nwo
stringlengths
5
106
sha
stringlengths
40
40
path
stringlengths
4
174
language
stringclasses
1 value
identifier
stringlengths
1
140
parameters
stringlengths
0
87.7k
argument_list
stringclasses
1 value
return_statement
stringlengths
0
426k
docstring
stringlengths
0
64.3k
docstring_summary
stringlengths
0
26.3k
docstring_tokens
list
function
stringlengths
18
4.83M
function_tokens
list
url
stringlengths
83
304
hudson-and-thames/mlfinlab
79dcc7120ec84110578f75b025a75850eb72fc73
mlfinlab/multi_product/etf_trick.py
python
ETFTrick._update_cache
(self)
Updates cache (two previous rows) when new data batch is read into the memory. Cache is used to recalculate ETF trick value which corresponds to previous batch last row. That is why we need 2 previous rows for close price difference calculation :return: (dict): dictionary with open, close, alloc, costs and rates last 2 rows
Updates cache (two previous rows) when new data batch is read into the memory. Cache is used to recalculate ETF trick value which corresponds to previous batch last row. That is why we need 2 previous rows for close price difference calculation
[ "Updates", "cache", "(", "two", "previous", "rows", ")", "when", "new", "data", "batch", "is", "read", "into", "the", "memory", ".", "Cache", "is", "used", "to", "recalculate", "ETF", "trick", "value", "which", "corresponds", "to", "previous", "batch", "last", "row", ".", "That", "is", "why", "we", "need", "2", "previous", "rows", "for", "close", "price", "difference", "calculation" ]
def _update_cache(self): """ Updates cache (two previous rows) when new data batch is read into the memory. Cache is used to recalculate ETF trick value which corresponds to previous batch last row. That is why we need 2 previous rows for close price difference calculation :return: (dict): dictionary with open, close, alloc, costs and rates last 2 rows """ pass
[ "def", "_update_cache", "(", "self", ")", ":", "pass" ]
https://github.com/hudson-and-thames/mlfinlab/blob/79dcc7120ec84110578f75b025a75850eb72fc73/mlfinlab/multi_product/etf_trick.py#L72-L81
XingangPan/Switchable-Whitening
dc8a9947ee27285ab123db1f152e18959e0e0861
utils/common_utils.py
python
accuracy
(output, target, topk=(1,))
return res
Computes the precision@k for the specified values of k
Computes the precision
[ "Computes", "the", "precision" ]
def accuracy(output, target, topk=(1,)): """Computes the precision@k for the specified values of k""" maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0, keepdim=True) res.append(correct_k.mul_(100.0 / batch_size)) return res
[ "def", "accuracy", "(", "output", ",", "target", ",", "topk", "=", "(", "1", ",", ")", ")", ":", "maxk", "=", "max", "(", "topk", ")", "batch_size", "=", "target", ".", "size", "(", "0", ")", "_", ",", "pred", "=", "output", ".", "topk", "(", "maxk", ",", "1", ",", "True", ",", "True", ")", "pred", "=", "pred", ".", "t", "(", ")", "correct", "=", "pred", ".", "eq", "(", "target", ".", "view", "(", "1", ",", "-", "1", ")", ".", "expand_as", "(", "pred", ")", ")", "res", "=", "[", "]", "for", "k", "in", "topk", ":", "correct_k", "=", "correct", "[", ":", "k", "]", ".", "view", "(", "-", "1", ")", ".", "float", "(", ")", ".", "sum", "(", "0", ",", "keepdim", "=", "True", ")", "res", ".", "append", "(", "correct_k", ".", "mul_", "(", "100.0", "/", "batch_size", ")", ")", "return", "res" ]
https://github.com/XingangPan/Switchable-Whitening/blob/dc8a9947ee27285ab123db1f152e18959e0e0861/utils/common_utils.py#L153-L166
zhl2008/awd-platform
0416b31abea29743387b10b3914581fbe8e7da5e
web_hxb2/lib/python3.5/site-packages/django/db/backends/base/schema.py
python
BaseDatabaseSchemaEditor._digest
(cls, *args)
return h.hexdigest()[:8]
Generates a 32-bit digest of a set of arguments that can be used to shorten identifying names.
Generates a 32-bit digest of a set of arguments that can be used to shorten identifying names.
[ "Generates", "a", "32", "-", "bit", "digest", "of", "a", "set", "of", "arguments", "that", "can", "be", "used", "to", "shorten", "identifying", "names", "." ]
def _digest(cls, *args): """ Generates a 32-bit digest of a set of arguments that can be used to shorten identifying names. """ h = hashlib.md5() for arg in args: h.update(force_bytes(arg)) return h.hexdigest()[:8]
[ "def", "_digest", "(", "cls", ",", "*", "args", ")", ":", "h", "=", "hashlib", ".", "md5", "(", ")", "for", "arg", "in", "args", ":", "h", ".", "update", "(", "force_bytes", "(", "arg", ")", ")", "return", "h", ".", "hexdigest", "(", ")", "[", ":", "8", "]" ]
https://github.com/zhl2008/awd-platform/blob/0416b31abea29743387b10b3914581fbe8e7da5e/web_hxb2/lib/python3.5/site-packages/django/db/backends/base/schema.py#L118-L126
leo-editor/leo-editor
383d6776d135ef17d73d935a2f0ecb3ac0e99494
leo/plugins/qt_gui.py
python
LeoQtGui.createLeoFrame
(self, c, title)
return qt_frame.LeoQtFrame(c, title, gui=self)
Create a new Leo frame.
Create a new Leo frame.
[ "Create", "a", "new", "Leo", "frame", "." ]
def createLeoFrame(self, c, title): """Create a new Leo frame.""" return qt_frame.LeoQtFrame(c, title, gui=self)
[ "def", "createLeoFrame", "(", "self", ",", "c", ",", "title", ")", ":", "return", "qt_frame", ".", "LeoQtFrame", "(", "c", ",", "title", ",", "gui", "=", "self", ")" ]
https://github.com/leo-editor/leo-editor/blob/383d6776d135ef17d73d935a2f0ecb3ac0e99494/leo/plugins/qt_gui.py#L276-L278
HenriWahl/Nagstamon
16549c6860b51a93141d84881c6ad28c35d8581e
Nagstamon/Servers/Monitos3.py
python
Monitos3Server.get
(self, table, raw=[], headers={})
return result
send data to livestatus socket, receive result, format as json
send data to livestatus socket, receive result, format as json
[ "send", "data", "to", "livestatus", "socket", "receive", "result", "format", "as", "json" ]
def get(self, table, raw=[], headers={}): """send data to livestatus socket, receive result, format as json""" data = ['GET %s' % table, ] headers['OutputFormat'] = 'json' headers['ColumnHeaders'] = 'on' for k, v in headers.items(): data.append('%s: %s' % (k, v)) for line in raw: data.append(line) result = self.communicate(data) if result: return json.loads(result) return result
[ "def", "get", "(", "self", ",", "table", ",", "raw", "=", "[", "]", ",", "headers", "=", "{", "}", ")", ":", "data", "=", "[", "'GET %s'", "%", "table", ",", "]", "headers", "[", "'OutputFormat'", "]", "=", "'json'", "headers", "[", "'ColumnHeaders'", "]", "=", "'on'", "for", "k", ",", "v", "in", "headers", ".", "items", "(", ")", ":", "data", ".", "append", "(", "'%s: %s'", "%", "(", "k", ",", "v", ")", ")", "for", "line", "in", "raw", ":", "data", ".", "append", "(", "line", ")", "result", "=", "self", ".", "communicate", "(", "data", ")", "if", "result", ":", "return", "json", ".", "loads", "(", "result", ")", "return", "result" ]
https://github.com/HenriWahl/Nagstamon/blob/16549c6860b51a93141d84881c6ad28c35d8581e/Nagstamon/Servers/Monitos3.py#L128-L140
exentriquesolutions/nip.io
cf6c5be870b63f07ecdf9f56500e5d8e846f3593
nipio/backend.py
python
DynamicBackend.run
(self)
Run the pipe backend. This is a loop that runs forever.
Run the pipe backend.
[ "Run", "the", "pipe", "backend", "." ]
def run(self) -> None: """Run the pipe backend. This is a loop that runs forever. """ _log('starting up') handshake = _get_next() if handshake[1] != '5': _log(f'Not version 5: {handshake}') sys.exit(1) _write('OK', 'nip.io backend - We are good') _log('Done handshake') while True: cmd = _get_next() if _is_debug(): _log(f"cmd: {cmd}") if cmd[0] == "CMD": _log(f"received command: {cmd}") self.handle_command(cmd) continue if cmd[0] == "END": _log("completing") break if len(cmd) < 6: _log(f'did not understand: {cmd}') _write('FAIL') continue qname = cmd[1].lower() qtype = cmd[3] if (qtype == 'A' or qtype == 'ANY') and qname.endswith(self.domain): if qname == self.domain: self.handle_self(self.domain) elif qname in self.name_servers: self.handle_nameservers(qname) else: self.handle_subdomains(qname) elif qtype == 'SOA' and qname.endswith(self.domain): self.handle_soa(qname) else: self.handle_unknown(qtype, qname)
[ "def", "run", "(", "self", ")", "->", "None", ":", "_log", "(", "'starting up'", ")", "handshake", "=", "_get_next", "(", ")", "if", "handshake", "[", "1", "]", "!=", "'5'", ":", "_log", "(", "f'Not version 5: {handshake}'", ")", "sys", ".", "exit", "(", "1", ")", "_write", "(", "'OK'", ",", "'nip.io backend - We are good'", ")", "_log", "(", "'Done handshake'", ")", "while", "True", ":", "cmd", "=", "_get_next", "(", ")", "if", "_is_debug", "(", ")", ":", "_log", "(", "f\"cmd: {cmd}\"", ")", "if", "cmd", "[", "0", "]", "==", "\"CMD\"", ":", "_log", "(", "f\"received command: {cmd}\"", ")", "self", ".", "handle_command", "(", "cmd", ")", "continue", "if", "cmd", "[", "0", "]", "==", "\"END\"", ":", "_log", "(", "\"completing\"", ")", "break", "if", "len", "(", "cmd", ")", "<", "6", ":", "_log", "(", "f'did not understand: {cmd}'", ")", "_write", "(", "'FAIL'", ")", "continue", "qname", "=", "cmd", "[", "1", "]", ".", "lower", "(", ")", "qtype", "=", "cmd", "[", "3", "]", "if", "(", "qtype", "==", "'A'", "or", "qtype", "==", "'ANY'", ")", "and", "qname", ".", "endswith", "(", "self", ".", "domain", ")", ":", "if", "qname", "==", "self", ".", "domain", ":", "self", ".", "handle_self", "(", "self", ".", "domain", ")", "elif", "qname", "in", "self", ".", "name_servers", ":", "self", ".", "handle_nameservers", "(", "qname", ")", "else", ":", "self", ".", "handle_subdomains", "(", "qname", ")", "elif", "qtype", "==", "'SOA'", "and", "qname", ".", "endswith", "(", "self", ".", "domain", ")", ":", "self", ".", "handle_soa", "(", "qname", ")", "else", ":", "self", ".", "handle_unknown", "(", "qtype", ",", "qname", ")" ]
https://github.com/exentriquesolutions/nip.io/blob/cf6c5be870b63f07ecdf9f56500e5d8e846f3593/nipio/backend.py#L174-L219
ftramer/Steal-ML
e37c67b2f74e42a85370ce431bc9d4e391b0ed8b
regression/aws_wrapper/regression.py
python
eps_round
(x, epsilon)
return round(x / epsilon) * epsilon
Round a floating point value to the nearest multiple of eps
Round a floating point value to the nearest multiple of eps
[ "Round", "a", "floating", "point", "value", "to", "the", "nearest", "multiple", "of", "eps" ]
def eps_round(x, epsilon): """ Round a floating point value to the nearest multiple of eps """ return round(x / epsilon) * epsilon
[ "def", "eps_round", "(", "x", ",", "epsilon", ")", ":", "return", "round", "(", "x", "/", "epsilon", ")", "*", "epsilon" ]
https://github.com/ftramer/Steal-ML/blob/e37c67b2f74e42a85370ce431bc9d4e391b0ed8b/regression/aws_wrapper/regression.py#L60-L64
BMW-InnovationLab/BMW-TensorFlow-Training-GUI
4f10d1f00f9ac312ca833e5b28fd0f8952cfee17
training_api/research/object_detection/core/box_list_ops.py
python
_copy_extra_fields
(boxlist_to_copy_to, boxlist_to_copy_from)
return boxlist_to_copy_to
Copies the extra fields of boxlist_to_copy_from to boxlist_to_copy_to. Args: boxlist_to_copy_to: BoxList to which extra fields are copied. boxlist_to_copy_from: BoxList from which fields are copied. Returns: boxlist_to_copy_to with extra fields.
Copies the extra fields of boxlist_to_copy_from to boxlist_to_copy_to.
[ "Copies", "the", "extra", "fields", "of", "boxlist_to_copy_from", "to", "boxlist_to_copy_to", "." ]
def _copy_extra_fields(boxlist_to_copy_to, boxlist_to_copy_from): """Copies the extra fields of boxlist_to_copy_from to boxlist_to_copy_to. Args: boxlist_to_copy_to: BoxList to which extra fields are copied. boxlist_to_copy_from: BoxList from which fields are copied. Returns: boxlist_to_copy_to with extra fields. """ for field in boxlist_to_copy_from.get_extra_fields(): boxlist_to_copy_to.add_field(field, boxlist_to_copy_from.get_field(field)) return boxlist_to_copy_to
[ "def", "_copy_extra_fields", "(", "boxlist_to_copy_to", ",", "boxlist_to_copy_from", ")", ":", "for", "field", "in", "boxlist_to_copy_from", ".", "get_extra_fields", "(", ")", ":", "boxlist_to_copy_to", ".", "add_field", "(", "field", ",", "boxlist_to_copy_from", ".", "get_field", "(", "field", ")", ")", "return", "boxlist_to_copy_to" ]
https://github.com/BMW-InnovationLab/BMW-TensorFlow-Training-GUI/blob/4f10d1f00f9ac312ca833e5b28fd0f8952cfee17/training_api/research/object_detection/core/box_list_ops.py#L725-L737
pculture/miro
d8e4594441939514dd2ac29812bf37087bb3aea5
tv/lib/config.py
python
set_theme
(theme)
Setup the theme to get config data from. This method exists because we need to create the config object ASAP, before we know the theme on some platforms. Therfore, we create the config object, then later on set the theme.
Setup the theme to get config data from.
[ "Setup", "the", "theme", "to", "get", "config", "data", "from", "." ]
def set_theme(theme): """Setup the theme to get config data from. This method exists because we need to create the config object ASAP, before we know the theme on some platforms. Therfore, we create the config object, then later on set the theme. """ app.configfile = AppConfig(theme)
[ "def", "set_theme", "(", "theme", ")", ":", "app", ".", "configfile", "=", "AppConfig", "(", "theme", ")" ]
https://github.com/pculture/miro/blob/d8e4594441939514dd2ac29812bf37087bb3aea5/tv/lib/config.py#L233-L240
makerbot/ReplicatorG
d6f2b07785a5a5f1e172fb87cb4303b17c575d5d
skein_engines/skeinforge-50/fabmetheus_utilities/intercircle.py
python
getCircleNodesFromLoop
(loop, radius, thresholdRatio=0.9)
return getCircleNodesFromPoints( points, radius )
Get the circle nodes from every point on a loop and between points.
Get the circle nodes from every point on a loop and between points.
[ "Get", "the", "circle", "nodes", "from", "every", "point", "on", "a", "loop", "and", "between", "points", "." ]
def getCircleNodesFromLoop(loop, radius, thresholdRatio=0.9): 'Get the circle nodes from every point on a loop and between points.' radius = abs(radius) points = getPointsFromLoop( loop, radius, thresholdRatio ) return getCircleNodesFromPoints( points, radius )
[ "def", "getCircleNodesFromLoop", "(", "loop", ",", "radius", ",", "thresholdRatio", "=", "0.9", ")", ":", "radius", "=", "abs", "(", "radius", ")", "points", "=", "getPointsFromLoop", "(", "loop", ",", "radius", ",", "thresholdRatio", ")", "return", "getCircleNodesFromPoints", "(", "points", ",", "radius", ")" ]
https://github.com/makerbot/ReplicatorG/blob/d6f2b07785a5a5f1e172fb87cb4303b17c575d5d/skein_engines/skeinforge-50/fabmetheus_utilities/intercircle.py#L296-L300
SteveDoyle2/pyNastran
eda651ac2d4883d95a34951f8a002ff94f642a1a
pyNastran/bdf/case_control_deck2.py
python
CaseControlDeck.convert_to_sol_200
(self, model: BDF)
Takes a case control deck and changes it from a SOL xxx to a SOL 200 Parameters ---------- model : BDF() the BDF object .. todo:: not done...
Takes a case control deck and changes it from a SOL xxx to a SOL 200
[ "Takes", "a", "case", "control", "deck", "and", "changes", "it", "from", "a", "SOL", "xxx", "to", "a", "SOL", "200" ]
def convert_to_sol_200(self, model: BDF) -> None: """ Takes a case control deck and changes it from a SOL xxx to a SOL 200 Parameters ---------- model : BDF() the BDF object .. todo:: not done... """ analysis = model.rsolmap_to_str[model.sol] model.sol = 200 subcase0 = self.subcases[0] subcase0.add_parameter_to_global_subcase('ANALYSIS', analysis)
[ "def", "convert_to_sol_200", "(", "self", ",", "model", ":", "BDF", ")", "->", "None", ":", "analysis", "=", "model", ".", "rsolmap_to_str", "[", "model", ".", "sol", "]", "model", ".", "sol", "=", "200", "subcase0", "=", "self", ".", "subcases", "[", "0", "]", "subcase0", ".", "add_parameter_to_global_subcase", "(", "'ANALYSIS'", ",", "analysis", ")" ]
https://github.com/SteveDoyle2/pyNastran/blob/eda651ac2d4883d95a34951f8a002ff94f642a1a/pyNastran/bdf/case_control_deck2.py#L987-L1003
scrtlabs/catalyst
2e8029780f2381da7a0729f7b52505e5db5f535b
catalyst/assets/assets.py
python
_filter_kwargs
(names, dict_)
return {k: v for k, v in dict_.items() if k in names and v is not None}
Filter out kwargs from a dictionary. Parameters ---------- names : set[str] The names to select from ``dict_``. dict_ : dict[str, any] The dictionary to select from. Returns ------- kwargs : dict[str, any] ``dict_`` where the keys intersect with ``names`` and the values are not None.
Filter out kwargs from a dictionary.
[ "Filter", "out", "kwargs", "from", "a", "dictionary", "." ]
def _filter_kwargs(names, dict_): """Filter out kwargs from a dictionary. Parameters ---------- names : set[str] The names to select from ``dict_``. dict_ : dict[str, any] The dictionary to select from. Returns ------- kwargs : dict[str, any] ``dict_`` where the keys intersect with ``names`` and the values are not None. """ return {k: v for k, v in dict_.items() if k in names and v is not None}
[ "def", "_filter_kwargs", "(", "names", ",", "dict_", ")", ":", "return", "{", "k", ":", "v", "for", "k", ",", "v", "in", "dict_", ".", "items", "(", ")", "if", "k", "in", "names", "and", "v", "is", "not", "None", "}" ]
https://github.com/scrtlabs/catalyst/blob/2e8029780f2381da7a0729f7b52505e5db5f535b/catalyst/assets/assets.py#L165-L181
salabim/salabim
e0de846b042daf2dc71aaf43d8adc6486b57f376
salabim.py
python
Queue.__radd__
(self, other)
return self.union(other)
[]
def __radd__(self, other): if other == 0: # to be able to use sum return self if not isinstance(other, Queue): return NotImplemented return self.union(other)
[ "def", "__radd__", "(", "self", ",", "other", ")", ":", "if", "other", "==", "0", ":", "# to be able to use sum", "return", "self", "if", "not", "isinstance", "(", "other", ",", "Queue", ")", ":", "return", "NotImplemented", "return", "self", ".", "union", "(", "other", ")" ]
https://github.com/salabim/salabim/blob/e0de846b042daf2dc71aaf43d8adc6486b57f376/salabim.py#L4118-L4123
holzschu/Carnets
44effb10ddfc6aa5c8b0687582a724ba82c6b547
Library/lib/python3.7/site-packages/mpmath/libmp/six.py
python
iterkeys
(d)
return iter(getattr(d, _iterkeys)())
Return an iterator over the keys of a dictionary.
Return an iterator over the keys of a dictionary.
[ "Return", "an", "iterator", "over", "the", "keys", "of", "a", "dictionary", "." ]
def iterkeys(d): """Return an iterator over the keys of a dictionary.""" return iter(getattr(d, _iterkeys)())
[ "def", "iterkeys", "(", "d", ")", ":", "return", "iter", "(", "getattr", "(", "d", ",", "_iterkeys", ")", "(", ")", ")" ]
https://github.com/holzschu/Carnets/blob/44effb10ddfc6aa5c8b0687582a724ba82c6b547/Library/lib/python3.7/site-packages/mpmath/libmp/six.py#L266-L268
pypa/pipenv
b21baade71a86ab3ee1429f71fbc14d4f95fb75d
pipenv/vendor/pyparsing.py
python
Forward.validate
(self, validateTrace=None)
[]
def validate(self, validateTrace=None): if validateTrace is None: validateTrace = [] if self not in validateTrace: tmp = validateTrace[:] + [self] if self.expr is not None: self.expr.validate(tmp) self.checkRecursion([])
[ "def", "validate", "(", "self", ",", "validateTrace", "=", "None", ")", ":", "if", "validateTrace", "is", "None", ":", "validateTrace", "=", "[", "]", "if", "self", "not", "in", "validateTrace", ":", "tmp", "=", "validateTrace", "[", ":", "]", "+", "[", "self", "]", "if", "self", ".", "expr", "is", "not", "None", ":", "self", ".", "expr", ".", "validate", "(", "tmp", ")", "self", ".", "checkRecursion", "(", "[", "]", ")" ]
https://github.com/pypa/pipenv/blob/b21baade71a86ab3ee1429f71fbc14d4f95fb75d/pipenv/vendor/pyparsing.py#L5045-L5053
dropbox/dropbox-sdk-python
015437429be224732990041164a21a0501235db1
dropbox/team_log.py
python
ShowcaseDownloadPolicy.is_enabled
(self)
return self._tag == 'enabled'
Check if the union tag is ``enabled``. :rtype: bool
Check if the union tag is ``enabled``.
[ "Check", "if", "the", "union", "tag", "is", "enabled", "." ]
def is_enabled(self): """ Check if the union tag is ``enabled``. :rtype: bool """ return self._tag == 'enabled'
[ "def", "is_enabled", "(", "self", ")", ":", "return", "self", ".", "_tag", "==", "'enabled'" ]
https://github.com/dropbox/dropbox-sdk-python/blob/015437429be224732990041164a21a0501235db1/dropbox/team_log.py#L64932-L64938
caiiiac/Machine-Learning-with-Python
1a26c4467da41ca4ebc3d5bd789ea942ef79422f
MachineLearning/venv/lib/python3.5/site-packages/scipy/spatial/_plotutils.py
python
convex_hull_plot_2d
(hull, ax=None)
return ax.figure
Plot the given convex hull diagram in 2-D Parameters ---------- hull : scipy.spatial.ConvexHull instance Convex hull to plot ax : matplotlib.axes.Axes instance, optional Axes to plot on Returns ------- fig : matplotlib.figure.Figure instance Figure for the plot See Also -------- ConvexHull Notes ----- Requires Matplotlib.
Plot the given convex hull diagram in 2-D
[ "Plot", "the", "given", "convex", "hull", "diagram", "in", "2", "-", "D" ]
def convex_hull_plot_2d(hull, ax=None): """ Plot the given convex hull diagram in 2-D Parameters ---------- hull : scipy.spatial.ConvexHull instance Convex hull to plot ax : matplotlib.axes.Axes instance, optional Axes to plot on Returns ------- fig : matplotlib.figure.Figure instance Figure for the plot See Also -------- ConvexHull Notes ----- Requires Matplotlib. """ from matplotlib.collections import LineCollection if hull.points.shape[1] != 2: raise ValueError("Convex hull is not 2-D") ax.plot(hull.points[:,0], hull.points[:,1], 'o') line_segments = [hull.points[simplex] for simplex in hull.simplices] ax.add_collection(LineCollection(line_segments, colors='k', linestyle='solid')) _adjust_bounds(ax, hull.points) return ax.figure
[ "def", "convex_hull_plot_2d", "(", "hull", ",", "ax", "=", "None", ")", ":", "from", "matplotlib", ".", "collections", "import", "LineCollection", "if", "hull", ".", "points", ".", "shape", "[", "1", "]", "!=", "2", ":", "raise", "ValueError", "(", "\"Convex hull is not 2-D\"", ")", "ax", ".", "plot", "(", "hull", ".", "points", "[", ":", ",", "0", "]", ",", "hull", ".", "points", "[", ":", ",", "1", "]", ",", "'o'", ")", "line_segments", "=", "[", "hull", ".", "points", "[", "simplex", "]", "for", "simplex", "in", "hull", ".", "simplices", "]", "ax", ".", "add_collection", "(", "LineCollection", "(", "line_segments", ",", "colors", "=", "'k'", ",", "linestyle", "=", "'solid'", ")", ")", "_adjust_bounds", "(", "ax", ",", "hull", ".", "points", ")", "return", "ax", ".", "figure" ]
https://github.com/caiiiac/Machine-Learning-with-Python/blob/1a26c4467da41ca4ebc3d5bd789ea942ef79422f/MachineLearning/venv/lib/python3.5/site-packages/scipy/spatial/_plotutils.py#L78-L115
AcidWeb/CurseBreaker
1a8cb60f4db0cc8b7e0702441e1adc0f1829003e
CurseBreaker.py
python
TUI.parse_args
(self, args)
return sorted(parsed)
[]
def parse_args(self, args): parsed = [] for addon in sorted(self.core.config['Addons'], key=lambda k: len(k['Name']), reverse=True): if addon['Name'] in args or addon['URL'] in args: parsed.append(addon['Name']) args = args.replace(addon['Name'], '', 1) return sorted(parsed)
[ "def", "parse_args", "(", "self", ",", "args", ")", ":", "parsed", "=", "[", "]", "for", "addon", "in", "sorted", "(", "self", ".", "core", ".", "config", "[", "'Addons'", "]", ",", "key", "=", "lambda", "k", ":", "len", "(", "k", "[", "'Name'", "]", ")", ",", "reverse", "=", "True", ")", ":", "if", "addon", "[", "'Name'", "]", "in", "args", "or", "addon", "[", "'URL'", "]", "in", "args", ":", "parsed", ".", "append", "(", "addon", "[", "'Name'", "]", ")", "args", "=", "args", ".", "replace", "(", "addon", "[", "'Name'", "]", ",", "''", ",", "1", ")", "return", "sorted", "(", "parsed", ")" ]
https://github.com/AcidWeb/CurseBreaker/blob/1a8cb60f4db0cc8b7e0702441e1adc0f1829003e/CurseBreaker.py#L400-L406
galaxyproject/galaxy
4c03520f05062e0f4a1b3655dc0b7452fda69943
lib/galaxy/webapps/galaxy/services/datasets.py
python
DatasetsService.index
( self, trans: ProvidesHistoryContext, history_id: Optional[EncodedDatabaseIdField], serialization_params: SerializationParams, filter_query_params: FilterQueryParams, )
return [ self.serializer_by_type[content.history_content_type].serialize_to_view(content, user=user, trans=trans, view=view) for content in contents ]
Search datasets or collections using a query system and returns a list containing summary of dataset or dataset_collection information.
