repo_id
stringlengths
15
86
file_path
stringlengths
28
180
content
stringlengths
1
1.75M
__index_level_0__
int64
0
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/musicgen/__init__.py
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _import_structure = { "configuration_musicgen": [ "MUSICGEN_PRETRAINED_CONFIG_ARCHIVE_MAP", "MusicgenConfig", "MusicgenDecoderConfig", ], "processing_musicgen": ["MusicgenProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_musicgen"] = [ "MUSICGEN_PRETRAINED_MODEL_ARCHIVE_LIST", "MusicgenForConditionalGeneration", "MusicgenForCausalLM", "MusicgenModel", "MusicgenPreTrainedModel", ] if TYPE_CHECKING: from .configuration_musicgen import ( MUSICGEN_PRETRAINED_CONFIG_ARCHIVE_MAP, MusicgenConfig, MusicgenDecoderConfig, ) from .processing_musicgen import MusicgenProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_musicgen import ( MUSICGEN_PRETRAINED_MODEL_ARCHIVE_LIST, MusicgenForCausalLM, MusicgenForConditionalGeneration, MusicgenModel, MusicgenPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/musicgen/convert_musicgen_transformers.py
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert MusicGen checkpoints from the original repository.""" import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, T5EncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) EXPECTED_MISSING_KEYS = ["model.decoder.embed_positions.weights"] def rename_keys(name): if "emb" in name: name = name.replace("emb", "model.decoder.embed_tokens") if "transformer" in name: name = name.replace("transformer", "model.decoder") if "cross_attention" in name: name = name.replace("cross_attention", "encoder_attn") if "linear1" in name: name = name.replace("linear1", "fc1") if "linear2" in name: name = name.replace("linear2", "fc2") if "norm1" in name: name = name.replace("norm1", "self_attn_layer_norm") if "norm_cross" in name: name = name.replace("norm_cross", "encoder_attn_layer_norm") if "norm2" in name: name = name.replace("norm2", "final_layer_norm") if "out_norm" in name: name = name.replace("out_norm", "model.decoder.layer_norm") if "linears" in name: name = name.replace("linears", "lm_heads") if "condition_provider.conditioners.description.output_proj" in name: name = name.replace("condition_provider.conditioners.description.output_proj", "enc_to_dec_proj") return name def rename_state_dict(state_dict: OrderedDict, hidden_size: int) -> Tuple[Dict, Dict]: """Function that takes the fairseq Musicgen state dict and renames it according to the HF module names. It further partitions the state dict into the decoder (LM) state dict, and that for the encoder-decoder projection.""" keys = list(state_dict.keys()) enc_dec_proj_state_dict = {} for key in keys: val = state_dict.pop(key) key = rename_keys(key) if "in_proj_weight" in key: # split fused qkv proj state_dict[key.replace("in_proj_weight", "q_proj.weight")] = val[:hidden_size, :] state_dict[key.replace("in_proj_weight", "k_proj.weight")] = val[hidden_size : 2 * hidden_size, :] state_dict[key.replace("in_proj_weight", "v_proj.weight")] = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: enc_dec_proj_state_dict[key[len("enc_to_dec_proj.") :]] = val else: state_dict[key] = val return state_dict, enc_dec_proj_state_dict def decoder_config_from_checkpoint(checkpoint: str) -> MusicgenDecoderConfig: if checkpoint == "small": # default config values hidden_size = 1024 num_hidden_layers = 24 num_attention_heads = 16 elif checkpoint == "medium": hidden_size = 1536 num_hidden_layers = 48 num_attention_heads = 24 elif checkpoint == "large": hidden_size = 2048 num_hidden_layers = 48 num_attention_heads = 32 else: raise ValueError(f"Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.") config = MusicgenDecoderConfig( hidden_size=hidden_size, ffn_dim=hidden_size * 4, num_hidden_layers=num_hidden_layers, num_attention_heads=num_attention_heads, ) return config @torch.no_grad() def convert_musicgen_checkpoint(checkpoint, pytorch_dump_folder=None, repo_id=None, device="cpu"): fairseq_model = MusicGen.get_pretrained(checkpoint, device=device) decoder_config = decoder_config_from_checkpoint(checkpoint) decoder_state_dict = fairseq_model.lm.state_dict() decoder_state_dict, enc_dec_proj_state_dict = rename_state_dict( decoder_state_dict, hidden_size=decoder_config.hidden_size ) text_encoder = T5EncoderModel.from_pretrained("t5-base") audio_encoder = EncodecModel.from_pretrained("facebook/encodec_32khz") decoder = MusicgenForCausalLM(decoder_config).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection missing_keys, unexpected_keys = decoder.load_state_dict(decoder_state_dict, strict=False) for key in missing_keys.copy(): if key.startswith(("text_encoder", "audio_encoder")) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(key) if len(missing_keys) > 0: raise ValueError(f"Missing key(s) in state_dict: {missing_keys}") if len(unexpected_keys) > 0: raise ValueError(f"Unexpected key(s) in state_dict: {unexpected_keys}") # init the composite model model = MusicgenForConditionalGeneration(text_encoder=text_encoder, audio_encoder=audio_encoder, decoder=decoder) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(enc_dec_proj_state_dict) # check we can do a forward pass input_ids = torch.arange(0, 8, dtype=torch.long).reshape(2, -1) decoder_input_ids = input_ids.reshape(2 * 4, -1) with torch.no_grad(): logits = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids).logits if logits.shape != (8, 1, 2048): raise ValueError("Incorrect shape for logits") # now construct the processor tokenizer = AutoTokenizer.from_pretrained("t5-base") feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/encodec_32khz", padding_side="left") processor = MusicgenProcessor(feature_extractor=feature_extractor, tokenizer=tokenizer) # set the appropriate bos/pad token ids model.generation_config.decoder_start_token_id = 2048 model.generation_config.pad_token_id = 2048 # set other default generation config params model.generation_config.max_length = int(30 * audio_encoder.config.frame_rate) model.generation_config.do_sample = True model.generation_config.guidance_scale = 3.0 if pytorch_dump_folder is not None: Path(pytorch_dump_folder).mkdir(exist_ok=True) logger.info(f"Saving model {checkpoint} to {pytorch_dump_folder}") model.save_pretrained(pytorch_dump_folder) processor.save_pretrained(pytorch_dump_folder) if repo_id: logger.info(f"Pushing model {checkpoint} to {repo_id}") model.push_to_hub(repo_id) processor.push_to_hub(repo_id) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) args = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/musicgen/configuration_musicgen.py
# coding=utf-8 # Copyright 2023 Meta AI and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ MusicGen model configuration""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig logger = logging.get_logger(__name__) MUSICGEN_PRETRAINED_CONFIG_ARCHIVE_MAP = { "facebook/musicgen-small": "https://huggingface.co/facebook/musicgen-small/resolve/main/config.json", # See all Musicgen models at https://huggingface.co/models?filter=musicgen } class MusicgenDecoderConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of an [`MusicgenDecoder`]. It is used to instantiate a MusicGen decoder according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the MusicGen [facebook/musicgen-small](https://huggingface.co/facebook/musicgen-small) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 2048): Vocabulary size of the MusicgenDecoder model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`MusicgenDecoder`]. hidden_size (`int`, *optional*, defaults to 1024): Dimensionality of the layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 24): Number of decoder layers. num_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer block. ffn_dim (`int`, *optional*, defaults to 4096): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer block. activation_function (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the decoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, text_encoder, and pooler. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. activation_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for activations inside the fully connected layer. max_position_embeddings (`int`, *optional*, defaults to 2048): The maximum sequence length that this model might ever be used with. Typically, set this to something large just in case (e.g., 512 or 1024 or 2048). initializer_factor (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layerdrop (`float`, *optional*, defaults to 0.0): The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. scale_embedding (`bool`, *optional*, defaults to `False`): Scale embeddings by diving by sqrt(hidden_size). use_cache (`bool`, *optional*, defaults to `True`): Whether the model should return the last key/values attentions (not used by all models) num_codebooks (`int`, *optional*, defaults to 4): The number of parallel codebooks forwarded to the model. tie_word_embeddings(`bool`, *optional*, defaults to `False`): Whether input and output word embeddings should be tied. """ model_type = "musicgen_decoder" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size=2048, max_position_embeddings=2048, num_hidden_layers=24, ffn_dim=4096, num_attention_heads=16, layerdrop=0.0, use_cache=True, activation_function="gelu", hidden_size=1024, dropout=0.1, attention_dropout=0.0, activation_dropout=0.0, initializer_factor=0.02, scale_embedding=False, num_codebooks=4, pad_token_id=2048, bos_token_id=2048, eos_token_id=None, tie_word_embeddings=False, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.ffn_dim = ffn_dim self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.dropout = dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.activation_function = activation_function self.initializer_factor = initializer_factor self.layerdrop = layerdrop self.use_cache = use_cache self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True self.num_codebooks = num_codebooks super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, ) class MusicgenConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`MusicgenModel`]. It is used to instantiate a MusicGen model according to the specified arguments, defining the text encoder, audio encoder and MusicGen decoder configs. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: kwargs (*optional*): Dictionary of keyword arguments. Notably: - **text_encoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that defines the text encoder config. - **audio_encoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that defines the audio encoder config. - **decoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that defines the decoder config. Example: ```python >>> from transformers import ( ... MusicgenConfig, ... MusicgenDecoderConfig, ... T5Config, ... EncodecConfig, ... MusicgenForConditionalGeneration, ... ) >>> # Initializing text encoder, audio encoder, and decoder model configurations >>> text_encoder_config = T5Config() >>> audio_encoder_config = EncodecConfig() >>> decoder_config = MusicgenDecoderConfig() >>> configuration = MusicgenConfig.from_sub_models_config( ... text_encoder_config, audio_encoder_config, decoder_config ... ) >>> # Initializing a MusicgenForConditionalGeneration (with random weights) from the facebook/musicgen-small style configuration >>> model = MusicgenForConditionalGeneration(configuration) >>> # Accessing the model configuration >>> configuration = model.config >>> config_text_encoder = model.config.text_encoder >>> config_audio_encoder = model.config.audio_encoder >>> config_decoder = model.config.decoder >>> # Saving the model, including its configuration >>> model.save_pretrained("musicgen-model") >>> # loading model and config from pretrained folder >>> musicgen_config = MusicgenConfig.from_pretrained("musicgen-model") >>> model = MusicgenForConditionalGeneration.from_pretrained("musicgen-model", config=musicgen_config) ```""" model_type = "musicgen" is_composition = True def __init__(self, **kwargs): super().__init__(**kwargs) if "text_encoder" not in kwargs or "audio_encoder" not in kwargs or "decoder" not in kwargs: raise ValueError("Config has to be initialized with text_encoder, audio_encoder and decoder config") text_encoder_config = kwargs.pop("text_encoder") text_encoder_model_type = text_encoder_config.pop("model_type") audio_encoder_config = kwargs.pop("audio_encoder") audio_encoder_model_type = audio_encoder_config.pop("model_type") decoder_config = kwargs.pop("decoder") self.text_encoder = AutoConfig.for_model(text_encoder_model_type, **text_encoder_config) self.audio_encoder = AutoConfig.for_model(audio_encoder_model_type, **audio_encoder_config) self.decoder = MusicgenDecoderConfig(**decoder_config) self.is_encoder_decoder = True @classmethod def from_sub_models_config( cls, text_encoder_config: PretrainedConfig, audio_encoder_config: PretrainedConfig, decoder_config: MusicgenDecoderConfig, **kwargs, ): r""" Instantiate a [`MusicgenConfig`] (or a derived class) from text encoder, audio encoder and decoder configurations. Returns: [`MusicgenConfig`]: An instance of a configuration object """ return cls( text_encoder=text_encoder_config.to_dict(), audio_encoder=audio_encoder_config.to_dict(), decoder=decoder_config.to_dict(), **kwargs, ) def to_dict(self): """ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. Returns: `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, """ output = copy.deepcopy(self.__dict__) output["text_encoder"] = self.text_encoder.to_dict() output["audio_encoder"] = self.audio_encoder.to_dict() output["decoder"] = self.decoder.to_dict() output["model_type"] = self.__class__.model_type return output
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/musicgen/modeling_musicgen.py
# coding=utf-8 # Copyright 2023 Meta AI and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch Musicgen model.""" import copy import inspect import math import random from dataclasses import dataclass from typing import Any, Dict, Optional, Tuple, Union import torch import torch.nn as nn from torch.nn import CrossEntropyLoss from torch.utils.checkpoint import checkpoint from ...activations import ACT2FN from ...generation.configuration_utils import GenerationConfig from ...generation.logits_process import LogitsProcessorList from ...generation.stopping_criteria import StoppingCriteriaList from ...modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPastAndCrossAttentions, CausalLMOutputWithCrossAttentions, ModelOutput, Seq2SeqLMOutput, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ..auto.configuration_auto import AutoConfig from ..auto.modeling_auto import AutoModel from .configuration_musicgen import MusicgenConfig, MusicgenDecoderConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "MusicgenConfig" _CHECKPOINT_FOR_DOC = "facebook/musicgen-small" MUSICGEN_PRETRAINED_MODEL_ARCHIVE_LIST = [ "facebook/musicgen-small", # See all Musicgen models at https://huggingface.co/models?filter=musicgen ] @dataclass class MusicgenUnconditionalInput(ModelOutput): """ Args: encoder_outputs (`Tuple[torch.FloatTensor]` of length 1, with tensor shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the text encoder model. attention_mask (`torch.LongTensor`) of shape `(batch_size, sequence_length)`, *optional*): Encoder attention mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: 1 for tokens that are **not masked**, 0 for tokens that are **masked**. guidance_scale (`float`, *optional*): Guidance scale for classifier free guidance, setting the balance between the conditional logits (predicted from the prompts) and the unconditional logits (predicted without prompts). """ encoder_outputs: Tuple[torch.FloatTensor] = None attention_mask: torch.LongTensor = None guidance_scale: float = None # Copied from transformers.models.bart.modeling_bart._make_causal_mask def _make_causal_mask( input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0 ): """ Make causal mask used for bi-directional self-attention. """ bsz, tgt_len = input_ids_shape mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device) mask_cond = torch.arange(mask.size(-1), device=device) mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) mask = mask.to(dtype) if past_key_values_length > 0: mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1) return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length) # Copied from transformers.models.bart.modeling_bart._expand_mask def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): """ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. """ bsz, src_len = mask.size() tgt_len = tgt_len if tgt_len is not None else src_len expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) inverted_mask = 1.0 - expanded_mask return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min) # Copied from transformers.models.encoder_decoder.modeling_encoder_decoder.shift_tokens_right def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int): """ Shift input ids one token to the right. """ shifted_input_ids = input_ids.new_zeros(input_ids.shape) shifted_input_ids[:, 1:] = input_ids[:, :-1].clone() if decoder_start_token_id is None: raise ValueError("Make sure to set the decoder_start_token_id attribute of the model's configuration.") shifted_input_ids[:, 0] = decoder_start_token_id if pad_token_id is None: raise ValueError("Make sure to set the pad_token_id attribute of the model's configuration.") # replace possible -100 values in labels by `pad_token_id` shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) return shifted_input_ids class MusicgenSinusoidalPositionalEmbedding(nn.Module): """This module produces sinusoidal positional embeddings of any length.""" def __init__(self, num_positions: int, embedding_dim: int): super().__init__() self.embedding_dim = embedding_dim self.make_weights(num_positions, embedding_dim) def make_weights(self, num_embeddings: int, embedding_dim: int): emb_weights = self.get_embedding(num_embeddings, embedding_dim) if hasattr(self, "weights"): # in forward put the weights on the correct dtype and device of the param emb_weights = emb_weights.to(dtype=self.weights.dtype, device=self.weights.device) self.weights = nn.Parameter(emb_weights) self.weights.requires_grad = False self.weights.detach_() @staticmethod def get_embedding(num_embeddings: int, embedding_dim: int): """ Build sinusoidal embeddings. This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of "Attention Is All You Need". """ half_dim = embedding_dim // 2 emb = math.log(10000) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, dtype=torch.float) * -emb) emb = torch.arange(num_embeddings, dtype=torch.float).unsqueeze(1) * emb.unsqueeze(0) emb = torch.cat([torch.cos(emb), torch.sin(emb)], dim=1).view(num_embeddings, -1) if embedding_dim % 2 == 1: # zero pad emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1) return emb.to(torch.get_default_dtype()) @torch.no_grad() def forward(self, input_ids: torch.Tensor, past_key_values_length: int = 0): bsz, codebooks, seq_len = input_ids.size() # Create the position ids from the input token ids. position_ids = (torch.arange(seq_len) + past_key_values_length).to(input_ids.device) # expand embeddings if needed if seq_len > self.weights.size(0): self.make_weights(seq_len + self.offset, self.embedding_dim) return self.weights.index_select(0, position_ids.view(-1)).detach() # Copied from transformers.models.bart.modeling_bart.BartAttention class MusicgenAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj # `past_key_value[0].shape[2] == key_value_states.shape[1]` # is checking that the `sequence_length` of the `past_key_value` is the same as # the provided `key_value_states` to support prefix tuning if ( is_cross_attention and past_key_value is not None and past_key_value[0].shape[2] == key_value_states.shape[1] ): # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.reshape(*proj_shape) value_states = value_states.reshape(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if layer_head_mask is not None: if layer_head_mask.size() != (self.num_heads,): raise ValueError( f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" f" {layer_head_mask.size()}" ) attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to be reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned across GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped, past_key_value class MusicgenDecoderLayer(nn.Module): def __init__(self, config: MusicgenDecoderConfig): super().__init__() self.embed_dim = config.hidden_size self.self_attn = MusicgenAttention( embed_dim=self.embed_dim, num_heads=config.num_attention_heads, dropout=config.attention_dropout, is_decoder=True, bias=False, ) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.encoder_attn = MusicgenAttention( self.embed_dim, config.num_attention_heads, dropout=config.attention_dropout, is_decoder=True, bias=False, ) self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.fc1 = nn.Linear(self.embed_dim, config.ffn_dim, bias=False) self.fc2 = nn.Linear(config.ffn_dim, self.embed_dim, bias=False) self.final_layer_norm = nn.LayerNorm(self.embed_dim) # Copied from transformers.models.mbart.modeling_mbart.MBartDecoderLayer.forward def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, cross_attn_layer_head_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = True, ) -> torch.Tensor: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. encoder_hidden_states (`torch.FloatTensor`): cross attention input to the layer of shape `(batch, seq_len, embed_dim)` encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size `(encoder_attention_heads,)`. cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of size `(decoder_attention_heads,)`. past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Self Attention # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None # add present self-attn cache to positions 1,2 of present_key_value tuple hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, past_key_value=self_attn_past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states # Cross-Attention Block cross_attn_present_key_value = None cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, layer_head_mask=cross_attn_layer_head_mask, past_key_value=cross_attn_past_key_value, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states # add cross-attn to positions 3,4 of present_key_value tuple present_key_value = present_key_value + cross_attn_present_key_value # Fully Connected residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights, cross_attn_weights) if use_cache: outputs += (present_key_value,) return outputs class MusicgenPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = MusicgenDecoderConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["MusicgenDecoderLayer", "MusicgenAttention"] def _init_weights(self, module): std = self.config.initializer_factor if isinstance(module, (nn.Linear, nn.Conv1d)): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, MusicgenDecoder): module.gradient_checkpointing = value MUSICGEN_START_DOCSTRING = r""" The Musicgen model was proposed in [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi, Alexandre Défossez. It is an encoder decoder transformer trained on the task of conditional music generation This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MusicgenConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ MUSICGEN_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`torch.LongTensor` of shape `(batch_size * num_codebooks, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary, corresponding to the sequence of audio codes. Indices can be obtained by encoding an audio prompt with an audio encoder model to predict audio codes, such as with the [`EncodecModel`]. See [`EncodecModel.encode`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) <Tip warning={true}> The `decoder_input_ids` will automatically be converted from shape `(batch_size * num_codebooks, target_sequence_length)` to `(batch_size, num_codebooks, target_sequence_length)` in the forward pass. If you obtain audio codes from an audio encoding model, such as [`EncodecModel`], ensure that the number of frames is equal to 1, and that you reshape the audio codes from `(frames, batch_size, num_codebooks, target_sequence_length)` to `(batch_size * num_codebooks, target_sequence_length)` prior to passing them as `decoder_input_ids`. </Tip> decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be input (see `past_key_values`). This is useful if you want more control over how to convert `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value of `inputs_embeds`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ MUSICGEN_DECODER_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size * num_codebooks, sequence_length)`): Indices of input sequence tokens in the vocabulary, corresponding to the sequence of audio codes. Indices can be obtained by encoding an audio prompt with an audio encoder model to predict audio codes, such as with the [`EncodecModel`]. See [`EncodecModel.encode`] for details. [What are input IDs?](../glossary#input-ids) <Tip warning={true}> The `input_ids` will automatically be converted from shape `(batch_size * num_codebooks, target_sequence_length)` to `(batch_size, num_codebooks, target_sequence_length)` in the forward pass. If you obtain audio codes from an audio encoding model, such as [`EncodecModel`], ensure that the number of frames is equal to 1, and that you reshape the audio codes from `(frames, batch_size, num_codebooks, target_sequence_length)` to `(batch_size * num_codebooks, target_sequence_length)` prior to passing them as `input_ids`. </Tip> attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing cross-attention on hidden heads. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ class MusicgenDecoder(MusicgenPreTrainedModel): """ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MusicgenDecoderLayer`] """ def __init__(self, config: MusicgenDecoderConfig): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.layerdrop self.max_target_positions = config.max_position_embeddings self.d_model = config.hidden_size self.num_codebooks = config.num_codebooks self.embed_scale = math.sqrt(config.hidden_size) if config.scale_embedding else 1.0 embed_dim = config.vocab_size + 1 self.embed_tokens = nn.ModuleList( [nn.Embedding(embed_dim, config.hidden_size) for _ in range(config.num_codebooks)] ) self.embed_positions = MusicgenSinusoidalPositionalEmbedding( config.max_position_embeddings, config.hidden_size, ) self.layers = nn.ModuleList([MusicgenDecoderLayer(config) for _ in range(config.num_hidden_layers)]) self.layer_norm = nn.LayerNorm(config.hidden_size) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length): # create causal mask # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] combined_attention_mask = None if input_shape[-1] > 1: combined_attention_mask = _make_causal_mask( input_shape, inputs_embeds.dtype, device=inputs_embeds.device, past_key_values_length=past_key_values_length, ) if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to( inputs_embeds.device ) combined_attention_mask = ( expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask ) return combined_attention_mask @add_start_docstrings_to_model_forward(MUSICGEN_DECODER_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif input_ids is not None: # (bsz * codebooks, seq_len) -> (bsz, codebooks, seq_len) input = input_ids.reshape(-1, self.num_codebooks, input_ids.shape[-1]) bsz, num_codebooks, seq_len = input.shape input_shape = (bsz, seq_len) elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] input = inputs_embeds[:, :, -1:] else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if inputs_embeds is None: inputs_embeds = torch.zeros((bsz, seq_len, self.d_model), device=input_ids.device) for codebook in range(num_codebooks): inputs_embeds += self.embed_tokens[codebook](input[:, codebook]) attention_mask = self._prepare_decoder_attention_mask( attention_mask, input_shape, inputs_embeds, past_key_values_length ) # expand encoder attention mask if encoder_hidden_states is not None and encoder_attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] encoder_attention_mask = _expand_mask(encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]) # embed positions positions = self.embed_positions(input, past_key_values_length) hidden_states = inputs_embeds + positions.to(inputs_embeds.device) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing`. Setting `use_cache=False`..." ) use_cache = False # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None next_decoder_cache = () if use_cache else None # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): if attn_mask is not None: if attn_mask.size()[0] != len(self.layers): raise ValueError( f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" f" {attn_mask.size()[0]}." ) for idx, decoder_layer in enumerate(self.layers): # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) if output_hidden_states: all_hidden_states += (hidden_states,) dropout_probability = random.uniform(0, 1) if self.training and (dropout_probability < self.layerdrop): continue past_key_value = past_key_values[idx] if past_key_values is not None else None if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): # None for past_key_value return module(*inputs, output_attentions, use_cache) return custom_forward layer_outputs = checkpoint( create_custom_forward(decoder_layer), hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, head_mask[idx] if head_mask is not None else None, cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, None, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, layer_head_mask=(head_mask[idx] if head_mask is not None else None), cross_attn_layer_head_mask=( cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None ), past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[3 if output_attentions else 1],) if output_attentions: all_self_attns += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) hidden_states = self.layer_norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if not return_dict: return tuple( v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, ) @add_start_docstrings( "The bare Musicgen decoder model outputting raw hidden-states without any specific head on top.", MUSICGEN_START_DOCSTRING, ) class MusicgenModel(MusicgenPreTrainedModel): def __init__(self, config: MusicgenDecoderConfig): super().__init__(config) self.decoder = MusicgenDecoder(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.decoder.embed_tokens def set_input_embeddings(self, value): self.decoder.embed_tokens = value def get_decoder(self): return self.decoder @add_start_docstrings_to_model_forward(MUSICGEN_DECODER_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) decoder_outputs = self.decoder( input_ids=input_ids, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask, encoder_hidden_states=encoder_hidden_states, head_mask=head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: return decoder_outputs return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=decoder_outputs.last_hidden_state, past_key_values=decoder_outputs.past_key_values, hidden_states=decoder_outputs.hidden_states, attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, ) @add_start_docstrings( "The MusicGen decoder model with a language modelling head on top.", MUSICGEN_START_DOCSTRING, ) class MusicgenForCausalLM(MusicgenPreTrainedModel): def __init__(self, config: MusicgenDecoderConfig): super().__init__(config) self.model = MusicgenModel(config) self.num_codebooks = config.num_codebooks self.lm_heads = nn.ModuleList( [nn.Linear(config.hidden_size, config.vocab_size, bias=False) for _ in range(config.num_codebooks)] ) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.decoder.embed_tokens def set_input_embeddings(self, value): self.model.decoder.embed_tokens = value def get_output_embeddings(self): return self.lm_heads def set_output_embeddings(self, new_embeddings): self.lm_heads = new_embeddings def set_decoder(self, decoder): self.model.decoder = decoder def get_decoder(self): return self.model.decoder @add_start_docstrings_to_model_forward(MUSICGEN_DECODER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` Returns: """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.model( input_ids, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, head_mask=head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] lm_logits = torch.stack([head(hidden_states) for head in self.lm_heads], dim=1) loss = None if labels is not None: raise NotImplementedError("Training is not implemented for Musicgen.") # (bsz, num_codebooks, seq_len, vocab_size) -> (bsz * num_codebooks, seq_len, vocab_size) lm_logits = lm_logits.reshape(-1, *lm_logits.shape[2:]) if not return_dict: output = (lm_logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return CausalLMOutputWithCrossAttentions( loss=loss, logits=lm_logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) def prepare_inputs_for_generation( self, input_ids, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, head_mask=None, cross_attn_head_mask=None, past_key_values=None, use_cache=True, delay_pattern_mask=None, guidance_scale=None, **kwargs, ): if delay_pattern_mask is None: input_ids, delay_pattern_mask = self.build_delay_pattern_mask( input_ids, pad_token_id=self.generation_config.pad_token_id, max_length=self.generation_config.max_length, ) # apply the delay pattern mask input_ids = self.apply_delay_pattern_mask(input_ids, delay_pattern_mask) if guidance_scale is not None and guidance_scale > 1: # for classifier free guidance we need to replicate the decoder args across the batch dim (we'll split these # before sampling) input_ids = input_ids.repeat((2, 1)) if attention_mask is not None: attention_mask = attention_mask.repeat((2, 1)) if past_key_values is not None: input_ids = input_ids[:, -1:] return { "input_ids": input_ids, "attention_mask": attention_mask, "encoder_hidden_states": encoder_hidden_states, "encoder_attention_mask": encoder_attention_mask, "head_mask": head_mask, "cross_attn_head_mask": cross_attn_head_mask, "past_key_values": past_key_values, "use_cache": use_cache, } def build_delay_pattern_mask(self, input_ids: torch.LongTensor, pad_token_id: int, max_length: int = None): """Build a delayed pattern mask to the input_ids. Each codebook is offset by the previous codebook by one, giving a delayed pattern mask at the start of sequence and end of sequence. Take the example where there are 4 codebooks and a max sequence length of 8, we have the delayed pattern mask of shape `(codebooks, seq_len)`: - [P, -1, -1, -1, -1, P, P, P] - [P, P, -1, -1, -1, -1, P, P] - [P, P, P, -1, -1, -1, -1, P] - [P, P, P, P, -1, -1, -1, -1] where P is the special padding token id and -1 indicates that the token is valid for prediction. If we include a prompt (decoder input ids), the -1 positions indicate where new tokens should be predicted. Otherwise, the mask is set to the value in the prompt: - [P, a, b, -1, -1, P, P, P] - [P, P, c, d, -1, -1, P, P] - [P, P, P, e, f, -1, -1, P] - [P, P, P, P, g, h, -1, -1] where a-h indicate the input prompt (decoder input ids) that are offset by 1. Now, we only override the -1 tokens in our prediction. """ # (bsz * num_codebooks, seq_len) -> (bsz, num_codebooks, seq_len) input_ids = input_ids.reshape(-1, self.num_codebooks, input_ids.shape[-1]) bsz, num_codebooks, seq_len = input_ids.shape max_length = max_length if max_length is not None else self.generation_config.max_length input_ids_shifted = ( torch.ones((bsz, num_codebooks, max_length), dtype=torch.long, device=input_ids.device) * -1 ) # we only apply the mask if we have a large enough seq len - otherwise we return as is if max_length < 2 * num_codebooks - 1: return input_ids.reshape(bsz * num_codebooks, -1), input_ids_shifted.reshape(bsz * num_codebooks, -1) # fill the shifted ids with the prompt entries, offset by the codebook idx for codebook in range(num_codebooks): input_ids_shifted[:, codebook, codebook : seq_len + codebook] = input_ids[:, codebook] # construct a pattern mask that indicates the positions of padding tokens for each codebook # first fill the upper triangular part (the EOS padding) delay_pattern = torch.triu( torch.ones((num_codebooks, max_length), dtype=torch.bool), diagonal=max_length - num_codebooks + 1 ) # then fill the lower triangular part (the BOS padding) delay_pattern = delay_pattern + torch.tril(torch.ones((num_codebooks, max_length), dtype=torch.bool)) mask = ~delay_pattern.to(input_ids.device) input_ids = mask * input_ids_shifted + ~mask * pad_token_id # find the first position to start generating - this is the first place we have the -1 token # and will always be in the first codebook (since it has no codebook offset) first_codebook_ids = input_ids[:, 0, :] start_ids = (first_codebook_ids == -1).nonzero()[:, 1] if len(start_ids) > 0: first_start_id = min(start_ids) else: # we have no tokens that need to be filled - return entire matrix of input ids first_start_id = seq_len # (bsz * num_codebooks, seq_len) -> (bsz, num_codebooks, seq_len) pattern_mask = input_ids.reshape(bsz * num_codebooks, -1) input_ids = input_ids[..., :first_start_id].reshape(bsz * num_codebooks, -1) return input_ids, pattern_mask @staticmethod def apply_delay_pattern_mask(input_ids, decoder_pad_token_mask): """Apply a delay pattern mask to the decoder input ids, only preserving predictions where the mask is set to -1, and otherwise setting to the value detailed in the mask.""" seq_len = input_ids.shape[-1] decoder_pad_token_mask = decoder_pad_token_mask[..., :seq_len] input_ids = torch.where(decoder_pad_token_mask == -1, input_ids, decoder_pad_token_mask) return input_ids @torch.no_grad() def generate( self, inputs: Optional[torch.Tensor] = None, generation_config: Optional[GenerationConfig] = None, logits_processor: Optional[LogitsProcessorList] = None, stopping_criteria: Optional[StoppingCriteriaList] = None, synced_gpus: Optional[bool] = None, **kwargs, ): """ Generates sequences of token ids for models with a language modeling head. <Tip warning={true}> Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the model's default generation configuration. You can override any `generation_config` by passing the corresponding parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`. For an overview of generation strategies and code examples, check out the [following guide](./generation_strategies). </Tip> Parameters: inputs (`torch.Tensor` of varying shape depending on the modality, *optional*): The sequence used as a prompt for the generation or as model inputs to the encoder. If `None` the method initializes it with `bos_token_id` and a batch size of 1. For decoder-only models `inputs` should be in the format `input_ids`. For encoder-decoder models *inputs* can represent any of `input_ids`, `input_values`, `input_features`, or `pixel_values`. generation_config (`~generation.GenerationConfig`, *optional*): The generation configuration to be used as base parametrization for the generation call. `**kwargs` passed to generate matching the attributes of `generation_config` will override them. If `generation_config` is not provided, the default will be used, which had the following loading priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s default values, whose documentation should be checked to parameterize generation. logits_processor (`LogitsProcessorList`, *optional*): Custom logits processors that complement the default logits processors built from arguments and generation config. If a logit processor is passed that is already created with the arguments or a generation config an error is thrown. This feature is intended for advanced users. stopping_criteria (`StoppingCriteriaList`, *optional*): Custom stopping criteria that complement the default stopping criteria built from arguments and a generation config. If a stopping criteria is passed that is already created with the arguments or a generation config an error is thrown. This feature is intended for advanced users. synced_gpus (`bool`, *optional*, defaults to `False`): Whether to continue running the while loop until max_length (needed for ZeRO stage 3) kwargs (`Dict[str, Any]`, *optional*): Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*. Return: [`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True` or when `config.return_dict_in_generate=True`) or a `torch.FloatTensor`. If the model is *not* an encoder-decoder model (`model.config.is_encoder_decoder=False`), the possible [`~utils.ModelOutput`] types are: - [`~generation.GreedySearchDecoderOnlyOutput`], - [`~generation.SampleDecoderOnlyOutput`], - [`~generation.BeamSearchDecoderOnlyOutput`], - [`~generation.BeamSampleDecoderOnlyOutput`] If the model is an encoder-decoder model (`model.config.is_encoder_decoder=True`), the possible [`~utils.ModelOutput`] types are: - [`~generation.GreedySearchEncoderDecoderOutput`], - [`~generation.SampleEncoderDecoderOutput`], - [`~generation.BeamSearchEncoderDecoderOutput`], - [`~generation.BeamSampleEncoderDecoderOutput`] """ # 1. Handle `generation_config` and kwargs that might update it, and validate the resulting objects if generation_config is None: generation_config = self.generation_config generation_config = copy.deepcopy(generation_config) model_kwargs = generation_config.update(**kwargs) # All unused kwargs must be model kwargs generation_config.validate() self._validate_model_kwargs(model_kwargs.copy()) # 2. Set generation parameters if not already defined logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList() stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList() if generation_config.pad_token_id is None and generation_config.eos_token_id is not None: if model_kwargs.get("attention_mask", None) is None: logger.warning( "The attention mask and the pad token id were not set. As a consequence, you may observe " "unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results." ) eos_token_id = generation_config.eos_token_id if isinstance(eos_token_id, list): eos_token_id = eos_token_id[0] logger.warning(f"Setting `pad_token_id` to `eos_token_id`:{eos_token_id} for open-end generation.") generation_config.pad_token_id = eos_token_id # 3. Define model inputs # inputs_tensor has to be defined # model_input_name is defined if model-specific keyword input is passed # otherwise model_input_name is None # all model-specific keyword inputs are removed from `model_kwargs` input_ids, model_input_name, model_kwargs = self._prepare_model_inputs( inputs, generation_config.bos_token_id, model_kwargs ) batch_size = input_ids.shape[0] // self.num_codebooks # 4. Define other model kwargs model_kwargs["output_attentions"] = generation_config.output_attentions model_kwargs["output_hidden_states"] = generation_config.output_hidden_states model_kwargs["use_cache"] = generation_config.use_cache model_kwargs["guidance_scale"] = generation_config.guidance_scale requires_attention_mask = "encoder_outputs" not in model_kwargs if model_kwargs.get("attention_mask", None) is None and requires_attention_mask: model_kwargs["attention_mask"] = self._prepare_attention_mask_for_generation( input_ids, generation_config.pad_token_id, generation_config.eos_token_id ) # 5. Prepare `max_length` depending on other stopping criteria. input_ids_seq_length = input_ids.shape[-1] has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None if has_default_max_length and generation_config.max_new_tokens is None and generation_config.max_length != 20: logger.warning( f"Using the model-agnostic default `max_length` (={generation_config.max_length}) " "to control the generation length. recommend setting `max_new_tokens` to control the maximum length of the generation.", UserWarning, ) elif generation_config.max_new_tokens is not None: if not has_default_max_length: logger.warning( f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(=" f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. " "Please refer to the documentation for more information. " "(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)" ) generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length if generation_config.min_length is not None and generation_config.min_length > generation_config.max_length: raise ValueError( f"Unfeasible length constraints: the minimum length ({generation_config.min_length}) is larger than" f" the maximum length ({generation_config.max_length})" ) if input_ids_seq_length >= generation_config.max_length: logger.warning( f"Input length of decoder_input_ids is {input_ids_seq_length}, but `max_length` is set to" f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider" " increasing `max_new_tokens`." ) # 6. Prepare `input_ids` which will be used for auto-regressive generation # Build the delay pattern mask for offsetting each codebook prediction by 1 (this behaviour is specific to MusicGen) input_ids, delay_pattern_mask = self.build_delay_pattern_mask( input_ids, pad_token_id=generation_config.decoder_start_token_id, max_length=generation_config.max_length, ) # stash the delay mask so that we don't have to recompute it in each forward pass model_kwargs["delay_pattern_mask"] = delay_pattern_mask # 7. determine generation mode is_greedy_gen_mode = ( (generation_config.num_beams == 1) and (generation_config.num_beam_groups == 1) and generation_config.do_sample is False ) is_sample_gen_mode = ( (generation_config.num_beams == 1) and (generation_config.num_beam_groups == 1) and generation_config.do_sample is True ) # 8. prepare distribution pre_processing samplers logits_processor = self._get_logits_processor( generation_config=generation_config, input_ids_seq_length=input_ids_seq_length, encoder_input_ids=input_ids, prefix_allowed_tokens_fn=None, logits_processor=logits_processor, ) # 9. prepare stopping criteria stopping_criteria = self._get_stopping_criteria( generation_config=generation_config, stopping_criteria=stopping_criteria ) if is_greedy_gen_mode: if generation_config.num_return_sequences > 1: raise ValueError( "num_return_sequences has to be 1 when doing greedy search, " f"but is {generation_config.num_return_sequences}." ) # 8. run greedy search outputs = self.greedy_search( input_ids, logits_processor=logits_processor, stopping_criteria=stopping_criteria, pad_token_id=generation_config.pad_token_id, eos_token_id=generation_config.eos_token_id, output_scores=generation_config.output_scores, return_dict_in_generate=generation_config.return_dict_in_generate, synced_gpus=synced_gpus, **model_kwargs, ) elif is_sample_gen_mode: # 9. prepare logits warper logits_warper = self._get_logits_warper(generation_config) # expand input_ids with `num_return_sequences` additional sequences per batch input_ids, model_kwargs = self._expand_inputs_for_generation( input_ids=input_ids, expand_size=generation_config.num_return_sequences, **model_kwargs, ) # 10. run sample outputs = self.sample( input_ids, logits_processor=logits_processor, logits_warper=logits_warper, stopping_criteria=stopping_criteria, pad_token_id=generation_config.pad_token_id, eos_token_id=generation_config.eos_token_id, output_scores=generation_config.output_scores, return_dict_in_generate=generation_config.return_dict_in_generate, synced_gpus=synced_gpus, **model_kwargs, ) else: raise ValueError( "Got incompatible mode for generation, should be one of greedy or sampling." "Ensure that beam search is de-activated by setting `num_beams=1` and `num_beam_groups=1`." ) if generation_config.return_dict_in_generate: output_ids = outputs.sequences else: output_ids = outputs # apply the pattern mask to the final ids output_ids = self.apply_delay_pattern_mask(output_ids, model_kwargs["delay_pattern_mask"]) # revert the pattern delay mask by filtering the pad token id output_ids = output_ids[output_ids != generation_config.pad_token_id].reshape( batch_size, self.num_codebooks, -1 ) if generation_config.return_dict_in_generate: outputs.sequences = output_ids return outputs else: return output_ids @add_start_docstrings( "The composite MusicGen model with a text encoder, audio encoder and Musicgen decoder," "for music generation tasks with one or both of text and audio prompts.", MUSICGEN_START_DOCSTRING, ) class MusicgenForConditionalGeneration(PreTrainedModel): config_class = MusicgenConfig base_model_prefix = "encoder_decoder" main_input_name = "input_ids" supports_gradient_checkpointing = True def __init__( self, config: Optional[MusicgenConfig] = None, text_encoder: Optional[PreTrainedModel] = None, audio_encoder: Optional[PreTrainedModel] = None, decoder: Optional[MusicgenForCausalLM] = None, ): if config is None and (text_encoder is None or audio_encoder is None or decoder is None): raise ValueError( "Either a configuration has to be provided, or all three of text encoder, audio encoder and MusicGen decoder." ) if config is None: config = MusicgenConfig.from_sub_models_config(text_encoder.config, audio_encoder.config, decoder.config) else: if not isinstance(config, self.config_class): raise ValueError(f"Config: {config} has to be of type {self.config_class}") if config.decoder.cross_attention_hidden_size is not None: if config.decoder.cross_attention_hidden_size != config.text_encoder.hidden_size: raise ValueError( "If `cross_attention_hidden_size` is specified in the MusicGen decoder's configuration, it has to be equal" f" to the text encoder's `hidden_size`. Got {config.decoder.cross_attention_hidden_size} for" f" `config.decoder.cross_attention_hidden_size` and {config.text_encoder.hidden_size} for" " `config.text_encoder.hidden_size`." ) # initialize with config super().__init__(config) if text_encoder is None: from ..auto.modeling_auto import AutoModelForTextEncoding text_encoder = AutoModelForTextEncoding.from_config(config.text_encoder) if audio_encoder is None: from ..auto.modeling_auto import AutoModel audio_encoder = AutoModel.from_config(config.audio_encoder) if decoder is None: decoder = MusicgenForCausalLM(config.decoder) self.text_encoder = text_encoder self.audio_encoder = audio_encoder self.decoder = decoder if self.text_encoder.config.to_dict() != self.config.text_encoder.to_dict(): logger.warning( f"Config of the text_encoder: {self.text_encoder.__class__} is overwritten by shared text_encoder config:" f" {self.config.text_encoder}" ) if self.audio_encoder.config.to_dict() != self.config.audio_encoder.to_dict(): logger.warning( f"Config of the audio_encoder: {self.audio_encoder.__class__} is overwritten by shared audio_encoder config:" f" {self.config.audio_encoder}" ) if self.decoder.config.to_dict() != self.config.decoder.to_dict(): logger.warning( f"Config of the decoder: {self.decoder.__class__} is overwritten by shared decoder config:" f" {self.config.decoder}" ) # make sure that the individual model's config refers to the shared config # so that the updates to the config will be synced self.text_encoder.config = self.config.text_encoder self.audio_encoder.config = self.config.audio_encoder self.decoder.config = self.config.decoder # text encoder outputs might need to be projected to different dimension for decoder if ( self.text_encoder.config.hidden_size != self.decoder.config.hidden_size and self.decoder.config.cross_attention_hidden_size is None ): self.enc_to_dec_proj = nn.Linear(self.text_encoder.config.hidden_size, self.decoder.config.hidden_size) if self.text_encoder.get_output_embeddings() is not None: raise ValueError( f"The encoder {self.text_encoder} should not have a LM Head. Please use a model without and LM Head" ) decoder_signature = set(inspect.signature(self.decoder.forward).parameters.keys()) if "encoder_hidden_states" not in decoder_signature: raise ValueError( "The selected decoder is not prepared for the encoder hidden states to be passed. Please see the " "following discussion on GitHub: https://github.com/huggingface/transformers/issues/23350" ) # tie text encoder, decoder weights if config set accordingly self.tie_weights() def tie_weights(self): # tie text encoder & decoder if needed if self.config.tie_encoder_decoder: # tie text encoder and decoder base model decoder_base_model_prefix = self.decoder.base_model_prefix self._tie_encoder_decoder_weights( self.text_encoder, self.decoder._modules[decoder_base_model_prefix], self.decoder.base_model_prefix ) def _set_gradient_checkpointing(self, module, value=False): # call both encoder and decoder function on gradient checkpointing self.text_encoder._set_gradient_checkpointing(module, value=value) self.decoder._set_gradient_checkpointing(module, value=value) def get_audio_encoder(self): return self.audio_encoder def get_text_encoder(self): return self.text_encoder def get_encoder(self): # get the text encoder to compute the encoder hidden-states for generation return self.get_text_encoder() def get_decoder(self): return self.decoder def get_input_embeddings(self): return self.text_encoder.get_input_embeddings() def get_output_embeddings(self): return self.decoder.get_output_embeddings() def set_output_embeddings(self, new_embeddings): return self.decoder.set_output_embeddings(new_embeddings) @classmethod def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): r""" Example: ```python >>> from transformers import MusicgenForConditionalGeneration >>> model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small") ```""" # At the moment fast initialization is not supported for composite models if kwargs.get("_fast_init", False): logger.warning( "Fast initialization is currently not supported for MusicgenForConditionalGeneration. " "Falling back to slow initialization..." ) kwargs["_fast_init"] = False return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) @classmethod def from_sub_models_pretrained( cls, text_encoder_pretrained_model_name_or_path: str = None, audio_encoder_pretrained_model_name_or_path: str = None, decoder_pretrained_model_name_or_path: str = None, *model_args, **kwargs, ) -> PreTrainedModel: r""" Instantiate a text encoder, an audio encoder, and a MusicGen decoder from one, two or three base classes of the library from pretrained model checkpoints. The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train the model, you need to first set it back in training mode with `model.train()`. Params: text_encoder_pretrained_model_name_or_path (`str`, *optional*): Information necessary to initiate the text encoder. Can be either: - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. Valid model ids can be located at the root-level, like `t5-base`, or namespaced under a user or organization name, like `google/flan-t5-base. - A path to a *directory* containing model weights saved using [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. audio_encoder_pretrained_model_name_or_path (`str`, *optional*): Information necessary to initiate the audio encoder. Can be either: - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a user or organization name, like `facebook/encodec_24khz`. - A path to a *directory* containing model weights saved using [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. decoder_pretrained_model_name_or_path (`str`, *optional*, defaults to `None`): Information necessary to initiate the decoder. Can be either: - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. Valid model ids can be located at the root-level, like `gpt2`, or namespaced under a user or organization name, like `facebook/musicgen-small`. - A path to a *directory* containing model weights saved using [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. model_args (remaining positional arguments, *optional*): All remaining positional arguments will be passed to the underlying model's `__init__` method. kwargs (remaining dictionary of keyword arguments, *optional*): Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., `output_attentions=True`). - To update the text encoder configuration, use the prefix *text_encoder_* for each configuration parameter. - To update the audio encoder configuration, use the prefix *audio_encoder_* for each configuration parameter. - To update the decoder configuration, use the prefix *decoder_* for each configuration parameter. - To update the parent model configuration, do not use a prefix for each configuration parameter. Behaves differently depending on whether a `config` is provided or automatically loaded. Example: ```python >>> from transformers import MusicgenForConditionalGeneration >>> # initialize a musicgen model from a t5 text encoder, encodec audio encoder, and musicgen decoder >>> model = MusicgenForConditionalGeneration.from_sub_models_pretrained( ... text_encoder_pretrained_model_name_or_path="t5-base", ... audio_encoder_pretrained_model_name_or_path="facebook/encodec_24khz", ... decoder_pretrained_model_name_or_path="facebook/musicgen-small", ... ) >>> # saving model after fine-tuning >>> model.save_pretrained("./musicgen-ft") >>> # load fine-tuned model >>> model = MusicgenForConditionalGeneration.from_pretrained("./musicgen-ft") ```""" kwargs_text_encoder = { argument[len("text_encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("text_encoder_") } kwargs_audio_encoder = { argument[len("audio_encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("audio_encoder_") } kwargs_decoder = { argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_") } # remove text encoder, audio encoder and decoder kwargs from kwargs for key in kwargs_text_encoder.keys(): del kwargs["text_encoder_" + key] for key in kwargs_audio_encoder.keys(): del kwargs["audio_encoder_" + key] for key in kwargs_decoder.keys(): del kwargs["decoder_" + key] # Load and initialize the encoder and decoder # The distinction between encoder and decoder at the model level is made # by the value of the flag `is_decoder` that we need to set correctly. text_encoder = kwargs_text_encoder.pop("model", None) if text_encoder is None: if text_encoder_pretrained_model_name_or_path is None: raise ValueError( "If `text_encoder_model` is not defined as an argument, a `text_encoder_pretrained_model_name_or_path` has " "to be defined." ) if "config" not in kwargs_text_encoder: encoder_config, kwargs_text_encoder = AutoConfig.from_pretrained( text_encoder_pretrained_model_name_or_path, **kwargs_text_encoder, return_unused_kwargs=True ) if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True: logger.info( f"Initializing {text_encoder_pretrained_model_name_or_path} as a text_encoder model " "from a decoder model. Cross-attention and casual mask are disabled." ) encoder_config.is_decoder = False encoder_config.add_cross_attention = False kwargs_text_encoder["config"] = encoder_config text_encoder = AutoModel.from_pretrained( text_encoder_pretrained_model_name_or_path, *model_args, **kwargs_text_encoder ) audio_encoder = kwargs_audio_encoder.pop("model", None) if audio_encoder is None: if audio_encoder_pretrained_model_name_or_path is None: raise ValueError( "If `audio_encoder_model` is not defined as an argument, an `audio_encoder_pretrained_model_name_or_path` has " "to be defined." ) if "config" not in kwargs_audio_encoder: encoder_config, kwargs_audio_encoder = AutoConfig.from_pretrained( audio_encoder_pretrained_model_name_or_path, **kwargs_audio_encoder, return_unused_kwargs=True ) if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True: logger.info( f"Initializing {audio_encoder_pretrained_model_name_or_path} as an audio_encoder model " "from a decoder model. Cross-attention and casual mask are disabled." ) encoder_config.is_decoder = False encoder_config.add_cross_attention = False kwargs_audio_encoder["config"] = encoder_config audio_encoder = AutoModel.from_pretrained( audio_encoder_pretrained_model_name_or_path, *model_args, **kwargs_audio_encoder ) decoder = kwargs_decoder.pop("model", None) if decoder is None: if decoder_pretrained_model_name_or_path is None: raise ValueError( "If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has " "to be defined." ) if "config" not in kwargs_decoder: decoder_config, kwargs_decoder = AutoConfig.from_pretrained( decoder_pretrained_model_name_or_path, **kwargs_decoder, return_unused_kwargs=True ) if isinstance(decoder_config, MusicgenConfig): decoder_config = decoder_config.decoder if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False: logger.info( f"Initializing {decoder_pretrained_model_name_or_path} as a decoder model. Cross attention" f" layers are added to {decoder_pretrained_model_name_or_path} and randomly initialized if" f" {decoder_pretrained_model_name_or_path}'s architecture allows for cross attention layers." ) decoder_config.is_decoder = True decoder_config.add_cross_attention = True kwargs_decoder["config"] = decoder_config if kwargs_decoder["config"].is_decoder is False or kwargs_decoder["config"].add_cross_attention is False: logger.warning( f"Decoder model {decoder_pretrained_model_name_or_path} is not initialized as a decoder. " f"In order to initialize {decoder_pretrained_model_name_or_path} as a decoder, " "make sure that the attributes `is_decoder` and `add_cross_attention` of `decoder_config` " "passed to `.from_sub_models_pretrained(...)` are set to `True` or do not pass a " "`decoder_config` to `.from_sub_models_pretrained(...)`" ) decoder = MusicgenForCausalLM.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs_decoder) # instantiate config with corresponding kwargs config = MusicgenConfig.from_sub_models_config( text_encoder.config, audio_encoder.config, decoder.config, **kwargs ) return cls(text_encoder=text_encoder, audio_encoder=audio_encoder, decoder=decoder, config=config) @add_start_docstrings_to_model_forward(MUSICGEN_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.BoolTensor] = None, input_values: Optional[torch.FloatTensor] = None, padding_mask: Optional[torch.BoolTensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.BoolTensor] = None, encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None, past_key_values: Tuple[Tuple[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Tuple, Seq2SeqLMOutput]: r""" Returns: Examples: ```python >>> from transformers import AutoProcessor, MusicgenForConditionalGeneration >>> import torch >>> processor = AutoProcessor.from_pretrained("facebook/musicgen-small") >>> model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small") >>> inputs = processor( ... text=["80s pop track with bassy drums and synth", "90s rock song with loud guitars and heavy drums"], ... padding=True, ... return_tensors="pt", ... ) >>> pad_token_id = model.generation_config.pad_token_id >>> decoder_input_ids = ( ... torch.ones((inputs.input_ids.shape[0] * model.decoder.num_codebooks, 1), dtype=torch.long) ... * pad_token_id ... ) >>> logits = model(**inputs, decoder_input_ids=decoder_input_ids).logits >>> logits.shape # (bsz * num_codebooks, tgt_len, vocab_size) torch.Size([8, 1, 2048]) ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict kwargs_text_encoder = { argument[len("text_encoder_")]: value for argument, value in kwargs.items() if argument.startswith("text_encoder_") } kwargs_audio_encoder = { argument[len("audio_encoder_")]: value for argument, value in kwargs.items() if argument.startswith("audio_encoder_") } kwargs_decoder = { argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_") } if encoder_outputs is None: encoder_outputs = self.text_encoder( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, **kwargs_text_encoder, ) elif isinstance(encoder_outputs, tuple): encoder_outputs = BaseModelOutput(*encoder_outputs) encoder_hidden_states = encoder_outputs[0] # optionally project encoder_hidden_states if ( self.text_encoder.config.hidden_size != self.decoder.config.hidden_size and self.decoder.config.cross_attention_hidden_size is None ): encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states) if attention_mask is not None: encoder_hidden_states = encoder_hidden_states * attention_mask[..., None] if (labels is not None) and (decoder_input_ids is None and decoder_inputs_embeds is None): decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) elif decoder_input_ids is None and decoder_inputs_embeds is None: audio_encoder_outputs = self.audio_encoder( input_values=input_values, padding_mask=padding_mask, **kwargs_audio_encoder, ) audio_codes = audio_encoder_outputs.audio_codes frames, bsz, codebooks, seq_len = audio_codes.shape if frames != 1: raise ValueError( f"Expected 1 frame in the audio code outputs, got {frames} frames. Ensure chunking is " "disabled by setting `chunk_length=None` in the audio encoder." ) decoder_input_ids = audio_codes[0, ...].reshape(bsz * self.decoder.num_codebooks, seq_len) # Decode decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=attention_mask, inputs_embeds=decoder_inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache, past_key_values=past_key_values, return_dict=return_dict, **kwargs_decoder, ) loss = None if labels is not None: logits = decoder_outputs.logits if return_dict else decoder_outputs[0] loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: if loss is not None: return (loss,) + decoder_outputs + encoder_outputs else: return decoder_outputs + encoder_outputs return Seq2SeqLMOutput( loss=loss, logits=decoder_outputs.logits, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) def prepare_inputs_for_generation( self, decoder_input_ids, past_key_values=None, attention_mask=None, head_mask=None, decoder_attention_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, use_cache=None, encoder_outputs=None, decoder_delay_pattern_mask=None, guidance_scale=None, **kwargs, ): if decoder_delay_pattern_mask is None: decoder_input_ids, decoder_delay_pattern_mask = self.decoder.build_delay_pattern_mask( decoder_input_ids, self.generation_config.pad_token_id, max_length=self.generation_config.max_length, ) # apply the delay pattern mask decoder_input_ids = self.decoder.apply_delay_pattern_mask(decoder_input_ids, decoder_delay_pattern_mask) if guidance_scale is not None and guidance_scale > 1: # for classifier free guidance we need to replicate the decoder args across the batch dim (we'll split these # before sampling) decoder_input_ids = decoder_input_ids.repeat((2, 1)) if decoder_attention_mask is not None: decoder_attention_mask = decoder_attention_mask.repeat((2, 1)) # cut decoder_input_ids if past is used if past_key_values is not None: decoder_input_ids = decoder_input_ids[:, -1:] return { "input_ids": None, # encoder_outputs is defined. input_ids not needed "encoder_outputs": encoder_outputs, "past_key_values": past_key_values, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, "use_cache": use_cache, } def _prepare_decoder_input_ids_for_generation( self, batch_size: int, model_input_name: str, model_kwargs: Dict[str, torch.Tensor], decoder_start_token_id: int = None, bos_token_id: int = None, device: torch.device = None, ) -> Tuple[torch.LongTensor, Dict[str, torch.Tensor]]: """Prepares `decoder_input_ids` for generation with encoder-decoder models""" # 1. Check whether the user has defined `decoder_input_ids` manually. To facilitate in terms of input naming, # we also allow the user to pass it under `input_ids`, if the encoder does not use it as the main input. if model_kwargs is not None and "decoder_input_ids" in model_kwargs: decoder_input_ids = model_kwargs.pop("decoder_input_ids") elif "input_ids" in model_kwargs and model_input_name != "input_ids": decoder_input_ids = model_kwargs.pop("input_ids") else: decoder_input_ids = None # 2. Encoder-decoder models expect the `decoder_input_ids` to start with a special token. Let's ensure that. decoder_start_token_id = self._get_decoder_start_token_id(decoder_start_token_id, bos_token_id) if device is None: device = self.device decoder_input_ids_start = ( torch.ones((batch_size * self.decoder.num_codebooks, 1), dtype=torch.long, device=device) * decoder_start_token_id ) # no user input -> use decoder_start_token_id as decoder_input_ids if decoder_input_ids is None: decoder_input_ids = decoder_input_ids_start # user input but doesn't start with decoder_start_token_id -> prepend decoder_start_token_id (and adjust # decoder_attention_mask if provided) elif (decoder_input_ids[..., 0] != decoder_start_token_id).all().item(): decoder_input_ids = torch.cat([decoder_input_ids_start, decoder_input_ids], dim=-1) if "decoder_attention_mask" in model_kwargs: decoder_attention_mask = model_kwargs["decoder_attention_mask"] decoder_attention_mask = torch.cat( (torch.ones_like(decoder_attention_mask)[:, :1], decoder_attention_mask), dim=-1, ) model_kwargs["decoder_attention_mask"] = decoder_attention_mask return decoder_input_ids, model_kwargs def _prepare_text_encoder_kwargs_for_generation( self, inputs_tensor: torch.Tensor, model_kwargs, model_input_name: Optional[str] = None, guidance_scale: Optional[float] = None, ) -> Dict[str, Any]: # 1. get text encoder encoder = self.get_text_encoder() # Compatibility with Accelerate big model inference: we need the encoder to outputs stuff on the same device # as the inputs. if hasattr(encoder, "_hf_hook"): encoder._hf_hook.io_same_device = True # 2. Prepare encoder args and encoder kwargs from model kwargs. irrelevant_prefix = ["decoder_", "cross_attn", "use_cache"] encoder_kwargs = { argument: value for argument, value in model_kwargs.items() if not any(argument.startswith(p) for p in irrelevant_prefix) } encoder_signature = set(inspect.signature(encoder.forward).parameters) encoder_accepts_wildcard = "kwargs" in encoder_signature or "model_kwargs" in encoder_signature if not encoder_accepts_wildcard: encoder_kwargs = { argument: value for argument, value in encoder_kwargs.items() if argument in encoder_signature } # 3. make sure that encoder returns `ModelOutput` model_input_name = model_input_name if model_input_name is not None else self.text_encoder.main_input_name encoder_kwargs["return_dict"] = True encoder_kwargs[model_input_name] = inputs_tensor last_hidden_state = encoder(**encoder_kwargs).last_hidden_state # for classifier free guidance we need to add a 'null' input to our encoder hidden states if guidance_scale is not None and guidance_scale > 1: last_hidden_state = torch.concatenate([last_hidden_state, torch.zeros_like(last_hidden_state)], dim=0) if "attention_mask" in model_kwargs: model_kwargs["attention_mask"] = torch.concatenate( [model_kwargs["attention_mask"], torch.zeros_like(model_kwargs["attention_mask"])], dim=0 ) model_kwargs["encoder_outputs"] = BaseModelOutput(last_hidden_state=last_hidden_state) return model_kwargs def _prepare_audio_encoder_kwargs_for_generation( self, input_values, model_kwargs, model_input_name: Optional[str] = None ): # 1. get audio encoder encoder = self.get_audio_encoder() # Compatibility with Accelerate big model inference: we need the encoder to outputs stuff on the same device # as the inputs. if hasattr(encoder, "_hf_hook"): encoder._hf_hook.io_same_device = True # 2. Prepare encoder args and encoder kwargs from model kwargs. irrelevant_prefix = ["decoder_", "cross_attn", "use_cache"] encoder_kwargs = { argument: value for argument, value in model_kwargs.items() if not any(argument.startswith(p) for p in irrelevant_prefix) } encoder_signature = set(inspect.signature(encoder.forward).parameters) encoder_accepts_wildcard = "kwargs" in encoder_signature or "model_kwargs" in encoder_signature if not encoder_accepts_wildcard: encoder_kwargs = { argument: value for argument, value in encoder_kwargs.items() if argument in encoder_signature } # 3. make sure that encoder returns `ModelOutput` model_input_name = model_input_name if model_input_name is not None else self.audio_encoder.main_input_name encoder_kwargs["return_dict"] = True encoder_kwargs[model_input_name] = input_values audio_encoder_outputs = encoder.encode(**encoder_kwargs) audio_codes = audio_encoder_outputs.audio_codes frames, bsz, codebooks, seq_len = audio_codes.shape if frames != 1: raise ValueError( f"Expected 1 frame in the audio code outputs, got {frames} frames. Ensure chunking is " "disabled by setting `chunk_length=None` in the audio encoder." ) decoder_input_ids = audio_codes[0, ...].reshape(bsz * self.decoder.num_codebooks, seq_len) model_kwargs["decoder_input_ids"] = decoder_input_ids model_kwargs["audio_scales"] = audio_encoder_outputs.audio_scales return model_kwargs def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id) def resize_token_embeddings(self, *args, **kwargs): raise NotImplementedError( "Resizing the embedding layers via the EncoderDecoderModel directly is not supported. Please use the" " respective methods of the wrapped objects (model.encoder.resize_token_embeddings(...) or" " model.decoder.resize_token_embeddings(...))" ) def _maybe_initialize_input_ids_for_generation( self, inputs: Optional[torch.Tensor] = None, bos_token_id: Optional[int] = None, model_kwargs: Optional[Dict[str, torch.Tensor]] = None, ) -> torch.LongTensor: """Initializes input ids for generation, if necessary.""" if inputs is not None: return inputs encoder_outputs = model_kwargs.get("encoder_outputs") if encoder_outputs is not None: # make dummy input_ids with value -100, as a sanity check ensuring that they won't be used for encoding shape = encoder_outputs[0].size()[:-1] return torch.ones(shape, dtype=torch.long, device=self.device) * -100 if bos_token_id is None: raise ValueError("`bos_token_id` has to be defined when no `input_ids` are provided.") # If there is some tensor in `model_kwargs`, we can infer the batch size from it. This is helpful with # soft-prompting or in multimodal implementations built on top of decoder-only language models. batch_size = 1 for value in model_kwargs.values(): if isinstance(value, torch.Tensor): batch_size = value.shape[0] break return torch.ones((batch_size, 1), dtype=torch.long, device=self.device) * bos_token_id @torch.no_grad() def generate( self, inputs: Optional[torch.Tensor] = None, generation_config: Optional[GenerationConfig] = None, logits_processor: Optional[LogitsProcessorList] = None, stopping_criteria: Optional[StoppingCriteriaList] = None, synced_gpus: Optional[bool] = None, **kwargs, ): """ Generates sequences of token ids for models with a language modeling head. <Tip warning={true}> Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the model's default generation configuration. You can override any `generation_config` by passing the corresponding parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`. For an overview of generation strategies and code examples, check out the [following guide](./generation_strategies). </Tip> Parameters: inputs (`torch.Tensor` of varying shape depending on the modality, *optional*): The sequence used as a prompt for the generation or as model inputs to the encoder. If `None` the method initializes it with `bos_token_id` and a batch size of 1. For decoder-only models `inputs` should be in the format `input_ids`. For encoder-decoder models *inputs* can represent any of `input_ids`, `input_values`, `input_features`, or `pixel_values`. generation_config (`~generation.GenerationConfig`, *optional*): The generation configuration to be used as base parametrization for the generation call. `**kwargs` passed to generate matching the attributes of `generation_config` will override them. If `generation_config` is not provided, the default will be used, which had the following loading priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s default values, whose documentation should be checked to parameterize generation. logits_processor (`LogitsProcessorList`, *optional*): Custom logits processors that complement the default logits processors built from arguments and generation config. If a logit processor is passed that is already created with the arguments or a generation config an error is thrown. This feature is intended for advanced users. stopping_criteria (`StoppingCriteriaList`, *optional*): Custom stopping criteria that complement the default stopping criteria built from arguments and a generation config. If a stopping criteria is passed that is already created with the arguments or a generation config an error is thrown. This feature is intended for advanced users. synced_gpus (`bool`, *optional*, defaults to `False`): Whether to continue running the while loop until max_length (needed for ZeRO stage 3) kwargs (`Dict[str, Any]`, *optional*): Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*. Return: [`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True` or when `config.return_dict_in_generate=True`) or a `torch.FloatTensor`. If the model is *not* an encoder-decoder model (`model.config.is_encoder_decoder=False`), the possible [`~utils.ModelOutput`] types are: - [`~generation.GreedySearchDecoderOnlyOutput`], - [`~generation.SampleDecoderOnlyOutput`], - [`~generation.BeamSearchDecoderOnlyOutput`], - [`~generation.BeamSampleDecoderOnlyOutput`] If the model is an encoder-decoder model (`model.config.is_encoder_decoder=True`), the possible [`~utils.ModelOutput`] types are: - [`~generation.GreedySearchEncoderDecoderOutput`], - [`~generation.SampleEncoderDecoderOutput`], - [`~generation.BeamSearchEncoderDecoderOutput`], - [`~generation.BeamSampleEncoderDecoderOutput`] """ # 1. Handle `generation_config` and kwargs that might update it, and validate the resulting objects if generation_config is None: generation_config = self.generation_config generation_config = copy.deepcopy(generation_config) model_kwargs = generation_config.update(**kwargs) # All unused kwargs must be model kwargs generation_config.validate() self._validate_model_kwargs(model_kwargs.copy()) if model_kwargs.get("encoder_outputs") is not None and type(model_kwargs["encoder_outputs"]) == tuple: # wrap the unconditional outputs as a BaseModelOutput for compatibility with the rest of generate model_kwargs["encoder_outputs"] = BaseModelOutput(last_hidden_state=model_kwargs["encoder_outputs"][0]) # 2. Set generation parameters if not already defined logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList() stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList() if generation_config.pad_token_id is None and generation_config.eos_token_id is not None: if model_kwargs.get("attention_mask", None) is None: logger.warning( "The attention mask and the pad token id were not set. As a consequence, you may observe " "unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results." ) eos_token_id = generation_config.eos_token_id if isinstance(eos_token_id, list): eos_token_id = eos_token_id[0] logger.warning(f"Setting `pad_token_id` to `eos_token_id`:{eos_token_id} for open-end generation.") generation_config.pad_token_id = eos_token_id # 3. Define model inputs # inputs_tensor has to be defined # model_input_name is defined if model-specific keyword input is passed # otherwise model_input_name is None # all model-specific keyword inputs are removed from `model_kwargs` inputs_tensor, model_input_name, model_kwargs = self._prepare_model_inputs( inputs, generation_config.bos_token_id, model_kwargs ) batch_size = inputs_tensor.shape[0] # 4. Define other model kwargs model_kwargs["output_attentions"] = generation_config.output_attentions model_kwargs["output_hidden_states"] = generation_config.output_hidden_states model_kwargs["use_cache"] = generation_config.use_cache model_kwargs["guidance_scale"] = generation_config.guidance_scale requires_attention_mask = "encoder_outputs" not in model_kwargs if model_kwargs.get("attention_mask", None) is None and requires_attention_mask: model_kwargs["attention_mask"] = self._prepare_attention_mask_for_generation( inputs_tensor, generation_config.pad_token_id, generation_config.eos_token_id ) if "encoder_outputs" not in model_kwargs: # encoder_outputs are created and added to `model_kwargs` model_kwargs = self._prepare_text_encoder_kwargs_for_generation( inputs_tensor, model_kwargs, model_input_name, guidance_scale=generation_config.guidance_scale, ) if "decoder_input_ids" not in model_kwargs and "input_values" in model_kwargs: model_kwargs = self._prepare_audio_encoder_kwargs_for_generation( model_kwargs["input_values"], model_kwargs, ) # 5. Prepare `input_ids` which will be used for auto-regressive generation input_ids, model_kwargs = self._prepare_decoder_input_ids_for_generation( batch_size=batch_size, model_input_name=model_input_name, model_kwargs=model_kwargs, decoder_start_token_id=generation_config.decoder_start_token_id, bos_token_id=generation_config.bos_token_id, device=inputs_tensor.device, ) # 6. Prepare `max_length` depending on other stopping criteria. input_ids_seq_length = input_ids.shape[-1] has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None if has_default_max_length and generation_config.max_new_tokens is None: logger.warning( f"Using the model-agnostic default `max_length` (={generation_config.max_length}) " "to control the generation length. recommend setting `max_new_tokens` to control the maximum length of the generation.", UserWarning, ) elif generation_config.max_new_tokens is not None: if not has_default_max_length: logger.warning( f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(=" f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. " "Please refer to the documentation for more information. " "(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)" ) generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length if generation_config.min_length is not None and generation_config.min_length > generation_config.max_length: raise ValueError( f"Unfeasible length constraints: the minimum length ({generation_config.min_length}) is larger than" f" the maximum length ({generation_config.max_length})" ) if input_ids_seq_length >= generation_config.max_length: logger.warning( f"Input length of decoder_input_ids is {input_ids_seq_length}, but `max_length` is set to" f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider" " increasing `max_new_tokens`." ) # build the delay pattern mask for offsetting each codebook prediction by 1 (this behaviour is specific to MusicGen) input_ids, decoder_delay_pattern_mask = self.decoder.build_delay_pattern_mask( input_ids, pad_token_id=generation_config.decoder_start_token_id, max_length=generation_config.max_length, ) # stash the delay mask so that we don't have to recompute in each forward pass model_kwargs["decoder_delay_pattern_mask"] = decoder_delay_pattern_mask # 7. determine generation mode is_greedy_gen_mode = ( (generation_config.num_beams == 1) and (generation_config.num_beam_groups == 1) and generation_config.do_sample is False ) is_sample_gen_mode = ( (generation_config.num_beams == 1) and (generation_config.num_beam_groups == 1) and generation_config.do_sample is True ) # 8. prepare distribution pre_processing samplers logits_processor = self._get_logits_processor( generation_config=generation_config, input_ids_seq_length=input_ids_seq_length, encoder_input_ids=inputs_tensor, prefix_allowed_tokens_fn=None, logits_processor=logits_processor, ) # 9. prepare stopping criteria stopping_criteria = self._get_stopping_criteria( generation_config=generation_config, stopping_criteria=stopping_criteria ) if is_greedy_gen_mode: if generation_config.num_return_sequences > 1: raise ValueError( "num_return_sequences has to be 1 when doing greedy search, " f"but is {generation_config.num_return_sequences}." ) # 10. run greedy search outputs = self.greedy_search( input_ids, logits_processor=logits_processor, stopping_criteria=stopping_criteria, pad_token_id=generation_config.pad_token_id, eos_token_id=generation_config.eos_token_id, output_scores=generation_config.output_scores, return_dict_in_generate=generation_config.return_dict_in_generate, synced_gpus=synced_gpus, **model_kwargs, ) elif is_sample_gen_mode: # 11. prepare logits warper logits_warper = self._get_logits_warper(generation_config) # expand input_ids with `num_return_sequences` additional sequences per batch input_ids, model_kwargs = self._expand_inputs_for_generation( input_ids=input_ids, expand_size=generation_config.num_return_sequences, is_encoder_decoder=self.config.is_encoder_decoder, **model_kwargs, ) # 12. run sample outputs = self.sample( input_ids, logits_processor=logits_processor, logits_warper=logits_warper, stopping_criteria=stopping_criteria, pad_token_id=generation_config.pad_token_id, eos_token_id=generation_config.eos_token_id, output_scores=generation_config.output_scores, return_dict_in_generate=generation_config.return_dict_in_generate, synced_gpus=synced_gpus, **model_kwargs, ) else: raise ValueError( "Got incompatible mode for generation, should be one of greedy or sampling." "Ensure that beam search is de-activated by setting `num_beams=1` and `num_beam_groups=1`." ) if generation_config.return_dict_in_generate: output_ids = outputs.sequences else: output_ids = outputs # apply the pattern mask to the final ids output_ids = self.decoder.apply_delay_pattern_mask(output_ids, model_kwargs["decoder_delay_pattern_mask"]) # revert the pattern delay mask by filtering the pad token id output_ids = output_ids[output_ids != generation_config.pad_token_id].reshape( batch_size, self.decoder.num_codebooks, -1 ) # append the frame dimension back to the audio codes output_ids = output_ids[None, ...] audio_scales = model_kwargs.get("audio_scales") if audio_scales is None: audio_scales = [None] * batch_size output_values = self.audio_encoder.decode( output_ids, audio_scales=audio_scales, ) if generation_config.return_dict_in_generate: outputs.sequences = output_values.audio_values return outputs else: return output_values.audio_values def get_unconditional_inputs(self, num_samples=1): """ Helper function to get null inputs for unconditional generation, enabling the model to be used without the feature extractor or tokenizer. Args: num_samples (int, *optional*): Number of audio samples to unconditionally generate. max_new_tokens (int, *optional*): Number of tokens to generate for each sample. More tokens means longer audio samples, at the expense of longer inference (since more audio tokens need to be generated per sample). Example: ```python >>> from transformers import MusicgenForConditionalGeneration >>> model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small") >>> # get the unconditional (or 'null') inputs for the model >>> unconditional_inputs = model.get_unconditional_inputs(num_samples=1) >>> audio_samples = model.generate(**unconditional_inputs, max_new_tokens=256) ```""" last_hidden_state = torch.zeros( (num_samples, 1, self.config.text_encoder.hidden_size), device=self.device, dtype=self.dtype ) attention_mask = torch.zeros((num_samples, 1), device=self.device, dtype=torch.long) return MusicgenUnconditionalInput( encoder_outputs=(last_hidden_state,), attention_mask=attention_mask, guidance_scale=1.0, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/whisper/tokenization_whisper.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for Whisper.""" import json import os from typing import List, Optional, Tuple, Union import numpy as np import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging from .english_normalizer import EnglishTextNormalizer VOCAB_FILES_NAMES = { "vocab_file": "vocab.json", "tokenizer_file": "tokenizer.json", "merges_file": "merges.txt", "normalizer_file": "normalizer.json", } PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/vocab.json", }, "merges_file": {"openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/merges_file.txt"}, "normalizer_file": { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/normalizer.json" }, } MAX_MODEL_INPUT_SIZES = { "openai/whisper-base": 448, } # Copied from transformers.models.gpt2.tokenization_gpt2.bytes_to_unicode def bytes_to_unicode(): """ Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control characters the bpe code barfs on. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. """ bs = ( list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1)) ) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8 + n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) logger = logging.get_logger(__name__) # Copied from transformers.models.gpt2.tokenization_gpt2.get_pairs def get_pairs(word): """ Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs LANGUAGES = { "en": "english", "zh": "chinese", "de": "german", "es": "spanish", "ru": "russian", "ko": "korean", "fr": "french", "ja": "japanese", "pt": "portuguese", "tr": "turkish", "pl": "polish", "ca": "catalan", "nl": "dutch", "ar": "arabic", "sv": "swedish", "it": "italian", "id": "indonesian", "hi": "hindi", "fi": "finnish", "vi": "vietnamese", "he": "hebrew", "uk": "ukrainian", "el": "greek", "ms": "malay", "cs": "czech", "ro": "romanian", "da": "danish", "hu": "hungarian", "ta": "tamil", "no": "norwegian", "th": "thai", "ur": "urdu", "hr": "croatian", "bg": "bulgarian", "lt": "lithuanian", "la": "latin", "mi": "maori", "ml": "malayalam", "cy": "welsh", "sk": "slovak", "te": "telugu", "fa": "persian", "lv": "latvian", "bn": "bengali", "sr": "serbian", "az": "azerbaijani", "sl": "slovenian", "kn": "kannada", "et": "estonian", "mk": "macedonian", "br": "breton", "eu": "basque", "is": "icelandic", "hy": "armenian", "ne": "nepali", "mn": "mongolian", "bs": "bosnian", "kk": "kazakh", "sq": "albanian", "sw": "swahili", "gl": "galician", "mr": "marathi", "pa": "punjabi", "si": "sinhala", "km": "khmer", "sn": "shona", "yo": "yoruba", "so": "somali", "af": "afrikaans", "oc": "occitan", "ka": "georgian", "be": "belarusian", "tg": "tajik", "sd": "sindhi", "gu": "gujarati", "am": "amharic", "yi": "yiddish", "lo": "lao", "uz": "uzbek", "fo": "faroese", "ht": "haitian creole", "ps": "pashto", "tk": "turkmen", "nn": "nynorsk", "mt": "maltese", "sa": "sanskrit", "lb": "luxembourgish", "my": "myanmar", "bo": "tibetan", "tl": "tagalog", "mg": "malagasy", "as": "assamese", "tt": "tatar", "haw": "hawaiian", "ln": "lingala", "ha": "hausa", "ba": "bashkir", "jw": "javanese", "su": "sundanese", } # language code lookup by name, with a few language aliases TO_LANGUAGE_CODE = { **{language: code for code, language in LANGUAGES.items()}, "burmese": "my", "valencian": "ca", "flemish": "nl", "haitian": "ht", "letzeburgesch": "lb", "pushto": "ps", "panjabi": "pa", "moldavian": "ro", "moldovan": "ro", "sinhalese": "si", "castilian": "es", } TASK_IDS = ["translate", "transcribe"] class WhisperTokenizer(PreTrainedTokenizer): """ Construct a Whisper tokenizer. This tokenizer inherits from [`PreTrainedTokenizer`] which contains some of the main methods. Users should refer to the superclass for more information regarding such methods. Args: vocab_file (`str`): Path to the vocabulary file. merges_file (`str`): Path to the merges file. normalizer_file (`str`, *optional*, defaults to `None`): Path to the normalizer_file file. errors (`str`, *optional*, defaults to `"replace"`): Paradigm to follow when decoding bytes to UTF-8. See [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. bos_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The beginning of sequence token. The `decoder_start_token_id` is used to set the first token as `"<|startoftranscript|>"` when generating. eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The end of sequence token. add_prefix_space (`bool`, *optional*, defaults to `False`): Whether or not to add an initial space to the input. This allows to treat the leading word just as any other word. language (`str`, *optional*): The language of the transcription text. The corresponding language id token is appended to the start of the sequence for multilingual speech recognition and speech translation tasks, e.g. for Spanish the token `"<|es|>"` is appended to the start of sequence. This should be used for multilingual fine-tuning only. task (`str`, *optional*): Task identifier to append at the start of sequence (if any). This should be used for mulitlingual fine-tuning, with `"transcribe"` for speech recognition and `"translate"` for speech translation. predict_timestamps (`bool`, *optional*, defaults to `False`): Whether to omit the `<|notimestamps|>` token at the start of the sequence. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = MAX_MODEL_INPUT_SIZES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, merges_file, normalizer_file=None, errors="replace", unk_token="<|endoftext|>", bos_token="<|endoftext|>", eos_token="<|endoftext|>", pad_token=None, add_prefix_space=False, language=None, task=None, predict_timestamps=False, **kwargs, ): bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token super().__init__( errors=errors, unk_token=unk_token, bos_token=bos_token, eos_token=eos_token, pad_token=pad_token, add_prefix_space=add_prefix_space, **kwargs, ) with open(vocab_file, encoding="utf-8") as vocab_handle: self.encoder = json.load(vocab_handle) self.decoder = {v: k for k, v in self.encoder.items()} self.errors = errors # how to handle errors in decoding self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} with open(merges_file, encoding="utf-8") as merges_handle: bpe_merges = merges_handle.read().split("\n")[1:-1] bpe_merges = [tuple(merge.split()) for merge in bpe_merges] self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges)))) self.cache = {} self.add_prefix_space = add_prefix_space if normalizer_file is not None: with open(normalizer_file, encoding="utf-8") as vocab_handle: self.english_spelling_normalizer = json.load(vocab_handle) else: self.english_spelling_normalizer = None # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""") self.language = language self.task = task self.predict_timestamps = predict_timestamps def get_vocab(self): vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab @property def vocab_size(self) -> int: return len(self.encoder) # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.bpe with GPT2 -> Whisper def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token) pairs = get_pairs(word) if not pairs: return token while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) i = j if word[i] == first and i < len(word) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = " ".join(word) self.cache[token] = word return word def set_prefix_tokens(self, language: str = None, task: str = None, predict_timestamps: bool = None): """ Override the prefix tokens appended to the start of the label sequence. This method can be used standalone to update the prefix tokens as required when fine-tuning. Example: ```python >>> # instantiate the tokenizer and set the prefix token to Spanish >>> tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-tiny", language="spanish") >>> # now switch the prefix token from Spanish to French >>> tokenizer.set_prefix_tokens(language="french") ``` Args: language (`str`, *optional*, defaults to `None`): The language of the transcription text. task (`str`, *optional*, defaults to `None`): Task identifier to append at the start of sequence (if any). predict_timestamps (`bool`, *optional*, defaults to `None`): Whether to omit the `<|notimestamps|>` token at the start of the sequence. """ self.language = language if language is not None else self.language self.task = task if task is not None else self.task self.predict_timestamps = predict_timestamps if predict_timestamps is not None else self.predict_timestamps @property def prefix_tokens(self) -> List[int]: all_special_ids = self.all_special_ids bos_token_id = all_special_ids[-106] translate_token_id = all_special_ids[-6] transcribe_token_id = all_special_ids[-5] notimestamps_token_id = all_special_ids[-1] langs = tuple(LANGUAGES.keys()) if self.language is not None: self.language = self.language.lower() if self.language in TO_LANGUAGE_CODE: language_id = TO_LANGUAGE_CODE[self.language] elif self.language in TO_LANGUAGE_CODE.values(): language_id = self.language else: is_language_code = len(self.language) == 2 raise ValueError( f"Unsupported language: {self.language}. Language should be one of:" f" {list(TO_LANGUAGE_CODE.values()) if is_language_code else list(TO_LANGUAGE_CODE.keys())}." ) if self.task is not None: if self.task not in TASK_IDS: raise ValueError(f"Unsupported task: {self.task}. Task should be in: {TASK_IDS}") bos_sequence = [bos_token_id] if self.language is not None: bos_sequence.append(bos_token_id + 1 + langs.index(language_id)) if self.task is not None: bos_sequence.append(transcribe_token_id if self.task == "transcribe" else translate_token_id) if not self.predict_timestamps: bos_sequence.append(notimestamps_token_id) return bos_sequence # Copied from transformers.models.speech_to_text.tokenization_speech_to_text.Speech2TextTokenizer.build_inputs_with_special_tokens def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None) -> List[int]: """Build model inputs from a sequence by appending eos_token_id.""" if token_ids_1 is None: return self.prefix_tokens + token_ids_0 + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_0 + token_ids_1 + [self.eos_token_id] # Copied from transformers.models.speech_to_text.tokenization_speech_to_text.Speech2TextTokenizer.get_special_tokens_mask def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) prefix_ones = [1] * len(self.prefix_tokens) suffix_ones = [1] if token_ids_1 is None: return prefix_ones + ([0] * len(token_ids_0)) + suffix_ones return prefix_ones + ([0] * len(token_ids_0)) + ([0] * len(token_ids_1)) + suffix_ones # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._tokenize with GPT2 -> Whisper def _tokenize(self, text): """Tokenize a string.""" bpe_tokens = [] for token in re.findall(self.pat, text): token = "".join( self.byte_encoder[b] for b in token.encode("utf-8") ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" ")) return bpe_tokens # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._convert_token_to_id with GPT2 -> Whisper def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.encoder.get(token, self.encoder.get(self.unk_token)) def _convert_id_to_token(self, index): """ Converts an index (integer) in a token (str) using the vocab. Whisper's base tokenizer always decodes OOV tokens as "", thus we do not use the `unk_token` here. """ return self.decoder.get(index, "") def _normalize(self, text): """ Normalize a given string using the `EnglishTextNormalizer` class, which preforms commons transformation on english text. """ normalizer = EnglishTextNormalizer(self.english_spelling_normalizer) return normalizer(text) def _decode_with_timestamps(self, token_ids, skip_special_tokens=False, time_precision=0.02) -> str: """ Timestamp tokens are above the special tokens' id range and are ignored by `decode()`. This method decodes given tokens with timestamps tokens annotated, e.g. "<|1.08|>". """ timestamp_begin = self.all_special_ids[-1] + 1 outputs = [[]] for token in token_ids: if token >= timestamp_begin: timestamp = f"<|{(token - timestamp_begin) * time_precision:.2f}|>" outputs.append(timestamp) outputs.append([]) else: outputs[-1].append(token) outputs = [ s if isinstance(s, str) else self.decode(s, skip_special_tokens=skip_special_tokens) for s in outputs ] return "".join(outputs) def _compute_offsets(self, token_ids, time_precision=0.02): """ Compute offsets for a given tokenized input Args: token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`): List of tokenized input ids. Can be obtained using the `__call__` method. time_precision (`float`, `optional`, defaults to 0.02): The time ratio to convert from token to time. """ offsets = [] token_ids = np.array(token_ids) if token_ids.shape[0] > 1 and len(token_ids.shape) > 1: raise ValueError("Can only process a single input at a time") timestamp_begin = self.all_special_ids[-1] + 1 timestamp_tokens = token_ids >= timestamp_begin consecutive = np.where(timestamp_tokens[:-1] & timestamp_tokens[1:])[0] + 1 if consecutive.shape[0] == 0 and timestamp_tokens.sum() <= 1: # either there are no timestamps or there are no consecutive ones return [] elif np.where(timestamp_tokens)[0][-1] + 1 not in consecutive: # we add the final timestamp if it is not already in the list consecutive = np.append(consecutive, np.where(timestamp_tokens)[0][-1] + 1) last_slice = np.where(timestamp_tokens)[0][0] for current_slice in consecutive: sliced_tokens = token_ids[last_slice:current_slice] if len(sliced_tokens) > 1: start_timestamp_position = sliced_tokens[0].item() - timestamp_begin end_timestamp_position = sliced_tokens[-1].item() - timestamp_begin offsets.append( { "text": self._decode(sliced_tokens), "timestamp": ( start_timestamp_position * time_precision, end_timestamp_position * time_precision, ), } ) last_slice = current_slice return offsets def decode( self, token_ids, skip_special_tokens: bool = False, clean_up_tokenization_spaces: bool = None, output_offsets: bool = False, time_precision=0.02, decode_with_timestamps: bool = False, **kwargs, ) -> str: """ Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special tokens and clean up tokenization spaces. Similar to doing `self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))`. Args: token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`): List of tokenized input ids. Can be obtained using the `__call__` method. skip_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not to remove special tokens in the decoding. clean_up_tokenization_spaces (`bool`, *optional*): Whether or not to clean up the tokenization spaces. If `None`, will default to `self.clean_up_tokenization_spaces` (available in the `tokenizer_config`). kwargs (additional keyword arguments, *optional*): Will be passed to the underlying model specific decode method. output_offsets (`bool`, *optional*, defaults to `False`): Whether or not to output the offsets of the tokens. This should only be set if the model predicted timestamps. decode_with_timestamps (`bool`, *optional*, defaults to `False`): Whether or not to decode with timestamps included in the raw text. Returns: `str`: The decoded sentence. """ text = super().decode( token_ids, skip_special_tokens=skip_special_tokens, clean_up_tokenization_spaces=clean_up_tokenization_spaces, **kwargs, ) if decode_with_timestamps: text = self._decode_with_timestamps( token_ids, time_precision=time_precision, skip_special_tokens=skip_special_tokens ) # retrieve offsets if output_offsets: offsets = None offsets = self._compute_offsets(token_ids, time_precision=time_precision) return {"text": text, "offsets": offsets} return text def _decode( self, token_ids: Union[int, List[int]], skip_special_tokens: bool = False, normalize: bool = False, **kwargs ) -> str: self._decode_use_source_tokenizer = kwargs.pop("use_source_tokenizer", False) if skip_special_tokens: prompt_token_id = self.convert_tokens_to_ids("<|startofprev|>") decoder_start_token_id = self.convert_tokens_to_ids("<|startoftranscript|>") token_ids = self._strip_prompt(token_ids, prompt_token_id, decoder_start_token_id) filtered_tokens = self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 sub_texts = [] current_sub_text = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(current_sub_text)) current_sub_text = [] sub_texts.append(token) else: current_sub_text.append(token) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(current_sub_text)) text = "".join(sub_texts) if normalize: clean_text = self._normalize(text) return clean_text else: return text # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.convert_tokens_to_string with GPT2 -> Whisper def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" text = "".join(tokens) text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors) return text def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) merge_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) normalizer_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["normalizer_file"] ) with open(vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") index = 0 with open(merge_file, "w", encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) index = token_index writer.write(" ".join(bpe_tokens) + "\n") index += 1 if self.english_spelling_normalizer is not None: with open(normalizer_file, "w", encoding="utf-8") as f: f.write( json.dumps(self.english_spelling_normalizer, indent=2, sort_keys=True, ensure_ascii=False) + "\n" ) return vocab_file, merge_file, normalizer_file # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.prepare_for_tokenization with GPT2 -> Whisper def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs): add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space) if is_split_into_words or add_prefix_space: text = " " + text return (text, kwargs) # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._build_conversation_input_ids with GPT2 -> Whisper def _build_conversation_input_ids(self, conversation) -> List[int]: input_ids = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(text, add_special_tokens=False) + [self.eos_token_id]) if len(input_ids) > self.model_max_length: input_ids = input_ids[-self.model_max_length :] return input_ids def get_decoder_prompt_ids(self, task=None, language=None, no_timestamps=True): self.set_prefix_tokens(task=task, language=language, predict_timestamps=not no_timestamps) # prefix tokens are of the form: <|startoftranscript|> <|lang_id|> <|task|> <|notimestamps|> # we don't want to force the bos token at position 1, as this is the starting token # when we generate, so we slice the prefix tokens to: <|lang_id|> <|task|> <|notimestamps|> # to get the forced tokens forced_tokens = self.prefix_tokens[1:] forced_decoder_ids = [(rank + 1, token) for rank, token in enumerate(forced_tokens)] return forced_decoder_ids def _decode_asr(self, model_outputs, *, return_timestamps, return_language, time_precision): return _decode_asr( self, model_outputs, return_timestamps=return_timestamps, return_language=return_language, time_precision=time_precision, ) def get_prompt_ids(self, text: str, return_tensors="np"): """Converts prompt text to IDs that can be passed to [`~WhisperForConditionalGeneration.generate`].""" batch_encoding = self("<|startofprev|>", " " + text.strip(), add_special_tokens=False) # Check for special tokens prompt_text_ids = batch_encoding["input_ids"][1:] special_token_id = next((x for x in prompt_text_ids if x >= self.all_special_ids[0]), None) if special_token_id is not None: token = self.convert_ids_to_tokens(special_token_id) raise ValueError(f"Encountered text in the prompt corresponding to disallowed special token: {token}.") batch_encoding.convert_to_tensors(tensor_type=return_tensors) return batch_encoding["input_ids"] @staticmethod def _strip_prompt(token_ids: List[int], prompt_token_id: int, decoder_start_token_id: int): has_prompt = isinstance(token_ids, list) and token_ids and token_ids[0] == prompt_token_id if has_prompt: if decoder_start_token_id in token_ids: return token_ids[token_ids.index(decoder_start_token_id) :] else: return [] return token_ids def _decode_asr(tokenizer, model_outputs, *, return_timestamps, return_language, time_precision): """ Internal method meant to only be used by asr pipeline. Handles all the little quirks specific to whisper to handle the various options not allowed in other seq2seq models """ # =========== Overview ============ # - iterate over all outputs # - all tokens within output # - Each token can be # - language token # - special token # - timestamp token # - text token # - We accumulate the text tokens. # - We split on end timestamps # - Lots of complexity comes from stride and timestamps last_language = None def new_chunk(): return {"language": last_language, "timestamp": [None, None], "text": ""} # Welcome to the state machine ! chunks = [] chunk = new_chunk() time_offset = 0.0 timestamp_begin = tokenizer.convert_tokens_to_ids("<|notimestamps|>") + 1 previous_tokens = [] previous_token_timestamps = [] skip = False right_stride_start = None all_special_ids = set(tokenizer.all_special_ids) # - iterate over all outputs for chunk_id, output in enumerate(model_outputs): # We can drop everything to Python list, it's going to make # our lives easier token_ids = output["tokens"][0].tolist() if return_timestamps == "word": token_timestamps = output["token_timestamps"][0].tolist() # Those keep track of timestamps within strides # Which need to be skipped and resolve all tokens in a single # chunk. last_timestamp = None first_timestamp = timestamp_begin if "stride" in output: chunk_len, stride_left, stride_right = output["stride"] # Offset the timings to account for the other `model_outputs`. time_offset -= stride_left right_stride_start = chunk_len - stride_right # Keeping track of timestamps within strides # We're going to NOT split on those, and delay until we're # out of BOTH stride. Otherwise lots of issues occur and # corner cases if stride_left: first_timestamp = stride_left / time_precision + timestamp_begin if stride_right: for token in reversed(token_ids): if token >= timestamp_begin: # There can be several token in the right stride # But the last one is ALWAYS going to be skipped if ( last_timestamp is not None and (token - timestamp_begin) * time_precision < right_stride_start ): break last_timestamp = token current_tokens = [] current_token_timestamps = [] # - all tokens within output for i, token in enumerate(token_ids): # 4 possible states for each token # - 1/ Language code # - 2/ all other special tokens (which we ignore) # - 3/ Timestamp # - 4/ Regular text if token in all_special_ids: # Either language code or other text = tokenizer.decode([token]) # Removing outer shell <|XX|> text = text[2:-2] language = LANGUAGES.get(text, None) if language is not None: # 1/ Indeed some language # TODO Handle when language is different from the previous # one, and we cannot use timestamped tokens to create chunks if last_language and language != last_language and not return_timestamps: previous_tokens.append(current_tokens) resolved_tokens = _find_longest_common_sequence(previous_tokens) resolved_text = tokenizer.decode(resolved_tokens) chunk["text"] = resolved_text chunks.append(chunk) # Flush all our temporary context previous_tokens = [] current_tokens = [] chunk = new_chunk() chunk["language"] = language last_language = language else: # 2/ This is a regular special token, ignoring it pass elif token >= timestamp_begin: # 3/ Timestamp token time = (token - timestamp_begin) * time_precision + time_offset time = round(time, 2) if last_timestamp and token >= last_timestamp: # Whisper outputted a timestamp token, but it falls within # our stride, so we're going to skip it for the time being # and resolve this later # Skip is necessary because timestamp tokens always come # by pair, so we need to skip the next one too (which would mark the start of another chunk). skip = True elif skip or (previous_tokens and token < first_timestamp): skip = False elif chunk["timestamp"][0] is None: chunk["timestamp"][0] = time else: # This is the end of the timestamp chunk if time == chunk["timestamp"][0]: # This is a bug in timestamp token output # where we're taking the duplicate token # as a stop where it should be a start. # This is an issue in the underlying model output # Let's just skip it so it becomes de-factor # a start agin pass else: chunk["timestamp"][1] = time # Handling merges. previous_tokens.append(current_tokens) if return_timestamps == "word": previous_token_timestamps.append(current_token_timestamps) resolved_tokens, resolved_token_timestamps = _find_longest_common_sequence( previous_tokens, previous_token_timestamps ) resolved_text = tokenizer.decode(resolved_tokens) chunk["text"] = resolved_text if return_timestamps == "word": chunk["words"] = _collate_word_timestamps( tokenizer, resolved_tokens, resolved_token_timestamps, last_language ) chunks.append(chunk) # Flush all our temporary context previous_tokens = [] current_tokens = [] previous_token_timestamps = [] current_token_timestamps = [] chunk = new_chunk() else: # 4/ Regular token # We just append to the list of all tokens so we can handle # merges later and decode into text. current_tokens.append(token) if return_timestamps == "word": start_time = round(token_timestamps[i] + time_offset, 2) if i + 1 < len(token_timestamps): end_time = round(token_timestamps[i + 1] + time_offset, 2) else: end_time = None # should never happen current_token_timestamps.append((start_time, end_time)) if "stride" in output: time_offset += chunk_len - stride_right # Leftover tokens if current_tokens: previous_tokens.append(current_tokens) if return_timestamps == "word": previous_token_timestamps.append(current_token_timestamps) elif not (any(p for p in previous_tokens)): chunk = new_chunk() previous_tokens = [] current_tokens = [] previous_token_timestamps = [] current_token_timestamps = [] if previous_tokens: if return_timestamps: logger.warning( "Whisper did not predict an ending timestamp, which can happen if audio is cut off in the middle of a word. " "Also make sure WhisperTimeStampLogitsProcessor was used during generation." ) # Happens when we don't use timestamps resolved_tokens, resolved_token_timestamps = _find_longest_common_sequence( previous_tokens, previous_token_timestamps ) resolved_text = tokenizer.decode(resolved_tokens) chunk["text"] = resolved_text if return_timestamps == "word": chunk["words"] = _collate_word_timestamps( tokenizer, resolved_tokens, resolved_token_timestamps, last_language ) chunks.append(chunk) # Preparing and cleaning up the pipeline output full_text = "".join(chunk["text"] for chunk in chunks) if return_timestamps or return_language: for chunk in chunks: if not return_timestamps: chunk.pop("timestamp") else: chunk["timestamp"] = tuple(chunk["timestamp"]) if not return_language: chunk.pop("language") if return_timestamps == "word": new_chunks = [] for chunk in chunks: new_chunks.extend(chunk["words"]) optional = {"chunks": new_chunks} else: optional = {"chunks": chunks} else: optional = {} return full_text, optional def _find_longest_common_sequence(sequences, token_timestamp_sequences=None): # It would be much harder to do O(n) because of fault tolerance. # We actually have a really good property which is that the total sequence # MUST be those subsequences in order. # If token_timestamp_sequences is provided, will split those sequences in # exactly the same way. left_sequence = sequences[0] left_length = len(left_sequence) total_sequence = [] if token_timestamp_sequences: left_token_timestamp_sequence = token_timestamp_sequences[0] total_token_timestamp_sequence = [] for seq_idx, right_sequence in enumerate(sequences[1:]): # index = 0 max_ = 0.0 max_indices = (left_length, left_length, 0, 0) # Here we're sliding matches # [a, b, c, d] # [c, d, f] # = [c] == [d] # # [a, b, c, d] # [c, d, f] # = [c, d] == [c, d] # # # [a, b, c, d] # [c, d, f] # # = [b, c, d] == [c, d, f] # # [a, b, c, d] # [c, d, f] # # [a, b, c] == [c, d, f] # # [a, b, c, d] # [d, f] # # [a, b] == [d, f] # # [a, b, c, d] # [f] # # [a] == [f] right_length = len(right_sequence) for i in range(1, left_length + right_length): # epsilon to favor long perfect matches eps = i / 10000.0 # Slightly convoluted because we don't want out of bound indices # This will be necessary for a small conflict resolution optimization # later left_start = max(0, left_length - i) left_stop = min(left_length, left_length + right_length - i) left = np.array(left_sequence[left_start:left_stop]) right_start = max(0, i - left_length) right_stop = min(right_length, i) right = np.array(right_sequence[right_start:right_stop]) # We can only match subsequences of the same size. if len(left) != len(right): raise RuntimeError( "There is a bug within whisper `decode_asr` function, please report it. Dropping to prevent bad inference." ) matches = np.sum(left == right) matching = matches / i + eps if matches > 1 and matching > max_: max_ = matching max_indices = (left_start, left_stop, right_start, right_stop) (left_start, left_stop, right_start, right_stop) = max_indices # This is a small conflict optimization since those sequences overlap # in audio. # We're going to give more confidence to the left sequence # for the left of the overlap, # and to the right of the sequence, for the right of the overlap left_mid = (left_stop + left_start) // 2 right_mid = (right_stop + right_start) // 2 total_sequence.extend(left_sequence[:left_mid]) left_sequence = right_sequence[right_mid:] left_length = len(left_sequence) if token_timestamp_sequences: total_token_timestamp_sequence.extend(left_token_timestamp_sequence[:left_mid]) left_token_timestamp_sequence = token_timestamp_sequences[seq_idx + 1][right_mid:] total_sequence.extend(left_sequence) if token_timestamp_sequences is None: return total_sequence if len(token_timestamp_sequences) > 0: total_token_timestamp_sequence.extend(left_token_timestamp_sequence) return total_sequence, total_token_timestamp_sequence else: return total_sequence, [] def _collate_word_timestamps(tokenizer, tokens, token_timestamps, language): words, _, token_indices = _combine_tokens_into_words(tokenizer, tokens, language) timings = [ { "text": word, "timestamp": (token_timestamps[indices[0]][0], token_timestamps[indices[-1]][1]), } for word, indices in zip(words, token_indices) ] return timings def _combine_tokens_into_words( tokenizer, tokens: List[int], language: str = None, prepend_punctuations: str = "\"'“¡¿([{-", append_punctuations: str = "\"'.。,,!!??::”)]}、", ): """ Groups tokens by word. Returns a tuple containing a list of strings with the words, and a list of `token_id` sequences with the tokens making up each word. """ if language is None: language = tokenizer.language if language is None: language = "english" if language in {"chinese", "japanese", "thai", "lao", "myanmar"}: # These languages don't typically use spaces. words, word_tokens, token_indices = _split_tokens_on_unicode(tokenizer, tokens) else: words, word_tokens, token_indices = _split_tokens_on_spaces(tokenizer, tokens) _merge_punctuations(words, word_tokens, token_indices, prepend_punctuations, append_punctuations) return words, word_tokens, token_indices def _split_tokens_on_unicode(tokenizer, tokens: List[int]): """Combine tokens into words by splitting at any position where the tokens are decoded as valid unicode points.""" decoded_full = tokenizer.decode(tokens, decode_with_timestamps=True) replacement_char = "\ufffd" words = [] word_tokens = [] token_indices = [] current_tokens = [] current_indices = [] unicode_offset = 0 for token_idx, token in enumerate(tokens): current_tokens.append(token) current_indices.append(token_idx) decoded = tokenizer.decode(current_tokens, decode_with_timestamps=True) if ( replacement_char not in decoded or decoded_full[unicode_offset + decoded.index(replacement_char)] == replacement_char ): words.append(decoded) word_tokens.append(current_tokens) token_indices.append(current_indices) current_tokens = [] current_indices = [] unicode_offset += len(decoded) return words, word_tokens, token_indices def _split_tokens_on_spaces(tokenizer, tokens: List[int]): """Combine tokens into words by splitting at whitespace and punctuation tokens.""" subwords, subword_tokens_list, subword_indices_list = _split_tokens_on_unicode(tokenizer, tokens) words = [] word_tokens = [] token_indices = [] for subword, subword_tokens, subword_indices in zip(subwords, subword_tokens_list, subword_indices_list): special = subword_tokens[0] >= tokenizer.eos_token_id with_space = subword.startswith(" ") punctuation = subword.strip() in "!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~" if special or with_space or punctuation or len(words) == 0: words.append(subword) word_tokens.append(subword_tokens) token_indices.append(subword_indices) else: words[-1] = words[-1] + subword word_tokens[-1].extend(subword_tokens) token_indices[-1].extend(subword_indices) return words, word_tokens, token_indices def _merge_punctuations(words, tokens, indices, prepended, appended): """Merges punctuation tokens with neighboring words.""" # prepend punctuations i = len(words) - 2 j = len(words) - 1 while i >= 0: if words[i].startswith(" ") and words[i].strip() in prepended: words[j] = words[i] + words[j] tokens[j] = tokens[i] + tokens[j] indices[j] = indices[i] + indices[j] words[i] = "" tokens[i] = [] indices[i] = [] else: j = i i -= 1 # append punctuations i = 0 j = 1 while j < len(words): if not words[i].endswith(" ") and words[j] in appended: words[i] += words[j] tokens[i] += tokens[j] indices[i] += indices[j] words[j] = "" tokens[j] = [] indices[j] = [] else: i = j j += 1 # remove elements that are now empty words[:] = [word for word in words if word] tokens[:] = [token for token in tokens if token] indices[:] = [idx for idx in indices if idx]
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/whisper/__init__.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _import_structure = { "configuration_whisper": ["WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP", "WhisperConfig", "WhisperOnnxConfig"], "feature_extraction_whisper": ["WhisperFeatureExtractor"], "processing_whisper": ["WhisperProcessor"], "tokenization_whisper": ["WhisperTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_whisper_fast"] = ["WhisperTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_whisper"] = [ "WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST", "WhisperForConditionalGeneration", "WhisperModel", "WhisperPreTrainedModel", "WhisperForAudioClassification", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_whisper"] = [ "TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFWhisperForConditionalGeneration", "TFWhisperModel", "TFWhisperPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_flax_whisper"] = [ "FlaxWhisperForConditionalGeneration", "FlaxWhisperModel", "FlaxWhisperPreTrainedModel", "FlaxWhisperForAudioClassification", ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/whisper/modeling_flax_whisper.py
