nwo
stringlengths 5
86
| sha
stringlengths 40
40
| path
stringlengths 4
189
| language
stringclasses 1
value | identifier
stringlengths 1
94
| parameters
stringlengths 2
4.03k
| argument_list
stringclasses 1
value | return_statement
stringlengths 0
11.5k
| docstring
stringlengths 1
33.2k
| docstring_summary
stringlengths 0
5.15k
| docstring_tokens
list | function
stringlengths 34
151k
| function_tokens
list | url
stringlengths 90
278
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
benoitsteiner/tensorflow-opencl
|
cb7cb40a57fde5cfd4731bc551e82a1e2fef43a5
|
tensorflow/python/ops/image_ops_impl.py
|
python
|
flip_left_right
|
(image)
|
return fix_image_flip_shape(image, array_ops.reverse(image, [1]))
|
Flip an image horizontally (left to right).
Outputs the contents of `image` flipped along the second dimension, which is
`width`.
See also `reverse()`.
Args:
image: A 3-D tensor of shape `[height, width, channels].`
Returns:
A 3-D tensor of the same type and shape as `image`.
Raises:
ValueError: if the shape of `image` not supported.
|
Flip an image horizontally (left to right).
|
[
"Flip",
"an",
"image",
"horizontally",
"(",
"left",
"to",
"right",
")",
"."
] |
def flip_left_right(image):
"""Flip an image horizontally (left to right).
Outputs the contents of `image` flipped along the second dimension, which is
`width`.
See also `reverse()`.
Args:
image: A 3-D tensor of shape `[height, width, channels].`
Returns:
A 3-D tensor of the same type and shape as `image`.
Raises:
ValueError: if the shape of `image` not supported.
"""
image = ops.convert_to_tensor(image, name='image')
image = control_flow_ops.with_dependencies(
_Check3DImage(image, require_static=False), image)
return fix_image_flip_shape(image, array_ops.reverse(image, [1]))
|
[
"def",
"flip_left_right",
"(",
"image",
")",
":",
"image",
"=",
"ops",
".",
"convert_to_tensor",
"(",
"image",
",",
"name",
"=",
"'image'",
")",
"image",
"=",
"control_flow_ops",
".",
"with_dependencies",
"(",
"_Check3DImage",
"(",
"image",
",",
"require_static",
"=",
"False",
")",
",",
"image",
")",
"return",
"fix_image_flip_shape",
"(",
"image",
",",
"array_ops",
".",
"reverse",
"(",
"image",
",",
"[",
"1",
"]",
")",
")"
] |
https://github.com/benoitsteiner/tensorflow-opencl/blob/cb7cb40a57fde5cfd4731bc551e82a1e2fef43a5/tensorflow/python/ops/image_ops_impl.py#L262-L282
|
|
InteractiveComputerGraphics/PositionBasedDynamics
|
136469f03f7869666d907ea8d27872b098715f4a
|
extern/pybind/pybind11/setup_helpers.py
|
python
|
tmp_chdir
|
()
|
Prepare and enter a temporary directory, cleanup when done
|
Prepare and enter a temporary directory, cleanup when done
|
[
"Prepare",
"and",
"enter",
"a",
"temporary",
"directory",
"cleanup",
"when",
"done"
] |
def tmp_chdir():
"Prepare and enter a temporary directory, cleanup when done"
# Threadsafe
with tmp_chdir_lock:
olddir = os.getcwd()
try:
tmpdir = tempfile.mkdtemp()
os.chdir(tmpdir)
yield tmpdir
finally:
os.chdir(olddir)
shutil.rmtree(tmpdir)
|
[
"def",
"tmp_chdir",
"(",
")",
":",
"# Threadsafe",
"with",
"tmp_chdir_lock",
":",
"olddir",
"=",
"os",
".",
"getcwd",
"(",
")",
"try",
":",
"tmpdir",
"=",
"tempfile",
".",
"mkdtemp",
"(",
")",
"os",
".",
"chdir",
"(",
"tmpdir",
")",
"yield",
"tmpdir",
"finally",
":",
"os",
".",
"chdir",
"(",
"olddir",
")",
"shutil",
".",
"rmtree",
"(",
"tmpdir",
")"
] |
https://github.com/InteractiveComputerGraphics/PositionBasedDynamics/blob/136469f03f7869666d907ea8d27872b098715f4a/extern/pybind/pybind11/setup_helpers.py#L209-L221
|
||
apple/swift-lldb
|
d74be846ef3e62de946df343e8c234bde93a8912
|
scripts/Python/static-binding/lldb.py
|
python
|
SBStream.write
|
(self, str)
|
return _lldb.SBStream_write(self, str)
|
write(SBStream self, char const * str)
|
write(SBStream self, char const * str)
|
[
"write",
"(",
"SBStream",
"self",
"char",
"const",
"*",
"str",
")"
] |
def write(self, str):
"""write(SBStream self, char const * str)"""
return _lldb.SBStream_write(self, str)
|
[
"def",
"write",
"(",
"self",
",",
"str",
")",
":",
"return",
"_lldb",
".",
"SBStream_write",
"(",
"self",
",",
"str",
")"
] |
https://github.com/apple/swift-lldb/blob/d74be846ef3e62de946df343e8c234bde93a8912/scripts/Python/static-binding/lldb.py#L9570-L9572
|
|
aws/lumberyard
|
f85344403c1c2e77ec8c75deb2c116e97b713217
|
dev/Gems/CloudGemDefectReporter/v1/AWS/common-code/Lib/requests/sessions.py
|
python
|
Session.close
|
(self)
|
Closes all adapters and as such the session
|
Closes all adapters and as such the session
|
[
"Closes",
"all",
"adapters",
"and",
"as",
"such",
"the",
"session"
] |
def close(self):
"""Closes all adapters and as such the session"""
for v in self.adapters.values():
v.close()
|
[
"def",
"close",
"(",
"self",
")",
":",
"for",
"v",
"in",
"self",
".",
"adapters",
".",
"values",
"(",
")",
":",
"v",
".",
"close",
"(",
")"
] |
https://github.com/aws/lumberyard/blob/f85344403c1c2e77ec8c75deb2c116e97b713217/dev/Gems/CloudGemDefectReporter/v1/AWS/common-code/Lib/requests/sessions.py#L705-L708
|
||
aws/lumberyard
|
f85344403c1c2e77ec8c75deb2c116e97b713217
|
dev/Tools/Python/3.7.10/mac/Python.framework/Versions/3.7/lib/python3.7/site-packages/pip/_vendor/packaging/_compat.py
|
python
|
with_metaclass
|
(meta, *bases)
|
return type.__new__(metaclass, "temporary_class", (), {})
|
Create a base class with a metaclass.
|
Create a base class with a metaclass.
|
[
"Create",
"a",
"base",
"class",
"with",
"a",
"metaclass",
"."
] |
def with_metaclass(meta, *bases):
# type: (Type[Any], Tuple[Type[Any], ...]) -> Any
"""
Create a base class with a metaclass.
"""
# This requires a bit of explanation: the basic idea is to make a dummy
# metaclass for one level of class instantiation that replaces itself with
# the actual metaclass.
class metaclass(meta): # type: ignore
def __new__(cls, name, this_bases, d):
# type: (Type[Any], str, Tuple[Any], Dict[Any, Any]) -> Any
return meta(name, bases, d)
return type.__new__(metaclass, "temporary_class", (), {})
|
[
"def",
"with_metaclass",
"(",
"meta",
",",
"*",
"bases",
")",
":",
"# type: (Type[Any], Tuple[Type[Any], ...]) -> Any",
"# This requires a bit of explanation: the basic idea is to make a dummy",
"# metaclass for one level of class instantiation that replaces itself with",
"# the actual metaclass.",
"class",
"metaclass",
"(",
"meta",
")",
":",
"# type: ignore",
"def",
"__new__",
"(",
"cls",
",",
"name",
",",
"this_bases",
",",
"d",
")",
":",
"# type: (Type[Any], str, Tuple[Any], Dict[Any, Any]) -> Any",
"return",
"meta",
"(",
"name",
",",
"bases",
",",
"d",
")",
"return",
"type",
".",
"__new__",
"(",
"metaclass",
",",
"\"temporary_class\"",
",",
"(",
")",
",",
"{",
"}",
")"
] |
https://github.com/aws/lumberyard/blob/f85344403c1c2e77ec8c75deb2c116e97b713217/dev/Tools/Python/3.7.10/mac/Python.framework/Versions/3.7/lib/python3.7/site-packages/pip/_vendor/packaging/_compat.py#L25-L38
|
|
CRYTEK/CRYENGINE
|
232227c59a220cbbd311576f0fbeba7bb53b2a8c
|
Editor/Python/windows/Lib/site-packages/setuptools/package_index.py
|
python
|
find_external_links
|
(url, page)
|
Find rel="homepage" and rel="download" links in `page`, yielding URLs
|
Find rel="homepage" and rel="download" links in `page`, yielding URLs
|
[
"Find",
"rel",
"=",
"homepage",
"and",
"rel",
"=",
"download",
"links",
"in",
"page",
"yielding",
"URLs"
] |
def find_external_links(url, page):
"""Find rel="homepage" and rel="download" links in `page`, yielding URLs"""
for match in REL.finditer(page):
tag, rel = match.groups()
rels = set(map(str.strip, rel.lower().split(',')))
if 'homepage' in rels or 'download' in rels:
for match in HREF.finditer(tag):
yield urllib.parse.urljoin(url, htmldecode(match.group(1)))
for tag in ("<th>Home Page", "<th>Download URL"):
pos = page.find(tag)
if pos != -1:
match = HREF.search(page, pos)
if match:
yield urllib.parse.urljoin(url, htmldecode(match.group(1)))
|
[
"def",
"find_external_links",
"(",
"url",
",",
"page",
")",
":",
"for",
"match",
"in",
"REL",
".",
"finditer",
"(",
"page",
")",
":",
"tag",
",",
"rel",
"=",
"match",
".",
"groups",
"(",
")",
"rels",
"=",
"set",
"(",
"map",
"(",
"str",
".",
"strip",
",",
"rel",
".",
"lower",
"(",
")",
".",
"split",
"(",
"','",
")",
")",
")",
"if",
"'homepage'",
"in",
"rels",
"or",
"'download'",
"in",
"rels",
":",
"for",
"match",
"in",
"HREF",
".",
"finditer",
"(",
"tag",
")",
":",
"yield",
"urllib",
".",
"parse",
".",
"urljoin",
"(",
"url",
",",
"htmldecode",
"(",
"match",
".",
"group",
"(",
"1",
")",
")",
")",
"for",
"tag",
"in",
"(",
"\"<th>Home Page\"",
",",
"\"<th>Download URL\"",
")",
":",
"pos",
"=",
"page",
".",
"find",
"(",
"tag",
")",
"if",
"pos",
"!=",
"-",
"1",
":",
"match",
"=",
"HREF",
".",
"search",
"(",
"page",
",",
"pos",
")",
"if",
"match",
":",
"yield",
"urllib",
".",
"parse",
".",
"urljoin",
"(",
"url",
",",
"htmldecode",
"(",
"match",
".",
"group",
"(",
"1",
")",
")",
")"
] |
https://github.com/CRYTEK/CRYENGINE/blob/232227c59a220cbbd311576f0fbeba7bb53b2a8c/Editor/Python/windows/Lib/site-packages/setuptools/package_index.py#L222-L237
|
||
catboost/catboost
|
167f64f237114a4d10b2b4ee42adb4569137debe
|
contrib/python/scipy/scipy/interpolate/interpolate.py
|
python
|
_PPolyBase.construct_fast
|
(cls, c, x, extrapolate=None, axis=0)
|
return self
|
Construct the piecewise polynomial without making checks.
Takes the same parameters as the constructor. Input arguments
`c` and `x` must be arrays of the correct shape and type. The
`c` array can only be of dtypes float and complex, and `x`
array must have dtype float.
|
Construct the piecewise polynomial without making checks.
|
[
"Construct",
"the",
"piecewise",
"polynomial",
"without",
"making",
"checks",
"."
] |
def construct_fast(cls, c, x, extrapolate=None, axis=0):
"""
Construct the piecewise polynomial without making checks.
Takes the same parameters as the constructor. Input arguments
`c` and `x` must be arrays of the correct shape and type. The
`c` array can only be of dtypes float and complex, and `x`
array must have dtype float.
"""
self = object.__new__(cls)
self.c = c
self.x = x
self.axis = axis
if extrapolate is None:
extrapolate = True
self.extrapolate = extrapolate
return self
|
[
"def",
"construct_fast",
"(",
"cls",
",",
"c",
",",
"x",
",",
"extrapolate",
"=",
"None",
",",
"axis",
"=",
"0",
")",
":",
"self",
"=",
"object",
".",
"__new__",
"(",
"cls",
")",
"self",
".",
"c",
"=",
"c",
"self",
".",
"x",
"=",
"x",
"self",
".",
"axis",
"=",
"axis",
"if",
"extrapolate",
"is",
"None",
":",
"extrapolate",
"=",
"True",
"self",
".",
"extrapolate",
"=",
"extrapolate",
"return",
"self"
] |
https://github.com/catboost/catboost/blob/167f64f237114a4d10b2b4ee42adb4569137debe/contrib/python/scipy/scipy/interpolate/interpolate.py#L686-L702
|
|
aws/lumberyard
|
f85344403c1c2e77ec8c75deb2c116e97b713217
|
dev/Tools/Python/3.7.10/windows/Lib/quopri.py
|
python
|
unhex
|
(s)
|
return bits
|
Get the integer value of a hexadecimal number.
|
Get the integer value of a hexadecimal number.
|
[
"Get",
"the",
"integer",
"value",
"of",
"a",
"hexadecimal",
"number",
"."
] |
def unhex(s):
"""Get the integer value of a hexadecimal number."""
bits = 0
for c in s:
c = bytes((c,))
if b'0' <= c <= b'9':
i = ord('0')
elif b'a' <= c <= b'f':
i = ord('a')-10
elif b'A' <= c <= b'F':
i = ord(b'A')-10
else:
assert False, "non-hex digit "+repr(c)
bits = bits*16 + (ord(c) - i)
return bits
|
[
"def",
"unhex",
"(",
"s",
")",
":",
"bits",
"=",
"0",
"for",
"c",
"in",
"s",
":",
"c",
"=",
"bytes",
"(",
"(",
"c",
",",
")",
")",
"if",
"b'0'",
"<=",
"c",
"<=",
"b'9'",
":",
"i",
"=",
"ord",
"(",
"'0'",
")",
"elif",
"b'a'",
"<=",
"c",
"<=",
"b'f'",
":",
"i",
"=",
"ord",
"(",
"'a'",
")",
"-",
"10",
"elif",
"b'A'",
"<=",
"c",
"<=",
"b'F'",
":",
"i",
"=",
"ord",
"(",
"b'A'",
")",
"-",
"10",
"else",
":",
"assert",
"False",
",",
"\"non-hex digit \"",
"+",
"repr",
"(",
"c",
")",
"bits",
"=",
"bits",
"*",
"16",
"+",
"(",
"ord",
"(",
"c",
")",
"-",
"i",
")",
"return",
"bits"
] |
https://github.com/aws/lumberyard/blob/f85344403c1c2e77ec8c75deb2c116e97b713217/dev/Tools/Python/3.7.10/windows/Lib/quopri.py#L177-L191
|
|
adobe/chromium
|
cfe5bf0b51b1f6b9fe239c2a3c2f2364da9967d7
|
gpu/command_buffer/build_gles2_cmd_buffer.py
|
python
|
HandWrittenHandler.WriteServiceImplementation
|
(self, func, file)
|
Overrriden from TypeHandler.
|
Overrriden from TypeHandler.
|
[
"Overrriden",
"from",
"TypeHandler",
"."
] |
def WriteServiceImplementation(self, func, file):
"""Overrriden from TypeHandler."""
pass
|
[
"def",
"WriteServiceImplementation",
"(",
"self",
",",
"func",
",",
"file",
")",
":",
"pass"
] |
https://github.com/adobe/chromium/blob/cfe5bf0b51b1f6b9fe239c2a3c2f2364da9967d7/gpu/command_buffer/build_gles2_cmd_buffer.py#L2453-L2455
|
||
apache/thrift
|
0b29261a4f3c6882ef3b09aae47914f0012b0472
|
lib/py/src/transport/TSocket.py
|
python
|
TSocket.__init__
|
(self, host='localhost', port=9090, unix_socket=None,
socket_family=socket.AF_UNSPEC,
socket_keepalive=False)
|
Initialize a TSocket
@param host(str) The host to connect to.
@param port(int) The (TCP) port to connect to.
@param unix_socket(str) The filename of a unix socket to connect to.
(host and port will be ignored.)
@param socket_family(int) The socket family to use with this socket.
@param socket_keepalive(bool) enable TCP keepalive, default off.
|
Initialize a TSocket
|
[
"Initialize",
"a",
"TSocket"
] |
def __init__(self, host='localhost', port=9090, unix_socket=None,
socket_family=socket.AF_UNSPEC,
socket_keepalive=False):
"""Initialize a TSocket
@param host(str) The host to connect to.
@param port(int) The (TCP) port to connect to.
@param unix_socket(str) The filename of a unix socket to connect to.
(host and port will be ignored.)
@param socket_family(int) The socket family to use with this socket.
@param socket_keepalive(bool) enable TCP keepalive, default off.
"""
self.host = host
self.port = port
self.handle = None
self._unix_socket = unix_socket
self._timeout = None
self._socket_family = socket_family
self._socket_keepalive = socket_keepalive
|
[
"def",
"__init__",
"(",
"self",
",",
"host",
"=",
"'localhost'",
",",
"port",
"=",
"9090",
",",
"unix_socket",
"=",
"None",
",",
"socket_family",
"=",
"socket",
".",
"AF_UNSPEC",
",",
"socket_keepalive",
"=",
"False",
")",
":",
"self",
".",
"host",
"=",
"host",
"self",
".",
"port",
"=",
"port",
"self",
".",
"handle",
"=",
"None",
"self",
".",
"_unix_socket",
"=",
"unix_socket",
"self",
".",
"_timeout",
"=",
"None",
"self",
".",
"_socket_family",
"=",
"socket_family",
"self",
".",
"_socket_keepalive",
"=",
"socket_keepalive"
] |
https://github.com/apache/thrift/blob/0b29261a4f3c6882ef3b09aae47914f0012b0472/lib/py/src/transport/TSocket.py#L53-L71
|
||
wlanjie/AndroidFFmpeg
|
7baf9122f4b8e1c74e7baf4be5c422c7a5ba5aaf
|
tools/fdk-aac-build/x86/toolchain/lib/python2.7/distutils/cmd.py
|
python
|
Command.announce
|
(self, msg, level=1)
|
If the current verbosity level is of greater than or equal to
'level' print 'msg' to stdout.
|
If the current verbosity level is of greater than or equal to
'level' print 'msg' to stdout.
|
[
"If",
"the",
"current",
"verbosity",
"level",
"is",
"of",
"greater",
"than",
"or",
"equal",
"to",
"level",
"print",
"msg",
"to",
"stdout",
"."
] |
def announce(self, msg, level=1):
"""If the current verbosity level is of greater than or equal to
'level' print 'msg' to stdout.
"""
log.log(level, msg)
|
[
"def",
"announce",
"(",
"self",
",",
"msg",
",",
"level",
"=",
"1",
")",
":",
"log",
".",
"log",
"(",
"level",
",",
"msg",
")"
] |
https://github.com/wlanjie/AndroidFFmpeg/blob/7baf9122f4b8e1c74e7baf4be5c422c7a5ba5aaf/tools/fdk-aac-build/x86/toolchain/lib/python2.7/distutils/cmd.py#L180-L184
|
||
LiquidPlayer/LiquidCore
|
9405979363f2353ac9a71ad8ab59685dd7f919c9
|
deps/boost_1_66_0/libs/python/config/tools/sphinx4scons.py
|
python
|
_get_sphinxoptions
|
(env, target, source)
|
return " ".join(options)
|
Concatenates all the options for the sphinx command line.
|
Concatenates all the options for the sphinx command line.
|
[
"Concatenates",
"all",
"the",
"options",
"for",
"the",
"sphinx",
"command",
"line",
"."
] |
def _get_sphinxoptions(env, target, source):
"""Concatenates all the options for the sphinx command line."""
options = []
builder = _get_sphinxbuilder(env)
options.append("-b %s" % env.subst(builder, target=target, source=source))
flags = env.get('options', env.get('SPHINXFLAGS', ''))
options.append(env.subst(flags, target=target, source=source))
tags = env.get('tags', env.get('SPHINXTAGS', None))
if tags is not None:
if not SCons.SCons.Util.is_List(tags):
tags = [tags]
for tag in tags:
if tag != '':
tag = env.subst(tag, target=target, source=source)
options.append("-t %s" % tag)
settings = env.get('settings', env.get('SPHINXSETTINGS', None))
if settings is not None:
if not SCons.SCons.Util.is_Dict(settings):
raise TypeError('SPHINXSETTINGS and/or settings argument must be a dictionary')
for key, value in settings.iteritems():
if value != '':
value = env.subst(value, target=target, source=source)
options.append('-D "%s=%s"' % (key, value))
doctree = env.get('doctree', env.get("SPHINXDOCTREE", None))
if isinstance(doctree, SCons.Node.FS.Dir):
options.append("-d %s" % doctree.get_abspath())
elif doctree is not None and doctree != '':
doctree = env.subst(doctree, target=target, source=source)
options.append("-d %s" % env.Dir(doctree).get_abspath())
config = _get_sphinxconfig_path(env, None)
if config is not None and config != '':
config = env.subst(config, target=target, source=source)
options.append("-c %s" % env.Dir(config).File('conf.py').rfile().dir.get_abspath())
return " ".join(options)
|
[
"def",
"_get_sphinxoptions",
"(",
"env",
",",
"target",
",",
"source",
")",
":",
"options",
"=",
"[",
"]",
"builder",
"=",
"_get_sphinxbuilder",
"(",
"env",
")",
"options",
".",
"append",
"(",
"\"-b %s\"",
"%",
"env",
".",
"subst",
"(",
"builder",
",",
"target",
"=",
"target",
",",
"source",
"=",
"source",
")",
")",
"flags",
"=",
"env",
".",
"get",
"(",
"'options'",
",",
"env",
".",
"get",
"(",
"'SPHINXFLAGS'",
",",
"''",
")",
")",
"options",
".",
"append",
"(",
"env",
".",
"subst",
"(",
"flags",
",",
"target",
"=",
"target",
",",
"source",
"=",
"source",
")",
")",
"tags",
"=",
"env",
".",
"get",
"(",
"'tags'",
",",
"env",
".",
"get",
"(",
"'SPHINXTAGS'",
",",
"None",
")",
")",
"if",
"tags",
"is",
"not",
"None",
":",
"if",
"not",
"SCons",
".",
"SCons",
".",
"Util",
".",
"is_List",
"(",
"tags",
")",
":",
"tags",
"=",
"[",
"tags",
"]",
"for",
"tag",
"in",
"tags",
":",
"if",
"tag",
"!=",
"''",
":",
"tag",
"=",
"env",
".",
"subst",
"(",
"tag",
",",
"target",
"=",
"target",
",",
"source",
"=",
"source",
")",
"options",
".",
"append",
"(",
"\"-t %s\"",
"%",
"tag",
")",
"settings",
"=",
"env",
".",
"get",
"(",
"'settings'",
",",
"env",
".",
"get",
"(",
"'SPHINXSETTINGS'",
",",
"None",
")",
")",
"if",
"settings",
"is",
"not",
"None",
":",
"if",
"not",
"SCons",
".",
"SCons",
".",
"Util",
".",
"is_Dict",
"(",
"settings",
")",
":",
"raise",
"TypeError",
"(",
"'SPHINXSETTINGS and/or settings argument must be a dictionary'",
")",
"for",
"key",
",",
"value",
"in",
"settings",
".",
"iteritems",
"(",
")",
":",
"if",
"value",
"!=",
"''",
":",
"value",
"=",
"env",
".",
"subst",
"(",
"value",
",",
"target",
"=",
"target",
",",
"source",
"=",
"source",
")",
"options",
".",
"append",
"(",
"'-D \"%s=%s\"'",
"%",
"(",
"key",
",",
"value",
")",
")",
"doctree",
"=",
"env",
".",
"get",
"(",
"'doctree'",
",",
"env",
".",
"get",
"(",
"\"SPHINXDOCTREE\"",
",",
"None",
")",
")",
"if",
"isinstance",
"(",
"doctree",
",",
"SCons",
".",
"Node",
".",
"FS",
".",
"Dir",
")",
":",
"options",
".",
"append",
"(",
"\"-d %s\"",
"%",
"doctree",
".",
"get_abspath",
"(",
")",
")",
"elif",
"doctree",
"is",
"not",
"None",
"and",
"doctree",
"!=",
"''",
":",
"doctree",
"=",
"env",
".",
"subst",
"(",
"doctree",
",",
"target",
"=",
"target",
",",
"source",
"=",
"source",
")",
"options",
".",
"append",
"(",
"\"-d %s\"",
"%",
"env",
".",
"Dir",
"(",
"doctree",
")",
".",
"get_abspath",
"(",
")",
")",
"config",
"=",
"_get_sphinxconfig_path",
"(",
"env",
",",
"None",
")",
"if",
"config",
"is",
"not",
"None",
"and",
"config",
"!=",
"''",
":",
"config",
"=",
"env",
".",
"subst",
"(",
"config",
",",
"target",
"=",
"target",
",",
"source",
"=",
"source",
")",
"options",
".",
"append",
"(",
"\"-c %s\"",
"%",
"env",
".",
"Dir",
"(",
"config",
")",
".",
"File",
"(",
"'conf.py'",
")",
".",
"rfile",
"(",
")",
".",
"dir",
".",
"get_abspath",
"(",
")",
")",
"return",
"\" \"",
".",
"join",
"(",
"options",
")"
] |
https://github.com/LiquidPlayer/LiquidCore/blob/9405979363f2353ac9a71ad8ab59685dd7f919c9/deps/boost_1_66_0/libs/python/config/tools/sphinx4scons.py#L142-L181
|
|
catboost/catboost
|
167f64f237114a4d10b2b4ee42adb4569137debe
|
contrib/python/scipy/py2/scipy/integrate/quadpack.py
|
python
|
dblquad
|
(func, a, b, gfun, hfun, args=(), epsabs=1.49e-8, epsrel=1.49e-8)
|
return nquad(func, [temp_ranges, [a, b]], args=args,
opts={"epsabs": epsabs, "epsrel": epsrel})
|
Compute a double integral.
Return the double (definite) integral of ``func(y, x)`` from ``x = a..b``
and ``y = gfun(x)..hfun(x)``.
Parameters
----------
func : callable
A Python function or method of at least two variables: y must be the
first argument and x the second argument.
a, b : float
The limits of integration in x: `a` < `b`
gfun : callable or float
The lower boundary curve in y which is a function taking a single
floating point argument (x) and returning a floating point result
or a float indicating a constant boundary curve.
hfun : callable or float
The upper boundary curve in y (same requirements as `gfun`).
args : sequence, optional
Extra arguments to pass to `func`.
epsabs : float, optional
Absolute tolerance passed directly to the inner 1-D quadrature
integration. Default is 1.49e-8.
epsrel : float, optional
Relative tolerance of the inner 1-D integrals. Default is 1.49e-8.
Returns
-------
y : float
The resultant integral.
abserr : float
An estimate of the error.
See also
--------
quad : single integral
tplquad : triple integral
nquad : N-dimensional integrals
fixed_quad : fixed-order Gaussian quadrature
quadrature : adaptive Gaussian quadrature
odeint : ODE integrator
ode : ODE integrator
simps : integrator for sampled data
romb : integrator for sampled data
scipy.special : for coefficients and roots of orthogonal polynomials
Examples
--------
Compute the double integral of ``x * y**2`` over the box
``x`` ranging from 0 to 2 and ``y`` ranging from 0 to 1.
>>> from scipy import integrate
>>> f = lambda y, x: x*y**2
>>> integrate.dblquad(f, 0, 2, lambda x: 0, lambda x: 1)
(0.6666666666666667, 7.401486830834377e-15)
|
Compute a double integral.
|
[
"Compute",
"a",
"double",
"integral",
"."
] |
def dblquad(func, a, b, gfun, hfun, args=(), epsabs=1.49e-8, epsrel=1.49e-8):
"""
Compute a double integral.
Return the double (definite) integral of ``func(y, x)`` from ``x = a..b``
and ``y = gfun(x)..hfun(x)``.
Parameters
----------
func : callable
A Python function or method of at least two variables: y must be the
first argument and x the second argument.
a, b : float
The limits of integration in x: `a` < `b`
gfun : callable or float
The lower boundary curve in y which is a function taking a single
floating point argument (x) and returning a floating point result
or a float indicating a constant boundary curve.
hfun : callable or float
The upper boundary curve in y (same requirements as `gfun`).
args : sequence, optional
Extra arguments to pass to `func`.
epsabs : float, optional
Absolute tolerance passed directly to the inner 1-D quadrature
integration. Default is 1.49e-8.
epsrel : float, optional
Relative tolerance of the inner 1-D integrals. Default is 1.49e-8.
Returns
-------
y : float
The resultant integral.
abserr : float
An estimate of the error.
See also
--------
quad : single integral
tplquad : triple integral
nquad : N-dimensional integrals
fixed_quad : fixed-order Gaussian quadrature
quadrature : adaptive Gaussian quadrature
odeint : ODE integrator
ode : ODE integrator
simps : integrator for sampled data
romb : integrator for sampled data
scipy.special : for coefficients and roots of orthogonal polynomials
Examples
--------
Compute the double integral of ``x * y**2`` over the box
``x`` ranging from 0 to 2 and ``y`` ranging from 0 to 1.
>>> from scipy import integrate
>>> f = lambda y, x: x*y**2
>>> integrate.dblquad(f, 0, 2, lambda x: 0, lambda x: 1)
(0.6666666666666667, 7.401486830834377e-15)
"""
def temp_ranges(*args):
return [gfun(args[0]) if callable(gfun) else gfun,
hfun(args[0]) if callable(hfun) else hfun]
return nquad(func, [temp_ranges, [a, b]], args=args,
opts={"epsabs": epsabs, "epsrel": epsrel})
|
[
"def",
"dblquad",
"(",
"func",
",",
"a",
",",
"b",
",",
"gfun",
",",
"hfun",
",",
"args",
"=",
"(",
")",
",",
"epsabs",
"=",
"1.49e-8",
",",
"epsrel",
"=",
"1.49e-8",
")",
":",
"def",
"temp_ranges",
"(",
"*",
"args",
")",
":",
"return",
"[",
"gfun",
"(",
"args",
"[",
"0",
"]",
")",
"if",
"callable",
"(",
"gfun",
")",
"else",
"gfun",
",",
"hfun",
"(",
"args",
"[",
"0",
"]",
")",
"if",
"callable",
"(",
"hfun",
")",
"else",
"hfun",
"]",
"return",
"nquad",
"(",
"func",
",",
"[",
"temp_ranges",
",",
"[",
"a",
",",
"b",
"]",
"]",
",",
"args",
"=",
"args",
",",
"opts",
"=",
"{",
"\"epsabs\"",
":",
"epsabs",
",",
"\"epsrel\"",
":",
"epsrel",
"}",
")"
] |
https://github.com/catboost/catboost/blob/167f64f237114a4d10b2b4ee42adb4569137debe/contrib/python/scipy/py2/scipy/integrate/quadpack.py#L515-L581
|
|
wxWidgets/wxPython-Classic
|
19571e1ae65f1ac445f5491474121998c97a1bf0
|
src/gtk/propgrid.py
|
python
|
PropertyGridIteratorBase.Prev
|
(*args, **kwargs)
|
return _propgrid.PropertyGridIteratorBase_Prev(*args, **kwargs)
|
Prev(self)
|
Prev(self)
|
[
"Prev",
"(",
"self",
")"
] |
def Prev(*args, **kwargs):
"""Prev(self)"""
return _propgrid.PropertyGridIteratorBase_Prev(*args, **kwargs)
|
[
"def",
"Prev",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"return",
"_propgrid",
".",
"PropertyGridIteratorBase_Prev",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")"
] |
https://github.com/wxWidgets/wxPython-Classic/blob/19571e1ae65f1ac445f5491474121998c97a1bf0/src/gtk/propgrid.py#L954-L956
|
|
wxWidgets/wxPython-Classic
|
19571e1ae65f1ac445f5491474121998c97a1bf0
|
demo/PropertyGrid.py
|
python
|
TrivialPropertyEditor.CreateControls
|
(self, propgrid, property, pos, sz)
|
Create the actual wxPython controls here for editing the
property value.
You must use propgrid.GetPanel() as parent for created controls.
Return value is either single editor control or tuple of two
editor controls, of which first is the primary one and second
is usually a button.
|
Create the actual wxPython controls here for editing the
property value.
|
[
"Create",
"the",
"actual",
"wxPython",
"controls",
"here",
"for",
"editing",
"the",
"property",
"value",
"."
] |
def CreateControls(self, propgrid, property, pos, sz):
""" Create the actual wxPython controls here for editing the
property value.
You must use propgrid.GetPanel() as parent for created controls.
Return value is either single editor control or tuple of two
editor controls, of which first is the primary one and second
is usually a button.
