nwo
stringlengths
5
106
sha
stringlengths
40
40
path
stringlengths
4
174
language
stringclasses
1 value
identifier
stringlengths
1
140
parameters
stringlengths
0
87.7k
argument_list
stringclasses
1 value
return_statement
stringlengths
0
426k
docstring
stringlengths
0
64.3k
docstring_summary
stringlengths
0
26.3k
docstring_tokens
list
function
stringlengths
18
4.83M
function_tokens
list
url
stringlengths
83
304
mkdocs/mkdocs
cff5b55d59aa37da5aa67aadd9673167035d9d1c
mkdocs/utils/__init__.py
python
reduce_list
(data_set)
return [item for item in data_set if item not in seen and not seen.add(item)]
Reduce duplicate items in a list and preserve order
Reduce duplicate items in a list and preserve order
[ "Reduce", "duplicate", "items", "in", "a", "list", "and", "preserve", "order" ]
def reduce_list(data_set): """ Reduce duplicate items in a list and preserve order """ seen = set() return [item for item in data_set if item not in seen and not seen.add(item)]
[ "def", "reduce_list", "(", "data_set", ")", ":", "seen", "=", "set", "(", ")", "return", "[", "item", "for", "item", "in", "data_set", "if", "item", "not", "in", "seen", "and", "not", "seen", ".", "add", "(", "item", ")", "]" ]
https://github.com/mkdocs/mkdocs/blob/cff5b55d59aa37da5aa67aadd9673167035d9d1c/mkdocs/utils/__init__.py#L119-L123
matt-graham/mici
aa209e2cf698bb9e0c7c733d7b6a5557ab5df190
mici/systems.py
python
ConstrainedEuclideanMetricSystem.__init__
( self, neg_log_dens, constr, metric=None, dens_wrt_hausdorff=True, grad_neg_log_dens=None, jacob_constr=None, )
Args: neg_log_dens (Callable[[array], float]): Function which given a position array returns the negative logarithm of an unnormalized probability density on the constrained position space with respect to the Hausdorff measure on the constraint manifold (if `dens_wrt_hausdorff == True`) or alternatively the negative logarithm of an unnormalized probability density on the unconstrained (ambient) position space with respect to the Lebesgue measure. In the former case the target distribution it is wished to draw approximate samples from is assumed to be directly specified by the density function on the manifold. In the latter case the density function is instead taken to specify a prior distribution on the ambient space with the target distribution then corresponding to the posterior distribution when conditioning on the (zero Lebesgue measure) event `constr(pos) == 0`. This target posterior distribution has support on the differentiable manifold implicitly defined by the constraint equation, with density with respect to the Hausdorff measure on the manifold corresponding to the ratio of the prior density (specified by `neg_log_dens`) and the square-root of the determinant of the Gram matrix defined by gram(q) = jacob_constr(q) @ inv(metric) @ jacob_constr(q).T where `jacob_constr` is the Jacobian of the constraint function `constr` and `metric` is the matrix representation of the metric on the ambient space. constr (Callable[[array], array]): Function which given a position array return as a 1D array the value of the (vector-valued) constraint function, the zero level-set of which implicitly defines the manifold the dynamic is simulated on. metric (None or array or PositiveDefiniteMatrix): Matrix object corresponding to matrix representation of metric on *unconstrained* position space and covariance of Gaussian marginal distribution on *unconstrained* momentum vector. If `None` is passed (the default), the identity matrix will be used. If a 1D array is passed then this is assumed to specify a metric with positive diagonal matrix representation and the array the matrix diagonal. If a 2D array is passed then this is assumed to specify a metric with a dense positive definite matrix representation specified by the array. Otherwise if the value is a `mici.matrices.PositiveDefiniteMatrix` subclass it is assumed to directly specify the metric matrix representation. dens_wrt_hausdorff (bool): Whether the `neg_log_dens` function specifies the (negative logarithm) of the density of the target distribution with respect to the Hausdorff measure on the manifold directly (True) or alternatively the negative logarithm of a density of a prior distriubtion on the unconstrained (ambient) position space with respect to the Lebesgue measure, with the target distribution then corresponding to the posterior distribution when conditioning on the event `const(pos) == 0` (False). Note that in the former case the base Hausdorff measure on the manifold depends on the metric defined on the ambient space, with the Hausdorff measure being defined with respect to the metric induced on the manifold from this ambient metric. grad_neg_log_dens ( None or Callable[[array], array or Tuple[array, float]]): Function which given a position array returns the derivative of `neg_log_dens` with respect to the position array argument. Optionally the function may instead return a 2-tuple of values with the first being the array corresponding to the derivative and the second being the value of the `neg_log_dens` evaluated at the passed position array. If `None` is passed (the default) an automatic differentiation fallback will be used to attempt to construct a function to compute the derivative (and value) of `neg_log_dens` automatically. jacob_constr ( None or Callable[[array], array or Tuple[array, array]]): Function which given a position array computes the Jacobian (matrix / 2D array of partial derivatives) of the output of the constraint function `c = constr(q)` with respect to the position array argument `q`, returning the computed Jacobian as a 2D array `jacob` with jacob[i, j] = ∂c[i] / ∂q[j] Optionally the function may instead return a 2-tuple of values with the first being the array corresponding to the Jacobian and the second being the value of `constr` evaluated at the passed position array. If `None` is passed (the default) an automatic differentiation fallback will be used to attempt to construct a function to compute the Jacobian (and value) of `constr` automatically.
Args: neg_log_dens (Callable[[array], float]): Function which given a position array returns the negative logarithm of an unnormalized probability density on the constrained position space with respect to the Hausdorff measure on the constraint manifold (if `dens_wrt_hausdorff == True`) or alternatively the negative logarithm of an unnormalized probability density on the unconstrained (ambient) position space with respect to the Lebesgue measure. In the former case the target distribution it is wished to draw approximate samples from is assumed to be directly specified by the density function on the manifold. In the latter case the density function is instead taken to specify a prior distribution on the ambient space with the target distribution then corresponding to the posterior distribution when conditioning on the (zero Lebesgue measure) event `constr(pos) == 0`. This target posterior distribution has support on the differentiable manifold implicitly defined by the constraint equation, with density with respect to the Hausdorff measure on the manifold corresponding to the ratio of the prior density (specified by `neg_log_dens`) and the square-root of the determinant of the Gram matrix defined by
[ "Args", ":", "neg_log_dens", "(", "Callable", "[[", "array", "]", "float", "]", ")", ":", "Function", "which", "given", "a", "position", "array", "returns", "the", "negative", "logarithm", "of", "an", "unnormalized", "probability", "density", "on", "the", "constrained", "position", "space", "with", "respect", "to", "the", "Hausdorff", "measure", "on", "the", "constraint", "manifold", "(", "if", "dens_wrt_hausdorff", "==", "True", ")", "or", "alternatively", "the", "negative", "logarithm", "of", "an", "unnormalized", "probability", "density", "on", "the", "unconstrained", "(", "ambient", ")", "position", "space", "with", "respect", "to", "the", "Lebesgue", "measure", ".", "In", "the", "former", "case", "the", "target", "distribution", "it", "is", "wished", "to", "draw", "approximate", "samples", "from", "is", "assumed", "to", "be", "directly", "specified", "by", "the", "density", "function", "on", "the", "manifold", ".", "In", "the", "latter", "case", "the", "density", "function", "is", "instead", "taken", "to", "specify", "a", "prior", "distribution", "on", "the", "ambient", "space", "with", "the", "target", "distribution", "then", "corresponding", "to", "the", "posterior", "distribution", "when", "conditioning", "on", "the", "(", "zero", "Lebesgue", "measure", ")", "event", "constr", "(", "pos", ")", "==", "0", ".", "This", "target", "posterior", "distribution", "has", "support", "on", "the", "differentiable", "manifold", "implicitly", "defined", "by", "the", "constraint", "equation", "with", "density", "with", "respect", "to", "the", "Hausdorff", "measure", "on", "the", "manifold", "corresponding", "to", "the", "ratio", "of", "the", "prior", "density", "(", "specified", "by", "neg_log_dens", ")", "and", "the", "square", "-", "root", "of", "the", "determinant", "of", "the", "Gram", "matrix", "defined", "by" ]
def __init__( self, neg_log_dens, constr, metric=None, dens_wrt_hausdorff=True, grad_neg_log_dens=None, jacob_constr=None, ): """ Args: neg_log_dens (Callable[[array], float]): Function which given a position array returns the negative logarithm of an unnormalized probability density on the constrained position space with respect to the Hausdorff measure on the constraint manifold (if `dens_wrt_hausdorff == True`) or alternatively the negative logarithm of an unnormalized probability density on the unconstrained (ambient) position space with respect to the Lebesgue measure. In the former case the target distribution it is wished to draw approximate samples from is assumed to be directly specified by the density function on the manifold. In the latter case the density function is instead taken to specify a prior distribution on the ambient space with the target distribution then corresponding to the posterior distribution when conditioning on the (zero Lebesgue measure) event `constr(pos) == 0`. This target posterior distribution has support on the differentiable manifold implicitly defined by the constraint equation, with density with respect to the Hausdorff measure on the manifold corresponding to the ratio of the prior density (specified by `neg_log_dens`) and the square-root of the determinant of the Gram matrix defined by gram(q) = jacob_constr(q) @ inv(metric) @ jacob_constr(q).T where `jacob_constr` is the Jacobian of the constraint function `constr` and `metric` is the matrix representation of the metric on the ambient space. constr (Callable[[array], array]): Function which given a position array return as a 1D array the value of the (vector-valued) constraint function, the zero level-set of which implicitly defines the manifold the dynamic is simulated on. metric (None or array or PositiveDefiniteMatrix): Matrix object corresponding to matrix representation of metric on *unconstrained* position space and covariance of Gaussian marginal distribution on *unconstrained* momentum vector. If `None` is passed (the default), the identity matrix will be used. If a 1D array is passed then this is assumed to specify a metric with positive diagonal matrix representation and the array the matrix diagonal. If a 2D array is passed then this is assumed to specify a metric with a dense positive definite matrix representation specified by the array. Otherwise if the value is a `mici.matrices.PositiveDefiniteMatrix` subclass it is assumed to directly specify the metric matrix representation. dens_wrt_hausdorff (bool): Whether the `neg_log_dens` function specifies the (negative logarithm) of the density of the target distribution with respect to the Hausdorff measure on the manifold directly (True) or alternatively the negative logarithm of a density of a prior distriubtion on the unconstrained (ambient) position space with respect to the Lebesgue measure, with the target distribution then corresponding to the posterior distribution when conditioning on the event `const(pos) == 0` (False). Note that in the former case the base Hausdorff measure on the manifold depends on the metric defined on the ambient space, with the Hausdorff measure being defined with respect to the metric induced on the manifold from this ambient metric. grad_neg_log_dens ( None or Callable[[array], array or Tuple[array, float]]): Function which given a position array returns the derivative of `neg_log_dens` with respect to the position array argument. Optionally the function may instead return a 2-tuple of values with the first being the array corresponding to the derivative and the second being the value of the `neg_log_dens` evaluated at the passed position array. If `None` is passed (the default) an automatic differentiation fallback will be used to attempt to construct a function to compute the derivative (and value) of `neg_log_dens` automatically. jacob_constr ( None or Callable[[array], array or Tuple[array, array]]): Function which given a position array computes the Jacobian (matrix / 2D array of partial derivatives) of the output of the constraint function `c = constr(q)` with respect to the position array argument `q`, returning the computed Jacobian as a 2D array `jacob` with jacob[i, j] = ∂c[i] / ∂q[j] Optionally the function may instead return a 2-tuple of values with the first being the array corresponding to the Jacobian and the second being the value of `constr` evaluated at the passed position array. If `None` is passed (the default) an automatic differentiation fallback will be used to attempt to construct a function to compute the Jacobian (and value) of `constr` automatically. """ super().__init__( neg_log_dens=neg_log_dens, metric=metric, grad_neg_log_dens=grad_neg_log_dens, ) self._constr = constr self.dens_wrt_hausdorff = dens_wrt_hausdorff self._jacob_constr = autodiff_fallback( jacob_constr, constr, "jacobian_and_value", "jacob_constr" )
[ "def", "__init__", "(", "self", ",", "neg_log_dens", ",", "constr", ",", "metric", "=", "None", ",", "dens_wrt_hausdorff", "=", "True", ",", "grad_neg_log_dens", "=", "None", ",", "jacob_constr", "=", "None", ",", ")", ":", "super", "(", ")", ".", "__init__", "(", "neg_log_dens", "=", "neg_log_dens", ",", "metric", "=", "metric", ",", "grad_neg_log_dens", "=", "grad_neg_log_dens", ",", ")", "self", ".", "_constr", "=", "constr", "self", ".", "dens_wrt_hausdorff", "=", "dens_wrt_hausdorff", "self", ".", "_jacob_constr", "=", "autodiff_fallback", "(", "jacob_constr", ",", "constr", ",", "\"jacobian_and_value\"", ",", "\"jacob_constr\"", ")" ]
https://github.com/matt-graham/mici/blob/aa209e2cf698bb9e0c7c733d7b6a5557ab5df190/mici/systems.py#L459-L564
SanPen/GridCal
d3f4566d2d72c11c7e910c9d162538ef0e60df31
src/GridCal/Gui/GuiFunctions.py
python
PandasModel.columnCount
(self, parent=None)
return self.c
:param parent: :return:
[]
def columnCount(self, parent=None): """ :param parent: :return: """ return self.c
[ "def", "columnCount", "(", "self", ",", "parent", "=", "None", ")", ":", "return", "self", ".", "c" ]
https://github.com/SanPen/GridCal/blob/d3f4566d2d72c11c7e910c9d162538ef0e60df31/src/GridCal/Gui/GuiFunctions.py#L321-L327
Chaffelson/nipyapi
d3b186fd701ce308c2812746d98af9120955e810
nipyapi/nifi/models/bulletin_dto.py
python
BulletinDTO.timestamp
(self, timestamp)
Sets the timestamp of this BulletinDTO. When this bulletin was generated. :param timestamp: The timestamp of this BulletinDTO. :type: str
Sets the timestamp of this BulletinDTO. When this bulletin was generated.
[ "Sets", "the", "timestamp", "of", "this", "BulletinDTO", ".", "When", "this", "bulletin", "was", "generated", "." ]
def timestamp(self, timestamp): """ Sets the timestamp of this BulletinDTO. When this bulletin was generated. :param timestamp: The timestamp of this BulletinDTO. :type: str """ self._timestamp = timestamp
[ "def", "timestamp", "(", "self", ",", "timestamp", ")", ":", "self", ".", "_timestamp", "=", "timestamp" ]
https://github.com/Chaffelson/nipyapi/blob/d3b186fd701ce308c2812746d98af9120955e810/nipyapi/nifi/models/bulletin_dto.py#L287-L296
krintoxi/NoobSec-Toolkit
38738541cbc03cedb9a3b3ed13b629f781ad64f6
NoobSecToolkit - MAC OSX/scripts/sshbackdoors/backdoors/shell/pupy/pupy/pupylib/PupyCmd.py
python
WindowsColoredStdout.read
(self, *args, **kwargs)
[]
def read(self, *args, **kwargs): sys.stdout.read(*args, **kwargs)
[ "def", "read", "(", "self", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "sys", ".", "stdout", ".", "read", "(", "*", "args", ",", "*", "*", "kwargs", ")" ]
https://github.com/krintoxi/NoobSec-Toolkit/blob/38738541cbc03cedb9a3b3ed13b629f781ad64f6/NoobSecToolkit - MAC OSX/scripts/sshbackdoors/backdoors/shell/pupy/pupy/pupylib/PupyCmd.py#L144-L145
Pyomo/pyomo
dbd4faee151084f343b893cc2b0c04cf2b76fd92
pyomo/core/base/units_container.py
python
_PyomoUnit.__call__
(self, exception=True)
return 1.0
Unit is treated as a constant value, and this method always returns 1.0 Returns ------- : float Returns 1.0
Unit is treated as a constant value, and this method always returns 1.0
[ "Unit", "is", "treated", "as", "a", "constant", "value", "and", "this", "method", "always", "returns", "1", ".", "0" ]
def __call__(self, exception=True): """Unit is treated as a constant value, and this method always returns 1.0 Returns ------- : float Returns 1.0 """ return 1.0
[ "def", "__call__", "(", "self", ",", "exception", "=", "True", ")", ":", "return", "1.0" ]
https://github.com/Pyomo/pyomo/blob/dbd4faee151084f343b893cc2b0c04cf2b76fd92/pyomo/core/base/units_container.py#L369-L377
hardbyte/python-can
e7a2b040ee1f0cdd7fd77fbfef0454353166b333
can/interfaces/ixxat/canlib_vcinpl.py
python
IXXATBus.flush_tx_buffer
(self)
Flushes the transmit buffer on the IXXAT
Flushes the transmit buffer on the IXXAT
[ "Flushes", "the", "transmit", "buffer", "on", "the", "IXXAT" ]
def flush_tx_buffer(self): """Flushes the transmit buffer on the IXXAT""" # TODO #64: no timeout? _canlib.canChannelWaitTxEvent(self._channel_handle, constants.INFINITE)
[ "def", "flush_tx_buffer", "(", "self", ")", ":", "# TODO #64: no timeout?", "_canlib", ".", "canChannelWaitTxEvent", "(", "self", ".", "_channel_handle", ",", "constants", ".", "INFINITE", ")" ]
https://github.com/hardbyte/python-can/blob/e7a2b040ee1f0cdd7fd77fbfef0454353166b333/can/interfaces/ixxat/canlib_vcinpl.py#L635-L638
sentinel-hub/sentinelhub-py
d7ad283cf9d4bd4c8c1a8b169cdbe37c5bc8208a
sentinelhub/sentinelhub_batch.py
python
SentinelHubBatch.delete_collection
(self, collection)
return self.client.get_json( url=self._get_collections_url(collection_id), request_type=RequestType.DELETE, use_session=True )
Delete an existing batch collection `Batch API reference <https://docs.sentinel-hub.com/api/latest/reference/#operation/deleteBatchCollection>`__ :param collection: Batch collection id or object :type collection: str or BatchCollection
Delete an existing batch collection
[ "Delete", "an", "existing", "batch", "collection" ]
def delete_collection(self, collection): """ Delete an existing batch collection `Batch API reference <https://docs.sentinel-hub.com/api/latest/reference/#operation/deleteBatchCollection>`__ :param collection: Batch collection id or object :type collection: str or BatchCollection """ collection_id = self._parse_collection_id(collection) return self.client.get_json( url=self._get_collections_url(collection_id), request_type=RequestType.DELETE, use_session=True )
[ "def", "delete_collection", "(", "self", ",", "collection", ")", ":", "collection_id", "=", "self", ".", "_parse_collection_id", "(", "collection", ")", "return", "self", ".", "client", ".", "get_json", "(", "url", "=", "self", ".", "_get_collections_url", "(", "collection_id", ")", ",", "request_type", "=", "RequestType", ".", "DELETE", ",", "use_session", "=", "True", ")" ]
https://github.com/sentinel-hub/sentinelhub-py/blob/d7ad283cf9d4bd4c8c1a8b169cdbe37c5bc8208a/sentinelhub/sentinelhub_batch.py#L459-L472
openmc-dev/openmc
0cf7d9283786677e324bfbdd0984a54d1c86dacc
openmc/data/resonance_covariance.py
python
MultiLevelBreitWignerCovariance.from_endf
(cls, ev, file_obj, items, resonance)
return mlbw
Create MLBW covariance data from an ENDF evaluation. Parameters ---------- ev : openmc.data.endf.Evaluation ENDF evaluation file_obj : file-like object ENDF file positioned at the second record of a resonance range subsection in MF=32, MT=151 items : list Items from the CONT record at the start of the resonance range subsection resonance : openmc.data.ResonanceRange object Corresponding resonance range with File 2 data. Returns ------- openmc.data.MultiLevelBreitWignerCovariance Multi-level Breit-Wigner resonance covariance parameters
Create MLBW covariance data from an ENDF evaluation.
[ "Create", "MLBW", "covariance", "data", "from", "an", "ENDF", "evaluation", "." ]
def from_endf(cls, ev, file_obj, items, resonance): """Create MLBW covariance data from an ENDF evaluation. Parameters ---------- ev : openmc.data.endf.Evaluation ENDF evaluation file_obj : file-like object ENDF file positioned at the second record of a resonance range subsection in MF=32, MT=151 items : list Items from the CONT record at the start of the resonance range subsection resonance : openmc.data.ResonanceRange object Corresponding resonance range with File 2 data. Returns ------- openmc.data.MultiLevelBreitWignerCovariance Multi-level Breit-Wigner resonance covariance parameters """ # Read energy-dependent scattering radius if present energy_min, energy_max = items[0:2] nro, naps = items[4:6] if nro != 0: params, ape = endf.get_tab1_record(file_obj) # Other scatter radius parameters items = endf.get_cont_record(file_obj) target_spin = items[0] lcomp = items[3] # Flag for compatibility 0, 1, 2 - 2 is compact form nls = items[4] # number of l-values # Build covariance matrix for General Resolved Resonance Formats if lcomp == 1: items = endf.get_cont_record(file_obj) # Number of short range type resonance covariances num_short_range = items[4] # Number of long range type resonance covariances num_long_range = items[5] # Read resonance widths, J values, etc records = [] for i in range(num_short_range): items, values = endf.get_list_record(file_obj) mpar = items[2] num_res = items[5] num_par_vals = num_res*6 res_values = values[:num_par_vals] cov_values = values[num_par_vals:] energy = res_values[0::6] spin = res_values[1::6] gt = res_values[2::6] gn = res_values[3::6] gg = res_values[4::6] gf = res_values[5::6] for i, E in enumerate(energy): records.append([energy[i], spin[i], gt[i], gn[i], gg[i], gf[i]]) # Build the upper-triangular covariance matrix cov_dim = mpar*num_res cov = np.zeros([cov_dim, cov_dim]) indices = np.triu_indices(cov_dim) cov[indices] = cov_values # Compact format - Resonances and individual uncertainties followed by # compact correlations elif lcomp == 2: items, values = endf.get_list_record(file_obj) mean = items num_res = items[5] energy = values[0::12] spin = values[1::12] gt = values[2::12] gn = values[3::12] gg = values[4::12] gf = values[5::12] par_unc = [] for i in range(num_res): res_unc = values[i*12+6 : i*12+12] # Delete 0 values (not provided, no fission width) # DAJ/DGT always zero, DGF sometimes nonzero [1, 2, 5] res_unc_nonzero = [] for j in range(6): if j in [1, 2, 5] and res_unc[j] != 0.0: res_unc_nonzero.append(res_unc[j]) elif j in [0, 3, 4]: res_unc_nonzero.append(res_unc[j]) par_unc.extend(res_unc_nonzero) records = [] for i, E in enumerate(energy): records.append([energy[i], spin[i], gt[i], gn[i], gg[i], gf[i]]) corr = endf.get_intg_record(file_obj) cov = np.diag(par_unc).dot(corr).dot(np.diag(par_unc)) # Compatible resolved resonance format elif lcomp == 0: cov = np.zeros([4, 4]) records = [] cov_index = 0 for i in range(nls): items, values = endf.get_list_record(file_obj) num_res = items[5] for j in range(num_res): one_res = values[18*j:18*(j+1)] res_values = one_res[:6] cov_values = one_res[6:] records.append(list(res_values)) # Populate the coviariance matrix for this resonance # There are no covariances between resonances in lcomp=0 cov[cov_index, cov_index] = cov_values[0] cov[cov_index+1, cov_index+1 : cov_index+2] = cov_values[1:2] cov[cov_index+1, cov_index+3] = cov_values[4] cov[cov_index+2, cov_index+2] = cov_values[3] cov[cov_index+2, cov_index+3] = cov_values[5] cov[cov_index+3, cov_index+3] = cov_values[6] cov_index += 4 if j < num_res-1: # Pad matrix for additional values cov = np.pad(cov, ((0, 4), (0, 4)), 'constant', constant_values=0) # Create pandas DataFrame with resonance data, currently # redundant with data.IncidentNeutron.resonance columns = ['energy', 'J', 'totalWidth', 'neutronWidth', 'captureWidth', 'fissionWidth'] parameters = pd.DataFrame.from_records(records, columns=columns) # Determine mpar (number of parameters for each resonance in # covariance matrix) nparams, params = parameters.shape covsize = cov.shape[0] mpar = int(covsize/nparams) # Add parameters from File 2 parameters = _add_file2_contributions(parameters, resonance.parameters) # Create instance of class mlbw = cls(energy_min, energy_max, parameters, cov, mpar, lcomp, resonance) return mlbw
[ "def", "from_endf", "(", "cls", ",", "ev", ",", "file_obj", ",", "items", ",", "resonance", ")", ":", "# Read energy-dependent scattering radius if present", "energy_min", ",", "energy_max", "=", "items", "[", "0", ":", "2", "]", "nro", ",", "naps", "=", "items", "[", "4", ":", "6", "]", "if", "nro", "!=", "0", ":", "params", ",", "ape", "=", "endf", ".", "get_tab1_record", "(", "file_obj", ")", "# Other scatter radius parameters", "items", "=", "endf", ".", "get_cont_record", "(", "file_obj", ")", "target_spin", "=", "items", "[", "0", "]", "lcomp", "=", "items", "[", "3", "]", "# Flag for compatibility 0, 1, 2 - 2 is compact form", "nls", "=", "items", "[", "4", "]", "# number of l-values", "# Build covariance matrix for General Resolved Resonance Formats", "if", "lcomp", "==", "1", ":", "items", "=", "endf", ".", "get_cont_record", "(", "file_obj", ")", "# Number of short range type resonance covariances", "num_short_range", "=", "items", "[", "4", "]", "# Number of long range type resonance covariances", "num_long_range", "=", "items", "[", "5", "]", "# Read resonance widths, J values, etc", "records", "=", "[", "]", "for", "i", "in", "range", "(", "num_short_range", ")", ":", "items", ",", "values", "=", "endf", ".", "get_list_record", "(", "file_obj", ")", "mpar", "=", "items", "[", "2", "]", "num_res", "=", "items", "[", "5", "]", "num_par_vals", "=", "num_res", "*", "6", "res_values", "=", "values", "[", ":", "num_par_vals", "]", "cov_values", "=", "values", "[", "num_par_vals", ":", "]", "energy", "=", "res_values", "[", "0", ":", ":", "6", "]", "spin", "=", "res_values", "[", "1", ":", ":", "6", "]", "gt", "=", "res_values", "[", "2", ":", ":", "6", "]", "gn", "=", "res_values", "[", "3", ":", ":", "6", "]", "gg", "=", "res_values", "[", "4", ":", ":", "6", "]", "gf", "=", "res_values", "[", "5", ":", ":", "6", "]", "for", "i", ",", "E", "in", "enumerate", "(", "energy", ")", ":", "records", ".", "append", "(", "[", "energy", "[", "i", "]", ",", "spin", "[", "i", "]", ",", "gt", "[", "i", "]", ",", "gn", "[", "i", "]", ",", "gg", "[", "i", "]", ",", "gf", "[", "i", "]", "]", ")", "# Build the upper-triangular covariance matrix", "cov_dim", "=", "mpar", "*", "num_res", "cov", "=", "np", ".", "zeros", "(", "[", "cov_dim", ",", "cov_dim", "]", ")", "indices", "=", "np", ".", "triu_indices", "(", "cov_dim", ")", "cov", "[", "indices", "]", "=", "cov_values", "# Compact format - Resonances and individual uncertainties followed by", "# compact correlations", "elif", "lcomp", "==", "2", ":", "items", ",", "values", "=", "endf", ".", "get_list_record", "(", "file_obj", ")", "mean", "=", "items", "num_res", "=", "items", "[", "5", "]", "energy", "=", "values", "[", "0", ":", ":", "12", "]", "spin", "=", "values", "[", "1", ":", ":", "12", "]", "gt", "=", "values", "[", "2", ":", ":", "12", "]", "gn", "=", "values", "[", "3", ":", ":", "12", "]", "gg", "=", "values", "[", "4", ":", ":", "12", "]", "gf", "=", "values", "[", "5", ":", ":", "12", "]", "par_unc", "=", "[", "]", "for", "i", "in", "range", "(", "num_res", ")", ":", "res_unc", "=", "values", "[", "i", "*", "12", "+", "6", ":", "i", "*", "12", "+", "12", "]", "# Delete 0 values (not provided, no fission width)", "# DAJ/DGT always zero, DGF sometimes nonzero [1, 2, 5]", "res_unc_nonzero", "=", "[", "]", "for", "j", "in", "range", "(", "6", ")", ":", "if", "j", "in", "[", "1", ",", "2", ",", "5", "]", "and", "res_unc", "[", "j", "]", "!=", "0.0", ":", "res_unc_nonzero", ".", "append", "(", "res_unc", "[", "j", "]", ")", "elif", "j", "in", "[", "0", ",", "3", ",", "4", "]", ":", "res_unc_nonzero", ".", "append", "(", "res_unc", "[", "j", "]", ")", "par_unc", ".", "extend", "(", "res_unc_nonzero", ")", "records", "=", "[", "]", "for", "i", ",", "E", "in", "enumerate", "(", "energy", ")", ":", "records", ".", "append", "(", "[", "energy", "[", "i", "]", ",", "spin", "[", "i", "]", ",", "gt", "[", "i", "]", ",", "gn", "[", "i", "]", ",", "gg", "[", "i", "]", ",", "gf", "[", "i", "]", "]", ")", "corr", "=", "endf", ".", "get_intg_record", "(", "file_obj", ")", "cov", "=", "np", ".", "diag", "(", "par_unc", ")", ".", "dot", "(", "corr", ")", ".", "dot", "(", "np", ".", "diag", "(", "par_unc", ")", ")", "# Compatible resolved resonance format", "elif", "lcomp", "==", "0", ":", "cov", "=", "np", ".", "zeros", "(", "[", "4", ",", "4", "]", ")", "records", "=", "[", "]", "cov_index", "=", "0", "for", "i", "in", "range", "(", "nls", ")", ":", "items", ",", "values", "=", "endf", ".", "get_list_record", "(", "file_obj", ")", "num_res", "=", "items", "[", "5", "]", "for", "j", "in", "range", "(", "num_res", ")", ":", "one_res", "=", "values", "[", "18", "*", "j", ":", "18", "*", "(", "j", "+", "1", ")", "]", "res_values", "=", "one_res", "[", ":", "6", "]", "cov_values", "=", "one_res", "[", "6", ":", "]", "records", ".", "append", "(", "list", "(", "res_values", ")", ")", "# Populate the coviariance matrix for this resonance", "# There are no covariances between resonances in lcomp=0", "cov", "[", "cov_index", ",", "cov_index", "]", "=", "cov_values", "[", "0", "]", "cov", "[", "cov_index", "+", "1", ",", "cov_index", "+", "1", ":", "cov_index", "+", "2", "]", "=", "cov_values", "[", "1", ":", "2", "]", "cov", "[", "cov_index", "+", "1", ",", "cov_index", "+", "3", "]", "=", "cov_values", "[", "4", "]", "cov", "[", "cov_index", "+", "2", ",", "cov_index", "+", "2", "]", "=", "cov_values", "[", "3", "]", "cov", "[", "cov_index", "+", "2", ",", "cov_index", "+", "3", "]", "=", "cov_values", "[", "5", "]", "cov", "[", "cov_index", "+", "3", ",", "cov_index", "+", "3", "]", "=", "cov_values", "[", "6", "]", "cov_index", "+=", "4", "if", "j", "<", "num_res", "-", "1", ":", "# Pad matrix for additional values", "cov", "=", "np", ".", "pad", "(", "cov", ",", "(", "(", "0", ",", "4", ")", ",", "(", "0", ",", "4", ")", ")", ",", "'constant'", ",", "constant_values", "=", "0", ")", "# Create pandas DataFrame with resonance data, currently", "# redundant with data.IncidentNeutron.resonance", "columns", "=", "[", "'energy'", ",", "'J'", ",", "'totalWidth'", ",", "'neutronWidth'", ",", "'captureWidth'", ",", "'fissionWidth'", "]", "parameters", "=", "pd", ".", "DataFrame", ".", "from_records", "(", "records", ",", "columns", "=", "columns", ")", "# Determine mpar (number of parameters for each resonance in", "# covariance matrix)", "nparams", ",", "params", "=", "parameters", ".", "shape", "covsize", "=", "cov", ".", "shape", "[", "0", "]", "mpar", "=", "int", "(", "covsize", "/", "nparams", ")", "# Add parameters from File 2", "parameters", "=", "_add_file2_contributions", "(", "parameters", ",", "resonance", ".", "parameters", ")", "# Create instance of class", "mlbw", "=", "cls", "(", "energy_min", ",", "energy_max", ",", "parameters", ",", "cov", ",", "mpar", ",", "lcomp", ",", "resonance", ")", "return", "mlbw" ]
https://github.com/openmc-dev/openmc/blob/0cf7d9283786677e324bfbdd0984a54d1c86dacc/openmc/data/resonance_covariance.py#L350-L497
pyqtgraph/pyqtgraph
ac3887abfca4e529aac44f022f8e40556a2587b0
pyqtgraph/widgets/SpinBox.py
python
SpinBox.setDecimals
(self, decimals)
Set the number of decimals to be displayed when formatting numeric values.
Set the number of decimals to be displayed when formatting numeric values.
[ "Set", "the", "number", "of", "decimals", "to", "be", "displayed", "when", "formatting", "numeric", "values", "." ]
def setDecimals(self, decimals): """Set the number of decimals to be displayed when formatting numeric values. """ self.setOpts(decimals=decimals)
[ "def", "setDecimals", "(", "self", ",", "decimals", ")", ":", "self", ".", "setOpts", "(", "decimals", "=", "decimals", ")" ]
https://github.com/pyqtgraph/pyqtgraph/blob/ac3887abfca4e529aac44f022f8e40556a2587b0/pyqtgraph/widgets/SpinBox.py#L287-L291
wistbean/fxxkpython
88e16d79d8dd37236ba6ecd0d0ff11d63143968c
vip/qyxuan/projects/Snake/venv/lib/python3.6/site-packages/pip-19.0.3-py3.6.egg/pip/_vendor/distlib/util.py
python
EventMixin.get_subscribers
(self, event)
return iter(self._subscribers.get(event, ()))
Return an iterator for the subscribers for an event. :param event: The event to return subscribers for.
Return an iterator for the subscribers for an event. :param event: The event to return subscribers for.
[ "Return", "an", "iterator", "for", "the", "subscribers", "for", "an", "event", ".", ":", "param", "event", ":", "The", "event", "to", "return", "subscribers", "for", "." ]
def get_subscribers(self, event): """ Return an iterator for the subscribers for an event. :param event: The event to return subscribers for. """ return iter(self._subscribers.get(event, ()))
[ "def", "get_subscribers", "(", "self", ",", "event", ")", ":", "return", "iter", "(", "self", ".", "_subscribers", ".", "get", "(", "event", ",", "(", ")", ")", ")" ]
https://github.com/wistbean/fxxkpython/blob/88e16d79d8dd37236ba6ecd0d0ff11d63143968c/vip/qyxuan/projects/Snake/venv/lib/python3.6/site-packages/pip-19.0.3-py3.6.egg/pip/_vendor/distlib/util.py#L1020-L1025
PaloAltoNetworks/pan-os-python
30f6cd9e29d0e3c2549d46c722f6dcb507acd437
panos/userid.py
python
UserId.get_user_tags
(self, user=None, prefix=None)
return ans
Get the dynamic user tags. Note: PAN-OS 9.1+ Args: user: Get only this user's tags, not all users and all tags. prefix: Override class tag prefix. Returns: dict: Dict where the user is the key and the value is a list of tags.
Get the dynamic user tags.
