nwo
stringlengths
5
106
sha
stringlengths
40
40
path
stringlengths
4
174
language
stringclasses
1 value
identifier
stringlengths
1
140
parameters
stringlengths
0
87.7k
argument_list
stringclasses
1 value
return_statement
stringlengths
0
426k
docstring
stringlengths
0
64.3k
docstring_summary
stringlengths
0
26.3k
docstring_tokens
list
function
stringlengths
18
4.83M
function_tokens
list
url
stringlengths
83
304
x1ddos/simpleauth
d6a369e2783466f3b9bbdb54411e5698a5c043d1
example/lib/httplib2/socks.py
python
setdefaultproxy
(proxytype=None, addr=None, port=None, rdns=True, username=None, password=None)
setdefaultproxy(proxytype, addr[, port[, rdns[, username[, password]]]]) Sets a default proxy which all further socksocket objects will use, unless explicitly changed.
setdefaultproxy(proxytype, addr[, port[, rdns[, username[, password]]]]) Sets a default proxy which all further socksocket objects will use, unless explicitly changed.
[ "setdefaultproxy", "(", "proxytype", "addr", "[", "port", "[", "rdns", "[", "username", "[", "password", "]]]]", ")", "Sets", "a", "default", "proxy", "which", "all", "further", "socksocket", "objects", "will", "use", "unless", "explicitly", "changed", "." ]
def setdefaultproxy(proxytype=None, addr=None, port=None, rdns=True, username=None, password=None): """setdefaultproxy(proxytype, addr[, port[, rdns[, username[, password]]]]) Sets a default proxy which all further socksocket objects will use, unless explicitly changed. """ global _defaultproxy _defaultproxy = (proxytype, addr, port, rdns, username, password)
[ "def", "setdefaultproxy", "(", "proxytype", "=", "None", ",", "addr", "=", "None", ",", "port", "=", "None", ",", "rdns", "=", "True", ",", "username", "=", "None", ",", "password", "=", "None", ")", ":", "global", "_defaultproxy", "_defaultproxy", "=", "(", "proxytype", ",", "addr", ",", "port", ",", "rdns", ",", "username", ",", "password", ")" ]
https://github.com/x1ddos/simpleauth/blob/d6a369e2783466f3b9bbdb54411e5698a5c043d1/example/lib/httplib2/socks.py#L96-L102
lovedaybrooke/gender-decoder
c66fb57afed0865eb698bf2c14057a13131217d7
app/models.py
python
CodedWordCounter.__init__
(self, ad, word, coding)
[]
def __init__(self, ad, word, coding): self.ad_hash = ad.hash self.word = word self.coding = coding self.count = 1 db.session.add(self) db.session.commit()
[ "def", "__init__", "(", "self", ",", "ad", ",", "word", ",", "coding", ")", ":", "self", ".", "ad_hash", "=", "ad", ".", "hash", "self", ".", "word", "=", "word", "self", ".", "coding", "=", "coding", "self", ".", "count", "=", "1", "db", ".", "session", ".", "add", "(", "self", ")", "db", ".", "session", ".", "commit", "(", ")" ]
https://github.com/lovedaybrooke/gender-decoder/blob/c66fb57afed0865eb698bf2c14057a13131217d7/app/models.py#L143-L149
GPflow/GPflowOpt
3d86bcc000b0367f19e9f03f4458f5641e5dde60
gpflowopt/acquisition/acquisition.py
python
Acquisition.set_data
(self, X, Y)
return num_outputs_sum
Update the training data of the contained models Sets the _needs_setup attribute to True so the contained models are optimized and :meth:`setup` is run again right before evaluating the :class:`Acquisition` function. Let Q be the the sum of the output dimensions of all contained models, Y should have a minimum of Q columns. Only the first Q columns of Y are used while returning the scalar Q :param X: input data N x D :param Y: output data N x R (R >= Q) :return: Q (sum of output dimensions of contained models)
Update the training data of the contained models
[ "Update", "the", "training", "data", "of", "the", "contained", "models" ]
def set_data(self, X, Y): """ Update the training data of the contained models Sets the _needs_setup attribute to True so the contained models are optimized and :meth:`setup` is run again right before evaluating the :class:`Acquisition` function. Let Q be the the sum of the output dimensions of all contained models, Y should have a minimum of Q columns. Only the first Q columns of Y are used while returning the scalar Q :param X: input data N x D :param Y: output data N x R (R >= Q) :return: Q (sum of output dimensions of contained models) """ num_outputs_sum = 0 for model in self.models: num_outputs = model.Y.shape[1] Ypart = Y[:, num_outputs_sum:num_outputs_sum + num_outputs] num_outputs_sum += num_outputs model.X = X model.Y = Ypart self.highest_parent._needs_setup = True return num_outputs_sum
[ "def", "set_data", "(", "self", ",", "X", ",", "Y", ")", ":", "num_outputs_sum", "=", "0", "for", "model", "in", "self", ".", "models", ":", "num_outputs", "=", "model", ".", "Y", ".", "shape", "[", "1", "]", "Ypart", "=", "Y", "[", ":", ",", "num_outputs_sum", ":", "num_outputs_sum", "+", "num_outputs", "]", "num_outputs_sum", "+=", "num_outputs", "model", ".", "X", "=", "X", "model", ".", "Y", "=", "Ypart", "self", ".", "highest_parent", ".", "_needs_setup", "=", "True", "return", "num_outputs_sum" ]
https://github.com/GPflow/GPflowOpt/blob/3d86bcc000b0367f19e9f03f4458f5641e5dde60/gpflowopt/acquisition/acquisition.py#L145-L169
crs4/pydoop
438c92ed34e2d4f12db7cc1ea3a7ed094206c3a5
pydoop/app/submit.py
python
PydoopSubmitter.set_args
(self, args, unknown_args=None)
Configure job, based on the arguments provided.
Configure job, based on the arguments provided.
[ "Configure", "job", "based", "on", "the", "arguments", "provided", "." ]
def set_args(self, args, unknown_args=None): """ Configure job, based on the arguments provided. """ if unknown_args is None: unknown_args = [] self.logger.setLevel(getattr(logging, args.log_level)) parent = hdfs.path.dirname(hdfs.path.abspath(args.output.rstrip("/"))) self.remote_wd = hdfs.path.join( parent, utils.make_random_str(prefix="pydoop_submit_") ) self.remote_exe = hdfs.path.join(self.remote_wd, str(uuid.uuid4())) self.properties[JOB_NAME] = args.job_name or 'pydoop' self.properties[IS_JAVA_RR] = ( 'false' if args.do_not_use_java_record_reader else 'true' ) self.properties[IS_JAVA_RW] = ( 'false' if args.do_not_use_java_record_writer else 'true' ) if args.num_reducers is not None: self.properties[JOB_REDUCES] = args.num_reducers if args.job_name: self.properties[JOB_NAME] = args.job_name self.properties.update(args.job_conf or {}) self.__set_files_to_cache(args) self.__set_archives_to_cache(args) self.requested_env = self._env_arg_to_dict(args.set_env or []) self.args = args self.unknown_args = unknown_args
[ "def", "set_args", "(", "self", ",", "args", ",", "unknown_args", "=", "None", ")", ":", "if", "unknown_args", "is", "None", ":", "unknown_args", "=", "[", "]", "self", ".", "logger", ".", "setLevel", "(", "getattr", "(", "logging", ",", "args", ".", "log_level", ")", ")", "parent", "=", "hdfs", ".", "path", ".", "dirname", "(", "hdfs", ".", "path", ".", "abspath", "(", "args", ".", "output", ".", "rstrip", "(", "\"/\"", ")", ")", ")", "self", ".", "remote_wd", "=", "hdfs", ".", "path", ".", "join", "(", "parent", ",", "utils", ".", "make_random_str", "(", "prefix", "=", "\"pydoop_submit_\"", ")", ")", "self", ".", "remote_exe", "=", "hdfs", ".", "path", ".", "join", "(", "self", ".", "remote_wd", ",", "str", "(", "uuid", ".", "uuid4", "(", ")", ")", ")", "self", ".", "properties", "[", "JOB_NAME", "]", "=", "args", ".", "job_name", "or", "'pydoop'", "self", ".", "properties", "[", "IS_JAVA_RR", "]", "=", "(", "'false'", "if", "args", ".", "do_not_use_java_record_reader", "else", "'true'", ")", "self", ".", "properties", "[", "IS_JAVA_RW", "]", "=", "(", "'false'", "if", "args", ".", "do_not_use_java_record_writer", "else", "'true'", ")", "if", "args", ".", "num_reducers", "is", "not", "None", ":", "self", ".", "properties", "[", "JOB_REDUCES", "]", "=", "args", ".", "num_reducers", "if", "args", ".", "job_name", ":", "self", ".", "properties", "[", "JOB_NAME", "]", "=", "args", ".", "job_name", "self", ".", "properties", ".", "update", "(", "args", ".", "job_conf", "or", "{", "}", ")", "self", ".", "__set_files_to_cache", "(", "args", ")", "self", ".", "__set_archives_to_cache", "(", "args", ")", "self", ".", "requested_env", "=", "self", ".", "_env_arg_to_dict", "(", "args", ".", "set_env", "or", "[", "]", ")", "self", ".", "args", "=", "args", "self", ".", "unknown_args", "=", "unknown_args" ]
https://github.com/crs4/pydoop/blob/438c92ed34e2d4f12db7cc1ea3a7ed094206c3a5/pydoop/app/submit.py#L132-L161
sthanhng/yoloface
2b954f318d9bd9136836bed0a71109ab56681790
yolo/yolo.py
python
letterbox_image
(image, size)
return new_image
Resize image with unchanged aspect ratio using padding
Resize image with unchanged aspect ratio using padding
[ "Resize", "image", "with", "unchanged", "aspect", "ratio", "using", "padding" ]
def letterbox_image(image, size): '''Resize image with unchanged aspect ratio using padding''' img_width, img_height = image.size w, h = size scale = min(w / img_width, h / img_height) nw = int(img_width * scale) nh = int(img_height * scale) image = image.resize((nw, nh), Image.BICUBIC) new_image = Image.new('RGB', size, (128, 128, 128)) new_image.paste(image, ((w - nw) // 2, (h - nh) // 2)) return new_image
[ "def", "letterbox_image", "(", "image", ",", "size", ")", ":", "img_width", ",", "img_height", "=", "image", ".", "size", "w", ",", "h", "=", "size", "scale", "=", "min", "(", "w", "/", "img_width", ",", "h", "/", "img_height", ")", "nw", "=", "int", "(", "img_width", "*", "scale", ")", "nh", "=", "int", "(", "img_height", "*", "scale", ")", "image", "=", "image", ".", "resize", "(", "(", "nw", ",", "nh", ")", ",", "Image", ".", "BICUBIC", ")", "new_image", "=", "Image", ".", "new", "(", "'RGB'", ",", "size", ",", "(", "128", ",", "128", ",", "128", ")", ")", "new_image", ".", "paste", "(", "image", ",", "(", "(", "w", "-", "nw", ")", "//", "2", ",", "(", "h", "-", "nh", ")", "//", "2", ")", ")", "return", "new_image" ]
https://github.com/sthanhng/yoloface/blob/2b954f318d9bd9136836bed0a71109ab56681790/yolo/yolo.py#L154-L166
openhatch/oh-mainline
ce29352a034e1223141dcc2f317030bbc3359a51
vendor/packages/twisted/twisted/web/vhost.py
python
NameVirtualHost.removeHost
(self, name)
Remove a host.
Remove a host.
[ "Remove", "a", "host", "." ]
def removeHost(self, name): """Remove a host.""" del self.hosts[name]
[ "def", "removeHost", "(", "self", ",", "name", ")", ":", "del", "self", ".", "hosts", "[", "name", "]" ]
https://github.com/openhatch/oh-mainline/blob/ce29352a034e1223141dcc2f317030bbc3359a51/vendor/packages/twisted/twisted/web/vhost.py#L71-L73
openshift/openshift-tools
1188778e728a6e4781acf728123e5b356380fe6f
openshift/installer/vendored/openshift-ansible-3.11.28-1/roles/lib_vendored_deps/library/oc_route.py
python
OCRoute.__init__
(self, config, verbose=False)
Constructor for OCVolume
Constructor for OCVolume
[ "Constructor", "for", "OCVolume" ]
def __init__(self, config, verbose=False): ''' Constructor for OCVolume ''' super(OCRoute, self).__init__(config.namespace, kubeconfig=config.kubeconfig, verbose=verbose) self.config = config self._route = None
[ "def", "__init__", "(", "self", ",", "config", ",", "verbose", "=", "False", ")", ":", "super", "(", "OCRoute", ",", "self", ")", ".", "__init__", "(", "config", ".", "namespace", ",", "kubeconfig", "=", "config", ".", "kubeconfig", ",", "verbose", "=", "verbose", ")", "self", ".", "config", "=", "config", "self", ".", "_route", "=", "None" ]
https://github.com/openshift/openshift-tools/blob/1188778e728a6e4781acf728123e5b356380fe6f/openshift/installer/vendored/openshift-ansible-3.11.28-1/roles/lib_vendored_deps/library/oc_route.py#L1674-L1680
urwid/urwid
e2423b5069f51d318ea1ac0f355a0efe5448f7eb
urwid/text_layout.py
python
line_width
( segs )
return sc
Return the screen column width of one line of a text layout structure. This function ignores any existing shift applied to the line, represented by an (amount, None) tuple at the start of the line.
Return the screen column width of one line of a text layout structure.
[ "Return", "the", "screen", "column", "width", "of", "one", "line", "of", "a", "text", "layout", "structure", "." ]
def line_width( segs ): """ Return the screen column width of one line of a text layout structure. This function ignores any existing shift applied to the line, represented by an (amount, None) tuple at the start of the line. """ sc = 0 seglist = segs if segs and len(segs[0])==2 and segs[0][1]==None: seglist = segs[1:] for s in seglist: sc += s[0] return sc
[ "def", "line_width", "(", "segs", ")", ":", "sc", "=", "0", "seglist", "=", "segs", "if", "segs", "and", "len", "(", "segs", "[", "0", "]", ")", "==", "2", "and", "segs", "[", "0", "]", "[", "1", "]", "==", "None", ":", "seglist", "=", "segs", "[", "1", ":", "]", "for", "s", "in", "seglist", ":", "sc", "+=", "s", "[", "0", "]", "return", "sc" ]
https://github.com/urwid/urwid/blob/e2423b5069f51d318ea1ac0f355a0efe5448f7eb/urwid/text_layout.py#L339-L352
PaddlePaddle/PaddleX
2bab73f81ab54e328204e7871e6ae4a82e719f5d
static/paddlex/cv/models/base.py
python
BaseAPI.export_quant_model
(self, dataset, save_dir, batch_size=1, batch_num=10, cache_dir="./temp")
[]
def export_quant_model(self, dataset, save_dir, batch_size=1, batch_num=10, cache_dir="./temp"): input_channel = getattr(self, 'input_channel', 3) arrange_transforms( model_type=self.model_type, class_name=self.__class__.__name__, transforms=dataset.transforms, mode='quant', input_channel=input_channel) dataset.num_samples = batch_size * batch_num import paddle version = paddle.__version__.strip().split('.') if version[0] == '2' or (version[0] == '0' and hasattr(paddle, 'enable_static')): from .slim.post_quantization import PaddleXPostTrainingQuantizationV2 as PaddleXPostTrainingQuantization else: from .slim.post_quantization import PaddleXPostTrainingQuantization PaddleXPostTrainingQuantization._collect_target_varnames is_use_cache_file = True if cache_dir is None: is_use_cache_file = False quant_prog = self.test_prog.clone(for_test=True) post_training_quantization = PaddleXPostTrainingQuantization( executor=self.exe, dataset=dataset, program=quant_prog, inputs=self.test_inputs, outputs=self.test_outputs, batch_size=batch_size, batch_nums=batch_num, scope=self.scope, algo='KL', quantizable_op_type=["conv2d", "depthwise_conv2d", "mul"], is_full_quantize=False, is_use_cache_file=is_use_cache_file, cache_dir=cache_dir) post_training_quantization.quantize() post_training_quantization.save_quantized_model(save_dir) model_info = self.get_model_info() model_info['status'] = 'Quant' # 保存模型输出的变量描述 model_info['_ModelInputsOutputs'] = dict() model_info['_ModelInputsOutputs']['test_inputs'] = [ [k, v.name] for k, v in self.test_inputs.items() ] model_info['_ModelInputsOutputs']['test_outputs'] = [ [k, v.name] for k, v in self.test_outputs.items() ] with open( osp.join(save_dir, 'model.yml'), encoding='utf-8', mode='w') as f: yaml.dump(model_info, f)
[ "def", "export_quant_model", "(", "self", ",", "dataset", ",", "save_dir", ",", "batch_size", "=", "1", ",", "batch_num", "=", "10", ",", "cache_dir", "=", "\"./temp\"", ")", ":", "input_channel", "=", "getattr", "(", "self", ",", "'input_channel'", ",", "3", ")", "arrange_transforms", "(", "model_type", "=", "self", ".", "model_type", ",", "class_name", "=", "self", ".", "__class__", ".", "__name__", ",", "transforms", "=", "dataset", ".", "transforms", ",", "mode", "=", "'quant'", ",", "input_channel", "=", "input_channel", ")", "dataset", ".", "num_samples", "=", "batch_size", "*", "batch_num", "import", "paddle", "version", "=", "paddle", ".", "__version__", ".", "strip", "(", ")", ".", "split", "(", "'.'", ")", "if", "version", "[", "0", "]", "==", "'2'", "or", "(", "version", "[", "0", "]", "==", "'0'", "and", "hasattr", "(", "paddle", ",", "'enable_static'", ")", ")", ":", "from", ".", "slim", ".", "post_quantization", "import", "PaddleXPostTrainingQuantizationV2", "as", "PaddleXPostTrainingQuantization", "else", ":", "from", ".", "slim", ".", "post_quantization", "import", "PaddleXPostTrainingQuantization", "PaddleXPostTrainingQuantization", ".", "_collect_target_varnames", "is_use_cache_file", "=", "True", "if", "cache_dir", "is", "None", ":", "is_use_cache_file", "=", "False", "quant_prog", "=", "self", ".", "test_prog", ".", "clone", "(", "for_test", "=", "True", ")", "post_training_quantization", "=", "PaddleXPostTrainingQuantization", "(", "executor", "=", "self", ".", "exe", ",", "dataset", "=", "dataset", ",", "program", "=", "quant_prog", ",", "inputs", "=", "self", ".", "test_inputs", ",", "outputs", "=", "self", ".", "test_outputs", ",", "batch_size", "=", "batch_size", ",", "batch_nums", "=", "batch_num", ",", "scope", "=", "self", ".", "scope", ",", "algo", "=", "'KL'", ",", "quantizable_op_type", "=", "[", "\"conv2d\"", ",", "\"depthwise_conv2d\"", ",", "\"mul\"", "]", ",", "is_full_quantize", "=", "False", ",", "is_use_cache_file", "=", "is_use_cache_file", ",", "cache_dir", "=", "cache_dir", ")", "post_training_quantization", ".", "quantize", "(", ")", "post_training_quantization", ".", "save_quantized_model", "(", "save_dir", ")", "model_info", "=", "self", ".", "get_model_info", "(", ")", "model_info", "[", "'status'", "]", "=", "'Quant'", "# 保存模型输出的变量描述", "model_info", "[", "'_ModelInputsOutputs'", "]", "=", "dict", "(", ")", "model_info", "[", "'_ModelInputsOutputs'", "]", "[", "'test_inputs'", "]", "=", "[", "[", "k", ",", "v", ".", "name", "]", "for", "k", ",", "v", "in", "self", ".", "test_inputs", ".", "items", "(", ")", "]", "model_info", "[", "'_ModelInputsOutputs'", "]", "[", "'test_outputs'", "]", "=", "[", "[", "k", ",", "v", ".", "name", "]", "for", "k", ",", "v", "in", "self", ".", "test_outputs", ".", "items", "(", ")", "]", "with", "open", "(", "osp", ".", "join", "(", "save_dir", ",", "'model.yml'", ")", ",", "encoding", "=", "'utf-8'", ",", "mode", "=", "'w'", ")", "as", "f", ":", "yaml", ".", "dump", "(", "model_info", ",", "f", ")" ]
https://github.com/PaddlePaddle/PaddleX/blob/2bab73f81ab54e328204e7871e6ae4a82e719f5d/static/paddlex/cv/models/base.py#L132-L189
deepmind/learning-to-learn
f3c1a8d176b8ea7cc60478bfcfdd10a7a52fd296
networks.py
python
KernelDeepLSTM.__init__
(self, kernel_shape, name="kernel_deep_lstm", **kwargs)
Creates an instance of `KernelDeepLSTM`. Args: kernel_shape: Kernel shape (2D `tuple`). name: Module name. **kwargs: Additional `DeepLSTM` args.
Creates an instance of `KernelDeepLSTM`.
[ "Creates", "an", "instance", "of", "KernelDeepLSTM", "." ]
def __init__(self, kernel_shape, name="kernel_deep_lstm", **kwargs): """Creates an instance of `KernelDeepLSTM`. Args: kernel_shape: Kernel shape (2D `tuple`). name: Module name. **kwargs: Additional `DeepLSTM` args. """ self._kernel_shape = kernel_shape output_size = np.prod(kernel_shape) super(KernelDeepLSTM, self).__init__(output_size, name=name, **kwargs)
[ "def", "__init__", "(", "self", ",", "kernel_shape", ",", "name", "=", "\"kernel_deep_lstm\"", ",", "*", "*", "kwargs", ")", ":", "self", ".", "_kernel_shape", "=", "kernel_shape", "output_size", "=", "np", ".", "prod", "(", "kernel_shape", ")", "super", "(", "KernelDeepLSTM", ",", "self", ")", ".", "__init__", "(", "output_size", ",", "name", "=", "name", ",", "*", "*", "kwargs", ")" ]
https://github.com/deepmind/learning-to-learn/blob/f3c1a8d176b8ea7cc60478bfcfdd10a7a52fd296/networks.py#L268-L278
linxid/Machine_Learning_Study_Path
558e82d13237114bbb8152483977806fc0c222af
Machine Learning In Action/Chapter4-NaiveBayes/venv/Lib/site-packages/pkg_resources/__init__.py
python
ZipProvider.__init__
(self, module)
[]
def __init__(self, module): EggProvider.__init__(self, module) self.zip_pre = self.loader.archive + os.sep
[ "def", "__init__", "(", "self", ",", "module", ")", ":", "EggProvider", ".", "__init__", "(", "self", ",", "module", ")", "self", ".", "zip_pre", "=", "self", ".", "loader", ".", "archive", "+", "os", ".", "sep" ]
https://github.com/linxid/Machine_Learning_Study_Path/blob/558e82d13237114bbb8152483977806fc0c222af/Machine Learning In Action/Chapter4-NaiveBayes/venv/Lib/site-packages/pkg_resources/__init__.py#L1689-L1691
cronyo/cronyo
cd5abab0871b68bf31b18aac934303928130a441
cronyo/vendor/idna/core.py
python
check_bidi
(label, check_ltr=False)
return True
[]
def check_bidi(label, check_ltr=False): # Bidi rules should only be applied if string contains RTL characters bidi_label = False for (idx, cp) in enumerate(label, 1): direction = unicodedata.bidirectional(cp) if direction == '': # String likely comes from a newer version of Unicode raise IDNABidiError('Unknown directionality in label {0} at position {1}'.format(repr(label), idx)) if direction in ['R', 'AL', 'AN']: bidi_label = True if not bidi_label and not check_ltr: return True # Bidi rule 1 direction = unicodedata.bidirectional(label[0]) if direction in ['R', 'AL']: rtl = True elif direction == 'L': rtl = False else: raise IDNABidiError('First codepoint in label {0} must be directionality L, R or AL'.format(repr(label))) valid_ending = False number_type = False for (idx, cp) in enumerate(label, 1): direction = unicodedata.bidirectional(cp) if rtl: # Bidi rule 2 if not direction in ['R', 'AL', 'AN', 'EN', 'ES', 'CS', 'ET', 'ON', 'BN', 'NSM']: raise IDNABidiError('Invalid direction for codepoint at position {0} in a right-to-left label'.format(idx)) # Bidi rule 3 if direction in ['R', 'AL', 'EN', 'AN']: valid_ending = True elif direction != 'NSM': valid_ending = False # Bidi rule 4 if direction in ['AN', 'EN']: if not number_type: number_type = direction else: if number_type != direction: raise IDNABidiError('Can not mix numeral types in a right-to-left label') else: # Bidi rule 5 if not direction in ['L', 'EN', 'ES', 'CS', 'ET', 'ON', 'BN', 'NSM']: raise IDNABidiError('Invalid direction for codepoint at position {0} in a left-to-right label'.format(idx)) # Bidi rule 6 if direction in ['L', 'EN']: valid_ending = True elif direction != 'NSM': valid_ending = False if not valid_ending: raise IDNABidiError('Label ends with illegal codepoint directionality') return True
[ "def", "check_bidi", "(", "label", ",", "check_ltr", "=", "False", ")", ":", "# Bidi rules should only be applied if string contains RTL characters", "bidi_label", "=", "False", "for", "(", "idx", ",", "cp", ")", "in", "enumerate", "(", "label", ",", "1", ")", ":", "direction", "=", "unicodedata", ".", "bidirectional", "(", "cp", ")", "if", "direction", "==", "''", ":", "# String likely comes from a newer version of Unicode", "raise", "IDNABidiError", "(", "'Unknown directionality in label {0} at position {1}'", ".", "format", "(", "repr", "(", "label", ")", ",", "idx", ")", ")", "if", "direction", "in", "[", "'R'", ",", "'AL'", ",", "'AN'", "]", ":", "bidi_label", "=", "True", "if", "not", "bidi_label", "and", "not", "check_ltr", ":", "return", "True", "# Bidi rule 1", "direction", "=", "unicodedata", ".", "bidirectional", "(", "label", "[", "0", "]", ")", "if", "direction", "in", "[", "'R'", ",", "'AL'", "]", ":", "rtl", "=", "True", "elif", "direction", "==", "'L'", ":", "rtl", "=", "False", "else", ":", "raise", "IDNABidiError", "(", "'First codepoint in label {0} must be directionality L, R or AL'", ".", "format", "(", "repr", "(", "label", ")", ")", ")", "valid_ending", "=", "False", "number_type", "=", "False", "for", "(", "idx", ",", "cp", ")", "in", "enumerate", "(", "label", ",", "1", ")", ":", "direction", "=", "unicodedata", ".", "bidirectional", "(", "cp", ")", "if", "rtl", ":", "# Bidi rule 2", "if", "not", "direction", "in", "[", "'R'", ",", "'AL'", ",", "'AN'", ",", "'EN'", ",", "'ES'", ",", "'CS'", ",", "'ET'", ",", "'ON'", ",", "'BN'", ",", "'NSM'", "]", ":", "raise", "IDNABidiError", "(", "'Invalid direction for codepoint at position {0} in a right-to-left label'", ".", "format", "(", "idx", ")", ")", "# Bidi rule 3", "if", "direction", "in", "[", "'R'", ",", "'AL'", ",", "'EN'", ",", "'AN'", "]", ":", "valid_ending", "=", "True", "elif", "direction", "!=", "'NSM'", ":", "valid_ending", "=", "False", "# Bidi rule 4", "if", "direction", "in", "[", "'AN'", ",", "'EN'", "]", ":", "if", "not", "number_type", ":", "number_type", "=", "direction", "else", ":", "if", "number_type", "!=", "direction", ":", "raise", "IDNABidiError", "(", "'Can not mix numeral types in a right-to-left label'", ")", "else", ":", "# Bidi rule 5", "if", "not", "direction", "in", "[", "'L'", ",", "'EN'", ",", "'ES'", ",", "'CS'", ",", "'ET'", ",", "'ON'", ",", "'BN'", ",", "'NSM'", "]", ":", "raise", "IDNABidiError", "(", "'Invalid direction for codepoint at position {0} in a left-to-right label'", ".", "format", "(", "idx", ")", ")", "# Bidi rule 6", "if", "direction", "in", "[", "'L'", ",", "'EN'", "]", ":", "valid_ending", "=", "True", "elif", "direction", "!=", "'NSM'", ":", "valid_ending", "=", "False", "if", "not", "valid_ending", ":", "raise", "IDNABidiError", "(", "'Label ends with illegal codepoint directionality'", ")", "return", "True" ]
https://github.com/cronyo/cronyo/blob/cd5abab0871b68bf31b18aac934303928130a441/cronyo/vendor/idna/core.py#L67-L124
replit-archive/empythoned
977ec10ced29a3541a4973dc2b59910805695752
dist/lib/python2.7/cookielib.py
python
http2time
(text)
return _str2time(day, mon, yr, hr, min, sec, tz)
Returns time in seconds since epoch of time represented by a string. Return value is an integer. None is returned if the format of str is unrecognized, the time is outside the representable range, or the timezone string is not recognized. If the string contains no timezone, UTC is assumed. The timezone in the string may be numerical (like "-0800" or "+0100") or a string timezone (like "UTC", "GMT", "BST" or "EST"). Currently, only the timezone strings equivalent to UTC (zero offset) are known to the function. The function loosely parses the following formats: Wed, 09 Feb 1994 22:23:32 GMT -- HTTP format Tuesday, 08-Feb-94 14:15:29 GMT -- old rfc850 HTTP format Tuesday, 08-Feb-1994 14:15:29 GMT -- broken rfc850 HTTP format 09 Feb 1994 22:23:32 GMT -- HTTP format (no weekday) 08-Feb-94 14:15:29 GMT -- rfc850 format (no weekday) 08-Feb-1994 14:15:29 GMT -- broken rfc850 format (no weekday) The parser ignores leading and trailing whitespace. The time may be absent. If the year is given with only 2 digits, the function will select the century that makes the year closest to the current date.
Returns time in seconds since epoch of time represented by a string.