# coding=utf-8 # Copyright 2022 The OpenAI Authors and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Flax whisper model.""" import random from functools import partial from typing import Optional, Tuple import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict, freeze, unfreeze from flax.linen import combine_masks, make_causal_mask from flax.linen import partitioning as nn_partitioning from flax.linen.attention import dot_product_attention_weights from flax.traverse_util import flatten_dict, unflatten_dict from jax import lax from jax.random import PRNGKey from ...generation.flax_logits_process import FlaxWhisperTimeStampLogitsProcessor from ...modeling_flax_outputs import ( FlaxBaseModelOutput, FlaxBaseModelOutputWithPastAndCrossAttentions, FlaxCausalLMOutputWithCrossAttentions, FlaxSeq2SeqLMOutput, FlaxSeq2SeqModelOutput, FlaxSequenceClassifierOutput, ) from ...modeling_flax_utils import ( ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring, append_replace_return_docstrings, overwrite_call_docstring, ) from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings from .configuration_whisper import WhisperConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "openai/whisper-tiny" _CONFIG_FOR_DOC = "WhisperConfig" remat = nn_partitioning.remat WHISPER_START_DOCSTRING = r""" This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its models (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a Flax Linen [flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior. Finally, this model supports inherent JAX features such as: - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) Parameters: config ([`WhisperConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and `jax.numpy.bfloat16` (on TPUs). This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given `dtype`. **Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.** If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and [`~FlaxPreTrainedModel.to_bf16`]. """ WHISPER_INPUTS_DOCSTRING = r""" Args: input_features (`numpy.ndarray` of shape `(batch_size, feature_size, sequence_length)`): Float values mel features extracted from the raw speech waveform. Raw speech waveform can be obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the [`WhisperFeatureExtractor`] should be used for extracting the features, padding and conversion into a tensor of type `numpy.ndarray`. See [`~WhisperFeatureExtractor.__call__`] attention_mask (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Whisper does not support masking of the `input_features`, this argument is preserved for compatibility, but is not used. By default the silence in the input log mel spectrogram are ignored. decoder_input_ids (`numpy.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`WhisperTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) Whisper uses the `decoder_start_token_id` as the starting token for `decoder_input_ids` generation. decoder_attention_mask (`numpy.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Whisper does not use `position_ids` in the encoder as `input_features` is always the same size and doesn't use masking, but this argument is preserved for compatibility. By default the silence in the input log mel spectrogram are ignored. decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ WHISPER_ENCODE_INPUTS_DOCSTRING = r""" Args: input_features (`numpy.ndarray` of shape `(batch_size, feature_size, sequence_length)`): Float values mel features extracted from the raw speech waveform. Raw speech waveform can be obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the [`WhisperFeatureExtractor`] should be used for extracting the mel features, padding and conversion into a tensor of type `numpy.ndarray`. See [`~WhisperFeatureExtractor.__call__`]. attention_mask (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Whisper does not support masking of the `input_features`, this argument is preserved for compatibility, but is not used. By default the silence in the input log mel spectrogram are ignored. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ WHISPER_DECODE_INPUTS_DOCSTRING = r""" Args: decoder_input_ids (`numpy.ndarray` of shape `(batch_size, target_sequence_length)`): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`WhisperTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) encoder_outputs (`tuple(tuple(numpy.ndarray)`): Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Whisper does not support masking of the `input_features`, this argument is preserved for compatibility, but it is not used. By default the silence in the input log mel spectrogram are ignored. decoder_attention_mask (`numpy.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. past_key_values (`Dict[str, numpy.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`): Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ class FlaxWhisperAttention(nn.Module): config: WhisperConfig embed_dim: int num_heads: int dropout: float = 0.0 causal: bool = False bias: bool = True dtype: jnp.dtype = jnp.float32 def setup(self) -> None: self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {self.num_heads})." ) dense = partial( nn.Dense, self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.q_proj = dense(use_bias=self.bias) self.k_proj = dense(use_bias=False) self.v_proj = dense(use_bias=self.bias) self.out_proj = dense(use_bias=self.bias) if self.causal: self.causal_mask = make_causal_mask( jnp.ones((1, self.config.max_target_positions), dtype="bool"), dtype="bool" ) def __call__( self, hidden_states: jnp.ndarray, key_value_states: Optional[jnp.ndarray] = None, attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: is_cross_attention = key_value_states is not None batch_size = hidden_states.shape[0] query_states = self.q_proj(hidden_states) if is_cross_attention: key_states = self.k_proj(key_value_states) value_states = self.v_proj(key_value_states) else: key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = self._split_heads(query_states) key_states = self._split_heads(key_states) value_states = self._split_heads(value_states) if self.causal: query_length, key_length = query_states.shape[1], key_states.shape[1] if self.has_variable("cache", "cached_key"): mask_shift = self.variables["cache"]["cache_index"] max_decoder_length = self.variables["cache"]["cached_key"].shape[1] causal_mask = lax.dynamic_slice( self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length), ) else: causal_mask = self.causal_mask[:, :, :query_length, :key_length] causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:]) # combine masks if needed if attention_mask is not None and self.causal: attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape) attention_mask = combine_masks(attention_mask, causal_mask) elif self.causal: attention_mask = causal_mask elif attention_mask is not None: attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) # During fast autoregressive decoding, we feed one position at a time, # and cache the keys and values step by step. if self.causal and (self.has_variable("cache", "cached_key") or init_cache): key_states, value_states, attention_mask = self._concatenate_to_cache( key_states, value_states, query_states, attention_mask ) # Convert the boolean attention mask to an attention bias. if attention_mask is not None: # attention mask in the form of attention bias attention_bias = lax.select( attention_mask > 0, jnp.full(attention_mask.shape, 0.0).astype(self.dtype), jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype), ) else: attention_bias = None dropout_rng = None if not deterministic and self.dropout > 0.0: dropout_rng = self.make_rng("dropout") attn_weights = dot_product_attention_weights( query_states, key_states, bias=attention_bias, dropout_rng=dropout_rng, dropout_rate=self.dropout, broadcast_dropout=True, deterministic=deterministic, dtype=self.dtype, precision=None, ) attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) attn_output = self._merge_heads(attn_output) attn_output = self.out_proj(attn_output) return attn_output, attn_weights def _split_heads(self, hidden_state) -> jnp.ndarray: return hidden_state.reshape(hidden_state.shape[:2] + (self.num_heads, self.head_dim)) def _merge_heads(self, hidden_state) -> jnp.ndarray: return hidden_state.reshape(hidden_state.shape[:2] + (self.embed_dim,)) @nn.compact def _concatenate_to_cache(self, key, value, query, attention_mask) -> Tuple[jnp.ndarray, jnp.ndarray, jnp.ndarray]: # detect if we're initializing by absence of existing cache data. is_initialized = self.has_variable("cache", "cached_key") cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype) cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype) cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32)) if is_initialized: *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape # update key, value caches with our new 1d spatial slices cur_index = cache_index.value indices = (0,) * len(batch_dims) + (cur_index, 0, 0) key = lax.dynamic_update_slice(cached_key.value, key, indices) value = lax.dynamic_update_slice(cached_value.value, value, indices) cached_key.value = key cached_value.value = value num_updated_cache_vectors = query.shape[1] cache_index.value = cache_index.value + num_updated_cache_vectors # causal mask for cached decoder self-attention: our single query position should only # attend to those key positions that have already been generated and cached, not the # remaining zero elements. pad_mask = jnp.broadcast_to( jnp.arange(max_length) < cur_index + num_updated_cache_vectors, tuple(batch_dims) + (1, num_updated_cache_vectors, max_length), ) attention_mask = combine_masks(pad_mask, attention_mask) return key, value, attention_mask # Copied from transformers.models.mbart.modeling_flax_mbart.FlaxMBartEncoderLayer with MBart->Whisper class FlaxWhisperEncoderLayer(nn.Module): config: WhisperConfig dtype: jnp.dtype = jnp.float32 def setup(self) -> None: self.embed_dim = self.config.d_model self.self_attn = FlaxWhisperAttention( config=self.config, embed_dim=self.embed_dim, num_heads=self.config.encoder_attention_heads, dropout=self.config.attention_dropout, dtype=self.dtype, ) self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) self.dropout_layer = nn.Dropout(rate=self.config.dropout) self.activation_fn = ACT2FN[self.config.activation_function] self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout) self.fc1 = nn.Dense( self.config.encoder_ffn_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.fc2 = nn.Dense( self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std) ) self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) hidden_states, attn_weights = self.self_attn(hidden_states=hidden_states, attention_mask=attention_mask) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs class FlaxWhisperEncoderLayerCollection(nn.Module): config: WhisperConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation gradient_checkpointing: bool = False def setup(self): if self.gradient_checkpointing: FlaxWhisperEncoderCheckpointLayer = remat(FlaxWhisperEncoderLayer, static_argnums=(2, 3)) self.layers = [ FlaxWhisperEncoderCheckpointLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.encoder_layers) ] else: self.layers = [ FlaxWhisperEncoderLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.encoder_layers) ] self.layerdrop = self.config.encoder_layerdrop def __call__( self, hidden_states, attention_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): all_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None for encoder_layer in self.layers: if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = random.uniform(0, 1) if not deterministic and (dropout_probability < self.layerdrop): # skip the layer layer_outputs = (None, None) else: layer_outputs = encoder_layer( hidden_states, attention_mask, output_attentions, deterministic, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states += (hidden_states,) outputs = (hidden_states, all_hidden_states, all_attentions) if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions ) # Copied from transformers.models.mbart.modeling_flax_mbart.FlaxMBartDecoderLayer with MBart->Whisper class FlaxWhisperDecoderLayer(nn.Module): config: WhisperConfig dtype: jnp.dtype = jnp.float32 def setup(self) -> None: self.embed_dim = self.config.d_model self.self_attn = FlaxWhisperAttention( config=self.config, embed_dim=self.embed_dim, num_heads=self.config.decoder_attention_heads, dropout=self.config.attention_dropout, causal=True, dtype=self.dtype, ) self.dropout_layer = nn.Dropout(rate=self.config.dropout) self.activation_fn = ACT2FN[self.config.activation_function] self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout) self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) self.encoder_attn = FlaxWhisperAttention( config=self.config, embed_dim=self.embed_dim, num_heads=self.config.decoder_attention_heads, dropout=self.config.attention_dropout, dtype=self.dtype, ) self.encoder_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) self.fc1 = nn.Dense( self.config.decoder_ffn_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.fc2 = nn.Dense( self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std) ) self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Self Attention hidden_states, self_attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, init_cache=init_cache ) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states # Cross-Attention Block cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) hidden_states, cross_attn_weights = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, ) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights, cross_attn_weights) return outputs class FlaxWhisperDecoderLayerCollection(nn.Module): config: WhisperConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation gradient_checkpointing: bool = False def setup(self): if self.gradient_checkpointing: FlaxWhisperDecoderCheckpointLayer = remat(FlaxWhisperDecoderLayer, static_argnums=(4, 5, 6)) self.layers = [ FlaxWhisperDecoderCheckpointLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.decoder_layers) ] else: self.layers = [ FlaxWhisperDecoderLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.decoder_layers) ] self.layerdrop = self.config.decoder_layerdrop def __call__( self, hidden_states, attention_mask, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, deterministic: bool = True, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None for decoder_layer in self.layers: if output_hidden_states: all_hidden_states += (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = random.uniform(0, 1) if not deterministic and (dropout_probability < self.layerdrop): layer_outputs = (None, None, None) else: layer_outputs = decoder_layer( hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, init_cache, output_attentions, deterministic, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) outputs = [hidden_states, all_hidden_states, all_self_attns, all_cross_attentions] if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, ) class FlaxWhisperEncoder(nn.Module): config: WhisperConfig dtype: jnp.dtype = jnp.float32 gradient_checkpointing: bool = False def setup(self) -> None: self.conv1 = nn.Conv( self.config.d_model, kernel_size=(3,), padding=1, kernel_init=jax.nn.initializers.normal(self.config.init_std), dtype=self.dtype, ) self.conv2 = nn.Conv( self.config.d_model, kernel_size=(3,), strides=2, padding=1, kernel_init=jax.nn.initializers.normal(self.config.init_std), dtype=self.dtype, ) self.dropout_layer = nn.Dropout(rate=self.config.dropout) self.layers = FlaxWhisperEncoderLayerCollection( self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing, ) self.embed_positions = nn.Embed(self.config.max_source_positions, self.config.d_model, dtype=self.dtype) self.layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) def __call__( self, input_features: jnp.ndarray, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: if input_features.shape[1:] != (self.config.num_mel_bins, self.config.max_source_positions * 2): raise ValueError( "input_features.shape[1:], must be equal to (self.config.num_mel_bins," f" self.config.max_source_positions * 2) (got {input_features.shape[1:]}, but should be" f" ({self.config.num_mel_bins}, {self.config.max_source_positions * 2}))" ) input_features = input_features.transpose(0, 2, 1) hidden_states = jax.nn.gelu(self.conv1(input_features), approximate=False) hidden_states = jax.nn.gelu(self.conv2(hidden_states), approximate=False) embed_positions = self.embed_positions(jnp.arange(self.config.max_source_positions)) hidden_states = hidden_states + embed_positions hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) outputs = self.layers( hidden_states, attention_mask=None, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_states = outputs[0] last_hidden_states = self.layer_norm(last_hidden_states) # update the last element in `hidden_states` after applying `layernorm` above hidden_states = None if output_hidden_states: hidden_states = outputs[1] hidden_states = hidden_states[:-1] + (last_hidden_states,) if not return_dict: outputs = (last_hidden_states, hidden_states) + (outputs[2:] if output_hidden_states else outputs[1:]) return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutput( last_hidden_state=last_hidden_states, hidden_states=hidden_states, attentions=outputs.attentions, ) class FlaxWhisperDecoder(nn.Module): config: WhisperConfig dtype: jnp.dtype = jnp.float32 gradient_checkpointing: bool = False def setup(self) -> None: self.embed_tokens = nn.Embed(self.config.vocab_size, self.config.d_model, dtype=self.dtype) self.embed_positions = nn.Embed(self.config.max_target_positions, self.config.d_model, dtype=self.dtype) self.layers = FlaxWhisperDecoderLayerCollection( self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing ) self.dropout_layer = nn.Dropout(rate=self.config.dropout) self.layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-5) def __call__( self, input_ids: jnp.ndarray, attention_mask: jnp.ndarray, position_ids: jnp.ndarray, encoder_hidden_states: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: input_embeds = self.embed_tokens(input_ids) position_embeds = self.embed_positions(position_ids) hidden_states = input_embeds + position_embeds hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) outputs = self.layers( hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, deterministic=deterministic, init_cache=init_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_states = outputs[0] last_hidden_states = self.layer_norm(last_hidden_states) # update the last element in `hidden_states` after applying `layernorm` above hidden_states = None if output_hidden_states: hidden_states = outputs[1] hidden_states = hidden_states[:-1] + (last_hidden_states,) if not return_dict: outputs = (last_hidden_states, hidden_states) + (outputs[2:] if output_hidden_states else outputs[1:]) return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=last_hidden_states, hidden_states=hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) class FlaxWhisperModule(nn.Module): config: WhisperConfig dtype: jnp.dtype = jnp.float32 gradient_checkpointing: bool = False def setup(self) -> None: self.encoder = FlaxWhisperEncoder( self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing ) self.decoder = FlaxWhisperDecoder( self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing ) def __call__( self, input_features: jnp.ndarray, decoder_input_ids: jnp.ndarray, decoder_attention_mask: jnp.ndarray, decoder_position_ids: jnp.ndarray, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): encoder_outputs = self.encoder( input_features, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, position_ids=decoder_position_ids, encoder_hidden_states=encoder_outputs[0], output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) if not return_dict: return decoder_outputs + encoder_outputs return FlaxSeq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) def _get_encoder_module(self): return self.encoder def _get_decoder_module(self): return self.decoder class FlaxWhisperPreTrainedModel(FlaxPreTrainedModel): config_class = WhisperConfig base_model_prefix: str = "model" main_input_name = "input_features" module_class: nn.Module = None def __init__( self, config: WhisperConfig, input_shape: Tuple[int] = (1, 80, 3000), seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, gradient_checkpointing: bool = False, **kwargs, ): module = self.module_class(config=config, dtype=dtype, gradient_checkpointing=gradient_checkpointing, **kwargs) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) def enable_gradient_checkpointing(self): self._module = self.module_class( config=self.config, dtype=self.dtype, gradient_checkpointing=True, ) def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: # init input tensors input_features = jnp.zeros(input_shape, dtype="f4") input_features = input_features.at[(..., -1)].set(self.config.eos_token_id) decoder_input_ids = jnp.zeros((input_shape[0], 1), dtype="i4") decoder_attention_mask = jnp.ones_like(decoder_input_ids) batch_size, sequence_length = decoder_input_ids.shape decoder_position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} random_params = self.module.init( rngs, input_features=input_features, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, decoder_position_ids=decoder_position_ids, )["params"] if params is not None: random_params = flatten_dict(unfreeze(random_params)) params = flatten_dict(unfreeze(params)) for missing_key in self._missing_keys: params[missing_key] = random_params[missing_key] self._missing_keys = set() return freeze(unflatten_dict(params)) else: return random_params # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartPreTrainedModel.init_cache with Bart->Whisper def init_cache(self, batch_size, max_length, encoder_outputs): r""" Args: batch_size (`int`): batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache. max_length (`int`): maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized cache. encoder_outputs (`Union[FlaxBaseModelOutput, tuple(tuple(jnp.ndarray)]`): `encoder_outputs` consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`). `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. """ # init input variables to retrieve cache decoder_input_ids = jnp.ones((batch_size, max_length), dtype="i4") decoder_attention_mask = jnp.ones_like(decoder_input_ids) decoder_position_ids = jnp.broadcast_to( jnp.arange(jnp.atleast_2d(decoder_input_ids).shape[-1]), decoder_input_ids.shape ) def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): decoder_module = module._get_decoder_module() return decoder_module( decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs, ) init_variables = self.module.init( jax.random.PRNGKey(0), decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, decoder_position_ids=decoder_position_ids, encoder_hidden_states=encoder_outputs[0], init_cache=True, method=_decoder_forward, # we only need to call the decoder to init the cache ) return unfreeze(init_variables["cache"]) @add_start_docstrings(WHISPER_ENCODE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxBaseModelOutput, config_class=WhisperConfig) def encode( self, input_features: jnp.ndarray, attention_mask: Optional[jnp.ndarray] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, **kwargs, ): r""" Returns: Example: ```python >>> from transformers import WhisperProcessor, FlaxWhisperForConditionalGeneration >>> from datasets import load_dataset >>> processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en") >>> model = FlaxWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en", from_pt=True) >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> inputs = processor(ds[0]["audio"]["array"], return_tensors="np") >>> input_features = inputs.input_features >>> encoder_outputs = model.encode(input_features=input_features) ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng def _encoder_forward(module, input_features, **kwargs): encode_module = module._get_encoder_module() return encode_module(input_features, **kwargs) return self.module.apply( {"params": params or self.params}, input_features=jnp.array(input_features, dtype="f4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, method=_encoder_forward, ) @add_start_docstrings(WHISPER_DECODE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxBaseModelOutputWithPastAndCrossAttentions, config_class=WhisperConfig) def decode( self, decoder_input_ids, encoder_outputs, encoder_attention_mask: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None, past_key_values: dict = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Example: ```python >>> from transformers import WhisperProcessor, FlaxWhisperForConditionalGeneration >>> from datasets import load_dataset >>> import jax.numpy as jnp >>> processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en") >>> model = FlaxWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en", from_pt=True) >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> input_features = processor(ds[0]["audio"]["array"], return_tensors="np").input_features >>> encoder_outputs = model.encode(input_features=input_features) >>> decoder_start_token_id = model.config.decoder_start_token_id >>> decoder_input_ids = jnp.ones((input_features.shape[0], 1), dtype="i4") * decoder_start_token_id >>> outputs = model.decode(decoder_input_ids, encoder_outputs) >>> last_decoder_hidden_states = outputs.last_hidden_state ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict encoder_hidden_states = encoder_outputs[0] batch_size, sequence_length = decoder_input_ids.shape if decoder_position_ids is None: if past_key_values is not None: raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.") if decoder_attention_mask is not None: decoder_position_ids = (decoder_attention_mask.cumsum(-1) * decoder_attention_mask) - 1 else: decoder_position_ids = jnp.broadcast_to( jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) ) if decoder_attention_mask is None: decoder_attention_mask = jnp.ones((batch_size, sequence_length)) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng inputs = {"params": params or self.params} # if past_key_values are passed then cache is already initialized a private flag init_cache has to be # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that # it can be changed by FlaxWhisperAttention module if past_key_values: inputs["cache"] = past_key_values mutable = ["cache"] else: mutable = False def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): decoder_module = module._get_decoder_module() return decoder_module( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, position_ids=decoder_position_ids, **kwargs, ) outputs = self.module.apply( inputs, decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), encoder_hidden_states=encoder_hidden_states, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, mutable=mutable, method=_decoder_forward, ) # add updated cache to model output if past_key_values is not None and return_dict: outputs, past = outputs outputs["past_key_values"] = unfreeze(past["cache"]) return outputs elif past_key_values is not None and not return_dict: outputs, past = outputs outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:] return outputs @add_start_docstrings_to_model_forward(WHISPER_INPUTS_DOCSTRING) def __call__( self, input_features: jnp.ndarray, decoder_input_ids: jnp.ndarray, attention_mask: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None, position_ids: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict # prepare decoder inputs if decoder_position_ids is None: if decoder_attention_mask is not None: decoder_position_ids = (decoder_attention_mask.cumsum(-1) * decoder_attention_mask) - 1 else: batch_size, sequence_length = decoder_input_ids.shape decoder_position_ids = jnp.broadcast_to( jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) ) if decoder_attention_mask is None: decoder_attention_mask = jnp.ones_like(decoder_input_ids) # Handle any PRNG if needed rngs = {"dropout": dropout_rng} if dropout_rng is not None else {} return self.module.apply( {"params": params or self.params}, input_features=jnp.array(input_features, dtype="f4"), decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, ) @add_start_docstrings( "The bare Whisper Model transformer outputting raw hidden-states without any specific head on top.", WHISPER_START_DOCSTRING, ) class FlaxWhisperModel(FlaxWhisperPreTrainedModel): config: WhisperConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation module_class = FlaxWhisperModule append_call_sample_docstring(FlaxWhisperModel, _CHECKPOINT_FOR_DOC, FlaxSeq2SeqModelOutput, _CONFIG_FOR_DOC) class FlaxWhisperForConditionalGenerationModule(nn.Module): config: WhisperConfig dtype: jnp.dtype = jnp.float32 gradient_checkpointing: bool = False def setup(self) -> None: self.model = FlaxWhisperModule( config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing ) self.lm_head = nn.Dense( self.config.vocab_size, use_bias=False, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) def _get_encoder_module(self): return self.model.encoder def _get_decoder_module(self): return self.model.decoder def __call__( self, input_features, decoder_input_ids, decoder_attention_mask: jnp.ndarray = None, decoder_position_ids: jnp.ndarray = None, position_ids: jnp.ndarray = None, attention_mask: jnp.ndarray = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): outputs = self.model( input_features=input_features, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, decoder_position_ids=decoder_position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) hidden_states = outputs[0] if self.config.tie_word_embeddings: shared_embedding = self.model.decoder.embed_tokens.variables["params"]["embedding"] lm_logits = self.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states) else: lm_logits = self.lm_head(hidden_states) if not return_dict: output = (lm_logits,) + outputs[1:] return output return FlaxSeq2SeqLMOutput( logits=lm_logits, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, ) @add_start_docstrings("The Whisper Model with a language modeling head.", WHISPER_START_DOCSTRING) class FlaxWhisperForConditionalGeneration(FlaxWhisperPreTrainedModel): module_class = FlaxWhisperForConditionalGenerationModule dtype: jnp.dtype = jnp.float32 @add_start_docstrings(WHISPER_DECODE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxCausalLMOutputWithCrossAttentions, config_class=WhisperConfig) def decode( self, decoder_input_ids, encoder_outputs, encoder_attention_mask: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None, past_key_values: dict = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Example: ```python >>> from transformers import WhisperProcessor, FlaxWhisperForConditionalGeneration >>> from datasets import load_dataset >>> processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en") >>> model = FlaxWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en", from_pt=True) >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> inputs = processor(ds[0]["audio"]["array"], return_tensors="np") >>> input_features = inputs.input_features >>> encoder_outputs = model.encode(input_features=input_features) >>> decoder_start_token_id = model.config.decoder_start_token_id >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id >>> outputs = model.decode(decoder_input_ids, encoder_outputs) >>> last_decoder_hidden_states = outputs.last_hidden_state ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict encoder_hidden_states = encoder_outputs[0] batch_size, sequence_length = decoder_input_ids.shape if decoder_position_ids is None: if past_key_values is not None: raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.") if decoder_attention_mask is not None: decoder_position_ids = (decoder_attention_mask.cumsum(-1) * decoder_attention_mask) - 1 else: decoder_position_ids = jnp.broadcast_to( jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) ) if decoder_attention_mask is None: decoder_attention_mask = jnp.ones((batch_size, sequence_length), dtype="i4") # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng inputs = {"params": params or self.params} # if past_key_values are passed then cache is already initialized a private flag init_cache has to be # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that # it can be changed by FlaxWhisperAttention module if past_key_values: inputs["cache"] = past_key_values mutable = ["cache"] else: mutable = False def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): decoder_module = module._get_decoder_module() outputs = decoder_module( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, position_ids=decoder_position_ids, **kwargs, ) hidden_states = outputs[0] if self.config.tie_word_embeddings: shared_embedding = module.model.decoder.embed_tokens.variables["params"]["embedding"] lm_logits = module.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states) else: lm_logits = module.lm_head(hidden_states) return lm_logits, outputs outputs = self.module.apply( inputs, decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), encoder_hidden_states=encoder_hidden_states, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, mutable=mutable, method=_decoder_forward, ) if past_key_values is None: lm_logits, decoder_outputs = outputs else: (lm_logits, decoder_outputs), past = outputs if return_dict: outputs = FlaxCausalLMOutputWithCrossAttentions( logits=lm_logits, hidden_states=decoder_outputs.hidden_states, attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, ) else: outputs = (lm_logits,) + decoder_outputs[1:] # add updated cache to model output if past_key_values is not None and return_dict: outputs["past_key_values"] = unfreeze(past["cache"]) return outputs elif past_key_values is not None and not return_dict: outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:] return outputs def generate( self, input_features, generation_config=None, logits_processor=None, return_timestamps=None, task=None, language=None, is_multilingual=None, **kwargs, ): if generation_config is None: generation_config = self.generation_config if return_timestamps is not None: generation_config.return_timestamps = return_timestamps if task is not None: generation_config.task = task if is_multilingual is not None: generation_config.is_multilingual = is_multilingual if language is not None: generation_config.language = language if kwargs is not None and "decoder_input_ids" in kwargs: decoder_input_length = len(kwargs["decoder_input_ids"]) else: decoder_input_length = 1 forced_decoder_ids = [] if hasattr(generation_config, "is_multilingual") and generation_config.is_multilingual: if hasattr(generation_config, "language"): forced_decoder_ids.append((1, generation_config.lang_to_id[generation_config.language])) else: forced_decoder_ids.append((1, None)) if hasattr(generation_config, "task"): forced_decoder_ids.append((2, generation_config.task_to_id[generation_config.task])) else: forced_decoder_ids.append((2, generation_config.task_to_id["transcribe"])) if ( hasattr(generation_config, "return_timestamps") and generation_config.return_timestamps ) or return_timestamps: logits_processor = [ FlaxWhisperTimeStampLogitsProcessor(generation_config, self.config, decoder_input_length) ] else: if forced_decoder_ids and forced_decoder_ids[-1][0] != generation_config.no_timestamps_token_id: idx = forced_decoder_ids[-1][0] + 1 if forced_decoder_ids else 1 forced_decoder_ids.append((idx, generation_config.no_timestamps_token_id)) if len(forced_decoder_ids) > 0: generation_config.forced_decoder_ids = forced_decoder_ids return super().generate( input_features, generation_config, logits_processor=logits_processor, **kwargs, ) def prepare_inputs_for_generation( self, decoder_input_ids, max_length, attention_mask: Optional[jnp.DeviceArray] = None, decoder_attention_mask: Optional[jnp.DeviceArray] = None, encoder_outputs=None, **kwargs, ): # initializing the cache batch_size, seq_length = decoder_input_ids.shape past_key_values = self.init_cache(batch_size, max_length, encoder_outputs) # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length. # But since the decoder uses a causal mask, those positions are masked anyways. # Thus we can create a single static attention_mask here, which is more efficient for compilation extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4") if decoder_attention_mask is not None: position_ids = decoder_attention_mask.cumsum(-1) - 1 extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, decoder_attention_mask, (0, 0)) else: position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length)) return { "past_key_values": past_key_values, "encoder_outputs": encoder_outputs, "encoder_attention_mask": attention_mask, "decoder_attention_mask": extended_attention_mask, "decoder_position_ids": position_ids, } def update_inputs_for_generation(self, model_outputs, model_kwargs): model_kwargs["past_key_values"] = model_outputs.past_key_values model_kwargs["decoder_position_ids"] = model_kwargs["decoder_position_ids"][:, -1:] + 1 return model_kwargs FLAX_WHISPER_CONDITIONAL_GENERATION_DOCSTRING = r""" Returns: Transcription example: ```python >>> from transformers import WhisperProcessor, FlaxWhisperForConditionalGeneration >>> from datasets import load_dataset >>> processor = WhisperProcessor.from_pretrained("openai/whisper-tiny.en") >>> model = FlaxWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en", from_pt=True) >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> inputs = processor(ds[0]["audio"]["array"], return_tensors="np") >>> input_features = inputs.input_features >>> generated_ids = model.generate(input_ids=input_features) >>> transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] >>> transcription ' Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel.' ``` """ overwrite_call_docstring( FlaxWhisperForConditionalGeneration, WHISPER_INPUTS_DOCSTRING + FLAX_WHISPER_CONDITIONAL_GENERATION_DOCSTRING ) append_replace_return_docstrings( FlaxWhisperForConditionalGeneration, output_type=FlaxSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC ) class FlaxWhisperForAudioClassificationModule(nn.Module): config: WhisperConfig dtype: jnp.dtype = jnp.float32 gradient_checkpointing: bool = False def setup(self) -> None: self.encoder = FlaxWhisperEncoder( config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing ) self.config.is_encoder_decoder = False num_layers = self.config.num_hidden_layers + 1 if self.config.use_weighted_layer_sum: self.layer_weights = jnp.repeat(1 / num_layers, num_layers) self.projector = nn.Dense(self.config.classifier_proj_size, dtype=self.dtype) self.classifier = nn.Dense(self.config.num_labels, dtype=self.dtype) def __call__( self, input_features, encoder_outputs=None, output_attentions=None, output_hidden_states: bool = True, return_dict: bool = True, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if encoder_outputs is None: encoder_outputs = self.encoder( input_features, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if self.config.use_weighted_layer_sum: hidden_states = jnp.stack(encoder_outputs, axis=1) norm_weights = jax.nn.softmax(self.layer_weights, axis=-1) hidden_states = jnp.sum(hidden_states * jnp.reshape(norm_weights, [-1, 1, 1]), axis=1) else: hidden_states = encoder_outputs[0] hidden_states = self.projector(hidden_states) pooled_output = jnp.mean(hidden_states, axis=1) logits = self.classifier(pooled_output) if not return_dict: return (logits,) + encoder_outputs[1:] return FlaxSequenceClassifierOutput( logits=logits, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings("The Whisper Model with an audio classification head on top.", WHISPER_START_DOCSTRING) class FlaxWhisperForAudioClassification(FlaxWhisperPreTrainedModel): module_class = FlaxWhisperForAudioClassificationModule dtype: jnp.dtype = jnp.float32 def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: # init input tensors input_features = jnp.zeros(input_shape, dtype="f4") input_features = input_features.at[(..., -1)].set(self.config.eos_token_id) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} random_params = self.module.init( rngs, input_features=input_features, )["params"] if params is not None: random_params = flatten_dict(unfreeze(random_params)) params = flatten_dict(unfreeze(params)) for missing_key in self._missing_keys: params[missing_key] = random_params[missing_key] self._missing_keys = set() return freeze(unflatten_dict(params)) else: return random_params @add_start_docstrings_to_model_forward(WHISPER_INPUTS_DOCSTRING) def __call__( self, input_features: jnp.ndarray, attention_mask: Optional[jnp.ndarray] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, **kwargs, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng return self.module.apply( {"params": params or self.params}, input_features=jnp.array(input_features, dtype="f4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, rngs=rngs, ) FLAX_WHISPER_AUDIO_CLASSIFICATION_DOCSTRING = r""" Returns: Transcription example: ```python >>> import jax.numpy as jnp >>> from transformers import AutoFeatureExtractor, FlaxWhisperForAudioClassification >>> from datasets import load_dataset >>> feature_extractor = AutoFeatureExtractor.from_pretrained("sanchit-gandhi/whisper-medium-fleurs-lang-id") >>> model = FlaxWhisperForAudioClassification.from_pretrained( ... "sanchit-gandhi/whisper-medium-fleurs-lang-id", from_pt=True ... ) >>> ds = load_dataset("google/fleurs", "all", split="validation", streaming=True) >>> sample = next(iter(ds)) >>> inputs = feature_extractor( ... sample["audio"]["array"], sampling_rate=sample["audio"]["sampling_rate"], return_tensors="np" ... ) >>> input_features = inputs.input_features >>> logits = model(input_features).logits >>> predicted_class_ids = jnp.argmax(logits).item() >>> predicted_label = model.config.id2label[predicted_class_ids] >>> predicted_label 'af_za' ``` """ overwrite_call_docstring( FlaxWhisperForAudioClassification, WHISPER_INPUTS_DOCSTRING + FLAX_WHISPER_AUDIO_CLASSIFICATION_DOCSTRING ) append_replace_return_docstrings( FlaxWhisperForAudioClassification, output_type=FlaxSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/whisper/english_normalizer.py
# Copyright 2022 The OpenAI team and The HuggingFace Team. All rights reserved. # Most of the code is copy pasted from the original whisper repository # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re import unicodedata from fractions import Fraction from typing import Iterator, List, Match, Optional, Union import regex # non-ASCII letters that are not separated by "NFKD" normalization ADDITIONAL_DIACRITICS = { "œ": "oe", "Œ": "OE", "ø": "o", "Ø": "O", "æ": "ae", "Æ": "AE", "ß": "ss", "ẞ": "SS", "đ": "d", "Đ": "D", "ð": "d", "Ð": "D", "þ": "th", "Þ": "th", "ł": "l", "Ł": "L", } def remove_symbols_and_diacritics(s: str, keep=""): """ Replace any other markers, symbols, and punctuations with a space, and drop any diacritics (category 'Mn' and some manual mappings) """ def replace_character(char): if char in keep: return char elif char in ADDITIONAL_DIACRITICS: return ADDITIONAL_DIACRITICS[char] elif unicodedata.category(char) == "Mn": return "" elif unicodedata.category(char)[0] in "MSP": return " " return char return "".join(replace_character(c) for c in unicodedata.normalize("NFKD", s)) def remove_symbols(s: str): """ Replace any other markers, symbols, punctuations with a space, keeping diacritics """ return "".join(" " if unicodedata.category(c)[0] in "MSP" else c for c in unicodedata.normalize("NFKC", s)) class BasicTextNormalizer: def __init__(self, remove_diacritics: bool = False, split_letters: bool = False): self.clean = remove_symbols_and_diacritics if remove_diacritics else remove_symbols self.split_letters = split_letters def __call__(self, s: str): s = s.lower() s = re.sub(r"[<\[][^>\]]*[>\]]", "", s) # remove words between brackets s = re.sub(r"\(([^)]+?)\)", "", s) # remove words between parenthesis s = self.clean(s).lower() if self.split_letters: s = " ".join(regex.findall(r"\X", s, regex.U)) s = re.sub(r"\s+", " ", s) # replace any successive whitespace characters with a space return s class EnglishNumberNormalizer: """ Convert any spelled-out numbers into arabic numbers, while handling: - remove any commas - keep the suffixes such as: `1960s`, `274th`, `32nd`, etc. - spell out currency symbols after the number. e.g. `$20 million` -> `20000000 dollars` - spell out `one` and `ones` - interpret successive single-digit numbers as nominal: `one oh one` -> `101` """ def __init__(self): super().__init__() self.zeros = {"o", "oh", "zero"} # fmt: off self.ones = { name: i for i, name in enumerate( ["one", "two", "three", "four", "five", "six", "seven", "eight", "nine", "ten", "eleven", "twelve", "thirteen", "fourteen", "fifteen", "sixteen", "seventeen", "eighteen", "nineteen"], start=1, ) } # fmt: on self.ones_plural = { "sixes" if name == "six" else name + "s": (value, "s") for name, value in self.ones.items() } self.ones_ordinal = { "zeroth": (0, "th"), "first": (1, "st"), "second": (2, "nd"), "third": (3, "rd"), "fifth": (5, "th"), "twelfth": (12, "th"), **{ name + ("h" if name.endswith("t") else "th"): (value, "th") for name, value in self.ones.items() if value > 3 and value != 5 and value != 12 }, } self.ones_suffixed = {**self.ones_plural, **self.ones_ordinal} self.tens = { "twenty": 20, "thirty": 30, "forty": 40, "fifty": 50, "sixty": 60, "seventy": 70, "eighty": 80, "ninety": 90, } self.tens_plural = {name.replace("y", "ies"): (value, "s") for name, value in self.tens.items()} self.tens_ordinal = {name.replace("y", "ieth"): (value, "th") for name, value in self.tens.items()} self.tens_suffixed = {**self.tens_plural, **self.tens_ordinal} self.multipliers = { "hundred": 100, "thousand": 1_000, "million": 1_000_000, "billion": 1_000_000_000, "trillion": 1_000_000_000_000, "quadrillion": 1_000_000_000_000_000, "quintillion": 1_000_000_000_000_000_000, "sextillion": 1_000_000_000_000_000_000_000, "septillion": 1_000_000_000_000_000_000_000_000, "octillion": 1_000_000_000_000_000_000_000_000_000, "nonillion": 1_000_000_000_000_000_000_000_000_000_000, "decillion": 1_000_000_000_000_000_000_000_000_000_000_000, } self.multipliers_plural = {name + "s": (value, "s") for name, value in self.multipliers.items()} self.multipliers_ordinal = {name + "th": (value, "th") for name, value in self.multipliers.items()} self.multipliers_suffixed = {**self.multipliers_plural, **self.multipliers_ordinal} self.decimals = {*self.ones, *self.tens, *self.zeros} self.preceding_prefixers = { "minus": "-", "negative": "-", "plus": "+", "positive": "+", } self.following_prefixers = { "pound": "£", "pounds": "£", "euro": "€", "euros": "€", "dollar": "$", "dollars": "$", "cent": "¢", "cents": "¢", } self.prefixes = set(list(self.preceding_prefixers.values()) + list(self.following_prefixers.values())) self.suffixers = { "per": {"cent": "%"}, "percent": "%", } self.specials = {"and", "double", "triple", "point"} self.words = { key for mapping in [ self.zeros, self.ones, self.ones_suffixed, self.tens, self.tens_suffixed, self.multipliers, self.multipliers_suffixed, self.preceding_prefixers, self.following_prefixers, self.suffixers, self.specials, ] for key in mapping } self.literal_words = {"one", "ones"} def process_words(self, words: List[str]) -> Iterator[str]: prefix: Optional[str] = None value: Optional[Union[str, int]] = None skip = False def to_fraction(s: str): try: return Fraction(s) except ValueError: return None def output(result: Union[str, int]): nonlocal prefix, value result = str(result) if prefix is not None: result = prefix + result value = None prefix = None return result if len(words) == 0: return for i, current in enumerate(words): prev = words[i - 1] if i != 0 else None next = words[i + 1] if i != len(words) - 1 else None if skip: skip = False continue next_is_numeric = next is not None and re.match(r"^\d+(\.\d+)?$", next) has_prefix = current[0] in self.prefixes current_without_prefix = current[1:] if has_prefix else current if re.match(r"^\d+(\.\d+)?$", current_without_prefix): # arabic numbers (potentially with signs and fractions) f = to_fraction(current_without_prefix) if f is None: raise ValueError("Converting the fraction failed") if value is not None: if isinstance(value, str) and value.endswith("."): # concatenate decimals / ip address components value = str(value) + str(current) continue else: yield output(value) prefix = current[0] if has_prefix else prefix if f.denominator == 1: value = f.numerator # store integers as int else: value = current_without_prefix elif current not in self.words: # non-numeric words if value is not None: yield output(value) yield output(current) elif current in self.zeros: value = str(value or "") + "0" elif current in self.ones: ones = self.ones[current] if value is None: value = ones elif isinstance(value, str) or prev in self.ones: if prev in self.tens and ones < 10: # replace the last zero with the digit value = value[:-1] + str(ones) else: value = str(value) + str(ones) elif ones < 10: if value % 10 == 0: value += ones else: value = str(value) + str(ones) else: # eleven to nineteen if value % 100 == 0: value += ones else: value = str(value) + str(ones) elif current in self.ones_suffixed: # ordinal or cardinal; yield the number right away ones, suffix = self.ones_suffixed[current] if value is None: yield output(str(ones) + suffix) elif isinstance(value, str) or prev in self.ones: if prev in self.tens and ones < 10: yield output(value[:-1] + str(ones) + suffix) else: yield output(str(value) + str(ones) + suffix) elif ones < 10: if value % 10 == 0: yield output(str(value + ones) + suffix) else: yield output(str(value) + str(ones) + suffix) else: # eleven to nineteen if value % 100 == 0: yield output(str(value + ones) + suffix) else: yield output(str(value) + str(ones) + suffix) value = None elif current in self.tens: tens = self.tens[current] if value is None: value = tens elif isinstance(value, str): value = str(value) + str(tens) else: if value % 100 == 0: value += tens else: value = str(value) + str(tens) elif current in self.tens_suffixed: # ordinal or cardinal; yield the number right away tens, suffix = self.tens_suffixed[current] if value is None: yield output(str(tens) + suffix) elif isinstance(value, str): yield output(str(value) + str(tens) + suffix) else: if value % 100 == 0: yield output(str(value + tens) + suffix) else: yield output(str(value) + str(tens) + suffix) elif current in self.multipliers: multiplier = self.multipliers[current] if value is None: value = multiplier elif isinstance(value, str) or value == 0: f = to_fraction(value) p = f * multiplier if f is not None else None if f is not None and p.denominator == 1: value = p.numerator else: yield output(value) value = multiplier else: before = value // 1000 * 1000 residual = value % 1000 value = before + residual * multiplier elif current in self.multipliers_suffixed: multiplier, suffix = self.multipliers_suffixed[current] if value is None: yield output(str(multiplier) + suffix) elif isinstance(value, str): f = to_fraction(value) p = f * multiplier if f is not None else None if f is not None and p.denominator == 1: yield output(str(p.numerator) + suffix) else: yield output(value) yield output(str(multiplier) + suffix) else: # int before = value // 1000 * 1000 residual = value % 1000 value = before + residual * multiplier yield output(str(value) + suffix) value = None elif current in self.preceding_prefixers: # apply prefix (positive, minus, etc.) if it precedes a number if value is not None: yield output(value) if next in self.words or next_is_numeric: prefix = self.preceding_prefixers[current] else: yield output(current) elif current in self.following_prefixers: # apply prefix (dollars, cents, etc.) only after a number if value is not None: prefix = self.following_prefixers[current] yield output(value) else: yield output(current) elif current in self.suffixers: # apply suffix symbols (percent -> '%') if value is not None: suffix = self.suffixers[current] if isinstance(suffix, dict): if next in suffix: yield output(str(value) + suffix[next]) skip = True else: yield output(value) yield output(current) else: yield output(str(value) + suffix) else: yield output(current) elif current in self.specials: if next not in self.words and not next_is_numeric: # apply special handling only if the next word can be numeric if value is not None: yield output(value) yield output(current) elif current == "and": # ignore "and" after hundreds, thousands, etc. if prev not in self.multipliers: if value is not None: yield output(value) yield output(current) elif current == "double" or current == "triple": if next in self.ones or next in self.zeros: repeats = 2 if current == "double" else 3 ones = self.ones.get(next, 0) value = str(value or "") + str(ones) * repeats skip = True else: if value is not None: yield output(value) yield output(current) elif current == "point": if next in self.decimals or next_is_numeric: value = str(value or "") + "." else: # should all have been covered at this point raise ValueError(f"Unexpected token: {current}") else: # all should have been covered at this point raise ValueError(f"Unexpected token: {current}") if value is not None: yield output(value) def preprocess(self, s: str): # replace "<number> and a half" with "<number> point five" results = [] segments = re.split(r"\band\s+a\s+half\b", s) for i, segment in enumerate(segments): if len(segment.strip()) == 0: continue if i == len(segments) - 1: results.append(segment) else: results.append(segment) last_word = segment.rsplit(maxsplit=2)[-1] if last_word in self.decimals or last_word in self.multipliers: results.append("point five") else: results.append("and a half") s = " ".join(results) # put a space at number/letter boundary s = re.sub(r"([a-z])([0-9])", r"\1 \2", s) s = re.sub(r"([0-9])([a-z])", r"\1 \2", s) # but remove spaces which could be a suffix s = re.sub(r"([0-9])\s+(st|nd|rd|th|s)\b", r"\1\2", s) return s def postprocess(self, s: str): def combine_cents(m: Match): try: currency = m.group(1) integer = m.group(2) cents = int(m.group(3)) return f"{currency}{integer}.{cents:02d}" except ValueError: return m.string def extract_cents(m: Match): try: return f"¢{int(m.group(1))}" except ValueError: return m.string # apply currency postprocessing; "$2 and ¢7" -> "$2.07" s = re.sub(r"([€£$])([0-9]+) (?:and )?¢([0-9]{1,2})\b", combine_cents, s) s = re.sub(r"[€£$]0.([0-9]{1,2})\b", extract_cents, s) # write "one(s)" instead of "1(s)", just for the readability s = re.sub(r"\b1(s?)\b", r"one\1", s) return s def __call__(self, s: str): s = self.preprocess(s) s = " ".join(word for word in self.process_words(s.split()) if word is not None) s = self.postprocess(s) return s class EnglishSpellingNormalizer: """ Applies British-American spelling mappings as listed in [1]. [1] https://www.tysto.com/uk-us-spelling-list.html """ def __init__(self, english_spelling_mapping): self.mapping = english_spelling_mapping def __call__(self, s: str): return " ".join(self.mapping.get(word, word) for word in s.split()) class EnglishTextNormalizer: def __init__(self, english_spelling_mapping): self.ignore_patterns = r"\b(hmm|mm|mhm|mmm|uh|um)\b" self.replacers = { # common contractions r"\bwon't\b": "will not", r"\bcan't\b": "can not", r"\blet's\b": "let us", r"\bain't\b": "aint", r"\by'all\b": "you all", r"\bwanna\b": "want to", r"\bgotta\b": "got to", r"\bgonna\b": "going to", r"\bi'ma\b": "i am going to", r"\bimma\b": "i am going to", r"\bwoulda\b": "would have", r"\bcoulda\b": "could have", r"\bshoulda\b": "should have", r"\bma'am\b": "madam", # contractions in titles/prefixes r"\bmr\b": "mister ", r"\bmrs\b": "missus ", r"\bst\b": "saint ", r"\bdr\b": "doctor ", r"\bprof\b": "professor ", r"\bcapt\b": "captain ", r"\bgov\b": "governor ", r"\bald\b": "alderman ", r"\bgen\b": "general ", r"\bsen\b": "senator ", r"\brep\b": "representative ", r"\bpres\b": "president ", r"\brev\b": "reverend ", r"\bhon\b": "honorable ", r"\basst\b": "assistant ", r"\bassoc\b": "associate ", r"\blt\b": "lieutenant ", r"\bcol\b": "colonel ", r"\bjr\b": "junior ", r"\bsr\b": "senior ", r"\besq\b": "esquire ", # prefect tenses, ideally it should be any past participles, but it's harder.. r"'d been\b": " had been", r"'s been\b": " has been", r"'d gone\b": " had gone", r"'s gone\b": " has gone", r"'d done\b": " had done", # "'s done" is ambiguous r"'s got\b": " has got", # general contractions r"n't\b": " not", r"'re\b": " are", r"'s\b": " is", r"'d\b": " would", r"'ll\b": " will", r"'t\b": " not", r"'ve\b": " have", r"'m\b": " am", } self.standardize_numbers = EnglishNumberNormalizer() self.standardize_spellings = EnglishSpellingNormalizer(english_spelling_mapping) def __call__(self, s: str): s = s.lower() s = re.sub(r"[<\[][^>\]]*[>\]]", "", s) # remove words between brackets s = re.sub(r"\(([^)]+?)\)", "", s) # remove words between parenthesis s = re.sub(self.ignore_patterns, "", s) s = re.sub(r"\s+'", "'", s) # standardize when there's a space before an apostrophe for pattern, replacement in self.replacers.items(): s = re.sub(pattern, replacement, s) s = re.sub(r"(\d),(\d)", r"\1\2", s) # remove commas between digits s = re.sub(r"\.([^0-9]|$)", r" \1", s) # remove periods not followed by numbers s = remove_symbols_and_diacritics(s, keep=".%$¢€£") # keep some symbols for numerics s = self.standardize_numbers(s) s = self.standardize_spellings(s) # now remove prefix/suffix symbols that are not preceded/followed by numbers s = re.sub(r"[.$¢€£]([^0-9])", r" \1", s) s = re.sub(r"([^0-9])%", r"\1 ", s) s = re.sub(r"\s+", " ", s) # replace any successive whitespace characters with a space return s
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/whisper/convert_openai_to_hf.py
# Copyright 2022 The HuggingFace Inc. team and the OpenAI team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration _MODELS = { "tiny.en": "https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt", "tiny": "https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt", "base.en": "https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt", "base": "https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt", "small.en": "https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt", "small": "https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt", "medium.en": "https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt", "medium": "https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt", "large": "https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt", "large-v2": "https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt", } def remove_ignore_keys_(state_dict): ignore_keys = ["layers", "blocks"] for k in ignore_keys: state_dict.pop(k, None) WHISPER_MAPPING = { "blocks": "layers", "mlp.0": "fc1", "mlp.2": "fc2", "mlp_ln": "final_layer_norm", ".attn.query": ".self_attn.q_proj", ".attn.key": ".self_attn.k_proj", ".attn.value": ".self_attn.v_proj", ".attn_ln": ".self_attn_layer_norm", ".attn.out": ".self_attn.out_proj", ".cross_attn.query": ".encoder_attn.q_proj", ".cross_attn.key": ".encoder_attn.k_proj", ".cross_attn.value": ".encoder_attn.v_proj", ".cross_attn_ln": ".encoder_attn_layer_norm", ".cross_attn.out": ".encoder_attn.out_proj", "decoder.ln.": "decoder.layer_norm.", "encoder.ln.": "encoder.layer_norm.", "token_embedding": "embed_tokens", "encoder.positional_embedding": "encoder.embed_positions.weight", "decoder.positional_embedding": "decoder.embed_positions.weight", "ln_post": "layer_norm", } def rename_keys(s_dict): keys = list(s_dict.keys()) for key in keys: new_key = key for k, v in WHISPER_MAPPING.items(): if k in key: new_key = new_key.replace(k, v) print(f"{key} -> {new_key}") s_dict[new_key] = s_dict.pop(key) return s_dict def make_linear_from_emb(emb): vocab_size, emb_size = emb.weight.shape lin_layer = nn.Linear(vocab_size, emb_size, bias=False) lin_layer.weight.data = emb.weight.data return lin_layer def _download(url: str, root: str) -> bytes: os.makedirs(root, exist_ok=True) filename = os.path.basename(url) expected_sha256 = url.split("/")[-2] download_target = os.path.join(root, filename) if os.path.exists(download_target) and not os.path.isfile(download_target): raise RuntimeError(f"{download_target} exists and is not a regular file") if os.path.isfile(download_target): model_bytes = open(download_target, "rb").read() if hashlib.sha256(model_bytes).hexdigest() == expected_sha256: return model_bytes else: warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file") with urllib.request.urlopen(url) as source, open(download_target, "wb") as output: with tqdm( total=int(source.info().get("Content-Length")), ncols=80, unit="iB", unit_scale=True, unit_divisor=1024 ) as loop: while True: buffer = source.read(8192) if not buffer: break output.write(buffer) loop.update(len(buffer)) model_bytes = open(download_target, "rb").read() if hashlib.sha256(model_bytes).hexdigest() != expected_sha256: raise RuntimeError( "Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model." ) return model_bytes def convert_openai_whisper_to_tfms(checkpoint_path, pytorch_dump_folder_path): if ".pt" not in checkpoint_path: original_checkpoint = _download(_MODELS[checkpoint_path]) else: original_checkpoint = torch.load(checkpoint_path, map_location="cpu") dimensions = original_checkpoint["dims"] state_dict = original_checkpoint["model_state_dict"] proj_out_weights = state_dict["decoder.token_embedding.weight"] remove_ignore_keys_(state_dict) rename_keys(state_dict) tie_embeds = True ffn_dim = state_dict["decoder.layers.0.fc1.weight"].shape[0] config = WhisperConfig( vocab_size=dimensions["n_vocab"], encoder_ffn_dim=ffn_dim, decoder_ffn_dim=ffn_dim, num_mel_bins=dimensions["n_mels"], d_model=dimensions["n_audio_state"], max_target_positions=dimensions["n_text_ctx"], encoder_layers=dimensions["n_audio_layer"], encoder_attention_heads=dimensions["n_audio_head"], decoder_layers=dimensions["n_text_layer"], decoder_attention_heads=dimensions["n_text_state"], max_source_positions=dimensions["n_audio_ctx"], ) model = WhisperForConditionalGeneration(config) missing, unexpected = model.model.load_state_dict(state_dict, strict=False) if len(missing) > 0 and not set(missing) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( "Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing," f" but all the following weights are missing {missing}" ) if tie_embeds: model.proj_out = make_linear_from_emb(model.model.decoder.embed_tokens) else: model.proj_out.weight.data = proj_out_weights model.save_pretrained(pytorch_dump_folder_path) if __name__ == "__main__": parser = argparse.ArgumentParser() # # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Patht to the downloaded checkpoints") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") args = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/whisper/feature_extraction_whisper.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Feature extractor class for Whisper """ import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging logger = logging.get_logger(__name__) class WhisperFeatureExtractor(SequenceFeatureExtractor): r""" Constructs a Whisper feature extractor. This feature extractor inherits from [`~feature_extraction_sequence_utils.SequenceFeatureExtractor`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. This class extracts mel-filter bank features from raw speech using a custom numpy implementation of the `Short Time Fourier Transform` which should match pytorch's `torch.stft` equivalent. Args: feature_size (`int`, defaults to 80): The feature dimension of the extracted features. sampling_rate (`int`, defaults to 16000): The sampling rate at which the audio files should be digitalized expressed in hertz (Hz). hop_length (`int`, defaults to 160): Length of the overlaping windows for the STFT used to obtain the Mel Frequency coefficients. chunk_length (`int`, defaults to 30): The maximum number of chuncks of `sampling_rate` samples used to trim and pad longer or shorter audio sequences. n_fft (`int`, defaults to 400): Size of the Fourier transform. padding_value (`float`, *optional*, defaults to 0.0): Padding value used to pad the audio. Should correspond to silences. """ model_input_names = ["input_features"] def __init__( self, feature_size=80, sampling_rate=16000, hop_length=160, chunk_length=30, n_fft=400, padding_value=0.0, return_attention_mask=False, # pad inputs to max length with silence token (zero) and no attention mask **kwargs, ): super().__init__( feature_size=feature_size, sampling_rate=sampling_rate, padding_value=padding_value, return_attention_mask=return_attention_mask, **kwargs, ) self.n_fft = n_fft self.hop_length = hop_length self.chunk_length = chunk_length self.n_samples = chunk_length * sampling_rate self.nb_max_frames = self.n_samples // hop_length self.sampling_rate = sampling_rate self.mel_filters = mel_filter_bank( num_frequency_bins=1 + n_fft // 2, num_mel_filters=feature_size, min_frequency=0.0, max_frequency=8000.0, sampling_rate=sampling_rate, norm="slaney", mel_scale="slaney", ) def _np_extract_fbank_features(self, waveform: np.array) -> np.ndarray: """ Compute the log-mel spectrogram of the provided audio, gives similar results to Whisper's original torch implementation with 1e-5 tolerance. """ log_spec = spectrogram( waveform, window_function(self.n_fft, "hann"), frame_length=self.n_fft, hop_length=self.hop_length, power=2.0, mel_filters=self.mel_filters, log_mel="log10", ) log_spec = log_spec[:, :-1] log_spec = np.maximum(log_spec, log_spec.max() - 8.0) log_spec = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def zero_mean_unit_var_norm( input_values: List[np.ndarray], attention_mask: List[np.ndarray], padding_value: float = 0.0 ) -> List[np.ndarray]: """ Every array in the list is normalized to have zero mean and unit variance """ if attention_mask is not None: attention_mask = np.array(attention_mask, np.int32) normed_input_values = [] for vector, length in zip(input_values, attention_mask.sum(-1)): normed_slice = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7) if length < normed_slice.shape[0]: normed_slice[length:] = padding_value normed_input_values.append(normed_slice) else: normed_input_values = [(x - x.mean()) / np.sqrt(x.var() + 1e-7) for x in input_values] return normed_input_values def __call__( self, raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], truncation: bool = True, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_attention_mask: Optional[bool] = None, padding: Optional[str] = "max_length", max_length: Optional[int] = None, sampling_rate: Optional[int] = None, do_normalize: Optional[bool] = None, **kwargs, ) -> BatchFeature: """ Main method to featurize and prepare for the model one or several sequence(s). Args: raw_speech (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`): The sequence or batch of sequences to be padded. Each sequence can be a numpy array, a list of float values, a list of numpy arrays or a list of list of float values. Must be mono channel audio, not stereo, i.e. single float per timestep. truncation (`bool`, *optional*, default to `True`): Activates truncation to cut input sequences longer than *max_length* to *max_length*. pad_to_multiple_of (`int`, *optional*, defaults to None): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128. return_attention_mask (`bool`, *optional*): Whether to return the attention mask. If left to the default, will return the attention mask according to the specific feature_extractor's default. [What are attention masks?](../glossary#attention-mask) <Tip> For Whisper models, `attention_mask` should always be passed for batched inference, to avoid subtle bugs. </Tip> return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. sampling_rate (`int`, *optional*): The sampling rate at which the `raw_speech` input was sampled. It is strongly recommended to pass `sampling_rate` at the forward call to prevent silent errors and allow automatic speech recognition pipeline. padding_value (`float`, defaults to 0.0): The value that is used to fill the padding values / vectors. do_normalize (`bool`, *optional*, defaults to `False`): Whether or not to zero-mean unit-variance normalize the input. Normalizing can help to significantly improve the performance of the model. """ if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a" f" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input" f" was sampled with {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1 if is_batched_numpy and len(raw_speech.shape) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}") is_batched = is_batched_numpy or ( isinstance(raw_speech, (list, tuple)) and (isinstance(raw_speech[0], (np.ndarray, tuple, list))) ) if is_batched: raw_speech = [np.asarray([speech], dtype=np.float32).T for speech in raw_speech] elif not is_batched and not isinstance(raw_speech, np.ndarray): raw_speech = np.asarray(raw_speech, dtype=np.float32) elif isinstance(raw_speech, np.ndarray) and raw_speech.dtype is np.dtype(np.float64): raw_speech = raw_speech.astype(np.float32) # always return batch if not is_batched: raw_speech = [np.asarray([raw_speech]).T] batched_speech = BatchFeature({"input_features": raw_speech}) # convert into correct format for padding padded_inputs = self.pad( batched_speech, padding=padding, max_length=max_length if max_length else self.n_samples, truncation=truncation, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask or do_normalize, ) # zero-mean and unit-variance normalization if do_normalize: padded_inputs["input_features"] = self.zero_mean_unit_var_norm( padded_inputs["input_features"], attention_mask=padded_inputs["attention_mask"], padding_value=self.padding_value, ) padded_inputs["input_features"] = np.stack(padded_inputs["input_features"], axis=0) # make sure list is in array format input_features = padded_inputs.get("input_features").transpose(2, 0, 1) input_features = [self._np_extract_fbank_features(waveform) for waveform in input_features[0]] if isinstance(input_features[0], List): padded_inputs["input_features"] = [np.asarray(feature, dtype=np.float32) for feature in input_features] else: padded_inputs["input_features"] = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) padded_inputs["attention_mask"] = padded_inputs["attention_mask"][:, :: self.hop_length] if return_tensors is not None: padded_inputs = padded_inputs.convert_to_tensors(return_tensors) return padded_inputs def to_dict(self) -> Dict[str, Any]: """ Serializes this instance to a Python dictionary. Returns: `Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance. """ output = copy.deepcopy(self.__dict__) output["feature_extractor_type"] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/whisper/configuration_whisper.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Whisper model configuration""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeq2SeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType logger = logging.get_logger(__name__) WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP = { "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/config.json", } # fmt: off NON_SPEECH_TOKENS = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377, 1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211, 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 10563, 10786, 11420, 11709, 11907, 13163, 13697, 13700, 14808, 15306, 16410, 16791, 17992, 19203, 19510, 20724, 22305, 22935, 27007, 30109, 30420, 33409, 34949, 40283, 40493, 40549, 47282, 49146, 50257, 50359, 50360, 50361 ] NON_SPEECH_TOKENS_MULTI = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627, 3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647, 7273, 9061, 9383, 10428, 10929, 11938, 12033, 12331, 12562, 13793, 14157, 14635, 15265, 15618, 16553, 16604, 18362, 18956, 20075, 21675, 22520, 26130, 26161, 26435, 28279, 29464, 31650, 32302, 32470, 36865, 42863, 47425, 49870, 50254, 50258, 50360, 50361, 50362 ] # fmt: on class WhisperConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`WhisperModel`]. It is used to instantiate a Whisper model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Whisper [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 51865): Vocabulary size of the Whisper model. Defines the number of different tokens that can be represented by the `decoder_input_ids` passed when calling [`WhisperModel`] num_mel_bins (`int`, *optional*, defaults to 80): Number of mel features used per input features. Should correspond to the value used in the `WhisperProcessor` class. encoder_layers (`int`, *optional*, defaults to 6): Number of encoder layers. decoder_layers (`int`, *optional*, defaults to 6): Number of decoder layers. encoder_attention_heads (`int`, *optional*, defaults to 4): Number of attention heads for each attention layer in the Transformer encoder. decoder_attention_heads (`int`, *optional*, defaults to 4): Number of attention heads for each attention layer in the Transformer decoder. encoder_ffn_dim (`int`, *optional*, defaults to 1536): Dimensionality of the "intermediate" (often named feed-forward) layer in encoder. decoder_ffn_dim (`int`, *optional*, defaults to 1536): Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. encoder_layerdrop (`float`, *optional*, defaults to 0.0): The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. decoder_layerdrop (`float`, *optional*, defaults to 0.0): The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. decoder_start_token_id (`int`, *optional*, defaults to 50257): Corresponds to the "<|startoftranscript|>" token, which is automatically used when no `decoder_input_ids` are provided to the `generate` function. It is used to guide the model`s generation process depending on the task. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). is_encoder_decoder (`bool`, *optional*, defaults to `True`): Whether the model is used as an encoder/decoder or not. activation_function (`str`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. d_model (`int`, *optional*, defaults to 256): Dimensionality of the layers. dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. activation_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for activations inside the fully connected layer. init_std (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. scale_embedding (`bool`, *optional*, defaults to False): Scale embeddings by diving by sqrt(d_model). max_source_positions (`int`, *optional*, defaults to 1500): The maximum sequence length of log-mel filter-bank features that this model might ever be used with. max_target_positions (`int`, *optional*, defaults to 448): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). pad_token_id (`int`, *optional*, defaults to 50256): Padding token id. bos_token_id (`int`, *optional*, defaults to 50256): Begin of stream token id. eos_token_id (`int`, *optional*, defaults to 50256): End of stream token id. suppress_tokens (`List[int]`, *optional*): A list containing the non-speech tokens that will be used by the logit processor in the `generate` function. NON_SPEECH_TOKENS and NON_SPEECH_TOKENS_MULTI each correspond to the `english-only` and the `multilingual` model. begin_suppress_tokens (`List[int]`, *optional*, defaults to `[220,50256]`): A list containing tokens that will be supressed at the beginning of the sampling process. Initialized as the token for `" "` (`blank_token_id`) and the `eos_token_id` use_weighted_layer_sum (`bool`, *optional*, defaults to `False`): Whether to use a weighted average of layer outputs with learned weights. Only relevant when using an instance of [`WhisperForAudioClassification`]. classifier_proj_size (`int`, *optional*, defaults to 256): Dimensionality of the projection before token mean-pooling for classification. Only relevant when using an instance of [`WhisperForAudioClassification`]. apply_spec_augment (`bool`, *optional*, defaults to `False`): Whether to apply *SpecAugment* data augmentation to the outputs of the feature encoder. For reference see [SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition](https://arxiv.org/abs/1904.08779). mask_time_prob (`float`, *optional*, defaults to 0.05): Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked. The masking procecure generates `mask_time_prob*len(time_axis)/mask_time_length` independent masks over the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector span to be masked, *mask_time_prob* should be `prob_vector_start*mask_time_length`. Note that overlap may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment == True`. mask_time_length (`int`, *optional*, defaults to 10): Length of vector span along the time axis. mask_time_min_masks (`int`, *optional*, defaults to 2),: The minimum number of masks of length `mask_feature_length` generated along the time axis, each time step, irrespectively of `mask_feature_prob`. Only relevant if ''mask_time_prob*len(time_axis)/mask_time_length < mask_time_min_masks'' mask_feature_prob (`float`, *optional*, defaults to 0.0): Percentage (between 0 and 1) of all feature vectors along the feature axis which will be masked. The masking procecure generates `mask_feature_prob*len(feature_axis)/mask_time_length` independent masks over the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector span to be masked, *mask_feature_prob* should be `prob_vector_start*mask_feature_length`. Note that overlap may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is True`. mask_feature_length (`int`, *optional*, defaults to 10): Length of vector span along the feature axis. mask_feature_min_masks (`int`, *optional*, defaults to 0),: The minimum number of masks of length `mask_feature_length` generated along the feature axis, each time step, irrespectively of `mask_feature_prob`. Only relevant if `mask_feature_prob*len(feature_axis)/mask_feature_length < mask_feature_min_masks`. median_filter_width (`int`, *optional*, defaults to 7): Width of the median filter used to smoothen to cross-attention outputs when computing token timestamps. Should be an odd number. Example: ```python >>> from transformers import WhisperConfig, WhisperModel >>> # Initializing a Whisper tiny style configuration >>> configuration = WhisperConfig() >>> # Initializing a model (with random weights) from the tiny style configuration >>> model = WhisperModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "whisper" keys_to_ignore_at_inference = ["past_key_values"] attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self, vocab_size=51865, num_mel_bins=80, encoder_layers=6, encoder_attention_heads=4, decoder_layers=6, decoder_attention_heads=4, decoder_ffn_dim=1536, encoder_ffn_dim=1536, encoder_layerdrop=0.0, decoder_layerdrop=0.0, decoder_start_token_id=50257, use_cache=True, is_encoder_decoder=True, activation_function="gelu", d_model=256, dropout=0.0, attention_dropout=0.0, activation_dropout=0.0, init_std=0.02, scale_embedding=False, max_source_positions=1500, max_target_positions=448, pad_token_id=50256, bos_token_id=50256, eos_token_id=50256, suppress_tokens=None, begin_suppress_tokens=[220, 50256], use_weighted_layer_sum=False, classifier_proj_size=256, apply_spec_augment=False, mask_time_prob=0.05, mask_time_length=10, mask_time_min_masks=2, mask_feature_prob=0.0, mask_feature_length=10, mask_feature_min_masks=0, median_filter_width=7, **kwargs, ): self.vocab_size = vocab_size self.num_mel_bins = num_mel_bins self.d_model = d_model self.encoder_layers = encoder_layers self.encoder_attention_heads = encoder_attention_heads self.decoder_layers = decoder_layers self.decoder_attention_heads = decoder_attention_heads self.decoder_ffn_dim = decoder_ffn_dim self.encoder_ffn_dim = encoder_ffn_dim self.dropout = dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.activation_function = activation_function self.init_std = init_std self.encoder_layerdrop = encoder_layerdrop self.decoder_layerdrop = decoder_layerdrop self.use_cache = use_cache self.num_hidden_layers = encoder_layers self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True self.max_source_positions = max_source_positions self.max_target_positions = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. self.classifier_proj_size = classifier_proj_size self.use_weighted_layer_sum = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 self.apply_spec_augment = apply_spec_augment self.mask_time_prob = mask_time_prob self.mask_time_length = mask_time_length self.mask_time_min_masks = mask_time_min_masks self.mask_feature_prob = mask_feature_prob self.mask_feature_length = mask_feature_length self.mask_feature_min_masks = mask_feature_min_masks self.median_filter_width = median_filter_width super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, is_encoder_decoder=is_encoder_decoder, decoder_start_token_id=decoder_start_token_id, suppress_tokens=suppress_tokens, begin_suppress_tokens=begin_suppress_tokens, **kwargs, ) class WhisperOnnxConfig(OnnxSeq2SeqConfigWithPast): @property def inputs(self) -> Mapping[str, Mapping[int, str]]: common_inputs = OrderedDict( [ ("input_features", {0: "batch", 1: "feature_size", 2: "encoder_sequence"}), ] ) if self.use_past: common_inputs["decoder_input_ids"] = {0: "batch"} else: common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(common_inputs, direction="inputs") return common_inputs def generate_dummy_inputs( self, preprocessor: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"], batch_size: int = -1, seq_length: int = -1, is_pair: bool = False, framework: Optional["TensorType"] = None, sampling_rate: int = 22050, time_duration: float = 5.0, frequency: int = 220, ) -> Mapping[str, Any]: dummy_inputs = OrderedDict() encoder_inputs = OnnxConfig.generate_dummy_inputs( self, preprocessor=preprocessor.feature_extractor, batch_size=batch_size, framework=framework, sampling_rate=sampling_rate, time_duration=time_duration, frequency=frequency, ) encoder_sequence_length = encoder_inputs["input_features"].shape[2] seq_length = encoder_sequence_length // 2 if self.use_past else seq_length decoder_inputs = super().generate_dummy_inputs( preprocessor.tokenizer, batch_size, seq_length, is_pair, framework ) dummy_inputs["input_features"] = encoder_inputs.pop("input_features") dummy_inputs["decoder_input_ids"] = decoder_inputs.pop("decoder_input_ids") if "past_key_values" in decoder_inputs: dummy_inputs["past_key_values"] = decoder_inputs.pop("past_key_values") return dummy_inputs @property def atol_for_validation(self) -> float: return 1e-3
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/whisper/processing_whisper.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Speech processor class for Whisper """ from ...processing_utils import ProcessorMixin class WhisperProcessor(ProcessorMixin): r""" Constructs a Whisper processor which wraps a Whisper feature extractor and a Whisper tokenizer into a single processor. [`WhisperProcessor`] offers all the functionalities of [`WhisperFeatureExtractor`] and [`WhisperTokenizer`]. See the [`~WhisperProcessor.__call__`] and [`~WhisperProcessor.decode`] for more information. Args: feature_extractor (`WhisperFeatureExtractor`): An instance of [`WhisperFeatureExtractor`]. The feature extractor is a required input. tokenizer (`WhisperTokenizer`): An instance of [`WhisperTokenizer`]. The tokenizer is a required input. """ feature_extractor_class = "WhisperFeatureExtractor" tokenizer_class = "WhisperTokenizer" def __init__(self, feature_extractor, tokenizer): super().__init__(feature_extractor, tokenizer) self.current_processor = self.feature_extractor self._in_target_context_manager = False def get_decoder_prompt_ids(self, task=None, language=None, no_timestamps=True): return self.tokenizer.get_decoder_prompt_ids(task=task, language=language, no_timestamps=no_timestamps) def __call__(self, *args, **kwargs): """ Forwards the `audio` argument to WhisperFeatureExtractor's [`~WhisperFeatureExtractor.__call__`] and the `text` argument to [`~WhisperTokenizer.__call__`]. Please refer to the doctsring of the above two methods for more information. """ # For backward compatibility if self._in_target_context_manager: return self.current_processor(*args, **kwargs) audio = kwargs.pop("audio", None) sampling_rate = kwargs.pop("sampling_rate", None) text = kwargs.pop("text", None) if len(args) > 0: audio = args[0] args = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process.") if audio is not None: inputs = self.feature_extractor(audio, *args, sampling_rate=sampling_rate, **kwargs) if text is not None: encodings = self.tokenizer(text, **kwargs) if text is None: return inputs elif audio is None: return encodings else: inputs["labels"] = encodings["input_ids"] return inputs def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to WhisperTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) def decode(self, *args, **kwargs): """ This method forwards all its arguments to WhisperTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) def get_prompt_ids(self, text: str, return_tensors="np"): return self.tokenizer.get_prompt_ids(text, return_tensors=return_tensors)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/whisper/modeling_whisper.py
# coding=utf-8 # Copyright 2022 The OpenAI Authors and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch Whisper model.""" import math from typing import Optional, Tuple, Union import numpy as np import torch import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...generation.logits_process import WhisperTimeStampLogitsProcessor from ...modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPastAndCrossAttentions, Seq2SeqLMOutput, Seq2SeqModelOutput, SequenceClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_whisper import WhisperConfig from .tokenization_whisper import TASK_IDS, TO_LANGUAGE_CODE logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "WhisperConfig" _CHECKPOINT_FOR_DOC = "openai/whisper-tiny" WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST = [ "openai/whisper-base", # See all Whisper models at https://huggingface.co/models?filter=whisper ] # Copied from transformers.models.bart.modeling_bart.shift_tokens_right def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int): """ Shift input ids one token to the right. """ shifted_input_ids = input_ids.new_zeros(input_ids.shape) shifted_input_ids[:, 1:] = input_ids[:, :-1].clone() shifted_input_ids[:, 0] = decoder_start_token_id if pad_token_id is None: raise ValueError("self.model.config.pad_token_id has to be defined.") # replace possible -100 values in labels by `pad_token_id` shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) return shifted_input_ids # Copied from transformers.models.bart.modeling_bart._make_causal_mask def _make_causal_mask( input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0 ): """ Make causal mask used for bi-directional self-attention. """ bsz, tgt_len = input_ids_shape mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device) mask_cond = torch.arange(mask.size(-1), device=device) mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) mask = mask.to(dtype) if past_key_values_length > 0: mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1) return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length) # Copied from transformers.models.bart.modeling_bart._expand_mask def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): """ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. """ bsz, src_len = mask.size() tgt_len = tgt_len if tgt_len is not None else src_len expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) inverted_mask = 1.0 - expanded_mask return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min) # Copied from transformers.models.wav2vec2.modeling_wav2vec2._compute_mask_indices def _compute_mask_indices( shape: Tuple[int, int], mask_prob: float, mask_length: int, attention_mask: Optional[torch.LongTensor] = None, min_masks: int = 0, ) -> np.ndarray: """ Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on CPU as part of the preprocessing during training. Args: shape: The shape for which to compute masks. This should be of a tuple of size 2 where the first element is the batch size and the second element is the length of the axis to span. mask_prob: The percentage of the whole axis (between 0 and 1) which will be masked. The number of independently generated mask spans of length `mask_length` is computed by `mask_prob*shape[1]/mask_length`. Note that due to overlaps, `mask_prob` is an upper bound and the actual percentage will be smaller. mask_length: size of the mask min_masks: minimum number of masked spans attention_mask: A (right-padded) attention mask which independently shortens the feature axis of each batch dimension. """ batch_size, sequence_length = shape if mask_length < 1: raise ValueError("`mask_length` has to be bigger than 0.") if mask_length > sequence_length: raise ValueError( f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length}" f" and `sequence_length`: {sequence_length}`" ) # epsilon is used for probabilistic rounding epsilon = np.random.rand(1).item() def compute_num_masked_span(input_length): """Given input length, compute how many spans should be masked""" num_masked_span = int(mask_prob * input_length / mask_length + epsilon) num_masked_span = max(num_masked_span, min_masks) # make sure num masked span <= sequence_length if num_masked_span * mask_length > sequence_length: num_masked_span = sequence_length // mask_length # make sure num_masked span is also <= input_length - (mask_length - 1) if input_length - (mask_length - 1) < num_masked_span: num_masked_span = max(input_length - (mask_length - 1), 0) return num_masked_span # compute number of masked spans in batch input_lengths = ( attention_mask.sum(-1).detach().tolist() if attention_mask is not None else [sequence_length for _ in range(batch_size)] ) # SpecAugment mask to fill spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=bool) spec_aug_mask_idxs = [] max_num_masked_span = compute_num_masked_span(sequence_length) if max_num_masked_span == 0: return spec_aug_mask for input_length in input_lengths: # compute num of masked spans for this input num_masked_span = compute_num_masked_span(input_length) # get random indices to mask spec_aug_mask_idx = np.random.choice( np.arange(input_length - (mask_length - 1)), num_masked_span, replace=False ) # pick first sampled index that will serve as a dummy index to pad vector # to ensure same dimension for all batches due to probabilistic rounding # Picking first sample just pads those vectors twice. if len(spec_aug_mask_idx) == 0: # this case can only happen if `input_length` is strictly smaller then # `sequence_length` in which case the last token has to be a padding # token which we can use as a dummy mask id dummy_mask_idx = sequence_length - 1 else: dummy_mask_idx = spec_aug_mask_idx[0] spec_aug_mask_idx = np.concatenate( [spec_aug_mask_idx, np.ones(max_num_masked_span - num_masked_span, dtype=np.int32) * dummy_mask_idx] ) spec_aug_mask_idxs.append(spec_aug_mask_idx) spec_aug_mask_idxs = np.array(spec_aug_mask_idxs) # expand masked indices to masked spans spec_aug_mask_idxs = np.broadcast_to( spec_aug_mask_idxs[:, :, None], (batch_size, max_num_masked_span, mask_length) ) spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(batch_size, max_num_masked_span * mask_length) # add offset to the starting indexes so that indexes now create a span offsets = np.arange(mask_length)[None, None, :] offsets = np.broadcast_to(offsets, (batch_size, max_num_masked_span, mask_length)).reshape( batch_size, max_num_masked_span * mask_length ) spec_aug_mask_idxs = spec_aug_mask_idxs + offsets # ensure that we cannot have indices larger than sequence_length if spec_aug_mask_idxs.max() > sequence_length - 1: spec_aug_mask_idxs[spec_aug_mask_idxs > sequence_length - 1] = sequence_length - 1 # scatter indices to mask np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1) return spec_aug_mask def _median_filter(inputs: torch.Tensor, filter_width: int) -> torch.Tensor: """ Applies a median filter of width `filter_width` along the last dimension of the input. The `inputs` tensor is assumed to be 3- or 4-dimensional. """ if filter_width <= 0 or filter_width % 2 != 1: raise ValueError("`filter_width` should be an odd number") pad_width = filter_width // 2 if inputs.shape[-1] <= pad_width: return inputs # Pad the left and right edges. inputs = nn.functional.pad(inputs, (pad_width, pad_width, 0, 0), mode="reflect") # sort() is faster than torch.median (https://github.com/pytorch/pytorch/issues/51450) result = inputs.unfold(-1, filter_width, 1).sort()[0][..., pad_width] return result def _dynamic_time_warping(matrix: np.ndarray): """ Measures similarity between two temporal sequences: the input audio and the output tokens. Used to generate token-level timestamps. """ output_length, input_length = matrix.shape cost = np.ones((output_length + 1, input_length + 1), dtype=np.float32) * np.inf trace = -np.ones((output_length + 1, input_length + 1), dtype=np.float32) cost[0, 0] = 0 for j in range(1, input_length + 1): for i in range(1, output_length + 1): c0 = cost[i - 1, j - 1] c1 = cost[i - 1, j] c2 = cost[i, j - 1] if c0 < c1 and c0 < c2: c, t = c0, 0 elif c1 < c0 and c1 < c2: c, t = c1, 1 else: c, t = c2, 2 cost[i, j] = matrix[i - 1, j - 1] + c trace[i, j] = t # backtrace i = trace.shape[0] - 1 j = trace.shape[1] - 1 trace[0, :] = 2 trace[:, 0] = 1 text_indices = [] time_indices = [] while i > 0 or j > 0: text_indices.append(i - 1) time_indices.append(j - 1) if trace[i, j] == 0: i -= 1 j -= 1 elif trace[i, j] == 1: i -= 1 elif trace[i, j] == 2: j -= 1 else: raise RuntimeError( f"Internal error in dynamic time warping. Unexpected trace[{i}, {j}]. Please file a bug report." ) text_indices = np.array(text_indices)[::-1] time_indices = np.array(time_indices)[::-1] return text_indices, time_indices class WhisperPositionalEmbedding(nn.Embedding): def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None): super().__init__(num_positions, embedding_dim) def forward(self, input_ids, past_key_values_length=0): return self.weight[past_key_values_length : past_key_values_length + input_ids.shape[1]] class WhisperAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.k_proj = nn.Linear(embed_dim, embed_dim, bias=False) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) # Copied from transformers.models.bart.modeling_bart.BartAttention._shape with BART->whisper def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() # Copied from transformers.models.bart.modeling_bart.BartAttention.forward with BART->whisper def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj # `past_key_value[0].shape[2] == key_value_states.shape[1]` # is checking that the `sequence_length` of the `past_key_value` is the same as # the provided `key_value_states` to support prefix tuning if ( is_cross_attention and past_key_value is not None and past_key_value[0].shape[2] == key_value_states.shape[1] ): # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.reshape(*proj_shape) value_states = value_states.reshape(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if layer_head_mask is not None: if layer_head_mask.size() != (self.num_heads,): raise ValueError( f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" f" {layer_head_mask.size()}" ) attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to be reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned across GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped, past_key_value # Copied from transformers.models.mbart.modeling_mbart.MBartEncoderLayer with MBart->Whisper class WhisperEncoderLayer(nn.Module): def __init__(self, config: WhisperConfig): super().__init__() self.embed_dim = config.d_model self.self_attn = WhisperAttention( embed_dim=self.embed_dim, num_heads=config.encoder_attention_heads, dropout=config.attention_dropout, ) self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim) self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim) self.final_layer_norm = nn.LayerNorm(self.embed_dim) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, layer_head_mask: torch.Tensor, output_attentions: bool = False, ) -> torch.Tensor: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size `(encoder_attention_heads,)`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) hidden_states, attn_weights, _ = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states if hidden_states.dtype == torch.float16 and ( torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any() ): clamp_value = torch.finfo(hidden_states.dtype).max - 1000 hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs # Copied from transformers.models.mbart.modeling_mbart.MBartDecoderLayer with MBart->Whisper class WhisperDecoderLayer(nn.Module): def __init__(self, config: WhisperConfig): super().__init__() self.embed_dim = config.d_model self.self_attn = WhisperAttention( embed_dim=self.embed_dim, num_heads=config.decoder_attention_heads, dropout=config.attention_dropout, is_decoder=True, ) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.encoder_attn = WhisperAttention( self.embed_dim, config.decoder_attention_heads, dropout=config.attention_dropout, is_decoder=True, ) self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim) self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim) self.final_layer_norm = nn.LayerNorm(self.embed_dim) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, cross_attn_layer_head_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = True, ) -> torch.Tensor: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. encoder_hidden_states (`torch.FloatTensor`): cross attention input to the layer of shape `(batch, seq_len, embed_dim)` encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size `(encoder_attention_heads,)`. cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of size `(decoder_attention_heads,)`. past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Self Attention # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None # add present self-attn cache to positions 1,2 of present_key_value tuple hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, past_key_value=self_attn_past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states # Cross-Attention Block cross_attn_present_key_value = None cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, layer_head_mask=cross_attn_layer_head_mask, past_key_value=cross_attn_past_key_value, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states # add cross-attn to positions 3,4 of present_key_value tuple present_key_value = present_key_value + cross_attn_present_key_value # Fully Connected residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights, cross_attn_weights) if use_cache: outputs += (present_key_value,) return outputs class WhisperPreTrainedModel(PreTrainedModel): config_class = WhisperConfig base_model_prefix = "model" main_input_name = "input_features" supports_gradient_checkpointing = True _no_split_modules = ["WhisperEncoderLayer", "WhisperDecoderLayer"] def _init_weights(self, module): std = self.config.init_std if isinstance(module, (nn.Linear, nn.Conv1d)): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, (WhisperDecoder, WhisperEncoder)): module.gradient_checkpointing = value def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor): """ Computes the output length of the convolutional layers """ input_lengths = (input_lengths - 1) // 2 + 1 return input_lengths WHISPER_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`WhisperConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ WHISPER_INPUTS_DOCSTRING = r""" Args: input_features (`torch.FloatTensor` of shape `(batch_size, feature_size, sequence_length)`): Float values mel features extracted from the raw speech waveform. Raw speech waveform can be obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the [`AutoFeatureExtractor`] should be used for extracting the mel features, padding and conversion into a tensor of type `torch.FloatTensor`. See [`~WhisperFeatureExtractor.__call__`] attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing *SpecAugment* data augmentation on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`WhisperTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) Whisper uses the `decoder_start_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. If you want to change padding behavior, you should read [`modeling_whisper._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the BART paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be input (see `past_key_values`). This is useful if you want more control over how to convert `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ WHISPER_ENCODER_INPUTS_DOCSTRING = r""" Args: input_features (`torch.FloatTensor` of shape `(batch_size, feature_size, sequence_length)`): Float values mel features extracted from the raw speech waveform. Raw speech waveform can be obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the [`AutoFeatureExtractor`] should be used for extracting the mel features, padding and conversion into a tensor of type `torch.FloatTensor`. See [`~WhisperFeatureExtractor.__call__`] head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ class WhisperEncoder(WhisperPreTrainedModel): """ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a [`WhisperEncoderLayer`]. Args: config: WhisperConfig """ def __init__(self, config: WhisperConfig): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.encoder_layerdrop embed_dim = config.d_model self.num_mel_bins = config.num_mel_bins self.padding_idx = config.pad_token_id self.max_source_positions = config.max_source_positions self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0 self.conv1 = nn.Conv1d(self.num_mel_bins, embed_dim, kernel_size=3, padding=1) self.conv2 = nn.Conv1d(embed_dim, embed_dim, kernel_size=3, stride=2, padding=1) self.embed_positions = nn.Embedding(self.max_source_positions, embed_dim) self.layers = nn.ModuleList([WhisperEncoderLayer(config) for _ in range(config.encoder_layers)]) self.layer_norm = nn.LayerNorm(config.d_model) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def _freeze_parameters(self): for param in self.parameters(): param.requires_grad = False self._requires_grad = False def get_input_embeddings(self) -> nn.Module: return self.conv1 def set_input_embeddings(self, value: nn.Module): self.conv1 = value def forward( self, input_features, attention_mask=None, head_mask=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" Args: input_features (`torch.LongTensor` of shape `(batch_size, feature_size, sequence_length)`): Float values of mel features extracted from the raw speech waveform. Raw speech waveform can be obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the [`AutoFeatureExtractor`] should be used for extracting the mel features, padding and conversion into a tensor of type `torch.FloatTensor`. See [`~WhisperFeatureExtractor.__call__`] attention_mask (`torch.Tensor`)`, *optional*): Whisper does not support masking of the `input_features`, this argument is preserved for compatibility, but it is not used. By default the silence in the input log mel spectrogram are ignored. head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict inputs_embeds = nn.functional.gelu(self.conv1(input_features)) inputs_embeds = nn.functional.gelu(self.conv2(inputs_embeds)) inputs_embeds = inputs_embeds.permute(0, 2, 1) embed_pos = self.embed_positions.weight hidden_states = inputs_embeds + embed_pos hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None # check if head_mask has a correct number of layers specified if desired if head_mask is not None: assert head_mask.size()[0] == ( len(self.layers) ), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}." for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) to_drop = False if self.training: dropout_probability = torch.rand([]) if dropout_probability < self.layerdrop: # skip the layer to_drop = True if to_drop: layer_outputs = (None, None) else: if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(encoder_layer), hidden_states, None, (head_mask[idx] if head_mask is not None else None), ) else: layer_outputs = encoder_layer( hidden_states, None, layer_head_mask=(head_mask[idx] if head_mask is not None else None), output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) hidden_states = self.layer_norm(hidden_states) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) class WhisperDecoder(WhisperPreTrainedModel): """ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`WhisperDecoderLayer`] Args: config: WhisperConfig """ def __init__(self, config: WhisperConfig): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.decoder_layerdrop self.padding_idx = config.pad_token_id self.max_target_positions = config.max_target_positions self.max_source_positions = config.max_source_positions self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0 self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx) self.embed_positions = WhisperPositionalEmbedding(self.max_target_positions, config.d_model) self.layers = nn.ModuleList([WhisperDecoderLayer(config) for _ in range(config.decoder_layers)]) self.layer_norm = nn.LayerNorm(config.d_model) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length): # create causal mask # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] combined_attention_mask = None if input_shape[-1] > 1: combined_attention_mask = _make_causal_mask( input_shape, inputs_embeds.dtype, device=inputs_embeds.device, past_key_values_length=past_key_values_length, ) if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]) combined_attention_mask = ( expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask ) return combined_attention_mask def forward( self, input_ids=None, attention_mask=None, encoder_hidden_states=None, head_mask=None, cross_attn_head_mask=None, past_key_values=None, inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`WhisperTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in encoder to avoid performing cross-attention on hidden heads. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) attention_mask = self._prepare_decoder_attention_mask( attention_mask, input_shape, inputs_embeds, past_key_values_length ) # embed positions if input_ids is not None: positions = self.embed_positions(input_ids, past_key_values_length=past_key_values_length) else: positions = self.embed_positions(inputs_embeds, past_key_values_length=past_key_values_length) hidden_states = inputs_embeds + positions hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache = True` is incompatible with gradient checkpointing. Setting `use_cache = False`..." ) use_cache = False # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None next_decoder_cache = () if use_cache else None # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): if attn_mask is not None: assert attn_mask.size()[0] == (len(self.layers)), ( f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" f" {head_mask.size()[0]}." ) for idx, decoder_layer in enumerate(self.layers): # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) if output_hidden_states: all_hidden_states += (hidden_states,) if self.training: dropout_probability = torch.rand([]) if dropout_probability < self.layerdrop: continue past_key_value = past_key_values[idx] if past_key_values is not None else None if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): # None for past_key_value return module(*inputs, output_attentions, use_cache) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(decoder_layer), hidden_states, attention_mask, encoder_hidden_states, None, # encoder attention mask head_mask[idx] if head_mask is not None else None, cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, None, # past_key_value ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, layer_head_mask=(head_mask[idx] if head_mask is not None else None), cross_attn_layer_head_mask=( cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None ), past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[3 if output_attentions else 1],) if output_attentions: all_self_attns += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) hidden_states = self.layer_norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if not return_dict: return tuple( v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, ) @add_start_docstrings( "The bare Whisper Model outputting raw hidden-states without any specific head on top.", WHISPER_START_DOCSTRING, ) class WhisperModel(WhisperPreTrainedModel): def __init__(self, config: WhisperConfig): super().__init__(config) self.encoder = WhisperEncoder(config) self.decoder = WhisperDecoder(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.decoder.embed_tokens def set_input_embeddings(self, value): self.decoder.embed_tokens = value def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder def freeze_encoder(self): """ Calling this function will disable the gradient computation for the Whisper encoder so that its parameters will not be updated during training. """ self.encoder._freeze_parameters() def _mask_input_features( self, input_features: torch.FloatTensor, attention_mask: Optional[torch.LongTensor] = None, ): """ Masks extracted features along time axis and/or along feature axis according to [SpecAugment](https://arxiv.org/abs/1904.08779). """ # `config.apply_spec_augment` can set masking to False if not getattr(self.config, "apply_spec_augment", True): return input_features # generate indices & apply SpecAugment along time axis batch_size, hidden_size, sequence_length = input_features.size() if self.config.mask_time_prob > 0 and self.training: # generate indices & apply SpecAugment along time axis mask_time_indices = _compute_mask_indices( (batch_size, sequence_length), mask_prob=self.config.mask_time_prob, mask_length=self.config.mask_time_length, attention_mask=attention_mask, min_masks=self.config.mask_time_min_masks, ) mask_time_indices = torch.tensor(mask_time_indices, device=input_features.device, dtype=torch.bool) mask_time_indices = mask_time_indices[:, None].expand(-1, hidden_size, -1) input_features[mask_time_indices] = 0 if self.config.mask_feature_prob > 0 and self.training: # generate indices & apply SpecAugment along feature axis mask_feature_indices = _compute_mask_indices( (batch_size, hidden_size), mask_prob=self.config.mask_feature_prob, mask_length=self.config.mask_feature_length, min_masks=self.config.mask_feature_min_masks, ) mask_feature_indices = torch.tensor(mask_feature_indices, device=input_features.device, dtype=torch.bool) input_features[mask_feature_indices] = 0 return input_features @add_start_docstrings_to_model_forward(WHISPER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_features: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, decoder_head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, decoder_inputs_embeds: Optional[Tuple[torch.FloatTensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], Seq2SeqModelOutput]: r""" Returns: Example: ```python >>> import torch >>> from transformers import AutoFeatureExtractor, WhisperModel >>> from datasets import load_dataset >>> model = WhisperModel.from_pretrained("openai/whisper-base") >>> feature_extractor = AutoFeatureExtractor.from_pretrained("openai/whisper-base") >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> inputs = feature_extractor(ds[0]["audio"]["array"], return_tensors="pt") >>> input_features = inputs.input_features >>> decoder_input_ids = torch.tensor([[1, 1]]) * model.config.decoder_start_token_id >>> last_hidden_state = model(input_features, decoder_input_ids=decoder_input_ids).last_hidden_state >>> list(last_hidden_state.shape) [1, 2, 512] ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if encoder_outputs is None: input_features = self._mask_input_features(input_features, attention_mask=attention_mask) encoder_outputs = self.encoder( input_features, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_outputs[0], head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: return decoder_outputs + encoder_outputs return Seq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) @add_start_docstrings( "The Whisper Model with a language modeling head. Can be used for automatic speech recognition.", WHISPER_START_DOCSTRING, ) class WhisperForConditionalGeneration(WhisperPreTrainedModel): base_model_prefix = "model" _tied_weights_keys = ["proj_out.weight"] def __init__(self, config: WhisperConfig): super().__init__(config) self.model = WhisperModel(config) self.proj_out = nn.Linear(config.d_model, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_encoder(self): return self.model.get_encoder() def get_decoder(self): return self.model.get_decoder() def resize_token_embeddings(self, new_num_tokens: int) -> nn.Embedding: new_embeddings = super().resize_token_embeddings(new_num_tokens) return new_embeddings def get_output_embeddings(self): return self.proj_out def set_output_embeddings(self, new_embeddings): self.proj_out = new_embeddings def get_input_embeddings(self) -> nn.Module: return self.model.get_input_embeddings() def freeze_encoder(self): """ Calling this function will disable the gradient computation for the Whisper encoder so that its parameters will not be updated during training. """ self.model.encoder._freeze_parameters() @add_start_docstrings_to_model_forward(WHISPER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_features: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, decoder_head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, decoder_inputs_embeds: Optional[Tuple[torch.FloatTensor]] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], Seq2SeqLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: Example: ```python >>> import torch >>> from transformers import AutoProcessor, WhisperForConditionalGeneration >>> from datasets import load_dataset >>> processor = AutoProcessor.from_pretrained("openai/whisper-tiny.en") >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en") >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> inputs = processor(ds[0]["audio"]["array"], return_tensors="pt") >>> input_features = inputs.input_features >>> generated_ids = model.generate(inputs=input_features) >>> transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] >>> transcription ' Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel.' ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: if decoder_input_ids is None and decoder_inputs_embeds is None: decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) outputs = self.model( input_features, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, encoder_outputs=encoder_outputs, decoder_attention_mask=decoder_attention_mask, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) lm_logits = self.proj_out(outputs[0]) loss = None if labels is not None: loss_fct = CrossEntropyLoss() # move labels to correct device to enable PP labels = labels.to(lm_logits.device) loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.reshape(-1)) if not return_dict: output = (lm_logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return Seq2SeqLMOutput( loss=loss, logits=lm_logits, past_key_values=outputs.past_key_values, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, ) def generate( self, inputs: Optional[torch.Tensor] = None, generation_config=None, logits_processor=None, stopping_criteria=None, prefix_allowed_tokens_fn=None, synced_gpus=False, return_timestamps=None, task=None, language=None, is_multilingual=None, prompt_ids: Optional[torch.Tensor] = None, return_token_timestamps=None, **kwargs, ): """ Generates sequences of token ids for models with a language modeling head. <Tip warning={true}> Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the model's default generation configuration. You can override any `generation_config` by passing the corresponding parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`. For an overview of generation strategies and code examples, check out the [following guide](./generation_strategies). </Tip> Parameters: inputs (`torch.Tensor` of varying shape depending on the modality, *optional*): The sequence used as a prompt for the generation or as model inputs to the encoder. If `None` the method initializes it with `bos_token_id` and a batch size of 1. For decoder-only models `inputs` should of in the format of `input_ids`. For encoder-decoder models *inputs* can represent any of `input_ids`, `input_values`, `input_features`, or `pixel_values`. generation_config (`~generation.GenerationConfig`, *optional*): The generation configuration to be used as base parametrization for the generation call. `**kwargs` passed to generate matching the attributes of `generation_config` will override them. If `generation_config` is not provided, the default will be used, which had the following loading priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s default values, whose documentation should be checked to parameterize generation. logits_processor (`LogitsProcessorList`, *optional*): Custom logits processors that complement the default logits processors built from arguments and generation config. If a logit processor is passed that is already created with the arguments or a generation config an error is thrown. This feature is intended for advanced users. stopping_criteria (`StoppingCriteriaList`, *optional*): Custom stopping criteria that complement the default stopping criteria built from arguments and a generation config. If a stopping criteria is passed that is already created with the arguments or a generation config an error is thrown. This feature is intended for advanced users. prefix_allowed_tokens_fn (`Callable[[int, torch.Tensor], List[int]]`, *optional*): If provided, this function constraints the beam search to allowed tokens only at each step. If not provided no constraint is applied. This function takes 2 arguments: the batch ID `batch_id` and `input_ids`. It has to return a list with the allowed tokens for the next generation step conditioned on the batch ID `batch_id` and the previously generated tokens `inputs_ids`. This argument is useful for constrained generation conditioned on the prefix, as described in [Autoregressive Entity Retrieval](https://arxiv.org/abs/2010.00904). synced_gpus (`bool`, *optional*, defaults to `False`): Whether to continue running the while loop until max_length (needed for ZeRO stage 3) return_timestamps (`bool`, *optional*): Whether to return the timestamps with the text. This enables the `WhisperTimestampsLogitsProcessor`. task (`str`, *optional*): Task to use for generation, either "translate" or "transcribe". The `model.config.forced_decoder_ids` will be updated accordingly. language (`str`, *optional*): Language token to use for generation, can be either in the form of `<|en|>`, `en` or `english`. You can find all the possible language tokens in the `model.generation_config.lang_to_id` dictionary. is_multilingual (`bool`, *optional*): Whether or not the model is multilingual. prompt_ids (`torch.Tensor`, *optional*): Rank-1 tensor of token IDs created by passing text to [`~WhisperProcessor.get_prompt_ids`] that is provided as a prompt to each chunk. This can be used to provide or "prompt-engineer" a context for transcription, e.g. custom vocabularies or proper nouns to make it more likely to predict those words correctly. It cannot be used in conjunction with `decoder_start_token_id` as it overwrites this value. return_token_timestamps (`bool`, *optional*): Whether to return token-level timestamps with the text. This can be used with or without the `return_timestamps` option. To get word-level timestamps, use the tokenizer to group the tokens into words. kwargs (`Dict[str, Any]`, *optional*): Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*. Return: [`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True` or when `config.return_dict_in_generate=True`) or a `torch.FloatTensor`. If the model is *not* an encoder-decoder model (`model.config.is_encoder_decoder=False`), the possible [`~utils.ModelOutput`] types are: - [`~generation.GreedySearchDecoderOnlyOutput`], - [`~generation.SampleDecoderOnlyOutput`], - [`~generation.BeamSearchDecoderOnlyOutput`], - [`~generation.BeamSampleDecoderOnlyOutput`] If the model is an encoder-decoder model (`model.config.is_encoder_decoder=True`), the possible [`~utils.ModelOutput`] types are: - [`~generation.GreedySearchEncoderDecoderOutput`], - [`~generation.SampleEncoderDecoderOutput`], - [`~generation.BeamSearchEncoderDecoderOutput`], - [`~generation.BeamSampleEncoderDecoderOutput`] """ if generation_config is None: generation_config = self.generation_config if return_timestamps is not None: if not hasattr(generation_config, "no_timestamps_token_id"): raise ValueError( "You are trying to return timestamps, but the generation config is not properly set." "Make sure to initialize the generation config with the correct attributes that are needed such as `no_timestamps_token_id`." "For more details on how to generate the approtiate config, refer to https://github.com/huggingface/transformers/issues/21878#issuecomment-1451902363" ) generation_config.return_timestamps = return_timestamps else: generation_config.return_timestamps = False if language is not None: language = language.lower() generation_config.language = language if task is not None: generation_config.task = task forced_decoder_ids = None # Legacy code for backward compatibility if hasattr(self.config, "forced_decoder_ids") and self.config.forced_decoder_ids is not None: forced_decoder_ids = self.config.forced_decoder_ids elif ( hasattr(self.generation_config, "forced_decoder_ids") and self.generation_config.forced_decoder_ids is not None ): forced_decoder_ids = self.generation_config.forced_decoder_ids else: forced_decoder_ids = kwargs.get("forced_decoder_ids", None) if task is not None or language is not None or (forced_decoder_ids is None and prompt_ids is not None): forced_decoder_ids = [] if hasattr(generation_config, "language"): if generation_config.language in generation_config.lang_to_id.keys(): language_token = generation_config.language elif generation_config.language in TO_LANGUAGE_CODE.keys(): language_token = f"<|{TO_LANGUAGE_CODE[generation_config.language]}|>" elif generation_config.language in TO_LANGUAGE_CODE.values(): language_token = f"<|{generation_config.language}|>" else: is_language_code = len(generation_config.language) == 2 raise ValueError( f"Unsupported language: {generation_config.language}. Language should be one of:" f" {list(TO_LANGUAGE_CODE.values()) if is_language_code else list(TO_LANGUAGE_CODE.keys())}." ) forced_decoder_ids.append((1, generation_config.lang_to_id[language_token])) else: forced_decoder_ids.append((1, None)) # automatically detect the language if hasattr(generation_config, "task"): if generation_config.task in TASK_IDS: forced_decoder_ids.append((2, generation_config.task_to_id[generation_config.task])) else: raise ValueError( f"The `{generation_config.task}`task is not supported. The task should be one of `{TASK_IDS}`" ) elif hasattr(generation_config, "task_to_id"): forced_decoder_ids.append((2, generation_config.task_to_id["transcribe"])) # defaults to transcribe if hasattr(generation_config, "no_timestamps_token_id") and not generation_config.return_timestamps: idx = forced_decoder_ids[-1][0] + 1 if forced_decoder_ids else 1 forced_decoder_ids.append((idx, generation_config.no_timestamps_token_id)) if forced_decoder_ids is not None: generation_config.forced_decoder_ids = forced_decoder_ids if prompt_ids is not None: if kwargs.get("decoder_start_token_id") is not None: raise ValueError( "When specifying `prompt_ids`, you cannot also specify `decoder_start_token_id` as it gets overwritten." ) prompt_ids = prompt_ids.tolist() decoder_start_token_id, *text_prompt_ids = prompt_ids # Slicing the text prompt ids in a manner consistent with the OpenAI implementation # to accomodate context space for the prefix (see https://github.com/openai/whisper/blob/c09a7ae299c4c34c5839a76380ae407e7d785914/whisper/decoding.py#L599) text_prompt_ids = text_prompt_ids[-self.config.max_length // 2 - 1 :] # Set the decoder_start_token_id to <|startofprev|> kwargs.update({"decoder_start_token_id": decoder_start_token_id}) # If the user passes `max_new_tokens`, increase its number to account for the prompt if kwargs.get("max_new_tokens", None) is not None: kwargs["max_new_tokens"] += len(text_prompt_ids) # Reformat the forced_decoder_ids to incorporate the prompt non_prompt_forced_decoder_ids = ( kwargs.pop("forced_decoder_ids", None) or generation_config.forced_decoder_ids ) forced_decoder_ids = [ *text_prompt_ids, generation_config.decoder_start_token_id, *[token for _rank, token in non_prompt_forced_decoder_ids], ] forced_decoder_ids = [(rank + 1, token) for rank, token in enumerate(forced_decoder_ids)] generation_config.forced_decoder_ids = forced_decoder_ids if generation_config.return_timestamps: logits_processor = [WhisperTimeStampLogitsProcessor(generation_config)] if return_token_timestamps: kwargs["output_attentions"] = True kwargs["return_dict_in_generate"] = True if getattr(generation_config, "task", None) == "translate": logger.warning("Token-level timestamps may not be reliable for task 'translate'.") if not hasattr(generation_config, "alignment_heads"): raise ValueError( "Model generation config has no `alignment_heads`, token-level timestamps not available. " "See https://gist.github.com/hollance/42e32852f24243b748ae6bc1f985b13a on how to add this property to the generation config." ) outputs = super().generate( inputs, generation_config, logits_processor, stopping_criteria, prefix_allowed_tokens_fn, synced_gpus, **kwargs, ) if return_token_timestamps and hasattr(generation_config, "alignment_heads"): outputs["token_timestamps"] = self._extract_token_timestamps(outputs, generation_config.alignment_heads) return outputs def prepare_inputs_for_generation( self, decoder_input_ids, past_key_values=None, use_cache=None, encoder_outputs=None, attention_mask=None, **kwargs, ): # cut decoder_input_ids if past is used if past_key_values is not None: decoder_input_ids = decoder_input_ids[:, -1:] return { "encoder_outputs": encoder_outputs, "past_key_values": past_key_values, "decoder_input_ids": decoder_input_ids, "use_cache": use_cache, "decoder_attention_mask": None, } @staticmethod def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),) return reordered_past def _extract_token_timestamps(self, generate_outputs, alignment_heads, time_precision=0.02): """ Calculates token-level timestamps using the encoder-decoder cross-attentions and dynamic time-warping (DTW) to map each output token to a position in the input audio. Returns: tensor containing the timestamps in seconds for each predicted token """ # Create a list with `decoder_layers` elements, each a tensor of shape # (batch size, attention_heads, output length, input length). cross_attentions = [] for i in range(self.config.decoder_layers): cross_attentions.append(torch.cat([x[i] for x in generate_outputs.cross_attentions], dim=2)) # Select specific cross-attention layers and heads. This is a tensor # of shape (batch size, num selected, output length, input length). weights = torch.stack([cross_attentions[l][:, h] for l, h in alignment_heads]) weights = weights.permute([1, 0, 2, 3]) # Normalize and smoothen the weights. std, mean = torch.std_mean(weights, dim=-2, keepdim=True, unbiased=False) weights = (weights - mean) / std weights = _median_filter(weights, self.config.median_filter_width) # Average the different cross-attention heads. matrix = weights.mean(dim=1) timestamps = torch.zeros_like(generate_outputs.sequences, dtype=torch.float32) # Perform dynamic time warping on each element of the batch. for batch_idx in range(timestamps.shape[0]): text_indices, time_indices = _dynamic_time_warping(-matrix[batch_idx].double().cpu().numpy()) jumps = np.pad(np.diff(text_indices), (1, 0), constant_values=1).astype(bool) jump_times = time_indices[jumps] * time_precision timestamps[batch_idx, 1:] = torch.tensor(jump_times) return timestamps @add_start_docstrings( """ Whisper Encoder Model with a sequence classification head on top (a linear layer over the pooled output) for tasks like SUPERB Keyword Spotting. """, WHISPER_ENCODER_INPUTS_DOCSTRING, ) class WhisperForAudioClassification(WhisperPreTrainedModel): def __init__(self, config): super().