [f1, f2, f3, f4])
array([-0.01376344, 1.02752689, -0.01376344])
Multi-band (passbands are [f1, f2] and [f3,f4]):
>>> signal.firwin(numtaps, [f1, f2, f3, f4], pass_zero=False)
array([ 0.04890915, 0.91284326, 0.04890915])
"""
# The major enhancements to this function added in November 2010 were
# developed by Tom Krauss (see ticket #902).
nyq = 0.5 * _get_fs(fs, nyq)
cutoff = np.atleast_1d(cutoff) / float(nyq)
# Check for invalid input.
if cutoff.ndim > 1:
raise ValueError("The cutoff argument must be at most "
"one-dimensional.")
if cutoff.size == 0:
raise ValueError("At least one cutoff frequency must be given.")
if cutoff.min() <= 0 or cutoff.max() >= 1:
raise ValueError("Invalid cutoff frequency: frequencies must be "
"greater than 0 and less than fs/2.")
if np.any(np.diff(cutoff) <= 0):
raise ValueError("Invalid cutoff frequencies: the frequencies "
"must be strictly increasing.")
if width is not None:
# A width was given. Find the beta parameter of the Kaiser window
# and set `window`. This overrides the value of `window` passed in.
atten = kaiser_atten(numtaps, float(width) / nyq)
beta = kaiser_beta(atten)
window = ('kaiser', beta)
pass_nyquist = bool(cutoff.size & 1) ^ pass_zero
if pass_nyquist and numtaps % 2 == 0:
raise ValueError("A filter with an even number of coefficients must "
"have zero response at the Nyquist frequency.")
# Insert 0 and/or 1 at the ends of cutoff so that the length of cutoff
# is even, and each pair in cutoff corresponds to passband.
cutoff = np.hstack(([0.0] * pass_zero, cutoff, [1.0] * pass_nyquist))
# `bands` is a 2D array; each row gives the left and right edges of
# a passband.
bands = cutoff.reshape(-1, 2)
# Build up the coefficients.
alpha = 0.5 * (numtaps - 1)
m = np.arange(0, numtaps) - alpha
h = 0
for left, right in bands:
h += right * sinc(right * m)
h -= left * sinc(left * m)
# Get and apply the window function.
from .signaltools import get_window
win = get_window(window, numtaps, fftbins=False)
h *= win
# Now handle scaling if desired.
if scale:
# Get the first passband.
left, right = bands[0]
if left == 0:
scale_frequency = 0.0
elif right == 1:
scale_frequency = 1.0
else:
scale_frequency = 0.5 * (left + right)
c = np.cos(np.pi * m * scale_frequency)
s = np.sum(h * c)
h /= s
return h | [
"def",
"firwin",
"(",
"numtaps",
",",
"cutoff",
",",
"width",
"=",
"None",
",",
"window",
"=",
"'hamming'",
",",
"pass_zero",
"=",
"True",
",",
"scale",
"=",
"True",
",",
"nyq",
"=",
"None",
",",
"fs",
"=",
"None",
")",
":",
"# The major enhancements to this function added in November 2010 were",
"# developed by Tom Krauss (see ticket #902).",
"nyq",
"=",
"0.5",
"*",
"_get_fs",
"(",
"fs",
",",
"nyq",
")",
"cutoff",
"=",
"np",
".",
"atleast_1d",
"(",
"cutoff",
")",
"/",
"float",
"(",
"nyq",
")",
"# Check for invalid input.",
"if",
"cutoff",
".",
"ndim",
">",
"1",
":",
"raise",
"ValueError",
"(",
"\"The cutoff argument must be at most \"",
"\"one-dimensional.\"",
")",
"if",
"cutoff",
".",
"size",
"==",
"0",
":",
"raise",
"ValueError",
"(",
"\"At least one cutoff frequency must be given.\"",
")",
"if",
"cutoff",
".",
"min",
"(",
")",
"<=",
"0",
"or",
"cutoff",
".",
"max",
"(",
")",
">=",
"1",
":",
"raise",
"ValueError",
"(",
"\"Invalid cutoff frequency: frequencies must be \"",
"\"greater than 0 and less than fs/2.\"",
")",
"if",
"np",
".",
"any",
"(",
"np",
".",
"diff",
"(",
"cutoff",
")",
"<=",
"0",
")",
":",
"raise",
"ValueError",
"(",
"\"Invalid cutoff frequencies: the frequencies \"",
"\"must be strictly increasing.\"",
")",
"if",
"width",
"is",
"not",
"None",
":",
"# A width was given. Find the beta parameter of the Kaiser window",
"# and set `window`. This overrides the value of `window` passed in.",
"atten",
"=",
"kaiser_atten",
"(",
"numtaps",
",",
"float",
"(",
"width",
")",
"/",
"nyq",
")",
"beta",
"=",
"kaiser_beta",
"(",
"atten",
")",
"window",
"=",
"(",
"'kaiser'",
",",
"beta",
")",
"pass_nyquist",
"=",
"bool",
"(",
"cutoff",
".",
"size",
"&",
"1",
")",
"^",
"pass_zero",
"if",
"pass_nyquist",
"and",
"numtaps",
"%",
"2",
"==",
"0",
":",
"raise",
"ValueError",
"(",
"\"A filter with an even number of coefficients must \"",
"\"have zero response at the Nyquist frequency.\"",
")",
"# Insert 0 and/or 1 at the ends of cutoff so that the length of cutoff",
"# is even, and each pair in cutoff corresponds to passband.",
"cutoff",
"=",
"np",
".",
"hstack",
"(",
"(",
"[",
"0.0",
"]",
"*",
"pass_zero",
",",
"cutoff",
",",
"[",
"1.0",
"]",
"*",
"pass_nyquist",
")",
")",
"# `bands` is a 2D array; each row gives the left and right edges of",
"# a passband.",
"bands",
"=",
"cutoff",
".",
"reshape",
"(",
"-",
"1",
",",
"2",
")",
"# Build up the coefficients.",
"alpha",
"=",
"0.5",
"*",
"(",
"numtaps",
"-",
"1",
")",
"m",
"=",
"np",
".",
"arange",
"(",
"0",
",",
"numtaps",
")",
"-",
"alpha",
"h",
"=",
"0",
"for",
"left",
",",
"right",
"in",
"bands",
":",
"h",
"+=",
"right",
"*",
"sinc",
"(",
"right",
"*",
"m",
")",
"h",
"-=",
"left",
"*",
"sinc",
"(",
"left",
"*",
"m",
")",
"# Get and apply the window function.",
"from",
".",
"signaltools",
"import",
"get_window",
"win",
"=",
"get_window",
"(",
"window",
",",
"numtaps",
",",
"fftbins",
"=",
"False",
")",
"h",
"*=",
"win",
"# Now handle scaling if desired.",
"if",
"scale",
":",
"# Get the first passband.",
"left",
",",
"right",
"=",
"bands",
"[",
"0",
"]",
"if",
"left",
"==",
"0",
":",
"scale_frequency",
"=",
"0.0",
"elif",
"right",
"==",
"1",
":",
"scale_frequency",
"=",
"1.0",
"else",
":",
"scale_frequency",
"=",
"0.5",
"*",
"(",
"left",
"+",
"right",
")",
"c",
"=",
"np",
".",
"cos",
"(",
"np",
".",
"pi",
"*",
"m",
"*",
"scale_frequency",
")",
"s",
"=",
"np",
".",
"sum",
"(",
"h",
"*",
"c",
")",
"h",
"/=",
"s",
"return",
"h"
] | https://github.com/catboost/catboost/blob/167f64f237114a4d10b2b4ee42adb4569137debe/contrib/python/scipy/py3/scipy/signal/fir_filter_design.py#L262-L447 |
|
CRYTEK/CRYENGINE | 232227c59a220cbbd311576f0fbeba7bb53b2a8c | Code/Tools/waf-1.7.13/crywaflib/winres.py | python | load_rc_tool | (conf) | Detect the programs RC or windres, depending on the C/C++ compiler in use | Detect the programs RC or windres, depending on the C/C++ compiler in use | [
"Detect",
"the",
"programs",
"RC",
"or",
"windres",
"depending",
"on",
"the",
"C",
"/",
"C",
"++",
"compiler",
"in",
"use"
] | def load_rc_tool(conf):
"""
Detect the programs RC or windres, depending on the C/C++ compiler in use
"""
v = conf.env
if not v['WINRC']:
conf.fatal('Error: Resource compiler "WINRC" path has not been set.')
v['WINRC_TGT_F'] = '/fo'
v['WINRC_SRC_F'] = ''
v['WINRCFLAGS'] = [
'/l0x0409', # Set default language
'/nologo' # Hide Logo
] | [
"def",
"load_rc_tool",
"(",
"conf",
")",
":",
"v",
"=",
"conf",
".",
"env",
"if",
"not",
"v",
"[",
"'WINRC'",
"]",
":",
"conf",
".",
"fatal",
"(",
"'Error: Resource compiler \"WINRC\" path has not been set.'",
")",
"v",
"[",
"'WINRC_TGT_F'",
"]",
"=",
"'/fo'",
"v",
"[",
"'WINRC_SRC_F'",
"]",
"=",
"''",
"v",
"[",
"'WINRCFLAGS'",
"]",
"=",
"[",
"'/l0x0409'",
",",
"# Set default language",
"'/nologo'",
"# Hide Logo",
"]"
] | https://github.com/CRYTEK/CRYENGINE/blob/232227c59a220cbbd311576f0fbeba7bb53b2a8c/Code/Tools/waf-1.7.13/crywaflib/winres.py#L126-L141 |
||
hanpfei/chromium-net | 392cc1fa3a8f92f42e4071ab6e674d8e0482f83f | third_party/catapult/telemetry/third_party/web-page-replay/third_party/ipaddr/ipaddr.py | python | _BaseNet.iter_subnets | (self, prefixlen_diff=1, new_prefix=None) | The subnets which join to make the current subnet.
In the case that self contains only one IP
(self._prefixlen == 32 for IPv4 or self._prefixlen == 128
for IPv6), return a list with just ourself.
Args:
prefixlen_diff: An integer, the amount the prefix length
should be increased by. This should not be set if
new_prefix is also set.
new_prefix: The desired new prefix length. This must be a
larger number (smaller prefix) than the existing prefix.
This should not be set if prefixlen_diff is also set.
Returns:
An iterator of IPv(4|6) objects.
Raises:
ValueError: The prefixlen_diff is too small or too large.
OR
prefixlen_diff and new_prefix are both set or new_prefix
is a smaller number than the current prefix (smaller
number means a larger network) | The subnets which join to make the current subnet. | [
"The",
"subnets",
"which",
"join",
"to",
"make",
"the",
"current",
"subnet",
"."
] | def iter_subnets(self, prefixlen_diff=1, new_prefix=None):
"""The subnets which join to make the current subnet.
In the case that self contains only one IP
(self._prefixlen == 32 for IPv4 or self._prefixlen == 128
for IPv6), return a list with just ourself.
Args:
prefixlen_diff: An integer, the amount the prefix length
should be increased by. This should not be set if
new_prefix is also set.
new_prefix: The desired new prefix length. This must be a
larger number (smaller prefix) than the existing prefix.
This should not be set if prefixlen_diff is also set.
Returns:
An iterator of IPv(4|6) objects.
Raises:
ValueError: The prefixlen_diff is too small or too large.
OR
prefixlen_diff and new_prefix are both set or new_prefix
is a smaller number than the current prefix (smaller
number means a larger network)
"""
if self._prefixlen == self._max_prefixlen:
yield self
return
if new_prefix is not None:
if new_prefix < self._prefixlen:
raise ValueError('new prefix must be longer')
if prefixlen_diff != 1:
raise ValueError('cannot set prefixlen_diff and new_prefix')
prefixlen_diff = new_prefix - self._prefixlen
if prefixlen_diff < 0:
raise ValueError('prefix length diff must be > 0')
new_prefixlen = self._prefixlen + prefixlen_diff
if not self._is_valid_netmask(str(new_prefixlen)):
raise ValueError(
'prefix length diff %d is invalid for netblock %s' % (
new_prefixlen, str(self)))
first = IPNetwork('%s/%s' % (str(self.network),
str(self._prefixlen + prefixlen_diff)),
version=self._version)
yield first
current = first
while True:
broadcast = current.broadcast
if broadcast == self.broadcast:
return
new_addr = IPAddress(int(broadcast) + 1, version=self._version)
current = IPNetwork('%s/%s' % (str(new_addr), str(new_prefixlen)),
version=self._version)
yield current | [
"def",
"iter_subnets",
"(",
"self",
",",
"prefixlen_diff",
"=",
"1",
",",
"new_prefix",
"=",
"None",
")",
":",
"if",
"self",
".",
"_prefixlen",
"==",
"self",
".",
"_max_prefixlen",
":",
"yield",
"self",
"return",
"if",
"new_prefix",
"is",
"not",
"None",
":",
"if",
"new_prefix",
"<",
"self",
".",
"_prefixlen",
":",
"raise",
"ValueError",
"(",
"'new prefix must be longer'",
")",
"if",
"prefixlen_diff",
"!=",
"1",
":",
"raise",
"ValueError",
"(",
"'cannot set prefixlen_diff and new_prefix'",
")",
"prefixlen_diff",
"=",
"new_prefix",
"-",
"self",
".",
"_prefixlen",
"if",
"prefixlen_diff",
"<",
"0",
":",
"raise",
"ValueError",
"(",
"'prefix length diff must be > 0'",
")",
"new_prefixlen",
"=",
"self",
".",
"_prefixlen",
"+",
"prefixlen_diff",
"if",
"not",
"self",
".",
"_is_valid_netmask",
"(",
"str",
"(",
"new_prefixlen",
")",
")",
":",
"raise",
"ValueError",
"(",
"'prefix length diff %d is invalid for netblock %s'",
"%",
"(",
"new_prefixlen",
",",
"str",
"(",
"self",
")",
")",
")",
"first",
"=",
"IPNetwork",
"(",
"'%s/%s'",
"%",
"(",
"str",
"(",
"self",
".",
"network",
")",
",",
"str",
"(",
"self",
".",
"_prefixlen",
"+",
"prefixlen_diff",
")",
")",
",",
"version",
"=",
"self",
".",
"_version",
")",
"yield",
"first",
"current",
"=",
"first",
"while",
"True",
":",
"broadcast",
"=",
"current",
".",
"broadcast",
"if",
"broadcast",
"==",
"self",
".",
"broadcast",
":",
"return",
"new_addr",
"=",
"IPAddress",
"(",
"int",
"(",
"broadcast",
")",
"+",
"1",
",",
"version",
"=",
"self",
".",
"_version",
")",
"current",
"=",
"IPNetwork",
"(",
"'%s/%s'",
"%",
"(",
"str",
"(",
"new_addr",
")",
",",
"str",
"(",
"new_prefixlen",
")",
")",
",",
"version",
"=",
"self",
".",
"_version",
")",
"yield",
"current"
] | https://github.com/hanpfei/chromium-net/blob/392cc1fa3a8f92f42e4071ab6e674d8e0482f83f/third_party/catapult/telemetry/third_party/web-page-replay/third_party/ipaddr/ipaddr.py#L889-L949 |
||
Samsung/veles | 95ed733c2e49bc011ad98ccf2416ecec23fbf352 | veles/external/prettytable.py | python | TableHandler.generate_table | (self, rows) | return table | Generates from a list of rows a PrettyTable object. | Generates from a list of rows a PrettyTable object. | [
"Generates",
"from",
"a",
"list",
"of",
"rows",
"a",
"PrettyTable",
"object",
"."
] | def generate_table(self, rows):
"""
Generates from a list of rows a PrettyTable object.
"""
table = PrettyTable(**self.kwargs)
for row in self.rows:
if len(row[0]) < self.max_row_width:
appends = self.max_row_width - len(row[0])
for i in range(1, appends):
row[0].append("-")
if row[1] == True:
self.make_fields_unique(row[0])
table.field_names = row[0]
else:
table.add_row(row[0])
return table | [
"def",
"generate_table",
"(",
"self",
",",
"rows",
")",
":",
"table",
"=",
"PrettyTable",
"(",
"*",
"*",
"self",
".",
"kwargs",
")",
"for",
"row",
"in",
"self",
".",
"rows",
":",
"if",
"len",
"(",
"row",
"[",
"0",
"]",
")",
"<",
"self",
".",
"max_row_width",
":",
"appends",
"=",
"self",
".",
"max_row_width",
"-",
"len",
"(",
"row",
"[",
"0",
"]",
")",
"for",
"i",
"in",
"range",
"(",
"1",
",",
"appends",
")",
":",
"row",
"[",
"0",
"]",
".",
"append",
"(",
"\"-\"",
")",
"if",
"row",
"[",
"1",
"]",
"==",
"True",
":",
"self",
".",
"make_fields_unique",
"(",
"row",
"[",
"0",
"]",
")",
"table",
".",
"field_names",
"=",
"row",
"[",
"0",
"]",
"else",
":",
"table",
".",
"add_row",
"(",
"row",
"[",
"0",
"]",
")",
"return",
"table"
] | https://github.com/Samsung/veles/blob/95ed733c2e49bc011ad98ccf2416ecec23fbf352/veles/external/prettytable.py#L1403-L1419 |
|
aws/lumberyard | f85344403c1c2e77ec8c75deb2c116e97b713217 | dev/Gems/CloudGemMetric/v1/AWS/common-code/Lib/numba/numpy_support.py | python | _check_struct_alignment | (rec, fields) | Check alignment compatibility with Numpy | Check alignment compatibility with Numpy | [
"Check",
"alignment",
"compatibility",
"with",
"Numpy"
] | def _check_struct_alignment(rec, fields):
"""Check alignment compatibility with Numpy"""
if rec.aligned:
for k, dt in zip(fields['names'], fields['formats']):
llvm_align = rec.alignof(k)
npy_align = dt.alignment
if llvm_align is not None and npy_align != llvm_align:
msg = (
'NumPy is using a different alignment ({}) '
'than Numba/LLVM ({}) for {}. '
'This is likely a NumPy bug.'
)
raise ValueError(msg.format(npy_align, llvm_align, dt)) | [
"def",
"_check_struct_alignment",
"(",
"rec",
",",
"fields",
")",
":",
"if",
"rec",
".",
"aligned",
":",
"for",
"k",
",",
"dt",
"in",
"zip",
"(",
"fields",
"[",
"'names'",
"]",
",",
"fields",
"[",
"'formats'",
"]",
")",
":",
"llvm_align",
"=",
"rec",
".",
"alignof",
"(",
"k",
")",
"npy_align",
"=",
"dt",
".",
"alignment",
"if",
"llvm_align",
"is",
"not",
"None",
"and",
"npy_align",
"!=",
"llvm_align",
":",
"msg",
"=",
"(",
"'NumPy is using a different alignment ({}) '",
"'than Numba/LLVM ({}) for {}. '",
"'This is likely a NumPy bug.'",
")",
"raise",
"ValueError",
"(",
"msg",
".",
"format",
"(",
"npy_align",
",",
"llvm_align",
",",
"dt",
")",
")"
] | https://github.com/aws/lumberyard/blob/f85344403c1c2e77ec8c75deb2c116e97b713217/dev/Gems/CloudGemMetric/v1/AWS/common-code/Lib/numba/numpy_support.py#L182-L194 |
||
Xilinx/Vitis-AI | fc74d404563d9951b57245443c73bef389f3657f | tools/Vitis-AI-Quantizer/vai_q_tensorflow1.x/tensorflow/contrib/losses/python/metric_learning/metric_loss_ops.py | python | update_all_medoids | (pairwise_distances, predictions, labels, chosen_ids,
margin_multiplier, margin_type) | return chosen_ids | Updates all cluster medoids a cluster at a time.
Args:
pairwise_distances: 2-D Tensor of pairwise distances.
predictions: 1-D Tensor of predicted cluster assignment.
labels: 1-D Tensor of ground truth cluster assignment.
chosen_ids: 1-D Tensor of cluster centroid indices.
margin_multiplier: multiplication constant.
margin_type: Type of structured margin to use. Default is nmi.
Returns:
chosen_ids: Updated 1-D Tensor of cluster centroid indices. | Updates all cluster medoids a cluster at a time. | [
"Updates",
"all",
"cluster",
"medoids",
"a",
"cluster",
"at",
"a",
"time",
"."
] | def update_all_medoids(pairwise_distances, predictions, labels, chosen_ids,
margin_multiplier, margin_type):
"""Updates all cluster medoids a cluster at a time.
Args:
pairwise_distances: 2-D Tensor of pairwise distances.
predictions: 1-D Tensor of predicted cluster assignment.
labels: 1-D Tensor of ground truth cluster assignment.
chosen_ids: 1-D Tensor of cluster centroid indices.
margin_multiplier: multiplication constant.
margin_type: Type of structured margin to use. Default is nmi.
Returns:
chosen_ids: Updated 1-D Tensor of cluster centroid indices.
"""
def func_cond_augmented_pam(iteration, chosen_ids):
del chosen_ids # Unused argument.
return iteration < num_classes
def func_body_augmented_pam(iteration, chosen_ids):
"""Call the update_medoid_per_cluster subroutine."""
mask = math_ops.equal(
math_ops.cast(predictions, dtypes.int64),
math_ops.cast(iteration, dtypes.int64))
this_cluster_ids = array_ops.where(mask)
pairwise_distances_subset = array_ops.transpose(
array_ops.gather(
array_ops.transpose(
array_ops.gather(pairwise_distances, this_cluster_ids)),
this_cluster_ids))
chosen_ids = update_medoid_per_cluster(pairwise_distances,
pairwise_distances_subset, labels,
chosen_ids, this_cluster_ids,
iteration, margin_multiplier,
margin_type)
return iteration + 1, chosen_ids
unique_class_ids = array_ops.unique(labels)[0]
num_classes = array_ops.size(unique_class_ids)
iteration = array_ops.constant(0)
_, chosen_ids = control_flow_ops.while_loop(
func_cond_augmented_pam, func_body_augmented_pam, [iteration, chosen_ids])
return chosen_ids | [
"def",
"update_all_medoids",
"(",
"pairwise_distances",
",",
"predictions",
",",
"labels",
",",
"chosen_ids",
",",
"margin_multiplier",
",",
"margin_type",
")",
":",
"def",
"func_cond_augmented_pam",
"(",
"iteration",
",",
"chosen_ids",
")",
":",
"del",
"chosen_ids",
"# Unused argument.",
"return",
"iteration",
"<",
"num_classes",
"def",
"func_body_augmented_pam",
"(",
"iteration",
",",
"chosen_ids",
")",
":",
"\"\"\"Call the update_medoid_per_cluster subroutine.\"\"\"",
"mask",
"=",
"math_ops",
".",
"equal",
"(",
"math_ops",
".",
"cast",
"(",
"predictions",
",",
"dtypes",
".",
"int64",
")",
",",
"math_ops",
".",
"cast",
"(",
"iteration",
",",
"dtypes",
".",
"int64",
")",
")",
"this_cluster_ids",
"=",
"array_ops",
".",
"where",
"(",
"mask",
")",
"pairwise_distances_subset",
"=",
"array_ops",
".",
"transpose",
"(",
"array_ops",
".",
"gather",
"(",
"array_ops",
".",
"transpose",
"(",
"array_ops",
".",
"gather",
"(",
"pairwise_distances",
",",
"this_cluster_ids",
")",
")",
",",
"this_cluster_ids",
")",
")",
"chosen_ids",
"=",
"update_medoid_per_cluster",
"(",
"pairwise_distances",
",",
"pairwise_distances_subset",
",",
"labels",
",",
"chosen_ids",
",",
"this_cluster_ids",
",",
"iteration",
",",
"margin_multiplier",
",",
"margin_type",
")",
"return",
"iteration",
"+",
"1",
",",
"chosen_ids",
"unique_class_ids",
"=",
"array_ops",
".",
"unique",
"(",
"labels",
")",
"[",
"0",
"]",
"num_classes",
"=",
"array_ops",
".",
"size",
"(",
"unique_class_ids",
")",
"iteration",
"=",
"array_ops",
".",
"constant",
"(",
"0",
")",
"_",
",",
"chosen_ids",
"=",
"control_flow_ops",
".",
"while_loop",
"(",
"func_cond_augmented_pam",
",",
"func_body_augmented_pam",
",",
"[",
"iteration",
",",
"chosen_ids",
"]",
")",
"return",
"chosen_ids"
] | https://github.com/Xilinx/Vitis-AI/blob/fc74d404563d9951b57245443c73bef389f3657f/tools/Vitis-AI-Quantizer/vai_q_tensorflow1.x/tensorflow/contrib/losses/python/metric_learning/metric_loss_ops.py#L831-L877 |
|
potassco/clingo | e0c91d8f95cc28de1c480a871f9c97c30de83d40 | libpyclingo/clingo/application.py | python | Application.validate_options | (self) | Function to validate custom options.
Returns
-------
This function should return false if option validation fails. | Function to validate custom options. | [
"Function",
"to",
"validate",
"custom",
"options",
"."
] | def validate_options(self) -> bool:
'''
Function to validate custom options.
Returns
-------
This function should return false if option validation fails.
''' | [
"def",
"validate_options",
"(",
"self",
")",
"->",
"bool",
":"
] | https://github.com/potassco/clingo/blob/e0c91d8f95cc28de1c480a871f9c97c30de83d40/libpyclingo/clingo/application.py#L182-L189 |
||
benoitsteiner/tensorflow-opencl | cb7cb40a57fde5cfd4731bc551e82a1e2fef43a5 | tensorflow/contrib/tpu/python/tpu/tpu.py | python | batch_parallel | (computation,
inputs=None,
num_shards=1,
infeed_queue=None,
global_tpu_id=None,
name=None) | return shard(
computation,
inputs,
num_shards=num_shards,
infeed_queue=infeed_queue,
global_tpu_id=global_tpu_id,
name=name) | Shards `computation` along the batch dimension for parallel execution.
Convenience wrapper around shard().
`inputs` must be a list of Tensors or None (equivalent to an empty
list). Each input is split into `num_shards` pieces along the 0-th
dimension, and computation is applied to each shard in parallel.
Tensors are broadcast to all shards if they are lexically captured by
`computation`. e.g.,
x = tf.constant(7)
def computation():
return x + 3
... = shard(computation, ...)
The outputs from all shards are concatenated back together along their 0-th
dimension.
Inputs and outputs of the computation must be at least rank-1 Tensors.
Args:
computation: a Python function that builds a computation to apply to each
shard of the input.
inputs: a list of input tensors or None (equivalent to an empty
list). The 0-th dimension of each Tensor must have size
divisible by `num_shards`.
num_shards: the number of shards.
infeed_queue: if not None, the InfeedQueue from which to append a tuple
of arguments as inputs to `computation`.
global_tpu_id: if not None, a Numpy 2D array indicating the global
id of each TPU device in the system. The outer dimension of the
array is host task id, and the inner dimension is device ordinal,
so e.g., global_tpu_id[x][y] indicates the global id of device
/task:x/device:TPU_NODE:y.
name: name of the operator.
Returns:
A list of output tensors.
Raises:
ValueError: if num_shards <= 0 | Shards `computation` along the batch dimension for parallel execution. | [
"Shards",
"computation",
"along",
"the",
"batch",
"dimension",
"for",
"parallel",
"execution",
"."
] | def batch_parallel(computation,
inputs=None,
num_shards=1,
infeed_queue=None,
global_tpu_id=None,
name=None):
"""Shards `computation` along the batch dimension for parallel execution.
Convenience wrapper around shard().
`inputs` must be a list of Tensors or None (equivalent to an empty
list). Each input is split into `num_shards` pieces along the 0-th
dimension, and computation is applied to each shard in parallel.
Tensors are broadcast to all shards if they are lexically captured by
`computation`. e.g.,
x = tf.constant(7)
def computation():
return x + 3
... = shard(computation, ...)
The outputs from all shards are concatenated back together along their 0-th
dimension.
Inputs and outputs of the computation must be at least rank-1 Tensors.
Args:
computation: a Python function that builds a computation to apply to each
shard of the input.
inputs: a list of input tensors or None (equivalent to an empty
list). The 0-th dimension of each Tensor must have size
divisible by `num_shards`.
num_shards: the number of shards.
infeed_queue: if not None, the InfeedQueue from which to append a tuple
of arguments as inputs to `computation`.
global_tpu_id: if not None, a Numpy 2D array indicating the global
id of each TPU device in the system. The outer dimension of the
array is host task id, and the inner dimension is device ordinal,
so e.g., global_tpu_id[x][y] indicates the global id of device
/task:x/device:TPU_NODE:y.
name: name of the operator.