[ "Get", "the", "dynamic", "user", "tags", "." ]
def get_user_tags(self, user=None, prefix=None): """ Get the dynamic user tags. Note: PAN-OS 9.1+ Args: user: Get only this user's tags, not all users and all tags. prefix: Override class tag prefix. Returns: dict: Dict where the user is the key and the value is a list of tags. """ if prefix is None: prefix = self.prefix limit = 500 start = 1 start_elm = None msg = [ "<show><object><registered-user>", ] if user is None: msg.append( "<all>" + "<limit>{0}</limit>".format(limit) + "<start-point>{0}</start-point>".format(start) + "</all>" ) else: msg.append("<user>{0}</user>".format(user)) msg.append("</registered-user></object></show>") cmd = ET.fromstring("".join(msg)) if user is None: start_elm = cmd.find("./object/registered-user/all/start-point") ans = {} while True: resp = self.device.op( cmd=ET.tostring(cmd, encoding="utf-8"), vsys=self.device.vsys, cmd_xml=False, ) entries = resp.findall("./result/entry") for entry in entries: key = entry.attrib["user"] val = [] members = entry.findall("./tag/member") for member in members: tag = member.text if not prefix or tag.startswith(prefix): val.append(tag) ans[key] = val if start_elm is None or limit <= 0 or len(entries) < limit: break start += len(entries) start_elm.text = "{0}".format(start) # Done. return ans
[ "def", "get_user_tags", "(", "self", ",", "user", "=", "None", ",", "prefix", "=", "None", ")", ":", "if", "prefix", "is", "None", ":", "prefix", "=", "self", ".", "prefix", "limit", "=", "500", "start", "=", "1", "start_elm", "=", "None", "msg", "=", "[", "\"<show><object><registered-user>\"", ",", "]", "if", "user", "is", "None", ":", "msg", ".", "append", "(", "\"<all>\"", "+", "\"<limit>{0}</limit>\"", ".", "format", "(", "limit", ")", "+", "\"<start-point>{0}</start-point>\"", ".", "format", "(", "start", ")", "+", "\"</all>\"", ")", "else", ":", "msg", ".", "append", "(", "\"<user>{0}</user>\"", ".", "format", "(", "user", ")", ")", "msg", ".", "append", "(", "\"</registered-user></object></show>\"", ")", "cmd", "=", "ET", ".", "fromstring", "(", "\"\"", ".", "join", "(", "msg", ")", ")", "if", "user", "is", "None", ":", "start_elm", "=", "cmd", ".", "find", "(", "\"./object/registered-user/all/start-point\"", ")", "ans", "=", "{", "}", "while", "True", ":", "resp", "=", "self", ".", "device", ".", "op", "(", "cmd", "=", "ET", ".", "tostring", "(", "cmd", ",", "encoding", "=", "\"utf-8\"", ")", ",", "vsys", "=", "self", ".", "device", ".", "vsys", ",", "cmd_xml", "=", "False", ",", ")", "entries", "=", "resp", ".", "findall", "(", "\"./result/entry\"", ")", "for", "entry", "in", "entries", ":", "key", "=", "entry", ".", "attrib", "[", "\"user\"", "]", "val", "=", "[", "]", "members", "=", "entry", ".", "findall", "(", "\"./tag/member\"", ")", "for", "member", "in", "members", ":", "tag", "=", "member", ".", "text", "if", "not", "prefix", "or", "tag", ".", "startswith", "(", "prefix", ")", ":", "val", ".", "append", "(", "tag", ")", "ans", "[", "key", "]", "=", "val", "if", "start_elm", "is", "None", "or", "limit", "<=", "0", "or", "len", "(", "entries", ")", "<", "limit", ":", "break", "start", "+=", "len", "(", "entries", ")", "start_elm", ".", "text", "=", "\"{0}\"", ".", "format", "(", "start", ")", "# Done.", "return", "ans" ]
https://github.com/PaloAltoNetworks/pan-os-python/blob/30f6cd9e29d0e3c2549d46c722f6dcb507acd437/panos/userid.py#L621-L684
openstack/neutron
fb229fb527ac8b95526412f7762d90826ac41428
neutron/db/l3_agentschedulers_db.py
python
L3AgentSchedulerDbMixin.get_routers_l3_agents_count
(self, context)
return [(self._make_router_dict(router_model), agent_count if agent_count else 0) for router_model, agent_count in l3_model_list]
Return a map between routers and agent counts for all routers.
Return a map between routers and agent counts for all routers.
[ "Return", "a", "map", "between", "routers", "and", "agent", "counts", "for", "all", "routers", "." ]
def get_routers_l3_agents_count(self, context): """Return a map between routers and agent counts for all routers.""" # TODO(sshank): This portion needs Router OVO integration when it is # merged. l3_model_list = l3_objs.RouterExtraAttributes.get_router_agents_count( context) return [(self._make_router_dict(router_model), agent_count if agent_count else 0) for router_model, agent_count in l3_model_list]
[ "def", "get_routers_l3_agents_count", "(", "self", ",", "context", ")", ":", "# TODO(sshank): This portion needs Router OVO integration when it is", "# merged.", "l3_model_list", "=", "l3_objs", ".", "RouterExtraAttributes", ".", "get_router_agents_count", "(", "context", ")", "return", "[", "(", "self", ".", "_make_router_dict", "(", "router_model", ")", ",", "agent_count", "if", "agent_count", "else", "0", ")", "for", "router_model", ",", "agent_count", "in", "l3_model_list", "]" ]
https://github.com/openstack/neutron/blob/fb229fb527ac8b95526412f7762d90826ac41428/neutron/db/l3_agentschedulers_db.py#L401-L409
ioflo/ioflo
177ac656d7c4ff801aebb0d8b401db365a5248ce
ioflo/aid/aggregating.py
python
gowa
(w, wm, l=1.0)
return math.pow(s, 1/l)
Generalized Ordered Weighted Averaging Operator More info can be found here: https://pdfs.semanticscholar.org/2810/c971af0d01d085c799fb2295dc5668d055c8.pdf l = -1 = Ordered Weighted Harmonic Averaging Operator l = -.000000000001 = Ordered Weighted Geometric Averaging Operator l = 1 = Ordered Weighted Arithmetic Averaging Operator l = 2 = Ordered Weighted Quadratic Averaging Operator w = list of weights wm = list of importance weighted membership values l = lambda real number specifying type of owa to use returns ordered weighted average
Generalized Ordered Weighted Averaging Operator More info can be found here: https://pdfs.semanticscholar.org/2810/c971af0d01d085c799fb2295dc5668d055c8.pdf
[ "Generalized", "Ordered", "Weighted", "Averaging", "Operator", "More", "info", "can", "be", "found", "here", ":", "https", ":", "//", "pdfs", ".", "semanticscholar", ".", "org", "/", "2810", "/", "c971af0d01d085c799fb2295dc5668d055c8", ".", "pdf" ]
def gowa(w, wm, l=1.0): """ Generalized Ordered Weighted Averaging Operator More info can be found here: https://pdfs.semanticscholar.org/2810/c971af0d01d085c799fb2295dc5668d055c8.pdf l = -1 = Ordered Weighted Harmonic Averaging Operator l = -.000000000001 = Ordered Weighted Geometric Averaging Operator l = 1 = Ordered Weighted Arithmetic Averaging Operator l = 2 = Ordered Weighted Quadratic Averaging Operator w = list of weights wm = list of importance weighted membership values l = lambda real number specifying type of owa to use returns ordered weighted average """ if len(w) != len(wm): raise ValueError("Weights and membership value lists must be of equal length.") if l == 0: raise ZeroDivisionError("Param l cannot be 0. Use -.000000000001 for owg.") wm.sort(reverse=True) s = 0 for i in range(len(w)): s += w[i] * math.pow(wm[i], l) return math.pow(s, 1/l)
[ "def", "gowa", "(", "w", ",", "wm", ",", "l", "=", "1.0", ")", ":", "if", "len", "(", "w", ")", "!=", "len", "(", "wm", ")", ":", "raise", "ValueError", "(", "\"Weights and membership value lists must be of equal length.\"", ")", "if", "l", "==", "0", ":", "raise", "ZeroDivisionError", "(", "\"Param l cannot be 0. Use -.000000000001 for owg.\"", ")", "wm", ".", "sort", "(", "reverse", "=", "True", ")", "s", "=", "0", "for", "i", "in", "range", "(", "len", "(", "w", ")", ")", ":", "s", "+=", "w", "[", "i", "]", "*", "math", ".", "pow", "(", "wm", "[", "i", "]", ",", "l", ")", "return", "math", ".", "pow", "(", "s", ",", "1", "/", "l", ")" ]
https://github.com/ioflo/ioflo/blob/177ac656d7c4ff801aebb0d8b401db365a5248ce/ioflo/aid/aggregating.py#L60-L89
Ledger-Donjon/lascar
7a1fc2187a9b642efcdda5d9177f86ec2345d7ba
lascar/tools/signal_processing.py
python
running_min
(x, window=32)
return L
Returns min of consecutive windows of x, each max repeated window times
Returns min of consecutive windows of x, each max repeated window times
[ "Returns", "min", "of", "consecutive", "windows", "of", "x", "each", "max", "repeated", "window", "times" ]
def running_min(x, window=32): """ Returns min of consecutive windows of x, each max repeated window times """ n = x.shape[0] L = np.zeros(n, dtype=x.dtype) for i in range(0, n - window, window): L[i : i + window] = np.repeat(x[i : i + window].min(), window) leftover = n % window if leftover: L[-leftover:] = np.repeat(x[-leftover:].min(), leftover) return L
[ "def", "running_min", "(", "x", ",", "window", "=", "32", ")", ":", "n", "=", "x", ".", "shape", "[", "0", "]", "L", "=", "np", ".", "zeros", "(", "n", ",", "dtype", "=", "x", ".", "dtype", ")", "for", "i", "in", "range", "(", "0", ",", "n", "-", "window", ",", "window", ")", ":", "L", "[", "i", ":", "i", "+", "window", "]", "=", "np", ".", "repeat", "(", "x", "[", "i", ":", "i", "+", "window", "]", ".", "min", "(", ")", ",", "window", ")", "leftover", "=", "n", "%", "window", "if", "leftover", ":", "L", "[", "-", "leftover", ":", "]", "=", "np", ".", "repeat", "(", "x", "[", "-", "leftover", ":", "]", ".", "min", "(", ")", ",", "leftover", ")", "return", "L" ]
https://github.com/Ledger-Donjon/lascar/blob/7a1fc2187a9b642efcdda5d9177f86ec2345d7ba/lascar/tools/signal_processing.py#L144-L155
SpamScope/spamscope
ffbfc53b9a3503ef3041cee94c6726c8b899118d
src/modules/attachments/thug_analysis.py
python
CustomWatchdog.handler
(self, signum, frame)
Function that handles Thug timeout
Function that handles Thug timeout
[ "Function", "that", "handles", "Thug", "timeout" ]
def handler(self, signum, frame): """ Function that handles Thug timeout """ msg = "The analysis took more than {} seconds.".format(self.time) log.critical(msg) if self.callback: self.callback(signum, frame) log.ThugLogging.log_event() raise Exception(msg)
[ "def", "handler", "(", "self", ",", "signum", ",", "frame", ")", ":", "msg", "=", "\"The analysis took more than {} seconds.\"", ".", "format", "(", "self", ".", "time", ")", "log", ".", "critical", "(", "msg", ")", "if", "self", ".", "callback", ":", "self", ".", "callback", "(", "signum", ",", "frame", ")", "log", ".", "ThugLogging", ".", "log_event", "(", ")", "raise", "Exception", "(", "msg", ")" ]
https://github.com/SpamScope/spamscope/blob/ffbfc53b9a3503ef3041cee94c6726c8b899118d/src/modules/attachments/thug_analysis.py#L70-L81
noamraph/dreampie
b09ee546ec099ee6549c649692ceb129e05fb229
dreampielib/gui/tags.py
python
get_theme
(config, theme_name)
return theme
Get a theme description (a dict of tuples, see above) from a config object.
Get a theme description (a dict of tuples, see above) from a config object.
[ "Get", "a", "theme", "description", "(", "a", "dict", "of", "tuples", "see", "above", ")", "from", "a", "config", "object", "." ]
def get_theme(config, theme_name): """ Get a theme description (a dict of tuples, see above) from a config object. """ section = theme_name + THEME_POSTFIX if not config.get_bool('is-active', section): raise ValueError("Theme %s is not active" % theme_name) theme = {} for tag, _desc in tag_desc: theme[tag, FG, COLOR] = config.get('%s-fg' % tag, section) theme[tag, BG, COLOR] = config.get('%s-bg' % tag, section) if tag != DEFAULT: theme[tag, FG, ISSET] = config.get_bool('%s-fg-set' % tag, section) theme[tag, BG, ISSET] = config.get_bool('%s-bg-set' % tag, section) return theme
[ "def", "get_theme", "(", "config", ",", "theme_name", ")", ":", "section", "=", "theme_name", "+", "THEME_POSTFIX", "if", "not", "config", ".", "get_bool", "(", "'is-active'", ",", "section", ")", ":", "raise", "ValueError", "(", "\"Theme %s is not active\"", "%", "theme_name", ")", "theme", "=", "{", "}", "for", "tag", ",", "_desc", "in", "tag_desc", ":", "theme", "[", "tag", ",", "FG", ",", "COLOR", "]", "=", "config", ".", "get", "(", "'%s-fg'", "%", "tag", ",", "section", ")", "theme", "[", "tag", ",", "BG", ",", "COLOR", "]", "=", "config", ".", "get", "(", "'%s-bg'", "%", "tag", ",", "section", ")", "if", "tag", "!=", "DEFAULT", ":", "theme", "[", "tag", ",", "FG", ",", "ISSET", "]", "=", "config", ".", "get_bool", "(", "'%s-fg-set'", "%", "tag", ",", "section", ")", "theme", "[", "tag", ",", "BG", ",", "ISSET", "]", "=", "config", ".", "get_bool", "(", "'%s-bg-set'", "%", "tag", ",", "section", ")", "return", "theme" ]
https://github.com/noamraph/dreampie/blob/b09ee546ec099ee6549c649692ceb129e05fb229/dreampielib/gui/tags.py#L154-L168
allegro/ralph
1e4a9e1800d5f664abaef2624b8bf7512df279ce
src/ralph/admin/mixins.py
python
BulkEditChangeListMixin.get_list_display
(self, request)
return super().get_list_display(request)
Override django admin get list display method. Set new values for fields list_editable and list_display.
Override django admin get list display method. Set new values for fields list_editable and list_display.
[ "Override", "django", "admin", "get", "list", "display", "method", ".", "Set", "new", "values", "for", "fields", "list_editable", "and", "list_display", "." ]
def get_list_display(self, request): """ Override django admin get list display method. Set new values for fields list_editable and list_display. """ self.list_editable = [] if request.GET.get(BULK_EDIT_VAR): # separate read-only and editable fields bulk_list_display = self.bulk_edit_list bulk_list_edit = self.bulk_edit_list if issubclass(self.model, PermByFieldMixin): bulk_list_display = [ field for field in self.bulk_edit_list if self.model.has_access_to_field( field, request.user, action='view' ) ] bulk_list_edit = [ field for field in bulk_list_display if self.model.has_access_to_field( field, request.user, action='change' ) ] # overwrite displayed fields in bulk-edit mode list_display = bulk_list_display.copy() if 'id' not in list_display: list_display.insert(0, 'id') # list editable is subset of list display in this case self.list_editable = bulk_list_edit return list_display return super().get_list_display(request)
[ "def", "get_list_display", "(", "self", ",", "request", ")", ":", "self", ".", "list_editable", "=", "[", "]", "if", "request", ".", "GET", ".", "get", "(", "BULK_EDIT_VAR", ")", ":", "# separate read-only and editable fields", "bulk_list_display", "=", "self", ".", "bulk_edit_list", "bulk_list_edit", "=", "self", ".", "bulk_edit_list", "if", "issubclass", "(", "self", ".", "model", ",", "PermByFieldMixin", ")", ":", "bulk_list_display", "=", "[", "field", "for", "field", "in", "self", ".", "bulk_edit_list", "if", "self", ".", "model", ".", "has_access_to_field", "(", "field", ",", "request", ".", "user", ",", "action", "=", "'view'", ")", "]", "bulk_list_edit", "=", "[", "field", "for", "field", "in", "bulk_list_display", "if", "self", ".", "model", ".", "has_access_to_field", "(", "field", ",", "request", ".", "user", ",", "action", "=", "'change'", ")", "]", "# overwrite displayed fields in bulk-edit mode", "list_display", "=", "bulk_list_display", ".", "copy", "(", ")", "if", "'id'", "not", "in", "list_display", ":", "list_display", ".", "insert", "(", "0", ",", "'id'", ")", "# list editable is subset of list display in this case", "self", ".", "list_editable", "=", "bulk_list_edit", "return", "list_display", "return", "super", "(", ")", ".", "get_list_display", "(", "request", ")" ]
https://github.com/allegro/ralph/blob/1e4a9e1800d5f664abaef2624b8bf7512df279ce/src/ralph/admin/mixins.py#L543-L573
sagemath/sage
f9b2db94f675ff16963ccdefba4f1a3393b3fe0d
src/sage/modular/modsym/modsym.py
python
canonical_parameters
(group, weight, sign, base_ring)
return group, weight, sign, base_ring
Return the canonically normalized parameters associated to a choice of group, weight, sign, and base_ring. That is, normalize each of these to be of the correct type, perform all appropriate type checking, etc. EXAMPLES:: sage: p1 = sage.modular.modsym.modsym.canonical_parameters(5,int(2),1,QQ) ; p1 (Congruence Subgroup Gamma0(5), 2, 1, Rational Field) sage: p2 = sage.modular.modsym.modsym.canonical_parameters(Gamma0(5),2,1,QQ) ; p2 (Congruence Subgroup Gamma0(5), 2, 1, Rational Field) sage: p1 == p2 True sage: type(p1[1]) <class 'sage.rings.integer.Integer'>
Return the canonically normalized parameters associated to a choice of group, weight, sign, and base_ring. That is, normalize each of these to be of the correct type, perform all appropriate type checking, etc.
[ "Return", "the", "canonically", "normalized", "parameters", "associated", "to", "a", "choice", "of", "group", "weight", "sign", "and", "base_ring", ".", "That", "is", "normalize", "each", "of", "these", "to", "be", "of", "the", "correct", "type", "perform", "all", "appropriate", "type", "checking", "etc", "." ]
def canonical_parameters(group, weight, sign, base_ring): """ Return the canonically normalized parameters associated to a choice of group, weight, sign, and base_ring. That is, normalize each of these to be of the correct type, perform all appropriate type checking, etc. EXAMPLES:: sage: p1 = sage.modular.modsym.modsym.canonical_parameters(5,int(2),1,QQ) ; p1 (Congruence Subgroup Gamma0(5), 2, 1, Rational Field) sage: p2 = sage.modular.modsym.modsym.canonical_parameters(Gamma0(5),2,1,QQ) ; p2 (Congruence Subgroup Gamma0(5), 2, 1, Rational Field) sage: p1 == p2 True sage: type(p1[1]) <class 'sage.rings.integer.Integer'> """ sign = rings.Integer(sign) if not (sign in [-1,0,1]): raise ValueError("sign must be -1, 0, or 1") weight = rings.Integer(weight) if weight <= 1: raise ValueError("the weight must be at least 2") if isinstance(group, (int, rings.Integer)): group = arithgroup.Gamma0(group) elif isinstance(group, dirichlet.DirichletCharacter): if group.is_trivial(): group = arithgroup.Gamma0(group.modulus()) else: eps = group.minimize_base_ring() group = (eps, eps.parent()) if base_ring is None: base_ring = eps.base_ring() if base_ring is None: base_ring = rational_field.RationalField() if not isinstance(base_ring, rings.CommutativeRing): raise TypeError("base_ring (=%s) must be a commutative ring"%base_ring) if not base_ring.is_field(): raise TypeError("(currently) base_ring (=%s) must be a field"%base_ring) return group, weight, sign, base_ring
[ "def", "canonical_parameters", "(", "group", ",", "weight", ",", "sign", ",", "base_ring", ")", ":", "sign", "=", "rings", ".", "Integer", "(", "sign", ")", "if", "not", "(", "sign", "in", "[", "-", "1", ",", "0", ",", "1", "]", ")", ":", "raise", "ValueError", "(", "\"sign must be -1, 0, or 1\"", ")", "weight", "=", "rings", ".", "Integer", "(", "weight", ")", "if", "weight", "<=", "1", ":", "raise", "ValueError", "(", "\"the weight must be at least 2\"", ")", "if", "isinstance", "(", "group", ",", "(", "int", ",", "rings", ".", "Integer", ")", ")", ":", "group", "=", "arithgroup", ".", "Gamma0", "(", "group", ")", "elif", "isinstance", "(", "group", ",", "dirichlet", ".", "DirichletCharacter", ")", ":", "if", "group", ".", "is_trivial", "(", ")", ":", "group", "=", "arithgroup", ".", "Gamma0", "(", "group", ".", "modulus", "(", ")", ")", "else", ":", "eps", "=", "group", ".", "minimize_base_ring", "(", ")", "group", "=", "(", "eps", ",", "eps", ".", "parent", "(", ")", ")", "if", "base_ring", "is", "None", ":", "base_ring", "=", "eps", ".", "base_ring", "(", ")", "if", "base_ring", "is", "None", ":", "base_ring", "=", "rational_field", ".", "RationalField", "(", ")", "if", "not", "isinstance", "(", "base_ring", ",", "rings", ".", "CommutativeRing", ")", ":", "raise", "TypeError", "(", "\"base_ring (=%s) must be a commutative ring\"", "%", "base_ring", ")", "if", "not", "base_ring", ".", "is_field", "(", ")", ":", "raise", "TypeError", "(", "\"(currently) base_ring (=%s) must be a field\"", "%", "base_ring", ")", "return", "group", ",", "weight", ",", "sign", ",", "base_ring" ]
https://github.com/sagemath/sage/blob/f9b2db94f675ff16963ccdefba4f1a3393b3fe0d/src/sage/modular/modsym/modsym.py#L99-L145
Ultimaker/Uranium
66da853cd9a04edd3a8a03526fac81e83c03f5aa
UM/SortedList.py
python
SortedList.__delitem__
(self, index)
Remove value at `index` from sorted list. ``sl.__delitem__(index)`` <==> ``del sl[index]`` Supports slicing. Runtime complexity: `O(log(n))` -- approximate. >>> sl = SortedList('abcde') >>> del sl[2] >>> sl SortedList(['a', 'b', 'd', 'e']) >>> del sl[:2] >>> sl SortedList(['d', 'e']) :param index: integer or slice for indexing :raises IndexError: if index out of range
Remove value at `index` from sorted list.
[ "Remove", "value", "at", "index", "from", "sorted", "list", "." ]
def __delitem__(self, index): """Remove value at `index` from sorted list. ``sl.__delitem__(index)`` <==> ``del sl[index]`` Supports slicing. Runtime complexity: `O(log(n))` -- approximate. >>> sl = SortedList('abcde') >>> del sl[2] >>> sl SortedList(['a', 'b', 'd', 'e']) >>> del sl[:2] >>> sl SortedList(['d', 'e']) :param index: integer or slice for indexing :raises IndexError: if index out of range """ if isinstance(index, slice): start, stop, step = index.indices(self._len) if step == 1 and start < stop: if start == 0 and stop == self._len: return self._clear() elif self._len <= 8 * (stop - start): values = self._getitem(slice(None, start)) if stop < self._len: values += self._getitem(slice(stop, None)) self._clear() return self._update(values) indices = range(start, stop, step) # Delete items from greatest index to least so # that the indices remain valid throughout iteration. if step > 0: indices = reversed(indices) _pos, _delete = self._pos, self._delete for index in indices: pos, idx = _pos(index) _delete(pos, idx) else: pos, idx = self._pos(index) self._delete(pos, idx)
[ "def", "__delitem__", "(", "self", ",", "index", ")", ":", "if", "isinstance", "(", "index", ",", "slice", ")", ":", "start", ",", "stop", ",", "step", "=", "index", ".", "indices", "(", "self", ".", "_len", ")", "if", "step", "==", "1", "and", "start", "<", "stop", ":", "if", "start", "==", "0", "and", "stop", "==", "self", ".", "_len", ":", "return", "self", ".", "_clear", "(", ")", "elif", "self", ".", "_len", "<=", "8", "*", "(", "stop", "-", "start", ")", ":", "values", "=", "self", ".", "_getitem", "(", "slice", "(", "None", ",", "start", ")", ")", "if", "stop", "<", "self", ".", "_len", ":", "values", "+=", "self", ".", "_getitem", "(", "slice", "(", "stop", ",", "None", ")", ")", "self", ".", "_clear", "(", ")", "return", "self", ".", "_update", "(", "values", ")", "indices", "=", "range", "(", "start", ",", "stop", ",", "step", ")", "# Delete items from greatest index to least so", "# that the indices remain valid throughout iteration.", "if", "step", ">", "0", ":", "indices", "=", "reversed", "(", "indices", ")", "_pos", ",", "_delete", "=", "self", ".", "_pos", ",", "self", ".", "_delete", "for", "index", "in", "indices", ":", "pos", ",", "idx", "=", "_pos", "(", "index", ")", "_delete", "(", "pos", ",", "idx", ")", "else", ":", "pos", ",", "idx", "=", "self", ".", "_pos", "(", "index", ")", "self", ".", "_delete", "(", "pos", ",", "idx", ")" ]
https://github.com/Ultimaker/Uranium/blob/66da853cd9a04edd3a8a03526fac81e83c03f5aa/UM/SortedList.py#L797-L846
rootpy/rootpy
3926935e1f2100d8ba68070c2ab44055d4800f73
rootpy/extern/pyparsing.py
python
ParserElement.inlineLiteralsUsing
(cls)
Set class to be used for inclusion of string literals into a parser.
Set class to be used for inclusion of string literals into a parser.
[ "Set", "class", "to", "be", "used", "for", "inclusion", "of", "string", "literals", "into", "a", "parser", "." ]
def inlineLiteralsUsing(cls): """ Set class to be used for inclusion of string literals into a parser. """ ParserElement.literalStringClass = cls
[ "def", "inlineLiteralsUsing", "(", "cls", ")", ":", "ParserElement", ".", "literalStringClass", "=", "cls" ]
https://github.com/rootpy/rootpy/blob/3926935e1f2100d8ba68070c2ab44055d4800f73/rootpy/extern/pyparsing.py#L800-L804
iterative/dvc
13238e97168007cb5ba21966368457776274b9ca
dvc/repo/experiments/utils.py
python
resolve_name
( scm: "Git", exp_names: Union[Iterable[str], str], git_remote: Optional[str] = None, )
return result
find the ref_info of specified names.
find the ref_info of specified names.
[ "find", "the", "ref_info", "of", "specified", "names", "." ]
def resolve_name( scm: "Git", exp_names: Union[Iterable[str], str], git_remote: Optional[str] = None, ) -> Dict[str, Optional[ExpRefInfo]]: """find the ref_info of specified names.""" if isinstance(exp_names, str): exp_names = [exp_names] result = {} unresolved = set() for exp_name in exp_names: if exp_name.startswith("refs/"): result[exp_name] = ExpRefInfo.from_ref(exp_name) else: unresolved.add(exp_name) unresolved_result = exp_refs_by_names(scm, unresolved, git_remote) cur_rev = scm.get_rev() for name in unresolved: ref_info_list = unresolved_result[name] if not ref_info_list: result[name] = None elif len(ref_info_list) == 1: result[name] = ref_info_list[0] else: for ref_info in ref_info_list: if ref_info.baseline_sha == cur_rev: result[name] = ref_info break else: raise AmbiguousExpRefInfo(name, ref_info_list) return result
[ "def", "resolve_name", "(", "scm", ":", "\"Git\"", ",", "exp_names", ":", "Union", "[", "Iterable", "[", "str", "]", ",", "str", "]", ",", "git_remote", ":", "Optional", "[", "str", "]", "=", "None", ",", ")", "->", "Dict", "[", "str", ",", "Optional", "[", "ExpRefInfo", "]", "]", ":", "if", "isinstance", "(", "exp_names", ",", "str", ")", ":", "exp_names", "=", "[", "exp_names", "]", "result", "=", "{", "}", "unresolved", "=", "set", "(", ")", "for", "exp_name", "in", "exp_names", ":", "if", "exp_name", ".", "startswith", "(", "\"refs/\"", ")", ":", "result", "[", "exp_name", "]", "=", "ExpRefInfo", ".", "from_ref", "(", "exp_name", ")", "else", ":", "unresolved", ".", "add", "(", "exp_name", ")", "unresolved_result", "=", "exp_refs_by_names", "(", "scm", ",", "unresolved", ",", "git_remote", ")", "cur_rev", "=", "scm", ".", "get_rev", "(", ")", "for", "name", "in", "unresolved", ":", "ref_info_list", "=", "unresolved_result", "[", "name", "]", "if", "not", "ref_info_list", ":", "result", "[", "name", "]", "=", "None", "elif", "len", "(", "ref_info_list", ")", "==", "1", ":", "result", "[", "name", "]", "=", "ref_info_list", "[", "0", "]", "else", ":", "for", "ref_info", "in", "ref_info_list", ":", "if", "ref_info", ".", "baseline_sha", "==", "cur_rev", ":", "result", "[", "name", "]", "=", "ref_info", "break", "else", ":", "raise", "AmbiguousExpRefInfo", "(", "name", ",", "ref_info_list", ")", "return", "result" ]
https://github.com/iterative/dvc/blob/13238e97168007cb5ba21966368457776274b9ca/dvc/repo/experiments/utils.py#L180-L212
caiiiac/Machine-Learning-with-Python
1a26c4467da41ca4ebc3d5bd789ea942ef79422f
MachineLearning/venv/lib/python3.5/site-packages/sklearn/datasets/samples_generator.py
python
make_classification
(n_samples=100, n_features=20, n_informative=2, n_redundant=2, n_repeated=0, n_classes=2, n_clusters_per_class=2, weights=None, flip_y=0.01, class_sep=1.0, hypercube=True, shift=0.0, scale=1.0, shuffle=True, random_state=None)
return X, y
Generate a random n-class classification problem. This initially creates clusters of points normally distributed (std=1) about vertices of a `2 * class_sep`-sided hypercube, and assigns an equal number of clusters to each class. It introduces interdependence between these features and adds various types of further noise to the data. Prior to shuffling, `X` stacks a number of these primary "informative" features, "redundant" linear combinations of these, "repeated" duplicates of sampled features, and arbitrary noise for and remaining features. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=20) The total number of features. These comprise `n_informative` informative features, `n_redundant` redundant features, `n_repeated` duplicated features and `n_features-n_informative-n_redundant- n_repeated` useless features drawn at random. n_informative : int, optional (default=2) The number of informative features. Each class is composed of a number of gaussian clusters each located around the vertices of a hypercube in a subspace of dimension `n_informative`. For each cluster, informative features are drawn independently from N(0, 1) and then randomly linearly combined within each cluster in order to add covariance. The clusters are then placed on the vertices of the hypercube. n_redundant : int, optional (default=2) The number of redundant features. These features are generated as random linear combinations of the informative features. n_repeated : int, optional (default=0) The number of duplicated features, drawn randomly from the informative and the redundant features. n_classes : int, optional (default=2) The number of classes (or labels) of the classification problem. n_clusters_per_class : int, optional (default=2) The number of clusters per class. weights : list of floats or None (default=None) The proportions of samples assigned to each class. If None, then classes are balanced. Note that if `len(weights) == n_classes - 1`, then the last class weight is automatically inferred. More than `n_samples` samples may be returned if the sum of `weights` exceeds 1. flip_y : float, optional (default=0.01) The fraction of samples whose class are randomly exchanged. class_sep : float, optional (default=1.0) The factor multiplying the hypercube dimension. hypercube : boolean, optional (default=True) If True, the clusters are put on the vertices of a hypercube. If False, the clusters are put on the vertices of a random polytope. shift : float, array of shape [n_features] or None, optional (default=0.0) Shift features by the specified value. If None, then features are shifted by a random value drawn in [-class_sep, class_sep]. scale : float, array of shape [n_features] or None, optional (default=1.0) Multiply features by the specified value. If None, then features are scaled by a random value drawn in [1, 100]. Note that scaling happens after shifting. shuffle : boolean, optional (default=True) Shuffle the samples and the features. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The generated samples. y : array of shape [n_samples] The integer labels for class membership of each sample. Notes ----- The algorithm is adapted from Guyon [1] and was designed to generate the "Madelon" dataset. References ---------- .. [1] I. Guyon, "Design of experiments for the NIPS 2003 variable selection benchmark", 2003. See also -------- make_blobs: simplified variant make_multilabel_classification: unrelated generator for multilabel tasks
Generate a random n-class classification problem.
