nwo
stringlengths
5
86
sha
stringlengths
40
40
path
stringlengths
4
189
language
stringclasses
1 value
identifier
stringlengths
1
94
parameters
stringlengths
2
4.03k
argument_list
stringclasses
1 value
return_statement
stringlengths
0
11.5k
docstring
stringlengths
1
33.2k
docstring_summary
stringlengths
0
5.15k
docstring_tokens
list
function
stringlengths
34
151k
function_tokens
list
url
stringlengths
90
278
aws/lumberyard
f85344403c1c2e77ec8c75deb2c116e97b713217
dev/Tools/AWSPythonSDK/1.5.8/docutils/frontend.py
python
read_config_file
(option, opt, value, parser)
Read a configuration file during option processing. (Option callback.)
Read a configuration file during option processing. (Option callback.)
[ "Read", "a", "configuration", "file", "during", "option", "processing", ".", "(", "Option", "callback", ".", ")" ]
def read_config_file(option, opt, value, parser): """ Read a configuration file during option processing. (Option callback.) """ try: new_settings = parser.get_config_file_settings(value) except ValueError, error: parser.error(error) parser.values.update(new_settings, parser)
[ "def", "read_config_file", "(", "option", ",", "opt", ",", "value", ",", "parser", ")", ":", "try", ":", "new_settings", "=", "parser", ".", "get_config_file_settings", "(", "value", ")", "except", "ValueError", ",", "error", ":", "parser", ".", "error", "(", "error", ")", "parser", ".", "values", ".", "update", "(", "new_settings", ",", "parser", ")" ]
https://github.com/aws/lumberyard/blob/f85344403c1c2e77ec8c75deb2c116e97b713217/dev/Tools/AWSPythonSDK/1.5.8/docutils/frontend.py#L59-L67
wxWidgets/wxPython-Classic
19571e1ae65f1ac445f5491474121998c97a1bf0
src/osx_carbon/aui.py
python
AuiDockArt.DrawPaneButton
(*args, **kwargs)
return _aui.AuiDockArt_DrawPaneButton(*args, **kwargs)
DrawPaneButton(self, DC dc, Window window, int button, int buttonState, Rect rect, AuiPaneInfo pane)
DrawPaneButton(self, DC dc, Window window, int button, int buttonState, Rect rect, AuiPaneInfo pane)
[ "DrawPaneButton", "(", "self", "DC", "dc", "Window", "window", "int", "button", "int", "buttonState", "Rect", "rect", "AuiPaneInfo", "pane", ")" ]
def DrawPaneButton(*args, **kwargs): """ DrawPaneButton(self, DC dc, Window window, int button, int buttonState, Rect rect, AuiPaneInfo pane) """ return _aui.AuiDockArt_DrawPaneButton(*args, **kwargs)
[ "def", "DrawPaneButton", "(", "*", "args", ",", "*", "*", "kwargs", ")", ":", "return", "_aui", ".", "AuiDockArt_DrawPaneButton", "(", "*", "args", ",", "*", "*", "kwargs", ")" ]
https://github.com/wxWidgets/wxPython-Classic/blob/19571e1ae65f1ac445f5491474121998c97a1bf0/src/osx_carbon/aui.py#L1018-L1023
cyberbotics/webots
af7fa7d68dcf7b4550f1f2e132092b41e83698fc
projects/humans/c3d/controllers/c3d_viewer/c3d.py
python
Manager.get
(self, group, default=None)
return group
Get a group or parameter. Parameters ---------- group : str If this string contains a period (.), then the part before the period will be used to retrieve a group, and the part after the period will be used to retrieve a parameter from that group. If this string does not contain a period, then just a group will be returned. default : any Return this value if the named group and parameter are not found. Returns ------- value : :class:`Group` or :class:`Param` Either a group or parameter with the specified name(s). If neither is found, returns the default value.
Get a group or parameter.
[ "Get", "a", "group", "or", "parameter", "." ]
def get(self, group, default=None): '''Get a group or parameter. Parameters ---------- group : str If this string contains a period (.), then the part before the period will be used to retrieve a group, and the part after the period will be used to retrieve a parameter from that group. If this string does not contain a period, then just a group will be returned. default : any Return this value if the named group and parameter are not found. Returns ------- value : :class:`Group` or :class:`Param` Either a group or parameter with the specified name(s). If neither is found, returns the default value. ''' if isinstance(group, int): return self.groups.get(group, default) group = group.upper() param = None if '.' in group: group, param = group.split('.', 1) if ':' in group: group, param = group.split(':', 1) if group not in self.groups: return default group = self.groups[group] if param is not None: return group.get(param, default) return group
[ "def", "get", "(", "self", ",", "group", ",", "default", "=", "None", ")", ":", "if", "isinstance", "(", "group", ",", "int", ")", ":", "return", "self", ".", "groups", ".", "get", "(", "group", ",", "default", ")", "group", "=", "group", ".", "upper", "(", ")", "param", "=", "None", "if", "'.'", "in", "group", ":", "group", ",", "param", "=", "group", ".", "split", "(", "'.'", ",", "1", ")", "if", "':'", "in", "group", ":", "group", ",", "param", "=", "group", ".", "split", "(", "':'", ",", "1", ")", "if", "group", "not", "in", "self", ".", "groups", ":", "return", "default", "group", "=", "self", ".", "groups", "[", "group", "]", "if", "param", "is", "not", "None", ":", "return", "group", ".", "get", "(", "param", ",", "default", ")", "return", "group" ]
https://github.com/cyberbotics/webots/blob/af7fa7d68dcf7b4550f1f2e132092b41e83698fc/projects/humans/c3d/controllers/c3d_viewer/c3d.py#L597-L630
google/fhir
d77f57706c1a168529b0b87ca7ccb1c0113e83c2
py/google/fhir/json_format/_json_printer.py
python
JsonPrinter._print_message_field
(self, field_name: str, field: descriptor.FieldDescriptor, value: Any)
Prints singular and repeated fields from a message.
Prints singular and repeated fields from a message.
[ "Prints", "singular", "and", "repeated", "fields", "from", "a", "message", "." ]
def _print_message_field(self, field_name: str, field: descriptor.FieldDescriptor, value: Any) -> None: """Prints singular and repeated fields from a message.""" self.generator.add_field(field_name) if proto_utils.field_is_repeated(field): self._print_list(cast(List[Any], value), self._print) else: self._print(cast(message.Message, value))
[ "def", "_print_message_field", "(", "self", ",", "field_name", ":", "str", ",", "field", ":", "descriptor", ".", "FieldDescriptor", ",", "value", ":", "Any", ")", "->", "None", ":", "self", ".", "generator", ".", "add_field", "(", "field_name", ")", "if", "proto_utils", ".", "field_is_repeated", "(", "field", ")", ":", "self", ".", "_print_list", "(", "cast", "(", "List", "[", "Any", "]", ",", "value", ")", ",", "self", ".", "_print", ")", "else", ":", "self", ".", "_print", "(", "cast", "(", "message", ".", "Message", ",", "value", ")", ")" ]
https://github.com/google/fhir/blob/d77f57706c1a168529b0b87ca7ccb1c0113e83c2/py/google/fhir/json_format/_json_printer.py#L303-L311
wxWidgets/wxPython-Classic
19571e1ae65f1ac445f5491474121998c97a1bf0
src/gtk/_core.py
python
GBPosition.SetCol
(*args, **kwargs)
return _core_.GBPosition_SetCol(*args, **kwargs)
SetCol(self, int col)
SetCol(self, int col)
[ "SetCol", "(", "self", "int", "col", ")" ]
def SetCol(*args, **kwargs): """SetCol(self, int col)""" return _core_.GBPosition_SetCol(*args, **kwargs)
[ "def", "SetCol", "(", "*", "args", ",", "*", "*", "kwargs", ")", ":", "return", "_core_", ".", "GBPosition_SetCol", "(", "*", "args", ",", "*", "*", "kwargs", ")" ]
https://github.com/wxWidgets/wxPython-Classic/blob/19571e1ae65f1ac445f5491474121998c97a1bf0/src/gtk/_core.py#L15584-L15586
FreeCAD/FreeCAD
ba42231b9c6889b89e064d6d563448ed81e376ec
src/Mod/Draft/draftguitools/gui_upgrade.py
python
Upgrade.proceed
(self)
Proceed with execution of the command after selection.
Proceed with execution of the command after selection.
[ "Proceed", "with", "execution", "of", "the", "command", "after", "selection", "." ]
def proceed(self): """Proceed with execution of the command after selection.""" if Gui.Selection.getSelection(): Gui.addModule("Draft") _cmd = 'Draft.upgrade' _cmd += '(' _cmd += 'FreeCADGui.Selection.getSelection(), ' _cmd += 'delete=True' _cmd += ')' _cmd_list = ['_objs_ = ' + _cmd, 'FreeCAD.ActiveDocument.recompute()'] self.commit(translate("draft", "Upgrade"), _cmd_list) self.finish()
[ "def", "proceed", "(", "self", ")", ":", "if", "Gui", ".", "Selection", ".", "getSelection", "(", ")", ":", "Gui", ".", "addModule", "(", "\"Draft\"", ")", "_cmd", "=", "'Draft.upgrade'", "_cmd", "+=", "'('", "_cmd", "+=", "'FreeCADGui.Selection.getSelection(), '", "_cmd", "+=", "'delete=True'", "_cmd", "+=", "')'", "_cmd_list", "=", "[", "'_objs_ = '", "+", "_cmd", ",", "'FreeCAD.ActiveDocument.recompute()'", "]", "self", ".", "commit", "(", "translate", "(", "\"draft\"", ",", "\"Upgrade\"", ")", ",", "_cmd_list", ")", "self", ".", "finish", "(", ")" ]
https://github.com/FreeCAD/FreeCAD/blob/ba42231b9c6889b89e064d6d563448ed81e376ec/src/Mod/Draft/draftguitools/gui_upgrade.py#L74-L87
wxWidgets/wxPython-Classic
19571e1ae65f1ac445f5491474121998c97a1bf0
src/gtk/_windows.py
python
CalculateLayoutEvent.GetFlags
(*args, **kwargs)
return _windows_.CalculateLayoutEvent_GetFlags(*args, **kwargs)
GetFlags(self) -> int
GetFlags(self) -> int
[ "GetFlags", "(", "self", ")", "-", ">", "int" ]
def GetFlags(*args, **kwargs): """GetFlags(self) -> int""" return _windows_.CalculateLayoutEvent_GetFlags(*args, **kwargs)
[ "def", "GetFlags", "(", "*", "args", ",", "*", "*", "kwargs", ")", ":", "return", "_windows_", ".", "CalculateLayoutEvent_GetFlags", "(", "*", "args", ",", "*", "*", "kwargs", ")" ]
https://github.com/wxWidgets/wxPython-Classic/blob/19571e1ae65f1ac445f5491474121998c97a1bf0/src/gtk/_windows.py#L2015-L2017
tensorflow/tensorflow
419e3a6b650ea4bd1b0cba23c4348f8a69f3272e
tensorflow/python/ops/structured/structured_tensor.py
python
StructuredTensor._from_pylist_of_value
(cls, pyval, typespec, path_so_far)
Converts python list `pyval` to a Tensor or RaggedTensor with rank>1.
Converts python list `pyval` to a Tensor or RaggedTensor with rank>1.
[ "Converts", "python", "list", "pyval", "to", "a", "Tensor", "or", "RaggedTensor", "with", "rank", ">", "1", "." ]
def _from_pylist_of_value(cls, pyval, typespec, path_so_far): """Converts python list `pyval` to a Tensor or RaggedTensor with rank>1.""" if typespec is None: try: return ragged_factory_ops.constant(pyval) except Exception as exc: raise ValueError('Error parsing path %r' % (path_so_far,)) from exc elif isinstance(typespec, tensor_spec.TensorSpec): try: result = constant_op.constant(pyval, typespec.dtype) except Exception as exc: raise ValueError('Error parsing path %r' % (path_so_far,)) from exc if not typespec.shape.is_compatible_with(result.shape): raise ValueError('Value at %r does not match typespec: %r vs %r' % (path_so_far, typespec, pyval)) return result elif isinstance(typespec, ragged_tensor.RaggedTensorSpec): # pylint: disable=protected-access try: return ragged_factory_ops.constant( pyval, dtype=typespec._dtype, ragged_rank=typespec._ragged_rank, row_splits_dtype=typespec._row_splits_dtype, inner_shape=typespec._shape[typespec._ragged_rank + 1:]) except Exception as exc: raise ValueError('Error parsing path %r' % (path_so_far,)) from exc elif isinstance(typespec, StructuredTensorSpec): empty_rank = _pyval_empty_list_depth(pyval) if empty_rank is None: raise ValueError('Value at %r does not match typespec: %r vs %r' % (path_so_far, typespec, pyval)) else: return cls._from_pylist_of_dict(pyval, set(), empty_rank, typespec, path_so_far) else: raise ValueError('Value at %r does not match typespec: %r vs %r' % (path_so_far, typespec, pyval))
[ "def", "_from_pylist_of_value", "(", "cls", ",", "pyval", ",", "typespec", ",", "path_so_far", ")", ":", "if", "typespec", "is", "None", ":", "try", ":", "return", "ragged_factory_ops", ".", "constant", "(", "pyval", ")", "except", "Exception", "as", "exc", ":", "raise", "ValueError", "(", "'Error parsing path %r'", "%", "(", "path_so_far", ",", ")", ")", "from", "exc", "elif", "isinstance", "(", "typespec", ",", "tensor_spec", ".", "TensorSpec", ")", ":", "try", ":", "result", "=", "constant_op", ".", "constant", "(", "pyval", ",", "typespec", ".", "dtype", ")", "except", "Exception", "as", "exc", ":", "raise", "ValueError", "(", "'Error parsing path %r'", "%", "(", "path_so_far", ",", ")", ")", "from", "exc", "if", "not", "typespec", ".", "shape", ".", "is_compatible_with", "(", "result", ".", "shape", ")", ":", "raise", "ValueError", "(", "'Value at %r does not match typespec: %r vs %r'", "%", "(", "path_so_far", ",", "typespec", ",", "pyval", ")", ")", "return", "result", "elif", "isinstance", "(", "typespec", ",", "ragged_tensor", ".", "RaggedTensorSpec", ")", ":", "# pylint: disable=protected-access", "try", ":", "return", "ragged_factory_ops", ".", "constant", "(", "pyval", ",", "dtype", "=", "typespec", ".", "_dtype", ",", "ragged_rank", "=", "typespec", ".", "_ragged_rank", ",", "row_splits_dtype", "=", "typespec", ".", "_row_splits_dtype", ",", "inner_shape", "=", "typespec", ".", "_shape", "[", "typespec", ".", "_ragged_rank", "+", "1", ":", "]", ")", "except", "Exception", "as", "exc", ":", "raise", "ValueError", "(", "'Error parsing path %r'", "%", "(", "path_so_far", ",", ")", ")", "from", "exc", "elif", "isinstance", "(", "typespec", ",", "StructuredTensorSpec", ")", ":", "empty_rank", "=", "_pyval_empty_list_depth", "(", "pyval", ")", "if", "empty_rank", "is", "None", ":", "raise", "ValueError", "(", "'Value at %r does not match typespec: %r vs %r'", "%", "(", "path_so_far", ",", "typespec", ",", "pyval", ")", ")", "else", ":", "return", "cls", ".", "_from_pylist_of_dict", "(", "pyval", ",", "set", "(", ")", ",", "empty_rank", ",", "typespec", ",", "path_so_far", ")", "else", ":", "raise", "ValueError", "(", "'Value at %r does not match typespec: %r vs %r'", "%", "(", "path_so_far", ",", "typespec", ",", "pyval", ")", ")" ]
https://github.com/tensorflow/tensorflow/blob/419e3a6b650ea4bd1b0cba23c4348f8a69f3272e/tensorflow/python/ops/structured/structured_tensor.py#L987-L1024
wxWidgets/wxPython-Classic
19571e1ae65f1ac445f5491474121998c97a1bf0
src/osx_carbon/html.py
python
HtmlParser.GetSource
(*args, **kwargs)
return _html.HtmlParser_GetSource(*args, **kwargs)
GetSource(self) -> String
GetSource(self) -> String
[ "GetSource", "(", "self", ")", "-", ">", "String" ]
def GetSource(*args, **kwargs): """GetSource(self) -> String""" return _html.HtmlParser_GetSource(*args, **kwargs)
[ "def", "GetSource", "(", "*", "args", ",", "*", "*", "kwargs", ")", ":", "return", "_html", ".", "HtmlParser_GetSource", "(", "*", "args", ",", "*", "*", "kwargs", ")" ]
https://github.com/wxWidgets/wxPython-Classic/blob/19571e1ae65f1ac445f5491474121998c97a1bf0/src/osx_carbon/html.py#L225-L227
catboost/catboost
167f64f237114a4d10b2b4ee42adb4569137debe
contrib/python/scipy/py3/scipy/stats/morestats.py
python
probplot
(x, sparams=(), dist='norm', fit=True, plot=None, rvalue=False)
Calculate quantiles for a probability plot, and optionally show the plot. Generates a probability plot of sample data against the quantiles of a specified theoretical distribution (the normal distribution by default). `probplot` optionally calculates a best-fit line for the data and plots the results using Matplotlib or a given plot function. Parameters ---------- x : array_like Sample/response data from which `probplot` creates the plot. sparams : tuple, optional Distribution-specific shape parameters (shape parameters plus location and scale). dist : str or stats.distributions instance, optional Distribution or distribution function name. The default is 'norm' for a normal probability plot. Objects that look enough like a stats.distributions instance (i.e. they have a ``ppf`` method) are also accepted. fit : bool, optional Fit a least-squares regression (best-fit) line to the sample data if True (default). plot : object, optional If given, plots the quantiles and least squares fit. `plot` is an object that has to have methods "plot" and "text". The `matplotlib.pyplot` module or a Matplotlib Axes object can be used, or a custom object with the same methods. Default is None, which means that no plot is created. Returns ------- (osm, osr) : tuple of ndarrays Tuple of theoretical quantiles (osm, or order statistic medians) and ordered responses (osr). `osr` is simply sorted input `x`. For details on how `osm` is calculated see the Notes section. (slope, intercept, r) : tuple of floats, optional Tuple containing the result of the least-squares fit, if that is performed by `probplot`. `r` is the square root of the coefficient of determination. If ``fit=False`` and ``plot=None``, this tuple is not returned. Notes ----- Even if `plot` is given, the figure is not shown or saved by `probplot`; ``plt.show()`` or ``plt.savefig('figname.png')`` should be used after calling `probplot`. `probplot` generates a probability plot, which should not be confused with a Q-Q or a P-P plot. Statsmodels has more extensive functionality of this type, see ``statsmodels.api.ProbPlot``. The formula used for the theoretical quantiles (horizontal axis of the probability plot) is Filliben's estimate:: quantiles = dist.ppf(val), for 0.5**(1/n), for i = n val = (i - 0.3175) / (n + 0.365), for i = 2, ..., n-1 1 - 0.5**(1/n), for i = 1 where ``i`` indicates the i-th ordered value and ``n`` is the total number of values. Examples -------- >>> from scipy import stats >>> import matplotlib.pyplot as plt >>> nsample = 100 >>> np.random.seed(7654321) A t distribution with small degrees of freedom: >>> ax1 = plt.subplot(221) >>> x = stats.t.rvs(3, size=nsample) >>> res = stats.probplot(x, plot=plt) A t distribution with larger degrees of freedom: >>> ax2 = plt.subplot(222) >>> x = stats.t.rvs(25, size=nsample) >>> res = stats.probplot(x, plot=plt) A mixture of two normal distributions with broadcasting: >>> ax3 = plt.subplot(223) >>> x = stats.norm.rvs(loc=[0,5], scale=[1,1.5], ... size=(nsample//2,2)).ravel() >>> res = stats.probplot(x, plot=plt) A standard normal distribution: >>> ax4 = plt.subplot(224) >>> x = stats.norm.rvs(loc=0, scale=1, size=nsample) >>> res = stats.probplot(x, plot=plt) Produce a new figure with a loggamma distribution, using the ``dist`` and ``sparams`` keywords: >>> fig = plt.figure() >>> ax = fig.add_subplot(111) >>> x = stats.loggamma.rvs(c=2.5, size=500) >>> res = stats.probplot(x, dist=stats.loggamma, sparams=(2.5,), plot=ax) >>> ax.set_title("Probplot for loggamma dist with shape parameter 2.5") Show the results with Matplotlib: >>> plt.show()
Calculate quantiles for a probability plot, and optionally show the plot.
[ "Calculate", "quantiles", "for", "a", "probability", "plot", "and", "optionally", "show", "the", "plot", "." ]
def probplot(x, sparams=(), dist='norm', fit=True, plot=None, rvalue=False): """ Calculate quantiles for a probability plot, and optionally show the plot. Generates a probability plot of sample data against the quantiles of a specified theoretical distribution (the normal distribution by default). `probplot` optionally calculates a best-fit line for the data and plots the results using Matplotlib or a given plot function. Parameters ---------- x : array_like Sample/response data from which `probplot` creates the plot. sparams : tuple, optional Distribution-specific shape parameters (shape parameters plus location and scale). dist : str or stats.distributions instance, optional Distribution or distribution function name. The default is 'norm' for a normal probability plot. Objects that look enough like a stats.distributions instance (i.e. they have a ``ppf`` method) are also accepted. fit : bool, optional Fit a least-squares regression (best-fit) line to the sample data if True (default). plot : object, optional If given, plots the quantiles and least squares fit. `plot` is an object that has to have methods "plot" and "text". The `matplotlib.pyplot` module or a Matplotlib Axes object can be used, or a custom object with the same methods. Default is None, which means that no plot is created. Returns ------- (osm, osr) : tuple of ndarrays Tuple of theoretical quantiles (osm, or order statistic medians) and ordered responses (osr). `osr` is simply sorted input `x`. For details on how `osm` is calculated see the Notes section. (slope, intercept, r) : tuple of floats, optional Tuple containing the result of the least-squares fit, if that is performed by `probplot`. `r` is the square root of the coefficient of determination. If ``fit=False`` and ``plot=None``, this tuple is not returned. Notes ----- Even if `plot` is given, the figure is not shown or saved by `probplot`; ``plt.show()`` or ``plt.savefig('figname.png')`` should be used after calling `probplot`. `probplot` generates a probability plot, which should not be confused with a Q-Q or a P-P plot. Statsmodels has more extensive functionality of this type, see ``statsmodels.api.ProbPlot``. The formula used for the theoretical quantiles (horizontal axis of the probability plot) is Filliben's estimate:: quantiles = dist.ppf(val), for 0.5**(1/n), for i = n val = (i - 0.3175) / (n + 0.365), for i = 2, ..., n-1 1 - 0.5**(1/n), for i = 1 where ``i`` indicates the i-th ordered value and ``n`` is the total number of values. Examples -------- >>> from scipy import stats >>> import matplotlib.pyplot as plt >>> nsample = 100 >>> np.random.seed(7654321) A t distribution with small degrees of freedom: >>> ax1 = plt.subplot(221) >>> x = stats.t.rvs(3, size=nsample) >>> res = stats.probplot(x, plot=plt) A t distribution with larger degrees of freedom: >>> ax2 = plt.subplot(222) >>> x = stats.t.rvs(25, size=nsample) >>> res = stats.probplot(x, plot=plt) A mixture of two normal distributions with broadcasting: >>> ax3 = plt.subplot(223) >>> x = stats.norm.rvs(loc=[0,5], scale=[1,1.5], ... size=(nsample//2,2)).ravel() >>> res = stats.probplot(x, plot=plt) A standard normal distribution: >>> ax4 = plt.subplot(224) >>> x = stats.norm.rvs(loc=0, scale=1, size=nsample) >>> res = stats.probplot(x, plot=plt) Produce a new figure with a loggamma distribution, using the ``dist`` and ``sparams`` keywords: >>> fig = plt.figure() >>> ax = fig.add_subplot(111) >>> x = stats.loggamma.rvs(c=2.5, size=500) >>> res = stats.probplot(x, dist=stats.loggamma, sparams=(2.5,), plot=ax) >>> ax.set_title("Probplot for loggamma dist with shape parameter 2.5") Show the results with Matplotlib: >>> plt.show() """ x = np.asarray(x) _perform_fit = fit or (plot is not None) if x.size == 0: if _perform_fit: return (x, x), (np.nan, np.nan, 0.0) else: return x, x osm_uniform = _calc_uniform_order_statistic_medians(len(x)) dist = _parse_dist_kw(dist, enforce_subclass=False) if sparams is None: sparams = () if isscalar(sparams): sparams = (sparams,) if not isinstance(sparams, tuple): sparams = tuple(sparams) osm = dist.ppf(osm_uniform, *sparams) osr = sort(x) if _perform_fit: # perform a linear least squares fit. slope, intercept, r, prob, sterrest = stats.linregress(osm, osr) if plot is not None: plot.plot(osm, osr, 'bo', osm, slope*osm + intercept, 'r-') _add_axis_labels_title(plot, xlabel='Theoretical quantiles', ylabel='Ordered Values', title='Probability Plot') # Add R^2 value to the plot as text if rvalue: xmin = amin(osm) xmax = amax(osm) ymin = amin(x) ymax = amax(x) posx = xmin + 0.70 * (xmax - xmin) posy = ymin + 0.01 * (ymax - ymin) plot.text(posx, posy, "$R^2=%1.4f$" % r**2) if fit: return (osm, osr), (slope, intercept, r) else: return osm, osr
[ "def", "probplot", "(", "x", ",", "sparams", "=", "(", ")", ",", "dist", "=", "'norm'", ",", "fit", "=", "True", ",", "plot", "=", "None", ",", "rvalue", "=", "False", ")", ":", "x", "=", "np", ".", "asarray", "(", "x", ")", "_perform_fit", "=", "fit", "or", "(", "plot", "is", "not", "None", ")", "if", "x", ".", "size", "==", "0", ":", "if", "_perform_fit", ":", "return", "(", "x", ",", "x", ")", ",", "(", "np", ".", "nan", ",", "np", ".", "nan", ",", "0.0", ")", "else", ":", "return", "x", ",", "x", "osm_uniform", "=", "_calc_uniform_order_statistic_medians", "(", "len", "(", "x", ")", ")", "dist", "=", "_parse_dist_kw", "(", "dist", ",", "enforce_subclass", "=", "False", ")", "if", "sparams", "is", "None", ":", "sparams", "=", "(", ")", "if", "isscalar", "(", "sparams", ")", ":", "sparams", "=", "(", "sparams", ",", ")", "if", "not", "isinstance", "(", "sparams", ",", "tuple", ")", ":", "sparams", "=", "tuple", "(", "sparams", ")", "osm", "=", "dist", ".", "ppf", "(", "osm_uniform", ",", "*", "sparams", ")", "osr", "=", "sort", "(", "x", ")", "if", "_perform_fit", ":", "# perform a linear least squares fit.", "slope", ",", "intercept", ",", "r", ",", "prob", ",", "sterrest", "=", "stats", ".", "linregress", "(", "osm", ",", "osr", ")", "if", "plot", "is", "not", "None", ":", "plot", ".", "plot", "(", "osm", ",", "osr", ",", "'bo'", ",", "osm", ",", "slope", "*", "osm", "+", "intercept", ",", "'r-'", ")", "_add_axis_labels_title", "(", "plot", ",", "xlabel", "=", "'Theoretical quantiles'", ",", "ylabel", "=", "'Ordered Values'", ",", "title", "=", "'Probability Plot'", ")", "# Add R^2 value to the plot as text", "if", "rvalue", ":", "xmin", "=", "amin", "(", "osm", ")", "xmax", "=", "amax", "(", "osm", ")", "ymin", "=", "amin", "(", "x", ")", "ymax", "=", "amax", "(", "x", ")", "posx", "=", "xmin", "+", "0.70", "*", "(", "xmax", "-", "xmin", ")", "posy", "=", "ymin", "+", "0.01", "*", "(", "ymax", "-", "ymin", ")", "plot", ".", "text", "(", "posx", ",", "posy", ",", "\"$R^2=%1.4f$\"", "%", "r", "**", "2", ")", "if", "fit", ":", "return", "(", "osm", ",", "osr", ")", ",", "(", "slope", ",", "intercept", ",", "r", ")", "else", ":", "return", "osm", ",", "osr" ]
https://github.com/catboost/catboost/blob/167f64f237114a4d10b2b4ee42adb4569137debe/contrib/python/scipy/py3/scipy/stats/morestats.py#L474-L627
nsnam/ns-3-dev-git
efdb2e21f45c0a87a60b47c547b68fa140a7b686
utils/grid.py
python
GraphicRenderer.get_selection_rectangle
(self)
return(x_start, y_start, x_end - x_start, y_height)
! Get Selection Rectangle @param self this object @return rectangle
! Get Selection Rectangle
[ "!", "Get", "Selection", "Rectangle" ]
def get_selection_rectangle(self): """! Get Selection Rectangle @param self this object @return rectangle """ y_start = self.__top_legend.get_height() + self.__data.get_height() + self.__mid_scale.get_height() + 20 y_height = self.__bot_scale.get_height() + 20 x_start = self.__bot_scale.get_position(self.__r_start) x_end = self.__bot_scale.get_position(self.__r_end) return(x_start, y_start, x_end - x_start, y_height)
[ "def", "get_selection_rectangle", "(", "self", ")", ":", "y_start", "=", "self", ".", "__top_legend", ".", "get_height", "(", ")", "+", "self", ".", "__data", ".", "get_height", "(", ")", "+", "self", ".", "__mid_scale", ".", "get_height", "(", ")", "+", "20", "y_height", "=", "self", ".", "__bot_scale", ".", "get_height", "(", ")", "+", "20", "x_start", "=", "self", ".", "__bot_scale", ".", "get_position", "(", "self", ".", "__r_start", ")", "x_end", "=", "self", ".", "__bot_scale", ".", "get_position", "(", "self", ".", "__r_end", ")", "return", "(", "x_start", ",", "y_start", ",", "x_end", "-", "x_start", ",", "y_height", ")" ]
https://github.com/nsnam/ns-3-dev-git/blob/efdb2e21f45c0a87a60b47c547b68fa140a7b686/utils/grid.py#L1039-L1048
macchina-io/macchina.io
ef24ba0e18379c3dd48fb84e6dbf991101cb8db0
platform/JS/V8/tools/gyp/pylib/gyp/input.py
python
BuildTargetsDict
(data)
return targets
Builds a dict mapping fully-qualified target names to their target dicts. |data| is a dict mapping loaded build files by pathname relative to the current directory. Values in |data| are build file contents. For each |data| value with a "targets" key, the value of the "targets" key is taken as a list containing target dicts. Each target's fully-qualified name is constructed from the pathname of the build file (|data| key) and its "target_name" property. These fully-qualified names are used as the keys in the returned dict. These keys provide access to the target dicts, the dicts in the "targets" lists.