"""
try:
x, y = pos
w, h = sz
h = 64 + 6
# Make room for button
bw = propgrid.GetRowHeight()
w -= bw
s = property.GetDisplayedString();
tc = wx.TextCtrl(propgrid.GetPanel(), wxpg.PG_SUBID1, s,
(x,y), (w,h),
wx.TE_PROCESS_ENTER)
btn = wx.Button(propgrid.GetPanel(), wxpg.PG_SUBID2, '...',
(x+w, y),
(bw, h), wx.WANTS_CHARS)
return (tc, btn)
except:
import traceback
print(traceback.print_exc())
|
[
"def",
"CreateControls",
"(",
"self",
",",
"propgrid",
",",
"property",
",",
"pos",
",",
"sz",
")",
":",
"try",
":",
"x",
",",
"y",
"=",
"pos",
"w",
",",
"h",
"=",
"sz",
"h",
"=",
"64",
"+",
"6",
"# Make room for button",
"bw",
"=",
"propgrid",
".",
"GetRowHeight",
"(",
")",
"w",
"-=",
"bw",
"s",
"=",
"property",
".",
"GetDisplayedString",
"(",
")",
"tc",
"=",
"wx",
".",
"TextCtrl",
"(",
"propgrid",
".",
"GetPanel",
"(",
")",
",",
"wxpg",
".",
"PG_SUBID1",
",",
"s",
",",
"(",
"x",
",",
"y",
")",
",",
"(",
"w",
",",
"h",
")",
",",
"wx",
".",
"TE_PROCESS_ENTER",
")",
"btn",
"=",
"wx",
".",
"Button",
"(",
"propgrid",
".",
"GetPanel",
"(",
")",
",",
"wxpg",
".",
"PG_SUBID2",
",",
"'...'",
",",
"(",
"x",
"+",
"w",
",",
"y",
")",
",",
"(",
"bw",
",",
"h",
")",
",",
"wx",
".",
"WANTS_CHARS",
")",
"return",
"(",
"tc",
",",
"btn",
")",
"except",
":",
"import",
"traceback",
"print",
"(",
"traceback",
".",
"print_exc",
"(",
")",
")"
] |
https://github.com/wxWidgets/wxPython-Classic/blob/19571e1ae65f1ac445f5491474121998c97a1bf0/demo/PropertyGrid.py#L399-L429
|
||
MrMC/mrmc
|
5a8e460b2aec44f03eb9604cbd7681d4277dbb81
|
tools/EventClients/lib/python/xbmcclient.py
|
python
|
Packet.get_udp_message
|
(self, packetnum=1)
|
return header + payload
|
Construct the UDP message for the specified packetnum and return
as string
Keyword arguments:
packetnum -- the packet no. for which to construct the message
(default 1)
|
Construct the UDP message for the specified packetnum and return
as string
|
[
"Construct",
"the",
"UDP",
"message",
"for",
"the",
"specified",
"packetnum",
"and",
"return",
"as",
"string"
] |
def get_udp_message(self, packetnum=1):
"""Construct the UDP message for the specified packetnum and return
as string
Keyword arguments:
packetnum -- the packet no. for which to construct the message
(default 1)
"""
if packetnum > self.num_packets() or packetnum < 1:
return ""
header = ""
if packetnum==1:
header = self.get_header(self.packettype, packetnum, self.maxseq,
self.get_payload_size(packetnum))
else:
header = self.get_header(PT_BLOB, packetnum, self.maxseq,
self.get_payload_size(packetnum))
payload = self.payload[ (packetnum-1) * MAX_PAYLOAD_SIZE :
(packetnum-1) * MAX_PAYLOAD_SIZE+
self.get_payload_size(packetnum) ]
return header + payload
|
[
"def",
"get_udp_message",
"(",
"self",
",",
"packetnum",
"=",
"1",
")",
":",
"if",
"packetnum",
">",
"self",
".",
"num_packets",
"(",
")",
"or",
"packetnum",
"<",
"1",
":",
"return",
"\"\"",
"header",
"=",
"\"\"",
"if",
"packetnum",
"==",
"1",
":",
"header",
"=",
"self",
".",
"get_header",
"(",
"self",
".",
"packettype",
",",
"packetnum",
",",
"self",
".",
"maxseq",
",",
"self",
".",
"get_payload_size",
"(",
"packetnum",
")",
")",
"else",
":",
"header",
"=",
"self",
".",
"get_header",
"(",
"PT_BLOB",
",",
"packetnum",
",",
"self",
".",
"maxseq",
",",
"self",
".",
"get_payload_size",
"(",
"packetnum",
")",
")",
"payload",
"=",
"self",
".",
"payload",
"[",
"(",
"packetnum",
"-",
"1",
")",
"*",
"MAX_PAYLOAD_SIZE",
":",
"(",
"packetnum",
"-",
"1",
")",
"*",
"MAX_PAYLOAD_SIZE",
"+",
"self",
".",
"get_payload_size",
"(",
"packetnum",
")",
"]",
"return",
"header",
"+",
"payload"
] |
https://github.com/MrMC/mrmc/blob/5a8e460b2aec44f03eb9604cbd7681d4277dbb81/tools/EventClients/lib/python/xbmcclient.py#L219-L240
|
|
miyosuda/TensorFlowAndroidMNIST
|
7b5a4603d2780a8a2834575706e9001977524007
|
jni-build/jni/include/tensorflow/contrib/graph_editor/subgraph.py
|
python
|
SubGraphView.remap_outputs
|
(self, new_output_indices)
|
return res
|
Remap the output of the subgraph.
If the output of the original subgraph are [t0, t1, t2], remapping to
[1,1,0] will create a new instance whose outputs is [t1, t1, t0].
Note that this is only modifying the view: the underlying tf.Graph is not
affected.
Args:
new_output_indices: an iterable of integers representing a mapping between
the old outputs and the new ones. This mapping can be under-complete and
can have repetitions.
Returns:
A new modified instance of the original subgraph view with remapped
outputs.
|
Remap the output of the subgraph.
|
[
"Remap",
"the",
"output",
"of",
"the",
"subgraph",
"."
] |
def remap_outputs(self, new_output_indices):
"""Remap the output of the subgraph.
If the output of the original subgraph are [t0, t1, t2], remapping to
[1,1,0] will create a new instance whose outputs is [t1, t1, t0].
Note that this is only modifying the view: the underlying tf.Graph is not
affected.
Args:
new_output_indices: an iterable of integers representing a mapping between
the old outputs and the new ones. This mapping can be under-complete and
can have repetitions.
Returns:
A new modified instance of the original subgraph view with remapped
outputs.
"""
res = copy.copy(self)
res._remap_outputs(new_output_indices) # pylint: disable=protected-access
return res
|
[
"def",
"remap_outputs",
"(",
"self",
",",
"new_output_indices",
")",
":",
"res",
"=",
"copy",
".",
"copy",
"(",
"self",
")",
"res",
".",
"_remap_outputs",
"(",
"new_output_indices",
")",
"# pylint: disable=protected-access",
"return",
"res"
] |
https://github.com/miyosuda/TensorFlowAndroidMNIST/blob/7b5a4603d2780a8a2834575706e9001977524007/jni-build/jni/include/tensorflow/contrib/graph_editor/subgraph.py#L352-L371
|
|
baidu-research/tensorflow-allreduce
|
66d5b855e90b0949e9fa5cca5599fd729a70e874
|
tensorflow/python/ops/rnn.py
|
python
|
dynamic_rnn
|
(cell, inputs, sequence_length=None, initial_state=None,
dtype=None, parallel_iterations=None, swap_memory=False,
time_major=False, scope=None)
|
Creates a recurrent neural network specified by RNNCell `cell`.
Performs fully dynamic unrolling of `inputs`.
`Inputs` may be a single `Tensor` where the maximum time is either the first
or second dimension (see the parameter
`time_major`). Alternatively, it may be a (possibly nested) tuple of
Tensors, each of them having matching batch and time dimensions.
The corresponding output is either a single `Tensor` having the same number
of time steps and batch size, or a (possibly nested) tuple of such tensors,
matching the nested structure of `cell.output_size`.
The parameter `sequence_length` is optional and is used to copy-through state
and zero-out outputs when past a batch element's sequence length. So it's more
for correctness than performance.
Args:
cell: An instance of RNNCell.
inputs: The RNN inputs.
If `time_major == False` (default), this must be a `Tensor` of shape:
`[batch_size, max_time, ...]`, or a nested tuple of such
elements.
If `time_major == True`, this must be a `Tensor` of shape:
`[max_time, batch_size, ...]`, or a nested tuple of such
elements.
This may also be a (possibly nested) tuple of Tensors satisfying
this property. The first two dimensions must match across all the inputs,
but otherwise the ranks and other shape components may differ.
In this case, input to `cell` at each time-step will replicate the
structure of these tuples, except for the time dimension (from which the
time is taken).
The input to `cell` at each time step will be a `Tensor` or (possibly
nested) tuple of Tensors each with dimensions `[batch_size, ...]`.
sequence_length: (optional) An int32/int64 vector sized `[batch_size]`.
initial_state: (optional) An initial state for the RNN.
If `cell.state_size` is an integer, this must be
a `Tensor` of appropriate type and shape `[batch_size, cell.state_size]`.
If `cell.state_size` is a tuple, this should be a tuple of
tensors having shapes `[batch_size, s] for s in cell.state_size`.
dtype: (optional) The data type for the initial state and expected output.
Required if initial_state is not provided or RNN state has a heterogeneous
dtype.
parallel_iterations: (Default: 32). The number of iterations to run in
parallel. Those operations which do not have any temporal dependency
and can be run in parallel, will be. This parameter trades off
time for space. Values >> 1 use more memory but take less time,
while smaller values use less memory but computations take longer.
swap_memory: Transparently swap the tensors produced in forward inference
but needed for back prop from GPU to CPU. This allows training RNNs
which would typically not fit on a single GPU, with very minimal (or no)
performance penalty.
time_major: The shape format of the `inputs` and `outputs` Tensors.
If true, these `Tensors` must be shaped `[max_time, batch_size, depth]`.
If false, these `Tensors` must be shaped `[batch_size, max_time, depth]`.
Using `time_major = True` is a bit more efficient because it avoids
transposes at the beginning and end of the RNN calculation. However,
most TensorFlow data is batch-major, so by default this function
accepts input and emits output in batch-major form.
scope: VariableScope for the created subgraph; defaults to "rnn".
Returns:
A pair (outputs, state) where:
outputs: The RNN output `Tensor`.
If time_major == False (default), this will be a `Tensor` shaped:
`[batch_size, max_time, cell.output_size]`.
If time_major == True, this will be a `Tensor` shaped:
`[max_time, batch_size, cell.output_size]`.
Note, if `cell.output_size` is a (possibly nested) tuple of integers
or `TensorShape` objects, then `outputs` will be a tuple having the
same structure as `cell.output_size`, containing Tensors having shapes
corresponding to the shape data in `cell.output_size`.
state: The final state. If `cell.state_size` is an int, this
will be shaped `[batch_size, cell.state_size]`. If it is a
`TensorShape`, this will be shaped `[batch_size] + cell.state_size`.
If it is a (possibly nested) tuple of ints or `TensorShape`, this will
be a tuple having the corresponding shapes.
Raises:
TypeError: If `cell` is not an instance of RNNCell.
ValueError: If inputs is None or an empty list.
|
Creates a recurrent neural network specified by RNNCell `cell`.
|
[
"Creates",
"a",
"recurrent",
"neural",
"network",
"specified",
"by",
"RNNCell",
"cell",
"."
] |
def dynamic_rnn(cell, inputs, sequence_length=None, initial_state=None,
dtype=None, parallel_iterations=None, swap_memory=False,
time_major=False, scope=None):
"""Creates a recurrent neural network specified by RNNCell `cell`.
Performs fully dynamic unrolling of `inputs`.
`Inputs` may be a single `Tensor` where the maximum time is either the first
or second dimension (see the parameter
`time_major`). Alternatively, it may be a (possibly nested) tuple of
Tensors, each of them having matching batch and time dimensions.
The corresponding output is either a single `Tensor` having the same number
of time steps and batch size, or a (possibly nested) tuple of such tensors,
matching the nested structure of `cell.output_size`.
The parameter `sequence_length` is optional and is used to copy-through state
and zero-out outputs when past a batch element's sequence length. So it's more
for correctness than performance.
Args:
cell: An instance of RNNCell.
inputs: The RNN inputs.
If `time_major == False` (default), this must be a `Tensor` of shape:
`[batch_size, max_time, ...]`, or a nested tuple of such
elements.
If `time_major == True`, this must be a `Tensor` of shape:
`[max_time, batch_size, ...]`, or a nested tuple of such
elements.
This may also be a (possibly nested) tuple of Tensors satisfying
this property. The first two dimensions must match across all the inputs,
but otherwise the ranks and other shape components may differ.
In this case, input to `cell` at each time-step will replicate the
structure of these tuples, except for the time dimension (from which the
time is taken).
The input to `cell` at each time step will be a `Tensor` or (possibly
nested) tuple of Tensors each with dimensions `[batch_size, ...]`.
sequence_length: (optional) An int32/int64 vector sized `[batch_size]`.
initial_state: (optional) An initial state for the RNN.
If `cell.state_size` is an integer, this must be
a `Tensor` of appropriate type and shape `[batch_size, cell.state_size]`.
If `cell.state_size` is a tuple, this should be a tuple of
tensors having shapes `[batch_size, s] for s in cell.state_size`.
dtype: (optional) The data type for the initial state and expected output.
Required if initial_state is not provided or RNN state has a heterogeneous
dtype.
parallel_iterations: (Default: 32). The number of iterations to run in
parallel. Those operations which do not have any temporal dependency
and can be run in parallel, will be. This parameter trades off
time for space. Values >> 1 use more memory but take less time,
while smaller values use less memory but computations take longer.
swap_memory: Transparently swap the tensors produced in forward inference
but needed for back prop from GPU to CPU. This allows training RNNs
which would typically not fit on a single GPU, with very minimal (or no)
performance penalty.
time_major: The shape format of the `inputs` and `outputs` Tensors.
If true, these `Tensors` must be shaped `[max_time, batch_size, depth]`.
If false, these `Tensors` must be shaped `[batch_size, max_time, depth]`.
Using `time_major = True` is a bit more efficient because it avoids
transposes at the beginning and end of the RNN calculation. However,
most TensorFlow data is batch-major, so by default this function
accepts input and emits output in batch-major form.
scope: VariableScope for the created subgraph; defaults to "rnn".
Returns:
A pair (outputs, state) where:
outputs: The RNN output `Tensor`.
If time_major == False (default), this will be a `Tensor` shaped:
`[batch_size, max_time, cell.output_size]`.
If time_major == True, this will be a `Tensor` shaped:
`[max_time, batch_size, cell.output_size]`.
Note, if `cell.output_size` is a (possibly nested) tuple of integers
or `TensorShape` objects, then `outputs` will be a tuple having the
same structure as `cell.output_size`, containing Tensors having shapes
corresponding to the shape data in `cell.output_size`.
state: The final state. If `cell.state_size` is an int, this
will be shaped `[batch_size, cell.state_size]`. If it is a
`TensorShape`, this will be shaped `[batch_size] + cell.state_size`.
If it is a (possibly nested) tuple of ints or `TensorShape`, this will
be a tuple having the corresponding shapes.
Raises:
TypeError: If `cell` is not an instance of RNNCell.
ValueError: If inputs is None or an empty list.
"""
if not _like_rnncell(cell):
raise TypeError("cell must be an instance of RNNCell")
# By default, time_major==False and inputs are batch-major: shaped
# [batch, time, depth]
# For internal calculations, we transpose to [time, batch, depth]
flat_input = nest.flatten(inputs)
if not time_major:
# (B,T,D) => (T,B,D)
flat_input = [ops.convert_to_tensor(input_) for input_ in flat_input]
flat_input = tuple(_transpose_batch_time(input_) for input_ in flat_input)
parallel_iterations = parallel_iterations or 32
if sequence_length is not None:
sequence_length = math_ops.to_int32(sequence_length)
if sequence_length.get_shape().ndims not in (None, 1):
raise ValueError(
"sequence_length must be a vector of length batch_size, "
"but saw shape: %s" % sequence_length.get_shape())
sequence_length = array_ops.identity( # Just to find it in the graph.
sequence_length, name="sequence_length")
# Create a new scope in which the caching device is either
# determined by the parent scope, or is set to place the cached
# Variable using the same placement as for the rest of the RNN.
with vs.variable_scope(scope or "rnn") as varscope:
if varscope.caching_device is None:
varscope.set_caching_device(lambda op: op.device)
batch_size = _best_effort_input_batch_size(flat_input)
if initial_state is not None:
state = initial_state
else:
if not dtype:
raise ValueError("If there is no initial_state, you must give a dtype.")
state = cell.zero_state(batch_size, dtype)
def _assert_has_shape(x, shape):
x_shape = array_ops.shape(x)
packed_shape = array_ops.stack(shape)
return control_flow_ops.Assert(
math_ops.reduce_all(math_ops.equal(x_shape, packed_shape)),
["Expected shape for Tensor %s is " % x.name,
packed_shape, " but saw shape: ", x_shape])
if sequence_length is not None:
# Perform some shape validation
with ops.control_dependencies(
[_assert_has_shape(sequence_length, [batch_size])]):
sequence_length = array_ops.identity(
sequence_length, name="CheckSeqLen")
inputs = nest.pack_sequence_as(structure=inputs, flat_sequence=flat_input)
(outputs, final_state) = _dynamic_rnn_loop(
cell,
inputs,
state,
parallel_iterations=parallel_iterations,
swap_memory=swap_memory,
sequence_length=sequence_length,
dtype=dtype)
# Outputs of _dynamic_rnn_loop are always shaped [time, batch, depth].
# If we are performing batch-major calculations, transpose output back
# to shape [batch, time, depth]
if not time_major:
# (T,B,D) => (B,T,D)
outputs = nest.map_structure(_transpose_batch_time, outputs)
return (outputs, final_state)
|
[
"def",
"dynamic_rnn",
"(",
"cell",
",",
"inputs",
",",
"sequence_length",
"=",
"None",
",",
"initial_state",
"=",
"None",
",",
"dtype",
"=",
"None",
",",
"parallel_iterations",
"=",
"None",
",",
"swap_memory",
"=",
"False",
",",
"time_major",
"=",
"False",
",",
"scope",
"=",
"None",
")",
":",
"if",
"not",
"_like_rnncell",
"(",
"cell",
")",
":",
"raise",
"TypeError",
"(",
"\"cell must be an instance of RNNCell\"",
")",
"# By default, time_major==False and inputs are batch-major: shaped",
"# [batch, time, depth]",
"# For internal calculations, we transpose to [time, batch, depth]",
"flat_input",
"=",
"nest",
".",
"flatten",
"(",
"inputs",
")",
"if",
"not",
"time_major",
":",
"# (B,T,D) => (T,B,D)",
"flat_input",
"=",
"[",
"ops",
".",
"convert_to_tensor",
"(",
"input_",
")",
"for",
"input_",
"in",
"flat_input",
"]",
"flat_input",
"=",
"tuple",
"(",
"_transpose_batch_time",
"(",
"input_",
")",
"for",
"input_",
"in",
"flat_input",
")",
"parallel_iterations",
"=",
"parallel_iterations",
"or",
"32",
"if",
"sequence_length",
"is",
"not",
"None",
":",
"sequence_length",
"=",
"math_ops",
".",
"to_int32",
"(",
"sequence_length",
")",
"if",
"sequence_length",
".",
"get_shape",
"(",
")",
".",
"ndims",
"not",
"in",
"(",
"None",
",",
"1",
")",
":",
"raise",
"ValueError",
"(",
"\"sequence_length must be a vector of length batch_size, \"",
"\"but saw shape: %s\"",
"%",
"sequence_length",
".",
"get_shape",
"(",
")",
")",
"sequence_length",
"=",
"array_ops",
".",
"identity",
"(",
"# Just to find it in the graph.",
"sequence_length",
",",
"name",
"=",
"\"sequence_length\"",
")",
"# Create a new scope in which the caching device is either",
"# determined by the parent scope, or is set to place the cached",
"# Variable using the same placement as for the rest of the RNN.",
"with",
"vs",
".",
"variable_scope",
"(",
"scope",
"or",
"\"rnn\"",
")",
"as",
"varscope",
":",
"if",
"varscope",
".",
"caching_device",
"is",
"None",
":",
"varscope",
".",
"set_caching_device",
"(",
"lambda",
"op",
":",
"op",
".",
"device",
")",
"batch_size",
"=",
"_best_effort_input_batch_size",
"(",
"flat_input",
")",
"if",
"initial_state",
"is",
"not",
"None",
":",
"state",
"=",
"initial_state",
"else",
":",
"if",
"not",
"dtype",
":",
"raise",
"ValueError",
"(",
"\"If there is no initial_state, you must give a dtype.\"",
")",
"state",
"=",
"cell",
".",
"zero_state",
"(",
"batch_size",
",",
"dtype",
")",
"def",
"_assert_has_shape",
"(",
"x",
",",
"shape",
")",
":",
"x_shape",
"=",
"array_ops",
".",
"shape",
"(",
"x",
")",
"packed_shape",
"=",
"array_ops",
".",
"stack",
"(",
"shape",
")",
"return",
"control_flow_ops",
".",
"Assert",
"(",
"math_ops",
".",
"reduce_all",
"(",
"math_ops",
".",
"equal",
"(",
"x_shape",
",",
"packed_shape",
")",
")",
",",
"[",
"\"Expected shape for Tensor %s is \"",
"%",
"x",
".",
"name",
",",
"packed_shape",
",",
"\" but saw shape: \"",
",",
"x_shape",
"]",
")",
"if",
"sequence_length",
"is",
"not",
"None",
":",
"# Perform some shape validation",
"with",
"ops",
".",
"control_dependencies",
"(",
"[",
"_assert_has_shape",
"(",
"sequence_length",
",",
"[",
"batch_size",
"]",
")",
"]",
")",
":",
"sequence_length",
"=",
"array_ops",
".",
"identity",
"(",
"sequence_length",
",",
"name",
"=",
"\"CheckSeqLen\"",
")",
"inputs",
"=",
"nest",
".",
"pack_sequence_as",
"(",
"structure",
"=",
"inputs",
",",
"flat_sequence",
"=",
"flat_input",
")",
"(",
"outputs",
",",
"final_state",
")",
"=",
"_dynamic_rnn_loop",
"(",
"cell",
",",
"inputs",
",",
"state",
",",
"parallel_iterations",
"=",
"parallel_iterations",
",",
"swap_memory",
"=",
"swap_memory",
",",
"sequence_length",
"=",
"sequence_length",
",",
"dtype",
"=",
"dtype",
")",
"# Outputs of _dynamic_rnn_loop are always shaped [time, batch, depth].",
"# If we are performing batch-major calculations, transpose output back",
"# to shape [batch, time, depth]",
"if",
"not",
"time_major",
":",
"# (T,B,D) => (B,T,D)",
"outputs",
"=",
"nest",
".",
"map_structure",
"(",
"_transpose_batch_time",
",",
"outputs",
")",
"return",
"(",
"outputs",
",",
"final_state",
")"
] |
https://github.com/baidu-research/tensorflow-allreduce/blob/66d5b855e90b0949e9fa5cca5599fd729a70e874/tensorflow/python/ops/rnn.py#L443-L607
|
||
Xilinx/Vitis-AI
|
fc74d404563d9951b57245443c73bef389f3657f
|
tools/Vitis-AI-Quantizer/vai_q_tensorflow1.x/tensorflow/python/keras/engine/network.py
|
python
|
Network._insert_layers
|
(self, layers, relevant_nodes=None)
|
Inserts Layers into the Network after Network creation.
This is only valid for Keras Graph Networks. Layers added via this function
will be included in the `call` computation and `get_config` of this Network.
They will not be added to the Network's outputs.
Arguments:
layers: Arbitrary nested structure of Layers. Layers must be reachable
from one or more of the `keras.Input` Tensors that correspond to this
Network's inputs.
relevant_nodes: Nodes from the Layers that should be considered part of
this Network. If `None`, all Nodes will be considered part of this
Network.
Raises:
ValueError: If the layers depend on `Input`s not found in this Model.
|
Inserts Layers into the Network after Network creation.
|
[
"Inserts",
"Layers",
"into",
"the",
"Network",
"after",
"Network",
"creation",
"."
] |
def _insert_layers(self, layers, relevant_nodes=None):
"""Inserts Layers into the Network after Network creation.
This is only valid for Keras Graph Networks. Layers added via this function
will be included in the `call` computation and `get_config` of this Network.
They will not be added to the Network's outputs.
Arguments:
layers: Arbitrary nested structure of Layers. Layers must be reachable
from one or more of the `keras.Input` Tensors that correspond to this
Network's inputs.
relevant_nodes: Nodes from the Layers that should be considered part of
this Network. If `None`, all Nodes will be considered part of this
Network.
Raises:
ValueError: If the layers depend on `Input`s not found in this Model.
"""
layers = nest.flatten(layers)
tf_utils.assert_no_legacy_layers(layers)
node_to_depth = {}
for depth, nodes in self._nodes_by_depth.items():
node_to_depth.update({node: depth for node in nodes})
# The nodes of these Layers that are relevant to this Network. If not
# provided, assume all Nodes are relevant
if not relevant_nodes:
relevant_nodes = nest.flatten([layer._inbound_nodes for layer in layers])
network_nodes = set(relevant_nodes + list(node_to_depth.keys()))
def _get_min_depth(node):
"""Gets the minimum depth at which node can be computed."""
min_depth = 0
for layer, node_id, _, _ in node.iterate_inbound(include_arguments=True):
inbound_node = layer._inbound_nodes[node_id]
if inbound_node in node_to_depth:
min_depth = min(min_depth, node_to_depth[inbound_node])
elif inbound_node not in network_nodes:
continue
else:
# Previous relevant nodes haven't been processed yet.
return None
# New node is one shallower than its shallowest input.
return min_depth - 1
# Insert nodes into `_nodes_by_depth` and other node attrs.
unprocessed_nodes = copy.copy(relevant_nodes)
i = 0
while unprocessed_nodes:
i += 1
# Do a sanity check. This can occur if `Input`s from outside this Model
# are being relied on.
if i > 10000:
raise ValueError('Layers could not be added due to missing '
'dependencies.')
node = unprocessed_nodes.pop(0)
depth = _get_min_depth(node)
if depth is None: # Defer until inbound nodes are processed.
unprocessed_nodes.append(node)
continue
node_key = _make_node_key(node.outbound_layer.name,
node.outbound_layer._inbound_nodes.index(node))
if node_key not in self._network_nodes:
node_to_depth[node] = depth
self._network_nodes.add(node_key)
self._nodes_by_depth[depth].append(node)
# Insert layers and update other layer attrs.
layer_set = set(self._layers)
for layer in layers:
if layer not in layer_set:
self._layers.append(layer)
self._layer_call_argspecs[layer] = tf_inspect.getfullargspec(layer.call)
layer_set.add(layer)
|
[
"def",
"_insert_layers",
"(",
"self",
",",
"layers",
",",
"relevant_nodes",
"=",
"None",
")",
":",
"layers",
"=",
"nest",
".",
"flatten",
"(",
"layers",
")",
"tf_utils",
".",
"assert_no_legacy_layers",
"(",
"layers",
")",
"node_to_depth",
"=",
"{",
"}",
"for",
"depth",
",",
"nodes",
"in",
"self",
".",
"_nodes_by_depth",
".",
"items",
"(",
")",
":",
"node_to_depth",
".",
"update",
"(",
"{",
"node",
":",
"depth",
"for",
"node",
"in",
"nodes",
"}",
")",
"# The nodes of these Layers that are relevant to this Network. If not",
"# provided, assume all Nodes are relevant",
"if",
"not",
"relevant_nodes",
":",
"relevant_nodes",
"=",
"nest",
".",
"flatten",
"(",
"[",
"layer",
".",
"_inbound_nodes",
"for",
"layer",
"in",
"layers",
"]",
")",
"network_nodes",
"=",
"set",
"(",
"relevant_nodes",
"+",
"list",
"(",
"node_to_depth",
".",
"keys",
"(",
")",
")",
")",
"def",
"_get_min_depth",
"(",
"node",
")",
":",
"\"\"\"Gets the minimum depth at which node can be computed.\"\"\"",
"min_depth",
"=",
"0",
"for",
"layer",
",",
"node_id",
",",
"_",
",",
"_",
"in",
"node",
".",
"iterate_inbound",
"(",
"include_arguments",
"=",
"True",
")",
":",
"inbound_node",
"=",
"layer",
".",
"_inbound_nodes",
"[",
"node_id",
"]",
"if",
"inbound_node",
"in",
"node_to_depth",
":",
"min_depth",
"=",
"min",
"(",
"min_depth",
",",
"node_to_depth",
"[",
"inbound_node",
"]",
")",
"elif",
"inbound_node",
"not",
"in",
"network_nodes",
":",
"continue",
"else",
":",
"# Previous relevant nodes haven't been processed yet.",
"return",
"None",
"# New node is one shallower than its shallowest input.",
"return",
"min_depth",
"-",
"1",
"# Insert nodes into `_nodes_by_depth` and other node attrs.",
"unprocessed_nodes",
"=",
"copy",
".",
"copy",
"(",
"relevant_nodes",
")",
"i",
"=",
"0",
"while",
"unprocessed_nodes",
":",
"i",
"+=",
"1",
"# Do a sanity check. This can occur if `Input`s from outside this Model",
"# are being relied on.",
"if",
"i",
">",
"10000",
":",
"raise",
"ValueError",
"(",
"'Layers could not be added due to missing '",
"'dependencies.'",
")",
"node",
"=",
"unprocessed_nodes",
".",
"pop",
"(",
"0",
")",
"depth",
"=",
"_get_min_depth",
"(",
"node",
")",
"if",
"depth",
"is",
"None",
":",
"# Defer until inbound nodes are processed.",
"unprocessed_nodes",
".",
"append",
"(",
"node",
")",
"continue",
"node_key",
"=",
"_make_node_key",
"(",
"node",
".",
"outbound_layer",
".",
"name",
",",
"node",
".",
"outbound_layer",
".",
"_inbound_nodes",
".",
"index",
"(",
"node",
")",
")",
"if",
"node_key",
"not",
"in",
"self",
".",
"_network_nodes",
":",
"node_to_depth",
"[",
"node",
"]",
"=",
"depth",
"self",
".",
"_network_nodes",
".",
"add",
"(",
"node_key",
")",
"self",
".",
"_nodes_by_depth",
"[",
"depth",
"]",
".",
"append",
"(",
"node",
")",
"# Insert layers and update other layer attrs.",
"layer_set",
"=",
"set",
"(",
"self",
".",
"_layers",
")",
"for",
"layer",
"in",
"layers",
":",
"if",
"layer",
"not",
"in",
"layer_set",
":",
"self",
".",
"_layers",
".",
"append",
"(",
"layer",
")",
"self",
".",
"_layer_call_argspecs",
"[",
"layer",
"]",
"=",
"tf_inspect",
".",
"getfullargspec",
"(",
"layer",
".",
"call",
")",
"layer_set",
".",
"add",
"(",
"layer",
")"
] |
https://github.com/Xilinx/Vitis-AI/blob/fc74d404563d9951b57245443c73bef389f3657f/tools/Vitis-AI-Quantizer/vai_q_tensorflow1.x/tensorflow/python/keras/engine/network.py#L1519-L1593
|
||
vtraag/louvain-igraph
|
124ea1be49ee74eec2eaca8006599d7fc5560db6
|
src/louvain/VertexPartition.py
|
python
|
MutableVertexPartition.__init__
|
(self, graph, initial_membership=None)
|
Parameters
----------
graph
The `ig.Graph` on which this partition is defined.
membership
The membership vector of this partition. Membership[i] = c implies that
node i is in community c. If None, it is initialised with a singleton
partition community, i.e. membership[i] = i.
|
Parameters
----------
graph
The `ig.Graph` on which this partition is defined.
|
[
"Parameters",
"----------",
"graph",
"The",
"ig",
".",
"Graph",
"on",
"which",
"this",
"partition",
"is",
"defined",
"."
] |
def __init__(self, graph, initial_membership=None):
"""
Parameters
----------
graph
The `ig.Graph` on which this partition is defined.
membership
The membership vector of this partition. Membership[i] = c implies that
node i is in community c. If None, it is initialised with a singleton
partition community, i.e. membership[i] = i.
"""
if initial_membership is not None:
initial_membership = list(initial_membership)
super(MutableVertexPartition, self).__init__(graph, initial_membership)
|
[
"def",
"__init__",
"(",
"self",
",",
"graph",
",",
"initial_membership",
"=",
"None",
")",
":",
"if",
"initial_membership",
"is",
"not",
"None",
":",
"initial_membership",
"=",
"list",
"(",
"initial_membership",
")",
"super",
"(",
"MutableVertexPartition",
",",
"self",
")",
".",
"__init__",
"(",
"graph",
",",
"initial_membership",
")"
] |
https://github.com/vtraag/louvain-igraph/blob/124ea1be49ee74eec2eaca8006599d7fc5560db6/src/louvain/VertexPartition.py#L37-L52
|
||
panda3d/panda3d
|
833ad89ebad58395d0af0b7ec08538e5e4308265
|
direct/src/showbase/ShowBase.py
|
python
|
ShowBase.setSceneGraphAnalyzerMeter
|
(self, flag)
|
Turns on or off (according to flag) a standard frame rate
meter in the upper-right corner of the main window.
|
Turns on or off (according to flag) a standard frame rate
meter in the upper-right corner of the main window.
|
[
"Turns",
"on",
"or",
"off",
"(",
"according",
"to",
"flag",
")",
"a",
"standard",
"frame",
"rate",
"meter",
"in",
"the",
"upper",
"-",
"right",
"corner",
"of",
"the",
"main",
"window",
"."
] |
def setSceneGraphAnalyzerMeter(self, flag):
"""
Turns on or off (according to flag) a standard frame rate
meter in the upper-right corner of the main window.
"""
if flag:
if not self.sceneGraphAnalyzerMeter:
self.sceneGraphAnalyzerMeter = SceneGraphAnalyzerMeter('sceneGraphAnalyzerMeter', self.render.node())
self.sceneGraphAnalyzerMeter.setupWindow(self.win)
else:
if self.sceneGraphAnalyzerMeter:
self.sceneGraphAnalyzerMeter.clearWindow()
self.sceneGraphAnalyzerMeter = None
|
[
"def",
"setSceneGraphAnalyzerMeter",
"(",
"self",
",",
"flag",
")",
":",
"if",
"flag",
":",
"if",
"not",
"self",
".",
"sceneGraphAnalyzerMeter",
":",
"self",
".",
"sceneGraphAnalyzerMeter",
"=",
"SceneGraphAnalyzerMeter",
"(",
"'sceneGraphAnalyzerMeter'",
",",
"self",
".",
"render",
".",
"node",
"(",
")",
")",
"self",
".",
"sceneGraphAnalyzerMeter",
".",
"setupWindow",
"(",
"self",
".",
"win",
")",
"else",
":",
"if",
"self",
".",
"sceneGraphAnalyzerMeter",
":",
"self",
".",
"sceneGraphAnalyzerMeter",
".",
"clearWindow",
"(",
")",
"self",
".",
"sceneGraphAnalyzerMeter",
"=",
"None"
] |
https://github.com/panda3d/panda3d/blob/833ad89ebad58395d0af0b7ec08538e5e4308265/direct/src/showbase/ShowBase.py#L1126-L1138
|
||
wlanjie/AndroidFFmpeg
|
7baf9122f4b8e1c74e7baf4be5c422c7a5ba5aaf
|
tools/fdk-aac-build/armeabi-v7a/toolchain/lib/python2.7/multiprocessing/connection.py
|
python
|
SocketClient
|
(address)
|
return conn
|
Return a connection object connected to the socket given by `address`
|
Return a connection object connected to the socket given by `address`
|
[
"Return",
"a",
"connection",
"object",
"connected",
"to",
"the",
"socket",
"given",
"by",
"address"
] |
def SocketClient(address):
'''
Return a connection object connected to the socket given by `address`
'''
family = address_type(address)
s = socket.socket( getattr(socket, family) )
s.setblocking(True)
t = _init_timeout()
while 1:
try:
s.connect(address)
except socket.error, e:
if e.args[0] != errno.ECONNREFUSED or _check_timeout(t):
debug('failed to connect to address %s', address)
raise
time.sleep(0.01)
else:
break
else:
raise
fd = duplicate(s.fileno())
conn = _multiprocessing.Connection(fd)
s.close()
return conn
|
[
"def",
"SocketClient",
"(",
"address",
")",
":",
"family",
"=",
"address_type",
"(",
"address",
")",
"s",
"=",
"socket",
".",
"socket",
"(",
"getattr",
"(",
"socket",
",",
"family",
")",
")",
"s",
".",
"setblocking",
"(",
"True",
")",
"t",
"=",
"_init_timeout",
"(",
")",
"while",
"1",
":",
"try",
":",
"s",
".",
"connect",
"(",
"address",
")",
"except",
"socket",
".",
"error",
",",
"e",
":",
"if",
"e",
".",
"args",
"[",
"0",
"]",
"!=",
"errno",
".",
"ECONNREFUSED",
"or",
"_check_timeout",
"(",
"t",
")",
":",
"debug",
"(",
"'failed to connect to address %s'",
",",
"address",
")",
"raise",
"time",
".",
"sleep",
"(",
"0.01",
")",
"else",
":",
"break",
"else",
":",
"raise",
"fd",
"=",
"duplicate",
"(",
"s",
".",
"fileno",
"(",
")",
")",
"conn",
"=",
"_multiprocessing",
".",
"Connection",
"(",
"fd",
")",
"s",
".",
"close",
"(",
")",
"return",
"conn"
] |
https://github.com/wlanjie/AndroidFFmpeg/blob/7baf9122f4b8e1c74e7baf4be5c422c7a5ba5aaf/tools/fdk-aac-build/armeabi-v7a/toolchain/lib/python2.7/multiprocessing/connection.py#L286-L311
|
|
mamedev/mame
|
02cd26d37ee11191f3e311e19e805d872cb1e3a4
|
3rdparty/portmidi/pm_python/pyportmidi/midi.py
|
python
|
Input.close
|
(self)
|
closes a midi stream, flushing any pending buffers.