[ "Generate", "a", "random", "n", "-", "class", "classification", "problem", "." ]
def make_classification(n_samples=100, n_features=20, n_informative=2, n_redundant=2, n_repeated=0, n_classes=2, n_clusters_per_class=2, weights=None, flip_y=0.01, class_sep=1.0, hypercube=True, shift=0.0, scale=1.0, shuffle=True, random_state=None): """Generate a random n-class classification problem. This initially creates clusters of points normally distributed (std=1) about vertices of a `2 * class_sep`-sided hypercube, and assigns an equal number of clusters to each class. It introduces interdependence between these features and adds various types of further noise to the data. Prior to shuffling, `X` stacks a number of these primary "informative" features, "redundant" linear combinations of these, "repeated" duplicates of sampled features, and arbitrary noise for and remaining features. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=20) The total number of features. These comprise `n_informative` informative features, `n_redundant` redundant features, `n_repeated` duplicated features and `n_features-n_informative-n_redundant- n_repeated` useless features drawn at random. n_informative : int, optional (default=2) The number of informative features. Each class is composed of a number of gaussian clusters each located around the vertices of a hypercube in a subspace of dimension `n_informative`. For each cluster, informative features are drawn independently from N(0, 1) and then randomly linearly combined within each cluster in order to add covariance. The clusters are then placed on the vertices of the hypercube. n_redundant : int, optional (default=2) The number of redundant features. These features are generated as random linear combinations of the informative features. n_repeated : int, optional (default=0) The number of duplicated features, drawn randomly from the informative and the redundant features. n_classes : int, optional (default=2) The number of classes (or labels) of the classification problem. n_clusters_per_class : int, optional (default=2) The number of clusters per class. weights : list of floats or None (default=None) The proportions of samples assigned to each class. If None, then classes are balanced. Note that if `len(weights) == n_classes - 1`, then the last class weight is automatically inferred. More than `n_samples` samples may be returned if the sum of `weights` exceeds 1. flip_y : float, optional (default=0.01) The fraction of samples whose class are randomly exchanged. class_sep : float, optional (default=1.0) The factor multiplying the hypercube dimension. hypercube : boolean, optional (default=True) If True, the clusters are put on the vertices of a hypercube. If False, the clusters are put on the vertices of a random polytope. shift : float, array of shape [n_features] or None, optional (default=0.0) Shift features by the specified value. If None, then features are shifted by a random value drawn in [-class_sep, class_sep]. scale : float, array of shape [n_features] or None, optional (default=1.0) Multiply features by the specified value. If None, then features are scaled by a random value drawn in [1, 100]. Note that scaling happens after shifting. shuffle : boolean, optional (default=True) Shuffle the samples and the features. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The generated samples. y : array of shape [n_samples] The integer labels for class membership of each sample. Notes ----- The algorithm is adapted from Guyon [1] and was designed to generate the "Madelon" dataset. References ---------- .. [1] I. Guyon, "Design of experiments for the NIPS 2003 variable selection benchmark", 2003. See also -------- make_blobs: simplified variant make_multilabel_classification: unrelated generator for multilabel tasks """ generator = check_random_state(random_state) # Count features, clusters and samples if n_informative + n_redundant + n_repeated > n_features: raise ValueError("Number of informative, redundant and repeated " "features must sum to less than the number of total" " features") if 2 ** n_informative < n_classes * n_clusters_per_class: raise ValueError("n_classes * n_clusters_per_class must" " be smaller or equal 2 ** n_informative") if weights and len(weights) not in [n_classes, n_classes - 1]: raise ValueError("Weights specified but incompatible with number " "of classes.") n_useless = n_features - n_informative - n_redundant - n_repeated n_clusters = n_classes * n_clusters_per_class if weights and len(weights) == (n_classes - 1): weights.append(1.0 - sum(weights)) if weights is None: weights = [1.0 / n_classes] * n_classes weights[-1] = 1.0 - sum(weights[:-1]) # Distribute samples among clusters by weight n_samples_per_cluster = [] for k in range(n_clusters): n_samples_per_cluster.append(int(n_samples * weights[k % n_classes] / n_clusters_per_class)) for i in range(n_samples - sum(n_samples_per_cluster)): n_samples_per_cluster[i % n_clusters] += 1 # Initialize X and y X = np.zeros((n_samples, n_features)) y = np.zeros(n_samples, dtype=np.int) # Build the polytope whose vertices become cluster centroids centroids = _generate_hypercube(n_clusters, n_informative, generator).astype(float) centroids *= 2 * class_sep centroids -= class_sep if not hypercube: centroids *= generator.rand(n_clusters, 1) centroids *= generator.rand(1, n_informative) # Initially draw informative features from the standard normal X[:, :n_informative] = generator.randn(n_samples, n_informative) # Create each cluster; a variant of make_blobs stop = 0 for k, centroid in enumerate(centroids): start, stop = stop, stop + n_samples_per_cluster[k] y[start:stop] = k % n_classes # assign labels X_k = X[start:stop, :n_informative] # slice a view of the cluster A = 2 * generator.rand(n_informative, n_informative) - 1 X_k[...] = np.dot(X_k, A) # introduce random covariance X_k += centroid # shift the cluster to a vertex # Create redundant features if n_redundant > 0: B = 2 * generator.rand(n_informative, n_redundant) - 1 X[:, n_informative:n_informative + n_redundant] = \ np.dot(X[:, :n_informative], B) # Repeat some features if n_repeated > 0: n = n_informative + n_redundant indices = ((n - 1) * generator.rand(n_repeated) + 0.5).astype(np.intp) X[:, n:n + n_repeated] = X[:, indices] # Fill useless features if n_useless > 0: X[:, -n_useless:] = generator.randn(n_samples, n_useless) # Randomly replace labels if flip_y >= 0.0: flip_mask = generator.rand(n_samples) < flip_y y[flip_mask] = generator.randint(n_classes, size=flip_mask.sum()) # Randomly shift and scale if shift is None: shift = (2 * generator.rand(n_features) - 1) * class_sep X += shift if scale is None: scale = 1 + 100 * generator.rand(n_features) X *= scale if shuffle: # Randomly permute samples X, y = util_shuffle(X, y, random_state=generator) # Randomly permute features indices = np.arange(n_features) generator.shuffle(indices) X[:, :] = X[:, indices] return X, y
[ "def", "make_classification", "(", "n_samples", "=", "100", ",", "n_features", "=", "20", ",", "n_informative", "=", "2", ",", "n_redundant", "=", "2", ",", "n_repeated", "=", "0", ",", "n_classes", "=", "2", ",", "n_clusters_per_class", "=", "2", ",", "weights", "=", "None", ",", "flip_y", "=", "0.01", ",", "class_sep", "=", "1.0", ",", "hypercube", "=", "True", ",", "shift", "=", "0.0", ",", "scale", "=", "1.0", ",", "shuffle", "=", "True", ",", "random_state", "=", "None", ")", ":", "generator", "=", "check_random_state", "(", "random_state", ")", "# Count features, clusters and samples", "if", "n_informative", "+", "n_redundant", "+", "n_repeated", ">", "n_features", ":", "raise", "ValueError", "(", "\"Number of informative, redundant and repeated \"", "\"features must sum to less than the number of total\"", "\" features\"", ")", "if", "2", "**", "n_informative", "<", "n_classes", "*", "n_clusters_per_class", ":", "raise", "ValueError", "(", "\"n_classes * n_clusters_per_class must\"", "\" be smaller or equal 2 ** n_informative\"", ")", "if", "weights", "and", "len", "(", "weights", ")", "not", "in", "[", "n_classes", ",", "n_classes", "-", "1", "]", ":", "raise", "ValueError", "(", "\"Weights specified but incompatible with number \"", "\"of classes.\"", ")", "n_useless", "=", "n_features", "-", "n_informative", "-", "n_redundant", "-", "n_repeated", "n_clusters", "=", "n_classes", "*", "n_clusters_per_class", "if", "weights", "and", "len", "(", "weights", ")", "==", "(", "n_classes", "-", "1", ")", ":", "weights", ".", "append", "(", "1.0", "-", "sum", "(", "weights", ")", ")", "if", "weights", "is", "None", ":", "weights", "=", "[", "1.0", "/", "n_classes", "]", "*", "n_classes", "weights", "[", "-", "1", "]", "=", "1.0", "-", "sum", "(", "weights", "[", ":", "-", "1", "]", ")", "# Distribute samples among clusters by weight", "n_samples_per_cluster", "=", "[", "]", "for", "k", "in", "range", "(", "n_clusters", ")", ":", "n_samples_per_cluster", ".", "append", "(", "int", "(", "n_samples", "*", "weights", "[", "k", "%", "n_classes", "]", "/", "n_clusters_per_class", ")", ")", "for", "i", "in", "range", "(", "n_samples", "-", "sum", "(", "n_samples_per_cluster", ")", ")", ":", "n_samples_per_cluster", "[", "i", "%", "n_clusters", "]", "+=", "1", "# Initialize X and y", "X", "=", "np", ".", "zeros", "(", "(", "n_samples", ",", "n_features", ")", ")", "y", "=", "np", ".", "zeros", "(", "n_samples", ",", "dtype", "=", "np", ".", "int", ")", "# Build the polytope whose vertices become cluster centroids", "centroids", "=", "_generate_hypercube", "(", "n_clusters", ",", "n_informative", ",", "generator", ")", ".", "astype", "(", "float", ")", "centroids", "*=", "2", "*", "class_sep", "centroids", "-=", "class_sep", "if", "not", "hypercube", ":", "centroids", "*=", "generator", ".", "rand", "(", "n_clusters", ",", "1", ")", "centroids", "*=", "generator", ".", "rand", "(", "1", ",", "n_informative", ")", "# Initially draw informative features from the standard normal", "X", "[", ":", ",", ":", "n_informative", "]", "=", "generator", ".", "randn", "(", "n_samples", ",", "n_informative", ")", "# Create each cluster; a variant of make_blobs", "stop", "=", "0", "for", "k", ",", "centroid", "in", "enumerate", "(", "centroids", ")", ":", "start", ",", "stop", "=", "stop", ",", "stop", "+", "n_samples_per_cluster", "[", "k", "]", "y", "[", "start", ":", "stop", "]", "=", "k", "%", "n_classes", "# assign labels", "X_k", "=", "X", "[", "start", ":", "stop", ",", ":", "n_informative", "]", "# slice a view of the cluster", "A", "=", "2", "*", "generator", ".", "rand", "(", "n_informative", ",", "n_informative", ")", "-", "1", "X_k", "[", "...", "]", "=", "np", ".", "dot", "(", "X_k", ",", "A", ")", "# introduce random covariance", "X_k", "+=", "centroid", "# shift the cluster to a vertex", "# Create redundant features", "if", "n_redundant", ">", "0", ":", "B", "=", "2", "*", "generator", ".", "rand", "(", "n_informative", ",", "n_redundant", ")", "-", "1", "X", "[", ":", ",", "n_informative", ":", "n_informative", "+", "n_redundant", "]", "=", "np", ".", "dot", "(", "X", "[", ":", ",", ":", "n_informative", "]", ",", "B", ")", "# Repeat some features", "if", "n_repeated", ">", "0", ":", "n", "=", "n_informative", "+", "n_redundant", "indices", "=", "(", "(", "n", "-", "1", ")", "*", "generator", ".", "rand", "(", "n_repeated", ")", "+", "0.5", ")", ".", "astype", "(", "np", ".", "intp", ")", "X", "[", ":", ",", "n", ":", "n", "+", "n_repeated", "]", "=", "X", "[", ":", ",", "indices", "]", "# Fill useless features", "if", "n_useless", ">", "0", ":", "X", "[", ":", ",", "-", "n_useless", ":", "]", "=", "generator", ".", "randn", "(", "n_samples", ",", "n_useless", ")", "# Randomly replace labels", "if", "flip_y", ">=", "0.0", ":", "flip_mask", "=", "generator", ".", "rand", "(", "n_samples", ")", "<", "flip_y", "y", "[", "flip_mask", "]", "=", "generator", ".", "randint", "(", "n_classes", ",", "size", "=", "flip_mask", ".", "sum", "(", ")", ")", "# Randomly shift and scale", "if", "shift", "is", "None", ":", "shift", "=", "(", "2", "*", "generator", ".", "rand", "(", "n_features", ")", "-", "1", ")", "*", "class_sep", "X", "+=", "shift", "if", "scale", "is", "None", ":", "scale", "=", "1", "+", "100", "*", "generator", ".", "rand", "(", "n_features", ")", "X", "*=", "scale", "if", "shuffle", ":", "# Randomly permute samples", "X", ",", "y", "=", "util_shuffle", "(", "X", ",", "y", ",", "random_state", "=", "generator", ")", "# Randomly permute features", "indices", "=", "np", ".", "arange", "(", "n_features", ")", "generator", ".", "shuffle", "(", "indices", ")", "X", "[", ":", ",", ":", "]", "=", "X", "[", ":", ",", "indices", "]", "return", "X", ",", "y" ]
https://github.com/caiiiac/Machine-Learning-with-Python/blob/1a26c4467da41ca4ebc3d5bd789ea942ef79422f/MachineLearning/venv/lib/python3.5/site-packages/sklearn/datasets/samples_generator.py#L38-L247
django/django
0a17666045de6739ae1c2ac695041823d5f827f7
django/core/serializers/xml_serializer.py
python
Deserializer._handle_m2m_field_node
(self, node, field)
Handle a <field> node for a ManyToManyField.
Handle a <field> node for a ManyToManyField.
[ "Handle", "a", "<field", ">", "node", "for", "a", "ManyToManyField", "." ]
def _handle_m2m_field_node(self, node, field): """ Handle a <field> node for a ManyToManyField. """ model = field.remote_field.model default_manager = model._default_manager if hasattr(default_manager, 'get_by_natural_key'): def m2m_convert(n): keys = n.getElementsByTagName('natural') if keys: # If there are 'natural' subelements, it must be a natural key field_value = [getInnerText(k).strip() for k in keys] obj_pk = default_manager.db_manager(self.db).get_by_natural_key(*field_value).pk else: # Otherwise, treat like a normal PK value. obj_pk = model._meta.pk.to_python(n.getAttribute('pk')) return obj_pk else: def m2m_convert(n): return model._meta.pk.to_python(n.getAttribute('pk')) values = [] try: for c in node.getElementsByTagName('object'): values.append(m2m_convert(c)) except Exception as e: if isinstance(e, ObjectDoesNotExist) and self.handle_forward_references: return base.DEFER_FIELD else: raise base.M2MDeserializationError(e, c) else: return values
[ "def", "_handle_m2m_field_node", "(", "self", ",", "node", ",", "field", ")", ":", "model", "=", "field", ".", "remote_field", ".", "model", "default_manager", "=", "model", ".", "_default_manager", "if", "hasattr", "(", "default_manager", ",", "'get_by_natural_key'", ")", ":", "def", "m2m_convert", "(", "n", ")", ":", "keys", "=", "n", ".", "getElementsByTagName", "(", "'natural'", ")", "if", "keys", ":", "# If there are 'natural' subelements, it must be a natural key", "field_value", "=", "[", "getInnerText", "(", "k", ")", ".", "strip", "(", ")", "for", "k", "in", "keys", "]", "obj_pk", "=", "default_manager", ".", "db_manager", "(", "self", ".", "db", ")", ".", "get_by_natural_key", "(", "*", "field_value", ")", ".", "pk", "else", ":", "# Otherwise, treat like a normal PK value.", "obj_pk", "=", "model", ".", "_meta", ".", "pk", ".", "to_python", "(", "n", ".", "getAttribute", "(", "'pk'", ")", ")", "return", "obj_pk", "else", ":", "def", "m2m_convert", "(", "n", ")", ":", "return", "model", ".", "_meta", ".", "pk", ".", "to_python", "(", "n", ".", "getAttribute", "(", "'pk'", ")", ")", "values", "=", "[", "]", "try", ":", "for", "c", "in", "node", ".", "getElementsByTagName", "(", "'object'", ")", ":", "values", ".", "append", "(", "m2m_convert", "(", "c", ")", ")", "except", "Exception", "as", "e", ":", "if", "isinstance", "(", "e", ",", "ObjectDoesNotExist", ")", "and", "self", ".", "handle_forward_references", ":", "return", "base", ".", "DEFER_FIELD", "else", ":", "raise", "base", ".", "M2MDeserializationError", "(", "e", ",", "c", ")", "else", ":", "return", "values" ]
https://github.com/django/django/blob/0a17666045de6739ae1c2ac695041823d5f827f7/django/core/serializers/xml_serializer.py#L285-L315
plotly/plotly.py
cfad7862594b35965c0e000813bd7805e8494a5b
packages/python/plotly/plotly/graph_objs/_histogram2dcontour.py
python
Histogram2dContour.colorbar
(self)
return self["colorbar"]
The 'colorbar' property is an instance of ColorBar that may be specified as: - An instance of :class:`plotly.graph_objs.histogram2dcontour.ColorBar` - A dict of string/value properties that will be passed to the ColorBar constructor Supported dict properties: bgcolor Sets the color of padded area. bordercolor Sets the axis line color. borderwidth Sets the width (in px) or the border enclosing this color bar. dtick Sets the step in-between ticks on this axis. Use with `tick0`. Must be a positive number, or special strings available to "log" and "date" axes. If the axis `type` is "log", then ticks are set every 10^(n*dtick) where n is the tick number. For example, to set a tick mark at 1, 10, 100, 1000, ... set dtick to 1. To set tick marks at 1, 100, 10000, ... set dtick to 2. To set tick marks at 1, 5, 25, 125, 625, 3125, ... set dtick to log_10(5), or 0.69897000433. "log" has several special values; "L<f>", where `f` is a positive number, gives ticks linearly spaced in value (but not position). For example `tick0` = 0.1, `dtick` = "L0.5" will put ticks at 0.1, 0.6, 1.1, 1.6 etc. To show powers of 10 plus small digits between, use "D1" (all digits) or "D2" (only 2 and 5). `tick0` is ignored for "D1" and "D2". If the axis `type` is "date", then you must convert the time to milliseconds. For example, to set the interval between ticks to one day, set `dtick` to 86400000.0. "date" also has special values "M<n>" gives ticks spaced by a number of months. `n` must be a positive integer. To set ticks on the 15th of every third month, set `tick0` to "2000-01-15" and `dtick` to "M3". To set ticks every 4 years, set `dtick` to "M48" exponentformat Determines a formatting rule for the tick exponents. For example, consider the number 1,000,000,000. If "none", it appears as 1,000,000,000. If "e", 1e+9. If "E", 1E+9. If "power", 1x10^9 (with 9 in a super script). If "SI", 1G. If "B", 1B. len Sets the length of the color bar This measure excludes the padding of both ends. That is, the color bar length is this length minus the padding on both ends. lenmode Determines whether this color bar's length (i.e. the measure in the color variation direction) is set in units of plot "fraction" or in *pixels. Use `len` to set the value. minexponent Hide SI prefix for 10^n if |n| is below this number. This only has an effect when `tickformat` is "SI" or "B". nticks Specifies the maximum number of ticks for the particular axis. The actual number of ticks will be chosen automatically to be less than or equal to `nticks`. Has an effect only if `tickmode` is set to "auto". orientation Sets the orientation of the colorbar. outlinecolor Sets the axis line color. outlinewidth Sets the width (in px) of the axis line. separatethousands If "true", even 4-digit integers are separated showexponent If "all", all exponents are shown besides their significands. If "first", only the exponent of the first tick is shown. If "last", only the exponent of the last tick is shown. If "none", no exponents appear. showticklabels Determines whether or not the tick labels are drawn. showtickprefix If "all", all tick labels are displayed with a prefix. If "first", only the first tick is displayed with a prefix. If "last", only the last tick is displayed with a suffix. If "none", tick prefixes are hidden. showticksuffix Same as `showtickprefix` but for tick suffixes. thickness Sets the thickness of the color bar This measure excludes the size of the padding, ticks and labels. thicknessmode Determines whether this color bar's thickness (i.e. the measure in the constant color direction) is set in units of plot "fraction" or in "pixels". Use `thickness` to set the value. tick0 Sets the placement of the first tick on this axis. Use with `dtick`. If the axis `type` is "log", then you must take the log of your starting tick (e.g. to set the starting tick to 100, set the `tick0` to 2) except when `dtick`=*L<f>* (see `dtick` for more info). If the axis `type` is "date", it should be a date string, like date data. If the axis `type` is "category", it should be a number, using the scale where each category is assigned a serial number from zero in the order it appears. tickangle Sets the angle of the tick labels with respect to the horizontal. For example, a `tickangle` of -90 draws the tick labels vertically. tickcolor Sets the tick color. tickfont Sets the color bar's tick label font tickformat Sets the tick label formatting rule using d3 formatting mini-languages which are very similar to those in Python. For numbers, see: h ttps://github.com/d3/d3-format/tree/v1.4.5#d3-f ormat. And for dates see: https://github.com/d3/d3-time- format/tree/v2.2.3#locale_format. We add two items to d3's date formatter: "%h" for half of the year as a decimal number as well as "%{n}f" for fractional seconds with n digits. For example, *2016-10-13 09:15:23.456* with tickformat "%H~%M~%S.%2f" would display "09~15~23.46" tickformatstops A tuple of :class:`plotly.graph_objects.histogr am2dcontour.colorbar.Tickformatstop` instances or dicts with compatible properties tickformatstopdefaults When used in a template (as layout.template.dat a.histogram2dcontour.colorbar.tickformatstopdef aults), sets the default property values to use for elements of histogram2dcontour.colorbar.tickformatstops ticklabeloverflow Determines how we handle tick labels that would overflow either the graph div or the domain of the axis. The default value for inside tick labels is *hide past domain*. In other cases the default is *hide past div*. ticklabelposition Determines where tick labels are drawn relative to the ticks. Left and right options are used when `orientation` is "h", top and bottom when `orientation` is "v". ticklen Sets the tick length (in px). tickmode Sets the tick mode for this axis. If "auto", the number of ticks is set via `nticks`. If "linear", the placement of the ticks is determined by a starting position `tick0` and a tick step `dtick` ("linear" is the default value if `tick0` and `dtick` are provided). If "array", the placement of the ticks is set via `tickvals` and the tick text is `ticktext`. ("array" is the default value if `tickvals` is provided). tickprefix Sets a tick label prefix. ticks Determines whether ticks are drawn or not. If "", this axis' ticks are not drawn. If "outside" ("inside"), this axis' are drawn outside (inside) the axis lines. ticksuffix Sets a tick label suffix. ticktext Sets the text displayed at the ticks position via `tickvals`. Only has an effect if `tickmode` is set to "array". Used with `tickvals`. ticktextsrc Sets the source reference on Chart Studio Cloud for `ticktext`. tickvals Sets the values at which ticks on this axis appear. Only has an effect if `tickmode` is set to "array". Used with `ticktext`. tickvalssrc Sets the source reference on Chart Studio Cloud for `tickvals`. tickwidth Sets the tick width (in px). title :class:`plotly.graph_objects.histogram2dcontour .colorbar.Title` instance or dict with compatible properties titlefont Deprecated: Please use histogram2dcontour.colorbar.title.font instead. Sets this color bar's title font. Note that the title's font used to be set by the now deprecated `titlefont` attribute. titleside Deprecated: Please use histogram2dcontour.colorbar.title.side instead. Determines the location of color bar's title with respect to the color bar. Defaults to "top" when `orientation` if "v" and defaults to "right" when `orientation` if "h". Note that the title's location used to be set by the now deprecated `titleside` attribute. x Sets the x position of the color bar (in plot fraction). Defaults to 1.02 when `orientation` is "v" and 0.5 when `orientation` is "h". xanchor Sets this color bar's horizontal position anchor. This anchor binds the `x` position to the "left", "center" or "right" of the color bar. Defaults to "left" when `orientation` is "v" and "center" when `orientation` is "h". xpad Sets the amount of padding (in px) along the x direction. y Sets the y position of the color bar (in plot fraction). Defaults to 0.5 when `orientation` is "v" and 1.02 when `orientation` is "h". yanchor Sets this color bar's vertical position anchor This anchor binds the `y` position to the "top", "middle" or "bottom" of the color bar. Defaults to "middle" when `orientation` is "v" and "bottom" when `orientation` is "h". ypad Sets the amount of padding (in px) along the y direction. Returns ------- plotly.graph_objs.histogram2dcontour.ColorBar
The 'colorbar' property is an instance of ColorBar that may be specified as: - An instance of :class:`plotly.graph_objs.histogram2dcontour.ColorBar` - A dict of string/value properties that will be passed to the ColorBar constructor Supported dict properties: bgcolor Sets the color of padded area. bordercolor Sets the axis line color. borderwidth Sets the width (in px) or the border enclosing this color bar. dtick Sets the step in-between ticks on this axis. Use with `tick0`. Must be a positive number, or special strings available to "log" and "date" axes. If the axis `type` is "log", then ticks are set every 10^(n*dtick) where n is the tick number. For example, to set a tick mark at 1, 10, 100, 1000, ... set dtick to 1. To set tick marks at 1, 100, 10000, ... set dtick to 2. To set tick marks at 1, 5, 25, 125, 625, 3125, ... set dtick to log_10(5), or 0.69897000433. "log" has several special values; "L<f>", where `f` is a positive number, gives ticks linearly spaced in value (but not position). For example `tick0` = 0.1, `dtick` = "L0.5" will put ticks at 0.1, 0.6, 1.1, 1.6 etc. To show powers of 10 plus small digits between, use "D1" (all digits) or "D2" (only 2 and 5). `tick0` is ignored for "D1" and "D2". If the axis `type` is "date", then you must convert the time to milliseconds. For example, to set the interval between ticks to one day, set `dtick` to 86400000.0. "date" also has special values "M<n>" gives ticks spaced by a number of months. `n` must be a positive integer. To set ticks on the 15th of every third month, set `tick0` to "2000-01-15" and `dtick` to "M3". To set ticks every 4 years, set `dtick` to "M48" exponentformat Determines a formatting rule for the tick exponents. For example, consider the number 1,000,000,000. If "none", it appears as 1,000,000,000. If "e", 1e+9. If "E", 1E+9. If "power", 1x10^9 (with 9 in a super script). If "SI", 1G. If "B", 1B. len Sets the length of the color bar This measure excludes the padding of both ends. That is, the color bar length is this length minus the padding on both ends. lenmode Determines whether this color bar's length (i.e. the measure in the color variation direction) is set in units of plot "fraction" or in *pixels. Use `len` to set the value. minexponent Hide SI prefix for 10^n if |n| is below this number. This only has an effect when `tickformat` is "SI" or "B". nticks Specifies the maximum number of ticks for the particular axis. The actual number of ticks will be chosen automatically to be less than or equal to `nticks`. Has an effect only if `tickmode` is set to "auto". orientation Sets the orientation of the colorbar. outlinecolor Sets the axis line color. outlinewidth Sets the width (in px) of the axis line. separatethousands If "true", even 4-digit integers are separated showexponent If "all", all exponents are shown besides their significands. If "first", only the exponent of the first tick is shown. If "last", only the exponent of the last tick is shown. If "none", no exponents appear. showticklabels Determines whether or not the tick labels are drawn. showtickprefix If "all", all tick labels are displayed with a prefix. If "first", only the first tick is displayed with a prefix. If "last", only the last tick is displayed with a suffix. If "none", tick prefixes are hidden. showticksuffix Same as `showtickprefix` but for tick suffixes. thickness Sets the thickness of the color bar This measure excludes the size of the padding, ticks and labels. thicknessmode Determines whether this color bar's thickness (i.e. the measure in the constant color direction) is set in units of plot "fraction" or in "pixels". Use `thickness` to set the value. tick0 Sets the placement of the first tick on this axis. Use with `dtick`. If the axis `type` is "log", then you must take the log of your starting tick (e.g. to set the starting tick to 100, set the `tick0` to 2) except when `dtick`=*L<f>* (see `dtick` for more info). If the axis `type` is "date", it should be a date string, like date data. If the axis `type` is "category", it should be a number, using the scale where each category is assigned a serial number from zero in the order it appears. tickangle Sets the angle of the tick labels with respect to the horizontal. For example, a `tickangle` of -90 draws the tick labels vertically. tickcolor Sets the tick color. tickfont Sets the color bar's tick label font tickformat Sets the tick label formatting rule using d3 formatting mini-languages which are very similar to those in Python. For numbers, see: h ttps://github.com/d3/d3-format/tree/v1.4.5#d3-f ormat. And for dates see: https://github.com/d3/d3-time- format/tree/v2.2.3#locale_format. We add two items to d3's date formatter: "%h" for half of the year as a decimal number as well as "%{n}f" for fractional seconds with n digits. For example, *2016-10-13 09:15:23.456* with tickformat "%H~%M~%S.%2f" would display "09~15~23.46" tickformatstops A tuple of :class:`plotly.graph_objects.histogr am2dcontour.colorbar.Tickformatstop` instances or dicts with compatible properties tickformatstopdefaults When used in a template (as layout.template.dat a.histogram2dcontour.colorbar.tickformatstopdef aults), sets the default property values to use for elements of histogram2dcontour.colorbar.tickformatstops ticklabeloverflow Determines how we handle tick labels that would overflow either the graph div or the domain of the axis. The default value for inside tick labels is *hide past domain*. In other cases the default is *hide past div*. ticklabelposition Determines where tick labels are drawn relative to the ticks. Left and right options are used when `orientation` is "h", top and bottom when `orientation` is "v". ticklen Sets the tick length (in px). tickmode Sets the tick mode for this axis. If "auto", the number of ticks is set via `nticks`. If "linear", the placement of the ticks is determined by a starting position `tick0` and a tick step `dtick` ("linear" is the default value if `tick0` and `dtick` are provided). If "array", the placement of the ticks is set via `tickvals` and the tick text is `ticktext`. ("array" is the default value if `tickvals` is provided). tickprefix Sets a tick label prefix. ticks Determines whether ticks are drawn or not. If "", this axis' ticks are not drawn. If "outside" ("inside"), this axis' are drawn outside (inside) the axis lines. ticksuffix Sets a tick label suffix. ticktext Sets the text displayed at the ticks position via `tickvals`. Only has an effect if `tickmode` is set to "array". Used with `tickvals`. ticktextsrc Sets the source reference on Chart Studio Cloud for `ticktext`. tickvals Sets the values at which ticks on this axis appear. Only has an effect if `tickmode` is set to "array". Used with `ticktext`. tickvalssrc Sets the source reference on Chart Studio Cloud for `tickvals`. tickwidth Sets the tick width (in px). title :class:`plotly.graph_objects.histogram2dcontour .colorbar.Title` instance or dict with compatible properties titlefont Deprecated: Please use histogram2dcontour.colorbar.title.font instead. Sets this color bar's title font. Note that the title's font used to be set by the now deprecated `titlefont` attribute. titleside Deprecated: Please use histogram2dcontour.colorbar.title.side instead. Determines the location of color bar's title with respect to the color bar. Defaults to "top" when `orientation` if "v" and defaults to "right" when `orientation` if "h". Note that the title's location used to be set by the now deprecated `titleside` attribute. x Sets the x position of the color bar (in plot fraction). Defaults to 1.02 when `orientation` is "v" and 0.5 when `orientation` is "h". xanchor Sets this color bar's horizontal position anchor. This anchor binds the `x` position to the "left", "center" or "right" of the color bar. Defaults to "left" when `orientation` is "v" and "center" when `orientation` is "h". xpad Sets the amount of padding (in px) along the x direction. y Sets the y position of the color bar (in plot fraction). Defaults to 0.5 when `orientation` is "v" and 1.02 when `orientation` is "h". yanchor Sets this color bar's vertical position anchor This anchor binds the `y` position to the "top", "middle" or "bottom" of the color bar. Defaults to "middle" when `orientation` is "v" and "bottom" when `orientation` is "h". ypad Sets the amount of padding (in px) along the y direction.