Builds a dict mapping fully-qualified target names to their target dicts.
[ "Builds", "a", "dict", "mapping", "fully", "-", "qualified", "target", "names", "to", "their", "target", "dicts", "." ]
def BuildTargetsDict(data): """Builds a dict mapping fully-qualified target names to their target dicts. |data| is a dict mapping loaded build files by pathname relative to the current directory. Values in |data| are build file contents. For each |data| value with a "targets" key, the value of the "targets" key is taken as a list containing target dicts. Each target's fully-qualified name is constructed from the pathname of the build file (|data| key) and its "target_name" property. These fully-qualified names are used as the keys in the returned dict. These keys provide access to the target dicts, the dicts in the "targets" lists. """ targets = {} for build_file in data['target_build_files']: for target in data[build_file].get('targets', []): target_name = gyp.common.QualifiedTarget(build_file, target['target_name'], target['toolset']) if target_name in targets: raise GypError('Duplicate target definitions for ' + target_name) targets[target_name] = target return targets
[ "def", "BuildTargetsDict", "(", "data", ")", ":", "targets", "=", "{", "}", "for", "build_file", "in", "data", "[", "'target_build_files'", "]", ":", "for", "target", "in", "data", "[", "build_file", "]", ".", "get", "(", "'targets'", ",", "[", "]", ")", ":", "target_name", "=", "gyp", ".", "common", ".", "QualifiedTarget", "(", "build_file", ",", "target", "[", "'target_name'", "]", ",", "target", "[", "'toolset'", "]", ")", "if", "target_name", "in", "targets", ":", "raise", "GypError", "(", "'Duplicate target definitions for '", "+", "target_name", ")", "targets", "[", "target_name", "]", "=", "target", "return", "targets" ]
https://github.com/macchina-io/macchina.io/blob/ef24ba0e18379c3dd48fb84e6dbf991101cb8db0/platform/JS/V8/tools/gyp/pylib/gyp/input.py#L1333-L1356
ApolloAuto/apollo-platform
86d9dc6743b496ead18d597748ebabd34a513289
ros/third_party/lib_x86_64/python2.7/dist-packages/numpy/oldnumeric/ma.py
python
_MaskedPrintOption.set_display
(self, s)
set_display(s) sets what prints for masked values.
set_display(s) sets what prints for masked values.
[ "set_display", "(", "s", ")", "sets", "what", "prints", "for", "masked", "values", "." ]
def set_display (self, s): "set_display(s) sets what prints for masked values." self._display = s
[ "def", "set_display", "(", "self", ",", "s", ")", ":", "self", ".", "_display", "=", "s" ]
https://github.com/ApolloAuto/apollo-platform/blob/86d9dc6743b496ead18d597748ebabd34a513289/ros/third_party/lib_x86_64/python2.7/dist-packages/numpy/oldnumeric/ma.py#L69-L71
ceph/ceph
959663007321a369c83218414a29bd9dbc8bda3a
qa/tasks/rgw_multisite.py
python
create_zone
(ctx, cluster, gateways, creds, zonegroup, config)
return zone
create a zone with the given configuration
create a zone with the given configuration
[ "create", "a", "zone", "with", "the", "given", "configuration" ]
def create_zone(ctx, cluster, gateways, creds, zonegroup, config): """ create a zone with the given configuration """ zone = multisite.Zone(config['name'], zonegroup, cluster) if config.pop('is_pubsub', False): zone = PSZone(config['name'], zonegroup, cluster) else: zone = RadosZone(config['name'], zonegroup, cluster) # collect Gateways for the zone's endpoints endpoints = config.get('endpoints') if not endpoints: raise ConfigError('no \'endpoints\' for zone %s' % config['name']) zone.gateways = [gateways[role] for role in endpoints] for gateway in zone.gateways: gateway.set_zone(zone) # format the gateway endpoints endpoints = [g.endpoint() for g in zone.gateways] args = is_default_arg(config) args += is_master_arg(config) args += creds.credential_args() if len(endpoints): args += ['--endpoints', ','.join(endpoints)] zone.create(cluster, args) zonegroup.zones.append(zone) create_zone_pools(ctx, zone) if ctx.rgw.compression_type: configure_zone_compression(zone, ctx.rgw.compression_type) zonegroup.zones_by_type.setdefault(zone.tier_type(), []).append(zone) if zone.is_read_only(): zonegroup.ro_zones.append(zone) else: zonegroup.rw_zones.append(zone) return zone
[ "def", "create_zone", "(", "ctx", ",", "cluster", ",", "gateways", ",", "creds", ",", "zonegroup", ",", "config", ")", ":", "zone", "=", "multisite", ".", "Zone", "(", "config", "[", "'name'", "]", ",", "zonegroup", ",", "cluster", ")", "if", "config", ".", "pop", "(", "'is_pubsub'", ",", "False", ")", ":", "zone", "=", "PSZone", "(", "config", "[", "'name'", "]", ",", "zonegroup", ",", "cluster", ")", "else", ":", "zone", "=", "RadosZone", "(", "config", "[", "'name'", "]", ",", "zonegroup", ",", "cluster", ")", "# collect Gateways for the zone's endpoints", "endpoints", "=", "config", ".", "get", "(", "'endpoints'", ")", "if", "not", "endpoints", ":", "raise", "ConfigError", "(", "'no \\'endpoints\\' for zone %s'", "%", "config", "[", "'name'", "]", ")", "zone", ".", "gateways", "=", "[", "gateways", "[", "role", "]", "for", "role", "in", "endpoints", "]", "for", "gateway", "in", "zone", ".", "gateways", ":", "gateway", ".", "set_zone", "(", "zone", ")", "# format the gateway endpoints", "endpoints", "=", "[", "g", ".", "endpoint", "(", ")", "for", "g", "in", "zone", ".", "gateways", "]", "args", "=", "is_default_arg", "(", "config", ")", "args", "+=", "is_master_arg", "(", "config", ")", "args", "+=", "creds", ".", "credential_args", "(", ")", "if", "len", "(", "endpoints", ")", ":", "args", "+=", "[", "'--endpoints'", ",", "','", ".", "join", "(", "endpoints", ")", "]", "zone", ".", "create", "(", "cluster", ",", "args", ")", "zonegroup", ".", "zones", ".", "append", "(", "zone", ")", "create_zone_pools", "(", "ctx", ",", "zone", ")", "if", "ctx", ".", "rgw", ".", "compression_type", ":", "configure_zone_compression", "(", "zone", ",", "ctx", ".", "rgw", ".", "compression_type", ")", "zonegroup", ".", "zones_by_type", ".", "setdefault", "(", "zone", ".", "tier_type", "(", ")", ",", "[", "]", ")", ".", "append", "(", "zone", ")", "if", "zone", ".", "is_read_only", "(", ")", ":", "zonegroup", ".", "ro_zones", ".", "append", "(", "zone", ")", "else", ":", "zonegroup", ".", "rw_zones", ".", "append", "(", "zone", ")", "return", "zone" ]
https://github.com/ceph/ceph/blob/959663007321a369c83218414a29bd9dbc8bda3a/qa/tasks/rgw_multisite.py#L373-L411
aws/lumberyard
f85344403c1c2e77ec8c75deb2c116e97b713217
dev/Tools/Python/3.7.10/windows/Lib/site-packages/pip/_vendor/distlib/resources.py
python
Resource.as_stream
(self)
return self.finder.get_stream(self)
Get the resource as a stream. This is not a property to make it obvious that it returns a new stream each time.
Get the resource as a stream.
[ "Get", "the", "resource", "as", "a", "stream", "." ]
def as_stream(self): """ Get the resource as a stream. This is not a property to make it obvious that it returns a new stream each time. """ return self.finder.get_stream(self)
[ "def", "as_stream", "(", "self", ")", ":", "return", "self", ".", "finder", ".", "get_stream", "(", "self", ")" ]
https://github.com/aws/lumberyard/blob/f85344403c1c2e77ec8c75deb2c116e97b713217/dev/Tools/Python/3.7.10/windows/Lib/site-packages/pip/_vendor/distlib/resources.py#L86-L93
apiaryio/snowcrash
b5b39faa85f88ee17459edf39fdc6fe4fc70d2e3
tools/gyp/pylib/gyp/generator/analyzer.py
python
_AddSources
(sources, base_path, base_path_components, result)
Extracts valid sources from |sources| and adds them to |result|. Each source file is relative to |base_path|, but may contain '..'. To make resolving '..' easier |base_path_components| contains each of the directories in |base_path|. Additionally each source may contain variables. Such sources are ignored as it is assumed dependencies on them are expressed and tracked in some other means.
Extracts valid sources from |sources| and adds them to |result|. Each source file is relative to |base_path|, but may contain '..'. To make resolving '..' easier |base_path_components| contains each of the directories in |base_path|. Additionally each source may contain variables. Such sources are ignored as it is assumed dependencies on them are expressed and tracked in some other means.
[ "Extracts", "valid", "sources", "from", "|sources|", "and", "adds", "them", "to", "|result|", ".", "Each", "source", "file", "is", "relative", "to", "|base_path|", "but", "may", "contain", "..", ".", "To", "make", "resolving", "..", "easier", "|base_path_components|", "contains", "each", "of", "the", "directories", "in", "|base_path|", ".", "Additionally", "each", "source", "may", "contain", "variables", ".", "Such", "sources", "are", "ignored", "as", "it", "is", "assumed", "dependencies", "on", "them", "are", "expressed", "and", "tracked", "in", "some", "other", "means", "." ]
def _AddSources(sources, base_path, base_path_components, result): """Extracts valid sources from |sources| and adds them to |result|. Each source file is relative to |base_path|, but may contain '..'. To make resolving '..' easier |base_path_components| contains each of the directories in |base_path|. Additionally each source may contain variables. Such sources are ignored as it is assumed dependencies on them are expressed and tracked in some other means.""" # NOTE: gyp paths are always posix style. for source in sources: if not len(source) or source.startswith('!!!') or source.startswith('$'): continue # variable expansion may lead to //. org_source = source source = source[0] + source[1:].replace('//', '/') if source.startswith('../'): source = _ResolveParent(source, base_path_components) if len(source): result.append(source) continue result.append(base_path + source) if debug: print 'AddSource', org_source, result[len(result) - 1]
[ "def", "_AddSources", "(", "sources", ",", "base_path", ",", "base_path_components", ",", "result", ")", ":", "# NOTE: gyp paths are always posix style.", "for", "source", "in", "sources", ":", "if", "not", "len", "(", "source", ")", "or", "source", ".", "startswith", "(", "'!!!'", ")", "or", "source", ".", "startswith", "(", "'$'", ")", ":", "continue", "# variable expansion may lead to //.", "org_source", "=", "source", "source", "=", "source", "[", "0", "]", "+", "source", "[", "1", ":", "]", ".", "replace", "(", "'//'", ",", "'/'", ")", "if", "source", ".", "startswith", "(", "'../'", ")", ":", "source", "=", "_ResolveParent", "(", "source", ",", "base_path_components", ")", "if", "len", "(", "source", ")", ":", "result", ".", "append", "(", "source", ")", "continue", "result", ".", "append", "(", "base_path", "+", "source", ")", "if", "debug", ":", "print", "'AddSource'", ",", "org_source", ",", "result", "[", "len", "(", "result", ")", "-", "1", "]" ]
https://github.com/apiaryio/snowcrash/blob/b5b39faa85f88ee17459edf39fdc6fe4fc70d2e3/tools/gyp/pylib/gyp/generator/analyzer.py#L137-L158
eventql/eventql
7ca0dbb2e683b525620ea30dc40540a22d5eb227
deps/3rdparty/spidermonkey/mozjs/media/webrtc/trunk/tools/gyp/pylib/gyp/generator/make.py
python
EscapeCppDefine
(s)
return s.replace('#', r'\#')
Escapes a CPP define so that it will reach the compiler unaltered.
Escapes a CPP define so that it will reach the compiler unaltered.
[ "Escapes", "a", "CPP", "define", "so", "that", "it", "will", "reach", "the", "compiler", "unaltered", "." ]
def EscapeCppDefine(s): """Escapes a CPP define so that it will reach the compiler unaltered.""" s = EscapeShellArgument(s) s = EscapeMakeVariableExpansion(s) # '#' characters must be escaped even embedded in a string, else Make will # treat it as the start of a comment. return s.replace('#', r'\#')
[ "def", "EscapeCppDefine", "(", "s", ")", ":", "s", "=", "EscapeShellArgument", "(", "s", ")", "s", "=", "EscapeMakeVariableExpansion", "(", "s", ")", "# '#' characters must be escaped even embedded in a string, else Make will", "# treat it as the start of a comment.", "return", "s", ".", "replace", "(", "'#'", ",", "r'\\#'", ")" ]
https://github.com/eventql/eventql/blob/7ca0dbb2e683b525620ea30dc40540a22d5eb227/deps/3rdparty/spidermonkey/mozjs/media/webrtc/trunk/tools/gyp/pylib/gyp/generator/make.py#L586-L592
TheLegendAli/DeepLab-Context
fb04e9e2fc2682490ad9f60533b9d6c4c0e0479c
scripts/cpp_lint.py
python
FileInfo.FullName
(self)
return os.path.abspath(self._filename).replace('\\', '/')
Make Windows paths like Unix.
Make Windows paths like Unix.
[ "Make", "Windows", "paths", "like", "Unix", "." ]
def FullName(self): """Make Windows paths like Unix.""" return os.path.abspath(self._filename).replace('\\', '/')
[ "def", "FullName", "(", "self", ")", ":", "return", "os", ".", "path", ".", "abspath", "(", "self", ".", "_filename", ")", ".", "replace", "(", "'\\\\'", ",", "'/'", ")" ]
https://github.com/TheLegendAli/DeepLab-Context/blob/fb04e9e2fc2682490ad9f60533b9d6c4c0e0479c/scripts/cpp_lint.py#L881-L883
su2code/SU2
72b2fa977b64b9683a388920f05298a40d39e5c5
SU2_PY/SU2/util/ordered_bunch.py
python
OrderedBunch.__delattr__
(self, k)
Deletes attribute k if it exists, otherwise deletes key k. A KeyError raised by deleting the key--such as when the key is missing--will propagate as an AttributeError instead. >>> b = OrderedBunch(lol=42) >>> del b.values Traceback (most recent call last): ... AttributeError: 'OrderedBunch' object attribute 'values' is read-only >>> del b.lol >>> b.lol Traceback (most recent call last): ... AttributeError: lol
Deletes attribute k if it exists, otherwise deletes key k. A KeyError raised by deleting the key--such as when the key is missing--will propagate as an AttributeError instead. >>> b = OrderedBunch(lol=42) >>> del b.values Traceback (most recent call last): ... AttributeError: 'OrderedBunch' object attribute 'values' is read-only >>> del b.lol >>> b.lol Traceback (most recent call last): ... AttributeError: lol
[ "Deletes", "attribute", "k", "if", "it", "exists", "otherwise", "deletes", "key", "k", ".", "A", "KeyError", "raised", "by", "deleting", "the", "key", "--", "such", "as", "when", "the", "key", "is", "missing", "--", "will", "propagate", "as", "an", "AttributeError", "instead", ".", ">>>", "b", "=", "OrderedBunch", "(", "lol", "=", "42", ")", ">>>", "del", "b", ".", "values", "Traceback", "(", "most", "recent", "call", "last", ")", ":", "...", "AttributeError", ":", "OrderedBunch", "object", "attribute", "values", "is", "read", "-", "only", ">>>", "del", "b", ".", "lol", ">>>", "b", ".", "lol", "Traceback", "(", "most", "recent", "call", "last", ")", ":", "...", "AttributeError", ":", "lol" ]
def __delattr__(self, k): """ Deletes attribute k if it exists, otherwise deletes key k. A KeyError raised by deleting the key--such as when the key is missing--will propagate as an AttributeError instead. >>> b = OrderedBunch(lol=42) >>> del b.values Traceback (most recent call last): ... AttributeError: 'OrderedBunch' object attribute 'values' is read-only >>> del b.lol >>> b.lol Traceback (most recent call last): ... AttributeError: lol """ try: # Throws exception if not in prototype chain object.__getattribute__(self, k) except AttributeError: try: del self[k] except KeyError: raise AttributeError(k) else: object.__delattr__(self, k)
[ "def", "__delattr__", "(", "self", ",", "k", ")", ":", "try", ":", "# Throws exception if not in prototype chain", "object", ".", "__getattribute__", "(", "self", ",", "k", ")", "except", "AttributeError", ":", "try", ":", "del", "self", "[", "k", "]", "except", "KeyError", ":", "raise", "AttributeError", "(", "k", ")", "else", ":", "object", ".", "__delattr__", "(", "self", ",", "k", ")" ]
https://github.com/su2code/SU2/blob/72b2fa977b64b9683a388920f05298a40d39e5c5/SU2_PY/SU2/util/ordered_bunch.py#L169-L194
SoarGroup/Soar
a1c5e249499137a27da60533c72969eef3b8ab6b
scons/scons-local-4.1.0/SCons/Tool/dvipdf.py
python
DviPdfPsFunction
(XXXDviAction, target = None, source= None, env=None)
return result
A builder for DVI files that sets the TEXPICTS environment variable before running dvi2ps or dvipdf.
A builder for DVI files that sets the TEXPICTS environment variable before running dvi2ps or dvipdf.
[ "A", "builder", "for", "DVI", "files", "that", "sets", "the", "TEXPICTS", "environment", "variable", "before", "running", "dvi2ps", "or", "dvipdf", "." ]
def DviPdfPsFunction(XXXDviAction, target = None, source= None, env=None): """A builder for DVI files that sets the TEXPICTS environment variable before running dvi2ps or dvipdf.""" try: abspath = source[0].attributes.path except AttributeError : abspath = '' saved_env = SCons.Scanner.LaTeX.modify_env_var(env, 'TEXPICTS', abspath) result = XXXDviAction(target, source, env) if saved_env is _null: try: del env['ENV']['TEXPICTS'] except KeyError: pass # was never set else: env['ENV']['TEXPICTS'] = saved_env return result
[ "def", "DviPdfPsFunction", "(", "XXXDviAction", ",", "target", "=", "None", ",", "source", "=", "None", ",", "env", "=", "None", ")", ":", "try", ":", "abspath", "=", "source", "[", "0", "]", ".", "attributes", ".", "path", "except", "AttributeError", ":", "abspath", "=", "''", "saved_env", "=", "SCons", ".", "Scanner", ".", "LaTeX", ".", "modify_env_var", "(", "env", ",", "'TEXPICTS'", ",", "abspath", ")", "result", "=", "XXXDviAction", "(", "target", ",", "source", ",", "env", ")", "if", "saved_env", "is", "_null", ":", "try", ":", "del", "env", "[", "'ENV'", "]", "[", "'TEXPICTS'", "]", "except", "KeyError", ":", "pass", "# was never set", "else", ":", "env", "[", "'ENV'", "]", "[", "'TEXPICTS'", "]", "=", "saved_env", "return", "result" ]
https://github.com/SoarGroup/Soar/blob/a1c5e249499137a27da60533c72969eef3b8ab6b/scons/scons-local-4.1.0/SCons/Tool/dvipdf.py#L43-L64
PaddlePaddle/Paddle
1252f4bb3e574df80aa6d18c7ddae1b3a90bd81c
python/paddle/tensor/einsum.py
python
build_view
(in_labels, out_labels)
return inv_map
Build an inverse map of dimension indices. Three conditions must hold for the result to be meaningful. First, no duplicate letter labels in each label string. Second, the number of dots in dimout_labels >= that in in_labels. Third, dots are contiguous in each label string. Parameters ---------- in_labels: The dimension labels to map to out_labels: The dimension labels to map from Returns ------- The inverse map from out_labels to in_labels. The length of the inverse map equals that of out_labels. -1 is filled if there's no matching intput dimension for a specific label. Examples -------- in_labels = 'ij..', out_labels = '..ji' inv_map = [2, 3, 1, 0] in_labels = 'ij..', out_labels = '..kji' inv_map = [2, 3, -1, 1, 0]
Build an inverse map of dimension indices. Three conditions must hold for the result to be meaningful. First, no duplicate letter labels in each label string. Second, the number of dots in dimout_labels >= that in in_labels. Third, dots are contiguous in each label string.
[ "Build", "an", "inverse", "map", "of", "dimension", "indices", ".", "Three", "conditions", "must", "hold", "for", "the", "result", "to", "be", "meaningful", ".", "First", "no", "duplicate", "letter", "labels", "in", "each", "label", "string", ".", "Second", "the", "number", "of", "dots", "in", "dimout_labels", ">", "=", "that", "in", "in_labels", ".", "Third", "dots", "are", "contiguous", "in", "each", "label", "string", "." ]
def build_view(in_labels, out_labels): ''' Build an inverse map of dimension indices. Three conditions must hold for the result to be meaningful. First, no duplicate letter labels in each label string. Second, the number of dots in dimout_labels >= that in in_labels. Third, dots are contiguous in each label string. Parameters ---------- in_labels: The dimension labels to map to out_labels: The dimension labels to map from Returns ------- The inverse map from out_labels to in_labels. The length of the inverse map equals that of out_labels. -1 is filled if there's no matching intput dimension for a specific label. Examples -------- in_labels = 'ij..', out_labels = '..ji' inv_map = [2, 3, 1, 0] in_labels = 'ij..', out_labels = '..kji' inv_map = [2, 3, -1, 1, 0] ''' inv_map = [-1] * len(out_labels) # First build the broadcast dimension mapping # Find the broadcast index range in out_labels r = re.search(r'\.+', out_labels) if r: start, end = r.start(), r.end() s = re.search(r'\.+', in_labels) # fill the broadcast dimension indices from right to left. if s: for ax, dim in zip( range(start, end)[::-1], range(s.start(), s.end())[::-1]): inv_map[ax] = dim # Now work on non-broadcast dimensions if r: it = itertools.chain(range(start), range(end, len(out_labels))) else: it = iter(range(len(out_labels))) for i in it: inv_map[i] = in_labels.find(out_labels[i]) return inv_map
[ "def", "build_view", "(", "in_labels", ",", "out_labels", ")", ":", "inv_map", "=", "[", "-", "1", "]", "*", "len", "(", "out_labels", ")", "# First build the broadcast dimension mapping", "# Find the broadcast index range in out_labels", "r", "=", "re", ".", "search", "(", "r'\\.+'", ",", "out_labels", ")", "if", "r", ":", "start", ",", "end", "=", "r", ".", "start", "(", ")", ",", "r", ".", "end", "(", ")", "s", "=", "re", ".", "search", "(", "r'\\.+'", ",", "in_labels", ")", "# fill the broadcast dimension indices from right to left.", "if", "s", ":", "for", "ax", ",", "dim", "in", "zip", "(", "range", "(", "start", ",", "end", ")", "[", ":", ":", "-", "1", "]", ",", "range", "(", "s", ".", "start", "(", ")", ",", "s", ".", "end", "(", ")", ")", "[", ":", ":", "-", "1", "]", ")", ":", "inv_map", "[", "ax", "]", "=", "dim", "# Now work on non-broadcast dimensions ", "if", "r", ":", "it", "=", "itertools", ".", "chain", "(", "range", "(", "start", ")", ",", "range", "(", "end", ",", "len", "(", "out_labels", ")", ")", ")", "else", ":", "it", "=", "iter", "(", "range", "(", "len", "(", "out_labels", ")", ")", ")", "for", "i", "in", "it", ":", "inv_map", "[", "i", "]", "=", "in_labels", ".", "find", "(", "out_labels", "[", "i", "]", ")", "return", "inv_map" ]
https://github.com/PaddlePaddle/Paddle/blob/1252f4bb3e574df80aa6d18c7ddae1b3a90bd81c/python/paddle/tensor/einsum.py#L145-L196
wxWidgets/wxPython-Classic
19571e1ae65f1ac445f5491474121998c97a1bf0
src/gtk/_controls.py
python
ComboBox.Create
(*args, **kwargs)
return _controls_.ComboBox_Create(*args, **kwargs)
Create(Window parent, int id=-1, String value=EmptyString, Point pos=DefaultPosition, Size size=DefaultSize, List choices=EmptyList, long style=0, Validator validator=DefaultValidator, String name=ChoiceNameStr) -> bool Actually create the GUI wxComboBox control for 2-phase creation
Create(Window parent, int id=-1, String value=EmptyString, Point pos=DefaultPosition, Size size=DefaultSize, List choices=EmptyList, long style=0, Validator validator=DefaultValidator, String name=ChoiceNameStr) -> bool
[ "Create", "(", "Window", "parent", "int", "id", "=", "-", "1", "String", "value", "=", "EmptyString", "Point", "pos", "=", "DefaultPosition", "Size", "size", "=", "DefaultSize", "List", "choices", "=", "EmptyList", "long", "style", "=", "0", "Validator", "validator", "=", "DefaultValidator", "String", "name", "=", "ChoiceNameStr", ")", "-", ">", "bool" ]
def Create(*args, **kwargs): """ Create(Window parent, int id=-1, String value=EmptyString, Point pos=DefaultPosition, Size size=DefaultSize, List choices=EmptyList, long style=0, Validator validator=DefaultValidator, String name=ChoiceNameStr) -> bool Actually create the GUI wxComboBox control for 2-phase creation """ return _controls_.ComboBox_Create(*args, **kwargs)
[ "def", "Create", "(", "*", "args", ",", "*", "*", "kwargs", ")", ":", "return", "_controls_", ".", "ComboBox_Create", "(", "*", "args", ",", "*", "*", "kwargs", ")" ]
https://github.com/wxWidgets/wxPython-Classic/blob/19571e1ae65f1ac445f5491474121998c97a1bf0/src/gtk/_controls.py#L600-L609
aws/lumberyard
f85344403c1c2e77ec8c75deb2c116e97b713217
dev/Gems/CloudGemMetric/v1/AWS/common-code/Lib/numpy/lib/scimath.py
python
logn
(n, x)
return nx.log(x)/nx.log(n)
Take log base n of x. If `x` contains negative inputs, the answer is computed and returned in the complex domain. Parameters ---------- n : array_like The integer base(s) in which the log is taken. x : array_like The value(s) whose log base `n` is (are) required. Returns ------- out : ndarray or scalar The log base `n` of the `x` value(s). If `x` was a scalar, so is `out`, otherwise an array is returned. Examples -------- >>> np.set_printoptions(precision=4) >>> np.lib.scimath.logn(2, [4, 8]) array([2., 3.]) >>> np.lib.scimath.logn(2, [-4, -8, 8]) array([2.+4.5324j, 3.+4.5324j, 3.+0.j ])
Take log base n of x.
[ "Take", "log", "base", "n", "of", "x", "." ]
def logn(n, x): """ Take log base n of x. If `x` contains negative inputs, the answer is computed and returned in the complex domain. Parameters ---------- n : array_like The integer base(s) in which the log is taken. x : array_like The value(s) whose log base `n` is (are) required. Returns ------- out : ndarray or scalar The log base `n` of the `x` value(s). If `x` was a scalar, so is `out`, otherwise an array is returned. Examples -------- >>> np.set_printoptions(precision=4) >>> np.lib.scimath.logn(2, [4, 8]) array([2., 3.]) >>> np.lib.scimath.logn(2, [-4, -8, 8]) array([2.+4.5324j, 3.+4.5324j, 3.+0.j ]) """ x = _fix_real_lt_zero(x) n = _fix_real_lt_zero(n) return nx.log(x)/nx.log(n)
[ "def", "logn", "(", "n", ",", "x", ")", ":", "x", "=", "_fix_real_lt_zero", "(", "x", ")", "n", "=", "_fix_real_lt_zero", "(", "n", ")", "return", "nx", ".", "log", "(", "x", ")", "/", "nx", ".", "log", "(", "n", ")" ]
https://github.com/aws/lumberyard/blob/f85344403c1c2e77ec8c75deb2c116e97b713217/dev/Gems/CloudGemMetric/v1/AWS/common-code/Lib/numpy/lib/scimath.py#L332-L364
aws/lumberyard
f85344403c1c2e77ec8c75deb2c116e97b713217
dev/Gems/CloudGemMetric/v1/AWS/python/windows/Lib/numba/dataflow.py
python
BlockInfo.make_incoming
(self)
return ret
Create an incoming variable (due to not enough values being available on our stack) and request its assignment from our incoming blocks' own stacks.
Create an incoming variable (due to not enough values being available on our stack) and request its assignment from our incoming blocks' own stacks.
[ "Create", "an", "incoming", "variable", "(", "due", "to", "not", "enough", "values", "being", "available", "on", "our", "stack", ")", "and", "request", "its", "assignment", "from", "our", "incoming", "blocks", "own", "stacks", "." ]
def make_incoming(self): """ Create an incoming variable (due to not enough values being available on our stack) and request its assignment from our incoming blocks' own stacks. """ assert self.incoming_blocks ret = self.make_temp('phi') for ib in self.incoming_blocks: stack_index = self.stack_offset + self.stack_effect ib.request_outgoing(self, ret, stack_index) return ret
[ "def", "make_incoming", "(", "self", ")", ":", "assert", "self", ".", "incoming_blocks", "ret", "=", "self", ".", "make_temp", "(", "'phi'", ")", "for", "ib", "in", "self", ".", "incoming_blocks", ":", "stack_index", "=", "self", ".", "stack_offset", "+", "self", ".", "stack_effect", "ib", ".", "request_outgoing", "(", "self", ",", "ret", ",", "stack_index", ")", "return", "ret" ]
https://github.com/aws/lumberyard/blob/f85344403c1c2e77ec8c75deb2c116e97b713217/dev/Gems/CloudGemMetric/v1/AWS/python/windows/Lib/numba/dataflow.py#L873-L884
savoirfairelinux/jami-daemon
7634487e9f568ae727f2d4cffbb735d23fa0324c
tools/jamictrl/controller.py
python
DRingCtrl.setActiveCodecList
(self, account=None, codec_list='')
Activate given codecs on an account. If no account is provided, active account is used
Activate given codecs on an account. If no account is provided, active account is used
[ "Activate", "given", "codecs", "on", "an", "account", ".", "If", "no", "account", "is", "provided", "active", "account", "is", "used" ]
def setActiveCodecList(self, account=None, codec_list=''): """Activate given codecs on an account. If no account is provided, active account is used""" account = self._valid_account(account) if self.isAccountExists(account): codec_list = [dbus.UInt32(x) for x in codec_list.split(',')] self.configurationmanager.setActiveCodecList(account, codec_list)
[ "def", "setActiveCodecList", "(", "self", ",", "account", "=", "None", ",", "codec_list", "=", "''", ")", ":", "account", "=", "self", ".", "_valid_account", "(", "account", ")", "if", "self", ".", "isAccountExists", "(", "account", ")", ":", "codec_list", "=", "[", "dbus", ".", "UInt32", "(", "x", ")", "for", "x", "in", "codec_list", ".", "split", "(", "','", ")", "]", "self", ".", "configurationmanager", ".", "setActiveCodecList", "(", "account", ",", "codec_list", ")" ]
https://github.com/savoirfairelinux/jami-daemon/blob/7634487e9f568ae727f2d4cffbb735d23fa0324c/tools/jamictrl/controller.py#L386-L392
aws/lumberyard
f85344403c1c2e77ec8c75deb2c116e97b713217
dev/Gems/CloudGemDefectReporter/v1/AWS/common-code/Lib/pkg_resources/__init__.py
python
ResourceManager._warn_unsafe_extraction_path
(path)
If the default extraction path is overridden and set to an insecure location, such as /tmp, it opens up an opportunity for an attacker to replace an extracted file with an unauthorized payload. Warn the user if a known insecure location is used. See Distribute #375 for more details.