Input.close(): return None
PortMidi attempts to close open streams when the application
exits -- this is particularly difficult under Windows.
|
closes a midi stream, flushing any pending buffers.
Input.close(): return None
|
[
"closes",
"a",
"midi",
"stream",
"flushing",
"any",
"pending",
"buffers",
".",
"Input",
".",
"close",
"()",
":",
"return",
"None"
] |
def close(self):
""" closes a midi stream, flushing any pending buffers.
Input.close(): return None
PortMidi attempts to close open streams when the application
exits -- this is particularly difficult under Windows.
"""
_check_init()
if not (self._input is None):
self._input.Close()
self._input = None
|
[
"def",
"close",
"(",
"self",
")",
":",
"_check_init",
"(",
")",
"if",
"not",
"(",
"self",
".",
"_input",
"is",
"None",
")",
":",
"self",
".",
"_input",
".",
"Close",
"(",
")",
"self",
".",
"_input",
"=",
"None"
] |
https://github.com/mamedev/mame/blob/02cd26d37ee11191f3e311e19e805d872cb1e3a4/3rdparty/portmidi/pm_python/pyportmidi/midi.py#L257-L267
|
||
catboost/catboost
|
167f64f237114a4d10b2b4ee42adb4569137debe
|
contrib/python/protobuf/py3/google/protobuf/descriptor.py
|
python
|
Descriptor.EnumValueName
|
(self, enum, value)
|
return self.enum_types_by_name[enum].values_by_number[value].name
|
Returns the string name of an enum value.
This is just a small helper method to simplify a common operation.
Args:
enum: string name of the Enum.
value: int, value of the enum.
Returns:
string name of the enum value.
Raises:
KeyError if either the Enum doesn't exist or the value is not a valid
value for the enum.
|
Returns the string name of an enum value.
|
[
"Returns",
"the",
"string",
"name",
"of",
"an",
"enum",
"value",
"."
] |
def EnumValueName(self, enum, value):
"""Returns the string name of an enum value.
This is just a small helper method to simplify a common operation.
Args:
enum: string name of the Enum.
value: int, value of the enum.
Returns:
string name of the enum value.
Raises:
KeyError if either the Enum doesn't exist or the value is not a valid
value for the enum.
"""
return self.enum_types_by_name[enum].values_by_number[value].name
|
[
"def",
"EnumValueName",
"(",
"self",
",",
"enum",
",",
"value",
")",
":",
"return",
"self",
".",
"enum_types_by_name",
"[",
"enum",
"]",
".",
"values_by_number",
"[",
"value",
"]",
".",
"name"
] |
https://github.com/catboost/catboost/blob/167f64f237114a4d10b2b4ee42adb4569137debe/contrib/python/protobuf/py3/google/protobuf/descriptor.py#L382-L398
|
|
sdhash/sdhash
|
b9eff63e4e5867e910f41fd69032bbb1c94a2a5e
|
external/tools/build/v2/tools/common.py
|
python
|
reset
|
()
|
Clear the module state. This is mainly for testing purposes.
Note that this must be called _after_ resetting the module 'feature'.
|
Clear the module state. This is mainly for testing purposes.
Note that this must be called _after_ resetting the module 'feature'.
|
[
"Clear",
"the",
"module",
"state",
".",
"This",
"is",
"mainly",
"for",
"testing",
"purposes",
".",
"Note",
"that",
"this",
"must",
"be",
"called",
"_after_",
"resetting",
"the",
"module",
"feature",
"."
] |
def reset ():
""" Clear the module state. This is mainly for testing purposes.
Note that this must be called _after_ resetting the module 'feature'.
"""
global __had_unspecified_value, __had_value, __declared_subfeature
global __init_loc
global __all_signatures, __debug_configuration, __show_configuration
# Stores toolsets without specified initialization values.
__had_unspecified_value = {}
# Stores toolsets with specified initialization values.
__had_value = {}
# Stores toolsets with declared subfeatures.
__declared_subfeature = {}
# Stores all signatures of the toolsets.
__all_signatures = {}
# Stores the initialization locations of each toolset
__init_loc = {}
__debug_configuration = '--debug-configuration' in bjam.variable('ARGV')
__show_configuration = '--show-configuration' in bjam.variable('ARGV')
global __executable_path_variable
OS = bjam.call("peek", [], "OS")[0]
if OS == "NT":
# On Windows the case and capitalization of PATH is not always predictable, so
# let's find out what variable name was really set.
for n in sys.environ:
if n.lower() == "path":
__executable_path_variable = n
break
else:
__executable_path_variable = "PATH"
m = {"NT": __executable_path_variable,
"CYGWIN": "PATH",
"MACOSX": "DYLD_LIBRARY_PATH",
"AIX": "LIBPATH"}
global __shared_library_path_variable
__shared_library_path_variable = m.get(OS, "LD_LIBRARY_PATH")
|
[
"def",
"reset",
"(",
")",
":",
"global",
"__had_unspecified_value",
",",
"__had_value",
",",
"__declared_subfeature",
"global",
"__init_loc",
"global",
"__all_signatures",
",",
"__debug_configuration",
",",
"__show_configuration",
"# Stores toolsets without specified initialization values.",
"__had_unspecified_value",
"=",
"{",
"}",
"# Stores toolsets with specified initialization values.",
"__had_value",
"=",
"{",
"}",
"# Stores toolsets with declared subfeatures.",
"__declared_subfeature",
"=",
"{",
"}",
"# Stores all signatures of the toolsets.",
"__all_signatures",
"=",
"{",
"}",
"# Stores the initialization locations of each toolset",
"__init_loc",
"=",
"{",
"}",
"__debug_configuration",
"=",
"'--debug-configuration'",
"in",
"bjam",
".",
"variable",
"(",
"'ARGV'",
")",
"__show_configuration",
"=",
"'--show-configuration'",
"in",
"bjam",
".",
"variable",
"(",
"'ARGV'",
")",
"global",
"__executable_path_variable",
"OS",
"=",
"bjam",
".",
"call",
"(",
"\"peek\"",
",",
"[",
"]",
",",
"\"OS\"",
")",
"[",
"0",
"]",
"if",
"OS",
"==",
"\"NT\"",
":",
"# On Windows the case and capitalization of PATH is not always predictable, so",
"# let's find out what variable name was really set.",
"for",
"n",
"in",
"sys",
".",
"environ",
":",
"if",
"n",
".",
"lower",
"(",
")",
"==",
"\"path\"",
":",
"__executable_path_variable",
"=",
"n",
"break",
"else",
":",
"__executable_path_variable",
"=",
"\"PATH\"",
"m",
"=",
"{",
"\"NT\"",
":",
"__executable_path_variable",
",",
"\"CYGWIN\"",
":",
"\"PATH\"",
",",
"\"MACOSX\"",
":",
"\"DYLD_LIBRARY_PATH\"",
",",
"\"AIX\"",
":",
"\"LIBPATH\"",
"}",
"global",
"__shared_library_path_variable",
"__shared_library_path_variable",
"=",
"m",
".",
"get",
"(",
"OS",
",",
"\"LD_LIBRARY_PATH\"",
")"
] |
https://github.com/sdhash/sdhash/blob/b9eff63e4e5867e910f41fd69032bbb1c94a2a5e/external/tools/build/v2/tools/common.py#L25-L68
|
||
benoitsteiner/tensorflow-opencl
|
cb7cb40a57fde5cfd4731bc551e82a1e2fef43a5
|
tensorflow/python/summary/writer/writer.py
|
python
|
SummaryToEventTransformer.add_summary
|
(self, summary, global_step=None)
|
Adds a `Summary` protocol buffer to the event file.
This method wraps the provided summary in an `Event` protocol buffer
and adds it to the event file.
You can pass the result of evaluating any summary op, using
@{tf.Session.run} or
@{tf.Tensor.eval}, to this
function. Alternatively, you can pass a `tf.Summary` protocol
buffer that you populate with your own data. The latter is
commonly done to report evaluation results in event files.
Args:
summary: A `Summary` protocol buffer, optionally serialized as a string.
global_step: Number. Optional global step value to record with the
summary.
|
Adds a `Summary` protocol buffer to the event file.
|
[
"Adds",
"a",
"Summary",
"protocol",
"buffer",
"to",
"the",
"event",
"file",
"."
] |
def add_summary(self, summary, global_step=None):
"""Adds a `Summary` protocol buffer to the event file.
This method wraps the provided summary in an `Event` protocol buffer
and adds it to the event file.
You can pass the result of evaluating any summary op, using
@{tf.Session.run} or
@{tf.Tensor.eval}, to this
function. Alternatively, you can pass a `tf.Summary` protocol
buffer that you populate with your own data. The latter is
commonly done to report evaluation results in event files.
Args:
summary: A `Summary` protocol buffer, optionally serialized as a string.
global_step: Number. Optional global step value to record with the
summary.
"""
if isinstance(summary, bytes):
summ = summary_pb2.Summary()
summ.ParseFromString(summary)
summary = summ
# We strip metadata from values with tags that we have seen before in order
# to save space - we just store the metadata on the first value with a
# specific tag.
for value in summary.value:
if not value.metadata:
continue
if value.tag in self._seen_summary_tags:
# This tag has been encountered before. Strip the metadata.
value.ClearField("metadata")
continue
# We encounter a value with a tag we have not encountered previously. And
# it has metadata. Remember to strip metadata from future values with this
# tag string.
self._seen_summary_tags.add(value.tag)
event = event_pb2.Event(summary=summary)
self._add_event(event, global_step)
|
[
"def",
"add_summary",
"(",
"self",
",",
"summary",
",",
"global_step",
"=",
"None",
")",
":",
"if",
"isinstance",
"(",
"summary",
",",
"bytes",
")",
":",
"summ",
"=",
"summary_pb2",
".",
"Summary",
"(",
")",
"summ",
".",
"ParseFromString",
"(",
"summary",
")",
"summary",
"=",
"summ",
"# We strip metadata from values with tags that we have seen before in order",
"# to save space - we just store the metadata on the first value with a",
"# specific tag.",
"for",
"value",
"in",
"summary",
".",
"value",
":",
"if",
"not",
"value",
".",
"metadata",
":",
"continue",
"if",
"value",
".",
"tag",
"in",
"self",
".",
"_seen_summary_tags",
":",
"# This tag has been encountered before. Strip the metadata.",
"value",
".",
"ClearField",
"(",
"\"metadata\"",
")",
"continue",
"# We encounter a value with a tag we have not encountered previously. And",
"# it has metadata. Remember to strip metadata from future values with this",
"# tag string.",
"self",
".",
"_seen_summary_tags",
".",
"add",
"(",
"value",
".",
"tag",
")",
"event",
"=",
"event_pb2",
".",
"Event",
"(",
"summary",
"=",
"summary",
")",
"self",
".",
"_add_event",
"(",
"event",
",",
"global_step",
")"
] |
https://github.com/benoitsteiner/tensorflow-opencl/blob/cb7cb40a57fde5cfd4731bc551e82a1e2fef43a5/tensorflow/python/summary/writer/writer.py#L97-L138
|
||
aws/lumberyard
|
f85344403c1c2e77ec8c75deb2c116e97b713217
|
dev/Tools/Python/3.7.10/mac/Python.framework/Versions/3.7/lib/python3.7/site-packages/pip/_vendor/distlib/_backport/tarfile.py
|
python
|
_Stream.tell
|
(self)
|
return self.pos
|
Return the stream's file pointer position.
|
Return the stream's file pointer position.
|
[
"Return",
"the",
"stream",
"s",
"file",
"pointer",
"position",
"."
] |
def tell(self):
"""Return the stream's file pointer position.
"""
return self.pos
|
[
"def",
"tell",
"(",
"self",
")",
":",
"return",
"self",
".",
"pos"
] |
https://github.com/aws/lumberyard/blob/f85344403c1c2e77ec8c75deb2c116e97b713217/dev/Tools/Python/3.7.10/mac/Python.framework/Versions/3.7/lib/python3.7/site-packages/pip/_vendor/distlib/_backport/tarfile.py#L547-L550
|
|
Xilinx/Vitis-AI
|
fc74d404563d9951b57245443c73bef389f3657f
|
tools/Vitis-AI-Quantizer/vai_q_tensorflow1.x/tensorflow/python/ops/array_ops.py
|
python
|
expand_dims
|
(input, axis=None, name=None, dim=None)
|
return expand_dims_v2(input, axis, name)
|
Inserts a dimension of 1 into a tensor's shape.
Given a tensor `input`, this operation inserts a dimension of 1 at the
dimension index `axis` of `input`'s shape. The dimension index `axis` starts
at zero; if you specify a negative number for `axis` it is counted backward
from the end.
This operation is useful if you want to add a batch dimension to a single
element. For example, if you have a single image of shape `[height, width,
channels]`, you can make it a batch of 1 image with `expand_dims(image, 0)`,
which will make the shape `[1, height, width, channels]`.
Other examples:
```python
# 't' is a tensor of shape [2]
tf.shape(tf.expand_dims(t, 0)) # [1, 2]
tf.shape(tf.expand_dims(t, 1)) # [2, 1]
tf.shape(tf.expand_dims(t, -1)) # [2, 1]
# 't2' is a tensor of shape [2, 3, 5]
tf.shape(tf.expand_dims(t2, 0)) # [1, 2, 3, 5]
tf.shape(tf.expand_dims(t2, 2)) # [2, 3, 1, 5]
tf.shape(tf.expand_dims(t2, 3)) # [2, 3, 5, 1]
```
This operation requires that:
`-1-input.dims() <= dim <= input.dims()`
This operation is related to `squeeze()`, which removes dimensions of
size 1.
Args:
input: A `Tensor`.
axis: 0-D (scalar). Specifies the dimension index at which to expand the
shape of `input`. Must be in the range `[-rank(input) - 1, rank(input)]`.
name: The name of the output `Tensor` (optional).
dim: 0-D (scalar). Equivalent to `axis`, to be deprecated.
Returns:
A `Tensor` with the same data as `input`, but its shape has an additional
dimension of size 1 added.
Raises:
ValueError: if either both or neither of `dim` and `axis` are specified.
|
Inserts a dimension of 1 into a tensor's shape.
|
[
"Inserts",
"a",
"dimension",
"of",
"1",
"into",
"a",
"tensor",
"s",
"shape",
"."
] |
def expand_dims(input, axis=None, name=None, dim=None):
"""Inserts a dimension of 1 into a tensor's shape.
Given a tensor `input`, this operation inserts a dimension of 1 at the
dimension index `axis` of `input`'s shape. The dimension index `axis` starts
at zero; if you specify a negative number for `axis` it is counted backward
from the end.
This operation is useful if you want to add a batch dimension to a single
element. For example, if you have a single image of shape `[height, width,
channels]`, you can make it a batch of 1 image with `expand_dims(image, 0)`,
which will make the shape `[1, height, width, channels]`.
Other examples:
```python
# 't' is a tensor of shape [2]
tf.shape(tf.expand_dims(t, 0)) # [1, 2]
tf.shape(tf.expand_dims(t, 1)) # [2, 1]
tf.shape(tf.expand_dims(t, -1)) # [2, 1]
# 't2' is a tensor of shape [2, 3, 5]
tf.shape(tf.expand_dims(t2, 0)) # [1, 2, 3, 5]
tf.shape(tf.expand_dims(t2, 2)) # [2, 3, 1, 5]
tf.shape(tf.expand_dims(t2, 3)) # [2, 3, 5, 1]
```
This operation requires that:
`-1-input.dims() <= dim <= input.dims()`
This operation is related to `squeeze()`, which removes dimensions of
size 1.
Args:
input: A `Tensor`.
axis: 0-D (scalar). Specifies the dimension index at which to expand the
shape of `input`. Must be in the range `[-rank(input) - 1, rank(input)]`.
name: The name of the output `Tensor` (optional).
dim: 0-D (scalar). Equivalent to `axis`, to be deprecated.
Returns:
A `Tensor` with the same data as `input`, but its shape has an additional
dimension of size 1 added.
Raises:
ValueError: if either both or neither of `dim` and `axis` are specified.
"""
axis = deprecation.deprecated_argument_lookup("axis", axis, "dim", dim)
if axis is None:
raise ValueError("Must specify an axis argument to tf.expand_dims()")
return expand_dims_v2(input, axis, name)
|
[
"def",
"expand_dims",
"(",
"input",
",",
"axis",
"=",
"None",
",",
"name",
"=",
"None",
",",
"dim",
"=",
"None",
")",
":",
"axis",
"=",
"deprecation",
".",
"deprecated_argument_lookup",
"(",
"\"axis\"",
",",
"axis",
",",
"\"dim\"",
",",
"dim",
")",
"if",
"axis",
"is",
"None",
":",
"raise",
"ValueError",
"(",
"\"Must specify an axis argument to tf.expand_dims()\"",
")",
"return",
"expand_dims_v2",
"(",
"input",
",",
"axis",
",",
"name",
")"
] |
https://github.com/Xilinx/Vitis-AI/blob/fc74d404563d9951b57245443c73bef389f3657f/tools/Vitis-AI-Quantizer/vai_q_tensorflow1.x/tensorflow/python/ops/array_ops.py#L214-L265
|
|
tensorflow/tensorflow
|
419e3a6b650ea4bd1b0cba23c4348f8a69f3272e
|
tensorflow/python/ops/linalg/linear_operator_circulant.py
|
python
|
_BaseLinearOperatorCirculant.block_depth
|
(self)
|
return self._block_depth
|
Depth of recursively defined circulant blocks defining this `Operator`.
With `A` the dense representation of this `Operator`,
`block_depth = 1` means `A` is symmetric circulant. For example,
```
A = |w z y x|
|x w z y|
|y x w z|
|z y x w|
```
`block_depth = 2` means `A` is block symmetric circulant with symmetric
circulant blocks. For example, with `W`, `X`, `Y`, `Z` symmetric circulant,
```
A = |W Z Y X|
|X W Z Y|
|Y X W Z|
|Z Y X W|
```
`block_depth = 3` means `A` is block symmetric circulant with block
symmetric circulant blocks.
Returns:
Python `integer`.
|
Depth of recursively defined circulant blocks defining this `Operator`.
|
[
"Depth",
"of",
"recursively",
"defined",
"circulant",
"blocks",
"defining",
"this",
"Operator",
"."
] |
def block_depth(self):
"""Depth of recursively defined circulant blocks defining this `Operator`.
With `A` the dense representation of this `Operator`,
`block_depth = 1` means `A` is symmetric circulant. For example,
```
A = |w z y x|
|x w z y|
|y x w z|
|z y x w|
```
`block_depth = 2` means `A` is block symmetric circulant with symmetric
circulant blocks. For example, with `W`, `X`, `Y`, `Z` symmetric circulant,
```
A = |W Z Y X|
|X W Z Y|
|Y X W Z|
|Z Y X W|
```
`block_depth = 3` means `A` is block symmetric circulant with block
symmetric circulant blocks.
Returns:
Python `integer`.
"""
return self._block_depth
|
[
"def",
"block_depth",
"(",
"self",
")",
":",
"return",
"self",
".",
"_block_depth"
] |
https://github.com/tensorflow/tensorflow/blob/419e3a6b650ea4bd1b0cba23c4348f8a69f3272e/tensorflow/python/ops/linalg/linear_operator_circulant.py#L145-L175
|
|
aws/lumberyard
|
f85344403c1c2e77ec8c75deb2c116e97b713217
|
dev/Tools/build/waf-1.7.13/waflib/Tools/gnu_dirs.py
|
python
|
configure
|
(conf)
|
Read the command-line options to set lots of variables in *conf.env*. The variables
BINDIR and LIBDIR will be overwritten.
|
Read the command-line options to set lots of variables in *conf.env*. The variables
BINDIR and LIBDIR will be overwritten.
|
[
"Read",
"the",
"command",
"-",
"line",
"options",
"to",
"set",
"lots",
"of",
"variables",
"in",
"*",
"conf",
".",
"env",
"*",
".",
"The",
"variables",
"BINDIR",
"and",
"LIBDIR",
"will",
"be",
"overwritten",
"."
] |
def configure(conf):
"""
Read the command-line options to set lots of variables in *conf.env*. The variables
BINDIR and LIBDIR will be overwritten.
"""
def get_param(varname, default):
return getattr(Options.options, varname, '') or default
env = conf.env
env.LIBDIR = env.BINDIR = []
env.EXEC_PREFIX = get_param('EXEC_PREFIX', env.PREFIX)
env.PACKAGE = getattr(Context.g_module, 'APPNAME', None) or env.PACKAGE
complete = False
iter = 0
while not complete and iter < len(_options) + 1:
iter += 1
complete = True
for name, help, default in _options:
name = name.upper()
if not env[name]:
try:
env[name] = Utils.subst_vars(get_param(name, default).replace('/', os.sep), env)
except TypeError:
complete = False
if not complete:
lst = [name for name, _, _ in _options if not env[name.upper()]]
raise conf.errors.WafError('Variable substitution failure %r' % lst)
|
[
"def",
"configure",
"(",
"conf",
")",
":",
"def",
"get_param",
"(",
"varname",
",",
"default",
")",
":",
"return",
"getattr",
"(",
"Options",
".",
"options",
",",
"varname",
",",
"''",
")",
"or",
"default",
"env",
"=",
"conf",
".",
"env",
"env",
".",
"LIBDIR",
"=",
"env",
".",
"BINDIR",
"=",
"[",
"]",
"env",
".",
"EXEC_PREFIX",
"=",
"get_param",
"(",
"'EXEC_PREFIX'",
",",
"env",
".",
"PREFIX",
")",
"env",
".",
"PACKAGE",
"=",
"getattr",
"(",
"Context",
".",
"g_module",
",",
"'APPNAME'",
",",
"None",
")",
"or",
"env",
".",
"PACKAGE",
"complete",
"=",
"False",
"iter",
"=",
"0",
"while",
"not",
"complete",
"and",
"iter",
"<",
"len",
"(",
"_options",
")",
"+",
"1",
":",
"iter",
"+=",
"1",
"complete",
"=",
"True",
"for",
"name",
",",
"help",
",",
"default",
"in",
"_options",
":",
"name",
"=",
"name",
".",
"upper",
"(",
")",
"if",
"not",
"env",
"[",
"name",
"]",
":",
"try",
":",
"env",
"[",
"name",
"]",
"=",
"Utils",
".",
"subst_vars",
"(",
"get_param",
"(",
"name",
",",
"default",
")",
".",
"replace",
"(",
"'/'",
",",
"os",
".",
"sep",
")",
",",
"env",
")",
"except",
"TypeError",
":",
"complete",
"=",
"False",
"if",
"not",
"complete",
":",
"lst",
"=",
"[",
"name",
"for",
"name",
",",
"_",
",",
"_",
"in",
"_options",
"if",
"not",
"env",
"[",
"name",
".",
"upper",
"(",
")",
"]",
"]",
"raise",
"conf",
".",
"errors",
".",
"WafError",
"(",
"'Variable substitution failure %r'",
"%",
"lst",
")"
] |
https://github.com/aws/lumberyard/blob/f85344403c1c2e77ec8c75deb2c116e97b713217/dev/Tools/build/waf-1.7.13/waflib/Tools/gnu_dirs.py#L70-L98
|
||
apple/swift-clang
|
d7403439fc6641751840b723e7165fb02f52db95
|
bindings/python/clang/cindex.py
|
python
|
Cursor.semantic_parent
|
(self)
|
return self._semantic_parent
|
Return the semantic parent for this cursor.
|
Return the semantic parent for this cursor.
|
[
"Return",
"the",
"semantic",
"parent",
"for",
"this",
"cursor",
"."
] |
def semantic_parent(self):
"""Return the semantic parent for this cursor."""
if not hasattr(self, '_semantic_parent'):
self._semantic_parent = conf.lib.clang_getCursorSemanticParent(self)
return self._semantic_parent
|
[
"def",
"semantic_parent",
"(",
"self",
")",
":",
"if",
"not",
"hasattr",
"(",
"self",
",",
"'_semantic_parent'",
")",
":",
"self",
".",
"_semantic_parent",
"=",
"conf",
".",
"lib",
".",
"clang_getCursorSemanticParent",
"(",
"self",
")",
"return",
"self",
".",
"_semantic_parent"
] |
https://github.com/apple/swift-clang/blob/d7403439fc6641751840b723e7165fb02f52db95/bindings/python/clang/cindex.py#L1757-L1762
|
|
google/llvm-propeller
|
45c226984fe8377ebfb2ad7713c680d652ba678d
|
llvm/examples/Kaleidoscope/MCJIT/cached/genk-timing.py
|
python
|
generateKScript
|
(filename, numFuncs, elementsPerFunc, funcsBetweenExec, callWeighting, timingScript)
|
Generate a random Kaleidoscope script based on the given parameters
|
Generate a random Kaleidoscope script based on the given parameters
|
[
"Generate",
"a",
"random",
"Kaleidoscope",
"script",
"based",
"on",
"the",
"given",
"parameters"
] |
def generateKScript(filename, numFuncs, elementsPerFunc, funcsBetweenExec, callWeighting, timingScript):
""" Generate a random Kaleidoscope script based on the given parameters """
print("Generating " + filename)
print(" %d functions, %d elements per function, %d functions between execution" %
(numFuncs, elementsPerFunc, funcsBetweenExec))
print(" Call weighting = %f" % callWeighting)
script = KScriptGenerator(filename)
script.setCallWeighting(callWeighting)
script.writeComment("===========================================================================")
script.writeComment("Auto-generated script")
script.writeComment(" %d functions, %d elements per function, %d functions between execution"
% (numFuncs, elementsPerFunc, funcsBetweenExec))
script.writeComment(" call weighting = %f" % callWeighting)
script.writeComment("===========================================================================")
script.writeEmptyLine()
script.writePredefinedFunctions()
funcsSinceLastExec = 0
for i in range(numFuncs):
script.writeFunction(elementsPerFunc)
funcsSinceLastExec += 1
if funcsSinceLastExec == funcsBetweenExec:
script.writeFunctionCall()
funcsSinceLastExec = 0
# Always end with a function call
if funcsSinceLastExec > 0:
script.writeFunctionCall()
script.writeEmptyLine()
script.writeFinalFunctionCounts()
funcsCalled = len(script.calledFunctions)
print(" Called %d of %d functions, %d total" % (funcsCalled, numFuncs, script.totalCallsExecuted))
timingScript.writeTimingCall(filename, numFuncs, funcsCalled, script.totalCallsExecuted)
|
[
"def",
"generateKScript",
"(",
"filename",
",",
"numFuncs",
",",
"elementsPerFunc",
",",
"funcsBetweenExec",
",",
"callWeighting",
",",
"timingScript",
")",
":",
"print",
"(",
"\"Generating \"",
"+",
"filename",
")",
"print",
"(",
"\" %d functions, %d elements per function, %d functions between execution\"",
"%",
"(",
"numFuncs",
",",
"elementsPerFunc",
",",
"funcsBetweenExec",
")",
")",
"print",
"(",
"\" Call weighting = %f\"",
"%",
"callWeighting",
")",
"script",
"=",
"KScriptGenerator",
"(",
"filename",
")",
"script",
".",
"setCallWeighting",
"(",
"callWeighting",
")",
"script",
".",
"writeComment",
"(",
"\"===========================================================================\"",
")",
"script",
".",
"writeComment",
"(",
"\"Auto-generated script\"",
")",
"script",
".",
"writeComment",
"(",
"\" %d functions, %d elements per function, %d functions between execution\"",
"%",
"(",
"numFuncs",
",",
"elementsPerFunc",
",",
"funcsBetweenExec",
")",
")",
"script",
".",
"writeComment",
"(",
"\" call weighting = %f\"",
"%",
"callWeighting",
")",
"script",
".",
"writeComment",
"(",
"\"===========================================================================\"",
")",
"script",
".",
"writeEmptyLine",
"(",
")",
"script",
".",
"writePredefinedFunctions",
"(",
")",
"funcsSinceLastExec",
"=",
"0",
"for",
"i",
"in",
"range",
"(",
"numFuncs",
")",
":",
"script",
".",
"writeFunction",
"(",
"elementsPerFunc",
")",
"funcsSinceLastExec",
"+=",
"1",
"if",
"funcsSinceLastExec",
"==",
"funcsBetweenExec",
":",
"script",
".",
"writeFunctionCall",
"(",
")",
"funcsSinceLastExec",
"=",
"0",
"# Always end with a function call",
"if",
"funcsSinceLastExec",
">",
"0",
":",
"script",
".",
"writeFunctionCall",
"(",
")",
"script",
".",
"writeEmptyLine",
"(",
")",
"script",
".",
"writeFinalFunctionCounts",
"(",
")",
"funcsCalled",
"=",
"len",
"(",
"script",
".",
"calledFunctions",
")",
"print",
"(",
"\" Called %d of %d functions, %d total\"",
"%",
"(",
"funcsCalled",
",",
"numFuncs",
",",
"script",
".",
"totalCallsExecuted",
")",
")",
"timingScript",
".",
"writeTimingCall",
"(",
"filename",
",",
"numFuncs",
",",
"funcsCalled",
",",
"script",
".",
"totalCallsExecuted",
")"
] |
https://github.com/google/llvm-propeller/blob/45c226984fe8377ebfb2ad7713c680d652ba678d/llvm/examples/Kaleidoscope/MCJIT/cached/genk-timing.py#L176-L206
|
||
apple/swift-lldb
|
d74be846ef3e62de946df343e8c234bde93a8912
|
scripts/Python/static-binding/lldb.py
|
python
|
SBProcess.GetInterruptedFromEvent
|
(event)
|
return _lldb.SBProcess_GetInterruptedFromEvent(event)
|
GetInterruptedFromEvent(SBEvent event) -> bool
|
GetInterruptedFromEvent(SBEvent event) -> bool
|
[
"GetInterruptedFromEvent",
"(",
"SBEvent",
"event",
")",
"-",
">",
"bool"
] |
def GetInterruptedFromEvent(event):
"""GetInterruptedFromEvent(SBEvent event) -> bool"""
return _lldb.SBProcess_GetInterruptedFromEvent(event)
|
[
"def",
"GetInterruptedFromEvent",
"(",
"event",
")",
":",
"return",
"_lldb",
".",
"SBProcess_GetInterruptedFromEvent",
"(",
"event",
")"
] |
https://github.com/apple/swift-lldb/blob/d74be846ef3e62de946df343e8c234bde93a8912/scripts/Python/static-binding/lldb.py#L8677-L8679
|
|
clementine-player/Clementine
|
111379dfd027802b59125829fcf87e3e1d0ad73b
|
dist/cpplint.py
|
python
|
NestingState.CheckCompletedBlocks
|
(self, filename, error)
|
Checks that all classes and namespaces have been completely parsed.
Call this when all lines in a file have been processed.
Args:
filename: The name of the current file.
error: The function to call with any errors found.
|
Checks that all classes and namespaces have been completely parsed.
|
[
"Checks",
"that",
"all",
"classes",
"and",
"namespaces",
"have",
"been",
"completely",
"parsed",
"."
] |
def CheckCompletedBlocks(self, filename, error):
"""Checks that all classes and namespaces have been completely parsed.
Call this when all lines in a file have been processed.
Args:
filename: The name of the current file.
error: The function to call with any errors found.
"""
# Note: This test can result in false positives if #ifdef constructs
# get in the way of brace matching. See the testBuildClass test in
# cpplint_unittest.py for an example of this.
for obj in self.stack:
if isinstance(obj, _ClassInfo):
error(filename, obj.starting_linenum, 'build/class', 5,
'Failed to find complete declaration of class %s' %
obj.name)
elif isinstance(obj, _NamespaceInfo):
error(filename, obj.starting_linenum, 'build/namespaces', 5,
'Failed to find complete declaration of namespace %s' %
obj.name)
|
[
"def",
"CheckCompletedBlocks",
"(",
"self",
",",
"filename",
",",
"error",
")",
":",
"# Note: This test can result in false positives if #ifdef constructs",
"# get in the way of brace matching. See the testBuildClass test in",
"# cpplint_unittest.py for an example of this.",
"for",
"obj",
"in",
"self",
".",
"stack",
":",
"if",
"isinstance",
"(",
"obj",
",",
"_ClassInfo",
")",
":",
"error",
"(",
"filename",
",",
"obj",
".",
"starting_linenum",
",",
"'build/class'",
",",
"5",
",",
"'Failed to find complete declaration of class %s'",
"%",
"obj",
".",
"name",
")",
"elif",
"isinstance",
"(",
"obj",
",",
"_NamespaceInfo",
")",
":",
"error",
"(",
"filename",
",",
"obj",
".",
"starting_linenum",
",",
"'build/namespaces'",
",",
"5",
",",
"'Failed to find complete declaration of namespace %s'",
"%",
"obj",
".",
"name",
")"
] |
https://github.com/clementine-player/Clementine/blob/111379dfd027802b59125829fcf87e3e1d0ad73b/dist/cpplint.py#L2486-L2505
|
||
MVIG-SJTU/RMPE
|
5188c230ec800c12be7369c3619615bc9b020aa4
|
python/caffe/io.py
|
python
|
arraylist_to_blobprotovector_str
|
(arraylist)
|
return vec.SerializeToString()
|
Converts a list of arrays to a serialized blobprotovec, which could be
then passed to a network for processing.
|
Converts a list of arrays to a serialized blobprotovec, which could be
then passed to a network for processing.
|
[
"Converts",
"a",
"list",
"of",
"arrays",
"to",
"a",
"serialized",
"blobprotovec",
"which",
"could",
"be",
"then",
"passed",
"to",
"a",
"network",
"for",
"processing",
"."