__init__(config) self.encoder = WhisperEncoder(config) num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings if config.use_weighted_layer_sum: self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size) self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels) # Initialize weights and apply final processing self.post_init() def freeze_encoder(self): """ Calling this function will disable the gradient computation for the Whisper encoder so that its parameters will not be updated during training. Only the projection layers and classification head will be updated. """ self.encoder._freeze_parameters() def get_input_embeddings(self) -> nn.Module: return self.encoder.get_input_embeddings() def set_input_embeddings(self, value: nn.Module): self.encoder.set_input_embeddings(value) @add_start_docstrings_to_model_forward(WHISPER_ENCODER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_features: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). Returns: Example: ```python >>> import torch >>> from transformers import AutoFeatureExtractor, WhisperForAudioClassification >>> from datasets import load_dataset >>> feature_extractor = AutoFeatureExtractor.from_pretrained("sanchit-gandhi/whisper-medium-fleurs-lang-id") >>> model = WhisperForAudioClassification.from_pretrained("sanchit-gandhi/whisper-medium-fleurs-lang-id") >>> ds = load_dataset("google/fleurs", "all", split="validation", streaming=True) >>> sample = next(iter(ds)) >>> inputs = feature_extractor( ... sample["audio"]["array"], sampling_rate=sample["audio"]["sampling_rate"], return_tensors="pt" ... ) >>> input_features = inputs.input_features >>> with torch.no_grad(): ... logits = model(input_features).logits >>> predicted_class_ids = torch.argmax(logits).item() >>> predicted_label = model.config.id2label[predicted_class_ids] >>> predicted_label 'Afrikaans' ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if encoder_outputs is None: encoder_outputs = self.encoder( input_features, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if self.config.use_weighted_layer_sum: hidden_states = torch.stack(encoder_outputs, dim=1) norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) else: hidden_states = encoder_outputs[0] hidden_states = self.projector(hidden_states) pooled_output = hidden_states.mean(dim=1) logits = self.classifier(pooled_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() # move labels to correct device to enable PP labels = labels.to(logits.device) loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + encoder_outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/whisper/tokenization_whisper_fast.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for Whisper.""" import json import os from typing import List, Optional, Tuple import numpy as np from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .english_normalizer import EnglishTextNormalizer from .tokenization_whisper import LANGUAGES, TASK_IDS, TO_LANGUAGE_CODE, WhisperTokenizer, _decode_asr logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = { "vocab_file": "vocab.json", "tokenizer_file": "tokenizer.json", "merges_file": "merges.txt", "normalizer_file": "normalizer.json", } PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "openai/whisper-tiny": "https://huggingface.co/openai/whisper-tiny/resolve/main/vocab.json", "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/vocab.json", "openai/whisper-small": "https://huggingface.co/openai/whisper-small/resolve/main/vocab.json", "openai/whisper-medium": "https://huggingface.co/openai/whisper-medium/resolve/main/vocab.json", "openai/whisper-large": "https://huggingface.co/openai/whisper-large/resolve/main/vocab.json", "openai/whisper-tiny.en": "https://huggingface.co/openai/whisper-tiny.en/resolve/main/vocab.json", "openai/whisper-base.en": "https://huggingface.co/openai/whisper-base.en/resolve/main/vocab.json", "openai/whisper-small.en": "https://huggingface.co/openai/whisper-small.en/resolve/main/vocab.json", "openai/whisper-medium.en": "https://huggingface.co/openai/whisper-medium.en/resolve/main/vocab.json", }, "merges_file": { "openai/whisper-tiny": "https://huggingface.co/openai/whisper-tiny/resolve/main/merges.txt", "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/merges.txt", "openai/whisper-small": "https://huggingface.co/openai/whisper-small/resolve/main/merges.txt", "openai/whisper-medium": "https://huggingface.co/openai/whisper-medium/resolve/main/merges.txt", "openai/whisper-large": "https://huggingface.co/openai/whisper-large/resolve/main/merges.txt", "openai/whisper-tiny.en": "https://huggingface.co/openai/whisper-tiny.en/resolve/main/merges.txt", "openai/whisper-base.en": "https://huggingface.co/openai/whisper-base.en/resolve/main/merges.txt", "openai/whisper-small.en": "https://huggingface.co/openai/whisper-small.en/resolve/main/merges.txt", "openai/whisper-medium.en": "https://huggingface.co/openai/whisper-medium.en/resolve/main/merges.txt", }, "tokenizer_file": { "openai/whisper-tiny": "https://huggingface.co/openai/whisper-tiny/resolve/main/tokenizer.json", "openai/whisper-base": "https://huggingface.co/openai/whisper-base/resolve/main/tokenizer.json", "openai/whisper-small": "https://huggingface.co/openai/whisper-small/resolve/main/tokenizer.json", "openai/whisper-medium": "https://huggingface.co/openai/whisper-medium/resolve/main/tokenizer.json", "openai/whisper-large": "https://huggingface.co/openai/whisper-large/resolve/main/tokenizer.json", "openai/whisper-tiny.en": "https://huggingface.co/openai/whisper-tiny.en/resolve/main/tokenizer.json", "openai/whisper-base.en": "https://huggingface.co/openai/whisper-base.en/resolve/main/tokenizer.json", "openai/whisper-small.en": "https://huggingface.co/openai/whisper-small.en/resolve/main/tokenizer.json", "openai/whisper-medium.en": "https://huggingface.co/openai/whisper-medium.en/resolve/main/tokenizer.json", }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "openai/whisper-tiny": 1500, "openai/whisper-base": 1500, "openai/whisper-small": 1500, "openai/whisper-medium": 1500, "openai/whisper-large": 1500, "openai/whisper-tiny.en": 1500, "openai/whisper-base.en": 1500, "openai/whisper-small.en": 1500, "openai/whisper-medium.en": 1500, } class WhisperTokenizerFast(PreTrainedTokenizerFast): """ Construct a "fast" Whisper tokenizer (backed by HuggingFace's *tokenizers* library). This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. merges_file (`str`): Path to the merges file. normalizer_file (`str`, *optional*, defaults to `None`): Path to the normalizer_file file. errors (`str`, *optional*, defaults to `"replace"`): Paradigm to follow when decoding bytes to UTF-8. See [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. unk_token (`str`, *optional*, defaults to `<|endoftext|>`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. bos_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The beginning of sequence token. The `decoder_start_token_id` is used to set the first token as `"<|startoftranscript|>"` when generating. eos_token (`str`, *optional*, defaults to `<|endoftext|>`): The end of sequence token. add_prefix_space (`bool`, *optional*, defaults to `False`): Whether or not to add an initial space to the input. This allows to treat the leading word just as any other word. (Whisper tokenizer detect beginning of words by the preceding space). trim_offsets (`bool`, *optional*, defaults to `True`): Whether or not the post-processing step should trim offsets to avoid including whitespaces. language (`str`, *optional*): The language of the transcription text. The corresponding language id token is appended to the start of the sequence for multilingual speech recognition and speech translation tasks, e.g. for Spanish the token `"<|es|>"` is appended to the start of sequence. This should be used for multilingual fine-tuning only. task (`str`, *optional*): Task identifier to append at the start of sequence (if any). This should be used for mulitlingual fine-tuning, with `"transcribe"` for speech recognition and `"translate"` for speech translation. predict_timestamps (`bool`, *optional*, defaults to `False`): Whether to omit the `<|notimestamps|>` token at the start of the sequence. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] slow_tokenizer_class = WhisperTokenizer def __init__( self, vocab_file=None, merges_file=None, normalizer_file=None, tokenizer_file=None, unk_token="<|endoftext|>", bos_token="<|endoftext|>", eos_token="<|endoftext|>", add_prefix_space=False, language=None, task=None, predict_timestamps=False, **kwargs, ): super().__init__( vocab_file, merges_file, tokenizer_file=tokenizer_file, unk_token=unk_token, bos_token=bos_token, eos_token=eos_token, add_prefix_space=add_prefix_space, **kwargs, ) self.add_bos_token = kwargs.pop("add_bos_token", False) pre_tok_state = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get("add_prefix_space", add_prefix_space) != add_prefix_space: pre_tok_class = getattr(pre_tokenizers, pre_tok_state.pop("type")) pre_tok_state["add_prefix_space"] = add_prefix_space self.backend_tokenizer.pre_tokenizer = pre_tok_class(**pre_tok_state) if normalizer_file is not None: with open(normalizer_file, encoding="utf-8") as vocab_handle: self.english_spelling_normalizer = json.load(vocab_handle) else: self.english_spelling_normalizer = None self.add_prefix_space = add_prefix_space self.language = language self.task = task self.predict_timestamps = predict_timestamps # Copied from transformers.models.gpt2.tokenization_gpt2_fast.GPT2TokenizerFast._batch_encode_plus def _batch_encode_plus(self, *args, **kwargs) -> BatchEncoding: is_split_into_words = kwargs.get("is_split_into_words", False) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*args, **kwargs) # Copied from transformers.models.gpt2.tokenization_gpt2_fast.GPT2TokenizerFast._encode_plus def _encode_plus(self, *args, **kwargs) -> BatchEncoding: is_split_into_words = kwargs.get("is_split_into_words", False) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*args, **kwargs) # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer._decode_with_timestamps def _decode_with_timestamps(self, token_ids, skip_special_tokens=False, time_precision=0.02) -> str: """ Timestamp tokens are above the special tokens' id range and are ignored by `decode()`. This method decodes given tokens with timestamps tokens annotated, e.g. "<|1.08|>". """ timestamp_begin = self.all_special_ids[-1] + 1 outputs = [[]] for token in token_ids: if token >= timestamp_begin: timestamp = f"<|{(token - timestamp_begin) * time_precision:.2f}|>" outputs.append(timestamp) outputs.append([]) else: outputs[-1].append(token) outputs = [ s if isinstance(s, str) else self.decode(s, skip_special_tokens=skip_special_tokens) for s in outputs ] return "".join(outputs) # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer._compute_offsets def _compute_offsets(self, token_ids, time_precision=0.02): """ Compute offsets for a given tokenized input Args: token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`): List of tokenized input ids. Can be obtained using the `__call__` method. time_precision (`float`, `optional`, defaults to 0.02): The time ratio to convert from token to time. """ offsets = [] token_ids = np.array(token_ids) if token_ids.shape[0] > 1 and len(token_ids.shape) > 1: raise ValueError("Can only process a single input at a time") timestamp_begin = self.all_special_ids[-1] + 1 timestamp_tokens = token_ids >= timestamp_begin consecutive = np.where(timestamp_tokens[:-1] & timestamp_tokens[1:])[0] + 1 if consecutive.shape[0] == 0 and timestamp_tokens.sum() <= 1: # either there are no timestamps or there are no consecutive ones return [] elif np.where(timestamp_tokens)[0][-1] + 1 not in consecutive: # we add the final timestamp if it is not already in the list consecutive = np.append(consecutive, np.where(timestamp_tokens)[0][-1] + 1) last_slice = np.where(timestamp_tokens)[0][0] for current_slice in consecutive: sliced_tokens = token_ids[last_slice:current_slice] if len(sliced_tokens) > 1: start_timestamp_position = sliced_tokens[0].item() - timestamp_begin end_timestamp_position = sliced_tokens[-1].item() - timestamp_begin offsets.append( { "text": self._decode(sliced_tokens), "timestamp": ( start_timestamp_position * time_precision, end_timestamp_position * time_precision, ), } ) last_slice = current_slice return offsets # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer.decode def decode( self, token_ids, skip_special_tokens: bool = False, clean_up_tokenization_spaces: bool = None, output_offsets: bool = False, time_precision=0.02, decode_with_timestamps: bool = False, **kwargs, ) -> str: """ Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special tokens and clean up tokenization spaces. Similar to doing `self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))`. Args: token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`): List of tokenized input ids. Can be obtained using the `__call__` method. skip_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not to remove special tokens in the decoding. clean_up_tokenization_spaces (`bool`, *optional*): Whether or not to clean up the tokenization spaces. If `None`, will default to `self.clean_up_tokenization_spaces` (available in the `tokenizer_config`). kwargs (additional keyword arguments, *optional*): Will be passed to the underlying model specific decode method. output_offsets (`bool`, *optional*, defaults to `False`): Whether or not to output the offsets of the tokens. This should only be set if the model predicted timestamps. decode_with_timestamps (`bool`, *optional*, defaults to `False`): Whether or not to decode with timestamps included in the raw text. Returns: `str`: The decoded sentence. """ text = super().decode( token_ids, skip_special_tokens=skip_special_tokens, clean_up_tokenization_spaces=clean_up_tokenization_spaces, **kwargs, ) if decode_with_timestamps: text = self._decode_with_timestamps( token_ids, time_precision=time_precision, skip_special_tokens=skip_special_tokens ) # retrieve offsets if output_offsets: offsets = None offsets = self._compute_offsets(token_ids, time_precision=time_precision) return {"text": text, "offsets": offsets} return text def _decode(self, *args, normalize: bool = False, **kwargs) -> str: if kwargs["skip_special_tokens"]: prompt_token_id = self.convert_tokens_to_ids("<|startofprev|>") decoder_start_token_id = self.convert_tokens_to_ids("<|startoftranscript|>") kwargs["token_ids"] = self._strip_prompt(kwargs["token_ids"], prompt_token_id, decoder_start_token_id) text = super()._decode(*args, **kwargs) if normalize: clean_text = self._normalize(text) return clean_text else: return text # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer._normalize def _normalize(self, text): """ Normalize a given string using the `EnglishTextNormalizer` class, which preforms commons transformation on english text. """ normalizer = EnglishTextNormalizer(self.english_spelling_normalizer) return normalizer(text) def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: files = self._tokenizer.model.save(save_directory, name=filename_prefix) normalizer_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["normalizer_file"] ) if self.english_spelling_normalizer is not None: with open(normalizer_file, "w", encoding="utf-8") as f: f.write( json.dumps(self.english_spelling_normalizer, indent=2, sort_keys=True, ensure_ascii=False) + "\n" ) return tuple(files) + (normalizer_file,) def set_prefix_tokens(self, language: str = None, task: str = None, predict_timestamps: bool = None): """ Override the prefix tokens appended to the start of the label sequence. This method can be used standalone to update the prefix tokens as required when fine-tuning. Example: ```python >>> # instantiate the tokenizer and set the prefix token to Spanish >>> tokenizer = WhisperTokenizerFast.from_pretrained("openai/whisper-tiny", language="spanish") >>> # now switch the prefix token from Spanish to French >>> tokenizer.set_prefix_tokens(language="french") ``` Args: language (`str`, *optional*, defaults to `None`): The language of the transcription text. task (`str`, *optional*, defaults to `None`): Task identifier to append at the start of sequence (if any). predict_timestamps (`bool`, *optional*, defaults to `None`): Whether to omit the `<|notimestamps|>` token at the start of the sequence. """ self.language = language if language is not None else self.language self.task = task if task is not None else self.task self.predict_timestamps = predict_timestamps if predict_timestamps is not None else self.predict_timestamps prefix_token_ids = self.prefix_tokens prefixes = self.convert_ids_to_tokens(prefix_token_ids) eos = self.eos_token eos_token_id = self.eos_token_id prefix_template = " ".join([f"{token}:0" for token in prefixes]) self.backend_tokenizer.post_processor = processors.TemplateProcessing( single=f"{prefix_template} $A:0 {eos}:0", pair=f"{prefix_template} $A:0 $B:1 {eos}:1", special_tokens=[ (eos, eos_token_id), *zip(prefixes, prefix_token_ids), ], ) @property # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer.prefix_tokens def prefix_tokens(self) -> List[int]: all_special_ids = self.all_special_ids bos_token_id = all_special_ids[-106] translate_token_id = all_special_ids[-6] transcribe_token_id = all_special_ids[-5] notimestamps_token_id = all_special_ids[-1] langs = tuple(LANGUAGES.keys()) if self.language is not None: self.language = self.language.lower() if self.language in TO_LANGUAGE_CODE: language_id = TO_LANGUAGE_CODE[self.language] elif self.language in TO_LANGUAGE_CODE.values(): language_id = self.language else: is_language_code = len(self.language) == 2 raise ValueError( f"Unsupported language: {self.language}. Language should be one of:" f" {list(TO_LANGUAGE_CODE.values()) if is_language_code else list(TO_LANGUAGE_CODE.keys())}." ) if self.task is not None: if self.task not in TASK_IDS: raise ValueError(f"Unsupported task: {self.task}. Task should be in: {TASK_IDS}") bos_sequence = [bos_token_id] if self.language is not None: bos_sequence.append(bos_token_id + 1 + langs.index(language_id)) if self.task is not None: bos_sequence.append(transcribe_token_id if self.task == "transcribe" else translate_token_id) if not self.predict_timestamps: bos_sequence.append(notimestamps_token_id) return bos_sequence # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer.build_inputs_with_special_tokens def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None) -> List[int]: """Build model inputs from a sequence by appending eos_token_id.""" if token_ids_1 is None: return self.prefix_tokens + token_ids_0 + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_0 + token_ids_1 + [self.eos_token_id] # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer.get_special_tokens_mask def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) prefix_ones = [1] * len(self.prefix_tokens) suffix_ones = [1] if token_ids_1 is None: return prefix_ones + ([0] * len(token_ids_0)) + suffix_ones return prefix_ones + ([0] * len(token_ids_0)) + ([0] * len(token_ids_1)) + suffix_ones # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer._build_conversation_input_ids def _build_conversation_input_ids(self, conversation) -> List[int]: input_ids = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(text, add_special_tokens=False) + [self.eos_token_id]) if len(input_ids) > self.model_max_length: input_ids = input_ids[-self.model_max_length :] return input_ids # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer.get_decoder_prompt_ids def get_decoder_prompt_ids(self, task=None, language=None, no_timestamps=True): self.set_prefix_tokens(task=task, language=language, predict_timestamps=not no_timestamps) # prefix tokens are of the form: <|startoftranscript|> <|lang_id|> <|task|> <|notimestamps|> # we don't want to force the bos token at position 1, as this is the starting token # when we generate, so we slice the prefix tokens to: <|lang_id|> <|task|> <|notimestamps|> # to get the forced tokens forced_tokens = self.prefix_tokens[1:] forced_decoder_ids = [(rank + 1, token) for rank, token in enumerate(forced_tokens)] return forced_decoder_ids def _decode_asr(self, model_outputs, *, return_timestamps, return_language, time_precision): return _decode_asr( self, model_outputs, return_timestamps=return_timestamps, return_language=return_language, time_precision=time_precision, ) # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer.get_prompt_ids def get_prompt_ids(self, text: str, return_tensors="np"): """Converts prompt text to IDs that can be passed to [`~WhisperForConditionalGeneration.generate`].""" batch_encoding = self("<|startofprev|>", " " + text.strip(), add_special_tokens=False) # Check for special tokens prompt_text_ids = batch_encoding["input_ids"][1:] special_token_id = next((x for x in prompt_text_ids if x >= self.all_special_ids[0]), None) if special_token_id is not None: token = self.convert_ids_to_tokens(special_token_id) raise ValueError(f"Encountered text in the prompt corresponding to disallowed special token: {token}.") batch_encoding.convert_to_tensors(tensor_type=return_tensors) return batch_encoding["input_ids"] @staticmethod # Copied from transformers.models.whisper.tokenization_whisper.WhisperTokenizer._strip_prompt def _strip_prompt(token_ids: List[int], prompt_token_id: int, decoder_start_token_id: int): has_prompt = isinstance(token_ids, list) and token_ids and token_ids[0] == prompt_token_id if has_prompt: if decoder_start_token_id in token_ids: return token_ids[token_ids.index(decoder_start_token_id) :] else: return [] return token_ids
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/whisper/modeling_tf_whisper.py
# coding=utf-8 # Copyright 2022 The OpenAI Authors and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TensorFlow Whisper model.""" from __future__ import annotations import math import random from typing import Dict, List, Optional, Tuple, Union import numpy as np import tensorflow as tf from ...activations_tf import get_tf_activation from ...generation.configuration_utils import GenerationConfig from ...generation.tf_logits_process import TFLogitsProcessorList from ...modeling_tf_outputs import ( TFBaseModelOutput, TFBaseModelOutputWithPastAndCrossAttentions, TFSeq2SeqLMOutput, TFSeq2SeqModelOutput, ) from ...modeling_tf_utils import ( TFCausalLanguageModelingLoss, TFModelInputType, TFPreTrainedModel, keras_serializable, unpack_inputs, ) from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings from .configuration_whisper import WhisperConfig from .tokenization_whisper import TASK_IDS, TO_LANGUAGE_CODE logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "WhisperConfig" TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST = [ "openai/whisper-base", # See all Whisper models at https://huggingface.co/models?filter=whisper ] LARGE_NEGATIVE = -1e8 # Copied from transformers.models.bart.modeling_tf_bart.shift_tokens_right def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_token_id: int): pad_token_id = tf.cast(pad_token_id, input_ids.dtype) decoder_start_token_id = tf.cast(decoder_start_token_id, input_ids.dtype) start_tokens = tf.fill( (shape_list(input_ids)[0], 1), tf.convert_to_tensor(decoder_start_token_id, input_ids.dtype) ) shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1) # replace possible -100 values in labels by `pad_token_id` shifted_input_ids = tf.where( shifted_input_ids == -100, tf.fill(shape_list(shifted_input_ids), tf.convert_to_tensor(pad_token_id, input_ids.dtype)), shifted_input_ids, ) # "Verify that `labels` has only positive values and -100" assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype)) # Make sure the assertion op is called by wrapping the result in an identity no-op with tf.control_dependencies([assert_gte0]): shifted_input_ids = tf.identity(shifted_input_ids) return shifted_input_ids # Copied from transformers.models.bart.modeling_tf_bart._make_causal_mask def _make_causal_mask(input_ids_shape: tf.TensorShape, past_key_values_length: int = 0): """ Make causal mask used for bi-directional self-attention. """ bsz = input_ids_shape[0] tgt_len = input_ids_shape[1] mask = tf.ones((tgt_len, tgt_len)) * LARGE_NEGATIVE mask_cond = tf.range(shape_list(mask)[-1]) mask = tf.where(mask_cond < tf.reshape(mask_cond + 1, (shape_list(mask)[-1], 1)), 0.0, mask) if past_key_values_length > 0: mask = tf.concat([tf.zeros((tgt_len, past_key_values_length)), mask], axis=-1) return tf.tile(mask[None, None, :, :], (bsz, 1, 1, 1)) # Copied from transformers.models.bart.modeling_tf_bart._expand_mask def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None): """ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. """ src_len = shape_list(mask)[1] tgt_len = tgt_len if tgt_len is not None else src_len one_cst = tf.constant(1.0) mask = tf.cast(mask, dtype=one_cst.dtype) expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1)) return (one_cst - expanded_mask) * LARGE_NEGATIVE class TFWhisperPositionalEmbedding(tf.keras.layers.Layer): def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None, **kwargs): super().__init__(**kwargs) self.num_positions = num_positions self.embedding_dim = embedding_dim self.padding_idx = padding_idx def build(self, input_shape): self.weight = self.add_weight( name="weight", shape=[self.num_positions, self.embedding_dim], trainable=True, ) super().build(input_shape) def call(self, input_ids, past_key_values_length=0): past_key_values_length = tf.cast(past_key_values_length, tf.int32) gather_indices = tf.range(tf.shape(input_ids)[1], delta=1) + past_key_values_length return tf.gather(self.weight, gather_indices) class TFWhisperAttention(tf.keras.layers.Layer): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, **kwargs, ): super().__init__(**kwargs) self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = tf.keras.layers.Dropout(dropout) self.head_dim = embed_dim // num_heads if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.k_proj = tf.keras.layers.Dense(embed_dim, use_bias=False, name="k_proj") self.v_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj") self.q_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj") self.out_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj") # Copied from transformers.models.bart.modeling_tf_bart.TFBartAttention._shape with BART->whisper def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int): return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3)) # Copied from transformers.models.bart.modeling_tf_bart.TFBartAttention.call with BART->whisper def call( self, hidden_states: tf.Tensor, key_value_states: tf.Tensor | None = None, past_key_value: Tuple[Tuple[tf.Tensor]] | None = None, attention_mask: tf.Tensor | None = None, layer_head_mask: tf.Tensor | None = None, training: Optional[bool] = False, ) -> Tuple[tf.Tensor, tf.Tensor | None]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, embed_dim = shape_list(hidden_states) # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = tf.concat([past_key_value[0], key_states], axis=2) value_states = tf.concat([past_key_value[1], value_states], axis=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape) key_states = tf.reshape(key_states, proj_shape) value_states = tf.reshape(value_states, proj_shape) src_len = shape_list(key_states)[1] attn_weights = tf.matmul(query_states, key_states, transpose_b=True) tf.debugging.assert_equal( shape_list(attn_weights), [bsz * self.num_heads, tgt_len, src_len], message=( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {shape_list(attn_weights)}" ), ) if attention_mask is not None: tf.debugging.assert_equal( shape_list(attention_mask), [bsz, 1, tgt_len, src_len], message=( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is" f" {shape_list(attention_mask)}" ), ) attention_mask = tf.cast(attention_mask, dtype=attn_weights.dtype) attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) attn_weights = stable_softmax(attn_weights, axis=-1) if layer_head_mask is not None: tf.debugging.assert_equal( shape_list(layer_head_mask), [self.num_heads], message=( f"Head mask for a single layer should be of size {(self.num_heads)}, but is" f" {shape_list(layer_head_mask)}" ), ) attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape( attn_weights, (bsz, self.num_heads, tgt_len, src_len) ) attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) attn_probs = self.dropout(attn_weights, training=training) attn_output = tf.matmul(attn_probs, value_states) tf.debugging.assert_equal( shape_list(attn_output), [bsz * self.num_heads, tgt_len, self.head_dim], message=( f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" f" {shape_list(attn_output)}" ), ) attn_output = tf.transpose( tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3) ) attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim)) attn_output = self.out_proj(attn_output) attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) return attn_output, attn_weights, past_key_value # Copied from transformers.models.speech_to_text.modeling_tf_speech_to_text.TFSpeech2TextEncoderLayer with Speech2Text->Whisper class TFWhisperEncoderLayer(tf.keras.layers.Layer): def __init__(self, config: WhisperConfig, **kwargs): super().__init__(**kwargs) self.embed_dim = config.d_model self.self_attn = TFWhisperAttention( self.embed_dim, config.encoder_attention_heads, dropout=config.attention_dropout, name="self_attn" ) self.self_attn_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm") self.dropout = tf.keras.layers.Dropout(config.dropout) self.activation_fn = get_tf_activation(config.activation_function) self.activation_dropout = tf.keras.layers.Dropout(config.activation_dropout) self.fc1 = tf.keras.layers.Dense(config.encoder_ffn_dim, name="fc1") self.fc2 = tf.keras.layers.Dense(self.embed_dim, name="fc2") self.final_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm") def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, layer_head_mask: tf.Tensor, training: bool = False ): """ Args: hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`tf.Tensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size `(encoder_attention_heads,)` """ residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) hidden_states, self_attn_weights, _ = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask, training=training, ) tf.debugging.assert_equal( shape_list(hidden_states), shape_list(residual), message=f"Self attn modified the shape of query {shape_list(residual)} to {shape_list(hidden_states)}", ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout(hidden_states, training=training) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states return hidden_states, self_attn_weights # Copied from transformers.models.speech_to_text.modeling_tf_speech_to_text.TFSpeech2TextDecoderLayer with Speech2Text->Whisper class TFWhisperDecoderLayer(tf.keras.layers.Layer): def __init__(self, config: WhisperConfig, **kwargs): super().__init__(**kwargs) self.embed_dim = config.d_model self.self_attn = TFWhisperAttention( embed_dim=self.embed_dim, num_heads=config.decoder_attention_heads, dropout=config.attention_dropout, name="self_attn", is_decoder=True, ) self.dropout = tf.keras.layers.Dropout(config.dropout) self.activation_fn = get_tf_activation(config.activation_function) self.activation_dropout = tf.keras.layers.Dropout(config.activation_dropout) self.self_attn_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm") self.encoder_attn = TFWhisperAttention( self.embed_dim, config.decoder_attention_heads, dropout=config.attention_dropout, name="encoder_attn", is_decoder=True, ) self.encoder_attn_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="encoder_attn_layer_norm") self.fc1 = tf.keras.layers.Dense(config.decoder_ffn_dim, name="fc1") self.fc2 = tf.keras.layers.Dense(self.embed_dim, name="fc2") self.final_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm") def call( self, hidden_states, attention_mask: tf.Tensor | None = None, encoder_hidden_states: tf.Tensor | None = None, encoder_attention_mask: tf.Tensor | None = None, layer_head_mask: tf.Tensor | None = None, cross_attn_layer_head_mask: tf.Tensor | None = None, past_key_value: Tuple[tf.Tensor] | None = None, training=False, ) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]: """ Args: hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`tf.Tensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. encoder_hidden_states (`tf.Tensor`): cross attention input to the layer of shape `(batch, seq_len, embed_dim)` encoder_attention_mask (`tf.Tensor`): encoder attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size `(decoder_attention_heads,)` cross_attn_layer_head_mask (`tf.Tensor`): mask for heads of the cross-attention module. `(decoder_attention_heads,)` past_key_value (`Tuple(tf.Tensor)`): cached past key and value projection states """ residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Self Attention # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None # add present self-attn cache to positions 1,2 of present_key_value tuple hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, past_key_value=self_attn_past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, training=training, ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states # Cross-Attention Block cross_attn_present_key_value = None cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, layer_head_mask=cross_attn_layer_head_mask, past_key_value=cross_attn_past_key_value, training=training, ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states # add cross-attn to positions 3,4 of present_key_value tuple present_key_value = present_key_value + cross_attn_present_key_value # Fully Connected residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout(hidden_states, training=training) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states return ( hidden_states, self_attn_weights, cross_attn_weights, present_key_value, ) class TFWhisperPreTrainedModel(TFPreTrainedModel): config_class = WhisperConfig base_model_prefix = "model" main_input_name = "input_features" def _get_feat_extract_output_lengths(self, input_lengths: tf.Tensor) -> int: """ Computes the output length of the convolutional layers """ input_lengths = (input_lengths - 1) // 2 + 1 return input_lengths @property def dummy_inputs(self) -> Dict[str, tf.Tensor]: """ Dummy inputs to build the network. Returns: `Dict[str, tf.Tensor]`: The dummy inputs. """ return { self.main_input_name: tf.random.uniform( [1, self.config.num_mel_bins, self.config.max_source_positions * 2 - 1], dtype=tf.float32 ), "decoder_input_ids": tf.constant([[1, 3]], dtype=tf.int32), } @property def input_signature(self): return { "input_features": tf.TensorSpec((None, self.config.num_mel_bins, None), tf.float32, name="input_features"), "decoder_input_ids": tf.TensorSpec((None, None), tf.int32, name="decoder_input_ids"), "decoder_attention_mask": tf.TensorSpec((None, None), tf.int32, name="decoder_attention_mask"), } WHISPER_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. Parameters: config ([`WhisperConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ WHISPER_INPUTS_DOCSTRING = r""" Args: input_features (`tf.Tensor` of shape `(batch_size, feature_size, sequence_length)`): Float values of fbank features extracted from the raw speech waveform. Raw speech waveform can be obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the [`AutoFeatureExtractor`] should be used for extracting the fbank features, padding and conversion into a tensor of type `tf.Tensor`. See [`~WhisperFeatureExtractor.__call__`] decoder_input_ids (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`SpeechToTextTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) SpeechToText uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). decoder_attention_mask (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. If you want to change padding behavior, you should read [`modeling_whisper._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. decoder_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. encoder_outputs (`tuple(tuple(tf.Tensor)`, *optional*): Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. past_key_values (`tuple(tuple(tf.Tensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(tf.Tensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. decoder_inputs_embeds (`tf.Tensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be input (see `past_key_values`). This is useful if you want more control over how to convert `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @keras_serializable class TFWhisperEncoder(tf.keras.layers.Layer): config_class = WhisperConfig """ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a [`TFWhisperEncoderLayer`]. Args: config: WhisperConfig embed_tokens (TFWhisperEmbedding): output embedding """ def __init__(self, config: WhisperConfig, **kwargs): super().__init__(**kwargs) self.config = config self.layerdrop = config.encoder_layerdrop self.embed_dim = config.d_model self.num_mel_bins = config.num_mel_bins self.padding_idx = config.pad_token_id self.max_source_positions = config.max_source_positions self.embed_scale = math.sqrt(self.embed_dim) if config.scale_embedding else 1.0 # Padding is added in call() to match the PyTorch implementation self.conv1 = tf.keras.layers.Conv1D(self.embed_dim, kernel_size=3, strides=1, padding="valid", name="conv1") self.conv2 = tf.keras.layers.Conv1D(self.embed_dim, kernel_size=3, strides=2, padding="valid", name="conv2") self.embed_positions = TFWhisperPositionalEmbedding( self.max_source_positions, self.embed_dim, name="embed_positions" ) self.encoder_layers = [TFWhisperEncoderLayer(config, name=f"layers.{i}") for i in range(config.encoder_layers)] self.layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="layer_norm") self.dropout = tf.keras.layers.Dropout(config.dropout) @unpack_inputs def call( self, input_features=None, head_mask=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, ): r""" Args: input_features (`tf.Tensor` of shape `(batch_size, feature_size, sequence_length)`): Float values of fbank features extracted from the raw speech waveform. Raw speech waveform can be obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the [`AutoFeatureExtractor`] should be used for extracting the fbank features, padding and conversion into a tensor of type `tf.Tensor`. See [`~WhisperFeatureExtractor.__call__`] head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # TF 2.0 layers can't use channels first format when running on CPU. input_features = tf.transpose(input_features, perm=(0, 2, 1)) input_features = tf.pad(input_features, [[0, 0], [1, 1], [0, 0]]) inputs_embeds = tf.keras.activations.gelu(self.conv1(input_features)) inputs_embeds = tf.pad(inputs_embeds, [[0, 0], [1, 1], [0, 0]]) inputs_embeds = tf.keras.activations.gelu(self.conv2(inputs_embeds)) inputs_embeds = tf.transpose(inputs_embeds, perm=(0, 1, 2)) embed_pos = self.embed_positions(input_ids=tf.zeros((1, self.max_source_positions), dtype=tf.int32)) hidden_states = inputs_embeds + embed_pos hidden_states = self.dropout(hidden_states, training=training) encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None # check if head_mask has a correct number of layers specified if desired if head_mask is not None: tf.debugging.assert_equal( shape_list(head_mask)[0], len(self.encoder_layers), message=( f"The head_mask should be specified for {len(self.encoder_layers)} layers, but it is for" f" {shape_list(head_mask)[0]}." ), ) for idx, encoder_layer in enumerate(self.encoder_layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = random.uniform(0, 1) if training and (dropout_probability < self.layerdrop): # skip the layer continue hidden_states, attn = encoder_layer( hidden_states, None, layer_head_mask=(head_mask[idx] if head_mask is not None else None), training=training, ) if output_attentions: all_attentions += (attn,) hidden_states = self.layer_norm(hidden_states) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) @keras_serializable class TFWhisperDecoder(tf.keras.layers.Layer): config_class = WhisperConfig """ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`TFWhisperDecoderLayer`] Args: config: WhisperConfig """ def __init__(self, config: WhisperConfig, **kwargs): super().__init__(**kwargs) self.config = config self.dropout = tf.keras.layers.Dropout(config.dropout) self.layerdrop = config.decoder_layerdrop self.padding_idx = config.pad_token_id self.max_target_positions = config.max_target_positions self.max_source_positions = config.max_source_positions self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0 self.embed_tokens = tf.keras.layers.Embedding( input_dim=config.vocab_size, output_dim=config.d_model, embeddings_initializer=tf.keras.initializers.TruncatedNormal(stddev=self.config.init_std), name="embed_tokens", ) self.embed_positions = TFWhisperPositionalEmbedding( self.max_target_positions, config.d_model, name="embed_positions" ) self.decoder_layers = [TFWhisperDecoderLayer(config, name=f"layers.{i}") for i in range(config.decoder_layers)] self.layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="layer_norm") def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value def _prepare_decoder_attention_mask(self, attention_mask, input_shape, past_key_values_length): # create causal mask # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] batch_size, seq_len = input_shape[0], input_shape[1] combined_attention_mask = tf.cond( tf.math.greater(seq_len, 1), lambda: _make_causal_mask(input_shape, past_key_values_length=past_key_values_length), lambda: _expand_mask(tf.ones((batch_size, seq_len + past_key_values_length)), tgt_len=seq_len), ) if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] expanded_attn_mask = _expand_mask(attention_mask, tgt_len=input_shape[-1]) combined_attention_mask = ( expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask ) return combined_attention_mask @unpack_inputs def call( self, input_ids=None, attention_mask=None, position_ids=None, encoder_hidden_states=None, head_mask=None, cross_attn_head_mask=None, past_key_values=None, inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, ): r""" Args: input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`WhisperTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. encoder_hidden_states (`tf.Tensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in encoder to avoid performing cross-attention on hidden heads. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`tuple(tuple(tf.Tensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(tf.Tensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif input_ids is not None: input_shape = tf.shape(input_ids) input_ids = tf.reshape(input_ids, (-1, input_shape[-1])) elif inputs_embeds is not None: input_shape = tf.shape(inputs_embeds)[:-1] else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if inputs_embeds is None: check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim) inputs_embeds = self.embed_tokens(input_ids) attention_mask = self._prepare_decoder_attention_mask(attention_mask, input_shape, past_key_values_length) # embed positions filled_past_positions = past_key_values_length if position_ids is None else position_ids[0, -1] positions = self.embed_positions(input_ids, past_key_values_length=filled_past_positions) hidden_states = inputs_embeds + positions hidden_states = self.dropout(hidden_states, training=training) # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None next_decoder_cache = () if use_cache else None # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired for attn_mask_name, attn_mask in [("head_mask", head_mask), ("cross_attn_head_mask", cross_attn_head_mask)]: if attn_mask is not None: tf.debugging.assert_equal( shape_list(attn_mask)[0], len(self.decoder_layers), message=( f"The {attn_mask_name} should be specified for {len(self.decoder_layers)} layers, but it is" f" for {shape_list(attn_mask)[0]}." ), ) for idx, decoder_layer in enumerate(self.decoder_layers): # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) if output_hidden_states: all_hidden_states += (hidden_states,) dropout_probability = random.uniform(0, 1) if training and (dropout_probability < self.layerdrop): continue past_key_value = past_key_values[idx] if past_key_values is not None else None layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, layer_head_mask=(head_mask[idx] if head_mask is not None else None), cross_attn_layer_head_mask=(cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None), past_key_value=past_key_value, training=training, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[3],) if output_attentions: all_self_attns += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) hidden_states = self.layer_norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if not return_dict: return tuple( v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions] if v is not None ) return TFBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, ) @add_start_docstrings( "The bare Whisper Model outputting raw hidden-states without any specific head on top.", WHISPER_START_DOCSTRING, ) @keras_serializable class TFWhisperMainLayer(tf.keras.layers.Layer): config_class = WhisperConfig def __init__(self, config: WhisperConfig, **kwargs): super().__init__(**kwargs) self.config = config self.encoder = TFWhisperEncoder(config, name="encoder") self.decoder = TFWhisperDecoder(config, name="decoder") def get_input_embeddings(self): return self.decoder.embed_tokens def set_input_embeddings(self, value): self.decoder.embed_tokens = value def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder @add_start_docstrings_to_model_forward(WHISPER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) @unpack_inputs def call( self, input_features=None, decoder_input_ids=None, decoder_attention_mask=None, decoder_position_ids=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, encoder_outputs=None, past_key_values=None, decoder_inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, ): r""" Returns: Example: ```python >>> import tensorflow as tf >>> from transformers import TFWhisperModel, AutoFeatureExtractor >>> from datasets import load_dataset >>> model = TFWhisperModel.from_pretrained("openai/whisper-base") >>> feature_extractor = AutoFeatureExtractor.from_pretrained("openai/whisper-base") >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> inputs = feature_extractor(ds[0]["audio"]["array"], return_tensors="tf") >>> input_features = inputs.input_features >>> decoder_input_ids = tf.convert_to_tensor([[1, 1]]) * model.config.decoder_start_token_id >>> last_hidden_state = model(input_features, decoder_input_ids=decoder_input_ids).last_hidden_state >>> list(last_hidden_state.shape) [1, 2, 512] ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if encoder_outputs is None: encoder_outputs = self.encoder( input_features, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) # If the user passed a tuple for encoder_outputs, we wrap it in a TFBaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, TFBaseModelOutput): encoder_outputs = TFBaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, position_ids=decoder_position_ids, encoder_hidden_states=encoder_outputs[0], head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) if not return_dict: return decoder_outputs + encoder_outputs return TFSeq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) @add_start_docstrings( "The bare Whisper Model outputting raw hidden-states without any specific head on top.", WHISPER_START_DOCSTRING, ) class TFWhisperModel(TFWhisperPreTrainedModel): def __init__(self, config: WhisperConfig, **kwargs): super().__init__(config, **kwargs) self.model = TFWhisperMainLayer(config, name="model") def get_input_embeddings(self): return self.model.decoder.embed_tokens def set_input_embeddings(self, value): self.model.decoder.embed_tokens = value def get_encoder(self): return self.model.encoder def get_decoder(self): return self.model.decoder def decoder(self): return self.model.decoder def encoder(self): return self.model.encoder @add_start_docstrings_to_model_forward(WHISPER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFSeq2SeqModelOutput, config_class=_CONFIG_FOR_DOC) @unpack_inputs def call( self, input_features: TFModelInputType | None = None, decoder_input_ids: np.ndarray | tf.Tensor | None = None, decoder_attention_mask: np.ndarray | tf.Tensor | None = None, decoder_position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, decoder_head_mask: np.ndarray | tf.Tensor | None = None, cross_attn_head_mask: np.ndarray | tf.Tensor | None = None, encoder_outputs: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, decoder_inputs_embeds: Optional[Tuple[Union[np.ndarray, tf.Tensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[Tuple[tf.Tensor], TFSeq2SeqModelOutput]: r""" Returns: Example: ```python >>> import tensorflow as tf >>> from transformers import TFWhisperModel, AutoFeatureExtractor >>> from datasets import load_dataset >>> model = TFWhisperModel.from_pretrained("openai/whisper-base") >>> feature_extractor = AutoFeatureExtractor.from_pretrained("openai/whisper-base") >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> inputs = feature_extractor(ds[0]["audio"]["array"], return_tensors="tf") >>> input_features = inputs.input_features >>> decoder_input_ids = tf.convert_to_tensor([[1, 1]]) * model.config.decoder_start_token_id >>> last_hidden_state = model(input_features, decoder_input_ids=decoder_input_ids).last_hidden_state >>> list(last_hidden_state.shape) [1, 2, 512] ```""" outputs = self.model( input_features=input_features, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, decoder_position_ids=decoder_position_ids, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, encoder_outputs=encoder_outputs, past_key_values=past_key_values, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs def serving_output(self, output): pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None return TFSeq2SeqModelOutput( last_hidden_state=output.last_hidden_state, past_key_values=pkv, decoder_hidden_states=dec_hs, decoder_attentions=dec_attns, cross_attentions=cross_attns, encoder_last_hidden_state=output.encoder_last_hidden_state, encoder_hidden_states=enc_hs, encoder_attentions=enc_attns, ) @add_start_docstrings( "The Whisper Model with a language modeling head. Can be used for automatic speech recognition.", WHISPER_START_DOCSTRING, ) class TFWhisperForConditionalGeneration(TFWhisperPreTrainedModel, TFCausalLanguageModelingLoss): base_model_prefix = "model" _keys_to_ignore_on_load_missing = [ r"encoder.version", r"decoder.version", r"proj_out.weight", ] _keys_to_ignore_on_save = [ r"proj_out.weight", ] def __init__(self, config: WhisperConfig, **kwargs): super().__init__(config, **kwargs) self.model = TFWhisperMainLayer(config, name="model") def get_encoder(self): return self.model.get_encoder() def get_decoder(self): return self.model.get_decoder() def get_output_embeddings(self): return self.get_input_embeddings() def set_output_embeddings(self, value): self.set_input_embeddings(value) def resize_token_embeddings(self, new_num_tokens: int) -> tf.keras.layers.Embedding: new_embeddings = super().resize_token_embeddings(new_num_tokens) return new_embeddings @add_start_docstrings_to_model_forward(WHISPER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) @unpack_inputs def call( self, input_features: TFModelInputType | None = None, decoder_input_ids: np.ndarray | tf.Tensor | None = None, decoder_attention_mask: np.ndarray | tf.Tensor | None = None, decoder_position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, decoder_head_mask: np.ndarray | tf.Tensor | None = None, cross_attn_head_mask: np.ndarray | tf.Tensor | None = None, encoder_outputs: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, decoder_inputs_embeds: Optional[Tuple[Union[np.ndarray, tf.Tensor]]] = None, labels: np.ndarray | tf.Tensor | None = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[Tuple[tf.Tensor], TFSeq2SeqLMOutput]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: Example: ```python >>> import tensorflow as tf >>> from transformers import AutoProcessor, TFWhisperForConditionalGeneration >>> from datasets import load_dataset >>> processor = AutoProcessor.from_pretrained("openai/whisper-tiny.en") >>> model = TFWhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en") >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> inputs = processor(ds[0]["audio"]["array"], return_tensors="tf") >>> input_features = inputs.input_features >>> generated_ids = model.generate(input_features=input_features) >>> transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] >>> transcription ' Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel.' ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: if decoder_input_ids is None and decoder_inputs_embeds is None: decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) outputs = self.model( input_features, decoder_input_ids=decoder_input_ids, encoder_outputs=encoder_outputs, decoder_attention_mask=decoder_attention_mask, decoder_position_ids=decoder_position_ids, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) decoder_last_hidden_state = outputs[0] # Decoder and encoder embeddings are tied lm_logits = tf.matmul(decoder_last_hidden_state, self.get_output_embeddings().weights, transpose_b=True) loss = None if labels is None else self.hf_compute_loss(labels, lm_logits) if not return_dict: output = (lm_logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFSeq2SeqLMOutput( loss=loss, logits=lm_logits, past_key_values=outputs.past_key_values, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, ) def generate( self, inputs: Optional[tf.Tensor] = None, generation_config: Optional[GenerationConfig] = None, logits_processor: Optional[TFLogitsProcessorList] = None, seed: Optional[List[int]] = None, return_timestamps: Optional[bool] = None, task: Optional[str] = None, language: Optional[str] = None, is_multilingual: Optional[bool] = None, prompt_ids: Optional[tf.Tensor] = None, return_token_timestamps=None, **kwargs, ): r""" Generates sequences of token ids for models with a language modeling head. <Tip warning={true}> Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the model's default generation configuration. You can override any `generation_config` by passing the corresponding parameters to generate, e.g. `.generate(inputs, num_beams=4, do_sample=True)`. For an overview of generation strategies and code examples, check out the [following guide](../generation_strategies). </Tip> Parameters: inputs (`tf.Tensor` of varying shape depending on the modality, *optional*): The sequence used as a prompt for the generation or as model inputs to the encoder. If unset the method initializes it with `bos_token_id` and a batch size of 1. For decoder-only models `inputs` should of in the format of `input_ids`. For encoder-decoder models *inputs* can represent any of `input_ids`, `input_values`, `input_features`, or `pixel_values`. generation_config (`~generation.GenerationConfig`, *optional*): The generation configuration to be used as base parametrization for the generation call. `**kwargs` passed to generate matching the attributes of `generation_config` will override them. If `generation_config` is not provided, the default will be used, which had the following loading priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s default values, whose documentation should be checked to parameterize generation. logits_processor (`LogitsProcessorList`, *optional*): Custom logits processors that complement the default logits processors built from arguments and generation config. If a logit processor is passed that is already created with the arguments or a generation config an error is thrown. This feature is intended for advanced users. seed (`List[int]`, *optional*): Random seed to control sampling, containing two integers, used when `do_sample` is `True`. See the `seed` argument from stateless functions in `tf.random`. return_timestamps (`bool`, *optional*): Whether to return the timestamps with the text. This enables the `TFWhisperTimestampsLogitsProcessor`. task (`str`, *optional*): Task to use for generation, either "translate" or "transcribe". The `model.config.forced_decoder_ids` will be updated accordingly. language (`str`, *optional*): Language token to use for generation, can be either in the form of `<|en|>`, `en` or `english`. You can find all the possible language tokens in the `model.generation_config.lang_to_id` dictionary. is_multilingual (`bool`, *optional*): Whether or not the model is multilingual. prompt_ids (`tf.Tensor`, *optional*): Rank-1 tensor of token IDs created by passing text to [`~WhisperProcessor.get_prompt_ids`] that is provided as a prompt to each chunk. This can be used to provide or "prompt-engineer" a context for transcription, e.g. custom vocabularies or proper nouns to make it more likely to predict those words correctly. It cannot be used in conjunction with `decoder_start_token_id` as it overwrites this value. return_token_timestamps (`bool`, *optional*): Whether to return token-level timestamps with the text. This can be used with or without the `return_timestamps` option. To get word-level timestamps, use the tokenizer to group the tokens into words. kwargs (`Dict[str, Any]`, *optional*): Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*. Return: [`~utils.ModelOutput`] or `tf.Tensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True` or when `config.return_dict_in_generate=True`) or a `tf.Tensor`. If the model is *not* an encoder-decoder model (`model.config.is_encoder_decoder=False`), the possible [`~utils.ModelOutput`] types are: - [`~generation.TFGreedySearchDecoderOnlyOutput`], - [`~generation.TFSampleDecoderOnlyOutput`], - [`~generation.TFBeamSearchDecoderOnlyOutput`], - [`~generation.TFBeamSampleDecoderOnlyOutput`] If the model is an encoder-decoder model (`model.config.is_encoder_decoder=True`), the possible [`~utils.ModelOutput`] types are: - [`~generation.TFGreedySearchEncoderDecoderOutput`], - [`~generation.TFSampleEncoderDecoderOutput`], - [`~generation.TFBeamSearchEncoderDecoderOutput`], - [`~generation.TFBeamSampleEncoderDecoderOutput`] """ if generation_config is None: generation_config = self.generation_config if return_timestamps is not None: if not hasattr(generation_config, "no_timestamps_token_id"): raise ValueError( "You are trying to return timestamps, but the generation config is not properly set." "Make sure to initialize the generation config with the correct attributes that are needed such as `no_timestamps_token_id`." "For more details on how to generate the approtiate config, refer to https://github.com/huggingface/transformers/issues/21878#issuecomment-1451902363" ) generation_config.return_timestamps = return_timestamps else: generation_config.return_timestamps = False if language is not None: language = language.lower() generation_config.language = language if task is not None: generation_config.task = task forced_decoder_ids = None # Legacy code for backward compatibility if hasattr(self.config, "forced_decoder_ids") and self.config.forced_decoder_ids is not None: forced_decoder_ids = self.config.forced_decoder_ids elif ( hasattr(self.generation_config, "forced_decoder_ids") and self.generation_config.forced_decoder_ids is not None ): forced_decoder_ids = self.generation_config.forced_decoder_ids else: forced_decoder_ids = kwargs.get("forced_decoder_ids", None) if task is not None or language is not None or (forced_decoder_ids is None and prompt_ids is not None): forced_decoder_ids = [] if hasattr(generation_config, "language"): if generation_config.language in generation_config.lang_to_id.keys(): language_token = generation_config.language elif generation_config.language in TO_LANGUAGE_CODE.keys(): language_token = f"<|{TO_LANGUAGE_CODE[generation_config.language]}|>" elif generation_config.language in TO_LANGUAGE_CODE.values(): language_token = f"<|{generation_config.language}|>" else: is_language_code = len(generation_config.language) == 2 raise ValueError( f"Unsupported language: {generation_config.language}. Language should be one of:" f" {list(TO_LANGUAGE_CODE.values()) if is_language_code else list(TO_LANGUAGE_CODE.keys())}." ) forced_decoder_ids.append((1, generation_config.lang_to_id[language_token])) else: forced_decoder_ids.append((1, None)) # automatically detect the language if hasattr(generation_config, "task"): if generation_config.task in TASK_IDS: forced_decoder_ids.append((2, generation_config.task_to_id[generation_config.task])) else: raise ValueError( f"The `{generation_config.task}`task is not supported. The task should be one of `{TASK_IDS}`" ) elif hasattr(generation_config, "task_to_id"): forced_decoder_ids.append((2, generation_config.task_to_id["transcribe"])) # defaults to transcribe if hasattr(generation_config, "no_timestamps_token_id") and not generation_config.return_timestamps: idx = forced_decoder_ids[-1][0] + 1 if forced_decoder_ids else 1 forced_decoder_ids.append((idx, generation_config.no_timestamps_token_id)) if forced_decoder_ids is not None: generation_config.forced_decoder_ids = forced_decoder_ids if prompt_ids is not None: if kwargs.get("decoder_start_token_id") is not None: raise ValueError( "When specifying `prompt_ids`, you cannot also specify `decoder_start_token_id` as it gets overwritten." ) prompt_ids = prompt_ids.tolist() decoder_start_token_id, *text_prompt_ids = prompt_ids # Slicing the text prompt ids in a manner consistent with the OpenAI implementation # to accomodate context space for the prefix (see https://github.com/openai/whisper/blob/c09a7ae299c4c34c5839a76380ae407e7d785914/whisper/decoding.py#L599) text_prompt_ids = text_prompt_ids[-self.config.max_length // 2 - 1 :] # Set the decoder_start_token_id to <|startofprev|> kwargs.update({"decoder_start_token_id": decoder_start_token_id}) # Update the max generation length to include the prompt specified_max_length = kwargs.pop("max_new_tokens", None) or kwargs.pop("max_length", None) default_max_length = generation_config.max_new_tokens or generation_config.max_length non_prompt_max_length = specified_max_length or default_max_length kwargs["max_new_tokens"] = non_prompt_max_length + len(text_prompt_ids) # Reformat the forced_decoder_ids to incorporate the prompt non_prompt_forced_decoder_ids = ( kwargs.pop("forced_decoder_ids", None) or generation_config.forced_decoder_ids ) forced_decoder_ids = [ *text_prompt_ids, generation_config.decoder_start_token_id, *[token for _rank, token in non_prompt_forced_decoder_ids], ] forced_decoder_ids = [(rank + 1, token) for rank, token in enumerate(forced_decoder_ids)] generation_config.forced_decoder_ids = forced_decoder_ids # TODO: Implement `WhisperTimeStampLogitsProcessor`. if generation_config.return_timestamps: # logits_processor = [TFWhisperTimeStampLogitsProcessor(generation_config)] raise ValueError("`TFWhisperForConditionalGeneration` doesn't support returning the timestamps yet.") if return_token_timestamps: kwargs["output_attentions"] = True kwargs["return_dict_in_generate"] = True if getattr(generation_config, "task", None) == "translate": logger.warning("Token-level timestamps may not be reliable for task 'translate'.") if not hasattr(generation_config, "alignment_heads"): raise ValueError( "Model generation config has no `alignment_heads`, token-level timestamps not available. " "See https://gist.github.com/hollance/42e32852f24243b748ae6bc1f985b13a on how to add this property to the generation config." ) outputs = super().generate( inputs, generation_config, logits_processor, **kwargs, ) if return_token_timestamps and hasattr(generation_config, "alignment_heads"): outputs["token_timestamps"] = self._extract_token_timestamps(outputs, generation_config.alignment_heads) return outputs def serving_output(self, output): pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None return TFSeq2SeqLMOutput( logits=output.logits, past_key_values=pkv, decoder_hidden_states=dec_hs, decoder_attentions=dec_attns, cross_attentions=cross_attns, encoder_last_hidden_state=output.encoder_last_hidden_state, encoder_hidden_states=enc_hs, encoder_attentions=enc_attns, ) def prepare_inputs_for_generation( self, decoder_input_ids, past_key_values=None, use_cache=None, encoder_outputs=None, attention_mask=None, decoder_attention_mask=None, **kwargs, ): # cut decoder_input_ids if past is used if past_key_values is not None: decoder_input_ids = decoder_input_ids[:, -1:] if decoder_attention_mask is not None: # xla decoder_position_ids = tf.math.cumsum(decoder_attention_mask, axis=-1, exclusive=True)[:, -1:] elif past_key_values is not None: # no xla + past decoder_position_ids = past_key_values[0][0].shape[2] else: # no xla + no past decoder_position_ids = tf.range(decoder_input_ids.shape[1]) decoder_position_ids = tf.broadcast_to(decoder_position_ids, decoder_input_ids.shape) return { "input_features": None, # Needs to be passed to make Keras.layer.__call__ happy "encoder_outputs": encoder_outputs, "past_key_values": past_key_values, "decoder_input_ids": decoder_input_ids, "use_cache": use_cache, "decoder_attention_mask": decoder_attention_mask, "decoder_position_ids": decoder_position_ids, }
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/sam/convert_sam_original_to_hf_format.py
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Convert SAM checkpoints from the original repository. """ import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) KEYS_TO_MODIFY_MAPPING = { "iou_prediction_head.layers.0": "iou_prediction_head.proj_in", "iou_prediction_head.layers.1": "iou_prediction_head.layers.0", "iou_prediction_head.layers.2": "iou_prediction_head.proj_out", "mask_decoder.output_upscaling.0": "mask_decoder.upscale_conv1", "mask_decoder.output_upscaling.1": "mask_decoder.upscale_layer_norm", "mask_decoder.output_upscaling.3": "mask_decoder.upscale_conv2", "mask_downscaling.0": "mask_embed.conv1", "mask_downscaling.1": "mask_embed.layer_norm1", "mask_downscaling.3": "mask_embed.conv2", "mask_downscaling.4": "mask_embed.layer_norm2", "mask_downscaling.6": "mask_embed.conv3", "point_embeddings": "point_embed", "pe_layer.positional_encoding_gaussian_matrix": "shared_embedding.positional_embedding", "image_encoder": "vision_encoder", "neck.0": "neck.conv1", "neck.1": "neck.layer_norm1", "neck.2": "neck.conv2", "neck.3": "neck.layer_norm2", "patch_embed.proj": "patch_embed.projection", ".norm": ".layer_norm", "blocks": "layers", } def replace_keys(state_dict): model_state_dict = {} state_dict.pop("pixel_mean", None) state_dict.pop("pixel_std", None) output_hypernetworks_mlps_pattern = r".*.output_hypernetworks_mlps.(\d+).layers.(\d+).*" for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: key = key.replace(key_to_modify, new_key) if re.match(output_hypernetworks_mlps_pattern, key): layer_nb = int(re.match(output_hypernetworks_mlps_pattern, key).group(2)) if layer_nb == 0: key = key.replace("layers.0", "proj_in") elif layer_nb == 1: key = key.replace("layers.1", "layers.0") elif layer_nb == 2: key = key.replace("layers.2", "proj_out") model_state_dict[key] = value model_state_dict["shared_image_embedding.positional_embedding"] = model_state_dict[ "prompt_encoder.shared_embedding.positional_embedding" ] return model_state_dict def convert_sam_checkpoint(model_name, pytorch_dump_folder, push_to_hub, model_hub_id="ybelkada/segment-anything"): checkpoint_path = hf_hub_download(model_hub_id, f"checkpoints/{model_name}.pth") if "sam_vit_b" in model_name: config = SamConfig() elif "sam_vit_l" in model_name: vision_config = SamVisionConfig( hidden_size=1024, num_hidden_layers=24, num_attention_heads=16, global_attn_indexes=[5, 11, 17, 23], ) config = SamConfig( vision_config=vision_config, ) elif "sam_vit_h" in model_name: vision_config = SamVisionConfig( hidden_size=1280, num_hidden_layers=32, num_attention_heads=16, global_attn_indexes=[7, 15, 23, 31], ) config = SamConfig( vision_config=vision_config, ) state_dict = torch.load(checkpoint_path, map_location="cpu") state_dict = replace_keys(state_dict) image_processor = SamImageProcessor() processor = SamProcessor(image_processor=image_processor) hf_model = SamModel(config) hf_model.load_state_dict(state_dict) hf_model = hf_model.to("cuda") img_url = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png" raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB") input_points = [[[400, 650]]] input_labels = [[1]] inputs = processor(images=np.array(raw_image), return_tensors="pt").to("cuda") with torch.no_grad(): output = hf_model(**inputs) scores = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.579890251159668 inputs = processor( images=np.array(raw_image), input_points=input_points, input_labels=input_labels, return_tensors="pt" ).to("cuda") with torch.no_grad(): output = hf_model(**inputs) scores = output.iou_scores.squeeze() assert scores[-1].item() == 0.9712603092193604 input_boxes = ((75, 275, 1725, 850),) inputs = processor(images=np.array(raw_image), input_boxes=input_boxes, return_tensors="pt").to("cuda") with torch.no_grad(): output = hf_model(**inputs) scores = output.iou_scores.squeeze() assert scores[-1].item() == 0.8686015605926514 # Test with 2 points and 1 image. input_points = [[[400, 650], [800, 650]]] input_labels = [[1, 1]] inputs = processor( images=np.array(raw_image), input_points=input_points, input_labels=input_labels, return_tensors="pt" ).to("cuda") with torch.no_grad(): output = hf_model(**inputs) scores = output.iou_scores.squeeze() assert scores[-1].item() == 0.9936047792434692 if __name__ == "__main__": parser = argparse.ArgumentParser() choices = ["sam_vit_b_01ec64", "sam_vit_h_4b8939", "sam_vit_l_0b3195"] parser.add_argument( "--model_name", default="sam_vit_h_4b8939", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) parser.add_argument( "--model_hub_id", default="ybelkada/segment-anything", choices=choices, type=str, help="Path to hf config.json of model to convert", ) args = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/sam/modeling_tf_sam.py
# coding=utf-8 # Copyright 2023 The Meta AI Authors and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TensorFlow SAM model. This file was mostly generated by auto-translation from the PyTorch original. In the event of a discrepancy, the original file should be regarded as the 'reference' version. """ from __future__ import annotations import collections from dataclasses import dataclass from typing import Dict, List, Optional, Tuple, Union import numpy as np import tensorflow as tf from ...activations_tf import ACT2FN from ...modeling_tf_outputs import TFBaseModelOutput from ...modeling_tf_utils import TFModelInputType, TFPreTrainedModel, shape_list, unpack_inputs from ...tf_utils import flatten, functional_layernorm from ...utils import ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_sam import SamConfig, SamMaskDecoderConfig, SamPromptEncoderConfig, SamVisionConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "SamConfig" _CHECKPOINT_FOR_DOC = "facebook/sam-vit-huge" TF_SAM_PRETRAINED_MODEL_ARCHIVE_LIST = [ "facebook/sam-vit-huge", "facebook/sam-vit-large", "facebook/sam-vit-base", # See all SAM models at https://huggingface.co/models?filter=sam ] @dataclass class TFSamVisionEncoderOutput(ModelOutput): """ Base class for sam vision model's outputs that also contains image embeddings obtained by applying the projection layer to the pooler_output. Args: image_embeds (`tf.Tensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): The image embeddings obtained by applying the projection layer to the pooler_output. last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ image_embeds: tf.Tensor | None = None last_hidden_state: tf.Tensor = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None @dataclass class TFSamImageSegmentationOutput(ModelOutput): """ Base class for Segment-Anything model's output Args: iou_scores (`tf.Tensor` of shape `(batch_size, num_masks)`): The iou scores of the predicted masks. pred_masks (`tf.Tensor` of shape `(batch_size, num_masks, height, width)`): The predicted low resolutions masks. Needs to be post-processed by the processor vision_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the vision model at the output of each layer plus the optional initial embedding outputs. vision_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. mask_decoder_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ iou_scores: tf.Tensor = None pred_masks: tf.Tensor = None vision_hidden_states: Tuple[tf.Tensor] | None = None vision_attentions: Tuple[tf.Tensor] | None = None mask_decoder_attentions: Tuple[tf.Tensor] | None = None class TFSamPatchEmbeddings(tf.keras.layers.Layer): """ This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a Transformer. """ def __init__(self, config, **kwargs): super().__init__(**kwargs) image_size, patch_size = config.image_size, config.patch_size num_channels, hidden_size = config.num_channels, config.hidden_size image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.num_patches = num_patches self.projection = tf.keras.layers.Conv2D( hidden_size, kernel_size=patch_size, strides=patch_size, name="projection" ) def call(self, pixel_values): batch_size, num_channels, height, width = shape_list(pixel_values) if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) if height != self.image_size[0] or width != self.image_size[1]: raise ValueError( f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})." ) embeddings = self.projection(tf.transpose(pixel_values, perm=[0, 2, 3, 1])) return embeddings class TFSamMLPBlock(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.lin1 = tf.keras.layers.Dense(config.mlp_dim, name="lin1") self.lin2 = tf.keras.layers.Dense(config.hidden_size, name="lin2") self.act = ACT2FN[config.hidden_act] def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.lin1(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.lin2(hidden_states) return hidden_states class TFSamLayerNorm(tf.keras.layers.Layer): r"""LayerNorm that supports two data formats: channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, height, width, channels) while channels_first corresponds to inputs with shape (batch_size, channels, height, width). """ def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last", **kwargs): super().__init__(**kwargs) self.eps = eps self.data_format = data_format self.normalized_shape = normalized_shape if self.data_format not in ["channels_last", "channels_first"]: raise NotImplementedError(f"Unsupported data format: {self.data_format}") def build(self, input_shape): self.weight = self.add_weight(shape=self.normalized_shape, initializer="ones", name="weight") self.bias = self.add_weight(shape=self.normalized_shape, initializer="zeros", name="bias") super().build(input_shape) def call(self, x: tf.Tensor) -> tf.Tensor: if self.data_format == "channels_last": x = functional_layernorm(x, weight=self.weight, bias=self.bias, epsilon=self.eps, axis=-1) elif self.data_format == "channels_first": x = functional_layernorm(x, weight=self.weight, bias=self.bias, epsilon=self.eps, axis=1) return x class TFSamAttention(tf.keras.layers.Layer): """ SAM's attention layer that allows for downscaling the size of the embedding after projection to queries, keys, and values. """ def __init__(self, config, downsample_rate=None, **kwargs): super().__init__(**kwargs) self.hidden_size = config.hidden_size downsample_rate = config.attention_downsample_rate if downsample_rate is None else downsample_rate self.internal_dim = config.hidden_size // downsample_rate self.num_attention_heads = config.num_attention_heads if self.internal_dim % config.num_attention_heads != 0: raise ValueError("num_attention_heads must divide hidden_size.") self.q_proj = tf.keras.layers.Dense(self.internal_dim, name="q_proj") self.k_proj = tf.keras.layers.Dense(self.internal_dim, name="k_proj") self.v_proj = tf.keras.layers.Dense(self.internal_dim, name="v_proj") self.out_proj = tf.keras.layers.Dense(self.hidden_size, name="out_proj") def _separate_heads(self, hidden_states: tf.Tensor, num_attention_heads: int) -> tf.Tensor: batch, point_batch_size, n_tokens, channel = shape_list(hidden_states) c_per_head = channel // num_attention_heads hidden_states = tf.reshape( hidden_states, (batch * point_batch_size, n_tokens, num_attention_heads, c_per_head) ) return tf.transpose(hidden_states, perm=[0, 2, 1, 3]) def _recombine_heads(self, hidden_states: tf.Tensor, point_batch_size: int) -> tf.Tensor: batch, n_heads, n_tokens, c_per_head = shape_list(hidden_states) hidden_states = tf.transpose(hidden_states, perm=[0, 2, 1, 3]) return tf.reshape( hidden_states, (batch // tf.reduce_max([1, point_batch_size]), point_batch_size, n_tokens, n_heads * c_per_head), ) def call(self, query: tf.Tensor, key: tf.Tensor, value: tf.Tensor) -> tf.Tensor: # Input projections query = self.q_proj(query) key = self.k_proj(key) value = self.v_proj(value) point_batch_size = shape_list(query)[1] # Separate into heads query = self._separate_heads(query, self.num_attention_heads) key = self._separate_heads(key, self.num_attention_heads) value = self._separate_heads(value, self.num_attention_heads) # SamAttention _, _, _, c_per_head = shape_list(query) attn = tf.matmul( query, tf.transpose(key, perm=[0, 1, 3, 2]) ) # batch_size * point_batch_size x N_heads x N_tokens x N_tokens attn = attn / tf.math.sqrt(float(c_per_head)) attn = tf.nn.softmax(attn, axis=-1) # Get output out = tf.matmul(attn, value) out = self._recombine_heads(out, point_batch_size) out = self.out_proj(out) return out class TFSamTwoWayAttentionBlock(tf.keras.layers.Layer): def __init__(self, config, attention_downsample_rate: int = 2, skip_first_layer_pe: bool = False, **kwargs): """ A transformer block with four layers: (1) self-attention of sparse inputs (2) cross attention of sparse inputs -> dense inputs (3) mlp block on sparse inputs (4) cross attention of dense inputs -> sparse inputs Arguments: config (`SamMaskDecoderConfig`): The configuration file used to instantiate the block attention_downsample_rate (*optionalk*, int, defaults to 2): The downsample ratio of the block used to reduce the inner dim of the attention. skip_first_layer_pe (*optional*, bool, defaults to `False`): Whether or not to skip the addition of the query_point_embedding on the first layer. """ super().__init__(**kwargs) self.hidden_size = config.hidden_size self.layer_norm_eps = config.layer_norm_eps self.self_attn = TFSamAttention(config, downsample_rate=1, name="self_attn") self.layer_norm1 = tf.keras.layers.LayerNormalization(epsilon=self.layer_norm_eps, name="layer_norm1") self.cross_attn_token_to_image = TFSamAttention( config, downsample_rate=attention_downsample_rate, name="cross_attn_token_to_image" ) self.layer_norm2 = tf.keras.layers.LayerNormalization(epsilon=self.layer_norm_eps, name="layer_norm2") self.mlp = TFSamMLPBlock(config, name="mlp") self.layer_norm3 = tf.keras.layers.LayerNormalization(epsilon=self.layer_norm_eps, name="layer_norm3") self.layer_norm4 = tf.keras.layers.LayerNormalization(epsilon=self.layer_norm_eps, name="layer_norm4") self.cross_attn_image_to_token = TFSamAttention( config, downsample_rate=attention_downsample_rate, name="cross_attn_image_to_token" ) self.skip_first_layer_pe = skip_first_layer_pe def call( self, queries: tf.Tensor, keys: tf.Tensor, query_point_embedding: tf.Tensor, key_point_embedding: tf.Tensor, output_attentions: bool = False, ): # Self attention block if self.skip_first_layer_pe: queries = self.self_attn(query=queries, key=queries, value=queries) else: query = queries + query_point_embedding attn_out = self.self_attn(query=query, key=query, value=queries) queries = queries + attn_out queries = self.layer_norm1(queries) # Cross attention block, tokens attending to image embedding query = queries + query_point_embedding key = keys + key_point_embedding attn_out = self.cross_attn_token_to_image(query=query, key=key, value=keys) queries = queries + attn_out queries = self.layer_norm2(queries) # MLP block mlp_out = self.mlp(queries) queries = queries + mlp_out queries = self.layer_norm3(queries) # Cross attention block, image embedding attending to tokens query = queries + query_point_embedding key = keys + key_point_embedding attn_out = self.cross_attn_image_to_token(query=key, key=query, value=queries) keys = keys + attn_out keys = self.layer_norm4(keys) outputs = (queries, keys) if output_attentions: outputs = outputs + (attn_out,) else: outputs = outputs + (None,) return outputs class TFSamTwoWayTransformer(tf.keras.layers.Layer): def __init__(self, config: SamMaskDecoderConfig, **kwargs): super().__init__(**kwargs) self.config = config self.num_hidden_layers = config.num_hidden_layers self.layers = [] for i in range(self.num_hidden_layers): self.layers.append(TFSamTwoWayAttentionBlock(config, skip_first_layer_pe=(i == 0), name=f"layers_._{i}")) self.final_attn_token_to_image = TFSamAttention(config, name="final_attn_token_to_image") self.layer_norm_final_attn = tf.keras.layers.LayerNormalization( epsilon=config.layer_norm_eps, name="layer_norm_final_attn" ) def call( self, point_embeddings: tf.Tensor, image_embeddings: tf.Tensor, image_positional_embeddings: tf.Tensor, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TFBaseModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict all_attentions = () if image_embeddings is None: raise ValueError("You have to specify an image_embedding") image_embeddings = tf.transpose(flatten(image_embeddings, 2), perm=(0, 2, 1))[:, None] image_positional_embeddings = tf.transpose(flatten(image_positional_embeddings, 2), (0, 2, 1))[:, None] # Prepare queries queries = point_embeddings keys = image_embeddings # Apply transformer blocks and final layernorm for layer in self.layers: queries, keys, attention_outputs = layer( queries=queries, keys=keys, query_point_embedding=point_embeddings, key_point_embedding=image_positional_embeddings, output_attentions=output_attentions, ) if output_attentions: all_attentions = all_attentions + (attention_outputs,) # Apply the final attenion layer from the points to the image query = queries + point_embeddings key = keys + image_positional_embeddings attn_out = self.final_attn_token_to_image(query=query, key=key, value=keys) queries = queries + attn_out queries = self.layer_norm_final_attn(queries) return queries, keys, all_attentions class TFSamFeedForward(tf.keras.layers.Layer): def __init__( self, input_dim: int, hidden_dim: int, output_dim: int, num_layers: int, sigmoid_output: bool = False, **kwargs ): super().__init__(**kwargs) self.num_layers = num_layers self.activation = tf.keras.layers.ReLU() self.proj_in = tf.keras.layers.Dense(hidden_dim, input_shape=(input_dim,), name="proj_in") self.proj_out = tf.keras.layers.Dense(output_dim, input_shape=(hidden_dim,), name="proj_out") self.layers = [ tf.keras.layers.Dense(hidden_dim, input_shape=(hidden_dim,), name=f"layers_._{i}") for i in range(num_layers - 2) ] self.sigmoid_output = sigmoid_output def call(self, hidden_states): hidden_states = self.proj_in(hidden_states) hidden_states = self.activation(hidden_states) for layer in self.layers: hidden_states = self.activation(layer(hidden_states)) hidden_states = self.proj_out(hidden_states) if self.sigmoid_output: hidden_states = tf.sigmoid(hidden_states) return hidden_states class TFSamMaskDecoder(tf.keras.layers.Layer): def __init__(self, config: SamMaskDecoderConfig, **kwargs): super().__init__(**kwargs) self.hidden_size = config.hidden_size self.num_multimask_outputs = config.num_multimask_outputs self.num_mask_tokens = config.num_multimask_outputs + 1 self.transformer = TFSamTwoWayTransformer(config, name="transformer") self.upscale_conv1 = tf.keras.layers.Conv2DTranspose( self.hidden_size // 4, kernel_size=2, strides=2, name="upscale_conv1", data_format="channels_first" ) self.upscale_conv2 = tf.keras.layers.Conv2DTranspose( self.hidden_size // 8, kernel_size=2, strides=2, name="upscale_conv2", data_format="channels_first" ) self.upscale_layer_norm = TFSamLayerNorm( self.hidden_size // 4, data_format="channels_first", name="upscale_layer_norm" ) self.activation = tf.nn.gelu mlps_list = [] for i in range(self.num_mask_tokens): mlps_list += [ TFSamFeedForward( self.hidden_size, self.hidden_size, self.hidden_size // 8, 3, name=f"output_hypernetworks_mlps_._{i}", ) ] self.output_hypernetworks_mlps = mlps_list self.iou_prediction_head = TFSamFeedForward( self.hidden_size, config.iou_head_hidden_dim, self.num_mask_tokens, config.iou_head_depth, name="iou_prediction_head", ) def build(self, input_shape): self.iou_token = self.add_weight(shape=(1, self.hidden_size), name="iou_token.weight", trainable=True) self.mask_tokens = self.add_weight( shape=(self.num_mask_tokens, self.hidden_size), name="mask_tokens.weight", trainable=True ) super().build(input_shape) def call( self, image_embeddings: tf.Tensor, image_positional_embeddings: tf.Tensor, sparse_prompt_embeddings: tf.Tensor, dense_prompt_embeddings: tf.Tensor, multimask_output: bool, output_attentions: Optional[bool] = None, ) -> Tuple[tf.Tensor, tf.Tensor]: batch_size, num_channels, height, width = shape_list(image_embeddings) point_batch_size = tf.math.maximum(1, tf.shape(sparse_prompt_embeddings)[1]) output_tokens = tf.concat([self.iou_token, self.mask_tokens], axis=0) # Should be (1, 32) + (4, 32) = (5, 32) output_tokens = tf.tile( output_tokens[None, None, :], [batch_size, point_batch_size, 1, 1] ) # Should be (batch_size, point_size, 5, 32) # Matt: The original Torch code checked that the sum of sparse_prompt_embeddings equalled 0. However, this only # happens when the sparse prompt embeddings are an empty tensor with shape[1] == 0. I replaced # it with an explicit shape check to avoid data-dependent control flow which breaks XLA. if shape_list(sparse_prompt_embeddings)[1] != 0: tokens = tf.concat((output_tokens, sparse_prompt_embeddings), axis=2) else: tokens = output_tokens point_embeddings = tf.cast(tokens, self.iou_token.dtype) image_embeddings = image_embeddings + dense_prompt_embeddings image_embeddings = tf.repeat(image_embeddings, point_batch_size, axis=0) image_positional_embeddings = tf.repeat(image_positional_embeddings, point_batch_size, axis=0) point_embedding, image_embeddings, attentions = self.transformer( point_embeddings=point_embeddings, image_embeddings=image_embeddings, image_positional_embeddings=image_positional_embeddings, output_attentions=output_attentions, ) iou_token_out = point_embedding[:, :, 0, :] mask_tokens_out = point_embedding[:, :, 1 : (1 + self.num_mask_tokens), :] image_embeddings = tf.transpose(image_embeddings, perm=(0, 1, 3, 2)) image_embeddings = tf.reshape(image_embeddings, [batch_size * point_batch_size, num_channels, height, width]) upscaled_embedding = self.upscale_conv1(image_embeddings) upscaled_embedding = self.activation(self.upscale_layer_norm(upscaled_embedding)) upscaled_embedding = self.activation(self.upscale_conv2(upscaled_embedding)) hyper_in_list = [] for i in range(self.num_mask_tokens): current_mlp = self.output_hypernetworks_mlps[i] hyper_in_list += [current_mlp(mask_tokens_out[:, :, i, :])] hyper_in = tf.stack(hyper_in_list, axis=2) _, num_channels, height, width = shape_list(upscaled_embedding) upscaled_embedding = tf.reshape( upscaled_embedding, [batch_size, point_batch_size, num_channels, height * width] ) masks = tf.reshape(hyper_in @ upscaled_embedding, [batch_size, point_batch_size, -1, height, width]) iou_pred = self.iou_prediction_head(iou_token_out) if multimask_output: mask_slice = slice(1, None) else: mask_slice = slice(0, 1) masks = masks[:, :, mask_slice, :, :] iou_pred = iou_pred[:, :, mask_slice] outputs = (masks, iou_pred) if output_attentions: outputs = outputs + (attentions,) else: outputs = outputs + (None,) return outputs class TFSamPositionalEmbedding(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.scale = config.hidden_size // 2 self.config = config def build(self, input_shape): # TODO Matt: What is going on here? Why is a non-trainable weight randomly initialized? self.positional_embedding = self.add_weight( name="positional_embedding", shape=(2, self.config.num_pos_feats), initializer=tf.keras.initializers.RandomNormal(mean=0.0, stddev=self.scale), trainable=False, ) super().build(input_shape) def call(self, input_coords, input_shape=None): """Positionally encode points that are normalized to [0,1].""" coordinates = tf.identity(input_coords) if input_shape is not None: coordinates = tf.stack( [ tf.cast(coordinates[:, :, :, 0], tf.float32) / input_shape[1], tf.cast(coordinates[:, :, :, 1], tf.float32) / input_shape[0], ], axis=-1, ) # assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape coordinates = 2 * coordinates - 1 coordinates = tf.cast(coordinates, self.positional_embedding.dtype) coordinates = tf.matmul(coordinates, self.positional_embedding) coordinates = 2 * np.pi * coordinates # outputs d_1 x ... x d_n x channel shape return tf.concat([tf.sin(coordinates), tf.cos(coordinates)], axis=-1) class TFSamMaskEmbedding(tf.keras.layers.Layer): def __init__(self, config: SamPromptEncoderConfig, **kwargs): super().__init__(**kwargs) self.mask_input_channels = config.mask_input_channels // 4 self.activation = ACT2FN[config.hidden_act] self.conv1 = tf.keras.layers.Conv2D(self.mask_input_channels, kernel_size=2, strides=2, name="conv1") self.conv2 = tf.keras.layers.Conv2D(config.mask_input_channels, kernel_size=2, strides=2, name="conv2") self.conv3 = tf.keras.layers.Conv2D(config.hidden_size, kernel_size=1, name="conv3") self.layer_norm1 = TFSamLayerNorm(self.mask_input_channels, config.layer_norm_eps, name="layer_norm1") self.layer_norm2 = TFSamLayerNorm(self.mask_input_channels * 4, config.layer_norm_eps, name="layer_norm2") def call(self, masks): masks = tf.transpose(masks, perm=(0, 2, 3, 1)) # Convert to channels-last hidden_states = self.conv1(masks) hidden_states = self.layer_norm1(hidden_states) hidden_states = self.activation(hidden_states) hidden_states = self.conv2(hidden_states) hidden_states = self.layer_norm2(hidden_states) hidden_states = self.activation(hidden_states) dense_embeddings = self.conv3(hidden_states) dense_embeddings = tf.transpose(dense_embeddings, perm=(0, 3, 1, 2)) # Convert back to channels-first return dense_embeddings def build(self, input_shape): # This class needs an explicit build method because it isn't called with the standard dummy inputs conv1_shape = [None, None, None, 1] conv2_shape = [None, None, None, self.mask_input_channels] conv3_shape = [None, None, None, self.mask_input_channels * 4] layer_norm1_shape = [None, None, None, self.mask_input_channels] layer_norm2_shape = [None, None, None, self.mask_input_channels * 4] with tf.name_scope("conv1"): self.conv1.build(conv1_shape) with tf.name_scope("conv2"): self.conv2.build(conv2_shape) with tf.name_scope("conv3"): self.conv3.build(conv3_shape) with tf.name_scope("layer_norm1"): self.layer_norm1.build(layer_norm1_shape) with tf.name_scope("layer_norm2"): self.layer_norm2.build(layer_norm2_shape) super().build(input_shape) class TFSamPromptEncoder(tf.keras.layers.Layer): def __init__(self, config: SamPromptEncoderConfig, shared_patch_embedding, **kwargs): super().__init__(**kwargs) self.shared_embedding = shared_patch_embedding self.mask_embed = TFSamMaskEmbedding(config, name="mask_embed") self.no_mask_embed = None self.image_embedding_size = (config.image_embedding_size, config.image_embedding_size) self.input_image_size = config.image_size self.point_embed = [] self.hidden_size = config.hidden_size self.not_a_point_embed = None self.config = config def build(self, input_shape): self.no_mask_embed = self.add_weight( name="no_mask_embed.weight", shape=(1, self.hidden_size), initializer=tf.keras.initializers.RandomNormal(mean=0.0, stddev=0.02), trainable=True, ) self.point_embed = [ self.add_weight( name=f"point_embed_._{i}.weight", shape=(1, self.hidden_size), initializer=tf.keras.initializers.RandomNormal(mean=0.0, stddev=0.02), trainable=True, ) for i in range(self.config.num_point_embeddings) ] self.not_a_point_embed = self.add_weight( name="not_a_point_embed.weight", shape=(1, self.hidden_size), initializer=tf.keras.initializers.RandomNormal(mean=0.0, stddev=0.02), trainable=True, ) with tf.name_scope("mask_embed"): # We must explicitly build the mask embed because it isn't touched by the standard dummy inputs self.mask_embed.build( (None, self.config.mask_input_channels, self.config.image_size, self.config.image_size) ) super().build(input_shape) def _embed_points(self, points: tf.Tensor, labels: tf.Tensor, pad: bool) -> tf.Tensor: """Embeds point prompts.""" points = points + 0.5 # Shift to center of pixel if pad: target_point_shape = (shape_list(points)[0], shape_list(points)[1], 1, shape_list(points)[-1]) target_labels_shape = (shape_list(points)[0], shape_list(points)[1], 1) padding_point = tf.zeros(target_point_shape, dtype=points.dtype) padding_label = -tf.ones(target_labels_shape, dtype=labels.dtype) points = tf.concat([points, padding_point], axis=2) labels = tf.concat([labels, padding_label], axis=2) input_shape = (self.input_image_size, self.input_image_size) point_embedding = self.shared_embedding(points, input_shape) point_embedding = tf.where(labels[..., None] == -1, self.not_a_point_embed[0], point_embedding) point_embedding = tf.where( labels[..., None] != -10, point_embedding, tf.zeros_like(point_embedding), ) point_embedding = tf.where( (labels == 0)[:, :, :, None], point_embedding + self.point_embed[0], point_embedding ) point_embedding = tf.where( (labels == 1)[:, :, :, None], point_embedding + self.point_embed[1], point_embedding ) return point_embedding def _embed_boxes(self, boxes: tf.Tensor) -> tf.Tensor: """Embeds box prompts.""" boxes = boxes + 0.5 # Shift to center of pixel batch_size, nb_boxes = shape_list(boxes)[:2] coords = tf.reshape(boxes, (batch_size, nb_boxes, 2, 2)) input_shape = (self.input_image_size, self.input_image_size) corner_embedding = self.shared_embedding(coords, input_shape) corner_embedding += tf.where( tf.range(shape_list(corner_embedding)[2])[None, None, :, None] == 0, self.point_embed[2][0], self.point_embed[3][0], ) return corner_embedding def call( self, batch_size: Optional[int], input_points: Optional[Tuple[tf.Tensor, tf.Tensor]], input_labels: tf.Tensor | None, input_boxes: tf.Tensor | None, input_masks: tf.Tensor | None, ) -> Tuple[tf.Tensor, tf.Tensor]: """ Embeds different types of prompts, returning both sparse and dense embeddings. Args: points (`tf.Tensor`, *optional*): point coordinates and labels to embed. boxes (`tf.Tensor`, *optional*): boxes to embed masks (`tf.Tensor`, *optional*): masks to embed """ sparse_embeddings = None if input_points is not None: batch_size, point_batch_size = shape_list(input_points)[:2] if input_labels is None: raise ValueError("If points are provided, labels must also be provided.") point_embeddings = self._embed_points(input_points, input_labels, pad=(input_boxes is None)) sparse_embeddings = tf.zeros( (batch_size, point_batch_size, 0, self.hidden_size), dtype=point_embeddings.dtype ) sparse_embeddings = tf.concat([sparse_embeddings, point_embeddings], axis=2) if input_boxes is not None: batch_size = shape_list(input_boxes)[0] box_embeddings = self._embed_boxes(input_boxes) if sparse_embeddings is None: sparse_embeddings = box_embeddings else: sparse_embeddings = tf.concat([sparse_embeddings, box_embeddings], axis=2) if input_masks is not None: dense_embeddings = self.mask_embed(input_masks) else: dense_embeddings = self.no_mask_embed[0] dense_embeddings = tf.reshape(dense_embeddings, (1, -1, 1, 1)) dense_embeddings = tf.tile( dense_embeddings, (batch_size, 1, self.image_embedding_size[0], self.image_embedding_size[1]) ) if sparse_embeddings is None: sparse_embeddings = tf.zeros((batch_size, 0, 1, self.hidden_size), dtype=dense_embeddings.dtype) return sparse_embeddings, dense_embeddings class TFSamVisionAttention(tf.keras.layers.Layer): """Multi-head Attention block with relative position embeddings.""" def __init__(self, config, window_size, **kwargs): super().__init__(**kwargs) input_size = ( (config.image_size // config.patch_size, config.image_size // config.patch_size) if window_size == 0 else (window_size, window_size) ) self.input_size = input_size self.num_attention_heads = config.num_attention_heads head_dim = config.hidden_size // config.num_attention_heads self.head_dim = head_dim self.scale = head_dim**-0.5 self.dropout = config.attention_dropout self.qkv = tf.keras.layers.Dense(config.hidden_size * 3, use_bias=config.qkv_bias, name="qkv") self.proj = tf.keras.layers.Dense(config.hidden_size, name="proj") self.use_rel_pos = config.use_rel_pos if self.use_rel_pos: if input_size is None: raise ValueError("Input size must be provided if using relative positional encoding.") self.config = config def build(self, input_shape): if self.input_size is not None: # initialize relative positional embeddings self.rel_pos_h = self.add_weight( shape=(2 * self.input_size[0] - 1, self.head_dim), initializer="zeros", name="rel_pos_h" ) self.rel_pos_w = self.add_weight( shape=(2 * self.input_size[1] - 1, self.head_dim), initializer="zeros", name="rel_pos_w" ) super().build(input_shape) def get_rel_pos(self, q_size: int, k_size: int, rel_pos: tf.Tensor) -> tf.Tensor: """ Get relative positional embeddings according to the relative positions of query and key sizes. Args: q_size (int): size of the query. k_size (int): size of key k. rel_pos (`tf.Tensor`): relative position embeddings (L, channel). Returns: Extracted positional embeddings according to relative positions. """ max_rel_dist = int(2 * max(q_size, k_size) - 1) # Interpolate rel pos if needed. if rel_pos.shape[0] != max_rel_dist: # Interpolate rel pos. rel_pos_resized = tf.image.resize( tf.reshape(rel_pos, (1, rel_pos.shape[0], -1)), size=(max_rel_dist, rel_pos.shape[1]), method="bilinear", ) rel_pos_resized = tf.reshape(rel_pos_resized, (-1, max_rel_dist)) else: rel_pos_resized = rel_pos # Scale the coords with short length if shapes for q and k are different. q_coords = tf.expand_dims(tf.range(q_size, dtype=tf.float32), 1) * max(k_size / q_size, 1.0) k_coords = tf.expand_dims(tf.range(k_size, dtype=tf.float32), 0) * max(q_size / k_size, 1.0) relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0) return tf.gather(rel_pos_resized, tf.cast(relative_coords, tf.int32)) def add_decomposed_rel_pos( self, attn: tf.Tensor, query: tf.Tensor, rel_pos_h: tf.Tensor, rel_pos_w: tf.Tensor, q_size: Tuple[int, int], k_size: Tuple[int, int], ) -> tf.Tensor: """ Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`. https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py Args: attn (`tf.Tensor`): attention map. query (`tf.Tensor`): query q in the attention layer with shape (batch_size, query_height * query_width, channel). rel_pos_h (`tf.Tensor`): relative position embeddings (Lh, channel) for height axis. rel_pos_w (`tf.Tensor`): relative position embeddings (Lw, channel) for width axis. q_size (tuple): spatial sequence size of query q with (query_height, query_width). k_size (tuple): spatial sequence size of key k with (key_height, key_width). Returns: attn (`tf.Tensor`): attention map with added relative positional embeddings. """ query_height, query_width = q_size key_height, key_width = k_size relative_position_height = self.get_rel_pos(query_height, key_height, rel_pos_h) relative_position_width = self.get_rel_pos(query_width, key_width, rel_pos_w) batch_size, _, dim = shape_list(query) reshaped_query = tf.reshape(query, (batch_size, query_height, query_width, dim)) rel_h = tf.einsum("bhwc,hkc->bhwk", reshaped_query, relative_position_height) rel_w = tf.einsum("bhwc,wkc->bhwk", reshaped_query, relative_position_width) attn = tf.reshape(attn, (batch_size, query_height, query_width, key_height, key_width)) attn = attn + tf.expand_dims(rel_h, axis=-1) + tf.expand_dims(rel_w, axis=-2) attn = tf.reshape(attn, (batch_size, query_height * query_width, key_height * key_width)) return attn def call(self, hidden_states: tf.Tensor, output_attentions=False, training=False) -> tf.Tensor: batch_size, height, width, _ = shape_list(hidden_states) # qkv with shape (3, batch_size, nHead, height * width, channel) qkv = tf.reshape(self.qkv(hidden_states), (batch_size, height * width, 3, self.num_attention_heads, -1)) qkv = tf.transpose(qkv, perm=(2, 0, 3, 1, 4)) # q, k, v with shape (batch_size * nHead, height * width, channel) query, key, value = tf.unstack( tf.reshape(qkv, (3, batch_size * self.num_attention_heads, height * width, -1)), axis=0 ) attn_weights = tf.matmul(query * self.scale, key, transpose_b=True) if self.use_rel_pos: attn_weights = self.add_decomposed_rel_pos( attn_weights, query, self.rel_pos_h, self.rel_pos_w, (height, width), (height, width) ) attn_weights = tf.nn.softmax(attn_weights, axis=-1) if training: attn_probs = tf.nn.dropout(attn_weights, rate=self.dropout) else: attn_probs = attn_weights attn_output = tf.reshape(attn_probs @ value, (batch_size, self.num_attention_heads, height, width, -1)) attn_output = tf.transpose(attn_output, perm=(0, 2, 3, 1, 4)) attn_output = tf.reshape(attn_output, (batch_size, height, width, self.config.hidden_size)) attn_output = self.proj(attn_output) if output_attentions: outputs = (attn_output, attn_weights) else: outputs = (attn_output, None) return outputs class TFSamVisionLayer(tf.keras.layers.Layer): def __init__(self, config, window_size, **kwargs): super().__init__(**kwargs) self.layer_norm1 = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm1") self.attn = TFSamVisionAttention(config, window_size, name="attn") self.layer_norm2 = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm2") self.mlp = TFSamMLPBlock(config, name="mlp") self.window_size = window_size def window_partition(self, hidden_states: tf.Tensor, window_size: int) -> Tuple[tf.Tensor, Tuple[int, int]]: batch_size, height, width, channel = shape_list(hidden_states) pad_h = (window_size - height % window_size) % window_size pad_w = (window_size - width % window_size) % window_size if pad_h > 0 or pad_w > 0: hidden_states = tf.pad(hidden_states, [[0, 0], [0, pad_h], [0, pad_w], [0, 0]]) pad_height, pad_width = height + pad_h, width + pad_w hidden_states = tf.reshape( hidden_states, [batch_size, pad_height // window_size, window_size, pad_width // window_size, window_size, channel], ) windows = tf.reshape( tf.transpose(hidden_states, perm=[0, 1, 3, 2, 4, 5]), [-1, window_size, window_size, channel] ) return windows, (pad_height, pad_width) def window_unpartition( self, windows: tf.Tensor, window_size: int, padding_shape: Tuple[int, int], original_shape: Tuple[int, int] ) -> tf.Tensor: pad_height, pad_width = padding_shape height, width = original_shape batch_size = shape_list(windows)[0] // (pad_height * pad_width // window_size // window_size) hidden_states = tf.reshape( windows, [batch_size, pad_height // window_size, pad_width // window_size, window_size, window_size, -1] ) hidden_states = tf.reshape( tf.transpose(hidden_states, perm=[0, 1, 3, 2, 4, 5]), [batch_size, pad_height, pad_width, -1] ) if pad_height > height or pad_width > width: hidden_states = hidden_states[:, :height, :width, :] return hidden_states def call( self, hidden_states: tf.Tensor, output_attentions: Optional[bool] = False, training: Optional[bool] = False, ) -> Tuple[tf.Tensor]: residual = hidden_states hidden_states = self.layer_norm1(hidden_states) if self.window_size > 0: height, width = hidden_states.shape[1], hidden_states.shape[2] hidden_states, padding_shape = self.window_partition(hidden_states, self.window_size) hidden_states, attn_weights = self.attn( hidden_states=hidden_states, output_attentions=output_attentions, training=training, ) if self.window_size > 0: hidden_states = self.window_unpartition(hidden_states, self.window_size, padding_shape, (height, width)) hidden_states = residual + hidden_states layernorm_output = self.layer_norm2(hidden_states) hidden_states = hidden_states + self.mlp(layernorm_output) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs class TFSamVisionNeck(tf.keras.layers.Layer): def __init__(self, config: SamVisionConfig, **kwargs): super().__init__(**kwargs) self.config = config self.conv1 = tf.keras.layers.Conv2D( config.output_channels, kernel_size=1, use_bias=False, name="conv1", ) self.layer_norm1 = TFSamLayerNorm(config.output_channels, name="layer_norm1") self.conv2 = tf.keras.layers.Conv2D( config.output_channels, kernel_size=3, padding="same", use_bias=False, name="conv2", ) self.layer_norm2 = TFSamLayerNorm(config.output_channels, name="layer_norm2") def call(self, hidden_states): hidden_states = self.conv1(hidden_states) hidden_states = self.layer_norm1(hidden_states) hidden_states = self.conv2(hidden_states) hidden_states = self.layer_norm2(hidden_states) hidden_states = tf.transpose(hidden_states, perm=[0, 3, 1, 2]) return hidden_states class TFSamVisionEncoder(tf.keras.layers.Layer): def __init__(self, config: SamVisionConfig, **kwargs): super().__init__(**kwargs) self.config = config self.image_size = config.image_size self.patch_embed = TFSamPatchEmbeddings(config, name="patch_embed") self.pos_embed = None self.layers = [] for i in range(config.num_hidden_layers): layer = TFSamVisionLayer( config, window_size=config.window_size if i not in config.global_attn_indexes else 0, name=f"layers_._{i}", ) self.layers.append(layer) self.neck = TFSamVisionNeck(config, name="neck") def build(self, input_shape): if self.config.use_abs_pos: # Initialize absolute positional embedding with pretrain image size. self.pos_embed = self.add_weight( shape=[ 1, self.config.image_size // self.config.patch_size, self.config.image_size // self.config.patch_size, self.config.hidden_size, ], initializer="zeros", trainable=True, name="pos_embed", ) super().build(input_shape) def get_input_embeddings(self): return self.patch_embed def call( self, pixel_values: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[Tuple, TFSamVisionEncoderOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") hidden_states = self.patch_embed(pixel_values) if self.pos_embed is not None: hidden_states = hidden_states + self.pos_embed all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layers): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = layer_module(hidden_states, output_attentions=output_attentions, training=training) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) hidden_states = self.neck(hidden_states) if not return_dict: outputs = (hidden_states,) if output_hidden_states: outputs = outputs + (all_hidden_states,) if output_attentions: outputs = outputs + (all_self_attentions,) return outputs return TFSamVisionEncoderOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) class TFSamPreTrainedModel(TFPreTrainedModel): config_class = SamConfig base_model_prefix = "sam" main_input_name = "pixel_values" SAM_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a TensorFlow [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TensorFlow Model and refer to the TensorFlow documentation for all matter related to general usage and behavior. Parameters: config ([`SamConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ SAM_INPUTS_DOCSTRING = r""" Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`SamProcessor`]. See [`SamProcessor.__call__`] for details. input_points (`tf.Tensor` of shape `(batch_size, num_points, 2)`): Input 2D spatial points, this is used by the prompt encoder to encode the prompt. Generally yields to much better results. The points can be obtained by passing a list of list of list to the processor that will create corresponding `tf` tensors of dimension 4. The first dimension is the image batch size, the second dimension is the point batch size (i.e. how many segmentation masks do we want the model to predict per input point), the third dimension is the number of points per segmentation mask (it is possible to pass multiple points for a single mask), and the last dimension is the x (vertical) and y (horizontal) coordinates of the point. If a different number of points is passed either for each image, or for each mask, the processor will create "PAD" points that will correspond to the (0, 0) coordinate, and the computation of the embedding will be skipped for these points using the labels. input_labels (`tf.Tensor` of shape `(batch_size, point_batch_size, num_points)`): Input labels for the points, this is used by the prompt encoder to encode the prompt. According to the official implementation, there are 3 types of labels - `1`: the point is a point that contains the object of interest - `0`: the point is a point that does not contain the object of interest - `-1`: the point corresponds to the background We added the label: - `-10`: the point is a padding point, thus should be ignored by the prompt encoder The padding labels should be automatically done by the processor. input_boxes (`tf.Tensor` of shape `(batch_size, num_boxes, 4)`): Input boxes for the points, this is used by the prompt encoder to encode the prompt. Generally yields to much better generated masks. The boxes can be obtained by passing a list of list of list to the processor, that will generate a `tf` tensor, with each dimension corresponding respectively to the image batch size, the number of boxes per image and the coordinates of the top left and botton right point of the box. In the order (`x1`, `y1`, `x2`, `y2`): - `x1`: the x coordinate of the top left point of the input box - `y1`: the y coordinate of the top left point of the input box - `x2`: the x coordinate of the bottom right point of the input box - `y2`: the y coordinate of the bottom right point of the input box input_masks (`tf.Tensor` of shape `(batch_size, image_size, image_size)`): SAM model also accepts segmentation masks as input. The mask will be embedded by the prompt encoder to generate a corresponding embedding, that will be fed later on to the mask decoder. These masks needs to be manually fed by the user, and they need to be of shape (`batch_size`, `image_size`, `image_size`). image_embeddings (`tf.Tensor` of shape `(batch_size, output_channels, window_size, window_size)`): Image embeddings, this is used by the mask decder to generate masks and iou scores. For more memory efficient computation, users can first retrieve the image embeddings using the `get_image_embeddings` method, and then feed them to the `call` method instead of feeding the `pixel_values`. multimask_output (`bool`, *optional*): In the original implementation and paper, the model always outputs 3 masks per image (or per point / per bounding box if relevant). However, it is possible to just output a single mask, that corresponds to the "best" mask, by specifying `multimask_output=False`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "Segment Anything Model (SAM) for generating segmentation masks, given an input image and ", " optional 2D location and bounding boxes.", SAM_START_DOCSTRING, ) class TFSamModel(TFSamPreTrainedModel): _keys_to_ignore_on_load_missing = [r"prompt_encoder.shared_embedding.positional_embedding"] def __init__(self, config, **kwargs): super().__init__(config, **kwargs) self.shared_image_embedding = TFSamPositionalEmbedding(config.vision_config, name="shared_image_embedding") self.vision_encoder = TFSamVisionEncoder(config.vision_config, name="vision_encoder") self.prompt_encoder = TFSamPromptEncoder( config.prompt_encoder_config, self.shared_image_embedding, name="prompt_encoder" ) self.mask_decoder = TFSamMaskDecoder(config.mask_decoder_config, name="mask_decoder") self.config = config def get_input_embeddings(self): return self.vision_encoder.get_input_embeddings() def get_image_wide_positional_embeddings(self): size = self.config.prompt_encoder_config.image_embedding_size grid = tf.ones((size, size)) y_embed = tf.math.cumsum(grid, axis=0) - 0.5 x_embed = tf.math.cumsum(grid, axis=1) - 0.5 y_embed = y_embed / size x_embed = x_embed / size positional_embedding = self.shared_image_embedding(tf.stack([x_embed, y_embed], axis=-1)) return tf.expand_dims(tf.transpose(positional_embedding, perm=[2, 0, 1]), axis=0) # channel x height x width def get_image_embeddings( self, pixel_values, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ): r""" Returns the image embeddings by passing the pixel values through the vision encoder. Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Input pixel values output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.TFModelOutput`] instead of a plain tuple. """ vision_output = self.vision_encoder( pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) image_embeddings = vision_output[0] return image_embeddings def get_prompt_embeddings( self, input_points: tf.Tensor | None = None, input_labels: tf.Tensor | None = None, input_boxes: tf.Tensor | None = None, input_masks: tf.Tensor | None = None, ): r""" Returns the prompt embeddings by passing the input points, labels, boxes and masks through the prompt encoder. Args: input_points (`tf.Tensor` of shape `(batch_size, point_batch_size, num_points_per_image, 2)`): Optional input points for the prompt encoder. The padding of the point is automatically done by the processor. `point_batch_size` refers to the number of masks that we want the model to predict per point. The model will output `point_batch_size` times 3 masks in total. input_labels (`tf.Tensor` of shape `(batch_size, point_batch_size, num_points_per_image)`): Optional input labels for the prompt encoder. The padding of the labels is automatically done by the processor, or can be fed by the user. input_boxes (`tf.Tensor` of shape `(batch_size, num_boxes_per_image, 4)`): Optional input boxes for the prompt encoder. The padding of the boxes is automatically done by the processor. users can also pass manually the input boxes. input_masks (`tf.Tensor` of shape `(batch_size, image_size, image_size)`): Optional input masks for the prompt encoder. """ prompt_output = self.prompt_encoder( input_points=input_points, input_labels=input_labels, input_boxes=input_boxes, input_masks=input_masks, ) return prompt_output @unpack_inputs @add_start_docstrings_to_model_forward(SAM_INPUTS_DOCSTRING) def call( self, pixel_values: TFModelInputType | None = None, input_points: tf.Tensor | None = None, input_labels: tf.Tensor | None = None, input_boxes: tf.Tensor | None = None, input_masks: tf.Tensor | None = None, image_embeddings: tf.Tensor | None = None, multimask_output: bool = True, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict=None, training=False, **kwargs, ) -> List[Dict[str, tf.Tensor]]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None and image_embeddings is None: raise ValueError("Either pixel_values or image_embeddings must be provided.") if pixel_values is not None and image_embeddings is not None: raise ValueError("Only one of pixel_values and image_embeddings can be provided.") if input_points is not None and len(input_points.shape) != 4: raise ValueError( "The input_points must be a 4D tensor. Of shape `batch_size`, `point_batch_size`, `nb_points_per_image`, `2`.", " got {}.".format(input_points.shape), ) if input_boxes is not None and len(input_boxes.shape) != 3: raise ValueError( "The input_points must be a 3D tensor. Of shape `batch_size`, `nb_boxes`, `4`.", " got {}.".format(input_boxes.shape), ) if input_points is not None and input_boxes is not None: point_batch_size = shape_list(input_points)[1] box_batch_size = shape_list(input_boxes)[1] if point_batch_size != box_batch_size: raise ValueError( "You should provide as many bounding boxes as input points per box. Got {} and {}.".format( point_batch_size, box_batch_size ) ) if pixel_values is not None: # Ensures that later checks pass even with an all-None shape from the serving signature pixel_values = tf.ensure_shape( pixel_values, [ None, self.config.vision_config.num_channels, self.config.vision_config.image_size, self.config.vision_config.image_size, ], ) image_positional_embeddings = self.get_image_wide_positional_embeddings() # repeat with batch size batch_size = shape_list(pixel_values)[0] if pixel_values is not None else shape_list(image_embeddings)[0] image_positional_embeddings = tf.repeat(image_positional_embeddings, batch_size, axis=0) vision_attentions = None vision_hidden_states = None if pixel_values is not None: vision_outputs = self.vision_encoder( pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=True, training=training, ) image_embeddings = vision_outputs["last_hidden_state"] if output_hidden_states: vision_hidden_states = vision_outputs["hidden_states"] if output_attentions: vision_attentions = vision_outputs["attentions"] if input_points is not None and input_labels is None: input_labels = tf.ones_like(input_points[:, :, :, 0], dtype=tf.int32) if input_points is not None and image_embeddings.shape[0] != input_points.shape[0]: raise ValueError( "The batch size of the image embeddings and the input points must be the same. ", "Got {} and {} respectively.".format(image_embeddings.shape[0], input_points.shape[0]), " if you want to pass multiple points for the same image, make sure that you passed ", " input_points of shape (batch_size, point_batch_size, num_points_per_image, 3) and ", " input_labels of shape (batch_size, point_batch_size, num_points_per_image)", ) sparse_embeddings, dense_embeddings = self.prompt_encoder( batch_size=shape_list(image_embeddings)[0], input_points=input_points, input_labels=input_labels, input_boxes=input_boxes, input_masks=input_masks, ) low_res_masks, iou_predictions, mask_decoder_attentions = self.mask_decoder( image_embeddings=image_embeddings, image_positional_embeddings=image_positional_embeddings, sparse_prompt_embeddings=sparse_embeddings, dense_prompt_embeddings=dense_embeddings, multimask_output=multimask_output, output_attentions=output_attentions, ) if not return_dict: output = (iou_predictions, low_res_masks) if output_hidden_states: output = output + (vision_hidden_states,) if output_attentions: output = output + (vision_attentions, mask_decoder_attentions) return output return TFSamImageSegmentationOutput( iou_scores=iou_predictions, pred_masks=low_res_masks, vision_hidden_states=vision_hidden_states, vision_attentions=vision_attentions, mask_decoder_attentions=mask_decoder_attentions, ) def serving_output(self, output: TFSamImageSegmentationOutput) -> TFSamImageSegmentationOutput: hs = tf.convert_to_tensor(output.vision_hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.vision_attentions) if self.config.output_attentions else None return TFSamImageSegmentationOutput( iou_scores=output.iou_scores, pred_masks=output.pred_masks, vision_hidden_states=hs if self.config.output_hidden_states else None, vision_attentions=attns if self.config.output_attentions else None, mask_decoder_attentions=output.mask_decoder_attentions if self.config.output_attentions else None, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/sam/__init__.py
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _import_structure = { "configuration_sam": [ "SAM_PRETRAINED_CONFIG_ARCHIVE_MAP", "SamConfig", "SamMaskDecoderConfig", "SamPromptEncoderConfig", "SamVisionConfig", ], "processing_sam": ["SamProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_sam"] = [ "SAM_PRETRAINED_MODEL_ARCHIVE_LIST", "SamModel", "SamPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_sam"] = [ "TF_SAM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFSamModel", "TFSamPreTrainedModel", ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["image_processing_sam"] = ["SamImageProcessor"] if TYPE_CHECKING: from .configuration_sam import ( SAM_PRETRAINED_CONFIG_ARCHIVE_MAP, SamConfig, SamMaskDecoderConfig, SamPromptEncoderConfig, SamVisionConfig, ) from .processing_sam import SamProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sam import SAM_PRETRAINED_MODEL_ARCHIVE_LIST, SamModel, SamPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_sam import TF_SAM_PRETRAINED_MODEL_ARCHIVE_LIST, TFSamModel, TFSamPreTrainedModel try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_sam import SamImageProcessor else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/sam/modeling_sam.py