Search datasets or collections using a query system and returns a list containing summary of dataset or dataset_collection information.
[ "Search", "datasets", "or", "collections", "using", "a", "query", "system", "and", "returns", "a", "list", "containing", "summary", "of", "dataset", "or", "dataset_collection", "information", "." ]
def index( self, trans: ProvidesHistoryContext, history_id: Optional[EncodedDatabaseIdField], serialization_params: SerializationParams, filter_query_params: FilterQueryParams, ) -> List[AnyHistoryContentItem]: """ Search datasets or collections using a query system and returns a list containing summary of dataset or dataset_collection information. """ user = self.get_authenticated_user(trans) filters = self.history_contents_filters.parse_query_filters(filter_query_params) view = serialization_params.view or 'summary' order_by = self.build_order_by(self.history_contents_manager, filter_query_params.order or "create_time-dsc") container = None if history_id: container = self.history_manager.get_accessible(self.decode_id(history_id), user) contents = self.history_contents_manager.contents( container=container, filters=filters, limit=filter_query_params.limit or DEFAULT_LIMIT, offset=filter_query_params.offset, order_by=order_by, user_id=user.id, ) return [ self.serializer_by_type[content.history_content_type].serialize_to_view(content, user=user, trans=trans, view=view) for content in contents ]
[ "def", "index", "(", "self", ",", "trans", ":", "ProvidesHistoryContext", ",", "history_id", ":", "Optional", "[", "EncodedDatabaseIdField", "]", ",", "serialization_params", ":", "SerializationParams", ",", "filter_query_params", ":", "FilterQueryParams", ",", ")", "->", "List", "[", "AnyHistoryContentItem", "]", ":", "user", "=", "self", ".", "get_authenticated_user", "(", "trans", ")", "filters", "=", "self", ".", "history_contents_filters", ".", "parse_query_filters", "(", "filter_query_params", ")", "view", "=", "serialization_params", ".", "view", "or", "'summary'", "order_by", "=", "self", ".", "build_order_by", "(", "self", ".", "history_contents_manager", ",", "filter_query_params", ".", "order", "or", "\"create_time-dsc\"", ")", "container", "=", "None", "if", "history_id", ":", "container", "=", "self", ".", "history_manager", ".", "get_accessible", "(", "self", ".", "decode_id", "(", "history_id", ")", ",", "user", ")", "contents", "=", "self", ".", "history_contents_manager", ".", "contents", "(", "container", "=", "container", ",", "filters", "=", "filters", ",", "limit", "=", "filter_query_params", ".", "limit", "or", "DEFAULT_LIMIT", ",", "offset", "=", "filter_query_params", ".", "offset", ",", "order_by", "=", "order_by", ",", "user_id", "=", "user", ".", "id", ",", ")", "return", "[", "self", ".", "serializer_by_type", "[", "content", ".", "history_content_type", "]", ".", "serialize_to_view", "(", "content", ",", "user", "=", "user", ",", "trans", "=", "trans", ",", "view", "=", "view", ")", "for", "content", "in", "contents", "]" ]
https://github.com/galaxyproject/galaxy/blob/4c03520f05062e0f4a1b3655dc0b7452fda69943/lib/galaxy/webapps/galaxy/services/datasets.py#L195-L224
subuser-security/subuser
8072271f8fc3dded60b048c2dee878f9840c126a
subuserlib/resolve.py
python
lookupRepositoryByPath
(user,path)
return None
If a repository with this path exists, return that repository. Otherwise, return None.
If a repository with this path exists, return that repository. Otherwise, return None.
[ "If", "a", "repository", "with", "this", "path", "exists", "return", "that", "repository", ".", "Otherwise", "return", "None", "." ]
def lookupRepositoryByPath(user,path): """ If a repository with this path exists, return that repository. Otherwise, return None. """ for _,repository in user.registry.repositories.items(): if repository.isLocal and path == repository.repoPath: return repository return None
[ "def", "lookupRepositoryByPath", "(", "user", ",", "path", ")", ":", "for", "_", ",", "repository", "in", "user", ".", "registry", ".", "repositories", ".", "items", "(", ")", ":", "if", "repository", ".", "isLocal", "and", "path", "==", "repository", ".", "repoPath", ":", "return", "repository", "return", "None" ]
https://github.com/subuser-security/subuser/blob/8072271f8fc3dded60b048c2dee878f9840c126a/subuserlib/resolve.py#L116-L123
openstack/horizon
12bb9fe5184c9dd3329ba17b3d03c90887dbcc3d
horizon/tabs/views.py
python
TabView.get_tabs
(self, request, **kwargs)
return self._tab_group
Returns the initialized tab group for this view.
Returns the initialized tab group for this view.
[ "Returns", "the", "initialized", "tab", "group", "for", "this", "view", "." ]
def get_tabs(self, request, **kwargs): """Returns the initialized tab group for this view.""" if self._tab_group is None: self._tab_group = self.tab_group_class(request, **kwargs) return self._tab_group
[ "def", "get_tabs", "(", "self", ",", "request", ",", "*", "*", "kwargs", ")", ":", "if", "self", ".", "_tab_group", "is", "None", ":", "self", ".", "_tab_group", "=", "self", ".", "tab_group_class", "(", "request", ",", "*", "*", "kwargs", ")", "return", "self", ".", "_tab_group" ]
https://github.com/openstack/horizon/blob/12bb9fe5184c9dd3329ba17b3d03c90887dbcc3d/horizon/tabs/views.py#L40-L44
boredbird/woe
335e9ec2a521d3bbccb0ad5d915128119e4d0ca6
woe/feature_process.py
python
proc_woe_discrete
(df,var,global_bt,global_gt,min_sample,alpha=0.01)
return civ
process woe transformation of discrete variables :param df: :param var: :param global_bt: :param global_gt: :param min_sample: :return:
process woe transformation of discrete variables :param df: :param var: :param global_bt: :param global_gt: :param min_sample: :return:
[ "process", "woe", "transformation", "of", "discrete", "variables", ":", "param", "df", ":", ":", "param", "var", ":", ":", "param", "global_bt", ":", ":", "param", "global_gt", ":", ":", "param", "min_sample", ":", ":", "return", ":" ]
def proc_woe_discrete(df,var,global_bt,global_gt,min_sample,alpha=0.01): ''' process woe transformation of discrete variables :param df: :param var: :param global_bt: :param global_gt: :param min_sample: :return: ''' s = 'process discrete variable:'+str(var) print(s.center(60, '-')) df = df[[var,'target']] div = DisInfoValue() div.var_name = var rdict = {} cpvar = df[var] # print('np.unique(df[var]):',np.unique(df[var])) for var_value in np.unique(df[var]): # Here come with a '==',in case type error you must do Nan filling process firstly df_temp = df[df[var] == var_value] gd = calulate_iv(df_temp,var,global_bt,global_gt) woei, ivi = gd['woei'],gd['ivi'] div.origin_value.append(var_value) div.woe_before.append(woei) rdict[var_value] = woei # print(var_value,woei,ivi) cpvar = cpvar.map(rdict) df[var] = cpvar iv_tree = binning_data_split(df,var,global_bt,global_gt,min_sample,alpha) # Traversal tree, get the segmentation point split_list = [] search(iv_tree, split_list) split_list = list(np.unique([1.0 * x for x in split_list if x is not None])) split_list.sort() # Segmentation point checking and processing split_list = check_point(df, var, split_list, min_sample) split_list.sort() civ = format_iv_split(df, var, split_list,global_bt,global_gt) civ.is_discrete = 1 split_list_temp = [] split_list_temp.append(float("-inf")) split_list_temp.extend([i for i in split_list]) split_list_temp.append(float("inf")) a = [] for i in range(split_list_temp.__len__() - 1): temp = [] for j in range(div.origin_value.__len__()): if (div.woe_before[j]>split_list_temp[i]) & (div.woe_before[j]<=split_list_temp[i+1]): temp.append(div.origin_value[j]) if temp != [] : a.append(temp) civ.split_list = a return civ
[ "def", "proc_woe_discrete", "(", "df", ",", "var", ",", "global_bt", ",", "global_gt", ",", "min_sample", ",", "alpha", "=", "0.01", ")", ":", "s", "=", "'process discrete variable:'", "+", "str", "(", "var", ")", "print", "(", "s", ".", "center", "(", "60", ",", "'-'", ")", ")", "df", "=", "df", "[", "[", "var", ",", "'target'", "]", "]", "div", "=", "DisInfoValue", "(", ")", "div", ".", "var_name", "=", "var", "rdict", "=", "{", "}", "cpvar", "=", "df", "[", "var", "]", "# print('np.unique(df[var]):',np.unique(df[var]))", "for", "var_value", "in", "np", ".", "unique", "(", "df", "[", "var", "]", ")", ":", "# Here come with a '==',in case type error you must do Nan filling process firstly", "df_temp", "=", "df", "[", "df", "[", "var", "]", "==", "var_value", "]", "gd", "=", "calulate_iv", "(", "df_temp", ",", "var", ",", "global_bt", ",", "global_gt", ")", "woei", ",", "ivi", "=", "gd", "[", "'woei'", "]", ",", "gd", "[", "'ivi'", "]", "div", ".", "origin_value", ".", "append", "(", "var_value", ")", "div", ".", "woe_before", ".", "append", "(", "woei", ")", "rdict", "[", "var_value", "]", "=", "woei", "# print(var_value,woei,ivi)", "cpvar", "=", "cpvar", ".", "map", "(", "rdict", ")", "df", "[", "var", "]", "=", "cpvar", "iv_tree", "=", "binning_data_split", "(", "df", ",", "var", ",", "global_bt", ",", "global_gt", ",", "min_sample", ",", "alpha", ")", "# Traversal tree, get the segmentation point", "split_list", "=", "[", "]", "search", "(", "iv_tree", ",", "split_list", ")", "split_list", "=", "list", "(", "np", ".", "unique", "(", "[", "1.0", "*", "x", "for", "x", "in", "split_list", "if", "x", "is", "not", "None", "]", ")", ")", "split_list", ".", "sort", "(", ")", "# Segmentation point checking and processing", "split_list", "=", "check_point", "(", "df", ",", "var", ",", "split_list", ",", "min_sample", ")", "split_list", ".", "sort", "(", ")", "civ", "=", "format_iv_split", "(", "df", ",", "var", ",", "split_list", ",", "global_bt", ",", "global_gt", ")", "civ", ".", "is_discrete", "=", "1", "split_list_temp", "=", "[", "]", "split_list_temp", ".", "append", "(", "float", "(", "\"-inf\"", ")", ")", "split_list_temp", ".", "extend", "(", "[", "i", "for", "i", "in", "split_list", "]", ")", "split_list_temp", ".", "append", "(", "float", "(", "\"inf\"", ")", ")", "a", "=", "[", "]", "for", "i", "in", "range", "(", "split_list_temp", ".", "__len__", "(", ")", "-", "1", ")", ":", "temp", "=", "[", "]", "for", "j", "in", "range", "(", "div", ".", "origin_value", ".", "__len__", "(", ")", ")", ":", "if", "(", "div", ".", "woe_before", "[", "j", "]", ">", "split_list_temp", "[", "i", "]", ")", "&", "(", "div", ".", "woe_before", "[", "j", "]", "<=", "split_list_temp", "[", "i", "+", "1", "]", ")", ":", "temp", ".", "append", "(", "div", ".", "origin_value", "[", "j", "]", ")", "if", "temp", "!=", "[", "]", ":", "a", ".", "append", "(", "temp", ")", "civ", ".", "split_list", "=", "a", "return", "civ" ]
https://github.com/boredbird/woe/blob/335e9ec2a521d3bbccb0ad5d915128119e4d0ca6/woe/feature_process.py#L384-L448
eBay/accelerator
218d9a5e4451ac72b9e65df6c5b32e37d25136c8
accelerator/job.py
python
CurrentJob.input_filename
(self, filename)
return os.path.join(self.input_directory, filename)
[]
def input_filename(self, filename): return os.path.join(self.input_directory, filename)
[ "def", "input_filename", "(", "self", ",", "filename", ")", ":", "return", "os", ".", "path", ".", "join", "(", "self", ".", "input_directory", ",", "filename", ")" ]
https://github.com/eBay/accelerator/blob/218d9a5e4451ac72b9e65df6c5b32e37d25136c8/accelerator/job.py#L256-L257
isl-org/MultiObjectiveOptimization
d45eb262ec61c0dafecebfb69027ff6de280dbb3
multi_task/min_norm_solvers.py
python
MinNormSolver.find_min_norm_element
(vecs)
Given a list of vectors (vecs), this method finds the minimum norm element in the convex hull as min |u|_2 st. u = \sum c_i vecs[i] and \sum c_i = 1. It is quite geometric, and the main idea is the fact that if d_{ij} = min |u|_2 st u = c x_i + (1-c) x_j; the solution lies in (0, d_{i,j}) Hence, we find the best 2-task solution, and then run the projected gradient descent until convergence
Given a list of vectors (vecs), this method finds the minimum norm element in the convex hull as min |u|_2 st. u = \sum c_i vecs[i] and \sum c_i = 1. It is quite geometric, and the main idea is the fact that if d_{ij} = min |u|_2 st u = c x_i + (1-c) x_j; the solution lies in (0, d_{i,j}) Hence, we find the best 2-task solution, and then run the projected gradient descent until convergence
[ "Given", "a", "list", "of", "vectors", "(", "vecs", ")", "this", "method", "finds", "the", "minimum", "norm", "element", "in", "the", "convex", "hull", "as", "min", "|u|_2", "st", ".", "u", "=", "\\", "sum", "c_i", "vecs", "[", "i", "]", "and", "\\", "sum", "c_i", "=", "1", ".", "It", "is", "quite", "geometric", "and", "the", "main", "idea", "is", "the", "fact", "that", "if", "d_", "{", "ij", "}", "=", "min", "|u|_2", "st", "u", "=", "c", "x_i", "+", "(", "1", "-", "c", ")", "x_j", ";", "the", "solution", "lies", "in", "(", "0", "d_", "{", "i", "j", "}", ")", "Hence", "we", "find", "the", "best", "2", "-", "task", "solution", "and", "then", "run", "the", "projected", "gradient", "descent", "until", "convergence" ]
def find_min_norm_element(vecs): """ Given a list of vectors (vecs), this method finds the minimum norm element in the convex hull as min |u|_2 st. u = \sum c_i vecs[i] and \sum c_i = 1. It is quite geometric, and the main idea is the fact that if d_{ij} = min |u|_2 st u = c x_i + (1-c) x_j; the solution lies in (0, d_{i,j}) Hence, we find the best 2-task solution, and then run the projected gradient descent until convergence """ # Solution lying at the combination of two points dps = {} init_sol, dps = MinNormSolver._min_norm_2d(vecs, dps) n=len(vecs) sol_vec = np.zeros(n) sol_vec[init_sol[0][0]] = init_sol[1] sol_vec[init_sol[0][1]] = 1 - init_sol[1] if n < 3: # This is optimal for n=2, so return the solution return sol_vec , init_sol[2] iter_count = 0 grad_mat = np.zeros((n,n)) for i in range(n): for j in range(n): grad_mat[i,j] = dps[(i, j)] while iter_count < MinNormSolver.MAX_ITER: grad_dir = -1.0*np.dot(grad_mat, sol_vec) new_point = MinNormSolver._next_point(sol_vec, grad_dir, n) # Re-compute the inner products for line search v1v1 = 0.0 v1v2 = 0.0 v2v2 = 0.0 for i in range(n): for j in range(n): v1v1 += sol_vec[i]*sol_vec[j]*dps[(i,j)] v1v2 += sol_vec[i]*new_point[j]*dps[(i,j)] v2v2 += new_point[i]*new_point[j]*dps[(i,j)] nc, nd = MinNormSolver._min_norm_element_from2(v1v1, v1v2, v2v2) new_sol_vec = nc*sol_vec + (1-nc)*new_point change = new_sol_vec - sol_vec if np.sum(np.abs(change)) < MinNormSolver.STOP_CRIT: return sol_vec, nd sol_vec = new_sol_vec
[ "def", "find_min_norm_element", "(", "vecs", ")", ":", "# Solution lying at the combination of two points", "dps", "=", "{", "}", "init_sol", ",", "dps", "=", "MinNormSolver", ".", "_min_norm_2d", "(", "vecs", ",", "dps", ")", "n", "=", "len", "(", "vecs", ")", "sol_vec", "=", "np", ".", "zeros", "(", "n", ")", "sol_vec", "[", "init_sol", "[", "0", "]", "[", "0", "]", "]", "=", "init_sol", "[", "1", "]", "sol_vec", "[", "init_sol", "[", "0", "]", "[", "1", "]", "]", "=", "1", "-", "init_sol", "[", "1", "]", "if", "n", "<", "3", ":", "# This is optimal for n=2, so return the solution", "return", "sol_vec", ",", "init_sol", "[", "2", "]", "iter_count", "=", "0", "grad_mat", "=", "np", ".", "zeros", "(", "(", "n", ",", "n", ")", ")", "for", "i", "in", "range", "(", "n", ")", ":", "for", "j", "in", "range", "(", "n", ")", ":", "grad_mat", "[", "i", ",", "j", "]", "=", "dps", "[", "(", "i", ",", "j", ")", "]", "while", "iter_count", "<", "MinNormSolver", ".", "MAX_ITER", ":", "grad_dir", "=", "-", "1.0", "*", "np", ".", "dot", "(", "grad_mat", ",", "sol_vec", ")", "new_point", "=", "MinNormSolver", ".", "_next_point", "(", "sol_vec", ",", "grad_dir", ",", "n", ")", "# Re-compute the inner products for line search", "v1v1", "=", "0.0", "v1v2", "=", "0.0", "v2v2", "=", "0.0", "for", "i", "in", "range", "(", "n", ")", ":", "for", "j", "in", "range", "(", "n", ")", ":", "v1v1", "+=", "sol_vec", "[", "i", "]", "*", "sol_vec", "[", "j", "]", "*", "dps", "[", "(", "i", ",", "j", ")", "]", "v1v2", "+=", "sol_vec", "[", "i", "]", "*", "new_point", "[", "j", "]", "*", "dps", "[", "(", "i", ",", "j", ")", "]", "v2v2", "+=", "new_point", "[", "i", "]", "*", "new_point", "[", "j", "]", "*", "dps", "[", "(", "i", ",", "j", ")", "]", "nc", ",", "nd", "=", "MinNormSolver", ".", "_min_norm_element_from2", "(", "v1v1", ",", "v1v2", ",", "v2v2", ")", "new_sol_vec", "=", "nc", "*", "sol_vec", "+", "(", "1", "-", "nc", ")", "*", "new_point", "change", "=", "new_sol_vec", "-", "sol_vec", "if", "np", ".", "sum", "(", "np", ".", "abs", "(", "change", ")", ")", "<", "MinNormSolver", ".", "STOP_CRIT", ":", "return", "sol_vec", ",", "nd", "sol_vec", "=", "new_sol_vec" ]
https://github.com/isl-org/MultiObjectiveOptimization/blob/d45eb262ec61c0dafecebfb69027ff6de280dbb3/multi_task/min_norm_solvers.py#L92-L137
OpenMined/SyferText
1e9a6c1fbbe31d1b20e852242bf2f9ab9bcc1ce6
src/syfertext/data/units/text_doc.py
python
TextDoc.__len__
(self)
return len(self.token_metas)
Return the number of tokens in the Doc.
Return the number of tokens in the Doc.
[ "Return", "the", "number", "of", "tokens", "in", "the", "Doc", "." ]
def __len__(self): """Return the number of tokens in the Doc.""" return len(self.token_metas)
[ "def", "__len__", "(", "self", ")", ":", "return", "len", "(", "self", ".", "token_metas", ")" ]
https://github.com/OpenMined/SyferText/blob/1e9a6c1fbbe31d1b20e852242bf2f9ab9bcc1ce6/src/syfertext/data/units/text_doc.py#L59-L61
opps/opps
fdc557a36ad0bca4e4ad339a6814f457c65e58c7
opps/core/filters.py
python
ChannelListFilter._get_descendant_count
(self, item, channel_list)
return len(children)
Search item occurrences on channel_list
Search item occurrences on channel_list
[ "Search", "item", "occurrences", "on", "channel_list" ]
def _get_descendant_count(self, item, channel_list): """ Search item occurrences on channel_list """ children = [] item_set = set(item.split('/')) for channel in channel_list: splt = set(channel.split('/')) if item != channel and item_set.issubset(splt): children.append(channel) return len(children)
[ "def", "_get_descendant_count", "(", "self", ",", "item", ",", "channel_list", ")", ":", "children", "=", "[", "]", "item_set", "=", "set", "(", "item", ".", "split", "(", "'/'", ")", ")", "for", "channel", "in", "channel_list", ":", "splt", "=", "set", "(", "channel", ".", "split", "(", "'/'", ")", ")", "if", "item", "!=", "channel", "and", "item_set", ".", "issubset", "(", "splt", ")", ":", "children", ".", "append", "(", "channel", ")", "return", "len", "(", "children", ")" ]
https://github.com/opps/opps/blob/fdc557a36ad0bca4e4ad339a6814f457c65e58c7/opps/core/filters.py#L55-L65
numba/numba
bf480b9e0da858a65508c2b17759a72ee6a44c51
numba/core/interpreter.py
python
Interpreter.op_PRINT_ITEM
(self, inst, item, printvar, res)
[]
def op_PRINT_ITEM(self, inst, item, printvar, res): item = self.get(item) printgv = ir.Global("print", print, loc=self.loc) self.store(value=printgv, name=printvar) call = ir.Expr.call(self.get(printvar), (item,), (), loc=self.loc) self.store(value=call, name=res)
[ "def", "op_PRINT_ITEM", "(", "self", ",", "inst", ",", "item", ",", "printvar", ",", "res", ")", ":", "item", "=", "self", ".", "get", "(", "item", ")", "printgv", "=", "ir", ".", "Global", "(", "\"print\"", ",", "print", ",", "loc", "=", "self", ".", "loc", ")", "self", ".", "store", "(", "value", "=", "printgv", ",", "name", "=", "printvar", ")", "call", "=", "ir", ".", "Expr", ".", "call", "(", "self", ".", "get", "(", "printvar", ")", ",", "(", "item", ",", ")", ",", "(", ")", ",", "loc", "=", "self", ".", "loc", ")", "self", ".", "store", "(", "value", "=", "call", ",", "name", "=", "res", ")" ]
https://github.com/numba/numba/blob/bf480b9e0da858a65508c2b17759a72ee6a44c51/numba/core/interpreter.py#L742-L747
JaniceWuo/MovieRecommend
4c86db64ca45598917d304f535413df3bc9fea65
movierecommend/venv1/Lib/site-packages/django/contrib/gis/utils/layermapping.py
python
LayerMapping.verify_geom
(self, geom, model_field)
return g.wkt
Verifies the geometry -- will construct and return a GeometryCollection if necessary (for example if the model field is MultiPolygonField while the mapped shapefile only contains Polygons).
Verifies the geometry -- will construct and return a GeometryCollection if necessary (for example if the model field is MultiPolygonField while the mapped shapefile only contains Polygons).
[ "Verifies", "the", "geometry", "--", "will", "construct", "and", "return", "a", "GeometryCollection", "if", "necessary", "(", "for", "example", "if", "the", "model", "field", "is", "MultiPolygonField", "while", "the", "mapped", "shapefile", "only", "contains", "Polygons", ")", "." ]
def verify_geom(self, geom, model_field): """ Verifies the geometry -- will construct and return a GeometryCollection if necessary (for example if the model field is MultiPolygonField while the mapped shapefile only contains Polygons). """ # Downgrade a 3D geom to a 2D one, if necessary. if self.coord_dim != geom.coord_dim: geom.coord_dim = self.coord_dim if self.make_multi(geom.geom_type, model_field): # Constructing a multi-geometry type to contain the single geometry multi_type = self.MULTI_TYPES[geom.geom_type.num] g = OGRGeometry(multi_type) g.add(geom) else: g = geom # Transforming the geometry with our Coordinate Transformation object, # but only if the class variable `transform` is set w/a CoordTransform # object. if self.transform: g.transform(self.transform) # Returning the WKT of the geometry. return g.wkt
[ "def", "verify_geom", "(", "self", ",", "geom", ",", "model_field", ")", ":", "# Downgrade a 3D geom to a 2D one, if necessary.", "if", "self", ".", "coord_dim", "!=", "geom", ".", "coord_dim", ":", "geom", ".", "coord_dim", "=", "self", ".", "coord_dim", "if", "self", ".", "make_multi", "(", "geom", ".", "geom_type", ",", "model_field", ")", ":", "# Constructing a multi-geometry type to contain the single geometry", "multi_type", "=", "self", ".", "MULTI_TYPES", "[", "geom", ".", "geom_type", ".", "num", "]", "g", "=", "OGRGeometry", "(", "multi_type", ")", "g", ".", "add", "(", "geom", ")", "else", ":", "g", "=", "geom", "# Transforming the geometry with our Coordinate Transformation object,", "# but only if the class variable `transform` is set w/a CoordTransform", "# object.", "if", "self", ".", "transform", ":", "g", ".", "transform", "(", "self", ".", "transform", ")", "# Returning the WKT of the geometry.", "return", "g", ".", "wkt" ]
https://github.com/JaniceWuo/MovieRecommend/blob/4c86db64ca45598917d304f535413df3bc9fea65/movierecommend/venv1/Lib/site-packages/django/contrib/gis/utils/layermapping.py#L422-L447
tensorwerk/hangar-py
a6deb22854a6c9e9709011b91c1c0eeda7f47bb0
src/hangar/records/commiting.py
python
number_commits_recorded
(refenv)
return len(list_all_commits(refenv))
Returns the total number of commits made across all history.