[ "The", "colorbar", "property", "is", "an", "instance", "of", "ColorBar", "that", "may", "be", "specified", "as", ":", "-", "An", "instance", "of", ":", "class", ":", "plotly", ".", "graph_objs", ".", "histogram2dcontour", ".", "ColorBar", "-", "A", "dict", "of", "string", "/", "value", "properties", "that", "will", "be", "passed", "to", "the", "ColorBar", "constructor", "Supported", "dict", "properties", ":", "bgcolor", "Sets", "the", "color", "of", "padded", "area", ".", "bordercolor", "Sets", "the", "axis", "line", "color", ".", "borderwidth", "Sets", "the", "width", "(", "in", "px", ")", "or", "the", "border", "enclosing", "this", "color", "bar", ".", "dtick", "Sets", "the", "step", "in", "-", "between", "ticks", "on", "this", "axis", ".", "Use", "with", "tick0", ".", "Must", "be", "a", "positive", "number", "or", "special", "strings", "available", "to", "log", "and", "date", "axes", ".", "If", "the", "axis", "type", "is", "log", "then", "ticks", "are", "set", "every", "10^", "(", "n", "*", "dtick", ")", "where", "n", "is", "the", "tick", "number", ".", "For", "example", "to", "set", "a", "tick", "mark", "at", "1", "10", "100", "1000", "...", "set", "dtick", "to", "1", ".", "To", "set", "tick", "marks", "at", "1", "100", "10000", "...", "set", "dtick", "to", "2", ".", "To", "set", "tick", "marks", "at", "1", "5", "25", "125", "625", "3125", "...", "set", "dtick", "to", "log_10", "(", "5", ")", "or", "0", ".", "69897000433", ".", "log", "has", "several", "special", "values", ";", "L<f", ">", "where", "f", "is", "a", "positive", "number", "gives", "ticks", "linearly", "spaced", "in", "value", "(", "but", "not", "position", ")", ".", "For", "example", "tick0", "=", "0", ".", "1", "dtick", "=", "L0", ".", "5", "will", "put", "ticks", "at", "0", ".", "1", "0", ".", "6", "1", ".", "1", "1", ".", "6", "etc", ".", "To", "show", "powers", "of", "10", "plus", "small", "digits", "between", "use", "D1", "(", "all", "digits", ")", "or", "D2", "(", "only", "2", "and", "5", ")", ".", "tick0", "is", "ignored", "for", "D1", "and", "D2", ".", "If", "the", "axis", "type", "is", "date", "then", "you", "must", "convert", "the", "time", "to", "milliseconds", ".", "For", "example", "to", "set", "the", "interval", "between", "ticks", "to", "one", "day", "set", "dtick", "to", "86400000", ".", "0", ".", "date", "also", "has", "special", "values", "M<n", ">", "gives", "ticks", "spaced", "by", "a", "number", "of", "months", ".", "n", "must", "be", "a", "positive", "integer", ".", "To", "set", "ticks", "on", "the", "15th", "of", "every", "third", "month", "set", "tick0", "to", "2000", "-", "01", "-", "15", "and", "dtick", "to", "M3", ".", "To", "set", "ticks", "every", "4", "years", "set", "dtick", "to", "M48", "exponentformat", "Determines", "a", "formatting", "rule", "for", "the", "tick", "exponents", ".", "For", "example", "consider", "the", "number", "1", "000", "000", "000", ".", "If", "none", "it", "appears", "as", "1", "000", "000", "000", ".", "If", "e", "1e", "+", "9", ".", "If", "E", "1E", "+", "9", ".", "If", "power", "1x10^9", "(", "with", "9", "in", "a", "super", "script", ")", ".", "If", "SI", "1G", ".", "If", "B", "1B", ".", "len", "Sets", "the", "length", "of", "the", "color", "bar", "This", "measure", "excludes", "the", "padding", "of", "both", "ends", ".", "That", "is", "the", "color", "bar", "length", "is", "this", "length", "minus", "the", "padding", "on", "both", "ends", ".", "lenmode", "Determines", "whether", "this", "color", "bar", "s", "length", "(", "i", ".", "e", ".", "the", "measure", "in", "the", "color", "variation", "direction", ")", "is", "set", "in", "units", "of", "plot", "fraction", "or", "in", "*", "pixels", ".", "Use", "len", "to", "set", "the", "value", ".", "minexponent", "Hide", "SI", "prefix", "for", "10^n", "if", "|n|", "is", "below", "this", "number", ".", "This", "only", "has", "an", "effect", "when", "tickformat", "is", "SI", "or", "B", ".", "nticks", "Specifies", "the", "maximum", "number", "of", "ticks", "for", "the", "particular", "axis", ".", "The", "actual", "number", "of", "ticks", "will", "be", "chosen", "automatically", "to", "be", "less", "than", "or", "equal", "to", "nticks", ".", "Has", "an", "effect", "only", "if", "tickmode", "is", "set", "to", "auto", ".", "orientation", "Sets", "the", "orientation", "of", "the", "colorbar", ".", "outlinecolor", "Sets", "the", "axis", "line", "color", ".", "outlinewidth", "Sets", "the", "width", "(", "in", "px", ")", "of", "the", "axis", "line", ".", "separatethousands", "If", "true", "even", "4", "-", "digit", "integers", "are", "separated", "showexponent", "If", "all", "all", "exponents", "are", "shown", "besides", "their", "significands", ".", "If", "first", "only", "the", "exponent", "of", "the", "first", "tick", "is", "shown", ".", "If", "last", "only", "the", "exponent", "of", "the", "last", "tick", "is", "shown", ".", "If", "none", "no", "exponents", "appear", ".", "showticklabels", "Determines", "whether", "or", "not", "the", "tick", "labels", "are", "drawn", ".", "showtickprefix", "If", "all", "all", "tick", "labels", "are", "displayed", "with", "a", "prefix", ".", "If", "first", "only", "the", "first", "tick", "is", "displayed", "with", "a", "prefix", ".", "If", "last", "only", "the", "last", "tick", "is", "displayed", "with", "a", "suffix", ".", "If", "none", "tick", "prefixes", "are", "hidden", ".", "showticksuffix", "Same", "as", "showtickprefix", "but", "for", "tick", "suffixes", ".", "thickness", "Sets", "the", "thickness", "of", "the", "color", "bar", "This", "measure", "excludes", "the", "size", "of", "the", "padding", "ticks", "and", "labels", ".", "thicknessmode", "Determines", "whether", "this", "color", "bar", "s", "thickness", "(", "i", ".", "e", ".", "the", "measure", "in", "the", "constant", "color", "direction", ")", "is", "set", "in", "units", "of", "plot", "fraction", "or", "in", "pixels", ".", "Use", "thickness", "to", "set", "the", "value", ".", "tick0", "Sets", "the", "placement", "of", "the", "first", "tick", "on", "this", "axis", ".", "Use", "with", "dtick", ".", "If", "the", "axis", "type", "is", "log", "then", "you", "must", "take", "the", "log", "of", "your", "starting", "tick", "(", "e", ".", "g", ".", "to", "set", "the", "starting", "tick", "to", "100", "set", "the", "tick0", "to", "2", ")", "except", "when", "dtick", "=", "*", "L<f", ">", "*", "(", "see", "dtick", "for", "more", "info", ")", ".", "If", "the", "axis", "type", "is", "date", "it", "should", "be", "a", "date", "string", "like", "date", "data", ".", "If", "the", "axis", "type", "is", "category", "it", "should", "be", "a", "number", "using", "the", "scale", "where", "each", "category", "is", "assigned", "a", "serial", "number", "from", "zero", "in", "the", "order", "it", "appears", ".", "tickangle", "Sets", "the", "angle", "of", "the", "tick", "labels", "with", "respect", "to", "the", "horizontal", ".", "For", "example", "a", "tickangle", "of", "-", "90", "draws", "the", "tick", "labels", "vertically", ".", "tickcolor", "Sets", "the", "tick", "color", ".", "tickfont", "Sets", "the", "color", "bar", "s", "tick", "label", "font", "tickformat", "Sets", "the", "tick", "label", "formatting", "rule", "using", "d3", "formatting", "mini", "-", "languages", "which", "are", "very", "similar", "to", "those", "in", "Python", ".", "For", "numbers", "see", ":", "h", "ttps", ":", "//", "github", ".", "com", "/", "d3", "/", "d3", "-", "format", "/", "tree", "/", "v1", ".", "4", ".", "5#d3", "-", "f", "ormat", ".", "And", "for", "dates", "see", ":", "https", ":", "//", "github", ".", "com", "/", "d3", "/", "d3", "-", "time", "-", "format", "/", "tree", "/", "v2", ".", "2", ".", "3#locale_format", ".", "We", "add", "two", "items", "to", "d3", "s", "date", "formatter", ":", "%h", "for", "half", "of", "the", "year", "as", "a", "decimal", "number", "as", "well", "as", "%", "{", "n", "}", "f", "for", "fractional", "seconds", "with", "n", "digits", ".", "For", "example", "*", "2016", "-", "10", "-", "13", "09", ":", "15", ":", "23", ".", "456", "*", "with", "tickformat", "%H~%M~%S", ".", "%2f", "would", "display", "09~15~23", ".", "46", "tickformatstops", "A", "tuple", "of", ":", "class", ":", "plotly", ".", "graph_objects", ".", "histogr", "am2dcontour", ".", "colorbar", ".", "Tickformatstop", "instances", "or", "dicts", "with", "compatible", "properties", "tickformatstopdefaults", "When", "used", "in", "a", "template", "(", "as", "layout", ".", "template", ".", "dat", "a", ".", "histogram2dcontour", ".", "colorbar", ".", "tickformatstopdef", "aults", ")", "sets", "the", "default", "property", "values", "to", "use", "for", "elements", "of", "histogram2dcontour", ".", "colorbar", ".", "tickformatstops", "ticklabeloverflow", "Determines", "how", "we", "handle", "tick", "labels", "that", "would", "overflow", "either", "the", "graph", "div", "or", "the", "domain", "of", "the", "axis", ".", "The", "default", "value", "for", "inside", "tick", "labels", "is", "*", "hide", "past", "domain", "*", ".", "In", "other", "cases", "the", "default", "is", "*", "hide", "past", "div", "*", ".", "ticklabelposition", "Determines", "where", "tick", "labels", "are", "drawn", "relative", "to", "the", "ticks", ".", "Left", "and", "right", "options", "are", "used", "when", "orientation", "is", "h", "top", "and", "bottom", "when", "orientation", "is", "v", ".", "ticklen", "Sets", "the", "tick", "length", "(", "in", "px", ")", ".", "tickmode", "Sets", "the", "tick", "mode", "for", "this", "axis", ".", "If", "auto", "the", "number", "of", "ticks", "is", "set", "via", "nticks", ".", "If", "linear", "the", "placement", "of", "the", "ticks", "is", "determined", "by", "a", "starting", "position", "tick0", "and", "a", "tick", "step", "dtick", "(", "linear", "is", "the", "default", "value", "if", "tick0", "and", "dtick", "are", "provided", ")", ".", "If", "array", "the", "placement", "of", "the", "ticks", "is", "set", "via", "tickvals", "and", "the", "tick", "text", "is", "ticktext", ".", "(", "array", "is", "the", "default", "value", "if", "tickvals", "is", "provided", ")", ".", "tickprefix", "Sets", "a", "tick", "label", "prefix", ".", "ticks", "Determines", "whether", "ticks", "are", "drawn", "or", "not", ".", "If", "this", "axis", "ticks", "are", "not", "drawn", ".", "If", "outside", "(", "inside", ")", "this", "axis", "are", "drawn", "outside", "(", "inside", ")", "the", "axis", "lines", ".", "ticksuffix", "Sets", "a", "tick", "label", "suffix", ".", "ticktext", "Sets", "the", "text", "displayed", "at", "the", "ticks", "position", "via", "tickvals", ".", "Only", "has", "an", "effect", "if", "tickmode", "is", "set", "to", "array", ".", "Used", "with", "tickvals", ".", "ticktextsrc", "Sets", "the", "source", "reference", "on", "Chart", "Studio", "Cloud", "for", "ticktext", ".", "tickvals", "Sets", "the", "values", "at", "which", "ticks", "on", "this", "axis", "appear", ".", "Only", "has", "an", "effect", "if", "tickmode", "is", "set", "to", "array", ".", "Used", "with", "ticktext", ".", "tickvalssrc", "Sets", "the", "source", "reference", "on", "Chart", "Studio", "Cloud", "for", "tickvals", ".", "tickwidth", "Sets", "the", "tick", "width", "(", "in", "px", ")", ".", "title", ":", "class", ":", "plotly", ".", "graph_objects", ".", "histogram2dcontour", ".", "colorbar", ".", "Title", "instance", "or", "dict", "with", "compatible", "properties", "titlefont", "Deprecated", ":", "Please", "use", "histogram2dcontour", ".", "colorbar", ".", "title", ".", "font", "instead", ".", "Sets", "this", "color", "bar", "s", "title", "font", ".", "Note", "that", "the", "title", "s", "font", "used", "to", "be", "set", "by", "the", "now", "deprecated", "titlefont", "attribute", ".", "titleside", "Deprecated", ":", "Please", "use", "histogram2dcontour", ".", "colorbar", ".", "title", ".", "side", "instead", ".", "Determines", "the", "location", "of", "color", "bar", "s", "title", "with", "respect", "to", "the", "color", "bar", ".", "Defaults", "to", "top", "when", "orientation", "if", "v", "and", "defaults", "to", "right", "when", "orientation", "if", "h", ".", "Note", "that", "the", "title", "s", "location", "used", "to", "be", "set", "by", "the", "now", "deprecated", "titleside", "attribute", ".", "x", "Sets", "the", "x", "position", "of", "the", "color", "bar", "(", "in", "plot", "fraction", ")", ".", "Defaults", "to", "1", ".", "02", "when", "orientation", "is", "v", "and", "0", ".", "5", "when", "orientation", "is", "h", ".", "xanchor", "Sets", "this", "color", "bar", "s", "horizontal", "position", "anchor", ".", "This", "anchor", "binds", "the", "x", "position", "to", "the", "left", "center", "or", "right", "of", "the", "color", "bar", ".", "Defaults", "to", "left", "when", "orientation", "is", "v", "and", "center", "when", "orientation", "is", "h", ".", "xpad", "Sets", "the", "amount", "of", "padding", "(", "in", "px", ")", "along", "the", "x", "direction", ".", "y", "Sets", "the", "y", "position", "of", "the", "color", "bar", "(", "in", "plot", "fraction", ")", ".", "Defaults", "to", "0", ".", "5", "when", "orientation", "is", "v", "and", "1", ".", "02", "when", "orientation", "is", "h", ".", "yanchor", "Sets", "this", "color", "bar", "s", "vertical", "position", "anchor", "This", "anchor", "binds", "the", "y", "position", "to", "the", "top", "middle", "or", "bottom", "of", "the", "color", "bar", ".", "Defaults", "to", "middle", "when", "orientation", "is", "v", "and", "bottom", "when", "orientation", "is", "h", ".", "ypad", "Sets", "the", "amount", "of", "padding", "(", "in", "px", ")", "along", "the", "y", "direction", "." ]
def colorbar(self): """ The 'colorbar' property is an instance of ColorBar that may be specified as: - An instance of :class:`plotly.graph_objs.histogram2dcontour.ColorBar` - A dict of string/value properties that will be passed to the ColorBar constructor Supported dict properties: bgcolor Sets the color of padded area. bordercolor Sets the axis line color. borderwidth Sets the width (in px) or the border enclosing this color bar. dtick Sets the step in-between ticks on this axis. Use with `tick0`. Must be a positive number, or special strings available to "log" and "date" axes. If the axis `type` is "log", then ticks are set every 10^(n*dtick) where n is the tick number. For example, to set a tick mark at 1, 10, 100, 1000, ... set dtick to 1. To set tick marks at 1, 100, 10000, ... set dtick to 2. To set tick marks at 1, 5, 25, 125, 625, 3125, ... set dtick to log_10(5), or 0.69897000433. "log" has several special values; "L<f>", where `f` is a positive number, gives ticks linearly spaced in value (but not position). For example `tick0` = 0.1, `dtick` = "L0.5" will put ticks at 0.1, 0.6, 1.1, 1.6 etc. To show powers of 10 plus small digits between, use "D1" (all digits) or "D2" (only 2 and 5). `tick0` is ignored for "D1" and "D2". If the axis `type` is "date", then you must convert the time to milliseconds. For example, to set the interval between ticks to one day, set `dtick` to 86400000.0. "date" also has special values "M<n>" gives ticks spaced by a number of months. `n` must be a positive integer. To set ticks on the 15th of every third month, set `tick0` to "2000-01-15" and `dtick` to "M3". To set ticks every 4 years, set `dtick` to "M48" exponentformat Determines a formatting rule for the tick exponents. For example, consider the number 1,000,000,000. If "none", it appears as 1,000,000,000. If "e", 1e+9. If "E", 1E+9. If "power", 1x10^9 (with 9 in a super script). If "SI", 1G. If "B", 1B. len Sets the length of the color bar This measure excludes the padding of both ends. That is, the color bar length is this length minus the padding on both ends. lenmode Determines whether this color bar's length (i.e. the measure in the color variation direction) is set in units of plot "fraction" or in *pixels. Use `len` to set the value. minexponent Hide SI prefix for 10^n if |n| is below this number. This only has an effect when `tickformat` is "SI" or "B". nticks Specifies the maximum number of ticks for the particular axis. The actual number of ticks will be chosen automatically to be less than or equal to `nticks`. Has an effect only if `tickmode` is set to "auto". orientation Sets the orientation of the colorbar. outlinecolor Sets the axis line color. outlinewidth Sets the width (in px) of the axis line. separatethousands If "true", even 4-digit integers are separated showexponent If "all", all exponents are shown besides their significands. If "first", only the exponent of the first tick is shown. If "last", only the exponent of the last tick is shown. If "none", no exponents appear. showticklabels Determines whether or not the tick labels are drawn. showtickprefix If "all", all tick labels are displayed with a prefix. If "first", only the first tick is displayed with a prefix. If "last", only the last tick is displayed with a suffix. If "none", tick prefixes are hidden. showticksuffix Same as `showtickprefix` but for tick suffixes. thickness Sets the thickness of the color bar This measure excludes the size of the padding, ticks and labels. thicknessmode Determines whether this color bar's thickness (i.e. the measure in the constant color direction) is set in units of plot "fraction" or in "pixels". Use `thickness` to set the value. tick0 Sets the placement of the first tick on this axis. Use with `dtick`. If the axis `type` is "log", then you must take the log of your starting tick (e.g. to set the starting tick to 100, set the `tick0` to 2) except when `dtick`=*L<f>* (see `dtick` for more info). If the axis `type` is "date", it should be a date string, like date data. If the axis `type` is "category", it should be a number, using the scale where each category is assigned a serial number from zero in the order it appears. tickangle Sets the angle of the tick labels with respect to the horizontal. For example, a `tickangle` of -90 draws the tick labels vertically. tickcolor Sets the tick color. tickfont Sets the color bar's tick label font tickformat Sets the tick label formatting rule using d3 formatting mini-languages which are very similar to those in Python. For numbers, see: h ttps://github.com/d3/d3-format/tree/v1.4.5#d3-f ormat. And for dates see: https://github.com/d3/d3-time- format/tree/v2.2.3#locale_format. We add two items to d3's date formatter: "%h" for half of the year as a decimal number as well as "%{n}f" for fractional seconds with n digits. For example, *2016-10-13 09:15:23.456* with tickformat "%H~%M~%S.%2f" would display "09~15~23.46" tickformatstops A tuple of :class:`plotly.graph_objects.histogr am2dcontour.colorbar.Tickformatstop` instances or dicts with compatible properties tickformatstopdefaults When used in a template (as layout.template.dat a.histogram2dcontour.colorbar.tickformatstopdef aults), sets the default property values to use for elements of histogram2dcontour.colorbar.tickformatstops ticklabeloverflow Determines how we handle tick labels that would overflow either the graph div or the domain of the axis. The default value for inside tick labels is *hide past domain*. In other cases the default is *hide past div*. ticklabelposition Determines where tick labels are drawn relative to the ticks. Left and right options are used when `orientation` is "h", top and bottom when `orientation` is "v". ticklen Sets the tick length (in px). tickmode Sets the tick mode for this axis. If "auto", the number of ticks is set via `nticks`. If "linear", the placement of the ticks is determined by a starting position `tick0` and a tick step `dtick` ("linear" is the default value if `tick0` and `dtick` are provided). If "array", the placement of the ticks is set via `tickvals` and the tick text is `ticktext`. ("array" is the default value if `tickvals` is provided). tickprefix Sets a tick label prefix. ticks Determines whether ticks are drawn or not. If "", this axis' ticks are not drawn. If "outside" ("inside"), this axis' are drawn outside (inside) the axis lines. ticksuffix Sets a tick label suffix. ticktext Sets the text displayed at the ticks position via `tickvals`. Only has an effect if `tickmode` is set to "array". Used with `tickvals`. ticktextsrc Sets the source reference on Chart Studio Cloud for `ticktext`. tickvals Sets the values at which ticks on this axis appear. Only has an effect if `tickmode` is set to "array". Used with `ticktext`. tickvalssrc Sets the source reference on Chart Studio Cloud for `tickvals`. tickwidth Sets the tick width (in px). title :class:`plotly.graph_objects.histogram2dcontour .colorbar.Title` instance or dict with compatible properties titlefont Deprecated: Please use histogram2dcontour.colorbar.title.font instead. Sets this color bar's title font. Note that the title's font used to be set by the now deprecated `titlefont` attribute. titleside Deprecated: Please use histogram2dcontour.colorbar.title.side instead. Determines the location of color bar's title with respect to the color bar. Defaults to "top" when `orientation` if "v" and defaults to "right" when `orientation` if "h". Note that the title's location used to be set by the now deprecated `titleside` attribute. x Sets the x position of the color bar (in plot fraction). Defaults to 1.02 when `orientation` is "v" and 0.5 when `orientation` is "h". xanchor Sets this color bar's horizontal position anchor. This anchor binds the `x` position to the "left", "center" or "right" of the color bar. Defaults to "left" when `orientation` is "v" and "center" when `orientation` is "h". xpad Sets the amount of padding (in px) along the x direction. y Sets the y position of the color bar (in plot fraction). Defaults to 0.5 when `orientation` is "v" and 1.02 when `orientation` is "h". yanchor Sets this color bar's vertical position anchor This anchor binds the `y` position to the "top", "middle" or "bottom" of the color bar. Defaults to "middle" when `orientation` is "v" and "bottom" when `orientation` is "h". ypad Sets the amount of padding (in px) along the y direction. Returns ------- plotly.graph_objs.histogram2dcontour.ColorBar """ return self["colorbar"]
[ "def", "colorbar", "(", "self", ")", ":", "return", "self", "[", "\"colorbar\"", "]" ]
https://github.com/plotly/plotly.py/blob/cfad7862594b35965c0e000813bd7805e8494a5b/packages/python/plotly/plotly/graph_objs/_histogram2dcontour.py#L224-L475
tp4a/teleport
1fafd34f1f775d2cf80ea4af6e44468d8e0b24ad
server/www/packages/packages-linux/x64/tornado/httpserver.py
python
_HTTPRequestContext.__init__
( self, stream: iostream.IOStream, address: Tuple, protocol: Optional[str], trusted_downstream: List[str] = None, )
[]
def __init__( self, stream: iostream.IOStream, address: Tuple, protocol: Optional[str], trusted_downstream: List[str] = None, ) -> None: self.address = address # Save the socket's address family now so we know how to # interpret self.address even after the stream is closed # and its socket attribute replaced with None. if stream.socket is not None: self.address_family = stream.socket.family else: self.address_family = None # In HTTPServerRequest we want an IP, not a full socket address. if ( self.address_family in (socket.AF_INET, socket.AF_INET6) and address is not None ): self.remote_ip = address[0] else: # Unix (or other) socket; fake the remote address. self.remote_ip = "0.0.0.0" if protocol: self.protocol = protocol elif isinstance(stream, iostream.SSLIOStream): self.protocol = "https" else: self.protocol = "http" self._orig_remote_ip = self.remote_ip self._orig_protocol = self.protocol self.trusted_downstream = set(trusted_downstream or [])
[ "def", "__init__", "(", "self", ",", "stream", ":", "iostream", ".", "IOStream", ",", "address", ":", "Tuple", ",", "protocol", ":", "Optional", "[", "str", "]", ",", "trusted_downstream", ":", "List", "[", "str", "]", "=", "None", ",", ")", "->", "None", ":", "self", ".", "address", "=", "address", "# Save the socket's address family now so we know how to", "# interpret self.address even after the stream is closed", "# and its socket attribute replaced with None.", "if", "stream", ".", "socket", "is", "not", "None", ":", "self", ".", "address_family", "=", "stream", ".", "socket", ".", "family", "else", ":", "self", ".", "address_family", "=", "None", "# In HTTPServerRequest we want an IP, not a full socket address.", "if", "(", "self", ".", "address_family", "in", "(", "socket", ".", "AF_INET", ",", "socket", ".", "AF_INET6", ")", "and", "address", "is", "not", "None", ")", ":", "self", ".", "remote_ip", "=", "address", "[", "0", "]", "else", ":", "# Unix (or other) socket; fake the remote address.", "self", ".", "remote_ip", "=", "\"0.0.0.0\"", "if", "protocol", ":", "self", ".", "protocol", "=", "protocol", "elif", "isinstance", "(", "stream", ",", "iostream", ".", "SSLIOStream", ")", ":", "self", ".", "protocol", "=", "\"https\"", "else", ":", "self", ".", "protocol", "=", "\"http\"", "self", ".", "_orig_remote_ip", "=", "self", ".", "remote_ip", "self", ".", "_orig_protocol", "=", "self", ".", "protocol", "self", ".", "trusted_downstream", "=", "set", "(", "trusted_downstream", "or", "[", "]", ")" ]
https://github.com/tp4a/teleport/blob/1fafd34f1f775d2cf80ea4af6e44468d8e0b24ad/server/www/packages/packages-linux/x64/tornado/httpserver.py#L287-L319
pantsbuild/pex
473c6ac732ed4bc338b4b20a9ec930d1d722c9b4
pex/vendor/_vendored/pip/pip/_vendor/urllib3/exceptions.py
python
InvalidChunkLength.__repr__
(self)
return "InvalidChunkLength(got length %r, %i bytes read)" % ( self.length, self.partial, )
[]
def __repr__(self): return "InvalidChunkLength(got length %r, %i bytes read)" % ( self.length, self.partial, )
[ "def", "__repr__", "(", "self", ")", ":", "return", "\"InvalidChunkLength(got length %r, %i bytes read)\"", "%", "(", "self", ".", "length", ",", "self", ".", "partial", ",", ")" ]
https://github.com/pantsbuild/pex/blob/473c6ac732ed4bc338b4b20a9ec930d1d722c9b4/pex/vendor/_vendored/pip/pip/_vendor/urllib3/exceptions.py#L273-L277
webpy/webpy
62245f7da4aab8f8607c192b98d5ef93873f995b
web/webapi.py
python
debug
(*args)
return ""
Prints a prettyprinted version of `args` to stderr.
Prints a prettyprinted version of `args` to stderr.
[ "Prints", "a", "prettyprinted", "version", "of", "args", "to", "stderr", "." ]
def debug(*args): """ Prints a prettyprinted version of `args` to stderr. """ try: out = ctx.environ["wsgi.errors"] except: out = sys.stderr for arg in args: print(pprint.pformat(arg), file=out) return ""
[ "def", "debug", "(", "*", "args", ")", ":", "try", ":", "out", "=", "ctx", ".", "environ", "[", "\"wsgi.errors\"", "]", "except", ":", "out", "=", "sys", ".", "stderr", "for", "arg", "in", "args", ":", "print", "(", "pprint", ".", "pformat", "(", "arg", ")", ",", "file", "=", "out", ")", "return", "\"\"" ]
https://github.com/webpy/webpy/blob/62245f7da4aab8f8607c192b98d5ef93873f995b/web/webapi.py#L605-L615
zeropointdynamics/zelos
0c5bd57b4bab56c23c27dc5301ba1a42ee054726
src/zelos/scheduler.py
python
Scheduler.stop
(self, stop_reason: str)
Stops execution of the running processes, exiting the run loop. If there is no process running, this will prevent the next run. Args: stop_reason: A string passed in for debugging purposes to indicate what caused Zelos to stop.
Stops execution of the running processes, exiting the run loop. If there is no process running, this will prevent the next run.
[ "Stops", "execution", "of", "the", "running", "processes", "exiting", "the", "run", "loop", ".", "If", "there", "is", "no", "process", "running", "this", "will", "prevent", "the", "next", "run", "." ]
def stop(self, stop_reason: str) -> None: """ Stops execution of the running processes, exiting the run loop. If there is no process running, this will prevent the next run. Args: stop_reason: A string passed in for debugging purposes to indicate what caused Zelos to stop. """ self.stop_and_exec(stop_reason, lambda: False)
[ "def", "stop", "(", "self", ",", "stop_reason", ":", "str", ")", "->", "None", ":", "self", ".", "stop_and_exec", "(", "stop_reason", ",", "lambda", ":", "False", ")" ]
https://github.com/zeropointdynamics/zelos/blob/0c5bd57b4bab56c23c27dc5301ba1a42ee054726/src/zelos/scheduler.py#L50-L60
pyjanitor-devs/pyjanitor
2207c0bddbf7e23f56e87892de0405787b11621e
janitor/functions/utils.py
python
_column_sel_dispatch
(columns_to_select, df)
return [*df.columns[filtered_columns]]
Base function for column selection. Applies only to callables. The callable is applied to every column in the dataframe. Either True or False is expected per column. A list of column names is returned.
Base function for column selection. Applies only to callables. The callable is applied to every column in the dataframe. Either True or False is expected per column. A list of column names is returned.
[ "Base", "function", "for", "column", "selection", ".", "Applies", "only", "to", "callables", ".", "The", "callable", "is", "applied", "to", "every", "column", "in", "the", "dataframe", ".", "Either", "True", "or", "False", "is", "expected", "per", "column", ".", "A", "list", "of", "column", "names", "is", "returned", "." ]
def _column_sel_dispatch(columns_to_select, df): # noqa: F811 """ Base function for column selection. Applies only to callables. The callable is applied to every column in the dataframe. Either True or False is expected per column. A list of column names is returned. """ # the function will be applied per series. # this allows filtration based on the contents of the series # or based on the name of the series, # which happens to be a column name as well. # whatever the case may be, # the returned values should be a sequence of booleans, # with at least one True. filtered_columns = df.agg(columns_to_select) if not filtered_columns.any(): raise ValueError( """ No match was returned for the provided callable. """ ) return [*df.columns[filtered_columns]]
[ "def", "_column_sel_dispatch", "(", "columns_to_select", ",", "df", ")", ":", "# noqa: F811", "# the function will be applied per series.", "# this allows filtration based on the contents of the series", "# or based on the name of the series,", "# which happens to be a column name as well.", "# whatever the case may be,", "# the returned values should be a sequence of booleans,", "# with at least one True.", "filtered_columns", "=", "df", ".", "agg", "(", "columns_to_select", ")", "if", "not", "filtered_columns", ".", "any", "(", ")", ":", "raise", "ValueError", "(", "\"\"\"\n No match was returned for the provided callable.\n \"\"\"", ")", "return", "[", "*", "df", ".", "columns", "[", "filtered_columns", "]", "]" ]
https://github.com/pyjanitor-devs/pyjanitor/blob/2207c0bddbf7e23f56e87892de0405787b11621e/janitor/functions/utils.py#L419-L444
sagemath/sage
f9b2db94f675ff16963ccdefba4f1a3393b3fe0d
src/sage/combinat/species/generating_series.py
python
ExponentialGeneratingSeriesRing
(R)
return ExponentialGeneratingSeriesRing_class(R)
Return the ring of exponential generating series over ``R``. Note that it is just a :class:`LazyPowerSeriesRing` whose elements have some extra methods. EXAMPLES:: sage: from sage.combinat.species.generating_series import ExponentialGeneratingSeriesRing sage: R = ExponentialGeneratingSeriesRing(QQ); R Lazy Power Series Ring over Rational Field sage: R([1]).coefficients(4) [1, 1, 1, 1] sage: R([1]).counts(4) [1, 1, 2, 6] TESTS: We test to make sure that caching works. :: sage: R is ExponentialGeneratingSeriesRing(QQ) True
Return the ring of exponential generating series over ``R``.
[ "Return", "the", "ring", "of", "exponential", "generating", "series", "over", "R", "." ]
def ExponentialGeneratingSeriesRing(R): """ Return the ring of exponential generating series over ``R``. Note that it is just a :class:`LazyPowerSeriesRing` whose elements have some extra methods. EXAMPLES:: sage: from sage.combinat.species.generating_series import ExponentialGeneratingSeriesRing sage: R = ExponentialGeneratingSeriesRing(QQ); R Lazy Power Series Ring over Rational Field sage: R([1]).coefficients(4) [1, 1, 1, 1] sage: R([1]).counts(4) [1, 1, 2, 6] TESTS: We test to make sure that caching works. :: sage: R is ExponentialGeneratingSeriesRing(QQ) True """ return ExponentialGeneratingSeriesRing_class(R)
[ "def", "ExponentialGeneratingSeriesRing", "(", "R", ")", ":", "return", "ExponentialGeneratingSeriesRing_class", "(", "R", ")" ]
https://github.com/sagemath/sage/blob/f9b2db94f675ff16963ccdefba4f1a3393b3fe0d/src/sage/combinat/species/generating_series.py#L167-L194
Yelp/clusterman
54beef89c01a2681aafd1fbb93b6ad5f6252d6cf
clusterman/simulator/simulated_spot_fleet_resource_group.py
python
SimulatedSpotFleetResourceGroup._get_resource_group_tags
(self)
return {}
[]
def _get_resource_group_tags(self): return {}
[ "def", "_get_resource_group_tags", "(", "self", ")", ":", "return", "{", "}" ]
https://github.com/Yelp/clusterman/blob/54beef89c01a2681aafd1fbb93b6ad5f6252d6cf/clusterman/simulator/simulated_spot_fleet_resource_group.py#L212-L213
avocado-framework/avocado
1f9b3192e8ba47d029c33fe21266bd113d17811f
avocado/utils/asset.py
python
Asset._verify_hash
(self, asset_path)
return self._has_valid_hash(asset_path, self.asset_hash)
Verify if the `asset_path` hash matches the hash in the hash file. :param asset_path: full path of the asset file. :returns: True when self.asset_hash is None or when it has the same value as the hash of the asset_file, otherwise return False. :rtype: bool
Verify if the `asset_path` hash matches the hash in the hash file.
[ "Verify", "if", "the", "asset_path", "hash", "matches", "the", "hash", "in", "the", "hash", "file", "." ]
def _verify_hash(self, asset_path): """ Verify if the `asset_path` hash matches the hash in the hash file. :param asset_path: full path of the asset file. :returns: True when self.asset_hash is None or when it has the same value as the hash of the asset_file, otherwise return False. :rtype: bool """ return self._has_valid_hash(asset_path, self.asset_hash)
[ "def", "_verify_hash", "(", "self", ",", "asset_path", ")", ":", "return", "self", ".", "_has_valid_hash", "(", "asset_path", ",", "self", ".", "asset_hash", ")" ]
https://github.com/avocado-framework/avocado/blob/1f9b3192e8ba47d029c33fe21266bd113d17811f/avocado/utils/asset.py#L330-L339
PyHDI/veriloggen
2382d200deabf59cfcfd741f5eba371010aaf2bb
veriloggen/dataflow/visitor.py
python
InputVisitor.visit__Variable
(self, node)
return set([node])
[]
def visit__Variable(self, node): if isinstance(node.input_data, dtypes._Numeric): return self.visit(node.input_data) return set([node])
[ "def", "visit__Variable", "(", "self", ",", "node", ")", ":", "if", "isinstance", "(", "node", ".", "input_data", ",", "dtypes", ".", "_Numeric", ")", ":", "return", "self", ".", "visit", "(", "node", ".", "input_data", ")", "return", "set", "(", "[", "node", "]", ")" ]
https://github.com/PyHDI/veriloggen/blob/2382d200deabf59cfcfd741f5eba371010aaf2bb/veriloggen/dataflow/visitor.py#L107-L110
naftaliharris/tauthon
5587ceec329b75f7caf6d65a036db61ac1bae214
Lib/typing.py
python
_subs_tree
(cls, tvars=None, args=None)
return tree_args
Calculate substitution tree for generic cls after replacing its type parameters with substitutions in tvars -> args (if any). Repeat the same cyclicaly following __origin__'s.
Calculate substitution tree for generic cls after replacing its type parameters with substitutions in tvars -> args (if any). Repeat the same cyclicaly following __origin__'s.
[ "Calculate", "substitution", "tree", "for", "generic", "cls", "after", "replacing", "its", "type", "parameters", "with", "substitutions", "in", "tvars", "-", ">", "args", "(", "if", "any", ")", ".", "Repeat", "the", "same", "cyclicaly", "following", "__origin__", "s", "." ]
def _subs_tree(cls, tvars=None, args=None): """ Calculate substitution tree for generic cls after replacing its type parameters with substitutions in tvars -> args (if any). Repeat the same cyclicaly following __origin__'s. """ if cls.__origin__ is None: return cls # Make of chain of origins (i.e. cls -> cls.__origin__) current = cls.__origin__ orig_chain = [] while current.__origin__ is not None: orig_chain.append(current) current = current.__origin__ # Replace type variables in __args__ if asked ... tree_args = [] for arg in cls.__args__: tree_args.append(_replace_arg(arg, tvars, args)) # ... then continue replacing down the origin chain. for ocls in orig_chain: new_tree_args = [] for i, arg in enumerate(ocls.__args__): new_tree_args.append(_replace_arg(arg, ocls.__parameters__, tree_args)) tree_args = new_tree_args return tree_args
[ "def", "_subs_tree", "(", "cls", ",", "tvars", "=", "None", ",", "args", "=", "None", ")", ":", "if", "cls", ".", "__origin__", "is", "None", ":", "return", "cls", "# Make of chain of origins (i.e. cls -> cls.__origin__)", "current", "=", "cls", ".", "__origin__", "orig_chain", "=", "[", "]", "while", "current", ".", "__origin__", "is", "not", "None", ":", "orig_chain", ".", "append", "(", "current", ")", "current", "=", "current", ".", "__origin__", "# Replace type variables in __args__ if asked ...", "tree_args", "=", "[", "]", "for", "arg", "in", "cls", ".", "__args__", ":", "tree_args", ".", "append", "(", "_replace_arg", "(", "arg", ",", "tvars", ",", "args", ")", ")", "# ... then continue replacing down the origin chain.", "for", "ocls", "in", "orig_chain", ":", "new_tree_args", "=", "[", "]", "for", "i", ",", "arg", "in", "enumerate", "(", "ocls", ".", "__args__", ")", ":", "new_tree_args", ".", "append", "(", "_replace_arg", "(", "arg", ",", "ocls", ".", "__parameters__", ",", "tree_args", ")", ")", "tree_args", "=", "new_tree_args", "return", "tree_args" ]
https://github.com/naftaliharris/tauthon/blob/5587ceec329b75f7caf6d65a036db61ac1bae214/Lib/typing.py#L582-L606
NVIDIA/OpenSeq2Seq
8681d381ed404fde516e2c1b823de5a213c59aba
open_seq2seq/parts/rnns/attention_wrapper.py
python
AttentionWrapper.__init__
( self, cell, attention_mechanism, attention_layer_size=None, alignment_history=False, cell_input_fn=None, output_attention=True, initial_cell_state=None, name=None )
Construct the `AttentionWrapper`. **NOTE** If you are using the `BeamSearchDecoder` with a cell wrapped in `AttentionWrapper`, then you must ensure that: - The encoder output has been tiled to `beam_width` via @{tf.contrib.seq2seq.tile_batch} (NOT `tf.tile`). - The `batch_size` argument passed to the `zero_state` method of this wrapper is equal to `true_batch_size * beam_width`. - The initial state created with `zero_state` above contains a `cell_state` value containing properly tiled final state from the encoder. An example: ``` tiled_encoder_outputs = tf.contrib.seq2seq.tile_batch( encoder_outputs, multiplier=beam_width) tiled_encoder_final_state = tf.conrib.seq2seq.tile_batch( encoder_final_state, multiplier=beam_width) tiled_sequence_length = tf.contrib.seq2seq.tile_batch( sequence_length, multiplier=beam_width) attention_mechanism = MyFavoriteAttentionMechanism( num_units=attention_depth, memory=tiled_inputs, memory_sequence_length=tiled_sequence_length) attention_cell = AttentionWrapper(cell, attention_mechanism, ...) decoder_initial_state = attention_cell.zero_state( dtype, batch_size=true_batch_size * beam_width) decoder_initial_state = decoder_initial_state.clone( cell_state=tiled_encoder_final_state) ``` Args: cell: An instance of `RNNCell`. attention_mechanism: A list of `AttentionMechanism` instances or a single instance. attention_layer_size: A list of Python integers or a single Python integer, the depth of the attention (output) layer(s). If None (default), use the context as attention at each time step. Otherwise, feed the context and cell output into the attention layer to generate attention at each time step. If attention_mechanism is a list, attention_layer_size must be a list of the same length. alignment_history: Python boolean, whether to store alignment history from all time steps in the final output state (currently stored as a time major `TensorArray` on which you must call `stack()`). cell_input_fn: (optional) A `callable`. The default is: `lambda inputs, attention: array_ops.concat([inputs, attention], -1)`. output_attention: bool or "both". If `True` (default), the output at each time step is the attention value. This is the behavior of Luong-style attention mechanisms. If `False`, the output at each time step is the output of `cell`. This is the beahvior of Bhadanau-style attention mechanisms. If "both", the attention value and cell output are concatenated together and set as the output. In all cases, the `attention` tensor is propagated to the next time step via the state and is used there. This flag only controls whether the attention mechanism is propagated up to the next cell in an RNN stack or to the top RNN output. initial_cell_state: The initial state value to use for the cell when the user calls `zero_state()`. Note that if this value is provided now, and the user uses a `batch_size` argument of `zero_state` which does not match the batch size of `initial_cell_state`, proper behavior is not guaranteed. name: Name to use when creating ops. Raises: TypeError: `attention_layer_size` is not None and (`attention_mechanism` is a list but `attention_layer_size` is not; or vice versa). ValueError: if `attention_layer_size` is not None, `attention_mechanism` is a list, and its length does not match that of `attention_layer_size`.
Construct the `AttentionWrapper`.