If the default extraction path is overridden and set to an insecure location, such as /tmp, it opens up an opportunity for an attacker to replace an extracted file with an unauthorized payload. Warn the user if a known insecure location is used.
[ "If", "the", "default", "extraction", "path", "is", "overridden", "and", "set", "to", "an", "insecure", "location", "such", "as", "/", "tmp", "it", "opens", "up", "an", "opportunity", "for", "an", "attacker", "to", "replace", "an", "extracted", "file", "with", "an", "unauthorized", "payload", ".", "Warn", "the", "user", "if", "a", "known", "insecure", "location", "is", "used", "." ]
def _warn_unsafe_extraction_path(path): """ If the default extraction path is overridden and set to an insecure location, such as /tmp, it opens up an opportunity for an attacker to replace an extracted file with an unauthorized payload. Warn the user if a known insecure location is used. See Distribute #375 for more details. """ if os.name == 'nt' and not path.startswith(os.environ['windir']): # On Windows, permissions are generally restrictive by default # and temp directories are not writable by other users, so # bypass the warning. return mode = os.stat(path).st_mode if mode & stat.S_IWOTH or mode & stat.S_IWGRP: msg = ( "%s is writable by group/others and vulnerable to attack " "when " "used with get_resource_filename. Consider a more secure " "location (set with .set_extraction_path or the " "PYTHON_EGG_CACHE environment variable)." % path ) warnings.warn(msg, UserWarning)
[ "def", "_warn_unsafe_extraction_path", "(", "path", ")", ":", "if", "os", ".", "name", "==", "'nt'", "and", "not", "path", ".", "startswith", "(", "os", ".", "environ", "[", "'windir'", "]", ")", ":", "# On Windows, permissions are generally restrictive by default", "# and temp directories are not writable by other users, so", "# bypass the warning.", "return", "mode", "=", "os", ".", "stat", "(", "path", ")", ".", "st_mode", "if", "mode", "&", "stat", ".", "S_IWOTH", "or", "mode", "&", "stat", ".", "S_IWGRP", ":", "msg", "=", "(", "\"%s is writable by group/others and vulnerable to attack \"", "\"when \"", "\"used with get_resource_filename. Consider a more secure \"", "\"location (set with .set_extraction_path or the \"", "\"PYTHON_EGG_CACHE environment variable).\"", "%", "path", ")", "warnings", ".", "warn", "(", "msg", ",", "UserWarning", ")" ]
https://github.com/aws/lumberyard/blob/f85344403c1c2e77ec8c75deb2c116e97b713217/dev/Gems/CloudGemDefectReporter/v1/AWS/common-code/Lib/pkg_resources/__init__.py#L1301-L1324
aws/lumberyard
f85344403c1c2e77ec8c75deb2c116e97b713217
dev/Tools/Python/3.7.10/mac/Python.framework/Versions/3.7/lib/python3.7/site-packages/botocore/handlers.py
python
validate_ascii_metadata
(params, **kwargs)
Verify S3 Metadata only contains ascii characters. From: http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingMetadata.html "Amazon S3 stores user-defined metadata in lowercase. Each name, value pair must conform to US-ASCII when using REST and UTF-8 when using SOAP or browser-based uploads via POST."
Verify S3 Metadata only contains ascii characters.
[ "Verify", "S3", "Metadata", "only", "contains", "ascii", "characters", "." ]
def validate_ascii_metadata(params, **kwargs): """Verify S3 Metadata only contains ascii characters. From: http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingMetadata.html "Amazon S3 stores user-defined metadata in lowercase. Each name, value pair must conform to US-ASCII when using REST and UTF-8 when using SOAP or browser-based uploads via POST." """ metadata = params.get('Metadata') if not metadata or not isinstance(metadata, dict): # We have to at least type check the metadata as a dict type # because this handler is called before param validation. # We'll go ahead and return because the param validator will # give a descriptive error message for us. # We might need a post-param validation event. return for key, value in metadata.items(): try: key.encode('ascii') value.encode('ascii') except UnicodeEncodeError as e: error_msg = ( 'Non ascii characters found in S3 metadata ' 'for key "%s", value: "%s". \nS3 metadata can only ' 'contain ASCII characters. ' % (key, value) ) raise ParamValidationError( report=error_msg)
[ "def", "validate_ascii_metadata", "(", "params", ",", "*", "*", "kwargs", ")", ":", "metadata", "=", "params", ".", "get", "(", "'Metadata'", ")", "if", "not", "metadata", "or", "not", "isinstance", "(", "metadata", ",", "dict", ")", ":", "# We have to at least type check the metadata as a dict type", "# because this handler is called before param validation.", "# We'll go ahead and return because the param validator will", "# give a descriptive error message for us.", "# We might need a post-param validation event.", "return", "for", "key", ",", "value", "in", "metadata", ".", "items", "(", ")", ":", "try", ":", "key", ".", "encode", "(", "'ascii'", ")", "value", ".", "encode", "(", "'ascii'", ")", "except", "UnicodeEncodeError", "as", "e", ":", "error_msg", "=", "(", "'Non ascii characters found in S3 metadata '", "'for key \"%s\", value: \"%s\". \\nS3 metadata can only '", "'contain ASCII characters. '", "%", "(", "key", ",", "value", ")", ")", "raise", "ParamValidationError", "(", "report", "=", "error_msg", ")" ]
https://github.com/aws/lumberyard/blob/f85344403c1c2e77ec8c75deb2c116e97b713217/dev/Tools/Python/3.7.10/mac/Python.framework/Versions/3.7/lib/python3.7/site-packages/botocore/handlers.py#L517-L546
aws/lumberyard
f85344403c1c2e77ec8c75deb2c116e97b713217
dev/Tools/Python/3.7.10/windows/Lib/idlelib/config.py
python
IdleConf.GetCurrentKeySet
(self)
return result
Return CurrentKeys with 'darwin' modifications.
Return CurrentKeys with 'darwin' modifications.
[ "Return", "CurrentKeys", "with", "darwin", "modifications", "." ]
def GetCurrentKeySet(self): "Return CurrentKeys with 'darwin' modifications." result = self.GetKeySet(self.CurrentKeys()) if sys.platform == "darwin": # macOS (OS X) Tk variants do not support the "Alt" # keyboard modifier. Replace it with "Option". # TODO (Ned?): the "Option" modifier does not work properly # for Cocoa Tk and XQuartz Tk so we should not use it # in the default 'OSX' keyset. for k, v in result.items(): v2 = [ x.replace('<Alt-', '<Option-') for x in v ] if v != v2: result[k] = v2 return result
[ "def", "GetCurrentKeySet", "(", "self", ")", ":", "result", "=", "self", ".", "GetKeySet", "(", "self", ".", "CurrentKeys", "(", ")", ")", "if", "sys", ".", "platform", "==", "\"darwin\"", ":", "# macOS (OS X) Tk variants do not support the \"Alt\"", "# keyboard modifier. Replace it with \"Option\".", "# TODO (Ned?): the \"Option\" modifier does not work properly", "# for Cocoa Tk and XQuartz Tk so we should not use it", "# in the default 'OSX' keyset.", "for", "k", ",", "v", "in", "result", ".", "items", "(", ")", ":", "v2", "=", "[", "x", ".", "replace", "(", "'<Alt-'", ",", "'<Option-'", ")", "for", "x", "in", "v", "]", "if", "v", "!=", "v2", ":", "result", "[", "k", "]", "=", "v2", "return", "result" ]
https://github.com/aws/lumberyard/blob/f85344403c1c2e77ec8c75deb2c116e97b713217/dev/Tools/Python/3.7.10/windows/Lib/idlelib/config.py#L538-L553
smartdevicelink/sdl_core
68f082169e0a40fccd9eb0db3c83911c28870f07
tools/InterfaceGenerator/generator/generators/SmartFactoryBase.py
python
CodeGenerator._gen_schema_item_fill
(self, member, since, until, deprecated, removed)
Generate schema item fill code. Generates source code that fills new schema with item. Keyword arguments: member -- struct member/function parameter to process. Returns: String with schema item fill code.
Generate schema item fill code.
[ "Generate", "schema", "item", "fill", "code", "." ]
def _gen_schema_item_fill(self, member, since, until, deprecated, removed): """Generate schema item fill code. Generates source code that fills new schema with item. Keyword arguments: member -- struct member/function parameter to process. Returns: String with schema item fill code. """ self._check_member_history(member) if (since is not None or member.since is not None): if member.history is not None: return self._impl_code_item_fill_template_with_version_and_history_vector.substitute( name=member.name, var_name=self._gen_schema_item_var_name(member), is_mandatory=u"true" if member.is_mandatory is True else u"false", since=member.since if member.since is not None else since if since is not None else "", until=member.until if member.until is not None else until if until is not None else "", deprecated=member.deprecated if member.deprecated is not None else deprecated if deprecated is not None else u"false", removed=member.removed if member.removed is not None else removed if removed is not None else u"false", vector_name=member.name) else: return self._impl_code_item_fill_template_with_version.substitute( name=member.name, var_name=self._gen_schema_item_var_name(member), is_mandatory=u"true" if member.is_mandatory is True else u"false", since=member.since if member.since is not None else since if since is not None else "", until=member.until if member.until is not None else until if until is not None else "", deprecated=member.deprecated if member.deprecated is not None else deprecated if deprecated is not None else u"false", removed=member.removed if member.removed is not None else removed if removed is not None else u"false") else: return self._impl_code_item_fill_template.substitute( name=member.name, var_name=self._gen_schema_item_var_name(member), is_mandatory=u"true" if member.is_mandatory is True else u"false")
[ "def", "_gen_schema_item_fill", "(", "self", ",", "member", ",", "since", ",", "until", ",", "deprecated", ",", "removed", ")", ":", "self", ".", "_check_member_history", "(", "member", ")", "if", "(", "since", "is", "not", "None", "or", "member", ".", "since", "is", "not", "None", ")", ":", "if", "member", ".", "history", "is", "not", "None", ":", "return", "self", ".", "_impl_code_item_fill_template_with_version_and_history_vector", ".", "substitute", "(", "name", "=", "member", ".", "name", ",", "var_name", "=", "self", ".", "_gen_schema_item_var_name", "(", "member", ")", ",", "is_mandatory", "=", "u\"true\"", "if", "member", ".", "is_mandatory", "is", "True", "else", "u\"false\"", ",", "since", "=", "member", ".", "since", "if", "member", ".", "since", "is", "not", "None", "else", "since", "if", "since", "is", "not", "None", "else", "\"\"", ",", "until", "=", "member", ".", "until", "if", "member", ".", "until", "is", "not", "None", "else", "until", "if", "until", "is", "not", "None", "else", "\"\"", ",", "deprecated", "=", "member", ".", "deprecated", "if", "member", ".", "deprecated", "is", "not", "None", "else", "deprecated", "if", "deprecated", "is", "not", "None", "else", "u\"false\"", ",", "removed", "=", "member", ".", "removed", "if", "member", ".", "removed", "is", "not", "None", "else", "removed", "if", "removed", "is", "not", "None", "else", "u\"false\"", ",", "vector_name", "=", "member", ".", "name", ")", "else", ":", "return", "self", ".", "_impl_code_item_fill_template_with_version", ".", "substitute", "(", "name", "=", "member", ".", "name", ",", "var_name", "=", "self", ".", "_gen_schema_item_var_name", "(", "member", ")", ",", "is_mandatory", "=", "u\"true\"", "if", "member", ".", "is_mandatory", "is", "True", "else", "u\"false\"", ",", "since", "=", "member", ".", "since", "if", "member", ".", "since", "is", "not", "None", "else", "since", "if", "since", "is", "not", "None", "else", "\"\"", ",", "until", "=", "member", ".", "until", "if", "member", ".", "until", "is", "not", "None", "else", "until", "if", "until", "is", "not", "None", "else", "\"\"", ",", "deprecated", "=", "member", ".", "deprecated", "if", "member", ".", "deprecated", "is", "not", "None", "else", "deprecated", "if", "deprecated", "is", "not", "None", "else", "u\"false\"", ",", "removed", "=", "member", ".", "removed", "if", "member", ".", "removed", "is", "not", "None", "else", "removed", "if", "removed", "is", "not", "None", "else", "u\"false\"", ")", "else", ":", "return", "self", ".", "_impl_code_item_fill_template", ".", "substitute", "(", "name", "=", "member", ".", "name", ",", "var_name", "=", "self", ".", "_gen_schema_item_var_name", "(", "member", ")", ",", "is_mandatory", "=", "u\"true\"", "if", "member", ".", "is_mandatory", "is", "True", "else", "u\"false\"", ")" ]
https://github.com/smartdevicelink/sdl_core/blob/68f082169e0a40fccd9eb0db3c83911c28870f07/tools/InterfaceGenerator/generator/generators/SmartFactoryBase.py#L1072-L1111
wlanjie/AndroidFFmpeg
7baf9122f4b8e1c74e7baf4be5c422c7a5ba5aaf
tools/fdk-aac-build/armeabi/toolchain/lib/python2.7/logging/handlers.py
python
SMTPHandler.emit
(self, record)
Emit a record. Format the record and send it to the specified addressees.
Emit a record.
[ "Emit", "a", "record", "." ]
def emit(self, record): """ Emit a record. Format the record and send it to the specified addressees. """ try: import smtplib from email.utils import formatdate port = self.mailport if not port: port = smtplib.SMTP_PORT smtp = smtplib.SMTP(self.mailhost, port, timeout=self._timeout) msg = self.format(record) msg = "From: %s\r\nTo: %s\r\nSubject: %s\r\nDate: %s\r\n\r\n%s" % ( self.fromaddr, ",".join(self.toaddrs), self.getSubject(record), formatdate(), msg) if self.username: if self.secure is not None: smtp.ehlo() smtp.starttls(*self.secure) smtp.ehlo() smtp.login(self.username, self.password) smtp.sendmail(self.fromaddr, self.toaddrs, msg) smtp.quit() except (KeyboardInterrupt, SystemExit): raise except: self.handleError(record)
[ "def", "emit", "(", "self", ",", "record", ")", ":", "try", ":", "import", "smtplib", "from", "email", ".", "utils", "import", "formatdate", "port", "=", "self", ".", "mailport", "if", "not", "port", ":", "port", "=", "smtplib", ".", "SMTP_PORT", "smtp", "=", "smtplib", ".", "SMTP", "(", "self", ".", "mailhost", ",", "port", ",", "timeout", "=", "self", ".", "_timeout", ")", "msg", "=", "self", ".", "format", "(", "record", ")", "msg", "=", "\"From: %s\\r\\nTo: %s\\r\\nSubject: %s\\r\\nDate: %s\\r\\n\\r\\n%s\"", "%", "(", "self", ".", "fromaddr", ",", "\",\"", ".", "join", "(", "self", ".", "toaddrs", ")", ",", "self", ".", "getSubject", "(", "record", ")", ",", "formatdate", "(", ")", ",", "msg", ")", "if", "self", ".", "username", ":", "if", "self", ".", "secure", "is", "not", "None", ":", "smtp", ".", "ehlo", "(", ")", "smtp", ".", "starttls", "(", "*", "self", ".", "secure", ")", "smtp", ".", "ehlo", "(", ")", "smtp", ".", "login", "(", "self", ".", "username", ",", "self", ".", "password", ")", "smtp", ".", "sendmail", "(", "self", ".", "fromaddr", ",", "self", ".", "toaddrs", ",", "msg", ")", "smtp", ".", "quit", "(", ")", "except", "(", "KeyboardInterrupt", ",", "SystemExit", ")", ":", "raise", "except", ":", "self", ".", "handleError", "(", "record", ")" ]
https://github.com/wlanjie/AndroidFFmpeg/blob/7baf9122f4b8e1c74e7baf4be5c422c7a5ba5aaf/tools/fdk-aac-build/armeabi/toolchain/lib/python2.7/logging/handlers.py#L916-L946
wxWidgets/wxPython-Classic
19571e1ae65f1ac445f5491474121998c97a1bf0
src/osx_cocoa/_misc.py
python
DateTime_IsLeapYear
(*args, **kwargs)
return _misc_.DateTime_IsLeapYear(*args, **kwargs)
DateTime_IsLeapYear(int year=Inv_Year, int cal=Gregorian) -> bool
DateTime_IsLeapYear(int year=Inv_Year, int cal=Gregorian) -> bool
[ "DateTime_IsLeapYear", "(", "int", "year", "=", "Inv_Year", "int", "cal", "=", "Gregorian", ")", "-", ">", "bool" ]
def DateTime_IsLeapYear(*args, **kwargs): """DateTime_IsLeapYear(int year=Inv_Year, int cal=Gregorian) -> bool""" return _misc_.DateTime_IsLeapYear(*args, **kwargs)
[ "def", "DateTime_IsLeapYear", "(", "*", "args", ",", "*", "*", "kwargs", ")", ":", "return", "_misc_", ".", "DateTime_IsLeapYear", "(", "*", "args", ",", "*", "*", "kwargs", ")" ]
https://github.com/wxWidgets/wxPython-Classic/blob/19571e1ae65f1ac445f5491474121998c97a1bf0/src/osx_cocoa/_misc.py#L4249-L4251
wxWidgets/wxPython-Classic
19571e1ae65f1ac445f5491474121998c97a1bf0
samples/pySketch/pySketch.py
python
DrawingFrame.deselectAll
(self)
Deselect every DrawingObject in our document.
Deselect every DrawingObject in our document.
[ "Deselect", "every", "DrawingObject", "in", "our", "document", "." ]
def deselectAll(self): """ Deselect every DrawingObject in our document. """ self.selection = [] self.requestRedraw() self._adjustMenus()
[ "def", "deselectAll", "(", "self", ")", ":", "self", ".", "selection", "=", "[", "]", "self", ".", "requestRedraw", "(", ")", "self", ".", "_adjustMenus", "(", ")" ]
https://github.com/wxWidgets/wxPython-Classic/blob/19571e1ae65f1ac445f5491474121998c97a1bf0/samples/pySketch/pySketch.py#L1150-L1155
catboost/catboost
167f64f237114a4d10b2b4ee42adb4569137debe
contrib/python/prompt-toolkit/py2/prompt_toolkit/document.py
python
Document.get_cursor_right_position
(self, count=1)
return min(count, len(self.current_line_after_cursor))
Relative position for cursor_right.
Relative position for cursor_right.
[ "Relative", "position", "for", "cursor_right", "." ]
def get_cursor_right_position(self, count=1): """ Relative position for cursor_right. """ if count < 0: return self.get_cursor_left_position(-count) return min(count, len(self.current_line_after_cursor))
[ "def", "get_cursor_right_position", "(", "self", ",", "count", "=", "1", ")", ":", "if", "count", "<", "0", ":", "return", "self", ".", "get_cursor_left_position", "(", "-", "count", ")", "return", "min", "(", "count", ",", "len", "(", "self", ".", "current_line_after_cursor", ")", ")" ]
https://github.com/catboost/catboost/blob/167f64f237114a4d10b2b4ee42adb4569137debe/contrib/python/prompt-toolkit/py2/prompt_toolkit/document.py#L614-L621
apple/turicreate
cce55aa5311300e3ce6af93cb45ba791fd1bdf49
deps/src/libxml2-2.9.1/python/libxml2class.py
python
xmlNode.freeNode
(self)
Free a node, this is a recursive behaviour, all the children are freed too. This doesn't unlink the child from the list, use xmlUnlinkNode() first.
Free a node, this is a recursive behaviour, all the children are freed too. This doesn't unlink the child from the list, use xmlUnlinkNode() first.
[ "Free", "a", "node", "this", "is", "a", "recursive", "behaviour", "all", "the", "children", "are", "freed", "too", ".", "This", "doesn", "t", "unlink", "the", "child", "from", "the", "list", "use", "xmlUnlinkNode", "()", "first", "." ]
def freeNode(self): """Free a node, this is a recursive behaviour, all the children are freed too. This doesn't unlink the child from the list, use xmlUnlinkNode() first. """ libxml2mod.xmlFreeNode(self._o)
[ "def", "freeNode", "(", "self", ")", ":", "libxml2mod", ".", "xmlFreeNode", "(", "self", ".", "_o", ")" ]
https://github.com/apple/turicreate/blob/cce55aa5311300e3ce6af93cb45ba791fd1bdf49/deps/src/libxml2-2.9.1/python/libxml2class.py#L2439-L2443
kamyu104/LeetCode-Solutions
77605708a927ea3b85aee5a479db733938c7c211
Python/find-all-duplicates-in-an-array.py
python
Solution.findDuplicates
(self, nums)
return result
:type nums: List[int] :rtype: List[int]
:type nums: List[int] :rtype: List[int]
[ ":", "type", "nums", ":", "List", "[", "int", "]", ":", "rtype", ":", "List", "[", "int", "]" ]
def findDuplicates(self, nums): """ :type nums: List[int] :rtype: List[int] """ result = [] for i in nums: if nums[abs(i)-1] < 0: result.append(abs(i)) else: nums[abs(i)-1] *= -1 return result
[ "def", "findDuplicates", "(", "self", ",", "nums", ")", ":", "result", "=", "[", "]", "for", "i", "in", "nums", ":", "if", "nums", "[", "abs", "(", "i", ")", "-", "1", "]", "<", "0", ":", "result", ".", "append", "(", "abs", "(", "i", ")", ")", "else", ":", "nums", "[", "abs", "(", "i", ")", "-", "1", "]", "*=", "-", "1", "return", "result" ]
https://github.com/kamyu104/LeetCode-Solutions/blob/77605708a927ea3b85aee5a479db733938c7c211/Python/find-all-duplicates-in-an-array.py#L5-L16
htcondor/htcondor
4829724575176d1d6c936e4693dfd78a728569b0
bindings/python/htcondor/htchirp/htchirp.py
python
HTChirp._write
( self, fd, data, length, offset=None, stride_length=None, stride_skip=None )
return wb
Write to a file on the Chirp server :param fd: File descriptor :param data: Data to write :param length: Number of bytes to write :param offset: Skip this many bytes when writing :param stride_length: Write this many bytes every stride_skip bytes :param stride_skip: Skip this many bytes between writes :returns: Number of bytes written
Write to a file on the Chirp server
[ "Write", "to", "a", "file", "on", "the", "Chirp", "server" ]
def _write( self, fd, data, length, offset=None, stride_length=None, stride_skip=None ): """Write to a file on the Chirp server :param fd: File descriptor :param data: Data to write :param length: Number of bytes to write :param offset: Skip this many bytes when writing :param stride_length: Write this many bytes every stride_skip bytes :param stride_skip: Skip this many bytes between writes :returns: Number of bytes written """ # check that client is connected self._check_connection() if offset is None and (stride_length, stride_skip) != (None, None): offset = 0 # assume offset is 0 if stride given but not offset if (offset, stride_length, stride_skip) == (None, None, None): # write self._simple_command( "write {0} {1}\n".format(int(fd), int(length)), get_response=False ) elif (offset != None) and (stride_length, stride_skip) == (None, None): # pwrite self._simple_command( "pwrite {0} {1} {2}\n".format(int(fd), int(length), int(offset)), get_response=False, ) elif (stride_length, stride_skip) != (None, None): # swrite wb = self._simple_command( "swrite {0} {1} {2} {3} {4}\n".format( int(fd), int(length), int(offset), int(stride_length), int(stride_skip), ), get_response=False, ) else: raise self.InvalidRequest( "Both stride_length and stride_skip must be specified" ) wfd = self.socket.makefile("wb") # open socket as a file object wfd.write(data) # write data wfd.close() # close socket file object wb = int(self._simple_response()) # get bytes written return wb
[ "def", "_write", "(", "self", ",", "fd", ",", "data", ",", "length", ",", "offset", "=", "None", ",", "stride_length", "=", "None", ",", "stride_skip", "=", "None", ")", ":", "# check that client is connected", "self", ".", "_check_connection", "(", ")", "if", "offset", "is", "None", "and", "(", "stride_length", ",", "stride_skip", ")", "!=", "(", "None", ",", "None", ")", ":", "offset", "=", "0", "# assume offset is 0 if stride given but not offset", "if", "(", "offset", ",", "stride_length", ",", "stride_skip", ")", "==", "(", "None", ",", "None", ",", "None", ")", ":", "# write", "self", ".", "_simple_command", "(", "\"write {0} {1}\\n\"", ".", "format", "(", "int", "(", "fd", ")", ",", "int", "(", "length", ")", ")", ",", "get_response", "=", "False", ")", "elif", "(", "offset", "!=", "None", ")", "and", "(", "stride_length", ",", "stride_skip", ")", "==", "(", "None", ",", "None", ")", ":", "# pwrite", "self", ".", "_simple_command", "(", "\"pwrite {0} {1} {2}\\n\"", ".", "format", "(", "int", "(", "fd", ")", ",", "int", "(", "length", ")", ",", "int", "(", "offset", ")", ")", ",", "get_response", "=", "False", ",", ")", "elif", "(", "stride_length", ",", "stride_skip", ")", "!=", "(", "None", ",", "None", ")", ":", "# swrite", "wb", "=", "self", ".", "_simple_command", "(", "\"swrite {0} {1} {2} {3} {4}\\n\"", ".", "format", "(", "int", "(", "fd", ")", ",", "int", "(", "length", ")", ",", "int", "(", "offset", ")", ",", "int", "(", "stride_length", ")", ",", "int", "(", "stride_skip", ")", ",", ")", ",", "get_response", "=", "False", ",", ")", "else", ":", "raise", "self", ".", "InvalidRequest", "(", "\"Both stride_length and stride_skip must be specified\"", ")", "wfd", "=", "self", ".", "socket", ".", "makefile", "(", "\"wb\"", ")", "# open socket as a file object", "wfd", ".", "write", "(", "data", ")", "# write data", "wfd", ".", "close", "(", ")", "# close socket file object", "wb", "=", "int", "(", "self", ".", "_simple_response", "(", ")", ")", "# get bytes written", "return", "wb" ]
https://github.com/htcondor/htcondor/blob/4829724575176d1d6c936e4693dfd78a728569b0/bindings/python/htcondor/htchirp/htchirp.py#L460-L517
LiquidPlayer/LiquidCore
9405979363f2353ac9a71ad8ab59685dd7f919c9
deps/node-10.15.3/deps/v8/third_party/jinja2/idtracking.py
python
FrameSymbolVisitor.visit_Block
(self, node, **kwargs)
Stop visiting at blocks.
Stop visiting at blocks.
[ "Stop", "visiting", "at", "blocks", "." ]
def visit_Block(self, node, **kwargs): """Stop visiting at blocks."""
[ "def", "visit_Block", "(", "self", ",", "node", ",", "*", "*", "kwargs", ")", ":" ]
https://github.com/LiquidPlayer/LiquidCore/blob/9405979363f2353ac9a71ad8ab59685dd7f919c9/deps/node-10.15.3/deps/v8/third_party/jinja2/idtracking.py#L282-L283
catboost/catboost
167f64f237114a4d10b2b4ee42adb4569137debe
contrib/python/scipy/scipy/optimize/linesearch.py
python
scalar_search_wolfe1
(phi, derphi, phi0=None, old_phi0=None, derphi0=None, c1=1e-4, c2=0.9, amax=50, amin=1e-8, xtol=1e-14)
return stp, phi1, phi0
Scalar function search for alpha that satisfies strong Wolfe conditions alpha > 0 is assumed to be a descent direction. Parameters ---------- phi : callable phi(alpha) Function at point `alpha` derphi : callable dphi(alpha) Derivative `d phi(alpha)/ds`. Returns a scalar. phi0 : float, optional Value of `f` at 0 old_phi0 : float, optional Value of `f` at the previous point derphi0 : float, optional Value `derphi` at 0 c1, c2 : float, optional Wolfe parameters amax, amin : float, optional Maximum and minimum step size xtol : float, optional Relative tolerance for an acceptable step. Returns ------- alpha : float Step size, or None if no suitable step was found phi : float Value of `phi` at the new point `alpha` phi0 : float Value of `phi` at `alpha=0` Notes ----- Uses routine DCSRCH from MINPACK.