Returns:
A list of output tensors.
Raises:
ValueError: if num_shards <= 0
"""
return shard(
computation,
inputs,
num_shards=num_shards,
infeed_queue=infeed_queue,
global_tpu_id=global_tpu_id,
name=name) | [
"def",
"batch_parallel",
"(",
"computation",
",",
"inputs",
"=",
"None",
",",
"num_shards",
"=",
"1",
",",
"infeed_queue",
"=",
"None",
",",
"global_tpu_id",
"=",
"None",
",",
"name",
"=",
"None",
")",
":",
"return",
"shard",
"(",
"computation",
",",
"inputs",
",",
"num_shards",
"=",
"num_shards",
",",
"infeed_queue",
"=",
"infeed_queue",
",",
"global_tpu_id",
"=",
"global_tpu_id",
",",
"name",
"=",
"name",
")"
] | https://github.com/benoitsteiner/tensorflow-opencl/blob/cb7cb40a57fde5cfd4731bc551e82a1e2fef43a5/tensorflow/contrib/tpu/python/tpu/tpu.py#L491-L544 |
|
martinmoene/string-view-lite | 6c2ba8672db54a355a6d76c820dd46ecda254038 | script/upload-conan.py | python | createConanPackage | ( args ) | Create conan package and upload it. | Create conan package and upload it. | [
"Create",
"conan",
"package",
"and",
"upload",
"it",
"."
] | def createConanPackage( args ):
"""Create conan package and upload it."""
cmd = tpl_conan_create.format(usr=args.user, chn=args.channel)
if args.verbose:
print( "> {}".format(cmd) )
if not args.dry_run:
subprocess.call( cmd, shell=False ) | [
"def",
"createConanPackage",
"(",
"args",
")",
":",
"cmd",
"=",
"tpl_conan_create",
".",
"format",
"(",
"usr",
"=",
"args",
".",
"user",
",",
"chn",
"=",
"args",
".",
"channel",
")",
"if",
"args",
".",
"verbose",
":",
"print",
"(",
"\"> {}\"",
".",
"format",
"(",
"cmd",
")",
")",
"if",
"not",
"args",
".",
"dry_run",
":",
"subprocess",
".",
"call",
"(",
"cmd",
",",
"shell",
"=",
"False",
")"
] | https://github.com/martinmoene/string-view-lite/blob/6c2ba8672db54a355a6d76c820dd46ecda254038/script/upload-conan.py#L38-L44 |
||
cvxpy/cvxpy | 5165b4fb750dfd237de8659383ef24b4b2e33aaf | cvxpy/reductions/solvers/conic_solvers/glpk_mi_conif.py | python | GLPK_MI.invert | (self, solution, inverse_data) | Returns the solution to the original problem given the inverse_data. | Returns the solution to the original problem given the inverse_data. | [
"Returns",
"the",
"solution",
"to",
"the",
"original",
"problem",
"given",
"the",
"inverse_data",
"."
] | def invert(self, solution, inverse_data):
"""Returns the solution to the original problem given the inverse_data.
"""
status = solution['status']
if status in s.SOLUTION_PRESENT:
opt_val = solution['value'] + inverse_data[s.OFFSET]
primal_vars = {inverse_data[self.VAR_ID]: solution['primal']}
return Solution(status, opt_val, primal_vars, None, {})
else:
return failure_solution(status) | [
"def",
"invert",
"(",
"self",
",",
"solution",
",",
"inverse_data",
")",
":",
"status",
"=",
"solution",
"[",
"'status'",
"]",
"if",
"status",
"in",
"s",
".",
"SOLUTION_PRESENT",
":",
"opt_val",
"=",
"solution",
"[",
"'value'",
"]",
"+",
"inverse_data",
"[",
"s",
".",
"OFFSET",
"]",
"primal_vars",
"=",
"{",
"inverse_data",
"[",
"self",
".",
"VAR_ID",
"]",
":",
"solution",
"[",
"'primal'",
"]",
"}",
"return",
"Solution",
"(",
"status",
",",
"opt_val",
",",
"primal_vars",
",",
"None",
",",
"{",
"}",
")",
"else",
":",
"return",
"failure_solution",
"(",
"status",
")"
] | https://github.com/cvxpy/cvxpy/blob/5165b4fb750dfd237de8659383ef24b4b2e33aaf/cvxpy/reductions/solvers/conic_solvers/glpk_mi_conif.py#L102-L112 |
||
aws/lumberyard | f85344403c1c2e77ec8c75deb2c116e97b713217 | dev/Gems/CloudGemMetric/v1/AWS/python/windows/Lib/pandas/core/window/numba_.py | python | make_rolling_apply | (
func: Callable[..., Scalar],
args: Tuple,
nogil: bool,
parallel: bool,
nopython: bool,
) | return roll_apply | Creates a JITted rolling apply function with a JITted version of
the user's function.
Parameters
----------
func : function
function to be applied to each window and will be JITed
args : tuple
*args to be passed into the function
nogil : bool
nogil parameter from engine_kwargs for numba.jit
parallel : bool
parallel parameter from engine_kwargs for numba.jit
nopython : bool
nopython parameter from engine_kwargs for numba.jit
Returns
-------
Numba function | Creates a JITted rolling apply function with a JITted version of
the user's function. | [
"Creates",
"a",
"JITted",
"rolling",
"apply",
"function",
"with",
"a",
"JITted",
"version",
"of",
"the",
"user",
"s",
"function",
"."
] | def make_rolling_apply(
func: Callable[..., Scalar],
args: Tuple,
nogil: bool,
parallel: bool,
nopython: bool,
):
"""
Creates a JITted rolling apply function with a JITted version of
the user's function.
Parameters
----------
func : function
function to be applied to each window and will be JITed
args : tuple
*args to be passed into the function
nogil : bool
nogil parameter from engine_kwargs for numba.jit
parallel : bool
parallel parameter from engine_kwargs for numba.jit
nopython : bool
nopython parameter from engine_kwargs for numba.jit
Returns
-------
Numba function
"""
numba = import_optional_dependency("numba")
if parallel:
loop_range = numba.prange
else:
loop_range = range
if isinstance(func, numba.targets.registry.CPUDispatcher):
# Don't jit a user passed jitted function
numba_func = func
else:
@numba.generated_jit(nopython=nopython, nogil=nogil, parallel=parallel)
def numba_func(window, *_args):
if getattr(np, func.__name__, False) is func or isinstance(
func, types.BuiltinFunctionType
):
jf = func
else:
jf = numba.jit(func, nopython=nopython, nogil=nogil)
def impl(window, *_args):
return jf(window, *_args)
return impl
@numba.jit(nopython=nopython, nogil=nogil, parallel=parallel)
def roll_apply(
values: np.ndarray, begin: np.ndarray, end: np.ndarray, minimum_periods: int,
) -> np.ndarray:
result = np.empty(len(begin))
for i in loop_range(len(result)):
start = begin[i]
stop = end[i]
window = values[start:stop]
count_nan = np.sum(np.isnan(window))
if len(window) - count_nan >= minimum_periods:
result[i] = numba_func(window, *args)
else:
result[i] = np.nan
return result
return roll_apply | [
"def",
"make_rolling_apply",
"(",
"func",
":",
"Callable",
"[",
"...",
",",
"Scalar",
"]",
",",
"args",
":",
"Tuple",
",",
"nogil",
":",
"bool",
",",
"parallel",
":",
"bool",
",",
"nopython",
":",
"bool",
",",
")",
":",
"numba",
"=",
"import_optional_dependency",
"(",
"\"numba\"",
")",
"if",
"parallel",
":",
"loop_range",
"=",
"numba",
".",
"prange",
"else",
":",
"loop_range",
"=",
"range",
"if",
"isinstance",
"(",
"func",
",",
"numba",
".",
"targets",
".",
"registry",
".",
"CPUDispatcher",
")",
":",
"# Don't jit a user passed jitted function",
"numba_func",
"=",
"func",
"else",
":",
"@",
"numba",
".",
"generated_jit",
"(",
"nopython",
"=",
"nopython",
",",
"nogil",
"=",
"nogil",
",",
"parallel",
"=",
"parallel",
")",
"def",
"numba_func",
"(",
"window",
",",
"*",
"_args",
")",
":",
"if",
"getattr",
"(",
"np",
",",
"func",
".",
"__name__",
",",
"False",
")",
"is",
"func",
"or",
"isinstance",
"(",
"func",
",",
"types",
".",
"BuiltinFunctionType",
")",
":",
"jf",
"=",
"func",
"else",
":",
"jf",
"=",
"numba",
".",
"jit",
"(",
"func",
",",
"nopython",
"=",
"nopython",
",",
"nogil",
"=",
"nogil",
")",
"def",
"impl",
"(",
"window",
",",
"*",
"_args",
")",
":",
"return",
"jf",
"(",
"window",
",",
"*",
"_args",
")",
"return",
"impl",
"@",
"numba",
".",
"jit",
"(",
"nopython",
"=",
"nopython",
",",
"nogil",
"=",
"nogil",
",",
"parallel",
"=",
"parallel",
")",
"def",
"roll_apply",
"(",
"values",
":",
"np",
".",
"ndarray",
",",
"begin",
":",
"np",
".",
"ndarray",
",",
"end",
":",
"np",
".",
"ndarray",
",",
"minimum_periods",
":",
"int",
",",
")",
"->",
"np",
".",
"ndarray",
":",
"result",
"=",
"np",
".",
"empty",
"(",
"len",
"(",
"begin",
")",
")",
"for",
"i",
"in",
"loop_range",
"(",
"len",
"(",
"result",
")",
")",
":",
"start",
"=",
"begin",
"[",
"i",
"]",
"stop",
"=",
"end",
"[",
"i",
"]",
"window",
"=",
"values",
"[",
"start",
":",
"stop",
"]",
"count_nan",
"=",
"np",
".",
"sum",
"(",
"np",
".",
"isnan",
"(",
"window",
")",
")",
"if",
"len",
"(",
"window",
")",
"-",
"count_nan",
">=",
"minimum_periods",
":",
"result",
"[",
"i",
"]",
"=",
"numba_func",
"(",
"window",
",",
"*",
"args",
")",
"else",
":",
"result",
"[",
"i",
"]",
"=",
"np",
".",
"nan",
"return",
"result",
"return",
"roll_apply"
] | https://github.com/aws/lumberyard/blob/f85344403c1c2e77ec8c75deb2c116e97b713217/dev/Gems/CloudGemMetric/v1/AWS/python/windows/Lib/pandas/core/window/numba_.py#L10-L80 |
|
nsnam/ns-3-dev-git | efdb2e21f45c0a87a60b47c547b68fa140a7b686 | utils/grid.py | python | MainWindow.__set_bigger_cb | (self, widget) | ! Set Bigger Callback
@param self this object
@param widget widget
@return none | ! Set Bigger Callback | [
"!",
"Set",
"Bigger",
"Callback"
] | def __set_bigger_cb(self, widget):
"""! Set Bigger Callback
@param self this object
@param widget widget
@return none
"""
self.__render.set_bigger_zoom() | [
"def",
"__set_bigger_cb",
"(",
"self",
",",
"widget",
")",
":",
"self",
".",
"__render",
".",
"set_bigger_zoom",
"(",
")"
] | https://github.com/nsnam/ns-3-dev-git/blob/efdb2e21f45c0a87a60b47c547b68fa140a7b686/utils/grid.py#L1569-L1575 |
||
grpc/grpc | 27bc6fe7797e43298dc931b96dc57322d0852a9f | src/python/grpcio/grpc/framework/foundation/future.py | python | Future.traceback | (self, timeout=None) | Access the traceback of the exception raised by the computation.
This method may return immediately or may block.
Args:
timeout: The length of time in seconds to wait for the computation to
terminate or be cancelled, or None if this method should block until
the computation is terminated or is cancelled no matter how long that
takes.
Returns:
The traceback of the exception raised by the computation, or None if the
computation did not raise an exception.
Raises:
TimeoutError: If a timeout value is passed and the computation does not
terminate within the allotted time.
CancelledError: If the computation was cancelled. | Access the traceback of the exception raised by the computation. | [
"Access",
"the",
"traceback",
"of",
"the",
"exception",
"raised",
"by",
"the",
"computation",
"."
] | def traceback(self, timeout=None):
"""Access the traceback of the exception raised by the computation.
This method may return immediately or may block.
Args:
timeout: The length of time in seconds to wait for the computation to
terminate or be cancelled, or None if this method should block until
the computation is terminated or is cancelled no matter how long that
takes.
Returns:
The traceback of the exception raised by the computation, or None if the
computation did not raise an exception.
Raises:
TimeoutError: If a timeout value is passed and the computation does not
terminate within the allotted time.
CancelledError: If the computation was cancelled.
"""
raise NotImplementedError() | [
"def",
"traceback",
"(",
"self",
",",
"timeout",
"=",
"None",
")",
":",
"raise",
"NotImplementedError",
"(",
")"
] | https://github.com/grpc/grpc/blob/27bc6fe7797e43298dc931b96dc57322d0852a9f/src/python/grpcio/grpc/framework/foundation/future.py#L186-L206 |
||
jackaudio/jack2 | 21b293dbc37d42446141a08922cdec0d2550c6a0 | waflib/Runner.py | python | Consumer.run | (self) | Processes a single task | Processes a single task | [
"Processes",
"a",
"single",
"task"
] | def run(self):
"""
Processes a single task
"""
try:
if not self.spawner.master.stop:
self.spawner.master.process_task(self.task)
finally:
self.spawner.sem.release()
self.spawner.master.out.put(self.task)
self.task = None
self.spawner = None | [
"def",
"run",
"(",
"self",
")",
":",
"try",
":",
"if",
"not",
"self",
".",
"spawner",
".",
"master",
".",
"stop",
":",
"self",
".",
"spawner",
".",
"master",
".",
"process_task",
"(",
"self",
".",
"task",
")",
"finally",
":",
"self",
".",
"spawner",
".",
"sem",
".",
"release",
"(",
")",
"self",
".",
"spawner",
".",
"master",
".",
"out",
".",
"put",
"(",
"self",
".",
"task",
")",
"self",
".",
"task",
"=",
"None",
"self",
".",
"spawner",
"=",
"None"
] | https://github.com/jackaudio/jack2/blob/21b293dbc37d42446141a08922cdec0d2550c6a0/waflib/Runner.py#L74-L85 |
||
SpenceKonde/megaTinyCore | 1c4a70b18a149fe6bcb551dfa6db11ca50b8997b | megaavr/tools/libs/pymcuprog/backend.py | python | Backend.get_supported_devices | () | return devices | Return a list of devices supported by pymcuprog.
This will be the list of devices with a corresponding device file
:returns: List of device names | Return a list of devices supported by pymcuprog. | [
"Return",
"a",
"list",
"of",
"devices",
"supported",
"by",
"pymcuprog",
"."
] | def get_supported_devices():
"""
Return a list of devices supported by pymcuprog.
This will be the list of devices with a corresponding device file
:returns: List of device names
"""
devices = []
for filename in os.listdir(DEVICE_FOLDER):
if filename not in NON_DEVICEFILES and filename.endswith('.py'):
devices.append(filename.split('.py')[0])
return devices | [
"def",
"get_supported_devices",
"(",
")",
":",
"devices",
"=",
"[",
"]",
"for",
"filename",
"in",
"os",
".",
"listdir",
"(",
"DEVICE_FOLDER",
")",
":",
"if",
"filename",
"not",
"in",
"NON_DEVICEFILES",
"and",
"filename",
".",
"endswith",
"(",
"'.py'",
")",
":",
"devices",
".",
"append",
"(",
"filename",
".",
"split",
"(",
"'.py'",
")",
"[",
"0",
"]",
")",
"return",
"devices"
] | https://github.com/SpenceKonde/megaTinyCore/blob/1c4a70b18a149fe6bcb551dfa6db11ca50b8997b/megaavr/tools/libs/pymcuprog/backend.py#L92-L104 |
|
google/llvm-propeller | 45c226984fe8377ebfb2ad7713c680d652ba678d | libcxx/utils/google-benchmark/tools/compare.py | python | check_inputs | (in1, in2, flags) | Perform checking on the user provided inputs and diagnose any abnormalities | Perform checking on the user provided inputs and diagnose any abnormalities | [
"Perform",
"checking",
"on",
"the",
"user",
"provided",
"inputs",
"and",
"diagnose",
"any",
"abnormalities"
] | def check_inputs(in1, in2, flags):
"""
Perform checking on the user provided inputs and diagnose any abnormalities
"""
in1_kind, in1_err = classify_input_file(in1)
in2_kind, in2_err = classify_input_file(in2)
output_file = find_benchmark_flag('--benchmark_out=', flags)
output_type = find_benchmark_flag('--benchmark_out_format=', flags)
if in1_kind == IT_Executable and in2_kind == IT_Executable and output_file:
print(("WARNING: '--benchmark_out=%s' will be passed to both "
"benchmarks causing it to be overwritten") % output_file)
if in1_kind == IT_JSON and in2_kind == IT_JSON and len(flags) > 0:
print("WARNING: passing optional flags has no effect since both "
"inputs are JSON")
if output_type is not None and output_type != 'json':
print(("ERROR: passing '--benchmark_out_format=%s' to 'compare.py`"
" is not supported.") % output_type)
sys.exit(1) | [
"def",
"check_inputs",
"(",
"in1",
",",
"in2",
",",
"flags",
")",
":",
"in1_kind",
",",
"in1_err",
"=",
"classify_input_file",
"(",
"in1",
")",
"in2_kind",
",",
"in2_err",
"=",
"classify_input_file",
"(",
"in2",
")",
"output_file",
"=",
"find_benchmark_flag",
"(",
"'--benchmark_out='",
",",
"flags",
")",
"output_type",
"=",
"find_benchmark_flag",
"(",
"'--benchmark_out_format='",
",",
"flags",
")",
"if",
"in1_kind",
"==",
"IT_Executable",
"and",
"in2_kind",
"==",
"IT_Executable",
"and",
"output_file",
":",
"print",
"(",
"(",
"\"WARNING: '--benchmark_out=%s' will be passed to both \"",
"\"benchmarks causing it to be overwritten\"",
")",
"%",
"output_file",
")",
"if",
"in1_kind",
"==",
"IT_JSON",
"and",
"in2_kind",
"==",
"IT_JSON",
"and",
"len",
"(",
"flags",
")",
">",
"0",
":",
"print",
"(",
"\"WARNING: passing optional flags has no effect since both \"",
"\"inputs are JSON\"",
")",
"if",
"output_type",
"is",
"not",
"None",
"and",
"output_type",
"!=",
"'json'",
":",
"print",
"(",
"(",
"\"ERROR: passing '--benchmark_out_format=%s' to 'compare.py`\"",
"\" is not supported.\"",
")",
"%",
"output_type",
")",
"sys",
".",
"exit",
"(",
"1",
")"
] | https://github.com/google/llvm-propeller/blob/45c226984fe8377ebfb2ad7713c680d652ba678d/libcxx/utils/google-benchmark/tools/compare.py#L16-L33 |
||
facebookresearch/ELF | 1f790173095cd910976d9f651b80beb872ec5d12 | elf/utils_elf.py | python | GCWrapper.Stop | (self) | Stop all game environments. :func:`Start()` cannot be called again after :func:`Stop()` has been called. | Stop all game environments. :func:`Start()` cannot be called again after :func:`Stop()` has been called. | [
"Stop",
"all",
"game",
"environments",
".",
":",
"func",
":",
"Start",
"()",
"cannot",
"be",
"called",
"again",
"after",
":",
"func",
":",
"Stop",
"()",
"has",
"been",
"called",
"."
] | def Stop(self):
'''Stop all game environments. :func:`Start()` cannot be called again after :func:`Stop()` has been called.'''
self.GC.Stop() | [
"def",
"Stop",
"(",
"self",
")",
":",
"self",
".",
"GC",
".",
"Stop",
"(",
")"
] | https://github.com/facebookresearch/ELF/blob/1f790173095cd910976d9f651b80beb872ec5d12/elf/utils_elf.py#L388-L390 |
||
apache/singa | 93fd9da72694e68bfe3fb29d0183a65263d238a1 | python/singa/image_tool.py | python | ImageTool.resize_by_hw_range | (self, rng, inplace=True) | return self.resize_by_hw_list(size_list, 1, inplace) | Args:
rng: a tuple ((hbegin[0], hend[0]), (wbegin[1], wend[1])), include begin, exclude end
inplace: inplace imgs or not (return new_imgs) | Args:
rng: a tuple ((hbegin[0], hend[0]), (wbegin[1], wend[1])), include begin, exclude end
inplace: inplace imgs or not (return new_imgs) | [
"Args",
":",
"rng",
":",
"a",
"tuple",
"((",
"hbegin",
"[",
"0",
"]",
"hend",
"[",
"0",
"]",
")",
"(",
"wbegin",
"[",
"1",
"]",
"wend",
"[",
"1",
"]",
"))",
"include",
"begin",
"exclude",
"end",
"inplace",
":",
"inplace",
"imgs",
"or",
"not",
"(",
"return",
"new_imgs",
")"
] | def resize_by_hw_range(self, rng, inplace=True):
'''
Args:
rng: a tuple ((hbegin[0], hend[0]), (wbegin[1], wend[1])), include begin, exclude end
inplace: inplace imgs or not (return new_imgs)
'''
if rng[0][1] - rng[0][0] != rng[1][1] - rng[1][0]:
raise Exception('num of widths and heights must be the same!')
heights = range(rng[0][0], rng[0][1])
widths = range(rng[1][0], rng[1][1])
size_list = zip(heights, widths)
return self.resize_by_hw_list(size_list, 1, inplace) | [
"def",
"resize_by_hw_range",
"(",
"self",
",",
"rng",
",",
"inplace",
"=",
"True",
")",
":",
"if",
"rng",
"[",
"0",
"]",
"[",
"1",
"]",
"-",
"rng",
"[",
"0",
"]",
"[",
"0",
"]",
"!=",
"rng",
"[",
"1",
"]",
"[",
"1",
"]",
"-",
"rng",
"[",
"1",
"]",
"[",
"0",
"]",
":",
"raise",
"Exception",
"(",
"'num of widths and heights must be the same!'",
")",
"heights",
"=",
"range",
"(",
"rng",
"[",
"0",
"]",
"[",
"0",
"]",
",",
"rng",
"[",
"0",
"]",
"[",
"1",
"]",
")",
"widths",
"=",
"range",
"(",
"rng",
"[",
"1",
"]",
"[",
"0",
"]",
",",
"rng",
"[",
"1",
"]",
"[",
"1",
"]",
")",
"size_list",
"=",
"zip",
"(",
"heights",
",",
"widths",
")",
"return",
"self",
".",
"resize_by_hw_list",
"(",
"size_list",
",",
"1",
",",
"inplace",
")"
] | https://github.com/apache/singa/blob/93fd9da72694e68bfe3fb29d0183a65263d238a1/python/singa/image_tool.py#L302-L313 |
|
apple/swift-lldb | d74be846ef3e62de946df343e8c234bde93a8912 | scripts/Python/static-binding/lldb.py | python | SBCommandInterpreter.HandleCommandsFromFile | (self, file, override_context, options, result) | return _lldb.SBCommandInterpreter_HandleCommandsFromFile(self, file, override_context, options, result) | HandleCommandsFromFile(SBCommandInterpreter self, SBFileSpec file, SBExecutionContext override_context, SBCommandInterpreterRunOptions options, SBCommandReturnObject result) | HandleCommandsFromFile(SBCommandInterpreter self, SBFileSpec file, SBExecutionContext override_context, SBCommandInterpreterRunOptions options, SBCommandReturnObject result) | [
"HandleCommandsFromFile",
"(",
"SBCommandInterpreter",
"self",
"SBFileSpec",
"file",
"SBExecutionContext",
"override_context",
"SBCommandInterpreterRunOptions",
"options",
"SBCommandReturnObject",
"result",
")"
] | def HandleCommandsFromFile(self, file, override_context, options, result):
"""HandleCommandsFromFile(SBCommandInterpreter self, SBFileSpec file, SBExecutionContext override_context, SBCommandInterpreterRunOptions options, SBCommandReturnObject result)"""
return _lldb.SBCommandInterpreter_HandleCommandsFromFile(self, file, override_context, options, result) | [
"def",
"HandleCommandsFromFile",
"(",
"self",
",",
"file",
",",
"override_context",
",",
"options",
",",
"result",
")",
":",
"return",
"_lldb",
".",
"SBCommandInterpreter_HandleCommandsFromFile",
"(",
"self",
",",
"file",
",",
"override_context",
",",
"options",
",",
"result",
")"
] | https://github.com/apple/swift-lldb/blob/d74be846ef3e62de946df343e8c234bde93a8912/scripts/Python/static-binding/lldb.py#L2778-L2780 |
|
Xilinx/Vitis-AI | fc74d404563d9951b57245443c73bef389f3657f | tools/Vitis-AI-Quantizer/vai_q_tensorflow1.x/tensorflow/python/data/experimental/ops/optimization.py | python | model | () | return _apply_fn | A transformation that models performance.
Returns:
A `Dataset` transformation function, which can be passed to
`tf.data.Dataset.apply`. | A transformation that models performance. | [
"A",
"transformation",
"that",
"models",
"performance",
"."
] | def model():
"""A transformation that models performance.
Returns:
A `Dataset` transformation function, which can be passed to
`tf.data.Dataset.apply`.
"""
def _apply_fn(dataset):
"""Function from `Dataset` to `Dataset` that applies the transformation."""
return dataset_ops._ModelDataset(dataset) # pylint: disable=protected-access
return _apply_fn | [
"def",
"model",
"(",
")",
":",
"def",
"_apply_fn",
"(",
"dataset",
")",
":",
"\"\"\"Function from `Dataset` to `Dataset` that applies the transformation.\"\"\"",
"return",
"dataset_ops",
".",
"_ModelDataset",
"(",
"dataset",
")",
"# pylint: disable=protected-access",
"return",
"_apply_fn"
] | https://github.com/Xilinx/Vitis-AI/blob/fc74d404563d9951b57245443c73bef389f3657f/tools/Vitis-AI-Quantizer/vai_q_tensorflow1.x/tensorflow/python/data/experimental/ops/optimization.py#L47-L59 |
|
intel/ideep | b57539e4608e75f80dbc5c2784643d5f2f242003 | python/ideep4py/__init__.py | python | array | (x, itype=dat_array) | Create a :class:`ideep4py.mdarray` object according to ``x``.
Args:
array (numpy.ndarray or ideep4py.mdarray):
if ``x`` is numpy.ndarray not in C contiguous, it will be
converted to C contiguous before ideep4py.mdarray created.
itype (=data_type): ideep4py.mdarray created is optimized according
``itype`` flag.
Returns:
Instance of :class:`ideep4py.mdarray`. | Create a :class:`ideep4py.mdarray` object according to ``x``. | [
"Create",
"a",
":",
"class",
":",
"ideep4py",
".",
"mdarray",
"object",
"according",
"to",
"x",
"."
] | def array(x, itype=dat_array):
"""Create a :class:`ideep4py.mdarray` object according to ``x``.
Args:
array (numpy.ndarray or ideep4py.mdarray):
if ``x`` is numpy.ndarray not in C contiguous, it will be
converted to C contiguous before ideep4py.mdarray created.
itype (=data_type): ideep4py.mdarray created is optimized according
``itype`` flag.
Returns:
Instance of :class:`ideep4py.mdarray`.