[ "Construct", "the", "AttentionWrapper", "." ]
def __init__( self, cell, attention_mechanism, attention_layer_size=None, alignment_history=False, cell_input_fn=None, output_attention=True, initial_cell_state=None, name=None ): """Construct the `AttentionWrapper`. **NOTE** If you are using the `BeamSearchDecoder` with a cell wrapped in `AttentionWrapper`, then you must ensure that: - The encoder output has been tiled to `beam_width` via @{tf.contrib.seq2seq.tile_batch} (NOT `tf.tile`). - The `batch_size` argument passed to the `zero_state` method of this wrapper is equal to `true_batch_size * beam_width`. - The initial state created with `zero_state` above contains a `cell_state` value containing properly tiled final state from the encoder. An example: ``` tiled_encoder_outputs = tf.contrib.seq2seq.tile_batch( encoder_outputs, multiplier=beam_width) tiled_encoder_final_state = tf.conrib.seq2seq.tile_batch( encoder_final_state, multiplier=beam_width) tiled_sequence_length = tf.contrib.seq2seq.tile_batch( sequence_length, multiplier=beam_width) attention_mechanism = MyFavoriteAttentionMechanism( num_units=attention_depth, memory=tiled_inputs, memory_sequence_length=tiled_sequence_length) attention_cell = AttentionWrapper(cell, attention_mechanism, ...) decoder_initial_state = attention_cell.zero_state( dtype, batch_size=true_batch_size * beam_width) decoder_initial_state = decoder_initial_state.clone( cell_state=tiled_encoder_final_state) ``` Args: cell: An instance of `RNNCell`. attention_mechanism: A list of `AttentionMechanism` instances or a single instance. attention_layer_size: A list of Python integers or a single Python integer, the depth of the attention (output) layer(s). If None (default), use the context as attention at each time step. Otherwise, feed the context and cell output into the attention layer to generate attention at each time step. If attention_mechanism is a list, attention_layer_size must be a list of the same length. alignment_history: Python boolean, whether to store alignment history from all time steps in the final output state (currently stored as a time major `TensorArray` on which you must call `stack()`). cell_input_fn: (optional) A `callable`. The default is: `lambda inputs, attention: array_ops.concat([inputs, attention], -1)`. output_attention: bool or "both". If `True` (default), the output at each time step is the attention value. This is the behavior of Luong-style attention mechanisms. If `False`, the output at each time step is the output of `cell`. This is the beahvior of Bhadanau-style attention mechanisms. If "both", the attention value and cell output are concatenated together and set as the output. In all cases, the `attention` tensor is propagated to the next time step via the state and is used there. This flag only controls whether the attention mechanism is propagated up to the next cell in an RNN stack or to the top RNN output. initial_cell_state: The initial state value to use for the cell when the user calls `zero_state()`. Note that if this value is provided now, and the user uses a `batch_size` argument of `zero_state` which does not match the batch size of `initial_cell_state`, proper behavior is not guaranteed. name: Name to use when creating ops. Raises: TypeError: `attention_layer_size` is not None and (`attention_mechanism` is a list but `attention_layer_size` is not; or vice versa). ValueError: if `attention_layer_size` is not None, `attention_mechanism` is a list, and its length does not match that of `attention_layer_size`. """ super(AttentionWrapper, self).__init__(name=name) rnn_cell_impl.assert_like_rnncell("cell", cell) if isinstance(attention_mechanism, (list, tuple)): self._is_multi = True attention_mechanisms = attention_mechanism for attention_mechanism in attention_mechanisms: if not isinstance(attention_mechanism, AttentionMechanism): raise TypeError( "attention_mechanism must contain only instances of " "AttentionMechanism, saw type: %s" % type(attention_mechanism).__name__ ) else: self._is_multi = False if not isinstance(attention_mechanism, AttentionMechanism): raise TypeError( "attention_mechanism must be an AttentionMechanism or list of " "multiple AttentionMechanism instances, saw type: %s" % type(attention_mechanism).__name__ ) attention_mechanisms = (attention_mechanism,) if cell_input_fn is None: cell_input_fn = ( lambda inputs, attention: array_ops.concat([inputs, attention], -1) ) else: if not callable(cell_input_fn): raise TypeError( "cell_input_fn must be callable, saw type: %s" % type(cell_input_fn).__name__ ) if attention_layer_size is not None: attention_layer_sizes = tuple( attention_layer_size if isinstance(attention_layer_size, (list, tuple )) else (attention_layer_size,) ) if len(attention_layer_sizes) != len(attention_mechanisms): raise ValueError( "If provided, attention_layer_size must contain exactly one " "integer per attention_mechanism, saw: %d vs %d" % (len(attention_layer_sizes), len(attention_mechanisms)) ) self._attention_layers = tuple( layers_core.Dense( attention_layer_size, name="attention_layer", use_bias=False, dtype=attention_mechanisms[i].dtype ) for i, attention_layer_size in enumerate(attention_layer_sizes) ) self._attention_layer_size = sum(attention_layer_sizes) else: self._attention_layers = None self._attention_layer_size = sum( attention_mechanism.values.get_shape()[-1].value for attention_mechanism in attention_mechanisms ) self._cell = cell self._attention_mechanisms = attention_mechanisms self._cell_input_fn = cell_input_fn self._output_attention = output_attention self._alignment_history = alignment_history with ops.name_scope(name, "AttentionWrapperInit"): if initial_cell_state is None: self._initial_cell_state = None else: final_state_tensor = nest.flatten(initial_cell_state)[-1] state_batch_size = ( final_state_tensor.shape[0].value or array_ops.shape(final_state_tensor)[0] ) error_message = ( "When constructing AttentionWrapper %s: " % self._base_name + "Non-matching batch sizes between the memory " "(encoder output) and initial_cell_state. Are you using " "the BeamSearchDecoder? You may need to tile your initial state " "via the tf.contrib.seq2seq.tile_batch function with argument " "multiple=beam_width." ) with ops.control_dependencies( self._batch_size_checks(state_batch_size, error_message) ): self._initial_cell_state = nest.map_structure( lambda s: array_ops.identity(s, name="check_initial_cell_state"), initial_cell_state )
[ "def", "__init__", "(", "self", ",", "cell", ",", "attention_mechanism", ",", "attention_layer_size", "=", "None", ",", "alignment_history", "=", "False", ",", "cell_input_fn", "=", "None", ",", "output_attention", "=", "True", ",", "initial_cell_state", "=", "None", ",", "name", "=", "None", ")", ":", "super", "(", "AttentionWrapper", ",", "self", ")", ".", "__init__", "(", "name", "=", "name", ")", "rnn_cell_impl", ".", "assert_like_rnncell", "(", "\"cell\"", ",", "cell", ")", "if", "isinstance", "(", "attention_mechanism", ",", "(", "list", ",", "tuple", ")", ")", ":", "self", ".", "_is_multi", "=", "True", "attention_mechanisms", "=", "attention_mechanism", "for", "attention_mechanism", "in", "attention_mechanisms", ":", "if", "not", "isinstance", "(", "attention_mechanism", ",", "AttentionMechanism", ")", ":", "raise", "TypeError", "(", "\"attention_mechanism must contain only instances of \"", "\"AttentionMechanism, saw type: %s\"", "%", "type", "(", "attention_mechanism", ")", ".", "__name__", ")", "else", ":", "self", ".", "_is_multi", "=", "False", "if", "not", "isinstance", "(", "attention_mechanism", ",", "AttentionMechanism", ")", ":", "raise", "TypeError", "(", "\"attention_mechanism must be an AttentionMechanism or list of \"", "\"multiple AttentionMechanism instances, saw type: %s\"", "%", "type", "(", "attention_mechanism", ")", ".", "__name__", ")", "attention_mechanisms", "=", "(", "attention_mechanism", ",", ")", "if", "cell_input_fn", "is", "None", ":", "cell_input_fn", "=", "(", "lambda", "inputs", ",", "attention", ":", "array_ops", ".", "concat", "(", "[", "inputs", ",", "attention", "]", ",", "-", "1", ")", ")", "else", ":", "if", "not", "callable", "(", "cell_input_fn", ")", ":", "raise", "TypeError", "(", "\"cell_input_fn must be callable, saw type: %s\"", "%", "type", "(", "cell_input_fn", ")", ".", "__name__", ")", "if", "attention_layer_size", "is", "not", "None", ":", "attention_layer_sizes", "=", "tuple", "(", "attention_layer_size", "if", "isinstance", "(", "attention_layer_size", ",", "(", "list", ",", "tuple", ")", ")", "else", "(", "attention_layer_size", ",", ")", ")", "if", "len", "(", "attention_layer_sizes", ")", "!=", "len", "(", "attention_mechanisms", ")", ":", "raise", "ValueError", "(", "\"If provided, attention_layer_size must contain exactly one \"", "\"integer per attention_mechanism, saw: %d vs %d\"", "%", "(", "len", "(", "attention_layer_sizes", ")", ",", "len", "(", "attention_mechanisms", ")", ")", ")", "self", ".", "_attention_layers", "=", "tuple", "(", "layers_core", ".", "Dense", "(", "attention_layer_size", ",", "name", "=", "\"attention_layer\"", ",", "use_bias", "=", "False", ",", "dtype", "=", "attention_mechanisms", "[", "i", "]", ".", "dtype", ")", "for", "i", ",", "attention_layer_size", "in", "enumerate", "(", "attention_layer_sizes", ")", ")", "self", ".", "_attention_layer_size", "=", "sum", "(", "attention_layer_sizes", ")", "else", ":", "self", ".", "_attention_layers", "=", "None", "self", ".", "_attention_layer_size", "=", "sum", "(", "attention_mechanism", ".", "values", ".", "get_shape", "(", ")", "[", "-", "1", "]", ".", "value", "for", "attention_mechanism", "in", "attention_mechanisms", ")", "self", ".", "_cell", "=", "cell", "self", ".", "_attention_mechanisms", "=", "attention_mechanisms", "self", ".", "_cell_input_fn", "=", "cell_input_fn", "self", ".", "_output_attention", "=", "output_attention", "self", ".", "_alignment_history", "=", "alignment_history", "with", "ops", ".", "name_scope", "(", "name", ",", "\"AttentionWrapperInit\"", ")", ":", "if", "initial_cell_state", "is", "None", ":", "self", ".", "_initial_cell_state", "=", "None", "else", ":", "final_state_tensor", "=", "nest", ".", "flatten", "(", "initial_cell_state", ")", "[", "-", "1", "]", "state_batch_size", "=", "(", "final_state_tensor", ".", "shape", "[", "0", "]", ".", "value", "or", "array_ops", ".", "shape", "(", "final_state_tensor", ")", "[", "0", "]", ")", "error_message", "=", "(", "\"When constructing AttentionWrapper %s: \"", "%", "self", ".", "_base_name", "+", "\"Non-matching batch sizes between the memory \"", "\"(encoder output) and initial_cell_state. Are you using \"", "\"the BeamSearchDecoder? You may need to tile your initial state \"", "\"via the tf.contrib.seq2seq.tile_batch function with argument \"", "\"multiple=beam_width.\"", ")", "with", "ops", ".", "control_dependencies", "(", "self", ".", "_batch_size_checks", "(", "state_batch_size", ",", "error_message", ")", ")", ":", "self", ".", "_initial_cell_state", "=", "nest", ".", "map_structure", "(", "lambda", "s", ":", "array_ops", ".", "identity", "(", "s", ",", "name", "=", "\"check_initial_cell_state\"", ")", ",", "initial_cell_state", ")" ]
https://github.com/NVIDIA/OpenSeq2Seq/blob/8681d381ed404fde516e2c1b823de5a213c59aba/open_seq2seq/parts/rnns/attention_wrapper.py#L1422-L1593
jbjorne/TEES
caf19a4a1352ac59f5dc13a8684cc42ce4342d9d
ExampleBuilders/ExampleStats.py
python
ExampleStats.printStats
(self)
[]
def printStats(self): print >> sys.stderr, "Example Statistics (total/filtered)" #print >> sys.stderr, self.examplesByClass.keys() counts = [0,0] for className in sorted(self.examplesByClass.keys()): if self.filteredByClassByFilter.has_key(className): filterStr = str( self.filteredByClassByFilter[className] ) else: filterStr = "" print >> sys.stderr, " ", className + ": " + str(self.examplesByClass[className]) + "/" + str(self.filteredByClass[className]), filterStr if className != "neg": counts[0] += self.examplesByClass[className] counts[1] += self.filteredByClass[className] if counts[0] != 0: posCoverage = float(counts[0] - counts[1]) / float(counts[0]) * 100.0 print >> sys.stderr, "Positives Coverage %.2f" % posCoverage, "%", counts # Print generic counts for value in sorted(self.values.keys()): print >> sys.stderr, value + ":", self.values[value] for variable in sorted(self.variables.keys()): print >> sys.stderr, variable + ":", self.variables[variable]
[ "def", "printStats", "(", "self", ")", ":", "print", ">>", "sys", ".", "stderr", ",", "\"Example Statistics (total/filtered)\"", "#print >> sys.stderr, self.examplesByClass.keys()", "counts", "=", "[", "0", ",", "0", "]", "for", "className", "in", "sorted", "(", "self", ".", "examplesByClass", ".", "keys", "(", ")", ")", ":", "if", "self", ".", "filteredByClassByFilter", ".", "has_key", "(", "className", ")", ":", "filterStr", "=", "str", "(", "self", ".", "filteredByClassByFilter", "[", "className", "]", ")", "else", ":", "filterStr", "=", "\"\"", "print", ">>", "sys", ".", "stderr", ",", "\" \"", ",", "className", "+", "\": \"", "+", "str", "(", "self", ".", "examplesByClass", "[", "className", "]", ")", "+", "\"/\"", "+", "str", "(", "self", ".", "filteredByClass", "[", "className", "]", ")", ",", "filterStr", "if", "className", "!=", "\"neg\"", ":", "counts", "[", "0", "]", "+=", "self", ".", "examplesByClass", "[", "className", "]", "counts", "[", "1", "]", "+=", "self", ".", "filteredByClass", "[", "className", "]", "if", "counts", "[", "0", "]", "!=", "0", ":", "posCoverage", "=", "float", "(", "counts", "[", "0", "]", "-", "counts", "[", "1", "]", ")", "/", "float", "(", "counts", "[", "0", "]", ")", "*", "100.0", "print", ">>", "sys", ".", "stderr", ",", "\"Positives Coverage %.2f\"", "%", "posCoverage", ",", "\"%\"", ",", "counts", "# Print generic counts", "for", "value", "in", "sorted", "(", "self", ".", "values", ".", "keys", "(", ")", ")", ":", "print", ">>", "sys", ".", "stderr", ",", "value", "+", "\":\"", ",", "self", ".", "values", "[", "value", "]", "for", "variable", "in", "sorted", "(", "self", ".", "variables", ".", "keys", "(", ")", ")", ":", "print", ">>", "sys", ".", "stderr", ",", "variable", "+", "\":\"", ",", "self", ".", "variables", "[", "variable", "]" ]
https://github.com/jbjorne/TEES/blob/caf19a4a1352ac59f5dc13a8684cc42ce4342d9d/ExampleBuilders/ExampleStats.py#L64-L84
makerbot/ReplicatorG
d6f2b07785a5a5f1e172fb87cb4303b17c575d5d
skein_engines/skeinforge-35/skeinforge_application/skeinforge_plugins/profile.py
python
ProfileMenuSaveListener.__init__
( self, menu, window )
Set the menu.
Set the menu.
[ "Set", "the", "menu", "." ]
def __init__( self, menu, window ): "Set the menu." self.menu = menu addToProfileMenu( menu ) euclidean.addElementToListTableIfNotThere( self, window, settings.globalProfileSaveListenerListTable )
[ "def", "__init__", "(", "self", ",", "menu", ",", "window", ")", ":", "self", ".", "menu", "=", "menu", "addToProfileMenu", "(", "menu", ")", "euclidean", ".", "addElementToListTableIfNotThere", "(", "self", ",", "window", ",", "settings", ".", "globalProfileSaveListenerListTable", ")" ]
https://github.com/makerbot/ReplicatorG/blob/d6f2b07785a5a5f1e172fb87cb4303b17c575d5d/skein_engines/skeinforge-35/skeinforge_application/skeinforge_plugins/profile.py#L109-L113
spesmilo/electrum
bdbd59300fbd35b01605e66145458e5f396108e8
electrum/transaction.py
python
PartialTxInput.already_has_some_signatures
(self)
return (self.part_sigs or self.script_sig is not None or self.witness is not None)
Returns whether progress has been made towards completing this input.
Returns whether progress has been made towards completing this input.
[ "Returns", "whether", "progress", "has", "been", "made", "towards", "completing", "this", "input", "." ]
def already_has_some_signatures(self) -> bool: """Returns whether progress has been made towards completing this input.""" return (self.part_sigs or self.script_sig is not None or self.witness is not None)
[ "def", "already_has_some_signatures", "(", "self", ")", "->", "bool", ":", "return", "(", "self", ".", "part_sigs", "or", "self", ".", "script_sig", "is", "not", "None", "or", "self", ".", "witness", "is", "not", "None", ")" ]
https://github.com/spesmilo/electrum/blob/bdbd59300fbd35b01605e66145458e5f396108e8/electrum/transaction.py#L1558-L1562
FrancoisSchnell/GPicSync
07d7c4b7da44e4e6665abb94bbb9ef6da0e779d1
src/gpicsync-GUI.py
python
GUI.geoWriterFrame
(self,evt)
Frame to manually write latitude/longitude in the EXIF header of the picture
Frame to manually write latitude/longitude in the EXIF header of the picture
[ "Frame", "to", "manually", "write", "latitude", "/", "longitude", "in", "the", "EXIF", "header", "of", "the", "picture" ]
def geoWriterFrame(self,evt): """ Frame to manually write latitude/longitude in the EXIF header of the picture""" self.winGeoFrame=wx.Frame(win,size=(300,300),title=("Manual latitude/longitude EXIF writer")) bkg=wx.Panel(self.winGeoFrame) instructionLabel = wx.StaticText(bkg, -1,("Enter coordinates in decimal degrees")) latLabel = wx.StaticText(bkg, -1,("Latitude")+":") self.latEntry=wx.TextCtrl(bkg,size=(100,-1)) self.latEntry.SetValue(str(self.defaultLat)) lonLabel = wx.StaticText(bkg, -1,("Longitude")+":") self.lonEntry=wx.TextCtrl(bkg,size=(100,-1)) self.lonEntry.SetValue(str(self.defaultLon)) eleLabel = wx.StaticText(bkg, -1,("Eventual elevation (meters)")+":") self.eleEntry=wx.TextCtrl(bkg,size=(100,-1)) selectButton=wx.Button(bkg,size=(-1,-1),label=("Select and write in picture(s)")) self.Bind(wx.EVT_BUTTON, self.manualGeoWrite, selectButton) vbox=wx.BoxSizer(wx.VERTICAL) vbox.Add(instructionLabel,proportion=0,flag=wx.ALIGN_CENTER|wx.ALL,border=20) vbox.Add(latLabel,proportion=0,flag=wx.ALIGN_CENTER|wx.ALL,border=5) vbox.Add(self.latEntry,proportion=0,flag=wx.ALIGN_CENTER,border=5) vbox.Add(lonLabel,proportion=0,flag=wx.ALIGN_CENTER|wx.ALL,border=5) vbox.Add(self.lonEntry,proportion=0,flag=wx.ALIGN_CENTER,border=5) vbox.Add(eleLabel,proportion=0,flag=wx.ALIGN_CENTER|wx.ALL,border=5) vbox.Add(self.eleEntry,proportion=0,flag=wx.ALIGN_CENTER,border=5) vbox.Add(selectButton,proportion=0,flag=wx.ALIGN_CENTER|wx.ALL,border=20) bkg.SetSizer(vbox) self.winGeoFrame.Show()
[ "def", "geoWriterFrame", "(", "self", ",", "evt", ")", ":", "self", ".", "winGeoFrame", "=", "wx", ".", "Frame", "(", "win", ",", "size", "=", "(", "300", ",", "300", ")", ",", "title", "=", "(", "\"Manual latitude/longitude EXIF writer\"", ")", ")", "bkg", "=", "wx", ".", "Panel", "(", "self", ".", "winGeoFrame", ")", "instructionLabel", "=", "wx", ".", "StaticText", "(", "bkg", ",", "-", "1", ",", "(", "\"Enter coordinates in decimal degrees\"", ")", ")", "latLabel", "=", "wx", ".", "StaticText", "(", "bkg", ",", "-", "1", ",", "(", "\"Latitude\"", ")", "+", "\":\"", ")", "self", ".", "latEntry", "=", "wx", ".", "TextCtrl", "(", "bkg", ",", "size", "=", "(", "100", ",", "-", "1", ")", ")", "self", ".", "latEntry", ".", "SetValue", "(", "str", "(", "self", ".", "defaultLat", ")", ")", "lonLabel", "=", "wx", ".", "StaticText", "(", "bkg", ",", "-", "1", ",", "(", "\"Longitude\"", ")", "+", "\":\"", ")", "self", ".", "lonEntry", "=", "wx", ".", "TextCtrl", "(", "bkg", ",", "size", "=", "(", "100", ",", "-", "1", ")", ")", "self", ".", "lonEntry", ".", "SetValue", "(", "str", "(", "self", ".", "defaultLon", ")", ")", "eleLabel", "=", "wx", ".", "StaticText", "(", "bkg", ",", "-", "1", ",", "(", "\"Eventual elevation (meters)\"", ")", "+", "\":\"", ")", "self", ".", "eleEntry", "=", "wx", ".", "TextCtrl", "(", "bkg", ",", "size", "=", "(", "100", ",", "-", "1", ")", ")", "selectButton", "=", "wx", ".", "Button", "(", "bkg", ",", "size", "=", "(", "-", "1", ",", "-", "1", ")", ",", "label", "=", "(", "\"Select and write in picture(s)\"", ")", ")", "self", ".", "Bind", "(", "wx", ".", "EVT_BUTTON", ",", "self", ".", "manualGeoWrite", ",", "selectButton", ")", "vbox", "=", "wx", ".", "BoxSizer", "(", "wx", ".", "VERTICAL", ")", "vbox", ".", "Add", "(", "instructionLabel", ",", "proportion", "=", "0", ",", "flag", "=", "wx", ".", "ALIGN_CENTER", "|", "wx", ".", "ALL", ",", "border", "=", "20", ")", "vbox", ".", "Add", "(", "latLabel", ",", "proportion", "=", "0", ",", "flag", "=", "wx", ".", "ALIGN_CENTER", "|", "wx", ".", "ALL", ",", "border", "=", "5", ")", "vbox", ".", "Add", "(", "self", ".", "latEntry", ",", "proportion", "=", "0", ",", "flag", "=", "wx", ".", "ALIGN_CENTER", ",", "border", "=", "5", ")", "vbox", ".", "Add", "(", "lonLabel", ",", "proportion", "=", "0", ",", "flag", "=", "wx", ".", "ALIGN_CENTER", "|", "wx", ".", "ALL", ",", "border", "=", "5", ")", "vbox", ".", "Add", "(", "self", ".", "lonEntry", ",", "proportion", "=", "0", ",", "flag", "=", "wx", ".", "ALIGN_CENTER", ",", "border", "=", "5", ")", "vbox", ".", "Add", "(", "eleLabel", ",", "proportion", "=", "0", ",", "flag", "=", "wx", ".", "ALIGN_CENTER", "|", "wx", ".", "ALL", ",", "border", "=", "5", ")", "vbox", ".", "Add", "(", "self", ".", "eleEntry", ",", "proportion", "=", "0", ",", "flag", "=", "wx", ".", "ALIGN_CENTER", ",", "border", "=", "5", ")", "vbox", ".", "Add", "(", "selectButton", ",", "proportion", "=", "0", ",", "flag", "=", "wx", ".", "ALIGN_CENTER", "|", "wx", ".", "ALL", ",", "border", "=", "20", ")", "bkg", ".", "SetSizer", "(", "vbox", ")", "self", ".", "winGeoFrame", ".", "Show", "(", ")" ]
https://github.com/FrancoisSchnell/GPicSync/blob/07d7c4b7da44e4e6665abb94bbb9ef6da0e779d1/src/gpicsync-GUI.py#L649-L674
haiwen/seahub
e92fcd44e3e46260597d8faa9347cb8222b8b10d
seahub/utils/__init__.py
python
get_password_strength_level
(password)
return calculate_bitwise(num)
[]
def get_password_strength_level(password): num = 0 for letter in password: # get ascii dec # bitwise OR num |= get_char_mode(ord(letter)) return calculate_bitwise(num)
[ "def", "get_password_strength_level", "(", "password", ")", ":", "num", "=", "0", "for", "letter", "in", "password", ":", "# get ascii dec", "# bitwise OR", "num", "|=", "get_char_mode", "(", "ord", "(", "letter", ")", ")", "return", "calculate_bitwise", "(", "num", ")" ]
https://github.com/haiwen/seahub/blob/e92fcd44e3e46260597d8faa9347cb8222b8b10d/seahub/utils/__init__.py#L1195-L1203
landlab/landlab
a5dd80b8ebfd03d1ba87ef6c4368c409485f222c
landlab/components/species_evolution/record.py
python
Record.latest_time
(self)
return max(self.times)
The latest time in the record.
The latest time in the record.
[ "The", "latest", "time", "in", "the", "record", "." ]
def latest_time(self): """The latest time in the record.""" return max(self.times)
[ "def", "latest_time", "(", "self", ")", ":", "return", "max", "(", "self", ".", "times", ")" ]
https://github.com/landlab/landlab/blob/a5dd80b8ebfd03d1ba87ef6c4368c409485f222c/landlab/components/species_evolution/record.py#L62-L64
mgear-dev/mgear
06ddc26c5adb5eab07ca470c7fafa77404c8a1de
scripts/mgear/maya/shifter/component/hydraulic_01/__init__.py
python
Component.addOperators
(self)
Create operators and set the relations for the component rig Apply operators, constraints, expressions to the hierarchy. In order to keep the code clean and easier to debug, we shouldn't create any new object in this method.
Create operators and set the relations for the component rig
[ "Create", "operators", "and", "set", "the", "relations", "for", "the", "component", "rig" ]
def addOperators(self): """Create operators and set the relations for the component rig Apply operators, constraints, expressions to the hierarchy. In order to keep the code clean and easier to debug, we shouldn't create any new object in this method. """ applyop.aimCns(self.ref_base, self.tip_ctl, axis="yx", wupType=2, wupVector=[1, 0, 0], wupObject=self.ctl, maintainOffset=False) applyop.aimCns(self.ref_tip, self.ctl, axis="-yx", wupType=2, wupVector=[1, 0, 0], wupObject=self.tip_ctl, maintainOffset=False) bIncrement = 1.0 / (self.settings["div"] - 1) blend = 0 for i, div_cns in enumerate(self.div_cns): intMatrix = applyop.gear_intmatrix_op( self.ref_base.attr("worldMatrix"), self.ref_tip.attr("worldMatrix"), blend) applyop.gear_mulmatrix_op(intMatrix.attr("output"), div_cns.attr("parentInverseMatrix[0]"), div_cns) blend = blend + bIncrement
[ "def", "addOperators", "(", "self", ")", ":", "applyop", ".", "aimCns", "(", "self", ".", "ref_base", ",", "self", ".", "tip_ctl", ",", "axis", "=", "\"yx\"", ",", "wupType", "=", "2", ",", "wupVector", "=", "[", "1", ",", "0", ",", "0", "]", ",", "wupObject", "=", "self", ".", "ctl", ",", "maintainOffset", "=", "False", ")", "applyop", ".", "aimCns", "(", "self", ".", "ref_tip", ",", "self", ".", "ctl", ",", "axis", "=", "\"-yx\"", ",", "wupType", "=", "2", ",", "wupVector", "=", "[", "1", ",", "0", ",", "0", "]", ",", "wupObject", "=", "self", ".", "tip_ctl", ",", "maintainOffset", "=", "False", ")", "bIncrement", "=", "1.0", "/", "(", "self", ".", "settings", "[", "\"div\"", "]", "-", "1", ")", "blend", "=", "0", "for", "i", ",", "div_cns", "in", "enumerate", "(", "self", ".", "div_cns", ")", ":", "intMatrix", "=", "applyop", ".", "gear_intmatrix_op", "(", "self", ".", "ref_base", ".", "attr", "(", "\"worldMatrix\"", ")", ",", "self", ".", "ref_tip", ".", "attr", "(", "\"worldMatrix\"", ")", ",", "blend", ")", "applyop", ".", "gear_mulmatrix_op", "(", "intMatrix", ".", "attr", "(", "\"output\"", ")", ",", "div_cns", ".", "attr", "(", "\"parentInverseMatrix[0]\"", ")", ",", "div_cns", ")", "blend", "=", "blend", "+", "bIncrement" ]
https://github.com/mgear-dev/mgear/blob/06ddc26c5adb5eab07ca470c7fafa77404c8a1de/scripts/mgear/maya/shifter/component/hydraulic_01/__init__.py#L93-L128
openstack/ironic
b392dc19bcd29cef5a69ec00d2f18a7a19a679e5
ironic/api/controllers/v1/port.py
python
PortsController._check_allowed_port_fields
(self, fields)
Check if fetching a particular field of a port is allowed. Check if the required version is being requested for fields that are only allowed to be fetched in a particular API version. :param fields: list or set of fields to check :raises: NotAcceptable if a field is not allowed
Check if fetching a particular field of a port is allowed.
[ "Check", "if", "fetching", "a", "particular", "field", "of", "a", "port", "is", "allowed", "." ]
def _check_allowed_port_fields(self, fields): """Check if fetching a particular field of a port is allowed. Check if the required version is being requested for fields that are only allowed to be fetched in a particular API version. :param fields: list or set of fields to check :raises: NotAcceptable if a field is not allowed """ if fields is None: return if (not api_utils.allow_port_advanced_net_fields() and set(fields).intersection(self.advanced_net_fields)): raise exception.NotAcceptable() if ('portgroup_uuid' in fields and not api_utils.allow_portgroups_subcontrollers()): raise exception.NotAcceptable() if ('physical_network' in fields and not api_utils.allow_port_physical_network()): raise exception.NotAcceptable() if ('is_smartnic' in fields and not api_utils.allow_port_is_smartnic()): raise exception.NotAcceptable() if ('local_link_connection/network_type' in fields and not api_utils.allow_local_link_connection_network_type()): raise exception.NotAcceptable() if (isinstance(fields, dict) and fields.get('local_link_connection') is not None): if (not api_utils.allow_local_link_connection_network_type() and 'network_type' in fields['local_link_connection']): raise exception.NotAcceptable()
[ "def", "_check_allowed_port_fields", "(", "self", ",", "fields", ")", ":", "if", "fields", "is", "None", ":", "return", "if", "(", "not", "api_utils", ".", "allow_port_advanced_net_fields", "(", ")", "and", "set", "(", "fields", ")", ".", "intersection", "(", "self", ".", "advanced_net_fields", ")", ")", ":", "raise", "exception", ".", "NotAcceptable", "(", ")", "if", "(", "'portgroup_uuid'", "in", "fields", "and", "not", "api_utils", ".", "allow_portgroups_subcontrollers", "(", ")", ")", ":", "raise", "exception", ".", "NotAcceptable", "(", ")", "if", "(", "'physical_network'", "in", "fields", "and", "not", "api_utils", ".", "allow_port_physical_network", "(", ")", ")", ":", "raise", "exception", ".", "NotAcceptable", "(", ")", "if", "(", "'is_smartnic'", "in", "fields", "and", "not", "api_utils", ".", "allow_port_is_smartnic", "(", ")", ")", ":", "raise", "exception", ".", "NotAcceptable", "(", ")", "if", "(", "'local_link_connection/network_type'", "in", "fields", "and", "not", "api_utils", ".", "allow_local_link_connection_network_type", "(", ")", ")", ":", "raise", "exception", ".", "NotAcceptable", "(", ")", "if", "(", "isinstance", "(", "fields", ",", "dict", ")", "and", "fields", ".", "get", "(", "'local_link_connection'", ")", "is", "not", "None", ")", ":", "if", "(", "not", "api_utils", ".", "allow_local_link_connection_network_type", "(", ")", "and", "'network_type'", "in", "fields", "[", "'local_link_connection'", "]", ")", ":", "raise", "exception", ".", "NotAcceptable", "(", ")" ]
https://github.com/openstack/ironic/blob/b392dc19bcd29cef5a69ec00d2f18a7a19a679e5/ironic/api/controllers/v1/port.py#L316-L346
fastavro/fastavro
dc1179d6d0e63c1d6e7cbeb5e0886bf70672745f
fastavro/_logical_writers_py.py
python
prepare_time_millis
(data, schema)
Convert datetime.time to int timestamp with milliseconds
Convert datetime.time to int timestamp with milliseconds
[ "Convert", "datetime", ".", "time", "to", "int", "timestamp", "with", "milliseconds" ]
def prepare_time_millis(data, schema): """Convert datetime.time to int timestamp with milliseconds""" if isinstance(data, datetime.time): return int( data.hour * MLS_PER_HOUR + data.minute * MLS_PER_MINUTE + data.second * MLS_PER_SECOND + int(data.microsecond / 1000) ) else: return data
[ "def", "prepare_time_millis", "(", "data", ",", "schema", ")", ":", "if", "isinstance", "(", "data", ",", "datetime", ".", "time", ")", ":", "return", "int", "(", "data", ".", "hour", "*", "MLS_PER_HOUR", "+", "data", ".", "minute", "*", "MLS_PER_MINUTE", "+", "data", ".", "second", "*", "MLS_PER_SECOND", "+", "int", "(", "data", ".", "microsecond", "/", "1000", ")", ")", "else", ":", "return", "data" ]
https://github.com/fastavro/fastavro/blob/dc1179d6d0e63c1d6e7cbeb5e0886bf70672745f/fastavro/_logical_writers_py.py#L224-L234
BillBillBillBill/Tickeys-linux
2df31b8665004c58a5d4ab05277f245267d96364
tickeys/kivy_32/kivy/base.py
python
ExceptionManagerBase.add_handler
(self, cls)
Add a new exception handler to the stack.
Add a new exception handler to the stack.
[ "Add", "a", "new", "exception", "handler", "to", "the", "stack", "." ]
def add_handler(self, cls): '''Add a new exception handler to the stack.''' if not cls in self.handlers: self.handlers.append(cls)
[ "def", "add_handler", "(", "self", ",", "cls", ")", ":", "if", "not", "cls", "in", "self", ".", "handlers", ":", "self", ".", "handlers", ".", "append", "(", "cls", ")" ]
https://github.com/BillBillBillBill/Tickeys-linux/blob/2df31b8665004c58a5d4ab05277f245267d96364/tickeys/kivy_32/kivy/base.py#L72-L75
PaddlePaddle/X2Paddle
b492545f61446af69e5d5d6288bc3a43a9a3931e
x2paddle/project_convertor/pytorch/models/resnet.py
python
resnet152
(pretrained: bool=False, progress: bool=True, **kwargs: Any)
return _resnet('resnet152', Bottleneck, [3, 8, 36, 3], pretrained, **kwargs)
r"""ResNet-152 model from `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr
r"""ResNet-152 model from `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.