# coding=utf-8 # Copyright 2023 The Meta AI Authors and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch SAM model.""" import collections import math from dataclasses import dataclass from typing import Dict, List, Optional, Tuple, Union import numpy as np import torch import torch.nn.functional as F import torch.utils.checkpoint from torch import Tensor, nn from ...activations import ACT2FN from ...modeling_outputs import BaseModelOutput from ...modeling_utils import PreTrainedModel from ...utils import ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_sam import SamConfig, SamMaskDecoderConfig, SamPromptEncoderConfig, SamVisionConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "SamConfig" _CHECKPOINT_FOR_DOC = "facebook/sam-vit-huge" SAM_PRETRAINED_MODEL_ARCHIVE_LIST = [ "facebook/sam-vit-huge", "facebook/sam-vit-large", "facebook/sam-vit-base", # See all SAM models at https://huggingface.co/models?filter=sam ] @dataclass class SamVisionEncoderOutput(ModelOutput): """ Base class for sam vision model's outputs that also contains image embeddings obtained by applying the projection layer to the pooler_output. Args: image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): The image embeddings obtained by applying the projection layer to the pooler_output. last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ image_embeds: Optional[torch.FloatTensor] = None last_hidden_state: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class SamImageSegmentationOutput(ModelOutput): """ Base class for Segment-Anything model's output Args: iou_scores (`torch.FloatTensor` of shape `(batch_size, num_masks)`): The iou scores of the predicted masks. pred_masks (`torch.FloatTensor` of shape `(batch_size, num_masks, height, width)`): The predicted low resolutions masks. Needs to be post-processed by the processor vision_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the vision model at the output of each layer plus the optional initial embedding outputs. vision_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. mask_decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ iou_scores: torch.FloatTensor = None pred_masks: torch.FloatTensor = None vision_hidden_states: Optional[Tuple[torch.FloatTensor]] = None vision_attentions: Optional[Tuple[torch.FloatTensor]] = None mask_decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None class SamPatchEmbeddings(nn.Module): """ This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a Transformer. """ def __init__(self, config): super().__init__() image_size, patch_size = config.image_size, config.patch_size num_channels, hidden_size = config.num_channels, config.hidden_size image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.num_patches = num_patches self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) def forward(self, pixel_values): batch_size, num_channels, height, width = pixel_values.shape if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) if height != self.image_size[0] or width != self.image_size[1]: raise ValueError( f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})." ) embeddings = self.projection(pixel_values).permute(0, 2, 3, 1) return embeddings class SamMLPBlock(nn.Module): def __init__(self, config): super().__init__() self.lin1 = nn.Linear(config.hidden_size, config.mlp_dim) self.lin2 = nn.Linear(config.mlp_dim, config.hidden_size) self.act = ACT2FN[config.hidden_act] def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.lin1(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.lin2(hidden_states) return hidden_states # Copied from transformers.models.convnext.modeling_convnext.ConvNextLayerNorm with ConvNext->Sam class SamLayerNorm(nn.Module): r"""LayerNorm that supports two data formats: channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, height, width, channels) while channels_first corresponds to inputs with shape (batch_size, channels, height, width). """ def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"): super().__init__() self.weight = nn.Parameter(torch.ones(normalized_shape)) self.bias = nn.Parameter(torch.zeros(normalized_shape)) self.eps = eps self.data_format = data_format if self.data_format not in ["channels_last", "channels_first"]: raise NotImplementedError(f"Unsupported data format: {self.data_format}") self.normalized_shape = (normalized_shape,) def forward(self, x: torch.Tensor) -> torch.Tensor: if self.data_format == "channels_last": x = torch.nn.functional.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) elif self.data_format == "channels_first": input_dtype = x.dtype x = x.float() u = x.mean(1, keepdim=True) s = (x - u).pow(2).mean(1, keepdim=True) x = (x - u) / torch.sqrt(s + self.eps) x = x.to(dtype=input_dtype) x = self.weight[:, None, None] * x + self.bias[:, None, None] return x class SamAttention(nn.Module): """ SAM's attention layer that allows for downscaling the size of the embedding after projection to queries, keys, and values. """ def __init__(self, config, downsample_rate=None): super().__init__() self.hidden_size = config.hidden_size downsample_rate = config.attention_downsample_rate if downsample_rate is None else downsample_rate self.internal_dim = config.hidden_size // downsample_rate self.num_attention_heads = config.num_attention_heads if self.internal_dim % config.num_attention_heads != 0: raise ValueError("num_attention_heads must divide hidden_size.") self.q_proj = nn.Linear(self.hidden_size, self.internal_dim) self.k_proj = nn.Linear(self.hidden_size, self.internal_dim) self.v_proj = nn.Linear(self.hidden_size, self.internal_dim) self.out_proj = nn.Linear(self.internal_dim, self.hidden_size) def _separate_heads(self, hidden_states: Tensor, num_attention_heads: int) -> Tensor: batch, point_batch_size, n_tokens, channel = hidden_states.shape c_per_head = channel // num_attention_heads hidden_states = hidden_states.reshape(batch * point_batch_size, n_tokens, num_attention_heads, c_per_head) return hidden_states.transpose(1, 2) def _recombine_heads(self, hidden_states: Tensor, point_batch_size: int) -> Tensor: batch, n_heads, n_tokens, c_per_head = hidden_states.shape hidden_states = hidden_states.transpose(1, 2) return hidden_states.reshape(batch // point_batch_size, point_batch_size, n_tokens, n_heads * c_per_head) def forward(self, query: Tensor, key: Tensor, value: Tensor, attention_similarity: Tensor = None) -> Tensor: # Input projections query = self.q_proj(query) key = self.k_proj(key) value = self.v_proj(value) point_batch_size = query.shape[1] # Separate into heads query = self._separate_heads(query, self.num_attention_heads) key = self._separate_heads(key, self.num_attention_heads) value = self._separate_heads(value, self.num_attention_heads) # SamAttention _, _, _, c_per_head = query.shape attn = query @ key.permute(0, 1, 3, 2) # batch_size * point_batch_size x N_heads x N_tokens x N_tokens attn = attn / math.sqrt(c_per_head) attn = torch.softmax(attn, dim=-1) if attention_similarity is not None: attn = attn + attention_similarity attn = torch.softmax(attn, dim=-1) # Get output out = attn @ value out = self._recombine_heads(out, point_batch_size) out = self.out_proj(out) return out class SamTwoWayAttentionBlock(nn.Module): def __init__(self, config, attention_downsample_rate: int = 2, skip_first_layer_pe: bool = False): """ A transformer block with four layers: (1) self-attention of sparse inputs (2) cross attention of sparse inputs -> dense inputs (3) mlp block on sparse inputs (4) cross attention of dense inputs -> sparse inputs Arguments: config (`SamMaskDecoderConfig`): The configuration file used to instantiate the block attention_downsample_rate (*optionalk*, int, defaults to 2): The downsample ratio of the block used to reduce the inner dim of the attention. skip_first_layer_pe (*optional*, bool, defaults to `False`): Whether or not to skip the addition of the query_point_embedding on the first layer. """ super().__init__() self.hidden_size = config.hidden_size self.layer_norm_eps = config.layer_norm_eps self.self_attn = SamAttention(config, downsample_rate=1) self.layer_norm1 = nn.LayerNorm(self.hidden_size, eps=self.layer_norm_eps) self.cross_attn_token_to_image = SamAttention(config, downsample_rate=attention_downsample_rate) self.layer_norm2 = nn.LayerNorm(self.hidden_size, eps=self.layer_norm_eps) self.mlp = SamMLPBlock(config) self.layer_norm3 = nn.LayerNorm(self.hidden_size, eps=self.layer_norm_eps) self.layer_norm4 = nn.LayerNorm(self.hidden_size, eps=self.layer_norm_eps) self.cross_attn_image_to_token = SamAttention(config, downsample_rate=attention_downsample_rate) self.skip_first_layer_pe = skip_first_layer_pe def forward( self, queries: Tensor, keys: Tensor, query_point_embedding: Tensor, key_point_embedding: Tensor, attention_similarity: Tensor, output_attentions: bool = False, ): # Self attention block if self.skip_first_layer_pe: queries = self.self_attn(query=queries, key=queries, value=queries) else: query = queries + query_point_embedding attn_out = self.self_attn(query=query, key=query, value=queries) queries = queries + attn_out queries = self.layer_norm1(queries) # Cross attention block, tokens attending to image embedding query = queries + query_point_embedding key = keys + key_point_embedding attn_out = self.cross_attn_token_to_image( query=query, key=key, value=keys, attention_similarity=attention_similarity ) queries = queries + attn_out queries = self.layer_norm2(queries) # MLP block mlp_out = self.mlp(queries) queries = queries + mlp_out queries = self.layer_norm3(queries) # Cross attention block, image embedding attending to tokens query = queries + query_point_embedding key = keys + key_point_embedding attn_out = self.cross_attn_image_to_token(query=key, key=query, value=queries) keys = keys + attn_out keys = self.layer_norm4(keys) outputs = (queries, keys) if output_attentions: outputs = outputs + (attn_out,) else: outputs = outputs + (None,) return outputs class SamTwoWayTransformer(nn.Module): def __init__(self, config: SamMaskDecoderConfig): super().__init__() self.config = config self.num_hidden_layers = config.num_hidden_layers self.layers = nn.ModuleList() for i in range(self.num_hidden_layers): self.layers.append(SamTwoWayAttentionBlock(config, skip_first_layer_pe=(i == 0))) self.final_attn_token_to_image = SamAttention(config) self.layer_norm_final_attn = nn.LayerNorm(config.hidden_size) def forward( self, point_embeddings: Tensor, image_embeddings: Tensor, image_positional_embeddings: Tensor, attention_similarity: Tensor, target_embedding=None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict all_attentions = () if image_embeddings is None: raise ValueError("You have to specify an image_embedding") image_embeddings = image_embeddings.flatten(2).permute(0, 2, 1).unsqueeze(1) image_positional_embeddings = image_positional_embeddings.flatten(2).permute(0, 2, 1).unsqueeze(1) # Prepare queries queries = point_embeddings keys = image_embeddings # Apply transformer blocks and final layernorm for layer in self.layers: if target_embedding is not None: queries += target_embedding queries, keys, attention_outputs = layer( queries=queries, keys=keys, query_point_embedding=point_embeddings, key_point_embedding=image_positional_embeddings, attention_similarity=attention_similarity, output_attentions=output_attentions, ) if output_attentions: all_attentions = all_attentions + (attention_outputs,) # Apply the final attenion layer from the points to the image query = queries + point_embeddings key = keys + image_positional_embeddings attn_out = self.final_attn_token_to_image(query=query, key=key, value=keys) queries = queries + attn_out queries = self.layer_norm_final_attn(queries) return queries, keys, all_attentions class SamFeedForward(nn.Module): def __init__( self, input_dim: int, hidden_dim: int, output_dim: int, num_layers: int, sigmoid_output: bool = False ): super().__init__() self.num_layers = num_layers self.activation = nn.ReLU() self.proj_in = nn.Linear(input_dim, hidden_dim) self.proj_out = nn.Linear(hidden_dim, output_dim) self.layers = nn.ModuleList([nn.Linear(hidden_dim, hidden_dim) for _ in range(num_layers - 2)]) self.sigmoid_output = sigmoid_output def forward(self, hidden_states): hidden_states = self.proj_in(hidden_states) hidden_states = self.activation(hidden_states) for layer in self.layers: hidden_states = self.activation(layer(hidden_states)) hidden_states = self.proj_out(hidden_states) if self.sigmoid_output: hidden_states = F.sigmoid(hidden_states) return hidden_states class SamMaskDecoder(nn.Module): def __init__(self, config: SamMaskDecoderConfig): super().__init__() self.hidden_size = config.hidden_size self.num_multimask_outputs = config.num_multimask_outputs self.num_mask_tokens = config.num_multimask_outputs + 1 self.iou_token = nn.Embedding(1, self.hidden_size) self.mask_tokens = nn.Embedding(self.num_mask_tokens, self.hidden_size) self.transformer = SamTwoWayTransformer(config) # should we create a new class for this? self.upscale_conv1 = nn.ConvTranspose2d(self.hidden_size, self.hidden_size // 4, kernel_size=2, stride=2) self.upscale_conv2 = nn.ConvTranspose2d(self.hidden_size // 4, self.hidden_size // 8, kernel_size=2, stride=2) self.upscale_layer_norm = SamLayerNorm(self.hidden_size // 4, data_format="channels_first") self.activation = nn.GELU() mlps_list = [] for _ in range(self.num_mask_tokens): mlps_list += [SamFeedForward(self.hidden_size, self.hidden_size, self.hidden_size // 8, 3)] self.output_hypernetworks_mlps = nn.ModuleList(mlps_list) self.iou_prediction_head = SamFeedForward( self.hidden_size, config.iou_head_hidden_dim, self.num_mask_tokens, config.iou_head_depth ) def forward( self, image_embeddings: torch.Tensor, image_positional_embeddings: torch.Tensor, sparse_prompt_embeddings: torch.Tensor, dense_prompt_embeddings: torch.Tensor, multimask_output: bool, output_attentions: Optional[bool] = None, attention_similarity: torch.Tensor = None, target_embedding: torch.Tensor = None, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Predict masks given image and prompt embeddings. Args: image_embeddings (`torch.Tensor`): the embeddings from the image encoder image_positional_embedding (`torch.Tensor`): positional encoding with the shape of image_embeddings sparse_prompt_embeddings (`torch.Tensor`): The embeddings of the points and boxes dense_prompt_embeddings (`torch.Tensor`): the embeddings of the mask inputs multimask_output (bool): Whether to return multiple masks or a single mask. output_attentions (bool, *optional*): Whether or not to return the attentions tensors of all attention layers. """ batch_size, num_channels, height, width = image_embeddings.shape point_batch_size = sparse_prompt_embeddings.shape[1] # Concatenate output tokens output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0) output_tokens = output_tokens.repeat(batch_size, point_batch_size, 1, 1) if sparse_prompt_embeddings.sum().item() != 0: tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=2) else: tokens = output_tokens point_embeddings = tokens.to(self.iou_token.weight.dtype) # Expand per-image data in batch direction to be per-point image_embeddings = image_embeddings + dense_prompt_embeddings image_embeddings = image_embeddings.repeat_interleave(point_batch_size, 0) image_positional_embeddings = image_positional_embeddings.repeat_interleave(point_batch_size, 0) # Run the transformer, image_positional_embedding are consumed point_embedding, image_embeddings, attentions = self.transformer( point_embeddings=point_embeddings, image_embeddings=image_embeddings, image_positional_embeddings=image_positional_embeddings, attention_similarity=attention_similarity, target_embedding=target_embedding, output_attentions=output_attentions, ) iou_token_out = point_embedding[:, :, 0, :] mask_tokens_out = point_embedding[:, :, 1 : (1 + self.num_mask_tokens), :] # Upscale mask embeddings and predict masks using the mask tokens image_embeddings = image_embeddings.transpose(2, 3).reshape( batch_size * point_batch_size, num_channels, height, width ) upscaled_embedding = self.upscale_conv1(image_embeddings) upscaled_embedding = self.activation(self.upscale_layer_norm(upscaled_embedding)) upscaled_embedding = self.activation(self.upscale_conv2(upscaled_embedding)) hyper_in_list = [] for i in range(self.num_mask_tokens): current_mlp = self.output_hypernetworks_mlps[i] hyper_in_list += [current_mlp(mask_tokens_out[:, :, i, :])] hyper_in = torch.stack(hyper_in_list, dim=2) _, num_channels, height, width = upscaled_embedding.shape upscaled_embedding = upscaled_embedding.reshape(batch_size, point_batch_size, num_channels, height * width) masks = (hyper_in @ upscaled_embedding).reshape(batch_size, point_batch_size, -1, height, width) # Generate mask quality predictions iou_pred = self.iou_prediction_head(iou_token_out) # Select the correct mask or masks for output if multimask_output: mask_slice = slice(1, None) else: mask_slice = slice(0, 1) masks = masks[:, :, mask_slice, :, :] iou_pred = iou_pred[:, :, mask_slice] outputs = (masks, iou_pred) if output_attentions: outputs = outputs + (attentions,) else: outputs = outputs + (None,) return outputs class SamPositionalEmbedding(nn.Module): def __init__(self, config): super().__init__() self.scale = config.hidden_size // 2 self.register_buffer("positional_embedding", self.scale * torch.randn((2, config.num_pos_feats))) def forward(self, input_coords, input_shape=None): """Positionally encode points that are normalized to [0,1].""" coordinates = input_coords.clone() if input_shape is not None: coordinates[:, :, :, 0] = coordinates[:, :, :, 0] / input_shape[1] coordinates[:, :, :, 1] = coordinates[:, :, :, 1] / input_shape[0] # assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape coordinates = 2 * coordinates - 1 coordinates = coordinates.to(self.positional_embedding.dtype) coordinates = coordinates @ self.positional_embedding coordinates = 2 * np.pi * coordinates # outputs d_1 x ... x d_n x channel shape return torch.cat([torch.sin(coordinates), torch.cos(coordinates)], dim=-1) class SamMaskEmbedding(nn.Module): def __init__(self, config: SamPromptEncoderConfig): super().__init__() self.mask_input_channels = config.mask_input_channels // 4 self.activation = ACT2FN[config.hidden_act] self.conv1 = nn.Conv2d(1, self.mask_input_channels, kernel_size=2, stride=2) self.conv2 = nn.Conv2d(self.mask_input_channels, config.mask_input_channels, kernel_size=2, stride=2) self.conv3 = nn.Conv2d(config.mask_input_channels, config.hidden_size, kernel_size=1) self.layer_norm1 = SamLayerNorm( self.mask_input_channels, eps=config.layer_norm_eps, data_format="channels_first" ) self.layer_norm2 = SamLayerNorm( self.mask_input_channels * 4, eps=config.layer_norm_eps, data_format="channels_first" ) def forward(self, masks): hidden_states = self.conv1(masks) hidden_states = self.layer_norm1(hidden_states) hidden_states = self.activation(hidden_states) hidden_states = self.conv2(hidden_states) hidden_states = self.layer_norm2(hidden_states) hidden_states = self.activation(hidden_states) dense_embeddings = self.conv3(hidden_states) return dense_embeddings class SamPromptEncoder(nn.Module): def __init__(self, config: SamPromptEncoderConfig, shared_patch_embedding): super().__init__() self.shared_embedding = shared_patch_embedding self.mask_embed = SamMaskEmbedding(config) self.no_mask_embed = nn.Embedding(1, config.hidden_size) self.image_embedding_size = (config.image_embedding_size, config.image_embedding_size) self.input_image_size = config.image_size self.point_embed = nn.ModuleList( [nn.Embedding(1, config.hidden_size) for i in range(config.num_point_embeddings)] ) self.hidden_size = config.hidden_size self.not_a_point_embed = nn.Embedding(1, config.hidden_size) def _embed_points(self, points: torch.Tensor, labels: torch.Tensor, pad: bool) -> torch.Tensor: """Embeds point prompts.""" points = points + 0.5 # Shift to center of pixel if pad: target_point_shape = (points.shape[0], points.shape[1], 1, points.shape[-1]) target_labels_shape = (points.shape[0], points.shape[1], 1) padding_point = torch.zeros(target_point_shape, device=points.device) padding_label = -torch.ones(target_labels_shape, device=labels.device) points = torch.cat([points, padding_point], dim=2) labels = torch.cat([labels, padding_label], dim=2) input_shape = (self.input_image_size, self.input_image_size) point_embedding = self.shared_embedding(points, input_shape) # torch.where and expanding the labels tensor is required by the ONNX export point_embedding = torch.where(labels[..., None] == -1, self.not_a_point_embed.weight, point_embedding) # This is required for the ONNX export. The dtype, device need to be explicitely # specificed as otherwise torch.onnx.export interprets as double point_embedding = torch.where( labels[..., None] != -10, point_embedding, torch.tensor(0.0, dtype=point_embedding.dtype, device=point_embedding.device), ) point_embedding = torch.where( (labels == 0)[:, :, :, None], point_embedding + self.point_embed[0].weight[None, None, :, :], point_embedding, ) point_embedding = torch.where( (labels == 1)[:, :, :, None], point_embedding + self.point_embed[1].weight[None, None, :, :], point_embedding, ) return point_embedding def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor: """Embeds box prompts.""" boxes = boxes + 0.5 # Shift to center of pixel batch_size, nb_boxes = boxes.shape[:2] coords = boxes.reshape(batch_size, nb_boxes, 2, 2) input_shape = (self.input_image_size, self.input_image_size) corner_embedding = self.shared_embedding(coords, input_shape) corner_embedding[:, :, 0, :] += self.point_embed[2].weight corner_embedding[:, :, 1, :] += self.point_embed[3].weight return corner_embedding def forward( self, input_points: Optional[Tuple[torch.Tensor, torch.Tensor]], input_labels: Optional[torch.Tensor], input_boxes: Optional[torch.Tensor], input_masks: Optional[torch.Tensor], ) -> Tuple[torch.Tensor, torch.Tensor]: """ Embeds different types of prompts, returning both sparse and dense embeddings. Args: points (`torch.Tensor`, *optional*): point coordinates and labels to embed. boxes (`torch.Tensor`, *optional*): boxes to embed masks (`torch.Tensor`, *optional*): masks to embed """ sparse_embeddings = None batch_size = 1 target_device = self.shared_embedding.positional_embedding.device if input_points is not None: batch_size, point_batch_size = input_points.shape[:2] if input_labels is None: raise ValueError("If points are provided, labels must also be provided.") point_embeddings = self._embed_points(input_points, input_labels, pad=(input_boxes is None)) sparse_embeddings = point_embeddings if input_boxes is not None: batch_size = input_boxes.shape[0] box_embeddings = self._embed_boxes(input_boxes) if sparse_embeddings is None: sparse_embeddings = box_embeddings else: sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=2) if input_masks is not None: dense_embeddings = self.mask_embed(input_masks) else: dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand( batch_size, -1, self.image_embedding_size[0], self.image_embedding_size[1] ) if sparse_embeddings is None: sparse_embeddings = torch.zeros((batch_size, 1, 1, self.hidden_size), device=target_device) return sparse_embeddings, dense_embeddings class SamVisionAttention(nn.Module): """Multi-head Attention block with relative position embeddings.""" def __init__(self, config, window_size): super().__init__() input_size = ( (config.image_size // config.patch_size, config.image_size // config.patch_size) if window_size == 0 else (window_size, window_size) ) self.num_attention_heads = config.num_attention_heads head_dim = config.hidden_size // config.num_attention_heads self.scale = head_dim**-0.5 self.dropout = config.attention_dropout self.qkv = nn.Linear(config.hidden_size, config.hidden_size * 3, bias=config.qkv_bias) self.proj = nn.Linear(config.hidden_size, config.hidden_size) self.use_rel_pos = config.use_rel_pos if self.use_rel_pos: if input_size is None: raise ValueError("Input size must be provided if using relative positional encoding.") # initialize relative positional embeddings self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim)) self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim)) def get_rel_pos(self, q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor: """ Get relative positional embeddings according to the relative positions of query and key sizes. Args: q_size (int): size of the query. k_size (int): size of key k. rel_pos (`torch.Tensor`): relative position embeddings (L, channel). Returns: Extracted positional embeddings according to relative positions. """ max_rel_dist = int(2 * max(q_size, k_size) - 1) # Interpolate rel pos. rel_pos_resized = F.interpolate( rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1), size=max_rel_dist, mode="linear", ) rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0) # Scale the coords with short length if shapes for q and k are different. q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0) k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0) relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0) return rel_pos_resized[relative_coords.long()] def add_decomposed_rel_pos( self, attn: torch.Tensor, query: torch.Tensor, rel_pos_h: torch.Tensor, rel_pos_w: torch.Tensor, q_size: Tuple[int, int], k_size: Tuple[int, int], ) -> torch.Tensor: """ Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`. https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py Args: attn (`torch.Tensor`): attention map. query (`torch.Tensor`): query q in the attention layer with shape (batch_size, query_height * query_width, channel). rel_pos_h (`torch.Tensor`): relative position embeddings (Lh, channel) for height axis. rel_pos_w (`torch.Tensor`): relative position embeddings (Lw, channel) for width axis. q_size (tuple): spatial sequence size of query q with (query_height, query_width). k_size (tuple): spatial sequence size of key k with (key_height, key_width). Returns: attn (`torch.Tensor`): attention map with added relative positional embeddings. """ query_height, query_width = q_size key_height, key_width = k_size relative_position_height = self.get_rel_pos(query_height, key_height, rel_pos_h) relative_position_width = self.get_rel_pos(query_width, key_width, rel_pos_w) batch_size, _, dim = query.shape reshaped_query = query.reshape(batch_size, query_height, query_width, dim) rel_h = torch.einsum("bhwc,hkc->bhwk", reshaped_query, relative_position_height) rel_w = torch.einsum("bhwc,wkc->bhwk", reshaped_query, relative_position_width) attn = attn.reshape(batch_size, query_height, query_width, key_height, key_width) attn = attn + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :] attn = attn.reshape(batch_size, query_height * query_width, key_height * key_width) return attn def forward(self, hidden_states: torch.Tensor, output_attentions=False) -> torch.Tensor: batch_size, height, width, _ = hidden_states.shape # qkv with shape (3, batch_size, nHead, height * width, channel) qkv = ( self.qkv(hidden_states) .reshape(batch_size, height * width, 3, self.num_attention_heads, -1) .permute(2, 0, 3, 1, 4) ) # q, k, v with shape (batch_size * nHead, height * width, channel) query, key, value = qkv.reshape(3, batch_size * self.num_attention_heads, height * width, -1).unbind(0) attn_weights = (query * self.scale) @ key.transpose(-2, -1) if self.use_rel_pos: attn_weights = self.add_decomposed_rel_pos( attn_weights, query, self.rel_pos_h, self.rel_pos_w, (height, width), (height, width) ) attn_weights = torch.nn.functional.softmax(attn_weights, dtype=torch.float32, dim=-1).to(query.dtype) attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = (attn_probs @ value).reshape(batch_size, self.num_attention_heads, height, width, -1) attn_output = attn_output.permute(0, 2, 3, 1, 4).reshape(batch_size, height, width, -1) attn_output = self.proj(attn_output) if output_attentions: outputs = (attn_output, attn_weights) else: outputs = (attn_output, None) return outputs class SamVisionLayer(nn.Module): def __init__(self, config, window_size): super().__init__() self.layer_norm1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.attn = SamVisionAttention(config, window_size) self.layer_norm2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.mlp = SamMLPBlock(config) self.window_size = window_size def window_partition(self, hidden_states: torch.Tensor, window_size: int) -> Tuple[torch.Tensor, Tuple[int, int]]: """ Args: Partition into non-overlapping windows with padding if needed. hidden_states (tensor): input tokens with [batch_size, height, width, channel]. window_size (int): window size. Returns: windows: windows after partition with [batch_size * num_windows, window_size, window_size, channel]. (pad_height, pad_width): padded height and width before partition """ batch_size, height, width, channel = hidden_states.shape pad_h = (window_size - height % window_size) % window_size pad_w = (window_size - width % window_size) % window_size hidden_states = F.pad(hidden_states, (0, 0, 0, pad_w, 0, pad_h)) pad_height, pad_width = height + pad_h, width + pad_w hidden_states = hidden_states.reshape( batch_size, pad_height // window_size, window_size, pad_width // window_size, window_size, channel ) windows = hidden_states.permute(0, 1, 3, 2, 4, 5).contiguous().reshape(-1, window_size, window_size, channel) return windows, (pad_height, pad_width) def window_unpartition( self, windows: torch.Tensor, window_size: int, padding_shape: Tuple[int, int], original_shape: Tuple[int, int] ) -> torch.Tensor: """ Args: Window unpartition into original sequences and removing padding. hidden_states (tensor): input tokens with [batch_size * num_windows, window_size, window_size, channel]. window_size (int): window size. padding_shape (Tuple): padded height and width (pad_height, pad_width). original_shape (Tuple): original height and width (height, width) before padding. Returns: hidden_states: unpartitioned sequences with [batch_size, height, width, channel]. """ pad_height, pad_width = padding_shape height, width = original_shape batch_size = windows.shape[0] // (pad_height * pad_width // window_size // window_size) hidden_states = windows.reshape( batch_size, pad_height // window_size, pad_width // window_size, window_size, window_size, -1 ) hidden_states = ( hidden_states.permute(0, 1, 3, 2, 4, 5).contiguous().reshape(batch_size, pad_height, pad_width, -1) ) hidden_states = hidden_states[:, :height, :width, :].contiguous() return hidden_states def forward( self, hidden_states: torch.Tensor, output_attentions: Optional[bool] = False, ) -> Tuple[torch.FloatTensor]: residual = hidden_states hidden_states = self.layer_norm1(hidden_states) # Window partition if self.window_size > 0: height, width = hidden_states.shape[1], hidden_states.shape[2] hidden_states, padding_shape = self.window_partition(hidden_states, self.window_size) hidden_states, attn_weights = self.attn( hidden_states=hidden_states, output_attentions=output_attentions, ) # Reverse window partition if self.window_size > 0: hidden_states = self.window_unpartition(hidden_states, self.window_size, padding_shape, (height, width)) hidden_states = residual + hidden_states layernorm_output = self.layer_norm2(hidden_states) hidden_states = hidden_states + self.mlp(layernorm_output) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs class SamVisionNeck(nn.Module): def __init__(self, config: SamVisionConfig): super().__init__() self.config = config self.conv1 = nn.Conv2d(config.hidden_size, config.output_channels, kernel_size=1, bias=False) self.layer_norm1 = SamLayerNorm(config.output_channels, data_format="channels_first") self.conv2 = nn.Conv2d(config.output_channels, config.output_channels, kernel_size=3, padding=1, bias=False) self.layer_norm2 = SamLayerNorm(config.output_channels, data_format="channels_first") def forward(self, hidden_states): hidden_states = hidden_states.permute(0, 3, 1, 2) hidden_states = self.conv1(hidden_states) hidden_states = self.layer_norm1(hidden_states) hidden_states = self.conv2(hidden_states) hidden_states = self.layer_norm2(hidden_states) return hidden_states class SamVisionEncoder(nn.Module): def __init__(self, config: SamVisionConfig): super().__init__() self.config = config self.image_size = config.image_size self.patch_embed = SamPatchEmbeddings(config) self.pos_embed = None if config.use_abs_pos: # Initialize absolute positional embedding with pretrain image size. self.pos_embed = nn.Parameter( torch.zeros( 1, config.image_size // config.patch_size, config.image_size // config.patch_size, config.hidden_size, ) ) self.layers = nn.ModuleList() for i in range(config.num_hidden_layers): layer = SamVisionLayer( config, window_size=config.window_size if i not in config.global_attn_indexes else 0, ) self.layers.append(layer) self.neck = SamVisionNeck(config) self.gradient_checkpointing = False def get_input_embeddings(self): return self.patch_embed def forward( self, pixel_values: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SamVisionEncoderOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") hidden_states = self.patch_embed(pixel_values) if self.pos_embed is not None: hidden_states = hidden_states + self.pos_embed all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layers): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(layer_module), hidden_states, ) else: layer_outputs = layer_module(hidden_states, output_attentions=output_attentions) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) hidden_states = self.neck(hidden_states) if not return_dict: outputs = (hidden_states,) if output_hidden_states: outputs = outputs + (all_hidden_states,) if output_attentions: outputs = outputs + (all_self_attentions,) return outputs return SamVisionEncoderOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) class SamPreTrainedModel(PreTrainedModel): config_class = SamConfig base_model_prefix = "sam" main_input_name = "pixel_values" def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, (nn.Linear, nn.Conv2d, nn.ConvTranspose2d)): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() SAM_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`SamConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ SAM_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`SamProcessor`]. See [`SamProcessor.__call__`] for details. input_points (`torch.FloatTensor` of shape `(batch_size, num_points, 2)`): Input 2D spatial points, this is used by the prompt encoder to encode the prompt. Generally yields to much better results. The points can be obtained by passing a list of list of list to the processor that will create corresponding `torch` tensors of dimension 4. The first dimension is the image batch size, the second dimension is the point batch size (i.e. how many segmentation masks do we want the model to predict per input point), the third dimension is the number of points per segmentation mask (it is possible to pass multiple points for a single mask), and the last dimension is the x (vertical) and y (horizontal) coordinates of the point. If a different number of points is passed either for each image, or for each mask, the processor will create "PAD" points that will correspond to the (0, 0) coordinate, and the computation of the embedding will be skipped for these points using the labels. input_labels (`torch.LongTensor` of shape `(batch_size, point_batch_size, num_points)`): Input labels for the points, this is used by the prompt encoder to encode the prompt. According to the official implementation, there are 3 types of labels - `1`: the point is a point that contains the object of interest - `0`: the point is a point that does not contain the object of interest - `-1`: the point corresponds to the background We added the label: - `-10`: the point is a padding point, thus should be ignored by the prompt encoder The padding labels should be automatically done by the processor. input_boxes (`torch.FloatTensor` of shape `(batch_size, num_boxes, 4)`): Input boxes for the points, this is used by the prompt encoder to encode the prompt. Generally yields to much better generated masks. The boxes can be obtained by passing a list of list of list to the processor, that will generate a `torch` tensor, with each dimension corresponding respectively to the image batch size, the number of boxes per image and the coordinates of the top left and botton right point of the box. In the order (`x1`, `y1`, `x2`, `y2`): - `x1`: the x coordinate of the top left point of the input box - `y1`: the y coordinate of the top left point of the input box - `x2`: the x coordinate of the bottom right point of the input box - `y2`: the y coordinate of the bottom right point of the input box input_masks (`torch.FloatTensor` of shape `(batch_size, image_size, image_size)`): SAM model also accepts segmentation masks as input. The mask will be embedded by the prompt encoder to generate a corresponding embedding, that will be fed later on to the mask decoder. These masks needs to be manually fed by the user, and they need to be of shape (`batch_size`, `image_size`, `image_size`). image_embeddings (`torch.FloatTensor` of shape `(batch_size, output_channels, window_size, window_size)`): Image embeddings, this is used by the mask decder to generate masks and iou scores. For more memory efficient computation, users can first retrieve the image embeddings using the `get_image_embeddings` method, and then feed them to the `forward` method instead of feeding the `pixel_values`. multimask_output (`bool`, *optional*): In the original implementation and paper, the model always outputs 3 masks per image (or per point / per bounding box if relevant). However, it is possible to just output a single mask, that corresponds to the "best" mask, by specifying `multimask_output=False`. attention_similarity (`torch.FloatTensor`, *optional*): Attention similarity tensor, to be provided to the mask decoder for target-guided attention in case the model is used for personalization as introduced in [PerSAM](https://arxiv.org/abs/2305.03048). target_embedding (`torch.FloatTensor`, *optional*): Embedding of the target concept, to be provided to the mask decoder for target-semantic prompting in case the model is used for personalization as introduced in [PerSAM](https://arxiv.org/abs/2305.03048). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "Segment Anything Model (SAM) for generating segmentation masks, given an input image and ", " optional 2D location and bounding boxes.", SAM_START_DOCSTRING, ) class SamModel(SamPreTrainedModel): _tied_weights_keys = ["prompt_encoder.shared_embedding.positional_embedding"] def __init__(self, config): super().__init__(config) self.shared_image_embedding = SamPositionalEmbedding(config.vision_config) self.vision_encoder = SamVisionEncoder(config.vision_config) self.prompt_encoder = SamPromptEncoder(config.prompt_encoder_config, self.shared_image_embedding) self.mask_decoder = SamMaskDecoder(config.mask_decoder_config) self.post_init() def get_input_embeddings(self): return self.vision_encoder.get_input_embeddings() def get_image_wide_positional_embeddings(self): size = self.config.prompt_encoder_config.image_embedding_size target_device = self.shared_image_embedding.positional_embedding.device target_dtype = self.shared_image_embedding.positional_embedding.dtype grid = torch.ones((size, size), device=target_device, dtype=target_dtype) y_embed = grid.cumsum(dim=0) - 0.5 x_embed = grid.cumsum(dim=1) - 0.5 y_embed = y_embed / size x_embed = x_embed / size positional_embedding = self.shared_image_embedding(torch.stack([x_embed, y_embed], dim=-1)) return positional_embedding.permute(2, 0, 1).unsqueeze(0) # channel x height x width @torch.no_grad() def get_image_embeddings( self, pixel_values, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ): r""" Returns the image embeddings by passing the pixel values through the vision encoder. Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Input pixel values output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ vision_output = self.vision_encoder( pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) image_embeddings = vision_output[0] return image_embeddings @torch.no_grad() def get_prompt_embeddings( self, input_points: Optional[torch.FloatTensor] = None, input_labels: Optional[torch.LongTensor] = None, input_boxes: Optional[torch.FloatTensor] = None, input_masks: Optional[torch.LongTensor] = None, ): r""" Returns the prompt embeddings by passing the input points, labels, boxes and masks through the prompt encoder. Args: input_points (`torch.FloatTensor` of shape `(batch_size, point_batch_size, num_points_per_image, 2)`): Optional input points for the prompt encoder. The padding of the point is automatically done by the processor. `point_batch_size` refers to the number of masks that we want the model to predict per point. The model will output `point_batch_size` times 3 masks in total. input_labels (`torch.LongTensor` of shape `(batch_size, point_batch_size, num_points_per_image)`): Optional input labels for the prompt encoder. The padding of the labels is automatically done by the processor, or can be fed by the user. input_boxes (`torch.FloatTensor` of shape `(batch_size, num_boxes_per_image, 4)`): Optional input boxes for the prompt encoder. The padding of the boxes is automatically done by the processor. users can also pass manually the input boxes. input_masks (`torch.LongTensor` of shape `(batch_size, image_size, image_size)`): Optional input masks for the prompt encoder. """ prompt_output = self.prompt_encoder( input_points=input_points, input_labels=input_labels, input_boxes=input_boxes, input_masks=input_masks, ) return prompt_output @add_start_docstrings_to_model_forward(SAM_INPUTS_DOCSTRING) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, input_points: Optional[torch.FloatTensor] = None, input_labels: Optional[torch.LongTensor] = None, input_boxes: Optional[torch.FloatTensor] = None, input_masks: Optional[torch.LongTensor] = None, image_embeddings: Optional[torch.FloatTensor] = None, multimask_output: bool = True, attention_similarity: Optional[torch.FloatTensor] = None, target_embedding: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict=None, **kwargs, ) -> List[Dict[str, torch.Tensor]]: r""" Example: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoModel, AutoProcessor >>> model = AutoModel.from_pretrained("facebook/sam-vit-base") >>> processor = AutoProcessor.from_pretrained("facebook/sam-vit-base") >>> img_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/sam-car.png" >>> raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB") >>> input_points = [[[400, 650]]] # 2D location of a window on the car >>> inputs = processor(images=raw_image, input_points=input_points, return_tensors="pt") >>> # Get segmentation mask >>> outputs = model(**inputs) >>> # Postprocess masks >>> masks = processor.post_process_masks( ... outputs.pred_masks, inputs["original_sizes"], inputs["reshaped_input_sizes"] ... ) ``` """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None and image_embeddings is None: raise ValueError("Either pixel_values or image_embeddings must be provided.") if pixel_values is not None and image_embeddings is not None: raise ValueError("Only one of pixel_values and image_embeddings can be provided.") if input_points is not None and len(input_points.shape) != 4: raise ValueError( "The input_points must be a 4D tensor. Of shape `batch_size`, `point_batch_size`, `nb_points_per_image`, `2`.", " got {}.".format(input_points.shape), ) if input_boxes is not None and len(input_boxes.shape) != 3: raise ValueError( "The input_points must be a 3D tensor. Of shape `batch_size`, `nb_boxes`, `4`.", " got {}.".format(input_boxes.shape), ) if input_points is not None and input_boxes is not None: point_batch_size = input_points.shape[1] box_batch_size = input_boxes.shape[1] if point_batch_size != box_batch_size: raise ValueError( "You should provide as many bounding boxes as input points per box. Got {} and {}.".format( point_batch_size, box_batch_size ) ) image_positional_embeddings = self.get_image_wide_positional_embeddings() # repeat with batch size batch_size = pixel_values.shape[0] if pixel_values is not None else image_embeddings.shape[0] image_positional_embeddings = image_positional_embeddings.repeat(batch_size, 1, 1, 1) vision_attentions = None vision_hidden_states = None if pixel_values is not None: vision_outputs = self.vision_encoder( pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) image_embeddings = vision_outputs[0] if output_hidden_states: vision_hidden_states = vision_outputs[1] if output_attentions: vision_attentions = vision_outputs[-1] if input_points is not None and input_labels is None: input_labels = torch.ones_like(input_points[:, :, :, 0], dtype=torch.int, device=input_points.device) if input_points is not None and image_embeddings.shape[0] != input_points.shape[0]: raise ValueError( "The batch size of the image embeddings and the input points must be the same. ", "Got {} and {} respectively.".format(image_embeddings.shape[0], input_points.shape[0]), " if you want to pass multiple points for the same image, make sure that you passed ", " input_points of shape (batch_size, point_batch_size, num_points_per_image, 3) and ", " input_labels of shape (batch_size, point_batch_size, num_points_per_image)", ) sparse_embeddings, dense_embeddings = self.prompt_encoder( input_points=input_points, input_labels=input_labels, input_boxes=input_boxes, input_masks=input_masks, ) low_res_masks, iou_predictions, mask_decoder_attentions = self.mask_decoder( image_embeddings=image_embeddings, image_positional_embeddings=image_positional_embeddings, sparse_prompt_embeddings=sparse_embeddings, dense_prompt_embeddings=dense_embeddings, multimask_output=multimask_output, attention_similarity=attention_similarity, target_embedding=target_embedding, output_attentions=output_attentions, ) if not return_dict: output = (iou_predictions, low_res_masks) if output_hidden_states: output = output + (vision_hidden_states,) if output_attentions: output = output + (vision_attentions, mask_decoder_attentions) return output return SamImageSegmentationOutput( iou_scores=iou_predictions, pred_masks=low_res_masks, vision_hidden_states=vision_hidden_states, vision_attentions=vision_attentions, mask_decoder_attentions=mask_decoder_attentions, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/sam/configuration_sam.py
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ SAM model configuration""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) SAM_PRETRAINED_CONFIG_ARCHIVE_MAP = { "facebook/sam-vit-huge": "https://huggingface.co/facebook/sam-vit-huge/resolve/main/config.json", "facebook/sam-vit-large": "https://huggingface.co/facebook/sam-vit-large/resolve/main/config.json", "facebook/sam-vit-base": "https://huggingface.co/facebook/sam-vit-base/resolve/main/config.json", } class SamPromptEncoderConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`SamPromptEncoder`]. The [`SamPromptEncoder`] module is used to encode the input 2D points and bounding boxes. Instantiating a configuration defaults will yield a similar configuration to that of the SAM-vit-h [facebook/sam-vit-huge](https://huggingface.co/facebook/sam-vit-huge) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 256): Dimensionality of the hidden states. image_size (`int`, *optional*, defaults to 1024): The expected output resolution of the image. patch_size (`int`, *optional*, defaults to 16): The size (resolution) of each patch. mask_input_channels (`int`, *optional*, defaults to 16): The number of channels to be fed to the `MaskDecoder` module. num_point_embeddings (`int`, *optional*, defaults to 4): The number of point embeddings to be used. hidden_act (`str`, *optional*, defaults to `"gelu"`): The non-linear activation function in the encoder and pooler. """ def __init__( self, hidden_size=256, image_size=1024, patch_size=16, mask_input_channels=16, num_point_embeddings=4, hidden_act="gelu", layer_norm_eps=1e-6, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.image_size = image_size self.patch_size = patch_size self.image_embedding_size = image_size // patch_size self.mask_input_channels = mask_input_channels self.num_point_embeddings = num_point_embeddings self.hidden_act = hidden_act self.layer_norm_eps = layer_norm_eps class SamMaskDecoderConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`SamMaskDecoder`]. It is used to instantiate a SAM mask decoder to the specified arguments, defining the model architecture. Instantiating a configuration defaults will yield a similar configuration to that of the SAM-vit-h [facebook/sam-vit-huge](https://huggingface.co/facebook/sam-vit-huge) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 256): Dimensionality of the hidden states. hidden_act (`str`, *optional*, defaults to `"relu"`): The non-linear activation function used inside the `SamMaskDecoder` module. mlp_dim (`int`, *optional*, defaults to 2048): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. num_hidden_layers (`int`, *optional*, defaults to 2): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 8): Number of attention heads for each attention layer in the Transformer encoder. attention_downsample_rate (`int`, *optional*, defaults to 2): The downsampling rate of the attention layer. num_multimask_outputs (`int`, *optional*, defaults to 3): The number of outputs from the `SamMaskDecoder` module. In the Segment Anything paper, this is set to 3. iou_head_depth (`int`, *optional*, defaults to 3): The number of layers in the IoU head module. iou_head_hidden_dim (`int`, *optional*, defaults to 256): The dimensionality of the hidden states in the IoU head module. layer_norm_eps (`float`, *optional*, defaults to 1e-6): The epsilon used by the layer normalization layers. """ def __init__( self, hidden_size=256, hidden_act="relu", mlp_dim=2048, num_hidden_layers=2, num_attention_heads=8, attention_downsample_rate=2, num_multimask_outputs=3, iou_head_depth=3, iou_head_hidden_dim=256, layer_norm_eps=1e-6, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.hidden_act = hidden_act self.mlp_dim = mlp_dim self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.attention_downsample_rate = attention_downsample_rate self.num_multimask_outputs = num_multimask_outputs self.iou_head_depth = iou_head_depth self.iou_head_hidden_dim = iou_head_hidden_dim self.layer_norm_eps = layer_norm_eps class SamVisionConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`SamVisionModel`]. It is used to instantiate a SAM vision encoder according to the specified arguments, defining the model architecture. Instantiating a configuration defaults will yield a similar configuration to that of the SAM ViT-h [facebook/sam-vit-huge](https://huggingface.co/facebook/sam-vit-huge) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. output_channels (`int`, *optional*, defaults to 256): Dimensionality of the output channels in the Patch Encoder. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. num_channels (`int`, *optional*, defaults to 3): Number of channels in the input image. image_size (`int`, *optional*, defaults to 1024): Expected resolution. Target size of the resized input image. patch_size (`int`, *optional*, defaults to 16): Size of the patches to be extracted from the input image. hidden_act (`str`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) layer_norm_eps (`float`, *optional*, defaults to 1e-6): The epsilon used by the layer normalization layers. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 1e-10): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. qkv_bias (`bool`, *optional*, defaults to `True`): Whether to add a bias to query, key, value projections. mlp_ratio (`float`, *optional*, defaults to 4.0): Ratio of mlp hidden dim to embedding dim. use_abs_pos (`bool`, *optional*, defaults to True): Whether to use absolute position embedding. use_rel_pos (`bool`, *optional*, defaults to True): Whether to use relative position embedding. window_size (`int`, *optional*, defaults to 14): Window size for relative position. global_attn_indexes (`List[int]`, *optional*, defaults to `[2, 5, 8, 11]`): The indexes of the global attention layers. num_pos_feats (`int`, *optional*, defaults to 128): The dimensionality of the position embedding. mlp_dim (`int`, *optional*, defaults to None): The dimensionality of the MLP layer in the Transformer encoder. If `None`, defaults to `mlp_ratio * hidden_size`. """ def __init__( self, hidden_size=768, output_channels=256, num_hidden_layers=12, num_attention_heads=12, num_channels=3, image_size=1024, patch_size=16, hidden_act="gelu", layer_norm_eps=1e-06, attention_dropout=0.0, initializer_range=1e-10, qkv_bias=True, mlp_ratio=4.0, use_abs_pos=True, use_rel_pos=True, window_size=14, global_attn_indexes=[2, 5, 8, 11], num_pos_feats=128, mlp_dim=None, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.output_channels = output_channels self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.num_channels = num_channels self.image_size = image_size self.patch_size = patch_size self.hidden_act = hidden_act self.layer_norm_eps = layer_norm_eps self.attention_dropout = attention_dropout self.initializer_range = initializer_range self.qkv_bias = qkv_bias self.mlp_ratio = mlp_ratio self.use_abs_pos = use_abs_pos self.use_rel_pos = use_rel_pos self.window_size = window_size self.global_attn_indexes = global_attn_indexes self.num_pos_feats = num_pos_feats self.mlp_dim = int(hidden_size * mlp_ratio) if mlp_dim is None else mlp_dim class SamConfig(PretrainedConfig): r""" [`SamConfig`] is the configuration class to store the configuration of a [`SamModel`]. It is used to instantiate a SAM model according to the specified arguments, defining the vision model, prompt-encoder model and mask decoder configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the SAM-ViT-H [facebook/sam-vit-huge](https://huggingface.co/facebook/sam-vit-huge) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vision_config (Union[`dict`, `SamVisionConfig`], *optional*): Dictionary of configuration options used to initialize [`SamVisionConfig`]. prompt_encoder_config (Union[`dict`, `SamPromptEncoderConfig`], *optional*): Dictionary of configuration options used to initialize [`SamPromptEncoderConfig`]. mask_decoder_config (Union[`dict`, `SamMaskDecoderConfig`], *optional*): Dictionary of configuration options used to initialize [`SamMaskDecoderConfig`]. kwargs (*optional*): Dictionary of keyword arguments. Example: ```python >>> from transformers import ( ... SamVisionConfig, ... SamPromptEncoderConfig, ... SamMaskDecoderConfig, ... SamModel, ... ) >>> # Initializing a SamConfig with `"facebook/sam-vit-huge"` style configuration >>> configuration = SamConfig() >>> # Initializing a SamModel (with random weights) from the `"facebook/sam-vit-huge"` style configuration >>> model = SamModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config >>> # We can also initialize a SamConfig from a SamVisionConfig, SamPromptEncoderConfig, and SamMaskDecoderConfig >>> # Initializing SAM vision, SAM Q-Former and language model configurations >>> vision_config = SamVisionConfig() >>> prompt_encoder_config = SamPromptEncoderConfig() >>> mask_decoder_config = SamMaskDecoderConfig() >>> config = SamConfig(vision_config, prompt_encoder_config, mask_decoder_config) ```""" model_type = "sam" is_composition = True def __init__( self, vision_config=None, prompt_encoder_config=None, mask_decoder_config=None, initializer_range=0.02, **kwargs, ): super().__init__(**kwargs) vision_config = vision_config if vision_config is not None else {} prompt_encoder_config = prompt_encoder_config if prompt_encoder_config is not None else {} mask_decoder_config = mask_decoder_config if mask_decoder_config is not None else {} if isinstance(vision_config, SamVisionConfig): vision_config = vision_config.to_dict() if isinstance(prompt_encoder_config, SamPromptEncoderConfig): prompt_encoder_config = prompt_encoder_config.to_dict() if isinstance(mask_decoder_config, SamMaskDecoderConfig): mask_decoder_config = mask_decoder_config.to_dict() self.vision_config = SamVisionConfig(**vision_config) self.prompt_encoder_config = SamPromptEncoderConfig(**prompt_encoder_config) self.mask_decoder_config = SamMaskDecoderConfig(**mask_decoder_config) self.initializer_range = initializer_range def to_dict(self): """ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. Returns: `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, """ output = copy.deepcopy(self.__dict__) output["vision_config"] = self.vision_config.to_dict() output["prompt_encoder_config"] = self.prompt_encoder_config.to_dict() output["mask_decoder_config"] = self.mask_decoder_config.to_dict() output["model_type"] = self.__class__.model_type return output
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/sam/processing_sam.py
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Processor class for SAM. """ from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class SamProcessor(ProcessorMixin): r""" Constructs a SAM processor which wraps a SAM image processor and an 2D points & Bounding boxes processor into a single processor. [`SamProcessor`] offers all the functionalities of [`SamImageProcessor`]. See the docstring of [`~SamImageProcessor.__call__`] for more information. Args: image_processor (`SamImageProcessor`): An instance of [`SamImageProcessor`]. The image processor is a required input. """ attributes = ["image_processor"] image_processor_class = "SamImageProcessor" def __init__(self, image_processor): super().__init__(image_processor) self.current_processor = self.image_processor self.point_pad_value = -10 self.target_size = self.image_processor.size["longest_edge"] def __call__( self, images=None, input_points=None, input_labels=None, input_boxes=None, return_tensors: Optional[Union[str, TensorType]] = None, **kwargs, ) -> BatchEncoding: """ This method uses [`SamImageProcessor.__call__`] method to prepare image(s) for the model. It also prepares 2D points and bounding boxes for the model if they are provided. """ encoding_image_processor = self.image_processor( images, return_tensors=return_tensors, **kwargs, ) # pop arguments that are not used in the foward but used nevertheless original_sizes = encoding_image_processor["original_sizes"] if hasattr(original_sizes, "numpy"): # Checks if Torch or TF tensor original_sizes = original_sizes.numpy() input_points, input_labels, input_boxes = self._check_and_preprocess_points( input_points=input_points, input_labels=input_labels, input_boxes=input_boxes, ) encoding_image_processor = self._normalize_and_convert( encoding_image_processor, original_sizes, input_points=input_points, input_labels=input_labels, input_boxes=input_boxes, return_tensors=return_tensors, ) return encoding_image_processor def _normalize_and_convert( self, encoding_image_processor, original_sizes, input_points=None, input_labels=None, input_boxes=None, return_tensors="pt", ): if input_points is not None: if len(original_sizes) != len(input_points): input_points = [ self._normalize_coordinates(self.target_size, point, original_sizes[0]) for point in input_points ] else: input_points = [ self._normalize_coordinates(self.target_size, point, original_size) for point, original_size in zip(input_points, original_sizes) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points): if input_labels is not None: input_points, input_labels = self._pad_points_and_labels(input_points, input_labels) input_points = np.array(input_points) if input_labels is not None: input_labels = np.array(input_labels) if input_boxes is not None: if len(original_sizes) != len(input_boxes): input_boxes = [ self._normalize_coordinates(self.target_size, box, original_sizes[0], is_bounding_box=True) for box in input_boxes ] else: input_boxes = [ self._normalize_coordinates(self.target_size, box, original_size, is_bounding_box=True) for box, original_size in zip(input_boxes, original_sizes) ] input_boxes = np.array(input_boxes) if input_boxes is not None: if return_tensors == "pt": input_boxes = torch.from_numpy(input_boxes) # boxes batch size of 1 by default input_boxes = input_boxes.unsqueeze(1) if len(input_boxes.shape) != 3 else input_boxes elif return_tensors == "tf": input_boxes = tf.convert_to_tensor(input_boxes) # boxes batch size of 1 by default input_boxes = tf.expand_dims(input_boxes, 1) if len(input_boxes.shape) != 3 else input_boxes encoding_image_processor.update({"input_boxes": input_boxes}) if input_points is not None: if return_tensors == "pt": input_points = torch.from_numpy(input_points) # point batch size of 1 by default input_points = input_points.unsqueeze(1) if len(input_points.shape) != 4 else input_points elif return_tensors == "tf": input_points = tf.convert_to_tensor(input_points) # point batch size of 1 by default input_points = tf.expand_dims(input_points, 1) if len(input_points.shape) != 4 else input_points encoding_image_processor.update({"input_points": input_points}) if input_labels is not None: if return_tensors == "pt": input_labels = torch.from_numpy(input_labels) # point batch size of 1 by default input_labels = input_labels.unsqueeze(1) if len(input_labels.shape) != 3 else input_labels elif return_tensors == "tf": input_labels = tf.convert_to_tensor(input_labels) # point batch size of 1 by default input_labels = tf.expand_dims(input_labels, 1) if len(input_labels.shape) != 3 else input_labels encoding_image_processor.update({"input_labels": input_labels}) return encoding_image_processor def _pad_points_and_labels(self, input_points, input_labels): r""" The method pads the 2D points and labels to the maximum number of points in the batch. """ expected_nb_points = max([point.shape[0] for point in input_points]) processed_input_points = [] for i, point in enumerate(input_points): if point.shape[0] != expected_nb_points: point = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2)) + self.point_pad_value], axis=0 ) input_labels[i] = np.append(input_labels[i], [self.point_pad_value]) processed_input_points.append(point) input_points = processed_input_points return input_points, input_labels def _normalize_coordinates( self, target_size: int, coords: np.ndarray, original_size, is_bounding_box=False ) -> np.ndarray: """ Expects a numpy array of length 2 in the final dimension. Requires the original image size in (H, W) format. """ old_h, old_w = original_size new_h, new_w = self.image_processor._get_preprocess_shape(original_size, longest_edge=target_size) coords = deepcopy(coords).astype(float) if is_bounding_box: coords = coords.reshape(-1, 2, 2) coords[..., 0] = coords[..., 0] * (new_w / old_w) coords[..., 1] = coords[..., 1] * (new_h / old_h) if is_bounding_box: coords = coords.reshape(-1, 4) return coords def _check_and_preprocess_points( self, input_points=None, input_labels=None, input_boxes=None, ): r""" Check and preprocesses the 2D points, labels and bounding boxes. It checks if the input is valid and if they are, it converts the coordinates of the points and bounding boxes. If a user passes directly a `torch.Tensor`, it is converted to a `numpy.ndarray` and then to a `list`. """ if input_points is not None: if hasattr(input_points, "numpy"): # Checks for TF or Torch tensor input_points = input_points.numpy().tolist() if not isinstance(input_points, list) or not isinstance(input_points[0], list): raise ValueError("Input points must be a list of list of floating points.") input_points = [np.array(input_point) for input_point in input_points] else: input_points = None if input_labels is not None: if hasattr(input_labels, "numpy"): input_labels = input_labels.numpy().tolist() if not isinstance(input_labels, list) or not isinstance(input_labels[0], list): raise ValueError("Input labels must be a list of list integers.") input_labels = [np.array(label) for label in input_labels] else: input_labels = None if input_boxes is not None: if hasattr(input_boxes, "numpy"): input_boxes = input_boxes.numpy().tolist() if ( not isinstance(input_boxes, list) or not isinstance(input_boxes[0], list) or not isinstance(input_boxes[0][0], list) ): raise ValueError("Input boxes must be a list of list of list of floating points.") input_boxes = [np.array(box).astype(np.float32) for box in input_boxes] else: input_boxes = None return input_points, input_labels, input_boxes @property def model_input_names(self): image_processor_input_names = self.image_processor.model_input_names return list(dict.fromkeys(image_processor_input_names)) def post_process_masks(self, *args, **kwargs): return self.image_processor.post_process_masks(*args, **kwargs)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/sam/image_processing_sam.py
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for SAM.""" import math from copy import deepcopy from itertools import product from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, pad, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import ( TensorType, is_tf_available, is_torch_available, is_torchvision_available, logging, requires_backends, ) if is_torch_available(): import torch import torch.nn.functional as F if is_torchvision_available(): from torchvision.ops.boxes import batched_nms if is_tf_available(): import tensorflow as tf from tensorflow.experimental import numpy as tnp from ...tf_utils import flatten, shape_list logger = logging.get_logger(__name__) class SamImageProcessor(BaseImageProcessor): r""" Constructs a SAM image processor. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the `do_resize` parameter in the `preprocess` method. size (`dict`, *optional*, defaults to `{"longest_edge": 1024}`): Size of the output image after resizing. Resizes the longest edge of the image to match `size["longest_edge"]` while maintaining the aspect ratio. Can be overridden by the `size` parameter in the `preprocess` method. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`): Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the `preprocess` method. do_rescale (`bool`, *optional*, defaults to `True`): Wwhether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale` parameter in the `preprocess` method. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Scale factor to use if rescaling the image. Only has an effect if `do_rescale` is set to `True`. Can be overridden by the `rescale_factor` parameter in the `preprocess` method. do_normalize (`bool`, *optional*, defaults to `True`): Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` method. Can be overridden by the `do_normalize` parameter in the `preprocess` method. image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_MEAN`): Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_STD`): Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. Can be overridden by the `image_std` parameter in the `preprocess` method. do_pad (`bool`, *optional*, defaults to `True`): Whether to pad the image to the specified `pad_size`. Can be overridden by the `do_pad` parameter in the `preprocess` method. pad_size (`dict`, *optional*, defaults to `{"height": 1024, "width": 1024}`): Size of the output image after padding. Can be overridden by the `pad_size` parameter in the `preprocess` method. do_convert_rgb (`bool`, *optional*, defaults to `True`): Whether to convert the image to RGB. """ model_input_names = ["pixel_values"] def __init__( self, do_resize: bool = True, size: Dict[str, int] = None, resample: PILImageResampling = PILImageResampling.BILINEAR, do_rescale: bool = True, rescale_factor: Union[int, float] = 1 / 255, do_normalize: bool = True, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_pad: bool = True, pad_size: int = None, do_convert_rgb: bool = True, **kwargs, ) -> None: super().__init__(**kwargs) size = size if size is not None else {"longest_edge": 1024} size = get_size_dict(max_size=size, default_to_square=False) if not isinstance(size, dict) else size pad_size = pad_size if pad_size is not None else {"height": 1024, "width": 1024} pad_size = get_size_dict(pad_size, default_to_square=True) self.do_resize = do_resize self.size = size self.resample = resample self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD self.do_pad = do_pad self.pad_size = pad_size self.do_convert_rgb = do_convert_rgb def pad_image( self, image: np.ndarray, pad_size: Dict[str, int], data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Pad an image to `(pad_size["height"], pad_size["width"])` with zeros to the right and bottom. Args: image (`np.ndarray`): Image to pad. pad_size (`Dict[str, int]`): Size of the output image after padding. data_format (`str` or `ChannelDimension`, *optional*): The data format of the image. Can be either "channels_first" or "channels_last". If `None`, the `data_format` of the `image` will be used. """ output_height, output_width = pad_size["height"], pad_size["width"] input_height, input_width = get_image_size(image) pad_width = output_width - input_width pad_height = output_height - input_height padded_image = pad(image, ((0, pad_height), (0, pad_width)), data_format=data_format, **kwargs) return padded_image def _get_preprocess_shape(self, old_shape: Tuple[int, int], longest_edge: int): """ Compute the output size given input size and target long side length. """ oldh, oldw = old_shape scale = longest_edge * 1.0 / max(oldh, oldw) newh, neww = oldh * scale, oldw * scale newh = int(newh + 0.5) neww = int(neww + 0.5) return (newh, neww) def resize( self, image: np.ndarray, size: Dict[str, int], resample: PILImageResampling = PILImageResampling.BICUBIC, data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Resize an image to `(size["height"], size["width"])`. Args: image (`np.ndarray`): Image to resize. size (`Dict[str, int]`): Dictionary in the format `{"longest_edge": int}` specifying the size of the output image. The longest edge of the image will be resized to the specified size, while the other edge will be resized to maintain the aspect ratio. resample: `PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BILINEAR`. data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the output image. If unset, the channel dimension format of the input image is used. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. Returns: `np.ndarray`: The resized image. """ size = get_size_dict(size) if "longest_edge" not in size: raise ValueError(f"The `size` dictionary must contain the key `longest_edge`. Got {size.keys()}") input_size = get_image_size(image) output_height, output_width = self._get_preprocess_shape(input_size, size["longest_edge"]) return resize(image, size=(output_height, output_width), resample=resample, data_format=data_format, **kwargs) def preprocess( self, images: ImageInput, do_resize: Optional[bool] = None, size: Optional[Dict[str, int]] = None, resample: Optional["PILImageResampling"] = None, do_rescale: Optional[bool] = None, rescale_factor: Optional[Union[int, float]] = None, do_normalize: Optional[bool] = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_pad: Optional[bool] = None, pad_size: Optional[Dict[str, int]] = None, do_convert_rgb: bool = None, return_tensors: Optional[Union[str, TensorType]] = None, data_format: ChannelDimension = ChannelDimension.FIRST, **kwargs, ): """ Preprocess an image or batch of images. Args: images (`ImageInput`): Image to preprocess. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to `self.size`): Controls the size of the image after `resize`. The longest edge of the image is resized to `size["longest_edge"]` whilst preserving the aspect ratio. resample (`PILImageResampling`, *optional*, defaults to `self.resample`): `PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BILINEAR`. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image pixel values by rescaling factor. rescale_factor (`int` or `float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to apply to the image pixel values. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): Image mean to normalize the image by if `do_normalize` is set to `True`. image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): Image standard deviation to normalize the image by if `do_normalize` is set to `True`. do_pad (`bool`, *optional*, defaults to `self.do_pad`): Whether to pad the image. pad_size (`Dict[str, int]`, *optional*, defaults to `self.pad_size`): Controls the size of the padding applied to the image. The image is padded to `pad_size["height"]` and `pad_size["width"]` if `do_pad` is set to `True`. do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`): Whether to convert the image to RGB. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - Unset: Use the channel dimension format of the input image. """ do_resize = do_resize if do_resize is not None else self.do_resize size = size if size is not None else self.size size = get_size_dict(max_size=size, default_to_square=False) if not isinstance(size, dict) else size resample = resample if resample is not None else self.resample do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor do_normalize = do_normalize if do_normalize is not None else self.do_normalize image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std do_pad = do_pad if do_pad is not None else self.do_pad pad_size = pad_size if pad_size is not None else self.pad_size pad_size = get_size_dict(pad_size, default_to_square=True) do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb images = make_list_of_images(images) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and (size is None or resample is None): raise ValueError("Size and resample must be specified if do_resize is True.") if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True.") if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True.") if do_pad and pad_size is None: raise ValueError("Pad size must be specified if do_pad is True.") # PIL RGBA images are converted to RGB if do_convert_rgb: images = [convert_to_rgb(image) for image in images] # All transformations expect numpy arrays. images = [to_numpy_array(image) for image in images] original_sizes = [get_image_size(image) for image in images] if do_resize: images = [self.resize(image=image, size=size, resample=resample) for image in images] reshaped_input_sizes = [get_image_size(image) for image in images] if do_rescale: images = [self.rescale(image=image, scale=rescale_factor) for image in images] if do_normalize: images = [self.normalize(image=image, mean=image_mean, std=image_std) for image in images] if do_pad: images = [self.pad_image(image=image, pad_size=pad_size) for image in images] images = [to_channel_dimension_format(image, data_format) for image in images] encoded_outputs = BatchFeature( data={ "pixel_values": images, "original_sizes": original_sizes, "reshaped_input_sizes": reshaped_input_sizes, }, tensor_type=return_tensors, ) return encoded_outputs def post_process_masks( self, masks, original_sizes, reshaped_input_sizes, mask_threshold=0.0, binarize=True, pad_size=None, return_tensors="pt", ): """ Remove padding and upscale masks to the original image size. Args: masks (`Union[List[torch.Tensor], List[np.ndarray], List[tf.Tensor]]`): Batched masks from the mask_decoder in (batch_size, num_channels, height, width) format. original_sizes (`Union[torch.Tensor, tf.Tensor, List[Tuple[int,int]]]`): The original sizes of each image before it was resized to the model's expected input shape, in (height, width) format. reshaped_input_sizes (`Union[torch.Tensor, tf.Tensor, List[Tuple[int,int]]]`): The size of each image as it is fed to the model, in (height, width) format. Used to remove padding. mask_threshold (`float`, *optional*, defaults to 0.0): The threshold to use for binarizing the masks. binarize (`bool`, *optional*, defaults to `True`): Whether to binarize the masks. pad_size (`int`, *optional*, defaults to `self.pad_size`): The target size the images were padded to before being passed to the model. If None, the target size is assumed to be the processor's `pad_size`. return_tensors (`str`, *optional*, defaults to `"pt"`): If `"pt"`, return PyTorch tensors. If `"tf"`, return TensorFlow tensors. Returns: (`Union[torch.Tensor, tf.Tensor]`): Batched masks in batch_size, num_channels, height, width) format, where (height, width) is given by original_size. """ if return_tensors == "pt": return self._post_process_masks_pt( masks=masks, original_sizes=original_sizes, reshaped_input_sizes=reshaped_input_sizes, mask_threshold=mask_threshold, binarize=binarize, pad_size=pad_size, ) elif return_tensors == "tf": return self._post_process_masks_tf( masks=masks, original_sizes=original_sizes, reshaped_input_sizes=reshaped_input_sizes, mask_threshold=mask_threshold, binarize=binarize, pad_size=pad_size, ) else: raise ValueError("return_tensors must be either 'pt' or 'tf'") def _post_process_masks_pt( self, masks, original_sizes, reshaped_input_sizes, mask_threshold=0.0, binarize=True, pad_size=None ): """ Remove padding and upscale masks to the original image size. Args: masks (`Union[List[torch.Tensor], List[np.ndarray]]`): Batched masks from the mask_decoder in (batch_size, num_channels, height, width) format. original_sizes (`Union[torch.Tensor, List[Tuple[int,int]]]`): The original sizes of each image before it was resized to the model's expected input shape, in (height, width) format. reshaped_input_sizes (`Union[torch.Tensor, List[Tuple[int,int]]]`): The size of each image as it is fed to the model, in (height, width) format. Used to remove padding. mask_threshold (`float`, *optional*, defaults to 0.0): The threshold to use for binarizing the masks. binarize (`bool`, *optional*, defaults to `True`): Whether to binarize the masks. pad_size (`int`, *optional*, defaults to `self.pad_size`): The target size the images were padded to before being passed to the model. If None, the target size is assumed to be the processor's `pad_size`. Returns: (`torch.Tensor`): Batched masks in batch_size, num_channels, height, width) format, where (height, width) is given by original_size. """ requires_backends(self, ["torch"]) pad_size = self.pad_size if pad_size is None else pad_size target_image_size = (pad_size["height"], pad_size["width"]) if isinstance(original_sizes, (torch.Tensor, np.ndarray)): original_sizes = original_sizes.tolist() if isinstance(reshaped_input_sizes, (torch.Tensor, np.ndarray)): reshaped_input_sizes = reshaped_input_sizes.tolist() output_masks = [] for i, original_size in enumerate(original_sizes): if isinstance(masks[i], np.ndarray): masks[i] = torch.from_numpy(masks[i]) elif not isinstance(masks[i], torch.Tensor): raise ValueError("Input masks should be a list of `torch.tensors` or a list of `np.ndarray`") interpolated_mask = F.interpolate(masks[i], target_image_size, mode="bilinear", align_corners=False) interpolated_mask = interpolated_mask[..., : reshaped_input_sizes[i][0], : reshaped_input_sizes[i][1]] interpolated_mask = F.interpolate(interpolated_mask, original_size, mode="bilinear", align_corners=False) if binarize: interpolated_mask = interpolated_mask > mask_threshold output_masks.append(interpolated_mask) return output_masks def _post_process_masks_tf( self, masks, original_sizes, reshaped_input_sizes, mask_threshold=0.0, binarize=True, pad_size=None ): """ Remove padding and upscale masks to the original image size. Args: masks (`tf.Tensor`): Batched masks from the mask_decoder in (batch_size, num_channels, height, width) format. original_sizes (`tf.Tensor`): The original size of the images before resizing for input to the model, in (height, width) format. reshaped_input_sizes (`tf.Tensor`): The size of the image input to the model, in (height, width) format. Used to remove padding. mask_threshold (`float`, *optional*, defaults to 0.0): The threshold to use for binarizing the masks. binarize (`bool`, *optional*, defaults to `True`): Whether to binarize the masks. pad_size (`int`, *optional*, defaults to `self.pad_size`): The target size the images were padded to before being passed to the model. If None, the target size is assumed to be the processor's `pad_size`. Returns: (`tf.Tensor`): Batched masks in batch_size, num_channels, height, width) format, where (height, width) is given by original_size. """ requires_backends(self, ["tf"]) pad_size = self.pad_size if pad_size is None else pad_size target_image_size = (pad_size["height"], pad_size["width"]) output_masks = [] for i, original_size in enumerate(original_sizes): # tf.image expects NHWC, we transpose the NCHW inputs for it mask = tf.transpose(masks[i], perm=[0, 2, 3, 1]) interpolated_mask = tf.image.resize(mask, target_image_size, method="bilinear") interpolated_mask = interpolated_mask[:, : reshaped_input_sizes[i][0], : reshaped_input_sizes[i][1], :] interpolated_mask = tf.image.resize(interpolated_mask, original_size, method="bilinear") if binarize: interpolated_mask = interpolated_mask > mask_threshold # And then we transpose them back at the end output_masks.append(tf.transpose(interpolated_mask, perm=[0, 3, 1, 2])) return output_masks def post_process_for_mask_generation( self, all_masks, all_scores, all_boxes, crops_nms_thresh, return_tensors="pt" ): """ Post processes mask that are generated by calling the Non Maximum Suppression algorithm on the predicted masks. Args: all_masks (`Union[List[torch.Tensor], List[tf.Tensor]]`): List of all predicted segmentation masks all_scores (`Union[List[torch.Tensor], List[tf.Tensor]]`): List of all predicted iou scores all_boxes (`Union[List[torch.Tensor], List[tf.Tensor]]`): List of all bounding boxes of the predicted masks crops_nms_thresh (`float`): Threshold for NMS (Non Maximum Suppression) algorithm. return_tensors (`str`, *optional*, defaults to `pt`): If `pt`, returns `torch.Tensor`. If `tf`, returns `tf.Tensor`. """ if return_tensors == "pt": return _postprocess_for_mg(all_masks, all_scores, all_boxes, crops_nms_thresh) elif return_tensors == "tf": return _postprocess_for_mg_tf(all_masks, all_scores, all_boxes, crops_nms_thresh) def generate_crop_boxes( self, image, target_size, crop_n_layers: int = 0, overlap_ratio: float = 512 / 1500, points_per_crop: Optional[int] = 32, crop_n_points_downscale_factor: Optional[List[int]] = 1, device: Optional["torch.device"] = None, return_tensors: str = "pt", ): """ Generates a list of crop boxes of different sizes. Each layer has (2**i)**2 boxes for the ith layer. Args: image (`np.array`): Input original image target_size (`int`): Target size of the resized image crop_n_layers (`int`, *optional*, defaults to 0): If >0, mask prediction will be run again on crops of the image. Sets the number of layers to run, where each layer has 2**i_layer number of image crops. overlap_ratio (`float`, *optional*, defaults to 512/1500): Sets the degree to which crops overlap. In the first crop layer, crops will overlap by this fraction of the image length. Later layers with more crops scale down this overlap. points_per_crop (`int`, *optional*, defaults to 32): Number of points to sample from each crop. crop_n_points_downscale_factor (`List[int]`, *optional*, defaults to 1): The number of points-per-side sampled in layer n is scaled down by crop_n_points_downscale_factor**n. device (`torch.device`, *optional*, defaults to None): Device to use for the computation. If None, cpu will be used. return_tensors (`str`, *optional*, defaults to `pt`): If `pt`, returns `torch.Tensor`. If `tf`, returns `tf.Tensor`. """ crop_boxes, points_per_crop, cropped_images, input_labels = _generate_crop_boxes( image, target_size, crop_n_layers, overlap_ratio, points_per_crop, crop_n_points_downscale_factor, ) if return_tensors == "pt": if device is None: device = torch.device("cpu") crop_boxes = torch.tensor(crop_boxes, device=device) points_per_crop = torch.tensor(points_per_crop, device=device) # cropped_images stays as np input_labels = torch.tensor(input_labels, device=device) elif return_tensors == "tf": if device is not None: raise ValueError("device is not a supported argument when return_tensors is tf!") crop_boxes = tf.convert_to_tensor(crop_boxes) points_per_crop = tf.convert_to_tensor(points_per_crop) # cropped_images stays as np input_labels = tf.convert_to_tensor(input_labels) else: raise ValueError("return_tensors must be either 'pt' or 'tf'.") return crop_boxes, points_per_crop, cropped_images, input_labels def filter_masks( self, masks, iou_scores, original_size, cropped_box_image, pred_iou_thresh=0.88, stability_score_thresh=0.95, mask_threshold=0, stability_score_offset=1, return_tensors="pt", ): """ Filters the predicted masks by selecting only the ones that meets several criteria. The first criterion being that the iou scores needs to be greater than `pred_iou_thresh`. The second criterion is that the stability score needs to be greater than `stability_score_thresh`. The method also converts the predicted masks to bounding boxes and pad the predicted masks if necessary. Args: masks (`Union[torch.Tensor, tf.Tensor]`): Input masks. iou_scores (`Union[torch.Tensor, tf.Tensor]`): List of IoU scores. original_size (`Tuple[int,int]`): Size of the orginal image. cropped_box_image (`np.array`): The cropped image. pred_iou_thresh (`float`, *optional*, defaults to 0.88): The threshold for the iou scores. stability_score_thresh (`float`, *optional*, defaults to 0.95): The threshold for the stability score. mask_threshold (`float`, *optional*, defaults to 0): The threshold for the predicted masks. stability_score_offset (`float`, *optional*, defaults to 1): The offset for the stability score used in the `_compute_stability_score` method. return_tensors (`str`, *optional*, defaults to `pt`): If `pt`, returns `torch.Tensor`. If `tf`, returns `tf.Tensor`. """ if return_tensors == "pt": return self._filter_masks_pt( masks=masks, iou_scores=iou_scores, original_size=original_size, cropped_box_image=cropped_box_image, pred_iou_thresh=pred_iou_thresh, stability_score_thresh=stability_score_thresh, mask_threshold=mask_threshold, stability_score_offset=stability_score_offset, ) elif return_tensors == "tf": return self._filter_masks_tf( masks=masks, iou_scores=iou_scores, original_size=original_size, cropped_box_image=cropped_box_image, pred_iou_thresh=pred_iou_thresh, stability_score_thresh=stability_score_thresh, mask_threshold=mask_threshold, stability_score_offset=stability_score_offset, ) def _filter_masks_pt( self, masks, iou_scores, original_size, cropped_box_image, pred_iou_thresh=0.88, stability_score_thresh=0.95, mask_threshold=0, stability_score_offset=1, ): """ Filters the predicted masks by selecting only the ones that meets several criteria. The first criterion being that the iou scores needs to be greater than `pred_iou_thresh`. The second criterion is that the stability score needs to be greater than `stability_score_thresh`. The method also converts the predicted masks to bounding boxes and pad the predicted masks if necessary. Args: masks (`torch.Tensor`): Input masks. iou_scores (`torch.Tensor`): List of IoU scores. original_size (`Tuple[int,int]`): Size of the orginal image. cropped_box_image (`np.array`): The cropped image. pred_iou_thresh (`float`, *optional*, defaults to 0.88): The threshold for the iou scores. stability_score_thresh (`float`, *optional*, defaults to 0.95): The threshold for the stability score. mask_threshold (`float`, *optional*, defaults to 0): The threshold for the predicted masks. stability_score_offset (`float`, *optional*, defaults to 1): The offset for the stability score used in the `_compute_stability_score` method. """ requires_backends(self, ["torch"]) original_height, original_width = original_size iou_scores = iou_scores.flatten(0, 1) masks = masks.flatten(0, 1) if masks.shape[0] != iou_scores.shape[0]: raise ValueError("masks and iou_scores must have the same batch size.") if masks.device != iou_scores.device: iou_scores = iou_scores.to(masks.device) batch_size = masks.shape[0] keep_mask = torch.ones(batch_size, dtype=torch.bool, device=masks.device) if pred_iou_thresh > 0.0: keep_mask = keep_mask & (iou_scores > pred_iou_thresh) # compute stability score if stability_score_thresh > 0.0: stability_scores = _compute_stability_score_pt(masks, mask_threshold, stability_score_offset) keep_mask = keep_mask & (stability_scores > stability_score_thresh) scores = iou_scores[keep_mask] masks = masks[keep_mask] # binarize masks masks = masks > mask_threshold converted_boxes = _batched_mask_to_box(masks) keep_mask = ~_is_box_near_crop_edge( converted_boxes, cropped_box_image, [0, 0, original_width, original_height] ) scores = scores[keep_mask] masks = masks[keep_mask] converted_boxes = converted_boxes[keep_mask] masks = _pad_masks(masks, cropped_box_image, original_height, original_width) # conversion to rle is necessary to run non-maximum suppresion masks = _mask_to_rle_pytorch(masks) return masks, scores, converted_boxes def _filter_masks_tf( self, masks, iou_scores, original_size, cropped_box_image, pred_iou_thresh=0.88, stability_score_thresh=0.95, mask_threshold=0, stability_score_offset=1, ): """ Filters the predicted masks by selecting only the ones that meets several criteria. The first criterion being that the iou scores needs to be greater than `pred_iou_thresh`. The second criterion is that the stability score needs to be greater than `stability_score_thresh`. The method also converts the predicted masks to bounding boxes and pad the predicted masks if necessary. Args: masks (`tf.Tensor`): Input masks. iou_scores (`tf.Tensor`): List of IoU scores. original_size (`Tuple[int,int]`): Size of the orginal image. cropped_box_image (`np.array`): The cropped image. pred_iou_thresh (`float`, *optional*, defaults to 0.88): The threshold for the iou scores. stability_score_thresh (`float`, *optional*, defaults to 0.95): The threshold for the stability score. mask_threshold (`float`, *optional*, defaults to 0): The threshold for the predicted masks. stability_score_offset (`float`, *optional*, defaults to 1): The offset for the stability score used in the `_compute_stability_score` method. """ requires_backends(self, ["tf"]) original_height, original_width = original_size iou_scores = tf.reshape(iou_scores, [iou_scores.shape[0] * iou_scores.shape[1], iou_scores.shape[2:]]) masks = tf.reshape(masks, [masks.shape[0] * masks.shape[1], masks.shape[2:]]) if masks.shape[0] != iou_scores.shape[0]: raise ValueError("masks and iou_scores must have the same batch size.") batch_size = masks.shape[0] keep_mask = tf.ones(batch_size, dtype=tf.bool) if pred_iou_thresh > 0.0: keep_mask = keep_mask & (iou_scores > pred_iou_thresh) # compute stability score if stability_score_thresh > 0.0: stability_scores = _compute_stability_score_tf(masks, mask_threshold, stability_score_offset) keep_mask = keep_mask & (stability_scores > stability_score_thresh) scores = iou_scores[keep_mask] masks = masks[keep_mask] # binarize masks masks = masks > mask_threshold converted_boxes = _batched_mask_to_box_tf(masks) keep_mask = ~_is_box_near_crop_edge_tf( converted_boxes, cropped_box_image, [0, 0, original_width, original_height] ) scores = scores[keep_mask] masks = masks[keep_mask] converted_boxes = converted_boxes[keep_mask] masks = _pad_masks_tf(masks, cropped_box_image, original_height, original_width) # conversion to rle is necessary to run non-maximum suppresion masks = _mask_to_rle_tf(masks) return masks, scores, converted_boxes def _compute_stability_score_pt(masks: "torch.Tensor", mask_threshold: float, stability_score_offset: int): # One mask is always contained inside the other. # Save memory by preventing unnecesary cast to torch.int64 intersections = ( (masks > (mask_threshold + stability_score_offset)).sum(-1, dtype=torch.int16).sum(-1, dtype=torch.int32) ) unions = (masks > (mask_threshold - stability_score_offset)).sum(-1, dtype=torch.int16).sum(-1, dtype=torch.int32) stability_scores = intersections / unions return stability_scores def _compute_stability_score_tf(masks: "tf.Tensor", mask_threshold: float, stability_score_offset: int): # Torch does Py3-style division but TF does floor division with ints. We cast to float32 in TF to make sure # we get the right division results. intersections = tf.count_nonzero( masks > (mask_threshold + stability_score_offset), axis=[-1, -2], dtype=tf.float32 ) unions = tf.count_nonzero(masks > (mask_threshold - stability_score_offset), axis=[-1, -2], dtype=tf.float32) stability_scores = intersections / unions return stability_scores def _build_point_grid(n_per_side: int) -> np.ndarray: """Generates a 2D grid of points evenly spaced in [0,1]x[0,1].""" offset = 1 / (2 * n_per_side) points_one_side = np.linspace(offset, 1 - offset, n_per_side) points_x = np.tile(points_one_side[None, :], (n_per_side, 1)) points_y = np.tile(points_one_side[:, None], (1, n_per_side)) points = np.stack([points_x, points_y], axis=-1).reshape(-1, 2) return points def _normalize_coordinates( target_size: int, coords: np.ndarray, original_size: Tuple[int, int], is_bounding_box=False ) -> np.ndarray: """ Expects a numpy array of length 2 in the final dimension. Requires the original image size in (height, width) format. """ old_height, old_width = original_size scale = target_size * 1.0 / max(old_height, old_width) new_height, new_width = old_height * scale, old_width * scale new_width = int(new_width + 0.5) new_height = int(new_height + 0.5) coords = deepcopy(coords).astype(float) if is_bounding_box: coords = coords.reshape(-1, 2, 2) coords[..., 0] = coords[..., 0] * (new_width / old_width) coords[..., 1] = coords[..., 1] * (new_height / old_height) if is_bounding_box: coords = coords.reshape(-1, 4) return coords def _generate_crop_boxes( image, target_size: int, # Is it tuple here? crop_n_layers: int = 0, overlap_ratio: float = 512 / 1500, points_per_crop: Optional[int] = 32, crop_n_points_downscale_factor: Optional[List[int]] = 1, ) -> Tuple[List[List[int]], List[int]]: """ Generates a list of crop boxes of different sizes. Each layer has (2**i)**2 boxes for the ith layer. Args: image (Union[`numpy.ndarray`, `PIL.Image`, `torch.Tensor`]): Image to generate crops for. target_size (`int`): Size of the smallest crop. crop_n_layers (`int`, *optional*): If `crops_n_layers>0`, mask prediction will be run again on crops of the image. Sets the number of layers to run, where each layer has 2**i_layer number of image crops. overlap_ratio (`int`, *optional*): Sets the degree to which crops overlap. In the first crop layer, crops will overlap by this fraction of the image length. Later layers with more crops scale down this overlap. points_per_crop (`int`, *optional*): Number of points to sample per crop. crop_n_points_downscale_factor (`int`, *optional*): The number of points-per-side sampled in layer n is scaled down by crop_n_points_downscale_factor**n. """ if isinstance(image, list): raise ValueError("Only one image is allowed for crop generation.") image = to_numpy_array(image) original_size = get_image_size(image) points_grid = [] for i in range(crop_n_layers + 1): n_points = int(points_per_crop / (crop_n_points_downscale_factor**i)) points_grid.append(_build_point_grid(n_points)) crop_boxes, layer_idxs = _generate_per_layer_crops(crop_n_layers, overlap_ratio, original_size) cropped_images, point_grid_per_crop = _generate_crop_images( crop_boxes, image, points_grid, layer_idxs, target_size, original_size ) crop_boxes = np.array(crop_boxes) crop_boxes = crop_boxes.astype(np.float32) points_per_crop = np.array([point_grid_per_crop]) points_per_crop = np.transpose(points_per_crop, axes=(0, 2, 1, 3)) input_labels = np.ones_like(points_per_crop[:, :, :, 0], dtype=np.int64) return crop_boxes, points_per_crop, cropped_images, input_labels def _generate_per_layer_crops(crop_n_layers, overlap_ratio, original_size): """ Generates 2 ** (layers idx + 1) crops for each crop_n_layers. Crops are in the XYWH format : The XYWH format consists of the following required indices: - X: X coordinate of the top left of the bounding box - Y: Y coordinate of the top left of the bounding box - W: width of the bounding box - H: height of the bounding box """ crop_boxes, layer_idxs = [], [] im_height, im_width = original_size short_side = min(im_height, im_width) # Original image crop_boxes.append([0, 0, im_width, im_height]) layer_idxs.append(0) for i_layer in range(crop_n_layers): n_crops_per_side = 2 ** (i_layer + 1) overlap = int(overlap_ratio * short_side * (2 / n_crops_per_side)) crop_width = int(math.ceil((overlap * (n_crops_per_side - 1) + im_width) / n_crops_per_side)) crop_height = int(math.ceil((overlap * (n_crops_per_side - 1) + im_height) / n_crops_per_side)) crop_box_x0 = [int((crop_width - overlap) * i) for i in range(n_crops_per_side)] crop_box_y0 = [int((crop_height - overlap) * i) for i in range(n_crops_per_side)] for left, top in product(crop_box_x0, crop_box_y0): box = [left, top, min(left + crop_width, im_width), min(top + crop_height, im_height)] crop_boxes.append(box) layer_idxs.append(i_layer + 1) return crop_boxes, layer_idxs def _generate_crop_images(crop_boxes, image, points_grid, layer_idxs, target_size, original_size): """ Takes as an input bounding boxes that are used to crop the image. Based in the crops, the corresponding points are also passed. """ cropped_images = [] total_points_per_crop = [] for i, crop_box in enumerate(crop_boxes): left, top, right, bottom = crop_box channel_dim = infer_channel_dimension_format(image) if channel_dim == ChannelDimension.LAST: cropped_im = image[top:bottom, left:right, :] else: cropped_im = image[:, top:bottom, left:right] cropped_images.append(cropped_im) cropped_im_size = get_image_size(cropped_im) points_scale = np.array(cropped_im_size)[None, ::-1] points = points_grid[layer_idxs[i]] * points_scale normalized_points = _normalize_coordinates(target_size, points, original_size) total_points_per_crop.append(normalized_points) return cropped_images, total_points_per_crop def _pad_masks(masks, crop_box: List[int], orig_height: int, orig_width: int): left, top, right, bottom = crop_box if left == 0 and top == 0 and right == orig_width and bottom == orig_height: return masks # Coordinate transform masks pad_x, pad_y = orig_width - (right - left), orig_height - (bottom - top) pad = (left, pad_x - left, top, pad_y - top) return torch.nn.functional.pad(masks, pad, value=0) def _pad_masks_tf(masks, crop_box: List[int], orig_height: int, orig_width: int): left, top, right, bottom = crop_box if left == 0 and top == 0 and right == orig_width and bottom == orig_height: return masks # Coordinate transform masks pad_x, pad_y = orig_width - (right - left), orig_height - (bottom - top) pad = (left, pad_x - left, top, pad_y - top) return tf.pad(masks, pad, constant_values=0) def _is_box_near_crop_edge(boxes, crop_box, orig_box, atol=20.0): """Filter masks at the edge of a crop, but not at the edge of the original image.""" crop_box_torch = torch.as_tensor(crop_box, dtype=torch.float, device=boxes.device) orig_box_torch = torch.as_tensor(orig_box, dtype=torch.float, device=boxes.device) left, top, _, _ = crop_box offset = torch.tensor([[left, top, left, top]], device=boxes.device) # Check if boxes has a channel dimension if len(boxes.shape) == 3: offset = offset.unsqueeze(1) boxes = (boxes + offset).float() near_crop_edge = torch.isclose(boxes, crop_box_torch[None, :], atol=atol, rtol=0) near_image_edge = torch.isclose(boxes, orig_box_torch[None, :], atol=atol, rtol=0) near_crop_edge = torch.logical_and(near_crop_edge, ~near_image_edge) return torch.any(near_crop_edge, dim=1) def _is_box_near_crop_edge_tf(boxes, crop_box, orig_box, atol=20.0): """Filter masks at the edge of a crop, but not at the edge of the original image.""" crop_box_tf = tf.convert_to_tensor(crop_box, dtype=tf.float32) orig_box_tf = tf.convert_to_tensor(orig_box, dtype=tf.float32) left, top, _, _ = crop_box offset = tf.convert_to_tensor([[left, top, left, top]]) # Check if boxes has a channel dimension if len(boxes.shape) == 3: offset = tf.expand_dims(offset, 1) boxes = tf.cast(boxes + offset, tf.float32) near_crop_edge = tnp.isclose(boxes, crop_box_tf[None, :], atol=atol, rtol=0) near_image_edge = tnp.isclose(boxes, orig_box_tf[None, :], atol=atol, rtol=0) near_crop_edge = tf.math.logical_and(near_crop_edge, ~near_image_edge) return tf.reduce_any(near_crop_edge, axis=1) def _batched_mask_to_box(masks: "torch.Tensor"): """ Computes the bounding boxes around the given input masks. The bounding boxes are in the XYXY format which corresponds the following required indices: - LEFT: left hand side of the bounding box - TOP: top of the bounding box - RIGHT: right of the bounding box - BOTTOM: bottom of the bounding box Return [0,0,0,0] for an empty mask. For input shape channel_1 x channel_2 x ... x height x width, the output shape is channel_1 x channel_2 x ... x 4. Args: - masks (`torch.Tensor` of shape `(batch, nb_mask, height, width)`) """ # torch.max below raises an error on empty inputs, just skip in this case if torch.numel(masks) == 0: return torch.zeros(*masks.shape[:-2], 4, device=masks.device) # Normalize shape to Cxheightxwidth shape = masks.shape height, width = shape[-2:] # Get top and bottom edges in_height, _ = torch.max(masks, dim=-1) in_height_coords = in_height * torch.arange(height, device=in_height.device)[None, :] bottom_edges, _ = torch.max(in_height_coords, dim=-1) in_height_coords = in_height_coords + height * (~in_height) top_edges, _ = torch.min(in_height_coords, dim=-1) # Get left and right edges in_width, _ = torch.max(masks, dim=-2) in_width_coords = in_width * torch.arange(width, device=in_width.device)[None, :] right_edges, _ = torch.max(in_width_coords, dim=-1) in_width_coords = in_width_coords + width * (~in_width) left_edges, _ = torch.min(in_width_coords, dim=-1) # If the mask is empty the right edge will be to the left of the left edge. # Replace these boxes with [0, 0, 0, 0] empty_filter = (right_edges < left_edges) | (bottom_edges < top_edges) out = torch.stack([left_edges, top_edges, right_edges, bottom_edges], dim=-1) out = out * (~empty_filter).unsqueeze(-1) # Return to original shape out = out.reshape(*shape[:-2], 4) return out def _batched_mask_to_box_tf(masks: "tf.Tensor"): """ Computes the bounding boxes around the given input masks. The bounding boxes are in the XYXY format which corresponds the following required indices: - LEFT: left hand side of the bounding box - TOP: top of the bounding box - RIGHT: right of the bounding box - BOTTOM: bottom of the bounding box Return [0,0,0,0] for an empty mask. For input shape channel_1 x channel_2 x ... x height x width, the output shape is channel_1 x channel_2 x ... x 4. Args: - masks (`tf.Tensor` of shape `(batch, nb_mask, height, width)`) """ if tf.size(masks) == 0: return tf.zeros([*masks.shape[:-2], 4]) # Normalize shape to Cxheightxwidth shape = shape_list(masks) height, width = shape[-2:] # Get top and bottom edges in_height = tf.reduce_max(masks, axis=-1) in_height_coords = in_height * tf.range(height)[None, :] bottom_edges = tf.reduce_max(in_height_coords, axis=-1) in_height_coords = in_height_coords + height * (~in_height) top_edges = tf.reduce_min(in_height_coords, axis=-1) # Get left and right edges in_width, _ = tf.reduce_max(masks, axis=-2) in_width_coords = in_width * tf.range(width)[None, :] right_edges, _ = tf.reduce_max(in_width_coords, axis=-1) in_width_coords = in_width_coords + width * (~in_width) left_edges, _ = tf.reduce_min(in_width_coords, axis=-1) # If the mask is empty the right edge will be to the left of the left edge. # Replace these boxes with [0, 0, 0, 0] empty_filter = (right_edges < left_edges) | (bottom_edges < top_edges) out = tf.stack([left_edges, top_edges, right_edges, bottom_edges], axis=-1) out = out * tf.expand_dims(~empty_filter, -1) # Return to original shape out = tf.reshape(out, *shape[:-2], 4) return out def _mask_to_rle_pytorch(input_mask: "torch.Tensor"): """ Encodes masks the run-length encoding (RLE), in the format expected by pycoco tools. """ # Put in fortran order and flatten height and width batch_size, height, width = input_mask.shape input_mask = input_mask.permute(0, 2, 1).flatten(1) # Compute change indices diff = input_mask[:, 1:] ^ input_mask[:, :-1] change_indices = diff.nonzero() # Encode run length out = [] for i in range(batch_size): cur_idxs = change_indices[change_indices[:, 0] == i, 1] + 1 btw_idxs = cur_idxs[1:] - cur_idxs[:-1] counts = [] if input_mask[i, 0] == 0 else [0] counts += [cur_idxs[0].item()] + btw_idxs.tolist() + [height * width - cur_idxs[-1]] out.append({"size": [height, width], "counts": counts}) return out def _mask_to_rle_tf(input_mask: "tf.Tensor"): """ Encodes masks the run-length encoding (RLE), in the format expected by pycoco tools. """ # Put in fortran order and flatten height and width batch_size, height, width = input_mask.shape input_mask = flatten(tf.transpose(input_mask, perm=(0, 2, 1)), 1) # Compute change indices diff = input_mask[:, 1:] ^ input_mask[:, :-1] change_indices = tf.where(diff) # Encode run length out = [] for i in range(batch_size): cur_idxs = change_indices[change_indices[:, 0] == i, 1] + 1 btw_idxs = cur_idxs[1:] - cur_idxs[:-1] counts = [] if input_mask[i, 0] == 0 else [0] counts += [cur_idxs[0].item()] + btw_idxs.tolist() + [height * width - cur_idxs[-1]] out.append({"size": [height, width], "counts": counts}) return out def _rle_to_mask(rle: Dict[str, Any]) -> np.ndarray: """Compute a binary mask from an uncompressed RLE.""" height, width = rle["size"] mask = np.empty(height * width, dtype=bool) idx = 0 parity = False for count in rle["counts"]: mask[idx : idx + count] = parity idx += count parity = not parity mask = mask.reshape(width, height) return mask.transpose() # Reshape to original shape def _postprocess_for_mg(rle_masks, iou_scores, mask_boxes, amg_crops_nms_thresh=0.7): """ Perform NMS (Non Maximum Suppression) on the outputs. Args: rle_masks (`torch.Tensor`): binary masks in the RLE format iou_scores (`torch.Tensor` of shape (nb_masks, 1)): iou_scores predicted by the model mask_boxes (`torch.Tensor`): The bounding boxes corresponding to segmentation masks amg_crops_nms_thresh (`float`, *optional*, defaults to 0.7): NMS threshold. """ keep_by_nms = batched_nms( boxes=mask_boxes.float(), scores=iou_scores, idxs=torch.zeros(mask_boxes.shape[0]), iou_threshold=amg_crops_nms_thresh, ) iou_scores = iou_scores[keep_by_nms] rle_masks = [rle_masks[i] for i in keep_by_nms] mask_boxes = mask_boxes[keep_by_nms] masks = [_rle_to_mask(rle) for rle in rle_masks] return masks, iou_scores, rle_masks, mask_boxes def _postprocess_for_mg_tf(rle_masks, iou_scores, mask_boxes, amg_crops_nms_thresh=0.7): """ Perform NMS (Non Maximum Suppression) on the outputs. Args: rle_masks (`tf.Tensor`): binary masks in the RLE format iou_scores (`tf.Tensor` of shape (nb_masks, 1)): iou_scores predicted by the model mask_boxes (`tf.Tensor`): The bounding boxes corresponding to segmentation masks amg_crops_nms_thresh (`float`, *optional*, defaults to 0.7): NMS threshold. """ keep_by_nms = tf.image.combined_non_max_suppression( boxes=mask_boxes.float(), scores=iou_scores, idxs=torch.zeros(mask_boxes.shape[0]), iou_threshold=amg_crops_nms_thresh, ) iou_scores = iou_scores[keep_by_nms] rle_masks = [rle_masks[i] for i in keep_by_nms] mask_boxes = mask_boxes[keep_by_nms] masks = [_rle_to_mask(rle) for rle in rle_masks] return masks, iou_scores, rle_masks, mask_boxes
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/rag/modeling_rag.py
# coding=utf-8 # Copyright 2020, The RAG Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """RAG model implementation.""" import copy from dataclasses import dataclass from typing import Callable, List, Optional, Tuple, Union import torch from torch import nn from ...configuration_utils import PretrainedConfig from ...generation import BeamSearchScorer, GenerationConfig, LogitsProcessorList, StoppingCriteriaList from ...modeling_outputs import ModelOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings_to_model_forward, logging, replace_return_docstrings from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "RagConfig" @dataclass class RetrievAugLMMarginOutput(ModelOutput): """ Base class for retriever augmented marginalized models outputs. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Language modeling loss. logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head. The score is possibly marginalized over all documents for each vocabulary token. doc_scores (`torch.FloatTensor` of shape `(batch_size, config.n_docs)`): Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and `question_encoder_last_hidden_state`. past_key_values (`List[torch.FloatTensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): List of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, num_heads, sequence_length, embed_size_per_head)`). Contains precomputed hidden-states (key and values in the attention blocks) of the decoder that can be used (see `past_key_values` input) to speed up sequential decoding. retrieved_doc_embeds (`torch.FloatTensor` of shape `(batch_size, config.n_docs, hidden_size)`, *optional*, returned when *output_retrieved=True*): Embedded documents retrieved by the retriever. Is used with `question_encoder_last_hidden_state` to compute the `doc_scores`. retrieved_doc_ids (`torch.LongTensor` of shape `(batch_size, config.n_docs)`, *optional*, returned when *output_retrieved=True*): The indexes of the embedded documents retrieved by the retriever. context_input_ids (`torch.LongTensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): Input ids post-processed from the retrieved documents and the question encoder input_ids by the retriever. context_attention_mask (`torch.LongTensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): Attention mask post-processed from the retrieved documents and the question encoder `input_ids` by the retriever. question_encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden states at the output of the last layer of the question encoder pooled output of the model. question_enc_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden states of the question encoder at the output of each layer plus the initial embedding outputs. question_enc_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the question encoder, after the attention softmax, used to compute the weighted average in the self-attention heads. generator_enc_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the generator encoder of the model. generator_enc_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden states of the generator encoder at the output of each layer plus the initial embedding outputs. generator_enc_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the generator encoder, after the attention softmax, used to compute the weighted average in the self-attention heads. generator_dec_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden states of the generator decoder at the output of each layer plus the initial embedding outputs. generator_dec_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the generator decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. generator_cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Cross-attentions weights of the generator decoder, after the attention softmax, used to compute the weighted average in the cross-attention heads. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None doc_scores: torch.FloatTensor = None past_key_values: Optional[List[torch.FloatTensor]] = None retrieved_doc_embeds: Optional[torch.FloatTensor] = None retrieved_doc_ids: Optional[torch.LongTensor] = None context_input_ids: Optional[torch.LongTensor] = None context_attention_mask: Optional[torch.LongTensor] = None question_encoder_last_hidden_state: Optional[torch.FloatTensor] = None question_enc_hidden_states: Optional[Tuple[torch.FloatTensor]] = None question_enc_attentions: Optional[Tuple[torch.FloatTensor]] = None generator_enc_last_hidden_state: Optional[torch.FloatTensor] = None generator_enc_hidden_states: Optional[Tuple[torch.FloatTensor]] = None generator_enc_attentions: Optional[Tuple[torch.FloatTensor]] = None generator_dec_hidden_states: Optional[Tuple[torch.FloatTensor]] = None generator_dec_attentions: Optional[Tuple[torch.FloatTensor]] = None generator_cross_attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class RetrievAugLMOutput(ModelOutput): """ Args: logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head. The score is possibly marginalized over all documents for each vocabulary token. doc_scores (`torch.FloatTensor` of shape `(batch_size, config.n_docs)`): Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and `question_encoder_last_hidden_state`. past_key_values (`List[torch.FloatTensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): List of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, num_heads, sequence_length, embed_size_per_head)`). Contains precomputed hidden-states (key and values in the attention blocks) of the decoder that can be used (see `past_key_values` input) to speed up sequential decoding. retrieved_doc_embeds (`torch.FloatTensor` of shape `(batch_size, config.n_docs, hidden_size)`, *optional*, returned when *output_retrieved=True*): Embedded documents retrieved by the retriever. Is used with `question_encoder_last_hidden_state` to compute the `doc_scores`. retrieved_doc_ids (`torch.LongTensor` of shape `(batch_size, config.n_docs)`, *optional*, returned when *output_retrieved=True*): The indexes of the embedded documents retrieved by the retriever. context_input_ids (`torch.LongTensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): Input ids post-processed from the retrieved documents and the question encoder input_ids by the retriever. context_attention_mask (`torch.LongTensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): Attention mask post-processed from the retrieved documents and the question encoder `input_ids` by the retriever. question_encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden states at the output of the last layer of the question encoder pooled output of the model. question_enc_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden states of the question encoder at the output of each layer plus the initial embedding outputs. question_enc_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the question encoder, after the attention softmax, used to compute the weighted average in the self-attention heads. generator_enc_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the generator encoder of the model. generator_enc_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden states of the generator encoder at the output of each layer plus the initial embedding outputs. generator_enc_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the generator encoder, after the attention softmax, used to compute the weighted average in the self-attention heads. generator_dec_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden states of the generator decoder at the output of each layer plus the initial embedding outputs. generator_dec_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the generator decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. generator_cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Cross-attentions weights of the generator decoder, after the attention softmax, used to compute the weighted average in the cross-attention heads. """ logits: torch.FloatTensor = None doc_scores: torch.FloatTensor = None past_key_values: Optional[List[torch.FloatTensor]] = None retrieved_doc_embeds: Optional[torch.FloatTensor] = None retrieved_doc_ids: Optional[torch.LongTensor] = None context_input_ids: Optional[torch.LongTensor] = None context_attention_mask: Optional[torch.LongTensor] = None question_encoder_last_hidden_state: Optional[torch.FloatTensor] = None question_enc_hidden_states: Optional[Tuple[torch.FloatTensor]] = None question_enc_attentions: Optional[Tuple[torch.FloatTensor]] = None generator_enc_last_hidden_state: Optional[torch.FloatTensor] = None generator_enc_hidden_states: Optional[Tuple[torch.FloatTensor]] = None generator_enc_attentions: Optional[Tuple[torch.FloatTensor]] = None generator_dec_hidden_states: Optional[Tuple[torch.FloatTensor]] = None generator_dec_attentions: Optional[Tuple[torch.FloatTensor]] = None generator_cross_attentions: Optional[Tuple[torch.FloatTensor]] = None class RagPreTrainedModel(PreTrainedModel): r""" RAG models were released with the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandra Piktus et al. RAG is a retriever augmented model and encapsulate three components: a question encoder, a dataset retriever and a generator, the encoder and generator are trainable while the retriever is just an indexed dataset. """ config_class = RagConfig base_model_prefix = "rag" @classmethod def from_pretrained(cls, *args, **kwargs): # At the moment fast initialization is not supported # for composite models kwargs["_fast_init"] = False return super().from_pretrained(*args, **kwargs) @classmethod def from_pretrained_question_encoder_generator( cls, question_encoder_pretrained_model_name_or_path: str = None, generator_pretrained_model_name_or_path: str = None, retriever: RagRetriever = None, **kwargs, ) -> PreTrainedModel: r""" Instantiates an question encoder and a generator from one or two base classes of the library from pretrained model checkpoints. The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train the model, you need to first set it back in training mode with `model.train()`. Params: question_encoder_pretrained_model_name_or_path (`str`, *optional*, defaults to `None`): Information necessary to initiate the question encoder. Can be either: - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a user or organization name, like `dbmdz/bert-base-german-cased`. - A path to a *directory* containing model weights saved using [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. - A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In this case, `from_tf` should be set to `True` and a configuration object should be provided as `config` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards. generator_pretrained_model_name_or_path (`str`, *optional*, defaults to `None`): Information necessary to initiate the generator. Can be either: - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a user or organization name, like `dbmdz/bert-base-german-cased`. - A path to a *directory* containing model weights saved using [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. - A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In this case, `from_tf` should be set to `True` and a configuration object should be provided as `config` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards. model_args (remaining positional arguments, *optional*): All remaining positional arguments will be passed to the underlying model's `__init__` method. retriever ([`RagRetriever`], *optional*): The retriever to use. kwwargs (remaining dictionary of keyword arguments, *optional*): Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., `output_attentions=True`). - To update the question_encoder configuration, use the prefix *question_encoder_* for each configuration parameter. - To update the generator configuration, use the prefix *generator_* for each configuration parameter. - To update the parent model configuration, do not use a prefix for each configuration parameter. Behaves differently depending on whether a `config` is provided or automatically loaded. Example: ```python >>> from transformers import RagModel >>> # initialize a RAG from two pretrained models. >>> model = RagModel.from_pretrained_question_encoder_generator( ... "facebook/dpr-question_encoder-single-nq-base", "t5-small" ... ) >>> # saving model after fine-tuning >>> model.save_pretrained("./rag") >>> # load fine-tuned model >>> model = RagModel.from_pretrained("./rag") ```""" kwargs_question_encoder = { argument[len("question_encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("question_encoder_") } kwargs_generator = { argument[len("generator_") :]: value for argument, value in kwargs.items() if argument.startswith("generator_") } # remove question_encoder, generator kwargs from kwargs for key in kwargs_question_encoder.keys(): del kwargs["question_encoder_" + key] for key in kwargs_generator.keys(): del kwargs["generator_" + key] # Load and initialize the question_encoder and generator # The distinction between question_encoder and generator at the model level is made # by the value of the flag `is_generator` that we need to set correctly. question_encoder = kwargs_question_encoder.pop("model", None) if question_encoder is None: assert question_encoder_pretrained_model_name_or_path is not None, ( "If `model` is not defined as an argument, a `question_encoder_pretrained_model_name_or_path` has to" " be defined" ) from ..auto.modeling_auto import AutoModel if "config" not in kwargs_question_encoder: from ..auto.configuration_auto import AutoConfig question_encoder_config, kwargs_question_encoder = AutoConfig.from_pretrained( question_encoder_pretrained_model_name_or_path, **kwargs_question_encoder, return_unused_kwargs=True, ) kwargs_question_encoder["config"] = question_encoder_config question_encoder = AutoModel.from_pretrained( question_encoder_pretrained_model_name_or_path, **kwargs_question_encoder ) generator = kwargs_generator.pop("model", None) if generator is None: assert generator_pretrained_model_name_or_path is not None, ( "If `generator_model` is not defined as an argument, a `generator_pretrained_model_name_or_path` has" " to be defined" ) from ..auto.modeling_auto import AutoModelForSeq2SeqLM if "config" not in kwargs_generator: from ..auto.configuration_auto import AutoConfig generator_config, kwargs_generator = AutoConfig.from_pretrained( generator_pretrained_model_name_or_path, **kwargs_generator, return_unused_kwargs=True ) kwargs_generator["config"] = generator_config generator = AutoModelForSeq2SeqLM.from_pretrained( generator_pretrained_model_name_or_path, **kwargs_generator ) # instantiate config with corresponding kwargs config = kwargs.get("config", None) if config is None: config = RagConfig.from_question_encoder_generator_configs( question_encoder.config, generator.config, **kwargs ) return cls(question_encoder=question_encoder, generator=generator, config=config, retriever=retriever) RAG_START_DOCSTRING = r""" RAG is a seq2seq model which encapsulates two core components: a question encoder and a generator. During a forward pass, we encode the input with the question encoder and pass it to the retriever to extract relevant context documents. The documents are then prepended to the input. Such contextualized inputs is passed to the generator. The question encoder can be any *autoencoding* model, preferably [`DPRQuestionEncoder`], and the generator can be any *seq2seq* model, preferably [`BartForConditionalGeneration`]. The model can be initialized with a [`RagRetriever`] for end-to-end generation or used in combination with the outputs of a retriever in multiple steps---see examples for more details. The model is compatible any *autoencoding* model as the `question_encoder` and any *seq2seq* model with language model head as the `generator`. It has been tested with [`DPRQuestionEncoder`] as the `question_encoder` and [`BartForConditionalGeneration`] or [`T5ForConditionalGeneration`] as the `generator`. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Args: config ([`RagConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. question_encoder ([`PreTrainedModel`]): An encoder model compatible with the faiss index encapsulated by the `retriever`. generator ([`PreTrainedModel`]): A seq2seq model used as the generator in the RAG architecture. retriever ([`RagRetriever`]): A retriever class encapsulating a faiss index queried to obtain context documents for current inputs. """ RAG_FORWARD_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. [`RagConfig`], used to initialize the model, specifies which generator to use, it also specifies a compatible generator tokenizer. Use that tokenizer class to obtain the indices. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*) Tuple consists of (`generator_enc_last_hidden_state`, *optional*: `generator_enc_hidden_states`, *optional*: `generator_enc_attentions`). `generator_enc_last_hidden_state` of shape `(batch_size, n_docs * sequence_length, hidden_size)` is a sequence of hidden-states at the output of the last layer of the generator's encoder. Used by the ([`RagModel`]) model during decoding. decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Provide for generation tasks. `None` by default, construct as per instructions for the generator model you're using with your RAG instance. decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. past_key_values (`tuple(tuple(torch.FloatTensor))`): Tuple consists of two elements: `encoder_outputs` of the RAG model (see `encoder_outputs`) and `past_key_values` of the underlying generator. Can be used to speed up decoding. `past_key_values` are used in the ([`RagTokenForGeneration`]) model during decoding. doc_scores (`torch.FloatTensor` of shape `(batch_size, config.n_docs)`): Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and `question_encoder_last_hidden_state`. If the model has is not initialized with a `retriever` `doc_scores` has to be provided to the forward pass. `doc_scores` can be computed via `question_encoder_last_hidden_state` and `retrieved_doc_embeds`, see examples for more information. context_input_ids (`torch.LongTensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): Input IDs post-processed from the retrieved documents and the question encoder `input_ids` by the retriever. If the model has is not initialized with a `retriever` ``context_input_ids` has to be provided to the forward pass. `context_input_ids` are returned by [`~RagRetriever.__call__`]. context_attention_mask (`torch.LongTensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): Attention mask post-processed from the retrieved documents and the question encoder `input_ids` by the retriever. If the model has is not initialized with a `retriever` `context_attention_mask` has to be provided to the forward pass. `context_attention_mask` are returned by [`~RagRetriever.