"""
if isinstance(x, numpy.ndarray) and \
x.dtype == numpy.dtype('float32'):
if x.flags.contiguous is False:
x = numpy.ascontiguousarray(x)
return mdarray(x, itype)
else:
return x | [
"def",
"array",
"(",
"x",
",",
"itype",
"=",
"dat_array",
")",
":",
"if",
"isinstance",
"(",
"x",
",",
"numpy",
".",
"ndarray",
")",
"and",
"x",
".",
"dtype",
"==",
"numpy",
".",
"dtype",
"(",
"'float32'",
")",
":",
"if",
"x",
".",
"flags",
".",
"contiguous",
"is",
"False",
":",
"x",
"=",
"numpy",
".",
"ascontiguousarray",
"(",
"x",
")",
"return",
"mdarray",
"(",
"x",
",",
"itype",
")",
"else",
":",
"return",
"x"
] | https://github.com/intel/ideep/blob/b57539e4608e75f80dbc5c2784643d5f2f242003/python/ideep4py/__init__.py#L41-L61 |
||
google/mysql-protobuf | 467cda676afaa49e762c5c9164a43f6ad31a1fbf | protobuf/python/google/protobuf/text_format.py | python | Merge | (text, message) | return MergeLines(text.split('\n'), message) | Parses an ASCII representation of a protocol message into a message.
Like Parse(), but allows repeated values for a non-repeated field, and uses
the last one.
Args:
text: Message ASCII representation.
message: A protocol buffer message to merge into.
Returns:
The same message passed as argument.
Raises:
ParseError: On ASCII parsing problems. | Parses an ASCII representation of a protocol message into a message. | [
"Parses",
"an",
"ASCII",
"representation",
"of",
"a",
"protocol",
"message",
"into",
"a",
"message",
"."
] | def Merge(text, message):
"""Parses an ASCII representation of a protocol message into a message.
Like Parse(), but allows repeated values for a non-repeated field, and uses
the last one.
Args:
text: Message ASCII representation.
message: A protocol buffer message to merge into.
Returns:
The same message passed as argument.
Raises:
ParseError: On ASCII parsing problems.
"""
return MergeLines(text.split('\n'), message) | [
"def",
"Merge",
"(",
"text",
",",
"message",
")",
":",
"return",
"MergeLines",
"(",
"text",
".",
"split",
"(",
"'\\n'",
")",
",",
"message",
")"
] | https://github.com/google/mysql-protobuf/blob/467cda676afaa49e762c5c9164a43f6ad31a1fbf/protobuf/python/google/protobuf/text_format.py#L253-L269 |
|
Xilinx/Vitis-AI | fc74d404563d9951b57245443c73bef389f3657f | tools/Vitis-AI-Quantizer/vai_q_tensorflow1.x/tensorflow/python/ops/image_ops_impl.py | python | random_saturation | (image, lower, upper, seed=None) | return adjust_saturation(image, saturation_factor) | Adjust the saturation of RGB images by a random factor.
Equivalent to `adjust_saturation()` but uses a `saturation_factor` randomly
picked in the interval `[lower, upper]`.
Args:
image: RGB image or images. Size of the last dimension must be 3.
lower: float. Lower bound for the random saturation factor.
upper: float. Upper bound for the random saturation factor.
seed: An operation-specific seed. It will be used in conjunction with the
graph-level seed to determine the real seeds that will be used in this
operation. Please see the documentation of set_random_seed for its
interaction with the graph-level random seed.
Returns:
Adjusted image(s), same shape and DType as `image`.
Raises:
ValueError: if `upper <= lower` or if `lower < 0`. | Adjust the saturation of RGB images by a random factor. | [
"Adjust",
"the",
"saturation",
"of",
"RGB",
"images",
"by",
"a",
"random",
"factor",
"."
] | def random_saturation(image, lower, upper, seed=None):
"""Adjust the saturation of RGB images by a random factor.
Equivalent to `adjust_saturation()` but uses a `saturation_factor` randomly
picked in the interval `[lower, upper]`.
Args:
image: RGB image or images. Size of the last dimension must be 3.
lower: float. Lower bound for the random saturation factor.
upper: float. Upper bound for the random saturation factor.
seed: An operation-specific seed. It will be used in conjunction with the
graph-level seed to determine the real seeds that will be used in this
operation. Please see the documentation of set_random_seed for its
interaction with the graph-level random seed.
Returns:
Adjusted image(s), same shape and DType as `image`.
Raises:
ValueError: if `upper <= lower` or if `lower < 0`.
"""
if upper <= lower:
raise ValueError('upper must be > lower.')
if lower < 0:
raise ValueError('lower must be non-negative.')
# Pick a float in [lower, upper]
saturation_factor = random_ops.random_uniform([], lower, upper, seed=seed)
return adjust_saturation(image, saturation_factor) | [
"def",
"random_saturation",
"(",
"image",
",",
"lower",
",",
"upper",
",",
"seed",
"=",
"None",
")",
":",
"if",
"upper",
"<=",
"lower",
":",
"raise",
"ValueError",
"(",
"'upper must be > lower.'",
")",
"if",
"lower",
"<",
"0",
":",
"raise",
"ValueError",
"(",
"'lower must be non-negative.'",
")",
"# Pick a float in [lower, upper]",
"saturation_factor",
"=",
"random_ops",
".",
"random_uniform",
"(",
"[",
"]",
",",
"lower",
",",
"upper",
",",
"seed",
"=",
"seed",
")",
"return",
"adjust_saturation",
"(",
"image",
",",
"saturation_factor",
")"
] | https://github.com/Xilinx/Vitis-AI/blob/fc74d404563d9951b57245443c73bef389f3657f/tools/Vitis-AI-Quantizer/vai_q_tensorflow1.x/tensorflow/python/ops/image_ops_impl.py#L2051-L2080 |
|
aws/lumberyard | f85344403c1c2e77ec8c75deb2c116e97b713217 | dev/Gems/CloudGemMetric/v1/AWS/common-code/Lib/numpy/matlib.py | python | randn | (*args) | return asmatrix(np.random.randn(*args)) | Return a random matrix with data from the "standard normal" distribution.
`randn` generates a matrix filled with random floats sampled from a
univariate "normal" (Gaussian) distribution of mean 0 and variance 1.
Parameters
----------
\\*args : Arguments
Shape of the output.
If given as N integers, each integer specifies the size of one
dimension. If given as a tuple, this tuple gives the complete shape.
Returns
-------
Z : matrix of floats
A matrix of floating-point samples drawn from the standard normal
distribution.
See Also
--------
rand, numpy.random.RandomState.randn
Notes
-----
For random samples from :math:`N(\\mu, \\sigma^2)`, use:
``sigma * np.matlib.randn(...) + mu``
Examples
--------
>>> np.random.seed(123)
>>> import numpy.matlib
>>> np.matlib.randn(1)
matrix([[-1.0856306]])
>>> np.matlib.randn(1, 2, 3)
matrix([[ 0.99734545, 0.2829785 , -1.50629471],
[-0.57860025, 1.65143654, -2.42667924]])
Two-by-four matrix of samples from :math:`N(3, 6.25)`:
>>> 2.5 * np.matlib.randn((2, 4)) + 3
matrix([[1.92771843, 6.16484065, 0.83314899, 1.30278462],
[2.76322758, 6.72847407, 1.40274501, 1.8900451 ]]) | Return a random matrix with data from the "standard normal" distribution. | [
"Return",
"a",
"random",
"matrix",
"with",
"data",
"from",
"the",
"standard",
"normal",
"distribution",
"."
] | def randn(*args):
"""
Return a random matrix with data from the "standard normal" distribution.
`randn` generates a matrix filled with random floats sampled from a
univariate "normal" (Gaussian) distribution of mean 0 and variance 1.
Parameters
----------
\\*args : Arguments
Shape of the output.
If given as N integers, each integer specifies the size of one
dimension. If given as a tuple, this tuple gives the complete shape.
Returns
-------
Z : matrix of floats
A matrix of floating-point samples drawn from the standard normal
distribution.
See Also
--------
rand, numpy.random.RandomState.randn
Notes
-----
For random samples from :math:`N(\\mu, \\sigma^2)`, use:
``sigma * np.matlib.randn(...) + mu``
Examples
--------
>>> np.random.seed(123)
>>> import numpy.matlib
>>> np.matlib.randn(1)
matrix([[-1.0856306]])
>>> np.matlib.randn(1, 2, 3)
matrix([[ 0.99734545, 0.2829785 , -1.50629471],
[-0.57860025, 1.65143654, -2.42667924]])
Two-by-four matrix of samples from :math:`N(3, 6.25)`:
>>> 2.5 * np.matlib.randn((2, 4)) + 3
matrix([[1.92771843, 6.16484065, 0.83314899, 1.30278462],
[2.76322758, 6.72847407, 1.40274501, 1.8900451 ]])
"""
if isinstance(args[0], tuple):
args = args[0]
return asmatrix(np.random.randn(*args)) | [
"def",
"randn",
"(",
"*",
"args",
")",
":",
"if",
"isinstance",
"(",
"args",
"[",
"0",
"]",
",",
"tuple",
")",
":",
"args",
"=",
"args",
"[",
"0",
"]",
"return",
"asmatrix",
"(",
"np",
".",
"random",
".",
"randn",
"(",
"*",
"args",
")",
")"
] | https://github.com/aws/lumberyard/blob/f85344403c1c2e77ec8c75deb2c116e97b713217/dev/Gems/CloudGemMetric/v1/AWS/common-code/Lib/numpy/matlib.py#L266-L315 |
|
wlanjie/AndroidFFmpeg | 7baf9122f4b8e1c74e7baf4be5c422c7a5ba5aaf | tools/fdk-aac-build/armeabi-v7a/toolchain/lib/python2.7/string.py | python | rstrip | (s, chars=None) | return s.rstrip(chars) | rstrip(s [,chars]) -> string
Return a copy of the string s with trailing whitespace removed.
If chars is given and not None, remove characters in chars instead. | rstrip(s [,chars]) -> string | [
"rstrip",
"(",
"s",
"[",
"chars",
"]",
")",
"-",
">",
"string"
] | def rstrip(s, chars=None):
"""rstrip(s [,chars]) -> string
Return a copy of the string s with trailing whitespace removed.
If chars is given and not None, remove characters in chars instead.
"""
return s.rstrip(chars) | [
"def",
"rstrip",
"(",
"s",
",",
"chars",
"=",
"None",
")",
":",
"return",
"s",
".",
"rstrip",
"(",
"chars",
")"
] | https://github.com/wlanjie/AndroidFFmpeg/blob/7baf9122f4b8e1c74e7baf4be5c422c7a5ba5aaf/tools/fdk-aac-build/armeabi-v7a/toolchain/lib/python2.7/string.py#L270-L277 |
|
wxWidgets/wxPython-Classic | 19571e1ae65f1ac445f5491474121998c97a1bf0 | src/osx_cocoa/aui.py | python | AuiDockArt.SetColour | (*args, **kwargs) | return _aui.AuiDockArt_SetColour(*args, **kwargs) | SetColour(self, int id, Colour colour) | SetColour(self, int id, Colour colour) | [
"SetColour",
"(",
"self",
"int",
"id",
"Colour",
"colour",
")"
] | def SetColour(*args, **kwargs):
"""SetColour(self, int id, Colour colour)"""
return _aui.AuiDockArt_SetColour(*args, **kwargs) | [
"def",
"SetColour",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"return",
"_aui",
".",
"AuiDockArt_SetColour",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")"
] | https://github.com/wxWidgets/wxPython-Classic/blob/19571e1ae65f1ac445f5491474121998c97a1bf0/src/osx_cocoa/aui.py#L986-L988 |
|
panda3d/panda3d | 833ad89ebad58395d0af0b7ec08538e5e4308265 | direct/src/interval/FunctionInterval.py | python | ScaleInterval.__init__ | (self, nodePath, scale, duration = 0.0,
name = None, other = None) | __init__(nodePath, scale, duration, name) | __init__(nodePath, scale, duration, name) | [
"__init__",
"(",
"nodePath",
"scale",
"duration",
"name",
")"
] | def __init__(self, nodePath, scale, duration = 0.0,
name = None, other = None):
"""__init__(nodePath, scale, duration, name)
"""
# Create function
def scaleFunc(np = nodePath, scale = scale, other = other):
if other:
np.setScale(other, scale)
else:
np.setScale(scale)
# Determine name
if name is None:
name = 'ScaleInterval-%d' % ScaleInterval.scaleIntervalNum
ScaleInterval.scaleIntervalNum += 1
# Create function interval
FunctionInterval.__init__(self, scaleFunc, name = name) | [
"def",
"__init__",
"(",
"self",
",",
"nodePath",
",",
"scale",
",",
"duration",
"=",
"0.0",
",",
"name",
"=",
"None",
",",
"other",
"=",
"None",
")",
":",
"# Create function",
"def",
"scaleFunc",
"(",
"np",
"=",
"nodePath",
",",
"scale",
"=",
"scale",
",",
"other",
"=",
"other",
")",
":",
"if",
"other",
":",
"np",
".",
"setScale",
"(",
"other",
",",
"scale",
")",
"else",
":",
"np",
".",
"setScale",
"(",
"scale",
")",
"# Determine name",
"if",
"name",
"is",
"None",
":",
"name",
"=",
"'ScaleInterval-%d'",
"%",
"ScaleInterval",
".",
"scaleIntervalNum",
"ScaleInterval",
".",
"scaleIntervalNum",
"+=",
"1",
"# Create function interval",
"FunctionInterval",
".",
"__init__",
"(",
"self",
",",
"scaleFunc",
",",
"name",
"=",
"name",
")"
] | https://github.com/panda3d/panda3d/blob/833ad89ebad58395d0af0b7ec08538e5e4308265/direct/src/interval/FunctionInterval.py#L217-L232 |
||
hfinkel/llvm-project-cxxjit | 91084ef018240bbb8e24235ff5cd8c355a9c1a1e | clang/bindings/python/clang/cindex.py | python | CursorKind.is_declaration | (self) | return conf.lib.clang_isDeclaration(self) | Test if this is a declaration kind. | Test if this is a declaration kind. | [
"Test",
"if",
"this",
"is",
"a",
"declaration",
"kind",
"."
] | def is_declaration(self):
"""Test if this is a declaration kind."""
return conf.lib.clang_isDeclaration(self) | [
"def",
"is_declaration",
"(",
"self",
")",
":",
"return",
"conf",
".",
"lib",
".",
"clang_isDeclaration",
"(",
"self",
")"
] | https://github.com/hfinkel/llvm-project-cxxjit/blob/91084ef018240bbb8e24235ff5cd8c355a9c1a1e/clang/bindings/python/clang/cindex.py#L671-L673 |
|
tensorflow/tensorflow | 419e3a6b650ea4bd1b0cba23c4348f8a69f3272e | tensorflow/python/keras/engine/training_utils_v1.py | python | Aggregator.create | (self, batch_outs) | Creates the initial results from the first batch outputs.
Args:
batch_outs: A list of batch-level outputs. | Creates the initial results from the first batch outputs. | [
"Creates",
"the",
"initial",
"results",
"from",
"the",
"first",
"batch",
"outputs",
"."
] | def create(self, batch_outs):
"""Creates the initial results from the first batch outputs.
Args:
batch_outs: A list of batch-level outputs.
"""
raise NotImplementedError('Must be implemented in subclasses.') | [
"def",
"create",
"(",
"self",
",",
"batch_outs",
")",
":",
"raise",
"NotImplementedError",
"(",
"'Must be implemented in subclasses.'",
")"
] | https://github.com/tensorflow/tensorflow/blob/419e3a6b650ea4bd1b0cba23c4348f8a69f3272e/tensorflow/python/keras/engine/training_utils_v1.py#L90-L96 |
||
metashell/metashell | f4177e4854ea00c8dbc722cadab26ef413d798ea | 3rd/templight/compiler-rt/lib/sanitizer_common/scripts/cpplint.py | python | FindNextMultiLineCommentStart | (lines, lineix) | return len(lines) | Find the beginning marker for a multiline comment. | Find the beginning marker for a multiline comment. | [
"Find",
"the",
"beginning",
"marker",
"for",
"a",
"multiline",
"comment",
"."
] | def FindNextMultiLineCommentStart(lines, lineix):
"""Find the beginning marker for a multiline comment."""
while lineix < len(lines):
if lines[lineix].strip().startswith('/*'):
# Only return this marker if the comment goes beyond this line
if lines[lineix].strip().find('*/', 2) < 0:
return lineix
lineix += 1
return len(lines) | [
"def",
"FindNextMultiLineCommentStart",
"(",
"lines",
",",
"lineix",
")",
":",
"while",
"lineix",
"<",
"len",
"(",
"lines",
")",
":",
"if",
"lines",
"[",
"lineix",
"]",
".",
"strip",
"(",
")",
".",
"startswith",
"(",
"'/*'",
")",
":",
"# Only return this marker if the comment goes beyond this line",
"if",
"lines",
"[",
"lineix",
"]",
".",
"strip",
"(",
")",
".",
"find",
"(",
"'*/'",
",",
"2",
")",
"<",
"0",
":",
"return",
"lineix",
"lineix",
"+=",
"1",
"return",
"len",
"(",
"lines",
")"
] | https://github.com/metashell/metashell/blob/f4177e4854ea00c8dbc722cadab26ef413d798ea/3rd/templight/compiler-rt/lib/sanitizer_common/scripts/cpplint.py#L1364-L1372 |
|
tiann/android-native-debug | 198903ed9346dc4a74327a63cb98d449b97d8047 | app/source/art/tools/cpplint.py | python | _BlockInfo.CheckBegin | (self, filename, clean_lines, linenum, error) | Run checks that applies to text up to the opening brace.
This is mostly for checking the text after the class identifier
and the "{", usually where the base class is specified. For other
blocks, there isn't much to check, so we always pass.
Args:
filename: The name of the current file.
clean_lines: A CleansedLines instance containing the file.
linenum: The number of the line to check.
error: The function to call with any errors found. | Run checks that applies to text up to the opening brace. | [
"Run",
"checks",
"that",
"applies",
"to",
"text",
"up",
"to",
"the",
"opening",
"brace",
"."
] | def CheckBegin(self, filename, clean_lines, linenum, error):
"""Run checks that applies to text up to the opening brace.
This is mostly for checking the text after the class identifier
and the "{", usually where the base class is specified. For other
blocks, there isn't much to check, so we always pass.
Args:
filename: The name of the current file.
clean_lines: A CleansedLines instance containing the file.
linenum: The number of the line to check.
error: The function to call with any errors found.
"""
pass | [
"def",
"CheckBegin",
"(",
"self",
",",
"filename",
",",
"clean_lines",
",",
"linenum",
",",
"error",
")",
":",
"pass"
] | https://github.com/tiann/android-native-debug/blob/198903ed9346dc4a74327a63cb98d449b97d8047/app/source/art/tools/cpplint.py#L1372-L1385 |
||
domino-team/openwrt-cc | 8b181297c34d14d3ca521cc9f31430d561dbc688 | package/gli-pub/openwrt-node-packages-master/node/node-v6.9.1/deps/npm/node_modules/node-gyp/gyp/pylib/gyp/generator/eclipse.py | python | GetAllDefines | (target_list, target_dicts, data, config_name, params,
compiler_path) | return all_defines | Calculate the defines for a project.
Returns:
A dict that includes explict defines declared in gyp files along with all of
the default defines that the compiler uses. | Calculate the defines for a project. | [
"Calculate",
"the",
"defines",
"for",
"a",
"project",
"."
] | def GetAllDefines(target_list, target_dicts, data, config_name, params,
compiler_path):
"""Calculate the defines for a project.
Returns:
A dict that includes explict defines declared in gyp files along with all of
the default defines that the compiler uses.
"""
# Get defines declared in the gyp files.
all_defines = {}
flavor = gyp.common.GetFlavor(params)
if flavor == 'win':
generator_flags = params.get('generator_flags', {})
for target_name in target_list:
target = target_dicts[target_name]
if flavor == 'win':
msvs_settings = gyp.msvs_emulation.MsvsSettings(target, generator_flags)
extra_defines = msvs_settings.GetComputedDefines(config_name)
else:
extra_defines = []
if config_name in target['configurations']:
config = target['configurations'][config_name]
target_defines = config['defines']
else:
target_defines = []
for define in target_defines + extra_defines:
split_define = define.split('=', 1)
if len(split_define) == 1:
split_define.append('1')
if split_define[0].strip() in all_defines:
# Already defined
continue
all_defines[split_define[0].strip()] = split_define[1].strip()
# Get default compiler defines (if possible).
if flavor == 'win':
return all_defines # Default defines already processed in the loop above.
if compiler_path:
command = shlex.split(compiler_path)
command.extend(['-E', '-dM', '-'])
cpp_proc = subprocess.Popen(args=command, cwd='.',
stdin=subprocess.PIPE, stdout=subprocess.PIPE)
cpp_output = cpp_proc.communicate()[0]
cpp_lines = cpp_output.split('\n')
for cpp_line in cpp_lines:
if not cpp_line.strip():
continue
cpp_line_parts = cpp_line.split(' ', 2)
key = cpp_line_parts[1]
if len(cpp_line_parts) >= 3:
val = cpp_line_parts[2]
else:
val = '1'
all_defines[key] = val
return all_defines | [
"def",
"GetAllDefines",
"(",
"target_list",
",",
"target_dicts",
",",
"data",
",",
"config_name",
",",
"params",
",",
"compiler_path",
")",
":",
"# Get defines declared in the gyp files.",
"all_defines",
"=",
"{",
"}",
"flavor",
"=",
"gyp",
".",
"common",
".",
"GetFlavor",
"(",
"params",
")",
"if",
"flavor",
"==",
"'win'",
":",
"generator_flags",
"=",
"params",
".",
"get",
"(",
"'generator_flags'",
",",
"{",
"}",
")",
"for",
"target_name",
"in",
"target_list",
":",
"target",
"=",
"target_dicts",
"[",
"target_name",
"]",
"if",
"flavor",
"==",
"'win'",
":",
"msvs_settings",
"=",
"gyp",
".",
"msvs_emulation",
".",
"MsvsSettings",
"(",
"target",
",",
"generator_flags",
")",
"extra_defines",
"=",
"msvs_settings",
".",
"GetComputedDefines",
"(",
"config_name",
")",
"else",
":",
"extra_defines",
"=",
"[",
"]",
"if",
"config_name",
"in",
"target",
"[",
"'configurations'",
"]",
":",
"config",
"=",
"target",
"[",
"'configurations'",
"]",
"[",
"config_name",
"]",
"target_defines",
"=",
"config",
"[",
"'defines'",
"]",
"else",
":",
"target_defines",
"=",
"[",
"]",
"for",
"define",
"in",
"target_defines",
"+",
"extra_defines",
":",
"split_define",
"=",
"define",
".",
"split",
"(",
"'='",
",",
"1",
")",
"if",
"len",
"(",
"split_define",
")",
"==",
"1",
":",
"split_define",
".",
"append",
"(",
"'1'",
")",
"if",
"split_define",
"[",
"0",
"]",
".",
"strip",
"(",
")",
"in",
"all_defines",
":",
"# Already defined",
"continue",
"all_defines",
"[",
"split_define",
"[",
"0",
"]",
".",
"strip",
"(",
")",
"]",
"=",
"split_define",
"[",
"1",
"]",
".",
"strip",
"(",
")",
"# Get default compiler defines (if possible).",
"if",
"flavor",
"==",
"'win'",
":",
"return",
"all_defines",
"# Default defines already processed in the loop above.",
"if",
"compiler_path",
":",
"command",
"=",
"shlex",
".",
"split",
"(",
"compiler_path",
")",
"command",
".",
"extend",
"(",
"[",
"'-E'",
",",
"'-dM'",
",",
"'-'",
"]",
")",
"cpp_proc",
"=",
"subprocess",
".",
"Popen",
"(",
"args",
"=",
"command",
",",
"cwd",
"=",
"'.'",
",",
"stdin",
"=",
"subprocess",
".",
"PIPE",
",",
"stdout",
"=",
"subprocess",
".",
"PIPE",
")",
"cpp_output",
"=",
"cpp_proc",
".",
"communicate",
"(",
")",
"[",
"0",
"]",
"cpp_lines",
"=",
"cpp_output",
".",
"split",
"(",
"'\\n'",
")",
"for",
"cpp_line",
"in",
"cpp_lines",
":",
"if",
"not",
"cpp_line",
".",
"strip",
"(",
")",
":",
"continue",
"cpp_line_parts",
"=",
"cpp_line",
".",
"split",
"(",
"' '",
",",
"2",
")",
"key",
"=",
"cpp_line_parts",
"[",
"1",
"]",
"if",
"len",
"(",
"cpp_line_parts",
")",
">=",
"3",
":",
"val",
"=",
"cpp_line_parts",
"[",
"2",
"]",
"else",
":",
"val",
"=",
"'1'",
"all_defines",
"[",
"key",
"]",
"=",
"val",
"return",
"all_defines"
] | https://github.com/domino-team/openwrt-cc/blob/8b181297c34d14d3ca521cc9f31430d561dbc688/package/gli-pub/openwrt-node-packages-master/node/node-v6.9.1/deps/npm/node_modules/node-gyp/gyp/pylib/gyp/generator/eclipse.py#L193-L249 |
|
kushview/Element | 1cc16380caa2ab79461246ba758b9de1f46db2a5 | waflib/extras/run_m_script.py | python | apply_run_m_script | (tg) | Task generator customising the options etc. to call Matlab in batch
mode for running a m-script. | Task generator customising the options etc. to call Matlab in batch
mode for running a m-script. | [
"Task",
"generator",
"customising",
"the",
"options",
"etc",
".",
"to",
"call",
"Matlab",
"in",
"batch",
"mode",
"for",
"running",
"a",
"m",
"-",
"script",
"."
] | def apply_run_m_script(tg):
"""Task generator customising the options etc. to call Matlab in batch
mode for running a m-script.
"""
# Convert sources and targets to nodes
src_node = tg.path.find_resource(tg.source)
tgt_nodes = [tg.path.find_or_declare(t) for t in tg.to_list(tg.target)]
tsk = tg.create_task('run_m_script', src=src_node, tgt=tgt_nodes)
tsk.cwd = src_node.parent.abspath()
tsk.env.MSCRIPTTRUNK = os.path.splitext(src_node.name)[0]
tsk.env.LOGFILEPATH = os.path.join(tg.bld.bldnode.abspath(), '%s_%d.log' % (tsk.env.MSCRIPTTRUNK, tg.idx))
# dependencies (if the attribute 'deps' changes, trigger a recompilation)
for x in tg.to_list(getattr(tg, 'deps', [])):
node = tg.path.find_resource(x)
if not node:
tg.bld.fatal('Could not find dependency %r for running %r' % (x, src_node.abspath()))
tsk.dep_nodes.append(node)
Logs.debug('deps: found dependencies %r for running %r', tsk.dep_nodes, src_node.abspath())
# Bypass the execution of process_source by setting the source to an empty list
tg.source = [] | [
"def",
"apply_run_m_script",
"(",
"tg",
")",
":",
"# Convert sources and targets to nodes ",
"src_node",
"=",
"tg",
".",
"path",
".",
"find_resource",
"(",
"tg",
".",
"source",
")",
"tgt_nodes",
"=",
"[",
"tg",
".",
"path",
".",
"find_or_declare",
"(",
"t",
")",
"for",
"t",
"in",
"tg",
".",
"to_list",
"(",
"tg",
".",
"target",
")",
"]",
"tsk",
"=",
"tg",
".",
"create_task",
"(",
"'run_m_script'",
",",
"src",
"=",
"src_node",
",",
"tgt",
"=",
"tgt_nodes",
")",
"tsk",
".",
"cwd",
"=",
"src_node",
".",
"parent",
".",
"abspath",
"(",
")",
"tsk",
".",
"env",
".",
"MSCRIPTTRUNK",
"=",
"os",
".",
"path",
".",
"splitext",
"(",
"src_node",
".",
"name",
")",
"[",
"0",
"]",
"tsk",
".",
"env",
".",
"LOGFILEPATH",
"=",
"os",
".",
"path",
".",
"join",
"(",
"tg",
".",
"bld",
".",
"bldnode",
".",
"abspath",
"(",
")",
",",
"'%s_%d.log'",
"%",
"(",
"tsk",
".",
"env",
".",
"MSCRIPTTRUNK",
",",
"tg",
".",
"idx",
")",
")",
"# dependencies (if the attribute 'deps' changes, trigger a recompilation)",
"for",
"x",
"in",
"tg",
".",
"to_list",
"(",
"getattr",
"(",
"tg",
",",
"'deps'",
",",
"[",
"]",
")",
")",
":",
"node",
"=",
"tg",
".",
"path",
".",
"find_resource",
"(",
"x",
")",
"if",
"not",
"node",
":",
"tg",
".",
"bld",
".",
"fatal",
"(",
"'Could not find dependency %r for running %r'",
"%",
"(",
"x",
",",
"src_node",
".",
"abspath",
"(",
")",
")",
")",
"tsk",
".",
"dep_nodes",
".",
"append",
"(",
"node",
")",
"Logs",
".",
"debug",
"(",
"'deps: found dependencies %r for running %r'",
",",
"tsk",
".",
"dep_nodes",
",",
"src_node",
".",
"abspath",
"(",
")",
")",
"# Bypass the execution of process_source by setting the source to an empty list",
"tg",
".",
"source",
"=",
"[",
"]"
] | https://github.com/kushview/Element/blob/1cc16380caa2ab79461246ba758b9de1f46db2a5/waflib/extras/run_m_script.py#L65-L88 |
||
psi4/psi4 | be533f7f426b6ccc263904e55122899b16663395 | psi4/driver/qcdb/libmintsmolecule.py | python | LibmintsMolecule.atom_to_unique_offset | (self, iatom) | return -1 | Converts an atom number to the offset of this atom
in the list of generated atoms. The unique atom itself is allowed offset 0. | Converts an atom number to the offset of this atom
in the list of generated atoms. The unique atom itself is allowed offset 0. | [
"Converts",
"an",
"atom",
"number",
"to",
"the",
"offset",
"of",
"this",
"atom",
"in",
"the",
"list",
"of",
"generated",
"atoms",
".",
"The",
"unique",
"atom",
"itself",
"is",
"allowed",
"offset",
"0",
"."