] |
def arraylist_to_blobprotovector_str(arraylist):
"""Converts a list of arrays to a serialized blobprotovec, which could be
then passed to a network for processing.
"""
vec = caffe_pb2.BlobProtoVector()
vec.blobs.extend([array_to_blobproto(arr) for arr in arraylist])
return vec.SerializeToString()
|
[
"def",
"arraylist_to_blobprotovector_str",
"(",
"arraylist",
")",
":",
"vec",
"=",
"caffe_pb2",
".",
"BlobProtoVector",
"(",
")",
"vec",
".",
"blobs",
".",
"extend",
"(",
"[",
"array_to_blobproto",
"(",
"arr",
")",
"for",
"arr",
"in",
"arraylist",
"]",
")",
"return",
"vec",
".",
"SerializeToString",
"(",
")"
] |
https://github.com/MVIG-SJTU/RMPE/blob/5188c230ec800c12be7369c3619615bc9b020aa4/python/caffe/io.py#L49-L55
|
|
wxWidgets/wxPython-Classic
|
19571e1ae65f1ac445f5491474121998c97a1bf0
|
src/osx_cocoa/_misc.py
|
python
|
Log.ClearTraceMasks
|
(*args, **kwargs)
|
return _misc_.Log_ClearTraceMasks(*args, **kwargs)
|
ClearTraceMasks()
|
ClearTraceMasks()
|
[
"ClearTraceMasks",
"()"
] |
def ClearTraceMasks(*args, **kwargs):
"""ClearTraceMasks()"""
return _misc_.Log_ClearTraceMasks(*args, **kwargs)
|
[
"def",
"ClearTraceMasks",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"return",
"_misc_",
".",
"Log_ClearTraceMasks",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")"
] |
https://github.com/wxWidgets/wxPython-Classic/blob/19571e1ae65f1ac445f5491474121998c97a1bf0/src/osx_cocoa/_misc.py#L1570-L1572
|
|
intel/llvm
|
e6d0547e9d99b5a56430c4749f6c7e328bf221ab
|
lldb/examples/python/mach_o.py
|
python
|
TerminalColors.magenta
|
(self, fg=True)
|
return ''
|
Set the foreground or background color to magenta.
The foreground color will be set if "fg" tests True. The background color will be set if "fg" tests False.
|
Set the foreground or background color to magenta.
The foreground color will be set if "fg" tests True. The background color will be set if "fg" tests False.
|
[
"Set",
"the",
"foreground",
"or",
"background",
"color",
"to",
"magenta",
".",
"The",
"foreground",
"color",
"will",
"be",
"set",
"if",
"fg",
"tests",
"True",
".",
"The",
"background",
"color",
"will",
"be",
"set",
"if",
"fg",
"tests",
"False",
"."
] |
def magenta(self, fg=True):
'''Set the foreground or background color to magenta.
The foreground color will be set if "fg" tests True. The background color will be set if "fg" tests False.'''
if self.enabled:
if fg:
return "\x1b[35m"
else:
return "\x1b[45m"
return ''
|
[
"def",
"magenta",
"(",
"self",
",",
"fg",
"=",
"True",
")",
":",
"if",
"self",
".",
"enabled",
":",
"if",
"fg",
":",
"return",
"\"\\x1b[35m\"",
"else",
":",
"return",
"\"\\x1b[45m\"",
"return",
"''"
] |
https://github.com/intel/llvm/blob/e6d0547e9d99b5a56430c4749f6c7e328bf221ab/lldb/examples/python/mach_o.py#L321-L329
|
|
aws/lumberyard
|
f85344403c1c2e77ec8c75deb2c116e97b713217
|
dev/Tools/Python/3.7.10/mac/Python.framework/Versions/3.7/lib/python3.7/tkinter/font.py
|
python
|
families
|
(root=None, displayof=None)
|
return root.tk.splitlist(root.tk.call("font", "families", *args))
|
Get font families (as a tuple)
|
Get font families (as a tuple)
|
[
"Get",
"font",
"families",
"(",
"as",
"a",
"tuple",
")"
] |
def families(root=None, displayof=None):
"Get font families (as a tuple)"
if not root:
root = tkinter._default_root
args = ()
if displayof:
args = ('-displayof', displayof)
return root.tk.splitlist(root.tk.call("font", "families", *args))
|
[
"def",
"families",
"(",
"root",
"=",
"None",
",",
"displayof",
"=",
"None",
")",
":",
"if",
"not",
"root",
":",
"root",
"=",
"tkinter",
".",
"_default_root",
"args",
"=",
"(",
")",
"if",
"displayof",
":",
"args",
"=",
"(",
"'-displayof'",
",",
"displayof",
")",
"return",
"root",
".",
"tk",
".",
"splitlist",
"(",
"root",
".",
"tk",
".",
"call",
"(",
"\"font\"",
",",
"\"families\"",
",",
"*",
"args",
")",
")"
] |
https://github.com/aws/lumberyard/blob/f85344403c1c2e77ec8c75deb2c116e97b713217/dev/Tools/Python/3.7.10/mac/Python.framework/Versions/3.7/lib/python3.7/tkinter/font.py#L177-L184
|
|
FreeCAD/FreeCAD
|
ba42231b9c6889b89e064d6d563448ed81e376ec
|
src/Mod/Draft/draftviewproviders/view_dimension.py
|
python
|
ViewProviderAngularDimension.attach
|
(self, vobj)
|
Set up the scene sub-graph of the viewprovider.
|
Set up the scene sub-graph of the viewprovider.
|
[
"Set",
"up",
"the",
"scene",
"sub",
"-",
"graph",
"of",
"the",
"viewprovider",
"."
] |
def attach(self, vobj):
"""Set up the scene sub-graph of the viewprovider."""
self.Object = vobj.Object
self.color = coin.SoBaseColor()
if hasattr(vobj, "LineColor"):
self.color.rgb.setValue(vobj.LineColor[0],
vobj.LineColor[1],
vobj.LineColor[2])
self.font = coin.SoFont()
self.font3d = coin.SoFont()
self.text = coin.SoAsciiText() # Can be oriented in 3D space
self.text3d = coin.SoText2() # Faces the camera always
# The text string needs to be initialized to something,
# otherwise it may cause a crash of the system
self.text.string = "d"
self.text3d.string = "d"
self.text.justification = coin.SoAsciiText.CENTER
self.text3d.justification = coin.SoAsciiText.CENTER
self.textpos = coin.SoTransform()
label = coin.SoSeparator()
label.addChild(self.textpos)
label.addChild(self.color)
label.addChild(self.font)
label.addChild(self.text)
label3d = coin.SoSeparator()
label3d.addChild(self.textpos)
label3d.addChild(self.color)
label3d.addChild(self.font3d)
label3d.addChild(self.text3d)
self.coord1 = coin.SoCoordinate3()
self.trans1 = coin.SoTransform()
self.coord2 = coin.SoCoordinate3()
self.trans2 = coin.SoTransform()
self.marks = coin.SoSeparator()
self.drawstyle = coin.SoDrawStyle()
self.coords = coin.SoCoordinate3()
self.arc = coin.SoType.fromName("SoBrepEdgeSet").createInstance()
self.node = coin.SoGroup()
self.node.addChild(self.color)
self.node.addChild(self.drawstyle)
self.node.addChild(self.coords)
self.node.addChild(self.arc)
self.node.addChild(self.marks)
self.node.addChild(label)
self.node3d = coin.SoGroup()
self.node3d.addChild(self.color)
self.node3d.addChild(self.drawstyle)
self.node3d.addChild(self.coords)
self.node3d.addChild(self.arc)
self.node3d.addChild(self.marks)
self.node3d.addChild(label3d)
vobj.addDisplayMode(self.node, "2D")
vobj.addDisplayMode(self.node3d, "3D")
self.updateData(vobj.Object, None)
self.onChanged(vobj, "FontSize")
self.onChanged(vobj, "FontName")
self.onChanged(vobj, "ArrowType")
self.onChanged(vobj, "LineColor")
|
[
"def",
"attach",
"(",
"self",
",",
"vobj",
")",
":",
"self",
".",
"Object",
"=",
"vobj",
".",
"Object",
"self",
".",
"color",
"=",
"coin",
".",
"SoBaseColor",
"(",
")",
"if",
"hasattr",
"(",
"vobj",
",",
"\"LineColor\"",
")",
":",
"self",
".",
"color",
".",
"rgb",
".",
"setValue",
"(",
"vobj",
".",
"LineColor",
"[",
"0",
"]",
",",
"vobj",
".",
"LineColor",
"[",
"1",
"]",
",",
"vobj",
".",
"LineColor",
"[",
"2",
"]",
")",
"self",
".",
"font",
"=",
"coin",
".",
"SoFont",
"(",
")",
"self",
".",
"font3d",
"=",
"coin",
".",
"SoFont",
"(",
")",
"self",
".",
"text",
"=",
"coin",
".",
"SoAsciiText",
"(",
")",
"# Can be oriented in 3D space",
"self",
".",
"text3d",
"=",
"coin",
".",
"SoText2",
"(",
")",
"# Faces the camera always",
"# The text string needs to be initialized to something,",
"# otherwise it may cause a crash of the system",
"self",
".",
"text",
".",
"string",
"=",
"\"d\"",
"self",
".",
"text3d",
".",
"string",
"=",
"\"d\"",
"self",
".",
"text",
".",
"justification",
"=",
"coin",
".",
"SoAsciiText",
".",
"CENTER",
"self",
".",
"text3d",
".",
"justification",
"=",
"coin",
".",
"SoAsciiText",
".",
"CENTER",
"self",
".",
"textpos",
"=",
"coin",
".",
"SoTransform",
"(",
")",
"label",
"=",
"coin",
".",
"SoSeparator",
"(",
")",
"label",
".",
"addChild",
"(",
"self",
".",
"textpos",
")",
"label",
".",
"addChild",
"(",
"self",
".",
"color",
")",
"label",
".",
"addChild",
"(",
"self",
".",
"font",
")",
"label",
".",
"addChild",
"(",
"self",
".",
"text",
")",
"label3d",
"=",
"coin",
".",
"SoSeparator",
"(",
")",
"label3d",
".",
"addChild",
"(",
"self",
".",
"textpos",
")",
"label3d",
".",
"addChild",
"(",
"self",
".",
"color",
")",
"label3d",
".",
"addChild",
"(",
"self",
".",
"font3d",
")",
"label3d",
".",
"addChild",
"(",
"self",
".",
"text3d",
")",
"self",
".",
"coord1",
"=",
"coin",
".",
"SoCoordinate3",
"(",
")",
"self",
".",
"trans1",
"=",
"coin",
".",
"SoTransform",
"(",
")",
"self",
".",
"coord2",
"=",
"coin",
".",
"SoCoordinate3",
"(",
")",
"self",
".",
"trans2",
"=",
"coin",
".",
"SoTransform",
"(",
")",
"self",
".",
"marks",
"=",
"coin",
".",
"SoSeparator",
"(",
")",
"self",
".",
"drawstyle",
"=",
"coin",
".",
"SoDrawStyle",
"(",
")",
"self",
".",
"coords",
"=",
"coin",
".",
"SoCoordinate3",
"(",
")",
"self",
".",
"arc",
"=",
"coin",
".",
"SoType",
".",
"fromName",
"(",
"\"SoBrepEdgeSet\"",
")",
".",
"createInstance",
"(",
")",
"self",
".",
"node",
"=",
"coin",
".",
"SoGroup",
"(",
")",
"self",
".",
"node",
".",
"addChild",
"(",
"self",
".",
"color",
")",
"self",
".",
"node",
".",
"addChild",
"(",
"self",
".",
"drawstyle",
")",
"self",
".",
"node",
".",
"addChild",
"(",
"self",
".",
"coords",
")",
"self",
".",
"node",
".",
"addChild",
"(",
"self",
".",
"arc",
")",
"self",
".",
"node",
".",
"addChild",
"(",
"self",
".",
"marks",
")",
"self",
".",
"node",
".",
"addChild",
"(",
"label",
")",
"self",
".",
"node3d",
"=",
"coin",
".",
"SoGroup",
"(",
")",
"self",
".",
"node3d",
".",
"addChild",
"(",
"self",
".",
"color",
")",
"self",
".",
"node3d",
".",
"addChild",
"(",
"self",
".",
"drawstyle",
")",
"self",
".",
"node3d",
".",
"addChild",
"(",
"self",
".",
"coords",
")",
"self",
".",
"node3d",
".",
"addChild",
"(",
"self",
".",
"arc",
")",
"self",
".",
"node3d",
".",
"addChild",
"(",
"self",
".",
"marks",
")",
"self",
".",
"node3d",
".",
"addChild",
"(",
"label3d",
")",
"vobj",
".",
"addDisplayMode",
"(",
"self",
".",
"node",
",",
"\"2D\"",
")",
"vobj",
".",
"addDisplayMode",
"(",
"self",
".",
"node3d",
",",
"\"3D\"",
")",
"self",
".",
"updateData",
"(",
"vobj",
".",
"Object",
",",
"None",
")",
"self",
".",
"onChanged",
"(",
"vobj",
",",
"\"FontSize\"",
")",
"self",
".",
"onChanged",
"(",
"vobj",
",",
"\"FontName\"",
")",
"self",
".",
"onChanged",
"(",
"vobj",
",",
"\"ArrowType\"",
")",
"self",
".",
"onChanged",
"(",
"vobj",
",",
"\"LineColor\"",
")"
] |
https://github.com/FreeCAD/FreeCAD/blob/ba42231b9c6889b89e064d6d563448ed81e376ec/src/Mod/Draft/draftviewproviders/view_dimension.py#L919-L985
|
||
hanpfei/chromium-net
|
392cc1fa3a8f92f42e4071ab6e674d8e0482f83f
|
third_party/catapult/telemetry/third_party/pyserial/serial/rfc2217.py
|
python
|
PortManager.escape
|
(self, data)
|
\
this generator function is for the user. all outgoing data has to be
properly escaped, so that no IAC character in the data stream messes up
the Telnet state machine in the server.
socket.sendall(escape(data))
|
\
this generator function is for the user. all outgoing data has to be
properly escaped, so that no IAC character in the data stream messes up
the Telnet state machine in the server.
|
[
"\\",
"this",
"generator",
"function",
"is",
"for",
"the",
"user",
".",
"all",
"outgoing",
"data",
"has",
"to",
"be",
"properly",
"escaped",
"so",
"that",
"no",
"IAC",
"character",
"in",
"the",
"data",
"stream",
"messes",
"up",
"the",
"Telnet",
"state",
"machine",
"in",
"the",
"server",
"."
] |
def escape(self, data):
"""\
this generator function is for the user. all outgoing data has to be
properly escaped, so that no IAC character in the data stream messes up
the Telnet state machine in the server.
socket.sendall(escape(data))
"""
for byte in data:
if byte == IAC:
yield IAC
yield IAC
else:
yield byte
|
[
"def",
"escape",
"(",
"self",
",",
"data",
")",
":",
"for",
"byte",
"in",
"data",
":",
"if",
"byte",
"==",
"IAC",
":",
"yield",
"IAC",
"yield",
"IAC",
"else",
":",
"yield",
"byte"
] |
https://github.com/hanpfei/chromium-net/blob/392cc1fa3a8f92f42e4071ab6e674d8e0482f83f/third_party/catapult/telemetry/third_party/pyserial/serial/rfc2217.py#L1010-L1023
|
||
aws/lumberyard
|
f85344403c1c2e77ec8c75deb2c116e97b713217
|
dev/Tools/Python/3.7.10/windows/Lib/ipaddress.py
|
python
|
IPv4Address.is_unspecified
|
(self)
|
return self == self._constants._unspecified_address
|
Test if the address is unspecified.
Returns:
A boolean, True if this is the unspecified address as defined in
RFC 5735 3.
|
Test if the address is unspecified.
|
[
"Test",
"if",
"the",
"address",
"is",
"unspecified",
"."
] |
def is_unspecified(self):
"""Test if the address is unspecified.
Returns:
A boolean, True if this is the unspecified address as defined in
RFC 5735 3.
"""
return self == self._constants._unspecified_address
|
[
"def",
"is_unspecified",
"(",
"self",
")",
":",
"return",
"self",
"==",
"self",
".",
"_constants",
".",
"_unspecified_address"
] |
https://github.com/aws/lumberyard/blob/f85344403c1c2e77ec8c75deb2c116e97b713217/dev/Tools/Python/3.7.10/windows/Lib/ipaddress.py#L1374-L1382
|
|
tensorflow/tensorflow
|
419e3a6b650ea4bd1b0cba23c4348f8a69f3272e
|
tensorflow/python/keras/utils/tf_utils.py
|
python
|
assert_no_legacy_layers
|
(layers)
|
Prevent tf.layers.Layers from being used with Keras.
Certain legacy layers inherit from their keras analogs; however they are
not supported with keras and can lead to subtle and hard to diagnose bugs.
Args:
layers: A list of layers to check
Raises:
TypeError: If any elements of layers are tf.layers.Layers
|
Prevent tf.layers.Layers from being used with Keras.
|
[
"Prevent",
"tf",
".",
"layers",
".",
"Layers",
"from",
"being",
"used",
"with",
"Keras",
"."
] |
def assert_no_legacy_layers(layers):
"""Prevent tf.layers.Layers from being used with Keras.
Certain legacy layers inherit from their keras analogs; however they are
not supported with keras and can lead to subtle and hard to diagnose bugs.
Args:
layers: A list of layers to check
Raises:
TypeError: If any elements of layers are tf.layers.Layers
"""
# isinstance check for tf.layers.Layer introduces a circular dependency.
legacy_layers = [l for l in layers if getattr(l, '_is_legacy_layer', None)]
if legacy_layers:
layer_str = '\n'.join(' ' + str(l) for l in legacy_layers)
raise TypeError(
'The following are legacy tf.layers.Layers:\n{}\nTo use keras as a '
'framework (for instance using the Network, Model, or Sequential '
'classes), please use the tf.keras.layers implementation instead. '
'(Or, if writing custom layers, subclass from tf.keras.layers rather '
'than tf.layers)'.format(layer_str))
|
[
"def",
"assert_no_legacy_layers",
"(",
"layers",
")",
":",
"# isinstance check for tf.layers.Layer introduces a circular dependency.",
"legacy_layers",
"=",
"[",
"l",
"for",
"l",
"in",
"layers",
"if",
"getattr",
"(",
"l",
",",
"'_is_legacy_layer'",
",",
"None",
")",
"]",
"if",
"legacy_layers",
":",
"layer_str",
"=",
"'\\n'",
".",
"join",
"(",
"' '",
"+",
"str",
"(",
"l",
")",
"for",
"l",
"in",
"legacy_layers",
")",
"raise",
"TypeError",
"(",
"'The following are legacy tf.layers.Layers:\\n{}\\nTo use keras as a '",
"'framework (for instance using the Network, Model, or Sequential '",
"'classes), please use the tf.keras.layers implementation instead. '",
"'(Or, if writing custom layers, subclass from tf.keras.layers rather '",
"'than tf.layers)'",
".",
"format",
"(",
"layer_str",
")",
")"
] |
https://github.com/tensorflow/tensorflow/blob/419e3a6b650ea4bd1b0cba23c4348f8a69f3272e/tensorflow/python/keras/utils/tf_utils.py#L404-L426
|
||
google/fhir
|
d77f57706c1a168529b0b87ca7ccb1c0113e83c2
|
py/google/fhir/fhir_errors.py
|
python
|
ListErrorReporter.report_validation_warning
|
(self, element_path: str, msg: str)
|
Logs to the `warning` context and stores `msg` in `warnings`.
|
Logs to the `warning` context and stores `msg` in `warnings`.
|
[
"Logs",
"to",
"the",
"warning",
"context",
"and",
"stores",
"msg",
"in",
"warnings",
"."
] |
def report_validation_warning(self, element_path: str, msg: str) -> None:
"""Logs to the `warning` context and stores `msg` in `warnings`."""
logging.warning('%s; %s', element_path, msg)
self.warnings.append(msg)
|
[
"def",
"report_validation_warning",
"(",
"self",
",",
"element_path",
":",
"str",
",",
"msg",
":",
"str",
")",
"->",
"None",
":",
"logging",
".",
"warning",
"(",
"'%s; %s'",
",",
"element_path",
",",
"msg",
")",
"self",
".",
"warnings",
".",
"append",
"(",
"msg",
")"
] |
https://github.com/google/fhir/blob/d77f57706c1a168529b0b87ca7ccb1c0113e83c2/py/google/fhir/fhir_errors.py#L132-L135
|
||
Z3Prover/z3
|
d745d03afdfdf638d66093e2bfbacaf87187f35b
|
src/api/python/z3/z3.py
|
python
|
Solver.consequences
|
(self, assumptions, variables)
|
return CheckSatResult(r), consequences
|
Determine fixed values for the variables based on the solver state and assumptions.
>>> s = Solver()
>>> a, b, c, d = Bools('a b c d')
>>> s.add(Implies(a,b), Implies(b, c))
>>> s.consequences([a],[b,c,d])
(sat, [Implies(a, b), Implies(a, c)])
>>> s.consequences([Not(c),d],[a,b,c,d])
(sat, [Implies(d, d), Implies(Not(c), Not(c)), Implies(Not(c), Not(b)), Implies(Not(c), Not(a))])
|
Determine fixed values for the variables based on the solver state and assumptions.
>>> s = Solver()
>>> a, b, c, d = Bools('a b c d')
>>> s.add(Implies(a,b), Implies(b, c))
>>> s.consequences([a],[b,c,d])
(sat, [Implies(a, b), Implies(a, c)])
>>> s.consequences([Not(c),d],[a,b,c,d])
(sat, [Implies(d, d), Implies(Not(c), Not(c)), Implies(Not(c), Not(b)), Implies(Not(c), Not(a))])
|
[
"Determine",
"fixed",
"values",
"for",
"the",
"variables",
"based",
"on",
"the",
"solver",
"state",
"and",
"assumptions",
".",
">>>",
"s",
"=",
"Solver",
"()",
">>>",
"a",
"b",
"c",
"d",
"=",
"Bools",
"(",
"a",
"b",
"c",
"d",
")",
">>>",
"s",
".",
"add",
"(",
"Implies",
"(",
"a",
"b",
")",
"Implies",
"(",
"b",
"c",
"))",
">>>",
"s",
".",
"consequences",
"(",
"[",
"a",
"]",
"[",
"b",
"c",
"d",
"]",
")",
"(",
"sat",
"[",
"Implies",
"(",
"a",
"b",
")",
"Implies",
"(",
"a",
"c",
")",
"]",
")",
">>>",
"s",
".",
"consequences",
"(",
"[",
"Not",
"(",
"c",
")",
"d",
"]",
"[",
"a",
"b",
"c",
"d",
"]",
")",
"(",
"sat",
"[",
"Implies",
"(",
"d",
"d",
")",
"Implies",
"(",
"Not",
"(",
"c",
")",
"Not",
"(",
"c",
"))",
"Implies",
"(",
"Not",
"(",
"c",
")",
"Not",
"(",
"b",
"))",
"Implies",
"(",
"Not",
"(",
"c",
")",
"Not",
"(",
"a",
"))",
"]",
")"
] |
def consequences(self, assumptions, variables):
"""Determine fixed values for the variables based on the solver state and assumptions.
>>> s = Solver()
>>> a, b, c, d = Bools('a b c d')
>>> s.add(Implies(a,b), Implies(b, c))
>>> s.consequences([a],[b,c,d])
(sat, [Implies(a, b), Implies(a, c)])
>>> s.consequences([Not(c),d],[a,b,c,d])
(sat, [Implies(d, d), Implies(Not(c), Not(c)), Implies(Not(c), Not(b)), Implies(Not(c), Not(a))])
"""
if isinstance(assumptions, list):
_asms = AstVector(None, self.ctx)
for a in assumptions:
_asms.push(a)
assumptions = _asms
if isinstance(variables, list):
_vars = AstVector(None, self.ctx)
for a in variables:
_vars.push(a)
variables = _vars
_z3_assert(isinstance(assumptions, AstVector), "ast vector expected")
_z3_assert(isinstance(variables, AstVector), "ast vector expected")
consequences = AstVector(None, self.ctx)
r = Z3_solver_get_consequences(self.ctx.ref(), self.solver, assumptions.vector,
variables.vector, consequences.vector)
sz = len(consequences)
consequences = [consequences[i] for i in range(sz)]
return CheckSatResult(r), consequences
|
[
"def",
"consequences",
"(",
"self",
",",
"assumptions",
",",
"variables",
")",
":",
"if",
"isinstance",
"(",
"assumptions",
",",
"list",
")",
":",
"_asms",
"=",
"AstVector",
"(",
"None",
",",
"self",
".",
"ctx",
")",
"for",
"a",
"in",
"assumptions",
":",
"_asms",
".",
"push",
"(",
"a",
")",
"assumptions",
"=",
"_asms",
"if",
"isinstance",
"(",
"variables",
",",
"list",
")",
":",
"_vars",
"=",
"AstVector",
"(",
"None",
",",
"self",
".",
"ctx",
")",
"for",
"a",
"in",
"variables",
":",
"_vars",
".",
"push",
"(",
"a",
")",
"variables",
"=",
"_vars",
"_z3_assert",
"(",
"isinstance",
"(",
"assumptions",
",",
"AstVector",
")",
",",
"\"ast vector expected\"",
")",
"_z3_assert",
"(",
"isinstance",
"(",
"variables",
",",
"AstVector",
")",
",",
"\"ast vector expected\"",
")",
"consequences",
"=",
"AstVector",
"(",
"None",
",",
"self",
".",
"ctx",
")",
"r",
"=",
"Z3_solver_get_consequences",
"(",
"self",
".",
"ctx",
".",
"ref",
"(",
")",
",",
"self",
".",
"solver",
",",
"assumptions",
".",
"vector",
",",
"variables",
".",
"vector",
",",
"consequences",
".",
"vector",
")",
"sz",
"=",
"len",
"(",
"consequences",
")",
"consequences",
"=",
"[",
"consequences",
"[",
"i",
"]",
"for",
"i",
"in",
"range",
"(",
"sz",
")",
"]",
"return",
"CheckSatResult",
"(",
"r",
")",
",",
"consequences"
] |
https://github.com/Z3Prover/z3/blob/d745d03afdfdf638d66093e2bfbacaf87187f35b/src/api/python/z3/z3.py#L7109-L7136
|
|
google/iree
|
1224bbdbe65b0d1fdf40e7324f60f68beeaf7c76
|
integrations/tensorflow/python_projects/iree_tf/iree/tf/support/tf_utils.py
|
python
|
save_input_values
|
(inputs: Sequence[np.ndarray],
artifacts_dir: str = None)
|
return result
|
Saves input values with IREE tools format if 'artifacts_dir' is set.
|
Saves input values with IREE tools format if 'artifacts_dir' is set.
|
[
"Saves",
"input",
"values",
"with",
"IREE",
"tools",
"format",
"if",
"artifacts_dir",
"is",
"set",
"."
] |
def save_input_values(inputs: Sequence[np.ndarray],
artifacts_dir: str = None) -> str:
"""Saves input values with IREE tools format if 'artifacts_dir' is set."""
result = []
for array in inputs:
shape_dtype = get_shape_and_dtype(array)
values = " ".join([str(x) for x in array.flatten()])
result.append(f"{shape_dtype}={values}")
result = "\n".join(result)
if artifacts_dir is not None:
inputs_path = os.path.join(artifacts_dir, "inputs.txt")
logging.info("Saving IREE input values to: %s", inputs_path)
with open(inputs_path, "w") as f:
f.write(result)
f.write("\n")
return result
|
[
"def",
"save_input_values",
"(",
"inputs",
":",
"Sequence",
"[",
"np",
".",
"ndarray",
"]",
",",
"artifacts_dir",
":",
"str",
"=",
"None",
")",
"->",
"str",
":",
"result",
"=",
"[",
"]",
"for",
"array",
"in",
"inputs",
":",
"shape_dtype",
"=",
"get_shape_and_dtype",
"(",
"array",
")",
"values",
"=",
"\" \"",
".",
"join",
"(",
"[",
"str",
"(",
"x",
")",
"for",
"x",
"in",
"array",
".",
"flatten",
"(",
")",
"]",
")",
"result",
".",
"append",
"(",
"f\"{shape_dtype}={values}\"",
")",
"result",
"=",
"\"\\n\"",
".",
"join",
"(",
"result",
")",
"if",
"artifacts_dir",
"is",
"not",
"None",
":",
"inputs_path",
"=",
"os",
".",
"path",
".",
"join",
"(",
"artifacts_dir",
",",
"\"inputs.txt\"",
")",
"logging",
".",
"info",
"(",
"\"Saving IREE input values to: %s\"",
",",
"inputs_path",
")",
"with",
"open",
"(",
"inputs_path",
",",
"\"w\"",
")",
"as",
"f",
":",
"f",
".",
"write",
"(",
"result",
")",
"f",
".",
"write",
"(",
"\"\\n\"",
")",
"return",
"result"
] |
https://github.com/google/iree/blob/1224bbdbe65b0d1fdf40e7324f60f68beeaf7c76/integrations/tensorflow/python_projects/iree_tf/iree/tf/support/tf_utils.py#L114-L129
|
|
mantidproject/mantid
|
03deeb89254ec4289edb8771e0188c2090a02f32
|
scripts/LargeScaleStructures/data_stitching.py
|
python
|
DataSet.is_loaded
|
(self)
|
return mtd.doesExist(self._ws_name)
|
Return True is this data set has been loaded
|
Return True is this data set has been loaded
|
[
"Return",
"True",
"is",
"this",
"data",
"set",
"has",
"been",
"loaded"
] |
def is_loaded(self):
"""
Return True is this data set has been loaded
"""
return mtd.doesExist(self._ws_name)
|
[
"def",
"is_loaded",
"(",
"self",
")",
":",
"return",
"mtd",
".",
"doesExist",
"(",
"self",
".",
"_ws_name",
")"
] |
https://github.com/mantidproject/mantid/blob/03deeb89254ec4289edb8771e0188c2090a02f32/scripts/LargeScaleStructures/data_stitching.py#L235-L239
|
|
wxWidgets/wxPython-Classic
|
19571e1ae65f1ac445f5491474121998c97a1bf0
|
wx/lib/docview.py
|
python
|
Document.NotifyClosing
|
(self)
|
Notifies the views that the document is going to close.
|
Notifies the views that the document is going to close.
|
[
"Notifies",
"the",
"views",
"that",
"the",
"document",
"is",
"going",
"to",
"close",
"."
] |
def NotifyClosing(self):
"""
Notifies the views that the document is going to close.
"""
for view in self._documentViews:
view.OnClosingDocument()
|
[
"def",
"NotifyClosing",
"(",
"self",
")",
":",
"for",
"view",
"in",
"self",
".",
"_documentViews",
":",
"view",
".",
"OnClosingDocument",
"(",
")"
] |
https://github.com/wxWidgets/wxPython-Classic/blob/19571e1ae65f1ac445f5491474121998c97a1bf0/wx/lib/docview.py#L727-L732
|
||
kismetwireless/kismet
|
a7c0dc270c960fb1f58bd9cec4601c201885fd4e
|
capture_proxy_adsb/KismetCaptureProxyAdsb/__init__.py
|
python
|
KismetProxyAdsb.adsb_len_by_type
|
(self, type)
|
return 56
|
Get expected length of message in bits based on the type
|
Get expected length of message in bits based on the type
|
[
"Get",
"expected",
"length",
"of",
"message",
"in",
"bits",
"based",
"on",
"the",
"type"
] |
def adsb_len_by_type(self, type):
"""
Get expected length of message in bits based on the type
"""
if type == 16 or type == 17 or type == 19 or type == 20 or type == 21:
return 112
return 56
|
[
"def",
"adsb_len_by_type",
"(",
"self",
",",
"type",
")",
":",
"if",
"type",
"==",
"16",
"or",
"type",
"==",
"17",
"or",
"type",
"==",
"19",
"or",
"type",
"==",
"20",
"or",
"type",
"==",
"21",
":",
"return",
"112",
"return",
"56"
] |
https://github.com/kismetwireless/kismet/blob/a7c0dc270c960fb1f58bd9cec4601c201885fd4e/capture_proxy_adsb/KismetCaptureProxyAdsb/__init__.py#L420-L428
|
|
baidu-research/tensorflow-allreduce
|
66d5b855e90b0949e9fa5cca5599fd729a70e874
|
tensorflow/python/ops/spectral_ops.py
|
python
|
_irfft_wrapper
|
(ifft_fn, fft_rank, default_name)
|
return _irfft
|
Wrapper around gen_spectral_ops.irfft* that infers fft_length argument.
|
Wrapper around gen_spectral_ops.irfft* that infers fft_length argument.
|
[
"Wrapper",
"around",
"gen_spectral_ops",
".",
"irfft",
"*",
"that",
"infers",
"fft_length",
"argument",
"."
] |
def _irfft_wrapper(ifft_fn, fft_rank, default_name):
"""Wrapper around gen_spectral_ops.irfft* that infers fft_length argument."""
def _irfft(input_tensor, fft_length=None, name=None):
with _ops.name_scope(name, default_name,
[input_tensor, fft_length]) as name:
input_tensor = _ops.convert_to_tensor(input_tensor, _dtypes.complex64)
input_tensor.shape.with_rank_at_least(fft_rank)
if fft_length is None:
fft_length = _infer_fft_length_for_irfft(input_tensor, fft_rank)
else:
fft_length = _ops.convert_to_tensor(fft_length, _dtypes.int32)
input_tensor = _maybe_pad_for_rfft(input_tensor, fft_rank, fft_length,
is_reverse=True)
return ifft_fn(input_tensor, fft_length, name)
_irfft.__doc__ = ifft_fn.__doc__
return _irfft
|
[
"def",
"_irfft_wrapper",
"(",
"ifft_fn",
",",
"fft_rank",
",",
"default_name",
")",
":",
"def",
"_irfft",
"(",
"input_tensor",
",",
"fft_length",
"=",
"None",
",",
"name",
"=",
"None",
")",
":",
"with",
"_ops",
".",
"name_scope",
"(",
"name",
",",
"default_name",
",",
"[",
"input_tensor",
",",
"fft_length",
"]",
")",
"as",
"name",
":",
"input_tensor",
"=",
"_ops",
".",
"convert_to_tensor",
"(",
"input_tensor",
",",
"_dtypes",
".",
"complex64",
")",
"input_tensor",
".",
"shape",
".",
"with_rank_at_least",
"(",
"fft_rank",
")",
"if",
"fft_length",
"is",
"None",
":",
"fft_length",
"=",
"_infer_fft_length_for_irfft",
"(",
"input_tensor",
",",
"fft_rank",
")",
"else",
":",
"fft_length",
"=",
"_ops",
".",
"convert_to_tensor",
"(",
"fft_length",
",",
"_dtypes",
".",
"int32",
")",
"input_tensor",
"=",
"_maybe_pad_for_rfft",
"(",
"input_tensor",
",",
"fft_rank",
",",
"fft_length",
",",
"is_reverse",
"=",
"True",
")",
"return",
"ifft_fn",
"(",
"input_tensor",
",",
"fft_length",
",",
"name",
")",
"_irfft",
".",
"__doc__",
"=",
"ifft_fn",
".",
"__doc__",
"return",
"_irfft"
] |
https://github.com/baidu-research/tensorflow-allreduce/blob/66d5b855e90b0949e9fa5cca5599fd729a70e874/tensorflow/python/ops/spectral_ops.py#L138-L154
|
|
wlanjie/AndroidFFmpeg
|
7baf9122f4b8e1c74e7baf4be5c422c7a5ba5aaf
|
tools/fdk-aac-build/armeabi-v7a/toolchain/lib/python2.7/mailbox.py
|
python
|
MH.get_sequences
|
(self)
|
return results
|
Return a name-to-key-list dictionary to define each sequence.
|
Return a name-to-key-list dictionary to define each sequence.
|
[
"Return",
"a",
"name",
"-",
"to",
"-",
"key",
"-",
"list",
"dictionary",
"to",
"define",
"each",
"sequence",
"."