[ "Returns", "time", "in", "seconds", "since", "epoch", "of", "time", "represented", "by", "a", "string", "." ]
def http2time(text): """Returns time in seconds since epoch of time represented by a string. Return value is an integer. None is returned if the format of str is unrecognized, the time is outside the representable range, or the timezone string is not recognized. If the string contains no timezone, UTC is assumed. The timezone in the string may be numerical (like "-0800" or "+0100") or a string timezone (like "UTC", "GMT", "BST" or "EST"). Currently, only the timezone strings equivalent to UTC (zero offset) are known to the function. The function loosely parses the following formats: Wed, 09 Feb 1994 22:23:32 GMT -- HTTP format Tuesday, 08-Feb-94 14:15:29 GMT -- old rfc850 HTTP format Tuesday, 08-Feb-1994 14:15:29 GMT -- broken rfc850 HTTP format 09 Feb 1994 22:23:32 GMT -- HTTP format (no weekday) 08-Feb-94 14:15:29 GMT -- rfc850 format (no weekday) 08-Feb-1994 14:15:29 GMT -- broken rfc850 format (no weekday) The parser ignores leading and trailing whitespace. The time may be absent. If the year is given with only 2 digits, the function will select the century that makes the year closest to the current date. """ # fast exit for strictly conforming string m = STRICT_DATE_RE.search(text) if m: g = m.groups() mon = MONTHS_LOWER.index(g[1].lower()) + 1 tt = (int(g[2]), mon, int(g[0]), int(g[3]), int(g[4]), float(g[5])) return _timegm(tt) # No, we need some messy parsing... # clean up text = text.lstrip() text = WEEKDAY_RE.sub("", text, 1) # Useless weekday # tz is time zone specifier string day, mon, yr, hr, min, sec, tz = [None]*7 # loose regexp parse m = LOOSE_HTTP_DATE_RE.search(text) if m is not None: day, mon, yr, hr, min, sec, tz = m.groups() else: return None # bad format return _str2time(day, mon, yr, hr, min, sec, tz)
[ "def", "http2time", "(", "text", ")", ":", "# fast exit for strictly conforming string", "m", "=", "STRICT_DATE_RE", ".", "search", "(", "text", ")", "if", "m", ":", "g", "=", "m", ".", "groups", "(", ")", "mon", "=", "MONTHS_LOWER", ".", "index", "(", "g", "[", "1", "]", ".", "lower", "(", ")", ")", "+", "1", "tt", "=", "(", "int", "(", "g", "[", "2", "]", ")", ",", "mon", ",", "int", "(", "g", "[", "0", "]", ")", ",", "int", "(", "g", "[", "3", "]", ")", ",", "int", "(", "g", "[", "4", "]", ")", ",", "float", "(", "g", "[", "5", "]", ")", ")", "return", "_timegm", "(", "tt", ")", "# No, we need some messy parsing...", "# clean up", "text", "=", "text", ".", "lstrip", "(", ")", "text", "=", "WEEKDAY_RE", ".", "sub", "(", "\"\"", ",", "text", ",", "1", ")", "# Useless weekday", "# tz is time zone specifier string", "day", ",", "mon", ",", "yr", ",", "hr", ",", "min", ",", "sec", ",", "tz", "=", "[", "None", "]", "*", "7", "# loose regexp parse", "m", "=", "LOOSE_HTTP_DATE_RE", ".", "search", "(", "text", ")", "if", "m", "is", "not", "None", ":", "day", ",", "mon", ",", "yr", ",", "hr", ",", "min", ",", "sec", ",", "tz", "=", "m", ".", "groups", "(", ")", "else", ":", "return", "None", "# bad format", "return", "_str2time", "(", "day", ",", "mon", ",", "yr", ",", "hr", ",", "min", ",", "sec", ",", "tz", ")" ]
https://github.com/replit-archive/empythoned/blob/977ec10ced29a3541a4973dc2b59910805695752/dist/lib/python2.7/cookielib.py#L212-L266
scikit-learn/scikit-learn
1d1aadd0711b87d2a11c80aad15df6f8cf156712
sklearn/gaussian_process/kernels.py
python
Matern.__call__
(self, X, Y=None, eval_gradient=False)
Return the kernel k(X, Y) and optionally its gradient. Parameters ---------- X : ndarray of shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : ndarray of shape (n_samples_Y, n_features), default=None Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool, default=False Determines whether the gradient with respect to the log of the kernel hyperparameter is computed. Only supported when Y is None. Returns ------- K : ndarray of shape (n_samples_X, n_samples_Y) Kernel k(X, Y) K_gradient : ndarray of shape (n_samples_X, n_samples_X, n_dims), \ optional The gradient of the kernel k(X, X) with respect to the log of the hyperparameter of the kernel. Only returned when `eval_gradient` is True.
Return the kernel k(X, Y) and optionally its gradient.
[ "Return", "the", "kernel", "k", "(", "X", "Y", ")", "and", "optionally", "its", "gradient", "." ]
def __call__(self, X, Y=None, eval_gradient=False): """Return the kernel k(X, Y) and optionally its gradient. Parameters ---------- X : ndarray of shape (n_samples_X, n_features) Left argument of the returned kernel k(X, Y) Y : ndarray of shape (n_samples_Y, n_features), default=None Right argument of the returned kernel k(X, Y). If None, k(X, X) if evaluated instead. eval_gradient : bool, default=False Determines whether the gradient with respect to the log of the kernel hyperparameter is computed. Only supported when Y is None. Returns ------- K : ndarray of shape (n_samples_X, n_samples_Y) Kernel k(X, Y) K_gradient : ndarray of shape (n_samples_X, n_samples_X, n_dims), \ optional The gradient of the kernel k(X, X) with respect to the log of the hyperparameter of the kernel. Only returned when `eval_gradient` is True. """ X = np.atleast_2d(X) length_scale = _check_length_scale(X, self.length_scale) if Y is None: dists = pdist(X / length_scale, metric="euclidean") else: if eval_gradient: raise ValueError("Gradient can only be evaluated when Y is None.") dists = cdist(X / length_scale, Y / length_scale, metric="euclidean") if self.nu == 0.5: K = np.exp(-dists) elif self.nu == 1.5: K = dists * math.sqrt(3) K = (1.0 + K) * np.exp(-K) elif self.nu == 2.5: K = dists * math.sqrt(5) K = (1.0 + K + K ** 2 / 3.0) * np.exp(-K) elif self.nu == np.inf: K = np.exp(-(dists ** 2) / 2.0) else: # general case; expensive to evaluate K = dists K[K == 0.0] += np.finfo(float).eps # strict zeros result in nan tmp = math.sqrt(2 * self.nu) * K K.fill((2 ** (1.0 - self.nu)) / gamma(self.nu)) K *= tmp ** self.nu K *= kv(self.nu, tmp) if Y is None: # convert from upper-triangular matrix to square matrix K = squareform(K) np.fill_diagonal(K, 1) if eval_gradient: if self.hyperparameter_length_scale.fixed: # Hyperparameter l kept fixed K_gradient = np.empty((X.shape[0], X.shape[0], 0)) return K, K_gradient # We need to recompute the pairwise dimension-wise distances if self.anisotropic: D = (X[:, np.newaxis, :] - X[np.newaxis, :, :]) ** 2 / ( length_scale ** 2 ) else: D = squareform(dists ** 2)[:, :, np.newaxis] if self.nu == 0.5: denominator = np.sqrt(D.sum(axis=2))[:, :, np.newaxis] K_gradient = K[..., np.newaxis] * np.divide( D, denominator, where=denominator != 0 ) elif self.nu == 1.5: K_gradient = 3 * D * np.exp(-np.sqrt(3 * D.sum(-1)))[..., np.newaxis] elif self.nu == 2.5: tmp = np.sqrt(5 * D.sum(-1))[..., np.newaxis] K_gradient = 5.0 / 3.0 * D * (tmp + 1) * np.exp(-tmp) elif self.nu == np.inf: K_gradient = D * K[..., np.newaxis] else: # approximate gradient numerically def f(theta): # helper function return self.clone_with_theta(theta)(X, Y) return K, _approx_fprime(self.theta, f, 1e-10) if not self.anisotropic: return K, K_gradient[:, :].sum(-1)[:, :, np.newaxis] else: return K, K_gradient else: return K
[ "def", "__call__", "(", "self", ",", "X", ",", "Y", "=", "None", ",", "eval_gradient", "=", "False", ")", ":", "X", "=", "np", ".", "atleast_2d", "(", "X", ")", "length_scale", "=", "_check_length_scale", "(", "X", ",", "self", ".", "length_scale", ")", "if", "Y", "is", "None", ":", "dists", "=", "pdist", "(", "X", "/", "length_scale", ",", "metric", "=", "\"euclidean\"", ")", "else", ":", "if", "eval_gradient", ":", "raise", "ValueError", "(", "\"Gradient can only be evaluated when Y is None.\"", ")", "dists", "=", "cdist", "(", "X", "/", "length_scale", ",", "Y", "/", "length_scale", ",", "metric", "=", "\"euclidean\"", ")", "if", "self", ".", "nu", "==", "0.5", ":", "K", "=", "np", ".", "exp", "(", "-", "dists", ")", "elif", "self", ".", "nu", "==", "1.5", ":", "K", "=", "dists", "*", "math", ".", "sqrt", "(", "3", ")", "K", "=", "(", "1.0", "+", "K", ")", "*", "np", ".", "exp", "(", "-", "K", ")", "elif", "self", ".", "nu", "==", "2.5", ":", "K", "=", "dists", "*", "math", ".", "sqrt", "(", "5", ")", "K", "=", "(", "1.0", "+", "K", "+", "K", "**", "2", "/", "3.0", ")", "*", "np", ".", "exp", "(", "-", "K", ")", "elif", "self", ".", "nu", "==", "np", ".", "inf", ":", "K", "=", "np", ".", "exp", "(", "-", "(", "dists", "**", "2", ")", "/", "2.0", ")", "else", ":", "# general case; expensive to evaluate", "K", "=", "dists", "K", "[", "K", "==", "0.0", "]", "+=", "np", ".", "finfo", "(", "float", ")", ".", "eps", "# strict zeros result in nan", "tmp", "=", "math", ".", "sqrt", "(", "2", "*", "self", ".", "nu", ")", "*", "K", "K", ".", "fill", "(", "(", "2", "**", "(", "1.0", "-", "self", ".", "nu", ")", ")", "/", "gamma", "(", "self", ".", "nu", ")", ")", "K", "*=", "tmp", "**", "self", ".", "nu", "K", "*=", "kv", "(", "self", ".", "nu", ",", "tmp", ")", "if", "Y", "is", "None", ":", "# convert from upper-triangular matrix to square matrix", "K", "=", "squareform", "(", "K", ")", "np", ".", "fill_diagonal", "(", "K", ",", "1", ")", "if", "eval_gradient", ":", "if", "self", ".", "hyperparameter_length_scale", ".", "fixed", ":", "# Hyperparameter l kept fixed", "K_gradient", "=", "np", ".", "empty", "(", "(", "X", ".", "shape", "[", "0", "]", ",", "X", ".", "shape", "[", "0", "]", ",", "0", ")", ")", "return", "K", ",", "K_gradient", "# We need to recompute the pairwise dimension-wise distances", "if", "self", ".", "anisotropic", ":", "D", "=", "(", "X", "[", ":", ",", "np", ".", "newaxis", ",", ":", "]", "-", "X", "[", "np", ".", "newaxis", ",", ":", ",", ":", "]", ")", "**", "2", "/", "(", "length_scale", "**", "2", ")", "else", ":", "D", "=", "squareform", "(", "dists", "**", "2", ")", "[", ":", ",", ":", ",", "np", ".", "newaxis", "]", "if", "self", ".", "nu", "==", "0.5", ":", "denominator", "=", "np", ".", "sqrt", "(", "D", ".", "sum", "(", "axis", "=", "2", ")", ")", "[", ":", ",", ":", ",", "np", ".", "newaxis", "]", "K_gradient", "=", "K", "[", "...", ",", "np", ".", "newaxis", "]", "*", "np", ".", "divide", "(", "D", ",", "denominator", ",", "where", "=", "denominator", "!=", "0", ")", "elif", "self", ".", "nu", "==", "1.5", ":", "K_gradient", "=", "3", "*", "D", "*", "np", ".", "exp", "(", "-", "np", ".", "sqrt", "(", "3", "*", "D", ".", "sum", "(", "-", "1", ")", ")", ")", "[", "...", ",", "np", ".", "newaxis", "]", "elif", "self", ".", "nu", "==", "2.5", ":", "tmp", "=", "np", ".", "sqrt", "(", "5", "*", "D", ".", "sum", "(", "-", "1", ")", ")", "[", "...", ",", "np", ".", "newaxis", "]", "K_gradient", "=", "5.0", "/", "3.0", "*", "D", "*", "(", "tmp", "+", "1", ")", "*", "np", ".", "exp", "(", "-", "tmp", ")", "elif", "self", ".", "nu", "==", "np", ".", "inf", ":", "K_gradient", "=", "D", "*", "K", "[", "...", ",", "np", ".", "newaxis", "]", "else", ":", "# approximate gradient numerically", "def", "f", "(", "theta", ")", ":", "# helper function", "return", "self", ".", "clone_with_theta", "(", "theta", ")", "(", "X", ",", "Y", ")", "return", "K", ",", "_approx_fprime", "(", "self", ".", "theta", ",", "f", ",", "1e-10", ")", "if", "not", "self", ".", "anisotropic", ":", "return", "K", ",", "K_gradient", "[", ":", ",", ":", "]", ".", "sum", "(", "-", "1", ")", "[", ":", ",", ":", ",", "np", ".", "newaxis", "]", "else", ":", "return", "K", ",", "K_gradient", "else", ":", "return", "K" ]
https://github.com/scikit-learn/scikit-learn/blob/1d1aadd0711b87d2a11c80aad15df6f8cf156712/sklearn/gaussian_process/kernels.py#L1660-L1758
vxgmichel/aiostream
7c3853b6d7bec1c00497d389dc4faec0d63a8367
aiostream/stream/create.py
python
throw
(exc)
Throw an exception without generating any value.
Throw an exception without generating any value.
[ "Throw", "an", "exception", "without", "generating", "any", "value", "." ]
async def throw(exc): """Throw an exception without generating any value.""" if False: yield raise exc
[ "async", "def", "throw", "(", "exc", ")", ":", "if", "False", ":", "yield", "raise", "exc" ]
https://github.com/vxgmichel/aiostream/blob/7c3853b6d7bec1c00497d389dc4faec0d63a8367/aiostream/stream/create.py#L91-L95
awslabs/aws-config-rules
8dfeacf9d9e5e5f0fbb1b8545ff702dea700ea7a
python/API_GW_AUTHORIZER_IN_PLACE/API_GW_AUTHORIZER_IN_PLACE.py
python
build_evaluation_from_config_item
(configuration_item, compliance_type, annotation=None)
return eval_ci
Form an evaluation as a dictionary. Usually suited to report on configuration change rules. Keyword arguments: configuration_item -- the configurationItem dictionary in the invokingEvent compliance_type -- either COMPLIANT, NON_COMPLIANT or NOT_APPLICABLE annotation -- an annotation to be added to the evaluation (default None). It will be truncated to 255 if longer.
Form an evaluation as a dictionary. Usually suited to report on configuration change rules.
[ "Form", "an", "evaluation", "as", "a", "dictionary", ".", "Usually", "suited", "to", "report", "on", "configuration", "change", "rules", "." ]
def build_evaluation_from_config_item(configuration_item, compliance_type, annotation=None): """Form an evaluation as a dictionary. Usually suited to report on configuration change rules. Keyword arguments: configuration_item -- the configurationItem dictionary in the invokingEvent compliance_type -- either COMPLIANT, NON_COMPLIANT or NOT_APPLICABLE annotation -- an annotation to be added to the evaluation (default None). It will be truncated to 255 if longer. """ eval_ci = {} if annotation: eval_ci['Annotation'] = build_annotation(annotation) eval_ci['ComplianceResourceType'] = configuration_item['resourceType'] eval_ci['ComplianceResourceId'] = configuration_item['resourceId'] eval_ci['ComplianceType'] = compliance_type eval_ci['OrderingTimestamp'] = configuration_item['configurationItemCaptureTime'] return eval_ci
[ "def", "build_evaluation_from_config_item", "(", "configuration_item", ",", "compliance_type", ",", "annotation", "=", "None", ")", ":", "eval_ci", "=", "{", "}", "if", "annotation", ":", "eval_ci", "[", "'Annotation'", "]", "=", "build_annotation", "(", "annotation", ")", "eval_ci", "[", "'ComplianceResourceType'", "]", "=", "configuration_item", "[", "'resourceType'", "]", "eval_ci", "[", "'ComplianceResourceId'", "]", "=", "configuration_item", "[", "'resourceId'", "]", "eval_ci", "[", "'ComplianceType'", "]", "=", "compliance_type", "eval_ci", "[", "'OrderingTimestamp'", "]", "=", "configuration_item", "[", "'configurationItemCaptureTime'", "]", "return", "eval_ci" ]
https://github.com/awslabs/aws-config-rules/blob/8dfeacf9d9e5e5f0fbb1b8545ff702dea700ea7a/python/API_GW_AUTHORIZER_IN_PLACE/API_GW_AUTHORIZER_IN_PLACE.py#L192-L207
pandas-dev/pandas
5ba7d714014ae8feaccc0dd4a98890828cf2832d
pandas/core/arrays/categorical.py
python
Categorical.as_unordered
(self, inplace=False)
return self.set_ordered(False, inplace=inplace)
Set the Categorical to be unordered. Parameters ---------- inplace : bool, default False Whether or not to set the ordered attribute in-place or return a copy of this categorical with ordered set to False. Returns ------- Categorical or None Unordered Categorical or None if ``inplace=True``.
Set the Categorical to be unordered.
[ "Set", "the", "Categorical", "to", "be", "unordered", "." ]
def as_unordered(self, inplace=False): """ Set the Categorical to be unordered. Parameters ---------- inplace : bool, default False Whether or not to set the ordered attribute in-place or return a copy of this categorical with ordered set to False. Returns ------- Categorical or None Unordered Categorical or None if ``inplace=True``. """ inplace = validate_bool_kwarg(inplace, "inplace") return self.set_ordered(False, inplace=inplace)
[ "def", "as_unordered", "(", "self", ",", "inplace", "=", "False", ")", ":", "inplace", "=", "validate_bool_kwarg", "(", "inplace", ",", "\"inplace\"", ")", "return", "self", ".", "set_ordered", "(", "False", ",", "inplace", "=", "inplace", ")" ]
https://github.com/pandas-dev/pandas/blob/5ba7d714014ae8feaccc0dd4a98890828cf2832d/pandas/core/arrays/categorical.py#L876-L892
golismero/golismero
7d605b937e241f51c1ca4f47b20f755eeefb9d76
thirdparty_libs/httpparser/util.py
python
IOrderedDict.popitem
(self, last=True)
return key, value
od.popitem() -> (k, v), return and remove a (key, value) pair. Pairs are returned in LIFO order if last is true or FIFO order if false.
od.popitem() -> (k, v), return and remove a (key, value) pair. Pairs are returned in LIFO order if last is true or FIFO order if false.
[ "od", ".", "popitem", "()", "-", ">", "(", "k", "v", ")", "return", "and", "remove", "a", "(", "key", "value", ")", "pair", ".", "Pairs", "are", "returned", "in", "LIFO", "order", "if", "last", "is", "true", "or", "FIFO", "order", "if", "false", "." ]
def popitem(self, last=True): '''od.popitem() -> (k, v), return and remove a (key, value) pair. Pairs are returned in LIFO order if last is true or FIFO order if false. ''' if not self: raise KeyError('dictionary is empty') key = next(reversed(self) if last else iter(self)) value = self.pop(key) return key, value
[ "def", "popitem", "(", "self", ",", "last", "=", "True", ")", ":", "if", "not", "self", ":", "raise", "KeyError", "(", "'dictionary is empty'", ")", "key", "=", "next", "(", "reversed", "(", "self", ")", "if", "last", "else", "iter", "(", "self", ")", ")", "value", "=", "self", ".", "pop", "(", "key", ")", "return", "key", ",", "value" ]
https://github.com/golismero/golismero/blob/7d605b937e241f51c1ca4f47b20f755eeefb9d76/thirdparty_libs/httpparser/util.py#L174-L183
kwea123/VTuber_Unity
a8e226c5fd3f10ad4bb21b60f2fd943d375b5314
face_alignment/models.py
python
conv3x3
(in_planes, out_planes, strd=1, padding=1, bias=False)
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=strd, padding=padding, bias=bias)
3x3 convolution with padding
3x3 convolution with padding
[ "3x3", "convolution", "with", "padding" ]
def conv3x3(in_planes, out_planes, strd=1, padding=1, bias=False): "3x3 convolution with padding" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=strd, padding=padding, bias=bias)
[ "def", "conv3x3", "(", "in_planes", ",", "out_planes", ",", "strd", "=", "1", ",", "padding", "=", "1", ",", "bias", "=", "False", ")", ":", "return", "nn", ".", "Conv2d", "(", "in_planes", ",", "out_planes", ",", "kernel_size", "=", "3", ",", "stride", "=", "strd", ",", "padding", "=", "padding", ",", "bias", "=", "bias", ")" ]
https://github.com/kwea123/VTuber_Unity/blob/a8e226c5fd3f10ad4bb21b60f2fd943d375b5314/face_alignment/models.py#L7-L10
Emptyset110/dHydra
8ec44994ff4dda8bf1ec40e38dd068b757945933
dHydra/Vendor/CtpTraderApi/CtpTraderApi.py
python
CtpTraderApi.OnRspQryProduct
(self, pProduct, pRspInfo, nRequestID, bIsLast)
请求查询产品响应
请求查询产品响应
[ "请求查询产品响应" ]
def OnRspQryProduct(self, pProduct, pRspInfo, nRequestID, bIsLast): """请求查询产品响应""" if pRspInfo.ErrorID == 0: self.logger.info( "OnRspQryProduct: Received" ", no operation is followed" ) # 否则,推送错误信息 else: self.logger.error( "OnRspQryProduct:{}, ErrorMsg:{}" .format( pRspInfo.ErrorID, pRspInfo.ErrorMsg.decode('gbk') ) )
[ "def", "OnRspQryProduct", "(", "self", ",", "pProduct", ",", "pRspInfo", ",", "nRequestID", ",", "bIsLast", ")", ":", "if", "pRspInfo", ".", "ErrorID", "==", "0", ":", "self", ".", "logger", ".", "info", "(", "\"OnRspQryProduct: Received\"", "\", no operation is followed\"", ")", "# 否则,推送错误信息", "else", ":", "self", ".", "logger", ".", "error", "(", "\"OnRspQryProduct:{}, ErrorMsg:{}\"", ".", "format", "(", "pRspInfo", ".", "ErrorID", ",", "pRspInfo", ".", "ErrorMsg", ".", "decode", "(", "'gbk'", ")", ")", ")" ]
https://github.com/Emptyset110/dHydra/blob/8ec44994ff4dda8bf1ec40e38dd068b757945933/dHydra/Vendor/CtpTraderApi/CtpTraderApi.py#L1776-L1791
google/timesketch
1ce6b60e125d104e6644947c6f1dbe1b82ac76b6
timesketch/models/sketch.py
python
AggregationGroup.__init__
( self, name, description, user, sketch, aggregations=None, parameters='', orientation='', view=None)
Initialize the AggregationGroup object. Args: name (str): Name of the aggregation description (str): Description of the aggregation user (User): The user who created the aggregation sketch (Sketch): The sketch that the aggregation is bound to aggregations (Aggregation): List of aggregation objects. parameters (str): A JSON formatted dict with parameters for charting. orientation (str): Describes how charts should be joined together. view (View): Optional: The view that the aggregation is bound to
Initialize the AggregationGroup object.
[ "Initialize", "the", "AggregationGroup", "object", "." ]
def __init__( self, name, description, user, sketch, aggregations=None, parameters='', orientation='', view=None): """Initialize the AggregationGroup object. Args: name (str): Name of the aggregation description (str): Description of the aggregation user (User): The user who created the aggregation sketch (Sketch): The sketch that the aggregation is bound to aggregations (Aggregation): List of aggregation objects. parameters (str): A JSON formatted dict with parameters for charting. orientation (str): Describes how charts should be joined together. view (View): Optional: The view that the aggregation is bound to """ super().__init__() self.name = name self.description = description self.aggregations = aggregations or [] self.parameters = parameters self.orientation = orientation self.user = user self.sketch = sketch self.view = view
[ "def", "__init__", "(", "self", ",", "name", ",", "description", ",", "user", ",", "sketch", ",", "aggregations", "=", "None", ",", "parameters", "=", "''", ",", "orientation", "=", "''", ",", "view", "=", "None", ")", ":", "super", "(", ")", ".", "__init__", "(", ")", "self", ".", "name", "=", "name", "self", ".", "description", "=", "description", "self", ".", "aggregations", "=", "aggregations", "or", "[", "]", "self", ".", "parameters", "=", "parameters", "self", ".", "orientation", "=", "orientation", "self", ".", "user", "=", "user", "self", ".", "sketch", "=", "sketch", "self", ".", "view", "=", "view" ]
https://github.com/google/timesketch/blob/1ce6b60e125d104e6644947c6f1dbe1b82ac76b6/timesketch/models/sketch.py#L496-L520
zhl2008/awd-platform
0416b31abea29743387b10b3914581fbe8e7da5e
web_flaskbb/lib/python2.7/site-packages/celery/backends/database/__init__.py
python
DatabaseBackend.__reduce__
(self, args=(), kwargs={})
return super(DatabaseBackend, self).__reduce__(args, kwargs)
[]
def __reduce__(self, args=(), kwargs={}): kwargs.update( dict(dburi=self.url, expires=self.expires, engine_options=self.engine_options)) return super(DatabaseBackend, self).__reduce__(args, kwargs)
[ "def", "__reduce__", "(", "self", ",", "args", "=", "(", ")", ",", "kwargs", "=", "{", "}", ")", ":", "kwargs", ".", "update", "(", "dict", "(", "dburi", "=", "self", ".", "url", ",", "expires", "=", "self", ".", "expires", ",", "engine_options", "=", "self", ".", "engine_options", ")", ")", "return", "super", "(", "DatabaseBackend", ",", "self", ")", ".", "__reduce__", "(", "args", ",", "kwargs", ")" ]
https://github.com/zhl2008/awd-platform/blob/0416b31abea29743387b10b3914581fbe8e7da5e/web_flaskbb/lib/python2.7/site-packages/celery/backends/database/__init__.py#L183-L188
omz/PythonistaAppTemplate
f560f93f8876d82a21d108977f90583df08d55af
PythonistaAppTemplate/PythonistaKit.framework/pylib/site-packages/pygments/util.py
python
unirange
(a, b)
Returns a regular expression string to match the given non-BMP range.
Returns a regular expression string to match the given non-BMP range.
[ "Returns", "a", "regular", "expression", "string", "to", "match", "the", "given", "non", "-", "BMP", "range", "." ]
def unirange(a, b): """ Returns a regular expression string to match the given non-BMP range. """ if b < a: raise ValueError("Bad character range") if a < 0x10000 or b < 0x10000: raise ValueError("unirange is only defined for non-BMP ranges") if sys.maxunicode > 0xffff: # wide build return u'[%s-%s]' % (unichr(a), unichr(b)) else: # narrow build stores surrogates, and the 're' module handles them # (incorrectly) as characters. Since there is still ordering among # these characters, expand the range to one that it understands. Some # background in http://bugs.python.org/issue3665 and # http://bugs.python.org/issue12749 # # Additionally, the lower constants are using unichr rather than # literals because jython [which uses the wide path] can't load this # file if they are literals. ah, al = _surrogatepair(a) bh, bl = _surrogatepair(b) if ah == bh: return u'(?:%s[%s-%s])' % (unichr(ah), unichr(al), unichr(bl)) else: buf = [] buf.append(u'%s[%s-%s]' % (unichr(ah), unichr(al), ah == bh and unichr(bl) or unichr(0xdfff))) if ah - bh > 1: buf.append(u'[%s-%s][%s-%s]' % unichr(ah+1), unichr(bh-1), unichr(0xdc00), unichr(0xdfff)) if ah != bh: buf.append(u'%s[%s-%s]' % (unichr(bh), unichr(0xdc00), unichr(bl))) return u'(?:' + u'|'.join(buf) + u')'
[ "def", "unirange", "(", "a", ",", "b", ")", ":", "if", "b", "<", "a", ":", "raise", "ValueError", "(", "\"Bad character range\"", ")", "if", "a", "<", "0x10000", "or", "b", "<", "0x10000", ":", "raise", "ValueError", "(", "\"unirange is only defined for non-BMP ranges\"", ")", "if", "sys", ".", "maxunicode", ">", "0xffff", ":", "# wide build", "return", "u'[%s-%s]'", "%", "(", "unichr", "(", "a", ")", ",", "unichr", "(", "b", ")", ")", "else", ":", "# narrow build stores surrogates, and the 're' module handles them", "# (incorrectly) as characters. Since there is still ordering among", "# these characters, expand the range to one that it understands. Some", "# background in http://bugs.python.org/issue3665 and", "# http://bugs.python.org/issue12749", "#", "# Additionally, the lower constants are using unichr rather than", "# literals because jython [which uses the wide path] can't load this", "# file if they are literals.", "ah", ",", "al", "=", "_surrogatepair", "(", "a", ")", "bh", ",", "bl", "=", "_surrogatepair", "(", "b", ")", "if", "ah", "==", "bh", ":", "return", "u'(?:%s[%s-%s])'", "%", "(", "unichr", "(", "ah", ")", ",", "unichr", "(", "al", ")", ",", "unichr", "(", "bl", ")", ")", "else", ":", "buf", "=", "[", "]", "buf", ".", "append", "(", "u'%s[%s-%s]'", "%", "(", "unichr", "(", "ah", ")", ",", "unichr", "(", "al", ")", ",", "ah", "==", "bh", "and", "unichr", "(", "bl", ")", "or", "unichr", "(", "0xdfff", ")", ")", ")", "if", "ah", "-", "bh", ">", "1", ":", "buf", ".", "append", "(", "u'[%s-%s][%s-%s]'", "%", "unichr", "(", "ah", "+", "1", ")", ",", "unichr", "(", "bh", "-", "1", ")", ",", "unichr", "(", "0xdc00", ")", ",", "unichr", "(", "0xdfff", ")", ")", "if", "ah", "!=", "bh", ":", "buf", ".", "append", "(", "u'%s[%s-%s]'", "%", "(", "unichr", "(", "bh", ")", ",", "unichr", "(", "0xdc00", ")", ",", "unichr", "(", "bl", ")", ")", ")", "return", "u'(?:'", "+", "u'|'", ".", "join", "(", "buf", ")", "+", "u')'" ]
https://github.com/omz/PythonistaAppTemplate/blob/f560f93f8876d82a21d108977f90583df08d55af/PythonistaAppTemplate/PythonistaKit.framework/pylib/site-packages/pygments/util.py#L214-L252
freedombox/FreedomBox
335a7f92cc08f27981f838a7cddfc67740598e54
plinth/modules/storage/forms.py
python
DirectorySelectForm.get_initial
(self, choices)
return (initial_selection, subdir)
Get initial form data.
Get initial form data.
[ "Get", "initial", "form", "data", "." ]
def get_initial(self, choices): """Get initial form data.""" initial_selection = () subdir = '' storage_path = self.initial['storage_path'] for choice in choices: if storage_path.startswith(choice[0]): initial_selection = choice subdir = storage_path.split(choice[0], 1)[1].strip('/') if choice[0] == '/': subdir = '/' + subdir break return (initial_selection, subdir)
[ "def", "get_initial", "(", "self", ",", "choices", ")", ":", "initial_selection", "=", "(", ")", "subdir", "=", "''", "storage_path", "=", "self", ".", "initial", "[", "'storage_path'", "]", "for", "choice", "in", "choices", ":", "if", "storage_path", ".", "startswith", "(", "choice", "[", "0", "]", ")", ":", "initial_selection", "=", "choice", "subdir", "=", "storage_path", ".", "split", "(", "choice", "[", "0", "]", ",", "1", ")", "[", "1", "]", ".", "strip", "(", "'/'", ")", "if", "choice", "[", "0", "]", "==", "'/'", ":", "subdir", "=", "'/'", "+", "subdir", "break", "return", "(", "initial_selection", ",", "subdir", ")" ]
https://github.com/freedombox/FreedomBox/blob/335a7f92cc08f27981f838a7cddfc67740598e54/plinth/modules/storage/forms.py#L119-L131
qibinlou/SinaWeibo-Emotion-Classification
f336fc104abd68b0ec4180fe2ed80fafe49cb790
nltk/sem/evaluate.py
python
is_rel
(s)
Check whether a set represents a relation (of any arity). :param s: a set containing tuples of str elements :type s: set :rtype: bool
Check whether a set represents a relation (of any arity).