] | def atom_to_unique_offset(self, iatom):
"""Converts an atom number to the offset of this atom
in the list of generated atoms. The unique atom itself is allowed offset 0.
"""
iuniq = self.PYatom_to_unique[iatom]
nequiv = self.nequiv[iuniq]
for i in range(nequiv):
if self.equiv[iuniq][i] == iatom:
return i
raise ValidationError("Molecule::atom_to_unique_offset: I should've found the atom requested...but didn't.")
return -1 | [
"def",
"atom_to_unique_offset",
"(",
"self",
",",
"iatom",
")",
":",
"iuniq",
"=",
"self",
".",
"PYatom_to_unique",
"[",
"iatom",
"]",
"nequiv",
"=",
"self",
".",
"nequiv",
"[",
"iuniq",
"]",
"for",
"i",
"in",
"range",
"(",
"nequiv",
")",
":",
"if",
"self",
".",
"equiv",
"[",
"iuniq",
"]",
"[",
"i",
"]",
"==",
"iatom",
":",
"return",
"i",
"raise",
"ValidationError",
"(",
"\"Molecule::atom_to_unique_offset: I should've found the atom requested...but didn't.\"",
")",
"return",
"-",
"1"
] | https://github.com/psi4/psi4/blob/be533f7f426b6ccc263904e55122899b16663395/psi4/driver/qcdb/libmintsmolecule.py#L3113-L3124 |
|
google-coral/edgetpu | 5020de9386ff370dcc1f63291a2d0f98eeb98adb | edgetpu/classification/engine.py | python | ClassificationEngine.classify_with_input_tensor | (self, input_tensor, threshold=0.0, top_k=3) | return result[:top_k] | Performs classification with a raw input tensor.
This requires you to process the input data (the image) and convert
it to the appropriately formatted input tensor for your model.
Args:
input_tensor (:obj:`numpy.ndarray`): A 1-D array as the input tensor.
threshold (float): Minimum confidence threshold for returned classifications. For example,
use ``0.5`` to receive only classifications with a confidence equal-to or higher-than 0.5.
top_k (int): The maximum number of classifications to return.
Returns:
A :obj:`list` of classifications, each of which is a list [int, float] that represents
the label id (int) and the confidence score (float).
Raises:
ValueError: If argument values are invalid. | Performs classification with a raw input tensor. | [
"Performs",
"classification",
"with",
"a",
"raw",
"input",
"tensor",
"."
] | def classify_with_input_tensor(self, input_tensor, threshold=0.0, top_k=3):
"""Performs classification with a raw input tensor.
This requires you to process the input data (the image) and convert
it to the appropriately formatted input tensor for your model.
Args:
input_tensor (:obj:`numpy.ndarray`): A 1-D array as the input tensor.
threshold (float): Minimum confidence threshold for returned classifications. For example,
use ``0.5`` to receive only classifications with a confidence equal-to or higher-than 0.5.
top_k (int): The maximum number of classifications to return.
Returns:
A :obj:`list` of classifications, each of which is a list [int, float] that represents
the label id (int) and the confidence score (float).
Raises:
ValueError: If argument values are invalid.
"""
if top_k <= 0:
raise ValueError('top_k must be positive!')
_, self._raw_result = self.run_inference(
input_tensor)
# top_k must be less or equal to number of possible results.
top_k = min(top_k, len(self._raw_result))
result = []
indices = numpy.argpartition(self._raw_result, -top_k)[-top_k:]
for i in indices:
if self._raw_result[i] > threshold:
result.append((i, self._raw_result[i]))
result.sort(key=lambda tup: -tup[1])
return result[:top_k] | [
"def",
"classify_with_input_tensor",
"(",
"self",
",",
"input_tensor",
",",
"threshold",
"=",
"0.0",
",",
"top_k",
"=",
"3",
")",
":",
"if",
"top_k",
"<=",
"0",
":",
"raise",
"ValueError",
"(",
"'top_k must be positive!'",
")",
"_",
",",
"self",
".",
"_raw_result",
"=",
"self",
".",
"run_inference",
"(",
"input_tensor",
")",
"# top_k must be less or equal to number of possible results.",
"top_k",
"=",
"min",
"(",
"top_k",
",",
"len",
"(",
"self",
".",
"_raw_result",
")",
")",
"result",
"=",
"[",
"]",
"indices",
"=",
"numpy",
".",
"argpartition",
"(",
"self",
".",
"_raw_result",
",",
"-",
"top_k",
")",
"[",
"-",
"top_k",
":",
"]",
"for",
"i",
"in",
"indices",
":",
"if",
"self",
".",
"_raw_result",
"[",
"i",
"]",
">",
"threshold",
":",
"result",
".",
"append",
"(",
"(",
"i",
",",
"self",
".",
"_raw_result",
"[",
"i",
"]",
")",
")",
"result",
".",
"sort",
"(",
"key",
"=",
"lambda",
"tup",
":",
"-",
"tup",
"[",
"1",
"]",
")",
"return",
"result",
"[",
":",
"top_k",
"]"
] | https://github.com/google-coral/edgetpu/blob/5020de9386ff370dcc1f63291a2d0f98eeb98adb/edgetpu/classification/engine.py#L101-L132 |
|
pytorch/pytorch | 7176c92687d3cc847cc046bf002269c6949a21c2 | caffe2/python/net_builder.py | python | NetBuilder.stop_blob | (self) | return self._stop_blob | Returns the BlobReference to the stop_blob of this NetBuilder.
If one is not yet available, creates one.
This function assumes that the stop_blob() will be used immediatelly
in the current net, so it doesn't initialize it if the current net is
the first of the builder. | Returns the BlobReference to the stop_blob of this NetBuilder.
If one is not yet available, creates one.
This function assumes that the stop_blob() will be used immediatelly
in the current net, so it doesn't initialize it if the current net is
the first of the builder. | [
"Returns",
"the",
"BlobReference",
"to",
"the",
"stop_blob",
"of",
"this",
"NetBuilder",
".",
"If",
"one",
"is",
"not",
"yet",
"available",
"creates",
"one",
".",
"This",
"function",
"assumes",
"that",
"the",
"stop_blob",
"()",
"will",
"be",
"used",
"immediatelly",
"in",
"the",
"current",
"net",
"so",
"it",
"doesn",
"t",
"initialize",
"it",
"if",
"the",
"current",
"net",
"is",
"the",
"first",
"of",
"the",
"builder",
"."
] | def stop_blob(self):
"""
Returns the BlobReference to the stop_blob of this NetBuilder.
If one is not yet available, creates one.
This function assumes that the stop_blob() will be used immediatelly
in the current net, so it doesn't initialize it if the current net is
the first of the builder.
"""
assert not self._use_control_ops, \
'Stop blobs are not used with control operators'
if self._stop_blob is None:
net = self.current_net()
self._stop_blob = core.BlobReference(
net.NextName('stop_blob'), net=net)
net.Const(False, blob_out=self._stop_blob)
if self._current_net != self._children[0]:
self._children.insert(0, core.Net('stop_blob_init'))
self._children[0].Const(False, blob_out=self._stop_blob)
return self._stop_blob | [
"def",
"stop_blob",
"(",
"self",
")",
":",
"assert",
"not",
"self",
".",
"_use_control_ops",
",",
"'Stop blobs are not used with control operators'",
"if",
"self",
".",
"_stop_blob",
"is",
"None",
":",
"net",
"=",
"self",
".",
"current_net",
"(",
")",
"self",
".",
"_stop_blob",
"=",
"core",
".",
"BlobReference",
"(",
"net",
".",
"NextName",
"(",
"'stop_blob'",
")",
",",
"net",
"=",
"net",
")",
"net",
".",
"Const",
"(",
"False",
",",
"blob_out",
"=",
"self",
".",
"_stop_blob",
")",
"if",
"self",
".",
"_current_net",
"!=",
"self",
".",
"_children",
"[",
"0",
"]",
":",
"self",
".",
"_children",
".",
"insert",
"(",
"0",
",",
"core",
".",
"Net",
"(",
"'stop_blob_init'",
")",
")",
"self",
".",
"_children",
"[",
"0",
"]",
".",
"Const",
"(",
"False",
",",
"blob_out",
"=",
"self",
".",
"_stop_blob",
")",
"return",
"self",
".",
"_stop_blob"
] | https://github.com/pytorch/pytorch/blob/7176c92687d3cc847cc046bf002269c6949a21c2/caffe2/python/net_builder.py#L57-L75 |
|
TimoSaemann/caffe-segnet-cudnn5 | abcf30dca449245e101bf4ced519f716177f0885 | python/caffe/draw.py | python | get_pooling_types_dict | () | return d | Get dictionary mapping pooling type number to type name | Get dictionary mapping pooling type number to type name | [
"Get",
"dictionary",
"mapping",
"pooling",
"type",
"number",
"to",
"type",
"name"
] | def get_pooling_types_dict():
"""Get dictionary mapping pooling type number to type name
"""
desc = caffe_pb2.PoolingParameter.PoolMethod.DESCRIPTOR
d = {}
for k, v in desc.values_by_name.items():
d[v.number] = k
return d | [
"def",
"get_pooling_types_dict",
"(",
")",
":",
"desc",
"=",
"caffe_pb2",
".",
"PoolingParameter",
".",
"PoolMethod",
".",
"DESCRIPTOR",
"d",
"=",
"{",
"}",
"for",
"k",
",",
"v",
"in",
"desc",
".",
"values_by_name",
".",
"items",
"(",
")",
":",
"d",
"[",
"v",
".",
"number",
"]",
"=",
"k",
"return",
"d"
] | https://github.com/TimoSaemann/caffe-segnet-cudnn5/blob/abcf30dca449245e101bf4ced519f716177f0885/python/caffe/draw.py#L36-L43 |
|
KratosMultiphysics/Kratos | 0000833054ed0503424eb28205d6508d9ca6cbbc | applications/RANSApplication/python_scripts/formulations/rans_formulation.py | python | RansFormulation.GetModelPart | (self) | return None | Returns the model part used for solving current formulation (if a strategy is used only.)
Returns:
Kratos.ModelPart: Model part used for solving current formulation | Returns the model part used for solving current formulation (if a strategy is used only.) | [
"Returns",
"the",
"model",
"part",
"used",
"for",
"solving",
"current",
"formulation",
"(",
"if",
"a",
"strategy",
"is",
"used",
"only",
".",
")"
] | def GetModelPart(self):
"""Returns the model part used for solving current formulation (if a strategy is used only.)
Returns:
Kratos.ModelPart: Model part used for solving current formulation
"""
if (self.GetStrategy() is not None):
return self.GetStrategy().GetModelPart()
return None | [
"def",
"GetModelPart",
"(",
"self",
")",
":",
"if",
"(",
"self",
".",
"GetStrategy",
"(",
")",
"is",
"not",
"None",
")",
":",
"return",
"self",
".",
"GetStrategy",
"(",
")",
".",
"GetModelPart",
"(",
")",
"return",
"None"
] | https://github.com/KratosMultiphysics/Kratos/blob/0000833054ed0503424eb28205d6508d9ca6cbbc/applications/RANSApplication/python_scripts/formulations/rans_formulation.py#L341-L350 |
|
MegEngine/MegEngine | ce9ad07a27ec909fb8db4dd67943d24ba98fb93a | imperative/python/megengine/distributed/group.py | python | get_world_size | () | return _sd.world_size if _sd is not None else 1 | r"""Get the total number of processes participating in the job. | r"""Get the total number of processes participating in the job. | [
"r",
"Get",
"the",
"total",
"number",
"of",
"processes",
"participating",
"in",
"the",
"job",
"."
] | def get_world_size() -> int:
r"""Get the total number of processes participating in the job."""
return _sd.world_size if _sd is not None else 1 | [
"def",
"get_world_size",
"(",
")",
"->",
"int",
":",
"return",
"_sd",
".",
"world_size",
"if",
"_sd",
"is",
"not",
"None",
"else",
"1"
] | https://github.com/MegEngine/MegEngine/blob/ce9ad07a27ec909fb8db4dd67943d24ba98fb93a/imperative/python/megengine/distributed/group.py#L205-L207 |
|
aws/lumberyard | f85344403c1c2e77ec8c75deb2c116e97b713217 | dev/Tools/Python/3.7.10/mac/Python.framework/Versions/3.7/lib/python3.7/code.py | python | InteractiveInterpreter.__init__ | (self, locals=None) | Constructor.
The optional 'locals' argument specifies the dictionary in
which code will be executed; it defaults to a newly created
dictionary with key "__name__" set to "__console__" and key
"__doc__" set to None. | Constructor. | [
"Constructor",
"."
] | def __init__(self, locals=None):
"""Constructor.
The optional 'locals' argument specifies the dictionary in
which code will be executed; it defaults to a newly created
dictionary with key "__name__" set to "__console__" and key
"__doc__" set to None.
"""
if locals is None:
locals = {"__name__": "__console__", "__doc__": None}
self.locals = locals
self.compile = CommandCompiler() | [
"def",
"__init__",
"(",
"self",
",",
"locals",
"=",
"None",
")",
":",
"if",
"locals",
"is",
"None",
":",
"locals",
"=",
"{",
"\"__name__\"",
":",
"\"__console__\"",
",",
"\"__doc__\"",
":",
"None",
"}",
"self",
".",
"locals",
"=",
"locals",
"self",
".",
"compile",
"=",
"CommandCompiler",
"(",
")"
] | https://github.com/aws/lumberyard/blob/f85344403c1c2e77ec8c75deb2c116e97b713217/dev/Tools/Python/3.7.10/mac/Python.framework/Versions/3.7/lib/python3.7/code.py#L24-L36 |
||
adobe/chromium | cfe5bf0b51b1f6b9fe239c2a3c2f2364da9967d7 | base/android/jni_generator/jni_generator.py | python | ExtractCalledByNatives | (contents) | return MangleCalledByNatives(called_by_natives) | Parses all methods annotated with @CalledByNative.
Args:
contents: the contents of the java file.
Returns:
A list of dict with information about the annotated methods.
TODO(bulach): return a CalledByNative object.
Raises:
ParseError: if unable to parse. | Parses all methods annotated with @CalledByNative. | [
"Parses",
"all",
"methods",
"annotated",
"with",
"@CalledByNative",
"."
] | def ExtractCalledByNatives(contents):
"""Parses all methods annotated with @CalledByNative.
Args:
contents: the contents of the java file.
Returns:
A list of dict with information about the annotated methods.
TODO(bulach): return a CalledByNative object.
Raises:
ParseError: if unable to parse.
"""
called_by_natives = []
for match in re.finditer(RE_CALLED_BY_NATIVE, contents):
called_by_natives += [CalledByNative(
system_class=False,
unchecked='Unchecked' in match.group('Unchecked'),
static='static' in match.group('prefix'),
java_class_name=match.group('annotation') or '',
return_type=match.group('return_type'),
env_call=GetEnvCallForReturnType(match.group('return_type')),
name=match.group('name'),
params=ParseParams(match.group('params')))]
# Check for any @CalledByNative occurrences that weren't matched.
unmatched_lines = re.sub(RE_CALLED_BY_NATIVE, '', contents).split('\n')
for line1, line2 in zip(unmatched_lines, unmatched_lines[1:]):
if '@CalledByNative' in line1:
raise ParseError('could not parse @CalledByNative method signature',
line1, line2)
return MangleCalledByNatives(called_by_natives) | [
"def",
"ExtractCalledByNatives",
"(",
"contents",
")",
":",
"called_by_natives",
"=",
"[",
"]",
"for",
"match",
"in",
"re",
".",
"finditer",
"(",
"RE_CALLED_BY_NATIVE",
",",
"contents",
")",
":",
"called_by_natives",
"+=",
"[",
"CalledByNative",
"(",
"system_class",
"=",
"False",
",",
"unchecked",
"=",
"'Unchecked'",
"in",
"match",
".",
"group",
"(",
"'Unchecked'",
")",
",",
"static",
"=",
"'static'",
"in",
"match",
".",
"group",
"(",
"'prefix'",
")",
",",
"java_class_name",
"=",
"match",
".",
"group",
"(",
"'annotation'",
")",
"or",
"''",
",",
"return_type",
"=",
"match",
".",
"group",
"(",
"'return_type'",
")",
",",
"env_call",
"=",
"GetEnvCallForReturnType",
"(",
"match",
".",
"group",
"(",
"'return_type'",
")",
")",
",",
"name",
"=",
"match",
".",
"group",
"(",
"'name'",
")",
",",
"params",
"=",
"ParseParams",
"(",
"match",
".",
"group",
"(",
"'params'",
")",
")",
")",
"]",
"# Check for any @CalledByNative occurrences that weren't matched.",
"unmatched_lines",
"=",
"re",
".",
"sub",
"(",
"RE_CALLED_BY_NATIVE",
",",
"''",
",",
"contents",
")",
".",
"split",
"(",
"'\\n'",
")",
"for",
"line1",
",",
"line2",
"in",
"zip",
"(",
"unmatched_lines",
",",
"unmatched_lines",
"[",
"1",
":",
"]",
")",
":",
"if",
"'@CalledByNative'",
"in",
"line1",
":",
"raise",
"ParseError",
"(",
"'could not parse @CalledByNative method signature'",
",",
"line1",
",",
"line2",
")",
"return",
"MangleCalledByNatives",
"(",
"called_by_natives",
")"
] | https://github.com/adobe/chromium/blob/cfe5bf0b51b1f6b9fe239c2a3c2f2364da9967d7/base/android/jni_generator/jni_generator.py#L348-L378 |
|
hanpfei/chromium-net | 392cc1fa3a8f92f42e4071ab6e674d8e0482f83f | third_party/catapult/third_party/coverage/coverage/templite.py | python | Templite._syntax_error | (self, msg, thing) | Raise a syntax error using `msg`, and showing `thing`. | Raise a syntax error using `msg`, and showing `thing`. | [
"Raise",
"a",
"syntax",
"error",
"using",
"msg",
"and",
"showing",
"thing",
"."
] | def _syntax_error(self, msg, thing):
"""Raise a syntax error using `msg`, and showing `thing`."""
raise TempliteSyntaxError("%s: %r" % (msg, thing)) | [
"def",
"_syntax_error",
"(",
"self",
",",
"msg",
",",
"thing",
")",
":",
"raise",
"TempliteSyntaxError",
"(",
"\"%s: %r\"",
"%",
"(",
"msg",
",",
"thing",
")",
")"
] | https://github.com/hanpfei/chromium-net/blob/392cc1fa3a8f92f42e4071ab6e674d8e0482f83f/third_party/catapult/third_party/coverage/coverage/templite.py#L234-L236 |
||
FreeCAD/FreeCAD | ba42231b9c6889b89e064d6d563448ed81e376ec | src/Mod/Draft/draftguitools/gui_annotationstyleeditor.py | python | AnnotationStyleEditor.update_style | (self, arg=None) | Update the current style with the values from the editor. | Update the current style with the values from the editor. | [
"Update",
"the",
"current",
"style",
"with",
"the",
"values",
"from",
"the",
"editor",
"."
] | def update_style(self, arg=None):
"""Update the current style with the values from the editor."""
index = self.form.comboBoxStyles.currentIndex()
if index > 1:
values = {}
style = self.form.comboBoxStyles.itemText(index)
for key in DEFAULT.keys():
control = getattr(self.form, key)
if DEFAULT[key][0] == "str":
values[key] = control.text()
elif DEFAULT[key][0] == "font":
values[key] = control.currentFont().family()
elif DEFAULT[key][0] == "color":
values[key] = control.property("color").rgb() << 8
elif DEFAULT[key][0] in ["int", "float"]:
values[key] = control.value()
elif DEFAULT[key][0] == "bool":
values[key] = control.isChecked()
elif DEFAULT[key][0] == "index":
values[key] = control.currentIndex()
self.styles[style] = values | [
"def",
"update_style",
"(",
"self",
",",
"arg",
"=",
"None",
")",
":",
"index",
"=",
"self",
".",
"form",
".",
"comboBoxStyles",
".",
"currentIndex",
"(",
")",
"if",
"index",
">",
"1",
":",
"values",
"=",
"{",
"}",
"style",
"=",
"self",
".",
"form",
".",
"comboBoxStyles",
".",
"itemText",
"(",
"index",
")",
"for",
"key",
"in",
"DEFAULT",
".",
"keys",
"(",
")",
":",
"control",
"=",
"getattr",
"(",
"self",
".",
"form",
",",
"key",
")",
"if",
"DEFAULT",
"[",
"key",
"]",
"[",
"0",
"]",
"==",
"\"str\"",
":",
"values",
"[",
"key",
"]",
"=",
"control",
".",
"text",
"(",
")",
"elif",
"DEFAULT",
"[",
"key",
"]",
"[",
"0",
"]",
"==",
"\"font\"",
":",
"values",
"[",
"key",
"]",
"=",
"control",
".",
"currentFont",
"(",
")",
".",
"family",
"(",
")",
"elif",
"DEFAULT",
"[",
"key",
"]",
"[",
"0",
"]",
"==",
"\"color\"",
":",
"values",
"[",
"key",
"]",
"=",
"control",
".",
"property",
"(",
"\"color\"",
")",
".",
"rgb",
"(",
")",
"<<",
"8",
"elif",
"DEFAULT",
"[",
"key",
"]",
"[",
"0",
"]",
"in",
"[",
"\"int\"",
",",
"\"float\"",
"]",
":",
"values",
"[",
"key",
"]",
"=",
"control",
".",
"value",
"(",
")",
"elif",
"DEFAULT",
"[",
"key",
"]",
"[",
"0",
"]",
"==",
"\"bool\"",
":",
"values",
"[",
"key",
"]",
"=",
"control",
".",
"isChecked",
"(",
")",
"elif",
"DEFAULT",
"[",
"key",
"]",
"[",
"0",
"]",
"==",
"\"index\"",
":",
"values",
"[",
"key",
"]",
"=",
"control",
".",
"currentIndex",
"(",
")",
"self",
".",
"styles",
"[",
"style",
"]",
"=",
"values"
] | https://github.com/FreeCAD/FreeCAD/blob/ba42231b9c6889b89e064d6d563448ed81e376ec/src/Mod/Draft/draftguitools/gui_annotationstyleeditor.py#L353-L373 |
||
catboost/catboost | 167f64f237114a4d10b2b4ee42adb4569137debe | contrib/python/pandas/py2/pandas/io/pytables.py | python | HDFStore.select | (self, key, where=None, start=None, stop=None, columns=None,
iterator=False, chunksize=None, auto_close=False, **kwargs) | return it.get_result() | Retrieve pandas object stored in file, optionally based on where
criteria
Parameters
----------
key : object
where : list of Term (or convertible) objects, optional
start : integer (defaults to None), row number to start selection
stop : integer (defaults to None), row number to stop selection
columns : a list of columns that if not None, will limit the return
columns
iterator : boolean, return an iterator, default False
chunksize : nrows to include in iteration, return an iterator
auto_close : boolean, should automatically close the store when
finished, default is False
Returns
-------
The selected object | Retrieve pandas object stored in file, optionally based on where
criteria | [
"Retrieve",
"pandas",
"object",
"stored",
"in",
"file",
"optionally",
"based",
"on",
"where",
"criteria"
] | def select(self, key, where=None, start=None, stop=None, columns=None,
iterator=False, chunksize=None, auto_close=False, **kwargs):
"""
Retrieve pandas object stored in file, optionally based on where
criteria
Parameters
----------
key : object
where : list of Term (or convertible) objects, optional
start : integer (defaults to None), row number to start selection
stop : integer (defaults to None), row number to stop selection
columns : a list of columns that if not None, will limit the return
columns
iterator : boolean, return an iterator, default False
chunksize : nrows to include in iteration, return an iterator
auto_close : boolean, should automatically close the store when
finished, default is False
Returns
-------
The selected object
"""
group = self.get_node(key)
if group is None:
raise KeyError('No object named {key} in the file'.format(key=key))
# create the storer and axes
where = _ensure_term(where, scope_level=1)
s = self._create_storer(group)
s.infer_axes()
# function to call on iteration
def func(_start, _stop, _where):
return s.read(start=_start, stop=_stop,
where=_where,
columns=columns)
# create the iterator
it = TableIterator(self, s, func, where=where, nrows=s.nrows,
start=start, stop=stop, iterator=iterator,
chunksize=chunksize, auto_close=auto_close)
return it.get_result() | [
"def",
"select",
"(",
"self",
",",
"key",
",",
"where",
"=",
"None",
",",
"start",
"=",
"None",
",",
"stop",
"=",
"None",
",",
"columns",
"=",
"None",
",",
"iterator",
"=",
"False",
",",
"chunksize",
"=",
"None",
",",
"auto_close",
"=",
"False",
",",
"*",
"*",
"kwargs",
")",
":",
"group",
"=",
"self",
".",
"get_node",
"(",
"key",
")",
"if",
"group",
"is",
"None",
":",
"raise",
"KeyError",
"(",
"'No object named {key} in the file'",
".",
"format",
"(",
"key",
"=",
"key",
")",
")",
"# create the storer and axes",
"where",
"=",
"_ensure_term",
"(",
"where",
",",
"scope_level",
"=",
"1",
")",
"s",
"=",
"self",
".",
"_create_storer",
"(",
"group",
")",
"s",
".",
"infer_axes",
"(",
")",
"# function to call on iteration",
"def",
"func",
"(",
"_start",
",",
"_stop",
",",
"_where",
")",
":",
"return",
"s",
".",
"read",
"(",
"start",
"=",
"_start",
",",
"stop",
"=",
"_stop",
",",
"where",
"=",
"_where",
",",
"columns",
"=",
"columns",
")",
"# create the iterator",
"it",
"=",
"TableIterator",
"(",
"self",
",",
"s",
",",
"func",
",",
"where",
"=",
"where",
",",
"nrows",
"=",
"s",
".",
"nrows",
",",
"start",
"=",
"start",
",",
"stop",
"=",
"stop",
",",
"iterator",
"=",
"iterator",
",",
"chunksize",
"=",
"chunksize",
",",
"auto_close",
"=",
"auto_close",
")",
"return",
"it",
".",
"get_result",
"(",
")"
] | https://github.com/catboost/catboost/blob/167f64f237114a4d10b2b4ee42adb4569137debe/contrib/python/pandas/py2/pandas/io/pytables.py#L697-L740 |
|
eclipse/sumo | 7132a9b8b6eea734bdec38479026b4d8c4336d03 | tools/contributed/sumopy/coremodules/demand/wxgui.py | python | WxGui.init_widgets | (self, mainframe) | Set mainframe and initialize widgets to various places. | Set mainframe and initialize widgets to various places. | [
"Set",
"mainframe",
"and",
"initialize",
"widgets",
"to",
"various",
"places",
"."
] | def init_widgets(self, mainframe):
"""
Set mainframe and initialize widgets to various places.