Returns the total number of commits made across all history.
[ "Returns", "the", "total", "number", "of", "commits", "made", "across", "all", "history", "." ]
def number_commits_recorded(refenv) -> int: """Returns the total number of commits made across all history. """ return len(list_all_commits(refenv))
[ "def", "number_commits_recorded", "(", "refenv", ")", "->", "int", ":", "return", "len", "(", "list_all_commits", "(", "refenv", ")", ")" ]
https://github.com/tensorwerk/hangar-py/blob/a6deb22854a6c9e9709011b91c1c0eeda7f47bb0/src/hangar/records/commiting.py#L700-L703
pypa/pipenv
b21baade71a86ab3ee1429f71fbc14d4f95fb75d
pipenv/patched/notpip/_vendor/distlib/database.py
python
_Cache.__init__
(self)
Initialise an instance. There is normally one for each DistributionPath.
Initialise an instance. There is normally one for each DistributionPath.
[ "Initialise", "an", "instance", ".", "There", "is", "normally", "one", "for", "each", "DistributionPath", "." ]
def __init__(self): """ Initialise an instance. There is normally one for each DistributionPath. """ self.name = {} self.path = {} self.generated = False
[ "def", "__init__", "(", "self", ")", ":", "self", ".", "name", "=", "{", "}", "self", ".", "path", "=", "{", "}", "self", ".", "generated", "=", "False" ]
https://github.com/pypa/pipenv/blob/b21baade71a86ab3ee1429f71fbc14d4f95fb75d/pipenv/patched/notpip/_vendor/distlib/database.py#L49-L55
isce-framework/isce2
0e5114a8bede3caf1d533d98e44dfe4b983e3f48
components/isceobj/TopsProc/runDenseOffsets.py
python
runDenseOffsetsCPU
(self)
Estimate dense offset field between merged reference bursts and secondary bursts.
Estimate dense offset field between merged reference bursts and secondary bursts.
[ "Estimate", "dense", "offset", "field", "between", "merged", "reference", "bursts", "and", "secondary", "bursts", "." ]
def runDenseOffsetsCPU(self): ''' Estimate dense offset field between merged reference bursts and secondary bursts. ''' from mroipac.ampcor.DenseAmpcor import DenseAmpcor os.environ['VRT_SHARED_SOURCE'] = "0" print('\n============================================================') print('Configuring DenseAmpcor object for processing...\n') ### Determine appropriate filenames mf = 'reference.slc' sf = 'secondary.slc' if not ((self.numberRangeLooks == 1) and (self.numberAzimuthLooks==1)): mf += '.full' sf += '.full' reference = os.path.join(self._insar.mergedDirname, mf) secondary = os.path.join(self._insar.mergedDirname, sf) ####For this module currently, we need to create an actual file on disk for infile in [reference,secondary]: if os.path.isfile(infile): continue cmd = 'gdal_translate -of ENVI {0}.vrt {0}'.format(infile) status = os.system(cmd) if status: raise Exception('{0} could not be executed'.format(status)) ### Load the reference object m = isceobj.createSlcImage() m.load(reference + '.xml') m.setAccessMode('READ') # m.createImage() ### Load the secondary object s = isceobj.createSlcImage() s.load(secondary + '.xml') s.setAccessMode('READ') # s.createImage() width = m.getWidth() length = m.getLength() objOffset = DenseAmpcor(name='dense') objOffset.configure() # objOffset.numberThreads = 1 ### Configure dense Ampcor object print('\nReference frame: %s' % (mf)) print('Secondary frame: %s' % (sf)) print('Main window size width: %d' % (self.winwidth)) print('Main window size height: %d' % (self.winhgt)) print('Search window size width: %d' % (self.srcwidth)) print('Search window size height: %d' % (self.srchgt)) print('Skip sample across: %d' % (self.skipwidth)) print('Skip sample down: %d' % (self.skiphgt)) print('Field margin: %d' % (self.margin)) print('Oversampling factor: %d' % (self.oversample)) print('Gross offset across: %d' % (self.rgshift)) print('Gross offset down: %d\n' % (self.azshift)) objOffset.setWindowSizeWidth(self.winwidth) objOffset.setWindowSizeHeight(self.winhgt) objOffset.setSearchWindowSizeWidth(self.srcwidth) objOffset.setSearchWindowSizeHeight(self.srchgt) objOffset.skipSampleAcross = self.skipwidth objOffset.skipSampleDown = self.skiphgt objOffset.oversamplingFactor = self.oversample objOffset.setAcrossGrossOffset(self.rgshift) objOffset.setDownGrossOffset(self.azshift) objOffset.setFirstPRF(1.0) objOffset.setSecondPRF(1.0) if m.dataType.startswith('C'): objOffset.setImageDataType1('mag') else: objOffset.setImageDataType1('real') if s.dataType.startswith('C'): objOffset.setImageDataType2('mag') else: objOffset.setImageDataType2('real') objOffset.offsetImageName = os.path.join(self._insar.mergedDirname, self._insar.offsetfile) objOffset.snrImageName = os.path.join(self._insar.mergedDirname, self._insar.snrfile) objOffset.covImageName = os.path.join(self._insar.mergedDirname, self._insar.covfile) print('Output dense offsets file name: %s' % (objOffset.offsetImageName)) print('Output SNR file name: %s' % (objOffset.snrImageName)) print('Output covariance file name: %s' % (objOffset.covImageName)) print('\n======================================') print('Running dense ampcor...') print('======================================\n') objOffset.denseampcor(m, s) ### Where the magic happens... ### Store params for later self._insar.offset_width = objOffset.offsetCols self._insar.offset_length = objOffset.offsetLines self._insar.offset_top = objOffset.locationDown[0][0] self._insar.offset_left = objOffset.locationAcross[0][0]
[ "def", "runDenseOffsetsCPU", "(", "self", ")", ":", "from", "mroipac", ".", "ampcor", ".", "DenseAmpcor", "import", "DenseAmpcor", "os", ".", "environ", "[", "'VRT_SHARED_SOURCE'", "]", "=", "\"0\"", "print", "(", "'\\n============================================================'", ")", "print", "(", "'Configuring DenseAmpcor object for processing...\\n'", ")", "### Determine appropriate filenames", "mf", "=", "'reference.slc'", "sf", "=", "'secondary.slc'", "if", "not", "(", "(", "self", ".", "numberRangeLooks", "==", "1", ")", "and", "(", "self", ".", "numberAzimuthLooks", "==", "1", ")", ")", ":", "mf", "+=", "'.full'", "sf", "+=", "'.full'", "reference", "=", "os", ".", "path", ".", "join", "(", "self", ".", "_insar", ".", "mergedDirname", ",", "mf", ")", "secondary", "=", "os", ".", "path", ".", "join", "(", "self", ".", "_insar", ".", "mergedDirname", ",", "sf", ")", "####For this module currently, we need to create an actual file on disk", "for", "infile", "in", "[", "reference", ",", "secondary", "]", ":", "if", "os", ".", "path", ".", "isfile", "(", "infile", ")", ":", "continue", "cmd", "=", "'gdal_translate -of ENVI {0}.vrt {0}'", ".", "format", "(", "infile", ")", "status", "=", "os", ".", "system", "(", "cmd", ")", "if", "status", ":", "raise", "Exception", "(", "'{0} could not be executed'", ".", "format", "(", "status", ")", ")", "### Load the reference object", "m", "=", "isceobj", ".", "createSlcImage", "(", ")", "m", ".", "load", "(", "reference", "+", "'.xml'", ")", "m", ".", "setAccessMode", "(", "'READ'", ")", "# m.createImage()", "### Load the secondary object", "s", "=", "isceobj", ".", "createSlcImage", "(", ")", "s", ".", "load", "(", "secondary", "+", "'.xml'", ")", "s", ".", "setAccessMode", "(", "'READ'", ")", "# s.createImage()", "width", "=", "m", ".", "getWidth", "(", ")", "length", "=", "m", ".", "getLength", "(", ")", "objOffset", "=", "DenseAmpcor", "(", "name", "=", "'dense'", ")", "objOffset", ".", "configure", "(", ")", "# objOffset.numberThreads = 1", "### Configure dense Ampcor object", "print", "(", "'\\nReference frame: %s'", "%", "(", "mf", ")", ")", "print", "(", "'Secondary frame: %s'", "%", "(", "sf", ")", ")", "print", "(", "'Main window size width: %d'", "%", "(", "self", ".", "winwidth", ")", ")", "print", "(", "'Main window size height: %d'", "%", "(", "self", ".", "winhgt", ")", ")", "print", "(", "'Search window size width: %d'", "%", "(", "self", ".", "srcwidth", ")", ")", "print", "(", "'Search window size height: %d'", "%", "(", "self", ".", "srchgt", ")", ")", "print", "(", "'Skip sample across: %d'", "%", "(", "self", ".", "skipwidth", ")", ")", "print", "(", "'Skip sample down: %d'", "%", "(", "self", ".", "skiphgt", ")", ")", "print", "(", "'Field margin: %d'", "%", "(", "self", ".", "margin", ")", ")", "print", "(", "'Oversampling factor: %d'", "%", "(", "self", ".", "oversample", ")", ")", "print", "(", "'Gross offset across: %d'", "%", "(", "self", ".", "rgshift", ")", ")", "print", "(", "'Gross offset down: %d\\n'", "%", "(", "self", ".", "azshift", ")", ")", "objOffset", ".", "setWindowSizeWidth", "(", "self", ".", "winwidth", ")", "objOffset", ".", "setWindowSizeHeight", "(", "self", ".", "winhgt", ")", "objOffset", ".", "setSearchWindowSizeWidth", "(", "self", ".", "srcwidth", ")", "objOffset", ".", "setSearchWindowSizeHeight", "(", "self", ".", "srchgt", ")", "objOffset", ".", "skipSampleAcross", "=", "self", ".", "skipwidth", "objOffset", ".", "skipSampleDown", "=", "self", ".", "skiphgt", "objOffset", ".", "oversamplingFactor", "=", "self", ".", "oversample", "objOffset", ".", "setAcrossGrossOffset", "(", "self", ".", "rgshift", ")", "objOffset", ".", "setDownGrossOffset", "(", "self", ".", "azshift", ")", "objOffset", ".", "setFirstPRF", "(", "1.0", ")", "objOffset", ".", "setSecondPRF", "(", "1.0", ")", "if", "m", ".", "dataType", ".", "startswith", "(", "'C'", ")", ":", "objOffset", ".", "setImageDataType1", "(", "'mag'", ")", "else", ":", "objOffset", ".", "setImageDataType1", "(", "'real'", ")", "if", "s", ".", "dataType", ".", "startswith", "(", "'C'", ")", ":", "objOffset", ".", "setImageDataType2", "(", "'mag'", ")", "else", ":", "objOffset", ".", "setImageDataType2", "(", "'real'", ")", "objOffset", ".", "offsetImageName", "=", "os", ".", "path", ".", "join", "(", "self", ".", "_insar", ".", "mergedDirname", ",", "self", ".", "_insar", ".", "offsetfile", ")", "objOffset", ".", "snrImageName", "=", "os", ".", "path", ".", "join", "(", "self", ".", "_insar", ".", "mergedDirname", ",", "self", ".", "_insar", ".", "snrfile", ")", "objOffset", ".", "covImageName", "=", "os", ".", "path", ".", "join", "(", "self", ".", "_insar", ".", "mergedDirname", ",", "self", ".", "_insar", ".", "covfile", ")", "print", "(", "'Output dense offsets file name: %s'", "%", "(", "objOffset", ".", "offsetImageName", ")", ")", "print", "(", "'Output SNR file name: %s'", "%", "(", "objOffset", ".", "snrImageName", ")", ")", "print", "(", "'Output covariance file name: %s'", "%", "(", "objOffset", ".", "covImageName", ")", ")", "print", "(", "'\\n======================================'", ")", "print", "(", "'Running dense ampcor...'", ")", "print", "(", "'======================================\\n'", ")", "objOffset", ".", "denseampcor", "(", "m", ",", "s", ")", "### Where the magic happens...", "### Store params for later", "self", ".", "_insar", ".", "offset_width", "=", "objOffset", ".", "offsetCols", "self", ".", "_insar", ".", "offset_length", "=", "objOffset", ".", "offsetLines", "self", ".", "_insar", ".", "offset_top", "=", "objOffset", ".", "locationDown", "[", "0", "]", "[", "0", "]", "self", ".", "_insar", ".", "offset_left", "=", "objOffset", ".", "locationAcross", "[", "0", "]", "[", "0", "]" ]
https://github.com/isce-framework/isce2/blob/0e5114a8bede3caf1d533d98e44dfe4b983e3f48/components/isceobj/TopsProc/runDenseOffsets.py#L33-L136
pyvista/pyvista
012dbb95a9aae406c3cd4cd94fc8c477f871e426
pyvista/examples/downloads.py
python
download_crater_topo
(load=True)
return _download_and_read('Ruapehu_mag_dem_15m_NZTM.vtk', load=load)
Download crater dataset. Parameters ---------- load : bool, optional Load the dataset after downloading it when ``True``. Set this to ``False`` and only the filename will be returned. Returns ------- pyvista.UniformGrid or str DataSet or filename depending on ``load``. Examples -------- >>> from pyvista import examples >>> dataset = examples.download_crater_topo() >>> dataset.plot(cmap="gist_earth", cpos="xy") This dataset is used in the following examples: * :ref:`terrain_following_mesh_example` * :ref:`ref_topo_map_example`
Download crater dataset.
[ "Download", "crater", "dataset", "." ]
def download_crater_topo(load=True): # pragma: no cover """Download crater dataset. Parameters ---------- load : bool, optional Load the dataset after downloading it when ``True``. Set this to ``False`` and only the filename will be returned. Returns ------- pyvista.UniformGrid or str DataSet or filename depending on ``load``. Examples -------- >>> from pyvista import examples >>> dataset = examples.download_crater_topo() >>> dataset.plot(cmap="gist_earth", cpos="xy") This dataset is used in the following examples: * :ref:`terrain_following_mesh_example` * :ref:`ref_topo_map_example` """ return _download_and_read('Ruapehu_mag_dem_15m_NZTM.vtk', load=load)
[ "def", "download_crater_topo", "(", "load", "=", "True", ")", ":", "# pragma: no cover", "return", "_download_and_read", "(", "'Ruapehu_mag_dem_15m_NZTM.vtk'", ",", "load", "=", "load", ")" ]
https://github.com/pyvista/pyvista/blob/012dbb95a9aae406c3cd4cd94fc8c477f871e426/pyvista/examples/downloads.py#L2479-L2505
nschaetti/EchoTorch
cba209c49e0fda73172d2e853b85c747f9f5117e
echotorch/base_tensors.py
python
BaseTensor.__getattr__
(self, item)
r"""Override attribute getter and redirect unknown attributes to wrapper tensor.
r"""Override attribute getter and redirect unknown attributes to wrapper tensor.
[ "r", "Override", "attribute", "getter", "and", "redirect", "unknown", "attributes", "to", "wrapper", "tensor", "." ]
def __getattr__(self, item): r"""Override attribute getter and redirect unknown attributes to wrapper tensor. """ if hasattr(self._tensor, item): return getattr(self._tensor, item) else: raise AttributeError( "AttributeError: Neither '{}' object nor its wrapped " "tensor has no attribute '{}'".format(self.__class__.__name__, item) )
[ "def", "__getattr__", "(", "self", ",", "item", ")", ":", "if", "hasattr", "(", "self", ".", "_tensor", ",", "item", ")", ":", "return", "getattr", "(", "self", ".", "_tensor", ",", "item", ")", "else", ":", "raise", "AttributeError", "(", "\"AttributeError: Neither '{}' object nor its wrapped \"", "\"tensor has no attribute '{}'\"", ".", "format", "(", "self", ".", "__class__", ".", "__name__", ",", "item", ")", ")" ]
https://github.com/nschaetti/EchoTorch/blob/cba209c49e0fda73172d2e853b85c747f9f5117e/echotorch/base_tensors.py#L310-L319
JaniceWuo/MovieRecommend
4c86db64ca45598917d304f535413df3bc9fea65
movierecommend/venv1/Lib/site-packages/django/db/models/fields/__init__.py
python
CommaSeparatedIntegerField.formfield
(self, **kwargs)
return super(CommaSeparatedIntegerField, self).formfield(**defaults)
[]
def formfield(self, **kwargs): defaults = { 'error_messages': { 'invalid': _('Enter only digits separated by commas.'), } } defaults.update(kwargs) return super(CommaSeparatedIntegerField, self).formfield(**defaults)
[ "def", "formfield", "(", "self", ",", "*", "*", "kwargs", ")", ":", "defaults", "=", "{", "'error_messages'", ":", "{", "'invalid'", ":", "_", "(", "'Enter only digits separated by commas.'", ")", ",", "}", "}", "defaults", ".", "update", "(", "kwargs", ")", "return", "super", "(", "CommaSeparatedIntegerField", ",", "self", ")", ".", "formfield", "(", "*", "*", "defaults", ")" ]
https://github.com/JaniceWuo/MovieRecommend/blob/4c86db64ca45598917d304f535413df3bc9fea65/movierecommend/venv1/Lib/site-packages/django/db/models/fields/__init__.py#L1128-L1135
MDudek-ICS/TRISIS-TRITON-HATMAN
15a00af7fd1040f0430729d024427601f84886a1
decompiled_code/library/random.py
python
Random.randint
(self, a, b)
return self.randrange(a, b + 1)
Return random integer in range [a, b], including both end points.
Return random integer in range [a, b], including both end points.
[ "Return", "random", "integer", "in", "range", "[", "a", "b", "]", "including", "both", "end", "points", "." ]
def randint(self, a, b): """Return random integer in range [a, b], including both end points. """ return self.randrange(a, b + 1)
[ "def", "randint", "(", "self", ",", "a", ",", "b", ")", ":", "return", "self", ".", "randrange", "(", "a", ",", "b", "+", "1", ")" ]
https://github.com/MDudek-ICS/TRISIS-TRITON-HATMAN/blob/15a00af7fd1040f0430729d024427601f84886a1/decompiled_code/library/random.py#L201-L204
portante/pycscope
d991da9d45c6d0a4c6617c267da238a5f1bd2bdf
pycscope/__init__.py
python
replaceNodeType
(treeList)
return treeList
Replaces the 0th element in the list with the name that corresponds to its node value.
Replaces the 0th element in the list with the name that corresponds to its node value.
[ "Replaces", "the", "0th", "element", "in", "the", "list", "with", "the", "name", "that", "corresponds", "to", "its", "node", "value", "." ]
def replaceNodeType(treeList): """ Replaces the 0th element in the list with the name that corresponds to its node value. """ global nodeNames # Replace node num with name treeList[0] = nodeNames[treeList[0]] # Recurse for i in range(1, len(treeList)): if type(treeList[i]) == tuple: treeList[i] = list(treeList[i]) if type(treeList[i]) == list: replaceNodeType(treeList[i]) return treeList
[ "def", "replaceNodeType", "(", "treeList", ")", ":", "global", "nodeNames", "# Replace node num with name", "treeList", "[", "0", "]", "=", "nodeNames", "[", "treeList", "[", "0", "]", "]", "# Recurse", "for", "i", "in", "range", "(", "1", ",", "len", "(", "treeList", ")", ")", ":", "if", "type", "(", "treeList", "[", "i", "]", ")", "==", "tuple", ":", "treeList", "[", "i", "]", "=", "list", "(", "treeList", "[", "i", "]", ")", "if", "type", "(", "treeList", "[", "i", "]", ")", "==", "list", ":", "replaceNodeType", "(", "treeList", "[", "i", "]", ")", "return", "treeList" ]
https://github.com/portante/pycscope/blob/d991da9d45c6d0a4c6617c267da238a5f1bd2bdf/pycscope/__init__.py#L276-L291
stephenmcd/gnotty
bea3762dc9cbc3cb21a5ae7224091cf027273c40
gnotty/bots/events.py
python
on
(event, *args, **kwargs)
return wrapper
Event method wrapper for bot mixins. When a bot is constructed, its metaclass inspects all members of all base classes, and looks for methods marked with an event attribute which is assigned via this wrapper. It then stores all the methods in a dict that maps event names to lists of these methods, which are each called when the event occurs.
Event method wrapper for bot mixins. When a bot is constructed, its metaclass inspects all members of all base classes, and looks for methods marked with an event attribute which is assigned via this wrapper. It then stores all the methods in a dict that maps event names to lists of these methods, which are each called when the event occurs.
[ "Event", "method", "wrapper", "for", "bot", "mixins", ".", "When", "a", "bot", "is", "constructed", "its", "metaclass", "inspects", "all", "members", "of", "all", "base", "classes", "and", "looks", "for", "methods", "marked", "with", "an", "event", "attribute", "which", "is", "assigned", "via", "this", "wrapper", ".", "It", "then", "stores", "all", "the", "methods", "in", "a", "dict", "that", "maps", "event", "names", "to", "lists", "of", "these", "methods", "which", "are", "each", "called", "when", "the", "event", "occurs", "." ]
def on(event, *args, **kwargs): """ Event method wrapper for bot mixins. When a bot is constructed, its metaclass inspects all members of all base classes, and looks for methods marked with an event attribute which is assigned via this wrapper. It then stores all the methods in a dict that maps event names to lists of these methods, which are each called when the event occurs. """ def wrapper(func): for i, arg in args: kwargs[i] = arg func.event = Event(event, kwargs) return func return wrapper
[ "def", "on", "(", "event", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "def", "wrapper", "(", "func", ")", ":", "for", "i", ",", "arg", "in", "args", ":", "kwargs", "[", "i", "]", "=", "arg", "func", ".", "event", "=", "Event", "(", "event", ",", "kwargs", ")", "return", "func", "return", "wrapper" ]
https://github.com/stephenmcd/gnotty/blob/bea3762dc9cbc3cb21a5ae7224091cf027273c40/gnotty/bots/events.py#L8-L22
holzschu/Carnets
44effb10ddfc6aa5c8b0687582a724ba82c6b547
Library/lib/python3.7/site-packages/Pillow-6.0.0-py3.7-macosx-10.9-x86_64.egg/PIL/Image.py
python
Image.toqpixmap
(self)
return ImageQt.toqpixmap(self)
Returns a QPixmap copy of this image
Returns a QPixmap copy of this image
[ "Returns", "a", "QPixmap", "copy", "of", "this", "image" ]
def toqpixmap(self): """Returns a QPixmap copy of this image""" from . import ImageQt if not ImageQt.qt_is_installed: raise ImportError("Qt bindings are not installed") return ImageQt.toqpixmap(self)
[ "def", "toqpixmap", "(", "self", ")", ":", "from", ".", "import", "ImageQt", "if", "not", "ImageQt", ".", "qt_is_installed", ":", "raise", "ImportError", "(", "\"Qt bindings are not installed\"", ")", "return", "ImageQt", ".", "toqpixmap", "(", "self", ")" ]
https://github.com/holzschu/Carnets/blob/44effb10ddfc6aa5c8b0687582a724ba82c6b547/Library/lib/python3.7/site-packages/Pillow-6.0.0-py3.7-macosx-10.9-x86_64.egg/PIL/Image.py#L2307-L2312
Esri/ArcREST
ab240fde2b0200f61d4a5f6df033516e53f2f416
src/arcrest/manageorg/_parameters.py
python
PortalParameters.canSignInIDP
(self)
return self._canSignInIDP
gets/sets the property value canSignInIDP
gets/sets the property value canSignInIDP
[ "gets", "/", "sets", "the", "property", "value", "canSignInIDP" ]
def canSignInIDP(self): """gets/sets the property value canSignInIDP""" return self._canSignInIDP
[ "def", "canSignInIDP", "(", "self", ")", ":", "return", "self", ".", "_canSignInIDP" ]
https://github.com/Esri/ArcREST/blob/ab240fde2b0200f61d4a5f6df033516e53f2f416/src/arcrest/manageorg/_parameters.py#L850-L852
svenkreiss/pysparkling
f0e8e8d039f3313c2693b7c7576cb1b7ba5a6d78
pysparkling/sql/functions.py
python
log1p
(e)
return col(Log1p(parse(e)))
:rtype: Column
:rtype: Column
[ ":", "rtype", ":", "Column" ]
def log1p(e): """ :rtype: Column """ return col(Log1p(parse(e)))
[ "def", "log1p", "(", "e", ")", ":", "return", "col", "(", "Log1p", "(", "parse", "(", "e", ")", ")", ")" ]
https://github.com/svenkreiss/pysparkling/blob/f0e8e8d039f3313c2693b7c7576cb1b7ba5a6d78/pysparkling/sql/functions.py#L1003-L1007
home-assistant/core
265ebd17a3f17ed8dc1e9bdede03ac8e323f1ab1
homeassistant/components/cloud/prefs.py
python
CloudPreferences._empty_config
(username)
return { PREF_ALEXA_DEFAULT_EXPOSE: DEFAULT_EXPOSED_DOMAINS, PREF_ALEXA_ENTITY_CONFIGS: {}, PREF_CLOUD_USER: None, PREF_CLOUDHOOKS: {}, PREF_ENABLE_ALEXA: True, PREF_ENABLE_GOOGLE: True, PREF_ENABLE_REMOTE: False, PREF_GOOGLE_DEFAULT_EXPOSE: DEFAULT_EXPOSED_DOMAINS, PREF_GOOGLE_ENTITY_CONFIGS: {}, PREF_GOOGLE_LOCAL_WEBHOOK_ID: webhook.async_generate_id(), PREF_GOOGLE_SECURE_DEVICES_PIN: None, PREF_USERNAME: username, }
Return an empty config.
Return an empty config.