[ "Check", "whether", "a", "set", "represents", "a", "relation", "(", "of", "any", "arity", ")", "." ]
def is_rel(s): """ Check whether a set represents a relation (of any arity). :param s: a set containing tuples of str elements :type s: set :rtype: bool """ # we have the empty relation, i.e. set() if len(s) == 0: return True # all the elements are tuples of the same length elif s == set([elem for elem in s if isinstance(elem, tuple)]) and\ len(max(s))==len(min(s)): return True else: raise ValueError, "Set %r contains sequences of different lengths" % s
[ "def", "is_rel", "(", "s", ")", ":", "# we have the empty relation, i.e. set()", "if", "len", "(", "s", ")", "==", "0", ":", "return", "True", "# all the elements are tuples of the same length", "elif", "s", "==", "set", "(", "[", "elem", "for", "elem", "in", "s", "if", "isinstance", "(", "elem", ",", "tuple", ")", "]", ")", "and", "len", "(", "max", "(", "s", ")", ")", "==", "len", "(", "min", "(", "s", ")", ")", ":", "return", "True", "else", ":", "raise", "ValueError", ",", "\"Set %r contains sequences of different lengths\"", "%", "s" ]
https://github.com/qibinlou/SinaWeibo-Emotion-Classification/blob/f336fc104abd68b0ec4180fe2ed80fafe49cb790/nltk/sem/evaluate.py#L44-L60
securesystemslab/zippy
ff0e84ac99442c2c55fe1d285332cfd4e185e089
zippy/benchmarks/src/benchmarks/sympy/sympy/categories/diagram_drawing.py
python
DiagramGrid._find_triangle_to_weld
(triangles, fringe, grid)
return None
Finds, if possible, a triangle and an edge in the fringe to which the triangle could be attached. Returns the tuple containing the triangle and the index of the corresponding edge in the fringe. This function relies on the fact that objects are unique in the diagram.
Finds, if possible, a triangle and an edge in the fringe to which the triangle could be attached. Returns the tuple containing the triangle and the index of the corresponding edge in the fringe.
[ "Finds", "if", "possible", "a", "triangle", "and", "an", "edge", "in", "the", "fringe", "to", "which", "the", "triangle", "could", "be", "attached", ".", "Returns", "the", "tuple", "containing", "the", "triangle", "and", "the", "index", "of", "the", "corresponding", "edge", "in", "the", "fringe", "." ]
def _find_triangle_to_weld(triangles, fringe, grid): """ Finds, if possible, a triangle and an edge in the fringe to which the triangle could be attached. Returns the tuple containing the triangle and the index of the corresponding edge in the fringe. This function relies on the fact that objects are unique in the diagram. """ for triangle in triangles: for (a, b) in fringe: if frozenset([grid[a], grid[b]]) in triangle: return (triangle, (a, b)) return None
[ "def", "_find_triangle_to_weld", "(", "triangles", ",", "fringe", ",", "grid", ")", ":", "for", "triangle", "in", "triangles", ":", "for", "(", "a", ",", "b", ")", "in", "fringe", ":", "if", "frozenset", "(", "[", "grid", "[", "a", "]", ",", "grid", "[", "b", "]", "]", ")", "in", "triangle", ":", "return", "(", "triangle", ",", "(", "a", ",", "b", ")", ")", "return", "None" ]
https://github.com/securesystemslab/zippy/blob/ff0e84ac99442c2c55fe1d285332cfd4e185e089/zippy/benchmarks/src/benchmarks/sympy/sympy/categories/diagram_drawing.py#L558-L572
WikidPad/WikidPad
558109638807bc76b4672922686e416ab2d5f79c
WikidPad/lib/whoosh/lang/isri.py
python
ISRIStemmer.stem
(self, token)
return self.stm
Stemming a word token using the ISRI stemmer.
Stemming a word token using the ISRI stemmer.
[ "Stemming", "a", "word", "token", "using", "the", "ISRI", "stemmer", "." ]
def stem(self, token): """ Stemming a word token using the ISRI stemmer. """ self.stm = token self.norm(1) # remove diacritics which representing Arabic short vowels if self.stm in self.stop_words: return self.stm # exclude stop words from being processed self.pre32() # remove length three and length two prefixes in this order self.suf32() # remove length three and length two suffixes in this order self.waw() # remove connective ‘و’ if it precedes a word beginning with ‘و’ self.norm(2) # normalize initial hamza to bare alif if len(self.stm) <= 3: return self.stm # return stem if less than or equal to three if len(self.stm) == 4: # length 4 word self.pro_w4() return self.stm elif len(self.stm) == 5: # length 5 word self.pro_w53() self.end_w5() return self.stm elif len(self.stm) == 6: # length 6 word self.pro_w6() self.end_w6() return self.stm elif len(self.stm) == 7: # length 7 word self.suf1() if len(self.stm) == 7: self.pre1() if len(self.stm) == 6: self.pro_w6() self.end_w6() return self.stm return self.stm
[ "def", "stem", "(", "self", ",", "token", ")", ":", "self", ".", "stm", "=", "token", "self", ".", "norm", "(", "1", ")", "# remove diacritics which representing Arabic short vowels", "if", "self", ".", "stm", "in", "self", ".", "stop_words", ":", "return", "self", ".", "stm", "# exclude stop words from being processed", "self", ".", "pre32", "(", ")", "# remove length three and length two prefixes in this order", "self", ".", "suf32", "(", ")", "# remove length three and length two suffixes in this order", "self", ".", "waw", "(", ")", "# remove connective ‘و’ if it precedes a word beginning with ‘و’", "self", ".", "norm", "(", "2", ")", "# normalize initial hamza to bare alif", "if", "len", "(", "self", ".", "stm", ")", "<=", "3", ":", "return", "self", ".", "stm", "# return stem if less than or equal to three", "if", "len", "(", "self", ".", "stm", ")", "==", "4", ":", "# length 4 word", "self", ".", "pro_w4", "(", ")", "return", "self", ".", "stm", "elif", "len", "(", "self", ".", "stm", ")", "==", "5", ":", "# length 5 word", "self", ".", "pro_w53", "(", ")", "self", ".", "end_w5", "(", ")", "return", "self", ".", "stm", "elif", "len", "(", "self", ".", "stm", ")", "==", "6", ":", "# length 6 word", "self", ".", "pro_w6", "(", ")", "self", ".", "end_w6", "(", ")", "return", "self", ".", "stm", "elif", "len", "(", "self", ".", "stm", ")", "==", "7", ":", "# length 7 word", "self", ".", "suf1", "(", ")", "if", "len", "(", "self", ".", "stm", ")", "==", "7", ":", "self", ".", "pre1", "(", ")", "if", "len", "(", "self", ".", "stm", ")", "==", "6", ":", "self", ".", "pro_w6", "(", ")", "self", ".", "end_w6", "(", ")", "return", "self", ".", "stm", "return", "self", ".", "stm" ]
https://github.com/WikidPad/WikidPad/blob/558109638807bc76b4672922686e416ab2d5f79c/WikidPad/lib/whoosh/lang/isri.py#L142-L175
fortharris/Pcode
147962d160a834c219e12cb456abc130826468e4
Xtra/autopep8.py
python
FixPEP8.fix_e251
(self, result)
Remove whitespace around parameter '=' sign.
Remove whitespace around parameter '=' sign.
[ "Remove", "whitespace", "around", "parameter", "=", "sign", "." ]
def fix_e251(self, result): """Remove whitespace around parameter '=' sign.""" line_index = result['line'] - 1 target = self.source[line_index] # This is necessary since pep8 sometimes reports columns that goes # past the end of the physical line. This happens in cases like, # foo(bar\n=None) c = min(result['column'] - 1, len(target) - 1) if target[c].strip(): fixed = target else: fixed = target[:c].rstrip() + target[c:].lstrip() # There could be an escaped newline # # def foo(a=\ # 1) if fixed.endswith(('=\\\n', '=\\\r\n', '=\\\r')): self.source[line_index] = fixed.rstrip('\n\r \t\\') self.source[line_index + 1] = self.source[line_index + 1].lstrip() return [line_index + 1, line_index + 2] # Line indexed at 1 self.source[result['line'] - 1] = fixed
[ "def", "fix_e251", "(", "self", ",", "result", ")", ":", "line_index", "=", "result", "[", "'line'", "]", "-", "1", "target", "=", "self", ".", "source", "[", "line_index", "]", "# This is necessary since pep8 sometimes reports columns that goes", "# past the end of the physical line. This happens in cases like,", "# foo(bar\\n=None)", "c", "=", "min", "(", "result", "[", "'column'", "]", "-", "1", ",", "len", "(", "target", ")", "-", "1", ")", "if", "target", "[", "c", "]", ".", "strip", "(", ")", ":", "fixed", "=", "target", "else", ":", "fixed", "=", "target", "[", ":", "c", "]", ".", "rstrip", "(", ")", "+", "target", "[", "c", ":", "]", ".", "lstrip", "(", ")", "# There could be an escaped newline", "#", "# def foo(a=\\", "# 1)", "if", "fixed", ".", "endswith", "(", "(", "'=\\\\\\n'", ",", "'=\\\\\\r\\n'", ",", "'=\\\\\\r'", ")", ")", ":", "self", ".", "source", "[", "line_index", "]", "=", "fixed", ".", "rstrip", "(", "'\\n\\r \\t\\\\'", ")", "self", ".", "source", "[", "line_index", "+", "1", "]", "=", "self", ".", "source", "[", "line_index", "+", "1", "]", ".", "lstrip", "(", ")", "return", "[", "line_index", "+", "1", ",", "line_index", "+", "2", "]", "# Line indexed at 1", "self", ".", "source", "[", "result", "[", "'line'", "]", "-", "1", "]", "=", "fixed" ]
https://github.com/fortharris/Pcode/blob/147962d160a834c219e12cb456abc130826468e4/Xtra/autopep8.py#L658-L683
edisonlz/fastor
342078a18363ac41d3c6b1ab29dbdd44fdb0b7b3
base/site-packages/mongoengine/django/storage.py
python
GridFSStorage.size
(self, name)
Returns the total size, in bytes, of the file specified by name.
Returns the total size, in bytes, of the file specified by name.
[ "Returns", "the", "total", "size", "in", "bytes", "of", "the", "file", "specified", "by", "name", "." ]
def size(self, name): """Returns the total size, in bytes, of the file specified by name. """ doc = self._get_doc_with_name(name) if doc: return getattr(doc, self.field).length else: raise ValueError("No such file or directory: '%s'" % name)
[ "def", "size", "(", "self", ",", "name", ")", ":", "doc", "=", "self", ".", "_get_doc_with_name", "(", "name", ")", "if", "doc", ":", "return", "getattr", "(", "doc", ",", "self", ".", "field", ")", ".", "length", "else", ":", "raise", "ValueError", "(", "\"No such file or directory: '%s'\"", "%", "name", ")" ]
https://github.com/edisonlz/fastor/blob/342078a18363ac41d3c6b1ab29dbdd44fdb0b7b3/base/site-packages/mongoengine/django/storage.py#L58-L65
leo-editor/leo-editor
383d6776d135ef17d73d935a2f0ecb3ac0e99494
leo/core/leoCommands.py
python
Commands.redraw_later
(self)
Ensure that c.redraw() will be called eventually. c.outerUpdate will call c.redraw() only if no other code calls c.redraw().
Ensure that c.redraw() will be called eventually.
[ "Ensure", "that", "c", ".", "redraw", "()", "will", "be", "called", "eventually", "." ]
def redraw_later(self): """ Ensure that c.redraw() will be called eventually. c.outerUpdate will call c.redraw() only if no other code calls c.redraw(). """ c = self c.requestLaterRedraw = True if 'drawing' in g.app.debug: # g.trace('\n' + g.callers(8)) g.trace(g.callers())
[ "def", "redraw_later", "(", "self", ")", ":", "c", "=", "self", "c", ".", "requestLaterRedraw", "=", "True", "if", "'drawing'", "in", "g", ".", "app", ".", "debug", ":", "# g.trace('\\n' + g.callers(8))", "g", ".", "trace", "(", "g", ".", "callers", "(", ")", ")" ]
https://github.com/leo-editor/leo-editor/blob/383d6776d135ef17d73d935a2f0ecb3ac0e99494/leo/core/leoCommands.py#L3201-L3211
buke/GreenOdoo
3d8c55d426fb41fdb3f2f5a1533cfe05983ba1df
runtime/python/lib/python2.7/pickletools.py
python
read_stringnl_noescape_pair
(f)
return "%s %s" % (read_stringnl_noescape(f), read_stringnl_noescape(f))
r""" >>> import StringIO >>> read_stringnl_noescape_pair(StringIO.StringIO("Queue\nEmpty\njunk")) 'Queue Empty'
r""" >>> import StringIO >>> read_stringnl_noescape_pair(StringIO.StringIO("Queue\nEmpty\njunk")) 'Queue Empty'
[ "r", ">>>", "import", "StringIO", ">>>", "read_stringnl_noescape_pair", "(", "StringIO", ".", "StringIO", "(", "Queue", "\\", "nEmpty", "\\", "njunk", "))", "Queue", "Empty" ]
def read_stringnl_noescape_pair(f): r""" >>> import StringIO >>> read_stringnl_noescape_pair(StringIO.StringIO("Queue\nEmpty\njunk")) 'Queue Empty' """ return "%s %s" % (read_stringnl_noescape(f), read_stringnl_noescape(f))
[ "def", "read_stringnl_noescape_pair", "(", "f", ")", ":", "return", "\"%s %s\"", "%", "(", "read_stringnl_noescape", "(", "f", ")", ",", "read_stringnl_noescape", "(", "f", ")", ")" ]
https://github.com/buke/GreenOdoo/blob/3d8c55d426fb41fdb3f2f5a1533cfe05983ba1df/runtime/python/lib/python2.7/pickletools.py#L335-L342
IronLanguages/ironpython2
51fdedeeda15727717fb8268a805f71b06c0b9f1
Src/StdLib/Lib/decimal.py
python
Context.remainder_near
(self, a, b)
return a.remainder_near(b, context=self)
Returns to be "a - b * n", where n is the integer nearest the exact value of "x / b" (if two integers are equally near then the even one is chosen). If the result is equal to 0 then its sign will be the sign of a. This operation will fail under the same conditions as integer division (that is, if integer division on the same two operands would fail, the remainder cannot be calculated). >>> ExtendedContext.remainder_near(Decimal('2.1'), Decimal('3')) Decimal('-0.9') >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('6')) Decimal('-2') >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('3')) Decimal('1') >>> ExtendedContext.remainder_near(Decimal('-10'), Decimal('3')) Decimal('-1') >>> ExtendedContext.remainder_near(Decimal('10.2'), Decimal('1')) Decimal('0.2') >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('0.3')) Decimal('0.1') >>> ExtendedContext.remainder_near(Decimal('3.6'), Decimal('1.3')) Decimal('-0.3') >>> ExtendedContext.remainder_near(3, 11) Decimal('3') >>> ExtendedContext.remainder_near(Decimal(3), 11) Decimal('3') >>> ExtendedContext.remainder_near(3, Decimal(11)) Decimal('3')
Returns to be "a - b * n", where n is the integer nearest the exact value of "x / b" (if two integers are equally near then the even one is chosen). If the result is equal to 0 then its sign will be the sign of a.
[ "Returns", "to", "be", "a", "-", "b", "*", "n", "where", "n", "is", "the", "integer", "nearest", "the", "exact", "value", "of", "x", "/", "b", "(", "if", "two", "integers", "are", "equally", "near", "then", "the", "even", "one", "is", "chosen", ")", ".", "If", "the", "result", "is", "equal", "to", "0", "then", "its", "sign", "will", "be", "the", "sign", "of", "a", "." ]
def remainder_near(self, a, b): """Returns to be "a - b * n", where n is the integer nearest the exact value of "x / b" (if two integers are equally near then the even one is chosen). If the result is equal to 0 then its sign will be the sign of a. This operation will fail under the same conditions as integer division (that is, if integer division on the same two operands would fail, the remainder cannot be calculated). >>> ExtendedContext.remainder_near(Decimal('2.1'), Decimal('3')) Decimal('-0.9') >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('6')) Decimal('-2') >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('3')) Decimal('1') >>> ExtendedContext.remainder_near(Decimal('-10'), Decimal('3')) Decimal('-1') >>> ExtendedContext.remainder_near(Decimal('10.2'), Decimal('1')) Decimal('0.2') >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('0.3')) Decimal('0.1') >>> ExtendedContext.remainder_near(Decimal('3.6'), Decimal('1.3')) Decimal('-0.3') >>> ExtendedContext.remainder_near(3, 11) Decimal('3') >>> ExtendedContext.remainder_near(Decimal(3), 11) Decimal('3') >>> ExtendedContext.remainder_near(3, Decimal(11)) Decimal('3') """ a = _convert_other(a, raiseit=True) return a.remainder_near(b, context=self)
[ "def", "remainder_near", "(", "self", ",", "a", ",", "b", ")", ":", "a", "=", "_convert_other", "(", "a", ",", "raiseit", "=", "True", ")", "return", "a", ".", "remainder_near", "(", "b", ",", "context", "=", "self", ")" ]
https://github.com/IronLanguages/ironpython2/blob/51fdedeeda15727717fb8268a805f71b06c0b9f1/Src/StdLib/Lib/decimal.py#L5155-L5187
KalleHallden/AutoTimer
2d954216700c4930baa154e28dbddc34609af7ce
env/lib/python2.7/site-packages/pip/_vendor/urllib3/__init__.py
python
add_stderr_logger
(level=logging.DEBUG)
return handler
Helper for quickly adding a StreamHandler to the logger. Useful for debugging. Returns the handler after adding it.
Helper for quickly adding a StreamHandler to the logger. Useful for debugging.
[ "Helper", "for", "quickly", "adding", "a", "StreamHandler", "to", "the", "logger", ".", "Useful", "for", "debugging", "." ]
def add_stderr_logger(level=logging.DEBUG): """ Helper for quickly adding a StreamHandler to the logger. Useful for debugging. Returns the handler after adding it. """ # This method needs to be in this __init__.py to get the __name__ correct # even if urllib3 is vendored within another package. logger = logging.getLogger(__name__) handler = logging.StreamHandler() handler.setFormatter(logging.Formatter('%(asctime)s %(levelname)s %(message)s')) logger.addHandler(handler) logger.setLevel(level) logger.debug('Added a stderr logging handler to logger: %s', __name__) return handler
[ "def", "add_stderr_logger", "(", "level", "=", "logging", ".", "DEBUG", ")", ":", "# This method needs to be in this __init__.py to get the __name__ correct", "# even if urllib3 is vendored within another package.", "logger", "=", "logging", ".", "getLogger", "(", "__name__", ")", "handler", "=", "logging", ".", "StreamHandler", "(", ")", "handler", ".", "setFormatter", "(", "logging", ".", "Formatter", "(", "'%(asctime)s %(levelname)s %(message)s'", ")", ")", "logger", ".", "addHandler", "(", "handler", ")", "logger", ".", "setLevel", "(", "level", ")", "logger", ".", "debug", "(", "'Added a stderr logging handler to logger: %s'", ",", "__name__", ")", "return", "handler" ]
https://github.com/KalleHallden/AutoTimer/blob/2d954216700c4930baa154e28dbddc34609af7ce/env/lib/python2.7/site-packages/pip/_vendor/urllib3/__init__.py#L51-L66
timkpaine/pyEX
254acd2b0cf7cb7183100106f4ecc11d1860c46a
pyEX/commodities/commodities.py
python
natgasDF
(token="", version="stable", filter="", format="json", **timeseries_kwargs)
return timeSeriesDF( id="ENERGY", key="DHHNGSP", token=token, version=version, filter=filter, format=format, **timeseries_kwargs )
[]
def natgasDF(token="", version="stable", filter="", format="json", **timeseries_kwargs): _timeseriesWrapper(timeseries_kwargs) return timeSeriesDF( id="ENERGY", key="DHHNGSP", token=token, version=version, filter=filter, format=format, **timeseries_kwargs )
[ "def", "natgasDF", "(", "token", "=", "\"\"", ",", "version", "=", "\"stable\"", ",", "filter", "=", "\"\"", ",", "format", "=", "\"json\"", ",", "*", "*", "timeseries_kwargs", ")", ":", "_timeseriesWrapper", "(", "timeseries_kwargs", ")", "return", "timeSeriesDF", "(", "id", "=", "\"ENERGY\"", ",", "key", "=", "\"DHHNGSP\"", ",", "token", "=", "token", ",", "version", "=", "version", ",", "filter", "=", "filter", ",", "format", "=", "format", ",", "*", "*", "timeseries_kwargs", ")" ]
https://github.com/timkpaine/pyEX/blob/254acd2b0cf7cb7183100106f4ecc11d1860c46a/pyEX/commodities/commodities.py#L204-L214
pydata/patsy
5fc881104b749b720b08e393a5505d6e69d72f95
patsy/design_info.py
python
DesignInfo.linear_constraint
(self, constraint_likes)
return linear_constraint(constraint_likes, self.column_names)
Construct a linear constraint in matrix form from a (possibly symbolic) description. Possible inputs: * A dictionary which is taken as a set of equality constraint. Keys can be either string column names, or integer column indexes. * A string giving a arithmetic expression referring to the matrix columns by name. * A list of such strings which are ANDed together. * A tuple (A, b) where A and b are array_likes, and the constraint is Ax = b. If necessary, these will be coerced to the proper dimensionality by appending dimensions with size 1. The string-based language has the standard arithmetic operators, / * + - and parentheses, plus "=" is used for equality and "," is used to AND together multiple constraint equations within a string. You can If no = appears in some expression, then that expression is assumed to be equal to zero. Division is always float-based, even if ``__future__.true_division`` isn't in effect. Returns a :class:`LinearConstraint` object. Examples:: di = DesignInfo(["x1", "x2", "x3"]) # Equivalent ways to write x1 == 0: di.linear_constraint({"x1": 0}) # by name di.linear_constraint({0: 0}) # by index di.linear_constraint("x1 = 0") # string based di.linear_constraint("x1") # can leave out "= 0" di.linear_constraint("2 * x1 = (x1 + 2 * x1) / 3") di.linear_constraint(([1, 0, 0], 0)) # constraint matrices # Equivalent ways to write x1 == 0 and x3 == 10 di.linear_constraint({"x1": 0, "x3": 10}) di.linear_constraint({0: 0, 2: 10}) di.linear_constraint({0: 0, "x3": 10}) di.linear_constraint("x1 = 0, x3 = 10") di.linear_constraint("x1, x3 = 10") di.linear_constraint(["x1", "x3 = 0"]) # list of strings di.linear_constraint("x1 = 0, x3 - 10 = x1") di.linear_constraint([[1, 0, 0], [0, 0, 1]], [0, 10]) # You can also chain together equalities, just like Python: di.linear_constraint("x1 = x2 = 3")
Construct a linear constraint in matrix form from a (possibly symbolic) description.
[ "Construct", "a", "linear", "constraint", "in", "matrix", "form", "from", "a", "(", "possibly", "symbolic", ")", "description", "." ]
def linear_constraint(self, constraint_likes): """Construct a linear constraint in matrix form from a (possibly symbolic) description. Possible inputs: * A dictionary which is taken as a set of equality constraint. Keys can be either string column names, or integer column indexes. * A string giving a arithmetic expression referring to the matrix columns by name. * A list of such strings which are ANDed together. * A tuple (A, b) where A and b are array_likes, and the constraint is Ax = b. If necessary, these will be coerced to the proper dimensionality by appending dimensions with size 1. The string-based language has the standard arithmetic operators, / * + - and parentheses, plus "=" is used for equality and "," is used to AND together multiple constraint equations within a string. You can If no = appears in some expression, then that expression is assumed to be equal to zero. Division is always float-based, even if ``__future__.true_division`` isn't in effect. Returns a :class:`LinearConstraint` object. Examples:: di = DesignInfo(["x1", "x2", "x3"]) # Equivalent ways to write x1 == 0: di.linear_constraint({"x1": 0}) # by name di.linear_constraint({0: 0}) # by index di.linear_constraint("x1 = 0") # string based di.linear_constraint("x1") # can leave out "= 0" di.linear_constraint("2 * x1 = (x1 + 2 * x1) / 3") di.linear_constraint(([1, 0, 0], 0)) # constraint matrices # Equivalent ways to write x1 == 0 and x3 == 10 di.linear_constraint({"x1": 0, "x3": 10}) di.linear_constraint({0: 0, 2: 10}) di.linear_constraint({0: 0, "x3": 10}) di.linear_constraint("x1 = 0, x3 = 10") di.linear_constraint("x1, x3 = 10") di.linear_constraint(["x1", "x3 = 0"]) # list of strings di.linear_constraint("x1 = 0, x3 - 10 = x1") di.linear_constraint([[1, 0, 0], [0, 0, 1]], [0, 10]) # You can also chain together equalities, just like Python: di.linear_constraint("x1 = x2 = 3") """ return linear_constraint(constraint_likes, self.column_names)
[ "def", "linear_constraint", "(", "self", ",", "constraint_likes", ")", ":", "return", "linear_constraint", "(", "constraint_likes", ",", "self", ".", "column_names", ")" ]
https://github.com/pydata/patsy/blob/5fc881104b749b720b08e393a5505d6e69d72f95/patsy/design_info.py#L487-L536
JiYou/openstack
8607dd488bde0905044b303eb6e52bdea6806923
packages/source/quantum/quantum/openstack/common/rpc/impl_kombu.py
python
Connection.iterconsume
(self, limit=None, timeout=None)
Return an iterator that will consume from all queues/consumers
Return an iterator that will consume from all queues/consumers
[ "Return", "an", "iterator", "that", "will", "consume", "from", "all", "queues", "/", "consumers" ]
def iterconsume(self, limit=None, timeout=None): """Return an iterator that will consume from all queues/consumers""" info = {'do_consume': True} def _error_callback(exc): if isinstance(exc, socket.timeout): LOG.debug(_('Timed out waiting for RPC response: %s') % str(exc)) raise rpc_common.Timeout() else: LOG.exception(_('Failed to consume message from queue: %s') % str(exc)) info['do_consume'] = True def _consume(): if info['do_consume']: queues_head = self.consumers[:-1] queues_tail = self.consumers[-1] for queue in queues_head: queue.consume(nowait=True) queues_tail.consume(nowait=False) info['do_consume'] = False return self.connection.drain_events(timeout=timeout) for iteration in itertools.count(0): if limit and iteration >= limit: raise StopIteration yield self.ensure(_error_callback, _consume)
[ "def", "iterconsume", "(", "self", ",", "limit", "=", "None", ",", "timeout", "=", "None", ")", ":", "info", "=", "{", "'do_consume'", ":", "True", "}", "def", "_error_callback", "(", "exc", ")", ":", "if", "isinstance", "(", "exc", ",", "socket", ".", "timeout", ")", ":", "LOG", ".", "debug", "(", "_", "(", "'Timed out waiting for RPC response: %s'", ")", "%", "str", "(", "exc", ")", ")", "raise", "rpc_common", ".", "Timeout", "(", ")", "else", ":", "LOG", ".", "exception", "(", "_", "(", "'Failed to consume message from queue: %s'", ")", "%", "str", "(", "exc", ")", ")", "info", "[", "'do_consume'", "]", "=", "True", "def", "_consume", "(", ")", ":", "if", "info", "[", "'do_consume'", "]", ":", "queues_head", "=", "self", ".", "consumers", "[", ":", "-", "1", "]", "queues_tail", "=", "self", ".", "consumers", "[", "-", "1", "]", "for", "queue", "in", "queues_head", ":", "queue", ".", "consume", "(", "nowait", "=", "True", ")", "queues_tail", ".", "consume", "(", "nowait", "=", "False", ")", "info", "[", "'do_consume'", "]", "=", "False", "return", "self", ".", "connection", ".", "drain_events", "(", "timeout", "=", "timeout", ")", "for", "iteration", "in", "itertools", ".", "count", "(", "0", ")", ":", "if", "limit", "and", "iteration", ">=", "limit", ":", "raise", "StopIteration", "yield", "self", ".", "ensure", "(", "_error_callback", ",", "_consume", ")" ]
https://github.com/JiYou/openstack/blob/8607dd488bde0905044b303eb6e52bdea6806923/packages/source/quantum/quantum/openstack/common/rpc/impl_kombu.py#L620-L648
google/coursebuilder-core
08f809db3226d9269e30d5edd0edd33bd22041f4
coursebuilder/modules/dashboard/filer.py
python
FilesItemRESTHandler.delete
(self)
Handles REST DELETE verb.
Handles REST DELETE verb.
[ "Handles", "REST", "DELETE", "verb", "." ]
def delete(self): """Handles REST DELETE verb.""" key = self.request.get('key') if not self.assert_xsrf_token_or_fail( self.request, 'delete-asset', {'key': key}): return if not FilesRights.can_delete(self): transforms.send_json_response( self, 401, 'Access denied.', {'key': key}) return fs = self.app_context.fs.impl path = fs.physical_to_logical(key) if not fs.isfile(path): transforms.send_json_response( self, 403, 'File does not exist.', None) return fs.delete(path) transforms.send_json_response(self, 200, 'Deleted.')