Scalar function search for alpha that satisfies strong Wolfe conditions
[ "Scalar", "function", "search", "for", "alpha", "that", "satisfies", "strong", "Wolfe", "conditions" ]
def scalar_search_wolfe1(phi, derphi, phi0=None, old_phi0=None, derphi0=None, c1=1e-4, c2=0.9, amax=50, amin=1e-8, xtol=1e-14): """ Scalar function search for alpha that satisfies strong Wolfe conditions alpha > 0 is assumed to be a descent direction. Parameters ---------- phi : callable phi(alpha) Function at point `alpha` derphi : callable dphi(alpha) Derivative `d phi(alpha)/ds`. Returns a scalar. phi0 : float, optional Value of `f` at 0 old_phi0 : float, optional Value of `f` at the previous point derphi0 : float, optional Value `derphi` at 0 c1, c2 : float, optional Wolfe parameters amax, amin : float, optional Maximum and minimum step size xtol : float, optional Relative tolerance for an acceptable step. Returns ------- alpha : float Step size, or None if no suitable step was found phi : float Value of `phi` at the new point `alpha` phi0 : float Value of `phi` at `alpha=0` Notes ----- Uses routine DCSRCH from MINPACK. """ if phi0 is None: phi0 = phi(0.) if derphi0 is None: derphi0 = derphi(0.) if old_phi0 is not None and derphi0 != 0: alpha1 = min(1.0, 1.01*2*(phi0 - old_phi0)/derphi0) if alpha1 < 0: alpha1 = 1.0 else: alpha1 = 1.0 phi1 = phi0 derphi1 = derphi0 isave = np.zeros((2,), np.intc) dsave = np.zeros((13,), float) task = b'START' maxiter = 100 for i in xrange(maxiter): stp, phi1, derphi1, task = minpack2.dcsrch(alpha1, phi1, derphi1, c1, c2, xtol, task, amin, amax, isave, dsave) if task[:2] == b'FG': alpha1 = stp phi1 = phi(stp) derphi1 = derphi(stp) else: break else: # maxiter reached, the line search did not converge stp = None if task[:5] == b'ERROR' or task[:4] == b'WARN': stp = None # failed return stp, phi1, phi0
[ "def", "scalar_search_wolfe1", "(", "phi", ",", "derphi", ",", "phi0", "=", "None", ",", "old_phi0", "=", "None", ",", "derphi0", "=", "None", ",", "c1", "=", "1e-4", ",", "c2", "=", "0.9", ",", "amax", "=", "50", ",", "amin", "=", "1e-8", ",", "xtol", "=", "1e-14", ")", ":", "if", "phi0", "is", "None", ":", "phi0", "=", "phi", "(", "0.", ")", "if", "derphi0", "is", "None", ":", "derphi0", "=", "derphi", "(", "0.", ")", "if", "old_phi0", "is", "not", "None", "and", "derphi0", "!=", "0", ":", "alpha1", "=", "min", "(", "1.0", ",", "1.01", "*", "2", "*", "(", "phi0", "-", "old_phi0", ")", "/", "derphi0", ")", "if", "alpha1", "<", "0", ":", "alpha1", "=", "1.0", "else", ":", "alpha1", "=", "1.0", "phi1", "=", "phi0", "derphi1", "=", "derphi0", "isave", "=", "np", ".", "zeros", "(", "(", "2", ",", ")", ",", "np", ".", "intc", ")", "dsave", "=", "np", ".", "zeros", "(", "(", "13", ",", ")", ",", "float", ")", "task", "=", "b'START'", "maxiter", "=", "100", "for", "i", "in", "xrange", "(", "maxiter", ")", ":", "stp", ",", "phi1", ",", "derphi1", ",", "task", "=", "minpack2", ".", "dcsrch", "(", "alpha1", ",", "phi1", ",", "derphi1", ",", "c1", ",", "c2", ",", "xtol", ",", "task", ",", "amin", ",", "amax", ",", "isave", ",", "dsave", ")", "if", "task", "[", ":", "2", "]", "==", "b'FG'", ":", "alpha1", "=", "stp", "phi1", "=", "phi", "(", "stp", ")", "derphi1", "=", "derphi", "(", "stp", ")", "else", ":", "break", "else", ":", "# maxiter reached, the line search did not converge", "stp", "=", "None", "if", "task", "[", ":", "5", "]", "==", "b'ERROR'", "or", "task", "[", ":", "4", "]", "==", "b'WARN'", ":", "stp", "=", "None", "# failed", "return", "stp", ",", "phi1", ",", "phi0" ]
https://github.com/catboost/catboost/blob/167f64f237114a4d10b2b4ee42adb4569137debe/contrib/python/scipy/scipy/optimize/linesearch.py#L106-L185
miyosuda/TensorFlowAndroidMNIST
7b5a4603d2780a8a2834575706e9001977524007
jni-build/jni/include/tensorflow/contrib/learn/python/learn/models.py
python
linear_regression
(x, y, init_mean=None, init_stddev=1.0)
Creates linear regression TensorFlow subgraph. Args: x: tensor or placeholder for input features. y: tensor or placeholder for target. init_mean: the mean value to use for initialization. init_stddev: the standard devation to use for initialization. Returns: Predictions and loss tensors. Side effects: The variables linear_regression.weights and linear_regression.bias are initialized as follows. If init_mean is not None, then initialization will be done using a random normal initializer with the given init_mean and init_stddv. (These may be set to 0.0 each if a zero initialization is desirable for convex use cases.) If init_mean is None, then the uniform_unit_scaling_initialzer will be used.
Creates linear regression TensorFlow subgraph.
[ "Creates", "linear", "regression", "TensorFlow", "subgraph", "." ]
def linear_regression(x, y, init_mean=None, init_stddev=1.0): """Creates linear regression TensorFlow subgraph. Args: x: tensor or placeholder for input features. y: tensor or placeholder for target. init_mean: the mean value to use for initialization. init_stddev: the standard devation to use for initialization. Returns: Predictions and loss tensors. Side effects: The variables linear_regression.weights and linear_regression.bias are initialized as follows. If init_mean is not None, then initialization will be done using a random normal initializer with the given init_mean and init_stddv. (These may be set to 0.0 each if a zero initialization is desirable for convex use cases.) If init_mean is None, then the uniform_unit_scaling_initialzer will be used. """ with vs.variable_scope('linear_regression'): logging_ops.histogram_summary('linear_regression.x', x) logging_ops.histogram_summary('linear_regression.y', y) dtype = x.dtype.base_dtype y_shape = y.get_shape() if len(y_shape) == 1: output_shape = 1 else: output_shape = y_shape[1] # Set up the requested initialization. if init_mean is None: weights = vs.get_variable( 'weights', [x.get_shape()[1], output_shape], dtype=dtype) bias = vs.get_variable('bias', [output_shape], dtype=dtype) else: weights = vs.get_variable('weights', [x.get_shape()[1], output_shape], initializer=init_ops.random_normal_initializer( init_mean, init_stddev, dtype=dtype), dtype=dtype) bias = vs.get_variable('bias', [output_shape], initializer=init_ops.random_normal_initializer( init_mean, init_stddev, dtype=dtype), dtype=dtype) logging_ops.histogram_summary('linear_regression.weights', weights) logging_ops.histogram_summary('linear_regression.bias', bias) return losses_ops.mean_squared_error_regressor(x, y, weights, bias)
[ "def", "linear_regression", "(", "x", ",", "y", ",", "init_mean", "=", "None", ",", "init_stddev", "=", "1.0", ")", ":", "with", "vs", ".", "variable_scope", "(", "'linear_regression'", ")", ":", "logging_ops", ".", "histogram_summary", "(", "'linear_regression.x'", ",", "x", ")", "logging_ops", ".", "histogram_summary", "(", "'linear_regression.y'", ",", "y", ")", "dtype", "=", "x", ".", "dtype", ".", "base_dtype", "y_shape", "=", "y", ".", "get_shape", "(", ")", "if", "len", "(", "y_shape", ")", "==", "1", ":", "output_shape", "=", "1", "else", ":", "output_shape", "=", "y_shape", "[", "1", "]", "# Set up the requested initialization.", "if", "init_mean", "is", "None", ":", "weights", "=", "vs", ".", "get_variable", "(", "'weights'", ",", "[", "x", ".", "get_shape", "(", ")", "[", "1", "]", ",", "output_shape", "]", ",", "dtype", "=", "dtype", ")", "bias", "=", "vs", ".", "get_variable", "(", "'bias'", ",", "[", "output_shape", "]", ",", "dtype", "=", "dtype", ")", "else", ":", "weights", "=", "vs", ".", "get_variable", "(", "'weights'", ",", "[", "x", ".", "get_shape", "(", ")", "[", "1", "]", ",", "output_shape", "]", ",", "initializer", "=", "init_ops", ".", "random_normal_initializer", "(", "init_mean", ",", "init_stddev", ",", "dtype", "=", "dtype", ")", ",", "dtype", "=", "dtype", ")", "bias", "=", "vs", ".", "get_variable", "(", "'bias'", ",", "[", "output_shape", "]", ",", "initializer", "=", "init_ops", ".", "random_normal_initializer", "(", "init_mean", ",", "init_stddev", ",", "dtype", "=", "dtype", ")", ",", "dtype", "=", "dtype", ")", "logging_ops", ".", "histogram_summary", "(", "'linear_regression.weights'", ",", "weights", ")", "logging_ops", ".", "histogram_summary", "(", "'linear_regression.bias'", ",", "bias", ")", "return", "losses_ops", ".", "mean_squared_error_regressor", "(", "x", ",", "y", ",", "weights", ",", "bias", ")" ]
https://github.com/miyosuda/TensorFlowAndroidMNIST/blob/7b5a4603d2780a8a2834575706e9001977524007/jni-build/jni/include/tensorflow/contrib/learn/python/learn/models.py#L61-L106
aws/lumberyard
f85344403c1c2e77ec8c75deb2c116e97b713217
dev/Tools/Python/3.7.10/mac/Python.framework/Versions/3.7/lib/python3.7/_pyio.py
python
IOBase.__enter__
(self)
return self
Context management protocol. Returns self (an instance of IOBase).
Context management protocol. Returns self (an instance of IOBase).
[ "Context", "management", "protocol", ".", "Returns", "self", "(", "an", "instance", "of", "IOBase", ")", "." ]
def __enter__(self): # That's a forward reference """Context management protocol. Returns self (an instance of IOBase).""" self._checkClosed() return self
[ "def", "__enter__", "(", "self", ")", ":", "# That's a forward reference", "self", ".", "_checkClosed", "(", ")", "return", "self" ]
https://github.com/aws/lumberyard/blob/f85344403c1c2e77ec8c75deb2c116e97b713217/dev/Tools/Python/3.7.10/mac/Python.framework/Versions/3.7/lib/python3.7/_pyio.py#L448-L451
aimerykong/Low-Rank-Bilinear-Pooling
487eb2c857fd9c95357a5166b0c15ad0fe135b28
caffe-20160312/scripts/cpp_lint.py
python
FileInfo.Extension
(self)
return self.Split()[2]
File extension - text following the final period.
File extension - text following the final period.
[ "File", "extension", "-", "text", "following", "the", "final", "period", "." ]
def Extension(self): """File extension - text following the final period.""" return self.Split()[2]
[ "def", "Extension", "(", "self", ")", ":", "return", "self", ".", "Split", "(", ")", "[", "2", "]" ]
https://github.com/aimerykong/Low-Rank-Bilinear-Pooling/blob/487eb2c857fd9c95357a5166b0c15ad0fe135b28/caffe-20160312/scripts/cpp_lint.py#L948-L950
hpi-xnor/BMXNet-v2
af2b1859eafc5c721b1397cef02f946aaf2ce20d
example/gluon/house_prices/kaggle_k_fold_cross_validation.py
python
k_fold_cross_valid
(k, epochs, verbose_epoch, X_train, y_train, learning_rate, weight_decay, batch_size)
return train_loss_sum / k, test_loss_sum / k
Conducts k-fold cross validation for the model.
Conducts k-fold cross validation for the model.
[ "Conducts", "k", "-", "fold", "cross", "validation", "for", "the", "model", "." ]
def k_fold_cross_valid(k, epochs, verbose_epoch, X_train, y_train, learning_rate, weight_decay, batch_size): """Conducts k-fold cross validation for the model.""" assert k > 1 fold_size = X_train.shape[0] // k train_loss_sum = 0.0 test_loss_sum = 0.0 for test_idx in range(k): X_val_test = X_train[test_idx * fold_size: (test_idx + 1) * fold_size, :] y_val_test = y_train[test_idx * fold_size: (test_idx + 1) * fold_size] val_train_defined = False for i in range(k): if i != test_idx: X_cur_fold = X_train[i * fold_size: (i + 1) * fold_size, :] y_cur_fold = y_train[i * fold_size: (i + 1) * fold_size] if not val_train_defined: X_val_train = X_cur_fold y_val_train = y_cur_fold val_train_defined = True else: X_val_train = nd.concat(X_val_train, X_cur_fold, dim=0) y_val_train = nd.concat(y_val_train, y_cur_fold, dim=0) net = get_net() train_loss = train(net, X_val_train, y_val_train, epochs, verbose_epoch, learning_rate, weight_decay, batch_size) train_loss_sum += train_loss test_loss = get_rmse_log(net, X_val_test, y_val_test) print("Test loss: %f" % test_loss) test_loss_sum += test_loss return train_loss_sum / k, test_loss_sum / k
[ "def", "k_fold_cross_valid", "(", "k", ",", "epochs", ",", "verbose_epoch", ",", "X_train", ",", "y_train", ",", "learning_rate", ",", "weight_decay", ",", "batch_size", ")", ":", "assert", "k", ">", "1", "fold_size", "=", "X_train", ".", "shape", "[", "0", "]", "//", "k", "train_loss_sum", "=", "0.0", "test_loss_sum", "=", "0.0", "for", "test_idx", "in", "range", "(", "k", ")", ":", "X_val_test", "=", "X_train", "[", "test_idx", "*", "fold_size", ":", "(", "test_idx", "+", "1", ")", "*", "fold_size", ",", ":", "]", "y_val_test", "=", "y_train", "[", "test_idx", "*", "fold_size", ":", "(", "test_idx", "+", "1", ")", "*", "fold_size", "]", "val_train_defined", "=", "False", "for", "i", "in", "range", "(", "k", ")", ":", "if", "i", "!=", "test_idx", ":", "X_cur_fold", "=", "X_train", "[", "i", "*", "fold_size", ":", "(", "i", "+", "1", ")", "*", "fold_size", ",", ":", "]", "y_cur_fold", "=", "y_train", "[", "i", "*", "fold_size", ":", "(", "i", "+", "1", ")", "*", "fold_size", "]", "if", "not", "val_train_defined", ":", "X_val_train", "=", "X_cur_fold", "y_val_train", "=", "y_cur_fold", "val_train_defined", "=", "True", "else", ":", "X_val_train", "=", "nd", ".", "concat", "(", "X_val_train", ",", "X_cur_fold", ",", "dim", "=", "0", ")", "y_val_train", "=", "nd", ".", "concat", "(", "y_val_train", ",", "y_cur_fold", ",", "dim", "=", "0", ")", "net", "=", "get_net", "(", ")", "train_loss", "=", "train", "(", "net", ",", "X_val_train", ",", "y_val_train", ",", "epochs", ",", "verbose_epoch", ",", "learning_rate", ",", "weight_decay", ",", "batch_size", ")", "train_loss_sum", "+=", "train_loss", "test_loss", "=", "get_rmse_log", "(", "net", ",", "X_val_test", ",", "y_val_test", ")", "print", "(", "\"Test loss: %f\"", "%", "test_loss", ")", "test_loss_sum", "+=", "test_loss", "return", "train_loss_sum", "/", "k", ",", "test_loss_sum", "/", "k" ]
https://github.com/hpi-xnor/BMXNet-v2/blob/af2b1859eafc5c721b1397cef02f946aaf2ce20d/example/gluon/house_prices/kaggle_k_fold_cross_validation.py#L104-L135
MhLiao/TextBoxes_plusplus
39d4898de1504c53a2ed3d67966a57b3595836d0
python/caffe/io.py
python
Transformer.set_mean
(self, in_, mean)
Set the mean to subtract for centering the data. Parameters ---------- in_ : which input to assign this mean. mean : mean ndarray (input dimensional or broadcastable)
Set the mean to subtract for centering the data.
[ "Set", "the", "mean", "to", "subtract", "for", "centering", "the", "data", "." ]
def set_mean(self, in_, mean): """ Set the mean to subtract for centering the data. Parameters ---------- in_ : which input to assign this mean. mean : mean ndarray (input dimensional or broadcastable) """ self.__check_input(in_) ms = mean.shape if mean.ndim == 1: # broadcast channels if ms[0] != self.inputs[in_][1]: raise ValueError('Mean channels incompatible with input.') mean = mean[:, np.newaxis, np.newaxis] else: # elementwise mean if len(ms) == 2: ms = (1,) + ms if len(ms) != 3: raise ValueError('Mean shape invalid') if ms != self.inputs[in_][1:]: raise ValueError('Mean shape incompatible with input shape.') self.mean[in_] = mean
[ "def", "set_mean", "(", "self", ",", "in_", ",", "mean", ")", ":", "self", ".", "__check_input", "(", "in_", ")", "ms", "=", "mean", ".", "shape", "if", "mean", ".", "ndim", "==", "1", ":", "# broadcast channels", "if", "ms", "[", "0", "]", "!=", "self", ".", "inputs", "[", "in_", "]", "[", "1", "]", ":", "raise", "ValueError", "(", "'Mean channels incompatible with input.'", ")", "mean", "=", "mean", "[", ":", ",", "np", ".", "newaxis", ",", "np", ".", "newaxis", "]", "else", ":", "# elementwise mean", "if", "len", "(", "ms", ")", "==", "2", ":", "ms", "=", "(", "1", ",", ")", "+", "ms", "if", "len", "(", "ms", ")", "!=", "3", ":", "raise", "ValueError", "(", "'Mean shape invalid'", ")", "if", "ms", "!=", "self", ".", "inputs", "[", "in_", "]", "[", "1", ":", "]", ":", "raise", "ValueError", "(", "'Mean shape incompatible with input shape.'", ")", "self", ".", "mean", "[", "in_", "]", "=", "mean" ]
https://github.com/MhLiao/TextBoxes_plusplus/blob/39d4898de1504c53a2ed3d67966a57b3595836d0/python/caffe/io.py#L236-L260
aws/lumberyard
f85344403c1c2e77ec8c75deb2c116e97b713217
dev/Gems/CloudGemMetric/v1/AWS/common-code/Lib/numba/targets/linalg.py
python
_solve_compute_return
(b, bcpy)
Extract 'x' (the solution) from the 'bcpy' scratch space. Note 'b' is only used to check the system input dimension...
Extract 'x' (the solution) from the 'bcpy' scratch space. Note 'b' is only used to check the system input dimension...
[ "Extract", "x", "(", "the", "solution", ")", "from", "the", "bcpy", "scratch", "space", ".", "Note", "b", "is", "only", "used", "to", "check", "the", "system", "input", "dimension", "..." ]
def _solve_compute_return(b, bcpy): """ Extract 'x' (the solution) from the 'bcpy' scratch space. Note 'b' is only used to check the system input dimension... """ raise NotImplementedError
[ "def", "_solve_compute_return", "(", "b", ",", "bcpy", ")", ":", "raise", "NotImplementedError" ]
https://github.com/aws/lumberyard/blob/f85344403c1c2e77ec8c75deb2c116e97b713217/dev/Gems/CloudGemMetric/v1/AWS/common-code/Lib/numba/targets/linalg.py#L1670-L1675
miyosuda/TensorFlowAndroidDemo
35903e0221aa5f109ea2dbef27f20b52e317f42d
jni-build/jni/include/tensorflow/contrib/lookup/lookup_ops.py
python
MutableHashTable.insert
(self, keys, values, name=None)
return op
Associates `keys` with `values`. Args: keys: Keys to insert. Can be a tensor of any shape. Must match the table's key type. values: Values to be associated with keys. Must be a tensor of the same shape as `keys` and match the table's value type. name: A name for the operation (optional). Returns: The created Operation. Raises: TypeError: when `keys` or `values` doesn't match the table data types.
Associates `keys` with `values`.
[ "Associates", "keys", "with", "values", "." ]
def insert(self, keys, values, name=None): """Associates `keys` with `values`. Args: keys: Keys to insert. Can be a tensor of any shape. Must match the table's key type. values: Values to be associated with keys. Must be a tensor of the same shape as `keys` and match the table's value type. name: A name for the operation (optional). Returns: The created Operation. Raises: TypeError: when `keys` or `values` doesn't match the table data types. """ self._check_table_dtypes(keys.dtype, values.dtype) with ops.op_scope([self._table_ref, keys, values], name, "%s_lookup_table_insert" % self._name) as name: # pylint: disable=protected-access op = gen_data_flow_ops._lookup_table_insert( self._table_ref, keys, values, name=name) # pylint: enable=protected-access return op
[ "def", "insert", "(", "self", ",", "keys", ",", "values", ",", "name", "=", "None", ")", ":", "self", ".", "_check_table_dtypes", "(", "keys", ".", "dtype", ",", "values", ".", "dtype", ")", "with", "ops", ".", "op_scope", "(", "[", "self", ".", "_table_ref", ",", "keys", ",", "values", "]", ",", "name", ",", "\"%s_lookup_table_insert\"", "%", "self", ".", "_name", ")", "as", "name", ":", "# pylint: disable=protected-access", "op", "=", "gen_data_flow_ops", ".", "_lookup_table_insert", "(", "self", ".", "_table_ref", ",", "keys", ",", "values", ",", "name", "=", "name", ")", "# pylint: enable=protected-access", "return", "op" ]
https://github.com/miyosuda/TensorFlowAndroidDemo/blob/35903e0221aa5f109ea2dbef27f20b52e317f42d/jni-build/jni/include/tensorflow/contrib/lookup/lookup_ops.py#L801-L826
ChromiumWebApps/chromium
c7361d39be8abd1574e6ce8957c8dbddd4c6ccf7
tools/idl_parser/idl_ppapi_parser.py
python
IDLPPAPIParser.p_ValueListCont
(self, p)
ValueListCont : ValueList |
ValueListCont : ValueList |
[ "ValueListCont", ":", "ValueList", "|" ]
def p_ValueListCont(self, p): """ValueListCont : ValueList |""" if len(p) > 1: p[0] = p[1]
[ "def", "p_ValueListCont", "(", "self", ",", "p", ")", ":", "if", "len", "(", "p", ")", ">", "1", ":", "p", "[", "0", "]", "=", "p", "[", "1", "]" ]
https://github.com/ChromiumWebApps/chromium/blob/c7361d39be8abd1574e6ce8957c8dbddd4c6ccf7/tools/idl_parser/idl_ppapi_parser.py#L266-L270
Xilinx/Vitis-AI
fc74d404563d9951b57245443c73bef389f3657f
tools/Vitis-AI-Quantizer/vai_q_tensorflow1.x/tensorflow/contrib/losses/python/metric_learning/metric_loss_ops.py
python
masked_minimum
(data, mask, dim=1)
return masked_minimums
Computes the axis wise minimum over chosen elements. Args: data: 2-D float `Tensor` of size [n, m]. mask: 2-D Boolean `Tensor` of size [n, m]. dim: The dimension over which to compute the minimum. Returns: masked_minimums: N-D `Tensor`. The minimized dimension is of size 1 after the operation.
Computes the axis wise minimum over chosen elements.
[ "Computes", "the", "axis", "wise", "minimum", "over", "chosen", "elements", "." ]
def masked_minimum(data, mask, dim=1): """Computes the axis wise minimum over chosen elements. Args: data: 2-D float `Tensor` of size [n, m]. mask: 2-D Boolean `Tensor` of size [n, m]. dim: The dimension over which to compute the minimum. Returns: masked_minimums: N-D `Tensor`. The minimized dimension is of size 1 after the operation. """ axis_maximums = math_ops.reduce_max(data, dim, keepdims=True) masked_minimums = math_ops.reduce_min( math_ops.multiply(data - axis_maximums, mask), dim, keepdims=True) + axis_maximums return masked_minimums
[ "def", "masked_minimum", "(", "data", ",", "mask", ",", "dim", "=", "1", ")", ":", "axis_maximums", "=", "math_ops", ".", "reduce_max", "(", "data", ",", "dim", ",", "keepdims", "=", "True", ")", "masked_minimums", "=", "math_ops", ".", "reduce_min", "(", "math_ops", ".", "multiply", "(", "data", "-", "axis_maximums", ",", "mask", ")", ",", "dim", ",", "keepdims", "=", "True", ")", "+", "axis_maximums", "return", "masked_minimums" ]
https://github.com/Xilinx/Vitis-AI/blob/fc74d404563d9951b57245443c73bef389f3657f/tools/Vitis-AI-Quantizer/vai_q_tensorflow1.x/tensorflow/contrib/losses/python/metric_learning/metric_loss_ops.py#L141-L157
hanpfei/chromium-net
392cc1fa3a8f92f42e4071ab6e674d8e0482f83f
tools/idl_parser/idl_parser.py
python
IDLParser.p_SerializationPatternList
(self, p)
SerializationPatternList : GETTER | identifier Identifiers |
SerializationPatternList : GETTER | identifier Identifiers |
[ "SerializationPatternList", ":", "GETTER", "|", "identifier", "Identifiers", "|" ]
def p_SerializationPatternList(self, p): """SerializationPatternList : GETTER | identifier Identifiers |""" p[0] = self.BuildProduction('List', p, 0) if len(p) > 1: if p[1] == 'getter': p[0].AddChildren(self.BuildTrue('GETTER')) else: attributes = ListFromConcat(p[1], p[2]) p[0].AddChildren(self.BuildAttribute('ATTRIBUTES', attributes))
[ "def", "p_SerializationPatternList", "(", "self", ",", "p", ")", ":", "p", "[", "0", "]", "=", "self", ".", "BuildProduction", "(", "'List'", ",", "p", ",", "0", ")", "if", "len", "(", "p", ")", ">", "1", ":", "if", "p", "[", "1", "]", "==", "'getter'", ":", "p", "[", "0", "]", ".", "AddChildren", "(", "self", ".", "BuildTrue", "(", "'GETTER'", ")", ")", "else", ":", "attributes", "=", "ListFromConcat", "(", "p", "[", "1", "]", ",", "p", "[", "2", "]", ")", "p", "[", "0", "]", ".", "AddChildren", "(", "self", ".", "BuildAttribute", "(", "'ATTRIBUTES'", ",", "attributes", ")", ")" ]
https://github.com/hanpfei/chromium-net/blob/392cc1fa3a8f92f42e4071ab6e674d8e0482f83f/tools/idl_parser/idl_parser.py#L539-L549
benoitsteiner/tensorflow-opencl
cb7cb40a57fde5cfd4731bc551e82a1e2fef43a5
tensorflow/python/estimator/training.py
python
EvalSpec.__new__
(cls, input_fn, steps=100, name=None, hooks=None, exporters=None, start_delay_secs=120, throttle_secs=600)
return super(EvalSpec, cls).__new__( cls, input_fn=input_fn, steps=steps, name=name, hooks=hooks, exporters=exporters, start_delay_secs=start_delay_secs, throttle_secs=throttle_secs)
Creates a validated `EvalSpec` instance. Args: input_fn: Evaluation input function returning a tuple of: features - `Tensor` or dictionary of string feature name to `Tensor`. labels - `Tensor` or dictionary of `Tensor` with labels. steps: Int. Positive number of steps for which to evaluate model. If `None`, evaluates until `input_fn` raises an end-of-input exception. See `Estimator.evaluate` for details. name: String. Name of the evaluation if user needs to run multiple evaluations on different data sets. Metrics for different evaluations are saved in separate folders, and appear separately in tensorboard. hooks: Iterable of `tf.train.SessionRunHook` objects to run during evaluation. exporters: Iterable of `Exporter`s, or a single one, or `None`. `exporters` will be invoked after each evaluation. start_delay_secs: Int. Start evaluating after waiting for this many seconds. throttle_secs: Int. Do not re-evaluate unless the last evaluation was started at least this many seconds ago. Of course, evaluation does not occur if no new checkpoints are available, hence, this is the minimum. Returns: A validated `EvalSpec` object. Raises: ValueError: If any of the input arguments is invalid. TypeError: If any of the arguments is not of the expected type.
Creates a validated `EvalSpec` instance.
[ "Creates", "a", "validated", "EvalSpec", "instance", "." ]
def __new__(cls, input_fn, steps=100, name=None, hooks=None, exporters=None, start_delay_secs=120, throttle_secs=600): """Creates a validated `EvalSpec` instance. Args: input_fn: Evaluation input function returning a tuple of: features - `Tensor` or dictionary of string feature name to `Tensor`. labels - `Tensor` or dictionary of `Tensor` with labels. steps: Int. Positive number of steps for which to evaluate model. If `None`, evaluates until `input_fn` raises an end-of-input exception. See `Estimator.evaluate` for details. name: String. Name of the evaluation if user needs to run multiple evaluations on different data sets. Metrics for different evaluations are saved in separate folders, and appear separately in tensorboard. hooks: Iterable of `tf.train.SessionRunHook` objects to run during evaluation. exporters: Iterable of `Exporter`s, or a single one, or `None`. `exporters` will be invoked after each evaluation. start_delay_secs: Int. Start evaluating after waiting for this many seconds. throttle_secs: Int. Do not re-evaluate unless the last evaluation was started at least this many seconds ago. Of course, evaluation does not occur if no new checkpoints are available, hence, this is the minimum. Returns: A validated `EvalSpec` object. Raises: ValueError: If any of the input arguments is invalid. TypeError: If any of the arguments is not of the expected type. """ # Validate input_fn. _validate_input_fn(input_fn) # Validate steps. if steps is not None and steps <= 0: raise ValueError('Must specify steps > 0, given: {}'.format(steps)) # Validate name. if name is not None and not isinstance(name, six.string_types): raise TypeError('`name` must be string, given: {}'.format(name)) # Validate hooks. hooks = _validate_hooks(hooks) # Validate exporters. exporters = _validate_exporters(exporters) # Validate start_delay_secs. if start_delay_secs < 0: raise ValueError('Must specify start_delay_secs >= 0, given: {}'.format( start_delay_secs)) # Validate throttle_secs. if throttle_secs < 0: raise ValueError( 'Must specify throttle_secs >= 0, given: {}'.format(throttle_secs)) return super(EvalSpec, cls).__new__( cls, input_fn=input_fn, steps=steps, name=name, hooks=hooks, exporters=exporters, start_delay_secs=start_delay_secs, throttle_secs=throttle_secs)
[ "def", "__new__", "(", "cls", ",", "input_fn", ",", "steps", "=", "100", ",", "name", "=", "None", ",", "hooks", "=", "None", ",", "exporters", "=", "None", ",", "start_delay_secs", "=", "120", ",", "throttle_secs", "=", "600", ")", ":", "# Validate input_fn.", "_validate_input_fn", "(", "input_fn", ")", "# Validate steps.", "if", "steps", "is", "not", "None", "and", "steps", "<=", "0", ":", "raise", "ValueError", "(", "'Must specify steps > 0, given: {}'", ".", "format", "(", "steps", ")", ")", "# Validate name.", "if", "name", "is", "not", "None", "and", "not", "isinstance", "(", "name", ",", "six", ".", "string_types", ")", ":", "raise", "TypeError", "(", "'`name` must be string, given: {}'", ".", "format", "(", "name", ")", ")", "# Validate hooks.", "hooks", "=", "_validate_hooks", "(", "hooks", ")", "# Validate exporters.", "exporters", "=", "_validate_exporters", "(", "exporters", ")", "# Validate start_delay_secs.", "if", "start_delay_secs", "<", "0", ":", "raise", "ValueError", "(", "'Must specify start_delay_secs >= 0, given: {}'", ".", "format", "(", "start_delay_secs", ")", ")", "# Validate throttle_secs.", "if", "throttle_secs", "<", "0", ":", "raise", "ValueError", "(", "'Must specify throttle_secs >= 0, given: {}'", ".", "format", "(", "throttle_secs", ")", ")", "return", "super", "(", "EvalSpec", ",", "cls", ")", ".", "__new__", "(", "cls", ",", "input_fn", "=", "input_fn", ",", "steps", "=", "steps", ",", "name", "=", "name", ",", "hooks", "=", "hooks", ",", "exporters", "=", "exporters", ",", "start_delay_secs", "=", "start_delay_secs", ",", "throttle_secs", "=", "throttle_secs", ")" ]
https://github.com/benoitsteiner/tensorflow-opencl/blob/cb7cb40a57fde5cfd4731bc551e82a1e2fef43a5/tensorflow/python/estimator/training.py#L181-L253
apiaryio/drafter
4634ebd07f6c6f257cc656598ccd535492fdfb55
tools/gyp/pylib/gyp/generator/cmake.py
python
SetVariableList
(output, variable_name, values)
Sets a CMake variable to a list.
Sets a CMake variable to a list.