__call__`]. use_cache (`bool`, *optional*, defaults to `True`): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. output_retrieved(`bool`, *optional*): Whether or not to return the `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask`. See returned tensors for more detail. n_docs (`int`, *optional*, defaults to `config.n_docs``) Number of documents to retrieve and/or number of documents for which to generate an answer. """ @add_start_docstrings_to_model_forward(RAG_START_DOCSTRING) class RagModel(RagPreTrainedModel): def __init__( self, config: Optional[PretrainedConfig] = None, question_encoder: Optional[PreTrainedModel] = None, generator: Optional[PreTrainedModel] = None, retriever: Optional[RagRetriever] = None, # or maybe just use a `set_retriever(...)` method **kwargs, ): assert config is not None or ( question_encoder is not None and generator is not None ), "Either a configuration or an question_encoder and a generator has to be provided." if config is None: config = RagConfig.from_question_encoder_generator_configs( question_encoder.config, generator.config, **kwargs ) else: assert isinstance(config, self.config_class), f"config: {config} has to be of type {self.config_class}" super().__init__(config) if question_encoder is None: from ..auto.modeling_auto import AutoModel question_encoder = AutoModel.from_config(config.question_encoder) if generator is None: from ..auto.modeling_auto import AutoModelForSeq2SeqLM generator = AutoModelForSeq2SeqLM.from_config(config.generator) self.retriever = retriever if self.retriever is not None: assert isinstance( retriever, RagRetriever ), f"`self.retriever` is of type {type(self.retriever)}, but should be of type `RagRetriever`" self.retriever = retriever self.question_encoder = question_encoder self.generator = generator self.ctx_encoder = None self.context_encoder_training = False @add_start_docstrings_to_model_forward(RAG_FORWARD_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=RetrievAugLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.BoolTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, doc_scores: Optional[torch.FloatTensor] = None, context_input_ids: Optional[torch.LongTensor] = None, context_attention_mask=None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_retrieved: Optional[bool] = None, n_docs: Optional[int] = None, ) -> Union[Tuple[torch.Tensor], RetrievAugLMOutput]: r""" Returns: Example: ```python >>> from transformers import AutoTokenizer, RagRetriever, RagModel >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("facebook/rag-token-base") >>> retriever = RagRetriever.from_pretrained( ... "facebook/rag-token-base", index_name="exact", use_dummy_dataset=True ... ) >>> # initialize with RagRetriever to do everything in one forward call >>> model = RagModel.from_pretrained("facebook/rag-token-base", retriever=retriever) >>> inputs = tokenizer("How many people live in Paris?", return_tensors="pt") >>> outputs = model(input_ids=inputs["input_ids"]) ```""" n_docs = n_docs if n_docs is not None else self.config.n_docs use_cache = use_cache if use_cache is not None else self.config.use_cache output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) output_retrieved = output_retrieved if output_retrieved is not None else self.config.output_retrieved # whether retriever has to be used has_to_retrieve = ( self.retriever is not None and (context_input_ids is None or context_attention_mask is None or doc_scores is None) and encoder_outputs is None ) # encoder_outputs are pre-computed during RAG-token generation if encoder_outputs is None: if has_to_retrieve: question_enc_outputs = self.question_encoder( input_ids, attention_mask=attention_mask, return_dict=True ) question_encoder_last_hidden_state = question_enc_outputs[0] # hidden states of question encoder retriever_outputs = self.retriever( input_ids, question_encoder_last_hidden_state.cpu().detach().to(torch.float32).numpy(), prefix=self.generator.config.prefix, n_docs=n_docs, return_tensors="pt", ) if self.context_encoder_training: ( context_input_ids, context_attention_mask, retrieved_doc_embeds, retrived_doc_input_ids, retrived_doc_attention_mask, retrieved_doc_ids, ) = ( retriever_outputs["context_input_ids"], retriever_outputs["context_attention_mask"], retriever_outputs["retrieved_doc_embeds"], retriever_outputs["tokenized_doc_ids"], retriever_outputs["tokenized_doc_attention_mask"], retriever_outputs["doc_ids"], ) context_input_ids = context_input_ids.to(input_ids) context_attention_mask = context_attention_mask.to(input_ids) retrived_doc_input_ids = retrived_doc_input_ids.to(input_ids) retrived_doc_attention_mask = retrived_doc_attention_mask.to(input_ids) retrieved_doc_embeds = self.ctx_encoder( retrived_doc_input_ids, attention_mask=retrived_doc_attention_mask, return_dict=True ).pooler_output retrieved_doc_embeds = retrieved_doc_embeds.view( -1, n_docs, question_encoder_last_hidden_state.shape[1] ) # reshaping # compute doc_scores involving ctx_encoder doc_scores = torch.bmm( question_encoder_last_hidden_state.unsqueeze(1), retrieved_doc_embeds.transpose(1, 2) ).squeeze(1) else: context_input_ids, context_attention_mask, retrieved_doc_embeds, retrieved_doc_ids = ( retriever_outputs["context_input_ids"], retriever_outputs["context_attention_mask"], retriever_outputs["retrieved_doc_embeds"], retriever_outputs["doc_ids"], ) # set to correct device retrieved_doc_embeds = retrieved_doc_embeds.to(question_encoder_last_hidden_state) context_input_ids = context_input_ids.to(input_ids) context_attention_mask = context_attention_mask.to(input_ids) # compute doc_scores doc_scores = torch.bmm( question_encoder_last_hidden_state.unsqueeze(1), retrieved_doc_embeds.transpose(1, 2) ).squeeze(1) else: assert context_input_ids is not None, ( "Make sure that `context_input_ids` are passed, if no `retriever` is set. Alternatively, you can" " set a retriever using the `set_retriever(...)` function." ) assert context_attention_mask is not None, ( "Make sure that `context_attention_mask` are passed, if no `retriever` is set. Alternatively, you" " can set a retriever using the `set_retriever(...)` function." ) assert doc_scores is not None, ( "Make sure that `doc_scores` are passed, if no `retriever` is set. Alternatively, you can set a" " retriever using the `set_retriever(...)` function." ) assert ( doc_scores is not None ), "Make sure that `doc_scores` are passed when passing `encoder_outputs` to the forward function." assert (doc_scores.shape[1] % n_docs) == 0, ( f" The first dimension of `context_input_ids` should be a multiple of `n_docs`={n_docs}, but is" f" {context_input_ids.shape[0]}." ) # Decoder input without context documents if decoder_input_ids is not None: decoder_input_ids = decoder_input_ids.repeat_interleave(n_docs, dim=0) if decoder_attention_mask is not None: decoder_attention_mask = decoder_attention_mask.repeat_interleave(n_docs, dim=0) gen_outputs = self.generator( input_ids=context_input_ids, attention_mask=context_attention_mask, encoder_outputs=encoder_outputs, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, return_dict=True, ) if not has_to_retrieve: question_encoder_last_hidden_state = None question_enc_hidden_states = None question_enc_attentions = None retrieved_doc_embeds = None retrieved_doc_ids = None else: question_enc_hidden_states = question_enc_outputs.hidden_states question_enc_attentions = question_enc_outputs.attentions if not has_to_retrieve or not output_retrieved: # don't output retrieved docs context_input_ids = (None,) context_attention_mask = None retrieved_doc_embeds = None retrieved_doc_ids = None return RetrievAugLMOutput( logits=gen_outputs.logits, doc_scores=doc_scores, past_key_values=gen_outputs.past_key_values, context_input_ids=context_input_ids, context_attention_mask=context_attention_mask, retrieved_doc_embeds=retrieved_doc_embeds, retrieved_doc_ids=retrieved_doc_ids, question_encoder_last_hidden_state=question_encoder_last_hidden_state, question_enc_hidden_states=question_enc_hidden_states, question_enc_attentions=question_enc_attentions, generator_enc_last_hidden_state=gen_outputs.encoder_last_hidden_state, generator_enc_hidden_states=gen_outputs.encoder_hidden_states, generator_enc_attentions=gen_outputs.encoder_attentions, generator_dec_hidden_states=gen_outputs.decoder_hidden_states, generator_dec_attentions=gen_outputs.decoder_attentions, generator_cross_attentions=gen_outputs.cross_attentions, ) @add_start_docstrings_to_model_forward( """ A RAG-sequence model implementation. It performs RAG-sequence specific marginalization in the forward pass. """, RAG_START_DOCSTRING, ) class RagSequenceForGeneration(RagPreTrainedModel): def __init__( self, config: Optional[PretrainedConfig] = None, question_encoder: Optional[PreTrainedModel] = None, generator: Optional[PreTrainedModel] = None, retriever: Optional[RagRetriever] = None, **kwargs, ): assert config is not None or ( question_encoder is not None and generator is not None ), "Either a configuration or an encoder and a generator has to be provided." if config is None: config = RagConfig.from_question_encoder_generator_configs( question_encoder.config, generator.config, **kwargs ) super().__init__(config) # instantiate model self.rag = RagModel(config=config, question_encoder=question_encoder, generator=generator, retriever=retriever) def set_retriever(self, retriever: RagRetriever): self.rag.retriever = retriever def set_context_encoder_for_training(self, ctx_encoder: PreTrainedModel): self.rag.context_encoder_training = True self.rag.ctx_encoder = ctx_encoder @add_start_docstrings_to_model_forward(RAG_FORWARD_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=RetrievAugLMMarginOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.BoolTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, context_input_ids: Optional[torch.LongTensor] = None, context_attention_mask: Optional[torch.LongTensor] = None, doc_scores: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_retrieved: Optional[bool] = None, exclude_bos_score: Optional[bool] = None, reduce_loss: Optional[bool] = None, labels: Optional[torch.LongTensor] = None, n_docs: Optional[int] = None, **kwargs, # needs kwargs for generation ) -> RetrievAugLMMarginOutput: r""" exclude_bos_score (`bool`, *optional*): Only relevant if `labels` is passed. If `True`, the score of the BOS token is disregarded when computing the loss. reduce_loss (`bool`, *optional*): Only relevant if `labels` is passed. If `True`, the NLL loss is reduced using the `torch.Tensor.sum` operation. kwargs (`Dict[str, any]`, optional, defaults to *{}*): Legacy dictionary, which is required so that model can use *generate()* function. Returns: Example: ```python >>> from transformers import AutoTokenizer, RagRetriever, RagSequenceForGeneration >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("facebook/rag-sequence-nq") >>> retriever = RagRetriever.from_pretrained( ... "facebook/rag-sequence-nq", index_name="exact", use_dummy_dataset=True ... ) >>> # initialize with RagRetriever to do everything in one forward call >>> model = RagSequenceForGeneration.from_pretrained("facebook/rag-token-nq", retriever=retriever) >>> inputs = tokenizer("How many people live in Paris?", return_tensors="pt") >>> targets = tokenizer(text_target="In Paris, there are 10 million people.", return_tensors="pt") >>> input_ids = inputs["input_ids"] >>> labels = targets["input_ids"] >>> outputs = model(input_ids=input_ids, labels=labels) >>> # or use retriever separately >>> model = RagSequenceForGeneration.from_pretrained("facebook/rag-sequence-nq", use_dummy_dataset=True) >>> # 1. Encode >>> question_hidden_states = model.question_encoder(input_ids)[0] >>> # 2. Retrieve >>> docs_dict = retriever(input_ids.numpy(), question_hidden_states.detach().numpy(), return_tensors="pt") >>> doc_scores = torch.bmm( ... question_hidden_states.unsqueeze(1), docs_dict["retrieved_doc_embeds"].float().transpose(1, 2) ... ).squeeze(1) >>> # 3. Forward to generator >>> outputs = model( ... context_input_ids=docs_dict["context_input_ids"], ... context_attention_mask=docs_dict["context_attention_mask"], ... doc_scores=doc_scores, ... decoder_input_ids=labels, ... ) ```""" n_docs = n_docs if n_docs is not None else self.config.n_docs exclude_bos_score = exclude_bos_score if exclude_bos_score is not None else self.config.exclude_bos_score reduce_loss = reduce_loss if reduce_loss is not None else self.config.reduce_loss if labels is not None: if decoder_input_ids is None: decoder_input_ids = labels use_cache = False outputs = self.rag( input_ids=input_ids, attention_mask=attention_mask, encoder_outputs=encoder_outputs, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, context_input_ids=context_input_ids, context_attention_mask=context_attention_mask, doc_scores=doc_scores, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, output_retrieved=output_retrieved, n_docs=n_docs, ) loss = None if labels is not None: loss = self.get_nll( outputs.logits, outputs.doc_scores, decoder_input_ids, reduce_loss=reduce_loss, epsilon=self.config.label_smoothing, exclude_bos_score=exclude_bos_score, n_docs=n_docs, ) return RetrievAugLMMarginOutput( loss=loss, logits=outputs.logits, doc_scores=outputs.doc_scores, past_key_values=outputs.past_key_values, context_input_ids=outputs.context_input_ids, context_attention_mask=outputs.context_attention_mask, retrieved_doc_embeds=outputs.retrieved_doc_embeds, retrieved_doc_ids=outputs.retrieved_doc_ids, question_encoder_last_hidden_state=outputs.question_encoder_last_hidden_state, question_enc_hidden_states=outputs.question_enc_hidden_states, question_enc_attentions=outputs.question_enc_attentions, generator_enc_last_hidden_state=outputs.generator_enc_last_hidden_state, generator_enc_hidden_states=outputs.generator_enc_hidden_states, generator_enc_attentions=outputs.generator_enc_attentions, generator_dec_hidden_states=outputs.generator_dec_hidden_states, generator_dec_attentions=outputs.generator_dec_attentions, generator_cross_attentions=outputs.generator_cross_attentions, ) @property def retriever(self): return self.rag.retriever @property def generator(self): return self.rag.generator @property def question_encoder(self): return self.rag.question_encoder @torch.no_grad() def generate( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.LongTensor] = None, context_input_ids: Optional[torch.LongTensor] = None, context_attention_mask: Optional[torch.LongTensor] = None, doc_scores: Optional[torch.FloatTensor] = None, do_deduplication: Optional[bool] = None, # defaults to True num_return_sequences: Optional[int] = None, # defaults to 1 num_beams: Optional[int] = None, # defaults to 1 n_docs: Optional[int] = None, **model_kwargs, ) -> torch.LongTensor: """ Implements RAG sequence "thorough" decoding. Read the [`~generation.GenerationMixin.generate`]` documentation for more information on how to set other generate input parameters. Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): The sequence used as a prompt for the generation. If `input_ids` is not passed, then `context_input_ids` has to be provided. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) context_input_ids (`torch.LongTensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): Input IDs post-processed from the retrieved documents and the question encoder input_ids by the retriever. context_attention_mask (`torch.LongTensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): Attention mask post-processed from the retrieved documents and the question encoder `input_ids` by the retriever. If the model is not initialized with a `retriever` or `input_ids` is not given, `context_input_ids` and `context_attention_mask` have to be provided to the forward pass. They are returned by [`~RagRetriever.__call__`]. doc_scores (`torch.FloatTensor` of shape `(batch_size, config.n_docs)`): Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and `question_encoder_last_hidden_state`. If the model is not initialized with a `retriever` or `input_ids` is not given, `doc_scores` has to be provided to the forward pass. `doc_scores` are returned by [`~RagRetriever.__call__`]. do_deduplication (`bool`, *optional*): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. num_return_sequences(`int`, *optional*, defaults to 1): The number of independently computed returned sequences for each element in the batch. Note that this is not the value we pass to the `generator`'s `[`~generation.GenerationMixin.generate`]` function, where we set `num_return_sequences` to `num_beams`. num_beams (`int`, *optional*, defaults to 1): Number of beams for beam search. 1 means no beam search. n_docs (`int`, *optional*, defaults to `config.n_docs`) Number of documents to retrieve and/or number of documents for which to generate an answer. kwargs (`Dict[str, Any]`, *optional*): Additional kwargs will be passed to [`~generation.GenerationMixin.generate`]. Return: `torch.LongTensor` of shape `(batch_size * num_return_sequences, sequence_length)`: The generated sequences. The second dimension (sequence length) is either equal to `max_length` or shorter if all batches finished early due to the `eos_token_id`. """ n_docs = n_docs if n_docs is not None else self.config.n_docs do_deduplication = do_deduplication if do_deduplication is not None else self.config.do_deduplication num_doc_return_sequences = ( num_return_sequences if num_return_sequences is not None else self.config.num_return_sequences ) num_beams = num_beams if num_beams is not None else self.config.num_beams assert ( input_ids is not None or context_input_ids is not None ), " At least one of input_ids or context_input_ids must be given" if self.retriever is not None and context_input_ids is None: question_hidden_states = self.question_encoder(input_ids, attention_mask=attention_mask)[0] context_input_ids = self.retriever( input_ids, question_hidden_states.cpu().detach().to(torch.float32).numpy(), prefix=self.generator.config.prefix, n_docs=n_docs, return_tensors="pt", )["context_input_ids"] # set to correct device context_input_ids = context_input_ids.to(input_ids) hypos = [] model_kwargs["num_beams"] = num_beams model_kwargs["num_return_sequences"] = num_beams model_kwargs["attention_mask"] = None batch_size = input_ids.shape[0] if input_ids is not None else context_input_ids.shape[0] // n_docs for index in range(batch_size): # first, generate beams from documents: generator_input_ids = context_input_ids[index * n_docs : (index + 1) * n_docs] # (n_docs, max_len) output_sequences = self.generator.generate( generator_input_ids, **model_kwargs, ) # n_docs * n_beam, tgt_len if do_deduplication: # do_deduplication, max_output_len output_sequences = torch.stack(list({str(k.tolist()): k for k in output_sequences}.values())) num_candidates = output_sequences.shape[ 0 ] # after deduplication, this number can be less than n_docs*n_beam # then, run model forwards to get nll scores: if input_ids is not None: new_input_ids = input_ids[index : index + 1].repeat(num_candidates, 1) outputs = self(new_input_ids, labels=output_sequences, exclude_bos_score=True) else: # input_ids is None, need context_input_ids/mask and doc_scores assert context_attention_mask is not None, ( "Make sure that `context_attention_mask` are passed, if no `input_ids` is set. Alternatively, you" " can set a retriever using the `set_retriever(...)` function." ) assert doc_scores is not None, ( "Make sure that `doc_scores` are passed, if no `input_ids` is set. Alternatively, you can set a" " retriever using the `set_retriever(...)` function." ) individual_input_ids = generator_input_ids.repeat( num_candidates, 1 ) # (num_candidates*n_docs, max_len) individual_attention_mask = context_attention_mask[index * n_docs : (index + 1) * n_docs] individual_attention_mask = individual_attention_mask.repeat(num_candidates, 1) individual_doc_scores = doc_scores[index : (index + 1), :] # doc_scores.shape = [batch, n_docs] individual_doc_scores = individual_doc_scores.repeat(num_candidates, 1) # [num_candidates, n_docs] outputs = self( context_input_ids=individual_input_ids, context_attention_mask=individual_attention_mask, doc_scores=individual_doc_scores, labels=output_sequences, exclude_bos_score=True, ) top_cand_inds = (-outputs["loss"]).topk(num_doc_return_sequences)[1] # add hypothesis hypos.append(output_sequences[top_cand_inds]) return self._cat_and_pad(hypos, pad_token_id=self.config.generator.pad_token_id) def get_nll( self, seq_logits, doc_scores, target, reduce_loss=False, epsilon=0.0, exclude_bos_score=False, n_docs=None ): # shift tokens left target = torch.cat( [target[:, 1:], target.new(target.shape[0], 1).fill_(self.config.generator.pad_token_id)], 1 ) n_docs = n_docs if n_docs is not None else self.config.n_docs # bos_token_id is None for T5 bos_token_id = self.config.bos_token_id or self.config.generator.bos_token_id use_bos = bos_token_id is not None and target[:, 0].eq(bos_token_id).all() def _mask_pads(ll, smooth_obj): pad_mask = target.eq(self.config.generator.pad_token_id) if pad_mask.any(): ll.masked_fill_(pad_mask, 0.0) smooth_obj.masked_fill_(pad_mask, 0.0) return ll.squeeze(-1), smooth_obj.squeeze(-1) # seq_logits dim = (batch*n_docs, tgt_len , #vocabs) seq_logprobs = nn.functional.log_softmax(seq_logits, dim=-1).view( seq_logits.shape[0] // n_docs, n_docs, -1, seq_logits.size(-1) ) # batch_size x n_docs x tgt_len x #vocab_size doc_logprobs = nn.functional.log_softmax(doc_scores, dim=1).unsqueeze(-1).unsqueeze(-1) # RAG-sequence marginalization first_token_scores = seq_logprobs[:, :, :1, :] second_token_scores = seq_logprobs[:, :, 1:2, :] remainder = seq_logprobs[:, :, 2:, :] rag_logprobs = torch.cat([first_token_scores, second_token_scores + doc_logprobs, remainder], dim=2) # calculate loss target = target.unsqueeze(1).unsqueeze(-1).repeat(1, n_docs, 1, 1) assert target.dim() == rag_logprobs.dim() ll = rag_logprobs.gather(dim=-1, index=target) smooth_obj = rag_logprobs.sum(dim=-1, keepdim=True) # total sum of all (normalised) logits ll, smooth_obj = _mask_pads(ll, smooth_obj) # sum over tokens, exclude bos while scoring ll = ll[:, :, 1:].sum(2) if exclude_bos_score and use_bos else ll.sum(2) smooth_obj = smooth_obj.sum(2) ll = ll.logsumexp(1) # logsumexp over docs smooth_obj = smooth_obj.logsumexp(1) nll_loss = -ll smooth_loss = -smooth_obj if reduce_loss: nll_loss = nll_loss.sum() smooth_loss = smooth_loss.sum() eps_i = epsilon / rag_logprobs.size(-1) loss = (1.0 - epsilon) * nll_loss + eps_i * smooth_loss return loss @staticmethod def _cat_and_pad(tensors, pad_token_id): output = ( tensors[0].new(sum([t.shape[0] for t in tensors]), max([t.shape[1] for t in tensors])).fill_(pad_token_id) ) ind = 0 for t in tensors: output[ind : ind + t.shape[0], : t.shape[1]] = t ind += t.shape[0] return output @add_start_docstrings_to_model_forward( """ A RAG-token model implementation. It performs RAG-token specific marginalization in the forward pass. """, RAG_START_DOCSTRING, ) class RagTokenForGeneration(RagPreTrainedModel): def __init__( self, config: Optional[PretrainedConfig] = None, question_encoder: Optional[PreTrainedModel] = None, generator: Optional[PreTrainedModel] = None, retriever: Optional[RagRetriever] = None, **kwargs, ): assert config is not None or ( question_encoder is not None and generator is not None ), "Either a configuration or an encoder and a generator has to be provided." if config is None: config = RagConfig.from_question_encoder_generator_configs( question_encoder.config, generator.config, **kwargs ) super().__init__(config) # instantiate model self.rag = RagModel(config=config, question_encoder=question_encoder, generator=generator, retriever=retriever) def set_retriever(self, retriever: RagRetriever): self.rag.retriever = retriever def set_context_encoder_for_training(self, ctx_encoder: PreTrainedModel): self.rag.context_encoder_training = True self.rag.ctx_encoder = ctx_encoder def prepare_inputs_for_generation( self, decoder_input_ids, past_key_values=None, attention_mask=None, use_cache=None, encoder_outputs=None, doc_scores=None, n_docs=None, **kwargs, ): if past_key_values is not None: # if past is defined use only last decoder_input_ids decoder_input_ids = decoder_input_ids[:, -1:] return { "input_ids": None, "encoder_outputs": encoder_outputs, "doc_scores": doc_scores, "context_attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "past_key_values": past_key_values, "use_cache": use_cache, "do_marginalize": True, "n_docs": n_docs, } @property def retriever(self): return self.rag.retriever @property def generator(self): return self.rag.generator @property def question_encoder(self): return self.rag.question_encoder @staticmethod def _reorder_cache(past_key_values, beam_idx): """Reorders cache for generation. BART-inspired but we need to take care of the extra dimension for docs""" def _reorder_stacked(hidden_states, new_order): n_docs = hidden_states.shape[0] // new_order.shape[0] hidden_states = hidden_states.view(-1, n_docs, *hidden_states.shape[1:]) hidden_states = hidden_states.index_select(0, new_order) result = hidden_states.view(-1, *hidden_states.shape[2:]) return result reordered_past = () for layer_past in past_key_values: # get the correct batch idx from decoder layer's batch dim for cross and self-attn reordered_past += (tuple(_reorder_stacked(past_state, beam_idx) for past_state in layer_past),) return reordered_past def marginalize(self, seq_logits, doc_scores, n_docs=None): n_docs = n_docs if n_docs is not None else self.config.n_docs # RAG-token marginalization seq_logprobs = nn.functional.log_softmax(seq_logits, dim=-1).view( seq_logits.shape[0] // n_docs, n_docs, -1, seq_logits.size(-1) ) doc_logprobs = torch.log_softmax(doc_scores, dim=1) log_prob_sum = seq_logprobs + doc_logprobs.unsqueeze(-1).unsqueeze(-1) return torch.logsumexp(log_prob_sum, dim=1) @add_start_docstrings_to_model_forward(RAG_FORWARD_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=RetrievAugLMMarginOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.BoolTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, context_input_ids: Optional[torch.LongTensor] = None, context_attention_mask: Optional[torch.LongTensor] = None, doc_scores: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_retrieved: Optional[bool] = None, do_marginalize: Optional[bool] = None, reduce_loss: Optional[bool] = None, labels: Optional[torch.LongTensor] = None, n_docs: Optional[int] = None, **kwargs, # needs kwargs for generation ) -> RetrievAugLMMarginOutput: r""" do_marginalize (`bool`, *optional*): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*): Only relevant if `labels` is passed. If `True`, the NLL loss is reduced using the `torch.Tensor.sum` operation. kwargs (`Dict[str, any]`, optional, defaults to *{}*): Legacy dictionary, which is required so that model can use *generate()* function. Returns: Example: ```python >>> from transformers import AutoTokenizer, RagRetriever, RagTokenForGeneration >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("facebook/rag-token-nq") >>> retriever = RagRetriever.from_pretrained( ... "facebook/rag-token-nq", index_name="exact", use_dummy_dataset=True ... ) >>> # initialize with RagRetriever to do everything in one forward call >>> model = RagTokenForGeneration.from_pretrained("facebook/rag-token-nq", retriever=retriever) >>> inputs = tokenizer("How many people live in Paris?", return_tensors="pt") >>> targets = tokenizer(text_target="In Paris, there are 10 million people.", return_tensors="pt") >>> input_ids = inputs["input_ids"] >>> labels = targets["input_ids"] >>> outputs = model(input_ids=input_ids, labels=labels) >>> # or use retriever separately >>> model = RagTokenForGeneration.from_pretrained("facebook/rag-token-nq", use_dummy_dataset=True) >>> # 1. Encode >>> question_hidden_states = model.question_encoder(input_ids)[0] >>> # 2. Retrieve >>> docs_dict = retriever(input_ids.numpy(), question_hidden_states.detach().numpy(), return_tensors="pt") >>> doc_scores = torch.bmm( ... question_hidden_states.unsqueeze(1), docs_dict["retrieved_doc_embeds"].float().transpose(1, 2) ... ).squeeze(1) >>> # 3. Forward to generator >>> outputs = model( ... context_input_ids=docs_dict["context_input_ids"], ... context_attention_mask=docs_dict["context_attention_mask"], ... doc_scores=doc_scores, ... decoder_input_ids=labels, ... ) >>> # or directly generate >>> generated = model.generate( ... context_input_ids=docs_dict["context_input_ids"], ... context_attention_mask=docs_dict["context_attention_mask"], ... doc_scores=doc_scores, ... ) >>> generated_string = tokenizer.batch_decode(generated, skip_special_tokens=True) ```""" n_docs = n_docs if n_docs is not None else self.config.n_docs do_marginalize = do_marginalize if do_marginalize is not None else self.config.do_marginalize reduce_loss = reduce_loss if reduce_loss is not None else self.config.reduce_loss if labels is not None: if decoder_input_ids is None: decoder_input_ids = labels use_cache = False outputs = self.rag( input_ids=input_ids, attention_mask=attention_mask, encoder_outputs=encoder_outputs, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, context_input_ids=context_input_ids, context_attention_mask=context_attention_mask, doc_scores=doc_scores, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, output_retrieved=output_retrieved, n_docs=n_docs, ) loss = None logits = outputs.logits if labels is not None: assert decoder_input_ids is not None loss = self.get_nll( outputs.logits, outputs.doc_scores, labels, reduce_loss=reduce_loss, epsilon=self.config.label_smoothing, n_docs=n_docs, ) if do_marginalize: logits = self.marginalize(logits, outputs.doc_scores, n_docs) return RetrievAugLMMarginOutput( loss=loss, logits=logits, doc_scores=outputs.doc_scores, past_key_values=outputs.past_key_values, context_input_ids=outputs.context_input_ids, context_attention_mask=outputs.context_attention_mask, retrieved_doc_embeds=outputs.retrieved_doc_embeds, retrieved_doc_ids=outputs.retrieved_doc_ids, question_encoder_last_hidden_state=outputs.question_encoder_last_hidden_state, question_enc_hidden_states=outputs.question_enc_hidden_states, question_enc_attentions=outputs.question_enc_attentions, generator_enc_last_hidden_state=outputs.generator_enc_last_hidden_state, generator_enc_hidden_states=outputs.generator_enc_hidden_states, generator_enc_attentions=outputs.generator_enc_attentions, generator_dec_hidden_states=outputs.generator_dec_hidden_states, generator_dec_attentions=outputs.generator_dec_attentions, generator_cross_attentions=outputs.generator_cross_attentions, ) @torch.no_grad() def generate( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.LongTensor] = None, context_input_ids: Optional[torch.LongTensor] = None, context_attention_mask: Optional[torch.LongTensor] = None, doc_scores: Optional[torch.FloatTensor] = None, n_docs: Optional[int] = None, generation_config: Optional[GenerationConfig] = None, prefix_allowed_tokens_fn: Callable[[int, torch.Tensor], List[int]] = None, logits_processor: Optional[LogitsProcessorList] = LogitsProcessorList(), stopping_criteria: Optional[StoppingCriteriaList] = StoppingCriteriaList(), **kwargs, ) -> torch.LongTensor: """ Implements RAG token decoding. Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): The sequence used as a prompt for the generation. If `input_ids` is not passed, then `context_input_ids` has to be provided. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) context_input_ids (`torch.LongTensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): Input IDs post-processed from the retrieved documents and the question encoder `input_ids` by the retriever. If the model has is not initialized with a `retriever`, `context_input_ids` has to be provided to the forward pass. `context_input_ids` are returned by [`~RagRetriever.__call__`]. context_attention_mask (`torch.LongTensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): Attention mask post-processed from the retrieved documents and the question encoder `input_ids` by the retriever. If the model has is not initialized with a `retriever`, `context_input_ids` has to be provided to the forward pass. `context_input_ids` are returned by [`~RagRetriever.__call__`]. doc_scores (`torch.FloatTensor` of shape `(batch_size, config.n_docs)`): Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and `question_encoder_last_hidden_state`. If the model has is not initialized with a `retriever`, `context_input_ids` has to be provided to the forward pass. `context_input_ids` are returned by [`~RagRetriever.__call__`]. n_docs (`int`, *optional*, defaults to `config.n_docs`) Number of documents to retrieve and/or number of documents for which to generate an answer. generation_config (`~generation.GenerationConfig`, *optional*): The generation configuration to be used as base parametrization for the generation call. `**kwargs` passed to generate matching the attributes of `generation_config` will override them. If `generation_config` is not provided, the default will be used, which has the following loading priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s default values, whose documentation should be checked to parameterize generation. prefix_allowed_tokens_fn (`Callable[[int, torch.Tensor], List[int]]`, *optional*): If provided, this function constraints the beam search to allowed tokens only at each step. If not provided no constraint is applied. This function takes 2 arguments `inputs_ids` and the batch ID `batch_id`. It has to return a list with the allowed tokens for the next generation step conditioned on the previously generated tokens `inputs_ids` and the batch ID `batch_id`. This argument is useful for constrained generation conditioned on the prefix, as described in [Autoregressive Entity Retrieval](https://arxiv.org/abs/2010.00904). logits_processor (`LogitsProcessorList`, *optional*): Custom logits processors that complement the default logits processors built from arguments and a model's config. If a logit processor is passed that is already created with the arguments or a model's config an error is thrown. stopping_criteria (`StoppingCriteriaList`, *optional*): Custom stopping criteria that complement the default stopping criteria built from arguments and a model's config. If a stopping criteria is passed that is already created with the arguments or a model's config an error is thrown. kwargs (`Dict[str, Any]`, *optional*): Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be forwarded to the `forward` function of the model. Return: `torch.LongTensor` of shape `(batch_size * num_return_sequences, sequence_length)`: The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter if all batches finished early due to the `eos_token_id`. """ # Handle `generation_config` and kwargs that might update it if generation_config is None: generation_config = self.generation_config generation_config = copy.deepcopy(generation_config) model_kwargs = generation_config.update(**kwargs) # All unused kwargs must be model kwargs # set default parameters n_docs = n_docs if n_docs is not None else self.config.n_docs # retrieve docs if self.retriever is not None and context_input_ids is None: question_hidden_states = self.question_encoder(input_ids, attention_mask=attention_mask)[0] out = self.retriever( input_ids, question_hidden_states.cpu().detach().to(torch.float32).numpy(), prefix=self.generator.config.prefix, n_docs=n_docs, return_tensors="pt", ) context_input_ids, context_attention_mask, retrieved_doc_embeds = ( out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], ) # set to correct device retrieved_doc_embeds = retrieved_doc_embeds.to(question_hidden_states) context_input_ids = context_input_ids.to(input_ids) context_attention_mask = context_attention_mask.to(input_ids) # compute doc_scores doc_scores = torch.bmm(question_hidden_states.unsqueeze(1), retrieved_doc_embeds.transpose(1, 2)).squeeze( 1 ) assert (context_input_ids.shape[0] % n_docs) == 0, ( f" The first dimension of `context_input_ids` should be a multiple of `n_docs`={n_docs}, but is" f" {context_input_ids.shape[0]}." ) # batch_size batch_size = context_input_ids.shape[0] // n_docs encoder = self.rag.generator.get_encoder() encoder_outputs = encoder(input_ids=context_input_ids, attention_mask=context_attention_mask, return_dict=True) input_ids = torch.full( (batch_size * generation_config.num_beams, 1), generation_config.decoder_start_token_id, dtype=torch.long, device=next(self.parameters()).device, ) input_ids_seq_length = input_ids.shape[-1] last_hidden_state = encoder_outputs["last_hidden_state"] def extend_enc_output(tensor, num_beams=None): # split into `batch_size`, `num_beams`, `num_docs` tensor = tensor[None, None, :].reshape((batch_size, 1, n_docs) + tensor.shape[1:]) # repeat same last hidden states over `num_beams` dimension tensor = tensor.expand((batch_size, num_beams, n_docs) + tensor.shape[3:]) # merge `batch_size`, `num_beams`, `num_docs` dims again return tensor.reshape((batch_size * num_beams * n_docs,) + tensor.shape[3:]) # correctly extend last_hidden_state and attention mask context_attention_mask = extend_enc_output(context_attention_mask, num_beams=generation_config.num_beams) encoder_outputs["last_hidden_state"] = extend_enc_output( last_hidden_state, num_beams=generation_config.num_beams ) doc_scores = doc_scores.repeat_interleave(generation_config.num_beams, dim=0) # define start_len & additional parameters model_kwargs["doc_scores"] = doc_scores model_kwargs["encoder_outputs"] = encoder_outputs model_kwargs["attention_mask"] = context_attention_mask model_kwargs["n_docs"] = n_docs pre_processor = self._get_logits_processor( generation_config=generation_config, input_ids_seq_length=input_ids_seq_length, encoder_input_ids=context_input_ids, prefix_allowed_tokens_fn=prefix_allowed_tokens_fn, logits_processor=logits_processor, ) if generation_config.num_beams == 1: if generation_config.num_return_sequences > 1: raise ValueError( f"num_return_sequences has to be 1, but is {generation_config.num_return_sequences} when doing" " greedy search." ) return self.greedy_search( input_ids, logits_processor=pre_processor, max_length=generation_config.max_length, pad_token_id=generation_config.pad_token_id, eos_token_id=generation_config.eos_token_id, **model_kwargs, ) elif generation_config.num_beams > 1: if generation_config.num_return_sequences > generation_config.num_beams: raise ValueError("`num_return_sequences` has to be smaller or equal to `num_beams`.") beam_scorer = BeamSearchScorer( batch_size=batch_size, num_beams=generation_config.num_beams, device=self.device, length_penalty=generation_config.length_penalty, do_early_stopping=generation_config.early_stopping, num_beam_hyps_to_keep=generation_config.num_return_sequences, max_length=generation_config.max_length, ) return self.beam_search( input_ids, beam_scorer, logits_processor=pre_processor, max_length=generation_config.max_length, pad_token_id=generation_config.pad_token_id, eos_token_id=generation_config.eos_token_id, **model_kwargs, ) else: raise ValueError( f"`num_beams` has to be an integer strictly superior to 0 (≥ 1), but is {generation_config.num_beams}" ) def get_input_embeddings(self): return self.rag.generator.get_input_embeddings() def get_output_embeddings(self): return self.rag.generator.get_output_embeddings() def set_output_embeddings(self, new_embeddings): return self.rag.generator.set_output_embeddings(new_embeddings) def shift_tokens_right(self, input_ids, start_token_id=None): """Shift input ids one token to the right, and pad with start_token_id""" if start_token_id is None: start_token_id = self.config.decoder_start_token_id shifted_input_ids = input_ids.new_zeros(input_ids.shape) shifted_input_ids[:, 1:] = input_ids[:, :-1].clone() shifted_input_ids[:, 0] = start_token_id return shifted_input_ids def get_nll(self, seq_logits, doc_scores, target, reduce_loss=False, epsilon=0.0, n_docs=None): n_docs = n_docs if n_docs is not None else self.config.n_docs # shift tokens left target = torch.cat( [target[:, 1:], target.new(target.shape[0], 1).fill_(self.config.generator.pad_token_id)], 1 ) def _mask_pads(ll, smooth_obj): pad_mask = target.eq(self.config.generator.pad_token_id) if pad_mask.any(): ll.masked_fill_(pad_mask, 0.0) smooth_obj.masked_fill_(pad_mask, 0.0) return ll.squeeze(-1), smooth_obj.squeeze(-1) rag_logprobs = self.marginalize(seq_logits, doc_scores, n_docs) target = target.unsqueeze(-1) assert target.dim() == rag_logprobs.dim() ll = rag_logprobs.gather(dim=-1, index=target) smooth_obj = rag_logprobs.sum(dim=-1, keepdim=True) # total sum of all (normalised) logits ll, smooth_obj = _mask_pads(ll, smooth_obj) ll = ll.sum(1) # sum over tokens smooth_obj = smooth_obj.sum(1) nll_loss = -ll smooth_loss = -smooth_obj if reduce_loss: nll_loss = nll_loss.sum() smooth_loss = smooth_loss.sum() eps_i = epsilon / rag_logprobs.size(-1) loss = (1.0 - epsilon) * nll_loss + eps_i * smooth_loss return loss
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/rag/__init__.py
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _import_structure = { "configuration_rag": ["RagConfig"], "retrieval_rag": ["RagRetriever"], "tokenization_rag": ["RagTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_rag"] = [ "RagModel", "RagPreTrainedModel", "RagSequenceForGeneration", "RagTokenForGeneration", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_rag"] = [ "TFRagModel", "TFRagPreTrainedModel", "TFRagSequenceForGeneration", "TFRagTokenForGeneration", ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/rag/retrieval_rag.py
# coding=utf-8 # Copyright 2020, The RAG Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """RAG Retriever model implementation.""" import os import pickle import time from typing import Iterable, List, Optional, Tuple import numpy as np from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import cached_file, is_datasets_available, is_faiss_available, logging, requires_backends from .configuration_rag import RagConfig from .tokenization_rag import RagTokenizer if is_datasets_available(): from datasets import Dataset, load_dataset, load_from_disk if is_faiss_available(): import faiss logger = logging.get_logger(__name__) LEGACY_INDEX_PATH = "https://storage.googleapis.com/huggingface-nlp/datasets/wiki_dpr/" class Index: """ A base class for the Indices encapsulated by the [`RagRetriever`]. """ def get_doc_dicts(self, doc_ids: np.ndarray) -> List[dict]: """ Returns a list of dictionaries, containing titles and text of the retrieved documents. Args: doc_ids (`np.ndarray` of shape `(batch_size, n_docs)`): A tensor of document indices. """ raise NotImplementedError def get_top_docs(self, question_hidden_states: np.ndarray, n_docs=5) -> Tuple[np.ndarray, np.ndarray]: """ For each query in the batch, retrieves `n_docs` documents. Args: question_hidden_states (`np.ndarray` of shape `(batch_size, vector_size)`): An array of query vectors. n_docs (`int`): The number of docs retrieved per query. Returns: `np.ndarray` of shape `(batch_size, n_docs)`: A tensor of indices of retrieved documents. `np.ndarray` of shape `(batch_size, vector_size)`: A tensor of vector representations of retrieved documents. """ raise NotImplementedError def is_initialized(self): """ Returns `True` if index is already initialized. """ raise NotImplementedError def init_index(self): """ A function responsible for loading the index into memory. Should be called only once per training run of a RAG model. E.g. if the model is trained on multiple GPUs in a distributed setup, only one of the workers will load the index. """ raise NotImplementedError class LegacyIndex(Index): """ An index which can be deserialized from the files built using https://github.com/facebookresearch/DPR. We use default faiss index parameters as specified in that repository. Args: vector_size (`int`): The dimension of indexed vectors. index_path (`str`): A path to a *directory* containing index files compatible with [`~models.rag.retrieval_rag.LegacyIndex`] """ INDEX_FILENAME = "hf_bert_base.hnswSQ8_correct_phi_128.c_index" PASSAGE_FILENAME = "psgs_w100.tsv.pkl" def __init__(self, vector_size, index_path): self.index_id_to_db_id = [] self.index_path = index_path self.passages = self._load_passages() self.vector_size = vector_size self.index = None self._index_initialized = False def _resolve_path(self, index_path, filename): is_local = os.path.isdir(index_path) try: # Load from URL or cache if already cached resolved_archive_file = cached_file(index_path, filename) except EnvironmentError: msg = ( f"Can't load '{filename}'. Make sure that:\n\n" f"- '{index_path}' is a correct remote path to a directory containing a file named {filename}\n\n" f"- or '{index_path}' is the correct path to a directory containing a file named {filename}.\n\n" ) raise EnvironmentError(msg) if is_local: logger.info(f"loading file {resolved_archive_file}") else: logger.info(f"loading file {filename} from cache at {resolved_archive_file}") return resolved_archive_file def _load_passages(self): logger.info(f"Loading passages from {self.index_path}") passages_path = self._resolve_path(self.index_path, self.PASSAGE_FILENAME) with open(passages_path, "rb") as passages_file: passages = pickle.load(passages_file) return passages def _deserialize_index(self): logger.info(f"Loading index from {self.index_path}") resolved_index_path = self._resolve_path(self.index_path, self.INDEX_FILENAME + ".index.dpr") self.index = faiss.read_index(resolved_index_path) resolved_meta_path = self._resolve_path(self.index_path, self.INDEX_FILENAME + ".index_meta.dpr") with open(resolved_meta_path, "rb") as metadata_file: self.index_id_to_db_id = pickle.load(metadata_file) assert ( len(self.index_id_to_db_id) == self.index.ntotal ), "Deserialized index_id_to_db_id should match faiss index size" def is_initialized(self): return self._index_initialized def init_index(self): index = faiss.IndexHNSWFlat(self.vector_size + 1, 512) index.hnsw.efSearch = 128 index.hnsw.efConstruction = 200 self.index = index self._deserialize_index() self._index_initialized = True def get_doc_dicts(self, doc_ids: np.array): doc_list = [] for doc_ids_i in doc_ids: ids = [str(int(doc_id)) for doc_id in doc_ids_i] docs = [self.passages[doc_id] for doc_id in ids] doc_list.append(docs) doc_dicts = [] for docs in doc_list: doc_dict = {} doc_dict["title"] = [doc[1] for doc in docs] doc_dict["text"] = [doc[0] for doc in docs] doc_dicts.append(doc_dict) return doc_dicts def get_top_docs(self, question_hidden_states: np.ndarray, n_docs=5) -> Tuple[np.ndarray, np.ndarray]: aux_dim = np.zeros(len(question_hidden_states), dtype="float32").reshape(-1, 1) query_nhsw_vectors = np.hstack((question_hidden_states, aux_dim)) _, docs_ids = self.index.search(query_nhsw_vectors, n_docs) vectors = [[self.index.reconstruct(int(doc_id))[:-1] for doc_id in doc_ids] for doc_ids in docs_ids] ids = [[int(self.index_id_to_db_id[doc_id]) for doc_id in doc_ids] for doc_ids in docs_ids] return np.array(ids), np.array(vectors) class HFIndexBase(Index): def __init__(self, vector_size, dataset, index_initialized=False): self.vector_size = vector_size self.dataset = dataset self._index_initialized = index_initialized self._check_dataset_format(with_index=index_initialized) dataset.set_format("numpy", columns=["embeddings"], output_all_columns=True, dtype="float32") def _check_dataset_format(self, with_index: bool): if not isinstance(self.dataset, Dataset): raise ValueError(f"Dataset should be a datasets.Dataset object, but got {type(self.dataset)}") if len({"title", "text", "embeddings"} - set(self.dataset.column_names)) > 0: raise ValueError( "Dataset should be a dataset with the following columns: " "title (str), text (str) and embeddings (arrays of dimension vector_size), " f"but got columns {self.dataset.column_names}" ) if with_index and "embeddings" not in self.dataset.list_indexes(): raise ValueError( "Missing faiss index in the dataset. Make sure you called `dataset.add_faiss_index` to compute it " "or `dataset.load_faiss_index` to load one from the disk." ) def init_index(self): raise NotImplementedError() def is_initialized(self): return self._index_initialized def get_doc_dicts(self, doc_ids: np.ndarray) -> List[dict]: return [self.dataset[doc_ids[i].tolist()] for i in range(doc_ids.shape[0])] def get_top_docs(self, question_hidden_states: np.ndarray, n_docs=5) -> Tuple[np.ndarray, np.ndarray]: _, ids = self.dataset.search_batch("embeddings", question_hidden_states, n_docs) docs = [self.dataset[[i for i in indices if i >= 0]] for indices in ids] vectors = [doc["embeddings"] for doc in docs] for i in range(len(vectors)): if len(vectors[i]) < n_docs: vectors[i] = np.vstack([vectors[i], np.zeros((n_docs - len(vectors[i]), self.vector_size))]) return np.array(ids), np.array(vectors) # shapes (batch_size, n_docs) and (batch_size, n_docs, d) class CanonicalHFIndex(HFIndexBase): """ A wrapper around an instance of [`~datasets.Datasets`]. If `index_path` is set to `None`, we load the pre-computed index available with the [`~datasets.arrow_dataset.Dataset`], otherwise, we load the index from the indicated path on disk. Args: vector_size (`int`): the dimension of the passages embeddings used by the index dataset_name (`str`, optional, defaults to `wiki_dpr`): A dataset identifier of the indexed dataset on HuggingFace AWS bucket (list all available datasets and ids with `datasets.list_datasets()`). dataset_split (`str`, optional, defaults to `train`) Which split of the `dataset` to load. index_name (`str`, optional, defaults to `train`) The index_name of the index associated with the `dataset`. The index loaded from `index_path` will be saved under this name. index_path (`str`, optional, defaults to `None`) The path to the serialized faiss index on disk. use_dummy_dataset (`bool`, optional, defaults to `False`): If True, use the dummy configuration of the dataset for tests. """ def __init__( self, vector_size: int, dataset_name: str = "wiki_dpr", dataset_split: str = "train", index_name: Optional[str] = None, index_path: Optional[str] = None, use_dummy_dataset=False, ): if int(index_path is None) + int(index_name is None) != 1: raise ValueError("Please provide `index_name` or `index_path`.") self.dataset_name = dataset_name self.dataset_split = dataset_split self.index_name = index_name self.index_path = index_path self.use_dummy_dataset = use_dummy_dataset logger.info(f"Loading passages from {self.dataset_name}") dataset = load_dataset( self.dataset_name, with_index=False, split=self.dataset_split, dummy=self.use_dummy_dataset ) super().__init__(vector_size, dataset, index_initialized=False) def init_index(self): if self.index_path is not None: logger.info(f"Loading index from {self.index_path}") self.dataset.load_faiss_index("embeddings", file=self.index_path) else: logger.info(f"Loading index from {self.dataset_name} with index name {self.index_name}") self.dataset = load_dataset( self.dataset_name, with_embeddings=True, with_index=True, split=self.dataset_split, index_name=self.index_name, dummy=self.use_dummy_dataset, ) self.dataset.set_format("numpy", columns=["embeddings"], output_all_columns=True) self._index_initialized = True class CustomHFIndex(HFIndexBase): """ A wrapper around an instance of [`~datasets.Datasets`]. The dataset and the index are both loaded from the indicated paths on disk. Args: vector_size (`int`): the dimension of the passages embeddings used by the index dataset_path (`str`): The path to the serialized dataset on disk. The dataset should have 3 columns: title (str), text (str) and embeddings (arrays of dimension vector_size) index_path (`str`) The path to the serialized faiss index on disk. """ def __init__(self, vector_size: int, dataset, index_path=None): super().__init__(vector_size, dataset, index_initialized=index_path is None) self.index_path = index_path @classmethod def load_from_disk(cls, vector_size, dataset_path, index_path): logger.info(f"Loading passages from {dataset_path}") if dataset_path is None or index_path is None: raise ValueError( "Please provide `dataset_path` and `index_path` after calling `dataset.save_to_disk(dataset_path)` " "and `dataset.get_index('embeddings').save(index_path)`." ) dataset = load_from_disk(dataset_path) return cls(vector_size=vector_size, dataset=dataset, index_path=index_path) def init_index(self): if not self.is_initialized(): logger.info(f"Loading index from {self.index_path}") self.dataset.load_faiss_index("embeddings", file=self.index_path) self._index_initialized = True class RagRetriever: """ Retriever used to get documents from vector queries. It retrieves the documents embeddings as well as the documents contents, and it formats them to be used with a RagModel. Args: config ([`RagConfig`]): The configuration of the RAG model this Retriever is used with. Contains parameters indicating which `Index` to build. You can load your own custom dataset with `config.index_name="custom"` or use a canonical one (default) from the datasets library with `config.index_name="wiki_dpr"` for example. question_encoder_tokenizer ([`PreTrainedTokenizer`]): The tokenizer that was used to tokenize the question. It is used to decode the question and then use the generator_tokenizer. generator_tokenizer ([`PreTrainedTokenizer`]): The tokenizer used for the generator part of the RagModel. index ([`~models.rag.retrieval_rag.Index`], optional, defaults to the one defined by the configuration): If specified, use this index instead of the one built using the configuration Examples: ```python >>> # To load the default "wiki_dpr" dataset with 21M passages from wikipedia (index name is 'compressed' or 'exact') >>> from transformers import RagRetriever >>> retriever = RagRetriever.from_pretrained( ... "facebook/dpr-ctx_encoder-single-nq-base", dataset="wiki_dpr", index_name="compressed" ... ) >>> # To load your own indexed dataset built with the datasets library. More info on how to build the indexed dataset in examples/rag/use_own_knowledge_dataset.py >>> from transformers import RagRetriever >>> dataset = ( ... ... ... ) # dataset must be a datasets.Datasets object with columns "title", "text" and "embeddings", and it must have a faiss index >>> retriever = RagRetriever.from_pretrained("facebook/dpr-ctx_encoder-single-nq-base", indexed_dataset=dataset) >>> # To load your own indexed dataset built with the datasets library that was saved on disk. More info in examples/rag/use_own_knowledge_dataset.py >>> from transformers import RagRetriever >>> dataset_path = "path/to/my/dataset" # dataset saved via *dataset.save_to_disk(...)* >>> index_path = "path/to/my/index.faiss" # faiss index saved via *dataset.get_index("embeddings").save(...)* >>> retriever = RagRetriever.from_pretrained( ... "facebook/dpr-ctx_encoder-single-nq-base", ... index_name="custom", ... passages_path=dataset_path, ... index_path=index_path, ... ) >>> # To load the legacy index built originally for Rag's paper >>> from transformers import RagRetriever >>> retriever = RagRetriever.from_pretrained("facebook/dpr-ctx_encoder-single-nq-base", index_name="legacy") ```""" def __init__(self, config, question_encoder_tokenizer, generator_tokenizer, index=None, init_retrieval=True): self._init_retrieval = init_retrieval requires_backends(self, ["datasets", "faiss"]) super().__init__() self.index = index or self._build_index(config) self.generator_tokenizer = generator_tokenizer self.question_encoder_tokenizer = question_encoder_tokenizer self.n_docs = config.n_docs self.batch_size = config.retrieval_batch_size self.config = config if self._init_retrieval: self.init_retrieval() self.ctx_encoder_tokenizer = None self.return_tokenized_docs = False @staticmethod def _build_index(config): if config.index_name == "legacy": return LegacyIndex( config.retrieval_vector_size, config.index_path or LEGACY_INDEX_PATH, ) elif config.index_name == "custom": return CustomHFIndex.load_from_disk( vector_size=config.retrieval_vector_size, dataset_path=config.passages_path, index_path=config.index_path, ) else: return CanonicalHFIndex( vector_size=config.retrieval_vector_size, dataset_name=config.dataset, dataset_split=config.dataset_split, index_name=config.index_name, index_path=config.index_path, use_dummy_dataset=config.use_dummy_dataset, ) @classmethod def from_pretrained(cls, retriever_name_or_path, indexed_dataset=None, **kwargs): requires_backends(cls, ["datasets", "faiss"]) config = kwargs.pop("config", None) or RagConfig.from_pretrained(retriever_name_or_path, **kwargs) rag_tokenizer = RagTokenizer.from_pretrained(retriever_name_or_path, config=config) question_encoder_tokenizer = rag_tokenizer.question_encoder generator_tokenizer = rag_tokenizer.generator if indexed_dataset is not None: config.index_name = "custom" index = CustomHFIndex(config.retrieval_vector_size, indexed_dataset) else: index = cls._build_index(config) return cls( config, question_encoder_tokenizer=question_encoder_tokenizer, generator_tokenizer=generator_tokenizer, index=index, ) def save_pretrained(self, save_directory): if isinstance(self.index, CustomHFIndex): if self.config.index_path is None: index_path = os.path.join(save_directory, "hf_dataset_index.faiss") self.index.dataset.get_index("embeddings").save(index_path) self.config.index_path = index_path if self.config.passages_path is None: passages_path = os.path.join(save_directory, "hf_dataset") # datasets don't support save_to_disk with indexes right now faiss_index = self.index.dataset._indexes.pop("embeddings") self.index.dataset.save_to_disk(passages_path) self.index.dataset._indexes["embeddings"] = faiss_index self.config.passages_path = passages_path self.config.save_pretrained(save_directory) rag_tokenizer = RagTokenizer( question_encoder=self.question_encoder_tokenizer, generator=self.generator_tokenizer, ) rag_tokenizer.save_pretrained(save_directory) def init_retrieval(self): """ Retriever initialization function. It loads the index into memory. """ logger.info("initializing retrieval") self.index.init_index() def postprocess_docs(self, docs, input_strings, prefix, n_docs, return_tensors=None): r""" Postprocessing retrieved `docs` and combining them with `input_strings`. Args: docs (`dict`): Retrieved documents. input_strings (`str`): Input strings decoded by `preprocess_query`. prefix (`str`): Prefix added at the beginning of each input, typically used with T5-based models. Return: `tuple(tensors)`: a tuple consisting of two elements: contextualized `input_ids` and a compatible `attention_mask`. """ def cat_input_and_doc(doc_title, doc_text, input_string, prefix): # TODO(Patrick): if we train more RAG models, I want to put the input first to take advantage of effortless truncation # TODO(piktus): better handling of truncation if doc_title.startswith('"'): doc_title = doc_title[1:] if doc_title.endswith('"'): doc_title = doc_title[:-1] if prefix is None: prefix = "" out = (prefix + doc_title + self.config.title_sep + doc_text + self.config.doc_sep + input_string).replace( " ", " " ) return out rag_input_strings = [ cat_input_and_doc( docs[i]["title"][j], docs[i]["text"][j], input_strings[i], prefix, ) for i in range(len(docs)) for j in range(n_docs) ] contextualized_inputs = self.generator_tokenizer.batch_encode_plus( rag_input_strings, max_length=self.config.max_combined_length, return_tensors=return_tensors, padding="max_length", truncation=True, ) return contextualized_inputs["input_ids"], contextualized_inputs["attention_mask"] def _chunk_tensor(self, t: Iterable, chunk_size: int) -> List[Iterable]: return [t[i : i + chunk_size] for i in range(0, len(t), chunk_size)] def _main_retrieve(self, question_hidden_states: np.ndarray, n_docs: int) -> Tuple[np.ndarray, np.ndarray]: question_hidden_states_batched = self._chunk_tensor(question_hidden_states, self.batch_size) ids_batched = [] vectors_batched = [] for question_hidden_states in question_hidden_states_batched: start_time = time.time() ids, vectors = self.index.get_top_docs(question_hidden_states, n_docs) logger.debug( f"index search time: {time.time() - start_time} sec, batch size {question_hidden_states.shape}" ) ids_batched.extend(ids) vectors_batched.extend(vectors) return ( np.array(ids_batched), np.array(vectors_batched), ) # shapes (batch_size, n_docs) and (batch_size, n_docs, d) def retrieve(self, question_hidden_states: np.ndarray, n_docs: int) -> Tuple[np.ndarray, List[dict]]: """ Retrieves documents for specified `question_hidden_states`. Args: question_hidden_states (`np.ndarray` of shape `(batch_size, vector_size)`): A batch of query vectors to retrieve with. n_docs (`int`): The number of docs retrieved per query. Return: `Tuple[np.ndarray, np.ndarray, List[dict]]`: A tuple with the following objects: - **retrieved_doc_embeds** (`np.ndarray` of shape `(batch_size, n_docs, dim)`) -- The retrieval embeddings of the retrieved docs per query. - **doc_ids** (`np.ndarray` of shape `(batch_size, n_docs)`) -- The ids of the documents in the index - **doc_dicts** (`List[dict]`): The `retrieved_doc_embeds` examples per query. """ doc_ids, retrieved_doc_embeds = self._main_retrieve(question_hidden_states, n_docs) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(doc_ids) def set_ctx_encoder_tokenizer(self, ctx_encoder_tokenizer: PreTrainedTokenizer): # used in end2end retriever training self.ctx_encoder_tokenizer = ctx_encoder_tokenizer self.return_tokenized_docs = True def __call__( self, question_input_ids: List[List[int]], question_hidden_states: np.ndarray, prefix=None, n_docs=None, return_tensors=None, ) -> BatchEncoding: """ Retrieves documents for specified `question_hidden_states`. Args: question_input_ids (`List[List[int]]`) batch of input ids question_hidden_states (`np.ndarray` of shape `(batch_size, vector_size)`: A batch of query vectors to retrieve with. prefix (`str`, *optional*): The prefix used by the generator's tokenizer. n_docs (`int`, *optional*): The number of docs retrieved per query. return_tensors (`str` or [`~utils.TensorType`], *optional*, defaults to "pt"): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. Returns: [`BatchEncoding`]: A [`BatchEncoding`] with the following fields: - **context_input_ids** -- List of token ids to be fed to a model. [What are input IDs?](../glossary#input-ids) - **context_attention_mask** -- List of indices specifying which tokens should be attended to by the model (when `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names`). [What are attention masks?](../glossary#attention-mask) - **retrieved_doc_embeds** -- List of embeddings of the retrieved documents - **doc_ids** -- List of ids of the retrieved documents """ n_docs = n_docs if n_docs is not None else self.n_docs prefix = prefix if prefix is not None else self.config.generator.prefix retrieved_doc_embeds, doc_ids, docs = self.retrieve(question_hidden_states, n_docs) input_strings = self.question_encoder_tokenizer.batch_decode(question_input_ids, skip_special_tokens=True) context_input_ids, context_attention_mask = self.postprocess_docs( docs, input_strings, prefix, n_docs, return_tensors=return_tensors ) if self.return_tokenized_docs: retrieved_doc_text = [] retrieved_doc_title = [] for b_idx in range(len(docs)): for doc_idx in range(n_docs): retrieved_doc_text.append(docs[b_idx]["text"][doc_idx]) retrieved_doc_title.append(docs[b_idx]["title"][doc_idx]) tokenized_docs = self.ctx_encoder_tokenizer( retrieved_doc_title, retrieved_doc_text, truncation=True, padding="longest", return_tensors=return_tensors, ) return BatchEncoding( { "context_input_ids": context_input_ids, "context_attention_mask": context_attention_mask, "retrieved_doc_embeds": retrieved_doc_embeds, "doc_ids": doc_ids, "tokenized_doc_ids": tokenized_docs["input_ids"], "tokenized_doc_attention_mask": tokenized_docs["attention_mask"], }, tensor_type=return_tensors, ) else: return BatchEncoding( { "context_input_ids": context_input_ids, "context_attention_mask": context_attention_mask, "retrieved_doc_embeds": retrieved_doc_embeds, "doc_ids": doc_ids, }, tensor_type=return_tensors, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/rag/modeling_tf_rag.py
# coding=utf-8 # Copyright 2020, The RAG Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TFRAG model implementation.""" from __future__ import annotations import copy from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import tensorflow as tf from ...configuration_utils import PretrainedConfig from ...generation import TFLogitsProcessorList from ...modeling_tf_utils import ( TFCausalLanguageModelingLoss, TFModelInputType, TFPreTrainedModel, shape_list, unpack_inputs, ) from ...utils import ModelOutput, add_start_docstrings_to_model_forward, logging, replace_return_docstrings from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "RagConfig" @dataclass class TFRetrievAugLMMarginOutput(ModelOutput): """ Base class for retriever augmented marginalized models outputs. Args: loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Language modeling loss. logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head. The score is possibly marginalized over all documents for each vocabulary token. past_key_values (`List[tf.Tensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): List of `tf.Tensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, num_heads, sequence_length, embed_size_per_head)`). Contains precomputed hidden-states (key and values in the attention blocks) of the decoder that can be used (see `past_key_values` input) to speed up sequential decoding. doc_scores (`tf.Tensor` of shape `(batch_size, config.n_docs)`): Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and `question_encoder_last_hidden_state`. retrieved_doc_embeds (`tf.Tensor` of shape `(batch_size, config.n_docs, hidden_size)`, *optional*, returned when *output_retrieved=True*): Embedded documents retrieved by the retriever. Is used with `question_encoder_last_hidden_state` to compute the `doc_scores`. retrieved_doc_ids (`tf.Tensor` (int32) of shape `(batch_size, config.n_docs)`, *optional*, returned when *output_retrieved=True*): The indexes of the embedded documents retrieved by the retriever. context_input_ids (`tf.Tensor`(int32) of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): Input ids post-processed from the retrieved documents and the question encoder input_ids by the retriever. context_attention_mask (`tf.Tensor` (int32) of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): Attention mask post-processed from the retrieved documents and the question encoder `input_ids` by the retriever. question_encoder_last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden states at the output of the last layer of the question encoder pooled output of the model. question_enc_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings and one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden states of the question encoder at the output of each layer plus the initial embedding outputs. question_enc_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the question encoder, after the attention softmax, used to compute the weighted average in the self-attention heads. generator_enc_last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the generator encoder of the model. generator_enc_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings and one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden states of the generator encoder at the output of each layer plus the initial embedding outputs. generator_enc_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the generator encoder, after the attention softmax, used to compute the weighted average in the self-attention heads. generator_dec_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings and one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden states of the generator decoder at the output of each layer plus the initial embedding outputs. generator_dec_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the generator decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: tf.Tensor | None = None logits: tf.Tensor = None past_key_values: List[tf.Tensor] | None = None doc_scores: tf.Tensor | None = None retrieved_doc_embeds: tf.Tensor | None = None retrieved_doc_ids: tf.Tensor | None = None context_input_ids: tf.Tensor | None = None context_attention_mask: tf.Tensor | None = None question_encoder_last_hidden_state: tf.Tensor | None = None question_enc_hidden_states: Tuple[tf.Tensor] | None = None question_enc_attentions: Tuple[tf.Tensor] | None = None generator_enc_last_hidden_state: tf.Tensor | None = None generator_enc_hidden_states: Tuple[tf.Tensor] | None = None generator_enc_attentions: Tuple[tf.Tensor] | None = None generator_dec_hidden_states: Tuple[tf.Tensor] | None = None generator_dec_attentions: Tuple[tf.Tensor] | None = None @dataclass class TFRetrievAugLMOutput(ModelOutput): """ Args: logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head. The score is possibly marginalized over all documents for each vocabulary token. past_key_values (`List[tf.Tensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): List of `tf.Tensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, num_heads, sequence_length, embed_size_per_head)`). Contains precomputed hidden-states (key and values in the attention blocks) of the decoder that can be used (see `past_key_values` input) to speed up sequential decoding. doc_scores (`tf.Tensor` of shape `(batch_size, config.n_docs)`): Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and `question_encoder_last_hidden_state`. retrieved_doc_embeds (`tf.Tensor` of shape `(batch_size, config.n_docs, hidden_size)`, *optional*, returned when *output_retrieved=True*): Embedded documents retrieved by the retriever. Is used with `question_encoder_last_hidden_state` to compute the `doc_scores`. retrieved_doc_ids (`tf.Tensor` of shape `(batch_size, config.n_docs)`, *optional*, returned when *output_retrieved=True*): The indexes of the embedded documents retrieved by the retriever. context_input_ids (`tf.Tensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): Input ids post-processed from the retrieved documents and the question encoder input_ids by the retriever. context_attention_mask (`tf.Tensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): Attention mask post-processed from the retrieved documents and the question encoder `input_ids` by the retriever. question_encoder_last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden states at the output of the last layer of the question encoder pooled output of the model. question_enc_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings and one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden states of the question encoder at the output of each layer plus the initial embedding outputs. question_enc_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the question encoder, after the attention softmax, used to compute the weighted average in the self-attention heads. generator_enc_last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the generator encoder of the model. generator_enc_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings and one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden states of the generator encoder at the output of each layer plus the initial embedding outputs. generator_enc_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the generator encoder, after the attention softmax, used to compute the weighted average in the self-attention heads. generator_dec_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings and one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden states of the generator decoder at the output of each layer plus the initial embedding outputs. generator_dec_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the generator decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. """ logits: tf.Tensor = None past_key_values: List[tf.Tensor] | None = None doc_scores: tf.Tensor | None = None retrieved_doc_embeds: tf.Tensor | None = None retrieved_doc_ids: tf.Tensor | None = None context_input_ids: tf.Tensor | None = None context_attention_mask: tf.Tensor | None = None question_encoder_last_hidden_state: tf.Tensor | None = None question_enc_hidden_states: Tuple[tf.Tensor] | None = None question_enc_attentions: Tuple[tf.Tensor] | None = None generator_enc_last_hidden_state: tf.Tensor | None = None generator_enc_hidden_states: Tuple[tf.Tensor] | None = None generator_enc_attentions: Tuple[tf.Tensor] | None = None generator_dec_hidden_states: Tuple[tf.Tensor] | None = None generator_dec_attentions: Tuple[tf.Tensor] | None = None class TFRagPreTrainedModel(TFPreTrainedModel): r""" RAG models were released with the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandra Piktus et al. RAG is a retriever augmented model and encapsulate three components: a question encoder, a dataset retriever and a generator, the encoder and generator are trainable while the retriever is just an indexed dataset. """ config_class = RagConfig base_model_prefix = "rag" _keys_to_ignore_on_load_missing = [r"position_ids"] @classmethod def from_pretrained_question_encoder_generator( cls, question_encoder_pretrained_model_name_or_path: str = None, generator_pretrained_model_name_or_path: str = None, retriever: RagRetriever = None, *model_args, **kwargs, ) -> TFPreTrainedModel: r""" Instantiates an question encoder and a generator from one or two base classes of the library from pretrained model checkpoints. Params: question_encoder_pretrained_model_name_or_path (`str`, *optional*): Information necessary to initiate the question encoder. Can be either: - A string with the *shortcut name* of a pretrained model to load from cache or download, e.g., `bert-base-uncased`. - A string with the *identifier name* of a pretrained model that was user-uploaded to our S3, e.g., `dbmdz/bert-base-german-cased`. - A path to a *directory* containing model weights saved using [`~TFPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. - A path or url to a *pytorch index checkpoint file* (e.g, `./pt_model/`). In this case, `question_encoder_from_pt` should be set to `True`. generator_pretrained_model_name_or_path (`str`, *optional*, defaults to `None`): Information necessary to initiate the generator. Can be either: - A string with the *shortcut name* of a pretrained model to load from cache or download, e.g., `t5-small`. - A string with the *identifier name* of a pretrained model that was user-uploaded to our S3, e.g., `facebook/bart-base`. - A path to a *directory* containing model weights saved using [`~TFPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. - A path or url to a *pytorch checkpoint file* (e.g, `./pt_model/`). In this case, `generator_from_pt` should be set to `True`. model_args (remaining positional arguments, *optional*): All remaining positional arguments will be passed to the underlying model's `__init__` method. retriever ([`RagRetriever`], *optional*): The retriever to use. kwargs (remaining dictionary of keyword arguments, *optional*): Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., `output_attentions=True`). - To update the question_encoder configuration, use the prefix *question_encoder_* for each configuration parameter. - To update the generator configuration, use the prefix *generator_* for each configuration parameter. - To update the parent model configuration, do not use a prefix for each configuration parameter. Behaves differently depending on whether a `config` is provided or automatically loaded. Example: ```python >>> from transformers import RagRetriever, TFRagModel >>> # initialize a RAG from two pretrained models. >>> model = TFRagModel.from_pretrained_question_encoder_generator( ... "facebook/dpr-question_encoder-single-nq-base", "t5-small" ... ) >>> # alternatively, initialize from pytorch pretrained models can also be done >>> model = TFRagModel.from_pretrained_question_encoder_generator( ... "facebook/dpr-question_encoder-single-nq-base", ... "facebook/bart-base", ... generator_from_pt=True, ... question_encoder_from_pt=True, ... ) >>> # saving model after fine-tuning >>> model.save_pretrained("./rag") >>> # load retriever >>> retriever = RagRetriever.from_pretrained( ... "facebook/rag-token-base", index_name="exact", use_dummy_dataset=True ... ) >>> # load fine-tuned model with retriever >>> model = TFRagModel.from_pretrained("./rag", retriever=retriever) ```""" kwargs_question_encoder = { argument[len("question_encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("question_encoder_") } kwargs_generator = { argument[len("generator_") :]: value for argument, value in kwargs.items() if argument.startswith("generator_") } # remove question_encoder, generator kwargs from kwargs for key in kwargs_question_encoder.keys(): del kwargs["question_encoder_" + key] for key in kwargs_generator.keys(): del kwargs["generator_" + key] # Load and initialize the question_encoder and generator # The distinction between question_encoder and generator at the model level is made # by the value of the flag `is_generator` that we need to set correctly. question_encoder = kwargs_question_encoder.pop("model", None) if question_encoder is None: assert question_encoder_pretrained_model_name_or_path is not None, ( "If `model` is not defined as an argument, a `question_encoder_pretrained_model_name_or_path` has to" " be defined" ) from ..auto.modeling_tf_auto import TFAutoModel if "config" not in kwargs_question_encoder: from ..auto.configuration_auto import AutoConfig question_encoder_config = AutoConfig.from_pretrained(question_encoder_pretrained_model_name_or_path) kwargs_question_encoder["config"] = question_encoder_config question_encoder = TFAutoModel.from_pretrained( question_encoder_pretrained_model_name_or_path, name="question_encoder", load_weight_prefix=cls.load_weight_prefix, *model_args, **kwargs_question_encoder, ) generator = kwargs_generator.pop("generator", None) if generator is None: assert generator_pretrained_model_name_or_path is not None, ( "If `generator_model` is not defined as an argument, a `generator_pretrained_model_name_or_path` has" " to be defined" ) from ..auto.modeling_tf_auto import TFAutoModelForSeq2SeqLM if "config" not in kwargs_generator: from ..auto.configuration_auto import AutoConfig generator_config = AutoConfig.from_pretrained(generator_pretrained_model_name_or_path) kwargs_generator["config"] = generator_config generator = TFAutoModelForSeq2SeqLM.from_pretrained( generator_pretrained_model_name_or_path, name="generator", load_weight_prefix=cls.load_weight_prefix, **kwargs_generator, ) # instantiate config with corresponding kwargs config = kwargs.get("config", None) if config is None: config = RagConfig.from_question_encoder_generator_configs( question_encoder.config, generator.config, **kwargs ) return cls(question_encoder=question_encoder, generator=generator, config=config, retriever=retriever) RAG_START_DOCSTRING = r""" RAG is a sequence-to-sequence model which encapsulates two core components: a question encoder and a generator. During a forward pass, we encode the input with the question encoder and pass it to the retriever to extract relevant context documents. The documents are then prepended to the input. Such contextualized inputs is passed to the generator. The question encoder can be any *autoencoding* model, preferably [`TFDPRQuestionEncoder`], and the generator can be any *seq2seq* model, preferably [`TFBartForConditionalGeneration`]. The model can be initialized with a [`RagRetriever`] for end-to-end generation or used in combination with the outputs of a retriever in multiple steps---see examples for more details. The model is compatible any *autoencoding* model as the `question_encoder` and any *seq2seq* model with language model head as the `generator`. It has been tested with [`TFDPRQuestionEncoder`] as the `question_encoder` and [`TFBartForConditionalGeneration`] as the `generator`. This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a Tensorflow [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. The model is in a developing state as it is now fully supports in eager-mode only, and may not be exported in SavedModel format. Args: config ([`RagConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. question_encoder ([`TFPreTrainedModel`]): An encoder model compatible with the faiss index encapsulated by the `retriever`. generator ([`TFPreTrainedModel`]): A seq2seq model used as the generator in the RAG architecture. retriever ([`RagRetriever`]): A retriever class encapsulating a faiss index queried to obtain context documents for current inputs. """ RAG_FORWARD_INPUTS_DOCSTRING = r""" Args: input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. [`RagConfig`], used to initialize the model, specifies which generator to use, it also specifies a compatible generator tokenizer. Use that tokenizer class to obtain the indices. attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) encoder_outputs (`tuple(tuple(tf.Tensor)`, *optional*) Tuple consists of (`generator_enc_last_hidden_state`, *optional*: `generator_enc_hidden_states`, *optional*: `generator_enc_attentions`). `generator_enc_last_hidden_state` of shape `(batch_size, n_docs * sequence_length, hidden_size)` is a sequence of hidden-states at the output of the last layer of the generator's encoder. Used by the ([`TFRagModel`]) model during decoding. decoder_input_ids (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): Provide for generation tasks. `None` by default, construct as per instructions for the generator model you're using with your RAG instance. decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. past_key_values (`tuple(tuple(tf.Tensor))`): Tuple consists of two elements: `encoder_outputs` of the RAG model (see `encoder_outputs`) and `past_key_values` of the underlying generator. Can be used to speed up decoding. `past_key_values` are used in the ([`RagTokenForGeneration`]) model during decoding. doc_scores (`tf.Tensor` of shape `(batch_size, config.n_docs)`): Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and `question_encoder_last_hidden_state`. If the model has is not initialized with a `retriever` `doc_scores` has to be provided to the forward pass. `doc_scores` can be computed via `question_encoder_last_hidden_state` and `retrieved_doc_embeds`, see examples for more information. context_input_ids (`tf.Tensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): Input IDs post-processed from the retrieved documents and the question encoder `input_ids` by the retriever. If the model has is not initialized with a `retriever` ``context_input_ids` has to be provided to the forward pass. `context_input_ids` are returned by [`~RagRetriever.__call__`]. context_attention_mask (`tf.Tensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): Attention mask post-processed from the retrieved documents and the question encoder `input_ids` by the retriever. If the model has is not initialized with a `retriever` `context_attention_mask` has to be provided to the forward pass. `context_attention_mask` are returned by [`~RagRetriever.__call__`]. use_cache (`bool`, *optional*, defaults to `True`): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. output_retrieved(`bool`, *optional*): Whether or not to return the `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask`. See returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`TFRetrievAugLMOutput`] instead of a plain tuple. n_docs (`int`, *optional*, defaults to `config.n_docs``) Number of documents to retrieve and/or number of documents for which to generate an answer. """ @add_start_docstrings_to_model_forward(RAG_START_DOCSTRING) class TFRagModel(TFRagPreTrainedModel): load_weight_prefix = "tf_rag_model_1" def __init__( self, config: Optional[PretrainedConfig] = None, question_encoder: Optional[TFPreTrainedModel] = None, generator: Optional[TFPreTrainedModel] = None, retriever: Optional[RagRetriever] = None, load_weight_prefix: Optional[str] = None, **kwargs, ): assert config is not None or ( question_encoder is not None and generator is not None ), "Either a configuration or an question_encoder and a generator has to be provided." if config is None: config = RagConfig.from_question_encoder_generator_configs( question_encoder.config, generator.config, **kwargs ) else: assert isinstance(config, self.config_class), f"config: {config} has to be of type {self.config_class}" super().__init__(config, **kwargs) if question_encoder is None: from ..auto.modeling_tf_auto import TFAutoModel question_encoder = TFAutoModel.from_config(config.question_encoder, name="question_encoder") if generator is None: from ..auto.modeling_tf_auto import TFAutoModelForSeq2SeqLM load_weight_prefix = load_weight_prefix if load_weight_prefix is not None else self.load_weight_prefix generator = TFAutoModelForSeq2SeqLM.from_config( config.generator, name="generator", load_weight_prefix=load_weight_prefix + "/generator" ) self.retriever = retriever if self.retriever is not None: assert isinstance( retriever, RagRetriever ), f"`self.retriever` is of type {type(self.retriever)}, but should be of type `RagRetriever`" self.retriever = retriever self.question_encoder = question_encoder self.generator = generator def set_retriever(self, retriever: RagRetriever): self.retriever = retriever @unpack_inputs @add_start_docstrings_to_model_forward(RAG_FORWARD_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFRetrievAugLMOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, encoder_outputs: np.ndarray | tf.Tensor | None = None, decoder_input_ids: np.ndarray | tf.Tensor | None = None, decoder_attention_mask: np.ndarray | tf.Tensor | None = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, doc_scores: np.ndarray | tf.Tensor | None = None, context_input_ids: np.ndarray | tf.Tensor | None = None, context_attention_mask: np.ndarray | tf.Tensor | None = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_retrieved: Optional[bool] = None, n_docs: Optional[int] = None, return_dict: Optional[bool] = None, training: bool = False, **kwargs, ): r""" Returns: Example: ```python >>> from transformers import AutoTokenizer, RagRetriever, TFRagModel >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("facebook/rag-token-base") >>> retriever = RagRetriever.from_pretrained( ... "facebook/rag-token-base", index_name="exact", use_dummy_dataset=True ... ) >>> # initialize with RagRetriever to do everything in one forward call >>> model = TFRagModel.from_pretrained("facebook/rag-token-base", retriever=retriever, from_pt=True) >>> input_dict = tokenizer.prepare_seq2seq_batch( ... "How many people live in Paris?", "In Paris, there are 10 million people.", return_tensors="tf" ... ) >>> input_ids = input_dict["input_ids"] >>> outputs = model(input_ids) ```""" assert ( "decoder_cached_states" not in kwargs ), "Please use past_key_values to cache intermediate outputs" # from modeling_tf_bart.py # aliasing to minimize code changing n_docs = n_docs if n_docs is not None else self.config.n_docs # whether retriever has to be used has_to_retrieve = ( self.retriever is not None and (context_input_ids is None or context_attention_mask is None or doc_scores is None) and encoder_outputs is None ) # encoder_outputs are pre-computed during RAG-token generation if encoder_outputs is None: if has_to_retrieve: question_enc_outputs = self.question_encoder( input_ids, attention_mask=attention_mask, return_dict=True, training=training ) # see https://github.com/huggingface/transformers/blob/main/src/transformers/models/dpr/modeling_tf_dpr.py#L91 question_encoder_last_hidden_state = question_enc_outputs[ 0 ] # hidden states of question encoder => pooler_output retriever_outputs = self.retriever( input_ids, question_encoder_last_hidden_state.numpy(), prefix=self.generator.config.prefix, n_docs=n_docs, return_tensors="tf", ) context_input_ids, context_attention_mask, retrieved_doc_embeds, retrieved_doc_ids = ( retriever_outputs["context_input_ids"], retriever_outputs["context_attention_mask"], retriever_outputs["retrieved_doc_embeds"], retriever_outputs["doc_ids"], ) context_input_ids = tf.cast(context_input_ids, tf.int32) context_attention_mask = tf.cast(context_attention_mask, tf.int32) retrieved_doc_embeds = tf.cast(retrieved_doc_embeds, tf.float32) retrieved_doc_ids = tf.cast(retrieved_doc_ids, tf.int32) # compute doc_scores doc_scores = tf.squeeze( tf.matmul( tf.expand_dims(question_encoder_last_hidden_state, axis=1), retrieved_doc_embeds, transpose_b=True, ), axis=1, ) else: assert context_input_ids is not None, ( "Make sure that `context_input_ids` are passed, if no `retriever` is set. Alternatively, you can" " set a retriever using the `set_retriever(...)` function." ) assert context_attention_mask is not None, ( "Make sure that `context_attention_mask` are passed, if no `retriever` is set. Alternatively, you" " can set a retriever using the `set_retriever(...)` function." ) assert doc_scores is not None, ( "Make sure that `doc_scores` are passed, if no `retriever` is set. Alternatively, you can set a" " retriever using the `set_retriever(...)` function." ) assert ( doc_scores is not None ), "Make sure that `doc_scores` are passed when passing `encoder_outputs` to the forward function." assert (doc_scores.shape[1] % n_docs) == 0, ( f" The first dimension of `context_input_ids` should be a multiple of `n_docs`={n_docs}, but is" f" {context_input_ids.shape[0]}." ) # Decoder input without context documents if decoder_input_ids is not None: decoder_input_ids = tf.repeat(decoder_input_ids, n_docs, axis=0) if decoder_attention_mask is not None: decoder_attention_mask = tf.repeat(decoder_attention_mask, n_docs, axis=0) gen_outputs = self.generator( context_input_ids, attention_mask=context_attention_mask, encoder_outputs=encoder_outputs, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, return_dict=True, training=training, ) if not has_to_retrieve: question_encoder_last_hidden_state = None question_enc_hidden_states = None question_enc_attentions = None retrieved_doc_embeds = None retrieved_doc_ids = None else: question_enc_hidden_states = question_enc_outputs.hidden_states question_enc_attentions = question_enc_outputs.attentions if not has_to_retrieve or not output_retrieved: # don't output retrieved docs context_input_ids = (None,) context_attention_mask = None retrieved_doc_embeds = None retrieved_doc_ids = None return TFRetrievAugLMOutput( logits=gen_outputs.logits, doc_scores=doc_scores, past_key_values=gen_outputs.past_key_values, context_input_ids=context_input_ids, context_attention_mask=context_attention_mask, retrieved_doc_embeds=retrieved_doc_embeds, retrieved_doc_ids=retrieved_doc_ids, question_encoder_last_hidden_state=question_encoder_last_hidden_state, question_enc_hidden_states=question_enc_hidden_states, question_enc_attentions=question_enc_attentions, generator_enc_last_hidden_state=gen_outputs.encoder_last_hidden_state, generator_enc_hidden_states=gen_outputs.encoder_hidden_states, generator_enc_attentions=gen_outputs.encoder_attentions, generator_dec_hidden_states=gen_outputs.decoder_hidden_states, generator_dec_attentions=gen_outputs.decoder_attentions, ) @add_start_docstrings_to_model_forward( """ A TF RAG-token model implementation. It performs RAG-token specific marginalization in the forward pass. """, RAG_START_DOCSTRING, ) class TFRagTokenForGeneration(TFRagPreTrainedModel, TFCausalLanguageModelingLoss): load_weight_prefix = "tf_rag_token_for_generation_1/rag" def __init__( self, config: Optional[PretrainedConfig] = None, question_encoder: Optional[TFPreTrainedModel] = None, generator: Optional[TFPreTrainedModel] = None, retriever: Optional[RagRetriever] = None, **kwargs, ): assert config is not None or ( question_encoder is not None and generator is not None ), "Either a configuration or an encoder and a generator has to be provided." if config is None: config = RagConfig.from_question_encoder_generator_configs( question_encoder.config, generator.config, **kwargs ) super().__init__(config) # instantiate model self.rag = TFRagModel( config=config, question_encoder=question_encoder, generator=generator, retriever=retriever, load_weight_prefix=self.load_weight_prefix, name="rag", ) def set_retriever(self, retriever: RagRetriever): self.rag.retriever = retriever # Adapted from https://github.com/huggingface/transformers/blob/main/src/transformers/modeling_tf_bart.py def prepare_inputs_for_generation( self, decoder_input_ids, past_key_values=None, attention_mask=None, use_cache=None, encoder_outputs=None, doc_scores=None, n_docs=None, **kwargs, ): if past_key_values is not None: # if past is defined use only last decoder_input_ids decoder_input_ids = decoder_input_ids[:, -1:] return { "input_ids": None, "encoder_outputs": encoder_outputs, "doc_scores": doc_scores, "context_attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "past_key_values": past_key_values, "use_cache": use_cache, "do_marginalize": True, "n_docs": n_docs, } @property def retriever(self): return self.rag.retriever @property def generator(self): return self.rag.generator @property def question_encoder(self): return self.rag.question_encoder @staticmethod def _gather_beams(nested, beam_indices, batch_axis=0): """ RAG-specific `_gather_beams`: gathers the beam slices indexed by beam_indices into new beam array. If the nested tensor has a shape mismatch with the beam indices, then it means it is the cache. In that case, isolates and takes care of the extra dimension for ndocs. """ def gather_fn(tensor): is_rag_cache = tensor.shape[0] != beam_indices.shape[0] if is_rag_cache: n_docs = tensor.shape[0] // beam_indices.shape[0] batch_size = beam_indices.shape[0] # reshapes into (batch size, num beams, n_docs, ...), the cache format expected by RAG tensor = tf.reshape(tensor, (batch_size, -1, n_docs, *tensor.shape[2:])) gathered_tensor = tf.gather(params=tensor, indices=beam_indices, axis=1, batch_dims=1) if is_rag_cache: # reshapes back into the shape expected by beam search gathered_tensor = tf.reshape(gathered_tensor, (batch_size * n_docs, -1, *gathered_tensor.shape[3:])) return gathered_tensor return tf.nest.map_structure(gather_fn, nested) def marginalize(self, seq_logits, doc_scores, n_docs=None): n_docs = n_docs if n_docs is not None else self.config.n_docs # RAG-token marginalization seq_logprobs = tf.nn.log_softmax(seq_logits, axis=-1) seq_logprobs = tf.reshape(seq_logprobs, [seq_logits.shape[0] // n_docs, n_docs, -1, seq_logits.shape[-1]]) doc_logprobs = tf.nn.log_softmax(doc_scores, axis=1) doc_logprobs = tf.expand_dims(doc_logprobs, axis=-1) doc_logprobs = tf.expand_dims(doc_logprobs, axis=-1) # twice log_prob_sum = seq_logprobs + doc_logprobs return tf.reduce_logsumexp(log_prob_sum, axis=1) @unpack_inputs @add_start_docstrings_to_model_forward(RAG_FORWARD_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFRetrievAugLMMarginOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, decoder_input_ids: np.ndarray | tf.Tensor | None = None, decoder_attention_mask: np.ndarray | tf.Tensor | None = None, encoder_outputs: np.ndarray | tf.Tensor | None = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, doc_scores: np.ndarray | tf.Tensor | None = None, context_input_ids: np.ndarray | tf.Tensor | None = None, context_attention_mask: np.ndarray | tf.Tensor | None = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_retrieved: Optional[bool] = None, n_docs: Optional[int] = None, do_marginalize: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, reduce_loss: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, **kwargs, # needs kwargs for generation ): r""" do_marginalize (`bool`, *optional*): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the cross entropy classification loss according to Rag-Token model formulation See https://arxiv.org/pdf/2005.11401.pdf Section 2.1 for details about Rag-Token formulation. Indices should be in `[0, ..., config.vocab_size - 1]`. reduce_loss (`bool`, *optional*): Only relevant if `labels` is passed. If `True`, the NLL loss is reduced using the `tf.Tensor.sum` operation. kwargs (`Dict[str, any]`, optional, defaults to *{}*): Legacy dictionary, which is required so that model can use *generate()* function. Returns: Example: ```python >>> import tensorflow as tf >>> from transformers import AutoTokenizer, RagRetriever, TFRagTokenForGeneration >>> tokenizer = AutoTokenizer.from_pretrained("facebook/rag-token-nq") >>> retriever = RagRetriever.from_pretrained( ... "facebook/rag-token-nq", index_name="exact", use_dummy_dataset=True ... ) >>> # initialize with RagRetriever to do everything in one forward call >>> model = TFRagTokenForGeneration.from_pretrained("facebook/rag-token-nq", retriever=retriever, from_pt=True) >>> input_dict = tokenizer.prepare_seq2seq_batch( ... "How many people live in Paris?", "In Paris, there are 10 million people.", return_tensors="tf" ... ) >>> outputs = model(input_dict, output_retrieved=True) >>> # or use retriever separately >>> # 1. Encode >>> input_ids = input_dict["input_ids"] >>> question_hidden_states = model.question_encoder(input_ids)[0] >>> # 2. Retrieve >>> docs_dict = retriever(input_ids.numpy(), question_hidden_states.numpy(), return_tensors="tf") >>> doc_scores = tf.squeeze( ... tf.matmul( ... tf.expand_dims(question_hidden_states, axis=1), docs_dict["retrieved_doc_embeds"], transpose_b=True ... ), ... axis=1, ... ) >>> # 3. Forward to generator >>> outputs = model( ... inputs=None, ... context_input_ids=docs_dict["context_input_ids"], ... context_attention_mask=docs_dict["context_attention_mask"], ... doc_scores=doc_scores, ... decoder_input_ids=input_dict["labels"], ... ) >>> # or directly generate >>> generated = model.generate( ... context_input_ids=docs_dict["context_input_ids"], ... context_attention_mask=docs_dict["context_attention_mask"], ... doc_scores=doc_scores, ... ) >>> generated_string = tokenizer.batch_decode(generated, skip_special_tokens=True) ```""" assert ( "decoder_cached_states" not in kwargs ), "Please use past_key_values to cache intermediate outputs" # from modeling_tf_bart.py do_marginalize = do_marginalize if do_marginalize else self.config.do_marginalize reduce_loss = reduce_loss if reduce_loss else self.config.reduce_loss if labels is not None: if decoder_input_ids is None: decoder_input_ids = labels use_cache = False outputs = self.rag( input_ids, attention_mask=attention_mask, encoder_outputs=encoder_outputs, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, context_input_ids=context_input_ids, context_attention_mask=context_attention_mask, doc_scores=doc_scores, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, output_retrieved=output_retrieved, n_docs=n_docs, training=training, ) loss = None logits = outputs.logits if labels is not None: assert decoder_input_ids is not None loss = self.get_nll( outputs.logits, outputs.doc_scores, labels, reduce_loss=reduce_loss, epsilon=self.config.label_smoothing, n_docs=n_docs, ) if do_marginalize: logits = self.marginalize(logits, outputs.doc_scores, n_docs) return TFRetrievAugLMMarginOutput( loss=loss, logits=logits, past_key_values=outputs.past_key_values, doc_scores=outputs.doc_scores, context_input_ids=outputs.context_input_ids, context_attention_mask=outputs.context_attention_mask, retrieved_doc_embeds=outputs.retrieved_doc_embeds, retrieved_doc_ids=outputs.retrieved_doc_ids, question_encoder_last_hidden_state=outputs.question_encoder_last_hidden_state, question_enc_hidden_states=outputs.question_enc_hidden_states, question_enc_attentions=outputs.question_enc_attentions, generator_enc_last_hidden_state=outputs.generator_enc_last_hidden_state, generator_enc_hidden_states=outputs.generator_enc_hidden_states, generator_enc_attentions=outputs.generator_enc_attentions, generator_dec_hidden_states=outputs.generator_dec_hidden_states, generator_dec_attentions=outputs.generator_dec_attentions, ) def generate( self, input_ids: TFModelInputType | None = None, attention_mask: tf.Tensor | None = None, context_input_ids=None, context_attention_mask=None, doc_scores=None, n_docs=None, generation_config=None, logits_processor=TFLogitsProcessorList(), **kwargs, ): """ Implements TFRAG token decoding. Args: input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): The sequence used as a prompt for the generation. If `input_ids` is not passed, then `context_input_ids` has to be provided. attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) context_input_ids (`tf.Tensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): Input IDs post-processed from the retrieved documents and the question encoder `input_ids` by the retriever. If the model has is not initialized with a `retriever`, `context_input_ids` has to be provided to the forward pass. `context_input_ids` are returned by [`~RagRetriever.__call__`]. context_attention_mask (`tf.Tensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): Attention mask post-processed from the retrieved documents and the question encoder `input_ids` by the retriever. If the model has is not initialized with a `retriever`, `context_input_ids` has to be provided to the forward pass. `context_input_ids` are returned by [`~RagRetriever.__call__`]. doc_scores (`tf.Tensor` of shape `(batch_size, config.n_docs)`): Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and `question_encoder_last_hidden_state`. If the model has is not initialized with a `retriever`, `context_input_ids` has to be provided to the forward pass. `context_input_ids` are returned by [`~RagRetriever.__call__`]. n_docs (`int`, *optional*, defaults to `config.n_docs`) Number of documents to retrieve and/or number of documents for which to generate an answer. generation_config (`~generation.GenerationConfig`, *optional*): The generation configuration to be used as base parametrization for the generation call. `**kwargs` passed to generate matching the attributes of `generation_config` will override them. If `generation_config` is not provided, the default will be used, which had the following loading priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s default values, whose documentation should be checked to parameterize generation. logits_processor (`TFLogitsProcessorList`, *optional*): Custom logits processors that complement the default logits processors built from arguments and a model's config. If a logit processor is passed that is already created with the arguments or a model's config an error is thrown. kwargs (`Dict[str, Any]`, *optional*): Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be forwarded to the `forward` function of the model. Return: `tf.Tensor` of shape `(batch_size * num_return_sequences, sequence_length)`: The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter if all batches finished early due to the `eos_token_id`. """ # Handle `generation_config` and kwargs that might update it if generation_config is None: generation_config = self.generation_config generation_config = copy.deepcopy(generation_config) model_kwargs = generation_config.update(**kwargs) # All unused kwargs must be model kwargs # set default parameters n_docs = n_docs if n_docs is not None else self.config.n_docs # retrieve docs if self.retriever is not None and context_input_ids is None: question_hidden_states = self.question_encoder(input_ids, attention_mask=attention_mask)[0] out = self.retriever( input_ids, question_hidden_states.numpy().astype(np.float32), prefix=self.generator.config.prefix, n_docs=n_docs, return_tensors="tf", ) context_input_ids, context_attention_mask, retrieved_doc_embeds = ( out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], ) context_input_ids = tf.cast(context_input_ids, tf.int32) context_attention_mask = tf.cast(context_attention_mask, tf.int32) retrieved_doc_embeds = tf.cast(retrieved_doc_embeds, tf.float32) # compute doc_scores doc_scores = tf.matmul( tf.expand_dims(question_hidden_states, axis=1), retrieved_doc_embeds, transpose_b=True ) doc_scores = tf.squeeze(doc_scores, axis=1) assert (context_input_ids.shape[0] % n_docs) == 0, ( f" The first dimension of `context_input_ids` should be a multiple of `n_docs`={n_docs}, but is" f" {context_input_ids.shape[0]}." ) batch_size = context_input_ids.shape[0] // n_docs encoder = self.rag.generator.get_encoder() encoder_outputs = encoder( input_ids=context_input_ids, attention_mask=context_attention_mask, output_attentions=generation_config.output_attentions, output_hidden_states=generation_config.output_hidden_states, return_dict=True, ) decoder_input_ids = tf.fill( (batch_size * generation_config.num_beams, 1), tf.cast(generation_config.decoder_start_token_id, tf.int32), ) last_hidden_state = encoder_outputs["last_hidden_state"] def extend_enc_output(tensor, num_beams=None): """ Broadcast tensor with `num_beams` replica, with correct order Input: tensor of shape (batch_size*n_docs , d) Output: tensor of shape (batch_size*num_beams*n_docs , d) """ # expand batch_size & num_beam dimensions d_shape_list = tensor.shape[1:] # split n_docs dimensions new_shape = (batch_size, 1, n_docs) + d_shape_list tensor = tf.reshape(tensor, new_shape) # repeat same last hidden states over `num_beams` dimension new_shape = (batch_size, num_beams, n_docs) + d_shape_list tensor = tf.broadcast_to(tensor, new_shape) # merge `batch_size`, `num_beams`, `num_docs` dims again new_shape = (batch_size * num_beams * n_docs,) + d_shape_list return tf.reshape(tensor, new_shape) # correctly extend last_hidden_state and attention mask context_attention_mask = extend_enc_output(context_attention_mask, num_beams=generation_config.num_beams) encoder_outputs["last_hidden_state"] = extend_enc_output( last_hidden_state, num_beams=generation_config.num_beams ) doc_scores = tf.repeat(doc_scores, generation_config.num_beams, axis=0) # define start_len & additional parameters model_kwargs["doc_scores"] = doc_scores model_kwargs["encoder_outputs"] = encoder_outputs model_kwargs["attention_mask"] = context_attention_mask model_kwargs["n_docs"] = n_docs pre_processor = self._get_logits_processor( generation_config=generation_config, input_ids_seq_length=tf.shape(decoder_input_ids)[-1], logits_processor=logits_processor, ) if generation_config.num_beams == 1: return self.greedy_search( input_ids=decoder_input_ids, max_length=generation_config.max_length, pad_token_id=generation_config.pad_token_id, eos_token_id=generation_config.eos_token_id, logits_processor=pre_processor, output_attentions=generation_config.output_attentions, output_hidden_states=generation_config.output_hidden_states, output_scores=generation_config.output_scores, return_dict_in_generate=generation_config.return_dict_in_generate, **model_kwargs, ) elif generation_config.num_beams > 1: if generation_config.num_beams < generation_config.num_return_sequences: raise ValueError( "Beam search decoding cannot return more sequences than it has beams. Please set num_beams >=" f" num_return_sequences, got {generation_config.num_beams} and" f" {generation_config.num_return_sequences} (respectivelly)" ) def unflatten_beam_dim(tensor): """Unflattens the first, flat batch*beam dimension of a non-scalar array.""" shape = shape_list(tensor) return tf.reshape(tensor, [-1, generation_config.num_beams] + shape[1:]) decoder_input_ids = unflatten_beam_dim(decoder_input_ids) model_kwargs["attention_mask"] = unflatten_beam_dim(model_kwargs["attention_mask"]) model_kwargs["encoder_outputs"]["last_hidden_state"] = unflatten_beam_dim( model_kwargs["encoder_outputs"]["last_hidden_state"] ) return self.beam_search( input_ids=decoder_input_ids, max_length=generation_config.max_length, pad_token_id=generation_config.pad_token_id, eos_token_id=generation_config.eos_token_id, logits_processor=pre_processor, output_attentions=generation_config.output_attentions, output_hidden_states=generation_config.output_hidden_states, output_scores=generation_config.output_scores, return_dict_in_generate=generation_config.return_dict_in_generate, **model_kwargs, ) else: raise ValueError( f"`num_beams` has to be an integer strictly superior to 0 (≥ 1), but is {generation_config.num_beams}" ) def get_input_embeddings(self): return self.rag.generator.get_input_embeddings() def get_output_embeddings(self): return self.rag.generator.get_output_embeddings() # Adapted from tf_t5's & tf_bart's _shift_right def shift_tokens_right(self, input_ids, start_token_id=None): """Shift input ids one token to the right, and pad with start_token_id""" if start_token_id is None: start_token_id = self.generator.config.decoder_start_token_id assert start_token_id is not None, ( "self.generator.config.decoder_start_token_id has to be defined. In Rag we commonly use Bart as" " generator, see Bart docs for more information" ) pad_token_id = self.generator.config.pad_token_id assert pad_token_id is not None, "self.model.config.pad_token_id has to be defined." start_tokens = tf.fill((shape_list(input_ids)[0], 1), tf.cast(start_token_id, input_ids.dtype)) shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1) # replace possible -100 values in labels by `pad_token_id` shifted_input_ids = tf.where( shifted_input_ids == -100, tf.fill(shape_list(shifted_input_ids), tf.cast(pad_token_id, input_ids.dtype)), shifted_input_ids, ) # "Verify that `labels` has only positive values and -100" assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.cast(0, shifted_input_ids.dtype)) # Make sure the assertion op is called by wrapping the result in an identity no-op with tf.control_dependencies([assert_gte0]): shifted_input_ids = tf.identity(shifted_input_ids) return shifted_input_ids # nll stands for 'negative log likelihood' def get_nll(self, seq_logits, doc_scores, target, reduce_loss=False, epsilon=0.0, n_docs=None): n_docs = n_docs if n_docs is not None else self.config.n_docs # shift tokens left (from original Pytorch's version) target = tf.concat( [target[:, 1:], tf.fill([target.shape[0], 1], tf.cast(self.config.generator.pad_token_id, target.dtype))], axis=1, ) rag_logprobs = self.marginalize(seq_logits, doc_scores, n_docs) loss = self.hf_compute_loss(target, rag_logprobs, from_logits=True, reduce_loss=reduce_loss) return loss # Adopted modeling_tf_bart + add smooth_loss to match with pytorch version def hf_compute_loss(self, labels, y_pred, smooth_epsilon=0.0, from_logits=True, reduce_loss=False): """CrossEntropyLoss that ignores pad tokens""" # Matt: As written, this loss is not XLA-compatible, but it's doing some very weird things # and I don't feel comfortable converting it. loss_fn = tf.keras.losses.SparseCategoricalCrossentropy( from_logits=True, reduction=tf.keras.losses.Reduction.SUM, ) if from_logits is False: # convert to logits eps = 1e-9 y_pred = tf.clip_by_value(y_pred, clip_value_min=eps, clip_value_max=1 - eps) y_pred = tf.math.log(y_pred) logits = y_pred melted_labels = tf.reshape(labels, (-1,)) active_loss = tf.not_equal(melted_labels, self.config.generator.pad_token_id) reduced_logits = tf.boolean_mask(tf.reshape(logits, (-1, logits.shape[2])), active_loss) labels = tf.boolean_mask(melted_labels, active_loss) nll_loss = loss_fn(labels, reduced_logits) smooth_loss = -tf.reduce_sum(reduced_logits, axis=-1) smooth_loss = tf.reduce_sum(smooth_loss) # sum and squeeze like torch eps_i = smooth_epsilon / reduced_logits.shape[-1] loss = (1.0 - smooth_epsilon) * nll_loss + eps_i * smooth_loss return loss @add_start_docstrings_to_model_forward( """ A TF RAG-sequence model implementation. It performs RAG-sequence specific marginalization in the forward pass. """, RAG_START_DOCSTRING, ) class TFRagSequenceForGeneration(TFRagPreTrainedModel, TFCausalLanguageModelingLoss): load_weight_prefix = "tf_rag_sequence_for_generation_1/rag" def __init__( self, config: Optional[PretrainedConfig] = None, question_encoder: Optional[TFPreTrainedModel] = None, generator: Optional[TFPreTrainedModel] = None, retriever: Optional[RagRetriever] = None, **kwargs, ): assert config is not None or ( question_encoder is not None and generator is not None ), "Either a configuration or an encoder and a generator has to be provided." if config is None: config = RagConfig.from_question_encoder_generator_configs( question_encoder.config, generator.config, **kwargs ) super().__init__(config) # instantiate model self.rag = TFRagModel( config=config, question_encoder=question_encoder, generator=generator, retriever=retriever, load_weight_prefix=self.load_weight_prefix, name="rag", ) def set_retriever(self, retriever: RagRetriever): self.rag.retriever = retriever @property def retriever(self): return self.rag.retriever @property def generator(self): return self.rag.generator @property def question_encoder(self): return self.rag.question_encoder @unpack_inputs @add_start_docstrings_to_model_forward(RAG_FORWARD_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFRetrievAugLMMarginOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, decoder_input_ids: np.ndarray | tf.Tensor | None = None, decoder_attention_mask: np.ndarray | tf.Tensor | None = None, encoder_outputs: np.ndarray | tf.Tensor | None = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, doc_scores: np.ndarray | tf.Tensor | None = None, context_input_ids: np.ndarray | tf.Tensor | None = None, context_attention_mask: np.ndarray | tf.Tensor | None = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_retrieved: Optional[bool] = None, n_docs: Optional[int] = None, exclude_bos_score: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, reduce_loss: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, **kwargs, # needs kwargs for generation ) -> Union[Tuple[tf.Tensor], TFRetrievAugLMMarginOutput]: r""" exclude_bos_score (`bool`, *optional*): Only relevant if `labels` is passed. If `True`, the score of the BOS token is disregarded when computing the loss. labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the cross entropy classification loss according to Rag-Sequence model formulation See https://arxiv.org/pdf/2005.11401.pdf Section 2.1 for details about Rag-Sequence formulation. Indices should be in `[0, ..., config.vocab_size - 1]`. reduce_loss (`bool`, *optional*): Only relevant if `labels` is passed. If `True`, the NLL loss is reduced using the `tf.Tensor.sum` operation. kwargs (`Dict[str, any]`, optional, defaults to *{}*): Legacy dictionary, which is required so that model can use *generate()* function. Returns: Example: ```python >>> from transformers import AutoTokenizer, RagRetriever, TFRagSequenceForGeneration >>> tokenizer = AutoTokenizer.from_pretrained("facebook/rag-sequence-nq") >>> retriever = RagRetriever.from_pretrained( ... "facebook/rag-sequence-nq", index_name="exact", use_dummy_dataset=True ... ) >>> # initialize with RagRetriever to do everything in one forward call >>> model = TFRagSequenceForGeneration.from_pretrained( ... "facebook/rag-sequence-nq", retriever=retriever, from_pt=True ... ) >>> input_dict = tokenizer.prepare_seq2seq_batch( ... "How many people live in Paris?", "In Paris, there are 10 million people.", return_tensors="tf" ... ) >>> outputs = model(input_dict, output_retrieved=True) >>> # or use retriever separately >>> # 1. Encode >>> input_ids = input_dict["input_ids"] >>> question_hidden_states = model.question_encoder(input_ids)[0] >>> # 2. Retrieve >>> docs_dict = retriever(input_ids.numpy(), question_hidden_states.numpy(), return_tensors="tf") >>> doc_scores = tf.squeeze( ... tf.matmul( ... tf.expand_dims(question_hidden_states, axis=1), docs_dict["retrieved_doc_embeds"], transpose_b=True ... ), ... axis=1, ... ) >>> # 3. Forward to generator >>> outputs = model( ... inputs=None, ... context_input_ids=docs_dict["context_input_ids"], ... context_attention_mask=docs_dict["context_attention_mask"], ... doc_scores=doc_scores, ... decoder_input_ids=input_dict["labels"], ... ) >>> # or directly generate >>> generated = model.generate( ... context_input_ids=docs_dict["context_input_ids"], ... context_attention_mask=docs_dict["context_attention_mask"], ... doc_scores=doc_scores, ... ) >>> generated_string = tokenizer.batch_decode(generated, skip_special_tokens=True) ```""" assert ( "decoder_cached_states" not in kwargs ), "Please use past_key_values to cache intermediate outputs" # from modeling_tf_bart.py exclude_bos_score = exclude_bos_score if exclude_bos_score else self.config.exclude_bos_score reduce_loss = reduce_loss if reduce_loss else self.config.reduce_loss if labels is not None: if decoder_input_ids is None: decoder_input_ids = labels use_cache = False outputs = self.rag( input_ids, attention_mask=attention_mask, encoder_outputs=encoder_outputs, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, context_input_ids=context_input_ids, context_attention_mask=context_attention_mask, doc_scores=doc_scores, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, output_retrieved=output_retrieved, n_docs=n_docs, training=training, ) loss = None if labels is not None: loss = self.get_nll( outputs.logits, outputs.doc_scores, labels, reduce_loss=reduce_loss, epsilon=self.config.label_smoothing, n_docs=n_docs, ) return TFRetrievAugLMMarginOutput( loss=loss, logits=outputs.logits, doc_scores=outputs.doc_scores, past_key_values=outputs.past_key_values, context_input_ids=outputs.context_input_ids, context_attention_mask=outputs.context_attention_mask, retrieved_doc_embeds=outputs.retrieved_doc_embeds, retrieved_doc_ids=outputs.retrieved_doc_ids, question_encoder_last_hidden_state=outputs.question_encoder_last_hidden_state, question_enc_hidden_states=outputs.question_enc_hidden_states, question_enc_attentions=outputs.question_enc_attentions, generator_enc_last_hidden_state=outputs.generator_enc_last_hidden_state, generator_enc_hidden_states=outputs.generator_enc_hidden_states, generator_enc_attentions=outputs.generator_enc_attentions, generator_dec_hidden_states=outputs.generator_dec_hidden_states, generator_dec_attentions=outputs.generator_dec_attentions, ) def get_nll( self, seq_logits, doc_scores, target, reduce_loss=False, epsilon=0.0, exclude_bos_score=False, n_docs=None ): # shift tokens left target = tf.concat( [target[:, 1:], tf.fill([target.shape[0], 1], tf.cast(self.config.generator.pad_token_id, target.dtype))], axis=1, ) # bos_token_id is None for T5 bos_token_id = self.config.bos_token_id or self.config.generator.bos_token_id n_docs = n_docs if n_docs is not None else self.config.n_docs equal_bos_token_id_all = tf.reduce_all(tf.equal(target[:, 0], bos_token_id)) use_bos = bos_token_id is not None and equal_bos_token_id_all def _mask_pads(ll, smooth_obj): pad_mask = tf.equal(target, tf.cast(self.config.generator.pad_token_id, target.dtype)) if tf.reduce_any(pad_mask): ll = tf.where(pad_mask, 0.0, ll) smooth_obj = tf.where(pad_mask, 0.0, smooth_obj) return tf.squeeze(ll, axis=-1), tf.squeeze(smooth_obj, axis=-1) # seq_logits.shape = (batch*n_docs, tgt_len , vocabs) seq_logprobs = tf.nn.log_softmax(seq_logits, axis=-1) seq_logprobs = tf.reshape( seq_logprobs, (seq_logits.shape[0] // n_docs, n_docs, -1, seq_logits.shape[-1]) ) # (batch_size, n_docs, tgt_len, vocabs) doc_logprobs = tf.nn.log_softmax(doc_scores, axis=1) doc_logprobs = tf.expand_dims(doc_logprobs, axis=-1) doc_logprobs = tf.expand_dims(doc_logprobs, axis=-1) # done twice to get 4-D # RAG-sequence marginalization first_token_scores = seq_logprobs[:, :, :1, :] second_token_scores = seq_logprobs[:, :, 1:2, :] remainder = seq_logprobs[:, :, 2:, :] rag_logprobs = tf.concat([first_token_scores, second_token_scores + doc_logprobs, remainder], axis=2) # calculate loss target = tf.expand_dims(target, axis=1) # n_docs dimension target = tf.expand_dims(target, axis=-1) # logits dimension target = tf.repeat(target, n_docs, axis=1) assert len(target.shape) == len(rag_logprobs.shape) # last-axis gathering only - use 2D-reshape-trick for Torch's style nD gathering def torch_gather(param, id_tensor): # 2d-gather torch equivalent: https://stackoverflow.com/questions/52129909/tensorflow-equivalent-of-torch-gather def gather2d(target, id_tensor): idx = tf.stack([tf.range(tf.shape(id_tensor)[0], dtype=id_tensor.dtype), id_tensor[:, 0]], axis=-1) result = tf.gather_nd(target, idx) return tf.expand_dims(result, axis=-1) target = tf.reshape(param, (-1, param.shape[-1])) # reshape 2D target_shape = id_tensor.shape id_tensor = tf.reshape(id_tensor, (-1, 1)) # also 2D-index result = gather2d(target, id_tensor) return tf.reshape(result, target_shape) ll = torch_gather(rag_logprobs, id_tensor=target) smooth_obj = tf.reduce_sum(rag_logprobs, axis=-1, keepdims=True) # total sum of all (normalised) logits ll, smooth_obj = _mask_pads(ll, smooth_obj) # sum over tokens, exclude bos while scoring if exclude_bos_score and use_bos: ll = tf.reduce_sum(ll[:, :, 1:], axis=2) else: ll = tf.reduce_sum(ll, axis=2) smooth_obj = tf.reduce_sum(smooth_obj, axis=2) ll = tf.math.reduce_logsumexp(ll, axis=1) # logsumexp over docs smooth_obj = tf.math.reduce_logsumexp(smooth_obj, axis=1) nll_loss = -ll smooth_loss = -smooth_obj if reduce_loss: nll_loss = tf.reduce_sum(nll_loss) smooth_loss = tf.reduce_sum(smooth_loss) eps_i = epsilon / rag_logprobs.shape[-1] loss = (1.0 - epsilon) * nll_loss + eps_i * smooth_loss return loss def generate( self, input_ids: TFModelInputType | None = None, attention_mask: tf.Tensor | None = None, context_input_ids=None, context_attention_mask=None, doc_scores=None, do_deduplication=None, # defaults to True num_return_sequences=None, # defaults to 1 num_beams=None, # defaults to 1 n_docs=None, **model_kwargs, ): """ Implements RAG sequence "thorough" decoding. Read the [`~generation.GenerationMixin.generate`]` documentation for more information on how to set other generate input parameters Args: input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): The sequence used as a prompt for the generation. If `input_ids` is not passed, then `context_input_ids` has to be provided. attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) context_input_ids (`tf.Tensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): Input IDs post-processed from the retrieved documents and the question encoder input_ids by the retriever. context_attention_mask (`tf.Tensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): Attention mask post-processed from the retrieved documents and the question encoder `input_ids` by the retriever. If the model has is not initialized with a `retriever` or `input_ids` is not given, `context_input_ids` and `context_attention_mask` have to be provided to the forward pass. They are returned by [`~RagRetriever.__call__`]. doc_scores (`tf.Tensor` of shape `(batch_size, config.n_docs)`): Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and `question_encoder_last_hidden_state`. If the model has is not initialized with a `retriever` or `input_ids` is not given, `doc_scores` has to be provided to the forward pass. `doc_scores` are returned by [`~RagRetriever.__call__`]. do_deduplication (`bool`, *optional*): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. num_return_sequences(`int`, *optional*, defaults to 1): The number of independently computed returned sequences for each element in the batch. Note that this is not the value we pass to the `generator`'s `[`~generation.GenerationMixin.generate`]` function, where we set `num_return_sequences` to `num_beams`. num_beams (`int`, *optional*, defaults to 1): Number of beams for beam search. 1 means no beam search. n_docs (`int`, *optional*, defaults to `config.n_docs`) Number of documents to retrieve and/or number of documents for which to generate an answer. kwargs (`Dict[str, Any]`, *optional*): Additional kwargs will be passed to [`~generation.GenerationMixin.generate`] Return: `tf.Tensor` of shape `(batch_size * num_return_sequences, sequence_length)`: The generated sequences. The second dimension (sequence length) is either equal to `max_length` or shorter if all batches finished early due to the `eos_token_id`. """ n_docs = n_docs if n_docs is not None else self.config.n_docs do_deduplication = do_deduplication if do_deduplication is not None else self.config.do_deduplication num_doc_return_sequences = ( num_return_sequences if num_return_sequences is not None else self.config.num_return_sequences ) num_beams = num_beams if num_beams is not None else self.config.num_beams assert ( input_ids is not None or context_input_ids is not None ), " At least one of input_ids or context_input_ids must be given" if self.retriever is not None and context_input_ids is None: question_hidden_states = self.question_encoder(input_ids, attention_mask=attention_mask)[0] context_input_ids = self.retriever( input_ids, question_hidden_states.numpy(), prefix=self.generator.config.prefix, n_docs=n_docs, return_tensors="tf", )["context_input_ids"] hypos = [] model_kwargs["num_beams"] = num_beams model_kwargs["num_return_sequences"] = num_beams # put here so that not confused with num_doc_return_sequences model_kwargs["attention_mask"] = None batch_size = input_ids.shape[0] if input_ids is not None else context_input_ids.shape[0] // n_docs for index in range(batch_size): # first, generate beams from documents: generator_input_ids = context_input_ids[index * n_docs : (index + 1) * n_docs] # (n_docs, max_len) output_sequences = self.generator.generate( generator_input_ids, **model_kwargs, ) # n_docs * n_beam, tgt_len if do_deduplication: # do_deduplication -- for TF, work on Eager mode only! output_sequences = tf.stack(list({str(k.numpy().tolist()): k for k in output_sequences}.values())) num_candidates = output_sequences.shape[ 0 ] # after deduplication, this number can be less than n_docs*n_beam # then, run model forwards to get nll scores: if input_ids is not None: new_input_ids = tf.tile(input_ids[index : index + 1], (num_candidates, 1)) outputs = self(new_input_ids, labels=output_sequences, exclude_bos_score=True) else: # input_ids is None, need context_input_ids/mask and doc_scores assert context_attention_mask is not None, ( "Make sure that `context_attention_mask` are passed, if no `input_ids` is set. Alternatively, you" " can set a retriever using the `set_retriever(...)` function." ) assert doc_scores is not None, ( "Make sure that `doc_scores` are passed, if no `input_ids` is set. Alternatively, you can set a" " retriever using the `set_retriever(...)` function." ) individual_input_ids = tf.tile( generator_input_ids, (num_candidates, 1) ) # (num_candidates*n_docs, max_len) individual_attention_mask = context_attention_mask[index * n_docs : (index + 1) * n_docs] individual_attention_mask = tf.tile(individual_attention_mask, (num_candidates, 1)) individual_doc_scores = doc_scores[index : (index + 1), :] # doc_scores.shape = [batch, n_docs] individual_doc_scores = tf.tile(individual_doc_scores, (num_candidates, 1)) # [num_candidates, n_docs] outputs = self( input_ids=None, context_input_ids=individual_input_ids, context_attention_mask=individual_attention_mask, doc_scores=individual_doc_scores, labels=output_sequences, exclude_bos_score=True, ) top_cand_inds = tf.math.top_k((-outputs["loss"]), k=num_doc_return_sequences)[1] # add hypothesis hypos.append(tf.gather(output_sequences, top_cand_inds)) return self._cat_and_pad(hypos, pad_token_id=self.config.generator.pad_token_id) @staticmethod def _cat_and_pad(tensors, pad_token_id): # used by generate(): tensors is a (batched) list of (candidates, len); len is varied across batch # Initialize padded tensor with shape ( all_candidates , max_candidate_length ), # where all_candidates counted from all inputs new_shape = sum([t.shape[0] for t in tensors]), max([t.shape[1] for t in tensors]) output = tf.fill(new_shape, pad_token_id) # Normal tensor doesn't support slice assignment, so we need tf.Variable output = tf.Variable(output) # Assign, and then convert back to tensor ind = 0 for t in tensors: output[ind : ind + t.shape[0], : t.shape[1]].assign(t) ind += t.shape[0] output = tf.convert_to_tensor(output) return tf.cast(output, tensors[0][0][0].dtype)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/rag/configuration_rag.py
# coding=utf-8 # Copyright 2020, The RAG Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ RAG model configuration""" import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings RAG_CONFIG_DOC = r""" [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: title_sep (`str`, *optional*, defaults to `" / "`): Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`]. doc_sep (`str`, *optional*, defaults to `" // "`): Separator inserted between the text of the retrieved document and the original input when calling [`RagRetriever`]. n_docs (`int`, *optional*, defaults to 5): Number of documents to retrieve. max_combined_length (`int`, *optional*, defaults to 300): Max length of contextualized input returned by [`~RagRetriever.__call__`]. retrieval_vector_size (`int`, *optional*, defaults to 768): Dimensionality of the document embeddings indexed by [`RagRetriever`]. retrieval_batch_size (`int`, *optional*, defaults to 8): Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated [`RagRetriever`]. dataset (`str`, *optional*, defaults to `"wiki_dpr"`): A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids using `datasets.list_datasets()`). dataset_split (`str`, *optional*, defaults to `"train"`) Which split of the `dataset` to load. index_name (`str`, *optional*, defaults to `"compressed"`) The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and `"compressed"`. index_path (`str`, *optional*) The path to the serialized faiss index on disk. passages_path (`str`, *optional*): A path to text passages compatible with the faiss index. Required if using [`~models.rag.retrieval_rag.LegacyIndex`] use_dummy_dataset (`bool`, *optional*, defaults to `False`) Whether to load a "dummy" variant of the dataset specified by `dataset`. label_smoothing (`float`, *optional*, defaults to 0.0): Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. do_marginalize (`bool`, *optional*, defaults to `False`): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. reduce_loss (`bool`, *optional*, defaults to `False`): Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation. do_deduplication (`bool`, *optional*, defaults to `True`): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. exclude_bos_score (`bool`, *optional*, defaults to `False`): Whether or not to disregard the BOS token when computing the loss. output_retrieved(`bool`, *optional*, defaults to `False`): If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask` are returned. See returned tensors for more detail. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). forced_eos_token_id (`int`, *optional*): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. """ @add_start_docstrings(RAG_CONFIG_DOC) class RagConfig(PretrainedConfig): model_type = "rag" is_composition = True def __init__( self, vocab_size=None, is_encoder_decoder=True, prefix=None, bos_token_id=None, pad_token_id=None, eos_token_id=None, decoder_start_token_id=None, title_sep=" / ", doc_sep=" // ", n_docs=5, max_combined_length=300, retrieval_vector_size=768, retrieval_batch_size=8, dataset="wiki_dpr", dataset_split="train", index_name="compressed", index_path=None, passages_path=None, use_dummy_dataset=False, reduce_loss=False, label_smoothing=0.0, do_deduplication=True, exclude_bos_score=False, do_marginalize=False, output_retrieved=False, use_cache=True, forced_eos_token_id=None, **kwargs, ): super().__init__( bos_token_id=bos_token_id, pad_token_id=pad_token_id, eos_token_id=eos_token_id, decoder_start_token_id=decoder_start_token_id, forced_eos_token_id=forced_eos_token_id, is_encoder_decoder=is_encoder_decoder, prefix=prefix, vocab_size=vocab_size, **kwargs, ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" question_encoder_config = kwargs.pop("question_encoder") question_encoder_model_type = question_encoder_config.pop("model_type") decoder_config = kwargs.pop("generator") decoder_model_type = decoder_config.pop("model_type") from ..auto.configuration_auto import AutoConfig self.question_encoder = AutoConfig.for_model(question_encoder_model_type, **question_encoder_config) self.generator = AutoConfig.for_model(decoder_model_type, **decoder_config) self.reduce_loss = reduce_loss self.label_smoothing = label_smoothing self.exclude_bos_score = exclude_bos_score self.do_marginalize = do_marginalize self.title_sep = title_sep self.doc_sep = doc_sep self.n_docs = n_docs self.max_combined_length = max_combined_length self.dataset = dataset self.dataset_split = dataset_split self.index_name = index_name self.retrieval_vector_size = retrieval_vector_size self.retrieval_batch_size = retrieval_batch_size self.passages_path = passages_path self.index_path = index_path self.use_dummy_dataset = use_dummy_dataset self.output_retrieved = output_retrieved self.do_deduplication = do_deduplication self.use_cache = use_cache if self.forced_eos_token_id is None: self.forced_eos_token_id = getattr(self.generator, "forced_eos_token_id", None) @classmethod def from_question_encoder_generator_configs( cls, question_encoder_config: PretrainedConfig, generator_config: PretrainedConfig, **kwargs ) -> PretrainedConfig: r""" Instantiate a [`EncoderDecoderConfig`] (or a derived class) from a pre-trained encoder model configuration and decoder model configuration. Returns: [`EncoderDecoderConfig`]: An instance of a configuration object """ return cls(question_encoder=question_encoder_config.to_dict(), generator=generator_config.to_dict(), **kwargs) def to_dict(self): """ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. Returns: `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, """ output = copy.deepcopy(self.__dict__) output["question_encoder"] = self.question_encoder.to_dict() output["generator"] = self.generator.to_dict() output["model_type"] = self.__class__.model_type return output
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/rag/tokenization_rag.py