[ "def", "delete", "(", "self", ")", ":", "key", "=", "self", ".", "request", ".", "get", "(", "'key'", ")", "if", "not", "self", ".", "assert_xsrf_token_or_fail", "(", "self", ".", "request", ",", "'delete-asset'", ",", "{", "'key'", ":", "key", "}", ")", ":", "return", "if", "not", "FilesRights", ".", "can_delete", "(", "self", ")", ":", "transforms", ".", "send_json_response", "(", "self", ",", "401", ",", "'Access denied.'", ",", "{", "'key'", ":", "key", "}", ")", "return", "fs", "=", "self", ".", "app_context", ".", "fs", ".", "impl", "path", "=", "fs", ".", "physical_to_logical", "(", "key", ")", "if", "not", "fs", ".", "isfile", "(", "path", ")", ":", "transforms", ".", "send_json_response", "(", "self", ",", "403", ",", "'File does not exist.'", ",", "None", ")", "return", "fs", ".", "delete", "(", "path", ")", "transforms", ".", "send_json_response", "(", "self", ",", "200", ",", "'Deleted.'", ")" ]
https://github.com/google/coursebuilder-core/blob/08f809db3226d9269e30d5edd0edd33bd22041f4/coursebuilder/modules/dashboard/filer.py#L499-L521
naver/sqlova
fc68af6008fd2fd5839210e4b06a352007f609b6
bert/modeling.py
python
BERTSelfAttention.forward
(self, hidden_states, attention_mask)
return context_layer
[]
def forward(self, hidden_states, attention_mask): mixed_query_layer = self.query(hidden_states) mixed_key_layer = self.key(hidden_states) mixed_value_layer = self.value(hidden_states) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. # [B, num_attention_heads, seq_len, attention_head_size] * [B, num_attention_heads, attention_head_size, seq_len] # -> [B, num_attention_heads, seq_len, seq_len] attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) # Apply the attention mask is (precomputed for all layers in BertModel forward() function) attention_scores = attention_scores + attention_mask # sort of multiplication in soft-max step. It is ~ -10000 # Normalize the attention scores to probabilities. attention_probs = nn.Softmax(dim=-1)(attention_scores) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # [B, num_attention_heads, seq_len, seq_len] * [B, num_attention_heads, seq_len, attention_head_size] # -> [B, num_attention_heads, seq_len, attention_head_size] context_layer = torch.matmul(attention_probs, value_layer) # -> [B, seq_len, num_attention_heads, attention_head_size] context_layer = context_layer.permute(0, 2, 1, 3).contiguous() # [B, seq_len] + [all_head_size=hidden_size] -> [B, seq_len, all_head_size] new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) return context_layer
[ "def", "forward", "(", "self", ",", "hidden_states", ",", "attention_mask", ")", ":", "mixed_query_layer", "=", "self", ".", "query", "(", "hidden_states", ")", "mixed_key_layer", "=", "self", ".", "key", "(", "hidden_states", ")", "mixed_value_layer", "=", "self", ".", "value", "(", "hidden_states", ")", "query_layer", "=", "self", ".", "transpose_for_scores", "(", "mixed_query_layer", ")", "key_layer", "=", "self", ".", "transpose_for_scores", "(", "mixed_key_layer", ")", "value_layer", "=", "self", ".", "transpose_for_scores", "(", "mixed_value_layer", ")", "# Take the dot product between \"query\" and \"key\" to get the raw attention scores.", "# [B, num_attention_heads, seq_len, attention_head_size] * [B, num_attention_heads, attention_head_size, seq_len]", "# -> [B, num_attention_heads, seq_len, seq_len]", "attention_scores", "=", "torch", ".", "matmul", "(", "query_layer", ",", "key_layer", ".", "transpose", "(", "-", "1", ",", "-", "2", ")", ")", "attention_scores", "=", "attention_scores", "/", "math", ".", "sqrt", "(", "self", ".", "attention_head_size", ")", "# Apply the attention mask is (precomputed for all layers in BertModel forward() function)", "attention_scores", "=", "attention_scores", "+", "attention_mask", "# sort of multiplication in soft-max step. It is ~ -10000", "# Normalize the attention scores to probabilities.", "attention_probs", "=", "nn", ".", "Softmax", "(", "dim", "=", "-", "1", ")", "(", "attention_scores", ")", "# This is actually dropping out entire tokens to attend to, which might", "# seem a bit unusual, but is taken from the original Transformer paper.", "attention_probs", "=", "self", ".", "dropout", "(", "attention_probs", ")", "# [B, num_attention_heads, seq_len, seq_len] * [B, num_attention_heads, seq_len, attention_head_size]", "# -> [B, num_attention_heads, seq_len, attention_head_size]", "context_layer", "=", "torch", ".", "matmul", "(", "attention_probs", ",", "value_layer", ")", "# -> [B, seq_len, num_attention_heads, attention_head_size]", "context_layer", "=", "context_layer", ".", "permute", "(", "0", ",", "2", ",", "1", ",", "3", ")", ".", "contiguous", "(", ")", "# [B, seq_len] + [all_head_size=hidden_size] -> [B, seq_len, all_head_size]", "new_context_layer_shape", "=", "context_layer", ".", "size", "(", ")", "[", ":", "-", "2", "]", "+", "(", "self", ".", "all_head_size", ",", ")", "context_layer", "=", "context_layer", ".", "view", "(", "*", "new_context_layer_shape", ")", "return", "context_layer" ]
https://github.com/naver/sqlova/blob/fc68af6008fd2fd5839210e4b06a352007f609b6/bert/modeling.py#L214-L248
linxid/Machine_Learning_Study_Path
558e82d13237114bbb8152483977806fc0c222af
Machine Learning In Action/Chapter8-Regression/venv/Lib/site-packages/pip-9.0.1-py3.6.egg/pip/_vendor/requests/packages/urllib3/connectionpool.py
python
HTTPSConnectionPool._prepare_conn
(self, conn)
return conn
Prepare the ``connection`` for :meth:`urllib3.util.ssl_wrap_socket` and establish the tunnel if proxy is used.
Prepare the ``connection`` for :meth:`urllib3.util.ssl_wrap_socket` and establish the tunnel if proxy is used.
[ "Prepare", "the", "connection", "for", ":", "meth", ":", "urllib3", ".", "util", ".", "ssl_wrap_socket", "and", "establish", "the", "tunnel", "if", "proxy", "is", "used", "." ]
def _prepare_conn(self, conn): """ Prepare the ``connection`` for :meth:`urllib3.util.ssl_wrap_socket` and establish the tunnel if proxy is used. """ if isinstance(conn, VerifiedHTTPSConnection): conn.set_cert(key_file=self.key_file, cert_file=self.cert_file, cert_reqs=self.cert_reqs, ca_certs=self.ca_certs, ca_cert_dir=self.ca_cert_dir, assert_hostname=self.assert_hostname, assert_fingerprint=self.assert_fingerprint) conn.ssl_version = self.ssl_version return conn
[ "def", "_prepare_conn", "(", "self", ",", "conn", ")", ":", "if", "isinstance", "(", "conn", ",", "VerifiedHTTPSConnection", ")", ":", "conn", ".", "set_cert", "(", "key_file", "=", "self", ".", "key_file", ",", "cert_file", "=", "self", ".", "cert_file", ",", "cert_reqs", "=", "self", ".", "cert_reqs", ",", "ca_certs", "=", "self", ".", "ca_certs", ",", "ca_cert_dir", "=", "self", ".", "ca_cert_dir", ",", "assert_hostname", "=", "self", ".", "assert_hostname", ",", "assert_fingerprint", "=", "self", ".", "assert_fingerprint", ")", "conn", ".", "ssl_version", "=", "self", ".", "ssl_version", "return", "conn" ]
https://github.com/linxid/Machine_Learning_Study_Path/blob/558e82d13237114bbb8152483977806fc0c222af/Machine Learning In Action/Chapter8-Regression/venv/Lib/site-packages/pip-9.0.1-py3.6.egg/pip/_vendor/requests/packages/urllib3/connectionpool.py#L763-L779
omz/PythonistaAppTemplate
f560f93f8876d82a21d108977f90583df08d55af
PythonistaAppTemplate/PythonistaKit.framework/pylib_ext/sympy/matrices/matrices.py
python
MatrixBase.solve_least_squares
(self, rhs, method='CH')
return (t*self).inv(method=method)*t*rhs
Return the least-square fit to the data. By default the cholesky_solve routine is used (method='CH'); other methods of matrix inversion can be used. To find out which are available, see the docstring of the .inv() method. Examples ======== >>> from sympy.matrices import Matrix, ones >>> A = Matrix([1, 2, 3]) >>> B = Matrix([2, 3, 4]) >>> S = Matrix(A.row_join(B)) >>> S Matrix([ [1, 2], [2, 3], [3, 4]]) If each line of S represent coefficients of Ax + By and x and y are [2, 3] then S*xy is: >>> r = S*Matrix([2, 3]); r Matrix([ [ 8], [13], [18]]) But let's add 1 to the middle value and then solve for the least-squares value of xy: >>> xy = S.solve_least_squares(Matrix([8, 14, 18])); xy Matrix([ [ 5/3], [10/3]]) The error is given by S*xy - r: >>> S*xy - r Matrix([ [1/3], [1/3], [1/3]]) >>> _.norm().n(2) 0.58 If a different xy is used, the norm will be higher: >>> xy += ones(2, 1)/10 >>> (S*xy - r).norm().n(2) 1.5
Return the least-square fit to the data.
[ "Return", "the", "least", "-", "square", "fit", "to", "the", "data", "." ]
def solve_least_squares(self, rhs, method='CH'): """Return the least-square fit to the data. By default the cholesky_solve routine is used (method='CH'); other methods of matrix inversion can be used. To find out which are available, see the docstring of the .inv() method. Examples ======== >>> from sympy.matrices import Matrix, ones >>> A = Matrix([1, 2, 3]) >>> B = Matrix([2, 3, 4]) >>> S = Matrix(A.row_join(B)) >>> S Matrix([ [1, 2], [2, 3], [3, 4]]) If each line of S represent coefficients of Ax + By and x and y are [2, 3] then S*xy is: >>> r = S*Matrix([2, 3]); r Matrix([ [ 8], [13], [18]]) But let's add 1 to the middle value and then solve for the least-squares value of xy: >>> xy = S.solve_least_squares(Matrix([8, 14, 18])); xy Matrix([ [ 5/3], [10/3]]) The error is given by S*xy - r: >>> S*xy - r Matrix([ [1/3], [1/3], [1/3]]) >>> _.norm().n(2) 0.58 If a different xy is used, the norm will be higher: >>> xy += ones(2, 1)/10 >>> (S*xy - r).norm().n(2) 1.5 """ if method == 'CH': return self.cholesky_solve(rhs) t = self.T return (t*self).inv(method=method)*t*rhs
[ "def", "solve_least_squares", "(", "self", ",", "rhs", ",", "method", "=", "'CH'", ")", ":", "if", "method", "==", "'CH'", ":", "return", "self", ".", "cholesky_solve", "(", "rhs", ")", "t", "=", "self", ".", "T", "return", "(", "t", "*", "self", ")", ".", "inv", "(", "method", "=", "method", ")", "*", "t", "*", "rhs" ]
https://github.com/omz/PythonistaAppTemplate/blob/f560f93f8876d82a21d108977f90583df08d55af/PythonistaAppTemplate/PythonistaKit.framework/pylib_ext/sympy/matrices/matrices.py#L918-L975
frappe/frappe
b64cab6867dfd860f10ccaf41a4ec04bc890b583
frappe/email/doctype/newsletter/newsletter.py
python
Newsletter.get_success_recipients
(self)
return frappe.get_all("Email Queue Recipient", filters={ "status": ("in", ["Not Sent", "Sending", "Sent"]), "parentfield": ("in", self.get_linked_email_queue()), }, pluck="recipient", )
Recipients who have already recieved the newsletter. Couldn't think of a better name ;)
Recipients who have already recieved the newsletter.
[ "Recipients", "who", "have", "already", "recieved", "the", "newsletter", "." ]
def get_success_recipients(self) -> List[str]: """Recipients who have already recieved the newsletter. Couldn't think of a better name ;) """ return frappe.get_all("Email Queue Recipient", filters={ "status": ("in", ["Not Sent", "Sending", "Sent"]), "parentfield": ("in", self.get_linked_email_queue()), }, pluck="recipient", )
[ "def", "get_success_recipients", "(", "self", ")", "->", "List", "[", "str", "]", ":", "return", "frappe", ".", "get_all", "(", "\"Email Queue Recipient\"", ",", "filters", "=", "{", "\"status\"", ":", "(", "\"in\"", ",", "[", "\"Not Sent\"", ",", "\"Sending\"", ",", "\"Sent\"", "]", ")", ",", "\"parentfield\"", ":", "(", "\"in\"", ",", "self", ".", "get_linked_email_queue", "(", ")", ")", ",", "}", ",", "pluck", "=", "\"recipient\"", ",", ")" ]
https://github.com/frappe/frappe/blob/b64cab6867dfd860f10ccaf41a4ec04bc890b583/frappe/email/doctype/newsletter/newsletter.py#L127-L138
cvxgrp/cvxportfolio
3985059af9341b58d3f6219280da64e2c85d2749
cvxportfolio/simulator.py
python
MarketSimulator.attribute
(self, true_results, policy, selector=None, delta=1, fit="linear", parallel=True)
return data
Attributes returns over a period to individual alpha sources. Args: true_results: observed results. policy: the policy that achieved the returns. Alpha model must be a stream. selector: A map from SimulationResult to time series. delta: the fractional deviation. fit: the type of fit to perform. Returns: A dict of alpha source to return series.
Attributes returns over a period to individual alpha sources.
[ "Attributes", "returns", "over", "a", "period", "to", "individual", "alpha", "sources", "." ]
def attribute(self, true_results, policy, selector=None, delta=1, fit="linear", parallel=True): """Attributes returns over a period to individual alpha sources. Args: true_results: observed results. policy: the policy that achieved the returns. Alpha model must be a stream. selector: A map from SimulationResult to time series. delta: the fractional deviation. fit: the type of fit to perform. Returns: A dict of alpha source to return series. """ # Default selector looks at profits. if selector is None: def selector(result): return result.v - sum(result.initial_portfolio) alpha_stream = policy.return_forecast assert isinstance(alpha_stream, MultipleReturnsForecasts) times = true_results.h.index weights = alpha_stream.weights assert np.sum(weights) == 1 alpha_sources = alpha_stream.alpha_sources num_sources = len(alpha_sources) Wmat = self.reduce_signal_perturb(weights, delta) perturb_pols = [] for idx in range(len(alpha_sources)): new_pol = copy.copy(policy) new_pol.return_forecast = MultipleReturnsForecasts(alpha_sources, Wmat[idx, :]) perturb_pols.append(new_pol) # Simulate p0 = true_results.initial_portfolio alt_results = self.run_multiple_backtest(p0, times[0], times[-1], perturb_pols, parallel=parallel) # Attribute. true_arr = selector(true_results).values attr_times = selector(true_results).index Rmat = np.zeros((num_sources, len(attr_times))) for idx, result in enumerate(alt_results): Rmat[idx, :] = selector(result).values Pmat = cvx.Variable((num_sources, len(attr_times))) if fit == "linear": prob = cvx.Problem(cvx.Minimize(0), [Wmat @ Pmat == Rmat]) prob.solve() elif fit == "least-squares": error = cvx.sum_squares(Wmat @ Pmat - Rmat) prob = cvx.Problem(cvx.Minimize(error), [Pmat.T @ weights == true_arr]) prob.solve() else: raise Exception("Unknown fitting method.") # Dict of results. wmask = np.tile(weights[:, np.newaxis], (1, len(attr_times))).T data = pd.DataFrame(columns=[s.name for s in alpha_sources], index=attr_times, data=Pmat.value.T * wmask) data['residual'] = true_arr - np.asarray((weights @ Pmat).value).ravel() data['RMS error'] = np.asarray( cvx.norm(Wmat @ Pmat - Rmat, 2, axis=0).value).ravel() data['RMS error'] /= np.sqrt(num_sources) return data
[ "def", "attribute", "(", "self", ",", "true_results", ",", "policy", ",", "selector", "=", "None", ",", "delta", "=", "1", ",", "fit", "=", "\"linear\"", ",", "parallel", "=", "True", ")", ":", "# Default selector looks at profits.", "if", "selector", "is", "None", ":", "def", "selector", "(", "result", ")", ":", "return", "result", ".", "v", "-", "sum", "(", "result", ".", "initial_portfolio", ")", "alpha_stream", "=", "policy", ".", "return_forecast", "assert", "isinstance", "(", "alpha_stream", ",", "MultipleReturnsForecasts", ")", "times", "=", "true_results", ".", "h", ".", "index", "weights", "=", "alpha_stream", ".", "weights", "assert", "np", ".", "sum", "(", "weights", ")", "==", "1", "alpha_sources", "=", "alpha_stream", ".", "alpha_sources", "num_sources", "=", "len", "(", "alpha_sources", ")", "Wmat", "=", "self", ".", "reduce_signal_perturb", "(", "weights", ",", "delta", ")", "perturb_pols", "=", "[", "]", "for", "idx", "in", "range", "(", "len", "(", "alpha_sources", ")", ")", ":", "new_pol", "=", "copy", ".", "copy", "(", "policy", ")", "new_pol", ".", "return_forecast", "=", "MultipleReturnsForecasts", "(", "alpha_sources", ",", "Wmat", "[", "idx", ",", ":", "]", ")", "perturb_pols", ".", "append", "(", "new_pol", ")", "# Simulate", "p0", "=", "true_results", ".", "initial_portfolio", "alt_results", "=", "self", ".", "run_multiple_backtest", "(", "p0", ",", "times", "[", "0", "]", ",", "times", "[", "-", "1", "]", ",", "perturb_pols", ",", "parallel", "=", "parallel", ")", "# Attribute.", "true_arr", "=", "selector", "(", "true_results", ")", ".", "values", "attr_times", "=", "selector", "(", "true_results", ")", ".", "index", "Rmat", "=", "np", ".", "zeros", "(", "(", "num_sources", ",", "len", "(", "attr_times", ")", ")", ")", "for", "idx", ",", "result", "in", "enumerate", "(", "alt_results", ")", ":", "Rmat", "[", "idx", ",", ":", "]", "=", "selector", "(", "result", ")", ".", "values", "Pmat", "=", "cvx", ".", "Variable", "(", "(", "num_sources", ",", "len", "(", "attr_times", ")", ")", ")", "if", "fit", "==", "\"linear\"", ":", "prob", "=", "cvx", ".", "Problem", "(", "cvx", ".", "Minimize", "(", "0", ")", ",", "[", "Wmat", "@", "Pmat", "==", "Rmat", "]", ")", "prob", ".", "solve", "(", ")", "elif", "fit", "==", "\"least-squares\"", ":", "error", "=", "cvx", ".", "sum_squares", "(", "Wmat", "@", "Pmat", "-", "Rmat", ")", "prob", "=", "cvx", ".", "Problem", "(", "cvx", ".", "Minimize", "(", "error", ")", ",", "[", "Pmat", ".", "T", "@", "weights", "==", "true_arr", "]", ")", "prob", ".", "solve", "(", ")", "else", ":", "raise", "Exception", "(", "\"Unknown fitting method.\"", ")", "# Dict of results.", "wmask", "=", "np", ".", "tile", "(", "weights", "[", ":", ",", "np", ".", "newaxis", "]", ",", "(", "1", ",", "len", "(", "attr_times", ")", ")", ")", ".", "T", "data", "=", "pd", ".", "DataFrame", "(", "columns", "=", "[", "s", ".", "name", "for", "s", "in", "alpha_sources", "]", ",", "index", "=", "attr_times", ",", "data", "=", "Pmat", ".", "value", ".", "T", "*", "wmask", ")", "data", "[", "'residual'", "]", "=", "true_arr", "-", "np", ".", "asarray", "(", "(", "weights", "@", "Pmat", ")", ".", "value", ")", ".", "ravel", "(", ")", "data", "[", "'RMS error'", "]", "=", "np", ".", "asarray", "(", "cvx", ".", "norm", "(", "Wmat", "@", "Pmat", "-", "Rmat", ",", "2", ",", "axis", "=", "0", ")", ".", "value", ")", ".", "ravel", "(", ")", "data", "[", "'RMS error'", "]", "/=", "np", ".", "sqrt", "(", "num_sources", ")", "return", "data" ]
https://github.com/cvxgrp/cvxportfolio/blob/3985059af9341b58d3f6219280da64e2c85d2749/cvxportfolio/simulator.py#L184-L250
TesterlifeRaymond/doraemon
d5cb6e34bd5f2aa97273ce0c0c9303e32beaa333
venv/lib/python3.6/site-packages/pip/utils/__init__.py
python
unzip_file
(filename, location, flatten=True)
Unzip the file (with path `filename`) to the destination `location`. All files are written based on system defaults and umask (i.e. permissions are not preserved), except that regular file members with any execute permissions (user, group, or world) have "chmod +x" applied after being written. Note that for windows, any execute changes using os.chmod are no-ops per the python docs.
Unzip the file (with path `filename`) to the destination `location`. All files are written based on system defaults and umask (i.e. permissions are not preserved), except that regular file members with any execute permissions (user, group, or world) have "chmod +x" applied after being written. Note that for windows, any execute changes using os.chmod are no-ops per the python docs.
[ "Unzip", "the", "file", "(", "with", "path", "filename", ")", "to", "the", "destination", "location", ".", "All", "files", "are", "written", "based", "on", "system", "defaults", "and", "umask", "(", "i", ".", "e", ".", "permissions", "are", "not", "preserved", ")", "except", "that", "regular", "file", "members", "with", "any", "execute", "permissions", "(", "user", "group", "or", "world", ")", "have", "chmod", "+", "x", "applied", "after", "being", "written", ".", "Note", "that", "for", "windows", "any", "execute", "changes", "using", "os", ".", "chmod", "are", "no", "-", "ops", "per", "the", "python", "docs", "." ]
def unzip_file(filename, location, flatten=True): """ Unzip the file (with path `filename`) to the destination `location`. All files are written based on system defaults and umask (i.e. permissions are not preserved), except that regular file members with any execute permissions (user, group, or world) have "chmod +x" applied after being written. Note that for windows, any execute changes using os.chmod are no-ops per the python docs. """ ensure_dir(location) zipfp = open(filename, 'rb') try: zip = zipfile.ZipFile(zipfp, allowZip64=True) leading = has_leading_dir(zip.namelist()) and flatten for info in zip.infolist(): name = info.filename data = zip.read(name) fn = name if leading: fn = split_leading_dir(name)[1] fn = os.path.join(location, fn) dir = os.path.dirname(fn) if fn.endswith('/') or fn.endswith('\\'): # A directory ensure_dir(fn) else: ensure_dir(dir) fp = open(fn, 'wb') try: fp.write(data) finally: fp.close() mode = info.external_attr >> 16 # if mode and regular file and any execute permissions for # user/group/world? if mode and stat.S_ISREG(mode) and mode & 0o111: # make dest file have execute for user/group/world # (chmod +x) no-op on windows per python docs os.chmod(fn, (0o777 - current_umask() | 0o111)) finally: zipfp.close()
[ "def", "unzip_file", "(", "filename", ",", "location", ",", "flatten", "=", "True", ")", ":", "ensure_dir", "(", "location", ")", "zipfp", "=", "open", "(", "filename", ",", "'rb'", ")", "try", ":", "zip", "=", "zipfile", ".", "ZipFile", "(", "zipfp", ",", "allowZip64", "=", "True", ")", "leading", "=", "has_leading_dir", "(", "zip", ".", "namelist", "(", ")", ")", "and", "flatten", "for", "info", "in", "zip", ".", "infolist", "(", ")", ":", "name", "=", "info", ".", "filename", "data", "=", "zip", ".", "read", "(", "name", ")", "fn", "=", "name", "if", "leading", ":", "fn", "=", "split_leading_dir", "(", "name", ")", "[", "1", "]", "fn", "=", "os", ".", "path", ".", "join", "(", "location", ",", "fn", ")", "dir", "=", "os", ".", "path", ".", "dirname", "(", "fn", ")", "if", "fn", ".", "endswith", "(", "'/'", ")", "or", "fn", ".", "endswith", "(", "'\\\\'", ")", ":", "# A directory", "ensure_dir", "(", "fn", ")", "else", ":", "ensure_dir", "(", "dir", ")", "fp", "=", "open", "(", "fn", ",", "'wb'", ")", "try", ":", "fp", ".", "write", "(", "data", ")", "finally", ":", "fp", ".", "close", "(", ")", "mode", "=", "info", ".", "external_attr", ">>", "16", "# if mode and regular file and any execute permissions for", "# user/group/world?", "if", "mode", "and", "stat", ".", "S_ISREG", "(", "mode", ")", "and", "mode", "&", "0o111", ":", "# make dest file have execute for user/group/world", "# (chmod +x) no-op on windows per python docs", "os", ".", "chmod", "(", "fn", ",", "(", "0o777", "-", "current_umask", "(", ")", "|", "0o111", ")", ")", "finally", ":", "zipfp", ".", "close", "(", ")" ]
https://github.com/TesterlifeRaymond/doraemon/blob/d5cb6e34bd5f2aa97273ce0c0c9303e32beaa333/venv/lib/python3.6/site-packages/pip/utils/__init__.py#L472-L512
inspurer/WorkAttendanceSystem
1221e2d67bdf5bb15fe99517cc3ded58ccb066df
V2.0/venv/Lib/site-packages/pip-9.0.1-py3.5.egg/pip/utils/__init__.py
python
backup_dir
(dir, ext='.bak')
return dir + extension
Figure out the name of a directory to back up the given dir to (adding .bak, .bak2, etc)
Figure out the name of a directory to back up the given dir to (adding .bak, .bak2, etc)
[ "Figure", "out", "the", "name", "of", "a", "directory", "to", "back", "up", "the", "given", "dir", "to", "(", "adding", ".", "bak", ".", "bak2", "etc", ")" ]
def backup_dir(dir, ext='.bak'): """Figure out the name of a directory to back up the given dir to (adding .bak, .bak2, etc)""" n = 1 extension = ext while os.path.exists(dir + extension): n += 1 extension = ext + str(n) return dir + extension
[ "def", "backup_dir", "(", "dir", ",", "ext", "=", "'.bak'", ")", ":", "n", "=", "1", "extension", "=", "ext", "while", "os", ".", "path", ".", "exists", "(", "dir", "+", "extension", ")", ":", "n", "+=", "1", "extension", "=", "ext", "+", "str", "(", "n", ")", "return", "dir", "+", "extension" ]
https://github.com/inspurer/WorkAttendanceSystem/blob/1221e2d67bdf5bb15fe99517cc3ded58ccb066df/V2.0/venv/Lib/site-packages/pip-9.0.1-py3.5.egg/pip/utils/__init__.py#L132-L140
CLUEbenchmark/CLUEPretrainedModels
b384fd41665a8261f9c689c940cf750b3bc21fce
run_classifier.py
python
ColaProcessor.get_test_examples
(self, data_dir)
return self._create_examples( self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")
See base class.
See base class.
[ "See", "base", "class", "." ]
def get_test_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")
[ "def", "get_test_examples", "(", "self", ",", "data_dir", ")", ":", "return", "self", ".", "_create_examples", "(", "self", ".", "_read_tsv", "(", "os", ".", "path", ".", "join", "(", "data_dir", ",", "\"test.tsv\"", ")", ")", ",", "\"test\"", ")" ]
https://github.com/CLUEbenchmark/CLUEPretrainedModels/blob/b384fd41665a8261f9c689c940cf750b3bc21fce/run_classifier.py#L354-L357
IronLanguages/ironpython3
7a7bb2a872eeab0d1009fc8a6e24dca43f65b693
Src/StdLib/Lib/nntplib.py
python
_NNTPBase.descriptions
(self, group_pattern)
return self._getdescriptions(group_pattern, True)
Get descriptions for a range of groups.
Get descriptions for a range of groups.
[ "Get", "descriptions", "for", "a", "range", "of", "groups", "." ]
def descriptions(self, group_pattern): """Get descriptions for a range of groups.""" return self._getdescriptions(group_pattern, True)
[ "def", "descriptions", "(", "self", ",", "group_pattern", ")", ":", "return", "self", ".", "_getdescriptions", "(", "group_pattern", ",", "True", ")" ]
https://github.com/IronLanguages/ironpython3/blob/7a7bb2a872eeab0d1009fc8a6e24dca43f65b693/Src/StdLib/Lib/nntplib.py#L647-L649
tp4a/teleport
1fafd34f1f775d2cf80ea4af6e44468d8e0b24ad
server/www/packages/packages-windows/x86/asn1crypto/x509.py
python
Certificate.key_identifier
(self)
return self.key_identifier_value.native
:return: None or a byte string of the certificate's key identifier from the key identifier extension
:return: None or a byte string of the certificate's key identifier from the key identifier extension
[ ":", "return", ":", "None", "or", "a", "byte", "string", "of", "the", "certificate", "s", "key", "identifier", "from", "the", "key", "identifier", "extension" ]
def key_identifier(self): """ :return: None or a byte string of the certificate's key identifier from the key identifier extension """ if not self.key_identifier_value: return None return self.key_identifier_value.native
[ "def", "key_identifier", "(", "self", ")", ":", "if", "not", "self", ".", "key_identifier_value", ":", "return", "None", "return", "self", ".", "key_identifier_value", ".", "native" ]
https://github.com/tp4a/teleport/blob/1fafd34f1f775d2cf80ea4af6e44468d8e0b24ad/server/www/packages/packages-windows/x86/asn1crypto/x509.py#L2563-L2573
trailofbits/manticore
b050fdf0939f6c63f503cdf87ec0ab159dd41159
manticore/core/manticore.py
python
ManticoreBase._all_states
(self)
return tuple(self._ready_states) + tuple(self._terminated_states)
Only allowed at not running. (At running we can have states at busy) Returns a tuple with all active state ids. Notably the "killed" states are not included here.
Only allowed at not running. (At running we can have states at busy) Returns a tuple with all active state ids. Notably the "killed" states are not included here.
[ "Only", "allowed", "at", "not", "running", ".", "(", "At", "running", "we", "can", "have", "states", "at", "busy", ")", "Returns", "a", "tuple", "with", "all", "active", "state", "ids", ".", "Notably", "the", "killed", "states", "are", "not", "included", "here", "." ]
def _all_states(self): """Only allowed at not running. (At running we can have states at busy) Returns a tuple with all active state ids. Notably the "killed" states are not included here. """ return tuple(self._ready_states) + tuple(self._terminated_states)
[ "def", "_all_states", "(", "self", ")", ":", "return", "tuple", "(", "self", ".", "_ready_states", ")", "+", "tuple", "(", "self", ".", "_terminated_states", ")" ]
https://github.com/trailofbits/manticore/blob/b050fdf0939f6c63f503cdf87ec0ab159dd41159/manticore/core/manticore.py#L838-L844
simons-public/protonfixes
24ecb378bc4e99bfe698090661d255dcbb5b677f
protonfixes/gamefixes/46330.py
python
main
()
Install vb6run
Install vb6run
[ "Install", "vb6run" ]
def main(): """ Install vb6run """ util.protontricks('vb6run')
[ "def", "main", "(", ")", ":", "util", ".", "protontricks", "(", "'vb6run'", ")" ]
https://github.com/simons-public/protonfixes/blob/24ecb378bc4e99bfe698090661d255dcbb5b677f/protonfixes/gamefixes/46330.py#L8-L12
doorstop-dev/doorstop
03aa287e5069e29da6979274e1cb6714ee450d3a
doorstop/core/editor.py
python
edit
(path, tool=None)
Open a file and wait for the default editor to exit. :param path: path of file to open :param tool: path of alternate editor :return: launched process
Open a file and wait for the default editor to exit.