[ "Return", "an", "empty", "config", "." ]
def _empty_config(username): """Return an empty config.""" return { PREF_ALEXA_DEFAULT_EXPOSE: DEFAULT_EXPOSED_DOMAINS, PREF_ALEXA_ENTITY_CONFIGS: {}, PREF_CLOUD_USER: None, PREF_CLOUDHOOKS: {}, PREF_ENABLE_ALEXA: True, PREF_ENABLE_GOOGLE: True, PREF_ENABLE_REMOTE: False, PREF_GOOGLE_DEFAULT_EXPOSE: DEFAULT_EXPOSED_DOMAINS, PREF_GOOGLE_ENTITY_CONFIGS: {}, PREF_GOOGLE_LOCAL_WEBHOOK_ID: webhook.async_generate_id(), PREF_GOOGLE_SECURE_DEVICES_PIN: None, PREF_USERNAME: username, }
[ "def", "_empty_config", "(", "username", ")", ":", "return", "{", "PREF_ALEXA_DEFAULT_EXPOSE", ":", "DEFAULT_EXPOSED_DOMAINS", ",", "PREF_ALEXA_ENTITY_CONFIGS", ":", "{", "}", ",", "PREF_CLOUD_USER", ":", "None", ",", "PREF_CLOUDHOOKS", ":", "{", "}", ",", "PREF_ENABLE_ALEXA", ":", "True", ",", "PREF_ENABLE_GOOGLE", ":", "True", ",", "PREF_ENABLE_REMOTE", ":", "False", ",", "PREF_GOOGLE_DEFAULT_EXPOSE", ":", "DEFAULT_EXPOSED_DOMAINS", ",", "PREF_GOOGLE_ENTITY_CONFIGS", ":", "{", "}", ",", "PREF_GOOGLE_LOCAL_WEBHOOK_ID", ":", "webhook", ".", "async_generate_id", "(", ")", ",", "PREF_GOOGLE_SECURE_DEVICES_PIN", ":", "None", ",", "PREF_USERNAME", ":", "username", ",", "}" ]
https://github.com/home-assistant/core/blob/265ebd17a3f17ed8dc1e9bdede03ac8e323f1ab1/homeassistant/components/cloud/prefs.py#L310-L325
devitocodes/devito
6abd441e3f5f091775ad332be6b95e017b8cbd16
examples/seismic/viscoacoustic/wavesolver.py
python
ViscoacousticWaveSolver.jacobian
(self, dmin, src=None, rec=None, p=None, P=None, rp=None, rP=None, v=None, dv=None, model=None, **kwargs)
return rec, p, P, summary
Linearized Born modelling function that creates the necessary data objects for running an adjoint modelling operator. Parameters ---------- src : SparseTimeFunction or array_like, optional Time series data for the injected source term. rec : SparseTimeFunction or array_like, optional The interpolated receiver data. p : TimeFunction, optional The forward wavefield. P : TimeFunction, optional The linearized wavefield. rp : TimeFunction, optional The computed attenuation memory variable. rP : TimeFunction, optional The computed attenuation memory variable. v : VectorTimeFunction, optional The computed particle velocity. dv : VectorTimeFunction, optional The computed particle velocity. model : Model, optional Object containing the physical parameters. vp : Function or float, optional The time-constant velocity. qp : Function, optional The P-wave quality factor. b : Function, optional The time-constant inverse density.
Linearized Born modelling function that creates the necessary data objects for running an adjoint modelling operator.
[ "Linearized", "Born", "modelling", "function", "that", "creates", "the", "necessary", "data", "objects", "for", "running", "an", "adjoint", "modelling", "operator", "." ]
def jacobian(self, dmin, src=None, rec=None, p=None, P=None, rp=None, rP=None, v=None, dv=None, model=None, **kwargs): """ Linearized Born modelling function that creates the necessary data objects for running an adjoint modelling operator. Parameters ---------- src : SparseTimeFunction or array_like, optional Time series data for the injected source term. rec : SparseTimeFunction or array_like, optional The interpolated receiver data. p : TimeFunction, optional The forward wavefield. P : TimeFunction, optional The linearized wavefield. rp : TimeFunction, optional The computed attenuation memory variable. rP : TimeFunction, optional The computed attenuation memory variable. v : VectorTimeFunction, optional The computed particle velocity. dv : VectorTimeFunction, optional The computed particle velocity. model : Model, optional Object containing the physical parameters. vp : Function or float, optional The time-constant velocity. qp : Function, optional The P-wave quality factor. b : Function, optional The time-constant inverse density. """ # Source term is read-only, so re-use the default src = src or self.geometry.src # Create a new receiver object to store the result rec = rec or self.geometry.rec # Create the forward wavefields u and U if not provided p = p or TimeFunction(name='p', grid=self.model.grid, time_order=self.time_order, space_order=self.space_order, staggered=NODE) P = P or TimeFunction(name='P', grid=self.model.grid, time_order=self.time_order, space_order=self.space_order, staggered=NODE) # Memory variable: rp = rp or TimeFunction(name='rp', grid=self.model.grid, time_order=self.time_order, space_order=self.space_order, staggered=NODE) # Memory variable: rP = rP or TimeFunction(name='rP', grid=self.model.grid, time_order=self.time_order, space_order=self.space_order, staggered=NODE) if self.time_order == 1: v = v or VectorTimeFunction(name="v", grid=self.model.grid, time_order=self.time_order, space_order=self.space_order) kwargs.update({k.name: k for k in v}) dv = dv or VectorTimeFunction(name="dv", grid=self.model.grid, time_order=self.time_order, space_order=self.space_order) kwargs.update({k.name: k for k in dv}) model = model or self.model # Pick vp and physical parameters from model unless explicitly provided kwargs.update(model.physical_params(**kwargs)) # Execute operator and return wavefield and receiver data summary = self.op_born().apply(dm=dmin, p=p, P=P, src=src, rec=rec, rp=rp, rP=rP, dt=kwargs.pop('dt', self.dt), **kwargs) return rec, p, P, summary
[ "def", "jacobian", "(", "self", ",", "dmin", ",", "src", "=", "None", ",", "rec", "=", "None", ",", "p", "=", "None", ",", "P", "=", "None", ",", "rp", "=", "None", ",", "rP", "=", "None", ",", "v", "=", "None", ",", "dv", "=", "None", ",", "model", "=", "None", ",", "*", "*", "kwargs", ")", ":", "# Source term is read-only, so re-use the default", "src", "=", "src", "or", "self", ".", "geometry", ".", "src", "# Create a new receiver object to store the result", "rec", "=", "rec", "or", "self", ".", "geometry", ".", "rec", "# Create the forward wavefields u and U if not provided", "p", "=", "p", "or", "TimeFunction", "(", "name", "=", "'p'", ",", "grid", "=", "self", ".", "model", ".", "grid", ",", "time_order", "=", "self", ".", "time_order", ",", "space_order", "=", "self", ".", "space_order", ",", "staggered", "=", "NODE", ")", "P", "=", "P", "or", "TimeFunction", "(", "name", "=", "'P'", ",", "grid", "=", "self", ".", "model", ".", "grid", ",", "time_order", "=", "self", ".", "time_order", ",", "space_order", "=", "self", ".", "space_order", ",", "staggered", "=", "NODE", ")", "# Memory variable:", "rp", "=", "rp", "or", "TimeFunction", "(", "name", "=", "'rp'", ",", "grid", "=", "self", ".", "model", ".", "grid", ",", "time_order", "=", "self", ".", "time_order", ",", "space_order", "=", "self", ".", "space_order", ",", "staggered", "=", "NODE", ")", "# Memory variable:", "rP", "=", "rP", "or", "TimeFunction", "(", "name", "=", "'rP'", ",", "grid", "=", "self", ".", "model", ".", "grid", ",", "time_order", "=", "self", ".", "time_order", ",", "space_order", "=", "self", ".", "space_order", ",", "staggered", "=", "NODE", ")", "if", "self", ".", "time_order", "==", "1", ":", "v", "=", "v", "or", "VectorTimeFunction", "(", "name", "=", "\"v\"", ",", "grid", "=", "self", ".", "model", ".", "grid", ",", "time_order", "=", "self", ".", "time_order", ",", "space_order", "=", "self", ".", "space_order", ")", "kwargs", ".", "update", "(", "{", "k", ".", "name", ":", "k", "for", "k", "in", "v", "}", ")", "dv", "=", "dv", "or", "VectorTimeFunction", "(", "name", "=", "\"dv\"", ",", "grid", "=", "self", ".", "model", ".", "grid", ",", "time_order", "=", "self", ".", "time_order", ",", "space_order", "=", "self", ".", "space_order", ")", "kwargs", ".", "update", "(", "{", "k", ".", "name", ":", "k", "for", "k", "in", "dv", "}", ")", "model", "=", "model", "or", "self", ".", "model", "# Pick vp and physical parameters from model unless explicitly provided", "kwargs", ".", "update", "(", "model", ".", "physical_params", "(", "*", "*", "kwargs", ")", ")", "# Execute operator and return wavefield and receiver data", "summary", "=", "self", ".", "op_born", "(", ")", ".", "apply", "(", "dm", "=", "dmin", ",", "p", "=", "p", ",", "P", "=", "P", ",", "src", "=", "src", ",", "rec", "=", "rec", ",", "rp", "=", "rp", ",", "rP", "=", "rP", ",", "dt", "=", "kwargs", ".", "pop", "(", "'dt'", ",", "self", ".", "dt", ")", ",", "*", "*", "kwargs", ")", "return", "rec", ",", "p", ",", "P", ",", "summary" ]
https://github.com/devitocodes/devito/blob/6abd441e3f5f091775ad332be6b95e017b8cbd16/examples/seismic/viscoacoustic/wavesolver.py#L324-L398
pventuzelo/octopus
e8b8c5a9d5f6d9c63605afe9ef1528ab481ec983
octopus/arch/wasm/instruction.py
python
WasmInstruction.__init__
(self, opcode, name, imm_struct, operand_size, insn_byte, pops, pushes, description, operand_interpretation=None, offset=0)
TODO
TODO
[ "TODO" ]
def __init__(self, opcode, name, imm_struct, operand_size, insn_byte, pops, pushes, description, operand_interpretation=None, offset=0): """ TODO """ self.opcode = opcode self.offset = offset self.name = name self.description = description self.operand_size = operand_size if len(insn_byte) > 1: self.operand = insn_byte[-operand_size:] # Immediate operand if any else: self.operand = None # specific interpretation of operand value self.operand_interpretation = operand_interpretation self.insn_byte = insn_byte self.pops = pops self.pushes = pushes self.imm_struct = imm_struct self.xref = list() self.ssa = None
[ "def", "__init__", "(", "self", ",", "opcode", ",", "name", ",", "imm_struct", ",", "operand_size", ",", "insn_byte", ",", "pops", ",", "pushes", ",", "description", ",", "operand_interpretation", "=", "None", ",", "offset", "=", "0", ")", ":", "self", ".", "opcode", "=", "opcode", "self", ".", "offset", "=", "offset", "self", ".", "name", "=", "name", "self", ".", "description", "=", "description", "self", ".", "operand_size", "=", "operand_size", "if", "len", "(", "insn_byte", ")", ">", "1", ":", "self", ".", "operand", "=", "insn_byte", "[", "-", "operand_size", ":", "]", "# Immediate operand if any", "else", ":", "self", ".", "operand", "=", "None", "# specific interpretation of operand value", "self", ".", "operand_interpretation", "=", "operand_interpretation", "self", ".", "insn_byte", "=", "insn_byte", "self", ".", "pops", "=", "pops", "self", ".", "pushes", "=", "pushes", "self", ".", "imm_struct", "=", "imm_struct", "self", ".", "xref", "=", "list", "(", ")", "self", ".", "ssa", "=", "None" ]
https://github.com/pventuzelo/octopus/blob/e8b8c5a9d5f6d9c63605afe9ef1528ab481ec983/octopus/arch/wasm/instruction.py#L10-L29
emesene/emesene
4548a4098310e21b16437bb36223a7f632a4f7bc
emesene/e3/cache/AvatarCache.py
python
AvatarCache.__add_entry
(self, hash_)
return time_info, hash_
add an entry to the information file with the current timestamp and the hash_ of the file that was saved return (stamp, hash)
add an entry to the information file with the current timestamp and the hash_ of the file that was saved return (stamp, hash)
[ "add", "an", "entry", "to", "the", "information", "file", "with", "the", "current", "timestamp", "and", "the", "hash_", "of", "the", "file", "that", "was", "saved", "return", "(", "stamp", "hash", ")" ]
def __add_entry(self, hash_): '''add an entry to the information file with the current timestamp and the hash_ of the file that was saved return (stamp, hash) ''' time_info = int(time.time()) handle = file(self.info_path, 'a') handle.write('%s %s\n' % (str(time_info), hash_)) handle.close() return time_info, hash_
[ "def", "__add_entry", "(", "self", ",", "hash_", ")", ":", "time_info", "=", "int", "(", "time", ".", "time", "(", ")", ")", "handle", "=", "file", "(", "self", ".", "info_path", ",", "'a'", ")", "handle", ".", "write", "(", "'%s %s\\n'", "%", "(", "str", "(", "time_info", ")", ",", "hash_", ")", ")", "handle", ".", "close", "(", ")", "return", "time_info", ",", "hash_" ]
https://github.com/emesene/emesene/blob/4548a4098310e21b16437bb36223a7f632a4f7bc/emesene/e3/cache/AvatarCache.py#L117-L127
omz/PythonistaAppTemplate
f560f93f8876d82a21d108977f90583df08d55af
PythonistaAppTemplate/PythonistaKit.framework/pylib_ext/matplotlib/axis.py
python
Tick._get_text1
(self)
Get the default Text 1 instance
Get the default Text 1 instance
[ "Get", "the", "default", "Text", "1", "instance" ]
def _get_text1(self): 'Get the default Text 1 instance' pass
[ "def", "_get_text1", "(", "self", ")", ":", "pass" ]
https://github.com/omz/PythonistaAppTemplate/blob/f560f93f8876d82a21d108977f90583df08d55af/PythonistaAppTemplate/PythonistaKit.framework/pylib_ext/matplotlib/axis.py#L201-L203
flasgger/flasgger
beb9fa781fc6b063fe3f3081b9677dd70184a2da
flasgger/commands.py
python
generate_api_schema
(file, endpoint)
return spec
Generate the swagger schema for your api.
Generate the swagger schema for your api.
[ "Generate", "the", "swagger", "schema", "for", "your", "api", "." ]
def generate_api_schema(file, endpoint): """Generate the swagger schema for your api.""" try: if endpoint is None: endpoint = current_app.swag.config["specs"][0]["endpoint"] spec = current_app.swag.get_apispecs(endpoint) except RuntimeError as e: click.echo(e, err=True) click.echo( "Possible values for endpoint are: {}".format( ", ".join( [ spec["endpoint"] for spec in current_app.swag.config["specs"] if "endpoint" in spec ] ) ), err=True, ) raise click.Abort # See also: https://github.com/flasgger/flasgger/issues/267 if is_openapi3(spec.get("openapi")): if "definitions" in spec: del spec["definitions"] json.dump(spec, file, indent=4) return spec
[ "def", "generate_api_schema", "(", "file", ",", "endpoint", ")", ":", "try", ":", "if", "endpoint", "is", "None", ":", "endpoint", "=", "current_app", ".", "swag", ".", "config", "[", "\"specs\"", "]", "[", "0", "]", "[", "\"endpoint\"", "]", "spec", "=", "current_app", ".", "swag", ".", "get_apispecs", "(", "endpoint", ")", "except", "RuntimeError", "as", "e", ":", "click", ".", "echo", "(", "e", ",", "err", "=", "True", ")", "click", ".", "echo", "(", "\"Possible values for endpoint are: {}\"", ".", "format", "(", "\", \"", ".", "join", "(", "[", "spec", "[", "\"endpoint\"", "]", "for", "spec", "in", "current_app", ".", "swag", ".", "config", "[", "\"specs\"", "]", "if", "\"endpoint\"", "in", "spec", "]", ")", ")", ",", "err", "=", "True", ",", ")", "raise", "click", ".", "Abort", "# See also: https://github.com/flasgger/flasgger/issues/267", "if", "is_openapi3", "(", "spec", ".", "get", "(", "\"openapi\"", ")", ")", ":", "if", "\"definitions\"", "in", "spec", ":", "del", "spec", "[", "\"definitions\"", "]", "json", ".", "dump", "(", "spec", ",", "file", ",", "indent", "=", "4", ")", "return", "spec" ]
https://github.com/flasgger/flasgger/blob/beb9fa781fc6b063fe3f3081b9677dd70184a2da/flasgger/commands.py#L14-L44
Qiskit/qiskit-terra
b66030e3b9192efdd3eb95cf25c6545fe0a13da4
qiskit/providers/models/backendconfiguration.py
python
GateConfig.to_dict
(self)
return out_dict
Return a dictionary format representation of the GateConfig. Returns: dict: The dictionary form of the GateConfig.
Return a dictionary format representation of the GateConfig.
[ "Return", "a", "dictionary", "format", "representation", "of", "the", "GateConfig", "." ]
def to_dict(self): """Return a dictionary format representation of the GateConfig. Returns: dict: The dictionary form of the GateConfig. """ out_dict = { "name": self.name, "parameters": self.parameters, "qasm_def": self.qasm_def, } if hasattr(self, "coupling_map"): out_dict["coupling_map"] = self.coupling_map if hasattr(self, "latency_map"): out_dict["latency_map"] = self.latency_map if hasattr(self, "conditional"): out_dict["conditional"] = self.conditional if hasattr(self, "description"): out_dict["description"] = self.description return out_dict
[ "def", "to_dict", "(", "self", ")", ":", "out_dict", "=", "{", "\"name\"", ":", "self", ".", "name", ",", "\"parameters\"", ":", "self", ".", "parameters", ",", "\"qasm_def\"", ":", "self", ".", "qasm_def", ",", "}", "if", "hasattr", "(", "self", ",", "\"coupling_map\"", ")", ":", "out_dict", "[", "\"coupling_map\"", "]", "=", "self", ".", "coupling_map", "if", "hasattr", "(", "self", ",", "\"latency_map\"", ")", ":", "out_dict", "[", "\"latency_map\"", "]", "=", "self", ".", "latency_map", "if", "hasattr", "(", "self", ",", "\"conditional\"", ")", ":", "out_dict", "[", "\"conditional\"", "]", "=", "self", ".", "conditional", "if", "hasattr", "(", "self", ",", "\"description\"", ")", ":", "out_dict", "[", "\"description\"", "]", "=", "self", ".", "description", "return", "out_dict" ]
https://github.com/Qiskit/qiskit-terra/blob/b66030e3b9192efdd3eb95cf25c6545fe0a13da4/qiskit/providers/models/backendconfiguration.py#L102-L121
pyqt/examples
843bb982917cecb2350b5f6d7f42c9b7fb142ec1
src/pyqt-official/designer/plugins/widgets/datetimeedit.py
python
PyDateEdit.setHorizontalHeaderFormat
(self, format)
[]
def setHorizontalHeaderFormat(self, format): if format != self.__horizontalHeaderFormat: self.__horizontalHeaderFormat = format if self.__cw: self.__cw.setHorizontalHeaderFormat(format)
[ "def", "setHorizontalHeaderFormat", "(", "self", ",", "format", ")", ":", "if", "format", "!=", "self", ".", "__horizontalHeaderFormat", ":", "self", ".", "__horizontalHeaderFormat", "=", "format", "if", "self", ".", "__cw", ":", "self", ".", "__cw", ".", "setHorizontalHeaderFormat", "(", "format", ")" ]
https://github.com/pyqt/examples/blob/843bb982917cecb2350b5f6d7f42c9b7fb142ec1/src/pyqt-official/designer/plugins/widgets/datetimeedit.py#L130-L134
aiqm/torchani
258e6c36cf2b35a3a672137ebe30cb923db75952
torchani/nn.py
python
Sequential.__init__
(self, *modules)
[]
def __init__(self, *modules): super().__init__(modules)
[ "def", "__init__", "(", "self", ",", "*", "modules", ")", ":", "super", "(", ")", ".", "__init__", "(", "modules", ")" ]
https://github.com/aiqm/torchani/blob/258e6c36cf2b35a3a672137ebe30cb923db75952/torchani/nn.py#L104-L105
igogo-x86/HexRaysPyTools
b8ebf757a92fda934c35c418fc55bfdd6fc8e67c
HexRaysPyTools/core/helper.py
python
get_ptr
(ea)
return ptr
Reads ptr at specified address.
Reads ptr at specified address.
[ "Reads", "ptr", "at", "specified", "address", "." ]
def get_ptr(ea): """ Reads ptr at specified address. """ if const.EA64: return idaapi.get_64bit(ea) ptr = idaapi.get_32bit(ea) if idaapi.cvar.inf.procname == "ARM": ptr &= -2 # Clear thumb bit return ptr
[ "def", "get_ptr", "(", "ea", ")", ":", "if", "const", ".", "EA64", ":", "return", "idaapi", ".", "get_64bit", "(", "ea", ")", "ptr", "=", "idaapi", ".", "get_32bit", "(", "ea", ")", "if", "idaapi", ".", "cvar", ".", "inf", ".", "procname", "==", "\"ARM\"", ":", "ptr", "&=", "-", "2", "# Clear thumb bit", "return", "ptr" ]
https://github.com/igogo-x86/HexRaysPyTools/blob/b8ebf757a92fda934c35c418fc55bfdd6fc8e67c/HexRaysPyTools/core/helper.py#L36-L43
google-research/tapas
a3e069b50c71f50b12a6e5bb3dad10fb51f6fe68
tapas/utils/span_prediction_utils.py
python
_gather_indexes
( indexes, flat_spans_2d, start_or_end, )
return span_index
Gathers indexes for start or end index. Where flat_spans_2d is a data-structure built to work with tf.gather_nd. It pairs a batch index with a start or end index. Args: indexes: <int32>[batch_size, seq_length]. flat_spans_2d: <int32>[batch_size, num_spans * 2, 2]. start_or_end: 0 for start index, 1 for end index. Returns: indexes: <int32>[batch_size, num_spans].
Gathers indexes for start or end index.
[ "Gathers", "indexes", "for", "start", "or", "end", "index", "." ]
def _gather_indexes( indexes, flat_spans_2d, start_or_end, ): """Gathers indexes for start or end index. Where flat_spans_2d is a data-structure built to work with tf.gather_nd. It pairs a batch index with a start or end index. Args: indexes: <int32>[batch_size, seq_length]. flat_spans_2d: <int32>[batch_size, num_spans * 2, 2]. start_or_end: 0 for start index, 1 for end index. Returns: indexes: <int32>[batch_size, num_spans]. """ shape = modeling.get_shape_list(flat_spans_2d, expected_rank=3) batch_size = shape[0] num_spans = shape[1] // 2 span_index = tf.gather_nd(params=indexes, indices=flat_spans_2d) span_index = tf.reshape(span_index, shape=(batch_size, num_spans, 2)) span_index = tf.slice( span_index, begin=[0, 0, start_or_end], size=[batch_size, num_spans, 1]) span_index = tf.squeeze(span_index, axis=2) return span_index
[ "def", "_gather_indexes", "(", "indexes", ",", "flat_spans_2d", ",", "start_or_end", ",", ")", ":", "shape", "=", "modeling", ".", "get_shape_list", "(", "flat_spans_2d", ",", "expected_rank", "=", "3", ")", "batch_size", "=", "shape", "[", "0", "]", "num_spans", "=", "shape", "[", "1", "]", "//", "2", "span_index", "=", "tf", ".", "gather_nd", "(", "params", "=", "indexes", ",", "indices", "=", "flat_spans_2d", ")", "span_index", "=", "tf", ".", "reshape", "(", "span_index", ",", "shape", "=", "(", "batch_size", ",", "num_spans", ",", "2", ")", ")", "span_index", "=", "tf", ".", "slice", "(", "span_index", ",", "begin", "=", "[", "0", ",", "0", ",", "start_or_end", "]", ",", "size", "=", "[", "batch_size", ",", "num_spans", ",", "1", "]", ")", "span_index", "=", "tf", ".", "squeeze", "(", "span_index", ",", "axis", "=", "2", ")", "return", "span_index" ]
https://github.com/google-research/tapas/blob/a3e069b50c71f50b12a6e5bb3dad10fb51f6fe68/tapas/utils/span_prediction_utils.py#L53-L79
oilshell/oil
94388e7d44a9ad879b12615f6203b38596b5a2d3
pgen2/tokenize.py
python
Untokenizer.compat
(self, token, iterable)
[]
def compat(self, token, iterable): startline = False indents = [] toks_append = self.tokens.append toknum, tokval = token if toknum in (NAME, NUMBER): tokval += ' ' if toknum in (NEWLINE, NL): startline = True for tok in iterable: toknum, tokval = tok[:2] if toknum in (NAME, NUMBER, ASYNC, AWAIT): tokval += ' ' if toknum == INDENT: indents.append(tokval) continue elif toknum == DEDENT: indents.pop() continue elif toknum in (NEWLINE, NL): startline = True elif startline and indents: toks_append(indents[-1]) startline = False toks_append(tokval)
[ "def", "compat", "(", "self", ",", "token", ",", "iterable", ")", ":", "startline", "=", "False", "indents", "=", "[", "]", "toks_append", "=", "self", ".", "tokens", ".", "append", "toknum", ",", "tokval", "=", "token", "if", "toknum", "in", "(", "NAME", ",", "NUMBER", ")", ":", "tokval", "+=", "' '", "if", "toknum", "in", "(", "NEWLINE", ",", "NL", ")", ":", "startline", "=", "True", "for", "tok", "in", "iterable", ":", "toknum", ",", "tokval", "=", "tok", "[", ":", "2", "]", "if", "toknum", "in", "(", "NAME", ",", "NUMBER", ",", "ASYNC", ",", "AWAIT", ")", ":", "tokval", "+=", "' '", "if", "toknum", "==", "INDENT", ":", "indents", ".", "append", "(", "tokval", ")", "continue", "elif", "toknum", "==", "DEDENT", ":", "indents", ".", "pop", "(", ")", "continue", "elif", "toknum", "in", "(", "NEWLINE", ",", "NL", ")", ":", "startline", "=", "True", "elif", "startline", "and", "indents", ":", "toks_append", "(", "indents", "[", "-", "1", "]", ")", "startline", "=", "False", "toks_append", "(", "tokval", ")" ]
https://github.com/oilshell/oil/blob/94388e7d44a9ad879b12615f6203b38596b5a2d3/pgen2/tokenize.py#L213-L239
LeapBeyond/scrubadub
ab199f0b3cc3ca11f646aabb05ebe124d2757ea5
scrubadub/detectors/base.py
python
Detector.iter_filth_documents
(self, document_list: Sequence[str], document_names: Sequence[Optional[str]])
Yields discovered filth in a list of documents. :param document_list: A list of documents to clean. :type document_list: List[str] :param document_names: A list containing the name of each document. :type document_names: List[str] :return: An iterator to the discovered :class:`Filth` :rtype: Iterator[:class:`Filth`]
Yields discovered filth in a list of documents.