# coding=utf-8 # Copyright 2020, The RAG Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for RAG.""" import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig logger = logging.get_logger(__name__) class RagTokenizer: def __init__(self, question_encoder, generator): self.question_encoder = question_encoder self.generator = generator self.current_tokenizer = self.question_encoder def save_pretrained(self, save_directory): if os.path.isfile(save_directory): raise ValueError(f"Provided path ({save_directory}) should be a directory, not a file") os.makedirs(save_directory, exist_ok=True) question_encoder_path = os.path.join(save_directory, "question_encoder_tokenizer") generator_path = os.path.join(save_directory, "generator_tokenizer") self.question_encoder.save_pretrained(question_encoder_path) self.generator.save_pretrained(generator_path) @classmethod def from_pretrained(cls, pretrained_model_name_or_path, **kwargs): # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer config = kwargs.pop("config", None) if config is None: config = RagConfig.from_pretrained(pretrained_model_name_or_path) question_encoder = AutoTokenizer.from_pretrained( pretrained_model_name_or_path, config=config.question_encoder, subfolder="question_encoder_tokenizer" ) generator = AutoTokenizer.from_pretrained( pretrained_model_name_or_path, config=config.generator, subfolder="generator_tokenizer" ) return cls(question_encoder=question_encoder, generator=generator) def __call__(self, *args, **kwargs): return self.current_tokenizer(*args, **kwargs) def batch_decode(self, *args, **kwargs): return self.generator.batch_decode(*args, **kwargs) def decode(self, *args, **kwargs): return self.generator.decode(*args, **kwargs) def _switch_to_input_mode(self): self.current_tokenizer = self.question_encoder def _switch_to_target_mode(self): self.current_tokenizer = self.generator def prepare_seq2seq_batch( self, src_texts: List[str], tgt_texts: Optional[List[str]] = None, max_length: Optional[int] = None, max_target_length: Optional[int] = None, padding: str = "longest", return_tensors: str = None, truncation: bool = True, **kwargs, ) -> BatchEncoding: warnings.warn( "`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the " "regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` " "context manager to prepare your targets. See the documentation of your specific tokenizer for more " "details", FutureWarning, ) if max_length is None: max_length = self.current_tokenizer.model_max_length model_inputs = self( src_texts, add_special_tokens=True, return_tensors=return_tensors, max_length=max_length, padding=padding, truncation=truncation, **kwargs, ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: max_target_length = self.current_tokenizer.model_max_length labels = self( text_target=tgt_texts, add_special_tokens=True, return_tensors=return_tensors, padding=padding, max_length=max_target_length, truncation=truncation, **kwargs, ) model_inputs["labels"] = labels["input_ids"] return model_inputs
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/videomae/__init__.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _import_structure = { "configuration_videomae": ["VIDEOMAE_PRETRAINED_CONFIG_ARCHIVE_MAP", "VideoMAEConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_videomae"] = [ "VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST", "VideoMAEForPreTraining", "VideoMAEModel", "VideoMAEPreTrainedModel", "VideoMAEForVideoClassification", ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["feature_extraction_videomae"] = ["VideoMAEFeatureExtractor"] _import_structure["image_processing_videomae"] = ["VideoMAEImageProcessor"] if TYPE_CHECKING: from .configuration_videomae import VIDEOMAE_PRETRAINED_CONFIG_ARCHIVE_MAP, VideoMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_videomae import ( VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, VideoMAEPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_videomae import VideoMAEFeatureExtractor from .image_processing_videomae import VideoMAEImageProcessor else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/videomae/image_processing_videomae.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for VideoMAE.""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( get_resize_output_image_size, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL logger = logging.get_logger(__name__) def make_batched(videos) -> List[List[ImageInput]]: if isinstance(videos, (list, tuple)) and isinstance(videos[0], (list, tuple)) and is_valid_image(videos[0][0]): return videos elif isinstance(videos, (list, tuple)) and is_valid_image(videos[0]): return [videos] elif is_valid_image(videos): return [[videos]] raise ValueError(f"Could not make batched video from {videos}") class VideoMAEImageProcessor(BaseImageProcessor): r""" Constructs a VideoMAE image processor. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the `do_resize` parameter in the `preprocess` method. size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`): Size of the output image after resizing. The shortest edge of the image will be resized to `size["shortest_edge"]` while maintaining the aspect ratio of the original image. Can be overriden by `size` in the `preprocess` method. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`): Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the `preprocess` method. do_center_crop (`bool`, *optional*, defaults to `True`): Whether to center crop the image to the specified `crop_size`. Can be overridden by the `do_center_crop` parameter in the `preprocess` method. crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`): Size of the image after applying the center crop. Can be overridden by the `crop_size` parameter in the `preprocess` method. do_rescale (`bool`, *optional*, defaults to `True`): Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale` parameter in the `preprocess` method. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Defines the scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the `preprocess` method. do_normalize (`bool`, *optional*, defaults to `True`): Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` method. image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`): Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`): Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. """ model_input_names = ["pixel_values"] def __init__( self, do_resize: bool = True, size: Dict[str, int] = None, resample: PILImageResampling = PILImageResampling.BILINEAR, do_center_crop: bool = True, crop_size: Dict[str, int] = None, do_rescale: bool = True, rescale_factor: Union[int, float] = 1 / 255, do_normalize: bool = True, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, **kwargs, ) -> None: super().__init__(**kwargs) size = size if size is not None else {"shortest_edge": 224} size = get_size_dict(size, default_to_square=False) crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224} crop_size = get_size_dict(crop_size, param_name="crop_size") self.do_resize = do_resize self.size = size self.do_center_crop = do_center_crop self.crop_size = crop_size self.resample = resample self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD def resize( self, image: np.ndarray, size: Dict[str, int], resample: PILImageResampling = PILImageResampling.BILINEAR, data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Resize an image. Args: image (`np.ndarray`): Image to resize. size (`Dict[str, int]`): Size of the output image. If `size` is of the form `{"height": h, "width": w}`, the output image will have the size `(h, w)`. If `size` is of the form `{"shortest_edge": s}`, the output image will have its shortest edge of length `s` while keeping the aspect ratio of the original image. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`): Resampling filter to use when resiizing the image. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the image. If not provided, it will be the same as the input image. """ size = get_size_dict(size, default_to_square=False) if "shortest_edge" in size: output_size = get_resize_output_image_size(image, size["shortest_edge"], default_to_square=False) elif "height" in size and "width" in size: output_size = (size["height"], size["width"]) else: raise ValueError(f"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}") return resize(image, size=output_size, resample=resample, data_format=data_format, **kwargs) def _preprocess_image( self, image: ImageInput, do_resize: bool = None, size: Dict[str, int] = None, resample: PILImageResampling = None, do_center_crop: bool = None, crop_size: Dict[str, int] = None, do_rescale: bool = None, rescale_factor: float = None, do_normalize: bool = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, data_format: Optional[ChannelDimension] = ChannelDimension.FIRST, ) -> np.ndarray: """Preprocesses a single image.""" if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True.") if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True.") if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True.") if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True.") # All transformations expect numpy arrays. image = to_numpy_array(image) if do_resize: image = self.resize(image=image, size=size, resample=resample) if do_center_crop: image = self.center_crop(image, size=crop_size) if do_rescale: image = self.rescale(image=image, scale=rescale_factor) if do_normalize: image = self.normalize(image=image, mean=image_mean, std=image_std) image = to_channel_dimension_format(image, data_format) return image def preprocess( self, videos: ImageInput, do_resize: bool = None, size: Dict[str, int] = None, resample: PILImageResampling = None, do_center_crop: bool = None, crop_size: Dict[str, int] = None, do_rescale: bool = None, rescale_factor: float = None, do_normalize: bool = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, return_tensors: Optional[Union[str, TensorType]] = None, data_format: ChannelDimension = ChannelDimension.FIRST, **kwargs, ) -> PIL.Image.Image: """ Preprocess an image or batch of images. Args: images (`ImageInput`): Image to preprocess. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to `self.size`): Size of the image after applying resize. resample (`PILImageResampling`, *optional*, defaults to `self.resample`): Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only has an effect if `do_resize` is set to `True`. do_center_crop (`bool`, *optional*, defaults to `self.do_centre_crop`): Whether to centre crop the image. crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`): Size of the image after applying the centre crop. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image values between [0 - 1]. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): Image mean. image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): Image standard deviation. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `ChannelDimension.LAST`: image in (height, width, num_channels) format. - Unset: Use the inferred channel dimension format of the input image. """ do_resize = do_resize if do_resize is not None else self.do_resize resample = resample if resample is not None else self.resample do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor do_normalize = do_normalize if do_normalize is not None else self.do_normalize image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std size = size if size is not None else self.size size = get_size_dict(size, default_to_square=False) crop_size = crop_size if crop_size is not None else self.crop_size crop_size = get_size_dict(crop_size, param_name="crop_size") if not valid_images(videos): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) videos = make_batched(videos) videos = [ [ self._preprocess_image( image=img, do_resize=do_resize, size=size, resample=resample, do_center_crop=do_center_crop, crop_size=crop_size, do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, data_format=data_format, ) for img in video ] for video in videos ] data = {"pixel_values": videos} return BatchFeature(data=data, tensor_type=return_tensors)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/videomae/feature_extraction_videomae.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Feature extractor class for VideoMAE.""" import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor logger = logging.get_logger(__name__) class VideoMAEFeatureExtractor(VideoMAEImageProcessor): def __init__(self, *args, **kwargs) -> None: warnings.warn( "The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use VideoMAEImageProcessor instead.", FutureWarning, ) super().__init__(*args, **kwargs)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/videomae/configuration_videomae.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ VideoMAE model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) VIDEOMAE_PRETRAINED_CONFIG_ARCHIVE_MAP = { "MCG-NJU/videomae-base": "https://huggingface.co/MCG-NJU/videomae-base/resolve/main/config.json", } class VideoMAEConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`VideoMAEModel`]. It is used to instantiate a VideoMAE model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the VideoMAE [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: image_size (`int`, *optional*, defaults to 224): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to 16): The size (resolution) of each patch. num_channels (`int`, *optional*, defaults to 3): The number of input channels. num_frames (`int`, *optional*, defaults to 16): The number of frames in each video. tubelet_size (`int`, *optional*, defaults to 2): The number of tubelets. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. qkv_bias (`bool`, *optional*, defaults to `True`): Whether to add a bias to the queries, keys and values. use_mean_pooling (`bool`, *optional*, defaults to `True`): Whether to mean pool the final hidden states instead of using the final hidden state of the [CLS] token. decoder_num_attention_heads (`int`, *optional*, defaults to 6): Number of attention heads for each attention layer in the decoder. decoder_hidden_size (`int`, *optional*, defaults to 384): Dimensionality of the decoder. decoder_num_hidden_layers (`int`, *optional*, defaults to 4): Number of hidden layers in the decoder. decoder_intermediate_size (`int`, *optional*, defaults to 1536): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the decoder. norm_pix_loss (`bool`, *optional*, defaults to `True`): Whether to normalize the target patch pixels. Example: ```python >>> from transformers import VideoMAEConfig, VideoMAEModel >>> # Initializing a VideoMAE videomae-base style configuration >>> configuration = VideoMAEConfig() >>> # Randomly initializing a model from the configuration >>> model = VideoMAEModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "videomae" def __init__( self, image_size=224, patch_size=16, num_channels=3, num_frames=16, tubelet_size=2, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.0, initializer_range=0.02, layer_norm_eps=1e-12, qkv_bias=True, use_mean_pooling=True, decoder_num_attention_heads=6, decoder_hidden_size=384, decoder_num_hidden_layers=4, decoder_intermediate_size=1536, norm_pix_loss=True, **kwargs, ): super().__init__(**kwargs) self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.num_frames = num_frames self.tubelet_size = tubelet_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.qkv_bias = qkv_bias self.use_mean_pooling = use_mean_pooling self.decoder_num_attention_heads = decoder_num_attention_heads self.decoder_hidden_size = decoder_hidden_size self.decoder_num_hidden_layers = decoder_num_hidden_layers self.decoder_intermediate_size = decoder_intermediate_size self.norm_pix_loss = norm_pix_loss
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/videomae/convert_videomae_to_pytorch.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert VideoMAE checkpoints from the original repository: https://github.com/MCG-NJU/VideoMAE""" import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def get_videomae_config(model_name): config = VideoMAEConfig() set_architecture_configs(model_name, config) if "finetuned" not in model_name: config.use_mean_pooling = False if "finetuned" in model_name: repo_id = "huggingface/label-files" if "kinetics" in model_name: config.num_labels = 400 filename = "kinetics400-id2label.json" elif "ssv2" in model_name: config.num_labels = 174 filename = "something-something-v2-id2label.json" else: raise ValueError("Model name should either contain 'kinetics' or 'ssv2' in case it's fine-tuned.") id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) id2label = {int(k): v for k, v in id2label.items()} config.id2label = id2label config.label2id = {v: k for k, v in id2label.items()} return config def set_architecture_configs(model_name, config): if "small" in model_name: config.hidden_size = 384 config.intermediate_size = 1536 config.num_hidden_layers = 12 config.num_attention_heads = 16 config.decoder_num_hidden_layers = 12 config.decoder_num_attention_heads = 3 config.decoder_hidden_size = 192 config.decoder_intermediate_size = 768 elif "large" in model_name: config.hidden_size = 1024 config.intermediate_size = 4096 config.num_hidden_layers = 24 config.num_attention_heads = 16 config.decoder_num_hidden_layers = 12 config.decoder_num_attention_heads = 8 config.decoder_hidden_size = 512 config.decoder_intermediate_size = 2048 elif "huge" in model_name: config.hidden_size = 1280 config.intermediate_size = 5120 config.num_hidden_layers = 32 config.num_attention_heads = 16 config.decoder_num_hidden_layers = 12 config.decoder_num_attention_heads = 8 config.decoder_hidden_size = 640 config.decoder_intermediate_size = 2560 elif "base" not in model_name: raise ValueError('Model name should include either "small", "base", "large", or "huge"') def rename_key(name): if "encoder." in name: name = name.replace("encoder.", "") if "cls_token" in name: name = name.replace("cls_token", "videomae.embeddings.cls_token") if "decoder_pos_embed" in name: name = name.replace("decoder_pos_embed", "decoder.decoder_pos_embed") if "pos_embed" in name and "decoder" not in name: name = name.replace("pos_embed", "videomae.embeddings.position_embeddings") if "patch_embed.proj" in name: name = name.replace("patch_embed.proj", "videomae.embeddings.patch_embeddings.projection") if "patch_embed.norm" in name: name = name.replace("patch_embed.norm", "videomae.embeddings.norm") if "decoder.blocks" in name: name = name.replace("decoder.blocks", "decoder.decoder_layers") if "blocks" in name: name = name.replace("blocks", "videomae.encoder.layer") if "attn.proj" in name: name = name.replace("attn.proj", "attention.output.dense") if "attn" in name and "bias" not in name: name = name.replace("attn", "attention.self") if "attn" in name: name = name.replace("attn", "attention.attention") if "norm1" in name: name = name.replace("norm1", "layernorm_before") if "norm2" in name: name = name.replace("norm2", "layernorm_after") if "mlp.fc1" in name: name = name.replace("mlp.fc1", "intermediate.dense") if "mlp.fc2" in name: name = name.replace("mlp.fc2", "output.dense") if "decoder_embed" in name: name = name.replace("decoder_embed", "decoder.decoder_embed") if "decoder_norm" in name: name = name.replace("decoder_norm", "decoder.decoder_norm") if "decoder_pred" in name: name = name.replace("decoder_pred", "decoder.decoder_pred") if "norm.weight" in name and "decoder" not in name and "fc" not in name: name = name.replace("norm.weight", "videomae.layernorm.weight") if "norm.bias" in name and "decoder" not in name and "fc" not in name: name = name.replace("norm.bias", "videomae.layernorm.bias") if "head" in name and "decoder" not in name: name = name.replace("head", "classifier") return name def convert_state_dict(orig_state_dict, config): for key in orig_state_dict.copy().keys(): val = orig_state_dict.pop(key) if key.startswith("encoder."): key = key.replace("encoder.", "") if "qkv" in key: key_split = key.split(".") if key.startswith("decoder.blocks"): dim = config.decoder_hidden_size layer_num = int(key_split[2]) prefix = "decoder.decoder_layers." if "weight" in key: orig_state_dict[f"{prefix}{layer_num}.attention.attention.query.weight"] = val[:dim, :] orig_state_dict[f"{prefix}{layer_num}.attention.attention.key.weight"] = val[dim : dim * 2, :] orig_state_dict[f"{prefix}{layer_num}.attention.attention.value.weight"] = val[-dim:, :] else: dim = config.hidden_size layer_num = int(key_split[1]) prefix = "videomae.encoder.layer." if "weight" in key: orig_state_dict[f"{prefix}{layer_num}.attention.attention.query.weight"] = val[:dim, :] orig_state_dict[f"{prefix}{layer_num}.attention.attention.key.weight"] = val[dim : dim * 2, :] orig_state_dict[f"{prefix}{layer_num}.attention.attention.value.weight"] = val[-dim:, :] else: orig_state_dict[rename_key(key)] = val return orig_state_dict # We will verify our results on a video of eating spaghetti # Frame indices used: [164 168 172 176 181 185 189 193 198 202 206 210 215 219 223 227] def prepare_video(): file = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video", filename="eating_spaghetti.npy", repo_type="dataset" ) video = np.load(file) return list(video) def convert_videomae_checkpoint(checkpoint_url, pytorch_dump_folder_path, model_name, push_to_hub): config = get_videomae_config(model_name) if "finetuned" in model_name: model = VideoMAEForVideoClassification(config) else: model = VideoMAEForPreTraining(config) # download original checkpoint, hosted on Google Drive output = "pytorch_model.bin" gdown.cached_download(checkpoint_url, output, quiet=False) files = torch.load(output, map_location="cpu") if "model" in files: state_dict = files["model"] else: state_dict = files["module"] new_state_dict = convert_state_dict(state_dict, config) model.load_state_dict(new_state_dict) model.eval() # verify model on basic input image_processor = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5], image_std=[0.5, 0.5, 0.5]) video = prepare_video() inputs = image_processor(video, return_tensors="pt") if "finetuned" not in model_name: local_path = hf_hub_download(repo_id="hf-internal-testing/bool-masked-pos", filename="bool_masked_pos.pt") inputs["bool_masked_pos"] = torch.load(local_path) outputs = model(**inputs) logits = outputs.logits model_names = [ "videomae-small-finetuned-kinetics", "videomae-small-finetuned-ssv2", # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) "videomae-base-short", "videomae-base-short-finetuned-kinetics", "videomae-base", "videomae-base-finetuned-kinetics", "videomae-large", "videomae-large-finetuned-kinetics", "videomae-huge-finetuned-kinetics", # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) "videomae-base-short-ssv2", "videomae-base-short-finetuned-ssv2", "videomae-base-ssv2", "videomae-base-finetuned-ssv2", ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": expected_shape = torch.Size([1, 400]) expected_slice = torch.tensor([-0.9291, -0.4061, -0.9307]) elif model_name == "videomae-small-finetuned-ssv2": expected_shape = torch.Size([1, 174]) expected_slice = torch.tensor([0.2671, -0.4689, -0.8235]) elif model_name == "videomae-base": expected_shape = torch.Size([1, 1408, 1536]) expected_slice = torch.tensor([[0.7739, 0.7968, 0.7089], [0.6701, 0.7487, 0.6209], [0.4287, 0.5158, 0.4773]]) elif model_name == "videomae-base-short": expected_shape = torch.Size([1, 1408, 1536]) expected_slice = torch.tensor([[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]]) # we verified the loss both for normalized and unnormalized targets for this one expected_loss = torch.tensor([0.5142]) if config.norm_pix_loss else torch.tensor([0.6469]) elif model_name == "videomae-large": expected_shape = torch.Size([1, 1408, 1536]) expected_slice = torch.tensor([[0.7149, 0.7997, 0.6966], [0.6768, 0.7869, 0.6948], [0.5139, 0.6221, 0.5605]]) elif model_name == "videomae-large-finetuned-kinetics": expected_shape = torch.Size([1, 400]) expected_slice = torch.tensor([0.0771, 0.0011, -0.3625]) elif model_name == "videomae-huge-finetuned-kinetics": expected_shape = torch.Size([1, 400]) expected_slice = torch.tensor([0.2433, 0.1632, -0.4894]) elif model_name == "videomae-base-short-finetuned-kinetics": expected_shape = torch.Size([1, 400]) expected_slice = torch.tensor([0.6588, 0.0990, -0.2493]) elif model_name == "videomae-base-finetuned-kinetics": expected_shape = torch.Size([1, 400]) expected_slice = torch.tensor([0.3669, -0.0688, -0.2421]) elif model_name == "videomae-base-short-ssv2": expected_shape = torch.Size([1, 1408, 1536]) expected_slice = torch.tensor([[0.4712, 0.5296, 0.5786], [0.2278, 0.2729, 0.4026], [0.0352, 0.0730, 0.2506]]) elif model_name == "videomae-base-short-finetuned-ssv2": expected_shape = torch.Size([1, 174]) expected_slice = torch.tensor([-0.0537, -0.1539, -0.3266]) elif model_name == "videomae-base-ssv2": expected_shape = torch.Size([1, 1408, 1536]) expected_slice = torch.tensor([[0.8131, 0.8727, 0.8546], [0.7366, 0.9377, 0.8870], [0.5935, 0.8874, 0.8564]]) elif model_name == "videomae-base-finetuned-ssv2": expected_shape = torch.Size([1, 174]) expected_slice = torch.tensor([0.1961, -0.8337, -0.6389]) else: raise ValueError(f"Model name not supported. Should be one of {model_names}") # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3], expected_slice, atol=1e-4) else: print("Logits:", logits[0, :3, :3]) assert torch.allclose(logits[0, :3, :3], expected_slice, atol=1e-4) print("Logits ok!") # verify loss, if applicable if model_name == "videomae-base-short": loss = outputs.loss assert torch.allclose(loss, expected_loss, atol=1e-4) print("Loss ok!") if pytorch_dump_folder_path is not None: print(f"Saving model and image processor to {pytorch_dump_folder_path}") image_processor.save_pretrained(pytorch_dump_folder_path) model.save_pretrained(pytorch_dump_folder_path) if push_to_hub: print("Pushing to the hub...") model.push_to_hub(model_name, organization="nielsr") if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4", type=str, help=( "URL of the original PyTorch checkpoint (on Google Drive) you'd like to convert. Should be a direct" " download link." ), ) parser.add_argument( "--pytorch_dump_folder_path", default="/Users/nielsrogge/Documents/VideoMAE/Test", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--model_name", default="videomae-base", type=str, help="Name of the model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) args = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/videomae/modeling_videomae.py
# coding=utf-8 # Copyright 2022 Multimedia Computing Group, Nanjing University and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch VideoMAE (masked autoencoder) model.""" import collections.abc import math from copy import deepcopy from dataclasses import dataclass from typing import Optional, Set, Tuple, Union import numpy as np import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import BaseModelOutput, ImageClassifierOutput from ...modeling_utils import PreTrainedModel from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from .configuration_videomae import VideoMAEConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "VideoMAEConfig" _CHECKPOINT_FOR_DOC = "MCG-NJU/videomae-base" VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST = [ "MCG-NJU/videomae-base", # See all VideoMAE models at https://huggingface.co/models?filter=videomae ] @dataclass class VideoMAEDecoderOutput(ModelOutput): """ Class for VideoMAEDecoder's outputs, with potential hidden states and attentions. Args: logits (`torch.FloatTensor` of shape `(batch_size, patch_size ** 2 * num_channels)`): Pixel reconstruction logits. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class VideoMAEForPreTrainingOutput(ModelOutput): """ Class for VideoMAEForPreTraining's outputs, with potential hidden states and attentions. Args: loss (`torch.FloatTensor` of shape `(1,)`): Pixel reconstruction loss. logits (`torch.FloatTensor` of shape `(batch_size, patch_size ** 2 * num_channels)`): Pixel reconstruction logits. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None # sin-cos position encoding # https://github.com/jadore801120/attention-is-all-you-need-pytorch/blob/master/transformer/Models.py#L31 def get_sinusoid_encoding_table(n_position, d_hid): """Sinusoid position encoding table""" # TODO: make it with torch instead of numpy def get_position_angle_vec(position): return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)] sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(n_position)]) sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1 return torch.FloatTensor(sinusoid_table).unsqueeze(0) class VideoMAEEmbeddings(nn.Module): """ Construct the patch and position embeddings. """ def __init__(self, config): super().__init__() self.patch_embeddings = VideoMAEPatchEmbeddings(config) self.num_patches = self.patch_embeddings.num_patches # fixed sin-cos embedding self.position_embeddings = get_sinusoid_encoding_table(self.num_patches, config.hidden_size) self.config = config def forward(self, pixel_values, bool_masked_pos): # create patch embeddings embeddings = self.patch_embeddings(pixel_values) # add position embeddings embeddings = embeddings + self.position_embeddings.type_as(embeddings).to(embeddings.device).clone().detach() # only keep visible patches # ~bool_masked_pos means visible if bool_masked_pos is not None: batch_size, _, num_channels = embeddings.shape embeddings = embeddings[~bool_masked_pos] embeddings = embeddings.reshape(batch_size, -1, num_channels) return embeddings class VideoMAEPatchEmbeddings(nn.Module): """ Video to Patch Embedding. This module turns a batch of videos of shape (batch_size, num_frames, num_channels, height, width) into a tensor of shape (batch_size, seq_len, hidden_size) to be consumed by a Transformer encoder. The seq_len (the number of patches) equals (number of frames // tubelet_size) * (height // patch_size) * (width // patch_size). """ def __init__(self, config): super().__init__() image_size = config.image_size patch_size = config.patch_size num_channels = config.num_channels hidden_size = config.hidden_size num_frames = config.num_frames tubelet_size = config.tubelet_size image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) self.image_size = image_size self.patch_size = patch_size self.tubelet_size = int(tubelet_size) num_patches = ( (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) * (num_frames // self.tubelet_size) ) self.num_channels = num_channels self.num_patches = num_patches self.projection = nn.Conv3d( in_channels=num_channels, out_channels=hidden_size, kernel_size=(self.tubelet_size, patch_size[0], patch_size[1]), stride=(self.tubelet_size, patch_size[0], patch_size[1]), ) def forward(self, pixel_values): batch_size, num_frames, num_channels, height, width = pixel_values.shape if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) if height != self.image_size[0] or width != self.image_size[1]: raise ValueError( f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})." ) # permute to (batch_size, num_channels, num_frames, height, width) pixel_values = pixel_values.permute(0, 2, 1, 3, 4) embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2) return embeddings class VideoMAESelfAttention(nn.Module): def __init__(self, config: VideoMAEConfig) -> None: super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size {config.hidden_size,} is not a multiple of the number of attention " f"heads {config.num_attention_heads}." ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=False) self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=False) self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=False) if config.qkv_bias: self.q_bias = nn.Parameter(torch.zeros(self.all_head_size)) self.v_bias = nn.Parameter(torch.zeros(self.all_head_size)) else: self.q_bias = None self.v_bias = None self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: k_bias = torch.zeros_like(self.v_bias, requires_grad=False) if self.q_bias is not None else None keys = nn.functional.linear(input=hidden_states, weight=self.key.weight, bias=k_bias) values = nn.functional.linear(input=hidden_states, weight=self.value.weight, bias=self.v_bias) queries = nn.functional.linear(input=hidden_states, weight=self.query.weight, bias=self.q_bias) key_layer = self.transpose_for_scores(keys) value_layer = self.transpose_for_scores(values) query_layer = self.transpose_for_scores(queries) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs # Copied from transformers.models.vit.modeling_vit.ViTSelfOutput with ViT->VideoMAE class VideoMAESelfOutput(nn.Module): """ The residual connection is defined in VideoMAELayer instead of here (as is the case with other models), due to the layernorm applied before each block. """ def __init__(self, config: VideoMAEConfig) -> None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states # Copied from transformers.models.vit.modeling_vit.ViTAttention with ViT->VideoMAE class VideoMAEAttention(nn.Module): def __init__(self, config: VideoMAEConfig) -> None: super().__init__() self.attention = VideoMAESelfAttention(config) self.output = VideoMAESelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads: Set[int]) -> None: if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads ) # Prune linear layers self.attention.query = prune_linear_layer(self.attention.query, index) self.attention.key = prune_linear_layer(self.attention.key, index) self.attention.value = prune_linear_layer(self.attention.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: self_outputs = self.attention(hidden_states, head_mask, output_attentions) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.vit.modeling_vit.ViTIntermediate ViT->VideoMAE class VideoMAEIntermediate(nn.Module): def __init__(self, config: VideoMAEConfig) -> None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.vit.modeling_vit.ViTOutput ViT->VideoMAE class VideoMAEOutput(nn.Module): def __init__(self, config: VideoMAEConfig) -> None: super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = hidden_states + input_tensor return hidden_states # Copied from transformers.models.vit.modeling_vit.ViTLayer with ViT->VideoMAE class VideoMAELayer(nn.Module): """This corresponds to the Block class in the timm implementation.""" def __init__(self, config: VideoMAEConfig) -> None: super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = VideoMAEAttention(config) self.intermediate = VideoMAEIntermediate(config) self.output = VideoMAEOutput(config) self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: self_attention_outputs = self.attention( self.layernorm_before(hidden_states), # in VideoMAE, layernorm is applied before self-attention head_mask, output_attentions=output_attentions, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights # first residual connection hidden_states = attention_output + hidden_states # in VideoMAE, layernorm is also applied after self-attention layer_output = self.layernorm_after(hidden_states) layer_output = self.intermediate(layer_output) # second residual connection is done here layer_output = self.output(layer_output, hidden_states) outputs = (layer_output,) + outputs return outputs # Copied from transformers.models.vit.modeling_vit.ViTEncoder with ViT->VideoMAE class VideoMAEEncoder(nn.Module): def __init__(self, config: VideoMAEConfig) -> None: super().__init__() self.config = config self.layer = nn.ModuleList([VideoMAELayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ) -> Union[tuple, BaseModelOutput]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(layer_module), hidden_states, layer_head_mask, ) else: layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) class VideoMAEPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = VideoMAEConfig base_model_prefix = "videomae" main_input_name = "pixel_values" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv3d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, VideoMAEEncoder): module.gradient_checkpointing = value VIDEOMAE_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`VideoMAEConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ VIDEOMAE_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_frames, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`VideoMAEImageProcessor.__call__`] for details. head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare VideoMAE Model transformer outputting raw hidden-states without any specific head on top.", VIDEOMAE_START_DOCSTRING, ) class VideoMAEModel(VideoMAEPreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config self.embeddings = VideoMAEEmbeddings(config) self.encoder = VideoMAEEncoder(config) if config.use_mean_pooling: self.layernorm = None else: self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.patch_embeddings def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(VIDEOMAE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: torch.FloatTensor, bool_masked_pos: Optional[torch.BoolTensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: r""" bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, sequence_length)`, *optional*): Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). Each video in the batch must have the same number of masked patches. If `None`, then all patches are considered. Sequence length is `(num_frames // tubelet_size) * (image_size // patch_size) ** 2`. Returns: Examples: ```python >>> import av >>> import numpy as np >>> from transformers import AutoImageProcessor, VideoMAEModel >>> from huggingface_hub import hf_hub_download >>> np.random.seed(0) >>> def read_video_pyav(container, indices): ... ''' ... Decode the video with PyAV decoder. ... Args: ... container (`av.container.input.InputContainer`): PyAV container. ... indices (`List[int]`): List of frame indices to decode. ... Returns: ... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3). ... ''' ... frames = [] ... container.seek(0) ... start_index = indices[0] ... end_index = indices[-1] ... for i, frame in enumerate(container.decode(video=0)): ... if i > end_index: ... break ... if i >= start_index and i in indices: ... frames.append(frame) ... return np.stack([x.to_ndarray(format="rgb24") for x in frames]) >>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len): ... converted_len = int(clip_len * frame_sample_rate) ... end_idx = np.random.randint(converted_len, seg_len) ... start_idx = end_idx - converted_len ... indices = np.linspace(start_idx, end_idx, num=clip_len) ... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64) ... return indices >>> # video clip consists of 300 frames (10 seconds at 30 FPS) >>> file_path = hf_hub_download( ... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset" ... ) >>> container = av.open(file_path) >>> # sample 16 frames >>> indices = sample_frame_indices(clip_len=16, frame_sample_rate=1, seg_len=container.streams.video[0].frames) >>> video = read_video_pyav(container, indices) >>> image_processor = AutoImageProcessor.from_pretrained("MCG-NJU/videomae-base") >>> model = VideoMAEModel.from_pretrained("MCG-NJU/videomae-base") >>> # prepare video for the model >>> inputs = image_processor(list(video), return_tensors="pt") >>> # forward pass >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state >>> list(last_hidden_states.shape) [1, 1568, 768] ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings(pixel_values, bool_masked_pos) encoder_outputs = self.encoder( embedding_output, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] if self.layernorm is not None: sequence_output = self.layernorm(sequence_output) if not return_dict: return (sequence_output,) + encoder_outputs[1:] return BaseModelOutput( last_hidden_state=sequence_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class VideoMAEDecoder(nn.Module): def __init__(self, config, num_patches): super().__init__() decoder_num_labels = config.num_channels * config.tubelet_size * config.patch_size**2 decoder_config = deepcopy(config) decoder_config.hidden_size = config.decoder_hidden_size decoder_config.num_hidden_layers = config.decoder_num_hidden_layers decoder_config.num_attention_heads = config.decoder_num_attention_heads decoder_config.intermediate_size = config.decoder_intermediate_size self.decoder_layers = nn.ModuleList( [VideoMAELayer(decoder_config) for _ in range(config.decoder_num_hidden_layers)] ) self.norm = nn.LayerNorm(config.decoder_hidden_size) self.head = ( nn.Linear(config.decoder_hidden_size, decoder_num_labels) if decoder_num_labels > 0 else nn.Identity() ) self.gradient_checkpointing = False self.config = config def forward( self, hidden_states, return_token_num, output_attentions=False, output_hidden_states=False, return_dict=True, ): # apply Transformer layers (blocks) all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for i, layer_module in enumerate(self.decoder_layers): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(layer_module), hidden_states, None, ) else: layer_outputs = layer_module(hidden_states, head_mask=None, output_attentions=output_attentions) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if return_token_num > 0: hidden_states = hidden_states[:, -return_token_num:] # predictor projection hidden_states = self.norm(hidden_states) logits = self.head(hidden_states) if not return_dict: return tuple(v for v in [logits, all_hidden_states, all_self_attentions] if v is not None) return VideoMAEDecoderOutput(logits=logits, hidden_states=all_hidden_states, attentions=all_self_attentions) @add_start_docstrings( "The VideoMAE Model transformer with the decoder on top for self-supervised pre-training.", VIDEOMAE_START_DOCSTRING, ) class VideoMAEForPreTraining(VideoMAEPreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config self.videomae = VideoMAEModel(config) self.encoder_to_decoder = nn.Linear(config.hidden_size, config.decoder_hidden_size, bias=False) self.mask_token = nn.Parameter(torch.zeros(1, 1, config.decoder_hidden_size)) self.position_embeddings = get_sinusoid_encoding_table( self.videomae.embeddings.num_patches, config.decoder_hidden_size ) self.decoder = VideoMAEDecoder(config, num_patches=self.videomae.embeddings.num_patches) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(VIDEOMAE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=VideoMAEForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: torch.FloatTensor, bool_masked_pos: torch.BoolTensor, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, VideoMAEForPreTrainingOutput]: r""" bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, sequence_length)`): Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). Each video in the batch must have the same number of masked patches. Sequence length is `(num_frames // tubelet_size) * (image_size // patch_size) ** 2`. Returns: Examples: ```python >>> from transformers import AutoImageProcessor, VideoMAEForPreTraining >>> import numpy as np >>> import torch >>> num_frames = 16 >>> video = list(np.random.randint(0, 256, (num_frames, 3, 224, 224))) >>> image_processor = AutoImageProcessor.from_pretrained("MCG-NJU/videomae-base") >>> model = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base") >>> pixel_values = image_processor(video, return_tensors="pt").pixel_values >>> num_patches_per_frame = (model.config.image_size // model.config.patch_size) ** 2 >>> seq_length = (num_frames // model.config.tubelet_size) * num_patches_per_frame >>> bool_masked_pos = torch.randint(0, 2, (1, seq_length)).bool() >>> outputs = model(pixel_values, bool_masked_pos=bool_masked_pos) >>> loss = outputs.loss ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.videomae( pixel_values, bool_masked_pos=bool_masked_pos, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.encoder_to_decoder( sequence_output ) # [batch_size, num_visible_patches, decoder_hidden_size] batch_size, seq_len, num_channels = sequence_output.shape # we don't unshuffle the correct visible token order, but shuffle the position embeddings accordingly. if bool_masked_pos is None: raise ValueError("One must provided a boolean mask ") expanded_position_embeddings = self.position_embeddings.expand(batch_size, -1, -1).type_as(pixel_values) expanded_position_embeddings = expanded_position_embeddings.to(pixel_values.device).clone().detach() pos_emb_visible = expanded_position_embeddings[~bool_masked_pos].reshape(batch_size, -1, num_channels) pos_emb_mask = expanded_position_embeddings[bool_masked_pos].reshape(batch_size, -1, num_channels) # [batch_size, num_patches, decoder_hidden_size] x_full = torch.cat([sequence_output + pos_emb_visible, self.mask_token + pos_emb_mask], dim=1) # [batch_size, num_masked_patches, num_channels * patch_size * patch_size] decoder_outputs = self.decoder(x_full, pos_emb_mask.shape[1]) logits = decoder_outputs.logits loss = None with torch.no_grad(): # calculate the labels to be predicted if self.config.num_channels != 3: # Can't unnormalize with default means/stds frames = pixel_values else: # first, unnormalize the frames device = pixel_values.device mean = torch.as_tensor(IMAGENET_DEFAULT_MEAN).to(device)[None, None, :, None, None] std = torch.as_tensor(IMAGENET_DEFAULT_STD).to(device)[None, None, :, None, None] frames = pixel_values * std + mean # in [0, 1] batch_size, time, num_channels, height, width = frames.shape tubelet_size, patch_size = self.config.tubelet_size, self.config.patch_size if self.config.norm_pix_loss: # step 1: split up dimensions (time by tubelet_size, height by patch_size, width by patch_size) frames = frames.view( batch_size, time // tubelet_size, tubelet_size, num_channels, height // patch_size, patch_size, width // patch_size, patch_size, ) # step 2: move dimensions to concatenate: frames = frames.permute(0, 1, 4, 6, 2, 5, 7, 3).contiguous() # step 3: concatenate: frames = frames.view( batch_size, time // tubelet_size * height // patch_size * width // patch_size, tubelet_size * patch_size * patch_size, num_channels, ) # step 4: normalize. The authors find that the mean is about 0.48 and standard deviation is about 0.08. frames_norm = (frames - frames.mean(dim=-2, keepdim=True)) / ( frames.var(dim=-2, unbiased=True, keepdim=True).sqrt() + 1e-6 ) # step 5: reshape to (batch_size, T//ts * H//ps * W//ps, ts * ps * ps * C) videos_patch = frames_norm.view( batch_size, time // tubelet_size * height // patch_size * width // patch_size, tubelet_size * patch_size * patch_size * num_channels, ) else: if self.config.num_channels != 3: raise ValueError( "Can't unnormalize non-RGB images. Consider setting config.norm_pix_loss to False." ) # step 1: split up dimensions (time by tubelet_size, height by patch_size, width by patch_size) frames = frames.view( batch_size, time // tubelet_size, tubelet_size, num_channels, height // patch_size, patch_size, width // patch_size, patch_size, ) # step 2: move dimensions to concatenate: (batch_size, T//ts, H//ps, W//ps, ts, ps, ps, C) frames = frames.permute(0, 1, 4, 6, 2, 5, 7, 3).contiguous() # step 3: concatenate videos_patch = frames.view( batch_size, time // tubelet_size * height // patch_size * width // patch_size, tubelet_size * patch_size * patch_size * num_channels, ) batch_size, _, num_channels = videos_patch.shape labels = videos_patch[bool_masked_pos].reshape(batch_size, -1, num_channels) loss_fct = MSELoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return VideoMAEForPreTrainingOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """VideoMAE Model transformer with a video classification head on top (a linear layer on top of the average pooled hidden states of all tokens) e.g. for ImageNet.""", VIDEOMAE_START_DOCSTRING, ) class VideoMAEForVideoClassification(VideoMAEPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.videomae = VideoMAEModel(config) # Classifier head self.fc_norm = nn.LayerNorm(config.hidden_size) if config.use_mean_pooling else None self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(VIDEOMAE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=ImageClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, ImageClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> import av >>> import torch >>> import numpy as np >>> from transformers import AutoImageProcessor, VideoMAEForVideoClassification >>> from huggingface_hub import hf_hub_download >>> np.random.seed(0) >>> def read_video_pyav(container, indices): ... ''' ... Decode the video with PyAV decoder. ... Args: ... container (`av.container.input.InputContainer`): PyAV container. ... indices (`List[int]`): List of frame indices to decode. ... Returns: ... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3). ... ''' ... frames = [] ... container.seek(0) ... start_index = indices[0] ... end_index = indices[-1] ... for i, frame in enumerate(container.decode(video=0)): ... if i > end_index: ... break ... if i >= start_index and i in indices: ... frames.append(frame) ... return np.stack([x.to_ndarray(format="rgb24") for x in frames]) >>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len): ... converted_len = int(clip_len * frame_sample_rate) ... end_idx = np.random.randint(converted_len, seg_len) ... start_idx = end_idx - converted_len ... indices = np.linspace(start_idx, end_idx, num=clip_len) ... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64) ... return indices >>> # video clip consists of 300 frames (10 seconds at 30 FPS) >>> file_path = hf_hub_download( ... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset" ... ) >>> container = av.open(file_path) >>> # sample 16 frames >>> indices = sample_frame_indices(clip_len=16, frame_sample_rate=1, seg_len=container.streams.video[0].frames) >>> video = read_video_pyav(container, indices) >>> image_processor = AutoImageProcessor.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics") >>> model = VideoMAEForVideoClassification.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics") >>> inputs = image_processor(list(video), return_tensors="pt") >>> with torch.no_grad(): ... outputs = model(**inputs) ... logits = outputs.logits >>> # model predicts one of the 400 Kinetics-400 classes >>> predicted_label = logits.argmax(-1).item() >>> print(model.config.id2label[predicted_label]) eating spaghetti ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.videomae( pixel_values, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] if self.fc_norm is not None: sequence_output = self.fc_norm(sequence_output.mean(1)) else: sequence_output = sequence_output[:, 0] logits = self.classifier(sequence_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/bert_japanese/__init__.py
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule _import_structure = {"tokenization_bert_japanese": ["BertJapaneseTokenizer", "CharacterTokenizer", "MecabTokenizer"]} if TYPE_CHECKING: from .tokenization_bert_japanese import BertJapaneseTokenizer, CharacterTokenizer, MecabTokenizer else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/bert_japanese/tokenization_bert_japanese.py
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes.""" import collections import copy import os import unicodedata from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): import sentencepiece as spm else: spm = None logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "spm_file": "spiece.model"} SPIECE_UNDERLINE = "▁" PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "cl-tohoku/bert-base-japanese": "https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/vocab.txt", "cl-tohoku/bert-base-japanese-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/vocab.txt" ), "cl-tohoku/bert-base-japanese-char": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/vocab.txt" ), "cl-tohoku/bert-base-japanese-char-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/vocab.txt" ), } } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "cl-tohoku/bert-base-japanese": 512, "cl-tohoku/bert-base-japanese-whole-word-masking": 512, "cl-tohoku/bert-base-japanese-char": 512, "cl-tohoku/bert-base-japanese-char-whole-word-masking": 512, } PRETRAINED_INIT_CONFIGURATION = { "cl-tohoku/bert-base-japanese": { "do_lower_case": False, "word_tokenizer_type": "mecab", "subword_tokenizer_type": "wordpiece", }, "cl-tohoku/bert-base-japanese-whole-word-masking": { "do_lower_case": False, "word_tokenizer_type": "mecab", "subword_tokenizer_type": "wordpiece", }, "cl-tohoku/bert-base-japanese-char": { "do_lower_case": False, "word_tokenizer_type": "mecab", "subword_tokenizer_type": "character", }, "cl-tohoku/bert-base-japanese-char-whole-word-masking": { "do_lower_case": False, "word_tokenizer_type": "mecab", "subword_tokenizer_type": "character", }, } # Copied from transformers.models.bert.tokenization_bert.load_vocab def load_vocab(vocab_file): """Loads a vocabulary file into a dictionary.""" vocab = collections.OrderedDict() with open(vocab_file, "r", encoding="utf-8") as reader: tokens = reader.readlines() for index, token in enumerate(tokens): token = token.rstrip("\n") vocab[token] = index return vocab # Copied from transformers.models.bert.tokenization_bert.whitespace_tokenize def whitespace_tokenize(text): """Runs basic whitespace cleaning and splitting on a piece of text.""" text = text.strip() if not text: return [] tokens = text.split() return tokens class BertJapaneseTokenizer(PreTrainedTokenizer): r""" Construct a BERT tokenizer for Japanese text. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to: this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to a one-wordpiece-per-line vocabulary file. spm_file (`str`, *optional*): Path to [SentencePiece](https://github.com/google/sentencepiece) file (generally has a .spm or .model extension) that contains the vocabulary. do_lower_case (`bool`, *optional*, defaults to `True`): Whether to lower case the input. Only has an effect when do_basic_tokenize=True. do_word_tokenize (`bool`, *optional*, defaults to `True`): Whether to do word tokenization. do_subword_tokenize (`bool`, *optional*, defaults to `True`): Whether to do subword tokenization. word_tokenizer_type (`str`, *optional*, defaults to `"basic"`): Type of word tokenizer. Choose from ["basic", "mecab", "sudachi", "jumanpp"]. subword_tokenizer_type (`str`, *optional*, defaults to `"wordpiece"`): Type of subword tokenizer. Choose from ["wordpiece", "character", "sentencepiece",]. mecab_kwargs (`dict`, *optional*): Dictionary passed to the `MecabTokenizer` constructor. sudachi_kwargs (`dict`, *optional*): Dictionary passed to the `SudachiTokenizer` constructor. jumanpp_kwargs (`dict`, *optional*): Dictionary passed to the `JumanppTokenizer` constructor. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self, vocab_file, spm_file=None, do_lower_case=False, do_word_tokenize=True, do_subword_tokenize=True, word_tokenizer_type="basic", subword_tokenizer_type="wordpiece", never_split=None, unk_token="[UNK]", sep_token="[SEP]", pad_token="[PAD]", cls_token="[CLS]", mask_token="[MASK]", mecab_kwargs=None, sudachi_kwargs=None, jumanpp_kwargs=None, **kwargs, ): super().__init__( spm_file=spm_file, unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, do_lower_case=do_lower_case, do_word_tokenize=do_word_tokenize, do_subword_tokenize=do_subword_tokenize, word_tokenizer_type=word_tokenizer_type, subword_tokenizer_type=subword_tokenizer_type, never_split=never_split, mecab_kwargs=mecab_kwargs, sudachi_kwargs=sudachi_kwargs, jumanpp_kwargs=jumanpp_kwargs, **kwargs, ) if subword_tokenizer_type == "sentencepiece": if not os.path.isfile(spm_file): raise ValueError( f"Can't find a vocabulary file at path '{spm_file}'. To load the vocabulary from a Google" " pretrained model use `tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) self.spm_file = spm_file else: if not os.path.isfile(vocab_file): raise ValueError( f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google" " pretrained model use `tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) self.vocab = load_vocab(vocab_file) self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()]) self.do_word_tokenize = do_word_tokenize self.word_tokenizer_type = word_tokenizer_type self.lower_case = do_lower_case self.never_split = never_split self.mecab_kwargs = copy.deepcopy(mecab_kwargs) self.sudachi_kwargs = copy.deepcopy(sudachi_kwargs) self.jumanpp_kwargs = copy.deepcopy(jumanpp_kwargs) if do_word_tokenize: if word_tokenizer_type == "basic": self.word_tokenizer = BasicTokenizer( do_lower_case=do_lower_case, never_split=never_split, tokenize_chinese_chars=False ) elif word_tokenizer_type == "mecab": self.word_tokenizer = MecabTokenizer( do_lower_case=do_lower_case, never_split=never_split, **(mecab_kwargs or {}) ) elif word_tokenizer_type == "sudachi": self.word_tokenizer = SudachiTokenizer( do_lower_case=do_lower_case, never_split=never_split, **(sudachi_kwargs or {}) ) elif word_tokenizer_type == "jumanpp": self.word_tokenizer = JumanppTokenizer( do_lower_case=do_lower_case, never_split=never_split, **(jumanpp_kwargs or {}) ) else: raise ValueError(f"Invalid word_tokenizer_type '{word_tokenizer_type}' is specified.") self.do_subword_tokenize = do_subword_tokenize self.subword_tokenizer_type = subword_tokenizer_type if do_subword_tokenize: if subword_tokenizer_type == "wordpiece": self.subword_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=self.unk_token) elif subword_tokenizer_type == "character": self.subword_tokenizer = CharacterTokenizer(vocab=self.vocab, unk_token=self.unk_token) elif subword_tokenizer_type == "sentencepiece": self.subword_tokenizer = SentencepieceTokenizer(vocab=self.spm_file, unk_token=self.unk_token) else: raise ValueError(f"Invalid subword_tokenizer_type '{subword_tokenizer_type}' is specified.") @property def do_lower_case(self): return self.lower_case def __getstate__(self): state = dict(self.__dict__) if self.word_tokenizer_type in ["mecab", "sudachi", "jumanpp"]: del state["word_tokenizer"] return state def __setstate__(self, state): self.__dict__ = state if self.word_tokenizer_type == "mecab": self.word_tokenizer = MecabTokenizer( do_lower_case=self.do_lower_case, never_split=self.never_split, **(self.mecab_kwargs or {}) ) elif self.word_tokenizer_type == "sudachi": self.word_tokenizer = SudachiTokenizer( do_lower_case=self.do_lower_case, never_split=self.never_split, **(self.sudachi_kwargs or {}) ) elif self.word_tokenizer_type == "jumanpp": self.word_tokenizer = JumanppTokenizer( do_lower_case=self.do_lower_case, never_split=self.never_split, **(self.jumanpp_kwargs or {}) ) def _tokenize(self, text): if self.do_word_tokenize: tokens = self.word_tokenizer.tokenize(text, never_split=self.all_special_tokens) else: tokens = [text] if self.do_subword_tokenize: split_tokens = [sub_token for token in tokens for sub_token in self.subword_tokenizer.tokenize(token)] else: split_tokens = tokens return split_tokens @property def vocab_size(self): if self.subword_tokenizer_type == "sentencepiece": return len(self.subword_tokenizer.sp_model) return len(self.vocab) def get_vocab(self): if self.subword_tokenizer_type == "sentencepiece": vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab return dict(self.vocab, **self.added_tokens_encoder) def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" if self.subword_tokenizer_type == "sentencepiece": return self.subword_tokenizer.sp_model.PieceToId(token) return self.vocab.get(token, self.vocab.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" if self.subword_tokenizer_type == "sentencepiece": return self.subword_tokenizer.sp_model.IdToPiece(index) return self.ids_to_tokens.get(index, self.unk_token) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" if self.subword_tokenizer_type == "sentencepiece": return self.subword_tokenizer.sp_model.decode(tokens) out_string = " ".join(tokens).replace(" ##", "").strip() return out_string # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.build_inputs_with_special_tokens def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A BERT sequence has the following format: - single sequence: `[CLS] X [SEP]` - pair of sequences: `[CLS] A [SEP] B [SEP]` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + token_ids_1 + sep # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.get_special_tokens_mask def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is not None: return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] return [1] + ([0] * len(token_ids_0)) + [1] # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.create_token_type_ids_from_sequences def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence pair mask has the following format: ``` 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if os.path.isdir(save_directory): if self.subword_tokenizer_type == "sentencepiece": vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["spm_file"] ) else: vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"], ) else: vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory if self.subword_tokenizer_type == "sentencepiece": with open(vocab_file, "wb") as writer: content_spiece_model = self.subword_tokenizer.sp_model.serialized_model_proto() writer.write(content_spiece_model) else: with open(vocab_file, "w", encoding="utf-8") as writer: index = 0 for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." " Please check that the vocabulary is not corrupted!" ) index = token_index writer.write(token + "\n") index += 1 return (vocab_file,) class MecabTokenizer: """Runs basic tokenization with MeCab morphological parser.""" def __init__( self, do_lower_case=False, never_split=None, normalize_text=True, mecab_dic: Optional[str] = "ipadic", mecab_option: Optional[str] = None, ): """ Constructs a MecabTokenizer. Args: **do_lower_case**: (*optional*) boolean (default True) Whether to lowercase the input. **never_split**: (*optional*) list of str Kept for backward compatibility purposes. Now implemented directly at the base class level (see [`PreTrainedTokenizer.tokenize`]) List of tokens not to split. **normalize_text**: (*optional*) boolean (default True) Whether to apply unicode normalization to text before tokenization. **mecab_dic**: (*optional*) string (default "ipadic") Name of dictionary to be used for MeCab initialization. If you are using a system-installed dictionary, set this option to `None` and modify *mecab_option*. **mecab_option**: (*optional*) string String passed to MeCab constructor. """ self.do_lower_case = do_lower_case self.never_split = never_split if never_split is not None else [] self.normalize_text = normalize_text try: import fugashi except ModuleNotFoundError as error: raise error.__class__( "You need to install fugashi to use MecabTokenizer. " "See https://pypi.org/project/fugashi/ for installation." ) mecab_option = mecab_option or "" if mecab_dic is not None: if mecab_dic == "ipadic": try: import ipadic except ModuleNotFoundError as error: raise error.__class__( "The ipadic dictionary is not installed. " "See https://github.com/polm/ipadic-py for installation." ) dic_dir = ipadic.DICDIR elif mecab_dic == "unidic_lite": try: import unidic_lite except ModuleNotFoundError as error: raise error.__class__( "The unidic_lite dictionary is not installed. " "See https://github.com/polm/unidic-lite for installation." ) dic_dir = unidic_lite.DICDIR elif mecab_dic == "unidic": try: import unidic except ModuleNotFoundError as error: raise error.__class__( "The unidic dictionary is not installed. " "See https://github.com/polm/unidic-py for installation." ) dic_dir = unidic.DICDIR if not os.path.isdir(dic_dir): raise RuntimeError( "The unidic dictionary itself is not found. " "See https://github.com/polm/unidic-py for installation." ) else: raise ValueError("Invalid mecab_dic is specified.") mecabrc = os.path.join(dic_dir, "mecabrc") mecab_option = f'-d "{dic_dir}" -r "{mecabrc}" ' + mecab_option self.mecab = fugashi.GenericTagger(mecab_option) def tokenize(self, text, never_split=None, **kwargs): """Tokenizes a piece of text.""" if self.normalize_text: text = unicodedata.normalize("NFKC", text) never_split = self.never_split + (never_split if never_split is not None else []) tokens = [] for word in self.mecab(text): token = word.surface if self.do_lower_case and token not in never_split: token = token.lower() tokens.append(token) return tokens class SudachiTokenizer: """Runs basic tokenization with Sudachi morphological parser.""" def __init__( self, do_lower_case=False, never_split=None, normalize_text=True, trim_whitespace=False, sudachi_split_mode="A", sudachi_config_path=None, sudachi_resource_dir=None, sudachi_dict_type="core", ): """ Constructs a SudachiTokenizer. Args: **do_lower_case**: (*optional*) boolean (default True) Whether to lowercase the input. **never_split**: (*optional*) list of str Kept for backward compatibility purposes. Now implemented directly at the base class level (see [`PreTrainedTokenizer.tokenize`]) List of tokens not to split. **normalize_text**: (*optional*) boolean (default True) Whether to apply unicode normalization to text before tokenization. **trim_whitespace**: (*optional*) boolean (default False) Whether to trim all whitespace, tab, newline from tokens. **sudachi_split_mode**: (*optional*) string Split mode of sudachi, choose from "A", "B", "C". **sudachi_config_path**: (*optional*) string **sudachi_resource_dir**: (*optional*) string **sudachi_dict_type**: (*optional*) string dict type of sudachi, choose from "small", "core", "full". """ self.do_lower_case = do_lower_case self.never_split = never_split if never_split is not None else [] self.normalize_text = normalize_text self.trim_whitespace = trim_whitespace try: from sudachipy import dictionary, tokenizer except ImportError: raise ImportError( "You need to install sudachipy to use SudachiTokenizer. " "See https://github.com/WorksApplications/SudachiPy for installation." ) if sudachi_split_mode == "A": self.split_mode = tokenizer.Tokenizer.SplitMode.A elif sudachi_split_mode == "B": self.split_mode = tokenizer.Tokenizer.SplitMode.B elif sudachi_split_mode == "C": self.split_mode = tokenizer.Tokenizer.SplitMode.C else: raise ValueError("Invalid sudachi_split_mode is specified.") self.sudachi = dictionary.Dictionary( config_path=sudachi_config_path, resource_dir=sudachi_resource_dir, dict=sudachi_dict_type ).create(self.split_mode) def tokenize(self, text, never_split=None, **kwargs): """Tokenizes a piece of text.""" if self.normalize_text: text = unicodedata.normalize("NFKC", text) never_split = self.never_split + (never_split if never_split is not None else []) tokens = [] for word in self.sudachi.tokenize(text): token = word.surface() if self.do_lower_case and token not in never_split: token = token.lower() if self.trim_whitespace: if token.strip() == "": continue else: token = token.strip() tokens.append(token) return tokens class JumanppTokenizer: """Runs basic tokenization with jumanpp morphological parser.""" def __init__( self, do_lower_case=False, never_split=None, normalize_text=True, trim_whitespace=False, ): """ Constructs a JumanppTokenizer. Args: **do_lower_case**: (*optional*) boolean (default True) Whether to lowercase the input. **never_split**: (*optional*) list of str Kept for backward compatibility purposes. Now implemented directly at the base class level (see [`PreTrainedTokenizer.tokenize`]) List of tokens not to split. **normalize_text**: (*optional*) boolean (default True) Whether to apply unicode normalization to text before tokenization. **trim_whitespace**: (*optional*) boolean (default False) Whether to trim all whitespace, tab, newline from tokens. """ self.do_lower_case = do_lower_case self.never_split = never_split if never_split is not None else [] self.normalize_text = normalize_text self.trim_whitespace = trim_whitespace try: import rhoknp except ImportError: raise ImportError( "You need to install rhoknp to use JumanppTokenizer. " "See https://github.com/ku-nlp/rhoknp for installation." ) self.juman = rhoknp.Jumanpp() def tokenize(self, text, never_split=None, **kwargs): """Tokenizes a piece of text.""" if self.normalize_text: text = unicodedata.normalize("NFKC", text) text = text.strip() never_split = self.never_split + (never_split if never_split is not None else []) tokens = [] for mrph in self.juman.apply_to_sentence(text).morphemes: token = mrph.text if self.do_lower_case and token not in never_split: token = token.lower() if self.trim_whitespace: if token.strip() == "": continue else: token = token.strip() tokens.append(token) return tokens class CharacterTokenizer: """Runs Character tokenization.""" def __init__(self, vocab, unk_token, normalize_text=True): """ Constructs a CharacterTokenizer. Args: **vocab**: Vocabulary object. **unk_token**: str A special symbol for out-of-vocabulary token. **normalize_text**: (`optional`) boolean (default True) Whether to apply unicode normalization to text before tokenization. """ self.vocab = vocab self.unk_token = unk_token self.normalize_text = normalize_text def tokenize(self, text): """ Tokenizes a piece of text into characters. For example, `input = "apple""` wil return as output `["a", "p", "p", "l", "e"]`. Args: text: A single token or whitespace separated tokens. This should have already been passed through *BasicTokenizer*. Returns: A list of characters. """ if self.normalize_text: text = unicodedata.normalize("NFKC", text) output_tokens = [] for char in text: if char not in self.vocab: output_tokens.append(self.unk_token) continue output_tokens.append(char) return output_tokens # Copied from transformers.models.bert.tokenization_bert.BasicTokenizer class BasicTokenizer(object): """ Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.). Args: do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. never_split (`Iterable`, *optional*): Collection of tokens which will never be split during tokenization. Only has an effect when `do_basic_tokenize=True` tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this [issue](https://github.com/huggingface/transformers/issues/328)). strip_accents (`bool`, *optional*): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for `lowercase` (as in the original BERT). do_split_on_punc (`bool`, *optional*, defaults to `True`): In some instances we want to skip the basic punctuation splitting so that later tokenization can capture the full context of the words, such as contractions. """ def __init__( self, do_lower_case=True, never_split=None, tokenize_chinese_chars=True, strip_accents=None, do_split_on_punc=True, ): if never_split is None: never_split = [] self.do_lower_case = do_lower_case self.never_split = set(never_split) self.tokenize_chinese_chars = tokenize_chinese_chars self.strip_accents = strip_accents self.do_split_on_punc = do_split_on_punc def tokenize(self, text, never_split=None): """ Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer. Args: never_split (`List[str]`, *optional*) Kept for backward compatibility purposes. Now implemented directly at the base class level (see [`PreTrainedTokenizer.tokenize`]) List of token not to split. """ # union() returns a new set by concatenating the two sets. never_split = self.never_split.union(set(never_split)) if never_split else self.never_split text = self._clean_text(text) # This was added on November 1st, 2018 for the multilingual and Chinese # models. This is also applied to the English models now, but it doesn't # matter since the English models were not trained on any Chinese data # and generally don't have any Chinese data in them (there are Chinese # characters in the vocabulary because Wikipedia does have some Chinese # words in the English Wikipedia.). if self.tokenize_chinese_chars: text = self._tokenize_chinese_chars(text) # prevents treating the same character with different unicode codepoints as different characters unicode_normalized_text = unicodedata.normalize("NFC", text) orig_tokens = whitespace_tokenize(unicode_normalized_text) split_tokens = [] for token in orig_tokens: if token not in never_split: if self.do_lower_case: token = token.lower() if self.strip_accents is not False: token = self._run_strip_accents(token) elif self.strip_accents: token = self._run_strip_accents(token) split_tokens.extend(self._run_split_on_punc(token, never_split)) output_tokens = whitespace_tokenize(" ".join(split_tokens)) return output_tokens def _run_strip_accents(self, text): """Strips accents from a piece of text.""" text = unicodedata.normalize("NFD", text) output = [] for char in text: cat = unicodedata.category(char) if cat == "Mn": continue output.append(char) return "".join(output) def _run_split_on_punc(self, text, never_split=None): """Splits punctuation on a piece of text.""" if not self.do_split_on_punc or (never_split is not None and text in never_split): return [text] chars = list(text) i = 0 start_new_word = True output = [] while i < len(chars): char = chars[i] if _is_punctuation(char): output.append([char]) start_new_word = True else: if start_new_word: output.append([]) start_new_word = False output[-1].append(char) i += 1 return ["".join(x) for x in output] def _tokenize_chinese_chars(self, text): """Adds whitespace around any CJK character.""" output = [] for char in text: cp = ord(char) if self._is_chinese_char(cp): output.append(" ") output.append(char) output.append(" ") else: output.append(char) return "".join(output) def _is_chinese_char(self, cp): """Checks whether CP is the codepoint of a CJK character.""" # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x20000 and cp <= 0x2A6DF) # or (cp >= 0x2A700 and cp <= 0x2B73F) # or (cp >= 0x2B740 and cp <= 0x2B81F) # or (cp >= 0x2B820 and cp <= 0x2CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2F800 and cp <= 0x2FA1F) # ): # return True return False def _clean_text(self, text): """Performs invalid character removal and whitespace cleanup on text.""" output = [] for char in text: cp = ord(char) if cp == 0 or cp == 0xFFFD or _is_control(char): continue if _is_whitespace(char): output.append(" ") else: output.append(char) return "".join(output) # Copied from transformers.models.bert.tokenization_bert.WordpieceTokenizer class WordpieceTokenizer(object): """Runs WordPiece tokenization.""" def __init__(self, vocab, unk_token, max_input_chars_per_word=100): self.vocab = vocab self.unk_token = unk_token self.max_input_chars_per_word = max_input_chars_per_word def tokenize(self, text): """ Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform tokenization using the given vocabulary. For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`. Args: text: A single token or whitespace separated tokens. This should have already been passed through *BasicTokenizer*. Returns: A list of wordpiece tokens. """ output_tokens = [] for token in whitespace_tokenize(text): chars = list(token) if len(chars) > self.max_input_chars_per_word: output_tokens.append(self.unk_token) continue is_bad = False start = 0 sub_tokens = [] while start < len(chars): end = len(chars) cur_substr = None while start < end: substr = "".join(chars[start:end]) if start > 0: substr = "##" + substr if substr in self.vocab: cur_substr = substr break end -= 1 if cur_substr is None: is_bad = True break sub_tokens.append(cur_substr) start = end if is_bad: output_tokens.append(self.unk_token) else: output_tokens.extend(sub_tokens) return output_tokens class SentencepieceTokenizer(object): """ Runs sentencepiece tokenization. Based on transformers.models.albert.tokenization_albert.AlbertTokenizer. """ def __init__( self, vocab, unk_token, do_lower_case=False, remove_space=True, keep_accents=True, sp_model_kwargs: Optional[Dict[str, Any]] = None, ): self.vocab = vocab self.unk_token = unk_token self.do_lower_case = do_lower_case self.remove_space = remove_space self.keep_accents = keep_accents self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab) def preprocess_text(self, inputs): if self.remove_space: outputs = " ".join(inputs.strip().split()) else: outputs = inputs outputs = outputs.replace("``", '"').replace("''", '"') if not self.keep_accents: outputs = unicodedata.normalize("NFKD", outputs) outputs = "".join([c for c in outputs if not unicodedata.combining(c)]) if self.do_lower_case: outputs = outputs.lower() return outputs def tokenize(self, text): """ Tokenizes text by sentencepiece. Based on [SentencePiece](https://github.com/google/sentencepiece). Tokenization needs the given vocabulary. Args: text: A string needs to be tokenized. Returns: A list of sentencepiece tokens. """ text = self.preprocess_text(text) pieces = self.sp_model.encode(text, out_type=str) new_pieces = [] for piece in pieces: if len(piece) > 1 and piece[-1] == str(",") and piece[-2].isdigit(): cur_pieces = self.sp_model.EncodeAsPieces(piece[:-1].replace(SPIECE_UNDERLINE, "")) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: cur_pieces = cur_pieces[1:] else: cur_pieces[0] = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(cur_pieces) else: new_pieces.append(piece) return new_pieces
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/data2vec/modeling_tf_data2vec_vision.py
# coding=utf-8 # Copyright 2022 Meta Platforms and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 Data2Vec Vision model.""" from __future__ import annotations import collections.abc import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import tensorflow as tf from ...activations_tf import get_tf_activation from ...modeling_tf_outputs import ( TFBaseModelOutput, TFBaseModelOutputWithPooling, TFSemanticSegmenterOutput, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import ( TFModelInputType, TFPreTrainedModel, TFSequenceClassificationLoss, get_initializer, keras_serializable, unpack_inputs, ) from ...tf_utils import shape_list, stable_softmax from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_data2vec_vision import Data2VecVisionConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "Data2VecVisionConfig" # Base docstring _CHECKPOINT_FOR_DOC = "facebook/data2vec-vision-base" _EXPECTED_OUTPUT_SHAPE = [1, 197, 768] # Image classification docstring _IMAGE_CLASS_CHECKPOINT = "facebook/data2vec-vision-base-ft1k" _IMAGE_CLASS_EXPECTED_OUTPUT = "remote control, remote" TF_DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST = [ "facebook/data2vec-vision-base-ft1k", # See all Data2VecVision models at https://huggingface.co/models?filter=data2vec-vision ] @dataclass class TFData2VecVisionModelOutputWithPooling(TFBaseModelOutputWithPooling): """ Class for outputs of [`TFData2VecVisionModel`]. Args: last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. pooler_output (`tf.Tensor` of shape `(batch_size, hidden_size)`): Average of the last layer hidden states of the patch tokens (excluding the *[CLS]* token) if *config.use_mean_pooling* is set to True. If set to False, then the final hidden state of the *[CLS]* token will be returned. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ last_hidden_state: tf.Tensor = None pooler_output: tf.Tensor = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None class TFData2VecVisionDropPath(tf.keras.layers.Layer): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). References: (1) github.com:rwightman/pytorch-image-models """ def __init__(self, drop_path, **kwargs): super().__init__(**kwargs) self.drop_path = drop_path def call(self, x, training=None): if training: keep_prob = 1 - self.drop_path shape = (tf.shape(x)[0],) + (1,) * (len(tf.shape(x)) - 1) random_tensor = keep_prob + tf.random.uniform(shape, 0, 1) random_tensor = tf.floor(random_tensor) return (x / keep_prob) * random_tensor return x class TFData2VecVisionEmbeddings(tf.keras.layers.Layer): """ Construct the CLS token, position and patch embeddings. Optionally, also the mask token. """ def __init__(self, config: Data2VecVisionConfig, **kwargs): super().__init__(**kwargs) self.config = config self.patch_embeddings = TFData2VecVisionPatchEmbeddings(config, name="patch_embeddings") self.num_patches = self.patch_embeddings.num_patches self.config = config self.dropout = tf.keras.layers.Dropout(config.hidden_dropout_prob) def build(self, input_shape: tf.TensorShape): self.cls_token = self.add_weight( shape=(1, 1, self.config.hidden_size), initializer=tf.random_normal_initializer(stddev=self.config.initializer_range), trainable=True, name="cls_token", ) if self.config.use_mask_token: self.mask_token = self.add_weight( shape=(1, 1, self.config.hidden_size), initializer=tf.random_normal_initializer(stddev=self.config.initializer_range), trainable=True, name="mask_token", ) else: self.mask_token = None if self.config.use_absolute_position_embeddings: self.position_embeddings = self.add_weight( shape=(1, self.num_patches + 1, self.config.hidden_size), initializer=tf.random_normal_initializer(stddev=self.config.initializer_range), trainable=True, name="position_embeddings", ) else: self.position_embeddings = None super().build(input_shape) def call(self, pixel_values: tf.Tensor, bool_masked_pos: tf.Tensor | None = None) -> tf.Tensor: embeddings = self.patch_embeddings(pixel_values) batch_size, seq_len, projection_dim = shape_list(embeddings) cls_tokens = tf.tile(self.cls_token, (batch_size, 1, 1)) if bool_masked_pos is not None: mask_tokens = tf.broadcast_to(self.mask_token, (batch_size, seq_len, projection_dim)) # replace the masked visual tokens by mask_tokens w = bool_masked_pos[..., None] w = tf.cast(w, mask_tokens.dtype) # since TF doesn't support eager tensor assignment embeddings = embeddings * (1 - w) + mask_tokens * w embeddings = tf.concat([cls_tokens, embeddings], axis=1) if self.position_embeddings is not None: embeddings = embeddings + self.position_embeddings embeddings = self.dropout(embeddings) return embeddings class TFData2VecVisionPatchEmbeddings(tf.keras.layers.Layer): """ Image to Patch Embedding. """ def __init__(self, config: Data2VecVisionConfig, **kwargs): super().__init__(**kwargs) self.config = config image_size, patch_size = config.image_size, config.patch_size num_channels, hidden_size = config.num_channels, config.hidden_size image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) patch_shape = (image_size[0] // patch_size[0], image_size[1] // patch_size[1]) self.image_size = image_size self.patch_size = patch_size self.num_patches = num_patches self.patch_shape = patch_shape self.num_channels = num_channels self.projection = tf.keras.layers.Conv2D( filters=hidden_size, kernel_size=patch_size, strides=patch_size, padding="valid", data_format="channels_last", kernel_initializer="glorot_uniform", # following torch.nn.Linear bias_initializer="zeros", name="projection", ) def call(self, pixel_values: tf.Tensor, training: bool = False) -> tf.Tensor: batch_size, num_channels, height, width = shape_list(pixel_values) if tf.executing_eagerly(): if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the" " configuration." ) if height != self.image_size[0] or width != self.image_size[1]: raise ValueError( f"Input image size ({height}*{width}) doesn't match model" f" ({self.image_size[0]}*{self.image_size[1]})." ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1)) projection = self.projection(pixel_values) # Change the 2D spatial dimensions to a single temporal dimension. # shape = (batch_size, num_patches, out_channels=embed_dim) num_patches = (width // self.patch_size[1]) * (height // self.patch_size[0]) return tf.reshape(tensor=projection, shape=(batch_size, num_patches, -1)) class TFData2VecVisionSelfAttention(tf.keras.layers.Layer): def __init__(self, config: Data2VecVisionConfig, window_size: Optional[tuple] = None, **kwargs): super().__init__(**kwargs) if config.hidden_size % config.num_attention_heads != 0: raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number " f"of attention heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.sqrt_att_head_size = math.sqrt(self.attention_head_size) self.query = tf.keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query" ) self.key = tf.keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key", use_bias=False, ) self.value = tf.keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value" ) self.dropout = tf.keras.layers.Dropout(rate=config.attention_probs_dropout_prob) if window_size: self.relative_position_bias = TFData2VecVisionRelativePositionBias( config, window_size=window_size, name="relative_position_bias" ) else: self.relative_position_bias = None def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor: # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size] tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size)) # Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size] return tf.transpose(tensor, perm=[0, 2, 1, 3]) def call( self, hidden_states: tf.Tensor, head_mask: tf.Tensor, output_attentions: bool, relative_position_bias: Optional["TFData2VecVisionRelativePositionBias"] = None, training: bool = False, ) -> Tuple[tf.Tensor]: batch_size = shape_list(hidden_states)[0] mixed_query_layer = self.query(inputs=hidden_states) mixed_key_layer = self.key(inputs=hidden_states) mixed_value_layer = self.value(inputs=hidden_states) query_layer = self.transpose_for_scores(mixed_query_layer, batch_size) key_layer = self.transpose_for_scores(mixed_key_layer, batch_size) value_layer = self.transpose_for_scores(mixed_value_layer, batch_size) # Take the dot product between "query" and "key" to get the raw attention scores. # (batch size, num_heads, seq_len_q, seq_len_k) attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True) attention_scores = attention_scores / self.sqrt_att_head_size # Add relative position bias if present. if self.relative_position_bias is not None: # Passing `0.0` to the `relative_position_bias()` layer because otherwise Keras # might complain about `Layer.call()` not being invoked properly. In this case this input # i.e., 0.0 is not going to be used in any calculations so we're safe. attention_scores = attention_scores + self.relative_position_bias(0.0)[None, ...] # Add shared relative position bias if provided. if relative_position_bias is not None: attention_scores = attention_scores + relative_position_bias # Normalize the attention scores to probabilities. attention_probs = stable_softmax(logits=attention_scores, axis=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(inputs=attention_probs, training=training) # Mask heads if we want to if head_mask is not None: attention_probs = tf.multiply(attention_probs, head_mask) attention_output = tf.matmul(attention_probs, value_layer) attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3]) # (batch_size, seq_len_q, all_head_size) attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.all_head_size)) outputs = (attention_output, attention_probs) if output_attentions else (attention_output,) return outputs class TFData2VecVisionSelfOutput(tf.keras.layers.Layer): """ The residual connection is defined in TFData2VecVisionLayer instead of here (as is the case with other models), due to the layernorm applied before each block. """ def __init__(self, config: Data2VecVisionConfig, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob) def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, gamma=None, training: bool = False) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) return hidden_states class TFData2VecVisionAttention(tf.keras.layers.Layer): def __init__(self, config: Data2VecVisionConfig, window_size: Optional[tuple] = None, **kwargs): super().__init__(**kwargs) self.attention = TFData2VecVisionSelfAttention(config, window_size=window_size, name="attention") self.dense_output = TFData2VecVisionSelfOutput(config, name="output") def prune_heads(self, heads): raise NotImplementedError def call( self, input_tensor: tf.Tensor, head_mask: tf.Tensor, output_attentions: bool, relative_position_bias: Optional["TFData2VecVisionRelativePositionBias"] = None, training: bool = False, ) -> Tuple[tf.Tensor]: self_outputs = self.attention( hidden_states=input_tensor, head_mask=head_mask, output_attentions=output_attentions, relative_position_bias=relative_position_bias, training=training, ) attention_output = self.dense_output( hidden_states=self_outputs[0], input_tensor=input_tensor, training=training ) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.vit.modeling_tf_vit.TFViTIntermediate with ViT->Data2VecVision class TFData2VecVisionIntermediate(tf.keras.layers.Layer): def __init__(self, config: Data2VecVisionConfig, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) if isinstance(config.hidden_act, str): self.intermediate_act_fn = get_tf_activation(config.hidden_act) else: self.intermediate_act_fn = config.hidden_act def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class TFData2VecVisionOutput(tf.keras.layers.Layer): def __init__(self, config: Data2VecVisionConfig, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout_prob) def call(self, hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) return hidden_states class TFData2VecVisionLayer(tf.keras.layers.Layer): """This corresponds to the Block class in the timm implementation.""" def __init__( self, config: Data2VecVisionConfig, window_size: Optional[tuple] = None, drop_path_rate: float = 0.0, **kwargs ): super().__init__(**kwargs) self.config = config self.attention = TFData2VecVisionAttention(config, window_size=window_size, name="attention") self.intermediate = TFData2VecVisionIntermediate(config, name="intermediate") self.data2vec_output = TFData2VecVisionOutput(config, name="output") self.layernorm_before = tf.keras.layers.LayerNormalization( epsilon=config.layer_norm_eps, name="layernorm_before" ) self.layernorm_after = tf.keras.layers.LayerNormalization( epsilon=config.layer_norm_eps, name="layernorm_after" ) # Using `layers.Activation` instead of `tf.identity` to better control `training` # behaviour. self.drop_path = ( TFData2VecVisionDropPath(drop_path_rate, name="drop_path") if drop_path_rate > 0.0 else tf.keras.layers.Activation("linear", name="drop_path") ) self.init_values = config.layer_scale_init_value def build(self, input_shape: tf.TensorShape = None): if self.init_values > 0: self.lambda_1 = self.add_weight( shape=(self.config.hidden_size), initializer="ones", trainable=True, name="lambda_1", ) self.lambda_2 = self.add_weight( shape=(self.config.hidden_size), initializer="ones", trainable=True, name="lambda_2", ) self.lambda_1.assign(self.init_values * tf.ones((self.config.hidden_size))) self.lambda_2.assign(self.init_values * tf.ones((self.config.hidden_size))) else: self.lambda_1, self.lambda_2 = None, None super().build(input_shape) def call( self, hidden_states: tf.Tensor, head_mask: tf.Tensor, output_attentions: bool, relative_position_bias: Optional["TFData2VecVisionRelativePositionBias"] = None, training: bool = False, ) -> Tuple[tf.Tensor]: self_attention_outputs = self.attention( # in Data2VecVision, layernorm is applied before self-attention input_tensor=self.layernorm_before(inputs=hidden_states), head_mask=head_mask, output_attentions=output_attentions, relative_position_bias=relative_position_bias, training=training, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights # apply lambda_1 if present if self.lambda_1 is not None: attention_output = self.lambda_1 * attention_output # first residual connection hidden_states = self.drop_path(attention_output) + hidden_states # in Data2VecVision, layernorm is also applied after self-attention layer_output = self.layernorm_after(hidden_states) layer_output = self.intermediate(layer_output) layer_output = self.data2vec_output(layer_output) if self.lambda_2 is not None: layer_output = self.lambda_2 * layer_output # second residual connection layer_output = self.drop_path(layer_output) + hidden_states outputs = (layer_output,) + outputs return outputs # Taken and modified from here: # https://github.com/leondgarse/keras_cv_attention_models/blob/main/keras_cv_attention_models/beit/beit.py#L28 class TFData2VecVisionRelativePositionBias(tf.keras.layers.Layer): def __init__(self, config: Data2VecVisionConfig, window_size: tuple, **kwargs) -> None: super().__init__(**kwargs) self.config = config self.window_size = window_size # +3 for cls_token_pos_len # window_size can be something like (14, 14) self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 self.relative_position_index = self.get_position_index() def build(self, input_shape): self.relative_position_bias_table = self.add_weight( shape=(self.num_relative_distance, self.config.num_attention_heads), initializer="zeros", trainable=True, name="relative_position_bias_table", ) # [2*Wh-1 * 2*Ww-1, nH] # cls to token & token 2 cls & cls to cls super().build(input_shape) def get_position_index(self): # get pair-wise relative position index for each token inside the window xx, yy = tf.meshgrid(range(self.window_size[0]), range(self.window_size[1])) coords = tf.stack([yy, xx], axis=0) # [2, Wh, Ww] coords_flatten = tf.reshape(coords, [2, -1]) # [2, Wh*Ww] relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # [2, Wh*Ww, Wh*Ww] relative_coords = tf.transpose(relative_coords, perm=[1, 2, 0]) # [Wh*Ww, Wh*Ww, 2] xx = (relative_coords[:, :, 0] + self.window_size[0] - 1) * (2 * self.window_size[1] - 1) yy = relative_coords[:, :, 1] + self.window_size[1] - 1 relative_coords = tf.stack([xx, yy], axis=-1) relative_position_index = tf.reduce_sum(relative_coords, axis=-1) # [Wh*Ww, Wh*Ww] top = tf.ones((1, relative_position_index.shape[1]), dtype=relative_position_index.dtype) * ( self.num_relative_distance - 3 ) left = tf.ones((relative_position_index.shape[0], 1), dtype=relative_position_index.dtype) * ( self.num_relative_distance - 2 ) corner = tf.ones((1, 1), dtype=relative_position_index.dtype) * (self.num_relative_distance - 1) left_corner = tf.concat([corner, left], axis=0) relative_position_index = tf.concat([top, relative_position_index], axis=0) relative_position_index = tf.concat([left_corner, relative_position_index], axis=1) # [Wh*Ww + 1, Wh*Ww + 1] return relative_position_index def call(self, inputs=None) -> tf.Tensor: relative_position_bias = tf.gather(self.relative_position_bias_table, self.relative_position_index, axis=0) return tf.transpose(relative_position_bias, [2, 0, 1]) class TFData2VecVisionEncoder(tf.keras.layers.Layer): def __init__(self, config: Data2VecVisionConfig, window_size: Optional[tuple] = None, **kwargs): super().__init__(**kwargs) self.config = config if config.use_shared_relative_position_bias: self.relative_position_bias = TFData2VecVisionRelativePositionBias( config, window_size=window_size, name="relative_position_bias" ) else: self.relative_position_bias = None # stochastic depth decay rule dpr = list(tf.linspace(0.0, config.drop_path_rate, config.num_hidden_layers)) self.layer = [ TFData2VecVisionLayer( config, window_size=window_size if config.use_relative_position_bias else None, drop_path_rate=dpr[i], name=f"layer_._{i}", ) for i in range(config.num_hidden_layers) ] def call( self, hidden_states: tf.Tensor, head_mask: tf.Tensor | None = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ) -> Union[tuple, TFBaseModelOutput]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None # Passing `0.0` to the `relative_position_bias()` layer because otherwise Keras # might complain about `Layer.call()` not being invoked properly. In this case this input # i.e., 0.0 is not going to be used in any calculations so we're safe. relative_position_bias = ( self.relative_position_bias(0.0) if self.relative_position_bias is not None else None ) layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions, relative_position_bias) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) @keras_serializable class TFData2VecVisionMainLayer(tf.keras.layers.Layer): config_class = Data2VecVisionConfig def __init__(self, config: Data2VecVisionConfig, add_pooling_layer: bool = True, **kwargs): super().__init__(**kwargs) self.config = config self.add_pooling_layer = add_pooling_layer self.embeddings = TFData2VecVisionEmbeddings(config, name="embeddings") self.encoder = TFData2VecVisionEncoder( config, window_size=self.embeddings.patch_embeddings.patch_shape, name="encoder" ) self.layernorm = ( tf.identity if config.use_mean_pooling else tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm") ) # We are setting the `data_format` like so because from here on we will revert to the # NCHW output format self.pooler = TFData2VecVisionPooler(config, name="pooler") if add_pooling_layer else None def get_input_embeddings(self) -> tf.keras.layers.Layer: return self.embeddings.patch_embeddings def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ raise NotImplementedError @unpack_inputs def call( self, pixel_values: tf.Tensor | None = None, bool_masked_pos: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[tuple, TFData2VecVisionModelOutputWithPooling]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] if head_mask is not None: raise NotImplementedError else: head_mask = [None] * self.config.num_hidden_layers embedding_output = self.embeddings(pixel_values, bool_masked_pos, training=training) encoder_outputs = self.encoder( embedding_output, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = encoder_outputs[0] sequence_output = self.layernorm(sequence_output) pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,) return head_outputs + encoder_outputs[1:] return TFData2VecVisionModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class TFData2VecVisionPooler(tf.keras.layers.Layer): def __init__(self, config: Data2VecVisionConfig, **kwargs): super().__init__(**kwargs) self.layernorm = ( tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm") if config.use_mean_pooling else None ) def call(self, hidden_states: tf.Tensor) -> tf.Tensor: if self.layernorm is not None: # Mean pool the final hidden states of the patch tokens patch_tokens = hidden_states[:, 1:, :] pooled_output = self.layernorm(tf.reduce_mean(patch_tokens, axis=1)) else: # Pool by simply taking the final hidden state of the [CLS] token pooled_output = hidden_states[:, 0] return pooled_output class TFData2VecVisionPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = Data2VecVisionConfig base_model_prefix = "data2vec_vision" main_input_name = "pixel_values" _keys_to_ignore_on_load_unexpected = [r"relative_position_index"] DATA2VEC_VISION_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.). This model is also a [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `pixel_values` only and nothing else: `model(pixel_values)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([pixel_values, attention_mask])` or `model([pixel_values, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"pixel_values": pixel_values, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Args: config ([`Data2VecVisionConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ DATA2VEC_VISION_INPUTS_DOCSTRING = r""" Args: pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` `Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`BeitImageProcessor.__call__`] for details. head_mask (`np.ndarray` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False``): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @add_start_docstrings( "The bare Data2VecVision Model transformer outputting raw hidden-states without any specific head on top.", DATA2VEC_VISION_START_DOCSTRING, ) class TFData2VecVisionModel(TFData2VecVisionPreTrainedModel): def __init__(self, config: Data2VecVisionConfig, add_pooling_layer: bool = False, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.config = config self.data2vec_vision = TFData2VecVisionMainLayer( config, add_pooling_layer=add_pooling_layer, name="data2vec_vision" ) def get_input_embeddings(self): return self.data2vec_vision.get_input_embeddings() @unpack_inputs @add_start_docstrings_to_model_forward(DATA2VEC_VISION_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFData2VecVisionModelOutputWithPooling, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def call( self, pixel_values: TFModelInputType | None = None, bool_masked_pos: tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[tuple, TFData2VecVisionModelOutputWithPooling]: r""" bool_masked_pos (`tf.Tensor` of shape `(batch_size, num_patches)`, *optional*): Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). """ outputs = self.data2vec_vision( pixel_values=pixel_values, bool_masked_pos=bool_masked_pos, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs @add_start_docstrings( """ Data2VecVision Model transformer with an image classification head on top (a linear layer on top of the average of the final hidden states of the patch tokens) e.g. for ImageNet. """, DATA2VEC_VISION_START_DOCSTRING, ) class TFData2VecVisionForImageClassification(TFData2VecVisionPreTrainedModel, TFSequenceClassificationLoss): def __init__(self, config: Data2VecVisionConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.data2vec_vision = TFData2VecVisionMainLayer(config, add_pooling_layer=True, name="data2vec_vision") # Classifier head self.classifier = tf.keras.layers.Dense( units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier", ) @unpack_inputs @add_start_docstrings_to_model_forward(DATA2VEC_VISION_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def call( self, pixel_values: TFModelInputType | None = None, head_mask: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFSequenceClassifierOutput, tuple]: r""" labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.data2vec_vision( pixel_values=pixel_values, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) pooled_output = outputs.pooler_output if return_dict else outputs[1] logits = self.classifier(pooled_output) loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class TFData2VecVisionConvModule(tf.keras.layers.Layer): """ A convolutional block that bundles conv/norm/activation layers. This block simplifies the usage of convolution layers, which are commonly used with a norm layer (e.g., BatchNorm) and activation layer (e.g., ReLU). Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation. """ def __init__( self, out_channels: int, kernel_size: Union[int, Tuple[int, int]], padding: str = "valid", bias: bool = False, dilation: Union[int, Tuple[int, int]] = 1, **kwargs, ) -> None: super().__init__(**kwargs) self.conv = tf.keras.layers.Conv2D( filters=out_channels, kernel_size=kernel_size, padding=padding, use_bias=bias, dilation_rate=dilation, name="conv", ) self.bn = tf.keras.layers.BatchNormalization(name="bn", momentum=0.9, epsilon=1e-5) self.activation = tf.nn.relu def call(self, input: tf.Tensor) -> tf.Tensor: output = self.conv(input) output = self.bn(output) output = self.activation(output) return output # Copied from: # https://gist.github.com/Rocketknight1/43abbe6e73f1008e6e459486e01e0ceb class TFAdaptiveAvgPool1D(tf.keras.layers.Layer): def __init__(self, output_dim, mode="dense", **kwargs): super().__init__(**kwargs) self.output_dim = output_dim self.mode = mode self.map = None def build(self, input_shape): super().build(input_shape) """We pre-compute the sparse matrix for the build() step once. The below code comes from https://stackoverflow.com/questions/53841509/how-does-adaptive-pooling-in-pytorch-work/63603993#63603993.""" def get_kernels(ind, outd) -> List: """Returns a List [(kernel_offset_start,kernel_length)] defining all the pooling kernels for a 1-D adaptive pooling layer that takes an input of dimension `ind` and yields an output of dimension `outd`""" def start_index(a, b, c): return math.floor((float(a) * float(c)) / b) def end_index(a, b, c): return math.ceil((float(a + 1) * float(c)) / b) results = [] for ow in range(outd): start = start_index(ow, outd, ind) end = end_index(ow, outd, ind) sz = end - start results.append((start, sz)) return results in_dim = int(input_shape[-1]) kernels = get_kernels(in_dim, self.output_dim) sparse_map = np.zeros((in_dim, self.output_dim), dtype=np.float32) for i, kernel in enumerate(kernels): sparse_map[kernel[0] : kernel[0] + kernel[1], i] = 1 / kernel[1] if self.mode == "dense": self.map = tf.constant(sparse_map) else: self.map = tf.sparse.from_dense(sparse_map) def call(self, inputs): if self.mode == "dense": return inputs @ self.map else: input_dims = inputs.shape input_matrix = tf.reshape(inputs, (-1, input_dims[-1])) out = tf.sparse.sparse_dense_matmul(input_matrix, self.map) return tf.reshape(out, input_dims[:-1].as_list() + [-1]) def get_config(self): config = super().get_config() config.update({"output_dim": self.output_dim, "mode": self.mode}) return config class TFAdaptiveAvgPool2D(tf.keras.layers.Layer): def __init__(self, output_shape, mode="dense", **kwargs): super().__init__(**kwargs) self.mode = mode self.h_pool = TFAdaptiveAvgPool1D(output_shape[0], mode=mode, name="h_pool") self.w_pool = TFAdaptiveAvgPool1D(output_shape[1], mode=mode, name="w_pool") def call(self, inputs): # Rearrange from NHWC -> NCHW inputs = tf.transpose(inputs, perm=[0, 3, 1, 2]) # Perform W-pooling inputs = self.w_pool(inputs) # Rearrange NCHW -> NCWH inputs = tf.transpose(inputs, perm=[0, 1, 3, 2]) # Perform H-pooling inputs = self.h_pool(inputs) # Rearrange from NCWH -> NHWC inputs = tf.transpose(inputs, perm=[0, 3, 2, 1]) return inputs def get_config(self): config = super().get_config() config.update({"mode": self.mode}) return config class TFData2VecVisionPyramidPoolingModule(tf.keras.layers.Layer): """ Pyramid Pooling Module (PPM) used in PSPNet. Args: pool_scales (tuple[int]): Pooling scales used in Pooling Pyramid Module. channels (int): Channels after modules, before conv_seg. Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation. """ def __init__(self, pool_scales: Tuple[int, ...], channels: int, **kwargs) -> None: super().__init__(**kwargs) self.pool_scales = pool_scales self.channels = channels self.layer_list = [] for idx, pool_scale in enumerate(pool_scales): pool_scale = pool_scale if isinstance(pool_scale, collections.abc.Iterable) else (pool_scale, pool_scale) self.layer_list.append( [ TFAdaptiveAvgPool2D(output_shape=pool_scale), TFData2VecVisionConvModule(out_channels=self.channels, kernel_size=1, name=f"{idx}.1"), ] ) def call(self, x: tf.Tensor) -> List[tf.Tensor]: ppm_outs = [] inputs = x for ppm in self.layer_list: for layer_module in ppm: ppm_out = layer_module(x) x = ppm_out upsampled_ppm_out = tf.image.resize(ppm_out, size=shape_list(inputs)[1:-1], method="bilinear") ppm_outs.append(upsampled_ppm_out) return ppm_outs class TFData2VecVisionUperHead(tf.keras.layers.Layer): """ Unified Perceptual Parsing for Scene Understanding. This head is the implementation of [UPerNet](https://arxiv.org/abs/1807.10221). Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation. """ def __init__(self, config: Data2VecVisionConfig, **kwargs) -> None: super().__init__(**kwargs) self.pool_scales = config.pool_scales # e.g. (1, 2, 3, 6) self.in_channels = [config.hidden_size] * 4 # e.g. [768, 768, 768, 768] self.channels = config.hidden_size self.classifier = tf.keras.layers.Conv2D(config.num_labels, kernel_size=1, name="classifier") # PSP Module self.psp_modules = TFData2VecVisionPyramidPoolingModule(self.pool_scales, self.channels, name="psp_modules") self.bottleneck = TFData2VecVisionConvModule(self.channels, kernel_size=3, padding="same", name="bottleneck") # FPN Module self.lateral_convs = [] self.fpn_convs = [] for idx, _ in enumerate(self.in_channels[:-1]): # skip the top layer l_conv = TFData2VecVisionConvModule(out_channels=self.channels, kernel_size=1, name=f"lateral_convs.{idx}") fpn_conv = TFData2VecVisionConvModule( out_channels=self.channels, kernel_size=3, padding="same", name=f"fpn_convs.{idx}" ) self.lateral_convs.append(l_conv) self.fpn_convs.append(fpn_conv) self.fpn_bottleneck = TFData2VecVisionConvModule( out_channels=self.channels, kernel_size=3, padding="same", name="fpn_bottleneck" ) def psp_forward(self, inputs): x = inputs[-1] psp_outs = [x] psp_outs.extend(self.psp_modules(x)) psp_outs = tf.concat(psp_outs, axis=-1) output = self.bottleneck(psp_outs) return output def call(self, encoder_hidden_states: tf.Tensor) -> tf.Tensor: # build laterals laterals = [lateral_conv(encoder_hidden_states[i]) for i, lateral_conv in enumerate(self.lateral_convs)] laterals.append(self.psp_forward(encoder_hidden_states)) # build top-down path used_backbone_levels = len(laterals) for i in range(used_backbone_levels - 1, 0, -1): prev_shape = shape_list(laterals[i - 1])[1:-1] laterals[i - 1] = laterals[i - 1] + tf.image.resize(laterals[i], size=prev_shape, method="bilinear") # build outputs fpn_outs = [self.fpn_convs[i](laterals[i]) for i in range(used_backbone_levels - 1)] # append psp feature fpn_outs.append(laterals[-1]) for i in range(used_backbone_levels - 1, 0, -1): fpn_outs[i] = tf.image.resize(fpn_outs[i], size=shape_list(fpn_outs[0])[1:-1], method="bilinear") fpn_outs = tf.concat(fpn_outs, axis=-1) output = self.fpn_bottleneck(fpn_outs) output = self.classifier(output) return output class TFData2VecVisionFCNHead(tf.keras.layers.Layer): """ Fully Convolution Networks for Semantic Segmentation. This head is implemented from [FCNNet](https://arxiv.org/abs/1411.4038). Args: config (Data2VecVisionConfig): Configuration. kernel_size (int): The kernel size for convs in the head. Default: 3. dilation (int): The dilation rate for convs in the head. Default: 1. Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation. """ def __init__( self, config: Data2VecVisionConfig, in_index: int = 2, kernel_size: int = 3, dilation: Union[int, Tuple[int, int]] = 1, **kwargs, ) -> None: super().