[ "Open", "a", "file", "and", "wait", "for", "the", "default", "editor", "to", "exit", "." ]
def edit(path, tool=None): """Open a file and wait for the default editor to exit. :param path: path of file to open :param tool: path of alternate editor :return: launched process """ process = launch(path, tool=tool) if process: try: process.wait() except KeyboardInterrupt: log.debug("user cancelled") finally: if process.returncode is None: process.terminate() log.warning("force closed editor") log.debug("process exited: {}".format(process.returncode))
[ "def", "edit", "(", "path", ",", "tool", "=", "None", ")", ":", "process", "=", "launch", "(", "path", ",", "tool", "=", "tool", ")", "if", "process", ":", "try", ":", "process", ".", "wait", "(", ")", "except", "KeyboardInterrupt", ":", "log", ".", "debug", "(", "\"user cancelled\"", ")", "finally", ":", "if", "process", ".", "returncode", "is", "None", ":", "process", ".", "terminate", "(", ")", "log", ".", "warning", "(", "\"force closed editor\"", ")", "log", ".", "debug", "(", "\"process exited: {}\"", ".", "format", "(", "process", ".", "returncode", ")", ")" ]
https://github.com/doorstop-dev/doorstop/blob/03aa287e5069e29da6979274e1cb6714ee450d3a/doorstop/core/editor.py#L20-L39
Instagram/LibCST
13370227703fe3171e94c57bdd7977f3af696b73
libcst/tool.py
python
_initialize_impl
(proc_name: str, command_args: List[str])
return 0
[]
def _initialize_impl(proc_name: str, command_args: List[str]) -> int: # Now, construct the full parser, parse the args and run the class. parser = argparse.ArgumentParser( description="Initialize a directory by writing a default LibCST config to it.", prog=f"{proc_name} initialize", fromfile_prefix_chars="@", ) parser.add_argument( "path", metavar="PATH", type=str, help="Path to initialize with a default LibCST codemod configuration", ) args = parser.parse_args(command_args) # Get default configuration file, write it to the YAML file we # recognize as our config. default_config = _default_config() # We serialize for ourselves here, since PyYAML doesn't allow # us to control comments in the default file. serializers: Dict[str, _SerializerBase] = { "generated_code_marker": _StrSerializer( "String that LibCST should look for in code which indicates " + "that the module is generated code." ), "formatter": _ListSerializer( "Command line and arguments for invoking a code formatter. " + "Anything specified here must be capable of taking code via " + "stdin and returning formatted code via stdout." ), "blacklist_patterns": _ListSerializer( "List of regex patterns which LibCST will evaluate against " + "filenames to determine if the module should be touched." ), "modules": _ListSerializer( "List of modules that contain codemods inside of them.", newlines=True ), "repo_root": _StrSerializer( "Absolute or relative path of the repository root, used for " + "providing full-repo metadata. Relative paths should be " + "specified with this file location as the base." ), } config_str = "".join( serializers[key].serialize(key, val) for key, val in default_config.items() ) # For safety, verify that it parses to the identical file. actual_config = yaml.safe_load(config_str) if actual_config != default_config: raise Exception("Logic error, serialization is invalid!") config_file = os.path.abspath(os.path.join(args.path, CONFIG_FILE_NAME)) with open(config_file, "w") as fp: fp.write(config_str) print(f"Successfully wrote default config file to {config_file}") return 0
[ "def", "_initialize_impl", "(", "proc_name", ":", "str", ",", "command_args", ":", "List", "[", "str", "]", ")", "->", "int", ":", "# Now, construct the full parser, parse the args and run the class.", "parser", "=", "argparse", ".", "ArgumentParser", "(", "description", "=", "\"Initialize a directory by writing a default LibCST config to it.\"", ",", "prog", "=", "f\"{proc_name} initialize\"", ",", "fromfile_prefix_chars", "=", "\"@\"", ",", ")", "parser", ".", "add_argument", "(", "\"path\"", ",", "metavar", "=", "\"PATH\"", ",", "type", "=", "str", ",", "help", "=", "\"Path to initialize with a default LibCST codemod configuration\"", ",", ")", "args", "=", "parser", ".", "parse_args", "(", "command_args", ")", "# Get default configuration file, write it to the YAML file we", "# recognize as our config.", "default_config", "=", "_default_config", "(", ")", "# We serialize for ourselves here, since PyYAML doesn't allow", "# us to control comments in the default file.", "serializers", ":", "Dict", "[", "str", ",", "_SerializerBase", "]", "=", "{", "\"generated_code_marker\"", ":", "_StrSerializer", "(", "\"String that LibCST should look for in code which indicates \"", "+", "\"that the module is generated code.\"", ")", ",", "\"formatter\"", ":", "_ListSerializer", "(", "\"Command line and arguments for invoking a code formatter. \"", "+", "\"Anything specified here must be capable of taking code via \"", "+", "\"stdin and returning formatted code via stdout.\"", ")", ",", "\"blacklist_patterns\"", ":", "_ListSerializer", "(", "\"List of regex patterns which LibCST will evaluate against \"", "+", "\"filenames to determine if the module should be touched.\"", ")", ",", "\"modules\"", ":", "_ListSerializer", "(", "\"List of modules that contain codemods inside of them.\"", ",", "newlines", "=", "True", ")", ",", "\"repo_root\"", ":", "_StrSerializer", "(", "\"Absolute or relative path of the repository root, used for \"", "+", "\"providing full-repo metadata. Relative paths should be \"", "+", "\"specified with this file location as the base.\"", ")", ",", "}", "config_str", "=", "\"\"", ".", "join", "(", "serializers", "[", "key", "]", ".", "serialize", "(", "key", ",", "val", ")", "for", "key", ",", "val", "in", "default_config", ".", "items", "(", ")", ")", "# For safety, verify that it parses to the identical file.", "actual_config", "=", "yaml", ".", "safe_load", "(", "config_str", ")", "if", "actual_config", "!=", "default_config", ":", "raise", "Exception", "(", "\"Logic error, serialization is invalid!\"", ")", "config_file", "=", "os", ".", "path", ".", "abspath", "(", "os", ".", "path", ".", "join", "(", "args", ".", "path", ",", "CONFIG_FILE_NAME", ")", ")", "with", "open", "(", "config_file", ",", "\"w\"", ")", "as", "fp", ":", "fp", ".", "write", "(", "config_str", ")", "print", "(", "f\"Successfully wrote default config file to {config_file}\"", ")", "return", "0" ]
https://github.com/Instagram/LibCST/blob/13370227703fe3171e94c57bdd7977f3af696b73/libcst/tool.py#L641-L700
zhl2008/awd-platform
0416b31abea29743387b10b3914581fbe8e7da5e
web_flaskbb/lib/python2.7/site-packages/enum/__init__.py
python
__str__
(self)
return "%s.%s" % (self.__class__.__name__, self._name_)
[]
def __str__(self): return "%s.%s" % (self.__class__.__name__, self._name_)
[ "def", "__str__", "(", "self", ")", ":", "return", "\"%s.%s\"", "%", "(", "self", ".", "__class__", ".", "__name__", ",", "self", ".", "_name_", ")" ]
https://github.com/zhl2008/awd-platform/blob/0416b31abea29743387b10b3914581fbe8e7da5e/web_flaskbb/lib/python2.7/site-packages/enum/__init__.py#L672-L673
emesene/emesene
4548a4098310e21b16437bb36223a7f632a4f7bc
emesene/e3/xmpp/SleekXMPP/sleekxmpp/basexmpp.py
python
BaseXMPP.make_query_roster
(self, iq=None)
return ET.Element("{jabber:iq:roster}query")
Create a roster query element. :param iq: Optionally use an existing stanza instead of generating a new one.
Create a roster query element.
[ "Create", "a", "roster", "query", "element", "." ]
def make_query_roster(self, iq=None): """Create a roster query element. :param iq: Optionally use an existing stanza instead of generating a new one. """ if iq: iq['query'] = 'jabber:iq:roster' return ET.Element("{jabber:iq:roster}query")
[ "def", "make_query_roster", "(", "self", ",", "iq", "=", "None", ")", ":", "if", "iq", ":", "iq", "[", "'query'", "]", "=", "'jabber:iq:roster'", "return", "ET", ".", "Element", "(", "\"{jabber:iq:roster}query\"", ")" ]
https://github.com/emesene/emesene/blob/4548a4098310e21b16437bb36223a7f632a4f7bc/emesene/e3/xmpp/SleekXMPP/sleekxmpp/basexmpp.py#L470-L478
wrye-bash/wrye-bash
d495c47cfdb44475befa523438a40c4419cb386f
Mopy/bash/bolt.py
python
Path.list
(self)
For directory: Returns list of files.
For directory: Returns list of files.
[ "For", "directory", ":", "Returns", "list", "of", "files", "." ]
def list(self): """For directory: Returns list of files.""" try: return [GPath_no_norm(x) for x in os.listdir(self._s)] except FileNotFoundError: return []
[ "def", "list", "(", "self", ")", ":", "try", ":", "return", "[", "GPath_no_norm", "(", "x", ")", "for", "x", "in", "os", ".", "listdir", "(", "self", ".", "_s", ")", "]", "except", "FileNotFoundError", ":", "return", "[", "]" ]
https://github.com/wrye-bash/wrye-bash/blob/d495c47cfdb44475befa523438a40c4419cb386f/Mopy/bash/bolt.py#L752-L757
inventree/InvenTree
4a5e4a88ac3e91d64a21e8cab3708ecbc6e2bd8b
InvenTree/part/templatetags/inventree_extras.py
python
inventree_title
(*args, **kwargs)
return version.inventreeInstanceTitle()
Return the title for the current instance - respecting the settings
Return the title for the current instance - respecting the settings
[ "Return", "the", "title", "for", "the", "current", "instance", "-", "respecting", "the", "settings" ]
def inventree_title(*args, **kwargs): """ Return the title for the current instance - respecting the settings """ return version.inventreeInstanceTitle()
[ "def", "inventree_title", "(", "*", "args", ",", "*", "*", "kwargs", ")", ":", "return", "version", ".", "inventreeInstanceTitle", "(", ")" ]
https://github.com/inventree/InvenTree/blob/4a5e4a88ac3e91d64a21e8cab3708ecbc6e2bd8b/InvenTree/part/templatetags/inventree_extras.py#L130-L132
cbfinn/maml_rl
9c8e2ebd741cb0c7b8bf2d040c4caeeb8e06cc95
rllab/algos/cma_es_lib.py
python
NoiseHandler.indices
(self, fit)
return the set of indices to be reevaluated for noise measurement. Given the first values are the earliest, this is a useful policy also with a time changing objective.
return the set of indices to be reevaluated for noise measurement.
[ "return", "the", "set", "of", "indices", "to", "be", "reevaluated", "for", "noise", "measurement", "." ]
def indices(self, fit): """return the set of indices to be reevaluated for noise measurement. Given the first values are the earliest, this is a useful policy also with a time changing objective. """ ## meta_parameters.noise_reeval_multiplier == 1.0 lam_reev = 1.0 * (self.lam_reeval if self.lam_reeval else 2 + len(fit) / 20) lam_reev = int(lam_reev) + ((lam_reev % 1) > np.random.rand()) ## meta_parameters.noise_choose_reeval == 1 choice = 1 if choice == 1: # take n_first first and reev - n_first best of the remaining n_first = lam_reev - lam_reev // 2 sort_idx = np.argsort(array(fit, copy=False)[n_first:]) + n_first return np.array(list(range(0, n_first)) + list(sort_idx[0:lam_reev - n_first]), copy=False) elif choice == 2: idx_sorted = np.argsort(array(fit, copy=False)) # take lam_reev equally spaced, starting with best linsp = np.linspace(0, len(fit) - len(fit) / lam_reev, lam_reev) return idx_sorted[[int(i) for i in linsp]] # take the ``lam_reeval`` best from the first ``2 * lam_reeval + 2`` values. elif choice == 3: return np.argsort(array(fit, copy=False)[:2 * (lam_reev + 1)])[:lam_reev] else: raise ValueError('unrecognized choice value %d for noise reev' % choice)
[ "def", "indices", "(", "self", ",", "fit", ")", ":", "## meta_parameters.noise_reeval_multiplier == 1.0", "lam_reev", "=", "1.0", "*", "(", "self", ".", "lam_reeval", "if", "self", ".", "lam_reeval", "else", "2", "+", "len", "(", "fit", ")", "/", "20", ")", "lam_reev", "=", "int", "(", "lam_reev", ")", "+", "(", "(", "lam_reev", "%", "1", ")", ">", "np", ".", "random", ".", "rand", "(", ")", ")", "## meta_parameters.noise_choose_reeval == 1", "choice", "=", "1", "if", "choice", "==", "1", ":", "# take n_first first and reev - n_first best of the remaining", "n_first", "=", "lam_reev", "-", "lam_reev", "//", "2", "sort_idx", "=", "np", ".", "argsort", "(", "array", "(", "fit", ",", "copy", "=", "False", ")", "[", "n_first", ":", "]", ")", "+", "n_first", "return", "np", ".", "array", "(", "list", "(", "range", "(", "0", ",", "n_first", ")", ")", "+", "list", "(", "sort_idx", "[", "0", ":", "lam_reev", "-", "n_first", "]", ")", ",", "copy", "=", "False", ")", "elif", "choice", "==", "2", ":", "idx_sorted", "=", "np", ".", "argsort", "(", "array", "(", "fit", ",", "copy", "=", "False", ")", ")", "# take lam_reev equally spaced, starting with best", "linsp", "=", "np", ".", "linspace", "(", "0", ",", "len", "(", "fit", ")", "-", "len", "(", "fit", ")", "/", "lam_reev", ",", "lam_reev", ")", "return", "idx_sorted", "[", "[", "int", "(", "i", ")", "for", "i", "in", "linsp", "]", "]", "# take the ``lam_reeval`` best from the first ``2 * lam_reeval + 2`` values.", "elif", "choice", "==", "3", ":", "return", "np", ".", "argsort", "(", "array", "(", "fit", ",", "copy", "=", "False", ")", "[", ":", "2", "*", "(", "lam_reev", "+", "1", ")", "]", ")", "[", ":", "lam_reev", "]", "else", ":", "raise", "ValueError", "(", "'unrecognized choice value %d for noise reev'", "%", "choice", ")" ]
https://github.com/cbfinn/maml_rl/blob/9c8e2ebd741cb0c7b8bf2d040c4caeeb8e06cc95/rllab/algos/cma_es_lib.py#L7093-L7123
ronreiter/interactive-tutorials
d026d1ae58941863d60eb30a8a94a8650d2bd4bf
suds/sax/enc.py
python
Encoder.encode
(self, s)
return s
Encode special characters found in string I{s}. @param s: A string to encode. @type s: str @return: The encoded string. @rtype: str
Encode special characters found in string I{s}.
[ "Encode", "special", "characters", "found", "in", "string", "I", "{", "s", "}", "." ]
def encode(self, s): """ Encode special characters found in string I{s}. @param s: A string to encode. @type s: str @return: The encoded string. @rtype: str """ if isinstance(s, str) and self.needsEncoding(s): for x in self.encodings: s = re.sub(x[0], x[1], s) return s
[ "def", "encode", "(", "self", ",", "s", ")", ":", "if", "isinstance", "(", "s", ",", "str", ")", "and", "self", ".", "needsEncoding", "(", "s", ")", ":", "for", "x", "in", "self", ".", "encodings", ":", "s", "=", "re", ".", "sub", "(", "x", "[", "0", "]", ",", "x", "[", "1", "]", ",", "s", ")", "return", "s" ]
https://github.com/ronreiter/interactive-tutorials/blob/d026d1ae58941863d60eb30a8a94a8650d2bd4bf/suds/sax/enc.py#L65-L76
googleapis/python-dialogflow
e48ea001b7c8a4a5c1fe4b162bad49ea397458e9
google/cloud/dialogflow_v2/services/environments/pagers.py
python
ListEnvironmentsPager.__getattr__
(self, name: str)
return getattr(self._response, name)
[]
def __getattr__(self, name: str) -> Any: return getattr(self._response, name)
[ "def", "__getattr__", "(", "self", ",", "name", ":", "str", ")", "->", "Any", ":", "return", "getattr", "(", "self", ".", "_response", ",", "name", ")" ]
https://github.com/googleapis/python-dialogflow/blob/e48ea001b7c8a4a5c1fe4b162bad49ea397458e9/google/cloud/dialogflow_v2/services/environments/pagers.py#L73-L74
SUSE/DeepSea
9c7fad93915ba1250c40d50c855011e9fe41ed21
srv/salt/_modules/dg.py
python
SizeMatcher.low
(self, low: Tuple)
Setter for 'low' matchers
Setter for 'low' matchers
[ "Setter", "for", "low", "matchers" ]
def low(self, low: Tuple) -> None: """ Setter for 'low' matchers """ self._low, self._low_suffix = low
[ "def", "low", "(", "self", ",", "low", ":", "Tuple", ")", "->", "None", ":", "self", ".", "_low", ",", "self", ".", "_low_suffix", "=", "low" ]
https://github.com/SUSE/DeepSea/blob/9c7fad93915ba1250c40d50c855011e9fe41ed21/srv/salt/_modules/dg.py#L382-L385
insarlab/MintPy
4357b8c726dec8a3f936770e3f3dda92882685b7
mintpy/utils/utils0.py
python
azimuth2heading_angle
(az_angle)
return head_angle
Convert azimuth angle from ISCE los.rdr band2 into satellite orbit heading angle ISCE-2 los.* file band2 is azimuth angle of LOS vector from ground target to the satellite measured from the north in anti-clockwise as positive Below are typical values in deg for satellites with near-polar orbit: ascending orbit: heading angle of -12 and azimuth angle of 102 descending orbit: heading angle of -168 and azimuth angle of -102
Convert azimuth angle from ISCE los.rdr band2 into satellite orbit heading angle
[ "Convert", "azimuth", "angle", "from", "ISCE", "los", ".", "rdr", "band2", "into", "satellite", "orbit", "heading", "angle" ]
def azimuth2heading_angle(az_angle): """Convert azimuth angle from ISCE los.rdr band2 into satellite orbit heading angle ISCE-2 los.* file band2 is azimuth angle of LOS vector from ground target to the satellite measured from the north in anti-clockwise as positive Below are typical values in deg for satellites with near-polar orbit: ascending orbit: heading angle of -12 and azimuth angle of 102 descending orbit: heading angle of -168 and azimuth angle of -102 """ head_angle = 90 - az_angle head_angle -= np.round(head_angle / 360.) * 360. return head_angle
[ "def", "azimuth2heading_angle", "(", "az_angle", ")", ":", "head_angle", "=", "90", "-", "az_angle", "head_angle", "-=", "np", ".", "round", "(", "head_angle", "/", "360.", ")", "*", "360.", "return", "head_angle" ]
https://github.com/insarlab/MintPy/blob/4357b8c726dec8a3f936770e3f3dda92882685b7/mintpy/utils/utils0.py#L366-L378
aws-samples/aws-kube-codesuite
ab4e5ce45416b83bffb947ab8d234df5437f4fca
src/kubernetes/client/models/v1_aws_elastic_block_store_volume_source.py
python
V1AWSElasticBlockStoreVolumeSource.partition
(self)
return self._partition
Gets the partition of this V1AWSElasticBlockStoreVolumeSource. The partition in the volume that you want to mount. If omitted, the default is to mount by volume name. Examples: For volume /dev/sda1, you specify the partition as \"1\". Similarly, the volume partition for /dev/sda is \"0\" (or you can leave the property empty). :return: The partition of this V1AWSElasticBlockStoreVolumeSource. :rtype: int
Gets the partition of this V1AWSElasticBlockStoreVolumeSource. The partition in the volume that you want to mount. If omitted, the default is to mount by volume name. Examples: For volume /dev/sda1, you specify the partition as \"1\". Similarly, the volume partition for /dev/sda is \"0\" (or you can leave the property empty).
[ "Gets", "the", "partition", "of", "this", "V1AWSElasticBlockStoreVolumeSource", ".", "The", "partition", "in", "the", "volume", "that", "you", "want", "to", "mount", ".", "If", "omitted", "the", "default", "is", "to", "mount", "by", "volume", "name", ".", "Examples", ":", "For", "volume", "/", "dev", "/", "sda1", "you", "specify", "the", "partition", "as", "\\", "1", "\\", ".", "Similarly", "the", "volume", "partition", "for", "/", "dev", "/", "sda", "is", "\\", "0", "\\", "(", "or", "you", "can", "leave", "the", "property", "empty", ")", "." ]
def partition(self): """ Gets the partition of this V1AWSElasticBlockStoreVolumeSource. The partition in the volume that you want to mount. If omitted, the default is to mount by volume name. Examples: For volume /dev/sda1, you specify the partition as \"1\". Similarly, the volume partition for /dev/sda is \"0\" (or you can leave the property empty). :return: The partition of this V1AWSElasticBlockStoreVolumeSource. :rtype: int """ return self._partition
[ "def", "partition", "(", "self", ")", ":", "return", "self", ".", "_partition" ]
https://github.com/aws-samples/aws-kube-codesuite/blob/ab4e5ce45416b83bffb947ab8d234df5437f4fca/src/kubernetes/client/models/v1_aws_elastic_block_store_volume_source.py#L76-L84
mayank93/Twitter-Sentiment-Analysis
f095c6ca6bf69787582b5dabb140fefaf278eb37
front-end/web2py/gluon/contrib/markdown/markdown2.py
python
_dedentlines
(lines, tabsize=8, skip_first_line=False)
return lines
_dedentlines(lines, tabsize=8, skip_first_line=False) -> dedented lines "lines" is a list of lines to dedent. "tabsize" is the tab width to use for indent width calculations. "skip_first_line" is a boolean indicating if the first line should be skipped for calculating the indent width and for dedenting. This is sometimes useful for docstrings and similar. Same as dedent() except operates on a sequence of lines. Note: the lines list is modified **in-place**.
_dedentlines(lines, tabsize=8, skip_first_line=False) -> dedented lines
[ "_dedentlines", "(", "lines", "tabsize", "=", "8", "skip_first_line", "=", "False", ")", "-", ">", "dedented", "lines" ]
def _dedentlines(lines, tabsize=8, skip_first_line=False): """_dedentlines(lines, tabsize=8, skip_first_line=False) -> dedented lines "lines" is a list of lines to dedent. "tabsize" is the tab width to use for indent width calculations. "skip_first_line" is a boolean indicating if the first line should be skipped for calculating the indent width and for dedenting. This is sometimes useful for docstrings and similar. Same as dedent() except operates on a sequence of lines. Note: the lines list is modified **in-place**. """ DEBUG = False if DEBUG: print "dedent: dedent(..., tabsize=%d, skip_first_line=%r)"\ % (tabsize, skip_first_line) indents = [] margin = None for i, line in enumerate(lines): if i == 0 and skip_first_line: continue indent = 0 for ch in line: if ch == ' ': indent += 1 elif ch == '\t': indent += tabsize - (indent % tabsize) elif ch in '\r\n': continue # skip all-whitespace lines else: break else: continue # skip all-whitespace lines if DEBUG: print "dedent: indent=%d: %r" % (indent, line) if margin is None: margin = indent else: margin = min(margin, indent) if DEBUG: print "dedent: margin=%r" % margin if margin is not None and margin > 0: for i, line in enumerate(lines): if i == 0 and skip_first_line: continue removed = 0 for j, ch in enumerate(line): if ch == ' ': removed += 1 elif ch == '\t': removed += tabsize - (removed % tabsize) elif ch in '\r\n': if DEBUG: print "dedent: %r: EOL -> strip up to EOL" % line lines[i] = lines[i][j:] break else: raise ValueError("unexpected non-whitespace char %r in " "line %r while removing %d-space margin" % (ch, line, margin)) if DEBUG: print "dedent: %r: %r -> removed %d/%d"\ % (line, ch, removed, margin) if removed == margin: lines[i] = lines[i][j+1:] break elif removed > margin: lines[i] = ' '*(removed-margin) + lines[i][j+1:] break else: if removed: lines[i] = lines[i][removed:] return lines
[ "def", "_dedentlines", "(", "lines", ",", "tabsize", "=", "8", ",", "skip_first_line", "=", "False", ")", ":", "DEBUG", "=", "False", "if", "DEBUG", ":", "print", "\"dedent: dedent(..., tabsize=%d, skip_first_line=%r)\"", "%", "(", "tabsize", ",", "skip_first_line", ")", "indents", "=", "[", "]", "margin", "=", "None", "for", "i", ",", "line", "in", "enumerate", "(", "lines", ")", ":", "if", "i", "==", "0", "and", "skip_first_line", ":", "continue", "indent", "=", "0", "for", "ch", "in", "line", ":", "if", "ch", "==", "' '", ":", "indent", "+=", "1", "elif", "ch", "==", "'\\t'", ":", "indent", "+=", "tabsize", "-", "(", "indent", "%", "tabsize", ")", "elif", "ch", "in", "'\\r\\n'", ":", "continue", "# skip all-whitespace lines", "else", ":", "break", "else", ":", "continue", "# skip all-whitespace lines", "if", "DEBUG", ":", "print", "\"dedent: indent=%d: %r\"", "%", "(", "indent", ",", "line", ")", "if", "margin", "is", "None", ":", "margin", "=", "indent", "else", ":", "margin", "=", "min", "(", "margin", ",", "indent", ")", "if", "DEBUG", ":", "print", "\"dedent: margin=%r\"", "%", "margin", "if", "margin", "is", "not", "None", "and", "margin", ">", "0", ":", "for", "i", ",", "line", "in", "enumerate", "(", "lines", ")", ":", "if", "i", "==", "0", "and", "skip_first_line", ":", "continue", "removed", "=", "0", "for", "j", ",", "ch", "in", "enumerate", "(", "line", ")", ":", "if", "ch", "==", "' '", ":", "removed", "+=", "1", "elif", "ch", "==", "'\\t'", ":", "removed", "+=", "tabsize", "-", "(", "removed", "%", "tabsize", ")", "elif", "ch", "in", "'\\r\\n'", ":", "if", "DEBUG", ":", "print", "\"dedent: %r: EOL -> strip up to EOL\"", "%", "line", "lines", "[", "i", "]", "=", "lines", "[", "i", "]", "[", "j", ":", "]", "break", "else", ":", "raise", "ValueError", "(", "\"unexpected non-whitespace char %r in \"", "\"line %r while removing %d-space margin\"", "%", "(", "ch", ",", "line", ",", "margin", ")", ")", "if", "DEBUG", ":", "print", "\"dedent: %r: %r -> removed %d/%d\"", "%", "(", "line", ",", "ch", ",", "removed", ",", "margin", ")", "if", "removed", "==", "margin", ":", "lines", "[", "i", "]", "=", "lines", "[", "i", "]", "[", "j", "+", "1", ":", "]", "break", "elif", "removed", ">", "margin", ":", "lines", "[", "i", "]", "=", "' '", "*", "(", "removed", "-", "margin", ")", "+", "lines", "[", "i", "]", "[", "j", "+", "1", ":", "]", "break", "else", ":", "if", "removed", ":", "lines", "[", "i", "]", "=", "lines", "[", "i", "]", "[", "removed", ":", "]", "return", "lines" ]
https://github.com/mayank93/Twitter-Sentiment-Analysis/blob/f095c6ca6bf69787582b5dabb140fefaf278eb37/front-end/web2py/gluon/contrib/markdown/markdown2.py#L1592-L1660
desaster/kippo
0d036350a719288f83078da8399572121f337f7e
kippo/dblog/mysql.py
python
DBLogger.simpleQuery
(self, sql, args)
Just run a deferred sql query, only care about errors
Just run a deferred sql query, only care about errors
[ "Just", "run", "a", "deferred", "sql", "query", "only", "care", "about", "errors" ]
def simpleQuery(self, sql, args): """ Just run a deferred sql query, only care about errors """ d = self.db.runQuery(sql, args) d.addErrback(self.sqlerror)
[ "def", "simpleQuery", "(", "self", ",", "sql", ",", "args", ")", ":", "d", "=", "self", ".", "db", ".", "runQuery", "(", "sql", ",", "args", ")", "d", ".", "addErrback", "(", "self", ".", "sqlerror", ")" ]
https://github.com/desaster/kippo/blob/0d036350a719288f83078da8399572121f337f7e/kippo/dblog/mysql.py#L51-L54
fake-name/ReadableWebProxy
ed5c7abe38706acc2684a1e6cd80242a03c5f010
WebMirror/management/rss_parser_funcs/feed_parse_extractTamingwangxianWordpressCom.py
python
extractTamingwangxianWordpressCom
(item)
return False
Parser for 'tamingwangxian.wordpress.com'
Parser for 'tamingwangxian.wordpress.com'
[ "Parser", "for", "tamingwangxian", ".", "wordpress", ".", "com" ]
def extractTamingwangxianWordpressCom(item): ''' Parser for 'tamingwangxian.wordpress.com' ''' vol, chp, frag, postfix = extractVolChapterFragmentPostfix(item['title']) if not (chp or vol) or "preview" in item['title'].lower(): return None tagmap = [ ('mdzs', 'Grandmaster of Demonic Cultivation', 'translated'), ('PRC', 'PRC', 'translated'), ('Loiterous', 'Loiterous', 'oel'), ] for tagname, name, tl_type in tagmap: if tagname in item['tags']: return buildReleaseMessageWithType(item, name, vol, chp, frag=frag, postfix=postfix, tl_type=tl_type) return False
[ "def", "extractTamingwangxianWordpressCom", "(", "item", ")", ":", "vol", ",", "chp", ",", "frag", ",", "postfix", "=", "extractVolChapterFragmentPostfix", "(", "item", "[", "'title'", "]", ")", "if", "not", "(", "chp", "or", "vol", ")", "or", "\"preview\"", "in", "item", "[", "'title'", "]", ".", "lower", "(", ")", ":", "return", "None", "tagmap", "=", "[", "(", "'mdzs'", ",", "'Grandmaster of Demonic Cultivation'", ",", "'translated'", ")", ",", "(", "'PRC'", ",", "'PRC'", ",", "'translated'", ")", ",", "(", "'Loiterous'", ",", "'Loiterous'", ",", "'oel'", ")", ",", "]", "for", "tagname", ",", "name", ",", "tl_type", "in", "tagmap", ":", "if", "tagname", "in", "item", "[", "'tags'", "]", ":", "return", "buildReleaseMessageWithType", "(", "item", ",", "name", ",", "vol", ",", "chp", ",", "frag", "=", "frag", ",", "postfix", "=", "postfix", ",", "tl_type", "=", "tl_type", ")", "return", "False" ]
https://github.com/fake-name/ReadableWebProxy/blob/ed5c7abe38706acc2684a1e6cd80242a03c5f010/WebMirror/management/rss_parser_funcs/feed_parse_extractTamingwangxianWordpressCom.py#L1-L21
burke-software/schooldriver
a07262ba864aee0182548ecceb661e49c925725f
appy/fields/string.py
python
String.getCkLanguage
(self)
return 'en_US'
Gets the language for CK editor SCAYT. We will use self.contentLanguage. If it is not supported by CK, we use english.
Gets the language for CK editor SCAYT. We will use self.contentLanguage. If it is not supported by CK, we use english.