"""
self._mainframe = mainframe
#self._neteditor = mainframe.add_view("Network", Neteditor)
# mainframe.browse_obj(self._module)
self.make_menu()
self.make_toolbar() | [
"def",
"init_widgets",
"(",
"self",
",",
"mainframe",
")",
":",
"self",
".",
"_mainframe",
"=",
"mainframe",
"#self._neteditor = mainframe.add_view(\"Network\", Neteditor)",
"# mainframe.browse_obj(self._module)",
"self",
".",
"make_menu",
"(",
")",
"self",
".",
"make_toolbar",
"(",
")"
] | https://github.com/eclipse/sumo/blob/7132a9b8b6eea734bdec38479026b4d8c4336d03/tools/contributed/sumopy/coremodules/demand/wxgui.py#L275-L284 |
||
hughperkins/tf-coriander | 970d3df6c11400ad68405f22b0c42a52374e94ca | tensorflow/python/ops/math_ops.py | python | conj | (x, name=None) | r"""Returns the complex conjugate of a complex number.
Given a tensor `input` of complex numbers, this operation returns a tensor of
complex numbers that are the complex conjugate of each element in `input`. The
complex numbers in `input` must be of the form \\(a + bj\\), where *a* is the
real part and *b* is the imaginary part.
The complex conjugate returned by this operation is of the form \\(a - bj\\).
For example:
# tensor 'input' is [-2.25 + 4.75j, 3.25 + 5.75j]
tf.conj(input) ==> [-2.25 - 4.75j, 3.25 - 5.75j]
If `x` is real, it is returned unchanged.
Args:
x: `Tensor` to conjugate. Must have numeric type.
name: A name for the operation (optional).
Returns:
A `Tensor` that is the conjugate of `x` (with the same type).
Raises:
TypeError: If `x` is not a numeric tensor. | r"""Returns the complex conjugate of a complex number. | [
"r",
"Returns",
"the",
"complex",
"conjugate",
"of",
"a",
"complex",
"number",
"."
] | def conj(x, name=None):
r"""Returns the complex conjugate of a complex number.
Given a tensor `input` of complex numbers, this operation returns a tensor of
complex numbers that are the complex conjugate of each element in `input`. The
complex numbers in `input` must be of the form \\(a + bj\\), where *a* is the
real part and *b* is the imaginary part.
The complex conjugate returned by this operation is of the form \\(a - bj\\).
For example:
# tensor 'input' is [-2.25 + 4.75j, 3.25 + 5.75j]
tf.conj(input) ==> [-2.25 - 4.75j, 3.25 - 5.75j]
If `x` is real, it is returned unchanged.
Args:
x: `Tensor` to conjugate. Must have numeric type.
name: A name for the operation (optional).
Returns:
A `Tensor` that is the conjugate of `x` (with the same type).
Raises:
TypeError: If `x` is not a numeric tensor.
"""
with ops.name_scope(name, "Conj", [x]) as name:
x = ops.convert_to_tensor(x, name="x")
if x.dtype.is_complex:
return gen_math_ops._conj(x, name=name)
elif x.dtype.is_floating or x.dtype.is_integer:
return x
else:
raise TypeError("Expected numeric tensor, got dtype %r" % x.dtype) | [
"def",
"conj",
"(",
"x",
",",
"name",
"=",
"None",
")",
":",
"with",
"ops",
".",
"name_scope",
"(",
"name",
",",
"\"Conj\"",
",",
"[",
"x",
"]",
")",
"as",
"name",
":",
"x",
"=",
"ops",
".",
"convert_to_tensor",
"(",
"x",
",",
"name",
"=",
"\"x\"",
")",
"if",
"x",
".",
"dtype",
".",
"is_complex",
":",
"return",
"gen_math_ops",
".",
"_conj",
"(",
"x",
",",
"name",
"=",
"name",
")",
"elif",
"x",
".",
"dtype",
".",
"is_floating",
"or",
"x",
".",
"dtype",
".",
"is_integer",
":",
"return",
"x",
"else",
":",
"raise",
"TypeError",
"(",
"\"Expected numeric tensor, got dtype %r\"",
"%",
"x",
".",
"dtype",
")"
] | https://github.com/hughperkins/tf-coriander/blob/970d3df6c11400ad68405f22b0c42a52374e94ca/tensorflow/python/ops/math_ops.py#L1760-L1794 |
||
wxWidgets/wxPython-Classic | 19571e1ae65f1ac445f5491474121998c97a1bf0 | src/gtk/aui.py | python | AuiTabContainer.GetArtProvider | (*args, **kwargs) | return _aui.AuiTabContainer_GetArtProvider(*args, **kwargs) | GetArtProvider(self) -> AuiTabArt | GetArtProvider(self) -> AuiTabArt | [
"GetArtProvider",
"(",
"self",
")",
"-",
">",
"AuiTabArt"
] | def GetArtProvider(*args, **kwargs):
"""GetArtProvider(self) -> AuiTabArt"""
return _aui.AuiTabContainer_GetArtProvider(*args, **kwargs) | [
"def",
"GetArtProvider",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"return",
"_aui",
".",
"AuiTabContainer_GetArtProvider",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")"
] | https://github.com/wxWidgets/wxPython-Classic/blob/19571e1ae65f1ac445f5491474121998c97a1bf0/src/gtk/aui.py#L1133-L1135 |
|
wxWidgets/wxPython-Classic | 19571e1ae65f1ac445f5491474121998c97a1bf0 | src/msw/richtext.py | python | RichTextParagraphLayoutBox.GetStyleForRange | (*args, **kwargs) | return _richtext.RichTextParagraphLayoutBox_GetStyleForRange(*args, **kwargs) | GetStyleForRange(self, RichTextRange range, RichTextAttr style) -> bool | GetStyleForRange(self, RichTextRange range, RichTextAttr style) -> bool | [
"GetStyleForRange",
"(",
"self",
"RichTextRange",
"range",
"RichTextAttr",
"style",
")",
"-",
">",
"bool"
] | def GetStyleForRange(*args, **kwargs):
"""GetStyleForRange(self, RichTextRange range, RichTextAttr style) -> bool"""
return _richtext.RichTextParagraphLayoutBox_GetStyleForRange(*args, **kwargs) | [
"def",
"GetStyleForRange",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"return",
"_richtext",
".",
"RichTextParagraphLayoutBox_GetStyleForRange",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")"
] | https://github.com/wxWidgets/wxPython-Classic/blob/19571e1ae65f1ac445f5491474121998c97a1bf0/src/msw/richtext.py#L1744-L1746 |
|
aws/lumberyard | f85344403c1c2e77ec8c75deb2c116e97b713217 | dev/Tools/Python/3.7.10/windows/Lib/site-packages/setuptools/depends.py | python | Require.is_current | (self, paths=None) | return self.version_ok(version) | Return true if dependency is present and up-to-date on 'paths | Return true if dependency is present and up-to-date on 'paths | [
"Return",
"true",
"if",
"dependency",
"is",
"present",
"and",
"up",
"-",
"to",
"-",
"date",
"on",
"paths"
] | def is_current(self, paths=None):
"""Return true if dependency is present and up-to-date on 'paths'"""
version = self.get_version(paths)
if version is None:
return False
return self.version_ok(version) | [
"def",
"is_current",
"(",
"self",
",",
"paths",
"=",
"None",
")",
":",
"version",
"=",
"self",
".",
"get_version",
"(",
"paths",
")",
"if",
"version",
"is",
"None",
":",
"return",
"False",
"return",
"self",
".",
"version_ok",
"(",
"version",
")"
] | https://github.com/aws/lumberyard/blob/f85344403c1c2e77ec8c75deb2c116e97b713217/dev/Tools/Python/3.7.10/windows/Lib/site-packages/setuptools/depends.py#L77-L82 |
|
tensorflow/tensorflow | 419e3a6b650ea4bd1b0cba23c4348f8a69f3272e | tensorflow/python/profiler/internal/flops_registry.py | python | _conv_2d_backprop_filter_flops | (graph, node) | return ops.OpStats("flops",
(2 * image_shape.num_elements()
* kernel_shape.num_elements()
/ (image_shape.dims[-1].value * strides_product))) | Compute flops for Conv2DBackpropFilter operation. | Compute flops for Conv2DBackpropFilter operation. | [
"Compute",
"flops",
"for",
"Conv2DBackpropFilter",
"operation",
"."
] | def _conv_2d_backprop_filter_flops(graph, node):
"""Compute flops for Conv2DBackpropFilter operation."""
# Formula same as for Conv2DBackpropInput:
# batch_size * image_x_dim * image_y_dim * kernel_x_dim * kernel_y_dim
# * input_depth * output_depth * 2 / (image_x_stride * image_x_stride)
#
_verify_conv_data_format(node)
# image_shape = [batch_size, image_y_dim, image_x_dim, input_depth]
image_shape = graph_util.tensor_shape_from_node_def_name(graph, node.input[0])
image_shape.assert_is_fully_defined()
# kernel_shape = [kernel_y_dim, kernel_x_dim, input_depth, output_depth]
kernel_shape = graph_util.tensor_shape_from_node_def_name(graph, node.name)
kernel_shape.assert_is_fully_defined()
# strides
strides_shape = list(node.attr["strides"].list.i)
strides_product = strides_shape[1] * strides_shape[2]
return ops.OpStats("flops",
(2 * image_shape.num_elements()
* kernel_shape.num_elements()
/ (image_shape.dims[-1].value * strides_product))) | [
"def",
"_conv_2d_backprop_filter_flops",
"(",
"graph",
",",
"node",
")",
":",
"# Formula same as for Conv2DBackpropInput:",
"# batch_size * image_x_dim * image_y_dim * kernel_x_dim * kernel_y_dim",
"# * input_depth * output_depth * 2 / (image_x_stride * image_x_stride)",
"#",
"_verify_conv_data_format",
"(",
"node",
")",
"# image_shape = [batch_size, image_y_dim, image_x_dim, input_depth]",
"image_shape",
"=",
"graph_util",
".",
"tensor_shape_from_node_def_name",
"(",
"graph",
",",
"node",
".",
"input",
"[",
"0",
"]",
")",
"image_shape",
".",
"assert_is_fully_defined",
"(",
")",
"# kernel_shape = [kernel_y_dim, kernel_x_dim, input_depth, output_depth]",
"kernel_shape",
"=",
"graph_util",
".",
"tensor_shape_from_node_def_name",
"(",
"graph",
",",
"node",
".",
"name",
")",
"kernel_shape",
".",
"assert_is_fully_defined",
"(",
")",
"# strides",
"strides_shape",
"=",
"list",
"(",
"node",
".",
"attr",
"[",
"\"strides\"",
"]",
".",
"list",
".",
"i",
")",
"strides_product",
"=",
"strides_shape",
"[",
"1",
"]",
"*",
"strides_shape",
"[",
"2",
"]",
"return",
"ops",
".",
"OpStats",
"(",
"\"flops\"",
",",
"(",
"2",
"*",
"image_shape",
".",
"num_elements",
"(",
")",
"*",
"kernel_shape",
".",
"num_elements",
"(",
")",
"/",
"(",
"image_shape",
".",
"dims",
"[",
"-",
"1",
"]",
".",
"value",
"*",
"strides_product",
")",
")",
")"
] | https://github.com/tensorflow/tensorflow/blob/419e3a6b650ea4bd1b0cba23c4348f8a69f3272e/tensorflow/python/profiler/internal/flops_registry.py#L410-L429 |
|
krishauser/Klampt | 972cc83ea5befac3f653c1ba20f80155768ad519 | Python/python2_version/klampt/math/optimize.py | python | OptimizationProblemBuilder.isFeasible | (self,eqTol=1e-3) | return True | Returns True if the currently bound state passes all equality, inequality, joint limit, and black-box feasibility
tests. Equality and IK constraints mut be met with equality tolerance eqTol. | Returns True if the currently bound state passes all equality, inequality, joint limit, and black-box feasibility
tests. Equality and IK constraints mut be met with equality tolerance eqTol. | [
"Returns",
"True",
"if",
"the",
"currently",
"bound",
"state",
"passes",
"all",
"equality",
"inequality",
"joint",
"limit",
"and",
"black",
"-",
"box",
"feasibility",
"tests",
".",
"Equality",
"and",
"IK",
"constraints",
"mut",
"be",
"met",
"with",
"equality",
"tolerance",
"eqTol",
"."
] | def isFeasible(self,eqTol=1e-3):
"""Returns True if the currently bound state passes all equality, inequality, joint limit, and black-box feasibility
tests. Equality and IK constraints mut be met with equality tolerance eqTol."""
if not self.inBounds(): return False
res = self.equalityResidual()
if any(abs(r) > eqTol for r in res):
return False
res = self.inequalityResidual()
if any(r > 0 for r in res):
return False
if not self.feasibilityTestsPass(): return False
return True | [
"def",
"isFeasible",
"(",
"self",
",",
"eqTol",
"=",
"1e-3",
")",
":",
"if",
"not",
"self",
".",
"inBounds",
"(",
")",
":",
"return",
"False",
"res",
"=",
"self",
".",
"equalityResidual",
"(",
")",
"if",
"any",
"(",
"abs",
"(",
"r",
")",
">",
"eqTol",
"for",
"r",
"in",
"res",
")",
":",
"return",
"False",
"res",
"=",
"self",
".",
"inequalityResidual",
"(",
")",
"if",
"any",
"(",
"r",
">",
"0",
"for",
"r",
"in",
"res",
")",
":",
"return",
"False",
"if",
"not",
"self",
".",
"feasibilityTestsPass",
"(",
")",
":",
"return",
"False",
"return",
"True"
] | https://github.com/krishauser/Klampt/blob/972cc83ea5befac3f653c1ba20f80155768ad519/Python/python2_version/klampt/math/optimize.py#L998-L1010 |
|
mantidproject/mantid | 03deeb89254ec4289edb8771e0188c2090a02f32 | qt/python/mantidqt/mantidqt/widgets/fitpropertybrowser/fitpropertybrowserplotinteraction.py | python | FitPropertyBrowserPlotInteraction.plot_current_guess | (self) | Plot the guess workspace of the currently selected function | Plot the guess workspace of the currently selected function | [
"Plot",
"the",
"guess",
"workspace",
"of",
"the",
"currently",
"selected",
"function"
] | def plot_current_guess(self):
"""
Plot the guess workspace of the currently selected function
"""
fun = self.fit_browser.currentHandler().ifun()
ws_name = self.fit_browser.workspaceName()
if fun == '' or ws_name == '':
return
out_ws_name = self._get_current_prefixed_function_name()
line = self._plot_guess_workspace(ws_name, fun, out_ws_name)
if line:
self.guess_lines[self._get_current_prefixed_function_name()] = line | [
"def",
"plot_current_guess",
"(",
"self",
")",
":",
"fun",
"=",
"self",
".",
"fit_browser",
".",
"currentHandler",
"(",
")",
".",
"ifun",
"(",
")",
"ws_name",
"=",
"self",
".",
"fit_browser",
".",
"workspaceName",
"(",
")",
"if",
"fun",
"==",
"''",
"or",
"ws_name",
"==",
"''",
":",
"return",
"out_ws_name",
"=",
"self",
".",
"_get_current_prefixed_function_name",
"(",
")",
"line",
"=",
"self",
".",
"_plot_guess_workspace",
"(",
"ws_name",
",",
"fun",
",",
"out_ws_name",
")",
"if",
"line",
":",
"self",
".",
"guess_lines",
"[",
"self",
".",
"_get_current_prefixed_function_name",
"(",
")",
"]",
"=",
"line"
] | https://github.com/mantidproject/mantid/blob/03deeb89254ec4289edb8771e0188c2090a02f32/qt/python/mantidqt/mantidqt/widgets/fitpropertybrowser/fitpropertybrowserplotinteraction.py#L99-L112 |
||
hughperkins/tf-coriander | 970d3df6c11400ad68405f22b0c42a52374e94ca | tensorflow/python/framework/ops.py | python | get_default_session | () | return _default_session_stack.get_default() | Returns the default session for the current thread.
The returned `Session` will be the innermost session on which a
`Session` or `Session.as_default()` context has been entered.
NOTE: The default session is a property of the current thread. If you
create a new thread, and wish to use the default session in that
thread, you must explicitly add a `with sess.as_default():` in that
thread's function.
Returns:
The default `Session` being used in the current thread. | Returns the default session for the current thread. | [
"Returns",
"the",
"default",
"session",
"for",
"the",
"current",
"thread",
"."
] | def get_default_session():
"""Returns the default session for the current thread.
The returned `Session` will be the innermost session on which a
`Session` or `Session.as_default()` context has been entered.
NOTE: The default session is a property of the current thread. If you
create a new thread, and wish to use the default session in that
thread, you must explicitly add a `with sess.as_default():` in that
thread's function.
Returns:
The default `Session` being used in the current thread.
"""
return _default_session_stack.get_default() | [
"def",
"get_default_session",
"(",
")",
":",
"return",
"_default_session_stack",
".",
"get_default",
"(",
")"
] | https://github.com/hughperkins/tf-coriander/blob/970d3df6c11400ad68405f22b0c42a52374e94ca/tensorflow/python/framework/ops.py#L3715-L3729 |
|
tensorflow/tensorflow | 419e3a6b650ea4bd1b0cba23c4348f8a69f3272e | tensorflow/python/keras/utils/generic_utils.py | python | serialize_keras_class_and_config | (
cls_name, cls_config, obj=None, shared_object_id=None) | return base_config | Returns the serialization of the class with the given config. | Returns the serialization of the class with the given config. | [
"Returns",
"the",
"serialization",
"of",
"the",
"class",
"with",
"the",
"given",
"config",
"."
] | def serialize_keras_class_and_config(
cls_name, cls_config, obj=None, shared_object_id=None):
"""Returns the serialization of the class with the given config."""
base_config = {'class_name': cls_name, 'config': cls_config}
# We call `serialize_keras_class_and_config` for some branches of the load
# path. In that case, we may already have a shared object ID we'd like to
# retain.
if shared_object_id is not None:
base_config[SHARED_OBJECT_KEY] = shared_object_id
# If we have an active `SharedObjectSavingScope`, check whether we've already
# serialized this config. If so, just use that config. This will store an
# extra ID field in the config, allowing us to re-create the shared object
# relationship at load time.
if _shared_object_saving_scope() is not None and obj is not None:
shared_object_config = _shared_object_saving_scope().get_config(obj)
if shared_object_config is None:
return _shared_object_saving_scope().create_config(base_config, obj)
return shared_object_config
return base_config | [
"def",
"serialize_keras_class_and_config",
"(",
"cls_name",
",",
"cls_config",
",",
"obj",
"=",
"None",
",",
"shared_object_id",
"=",
"None",
")",
":",
"base_config",
"=",
"{",
"'class_name'",
":",
"cls_name",
",",
"'config'",
":",
"cls_config",
"}",
"# We call `serialize_keras_class_and_config` for some branches of the load",
"# path. In that case, we may already have a shared object ID we'd like to",
"# retain.",
"if",
"shared_object_id",
"is",
"not",
"None",
":",
"base_config",
"[",
"SHARED_OBJECT_KEY",
"]",
"=",
"shared_object_id",
"# If we have an active `SharedObjectSavingScope`, check whether we've already",
"# serialized this config. If so, just use that config. This will store an",
"# extra ID field in the config, allowing us to re-create the shared object",
"# relationship at load time.",
"if",
"_shared_object_saving_scope",
"(",
")",
"is",
"not",
"None",
"and",
"obj",
"is",
"not",
"None",
":",
"shared_object_config",
"=",
"_shared_object_saving_scope",
"(",
")",
".",
"get_config",
"(",
"obj",
")",
"if",
"shared_object_config",
"is",
"None",
":",
"return",
"_shared_object_saving_scope",
"(",
")",
".",
"create_config",
"(",
"base_config",
",",
"obj",
")",
"return",
"shared_object_config",
"return",
"base_config"
] | https://github.com/tensorflow/tensorflow/blob/419e3a6b650ea4bd1b0cba23c4348f8a69f3272e/tensorflow/python/keras/utils/generic_utils.py#L320-L341 |
|
FreeCAD/FreeCAD | ba42231b9c6889b89e064d6d563448ed81e376ec | src/Mod/Draft/draftguitools/gui_clone.py | python | Clone.finish | (self, close=False) | Terminate the operation of the tool. | Terminate the operation of the tool. | [
"Terminate",
"the",
"operation",
"of",
"the",
"tool",
"."
] | def finish(self, close=False):
"""Terminate the operation of the tool."""
super(Clone, self).finish(close=False)
if self.moveAfterCloning:
todo.ToDo.delay(Gui.runCommand, "Draft_Move") | [
"def",
"finish",
"(",
"self",
",",
"close",
"=",
"False",
")",
":",
"super",
"(",
"Clone",
",",
"self",
")",
".",
"finish",
"(",
"close",
"=",
"False",
")",
"if",
"self",
".",
"moveAfterCloning",
":",
"todo",
".",
"ToDo",
".",
"delay",
"(",
"Gui",
".",
"runCommand",
",",
"\"Draft_Move\"",
")"
] | https://github.com/FreeCAD/FreeCAD/blob/ba42231b9c6889b89e064d6d563448ed81e376ec/src/Mod/Draft/draftguitools/gui_clone.py#L113-L117 |
||
PaddlePaddle/PaddleOCR | b756bf5f8c90142e0d89d3db0163965c686b6ffe | ppocr/utils/e2e_utils/extract_textpoint_fast.py | python | point_pair2poly | (point_pair_list) | return np.array(point_list).reshape(-1, 2) | Transfer vertical point_pairs into poly point in clockwise. | Transfer vertical point_pairs into poly point in clockwise. | [
"Transfer",
"vertical",
"point_pairs",
"into",
"poly",
"point",
"in",
"clockwise",
"."
] | def point_pair2poly(point_pair_list):
"""
Transfer vertical point_pairs into poly point in clockwise.
"""
point_num = len(point_pair_list) * 2
point_list = [0] * point_num
for idx, point_pair in enumerate(point_pair_list):
point_list[idx] = point_pair[0]
point_list[point_num - 1 - idx] = point_pair[1]
return np.array(point_list).reshape(-1, 2) | [
"def",
"point_pair2poly",
"(",
"point_pair_list",
")",
":",
"point_num",
"=",
"len",
"(",
"point_pair_list",
")",
"*",
"2",
"point_list",
"=",
"[",
"0",
"]",
"*",
"point_num",
"for",
"idx",
",",
"point_pair",
"in",
"enumerate",
"(",
"point_pair_list",
")",
":",
"point_list",
"[",
"idx",
"]",
"=",
"point_pair",
"[",
"0",
"]",
"point_list",
"[",
"point_num",
"-",
"1",
"-",
"idx",
"]",
"=",
"point_pair",
"[",
"1",
"]",
"return",
"np",
".",
"array",
"(",
"point_list",
")",
".",
"reshape",
"(",
"-",
"1",
",",
"2",
")"
] | https://github.com/PaddlePaddle/PaddleOCR/blob/b756bf5f8c90142e0d89d3db0163965c686b6ffe/ppocr/utils/e2e_utils/extract_textpoint_fast.py#L268-L277 |
|
aws/lumberyard | f85344403c1c2e77ec8c75deb2c116e97b713217 | dev/Tools/Python/3.7.10/mac/Python.framework/Versions/3.7/lib/python3.7/ipaddress.py | python | _collapse_addresses_internal | (addresses) | Loops through the addresses, collapsing concurrent netblocks.
Example:
ip1 = IPv4Network('192.0.2.0/26')
ip2 = IPv4Network('192.0.2.64/26')
ip3 = IPv4Network('192.0.2.128/26')
ip4 = IPv4Network('192.0.2.192/26')
_collapse_addresses_internal([ip1, ip2, ip3, ip4]) ->
[IPv4Network('192.0.2.0/24')]
This shouldn't be called directly; it is called via
collapse_addresses([]).
Args:
addresses: A list of IPv4Network's or IPv6Network's
Returns:
A list of IPv4Network's or IPv6Network's depending on what we were
passed. | Loops through the addresses, collapsing concurrent netblocks. | [
"Loops",
"through",
"the",
"addresses",
"collapsing",
"concurrent",
"netblocks",
"."
] | def _collapse_addresses_internal(addresses):
"""Loops through the addresses, collapsing concurrent netblocks.
Example:
ip1 = IPv4Network('192.0.2.0/26')
ip2 = IPv4Network('192.0.2.64/26')
ip3 = IPv4Network('192.0.2.128/26')
ip4 = IPv4Network('192.0.2.192/26')
_collapse_addresses_internal([ip1, ip2, ip3, ip4]) ->
[IPv4Network('192.0.2.0/24')]
This shouldn't be called directly; it is called via
collapse_addresses([]).
Args:
addresses: A list of IPv4Network's or IPv6Network's
Returns:
A list of IPv4Network's or IPv6Network's depending on what we were
passed.
"""
# First merge
to_merge = list(addresses)
subnets = {}
while to_merge:
net = to_merge.pop()
supernet = net.supernet()
existing = subnets.get(supernet)
if existing is None:
subnets[supernet] = net
elif existing != net:
# Merge consecutive subnets
del subnets[supernet]
to_merge.append(supernet)
# Then iterate over resulting networks, skipping subsumed subnets
last = None
for net in sorted(subnets.values()):
if last is not None:
# Since they are sorted, last.network_address <= net.network_address
# is a given.
if last.broadcast_address >= net.broadcast_address:
continue
yield net
last = net | [
"def",
"_collapse_addresses_internal",
"(",
"addresses",
")",
":",
"# First merge",
"to_merge",
"=",
"list",
"(",
"addresses",
")",
"subnets",
"=",
"{",
"}",
"while",
"to_merge",
":",
"net",
"=",
"to_merge",
".",
"pop",
"(",
")",
"supernet",
"=",
"net",
".",
"supernet",
"(",
")",
"existing",
"=",
"subnets",
".",
"get",
"(",
"supernet",
")",
"if",
"existing",
"is",
"None",
":",
"subnets",
"[",
"supernet",
"]",
"=",
"net",
"elif",
"existing",
"!=",
"net",
":",
"# Merge consecutive subnets",
"del",
"subnets",
"[",
"supernet",
"]",
"to_merge",
".",
"append",
"(",
"supernet",
")",
"# Then iterate over resulting networks, skipping subsumed subnets",
"last",
"=",
"None",
"for",
"net",
"in",
"sorted",
"(",
"subnets",
".",
"values",
"(",
")",
")",
":",
"if",
"last",
"is",
"not",
"None",
":",
"# Since they are sorted, last.network_address <= net.network_address",
"# is a given.",
"if",
"last",
".",
"broadcast_address",
">=",
"net",
".",
"broadcast_address",
":",
"continue",
"yield",
"net",
"last",
"=",
"net"
] | https://github.com/aws/lumberyard/blob/f85344403c1c2e77ec8c75deb2c116e97b713217/dev/Tools/Python/3.7.10/mac/Python.framework/Versions/3.7/lib/python3.7/ipaddress.py#L257-L303 |
||
scylladb/seastar | 0cdd2329beb1cc4c0af8828598c26114397ffa9c | scripts/perftune.py | python | PerfTunerBase.compute_cpu_mask | (self) | return self.__compute_cpu_mask | Return the CPU mask to use for seastar application binding. | Return the CPU mask to use for seastar application binding. | [
"Return",
"the",
"CPU",
"mask",
"to",
"use",
"for",
"seastar",
"application",
"binding",
"."
] | def compute_cpu_mask(self):
"""
Return the CPU mask to use for seastar application binding.
"""
# see the __set_mode_and_masks() description
if self.__compute_cpu_mask is None:
self.__set_mode_and_masks()
return self.__compute_cpu_mask | [
"def",
"compute_cpu_mask",
"(",
"self",
")",
":",
"# see the __set_mode_and_masks() description",
"if",
"self",
".",
"__compute_cpu_mask",
"is",
"None",
":",
"self",
".",
"__set_mode_and_masks",
"(",
")",
"return",
"self",
".",
"__compute_cpu_mask"
] | https://github.com/scylladb/seastar/blob/0cdd2329beb1cc4c0af8828598c26114397ffa9c/scripts/perftune.py#L384-L392 |
|
wlanjie/AndroidFFmpeg | 7baf9122f4b8e1c74e7baf4be5c422c7a5ba5aaf | tools/fdk-aac-build/armeabi/toolchain/lib/python2.7/xml/sax/_exceptions.py | python | SAXException.__init__ | (self, msg, exception=None) | Creates an exception. The message is required, but the exception
is optional. | Creates an exception. The message is required, but the exception
is optional. | [
"Creates",
"an",
"exception",
".",
"The",
"message",
"is",
"required",
"but",
"the",
"exception",
"is",
"optional",
"."