[ "Yields", "discovered", "filth", "in", "a", "list", "of", "documents", "." ]
def iter_filth_documents(self, document_list: Sequence[str], document_names: Sequence[Optional[str]]) -> Generator[Filth, None, None]: """Yields discovered filth in a list of documents. :param document_list: A list of documents to clean. :type document_list: List[str] :param document_names: A list containing the name of each document. :type document_names: List[str] :return: An iterator to the discovered :class:`Filth` :rtype: Iterator[:class:`Filth`] """ raise NotImplementedError('must be implemented in derived classes')
[ "def", "iter_filth_documents", "(", "self", ",", "document_list", ":", "Sequence", "[", "str", "]", ",", "document_names", ":", "Sequence", "[", "Optional", "[", "str", "]", "]", ")", "->", "Generator", "[", "Filth", ",", "None", ",", "None", "]", ":", "raise", "NotImplementedError", "(", "'must be implemented in derived classes'", ")" ]
https://github.com/LeapBeyond/scrubadub/blob/ab199f0b3cc3ca11f646aabb05ebe124d2757ea5/scrubadub/detectors/base.py#L81-L92
xgi/castero
766965fb1d3586d62ab6fd6dd144fa510c1e0ecb
castero/helpers.py
python
third
(n)
return int(n / 3)
Calculates one-third of a given value. :param n the integer to calculate one-third of :returns int: one-third of n, rounded down
Calculates one-third of a given value.
[ "Calculates", "one", "-", "third", "of", "a", "given", "value", "." ]
def third(n) -> int: """Calculates one-third of a given value. :param n the integer to calculate one-third of :returns int: one-third of n, rounded down """ return int(n / 3)
[ "def", "third", "(", "n", ")", "->", "int", ":", "return", "int", "(", "n", "/", "3", ")" ]
https://github.com/xgi/castero/blob/766965fb1d3586d62ab6fd6dd144fa510c1e0ecb/castero/helpers.py#L9-L15
cloudera/hue
23f02102d4547c17c32bd5ea0eb24e9eadd657a4
desktop/core/ext-py/dnspython-1.15.0/dns/message.py
python
_TextReader._question_line
(self, section)
Process one line from the text format question section.
Process one line from the text format question section.
[ "Process", "one", "line", "from", "the", "text", "format", "question", "section", "." ]
def _question_line(self, section): """Process one line from the text format question section.""" token = self.tok.get(want_leading=True) if not token.is_whitespace(): self.last_name = dns.name.from_text(token.value, None) name = self.last_name token = self.tok.get() if not token.is_identifier(): raise dns.exception.SyntaxError # Class try: rdclass = dns.rdataclass.from_text(token.value) token = self.tok.get() if not token.is_identifier(): raise dns.exception.SyntaxError except dns.exception.SyntaxError: raise dns.exception.SyntaxError except Exception: rdclass = dns.rdataclass.IN # Type rdtype = dns.rdatatype.from_text(token.value) self.message.find_rrset(self.message.question, name, rdclass, rdtype, create=True, force_unique=True) if self.updating: self.zone_rdclass = rdclass self.tok.get_eol()
[ "def", "_question_line", "(", "self", ",", "section", ")", ":", "token", "=", "self", ".", "tok", ".", "get", "(", "want_leading", "=", "True", ")", "if", "not", "token", ".", "is_whitespace", "(", ")", ":", "self", ".", "last_name", "=", "dns", ".", "name", ".", "from_text", "(", "token", ".", "value", ",", "None", ")", "name", "=", "self", ".", "last_name", "token", "=", "self", ".", "tok", ".", "get", "(", ")", "if", "not", "token", ".", "is_identifier", "(", ")", ":", "raise", "dns", ".", "exception", ".", "SyntaxError", "# Class", "try", ":", "rdclass", "=", "dns", ".", "rdataclass", ".", "from_text", "(", "token", ".", "value", ")", "token", "=", "self", ".", "tok", ".", "get", "(", ")", "if", "not", "token", ".", "is_identifier", "(", ")", ":", "raise", "dns", ".", "exception", ".", "SyntaxError", "except", "dns", ".", "exception", ".", "SyntaxError", ":", "raise", "dns", ".", "exception", ".", "SyntaxError", "except", "Exception", ":", "rdclass", "=", "dns", ".", "rdataclass", ".", "IN", "# Type", "rdtype", "=", "dns", ".", "rdatatype", ".", "from_text", "(", "token", ".", "value", ")", "self", ".", "message", ".", "find_rrset", "(", "self", ".", "message", ".", "question", ",", "name", ",", "rdclass", ",", "rdtype", ",", "create", "=", "True", ",", "force_unique", "=", "True", ")", "if", "self", ".", "updating", ":", "self", ".", "zone_rdclass", "=", "rdclass", "self", ".", "tok", ".", "get_eol", "(", ")" ]
https://github.com/cloudera/hue/blob/23f02102d4547c17c32bd5ea0eb24e9eadd657a4/desktop/core/ext-py/dnspython-1.15.0/dns/message.py#L883-L910
kuri65536/python-for-android
26402a08fc46b09ef94e8d7a6bbc3a54ff9d0891
python-modules/twisted/twisted/python/rebuild.py
python
latestFunction
(oldFunc)
return getattr(module, oldFunc.__name__)
Get the latest version of a function.
Get the latest version of a function.
[ "Get", "the", "latest", "version", "of", "a", "function", "." ]
def latestFunction(oldFunc): """ Get the latest version of a function. """ # This may be CPython specific, since I believe jython instantiates a new # module upon reload. dictID = id(oldFunc.func_globals) module = _modDictIDMap.get(dictID) if module is None: return oldFunc return getattr(module, oldFunc.__name__)
[ "def", "latestFunction", "(", "oldFunc", ")", ":", "# This may be CPython specific, since I believe jython instantiates a new", "# module upon reload.", "dictID", "=", "id", "(", "oldFunc", ".", "func_globals", ")", "module", "=", "_modDictIDMap", ".", "get", "(", "dictID", ")", "if", "module", "is", "None", ":", "return", "oldFunc", "return", "getattr", "(", "module", ",", "oldFunc", ".", "__name__", ")" ]
https://github.com/kuri65536/python-for-android/blob/26402a08fc46b09ef94e8d7a6bbc3a54ff9d0891/python-modules/twisted/twisted/python/rebuild.py#L66-L76
NVIDIA/DeepLearningExamples
589604d49e016cd9ef4525f7abcc9c7b826cfc5e
TensorFlow/Translation/GNMT/model.py
python
BaseModel.__init__
(self, hparams, mode, features, scope=None, extra_args=None)
Create the model. Args: hparams: Hyperparameter configurations. mode: TRAIN | EVAL | INFER features: a dict of input features. scope: scope of the model. extra_args: model_helper.ExtraArgs, for passing customizable functions.
Create the model.
[ "Create", "the", "model", "." ]
def __init__(self, hparams, mode, features, scope=None, extra_args=None): """Create the model. Args: hparams: Hyperparameter configurations. mode: TRAIN | EVAL | INFER features: a dict of input features. scope: scope of the model. extra_args: model_helper.ExtraArgs, for passing customizable functions. """ self.hparams = hparams # Set params self._set_params_initializer(hparams, mode, features, scope, extra_args) # Train graph res = self.build_graph(hparams, scope=scope) self._set_train_or_infer(res, hparams)
[ "def", "__init__", "(", "self", ",", "hparams", ",", "mode", ",", "features", ",", "scope", "=", "None", ",", "extra_args", "=", "None", ")", ":", "self", ".", "hparams", "=", "hparams", "# Set params", "self", ".", "_set_params_initializer", "(", "hparams", ",", "mode", ",", "features", ",", "scope", ",", "extra_args", ")", "# Train graph", "res", "=", "self", ".", "build_graph", "(", "hparams", ",", "scope", "=", "scope", ")", "self", ".", "_set_train_or_infer", "(", "res", ",", "hparams", ")" ]
https://github.com/NVIDIA/DeepLearningExamples/blob/589604d49e016cd9ef4525f7abcc9c7b826cfc5e/TensorFlow/Translation/GNMT/model.py#L74-L91
kpe/bert-for-tf2
55f6a6fd5d8ea14f96ee19938b7a1bf0cb26aaea
bert/loader_albert.py
python
albert_params
(albert_model: str)
return params
Returns the ALBERT params for the specified TFHub model. :param albert_model: either a model name or a checkpoint directory containing an assets/albert_config.json
Returns the ALBERT params for the specified TFHub model.
[ "Returns", "the", "ALBERT", "params", "for", "the", "specified", "TFHub", "model", "." ]
def albert_params(albert_model: str): """Returns the ALBERT params for the specified TFHub model. :param albert_model: either a model name or a checkpoint directory containing an assets/albert_config.json """ if tf.io.gfile.isdir(albert_model): config_file = os.path.join(albert_model, "assets", "albert_config.json") # google tfhub v2 weights if not tf.io.gfile.exists(config_file): config_file = os.path.join(albert_model, "albert_config.json") # google non-tfhub v2 weights if tf.io.gfile.exists(config_file): stock_config = loader.StockBertConfig.from_json_file(config_file) else: raise ValueError("No google-research ALBERT model found under:[{}] expecting albert_config.json or assets/albert_config.json".format(albert_model)) else: if albert_model in albert_models_config: # google tfhub v1 weights albert_config = albert_models_config[albert_model] stock_config = loader.StockBertConfig.from_dict(albert_config, return_instance=True, return_unused=False) else: raise ValueError("ALBERT model with name:[{}] not one of tfhub/google-research albert models, try one of:{}".format( albert_model, albert_models_tfhub)) params = loader.map_stock_config_to_params(stock_config) return params
[ "def", "albert_params", "(", "albert_model", ":", "str", ")", ":", "if", "tf", ".", "io", ".", "gfile", ".", "isdir", "(", "albert_model", ")", ":", "config_file", "=", "os", ".", "path", ".", "join", "(", "albert_model", ",", "\"assets\"", ",", "\"albert_config.json\"", ")", "# google tfhub v2 weights", "if", "not", "tf", ".", "io", ".", "gfile", ".", "exists", "(", "config_file", ")", ":", "config_file", "=", "os", ".", "path", ".", "join", "(", "albert_model", ",", "\"albert_config.json\"", ")", "# google non-tfhub v2 weights", "if", "tf", ".", "io", ".", "gfile", ".", "exists", "(", "config_file", ")", ":", "stock_config", "=", "loader", ".", "StockBertConfig", ".", "from_json_file", "(", "config_file", ")", "else", ":", "raise", "ValueError", "(", "\"No google-research ALBERT model found under:[{}] expecting albert_config.json or assets/albert_config.json\"", ".", "format", "(", "albert_model", ")", ")", "else", ":", "if", "albert_model", "in", "albert_models_config", ":", "# google tfhub v1 weights", "albert_config", "=", "albert_models_config", "[", "albert_model", "]", "stock_config", "=", "loader", ".", "StockBertConfig", ".", "from_dict", "(", "albert_config", ",", "return_instance", "=", "True", ",", "return_unused", "=", "False", ")", "else", ":", "raise", "ValueError", "(", "\"ALBERT model with name:[{}] not one of tfhub/google-research albert models, try one of:{}\"", ".", "format", "(", "albert_model", ",", "albert_models_tfhub", ")", ")", "params", "=", "loader", ".", "map_stock_config_to_params", "(", "stock_config", ")", "return", "params" ]
https://github.com/kpe/bert-for-tf2/blob/55f6a6fd5d8ea14f96ee19938b7a1bf0cb26aaea/bert/loader_albert.py#L142-L165
sqlalchemy/sqlalchemy
eb716884a4abcabae84a6aaba105568e925b7d27
lib/sqlalchemy/util/langhelpers.py
python
warn_limited
(msg, args)
Issue a warning with a parameterized string, limiting the number of registrations.
Issue a warning with a parameterized string, limiting the number of registrations.
[ "Issue", "a", "warning", "with", "a", "parameterized", "string", "limiting", "the", "number", "of", "registrations", "." ]
def warn_limited(msg, args): """Issue a warning with a parameterized string, limiting the number of registrations. """ if args: msg = _hash_limit_string(msg, 10, args) _warnings_warn(msg, exc.SAWarning)
[ "def", "warn_limited", "(", "msg", ",", "args", ")", ":", "if", "args", ":", "msg", "=", "_hash_limit_string", "(", "msg", ",", "10", ",", "args", ")", "_warnings_warn", "(", "msg", ",", "exc", ".", "SAWarning", ")" ]
https://github.com/sqlalchemy/sqlalchemy/blob/eb716884a4abcabae84a6aaba105568e925b7d27/lib/sqlalchemy/util/langhelpers.py#L1575-L1582
mjwestcott/Goodrich
dc2516591bd28488516c0337a62e64248debe47c
ch07/linked_stack.py
python
LinkedStack.is_empty
(self)
return self._size == 0
Return True if the stack is empty.
Return True if the stack is empty.
[ "Return", "True", "if", "the", "stack", "is", "empty", "." ]
def is_empty(self): """Return True if the stack is empty.""" return self._size == 0
[ "def", "is_empty", "(", "self", ")", ":", "return", "self", ".", "_size", "==", "0" ]
https://github.com/mjwestcott/Goodrich/blob/dc2516591bd28488516c0337a62e64248debe47c/ch07/linked_stack.py#L46-L48
jkkummerfeld/text2sql-data
2905ab815b4893d99ea061a20fb55860ecb1f92e
systems/sequence-to-sequence/seq2seq/graph_utils.py
python
get_dict_from_collection
(collection_name)
return dict(zip(keys, values))
Gets a dictionary from a graph collection. Args: collection_name: A collection name to read a dictionary from Returns: A dictionary with string keys and tensor values
Gets a dictionary from a graph collection.
[ "Gets", "a", "dictionary", "from", "a", "graph", "collection", "." ]
def get_dict_from_collection(collection_name): """Gets a dictionary from a graph collection. Args: collection_name: A collection name to read a dictionary from Returns: A dictionary with string keys and tensor values """ key_collection = collection_name + "_keys" value_collection = collection_name + "_values" keys = tf.get_collection(key_collection) values = tf.get_collection(value_collection) return dict(zip(keys, values))
[ "def", "get_dict_from_collection", "(", "collection_name", ")", ":", "key_collection", "=", "collection_name", "+", "\"_keys\"", "value_collection", "=", "collection_name", "+", "\"_values\"", "keys", "=", "tf", ".", "get_collection", "(", "key_collection", ")", "values", "=", "tf", ".", "get_collection", "(", "value_collection", ")", "return", "dict", "(", "zip", "(", "keys", ",", "values", ")", ")" ]
https://github.com/jkkummerfeld/text2sql-data/blob/2905ab815b4893d99ea061a20fb55860ecb1f92e/systems/sequence-to-sequence/seq2seq/graph_utils.py#L59-L72
RodrigoGantier/Mask_R_CNN_Keypoints
6b22e72de01ae98eaa1acd8645e5dbe3a096459f
utils.py
python
extract_bboxes
(mask)
return boxes.astype(np.int32)
Compute bounding boxes from masks. mask: [height, width, num_instances]. Mask pixels are either 1 or 0. Returns: bbox array [num_instances, (y1, x1, y2, x2)].
Compute bounding boxes from masks. mask: [height, width, num_instances]. Mask pixels are either 1 or 0.
[ "Compute", "bounding", "boxes", "from", "masks", ".", "mask", ":", "[", "height", "width", "num_instances", "]", ".", "Mask", "pixels", "are", "either", "1", "or", "0", "." ]
def extract_bboxes(mask): """Compute bounding boxes from masks. mask: [height, width, num_instances]. Mask pixels are either 1 or 0. Returns: bbox array [num_instances, (y1, x1, y2, x2)]. """ boxes = np.zeros([mask.shape[-1], 4], dtype=np.int32) for i in range(mask.shape[-1]): m = mask[:, :, i] # Bounding box. horizontal_indicies = np.where(np.any(m, axis=0))[0] vertical_indicies = np.where(np.any(m, axis=1))[0] if horizontal_indicies.shape[0]: x1, x2 = horizontal_indicies[[0, -1]] y1, y2 = vertical_indicies[[0, -1]] # x2 and y2 should not be part of the box. Increment by 1. x2 += 1 y2 += 1 else: # No mask for this instance. Might happen due to # resizing or cropping. Set bbox to zeros x1, x2, y1, y2 = 0, 0, 0, 0 boxes[i] = np.array([y1, x1, y2, x2]) return boxes.astype(np.int32)
[ "def", "extract_bboxes", "(", "mask", ")", ":", "boxes", "=", "np", ".", "zeros", "(", "[", "mask", ".", "shape", "[", "-", "1", "]", ",", "4", "]", ",", "dtype", "=", "np", ".", "int32", ")", "for", "i", "in", "range", "(", "mask", ".", "shape", "[", "-", "1", "]", ")", ":", "m", "=", "mask", "[", ":", ",", ":", ",", "i", "]", "# Bounding box.", "horizontal_indicies", "=", "np", ".", "where", "(", "np", ".", "any", "(", "m", ",", "axis", "=", "0", ")", ")", "[", "0", "]", "vertical_indicies", "=", "np", ".", "where", "(", "np", ".", "any", "(", "m", ",", "axis", "=", "1", ")", ")", "[", "0", "]", "if", "horizontal_indicies", ".", "shape", "[", "0", "]", ":", "x1", ",", "x2", "=", "horizontal_indicies", "[", "[", "0", ",", "-", "1", "]", "]", "y1", ",", "y2", "=", "vertical_indicies", "[", "[", "0", ",", "-", "1", "]", "]", "# x2 and y2 should not be part of the box. Increment by 1.", "x2", "+=", "1", "y2", "+=", "1", "else", ":", "# No mask for this instance. Might happen due to", "# resizing or cropping. Set bbox to zeros", "x1", ",", "x2", ",", "y1", ",", "y2", "=", "0", ",", "0", ",", "0", ",", "0", "boxes", "[", "i", "]", "=", "np", ".", "array", "(", "[", "y1", ",", "x1", ",", "y2", ",", "x2", "]", ")", "return", "boxes", ".", "astype", "(", "np", ".", "int32", ")" ]
https://github.com/RodrigoGantier/Mask_R_CNN_Keypoints/blob/6b22e72de01ae98eaa1acd8645e5dbe3a096459f/utils.py#L21-L44
oleg-yaroshevskiy/quest_qa_labeling
730a9632314e54584f69f909d5e2ef74d843e02c
packages/fairseq-hacked/fairseq/distributed_utils.py
python
suppress_output
(is_master)
Suppress printing on the current device. Force printing with `force=True`.
Suppress printing on the current device. Force printing with `force=True`.
[ "Suppress", "printing", "on", "the", "current", "device", ".", "Force", "printing", "with", "force", "=", "True", "." ]
def suppress_output(is_master): """Suppress printing on the current device. Force printing with `force=True`.""" import builtins as __builtin__ builtin_print = __builtin__.print def print(*args, **kwargs): force = kwargs.pop("force", False) if is_master or force: builtin_print(*args, **kwargs) __builtin__.print = print
[ "def", "suppress_output", "(", "is_master", ")", ":", "import", "builtins", "as", "__builtin__", "builtin_print", "=", "__builtin__", ".", "print", "def", "print", "(", "*", "args", ",", "*", "*", "kwargs", ")", ":", "force", "=", "kwargs", ".", "pop", "(", "\"force\"", ",", "False", ")", "if", "is_master", "or", "force", ":", "builtin_print", "(", "*", "args", ",", "*", "*", "kwargs", ")", "__builtin__", ".", "print", "=", "print" ]
https://github.com/oleg-yaroshevskiy/quest_qa_labeling/blob/730a9632314e54584f69f909d5e2ef74d843e02c/packages/fairseq-hacked/fairseq/distributed_utils.py#L112-L123
pydata/xarray
9226c7ac87b3eb246f7a7e49f8f0f23d68951624
xarray/core/indexes.py
python
default_indexes
( coords: Mapping[Any, "Variable"], dims: Iterable )
return {key: coords[key]._to_xindex() for key in dims if key in coords}
Default indexes for a Dataset/DataArray. Parameters ---------- coords : Mapping[Any, xarray.Variable] Coordinate variables from which to draw default indexes. dims : iterable Iterable of dimension names. Returns ------- Mapping from indexing keys (levels/dimension names) to indexes used for indexing along that dimension.
Default indexes for a Dataset/DataArray.
[ "Default", "indexes", "for", "a", "Dataset", "/", "DataArray", "." ]
def default_indexes( coords: Mapping[Any, "Variable"], dims: Iterable ) -> Dict[Hashable, Index]: """Default indexes for a Dataset/DataArray. Parameters ---------- coords : Mapping[Any, xarray.Variable] Coordinate variables from which to draw default indexes. dims : iterable Iterable of dimension names. Returns ------- Mapping from indexing keys (levels/dimension names) to indexes used for indexing along that dimension. """ return {key: coords[key]._to_xindex() for key in dims if key in coords}
[ "def", "default_indexes", "(", "coords", ":", "Mapping", "[", "Any", ",", "\"Variable\"", "]", ",", "dims", ":", "Iterable", ")", "->", "Dict", "[", "Hashable", ",", "Index", "]", ":", "return", "{", "key", ":", "coords", "[", "key", "]", ".", "_to_xindex", "(", ")", "for", "key", "in", "dims", "if", "key", "in", "coords", "}" ]
https://github.com/pydata/xarray/blob/9226c7ac87b3eb246f7a7e49f8f0f23d68951624/xarray/core/indexes.py#L479-L496
smicallef/spiderfoot
fd4bf9394c9ab3ecc90adc3115c56349fb23165b
modules/sfp_coinblocker.py
python
sfp_coinblocker.retrieveBlocklist
(self)
return self.parseBlocklist(res['content'])
[]
def retrieveBlocklist(self): blocklist = self.sf.cacheGet('coinblocker', self.opts.get('cacheperiod', 24)) if blocklist is not None: return self.parseBlocklist(blocklist) url = "https://zerodot1.gitlab.io/CoinBlockerLists/list.txt" res = self.sf.fetchUrl( url, timeout=self.opts['_fetchtimeout'], useragent=self.opts['_useragent'], ) if res['code'] != "200": self.error(f"Unexpected HTTP response code {res['code']} from {url}") self.errorState = True return None if res['content'] is None: self.error(f"Received no content from {url}") self.errorState = True return None self.sf.cachePut("coinblocker", res['content']) return self.parseBlocklist(res['content'])
[ "def", "retrieveBlocklist", "(", "self", ")", ":", "blocklist", "=", "self", ".", "sf", ".", "cacheGet", "(", "'coinblocker'", ",", "self", ".", "opts", ".", "get", "(", "'cacheperiod'", ",", "24", ")", ")", "if", "blocklist", "is", "not", "None", ":", "return", "self", ".", "parseBlocklist", "(", "blocklist", ")", "url", "=", "\"https://zerodot1.gitlab.io/CoinBlockerLists/list.txt\"", "res", "=", "self", ".", "sf", ".", "fetchUrl", "(", "url", ",", "timeout", "=", "self", ".", "opts", "[", "'_fetchtimeout'", "]", ",", "useragent", "=", "self", ".", "opts", "[", "'_useragent'", "]", ",", ")", "if", "res", "[", "'code'", "]", "!=", "\"200\"", ":", "self", ".", "error", "(", "f\"Unexpected HTTP response code {res['code']} from {url}\"", ")", "self", ".", "errorState", "=", "True", "return", "None", "if", "res", "[", "'content'", "]", "is", "None", ":", "self", ".", "error", "(", "f\"Received no content from {url}\"", ")", "self", ".", "errorState", "=", "True", "return", "None", "self", ".", "sf", ".", "cachePut", "(", "\"coinblocker\"", ",", "res", "[", "'content'", "]", ")", "return", "self", ".", "parseBlocklist", "(", "res", "[", "'content'", "]", ")" ]
https://github.com/smicallef/spiderfoot/blob/fd4bf9394c9ab3ecc90adc3115c56349fb23165b/modules/sfp_coinblocker.py#L93-L118
Source-Python-Dev-Team/Source.Python
d0ffd8ccbd1e9923c9bc44936f20613c1c76b7fb
addons/source-python/Python3/logging/config.py
python
stopListening
()
Stop the listening server which was created with a call to listen().
Stop the listening server which was created with a call to listen().
[ "Stop", "the", "listening", "server", "which", "was", "created", "with", "a", "call", "to", "listen", "()", "." ]
def stopListening(): """ Stop the listening server which was created with a call to listen(). """ global _listener logging._acquireLock() try: if _listener: _listener.abort = 1 _listener = None finally: logging._releaseLock()
[ "def", "stopListening", "(", ")", ":", "global", "_listener", "logging", ".", "_acquireLock", "(", ")", "try", ":", "if", "_listener", ":", "_listener", ".", "abort", "=", "1", "_listener", "=", "None", "finally", ":", "logging", ".", "_releaseLock", "(", ")" ]
https://github.com/Source-Python-Dev-Team/Source.Python/blob/d0ffd8ccbd1e9923c9bc44936f20613c1c76b7fb/addons/source-python/Python3/logging/config.py#L922-L933
IronLanguages/ironpython3
7a7bb2a872eeab0d1009fc8a6e24dca43f65b693
Src/IronPython/Modules/unicodedata/genunicodedata.py
python
add_eawidths
(data)
return data
[]
def add_eawidths(data): for eawidth in readdatafile(EASTASIANWIDTHS): if eawidth[0] in data: data[eawidth[0]] += [eawidth[1]] return data
[ "def", "add_eawidths", "(", "data", ")", ":", "for", "eawidth", "in", "readdatafile", "(", "EASTASIANWIDTHS", ")", ":", "if", "eawidth", "[", "0", "]", "in", "data", ":", "data", "[", "eawidth", "[", "0", "]", "]", "+=", "[", "eawidth", "[", "1", "]", "]", "return", "data" ]
https://github.com/IronLanguages/ironpython3/blob/7a7bb2a872eeab0d1009fc8a6e24dca43f65b693/Src/IronPython/Modules/unicodedata/genunicodedata.py#L32-L37
saltstack/salt
fae5bc757ad0f1716483ce7ae180b451545c2058
salt/crypt.py
python
_get_key_with_evict
(path, timestamp, passphrase)
return key
Load a private key from disk. `timestamp` above is intended to be the timestamp of the file's last modification. This fn is memoized so if it is called with the same path and timestamp (the file's last modified time) the second time the result is returned from the memoiziation. If the file gets modified then the params are different and the key is loaded from disk.