[ "Gets", "the", "language", "for", "CK", "editor", "SCAYT", ".", "We", "will", "use", "self", ".", "contentLanguage", ".", "If", "it", "is", "not", "supported", "by", "CK", "we", "use", "english", "." ]
def getCkLanguage(self): '''Gets the language for CK editor SCAYT. We will use self.contentLanguage. If it is not supported by CK, we use english.''' lang = self.contentLanguage if lang and (lang in self.ckLanguages): return self.ckLanguages[lang] return 'en_US'
[ "def", "getCkLanguage", "(", "self", ")", ":", "lang", "=", "self", ".", "contentLanguage", "if", "lang", "and", "(", "lang", "in", "self", ".", "ckLanguages", ")", ":", "return", "self", ".", "ckLanguages", "[", "lang", "]", "return", "'en_US'" ]
https://github.com/burke-software/schooldriver/blob/a07262ba864aee0182548ecceb661e49c925725f/appy/fields/string.py#L682-L688
huggingface/transformers
623b4f7c63f60cce917677ee704d6c93ee960b4b
src/transformers/trainer_utils.py
python
TrainerMemoryTracker.__init__
(self, skip_memory_metrics=False)
[]
def __init__(self, skip_memory_metrics=False): self.skip_memory_metrics = skip_memory_metrics if not is_psutil_available(): # soft dependency on psutil self.skip_memory_metrics = True if self.skip_memory_metrics: return import psutil # noqa if is_torch_cuda_available(): import torch self.torch = torch self.gpu = {} else: self.torch = None self.process = psutil.Process() self.cur_stage = None self.cpu = {} self.init_reported = False
[ "def", "__init__", "(", "self", ",", "skip_memory_metrics", "=", "False", ")", ":", "self", ".", "skip_memory_metrics", "=", "skip_memory_metrics", "if", "not", "is_psutil_available", "(", ")", ":", "# soft dependency on psutil", "self", ".", "skip_memory_metrics", "=", "True", "if", "self", ".", "skip_memory_metrics", ":", "return", "import", "psutil", "# noqa", "if", "is_torch_cuda_available", "(", ")", ":", "import", "torch", "self", ".", "torch", "=", "torch", "self", ".", "gpu", "=", "{", "}", "else", ":", "self", ".", "torch", "=", "None", "self", ".", "process", "=", "psutil", ".", "Process", "(", ")", "self", ".", "cur_stage", "=", "None", "self", ".", "cpu", "=", "{", "}", "self", ".", "init_reported", "=", "False" ]
https://github.com/huggingface/transformers/blob/623b4f7c63f60cce917677ee704d6c93ee960b4b/src/transformers/trainer_utils.py#L321-L346
JaniceWuo/MovieRecommend
4c86db64ca45598917d304f535413df3bc9fea65
movierecommend/venv1/Lib/site-packages/pip-9.0.1-py3.6.egg/pip/_vendor/ipaddress.py
python
_IPAddressBase._prefix_from_ip_string
(cls, ip_str)
Turn a netmask/hostmask string into a prefix length Args: ip_str: The netmask/hostmask to be converted Returns: An integer, the prefix length. Raises: NetmaskValueError: If the input is not a valid netmask/hostmask
Turn a netmask/hostmask string into a prefix length
[ "Turn", "a", "netmask", "/", "hostmask", "string", "into", "a", "prefix", "length" ]
def _prefix_from_ip_string(cls, ip_str): """Turn a netmask/hostmask string into a prefix length Args: ip_str: The netmask/hostmask to be converted Returns: An integer, the prefix length. Raises: NetmaskValueError: If the input is not a valid netmask/hostmask """ # Parse the netmask/hostmask like an IP address. try: ip_int = cls._ip_int_from_string(ip_str) except AddressValueError: cls._report_invalid_netmask(ip_str) # Try matching a netmask (this would be /1*0*/ as a bitwise regexp). # Note that the two ambiguous cases (all-ones and all-zeroes) are # treated as netmasks. try: return cls._prefix_from_ip_int(ip_int) except ValueError: pass # Invert the bits, and try matching a /0+1+/ hostmask instead. ip_int ^= cls._ALL_ONES try: return cls._prefix_from_ip_int(ip_int) except ValueError: cls._report_invalid_netmask(ip_str)
[ "def", "_prefix_from_ip_string", "(", "cls", ",", "ip_str", ")", ":", "# Parse the netmask/hostmask like an IP address.", "try", ":", "ip_int", "=", "cls", ".", "_ip_int_from_string", "(", "ip_str", ")", "except", "AddressValueError", ":", "cls", ".", "_report_invalid_netmask", "(", "ip_str", ")", "# Try matching a netmask (this would be /1*0*/ as a bitwise regexp).", "# Note that the two ambiguous cases (all-ones and all-zeroes) are", "# treated as netmasks.", "try", ":", "return", "cls", ".", "_prefix_from_ip_int", "(", "ip_int", ")", "except", "ValueError", ":", "pass", "# Invert the bits, and try matching a /0+1+/ hostmask instead.", "ip_int", "^=", "cls", ".", "_ALL_ONES", "try", ":", "return", "cls", ".", "_prefix_from_ip_int", "(", "ip_int", ")", "except", "ValueError", ":", "cls", ".", "_report_invalid_netmask", "(", "ip_str", ")" ]
https://github.com/JaniceWuo/MovieRecommend/blob/4c86db64ca45598917d304f535413df3bc9fea65/movierecommend/venv1/Lib/site-packages/pip-9.0.1-py3.6.egg/pip/_vendor/ipaddress.py#L624-L655
python-diamond/Diamond
7000e16cfdf4508ed9291fc4b3800592557b2431
src/collectors/bind/bind.py
python
BindCollector.get_default_config
(self)
return config
Returns the default collector settings
Returns the default collector settings
[ "Returns", "the", "default", "collector", "settings" ]
def get_default_config(self): """ Returns the default collector settings """ config = super(BindCollector, self).get_default_config() config.update({ 'host': 'localhost', 'port': 8080, 'path': 'bind', # Available stats: # - resolver (Per-view resolver and cache statistics) # - server (Incoming requests and their answers) # - zonemgmt (Requests/responses related to zone management) # - sockets (Socket statistics) # - memory (Global memory usage) 'publish': [ 'resolver', 'server', 'zonemgmt', 'sockets', 'memory', ], # By default we don't publish these special views 'publish_view_bind': False, 'publish_view_meta': False, }) return config
[ "def", "get_default_config", "(", "self", ")", ":", "config", "=", "super", "(", "BindCollector", ",", "self", ")", ".", "get_default_config", "(", ")", "config", ".", "update", "(", "{", "'host'", ":", "'localhost'", ",", "'port'", ":", "8080", ",", "'path'", ":", "'bind'", ",", "# Available stats:", "# - resolver (Per-view resolver and cache statistics)", "# - server (Incoming requests and their answers)", "# - zonemgmt (Requests/responses related to zone management)", "# - sockets (Socket statistics)", "# - memory (Global memory usage)", "'publish'", ":", "[", "'resolver'", ",", "'server'", ",", "'zonemgmt'", ",", "'sockets'", ",", "'memory'", ",", "]", ",", "# By default we don't publish these special views", "'publish_view_bind'", ":", "False", ",", "'publish_view_meta'", ":", "False", ",", "}", ")", "return", "config" ]
https://github.com/python-diamond/Diamond/blob/7000e16cfdf4508ed9291fc4b3800592557b2431/src/collectors/bind/bind.py#L36-L62
XanaduAI/strawberryfields
298601e409528f22c6717c2d816ab68ae8bda1fa
strawberryfields/backends/bosonicbackend/bosoniccircuit.py
python
BosonicModes.squeeze
(self, r, phi, k)
r"""Squeeze mode ``k`` by the amount ``r*exp(1j*phi)``. Args: r (float): squeezing magnitude phi (float): squeezing phase k (int): mode to be squeezed Raises: ValueError: if the mode is not in the list of active modes
r"""Squeeze mode ``k`` by the amount ``r*exp(1j*phi)``.
[ "r", "Squeeze", "mode", "k", "by", "the", "amount", "r", "*", "exp", "(", "1j", "*", "phi", ")", "." ]
def squeeze(self, r, phi, k): r"""Squeeze mode ``k`` by the amount ``r*exp(1j*phi)``. Args: r (float): squeezing magnitude phi (float): squeezing phase k (int): mode to be squeezed Raises: ValueError: if the mode is not in the list of active modes """ if self.active[k] is None: raise ValueError("Cannot squeeze mode, mode does not exist") sq = symp.expand(symp.squeezing(r, phi), k, self.nlen) self.means = update_means(self.means, sq, self.from_xp) self.covs = update_covs(self.covs, sq, self.from_xp)
[ "def", "squeeze", "(", "self", ",", "r", ",", "phi", ",", "k", ")", ":", "if", "self", ".", "active", "[", "k", "]", "is", "None", ":", "raise", "ValueError", "(", "\"Cannot squeeze mode, mode does not exist\"", ")", "sq", "=", "symp", ".", "expand", "(", "symp", ".", "squeezing", "(", "r", ",", "phi", ")", ",", "k", ",", "self", ".", "nlen", ")", "self", ".", "means", "=", "update_means", "(", "self", ".", "means", ",", "sq", ",", "self", ".", "from_xp", ")", "self", ".", "covs", "=", "update_covs", "(", "self", ".", "covs", ",", "sq", ",", "self", ".", "from_xp", ")" ]
https://github.com/XanaduAI/strawberryfields/blob/298601e409528f22c6717c2d816ab68ae8bda1fa/strawberryfields/backends/bosonicbackend/bosoniccircuit.py#L263-L279
biolab/orange3
41685e1c7b1d1babe680113685a2d44bcc9fec0b
Orange/widgets/visualize/owvenndiagram.py
python
OWVennDiagram.extract_columnwise
(self, var_dict, columns=None)
return self.merge_data(domain, values)
[]
def extract_columnwise(self, var_dict, columns=None): domain = {type_ : [] for type_ in self.atr_types} values = defaultdict(list) renamed = [] for atr_type, vars_dict in var_dict.items(): for var_name, var_data in vars_dict.items(): is_selected = bool(columns) and var_name.name in columns if var_data[0]: #columns are different, copy all, rename them for var, table_key in var_data[1]: idx = list(self.data).index(table_key) + 1 new_atr = var.copy(name=f'{var_name.name} ({idx})') if columns and atr_type == 'attributes': new_atr.attributes['Selected'] = is_selected domain[atr_type].append(new_atr) renamed.append(var_name.name) values[atr_type].append(getattr(self.data[table_key].table[:, var_name], self.atr_vals[atr_type]) .reshape(-1, 1)) else: new_atr = var_data[1][0][0].copy() if columns and atr_type == 'attributes': new_atr.attributes['Selected'] = is_selected domain[atr_type].append(new_atr) values[atr_type].append(getattr(self.data[var_data[1][0][1]].table[:, var_name], self.atr_vals[atr_type]) .reshape(-1, 1)) if renamed: self.Warning.renamed_vars(', '.join(renamed)) return self.merge_data(domain, values)
[ "def", "extract_columnwise", "(", "self", ",", "var_dict", ",", "columns", "=", "None", ")", ":", "domain", "=", "{", "type_", ":", "[", "]", "for", "type_", "in", "self", ".", "atr_types", "}", "values", "=", "defaultdict", "(", "list", ")", "renamed", "=", "[", "]", "for", "atr_type", ",", "vars_dict", "in", "var_dict", ".", "items", "(", ")", ":", "for", "var_name", ",", "var_data", "in", "vars_dict", ".", "items", "(", ")", ":", "is_selected", "=", "bool", "(", "columns", ")", "and", "var_name", ".", "name", "in", "columns", "if", "var_data", "[", "0", "]", ":", "#columns are different, copy all, rename them", "for", "var", ",", "table_key", "in", "var_data", "[", "1", "]", ":", "idx", "=", "list", "(", "self", ".", "data", ")", ".", "index", "(", "table_key", ")", "+", "1", "new_atr", "=", "var", ".", "copy", "(", "name", "=", "f'{var_name.name} ({idx})'", ")", "if", "columns", "and", "atr_type", "==", "'attributes'", ":", "new_atr", ".", "attributes", "[", "'Selected'", "]", "=", "is_selected", "domain", "[", "atr_type", "]", ".", "append", "(", "new_atr", ")", "renamed", ".", "append", "(", "var_name", ".", "name", ")", "values", "[", "atr_type", "]", ".", "append", "(", "getattr", "(", "self", ".", "data", "[", "table_key", "]", ".", "table", "[", ":", ",", "var_name", "]", ",", "self", ".", "atr_vals", "[", "atr_type", "]", ")", ".", "reshape", "(", "-", "1", ",", "1", ")", ")", "else", ":", "new_atr", "=", "var_data", "[", "1", "]", "[", "0", "]", "[", "0", "]", ".", "copy", "(", ")", "if", "columns", "and", "atr_type", "==", "'attributes'", ":", "new_atr", ".", "attributes", "[", "'Selected'", "]", "=", "is_selected", "domain", "[", "atr_type", "]", ".", "append", "(", "new_atr", ")", "values", "[", "atr_type", "]", ".", "append", "(", "getattr", "(", "self", ".", "data", "[", "var_data", "[", "1", "]", "[", "0", "]", "[", "1", "]", "]", ".", "table", "[", ":", ",", "var_name", "]", ",", "self", ".", "atr_vals", "[", "atr_type", "]", ")", ".", "reshape", "(", "-", "1", ",", "1", ")", ")", "if", "renamed", ":", "self", ".", "Warning", ".", "renamed_vars", "(", "', '", ".", "join", "(", "renamed", ")", ")", "return", "self", ".", "merge_data", "(", "domain", ",", "values", ")" ]
https://github.com/biolab/orange3/blob/41685e1c7b1d1babe680113685a2d44bcc9fec0b/Orange/widgets/visualize/owvenndiagram.py#L452-L481
natewong1313/bird-bot
0a76dca2157c021c6cd5734928b1ffcf46a2b3b2
pages/settingspage.py
python
SettingsPage.update_settings
(self,settings_data)
[]
def update_settings(self,settings_data): global webhook, webhook_on_browser, webhook_on_order, webhook_on_failed, browser_on_failed settings.webhook, settings.webhook_on_browser, settings.webhook_on_order, settings.webhook_on_failed, settings.browser_on_failed, settings.buy_one = settings_data["webhook"], settings_data["webhookonbrowser"], settings_data["webhookonorder"], settings_data["webhookonfailed"], settings_data["browseronfailed"], settings_data['onlybuyone']
[ "def", "update_settings", "(", "self", ",", "settings_data", ")", ":", "global", "webhook", ",", "webhook_on_browser", ",", "webhook_on_order", ",", "webhook_on_failed", ",", "browser_on_failed", "settings", ".", "webhook", ",", "settings", ".", "webhook_on_browser", ",", "settings", ".", "webhook_on_order", ",", "settings", ".", "webhook_on_failed", ",", "settings", ".", "browser_on_failed", ",", "settings", ".", "buy_one", "=", "settings_data", "[", "\"webhook\"", "]", ",", "settings_data", "[", "\"webhookonbrowser\"", "]", ",", "settings_data", "[", "\"webhookonorder\"", "]", ",", "settings_data", "[", "\"webhookonfailed\"", "]", ",", "settings_data", "[", "\"browseronfailed\"", "]", ",", "settings_data", "[", "'onlybuyone'", "]" ]
https://github.com/natewong1313/bird-bot/blob/0a76dca2157c021c6cd5734928b1ffcf46a2b3b2/pages/settingspage.py#L116-L118
wistbean/learn_python3_spider
73c873f4845f4385f097e5057407d03dd37a117b
stackoverflow/venv/lib/python3.6/site-packages/zope/interface/interface.py
python
Element.getName
(self)
return self.__name__
Returns the name of the object.
Returns the name of the object.
[ "Returns", "the", "name", "of", "the", "object", "." ]
def getName(self): """ Returns the name of the object. """ return self.__name__
[ "def", "getName", "(", "self", ")", ":", "return", "self", ".", "__name__" ]
https://github.com/wistbean/learn_python3_spider/blob/73c873f4845f4385f097e5057407d03dd37a117b/stackoverflow/venv/lib/python3.6/site-packages/zope/interface/interface.py#L69-L71
barseghyanartur/django-elasticsearch-dsl-drf
8fe35265d44501269b2603570773be47f20fa471
examples/simple/factories/books_book.py
python
BookWithoutTagsAndOrdersFactory.orders
(obj, created, extracted, **kwargs)
Dummy.
Dummy.
[ "Dummy", "." ]
def orders(obj, created, extracted, **kwargs): """Dummy."""
[ "def", "orders", "(", "obj", ",", "created", ",", "extracted", ",", "*", "*", "kwargs", ")", ":" ]
https://github.com/barseghyanartur/django-elasticsearch-dsl-drf/blob/8fe35265d44501269b2603570773be47f20fa471/examples/simple/factories/books_book.py#L161-L162
wikimedia/pywikibot
81a01ffaec7271bf5b4b170f85a80388420a4e78
pywikibot/logging.py
python
log
(text: object, decoder: Optional[str] = None, newline: bool = True, **kwargs: Any)
Output a record to the log file. :param text: the message which is to be logged to the log file. :param decoder: If None, text should be a unicode string else it should be encoded in the given encoding. :param newline: If True, a line feed will be added after printing the text. :param kwargs: The keyword arguments can be found in the python doc: https://docs.python.org/3/howto/logging-cookbook.html
Output a record to the log file.
[ "Output", "a", "record", "to", "the", "log", "file", "." ]
def log(text: object, decoder: Optional[str] = None, newline: bool = True, **kwargs: Any) -> None: """Output a record to the log file. :param text: the message which is to be logged to the log file. :param decoder: If None, text should be a unicode string else it should be encoded in the given encoding. :param newline: If True, a line feed will be added after printing the text. :param kwargs: The keyword arguments can be found in the python doc: https://docs.python.org/3/howto/logging-cookbook.html """ logoutput(text, decoder, newline, VERBOSE, **kwargs)
[ "def", "log", "(", "text", ":", "object", ",", "decoder", ":", "Optional", "[", "str", "]", "=", "None", ",", "newline", ":", "bool", "=", "True", ",", "*", "*", "kwargs", ":", "Any", ")", "->", "None", ":", "logoutput", "(", "text", ",", "decoder", ",", "newline", ",", "VERBOSE", ",", "*", "*", "kwargs", ")" ]
https://github.com/wikimedia/pywikibot/blob/81a01ffaec7271bf5b4b170f85a80388420a4e78/pywikibot/logging.py#L182-L193
arrayfire/arrayfire-python
96fa9768ee02e5fb5ffcaf3d1f744c898b141637
arrayfire/arith.py
python
exp
(a)
return _arith_unary_func(a, backend.get().af_exp)
Exponential of each element in the array. Parameters ---------- a : af.Array Multi dimensional arrayfire array. Returns -------- out : af.Array array containing the exponential of each value from `a`. Note ------- `a` must not be complex.
Exponential of each element in the array.
[ "Exponential", "of", "each", "element", "in", "the", "array", "." ]
def exp(a): """ Exponential of each element in the array. Parameters ---------- a : af.Array Multi dimensional arrayfire array. Returns -------- out : af.Array array containing the exponential of each value from `a`. Note ------- `a` must not be complex. """ return _arith_unary_func(a, backend.get().af_exp)
[ "def", "exp", "(", "a", ")", ":", "return", "_arith_unary_func", "(", "a", ",", "backend", ".", "get", "(", ")", ".", "af_exp", ")" ]
https://github.com/arrayfire/arrayfire-python/blob/96fa9768ee02e5fb5ffcaf3d1f744c898b141637/arrayfire/arith.py#L779-L797
sio2project/oioioi
adeb6a7b278b6bed853405e525f87fd2726c06ac
oioioi/sinolpack/package.py
python
SinolPackage._process_attachments
(self)
Removes previously added attachments for the problem, and saves new ones from the attachment directory.
Removes previously added attachments for the problem, and saves new ones from the attachment directory.
[ "Removes", "previously", "added", "attachments", "for", "the", "problem", "and", "saves", "new", "ones", "from", "the", "attachment", "directory", "." ]
def _process_attachments(self): """Removes previously added attachments for the problem, and saves new ones from the attachment directory. """ problem_attachments = ProblemAttachment.objects.filter(problem=self.problem) if problem_attachments is not None: problem_attachments.delete() attachments_dir = os.path.join(self.rootdir, 'attachments') if not os.path.isdir(attachments_dir): return attachments = [ attachment for attachment in os.listdir(attachments_dir) if os.path.isfile(os.path.join(attachments_dir, attachment)) ] if len(attachments) == 0: return for attachment in attachments: path = os.path.join(attachments_dir, attachment) instance = ProblemAttachment(problem=self.problem, description=attachment) instance.content.save(attachment, File(open(path, 'rb'))) logger.info('%s: attachment: %s', path, attachment)
[ "def", "_process_attachments", "(", "self", ")", ":", "problem_attachments", "=", "ProblemAttachment", ".", "objects", ".", "filter", "(", "problem", "=", "self", ".", "problem", ")", "if", "problem_attachments", "is", "not", "None", ":", "problem_attachments", ".", "delete", "(", ")", "attachments_dir", "=", "os", ".", "path", ".", "join", "(", "self", ".", "rootdir", ",", "'attachments'", ")", "if", "not", "os", ".", "path", ".", "isdir", "(", "attachments_dir", ")", ":", "return", "attachments", "=", "[", "attachment", "for", "attachment", "in", "os", ".", "listdir", "(", "attachments_dir", ")", "if", "os", ".", "path", ".", "isfile", "(", "os", ".", "path", ".", "join", "(", "attachments_dir", ",", "attachment", ")", ")", "]", "if", "len", "(", "attachments", ")", "==", "0", ":", "return", "for", "attachment", "in", "attachments", ":", "path", "=", "os", ".", "path", ".", "join", "(", "attachments_dir", ",", "attachment", ")", "instance", "=", "ProblemAttachment", "(", "problem", "=", "self", ".", "problem", ",", "description", "=", "attachment", ")", "instance", ".", "content", ".", "save", "(", "attachment", ",", "File", "(", "open", "(", "path", ",", "'rb'", ")", ")", ")", "logger", ".", "info", "(", "'%s: attachment: %s'", ",", "path", ",", "attachment", ")" ]
https://github.com/sio2project/oioioi/blob/adeb6a7b278b6bed853405e525f87fd2726c06ac/oioioi/sinolpack/package.py#L1232-L1255
ARM-DOE/pyart
72affe5b669f1996cd3cc39ec7d8dd29b838bd48
pyart/core/transforms.py
python
cartesian_to_geographic
(x, y, projparams)
return lon, lat
Cartesian to Geographic coordinate transform. Transform a set of Cartesian/Cartographic coordinates (x, y) to a geographic coordinate system (lat, lon) using pyproj or a build in Azimuthal equidistant projection. Parameters ---------- x, y : array-like Cartesian coordinates in meters unless R is defined in different units in the projparams parameter. projparams : dict or str Projection parameters passed to pyproj.Proj. If this parameter is a dictionary with a 'proj' key equal to 'pyart_aeqd' then a azimuthal equidistant projection will be used that is native to Py-ART and does not require pyproj to be installed. In this case a non-default value of R can be specified by setting the 'R' key to the desired value. Returns ------- lon, lat : array Longitude and latitude of the Cartesian coordinates in degrees.
Cartesian to Geographic coordinate transform.
[ "Cartesian", "to", "Geographic", "coordinate", "transform", "." ]
def cartesian_to_geographic(x, y, projparams): """ Cartesian to Geographic coordinate transform. Transform a set of Cartesian/Cartographic coordinates (x, y) to a geographic coordinate system (lat, lon) using pyproj or a build in Azimuthal equidistant projection. Parameters ---------- x, y : array-like Cartesian coordinates in meters unless R is defined in different units in the projparams parameter. projparams : dict or str Projection parameters passed to pyproj.Proj. If this parameter is a dictionary with a 'proj' key equal to 'pyart_aeqd' then a azimuthal equidistant projection will be used that is native to Py-ART and does not require pyproj to be installed. In this case a non-default value of R can be specified by setting the 'R' key to the desired value. Returns ------- lon, lat : array Longitude and latitude of the Cartesian coordinates in degrees. """ if isinstance(projparams, dict) and projparams.get('proj') == 'pyart_aeqd': # Use Py-ART's Azimuthal equidistance projection lon_0 = projparams['lon_0'] lat_0 = projparams['lat_0'] if 'R' in projparams: R = projparams['R'] lon, lat = cartesian_to_geographic_aeqd(x, y, lon_0, lat_0, R) else: lon, lat = cartesian_to_geographic_aeqd(x, y, lon_0, lat_0) else: # Use pyproj for the projection # check that pyproj is available if not _PYPROJ_AVAILABLE: raise MissingOptionalDependency( "PyProj is required to use cartesian_to_geographic " "with a projection other than pyart_aeqd but it is not " "installed") proj = pyproj.Proj(projparams) lon, lat = proj(x, y, inverse=True) return lon, lat
[ "def", "cartesian_to_geographic", "(", "x", ",", "y", ",", "projparams", ")", ":", "if", "isinstance", "(", "projparams", ",", "dict", ")", "and", "projparams", ".", "get", "(", "'proj'", ")", "==", "'pyart_aeqd'", ":", "# Use Py-ART's Azimuthal equidistance projection", "lon_0", "=", "projparams", "[", "'lon_0'", "]", "lat_0", "=", "projparams", "[", "'lat_0'", "]", "if", "'R'", "in", "projparams", ":", "R", "=", "projparams", "[", "'R'", "]", "lon", ",", "lat", "=", "cartesian_to_geographic_aeqd", "(", "x", ",", "y", ",", "lon_0", ",", "lat_0", ",", "R", ")", "else", ":", "lon", ",", "lat", "=", "cartesian_to_geographic_aeqd", "(", "x", ",", "y", ",", "lon_0", ",", "lat_0", ")", "else", ":", "# Use pyproj for the projection", "# check that pyproj is available", "if", "not", "_PYPROJ_AVAILABLE", ":", "raise", "MissingOptionalDependency", "(", "\"PyProj is required to use cartesian_to_geographic \"", "\"with a projection other than pyart_aeqd but it is not \"", "\"installed\"", ")", "proj", "=", "pyproj", ".", "Proj", "(", "projparams", ")", "lon", ",", "lat", "=", "proj", "(", "x", ",", "y", ",", "inverse", "=", "True", ")", "return", "lon", ",", "lat" ]
https://github.com/ARM-DOE/pyart/blob/72affe5b669f1996cd3cc39ec7d8dd29b838bd48/pyart/core/transforms.py#L462-L508
mlrun/mlrun
4c120719d64327a34b7ee1ab08fb5e01b258b00a
mlrun/db/httpdb.py
python
HTTPRunDB.remote_start
(self, func_url)
return schemas.BackgroundTask(**resp.json())
Execute a function remotely, Used for ``dask`` functions. :param func_url: URL to the function to be executed. :returns: A BackgroundTask object, with details on execution process and its status.
Execute a function remotely, Used for ``dask`` functions.