__init__(**kwargs) self.in_channels = config.hidden_size self.channels = config.auxiliary_channels self.num_convs = config.auxiliary_num_convs self.concat_input = config.auxiliary_concat_input self.in_index = in_index convs = [] convs.append( TFData2VecVisionConvModule( out_channels=self.channels, kernel_size=kernel_size, padding="same", dilation=dilation, name="convs.0", ) ) for i in range(self.num_convs - 1): convs.append( TFData2VecVisionConvModule( out_channels=self.channels, kernel_size=kernel_size, padding="same", dilation=dilation, name=f"conv_module_{i+2}", ) ) if self.num_convs == 0: self.convs = [tf.identity] else: self.convs = convs if self.concat_input: self.conv_cat = TFData2VecVisionConvModule( out_channels=self.channels, kernel_size=kernel_size, padding="same", name="conv_cat" ) self.classifier = tf.keras.layers.Conv2D(config.num_labels, kernel_size=1, name="classifier") def call(self, encoder_hidden_states: tf.Tensor) -> tf.Tensor: # just take the relevant feature maps hidden_states = encoder_hidden_states[self.in_index] output = hidden_states for layer_module in self.convs: output = layer_module(output) if self.concat_input: output = self.conv_cat(tf.concat([hidden_states, output], axis=-1)) output = self.classifier(output) return output @add_start_docstrings( """ Data2VecVision Model transformer with a semantic segmentation head on top e.g. for ADE20k, CityScapes. """, DATA2VEC_VISION_START_DOCSTRING, ) class TFData2VecVisionForSemanticSegmentation(TFData2VecVisionPreTrainedModel): def __init__(self, config: Data2VecVisionConfig, *inputs, **kwargs) -> None: super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.data2vec_vision = TFData2VecVisionMainLayer(config, add_pooling_layer=False, name="data2vec_vision") # FPNs self.fpn1 = [ tf.keras.layers.Conv2DTranspose(config.hidden_size, kernel_size=2, strides=2, name="fpn1.0"), tf.keras.layers.BatchNormalization(name="fpn1.1", momentum=0.9, epsilon=1e-5), tf.keras.layers.Activation("gelu"), tf.keras.layers.Conv2DTranspose(config.hidden_size, kernel_size=2, strides=2, name="fpn1.3"), ] self.fpn2 = [tf.keras.layers.Conv2DTranspose(config.hidden_size, kernel_size=2, strides=2, name="fpn2.0")] self.fpn3 = tf.identity self.fpn4 = tf.keras.layers.MaxPool2D(pool_size=2, strides=2) # Semantic segmentation head(s) self.decode_head = TFData2VecVisionUperHead(config, name="decode_head") self.auxiliary_head = ( TFData2VecVisionFCNHead(config, name="auxiliary_head") if config.use_auxiliary_head else None ) def compute_loss(self, logits, auxiliary_logits, labels): # upsample logits to the images' original size if len(shape_list(labels)) > 3: label_interp_shape = shape_list(labels)[1:-1] else: label_interp_shape = shape_list(labels)[-2:] upsampled_logits = tf.image.resize(logits, size=label_interp_shape, method="bilinear") if auxiliary_logits is not None: upsampled_auxiliary_logits = tf.image.resize(auxiliary_logits, size=label_interp_shape, method="bilinear") # compute weighted loss loss_fct = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction="none") # Copied from https://www.tensorflow.org/text/tutorials/transformer#loss_and_metrics. # Utility to mask the index to ignore during computing the loss. def masked_loss(real, pred): mask = tf.math.logical_not(tf.math.equal(real, self.config.semantic_loss_ignore_index)) loss_ = loss_fct(real, pred) mask = tf.cast(mask, dtype=loss_.dtype) loss_ *= mask reduced_masked_loss = tf.reduce_sum(loss_) / tf.reduce_sum(mask) return tf.reshape(reduced_masked_loss, (1,)) main_loss = masked_loss(labels, upsampled_logits) auxiliary_loss = masked_loss(labels, upsampled_auxiliary_logits) loss = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss return loss @unpack_inputs @add_start_docstrings_to_model_forward(DATA2VEC_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFSemanticSegmenterOutput, config_class=_CONFIG_FOR_DOC) def call( self, pixel_values: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, labels: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, TFSemanticSegmenterOutput]: r""" labels (`tf.Tensor` of shape `(batch_size, height, width)`, *optional*): Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels > 1`, a classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> from transformers import AutoImageProcessor, TFData2VecVisionForSemanticSegmentation >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("facebook/data2vec-vision-base") >>> model = TFData2VecVisionForSemanticSegmentation.from_pretrained("facebook/data2vec-vision-base") >>> inputs = image_processor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> # logits are of shape (batch_size, num_labels, height, width) >>> logits = outputs.logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) outputs = self.data2vec_vision( pixel_values, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=True, # we need the intermediate hidden states return_dict=return_dict, ) encoder_hidden_states = outputs.hidden_states if return_dict else outputs[1] # only keep certain features, and reshape # note that we do +1 as the encoder_hidden_states also includes the initial embeddings features = [feature for idx, feature in enumerate(encoder_hidden_states) if idx + 1 in self.config.out_indices] patch_resolution = self.config.image_size // self.config.patch_size def reshape_features(x): # We do it this way so TF can always infer the non-batch dims at compile time x = tf.reshape(x, (-1, patch_resolution, patch_resolution, self.config.hidden_size)) return x features = [reshape_features(x[:, 1:, :]) for x in features] # apply FPNs ops = [self.fpn1, self.fpn2, self.fpn3, self.fpn4] for module in ops[0]: features[0] = module(features[0]) features[1] = ops[1][0](features[1]) for i in range(len(features[2:])): features[i + 2] = ops[i + 2](features[i + 2]) logits = self.decode_head(features) # Tranpose the logits to maintain consistency in the output formats. transposed_logits = tf.transpose(logits, perm=[0, 3, 1, 2]) auxiliary_logits = None if self.auxiliary_head is not None: auxiliary_logits = self.auxiliary_head(features) loss = None if labels is not None: if self.config.num_labels == 1: raise ValueError("The number of labels should be greater than one") else: loss = self.compute_loss(logits, auxiliary_logits, labels) if not return_dict: if output_hidden_states: output = (logits,) + outputs[1:] else: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSemanticSegmenterOutput( loss=loss, logits=transposed_logits, hidden_states=outputs.hidden_states if output_hidden_states else None, attentions=outputs.attentions, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/data2vec/modeling_data2vec_audio.py
# coding=utf-8 # Copyright 2021 The Fairseq Authors and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch Data2VecAudio model.""" import math import warnings from typing import Optional, Tuple, Union import numpy as np import torch import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...deepspeed import is_deepspeed_zero3_enabled from ...modeling_outputs import ( BaseModelOutput, CausalLMOutput, SequenceClassifierOutput, TokenClassifierOutput, Wav2Vec2BaseModelOutput, XVectorOutput, ) from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_data2vec_audio import Data2VecAudioConfig logger = logging.get_logger(__name__) _HIDDEN_STATES_START_POSITION = 2 # General docstring _CONFIG_FOR_DOC = "Data2VecAudioConfig" # Base docstring _CHECKPOINT_FOR_DOC = "facebook/data2vec-audio-base-960h" _EXPECTED_OUTPUT_SHAPE = [1, 292, 768] # CTC docstring _CTC_EXPECTED_OUTPUT = "'MISTER QUILTER IS THE APOSTLE OF THE MIDDLE CLASSES AND WE ARE GLAD TO WELCOME HIS GOSPEL'" _CTC_EXPECTED_LOSS = 66.95 DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST = [ "facebook/data2vec-audio-base", "facebook/data2vec-audio-base-10m", "facebook/data2vec-audio-base-100h", "facebook/data2vec-audio-base-960h", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio ] # Copied from transformers.models.wav2vec2.modeling_wav2vec2._compute_mask_indices def _compute_mask_indices( shape: Tuple[int, int], mask_prob: float, mask_length: int, attention_mask: Optional[torch.LongTensor] = None, min_masks: int = 0, ) -> np.ndarray: """ Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on CPU as part of the preprocessing during training. Args: shape: The shape for which to compute masks. This should be of a tuple of size 2 where the first element is the batch size and the second element is the length of the axis to span. mask_prob: The percentage of the whole axis (between 0 and 1) which will be masked. The number of independently generated mask spans of length `mask_length` is computed by `mask_prob*shape[1]/mask_length`. Note that due to overlaps, `mask_prob` is an upper bound and the actual percentage will be smaller. mask_length: size of the mask min_masks: minimum number of masked spans attention_mask: A (right-padded) attention mask which independently shortens the feature axis of each batch dimension. """ batch_size, sequence_length = shape if mask_length < 1: raise ValueError("`mask_length` has to be bigger than 0.") if mask_length > sequence_length: raise ValueError( f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length}" f" and `sequence_length`: {sequence_length}`" ) # epsilon is used for probabilistic rounding epsilon = np.random.rand(1).item() def compute_num_masked_span(input_length): """Given input length, compute how many spans should be masked""" num_masked_span = int(mask_prob * input_length / mask_length + epsilon) num_masked_span = max(num_masked_span, min_masks) # make sure num masked span <= sequence_length if num_masked_span * mask_length > sequence_length: num_masked_span = sequence_length // mask_length # make sure num_masked span is also <= input_length - (mask_length - 1) if input_length - (mask_length - 1) < num_masked_span: num_masked_span = max(input_length - (mask_length - 1), 0) return num_masked_span # compute number of masked spans in batch input_lengths = ( attention_mask.sum(-1).detach().tolist() if attention_mask is not None else [sequence_length for _ in range(batch_size)] ) # SpecAugment mask to fill spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=bool) spec_aug_mask_idxs = [] max_num_masked_span = compute_num_masked_span(sequence_length) if max_num_masked_span == 0: return spec_aug_mask for input_length in input_lengths: # compute num of masked spans for this input num_masked_span = compute_num_masked_span(input_length) # get random indices to mask spec_aug_mask_idx = np.random.choice( np.arange(input_length - (mask_length - 1)), num_masked_span, replace=False ) # pick first sampled index that will serve as a dummy index to pad vector # to ensure same dimension for all batches due to probabilistic rounding # Picking first sample just pads those vectors twice. if len(spec_aug_mask_idx) == 0: # this case can only happen if `input_length` is strictly smaller then # `sequence_length` in which case the last token has to be a padding # token which we can use as a dummy mask id dummy_mask_idx = sequence_length - 1 else: dummy_mask_idx = spec_aug_mask_idx[0] spec_aug_mask_idx = np.concatenate( [spec_aug_mask_idx, np.ones(max_num_masked_span - num_masked_span, dtype=np.int32) * dummy_mask_idx] ) spec_aug_mask_idxs.append(spec_aug_mask_idx) spec_aug_mask_idxs = np.array(spec_aug_mask_idxs) # expand masked indices to masked spans spec_aug_mask_idxs = np.broadcast_to( spec_aug_mask_idxs[:, :, None], (batch_size, max_num_masked_span, mask_length) ) spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(batch_size, max_num_masked_span * mask_length) # add offset to the starting indexes so that indexes now create a span offsets = np.arange(mask_length)[None, None, :] offsets = np.broadcast_to(offsets, (batch_size, max_num_masked_span, mask_length)).reshape( batch_size, max_num_masked_span * mask_length ) spec_aug_mask_idxs = spec_aug_mask_idxs + offsets # ensure that we cannot have indices larger than sequence_length if spec_aug_mask_idxs.max() > sequence_length - 1: spec_aug_mask_idxs[spec_aug_mask_idxs > sequence_length - 1] = sequence_length - 1 # scatter indices to mask np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1) return spec_aug_mask class Data2VecAudioConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = nn.Conv1d( self.in_conv_dim, self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], stride=config.conv_stride[layer_id], bias=config.conv_bias, ) self.layer_norm = nn.LayerNorm(self.out_conv_dim, elementwise_affine=True) self.activation = ACT2FN[config.feat_extract_activation] def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = hidden_states.transpose(-2, -1) hidden_states = self.layer_norm(hidden_states) hidden_states = hidden_states.transpose(-2, -1) hidden_states = self.activation(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2SamePadLayer with Wav2Vec2->Data2VecAudio class Data2VecAudioPadLayer(nn.Module): def __init__(self, num_conv_pos_embeddings): super().__init__() self.num_pad_remove = 1 if num_conv_pos_embeddings % 2 == 0 else 0 def forward(self, hidden_states): if self.num_pad_remove > 0: hidden_states = hidden_states[:, :, : -self.num_pad_remove] return hidden_states class Data2VecAudioPositionalConvLayer(nn.Module): def __init__(self, config): super().__init__() self.conv = nn.Conv1d( config.hidden_size, config.hidden_size, kernel_size=config.conv_pos_kernel_size, padding=config.conv_pos_kernel_size // 2, groups=config.num_conv_pos_embedding_groups, ) self.padding = Data2VecAudioPadLayer(config.conv_pos_kernel_size) self.activation = ACT2FN[config.feat_extract_activation] # no learnable parameters self.layer_norm = nn.LayerNorm(config.hidden_size, elementwise_affine=False) def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = self.padding(hidden_states) hidden_states = hidden_states.transpose(1, 2) hidden_states = self.layer_norm(hidden_states) hidden_states = hidden_states.transpose(1, 2) hidden_states = self.activation(hidden_states) return hidden_states class Data2VecAudioPositionalConvEmbedding(nn.Module): def __init__(self, config): super().__init__() self.layers = nn.ModuleList( [Data2VecAudioPositionalConvLayer(config) for _ in range(config.num_conv_pos_embeddings)] ) def forward(self, hidden_states): hidden_states = hidden_states.transpose(1, 2) for layer in self.layers: hidden_states = layer(hidden_states) hidden_states = hidden_states.transpose(1, 2) return hidden_states class Data2VecAudioFeatureEncoder(nn.Module): """Construct the features from raw audio waveform""" def __init__(self, config): super().__init__() self.conv_layers = nn.ModuleList( [Data2VecAudioConvLayer(config, layer_id=i) for i in range(config.num_feat_extract_layers)] ) self.gradient_checkpointing = False self._requires_grad = True # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureEncoder._freeze_parameters def _freeze_parameters(self): for param in self.parameters(): param.requires_grad = False self._requires_grad = False # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureEncoder.forward def forward(self, input_values): hidden_states = input_values[:, None] # make sure hidden_states require grad for gradient_checkpointing if self._requires_grad and self.training: hidden_states.requires_grad = True for conv_layer in self.conv_layers: if self._requires_grad and self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs) return custom_forward hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(conv_layer), hidden_states, ) else: hidden_states = conv_layer(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureProjection with Wav2Vec2->Data2VecAudio class Data2VecAudioFeatureProjection(nn.Module): def __init__(self, config): super().__init__() self.layer_norm = nn.LayerNorm(config.conv_dim[-1], eps=config.layer_norm_eps) self.projection = nn.Linear(config.conv_dim[-1], config.hidden_size) self.dropout = nn.Dropout(config.feat_proj_dropout) def forward(self, hidden_states): # non-projected hidden states are needed for quantization norm_hidden_states = self.layer_norm(hidden_states) hidden_states = self.projection(norm_hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states, norm_hidden_states # Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->Data2VecAudio class Data2VecAudioAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj # `past_key_value[0].shape[2] == key_value_states.shape[1]` # is checking that the `sequence_length` of the `past_key_value` is the same as # the provided `key_value_states` to support prefix tuning if ( is_cross_attention and past_key_value is not None and past_key_value[0].shape[2] == key_value_states.shape[1] ): # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.reshape(*proj_shape) value_states = value_states.reshape(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if layer_head_mask is not None: if layer_head_mask.size() != (self.num_heads,): raise ValueError( f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" f" {layer_head_mask.size()}" ) attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to be reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned across GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped, past_key_value # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeedForward with Wav2Vec2->Data2VecAudio class Data2VecAudioFeedForward(nn.Module): def __init__(self, config): super().__init__() self.intermediate_dropout = nn.Dropout(config.activation_dropout) self.intermediate_dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act self.output_dense = nn.Linear(config.intermediate_size, config.hidden_size) self.output_dropout = nn.Dropout(config.hidden_dropout) def forward(self, hidden_states): hidden_states = self.intermediate_dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) hidden_states = self.intermediate_dropout(hidden_states) hidden_states = self.output_dense(hidden_states) hidden_states = self.output_dropout(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2EncoderLayer with Wav2Vec2->Data2VecAudio class Data2VecAudioEncoderLayer(nn.Module): def __init__(self, config): super().__init__() self.attention = Data2VecAudioAttention( embed_dim=config.hidden_size, num_heads=config.num_attention_heads, dropout=config.attention_dropout, is_decoder=False, ) self.dropout = nn.Dropout(config.hidden_dropout) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.feed_forward = Data2VecAudioFeedForward(config) self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states, attention_mask=None, output_attentions=False): attn_residual = hidden_states hidden_states, attn_weights, _ = self.attention( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions ) hidden_states = self.dropout(hidden_states) hidden_states = attn_residual + hidden_states hidden_states = self.layer_norm(hidden_states) hidden_states = hidden_states + self.feed_forward(hidden_states) hidden_states = self.final_layer_norm(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Encoder with Wav2Vec2->Data2VecAudio class Data2VecAudioEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.pos_conv_embed = Data2VecAudioPositionalConvEmbedding(config) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout) self.layers = nn.ModuleList([Data2VecAudioEncoderLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.tensor, attention_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None if attention_mask is not None: # make sure padded tokens output 0 expand_attention_mask = attention_mask.unsqueeze(-1).repeat(1, 1, hidden_states.shape[2]) hidden_states[~expand_attention_mask] = 0 # extend attention_mask attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype) attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min attention_mask = attention_mask.expand( attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1] ) position_embeddings = self.pos_conv_embed(hidden_states) hidden_states = hidden_states + position_embeddings hidden_states = self.layer_norm(hidden_states) hidden_states = self.dropout(hidden_states) deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled() for layer in self.layers: if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = torch.rand([]) skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False if not skip_the_layer or deepspeed_zero3_is_enabled: # under deepspeed zero3 all gpus must run in sync if self.gradient_checkpointing and self.training: # create gradient checkpointing function def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(layer), hidden_states, attention_mask, ) else: layer_outputs = layer( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions ) hidden_states = layer_outputs[0] if skip_the_layer: layer_outputs = (None, None) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Adapter with Wav2Vec2->Data2VecAudio class Data2VecAudioAdapter(nn.Module): def __init__(self, config): super().__init__() # feature dim might need to be down-projected if config.output_hidden_size != config.hidden_size: self.proj = nn.Linear(config.hidden_size, config.output_hidden_size) self.proj_layer_norm = nn.LayerNorm(config.output_hidden_size) else: self.proj = self.proj_layer_norm = None self.layers = nn.ModuleList(Data2VecAudioAdapterLayer(config) for _ in range(config.num_adapter_layers)) self.layerdrop = config.layerdrop def forward(self, hidden_states): # down project hidden_states if necessary if self.proj is not None and self.proj_layer_norm is not None: hidden_states = self.proj(hidden_states) hidden_states = self.proj_layer_norm(hidden_states) hidden_states = hidden_states.transpose(1, 2) for layer in self.layers: layerdrop_prob = np.random.random() if not self.training or (layerdrop_prob > self.layerdrop): hidden_states = layer(hidden_states) hidden_states = hidden_states.transpose(1, 2) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2AdapterLayer with Wav2Vec2->Data2VecAudio class Data2VecAudioAdapterLayer(nn.Module): def __init__(self, config): super().__init__() self.conv = nn.Conv1d( config.output_hidden_size, 2 * config.output_hidden_size, config.adapter_kernel_size, stride=config.adapter_stride, padding=1, ) def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = nn.functional.glu(hidden_states, dim=1) return hidden_states class Data2VecAudioPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = Data2VecAudioConfig base_model_prefix = "data2vec_audio" main_input_name = "input_values" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, Data2VecAudioFeatureProjection): k = math.sqrt(1 / module.projection.in_features) nn.init.uniform_(module.projection.weight, a=-k, b=k) nn.init.uniform_(module.projection.bias, a=-k, b=k) elif isinstance(module, Data2VecAudioPositionalConvLayer): nn.init.constant_(module.conv.bias, 0) elif isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)): if module.bias is not None: module.bias.data.zero_() if module.weight is not None: module.weight.data.fill_(1.0) elif isinstance(module, nn.Conv1d): nn.init.kaiming_normal_(module.weight) if module.bias is not None: k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0])) nn.init.uniform_(module.bias, a=-k, b=k) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2PreTrainedModel._get_feat_extract_output_lengths with def _get_feat_extract_output_lengths( self, input_lengths: Union[torch.LongTensor, int], add_adapter: Optional[bool] = None ): """ Computes the output length of the convolutional layers """ add_adapter = self.config.add_adapter if add_adapter is None else add_adapter def _conv_out_length(input_length, kernel_size, stride): # 1D convolutional layer output length formula taken # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html return torch.div(input_length - kernel_size, stride, rounding_mode="floor") + 1 for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride): input_lengths = _conv_out_length(input_lengths, kernel_size, stride) if add_adapter: for _ in range(self.config.num_adapter_layers): input_lengths = _conv_out_length(input_lengths, 1, self.config.adapter_stride) return input_lengths # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2PreTrainedModel._get_feature_vector_attention_mask def _get_feature_vector_attention_mask( self, feature_vector_length: int, attention_mask: torch.LongTensor, add_adapter=None ): # Effectively attention_mask.sum(-1), but not inplace to be able to run # on inference mode. non_padded_lengths = attention_mask.cumsum(dim=-1)[:, -1] output_lengths = self._get_feat_extract_output_lengths(non_padded_lengths, add_adapter=add_adapter) output_lengths = output_lengths.to(torch.long) batch_size = attention_mask.shape[0] attention_mask = torch.zeros( (batch_size, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device ) # these two operations makes sure that all values before the output lengths idxs are attended to attention_mask[(torch.arange(attention_mask.shape[0], device=attention_mask.device), output_lengths - 1)] = 1 attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() return attention_mask def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, (Data2VecAudioEncoder, Data2VecAudioFeatureEncoder)): module.gradient_checkpointing = value DATA2VEC_AUDIO_START_DOCSTRING = r""" Data2VecAudio was proposed in [data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/pdf/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu and Michael Auli. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving etc.). This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`Data2VecAudioConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ DATA2VEC_AUDIO_INPUTS_DOCSTRING = r""" Args: input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Float values of input raw speech waveform. Values can be obtained by loading a *.flac* or *.wav* audio file into an array of type *List[float]* or a *numpy.ndarray*, *e.g.* via the soundfile library (*pip install soundfile*). To prepare the array into *input_values*, the [`AutoProcessor`] should be used for padding and conversion into a tensor of type *torch.FloatTensor*. See [`Wav2Vec2Processor.__call__`] for details. attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) <Tip warning={true}> `attention_mask` should only be passed if the corresponding processor has `config.return_attention_mask == True`. For all models whose processor has `config.return_attention_mask == False`, such as [data2vec-audio-base](https://huggingface.co/facebook/data2vec-audio-base-960h), `attention_mask` should **not** be passed to avoid degraded performance when doing batched inference. For such models `input_values` should simply be padded with 0 and passed without `attention_mask`. Be aware that these models also yield slightly different results depending on whether `input_values` is padded or not. </Tip> output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare Data2VecAudio Model transformer outputting raw hidden-states without any specific head on top.", DATA2VEC_AUDIO_START_DOCSTRING, ) class Data2VecAudioModel(Data2VecAudioPreTrainedModel): def __init__(self, config: Data2VecAudioConfig): super().__init__(config) self.config = config self.feature_extractor = Data2VecAudioFeatureEncoder(config) self.feature_projection = Data2VecAudioFeatureProjection(config) # model only needs masking vector if mask prob is > 0.0 if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0: self.masked_spec_embed = nn.Parameter(torch.FloatTensor(config.hidden_size).uniform_()) self.encoder = Data2VecAudioEncoder(config) self.adapter = Data2VecAudioAdapter(config) if config.add_adapter else None # Initialize weights and apply final processing self.post_init() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.feature_extractor._freeze_parameters() def _mask_hidden_states( self, hidden_states: torch.FloatTensor, mask_time_indices: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, ): """ Masks extracted features along time axis and/or along feature axis according to [SpecAugment](https://arxiv.org/abs/1904.08779). """ # `config.apply_spec_augment` can set masking to False if not getattr(self.config, "apply_spec_augment", True): return hidden_states # generate indices & apply SpecAugment along time axis batch_size, sequence_length, hidden_size = hidden_states.size() if mask_time_indices is not None: # apply SpecAugment along time axis with given mask_time_indices hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) elif self.config.mask_time_prob > 0 and self.training: mask_time_indices = _compute_mask_indices( (batch_size, sequence_length), mask_prob=self.config.mask_time_prob, mask_length=self.config.mask_time_length, attention_mask=attention_mask, min_masks=self.config.mask_time_min_masks, ) mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool) hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) if self.config.mask_feature_prob > 0 and self.training: # generate indices & apply SpecAugment along feature axis mask_feature_indices = _compute_mask_indices( (batch_size, hidden_size), mask_prob=self.config.mask_feature_prob, mask_length=self.config.mask_feature_length, min_masks=self.config.mask_feature_min_masks, ) mask_feature_indices = torch.tensor(mask_feature_indices, device=hidden_states.device, dtype=torch.bool) mask_feature_indices = mask_feature_indices[:, None].expand(-1, sequence_length, -1) hidden_states[mask_feature_indices] = 0 return hidden_states @add_start_docstrings_to_model_forward(DATA2VEC_AUDIO_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=Wav2Vec2BaseModelOutput, config_class=_CONFIG_FOR_DOC, modality="audio", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, mask_time_indices: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, Wav2Vec2BaseModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict extract_features = self.feature_extractor(input_values) extract_features = extract_features.transpose(1, 2) if attention_mask is not None: # compute reduced attention_mask corresponding to feature vectors attention_mask = self._get_feature_vector_attention_mask( extract_features.shape[1], attention_mask, add_adapter=False ) hidden_states, extract_features = self.feature_projection(extract_features) hidden_states = self._mask_hidden_states( hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask ) encoder_outputs = self.encoder( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = encoder_outputs[0] if self.adapter is not None: hidden_states = self.adapter(hidden_states) if not return_dict: return (hidden_states, extract_features) + encoder_outputs[1:] return Wav2Vec2BaseModelOutput( last_hidden_state=hidden_states, extract_features=extract_features, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings( """Data2VecAudio Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).""", DATA2VEC_AUDIO_START_DOCSTRING, ) class Data2VecAudioForCTC(Data2VecAudioPreTrainedModel): def __init__(self, config): super().__init__(config) self.data2vec_audio = Data2VecAudioModel(config) self.dropout = nn.Dropout(config.final_dropout) if config.vocab_size is None: raise ValueError( f"You are trying to instantiate {self.__class__} with a configuration that " "does not define the vocabulary size of the language model head. Please " "instantiate the model as follows: `Data2VecAudioForCTC.from_pretrained(..., vocab_size=vocab_size)`. " "or define `vocab_size` of your model's configuration." ) output_hidden_size = ( config.output_hidden_size if hasattr(config, "add_adapter") and config.add_adapter else config.hidden_size ) self.lm_head = nn.Linear(output_hidden_size, config.vocab_size) # Initialize weights and apply final processing self.post_init() def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5." "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.data2vec_audio.feature_extractor._freeze_parameters() @add_start_docstrings_to_model_forward(DATA2VEC_AUDIO_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=CausalLMOutput, config_class=_CONFIG_FOR_DOC, expected_output=_CTC_EXPECTED_OUTPUT, expected_loss=_CTC_EXPECTED_LOSS, ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForCTC.forward with wav2vec2->data2vec_audio def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.Tensor] = None, ) -> Union[Tuple, CausalLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*): Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to the sequence length of the output logits. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.data2vec_audio( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] hidden_states = self.dropout(hidden_states) logits = self.lm_head(hidden_states) loss = None if labels is not None: if labels.max() >= self.config.vocab_size: raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}") # retrieve loss input_lengths from attention_mask attention_mask = ( attention_mask if attention_mask is not None else torch.ones_like(input_values, dtype=torch.long) ) input_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long) # assuming that padded tokens are filled with -100 # when not being attended to labels_mask = labels >= 0 target_lengths = labels_mask.sum(-1) flattened_targets = labels.masked_select(labels_mask) # ctc_loss doesn't support fp16 log_probs = nn.functional.log_softmax(logits, dim=-1, dtype=torch.float32).transpose(0, 1) with torch.backends.cudnn.flags(enabled=False): loss = nn.functional.ctc_loss( log_probs, flattened_targets, input_lengths, target_lengths, blank=self.config.pad_token_id, reduction=self.config.ctc_loss_reduction, zero_infinity=self.config.ctc_zero_infinity, ) if not return_dict: output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] return ((loss,) + output) if loss is not None else output return CausalLMOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions ) @add_start_docstrings( """ Data2VecAudio Model with a sequence classification head on top (a linear layer over the pooled output) for tasks like SUPERB Keyword Spotting. """, DATA2VEC_AUDIO_START_DOCSTRING, ) class Data2VecAudioForSequenceClassification(Data2VecAudioPreTrainedModel): def __init__(self, config): super().__init__(config) if hasattr(config, "add_adapter") and config.add_adapter: raise ValueError( "Sequence classification does not support the use of Data2VecAudio adapters (config.add_adapter=True)" ) self.data2vec_audio = Data2VecAudioModel(config) num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings if config.use_weighted_layer_sum: self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size) self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels) # Initialize weights and apply final processing self.post_init() def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameters will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5." "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.data2vec_audio.feature_extractor._freeze_parameters() def freeze_base_model(self): """ Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated. """ for param in self.data2vec_audio.parameters(): param.requires_grad = False @add_start_docstrings_to_model_forward(DATA2VEC_AUDIO_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, modality="audio", ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.forward with wav2vec2->data2vec_audio def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.Tensor] = None, ) -> Union[Tuple, SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states outputs = self.data2vec_audio( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if self.config.use_weighted_layer_sum: hidden_states = outputs[_HIDDEN_STATES_START_POSITION] hidden_states = torch.stack(hidden_states, dim=1) norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) else: hidden_states = outputs[0] hidden_states = self.projector(hidden_states) if attention_mask is None: pooled_output = hidden_states.mean(dim=1) else: padding_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask) hidden_states[~padding_mask] = 0.0 pooled_output = hidden_states.sum(dim=1) / padding_mask.sum(dim=1).view(-1, 1) logits = self.classifier(pooled_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Data2VecAudio Model with a frame classification head on top for tasks like Speaker Diarization. """, DATA2VEC_AUDIO_START_DOCSTRING, ) class Data2VecAudioForAudioFrameClassification(Data2VecAudioPreTrainedModel): def __init__(self, config): super().__init__(config) if hasattr(config, "add_adapter") and config.add_adapter: raise ValueError( "Audio frame classification does not support the use of Data2VecAudio adapters" " (config.add_adapter=True)" ) self.data2vec_audio = Data2VecAudioModel(config) num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings if config.use_weighted_layer_sum: self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) self.classifier = nn.Linear(config.hidden_size, config.num_labels) self.num_labels = config.num_labels self.init_weights() def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5." "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.data2vec_audio.feature_extractor._freeze_parameters() def freeze_base_model(self): """ Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated. """ for param in self.data2vec_audio.parameters(): param.requires_grad = False @add_start_docstrings_to_model_forward(DATA2VEC_AUDIO_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, modality="audio", ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForAudioFrameClassification.forward with wav2vec2->data2vec_audio def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states outputs = self.data2vec_audio( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if self.config.use_weighted_layer_sum: hidden_states = outputs[_HIDDEN_STATES_START_POSITION] hidden_states = torch.stack(hidden_states, dim=1) norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) else: hidden_states = outputs[0] logits = self.classifier(hidden_states) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), torch.argmax(labels.view(-1, self.num_labels), axis=1)) if not return_dict: output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] return output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.AMSoftmaxLoss class AMSoftmaxLoss(nn.Module): def __init__(self, input_dim, num_labels, scale=30.0, margin=0.4): super(AMSoftmaxLoss, self).__init__() self.scale = scale self.margin = margin self.num_labels = num_labels self.weight = nn.Parameter(torch.randn(input_dim, num_labels), requires_grad=True) self.loss = nn.CrossEntropyLoss() def forward(self, hidden_states, labels): labels = labels.flatten() weight = nn.functional.normalize(self.weight, dim=0) hidden_states = nn.functional.normalize(hidden_states, dim=1) cos_theta = torch.mm(hidden_states, weight) psi = cos_theta - self.margin onehot = nn.functional.one_hot(labels, self.num_labels) logits = self.scale * torch.where(onehot.bool(), psi, cos_theta) loss = self.loss(logits, labels) return loss # Copied from transformers.models.wav2vec2.modeling_wav2vec2.TDNNLayer class TDNNLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.tdnn_dim[layer_id - 1] if layer_id > 0 else config.tdnn_dim[layer_id] self.out_conv_dim = config.tdnn_dim[layer_id] self.kernel_size = config.tdnn_kernel[layer_id] self.dilation = config.tdnn_dilation[layer_id] self.kernel = nn.Linear(self.in_conv_dim * self.kernel_size, self.out_conv_dim) self.activation = nn.ReLU() def forward(self, hidden_states): hidden_states = hidden_states.unsqueeze(1) hidden_states = nn.functional.unfold( hidden_states, (self.kernel_size, self.in_conv_dim), stride=(1, self.in_conv_dim), dilation=(self.dilation, 1), ) hidden_states = hidden_states.transpose(1, 2) hidden_states = self.kernel(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states @add_start_docstrings( """ Data2VecAudio Model with an XVector feature extraction head on top for tasks like Speaker Verification. """, DATA2VEC_AUDIO_START_DOCSTRING, ) class Data2VecAudioForXVector(Data2VecAudioPreTrainedModel): def __init__(self, config): super().__init__(config) self.data2vec_audio = Data2VecAudioModel(config) num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings if config.use_weighted_layer_sum: self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) self.projector = nn.Linear(config.hidden_size, config.tdnn_dim[0]) tdnn_layers = [TDNNLayer(config, i) for i in range(len(config.tdnn_dim))] self.tdnn = nn.ModuleList(tdnn_layers) self.feature_extractor = nn.Linear(config.tdnn_dim[-1] * 2, config.xvector_output_dim) self.classifier = nn.Linear(config.xvector_output_dim, config.xvector_output_dim) self.objective = AMSoftmaxLoss(config.xvector_output_dim, config.num_labels) self.init_weights() def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5." "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.data2vec_audio.feature_extractor._freeze_parameters() def freeze_base_model(self): """ Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated. """ for param in self.data2vec_audio.parameters(): param.requires_grad = False def _get_tdnn_output_lengths(self, input_lengths: Union[torch.LongTensor, int]): """ Computes the output length of the TDNN layers """ def _conv_out_length(input_length, kernel_size, stride): # 1D convolutional layer output length formula taken # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html return (input_length - kernel_size) // stride + 1 for kernel_size in self.config.tdnn_kernel: input_lengths = _conv_out_length(input_lengths, kernel_size, 1) return input_lengths @add_start_docstrings_to_model_forward(DATA2VEC_AUDIO_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=XVectorOutput, config_class=_CONFIG_FOR_DOC, modality="audio", ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForXVector.forward with wav2vec2->data2vec_audio def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.Tensor] = None, ) -> Union[Tuple, XVectorOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states outputs = self.data2vec_audio( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if self.config.use_weighted_layer_sum: hidden_states = outputs[_HIDDEN_STATES_START_POSITION] hidden_states = torch.stack(hidden_states, dim=1) norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) else: hidden_states = outputs[0] hidden_states = self.projector(hidden_states) for tdnn_layer in self.tdnn: hidden_states = tdnn_layer(hidden_states) # Statistic Pooling if attention_mask is None: mean_features = hidden_states.mean(dim=1) std_features = hidden_states.std(dim=1) else: feat_extract_output_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(dim=1)) tdnn_output_lengths = self._get_tdnn_output_lengths(feat_extract_output_lengths) mean_features = [] std_features = [] for i, length in enumerate(tdnn_output_lengths): mean_features.append(hidden_states[i, :length].mean(dim=0)) std_features.append(hidden_states[i, :length].std(dim=0)) mean_features = torch.stack(mean_features) std_features = torch.stack(std_features) statistic_pooling = torch.cat([mean_features, std_features], dim=-1) output_embeddings = self.feature_extractor(statistic_pooling) logits = self.classifier(output_embeddings) loss = None if labels is not None: loss = self.objective(logits, labels) if not return_dict: output = (logits, output_embeddings) + outputs[_HIDDEN_STATES_START_POSITION:] return ((loss,) + output) if loss is not None else output return XVectorOutput( loss=loss, logits=logits, embeddings=output_embeddings, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/data2vec/convert_data2vec_text_original_pytorch_checkpoint_to_pytorch.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert data2vec checkpoint.""" import argparse import os import pathlib import fairseq import torch from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import ( Data2VecTextConfig, Data2VecTextForMaskedLM, Data2VecTextForSequenceClassification, Data2VecTextModel, ) from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) # IMPORTANT: In order for this script to run, please make sure to download the dictionary: `dict.txt` from wget https://dl.fbaipublicfiles.com/fairseq/models/roberta.large.tar.gz # File copied from https://github.com/pytorch/fairseq/blob/main/examples/data2vec/models/data2vec_text.py from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("0.9.0"): raise Exception("requires fairseq >= 0.9.0") logging.set_verbosity_info() logger = logging.get_logger(__name__) SAMPLE_TEXT = "Hello world! cécé herlolip" def convert_data2vec_checkpoint_to_pytorch( data2vec_checkpoint_path: str, pytorch_dump_folder_path: str, classification_head: bool ): """ Copy/paste/tweak data2vec's weights to our BERT structure. """ data2vec_checkpoint_dir, data2vec_checkpoint_file_name = os.path.split(data2vec_checkpoint_path) data2vec = Data2VecTextModel.from_pretrained( data2vec_checkpoint_dir, checkpoint_file=data2vec_checkpoint_file_name ) data2vec.eval() # disable dropout data2vec_model = data2vec.models[0] data2vec_sent_encoder = data2vec_model.encoder.sentence_encoder config = Data2VecTextConfig( vocab_size=data2vec_sent_encoder.embed_tokens.num_embeddings, hidden_size=data2vec_model.args.encoder_embed_dim, num_hidden_layers=data2vec_model.args.encoder_layers, num_attention_heads=data2vec_model.args.encoder_attention_heads, intermediate_size=data2vec_model.args.encoder_ffn_embed_dim, max_position_embeddings=514, type_vocab_size=1, layer_norm_eps=1e-5, # PyTorch default used in fairseq ) if classification_head: config.num_labels = data2vec.model.classification_heads["mnli"].out_proj.weight.shape[0] print("Our BERT config:", config) model = Data2VecTextForSequenceClassification(config) if classification_head else Data2VecTextForMaskedLM(config) model.eval() # Now let's copy all the weights. # Embeddings model.data2vec_text.embeddings.word_embeddings.weight = data2vec_sent_encoder.embed_tokens.weight model.data2vec_text.embeddings.position_embeddings.weight = data2vec_sent_encoder.embed_positions.weight model.data2vec_text.embeddings.token_type_embeddings.weight.data = torch.zeros_like( model.data2vec_text.embeddings.token_type_embeddings.weight ) # just zero them out b/c data2vec doesn't use them. model.data2vec_text.embeddings.LayerNorm.weight = data2vec_sent_encoder.layernorm_embedding.weight model.data2vec_text.embeddings.LayerNorm.bias = data2vec_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers): # Encoder: start of layer layer: BertLayer = model.data2vec_text.encoder.layer[i] data2vec_layer: TransformerSentenceEncoderLayer = data2vec_sent_encoder.layers[i] # self attention self_attn: BertSelfAttention = layer.attention.self assert data2vec_layer.self_attn.k_proj.weight.data.shape == torch.Size( (config.hidden_size, config.hidden_size) ), ( "Shape for data2vec_layer.self_attn.k_proj.weight.data should be" f" {torch.Size((config.hidden_size, config.hidden_size))}" ) assert data2vec_layer.self_attn.q_proj.weight.data.shape == torch.Size( (config.hidden_size, config.hidden_size) ), ( "Shape for data2vec_layer.self_attn.q_proj.weight.data should be" f" {torch.Size((config.hidden_size, config.hidden_size))}" ) assert data2vec_layer.self_attn.v_proj.weight.data.shape == torch.Size( (config.hidden_size, config.hidden_size) ), ( "Shape for data2vec_layer.self_attn.v_proj.weight.data should be" f" {torch.Size((config.hidden_size, config.hidden_size))}" ) self_attn.query.weight.data = data2vec_layer.self_attn.q_proj.weight self_attn.query.bias.data = data2vec_layer.self_attn.q_proj.bias self_attn.key.weight.data = data2vec_layer.self_attn.k_proj.weight self_attn.key.bias.data = data2vec_layer.self_attn.k_proj.bias self_attn.value.weight.data = data2vec_layer.self_attn.v_proj.weight self_attn.value.bias.data = data2vec_layer.self_attn.v_proj.bias # self-attention output self_output: BertSelfOutput = layer.attention.output assert ( self_output.dense.weight.shape == data2vec_layer.self_attn.out_proj.weight.shape ), f"Shape for self_output.dense.weight should be {data2vec_layer.self_attn.out_proj.weight.shape}" self_output.dense.weight = data2vec_layer.self_attn.out_proj.weight self_output.dense.bias = data2vec_layer.self_attn.out_proj.bias self_output.LayerNorm.weight = data2vec_layer.self_attn_layer_norm.weight self_output.LayerNorm.bias = data2vec_layer.self_attn_layer_norm.bias # intermediate intermediate: BertIntermediate = layer.intermediate assert ( intermediate.dense.weight.shape == data2vec_layer.fc1.weight.shape ), f"Shape for intermediate.dense.weight should be {data2vec_layer.fc1.weight.shape}" intermediate.dense.weight = data2vec_layer.fc1.weight intermediate.dense.bias = data2vec_layer.fc1.bias # output bert_output: BertOutput = layer.output assert ( bert_output.dense.weight.shape == data2vec_layer.fc2.weight.shape ), f"Shape for bert_output.dense.weight should be {data2vec_layer.fc2.weight.shape}" bert_output.dense.weight = data2vec_layer.fc2.weight bert_output.dense.bias = data2vec_layer.fc2.bias bert_output.LayerNorm.weight = data2vec_layer.final_layer_norm.weight bert_output.LayerNorm.bias = data2vec_layer.final_layer_norm.bias # end of layer if classification_head: model.classifier.dense.weight = data2vec.model.classification_heads["mnli"].dense.weight model.classifier.dense.bias = data2vec.model.classification_heads["mnli"].dense.bias model.classifier.out_proj.weight = data2vec.model.classification_heads["mnli"].out_proj.weight model.classifier.out_proj.bias = data2vec.model.classification_heads["mnli"].out_proj.bias else: # LM Head model.lm_head.dense.weight = data2vec_model.encoder.lm_head.dense.weight model.lm_head.dense.bias = data2vec_model.encoder.lm_head.dense.bias model.lm_head.layer_norm.weight = data2vec_model.encoder.lm_head.layer_norm.weight model.lm_head.layer_norm.bias = data2vec_model.encoder.lm_head.layer_norm.bias model.lm_head.decoder.weight = data2vec_model.encoder.lm_head.weight model.lm_head.decoder.bias = data2vec_model.encoder.lm_head.bias # Let's check that we get the same results. input_ids: torch.Tensor = data2vec.encode(SAMPLE_TEXT).unsqueeze(0) # batch of size 1 our_output = model(input_ids)[0] if classification_head: their_output = data2vec.model.classification_heads["mnli"](data2vec.extract_features(input_ids)) else: their_output = data2vec_model(input_ids)[0] print(our_output.shape, their_output.shape) max_absolute_diff = torch.max(torch.abs(our_output - their_output)).item() print(f"max_absolute_diff = {max_absolute_diff}") # ~ 1e-7 success = torch.allclose(our_output, their_output, atol=1e-3) print("Do both models output the same tensors?", "🔥" if success else "💩") if not success: raise Exception("Something went wRoNg") pathlib.Path(pytorch_dump_folder_path).mkdir(parents=True, exist_ok=True) print(f"Saving model to {pytorch_dump_folder_path}") model.save_pretrained(pytorch_dump_folder_path) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--classification_head", action="store_true", help="Whether to convert a final classification head." ) args = parser.parse_args() convert_data2vec_checkpoint_to_pytorch( args.checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/data2vec/__init__.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _import_structure = { "configuration_data2vec_audio": ["DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecAudioConfig"], "configuration_data2vec_text": [ "DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecTextConfig", "Data2VecTextOnnxConfig", ], "configuration_data2vec_vision": [ "DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecVisionConfig", "Data2VecVisionOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_data2vec_audio"] = [ "DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecAudioForAudioFrameClassification", "Data2VecAudioForCTC", "Data2VecAudioForSequenceClassification", "Data2VecAudioForXVector", "Data2VecAudioModel", "Data2VecAudioPreTrainedModel", ] _import_structure["modeling_data2vec_text"] = [ "DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecTextForCausalLM", "Data2VecTextForMaskedLM", "Data2VecTextForMultipleChoice", "Data2VecTextForQuestionAnswering", "Data2VecTextForSequenceClassification", "Data2VecTextForTokenClassification", "Data2VecTextModel", "Data2VecTextPreTrainedModel", ] _import_structure["modeling_data2vec_vision"] = [ "DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecVisionForImageClassification", "Data2VecVisionForMaskedImageModeling", "Data2VecVisionForSemanticSegmentation", "Data2VecVisionModel", "Data2VecVisionPreTrainedModel", ] if is_tf_available(): _import_structure["modeling_tf_data2vec_vision"] = [ "TFData2VecVisionForImageClassification", "TFData2VecVisionForSemanticSegmentation", "TFData2VecVisionModel", "TFData2VecVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_data2vec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, Data2VecAudioConfig from .configuration_data2vec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, Data2VecTextConfig, Data2VecTextOnnxConfig, ) from .configuration_data2vec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, Data2VecVisionConfig, Data2VecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_data2vec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, Data2VecAudioForAudioFrameClassification, Data2VecAudioForCTC, Data2VecAudioForSequenceClassification, Data2VecAudioForXVector, Data2VecAudioModel, Data2VecAudioPreTrainedModel, ) from .modeling_data2vec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, Data2VecTextForCausalLM, Data2VecTextForMaskedLM, Data2VecTextForMultipleChoice, Data2VecTextForQuestionAnswering, Data2VecTextForSequenceClassification, Data2VecTextForTokenClassification, Data2VecTextModel, Data2VecTextPreTrainedModel, ) from .modeling_data2vec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, Data2VecVisionForImageClassification, Data2VecVisionForMaskedImageModeling, Data2VecVisionForSemanticSegmentation, Data2VecVisionModel, Data2VecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_data2vec_vision import ( TFData2VecVisionForImageClassification, TFData2VecVisionForSemanticSegmentation, TFData2VecVisionModel, TFData2VecVisionPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/data2vec/modeling_data2vec_text.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch Data2VecText model.""" import math from typing import List, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN, gelu from ...modeling_outputs import ( BaseModelOutputWithPastAndCrossAttentions, BaseModelOutputWithPoolingAndCrossAttentions, CausalLMOutputWithCrossAttentions, MaskedLMOutput, MultipleChoiceModelOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_data2vec_text import Data2VecTextConfig logger = logging.get_logger(__name__) _HIDDEN_STATES_START_POSITION = 2 # General docstring _CHECKPOINT_FOR_DOC = "facebook/data2vec-text-base" _CONFIG_FOR_DOC = "Data2VecTextConfig" DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST = [ "facebook/data2vec-text-base", # See all data2vec models at https://huggingface.co/models?filter=data2vec-text ] # Copied from transformers.models.roberta.modeling_roberta.RobertaEmbeddings with Roberta->Data2VecText class Data2VecTextForTextEmbeddings(nn.Module): """ Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. """ # Copied from transformers.models.bert.modeling_bert.BertEmbeddings.__init__ def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) self.register_buffer( "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False ) # End copy self.padding_idx = config.pad_token_id self.position_embeddings = nn.Embedding( config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx ) def forward( self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0 ): if position_ids is None: if input_ids is not None: # Create the position ids from the input token ids. Any padded tokens remain padded. position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length) else: position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds) if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves # issue #5664 if token_type_ids is None: if hasattr(self, "token_type_ids"): buffered_token_type_ids = self.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings def create_position_ids_from_inputs_embeds(self, inputs_embeds): """ We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. Args: inputs_embeds: torch.Tensor Returns: torch.Tensor """ input_shape = inputs_embeds.size()[:-1] sequence_length = input_shape[1] position_ids = torch.arange( self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device ) return position_ids.unsqueeze(0).expand(input_shape) # Copied from transformers.models.roberta.modeling_roberta.RobertaSelfAttention with Roberta->Data2VecText class Data2VecTextSelfAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = position_embedding_type or getattr( config, "position_embedding_type", "absolute" ) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) self.is_decoder = config.is_decoder def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: mixed_query_layer = self.query(hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_layer = past_key_value[0] value_layer = past_key_value[1] attention_mask = encoder_attention_mask elif is_cross_attention: key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) key_layer = torch.cat([past_key_value[0], key_layer], dim=2) value_layer = torch.cat([past_key_value[1], value_layer], dim=2) else: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) use_cache = past_key_value is not None if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": query_length, key_length = query_layer.shape[2], key_layer.shape[2] if use_cache: position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view( -1, 1 ) else: position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility if self.position_embedding_type == "relative_key": relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == "relative_key_query": relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in Data2VecTextModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs # Copied from transformers.models.bert.modeling_bert.BertSelfOutput class Data2VecTextSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->Data2VecText class Data2VecTextAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() self.self = Data2VecTextSelfAttention(config, position_embedding_type=position_embedding_type) self.output = Data2VecTextSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: self_outputs = self.self( hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.bert.modeling_bert.BertIntermediate class Data2VecTextIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOutput class Data2VecTextOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->Data2VecText class Data2VecTextLayer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = Data2VecTextAttention(config) self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: if not self.is_decoder: raise ValueError(f"{self} should be used as a decoder model if cross attention is added") self.crossattention = Data2VecTextAttention(config, position_embedding_type="absolute") self.intermediate = Data2VecTextIntermediate(config) self.output = Data2VecTextOutput(config) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, past_key_value=self_attn_past_key_value, ) attention_output = self_attention_outputs[0] # if decoder, the last output is tuple of self-attn cache if self.is_decoder: outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] else: outputs = self_attention_outputs[1:] # add self attentions if we output attention weights cross_attn_present_key_value = None if self.is_decoder and encoder_hidden_states is not None: if not hasattr(self, "crossattention"): raise ValueError( f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" " by setting `config.add_cross_attention=True`" ) # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None cross_attention_outputs = self.crossattention( attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, cross_attn_past_key_value, output_attentions, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights # add cross-attn cache to positions 3,4 of present_key_value tuple cross_attn_present_key_value = cross_attention_outputs[-1] present_key_value = present_key_value + cross_attn_present_key_value layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) outputs = (layer_output,) + outputs # if decoder, return the attn key/values as the last output if self.is_decoder: outputs = outputs + (present_key_value,) return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output # Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->Data2VecText class Data2VecTextEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([Data2VecTextLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False next_decoder_cache = () if use_cache else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None past_key_value = past_key_values[i] if past_key_values is not None else None if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, past_key_value, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(layer_module), hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, ) else: layer_outputs = layer_module( hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if self.config.add_cross_attention: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, next_decoder_cache, all_hidden_states, all_self_attentions, all_cross_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) # Copied from transformers.models.bert.modeling_bert.BertPooler class Data2VecTextPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output class Data2VecTextPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = Data2VecTextConfig base_model_prefix = "data2vec_text" supports_gradient_checkpointing = True _no_split_modules = [] def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): if hasattr(module, "bias") and module.bias is not None: module.bias.data.zero_() if hasattr(module, "weight") and module.weight is not None: module.weight.data.fill_(1.0) def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, Data2VecTextEncoder): module.gradient_checkpointing = value DATA2VECTEXT_START_DOCSTRING = r""" Data2VecText was proposed in [data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/pdf/2202.03555) by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu and Michael Auli. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`Data2VecTextConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ DATA2VECTEXT_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare Data2VecText Model for text transformer outputting raw hidden-states without any specific head on top.", DATA2VECTEXT_START_DOCSTRING, ) class Data2VecTextModel(Data2VecTextPreTrainedModel): """ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in *Attention is all you need*_ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. .. _*Attention is all you need*: https://arxiv.org/abs/1706.03762 """ def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = Data2VecTextForTextEmbeddings(config) self.encoder = Data2VecTextEncoder(config) self.pooler = Data2VecTextPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(DATA2VECTEXT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPoolingAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) # Copied from transformers.models.bert.modeling_bert.BertModel.forward def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if self.config.is_decoder: use_cache = use_cache if use_cache is not None else self.config.use_cache else: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape device = input_ids.device if input_ids is not None else inputs_embeds.device # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if attention_mask is None: attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) if token_type_ids is None: if hasattr(self.embeddings, "token_type_ids"): buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) @add_start_docstrings( """Data2VecText Model with a `language modeling` head on top for CLM fine-tuning.""", DATA2VECTEXT_START_DOCSTRING ) class Data2VecTextForCausalLM(Data2VecTextPreTrainedModel): _tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"] def __init__(self, config): super().__init__(config) if not config.is_decoder: logger.warning("If you want to use `Data2VecTextLMHeadModel` as a standalone, add `is_decoder=True.`") self.data2vec_text = Data2VecTextModel(config, add_pooling_layer=False) self.lm_head = Data2VecTextLMHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.lm_head.decoder def set_output_embeddings(self, new_embeddings): self.lm_head.decoder = new_embeddings @add_start_docstrings_to_model_forward(DATA2VECTEXT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Returns: Example: ```python >>> from transformers import AutoTokenizer, Data2VecTextForCausalLM, Data2VecTextConfig >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("facebook/data2vec-text-base") >>> config = Data2VecTextConfig.from_pretrained("facebook/data2vec-text-base") >>> config.is_decoder = True >>> model = Data2VecTextForCausalLM.from_pretrained("facebook/data2vec-text-base", config=config) >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> prediction_logits = outputs.logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: use_cache = False outputs = self.data2vec_text( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.lm_head(sequence_output) lm_loss = None if labels is not None: # we are doing next-token prediction; shift prediction scores and input ids by one shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous() labels = labels[:, 1:].contiguous() loss_fct = CrossEntropyLoss() labels = labels.to(shifted_prediction_scores.device) lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((lm_loss,) + output) if lm_loss is not None else output return CausalLMOutputWithCrossAttentions( loss=lm_loss, logits=prediction_scores, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs): input_shape = input_ids.shape # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly if attention_mask is None: attention_mask = input_ids.new_ones(input_shape) # cut decoder_input_ids if past is used if past_key_values is not None: input_ids = input_ids[:, -1:] return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values} def _reorder_cache(self, past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),) return reordered_past @add_start_docstrings("""data2vec Model with a `language modeling` head on top.""", DATA2VECTEXT_START_DOCSTRING) class Data2VecTextForMaskedLM(Data2VecTextPreTrainedModel): _tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"] def __init__(self, config): super().__init__(config) if config.is_decoder: logger.warning( "If you want to use `Data2VecTextForMaskedLM` make sure `config.is_decoder=False` for " "bi-directional self-attention." ) self.data2vec_text = Data2VecTextModel(config, add_pooling_layer=False) self.lm_head = Data2VecTextLMHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.lm_head.decoder def set_output_embeddings(self, new_embeddings): self.lm_head.decoder = new_embeddings @add_start_docstrings_to_model_forward(DATA2VECTEXT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC, mask="<mask>", ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` kwargs (`Dict[str, any]`, optional, defaults to *{}*): Used to hide legacy arguments that have been deprecated. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.data2vec_text( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.lm_head(sequence_output) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() labels = labels.to(prediction_scores.device) masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) # Copied from transformers.models.roberta.modeling_roberta.RobertaLMHead with Roberta->Data2VecText class Data2VecTextLMHead(nn.Module): """Data2VecText Head for masked language modeling.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.decoder = nn.Linear(config.hidden_size, config.vocab_size) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) self.decoder.bias = self.bias def forward(self, features, **kwargs): x = self.dense(features) x = gelu(x) x = self.layer_norm(x) # project back to size of vocabulary with bias x = self.decoder(x) return x def _tie_weights(self): # To tie those two weights if they get disconnected (on TPU or when the bias is resized) # For accelerate compatibility and to not break backward compatibility if self.decoder.bias.device.type == "meta": self.decoder.bias = self.bias else: self.bias = self.decoder.bias @add_start_docstrings( """ Data2VecText Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, DATA2VECTEXT_START_DOCSTRING, ) class Data2VecTextForSequenceClassification(Data2VecTextPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.data2vec_text = Data2VecTextModel(config, add_pooling_layer=False) self.classifier = Data2VecTextClassificationHead(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(DATA2VECTEXT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.data2vec_text( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.classifier(sequence_output) loss = None if labels is not None: labels = labels.to(logits.device) if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Data2VecText Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, DATA2VECTEXT_START_DOCSTRING, ) class Data2VecTextForMultipleChoice(Data2VecTextPreTrainedModel): def __init__(self, config): super().__init__(config) self.data2vec_text = Data2VecTextModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, 1) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward( DATA2VECTEXT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MultipleChoiceModelOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None flat_inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) outputs = self.data2vec_text( flat_input_ids, position_ids=flat_position_ids, token_type_ids=flat_token_type_ids, attention_mask=flat_attention_mask, head_mask=head_mask, inputs_embeds=flat_inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() labels = labels.to(reshaped_logits.device) loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Data2VecText Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, DATA2VECTEXT_START_DOCSTRING, ) class Data2VecTextForTokenClassification(Data2VecTextPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.data2vec_text = Data2VecTextModel(config, add_pooling_layer=False) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(DATA2VECTEXT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.data2vec_text( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() labels = labels.to(logits.device) loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) # Copied from transformers.models.roberta.modeling_roberta.RobertaClassificationHead with Roberta->Data2VecText class Data2VecTextClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.out_proj = nn.Linear(config.hidden_size, config.num_labels) def forward(self, features, **kwargs): x = features[:, 0, :] # take <s> token (equiv. to [CLS]) x = self.dropout(x) x = self.dense(x) x = torch.tanh(x) x = self.dropout(x) x = self.out_proj(x) return x @add_start_docstrings( """ Data2VecText Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, DATA2VECTEXT_START_DOCSTRING, ) class Data2VecTextForQuestionAnswering(Data2VecTextPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.data2vec_text = Data2VecTextModel(config, add_pooling_layer=False) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(DATA2VECTEXT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.data2vec_text( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0): """ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. This is modified from fairseq's `utils.make_positions`. Args: x: torch.Tensor x: Returns: torch.Tensor """ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. mask = input_ids.ne(padding_idx).int() incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask return incremental_indices.long() + padding_idx
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/data2vec/configuration_data2vec_vision.py
# coding=utf-8 # Copyright Meta Platforms and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Data2VecVision model configuration""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging logger = logging.get_logger(__name__) DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class Data2VecVisionConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`Data2VecVisionModel`]. It is used to instantiate an Data2VecVision model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Data2VecVision [facebook/data2vec-vision-base](https://huggingface.co/facebook/data2vec-vision-base) architecture. Args: hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. image_size (`int`, *optional*, defaults to 224): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to 16): The size (resolution) of each patch. num_channels (`int`, *optional*, defaults to 3): The number of input channels. use_mask_token (`bool`, *optional*, defaults to `False`): Whether to use a mask token for masked image modeling. use_absolute_position_embeddings (`bool`, *optional*, defaults to `False`): Whether to use BERT-style absolute position embeddings. use_relative_position_bias (`bool`, *optional*, defaults to `False`): Whether to use T5-style relative position embeddings in the self-attention layers. use_shared_relative_position_bias (`bool`, *optional*, defaults to `False`): Whether to use the same relative position embeddings across all self-attention layers of the Transformer. layer_scale_init_value (`float`, *optional*, defaults to 0.1): Scale to use in the self-attention layers. 0.1 for base, 1e-5 for large. Set 0 to disable layer scale. drop_path_rate (`float`, *optional*, defaults to 0.1): Stochastic depth rate per sample (when applied in the main path of residual layers). use_mean_pooling (`bool`, *optional*, defaults to `True`): Whether to mean pool the final hidden states of the patches instead of using the final hidden state of the CLS token, before applying the classification head. out_indices (`List[int]`, *optional*, defaults to `[3, 5, 7, 11]`): Indices of the feature maps to use for semantic segmentation. pool_scales (`Tuple[int]`, *optional*, defaults to `[1, 2, 3, 6]`): Pooling scales used in Pooling Pyramid Module applied on the last feature map. use_auxiliary_head (`bool`, *optional*, defaults to `True`): Whether to use an auxiliary head during training. auxiliary_loss_weight (`float`, *optional*, defaults to 0.4): Weight of the cross-entropy loss of the auxiliary head. auxiliary_channels (`int`, *optional*, defaults to 256): Number of channels to use in the auxiliary head. auxiliary_num_convs (`int`, *optional*, defaults to 1): Number of convolutional layers to use in the auxiliary head. auxiliary_concat_input (`bool`, *optional*, defaults to `False`): Whether to concatenate the output of the auxiliary head with the input before the classification layer. semantic_loss_ignore_index (`int`, *optional*, defaults to 255): The index that is ignored by the loss function of the semantic segmentation model. Example: ```python >>> from transformers import Data2VecVisionConfig, Data2VecVisionModel >>> # Initializing a Data2VecVision data2vec_vision-base-patch16-224-in22k style configuration >>> configuration = Data2VecVisionConfig() >>> # Initializing a model (with random weights) from the data2vec_vision-base-patch16-224-in22k style configuration >>> model = Data2VecVisionModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "data2vec-vision" def __init__( self, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.0, initializer_range=0.02, layer_norm_eps=1e-12, image_size=224, patch_size=16, num_channels=3, use_mask_token=False, use_absolute_position_embeddings=False, use_relative_position_bias=False, use_shared_relative_position_bias=False, layer_scale_init_value=0.1, drop_path_rate=0.1, use_mean_pooling=True, out_indices=[3, 5, 7, 11], pool_scales=[1, 2, 3, 6], use_auxiliary_head=True, auxiliary_loss_weight=0.4, auxiliary_channels=256, auxiliary_num_convs=1, auxiliary_concat_input=False, semantic_loss_ignore_index=255, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.use_mask_token = use_mask_token self.use_absolute_position_embeddings = use_absolute_position_embeddings self.use_relative_position_bias = use_relative_position_bias self.use_shared_relative_position_bias = use_shared_relative_position_bias self.layer_scale_init_value = layer_scale_init_value self.drop_path_rate = drop_path_rate self.use_mean_pooling = use_mean_pooling # decode head attributes (semantic segmentation) self.out_indices = out_indices self.pool_scales = pool_scales # auxiliary head attributes (semantic segmentation) self.use_auxiliary_head = use_auxiliary_head self.auxiliary_loss_weight = auxiliary_loss_weight self.auxiliary_channels = auxiliary_channels self.auxiliary_num_convs = auxiliary_num_convs self.auxiliary_concat_input = auxiliary_concat_input self.semantic_loss_ignore_index = semantic_loss_ignore_index # Copied from transformers.models.vit.configuration_vit.ViTOnnxConfig class Data2VecVisionOnnxConfig(OnnxConfig): torch_onnx_minimum_version = version.parse("1.11") @property def inputs(self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def atol_for_validation(self) -> float: return 1e-4
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/data2vec/modeling_data2vec_vision.py
# coding=utf-8 # Copyright 2022 Meta Platforms and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch Data2VecVision model.""" import collections.abc import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPooling, ImageClassifierOutput, SemanticSegmenterOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import find_pruneable_heads_and_indices, meshgrid, prune_linear_layer from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_data2vec_vision import Data2VecVisionConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "Data2VecVisionConfig" # Base docstring _CHECKPOINT_FOR_DOC = "facebook/data2vec-vision-base" _EXPECTED_OUTPUT_SHAPE = [1, 197, 768] # Image classification docstring _IMAGE_CLASS_CHECKPOINT = "facebook/data2vec-vision-base-ft1k" _IMAGE_CLASS_EXPECTED_OUTPUT = "remote control, remote" DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST = [ "facebook/data2vec-vision-base-ft1k", # See all Data2VecVision models at https://huggingface.co/models?filter=data2vec-vision ] @dataclass # Copied from transformers.models.beit.modeling_beit.BeitModelOutputWithPooling with Beit->Data2VecVision class Data2VecVisionModelOutputWithPooling(BaseModelOutputWithPooling): """ Class for outputs of [`Data2VecVisionModel`]. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`): Average of the last layer hidden states of the patch tokens (excluding the *[CLS]* token) if *config.use_mean_pooling* is set to True. If set to False, then the final hidden state of the *[CLS]* token will be returned. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ # Copied from transformers.models.beit.modeling_beit.drop_path def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor: """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if drop_prob == 0.0 or not training: return input keep_prob = 1 - drop_prob shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device) random_tensor.floor_() # binarize output = input.div(keep_prob) * random_tensor return output # Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->Data2VecVision class Data2VecVisionDropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob: Optional[float] = None) -> None: super().__init__() self.drop_prob = drop_prob def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: return drop_path(hidden_states, self.drop_prob, self.training) def extra_repr(self) -> str: return "p={}".format(self.drop_prob) # Copied from transformers.models.beit.modeling_beit.BeitEmbeddings with Beit->Data2VecVision class Data2VecVisionEmbeddings(nn.Module): """ Construct the CLS token, position and patch embeddings. Optionally, also the mask token. """ def __init__(self, config: Data2VecVisionConfig) -> None: super().__init__() self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) if config.use_mask_token: self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) else: self.mask_token = None self.patch_embeddings = Data2VecVisionPatchEmbeddings(config) num_patches = self.patch_embeddings.num_patches if config.use_absolute_position_embeddings: self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.hidden_size)) else: self.position_embeddings = None self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, pixel_values: torch.Tensor, bool_masked_pos: Optional[torch.BoolTensor] = None) -> torch.Tensor: embeddings = self.patch_embeddings(pixel_values) batch_size, seq_len, _ = embeddings.size() cls_tokens = self.cls_token.expand(batch_size, -1, -1) if bool_masked_pos is not None: mask_tokens = self.mask_token.expand(batch_size, seq_len, -1) # replace the masked visual tokens by mask_tokens w = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens) embeddings = embeddings * (1 - w) + mask_tokens * w embeddings = torch.cat((cls_tokens, embeddings), dim=1) if self.position_embeddings is not None: embeddings = embeddings + self.position_embeddings embeddings = self.dropout(embeddings) return embeddings # Copied from transformers.models.beit.modeling_beit.BeitPatchEmbeddings with Beit->Data2VecVision class Data2VecVisionPatchEmbeddings(nn.Module): """ This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a Transformer. """ def __init__(self, config): super().__init__() image_size, patch_size = config.image_size, config.patch_size num_channels, hidden_size = config.num_channels, config.hidden_size image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) patch_shape = (image_size[0] // patch_size[0], image_size[1] // patch_size[1]) self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.num_patches = num_patches self.patch_shape = patch_shape self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) def forward(self, pixel_values: torch.Tensor) -> torch.Tensor: batch_size, num_channels, height, width = pixel_values.shape if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) if height != self.image_size[0] or width != self.image_size[1]: raise ValueError( f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})." ) embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2) return embeddings # Copied from transformers.models.beit.modeling_beit.BeitSelfAttention with Beit->Data2VecVision class Data2VecVisionSelfAttention(nn.Module): def __init__(self, config: Data2VecVisionConfig, window_size: Optional[tuple] = None) -> None: super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size {config.hidden_size,} is not a multiple of the number of attention " f"heads {config.num_attention_heads}." ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=False) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) if window_size: self.relative_position_bias = Data2VecVisionRelativePositionBias(config, window_size=window_size) else: self.relative_position_bias = None def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, relative_position_bias: Optional["Data2VecVisionRelativePositionBias"] = None, ) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]: mixed_query_layer = self.query(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) # Add relative position bias if present. if self.relative_position_bias is not None: attention_scores = attention_scores + self.relative_position_bias().unsqueeze(0) # Add shared relative position bias if provided. if relative_position_bias is not None: attention_scores = attention_scores + relative_position_bias # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs # Copied from transformers.models.beit.modeling_beit.BeitSelfOutput with Beit->Data2VecVision class Data2VecVisionSelfOutput(nn.Module): """ The residual connection is defined in Data2VecVisionLayer instead of here (as is the case with other models), due to the layernorm applied before each block. """ def __init__(self, config: Data2VecVisionConfig) -> None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor, gamma=None) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states # Copied from transformers.models.beit.modeling_beit.BeitAttention with Beit->Data2VecVision class Data2VecVisionAttention(nn.Module): def __init__(self, config: Data2VecVisionConfig, window_size: Optional[tuple] = None) -> None: super().__init__() self.attention = Data2VecVisionSelfAttention(config, window_size=window_size) self.output = Data2VecVisionSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads ) # Prune linear layers self.attention.query = prune_linear_layer(self.attention.query, index) self.attention.key = prune_linear_layer(self.attention.key, index) self.attention.value = prune_linear_layer(self.attention.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, relative_position_bias: Optional["Data2VecVisionRelativePositionBias"] = None, ) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]: self_outputs = self.attention(hidden_states, head_mask, output_attentions, relative_position_bias) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.beit.modeling_beit.BeitIntermediate with Beit->Data2VecVision class Data2VecVisionIntermediate(nn.Module): def __init__(self, config: Data2VecVisionConfig) -> None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.beit.modeling_beit.BeitOutput with Beit->Data2VecVision class Data2VecVisionOutput(nn.Module): def __init__(self, config: Data2VecVisionConfig) -> None: super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states # Copied from transformers.models.beit.modeling_beit.BeitLayer with Beit->Data2VecVision,BEiT->Data2VecVision class Data2VecVisionLayer(nn.Module): """This corresponds to the Block class in the timm implementation.""" def __init__( self, config: Data2VecVisionConfig, window_size: Optional[tuple] = None, drop_path_rate: float = 0.0 ) -> None: super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = Data2VecVisionAttention(config, window_size=window_size) self.intermediate = Data2VecVisionIntermediate(config) self.output = Data2VecVisionOutput(config) self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.drop_path = Data2VecVisionDropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity() self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) init_values = config.layer_scale_init_value if init_values > 0: self.lambda_1 = nn.Parameter(init_values * torch.ones((config.hidden_size)), requires_grad=True) self.lambda_2 = nn.Parameter(init_values * torch.ones((config.hidden_size)), requires_grad=True) else: self.lambda_1, self.lambda_2 = None, None def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, relative_position_bias: Optional["Data2VecVisionRelativePositionBias"] = None, ) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]: self_attention_outputs = self.attention( self.layernorm_before(hidden_states), # in Data2VecVision, layernorm is applied before self-attention head_mask, output_attentions=output_attentions, relative_position_bias=relative_position_bias, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights # apply lambda_1 if present if self.lambda_1 is not None: attention_output = self.lambda_1 * attention_output # first residual connection hidden_states = self.drop_path(attention_output) + hidden_states # in Data2VecVision, layernorm is also applied after self-attention layer_output = self.layernorm_after(hidden_states) layer_output = self.intermediate(layer_output) layer_output = self.output(layer_output) if self.lambda_2 is not None: layer_output = self.lambda_2 * layer_output # second residual connection layer_output = self.drop_path(layer_output) + hidden_states outputs = (layer_output,) + outputs return outputs # Copied from transformers.models.beit.modeling_beit.BeitRelativePositionBias with Beit->Data2VecVision class Data2VecVisionRelativePositionBias(nn.Module): def __init__(self, config: Data2VecVisionConfig, window_size: tuple) -> None: super().__init__() self.window_size = window_size self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 self.relative_position_bias_table = nn.Parameter( torch.zeros(self.num_relative_distance, config.num_attention_heads) ) # 2*Wh-1 * 2*Ww-1, nH # cls to token & token 2 cls & cls to cls # get pair-wise relative position index for each token inside the window coords_h = torch.arange(window_size[0]) coords_w = torch.arange(window_size[1]) coords = torch.stack(meshgrid([coords_h, coords_w], indexing="ij")) # 2, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += window_size[1] - 1 relative_coords[:, :, 0] *= 2 * window_size[1] - 1 relative_position_index = torch.zeros( size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype ) relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww relative_position_index[0, 0:] = self.num_relative_distance - 3 relative_position_index[0:, 0] = self.num_relative_distance - 2 relative_position_index[0, 0] = self.num_relative_distance - 1 self.register_buffer("relative_position_index", relative_position_index, persistent=False) def forward(self) -> torch.Tensor: relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view( self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1 ) # Wh*Ww,Wh*Ww,nH return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww # Copied from transformers.models.beit.modeling_beit.BeitEncoder with Beit->Data2VecVision class Data2VecVisionEncoder(nn.Module): def __init__(self, config: Data2VecVisionConfig, window_size: Optional[tuple] = None) -> None: super().__init__() self.config = config if config.use_shared_relative_position_bias: self.relative_position_bias = Data2VecVisionRelativePositionBias(config, window_size=window_size) else: self.relative_position_bias = None # stochastic depth decay rule dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)] self.layer = nn.ModuleList( [ Data2VecVisionLayer( config, window_size=window_size if config.use_relative_position_bias else None, drop_path_rate=dpr[i], ) for i in range(config.num_hidden_layers) ] ) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ) -> Union[tuple, BaseModelOutput]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(layer_module), hidden_states, layer_head_mask, ) else: relative_position_bias = ( self.relative_position_bias() if self.relative_position_bias is not None else None ) layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions, relative_position_bias) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) # Copied from transformers.models.beit.modeling_beit.BeitPreTrainedModel with Beit->Data2VecVision,beit->data2vec_vision class Data2VecVisionPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = Data2VecVisionConfig base_model_prefix = "data2vec_vision" main_input_name = "pixel_values" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d, nn.ConvTranspose2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, Data2VecVisionEncoder): module.gradient_checkpointing = value DATA2VEC_VISION_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`Data2VecVisionConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ DATA2VEC_VISION_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`BeitImageProcessor.__call__`] for details. head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare Data2VecVision Model transformer outputting raw hidden-states without any specific head on top.", DATA2VEC_VISION_START_DOCSTRING, ) # Copied from transformers.models.beit.modeling_beit.BeitModel with BEIT->DATA2VEC_VISION,Beit->Data2VecVision,True->False class Data2VecVisionModel(Data2VecVisionPreTrainedModel): def __init__(self, config: Data2VecVisionConfig, add_pooling_layer: bool = False) -> None: super().__init__(config) self.config = config self.embeddings = Data2VecVisionEmbeddings(config) self.encoder = Data2VecVisionEncoder(config, window_size=self.embeddings.patch_embeddings.patch_shape) self.layernorm = ( nn.Identity() if config.use_mean_pooling else nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) ) self.pooler = Data2VecVisionPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.patch_embeddings def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(DATA2VEC_VISION_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=Data2VecVisionModelOutputWithPooling, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, pixel_values: Optional[torch.Tensor] = None, bool_masked_pos: Optional[torch.BoolTensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, Data2VecVisionModelOutputWithPooling]: r""" bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*): Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings(pixel_values, bool_masked_pos) encoder_outputs = self.encoder( embedding_output, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] sequence_output = self.layernorm(sequence_output) pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,) return head_outputs + encoder_outputs[1:] return Data2VecVisionModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) # Copied from transformers.models.beit.modeling_beit.BeitPooler with Beit->Data2VecVision class Data2VecVisionPooler(nn.Module): def __init__(self, config: Data2VecVisionConfig) -> None: super().__init__() self.layernorm = ( nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) if config.use_mean_pooling else None ) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: if self.layernorm is not None: # Mean pool the final hidden states of the patch tokens patch_tokens = hidden_states[:, 1:, :] pooled_output = self.layernorm(patch_tokens.mean(1)) else: # Pool by simply taking the final hidden state of the [CLS] token pooled_output = hidden_states[:, 0] return pooled_output @add_start_docstrings( """ Data2VecVision Model transformer with an image classification head on top (a linear layer on top of the average of the final hidden states of the patch tokens) e.g. for ImageNet. """, DATA2VEC_VISION_START_DOCSTRING, ) # Copied from transformers.models.beit.modeling_beit.BeitForImageClassification with BEIT->DATA2VEC_VISION,Beit->Data2VecVision,beit->data2vec_vision class Data2VecVisionForImageClassification(Data2VecVisionPreTrainedModel): def __init__(self, config: Data2VecVisionConfig) -> None: super().__init__(config) self.num_labels = config.num_labels self.data2vec_vision = Data2VecVisionModel(config, add_pooling_layer=True) # Classifier head self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(DATA2VEC_VISION_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=ImageClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def forward( self, pixel_values: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, ImageClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.data2vec_vision( pixel_values, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs.pooler_output if return_dict else outputs[1] logits = self.classifier(pooled_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) # Copied from transformers.models.beit.modeling_beit.BeitConvModule with Beit->Data2VecVision class Data2VecVisionConvModule(nn.Module): """ A convolutional block that bundles conv/norm/activation layers. This block simplifies the usage of convolution layers, which are commonly used with a norm layer (e.g., BatchNorm) and activation layer (e.g., ReLU). Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation. """ def __init__( self, in_channels: int, out_channels: int, kernel_size: Union[int, Tuple[int, int]], padding: Union[int, Tuple[int, int], str] = 0, bias: bool = False, dilation: Union[int, Tuple[int, int]] = 1, ) -> None: super().__init__() self.conv = nn.Conv2d( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, padding=padding, bias=bias, dilation=dilation, ) self.bn = nn.BatchNorm2d(out_channels) self.activation = nn.ReLU() def forward(self, input: torch.Tensor) -> torch.Tensor: output = self.conv(input) output = self.bn(output) output = self.activation(output) return output # Copied from transformers.models.beit.modeling_beit.BeitPyramidPoolingBlock with Beit->Data2VecVision class Data2VecVisionPyramidPoolingBlock(nn.Module): def __init__(self, pool_scale: int, in_channels: int, channels: int) -> None: super().__init__() self.layers = [ nn.AdaptiveAvgPool2d(pool_scale), Data2VecVisionConvModule(in_channels, channels, kernel_size=1), ] for i, layer in enumerate(self.layers): self.add_module(str(i), layer) def forward(self, input: torch.Tensor) -> torch.Tensor: hidden_state = input for layer in self.layers: hidden_state = layer(hidden_state) return hidden_state # Copied from transformers.models.beit.modeling_beit.BeitPyramidPoolingModule with Beit->Data2VecVision class Data2VecVisionPyramidPoolingModule(nn.Module): """ Pyramid Pooling Module (PPM) used in PSPNet. Args: pool_scales (tuple[int]): Pooling scales used in Pooling Pyramid Module. in_channels (int): Input channels. channels (int): Channels after modules, before conv_seg. align_corners (bool): align_corners argument of F.interpolate. Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation. """ def __init__(self, pool_scales: Tuple[int, ...], in_channels: int, channels: int, align_corners: bool) -> None: super().__init__() self.pool_scales = pool_scales self.align_corners = align_corners self.in_channels = in_channels self.channels = channels self.blocks = [] for i, pool_scale in enumerate(pool_scales): block = Data2VecVisionPyramidPoolingBlock( pool_scale=pool_scale, in_channels=in_channels, channels=channels ) self.blocks.append(block) self.add_module(str(i), block) def forward(self, x: torch.Tensor) -> List[torch.Tensor]: ppm_outs = [] for ppm in self.blocks: ppm_out = ppm(x) upsampled_ppm_out = nn.functional.interpolate( ppm_out, size=x.size()[2:], mode="bilinear", align_corners=self.align_corners ) ppm_outs.append(upsampled_ppm_out) return ppm_outs # Copied from transformers.models.beit.modeling_beit.BeitUperHead with Beit->Data2VecVision class Data2VecVisionUperHead(nn.Module): """ Unified Perceptual Parsing for Scene Understanding. This head is the implementation of [UPerNet](https://arxiv.org/abs/1807.10221). Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation. """ def __init__(self, config: Data2VecVisionConfig) -> None: super().__init__() self.pool_scales = config.pool_scales # e.g. (1, 2, 3, 6) self.in_channels = [config.hidden_size] * 4 # e.g. [768, 768, 768, 768] self.channels = config.hidden_size self.align_corners = False self.classifier = nn.Conv2d(self.channels, config.num_labels, kernel_size=1) # PSP Module self.psp_modules = Data2VecVisionPyramidPoolingModule( self.pool_scales, self.in_channels[-1], self.channels, align_corners=self.align_corners, ) self.bottleneck = Data2VecVisionConvModule( self.in_channels[-1] + len(self.pool_scales) * self.channels, self.channels, kernel_size=3, padding=1, ) # FPN Module self.lateral_convs = nn.ModuleList() self.fpn_convs = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer l_conv = Data2VecVisionConvModule(in_channels, self.channels, kernel_size=1) fpn_conv = Data2VecVisionConvModule(self.channels, self.channels, kernel_size=3, padding=1) self.lateral_convs.append(l_conv) self.fpn_convs.append(fpn_conv) self.fpn_bottleneck = Data2VecVisionConvModule( len(self.in_channels) * self.channels, self.channels, kernel_size=3, padding=1, ) def psp_forward(self, inputs): x = inputs[-1] psp_outs = [x] psp_outs.extend(self.psp_modules(x)) psp_outs = torch.cat(psp_outs, dim=1) output = self.bottleneck(psp_outs) return output def forward(self, encoder_hidden_states: torch.Tensor) -> torch.Tensor: # build laterals laterals = [lateral_conv(encoder_hidden_states[i]) for i, lateral_conv in enumerate(self.lateral_convs)] laterals.append(self.psp_forward(encoder_hidden_states)) # build top-down path used_backbone_levels = len(laterals) for i in range(used_backbone_levels - 1, 0, -1): prev_shape = laterals[i - 1].shape[2:] laterals[i - 1] = laterals[i - 1] + nn.functional.interpolate( laterals[i], size=prev_shape, mode="bilinear", align_corners=self.align_corners ) # build outputs fpn_outs = [self.fpn_convs[i](laterals[i]) for i in range(used_backbone_levels - 1)] # append psp feature fpn_outs.append(laterals[-1]) for i in range(used_backbone_levels - 1, 0, -1): fpn_outs[i] = nn.functional.interpolate( fpn_outs[i], size=fpn_outs[0].shape[2:], mode="bilinear", align_corners=self.align_corners ) fpn_outs = torch.cat(fpn_outs, dim=1) output = self.fpn_bottleneck(fpn_outs) output = self.classifier(output) return output # Copied from transformers.models.beit.modeling_beit.BeitFCNHead with Beit->Data2VecVision class Data2VecVisionFCNHead(nn.Module): """ Fully Convolution Networks for Semantic Segmentation. This head is implemented of [FCNNet](https://arxiv.org/abs/1411.4038>). Args: config (Data2VecVisionConfig): Configuration. in_channels kernel_size (int): The kernel size for convs in the head. Default: 3. dilation (int): The dilation rate for convs in the head. Default: 1. Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation. """ def __init__( self, config: Data2VecVisionConfig, in_index: int = 2, kernel_size: int = 3, dilation: Union[int, Tuple[int, int]] = 1, ) -> None: super().__init__() self.in_channels = config.hidden_size self.channels = config.auxiliary_channels self.num_convs = config.auxiliary_num_convs self.concat_input = config.auxiliary_concat_input self.in_index = in_index conv_padding = (kernel_size // 2) * dilation convs = [] convs.append( Data2VecVisionConvModule( self.in_channels, self.channels, kernel_size=kernel_size, padding=conv_padding, dilation=dilation ) ) for i in range(self.num_convs - 1): convs.append( Data2VecVisionConvModule( self.channels, self.channels, kernel_size=kernel_size, padding=conv_padding, dilation=dilation ) ) if self.num_convs == 0: self.convs = nn.Identity() else: self.convs = nn.Sequential(*convs) if self.concat_input: self.conv_cat = Data2VecVisionConvModule( self.in_channels + self.channels, self.channels, kernel_size=kernel_size, padding=kernel_size // 2 ) self.classifier = nn.Conv2d(self.channels, config.num_labels, kernel_size=1) def forward(self, encoder_hidden_states: torch.Tensor) -> torch.Tensor: # just take the relevant feature maps hidden_states = encoder_hidden_states[self.in_index] output = self.convs(hidden_states) if self.concat_input: output = self.conv_cat(torch.cat([hidden_states, output], dim=1)) output = self.classifier(output) return output @add_start_docstrings( """ Data2VecVision Model transformer with a semantic segmentation head on top e.g. for ADE20k, CityScapes. """, DATA2VEC_VISION_START_DOCSTRING, ) # Copied from transformers.models.beit.modeling_beit.BeitForSemanticSegmentation with BEIT->DATA2VEC_VISION,Beit->Data2VecVision,microsoft/beit-base-finetuned-ade-640-640->facebook/data2vec-vision-base,beit->data2vec_vision class Data2VecVisionForSemanticSegmentation(Data2VecVisionPreTrainedModel): def __init__(self, config: Data2VecVisionConfig) -> None: super().__init__(config) self.num_labels = config.num_labels self.data2vec_vision = Data2VecVisionModel(config, add_pooling_layer=False) # FPNs self.fpn1 = nn.Sequential( nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2), nn.BatchNorm2d(config.hidden_size), nn.GELU(), nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2), ) self.fpn2 = nn.Sequential( nn.ConvTranspose2d(config.hidden_size, config.hidden_size, kernel_size=2, stride=2), ) self.fpn3 = nn.Identity() self.fpn4 = nn.MaxPool2d(kernel_size=2, stride=2) # Semantic segmentation head(s) self.decode_head = Data2VecVisionUperHead(config) self.auxiliary_head = Data2VecVisionFCNHead(config) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() def compute_loss(self, logits, auxiliary_logits, labels): # upsample logits to the images' original size upsampled_logits = nn.functional.interpolate( logits, size=labels.shape[-2:], mode="bilinear", align_corners=False ) if auxiliary_logits is not None: upsampled_auxiliary_logits = nn.functional.interpolate( auxiliary_logits, size=labels.shape[-2:], mode="bilinear", align_corners=False ) # compute weighted loss loss_fct = CrossEntropyLoss(ignore_index=self.config.semantic_loss_ignore_index) main_loss = loss_fct(upsampled_logits, labels) loss = main_loss if auxiliary_logits is not None: auxiliary_loss = loss_fct(upsampled_auxiliary_logits, labels) loss += self.config.auxiliary_loss_weight * auxiliary_loss return loss @add_start_docstrings_to_model_forward(DATA2VEC_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=SemanticSegmenterOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, SemanticSegmenterOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*): Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels > 1`, a classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> from transformers import AutoImageProcessor, Data2VecVisionForSemanticSegmentation >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("facebook/data2vec-vision-base") >>> model = Data2VecVisionForSemanticSegmentation.from_pretrained("facebook/data2vec-vision-base") >>> inputs = image_processor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> # logits are of shape (batch_size, num_labels, height, width) >>> logits = outputs.logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) outputs = self.data2vec_vision( pixel_values, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=True, # we need the intermediate hidden states return_dict=return_dict, ) encoder_hidden_states = outputs.hidden_states if return_dict else outputs[1] # only keep certain features, and reshape # note that we do +1 as the encoder_hidden_states also includes the initial embeddings features = [feature for idx, feature in enumerate(encoder_hidden_states) if idx + 1 in self.config.out_indices] batch_size = pixel_values.shape[0] patch_resolution = self.config.image_size // self.config.patch_size features = [ x[:, 1:, :].permute(0, 2, 1).reshape(batch_size, -1, patch_resolution, patch_resolution) for x in features ] # apply FPNs ops = [self.fpn1, self.fpn2, self.fpn3, self.fpn4] for i in range(len(features)): features[i] = ops[i](features[i]) logits = self.decode_head(features) auxiliary_logits = None if self.auxiliary_head is not None: auxiliary_logits = self.auxiliary_head(features) loss = None if labels is not None: if self.config.num_labels == 1: raise ValueError("The number of labels should be greater than one") else: loss = self.compute_loss(logits, auxiliary_logits, labels) if not return_dict: if output_hidden_states: output = (logits,) + outputs[1:] else: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states if output_hidden_states else None, attentions=outputs.attentions, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/data2vec/configuration_data2vec_audio.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Data2VecText configuration""" import math from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP = { "facebook/data2vec-base-960h": "https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class Data2VecAudioConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`Data2VecAudioModel`]. It is used to instantiate an Data2VecAudio model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Data2VecAudio [facebook/data2vec-audio-base-960h](https://huggingface.co/facebook/data2vec-audio-base-960h) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 32): Vocabulary size of the Data2VecAudio model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`Data2VecAudioModel`] or [`TFData2VecAudioModel`]. Vocabulary size of the model. Defines the different tokens that can be represented by the *inputs_ids* passed to the forward method of [`Data2VecAudioModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_dropout (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. final_dropout (`float`, *optional*, defaults to 0.1): The dropout probability for the final projection layer of [`Data2VecAudioForCTC`]. layerdrop (`float`, *optional*, defaults to 0.1): The LayerDrop probability. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. feat_proj_dropout (`float`, *optional*, defaults to 0.0): The dropout probability for output of the feature encoder. feat_extract_activation (`str, `optional`, defaults to `"gelu"`): The non-linear activation function (function or string) in the 1D convolutional layers of the feature extractor. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. conv_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 512, 512, 512)`): A tuple of integers defining the number of input and output channels of each 1D convolutional layer in the feature encoder. The length of *conv_dim* defines the number of 1D convolutional layers. conv_stride (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 2, 2, 2, 2, 2, 2)`): A tuple of integers defining the stride of each 1D convolutional layer in the feature encoder. The length of *conv_stride* defines the number of convolutional layers and has to match the length of *conv_dim*. conv_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(10, 3, 3, 3, 3, 3, 3)`): A tuple of integers defining the kernel size of each 1D convolutional layer in the feature encoder. The length of *conv_kernel* defines the number of convolutional layers and has to match the length of *conv_dim*. conv_bias (`bool`, *optional*, defaults to `False`): Whether the 1D convolutional layers have a bias. num_conv_pos_embeddings (`int`, *optional*, defaults to 128): Number of convolutional positional embeddings. Defines the kernel size of 1D convolutional positional embeddings layer. num_conv_pos_embedding_groups (`int`, *optional*, defaults to 16): Number of groups of 1D convolutional positional embeddings layer. mask_time_prob (`float`, *optional*, defaults to 0.05): Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked. The masking procecure generates ''mask_time_prob*len(time_axis)/mask_time_length'' independent masks over the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector span to be masked, *mask_time_prob* should be `prob_vector_start*mask_time_length`. Note that overlap may decrease the mask_time_length (`int`, *optional*, defaults to 10): Length of vector span along the time axis. mask_time_min_masks (`int`, *optional*, defaults to 2),: The minimum number of masks of length `mask_feature_length` generated along the time axis, each time step, irrespectively of `mask_feature_prob`. Only relevant if ''mask_time_prob*len(time_axis)/mask_time_length < mask_time_min_masks'' mask_feature_prob (`float`, *optional*, defaults to 0.0): Percentage (between 0 and 1) of all feature vectors along the feature axis which will be masked. The masking procecure generates ''mask_feature_prob*len(feature_axis)/mask_time_length'' independent masks over the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector span to be masked, *mask_feature_prob* should be `prob_vector_start*mask_feature_length`. Note that overlap may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is True`. mask_feature_length (`int`, *optional*, defaults to 10): Length of vector span along the feature axis. mask_feature_min_masks (`int`, *optional*, defaults to 0),: The minimum number of masks of length `mask_feature_length` generated along the feature axis, each time step, irrespectively of `mask_feature_prob`. Only relevant if ''mask_feature_prob*len(feature_axis)/mask_feature_length < mask_feature_min_masks'' ctc_loss_reduction (`str`, *optional*, defaults to `"sum"`): Specifies the reduction to apply to the output of `torch.nn.CTCLoss`. Only relevant when training an instance of [`Data2VecAudioForCTC`]. ctc_zero_infinity (`bool`, *optional*, defaults to `False`): Whether to zero infinite losses and the associated gradients of `torch.nn.CTCLoss`. Infinite losses mainly occur when the inputs are too short to be aligned to the targets. Only relevant when training an instance of [`Data2VecAudioForCTC`]. use_weighted_layer_sum (`bool`, *optional*, defaults to `False`): Whether to use a weighted average of layer outputs with learned weights. Only relevant when using an instance of [`Data2VecAudioForSequenceClassification`]. classifier_proj_size (`int`, *optional*, defaults to 256): Dimensionality of the projection before token mean-pooling for classification. tdnn_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 1500)`): A tuple of integers defining the number of output channels of each 1D convolutional layer in the *TDNN* module of the *XVector* model. The length of *tdnn_dim* defines the number of *TDNN* layers. tdnn_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 3, 3, 1, 1)`): A tuple of integers defining the kernel size of each 1D convolutional layer in the *TDNN* module of the *XVector* model. The length of *tdnn_kernel* has to match the length of *tdnn_dim*. tdnn_dilation (`Tuple[int]` or `List[int]`, *optional*, defaults to `(1, 2, 3, 1, 1)`): A tuple of integers defining the dilation factor of each 1D convolutional layer in *TDNN* module of the *XVector* model. The length of *tdnn_dilation* has to match the length of *tdnn_dim*. xvector_output_dim (`int`, *optional*, defaults to 512): Dimensionality of the *XVector* embedding vectors. add_adapter (`bool`, *optional*, defaults to `False`): Whether a convolutional network should be stacked on top of the Data2VecAudio Encoder. Can be very useful for warm-starting Data2VecAudio for SpeechEncoderDecoder models. adapter_kernel_size (`int`, *optional*, defaults to 3): Kernel size of the convolutional layers in the adapter network. Only relevant if `add_adapter is True`. adapter_stride (`int`, *optional*, defaults to 2): Stride of the convolutional layers in the adapter network. Only relevant if `add_adapter is True`. num_adapter_layers (`int`, *optional*, defaults to 3): Number of convolutional layers that should be used in the adapter network. Only relevant if `add_adapter is True`. output_hidden_size (`int`, *optional*): Dimensionality of the encoder output layer. If not defined, this defaults to *hidden-size*. Only relevant if `add_adapter is True`. Example: ```python >>> from transformers import Data2VecAudioConfig, Data2VecAudioModel >>> # Initializing a Data2VecAudio facebook/data2vec-audio-base-960h style configuration >>> configuration = Data2VecAudioConfig() >>> # Initializing a model (with random weights) from the facebook/data2vec-audio-base-960h style configuration >>> model = Data2VecAudioModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "data2vec-audio" def __init__( self, vocab_size=32, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout=0.1, activation_dropout=0.1, attention_dropout=0.1, feat_proj_dropout=0.0, final_dropout=0.1, layerdrop=0.1, initializer_range=0.02, layer_norm_eps=1e-5, feat_extract_activation="gelu", conv_dim=(512, 512, 512, 512, 512, 512, 512), conv_stride=(5, 2, 2, 2, 2, 2, 2), conv_kernel=(10, 3, 3, 3, 3, 2, 2), conv_bias=False, num_conv_pos_embedding_groups=16, conv_pos_kernel_size=19, num_conv_pos_embeddings=5, mask_time_prob=0.05, mask_time_length=10, mask_time_min_masks=2, mask_feature_prob=0.0, mask_feature_length=10, mask_feature_min_masks=0, ctc_loss_reduction="sum", ctc_zero_infinity=False, use_weighted_layer_sum=False, classifier_proj_size=256, tdnn_dim=(512, 512, 512, 512, 1500), tdnn_kernel=(5, 3, 3, 1, 1), tdnn_dilation=(1, 2, 3, 1, 1), xvector_output_dim=512, pad_token_id=0, bos_token_id=1, eos_token_id=2, add_adapter=False, adapter_kernel_size=3, adapter_stride=2, num_adapter_layers=3, output_hidden_size=None, **kwargs, ): super().__init__(**kwargs, pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id) self.hidden_size = hidden_size self.feat_extract_activation = feat_extract_activation self.conv_dim = list(conv_dim) self.conv_stride = list(conv_stride) self.conv_kernel = list(conv_kernel) self.conv_bias = conv_bias self.num_conv_pos_embeddings = num_conv_pos_embeddings self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups self.conv_pos_kernel_size = conv_pos_kernel_size self.num_feat_extract_layers = len(self.conv_dim) self.num_hidden_layers = num_hidden_layers self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.num_attention_heads = num_attention_heads self.hidden_dropout = hidden_dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.feat_proj_dropout = feat_proj_dropout self.final_dropout = final_dropout self.layerdrop = layerdrop self.layer_norm_eps = layer_norm_eps self.initializer_range = initializer_range self.vocab_size = vocab_size self.use_weighted_layer_sum = use_weighted_layer_sum if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`," f" `len(config.conv_kernel) = {len(self.conv_kernel)}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 self.mask_time_prob = mask_time_prob self.mask_time_length = mask_time_length self.mask_time_min_masks = mask_time_min_masks self.mask_feature_prob = mask_feature_prob self.mask_feature_length = mask_feature_length self.mask_feature_min_masks = mask_feature_min_masks # ctc loss self.ctc_loss_reduction = ctc_loss_reduction self.ctc_zero_infinity = ctc_zero_infinity # adapter self.add_adapter = add_adapter self.adapter_kernel_size = adapter_kernel_size self.adapter_stride = adapter_stride self.num_adapter_layers = num_adapter_layers self.output_hidden_size = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. self.classifier_proj_size = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. self.tdnn_dim = list(tdnn_dim) self.tdnn_kernel = list(tdnn_kernel) self.tdnn_dilation = list(tdnn_dilation) self.xvector_output_dim = xvector_output_dim @property def inputs_to_logits_ratio(self): return math.prod(self.conv_stride)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/data2vec/convert_data2vec_audio_original_pytorch_checkpoint_to_pytorch.py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert Wav2Vec2 checkpoint.""" import argparse import os from functools import reduce import fairseq import torch from datasets import load_dataset from transformers import Wav2Vec2Processor, logging from transformers.models.data2vec.configuration_data2vec_audio import Data2VecAudioConfig # Copied from https://github.com/pytorch/fairseq/blob/main/examples/data2vec/models/data2vec_audio.py from transformers.models.data2vec.data2vec_audio import Data2VecAudioModel as Dummy # noqa: F401 from transformers.models.data2vec.modeling_data2vec_audio import Data2VecAudioForCTC, Data2VecAudioModel logging.set_verbosity_info() logger = logging.get_logger(__name__) MAPPING = { "post_extract_proj": "feature_projection.projection", "models.0.layer_norm": "feature_projection.layer_norm", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } TOP_LEVEL_KEYS = [ "lm_head", ] def set_recursively(hf_pointer, key, value, full_name, weight_type): for attribute in key.split("."): hf_pointer = getattr(hf_pointer, attribute) if weight_type is not None: hf_shape = getattr(hf_pointer, weight_type).shape else: hf_shape = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": hf_pointer.weight.data = value elif weight_type == "weight_g": hf_pointer.weight_g.data = value elif weight_type == "weight_v": hf_pointer.weight_v.data = value elif weight_type == "bias": hf_pointer.bias.data = value else: hf_pointer.data = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.") def recursively_load_weights(fairseq_model, hf_model, is_headless): unused_weights = [] fairseq_dict = fairseq_model.state_dict() if not is_headless: feature_extractor = hf_model.data2vec_audio.feature_extractor pos_conv_embedding = hf_model.data2vec_audio.encoder.pos_conv_embed else: feature_extractor = hf_model.feature_extractor pos_conv_embedding = hf_model.encoder.pos_conv_embed for name, value in fairseq_dict.items(): is_used = False if "conv_layers" in name: load_conv_layer( name, value, feature_extractor, unused_weights, ) is_used = True elif "pos_conv" in name: load_pos_conv_layer( name, value, pos_conv_embedding, unused_weights, ) is_used = True else: for key, mapped_key in MAPPING.items(): if not is_headless: mapped_key = "data2vec_audio." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: is_used = True if "*" in mapped_key: layer_index = name.split(key)[0].split(".")[-2] mapped_key = mapped_key.replace("*", layer_index) if "weight_g" in name: weight_type = "weight_g" elif "weight_v" in name: weight_type = "weight_v" elif "bias" in name: weight_type = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj weight_type = "weight" else: weight_type = None set_recursively(hf_model, mapped_key, value, name, weight_type) continue if not is_used: unused_weights.append(name) logger.warning(f"Unused weights: {unused_weights}") def access_by_string(module, path): names = path.split(".") return reduce(getattr, names, module) def set_weights(full_name, module, fsq_value, hf_weight_path): hf_weight = access_by_string(module, hf_weight_path) hf_value = hf_weight.data if fsq_value.shape != hf_value.shape: raise ValueError(f"{full_name} has size {fsq_value.shape}, but {hf_value.shape} was found.") hf_weight.data = fsq_value logger.info(f"{full_name} was correctly initialized from {hf_weight_path}.") def load_conv_layer(full_name, value, feature_extractor, unused_weights): name = full_name.split("conv_layers.")[-1] items = name.split(".") layer_id = int(items[0]) type_id = int(items[1]) weight_type = name.split(".")[-1] if type_id == 0: layer_type = "conv" elif type_id == 2: layer_type = "layer_norm" else: unused_weights.append(full_name) return set_weights(full_name, feature_extractor, value, f"conv_layers.{layer_id}.{layer_type}.{weight_type}") def load_pos_conv_layer(full_name, value, pos_conv_embeddings, unused_weights): name = full_name.split("pos_conv.")[-1] items = name.split(".") layer_id = int(items[0]) type_id = int(items[1]) weight_type = name.split(".")[-1] if type_id != 0: unused_weights.append(full_name) return else: layer_type = "conv" set_weights(full_name, pos_conv_embeddings, value, f"layers.{layer_id}.{layer_type}.{weight_type}") @torch.no_grad() def convert_wav2vec2_checkpoint( checkpoint_path, pytorch_dump_folder_path, config_path=None, dict_path=None, is_finetuned=True ): """ Copy/paste/tweak model's weights to transformers design. """ if config_path is not None: config = Data2VecAudioConfig.from_pretrained(config_path) else: config = Data2VecAudioConfig() if not is_finetuned: # Modify final_proj layer name hf_wav2vec = Data2VecAudioModel(config) data2vec_checkpoint_dir = os.path.dirname(checkpoint_path) state_dict = torch.load(checkpoint_path) state_dict["model"]["final_proj.weight"] = state_dict["model"].pop("final_proj.0.weight") state_dict["model"]["final_proj.bias"] = state_dict["model"].pop("final_proj.0.bias") converted_ckpt = os.path.join(data2vec_checkpoint_dir, "converted.pt") torch.save(state_dict, converted_ckpt) else: hf_wav2vec = Data2VecAudioForCTC(config) converted_ckpt = checkpoint_path def load_data2vec(path): model, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task([path]) return model[0].eval() model = load_data2vec(converted_ckpt) recursively_load_weights(model, hf_wav2vec, not is_finetuned) processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-lv60") ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation") input_audio = [x["array"] for x in ds[:4]["audio"]] inputs = processor(input_audio, return_tensors="pt", padding=True) input_values = inputs.input_values attention_mask = inputs.attention_mask # input_values = inputs.input_values[:, :-1] # attention_mask = inputs.attention_mask[:, :-1] hf_wav2vec.eval() model.eval() if is_finetuned: their_output = model(source=input_values, padding_mask=(1 - attention_mask), mask=False, features_only=True)[ "encoder_out" ].transpose(0, 1) our_output = hf_wav2vec(input_values, attention_mask=attention_mask)["logits"] pred_ids = torch.argmax(our_output, dim=-1) output_string = processor.batch_decode(pred_ids) print(f"Expected Output: {ds[:4]['text']}, Pred: {output_string}") else: their_output = model(source=input_values, padding_mask=(1 - attention_mask), mask=False, features_only=True)[ "layer_results" ][-1][0].transpose(0, 1) our_output = hf_wav2vec(input_values, attention_mask=attention_mask)["last_hidden_state"] print(our_output.shape, their_output.shape) max_absolute_diff = torch.max(torch.abs(our_output - their_output)).item() print(f"max_absolute_diff = {max_absolute_diff}") # ~ 1e-7 success = torch.allclose(our_output, their_output, atol=1e-3) print("Do both models output the same tensors?", "🔥" if success else "💩") if not success: raise Exception("Something went wRoNg") hf_wav2vec.save_pretrained(pytorch_dump_folder_path) if is_finetuned: processor.save_pretrained(pytorch_dump_folder_path) else: processor.feature_extractor.save_pretrained(pytorch_dump_folder_path) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) args = parser.parse_args() convert_wav2vec2_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/data2vec/convert_data2vec_vision_original_pytorch_checkpoint_to_pytorch.py
#!/usr/bin/env python3 import argparse import json import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.models import create_model from transformers import ( BeitImageProcessor, Data2VecVisionConfig, Data2VecVisionForImageClassification, Data2VecVisionModel, ) def create_rename_keys(config, has_lm_head=False, is_semantic=False, hf_prefix="data2vec."): prefix = "backbone." if is_semantic else "" rename_keys = [] for i in range(config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"{prefix}blocks.{i}.norm1.weight", f"{hf_prefix}encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"{prefix}blocks.{i}.norm1.bias", f"{hf_prefix}encoder.layer.{i}.layernorm_before.bias")) rename_keys.append( (f"{prefix}blocks.{i}.attn.proj.weight", f"{hf_prefix}encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (f"{prefix}blocks.{i}.attn.proj.bias", f"{hf_prefix}encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append( (f"{prefix}blocks.{i}.norm2.weight", f"{hf_prefix}encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"{prefix}blocks.{i}.norm2.bias", f"{hf_prefix}encoder.layer.{i}.layernorm_after.bias")) rename_keys.append( (f"{prefix}blocks.{i}.mlp.fc1.weight", f"{hf_prefix}encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append( (f"{prefix}blocks.{i}.mlp.fc1.bias", f"{hf_prefix}encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"{prefix}blocks.{i}.mlp.fc2.weight", f"{hf_prefix}encoder.layer.{i}.output.dense.weight")) rename_keys.append((f"{prefix}blocks.{i}.mlp.fc2.bias", f"{hf_prefix}encoder.layer.{i}.output.dense.bias")) # projection layer + position embeddings rename_keys.extend( [ (f"{prefix}cls_token", f"{hf_prefix}embeddings.cls_token"), (f"{prefix}patch_embed.proj.weight", f"{hf_prefix}embeddings.patch_embeddings.projection.weight"), (f"{prefix}patch_embed.proj.bias", f"{hf_prefix}embeddings.patch_embeddings.projection.bias"), ] ) if has_lm_head: # mask token + shared relative position bias + layernorm rename_keys.extend( [ ("mask_token", f"{hf_prefix}embeddings.mask_token"), ( "rel_pos_bias.relative_position_bias_table", f"{hf_prefix}encoder.relative_position_bias.relative_position_bias_table", ), ( "rel_pos_bias.relative_position_index", f"{hf_prefix}encoder.relative_position_bias.relative_position_index", ), ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ] ) elif is_semantic: # semantic segmentation classification heads rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ] ) else: # layernorm + classification head rename_keys.extend( [ ("fc_norm.weight", f"{hf_prefix}pooler.layernorm.weight"), ("fc_norm.bias", f"{hf_prefix}pooler.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def read_in_q_k_v(state_dict, config, has_lm_head=False, is_semantic=False, hf_prefix="data2vec_vision."): for i in range(config.num_hidden_layers): prefix = "backbone." if is_semantic else "" # queries, keys and values in_proj_weight = state_dict.pop(f"{prefix}blocks.{i}.attn.qkv.weight") q_bias = state_dict.pop(f"{prefix}blocks.{i}.attn.q_bias") v_bias = state_dict.pop(f"{prefix}blocks.{i}.attn.v_bias") state_dict[f"{hf_prefix}encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[ : config.hidden_size, : ] state_dict[f"{hf_prefix}encoder.layer.{i}.attention.attention.query.bias"] = q_bias state_dict[f"{hf_prefix}encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] state_dict[f"{hf_prefix}encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[ -config.hidden_size :, : ] state_dict[f"{hf_prefix}encoder.layer.{i}.attention.attention.value.bias"] = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained gamma_1 = state_dict.pop(f"{prefix}blocks.{i}.gamma_1") gamma_2 = state_dict.pop(f"{prefix}blocks.{i}.gamma_2") state_dict[f"{hf_prefix}encoder.layer.{i}.lambda_1"] = gamma_1 state_dict[f"{hf_prefix}encoder.layer.{i}.lambda_2"] = gamma_2 # relative_position bias table + index if not has_lm_head: # each layer has its own relative position bias table = state_dict.pop(f"{prefix}blocks.{i}.attn.relative_position_bias_table") index = state_dict.pop(f"{prefix}blocks.{i}.attn.relative_position_index") state_dict[ f"{hf_prefix}encoder.layer.{i}.attention.attention.relative_position_bias.relative_position_bias_table" ] = table state_dict[ f"{hf_prefix}encoder.layer.{i}.attention.attention.relative_position_bias.relative_position_index" ] = index def get_args(): parser = argparse.ArgumentParser( "Convert Data2VecVision to HF for image classification and pretraining", add_help=False ) parser.add_argument("--hf_checkpoint_name", type=str) parser.add_argument("--input_size", default=224, type=int, help="images input size") parser.add_argument("--beit_checkpoint", default="", help="beit checkpoint") return parser.parse_args() def load_beit_model(args, is_finetuned, is_large): def load_state_dict(model, state_dict, prefix="", ignore_missing="relative_position_index"): missing_keys = [] unexpected_keys = [] error_msgs = [] # copy state_dict so _load_from_state_dict can modify it metadata = getattr(state_dict, "_metadata", None) state_dict = state_dict.copy() if metadata is not None: state_dict._metadata = metadata def load(module, prefix=""): local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {}) module._load_from_state_dict( state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs ) for name, child in module._modules.items(): if child is not None: load(child, prefix + name + ".") load(model, prefix=prefix) warn_missing_keys = [] ignore_missing_keys = [] for key in missing_keys: keep_flag = True for ignore_key in ignore_missing.split("|"): if ignore_key in key: keep_flag = False break if keep_flag: warn_missing_keys.append(key) else: ignore_missing_keys.append(key) missing_keys = warn_missing_keys if len(missing_keys) > 0: print( "Weights of {} not initialized from pretrained model: {}".format( model.__class__.__name__, missing_keys ) ) if len(unexpected_keys) > 0: print("Weights from pretrained model not used in {}: {}".format(model.__class__.__name__, unexpected_keys)) if len(ignore_missing_keys) > 0: print( "Ignored weights of {} not initialized from pretrained model: {}".format( model.__class__.__name__, ignore_missing_keys ) ) if len(error_msgs) > 0: print("\n".join(error_msgs)) model_kwargs = { "pretrained": False, "use_shared_rel_pos_bias": True, "use_abs_pos_emb": False, "init_values": 0.1, } if is_finetuned: model_kwargs.update( { "num_classes": 1000, "use_mean_pooling": True, "init_scale": 0.001, "use_rel_pos_bias": True, } ) model = create_model( "beit_large_patch16_224" if is_large else "beit_base_patch16_224", **model_kwargs, ) patch_size = model.patch_embed.patch_size args.window_size = (args.input_size // patch_size[0], args.input_size // patch_size[1]) checkpoint = torch.load(args.beit_checkpoint, map_location="cpu") print(f"Load ckpt from {args.beit_checkpoint}") checkpoint_model = None for model_key in ("model", "module"): if model_key in checkpoint: checkpoint_model = checkpoint[model_key] print(f"Load state_dict by model_key = {model_key}") break all_keys = list(checkpoint_model.keys()) for key in all_keys: if "relative_position_index" in key: checkpoint_model.pop(key) if "relative_position_bias_table" in key: rel_pos_bias = checkpoint_model[key] src_num_pos, num_attn_heads = rel_pos_bias.size() dst_num_pos, _ = model.state_dict()[key].size() dst_patch_shape = model.patch_embed.patch_shape if dst_patch_shape[0] != dst_patch_shape[1]: raise NotImplementedError() load_state_dict(model, checkpoint_model, prefix="") return model def main(): args = get_args() is_finetuned = "ft1k" in args.hf_checkpoint_name is_large = "large" in args.hf_checkpoint_name if is_finetuned: # To convert Beit's data2vec_vision to HF you need to copy # https://github.com/facebookresearch/data2vec_vision/blob/main/beit/modeling_finetune.py # into this folder. import modeling_finetune # noqa: F401 else: # To convert Beit's data2vec_vision to HF you need to copy # https://github.com/facebookresearch/data2vec_vision/blob/main/beit/modeling_cyclical.py # into this folder # IMPORTANT: Note that for now we've only converted the down-stream # model and not the full pretrained model. This means for the integration # test you need to add a `return x` after the following line: # https://github.com/facebookresearch/data2vec_vision/blob/af9a36349aaed59ae66e69b5dabeef2d62fdc5da/beit/modeling_cyclical.py#L197 # to make the integration test pass. import modeling_cyclical # noqa: F401 # 1. Create model config config = Data2VecVisionConfig() if is_finetuned: config.use_relative_position_bias = True config.use_shared_relative_position_bias = False config.use_mean_pooling = True config.num_labels = 1000 repo_id = "huggingface/label-files" filename = "imagenet-1k-id2label.json" id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) id2label = {int(k): v for k, v in id2label.items()} config.id2label = id2label config.label2id = {v: k for k, v in id2label.items()} else: config.use_relative_position_bias = False config.use_shared_relative_position_bias = True config.use_mean_pooling = False if is_large: config.hidden_size = 1024 config.intermediate_size = 4096 config.num_hidden_layers = 24 config.num_attention_heads = 16 # 2. Load Beit model orig_model = load_beit_model(args, is_finetuned, is_large) orig_model.eval() # 3. Forward Beit model image_processor = BeitImageProcessor(size=config.image_size, do_center_crop=False) image = Image.open("../../../../tests/fixtures/tests_samples/COCO/000000039769.png") encoding = image_processor(images=image, return_tensors="pt") pixel_values = encoding["pixel_values"] orig_args = (pixel_values,) if is_finetuned else (pixel_values, None) with torch.no_grad(): orig_model_output = orig_model(*orig_args) # 4. Load HF Data2VecVision model if is_finetuned: hf_model = Data2VecVisionForImageClassification(config) hf_model.eval() has_lm_head = False hf_prefix = "data2vec_vision." else: hf_model = Data2VecVisionModel(config) hf_model.eval() has_lm_head = True hf_prefix = "" rename_keys = create_rename_keys(config, hf_prefix=hf_prefix, has_lm_head=has_lm_head) state_dict = orig_model.state_dict() for src, dest in rename_keys: val = state_dict.pop(src) state_dict[dest] = val read_in_q_k_v(state_dict, config, hf_prefix=hf_prefix, has_lm_head=has_lm_head) missing_keys, unexpected_keys = hf_model.load_state_dict(state_dict, strict=False) print("HF missing", missing_keys) print("HF unexpected_keys", unexpected_keys) # 5. Forward HF Data2VecVision model with torch.no_grad(): hf_model_output = hf_model(pixel_values) hf_output = hf_model_output.logits if is_finetuned else hf_model_output.last_hidden_state # 6. Compare max_absolute_diff = torch.max(torch.abs(hf_output - orig_model_output)).item() print(f"max_absolute_diff = {max_absolute_diff}") success = torch.allclose(hf_output, orig_model_output, atol=1e-3) print("Do both models output the same tensors?", "🔥" if success else "💩") if not success: raise Exception("Something went wRoNg") # 7. Save print(f"Saving to {args.hf_checkpoint_name}") hf_model.save_pretrained(args.hf_checkpoint_name) image_processor.save_pretrained(args.hf_checkpoint_name) if __name__ == "__main__": main() # Run the following to convert checkpoints # python ./convert_data2vec_vision_original_pytorch_checkpoint_to_pytorch.py \ # --beit_checkpoint ./pretrained_base.pt \ # --hf_checkpoint_name "./data2vec-vision-base" # python ./convert_data2vec_vision_original_pytorch_checkpoint_to_pytorch.py \ # --beit_checkpoint ./finetuned_base.pt \ # --hf_checkpoint_name "./data2vec-vision-base-ft1k" # python ./convert_data2vec_vision_original_pytorch_checkpoint_to_pytorch.py \ # --beit_checkpoint ./pretrained_large.pt \ # --hf_checkpoint_name "./data2vec-vision-large" # python ./convert_data2vec_vision_original_pytorch_checkpoint_to_pytorch.py \ # --beit_checkpoint ./finetuned_large.pt \ # --hf_checkpoint_name "./data2vec-vision-large-ft1k"