] |
def get_sequences(self):
"""Return a name-to-key-list dictionary to define each sequence."""
results = {}
f = open(os.path.join(self._path, '.mh_sequences'), 'r')
try:
all_keys = set(self.keys())
for line in f:
try:
name, contents = line.split(':')
keys = set()
for spec in contents.split():
if spec.isdigit():
keys.add(int(spec))
else:
start, stop = (int(x) for x in spec.split('-'))
keys.update(range(start, stop + 1))
results[name] = [key for key in sorted(keys) \
if key in all_keys]
if len(results[name]) == 0:
del results[name]
except ValueError:
raise FormatError('Invalid sequence specification: %s' %
line.rstrip())
finally:
f.close()
return results
|
[
"def",
"get_sequences",
"(",
"self",
")",
":",
"results",
"=",
"{",
"}",
"f",
"=",
"open",
"(",
"os",
".",
"path",
".",
"join",
"(",
"self",
".",
"_path",
",",
"'.mh_sequences'",
")",
",",
"'r'",
")",
"try",
":",
"all_keys",
"=",
"set",
"(",
"self",
".",
"keys",
"(",
")",
")",
"for",
"line",
"in",
"f",
":",
"try",
":",
"name",
",",
"contents",
"=",
"line",
".",
"split",
"(",
"':'",
")",
"keys",
"=",
"set",
"(",
")",
"for",
"spec",
"in",
"contents",
".",
"split",
"(",
")",
":",
"if",
"spec",
".",
"isdigit",
"(",
")",
":",
"keys",
".",
"add",
"(",
"int",
"(",
"spec",
")",
")",
"else",
":",
"start",
",",
"stop",
"=",
"(",
"int",
"(",
"x",
")",
"for",
"x",
"in",
"spec",
".",
"split",
"(",
"'-'",
")",
")",
"keys",
".",
"update",
"(",
"range",
"(",
"start",
",",
"stop",
"+",
"1",
")",
")",
"results",
"[",
"name",
"]",
"=",
"[",
"key",
"for",
"key",
"in",
"sorted",
"(",
"keys",
")",
"if",
"key",
"in",
"all_keys",
"]",
"if",
"len",
"(",
"results",
"[",
"name",
"]",
")",
"==",
"0",
":",
"del",
"results",
"[",
"name",
"]",
"except",
"ValueError",
":",
"raise",
"FormatError",
"(",
"'Invalid sequence specification: %s'",
"%",
"line",
".",
"rstrip",
"(",
")",
")",
"finally",
":",
"f",
".",
"close",
"(",
")",
"return",
"results"
] |
https://github.com/wlanjie/AndroidFFmpeg/blob/7baf9122f4b8e1c74e7baf4be5c422c7a5ba5aaf/tools/fdk-aac-build/armeabi-v7a/toolchain/lib/python2.7/mailbox.py#L1122-L1147
|
|
wxWidgets/wxPython-Classic
|
19571e1ae65f1ac445f5491474121998c97a1bf0
|
src/gtk/stc.py
|
python
|
StyledTextCtrl.CallTipPosAtStart
|
(*args, **kwargs)
|
return _stc.StyledTextCtrl_CallTipPosAtStart(*args, **kwargs)
|
CallTipPosAtStart(self) -> int
Retrieve the position where the caret was before displaying the call tip.
|
CallTipPosAtStart(self) -> int
|
[
"CallTipPosAtStart",
"(",
"self",
")",
"-",
">",
"int"
] |
def CallTipPosAtStart(*args, **kwargs):
"""
CallTipPosAtStart(self) -> int
Retrieve the position where the caret was before displaying the call tip.
"""
return _stc.StyledTextCtrl_CallTipPosAtStart(*args, **kwargs)
|
[
"def",
"CallTipPosAtStart",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"return",
"_stc",
".",
"StyledTextCtrl_CallTipPosAtStart",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")"
] |
https://github.com/wxWidgets/wxPython-Classic/blob/19571e1ae65f1ac445f5491474121998c97a1bf0/src/gtk/stc.py#L3820-L3826
|
|
goldeneye-source/ges-code
|
2630cd8ef3d015af53c72ec2e19fc1f7e7fe8d9d
|
thirdparty/protobuf-2.3.0/python/google/protobuf/internal/decoder.py
|
python
|
_SkipVarint
|
(buffer, pos, end)
|
return pos
|
Skip a varint value. Returns the new position.
|
Skip a varint value. Returns the new position.
|
[
"Skip",
"a",
"varint",
"value",
".",
"Returns",
"the",
"new",
"position",
"."
] |
def _SkipVarint(buffer, pos, end):
"""Skip a varint value. Returns the new position."""
while ord(buffer[pos]) & 0x80:
pos += 1
pos += 1
if pos > end:
raise _DecodeError('Truncated message.')
return pos
|
[
"def",
"_SkipVarint",
"(",
"buffer",
",",
"pos",
",",
"end",
")",
":",
"while",
"ord",
"(",
"buffer",
"[",
"pos",
"]",
")",
"&",
"0x80",
":",
"pos",
"+=",
"1",
"pos",
"+=",
"1",
"if",
"pos",
">",
"end",
":",
"raise",
"_DecodeError",
"(",
"'Truncated message.'",
")",
"return",
"pos"
] |
https://github.com/goldeneye-source/ges-code/blob/2630cd8ef3d015af53c72ec2e19fc1f7e7fe8d9d/thirdparty/protobuf-2.3.0/python/google/protobuf/internal/decoder.py#L553-L561
|
|
NVIDIA/DALI
|
bf16cc86ba8f091b145f91962f21fe1b6aff243d
|
third_party/cpplint.py
|
python
|
NestingState.SeenOpenBrace
|
(self)
|
return (not self.stack) or self.stack[-1].seen_open_brace
|
Check if we have seen the opening brace for the innermost block.
Returns:
True if we have seen the opening brace, False if the innermost
block is still expecting an opening brace.
|
Check if we have seen the opening brace for the innermost block.
|
[
"Check",
"if",
"we",
"have",
"seen",
"the",
"opening",
"brace",
"for",
"the",
"innermost",
"block",
"."
] |
def SeenOpenBrace(self):
"""Check if we have seen the opening brace for the innermost block.
Returns:
True if we have seen the opening brace, False if the innermost
block is still expecting an opening brace.
"""
return (not self.stack) or self.stack[-1].seen_open_brace
|
[
"def",
"SeenOpenBrace",
"(",
"self",
")",
":",
"return",
"(",
"not",
"self",
".",
"stack",
")",
"or",
"self",
".",
"stack",
"[",
"-",
"1",
"]",
".",
"seen_open_brace"
] |
https://github.com/NVIDIA/DALI/blob/bf16cc86ba8f091b145f91962f21fe1b6aff243d/third_party/cpplint.py#L2429-L2436
|
|
wxWidgets/wxPython-Classic
|
19571e1ae65f1ac445f5491474121998c97a1bf0
|
samples/ide/activegrid/tool/FindInDirService.py
|
python
|
FindInDirService.SaveFindInDirConfig
|
(self, dirString, searchSubfolders)
|
Save search dir patterns and flags to registry.
dirString = search directory
searchSubfolders = Search subfolders
|
Save search dir patterns and flags to registry.
|
[
"Save",
"search",
"dir",
"patterns",
"and",
"flags",
"to",
"registry",
"."
] |
def SaveFindInDirConfig(self, dirString, searchSubfolders):
""" Save search dir patterns and flags to registry.
dirString = search directory
searchSubfolders = Search subfolders
"""
config = wx.ConfigBase_Get()
config.Write(FIND_MATCHDIR, dirString)
config.WriteInt(FIND_MATCHDIRSUBFOLDERS, searchSubfolders)
|
[
"def",
"SaveFindInDirConfig",
"(",
"self",
",",
"dirString",
",",
"searchSubfolders",
")",
":",
"config",
"=",
"wx",
".",
"ConfigBase_Get",
"(",
")",
"config",
".",
"Write",
"(",
"FIND_MATCHDIR",
",",
"dirString",
")",
"config",
".",
"WriteInt",
"(",
"FIND_MATCHDIRSUBFOLDERS",
",",
"searchSubfolders",
")"
] |
https://github.com/wxWidgets/wxPython-Classic/blob/19571e1ae65f1ac445f5491474121998c97a1bf0/samples/ide/activegrid/tool/FindInDirService.py#L302-L310
|
||
catboost/catboost
|
167f64f237114a4d10b2b4ee42adb4569137debe
|
contrib/python/scipy/scipy/signal/signaltools.py
|
python
|
fftconvolve
|
(in1, in2, mode="full")
|
Convolve two N-dimensional arrays using FFT.
Convolve `in1` and `in2` using the fast Fourier transform method, with
the output size determined by the `mode` argument.
This is generally much faster than `convolve` for large arrays (n > ~500),
but can be slower when only a few output values are needed, and can only
output float arrays (int or object array inputs will be cast to float).
As of v0.19, `convolve` automatically chooses this method or the direct
method based on an estimation of which is faster.
Parameters
----------
in1 : array_like
First input.
in2 : array_like
Second input. Should have the same number of dimensions as `in1`.
If operating in 'valid' mode, either `in1` or `in2` must be
at least as large as the other in every dimension.
mode : str {'full', 'valid', 'same'}, optional
A string indicating the size of the output:
``full``
The output is the full discrete linear convolution
of the inputs. (Default)
``valid``
The output consists only of those elements that do not
rely on the zero-padding.
``same``
The output is the same size as `in1`, centered
with respect to the 'full' output.
Returns
-------
out : array
An N-dimensional array containing a subset of the discrete linear
convolution of `in1` with `in2`.
Examples
--------
Autocorrelation of white noise is an impulse.
>>> from scipy import signal
>>> sig = np.random.randn(1000)
>>> autocorr = signal.fftconvolve(sig, sig[::-1], mode='full')
>>> import matplotlib.pyplot as plt
>>> fig, (ax_orig, ax_mag) = plt.subplots(2, 1)
>>> ax_orig.plot(sig)
>>> ax_orig.set_title('White noise')
>>> ax_mag.plot(np.arange(-len(sig)+1,len(sig)), autocorr)
>>> ax_mag.set_title('Autocorrelation')
>>> fig.tight_layout()
>>> fig.show()
Gaussian blur implemented using FFT convolution. Notice the dark borders
around the image, due to the zero-padding beyond its boundaries.
The `convolve2d` function allows for other types of image boundaries,
but is far slower.
>>> from scipy import misc
>>> face = misc.face(gray=True)
>>> kernel = np.outer(signal.gaussian(70, 8), signal.gaussian(70, 8))
>>> blurred = signal.fftconvolve(face, kernel, mode='same')
>>> fig, (ax_orig, ax_kernel, ax_blurred) = plt.subplots(3, 1,
... figsize=(6, 15))
>>> ax_orig.imshow(face, cmap='gray')
>>> ax_orig.set_title('Original')
>>> ax_orig.set_axis_off()
>>> ax_kernel.imshow(kernel, cmap='gray')
>>> ax_kernel.set_title('Gaussian kernel')
>>> ax_kernel.set_axis_off()
>>> ax_blurred.imshow(blurred, cmap='gray')
>>> ax_blurred.set_title('Blurred')
>>> ax_blurred.set_axis_off()
>>> fig.show()
|
Convolve two N-dimensional arrays using FFT.
|
[
"Convolve",
"two",
"N",
"-",
"dimensional",
"arrays",
"using",
"FFT",
"."
] |
def fftconvolve(in1, in2, mode="full"):
"""Convolve two N-dimensional arrays using FFT.
Convolve `in1` and `in2` using the fast Fourier transform method, with
the output size determined by the `mode` argument.
This is generally much faster than `convolve` for large arrays (n > ~500),
but can be slower when only a few output values are needed, and can only
output float arrays (int or object array inputs will be cast to float).
As of v0.19, `convolve` automatically chooses this method or the direct
method based on an estimation of which is faster.
Parameters
----------
in1 : array_like
First input.
in2 : array_like
Second input. Should have the same number of dimensions as `in1`.
If operating in 'valid' mode, either `in1` or `in2` must be
at least as large as the other in every dimension.
mode : str {'full', 'valid', 'same'}, optional
A string indicating the size of the output:
``full``
The output is the full discrete linear convolution
of the inputs. (Default)
``valid``
The output consists only of those elements that do not
rely on the zero-padding.
``same``
The output is the same size as `in1`, centered
with respect to the 'full' output.
Returns
-------
out : array
An N-dimensional array containing a subset of the discrete linear
convolution of `in1` with `in2`.
Examples
--------
Autocorrelation of white noise is an impulse.
>>> from scipy import signal
>>> sig = np.random.randn(1000)
>>> autocorr = signal.fftconvolve(sig, sig[::-1], mode='full')
>>> import matplotlib.pyplot as plt
>>> fig, (ax_orig, ax_mag) = plt.subplots(2, 1)
>>> ax_orig.plot(sig)
>>> ax_orig.set_title('White noise')
>>> ax_mag.plot(np.arange(-len(sig)+1,len(sig)), autocorr)
>>> ax_mag.set_title('Autocorrelation')
>>> fig.tight_layout()
>>> fig.show()
Gaussian blur implemented using FFT convolution. Notice the dark borders
around the image, due to the zero-padding beyond its boundaries.
The `convolve2d` function allows for other types of image boundaries,
but is far slower.
>>> from scipy import misc
>>> face = misc.face(gray=True)
>>> kernel = np.outer(signal.gaussian(70, 8), signal.gaussian(70, 8))
>>> blurred = signal.fftconvolve(face, kernel, mode='same')
>>> fig, (ax_orig, ax_kernel, ax_blurred) = plt.subplots(3, 1,
... figsize=(6, 15))
>>> ax_orig.imshow(face, cmap='gray')
>>> ax_orig.set_title('Original')
>>> ax_orig.set_axis_off()
>>> ax_kernel.imshow(kernel, cmap='gray')
>>> ax_kernel.set_title('Gaussian kernel')
>>> ax_kernel.set_axis_off()
>>> ax_blurred.imshow(blurred, cmap='gray')
>>> ax_blurred.set_title('Blurred')
>>> ax_blurred.set_axis_off()
>>> fig.show()
"""
in1 = asarray(in1)
in2 = asarray(in2)
if in1.ndim == in2.ndim == 0: # scalar inputs
return in1 * in2
elif not in1.ndim == in2.ndim:
raise ValueError("in1 and in2 should have the same dimensionality")
elif in1.size == 0 or in2.size == 0: # empty arrays
return array([])
s1 = array(in1.shape)
s2 = array(in2.shape)
complex_result = (np.issubdtype(in1.dtype, np.complexfloating) or
np.issubdtype(in2.dtype, np.complexfloating))
shape = s1 + s2 - 1
# Check that input sizes are compatible with 'valid' mode
if _inputs_swap_needed(mode, s1, s2):
# Convolution is commutative; order doesn't have any effect on output
in1, s1, in2, s2 = in2, s2, in1, s1
# Speed up FFT by padding to optimal size for FFTPACK
fshape = [fftpack.helper.next_fast_len(int(d)) for d in shape]
fslice = tuple([slice(0, int(sz)) for sz in shape])
# Pre-1.9 NumPy FFT routines are not threadsafe. For older NumPys, make
# sure we only call rfftn/irfftn from one thread at a time.
if not complex_result and (_rfft_mt_safe or _rfft_lock.acquire(False)):
try:
sp1 = np.fft.rfftn(in1, fshape)
sp2 = np.fft.rfftn(in2, fshape)
ret = (np.fft.irfftn(sp1 * sp2, fshape)[fslice].copy())
finally:
if not _rfft_mt_safe:
_rfft_lock.release()
else:
# If we're here, it's either because we need a complex result, or we
# failed to acquire _rfft_lock (meaning rfftn isn't threadsafe and
# is already in use by another thread). In either case, use the
# (threadsafe but slower) SciPy complex-FFT routines instead.
sp1 = fftpack.fftn(in1, fshape)
sp2 = fftpack.fftn(in2, fshape)
ret = fftpack.ifftn(sp1 * sp2)[fslice].copy()
if not complex_result:
ret = ret.real
if mode == "full":
return ret
elif mode == "same":
return _centered(ret, s1)
elif mode == "valid":
return _centered(ret, s1 - s2 + 1)
else:
raise ValueError("Acceptable mode flags are 'valid',"
" 'same', or 'full'.")
|
[
"def",
"fftconvolve",
"(",
"in1",
",",
"in2",
",",
"mode",
"=",
"\"full\"",
")",
":",
"in1",
"=",
"asarray",
"(",
"in1",
")",
"in2",
"=",
"asarray",
"(",
"in2",
")",
"if",
"in1",
".",
"ndim",
"==",
"in2",
".",
"ndim",
"==",
"0",
":",
"# scalar inputs",
"return",
"in1",
"*",
"in2",
"elif",
"not",
"in1",
".",
"ndim",
"==",
"in2",
".",
"ndim",
":",
"raise",
"ValueError",
"(",
"\"in1 and in2 should have the same dimensionality\"",
")",
"elif",
"in1",
".",
"size",
"==",
"0",
"or",
"in2",
".",
"size",
"==",
"0",
":",
"# empty arrays",
"return",
"array",
"(",
"[",
"]",
")",
"s1",
"=",
"array",
"(",
"in1",
".",
"shape",
")",
"s2",
"=",
"array",
"(",
"in2",
".",
"shape",
")",
"complex_result",
"=",
"(",
"np",
".",
"issubdtype",
"(",
"in1",
".",
"dtype",
",",
"np",
".",
"complexfloating",
")",
"or",
"np",
".",
"issubdtype",
"(",
"in2",
".",
"dtype",
",",
"np",
".",
"complexfloating",
")",
")",
"shape",
"=",
"s1",
"+",
"s2",
"-",
"1",
"# Check that input sizes are compatible with 'valid' mode",
"if",
"_inputs_swap_needed",
"(",
"mode",
",",
"s1",
",",
"s2",
")",
":",
"# Convolution is commutative; order doesn't have any effect on output",
"in1",
",",
"s1",
",",
"in2",
",",
"s2",
"=",
"in2",
",",
"s2",
",",
"in1",
",",
"s1",
"# Speed up FFT by padding to optimal size for FFTPACK",
"fshape",
"=",
"[",
"fftpack",
".",
"helper",
".",
"next_fast_len",
"(",
"int",
"(",
"d",
")",
")",
"for",
"d",
"in",
"shape",
"]",
"fslice",
"=",
"tuple",
"(",
"[",
"slice",
"(",
"0",
",",
"int",
"(",
"sz",
")",
")",
"for",
"sz",
"in",
"shape",
"]",
")",
"# Pre-1.9 NumPy FFT routines are not threadsafe. For older NumPys, make",
"# sure we only call rfftn/irfftn from one thread at a time.",
"if",
"not",
"complex_result",
"and",
"(",
"_rfft_mt_safe",
"or",
"_rfft_lock",
".",
"acquire",
"(",
"False",
")",
")",
":",
"try",
":",
"sp1",
"=",
"np",
".",
"fft",
".",
"rfftn",
"(",
"in1",
",",
"fshape",
")",
"sp2",
"=",
"np",
".",
"fft",
".",
"rfftn",
"(",
"in2",
",",
"fshape",
")",
"ret",
"=",
"(",
"np",
".",
"fft",
".",
"irfftn",
"(",
"sp1",
"*",
"sp2",
",",
"fshape",
")",
"[",
"fslice",
"]",
".",
"copy",
"(",
")",
")",
"finally",
":",
"if",
"not",
"_rfft_mt_safe",
":",
"_rfft_lock",
".",
"release",
"(",
")",
"else",
":",
"# If we're here, it's either because we need a complex result, or we",
"# failed to acquire _rfft_lock (meaning rfftn isn't threadsafe and",
"# is already in use by another thread). In either case, use the",
"# (threadsafe but slower) SciPy complex-FFT routines instead.",
"sp1",
"=",
"fftpack",
".",
"fftn",
"(",
"in1",
",",
"fshape",
")",
"sp2",
"=",
"fftpack",
".",
"fftn",
"(",
"in2",
",",
"fshape",
")",
"ret",
"=",
"fftpack",
".",
"ifftn",
"(",
"sp1",
"*",
"sp2",
")",
"[",
"fslice",
"]",
".",
"copy",
"(",
")",
"if",
"not",
"complex_result",
":",
"ret",
"=",
"ret",
".",
"real",
"if",
"mode",
"==",
"\"full\"",
":",
"return",
"ret",
"elif",
"mode",
"==",
"\"same\"",
":",
"return",
"_centered",
"(",
"ret",
",",
"s1",
")",
"elif",
"mode",
"==",
"\"valid\"",
":",
"return",
"_centered",
"(",
"ret",
",",
"s1",
"-",
"s2",
"+",
"1",
")",
"else",
":",
"raise",
"ValueError",
"(",
"\"Acceptable mode flags are 'valid',\"",
"\" 'same', or 'full'.\"",
")"
] |
https://github.com/catboost/catboost/blob/167f64f237114a4d10b2b4ee42adb4569137debe/contrib/python/scipy/scipy/signal/signaltools.py#L271-L405
|
||
tensorflow/tensorflow
|
419e3a6b650ea4bd1b0cba23c4348f8a69f3272e
|
tensorflow/python/keras/utils/kernelized_utils.py
|
python
|
_to_matrix
|
(u)
|
return u
|
If input tensor is a vector (i.e., has rank 1), converts it to matrix.
|
If input tensor is a vector (i.e., has rank 1), converts it to matrix.
|
[
"If",
"input",
"tensor",
"is",
"a",
"vector",
"(",
"i",
".",
"e",
".",
"has",
"rank",
"1",
")",
"converts",
"it",
"to",
"matrix",
"."
] |
def _to_matrix(u):
"""If input tensor is a vector (i.e., has rank 1), converts it to matrix."""
u_rank = len(u.shape)
if u_rank not in [1, 2]:
raise ValueError('The input tensor should have rank 1 or 2. Given rank: {}'
.format(u_rank))
if u_rank == 1:
return array_ops.expand_dims(u, 0)
return u
|
[
"def",
"_to_matrix",
"(",
"u",
")",
":",
"u_rank",
"=",
"len",
"(",
"u",
".",
"shape",
")",
"if",
"u_rank",
"not",
"in",
"[",
"1",
",",
"2",
"]",
":",
"raise",
"ValueError",
"(",
"'The input tensor should have rank 1 or 2. Given rank: {}'",
".",
"format",
"(",
"u_rank",
")",
")",
"if",
"u_rank",
"==",
"1",
":",
"return",
"array_ops",
".",
"expand_dims",
"(",
"u",
",",
"0",
")",
"return",
"u"
] |
https://github.com/tensorflow/tensorflow/blob/419e3a6b650ea4bd1b0cba23c4348f8a69f3272e/tensorflow/python/keras/utils/kernelized_utils.py#L21-L29
|
|
idaholab/moose
|
9eeebc65e098b4c30f8205fb41591fd5b61eb6ff
|
python/peacock/Input/BlockInfo.py
|
python
|
BlockInfo.paramValue
|
(self, param)
|
Gets the value of a parameter.
Input:
param[str]: Name of the parameter
Return:
str: Value of the parameter or None
|
Gets the value of a parameter.
Input:
param[str]: Name of the parameter
Return:
str: Value of the parameter or None
|
[
"Gets",
"the",
"value",
"of",
"a",
"parameter",
".",
"Input",
":",
"param",
"[",
"str",
"]",
":",
"Name",
"of",
"the",
"parameter",
"Return",
":",
"str",
":",
"Value",
"of",
"the",
"parameter",
"or",
"None"
] |
def paramValue(self, param):
"""
Gets the value of a parameter.
Input:
param[str]: Name of the parameter
Return:
str: Value of the parameter or None
"""
param_info = self.getParamInfo(param)
if param_info:
return param_info.value
|
[
"def",
"paramValue",
"(",
"self",
",",
"param",
")",
":",
"param_info",
"=",
"self",
".",
"getParamInfo",
"(",
"param",
")",
"if",
"param_info",
":",
"return",
"param_info",
".",
"value"
] |
https://github.com/idaholab/moose/blob/9eeebc65e098b4c30f8205fb41591fd5b61eb6ff/python/peacock/Input/BlockInfo.py#L103-L113
|
||
wxWidgets/wxPython-Classic
|
19571e1ae65f1ac445f5491474121998c97a1bf0
|
src/osx_cocoa/grid.py
|
python
|
Grid.EnableEditing
|
(*args, **kwargs)
|
return _grid.Grid_EnableEditing(*args, **kwargs)
|
EnableEditing(self, bool edit)
|
EnableEditing(self, bool edit)
|
[
"EnableEditing",
"(",
"self",
"bool",
"edit",
")"
] |
def EnableEditing(*args, **kwargs):
"""EnableEditing(self, bool edit)"""
return _grid.Grid_EnableEditing(*args, **kwargs)
|
[
"def",
"EnableEditing",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"return",
"_grid",
".",
"Grid_EnableEditing",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")"
] |
https://github.com/wxWidgets/wxPython-Classic/blob/19571e1ae65f1ac445f5491474121998c97a1bf0/src/osx_cocoa/grid.py#L1342-L1344
|
|
hughperkins/tf-coriander
|
970d3df6c11400ad68405f22b0c42a52374e94ca
|
tensorflow/python/training/rmsprop.py
|
python
|
RMSPropOptimizer.__init__
|
(self,
learning_rate,
decay=0.9,
momentum=0.0,
epsilon=1e-10,
use_locking=False,
centered=False,
name="RMSProp")
|
Construct a new RMSProp optimizer.
Note that in dense implement of this algorithm, m_t and v_t will
update even if g is zero, but in sparse implement, m_t and v_t
will not update in iterations g is zero.
Args:
learning_rate: A Tensor or a floating point value. The learning rate.
decay: Discounting factor for the history/coming gradient
momentum: A scalar tensor.
epsilon: Small value to avoid zero denominator.
use_locking: If True use locks for update operation.
centered: If True, gradients are normalized by the estimated variance of
the gradient; if False, by the uncentered second moment. Setting this to
True may help with training, but is slightly more expensive in terms of
computation and memory. Defaults to False.
name: Optional name prefix for the operations created when applying
gradients. Defaults to "RMSProp".
|
Construct a new RMSProp optimizer.
|
[
"Construct",
"a",
"new",
"RMSProp",
"optimizer",
"."
] |
def __init__(self,
learning_rate,
decay=0.9,
momentum=0.0,
epsilon=1e-10,
use_locking=False,
centered=False,
name="RMSProp"):
"""Construct a new RMSProp optimizer.
Note that in dense implement of this algorithm, m_t and v_t will
update even if g is zero, but in sparse implement, m_t and v_t
will not update in iterations g is zero.
Args:
learning_rate: A Tensor or a floating point value. The learning rate.
decay: Discounting factor for the history/coming gradient
momentum: A scalar tensor.
epsilon: Small value to avoid zero denominator.
use_locking: If True use locks for update operation.
centered: If True, gradients are normalized by the estimated variance of
the gradient; if False, by the uncentered second moment. Setting this to
True may help with training, but is slightly more expensive in terms of
computation and memory. Defaults to False.
name: Optional name prefix for the operations created when applying
gradients. Defaults to "RMSProp".
"""
super(RMSPropOptimizer, self).__init__(use_locking, name)
self._learning_rate = learning_rate
self._decay = decay
self._momentum = momentum
self._epsilon = epsilon
self._centered = centered
# Tensors for learning rate and momentum. Created in _prepare.
self._learning_rate_tensor = None
self._decay_tensor = None
self._momentum_tensor = None
self._epsilon_tensor = None
|
[
"def",
"__init__",
"(",
"self",
",",
"learning_rate",
",",
"decay",
"=",
"0.9",
",",
"momentum",
"=",
"0.0",
",",
"epsilon",
"=",
"1e-10",
",",
"use_locking",
"=",
"False",
",",
"centered",
"=",
"False",
",",
"name",
"=",
"\"RMSProp\"",
")",
":",
"super",
"(",
"RMSPropOptimizer",
",",
"self",
")",
".",
"__init__",
"(",
"use_locking",
",",
"name",
")",
"self",
".",
"_learning_rate",
"=",
"learning_rate",
"self",
".",
"_decay",
"=",
"decay",
"self",
".",
"_momentum",
"=",
"momentum",
"self",
".",
"_epsilon",
"=",
"epsilon",
"self",
".",
"_centered",
"=",
"centered",
"# Tensors for learning rate and momentum. Created in _prepare.",
"self",
".",
"_learning_rate_tensor",
"=",
"None",
"self",
".",
"_decay_tensor",
"=",
"None",
"self",
".",
"_momentum_tensor",
"=",
"None",
"self",
".",
"_epsilon_tensor",
"=",
"None"
] |
https://github.com/hughperkins/tf-coriander/blob/970d3df6c11400ad68405f22b0c42a52374e94ca/tensorflow/python/training/rmsprop.py#L59-L97
|
||
aws/lumberyard
|
f85344403c1c2e77ec8c75deb2c116e97b713217
|
dev/Gems/CloudGemMetric/v1/AWS/common-code/Lib/pandas/core/frame.py
|
python
|
DataFrame.__len__
|
(self)
|
return len(self.index)
|
Returns length of info axis, but here we use the index.
|
Returns length of info axis, but here we use the index.
|
[
"Returns",
"length",
"of",
"info",
"axis",
"but",
"here",
"we",
"use",
"the",
"index",
"."
] |
def __len__(self) -> int:
"""
Returns length of info axis, but here we use the index.
"""
return len(self.index)
|
[
"def",
"__len__",
"(",
"self",
")",
"->",
"int",
":",
"return",
"len",
"(",
"self",
".",
"index",
")"
] |
https://github.com/aws/lumberyard/blob/f85344403c1c2e77ec8c75deb2c116e97b713217/dev/Gems/CloudGemMetric/v1/AWS/common-code/Lib/pandas/core/frame.py#L1037-L1041
|
|
microsoft/checkedc-clang
|
a173fefde5d7877b7750e7ce96dd08cf18baebf2
|
llvm/utils/lit/lit/util.py
|
python
|
listdir_files
|
(dirname, suffixes=None, exclude_filenames=None)
|
Yields files in a directory.
Filenames that are not excluded by rules below are yielded one at a time, as
basenames (i.e., without dirname).
Files starting with '.' are always skipped.
If 'suffixes' is not None, then only filenames ending with one of its
members will be yielded. These can be extensions, like '.exe', or strings,
like 'Test'. (It is a lexicographic check; so an empty sequence will yield
nothing, but a single empty string will yield all filenames.)
If 'exclude_filenames' is not None, then none of the file basenames in it
will be yielded.
If specified, the containers for 'suffixes' and 'exclude_filenames' must
support membership checking for strs.
Args:
dirname: a directory path.
suffixes: (optional) a sequence of strings (set, list, etc.).
exclude_filenames: (optional) a sequence of strings.
Yields:
Filenames as returned by os.listdir (generally, str).
|
Yields files in a directory.
|
[
"Yields",
"files",
"in",
"a",
"directory",
"."
] |
def listdir_files(dirname, suffixes=None, exclude_filenames=None):
"""Yields files in a directory.
Filenames that are not excluded by rules below are yielded one at a time, as
basenames (i.e., without dirname).
Files starting with '.' are always skipped.
If 'suffixes' is not None, then only filenames ending with one of its
members will be yielded. These can be extensions, like '.exe', or strings,
like 'Test'. (It is a lexicographic check; so an empty sequence will yield
nothing, but a single empty string will yield all filenames.)
If 'exclude_filenames' is not None, then none of the file basenames in it
will be yielded.
If specified, the containers for 'suffixes' and 'exclude_filenames' must
support membership checking for strs.
Args:
dirname: a directory path.
suffixes: (optional) a sequence of strings (set, list, etc.).
exclude_filenames: (optional) a sequence of strings.
Yields:
Filenames as returned by os.listdir (generally, str).