[ "Execute", "a", "function", "remotely", "Used", "for", "dask", "functions", "." ]
def remote_start(self, func_url) -> schemas.BackgroundTask: """ Execute a function remotely, Used for ``dask`` functions. :param func_url: URL to the function to be executed. :returns: A BackgroundTask object, with details on execution process and its status. """ try: req = {"functionUrl": func_url} resp = self.api_call( "POST", "start/function", json=req, timeout=int(config.submit_timeout) or 60, ) except OSError as err: logger.error(f"error starting function: {err}") raise OSError(f"error: cannot start function, {err}") if not resp.ok: logger.error(f"bad resp!!\n{resp.text}") raise ValueError("bad function start response") return schemas.BackgroundTask(**resp.json())
[ "def", "remote_start", "(", "self", ",", "func_url", ")", "->", "schemas", ".", "BackgroundTask", ":", "try", ":", "req", "=", "{", "\"functionUrl\"", ":", "func_url", "}", "resp", "=", "self", ".", "api_call", "(", "\"POST\"", ",", "\"start/function\"", ",", "json", "=", "req", ",", "timeout", "=", "int", "(", "config", ".", "submit_timeout", ")", "or", "60", ",", ")", "except", "OSError", "as", "err", ":", "logger", ".", "error", "(", "f\"error starting function: {err}\"", ")", "raise", "OSError", "(", "f\"error: cannot start function, {err}\"", ")", "if", "not", "resp", ".", "ok", ":", "logger", ".", "error", "(", "f\"bad resp!!\\n{resp.text}\"", ")", "raise", "ValueError", "(", "\"bad function start response\"", ")", "return", "schemas", ".", "BackgroundTask", "(", "*", "*", "resp", ".", "json", "(", ")", ")" ]
https://github.com/mlrun/mlrun/blob/4c120719d64327a34b7ee1ab08fb5e01b258b00a/mlrun/db/httpdb.py#L1170-L1193
phantomcyber/playbooks
9e850ecc44cb98c5dde53784744213a1ed5799bd
zscaler_hunt_and_block_url.py
python
regular_long_description
(action=None, success=None, container=None, results=None, handle=None, filtered_artifacts=None, filtered_results=None, custom_function=None, **kwargs)
return
[]
def regular_long_description(action=None, success=None, container=None, results=None, handle=None, filtered_artifacts=None, filtered_results=None, custom_function=None, **kwargs): phantom.debug('regular_long_description() called') template = """Endpoint as trying to access a known bad URL: {0} Positives from VirusTotal: {1} Link to Phantom Incident: https://172.16.22.128/mission/{3} Splunk Results: {2}""" # parameter list for template variable replacement parameters = [ "artifact:*.cef.requestURL", "url_reputation_2:action_result.summary.positives", "filtered-data:filter_3:condition_1:run_query_1:action_result.data.*._raw", "container:id", ] phantom.format(container=container, template=template, parameters=parameters, name="regular_long_description") create_regular_ticket(container=container) return
[ "def", "regular_long_description", "(", "action", "=", "None", ",", "success", "=", "None", ",", "container", "=", "None", ",", "results", "=", "None", ",", "handle", "=", "None", ",", "filtered_artifacts", "=", "None", ",", "filtered_results", "=", "None", ",", "custom_function", "=", "None", ",", "*", "*", "kwargs", ")", ":", "phantom", ".", "debug", "(", "'regular_long_description() called'", ")", "template", "=", "\"\"\"Endpoint as trying to access a known bad URL:\n{0}\n\nPositives from VirusTotal: {1}\n\nLink to Phantom Incident: \nhttps://172.16.22.128/mission/{3}\n\nSplunk Results: \n{2}\"\"\"", "# parameter list for template variable replacement", "parameters", "=", "[", "\"artifact:*.cef.requestURL\"", ",", "\"url_reputation_2:action_result.summary.positives\"", ",", "\"filtered-data:filter_3:condition_1:run_query_1:action_result.data.*._raw\"", ",", "\"container:id\"", ",", "]", "phantom", ".", "format", "(", "container", "=", "container", ",", "template", "=", "template", ",", "parameters", "=", "parameters", ",", "name", "=", "\"regular_long_description\"", ")", "create_regular_ticket", "(", "container", "=", "container", ")", "return" ]
https://github.com/phantomcyber/playbooks/blob/9e850ecc44cb98c5dde53784744213a1ed5799bd/zscaler_hunt_and_block_url.py#L354-L380
RhetTbull/osxphotos
231d13279296ee4a242d3140d8abe7b5a5bcc9c0
osxphotos/photoinfo.py
python
PhotoInfo.exiftool
(self)
Returns a ExifToolCaching (read-only instance of ExifTool) object for the photo. Requires that exiftool (https://exiftool.org/) be installed If exiftool not installed, logs warning and returns None If photo path is missing, returns None
Returns a ExifToolCaching (read-only instance of ExifTool) object for the photo. Requires that exiftool (https://exiftool.org/) be installed If exiftool not installed, logs warning and returns None If photo path is missing, returns None
[ "Returns", "a", "ExifToolCaching", "(", "read", "-", "only", "instance", "of", "ExifTool", ")", "object", "for", "the", "photo", ".", "Requires", "that", "exiftool", "(", "https", ":", "//", "exiftool", ".", "org", "/", ")", "be", "installed", "If", "exiftool", "not", "installed", "logs", "warning", "and", "returns", "None", "If", "photo", "path", "is", "missing", "returns", "None" ]
def exiftool(self): """Returns a ExifToolCaching (read-only instance of ExifTool) object for the photo. Requires that exiftool (https://exiftool.org/) be installed If exiftool not installed, logs warning and returns None If photo path is missing, returns None """ try: # return the memoized instance if it exists return self._exiftool except AttributeError: try: exiftool_path = self._db._exiftool_path or get_exiftool_path() if self.path is not None and os.path.isfile(self.path): exiftool = ExifToolCaching(self.path, exiftool=exiftool_path) else: exiftool = None except FileNotFoundError: # get_exiftool_path raises FileNotFoundError if exiftool not found exiftool = None logging.warning( "exiftool not in path; download and install from https://exiftool.org/" ) self._exiftool = exiftool return self._exiftool
[ "def", "exiftool", "(", "self", ")", ":", "try", ":", "# return the memoized instance if it exists", "return", "self", ".", "_exiftool", "except", "AttributeError", ":", "try", ":", "exiftool_path", "=", "self", ".", "_db", ".", "_exiftool_path", "or", "get_exiftool_path", "(", ")", "if", "self", ".", "path", "is", "not", "None", "and", "os", ".", "path", ".", "isfile", "(", "self", ".", "path", ")", ":", "exiftool", "=", "ExifToolCaching", "(", "self", ".", "path", ",", "exiftool", "=", "exiftool_path", ")", "else", ":", "exiftool", "=", "None", "except", "FileNotFoundError", ":", "# get_exiftool_path raises FileNotFoundError if exiftool not found", "exiftool", "=", "None", "logging", ".", "warning", "(", "\"exiftool not in path; download and install from https://exiftool.org/\"", ")", "self", ".", "_exiftool", "=", "exiftool", "return", "self", ".", "_exiftool" ]
https://github.com/RhetTbull/osxphotos/blob/231d13279296ee4a242d3140d8abe7b5a5bcc9c0/osxphotos/photoinfo.py#L1328-L1352
rembo10/headphones
b3199605be1ebc83a7a8feab6b1e99b64014187c
lib/biplist/__init__.py
python
PlistWriter.writeRoot
(self, root)
Strategy is: - write header - wrap root object so everything is hashable - compute size of objects which will be written - need to do this in order to know how large the object refs will be in the list/dict/set reference lists - write objects - keep objects in writtenReferences - keep positions of object references in referencePositions - write object references with the length computed previously - computer object reference length - write object reference positions - write trailer
Strategy is: - write header - wrap root object so everything is hashable - compute size of objects which will be written - need to do this in order to know how large the object refs will be in the list/dict/set reference lists - write objects - keep objects in writtenReferences - keep positions of object references in referencePositions - write object references with the length computed previously - computer object reference length - write object reference positions - write trailer
[ "Strategy", "is", ":", "-", "write", "header", "-", "wrap", "root", "object", "so", "everything", "is", "hashable", "-", "compute", "size", "of", "objects", "which", "will", "be", "written", "-", "need", "to", "do", "this", "in", "order", "to", "know", "how", "large", "the", "object", "refs", "will", "be", "in", "the", "list", "/", "dict", "/", "set", "reference", "lists", "-", "write", "objects", "-", "keep", "objects", "in", "writtenReferences", "-", "keep", "positions", "of", "object", "references", "in", "referencePositions", "-", "write", "object", "references", "with", "the", "length", "computed", "previously", "-", "computer", "object", "reference", "length", "-", "write", "object", "reference", "positions", "-", "write", "trailer" ]
def writeRoot(self, root): """ Strategy is: - write header - wrap root object so everything is hashable - compute size of objects which will be written - need to do this in order to know how large the object refs will be in the list/dict/set reference lists - write objects - keep objects in writtenReferences - keep positions of object references in referencePositions - write object references with the length computed previously - computer object reference length - write object reference positions - write trailer """ output = self.header wrapped_root = self.wrapRoot(root) should_reference_root = True#not isinstance(wrapped_root, HashableWrapper) self.computeOffsets(wrapped_root, asReference=should_reference_root, isRoot=True) self.trailer = self.trailer._replace(**{'objectRefSize':self.intSize(len(self.computedUniques))}) (_, output) = self.writeObjectReference(wrapped_root, output) output = self.writeObject(wrapped_root, output, setReferencePosition=True) # output size at this point is an upper bound on how big the # object reference offsets need to be. self.trailer = self.trailer._replace(**{ 'offsetSize':self.intSize(len(output)), 'offsetCount':len(self.computedUniques), 'offsetTableOffset':len(output), 'topLevelObjectNumber':0 }) output = self.writeOffsetTable(output) output += pack('!xxxxxxBBQQQ', *self.trailer) self.file.write(output)
[ "def", "writeRoot", "(", "self", ",", "root", ")", ":", "output", "=", "self", ".", "header", "wrapped_root", "=", "self", ".", "wrapRoot", "(", "root", ")", "should_reference_root", "=", "True", "#not isinstance(wrapped_root, HashableWrapper)", "self", ".", "computeOffsets", "(", "wrapped_root", ",", "asReference", "=", "should_reference_root", ",", "isRoot", "=", "True", ")", "self", ".", "trailer", "=", "self", ".", "trailer", ".", "_replace", "(", "*", "*", "{", "'objectRefSize'", ":", "self", ".", "intSize", "(", "len", "(", "self", ".", "computedUniques", ")", ")", "}", ")", "(", "_", ",", "output", ")", "=", "self", ".", "writeObjectReference", "(", "wrapped_root", ",", "output", ")", "output", "=", "self", ".", "writeObject", "(", "wrapped_root", ",", "output", ",", "setReferencePosition", "=", "True", ")", "# output size at this point is an upper bound on how big the", "# object reference offsets need to be.", "self", ".", "trailer", "=", "self", ".", "trailer", ".", "_replace", "(", "*", "*", "{", "'offsetSize'", ":", "self", ".", "intSize", "(", "len", "(", "output", ")", ")", ",", "'offsetCount'", ":", "len", "(", "self", ".", "computedUniques", ")", ",", "'offsetTableOffset'", ":", "len", "(", "output", ")", ",", "'topLevelObjectNumber'", ":", "0", "}", ")", "output", "=", "self", ".", "writeOffsetTable", "(", "output", ")", "output", "+=", "pack", "(", "'!xxxxxxBBQQQ'", ",", "*", "self", ".", "trailer", ")", "self", ".", "file", ".", "write", "(", "output", ")" ]
https://github.com/rembo10/headphones/blob/b3199605be1ebc83a7a8feab6b1e99b64014187c/lib/biplist/__init__.py#L492-L527
henkelis/sonospy
841f52010fd6e1e932d8f1a8896ad4e5a0667b8a
web2py/gluon/tools.py
python
Auth.del_membership
(self, group_id, user_id=None)
return self.db(membership.user_id == user_id)(membership.group_id == group_id).delete()
revokes membership from group_id to user_id if group_id==None than user_id is that of current logged in user
revokes membership from group_id to user_id if group_id==None than user_id is that of current logged in user
[ "revokes", "membership", "from", "group_id", "to", "user_id", "if", "group_id", "==", "None", "than", "user_id", "is", "that", "of", "current", "logged", "in", "user" ]
def del_membership(self, group_id, user_id=None): """ revokes membership from group_id to user_id if group_id==None than user_id is that of current logged in user """ if not user_id and self.user: user_id = self.user.id membership = self.settings.table_membership log = self.messages.del_membership_log if log: self.log_event(log % dict(user_id=user_id, group_id=group_id)) return self.db(membership.user_id == user_id)(membership.group_id == group_id).delete()
[ "def", "del_membership", "(", "self", ",", "group_id", ",", "user_id", "=", "None", ")", ":", "if", "not", "user_id", "and", "self", ".", "user", ":", "user_id", "=", "self", ".", "user", ".", "id", "membership", "=", "self", ".", "settings", ".", "table_membership", "log", "=", "self", ".", "messages", ".", "del_membership_log", "if", "log", ":", "self", ".", "log_event", "(", "log", "%", "dict", "(", "user_id", "=", "user_id", ",", "group_id", "=", "group_id", ")", ")", "return", "self", ".", "db", "(", "membership", ".", "user_id", "==", "user_id", ")", "(", "membership", ".", "group_id", "==", "group_id", ")", ".", "delete", "(", ")" ]
https://github.com/henkelis/sonospy/blob/841f52010fd6e1e932d8f1a8896ad4e5a0667b8a/web2py/gluon/tools.py#L2010-L2025
TencentCloud/tencentcloud-sdk-python
3677fd1cdc8c5fd626ce001c13fd3b59d1f279d2
tencentcloud/redis/v20180412/models.py
python
InquiryPriceCreateInstanceRequest.__init__
(self)
r""" :param TypeId: 实例类型:2 – Redis2.8内存版(标准架构),3 – CKV 3.2内存版(标准架构),4 – CKV 3.2内存版(集群架构),6 – Redis4.0内存版(标准架构),7 – Redis4.0内存版(集群架构),8 – Redis5.0内存版(标准架构),9 – Redis5.0内存版(集群架构)。 :type TypeId: int :param MemSize: 内存容量,单位为MB, 数值需为1024的整数倍,具体规格以 [查询产品售卖规格](https://cloud.tencent.com/document/api/239/30600) 返回的规格为准。 TypeId为标准架构时,MemSize是实例总内存容量;TypeId为集群架构时,MemSize是单分片内存容量。 :type MemSize: int :param GoodsNum: 实例数量,单次购买实例数量以 [查询产品售卖规格](https://cloud.tencent.com/document/api/239/30600) 返回的规格为准。 :type GoodsNum: int :param Period: 购买时长,在创建包年包月实例的时候需要填写,按量计费实例填1即可,单位:月,取值范围 [1,2,3,4,5,6,7,8,9,10,11,12,24,36]。 :type Period: int :param BillingMode: 付费方式:0-按量计费,1-包年包月。 :type BillingMode: int :param ZoneId: 实例所属的可用区ID,可参考[地域和可用区](https://cloud.tencent.com/document/product/239/4106) 。 :type ZoneId: int :param RedisShardNum: 实例分片数量,Redis2.8标准架构、CKV标准架构和Redis2.8单机版、Redis4.0标准架构不需要填写。 :type RedisShardNum: int :param RedisReplicasNum: 实例副本数量,Redis2.8标准架构、CKV标准架构和Redis2.8单机版不需要填写。 :type RedisReplicasNum: int :param ReplicasReadonly: 是否支持副本只读,Redis2.8标准架构、CKV标准架构和Redis2.8单机版不需要填写。 :type ReplicasReadonly: bool :param ZoneName: 实例所属的可用区名称,可参考[地域和可用区](https://cloud.tencent.com/document/product/239/4106) 。 :type ZoneName: str
r""" :param TypeId: 实例类型:2 – Redis2.8内存版(标准架构),3 – CKV 3.2内存版(标准架构),4 – CKV 3.2内存版(集群架构),6 – Redis4.0内存版(标准架构),7 – Redis4.0内存版(集群架构),8 – Redis5.0内存版(标准架构),9 – Redis5.0内存版(集群架构)。 :type TypeId: int :param MemSize: 内存容量,单位为MB, 数值需为1024的整数倍,具体规格以 [查询产品售卖规格](https://cloud.tencent.com/document/api/239/30600) 返回的规格为准。 TypeId为标准架构时,MemSize是实例总内存容量;TypeId为集群架构时,MemSize是单分片内存容量。 :type MemSize: int :param GoodsNum: 实例数量,单次购买实例数量以 [查询产品售卖规格](https://cloud.tencent.com/document/api/239/30600) 返回的规格为准。 :type GoodsNum: int :param Period: 购买时长,在创建包年包月实例的时候需要填写,按量计费实例填1即可,单位:月,取值范围 [1,2,3,4,5,6,7,8,9,10,11,12,24,36]。 :type Period: int :param BillingMode: 付费方式:0-按量计费,1-包年包月。 :type BillingMode: int :param ZoneId: 实例所属的可用区ID,可参考[地域和可用区](https://cloud.tencent.com/document/product/239/4106) 。 :type ZoneId: int :param RedisShardNum: 实例分片数量,Redis2.8标准架构、CKV标准架构和Redis2.8单机版、Redis4.0标准架构不需要填写。 :type RedisShardNum: int :param RedisReplicasNum: 实例副本数量,Redis2.8标准架构、CKV标准架构和Redis2.8单机版不需要填写。 :type RedisReplicasNum: int :param ReplicasReadonly: 是否支持副本只读,Redis2.8标准架构、CKV标准架构和Redis2.8单机版不需要填写。 :type ReplicasReadonly: bool :param ZoneName: 实例所属的可用区名称,可参考[地域和可用区](https://cloud.tencent.com/document/product/239/4106) 。 :type ZoneName: str
[ "r", ":", "param", "TypeId", ":", "实例类型:2", "–", "Redis2", ".", "8内存版", "(", "标准架构", ")", ",3", "–", "CKV", "3", ".", "2内存版", "(", "标准架构", ")", ",4", "–", "CKV", "3", ".", "2内存版", "(", "集群架构", ")", ",6", "–", "Redis4", ".", "0内存版", "(", "标准架构", ")", ",7", "–", "Redis4", ".", "0内存版", "(", "集群架构", ")", ",8", "–", "Redis5", ".", "0内存版", "(", "标准架构", ")", ",9", "–", "Redis5", ".", "0内存版", "(", "集群架构", ")", "。", ":", "type", "TypeId", ":", "int", ":", "param", "MemSize", ":", "内存容量,单位为MB,", "数值需为1024的整数倍,具体规格以", "[", "查询产品售卖规格", "]", "(", "https", ":", "//", "cloud", ".", "tencent", ".", "com", "/", "document", "/", "api", "/", "239", "/", "30600", ")", "返回的规格为准。", "TypeId为标准架构时,MemSize是实例总内存容量;TypeId为集群架构时,MemSize是单分片内存容量。", ":", "type", "MemSize", ":", "int", ":", "param", "GoodsNum", ":", "实例数量,单次购买实例数量以", "[", "查询产品售卖规格", "]", "(", "https", ":", "//", "cloud", ".", "tencent", ".", "com", "/", "document", "/", "api", "/", "239", "/", "30600", ")", "返回的规格为准。", ":", "type", "GoodsNum", ":", "int", ":", "param", "Period", ":", "购买时长,在创建包年包月实例的时候需要填写,按量计费实例填1即可,单位:月,取值范围", "[", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "24", "36", "]", "。", ":", "type", "Period", ":", "int", ":", "param", "BillingMode", ":", "付费方式", ":", "0", "-", "按量计费,1", "-", "包年包月。", ":", "type", "BillingMode", ":", "int", ":", "param", "ZoneId", ":", "实例所属的可用区ID,可参考", "[", "地域和可用区", "]", "(", "https", ":", "//", "cloud", ".", "tencent", ".", "com", "/", "document", "/", "product", "/", "239", "/", "4106", ")", "。", ":", "type", "ZoneId", ":", "int", ":", "param", "RedisShardNum", ":", "实例分片数量,Redis2", ".", "8标准架构、CKV标准架构和Redis2", ".", "8单机版、Redis4", ".", "0标准架构不需要填写。", ":", "type", "RedisShardNum", ":", "int", ":", "param", "RedisReplicasNum", ":", "实例副本数量,Redis2", ".", "8标准架构、CKV标准架构和Redis2", ".", "8单机版不需要填写。", ":", "type", "RedisReplicasNum", ":", "int", ":", "param", "ReplicasReadonly", ":", "是否支持副本只读,Redis2", ".", "8标准架构、CKV标准架构和Redis2", ".", "8单机版不需要填写。", ":", "type", "ReplicasReadonly", ":", "bool", ":", "param", "ZoneName", ":", "实例所属的可用区名称,可参考", "[", "地域和可用区", "]", "(", "https", ":", "//", "cloud", ".", "tencent", ".", "com", "/", "document", "/", "product", "/", "239", "/", "4106", ")", "。", ":", "type", "ZoneName", ":", "str" ]
def __init__(self): r""" :param TypeId: 实例类型:2 – Redis2.8内存版(标准架构),3 – CKV 3.2内存版(标准架构),4 – CKV 3.2内存版(集群架构),6 – Redis4.0内存版(标准架构),7 – Redis4.0内存版(集群架构),8 – Redis5.0内存版(标准架构),9 – Redis5.0内存版(集群架构)。 :type TypeId: int :param MemSize: 内存容量,单位为MB, 数值需为1024的整数倍,具体规格以 [查询产品售卖规格](https://cloud.tencent.com/document/api/239/30600) 返回的规格为准。 TypeId为标准架构时,MemSize是实例总内存容量;TypeId为集群架构时,MemSize是单分片内存容量。 :type MemSize: int :param GoodsNum: 实例数量,单次购买实例数量以 [查询产品售卖规格](https://cloud.tencent.com/document/api/239/30600) 返回的规格为准。 :type GoodsNum: int :param Period: 购买时长,在创建包年包月实例的时候需要填写,按量计费实例填1即可,单位:月,取值范围 [1,2,3,4,5,6,7,8,9,10,11,12,24,36]。 :type Period: int :param BillingMode: 付费方式:0-按量计费,1-包年包月。 :type BillingMode: int :param ZoneId: 实例所属的可用区ID,可参考[地域和可用区](https://cloud.tencent.com/document/product/239/4106) 。 :type ZoneId: int :param RedisShardNum: 实例分片数量,Redis2.8标准架构、CKV标准架构和Redis2.8单机版、Redis4.0标准架构不需要填写。 :type RedisShardNum: int :param RedisReplicasNum: 实例副本数量,Redis2.8标准架构、CKV标准架构和Redis2.8单机版不需要填写。 :type RedisReplicasNum: int :param ReplicasReadonly: 是否支持副本只读,Redis2.8标准架构、CKV标准架构和Redis2.8单机版不需要填写。 :type ReplicasReadonly: bool :param ZoneName: 实例所属的可用区名称,可参考[地域和可用区](https://cloud.tencent.com/document/product/239/4106) 。 :type ZoneName: str """ self.TypeId = None self.MemSize = None self.GoodsNum = None self.Period = None self.BillingMode = None self.ZoneId = None self.RedisShardNum = None self.RedisReplicasNum = None self.ReplicasReadonly = None self.ZoneName = None
[ "def", "__init__", "(", "self", ")", ":", "self", ".", "TypeId", "=", "None", "self", ".", "MemSize", "=", "None", "self", ".", "GoodsNum", "=", "None", "self", ".", "Period", "=", "None", "self", ".", "BillingMode", "=", "None", "self", ".", "ZoneId", "=", "None", "self", ".", "RedisShardNum", "=", "None", "self", ".", "RedisReplicasNum", "=", "None", "self", ".", "ReplicasReadonly", "=", "None", "self", ".", "ZoneName", "=", "None" ]
https://github.com/TencentCloud/tencentcloud-sdk-python/blob/3677fd1cdc8c5fd626ce001c13fd3b59d1f279d2/tencentcloud/redis/v20180412/models.py#L3478-L3511
keiohta/tf2rl
43523930b3328b28fcf2ce64e6a9a8cf4a403044
tf2rl/algos/bi_res_ddpg.py
python
BiResDDPG.__init__
(self, eta=0.05, name="BiResDDPG", **kwargs)
Initialize BiResDDPG agent Args: eta (float): Gradients mixing factor. name (str): Name of agent. The default is ``"BiResDDPG"``. state_shape (iterable of int): action_dim (int): max_action (float): Size of maximum action. (``-max_action`` <= action <= ``max_action``). The degault is ``1``. lr_actor (float): Learning rate for actor network. The default is ``0.001``. lr_critic (float): Learning rage for critic network. The default is ``0.001``. actor_units (iterable of int): Number of units at hidden layers of actor. critic_units (iterable of int): Number of units at hidden layers of critic. sigma (float): Standard deviation of Gaussian noise. The default is ``0.1``. tau (float): Weight update ratio for target network. ``target = (1-tau)*target + tau*network`` The default is ``0.005``. n_warmup (int): Number of warmup steps before training. The default is ``1e4``. memory_capacity (int): Replay Buffer size. The default is ``1e4``. batch_size (int): Batch size. The default is ``256``. discount (float): Discount factor. The default is ``0.99``. max_grad (float): Maximum gradient. The default is ``10``. gpu (int): GPU id. ``-1`` disables GPU. The default is ``0``.
Initialize BiResDDPG agent
[ "Initialize", "BiResDDPG", "agent" ]
def __init__(self, eta=0.05, name="BiResDDPG", **kwargs): """ Initialize BiResDDPG agent Args: eta (float): Gradients mixing factor. name (str): Name of agent. The default is ``"BiResDDPG"``. state_shape (iterable of int): action_dim (int): max_action (float): Size of maximum action. (``-max_action`` <= action <= ``max_action``). The degault is ``1``. lr_actor (float): Learning rate for actor network. The default is ``0.001``. lr_critic (float): Learning rage for critic network. The default is ``0.001``. actor_units (iterable of int): Number of units at hidden layers of actor. critic_units (iterable of int): Number of units at hidden layers of critic. sigma (float): Standard deviation of Gaussian noise. The default is ``0.1``. tau (float): Weight update ratio for target network. ``target = (1-tau)*target + tau*network`` The default is ``0.005``. n_warmup (int): Number of warmup steps before training. The default is ``1e4``. memory_capacity (int): Replay Buffer size. The default is ``1e4``. batch_size (int): Batch size. The default is ``256``. discount (float): Discount factor. The default is ``0.99``. max_grad (float): Maximum gradient. The default is ``10``. gpu (int): GPU id. ``-1`` disables GPU. The default is ``0``. """ kwargs["name"] = name super().__init__(**kwargs) self._eta = eta
[ "def", "__init__", "(", "self", ",", "eta", "=", "0.05", ",", "name", "=", "\"BiResDDPG\"", ",", "*", "*", "kwargs", ")", ":", "kwargs", "[", "\"name\"", "]", "=", "name", "super", "(", ")", ".", "__init__", "(", "*", "*", "kwargs", ")", "self", ".", "_eta", "=", "eta" ]
https://github.com/keiohta/tf2rl/blob/43523930b3328b28fcf2ce64e6a9a8cf4a403044/tf2rl/algos/bi_res_ddpg.py#L21-L46
cmbruns/pyopenvr
ac4847a8a05cda0d4bcf7c4f243008b2a191c7a5
src/translate/generator.py
python
main
(sub_version=1)
[]
def main(sub_version=1): file_name1 = 'openvr.h' file_string1 = pkg_resources.resource_string(__name__, file_name1) declarations = Parser().parse_file(file_name=file_name1, file_string=file_string1) version = get_version(declarations) patch_version = str(version[2]).zfill(2) + str(sub_version).zfill(2) py_version = (version[0], version[1], patch_version) write_version( file_out=open('../openvr/version.py', 'w'), version=py_version, ) generator = CTypesGenerator() generator.generate( declarations=declarations, file_out=open('../openvr/__init__.py', 'w', newline=None), version=version, ) generator.generate_errors( declarations=declarations, file_out=open('../openvr/error_code/__init__.py', 'w', newline=None), )
[ "def", "main", "(", "sub_version", "=", "1", ")", ":", "file_name1", "=", "'openvr.h'", "file_string1", "=", "pkg_resources", ".", "resource_string", "(", "__name__", ",", "file_name1", ")", "declarations", "=", "Parser", "(", ")", ".", "parse_file", "(", "file_name", "=", "file_name1", ",", "file_string", "=", "file_string1", ")", "version", "=", "get_version", "(", "declarations", ")", "patch_version", "=", "str", "(", "version", "[", "2", "]", ")", ".", "zfill", "(", "2", ")", "+", "str", "(", "sub_version", ")", ".", "zfill", "(", "2", ")", "py_version", "=", "(", "version", "[", "0", "]", ",", "version", "[", "1", "]", ",", "patch_version", ")", "write_version", "(", "file_out", "=", "open", "(", "'../openvr/version.py'", ",", "'w'", ")", ",", "version", "=", "py_version", ",", ")", "generator", "=", "CTypesGenerator", "(", ")", "generator", ".", "generate", "(", "declarations", "=", "declarations", ",", "file_out", "=", "open", "(", "'../openvr/__init__.py'", ",", "'w'", ",", "newline", "=", "None", ")", ",", "version", "=", "version", ",", ")", "generator", ".", "generate_errors", "(", "declarations", "=", "declarations", ",", "file_out", "=", "open", "(", "'../openvr/error_code/__init__.py'", ",", "'w'", ",", "newline", "=", "None", ")", ",", ")" ]
https://github.com/cmbruns/pyopenvr/blob/ac4847a8a05cda0d4bcf7c4f243008b2a191c7a5/src/translate/generator.py#L342-L362
AppScale/gts
46f909cf5dc5ba81faf9d81dc9af598dcf8a82a9
AppServer/google/appengine/api/taskqueue/taskqueue.py
python
Queue.modify_task_lease
(self, task, lease_seconds)
Modifies the lease of a task in this queue. Args: task: A task instance that will have its lease modified. lease_seconds: Number of seconds, from the current time, that the task lease will be modified to. If lease_seconds is 0, then the task lease is removed and the task will be available for leasing again using the lease_tasks method. Raises: TypeError: if lease_seconds is not a valid float or integer. InvalidLeaseTimeError: if lease_seconds is outside the valid range. Error-subclass on application errors.
Modifies the lease of a task in this queue.
[ "Modifies", "the", "lease", "of", "a", "task", "in", "this", "queue", "." ]
def modify_task_lease(self, task, lease_seconds): """Modifies the lease of a task in this queue. Args: task: A task instance that will have its lease modified. lease_seconds: Number of seconds, from the current time, that the task lease will be modified to. If lease_seconds is 0, then the task lease is removed and the task will be available for leasing again using the lease_tasks method. Raises: TypeError: if lease_seconds is not a valid float or integer. InvalidLeaseTimeError: if lease_seconds is outside the valid range. Error-subclass on application errors. """ lease_seconds = self._ValidateLeaseSeconds(lease_seconds) request = taskqueue_service_pb.TaskQueueModifyTaskLeaseRequest() response = taskqueue_service_pb.TaskQueueModifyTaskLeaseResponse() request.set_queue_name(self.__name) request.set_task_name(task.name) request.set_eta_usec(task._eta_usec) request.set_lease_seconds(lease_seconds) try: apiproxy_stub_map.MakeSyncCall('taskqueue', 'ModifyTaskLease', request, response) except apiproxy_errors.ApplicationError, e: raise _TranslateError(e.application_error, e.error_detail) task._Task__eta_posix = response.updated_eta_usec() * 1e-6 task._Task__eta = None
[ "def", "modify_task_lease", "(", "self", ",", "task", ",", "lease_seconds", ")", ":", "lease_seconds", "=", "self", ".", "_ValidateLeaseSeconds", "(", "lease_seconds", ")", "request", "=", "taskqueue_service_pb", ".", "TaskQueueModifyTaskLeaseRequest", "(", ")", "response", "=", "taskqueue_service_pb", ".", "TaskQueueModifyTaskLeaseResponse", "(", ")", "request", ".", "set_queue_name", "(", "self", ".", "__name", ")", "request", ".", "set_task_name", "(", "task", ".", "name", ")", "request", ".", "set_eta_usec", "(", "task", ".", "_eta_usec", ")", "request", ".", "set_lease_seconds", "(", "lease_seconds", ")", "try", ":", "apiproxy_stub_map", ".", "MakeSyncCall", "(", "'taskqueue'", ",", "'ModifyTaskLease'", ",", "request", ",", "response", ")", "except", "apiproxy_errors", ".", "ApplicationError", ",", "e", ":", "raise", "_TranslateError", "(", "e", ".", "application_error", ",", "e", ".", "error_detail", ")", "task", ".", "_Task__eta_posix", "=", "response", ".", "updated_eta_usec", "(", ")", "*", "1e-6", "task", ".", "_Task__eta", "=", "None" ]
https://github.com/AppScale/gts/blob/46f909cf5dc5ba81faf9d81dc9af598dcf8a82a9/AppServer/google/appengine/api/taskqueue/taskqueue.py#L2131-L2165
tensorflow/graphics
86997957324bfbdd85848daae989b4c02588faa0
tensorflow_graphics/nn/metric/precision.py
python
evaluate
(ground_truth: type_alias.TensorLike, prediction: type_alias.TensorLike, classes: Optional[Union[int, List[int], Tuple[int]]] = None, reduce_average: bool = True, prediction_to_category_function: Callable[..., Any] = _cast_to_int, name: str = "precision_evaluate")
Computes the precision metric for the given ground truth and predictions. Note: In the following, A1 to An are optional batch dimensions, which must be broadcast compatible. Args: ground_truth: A tensor of shape `[A1, ..., An, N]`, where the last axis represents the ground truth labels. Will be cast to int32. prediction: A tensor of shape `[A1, ..., An, N]`, where the last axis represents the predictions (which can be continuous). classes: An integer or a list/tuple of integers representing the classes for which the precision will be evaluated. In case 'classes' is 'None', the number of classes will be inferred from the given labels and the precision will be calculated for each of the classes. Defaults to 'None'. reduce_average: Whether to calculate the average of the precision for each class and return a single precision value. Defaults to true. prediction_to_category_function: A function to associate a `prediction` to a category. Defaults to rounding down the value of the prediction to the nearest integer value. name: A name for this op. Defaults to "precision_evaluate". Returns: A tensor of shape `[A1, ..., An, C]`, where the last axis represents the precision calculated for each of the requested classes. Raises: ValueError: if the shape of `ground_truth`, `prediction` is not supported.
Computes the precision metric for the given ground truth and predictions.