[ "Sets", "a", "CMake", "variable", "to", "a", "list", "." ]
def SetVariableList(output, variable_name, values): """Sets a CMake variable to a list.""" if not values: return SetVariable(output, variable_name, "") if len(values) == 1: return SetVariable(output, variable_name, values[0]) output.write('list(APPEND ') output.write(variable_name) output.write('\n "') output.write('"\n "'.join([CMakeStringEscape(value) for value in values])) output.write('")\n')
[ "def", "SetVariableList", "(", "output", ",", "variable_name", ",", "values", ")", ":", "if", "not", "values", ":", "return", "SetVariable", "(", "output", ",", "variable_name", ",", "\"\"", ")", "if", "len", "(", "values", ")", "==", "1", ":", "return", "SetVariable", "(", "output", ",", "variable_name", ",", "values", "[", "0", "]", ")", "output", ".", "write", "(", "'list(APPEND '", ")", "output", ".", "write", "(", "variable_name", ")", "output", ".", "write", "(", "'\\n \"'", ")", "output", ".", "write", "(", "'\"\\n \"'", ".", "join", "(", "[", "CMakeStringEscape", "(", "value", ")", "for", "value", "in", "values", "]", ")", ")", "output", ".", "write", "(", "'\")\\n'", ")" ]
https://github.com/apiaryio/drafter/blob/4634ebd07f6c6f257cc656598ccd535492fdfb55/tools/gyp/pylib/gyp/generator/cmake.py#L189-L199
Xilinx/Vitis-AI
fc74d404563d9951b57245443c73bef389f3657f
tools/Vitis-AI-Quantizer/vai_q_tensorflow1.x/tensorflow/tools/compatibility/ast_edits.py
python
APIChangeSpec.preprocess
(self, root_node)
return [], []
Preprocess a parse tree. Return any produced logs and errors.
Preprocess a parse tree. Return any produced logs and errors.
[ "Preprocess", "a", "parse", "tree", ".", "Return", "any", "produced", "logs", "and", "errors", "." ]
def preprocess(self, root_node): # pylint: disable=unused-argument """Preprocess a parse tree. Return any produced logs and errors.""" return [], []
[ "def", "preprocess", "(", "self", ",", "root_node", ")", ":", "# pylint: disable=unused-argument", "return", "[", "]", ",", "[", "]" ]
https://github.com/Xilinx/Vitis-AI/blob/fc74d404563d9951b57245443c73bef389f3657f/tools/Vitis-AI-Quantizer/vai_q_tensorflow1.x/tensorflow/tools/compatibility/ast_edits.py#L213-L215
tensorflow/tensorflow
419e3a6b650ea4bd1b0cba23c4348f8a69f3272e
tensorflow/python/eager/function.py
python
ConcreteFunction._get_gradient_function
(self)
return self._delayed_rewrite_functions._rewrite_forward_and_call_backward
Returns gradient function. It will be lazily created at first call.
Returns gradient function. It will be lazily created at first call.
[ "Returns", "gradient", "function", ".", "It", "will", "be", "lazily", "created", "at", "first", "call", "." ]
def _get_gradient_function(self): """Returns gradient function. It will be lazily created at first call.""" return self._delayed_rewrite_functions._rewrite_forward_and_call_backward
[ "def", "_get_gradient_function", "(", "self", ")", ":", "return", "self", ".", "_delayed_rewrite_functions", ".", "_rewrite_forward_and_call_backward" ]
https://github.com/tensorflow/tensorflow/blob/419e3a6b650ea4bd1b0cba23c4348f8a69f3272e/tensorflow/python/eager/function.py#L2118-L2120
tomahawk-player/tomahawk-resolvers
7f827bbe410ccfdb0446f7d6a91acc2199c9cc8d
archive/spotify/breakpad/third_party/protobuf/protobuf/python/google/protobuf/service_reflection.py
python
_ServiceBuilder._GenerateNonImplementedMethod
(self, method)
return lambda inst, rpc_controller, request, callback: ( self._NonImplementedMethod(method.name, rpc_controller, callback))
Generates and returns a method that can be set for a service methods. Args: method: Descriptor of the service method for which a method is to be generated. Returns: A method that can be added to the service class.
Generates and returns a method that can be set for a service methods.
[ "Generates", "and", "returns", "a", "method", "that", "can", "be", "set", "for", "a", "service", "methods", "." ]
def _GenerateNonImplementedMethod(self, method): """Generates and returns a method that can be set for a service methods. Args: method: Descriptor of the service method for which a method is to be generated. Returns: A method that can be added to the service class. """ return lambda inst, rpc_controller, request, callback: ( self._NonImplementedMethod(method.name, rpc_controller, callback))
[ "def", "_GenerateNonImplementedMethod", "(", "self", ",", "method", ")", ":", "return", "lambda", "inst", ",", "rpc_controller", ",", "request", ",", "callback", ":", "(", "self", ".", "_NonImplementedMethod", "(", "method", ".", "name", ",", "rpc_controller", ",", "callback", ")", ")" ]
https://github.com/tomahawk-player/tomahawk-resolvers/blob/7f827bbe410ccfdb0446f7d6a91acc2199c9cc8d/archive/spotify/breakpad/third_party/protobuf/protobuf/python/google/protobuf/service_reflection.py#L205-L216
regomne/chinesize
2ae555445046cd28d60a514e30ac1d6eca1c442a
N2System/nsbparser/nsbParser.py
python
NsbParser.p101
(self)
unk
unk
[ "unk" ]
def p101(self): 'unk' self.text.append('\t'*self.tabcount+'OP_101')
[ "def", "p101", "(", "self", ")", ":", "self", ".", "text", ".", "append", "(", "'\\t'", "*", "self", ".", "tabcount", "+", "'OP_101'", ")" ]
https://github.com/regomne/chinesize/blob/2ae555445046cd28d60a514e30ac1d6eca1c442a/N2System/nsbparser/nsbParser.py#L321-L323
FreeCAD/FreeCAD
ba42231b9c6889b89e064d6d563448ed81e376ec
src/Mod/Draft/DraftVecUtils.py
python
rotate2D
(u, angle)
return Vector(x_rot, y_rot, u.z)
Rotate the given vector around the Z axis by the specified angle. The rotation occurs in two dimensions only by means of a rotation matrix. :: u_rot R u (x_rot) = (cos(-angle) -sin(-angle)) * (x) (y_rot) (sin(-angle) cos(-angle)) (y) Normally the angle is positive, but in this case it is negative. `"Such non-standard orientations are rarely used in mathematics but are common in 2D computer graphics, which often have the origin in the top left corner and the y-axis pointing down."` W3C Recommendations (2003), Scalable Vector Graphics: the initial coordinate system. Parameters ---------- u : Base::Vector3 The vector. angle : float The angle of rotation given in radians. Returns ------- Base::Vector3 The new rotated vector.
Rotate the given vector around the Z axis by the specified angle.
[ "Rotate", "the", "given", "vector", "around", "the", "Z", "axis", "by", "the", "specified", "angle", "." ]
def rotate2D(u, angle): """Rotate the given vector around the Z axis by the specified angle. The rotation occurs in two dimensions only by means of a rotation matrix. :: u_rot R u (x_rot) = (cos(-angle) -sin(-angle)) * (x) (y_rot) (sin(-angle) cos(-angle)) (y) Normally the angle is positive, but in this case it is negative. `"Such non-standard orientations are rarely used in mathematics but are common in 2D computer graphics, which often have the origin in the top left corner and the y-axis pointing down."` W3C Recommendations (2003), Scalable Vector Graphics: the initial coordinate system. Parameters ---------- u : Base::Vector3 The vector. angle : float The angle of rotation given in radians. Returns ------- Base::Vector3 The new rotated vector. """ x_rot = math.cos(-angle) * u.x - math.sin(-angle) * u.y y_rot = math.sin(-angle) * u.x + math.cos(-angle) * u.y return Vector(x_rot, y_rot, u.z)
[ "def", "rotate2D", "(", "u", ",", "angle", ")", ":", "x_rot", "=", "math", ".", "cos", "(", "-", "angle", ")", "*", "u", ".", "x", "-", "math", ".", "sin", "(", "-", "angle", ")", "*", "u", ".", "y", "y_rot", "=", "math", ".", "sin", "(", "-", "angle", ")", "*", "u", ".", "x", "+", "math", ".", "cos", "(", "-", "angle", ")", "*", "u", ".", "y", "return", "Vector", "(", "x_rot", ",", "y_rot", ",", "u", ".", "z", ")" ]
https://github.com/FreeCAD/FreeCAD/blob/ba42231b9c6889b89e064d6d563448ed81e376ec/src/Mod/Draft/DraftVecUtils.py#L403-L436
wlanjie/AndroidFFmpeg
7baf9122f4b8e1c74e7baf4be5c422c7a5ba5aaf
tools/fdk-aac-build/armeabi-v7a/toolchain/lib/python2.7/lib-tk/Tkinter.py
python
Misc.tk_bisque
(self)
Change the color scheme to light brown as used in Tk 3.6 and before.
Change the color scheme to light brown as used in Tk 3.6 and before.
[ "Change", "the", "color", "scheme", "to", "light", "brown", "as", "used", "in", "Tk", "3", ".", "6", "and", "before", "." ]
def tk_bisque(self): """Change the color scheme to light brown as used in Tk 3.6 and before.""" self.tk.call('tk_bisque')
[ "def", "tk_bisque", "(", "self", ")", ":", "self", ".", "tk", ".", "call", "(", "'tk_bisque'", ")" ]
https://github.com/wlanjie/AndroidFFmpeg/blob/7baf9122f4b8e1c74e7baf4be5c422c7a5ba5aaf/tools/fdk-aac-build/armeabi-v7a/toolchain/lib/python2.7/lib-tk/Tkinter.py#L408-L410
baidu-research/tensorflow-allreduce
66d5b855e90b0949e9fa5cca5599fd729a70e874
tensorflow/python/ops/data_flow_ops.py
python
MapStagingArea.get
(self, key=None, indices=None, name=None)
If the key is provided, the associated (key, value) is returned from the staging area. If the key is not in the staging area, this method will block until the associated (key, value) is inserted. If no key is provided and the staging area is ordered, the (key, value) with the smallest key will be returned. Otherwise, a random (key, value) will be returned. If the staging area is empty when this operation executes, it will block until there is an element to dequeue. Args: key: Key associated with the required data (Optional) indices: Partial list of tensors to retrieve (optional). A list of integer or string indices. String indices are only valid if the Staging Area has names associated with it. name: A name for the operation (optional) Returns: The created op
If the key is provided, the associated (key, value) is returned from the staging area. If the key is not in the staging area, this method will block until the associated (key, value) is inserted.
[ "If", "the", "key", "is", "provided", "the", "associated", "(", "key", "value", ")", "is", "returned", "from", "the", "staging", "area", ".", "If", "the", "key", "is", "not", "in", "the", "staging", "area", "this", "method", "will", "block", "until", "the", "associated", "(", "key", "value", ")", "is", "inserted", "." ]
def get(self, key=None, indices=None, name=None): """ If the key is provided, the associated (key, value) is returned from the staging area. If the key is not in the staging area, this method will block until the associated (key, value) is inserted. If no key is provided and the staging area is ordered, the (key, value) with the smallest key will be returned. Otherwise, a random (key, value) will be returned. If the staging area is empty when this operation executes, it will block until there is an element to dequeue. Args: key: Key associated with the required data (Optional) indices: Partial list of tensors to retrieve (optional). A list of integer or string indices. String indices are only valid if the Staging Area has names associated with it. name: A name for the operation (optional) Returns: The created op """ if key is None: return self._popitem(indices=indices, name=name) else: return self._pop(key, indices=indices, name=name)
[ "def", "get", "(", "self", ",", "key", "=", "None", ",", "indices", "=", "None", ",", "name", "=", "None", ")", ":", "if", "key", "is", "None", ":", "return", "self", ".", "_popitem", "(", "indices", "=", "indices", ",", "name", "=", "name", ")", "else", ":", "return", "self", ".", "_pop", "(", "key", ",", "indices", "=", "indices", ",", "name", "=", "name", ")" ]
https://github.com/baidu-research/tensorflow-allreduce/blob/66d5b855e90b0949e9fa5cca5599fd729a70e874/tensorflow/python/ops/data_flow_ops.py#L1996-L2024
domino-team/openwrt-cc
8b181297c34d14d3ca521cc9f31430d561dbc688
package/gli-pub/openwrt-node-packages-master/node/node-v6.9.1/tools/gyp/pylib/gyp/mac_tool.py
python
MacTool._LoadProvisioningProfile
(self, profile_path)
Extracts the plist embedded in a provisioning profile. Args: profile_path: string, path to the .mobileprovision file Returns: Content of the plist embedded in the provisioning profile as a dictionary.
Extracts the plist embedded in a provisioning profile.
[ "Extracts", "the", "plist", "embedded", "in", "a", "provisioning", "profile", "." ]
def _LoadProvisioningProfile(self, profile_path): """Extracts the plist embedded in a provisioning profile. Args: profile_path: string, path to the .mobileprovision file Returns: Content of the plist embedded in the provisioning profile as a dictionary. """ with tempfile.NamedTemporaryFile() as temp: subprocess.check_call([ 'security', 'cms', '-D', '-i', profile_path, '-o', temp.name]) return self._LoadPlistMaybeBinary(temp.name)
[ "def", "_LoadProvisioningProfile", "(", "self", ",", "profile_path", ")", ":", "with", "tempfile", ".", "NamedTemporaryFile", "(", ")", "as", "temp", ":", "subprocess", ".", "check_call", "(", "[", "'security'", ",", "'cms'", ",", "'-D'", ",", "'-i'", ",", "profile_path", ",", "'-o'", ",", "temp", ".", "name", "]", ")", "return", "self", ".", "_LoadPlistMaybeBinary", "(", "temp", ".", "name", ")" ]
https://github.com/domino-team/openwrt-cc/blob/8b181297c34d14d3ca521cc9f31430d561dbc688/package/gli-pub/openwrt-node-packages-master/node/node-v6.9.1/tools/gyp/pylib/gyp/mac_tool.py#L474-L486
hanpfei/chromium-net
392cc1fa3a8f92f42e4071ab6e674d8e0482f83f
third_party/catapult/third_party/gsutil/third_party/protorpc/protorpc/util.py
python
AcceptItem.match
(self, content_type)
return ((self.__main_type is None or self.__main_type == main_type) and (self.__sub_type is None or self.__sub_type == sub_type))
Determine if the given accept header matches content type. Args: content_type: Unparsed content type string. Returns: True if accept header matches content type, else False.
Determine if the given accept header matches content type.
[ "Determine", "if", "the", "given", "accept", "header", "matches", "content", "type", "." ]
def match(self, content_type): """Determine if the given accept header matches content type. Args: content_type: Unparsed content type string. Returns: True if accept header matches content type, else False. """ content_type, _ = cgi.parse_header(content_type) match = self.__CONTENT_TYPE_REGEX.match(content_type.lower()) if not match: return False main_type, sub_type = match.group(1), match.group(2) if not(main_type and sub_type): return False return ((self.__main_type is None or self.__main_type == main_type) and (self.__sub_type is None or self.__sub_type == sub_type))
[ "def", "match", "(", "self", ",", "content_type", ")", ":", "content_type", ",", "_", "=", "cgi", ".", "parse_header", "(", "content_type", ")", "match", "=", "self", ".", "__CONTENT_TYPE_REGEX", ".", "match", "(", "content_type", ".", "lower", "(", ")", ")", "if", "not", "match", ":", "return", "False", "main_type", ",", "sub_type", "=", "match", ".", "group", "(", "1", ")", ",", "match", ".", "group", "(", "2", ")", "if", "not", "(", "main_type", "and", "sub_type", ")", ":", "return", "False", "return", "(", "(", "self", ".", "__main_type", "is", "None", "or", "self", ".", "__main_type", "==", "main_type", ")", "and", "(", "self", ".", "__sub_type", "is", "None", "or", "self", ".", "__sub_type", "==", "sub_type", ")", ")" ]
https://github.com/hanpfei/chromium-net/blob/392cc1fa3a8f92f42e4071ab6e674d8e0482f83f/third_party/catapult/third_party/gsutil/third_party/protorpc/protorpc/util.py#L280-L299
naver/sling
5671cd445a2caae0b4dd0332299e4cfede05062c
webkit/Tools/Scripts/webkitpy/thirdparty/irc/irclib.py
python
ServerConnection.mode
(self, target, command)
Send a MODE command.
Send a MODE command.
[ "Send", "a", "MODE", "command", "." ]
def mode(self, target, command): """Send a MODE command.""" self.send_raw("MODE %s %s" % (target, command))
[ "def", "mode", "(", "self", ",", "target", ",", "command", ")", ":", "self", ".", "send_raw", "(", "\"MODE %s %s\"", "%", "(", "target", ",", "command", ")", ")" ]
https://github.com/naver/sling/blob/5671cd445a2caae0b4dd0332299e4cfede05062c/webkit/Tools/Scripts/webkitpy/thirdparty/irc/irclib.py#L719-L721
google/llvm-propeller
45c226984fe8377ebfb2ad7713c680d652ba678d
compiler-rt/lib/sanitizer_common/scripts/cpplint.py
python
ParseNolintSuppressions
(filename, raw_line, linenum, error)
Updates the global list of line error-suppressions. Parses any NOLINT comments on the current line, updating the global error_suppressions store. Reports an error if the NOLINT comment was malformed. Args: filename: str, the name of the input file. raw_line: str, the line of input text, with comments. linenum: int, the number of the current line. error: function, an error handler.
Updates the global list of line error-suppressions.
[ "Updates", "the", "global", "list", "of", "line", "error", "-", "suppressions", "." ]
def ParseNolintSuppressions(filename, raw_line, linenum, error): """Updates the global list of line error-suppressions. Parses any NOLINT comments on the current line, updating the global error_suppressions store. Reports an error if the NOLINT comment was malformed. Args: filename: str, the name of the input file. raw_line: str, the line of input text, with comments. linenum: int, the number of the current line. error: function, an error handler. """ matched = Search(r'\bNOLINT(NEXTLINE)?\b(\([^)]+\))?', raw_line) if matched: if matched.group(1): suppressed_line = linenum + 1 else: suppressed_line = linenum category = matched.group(2) if category in (None, '(*)'): # => "suppress all" _error_suppressions.setdefault(None, set()).add(suppressed_line) else: if category.startswith('(') and category.endswith(')'): category = category[1:-1] if category in _ERROR_CATEGORIES: _error_suppressions.setdefault(category, set()).add(suppressed_line) elif category not in _LEGACY_ERROR_CATEGORIES: error(filename, linenum, 'readability/nolint', 5, 'Unknown NOLINT error category: %s' % category)
[ "def", "ParseNolintSuppressions", "(", "filename", ",", "raw_line", ",", "linenum", ",", "error", ")", ":", "matched", "=", "Search", "(", "r'\\bNOLINT(NEXTLINE)?\\b(\\([^)]+\\))?'", ",", "raw_line", ")", "if", "matched", ":", "if", "matched", ".", "group", "(", "1", ")", ":", "suppressed_line", "=", "linenum", "+", "1", "else", ":", "suppressed_line", "=", "linenum", "category", "=", "matched", ".", "group", "(", "2", ")", "if", "category", "in", "(", "None", ",", "'(*)'", ")", ":", "# => \"suppress all\"", "_error_suppressions", ".", "setdefault", "(", "None", ",", "set", "(", ")", ")", ".", "add", "(", "suppressed_line", ")", "else", ":", "if", "category", ".", "startswith", "(", "'('", ")", "and", "category", ".", "endswith", "(", "')'", ")", ":", "category", "=", "category", "[", "1", ":", "-", "1", "]", "if", "category", "in", "_ERROR_CATEGORIES", ":", "_error_suppressions", ".", "setdefault", "(", "category", ",", "set", "(", ")", ")", ".", "add", "(", "suppressed_line", ")", "elif", "category", "not", "in", "_LEGACY_ERROR_CATEGORIES", ":", "error", "(", "filename", ",", "linenum", ",", "'readability/nolint'", ",", "5", ",", "'Unknown NOLINT error category: %s'", "%", "category", ")" ]
https://github.com/google/llvm-propeller/blob/45c226984fe8377ebfb2ad7713c680d652ba678d/compiler-rt/lib/sanitizer_common/scripts/cpplint.py#L583-L612
miyosuda/TensorFlowAndroidMNIST
7b5a4603d2780a8a2834575706e9001977524007
jni-build/jni/include/tensorflow/python/framework/common_shapes.py
python
separable_conv2d_shape
(op)
return [tensor_shape.TensorShape([batch_size, out_rows, out_cols, depth_out])]
Shape function for a SeparableConv2D op. This op has three inputs: * input, a 4D tensor with shape = [batch_size, rows, cols, depth_in] * depthwise_filter, a 4D tensor with shape = [filter_rows, filter_cols, depth_in, depth_multiplier] * pointwise_filter, a 4D tensor with shape = [1, 1, depth_in * depth_multiplier, depth_out] The output is a 4D tensor with shape = [batch_size, out_rows, out_cols, depth_out], where out_rows and out_cols depend on the value of the op's "padding" and "strides" attrs. Args: op: A SeparableConv2D Operation. Returns: A list containing the Shape of the SeparableConv2D output. Raises: ValueError: If the shapes of the input or filter are incompatible.
Shape function for a SeparableConv2D op.
[ "Shape", "function", "for", "a", "SeparableConv2D", "op", "." ]
def separable_conv2d_shape(op): """Shape function for a SeparableConv2D op. This op has three inputs: * input, a 4D tensor with shape = [batch_size, rows, cols, depth_in] * depthwise_filter, a 4D tensor with shape = [filter_rows, filter_cols, depth_in, depth_multiplier] * pointwise_filter, a 4D tensor with shape = [1, 1, depth_in * depth_multiplier, depth_out] The output is a 4D tensor with shape = [batch_size, out_rows, out_cols, depth_out], where out_rows and out_cols depend on the value of the op's "padding" and "strides" attrs. Args: op: A SeparableConv2D Operation. Returns: A list containing the Shape of the SeparableConv2D output. Raises: ValueError: If the shapes of the input or filter are incompatible. """ input_shape = op.inputs[0].get_shape().with_rank(4) depthwise_filter_shape = op.inputs[1].get_shape().merge_with( tensor_shape.TensorShape([None, None, input_shape[3], None])) pointwise_depth_in = depthwise_filter_shape[2] * depthwise_filter_shape[3] pointwise_filter_shape = op.inputs[2].get_shape().merge_with( tensor_shape.TensorShape([1, 1, pointwise_depth_in, None])) batch_size = input_shape[0] in_rows = input_shape[1] in_cols = input_shape[2] filter_rows = depthwise_filter_shape[0] filter_cols = depthwise_filter_shape[1] depth_out = pointwise_filter_shape[3] stride_b, stride_r, stride_c, stride_d = op.get_attr("strides") if stride_b != 1 or stride_d != 1: raise ValueError("Current implementation does not yet support " "strides in the batch and depth dimensions.") if stride_r != stride_c: # TODO(shlens): Add support for this. raise ValueError("Current implementation only supports equal length " "strides in the row and column dimensions.") # TODO(mrry,shlens): Raise an error if the stride would cause # information in the input to be ignored. This will require a change # in the kernel implementation. stride = stride_r padding = op.get_attr("padding") out_rows, out_cols = get2d_conv_output_size(in_rows, in_cols, filter_rows, filter_cols, stride, stride, padding) return [tensor_shape.TensorShape([batch_size, out_rows, out_cols, depth_out])]
[ "def", "separable_conv2d_shape", "(", "op", ")", ":", "input_shape", "=", "op", ".", "inputs", "[", "0", "]", ".", "get_shape", "(", ")", ".", "with_rank", "(", "4", ")", "depthwise_filter_shape", "=", "op", ".", "inputs", "[", "1", "]", ".", "get_shape", "(", ")", ".", "merge_with", "(", "tensor_shape", ".", "TensorShape", "(", "[", "None", ",", "None", ",", "input_shape", "[", "3", "]", ",", "None", "]", ")", ")", "pointwise_depth_in", "=", "depthwise_filter_shape", "[", "2", "]", "*", "depthwise_filter_shape", "[", "3", "]", "pointwise_filter_shape", "=", "op", ".", "inputs", "[", "2", "]", ".", "get_shape", "(", ")", ".", "merge_with", "(", "tensor_shape", ".", "TensorShape", "(", "[", "1", ",", "1", ",", "pointwise_depth_in", ",", "None", "]", ")", ")", "batch_size", "=", "input_shape", "[", "0", "]", "in_rows", "=", "input_shape", "[", "1", "]", "in_cols", "=", "input_shape", "[", "2", "]", "filter_rows", "=", "depthwise_filter_shape", "[", "0", "]", "filter_cols", "=", "depthwise_filter_shape", "[", "1", "]", "depth_out", "=", "pointwise_filter_shape", "[", "3", "]", "stride_b", ",", "stride_r", ",", "stride_c", ",", "stride_d", "=", "op", ".", "get_attr", "(", "\"strides\"", ")", "if", "stride_b", "!=", "1", "or", "stride_d", "!=", "1", ":", "raise", "ValueError", "(", "\"Current implementation does not yet support \"", "\"strides in the batch and depth dimensions.\"", ")", "if", "stride_r", "!=", "stride_c", ":", "# TODO(shlens): Add support for this.", "raise", "ValueError", "(", "\"Current implementation only supports equal length \"", "\"strides in the row and column dimensions.\"", ")", "# TODO(mrry,shlens): Raise an error if the stride would cause", "# information in the input to be ignored. This will require a change", "# in the kernel implementation.", "stride", "=", "stride_r", "padding", "=", "op", ".", "get_attr", "(", "\"padding\"", ")", "out_rows", ",", "out_cols", "=", "get2d_conv_output_size", "(", "in_rows", ",", "in_cols", ",", "filter_rows", ",", "filter_cols", ",", "stride", ",", "stride", ",", "padding", ")", "return", "[", "tensor_shape", ".", "TensorShape", "(", "[", "batch_size", ",", "out_rows", ",", "out_cols", ",", "depth_out", "]", ")", "]" ]
https://github.com/miyosuda/TensorFlowAndroidMNIST/blob/7b5a4603d2780a8a2834575706e9001977524007/jni-build/jni/include/tensorflow/python/framework/common_shapes.py#L312-L372
catboost/catboost
167f64f237114a4d10b2b4ee42adb4569137debe
contrib/python/pandas/py2/pandas/core/base.py
python
StringMixin.__str__
(self)
return self.__bytes__()
Return a string representation for a particular Object Invoked by str(df) in both py2/py3. Yields Bytestring in Py2, Unicode String in py3.
Return a string representation for a particular Object
[ "Return", "a", "string", "representation", "for", "a", "particular", "Object" ]
def __str__(self): """ Return a string representation for a particular Object Invoked by str(df) in both py2/py3. Yields Bytestring in Py2, Unicode String in py3. """ if compat.PY3: return self.__unicode__() return self.__bytes__()
[ "def", "__str__", "(", "self", ")", ":", "if", "compat", ".", "PY3", ":", "return", "self", ".", "__unicode__", "(", ")", "return", "self", ".", "__bytes__", "(", ")" ]
https://github.com/catboost/catboost/blob/167f64f237114a4d10b2b4ee42adb4569137debe/contrib/python/pandas/py2/pandas/core/base.py#L48-L58
yushroom/FishEngine
a4b9fb9b0a6dc202f7990e75f4b7d8d5163209d9
Script/reflect/clang/cindex.py
python
Cursor.is_anonymous
(self)
return conf.lib.clang_Cursor_isAnonymous(self)
Check if the record is anonymous.
Check if the record is anonymous.
[ "Check", "if", "the", "record", "is", "anonymous", "." ]
def is_anonymous(self): """ Check if the record is anonymous. """ if self.kind == CursorKind.FIELD_DECL: return self.type.get_declaration().is_anonymous() return conf.lib.clang_Cursor_isAnonymous(self)
[ "def", "is_anonymous", "(", "self", ")", ":", "if", "self", ".", "kind", "==", "CursorKind", ".", "FIELD_DECL", ":", "return", "self", ".", "type", ".", "get_declaration", "(", ")", ".", "is_anonymous", "(", ")", "return", "conf", ".", "lib", ".", "clang_Cursor_isAnonymous", "(", "self", ")" ]
https://github.com/yushroom/FishEngine/blob/a4b9fb9b0a6dc202f7990e75f4b7d8d5163209d9/Script/reflect/clang/cindex.py#L1714-L1720
wxWidgets/wxPython-Classic
19571e1ae65f1ac445f5491474121998c97a1bf0
wx/tools/Editra/src/eclib/ctrlbox.py
python
SegmentBar.HitTest
(self, pos)
return where, index
Find where the position is in the window @param pos: (x, y) in client cords @return: int
Find where the position is in the window @param pos: (x, y) in client cords @return: int
[ "Find", "where", "the", "position", "is", "in", "the", "window", "@param", "pos", ":", "(", "x", "y", ")", "in", "client", "cords", "@return", ":", "int" ]
def HitTest(self, pos): """Find where the position is in the window @param pos: (x, y) in client cords @return: int """ index = self.GetIndexFromPosition(pos) where = SEGMENT_HT_NOWHERE if index != wx.NOT_FOUND: button = self._buttons[index] if self.SegmentHasCloseButton(index): brect = button.XButton trect = wx.Rect(brect.x, brect.y, brect.Width+4, brect.Height+4) if trect.Contains(pos): where = SEGMENT_HT_X_BTN else: where = SEGMENT_HT_SEG else: where = SEGMENT_HT_SEG return where, index
[ "def", "HitTest", "(", "self", ",", "pos", ")", ":", "index", "=", "self", ".", "GetIndexFromPosition", "(", "pos", ")", "where", "=", "SEGMENT_HT_NOWHERE", "if", "index", "!=", "wx", ".", "NOT_FOUND", ":", "button", "=", "self", ".", "_buttons", "[", "index", "]", "if", "self", ".", "SegmentHasCloseButton", "(", "index", ")", ":", "brect", "=", "button", ".", "XButton", "trect", "=", "wx", ".", "Rect", "(", "brect", ".", "x", ",", "brect", ".", "y", ",", "brect", ".", "Width", "+", "4", ",", "brect", ".", "Height", "+", "4", ")", "if", "trect", ".", "Contains", "(", "pos", ")", ":", "where", "=", "SEGMENT_HT_X_BTN", "else", ":", "where", "=", "SEGMENT_HT_SEG", "else", ":", "where", "=", "SEGMENT_HT_SEG", "return", "where", ",", "index" ]
https://github.com/wxWidgets/wxPython-Classic/blob/19571e1ae65f1ac445f5491474121998c97a1bf0/wx/tools/Editra/src/eclib/ctrlbox.py#L932-L952
garbear/kodi-steamlink
3f8e5970b01607cdb3c2688fbaa78e08f2d9c561
tools/EventClients/lib/python/xbmcclient.py
python
Packet.get_udp_message
(self, packetnum=1)
return header + payload
Construct the UDP message for the specified packetnum and return as string Keyword arguments: packetnum -- the packet no. for which to construct the message (default 1)
Construct the UDP message for the specified packetnum and return as string
[ "Construct", "the", "UDP", "message", "for", "the", "specified", "packetnum", "and", "return", "as", "string" ]
def get_udp_message(self, packetnum=1): """Construct the UDP message for the specified packetnum and return as string Keyword arguments: packetnum -- the packet no. for which to construct the message (default 1) """ if packetnum > self.num_packets() or packetnum < 1: return b"" header = b"" if packetnum==1: header = self.get_header(self.packettype, packetnum, self.maxseq, self.get_payload_size(packetnum)) else: header = self.get_header(PT_BLOB, packetnum, self.maxseq, self.get_payload_size(packetnum)) payload = self.payload[ (packetnum-1) * MAX_PAYLOAD_SIZE : (packetnum-1) * MAX_PAYLOAD_SIZE+ self.get_payload_size(packetnum) ] return header + payload
[ "def", "get_udp_message", "(", "self", ",", "packetnum", "=", "1", ")", ":", "if", "packetnum", ">", "self", ".", "num_packets", "(", ")", "or", "packetnum", "<", "1", ":", "return", "b\"\"", "header", "=", "b\"\"", "if", "packetnum", "==", "1", ":", "header", "=", "self", ".", "get_header", "(", "self", ".", "packettype", ",", "packetnum", ",", "self", ".", "maxseq", ",", "self", ".", "get_payload_size", "(", "packetnum", ")", ")", "else", ":", "header", "=", "self", ".", "get_header", "(", "PT_BLOB", ",", "packetnum", ",", "self", ".", "maxseq", ",", "self", ".", "get_payload_size", "(", "packetnum", ")", ")", "payload", "=", "self", ".", "payload", "[", "(", "packetnum", "-", "1", ")", "*", "MAX_PAYLOAD_SIZE", ":", "(", "packetnum", "-", "1", ")", "*", "MAX_PAYLOAD_SIZE", "+", "self", ".", "get_payload_size", "(", "packetnum", ")", "]", "return", "header", "+", "payload" ]
https://github.com/garbear/kodi-steamlink/blob/3f8e5970b01607cdb3c2688fbaa78e08f2d9c561/tools/EventClients/lib/python/xbmcclient.py#L226-L247
hpi-xnor/BMXNet
ed0b201da6667887222b8e4b5f997c4f6b61943d
python/mxnet/ndarray/ndarray.py
python
NDArray.stype
(self)
return _STORAGE_TYPE_ID_TO_STR[_storage_type(self.handle)]
Storage-type of the array.