"""
if exclude_filenames is None:
exclude_filenames = set()
if suffixes is None:
suffixes = {''}
for filename in os.listdir(dirname):
if (os.path.isdir(os.path.join(dirname, filename)) or
filename.startswith('.') or
filename in exclude_filenames or
not any(filename.endswith(sfx) for sfx in suffixes)):
continue
yield filename
|
[
"def",
"listdir_files",
"(",
"dirname",
",",
"suffixes",
"=",
"None",
",",
"exclude_filenames",
"=",
"None",
")",
":",
"if",
"exclude_filenames",
"is",
"None",
":",
"exclude_filenames",
"=",
"set",
"(",
")",
"if",
"suffixes",
"is",
"None",
":",
"suffixes",
"=",
"{",
"''",
"}",
"for",
"filename",
"in",
"os",
".",
"listdir",
"(",
"dirname",
")",
":",
"if",
"(",
"os",
".",
"path",
".",
"isdir",
"(",
"os",
".",
"path",
".",
"join",
"(",
"dirname",
",",
"filename",
")",
")",
"or",
"filename",
".",
"startswith",
"(",
"'.'",
")",
"or",
"filename",
"in",
"exclude_filenames",
"or",
"not",
"any",
"(",
"filename",
".",
"endswith",
"(",
"sfx",
")",
"for",
"sfx",
"in",
"suffixes",
")",
")",
":",
"continue",
"yield",
"filename"
] |
https://github.com/microsoft/checkedc-clang/blob/a173fefde5d7877b7750e7ce96dd08cf18baebf2/llvm/utils/lit/lit/util.py#L167-L205
|
||
aws/lumberyard
|
f85344403c1c2e77ec8c75deb2c116e97b713217
|
dev/Tools/Python/3.7.10/windows/Lib/collections/__init__.py
|
python
|
OrderedDict.__setitem__
|
(self, key, value,
dict_setitem=dict.__setitem__, proxy=_proxy, Link=_Link)
|
od.__setitem__(i, y) <==> od[i]=y
|
od.__setitem__(i, y) <==> od[i]=y
|
[
"od",
".",
"__setitem__",
"(",
"i",
"y",
")",
"<",
"==",
">",
"od",
"[",
"i",
"]",
"=",
"y"
] |
def __setitem__(self, key, value,
dict_setitem=dict.__setitem__, proxy=_proxy, Link=_Link):
'od.__setitem__(i, y) <==> od[i]=y'
# Setting a new item creates a new link at the end of the linked list,
# and the inherited dictionary is updated with the new key/value pair.
if key not in self:
self.__map[key] = link = Link()
root = self.__root
last = root.prev
link.prev, link.next, link.key = last, root, key
last.next = link
root.prev = proxy(link)
dict_setitem(self, key, value)
|
[
"def",
"__setitem__",
"(",
"self",
",",
"key",
",",
"value",
",",
"dict_setitem",
"=",
"dict",
".",
"__setitem__",
",",
"proxy",
"=",
"_proxy",
",",
"Link",
"=",
"_Link",
")",
":",
"# Setting a new item creates a new link at the end of the linked list,",
"# and the inherited dictionary is updated with the new key/value pair.",
"if",
"key",
"not",
"in",
"self",
":",
"self",
".",
"__map",
"[",
"key",
"]",
"=",
"link",
"=",
"Link",
"(",
")",
"root",
"=",
"self",
".",
"__root",
"last",
"=",
"root",
".",
"prev",
"link",
".",
"prev",
",",
"link",
".",
"next",
",",
"link",
".",
"key",
"=",
"last",
",",
"root",
",",
"key",
"last",
".",
"next",
"=",
"link",
"root",
".",
"prev",
"=",
"proxy",
"(",
"link",
")",
"dict_setitem",
"(",
"self",
",",
"key",
",",
"value",
")"
] |
https://github.com/aws/lumberyard/blob/f85344403c1c2e77ec8c75deb2c116e97b713217/dev/Tools/Python/3.7.10/windows/Lib/collections/__init__.py#L115-L127
|
||
catboost/catboost
|
167f64f237114a4d10b2b4ee42adb4569137debe
|
contrib/python/prompt-toolkit/py2/prompt_toolkit/terminal/win32_output.py
|
python
|
ColorLookupTable.lookup_bg_color
|
(self, bg_color)
|
Return the color for use in the
`windll.kernel32.SetConsoleTextAttribute` API call.
:param bg_color: Background as text. E.g. 'ffffff' or 'red'
|
Return the color for use in the
`windll.kernel32.SetConsoleTextAttribute` API call.
|
[
"Return",
"the",
"color",
"for",
"use",
"in",
"the",
"windll",
".",
"kernel32",
".",
"SetConsoleTextAttribute",
"API",
"call",
"."
] |
def lookup_bg_color(self, bg_color):
"""
Return the color for use in the
`windll.kernel32.SetConsoleTextAttribute` API call.
:param bg_color: Background as text. E.g. 'ffffff' or 'red'
"""
# Background.
if bg_color in BG_ANSI_COLORS:
return BG_ANSI_COLORS[bg_color]
else:
return self._color_indexes(bg_color)[1]
|
[
"def",
"lookup_bg_color",
"(",
"self",
",",
"bg_color",
")",
":",
"# Background.",
"if",
"bg_color",
"in",
"BG_ANSI_COLORS",
":",
"return",
"BG_ANSI_COLORS",
"[",
"bg_color",
"]",
"else",
":",
"return",
"self",
".",
"_color_indexes",
"(",
"bg_color",
")",
"[",
"1",
"]"
] |
https://github.com/catboost/catboost/blob/167f64f237114a4d10b2b4ee42adb4569137debe/contrib/python/prompt-toolkit/py2/prompt_toolkit/terminal/win32_output.py#L545-L556
|
||
vgteam/vg
|
cf4d516a5e9ee5163c783e4437ddf16b18a4b561
|
scripts/giraffe-facts.py
|
python
|
Table.compute_merges
|
(self, merges=None)
|
return widths
|
Given a list of cell counts to merge horizontally, compute new widths from self.widths.
If merges is None, use self.widths.
|
Given a list of cell counts to merge horizontally, compute new widths from self.widths.
If merges is None, use self.widths.
|
[
"Given",
"a",
"list",
"of",
"cell",
"counts",
"to",
"merge",
"horizontally",
"compute",
"new",
"widths",
"from",
"self",
".",
"widths",
".",
"If",
"merges",
"is",
"None",
"use",
"self",
".",
"widths",
"."
] |
def compute_merges(self, merges=None):
"""
Given a list of cell counts to merge horizontally, compute new widths from self.widths.
If merges is None, use self.widths.
"""
widths = self.widths
if merges is not None:
new_widths = []
width_cursor = 0
for merge in merges:
# Compute a new column by merging the given number of old columns.
merged_width = 0
for i in range(merge):
# Take the widths of all cells
merged_width += widths[width_cursor]
width_cursor += 1
# Take the separating columns between cells
merged_width += merge - 1
new_widths.append(merged_width)
while width_cursor < len(widths):
# Copy any unmerged columns
new_widths.append(widths[i])
widths = new_widths
return widths
|
[
"def",
"compute_merges",
"(",
"self",
",",
"merges",
"=",
"None",
")",
":",
"widths",
"=",
"self",
".",
"widths",
"if",
"merges",
"is",
"not",
"None",
":",
"new_widths",
"=",
"[",
"]",
"width_cursor",
"=",
"0",
"for",
"merge",
"in",
"merges",
":",
"# Compute a new column by merging the given number of old columns.",
"merged_width",
"=",
"0",
"for",
"i",
"in",
"range",
"(",
"merge",
")",
":",
"# Take the widths of all cells",
"merged_width",
"+=",
"widths",
"[",
"width_cursor",
"]",
"width_cursor",
"+=",
"1",
"# Take the separating columns between cells",
"merged_width",
"+=",
"merge",
"-",
"1",
"new_widths",
".",
"append",
"(",
"merged_width",
")",
"while",
"width_cursor",
"<",
"len",
"(",
"widths",
")",
":",
"# Copy any unmerged columns",
"new_widths",
".",
"append",
"(",
"widths",
"[",
"i",
"]",
")",
"widths",
"=",
"new_widths",
"return",
"widths"
] |
https://github.com/vgteam/vg/blob/cf4d516a5e9ee5163c783e4437ddf16b18a4b561/scripts/giraffe-facts.py#L504-L532
|
|
google/flatbuffers
|
b3006913369e0a7550795e477011ac5bebb93497
|
python/flatbuffers/table.py
|
python
|
Table.Indirect
|
(self, off)
|
return off + encode.Get(N.UOffsetTFlags.packer_type, self.Bytes, off)
|
Indirect retrieves the relative offset stored at `offset`.
|
Indirect retrieves the relative offset stored at `offset`.
|
[
"Indirect",
"retrieves",
"the",
"relative",
"offset",
"stored",
"at",
"offset",
"."
] |
def Indirect(self, off):
"""Indirect retrieves the relative offset stored at `offset`."""
N.enforce_number(off, N.UOffsetTFlags)
return off + encode.Get(N.UOffsetTFlags.packer_type, self.Bytes, off)
|
[
"def",
"Indirect",
"(",
"self",
",",
"off",
")",
":",
"N",
".",
"enforce_number",
"(",
"off",
",",
"N",
".",
"UOffsetTFlags",
")",
"return",
"off",
"+",
"encode",
".",
"Get",
"(",
"N",
".",
"UOffsetTFlags",
".",
"packer_type",
",",
"self",
".",
"Bytes",
",",
"off",
")"
] |
https://github.com/google/flatbuffers/blob/b3006913369e0a7550795e477011ac5bebb93497/python/flatbuffers/table.py#L43-L46
|
|
hanpfei/chromium-net
|
392cc1fa3a8f92f42e4071ab6e674d8e0482f83f
|
third_party/protobuf/python/google/protobuf/text_format.py
|
python
|
_Parser.ParseLines
|
(self, lines, message)
|
return message
|
Parses an text representation of a protocol message into a message.
|
Parses an text representation of a protocol message into a message.
|
[
"Parses",
"an",
"text",
"representation",
"of",
"a",
"protocol",
"message",
"into",
"a",
"message",
"."
] |
def ParseLines(self, lines, message):
"""Parses an text representation of a protocol message into a message."""
self._allow_multiple_scalars = False
self._ParseOrMerge(lines, message)
return message
|
[
"def",
"ParseLines",
"(",
"self",
",",
"lines",
",",
"message",
")",
":",
"self",
".",
"_allow_multiple_scalars",
"=",
"False",
"self",
".",
"_ParseOrMerge",
"(",
"lines",
",",
"message",
")",
"return",
"message"
] |
https://github.com/hanpfei/chromium-net/blob/392cc1fa3a8f92f42e4071ab6e674d8e0482f83f/third_party/protobuf/python/google/protobuf/text_format.py#L427-L431
|
|
ricardoquesada/Spidermonkey
|
4a75ea2543408bd1b2c515aa95901523eeef7858
|
dom/bindings/parser/WebIDL.py
|
python
|
Parser.p_Inheritance
|
(self, p)
|
Inheritance : COLON ScopedName
|
Inheritance : COLON ScopedName
|
[
"Inheritance",
":",
"COLON",
"ScopedName"
] |
def p_Inheritance(self, p):
"""
Inheritance : COLON ScopedName
"""
p[0] = IDLIdentifierPlaceholder(self.getLocation(p, 2), p[2])
|
[
"def",
"p_Inheritance",
"(",
"self",
",",
"p",
")",
":",
"p",
"[",
"0",
"]",
"=",
"IDLIdentifierPlaceholder",
"(",
"self",
".",
"getLocation",
"(",
"p",
",",
"2",
")",
",",
"p",
"[",
"2",
"]",
")"
] |
https://github.com/ricardoquesada/Spidermonkey/blob/4a75ea2543408bd1b2c515aa95901523eeef7858/dom/bindings/parser/WebIDL.py#L4372-L4376
|
||
gnuradio/gnuradio
|
09c3c4fa4bfb1a02caac74cb5334dfe065391e3b
|
docs/doxygen/other/doxypy.py
|
python
|
Doxypy.makeCommentBlock
|
(self)
|
return l
|
Indents the current comment block with respect to the current
indentation level.
@returns a list of indented comment lines
|
Indents the current comment block with respect to the current
indentation level.
|
[
"Indents",
"the",
"current",
"comment",
"block",
"with",
"respect",
"to",
"the",
"current",
"indentation",
"level",
"."
] |
def makeCommentBlock(self):
"""Indents the current comment block with respect to the current
indentation level.
@returns a list of indented comment lines
"""
doxyStart = "##"
commentLines = self.comment
commentLines = ["%s# %s" % (self.indent, x) for x in commentLines]
l = [self.indent + doxyStart]
l.extend(commentLines)
return l
|
[
"def",
"makeCommentBlock",
"(",
"self",
")",
":",
"doxyStart",
"=",
"\"##\"",
"commentLines",
"=",
"self",
".",
"comment",
"commentLines",
"=",
"[",
"\"%s# %s\"",
"%",
"(",
"self",
".",
"indent",
",",
"x",
")",
"for",
"x",
"in",
"commentLines",
"]",
"l",
"=",
"[",
"self",
".",
"indent",
"+",
"doxyStart",
"]",
"l",
".",
"extend",
"(",
"commentLines",
")",
"return",
"l"
] |
https://github.com/gnuradio/gnuradio/blob/09c3c4fa4bfb1a02caac74cb5334dfe065391e3b/docs/doxygen/other/doxypy.py#L359-L372
|
|
miyosuda/TensorFlowAndroidDemo
|
35903e0221aa5f109ea2dbef27f20b52e317f42d
|
jni-build/jni/include/tensorflow/models/embedding/word2vec_optimized.py
|
python
|
Word2Vec.train
|
(self)
|
Train the model.
|
Train the model.
|
[
"Train",
"the",
"model",
"."
] |
def train(self):
"""Train the model."""
opts = self._options
initial_epoch, initial_words = self._session.run([self._epoch, self._words])
workers = []
for _ in xrange(opts.concurrent_steps):
t = threading.Thread(target=self._train_thread_body)
t.start()
workers.append(t)
last_words, last_time = initial_words, time.time()
while True:
time.sleep(5) # Reports our progress once a while.
(epoch, step, words,
lr) = self._session.run([self._epoch, self.step, self._words, self._lr])
now = time.time()
last_words, last_time, rate = words, now, (words - last_words) / (
now - last_time)
print("Epoch %4d Step %8d: lr = %5.3f words/sec = %8.0f\r" % (epoch, step,
lr, rate),
end="")
sys.stdout.flush()
if epoch != initial_epoch:
break
for t in workers:
t.join()
|
[
"def",
"train",
"(",
"self",
")",
":",
"opts",
"=",
"self",
".",
"_options",
"initial_epoch",
",",
"initial_words",
"=",
"self",
".",
"_session",
".",
"run",
"(",
"[",
"self",
".",
"_epoch",
",",
"self",
".",
"_words",
"]",
")",
"workers",
"=",
"[",
"]",
"for",
"_",
"in",
"xrange",
"(",
"opts",
".",
"concurrent_steps",
")",
":",
"t",
"=",
"threading",
".",
"Thread",
"(",
"target",
"=",
"self",
".",
"_train_thread_body",
")",
"t",
".",
"start",
"(",
")",
"workers",
".",
"append",
"(",
"t",
")",
"last_words",
",",
"last_time",
"=",
"initial_words",
",",
"time",
".",
"time",
"(",
")",
"while",
"True",
":",
"time",
".",
"sleep",
"(",
"5",
")",
"# Reports our progress once a while.",
"(",
"epoch",
",",
"step",
",",
"words",
",",
"lr",
")",
"=",
"self",
".",
"_session",
".",
"run",
"(",
"[",
"self",
".",
"_epoch",
",",
"self",
".",
"step",
",",
"self",
".",
"_words",
",",
"self",
".",
"_lr",
"]",
")",
"now",
"=",
"time",
".",
"time",
"(",
")",
"last_words",
",",
"last_time",
",",
"rate",
"=",
"words",
",",
"now",
",",
"(",
"words",
"-",
"last_words",
")",
"/",
"(",
"now",
"-",
"last_time",
")",
"print",
"(",
"\"Epoch %4d Step %8d: lr = %5.3f words/sec = %8.0f\\r\"",
"%",
"(",
"epoch",
",",
"step",
",",
"lr",
",",
"rate",
")",
",",
"end",
"=",
"\"\"",
")",
"sys",
".",
"stdout",
".",
"flush",
"(",
")",
"if",
"epoch",
"!=",
"initial_epoch",
":",
"break",
"for",
"t",
"in",
"workers",
":",
"t",
".",
"join",
"(",
")"
] |
https://github.com/miyosuda/TensorFlowAndroidDemo/blob/35903e0221aa5f109ea2dbef27f20b52e317f42d/jni-build/jni/include/tensorflow/models/embedding/word2vec_optimized.py#L310-L338
|
||
windystrife/UnrealEngine_NVIDIAGameWorks
|
b50e6338a7c5b26374d66306ebc7807541ff815e
|
Engine/Extras/ThirdPartyNotUE/emsdk/Win64/python/2.7.5.3_64bit/Lib/idlelib/configHandler.py
|
python
|
IdleUserConfParser.RemoveFile
|
(self)
|
Removes the user config file from disk if it exists.
|
Removes the user config file from disk if it exists.
|
[
"Removes",
"the",
"user",
"config",
"file",
"from",
"disk",
"if",
"it",
"exists",
"."
] |
def RemoveFile(self):
"""
Removes the user config file from disk if it exists.
"""
if os.path.exists(self.file):
os.remove(self.file)
|
[
"def",
"RemoveFile",
"(",
"self",
")",
":",
"if",
"os",
".",
"path",
".",
"exists",
"(",
"self",
".",
"file",
")",
":",
"os",
".",
"remove",
"(",
"self",
".",
"file",
")"
] |
https://github.com/windystrife/UnrealEngine_NVIDIAGameWorks/blob/b50e6338a7c5b26374d66306ebc7807541ff815e/Engine/Extras/ThirdPartyNotUE/emsdk/Win64/python/2.7.5.3_64bit/Lib/idlelib/configHandler.py#L127-L132
|
||
SequoiaDB/SequoiaDB
|
2894ed7e5bd6fe57330afc900cf76d0ff0df9f64
|
tools/server/php_linux/libxml2/lib/python2.4/site-packages/libxml2.py
|
python
|
xmlNs.xpathNodeSetFreeNs
|
(self)
|
Namespace nodes in libxml don't match the XPath semantic.
In a node set the namespace nodes are duplicated and the
next pointer is set to the parent node in the XPath
semantic. Check if such a node needs to be freed
|
Namespace nodes in libxml don't match the XPath semantic.
In a node set the namespace nodes are duplicated and the
next pointer is set to the parent node in the XPath
semantic. Check if such a node needs to be freed
|
[
"Namespace",
"nodes",
"in",
"libxml",
"don",
"t",
"match",
"the",
"XPath",
"semantic",
".",
"In",
"a",
"node",
"set",
"the",
"namespace",
"nodes",
"are",
"duplicated",
"and",
"the",
"next",
"pointer",
"is",
"set",
"to",
"the",
"parent",
"node",
"in",
"the",
"XPath",
"semantic",
".",
"Check",
"if",
"such",
"a",
"node",
"needs",
"to",
"be",
"freed"
] |
def xpathNodeSetFreeNs(self):
"""Namespace nodes in libxml don't match the XPath semantic.
In a node set the namespace nodes are duplicated and the
next pointer is set to the parent node in the XPath
semantic. Check if such a node needs to be freed """
libxml2mod.xmlXPathNodeSetFreeNs(self._o)
|
[
"def",
"xpathNodeSetFreeNs",
"(",
"self",
")",
":",
"libxml2mod",
".",
"xmlXPathNodeSetFreeNs",
"(",
"self",
".",
"_o",
")"
] |
https://github.com/SequoiaDB/SequoiaDB/blob/2894ed7e5bd6fe57330afc900cf76d0ff0df9f64/tools/server/php_linux/libxml2/lib/python2.4/site-packages/libxml2.py#L5969-L5974
|
||
rsummers11/CADLab
|
976ed959a0b5208bb4173127a7ef732ac73a9b6f
|
lesion_detector_3DCE/rcnn/pycocotools/coco.py
|
python
|
COCO.loadCats
|
(self, ids=[])
|
Load cats with the specified ids.
:param ids (int array) : integer ids specifying cats
:return: cats (object array) : loaded cat objects
|
Load cats with the specified ids.
:param ids (int array) : integer ids specifying cats
:return: cats (object array) : loaded cat objects
|
[
"Load",
"cats",
"with",
"the",
"specified",
"ids",
".",
":",
"param",
"ids",
"(",
"int",
"array",
")",
":",
"integer",
"ids",
"specifying",
"cats",
":",
"return",
":",
"cats",
"(",
"object",
"array",
")",
":",
"loaded",
"cat",
"objects"
] |
def loadCats(self, ids=[]):
"""
Load cats with the specified ids.
:param ids (int array) : integer ids specifying cats
:return: cats (object array) : loaded cat objects
"""
if type(ids) == list:
return [self.cats[id] for id in ids]
elif type(ids) == int:
return [self.cats[ids]]
|
[
"def",
"loadCats",
"(",
"self",
",",
"ids",
"=",
"[",
"]",
")",
":",
"if",
"type",
"(",
"ids",
")",
"==",
"list",
":",
"return",
"[",
"self",
".",
"cats",
"[",
"id",
"]",
"for",
"id",
"in",
"ids",
"]",
"elif",
"type",
"(",
"ids",
")",
"==",
"int",
":",
"return",
"[",
"self",
".",
"cats",
"[",
"ids",
"]",
"]"
] |
https://github.com/rsummers11/CADLab/blob/976ed959a0b5208bb4173127a7ef732ac73a9b6f/lesion_detector_3DCE/rcnn/pycocotools/coco.py#L206-L215
|
||
facebook/openr
|
ed38bdfd6bf290084bfab4821b59f83e7b59315d
|
build/fbcode_builder/getdeps/subcmd.py
|
python
|
cmd
|
(name, help=None, cmd_table=CmdTable)
|
return wrapper
|
@cmd() is a decorator that can be used to help define Subcmd instances
Example usage:
@subcmd('list', 'Show the result list')
class ListCmd(Subcmd):
def run(self, args):
# Perform the command actions here...
pass
|
@cmd() is a decorator that can be used to help define Subcmd instances
|
[
"@cmd",
"()",
"is",
"a",
"decorator",
"that",
"can",
"be",
"used",
"to",
"help",
"define",
"Subcmd",
"instances"
] |
def cmd(name, help=None, cmd_table=CmdTable):
"""
@cmd() is a decorator that can be used to help define Subcmd instances
Example usage:
@subcmd('list', 'Show the result list')
class ListCmd(Subcmd):
def run(self, args):
# Perform the command actions here...
pass
"""
def wrapper(cls):
class SubclassedCmd(cls):
NAME = name
HELP = help
cmd_table.append(SubclassedCmd)
return SubclassedCmd
return wrapper
|
[
"def",
"cmd",
"(",
"name",
",",
"help",
"=",
"None",
",",
"cmd_table",
"=",
"CmdTable",
")",
":",
"def",
"wrapper",
"(",
"cls",
")",
":",
"class",
"SubclassedCmd",
"(",
"cls",
")",
":",
"NAME",
"=",
"name",
"HELP",
"=",
"help",
"cmd_table",
".",
"append",
"(",
"SubclassedCmd",
")",
"return",
"SubclassedCmd",
"return",
"wrapper"
] |
https://github.com/facebook/openr/blob/ed38bdfd6bf290084bfab4821b59f83e7b59315d/build/fbcode_builder/getdeps/subcmd.py#L35-L56
|
|
kamyu104/LeetCode-Solutions
|
77605708a927ea3b85aee5a479db733938c7c211
|
Python/walking-robot-simulation-ii.py
|
python
|
Robot2.getPos
|
(self)
|
return self.__getPosDir()[0]
|
:rtype: List[int]
|
:rtype: List[int]
|
[
":",
"rtype",
":",
"List",
"[",
"int",
"]"
] |
def getPos(self):
"""
:rtype: List[int]
"""
return self.__getPosDir()[0]
|
[
"def",
"getPos",
"(",
"self",
")",
":",
"return",
"self",
".",
"__getPosDir",
"(",
")",
"[",
"0",
"]"
] |
https://github.com/kamyu104/LeetCode-Solutions/blob/77605708a927ea3b85aee5a479db733938c7c211/Python/walking-robot-simulation-ii.py#L75-L79
|
|
catboost/catboost
|
167f64f237114a4d10b2b4ee42adb4569137debe
|
contrib/python/prompt-toolkit/py3/prompt_toolkit/shortcuts/progress_bar/formatters.py
|
python
|
_hue_to_rgb
|
(hue: float)
|
return [
(255, t, 0),
(q, 255, 0),
(0, 255, t),
(0, q, 255),
(t, 0, 255),
(255, 0, q),
][i]
|
Take hue between 0 and 1, return (r, g, b).
|
Take hue between 0 and 1, return (r, g, b).
|
[
"Take",
"hue",
"between",
"0",
"and",
"1",
"return",
"(",
"r",
"g",
"b",
")",
"."
] |
def _hue_to_rgb(hue: float) -> Tuple[int, int, int]:
"""
Take hue between 0 and 1, return (r, g, b).
"""
i = int(hue * 6.0)
f = (hue * 6.0) - i
q = int(255 * (1.0 - f))
t = int(255 * (1.0 - (1.0 - f)))
i %= 6
return [
(255, t, 0),
(q, 255, 0),
(0, 255, t),
(0, q, 255),
(t, 0, 255),
(255, 0, q),
][i]
|
[
"def",
"_hue_to_rgb",
"(",
"hue",
":",
"float",
")",
"->",
"Tuple",
"[",
"int",
",",
"int",
",",
"int",
"]",
":",
"i",
"=",
"int",
"(",
"hue",
"*",
"6.0",
")",
"f",
"=",
"(",
"hue",
"*",
"6.0",
")",
"-",
"i",
"q",
"=",
"int",
"(",
"255",
"*",
"(",
"1.0",
"-",
"f",
")",
")",
"t",
"=",
"int",
"(",
"255",
"*",
"(",
"1.0",
"-",
"(",
"1.0",
"-",
"f",
")",
")",
")",
"i",
"%=",
"6",
"return",
"[",
"(",
"255",
",",
"t",
",",
"0",
")",
",",
"(",
"q",
",",
"255",
",",
"0",
")",
",",
"(",
"0",
",",
"255",
",",
"t",
")",
",",
"(",
"0",
",",
"q",
",",
"255",
")",
",",
"(",
"t",
",",
"0",
",",
"255",
")",
",",
"(",
"255",
",",
"0",
",",
"q",
")",
",",
"]",
"[",
"i",
"]"
] |
https://github.com/catboost/catboost/blob/167f64f237114a4d10b2b4ee42adb4569137debe/contrib/python/prompt-toolkit/py3/prompt_toolkit/shortcuts/progress_bar/formatters.py#L361-L380
|
|
catboost/catboost
|
167f64f237114a4d10b2b4ee42adb4569137debe
|
contrib/python/setuptools/py3/setuptools/_vendor/more_itertools/recipes.py
|
python
|
random_permutation
|
(iterable, r=None)
|
return tuple(sample(pool, r))
|
Return a random *r* length permutation of the elements in *iterable*.
If *r* is not specified or is ``None``, then *r* defaults to the length of
*iterable*.
>>> random_permutation(range(5)) # doctest:+SKIP
(3, 4, 0, 1, 2)
This equivalent to taking a random selection from
``itertools.permutations(iterable, r)``.
|
Return a random *r* length permutation of the elements in *iterable*.
|
[
"Return",
"a",
"random",
"*",
"r",
"*",
"length",
"permutation",
"of",
"the",
"elements",
"in",
"*",
"iterable",
"*",
"."
] |
def random_permutation(iterable, r=None):
"""Return a random *r* length permutation of the elements in *iterable*.
If *r* is not specified or is ``None``, then *r* defaults to the length of
*iterable*.
>>> random_permutation(range(5)) # doctest:+SKIP
(3, 4, 0, 1, 2)
This equivalent to taking a random selection from
``itertools.permutations(iterable, r)``.
"""
pool = tuple(iterable)
r = len(pool) if r is None else r
return tuple(sample(pool, r))
|
[
"def",
"random_permutation",
"(",
"iterable",
",",
"r",
"=",
"None",
")",
":",
"pool",
"=",
"tuple",
"(",
"iterable",
")",
"r",
"=",
"len",
"(",
"pool",
")",
"if",
"r",
"is",
"None",
"else",
"r",
"return",
"tuple",
"(",
"sample",
"(",
"pool",
",",
"r",
")",
")"
] |
https://github.com/catboost/catboost/blob/167f64f237114a4d10b2b4ee42adb4569137debe/contrib/python/setuptools/py3/setuptools/_vendor/more_itertools/recipes.py#L495-L510
|
|
llvm-mirror/lldb
|
d01083a850f577b85501a0902b52fd0930de72c7
|
utils/vim-lldb/python-vim-lldb/vim_panes.py
|
python
|
VimPane.get_highlights
|
(self)
|
return {}
|
Subclasses implement this to provide pane highlights.
This function is expected to return a map of:
{ highlight_name ==> [line_number, ...], ... }
|
Subclasses implement this to provide pane highlights.
This function is expected to return a map of:
{ highlight_name ==> [line_number, ...], ... }
|
[
"Subclasses",
"implement",
"this",
"to",
"provide",
"pane",
"highlights",
".",
"This",
"function",
"is",
"expected",
"to",
"return",
"a",
"map",
"of",
":",
"{",
"highlight_name",
"==",
">",
"[",
"line_number",
"...",
"]",
"...",
"}"
] |
def get_highlights(self):
""" Subclasses implement this to provide pane highlights.
This function is expected to return a map of:
{ highlight_name ==> [line_number, ...], ... }
"""
return {}
|
[
"def",
"get_highlights",
"(",
"self",
")",
":",
"return",
"{",
"}"
] |
https://github.com/llvm-mirror/lldb/blob/d01083a850f577b85501a0902b52fd0930de72c7/utils/vim-lldb/python-vim-lldb/vim_panes.py#L393-L398
|
|
intel/llvm
|
e6d0547e9d99b5a56430c4749f6c7e328bf221ab
|
lldb/utils/lui/lldbutil.py
|
python
|
get_parent_frame
|
(frame)
|
return None
|
Returns the parent frame of the input frame object; None if not available.
|
Returns the parent frame of the input frame object; None if not available.
|
[
"Returns",
"the",
"parent",
"frame",
"of",
"the",
"input",
"frame",
"object",
";",
"None",
"if",
"not",
"available",
"."
] |
def get_parent_frame(frame):
"""
Returns the parent frame of the input frame object; None if not available.
"""
thread = frame.GetThread()
parent_found = False
for f in thread:
if parent_found:
return f
if f.GetFrameID() == frame.GetFrameID():
parent_found = True
# If we reach here, no parent has been found, return None.
return None
|
[
"def",
"get_parent_frame",
"(",
"frame",
")",
":",
"thread",
"=",
"frame",
".",
"GetThread",
"(",
")",
"parent_found",
"=",
"False",
"for",
"f",
"in",
"thread",
":",
"if",
"parent_found",
":",
"return",
"f",
"if",
"f",
".",
"GetFrameID",
"(",
")",
"==",
"frame",
".",
"GetFrameID",
"(",
")",
":",
"parent_found",
"=",
"True",
"# If we reach here, no parent has been found, return None.",
"return",
"None"
] |
https://github.com/intel/llvm/blob/e6d0547e9d99b5a56430c4749f6c7e328bf221ab/lldb/utils/lui/lldbutil.py#L837-L850
|
|
wxWidgets/wxPython-Classic
|
19571e1ae65f1ac445f5491474121998c97a1bf0
|
src/msw/_controls.py
|
python
|
Notebook.SendPageChangedEvent
|
(*args, **kwargs)
|
return _controls_.Notebook_SendPageChangedEvent(*args, **kwargs)
|
SendPageChangedEvent(self, int nPageOld, int nPageNew=-1)
|
SendPageChangedEvent(self, int nPageOld, int nPageNew=-1)
|
[
"SendPageChangedEvent",
"(",
"self",
"int",
"nPageOld",
"int",
"nPageNew",
"=",
"-",
"1",
")"
] |
def SendPageChangedEvent(*args, **kwargs):
"""SendPageChangedEvent(self, int nPageOld, int nPageNew=-1)"""
return _controls_.Notebook_SendPageChangedEvent(*args, **kwargs)
|
[
"def",
"SendPageChangedEvent",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"return",
"_controls_",
".",
"Notebook_SendPageChangedEvent",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")"
] |
https://github.com/wxWidgets/wxPython-Classic/blob/19571e1ae65f1ac445f5491474121998c97a1bf0/src/msw/_controls.py#L3138-L3140
|
|
mapnik/mapnik
|
f3da900c355e1d15059c4a91b00203dcc9d9f0ef
|
scons/scons-local-4.1.0/SCons/Node/FS.py
|
python
|
File.Dir
|
(self, name, create=True)
|
return self.dir.Dir(name, create=create)
|
Create a directory node named 'name' relative to
the directory of this file.
|
Create a directory node named 'name' relative to
the directory of this file.
|
[
"Create",
"a",
"directory",
"node",
"named",
"name",
"relative",
"to",
"the",
"directory",
"of",
"this",
"file",
"."
] |
def Dir(self, name, create=True):
"""Create a directory node named 'name' relative to
the directory of this file."""
return self.dir.Dir(name, create=create)
|
[
"def",
"Dir",
"(",
"self",
",",
"name",
",",
"create",
"=",
"True",
")",
":",
"return",
"self",
".",
"dir",
".",
"Dir",
"(",
"name",
",",
"create",
"=",
"create",
")"
] |
https://github.com/mapnik/mapnik/blob/f3da900c355e1d15059c4a91b00203dcc9d9f0ef/scons/scons-local-4.1.0/SCons/Node/FS.py#L2649-L2652
|
|
wxWidgets/wxPython-Classic
|
19571e1ae65f1ac445f5491474121998c97a1bf0
|
src/msw/_controls.py
|
python
|
PreStaticText
|
(*args, **kwargs)
|
return val
|
PreStaticText() -> StaticText
|
PreStaticText() -> StaticText
|
[
"PreStaticText",
"()",
"-",
">",
"StaticText"
] |
def PreStaticText(*args, **kwargs):
"""PreStaticText() -> StaticText"""
val = _controls_.new_PreStaticText(*args, **kwargs)
return val
|
[
"def",
"PreStaticText",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"val",
"=",
"_controls_",
".",
"new_PreStaticText",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
"return",
"val"
] |
https://github.com/wxWidgets/wxPython-Classic/blob/19571e1ae65f1ac445f5491474121998c97a1bf0/src/msw/_controls.py#L1043-L1046
|
|
Xilinx/Vitis-AI
|
fc74d404563d9951b57245443c73bef389f3657f
|
tools/Vitis-AI-Quantizer/vai_q_tensorflow1.x/tensorflow/python/ops/math_ops.py
|
python
|
reduce_std
|
(input_tensor, axis=None, keepdims=False, name=None)
|
Computes the standard deviation of elements across dimensions of a tensor.
Reduces `input_tensor` along the dimensions given in `axis`.
Unless `keepdims` is true, the rank of the tensor is reduced by 1 for each
entry in `axis`. If `keepdims` is true, the reduced dimensions
are retained with length 1.
If `axis` is None, all dimensions are reduced, and a
tensor with a single element is returned.
For example:
```python
x = tf.constant([[1., 2.], [3., 4.]])
tf.reduce_std(x) # 1.1180339887498949
tf.reduce_std(x, 0) # [1., 1.]
tf.reduce_std(x, 1) # [0.5, 0.5]
```
Args:
input_tensor: The tensor to reduce. Should have numeric type.
axis: The dimensions to reduce. If `None` (the default), reduces all
dimensions. Must be in the range `[-rank(input_tensor),
rank(input_tensor))`.
keepdims: If true, retains reduced dimensions with length 1.
name: A name scope for the associated operations (optional).
Returns:
The reduced tensor, of the same dtype as the input_tensor.
@compatibility(numpy)
Equivalent to np.std
Please note that `np.std` has a `dtype` parameter that could be used to
specify the output type. By default this is `dtype=float64`. On the other
hand, `tf.reduce_std` has an aggressive type inference from `input_tensor`,
@end_compatibility
|
Computes the standard deviation of elements across dimensions of a tensor.
|
[
"Computes",
"the",
"standard",
"deviation",
"of",
"elements",
"across",
"dimensions",
"of",
"a",
"tensor",
"."