[ "r", "ResNet", "-", "152", "model", "from", "Deep", "Residual", "Learning", "for", "Image", "Recognition", "<https", ":", "//", "arxiv", ".", "org", "/", "pdf", "/", "1512", ".", "03385", ".", "pdf", ">", "_", "." ]
def resnet152(pretrained: bool=False, progress: bool=True, **kwargs: Any) -> ResNet: r"""ResNet-152 model from `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet('resnet152', Bottleneck, [3, 8, 36, 3], pretrained, **kwargs)
[ "def", "resnet152", "(", "pretrained", ":", "bool", "=", "False", ",", "progress", ":", "bool", "=", "True", ",", "*", "*", "kwargs", ":", "Any", ")", "->", "ResNet", ":", "return", "_resnet", "(", "'resnet152'", ",", "Bottleneck", ",", "[", "3", ",", "8", ",", "36", ",", "3", "]", ",", "pretrained", ",", "*", "*", "kwargs", ")" ]
https://github.com/PaddlePaddle/X2Paddle/blob/b492545f61446af69e5d5d6288bc3a43a9a3931e/x2paddle/project_convertor/pytorch/models/resnet.py#L358-L367
holzschu/Carnets
44effb10ddfc6aa5c8b0687582a724ba82c6b547
Library/lib/python3.7/site-packages/astropy-4.0-py3.7-macosx-10.9-x86_64.egg/astropy/table/column.py
python
col_copy
(col, copy_indices=True)
return newcol
Mixin-safe version of Column.copy() (with copy_data=True). Parameters ---------- col : Column or mixin column Input column copy_indices : bool Copy the column ``indices`` attribute Returns ------- col : Copy of input column
Mixin-safe version of Column.copy() (with copy_data=True).
[ "Mixin", "-", "safe", "version", "of", "Column", ".", "copy", "()", "(", "with", "copy_data", "=", "True", ")", "." ]
def col_copy(col, copy_indices=True): """ Mixin-safe version of Column.copy() (with copy_data=True). Parameters ---------- col : Column or mixin column Input column copy_indices : bool Copy the column ``indices`` attribute Returns ------- col : Copy of input column """ if isinstance(col, BaseColumn): return col.copy() # The new column should have None for the parent_table ref. If the # original parent_table weakref there at the point of copying then it # generates an infinite recursion. Instead temporarily remove the weakref # on the original column and restore after the copy in an exception-safe # manner. parent_table = col.info.parent_table indices = col.info.indices col.info.parent_table = None col.info.indices = [] try: newcol = col.copy() if hasattr(col, 'copy') else deepcopy(col) newcol.info = col.info newcol.info.indices = deepcopy(indices or []) if copy_indices else [] for index in newcol.info.indices: index.replace_col(col, newcol) finally: col.info.parent_table = parent_table col.info.indices = indices return newcol
[ "def", "col_copy", "(", "col", ",", "copy_indices", "=", "True", ")", ":", "if", "isinstance", "(", "col", ",", "BaseColumn", ")", ":", "return", "col", ".", "copy", "(", ")", "# The new column should have None for the parent_table ref. If the", "# original parent_table weakref there at the point of copying then it", "# generates an infinite recursion. Instead temporarily remove the weakref", "# on the original column and restore after the copy in an exception-safe", "# manner.", "parent_table", "=", "col", ".", "info", ".", "parent_table", "indices", "=", "col", ".", "info", ".", "indices", "col", ".", "info", ".", "parent_table", "=", "None", "col", ".", "info", ".", "indices", "=", "[", "]", "try", ":", "newcol", "=", "col", ".", "copy", "(", ")", "if", "hasattr", "(", "col", ",", "'copy'", ")", "else", "deepcopy", "(", "col", ")", "newcol", ".", "info", "=", "col", ".", "info", "newcol", ".", "info", ".", "indices", "=", "deepcopy", "(", "indices", "or", "[", "]", ")", "if", "copy_indices", "else", "[", "]", "for", "index", "in", "newcol", ".", "info", ".", "indices", ":", "index", ".", "replace_col", "(", "col", ",", "newcol", ")", "finally", ":", "col", ".", "info", ".", "parent_table", "=", "parent_table", "col", ".", "info", ".", "indices", "=", "indices", "return", "newcol" ]
https://github.com/holzschu/Carnets/blob/44effb10ddfc6aa5c8b0687582a724ba82c6b547/Library/lib/python3.7/site-packages/astropy-4.0-py3.7-macosx-10.9-x86_64.egg/astropy/table/column.py#L59-L98
opendevops-cn/codo-admin
7328acab38e71332136cc6684918f534d8e30948
mg/handlers/users_handler.py
python
UserHandler.put
(self, *args, **kwargs)
[]
def put(self, *args, **kwargs): data = json.loads(self.request.body.decode("utf-8")) key = data.get('key', None) value = data.get('value', None) user_id = data.get('user_id', None) if not key or not value or not user_id: return self.write(dict(code=-1, msg='不能为空')) try: with DBContext('w', None, True) as session: session.query(Users).filter(Users.user_id == user_id).update({key: value}) except Exception as e: return self.write(dict(code=-2, msg='修改失败,请检查数据是否合法或者重复')) self.write(dict(code=0, msg='编辑成功'))
[ "def", "put", "(", "self", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "data", "=", "json", ".", "loads", "(", "self", ".", "request", ".", "body", ".", "decode", "(", "\"utf-8\"", ")", ")", "key", "=", "data", ".", "get", "(", "'key'", ",", "None", ")", "value", "=", "data", ".", "get", "(", "'value'", ",", "None", ")", "user_id", "=", "data", ".", "get", "(", "'user_id'", ",", "None", ")", "if", "not", "key", "or", "not", "value", "or", "not", "user_id", ":", "return", "self", ".", "write", "(", "dict", "(", "code", "=", "-", "1", ",", "msg", "=", "'不能为空'))", "", "", "try", ":", "with", "DBContext", "(", "'w'", ",", "None", ",", "True", ")", "as", "session", ":", "session", ".", "query", "(", "Users", ")", ".", "filter", "(", "Users", ".", "user_id", "==", "user_id", ")", ".", "update", "(", "{", "key", ":", "value", "}", ")", "except", "Exception", "as", "e", ":", "return", "self", ".", "write", "(", "dict", "(", "code", "=", "-", "2", ",", "msg", "=", "'修改失败,请检查数据是否合法或者重复'))", "", "", "self", ".", "write", "(", "dict", "(", "code", "=", "0", ",", "msg", "=", "'编辑成功'))", "", "" ]
https://github.com/opendevops-cn/codo-admin/blob/7328acab38e71332136cc6684918f534d8e30948/mg/handlers/users_handler.py#L132-L147
PyHDI/veriloggen
2382d200deabf59cfcfd741f5eba371010aaf2bb
veriloggen/types/axi.py
python
AxiLiteWriteAddress.__init__
(self, m, name=None, datawidth=32, addrwidth=32, itype=None, otype=None)
[]
def __init__(self, m, name=None, datawidth=32, addrwidth=32, itype=None, otype=None): AxiLiteInterfaceBase.__init__(self, m, name, datawidth, addrwidth, itype, otype) self.awaddr = util.make_port( m, self.otype, name + '_awaddr', self.addrwidth, initval=0) self.awcache = util.make_port( m, self.otype, name + '_awcache', 4, initval=0, no_reg=True) self.awprot = util.make_port( m, self.otype, name + '_awprot', 3, initval=0, no_reg=True) self.awvalid = util.make_port( m, self.otype, name + '_awvalid', None, initval=0) self.awready = util.make_port( m, self.itype, name + '_awready', None, initval=0)
[ "def", "__init__", "(", "self", ",", "m", ",", "name", "=", "None", ",", "datawidth", "=", "32", ",", "addrwidth", "=", "32", ",", "itype", "=", "None", ",", "otype", "=", "None", ")", ":", "AxiLiteInterfaceBase", ".", "__init__", "(", "self", ",", "m", ",", "name", ",", "datawidth", ",", "addrwidth", ",", "itype", ",", "otype", ")", "self", ".", "awaddr", "=", "util", ".", "make_port", "(", "m", ",", "self", ".", "otype", ",", "name", "+", "'_awaddr'", ",", "self", ".", "addrwidth", ",", "initval", "=", "0", ")", "self", ".", "awcache", "=", "util", ".", "make_port", "(", "m", ",", "self", ".", "otype", ",", "name", "+", "'_awcache'", ",", "4", ",", "initval", "=", "0", ",", "no_reg", "=", "True", ")", "self", ".", "awprot", "=", "util", ".", "make_port", "(", "m", ",", "self", ".", "otype", ",", "name", "+", "'_awprot'", ",", "3", ",", "initval", "=", "0", ",", "no_reg", "=", "True", ")", "self", ".", "awvalid", "=", "util", ".", "make_port", "(", "m", ",", "self", ".", "otype", ",", "name", "+", "'_awvalid'", ",", "None", ",", "initval", "=", "0", ")", "self", ".", "awready", "=", "util", ".", "make_port", "(", "m", ",", "self", ".", "itype", ",", "name", "+", "'_awready'", ",", "None", ",", "initval", "=", "0", ")" ]
https://github.com/PyHDI/veriloggen/blob/2382d200deabf59cfcfd741f5eba371010aaf2bb/veriloggen/types/axi.py#L148-L163
Aceinna/gnss-ins-sim
e8a0495af21c12628cdf106a7c54a0fc7bd0b12a
gnss_ins_sim/sim/ins_sim.py
python
Sim.__convert_pos
(self, data, units, ref_frame)
return data, units
Convert position data into a proper form. For example, if units are [deg deg m] or [rad rad m] and ref_frame is 1, convertion is needed. LLA form position will be converted to [x y z] form. Vice Versa. Args: data: nx3 numpy array, can be in [Lat Lon Alt] or [x y z] form. units: units of the data. ref_frame: reference frame of the simulation. 0:NED, 1:virtual inertial Returns: data: nx3 numpy array after convertion. units: units of converted dta
Convert position data into a proper form. For example, if units are [deg deg m] or [rad rad m] and ref_frame is 1, convertion is needed. LLA form position will be converted to [x y z] form. Vice Versa. Args: data: nx3 numpy array, can be in [Lat Lon Alt] or [x y z] form. units: units of the data. ref_frame: reference frame of the simulation. 0:NED, 1:virtual inertial Returns: data: nx3 numpy array after convertion. units: units of converted dta
[ "Convert", "position", "data", "into", "a", "proper", "form", ".", "For", "example", "if", "units", "are", "[", "deg", "deg", "m", "]", "or", "[", "rad", "rad", "m", "]", "and", "ref_frame", "is", "1", "convertion", "is", "needed", ".", "LLA", "form", "position", "will", "be", "converted", "to", "[", "x", "y", "z", "]", "form", ".", "Vice", "Versa", ".", "Args", ":", "data", ":", "nx3", "numpy", "array", "can", "be", "in", "[", "Lat", "Lon", "Alt", "]", "or", "[", "x", "y", "z", "]", "form", ".", "units", ":", "units", "of", "the", "data", ".", "ref_frame", ":", "reference", "frame", "of", "the", "simulation", ".", "0", ":", "NED", "1", ":", "virtual", "inertial", "Returns", ":", "data", ":", "nx3", "numpy", "array", "after", "convertion", ".", "units", ":", "units", "of", "converted", "dta" ]
def __convert_pos(self, data, units, ref_frame): ''' Convert position data into a proper form. For example, if units are [deg deg m] or [rad rad m] and ref_frame is 1, convertion is needed. LLA form position will be converted to [x y z] form. Vice Versa. Args: data: nx3 numpy array, can be in [Lat Lon Alt] or [x y z] form. units: units of the data. ref_frame: reference frame of the simulation. 0:NED, 1:virtual inertial Returns: data: nx3 numpy array after convertion. units: units of converted dta ''' if ref_frame == 1: # deg to rad if units == ['deg', 'deg', 'm']: units = ['rad', 'rad', 'm'] data[:, 0] = data[:, 0] * attitude.D2R data[:, 1] = data[:, 1] * attitude.D2R # lla2ned if units == ['rad', 'rad', 'm']: units = ['m', 'm', 'm'] # relative motion in ECEF data = geoparams.lla2ecef_batch(data) ini_pos_ecef = data[0, :] # initial ECEF position data = data - ini_pos_ecef # relative motion in ECEF to NED, NED defined by first LLA c_ne = attitude.ecef_to_ned(data[0, 0], data[0, 1]) data = data.dot(c_ne.T) data = data + ini_pos_ecef elif ref_frame == 0: # ned2lla or ecef2lla # Because if the data are in NED or ECEF is unknown, this is not supported. if units == ['m', 'm', 'm']: units = ['rad', 'rad', 'm'] print("Unsupported position conversion from xyz to LLA.") return data, units
[ "def", "__convert_pos", "(", "self", ",", "data", ",", "units", ",", "ref_frame", ")", ":", "if", "ref_frame", "==", "1", ":", "# deg to rad", "if", "units", "==", "[", "'deg'", ",", "'deg'", ",", "'m'", "]", ":", "units", "=", "[", "'rad'", ",", "'rad'", ",", "'m'", "]", "data", "[", ":", ",", "0", "]", "=", "data", "[", ":", ",", "0", "]", "*", "attitude", ".", "D2R", "data", "[", ":", ",", "1", "]", "=", "data", "[", ":", ",", "1", "]", "*", "attitude", ".", "D2R", "# lla2ned", "if", "units", "==", "[", "'rad'", ",", "'rad'", ",", "'m'", "]", ":", "units", "=", "[", "'m'", ",", "'m'", ",", "'m'", "]", "# relative motion in ECEF", "data", "=", "geoparams", ".", "lla2ecef_batch", "(", "data", ")", "ini_pos_ecef", "=", "data", "[", "0", ",", ":", "]", "# initial ECEF position", "data", "=", "data", "-", "ini_pos_ecef", "# relative motion in ECEF to NED, NED defined by first LLA", "c_ne", "=", "attitude", ".", "ecef_to_ned", "(", "data", "[", "0", ",", "0", "]", ",", "data", "[", "0", ",", "1", "]", ")", "data", "=", "data", ".", "dot", "(", "c_ne", ".", "T", ")", "data", "=", "data", "+", "ini_pos_ecef", "elif", "ref_frame", "==", "0", ":", "# ned2lla or ecef2lla", "# Because if the data are in NED or ECEF is unknown, this is not supported.", "if", "units", "==", "[", "'m'", ",", "'m'", ",", "'m'", "]", ":", "units", "=", "[", "'rad'", ",", "'rad'", ",", "'m'", "]", "print", "(", "\"Unsupported position conversion from xyz to LLA.\"", ")", "return", "data", ",", "units" ]
https://github.com/Aceinna/gnss-ins-sim/blob/e8a0495af21c12628cdf106a7c54a0fc7bd0b12a/gnss_ins_sim/sim/ins_sim.py#L796-L832
home-assistant/core
265ebd17a3f17ed8dc1e9bdede03ac8e323f1ab1
homeassistant/components/mfi/switch.py
python
MfiSwitch.turn_off
(self, **kwargs)
Turn the switch off.
Turn the switch off.
[ "Turn", "the", "switch", "off", "." ]
def turn_off(self, **kwargs): """Turn the switch off.""" self._port.control(False) self._target_state = False
[ "def", "turn_off", "(", "self", ",", "*", "*", "kwargs", ")", ":", "self", ".", "_port", ".", "control", "(", "False", ")", "self", ".", "_target_state", "=", "False" ]
https://github.com/home-assistant/core/blob/265ebd17a3f17ed8dc1e9bdede03ac8e323f1ab1/homeassistant/components/mfi/switch.py#L109-L112
dulwich/dulwich
1f66817d712e3563ce1ff53b1218491a2eae39da
dulwich/pack.py
python
Pack.data
(self)
return self._data
The pack data object being used.
The pack data object being used.
[ "The", "pack", "data", "object", "being", "used", "." ]
def data(self): """The pack data object being used.""" if self._data is None: self._data = self._data_load() self._data.pack = self self.check_length_and_checksum() return self._data
[ "def", "data", "(", "self", ")", ":", "if", "self", ".", "_data", "is", "None", ":", "self", ".", "_data", "=", "self", ".", "_data_load", "(", ")", "self", ".", "_data", ".", "pack", "=", "self", "self", ".", "check_length_and_checksum", "(", ")", "return", "self", ".", "_data" ]
https://github.com/dulwich/dulwich/blob/1f66817d712e3563ce1ff53b1218491a2eae39da/dulwich/pack.py#L2004-L2010
stepjam/PyRep
d778d5d4ffa3be366d4e699f6e2941553fd47ecc
pyrep/robots/robot_component.py
python
RobotComponent.set_motor_locked_at_zero_velocity
(self, value: bool)
Sets if motor is locked when target velocity is zero for all joints. When enabled in velocity mode and its target velocity is zero, then the joint is locked in place. :param value: If the motors should be locked at zero velocity.
Sets if motor is locked when target velocity is zero for all joints.
[ "Sets", "if", "motor", "is", "locked", "when", "target", "velocity", "is", "zero", "for", "all", "joints", "." ]
def set_motor_locked_at_zero_velocity(self, value: bool) -> None: """Sets if motor is locked when target velocity is zero for all joints. When enabled in velocity mode and its target velocity is zero, then the joint is locked in place. :param value: If the motors should be locked at zero velocity. """ [j.set_motor_locked_at_zero_velocity(value) # type: ignore for j in self.joints]
[ "def", "set_motor_locked_at_zero_velocity", "(", "self", ",", "value", ":", "bool", ")", "->", "None", ":", "[", "j", ".", "set_motor_locked_at_zero_velocity", "(", "value", ")", "# type: ignore", "for", "j", "in", "self", ".", "joints", "]" ]
https://github.com/stepjam/PyRep/blob/d778d5d4ffa3be366d4e699f6e2941553fd47ecc/pyrep/robots/robot_component.py#L233-L242
cokelaer/bioservices
b491e8d71e285f9006e0af0a56f0cc5128cb86fa
src/bioservices/services.py
python
Service.on_web
(self, url)
Open a URL into a browser
Open a URL into a browser
[ "Open", "a", "URL", "into", "a", "browser" ]
def on_web(self, url): """Open a URL into a browser""" import webbrowser webbrowser.open(url)
[ "def", "on_web", "(", "self", ",", "url", ")", ":", "import", "webbrowser", "webbrowser", ".", "open", "(", "url", ")" ]
https://github.com/cokelaer/bioservices/blob/b491e8d71e285f9006e0af0a56f0cc5128cb86fa/src/bioservices/services.py#L235-L239
scikit-learn/scikit-learn
1d1aadd0711b87d2a11c80aad15df6f8cf156712
sklearn/feature_selection/_from_model.py
python
SelectFromModel.fit
(self, X, y=None, **fit_params)
return self
Fit the SelectFromModel meta-transformer. Parameters ---------- X : array-like of shape (n_samples, n_features) The training input samples. y : array-like of shape (n_samples,), default=None The target values (integers that correspond to classes in classification, real numbers in regression). **fit_params : dict Other estimator specific parameters. Returns ------- self : object Fitted estimator.
Fit the SelectFromModel meta-transformer.
[ "Fit", "the", "SelectFromModel", "meta", "-", "transformer", "." ]
def fit(self, X, y=None, **fit_params): """Fit the SelectFromModel meta-transformer. Parameters ---------- X : array-like of shape (n_samples, n_features) The training input samples. y : array-like of shape (n_samples,), default=None The target values (integers that correspond to classes in classification, real numbers in regression). **fit_params : dict Other estimator specific parameters. Returns ------- self : object Fitted estimator. """ if self.max_features is not None: if not isinstance(self.max_features, numbers.Integral): raise TypeError( "'max_features' should be an integer between" " 0 and {} features. Got {!r} instead.".format( X.shape[1], self.max_features ) ) elif self.max_features < 0 or self.max_features > X.shape[1]: raise ValueError( "'max_features' should be 0 and {} features.Got {} instead.".format( X.shape[1], self.max_features ) ) if self.prefit: raise NotFittedError("Since 'prefit=True', call transform directly") self.estimator_ = clone(self.estimator) self.estimator_.fit(X, y, **fit_params) if hasattr(self.estimator_, "feature_names_in_"): self.feature_names_in_ = self.estimator_.feature_names_in_ else: self._check_feature_names(X, reset=True) return self
[ "def", "fit", "(", "self", ",", "X", ",", "y", "=", "None", ",", "*", "*", "fit_params", ")", ":", "if", "self", ".", "max_features", "is", "not", "None", ":", "if", "not", "isinstance", "(", "self", ".", "max_features", ",", "numbers", ".", "Integral", ")", ":", "raise", "TypeError", "(", "\"'max_features' should be an integer between\"", "\" 0 and {} features. Got {!r} instead.\"", ".", "format", "(", "X", ".", "shape", "[", "1", "]", ",", "self", ".", "max_features", ")", ")", "elif", "self", ".", "max_features", "<", "0", "or", "self", ".", "max_features", ">", "X", ".", "shape", "[", "1", "]", ":", "raise", "ValueError", "(", "\"'max_features' should be 0 and {} features.Got {} instead.\"", ".", "format", "(", "X", ".", "shape", "[", "1", "]", ",", "self", ".", "max_features", ")", ")", "if", "self", ".", "prefit", ":", "raise", "NotFittedError", "(", "\"Since 'prefit=True', call transform directly\"", ")", "self", ".", "estimator_", "=", "clone", "(", "self", ".", "estimator", ")", "self", ".", "estimator_", ".", "fit", "(", "X", ",", "y", ",", "*", "*", "fit_params", ")", "if", "hasattr", "(", "self", ".", "estimator_", ",", "\"feature_names_in_\"", ")", ":", "self", ".", "feature_names_in_", "=", "self", ".", "estimator_", ".", "feature_names_in_", "else", ":", "self", ".", "_check_feature_names", "(", "X", ",", "reset", "=", "True", ")", "return", "self" ]
https://github.com/scikit-learn/scikit-learn/blob/1d1aadd0711b87d2a11c80aad15df6f8cf156712/sklearn/feature_selection/_from_model.py#L229-L274
mchristopher/PokemonGo-DesktopMap
ec37575f2776ee7d64456e2a1f6b6b78830b4fe0
app/pylibs/osx64/Cryptodome/Hash/SHA3_224.py
python
SHA3_224_Hash.update
(self, data)
return self
Continue hashing of a message by consuming the next chunk of data. Repeated calls are equivalent to a single call with the concatenation of all the arguments. In other words: >>> m.update(a); m.update(b) is equivalent to: >>> m.update(a+b) :Parameters: data : byte string The next chunk of the message being hashed.
Continue hashing of a message by consuming the next chunk of data.
[ "Continue", "hashing", "of", "a", "message", "by", "consuming", "the", "next", "chunk", "of", "data", "." ]
def update(self, data): """Continue hashing of a message by consuming the next chunk of data. Repeated calls are equivalent to a single call with the concatenation of all the arguments. In other words: >>> m.update(a); m.update(b) is equivalent to: >>> m.update(a+b) :Parameters: data : byte string The next chunk of the message being hashed. """ if self._digest_done and not self._update_after_digest: raise TypeError("You can only call 'digest' or 'hexdigest' on this object") expect_byte_string(data) result = _raw_keccak_lib.keccak_absorb(self._state.get(), data, c_size_t(len(data))) if result: raise ValueError("Error %d while updating SHA-3/224" % result) return self
[ "def", "update", "(", "self", ",", "data", ")", ":", "if", "self", ".", "_digest_done", "and", "not", "self", ".", "_update_after_digest", ":", "raise", "TypeError", "(", "\"You can only call 'digest' or 'hexdigest' on this object\"", ")", "expect_byte_string", "(", "data", ")", "result", "=", "_raw_keccak_lib", ".", "keccak_absorb", "(", "self", ".", "_state", ".", "get", "(", ")", ",", "data", ",", "c_size_t", "(", "len", "(", "data", ")", ")", ")", "if", "result", ":", "raise", "ValueError", "(", "\"Error %d while updating SHA-3/224\"", "%", "result", ")", "return", "self" ]
https://github.com/mchristopher/PokemonGo-DesktopMap/blob/ec37575f2776ee7d64456e2a1f6b6b78830b4fe0/app/pylibs/osx64/Cryptodome/Hash/SHA3_224.py#L73-L100
avocado-framework/avocado
1f9b3192e8ba47d029c33fe21266bd113d17811f
avocado/utils/asset.py
python
Asset.name_scheme
(self)
This property will return the scheme part of the name if is an URL. Otherwise, will return None.
This property will return the scheme part of the name if is an URL.
[ "This", "property", "will", "return", "the", "scheme", "part", "of", "the", "name", "if", "is", "an", "URL", "." ]
def name_scheme(self): """This property will return the scheme part of the name if is an URL. Otherwise, will return None. """ parsed = self.parsed_name if parsed: return parsed.scheme
[ "def", "name_scheme", "(", "self", ")", ":", "parsed", "=", "self", ".", "parsed_name", "if", "parsed", ":", "return", "parsed", ".", "scheme" ]
https://github.com/avocado-framework/avocado/blob/1f9b3192e8ba47d029c33fe21266bd113d17811f/avocado/utils/asset.py#L606-L613
theotherp/nzbhydra
4b03d7f769384b97dfc60dade4806c0fc987514e
libs/cffi/api.py
python
FFI.set_unicode
(self, enabled_flag)
Windows: if 'enabled_flag' is True, enable the UNICODE and _UNICODE defines in C, and declare the types like TCHAR and LPTCSTR to be (pointers to) wchar_t. If 'enabled_flag' is False, declare these types to be (pointers to) plain 8-bit characters. This is mostly for backward compatibility; you usually want True.
Windows: if 'enabled_flag' is True, enable the UNICODE and _UNICODE defines in C, and declare the types like TCHAR and LPTCSTR to be (pointers to) wchar_t. If 'enabled_flag' is False, declare these types to be (pointers to) plain 8-bit characters. This is mostly for backward compatibility; you usually want True.
[ "Windows", ":", "if", "enabled_flag", "is", "True", "enable", "the", "UNICODE", "and", "_UNICODE", "defines", "in", "C", "and", "declare", "the", "types", "like", "TCHAR", "and", "LPTCSTR", "to", "be", "(", "pointers", "to", ")", "wchar_t", ".", "If", "enabled_flag", "is", "False", "declare", "these", "types", "to", "be", "(", "pointers", "to", ")", "plain", "8", "-", "bit", "characters", ".", "This", "is", "mostly", "for", "backward", "compatibility", ";", "you", "usually", "want", "True", "." ]
def set_unicode(self, enabled_flag): """Windows: if 'enabled_flag' is True, enable the UNICODE and _UNICODE defines in C, and declare the types like TCHAR and LPTCSTR to be (pointers to) wchar_t. If 'enabled_flag' is False, declare these types to be (pointers to) plain 8-bit characters. This is mostly for backward compatibility; you usually want True. """ if self._windows_unicode is not None: raise ValueError("set_unicode() can only be called once") enabled_flag = bool(enabled_flag) if enabled_flag: self.cdef("typedef wchar_t TBYTE;" "typedef wchar_t TCHAR;" "typedef const wchar_t *LPCTSTR;" "typedef const wchar_t *PCTSTR;" "typedef wchar_t *LPTSTR;" "typedef wchar_t *PTSTR;" "typedef TBYTE *PTBYTE;" "typedef TCHAR *PTCHAR;") else: self.cdef("typedef char TBYTE;" "typedef char TCHAR;" "typedef const char *LPCTSTR;" "typedef const char *PCTSTR;" "typedef char *LPTSTR;" "typedef char *PTSTR;" "typedef TBYTE *PTBYTE;" "typedef TCHAR *PTCHAR;") self._windows_unicode = enabled_flag
[ "def", "set_unicode", "(", "self", ",", "enabled_flag", ")", ":", "if", "self", ".", "_windows_unicode", "is", "not", "None", ":", "raise", "ValueError", "(", "\"set_unicode() can only be called once\"", ")", "enabled_flag", "=", "bool", "(", "enabled_flag", ")", "if", "enabled_flag", ":", "self", ".", "cdef", "(", "\"typedef wchar_t TBYTE;\"", "\"typedef wchar_t TCHAR;\"", "\"typedef const wchar_t *LPCTSTR;\"", "\"typedef const wchar_t *PCTSTR;\"", "\"typedef wchar_t *LPTSTR;\"", "\"typedef wchar_t *PTSTR;\"", "\"typedef TBYTE *PTBYTE;\"", "\"typedef TCHAR *PTCHAR;\"", ")", "else", ":", "self", ".", "cdef", "(", "\"typedef char TBYTE;\"", "\"typedef char TCHAR;\"", "\"typedef const char *LPCTSTR;\"", "\"typedef const char *PCTSTR;\"", "\"typedef char *LPTSTR;\"", "\"typedef char *PTSTR;\"", "\"typedef TBYTE *PTBYTE;\"", "\"typedef TCHAR *PTCHAR;\"", ")", "self", ".", "_windows_unicode", "=", "enabled_flag" ]
https://github.com/theotherp/nzbhydra/blob/4b03d7f769384b97dfc60dade4806c0fc987514e/libs/cffi/api.py#L495-L523
bendmorris/static-python
2e0f8c4d7ed5b359dc7d8a75b6fb37e6b6c5c473
Lib/tkinter/__init__.py
python
Toplevel.__init__
(self, master=None, cnf={}, **kw)
Construct a toplevel widget with the parent MASTER. Valid resource names: background, bd, bg, borderwidth, class, colormap, container, cursor, height, highlightbackground, highlightcolor, highlightthickness, menu, relief, screen, takefocus, use, visual, width.
Construct a toplevel widget with the parent MASTER.
[ "Construct", "a", "toplevel", "widget", "with", "the", "parent", "MASTER", "." ]
def __init__(self, master=None, cnf={}, **kw): """Construct a toplevel widget with the parent MASTER. Valid resource names: background, bd, bg, borderwidth, class, colormap, container, cursor, height, highlightbackground, highlightcolor, highlightthickness, menu, relief, screen, takefocus, use, visual, width.""" if kw: cnf = _cnfmerge((cnf, kw)) extra = () for wmkey in ['screen', 'class_', 'class', 'visual', 'colormap']: if wmkey in cnf: val = cnf[wmkey] # TBD: a hack needed because some keys # are not valid as keyword arguments if wmkey[-1] == '_': opt = '-'+wmkey[:-1] else: opt = '-'+wmkey extra = extra + (opt, val) del cnf[wmkey] BaseWidget.__init__(self, master, 'toplevel', cnf, {}, extra) root = self._root() self.iconname(root.iconname()) self.title(root.title()) self.protocol("WM_DELETE_WINDOW", self.destroy)
[ "def", "__init__", "(", "self", ",", "master", "=", "None", ",", "cnf", "=", "{", "}", ",", "*", "*", "kw", ")", ":", "if", "kw", ":", "cnf", "=", "_cnfmerge", "(", "(", "cnf", ",", "kw", ")", ")", "extra", "=", "(", ")", "for", "wmkey", "in", "[", "'screen'", ",", "'class_'", ",", "'class'", ",", "'visual'", ",", "'colormap'", "]", ":", "if", "wmkey", "in", "cnf", ":", "val", "=", "cnf", "[", "wmkey", "]", "# TBD: a hack needed because some keys", "# are not valid as keyword arguments", "if", "wmkey", "[", "-", "1", "]", "==", "'_'", ":", "opt", "=", "'-'", "+", "wmkey", "[", ":", "-", "1", "]", "else", ":", "opt", "=", "'-'", "+", "wmkey", "extra", "=", "extra", "+", "(", "opt", ",", "val", ")", "del", "cnf", "[", "wmkey", "]", "BaseWidget", ".", "__init__", "(", "self", ",", "master", ",", "'toplevel'", ",", "cnf", ",", "{", "}", ",", "extra", ")", "root", "=", "self", ".", "_root", "(", ")", "self", ".", "iconname", "(", "root", ".", "iconname", "(", ")", ")", "self", ".", "title", "(", "root", ".", "title", "(", ")", ")", "self", ".", "protocol", "(", "\"WM_DELETE_WINDOW\"", ",", "self", ".", "destroy", ")" ]
https://github.com/bendmorris/static-python/blob/2e0f8c4d7ed5b359dc7d8a75b6fb37e6b6c5c473/Lib/tkinter/__init__.py#L2098-L2122
mdiazcl/fuzzbunch-debian
2b76c2249ade83a389ae3badb12a1bd09901fd2c
windows/Resources/Python/Override/Lib/multiprocessing/util.py
python
Finalize.still_active
(self)
return self._key in _finalizer_registry
Return whether this finalizer is still waiting to invoke callback
Return whether this finalizer is still waiting to invoke callback
[ "Return", "whether", "this", "finalizer", "is", "still", "waiting", "to", "invoke", "callback" ]
def still_active(self): ''' Return whether this finalizer is still waiting to invoke callback ''' return self._key in _finalizer_registry
[ "def", "still_active", "(", "self", ")", ":", "return", "self", ".", "_key", "in", "_finalizer_registry" ]
https://github.com/mdiazcl/fuzzbunch-debian/blob/2b76c2249ade83a389ae3badb12a1bd09901fd2c/windows/Resources/Python/Override/Lib/multiprocessing/util.py#L217-L221
lazylibrarian/LazyLibrarian
ae3c14e9db9328ce81765e094ab2a14ed7155624
lib/requests/adapters.py
python
BaseAdapter.send
(self, request, stream=False, timeout=None, verify=True, cert=None, proxies=None)
Sends PreparedRequest object. Returns Response object. :param request: The :class:`PreparedRequest <PreparedRequest>` being sent. :param stream: (optional) Whether to stream the request content. :param timeout: (optional) How long to wait for the server to send data before giving up, as a float, or a :ref:`(connect timeout, read timeout) <timeouts>` tuple. :type timeout: float or tuple :param verify: (optional) Whether to verify SSL certificates. :param cert: (optional) Any user-provided SSL certificate to be trusted. :param proxies: (optional) The proxies dictionary to apply to the request.
Sends PreparedRequest object. Returns Response object.
[ "Sends", "PreparedRequest", "object", ".", "Returns", "Response", "object", "." ]
def send(self, request, stream=False, timeout=None, verify=True, cert=None, proxies=None): """Sends PreparedRequest object. Returns Response object. :param request: The :class:`PreparedRequest <PreparedRequest>` being sent. :param stream: (optional) Whether to stream the request content. :param timeout: (optional) How long to wait for the server to send data before giving up, as a float, or a :ref:`(connect timeout, read timeout) <timeouts>` tuple. :type timeout: float or tuple :param verify: (optional) Whether to verify SSL certificates. :param cert: (optional) Any user-provided SSL certificate to be trusted. :param proxies: (optional) The proxies dictionary to apply to the request. """ raise NotImplementedError
[ "def", "send", "(", "self", ",", "request", ",", "stream", "=", "False", ",", "timeout", "=", "None", ",", "verify", "=", "True", ",", "cert", "=", "None", ",", "proxies", "=", "None", ")", ":", "raise", "NotImplementedError" ]
https://github.com/lazylibrarian/LazyLibrarian/blob/ae3c14e9db9328ce81765e094ab2a14ed7155624/lib/requests/adapters.py#L57-L71
mrJean1/PyGeodesy
7da5ca71aa3edb7bc49e219e0b8190686e1a7965
pygeodesy/deprecated/__init__.py
python
scalar
(value, low=EPS, high=1.0, name=_scalar_, Error=ValueError)
return C_(value, name=name, Error=Error, low=low, high=high)
DEPRECATED, use class L{Number_} or L{Scalar_}. @return: New value (C{float} or C{int} for C{int} B{C{low}}). @raise Error: Invalid B{C{value}}.
DEPRECATED, use class L{Number_} or L{Scalar_}.