Storage-type of the array.
[ "Storage", "-", "type", "of", "the", "array", "." ]
def stype(self): """Storage-type of the array. """ return _STORAGE_TYPE_ID_TO_STR[_storage_type(self.handle)]
[ "def", "stype", "(", "self", ")", ":", "return", "_STORAGE_TYPE_ID_TO_STR", "[", "_storage_type", "(", "self", ".", "handle", ")", "]" ]
https://github.com/hpi-xnor/BMXNet/blob/ed0b201da6667887222b8e4b5f997c4f6b61943d/python/mxnet/ndarray/ndarray.py#L1721-L1724
mantidproject/mantid
03deeb89254ec4289edb8771e0188c2090a02f32
Framework/PythonInterface/mantid/plots/axesfunctions.py
python
contour
(axes, workspace, *args, **kwargs)
return axes.contour(x, y, z, *args, **kwargs)
Essentially the same as :meth:`matplotlib.axes.Axes.contour` but calculates the countour levels. Currently this only works with workspaces that have a constant number of bins between spectra. :param axes: :class:`matplotlib.axes.Axes` object that will do the plotting :param workspace: :class:`mantid.api.MatrixWorkspace` or :class:`mantid.api.IMDHistoWorkspace` to extract the data from :param distribution: ``None`` (default) asks the workspace. ``False`` means divide by bin width. ``True`` means do not divide by bin width. Applies only when the the matrix workspace is a histogram. :param normalization: ``None`` (default) ask the workspace. Applies to MDHisto workspaces. It can override the value from displayNormalizationHisto. It checks only if the normalization is mantid.api.MDNormalization.NumEventsNormalization :param indices: Specify which slice of an MDHistoWorkspace to use when plotting. Needs to be a tuple and will be interpreted as a list of indices. You need to use ``slice(None)`` to select which dimensions to plot. *e.g.* to select the last two axes to plot from a 3D volume use ``indices=(5, slice(None), slice(None))`` where the 5 is the bin selected for the first axis. :param slicepoint: Specify which slice of an MDHistoWorkspace to use when plotting in the dimension units. You need to use ``None`` to select which dimension to plot. *e.g.* to select the last two axes to plot from a 3D volume use ``slicepoint=(1.0, None, None)`` where the 1.0 is the value of the dimension selected for the first axis. :param transpose: ``bool`` to transpose the x and y axes of the plotted dimensions of an MDHistoWorkspace
Essentially the same as :meth:`matplotlib.axes.Axes.contour` but calculates the countour levels. Currently this only works with workspaces that have a constant number of bins between spectra.
[ "Essentially", "the", "same", "as", ":", "meth", ":", "matplotlib", ".", "axes", ".", "Axes", ".", "contour", "but", "calculates", "the", "countour", "levels", ".", "Currently", "this", "only", "works", "with", "workspaces", "that", "have", "a", "constant", "number", "of", "bins", "between", "spectra", "." ]
def contour(axes, workspace, *args, **kwargs): ''' Essentially the same as :meth:`matplotlib.axes.Axes.contour` but calculates the countour levels. Currently this only works with workspaces that have a constant number of bins between spectra. :param axes: :class:`matplotlib.axes.Axes` object that will do the plotting :param workspace: :class:`mantid.api.MatrixWorkspace` or :class:`mantid.api.IMDHistoWorkspace` to extract the data from :param distribution: ``None`` (default) asks the workspace. ``False`` means divide by bin width. ``True`` means do not divide by bin width. Applies only when the the matrix workspace is a histogram. :param normalization: ``None`` (default) ask the workspace. Applies to MDHisto workspaces. It can override the value from displayNormalizationHisto. It checks only if the normalization is mantid.api.MDNormalization.NumEventsNormalization :param indices: Specify which slice of an MDHistoWorkspace to use when plotting. Needs to be a tuple and will be interpreted as a list of indices. You need to use ``slice(None)`` to select which dimensions to plot. *e.g.* to select the last two axes to plot from a 3D volume use ``indices=(5, slice(None), slice(None))`` where the 5 is the bin selected for the first axis. :param slicepoint: Specify which slice of an MDHistoWorkspace to use when plotting in the dimension units. You need to use ``None`` to select which dimension to plot. *e.g.* to select the last two axes to plot from a 3D volume use ``slicepoint=(1.0, None, None)`` where the 1.0 is the value of the dimension selected for the first axis. :param transpose: ``bool`` to transpose the x and y axes of the plotted dimensions of an MDHistoWorkspace ''' transpose = kwargs.pop('transpose', False) if isinstance(workspace, mantid.dataobjects.MDHistoWorkspace): (normalization, kwargs) = get_normalization(workspace, **kwargs) indices, kwargs = get_indices(workspace, **kwargs) x, y, z = get_md_data2d_bin_centers(workspace, normalization, indices, transpose) _setLabels2D(axes, workspace, indices, transpose) else: (distribution, kwargs) = get_distribution(workspace, **kwargs) (x, y, z) = get_matrix_2d_data(workspace, distribution, histogram2D=False, transpose=transpose) _setLabels2D(axes, workspace, transpose=transpose) return axes.contour(x, y, z, *args, **kwargs)
[ "def", "contour", "(", "axes", ",", "workspace", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "transpose", "=", "kwargs", ".", "pop", "(", "'transpose'", ",", "False", ")", "if", "isinstance", "(", "workspace", ",", "mantid", ".", "dataobjects", ".", "MDHistoWorkspace", ")", ":", "(", "normalization", ",", "kwargs", ")", "=", "get_normalization", "(", "workspace", ",", "*", "*", "kwargs", ")", "indices", ",", "kwargs", "=", "get_indices", "(", "workspace", ",", "*", "*", "kwargs", ")", "x", ",", "y", ",", "z", "=", "get_md_data2d_bin_centers", "(", "workspace", ",", "normalization", ",", "indices", ",", "transpose", ")", "_setLabels2D", "(", "axes", ",", "workspace", ",", "indices", ",", "transpose", ")", "else", ":", "(", "distribution", ",", "kwargs", ")", "=", "get_distribution", "(", "workspace", ",", "*", "*", "kwargs", ")", "(", "x", ",", "y", ",", "z", ")", "=", "get_matrix_2d_data", "(", "workspace", ",", "distribution", ",", "histogram2D", "=", "False", ",", "transpose", "=", "transpose", ")", "_setLabels2D", "(", "axes", ",", "workspace", ",", "transpose", "=", "transpose", ")", "return", "axes", ".", "contour", "(", "x", ",", "y", ",", "z", ",", "*", "args", ",", "*", "*", "kwargs", ")" ]
https://github.com/mantidproject/mantid/blob/03deeb89254ec4289edb8771e0188c2090a02f32/Framework/PythonInterface/mantid/plots/axesfunctions.py#L332-L371
benoitsteiner/tensorflow-opencl
cb7cb40a57fde5cfd4731bc551e82a1e2fef43a5
tensorflow/python/ops/image_ops_impl.py
python
total_variation
(images, name=None)
return tot_var
Calculate and return the total variation for one or more images. The total variation is the sum of the absolute differences for neighboring pixel-values in the input images. This measures how much noise is in the images. This can be used as a loss-function during optimization so as to suppress noise in images. If you have a batch of images, then you should calculate the scalar loss-value as the sum: `loss = tf.reduce_sum(tf.image.total_variation(images))` This implements the anisotropic 2-D version of the formula described here: https://en.wikipedia.org/wiki/Total_variation_denoising Args: images: 4-D Tensor of shape `[batch, height, width, channels]` or 3-D Tensor of shape `[height, width, channels]`. name: A name for the operation (optional). Raises: ValueError: if images.shape is not a 3-D or 4-D vector. Returns: The total variation of `images`. If `images` was 4-D, return a 1-D float Tensor of shape `[batch]` with the total variation for each image in the batch. If `images` was 3-D, return a scalar float with the total variation for that image.
Calculate and return the total variation for one or more images.
[ "Calculate", "and", "return", "the", "total", "variation", "for", "one", "or", "more", "images", "." ]
def total_variation(images, name=None): """Calculate and return the total variation for one or more images. The total variation is the sum of the absolute differences for neighboring pixel-values in the input images. This measures how much noise is in the images. This can be used as a loss-function during optimization so as to suppress noise in images. If you have a batch of images, then you should calculate the scalar loss-value as the sum: `loss = tf.reduce_sum(tf.image.total_variation(images))` This implements the anisotropic 2-D version of the formula described here: https://en.wikipedia.org/wiki/Total_variation_denoising Args: images: 4-D Tensor of shape `[batch, height, width, channels]` or 3-D Tensor of shape `[height, width, channels]`. name: A name for the operation (optional). Raises: ValueError: if images.shape is not a 3-D or 4-D vector. Returns: The total variation of `images`. If `images` was 4-D, return a 1-D float Tensor of shape `[batch]` with the total variation for each image in the batch. If `images` was 3-D, return a scalar float with the total variation for that image. """ with ops.name_scope(name, 'total_variation'): ndims = images.get_shape().ndims if ndims == 3: # The input is a single image with shape [height, width, channels]. # Calculate the difference of neighboring pixel-values. # The images are shifted one pixel along the height and width by slicing. pixel_dif1 = images[1:, :, :] - images[:-1, :, :] pixel_dif2 = images[:, 1:, :] - images[:, :-1, :] # Sum for all axis. (None is an alias for all axis.) sum_axis = None elif ndims == 4: # The input is a batch of images with shape: # [batch, height, width, channels]. # Calculate the difference of neighboring pixel-values. # The images are shifted one pixel along the height and width by slicing. pixel_dif1 = images[:, 1:, :, :] - images[:, :-1, :, :] pixel_dif2 = images[:, :, 1:, :] - images[:, :, :-1, :] # Only sum for the last 3 axis. # This results in a 1-D tensor with the total variation for each image. sum_axis = [1, 2, 3] else: raise ValueError('\'images\' must be either 3 or 4-dimensional.') # Calculate the total variation by taking the absolute value of the # pixel-differences and summing over the appropriate axis. tot_var = (math_ops.reduce_sum(math_ops.abs(pixel_dif1), axis=sum_axis) + math_ops.reduce_sum(math_ops.abs(pixel_dif2), axis=sum_axis)) return tot_var
[ "def", "total_variation", "(", "images", ",", "name", "=", "None", ")", ":", "with", "ops", ".", "name_scope", "(", "name", ",", "'total_variation'", ")", ":", "ndims", "=", "images", ".", "get_shape", "(", ")", ".", "ndims", "if", "ndims", "==", "3", ":", "# The input is a single image with shape [height, width, channels].", "# Calculate the difference of neighboring pixel-values.", "# The images are shifted one pixel along the height and width by slicing.", "pixel_dif1", "=", "images", "[", "1", ":", ",", ":", ",", ":", "]", "-", "images", "[", ":", "-", "1", ",", ":", ",", ":", "]", "pixel_dif2", "=", "images", "[", ":", ",", "1", ":", ",", ":", "]", "-", "images", "[", ":", ",", ":", "-", "1", ",", ":", "]", "# Sum for all axis. (None is an alias for all axis.)", "sum_axis", "=", "None", "elif", "ndims", "==", "4", ":", "# The input is a batch of images with shape:", "# [batch, height, width, channels].", "# Calculate the difference of neighboring pixel-values.", "# The images are shifted one pixel along the height and width by slicing.", "pixel_dif1", "=", "images", "[", ":", ",", "1", ":", ",", ":", ",", ":", "]", "-", "images", "[", ":", ",", ":", "-", "1", ",", ":", ",", ":", "]", "pixel_dif2", "=", "images", "[", ":", ",", ":", ",", "1", ":", ",", ":", "]", "-", "images", "[", ":", ",", ":", ",", ":", "-", "1", ",", ":", "]", "# Only sum for the last 3 axis.", "# This results in a 1-D tensor with the total variation for each image.", "sum_axis", "=", "[", "1", ",", "2", ",", "3", "]", "else", ":", "raise", "ValueError", "(", "'\\'images\\' must be either 3 or 4-dimensional.'", ")", "# Calculate the total variation by taking the absolute value of the", "# pixel-differences and summing over the appropriate axis.", "tot_var", "=", "(", "math_ops", ".", "reduce_sum", "(", "math_ops", ".", "abs", "(", "pixel_dif1", ")", ",", "axis", "=", "sum_axis", ")", "+", "math_ops", ".", "reduce_sum", "(", "math_ops", ".", "abs", "(", "pixel_dif2", ")", ",", "axis", "=", "sum_axis", ")", ")", "return", "tot_var" ]
https://github.com/benoitsteiner/tensorflow-opencl/blob/cb7cb40a57fde5cfd4731bc551e82a1e2fef43a5/tensorflow/python/ops/image_ops_impl.py#L1415-L1482
kamyu104/LeetCode-Solutions
77605708a927ea3b85aee5a479db733938c7c211
Python/number-of-different-subsequences-gcds.py
python
Solution.countDifferentSubsequenceGCDs
(self, nums)
return result
:type nums: List[int] :rtype: int
:type nums: List[int] :rtype: int
[ ":", "type", "nums", ":", "List", "[", "int", "]", ":", "rtype", ":", "int" ]
def countDifferentSubsequenceGCDs(self, nums): """ :type nums: List[int] :rtype: int """ max_num, nums_set = max(nums), set(nums) result = 0 for i in xrange(1, max_num+1): d = 0 for x in xrange(i, max_num+1, i): if x not in nums_set: continue d = fractions.gcd(d, x) # total time: O(log(min(d, x)) = O(logd), where d keeps the same or gets smaller if d == i: result += 1 break return result
[ "def", "countDifferentSubsequenceGCDs", "(", "self", ",", "nums", ")", ":", "max_num", ",", "nums_set", "=", "max", "(", "nums", ")", ",", "set", "(", "nums", ")", "result", "=", "0", "for", "i", "in", "xrange", "(", "1", ",", "max_num", "+", "1", ")", ":", "d", "=", "0", "for", "x", "in", "xrange", "(", "i", ",", "max_num", "+", "1", ",", "i", ")", ":", "if", "x", "not", "in", "nums_set", ":", "continue", "d", "=", "fractions", ".", "gcd", "(", "d", ",", "x", ")", "# total time: O(log(min(d, x)) = O(logd), where d keeps the same or gets smaller", "if", "d", "==", "i", ":", "result", "+=", "1", "break", "return", "result" ]
https://github.com/kamyu104/LeetCode-Solutions/blob/77605708a927ea3b85aee5a479db733938c7c211/Python/number-of-different-subsequences-gcds.py#L8-L24
PaddlePaddle/Paddle
1252f4bb3e574df80aa6d18c7ddae1b3a90bd81c
python/paddle/fluid/dygraph/jit.py
python
_dygraph_to_static_func_
(dygraph_func)
return __impl__
Converts imperative dygraph APIs into declarative function APIs. Decorator @dygraph_to_static_func only converts imperative dygraph APIs into declarative net-building APIs, which means it doesn't return immediate digital result as imperative mode. Users should handle Program and Executor by themselves. Note: This decorator is NOT our recommended way to transform imperative function to declarative function. We will remove this decorator after we finalize cleaning up code. Args: dygraph_func (callable): callable imperative function. Returns: Callable: converting imperative dygraph APIs into declarative net-building APIs. Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np from paddle.fluid.dygraph.jit import dygraph_to_static_func @dygraph_to_static_func def func(x): if fluid.layers.mean(x) < 0: x_v = x - 1 else: x_v = x + 1 return x_v x = fluid.layers.fill_constant(shape=[3, 3], value=0, dtype='float64') x_v = func(x) exe = fluid.Executor(fluid.CPUPlace()) out = exe.run(fetch_list=[x_v]) print(out[0]) # [[1. 1. 1.] # [1. 1. 1.] # [1. 1. 1.]]
Converts imperative dygraph APIs into declarative function APIs. Decorator @dygraph_to_static_func only converts imperative dygraph APIs into declarative net-building APIs, which means it doesn't return immediate digital result as imperative mode. Users should handle Program and Executor by themselves.
[ "Converts", "imperative", "dygraph", "APIs", "into", "declarative", "function", "APIs", ".", "Decorator", "@dygraph_to_static_func", "only", "converts", "imperative", "dygraph", "APIs", "into", "declarative", "net", "-", "building", "APIs", "which", "means", "it", "doesn", "t", "return", "immediate", "digital", "result", "as", "imperative", "mode", ".", "Users", "should", "handle", "Program", "and", "Executor", "by", "themselves", "." ]
def _dygraph_to_static_func_(dygraph_func): """ Converts imperative dygraph APIs into declarative function APIs. Decorator @dygraph_to_static_func only converts imperative dygraph APIs into declarative net-building APIs, which means it doesn't return immediate digital result as imperative mode. Users should handle Program and Executor by themselves. Note: This decorator is NOT our recommended way to transform imperative function to declarative function. We will remove this decorator after we finalize cleaning up code. Args: dygraph_func (callable): callable imperative function. Returns: Callable: converting imperative dygraph APIs into declarative net-building APIs. Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np from paddle.fluid.dygraph.jit import dygraph_to_static_func @dygraph_to_static_func def func(x): if fluid.layers.mean(x) < 0: x_v = x - 1 else: x_v = x + 1 return x_v x = fluid.layers.fill_constant(shape=[3, 3], value=0, dtype='float64') x_v = func(x) exe = fluid.Executor(fluid.CPUPlace()) out = exe.run(fetch_list=[x_v]) print(out[0]) # [[1. 1. 1.] # [1. 1. 1.] # [1. 1. 1.]] """ # TODO: remove this decorator after we finalize training API def __impl__(*args, **kwargs): program_translator = ProgramTranslator() if in_dygraph_mode() or not program_translator.enable_to_static: logging_utils.warn( "The decorator 'dygraph_to_static_func' doesn't work in " "dygraph mode or set ProgramTranslator.enable to False. " "We will just return dygraph output.") return dygraph_func(*args, **kwargs) static_func = program_translator.get_func(dygraph_func) return static_func(*args, **kwargs) return __impl__
[ "def", "_dygraph_to_static_func_", "(", "dygraph_func", ")", ":", "# TODO: remove this decorator after we finalize training API", "def", "__impl__", "(", "*", "args", ",", "*", "*", "kwargs", ")", ":", "program_translator", "=", "ProgramTranslator", "(", ")", "if", "in_dygraph_mode", "(", ")", "or", "not", "program_translator", ".", "enable_to_static", ":", "logging_utils", ".", "warn", "(", "\"The decorator 'dygraph_to_static_func' doesn't work in \"", "\"dygraph mode or set ProgramTranslator.enable to False. \"", "\"We will just return dygraph output.\"", ")", "return", "dygraph_func", "(", "*", "args", ",", "*", "*", "kwargs", ")", "static_func", "=", "program_translator", ".", "get_func", "(", "dygraph_func", ")", "return", "static_func", "(", "*", "args", ",", "*", "*", "kwargs", ")", "return", "__impl__" ]
https://github.com/PaddlePaddle/Paddle/blob/1252f4bb3e574df80aa6d18c7ddae1b3a90bd81c/python/paddle/fluid/dygraph/jit.py#L77-L137
vmware/concord-bft
ec036a384b4c81be0423d4b429bd37900b13b864
util/pyclient/bft_msgs.py
python
pack_batch_request
(client_id, num_of_messages_in_batch, msg_data, cid)
return data
Create and return a buffer with a header and message
Create and return a buffer with a header and message
[ "Create", "and", "return", "a", "buffer", "with", "a", "header", "and", "message" ]
def pack_batch_request(client_id, num_of_messages_in_batch, msg_data, cid): """Create and return a buffer with a header and message""" header = BatchRequestHeader(len(cid), client_id, num_of_messages_in_batch, len(msg_data)) data = b''.join([pack_batch_request_header(header), cid.encode(), msg_data]) return data
[ "def", "pack_batch_request", "(", "client_id", ",", "num_of_messages_in_batch", ",", "msg_data", ",", "cid", ")", ":", "header", "=", "BatchRequestHeader", "(", "len", "(", "cid", ")", ",", "client_id", ",", "num_of_messages_in_batch", ",", "len", "(", "msg_data", ")", ")", "data", "=", "b''", ".", "join", "(", "[", "pack_batch_request_header", "(", "header", ")", ",", "cid", ".", "encode", "(", ")", ",", "msg_data", "]", ")", "return", "data" ]
https://github.com/vmware/concord-bft/blob/ec036a384b4c81be0423d4b429bd37900b13b864/util/pyclient/bft_msgs.py#L96-L100
wxWidgets/wxPython-Classic
19571e1ae65f1ac445f5491474121998c97a1bf0
src/osx_carbon/propgrid.py
python
PGVIterator.GetProperty
(*args, **kwargs)
return _propgrid.PGVIterator_GetProperty(*args, **kwargs)
GetProperty(self) -> PGProperty
GetProperty(self) -> PGProperty
[ "GetProperty", "(", "self", ")", "-", ">", "PGProperty" ]
def GetProperty(*args, **kwargs): """GetProperty(self) -> PGProperty""" return _propgrid.PGVIterator_GetProperty(*args, **kwargs)
[ "def", "GetProperty", "(", "*", "args", ",", "*", "*", "kwargs", ")", ":", "return", "_propgrid", ".", "PGVIterator_GetProperty", "(", "*", "args", ",", "*", "*", "kwargs", ")" ]
https://github.com/wxWidgets/wxPython-Classic/blob/19571e1ae65f1ac445f5491474121998c97a1bf0/src/osx_carbon/propgrid.py#L1074-L1076
thalium/icebox
99d147d5b9269222225443ce171b4fd46d8985d4
third_party/virtualbox/src/VBox/Devices/EFI/Firmware/AppPkg/Applications/Python/PyMod-2.7.2/Lib/pydoc.py
python
isdata
(object)
return not (inspect.ismodule(object) or inspect.isclass(object) or inspect.isroutine(object) or inspect.isframe(object) or inspect.istraceback(object) or inspect.iscode(object))
Check if an object is of a type that probably means it's data.
Check if an object is of a type that probably means it's data.
[ "Check", "if", "an", "object", "is", "of", "a", "type", "that", "probably", "means", "it", "s", "data", "." ]
def isdata(object): """Check if an object is of a type that probably means it's data.""" return not (inspect.ismodule(object) or inspect.isclass(object) or inspect.isroutine(object) or inspect.isframe(object) or inspect.istraceback(object) or inspect.iscode(object))
[ "def", "isdata", "(", "object", ")", ":", "return", "not", "(", "inspect", ".", "ismodule", "(", "object", ")", "or", "inspect", ".", "isclass", "(", "object", ")", "or", "inspect", ".", "isroutine", "(", "object", ")", "or", "inspect", ".", "isframe", "(", "object", ")", "or", "inspect", ".", "istraceback", "(", "object", ")", "or", "inspect", ".", "iscode", "(", "object", ")", ")" ]
https://github.com/thalium/icebox/blob/99d147d5b9269222225443ce171b4fd46d8985d4/third_party/virtualbox/src/VBox/Devices/EFI/Firmware/AppPkg/Applications/Python/PyMod-2.7.2/Lib/pydoc.py#L102-L106
fifengine/fifengine
4b62c42e85bec19893cef8e63e6855927cff2c47
engine/python/fife/extensions/pychan/internal.py
python
Manager.getDefaultFont
(self)
return self.fonts['default']
Returns the default font
Returns the default font
[ "Returns", "the", "default", "font" ]
def getDefaultFont(self): """ Returns the default font """ return self.fonts['default']
[ "def", "getDefaultFont", "(", "self", ")", ":", "return", "self", ".", "fonts", "[", "'default'", "]" ]
https://github.com/fifengine/fifengine/blob/4b62c42e85bec19893cef8e63e6855927cff2c47/engine/python/fife/extensions/pychan/internal.py#L145-L149
apache/arrow
af33dd1157eb8d7d9bfac25ebf61445b793b7943
python/pyarrow/filesystem.py
python
FileSystem.mv
(self, path, new_path)
return self.rename(path, new_path)
Alias for FileSystem.rename.
Alias for FileSystem.rename.
[ "Alias", "for", "FileSystem", ".", "rename", "." ]
def mv(self, path, new_path): """ Alias for FileSystem.rename. """ return self.rename(path, new_path)
[ "def", "mv", "(", "self", ",", "path", ",", "new_path", ")", ":", "return", "self", ".", "rename", "(", "path", ",", "new_path", ")" ]
https://github.com/apache/arrow/blob/af33dd1157eb8d7d9bfac25ebf61445b793b7943/python/pyarrow/filesystem.py#L126-L130
apple/swift-lldb
d74be846ef3e62de946df343e8c234bde93a8912
scripts/Python/static-binding/lldb.py
python
SBListener.PeekAtNextEvent
(self, sb_event)
return _lldb.SBListener_PeekAtNextEvent(self, sb_event)
PeekAtNextEvent(SBListener self, SBEvent sb_event) -> bool
PeekAtNextEvent(SBListener self, SBEvent sb_event) -> bool
[ "PeekAtNextEvent", "(", "SBListener", "self", "SBEvent", "sb_event", ")", "-", ">", "bool" ]
def PeekAtNextEvent(self, sb_event): """PeekAtNextEvent(SBListener self, SBEvent sb_event) -> bool""" return _lldb.SBListener_PeekAtNextEvent(self, sb_event)
[ "def", "PeekAtNextEvent", "(", "self", ",", "sb_event", ")", ":", "return", "_lldb", ".", "SBListener_PeekAtNextEvent", "(", "self", ",", "sb_event", ")" ]
https://github.com/apple/swift-lldb/blob/d74be846ef3e62de946df343e8c234bde93a8912/scripts/Python/static-binding/lldb.py#L6870-L6872
cvxpy/cvxpy
5165b4fb750dfd237de8659383ef24b4b2e33aaf
cvxpy/expressions/expression.py
python
Expression.__gt__
(self, other: "Expression")
Unsupported.
Unsupported.
[ "Unsupported", "." ]
def __gt__(self, other: "Expression"): """Unsupported. """ raise NotImplementedError("Strict inequalities are not allowed.")
[ "def", "__gt__", "(", "self", ",", "other", ":", "\"Expression\"", ")", ":", "raise", "NotImplementedError", "(", "\"Strict inequalities are not allowed.\"", ")" ]
https://github.com/cvxpy/cvxpy/blob/5165b4fb750dfd237de8659383ef24b4b2e33aaf/cvxpy/expressions/expression.py#L677-L680
snap-stanford/snap-python
d53c51b0a26aa7e3e7400b014cdf728948fde80a
setup/snap.py
python
TBPGraph.GetLNIdV
(self, *args)
return _snap.TBPGraph_GetLNIdV(self, *args)
GetLNIdV(TBPGraph self, TIntV NIdV) Parameters: NIdV: TIntV &
GetLNIdV(TBPGraph self, TIntV NIdV)
[ "GetLNIdV", "(", "TBPGraph", "self", "TIntV", "NIdV", ")" ]
def GetLNIdV(self, *args): """ GetLNIdV(TBPGraph self, TIntV NIdV) Parameters: NIdV: TIntV & """ return _snap.TBPGraph_GetLNIdV(self, *args)
[ "def", "GetLNIdV", "(", "self", ",", "*", "args", ")", ":", "return", "_snap", ".", "TBPGraph_GetLNIdV", "(", "self", ",", "*", "args", ")" ]
https://github.com/snap-stanford/snap-python/blob/d53c51b0a26aa7e3e7400b014cdf728948fde80a/setup/snap.py#L5220-L5228
cms-sw/cmssw
fd9de012d503d3405420bcbeec0ec879baa57cf2
Validation/Tools/python/GenObject.py
python
GenObject.compareTwoTrees
(chain1, chain2, **kwargs)
return resultsDict
Given all of the necessary information, this routine will go through and compare two trees making sure they are 'identical' within requested precision. If 'diffOutputName' is passed in, a root file with a diffTree and missingTree will be produced.
Given all of the necessary information, this routine will go through and compare two trees making sure they are 'identical' within requested precision. If 'diffOutputName' is passed in, a root file with a diffTree and missingTree will be produced.