Load a private key from disk. `timestamp` above is intended to be the timestamp of the file's last modification. This fn is memoized so if it is called with the same path and timestamp (the file's last modified time) the second time the result is returned from the memoiziation. If the file gets modified then the params are different and the key is loaded from disk.
[ "Load", "a", "private", "key", "from", "disk", ".", "timestamp", "above", "is", "intended", "to", "be", "the", "timestamp", "of", "the", "file", "s", "last", "modification", ".", "This", "fn", "is", "memoized", "so", "if", "it", "is", "called", "with", "the", "same", "path", "and", "timestamp", "(", "the", "file", "s", "last", "modified", "time", ")", "the", "second", "time", "the", "result", "is", "returned", "from", "the", "memoiziation", ".", "If", "the", "file", "gets", "modified", "then", "the", "params", "are", "different", "and", "the", "key", "is", "loaded", "from", "disk", "." ]
def _get_key_with_evict(path, timestamp, passphrase): """ Load a private key from disk. `timestamp` above is intended to be the timestamp of the file's last modification. This fn is memoized so if it is called with the same path and timestamp (the file's last modified time) the second time the result is returned from the memoiziation. If the file gets modified then the params are different and the key is loaded from disk. """ log.debug("salt.crypt._get_key_with_evict: Loading private key") if HAS_M2: key = RSA.load_key(path, lambda x: bytes(passphrase)) else: with salt.utils.files.fopen(path) as f: key = RSA.importKey(f.read(), passphrase) return key
[ "def", "_get_key_with_evict", "(", "path", ",", "timestamp", ",", "passphrase", ")", ":", "log", ".", "debug", "(", "\"salt.crypt._get_key_with_evict: Loading private key\"", ")", "if", "HAS_M2", ":", "key", "=", "RSA", ".", "load_key", "(", "path", ",", "lambda", "x", ":", "bytes", "(", "passphrase", ")", ")", "else", ":", "with", "salt", ".", "utils", ".", "files", ".", "fopen", "(", "path", ")", "as", "f", ":", "key", "=", "RSA", ".", "importKey", "(", "f", ".", "read", "(", ")", ",", "passphrase", ")", "return", "key" ]
https://github.com/saltstack/salt/blob/fae5bc757ad0f1716483ce7ae180b451545c2058/salt/crypt.py#L183-L197
BigBrotherBot/big-brother-bot
848823c71413c86e7f1ff9584f43e08d40a7f2c0
b3/plugins/poweradminhf/__init__.py
python
PoweradminhfPlugin.cmd_pamatch
(self, data, client, cmd=None)
<on/off> - set server match mode on/off (You can safely use the command without the 'pa' at the beginning)
<on/off> - set server match mode on/off (You can safely use the command without the 'pa' at the beginning)
[ "<on", "/", "off", ">", "-", "set", "server", "match", "mode", "on", "/", "off", "(", "You", "can", "safely", "use", "the", "command", "without", "the", "pa", "at", "the", "beginning", ")" ]
def cmd_pamatch(self, data, client, cmd=None): """ <on/off> - set server match mode on/off (You can safely use the command without the 'pa' at the beginning) """ if not data or str(data).lower() not in ('on','off'): client.message('invalid or missing data, try !help pamatch') else: if data.lower() == 'on': self._matchmode = True self._enableTeamBalancer = False for e in self._match_plugin_disable: self.debug('disabling plugin %s' %e) plugin = self.console.getPlugin(e) if plugin: plugin.disable() client.message('plugin %s disabled' % e) self.console.say('match mode: ON') if self._matchManager: self._matchManager.stop() self._matchManager = MatchManager(self) self._matchManager.initMatch() elif data.lower() == 'off': self._matchmode = False if self._matchManager: self._matchManager.stop() self._matchManager = None # enable plugins for e in self._match_plugin_disable: self.debug('enabling plugin %s' %e) plugin = self.console.getPlugin(e) if plugin: plugin.enable() client.message('plugin %s enabled' % e) self.console.say('match mode: OFF')
[ "def", "cmd_pamatch", "(", "self", ",", "data", ",", "client", ",", "cmd", "=", "None", ")", ":", "if", "not", "data", "or", "str", "(", "data", ")", ".", "lower", "(", ")", "not", "in", "(", "'on'", ",", "'off'", ")", ":", "client", ".", "message", "(", "'invalid or missing data, try !help pamatch'", ")", "else", ":", "if", "data", ".", "lower", "(", ")", "==", "'on'", ":", "self", ".", "_matchmode", "=", "True", "self", ".", "_enableTeamBalancer", "=", "False", "for", "e", "in", "self", ".", "_match_plugin_disable", ":", "self", ".", "debug", "(", "'disabling plugin %s'", "%", "e", ")", "plugin", "=", "self", ".", "console", ".", "getPlugin", "(", "e", ")", "if", "plugin", ":", "plugin", ".", "disable", "(", ")", "client", ".", "message", "(", "'plugin %s disabled'", "%", "e", ")", "self", ".", "console", ".", "say", "(", "'match mode: ON'", ")", "if", "self", ".", "_matchManager", ":", "self", ".", "_matchManager", ".", "stop", "(", ")", "self", ".", "_matchManager", "=", "MatchManager", "(", "self", ")", "self", ".", "_matchManager", ".", "initMatch", "(", ")", "elif", "data", ".", "lower", "(", ")", "==", "'off'", ":", "self", ".", "_matchmode", "=", "False", "if", "self", ".", "_matchManager", ":", "self", ".", "_matchManager", ".", "stop", "(", ")", "self", ".", "_matchManager", "=", "None", "# enable plugins", "for", "e", "in", "self", ".", "_match_plugin_disable", ":", "self", ".", "debug", "(", "'enabling plugin %s'", "%", "e", ")", "plugin", "=", "self", ".", "console", ".", "getPlugin", "(", "e", ")", "if", "plugin", ":", "plugin", ".", "enable", "(", ")", "client", ".", "message", "(", "'plugin %s enabled'", "%", "e", ")", "self", ".", "console", ".", "say", "(", "'match mode: OFF'", ")" ]
https://github.com/BigBrotherBot/big-brother-bot/blob/848823c71413c86e7f1ff9584f43e08d40a7f2c0/b3/plugins/poweradminhf/__init__.py#L399-L438
exaile/exaile
a7b58996c5c15b3aa7b9975ac13ee8f784ef4689
plugins/quickbuttons/__init__.py
python
qb_spinner._set_delay_value
(self, value: int)
Set the delay value in ms
Set the delay value in ms
[ "Set", "the", "delay", "value", "in", "ms" ]
def _set_delay_value(self, value: int) -> None: """ Set the delay value in ms """ value = value * 1000 settings.set_option("player/auto_advance_delay", value)
[ "def", "_set_delay_value", "(", "self", ",", "value", ":", "int", ")", "->", "None", ":", "value", "=", "value", "*", "1000", "settings", ".", "set_option", "(", "\"player/auto_advance_delay\"", ",", "value", ")" ]
https://github.com/exaile/exaile/blob/a7b58996c5c15b3aa7b9975ac13ee8f784ef4689/plugins/quickbuttons/__init__.py#L366-L371
nvbn/everpad
5db96c0f9b7c30ce4f900274f3826fdfa55cbaac
everpad/provider/service.py
python
ProviderService.find_notes
( self, words, notebooks, tags, place, limit=const.DEFAULT_LIMIT, order=const.ORDER_UPDATED, pinnded=const.NOT_PINNDED, )
return notes
Find notes by filters
Find notes by filters
[ "Find", "notes", "by", "filters" ]
def find_notes( self, words, notebooks, tags, place, limit=const.DEFAULT_LIMIT, order=const.ORDER_UPDATED, pinnded=const.NOT_PINNDED, ): """Find notes by filters""" notes = btype.Note.list >> NoteFilterer(self.session)\ .by_words(words)\ .by_notebooks(notebooks)\ .by_tags(tags)\ .by_place(place)\ .by_pinnded(pinnded)\ .order_by(order)\ .all()\ .limit(limit) return notes
[ "def", "find_notes", "(", "self", ",", "words", ",", "notebooks", ",", "tags", ",", "place", ",", "limit", "=", "const", ".", "DEFAULT_LIMIT", ",", "order", "=", "const", ".", "ORDER_UPDATED", ",", "pinnded", "=", "const", ".", "NOT_PINNDED", ",", ")", ":", "notes", "=", "btype", ".", "Note", ".", "list", ">>", "NoteFilterer", "(", "self", ".", "session", ")", ".", "by_words", "(", "words", ")", ".", "by_notebooks", "(", "notebooks", ")", ".", "by_tags", "(", "tags", ")", ".", "by_place", "(", "place", ")", ".", "by_pinnded", "(", "pinnded", ")", ".", "order_by", "(", "order", ")", ".", "all", "(", ")", ".", "limit", "(", "limit", ")", "return", "notes" ]
https://github.com/nvbn/everpad/blob/5db96c0f9b7c30ce4f900274f3826fdfa55cbaac/everpad/provider/service.py#L163-L179
cloudera/hue
23f02102d4547c17c32bd5ea0eb24e9eadd657a4
desktop/core/ext-py/urllib3-1.25.8/dummyserver/handlers.py
python
TestingApp.upload
(self, request)
return Response()
Confirm that the uploaded file conforms to specification
Confirm that the uploaded file conforms to specification
[ "Confirm", "that", "the", "uploaded", "file", "conforms", "to", "specification" ]
def upload(self, request): "Confirm that the uploaded file conforms to specification" # FIXME: This is a huge broken mess param = request.params.get("upload_param", b"myfile").decode("ascii") filename = request.params.get("upload_filename", b"").decode("utf-8") size = int(request.params.get("upload_size", "0")) files_ = request.files.get(param) if len(files_) != 1: return Response( "Expected 1 file for '%s', not %d" % (param, len(files_)), status="400 Bad Request", ) file_ = files_[0] data = file_["body"] if int(size) != len(data): return Response( "Wrong size: %d != %d" % (size, len(data)), status="400 Bad Request" ) got_filename = file_["filename"] if isinstance(got_filename, binary_type): got_filename = got_filename.decode("utf-8") # Tornado can leave the trailing \n in place on the filename. if filename != got_filename: return Response( u"Wrong filename: %s != %s" % (filename, file_.filename), status="400 Bad Request", ) return Response()
[ "def", "upload", "(", "self", ",", "request", ")", ":", "# FIXME: This is a huge broken mess", "param", "=", "request", ".", "params", ".", "get", "(", "\"upload_param\"", ",", "b\"myfile\"", ")", ".", "decode", "(", "\"ascii\"", ")", "filename", "=", "request", ".", "params", ".", "get", "(", "\"upload_filename\"", ",", "b\"\"", ")", ".", "decode", "(", "\"utf-8\"", ")", "size", "=", "int", "(", "request", ".", "params", ".", "get", "(", "\"upload_size\"", ",", "\"0\"", ")", ")", "files_", "=", "request", ".", "files", ".", "get", "(", "param", ")", "if", "len", "(", "files_", ")", "!=", "1", ":", "return", "Response", "(", "\"Expected 1 file for '%s', not %d\"", "%", "(", "param", ",", "len", "(", "files_", ")", ")", ",", "status", "=", "\"400 Bad Request\"", ",", ")", "file_", "=", "files_", "[", "0", "]", "data", "=", "file_", "[", "\"body\"", "]", "if", "int", "(", "size", ")", "!=", "len", "(", "data", ")", ":", "return", "Response", "(", "\"Wrong size: %d != %d\"", "%", "(", "size", ",", "len", "(", "data", ")", ")", ",", "status", "=", "\"400 Bad Request\"", ")", "got_filename", "=", "file_", "[", "\"filename\"", "]", "if", "isinstance", "(", "got_filename", ",", "binary_type", ")", ":", "got_filename", "=", "got_filename", ".", "decode", "(", "\"utf-8\"", ")", "# Tornado can leave the trailing \\n in place on the filename.", "if", "filename", "!=", "got_filename", ":", "return", "Response", "(", "u\"Wrong filename: %s != %s\"", "%", "(", "filename", ",", "file_", ".", "filename", ")", ",", "status", "=", "\"400 Bad Request\"", ",", ")", "return", "Response", "(", ")" ]
https://github.com/cloudera/hue/blob/23f02102d4547c17c32bd5ea0eb24e9eadd657a4/desktop/core/ext-py/urllib3-1.25.8/dummyserver/handlers.py#L145-L177
roglew/guppy-proxy
01df16be71dd9f23d7de415a315821659c29bc63
guppyproxy/decoder.py
python
decode_jwt
(s)
return ret
[]
def decode_jwt(s): # in case they paste the whole auth header or the token with "bearer" s = s.strip() fields = s.split(b' ') s = fields[-1].strip() parts = s.split(b'.') ret = b'' for part in parts: try: ret += base64_decode_helper(part.decode()) + b'\n\n' except: ret += b"[error decoding]\n\n" return ret
[ "def", "decode_jwt", "(", "s", ")", ":", "# in case they paste the whole auth header or the token with \"bearer\"", "s", "=", "s", ".", "strip", "(", ")", "fields", "=", "s", ".", "split", "(", "b' '", ")", "s", "=", "fields", "[", "-", "1", "]", ".", "strip", "(", ")", "parts", "=", "s", ".", "split", "(", "b'.'", ")", "ret", "=", "b''", "for", "part", "in", "parts", ":", "try", ":", "ret", "+=", "base64_decode_helper", "(", "part", ".", "decode", "(", ")", ")", "+", "b'\\n\\n'", "except", ":", "ret", "+=", "b\"[error decoding]\\n\\n\"", "return", "ret" ]
https://github.com/roglew/guppy-proxy/blob/01df16be71dd9f23d7de415a315821659c29bc63/guppyproxy/decoder.py#L63-L75
coreemu/core
7e18a7a72023a69a92ad61d87461bd659ba27f7c
daemon/core/api/grpc/client.py
python
CoreGrpcClient.check_session
(self, session_id: int)
return self.stub.CheckSession(request)
Check if a session exists. :param session_id: id of session to check for :return: response with result if session was found
Check if a session exists.
[ "Check", "if", "a", "session", "exists", "." ]
def check_session(self, session_id: int) -> core_pb2.CheckSessionResponse: """ Check if a session exists. :param session_id: id of session to check for :return: response with result if session was found """ request = core_pb2.CheckSessionRequest(session_id=session_id) return self.stub.CheckSession(request)
[ "def", "check_session", "(", "self", ",", "session_id", ":", "int", ")", "->", "core_pb2", ".", "CheckSessionResponse", ":", "request", "=", "core_pb2", ".", "CheckSessionRequest", "(", "session_id", "=", "session_id", ")", "return", "self", ".", "stub", ".", "CheckSession", "(", "request", ")" ]
https://github.com/coreemu/core/blob/7e18a7a72023a69a92ad61d87461bd659ba27f7c/daemon/core/api/grpc/client.py#L278-L286
facebookresearch/mmf
fb6fe390287e1da12c3bd28d4ab43c5f7dcdfc9f
mmf/modules/attention.py
python
TopDownAttention.forward
(self, image_feat, question_embedding, image_locs=None)
return masked_attention
[]
def forward(self, image_feat, question_embedding, image_locs=None): # N x K x joint_dim joint_feature = self.combination_layer(image_feat, question_embedding) # N x K x n_att raw_attn = self.transform(joint_feature) if self.normalization.lower() == "softmax": attention = nn.functional.softmax(raw_attn, dim=1) if image_locs is not None: masked_attention = self._mask_attentions(attention, image_locs) masked_attention_sum = torch.sum(masked_attention, dim=1, keepdim=True) masked_attention_sum += masked_attention_sum.eq(0).float() + self.EPS masked_attention = masked_attention / masked_attention_sum else: masked_attention = attention elif self.normalization.lower() == "sigmoid": attention = torch.sigmoid(raw_attn) masked_attention = attention if image_locs is not None: masked_attention = self._mask_attentions(attention, image_locs) return masked_attention
[ "def", "forward", "(", "self", ",", "image_feat", ",", "question_embedding", ",", "image_locs", "=", "None", ")", ":", "# N x K x joint_dim", "joint_feature", "=", "self", ".", "combination_layer", "(", "image_feat", ",", "question_embedding", ")", "# N x K x n_att", "raw_attn", "=", "self", ".", "transform", "(", "joint_feature", ")", "if", "self", ".", "normalization", ".", "lower", "(", ")", "==", "\"softmax\"", ":", "attention", "=", "nn", ".", "functional", ".", "softmax", "(", "raw_attn", ",", "dim", "=", "1", ")", "if", "image_locs", "is", "not", "None", ":", "masked_attention", "=", "self", ".", "_mask_attentions", "(", "attention", ",", "image_locs", ")", "masked_attention_sum", "=", "torch", ".", "sum", "(", "masked_attention", ",", "dim", "=", "1", ",", "keepdim", "=", "True", ")", "masked_attention_sum", "+=", "masked_attention_sum", ".", "eq", "(", "0", ")", ".", "float", "(", ")", "+", "self", ".", "EPS", "masked_attention", "=", "masked_attention", "/", "masked_attention_sum", "else", ":", "masked_attention", "=", "attention", "elif", "self", ".", "normalization", ".", "lower", "(", ")", "==", "\"sigmoid\"", ":", "attention", "=", "torch", ".", "sigmoid", "(", "raw_attn", ")", "masked_attention", "=", "attention", "if", "image_locs", "is", "not", "None", ":", "masked_attention", "=", "self", ".", "_mask_attentions", "(", "attention", ",", "image_locs", ")", "return", "masked_attention" ]
https://github.com/facebookresearch/mmf/blob/fb6fe390287e1da12c3bd28d4ab43c5f7dcdfc9f/mmf/modules/attention.py#L139-L161
tp4a/teleport
1fafd34f1f775d2cf80ea4af6e44468d8e0b24ad
server/www/packages/packages-windows/x86/ldap3/extend/operation.py
python
ExtendedOperation.decode_response
(self)
[]
def decode_response(self): if not self.result: return None if self.result['result'] not in [RESULT_SUCCESS]: if self.connection.raise_exceptions: raise LDAPExtensionError('extended operation error: ' + self.result['description'] + ' - ' + self.result['message']) else: return None if not self.response_name or self.result['responseName'] == self.response_name: if self.result['responseValue']: if self.asn1_spec is not None: decoded, unprocessed = decoder.decode(self.result['responseValue'], asn1Spec=self.asn1_spec) if unprocessed: raise LDAPExtensionError('error decoding extended response value') self.decoded_response = decoded else: self.decoded_response = self.result['responseValue'] else: raise LDAPExtensionError('invalid response name received')
[ "def", "decode_response", "(", "self", ")", ":", "if", "not", "self", ".", "result", ":", "return", "None", "if", "self", ".", "result", "[", "'result'", "]", "not", "in", "[", "RESULT_SUCCESS", "]", ":", "if", "self", ".", "connection", ".", "raise_exceptions", ":", "raise", "LDAPExtensionError", "(", "'extended operation error: '", "+", "self", ".", "result", "[", "'description'", "]", "+", "' - '", "+", "self", ".", "result", "[", "'message'", "]", ")", "else", ":", "return", "None", "if", "not", "self", ".", "response_name", "or", "self", ".", "result", "[", "'responseName'", "]", "==", "self", ".", "response_name", ":", "if", "self", ".", "result", "[", "'responseValue'", "]", ":", "if", "self", ".", "asn1_spec", "is", "not", "None", ":", "decoded", ",", "unprocessed", "=", "decoder", ".", "decode", "(", "self", ".", "result", "[", "'responseValue'", "]", ",", "asn1Spec", "=", "self", ".", "asn1_spec", ")", "if", "unprocessed", ":", "raise", "LDAPExtensionError", "(", "'error decoding extended response value'", ")", "self", ".", "decoded_response", "=", "decoded", "else", ":", "self", ".", "decoded_response", "=", "self", ".", "result", "[", "'responseValue'", "]", "else", ":", "raise", "LDAPExtensionError", "(", "'invalid response name received'", ")" ]
https://github.com/tp4a/teleport/blob/1fafd34f1f775d2cf80ea4af6e44468d8e0b24ad/server/www/packages/packages-windows/x86/ldap3/extend/operation.py#L66-L84
numba/numba
bf480b9e0da858a65508c2b17759a72ee6a44c51
numba/cuda/cudaimpl.py
python
ptx_atomic_cas_tuple
(context, builder, sig, args)
[]
def ptx_atomic_cas_tuple(context, builder, sig, args): aryty, oldty, valty = sig.args ary, old, val = args dtype = aryty.dtype lary = context.make_array(aryty)(context, builder, ary) zero = context.get_constant(types.intp, 0) ptr = cgutils.get_item_pointer(context, builder, aryty, lary, (zero,)) if aryty.dtype in (cuda.cudadecl.integer_numba_types): lmod = builder.module bitwidth = aryty.dtype.bitwidth return nvvmutils.atomic_cmpxchg(builder, lmod, bitwidth, ptr, old, val) else: raise TypeError('Unimplemented atomic compare_and_swap ' 'with %s array' % dtype)
[ "def", "ptx_atomic_cas_tuple", "(", "context", ",", "builder", ",", "sig", ",", "args", ")", ":", "aryty", ",", "oldty", ",", "valty", "=", "sig", ".", "args", "ary", ",", "old", ",", "val", "=", "args", "dtype", "=", "aryty", ".", "dtype", "lary", "=", "context", ".", "make_array", "(", "aryty", ")", "(", "context", ",", "builder", ",", "ary", ")", "zero", "=", "context", ".", "get_constant", "(", "types", ".", "intp", ",", "0", ")", "ptr", "=", "cgutils", ".", "get_item_pointer", "(", "context", ",", "builder", ",", "aryty", ",", "lary", ",", "(", "zero", ",", ")", ")", "if", "aryty", ".", "dtype", "in", "(", "cuda", ".", "cudadecl", ".", "integer_numba_types", ")", ":", "lmod", "=", "builder", ".", "module", "bitwidth", "=", "aryty", ".", "dtype", ".", "bitwidth", "return", "nvvmutils", ".", "atomic_cmpxchg", "(", "builder", ",", "lmod", ",", "bitwidth", ",", "ptr", ",", "old", ",", "val", ")", "else", ":", "raise", "TypeError", "(", "'Unimplemented atomic compare_and_swap '", "'with %s array'", "%", "dtype", ")" ]
https://github.com/numba/numba/blob/bf480b9e0da858a65508c2b17759a72ee6a44c51/numba/cuda/cudaimpl.py#L944-L959
gtaylor/python-colormath
4a076831fd5136f685aa7143db81eba27b2cd19a
colormath/color_conversions.py
python
LCHab_to_Lab
(cobj, *args, **kwargs)
return LabColor( lab_l, lab_a, lab_b, illuminant=cobj.illuminant, observer=cobj.observer )
Convert from LCH(ab) to Lab.
Convert from LCH(ab) to Lab.
[ "Convert", "from", "LCH", "(", "ab", ")", "to", "Lab", "." ]
def LCHab_to_Lab(cobj, *args, **kwargs): """ Convert from LCH(ab) to Lab. """ lab_l = cobj.lch_l lab_a = math.cos(math.radians(cobj.lch_h)) * cobj.lch_c lab_b = math.sin(math.radians(cobj.lch_h)) * cobj.lch_c return LabColor( lab_l, lab_a, lab_b, illuminant=cobj.illuminant, observer=cobj.observer )
[ "def", "LCHab_to_Lab", "(", "cobj", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "lab_l", "=", "cobj", ".", "lch_l", "lab_a", "=", "math", ".", "cos", "(", "math", ".", "radians", "(", "cobj", ".", "lch_h", ")", ")", "*", "cobj", ".", "lch_c", "lab_b", "=", "math", ".", "sin", "(", "math", ".", "radians", "(", "cobj", ".", "lch_h", ")", ")", "*", "cobj", ".", "lch_c", "return", "LabColor", "(", "lab_l", ",", "lab_a", ",", "lab_b", ",", "illuminant", "=", "cobj", ".", "illuminant", ",", "observer", "=", "cobj", ".", "observer", ")" ]
https://github.com/gtaylor/python-colormath/blob/4a076831fd5136f685aa7143db81eba27b2cd19a/colormath/color_conversions.py#L359-L368
dimagi/commcare-hq
d67ff1d3b4c51fa050c19e60c3253a79d3452a39
corehq/reports.py
python
_filter_reports
(report_set, reports)
[]
def _filter_reports(report_set, reports): if report_set: return [r for r in reports if r.slug in report_set] else: return reports
[ "def", "_filter_reports", "(", "report_set", ",", "reports", ")", ":", "if", "report_set", ":", "return", "[", "r", "for", "r", "in", "reports", "if", "r", ".", "slug", "in", "report_set", "]", "else", ":", "return", "reports" ]
https://github.com/dimagi/commcare-hq/blob/d67ff1d3b4c51fa050c19e60c3253a79d3452a39/corehq/reports.py#L172-L176
cea-hpc/clustershell
c421133ed4baa69e35ff76c476d4097201485344
lib/ClusterShell/Worker/Tree.py
python
TreeWorker._copy_remote
(self, source, dest, targets, gateway, timeout, reverse)
run a remote copy in tree mode (using gateway)
run a remote copy in tree mode (using gateway)
[ "run", "a", "remote", "copy", "in", "tree", "mode", "(", "using", "gateway", ")" ]
def _copy_remote(self, source, dest, targets, gateway, timeout, reverse): """run a remote copy in tree mode (using gateway)""" self.logger.debug("_copy_remote gateway=%s source=%s dest=%s " "reverse=%s", gateway, source, dest, reverse) self._target_count += len(targets) self.gwtargets.setdefault(str(gateway), NodeSet()).add(targets) # tar commands are built here and launched on targets if reverse: # these weird replace calls aim to escape single quotes ' within '' srcdir = dirname(source).replace("'", '\'\"\'\"\'') srcbase = basename(normpath(self.source)).replace("'", '\'\"\'\"\'') cmd = self.TAR_CMD_FMT % (srcdir, srcbase) else: cmd = self.UNTAR_CMD_FMT % dest.replace("'", '\'\"\'\"\'') self.logger.debug('_copy_remote: tar cmd: %s', cmd) pchan = self.task._pchannel(gateway, self) pchan.shell(nodes=targets, command=cmd, worker=self, timeout=timeout, stderr=self.stderr, gw_invoke_cmd=self.invoke_gateway, remote=self.remote)
[ "def", "_copy_remote", "(", "self", ",", "source", ",", "dest", ",", "targets", ",", "gateway", ",", "timeout", ",", "reverse", ")", ":", "self", ".", "logger", ".", "debug", "(", "\"_copy_remote gateway=%s source=%s dest=%s \"", "\"reverse=%s\"", ",", "gateway", ",", "source", ",", "dest", ",", "reverse", ")", "self", ".", "_target_count", "+=", "len", "(", "targets", ")", "self", ".", "gwtargets", ".", "setdefault", "(", "str", "(", "gateway", ")", ",", "NodeSet", "(", ")", ")", ".", "add", "(", "targets", ")", "# tar commands are built here and launched on targets", "if", "reverse", ":", "# these weird replace calls aim to escape single quotes ' within ''", "srcdir", "=", "dirname", "(", "source", ")", ".", "replace", "(", "\"'\"", ",", "'\\'\\\"\\'\\\"\\''", ")", "srcbase", "=", "basename", "(", "normpath", "(", "self", ".", "source", ")", ")", ".", "replace", "(", "\"'\"", ",", "'\\'\\\"\\'\\\"\\''", ")", "cmd", "=", "self", ".", "TAR_CMD_FMT", "%", "(", "srcdir", ",", "srcbase", ")", "else", ":", "cmd", "=", "self", ".", "UNTAR_CMD_FMT", "%", "dest", ".", "replace", "(", "\"'\"", ",", "'\\'\\\"\\'\\\"\\''", ")", "self", ".", "logger", ".", "debug", "(", "'_copy_remote: tar cmd: %s'", ",", "cmd", ")", "pchan", "=", "self", ".", "task", ".", "_pchannel", "(", "gateway", ",", "self", ")", "pchan", ".", "shell", "(", "nodes", "=", "targets", ",", "command", "=", "cmd", ",", "worker", "=", "self", ",", "timeout", "=", "timeout", ",", "stderr", "=", "self", ".", "stderr", ",", "gw_invoke_cmd", "=", "self", ".", "invoke_gateway", ",", "remote", "=", "self", ".", "remote", ")" ]
https://github.com/cea-hpc/clustershell/blob/c421133ed4baa69e35ff76c476d4097201485344/lib/ClusterShell/Worker/Tree.py#L332-L355
rainofmine/Face_Attention_Network
68393da155da02d365e50e4118ca428eb9d24eb7
csv_eval.py
python
evaluate
( generator, retinanet, iou_threshold=0.5, score_threshold=0.05, max_detections=100, save_path=None )
return average_precisions
Evaluate a given dataset using a given retinanet. # Arguments generator : The generator that represents the dataset to evaluate. retinanet : The retinanet to evaluate. iou_threshold : The threshold used to consider when a detection is positive or negative. score_threshold : The score confidence threshold to use for detections. max_detections : The maximum number of detections to use per image. save_path : The path to save images with visualized detections to. # Returns A dict mapping class names to mAP scores.