] | def __init__(self, msg, exception=None):
"""Creates an exception. The message is required, but the exception
is optional."""
self._msg = msg
self._exception = exception
Exception.__init__(self, msg) | [
"def",
"__init__",
"(",
"self",
",",
"msg",
",",
"exception",
"=",
"None",
")",
":",
"self",
".",
"_msg",
"=",
"msg",
"self",
".",
"_exception",
"=",
"exception",
"Exception",
".",
"__init__",
"(",
"self",
",",
"msg",
")"
] | https://github.com/wlanjie/AndroidFFmpeg/blob/7baf9122f4b8e1c74e7baf4be5c422c7a5ba5aaf/tools/fdk-aac-build/armeabi/toolchain/lib/python2.7/xml/sax/_exceptions.py#L19-L24 |
||
danxuhk/ContinuousCRF-CNN | 2b6dcaf179620f118b225ed12c890414ca828e21 | python/caffe/pycaffe.py | python | _Net_forward_backward_all | (self, blobs=None, diffs=None, **kwargs) | return all_outs, all_diffs | Run net forward + backward in batches.
Parameters
----------
blobs: list of blobs to extract as in forward()
diffs: list of diffs to extract as in backward()
kwargs: Keys are input (for forward) and output (for backward) blob names
and values are ndarrays. Refer to forward() and backward().
Prefilled variants are called for lack of input or output blobs.
Returns
-------
all_blobs: {blob name: blob ndarray} dict.
all_diffs: {blob name: diff ndarray} dict. | Run net forward + backward in batches. | [
"Run",
"net",
"forward",
"+",
"backward",
"in",
"batches",
"."
] | def _Net_forward_backward_all(self, blobs=None, diffs=None, **kwargs):
"""
Run net forward + backward in batches.
Parameters
----------
blobs: list of blobs to extract as in forward()
diffs: list of diffs to extract as in backward()
kwargs: Keys are input (for forward) and output (for backward) blob names
and values are ndarrays. Refer to forward() and backward().
Prefilled variants are called for lack of input or output blobs.
Returns
-------
all_blobs: {blob name: blob ndarray} dict.
all_diffs: {blob name: diff ndarray} dict.
"""
# Batch blobs and diffs.
all_outs = {out: [] for out in set(self.outputs + (blobs or []))}
all_diffs = {diff: [] for diff in set(self.inputs + (diffs or []))}
forward_batches = self._batch({in_: kwargs[in_]
for in_ in self.inputs if in_ in kwargs})
backward_batches = self._batch({out: kwargs[out]
for out in self.outputs if out in kwargs})
# Collect outputs from batches (and heed lack of forward/backward batches).
for fb, bb in izip_longest(forward_batches, backward_batches, fillvalue={}):
batch_blobs = self.forward(blobs=blobs, **fb)
batch_diffs = self.backward(diffs=diffs, **bb)
for out, out_blobs in six.iteritems(batch_blobs):
all_outs[out].extend(out_blobs.copy())
for diff, out_diffs in six.iteritems(batch_diffs):
all_diffs[diff].extend(out_diffs.copy())
# Package in ndarray.
for out, diff in zip(all_outs, all_diffs):
all_outs[out] = np.asarray(all_outs[out])
all_diffs[diff] = np.asarray(all_diffs[diff])
# Discard padding at the end and package in ndarray.
pad = len(six.next(six.itervalues(all_outs))) - len(six.next(six.itervalues(kwargs)))
if pad:
for out, diff in zip(all_outs, all_diffs):
all_outs[out] = all_outs[out][:-pad]
all_diffs[diff] = all_diffs[diff][:-pad]
return all_outs, all_diffs | [
"def",
"_Net_forward_backward_all",
"(",
"self",
",",
"blobs",
"=",
"None",
",",
"diffs",
"=",
"None",
",",
"*",
"*",
"kwargs",
")",
":",
"# Batch blobs and diffs.",
"all_outs",
"=",
"{",
"out",
":",
"[",
"]",
"for",
"out",
"in",
"set",
"(",
"self",
".",
"outputs",
"+",
"(",
"blobs",
"or",
"[",
"]",
")",
")",
"}",
"all_diffs",
"=",
"{",
"diff",
":",
"[",
"]",
"for",
"diff",
"in",
"set",
"(",
"self",
".",
"inputs",
"+",
"(",
"diffs",
"or",
"[",
"]",
")",
")",
"}",
"forward_batches",
"=",
"self",
".",
"_batch",
"(",
"{",
"in_",
":",
"kwargs",
"[",
"in_",
"]",
"for",
"in_",
"in",
"self",
".",
"inputs",
"if",
"in_",
"in",
"kwargs",
"}",
")",
"backward_batches",
"=",
"self",
".",
"_batch",
"(",
"{",
"out",
":",
"kwargs",
"[",
"out",
"]",
"for",
"out",
"in",
"self",
".",
"outputs",
"if",
"out",
"in",
"kwargs",
"}",
")",
"# Collect outputs from batches (and heed lack of forward/backward batches).",
"for",
"fb",
",",
"bb",
"in",
"izip_longest",
"(",
"forward_batches",
",",
"backward_batches",
",",
"fillvalue",
"=",
"{",
"}",
")",
":",
"batch_blobs",
"=",
"self",
".",
"forward",
"(",
"blobs",
"=",
"blobs",
",",
"*",
"*",
"fb",
")",
"batch_diffs",
"=",
"self",
".",
"backward",
"(",
"diffs",
"=",
"diffs",
",",
"*",
"*",
"bb",
")",
"for",
"out",
",",
"out_blobs",
"in",
"six",
".",
"iteritems",
"(",
"batch_blobs",
")",
":",
"all_outs",
"[",
"out",
"]",
".",
"extend",
"(",
"out_blobs",
".",
"copy",
"(",
")",
")",
"for",
"diff",
",",
"out_diffs",
"in",
"six",
".",
"iteritems",
"(",
"batch_diffs",
")",
":",
"all_diffs",
"[",
"diff",
"]",
".",
"extend",
"(",
"out_diffs",
".",
"copy",
"(",
")",
")",
"# Package in ndarray.",
"for",
"out",
",",
"diff",
"in",
"zip",
"(",
"all_outs",
",",
"all_diffs",
")",
":",
"all_outs",
"[",
"out",
"]",
"=",
"np",
".",
"asarray",
"(",
"all_outs",
"[",
"out",
"]",
")",
"all_diffs",
"[",
"diff",
"]",
"=",
"np",
".",
"asarray",
"(",
"all_diffs",
"[",
"diff",
"]",
")",
"# Discard padding at the end and package in ndarray.",
"pad",
"=",
"len",
"(",
"six",
".",
"next",
"(",
"six",
".",
"itervalues",
"(",
"all_outs",
")",
")",
")",
"-",
"len",
"(",
"six",
".",
"next",
"(",
"six",
".",
"itervalues",
"(",
"kwargs",
")",
")",
")",
"if",
"pad",
":",
"for",
"out",
",",
"diff",
"in",
"zip",
"(",
"all_outs",
",",
"all_diffs",
")",
":",
"all_outs",
"[",
"out",
"]",
"=",
"all_outs",
"[",
"out",
"]",
"[",
":",
"-",
"pad",
"]",
"all_diffs",
"[",
"diff",
"]",
"=",
"all_diffs",
"[",
"diff",
"]",
"[",
":",
"-",
"pad",
"]",
"return",
"all_outs",
",",
"all_diffs"
] | https://github.com/danxuhk/ContinuousCRF-CNN/blob/2b6dcaf179620f118b225ed12c890414ca828e21/python/caffe/pycaffe.py#L216-L258 |
|
catboost/catboost | 167f64f237114a4d10b2b4ee42adb4569137debe | contrib/python/traitlets/py3/traitlets/config/sphinxdoc.py | python | reverse_aliases | (app) | return res | Produce a mapping of trait names to lists of command line aliases. | Produce a mapping of trait names to lists of command line aliases. | [
"Produce",
"a",
"mapping",
"of",
"trait",
"names",
"to",
"lists",
"of",
"command",
"line",
"aliases",
"."
] | def reverse_aliases(app):
"""Produce a mapping of trait names to lists of command line aliases.
"""
res = defaultdict(list)
for alias, trait in app.aliases.items():
res[trait].append(alias)
# Flags also often act as aliases for a boolean trait.
# Treat flags which set one trait to True as aliases.
for flag, (cfg, _) in app.flags.items():
if len(cfg) == 1:
classname = list(cfg)[0]
cls_cfg = cfg[classname]
if len(cls_cfg) == 1:
traitname = list(cls_cfg)[0]
if cls_cfg[traitname] is True:
res[classname+'.'+traitname].append(flag)
return res | [
"def",
"reverse_aliases",
"(",
"app",
")",
":",
"res",
"=",
"defaultdict",
"(",
"list",
")",
"for",
"alias",
",",
"trait",
"in",
"app",
".",
"aliases",
".",
"items",
"(",
")",
":",
"res",
"[",
"trait",
"]",
".",
"append",
"(",
"alias",
")",
"# Flags also often act as aliases for a boolean trait.",
"# Treat flags which set one trait to True as aliases.",
"for",
"flag",
",",
"(",
"cfg",
",",
"_",
")",
"in",
"app",
".",
"flags",
".",
"items",
"(",
")",
":",
"if",
"len",
"(",
"cfg",
")",
"==",
"1",
":",
"classname",
"=",
"list",
"(",
"cfg",
")",
"[",
"0",
"]",
"cls_cfg",
"=",
"cfg",
"[",
"classname",
"]",
"if",
"len",
"(",
"cls_cfg",
")",
"==",
"1",
":",
"traitname",
"=",
"list",
"(",
"cls_cfg",
")",
"[",
"0",
"]",
"if",
"cls_cfg",
"[",
"traitname",
"]",
"is",
"True",
":",
"res",
"[",
"classname",
"+",
"'.'",
"+",
"traitname",
"]",
".",
"append",
"(",
"flag",
")",
"return",
"res"
] | https://github.com/catboost/catboost/blob/167f64f237114a4d10b2b4ee42adb4569137debe/contrib/python/traitlets/py3/traitlets/config/sphinxdoc.py#L117-L135 |
|
kushview/Element | 1cc16380caa2ab79461246ba758b9de1f46db2a5 | waflib/Utils.py | python | subst_vars | (expr, params) | return reg_subst.sub(repl_var, expr) | Replaces ${VAR} with the value of VAR taken from a dict or a config set::
from waflib import Utils
s = Utils.subst_vars('${PREFIX}/bin', env)
:type expr: string
:param expr: String to perform substitution on
:param params: Dictionary or config set to look up variable values. | Replaces ${VAR} with the value of VAR taken from a dict or a config set:: | [
"Replaces",
"$",
"{",
"VAR",
"}",
"with",
"the",
"value",
"of",
"VAR",
"taken",
"from",
"a",
"dict",
"or",
"a",
"config",
"set",
"::"
] | def subst_vars(expr, params):
"""
Replaces ${VAR} with the value of VAR taken from a dict or a config set::
from waflib import Utils
s = Utils.subst_vars('${PREFIX}/bin', env)
:type expr: string
:param expr: String to perform substitution on
:param params: Dictionary or config set to look up variable values.
"""
def repl_var(m):
if m.group(1):
return '\\'
if m.group(2):
return '$'
try:
# ConfigSet instances may contain lists
return params.get_flat(m.group(3))
except AttributeError:
return params[m.group(3)]
# if you get a TypeError, it means that 'expr' is not a string...
# Utils.subst_vars(None, env) will not work
return reg_subst.sub(repl_var, expr) | [
"def",
"subst_vars",
"(",
"expr",
",",
"params",
")",
":",
"def",
"repl_var",
"(",
"m",
")",
":",
"if",
"m",
".",
"group",
"(",
"1",
")",
":",
"return",
"'\\\\'",
"if",
"m",
".",
"group",
"(",
"2",
")",
":",
"return",
"'$'",
"try",
":",
"# ConfigSet instances may contain lists",
"return",
"params",
".",
"get_flat",
"(",
"m",
".",
"group",
"(",
"3",
")",
")",
"except",
"AttributeError",
":",
"return",
"params",
"[",
"m",
".",
"group",
"(",
"3",
")",
"]",
"# if you get a TypeError, it means that 'expr' is not a string...",
"# Utils.subst_vars(None, env) will not work",
"return",
"reg_subst",
".",
"sub",
"(",
"repl_var",
",",
"expr",
")"
] | https://github.com/kushview/Element/blob/1cc16380caa2ab79461246ba758b9de1f46db2a5/waflib/Utils.py#L673-L696 |
|
livecode/livecode | 4606a10ea10b16d5071d0f9f263ccdd7ede8b31d | gyp/pylib/gyp/generator/msvs.py | python | _AddConfigurationToMSVS | (p, spec, tools, config, config_type, config_name) | Add to the project file the configuration specified by config.
Arguments:
p: The target project being generated.
spec: the target project dict.
tools: A dictionary of settings; the tool name is the key.
config: The dictionary that defines the special processing to be done
for this configuration.
config_type: The configuration type, a number as defined by Microsoft.
config_name: The name of the configuration. | Add to the project file the configuration specified by config. | [
"Add",
"to",
"the",
"project",
"file",
"the",
"configuration",
"specified",
"by",
"config",
"."
] | def _AddConfigurationToMSVS(p, spec, tools, config, config_type, config_name):
"""Add to the project file the configuration specified by config.
Arguments:
p: The target project being generated.
spec: the target project dict.
tools: A dictionary of settings; the tool name is the key.
config: The dictionary that defines the special processing to be done
for this configuration.
config_type: The configuration type, a number as defined by Microsoft.
config_name: The name of the configuration.
"""
attributes = _GetMSVSAttributes(spec, config, config_type)
# Add in this configuration.
tool_list = _ConvertToolsToExpectedForm(tools)
p.AddConfig(_ConfigFullName(config_name, config),
attrs=attributes, tools=tool_list) | [
"def",
"_AddConfigurationToMSVS",
"(",
"p",
",",
"spec",
",",
"tools",
",",
"config",
",",
"config_type",
",",
"config_name",
")",
":",
"attributes",
"=",
"_GetMSVSAttributes",
"(",
"spec",
",",
"config",
",",
"config_type",
")",
"# Add in this configuration.",
"tool_list",
"=",
"_ConvertToolsToExpectedForm",
"(",
"tools",
")",
"p",
".",
"AddConfig",
"(",
"_ConfigFullName",
"(",
"config_name",
",",
"config",
")",
",",
"attrs",
"=",
"attributes",
",",
"tools",
"=",
"tool_list",
")"
] | https://github.com/livecode/livecode/blob/4606a10ea10b16d5071d0f9f263ccdd7ede8b31d/gyp/pylib/gyp/generator/msvs.py#L1369-L1385 |
||
generalized-intelligence/GAAS | 29ab17d3e8a4ba18edef3a57c36d8db6329fac73 | deprecated/algorithms/sfm/OpenSfM/opensfm/types.py | python | Reconstruction.__init__ | (self) | Defaut constructor | Defaut constructor | [
"Defaut",
"constructor"
] | def __init__(self):
"""Defaut constructor"""
self.cameras = {}
self.shots = {}
self.points = {}
self.reference = None | [
"def",
"__init__",
"(",
"self",
")",
":",
"self",
".",
"cameras",
"=",
"{",
"}",
"self",
".",
"shots",
"=",
"{",
"}",
"self",
".",
"points",
"=",
"{",
"}",
"self",
".",
"reference",
"=",
"None"
] | https://github.com/generalized-intelligence/GAAS/blob/29ab17d3e8a4ba18edef3a57c36d8db6329fac73/deprecated/algorithms/sfm/OpenSfM/opensfm/types.py#L691-L696 |
||
H-uru/Plasma | c2140ea046e82e9c199e257a7f2e7edb42602871 | Scripts/Python/plasma/Plasma.py | python | PtGetNPCCount | () | This will return the number of NPCs in the current age | This will return the number of NPCs in the current age | [
"This",
"will",
"return",
"the",
"number",
"of",
"NPCs",
"in",
"the",
"current",
"age"
] | def PtGetNPCCount():
"""This will return the number of NPCs in the current age"""
pass | [
"def",
"PtGetNPCCount",
"(",
")",
":",
"pass"
] | https://github.com/H-uru/Plasma/blob/c2140ea046e82e9c199e257a7f2e7edb42602871/Scripts/Python/plasma/Plasma.py#L487-L489 |
||
sfzhang15/FaceBoxes | b52cc92f9362d3adc08d54666aeb9ebb62fdb7da | scripts/cpp_lint.py | python | _FunctionState.Begin | (self, function_name) | Start analyzing function body.
Args:
function_name: The name of the function being tracked. | Start analyzing function body. | [
"Start",
"analyzing",
"function",
"body",
"."
] | def Begin(self, function_name):
"""Start analyzing function body.
Args:
function_name: The name of the function being tracked.
"""
self.in_a_function = True
self.lines_in_function = 0
self.current_function = function_name | [
"def",
"Begin",
"(",
"self",
",",
"function_name",
")",
":",
"self",
".",
"in_a_function",
"=",
"True",
"self",
".",
"lines_in_function",
"=",
"0",
"self",
".",
"current_function",
"=",
"function_name"
] | https://github.com/sfzhang15/FaceBoxes/blob/b52cc92f9362d3adc08d54666aeb9ebb62fdb7da/scripts/cpp_lint.py#L821-L829 |
||
wxWidgets/wxPython-Classic | 19571e1ae65f1ac445f5491474121998c97a1bf0 | src/osx_cocoa/_misc.py | python | TimerRunner.__init__ | (self, *args) | __init__(self, wxTimer timer) -> TimerRunner
__init__(self, wxTimer timer, int milli, bool oneShot=False) -> TimerRunner | __init__(self, wxTimer timer) -> TimerRunner
__init__(self, wxTimer timer, int milli, bool oneShot=False) -> TimerRunner | [
"__init__",
"(",
"self",
"wxTimer",
"timer",
")",
"-",
">",
"TimerRunner",
"__init__",
"(",
"self",
"wxTimer",
"timer",
"int",
"milli",
"bool",
"oneShot",
"=",
"False",
")",
"-",
">",
"TimerRunner"
] | def __init__(self, *args):
"""
__init__(self, wxTimer timer) -> TimerRunner
__init__(self, wxTimer timer, int milli, bool oneShot=False) -> TimerRunner
"""
_misc_.TimerRunner_swiginit(self,_misc_.new_TimerRunner(*args)) | [
"def",
"__init__",
"(",
"self",
",",
"*",
"args",
")",
":",
"_misc_",
".",
"TimerRunner_swiginit",
"(",
"self",
",",
"_misc_",
".",
"new_TimerRunner",
"(",
"*",
"args",
")",
")"
] | https://github.com/wxWidgets/wxPython-Classic/blob/19571e1ae65f1ac445f5491474121998c97a1bf0/src/osx_cocoa/_misc.py#L1396-L1401 |
||
hanpfei/chromium-net | 392cc1fa3a8f92f42e4071ab6e674d8e0482f83f | third_party/catapult/third_party/gsutil/third_party/boto/boto/storage_uri.py | python | FileStorageUri.is_stream | (self) | return bool(self.stream) | Returns True if this URI represents input/output stream. | Returns True if this URI represents input/output stream. | [
"Returns",
"True",
"if",
"this",
"URI",
"represents",
"input",
"/",
"output",
"stream",
"."
] | def is_stream(self):
"""Returns True if this URI represents input/output stream.
"""
return bool(self.stream) | [
"def",
"is_stream",
"(",
"self",
")",
":",
"return",
"bool",
"(",
"self",
".",
"stream",
")"
] | https://github.com/hanpfei/chromium-net/blob/392cc1fa3a8f92f42e4071ab6e674d8e0482f83f/third_party/catapult/third_party/gsutil/third_party/boto/boto/storage_uri.py#L876-L879 |
|
kiwix/kiwix-xulrunner | 38f4a10ae4b1585c16cb11730bb0dcc4924ae19f | android/gen-custom-android-build.py | python | step_update_main_menu_xml | (jsdata, **options) | remove Open File menu item from main menu | remove Open File menu item from main menu | [
"remove",
"Open",
"File",
"menu",
"item",
"from",
"main",
"menu"
] | def step_update_main_menu_xml(jsdata, **options):
""" remove Open File menu item from main menu """
move_to_android_placeholder()
# Parse and edit res/menu/main.xml
menu_xml = os.path.join(ANDROID_PATH, 'res', 'menu', 'menu_main.xml')
soup = soup = BeautifulSoup(open(menu_xml, 'r'),
'xml', from_encoding='utf-8')
for elem in soup.findAll('item'):
if elem.get('android:id') == '@+id/menu_openfile':
elem['android:showAsAction'] = "never"
elem['android:visible'] = "false"
flushxml(soup, 'menu', menu_xml, head=False) | [
"def",
"step_update_main_menu_xml",
"(",
"jsdata",
",",
"*",
"*",
"options",
")",
":",
"move_to_android_placeholder",
"(",
")",
"# Parse and edit res/menu/main.xml",
"menu_xml",
"=",
"os",
".",
"path",
".",
"join",
"(",
"ANDROID_PATH",
",",
"'res'",
",",
"'menu'",
",",
"'menu_main.xml'",
")",
"soup",
"=",
"soup",
"=",
"BeautifulSoup",
"(",
"open",
"(",
"menu_xml",
",",
"'r'",
")",
",",
"'xml'",
",",
"from_encoding",
"=",
"'utf-8'",
")",
"for",
"elem",
"in",
"soup",
".",
"findAll",
"(",
"'item'",
")",
":",
"if",
"elem",
".",
"get",
"(",
"'android:id'",
")",
"==",
"'@+id/menu_openfile'",
":",
"elem",
"[",
"'android:showAsAction'",
"]",
"=",
"\"never\"",
"elem",
"[",
"'android:visible'",
"]",
"=",
"\"false\"",
"flushxml",
"(",
"soup",
",",
"'menu'",
",",
"menu_xml",
",",
"head",
"=",
"False",
")"
] | https://github.com/kiwix/kiwix-xulrunner/blob/38f4a10ae4b1585c16cb11730bb0dcc4924ae19f/android/gen-custom-android-build.py#L320-L333 |
||
miyosuda/TensorFlowAndroidMNIST | 7b5a4603d2780a8a2834575706e9001977524007 | jni-build/jni/include/tensorflow/python/client/timeline.py | python | Timeline._alloc_pid | (self) | return pid | Allocate a process Id. | Allocate a process Id. | [
"Allocate",
"a",
"process",
"Id",
"."
] | def _alloc_pid(self):
"""Allocate a process Id."""
pid = self._next_pid
self._next_pid += 1
return pid | [
"def",
"_alloc_pid",
"(",
"self",
")",
":",
"pid",
"=",
"self",
".",
"_next_pid",
"self",
".",
"_next_pid",
"+=",
"1",
"return",
"pid"
] | https://github.com/miyosuda/TensorFlowAndroidMNIST/blob/7b5a4603d2780a8a2834575706e9001977524007/jni-build/jni/include/tensorflow/python/client/timeline.py#L375-L379 |
|
Polidea/SiriusObfuscator | b0e590d8130e97856afe578869b83a209e2b19be | SymbolExtractorAndRenamer/compiler-rt/lib/asan/scripts/asan_symbolize.py | python | LLVMSymbolizer.symbolize | (self, addr, binary, offset) | return result | Overrides Symbolizer.symbolize. | Overrides Symbolizer.symbolize. | [
"Overrides",
"Symbolizer",
".",
"symbolize",
"."
] | def symbolize(self, addr, binary, offset):
"""Overrides Symbolizer.symbolize."""
if not self.pipe:
return None
result = []
try:
symbolizer_input = '"%s" %s' % (binary, offset)
if DEBUG:
print symbolizer_input
print >> self.pipe.stdin, symbolizer_input
while True:
function_name = self.pipe.stdout.readline().rstrip()
if not function_name:
break
file_name = self.pipe.stdout.readline().rstrip()
file_name = fix_filename(file_name)
if (not function_name.startswith('??') or
not file_name.startswith('??')):
# Append only non-trivial frames.
result.append('%s in %s %s' % (addr, function_name,
file_name))
except Exception:
result = []
if not result:
result = None
return result | [
"def",
"symbolize",
"(",
"self",
",",
"addr",
",",
"binary",
",",
"offset",
")",
":",
"if",
"not",
"self",
".",
"pipe",
":",
"return",
"None",
"result",
"=",
"[",
"]",
"try",
":",
"symbolizer_input",
"=",
"'\"%s\" %s'",
"%",
"(",
"binary",
",",
"offset",
")",
"if",
"DEBUG",
":",
"print",
"symbolizer_input",
"print",
">>",
"self",
".",
"pipe",
".",
"stdin",
",",
"symbolizer_input",
"while",
"True",
":",
"function_name",
"=",
"self",
".",
"pipe",
".",
"stdout",
".",
"readline",
"(",
")",
".",
"rstrip",
"(",
")",
"if",
"not",
"function_name",
":",
"break",
"file_name",
"=",
"self",
".",
"pipe",
".",
"stdout",
".",
"readline",
"(",
")",
".",
"rstrip",
"(",
")",
"file_name",
"=",
"fix_filename",
"(",
"file_name",
")",
"if",
"(",
"not",
"function_name",
".",
"startswith",
"(",
"'??'",
")",
"or",
"not",
"file_name",
".",
"startswith",
"(",
"'??'",
")",
")",
":",
"# Append only non-trivial frames.",
"result",
".",
"append",
"(",
"'%s in %s %s'",
"%",
"(",
"addr",
",",
"function_name",
",",
"file_name",
")",
")",
"except",
"Exception",
":",
"result",
"=",
"[",
"]",
"if",
"not",
"result",
":",
"result",
"=",
"None",
"return",
"result"
] | https://github.com/Polidea/SiriusObfuscator/blob/b0e590d8130e97856afe578869b83a209e2b19be/SymbolExtractorAndRenamer/compiler-rt/lib/asan/scripts/asan_symbolize.py#L100-L125 |
|
hanpfei/chromium-net | 392cc1fa3a8f92f42e4071ab6e674d8e0482f83f | third_party/catapult/third_party/pyfakefs/pyfakefs/fake_filesystem.py | python | FakeFile.SetContents | (self, contents) | Sets the file contents and size.
Args:
contents: string, new content of file. | Sets the file contents and size. | [
"Sets",
"the",
"file",
"contents",
"and",
"size",
"."
] | def SetContents(self, contents):
"""Sets the file contents and size.
Args:
contents: string, new content of file.