] |
def reduce_std(input_tensor, axis=None, keepdims=False, name=None):
"""Computes the standard deviation of elements across dimensions of a tensor.
Reduces `input_tensor` along the dimensions given in `axis`.
Unless `keepdims` is true, the rank of the tensor is reduced by 1 for each
entry in `axis`. If `keepdims` is true, the reduced dimensions
are retained with length 1.
If `axis` is None, all dimensions are reduced, and a
tensor with a single element is returned.
For example:
```python
x = tf.constant([[1., 2.], [3., 4.]])
tf.reduce_std(x) # 1.1180339887498949
tf.reduce_std(x, 0) # [1., 1.]
tf.reduce_std(x, 1) # [0.5, 0.5]
```
Args:
input_tensor: The tensor to reduce. Should have numeric type.
axis: The dimensions to reduce. If `None` (the default), reduces all
dimensions. Must be in the range `[-rank(input_tensor),
rank(input_tensor))`.
keepdims: If true, retains reduced dimensions with length 1.
name: A name scope for the associated operations (optional).
Returns:
The reduced tensor, of the same dtype as the input_tensor.
@compatibility(numpy)
Equivalent to np.std
Please note that `np.std` has a `dtype` parameter that could be used to
specify the output type. By default this is `dtype=float64`. On the other
hand, `tf.reduce_std` has an aggressive type inference from `input_tensor`,
@end_compatibility
"""
name = name if name else "reduce_std"
with ops.name_scope(name):
variance = reduce_variance(input_tensor, axis=axis, keepdims=keepdims)
return gen_math_ops.sqrt(variance)
|
[
"def",
"reduce_std",
"(",
"input_tensor",
",",
"axis",
"=",
"None",
",",
"keepdims",
"=",
"False",
",",
"name",
"=",
"None",
")",
":",
"name",
"=",
"name",
"if",
"name",
"else",
"\"reduce_std\"",
"with",
"ops",
".",
"name_scope",
"(",
"name",
")",
":",
"variance",
"=",
"reduce_variance",
"(",
"input_tensor",
",",
"axis",
"=",
"axis",
",",
"keepdims",
"=",
"keepdims",
")",
"return",
"gen_math_ops",
".",
"sqrt",
"(",
"variance",
")"
] |
https://github.com/Xilinx/Vitis-AI/blob/fc74d404563d9951b57245443c73bef389f3657f/tools/Vitis-AI-Quantizer/vai_q_tensorflow1.x/tensorflow/python/ops/math_ops.py#L1922-L1964
|
||
catboost/catboost
|
167f64f237114a4d10b2b4ee42adb4569137debe
|
contrib/python/numpy/py3/numpy/ma/core.py
|
python
|
_check_fill_value
|
(fill_value, ndtype)
|
return np.array(fill_value)
|
Private function validating the given `fill_value` for the given dtype.
If fill_value is None, it is set to the default corresponding to the dtype.
If fill_value is not None, its value is forced to the given dtype.
The result is always a 0d array.
|
Private function validating the given `fill_value` for the given dtype.
|
[
"Private",
"function",
"validating",
"the",
"given",
"fill_value",
"for",
"the",
"given",
"dtype",
"."
] |
def _check_fill_value(fill_value, ndtype):
"""
Private function validating the given `fill_value` for the given dtype.
If fill_value is None, it is set to the default corresponding to the dtype.
If fill_value is not None, its value is forced to the given dtype.
The result is always a 0d array.
"""
ndtype = np.dtype(ndtype)
if fill_value is None:
fill_value = default_fill_value(ndtype)
elif ndtype.names is not None:
if isinstance(fill_value, (ndarray, np.void)):
try:
fill_value = np.array(fill_value, copy=False, dtype=ndtype)
except ValueError as e:
err_msg = "Unable to transform %s to dtype %s"
raise ValueError(err_msg % (fill_value, ndtype)) from e
else:
fill_value = np.asarray(fill_value, dtype=object)
fill_value = np.array(_recursive_set_fill_value(fill_value, ndtype),
dtype=ndtype)
else:
if isinstance(fill_value, str) and (ndtype.char not in 'OSVU'):
# Note this check doesn't work if fill_value is not a scalar
err_msg = "Cannot set fill value of string with array of dtype %s"
raise TypeError(err_msg % ndtype)
else:
# In case we want to convert 1e20 to int.
# Also in case of converting string arrays.
try:
fill_value = np.array(fill_value, copy=False, dtype=ndtype)
except (OverflowError, ValueError) as e:
# Raise TypeError instead of OverflowError or ValueError.
# OverflowError is seldom used, and the real problem here is
# that the passed fill_value is not compatible with the ndtype.
err_msg = "Cannot convert fill_value %s to dtype %s"
raise TypeError(err_msg % (fill_value, ndtype)) from e
return np.array(fill_value)
|
[
"def",
"_check_fill_value",
"(",
"fill_value",
",",
"ndtype",
")",
":",
"ndtype",
"=",
"np",
".",
"dtype",
"(",
"ndtype",
")",
"if",
"fill_value",
"is",
"None",
":",
"fill_value",
"=",
"default_fill_value",
"(",
"ndtype",
")",
"elif",
"ndtype",
".",
"names",
"is",
"not",
"None",
":",
"if",
"isinstance",
"(",
"fill_value",
",",
"(",
"ndarray",
",",
"np",
".",
"void",
")",
")",
":",
"try",
":",
"fill_value",
"=",
"np",
".",
"array",
"(",
"fill_value",
",",
"copy",
"=",
"False",
",",
"dtype",
"=",
"ndtype",
")",
"except",
"ValueError",
"as",
"e",
":",
"err_msg",
"=",
"\"Unable to transform %s to dtype %s\"",
"raise",
"ValueError",
"(",
"err_msg",
"%",
"(",
"fill_value",
",",
"ndtype",
")",
")",
"from",
"e",
"else",
":",
"fill_value",
"=",
"np",
".",
"asarray",
"(",
"fill_value",
",",
"dtype",
"=",
"object",
")",
"fill_value",
"=",
"np",
".",
"array",
"(",
"_recursive_set_fill_value",
"(",
"fill_value",
",",
"ndtype",
")",
",",
"dtype",
"=",
"ndtype",
")",
"else",
":",
"if",
"isinstance",
"(",
"fill_value",
",",
"str",
")",
"and",
"(",
"ndtype",
".",
"char",
"not",
"in",
"'OSVU'",
")",
":",
"# Note this check doesn't work if fill_value is not a scalar",
"err_msg",
"=",
"\"Cannot set fill value of string with array of dtype %s\"",
"raise",
"TypeError",
"(",
"err_msg",
"%",
"ndtype",
")",
"else",
":",
"# In case we want to convert 1e20 to int.",
"# Also in case of converting string arrays.",
"try",
":",
"fill_value",
"=",
"np",
".",
"array",
"(",
"fill_value",
",",
"copy",
"=",
"False",
",",
"dtype",
"=",
"ndtype",
")",
"except",
"(",
"OverflowError",
",",
"ValueError",
")",
"as",
"e",
":",
"# Raise TypeError instead of OverflowError or ValueError.",
"# OverflowError is seldom used, and the real problem here is",
"# that the passed fill_value is not compatible with the ndtype.",
"err_msg",
"=",
"\"Cannot convert fill_value %s to dtype %s\"",
"raise",
"TypeError",
"(",
"err_msg",
"%",
"(",
"fill_value",
",",
"ndtype",
")",
")",
"from",
"e",
"return",
"np",
".",
"array",
"(",
"fill_value",
")"
] |
https://github.com/catboost/catboost/blob/167f64f237114a4d10b2b4ee42adb4569137debe/contrib/python/numpy/py3/numpy/ma/core.py#L428-L469
|
|
OpenVR-Advanced-Settings/OpenVR-AdvancedSettings
|
522ba46ac6bcff8e82907715f7f0af7abbbe1e7b
|
build_scripts/win/build.py
|
python
|
build
|
()
|
Runs:
'vcvarsall.bat', a Visual Studio file to set up the environment for QMAKE.
QMAKE, creates the makefiles.
jom/nmake, builds the makefiles.
|
Runs:
'vcvarsall.bat', a Visual Studio file to set up the environment for QMAKE.
QMAKE, creates the makefiles.
jom/nmake, builds the makefiles.
|
[
"Runs",
":",
"vcvarsall",
".",
"bat",
"a",
"Visual",
"Studio",
"file",
"to",
"set",
"up",
"the",
"environment",
"for",
"QMAKE",
".",
"QMAKE",
"creates",
"the",
"makefiles",
".",
"jom",
"/",
"nmake",
"builds",
"the",
"makefiles",
"."
] |
def build():
"""
Runs:
'vcvarsall.bat', a Visual Studio file to set up the environment for QMAKE.
QMAKE, creates the makefiles.
jom/nmake, builds the makefiles.
"""
set_current_activity("BUILD")
set_dirs()
COMPILE_MODE = ""
COMPILER = ""
say("Attempting to build version: " + VERSION_STRING)
say("Testing if all required build environment variables are set:")
QT_LOC = find_qt_path()
VS_LOC = get_required_env_var_path(VS_LOC_VAR_NAME, VS_LOC_DEFAULT)
if is_env_var_set(BUILD_CLANG_VAR_NAME):
say(f"{BUILD_CLANG_VAR_NAME} defined. Building for win32-clang-msvc.")
get_required_env_var_path(LLVM_LOC_VAR_NAME, LLVM_LOC_DEFAULT)
COMPILER = "win32-clang-msvc"
else:
say(f"{BUILD_CLANG_VAR_NAME} not defined. Building for msvc.")
COMPILER = "win32-msvc"
say("All required build environment values are set.")
#Otherwise qmake gets confused
add_line_to_run_bat_file("cd " + get_project_dir())
say("Adding 'vcvarsall.bat' to batch file.")
add_line_to_run_bat_file("@ECHO Setting up environment with Visual Studio 'vcvarsall.bat':")
add_line_to_run_bat_file("call " + '"' + VS_LOC + '"' + " " + PLATFORM_TARGET)
add_error_handling_line_to_bat_file()
add_line_to_run_bat_file("@ECHO Environment set up.")
say("'vcvarsall.bat' added to batch file.")
QMAKE_LOC = QT_LOC + r"\qmake.exe"
if is_env_var_set(BUILD_VSPROJ_VAR_NAME):
say(f"{BUILD_VSPROJ_VAR_NAME} defined. Building Visual Studio project files.")
add_line_to_run_bat_file("@ECHO Running Visual Studio project file building:")
add_line_to_run_bat_file('"' + QMAKE_LOC + '"' + " -tp vc")
add_error_handling_line_to_bat_file()
add_line_to_run_bat_file("@ECHO Done building Visual Studio project files.")
else:
say(f"{BUILD_VSPROJ_VAR_NAME} not defined. Not building Visual Studio project files.")
if is_env_var_set(BUILD_DEBUG_VAR_NAME):
COMPILE_MODE = "debug"
say(f"{BUILD_DEBUG_VAR_NAME} defined. Building '{COMPILE_MODE}' version.")
else:
COMPILE_MODE = "release"
say(f"{BUILD_DEBUG_VAR_NAME} not defined. Building '{COMPILE_MODE}' version.")
add_line_to_run_bat_file("@ECHO Running qmake:")
if is_env_var_set("OVRAS_WARNINGS_AS_ERRORS"):
add_line_to_run_bat_file('"' + QMAKE_LOC + '"' + " -spec " + COMPILER + " CONFIG+=X86_64 " + "CONFIG+=" + COMPILE_MODE + " CONFIG+=warnings_as_errors")
else:
add_line_to_run_bat_file('"' + QMAKE_LOC + '"' + " -spec " + COMPILER + " CONFIG+=X86_64 " + "CONFIG+=" + COMPILE_MODE)
add_error_handling_line_to_bat_file()
add_line_to_run_bat_file("@ECHO qmake done.")
if is_env_var_set(JOM_LOC_VAR_NAME):
JOM_LOC = os.getenv(JOM_LOC_VAR_NAME)
else:
say(f"{JOM_LOC_VAR_NAME} not defined. Using default value")
JOM_LOC = JOM_LOC_DEFAULT
say(f"{JOM_LOC_VAR_NAME} set to '{JOM_LOC}")
if os.path.exists(JOM_LOC):
say(f"{JOM_LOC_VAR_NAME} exists. Using jom.")
add_line_to_run_bat_file("@ECHO Running jom:")
add_line_to_run_bat_file(JOM_LOC)
add_error_handling_line_to_bat_file()
add_line_to_run_bat_file("@ECHO jom done.")
say(f"{JOM_LOC_VAR_NAME} added to batch file.")
else:
say(f"{JOM_LOC_VAR_NAME} does not exists. Using nmake.")
add_line_to_run_bat_file("@ECHO Running nmake:")
#nmake is in the path because of 'vcvarsall.bat' from VS_LOC
add_line_to_run_bat_file("nmake")
add_error_handling_line_to_bat_file()
add_line_to_run_bat_file("@ECHO nmake done.")
say("nmake added to batch file.")
add_line_to_run_bat_file("cd " + get_original_dir())
create_batch_file()
|
[
"def",
"build",
"(",
")",
":",
"set_current_activity",
"(",
"\"BUILD\"",
")",
"set_dirs",
"(",
")",
"COMPILE_MODE",
"=",
"\"\"",
"COMPILER",
"=",
"\"\"",
"say",
"(",
"\"Attempting to build version: \"",
"+",
"VERSION_STRING",
")",
"say",
"(",
"\"Testing if all required build environment variables are set:\"",
")",
"QT_LOC",
"=",
"find_qt_path",
"(",
")",
"VS_LOC",
"=",
"get_required_env_var_path",
"(",
"VS_LOC_VAR_NAME",
",",
"VS_LOC_DEFAULT",
")",
"if",
"is_env_var_set",
"(",
"BUILD_CLANG_VAR_NAME",
")",
":",
"say",
"(",
"f\"{BUILD_CLANG_VAR_NAME} defined. Building for win32-clang-msvc.\"",
")",
"get_required_env_var_path",
"(",
"LLVM_LOC_VAR_NAME",
",",
"LLVM_LOC_DEFAULT",
")",
"COMPILER",
"=",
"\"win32-clang-msvc\"",
"else",
":",
"say",
"(",
"f\"{BUILD_CLANG_VAR_NAME} not defined. Building for msvc.\"",
")",
"COMPILER",
"=",
"\"win32-msvc\"",
"say",
"(",
"\"All required build environment values are set.\"",
")",
"#Otherwise qmake gets confused",
"add_line_to_run_bat_file",
"(",
"\"cd \"",
"+",
"get_project_dir",
"(",
")",
")",
"say",
"(",
"\"Adding 'vcvarsall.bat' to batch file.\"",
")",
"add_line_to_run_bat_file",
"(",
"\"@ECHO Setting up environment with Visual Studio 'vcvarsall.bat':\"",
")",
"add_line_to_run_bat_file",
"(",
"\"call \"",
"+",
"'\"'",
"+",
"VS_LOC",
"+",
"'\"'",
"+",
"\" \"",
"+",
"PLATFORM_TARGET",
")",
"add_error_handling_line_to_bat_file",
"(",
")",
"add_line_to_run_bat_file",
"(",
"\"@ECHO Environment set up.\"",
")",
"say",
"(",
"\"'vcvarsall.bat' added to batch file.\"",
")",
"QMAKE_LOC",
"=",
"QT_LOC",
"+",
"r\"\\qmake.exe\"",
"if",
"is_env_var_set",
"(",
"BUILD_VSPROJ_VAR_NAME",
")",
":",
"say",
"(",
"f\"{BUILD_VSPROJ_VAR_NAME} defined. Building Visual Studio project files.\"",
")",
"add_line_to_run_bat_file",
"(",
"\"@ECHO Running Visual Studio project file building:\"",
")",
"add_line_to_run_bat_file",
"(",
"'\"'",
"+",
"QMAKE_LOC",
"+",
"'\"'",
"+",
"\" -tp vc\"",
")",
"add_error_handling_line_to_bat_file",
"(",
")",
"add_line_to_run_bat_file",
"(",
"\"@ECHO Done building Visual Studio project files.\"",
")",
"else",
":",
"say",
"(",
"f\"{BUILD_VSPROJ_VAR_NAME} not defined. Not building Visual Studio project files.\"",
")",
"if",
"is_env_var_set",
"(",
"BUILD_DEBUG_VAR_NAME",
")",
":",
"COMPILE_MODE",
"=",
"\"debug\"",
"say",
"(",
"f\"{BUILD_DEBUG_VAR_NAME} defined. Building '{COMPILE_MODE}' version.\"",
")",
"else",
":",
"COMPILE_MODE",
"=",
"\"release\"",
"say",
"(",
"f\"{BUILD_DEBUG_VAR_NAME} not defined. Building '{COMPILE_MODE}' version.\"",
")",
"add_line_to_run_bat_file",
"(",
"\"@ECHO Running qmake:\"",
")",
"if",
"is_env_var_set",
"(",
"\"OVRAS_WARNINGS_AS_ERRORS\"",
")",
":",
"add_line_to_run_bat_file",
"(",
"'\"'",
"+",
"QMAKE_LOC",
"+",
"'\"'",
"+",
"\" -spec \"",
"+",
"COMPILER",
"+",
"\" CONFIG+=X86_64 \"",
"+",
"\"CONFIG+=\"",
"+",
"COMPILE_MODE",
"+",
"\" CONFIG+=warnings_as_errors\"",
")",
"else",
":",
"add_line_to_run_bat_file",
"(",
"'\"'",
"+",
"QMAKE_LOC",
"+",
"'\"'",
"+",
"\" -spec \"",
"+",
"COMPILER",
"+",
"\" CONFIG+=X86_64 \"",
"+",
"\"CONFIG+=\"",
"+",
"COMPILE_MODE",
")",
"add_error_handling_line_to_bat_file",
"(",
")",
"add_line_to_run_bat_file",
"(",
"\"@ECHO qmake done.\"",
")",
"if",
"is_env_var_set",
"(",
"JOM_LOC_VAR_NAME",
")",
":",
"JOM_LOC",
"=",
"os",
".",
"getenv",
"(",
"JOM_LOC_VAR_NAME",
")",
"else",
":",
"say",
"(",
"f\"{JOM_LOC_VAR_NAME} not defined. Using default value\"",
")",
"JOM_LOC",
"=",
"JOM_LOC_DEFAULT",
"say",
"(",
"f\"{JOM_LOC_VAR_NAME} set to '{JOM_LOC}\"",
")",
"if",
"os",
".",
"path",
".",
"exists",
"(",
"JOM_LOC",
")",
":",
"say",
"(",
"f\"{JOM_LOC_VAR_NAME} exists. Using jom.\"",
")",
"add_line_to_run_bat_file",
"(",
"\"@ECHO Running jom:\"",
")",
"add_line_to_run_bat_file",
"(",
"JOM_LOC",
")",
"add_error_handling_line_to_bat_file",
"(",
")",
"add_line_to_run_bat_file",
"(",
"\"@ECHO jom done.\"",
")",
"say",
"(",
"f\"{JOM_LOC_VAR_NAME} added to batch file.\"",
")",
"else",
":",
"say",
"(",
"f\"{JOM_LOC_VAR_NAME} does not exists. Using nmake.\"",
")",
"add_line_to_run_bat_file",
"(",
"\"@ECHO Running nmake:\"",
")",
"#nmake is in the path because of 'vcvarsall.bat' from VS_LOC",
"add_line_to_run_bat_file",
"(",
"\"nmake\"",
")",
"add_error_handling_line_to_bat_file",
"(",
")",
"add_line_to_run_bat_file",
"(",
"\"@ECHO nmake done.\"",
")",
"say",
"(",
"\"nmake added to batch file.\"",
")",
"add_line_to_run_bat_file",
"(",
"\"cd \"",
"+",
"get_original_dir",
"(",
")",
")",
"create_batch_file",
"(",
")"
] |
https://github.com/OpenVR-Advanced-Settings/OpenVR-AdvancedSettings/blob/522ba46ac6bcff8e82907715f7f0af7abbbe1e7b/build_scripts/win/build.py#L84-L174
|
||
BVLC/caffe
|
9b891540183ddc834a02b2bd81b31afae71b2153
|
python/caffe/draw.py
|
python
|
draw_net_to_file
|
(caffe_net, filename, rankdir='LR', phase=None, display_lrm=False)
|
Draws a caffe net, and saves it to file using the format given as the
file extension. Use '.raw' to output raw text that you can manually feed
to graphviz to draw graphs.
Parameters
----------
caffe_net : a caffe.proto.caffe_pb2.NetParameter protocol buffer.
filename : string
The path to a file where the networks visualization will be stored.
rankdir : {'LR', 'TB', 'BT'}
Direction of graph layout.
phase : {caffe_pb2.Phase.TRAIN, caffe_pb2.Phase.TEST, None} optional
Include layers from this network phase. If None, include all layers.
(the default is None)
display_lrm : boolean, optional
If True display the learning rate multipliers for the learning layers
(default is False).
|
Draws a caffe net, and saves it to file using the format given as the
file extension. Use '.raw' to output raw text that you can manually feed
to graphviz to draw graphs.
|
[
"Draws",
"a",
"caffe",
"net",
"and",
"saves",
"it",
"to",
"file",
"using",
"the",
"format",
"given",
"as",
"the",
"file",
"extension",
".",
"Use",
".",
"raw",
"to",
"output",
"raw",
"text",
"that",
"you",
"can",
"manually",
"feed",
"to",
"graphviz",
"to",
"draw",
"graphs",
"."
] |
def draw_net_to_file(caffe_net, filename, rankdir='LR', phase=None, display_lrm=False):
"""Draws a caffe net, and saves it to file using the format given as the
file extension. Use '.raw' to output raw text that you can manually feed
to graphviz to draw graphs.
Parameters
----------
caffe_net : a caffe.proto.caffe_pb2.NetParameter protocol buffer.
filename : string
The path to a file where the networks visualization will be stored.
rankdir : {'LR', 'TB', 'BT'}
Direction of graph layout.
phase : {caffe_pb2.Phase.TRAIN, caffe_pb2.Phase.TEST, None} optional
Include layers from this network phase. If None, include all layers.
(the default is None)
display_lrm : boolean, optional
If True display the learning rate multipliers for the learning layers
(default is False).
"""
ext = filename[filename.rfind('.')+1:]
with open(filename, 'wb') as fid:
fid.write(draw_net(caffe_net, rankdir, ext, phase, display_lrm))
|
[
"def",
"draw_net_to_file",
"(",
"caffe_net",
",",
"filename",
",",
"rankdir",
"=",
"'LR'",
",",
"phase",
"=",
"None",
",",
"display_lrm",
"=",
"False",
")",
":",
"ext",
"=",
"filename",
"[",
"filename",
".",
"rfind",
"(",
"'.'",
")",
"+",
"1",
":",
"]",
"with",
"open",
"(",
"filename",
",",
"'wb'",
")",
"as",
"fid",
":",
"fid",
".",
"write",
"(",
"draw_net",
"(",
"caffe_net",
",",
"rankdir",
",",
"ext",
",",
"phase",
",",
"display_lrm",
")",
")"
] |
https://github.com/BVLC/caffe/blob/9b891540183ddc834a02b2bd81b31afae71b2153/python/caffe/draw.py#L293-L314
|
||
TheLegendAli/DeepLab-Context
|
fb04e9e2fc2682490ad9f60533b9d6c4c0e0479c
|
scripts/cpp_lint.py
|
python
|
_CppLintState.PrintErrorCounts
|
(self)
|
Print a summary of errors by category, and the total.
|
Print a summary of errors by category, and the total.
|
[
"Print",
"a",
"summary",
"of",
"errors",
"by",
"category",
"and",
"the",
"total",
"."
] |
def PrintErrorCounts(self):
"""Print a summary of errors by category, and the total."""
for category, count in self.errors_by_category.iteritems():
sys.stderr.write('Category \'%s\' errors found: %d\n' %
(category, count))
sys.stderr.write('Total errors found: %d\n' % self.error_count)
|
[
"def",
"PrintErrorCounts",
"(",
"self",
")",
":",
"for",
"category",
",",
"count",
"in",
"self",
".",
"errors_by_category",
".",
"iteritems",
"(",
")",
":",
"sys",
".",
"stderr",
".",
"write",
"(",
"'Category \\'%s\\' errors found: %d\\n'",
"%",
"(",
"category",
",",
"count",
")",
")",
"sys",
".",
"stderr",
".",
"write",
"(",
"'Total errors found: %d\\n'",
"%",
"self",
".",
"error_count",
")"
] |
https://github.com/TheLegendAli/DeepLab-Context/blob/fb04e9e2fc2682490ad9f60533b9d6c4c0e0479c/scripts/cpp_lint.py#L757-L762
|
||
cvxpy/cvxpy
|
5165b4fb750dfd237de8659383ef24b4b2e33aaf
|
cvxpy/reductions/complex2real/atom_canonicalizers/matrix_canon.py
|
python
|
hermitian_canon
|
(expr, real_args, imag_args, real2imag)
|
return expr.copy([matrix]), None
|
Canonicalize functions that take a Hermitian matrix.
|
Canonicalize functions that take a Hermitian matrix.
|
[
"Canonicalize",
"functions",
"that",
"take",
"a",
"Hermitian",
"matrix",
"."
] |
def hermitian_canon(expr, real_args, imag_args, real2imag):
"""Canonicalize functions that take a Hermitian matrix.
"""
if imag_args[0] is None:
matrix = real_args[0]
else:
if real_args[0] is None:
real_args[0] = np.zeros(imag_args[0].shape)
matrix = bmat([[real_args[0], -imag_args[0]],
[imag_args[0], real_args[0]]])
return expr.copy([matrix]), None
|
[
"def",
"hermitian_canon",
"(",
"expr",
",",
"real_args",
",",
"imag_args",
",",
"real2imag",
")",
":",
"if",
"imag_args",
"[",
"0",
"]",
"is",
"None",
":",
"matrix",
"=",
"real_args",
"[",
"0",
"]",
"else",
":",
"if",
"real_args",
"[",
"0",
"]",
"is",
"None",
":",
"real_args",
"[",
"0",
"]",
"=",
"np",
".",
"zeros",
"(",
"imag_args",
"[",
"0",
"]",
".",
"shape",
")",
"matrix",
"=",
"bmat",
"(",
"[",
"[",
"real_args",
"[",
"0",
"]",
",",
"-",
"imag_args",
"[",
"0",
"]",
"]",
",",
"[",
"imag_args",
"[",
"0",
"]",
",",
"real_args",
"[",
"0",
"]",
"]",
"]",
")",
"return",
"expr",
".",
"copy",
"(",
"[",
"matrix",
"]",
")",
",",
"None"
] |
https://github.com/cvxpy/cvxpy/blob/5165b4fb750dfd237de8659383ef24b4b2e33aaf/cvxpy/reductions/complex2real/atom_canonicalizers/matrix_canon.py#L29-L39
|
|
aws/lumberyard
|
f85344403c1c2e77ec8c75deb2c116e97b713217
|
dev/Gems/CloudGemMetric/v1/AWS/python/windows/Lib/pandas/core/ops/mask_ops.py
|
python
|
kleene_or
|
(
left: Union[bool, np.ndarray],
right: Union[bool, np.ndarray],
left_mask: Optional[np.ndarray],
right_mask: Optional[np.ndarray],
)
|
return result, mask
|
Boolean ``or`` using Kleene logic.
Values are NA where we have ``NA | NA`` or ``NA | False``.
``NA | True`` is considered True.
Parameters
----------
left, right : ndarray, NA, or bool
The values of the array.
left_mask, right_mask : ndarray, optional
The masks. Only one of these may be None, which implies that
the associated `left` or `right` value is a scalar.
Returns
-------
result, mask: ndarray[bool]
The result of the logical or, and the new mask.
|
Boolean ``or`` using Kleene logic.
|
[
"Boolean",
"or",
"using",
"Kleene",
"logic",
"."
] |
def kleene_or(
left: Union[bool, np.ndarray],
right: Union[bool, np.ndarray],
left_mask: Optional[np.ndarray],
right_mask: Optional[np.ndarray],
):
"""
Boolean ``or`` using Kleene logic.
Values are NA where we have ``NA | NA`` or ``NA | False``.
``NA | True`` is considered True.
Parameters
----------
left, right : ndarray, NA, or bool
The values of the array.
left_mask, right_mask : ndarray, optional
The masks. Only one of these may be None, which implies that
the associated `left` or `right` value is a scalar.
Returns
-------
result, mask: ndarray[bool]
The result of the logical or, and the new mask.
"""
# To reduce the number of cases, we ensure that `left` & `left_mask`
# always come from an array, not a scalar. This is safe, since because
# A | B == B | A
if left_mask is None:
return kleene_or(right, left, right_mask, left_mask)
assert isinstance(left, np.ndarray)
raise_for_nan(right, method="or")
if right is libmissing.NA:
result = left.copy()
else:
result = left | right
if right_mask is not None:
# output is unknown where (False & NA), (NA & False), (NA & NA)
left_false = ~(left | left_mask)
right_false = ~(right | right_mask)
mask = (
(left_false & right_mask)
| (right_false & left_mask)
| (left_mask & right_mask)
)
else:
if right is True:
mask = np.zeros_like(left_mask)
elif right is libmissing.NA:
mask = (~left & ~left_mask) | left_mask
else:
# False
mask = left_mask.copy()
return result, mask
|
[
"def",
"kleene_or",
"(",
"left",
":",
"Union",
"[",
"bool",
",",
"np",
".",
"ndarray",
"]",
",",
"right",
":",
"Union",
"[",
"bool",
",",
"np",
".",
"ndarray",
"]",
",",
"left_mask",
":",
"Optional",
"[",
"np",
".",
"ndarray",
"]",
",",
"right_mask",
":",
"Optional",
"[",
"np",
".",
"ndarray",
"]",
",",
")",
":",
"# To reduce the number of cases, we ensure that `left` & `left_mask`",
"# always come from an array, not a scalar. This is safe, since because",
"# A | B == B | A",
"if",
"left_mask",
"is",
"None",
":",
"return",
"kleene_or",
"(",
"right",
",",
"left",
",",
"right_mask",
",",
"left_mask",
")",
"assert",
"isinstance",
"(",
"left",
",",
"np",
".",
"ndarray",
")",
"raise_for_nan",
"(",
"right",
",",
"method",
"=",
"\"or\"",
")",
"if",
"right",
"is",
"libmissing",
".",
"NA",
":",
"result",
"=",
"left",
".",
"copy",
"(",
")",
"else",
":",
"result",
"=",
"left",
"|",
"right",
"if",
"right_mask",
"is",
"not",
"None",
":",
"# output is unknown where (False & NA), (NA & False), (NA & NA)",
"left_false",
"=",
"~",
"(",
"left",
"|",
"left_mask",
")",
"right_false",
"=",
"~",
"(",
"right",
"|",
"right_mask",
")",
"mask",
"=",
"(",
"(",
"left_false",
"&",
"right_mask",
")",
"|",
"(",
"right_false",
"&",
"left_mask",
")",
"|",
"(",
"left_mask",
"&",
"right_mask",
")",
")",
"else",
":",
"if",
"right",
"is",
"True",
":",
"mask",
"=",
"np",
".",
"zeros_like",
"(",
"left_mask",
")",
"elif",
"right",
"is",
"libmissing",
".",
"NA",
":",
"mask",
"=",
"(",
"~",
"left",
"&",
"~",
"left_mask",
")",
"|",
"left_mask",
"else",
":",
"# False",
"mask",
"=",
"left_mask",
".",
"copy",
"(",
")",
"return",
"result",
",",
"mask"
] |
https://github.com/aws/lumberyard/blob/f85344403c1c2e77ec8c75deb2c116e97b713217/dev/Gems/CloudGemMetric/v1/AWS/python/windows/Lib/pandas/core/ops/mask_ops.py#L11-L69
|
|
msitt/blpapi-python
|
bebcf43668c9e5f5467b1f685f9baebbfc45bc87
|
src/blpapi/versionhelper.py
|
python
|
_swig_add_metaclass
|
(metaclass)
|
return wrapper
|
Class decorator for adding a metaclass to a SWIG wrapped class - a slimmed down version of six.add_metaclass
|
Class decorator for adding a metaclass to a SWIG wrapped class - a slimmed down version of six.add_metaclass
|
[
"Class",
"decorator",
"for",
"adding",
"a",
"metaclass",
"to",
"a",
"SWIG",
"wrapped",
"class",
"-",
"a",
"slimmed",
"down",
"version",
"of",
"six",
".",
"add_metaclass"
] |
def _swig_add_metaclass(metaclass):
"""Class decorator for adding a metaclass to a SWIG wrapped class - a slimmed down version of six.add_metaclass"""
def wrapper(cls):
return metaclass(cls.__name__, cls.__bases__, cls.__dict__.copy())
return wrapper
|
[
"def",
"_swig_add_metaclass",
"(",
"metaclass",
")",
":",
"def",
"wrapper",
"(",
"cls",
")",
":",
"return",
"metaclass",
"(",
"cls",
".",
"__name__",
",",
"cls",
".",
"__bases__",
",",
"cls",
".",
"__dict__",
".",
"copy",
"(",
")",
")",
"return",
"wrapper"
] |
https://github.com/msitt/blpapi-python/blob/bebcf43668c9e5f5467b1f685f9baebbfc45bc87/src/blpapi/versionhelper.py#L54-L58
|
|
miyosuda/TensorFlowAndroidDemo
|
35903e0221aa5f109ea2dbef27f20b52e317f42d
|
jni-build/jni/include/tensorflow/contrib/rnn/python/ops/lstm_ops.py
|
python
|
_FusedLSTMGradShape
|
(op)
|
return [x_shape] * max_len + [cs_prev_shape, h_prev_shape, w_shape, wci_shape,
wco_shape, wcf_shape, b_shape]
|
Shape for FusedLSTM.
|
Shape for FusedLSTM.
|
[
"Shape",
"for",
"FusedLSTM",
"."