Evaluate a given dataset using a given retinanet. # Arguments generator : The generator that represents the dataset to evaluate. retinanet : The retinanet to evaluate. iou_threshold : The threshold used to consider when a detection is positive or negative. score_threshold : The score confidence threshold to use for detections. max_detections : The maximum number of detections to use per image. save_path : The path to save images with visualized detections to. # Returns A dict mapping class names to mAP scores.
[ "Evaluate", "a", "given", "dataset", "using", "a", "given", "retinanet", ".", "#", "Arguments", "generator", ":", "The", "generator", "that", "represents", "the", "dataset", "to", "evaluate", ".", "retinanet", ":", "The", "retinanet", "to", "evaluate", ".", "iou_threshold", ":", "The", "threshold", "used", "to", "consider", "when", "a", "detection", "is", "positive", "or", "negative", ".", "score_threshold", ":", "The", "score", "confidence", "threshold", "to", "use", "for", "detections", ".", "max_detections", ":", "The", "maximum", "number", "of", "detections", "to", "use", "per", "image", ".", "save_path", ":", "The", "path", "to", "save", "images", "with", "visualized", "detections", "to", ".", "#", "Returns", "A", "dict", "mapping", "class", "names", "to", "mAP", "scores", "." ]
def evaluate( generator, retinanet, iou_threshold=0.5, score_threshold=0.05, max_detections=100, save_path=None ): """ Evaluate a given dataset using a given retinanet. # Arguments generator : The generator that represents the dataset to evaluate. retinanet : The retinanet to evaluate. iou_threshold : The threshold used to consider when a detection is positive or negative. score_threshold : The score confidence threshold to use for detections. max_detections : The maximum number of detections to use per image. save_path : The path to save images with visualized detections to. # Returns A dict mapping class names to mAP scores. """ # gather all detections and annotations all_detections = _get_detections(generator, retinanet, score_threshold=score_threshold, max_detections=max_detections, save_path=save_path) all_annotations = _get_annotations(generator) average_precisions = {} for label in range(generator.num_classes()): false_positives = np.zeros((0,)) true_positives = np.zeros((0,)) scores = np.zeros((0,)) num_annotations = 0.0 for i in range(len(generator)): detections = all_detections[i][label] annotations = all_annotations[i][label] num_annotations += annotations.shape[0] detected_annotations = [] for d in detections: scores = np.append(scores, d[4]) if annotations.shape[0] == 0: false_positives = np.append(false_positives, 1) true_positives = np.append(true_positives, 0) continue overlaps = compute_overlap(np.expand_dims(d, axis=0), annotations) assigned_annotation = np.argmax(overlaps, axis=1) max_overlap = overlaps[0, assigned_annotation] if max_overlap >= iou_threshold and assigned_annotation not in detected_annotations: false_positives = np.append(false_positives, 0) true_positives = np.append(true_positives, 1) detected_annotations.append(assigned_annotation) else: false_positives = np.append(false_positives, 1) true_positives = np.append(true_positives, 0) # no annotations -> AP for this class is 0 (is this correct?) if num_annotations == 0: average_precisions[label] = 0, 0 continue # sort by score indices = np.argsort(-scores) false_positives = false_positives[indices] true_positives = true_positives[indices] # compute false positives and true positives false_positives = np.cumsum(false_positives) true_positives = np.cumsum(true_positives) # compute recall and precision recall = true_positives / num_annotations precision = true_positives / np.maximum(true_positives + false_positives, np.finfo(np.float64).eps) # compute average precision average_precision = _compute_ap(recall, precision) average_precisions[label] = average_precision, num_annotations print('\nmAP:') for label in range(generator.num_classes()): label_name = generator.label_to_name(label) print('{}: {}'.format(label_name, average_precisions[label][0])) return average_precisions
[ "def", "evaluate", "(", "generator", ",", "retinanet", ",", "iou_threshold", "=", "0.5", ",", "score_threshold", "=", "0.05", ",", "max_detections", "=", "100", ",", "save_path", "=", "None", ")", ":", "# gather all detections and annotations", "all_detections", "=", "_get_detections", "(", "generator", ",", "retinanet", ",", "score_threshold", "=", "score_threshold", ",", "max_detections", "=", "max_detections", ",", "save_path", "=", "save_path", ")", "all_annotations", "=", "_get_annotations", "(", "generator", ")", "average_precisions", "=", "{", "}", "for", "label", "in", "range", "(", "generator", ".", "num_classes", "(", ")", ")", ":", "false_positives", "=", "np", ".", "zeros", "(", "(", "0", ",", ")", ")", "true_positives", "=", "np", ".", "zeros", "(", "(", "0", ",", ")", ")", "scores", "=", "np", ".", "zeros", "(", "(", "0", ",", ")", ")", "num_annotations", "=", "0.0", "for", "i", "in", "range", "(", "len", "(", "generator", ")", ")", ":", "detections", "=", "all_detections", "[", "i", "]", "[", "label", "]", "annotations", "=", "all_annotations", "[", "i", "]", "[", "label", "]", "num_annotations", "+=", "annotations", ".", "shape", "[", "0", "]", "detected_annotations", "=", "[", "]", "for", "d", "in", "detections", ":", "scores", "=", "np", ".", "append", "(", "scores", ",", "d", "[", "4", "]", ")", "if", "annotations", ".", "shape", "[", "0", "]", "==", "0", ":", "false_positives", "=", "np", ".", "append", "(", "false_positives", ",", "1", ")", "true_positives", "=", "np", ".", "append", "(", "true_positives", ",", "0", ")", "continue", "overlaps", "=", "compute_overlap", "(", "np", ".", "expand_dims", "(", "d", ",", "axis", "=", "0", ")", ",", "annotations", ")", "assigned_annotation", "=", "np", ".", "argmax", "(", "overlaps", ",", "axis", "=", "1", ")", "max_overlap", "=", "overlaps", "[", "0", ",", "assigned_annotation", "]", "if", "max_overlap", ">=", "iou_threshold", "and", "assigned_annotation", "not", "in", "detected_annotations", ":", "false_positives", "=", "np", ".", "append", "(", "false_positives", ",", "0", ")", "true_positives", "=", "np", ".", "append", "(", "true_positives", ",", "1", ")", "detected_annotations", ".", "append", "(", "assigned_annotation", ")", "else", ":", "false_positives", "=", "np", ".", "append", "(", "false_positives", ",", "1", ")", "true_positives", "=", "np", ".", "append", "(", "true_positives", ",", "0", ")", "# no annotations -> AP for this class is 0 (is this correct?)", "if", "num_annotations", "==", "0", ":", "average_precisions", "[", "label", "]", "=", "0", ",", "0", "continue", "# sort by score", "indices", "=", "np", ".", "argsort", "(", "-", "scores", ")", "false_positives", "=", "false_positives", "[", "indices", "]", "true_positives", "=", "true_positives", "[", "indices", "]", "# compute false positives and true positives", "false_positives", "=", "np", ".", "cumsum", "(", "false_positives", ")", "true_positives", "=", "np", ".", "cumsum", "(", "true_positives", ")", "# compute recall and precision", "recall", "=", "true_positives", "/", "num_annotations", "precision", "=", "true_positives", "/", "np", ".", "maximum", "(", "true_positives", "+", "false_positives", ",", "np", ".", "finfo", "(", "np", ".", "float64", ")", ".", "eps", ")", "# compute average precision", "average_precision", "=", "_compute_ap", "(", "recall", ",", "precision", ")", "average_precisions", "[", "label", "]", "=", "average_precision", ",", "num_annotations", "print", "(", "'\\nmAP:'", ")", "for", "label", "in", "range", "(", "generator", ".", "num_classes", "(", ")", ")", ":", "label_name", "=", "generator", ".", "label_to_name", "(", "label", ")", "print", "(", "'{}: {}'", ".", "format", "(", "label_name", ",", "average_precisions", "[", "label", "]", "[", "0", "]", ")", ")", "return", "average_precisions" ]
https://github.com/rainofmine/Face_Attention_Network/blob/68393da155da02d365e50e4118ca428eb9d24eb7/csv_eval.py#L150-L238
openstack/magnum
fa298eeab19b1d87070d72c7c4fb26cd75b0781e
magnum/db/sqlalchemy/alembic/versions/461d798132c7_change_cluster_to_support_nodegroups.py
python
_handle_json_columns
(value, default=None)
return default
[]
def _handle_json_columns(value, default=None): if value is not None: return jsonutils.loads(value) return default
[ "def", "_handle_json_columns", "(", "value", ",", "default", "=", "None", ")", ":", "if", "value", "is", "not", "None", ":", "return", "jsonutils", ".", "loads", "(", "value", ")", "return", "default" ]
https://github.com/openstack/magnum/blob/fa298eeab19b1d87070d72c7c4fb26cd75b0781e/magnum/db/sqlalchemy/alembic/versions/461d798132c7_change_cluster_to_support_nodegroups.py#L39-L42
axcore/tartube
36dd493642923fe8b9190a41db596c30c043ae90
tartube/mainwin.py
python
MainWin.results_list_update_tooltip
(self, video_obj)
Called by downloads.DownloadWorker.data_callback(). When downloading a video individually, the tooltips in the Results List are only updated when the video file is actually downloaded. This function is called to update the tooltips at the end of every download, ensuring that any errors/warnings are visible in it. Args: video_obj (media.Video): The video which has just been downloaded individually
Called by downloads.DownloadWorker.data_callback().
[ "Called", "by", "downloads", ".", "DownloadWorker", ".", "data_callback", "()", "." ]
def results_list_update_tooltip(self, video_obj): """Called by downloads.DownloadWorker.data_callback(). When downloading a video individually, the tooltips in the Results List are only updated when the video file is actually downloaded. This function is called to update the tooltips at the end of every download, ensuring that any errors/warnings are visible in it. Args: video_obj (media.Video): The video which has just been downloaded individually """ if DEBUG_FUNC_FLAG: utils.debug_time('mwn 10275 results_list_update_tooltip') if video_obj.dbid in self.results_list_row_dict: # Update the corresponding row in the Results List row_num = self.results_list_row_dict[video_obj.dbid] # New rows are being added to the top, so the real row number # changes on every call to self.results_list_add_row() if self.app_obj.results_list_reverse_flag: row_num = self.results_list_row_count - 1 - row_num tree_path = Gtk.TreePath(row_num) row_iter = self.results_list_liststore.get_iter(tree_path) self.results_list_liststore.set( row_iter, 1, html.escape( video_obj.fetch_tooltip_text( self.app_obj, self.tooltip_max_len, True, # Show errors/warnings ), ), )
[ "def", "results_list_update_tooltip", "(", "self", ",", "video_obj", ")", ":", "if", "DEBUG_FUNC_FLAG", ":", "utils", ".", "debug_time", "(", "'mwn 10275 results_list_update_tooltip'", ")", "if", "video_obj", ".", "dbid", "in", "self", ".", "results_list_row_dict", ":", "# Update the corresponding row in the Results List", "row_num", "=", "self", ".", "results_list_row_dict", "[", "video_obj", ".", "dbid", "]", "# New rows are being added to the top, so the real row number", "# changes on every call to self.results_list_add_row()", "if", "self", ".", "app_obj", ".", "results_list_reverse_flag", ":", "row_num", "=", "self", ".", "results_list_row_count", "-", "1", "-", "row_num", "tree_path", "=", "Gtk", ".", "TreePath", "(", "row_num", ")", "row_iter", "=", "self", ".", "results_list_liststore", ".", "get_iter", "(", "tree_path", ")", "self", ".", "results_list_liststore", ".", "set", "(", "row_iter", ",", "1", ",", "html", ".", "escape", "(", "video_obj", ".", "fetch_tooltip_text", "(", "self", ".", "app_obj", ",", "self", ".", "tooltip_max_len", ",", "True", ",", "# Show errors/warnings", ")", ",", ")", ",", ")" ]
https://github.com/axcore/tartube/blob/36dd493642923fe8b9190a41db596c30c043ae90/tartube/mainwin.py#L11179-L11220
google/textfsm
65ce6c13f0b0c798a6505366cf17dd54bf285d90
textfsm/clitable.py
python
CliTable.sort
(self, cmp=None, key=None, reverse=False)
Overrides sort func to use the KeyValue for the key.
Overrides sort func to use the KeyValue for the key.
[ "Overrides", "sort", "func", "to", "use", "the", "KeyValue", "for", "the", "key", "." ]
def sort(self, cmp=None, key=None, reverse=False): """Overrides sort func to use the KeyValue for the key.""" if not key and self._keys: key = self.KeyValue super(CliTable, self).sort(cmp=cmp, key=key, reverse=reverse)
[ "def", "sort", "(", "self", ",", "cmp", "=", "None", ",", "key", "=", "None", ",", "reverse", "=", "False", ")", ":", "if", "not", "key", "and", "self", ".", "_keys", ":", "key", "=", "self", ".", "KeyValue", "super", "(", "CliTable", ",", "self", ")", ".", "sort", "(", "cmp", "=", "cmp", ",", "key", "=", "key", ",", "reverse", "=", "reverse", ")" ]
https://github.com/google/textfsm/blob/65ce6c13f0b0c798a6505366cf17dd54bf285d90/textfsm/clitable.py#L356-L360
caiiiac/Machine-Learning-with-Python
1a26c4467da41ca4ebc3d5bd789ea942ef79422f
MachineLearning/venv/lib/python3.5/site-packages/scipy/cluster/hierarchy.py
python
is_valid_im
(R, warning=False, throw=False, name=None)
return valid
Returns True if the inconsistency matrix passed is valid. It must be a :math:`n` by 4 array of doubles. The standard deviations ``R[:,1]`` must be nonnegative. The link counts ``R[:,2]`` must be positive and no greater than :math:`n-1`. Parameters ---------- R : ndarray The inconsistency matrix to check for validity. warning : bool, optional When True, issues a Python warning if the linkage matrix passed is invalid. throw : bool, optional When True, throws a Python exception if the linkage matrix passed is invalid. name : str, optional This string refers to the variable name of the invalid linkage matrix. Returns ------- b : bool True if the inconsistency matrix is valid.
Returns True if the inconsistency matrix passed is valid.
[ "Returns", "True", "if", "the", "inconsistency", "matrix", "passed", "is", "valid", "." ]
def is_valid_im(R, warning=False, throw=False, name=None): """Returns True if the inconsistency matrix passed is valid. It must be a :math:`n` by 4 array of doubles. The standard deviations ``R[:,1]`` must be nonnegative. The link counts ``R[:,2]`` must be positive and no greater than :math:`n-1`. Parameters ---------- R : ndarray The inconsistency matrix to check for validity. warning : bool, optional When True, issues a Python warning if the linkage matrix passed is invalid. throw : bool, optional When True, throws a Python exception if the linkage matrix passed is invalid. name : str, optional This string refers to the variable name of the invalid linkage matrix. Returns ------- b : bool True if the inconsistency matrix is valid. """ R = np.asarray(R, order='c') valid = True name_str = "%r " % name if name else '' try: if type(R) != np.ndarray: raise TypeError('Variable %spassed as inconsistency matrix is not ' 'a numpy array.' % name_str) if R.dtype != np.double: raise TypeError('Inconsistency matrix %smust contain doubles ' '(double).' % name_str) if len(R.shape) != 2: raise ValueError('Inconsistency matrix %smust have shape=2 (i.e. ' 'be two-dimensional).' % name_str) if R.shape[1] != 4: raise ValueError('Inconsistency matrix %smust have 4 columns.' % name_str) if R.shape[0] < 1: raise ValueError('Inconsistency matrix %smust have at least one ' 'row.' % name_str) if (R[:, 0] < 0).any(): raise ValueError('Inconsistency matrix %scontains negative link ' 'height means.' % name_str) if (R[:, 1] < 0).any(): raise ValueError('Inconsistency matrix %scontains negative link ' 'height standard deviations.' % name_str) if (R[:, 2] < 0).any(): raise ValueError('Inconsistency matrix %scontains negative link ' 'counts.' % name_str) except Exception as e: if throw: raise if warning: _warning(str(e)) valid = False return valid
[ "def", "is_valid_im", "(", "R", ",", "warning", "=", "False", ",", "throw", "=", "False", ",", "name", "=", "None", ")", ":", "R", "=", "np", ".", "asarray", "(", "R", ",", "order", "=", "'c'", ")", "valid", "=", "True", "name_str", "=", "\"%r \"", "%", "name", "if", "name", "else", "''", "try", ":", "if", "type", "(", "R", ")", "!=", "np", ".", "ndarray", ":", "raise", "TypeError", "(", "'Variable %spassed as inconsistency matrix is not '", "'a numpy array.'", "%", "name_str", ")", "if", "R", ".", "dtype", "!=", "np", ".", "double", ":", "raise", "TypeError", "(", "'Inconsistency matrix %smust contain doubles '", "'(double).'", "%", "name_str", ")", "if", "len", "(", "R", ".", "shape", ")", "!=", "2", ":", "raise", "ValueError", "(", "'Inconsistency matrix %smust have shape=2 (i.e. '", "'be two-dimensional).'", "%", "name_str", ")", "if", "R", ".", "shape", "[", "1", "]", "!=", "4", ":", "raise", "ValueError", "(", "'Inconsistency matrix %smust have 4 columns.'", "%", "name_str", ")", "if", "R", ".", "shape", "[", "0", "]", "<", "1", ":", "raise", "ValueError", "(", "'Inconsistency matrix %smust have at least one '", "'row.'", "%", "name_str", ")", "if", "(", "R", "[", ":", ",", "0", "]", "<", "0", ")", ".", "any", "(", ")", ":", "raise", "ValueError", "(", "'Inconsistency matrix %scontains negative link '", "'height means.'", "%", "name_str", ")", "if", "(", "R", "[", ":", ",", "1", "]", "<", "0", ")", ".", "any", "(", ")", ":", "raise", "ValueError", "(", "'Inconsistency matrix %scontains negative link '", "'height standard deviations.'", "%", "name_str", ")", "if", "(", "R", "[", ":", ",", "2", "]", "<", "0", ")", ".", "any", "(", ")", ":", "raise", "ValueError", "(", "'Inconsistency matrix %scontains negative link '", "'counts.'", "%", "name_str", ")", "except", "Exception", "as", "e", ":", "if", "throw", ":", "raise", "if", "warning", ":", "_warning", "(", "str", "(", "e", ")", ")", "valid", "=", "False", "return", "valid" ]
https://github.com/caiiiac/Machine-Learning-with-Python/blob/1a26c4467da41ca4ebc3d5bd789ea942ef79422f/MachineLearning/venv/lib/python3.5/site-packages/scipy/cluster/hierarchy.py#L1342-L1404
ProjectQ-Framework/ProjectQ
0d32c1610ba4e9aefd7f19eb52dadb4fbe5f9005
projectq/meta/_dagger.py
python
Dagger.__exit__
(self, exc_type, exc_value, exc_traceback)
Context manager exit function.
Context manager exit function.
[ "Context", "manager", "exit", "function", "." ]
def __exit__(self, exc_type, exc_value, exc_traceback): """Context manager exit function.""" # If an error happens in this context, qubits might not have been # deallocated because that code section was not yet executed, # so don't check and raise an additional error. if exc_type is not None: return # run dagger engine self._dagger_eng.run() self._dagger_eng = None # remove dagger handler from engine list (i.e. skip it) drop_engine_after(self.engine)
[ "def", "__exit__", "(", "self", ",", "exc_type", ",", "exc_value", ",", "exc_traceback", ")", ":", "# If an error happens in this context, qubits might not have been", "# deallocated because that code section was not yet executed,", "# so don't check and raise an additional error.", "if", "exc_type", "is", "not", "None", ":", "return", "# run dagger engine", "self", ".", "_dagger_eng", ".", "run", "(", ")", "self", ".", "_dagger_eng", "=", "None", "# remove dagger handler from engine list (i.e. skip it)", "drop_engine_after", "(", "self", ".", "engine", ")" ]
https://github.com/ProjectQ-Framework/ProjectQ/blob/0d32c1610ba4e9aefd7f19eb52dadb4fbe5f9005/projectq/meta/_dagger.py#L130-L141
OneDrive/onedrive-sdk-python
e5642f8cad8eea37a4f653c1a23dfcfc06c37110
src/onedrivesdk/model/quota.py
python
Quota.total
(self)
Gets and sets the total Returns: int: The total
Gets and sets the total Returns: int: The total
[ "Gets", "and", "sets", "the", "total", "Returns", ":", "int", ":", "The", "total" ]
def total(self): """Gets and sets the total Returns: int: The total """ if "total" in self._prop_dict: return self._prop_dict["total"] else: return None
[ "def", "total", "(", "self", ")", ":", "if", "\"total\"", "in", "self", ".", "_prop_dict", ":", "return", "self", ".", "_prop_dict", "[", "\"total\"", "]", "else", ":", "return", "None" ]
https://github.com/OneDrive/onedrive-sdk-python/blob/e5642f8cad8eea37a4f653c1a23dfcfc06c37110/src/onedrivesdk/model/quota.py#L70-L80
CompVis/adaptive-style-transfer
51b4c90dbd998d9efd1dc821ad7a8df69bef61da
evaluation/feature_extractor/nets/vgg.py
python
vgg_16
(inputs, num_classes=1000, is_training=True, dropout_keep_prob=0.5, spatial_squeeze=True, scope='vgg_16', add_classifier=True)
Oxford Net VGG 16-Layers version D Example. Note: All the fully_connected layers have been transformed to conv2d layers. To use in classification mode, resize input to 224x224. Args: inputs: a tensor of size [batch_size, height, width, channels]. num_classes: number of predicted classes. is_training: whether or not the model is being trained. dropout_keep_prob: the probability that activations are kept in the dropout layers during training. spatial_squeeze: whether or not should squeeze the spatial dimensions of the outputs. Useful to remove unnecessary dimensions for classification. scope: Optional scope for the variables. add_classifier: should contruct softmax classifier on top or not Returns: the last op containing the log predictions and end_points dict.
Oxford Net VGG 16-Layers version D Example.