[ "DEPRECATED", "use", "class", "L", "{", "Number_", "}", "or", "L", "{", "Scalar_", "}", "." ]
def scalar(value, low=EPS, high=1.0, name=_scalar_, Error=ValueError): # PYCHOK no cover '''DEPRECATED, use class L{Number_} or L{Scalar_}. @return: New value (C{float} or C{int} for C{int} B{C{low}}). @raise Error: Invalid B{C{value}}. ''' from pygeodesy.basics import isint # _MODS.basics.isint C_ = Number_ if isint(low) else Scalar_ return C_(value, name=name, Error=Error, low=low, high=high)
[ "def", "scalar", "(", "value", ",", "low", "=", "EPS", ",", "high", "=", "1.0", ",", "name", "=", "_scalar_", ",", "Error", "=", "ValueError", ")", ":", "# PYCHOK no cover", "from", "pygeodesy", ".", "basics", "import", "isint", "# _MODS.basics.isint", "C_", "=", "Number_", "if", "isint", "(", "low", ")", "else", "Scalar_", "return", "C_", "(", "value", ",", "name", "=", "name", ",", "Error", "=", "Error", ",", "low", "=", "low", ",", "high", "=", "high", ")" ]
https://github.com/mrJean1/PyGeodesy/blob/7da5ca71aa3edb7bc49e219e0b8190686e1a7965/pygeodesy/deprecated/__init__.py#L365-L374
onnx/sklearn-onnx
8e19d19b8a9bcae7f17d5b7cc2514cf6b89f8199
skl2onnx/common/_onnx_optimisation_common.py
python
_make_node
(op_type, inputs, outputs, name=None, doc_string=None, domain=None, attributes=None)
return node
Constructs a NodeProto. :param op_type: (string): The name of the operator to construct :param inputs: list of input names :param outputs: list of output names :param name: optional unique identifier for NodeProto :param doc_string: optional documentation string for NodeProto :param domain: optional domain for NodeProto. If it's None, we will just use default domain (which is empty) :param attributes: the attributes of the node. The acceptable values are documented in :func:`make_attribute`. :return: node
Constructs a NodeProto.
[ "Constructs", "a", "NodeProto", "." ]
def _make_node(op_type, inputs, outputs, name=None, doc_string=None, domain=None, attributes=None): """ Constructs a NodeProto. :param op_type: (string): The name of the operator to construct :param inputs: list of input names :param outputs: list of output names :param name: optional unique identifier for NodeProto :param doc_string: optional documentation string for NodeProto :param domain: optional domain for NodeProto. If it's None, we will just use default domain (which is empty) :param attributes: the attributes of the node. The acceptable values are documented in :func:`make_attribute`. :return: node """ node = NodeProto() node.op_type = op_type node.input.extend(inputs) node.output.extend(outputs) if name: node.name = name if doc_string: node.doc_string = doc_string if domain is not None: node.domain = domain if isinstance(attributes, dict): if len(attributes) > 0: node.attribute.extend( make_attribute(key, value) for key, value in sorted(attributes.items())) elif attributes: for att in attributes: node.attribute.extend([att]) return node
[ "def", "_make_node", "(", "op_type", ",", "inputs", ",", "outputs", ",", "name", "=", "None", ",", "doc_string", "=", "None", ",", "domain", "=", "None", ",", "attributes", "=", "None", ")", ":", "node", "=", "NodeProto", "(", ")", "node", ".", "op_type", "=", "op_type", "node", ".", "input", ".", "extend", "(", "inputs", ")", "node", ".", "output", ".", "extend", "(", "outputs", ")", "if", "name", ":", "node", ".", "name", "=", "name", "if", "doc_string", ":", "node", ".", "doc_string", "=", "doc_string", "if", "domain", "is", "not", "None", ":", "node", ".", "domain", "=", "domain", "if", "isinstance", "(", "attributes", ",", "dict", ")", ":", "if", "len", "(", "attributes", ")", ">", "0", ":", "node", ".", "attribute", ".", "extend", "(", "make_attribute", "(", "key", ",", "value", ")", "for", "key", ",", "value", "in", "sorted", "(", "attributes", ".", "items", "(", ")", ")", ")", "elif", "attributes", ":", "for", "att", "in", "attributes", ":", "node", ".", "attribute", ".", "extend", "(", "[", "att", "]", ")", "return", "node" ]
https://github.com/onnx/sklearn-onnx/blob/8e19d19b8a9bcae7f17d5b7cc2514cf6b89f8199/skl2onnx/common/_onnx_optimisation_common.py#L78-L113
pmaupin/pdfrw
6c892160e7e976b243db0c12c3e56ed8c78afc5a
examples/rl1/platypus_pdf_template.py
python
MyDocTemplate.afterFlowable
(self, flowable)
Adds Heading1 to table of contents
Adds Heading1 to table of contents
[ "Adds", "Heading1", "to", "table", "of", "contents" ]
def afterFlowable(self, flowable): """Adds Heading1 to table of contents""" if flowable.__class__.__name__ == 'Paragraph': style = flowable.style.name text = flowable.getPlainText() key = '%s' % self.seq.nextf('toc') if style == 'Heading1': self.canv.bookmarkPage(key) self.notify('TOCEntry', [1, text, self.page, key])
[ "def", "afterFlowable", "(", "self", ",", "flowable", ")", ":", "if", "flowable", ".", "__class__", ".", "__name__", "==", "'Paragraph'", ":", "style", "=", "flowable", ".", "style", ".", "name", "text", "=", "flowable", ".", "getPlainText", "(", ")", "key", "=", "'%s'", "%", "self", ".", "seq", ".", "nextf", "(", "'toc'", ")", "if", "style", "==", "'Heading1'", ":", "self", ".", "canv", ".", "bookmarkPage", "(", "key", ")", "self", ".", "notify", "(", "'TOCEntry'", ",", "[", "1", ",", "text", ",", "self", ".", "page", ",", "key", "]", ")" ]
https://github.com/pmaupin/pdfrw/blob/6c892160e7e976b243db0c12c3e56ed8c78afc5a/examples/rl1/platypus_pdf_template.py#L65-L73
SINGROUP/dscribe
79a13939d66bdc858865dc050b91be9debd3c06a
dscribe/descriptors/lmbtr.py
python
LMBTR.create
( self, system, positions=None, n_jobs=1, only_physical_cores=False, verbose=False )
return output
Return the LMBTR output for the given systems and given positions. Args: system (:class:`ase.Atoms` or list of :class:`ase.Atoms`): One or many atomic structures. positions (list): Positions where to calculate LMBTR. Can be provided as cartesian positions or atomic indices. If no positions are defined, the LMBTR output will be created for all atoms in the system. When calculating LMBTR for multiple systems, provide the positions as a list for each system. n_jobs (int): Number of parallel jobs to instantiate. Parallellizes the calculation across samples. Defaults to serial calculation with n_jobs=1. If a negative number is given, the used cpus will be calculated with, n_cpus + n_jobs, where n_cpus is the amount of CPUs as reported by the OS. With only_physical_cores you can control which types of CPUs are counted in n_cpus. only_physical_cores (bool): If a negative n_jobs is given, determines which types of CPUs are used in calculating the number of jobs. If set to False (default), also virtual CPUs are counted. If set to True, only physical CPUs are counted. verbose(bool): Controls whether to print the progress of each job into to the console. Returns: np.ndarray | scipy.sparse.csr_matrix: The LMBTR output for the given systems and positions. The return type depends on the 'sparse'-attribute. The first dimension is determined by the amount of positions and systems and the second dimension is determined by the get_number_of_features()-function.
Return the LMBTR output for the given systems and given positions.
[ "Return", "the", "LMBTR", "output", "for", "the", "given", "systems", "and", "given", "positions", "." ]
def create( self, system, positions=None, n_jobs=1, only_physical_cores=False, verbose=False ): """Return the LMBTR output for the given systems and given positions. Args: system (:class:`ase.Atoms` or list of :class:`ase.Atoms`): One or many atomic structures. positions (list): Positions where to calculate LMBTR. Can be provided as cartesian positions or atomic indices. If no positions are defined, the LMBTR output will be created for all atoms in the system. When calculating LMBTR for multiple systems, provide the positions as a list for each system. n_jobs (int): Number of parallel jobs to instantiate. Parallellizes the calculation across samples. Defaults to serial calculation with n_jobs=1. If a negative number is given, the used cpus will be calculated with, n_cpus + n_jobs, where n_cpus is the amount of CPUs as reported by the OS. With only_physical_cores you can control which types of CPUs are counted in n_cpus. only_physical_cores (bool): If a negative n_jobs is given, determines which types of CPUs are used in calculating the number of jobs. If set to False (default), also virtual CPUs are counted. If set to True, only physical CPUs are counted. verbose(bool): Controls whether to print the progress of each job into to the console. Returns: np.ndarray | scipy.sparse.csr_matrix: The LMBTR output for the given systems and positions. The return type depends on the 'sparse'-attribute. The first dimension is determined by the amount of positions and systems and the second dimension is determined by the get_number_of_features()-function. """ # Combine input arguments if isinstance(system, Atoms): system = [system] positions = [positions] n_samples = len(system) if positions is None: inp = [(i_sys,) for i_sys in system] else: n_pos = len(positions) if n_pos != n_samples: raise ValueError( "The given number of positions does not match the given" "number of systems." ) inp = list(zip(system, positions)) # Determine if the outputs have a fixed size n_features = self.get_number_of_features() static_size = None if positions is None: n_centers = len(inp[0][0]) else: first_sample, first_pos = inp[0] if first_pos is not None: n_centers = len(first_pos) else: n_centers = len(first_sample) def is_static(): for i_job in inp: if positions is None: if len(i_job[0]) != n_centers: return False else: if i_job[1] is not None: if len(i_job[1]) != n_centers: return False else: if len(i_job[0]) != n_centers: return False return True if is_static(): static_size = [n_centers, n_features] # Create in parallel output = self.create_parallel( inp, self.create_single, n_jobs, static_size, only_physical_cores, verbose=verbose, ) return output
[ "def", "create", "(", "self", ",", "system", ",", "positions", "=", "None", ",", "n_jobs", "=", "1", ",", "only_physical_cores", "=", "False", ",", "verbose", "=", "False", ")", ":", "# Combine input arguments", "if", "isinstance", "(", "system", ",", "Atoms", ")", ":", "system", "=", "[", "system", "]", "positions", "=", "[", "positions", "]", "n_samples", "=", "len", "(", "system", ")", "if", "positions", "is", "None", ":", "inp", "=", "[", "(", "i_sys", ",", ")", "for", "i_sys", "in", "system", "]", "else", ":", "n_pos", "=", "len", "(", "positions", ")", "if", "n_pos", "!=", "n_samples", ":", "raise", "ValueError", "(", "\"The given number of positions does not match the given\"", "\"number of systems.\"", ")", "inp", "=", "list", "(", "zip", "(", "system", ",", "positions", ")", ")", "# Determine if the outputs have a fixed size", "n_features", "=", "self", ".", "get_number_of_features", "(", ")", "static_size", "=", "None", "if", "positions", "is", "None", ":", "n_centers", "=", "len", "(", "inp", "[", "0", "]", "[", "0", "]", ")", "else", ":", "first_sample", ",", "first_pos", "=", "inp", "[", "0", "]", "if", "first_pos", "is", "not", "None", ":", "n_centers", "=", "len", "(", "first_pos", ")", "else", ":", "n_centers", "=", "len", "(", "first_sample", ")", "def", "is_static", "(", ")", ":", "for", "i_job", "in", "inp", ":", "if", "positions", "is", "None", ":", "if", "len", "(", "i_job", "[", "0", "]", ")", "!=", "n_centers", ":", "return", "False", "else", ":", "if", "i_job", "[", "1", "]", "is", "not", "None", ":", "if", "len", "(", "i_job", "[", "1", "]", ")", "!=", "n_centers", ":", "return", "False", "else", ":", "if", "len", "(", "i_job", "[", "0", "]", ")", "!=", "n_centers", ":", "return", "False", "return", "True", "if", "is_static", "(", ")", ":", "static_size", "=", "[", "n_centers", ",", "n_features", "]", "# Create in parallel", "output", "=", "self", ".", "create_parallel", "(", "inp", ",", "self", ".", "create_single", ",", "n_jobs", ",", "static_size", ",", "only_physical_cores", ",", "verbose", "=", "verbose", ",", ")", "return", "output" ]
https://github.com/SINGROUP/dscribe/blob/79a13939d66bdc858865dc050b91be9debd3c06a/dscribe/descriptors/lmbtr.py#L207-L295
deeptools/deepTools
ac42d29c298c026aa0c53c9db2553087ebc86b97
deeptools/parserCommon.py
python
gtf_options
(suppress=False)
return parser
Arguments present whenever a BED/GTF file can be used
Arguments present whenever a BED/GTF file can be used
[ "Arguments", "present", "whenever", "a", "BED", "/", "GTF", "file", "can", "be", "used" ]
def gtf_options(suppress=False): """ Arguments present whenever a BED/GTF file can be used """ if suppress: parser = argparse.ArgumentParser(add_help=False) group = parser else: parser = argparse.ArgumentParser(add_help=False) group = parser.add_argument_group('GTF/BED12 options') if suppress: help = argparse.SUPPRESS else: help = 'When either a BED12 or GTF file are used to provide \ regions, perform the computation on the merged exons, \ rather than using the genomic interval defined by the \ 5-prime and 3-prime most transcript bound (i.e., columns \ 2 and 3 of a BED file). If a BED3 or BED6 file is used \ as input, then columns 2 and 3 are used as an exon. (Default: %(default)s)' group.add_argument('--metagene', help=help, action='store_true', dest='keepExons') if suppress is False: help = 'When a GTF file is used to provide regions, only \ entries with this value as their feature (column 3) \ will be processed as transcripts. (Default: %(default)s)' group.add_argument('--transcriptID', help=help, default='transcript') if suppress is False: help = 'When a GTF file is used to provide regions, only \ entries with this value as their feature (column 3) \ will be processed as exons. CDS would be another common \ value for this. (Default: %(default)s)' group.add_argument('--exonID', help=help, default='exon') if suppress is False: help = 'Each region has an ID (e.g., ACTB) assigned to it, \ which for BED files is either column 4 (if it exists) \ or the interval bounds. For GTF files this is instead \ stored in the last column as a key:value pair (e.g., as \ \'transcript_id "ACTB"\', for a key of transcript_id \ and a value of ACTB). In some cases it can be \ convenient to use a different identifier. To do so, set \ this to the desired key. (Default: %(default)s)' group.add_argument('--transcript_id_designator', help=help, default='transcript_id') return parser
[ "def", "gtf_options", "(", "suppress", "=", "False", ")", ":", "if", "suppress", ":", "parser", "=", "argparse", ".", "ArgumentParser", "(", "add_help", "=", "False", ")", "group", "=", "parser", "else", ":", "parser", "=", "argparse", ".", "ArgumentParser", "(", "add_help", "=", "False", ")", "group", "=", "parser", ".", "add_argument_group", "(", "'GTF/BED12 options'", ")", "if", "suppress", ":", "help", "=", "argparse", ".", "SUPPRESS", "else", ":", "help", "=", "'When either a BED12 or GTF file are used to provide \\\n regions, perform the computation on the merged exons, \\\n rather than using the genomic interval defined by the \\\n 5-prime and 3-prime most transcript bound (i.e., columns \\\n 2 and 3 of a BED file). If a BED3 or BED6 file is used \\\n as input, then columns 2 and 3 are used as an exon. (Default: %(default)s)'", "group", ".", "add_argument", "(", "'--metagene'", ",", "help", "=", "help", ",", "action", "=", "'store_true'", ",", "dest", "=", "'keepExons'", ")", "if", "suppress", "is", "False", ":", "help", "=", "'When a GTF file is used to provide regions, only \\\n entries with this value as their feature (column 3) \\\n will be processed as transcripts. (Default: %(default)s)'", "group", ".", "add_argument", "(", "'--transcriptID'", ",", "help", "=", "help", ",", "default", "=", "'transcript'", ")", "if", "suppress", "is", "False", ":", "help", "=", "'When a GTF file is used to provide regions, only \\\n entries with this value as their feature (column 3) \\\n will be processed as exons. CDS would be another common \\\n value for this. (Default: %(default)s)'", "group", ".", "add_argument", "(", "'--exonID'", ",", "help", "=", "help", ",", "default", "=", "'exon'", ")", "if", "suppress", "is", "False", ":", "help", "=", "'Each region has an ID (e.g., ACTB) assigned to it, \\\n which for BED files is either column 4 (if it exists) \\\n or the interval bounds. For GTF files this is instead \\\n stored in the last column as a key:value pair (e.g., as \\\n \\'transcript_id \"ACTB\"\\', for a key of transcript_id \\\n and a value of ACTB). In some cases it can be \\\n convenient to use a different identifier. To do so, set \\\n this to the desired key. (Default: %(default)s)'", "group", ".", "add_argument", "(", "'--transcript_id_designator'", ",", "help", "=", "help", ",", "default", "=", "'transcript_id'", ")", "return", "parser" ]
https://github.com/deeptools/deepTools/blob/ac42d29c298c026aa0c53c9db2553087ebc86b97/deeptools/parserCommon.py#L140-L199
hakril/PythonForWindows
61e027a678d5b87aa64fcf8a37a6661a86236589
windows/winobject/registry.py
python
PyHKey.empty
(self)
[]
def empty(self): windows.winproxy.RegDeleteTreeW(self.phkey, None)
[ "def", "empty", "(", "self", ")", ":", "windows", ".", "winproxy", ".", "RegDeleteTreeW", "(", "self", ".", "phkey", ",", "None", ")" ]
https://github.com/hakril/PythonForWindows/blob/61e027a678d5b87aa64fcf8a37a6661a86236589/windows/winobject/registry.py#L374-L375
munificent/magpie
f5138e3d316ec1a664b5eadba1bcc8573d3faca3
dep/gyp/pylib/gyp/msvs_emulation.py
python
MsvsSettings.GetOutputName
(self, config, expand_special)
return output_file
Gets the explicitly overridden output name for a target or returns None if it's not overridden.
Gets the explicitly overridden output name for a target or returns None if it's not overridden.
[ "Gets", "the", "explicitly", "overridden", "output", "name", "for", "a", "target", "or", "returns", "None", "if", "it", "s", "not", "overridden", "." ]
def GetOutputName(self, config, expand_special): """Gets the explicitly overridden output name for a target or returns None if it's not overridden.""" config = self._TargetConfig(config) type = self.spec['type'] root = 'VCLibrarianTool' if type == 'static_library' else 'VCLinkerTool' # TODO(scottmg): Handle OutputDirectory without OutputFile. output_file = self._Setting((root, 'OutputFile'), config) if output_file: output_file = expand_special(self.ConvertVSMacros( output_file, config=config)) return output_file
[ "def", "GetOutputName", "(", "self", ",", "config", ",", "expand_special", ")", ":", "config", "=", "self", ".", "_TargetConfig", "(", "config", ")", "type", "=", "self", ".", "spec", "[", "'type'", "]", "root", "=", "'VCLibrarianTool'", "if", "type", "==", "'static_library'", "else", "'VCLinkerTool'", "# TODO(scottmg): Handle OutputDirectory without OutputFile.", "output_file", "=", "self", ".", "_Setting", "(", "(", "root", ",", "'OutputFile'", ")", ",", "config", ")", "if", "output_file", ":", "output_file", "=", "expand_special", "(", "self", ".", "ConvertVSMacros", "(", "output_file", ",", "config", "=", "config", ")", ")", "return", "output_file" ]
https://github.com/munificent/magpie/blob/f5138e3d316ec1a664b5eadba1bcc8573d3faca3/dep/gyp/pylib/gyp/msvs_emulation.py#L282-L293
matrix-org/synapse
8e57584a5859a9002759963eb546d523d2498a01
synapse/handlers/presence.py
python
PresenceHandler._persist_and_notify
(self, states: List[UserPresenceState])
Persist states in the database, poke the notifier and send to interested remote servers
Persist states in the database, poke the notifier and send to interested remote servers
[ "Persist", "states", "in", "the", "database", "poke", "the", "notifier", "and", "send", "to", "interested", "remote", "servers" ]
async def _persist_and_notify(self, states: List[UserPresenceState]) -> None: """Persist states in the database, poke the notifier and send to interested remote servers """ stream_id, max_token = await self.store.update_presence(states) parties = await get_interested_parties(self.store, self.presence_router, states) room_ids_to_states, users_to_states = parties self.notifier.on_new_event( "presence_key", stream_id, rooms=room_ids_to_states.keys(), users=[UserID.from_string(u) for u in users_to_states], ) # We only want to poke the local federation sender, if any, as other # workers will receive the presence updates via the presence replication # stream (which is updated by `store.update_presence`). await self.maybe_send_presence_to_interested_destinations(states)
[ "async", "def", "_persist_and_notify", "(", "self", ",", "states", ":", "List", "[", "UserPresenceState", "]", ")", "->", "None", ":", "stream_id", ",", "max_token", "=", "await", "self", ".", "store", ".", "update_presence", "(", "states", ")", "parties", "=", "await", "get_interested_parties", "(", "self", ".", "store", ",", "self", ".", "presence_router", ",", "states", ")", "room_ids_to_states", ",", "users_to_states", "=", "parties", "self", ".", "notifier", ".", "on_new_event", "(", "\"presence_key\"", ",", "stream_id", ",", "rooms", "=", "room_ids_to_states", ".", "keys", "(", ")", ",", "users", "=", "[", "UserID", ".", "from_string", "(", "u", ")", "for", "u", "in", "users_to_states", "]", ",", ")", "# We only want to poke the local federation sender, if any, as other", "# workers will receive the presence updates via the presence replication", "# stream (which is updated by `store.update_presence`).", "await", "self", ".", "maybe_send_presence_to_interested_destinations", "(", "states", ")" ]
https://github.com/matrix-org/synapse/blob/8e57584a5859a9002759963eb546d523d2498a01/synapse/handlers/presence.py#L1095-L1114
pycontribs/jira
09ece94f3cae7e6d0becfa87d77d6a05ce01cdf6
jira/client.py
python
JIRA.project_components
(self, project: str)
return components
Get a list of component Resources present on a project. Args: project (str): ID or key of the project to get components from Returns: List[Component]
Get a list of component Resources present on a project.
[ "Get", "a", "list", "of", "component", "Resources", "present", "on", "a", "project", "." ]
def project_components(self, project: str) -> List[Component]: """Get a list of component Resources present on a project. Args: project (str): ID or key of the project to get components from Returns: List[Component] """ r_json = self._get_json("project/" + project + "/components") components = [ Component(self._options, self._session, raw_comp_json) for raw_comp_json in r_json ] return components
[ "def", "project_components", "(", "self", ",", "project", ":", "str", ")", "->", "List", "[", "Component", "]", ":", "r_json", "=", "self", ".", "_get_json", "(", "\"project/\"", "+", "project", "+", "\"/components\"", ")", "components", "=", "[", "Component", "(", "self", ".", "_options", ",", "self", ".", "_session", ",", "raw_comp_json", ")", "for", "raw_comp_json", "in", "r_json", "]", "return", "components" ]
https://github.com/pycontribs/jira/blob/09ece94f3cae7e6d0becfa87d77d6a05ce01cdf6/jira/client.py#L2678-L2692
NifTK/NiftyNet
935bf4334cd00fa9f9d50f6a95ddcbfdde4031e0
niftynet/contrib/csv_reader/multitask_classifseg_application.py
python
MultiClassifSegApplication.interpret_output
(self, batch_output)
return True
Specifies how the output should be decoded :param batch_output: :return:
Specifies how the output should be decoded :param batch_output: :return:
[ "Specifies", "how", "the", "output", "should", "be", "decoded", ":", "param", "batch_output", ":", ":", "return", ":" ]
def interpret_output(self, batch_output): ''' Specifies how the output should be decoded :param batch_output: :return: ''' if not self.is_training: return self.output_decoder.decode_batch( {'window_seg': batch_output['seg'], 'csv_class': batch_output['value']}, batch_output['location']) return True
[ "def", "interpret_output", "(", "self", ",", "batch_output", ")", ":", "if", "not", "self", ".", "is_training", ":", "return", "self", ".", "output_decoder", ".", "decode_batch", "(", "{", "'window_seg'", ":", "batch_output", "[", "'seg'", "]", ",", "'csv_class'", ":", "batch_output", "[", "'value'", "]", "}", ",", "batch_output", "[", "'location'", "]", ")", "return", "True" ]
https://github.com/NifTK/NiftyNet/blob/935bf4334cd00fa9f9d50f6a95ddcbfdde4031e0/niftynet/contrib/csv_reader/multitask_classifseg_application.py#L519-L530
brianwrf/hackUtils
168123350d93b040fa0c437c9d59faf8fa65d8e6
hackUtils.py
python
php_str_noquotes
(data)
return encoded[:-1]
Convert string to chr(xx).chr(xx) for use in php
Convert string to chr(xx).chr(xx) for use in php
[ "Convert", "string", "to", "chr", "(", "xx", ")", ".", "chr", "(", "xx", ")", "for", "use", "in", "php" ]
def php_str_noquotes(data): "Convert string to chr(xx).chr(xx) for use in php" encoded = "" for char in data: encoded += "chr({0}).".format(ord(char)) return encoded[:-1]
[ "def", "php_str_noquotes", "(", "data", ")", ":", "encoded", "=", "\"\"", "for", "char", "in", "data", ":", "encoded", "+=", "\"chr({0}).\"", ".", "format", "(", "ord", "(", "char", ")", ")", "return", "encoded", "[", ":", "-", "1", "]" ]
https://github.com/brianwrf/hackUtils/blob/168123350d93b040fa0c437c9d59faf8fa65d8e6/hackUtils.py#L458-L463
git-cola/git-cola
b48b8028e0c3baf47faf7b074b9773737358163d
cola/cmds.py
python
ResetHard.confirm
(self)
return Interaction.confirm(title, question, info, ok_text)
[]
def confirm(self): title = N_('Restore Worktree and Reset All (Hard)') question = N_('Restore Worktree and Reset All?') info = self.tooltip(self.ref) ok_text = N_('Reset and Restore') return Interaction.confirm(title, question, info, ok_text)
[ "def", "confirm", "(", "self", ")", ":", "title", "=", "N_", "(", "'Restore Worktree and Reset All (Hard)'", ")", "question", "=", "N_", "(", "'Restore Worktree and Reset All?'", ")", "info", "=", "self", ".", "tooltip", "(", "self", ".", "ref", ")", "ok_text", "=", "N_", "(", "'Reset and Restore'", ")", "return", "Interaction", ".", "confirm", "(", "title", ",", "question", ",", "info", ",", "ok_text", ")" ]
https://github.com/git-cola/git-cola/blob/b48b8028e0c3baf47faf7b074b9773737358163d/cola/cmds.py#L574-L579
beancount/beancount
cb3526a1af95b3b5be70347470c381b5a86055fe
beancount/core/account.py
python
sans_root
(account_name: Account)
return join(*components) if account_name else None
Get the name of the account without the root. For example, an input of 'Assets:BofA:Checking' will produce 'BofA:Checking'. Args: account_name: A string, the name of the account whose leaf name to return. Returns: A string, the name of the non-root portion of this account name.
Get the name of the account without the root.
[ "Get", "the", "name", "of", "the", "account", "without", "the", "root", "." ]
def sans_root(account_name: Account)-> Account: """Get the name of the account without the root. For example, an input of 'Assets:BofA:Checking' will produce 'BofA:Checking'. Args: account_name: A string, the name of the account whose leaf name to return. Returns: A string, the name of the non-root portion of this account name. """ assert isinstance(account_name, str) components = account_name.split(sep)[1:] return join(*components) if account_name else None
[ "def", "sans_root", "(", "account_name", ":", "Account", ")", "->", "Account", ":", "assert", "isinstance", "(", "account_name", ",", "str", ")", "components", "=", "account_name", ".", "split", "(", "sep", ")", "[", "1", ":", "]", "return", "join", "(", "*", "components", ")", "if", "account_name", "else", "None" ]
https://github.com/beancount/beancount/blob/cb3526a1af95b3b5be70347470c381b5a86055fe/beancount/core/account.py#L107-L119
dimagi/commcare-hq
d67ff1d3b4c51fa050c19e60c3253a79d3452a39
corehq/apps/accounting/invoicing.py
python
LineItemFactory._is_partial_invoice
(self)
return not ( self.invoice.date_end.day == self._days_in_billing_period and self.invoice.date_start.day == 1 )
[]
def _is_partial_invoice(self): return not ( self.invoice.date_end.day == self._days_in_billing_period and self.invoice.date_start.day == 1 )
[ "def", "_is_partial_invoice", "(", "self", ")", ":", "return", "not", "(", "self", ".", "invoice", ".", "date_end", ".", "day", "==", "self", ".", "_days_in_billing_period", "and", "self", ".", "invoice", ".", "date_start", ".", "day", "==", "1", ")" ]
https://github.com/dimagi/commcare-hq/blob/d67ff1d3b4c51fa050c19e60c3253a79d3452a39/corehq/apps/accounting/invoicing.py#L579-L583
wal-e/wal-e
6c43976e13c619ebdddd0d869301c42ed131e983
wal_e/copyfileobj.py
python
copyfileobj
(src, dst, length=None, exception=OSError, bufsize=None)
return
Copy length bytes from fileobj src to fileobj dst. If length is None, copy the entire content.
Copy length bytes from fileobj src to fileobj dst. If length is None, copy the entire content.
[ "Copy", "length", "bytes", "from", "fileobj", "src", "to", "fileobj", "dst", ".", "If", "length", "is", "None", "copy", "the", "entire", "content", "." ]
def copyfileobj(src, dst, length=None, exception=OSError, bufsize=None): """Copy length bytes from fileobj src to fileobj dst. If length is None, copy the entire content. """ if bufsize is None: bufsize = pipebuf.PIPE_BUF_BYTES if length == 0: return if length is None: shutil.copyfileobj(src, dst, bufsize) return blocks, remainder = divmod(length, bufsize) for b in range(blocks): buf = src.read(bufsize) if len(buf) < bufsize: raise exception("unexpected end of data") dst.write(buf) if remainder != 0: buf = src.read(remainder) if len(buf) < remainder: raise exception("unexpected end of data") dst.write(buf) return
[ "def", "copyfileobj", "(", "src", ",", "dst", ",", "length", "=", "None", ",", "exception", "=", "OSError", ",", "bufsize", "=", "None", ")", ":", "if", "bufsize", "is", "None", ":", "bufsize", "=", "pipebuf", ".", "PIPE_BUF_BYTES", "if", "length", "==", "0", ":", "return", "if", "length", "is", "None", ":", "shutil", ".", "copyfileobj", "(", "src", ",", "dst", ",", "bufsize", ")", "return", "blocks", ",", "remainder", "=", "divmod", "(", "length", ",", "bufsize", ")", "for", "b", "in", "range", "(", "blocks", ")", ":", "buf", "=", "src", ".", "read", "(", "bufsize", ")", "if", "len", "(", "buf", ")", "<", "bufsize", ":", "raise", "exception", "(", "\"unexpected end of data\"", ")", "dst", ".", "write", "(", "buf", ")", "if", "remainder", "!=", "0", ":", "buf", "=", "src", ".", "read", "(", "remainder", ")", "if", "len", "(", "buf", ")", "<", "remainder", ":", "raise", "exception", "(", "\"unexpected end of data\"", ")", "dst", ".", "write", "(", "buf", ")", "return" ]
https://github.com/wal-e/wal-e/blob/6c43976e13c619ebdddd0d869301c42ed131e983/wal_e/copyfileobj.py#L6-L31
oracle/oci-python-sdk
3c1604e4e212008fb6718e2f68cdb5ef71fd5793
src/oci/regions.py
python
is_region_short_name
(region)
return False
[]
def is_region_short_name(region): region = region.lower() if region in REGIONS_SHORT_NAMES: return True if region in REGIONS: return False if _check_and_add_region_metadata(region): # Above call will return true if the requested region is now known, after considering additional sources # Check is needed if region short code was passed if region in REGIONS_SHORT_NAMES: return True return False
[ "def", "is_region_short_name", "(", "region", ")", ":", "region", "=", "region", ".", "lower", "(", ")", "if", "region", "in", "REGIONS_SHORT_NAMES", ":", "return", "True", "if", "region", "in", "REGIONS", ":", "return", "False", "if", "_check_and_add_region_metadata", "(", "region", ")", ":", "# Above call will return true if the requested region is now known, after considering additional sources", "# Check is needed if region short code was passed", "if", "region", "in", "REGIONS_SHORT_NAMES", ":", "return", "True", "return", "False" ]
https://github.com/oracle/oci-python-sdk/blob/3c1604e4e212008fb6718e2f68cdb5ef71fd5793/src/oci/regions.py#L81-L95
CheckPointSW/Karta
b845928487b50a5b41acd532ae0399177a4356aa
src/thumbs_up/analyzers/analyzer.py
python
Analyzer.delCodePtr
(self, src, dest)
Delete a code pointer (probably was found to be a False Positive). Args: src (int) effective address for the pointer's location dest (int): effective address for the (assumed) pointed code address
Delete a code pointer (probably was found to be a False Positive).
[ "Delete", "a", "code", "pointer", "(", "probably", "was", "found", "to", "be", "a", "False", "Positive", ")", "." ]
def delCodePtr(self, src, dest): """Delete a code pointer (probably was found to be a False Positive). Args: src (int) effective address for the pointer's location dest (int): effective address for the (assumed) pointed code address """ idc.del_dref(src, dest) idc.del_cref(src, dest, 0) ida_bytes.del_items(src, 0, self.addressSize())
[ "def", "delCodePtr", "(", "self", ",", "src", ",", "dest", ")", ":", "idc", ".", "del_dref", "(", "src", ",", "dest", ")", "idc", ".", "del_cref", "(", "src", ",", "dest", ",", "0", ")", "ida_bytes", ".", "del_items", "(", "src", ",", "0", ",", "self", ".", "addressSize", "(", ")", ")" ]
https://github.com/CheckPointSW/Karta/blob/b845928487b50a5b41acd532ae0399177a4356aa/src/thumbs_up/analyzers/analyzer.py#L208-L217
haiwen/seahub
e92fcd44e3e46260597d8faa9347cb8222b8b10d
seahub/share/models.py
python
PrivateFileDirShareManager.delete_private_file_dir_share
(self, from_user, to_user, repo_id, path)
[]
def delete_private_file_dir_share(self, from_user, to_user, repo_id, path): """ """ super(PrivateFileDirShareManager, self).filter( from_user=from_user, to_user=to_user, repo_id=repo_id, path=path).delete()
[ "def", "delete_private_file_dir_share", "(", "self", ",", "from_user", ",", "to_user", ",", "repo_id", ",", "path", ")", ":", "super", "(", "PrivateFileDirShareManager", ",", "self", ")", ".", "filter", "(", "from_user", "=", "from_user", ",", "to_user", "=", "to_user", ",", "repo_id", "=", "repo_id", ",", "path", "=", "path", ")", ".", "delete", "(", ")" ]
https://github.com/haiwen/seahub/blob/e92fcd44e3e46260597d8faa9347cb8222b8b10d/seahub/share/models.py#L573-L578
j4mie/micromodels
43db93afa3f7e067df13db41fa861fe0682e79c4
micromodels/models.py
python
Model.from_dict
(cls, D, is_json=False)
return instance
This factory for :class:`Model` takes either a native Python dictionary or a JSON dictionary/object if ``is_json`` is ``True``. The dictionary passed does not need to contain all of the values that the Model declares.
This factory for :class:`Model` takes either a native Python dictionary or a JSON dictionary/object if ``is_json`` is ``True``. The dictionary passed does not need to contain all of the values that the Model declares.