[ "Given", "all", "of", "the", "necessary", "information", "this", "routine", "will", "go", "through", "and", "compare", "two", "trees", "making", "sure", "they", "are", "identical", "within", "requested", "precision", ".", "If", "diffOutputName", "is", "passed", "in", "a", "root", "file", "with", "a", "diffTree", "and", "missingTree", "will", "be", "produced", "." ]
def compareTwoTrees (chain1, chain2, **kwargs): """Given all of the necessary information, this routine will go through and compare two trees making sure they are 'identical' within requested precision. If 'diffOutputName' is passed in, a root file with a diffTree and missingTree will be produced.""" print("Comparing Two Trees") diffOutputName = kwargs.get ('diffOutputName') tupleName1 = GenObject._kitchenSinkDict[chain1]['tupleName'] numEntries1 = GenObject._kitchenSinkDict[chain1]['numEntries'] tupleName2 = GenObject._kitchenSinkDict[chain2]['tupleName'] numEntries2 = GenObject._kitchenSinkDict[chain2]['numEntries'] debug = GenObject._kitchenSinkDict.get ('debug', False) ree1 = GenObject.getRunEventEntryDict (chain1, tupleName1, numEntries1) ree2 = GenObject.getRunEventEntryDict (chain2, tupleName2, numEntries2) overlap, firstOnly, secondOnly = \ GenObject.compareRunEventDicts (ree1, ree2) if diffOutputName: rootfile, diffTree, missingTree = \ GenObject.setupDiffOutputTree (diffOutputName, 'diffTree', 'missingTree') if firstOnly: vec = GenObject._rootClassDict['firstOnly'] for key in firstOnly: runevent = GenObject._key2re (key) vec.push_back( GenObject._rootObjectClone( runevent ) ) if secondOnly: vec = GenObject._rootClassDict['secondOnly'] for key in secondOnly: runevent = GenObject._key2re (key) vec.push_back( GenObject._rootObjectClone( runevent ) ) missingTree.Fill() resultsDict = {} if firstOnly: resultsDict.setdefault ('_runevent', {})['firstOnly'] = \ len (firstOnly) if secondOnly: resultsDict.setdefault ('_runevent', {})['secondOnly'] = \ len (secondOnly) resultsDict['eventsCompared'] = len (overlap) for reTuple in sorted(overlap): # if we are filling the diff tree, then save the run and # event information. if diffOutputName: GenObject._key2re (reTuple, GenObject._rootClassDict['runevent']) if debug: warn ('event1', blankLines = 3) event1 = GenObject.loadEventFromTree (chain1, ree1 [reTuple]) if debug: warn ('event2', blankLines = 3) event2 = GenObject.loadEventFromTree (chain2, ree2 [reTuple]) if GenObject._kitchenSinkDict.get('printEvent'): print("event1:") GenObject.printEvent (event1) print("event2:") GenObject.printEvent (event2) if GenObject._kitchenSinkDict.get('blur'): where = reTuple GenObject.blurEvent (event1, GenObject._kitchenSinkDict['blur'], where) for objName in sorted (event1.keys()): if "runevent" == objName: # runevent is a special case. We don't compare these continue if not GenObject._equivDict.get (objName): # we don't know how to compare these objects, so # skip them. continue if GenObject.isSingleton (objName): # I'll add this in later. For now, just skip it print("singleton") continue # Get ready to calculate root diff object if necessary rootObj = 0 if diffOutputName: rootObj = GenObject._rootObjectDict[objName] rootObj.clear() vec1 = event1[objName] vec2 = event2[objName] matchedSet, noMatch1Set, noMatch2Set = \ GenObject.pairEquivalentObjects (vec1, vec2) if noMatch1Set or noMatch2Set: ## print "No match 1", noMatch1Set ## print "No match 2", noMatch2Set count1 = len (noMatch1Set) count2 = len (noMatch2Set) key = (count1, count2) countDict = resultsDict.\ setdefault (objName, {}).\ setdefault ('_missing', {}) if key in countDict: countDict[key] += 1 else: countDict[key] = 1 # should be calculating root diff objects if diffOutputName: # first set for index in sorted(list(noMatch1Set)): goObj = vec1 [index] rootObj.firstOnly.push_back ( GenObject.\ _rootObjectClone \ (goObj) ) # second set for index in sorted(list(noMatch2Set)): goObj = vec2 [index] rootObj.secondOnly.push_back ( GenObject.\ _rootObjectClone \ (goObj) ) # o.k. Now that we have them matched, let's compare # the proper items: for pair in sorted(list(matchedSet)): if diffOutputName: rootDiffObj = GenObject._rootDiffObject \ ( vec1[ pair[1 - 1] ], vec2[ pair[2 - 1] ] ) rootObj.diff.push_back ( rootDiffObj ) problems = GenObject.\ compareTwoItems (vec1[ pair[1 - 1] ], vec2[ pair[2 - 1] ]) if problems.keys(): # pprint.pprint (problems) for varName in problems.keys(): countDict = resultsDict.\ setdefault (objName, {}).\ setdefault ('_var', {}) if varName in countDict: countDict[varName] += 1 else: countDict[varName] = 1 key = 'count_%s' % objName if key not in resultsDict: resultsDict[key] = 0 resultsDict[key] += len (matchedSet) # try cleaning up del vec1 del vec2 # end for objName if diffOutputName: diffTree.Fill() del event1 del event2 # end for overlap if diffOutputName: diffTree.Write() missingTree.Write() rootfile.Close() return resultsDict
[ "def", "compareTwoTrees", "(", "chain1", ",", "chain2", ",", "*", "*", "kwargs", ")", ":", "print", "(", "\"Comparing Two Trees\"", ")", "diffOutputName", "=", "kwargs", ".", "get", "(", "'diffOutputName'", ")", "tupleName1", "=", "GenObject", ".", "_kitchenSinkDict", "[", "chain1", "]", "[", "'tupleName'", "]", "numEntries1", "=", "GenObject", ".", "_kitchenSinkDict", "[", "chain1", "]", "[", "'numEntries'", "]", "tupleName2", "=", "GenObject", ".", "_kitchenSinkDict", "[", "chain2", "]", "[", "'tupleName'", "]", "numEntries2", "=", "GenObject", ".", "_kitchenSinkDict", "[", "chain2", "]", "[", "'numEntries'", "]", "debug", "=", "GenObject", ".", "_kitchenSinkDict", ".", "get", "(", "'debug'", ",", "False", ")", "ree1", "=", "GenObject", ".", "getRunEventEntryDict", "(", "chain1", ",", "tupleName1", ",", "numEntries1", ")", "ree2", "=", "GenObject", ".", "getRunEventEntryDict", "(", "chain2", ",", "tupleName2", ",", "numEntries2", ")", "overlap", ",", "firstOnly", ",", "secondOnly", "=", "GenObject", ".", "compareRunEventDicts", "(", "ree1", ",", "ree2", ")", "if", "diffOutputName", ":", "rootfile", ",", "diffTree", ",", "missingTree", "=", "GenObject", ".", "setupDiffOutputTree", "(", "diffOutputName", ",", "'diffTree'", ",", "'missingTree'", ")", "if", "firstOnly", ":", "vec", "=", "GenObject", ".", "_rootClassDict", "[", "'firstOnly'", "]", "for", "key", "in", "firstOnly", ":", "runevent", "=", "GenObject", ".", "_key2re", "(", "key", ")", "vec", ".", "push_back", "(", "GenObject", ".", "_rootObjectClone", "(", "runevent", ")", ")", "if", "secondOnly", ":", "vec", "=", "GenObject", ".", "_rootClassDict", "[", "'secondOnly'", "]", "for", "key", "in", "secondOnly", ":", "runevent", "=", "GenObject", ".", "_key2re", "(", "key", ")", "vec", ".", "push_back", "(", "GenObject", ".", "_rootObjectClone", "(", "runevent", ")", ")", "missingTree", ".", "Fill", "(", ")", "resultsDict", "=", "{", "}", "if", "firstOnly", ":", "resultsDict", ".", "setdefault", "(", "'_runevent'", ",", "{", "}", ")", "[", "'firstOnly'", "]", "=", "len", "(", "firstOnly", ")", "if", "secondOnly", ":", "resultsDict", ".", "setdefault", "(", "'_runevent'", ",", "{", "}", ")", "[", "'secondOnly'", "]", "=", "len", "(", "secondOnly", ")", "resultsDict", "[", "'eventsCompared'", "]", "=", "len", "(", "overlap", ")", "for", "reTuple", "in", "sorted", "(", "overlap", ")", ":", "# if we are filling the diff tree, then save the run and", "# event information.", "if", "diffOutputName", ":", "GenObject", ".", "_key2re", "(", "reTuple", ",", "GenObject", ".", "_rootClassDict", "[", "'runevent'", "]", ")", "if", "debug", ":", "warn", "(", "'event1'", ",", "blankLines", "=", "3", ")", "event1", "=", "GenObject", ".", "loadEventFromTree", "(", "chain1", ",", "ree1", "[", "reTuple", "]", ")", "if", "debug", ":", "warn", "(", "'event2'", ",", "blankLines", "=", "3", ")", "event2", "=", "GenObject", ".", "loadEventFromTree", "(", "chain2", ",", "ree2", "[", "reTuple", "]", ")", "if", "GenObject", ".", "_kitchenSinkDict", ".", "get", "(", "'printEvent'", ")", ":", "print", "(", "\"event1:\"", ")", "GenObject", ".", "printEvent", "(", "event1", ")", "print", "(", "\"event2:\"", ")", "GenObject", ".", "printEvent", "(", "event2", ")", "if", "GenObject", ".", "_kitchenSinkDict", ".", "get", "(", "'blur'", ")", ":", "where", "=", "reTuple", "GenObject", ".", "blurEvent", "(", "event1", ",", "GenObject", ".", "_kitchenSinkDict", "[", "'blur'", "]", ",", "where", ")", "for", "objName", "in", "sorted", "(", "event1", ".", "keys", "(", ")", ")", ":", "if", "\"runevent\"", "==", "objName", ":", "# runevent is a special case. We don't compare these", "continue", "if", "not", "GenObject", ".", "_equivDict", ".", "get", "(", "objName", ")", ":", "# we don't know how to compare these objects, so", "# skip them.", "continue", "if", "GenObject", ".", "isSingleton", "(", "objName", ")", ":", "# I'll add this in later. For now, just skip it", "print", "(", "\"singleton\"", ")", "continue", "# Get ready to calculate root diff object if necessary", "rootObj", "=", "0", "if", "diffOutputName", ":", "rootObj", "=", "GenObject", ".", "_rootObjectDict", "[", "objName", "]", "rootObj", ".", "clear", "(", ")", "vec1", "=", "event1", "[", "objName", "]", "vec2", "=", "event2", "[", "objName", "]", "matchedSet", ",", "noMatch1Set", ",", "noMatch2Set", "=", "GenObject", ".", "pairEquivalentObjects", "(", "vec1", ",", "vec2", ")", "if", "noMatch1Set", "or", "noMatch2Set", ":", "## print \"No match 1\", noMatch1Set", "## print \"No match 2\", noMatch2Set", "count1", "=", "len", "(", "noMatch1Set", ")", "count2", "=", "len", "(", "noMatch2Set", ")", "key", "=", "(", "count1", ",", "count2", ")", "countDict", "=", "resultsDict", ".", "setdefault", "(", "objName", ",", "{", "}", ")", ".", "setdefault", "(", "'_missing'", ",", "{", "}", ")", "if", "key", "in", "countDict", ":", "countDict", "[", "key", "]", "+=", "1", "else", ":", "countDict", "[", "key", "]", "=", "1", "# should be calculating root diff objects", "if", "diffOutputName", ":", "# first set", "for", "index", "in", "sorted", "(", "list", "(", "noMatch1Set", ")", ")", ":", "goObj", "=", "vec1", "[", "index", "]", "rootObj", ".", "firstOnly", ".", "push_back", "(", "GenObject", ".", "_rootObjectClone", "(", "goObj", ")", ")", "# second set", "for", "index", "in", "sorted", "(", "list", "(", "noMatch2Set", ")", ")", ":", "goObj", "=", "vec2", "[", "index", "]", "rootObj", ".", "secondOnly", ".", "push_back", "(", "GenObject", ".", "_rootObjectClone", "(", "goObj", ")", ")", "# o.k. Now that we have them matched, let's compare", "# the proper items: ", "for", "pair", "in", "sorted", "(", "list", "(", "matchedSet", ")", ")", ":", "if", "diffOutputName", ":", "rootDiffObj", "=", "GenObject", ".", "_rootDiffObject", "(", "vec1", "[", "pair", "[", "1", "-", "1", "]", "]", ",", "vec2", "[", "pair", "[", "2", "-", "1", "]", "]", ")", "rootObj", ".", "diff", ".", "push_back", "(", "rootDiffObj", ")", "problems", "=", "GenObject", ".", "compareTwoItems", "(", "vec1", "[", "pair", "[", "1", "-", "1", "]", "]", ",", "vec2", "[", "pair", "[", "2", "-", "1", "]", "]", ")", "if", "problems", ".", "keys", "(", ")", ":", "# pprint.pprint (problems)", "for", "varName", "in", "problems", ".", "keys", "(", ")", ":", "countDict", "=", "resultsDict", ".", "setdefault", "(", "objName", ",", "{", "}", ")", ".", "setdefault", "(", "'_var'", ",", "{", "}", ")", "if", "varName", "in", "countDict", ":", "countDict", "[", "varName", "]", "+=", "1", "else", ":", "countDict", "[", "varName", "]", "=", "1", "key", "=", "'count_%s'", "%", "objName", "if", "key", "not", "in", "resultsDict", ":", "resultsDict", "[", "key", "]", "=", "0", "resultsDict", "[", "key", "]", "+=", "len", "(", "matchedSet", ")", "# try cleaning up", "del", "vec1", "del", "vec2", "# end for objName ", "if", "diffOutputName", ":", "diffTree", ".", "Fill", "(", ")", "del", "event1", "del", "event2", "# end for overlap", "if", "diffOutputName", ":", "diffTree", ".", "Write", "(", ")", "missingTree", ".", "Write", "(", ")", "rootfile", ".", "Close", "(", ")", "return", "resultsDict" ]
https://github.com/cms-sw/cmssw/blob/fd9de012d503d3405420bcbeec0ec879baa57cf2/Validation/Tools/python/GenObject.py#L1310-L1457
wywu/LAB
4b6debd302ae109fd104d4dd04dccc3418ae7471
python/caffe/io.py
python
array_to_blobproto
(arr, diff=None)
return blob
Converts a N-dimensional array to blob proto. If diff is given, also convert the diff. You need to make sure that arr and diff have the same shape, and this function does not do sanity check.
Converts a N-dimensional array to blob proto. If diff is given, also convert the diff. You need to make sure that arr and diff have the same shape, and this function does not do sanity check.
[ "Converts", "a", "N", "-", "dimensional", "array", "to", "blob", "proto", ".", "If", "diff", "is", "given", "also", "convert", "the", "diff", ".", "You", "need", "to", "make", "sure", "that", "arr", "and", "diff", "have", "the", "same", "shape", "and", "this", "function", "does", "not", "do", "sanity", "check", "." ]
def array_to_blobproto(arr, diff=None): """Converts a N-dimensional array to blob proto. If diff is given, also convert the diff. You need to make sure that arr and diff have the same shape, and this function does not do sanity check. """ blob = caffe_pb2.BlobProto() blob.shape.dim.extend(arr.shape) blob.data.extend(arr.astype(float).flat) if diff is not None: blob.diff.extend(diff.astype(float).flat) return blob
[ "def", "array_to_blobproto", "(", "arr", ",", "diff", "=", "None", ")", ":", "blob", "=", "caffe_pb2", ".", "BlobProto", "(", ")", "blob", ".", "shape", ".", "dim", ".", "extend", "(", "arr", ".", "shape", ")", "blob", ".", "data", ".", "extend", "(", "arr", ".", "astype", "(", "float", ")", ".", "flat", ")", "if", "diff", "is", "not", "None", ":", "blob", ".", "diff", ".", "extend", "(", "diff", ".", "astype", "(", "float", ")", ".", "flat", ")", "return", "blob" ]
https://github.com/wywu/LAB/blob/4b6debd302ae109fd104d4dd04dccc3418ae7471/python/caffe/io.py#L36-L46
echronos/echronos
c996f1d2c8af6c6536205eb319c1bf1d4d84569c
external_tools/ply_info/example/BASIC/basparse.py
python
p_command_gosub
(p)
command : GOSUB INTEGER
command : GOSUB INTEGER
[ "command", ":", "GOSUB", "INTEGER" ]
def p_command_gosub(p): '''command : GOSUB INTEGER''' p[0] = ('GOSUB',int(p[2]))
[ "def", "p_command_gosub", "(", "p", ")", ":", "p", "[", "0", "]", "=", "(", "'GOSUB'", ",", "int", "(", "p", "[", "2", "]", ")", ")" ]
https://github.com/echronos/echronos/blob/c996f1d2c8af6c6536205eb319c1bf1d4d84569c/external_tools/ply_info/example/BASIC/basparse.py#L235-L237
appleseedhq/appleseed
1ba62025b5db722e179a2219d8d366c34bfaa342
sandbox/lib/python/site-packages/Qt.py
python
_pyside2
()
Initialise PySide2 These functions serve to test the existence of a binding along with set it up in such a way that it aligns with the final step; adding members from the original binding to Qt.py
Initialise PySide2
[ "Initialise", "PySide2" ]
def _pyside2(): """Initialise PySide2 These functions serve to test the existence of a binding along with set it up in such a way that it aligns with the final step; adding members from the original binding to Qt.py """ import PySide2 as module _setup(module, ["QtUiTools"]) Qt.__binding_version__ = module.__version__ try: try: # Before merge of PySide and shiboken import shiboken2 except ImportError: # After merge of PySide and shiboken, May 2017 from PySide2 import shiboken2 Qt.QtCompat.wrapInstance = ( lambda ptr, base=None: _wrapinstance( shiboken2.wrapInstance, ptr, base) ) Qt.QtCompat.getCppPointer = lambda object: \ shiboken2.getCppPointer(object)[0] except ImportError: pass # Optional if hasattr(Qt, "_QtUiTools"): Qt.QtCompat.loadUi = _loadUi if hasattr(Qt, "_QtCore"): Qt.__qt_version__ = Qt._QtCore.qVersion() Qt.QtCompat.qInstallMessageHandler = _qInstallMessageHandler Qt.QtCompat.translate = Qt._QtCore.QCoreApplication.translate if hasattr(Qt, "_QtWidgets"): Qt.QtCompat.setSectionResizeMode = \ Qt._QtWidgets.QHeaderView.setSectionResizeMode _reassign_misplaced_members("PySide2") _build_compatibility_members("PySide2")
[ "def", "_pyside2", "(", ")", ":", "import", "PySide2", "as", "module", "_setup", "(", "module", ",", "[", "\"QtUiTools\"", "]", ")", "Qt", ".", "__binding_version__", "=", "module", ".", "__version__", "try", ":", "try", ":", "# Before merge of PySide and shiboken", "import", "shiboken2", "except", "ImportError", ":", "# After merge of PySide and shiboken, May 2017", "from", "PySide2", "import", "shiboken2", "Qt", ".", "QtCompat", ".", "wrapInstance", "=", "(", "lambda", "ptr", ",", "base", "=", "None", ":", "_wrapinstance", "(", "shiboken2", ".", "wrapInstance", ",", "ptr", ",", "base", ")", ")", "Qt", ".", "QtCompat", ".", "getCppPointer", "=", "lambda", "object", ":", "shiboken2", ".", "getCppPointer", "(", "object", ")", "[", "0", "]", "except", "ImportError", ":", "pass", "# Optional", "if", "hasattr", "(", "Qt", ",", "\"_QtUiTools\"", ")", ":", "Qt", ".", "QtCompat", ".", "loadUi", "=", "_loadUi", "if", "hasattr", "(", "Qt", ",", "\"_QtCore\"", ")", ":", "Qt", ".", "__qt_version__", "=", "Qt", ".", "_QtCore", ".", "qVersion", "(", ")", "Qt", ".", "QtCompat", ".", "qInstallMessageHandler", "=", "_qInstallMessageHandler", "Qt", ".", "QtCompat", ".", "translate", "=", "Qt", ".", "_QtCore", ".", "QCoreApplication", ".", "translate", "if", "hasattr", "(", "Qt", ",", "\"_QtWidgets\"", ")", ":", "Qt", ".", "QtCompat", ".", "setSectionResizeMode", "=", "Qt", ".", "_QtWidgets", ".", "QHeaderView", ".", "setSectionResizeMode", "_reassign_misplaced_members", "(", "\"PySide2\"", ")", "_build_compatibility_members", "(", "\"PySide2\"", ")" ]
https://github.com/appleseedhq/appleseed/blob/1ba62025b5db722e179a2219d8d366c34bfaa342/sandbox/lib/python/site-packages/Qt.py#L1036-L1082
PixarAnimationStudios/USD
faed18ce62c8736b02413635b584a2f637156bad
pxr/usdImaging/usdviewq/selectionDataModel.py
python
SelectionDataModel.getProps
(self)
return [self._getPropFromPath(path) for path in self.getPropPaths()]
Get a list of all selected properties.
Get a list of all selected properties.
[ "Get", "a", "list", "of", "all", "selected", "properties", "." ]
def getProps(self): """Get a list of all selected properties.""" return [self._getPropFromPath(path) for path in self.getPropPaths()]
[ "def", "getProps", "(", "self", ")", ":", "return", "[", "self", ".", "_getPropFromPath", "(", "path", ")", "for", "path", "in", "self", ".", "getPropPaths", "(", ")", "]" ]
https://github.com/PixarAnimationStudios/USD/blob/faed18ce62c8736b02413635b584a2f637156bad/pxr/usdImaging/usdviewq/selectionDataModel.py#L943-L947
aws/lumberyard
f85344403c1c2e77ec8c75deb2c116e97b713217
dev/Gems/CloudGemMetric/v1/AWS/python/windows/Lib/numpy/core/fromnumeric.py
python
argsort
(a, axis=-1, kind=None, order=None)
return _wrapfunc(a, 'argsort', axis=axis, kind=kind, order=order)
Returns the indices that would sort an array. Perform an indirect sort along the given axis using the algorithm specified by the `kind` keyword. It returns an array of indices of the same shape as `a` that index data along the given axis in sorted order. Parameters ---------- a : array_like Array to sort. axis : int or None, optional Axis along which to sort. The default is -1 (the last axis). If None, the flattened array is used. kind : {'quicksort', 'mergesort', 'heapsort', 'stable'}, optional Sorting algorithm. The default is 'quicksort'. Note that both 'stable' and 'mergesort' use timsort under the covers and, in general, the actual implementation will vary with data type. The 'mergesort' option is retained for backwards compatibility. .. versionchanged:: 1.15.0. The 'stable' option was added. order : str or list of str, optional When `a` is an array with fields defined, this argument specifies which fields to compare first, second, etc. A single field can be specified as a string, and not all fields need be specified, but unspecified fields will still be used, in the order in which they come up in the dtype, to break ties. Returns ------- index_array : ndarray, int Array of indices that sort `a` along the specified `axis`. If `a` is one-dimensional, ``a[index_array]`` yields a sorted `a`. More generally, ``np.take_along_axis(a, index_array, axis=axis)`` always yields the sorted `a`, irrespective of dimensionality. See Also -------- sort : Describes sorting algorithms used. lexsort : Indirect stable sort with multiple keys. ndarray.sort : Inplace sort. argpartition : Indirect partial sort. take_along_axis : Apply ``index_array`` from argsort to an array as if by calling sort. Notes ----- See `sort` for notes on the different sorting algorithms. As of NumPy 1.4.0 `argsort` works with real/complex arrays containing nan values. The enhanced sort order is documented in `sort`. Examples -------- One dimensional array: >>> x = np.array([3, 1, 2]) >>> np.argsort(x) array([1, 2, 0]) Two-dimensional array: >>> x = np.array([[0, 3], [2, 2]]) >>> x array([[0, 3], [2, 2]]) >>> ind = np.argsort(x, axis=0) # sorts along first axis (down) >>> ind array([[0, 1], [1, 0]]) >>> np.take_along_axis(x, ind, axis=0) # same as np.sort(x, axis=0) array([[0, 2], [2, 3]]) >>> ind = np.argsort(x, axis=1) # sorts along last axis (across) >>> ind array([[0, 1], [0, 1]]) >>> np.take_along_axis(x, ind, axis=1) # same as np.sort(x, axis=1) array([[0, 3], [2, 2]]) Indices of the sorted elements of a N-dimensional array: >>> ind = np.unravel_index(np.argsort(x, axis=None), x.shape) >>> ind (array([0, 1, 1, 0]), array([0, 0, 1, 1])) >>> x[ind] # same as np.sort(x, axis=None) array([0, 2, 2, 3]) Sorting with keys: >>> x = np.array([(1, 0), (0, 1)], dtype=[('x', '<i4'), ('y', '<i4')]) >>> x array([(1, 0), (0, 1)], dtype=[('x', '<i4'), ('y', '<i4')]) >>> np.argsort(x, order=('x','y')) array([1, 0]) >>> np.argsort(x, order=('y','x')) array([0, 1])
Returns the indices that would sort an array.
[ "Returns", "the", "indices", "that", "would", "sort", "an", "array", "." ]
def argsort(a, axis=-1, kind=None, order=None): """ Returns the indices that would sort an array. Perform an indirect sort along the given axis using the algorithm specified by the `kind` keyword. It returns an array of indices of the same shape as `a` that index data along the given axis in sorted order. Parameters ---------- a : array_like Array to sort. axis : int or None, optional Axis along which to sort. The default is -1 (the last axis). If None, the flattened array is used. kind : {'quicksort', 'mergesort', 'heapsort', 'stable'}, optional Sorting algorithm. The default is 'quicksort'. Note that both 'stable' and 'mergesort' use timsort under the covers and, in general, the actual implementation will vary with data type. The 'mergesort' option is retained for backwards compatibility. .. versionchanged:: 1.15.0. The 'stable' option was added. order : str or list of str, optional When `a` is an array with fields defined, this argument specifies which fields to compare first, second, etc. A single field can be specified as a string, and not all fields need be specified, but unspecified fields will still be used, in the order in which they come up in the dtype, to break ties. Returns ------- index_array : ndarray, int Array of indices that sort `a` along the specified `axis`. If `a` is one-dimensional, ``a[index_array]`` yields a sorted `a`. More generally, ``np.take_along_axis(a, index_array, axis=axis)`` always yields the sorted `a`, irrespective of dimensionality. See Also -------- sort : Describes sorting algorithms used. lexsort : Indirect stable sort with multiple keys. ndarray.sort : Inplace sort. argpartition : Indirect partial sort. take_along_axis : Apply ``index_array`` from argsort to an array as if by calling sort. Notes ----- See `sort` for notes on the different sorting algorithms. As of NumPy 1.4.0 `argsort` works with real/complex arrays containing nan values. The enhanced sort order is documented in `sort`. Examples -------- One dimensional array: >>> x = np.array([3, 1, 2]) >>> np.argsort(x) array([1, 2, 0]) Two-dimensional array: >>> x = np.array([[0, 3], [2, 2]]) >>> x array([[0, 3], [2, 2]]) >>> ind = np.argsort(x, axis=0) # sorts along first axis (down) >>> ind array([[0, 1], [1, 0]]) >>> np.take_along_axis(x, ind, axis=0) # same as np.sort(x, axis=0) array([[0, 2], [2, 3]]) >>> ind = np.argsort(x, axis=1) # sorts along last axis (across) >>> ind array([[0, 1], [0, 1]]) >>> np.take_along_axis(x, ind, axis=1) # same as np.sort(x, axis=1) array([[0, 3], [2, 2]]) Indices of the sorted elements of a N-dimensional array: >>> ind = np.unravel_index(np.argsort(x, axis=None), x.shape) >>> ind (array([0, 1, 1, 0]), array([0, 0, 1, 1])) >>> x[ind] # same as np.sort(x, axis=None) array([0, 2, 2, 3]) Sorting with keys: >>> x = np.array([(1, 0), (0, 1)], dtype=[('x', '<i4'), ('y', '<i4')]) >>> x array([(1, 0), (0, 1)], dtype=[('x', '<i4'), ('y', '<i4')]) >>> np.argsort(x, order=('x','y')) array([1, 0]) >>> np.argsort(x, order=('y','x')) array([0, 1]) """ return _wrapfunc(a, 'argsort', axis=axis, kind=kind, order=order)
[ "def", "argsort", "(", "a", ",", "axis", "=", "-", "1", ",", "kind", "=", "None", ",", "order", "=", "None", ")", ":", "return", "_wrapfunc", "(", "a", ",", "'argsort'", ",", "axis", "=", "axis", ",", "kind", "=", "kind", ",", "order", "=", "order", ")" ]
https://github.com/aws/lumberyard/blob/f85344403c1c2e77ec8c75deb2c116e97b713217/dev/Gems/CloudGemMetric/v1/AWS/python/windows/Lib/numpy/core/fromnumeric.py#L998-L1105
ValveSoftware/source-sdk-2013
0d8dceea4310fde5706b3ce1c70609d72a38efdf
mp/src/thirdparty/protobuf-2.3.0/python/mox.py
python
MockAnything._Replay
(self)
Start replaying expected method calls.
Start replaying expected method calls.