[ "Oxford", "Net", "VGG", "16", "-", "Layers", "version", "D", "Example", "." ]
def vgg_16(inputs, num_classes=1000, is_training=True, dropout_keep_prob=0.5, spatial_squeeze=True, scope='vgg_16', add_classifier=True): """Oxford Net VGG 16-Layers version D Example. Note: All the fully_connected layers have been transformed to conv2d layers. To use in classification mode, resize input to 224x224. Args: inputs: a tensor of size [batch_size, height, width, channels]. num_classes: number of predicted classes. is_training: whether or not the model is being trained. dropout_keep_prob: the probability that activations are kept in the dropout layers during training. spatial_squeeze: whether or not should squeeze the spatial dimensions of the outputs. Useful to remove unnecessary dimensions for classification. scope: Optional scope for the variables. add_classifier: should contruct softmax classifier on top or not Returns: the last op containing the log predictions and end_points dict. """ with tf.variable_scope(scope, 'vgg_16', [inputs]) as sc: end_points_collection = sc.name + '_end_points' # Collect outputs for conv2d, fully_connected and max_pool2d. with slim.arg_scope([slim.conv2d, slim.fully_connected, slim.max_pool2d], outputs_collections=end_points_collection): net = slim.repeat(inputs, 2, slim.conv2d, 64, [3, 3], scope='conv1') net = slim.max_pool2d(net, [2, 2], scope='pool1') net = slim.repeat(net, 2, slim.conv2d, 128, [3, 3], scope='conv2') net = slim.max_pool2d(net, [2, 2], scope='pool2') net = slim.repeat(net, 3, slim.conv2d, 256, [3, 3], scope='conv3') net = slim.max_pool2d(net, [2, 2], scope='pool3') net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv4') net = slim.max_pool2d(net, [2, 2], scope='pool4') net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv5') net = slim.max_pool2d(net, [2, 2], scope='pool5') # Use conv2d instead of fully_connected layers. net = slim.conv2d(net, 4096, [7, 7], padding='VALID', scope='fc6') net = slim.dropout(net, dropout_keep_prob, is_training=is_training, scope='dropout6') net = slim.conv2d(net, 4096, [1, 1], scope='fc7') net = slim.dropout(net, dropout_keep_prob, is_training=is_training, scope='dropout7') if add_classifier: net = slim.conv2d(net, num_classes, [1, 1], activation_fn=None, normalizer_fn=None, scope='fc8') # Convert end_points_collection into a end_point dict. end_points = slim.utils.convert_collection_to_dict(end_points_collection) if add_classifier and spatial_squeeze: net = tf.squeeze(net, [1, 2], name='fc8/squeezed') pos = net.name.find('fc8/squeezed') prefix = net.name[:pos] end_points[prefix + 'fc8'] = net return net, end_points
[ "def", "vgg_16", "(", "inputs", ",", "num_classes", "=", "1000", ",", "is_training", "=", "True", ",", "dropout_keep_prob", "=", "0.5", ",", "spatial_squeeze", "=", "True", ",", "scope", "=", "'vgg_16'", ",", "add_classifier", "=", "True", ")", ":", "with", "tf", ".", "variable_scope", "(", "scope", ",", "'vgg_16'", ",", "[", "inputs", "]", ")", "as", "sc", ":", "end_points_collection", "=", "sc", ".", "name", "+", "'_end_points'", "# Collect outputs for conv2d, fully_connected and max_pool2d.", "with", "slim", ".", "arg_scope", "(", "[", "slim", ".", "conv2d", ",", "slim", ".", "fully_connected", ",", "slim", ".", "max_pool2d", "]", ",", "outputs_collections", "=", "end_points_collection", ")", ":", "net", "=", "slim", ".", "repeat", "(", "inputs", ",", "2", ",", "slim", ".", "conv2d", ",", "64", ",", "[", "3", ",", "3", "]", ",", "scope", "=", "'conv1'", ")", "net", "=", "slim", ".", "max_pool2d", "(", "net", ",", "[", "2", ",", "2", "]", ",", "scope", "=", "'pool1'", ")", "net", "=", "slim", ".", "repeat", "(", "net", ",", "2", ",", "slim", ".", "conv2d", ",", "128", ",", "[", "3", ",", "3", "]", ",", "scope", "=", "'conv2'", ")", "net", "=", "slim", ".", "max_pool2d", "(", "net", ",", "[", "2", ",", "2", "]", ",", "scope", "=", "'pool2'", ")", "net", "=", "slim", ".", "repeat", "(", "net", ",", "3", ",", "slim", ".", "conv2d", ",", "256", ",", "[", "3", ",", "3", "]", ",", "scope", "=", "'conv3'", ")", "net", "=", "slim", ".", "max_pool2d", "(", "net", ",", "[", "2", ",", "2", "]", ",", "scope", "=", "'pool3'", ")", "net", "=", "slim", ".", "repeat", "(", "net", ",", "3", ",", "slim", ".", "conv2d", ",", "512", ",", "[", "3", ",", "3", "]", ",", "scope", "=", "'conv4'", ")", "net", "=", "slim", ".", "max_pool2d", "(", "net", ",", "[", "2", ",", "2", "]", ",", "scope", "=", "'pool4'", ")", "net", "=", "slim", ".", "repeat", "(", "net", ",", "3", ",", "slim", ".", "conv2d", ",", "512", ",", "[", "3", ",", "3", "]", ",", "scope", "=", "'conv5'", ")", "net", "=", "slim", ".", "max_pool2d", "(", "net", ",", "[", "2", ",", "2", "]", ",", "scope", "=", "'pool5'", ")", "# Use conv2d instead of fully_connected layers.", "net", "=", "slim", ".", "conv2d", "(", "net", ",", "4096", ",", "[", "7", ",", "7", "]", ",", "padding", "=", "'VALID'", ",", "scope", "=", "'fc6'", ")", "net", "=", "slim", ".", "dropout", "(", "net", ",", "dropout_keep_prob", ",", "is_training", "=", "is_training", ",", "scope", "=", "'dropout6'", ")", "net", "=", "slim", ".", "conv2d", "(", "net", ",", "4096", ",", "[", "1", ",", "1", "]", ",", "scope", "=", "'fc7'", ")", "net", "=", "slim", ".", "dropout", "(", "net", ",", "dropout_keep_prob", ",", "is_training", "=", "is_training", ",", "scope", "=", "'dropout7'", ")", "if", "add_classifier", ":", "net", "=", "slim", ".", "conv2d", "(", "net", ",", "num_classes", ",", "[", "1", ",", "1", "]", ",", "activation_fn", "=", "None", ",", "normalizer_fn", "=", "None", ",", "scope", "=", "'fc8'", ")", "# Convert end_points_collection into a end_point dict.", "end_points", "=", "slim", ".", "utils", ".", "convert_collection_to_dict", "(", "end_points_collection", ")", "if", "add_classifier", "and", "spatial_squeeze", ":", "net", "=", "tf", ".", "squeeze", "(", "net", ",", "[", "1", ",", "2", "]", ",", "name", "=", "'fc8/squeezed'", ")", "pos", "=", "net", ".", "name", ".", "find", "(", "'fc8/squeezed'", ")", "prefix", "=", "net", ".", "name", "[", ":", "pos", "]", "end_points", "[", "prefix", "+", "'fc8'", "]", "=", "net", "return", "net", ",", "end_points" ]
https://github.com/CompVis/adaptive-style-transfer/blob/51b4c90dbd998d9efd1dc821ad7a8df69bef61da/evaluation/feature_extractor/nets/vgg.py#L127-L188
mattrobenolt/django-sudo
abf3fdc5d34ed325722fd0252e48e3402cfdabaa
tasks.py
python
clean
(c)
Clean working directory
Clean working directory
[ "Clean", "working", "directory" ]
def clean(c): "Clean working directory" run("rm -rf *.egg-info *.egg") run("rm -rf dist build")
[ "def", "clean", "(", "c", ")", ":", "run", "(", "\"rm -rf *.egg-info *.egg\"", ")", "run", "(", "\"rm -rf dist build\"", ")" ]
https://github.com/mattrobenolt/django-sudo/blob/abf3fdc5d34ed325722fd0252e48e3402cfdabaa/tasks.py#L31-L34
Jajcus/pyxmpp2
59e5fd7c8837991ac265dc6aad23a6bd256768a7
pyxmpp2/streamtls.py
python
StreamTLSHandler._make_tls_connection
(self)
Initiate TLS connection. [initiating entity only]
Initiate TLS connection.
[ "Initiate", "TLS", "connection", "." ]
def _make_tls_connection(self): """Initiate TLS connection. [initiating entity only] """ logger.debug("Preparing TLS connection") if self.settings["tls_verify_peer"]: cert_reqs = ssl.CERT_REQUIRED else: cert_reqs = ssl.CERT_NONE self.stream.transport.starttls( keyfile = self.settings["tls_key_file"], certfile = self.settings["tls_cert_file"], server_side = not self.stream.initiator, cert_reqs = cert_reqs, ssl_version = ssl.PROTOCOL_TLSv1, ca_certs = self.settings["tls_cacert_file"], do_handshake_on_connect = False, )
[ "def", "_make_tls_connection", "(", "self", ")", ":", "logger", ".", "debug", "(", "\"Preparing TLS connection\"", ")", "if", "self", ".", "settings", "[", "\"tls_verify_peer\"", "]", ":", "cert_reqs", "=", "ssl", ".", "CERT_REQUIRED", "else", ":", "cert_reqs", "=", "ssl", ".", "CERT_NONE", "self", ".", "stream", ".", "transport", ".", "starttls", "(", "keyfile", "=", "self", ".", "settings", "[", "\"tls_key_file\"", "]", ",", "certfile", "=", "self", ".", "settings", "[", "\"tls_cert_file\"", "]", ",", "server_side", "=", "not", "self", ".", "stream", ".", "initiator", ",", "cert_reqs", "=", "cert_reqs", ",", "ssl_version", "=", "ssl", ".", "PROTOCOL_TLSv1", ",", "ca_certs", "=", "self", ".", "settings", "[", "\"tls_cacert_file\"", "]", ",", "do_handshake_on_connect", "=", "False", ",", ")" ]
https://github.com/Jajcus/pyxmpp2/blob/59e5fd7c8837991ac265dc6aad23a6bd256768a7/pyxmpp2/streamtls.py#L166-L184
Esri/ArcREST
ab240fde2b0200f61d4a5f6df033516e53f2f416
src/arcrest/common/general.py
python
Feature.set_value
(self, field_name, value)
return True
sets an attribute value for a given field name
sets an attribute value for a given field name
[ "sets", "an", "attribute", "value", "for", "a", "given", "field", "name" ]
def set_value(self, field_name, value): """ sets an attribute value for a given field name """ if field_name in self.fields: if not value is None: self._dict['attributes'][field_name] = _unicode_convert(value) else: pass elif field_name.upper() in ['SHAPE', 'SHAPE@', "GEOMETRY"]: if isinstance(value, dict): if 'geometry' in value: self._dict['geometry'] = value['geometry'] elif any(k in value.keys() for k in ['x','y','points','paths','rings', 'spatialReference']): self._dict['geometry'] = value elif isinstance(value, AbstractGeometry): self._dict['geometry'] = value.asDictionary elif arcpyFound: if isinstance(value, arcpy.Geometry) and \ value.type == self.geometryType: self._dict['geometry']=json.loads(value.JSON) self._geom = None self._geom = self.geometry else: return False self._json = json.dumps(self._dict, default=_date_handler) return True
[ "def", "set_value", "(", "self", ",", "field_name", ",", "value", ")", ":", "if", "field_name", "in", "self", ".", "fields", ":", "if", "not", "value", "is", "None", ":", "self", ".", "_dict", "[", "'attributes'", "]", "[", "field_name", "]", "=", "_unicode_convert", "(", "value", ")", "else", ":", "pass", "elif", "field_name", ".", "upper", "(", ")", "in", "[", "'SHAPE'", ",", "'SHAPE@'", ",", "\"GEOMETRY\"", "]", ":", "if", "isinstance", "(", "value", ",", "dict", ")", ":", "if", "'geometry'", "in", "value", ":", "self", ".", "_dict", "[", "'geometry'", "]", "=", "value", "[", "'geometry'", "]", "elif", "any", "(", "k", "in", "value", ".", "keys", "(", ")", "for", "k", "in", "[", "'x'", ",", "'y'", ",", "'points'", ",", "'paths'", ",", "'rings'", ",", "'spatialReference'", "]", ")", ":", "self", ".", "_dict", "[", "'geometry'", "]", "=", "value", "elif", "isinstance", "(", "value", ",", "AbstractGeometry", ")", ":", "self", ".", "_dict", "[", "'geometry'", "]", "=", "value", ".", "asDictionary", "elif", "arcpyFound", ":", "if", "isinstance", "(", "value", ",", "arcpy", ".", "Geometry", ")", "and", "value", ".", "type", "==", "self", ".", "geometryType", ":", "self", ".", "_dict", "[", "'geometry'", "]", "=", "json", ".", "loads", "(", "value", ".", "JSON", ")", "self", ".", "_geom", "=", "None", "self", ".", "_geom", "=", "self", ".", "geometry", "else", ":", "return", "False", "self", ".", "_json", "=", "json", ".", "dumps", "(", "self", ".", "_dict", ",", "default", "=", "_date_handler", ")", "return", "True" ]
https://github.com/Esri/ArcREST/blob/ab240fde2b0200f61d4a5f6df033516e53f2f416/src/arcrest/common/general.py#L136-L160
GoogleCloudPlatform/PerfKitBenchmarker
6e3412d7d5e414b8ca30ed5eaf970cef1d919a67
perfkitbenchmarker/linux_packages/node_js.py
python
_Uninstall
(vm)
Uninstalls the node.js package on the VM.
Uninstalls the node.js package on the VM.
[ "Uninstalls", "the", "node", ".", "js", "package", "on", "the", "VM", "." ]
def _Uninstall(vm): """Uninstalls the node.js package on the VM.""" vm.RemoteCommand('cd {0} && sudo make uninstall'.format(NODE_DIR))
[ "def", "_Uninstall", "(", "vm", ")", ":", "vm", ".", "RemoteCommand", "(", "'cd {0} && sudo make uninstall'", ".", "format", "(", "NODE_DIR", ")", ")" ]
https://github.com/GoogleCloudPlatform/PerfKitBenchmarker/blob/6e3412d7d5e414b8ca30ed5eaf970cef1d919a67/perfkitbenchmarker/linux_packages/node_js.py#L44-L46
pypa/pip
7f8a6844037fb7255cfd0d34ff8e8cf44f2598d4
src/pip/_vendor/distlib/database.py
python
DistributionPath.distinfo_dirname
(cls, name, version)
return '-'.join([name, version]) + DISTINFO_EXT
The *name* and *version* parameters are converted into their filename-escaped form, i.e. any ``'-'`` characters are replaced with ``'_'`` other than the one in ``'dist-info'`` and the one separating the name from the version number. :parameter name: is converted to a standard distribution name by replacing any runs of non- alphanumeric characters with a single ``'-'``. :type name: string :parameter version: is converted to a standard version string. Spaces become dots, and all other non-alphanumeric characters (except dots) become dashes, with runs of multiple dashes condensed to a single dash. :type version: string :returns: directory name :rtype: string
The *name* and *version* parameters are converted into their filename-escaped form, i.e. any ``'-'`` characters are replaced with ``'_'`` other than the one in ``'dist-info'`` and the one separating the name from the version number.
[ "The", "*", "name", "*", "and", "*", "version", "*", "parameters", "are", "converted", "into", "their", "filename", "-", "escaped", "form", "i", ".", "e", ".", "any", "-", "characters", "are", "replaced", "with", "_", "other", "than", "the", "one", "in", "dist", "-", "info", "and", "the", "one", "separating", "the", "name", "from", "the", "version", "number", "." ]
def distinfo_dirname(cls, name, version): """ The *name* and *version* parameters are converted into their filename-escaped form, i.e. any ``'-'`` characters are replaced with ``'_'`` other than the one in ``'dist-info'`` and the one separating the name from the version number. :parameter name: is converted to a standard distribution name by replacing any runs of non- alphanumeric characters with a single ``'-'``. :type name: string :parameter version: is converted to a standard version string. Spaces become dots, and all other non-alphanumeric characters (except dots) become dashes, with runs of multiple dashes condensed to a single dash. :type version: string :returns: directory name :rtype: string""" name = name.replace('-', '_') return '-'.join([name, version]) + DISTINFO_EXT
[ "def", "distinfo_dirname", "(", "cls", ",", "name", ",", "version", ")", ":", "name", "=", "name", ".", "replace", "(", "'-'", ",", "'_'", ")", "return", "'-'", ".", "join", "(", "[", "name", ",", "version", "]", ")", "+", "DISTINFO_EXT" ]
https://github.com/pypa/pip/blob/7f8a6844037fb7255cfd0d34ff8e8cf44f2598d4/src/pip/_vendor/distlib/database.py#L179-L198
thinkle/gourmet
8af29c8ded24528030e5ae2ea3461f61c1e5a575
gourmet/plugins/import_export/website_import_plugins/cooksillustrated_plugin.py
python
LogInWebReader.read
(self)
[]
def read (self): self.emit('progress',0,_('Logging into %s')%'www.cooksillustrated.com') global driver if driver: # Don't log in twice :) self.d = driver else: #self.d = webdriver.Chrome() self.d = webdriver.Firefox() print('Logging in...') driver = self.d self.d.get('https://www.cooksillustrated.com/sign_in/') username,pw = self.get_username_and_pw() #un=self.d.find_element_by_xpath('//*[@name="user[email]"]') un=self.d.find_element_by_xpath('//*[@id="email"]') print('Got email element',un) un.send_keys(username) #pw_el = self.d.find_element_by_xpath('//*[@name="user[password]"]') pw_el = self.d.find_element_by_xpath('//*[@id="password"]') print('Got password element',pw_el) pw_el.send_keys(pw+'\n') # Now get URL # First log in... self.emit('progress',0.5,_('Logging into %s')%'www.cooksillustrated.com') self.emit('progress',0.6,_('Retrieving %s')%self.url) self.d.get(self.url) self.emit('progress',1,_('Retrieving %s')%self.url) self.content_type = 'text/html' self.data = self.d.page_source
[ "def", "read", "(", "self", ")", ":", "self", ".", "emit", "(", "'progress'", ",", "0", ",", "_", "(", "'Logging into %s'", ")", "%", "'www.cooksillustrated.com'", ")", "global", "driver", "if", "driver", ":", "# Don't log in twice :)", "self", ".", "d", "=", "driver", "else", ":", "#self.d = webdriver.Chrome()", "self", ".", "d", "=", "webdriver", ".", "Firefox", "(", ")", "print", "(", "'Logging in...'", ")", "driver", "=", "self", ".", "d", "self", ".", "d", ".", "get", "(", "'https://www.cooksillustrated.com/sign_in/'", ")", "username", ",", "pw", "=", "self", ".", "get_username_and_pw", "(", ")", "#un=self.d.find_element_by_xpath('//*[@name=\"user[email]\"]')", "un", "=", "self", ".", "d", ".", "find_element_by_xpath", "(", "'//*[@id=\"email\"]'", ")", "print", "(", "'Got email element'", ",", "un", ")", "un", ".", "send_keys", "(", "username", ")", "#pw_el = self.d.find_element_by_xpath('//*[@name=\"user[password]\"]')", "pw_el", "=", "self", ".", "d", ".", "find_element_by_xpath", "(", "'//*[@id=\"password\"]'", ")", "print", "(", "'Got password element'", ",", "pw_el", ")", "pw_el", ".", "send_keys", "(", "pw", "+", "'\\n'", ")", "# Now get URL", "# First log in...", "self", ".", "emit", "(", "'progress'", ",", "0.5", ",", "_", "(", "'Logging into %s'", ")", "%", "'www.cooksillustrated.com'", ")", "self", ".", "emit", "(", "'progress'", ",", "0.6", ",", "_", "(", "'Retrieving %s'", ")", "%", "self", ".", "url", ")", "self", ".", "d", ".", "get", "(", "self", ".", "url", ")", "self", ".", "emit", "(", "'progress'", ",", "1", ",", "_", "(", "'Retrieving %s'", ")", "%", "self", ".", "url", ")", "self", ".", "content_type", "=", "'text/html'", "self", ".", "data", "=", "self", ".", "d", ".", "page_source" ]
https://github.com/thinkle/gourmet/blob/8af29c8ded24528030e5ae2ea3461f61c1e5a575/gourmet/plugins/import_export/website_import_plugins/cooksillustrated_plugin.py#L59-L87
flow-project/flow
a511c41c48e6b928bb2060de8ad1ef3c3e3d9554
flow/networks/traffic_light_grid.py
python
TrafficLightGridNetwork.specify_edges
(self, net_params)
return self._inner_edges + self._outer_edges
See parent class.
See parent class.
[ "See", "parent", "class", "." ]
def specify_edges(self, net_params): """See parent class.""" return self._inner_edges + self._outer_edges
[ "def", "specify_edges", "(", "self", ",", "net_params", ")", ":", "return", "self", ".", "_inner_edges", "+", "self", ".", "_outer_edges" ]
https://github.com/flow-project/flow/blob/a511c41c48e6b928bb2060de8ad1ef3c3e3d9554/flow/networks/traffic_light_grid.py#L170-L172
ShuLiu1993/PANet
f055f716a21896dab8907c46c12e216323baefdb
lib/utils/blob.py
python
get_max_shape
(im_shapes)
return max_shape
Calculate max spatial size (h, w) for batching given a list of image shapes
Calculate max spatial size (h, w) for batching given a list of image shapes
[ "Calculate", "max", "spatial", "size", "(", "h", "w", ")", "for", "batching", "given", "a", "list", "of", "image", "shapes" ]
def get_max_shape(im_shapes): """Calculate max spatial size (h, w) for batching given a list of image shapes """ max_shape = np.array(im_shapes).max(axis=0) assert max_shape.size == 2 # Pad the image so they can be divisible by a stride if cfg.FPN.FPN_ON: stride = float(cfg.FPN.COARSEST_STRIDE) max_shape[0] = int(np.ceil(max_shape[0] / stride) * stride) max_shape[1] = int(np.ceil(max_shape[1] / stride) * stride) return max_shape
[ "def", "get_max_shape", "(", "im_shapes", ")", ":", "max_shape", "=", "np", ".", "array", "(", "im_shapes", ")", ".", "max", "(", "axis", "=", "0", ")", "assert", "max_shape", ".", "size", "==", "2", "# Pad the image so they can be divisible by a stride", "if", "cfg", ".", "FPN", ".", "FPN_ON", ":", "stride", "=", "float", "(", "cfg", ".", "FPN", ".", "COARSEST_STRIDE", ")", "max_shape", "[", "0", "]", "=", "int", "(", "np", ".", "ceil", "(", "max_shape", "[", "0", "]", "/", "stride", ")", "*", "stride", ")", "max_shape", "[", "1", "]", "=", "int", "(", "np", ".", "ceil", "(", "max_shape", "[", "1", "]", "/", "stride", ")", "*", "stride", ")", "return", "max_shape" ]
https://github.com/ShuLiu1993/PANet/blob/f055f716a21896dab8907c46c12e216323baefdb/lib/utils/blob.py#L91-L101
WikidPad/WikidPad
558109638807bc76b4672922686e416ab2d5f79c
WikidPad/lib/pwiki/WikiTxtCtrl.py
python
ViHandler.GotoVisualLineStart
(self)
Move caret to start of the visual line
Move caret to start of the visual line
[ "Move", "caret", "to", "start", "of", "the", "visual", "line" ]
def GotoVisualLineStart(self): """ Move caret to start of the visual line """ self.ctrl.HomeDisplay()
[ "def", "GotoVisualLineStart", "(", "self", ")", ":", "self", ".", "ctrl", ".", "HomeDisplay", "(", ")" ]
https://github.com/WikidPad/WikidPad/blob/558109638807bc76b4672922686e416ab2d5f79c/WikidPad/lib/pwiki/WikiTxtCtrl.py#L7850-L7854
cszn/KAIR
72e93351bca41d1b1f6a4c3e1957f5bffccc7101
models/model_base.py
python
ModelBase.get_bare_model
(self, network)
return network
Get bare model, especially under wrapping with DistributedDataParallel or DataParallel.
Get bare model, especially under wrapping with DistributedDataParallel or DataParallel.
[ "Get", "bare", "model", "especially", "under", "wrapping", "with", "DistributedDataParallel", "or", "DataParallel", "." ]
def get_bare_model(self, network): """Get bare model, especially under wrapping with DistributedDataParallel or DataParallel. """ if isinstance(network, (DataParallel, DistributedDataParallel)): network = network.module return network
[ "def", "get_bare_model", "(", "self", ",", "network", ")", ":", "if", "isinstance", "(", "network", ",", "(", "DataParallel", ",", "DistributedDataParallel", ")", ")", ":", "network", "=", "network", ".", "module", "return", "network" ]
https://github.com/cszn/KAIR/blob/72e93351bca41d1b1f6a4c3e1957f5bffccc7101/models/model_base.py#L89-L95
mrJean1/PyGeodesy
7da5ca71aa3edb7bc49e219e0b8190686e1a7965
pygeodesy/named.py
python
_xjoined_
(prefix, name)
return _SPACE_(prefix, repr(name)) if name and prefix else (prefix or name)
(INTERNAL) Join C{pref} and non-empty C{name}.
(INTERNAL) Join C{pref} and non-empty C{name}.
[ "(", "INTERNAL", ")", "Join", "C", "{", "pref", "}", "and", "non", "-", "empty", "C", "{", "name", "}", "." ]
def _xjoined_(prefix, name): '''(INTERNAL) Join C{pref} and non-empty C{name}. ''' return _SPACE_(prefix, repr(name)) if name and prefix else (prefix or name)
[ "def", "_xjoined_", "(", "prefix", ",", "name", ")", ":", "return", "_SPACE_", "(", "prefix", ",", "repr", "(", "name", ")", ")", "if", "name", "and", "prefix", "else", "(", "prefix", "or", "name", ")" ]
https://github.com/mrJean1/PyGeodesy/blob/7da5ca71aa3edb7bc49e219e0b8190686e1a7965/pygeodesy/named.py#L47-L50
dimagi/commcare-hq
d67ff1d3b4c51fa050c19e60c3253a79d3452a39
corehq/ex-submodules/pillowtop/pillow/interface.py
python
ConstructedPillow.__init__
(self, name, checkpoint, change_feed, processor, process_num=0, change_processed_event_handler=None, processor_chunk_size=0, is_dedicated_migration_process=False)
[]
def __init__(self, name, checkpoint, change_feed, processor, process_num=0, change_processed_event_handler=None, processor_chunk_size=0, is_dedicated_migration_process=False): self._name = name self._checkpoint = checkpoint self._change_feed = change_feed self.processor_chunk_size = processor_chunk_size if isinstance(processor, list): self.processors = processor else: self.processors = [processor] self._change_processed_event_handler = change_processed_event_handler self.is_dedicated_migration_process = is_dedicated_migration_process
[ "def", "__init__", "(", "self", ",", "name", ",", "checkpoint", ",", "change_feed", ",", "processor", ",", "process_num", "=", "0", ",", "change_processed_event_handler", "=", "None", ",", "processor_chunk_size", "=", "0", ",", "is_dedicated_migration_process", "=", "False", ")", ":", "self", ".", "_name", "=", "name", "self", ".", "_checkpoint", "=", "checkpoint", "self", ".", "_change_feed", "=", "change_feed", "self", ".", "processor_chunk_size", "=", "processor_chunk_size", "if", "isinstance", "(", "processor", ",", "list", ")", ":", "self", ".", "processors", "=", "processor", "else", ":", "self", ".", "processors", "=", "[", "processor", "]", "self", ".", "_change_processed_event_handler", "=", "change_processed_event_handler", "self", ".", "is_dedicated_migration_process", "=", "is_dedicated_migration_process" ]
https://github.com/dimagi/commcare-hq/blob/d67ff1d3b4c51fa050c19e60c3253a79d3452a39/corehq/ex-submodules/pillowtop/pillow/interface.py#L430-L443