[ "This", "factory", "for", ":", "class", ":", "Model", "takes", "either", "a", "native", "Python", "dictionary", "or", "a", "JSON", "dictionary", "/", "object", "if", "is_json", "is", "True", ".", "The", "dictionary", "passed", "does", "not", "need", "to", "contain", "all", "of", "the", "values", "that", "the", "Model", "declares", "." ]
def from_dict(cls, D, is_json=False): '''This factory for :class:`Model` takes either a native Python dictionary or a JSON dictionary/object if ``is_json`` is ``True``. The dictionary passed does not need to contain all of the values that the Model declares. ''' instance = cls() instance.set_data(D, is_json=is_json) return instance
[ "def", "from_dict", "(", "cls", ",", "D", ",", "is_json", "=", "False", ")", ":", "instance", "=", "cls", "(", ")", "instance", ".", "set_data", "(", "D", ",", "is_json", "=", "is_json", ")", "return", "instance" ]
https://github.com/j4mie/micromodels/blob/43db93afa3f7e067df13db41fa861fe0682e79c4/micromodels/models.py#L65-L74
JimmXinu/FanFicFare
bc149a2deb2636320fe50a3e374af6eef8f61889
fanficfare/adapters/adapter_fanfictalkcom.py
python
FanfictalkComAdapter.getSiteURLPattern
(self)
return r"https?://(archive\.hp)?"+re.escape(self.getSiteDomain())+r"(/archive)?/viewstory\.php\?sid=\d+$"
[]
def getSiteURLPattern(self): return r"https?://(archive\.hp)?"+re.escape(self.getSiteDomain())+r"(/archive)?/viewstory\.php\?sid=\d+$"
[ "def", "getSiteURLPattern", "(", "self", ")", ":", "return", "r\"https?://(archive\\.hp)?\"", "+", "re", ".", "escape", "(", "self", ".", "getSiteDomain", "(", ")", ")", "+", "r\"(/archive)?/viewstory\\.php\\?sid=\\d+$\"" ]
https://github.com/JimmXinu/FanFicFare/blob/bc149a2deb2636320fe50a3e374af6eef8f61889/fanficfare/adapters/adapter_fanfictalkcom.py#L76-L77
PyCQA/pylint
3fc855f9d0fa8e6410be5a23cf954ffd5471b4eb
pylint/checkers/typecheck.py
python
TypeChecker._check_uninferable_call
(self, node)
Check that the given uninferable Call node does not call an actual function.
Check that the given uninferable Call node does not call an actual function.
[ "Check", "that", "the", "given", "uninferable", "Call", "node", "does", "not", "call", "an", "actual", "function", "." ]
def _check_uninferable_call(self, node): """Check that the given uninferable Call node does not call an actual function. """ if not isinstance(node.func, nodes.Attribute): return # Look for properties. First, obtain # the lhs of the Attribute node and search the attribute # there. If that attribute is a property or a subclass of properties, # then most likely it's not callable. expr = node.func.expr klass = safe_infer(expr) if ( klass is None or klass is astroid.Uninferable or not isinstance(klass, astroid.Instance) ): return try: attrs = klass._proxied.getattr(node.func.attrname) except astroid.NotFoundError: return for attr in attrs: if attr is astroid.Uninferable: continue if not isinstance(attr, nodes.FunctionDef): continue # Decorated, see if it is decorated with a property. # Also, check the returns and see if they are callable. if decorated_with_property(attr): try: all_returns_are_callable = all( return_node.callable() or return_node is astroid.Uninferable for return_node in attr.infer_call_result(node) ) except astroid.InferenceError: continue if not all_returns_are_callable: self.add_message( "not-callable", node=node, args=node.func.as_string() ) break
[ "def", "_check_uninferable_call", "(", "self", ",", "node", ")", ":", "if", "not", "isinstance", "(", "node", ".", "func", ",", "nodes", ".", "Attribute", ")", ":", "return", "# Look for properties. First, obtain", "# the lhs of the Attribute node and search the attribute", "# there. If that attribute is a property or a subclass of properties,", "# then most likely it's not callable.", "expr", "=", "node", ".", "func", ".", "expr", "klass", "=", "safe_infer", "(", "expr", ")", "if", "(", "klass", "is", "None", "or", "klass", "is", "astroid", ".", "Uninferable", "or", "not", "isinstance", "(", "klass", ",", "astroid", ".", "Instance", ")", ")", ":", "return", "try", ":", "attrs", "=", "klass", ".", "_proxied", ".", "getattr", "(", "node", ".", "func", ".", "attrname", ")", "except", "astroid", ".", "NotFoundError", ":", "return", "for", "attr", "in", "attrs", ":", "if", "attr", "is", "astroid", ".", "Uninferable", ":", "continue", "if", "not", "isinstance", "(", "attr", ",", "nodes", ".", "FunctionDef", ")", ":", "continue", "# Decorated, see if it is decorated with a property.", "# Also, check the returns and see if they are callable.", "if", "decorated_with_property", "(", "attr", ")", ":", "try", ":", "all_returns_are_callable", "=", "all", "(", "return_node", ".", "callable", "(", ")", "or", "return_node", "is", "astroid", ".", "Uninferable", "for", "return_node", "in", "attr", ".", "infer_call_result", "(", "node", ")", ")", "except", "astroid", ".", "InferenceError", ":", "continue", "if", "not", "all_returns_are_callable", ":", "self", ".", "add_message", "(", "\"not-callable\"", ",", "node", "=", "node", ",", "args", "=", "node", ".", "func", ".", "as_string", "(", ")", ")", "break" ]
https://github.com/PyCQA/pylint/blob/3fc855f9d0fa8e6410be5a23cf954ffd5471b4eb/pylint/checkers/typecheck.py#L1213-L1261
n1nj4sec/pupy
a5d766ea81fdfe3bc2c38c9bdaf10e9b75af3b39
pupy/pupylib/PupyOffload.py
python
PupyOffloadSocket.getpeername
(self)
return self._raddr
[]
def getpeername(self): return self._raddr
[ "def", "getpeername", "(", "self", ")", ":", "return", "self", ".", "_raddr" ]
https://github.com/n1nj4sec/pupy/blob/a5d766ea81fdfe3bc2c38c9bdaf10e9b75af3b39/pupy/pupylib/PupyOffload.py#L151-L152
yangxue0827/FPN_Tensorflow
c72110d2803455e6e55020f69144d9490a3d39ad
libs/networks/slim_nets/resnet_v2.py
python
resnet_v2_101
(inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, spatial_squeeze=False, reuse=None, scope='resnet_v2_101')
return resnet_v2(inputs, blocks, num_classes, is_training=is_training, global_pool=global_pool, output_stride=output_stride, include_root_block=True, spatial_squeeze=spatial_squeeze, reuse=reuse, scope=scope)
ResNet-101 model of [1]. See resnet_v2() for arg and return description.
ResNet-101 model of [1]. See resnet_v2() for arg and return description.
[ "ResNet", "-", "101", "model", "of", "[", "1", "]", ".", "See", "resnet_v2", "()", "for", "arg", "and", "return", "description", "." ]
def resnet_v2_101(inputs, num_classes=None, is_training=True, global_pool=True, output_stride=None, spatial_squeeze=False, reuse=None, scope='resnet_v2_101'): """ResNet-101 model of [1]. See resnet_v2() for arg and return description.""" blocks = [ resnet_v2_block('block1', base_depth=64, num_units=3, stride=2), resnet_v2_block('block2', base_depth=128, num_units=4, stride=2), resnet_v2_block('block3', base_depth=256, num_units=23, stride=2), resnet_v2_block('block4', base_depth=512, num_units=3, stride=1), ] return resnet_v2(inputs, blocks, num_classes, is_training=is_training, global_pool=global_pool, output_stride=output_stride, include_root_block=True, spatial_squeeze=spatial_squeeze, reuse=reuse, scope=scope)
[ "def", "resnet_v2_101", "(", "inputs", ",", "num_classes", "=", "None", ",", "is_training", "=", "True", ",", "global_pool", "=", "True", ",", "output_stride", "=", "None", ",", "spatial_squeeze", "=", "False", ",", "reuse", "=", "None", ",", "scope", "=", "'resnet_v2_101'", ")", ":", "blocks", "=", "[", "resnet_v2_block", "(", "'block1'", ",", "base_depth", "=", "64", ",", "num_units", "=", "3", ",", "stride", "=", "2", ")", ",", "resnet_v2_block", "(", "'block2'", ",", "base_depth", "=", "128", ",", "num_units", "=", "4", ",", "stride", "=", "2", ")", ",", "resnet_v2_block", "(", "'block3'", ",", "base_depth", "=", "256", ",", "num_units", "=", "23", ",", "stride", "=", "2", ")", ",", "resnet_v2_block", "(", "'block4'", ",", "base_depth", "=", "512", ",", "num_units", "=", "3", ",", "stride", "=", "1", ")", ",", "]", "return", "resnet_v2", "(", "inputs", ",", "blocks", ",", "num_classes", ",", "is_training", "=", "is_training", ",", "global_pool", "=", "global_pool", ",", "output_stride", "=", "output_stride", ",", "include_root_block", "=", "True", ",", "spatial_squeeze", "=", "spatial_squeeze", ",", "reuse", "=", "reuse", ",", "scope", "=", "scope", ")" ]
https://github.com/yangxue0827/FPN_Tensorflow/blob/c72110d2803455e6e55020f69144d9490a3d39ad/libs/networks/slim_nets/resnet_v2.py#L270-L288
peter-u-diehl/stdp-mnist
d527ca3ee579d4f156d25ff160c0551a5ab82cf1
Diehl&Cook_spiking_MNIST.py
python
update_performance_plot
(im, performance, current_example_num, fig)
return im, performance
[]
def update_performance_plot(im, performance, current_example_num, fig): performance = get_current_performance(performance, current_example_num) im.set_ydata(performance) fig.canvas.draw() return im, performance
[ "def", "update_performance_plot", "(", "im", ",", "performance", ",", "current_example_num", ",", "fig", ")", ":", "performance", "=", "get_current_performance", "(", "performance", ",", "current_example_num", ")", "im", ".", "set_ydata", "(", "performance", ")", "fig", ".", "canvas", ".", "draw", "(", ")", "return", "im", ",", "performance" ]
https://github.com/peter-u-diehl/stdp-mnist/blob/d527ca3ee579d4f156d25ff160c0551a5ab82cf1/Diehl&Cook_spiking_MNIST.py#L163-L167
w3h/isf
6faf0a3df185465ec17369c90ccc16e2a03a1870
lib/thirdparty/scapy/utils.py
python
RawPcapReader.next
(self)
return pkt
implement the iterator protocol on a set of packets in a pcap file
implement the iterator protocol on a set of packets in a pcap file
[ "implement", "the", "iterator", "protocol", "on", "a", "set", "of", "packets", "in", "a", "pcap", "file" ]
def next(self): """implement the iterator protocol on a set of packets in a pcap file""" pkt = self.read_packet() if pkt == None: raise StopIteration return pkt
[ "def", "next", "(", "self", ")", ":", "pkt", "=", "self", ".", "read_packet", "(", ")", "if", "pkt", "==", "None", ":", "raise", "StopIteration", "return", "pkt" ]
https://github.com/w3h/isf/blob/6faf0a3df185465ec17369c90ccc16e2a03a1870/lib/thirdparty/scapy/utils.py#L645-L650
dpp/simply_lift
cf49f7dcce81c7f1557314dd0f0bb08aaedc73da
elyxer.py
python
ListItem.process
(self)
Set the correct type and contents.
Set the correct type and contents.
[ "Set", "the", "correct", "type", "and", "contents", "." ]
def process(self): "Set the correct type and contents." self.type = self.header[1] tag = TaggedText().complete(self.contents, 'li', True) self.contents = [tag]
[ "def", "process", "(", "self", ")", ":", "self", ".", "type", "=", "self", ".", "header", "[", "1", "]", "tag", "=", "TaggedText", "(", ")", ".", "complete", "(", "self", ".", "contents", ",", "'li'", ",", "True", ")", "self", ".", "contents", "=", "[", "tag", "]" ]
https://github.com/dpp/simply_lift/blob/cf49f7dcce81c7f1557314dd0f0bb08aaedc73da/elyxer.py#L6553-L6557
fake-name/ReadableWebProxy
ed5c7abe38706acc2684a1e6cd80242a03c5f010
Misc/diff_match_patch/diff_match_patch.py
python
diff_match_patch.diff_commonSuffix
(self, text1, text2)
return pointermid
Determine the common suffix of two strings. Args: text1: First string. text2: Second string. Returns: The number of characters common to the end of each string.
Determine the common suffix of two strings.
[ "Determine", "the", "common", "suffix", "of", "two", "strings", "." ]
def diff_commonSuffix(self, text1, text2): """Determine the common suffix of two strings. Args: text1: First string. text2: Second string. Returns: The number of characters common to the end of each string. """ # Quick check for common null cases. if not text1 or not text2 or text1[-1] != text2[-1]: return 0 # Binary search. # Performance analysis: http://neil.fraser.name/news/2007/10/09/ pointermin = 0 pointermax = min(len(text1), len(text2)) pointermid = pointermax pointerend = 0 while pointermin < pointermid: if (text1[-pointermid:len(text1) - pointerend] == text2[-pointermid:len(text2) - pointerend]): pointermin = pointermid pointerend = pointermin else: pointermax = pointermid pointermid = (pointermax - pointermin) // 2 + pointermin return pointermid
[ "def", "diff_commonSuffix", "(", "self", ",", "text1", ",", "text2", ")", ":", "# Quick check for common null cases.", "if", "not", "text1", "or", "not", "text2", "or", "text1", "[", "-", "1", "]", "!=", "text2", "[", "-", "1", "]", ":", "return", "0", "# Binary search.", "# Performance analysis: http://neil.fraser.name/news/2007/10/09/", "pointermin", "=", "0", "pointermax", "=", "min", "(", "len", "(", "text1", ")", ",", "len", "(", "text2", ")", ")", "pointermid", "=", "pointermax", "pointerend", "=", "0", "while", "pointermin", "<", "pointermid", ":", "if", "(", "text1", "[", "-", "pointermid", ":", "len", "(", "text1", ")", "-", "pointerend", "]", "==", "text2", "[", "-", "pointermid", ":", "len", "(", "text2", ")", "-", "pointerend", "]", ")", ":", "pointermin", "=", "pointermid", "pointerend", "=", "pointermin", "else", ":", "pointermax", "=", "pointermid", "pointermid", "=", "(", "pointermax", "-", "pointermin", ")", "//", "2", "+", "pointermin", "return", "pointermid" ]
https://github.com/fake-name/ReadableWebProxy/blob/ed5c7abe38706acc2684a1e6cd80242a03c5f010/Misc/diff_match_patch/diff_match_patch.py#L480-L507
codesociety/friartuck
450adae920ac64a4d3bca5258512295d3eaecea5
my_algo.py
python
order_for_robinhood
(context, security, weight, order_type=None)
This is a custom order method for this particular algorithm and places orders based on: (1) How much of each position in context.assets we currently hold (2) How much cash we currently hold This means that if you have existing positions (e.g. AAPL), your positions in that security will not be taken into account when calculating order amounts. The portfolio value that we'll be ordering on is labeled `valid_portfolio_value`. If you'd like to use a Stop/Limit/Stop-Limit Order please follow the following format: STOP - order_type = OrderType(stop_price=y) LIMIT - order_type = OrderType(limit_price=x) STOPLIMIT - order_type = OrderType(limit_price=x, stop_price=y)
This is a custom order method for this particular algorithm and places orders based on: (1) How much of each position in context.assets we currently hold (2) How much cash we currently hold
[ "This", "is", "a", "custom", "order", "method", "for", "this", "particular", "algorithm", "and", "places", "orders", "based", "on", ":", "(", "1", ")", "How", "much", "of", "each", "position", "in", "context", ".", "assets", "we", "currently", "hold", "(", "2", ")", "How", "much", "cash", "we", "currently", "hold" ]
def order_for_robinhood(context, security, weight, order_type=None): """ This is a custom order method for this particular algorithm and places orders based on: (1) How much of each position in context.assets we currently hold (2) How much cash we currently hold This means that if you have existing positions (e.g. AAPL), your positions in that security will not be taken into account when calculating order amounts. The portfolio value that we'll be ordering on is labeled `valid_portfolio_value`. If you'd like to use a Stop/Limit/Stop-Limit Order please follow the following format: STOP - order_type = OrderType(stop_price=y) LIMIT - order_type = OrderType(limit_price=x) STOPLIMIT - order_type = OrderType(limit_price=x, stop_price=y) """ # We use .95 as the cash because all market orders are converted into # limit orders with a 5% buffer. So any market order placed through # Robinhood is submitted as a limit order with (last_traded_price * 1.05) valid_portfolio_value = context.portfolio.cash * .95 # Calculate the percent of each security that we want to hold percent_to_order = weight - get_percent_held(context, security, valid_portfolio_value) # If within 1% of target weight, ignore. if abs(percent_to_order) < .01: log.info("Can't Make Order - Percent (%s) to order is less than 0.01 " % percent_to_order) return # Calculate the dollar value to order for this security value_to_order = percent_to_order * valid_portfolio_value if order_type: return order_value(security, value_to_order, order_type=order_type, time_in_force='gtc') else: return order_value(security, value_to_order, time_in_force='gtc')
[ "def", "order_for_robinhood", "(", "context", ",", "security", ",", "weight", ",", "order_type", "=", "None", ")", ":", "# We use .95 as the cash because all market orders are converted into", "# limit orders with a 5% buffer. So any market order placed through", "# Robinhood is submitted as a limit order with (last_traded_price * 1.05)", "valid_portfolio_value", "=", "context", ".", "portfolio", ".", "cash", "*", ".95", "# Calculate the percent of each security that we want to hold", "percent_to_order", "=", "weight", "-", "get_percent_held", "(", "context", ",", "security", ",", "valid_portfolio_value", ")", "# If within 1% of target weight, ignore.", "if", "abs", "(", "percent_to_order", ")", "<", ".01", ":", "log", ".", "info", "(", "\"Can't Make Order - Percent (%s) to order is less than 0.01 \"", "%", "percent_to_order", ")", "return", "# Calculate the dollar value to order for this security", "value_to_order", "=", "percent_to_order", "*", "valid_portfolio_value", "if", "order_type", ":", "return", "order_value", "(", "security", ",", "value_to_order", ",", "order_type", "=", "order_type", ",", "time_in_force", "=", "'gtc'", ")", "else", ":", "return", "order_value", "(", "security", ",", "value_to_order", ",", "time_in_force", "=", "'gtc'", ")" ]
https://github.com/codesociety/friartuck/blob/450adae920ac64a4d3bca5258512295d3eaecea5/my_algo.py#L138-L176
nadineproject/nadine
c41c8ef7ffe18f1853029c97eecc329039b4af6c
nadine/utils/payment_api.py
python
PaymentAPI.get_transactions
(self, year, month, day)
return clean_transactions
[]
def get_transactions(self, year, month, day): raw_transactions = self.entry_point.getTransactions(year, month, day) clean_transactions = clean_transaction_list(raw_transactions) return clean_transactions
[ "def", "get_transactions", "(", "self", ",", "year", ",", "month", ",", "day", ")", ":", "raw_transactions", "=", "self", ".", "entry_point", ".", "getTransactions", "(", "year", ",", "month", ",", "day", ")", "clean_transactions", "=", "clean_transaction_list", "(", "raw_transactions", ")", "return", "clean_transactions" ]
https://github.com/nadineproject/nadine/blob/c41c8ef7ffe18f1853029c97eecc329039b4af6c/nadine/utils/payment_api.py#L42-L45
usnistgov/fipy
6809b180b41a11de988a48655575df7e142c93b9
fipy/tools/dimensions/physicalField.py
python
PhysicalField.arccos
(self)
return PhysicalField(value=umath.arccos(self.inDimensionless()), unit = "rad")
Return the inverse cosine of the `PhysicalField` in radians >>> print(PhysicalField(0).arccos().allclose("1.57079632679 rad")) 1 The input `PhysicalField` must be dimensionless >>> print(numerix.round_(PhysicalField("1 m").arccos(), 6)) Traceback (most recent call last): ... TypeError: Incompatible units
Return the inverse cosine of the `PhysicalField` in radians
[ "Return", "the", "inverse", "cosine", "of", "the", "PhysicalField", "in", "radians" ]
def arccos(self): """ Return the inverse cosine of the `PhysicalField` in radians >>> print(PhysicalField(0).arccos().allclose("1.57079632679 rad")) 1 The input `PhysicalField` must be dimensionless >>> print(numerix.round_(PhysicalField("1 m").arccos(), 6)) Traceback (most recent call last): ... TypeError: Incompatible units """ return PhysicalField(value=umath.arccos(self.inDimensionless()), unit = "rad")
[ "def", "arccos", "(", "self", ")", ":", "return", "PhysicalField", "(", "value", "=", "umath", ".", "arccos", "(", "self", ".", "inDimensionless", "(", ")", ")", ",", "unit", "=", "\"rad\"", ")" ]
https://github.com/usnistgov/fipy/blob/6809b180b41a11de988a48655575df7e142c93b9/fipy/tools/dimensions/physicalField.py#L965-L979
google-research/tensorflow_constrained_optimization
723d63f8567aaa988c4ce4761152beee2b462e1d
tensorflow_constrained_optimization/python/train/constrained_optimizer.py
python
ConstrainedOptimizerV2.num_constraints
(self, num_constraints)
Explicitly sets the number of constraints. This function plays the same role as the (optional) num_constraints constructor argument. Once the number of constraints has been set, the internal state (e.g. the Lagrange multipliers) are fixed, and subsequent calls to this method will fail if the number of constraints has changed. If the num_constraints argument was not provided to the constructor, then this method *must* be called before optimization can be performed. Args: num_constraints: int, the number of constraints in the `ConstrainedMinimizationProblem` that will eventually be minimized. Raises: RuntimeError: if the internal state has already been created. ValueError: if the number of constraints differs from its previous value.
Explicitly sets the number of constraints.
[ "Explicitly", "sets", "the", "number", "of", "constraints", "." ]
def num_constraints(self, num_constraints): """Explicitly sets the number of constraints. This function plays the same role as the (optional) num_constraints constructor argument. Once the number of constraints has been set, the internal state (e.g. the Lagrange multipliers) are fixed, and subsequent calls to this method will fail if the number of constraints has changed. If the num_constraints argument was not provided to the constructor, then this method *must* be called before optimization can be performed. Args: num_constraints: int, the number of constraints in the `ConstrainedMinimizationProblem` that will eventually be minimized. Raises: RuntimeError: if the internal state has already been created. ValueError: if the number of constraints differs from its previous value. """ # Since get_loss_fn() can infer the number of constraints from a # ConstrainedMinimizationProblem, it's possible that the state might have # been created, even while self._num_constraints is None. if self._formulation.is_state_created: raise RuntimeError("num_constraints cannot be set after the internal " "state has been created (by e.g. the variables or " "minimize methods)") if (self._num_constraints is not None) and (num_constraints != self._num_constraints): raise ValueError("num_constraints cannot be changed once it has been set") self._num_constraints = num_constraints
[ "def", "num_constraints", "(", "self", ",", "num_constraints", ")", ":", "# Since get_loss_fn() can infer the number of constraints from a", "# ConstrainedMinimizationProblem, it's possible that the state might have", "# been created, even while self._num_constraints is None.", "if", "self", ".", "_formulation", ".", "is_state_created", ":", "raise", "RuntimeError", "(", "\"num_constraints cannot be set after the internal \"", "\"state has been created (by e.g. the variables or \"", "\"minimize methods)\"", ")", "if", "(", "self", ".", "_num_constraints", "is", "not", "None", ")", "and", "(", "num_constraints", "!=", "self", ".", "_num_constraints", ")", ":", "raise", "ValueError", "(", "\"num_constraints cannot be changed once it has been set\"", ")", "self", ".", "_num_constraints", "=", "num_constraints" ]
https://github.com/google-research/tensorflow_constrained_optimization/blob/723d63f8567aaa988c4ce4761152beee2b462e1d/tensorflow_constrained_optimization/python/train/constrained_optimizer.py#L587-L617
robinhood/faust
01b4c0ad8390221db71751d80001b0fd879291e2
faust/sensors/prometheus.py
python
PrometheusMonitor.on_commit_completed
(self, consumer: ConsumerT, state: typing.Any)
Call when consumer commit offset operation completed.
Call when consumer commit offset operation completed.
[ "Call", "when", "consumer", "commit", "offset", "operation", "completed", "." ]
def on_commit_completed(self, consumer: ConsumerT, state: typing.Any) -> None: """Call when consumer commit offset operation completed.""" super().on_commit_completed(consumer, state) self.consumer_commit_latency.observe( self.ms_since(typing.cast(float, state)))
[ "def", "on_commit_completed", "(", "self", ",", "consumer", ":", "ConsumerT", ",", "state", ":", "typing", ".", "Any", ")", "->", "None", ":", "super", "(", ")", ".", "on_commit_completed", "(", "consumer", ",", "state", ")", "self", ".", "consumer_commit_latency", ".", "observe", "(", "self", ".", "ms_since", "(", "typing", ".", "cast", "(", "float", ",", "state", ")", ")", ")" ]
https://github.com/robinhood/faust/blob/01b4c0ad8390221db71751d80001b0fd879291e2/faust/sensors/prometheus.py#L227-L232
larryhastings/gilectomy
4315ec3f1d6d4f813cc82ce27a24e7f784dbfc1a
Lib/tkinter/__init__.py
python
Misc._bind
(self, what, sequence, func, add, needcleanup=1)
Internal function.
Internal function.
[ "Internal", "function", "." ]
def _bind(self, what, sequence, func, add, needcleanup=1): """Internal function.""" if isinstance(func, str): self.tk.call(what + (sequence, func)) elif func: funcid = self._register(func, self._substitute, needcleanup) cmd = ('%sif {"[%s %s]" == "break"} break\n' % (add and '+' or '', funcid, self._subst_format_str)) self.tk.call(what + (sequence, cmd)) return funcid elif sequence: return self.tk.call(what + (sequence,)) else: return self.tk.splitlist(self.tk.call(what))
[ "def", "_bind", "(", "self", ",", "what", ",", "sequence", ",", "func", ",", "add", ",", "needcleanup", "=", "1", ")", ":", "if", "isinstance", "(", "func", ",", "str", ")", ":", "self", ".", "tk", ".", "call", "(", "what", "+", "(", "sequence", ",", "func", ")", ")", "elif", "func", ":", "funcid", "=", "self", ".", "_register", "(", "func", ",", "self", ".", "_substitute", ",", "needcleanup", ")", "cmd", "=", "(", "'%sif {\"[%s %s]\" == \"break\"} break\\n'", "%", "(", "add", "and", "'+'", "or", "''", ",", "funcid", ",", "self", ".", "_subst_format_str", ")", ")", "self", ".", "tk", ".", "call", "(", "what", "+", "(", "sequence", ",", "cmd", ")", ")", "return", "funcid", "elif", "sequence", ":", "return", "self", ".", "tk", ".", "call", "(", "what", "+", "(", "sequence", ",", ")", ")", "else", ":", "return", "self", ".", "tk", ".", "splitlist", "(", "self", ".", "tk", ".", "call", "(", "what", ")", ")" ]
https://github.com/larryhastings/gilectomy/blob/4315ec3f1d6d4f813cc82ce27a24e7f784dbfc1a/Lib/tkinter/__init__.py#L1036-L1052
javayhu/Gank-Alfred-Workflow
aca39bd0c7bc0c494eee204e10bca61dab760ab7
source-v1/workflow/update.py
python
install_update
(github_slug, current_version)
return True
If a newer release is available, download and install it :param github_slug: ``username/repo`` for workflow's GitHub repo :param current_version: the currently installed version of the workflow. :ref:`Semantic versioning <semver>` is required. :type current_version: ``unicode`` If an update is available, it will be downloaded and installed. :returns: ``True`` if an update is installed, else ``False``
If a newer release is available, download and install it
[ "If", "a", "newer", "release", "is", "available", "download", "and", "install", "it" ]
def install_update(github_slug, current_version): """If a newer release is available, download and install it :param github_slug: ``username/repo`` for workflow's GitHub repo :param current_version: the currently installed version of the workflow. :ref:`Semantic versioning <semver>` is required. :type current_version: ``unicode`` If an update is available, it will be downloaded and installed. :returns: ``True`` if an update is installed, else ``False`` """ # TODO: `github_slug` and `current_version` are both unusued. update_data = wf().cached_data('__workflow_update_status', max_age=0) if not update_data or not update_data.get('available'): wf().logger.info('No update available') return False local_file = download_workflow(update_data['download_url']) wf().logger.info('Installing updated workflow ...') subprocess.call(['open', local_file]) update_data['available'] = False wf().cache_data('__workflow_update_status', update_data) return True
[ "def", "install_update", "(", "github_slug", ",", "current_version", ")", ":", "# TODO: `github_slug` and `current_version` are both unusued.", "update_data", "=", "wf", "(", ")", ".", "cached_data", "(", "'__workflow_update_status'", ",", "max_age", "=", "0", ")", "if", "not", "update_data", "or", "not", "update_data", ".", "get", "(", "'available'", ")", ":", "wf", "(", ")", ".", "logger", ".", "info", "(", "'No update available'", ")", "return", "False", "local_file", "=", "download_workflow", "(", "update_data", "[", "'download_url'", "]", ")", "wf", "(", ")", ".", "logger", ".", "info", "(", "'Installing updated workflow ...'", ")", "subprocess", ".", "call", "(", "[", "'open'", ",", "local_file", "]", ")", "update_data", "[", "'available'", "]", "=", "False", "wf", "(", ")", ".", "cache_data", "(", "'__workflow_update_status'", ",", "update_data", ")", "return", "True" ]
https://github.com/javayhu/Gank-Alfred-Workflow/blob/aca39bd0c7bc0c494eee204e10bca61dab760ab7/source-v1/workflow/update.py#L320-L348
khanhnamle1994/natural-language-processing
01d450d5ac002b0156ef4cf93a07cb508c1bcdc5
assignment1/.env/lib/python2.7/site-packages/pkg_resources/__init__.py
python
WorkingSet.subscribe
(self, callback, existing=True)
Invoke `callback` for all distributions If `existing=True` (default), call on all existing ones, as well.
Invoke `callback` for all distributions
[ "Invoke", "callback", "for", "all", "distributions" ]
def subscribe(self, callback, existing=True): """Invoke `callback` for all distributions If `existing=True` (default), call on all existing ones, as well. """ if callback in self.callbacks: return self.callbacks.append(callback) if not existing: return for dist in self: callback(dist)
[ "def", "subscribe", "(", "self", ",", "callback", ",", "existing", "=", "True", ")", ":", "if", "callback", "in", "self", ".", "callbacks", ":", "return", "self", ".", "callbacks", ".", "append", "(", "callback", ")", "if", "not", "existing", ":", "return", "for", "dist", "in", "self", ":", "callback", "(", "dist", ")" ]
https://github.com/khanhnamle1994/natural-language-processing/blob/01d450d5ac002b0156ef4cf93a07cb508c1bcdc5/assignment1/.env/lib/python2.7/site-packages/pkg_resources/__init__.py#L991-L1003
IronLanguages/main
a949455434b1fda8c783289e897e78a9a0caabb5
External.LCA_RESTRICTED/Languages/IronPython/27/Lib/re.py
python
findall
(pattern, string, flags=0)
return _compile(pattern, flags).findall(string)
Return a list of all non-overlapping matches in the string. If one or more groups are present in the pattern, return a list of groups; this will be a list of tuples if the pattern has more than one group. Empty matches are included in the result.
Return a list of all non-overlapping matches in the string.
[ "Return", "a", "list", "of", "all", "non", "-", "overlapping", "matches", "in", "the", "string", "." ]
def findall(pattern, string, flags=0): """Return a list of all non-overlapping matches in the string. If one or more groups are present in the pattern, return a list of groups; this will be a list of tuples if the pattern has more than one group. Empty matches are included in the result.""" return _compile(pattern, flags).findall(string)
[ "def", "findall", "(", "pattern", ",", "string", ",", "flags", "=", "0", ")", ":", "return", "_compile", "(", "pattern", ",", "flags", ")", ".", "findall", "(", "string", ")" ]
https://github.com/IronLanguages/main/blob/a949455434b1fda8c783289e897e78a9a0caabb5/External.LCA_RESTRICTED/Languages/IronPython/27/Lib/re.py#L173-L181
caiiiac/Machine-Learning-with-Python
1a26c4467da41ca4ebc3d5bd789ea942ef79422f
MachineLearning/venv/lib/python3.5/site-packages/setuptools/command/py36compat.py
python
sdist_add_defaults.add_defaults
(self)
Add all the default files to self.filelist: - README or README.txt - setup.py - test/test*.py - all pure Python modules mentioned in setup script - all files pointed by package_data (build_py) - all files defined in data_files. - all files defined as scripts. - all C sources listed as part of extensions or C libraries in the setup script (doesn't catch C headers!) Warns if (README or README.txt) or setup.py are missing; everything else is optional.
Add all the default files to self.filelist: - README or README.txt - setup.py - test/test*.py - all pure Python modules mentioned in setup script - all files pointed by package_data (build_py) - all files defined in data_files. - all files defined as scripts. - all C sources listed as part of extensions or C libraries in the setup script (doesn't catch C headers!) Warns if (README or README.txt) or setup.py are missing; everything else is optional.
[ "Add", "all", "the", "default", "files", "to", "self", ".", "filelist", ":", "-", "README", "or", "README", ".", "txt", "-", "setup", ".", "py", "-", "test", "/", "test", "*", ".", "py", "-", "all", "pure", "Python", "modules", "mentioned", "in", "setup", "script", "-", "all", "files", "pointed", "by", "package_data", "(", "build_py", ")", "-", "all", "files", "defined", "in", "data_files", ".", "-", "all", "files", "defined", "as", "scripts", ".", "-", "all", "C", "sources", "listed", "as", "part", "of", "extensions", "or", "C", "libraries", "in", "the", "setup", "script", "(", "doesn", "t", "catch", "C", "headers!", ")", "Warns", "if", "(", "README", "or", "README", ".", "txt", ")", "or", "setup", ".", "py", "are", "missing", ";", "everything", "else", "is", "optional", "." ]
def add_defaults(self): """Add all the default files to self.filelist: - README or README.txt - setup.py - test/test*.py - all pure Python modules mentioned in setup script - all files pointed by package_data (build_py) - all files defined in data_files. - all files defined as scripts. - all C sources listed as part of extensions or C libraries in the setup script (doesn't catch C headers!) Warns if (README or README.txt) or setup.py are missing; everything else is optional. """ self._add_defaults_standards() self._add_defaults_optional() self._add_defaults_python() self._add_defaults_data_files() self._add_defaults_ext() self._add_defaults_c_libs() self._add_defaults_scripts()
[ "def", "add_defaults", "(", "self", ")", ":", "self", ".", "_add_defaults_standards", "(", ")", "self", ".", "_add_defaults_optional", "(", ")", "self", ".", "_add_defaults_python", "(", ")", "self", ".", "_add_defaults_data_files", "(", ")", "self", ".", "_add_defaults_ext", "(", ")", "self", ".", "_add_defaults_c_libs", "(", ")", "self", ".", "_add_defaults_scripts", "(", ")" ]
https://github.com/caiiiac/Machine-Learning-with-Python/blob/1a26c4467da41ca4ebc3d5bd789ea942ef79422f/MachineLearning/venv/lib/python3.5/site-packages/setuptools/command/py36compat.py#L18-L38
spartan-array/spartan
fdcf059ce7e48688648d793d632dc5961f4e72b5
spartan/array/distarray.py
python
_tile_mapper
(tile_id, blob, array=None, user_fn=None, **kw)
return user_fn(ex, **kw)
Invoke ``user_fn`` on ``blob``, and construct tiles from the results.
Invoke ``user_fn`` on ``blob``, and construct tiles from the results.
[ "Invoke", "user_fn", "on", "blob", "and", "construct", "tiles", "from", "the", "results", "." ]
def _tile_mapper(tile_id, blob, array=None, user_fn=None, **kw): '''Invoke ``user_fn`` on ``blob``, and construct tiles from the results.''' ex = array.extent_for_blob(tile_id) return user_fn(ex, **kw)
[ "def", "_tile_mapper", "(", "tile_id", ",", "blob", ",", "array", "=", "None", ",", "user_fn", "=", "None", ",", "*", "*", "kw", ")", ":", "ex", "=", "array", ".", "extent_for_blob", "(", "tile_id", ")", "return", "user_fn", "(", "ex", ",", "*", "*", "kw", ")" ]
https://github.com/spartan-array/spartan/blob/fdcf059ce7e48688648d793d632dc5961f4e72b5/spartan/array/distarray.py#L113-L116