] |
def _FusedLSTMGradShape(op):
"""Shape for FusedLSTM."""
max_len = op.get_attr("max_len")
x = op.inputs[1]
cs_prev = op.inputs[1 + max_len]
h_prev = op.inputs[2 + max_len]
w = op.inputs[3 + max_len]
wci = op.inputs[4 + max_len]
wco = op.inputs[5 + max_len]
wcf = op.inputs[6 + max_len]
b = op.inputs[7 + max_len]
x_shape = x.get_shape().with_rank(2)
cs_prev_shape = cs_prev.get_shape().with_rank(2)
h_prev_shape = h_prev.get_shape().with_rank(2)
w_shape = w.get_shape().with_rank(2)
wci_shape = wci.get_shape().with_rank(1)
wco_shape = wco.get_shape().with_rank(1)
wcf_shape = wcf.get_shape().with_rank(1)
b_shape = b.get_shape().with_rank(1)
return [x_shape] * max_len + [cs_prev_shape, h_prev_shape, w_shape, wci_shape,
wco_shape, wcf_shape, b_shape]
|
[
"def",
"_FusedLSTMGradShape",
"(",
"op",
")",
":",
"max_len",
"=",
"op",
".",
"get_attr",
"(",
"\"max_len\"",
")",
"x",
"=",
"op",
".",
"inputs",
"[",
"1",
"]",
"cs_prev",
"=",
"op",
".",
"inputs",
"[",
"1",
"+",
"max_len",
"]",
"h_prev",
"=",
"op",
".",
"inputs",
"[",
"2",
"+",
"max_len",
"]",
"w",
"=",
"op",
".",
"inputs",
"[",
"3",
"+",
"max_len",
"]",
"wci",
"=",
"op",
".",
"inputs",
"[",
"4",
"+",
"max_len",
"]",
"wco",
"=",
"op",
".",
"inputs",
"[",
"5",
"+",
"max_len",
"]",
"wcf",
"=",
"op",
".",
"inputs",
"[",
"6",
"+",
"max_len",
"]",
"b",
"=",
"op",
".",
"inputs",
"[",
"7",
"+",
"max_len",
"]",
"x_shape",
"=",
"x",
".",
"get_shape",
"(",
")",
".",
"with_rank",
"(",
"2",
")",
"cs_prev_shape",
"=",
"cs_prev",
".",
"get_shape",
"(",
")",
".",
"with_rank",
"(",
"2",
")",
"h_prev_shape",
"=",
"h_prev",
".",
"get_shape",
"(",
")",
".",
"with_rank",
"(",
"2",
")",
"w_shape",
"=",
"w",
".",
"get_shape",
"(",
")",
".",
"with_rank",
"(",
"2",
")",
"wci_shape",
"=",
"wci",
".",
"get_shape",
"(",
")",
".",
"with_rank",
"(",
"1",
")",
"wco_shape",
"=",
"wco",
".",
"get_shape",
"(",
")",
".",
"with_rank",
"(",
"1",
")",
"wcf_shape",
"=",
"wcf",
".",
"get_shape",
"(",
")",
".",
"with_rank",
"(",
"1",
")",
"b_shape",
"=",
"b",
".",
"get_shape",
"(",
")",
".",
"with_rank",
"(",
"1",
")",
"return",
"[",
"x_shape",
"]",
"*",
"max_len",
"+",
"[",
"cs_prev_shape",
",",
"h_prev_shape",
",",
"w_shape",
",",
"wci_shape",
",",
"wco_shape",
",",
"wcf_shape",
",",
"b_shape",
"]"
] |
https://github.com/miyosuda/TensorFlowAndroidDemo/blob/35903e0221aa5f109ea2dbef27f20b52e317f42d/jni-build/jni/include/tensorflow/contrib/rnn/python/ops/lstm_ops.py#L369-L392
|
|
Xilinx/Vitis-AI
|
fc74d404563d9951b57245443c73bef389f3657f
|
tools/Vitis-AI-Quantizer/vai_q_tensorflow1.x/tensorflow/python/ops/array_ops.py
|
python
|
_TileGradShape
|
(op)
|
Shape function for the TileGrad op.
|
Shape function for the TileGrad op.
|
[
"Shape",
"function",
"for",
"the",
"TileGrad",
"op",
"."
] |
def _TileGradShape(op):
"""Shape function for the TileGrad op."""
multiples_shape = op.inputs[1].get_shape().with_rank(1)
input_shape = op.inputs[0].get_shape().with_rank(multiples_shape[0])
# NOTE(mrry): Represent `multiples` as a `TensorShape` because (i)
# it is a vector of non-negative integers, and (ii) doing so allows
# us to handle partially-known multiples.
multiples = tensor_util.constant_value_as_shape(op.inputs[1]).with_rank(
input_shape.ndims)
if multiples.ndims is None:
return [tensor_shape.unknown_shape()]
else:
output_dims = []
for dim, multiple in zip(input_shape.dims, multiples.dims):
output_dims.append(dim // multiple)
return [tensor_shape.TensorShape(output_dims)]
|
[
"def",
"_TileGradShape",
"(",
"op",
")",
":",
"multiples_shape",
"=",
"op",
".",
"inputs",
"[",
"1",
"]",
".",
"get_shape",
"(",
")",
".",
"with_rank",
"(",
"1",
")",
"input_shape",
"=",
"op",
".",
"inputs",
"[",
"0",
"]",
".",
"get_shape",
"(",
")",
".",
"with_rank",
"(",
"multiples_shape",
"[",
"0",
"]",
")",
"# NOTE(mrry): Represent `multiples` as a `TensorShape` because (i)",
"# it is a vector of non-negative integers, and (ii) doing so allows",
"# us to handle partially-known multiples.",
"multiples",
"=",
"tensor_util",
".",
"constant_value_as_shape",
"(",
"op",
".",
"inputs",
"[",
"1",
"]",
")",
".",
"with_rank",
"(",
"input_shape",
".",
"ndims",
")",
"if",
"multiples",
".",
"ndims",
"is",
"None",
":",
"return",
"[",
"tensor_shape",
".",
"unknown_shape",
"(",
")",
"]",
"else",
":",
"output_dims",
"=",
"[",
"]",
"for",
"dim",
",",
"multiple",
"in",
"zip",
"(",
"input_shape",
".",
"dims",
",",
"multiples",
".",
"dims",
")",
":",
"output_dims",
".",
"append",
"(",
"dim",
"//",
"multiple",
")",
"return",
"[",
"tensor_shape",
".",
"TensorShape",
"(",
"output_dims",
")",
"]"
] |
https://github.com/Xilinx/Vitis-AI/blob/fc74d404563d9951b57245443c73bef389f3657f/tools/Vitis-AI-Quantizer/vai_q_tensorflow1.x/tensorflow/python/ops/array_ops.py#L2993-L3008
|
||
BitMEX/api-connectors
|
37a3a5b806ad5d0e0fc975ab86d9ed43c3bcd812
|
auto-generated/python/swagger_client/models/affiliate.py
|
python
|
Affiliate.total_comm
|
(self)
|
return self._total_comm
|
Gets the total_comm of this Affiliate. # noqa: E501
:return: The total_comm of this Affiliate. # noqa: E501
:rtype: float
|
Gets the total_comm of this Affiliate. # noqa: E501
|
[
"Gets",
"the",
"total_comm",
"of",
"this",
"Affiliate",
".",
"#",
"noqa",
":",
"E501"
] |
def total_comm(self):
"""Gets the total_comm of this Affiliate. # noqa: E501
:return: The total_comm of this Affiliate. # noqa: E501
:rtype: float
"""
return self._total_comm
|
[
"def",
"total_comm",
"(",
"self",
")",
":",
"return",
"self",
".",
"_total_comm"
] |
https://github.com/BitMEX/api-connectors/blob/37a3a5b806ad5d0e0fc975ab86d9ed43c3bcd812/auto-generated/python/swagger_client/models/affiliate.py#L343-L350
|
|
wxWidgets/wxPython-Classic
|
19571e1ae65f1ac445f5491474121998c97a1bf0
|
src/osx_carbon/_windows.py
|
python
|
PyScrolledWindow.DoGetBestSize
|
(*args, **kwargs)
|
return _windows_.PyScrolledWindow_DoGetBestSize(*args, **kwargs)
|
DoGetBestSize(self) -> Size
|
DoGetBestSize(self) -> Size
|
[
"DoGetBestSize",
"(",
"self",
")",
"-",
">",
"Size"
] |
def DoGetBestSize(*args, **kwargs):
"""DoGetBestSize(self) -> Size"""
return _windows_.PyScrolledWindow_DoGetBestSize(*args, **kwargs)
|
[
"def",
"DoGetBestSize",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"return",
"_windows_",
".",
"PyScrolledWindow_DoGetBestSize",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")"
] |
https://github.com/wxWidgets/wxPython-Classic/blob/19571e1ae65f1ac445f5491474121998c97a1bf0/src/osx_carbon/_windows.py#L4544-L4546
|
|
catboost/catboost
|
167f64f237114a4d10b2b4ee42adb4569137debe
|
contrib/python/scikit-learn/py2/sklearn/multiclass.py
|
python
|
OneVsOneClassifier.predict
|
(self, X)
|
return self.classes_[Y.argmax(axis=1)]
|
Estimate the best class label for each sample in X.
This is implemented as ``argmax(decision_function(X), axis=1)`` which
will return the label of the class with most votes by estimators
predicting the outcome of a decision for each possible class pair.
Parameters
----------
X : (sparse) array-like, shape = [n_samples, n_features]
Data.
Returns
-------
y : numpy array of shape [n_samples]
Predicted multi-class targets.
|
Estimate the best class label for each sample in X.
|
[
"Estimate",
"the",
"best",
"class",
"label",
"for",
"each",
"sample",
"in",
"X",
"."
] |
def predict(self, X):
"""Estimate the best class label for each sample in X.
This is implemented as ``argmax(decision_function(X), axis=1)`` which
will return the label of the class with most votes by estimators
predicting the outcome of a decision for each possible class pair.
Parameters
----------
X : (sparse) array-like, shape = [n_samples, n_features]
Data.
Returns
-------
y : numpy array of shape [n_samples]
Predicted multi-class targets.
"""
Y = self.decision_function(X)
return self.classes_[Y.argmax(axis=1)]
|
[
"def",
"predict",
"(",
"self",
",",
"X",
")",
":",
"Y",
"=",
"self",
".",
"decision_function",
"(",
"X",
")",
"return",
"self",
".",
"classes_",
"[",
"Y",
".",
"argmax",
"(",
"axis",
"=",
"1",
")",
"]"
] |
https://github.com/catboost/catboost/blob/167f64f237114a4d10b2b4ee42adb4569137debe/contrib/python/scikit-learn/py2/sklearn/multiclass.py#L551-L569
|
|
infinit/memo
|
3a8394d0f647efe03ccb8bfe885a7279cb8be8a6
|
elle/drake/src/drake/__init__.py
|
python
|
Dictionary.hash
|
(self)
|
return hashlib.sha1(str(items).encode('utf-8')).hexdigest()
|
Hash value.
|
Hash value.
|
[
"Hash",
"value",
"."
] |
def hash(self):
"""Hash value."""
# FIXME: sha1 of the string repr ain't optimal
items = list(self)
items.sort()
return hashlib.sha1(str(items).encode('utf-8')).hexdigest()
|
[
"def",
"hash",
"(",
"self",
")",
":",
"# FIXME: sha1 of the string repr ain't optimal",
"items",
"=",
"list",
"(",
"self",
")",
"items",
".",
"sort",
"(",
")",
"return",
"hashlib",
".",
"sha1",
"(",
"str",
"(",
"items",
")",
".",
"encode",
"(",
"'utf-8'",
")",
")",
".",
"hexdigest",
"(",
")"
] |
https://github.com/infinit/memo/blob/3a8394d0f647efe03ccb8bfe885a7279cb8be8a6/elle/drake/src/drake/__init__.py#L2550-L2555
|
|
kamyu104/LeetCode-Solutions
|
77605708a927ea3b85aee5a479db733938c7c211
|
Python/strobogrammatic-number-ii.py
|
python
|
Solution.findStrobogrammatic
|
(self, n)
|
return result
|
:type n: int
:rtype: List[str]
|
:type n: int
:rtype: List[str]
|
[
":",
"type",
"n",
":",
"int",
":",
"rtype",
":",
"List",
"[",
"str",
"]"
] |
def findStrobogrammatic(self, n):
"""
:type n: int
:rtype: List[str]
"""
lookup = {'0':'0', '1':'1', '6':'9', '8':'8', '9':'6'}
result = ['0', '1', '8'] if n%2 else ['']
for i in xrange(n%2, n, 2):
result = [a + num + b for a, b in lookup.iteritems() if i != n-2 or a != '0' for num in result]
return result
|
[
"def",
"findStrobogrammatic",
"(",
"self",
",",
"n",
")",
":",
"lookup",
"=",
"{",
"'0'",
":",
"'0'",
",",
"'1'",
":",
"'1'",
",",
"'6'",
":",
"'9'",
",",
"'8'",
":",
"'8'",
",",
"'9'",
":",
"'6'",
"}",
"result",
"=",
"[",
"'0'",
",",
"'1'",
",",
"'8'",
"]",
"if",
"n",
"%",
"2",
"else",
"[",
"''",
"]",
"for",
"i",
"in",
"xrange",
"(",
"n",
"%",
"2",
",",
"n",
",",
"2",
")",
":",
"result",
"=",
"[",
"a",
"+",
"num",
"+",
"b",
"for",
"a",
",",
"b",
"in",
"lookup",
".",
"iteritems",
"(",
")",
"if",
"i",
"!=",
"n",
"-",
"2",
"or",
"a",
"!=",
"'0'",
"for",
"num",
"in",
"result",
"]",
"return",
"result"
] |
https://github.com/kamyu104/LeetCode-Solutions/blob/77605708a927ea3b85aee5a479db733938c7c211/Python/strobogrammatic-number-ii.py#L5-L14
|
|
clasp-developers/clasp
|
5287e5eb9bbd5e8da1e3a629a03d78bd71d01969
|
debugger-tools/extend_lldb/print_function.py
|
python
|
get_line_numbers
|
(thread)
|
return map(GetLineNumber, range(thread.GetNumFrames()))
|
Returns a sequence of line numbers from the stack frames of this thread.
|
Returns a sequence of line numbers from the stack frames of this thread.
|
[
"Returns",
"a",
"sequence",
"of",
"line",
"numbers",
"from",
"the",
"stack",
"frames",
"of",
"this",
"thread",
"."
] |
def get_line_numbers(thread):
"""
Returns a sequence of line numbers from the stack frames of this thread.
"""
def GetLineNumber(i):
return thread.GetFrameAtIndex(i).GetLineEntry().GetLine()
return map(GetLineNumber, range(thread.GetNumFrames()))
|
[
"def",
"get_line_numbers",
"(",
"thread",
")",
":",
"def",
"GetLineNumber",
"(",
"i",
")",
":",
"return",
"thread",
".",
"GetFrameAtIndex",
"(",
"i",
")",
".",
"GetLineEntry",
"(",
")",
".",
"GetLine",
"(",
")",
"return",
"map",
"(",
"GetLineNumber",
",",
"range",
"(",
"thread",
".",
"GetNumFrames",
"(",
")",
")",
")"
] |
https://github.com/clasp-developers/clasp/blob/5287e5eb9bbd5e8da1e3a629a03d78bd71d01969/debugger-tools/extend_lldb/print_function.py#L250-L257
|
|
lmb-freiburg/ogn
|
974f72ef4bf840d6f6693d22d1843a79223e77ce
|
scripts/cpp_lint.py
|
python
|
_NestingState.Update
|
(self, filename, clean_lines, linenum, error)
|
Update nesting state with current line.
Args:
filename: The name of the current file.
clean_lines: A CleansedLines instance containing the file.
linenum: The number of the line to check.
error: The function to call with any errors found.
|
Update nesting state with current line.
|
[
"Update",
"nesting",
"state",
"with",
"current",
"line",
"."
] |
def Update(self, filename, clean_lines, linenum, error):
"""Update nesting state with current line.
Args:
filename: The name of the current file.
clean_lines: A CleansedLines instance containing the file.
linenum: The number of the line to check.
error: The function to call with any errors found.
"""
line = clean_lines.elided[linenum]
# Update pp_stack first
self.UpdatePreprocessor(line)
# Count parentheses. This is to avoid adding struct arguments to
# the nesting stack.
if self.stack:
inner_block = self.stack[-1]
depth_change = line.count('(') - line.count(')')
inner_block.open_parentheses += depth_change
# Also check if we are starting or ending an inline assembly block.
if inner_block.inline_asm in (_NO_ASM, _END_ASM):
if (depth_change != 0 and
inner_block.open_parentheses == 1 and
_MATCH_ASM.match(line)):
# Enter assembly block
inner_block.inline_asm = _INSIDE_ASM
else:
# Not entering assembly block. If previous line was _END_ASM,
# we will now shift to _NO_ASM state.
inner_block.inline_asm = _NO_ASM
elif (inner_block.inline_asm == _INSIDE_ASM and
inner_block.open_parentheses == 0):
# Exit assembly block
inner_block.inline_asm = _END_ASM
# Consume namespace declaration at the beginning of the line. Do
# this in a loop so that we catch same line declarations like this:
# namespace proto2 { namespace bridge { class MessageSet; } }
while True:
# Match start of namespace. The "\b\s*" below catches namespace
# declarations even if it weren't followed by a whitespace, this
# is so that we don't confuse our namespace checker. The
# missing spaces will be flagged by CheckSpacing.
namespace_decl_match = Match(r'^\s*namespace\b\s*([:\w]+)?(.*)$', line)
if not namespace_decl_match:
break
new_namespace = _NamespaceInfo(namespace_decl_match.group(1), linenum)
self.stack.append(new_namespace)
line = namespace_decl_match.group(2)
if line.find('{') != -1:
new_namespace.seen_open_brace = True
line = line[line.find('{') + 1:]
# Look for a class declaration in whatever is left of the line
# after parsing namespaces. The regexp accounts for decorated classes
# such as in:
# class LOCKABLE API Object {
# };
#
# Templates with class arguments may confuse the parser, for example:
# template <class T
# class Comparator = less<T>,
# class Vector = vector<T> >
# class HeapQueue {
#
# Because this parser has no nesting state about templates, by the
# time it saw "class Comparator", it may think that it's a new class.
# Nested templates have a similar problem:
# template <
# typename ExportedType,
# typename TupleType,
# template <typename, typename> class ImplTemplate>
#
# To avoid these cases, we ignore classes that are followed by '=' or '>'
class_decl_match = Match(
r'\s*(template\s*<[\w\s<>,:]*>\s*)?'
r'(class|struct)\s+([A-Z_]+\s+)*(\w+(?:::\w+)*)'
r'(([^=>]|<[^<>]*>|<[^<>]*<[^<>]*>\s*>)*)$', line)
if (class_decl_match and
(not self.stack or self.stack[-1].open_parentheses == 0)):
self.stack.append(_ClassInfo(
class_decl_match.group(4), class_decl_match.group(2),
clean_lines, linenum))
line = class_decl_match.group(5)
# If we have not yet seen the opening brace for the innermost block,
# run checks here.
if not self.SeenOpenBrace():
self.stack[-1].CheckBegin(filename, clean_lines, linenum, error)
# Update access control if we are inside a class/struct
if self.stack and isinstance(self.stack[-1], _ClassInfo):
classinfo = self.stack[-1]
access_match = Match(
r'^(.*)\b(public|private|protected|signals)(\s+(?:slots\s*)?)?'
r':(?:[^:]|$)',
line)
if access_match:
classinfo.access = access_match.group(2)
# Check that access keywords are indented +1 space. Skip this
# check if the keywords are not preceded by whitespaces.
indent = access_match.group(1)
if (len(indent) != classinfo.class_indent + 1 and
Match(r'^\s*$', indent)):
if classinfo.is_struct:
parent = 'struct ' + classinfo.name
else:
parent = 'class ' + classinfo.name
slots = ''
if access_match.group(3):
slots = access_match.group(3)
error(filename, linenum, 'whitespace/indent', 3,
'%s%s: should be indented +1 space inside %s' % (
access_match.group(2), slots, parent))
# Consume braces or semicolons from what's left of the line
while True:
# Match first brace, semicolon, or closed parenthesis.
matched = Match(r'^[^{;)}]*([{;)}])(.*)$', line)
if not matched:
break
token = matched.group(1)
if token == '{':
# If namespace or class hasn't seen a opening brace yet, mark
# namespace/class head as complete. Push a new block onto the
# stack otherwise.
if not self.SeenOpenBrace():
self.stack[-1].seen_open_brace = True
else:
self.stack.append(_BlockInfo(True))
if _MATCH_ASM.match(line):
self.stack[-1].inline_asm = _BLOCK_ASM
elif token == ';' or token == ')':
# If we haven't seen an opening brace yet, but we already saw
# a semicolon, this is probably a forward declaration. Pop
# the stack for these.
#
# Similarly, if we haven't seen an opening brace yet, but we
# already saw a closing parenthesis, then these are probably
# function arguments with extra "class" or "struct" keywords.
# Also pop these stack for these.
if not self.SeenOpenBrace():
self.stack.pop()
else: # token == '}'
# Perform end of block checks and pop the stack.
if self.stack:
self.stack[-1].CheckEnd(filename, clean_lines, linenum, error)
self.stack.pop()
line = matched.group(2)
|
[
"def",
"Update",
"(",
"self",
",",
"filename",
",",
"clean_lines",
",",
"linenum",
",",
"error",
")",
":",
"line",
"=",
"clean_lines",
".",
"elided",
"[",
"linenum",
"]",
"# Update pp_stack first",
"self",
".",
"UpdatePreprocessor",
"(",
"line",
")",
"# Count parentheses. This is to avoid adding struct arguments to",
"# the nesting stack.",
"if",
"self",
".",
"stack",
":",
"inner_block",
"=",
"self",
".",
"stack",
"[",
"-",
"1",
"]",
"depth_change",
"=",
"line",
".",
"count",
"(",
"'('",
")",
"-",
"line",
".",
"count",
"(",
"')'",
")",
"inner_block",
".",
"open_parentheses",
"+=",
"depth_change",
"# Also check if we are starting or ending an inline assembly block.",
"if",
"inner_block",
".",
"inline_asm",
"in",
"(",
"_NO_ASM",
",",
"_END_ASM",
")",
":",
"if",
"(",
"depth_change",
"!=",
"0",
"and",
"inner_block",
".",
"open_parentheses",
"==",
"1",
"and",
"_MATCH_ASM",
".",
"match",
"(",
"line",
")",
")",
":",
"# Enter assembly block",
"inner_block",
".",
"inline_asm",
"=",
"_INSIDE_ASM",
"else",
":",
"# Not entering assembly block. If previous line was _END_ASM,",
"# we will now shift to _NO_ASM state.",
"inner_block",
".",
"inline_asm",
"=",
"_NO_ASM",
"elif",
"(",
"inner_block",
".",
"inline_asm",
"==",
"_INSIDE_ASM",
"and",
"inner_block",
".",
"open_parentheses",
"==",
"0",
")",
":",
"# Exit assembly block",
"inner_block",
".",
"inline_asm",
"=",
"_END_ASM",
"# Consume namespace declaration at the beginning of the line. Do",
"# this in a loop so that we catch same line declarations like this:",
"# namespace proto2 { namespace bridge { class MessageSet; } }",
"while",
"True",
":",
"# Match start of namespace. The \"\\b\\s*\" below catches namespace",
"# declarations even if it weren't followed by a whitespace, this",
"# is so that we don't confuse our namespace checker. The",
"# missing spaces will be flagged by CheckSpacing.",
"namespace_decl_match",
"=",
"Match",
"(",
"r'^\\s*namespace\\b\\s*([:\\w]+)?(.*)$'",
",",
"line",
")",
"if",
"not",
"namespace_decl_match",
":",
"break",
"new_namespace",
"=",
"_NamespaceInfo",
"(",
"namespace_decl_match",
".",
"group",
"(",
"1",
")",
",",
"linenum",
")",
"self",
".",
"stack",
".",
"append",
"(",
"new_namespace",
")",
"line",
"=",
"namespace_decl_match",
".",
"group",
"(",
"2",
")",
"if",
"line",
".",
"find",
"(",
"'{'",
")",
"!=",
"-",
"1",
":",
"new_namespace",
".",
"seen_open_brace",
"=",
"True",
"line",
"=",
"line",
"[",
"line",
".",
"find",
"(",
"'{'",
")",
"+",
"1",
":",
"]",
"# Look for a class declaration in whatever is left of the line",
"# after parsing namespaces. The regexp accounts for decorated classes",
"# such as in:",
"# class LOCKABLE API Object {",
"# };",
"#",
"# Templates with class arguments may confuse the parser, for example:",
"# template <class T",
"# class Comparator = less<T>,",
"# class Vector = vector<T> >",
"# class HeapQueue {",
"#",
"# Because this parser has no nesting state about templates, by the",
"# time it saw \"class Comparator\", it may think that it's a new class.",
"# Nested templates have a similar problem:",
"# template <",
"# typename ExportedType,",
"# typename TupleType,",
"# template <typename, typename> class ImplTemplate>",
"#",
"# To avoid these cases, we ignore classes that are followed by '=' or '>'",
"class_decl_match",
"=",
"Match",
"(",
"r'\\s*(template\\s*<[\\w\\s<>,:]*>\\s*)?'",
"r'(class|struct)\\s+([A-Z_]+\\s+)*(\\w+(?:::\\w+)*)'",
"r'(([^=>]|<[^<>]*>|<[^<>]*<[^<>]*>\\s*>)*)$'",
",",
"line",
")",
"if",
"(",
"class_decl_match",
"and",
"(",
"not",
"self",
".",
"stack",
"or",
"self",
".",
"stack",
"[",
"-",
"1",
"]",
".",
"open_parentheses",
"==",
"0",
")",
")",
":",
"self",
".",
"stack",
".",
"append",
"(",
"_ClassInfo",
"(",
"class_decl_match",
".",
"group",
"(",
"4",
")",
",",
"class_decl_match",
".",
"group",
"(",
"2",
")",
",",
"clean_lines",
",",
"linenum",
")",
")",
"line",
"=",
"class_decl_match",
".",
"group",
"(",
"5",
")",
"# If we have not yet seen the opening brace for the innermost block,",
"# run checks here.",
"if",
"not",
"self",
".",
"SeenOpenBrace",
"(",
")",
":",
"self",
".",
"stack",
"[",
"-",
"1",
"]",
".",
"CheckBegin",
"(",
"filename",
",",
"clean_lines",
",",
"linenum",
",",
"error",
")",
"# Update access control if we are inside a class/struct",
"if",
"self",
".",
"stack",
"and",
"isinstance",
"(",
"self",
".",
"stack",
"[",
"-",
"1",
"]",
",",
"_ClassInfo",
")",
":",
"classinfo",
"=",
"self",
".",
"stack",
"[",
"-",
"1",
"]",
"access_match",
"=",
"Match",
"(",
"r'^(.*)\\b(public|private|protected|signals)(\\s+(?:slots\\s*)?)?'",
"r':(?:[^:]|$)'",
",",
"line",
")",
"if",
"access_match",
":",
"classinfo",
".",
"access",
"=",
"access_match",
".",
"group",
"(",
"2",
")",
"# Check that access keywords are indented +1 space. Skip this",
"# check if the keywords are not preceded by whitespaces.",
"indent",
"=",
"access_match",
".",
"group",
"(",
"1",
")",
"if",
"(",
"len",
"(",
"indent",
")",
"!=",
"classinfo",
".",
"class_indent",
"+",
"1",
"and",
"Match",
"(",
"r'^\\s*$'",
",",
"indent",
")",
")",
":",
"if",
"classinfo",
".",
"is_struct",
":",
"parent",
"=",
"'struct '",
"+",
"classinfo",
".",
"name",
"else",
":",
"parent",
"=",
"'class '",
"+",
"classinfo",
".",
"name",
"slots",
"=",
"''",
"if",
"access_match",
".",
"group",
"(",
"3",
")",
":",
"slots",
"=",
"access_match",
".",
"group",
"(",
"3",
")",
"error",
"(",
"filename",
",",
"linenum",
",",
"'whitespace/indent'",
",",
"3",
",",
"'%s%s: should be indented +1 space inside %s'",
"%",
"(",
"access_match",
".",
"group",
"(",
"2",
")",
",",
"slots",
",",
"parent",
")",
")",
"# Consume braces or semicolons from what's left of the line",
"while",
"True",
":",
"# Match first brace, semicolon, or closed parenthesis.",
"matched",
"=",
"Match",
"(",
"r'^[^{;)}]*([{;)}])(.*)$'",
",",
"line",
")",
"if",
"not",
"matched",
":",
"break",
"token",
"=",
"matched",
".",
"group",
"(",
"1",
")",
"if",
"token",
"==",
"'{'",
":",
"# If namespace or class hasn't seen a opening brace yet, mark",
"# namespace/class head as complete. Push a new block onto the",
"# stack otherwise.",
"if",
"not",
"self",
".",
"SeenOpenBrace",
"(",
")",
":",
"self",
".",
"stack",
"[",
"-",
"1",
"]",
".",
"seen_open_brace",
"=",
"True",
"else",
":",
"self",
".",
"stack",
".",
"append",
"(",
"_BlockInfo",
"(",
"True",
")",
")",
"if",
"_MATCH_ASM",
".",
"match",
"(",
"line",
")",
":",
"self",
".",
"stack",
"[",
"-",
"1",
"]",
".",
"inline_asm",
"=",
"_BLOCK_ASM",
"elif",
"token",
"==",
"';'",
"or",
"token",
"==",
"')'",
":",
"# If we haven't seen an opening brace yet, but we already saw",
"# a semicolon, this is probably a forward declaration. Pop",
"# the stack for these.",
"#",
"# Similarly, if we haven't seen an opening brace yet, but we",
"# already saw a closing parenthesis, then these are probably",
"# function arguments with extra \"class\" or \"struct\" keywords.",
"# Also pop these stack for these.",
"if",
"not",
"self",
".",
"SeenOpenBrace",
"(",
")",
":",
"self",
".",
"stack",
".",
"pop",
"(",
")",
"else",
":",
"# token == '}'",
"# Perform end of block checks and pop the stack.",
"if",
"self",
".",
"stack",
":",
"self",
".",
"stack",
"[",
"-",
"1",
"]",
".",
"CheckEnd",
"(",
"filename",
",",
"clean_lines",
",",
"linenum",
",",
"error",
")",
"self",
".",
"stack",
".",
"pop",
"(",
")",
"line",
"=",
"matched",
".",
"group",
"(",
"2",
")"
] |
https://github.com/lmb-freiburg/ogn/blob/974f72ef4bf840d6f6693d22d1843a79223e77ce/scripts/cpp_lint.py#L2004-L2158
|
||
klzgrad/naiveproxy
|
ed2c513637c77b18721fe428d7ed395b4d284c83
|
src/build/android/gyp/util/resource_utils.py
|
python
|
_ParseTextSymbolsFile
|
(path, fix_package_ids=False)
|
return ret
|
Given an R.txt file, returns a list of _TextSymbolEntry.
Args:
path: Input file path.
fix_package_ids: if True, 0x00 and 0x02 package IDs read from the file
will be fixed to 0x7f.
Returns:
A list of _TextSymbolEntry instances.
Raises:
Exception: An unexpected line was detected in the input.
|
Given an R.txt file, returns a list of _TextSymbolEntry.
|
[
"Given",
"an",
"R",
".",
"txt",
"file",
"returns",
"a",
"list",
"of",
"_TextSymbolEntry",
"."
] |
def _ParseTextSymbolsFile(path, fix_package_ids=False):
"""Given an R.txt file, returns a list of _TextSymbolEntry.
Args:
path: Input file path.
fix_package_ids: if True, 0x00 and 0x02 package IDs read from the file
will be fixed to 0x7f.
Returns:
A list of _TextSymbolEntry instances.
Raises:
Exception: An unexpected line was detected in the input.
"""
ret = []
with open(path) as f:
for line in f:
m = re.match(r'(int(?:\[\])?) (\w+) (\w+) (.+)$', line)
if not m:
raise Exception('Unexpected line in R.txt: %s' % line)
java_type, resource_type, name, value = m.groups()
if fix_package_ids:
value = _FixPackageIds(value)
ret.append(_TextSymbolEntry(java_type, resource_type, name, value))
return ret
|
[
"def",
"_ParseTextSymbolsFile",
"(",
"path",
",",
"fix_package_ids",
"=",
"False",
")",
":",
"ret",
"=",
"[",
"]",
"with",
"open",
"(",
"path",
")",
"as",
"f",
":",
"for",
"line",
"in",
"f",
":",
"m",
"=",
"re",
".",
"match",
"(",
"r'(int(?:\\[\\])?) (\\w+) (\\w+) (.+)$'",
",",
"line",
")",
"if",
"not",
"m",
":",
"raise",
"Exception",
"(",
"'Unexpected line in R.txt: %s'",
"%",
"line",
")",
"java_type",
",",
"resource_type",
",",
"name",
",",
"value",
"=",
"m",
".",
"groups",
"(",
")",
"if",
"fix_package_ids",
":",
"value",
"=",
"_FixPackageIds",
"(",
"value",
")",
"ret",
".",
"append",
"(",
"_TextSymbolEntry",
"(",
"java_type",
",",
"resource_type",
",",
"name",
",",
"value",
")",
")",
"return",
"ret"
] |
https://github.com/klzgrad/naiveproxy/blob/ed2c513637c77b18721fe428d7ed395b4d284c83/src/build/android/gyp/util/resource_utils.py#L314-L336
|
|
benoitsteiner/tensorflow-opencl
|
cb7cb40a57fde5cfd4731bc551e82a1e2fef43a5
|
tensorflow/python/ops/array_ops.py
|
python
|
_FakeQuantWithMinMaxArgsGradient
|
(op, grad)
|
return fake_quant_with_min_max_args_gradient(
grad,
op.inputs[0],
min=op.get_attr("min"),
max=op.get_attr("max"),
num_bits=op.get_attr("num_bits"),
narrow_range=op.get_attr("narrow_range"))
|
Gradient for FakeQuantWithMinMaxArgs op.
|
Gradient for FakeQuantWithMinMaxArgs op.
|
[
"Gradient",
"for",
"FakeQuantWithMinMaxArgs",
"op",
"."
] |
def _FakeQuantWithMinMaxArgsGradient(op, grad):
"""Gradient for FakeQuantWithMinMaxArgs op."""
return fake_quant_with_min_max_args_gradient(
grad,
op.inputs[0],
min=op.get_attr("min"),
max=op.get_attr("max"),
num_bits=op.get_attr("num_bits"),
narrow_range=op.get_attr("narrow_range"))
|
[
"def",
"_FakeQuantWithMinMaxArgsGradient",
"(",
"op",
",",
"grad",
")",
":",
"return",
"fake_quant_with_min_max_args_gradient",
"(",
"grad",
",",
"op",
".",
"inputs",
"[",
"0",
"]",
",",
"min",
"=",
"op",
".",
"get_attr",
"(",
"\"min\"",
")",
",",
"max",
"=",
"op",
".",
"get_attr",
"(",
"\"max\"",
")",
",",
"num_bits",
"=",
"op",
".",
"get_attr",
"(",
"\"num_bits\"",
")",
",",
"narrow_range",
"=",
"op",
".",
"get_attr",
"(",
"\"narrow_range\"",
")",
")"
] |
https://github.com/benoitsteiner/tensorflow-opencl/blob/cb7cb40a57fde5cfd4731bc551e82a1e2fef43a5/tensorflow/python/ops/array_ops.py#L2004-L2012
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.