[ "Start", "replaying", "expected", "method", "calls", "." ]
def _Replay(self): """Start replaying expected method calls.""" self._replay_mode = True
[ "def", "_Replay", "(", "self", ")", ":", "self", ".", "_replay_mode", "=", "True" ]
https://github.com/ValveSoftware/source-sdk-2013/blob/0d8dceea4310fde5706b3ce1c70609d72a38efdf/mp/src/thirdparty/protobuf-2.3.0/python/mox.py#L326-L329
apache/singa
93fd9da72694e68bfe3fb29d0183a65263d238a1
python/singa/sonnx.py
python
SingaFrontend._create_batchnorm
(cls, op, op_t)
return nodes
get a onnx node from singa _BatchNorm2d operator Args: op: a given operator Args: op_t: the tensor of the operator Returns: the onnx node
get a onnx node from singa _BatchNorm2d operator Args: op: a given operator Args: op_t: the tensor of the operator Returns: the onnx node
[ "get", "a", "onnx", "node", "from", "singa", "_BatchNorm2d", "operator", "Args", ":", "op", ":", "a", "given", "operator", "Args", ":", "op_t", ":", "the", "tensor", "of", "the", "operator", "Returns", ":", "the", "onnx", "node" ]
def _create_batchnorm(cls, op, op_t): """ get a onnx node from singa _BatchNorm2d operator Args: op: a given operator Args: op_t: the tensor of the operator Returns: the onnx node """ # first, we init batchnorm node epsilon = 1e-5 # the epsilon value used in singa bn_node = cls._common_singa_tensor_to_onnx_node(op, op_t) bn_node.attribute.extend([ helper.make_attribute('momentum', op.handle.factor), helper.make_attribute('epsilon', epsilon), ]) # then we add nodes of scal, bias, mean, var nodes = [] running_values = {"mean": op.running_mean, "var": op.running_var} for tmp_name, running_value in running_values.items(): node_name = op.name + ":" + tmp_name bn_node.input.append(node_name) nodes.append(bn_node) return nodes
[ "def", "_create_batchnorm", "(", "cls", ",", "op", ",", "op_t", ")", ":", "# first, we init batchnorm node", "epsilon", "=", "1e-5", "# the epsilon value used in singa", "bn_node", "=", "cls", ".", "_common_singa_tensor_to_onnx_node", "(", "op", ",", "op_t", ")", "bn_node", ".", "attribute", ".", "extend", "(", "[", "helper", ".", "make_attribute", "(", "'momentum'", ",", "op", ".", "handle", ".", "factor", ")", ",", "helper", ".", "make_attribute", "(", "'epsilon'", ",", "epsilon", ")", ",", "]", ")", "# then we add nodes of scal, bias, mean, var", "nodes", "=", "[", "]", "running_values", "=", "{", "\"mean\"", ":", "op", ".", "running_mean", ",", "\"var\"", ":", "op", ".", "running_var", "}", "for", "tmp_name", ",", "running_value", "in", "running_values", ".", "items", "(", ")", ":", "node_name", "=", "op", ".", "name", "+", "\":\"", "+", "tmp_name", "bn_node", ".", "input", ".", "append", "(", "node_name", ")", "nodes", ".", "append", "(", "bn_node", ")", "return", "nodes" ]
https://github.com/apache/singa/blob/93fd9da72694e68bfe3fb29d0183a65263d238a1/python/singa/sonnx.py#L595-L620
pytorch/pytorch
7176c92687d3cc847cc046bf002269c6949a21c2
benchmarks/distributed/rpc/rl/launcher.py
python
find_graph_variable
(args)
r""" Determines if user specified multiple entries for a single argument, in which case benchmark is run for each of these entries. Comma separated values in a given argument indicate multiple entries. Output is presented so that user can use plot repo to plot the results with each of the variable argument's entries on the x-axis. Args is modified in accordance with this. More than 1 argument with multiple entries is not permitted. Args: args (dict): Dictionary containing arguments passed by the user (and default arguments)
r""" Determines if user specified multiple entries for a single argument, in which case benchmark is run for each of these entries. Comma separated values in a given argument indicate multiple entries. Output is presented so that user can use plot repo to plot the results with each of the variable argument's entries on the x-axis. Args is modified in accordance with this. More than 1 argument with multiple entries is not permitted. Args: args (dict): Dictionary containing arguments passed by the user (and default arguments)
[ "r", "Determines", "if", "user", "specified", "multiple", "entries", "for", "a", "single", "argument", "in", "which", "case", "benchmark", "is", "run", "for", "each", "of", "these", "entries", ".", "Comma", "separated", "values", "in", "a", "given", "argument", "indicate", "multiple", "entries", ".", "Output", "is", "presented", "so", "that", "user", "can", "use", "plot", "repo", "to", "plot", "the", "results", "with", "each", "of", "the", "variable", "argument", "s", "entries", "on", "the", "x", "-", "axis", ".", "Args", "is", "modified", "in", "accordance", "with", "this", ".", "More", "than", "1", "argument", "with", "multiple", "entries", "is", "not", "permitted", ".", "Args", ":", "args", "(", "dict", ")", ":", "Dictionary", "containing", "arguments", "passed", "by", "the", "user", "(", "and", "default", "arguments", ")" ]
def find_graph_variable(args): r""" Determines if user specified multiple entries for a single argument, in which case benchmark is run for each of these entries. Comma separated values in a given argument indicate multiple entries. Output is presented so that user can use plot repo to plot the results with each of the variable argument's entries on the x-axis. Args is modified in accordance with this. More than 1 argument with multiple entries is not permitted. Args: args (dict): Dictionary containing arguments passed by the user (and default arguments) """ var_types = {'world_size': int, 'state_size': str, 'nlayers': int, 'out_features': int, 'batch': str2bool} for arg in var_types.keys(): if ',' in args[arg]: if args.get('x_axis_name'): raise("Only 1 x axis graph variable allowed") args[arg] = list(map(var_types[arg], args[arg].split(','))) # convert , separated str to list args['x_axis_name'] = arg else: args[arg] = var_types[arg](args[arg])
[ "def", "find_graph_variable", "(", "args", ")", ":", "var_types", "=", "{", "'world_size'", ":", "int", ",", "'state_size'", ":", "str", ",", "'nlayers'", ":", "int", ",", "'out_features'", ":", "int", ",", "'batch'", ":", "str2bool", "}", "for", "arg", "in", "var_types", ".", "keys", "(", ")", ":", "if", "','", "in", "args", "[", "arg", "]", ":", "if", "args", ".", "get", "(", "'x_axis_name'", ")", ":", "raise", "(", "\"Only 1 x axis graph variable allowed\"", ")", "args", "[", "arg", "]", "=", "list", "(", "map", "(", "var_types", "[", "arg", "]", ",", "args", "[", "arg", "]", ".", "split", "(", "','", ")", ")", ")", "# convert , separated str to list", "args", "[", "'x_axis_name'", "]", "=", "arg", "else", ":", "args", "[", "arg", "]", "=", "var_types", "[", "arg", "]", "(", "args", "[", "arg", "]", ")" ]
https://github.com/pytorch/pytorch/blob/7176c92687d3cc847cc046bf002269c6949a21c2/benchmarks/distributed/rpc/rl/launcher.py#L81-L103
eclipse/sumo
7132a9b8b6eea734bdec38479026b4d8c4336d03
tools/traci/_routeprobe.py
python
RouteProbeDomain.sampleCurrentRouteID
(self, probeID)
return self._getUniversal(tc.VAR_SAMPLE_CURRENT, probeID)
sampleCurrentRouteID(string) -> string Returns a random routeID from the distribution collected by this route proble in the current collectin interval
sampleCurrentRouteID(string) -> string Returns a random routeID from the distribution collected by this route proble in the current collectin interval
[ "sampleCurrentRouteID", "(", "string", ")", "-", ">", "string", "Returns", "a", "random", "routeID", "from", "the", "distribution", "collected", "by", "this", "route", "proble", "in", "the", "current", "collectin", "interval" ]
def sampleCurrentRouteID(self, probeID): """sampleCurrentRouteID(string) -> string Returns a random routeID from the distribution collected by this route proble in the current collectin interval """ return self._getUniversal(tc.VAR_SAMPLE_CURRENT, probeID)
[ "def", "sampleCurrentRouteID", "(", "self", ",", "probeID", ")", ":", "return", "self", ".", "_getUniversal", "(", "tc", ".", "VAR_SAMPLE_CURRENT", ",", "probeID", ")" ]
https://github.com/eclipse/sumo/blob/7132a9b8b6eea734bdec38479026b4d8c4336d03/tools/traci/_routeprobe.py#L44-L49
Kitware/VTK
5b4df4d90a4f31194d97d3c639dd38ea8f81e8b8
Wrapping/Python/vtkmodules/gtk/GtkGLExtVTKRenderWindow.py
python
GtkGLExtVTKRenderWindowBase.GetStillUpdateRate
(self)
return self._StillUpdateRate
Mirrors the method with the same name in vtkRenderWindowInteractor.
Mirrors the method with the same name in vtkRenderWindowInteractor.
[ "Mirrors", "the", "method", "with", "the", "same", "name", "in", "vtkRenderWindowInteractor", "." ]
def GetStillUpdateRate(self): """Mirrors the method with the same name in vtkRenderWindowInteractor.""" return self._StillUpdateRate
[ "def", "GetStillUpdateRate", "(", "self", ")", ":", "return", "self", ".", "_StillUpdateRate" ]
https://github.com/Kitware/VTK/blob/5b4df4d90a4f31194d97d3c639dd38ea8f81e8b8/Wrapping/Python/vtkmodules/gtk/GtkGLExtVTKRenderWindow.py#L103-L106
luliyucoordinate/Leetcode
96afcdc54807d1d184e881a075d1dbf3371e31fb
src/0146-LRU-Cache/0146.py
python
LRUCache.__init__
(self, capacity)
:type capacity: int
:type capacity: int
[ ":", "type", "capacity", ":", "int" ]
def __init__(self, capacity): """ :type capacity: int """ self.capacity = capacity self.cache = collections.OrderedDict()
[ "def", "__init__", "(", "self", ",", "capacity", ")", ":", "self", ".", "capacity", "=", "capacity", "self", ".", "cache", "=", "collections", ".", "OrderedDict", "(", ")" ]
https://github.com/luliyucoordinate/Leetcode/blob/96afcdc54807d1d184e881a075d1dbf3371e31fb/src/0146-LRU-Cache/0146.py#L3-L8
aws/lumberyard
f85344403c1c2e77ec8c75deb2c116e97b713217
dev/Tools/Python/3.7.10/linux_x64/lib/python3.7/imaplib.py
python
IMAP4.search
(self, charset, *criteria)
return self._untagged_response(typ, dat, name)
Search mailbox for matching messages. (typ, [data]) = <instance>.search(charset, criterion, ...) 'data' is space separated list of matching message numbers. If UTF8 is enabled, charset MUST be None.
Search mailbox for matching messages.
[ "Search", "mailbox", "for", "matching", "messages", "." ]
def search(self, charset, *criteria): """Search mailbox for matching messages. (typ, [data]) = <instance>.search(charset, criterion, ...) 'data' is space separated list of matching message numbers. If UTF8 is enabled, charset MUST be None. """ name = 'SEARCH' if charset: if self.utf8_enabled: raise IMAP4.error("Non-None charset not valid in UTF8 mode") typ, dat = self._simple_command(name, 'CHARSET', charset, *criteria) else: typ, dat = self._simple_command(name, *criteria) return self._untagged_response(typ, dat, name)
[ "def", "search", "(", "self", ",", "charset", ",", "*", "criteria", ")", ":", "name", "=", "'SEARCH'", "if", "charset", ":", "if", "self", ".", "utf8_enabled", ":", "raise", "IMAP4", ".", "error", "(", "\"Non-None charset not valid in UTF8 mode\"", ")", "typ", ",", "dat", "=", "self", ".", "_simple_command", "(", "name", ",", "'CHARSET'", ",", "charset", ",", "*", "criteria", ")", "else", ":", "typ", ",", "dat", "=", "self", ".", "_simple_command", "(", "name", ",", "*", "criteria", ")", "return", "self", ".", "_untagged_response", "(", "typ", ",", "dat", ",", "name", ")" ]
https://github.com/aws/lumberyard/blob/f85344403c1c2e77ec8c75deb2c116e97b713217/dev/Tools/Python/3.7.10/linux_x64/lib/python3.7/imaplib.py#L709-L724
cvxpy/cvxpy
5165b4fb750dfd237de8659383ef24b4b2e33aaf
cvxpy/lin_ops/lin_utils.py
python
sum_expr
(operators)
return lo.LinOp(lo.SUM, operators[0].shape, operators, None)
Add linear operators. Parameters ---------- operators : list A list of linear operators. Returns ------- LinOp A LinOp representing the sum of the operators.
Add linear operators.
[ "Add", "linear", "operators", "." ]
def sum_expr(operators): """Add linear operators. Parameters ---------- operators : list A list of linear operators. Returns ------- LinOp A LinOp representing the sum of the operators. """ return lo.LinOp(lo.SUM, operators[0].shape, operators, None)
[ "def", "sum_expr", "(", "operators", ")", ":", "return", "lo", ".", "LinOp", "(", "lo", ".", "SUM", ",", "operators", "[", "0", "]", ".", "shape", ",", "operators", ",", "None", ")" ]
https://github.com/cvxpy/cvxpy/blob/5165b4fb750dfd237de8659383ef24b4b2e33aaf/cvxpy/lin_ops/lin_utils.py#L162-L175
plumonito/dtslam
5994bb9cf7a11981b830370db206bceb654c085d
3rdparty/opencv-git/doc/pattern_tools/svgfig.py
python
Plot.SVG
(self, trans=None)
return Fig(Fig(*d, **{"trans": trans})).SVG(self.last_window)
Apply the transformation "trans" and return an SVG object.
Apply the transformation "trans" and return an SVG object.
[ "Apply", "the", "transformation", "trans", "and", "return", "an", "SVG", "object", "." ]
def SVG(self, trans=None): """Apply the transformation "trans" and return an SVG object.""" if trans is None: trans = self.trans if isinstance(trans, basestring): trans = totrans(trans) self.last_window = window(self.xmin, self.xmax, self.ymin, self.ymax, x=self.x, y=self.y, width=self.width, height=self.height, xlogbase=self.xlogbase, ylogbase=self.ylogbase, minusInfinity=self.minusInfinity, flipx=self.flipx, flipy=self.flipy) d = ([Axes(self.xmin, self.xmax, self.ymin, self.ymax, self.atx, self.aty, self.xticks, self.xminiticks, self.xlabels, self.xlogbase, self.yticks, self.yminiticks, self.ylabels, self.ylogbase, self.arrows, self.text_attr, **self.axis_attr)] + self.d) return Fig(Fig(*d, **{"trans": trans})).SVG(self.last_window)
[ "def", "SVG", "(", "self", ",", "trans", "=", "None", ")", ":", "if", "trans", "is", "None", ":", "trans", "=", "self", ".", "trans", "if", "isinstance", "(", "trans", ",", "basestring", ")", ":", "trans", "=", "totrans", "(", "trans", ")", "self", ".", "last_window", "=", "window", "(", "self", ".", "xmin", ",", "self", ".", "xmax", ",", "self", ".", "ymin", ",", "self", ".", "ymax", ",", "x", "=", "self", ".", "x", ",", "y", "=", "self", ".", "y", ",", "width", "=", "self", ".", "width", ",", "height", "=", "self", ".", "height", ",", "xlogbase", "=", "self", ".", "xlogbase", ",", "ylogbase", "=", "self", ".", "ylogbase", ",", "minusInfinity", "=", "self", ".", "minusInfinity", ",", "flipx", "=", "self", ".", "flipx", ",", "flipy", "=", "self", ".", "flipy", ")", "d", "=", "(", "[", "Axes", "(", "self", ".", "xmin", ",", "self", ".", "xmax", ",", "self", ".", "ymin", ",", "self", ".", "ymax", ",", "self", ".", "atx", ",", "self", ".", "aty", ",", "self", ".", "xticks", ",", "self", ".", "xminiticks", ",", "self", ".", "xlabels", ",", "self", ".", "xlogbase", ",", "self", ".", "yticks", ",", "self", ".", "yminiticks", ",", "self", ".", "ylabels", ",", "self", ".", "ylogbase", ",", "self", ".", "arrows", ",", "self", ".", "text_attr", ",", "*", "*", "self", ".", "axis_attr", ")", "]", "+", "self", ".", "d", ")", "return", "Fig", "(", "Fig", "(", "*", "d", ",", "*", "*", "{", "\"trans\"", ":", "trans", "}", ")", ")", ".", "SVG", "(", "self", ".", "last_window", ")" ]
https://github.com/plumonito/dtslam/blob/5994bb9cf7a11981b830370db206bceb654c085d/3rdparty/opencv-git/doc/pattern_tools/svgfig.py#L936-L954
ApolloAuto/apollo-platform
86d9dc6743b496ead18d597748ebabd34a513289
ros/third_party/lib_aarch64/python2.7/dist-packages/diagnostic_updater/_update_functions.py
python
FrequencyStatusParam.__init__
(self, freq_bound, tolerance = 0.1, window_size = 5)
Creates a filled-out FrequencyStatusParam.
Creates a filled-out FrequencyStatusParam.
[ "Creates", "a", "filled", "-", "out", "FrequencyStatusParam", "." ]
def __init__(self, freq_bound, tolerance = 0.1, window_size = 5): """Creates a filled-out FrequencyStatusParam.""" self.freq_bound = freq_bound self.tolerance = tolerance self.window_size = window_size
[ "def", "__init__", "(", "self", ",", "freq_bound", ",", "tolerance", "=", "0.1", ",", "window_size", "=", "5", ")", ":", "self", ".", "freq_bound", "=", "freq_bound", "self", ".", "tolerance", "=", "tolerance", "self", ".", "window_size", "=", "window_size" ]
https://github.com/ApolloAuto/apollo-platform/blob/86d9dc6743b496ead18d597748ebabd34a513289/ros/third_party/lib_aarch64/python2.7/dist-packages/diagnostic_updater/_update_functions.py#L65-L69
trilinos/Trilinos
6168be6dd51e35e1cd681e9c4b24433e709df140
packages/seacas/libraries/ioss/src/visualization/catalyst/phactori/phactori.py
python
SharedTriangleSet.CreateFromLocalProcess
(self, inPhactoriOperation)
figure out the set of triangles from the target surface which are on this process (if any): we assume we have a triangle mesh or this code won't work
figure out the set of triangles from the target surface which are on this process (if any): we assume we have a triangle mesh or this code won't work
[ "figure", "out", "the", "set", "of", "triangles", "from", "the", "target", "surface", "which", "are", "on", "this", "process", "(", "if", "any", ")", ":", "we", "assume", "we", "have", "a", "triangle", "mesh", "or", "this", "code", "won", "t", "work" ]
def CreateFromLocalProcess(self, inPhactoriOperation): """figure out the set of triangles from the target surface which are on this process (if any): we assume we have a triangle mesh or this code won't work""" #obtain pointer to the local geometry data csdata = inPhactoriOperation.mParaViewFilter.GetClientSideObject().\ GetOutputDataObject(0) self.numPoints = csdata.GetNumberOfPoints() if PhactoriDbg(): myDebugPrint3(str(dir(csdata)) + "\n") myDebugPrint3("num points: " + str(self.numPoints) + "\n") myDebugPrint3(str(dir(vtk)) + "\n") pntData = csdata.GetPointData() cellData = csdata.GetCellData() numCells = csdata.GetNumberOfCells() gNodeIdArray = pntData.GetArray('GlobalNodeId') #gElmtIdArray = cellData.GetArray('GlobalElementId') #pntGeometryArray = csdata.GetPoints() self.PointXyzs.SetNumberOfValues(self.numPoints*3) self.NodeIds = vtk.vtkIntArray() self.NodeIds.SetNumberOfValues(self.numPoints) #this is stupid, there is probably a much faster way to do this ptxyz = [0.0,0.0,0.0] for ii in range(0, self.numPoints): ndx = ii*3 csdata.GetPoint(ii,ptxyz) self.PointXyzs.SetValue(ndx, ptxyz[0]) self.PointXyzs.SetValue(ndx+1, ptxyz[1]) self.PointXyzs.SetValue(ndx+2, ptxyz[2]) if(gNodeIdArray == None): self.NodeIds.SetValue(ii, ii) else: self.NodeIds.SetValue(ii, gNodeIdArray.GetValue(ii)) self.Triangles.SetNumberOfValues(0) cellPointIds = vtk.vtkIdList() for ii in range(0, numCells): csdata.GetCellPoints(ii, cellPointIds) #numpoints should be 3 numids = cellPointIds.GetNumberOfIds() #we are only doing triangles if numids != 3: if numids < 3: #degenerate ? try just skipping if PhactoriDbg(): myDebugPrint3AndException(str(ii) + " degenerate 2 point\n") continue if True: #for now we consider this fatal error myDebugPrint3AndException( "PhactoriIntersectNodeNormalsWithSurface::CreateFromLocalProcess\n" "encountered non-triangle\n") continue self.Triangles.InsertNextValue(cellPointIds.GetId(0)) self.Triangles.InsertNextValue(cellPointIds.GetId(1)) self.Triangles.InsertNextValue(cellPointIds.GetId(2)) self.numTriangles = self.Triangles.GetNumberOfValues() // 3
[ "def", "CreateFromLocalProcess", "(", "self", ",", "inPhactoriOperation", ")", ":", "#obtain pointer to the local geometry data", "csdata", "=", "inPhactoriOperation", ".", "mParaViewFilter", ".", "GetClientSideObject", "(", ")", ".", "GetOutputDataObject", "(", "0", ")", "self", ".", "numPoints", "=", "csdata", ".", "GetNumberOfPoints", "(", ")", "if", "PhactoriDbg", "(", ")", ":", "myDebugPrint3", "(", "str", "(", "dir", "(", "csdata", ")", ")", "+", "\"\\n\"", ")", "myDebugPrint3", "(", "\"num points: \"", "+", "str", "(", "self", ".", "numPoints", ")", "+", "\"\\n\"", ")", "myDebugPrint3", "(", "str", "(", "dir", "(", "vtk", ")", ")", "+", "\"\\n\"", ")", "pntData", "=", "csdata", ".", "GetPointData", "(", ")", "cellData", "=", "csdata", ".", "GetCellData", "(", ")", "numCells", "=", "csdata", ".", "GetNumberOfCells", "(", ")", "gNodeIdArray", "=", "pntData", ".", "GetArray", "(", "'GlobalNodeId'", ")", "#gElmtIdArray = cellData.GetArray('GlobalElementId')", "#pntGeometryArray = csdata.GetPoints()", "self", ".", "PointXyzs", ".", "SetNumberOfValues", "(", "self", ".", "numPoints", "*", "3", ")", "self", ".", "NodeIds", "=", "vtk", ".", "vtkIntArray", "(", ")", "self", ".", "NodeIds", ".", "SetNumberOfValues", "(", "self", ".", "numPoints", ")", "#this is stupid, there is probably a much faster way to do this", "ptxyz", "=", "[", "0.0", ",", "0.0", ",", "0.0", "]", "for", "ii", "in", "range", "(", "0", ",", "self", ".", "numPoints", ")", ":", "ndx", "=", "ii", "*", "3", "csdata", ".", "GetPoint", "(", "ii", ",", "ptxyz", ")", "self", ".", "PointXyzs", ".", "SetValue", "(", "ndx", ",", "ptxyz", "[", "0", "]", ")", "self", ".", "PointXyzs", ".", "SetValue", "(", "ndx", "+", "1", ",", "ptxyz", "[", "1", "]", ")", "self", ".", "PointXyzs", ".", "SetValue", "(", "ndx", "+", "2", ",", "ptxyz", "[", "2", "]", ")", "if", "(", "gNodeIdArray", "==", "None", ")", ":", "self", ".", "NodeIds", ".", "SetValue", "(", "ii", ",", "ii", ")", "else", ":", "self", ".", "NodeIds", ".", "SetValue", "(", "ii", ",", "gNodeIdArray", ".", "GetValue", "(", "ii", ")", ")", "self", ".", "Triangles", ".", "SetNumberOfValues", "(", "0", ")", "cellPointIds", "=", "vtk", ".", "vtkIdList", "(", ")", "for", "ii", "in", "range", "(", "0", ",", "numCells", ")", ":", "csdata", ".", "GetCellPoints", "(", "ii", ",", "cellPointIds", ")", "#numpoints should be 3", "numids", "=", "cellPointIds", ".", "GetNumberOfIds", "(", ")", "#we are only doing triangles", "if", "numids", "!=", "3", ":", "if", "numids", "<", "3", ":", "#degenerate ? try just skipping", "if", "PhactoriDbg", "(", ")", ":", "myDebugPrint3AndException", "(", "str", "(", "ii", ")", "+", "\" degenerate 2 point\\n\"", ")", "continue", "if", "True", ":", "#for now we consider this fatal error", "myDebugPrint3AndException", "(", "\"PhactoriIntersectNodeNormalsWithSurface::CreateFromLocalProcess\\n\"", "\"encountered non-triangle\\n\"", ")", "continue", "self", ".", "Triangles", ".", "InsertNextValue", "(", "cellPointIds", ".", "GetId", "(", "0", ")", ")", "self", ".", "Triangles", ".", "InsertNextValue", "(", "cellPointIds", ".", "GetId", "(", "1", ")", ")", "self", ".", "Triangles", ".", "InsertNextValue", "(", "cellPointIds", ".", "GetId", "(", "2", ")", ")", "self", ".", "numTriangles", "=", "self", ".", "Triangles", ".", "GetNumberOfValues", "(", ")", "//", "3" ]
https://github.com/trilinos/Trilinos/blob/6168be6dd51e35e1cd681e9c4b24433e709df140/packages/seacas/libraries/ioss/src/visualization/catalyst/phactori/phactori.py#L6387-L6447
aws/lumberyard
f85344403c1c2e77ec8c75deb2c116e97b713217
dev/Tools/Python/3.7.10/windows/Lib/tarfile.py
python
TarFile.list
(self, verbose=True, *, members=None)
Print a table of contents to sys.stdout. If `verbose' is False, only the names of the members are printed. If it is True, an `ls -l'-like output is produced. `members' is optional and must be a subset of the list returned by getmembers().
Print a table of contents to sys.stdout. If `verbose' is False, only the names of the members are printed. If it is True, an `ls -l'-like output is produced. `members' is optional and must be a subset of the list returned by getmembers().
[ "Print", "a", "table", "of", "contents", "to", "sys", ".", "stdout", ".", "If", "verbose", "is", "False", "only", "the", "names", "of", "the", "members", "are", "printed", ".", "If", "it", "is", "True", "an", "ls", "-", "l", "-", "like", "output", "is", "produced", ".", "members", "is", "optional", "and", "must", "be", "a", "subset", "of", "the", "list", "returned", "by", "getmembers", "()", "." ]
def list(self, verbose=True, *, members=None): """Print a table of contents to sys.stdout. If `verbose' is False, only the names of the members are printed. If it is True, an `ls -l'-like output is produced. `members' is optional and must be a subset of the list returned by getmembers(). """ self._check() if members is None: members = self for tarinfo in members: if verbose: _safe_print(stat.filemode(tarinfo.mode)) _safe_print("%s/%s" % (tarinfo.uname or tarinfo.uid, tarinfo.gname or tarinfo.gid)) if tarinfo.ischr() or tarinfo.isblk(): _safe_print("%10s" % ("%d,%d" % (tarinfo.devmajor, tarinfo.devminor))) else: _safe_print("%10d" % tarinfo.size) _safe_print("%d-%02d-%02d %02d:%02d:%02d" \ % time.localtime(tarinfo.mtime)[:6]) _safe_print(tarinfo.name + ("/" if tarinfo.isdir() else "")) if verbose: if tarinfo.issym(): _safe_print("-> " + tarinfo.linkname) if tarinfo.islnk(): _safe_print("link to " + tarinfo.linkname) print()
[ "def", "list", "(", "self", ",", "verbose", "=", "True", ",", "*", ",", "members", "=", "None", ")", ":", "self", ".", "_check", "(", ")", "if", "members", "is", "None", ":", "members", "=", "self", "for", "tarinfo", "in", "members", ":", "if", "verbose", ":", "_safe_print", "(", "stat", ".", "filemode", "(", "tarinfo", ".", "mode", ")", ")", "_safe_print", "(", "\"%s/%s\"", "%", "(", "tarinfo", ".", "uname", "or", "tarinfo", ".", "uid", ",", "tarinfo", ".", "gname", "or", "tarinfo", ".", "gid", ")", ")", "if", "tarinfo", ".", "ischr", "(", ")", "or", "tarinfo", ".", "isblk", "(", ")", ":", "_safe_print", "(", "\"%10s\"", "%", "(", "\"%d,%d\"", "%", "(", "tarinfo", ".", "devmajor", ",", "tarinfo", ".", "devminor", ")", ")", ")", "else", ":", "_safe_print", "(", "\"%10d\"", "%", "tarinfo", ".", "size", ")", "_safe_print", "(", "\"%d-%02d-%02d %02d:%02d:%02d\"", "%", "time", ".", "localtime", "(", "tarinfo", ".", "mtime", ")", "[", ":", "6", "]", ")", "_safe_print", "(", "tarinfo", ".", "name", "+", "(", "\"/\"", "if", "tarinfo", ".", "isdir", "(", ")", "else", "\"\"", ")", ")", "if", "verbose", ":", "if", "tarinfo", ".", "issym", "(", ")", ":", "_safe_print", "(", "\"-> \"", "+", "tarinfo", ".", "linkname", ")", "if", "tarinfo", ".", "islnk", "(", ")", ":", "_safe_print", "(", "\"link to \"", "+", "tarinfo", ".", "linkname", ")", "print", "(", ")" ]
https://github.com/aws/lumberyard/blob/f85344403c1c2e77ec8c75deb2c116e97b713217/dev/Tools/Python/3.7.10/windows/Lib/tarfile.py#L1873-L1903
wxWidgets/wxPython-Classic
19571e1ae65f1ac445f5491474121998c97a1bf0
wx/tools/XRCed/listener.py
python
_Listener.SaveRecent
(self, path)
Append path to recently used files.
Append path to recently used files.
[ "Append", "path", "to", "recently", "used", "files", "." ]
def SaveRecent(self, path): '''Append path to recently used files.''' g.fileHistory.AddFileToHistory(path)
[ "def", "SaveRecent", "(", "self", ",", "path", ")", ":", "g", ".", "fileHistory", ".", "AddFileToHistory", "(", "path", ")" ]
https://github.com/wxWidgets/wxPython-Classic/blob/19571e1ae65f1ac445f5491474121998c97a1bf0/wx/tools/XRCed/listener.py#L328-L330
BlzFans/wke
b0fa21158312e40c5fbd84682d643022b6c34a93
cygwin/lib/python2.6/multiprocessing/__init__.py
python
Pool
(processes=None, initializer=None, initargs=())
return Pool(processes, initializer, initargs)
Returns a process pool object
Returns a process pool object
[ "Returns", "a", "process", "pool", "object" ]
def Pool(processes=None, initializer=None, initargs=()): ''' Returns a process pool object ''' from multiprocessing.pool import Pool return Pool(processes, initializer, initargs)
[ "def", "Pool", "(", "processes", "=", "None", ",", "initializer", "=", "None", ",", "initargs", "=", "(", ")", ")", ":", "from", "multiprocessing", ".", "pool", "import", "Pool", "return", "Pool", "(", "processes", ",", "initializer", ",", "initargs", ")" ]
https://github.com/BlzFans/wke/blob/b0fa21158312e40c5fbd84682d643022b6c34a93/cygwin/lib/python2.6/multiprocessing/__init__.py#L222-L227
SpenceKonde/megaTinyCore
1c4a70b18a149fe6bcb551dfa6db11ca50b8997b
megaavr/tools/libs/pymcuprog/nvmserialupdi.py
python
NvmAccessProviderSerial.hold_in_reset
(self)
return
Hold device in reset
Hold device in reset
[ "Hold", "device", "in", "reset" ]
def hold_in_reset(self): """ Hold device in reset """ # For UPDI parts it is sufficient to enter programming mode to hold the target in reset # Since the start function is a prerequisite to all functions in this file it can be # assumed that programming mode already has been entered return
[ "def", "hold_in_reset", "(", "self", ")", ":", "# For UPDI parts it is sufficient to enter programming mode to hold the target in reset", "# Since the start function is a prerequisite to all functions in this file it can be", "# assumed that programming mode already has been entered", "return" ]
https://github.com/SpenceKonde/megaTinyCore/blob/1c4a70b18a149fe6bcb551dfa6db11ca50b8997b/megaavr/tools/libs/pymcuprog/nvmserialupdi.py#L228-L235