"""
# Wrap byte arrays into a safe format
if sys.version_info >= (3, 0) and isinstance(contents, bytes):
contents = Hexlified(contents)
self.st_size = len(contents)
self.contents = contents
self.epoch += 1 | [
"def",
"SetContents",
"(",
"self",
",",
"contents",
")",
":",
"# Wrap byte arrays into a safe format",
"if",
"sys",
".",
"version_info",
">=",
"(",
"3",
",",
"0",
")",
"and",
"isinstance",
"(",
"contents",
",",
"bytes",
")",
":",
"contents",
"=",
"Hexlified",
"(",
"contents",
")",
"self",
".",
"st_size",
"=",
"len",
"(",
"contents",
")",
"self",
".",
"contents",
"=",
"contents",
"self",
".",
"epoch",
"+=",
"1"
] | https://github.com/hanpfei/chromium-net/blob/392cc1fa3a8f92f42e4071ab6e674d8e0482f83f/third_party/catapult/third_party/pyfakefs/pyfakefs/fake_filesystem.py#L238-L250 |
||
trailofbits/llvm-sanitizer-tutorial | d29dfeec7f51fbf234fd0080f28f2b30cd0b6e99 | llvm/tools/clang/tools/scan-build-py/libear/__init__.py | python | Toolset.set_compiler | (self, compiler) | part of public interface | part of public interface | [
"part",
"of",
"public",
"interface"
] | def set_compiler(self, compiler):
""" part of public interface """
self.compiler = compiler | [
"def",
"set_compiler",
"(",
"self",
",",
"compiler",
")",
":",
"self",
".",
"compiler",
"=",
"compiler"
] | https://github.com/trailofbits/llvm-sanitizer-tutorial/blob/d29dfeec7f51fbf234fd0080f28f2b30cd0b6e99/llvm/tools/clang/tools/scan-build-py/libear/__init__.py#L87-L89 |
||
wxWidgets/wxPython-Classic | 19571e1ae65f1ac445f5491474121998c97a1bf0 | wx/lib/floatcanvas/FloatCanvas.py | python | _colorGenerator | () | return _cycleidxs(indexcount=3, maxvalue=256, step=1) | Generates a series of unique colors used to do hit-tests with the Hit
Test bitmap | Generates a series of unique colors used to do hit-tests with the Hit
Test bitmap | [
"Generates",
"a",
"series",
"of",
"unique",
"colors",
"used",
"to",
"do",
"hit",
"-",
"tests",
"with",
"the",
"Hit",
"Test",
"bitmap"
] | def _colorGenerator():
"""
Generates a series of unique colors used to do hit-tests with the Hit
Test bitmap
"""
return _cycleidxs(indexcount=3, maxvalue=256, step=1) | [
"def",
"_colorGenerator",
"(",
")",
":",
"return",
"_cycleidxs",
"(",
"indexcount",
"=",
"3",
",",
"maxvalue",
"=",
"256",
",",
"step",
"=",
"1",
")"
] | https://github.com/wxWidgets/wxPython-Classic/blob/19571e1ae65f1ac445f5491474121998c97a1bf0/wx/lib/floatcanvas/FloatCanvas.py#L138-L144 |
|
grpc/grpc | 27bc6fe7797e43298dc931b96dc57322d0852a9f | examples/python/route_guide/route_guide_pb2_grpc.py | python | RouteGuideServicer.RecordRoute | (self, request_iterator, context) | A client-to-server streaming RPC.
Accepts a stream of Points on a route being traversed, returning a
RouteSummary when traversal is completed. | A client-to-server streaming RPC. | [
"A",
"client",
"-",
"to",
"-",
"server",
"streaming",
"RPC",
"."
] | def RecordRoute(self, request_iterator, context):
"""A client-to-server streaming RPC.
Accepts a stream of Points on a route being traversed, returning a
RouteSummary when traversal is completed.
"""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!') | [
"def",
"RecordRoute",
"(",
"self",
",",
"request_iterator",
",",
"context",
")",
":",
"context",
".",
"set_code",
"(",
"grpc",
".",
"StatusCode",
".",
"UNIMPLEMENTED",
")",
"context",
".",
"set_details",
"(",
"'Method not implemented!'",
")",
"raise",
"NotImplementedError",
"(",
"'Method not implemented!'",
")"
] | https://github.com/grpc/grpc/blob/27bc6fe7797e43298dc931b96dc57322d0852a9f/examples/python/route_guide/route_guide_pb2_grpc.py#L67-L75 |
||
wxWidgets/wxPython-Classic | 19571e1ae65f1ac445f5491474121998c97a1bf0 | src/osx_cocoa/_misc.py | python | DateTime.ParseFormat | (*args, **kwargs) | return _misc_.DateTime_ParseFormat(*args, **kwargs) | ParseFormat(self, String date, String format=DefaultDateTimeFormat, DateTime dateDef=DefaultDateTime) -> int | ParseFormat(self, String date, String format=DefaultDateTimeFormat, DateTime dateDef=DefaultDateTime) -> int | [
"ParseFormat",
"(",
"self",
"String",
"date",
"String",
"format",
"=",
"DefaultDateTimeFormat",
"DateTime",
"dateDef",
"=",
"DefaultDateTime",
")",
"-",
">",
"int"
] | def ParseFormat(*args, **kwargs):
"""ParseFormat(self, String date, String format=DefaultDateTimeFormat, DateTime dateDef=DefaultDateTime) -> int"""
return _misc_.DateTime_ParseFormat(*args, **kwargs) | [
"def",
"ParseFormat",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"return",
"_misc_",
".",
"DateTime_ParseFormat",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")"
] | https://github.com/wxWidgets/wxPython-Classic/blob/19571e1ae65f1ac445f5491474121998c97a1bf0/src/osx_cocoa/_misc.py#L4134-L4136 |
|
aws/lumberyard | f85344403c1c2e77ec8c75deb2c116e97b713217 | dev/Gems/CloudGemMetric/v1/AWS/python/windows/Lib/numpy/ma/extras.py | python | unique | (ar1, return_index=False, return_inverse=False) | return output | Finds the unique elements of an array.
Masked values are considered the same element (masked). The output array
is always a masked array. See `numpy.unique` for more details.
See Also
--------
numpy.unique : Equivalent function for ndarrays. | Finds the unique elements of an array. | [
"Finds",
"the",
"unique",
"elements",
"of",
"an",
"array",
"."
] | def unique(ar1, return_index=False, return_inverse=False):
"""
Finds the unique elements of an array.
Masked values are considered the same element (masked). The output array
is always a masked array. See `numpy.unique` for more details.
See Also
--------
numpy.unique : Equivalent function for ndarrays.
"""
output = np.unique(ar1,
return_index=return_index,
return_inverse=return_inverse)
if isinstance(output, tuple):
output = list(output)
output[0] = output[0].view(MaskedArray)
output = tuple(output)
else:
output = output.view(MaskedArray)
return output | [
"def",
"unique",
"(",
"ar1",
",",
"return_index",
"=",
"False",
",",
"return_inverse",
"=",
"False",
")",
":",
"output",
"=",
"np",
".",
"unique",
"(",
"ar1",
",",
"return_index",
"=",
"return_index",
",",
"return_inverse",
"=",
"return_inverse",
")",
"if",
"isinstance",
"(",
"output",
",",
"tuple",
")",
":",
"output",
"=",
"list",
"(",
"output",
")",
"output",
"[",
"0",
"]",
"=",
"output",
"[",
"0",
"]",
".",
"view",
"(",
"MaskedArray",
")",
"output",
"=",
"tuple",
"(",
"output",
")",
"else",
":",
"output",
"=",
"output",
".",
"view",
"(",
"MaskedArray",
")",
"return",
"output"
] | https://github.com/aws/lumberyard/blob/f85344403c1c2e77ec8c75deb2c116e97b713217/dev/Gems/CloudGemMetric/v1/AWS/python/windows/Lib/numpy/ma/extras.py#L1073-L1094 |
|
catboost/catboost | 167f64f237114a4d10b2b4ee42adb4569137debe | contrib/tools/python/src/Lib/lib-tk/ttk.py | python | Style.map | (self, style, query_opt=None, **kw) | return _splitdict(
self.tk,
self.tk.call(self._name, "map", style, *_format_mapdict(kw)),
conv=_tclobj_to_py) | Query or sets dynamic values of the specified option(s) in
style.
Each key in kw is an option and each value should be a list or a
tuple (usually) containing statespecs grouped in tuples, or list,
or something else of your preference. A statespec is compound of
one or more states and then a value. | Query or sets dynamic values of the specified option(s) in
style. | [
"Query",
"or",
"sets",
"dynamic",
"values",
"of",
"the",
"specified",
"option",
"(",
"s",
")",
"in",
"style",
"."
] | def map(self, style, query_opt=None, **kw):
"""Query or sets dynamic values of the specified option(s) in
style.
Each key in kw is an option and each value should be a list or a
tuple (usually) containing statespecs grouped in tuples, or list,
or something else of your preference. A statespec is compound of
one or more states and then a value."""
if query_opt is not None:
return _list_from_statespec(self.tk.splitlist(
self.tk.call(self._name, "map", style, '-%s' % query_opt)))
return _splitdict(
self.tk,
self.tk.call(self._name, "map", style, *_format_mapdict(kw)),
conv=_tclobj_to_py) | [
"def",
"map",
"(",
"self",
",",
"style",
",",
"query_opt",
"=",
"None",
",",
"*",
"*",
"kw",
")",
":",
"if",
"query_opt",
"is",
"not",
"None",
":",
"return",
"_list_from_statespec",
"(",
"self",
".",
"tk",
".",
"splitlist",
"(",
"self",
".",
"tk",
".",
"call",
"(",
"self",
".",
"_name",
",",
"\"map\"",
",",
"style",
",",
"'-%s'",
"%",
"query_opt",
")",
")",
")",
"return",
"_splitdict",
"(",
"self",
".",
"tk",
",",
"self",
".",
"tk",
".",
"call",
"(",
"self",
".",
"_name",
",",
"\"map\"",
",",
"style",
",",
"*",
"_format_mapdict",
"(",
"kw",
")",
")",
",",
"conv",
"=",
"_tclobj_to_py",
")"
] | https://github.com/catboost/catboost/blob/167f64f237114a4d10b2b4ee42adb4569137debe/contrib/tools/python/src/Lib/lib-tk/ttk.py#L389-L404 |
|
intel/llvm | e6d0547e9d99b5a56430c4749f6c7e328bf221ab | clang/tools/scan-build-py/lib/libscanbuild/compilation.py | python | compiler_language | (command) | return None | A predicate to decide the command is a compiler call or not.
Returns 'c' or 'c++' when it match. None otherwise. | A predicate to decide the command is a compiler call or not. | [
"A",
"predicate",
"to",
"decide",
"the",
"command",
"is",
"a",
"compiler",
"call",
"or",
"not",
"."
] | def compiler_language(command):
""" A predicate to decide the command is a compiler call or not.
Returns 'c' or 'c++' when it match. None otherwise. """
cplusplus = re.compile(r'^(.+)(\+\+)(-.+|)$')
if command:
executable = os.path.basename(command[0])
if any(pattern.match(executable) for pattern in COMPILER_PATTERNS):
return 'c++' if cplusplus.match(executable) else 'c'
return None | [
"def",
"compiler_language",
"(",
"command",
")",
":",
"cplusplus",
"=",
"re",
".",
"compile",
"(",
"r'^(.+)(\\+\\+)(-.+|)$'",
")",
"if",
"command",
":",
"executable",
"=",
"os",
".",
"path",
".",
"basename",
"(",
"command",
"[",
"0",
"]",
")",
"if",
"any",
"(",
"pattern",
".",
"match",
"(",
"executable",
")",
"for",
"pattern",
"in",
"COMPILER_PATTERNS",
")",
":",
"return",
"'c++'",
"if",
"cplusplus",
".",
"match",
"(",
"executable",
")",
"else",
"'c'",
"return",
"None"
] | https://github.com/intel/llvm/blob/e6d0547e9d99b5a56430c4749f6c7e328bf221ab/clang/tools/scan-build-py/lib/libscanbuild/compilation.py#L129-L140 |
|
psi4/psi4 | be533f7f426b6ccc263904e55122899b16663395 | psi4/driver/qcdb/molecule.py | python | Molecule.inertia_tensor_partial | (self, part, masswt=True, zero=ZERO) | return tensor | Compute inertia tensor based on atoms in *part*. | Compute inertia tensor based on atoms in *part*. | [
"Compute",
"inertia",
"tensor",
"based",
"on",
"atoms",
"in",
"*",
"part",
"*",
"."
] | def inertia_tensor_partial(self, part, masswt=True, zero=ZERO):
"""Compute inertia tensor based on atoms in *part*.
"""
tensor = [[0, 0, 0], [0, 0, 0], [0, 0, 0]]
for i in part:
if masswt:
# I(alpha, alpha)
tensor[0][0] += self.mass(i) * (self.y(i) * self.y(i) + self.z(i) * self.z(i))
tensor[1][1] += self.mass(i) * (self.x(i) * self.x(i) + self.z(i) * self.z(i))
tensor[2][2] += self.mass(i) * (self.x(i) * self.x(i) + self.y(i) * self.y(i))
# I(alpha, beta)
tensor[0][1] -= self.mass(i) * self.x(i) * self.y(i)
tensor[0][2] -= self.mass(i) * self.x(i) * self.z(i)
tensor[1][2] -= self.mass(i) * self.y(i) * self.z(i)
else:
# I(alpha, alpha)
tensor[0][0] += self.y(i) * self.y(i) + self.z(i) * self.z(i)
tensor[1][1] += self.x(i) * self.x(i) + self.z(i) * self.z(i)
tensor[2][2] += self.x(i) * self.x(i) + self.y(i) * self.y(i)
# I(alpha, beta)
tensor[0][1] -= self.x(i) * self.y(i)
tensor[0][2] -= self.x(i) * self.z(i)
tensor[1][2] -= self.y(i) * self.z(i)
# mirror
tensor[1][0] = tensor[0][1]
tensor[2][0] = tensor[0][2]
tensor[2][1] = tensor[1][2]
# Check the elements for zero and make them a hard zero.
for i in range(3):
for j in range(3):
if math.fabs(tensor[i][j]) < zero:
tensor[i][j] = 0.0
return tensor | [
"def",
"inertia_tensor_partial",
"(",
"self",
",",
"part",
",",
"masswt",
"=",
"True",
",",
"zero",
"=",
"ZERO",
")",
":",
"tensor",
"=",
"[",
"[",
"0",
",",
"0",
",",
"0",
"]",
",",
"[",
"0",
",",
"0",
",",
"0",
"]",
",",
"[",
"0",
",",
"0",
",",
"0",
"]",
"]",
"for",
"i",
"in",
"part",
":",
"if",
"masswt",
":",
"# I(alpha, alpha)",
"tensor",
"[",
"0",
"]",
"[",
"0",
"]",
"+=",
"self",
".",
"mass",
"(",
"i",
")",
"*",
"(",
"self",
".",
"y",
"(",
"i",
")",
"*",
"self",
".",
"y",
"(",
"i",
")",
"+",
"self",
".",
"z",
"(",
"i",
")",
"*",
"self",
".",
"z",
"(",
"i",
")",
")",
"tensor",
"[",
"1",
"]",
"[",
"1",
"]",
"+=",
"self",
".",
"mass",
"(",
"i",
")",
"*",
"(",
"self",
".",
"x",
"(",
"i",
")",
"*",
"self",
".",
"x",
"(",
"i",
")",
"+",
"self",
".",
"z",
"(",
"i",
")",
"*",
"self",
".",
"z",
"(",
"i",
")",
")",
"tensor",
"[",
"2",
"]",
"[",
"2",
"]",
"+=",
"self",
".",
"mass",
"(",
"i",
")",
"*",
"(",
"self",
".",
"x",
"(",
"i",
")",
"*",
"self",
".",
"x",
"(",
"i",
")",
"+",
"self",
".",
"y",
"(",
"i",
")",
"*",
"self",
".",
"y",
"(",
"i",
")",
")",
"# I(alpha, beta)",
"tensor",
"[",
"0",
"]",
"[",
"1",
"]",
"-=",
"self",
".",
"mass",
"(",
"i",
")",
"*",
"self",
".",
"x",
"(",
"i",
")",
"*",
"self",
".",
"y",
"(",
"i",
")",
"tensor",
"[",
"0",
"]",
"[",
"2",
"]",
"-=",
"self",
".",
"mass",
"(",
"i",
")",
"*",
"self",
".",
"x",
"(",
"i",
")",
"*",
"self",
".",
"z",
"(",
"i",
")",
"tensor",
"[",
"1",
"]",
"[",
"2",
"]",
"-=",
"self",
".",
"mass",
"(",
"i",
")",
"*",
"self",
".",
"y",
"(",
"i",
")",
"*",
"self",
".",
"z",
"(",
"i",
")",
"else",
":",
"# I(alpha, alpha)",
"tensor",
"[",
"0",
"]",
"[",
"0",
"]",
"+=",
"self",
".",
"y",
"(",
"i",
")",
"*",
"self",
".",
"y",
"(",
"i",
")",
"+",
"self",
".",
"z",
"(",
"i",
")",
"*",
"self",
".",
"z",
"(",
"i",
")",
"tensor",
"[",
"1",
"]",
"[",
"1",
"]",
"+=",
"self",
".",
"x",
"(",
"i",
")",
"*",
"self",
".",
"x",
"(",
"i",
")",
"+",
"self",
".",
"z",
"(",
"i",
")",
"*",
"self",
".",
"z",
"(",
"i",
")",
"tensor",
"[",
"2",
"]",
"[",
"2",
"]",
"+=",
"self",
".",
"x",
"(",
"i",
")",
"*",
"self",
".",
"x",
"(",
"i",
")",
"+",
"self",
".",
"y",
"(",
"i",
")",
"*",
"self",
".",
"y",
"(",
"i",
")",
"# I(alpha, beta)",
"tensor",
"[",
"0",
"]",
"[",
"1",
"]",
"-=",
"self",
".",
"x",
"(",
"i",
")",
"*",
"self",
".",
"y",
"(",
"i",
")",
"tensor",
"[",
"0",
"]",
"[",
"2",
"]",
"-=",
"self",
".",
"x",
"(",
"i",
")",
"*",
"self",
".",
"z",
"(",
"i",
")",
"tensor",
"[",
"1",
"]",
"[",
"2",
"]",
"-=",
"self",
".",
"y",
"(",
"i",
")",
"*",
"self",
".",
"z",
"(",
"i",
")",
"# mirror",
"tensor",
"[",
"1",
"]",
"[",
"0",
"]",
"=",
"tensor",
"[",
"0",
"]",
"[",
"1",
"]",
"tensor",
"[",
"2",
"]",
"[",
"0",
"]",
"=",
"tensor",
"[",
"0",
"]",
"[",
"2",
"]",
"tensor",
"[",
"2",
"]",
"[",
"1",
"]",
"=",
"tensor",
"[",
"1",
"]",
"[",
"2",
"]",
"# Check the elements for zero and make them a hard zero.",
"for",
"i",
"in",
"range",
"(",
"3",
")",
":",
"for",
"j",
"in",
"range",
"(",
"3",
")",
":",
"if",
"math",
".",
"fabs",
"(",
"tensor",
"[",
"i",
"]",
"[",
"j",
"]",
")",
"<",
"zero",
":",
"tensor",
"[",
"i",
"]",
"[",
"j",
"]",
"=",
"0.0",
"return",
"tensor"
] | https://github.com/psi4/psi4/blob/be533f7f426b6ccc263904e55122899b16663395/psi4/driver/qcdb/molecule.py#L756-L795 |
|
ArduPilot/ardupilot | 6e684b3496122b8158ac412b609d00004b7ac306 | libraries/AP_HAL_ChibiOS/hwdef/scripts/chibios_hwdef.py | python | write_AIRSPEED_config | (f) | write airspeed config defines | write airspeed config defines | [
"write",
"airspeed",
"config",
"defines"
] | def write_AIRSPEED_config(f):
'''write airspeed config defines'''
global airspeed_list
devlist = []
seen = set()
idx = 0
for dev in airspeed_list:
if seen_str(dev) in seen:
error("Duplicate AIRSPEED: %s" % seen_str(dev))
seen.add(seen_str(dev))
driver = dev[0]
wrapper = ''
a = driver.split(':')
driver = a[0]
for i in range(1, len(dev)):
if dev[i].startswith("SPI:"):
dev[i] = parse_spi_device(dev[i])
elif dev[i].startswith("I2C:"):
(wrapper, dev[i]) = parse_i2c_device(dev[i])
if dev[i].startswith('hal.i2c_mgr'):
dev[i] = 'std::move(%s)' % dev[i]
n = len(devlist)+1
devlist.append('HAL_AIRSPEED_PROBE%u' % n)
args = ['*this', str(idx)] + dev[1:]
f.write(
'#define HAL_AIRSPEED_PROBE%u %s ADD_BACKEND(AP_Airspeed_%s::probe(%s))\n'
% (n, wrapper, driver, ','.join(args)))
idx += 1
if len(devlist) > 0:
f.write('#define HAL_AIRSPEED_PROBE_LIST %s\n\n' % ';'.join(devlist)) | [
"def",
"write_AIRSPEED_config",
"(",
"f",
")",
":",
"global",
"airspeed_list",
"devlist",
"=",
"[",
"]",
"seen",
"=",
"set",
"(",
")",
"idx",
"=",
"0",
"for",
"dev",
"in",
"airspeed_list",
":",
"if",
"seen_str",
"(",
"dev",
")",
"in",
"seen",
":",
"error",
"(",
"\"Duplicate AIRSPEED: %s\"",
"%",
"seen_str",
"(",
"dev",
")",
")",
"seen",
".",
"add",
"(",
"seen_str",
"(",
"dev",
")",
")",
"driver",
"=",
"dev",
"[",
"0",
"]",
"wrapper",
"=",
"''",
"a",
"=",
"driver",
".",
"split",
"(",
"':'",
")",
"driver",
"=",
"a",
"[",
"0",
"]",
"for",
"i",
"in",
"range",
"(",
"1",
",",
"len",
"(",
"dev",
")",
")",
":",
"if",
"dev",
"[",
"i",
"]",
".",
"startswith",
"(",
"\"SPI:\"",
")",
":",
"dev",
"[",
"i",
"]",
"=",
"parse_spi_device",
"(",
"dev",
"[",
"i",
"]",
")",
"elif",
"dev",
"[",
"i",
"]",
".",
"startswith",
"(",
"\"I2C:\"",
")",
":",
"(",
"wrapper",
",",
"dev",
"[",
"i",
"]",
")",
"=",
"parse_i2c_device",
"(",
"dev",
"[",
"i",
"]",
")",
"if",
"dev",
"[",
"i",
"]",
".",
"startswith",
"(",
"'hal.i2c_mgr'",
")",
":",
"dev",
"[",
"i",
"]",
"=",
"'std::move(%s)'",
"%",
"dev",
"[",
"i",
"]",
"n",
"=",
"len",
"(",
"devlist",
")",
"+",
"1",
"devlist",
".",
"append",
"(",
"'HAL_AIRSPEED_PROBE%u'",
"%",
"n",
")",
"args",
"=",
"[",
"'*this'",
",",
"str",
"(",
"idx",
")",
"]",
"+",
"dev",
"[",
"1",
":",
"]",
"f",
".",
"write",
"(",
"'#define HAL_AIRSPEED_PROBE%u %s ADD_BACKEND(AP_Airspeed_%s::probe(%s))\\n'",
"%",
"(",
"n",
",",
"wrapper",
",",
"driver",
",",
"','",
".",
"join",
"(",
"args",
")",
")",
")",
"idx",
"+=",
"1",
"if",
"len",
"(",
"devlist",
")",
">",
"0",
":",
"f",
".",
"write",
"(",
"'#define HAL_AIRSPEED_PROBE_LIST %s\\n\\n'",
"%",
"';'",
".",
"join",
"(",
"devlist",
")",
")"
] | https://github.com/ArduPilot/ardupilot/blob/6e684b3496122b8158ac412b609d00004b7ac306/libraries/AP_HAL_ChibiOS/hwdef/scripts/chibios_hwdef.py#L1448-L1477 |
||
RobotLocomotion/drake | 0e18a34604c45ed65bc9018a54f7610f91cdad5b | tools/performance/benchmark_tool.py | python | CpuSpeedSettings.get_no_turbo | (self) | Return the current no-turbo state as string, either '1' or '0'. | Return the current no-turbo state as string, either '1' or '0'. | [
"Return",
"the",
"current",
"no",
"-",
"turbo",
"state",
"as",
"string",
"either",
"1",
"or",
"0",
"."
] | def get_no_turbo(self):
"""Return the current no-turbo state as string, either '1' or '0'."""
with open(self.NO_TURBO_CONTROL_FILE, 'r', encoding='utf-8') as fo:
return fo.read().strip() | [
"def",
"get_no_turbo",
"(",
"self",
")",
":",
"with",
"open",
"(",
"self",
".",
"NO_TURBO_CONTROL_FILE",
",",
"'r'",
",",
"encoding",
"=",
"'utf-8'",
")",
"as",
"fo",
":",
"return",
"fo",
".",
"read",
"(",
")",
".",
"strip",
"(",
")"
] | https://github.com/RobotLocomotion/drake/blob/0e18a34604c45ed65bc9018a54f7610f91cdad5b/tools/performance/benchmark_tool.py#L93-L96 |
||
moflow/moflow | 2dfb27c799c90c6caf1477508eca3eec616ef7d2 | bap/libtracewrap/libtrace/protobuf/python/google/protobuf/internal/decoder.py | python | StringDecoder | (field_number, is_repeated, is_packed, key, new_default) | Returns a decoder for a string field. | Returns a decoder for a string field. | [
"Returns",
"a",
"decoder",
"for",
"a",
"string",
"field",
"."
] | def StringDecoder(field_number, is_repeated, is_packed, key, new_default):
"""Returns a decoder for a string field."""
local_DecodeVarint = _DecodeVarint
local_unicode = unicode
assert not is_packed
if is_repeated:
tag_bytes = encoder.TagBytes(field_number,
wire_format.WIRETYPE_LENGTH_DELIMITED)
tag_len = len(tag_bytes)
def DecodeRepeatedField(buffer, pos, end, message, field_dict):
value = field_dict.get(key)
if value is None:
value = field_dict.setdefault(key, new_default(message))
while 1:
(size, pos) = local_DecodeVarint(buffer, pos)
new_pos = pos + size
if new_pos > end:
raise _DecodeError('Truncated string.')
value.append(local_unicode(buffer[pos:new_pos], 'utf-8'))
# Predict that the next tag is another copy of the same repeated field.
pos = new_pos + tag_len
if buffer[new_pos:pos] != tag_bytes or new_pos == end:
# Prediction failed. Return.
return new_pos
return DecodeRepeatedField
else:
def DecodeField(buffer, pos, end, message, field_dict):
(size, pos) = local_DecodeVarint(buffer, pos)
new_pos = pos + size
if new_pos > end:
raise _DecodeError('Truncated string.')
field_dict[key] = local_unicode(buffer[pos:new_pos], 'utf-8')
return new_pos
return DecodeField | [
"def",
"StringDecoder",
"(",
"field_number",
",",
"is_repeated",
",",
"is_packed",
",",
"key",
",",
"new_default",
")",
":",
"local_DecodeVarint",
"=",
"_DecodeVarint",
"local_unicode",
"=",
"unicode",
"assert",
"not",
"is_packed",
"if",
"is_repeated",
":",
"tag_bytes",
"=",
"encoder",
".",
"TagBytes",
"(",
"field_number",
",",
"wire_format",
".",
"WIRETYPE_LENGTH_DELIMITED",
")",
"tag_len",
"=",
"len",
"(",
"tag_bytes",
")",
"def",
"DecodeRepeatedField",
"(",
"buffer",
",",
"pos",
",",
"end",
",",
"message",
",",
"field_dict",
")",
":",
"value",
"=",
"field_dict",
".",
"get",
"(",
"key",
")",
"if",
"value",
"is",
"None",
":",
"value",
"=",
"field_dict",
".",
"setdefault",
"(",
"key",
",",
"new_default",
"(",
"message",
")",
")",
"while",
"1",
":",
"(",
"size",
",",
"pos",
")",
"=",
"local_DecodeVarint",
"(",
"buffer",
",",
"pos",
")",
"new_pos",
"=",
"pos",
"+",
"size",
"if",
"new_pos",
">",
"end",
":",
"raise",
"_DecodeError",
"(",
"'Truncated string.'",
")",
"value",
".",
"append",
"(",
"local_unicode",
"(",
"buffer",
"[",
"pos",
":",
"new_pos",
"]",
",",
"'utf-8'",
")",
")",
"# Predict that the next tag is another copy of the same repeated field.",
"pos",
"=",
"new_pos",
"+",
"tag_len",
"if",
"buffer",
"[",
"new_pos",
":",
"pos",
"]",
"!=",
"tag_bytes",
"or",
"new_pos",
"==",
"end",
":",
"# Prediction failed. Return.",
"return",
"new_pos",
"return",
"DecodeRepeatedField",
"else",
":",
"def",
"DecodeField",
"(",
"buffer",
",",
"pos",
",",
"end",
",",
"message",
",",
"field_dict",
")",
":",
"(",
"size",
",",
"pos",
")",
"=",
"local_DecodeVarint",
"(",
"buffer",
",",
"pos",
")",
"new_pos",
"=",
"pos",
"+",
"size",
"if",
"new_pos",
">",
"end",
":",
"raise",
"_DecodeError",
"(",
"'Truncated string.'",
")",
"field_dict",
"[",
"key",
"]",
"=",
"local_unicode",
"(",
"buffer",
"[",
"pos",
":",
"new_pos",
"]",
",",
"'utf-8'",
")",
"return",
"new_pos",
"return",
"DecodeField"
] | https://github.com/moflow/moflow/blob/2dfb27c799c90c6caf1477508eca3eec616ef7d2/bap/libtracewrap/libtrace/protobuf/python/google/protobuf/internal/decoder.py#L377-L412 |
||
sdhash/sdhash | b9eff63e4e5867e910f41fd69032bbb1c94a2a5e | sdhash-ui/cherrypy/_cpwsgi.py | python | AppResponse.close | (self) | Close and de-reference the current request and response. (Core) | Close and de-reference the current request and response. (Core) | [
"Close",
"and",
"de",
"-",
"reference",
"the",
"current",
"request",
"and",
"response",
".",
"(",
"Core",
")"
] | def close(self):
"""Close and de-reference the current request and response. (Core)"""
self.cpapp.release_serving() | [
"def",
"close",
"(",
"self",
")",
":",
"self",
".",
"cpapp",
".",
"release_serving",
"(",
")"
] | https://github.com/sdhash/sdhash/blob/b9eff63e4e5867e910f41fd69032bbb1c94a2a5e/sdhash-ui/cherrypy/_cpwsgi.py#L263-L265 |
||
lighttransport/nanort | 74063967336311f54ede5dffdfa242123825033b | deps/cpplint.py | python | GetLineWidth | (line) | Determines the width of the line in column positions.