[ "Computes", "the", "precision", "metric", "for", "the", "given", "ground", "truth", "and", "predictions", "." ]
def evaluate(ground_truth: type_alias.TensorLike, prediction: type_alias.TensorLike, classes: Optional[Union[int, List[int], Tuple[int]]] = None, reduce_average: bool = True, prediction_to_category_function: Callable[..., Any] = _cast_to_int, name: str = "precision_evaluate") -> tf.Tensor: """Computes the precision metric for the given ground truth and predictions. Note: In the following, A1 to An are optional batch dimensions, which must be broadcast compatible. Args: ground_truth: A tensor of shape `[A1, ..., An, N]`, where the last axis represents the ground truth labels. Will be cast to int32. prediction: A tensor of shape `[A1, ..., An, N]`, where the last axis represents the predictions (which can be continuous). classes: An integer or a list/tuple of integers representing the classes for which the precision will be evaluated. In case 'classes' is 'None', the number of classes will be inferred from the given labels and the precision will be calculated for each of the classes. Defaults to 'None'. reduce_average: Whether to calculate the average of the precision for each class and return a single precision value. Defaults to true. prediction_to_category_function: A function to associate a `prediction` to a category. Defaults to rounding down the value of the prediction to the nearest integer value. name: A name for this op. Defaults to "precision_evaluate". Returns: A tensor of shape `[A1, ..., An, C]`, where the last axis represents the precision calculated for each of the requested classes. Raises: ValueError: if the shape of `ground_truth`, `prediction` is not supported. """ with tf.name_scope(name): ground_truth = tf.cast( x=tf.convert_to_tensor(value=ground_truth), dtype=tf.int32) prediction = tf.convert_to_tensor(value=prediction) shape.compare_batch_dimensions( tensors=(ground_truth, prediction), tensor_names=("ground_truth", "prediction"), last_axes=-1, broadcast_compatible=True) prediction = prediction_to_category_function(prediction) if classes is None: num_classes = tf.math.maximum( tf.math.reduce_max(input_tensor=ground_truth), tf.math.reduce_max(input_tensor=prediction)) + 1 classes = tf.range(num_classes) else: classes = tf.convert_to_tensor(value=classes) # Make sure classes is a tensor of rank 1. classes = tf.reshape(classes, [1]) if tf.rank(classes) == 0 else classes # Create a confusion matrix for each of the classes (with dimensions # [A1, ..., An, C, N]). classes = tf.expand_dims(classes, -1) ground_truth_per_class = tf.equal(tf.expand_dims(ground_truth, -2), classes) prediction_per_class = tf.equal(tf.expand_dims(prediction, -2), classes) # Calculate the precision for each of the classes. true_positives = tf.math.reduce_sum( input_tensor=tf.cast( x=tf.math.logical_and(ground_truth_per_class, prediction_per_class), dtype=tf.float32), axis=-1) total_predicted_positives = tf.math.reduce_sum( input_tensor=tf.cast(x=prediction_per_class, dtype=tf.float32), axis=-1) precision_per_class = safe_ops.safe_signed_div(true_positives, total_predicted_positives) if reduce_average: return tf.math.reduce_mean(input_tensor=precision_per_class, axis=-1) else: return precision_per_class
[ "def", "evaluate", "(", "ground_truth", ":", "type_alias", ".", "TensorLike", ",", "prediction", ":", "type_alias", ".", "TensorLike", ",", "classes", ":", "Optional", "[", "Union", "[", "int", ",", "List", "[", "int", "]", ",", "Tuple", "[", "int", "]", "]", "]", "=", "None", ",", "reduce_average", ":", "bool", "=", "True", ",", "prediction_to_category_function", ":", "Callable", "[", "...", ",", "Any", "]", "=", "_cast_to_int", ",", "name", ":", "str", "=", "\"precision_evaluate\"", ")", "->", "tf", ".", "Tensor", ":", "with", "tf", ".", "name_scope", "(", "name", ")", ":", "ground_truth", "=", "tf", ".", "cast", "(", "x", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "ground_truth", ")", ",", "dtype", "=", "tf", ".", "int32", ")", "prediction", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "prediction", ")", "shape", ".", "compare_batch_dimensions", "(", "tensors", "=", "(", "ground_truth", ",", "prediction", ")", ",", "tensor_names", "=", "(", "\"ground_truth\"", ",", "\"prediction\"", ")", ",", "last_axes", "=", "-", "1", ",", "broadcast_compatible", "=", "True", ")", "prediction", "=", "prediction_to_category_function", "(", "prediction", ")", "if", "classes", "is", "None", ":", "num_classes", "=", "tf", ".", "math", ".", "maximum", "(", "tf", ".", "math", ".", "reduce_max", "(", "input_tensor", "=", "ground_truth", ")", ",", "tf", ".", "math", ".", "reduce_max", "(", "input_tensor", "=", "prediction", ")", ")", "+", "1", "classes", "=", "tf", ".", "range", "(", "num_classes", ")", "else", ":", "classes", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "classes", ")", "# Make sure classes is a tensor of rank 1.", "classes", "=", "tf", ".", "reshape", "(", "classes", ",", "[", "1", "]", ")", "if", "tf", ".", "rank", "(", "classes", ")", "==", "0", "else", "classes", "# Create a confusion matrix for each of the classes (with dimensions", "# [A1, ..., An, C, N]).", "classes", "=", "tf", ".", "expand_dims", "(", "classes", ",", "-", "1", ")", "ground_truth_per_class", "=", "tf", ".", "equal", "(", "tf", ".", "expand_dims", "(", "ground_truth", ",", "-", "2", ")", ",", "classes", ")", "prediction_per_class", "=", "tf", ".", "equal", "(", "tf", ".", "expand_dims", "(", "prediction", ",", "-", "2", ")", ",", "classes", ")", "# Calculate the precision for each of the classes.", "true_positives", "=", "tf", ".", "math", ".", "reduce_sum", "(", "input_tensor", "=", "tf", ".", "cast", "(", "x", "=", "tf", ".", "math", ".", "logical_and", "(", "ground_truth_per_class", ",", "prediction_per_class", ")", ",", "dtype", "=", "tf", ".", "float32", ")", ",", "axis", "=", "-", "1", ")", "total_predicted_positives", "=", "tf", ".", "math", ".", "reduce_sum", "(", "input_tensor", "=", "tf", ".", "cast", "(", "x", "=", "prediction_per_class", ",", "dtype", "=", "tf", ".", "float32", ")", ",", "axis", "=", "-", "1", ")", "precision_per_class", "=", "safe_ops", ".", "safe_signed_div", "(", "true_positives", ",", "total_predicted_positives", ")", "if", "reduce_average", ":", "return", "tf", ".", "math", ".", "reduce_mean", "(", "input_tensor", "=", "precision_per_class", ",", "axis", "=", "-", "1", ")", "else", ":", "return", "precision_per_class" ]
https://github.com/tensorflow/graphics/blob/86997957324bfbdd85848daae989b4c02588faa0/tensorflow_graphics/nn/metric/precision.py#L34-L111
p5py/p5
4ef1580b26179f1973c1669751da4522c5823f17
p5/core/image.py
python
PImage.__getitem__
(self, key)
return self._get_patch(key)
Return the color of the indexed pixel or the requested sub-region Note :: when the specified `key` denotes a single pixel, the color of that pixel is returned. Else, a new PImage (constructed using the slice specified by `key`). Note that this causes the internal buffer data to be reloaded (when the image is in an "unclean" state) and hence, many such operations can potentially slow things down. :returns: a sub-image or a the pixel color :rtype: p5.Color | p5.PImage :raises KeyError: When `key` is invalid.
Return the color of the indexed pixel or the requested sub-region
[ "Return", "the", "color", "of", "the", "indexed", "pixel", "or", "the", "requested", "sub", "-", "region" ]
def __getitem__(self, key): """Return the color of the indexed pixel or the requested sub-region Note :: when the specified `key` denotes a single pixel, the color of that pixel is returned. Else, a new PImage (constructed using the slice specified by `key`). Note that this causes the internal buffer data to be reloaded (when the image is in an "unclean" state) and hence, many such operations can potentially slow things down. :returns: a sub-image or a the pixel color :rtype: p5.Color | p5.PImage :raises KeyError: When `key` is invalid. """ if len(key) != 2: raise KeyError("Invalid image index") if _is_numeric(key[0]) and _is_numeric(key[1]): return self._get_pixel(key) return self._get_patch(key)
[ "def", "__getitem__", "(", "self", ",", "key", ")", ":", "if", "len", "(", "key", ")", "!=", "2", ":", "raise", "KeyError", "(", "\"Invalid image index\"", ")", "if", "_is_numeric", "(", "key", "[", "0", "]", ")", "and", "_is_numeric", "(", "key", "[", "1", "]", ")", ":", "return", "self", ".", "_get_pixel", "(", "key", ")", "return", "self", ".", "_get_patch", "(", "key", ")" ]
https://github.com/p5py/p5/blob/4ef1580b26179f1973c1669751da4522c5823f17/p5/core/image.py#L240-L262
CalebBell/thermo
572a47d1b03d49fe609b8d5f826fa6a7cde00828
thermo/phases/phase.py
python
Phase.PIP
(self)
return phase_identification_parameter(self.V(), self.dP_dT(), self.dP_dV(), self.d2P_dV2(), self.d2P_dTdV())
r'''Method to calculate and return the phase identification parameter of the phase. .. math:: \Pi = V \left[\frac{\frac{\partial^2 P}{\partial V \partial T}} {\frac{\partial P }{\partial T}}- \frac{\frac{\partial^2 P}{\partial V^2}}{\frac{\partial P}{\partial V}} \right] Returns ------- PIP : float Phase identification parameter, [-]
r'''Method to calculate and return the phase identification parameter of the phase.
[ "r", "Method", "to", "calculate", "and", "return", "the", "phase", "identification", "parameter", "of", "the", "phase", "." ]
def PIP(self): r'''Method to calculate and return the phase identification parameter of the phase. .. math:: \Pi = V \left[\frac{\frac{\partial^2 P}{\partial V \partial T}} {\frac{\partial P }{\partial T}}- \frac{\frac{\partial^2 P}{\partial V^2}}{\frac{\partial P}{\partial V}} \right] Returns ------- PIP : float Phase identification parameter, [-] ''' return phase_identification_parameter(self.V(), self.dP_dT(), self.dP_dV(), self.d2P_dV2(), self.d2P_dTdV())
[ "def", "PIP", "(", "self", ")", ":", "return", "phase_identification_parameter", "(", "self", ".", "V", "(", ")", ",", "self", ".", "dP_dT", "(", ")", ",", "self", ".", "dP_dV", "(", ")", ",", "self", ".", "d2P_dV2", "(", ")", ",", "self", ".", "d2P_dTdV", "(", ")", ")" ]
https://github.com/CalebBell/thermo/blob/572a47d1b03d49fe609b8d5f826fa6a7cde00828/thermo/phases/phase.py#L2585-L2600
d2l-ai/d2l-en
39a7d4174534740b2387b0dc5eb22f409b82ee10
d2l/torch.py
python
load_data_snli
(batch_size, num_steps=50)
return train_iter, test_iter, train_set.vocab
Download the SNLI dataset and return data iterators and vocabulary. Defined in :numref:`sec_natural-language-inference-and-dataset`
Download the SNLI dataset and return data iterators and vocabulary.
[ "Download", "the", "SNLI", "dataset", "and", "return", "data", "iterators", "and", "vocabulary", "." ]
def load_data_snli(batch_size, num_steps=50): """Download the SNLI dataset and return data iterators and vocabulary. Defined in :numref:`sec_natural-language-inference-and-dataset`""" num_workers = d2l.get_dataloader_workers() data_dir = d2l.download_extract('SNLI') train_data = read_snli(data_dir, True) test_data = read_snli(data_dir, False) train_set = SNLIDataset(train_data, num_steps) test_set = SNLIDataset(test_data, num_steps, train_set.vocab) train_iter = torch.utils.data.DataLoader(train_set, batch_size, shuffle=True, num_workers=num_workers) test_iter = torch.utils.data.DataLoader(test_set, batch_size, shuffle=False, num_workers=num_workers) return train_iter, test_iter, train_set.vocab
[ "def", "load_data_snli", "(", "batch_size", ",", "num_steps", "=", "50", ")", ":", "num_workers", "=", "d2l", ".", "get_dataloader_workers", "(", ")", "data_dir", "=", "d2l", ".", "download_extract", "(", "'SNLI'", ")", "train_data", "=", "read_snli", "(", "data_dir", ",", "True", ")", "test_data", "=", "read_snli", "(", "data_dir", ",", "False", ")", "train_set", "=", "SNLIDataset", "(", "train_data", ",", "num_steps", ")", "test_set", "=", "SNLIDataset", "(", "test_data", ",", "num_steps", ",", "train_set", ".", "vocab", ")", "train_iter", "=", "torch", ".", "utils", ".", "data", ".", "DataLoader", "(", "train_set", ",", "batch_size", ",", "shuffle", "=", "True", ",", "num_workers", "=", "num_workers", ")", "test_iter", "=", "torch", ".", "utils", ".", "data", ".", "DataLoader", "(", "test_set", ",", "batch_size", ",", "shuffle", "=", "False", ",", "num_workers", "=", "num_workers", ")", "return", "train_iter", ",", "test_iter", ",", "train_set", ".", "vocab" ]
https://github.com/d2l-ai/d2l-en/blob/39a7d4174534740b2387b0dc5eb22f409b82ee10/d2l/torch.py#L2454-L2470
mfrister/pushproxy
55f9386420986ba3cf61b61a9f5a78f73e5a82f2
setup/osx/extractkeychain/extractkeychain.py
python
getitemkey
( f )
[]
def getitemkey( f ): global keys # 0 0xfade0711 - magic number # 4 version # 8 crypto-offset - offset of the interesting data # 12 total len # 16 iv (8 bytes) # 24 CSSM header (large, we don't care) # ... stuff here not used for now # 156 the name of the key (ends null-terminated, there's probably another way # to figure the length, we don't care) # ... # ??? 'ssgp................' - 20 byte label, starting with 'ssgp'. Use this # to match up the later record - this is at totallen + 8 pos = f.tell() - 4 # IV f.seek( pos + 16 ) iv = f.read( IVLEN ) # total len f.seek( pos + 12 ) str = f.read(4) totallen = unpack(">I", str)[0] # label f.seek( pos + totallen + 8 ) label = f.read( LABELLEN ) if label[0:4] == 'SYSK': # don't care about system keys return if label[0:4] != 'ssgp': # TODO - we mightn't care about this, but warn during testing print "Unknown label %s after %d" % ( hexlify(label), pos) # ciphertext offset f.seek( pos + 8 ) str = f.read(4) cipheroff = unpack(">I", str)[0] cipherlen = totallen - cipheroff if cipherlen % BLOCKSIZE != 0: raise "Bad ciphertext len after %d" % pos # ciphertext f.seek( pos + cipheroff ) ciphertext = f.read( cipherlen ) import pdb; pdb.set_trace() # we're unwrapping it, so there's a magic IV we use. plain = kcdecrypt( dbkey, magicCmsIV, ciphertext ) # now we handle the unwrapping. we need to take the first 32 bytes, # and reverse them. revplain = '' for i in range(32): revplain += plain[31-i] # now the real key gets found. */ plain = kcdecrypt( dbkey, iv, revplain ) itemkey = plain[4:] if len(itemkey) != KEYLEN: raise Exception("Bad decrypted keylen!") keys[label] = itemkey
[ "def", "getitemkey", "(", "f", ")", ":", "global", "keys", "# 0 0xfade0711 - magic number", "# 4 version", "# 8 crypto-offset - offset of the interesting data", "# 12 total len", "# 16 iv (8 bytes)", "# 24 CSSM header (large, we don't care)", "# ... stuff here not used for now", "# 156 the name of the key (ends null-terminated, there's probably another way", "# to figure the length, we don't care)", "# ...", "# ??? 'ssgp................' - 20 byte label, starting with 'ssgp'. Use this", "# to match up the later record - this is at totallen + 8", "pos", "=", "f", ".", "tell", "(", ")", "-", "4", "# IV", "f", ".", "seek", "(", "pos", "+", "16", ")", "iv", "=", "f", ".", "read", "(", "IVLEN", ")", "# total len", "f", ".", "seek", "(", "pos", "+", "12", ")", "str", "=", "f", ".", "read", "(", "4", ")", "totallen", "=", "unpack", "(", "\">I\"", ",", "str", ")", "[", "0", "]", "# label", "f", ".", "seek", "(", "pos", "+", "totallen", "+", "8", ")", "label", "=", "f", ".", "read", "(", "LABELLEN", ")", "if", "label", "[", "0", ":", "4", "]", "==", "'SYSK'", ":", "# don't care about system keys", "return", "if", "label", "[", "0", ":", "4", "]", "!=", "'ssgp'", ":", "# TODO - we mightn't care about this, but warn during testing", "print", "\"Unknown label %s after %d\"", "%", "(", "hexlify", "(", "label", ")", ",", "pos", ")", "# ciphertext offset", "f", ".", "seek", "(", "pos", "+", "8", ")", "str", "=", "f", ".", "read", "(", "4", ")", "cipheroff", "=", "unpack", "(", "\">I\"", ",", "str", ")", "[", "0", "]", "cipherlen", "=", "totallen", "-", "cipheroff", "if", "cipherlen", "%", "BLOCKSIZE", "!=", "0", ":", "raise", "\"Bad ciphertext len after %d\"", "%", "pos", "# ciphertext", "f", ".", "seek", "(", "pos", "+", "cipheroff", ")", "ciphertext", "=", "f", ".", "read", "(", "cipherlen", ")", "import", "pdb", "pdb", ".", "set_trace", "(", ")", "# we're unwrapping it, so there's a magic IV we use.", "plain", "=", "kcdecrypt", "(", "dbkey", ",", "magicCmsIV", ",", "ciphertext", ")", "# now we handle the unwrapping. we need to take the first 32 bytes,", "# and reverse them.", "revplain", "=", "''", "for", "i", "in", "range", "(", "32", ")", ":", "revplain", "+=", "plain", "[", "31", "-", "i", "]", "# now the real key gets found. */", "plain", "=", "kcdecrypt", "(", "dbkey", ",", "iv", ",", "revplain", ")", "itemkey", "=", "plain", "[", "4", ":", "]", "if", "len", "(", "itemkey", ")", "!=", "KEYLEN", ":", "raise", "Exception", "(", "\"Bad decrypted keylen!\"", ")", "keys", "[", "label", "]", "=", "itemkey" ]
https://github.com/mfrister/pushproxy/blob/55f9386420986ba3cf61b61a9f5a78f73e5a82f2/setup/osx/extractkeychain/extractkeychain.py#L96-L167
tjweir/liftbook
e977a7face13ade1a4558e1909a6951d2f8928dd
elyxer.py
python
FormulaNumber.parsebit
(self, pos)
Parse a bunch of digits
Parse a bunch of digits
[ "Parse", "a", "bunch", "of", "digits" ]
def parsebit(self, pos): "Parse a bunch of digits" digits = pos.glob(lambda current: current.isdigit()) self.add(FormulaConstant(digits)) self.type = 'number'
[ "def", "parsebit", "(", "self", ",", "pos", ")", ":", "digits", "=", "pos", ".", "glob", "(", "lambda", "current", ":", "current", ".", "isdigit", "(", ")", ")", "self", ".", "add", "(", "FormulaConstant", "(", "digits", ")", ")", "self", ".", "type", "=", "'number'" ]
https://github.com/tjweir/liftbook/blob/e977a7face13ade1a4558e1909a6951d2f8928dd/elyxer.py#L4046-L4050
ales-tsurko/cells
4cf7e395cd433762bea70cdc863a346f3a6fe1d0
packaging/macos/python/lib/python3.7/datetime.py
python
timedelta.days
(self)
return self._days
days
days
[ "days" ]
def days(self): """days""" return self._days
[ "def", "days", "(", "self", ")", ":", "return", "self", ".", "_days" ]
https://github.com/ales-tsurko/cells/blob/4cf7e395cd433762bea70cdc863a346f3a6fe1d0/packaging/macos/python/lib/python3.7/datetime.py#L607-L609
cloudera/hue
23f02102d4547c17c32bd5ea0eb24e9eadd657a4
desktop/libs/libsentry/gen-py/sentry_policy_service/SentryPolicyService.py
python
Client.create_sentry_role
(self, request)
return self.recv_create_sentry_role()
Parameters: - request
Parameters: - request
[ "Parameters", ":", "-", "request" ]
def create_sentry_role(self, request): """ Parameters: - request """ self.send_create_sentry_role(request) return self.recv_create_sentry_role()
[ "def", "create_sentry_role", "(", "self", ",", "request", ")", ":", "self", ".", "send_create_sentry_role", "(", "request", ")", "return", "self", ".", "recv_create_sentry_role", "(", ")" ]
https://github.com/cloudera/hue/blob/23f02102d4547c17c32bd5ea0eb24e9eadd657a4/desktop/libs/libsentry/gen-py/sentry_policy_service/SentryPolicyService.py#L123-L129
andyet/thoonk.py
4535ad05975a6410fe3448ace28d591ba1452f02
thoonk/pubsub.py
python
Thoonk.feed_exists
(self, feed)
return self.redis.sismember('feeds', feed)
Check if a given feed exists. Arguments: feed -- The name of the feed.
Check if a given feed exists.
[ "Check", "if", "a", "given", "feed", "exists", "." ]
def feed_exists(self, feed): """ Check if a given feed exists. Arguments: feed -- The name of the feed. """ return self.redis.sismember('feeds', feed)
[ "def", "feed_exists", "(", "self", ",", "feed", ")", ":", "return", "self", ".", "redis", ".", "sismember", "(", "'feeds'", ",", "feed", ")" ]
https://github.com/andyet/thoonk.py/blob/4535ad05975a6410fe3448ace28d591ba1452f02/thoonk/pubsub.py#L256-L263
mchristopher/PokemonGo-DesktopMap
ec37575f2776ee7d64456e2a1f6b6b78830b4fe0
app/pywin/Lib/lib2to3/pytree.py
python
Node.__repr__
(self)
return "%s(%s, %r)" % (self.__class__.__name__, type_repr(self.type), self.children)
Return a canonical string representation.
Return a canonical string representation.
[ "Return", "a", "canonical", "string", "representation", "." ]
def __repr__(self): """Return a canonical string representation.""" return "%s(%s, %r)" % (self.__class__.__name__, type_repr(self.type), self.children)
[ "def", "__repr__", "(", "self", ")", ":", "return", "\"%s(%s, %r)\"", "%", "(", "self", ".", "__class__", ".", "__name__", ",", "type_repr", "(", "self", ".", "type", ")", ",", "self", ".", "children", ")" ]
https://github.com/mchristopher/PokemonGo-DesktopMap/blob/ec37575f2776ee7d64456e2a1f6b6b78830b4fe0/app/pywin/Lib/lib2to3/pytree.py#L268-L272
brean/python-pathfinding
18c54b14f98c042d298b9fcc3092bdcaa0c8f4e7
pathfinding/finder/a_star.py
python
AStarFinder.check_neighbors
(self, start, end, grid, open_list, open_value=True, backtrace_by=None)
return None
find next path segment based on given node (or return path if we found the end) :param start: start node :param end: end node :param grid: grid that stores all possible steps/tiles as 2D-list :param open_list: stores nodes that will be processed next
find next path segment based on given node (or return path if we found the end)
[ "find", "next", "path", "segment", "based", "on", "given", "node", "(", "or", "return", "path", "if", "we", "found", "the", "end", ")" ]
def check_neighbors(self, start, end, grid, open_list, open_value=True, backtrace_by=None): """ find next path segment based on given node (or return path if we found the end) :param start: start node :param end: end node :param grid: grid that stores all possible steps/tiles as 2D-list :param open_list: stores nodes that will be processed next """ # pop node with minimum 'f' value node = heapq.nsmallest(1, open_list)[0] open_list.remove(node) node.closed = True # if reached the end position, construct the path and return it # (ignored for bi-directional a*, there we look for a neighbor that is # part of the oncoming path) if not backtrace_by and node == end: return backtrace(end) # get neighbors of the current node neighbors = self.find_neighbors(grid, node) for neighbor in neighbors: if neighbor.closed: # already visited last minimum f value continue if backtrace_by and neighbor.opened == backtrace_by: # found the oncoming path if backtrace_by == BY_END: return bi_backtrace(node, neighbor) else: return bi_backtrace(neighbor, node) # check if the neighbor has not been inspected yet, or # can be reached with smaller cost from the current node self.process_node(neighbor, node, end, open_list, open_value) # the end has not been reached (yet) keep the find_path loop running return None
[ "def", "check_neighbors", "(", "self", ",", "start", ",", "end", ",", "grid", ",", "open_list", ",", "open_value", "=", "True", ",", "backtrace_by", "=", "None", ")", ":", "# pop node with minimum 'f' value", "node", "=", "heapq", ".", "nsmallest", "(", "1", ",", "open_list", ")", "[", "0", "]", "open_list", ".", "remove", "(", "node", ")", "node", ".", "closed", "=", "True", "# if reached the end position, construct the path and return it", "# (ignored for bi-directional a*, there we look for a neighbor that is", "# part of the oncoming path)", "if", "not", "backtrace_by", "and", "node", "==", "end", ":", "return", "backtrace", "(", "end", ")", "# get neighbors of the current node", "neighbors", "=", "self", ".", "find_neighbors", "(", "grid", ",", "node", ")", "for", "neighbor", "in", "neighbors", ":", "if", "neighbor", ".", "closed", ":", "# already visited last minimum f value", "continue", "if", "backtrace_by", "and", "neighbor", ".", "opened", "==", "backtrace_by", ":", "# found the oncoming path", "if", "backtrace_by", "==", "BY_END", ":", "return", "bi_backtrace", "(", "node", ",", "neighbor", ")", "else", ":", "return", "bi_backtrace", "(", "neighbor", ",", "node", ")", "# check if the neighbor has not been inspected yet, or", "# can be reached with smaller cost from the current node", "self", ".", "process_node", "(", "neighbor", ",", "node", ",", "end", ",", "open_list", ",", "open_value", ")", "# the end has not been reached (yet) keep the find_path loop running", "return", "None" ]
https://github.com/brean/python-pathfinding/blob/18c54b14f98c042d298b9fcc3092bdcaa0c8f4e7/pathfinding/finder/a_star.py#L42-L82
bnpy/bnpy
d5b311e8f58ccd98477f4a0c8a4d4982e3fca424
bnpy/datasets/zzz_unsupported/ToyARK13.py
python
showEachSetOfStatesIn3D
()
Make a 3D plot in separate figure for each of the 3 states in a "set" These three states just vary the speed of rotation and scale of noise, from slow and large to fast and smaller.
Make a 3D plot in separate figure for each of the 3 states in a "set"
[ "Make", "a", "3D", "plot", "in", "separate", "figure", "for", "each", "of", "the", "3", "states", "in", "a", "set" ]
def showEachSetOfStatesIn3D(): ''' Make a 3D plot in separate figure for each of the 3 states in a "set" These three states just vary the speed of rotation and scale of noise, from slow and large to fast and smaller. ''' from matplotlib import pylab from mpl_toolkits.mplot3d import Axes3D L = len(degPerSteps) for ii in range(L): plotSequenceForRotatingState3D(-1 * degPerSteps[ii], sigma2s[ii], 2)
[ "def", "showEachSetOfStatesIn3D", "(", ")", ":", "from", "matplotlib", "import", "pylab", "from", "mpl_toolkits", ".", "mplot3d", "import", "Axes3D", "L", "=", "len", "(", "degPerSteps", ")", "for", "ii", "in", "range", "(", "L", ")", ":", "plotSequenceForRotatingState3D", "(", "-", "1", "*", "degPerSteps", "[", "ii", "]", ",", "sigma2s", "[", "ii", "]", ",", "2", ")" ]
https://github.com/bnpy/bnpy/blob/d5b311e8f58ccd98477f4a0c8a4d4982e3fca424/bnpy/datasets/zzz_unsupported/ToyARK13.py#L213-L223
makerbot/ReplicatorG
d6f2b07785a5a5f1e172fb87cb4303b17c575d5d
skein_engines/skeinforge-35/fabmetheus_utilities/geometry/creation/teardrop.py
python
addNegativesByDerivation
(end, extrudeDerivation, negatives, radius, start, xmlElement)
Add teardrop drill hole to negatives.
Add teardrop drill hole to negatives.
[ "Add", "teardrop", "drill", "hole", "to", "negatives", "." ]
def addNegativesByDerivation(end, extrudeDerivation, negatives, radius, start, xmlElement): "Add teardrop drill hole to negatives." extrudeDerivation.offsetAlongDefault = [start, end] extrudeDerivation.tiltFollow = True extrudeDerivation.tiltTop = Vector3(0.0, 0.0, 1.0) extrudeDerivation.setToXMLElement(xmlElement.getCopyShallow()) extrude.addNegatives(extrudeDerivation, negatives, [getTeardropPathByEndStart(end, radius, start, xmlElement)])
[ "def", "addNegativesByDerivation", "(", "end", ",", "extrudeDerivation", ",", "negatives", ",", "radius", ",", "start", ",", "xmlElement", ")", ":", "extrudeDerivation", ".", "offsetAlongDefault", "=", "[", "start", ",", "end", "]", "extrudeDerivation", ".", "tiltFollow", "=", "True", "extrudeDerivation", ".", "tiltTop", "=", "Vector3", "(", "0.0", ",", "0.0", ",", "1.0", ")", "extrudeDerivation", ".", "setToXMLElement", "(", "xmlElement", ".", "getCopyShallow", "(", ")", ")", "extrude", ".", "addNegatives", "(", "extrudeDerivation", ",", "negatives", ",", "[", "getTeardropPathByEndStart", "(", "end", ",", "radius", ",", "start", ",", "xmlElement", ")", "]", ")" ]
https://github.com/makerbot/ReplicatorG/blob/d6f2b07785a5a5f1e172fb87cb4303b17c575d5d/skein_engines/skeinforge-35/fabmetheus_utilities/geometry/creation/teardrop.py#L24-L30
cloudera/hue
23f02102d4547c17c32bd5ea0eb24e9eadd657a4
desktop/core/ext-py/Django-1.11.29/django/contrib/staticfiles/finders.py
python
FileSystemFinder.find
(self, path, all=False)
return matches
Looks for files in the extra locations as defined in ``STATICFILES_DIRS``.
Looks for files in the extra locations as defined in ``STATICFILES_DIRS``.
[ "Looks", "for", "files", "in", "the", "extra", "locations", "as", "defined", "in", "STATICFILES_DIRS", "." ]
def find(self, path, all=False): """ Looks for files in the extra locations as defined in ``STATICFILES_DIRS``. """ matches = [] for prefix, root in self.locations: if root not in searched_locations: searched_locations.append(root) matched_path = self.find_location(root, path, prefix) if matched_path: if not all: return matched_path matches.append(matched_path) return matches
[ "def", "find", "(", "self", ",", "path", ",", "all", "=", "False", ")", ":", "matches", "=", "[", "]", "for", "prefix", ",", "root", "in", "self", ".", "locations", ":", "if", "root", "not", "in", "searched_locations", ":", "searched_locations", ".", "append", "(", "root", ")", "matched_path", "=", "self", ".", "find_location", "(", "root", ",", "path", ",", "prefix", ")", "if", "matched_path", ":", "if", "not", "all", ":", "return", "matched_path", "matches", ".", "append", "(", "matched_path", ")", "return", "matches" ]
https://github.com/cloudera/hue/blob/23f02102d4547c17c32bd5ea0eb24e9eadd657a4/desktop/core/ext-py/Django-1.11.29/django/contrib/staticfiles/finders.py#L76-L90