Args:
line: A string, which may be a Unicode string.
Returns:
The width of the line in column positions, accounting for Unicode
combining characters and wide characters. | Determines the width of the line in column positions. | [
"Determines",
"the",
"width",
"of",
"the",
"line",
"in",
"column",
"positions",
"."
] | def GetLineWidth(line):
"""Determines the width of the line in column positions.
Args:
line: A string, which may be a Unicode string.
Returns:
The width of the line in column positions, accounting for Unicode
combining characters and wide characters.
"""
if isinstance(line, unicode):
width = 0
for uc in unicodedata.normalize('NFC', line):
if unicodedata.east_asian_width(uc) in ('W', 'F'):
width += 2
elif not unicodedata.combining(uc):
width += 1
return width
else:
return len(line) | [
"def",
"GetLineWidth",
"(",
"line",
")",
":",
"if",
"isinstance",
"(",
"line",
",",
"unicode",
")",
":",
"width",
"=",
"0",
"for",
"uc",
"in",
"unicodedata",
".",
"normalize",
"(",
"'NFC'",
",",
"line",
")",
":",
"if",
"unicodedata",
".",
"east_asian_width",
"(",
"uc",
")",
"in",
"(",
"'W'",
",",
"'F'",
")",
":",
"width",
"+=",
"2",
"elif",
"not",
"unicodedata",
".",
"combining",
"(",
"uc",
")",
":",
"width",
"+=",
"1",
"return",
"width",
"else",
":",
"return",
"len",
"(",
"line",
")"
] | https://github.com/lighttransport/nanort/blob/74063967336311f54ede5dffdfa242123825033b/deps/cpplint.py#L4351-L4370 |
||
apple/turicreate | cce55aa5311300e3ce6af93cb45ba791fd1bdf49 | deps/src/libxml2-2.9.1/python/libxml2class.py | python | parserCtxt.htmlCtxtUseOptions | (self, options) | return ret | Applies the options to the parser context | Applies the options to the parser context | [
"Applies",
"the",
"options",
"to",
"the",
"parser",
"context"
] | def htmlCtxtUseOptions(self, options):
"""Applies the options to the parser context """
ret = libxml2mod.htmlCtxtUseOptions(self._o, options)
return ret | [
"def",
"htmlCtxtUseOptions",
"(",
"self",
",",
"options",
")",
":",
"ret",
"=",
"libxml2mod",
".",
"htmlCtxtUseOptions",
"(",
"self",
".",
"_o",
",",
"options",
")",
"return",
"ret"
] | https://github.com/apple/turicreate/blob/cce55aa5311300e3ce6af93cb45ba791fd1bdf49/deps/src/libxml2-2.9.1/python/libxml2class.py#L4203-L4206 |
|
ApolloAuto/apollo-platform | 86d9dc6743b496ead18d597748ebabd34a513289 | ros/ros_comm/rosbag/src/rosbag/bag.py | python | _BagReader102_Unindexed.reindex | (self) | Generates all bag index information by rereading the message records. | Generates all bag index information by rereading the message records. | [
"Generates",
"all",
"bag",
"index",
"information",
"by",
"rereading",
"the",
"message",
"records",
"."
] | def reindex(self):
"""Generates all bag index information by rereading the message records."""
f = self.bag._file
total_bytes = self.bag.size
# Re-read the file header to get to the start of the first message
self.bag._file.seek(self.bag._file_header_pos)
offset = f.tell()
# Read message definition and data records
while offset < total_bytes:
yield offset
op = _peek_next_header_op(f)
if op == _OP_MSG_DEF:
connection_info = self.read_message_definition_record()
if connection_info.topic not in self.bag._topic_connections:
self.bag._topic_connections[connection_info.topic] = connection_info.id
self.bag._connections[connection_info.id] = connection_info
self.bag._connection_indexes[connection_info.id] = []
elif op == _OP_MSG_DATA:
# Read the topic and timestamp from the header
header = _read_header(f)
topic = _read_str_field(header, 'topic')
secs = _read_uint32_field(header, 'sec')
nsecs = _read_uint32_field(header, 'nsec')
t = genpy.Time(secs, nsecs)
if topic not in self.bag._topic_connections:
datatype = _read_str_field(header, 'type')
self._create_connection_info_for_datatype(topic, datatype)
connection_id = self.bag._topic_connections[topic]
info = self.bag._connections[connection_id]
# Skip over the message content
_skip_sized(f)
# Insert the message entry (in order) into the connection index
bisect.insort_right(self.bag._connection_indexes[connection_id], _IndexEntry102(t, offset))
offset = f.tell() | [
"def",
"reindex",
"(",
"self",
")",
":",
"f",
"=",
"self",
".",
"bag",
".",
"_file",
"total_bytes",
"=",
"self",
".",
"bag",
".",
"size",
"# Re-read the file header to get to the start of the first message",
"self",
".",
"bag",
".",
"_file",
".",
"seek",
"(",
"self",
".",
"bag",
".",
"_file_header_pos",
")",
"offset",
"=",
"f",
".",
"tell",
"(",
")",
"# Read message definition and data records",
"while",
"offset",
"<",
"total_bytes",
":",
"yield",
"offset",
"op",
"=",
"_peek_next_header_op",
"(",
"f",
")",
"if",
"op",
"==",
"_OP_MSG_DEF",
":",
"connection_info",
"=",
"self",
".",
"read_message_definition_record",
"(",
")",
"if",
"connection_info",
".",
"topic",
"not",
"in",
"self",
".",
"bag",
".",
"_topic_connections",
":",
"self",
".",
"bag",
".",
"_topic_connections",
"[",
"connection_info",
".",
"topic",
"]",
"=",
"connection_info",
".",
"id",
"self",
".",
"bag",
".",
"_connections",
"[",
"connection_info",
".",
"id",
"]",
"=",
"connection_info",
"self",
".",
"bag",
".",
"_connection_indexes",
"[",
"connection_info",
".",
"id",
"]",
"=",
"[",
"]",
"elif",
"op",
"==",
"_OP_MSG_DATA",
":",
"# Read the topic and timestamp from the header",
"header",
"=",
"_read_header",
"(",
"f",
")",
"topic",
"=",
"_read_str_field",
"(",
"header",
",",
"'topic'",
")",
"secs",
"=",
"_read_uint32_field",
"(",
"header",
",",
"'sec'",
")",
"nsecs",
"=",
"_read_uint32_field",
"(",
"header",
",",
"'nsec'",
")",
"t",
"=",
"genpy",
".",
"Time",
"(",
"secs",
",",
"nsecs",
")",
"if",
"topic",
"not",
"in",
"self",
".",
"bag",
".",
"_topic_connections",
":",
"datatype",
"=",
"_read_str_field",
"(",
"header",
",",
"'type'",
")",
"self",
".",
"_create_connection_info_for_datatype",
"(",
"topic",
",",
"datatype",
")",
"connection_id",
"=",
"self",
".",
"bag",
".",
"_topic_connections",
"[",
"topic",
"]",
"info",
"=",
"self",
".",
"bag",
".",
"_connections",
"[",
"connection_id",
"]",
"# Skip over the message content",
"_skip_sized",
"(",
"f",
")",
"# Insert the message entry (in order) into the connection index",
"bisect",
".",
"insort_right",
"(",
"self",
".",
"bag",
".",
"_connection_indexes",
"[",
"connection_id",
"]",
",",
"_IndexEntry102",
"(",
"t",
",",
"offset",
")",
")",
"offset",
"=",
"f",
".",
"tell",
"(",
")"
] | https://github.com/ApolloAuto/apollo-platform/blob/86d9dc6743b496ead18d597748ebabd34a513289/ros/ros_comm/rosbag/src/rosbag/bag.py#L1749-L1796 |
||
ceph/ceph | 959663007321a369c83218414a29bd9dbc8bda3a | src/ceph-volume/ceph_volume/devices/simple/scan.py | python | parse_keyring | (file_contents) | return keyring.strip() | Extract the actual key from a string. Usually from a keyring file, where
the keyring will be in a client section. In the case of a lockbox, it is
something like::
[client.osd-lockbox.8d7a8ab2-5db0-4f83-a785-2809aba403d5]\n\tkey = AQDtoGha/GYJExAA7HNl7Ukhqr7AKlCpLJk6UA==\n
From the above case, it would return::
AQDtoGha/GYJExAA7HNl7Ukhqr7AKlCpLJk6UA== | Extract the actual key from a string. Usually from a keyring file, where
the keyring will be in a client section. In the case of a lockbox, it is
something like:: | [
"Extract",
"the",
"actual",
"key",
"from",
"a",
"string",
".",
"Usually",
"from",
"a",
"keyring",
"file",
"where",
"the",
"keyring",
"will",
"be",
"in",
"a",
"client",
"section",
".",
"In",
"the",
"case",
"of",
"a",
"lockbox",
"it",
"is",
"something",
"like",
"::"
] | def parse_keyring(file_contents):
"""
Extract the actual key from a string. Usually from a keyring file, where
the keyring will be in a client section. In the case of a lockbox, it is
something like::
[client.osd-lockbox.8d7a8ab2-5db0-4f83-a785-2809aba403d5]\n\tkey = AQDtoGha/GYJExAA7HNl7Ukhqr7AKlCpLJk6UA==\n
From the above case, it would return::
AQDtoGha/GYJExAA7HNl7Ukhqr7AKlCpLJk6UA==
"""
# remove newlines that might be trailing
keyring = file_contents.strip('\n')
# Now split on spaces
keyring = keyring.split(' ')[-1]
# Split on newlines
keyring = keyring.split('\n')[-1]
return keyring.strip() | [
"def",
"parse_keyring",
"(",
"file_contents",
")",
":",
"# remove newlines that might be trailing",
"keyring",
"=",
"file_contents",
".",
"strip",
"(",
"'\\n'",
")",
"# Now split on spaces",
"keyring",
"=",
"keyring",
".",
"split",
"(",
"' '",
")",
"[",
"-",
"1",
"]",
"# Split on newlines",
"keyring",
"=",
"keyring",
".",
"split",
"(",
"'\\n'",
")",
"[",
"-",
"1",
"]",
"return",
"keyring",
".",
"strip",
"(",
")"
] | https://github.com/ceph/ceph/blob/959663007321a369c83218414a29bd9dbc8bda3a/src/ceph-volume/ceph_volume/devices/simple/scan.py#L18-L39 |
|
windystrife/UnrealEngine_NVIDIAGameWorks | b50e6338a7c5b26374d66306ebc7807541ff815e | Engine/Extras/ThirdPartyNotUE/emsdk/Win64/python/2.7.5.3_64bit/Lib/idlelib/run.py | python | MyHandler.EOFhook | (self) | Override SocketIO method - terminate wait on callback and exit thread | Override SocketIO method - terminate wait on callback and exit thread | [
"Override",
"SocketIO",
"method",
"-",
"terminate",
"wait",
"on",
"callback",
"and",
"exit",
"thread"
] | def EOFhook(self):
"Override SocketIO method - terminate wait on callback and exit thread"
global quitting
quitting = True
thread.interrupt_main() | [
"def",
"EOFhook",
"(",
"self",
")",
":",
"global",
"quitting",
"quitting",
"=",
"True",
"thread",
".",
"interrupt_main",
"(",
")"
] | https://github.com/windystrife/UnrealEngine_NVIDIAGameWorks/blob/b50e6338a7c5b26374d66306ebc7807541ff815e/Engine/Extras/ThirdPartyNotUE/emsdk/Win64/python/2.7.5.3_64bit/Lib/idlelib/run.py#L279-L283 |
||
mindspore-ai/mindspore | fb8fd3338605bb34fa5cea054e535a8b1d753fab | mindspore/python/mindspore/ops/composite/multitype_ops/setitem_impl.py | python | _list_setitem_with_string | (data, number_index, value) | return F.list_setitem(data, number_index, value) | Assigns value to list.
Inputs:
data (list): Data of type list.
number_index (Number): Index of data.
Outputs:
list, type is the same as the element type of data. | Assigns value to list. | [
"Assigns",
"value",
"to",
"list",
"."
] | def _list_setitem_with_string(data, number_index, value):
"""
Assigns value to list.
Inputs:
data (list): Data of type list.
number_index (Number): Index of data.
Outputs:
list, type is the same as the element type of data.
"""
return F.list_setitem(data, number_index, value) | [
"def",
"_list_setitem_with_string",
"(",
"data",
",",
"number_index",
",",
"value",
")",
":",
"return",
"F",
".",
"list_setitem",
"(",
"data",
",",
"number_index",
",",
"value",
")"
] | https://github.com/mindspore-ai/mindspore/blob/fb8fd3338605bb34fa5cea054e535a8b1d753fab/mindspore/python/mindspore/ops/composite/multitype_ops/setitem_impl.py#L27-L38 |
|
aws/lumberyard | f85344403c1c2e77ec8c75deb2c116e97b713217 | dev/Tools/Python/3.7.10/mac/Python.framework/Versions/3.7/lib/python3.7/nntplib.py | python | _NNTPBase.body | (self, message_spec=None, *, file=None) | return self._artcmd(cmd, file) | Process a BODY command. Argument:
- message_spec: article number or message id
- file: filename string or file object to store the body in
Returns:
- resp: server response if successful
- ArticleInfo: (article number, message id, list of body lines) | Process a BODY command. Argument:
- message_spec: article number or message id
- file: filename string or file object to store the body in
Returns:
- resp: server response if successful
- ArticleInfo: (article number, message id, list of body lines) | [
"Process",
"a",
"BODY",
"command",
".",
"Argument",
":",
"-",
"message_spec",
":",
"article",
"number",
"or",
"message",
"id",
"-",
"file",
":",
"filename",
"string",
"or",
"file",
"object",
"to",
"store",
"the",
"body",
"in",
"Returns",
":",
"-",
"resp",
":",
"server",
"response",
"if",
"successful",
"-",
"ArticleInfo",
":",
"(",
"article",
"number",
"message",
"id",
"list",
"of",
"body",
"lines",
")"
] | def body(self, message_spec=None, *, file=None):
"""Process a BODY command. Argument:
- message_spec: article number or message id
- file: filename string or file object to store the body in
Returns:
- resp: server response if successful
- ArticleInfo: (article number, message id, list of body lines)
"""
if message_spec is not None:
cmd = 'BODY {0}'.format(message_spec)
else:
cmd = 'BODY'
return self._artcmd(cmd, file) | [
"def",
"body",
"(",
"self",
",",
"message_spec",
"=",
"None",
",",
"*",
",",
"file",
"=",
"None",
")",
":",
"if",
"message_spec",
"is",
"not",
"None",
":",
"cmd",
"=",
"'BODY {0}'",
".",
"format",
"(",
"message_spec",
")",
"else",
":",
"cmd",
"=",
"'BODY'",
"return",
"self",
".",
"_artcmd",
"(",
"cmd",
",",
"file",
")"
] | https://github.com/aws/lumberyard/blob/f85344403c1c2e77ec8c75deb2c116e97b713217/dev/Tools/Python/3.7.10/mac/Python.framework/Versions/3.7/lib/python3.7/nntplib.py#L744-L756 |
|
ricardoquesada/Spidermonkey | 4a75ea2543408bd1b2c515aa95901523eeef7858 | media/webrtc/trunk/build/android/pylib/valgrind_tools.py | python | MemcheckTool.GetTimeoutScale | (self) | return 30 | Returns a multiplier that should be applied to timeout values. | Returns a multiplier that should be applied to timeout values. | [
"Returns",
"a",
"multiplier",
"that",
"should",
"be",
"applied",
"to",
"timeout",
"values",
"."
] | def GetTimeoutScale(self):
"""Returns a multiplier that should be applied to timeout values."""
return 30 | [
"def",
"GetTimeoutScale",
"(",
"self",
")",
":",
"return",
"30"
] | https://github.com/ricardoquesada/Spidermonkey/blob/4a75ea2543408bd1b2c515aa95901523eeef7858/media/webrtc/trunk/build/android/pylib/valgrind_tools.py#L201-L203 |
|
heremaps/pptk | 697c09ac1a5a652d43aa8c4deb98c27c3a0b77e3 | pptk/viewer/viewer.py | python | viewer.wait | (self) | Blocks until :kbd:`Enter`/:kbd:`Return` key is pressed in viewer
Examples:
>>> v = pptk.viewer(xyz)
>>> v.wait()
Press enter in viewer to return control to python terminal. | [] | def wait(self):
"""
Blocks until :kbd:`Enter`/:kbd:`Return` key is pressed in viewer
Examples:
>>> v = pptk.viewer(xyz)
>>> v.wait()
Press enter in viewer to return control to python terminal.
"""
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect(('localhost', self._portNumber))
s.send(struct.pack('b', 7))
s.setblocking(1)
buf = b''
while len(buf) == 0:
buf += s.recv(1)
if buf != b'x':
raise RuntimeError('expecting return code \'x\'')
s.close() | [
"def",
"wait",
"(",
"self",
")",
":",
"s",
"=",
"socket",
".",
"socket",
"(",
"socket",
".",
"AF_INET",
",",
"socket",
".",
"SOCK_STREAM",
")",
"s",
".",
"connect",
"(",
"(",
"'localhost'",
",",
"self",
".",
"_portNumber",
")",
")",
"s",
".",
"send",
"(",
"struct",
".",
"pack",
"(",
"'b'",
",",
"7",
")",
")",
"s",
".",
"setblocking",
"(",
"1",
")",
"buf",
"=",
"b''",
"while",
"len",
"(",
"buf",
")",
"==",
"0",
":",
"buf",
"+=",
"s",
".",
"recv",
"(",
"1",
")",
"if",
"buf",
"!=",
"b'x'",
":",
"raise",
"RuntimeError",
"(",
"'expecting return code \\'x\\''",
")",
"s",
".",
"close",
"(",
")"
] | https://github.com/heremaps/pptk/blob/697c09ac1a5a652d43aa8c4deb98c27c3a0b77e3/pptk/viewer/viewer.py#L408-L430 |
|||
psmoveservice/PSMoveService | 22bbe20e9de53f3f3581137bce7b88e2587a27e7 | misc/python/pypsmove/transformations.py | python | unit_vector | (data, axis=None, out=None) | Return ndarray normalized by length, i.e. Euclidean norm, along axis.
>>> v0 = numpy.random.random(3)
>>> v1 = unit_vector(v0)
>>> numpy.allclose(v1, v0 / numpy.linalg.norm(v0))
True
>>> v0 = numpy.random.rand(5, 4, 3)
>>> v1 = unit_vector(v0, axis=-1)
>>> v2 = v0 / numpy.expand_dims(numpy.sqrt(numpy.sum(v0*v0, axis=2)), 2)
>>> numpy.allclose(v1, v2)
True
>>> v1 = unit_vector(v0, axis=1)
>>> v2 = v0 / numpy.expand_dims(numpy.sqrt(numpy.sum(v0*v0, axis=1)), 1)
>>> numpy.allclose(v1, v2)
True
>>> v1 = numpy.empty((5, 4, 3))
>>> unit_vector(v0, axis=1, out=v1)
>>> numpy.allclose(v1, v2)
True
>>> list(unit_vector([]))
[]
>>> list(unit_vector([1]))
[1.0] | Return ndarray normalized by length, i.e. Euclidean norm, along axis. | [
"Return",
"ndarray",
"normalized",
"by",
"length",
"i",
".",
"e",
".",
"Euclidean",
"norm",
"along",
"axis",
"."
] | def unit_vector(data, axis=None, out=None):
"""Return ndarray normalized by length, i.e. Euclidean norm, along axis.
>>> v0 = numpy.random.random(3)
>>> v1 = unit_vector(v0)
>>> numpy.allclose(v1, v0 / numpy.linalg.norm(v0))
True
>>> v0 = numpy.random.rand(5, 4, 3)
>>> v1 = unit_vector(v0, axis=-1)
>>> v2 = v0 / numpy.expand_dims(numpy.sqrt(numpy.sum(v0*v0, axis=2)), 2)
>>> numpy.allclose(v1, v2)
True
>>> v1 = unit_vector(v0, axis=1)
>>> v2 = v0 / numpy.expand_dims(numpy.sqrt(numpy.sum(v0*v0, axis=1)), 1)
>>> numpy.allclose(v1, v2)
True
>>> v1 = numpy.empty((5, 4, 3))
>>> unit_vector(v0, axis=1, out=v1)
>>> numpy.allclose(v1, v2)
True
>>> list(unit_vector([]))
[]
>>> list(unit_vector([1]))
[1.0]
"""
if out is None:
data = numpy.array(data, dtype=numpy.float64, copy=True)
if data.ndim == 1:
data /= math.sqrt(numpy.dot(data, data))
return data
else:
if out is not data:
out[:] = numpy.array(data, copy=False)
data = out
length = numpy.atleast_1d(numpy.sum(data*data, axis))
numpy.sqrt(length, length)
if axis is not None:
length = numpy.expand_dims(length, axis)
data /= length
if out is None:
return data | [
"def",
"unit_vector",
"(",
"data",
",",
"axis",
"=",
"None",
",",
"out",
"=",
"None",
")",
":",
"if",
"out",
"is",
"None",
":",
"data",
"=",
"numpy",
".",
"array",
"(",
"data",
",",
"dtype",
"=",
"numpy",
".",
"float64",
",",
"copy",
"=",
"True",
")",
"if",
"data",
".",
"ndim",
"==",
"1",
":",
"data",
"/=",
"math",
".",
"sqrt",
"(",
"numpy",
".",
"dot",
"(",
"data",
",",
"data",
")",
")",
"return",
"data",
"else",
":",
"if",
"out",
"is",
"not",
"data",
":",
"out",
"[",
":",
"]",
"=",
"numpy",
".",
"array",
"(",
"data",
",",
"copy",
"=",
"False",
")",
"data",
"=",
"out",
"length",
"=",
"numpy",
".",
"atleast_1d",
"(",
"numpy",
".",
"sum",
"(",
"data",
"*",
"data",
",",
"axis",
")",
")",
"numpy",
".",
"sqrt",
"(",
"length",
",",
"length",
")",
"if",
"axis",
"is",
"not",
"None",
":",
"length",
"=",
"numpy",
".",
"expand_dims",
"(",
"length",
",",
"axis",
")",
"data",
"/=",
"length",
"if",
"out",
"is",
"None",
":",
"return",
"data"
] | https://github.com/psmoveservice/PSMoveService/blob/22bbe20e9de53f3f3581137bce7b88e2587a27e7/misc/python/pypsmove/transformations.py#L1722-L1763 |
||
PlatformLab/Arachne | e67391471007174dd4002dc2c160628e19c284e8 | scripts/cpplint.py | python | CloseExpression | (clean_lines, linenum, pos) | return (line, clean_lines.NumLines(), -1) | If input points to ( or { or [ or <, finds the position that closes it.
If lines[linenum][pos] points to a '(' or '{' or '[' or '<', finds the
linenum/pos that correspond to the closing of the expression.
TODO(unknown): cpplint spends a fair bit of time matching parentheses.
Ideally we would want to index all opening and closing parentheses once
and have CloseExpression be just a simple lookup, but due to preprocessor
tricks, this is not so easy.
Args:
clean_lines: A CleansedLines instance containing the file.
linenum: The number of the line to check.
pos: A position on the line.
Returns:
A tuple (line, linenum, pos) pointer *past* the closing brace, or
(line, len(lines), -1) if we never find a close. Note we ignore
strings and comments when matching; and the line we return is the
'cleansed' line at linenum. | If input points to ( or { or [ or <, finds the position that closes it. | [
"If",
"input",
"points",
"to",
"(",
"or",
"{",
"or",
"[",
"or",
"<",
"finds",
"the",
"position",
"that",
"closes",
"it",
"."
] | def CloseExpression(clean_lines, linenum, pos):
"""If input points to ( or { or [ or <, finds the position that closes it.
If lines[linenum][pos] points to a '(' or '{' or '[' or '<', finds the
linenum/pos that correspond to the closing of the expression.
TODO(unknown): cpplint spends a fair bit of time matching parentheses.
Ideally we would want to index all opening and closing parentheses once
and have CloseExpression be just a simple lookup, but due to preprocessor
tricks, this is not so easy.
Args:
clean_lines: A CleansedLines instance containing the file.
linenum: The number of the line to check.
pos: A position on the line.
Returns:
A tuple (line, linenum, pos) pointer *past* the closing brace, or
(line, len(lines), -1) if we never find a close. Note we ignore
strings and comments when matching; and the line we return is the
'cleansed' line at linenum.
"""
line = clean_lines.elided[linenum]
if (line[pos] not in '({[<') or Match(r'<[<=]', line[pos:]):
return (line, clean_lines.NumLines(), -1)
# Check first line
(end_pos, stack) = FindEndOfExpressionInLine(line, pos, [])
if end_pos > -1:
return (line, linenum, end_pos)
# Continue scanning forward
while stack and linenum < clean_lines.NumLines() - 1:
linenum += 1
line = clean_lines.elided[linenum]
(end_pos, stack) = FindEndOfExpressionInLine(line, 0, stack)
if end_pos > -1:
return (line, linenum, end_pos)
# Did not find end of expression before end of file, give up
return (line, clean_lines.NumLines(), -1) | [
"def",
"CloseExpression",
"(",
"clean_lines",
",",
"linenum",
",",
"pos",
")",
":",
"line",
"=",
"clean_lines",
".",
"elided",
"[",
"linenum",
"]",
"if",
"(",
"line",
"[",
"pos",
"]",
"not",
"in",
"'({[<'",
")",
"or",
"Match",
"(",
"r'<[<=]'",
",",
"line",
"[",
"pos",
":",
"]",
")",
":",
"return",
"(",
"line",
",",
"clean_lines",
".",
"NumLines",
"(",
")",
",",
"-",
"1",
")",
"# Check first line",
"(",
"end_pos",
",",
"stack",
")",
"=",
"FindEndOfExpressionInLine",
"(",
"line",
",",
"pos",
",",
"[",
"]",
")",
"if",
"end_pos",
">",
"-",
"1",
":",
"return",
"(",
"line",
",",
"linenum",
",",
"end_pos",
")",
"# Continue scanning forward",
"while",
"stack",
"and",
"linenum",
"<",
"clean_lines",
".",
"NumLines",
"(",
")",
"-",
"1",
":",
"linenum",
"+=",
"1",
"line",
"=",
"clean_lines",
".",
"elided",
"[",
"linenum",
"]",
"(",
"end_pos",
",",
"stack",
")",
"=",
"FindEndOfExpressionInLine",
"(",
"line",
",",
"0",
",",
"stack",
")",
"if",
"end_pos",
">",
"-",
"1",
":",
"return",
"(",
"line",
",",
"linenum",
",",
"end_pos",
")",
"# Did not find end of expression before end of file, give up",
"return",
"(",
"line",
",",
"clean_lines",
".",
"NumLines",
"(",
")",
",",
"-",
"1",
")"
] | https://github.com/PlatformLab/Arachne/blob/e67391471007174dd4002dc2c160628e19c284e8/scripts/cpplint.py#L1570-L1611 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.