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/data2vec/configuration_data2vec_text.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Data2VecText configuration""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging logger = logging.get_logger(__name__) DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP = { "facebook/data2vec-text-base": "https://huggingface.co/data2vec/resolve/main/config.json", } class Data2VecTextConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`Data2VecTextModel`] and [`Data2VecTextModel`]. It is used to instantiate a Data2VecText model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Data2VecText [facebook/data2vec-text-base](https://huggingface.co/facebook/data2vec-text-base) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the DATA2VEC model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`Data2VecModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the `token_type_ids` passed when calling [`Data2VecModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. position_embedding_type (`str`, *optional*, defaults to `"absolute"`): Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). is_decoder (`bool`, *optional*, defaults to `False`): Whether the model is used as a decoder or not. If `False`, the model is used as an encoder. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. classifier_dropout (`float`, *optional*): The dropout ratio for the classification head. Examples: ```python >>> from transformers import Data2VecTextConfig, Data2VecTextModel >>> # Initializing a Data2VecText facebook/data2vec-text-base style configuration >>> configuration = Data2VecTextConfig() >>> # Initializing a model (with random weights) from the facebook/data2vec-text-base style configuration >>> model = Data2VecTextModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "data2vec-text" def __init__( self, vocab_size=30522, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=1, bos_token_id=0, eos_token_id=2, position_embedding_type="absolute", use_cache=True, classifier_dropout=None, **kwargs, ): super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.position_embedding_type = position_embedding_type self.use_cache = use_cache self.classifier_dropout = classifier_dropout class Data2VecTextOnnxConfig(OnnxConfig): @property def inputs(self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"} else: dynamic_axis = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/transfo_xl/__init__.py
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _import_structure = { "configuration_transfo_xl": ["TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP", "TransfoXLConfig"], "tokenization_transfo_xl": ["TransfoXLCorpus", "TransfoXLTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_transfo_xl"] = [ "TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST", "AdaptiveEmbedding", "TransfoXLForSequenceClassification", "TransfoXLLMHeadModel", "TransfoXLModel", "TransfoXLPreTrainedModel", "load_tf_weights_in_transfo_xl", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_transfo_xl"] = [ "TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFAdaptiveEmbedding", "TFTransfoXLForSequenceClassification", "TFTransfoXLLMHeadModel", "TFTransfoXLMainLayer", "TFTransfoXLModel", "TFTransfoXLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/transfo_xl/configuration_transfo_xl.py
# coding=utf-8 # Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Transformer XL configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP = { "transfo-xl-wt103": "https://huggingface.co/transfo-xl-wt103/resolve/main/config.json", } class TransfoXLConfig(PretrainedConfig): """ This is the configuration class to store the configuration of a [`TransfoXLModel`] or a [`TFTransfoXLModel`]. It is used to instantiate a Transformer-XL model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the TransfoXL [transfo-xl-wt103](https://huggingface.co/transfo-xl-wt103) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 267735): Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`TransfoXLModel`] or [`TFTransfoXLModel`]. cutoffs (`List[int]`, *optional*, defaults to `[20000, 40000, 200000]`): Cutoffs for the adaptive softmax. d_model (`int`, *optional*, defaults to 1024): Dimensionality of the model's hidden states. d_embed (`int`, *optional*, defaults to 1024): Dimensionality of the embeddings n_head (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. d_head (`int`, *optional*, defaults to 64): Dimensionality of the model's heads. d_inner (`int`, *optional*, defaults to 4096): Inner dimension in FF div_val (`int`, *optional*, defaults to 4): Divident value for adapative input and softmax pre_lnorm (`boolean`, *optional*, defaults to `False`): Whether or not to apply LayerNorm to the input instead of the output in the blocks. n_layer (`int`, *optional*, defaults to 18): Number of hidden layers in the Transformer encoder. mem_len (`int`, *optional*, defaults to 1600): Length of the retained previous heads. clamp_len (`int`, *optional*, defaults to 1000): Use the same pos embeddings after clamp_len. same_length (`boolean`, *optional*, defaults to `True`): Whether or not to use the same attn length for all tokens proj_share_all_but_first (`boolean`, *optional*, defaults to `True`): True to share all but first projs, False not to share. attn_type (`int`, *optional*, defaults to 0): Attention type. 0 for Transformer-XL, 1 for Shaw et al, 2 for Vaswani et al, 3 for Al Rfou et al. sample_softmax (`int`, *optional*, defaults to -1): Number of samples in the sampled softmax. adaptive (`boolean`, *optional*, defaults to `True`): Whether or not to use adaptive softmax. dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. dropatt (`float`, *optional*, defaults to 0): The dropout ratio for the attention probabilities. untie_r (`boolean`, *optional*, defaults to `True`): Whether ot not to untie relative position biases. init (`str`, *optional*, defaults to `"normal"`): Parameter initializer to use. init_range (`float`, *optional*, defaults to 0.01): Parameters initialized by U(-init_range, init_range). proj_init_std (`float`, *optional*, defaults to 0.01): Parameters initialized by N(0, init_std) init_std (`float`, *optional*, defaults to 0.02): Parameters initialized by N(0, init_std) layer_norm_epsilon (`float`, *optional*, defaults to 1e-5): The epsilon to use in the layer normalization layers Examples: ```python >>> from transformers import TransfoXLConfig, TransfoXLModel >>> # Initializing a Transformer XL configuration >>> configuration = TransfoXLConfig() >>> # Initializing a model (with random weights) from the configuration >>> model = TransfoXLModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "transfo-xl" keys_to_ignore_at_inference = ["mems"] attribute_map = { "n_token": "vocab_size", "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self, vocab_size=267735, cutoffs=[20000, 40000, 200000], d_model=1024, d_embed=1024, n_head=16, d_head=64, d_inner=4096, div_val=4, pre_lnorm=False, n_layer=18, mem_len=1600, clamp_len=1000, same_length=True, proj_share_all_but_first=True, attn_type=0, sample_softmax=-1, adaptive=True, dropout=0.1, dropatt=0.0, untie_r=True, init="normal", init_range=0.01, proj_init_std=0.01, init_std=0.02, layer_norm_epsilon=1e-5, eos_token_id=0, **kwargs, ): self.vocab_size = vocab_size self.cutoffs = [] self.cutoffs.extend(cutoffs) if proj_share_all_but_first: self.tie_projs = [False] + [True] * len(self.cutoffs) else: self.tie_projs = [False] + [False] * len(self.cutoffs) self.d_model = d_model self.d_embed = d_embed self.d_head = d_head self.d_inner = d_inner self.div_val = div_val self.pre_lnorm = pre_lnorm self.n_layer = n_layer self.n_head = n_head self.mem_len = mem_len self.same_length = same_length self.attn_type = attn_type self.clamp_len = clamp_len self.sample_softmax = sample_softmax self.adaptive = adaptive self.dropout = dropout self.dropatt = dropatt self.untie_r = untie_r self.init = init self.init_range = init_range self.proj_init_std = proj_init_std self.init_std = init_std self.layer_norm_epsilon = layer_norm_epsilon super().__init__(eos_token_id=eos_token_id, **kwargs) @property def max_position_embeddings(self): # Message copied from Transformer-XL documentation logger.info(f"The model {self.model_type} is one of the few models that has no sequence length limit.") return -1 @max_position_embeddings.setter def max_position_embeddings(self, value): # Message copied from Transformer-XL documentation raise NotImplementedError( f"The model {self.model_type} is one of the few models that has no sequence length limit." )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/transfo_xl/modeling_tf_transfo_xl.py
# coding=utf-8 # Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 Transformer XL model. """ from __future__ import annotations from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import tensorflow as tf from ...modeling_tf_utils import ( TFModelInputType, TFPreTrainedModel, TFSequenceClassificationLoss, get_initializer, keras_serializable, unpack_inputs, ) from ...tf_utils import shape_list, stable_softmax from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, ) from .configuration_transfo_xl import TransfoXLConfig from .modeling_tf_transfo_xl_utilities import TFAdaptiveSoftmaxMask logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "transfo-xl-wt103" _CONFIG_FOR_DOC = "TransfoXLConfig" TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST = [ "transfo-xl-wt103", # See all Transformer XL models at https://huggingface.co/models?filter=transfo-xl ] class TFPositionalEmbedding(tf.keras.layers.Layer): def __init__(self, demb, **kwargs): super().__init__(**kwargs) self.inv_freq = 1 / (10000 ** (tf.range(0, demb, 2.0) / demb)) def call(self, pos_seq, bsz=None): self.inv_freq = tf.cast(self.inv_freq, dtype=pos_seq.dtype) sinusoid_inp = tf.einsum("i,j->ij", pos_seq, self.inv_freq) pos_emb = tf.concat([tf.sin(sinusoid_inp), tf.cos(sinusoid_inp)], -1) if bsz is not None: return tf.tile(pos_emb[:, None, :], [1, bsz, 1]) else: return pos_emb[:, None, :] class TFPositionwiseFF(tf.keras.layers.Layer): def __init__(self, d_model, d_inner, dropout, pre_lnorm=False, layer_norm_epsilon=1e-5, init_std=0.02, **kwargs): super().__init__(**kwargs) self.d_model = d_model self.d_inner = d_inner self.dropout = dropout self.layer_1 = tf.keras.layers.Dense( d_inner, kernel_initializer=get_initializer(init_std), activation=tf.nn.relu, name="CoreNet_._0" ) self.drop_1 = tf.keras.layers.Dropout(dropout) self.layer_2 = tf.keras.layers.Dense(d_model, kernel_initializer=get_initializer(init_std), name="CoreNet_._3") self.drop_2 = tf.keras.layers.Dropout(dropout) self.layer_norm = tf.keras.layers.LayerNormalization(epsilon=layer_norm_epsilon, name="layer_norm") self.pre_lnorm = pre_lnorm def call(self, inp, training=False): if self.pre_lnorm: # layer normalization + positionwise feed-forward core_out = self.layer_norm(inp) core_out = self.layer_1(core_out) core_out = self.drop_1(core_out, training=training) core_out = self.layer_2(core_out) core_out = self.drop_2(core_out, training=training) # residual connection output = core_out + inp else: # positionwise feed-forward core_out = self.layer_1(inp) core_out = self.drop_1(core_out, training=training) core_out = self.layer_2(core_out) core_out = self.drop_2(core_out, training=training) # residual connection + layer normalization output = self.layer_norm(inp + core_out) return output class TFRelPartialLearnableMultiHeadAttn(tf.keras.layers.Layer): def __init__( self, n_head, d_model, d_head, dropout, dropatt=0.0, pre_lnorm=False, r_r_bias=None, r_w_bias=None, layer_norm_epsilon=1e-5, init_std=0.02, output_attentions=False, **kwargs, ): super().__init__(**kwargs) self.n_head = n_head self.d_model = d_model self.d_head = d_head self.dropout = dropout self.output_attentions = output_attentions self.qkv_net = tf.keras.layers.Dense( 3 * n_head * d_head, kernel_initializer=get_initializer(init_std), use_bias=False, name="qkv_net" ) self.drop = tf.keras.layers.Dropout(dropout) self.dropatt = tf.keras.layers.Dropout(dropatt) self.o_net = tf.keras.layers.Dense( d_model, kernel_initializer=get_initializer(init_std), use_bias=False, name="o_net" ) self.layer_norm = tf.keras.layers.LayerNormalization(epsilon=layer_norm_epsilon, name="layer_norm") self.scale = 1 / (d_head**0.5) self.pre_lnorm = pre_lnorm if r_r_bias is not None and r_w_bias is not None: # Biases are shared self.r_r_bias = r_r_bias self.r_w_bias = r_w_bias else: self.r_r_bias = None self.r_w_bias = None self.r_net = tf.keras.layers.Dense( self.n_head * self.d_head, kernel_initializer=get_initializer(init_std), use_bias=False, name="r_net" ) def build(self, input_shape): if self.r_r_bias is None or self.r_w_bias is None: # Biases are not shared self.r_r_bias = self.add_weight( shape=(self.n_head, self.d_head), initializer="zeros", trainable=True, name="r_r_bias" ) self.r_w_bias = self.add_weight( shape=(self.n_head, self.d_head), initializer="zeros", trainable=True, name="r_w_bias" ) super().build(input_shape) def _rel_shift(self, x): x_size = shape_list(x) x = tf.pad(x, [[0, 0], [1, 0], [0, 0], [0, 0]]) x = tf.reshape(x, [x_size[1] + 1, x_size[0], x_size[2], x_size[3]]) x = tf.slice(x, [1, 0, 0, 0], [-1, -1, -1, -1]) x = tf.reshape(x, x_size) return x def call(self, w, r, attn_mask, mems, head_mask, output_attentions, training=False): qlen, rlen, bsz = shape_list(w)[0], shape_list(r)[0], shape_list(w)[1] if mems is not None: mems = tf.cast(mems, dtype=w.dtype) cat = tf.concat([mems, w], 0) if self.pre_lnorm: w_heads = self.qkv_net(self.layer_norm(cat)) else: w_heads = self.qkv_net(cat) r_head_k = self.r_net(r) w_head_q, w_head_k, w_head_v = tf.split(w_heads, 3, axis=-1) w_head_q = w_head_q[-qlen:] else: if self.pre_lnorm: w_heads = self.qkv_net(self.layer_norm(w)) else: w_heads = self.qkv_net(w) r_head_k = self.r_net(r) w_head_q, w_head_k, w_head_v = tf.split(w_heads, 3, axis=-1) klen = shape_list(w_head_k)[0] w_head_q = tf.reshape(w_head_q, (qlen, bsz, self.n_head, self.d_head)) # qlen x bsz x n_head x d_head w_head_k = tf.reshape(w_head_k, (klen, bsz, self.n_head, self.d_head)) # qlen x bsz x n_head x d_head w_head_v = tf.reshape(w_head_v, (klen, bsz, self.n_head, self.d_head)) # qlen x bsz x n_head x d_head r_head_k = tf.reshape(r_head_k, (rlen, self.n_head, self.d_head)) # qlen x n_head x d_head # compute attention score rw_head_q = w_head_q + self.r_w_bias # qlen x bsz x n_head x d_head AC = tf.einsum("ibnd,jbnd->ijbn", rw_head_q, w_head_k) # qlen x klen x bsz x n_head rr_head_q = w_head_q + self.r_r_bias BD = tf.einsum("ibnd,jnd->ijbn", rr_head_q, r_head_k) # qlen x klen x bsz x n_head BD = self._rel_shift(BD) # [qlen x klen x bsz x n_head] attn_score = AC + BD attn_score = attn_score * self.scale # compute attention probability if attn_mask is not None: attn_mask_t = attn_mask[:, :, None, None] attn_mask_t = tf.cast(attn_mask_t, dtype=attn_score.dtype) attn_score = attn_score * (1.0 - attn_mask_t) - 1e30 * attn_mask_t # [qlen x klen x bsz x n_head] attn_prob = stable_softmax(attn_score, axis=1) attn_prob = self.dropatt(attn_prob, training=training) # Mask heads if we want to if head_mask is not None: attn_prob = attn_prob * head_mask # compute attention vector attn_vec = tf.einsum("ijbn,jbnd->ibnd", attn_prob, w_head_v) # [qlen x bsz x n_head x d_head] attn_vec_sizes = shape_list(attn_vec) attn_vec = tf.reshape(attn_vec, (attn_vec_sizes[0], attn_vec_sizes[1], self.n_head * self.d_head)) # linear projection attn_out = self.o_net(attn_vec) attn_out = self.drop(attn_out, training=training) if self.pre_lnorm: # residual connection outputs = [w + attn_out] else: # residual connection + layer normalization outputs = [self.layer_norm(w + attn_out)] if output_attentions: outputs.append(attn_prob) return outputs class TFRelPartialLearnableDecoderLayer(tf.keras.layers.Layer): def __init__( self, n_head, d_model, d_head, d_inner, dropout, dropatt=0.0, pre_lnorm=False, r_w_bias=None, r_r_bias=None, layer_norm_epsilon=1e-5, init_std=0.02, output_attentions=False, **kwargs, ): super().__init__(**kwargs) self.dec_attn = TFRelPartialLearnableMultiHeadAttn( n_head, d_model, d_head, dropout, dropatt=dropatt, pre_lnorm=pre_lnorm, r_w_bias=r_w_bias, r_r_bias=r_r_bias, init_std=init_std, layer_norm_epsilon=layer_norm_epsilon, output_attentions=output_attentions, name="dec_attn", ) self.pos_ff = TFPositionwiseFF( d_model, d_inner, dropout, pre_lnorm=pre_lnorm, init_std=init_std, layer_norm_epsilon=layer_norm_epsilon, name="pos_ff", ) def call(self, dec_inp, r, dec_attn_mask, mems, head_mask, output_attentions, training=False): attn_outputs = self.dec_attn(dec_inp, r, dec_attn_mask, mems, head_mask, output_attentions, training=training) ff_output = self.pos_ff(attn_outputs[0], training=training) outputs = [ff_output] + attn_outputs[1:] return outputs class TFTransfoEmbeddings(tf.keras.layers.Layer): def __init__(self, vocab_size, emb_size, init_std, **kwargs): super().__init__(**kwargs) self.vocab_size = vocab_size self.emb_size = emb_size self.init_std = init_std def build(self, input_shape): self.weight = self.add_weight( shape=(self.vocab_size, self.emb_size), initializer=get_initializer(self.init_std), name="embeddings", ) super().build(input_shape) def call(self, inputs): return tf.gather(self.weight, inputs) class TFAdaptiveEmbedding(tf.keras.layers.Layer): def __init__(self, n_token, d_embed, d_proj, cutoffs, div_val=1, init_std=0.02, sample_softmax=False, **kwargs): super().__init__(**kwargs) self.n_token = n_token self.d_embed = d_embed self.init_std = init_std self.cutoffs = cutoffs + [n_token] self.div_val = div_val self.d_proj = d_proj self.emb_scale = d_proj**0.5 self.cutoff_ends = [0] + self.cutoffs self.emb_layers = [] self.emb_projs = [] if div_val == 1: raise NotImplementedError # Removed these to avoid maintaining dead code - They are not used in our pretrained checkpoint else: for i in range(len(self.cutoffs)): l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] d_emb_i = d_embed // (div_val**i) self.emb_layers.append( TFTransfoEmbeddings( r_idx - l_idx, d_emb_i, init_std, name=f"emb_layers_._{i}", ) ) def build(self, input_shape): for i in range(len(self.cutoffs)): d_emb_i = self.d_embed // (self.div_val**i) self.emb_projs.append( self.add_weight( shape=(d_emb_i, self.d_proj), initializer=get_initializer(self.init_std), trainable=True, name=f"emb_projs_._{i}", ) ) super().build(input_shape) def call(self, inp): if self.div_val == 1: raise NotImplementedError # Removed these to avoid maintaining dead code - They are not used in our pretrained checkpoint else: inp_flat = tf.reshape(inp, (-1,)) emb_flat = tf.zeros([shape_list(inp_flat)[0], self.d_proj]) for i in range(len(self.cutoffs)): l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] mask_i = (inp_flat >= l_idx) & (inp_flat < r_idx) inp_i = tf.boolean_mask(inp_flat, mask_i) - l_idx emb_i = self.emb_layers[i](inp_i) emb_i = tf.einsum("id,de->ie", emb_i, self.emb_projs[i]) mask_idx = tf.where(mask_i) scatter = tf.scatter_nd(mask_idx, emb_i, shape_list(emb_flat)) emb_flat = tf.cast(emb_flat, dtype=scatter.dtype) emb_flat += scatter embed_shape = shape_list(inp) + [self.d_proj] embed = tf.reshape(emb_flat, embed_shape) embed *= self.emb_scale return embed @keras_serializable class TFTransfoXLMainLayer(tf.keras.layers.Layer): config_class = TransfoXLConfig def __init__(self, config, **kwargs): super().__init__(**kwargs) self.config = config self.output_hidden_states = config.output_hidden_states self.output_attentions = config.output_attentions self.return_dict = config.use_return_dict self.n_token = config.vocab_size self.d_embed = config.d_embed self.d_model = config.d_model self.n_head = config.n_head self.d_head = config.d_head self.untie_r = config.untie_r self.word_emb = TFAdaptiveEmbedding( config.vocab_size, config.d_embed, config.d_model, config.cutoffs, div_val=config.div_val, init_std=config.init_std, name="word_emb", ) self.drop = tf.keras.layers.Dropout(config.dropout) self.n_layer = config.n_layer self.mem_len = config.mem_len self.attn_type = config.attn_type self.layers = [] if config.attn_type == 0: # the default attention for i in range(config.n_layer): self.layers.append( TFRelPartialLearnableDecoderLayer( config.n_head, config.d_model, config.d_head, config.d_inner, config.dropout, dropatt=config.dropatt, pre_lnorm=config.pre_lnorm, r_w_bias=None if self.untie_r else self.r_w_bias, r_r_bias=None if self.untie_r else self.r_r_bias, layer_norm_epsilon=config.layer_norm_epsilon, init_std=config.init_std, output_attentions=self.output_attentions, name=f"layers_._{i}", ) ) else: # learnable embeddings and absolute embeddings raise NotImplementedError # Removed these to avoid maintaining dead code - They are not used in our pretrained checkpoint self.same_length = config.same_length self.clamp_len = config.clamp_len if self.attn_type == 0: # default attention self.pos_emb = TFPositionalEmbedding(self.d_model, name="pos_emb") else: # learnable embeddings and absolute embeddings raise NotImplementedError # Removed these to avoid maintaining dead code - They are not used in our pretrained checkpoint def build(self, input_shape): if not self.untie_r: self.r_w_bias = self.add_weight( shape=(self.n_head, self.d_head), initializer="zeros", trainable=True, name="r_w_bias" ) self.r_r_bias = self.add_weight( shape=(self.n_head, self.d_head), initializer="zeros", trainable=True, name="r_r_bias" ) super().build(input_shape) def get_input_embeddings(self): return self.word_emb def set_input_embeddings(self, value): raise NotImplementedError def backward_compatible(self): self.sample_softmax = -1 def reset_memory_length(self, mem_len): self.mem_len = mem_len def _prune_heads(self, heads): raise NotImplementedError def init_mems(self, bsz): if self.mem_len > 0: mems = [] for i in range(self.n_layer): empty = tf.zeros([self.mem_len, bsz, self.d_model]) mems.append(empty) return mems else: return None def _update_mems(self, hids, mems, mlen, qlen): # does not deal with None if mems is None: return None # mems is not None assert len(hids) == len(mems), "len(hids) != len(mems)" # There are `mlen + qlen` steps that can be cached into mems new_mems = [] end_idx = mlen + tf.math.maximum(0, qlen) beg_idx = tf.math.maximum(0, end_idx - tf.convert_to_tensor(self.mem_len)) for i in range(len(hids)): mems[i] = tf.cast(mems[i], dtype=hids[i].dtype) cat = tf.concat([mems[i], hids[i]], axis=0) tf.stop_gradient(cat) new_mems.append(cat[beg_idx:end_idx]) return new_mems @unpack_inputs def call( self, input_ids: TFModelInputType | None = None, mems: List[tf.Tensor] | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: bool = False, ): # the original code for Transformer-XL used shapes [len, bsz] but we want a unified interface in the library # so we transpose here from shape [bsz, len] to shape [len, bsz] if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_ids = tf.transpose(input_ids, perm=(1, 0)) qlen, bsz = shape_list(input_ids) elif inputs_embeds is not None: inputs_embeds = tf.transpose(inputs_embeds, perm=(1, 0, 2)) qlen, bsz = shape_list(inputs_embeds)[:2] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if mems is None: mems = self.init_mems(bsz) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] (a head_mask for each layer) # and head_mask is converted to shape [num_hidden_layers x qlen x klen x bsz x n_head] if head_mask is not None: raise NotImplementedError else: head_mask = [None] * self.n_layer if inputs_embeds is not None: word_emb = inputs_embeds else: word_emb = self.word_emb(input_ids) mlen = shape_list(mems[0])[0] if mems is not None else 0 klen = mlen + qlen # Compute decoder attention mask all_ones = tf.ones([qlen, klen], dtype=tf.int32) upper_mask = 1 - tf.linalg.band_part(tf.ones([qlen, klen], dtype=tf.int32), -1, mlen) if self.same_length: mask_len = klen - self.mem_len mask_shift_len = qlen - tf.nn.relu(mask_len) # Lazy clamping of negatives to zero # Use an indicator variable instead of a conditional to keep the compiler happy lower_mask = tf.linalg.band_part(all_ones, -1, 0) - ( tf.linalg.band_part(all_ones, mask_shift_len - 1, 0) * tf.cast(mask_shift_len != 0, tf.int32) ) dec_attn_mask = upper_mask + lower_mask else: dec_attn_mask = upper_mask hids = [] attentions = [] if output_attentions else None if self.attn_type == 0: # default pos_seq = tf.range(klen - 1, -1, -1.0) if self.clamp_len > 0: pos_seq = tf.minimum(pos_seq, self.clamp_len) pos_emb = self.pos_emb(pos_seq) core_out = self.drop(word_emb, training=training) pos_emb = self.drop(pos_emb, training=training) for i, layer in enumerate(self.layers): hids.append(core_out) mems_i = None if mems is None else mems[i] layer_outputs = layer( core_out, pos_emb, dec_attn_mask, mems_i, head_mask[i], output_attentions, training=training, ) core_out = layer_outputs[0] if output_attentions: attentions.append(layer_outputs[1]) else: # learnable embeddings and absolute embeddings raise NotImplementedError # Removed these to avoid maintaining dead code - They are not used in our pretrained checkpoint core_out = self.drop(core_out, training=training) new_mems = self._update_mems(hids, mems, mlen, qlen) # We transpose back here to shape [bsz, len, hidden_dim] core_out = tf.transpose(core_out, perm=(1, 0, 2)) if output_hidden_states: # Transpose to library standard shape [bsz, len, hidden_dim] and add last layer hids = tuple(tf.transpose(t, perm=(1, 0, 2)) for t in hids) hids = hids + (core_out,) else: hids = None if output_attentions: # Transpose to library standard shape [bsz, n_heads, query_seq_len, key_seq_len] attentions = tuple(tf.transpose(t, perm=(2, 3, 0, 1)) for t in attentions) if not return_dict: return tuple(v for v in [core_out, new_mems, hids, attentions] if v is not None) return TFTransfoXLModelOutput( last_hidden_state=core_out, mems=new_mems, hidden_states=hids, attentions=attentions, ) class TFTransfoXLPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = TransfoXLConfig base_model_prefix = "transformer" @dataclass class TFTransfoXLModelOutput(ModelOutput): """ Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding). Args: last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. mems (`List[tf.Tensor]` of length `config.n_layers`): Contains pre-computed hidden-states (key and values in the attention blocks). Can be used (see `mems` input) to speed up sequential decoding. The token ids which have their past given to this model should not be passed as input ids as they have already been computed. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ last_hidden_state: tf.Tensor = None mems: List[tf.Tensor] = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None @dataclass class TFTransfoXLLMHeadModelOutput(ModelOutput): """ Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding). Args: losses (`tf.Tensor` of shape *(batch_size, sequence_length-1)*, *optional*, returned when `labels` is provided): Language modeling losses (not reduced). prediction_scores (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token after SoftMax). mems (`List[tf.Tensor]` of length `config.n_layers`): Contains pre-computed hidden-states (key and values in the attention blocks). Can be used (see `mems` input) to speed up sequential decoding. The token ids which have their past given to this model should not be passed as input ids as they have already been computed. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ prediction_scores: tf.Tensor = None mems: List[tf.Tensor] = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None @dataclass class TFTransfoXLSequenceClassifierOutputWithPast(ModelOutput): """ Base class for outputs of sentence classification models. Args: loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Classification (or regression if config.num_labels==1) loss. logits (`tf.Tensor` of shape `(batch_size, config.num_labels)`): Classification (or regression if config.num_labels==1) scores (before SoftMax). mems (`List[tf.Tensor]` of length `config.n_layers`): Contains pre-computed hidden-states (key and values in the attention blocks). Can be used (see `mems` input) to speed up sequential decoding. The token ids which have their past given to this model should not be passed as input ids as they have already been computed. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: tf.Tensor | None = None logits: tf.Tensor = None mems: List[tf.Tensor] = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None TRANSFO_XL_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Parameters: config ([`TransfoXLConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ TRANSFO_XL_INPUTS_DOCSTRING = r""" Args: input_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and [`PreTrainedTokenizer.encode`] for details. [What are input IDs?](../glossary#input-ids) mems (`List[tf.Tensor]` of length `config.n_layers`): Contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model (see `mems` output below). Can be used to speed up sequential decoding. The token ids which have their mems given to this model should not be passed as `input_ids` as they have already been computed. head_mask (`tf.Tensor` or `Numpy array` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @add_start_docstrings( "The bare Bert Model transformer outputting raw hidden-states without any specific head on top.", TRANSFO_XL_START_DOCSTRING, ) class TFTransfoXLModel(TFTransfoXLPreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.transformer = TFTransfoXLMainLayer(config, name="transformer") @unpack_inputs @add_start_docstrings_to_model_forward(TRANSFO_XL_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFTransfoXLModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, mems: List[tf.Tensor] | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ): outputs = self.transformer( input_ids=input_ids, mems=mems, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs @add_start_docstrings( """ The Transformer-XL Model with a language modeling head on top (adaptive softmax with weights tied to the adaptive input embeddings) """, TRANSFO_XL_START_DOCSTRING, ) class TFTransfoXLLMHeadModel(TFTransfoXLPreTrainedModel): def __init__(self, config): super().__init__(config) self.transformer = TFTransfoXLMainLayer(config, name="transformer") self.sample_softmax = config.sample_softmax assert self.sample_softmax <= 0, ( "Sampling from the softmax is not implemented yet. Please look at issue: #3310:" " https://github.com/huggingface/transformers/issues/3310" ) self.crit = TFAdaptiveSoftmaxMask( config.vocab_size, config.d_embed, config.d_model, config.cutoffs, div_val=config.div_val, name="crit" ) def _resize_token_embeddings(self, new_num_tokens): raise NotImplementedError() def get_output_embeddings(self): """Double-check if you are using adaptive softmax.""" if len(self.crit.out_layers) > 0: return self.crit.out_layers[-1] return None def reset_memory_length(self, mem_len): self.transformer.reset_memory_length(mem_len) def init_mems(self, bsz): return self.transformer.init_mems(bsz) @unpack_inputs @add_start_docstrings_to_model_forward(TRANSFO_XL_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFTransfoXLLMHeadModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, mems: List[tf.Tensor] | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: bool = False, ): if input_ids is not None: bsz, tgt_len = shape_list(input_ids)[:2] else: bsz, tgt_len = shape_list(inputs_embeds)[:2] transformer_outputs = self.transformer( input_ids, mems, head_mask, inputs_embeds, output_attentions, output_hidden_states, return_dict, training=training, ) last_hidden = transformer_outputs[0] pred_hid = last_hidden[:, -tgt_len:] softmax_output = self.crit(pred_hid, labels, training=training) prediction_scores = softmax_output if labels is None else () if not return_dict: return (prediction_scores,) + transformer_outputs[1:] return TFTransfoXLLMHeadModelOutput( prediction_scores=prediction_scores, mems=transformer_outputs.mems, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **model_kwargs): inputs = {} # if past is defined in model kwargs then use it for faster decoding if past_key_values: input_ids = tf.expand_dims(input_ids[:, -1], axis=-1) else: input_ids = input_ids return inputs @add_start_docstrings( """ The Transfo XL Model transformer with a sequence classification head on top (linear layer). [`TFTransfoXLForSequenceClassification`] uses the last token in order to do the classification, as other causal models (e.g. GPT-1,GPT-2) do. Since it does classification on the last token, it requires to know the position of the last token. If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in each row of the batch). """, TRANSFO_XL_START_DOCSTRING, ) class TFTransfoXLForSequenceClassification(TFTransfoXLPreTrainedModel, TFSequenceClassificationLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.score = tf.keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.init_range), name="score", use_bias=False, ) self.transformer = TFTransfoXLMainLayer(config, name="transformer") def get_output_embeddings(self): # Remove after transformers v4.32. Fix this model's `test_model_common_attributes` test too. logger.warning( "Sequence classification models do not have output embeddings. `.get_output_embeddings` will be removed " "in transformers v4.32." ) return self.transformer.word_emb @unpack_inputs @add_start_docstrings_to_model_forward(TRANSFO_XL_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFTransfoXLSequenceClassifierOutputWithPast, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, mems: List[tf.Tensor] | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[Tuple, TFTransfoXLSequenceClassifierOutputWithPast]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the cross entropy classification loss. Indices should be in `[0, ..., config.vocab_size - 1]`. """ transformer_outputs = self.transformer( input_ids=input_ids, mems=mems, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) hidden_states = transformer_outputs[0] logits = self.score(hidden_states) in_logits = None if self.config.pad_token_id is None: sequence_lengths = -1 else: if input_ids is not None: sequence_lengths = ( tf.argmax(tf.cast(tf.math.equal(input_ids, self.config.pad_token_id), input_ids.dtype), axis=-1) - 1 ) sequence_lengths = tf.where(sequence_lengths >= 0, sequence_lengths, input_ids.shape[-1] - 1) in_logits = tf.gather(logits, sequence_lengths, batch_dims=1, axis=1) else: sequence_lengths = -1 logger.warning( f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " "unexpected if using padding tokens in conjunction with `inputs_embeds.`" ) loss = None if labels is not None: if input_ids is not None: batch_size, sequence_length = shape_list(input_ids)[:2] else: batch_size, sequence_length = shape_list(inputs_embeds)[:2] assert ( self.config.pad_token_id is not None or batch_size == 1 ), "Cannot handle batch sizes > 1 if no padding token is defined." if not tf.is_tensor(sequence_lengths): in_logits = logits[0:batch_size, sequence_lengths] loss = self.hf_compute_loss(tf.reshape(labels, [-1, 1]), tf.reshape(in_logits, [-1, self.num_labels])) pooled_logits = in_logits if in_logits is not None else logits if not return_dict: output = (pooled_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return TFTransfoXLSequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, mems=transformer_outputs.mems, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/transfo_xl/modeling_tf_transfo_xl_utilities.py
# coding=utf-8 # Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ A TF 2.0 Adaptive Softmax for Transformer XL model. """ import tensorflow as tf from ...tf_utils import shape_list class TFAdaptiveSoftmaxMask(tf.keras.layers.Layer): def __init__(self, vocab_size, d_embed, d_proj, cutoffs, div_val=1, keep_order=False, **kwargs): super().__init__(**kwargs) self.vocab_size = vocab_size self.d_embed = d_embed self.d_proj = d_proj self.cutoffs = cutoffs + [vocab_size] self.cutoff_ends = [0] + self.cutoffs self.div_val = div_val self.shortlist_size = self.cutoffs[0] self.n_clusters = len(self.cutoffs) - 1 self.head_size = self.shortlist_size + self.n_clusters self.keep_order = keep_order self.out_layers = [] self.out_projs = [] def build(self, input_shape): if self.n_clusters > 0: self.cluster_weight = self.add_weight( shape=(self.n_clusters, self.d_embed), initializer="zeros", trainable=True, name="cluster_weight" ) self.cluster_bias = self.add_weight( shape=(self.n_clusters,), initializer="zeros", trainable=True, name="cluster_bias" ) if self.div_val == 1: for i in range(len(self.cutoffs)): if self.d_proj != self.d_embed: weight = self.add_weight( shape=(self.d_embed, self.d_proj), initializer="zeros", trainable=True, name=f"out_projs_._{i}", ) self.out_projs.append(weight) else: self.out_projs.append(None) weight = self.add_weight( shape=(self.vocab_size, self.d_embed), initializer="zeros", trainable=True, name=f"out_layers_._{i}_._weight", ) bias = self.add_weight( shape=(self.vocab_size,), initializer="zeros", trainable=True, name=f"out_layers_._{i}_._bias", ) self.out_layers.append((weight, bias)) else: for i in range(len(self.cutoffs)): l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] d_emb_i = self.d_embed // (self.div_val**i) weight = self.add_weight( shape=(d_emb_i, self.d_proj), initializer="zeros", trainable=True, name=f"out_projs_._{i}" ) self.out_projs.append(weight) weight = self.add_weight( shape=(r_idx - l_idx, d_emb_i), initializer="zeros", trainable=True, name=f"out_layers_._{i}_._weight", ) bias = self.add_weight( shape=(r_idx - l_idx,), initializer="zeros", trainable=True, name=f"out_layers_._{i}_._bias", ) self.out_layers.append((weight, bias)) super().build(input_shape) @staticmethod def _logit(x, W, b, proj=None): y = x if proj is not None: y = tf.einsum("ibd,ed->ibe", y, proj) return tf.einsum("ibd,nd->ibn", y, W) + b @staticmethod def _gather_logprob(logprob, target): lp_size = shape_list(logprob) r = tf.range(lp_size[0], dtype=target.dtype) idx = tf.stack([r, target], 1) return tf.gather_nd(logprob, idx) def call(self, hidden, target, return_mean=True, training=False): head_logprob = 0 if self.n_clusters == 0: output = self._logit(hidden, self.out_layers[0][0], self.out_layers[0][1], self.out_projs[0]) if target is not None: loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=target, logits=output) out = tf.nn.log_softmax(output, axis=-1) else: hidden_sizes = shape_list(hidden) out = [] loss = tf.zeros(hidden_sizes[:2]) for i in range(len(self.cutoffs)): l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: mask = (target >= l_idx) & (target < r_idx) mask_idx = tf.where(mask) cur_target = tf.boolean_mask(target, mask) - l_idx if self.div_val == 1: cur_W = self.out_layers[0][0][l_idx:r_idx] cur_b = self.out_layers[0][1][l_idx:r_idx] else: cur_W = self.out_layers[i][0] cur_b = self.out_layers[i][1] if i == 0: cur_W = tf.concat([cur_W, self.cluster_weight], 0) cur_b = tf.concat([cur_b, self.cluster_bias], 0) head_logit = self._logit(hidden, cur_W, cur_b, self.out_projs[0]) head_logprob = tf.nn.log_softmax(head_logit) out.append(head_logprob[..., : self.cutoffs[0]]) if target is not None: cur_head_logprob = tf.boolean_mask(head_logprob, mask) cur_logprob = self._gather_logprob(cur_head_logprob, cur_target) else: tail_logit = self._logit(hidden, cur_W, cur_b, self.out_projs[i]) tail_logprob = tf.nn.log_softmax(tail_logit) cluster_prob_idx = self.cutoffs[0] + i - 1 # No probability for the head cluster logprob_i = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(logprob_i) if target is not None: cur_head_logprob = tf.boolean_mask(head_logprob, mask) cur_tail_logprob = tf.boolean_mask(tail_logprob, mask) cur_logprob = self._gather_logprob(cur_tail_logprob, cur_target) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(mask_idx, -cur_logprob, shape_list(loss)) out = tf.concat(out, axis=-1) if target is not None: if return_mean: loss = tf.reduce_mean(loss) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(loss) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(loss, name=self.name, aggregation="mean" if return_mean else "") return out
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/transfo_xl/modeling_transfo_xl.py
# coding=utf-8 # Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch Transformer XL model. Adapted from https://github.com/kimiyoung/transformer-xl. In particular https://github.com/kimiyoung/transformer-xl/blob/master/pytorch/mem_transformer.py """ import warnings from dataclasses import dataclass from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...modeling_utils import PreTrainedModel from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, ) from .configuration_transfo_xl import TransfoXLConfig from .modeling_transfo_xl_utilities import ProjectedAdaptiveLogSoftmax logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "transfo-xl-wt103" _CONFIG_FOR_DOC = "TransfoXLConfig" TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST = [ "transfo-xl-wt103", # See all Transformer XL models at https://huggingface.co/models?filter=transfo-xl ] def build_tf_to_pytorch_map(model, config): """ A map of modules from TF to PyTorch. This time I use a map to keep the PyTorch model as identical to the original PyTorch model as possible. """ tf_to_pt_map = {} if hasattr(model, "transformer"): # We are loading in a TransfoXLLMHeadModel => we will load also the Adaptive Softmax tf_to_pt_map.update( { "transformer/adaptive_softmax/cutoff_0/cluster_W": model.crit.cluster_weight, "transformer/adaptive_softmax/cutoff_0/cluster_b": model.crit.cluster_bias, } ) for i, (out_l, proj_l, tie_proj) in enumerate( zip(model.crit.out_layers, model.crit.out_projs, config.tie_projs) ): layer_str = f"transformer/adaptive_softmax/cutoff_{i}/" if config.tie_word_embeddings: tf_to_pt_map.update({layer_str + "b": out_l.bias}) else: raise NotImplementedError # I don't think this is implemented in the TF code tf_to_pt_map.update({layer_str + "lookup_table": out_l.weight, layer_str + "b": out_l.bias}) if not tie_proj: tf_to_pt_map.update({layer_str + "proj": proj_l}) # Now load the rest of the transformer model = model.transformer # Embeddings for i, (embed_l, proj_l) in enumerate(zip(model.word_emb.emb_layers, model.word_emb.emb_projs)): layer_str = f"transformer/adaptive_embed/cutoff_{i}/" tf_to_pt_map.update({layer_str + "lookup_table": embed_l.weight, layer_str + "proj_W": proj_l}) # Transformer blocks for i, b in enumerate(model.layers): layer_str = f"transformer/layer_{i}/" tf_to_pt_map.update( { layer_str + "rel_attn/LayerNorm/gamma": b.dec_attn.layer_norm.weight, layer_str + "rel_attn/LayerNorm/beta": b.dec_attn.layer_norm.bias, layer_str + "rel_attn/o/kernel": b.dec_attn.o_net.weight, layer_str + "rel_attn/qkv/kernel": b.dec_attn.qkv_net.weight, layer_str + "rel_attn/r/kernel": b.dec_attn.r_net.weight, layer_str + "ff/LayerNorm/gamma": b.pos_ff.layer_norm.weight, layer_str + "ff/LayerNorm/beta": b.pos_ff.layer_norm.bias, layer_str + "ff/layer_1/kernel": b.pos_ff.CoreNet[0].weight, layer_str + "ff/layer_1/bias": b.pos_ff.CoreNet[0].bias, layer_str + "ff/layer_2/kernel": b.pos_ff.CoreNet[3].weight, layer_str + "ff/layer_2/bias": b.pos_ff.CoreNet[3].bias, } ) # Relative positioning biases if config.untie_r: r_r_list = [] r_w_list = [] for b in model.layers: r_r_list.append(b.dec_attn.r_r_bias) r_w_list.append(b.dec_attn.r_w_bias) else: r_r_list = [model.r_r_bias] r_w_list = [model.r_w_bias] tf_to_pt_map.update({"transformer/r_r_bias": r_r_list, "transformer/r_w_bias": r_w_list}) return tf_to_pt_map def load_tf_weights_in_transfo_xl(model, config, tf_path): """Load tf checkpoints in a pytorch model""" try: import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise # Build TF to PyTorch weights loading map tf_to_pt_map = build_tf_to_pytorch_map(model, config) # Load weights from TF model init_vars = tf.train.list_variables(tf_path) tf_weights = {} for name, shape in init_vars: logger.info(f"Loading TF weight {name} with shape {shape}") array = tf.train.load_variable(tf_path, name) tf_weights[name] = array for name, pointer in tf_to_pt_map.items(): assert name in tf_weights array = tf_weights[name] # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v # which are not required for using pretrained model if "kernel" in name or "proj" in name: array = np.transpose(array) if ("r_r_bias" in name or "r_w_bias" in name) and len(pointer) > 1: # Here we will split the TF weights assert len(pointer) == array.shape[0] for i, p_i in enumerate(pointer): arr_i = array[i, ...] try: assert p_i.shape == arr_i.shape except AssertionError as e: e.args += (p_i.shape, arr_i.shape) raise logger.info(f"Initialize PyTorch weight {name} for layer {i}") p_i.data = torch.from_numpy(arr_i) else: try: assert ( pointer.shape == array.shape ), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" except AssertionError as e: e.args += (pointer.shape, array.shape) raise logger.info(f"Initialize PyTorch weight {name}") pointer.data = torch.from_numpy(array) tf_weights.pop(name, None) tf_weights.pop(name + "/Adam", None) tf_weights.pop(name + "/Adam_1", None) logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys())}") return model class PositionalEmbedding(nn.Module): def __init__(self, demb): super().__init__() self.demb = demb inv_freq = 1 / (10000 ** (torch.arange(0.0, demb, 2.0) / demb)) self.register_buffer("inv_freq", inv_freq) def forward(self, pos_seq, bsz=None): sinusoid_inp = torch.outer(pos_seq, self.inv_freq) pos_emb = torch.cat([sinusoid_inp.sin(), sinusoid_inp.cos()], dim=-1) if bsz is not None: return pos_emb[:, None, :].expand(-1, bsz, -1) else: return pos_emb[:, None, :] class PositionwiseFF(nn.Module): def __init__(self, d_model, d_inner, dropout, pre_lnorm=False, layer_norm_epsilon=1e-5): super().__init__() self.d_model = d_model self.d_inner = d_inner self.dropout = dropout self.CoreNet = nn.Sequential( nn.Linear(d_model, d_inner), nn.ReLU(inplace=True), nn.Dropout(dropout), nn.Linear(d_inner, d_model), nn.Dropout(dropout), ) self.layer_norm = nn.LayerNorm(d_model, eps=layer_norm_epsilon) self.pre_lnorm = pre_lnorm def forward(self, inp): if self.pre_lnorm: # layer normalization + positionwise feed-forward core_out = self.CoreNet(self.layer_norm(inp)) # residual connection output = core_out + inp else: # positionwise feed-forward core_out = self.CoreNet(inp) # residual connection + layer normalization output = self.layer_norm(inp + core_out) return output class RelPartialLearnableMultiHeadAttn(nn.Module): def __init__( self, n_head, d_model, d_head, dropout, dropatt=0, pre_lnorm=False, r_r_bias=None, r_w_bias=None, layer_norm_epsilon=1e-5, ): super().__init__() self.n_head = n_head self.d_model = d_model self.d_head = d_head self.dropout = dropout self.qkv_net = nn.Linear(d_model, 3 * n_head * d_head, bias=False) self.drop = nn.Dropout(dropout) self.dropatt = nn.Dropout(dropatt) self.o_net = nn.Linear(n_head * d_head, d_model, bias=False) self.layer_norm = nn.LayerNorm(d_model, eps=layer_norm_epsilon) self.scale = 1 / (d_head**0.5) self.pre_lnorm = pre_lnorm if r_r_bias is None or r_w_bias is None: # Biases are not shared self.r_r_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head)) self.r_w_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head)) else: self.r_r_bias = r_r_bias self.r_w_bias = r_w_bias self.r_net = nn.Linear(self.d_model, self.n_head * self.d_head, bias=False) def _rel_shift(self, x): zero_pad_shape = (x.size(0), 1) + x.size()[2:] zero_pad = torch.zeros(zero_pad_shape, device=x.device, dtype=x.dtype) x_padded = torch.cat([zero_pad, x], dim=1) x_padded_shape = (x.size(1) + 1, x.size(0)) + x.size()[2:] x_padded = x_padded.view(*x_padded_shape) x = x_padded[1:].view_as(x) return x def forward(self, w, r, attn_mask=None, mems=None, head_mask=None, output_attentions=False): qlen, rlen, bsz = w.size(0), r.size(0), w.size(1) if mems is not None: cat = torch.cat([mems, w], 0) if self.pre_lnorm: w_heads = self.qkv_net(self.layer_norm(cat)) else: w_heads = self.qkv_net(cat) r_head_k = self.r_net(r) w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1) w_head_q = w_head_q[-qlen:] else: if self.pre_lnorm: w_heads = self.qkv_net(self.layer_norm(w)) else: w_heads = self.qkv_net(w) r_head_k = self.r_net(r) w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1) klen = w_head_k.size(0) w_head_q = w_head_q.view(qlen, bsz, self.n_head, self.d_head) # qlen x bsz x n_head x d_head w_head_k = w_head_k.view(klen, bsz, self.n_head, self.d_head) # qlen x bsz x n_head x d_head w_head_v = w_head_v.view(klen, bsz, self.n_head, self.d_head) # qlen x bsz x n_head x d_head r_head_k = r_head_k.view(rlen, self.n_head, self.d_head) # qlen x n_head x d_head # compute attention score rw_head_q = w_head_q + self.r_w_bias # qlen x bsz x n_head x d_head AC = torch.einsum("ibnd,jbnd->ijbn", (rw_head_q, w_head_k)) # qlen x klen x bsz x n_head rr_head_q = w_head_q + self.r_r_bias BD = torch.einsum("ibnd,jnd->ijbn", (rr_head_q, r_head_k)) # qlen x klen x bsz x n_head BD = self._rel_shift(BD) # [qlen x klen x bsz x n_head] attn_score = AC + BD attn_score.mul_(self.scale) mask_value = torch.finfo(attn_score.dtype).min # compute attention probability if attn_mask is not None and torch.sum(attn_mask).item(): attn_mask = attn_mask == 1 # Switch to bool if attn_mask.dim() == 2: attn_score = ( attn_score.float().masked_fill(attn_mask[None, :, :, None], mask_value).type_as(attn_score) ) elif attn_mask.dim() == 3: attn_score = attn_score.float().masked_fill(attn_mask[:, :, :, None], mask_value).type_as(attn_score) # [qlen x klen x bsz x n_head] attn_prob = nn.functional.softmax(attn_score, dim=1) attn_prob = self.dropatt(attn_prob) # Mask heads if we want to if head_mask is not None: attn_prob = attn_prob * head_mask # compute attention vector attn_vec = torch.einsum("ijbn,jbnd->ibnd", (attn_prob, w_head_v)) # [qlen x bsz x n_head x d_head] attn_vec = attn_vec.contiguous().view(attn_vec.size(0), attn_vec.size(1), self.n_head * self.d_head) # linear projection attn_out = self.o_net(attn_vec) attn_out = self.drop(attn_out) if self.pre_lnorm: # residual connection outputs = [w + attn_out] else: # residual connection + layer normalization outputs = [self.layer_norm(w + attn_out)] if output_attentions: outputs.append(attn_prob) return outputs class RelPartialLearnableDecoderLayer(nn.Module): def __init__(self, n_head, d_model, d_head, d_inner, dropout, layer_norm_epsilon=1e-5, **kwargs): super().__init__() self.dec_attn = RelPartialLearnableMultiHeadAttn( n_head, d_model, d_head, dropout, layer_norm_epsilon=layer_norm_epsilon, **kwargs ) self.pos_ff = PositionwiseFF( d_model, d_inner, dropout, pre_lnorm=kwargs.get("pre_lnorm"), layer_norm_epsilon=layer_norm_epsilon ) def forward(self, dec_inp, r, dec_attn_mask=None, mems=None, head_mask=None, output_attentions=False): attn_outputs = self.dec_attn( dec_inp, r, attn_mask=dec_attn_mask, mems=mems, head_mask=head_mask, output_attentions=output_attentions, ) ff_output = self.pos_ff(attn_outputs[0]) outputs = [ff_output] + attn_outputs[1:] return outputs class AdaptiveEmbedding(nn.Module): def __init__(self, n_token, d_embed, d_proj, cutoffs, div_val=1, sample_softmax=False): super().__init__() self.n_token = n_token self.d_embed = d_embed self.cutoffs = cutoffs + [n_token] self.div_val = div_val self.d_proj = d_proj self.emb_scale = d_proj**0.5 self.cutoff_ends = [0] + self.cutoffs self.emb_layers = nn.ModuleList() self.emb_projs = nn.ParameterList() if div_val == 1: self.emb_layers.append(nn.Embedding(n_token, d_embed, sparse=sample_softmax > 0)) if d_proj != d_embed: self.emb_projs.append(nn.Parameter(torch.FloatTensor(d_proj, d_embed))) else: for i in range(len(self.cutoffs)): l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] d_emb_i = d_embed // (div_val**i) self.emb_layers.append(nn.Embedding(r_idx - l_idx, d_emb_i)) self.emb_projs.append(nn.Parameter(torch.FloatTensor(d_proj, d_emb_i))) def forward(self, inp): if self.div_val == 1: embed = self.emb_layers[0](inp) if self.d_proj != self.d_embed: embed = nn.functional.linear(embed, self.emb_projs[0]) else: param = next(self.parameters()) inp_flat = inp.view(-1) emb_flat = torch.zeros([inp_flat.size(0), self.d_proj], dtype=param.dtype, device=param.device) for i in range(len(self.cutoffs)): l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] mask_i = (inp_flat >= l_idx) & (inp_flat < r_idx) indices_i = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue inp_i = inp_flat.index_select(0, indices_i) - l_idx emb_i = self.emb_layers[i](inp_i) emb_i = nn.functional.linear(emb_i, self.emb_projs[i]) emb_flat.index_copy_(0, indices_i, emb_i) embed_shape = inp.size() + (self.d_proj,) embed = emb_flat.view(embed_shape) embed.mul_(self.emb_scale) return embed class TransfoXLPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = TransfoXLConfig load_tf_weights = load_tf_weights_in_transfo_xl base_model_prefix = "transformer" def _init_weight(self, weight): if self.config.init == "uniform": nn.init.uniform_(weight, -self.config.init_range, self.config.init_range) elif self.config.init == "normal": nn.init.normal_(weight, 0.0, self.config.init_std) def _init_bias(self, bias): nn.init.constant_(bias, 0.0) def _init_weights(self, m): """Initialize the weights.""" classname = m.__class__.__name__ if classname.find("Linear") != -1: if hasattr(m, "weight") and m.weight is not None: self._init_weight(m.weight) if hasattr(m, "bias") and m.bias is not None: self._init_bias(m.bias) elif classname.find("AdaptiveEmbedding") != -1: if hasattr(m, "emb_projs"): for i in range(len(m.emb_projs)): if m.emb_projs[i] is not None: nn.init.normal_(m.emb_projs[i], 0.0, self.config.proj_init_std) elif classname.find("Embedding") != -1: if hasattr(m, "weight"): self._init_weight(m.weight) elif classname.find("ProjectedAdaptiveLogSoftmax") != -1: if hasattr(m, "cluster_weight") and m.cluster_weight is not None: self._init_weight(m.cluster_weight) if hasattr(m, "cluster_bias") and m.cluster_bias is not None: self._init_bias(m.cluster_bias) if hasattr(m, "out_projs"): for i in range(len(m.out_projs)): if m.out_projs[i] is not None: nn.init.normal_(m.out_projs[i], 0.0, self.config.proj_init_std) elif classname.find("LayerNorm") != -1: if hasattr(m, "weight"): nn.init.normal_(m.weight, 1.0, self.config.init_std) if hasattr(m, "bias") and m.bias is not None: self._init_bias(m.bias) else: if hasattr(m, "r_emb"): self._init_weight(m.r_emb) if hasattr(m, "r_w_bias"): self._init_weight(m.r_w_bias) if hasattr(m, "r_r_bias"): self._init_weight(m.r_r_bias) if hasattr(m, "r_bias"): self._init_bias(m.r_bias) def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, layer: Optional[int] = -1): """ Resize input token embeddings matrix of the model if new_num_tokens != config.vocab_size. Take care of tying weights embeddings afterwards if the model class has a *tie_weights()* method. Arguments: new_num_tokens: (*optional*) int: New number of tokens in the embedding matrix. Increasing the size will add newly initialized vectors at the end. Reducing the size will remove vectors from the end. If not provided or None: does nothing and just returns a pointer to the input tokens `torch.nn.Embeddings` Module of the model. layer: (*optional*) int: Layer of the *AdaptiveEmbedding* where the resizing should be done. Per default the last layer will be resized. Be aware that when resizing other than the last layer, you have to ensure that the new token(s) in the tokenizer are at the corresponding position. Return: `torch.nn.Embeddings` Pointer to the input tokens Embeddings Module of the model """ base_model = getattr(self, self.base_model_prefix, self) # get the base model if needed if new_num_tokens is None: return self.get_input_embeddings() new_num_tokens_layer, layer = self._get_new_num_tokens_layer(new_num_tokens, layer) assert new_num_tokens_layer > 0, "The size of the new embedding layer cannot be 0 or less" model_embeds = base_model._resize_token_embeddings(new_num_tokens_layer, layer) # Update base model and current model config self.config.vocab_size = new_num_tokens base_model.vocab_size = new_num_tokens base_model.n_token = new_num_tokens new_embedding_shapes = self._get_embedding_shapes() self._resize_cutoffs(new_num_tokens, new_num_tokens_layer, new_embedding_shapes, layer) # Tie weights again if needed self.tie_weights() return model_embeds def _get_new_num_tokens_layer(self, new_num_tokens, layer): embeddings = self.get_input_embeddings() if layer == -1: layer = len(embeddings.emb_layers) - 1 assert 0 <= layer <= len(embeddings.emb_layers) - 1 new_num_tokens_layer = ( new_num_tokens - sum([emb.weight.shape[0] for emb in embeddings.emb_layers[:layer]]) - sum([emb.weight.shape[0] for emb in embeddings.emb_layers[layer + 1 :]]) ) return new_num_tokens_layer, layer def _get_embedding_shapes(self): embeddings = self.get_input_embeddings() return [emb.weight.shape[0] for emb in embeddings.emb_layers] def _resize_token_embeddings(self, new_num_tokens, layer=-1): embeddings = self.get_input_embeddings() if new_num_tokens is None: return embeddings new_embeddings_layer = self._get_resized_embeddings(embeddings.emb_layers[layer], new_num_tokens) embeddings.emb_layers[layer] = new_embeddings_layer self.set_input_embeddings(embeddings) return self.get_input_embeddings() def _resize_cutoffs(self, new_num_tokens, new_emb_size, new_embedding_shapes, layer): embeddings = self.get_input_embeddings() for i in range(layer, len(embeddings.cutoffs)): embeddings.cutoffs[i] = sum(new_embedding_shapes[: i + 1]) embeddings.cutoff_ends = [0] + embeddings.cutoffs embeddings.n_token = new_num_tokens self.config.cutoffs = embeddings.cutoffs[:-1] return embeddings.cutoffs @dataclass class TransfoXLModelOutput(ModelOutput): """ Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding). Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. mems (`List[torch.FloatTensor]` of length `config.n_layers`): Contains pre-computed hidden-states (key and values in the attention blocks). Can be used (see `mems` input) to speed up sequential decoding. The token ids which have their past given to this model should not be passed as input ids as they have already been computed. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ last_hidden_state: torch.FloatTensor mems: List[torch.FloatTensor] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class TransfoXLSequenceClassifierOutputWithPast(ModelOutput): """ Base class for outputs of sentence classification models. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Classification (or regression if config.num_labels==1) loss. logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): Classification (or regression if config.num_labels==1) scores (before SoftMax). mems (`List[torch.FloatTensor]` of length `config.n_layers`): Contains pre-computed hidden-states (key and values in the attention blocks). Can be used (see `mems` input) to speed up sequential decoding. The token ids which have their past given to this model should not be passed as input ids as they have already been computed. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None mems: List[torch.FloatTensor] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class TransfoXLLMHeadModelOutput(ModelOutput): """ Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding). Args: losses (`torch.FloatTensor` of shape *(batch_size, sequence_length-1)*, *optional*, returned when `labels` is provided): Language modeling losses (not reduced). prediction_scores (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token after SoftMax). mems (`List[torch.FloatTensor]` of length `config.n_layers`): Contains pre-computed hidden-states (key and values in the attention blocks). Can be used (see `mems` input) to speed up sequential decoding. The token ids which have their past given to this model should not be passed as input ids as they have already been computed. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. loss (`torch.FloatTensor` of shape `()`, *optional*, returned when `labels` is provided) Reduced language modeling loss. """ losses: Optional[torch.FloatTensor] = None prediction_scores: torch.FloatTensor = None mems: List[torch.FloatTensor] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None loss: Optional[torch.FloatTensor] = None @property def logits(self): # prediction scores are the output of the adaptive softmax, see # the file `modeling_transfo_xl_utilities`. Since the adaptive # softmax returns the log softmax value, `self.prediction_scores` # are strictly speaking not exactly `logits`, but behave the same # way logits do. return self.prediction_scores TRANSFO_XL_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`TransfoXLConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ TRANSFO_XL_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) mems (`List[torch.FloatTensor]` of length `config.n_layers`): Contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model (see `mems` output below). Can be used to speed up sequential decoding. The token ids which have their mems given to this model should not be passed as `input_ids` as they have already been computed. head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare Bert Model transformer outputting raw hidden-states without any specific head on top.", TRANSFO_XL_START_DOCSTRING, ) class TransfoXLModel(TransfoXLPreTrainedModel): def __init__(self, config): super().__init__(config) self.n_token = config.vocab_size self.d_embed = config.d_embed self.d_model = config.d_model self.n_head = config.n_head self.d_head = config.d_head self.word_emb = AdaptiveEmbedding( config.vocab_size, config.d_embed, config.d_model, config.cutoffs, div_val=config.div_val ) self.drop = nn.Dropout(config.dropout) self.n_layer = config.n_layer self.mem_len = config.mem_len self.attn_type = config.attn_type if not config.untie_r: self.r_w_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head)) self.r_r_bias = nn.Parameter(torch.FloatTensor(self.n_head, self.d_head)) self.layers = nn.ModuleList() if config.attn_type == 0: # the default attention for i in range(config.n_layer): self.layers.append( RelPartialLearnableDecoderLayer( config.n_head, config.d_model, config.d_head, config.d_inner, config.dropout, dropatt=config.dropatt, pre_lnorm=config.pre_lnorm, r_w_bias=None if config.untie_r else self.r_w_bias, r_r_bias=None if config.untie_r else self.r_r_bias, layer_norm_epsilon=config.layer_norm_epsilon, ) ) else: # learnable embeddings and absolute embeddings are not used in our pretrained checkpoints raise NotImplementedError # Removed them to avoid maintaining dead code self.same_length = config.same_length self.clamp_len = config.clamp_len if self.attn_type == 0: # default attention self.pos_emb = PositionalEmbedding(self.d_model) else: # learnable embeddings and absolute embeddings raise NotImplementedError # Removed these to avoid maintaining dead code - They are not used in our pretrained checkpoint # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.word_emb def set_input_embeddings(self, new_embeddings): self.word_emb = new_embeddings def backward_compatible(self): self.sample_softmax = -1 def reset_memory_length(self, mem_len): self.mem_len = mem_len def _prune_heads(self, heads): logger.info("Head pruning is not implemented for Transformer-XL model") pass def init_mems(self, bsz): if self.mem_len > 0: mems = [] param = next(self.parameters()) for i in range(self.n_layer): empty = torch.zeros(self.mem_len, bsz, self.config.d_model, dtype=param.dtype, device=param.device) mems.append(empty) return mems else: return None def _update_mems(self, hids, mems, mlen, qlen): # does not deal with None if mems is None: return None # mems is not None assert len(hids) == len(mems), "len(hids) != len(mems)" # There are `mlen + qlen` steps that can be cached into mems with torch.no_grad(): new_mems = [] end_idx = mlen + max(0, qlen) beg_idx = max(0, end_idx - self.mem_len) for i in range(len(hids)): cat = torch.cat([mems[i], hids[i]], dim=0) new_mems.append(cat[beg_idx:end_idx].detach()) return new_mems @add_start_docstrings_to_model_forward(TRANSFO_XL_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TransfoXLModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, mems: Optional[List[torch.FloatTensor]] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TransfoXLModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # the original code for Transformer-XL used shapes [len, bsz] but we want a unified interface in the library # so we transpose here from shape [bsz, len] to shape [len, bsz] if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_ids = input_ids.transpose(0, 1).contiguous() qlen, bsz = input_ids.size() elif inputs_embeds is not None: inputs_embeds = inputs_embeds.transpose(0, 1).contiguous() qlen, bsz = inputs_embeds.shape[0], inputs_embeds.shape[1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if mems is None: mems = self.init_mems(bsz) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] (a head_mask for each layer) # and head_mask is converted to shape [num_hidden_layers x qlen x klen x bsz x n_head] if head_mask is not None: if head_mask.dim() == 1: head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(0).unsqueeze(0) head_mask = head_mask.expand(self.n_layer, -1, -1, -1, -1) elif head_mask.dim() == 2: head_mask = head_mask.unsqueeze(1).unsqueeze(1).unsqueeze(1) head_mask = head_mask.to( dtype=next(self.parameters()).dtype ) # switch to float if need + fp16 compatibility else: head_mask = [None] * self.n_layer if inputs_embeds is not None: word_emb = inputs_embeds else: word_emb = self.word_emb(input_ids) mlen = mems[0].size(0) if mems is not None else 0 klen = mlen + qlen if self.same_length: all_ones = word_emb.new_ones((qlen, klen), dtype=torch.bool) mask_len = klen - self.mem_len if mask_len > 0: mask_shift_len = qlen - mask_len else: mask_shift_len = qlen dec_attn_mask = (torch.triu(all_ones, 1 + mlen) + torch.tril(all_ones, -mask_shift_len))[:, :, None] # -1 else: dec_attn_mask = torch.triu(word_emb.new_ones((qlen, klen), dtype=torch.bool), diagonal=1 + mlen)[ :, :, None ] hids = [] attentions = [] if output_attentions else None if self.attn_type == 0: # default pos_seq = torch.arange(klen - 1, -1, -1.0, device=word_emb.device, dtype=word_emb.dtype) if self.clamp_len > 0: pos_seq.clamp_(max=self.clamp_len) pos_emb = self.pos_emb(pos_seq) core_out = self.drop(word_emb) pos_emb = self.drop(pos_emb) for i, layer in enumerate(self.layers): hids.append(core_out) mems_i = None if mems is None else mems[i] layer_outputs = layer( core_out, pos_emb, dec_attn_mask=dec_attn_mask, mems=mems_i, head_mask=head_mask[i], output_attentions=output_attentions, ) core_out = layer_outputs[0] if output_attentions: attentions.append(layer_outputs[1]) else: # learnable embeddings and absolute embeddings raise NotImplementedError # Removed these to avoid maintaining dead code - They are not used in our pretrained checkpoint core_out = self.drop(core_out) new_mems = self._update_mems(hids, mems, mlen, qlen) if output_hidden_states: # Add last layer and transpose to library standard shape [bsz, len, hidden_dim] hids.append(core_out) hids = tuple(t.transpose(0, 1).contiguous() for t in hids) else: hids = None if output_attentions: # Transpose to library standard shape [bsz, n_heads, query_seq_len, key_seq_len] attentions = tuple(t.permute(2, 3, 0, 1).contiguous() for t in attentions) # We transpose back here to shape [bsz, len, hidden_dim] core_out = core_out.transpose(0, 1).contiguous() if not return_dict: return tuple(v for v in [core_out, new_mems, hids, attentions] if v is not None) return TransfoXLModelOutput( last_hidden_state=core_out, mems=new_mems, hidden_states=hids, attentions=attentions, ) @add_start_docstrings( """ The Transformer-XL Model with a language modeling head on top (adaptive softmax with weights tied to the adaptive input embeddings) """, TRANSFO_XL_START_DOCSTRING, ) class TransfoXLLMHeadModel(TransfoXLPreTrainedModel): _tied_weights_keys = [r"crit\.out_projs\.\d+", r"crit\.out_layers\.\d+\.weight"] def __init__(self, config): super().__init__(config) self.transformer = TransfoXLModel(config) self.sample_softmax = config.sample_softmax self.trainer_compatible = getattr(config, "trainer_compatible", False) if not self.trainer_compatible: warnings.warn( "The output of TransfoXL will be updated in v5 to support a single loss as first argument. In order" "to use that updated output, please specify `trainer_compatible=True` as your configuration" " attribute.", DeprecationWarning, ) assert self.sample_softmax <= 0, ( "Sampling from the softmax is not implemented yet. Please look at issue: #3310:" " https://github.com/huggingface/transformers/issues/3310" ) self.crit = ProjectedAdaptiveLogSoftmax( config.vocab_size, config.d_embed, config.d_model, config.cutoffs, div_val=config.div_val ) # Initialize weights and apply final processing self.post_init() def tie_weights(self): """ Run this to be sure output and input (adaptive) softmax weights are tied """ if self.config.tie_word_embeddings: for i in range(len(self.crit.out_layers)): self._tie_or_clone_weights(self.crit.out_layers[i], self.transformer.word_emb.emb_layers[i]) if self.config.tie_projs: for i, tie_proj in enumerate(self.config.tie_projs): if tie_proj and self.config.div_val == 1 and self.config.d_model != self.config.d_embed: if self.config.torchscript: self.crit.out_projs[i] = nn.Parameter(self.transformer.word_emb.emb_projs[0].clone()) else: self.crit.out_projs[i] = self.transformer.word_emb.emb_projs[0] elif tie_proj and self.config.div_val != 1: if self.config.torchscript: self.crit.out_projs[i] = nn.Parameter(self.transformer.word_emb.emb_projs[i].clone()) else: self.crit.out_projs[i] = self.transformer.word_emb.emb_projs[i] def reset_memory_length(self, mem_len): self.transformer.reset_memory_length(mem_len) def init_mems(self, bsz): return self.transformer.init_mems(bsz) @add_start_docstrings_to_model_forward(TRANSFO_XL_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TransfoXLLMHeadModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, mems: Optional[List[torch.FloatTensor]] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TransfoXLLMHeadModelOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None: bsz, tgt_len = input_ids.size(0), input_ids.size(1) elif inputs_embeds is not None: bsz, tgt_len = inputs_embeds.size(0), inputs_embeds.size(1) else: raise ValueError("You have to specify either input_ids or inputs_embeds") transformer_outputs = self.transformer( input_ids, mems=mems, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden = transformer_outputs[0] pred_hid = last_hidden[:, -tgt_len:] if labels is not None: # Prevents all labels being -100 and throwing an error # when backwarding the loss miss_valid_label = labels[0, 1:].sum() == (labels.size(1) - 1) * -100 if miss_valid_label: # Sets an <EOS> token, just to prevent loss from being NaN labels[0, 1] = self.config.eos_token_id softmax_output = self.crit(pred_hid, labels) prediction_scores = softmax_output.view(bsz, tgt_len, -1) if labels is None else () if labels is not None: losses = softmax_output.view(bsz, tgt_len - 1) # Avoids from incorporating padding (-100) tokens into loss value loss = losses[losses != 0].mean() else: losses, loss = None, None if not return_dict: if self.trainer_compatible: output = (prediction_scores, losses) if losses is not None else (prediction_scores,) output += transformer_outputs[1:] return ((loss,) + output) if loss is not None else output else: output = (prediction_scores, *transformer_outputs[1:]) output = ((losses,) + output) if losses is not None else output return (output + (loss,)) if loss is not None else output return TransfoXLLMHeadModelOutput( loss=loss, prediction_scores=prediction_scores, losses=losses, mems=transformer_outputs.mems, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) def get_output_embeddings(self): """Double-check if you are using adaptive softmax.""" if self.sample_softmax > 0: return self.out_layer else: return self.crit.out_layers[-1] def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **model_kwargs): inputs = {} # if past is defined in model kwargs then use it for faster decoding if past_key_values: inputs["mems"] = past_key_values inputs["input_ids"] = input_ids[:, -1].unsqueeze(-1) else: inputs["input_ids"] = input_ids return inputs def _resize_cutoffs(self, new_num_tokens, new_emb_size, new_embedding_shapes, layer): new_cutoffs = super()._resize_cutoffs(new_num_tokens, new_emb_size, new_embedding_shapes, layer) self.crit.cutoffs = new_cutoffs self.crit.cutoff_ends = [0] + new_cutoffs self.crit.n_token = new_num_tokens @staticmethod def _reorder_cache(mems: List[torch.Tensor], beam_idx: torch.Tensor) -> List[torch.Tensor]: """ This function is used to re-order the `mems` cache if [`~PreTrainedModel.beam_search`] or [`~PreTrainedModel.beam_sample`] is called. This is required to match `mems` with the correct beam_idx at every generation step. """ return [layer_past.index_select(1, beam_idx.to(layer_past.device)) for layer_past in mems] @add_start_docstrings( """ The Transformer-XL Model transformer with a sequence classification head on top (linear layer). [`TransfoXLForSequenceClassification`] uses the last token in order to do the classification, as other causal models (e.g. GPT-1) do. Since it does classification on the last token, it requires to know the position of the last token. If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in each row of the batch). """, TRANSFO_XL_START_DOCSTRING, ) class TransfoXLForSequenceClassification(TransfoXLPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.transformer = TransfoXLModel(config) self.score = nn.Linear(config.d_embed, self.num_labels, bias=False) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(TRANSFO_XL_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TransfoXLSequenceClassifierOutputWithPast, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, mems: Optional[List[torch.FloatTensor]] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TransfoXLSequenceClassifierOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, mems=mems, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] logits = self.score(hidden_states) if input_ids is not None: batch_size, sequence_length = input_ids.shape[:2] else: batch_size, sequence_length = inputs_embeds.shape[:2] assert ( self.config.pad_token_id is not None or batch_size == 1 ), "Cannot handle batch sizes > 1 if no padding token is defined." if self.config.pad_token_id is None: sequence_lengths = -1 else: if input_ids is not None: sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).long().argmax(-1) - 1).to( logits.device ) else: sequence_lengths = -1 logger.warning( f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " "unexpected if using padding tokens in conjunction with `inputs_embeds.`" ) pooled_logits = logits[range(batch_size), sequence_lengths] loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) else: loss = loss_fct(pooled_logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(pooled_logits, labels) if not return_dict: output = (pooled_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return TransfoXLSequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, mems=transformer_outputs.mems, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/transfo_xl/tokenization_transfo_xl.py
# coding=utf-8 # Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tokenization classes for Transformer XL model. Adapted from https://github.com/kimiyoung/transformer-xl. """ import glob import os import pickle import re from collections import Counter, OrderedDict from typing import List, Optional, Tuple import numpy as np from ...tokenization_utils import PreTrainedTokenizer from ...utils import ( cached_file, is_sacremoses_available, is_torch_available, logging, requires_backends, torch_only_method, ) if is_sacremoses_available(): import sacremoses as sm if is_torch_available(): import torch logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = { "pretrained_vocab_file": "vocab.pkl", "pretrained_vocab_file_torch": "vocab.bin", "vocab_file": "vocab.txt", } PRETRAINED_VOCAB_FILES_MAP = { "pretrained_vocab_file": { "transfo-xl-wt103": "https://huggingface.co/transfo-xl-wt103/resolve/main/vocab.pkl", } } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "transfo-xl-wt103": None, } PRETRAINED_CORPUS_ARCHIVE_MAP = { "transfo-xl-wt103": "https://huggingface.co/transfo-xl-wt103/resolve/main/corpus.bin", } CORPUS_NAME = "corpus.bin" MATCH_NUMBERS = r"(?<=\d)[,.](?=\d)", r" @\g<0>@ " DETOKENIZE_NUMBERS = [(r" @\,@ ", r","), (r" @\.@ ", r".")] def tokenize_numbers(text_array: List[str]) -> List[str]: """ Splits large comma-separated numbers and floating point values. This is done by replacing commas with ' @,@ ' and dots with ' @.@ '. Args: text_array: An already tokenized text as list. Returns: A list of strings with tokenized numbers. Example: ```python >>> tokenize_numbers(["$", "5,000", "1.73", "m"]) ['$', '5', '@,@', '000', '1', '@.@', '73', 'm'] ```""" tokenized = [] for i in range(len(text_array)): reg, sub = MATCH_NUMBERS replaced = re.sub(reg, sub, text_array[i]).split() tokenized.extend(replaced) return tokenized def detokenize_numbers(text: str) -> str: """ Inverts the operation of *tokenize_numbers*. This is replacing ' @,@ ' and ' @.@' by ',' and '.'. Args: text: A string where the number should be detokenized. Returns: A detokenized string. Example: ```python >>> detokenize_numbers("$ 5 @,@ 000 1 @.@ 73 m") '$ 5,000 1.73 m' ```""" for reg, sub in DETOKENIZE_NUMBERS: text = re.sub(reg, sub, text) return text class TransfoXLTokenizer(PreTrainedTokenizer): """ Construct a Transformer-XL tokenizer adapted from Vocab class in [the original code](https://github.com/kimiyoung/transformer-xl). The Transformer-XL tokenizer is a word-level tokenizer (no sub-word tokenization). This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: special (`List[str]`, *optional*): A list of special tokens (to be treated by the original implementation of this tokenizer). min_freq (`int`, *optional*, defaults to 0): The minimum number of times a token has to be present in order to be kept in the vocabulary (otherwise it will be mapped to `unk_token`). max_size (`int`, *optional*): The maximum size of the vocabulary. If left unset, it will default to the size of the vocabulary found after excluding the tokens according to the `min_freq` rule. lower_case (`bool`, *optional*, defaults to `False`): Whether or not to lowercase the input when tokenizing. delimiter (`str`, *optional*): The delimiter used between tokens. vocab_file (`str`, *optional*): File containing the vocabulary (from the original implementation). pretrained_vocab_file (`str`, *optional*): File containing the vocabulary as saved with the `save_pretrained()` method. never_split (`List[str]`, *optional*): List of tokens that should never be split. If no list is specified, will simply use the existing special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. eos_token (`str`, *optional*, defaults to `"<eos>"`): The end of sequence token. additional_special_tokens (`List[str]`, *optional*, defaults to `["<formula>"]`): A list of additional special tokens (for the HuggingFace functionality). language (`str`, *optional*, defaults to `"en"`): The language of this tokenizer (used for mose preprocessing). """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids"] def __init__( self, special=None, min_freq=0, max_size=None, lower_case=False, delimiter=None, vocab_file=None, pretrained_vocab_file: str = None, never_split=None, unk_token="<unk>", eos_token="<eos>", additional_special_tokens=["<formula>"], language="en", **kwargs, ): super().__init__( special=special, min_freq=min_freq, max_size=max_size, lower_case=lower_case, delimiter=delimiter, vocab_file=vocab_file, pretrained_vocab_file=pretrained_vocab_file, never_split=never_split, unk_token=unk_token, eos_token=eos_token, additional_special_tokens=additional_special_tokens, language=language, **kwargs, ) requires_backends(self, "sacremoses") if never_split is None: never_split = self.all_special_tokens if special is None: special = [] self.counter = Counter() self.special = special self.min_freq = min_freq self.max_size = max_size self.lower_case = lower_case self.delimiter = delimiter self.vocab_file = vocab_file self.never_split = never_split self.punctuation_symbols = '!"#$%&()*+,-./\\:;<=>?@[\\]^_`{|}~' self.punction_without_space_before_pattern = re.compile(rf"[^\s][{self.punctuation_symbols}]") self.punctuation_with_space_around_pattern = self._compile_space_around_punctuation_pattern() self.language = language self.moses_punct_normalizer = sm.MosesPunctNormalizer(language) self.moses_tokenizer = sm.MosesTokenizer(language) self.moses_detokenizer = sm.MosesDetokenizer(language) # This try... catch... is not beautiful but honestly this tokenizer was not made to be used # in a library like ours, at all. try: vocab_dict = None if pretrained_vocab_file is not None: # Priority on pickle files (support PyTorch and TF) with open(pretrained_vocab_file, "rb") as f: vocab_dict = pickle.load(f) # Loading a torch-saved transfo-xl vocab dict with pickle results in an integer # Entering this if statement means that we tried to load a torch-saved file with pickle, and we failed. # We therefore load it with torch, if it's available. if type(vocab_dict) == int: if not is_torch_available(): raise ImportError( "Not trying to load dict with PyTorch as you need to install pytorch to load " "from a PyTorch pretrained vocabulary, " "or activate it with environment variables USE_TORCH=1 and USE_TF=0." ) vocab_dict = torch.load(pretrained_vocab_file) if vocab_dict is not None: for key, value in vocab_dict.items(): if key not in self.__dict__: self.__dict__[key] = value elif vocab_file is not None: self.build_vocab() except Exception as e: raise ValueError( f"Unable to parse file {pretrained_vocab_file}. Unknown format. " "If you tried to load a model saved through TransfoXLTokenizerFast, " "please note they are not compatible." ) from e if vocab_file is not None: self.build_vocab() @property def do_lower_case(self): return self.lower_case def _compile_space_around_punctuation_pattern(self): look_ahead_for_special_token = f"(?=[{self.punctuation_symbols}])" look_ahead_to_match_all_except_space = r"(?=[^\s])" return re.compile(r"" + look_ahead_for_special_token + look_ahead_to_match_all_except_space) def count_file(self, path, verbose=False, add_eos=False): if verbose: logger.info(f"counting file {path} ...") assert os.path.exists(path), f"Input file {path} not found" sents = [] with open(path, "r", encoding="utf-8") as f: for idx, line in enumerate(f): if verbose and idx > 0 and idx % 500000 == 0: logger.info(f" line {idx}") symbols = self.tokenize(line, add_eos=add_eos) self.counter.update(symbols) sents.append(symbols) return sents def count_sents(self, sents, verbose=False): """ sents : a list of sentences, each a list of tokenized symbols """ if verbose: logger.info(f"counting {len(sents)} sents ...") for idx, symbols in enumerate(sents): if verbose and idx > 0 and idx % 500000 == 0: logger.info(f" line {idx}") self.counter.update(symbols) def _build_from_file(self, vocab_file): self.idx2sym = [] self.sym2idx = OrderedDict() with open(vocab_file, "r", encoding="utf-8") as f: for line in f: symb = line.strip().split()[0] self.add_symbol(symb) if "<UNK>" in self.sym2idx: self.unk_idx = self.sym2idx["<UNK>"] elif "<unk>" in self.sym2idx: self.unk_idx = self.sym2idx["<unk>"] else: raise ValueError("No <unknown> token in vocabulary") def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if os.path.isdir(save_directory): vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["pretrained_vocab_file"], ) else: vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory with open(vocab_file, "wb") as f: pickle.dump(self.__dict__, f) return (vocab_file,) def build_vocab(self): if self.vocab_file: logger.info(f"building vocab from {self.vocab_file}") self._build_from_file(self.vocab_file) logger.info(f"final vocab size {len(self)}") else: logger.info(f"building vocab with min_freq={self.min_freq}, max_size={self.max_size}") self.idx2sym = [] self.sym2idx = OrderedDict() for sym in self.special: self.add_special(sym) for sym, cnt in self.counter.most_common(self.max_size): if cnt < self.min_freq: break self.add_symbol(sym) logger.info(f"final vocab size {len(self)} from {len(self.counter)} unique tokens") @torch_only_method def encode_file(self, path, ordered=False, verbose=False, add_eos=True, add_double_eos=False): if verbose: logger.info(f"encoding file {path} ...") assert os.path.exists(path), f"Output file {path} not found" encoded = [] with open(path, "r", encoding="utf-8") as f: for idx, line in enumerate(f): if verbose and idx > 0 and idx % 500000 == 0: logger.info(f" line {idx}") symbols = self.tokenize(line, add_eos=add_eos, add_double_eos=add_double_eos) encoded.append(self.convert_to_tensor(symbols)) if ordered: encoded = torch.cat(encoded) return encoded @torch_only_method def encode_sents(self, sents, ordered=False, verbose=False): if verbose: logger.info(f"encoding {len(sents)} sents ...") encoded = [] for idx, symbols in enumerate(sents): if verbose and idx > 0 and idx % 500000 == 0: logger.info(f" line {idx}") encoded.append(self.convert_to_tensor(symbols)) if ordered: encoded = torch.cat(encoded) return encoded def add_special(self, sym): if sym not in self.sym2idx: self.idx2sym.append(sym) self.sym2idx[sym] = len(self.idx2sym) - 1 setattr(self, f"{sym.strip('<>')}_idx", self.sym2idx[sym]) def add_symbol(self, sym): if sym not in self.sym2idx: self.idx2sym.append(sym) self.sym2idx[sym] = len(self.idx2sym) - 1 def move_added_token(self, token: str, target_idx: int): """ Moves an added token to a specific position in the vocab. This method should be used when resizing an embedding layer other than the last one in the `AdaptiveEmbedding` in order to move the token in the tokenizer from the default position (at the very end) to the desired one. Args: token: The token to move to a specific position in the vocab. target_idx: The position where the token should be moved to. """ assert token in self.added_tokens_encoder, "Token which should be moved has to be an added token" assert token not in self.idx2sym, "Token which should be moved is already in vocab" # Insert sym into vocab self.idx2sym.insert(target_idx, token) self.sym2idx[token] = target_idx # Shift following indices in sym2idx for idx in range(target_idx + 1, len(self.idx2sym)): current_sym = self.idx2sym[idx] self.sym2idx[current_sym] = idx # Delete token from added_tokens old_index = self.added_tokens_encoder[token] del self.added_tokens_decoder[old_index] del self.added_tokens_encoder[token] def moses_punct_norm(self, text): return self.moses_punct_normalizer.normalize(text) def moses_tokenize(self, text): return self.moses_tokenizer.tokenize( text, aggressive_dash_splits=True, return_str=False, escape=False, protected_patterns=self.never_split ) def moses_pipeline(self, text: str) -> List[str]: """ Does basic tokenization using [`sacremoses.MosesPunctNormalizer`] and [`sacremoses.MosesTokenizer`] with *aggressive_dash_splits=True* (see [`sacremoses.tokenize.MosesTokenizer.tokenize`]). Additionally, large comma-separated numbers and floating point values are split. E.g. "23,000 people are 1.80m tall" -> "23 @,@ 000 people are 1 @.@ 80m tall" Args: text: Text to be tokenize Returns: A list of tokenized string Example: ```python >>> tokenizer = TransfoXLTokenizer.from_pretrained("transfo-xl-wt103") >>> tokenizer.moses_pipeline("23,000 people are 1.80 m tall") ['23', '@,@', '000', 'people', 'are', '1', '@.@', '80', 'm', 'tall'] ```""" text = self.moses_punct_norm(text) text = self.moses_tokenize(text) text = tokenize_numbers(text) return text def _convert_id_to_token(self, idx): """Converts an id in a token (BPE) using the vocab.""" assert 0 <= idx < len(self), f"Index {idx} out of vocabulary range" return self.idx2sym[idx] def _convert_token_to_id(self, sym): """Converts a token (str) in an id using the vocab.""" if sym in self.sym2idx: return self.sym2idx[sym] else: # logger.info(f'encounter unk {sym}') # assert '<eos>' not in sym if hasattr(self, "unk_idx"): return self.sym2idx.get(sym, self.unk_idx) # Backward compatibility with pre-trained models elif "<unk>" in self.sym2idx: return self.sym2idx["<unk>"] elif "<UNK>" in self.sym2idx: return self.sym2idx["<UNK>"] else: raise ValueError("Token not in vocabulary and no <unk> token in vocabulary for replacement") def convert_tokens_to_string(self, tokens): """ Converts a sequence of tokens (string) in a single string. Additionally, the split numbers are converted back into it's original form. """ out_string = self.moses_detokenizer.detokenize(tokens) return detokenize_numbers(out_string).strip() @torch_only_method def convert_to_tensor(self, symbols): return torch.LongTensor(self.convert_tokens_to_ids(symbols)) @property def vocab_size(self): return len(self.idx2sym) def get_vocab(self): return dict(self.sym2idx, **self.added_tokens_encoder) def _tokenize(self, line, add_eos=False, add_double_eos=False): line = line.strip() # convert to lower case if self.lower_case: line = line.lower() # empty delimiter '' will evaluate False if self.delimiter == "": symbols = line else: symbols = self.moses_pipeline(line) if add_double_eos: # lm1b return ["<S>"] + symbols + ["<S>"] elif add_eos: return symbols + ["<eos>"] else: return symbols class LMOrderedIterator(object): def __init__(self, data, bsz, bptt, device="cpu", ext_len=None): """ data -- LongTensor -- the LongTensor is strictly ordered """ self.bsz = bsz self.bptt = bptt self.ext_len = ext_len if ext_len is not None else 0 self.device = device # Work out how cleanly we can divide the dataset into bsz parts. self.n_step = data.size(0) // bsz # Trim off any extra elements that wouldn't cleanly fit (remainders). data = data.narrow(0, 0, self.n_step * bsz) # Evenly divide the data across the bsz batches. self.data = data.view(bsz, -1).t().contiguous().to(device) # Number of mini-batches self.n_batch = (self.n_step + self.bptt - 1) // self.bptt def get_batch(self, i, bptt=None): if bptt is None: bptt = self.bptt seq_len = min(bptt, self.data.size(0) - 1 - i) end_idx = i + seq_len beg_idx = max(0, i - self.ext_len) data = self.data[beg_idx:end_idx] target = self.data[i + 1 : i + 1 + seq_len] data_out = data.transpose(0, 1).contiguous().to(self.device) target_out = target.transpose(0, 1).contiguous().to(self.device) return data_out, target_out, seq_len def get_fixlen_iter(self, start=0): for i in range(start, self.data.size(0) - 1, self.bptt): yield self.get_batch(i) def get_varlen_iter(self, start=0, std=5, min_len=5, max_deviation=3): max_len = self.bptt + max_deviation * std i = start while True: bptt = self.bptt if np.random.random() < 0.95 else self.bptt / 2.0 bptt = min(max_len, max(min_len, int(np.random.normal(bptt, std)))) data, target, seq_len = self.get_batch(i, bptt) i += seq_len yield data, target, seq_len if i >= self.data.size(0) - 2: break def __iter__(self): return self.get_fixlen_iter() class LMShuffledIterator(object): def __init__(self, data, bsz, bptt, device="cpu", ext_len=None, shuffle=False): """ data -- list[LongTensor] -- there is no order among the LongTensors """ self.data = data self.bsz = bsz self.bptt = bptt self.ext_len = ext_len if ext_len is not None else 0 self.device = device self.shuffle = shuffle def get_sent_stream(self): # index iterator epoch_indices = np.random.permutation(len(self.data)) if self.shuffle else np.array(range(len(self.data))) # sentence iterator for idx in epoch_indices: yield self.data[idx] @torch_only_method def stream_iterator(self, sent_stream): # streams for each data in the batch streams = [None] * self.bsz data = torch.LongTensor(self.bptt, self.bsz) target = torch.LongTensor(self.bptt, self.bsz) n_retain = 0 while True: # data : [n_retain+bptt x bsz] # target : [bptt x bsz] data[n_retain:].fill_(-1) target.fill_(-1) valid_batch = True for i in range(self.bsz): n_filled = 0 try: while n_filled < self.bptt: if streams[i] is None or len(streams[i]) <= 1: streams[i] = next(sent_stream) # number of new tokens to fill in n_new = min(len(streams[i]) - 1, self.bptt - n_filled) # first n_retain tokens are retained from last batch data[n_retain + n_filled : n_retain + n_filled + n_new, i] = streams[i][:n_new] target[n_filled : n_filled + n_new, i] = streams[i][1 : n_new + 1] streams[i] = streams[i][n_new:] n_filled += n_new except StopIteration: valid_batch = False break if not valid_batch: return data_out = data.transpose(0, 1).contiguous().to(self.device) target_out = target.transpose(0, 1).contiguous().to(self.device) yield data_out, target_out, self.bptt n_retain = min(data.size(0), self.ext_len) if n_retain > 0: data[:n_retain] = data[-n_retain:] data.resize_(n_retain + self.bptt, data.size(1)) def __iter__(self): # sent_stream is an iterator sent_stream = self.get_sent_stream() for batch in self.stream_iterator(sent_stream): yield batch class LMMultiFileIterator(LMShuffledIterator): def __init__(self, paths, vocab, bsz, bptt, device="cpu", ext_len=None, shuffle=False): self.paths = paths self.vocab = vocab self.bsz = bsz self.bptt = bptt self.ext_len = ext_len if ext_len is not None else 0 self.device = device self.shuffle = shuffle def get_sent_stream(self, path): sents = self.vocab.encode_file(path, add_double_eos=True) if self.shuffle: np.random.shuffle(sents) sent_stream = iter(sents) return sent_stream def __iter__(self): if self.shuffle: np.random.shuffle(self.paths) for path in self.paths: # sent_stream is an iterator sent_stream = self.get_sent_stream(path) for batch in self.stream_iterator(sent_stream): yield batch class TransfoXLCorpus(object): @classmethod @torch_only_method def from_pretrained(cls, pretrained_model_name_or_path, cache_dir=None, *inputs, **kwargs): """ Instantiate a pre-processed corpus. """ vocab = TransfoXLTokenizer.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) is_local = os.path.isdir(pretrained_model_name_or_path) # redirect to the cache, if necessary try: resolved_corpus_file = cached_file(pretrained_model_name_or_path, CORPUS_NAME, cache_dir=cache_dir) except EnvironmentError: logger.error( f"Corpus '{pretrained_model_name_or_path}' was not found in corpus list" f" ({', '.join(PRETRAINED_CORPUS_ARCHIVE_MAP.keys())}. We assumed '{pretrained_model_name_or_path}'" f" was a path or url but couldn't find files {CORPUS_NAME} at this path or url." ) return None if is_local: logger.info(f"loading corpus file {resolved_corpus_file}") else: logger.info(f"loading corpus file {CORPUS_NAME} from cache at {resolved_corpus_file}") # Instantiate tokenizer. corpus = cls(*inputs, **kwargs) corpus_dict = torch.load(resolved_corpus_file) for key, value in corpus_dict.items(): corpus.__dict__[key] = value corpus.vocab = vocab if corpus.train is not None: corpus.train = torch.tensor(corpus.train, dtype=torch.long) if corpus.valid is not None: corpus.valid = torch.tensor(corpus.valid, dtype=torch.long) if corpus.test is not None: corpus.test = torch.tensor(corpus.test, dtype=torch.long) return corpus def __init__(self, *args, **kwargs): self.vocab = TransfoXLTokenizer(*args, **kwargs) self.dataset = None self.train = None self.valid = None self.test = None def build_corpus(self, path, dataset): self.dataset = dataset if self.dataset in ["ptb", "wt2", "enwik8", "text8"]: self.vocab.count_file(os.path.join(path, "train.txt")) self.vocab.count_file(os.path.join(path, "valid.txt")) self.vocab.count_file(os.path.join(path, "test.txt")) elif self.dataset == "wt103": self.vocab.count_file(os.path.join(path, "train.txt")) elif self.dataset == "lm1b": train_path_pattern = os.path.join( path, "1-billion-word-language-modeling-benchmark-r13output", "training-monolingual.tokenized.shuffled", "news.en-*", ) train_paths = glob.glob(train_path_pattern) # the vocab will load from file when build_vocab() is called self.vocab.build_vocab() if self.dataset in ["ptb", "wt2", "wt103"]: self.train = self.vocab.encode_file(os.path.join(path, "train.txt"), ordered=True) self.valid = self.vocab.encode_file(os.path.join(path, "valid.txt"), ordered=True) self.test = self.vocab.encode_file(os.path.join(path, "test.txt"), ordered=True) elif self.dataset in ["enwik8", "text8"]: self.train = self.vocab.encode_file(os.path.join(path, "train.txt"), ordered=True, add_eos=False) self.valid = self.vocab.encode_file(os.path.join(path, "valid.txt"), ordered=True, add_eos=False) self.test = self.vocab.encode_file(os.path.join(path, "test.txt"), ordered=True, add_eos=False) elif self.dataset == "lm1b": self.train = train_paths self.valid = self.vocab.encode_file(os.path.join(path, "valid.txt"), ordered=False, add_double_eos=True) self.test = self.vocab.encode_file(os.path.join(path, "test.txt"), ordered=False, add_double_eos=True) def get_iterator(self, split, *args, **kwargs): if split == "train": if self.dataset in ["ptb", "wt2", "wt103", "enwik8", "text8"]: data_iter = LMOrderedIterator(self.train, *args, **kwargs) elif self.dataset == "lm1b": kwargs["shuffle"] = True data_iter = LMMultiFileIterator(self.train, self.vocab, *args, **kwargs) elif split in ["valid", "test"]: data = self.valid if split == "valid" else self.test if self.dataset in ["ptb", "wt2", "wt103", "enwik8", "text8"]: data_iter = LMOrderedIterator(data, *args, **kwargs) elif self.dataset == "lm1b": data_iter = LMShuffledIterator(data, *args, **kwargs) else: data_iter = None raise ValueError(f"Split not recognized: {split}") return data_iter @torch_only_method def get_lm_corpus(datadir, dataset): fn = os.path.join(datadir, "cache.pt") fn_pickle = os.path.join(datadir, "cache.pkl") if os.path.exists(fn): logger.info("Loading cached dataset...") corpus = torch.load(fn_pickle) elif os.path.exists(fn): logger.info("Loading cached dataset from pickle...") with open(fn, "rb") as fp: corpus = pickle.load(fp) else: logger.info(f"Producing dataset {dataset}...") kwargs = {} if dataset in ["wt103", "wt2"]: kwargs["special"] = ["<eos>"] kwargs["lower_case"] = False elif dataset == "ptb": kwargs["special"] = ["<eos>"] kwargs["lower_case"] = True elif dataset == "lm1b": kwargs["special"] = [] kwargs["lower_case"] = False kwargs["vocab_file"] = os.path.join(datadir, "1b_word_vocab.txt") elif dataset in ["enwik8", "text8"]: pass corpus = TransfoXLCorpus(datadir, dataset, **kwargs) torch.save(corpus, fn) return corpus
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/transfo_xl/modeling_transfo_xl_utilities.py
# coding=utf-8 # Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Utilities for PyTorch Transformer XL model. Directly adapted from https://github.com/kimiyoung/transformer-xl. """ import torch from torch import nn # CUDA_MAJOR = int(torch.version.cuda.split('.')[0]) # CUDA_MINOR = int(torch.version.cuda.split('.')[1]) class ProjectedAdaptiveLogSoftmax(nn.Module): def __init__(self, n_token, d_embed, d_proj, cutoffs, div_val=1, keep_order=False): super().__init__() self.n_token = n_token self.d_embed = d_embed self.d_proj = d_proj self.cutoffs = cutoffs + [n_token] self.cutoff_ends = [0] + self.cutoffs self.div_val = div_val self.shortlist_size = self.cutoffs[0] self.n_clusters = len(self.cutoffs) - 1 self.head_size = self.shortlist_size + self.n_clusters if self.n_clusters > 0: self.cluster_weight = nn.Parameter(torch.zeros(self.n_clusters, self.d_embed)) self.cluster_bias = nn.Parameter(torch.zeros(self.n_clusters)) self.out_layers = nn.ModuleList() self.out_projs = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs)): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(d_proj, d_embed))) else: self.out_projs.append(None) self.out_layers.append(nn.Linear(d_embed, n_token)) else: for i in range(len(self.cutoffs)): l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] d_emb_i = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(d_proj, d_emb_i))) self.out_layers.append(nn.Linear(d_emb_i, r_idx - l_idx)) self.keep_order = keep_order def _compute_logit(self, hidden, weight, bias, proj): if proj is None: logit = nn.functional.linear(hidden, weight, bias=bias) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: proj_hid = nn.functional.linear(hidden, proj.t().contiguous()) logit = nn.functional.linear(proj_hid, weight, bias=bias) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def forward(self, hidden, labels=None, keep_order=False): """ Params: hidden :: [len*bsz x d_proj] labels :: [len*bsz] Return: if labels is None: out :: [len*bsz x n_tokens] log probabilities of tokens over the vocabulary else: out :: [(len-1)*bsz] Negative log likelihood. We could replace this implementation by the native PyTorch one if theirs had an option to set bias on all clusters in the native one. here: https://github.com/pytorch/pytorch/blob/dbe6a7a9ff1a364a8706bf5df58a1ca96d2fd9da/torch/nn/modules/adaptive.py#L138 """ if labels is not None: # Shift so that tokens < n predict n hidden = hidden[..., :-1, :].contiguous() labels = labels[..., 1:].contiguous() hidden = hidden.view(-1, hidden.size(-1)) labels = labels.view(-1) if hidden.size(0) != labels.size(0): raise RuntimeError("Input and labels should have the same size in the batch dimension.") else: hidden = hidden.view(-1, hidden.size(-1)) if self.n_clusters == 0: logit = self._compute_logit(hidden, self.out_layers[0].weight, self.out_layers[0].bias, self.out_projs[0]) if labels is not None: mask = labels != -100 out = torch.zeros_like(labels, dtype=hidden.dtype, device=hidden.device) out[mask] = ( -nn.functional.log_softmax(logit, dim=-1)[mask].gather(1, labels[mask].unsqueeze(1)).squeeze(1) ) else: out = nn.functional.log_softmax(logit, dim=-1) else: # construct weights and biases weights, biases = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] weight_i = self.out_layers[0].weight[l_idx:r_idx] bias_i = self.out_layers[0].bias[l_idx:r_idx] else: weight_i = self.out_layers[i].weight bias_i = self.out_layers[i].bias if i == 0: weight_i = torch.cat([weight_i, self.cluster_weight], dim=0) bias_i = torch.cat([bias_i, self.cluster_bias], dim=0) weights.append(weight_i) biases.append(bias_i) head_weight, head_bias, head_proj = weights[0], biases[0], self.out_projs[0] head_logit = self._compute_logit(hidden, head_weight, head_bias, head_proj) head_logprob = nn.functional.log_softmax(head_logit, dim=1) if labels is None: out = hidden.new_empty((head_logit.size(0), self.n_token)) else: out = torch.zeros_like(labels, dtype=hidden.dtype, device=hidden.device) offset = 0 cutoff_values = [0] + self.cutoffs for i in range(len(cutoff_values) - 1): l_idx, r_idx = cutoff_values[i], cutoff_values[i + 1] if labels is not None: mask_i = (labels >= l_idx) & (labels < r_idx) indices_i = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue target_i = labels.index_select(0, indices_i) - l_idx head_logprob_i = head_logprob.index_select(0, indices_i) hidden_i = hidden.index_select(0, indices_i) else: hidden_i = hidden if i == 0: if labels is not None: logprob_i = head_logprob_i.gather(1, target_i[:, None]).squeeze(1) else: out[:, : self.cutoffs[0]] = head_logprob[:, : self.cutoffs[0]] else: weight_i, bias_i, proj_i = weights[i], biases[i], self.out_projs[i] tail_logit_i = self._compute_logit(hidden_i, weight_i, bias_i, proj_i) tail_logprob_i = nn.functional.log_softmax(tail_logit_i, dim=1) cluster_prob_idx = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: logprob_i = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1, target_i[:, None] ).squeeze(1) else: logprob_i = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i out[:, l_idx:r_idx] = logprob_i if labels is not None: if (hasattr(self, "keep_order") and self.keep_order) or keep_order: out.index_copy_(0, indices_i, -logprob_i) else: out[offset : offset + logprob_i.size(0)].copy_(-logprob_i) offset += logprob_i.size(0) return out def log_prob(self, hidden): r""" Computes log probabilities for all \\(n\_classes\\) From: https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/adaptive.p Args: hidden (Tensor): a minibatch of example Returns: log-probabilities of for each class \\(c\\) in range \\(0 <= c <= n\_classes\\), where \\(n\_classes\\) is a parameter passed to `AdaptiveLogSoftmaxWithLoss` constructor. Shape: - Input: \\((N, in\_features)\\) - Output: \\((N, n\_classes)\\) """ if self.n_clusters == 0: logit = self._compute_logit(hidden, self.out_layers[0].weight, self.out_layers[0].bias, self.out_projs[0]) return nn.functional.log_softmax(logit, dim=-1) else: # construct weights and biases weights, biases = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] weight_i = self.out_layers[0].weight[l_idx:r_idx] bias_i = self.out_layers[0].bias[l_idx:r_idx] else: weight_i = self.out_layers[i].weight bias_i = self.out_layers[i].bias if i == 0: weight_i = torch.cat([weight_i, self.cluster_weight], dim=0) bias_i = torch.cat([bias_i, self.cluster_bias], dim=0) weights.append(weight_i) biases.append(bias_i) head_weight, head_bias, head_proj = weights[0], biases[0], self.out_projs[0] head_logit = self._compute_logit(hidden, head_weight, head_bias, head_proj) out = hidden.new_empty((head_logit.size(0), self.n_token)) head_logprob = nn.functional.log_softmax(head_logit, dim=1) cutoff_values = [0] + self.cutoffs for i in range(len(cutoff_values) - 1): start_idx, stop_idx = cutoff_values[i], cutoff_values[i + 1] if i == 0: out[:, : self.cutoffs[0]] = head_logprob[:, : self.cutoffs[0]] else: weight_i, bias_i, proj_i = weights[i], biases[i], self.out_projs[i] tail_logit_i = self._compute_logit(hidden, weight_i, bias_i, proj_i) tail_logprob_i = nn.functional.log_softmax(tail_logit_i, dim=1) logprob_i = head_logprob[:, -i] + tail_logprob_i out[:, start_idx, stop_idx] = logprob_i return out
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/transfo_xl/convert_transfo_xl_original_tf_checkpoint_to_pytorch.py
# coding=utf-8 # Copyright 2018 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert Transformer XL checkpoint and datasets.""" import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 data_utils.Vocab = data_utils.TransfoXLTokenizer data_utils.Corpus = data_utils.TransfoXLCorpus sys.modules["data_utils"] = data_utils sys.modules["vocabulary"] = data_utils def convert_transfo_xl_checkpoint_to_pytorch( tf_checkpoint_path, transfo_xl_config_file, pytorch_dump_folder_path, transfo_xl_dataset_file ): if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(transfo_xl_dataset_file, "rb") as fp: corpus = pickle.load(fp, encoding="latin1") # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) pytorch_vocab_dump_path = pytorch_dump_folder_path + "/" + VOCAB_FILES_NAMES["pretrained_vocab_file"] print(f"Save vocabulary to {pytorch_vocab_dump_path}") corpus_vocab_dict = corpus.vocab.__dict__ torch.save(corpus_vocab_dict, pytorch_vocab_dump_path) corpus_dict_no_vocab = corpus.__dict__ corpus_dict_no_vocab.pop("vocab", None) pytorch_dataset_dump_path = pytorch_dump_folder_path + "/" + CORPUS_NAME print(f"Save dataset to {pytorch_dataset_dump_path}") torch.save(corpus_dict_no_vocab, pytorch_dataset_dump_path) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model config_path = os.path.abspath(transfo_xl_config_file) tf_path = os.path.abspath(tf_checkpoint_path) print(f"Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.") # Initialise PyTorch model if transfo_xl_config_file == "": config = TransfoXLConfig() else: config = TransfoXLConfig.from_json_file(transfo_xl_config_file) print(f"Building PyTorch model from configuration: {config}") model = TransfoXLLMHeadModel(config) model = load_tf_weights_in_transfo_xl(model, config, tf_path) # Save pytorch-model pytorch_weights_dump_path = os.path.join(pytorch_dump_folder_path, WEIGHTS_NAME) pytorch_config_dump_path = os.path.join(pytorch_dump_folder_path, CONFIG_NAME) print(f"Save PyTorch model to {os.path.abspath(pytorch_weights_dump_path)}") torch.save(model.state_dict(), pytorch_weights_dump_path) print(f"Save configuration file to {os.path.abspath(pytorch_config_dump_path)}") with open(pytorch_config_dump_path, "w", encoding="utf-8") as f: f.write(config.to_json_string()) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--tf_checkpoint_path", default="", type=str, help="An optional path to a TensorFlow checkpoint path to be converted.", ) parser.add_argument( "--transfo_xl_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--transfo_xl_dataset_file", default="", type=str, help="An optional dataset file to be converted in a vocabulary.", ) args = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/gpt_neo/__init__.py
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _import_structure = { "configuration_gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig", "GPTNeoOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_gpt_neo"] = [ "GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoForCausalLM", "GPTNeoForQuestionAnswering", "GPTNeoForSequenceClassification", "GPTNeoForTokenClassification", "GPTNeoModel", "GPTNeoPreTrainedModel", "load_tf_weights_in_gpt_neo", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_flax_gpt_neo"] = [ "FlaxGPTNeoForCausalLM", "FlaxGPTNeoModel", "FlaxGPTNeoPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/gpt_neo/configuration_gpt_neo.py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ GPT Neo model configuration""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging logger = logging.get_logger(__name__) GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP = { "EleutherAI/gpt-neo-1.3B": "https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json", # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class GPTNeoConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`GPTNeoModel`]. It is used to instantiate a GPT Neo model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the GPTNeo [EleutherAI/gpt-neo-1.3B](https://huggingface.co/EleutherAI/gpt-neo-1.3B) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 50257): Vocabulary size of the GPT Neo model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`GPTNeoModel`]. Vocabulary size of the model. Defines the different tokens that can be represented by the *inputs_ids* passed to the forward method of [`GPTNeoModel`]. max_position_embeddings (`int`, *optional*, defaults to 2048): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). hidden_size (`int`, *optional*, defaults to 2048): Dimensionality of the encoder layers and the pooler layer. num_layers (`int`, *optional*, defaults to 24): Number of hidden layers in the Transformer encoder. attention_types (`List`, *optional*, defaults to `[[["global", "local"], 12]]`): The type of attention for each layer in a `List` of the following format `[[["attention_type"], num_layerss]]` e.g. for a 24 layer model `[[["global"], 24]]` or `[[["global", "local"], 12]]` Choose the value of `attention_type` from `["global", "local"]` num_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 8192): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. window_size (`int`, *optional*, defaults to 256): The size of the sliding window for local attention. activation_function (`str` or `function`, *optional*, defaults to `"gelu_new"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. resid_dropout (`float`, *optional*, defaults to 0.0): Residual dropout used in the attention pattern. embed_dropout (`float`, *optional*, defaults to 0.0): The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. classifier_dropout (`float`, *optional*, defaults to 0.1): Argument used when doing token classification, used in the model [`GPTNeoForTokenClassification`]. The dropout ratio for the hidden layer. layer_norm_epsilon (`float`, *optional*, defaults to 1e-5): The epsilon used by the layer normalization layers. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. bos_token_id (`int`, *optional*, defaults to 50256): The id of the beginning of sentence token in the vocabulary. eos_token_id (`int`, *optional*, defaults to 50256): The id of the end of sentence token in the vocabulary. Example: ```python >>> from transformers import GPTNeoConfig, GPTNeoModel >>> # Initializing a GPTNeo EleutherAI/gpt-neo-1.3B style configuration >>> configuration = GPTNeoConfig() >>> # Initializing a model (with random weights) from the EleutherAI/gpt-neo-1.3B style configuration >>> model = GPTNeoModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "gpt_neo" keys_to_ignore_at_inference = ["past_key_values"] attribute_map = {"num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self, vocab_size=50257, max_position_embeddings=2048, hidden_size=2048, num_layers=24, attention_types=[[["global", "local"], 12]], num_heads=16, intermediate_size=None, window_size=256, activation_function="gelu_new", resid_dropout=0.0, embed_dropout=0.0, attention_dropout=0.0, classifier_dropout=0.1, layer_norm_epsilon=1e-5, initializer_range=0.02, use_cache=True, bos_token_id=50256, eos_token_id=50256, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.num_layers = num_layers self.num_heads = num_heads self.intermediate_size = intermediate_size self.window_size = window_size self.activation_function = activation_function self.resid_dropout = resid_dropout self.embed_dropout = embed_dropout self.attention_dropout = attention_dropout self.classifier_dropout = classifier_dropout self.layer_norm_epsilon = layer_norm_epsilon self.initializer_range = initializer_range self.use_cache = use_cache self.bos_token_id = bos_token_id self.eos_token_id = eos_token_id self.attention_types = attention_types self.attention_layers = self.expand_attention_types_params(attention_types) if len(self.attention_layers) != self.num_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.attention_layers)` == `config.num_layers` " f"but is `len(config.attention_layers) = {len(self.attention_layers)}`, " f"`config.num_layers = {self.num_layers}`. " "`config.attention_layers` is prepared using `config.attention_types`. " "Please verify the value of `config.attention_types` argument." ) super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) @staticmethod def expand_attention_types_params(attention_types): attentions = [] for item in attention_types: for _ in range(item[1]): attentions.extend(item[0]) return attentions def custom_unfold(input, dimension, size, step): """Custom torch.Tensor.unfold implementation to enable the export to ONNX.""" import torch shape = input.size() rank = len(shape) sizedim = shape[dimension] low_indices = torch.arange(0, sizedim, step) min_length = torch.div(sizedim - size, step, rounding_mode="floor") + 1 indices = torch.arange(size) + low_indices[:min_length][:, None] s = [slice(None)] * rank s[dimension] = indices sliced = input[s] perm = list(range(0, rank + 1)) perm.append(perm.pop(dimension + 1)) return sliced.permute(perm) def custom_get_block_length_and_num_blocks(seq_length, window_size): """ Custom implementation for GPTNeoAttentionMixin._get_block_length_and_num_blocks to enable the export to ONNX as original implementation uses Python variables and control flow. """ import torch candidates = torch.arange(1, window_size) remainders = torch.remainder(seq_length, candidates) divisor_indices = remainders == 0 divisors = candidates[divisor_indices] largest_divisor = torch.max(divisors) return largest_divisor, torch.div(seq_length, largest_divisor, rounding_mode="floor") class GPTNeoOnnxConfig(OnnxConfigWithPast): @property def inputs(self) -> Mapping[str, Mapping[int, str]]: common_inputs = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}}) if self.use_past: self.fill_with_past_key_values_(common_inputs, direction="inputs") common_inputs["attention_mask"] = {0: "batch", 1: "past_sequence + sequence"} else: common_inputs["attention_mask"] = {0: "batch", 1: "sequence"} return common_inputs @property def num_attention_heads(self) -> int: return self._config.num_heads def generate_dummy_inputs( self, tokenizer: PreTrainedTokenizer, batch_size: int = -1, seq_length: int = -1, is_pair: bool = False, framework: Optional[TensorType] = None, ) -> Mapping[str, Any]: common_inputs = super(OnnxConfigWithPast, self).generate_dummy_inputs( tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework ) # We need to order the input in the way they appears in the forward() ordered_inputs = OrderedDict({"input_ids": common_inputs["input_ids"]}) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") else: import torch batch, seqlen = common_inputs["input_ids"].shape # Not using the same length for past_key_values past_key_values_length = seqlen + 2 past_shape = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) ordered_inputs["past_key_values"] = [ (torch.zeros(past_shape), torch.zeros(past_shape)) for _ in range(self.num_layers) ] ordered_inputs["attention_mask"] = common_inputs["attention_mask"] if self.use_past: mask_dtype = ordered_inputs["attention_mask"].dtype ordered_inputs["attention_mask"] = torch.cat( [ordered_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1 ) return ordered_inputs @property def default_onnx_opset(self) -> int: return 13
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/gpt_neo/modeling_flax_gpt_neo.py
# coding=utf-8 # Copyright 2021 The Eleuther AI and The Google Flax Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial from typing import Optional, Tuple import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict, freeze, unfreeze from flax.linen import combine_masks, make_causal_mask from flax.linen.attention import dot_product_attention_weights from flax.traverse_util import flatten_dict, unflatten_dict from jax import lax from ...modeling_flax_outputs import FlaxBaseModelOutput, FlaxCausalLMOutput from ...modeling_flax_utils import ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_gpt_neo import GPTNeoConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "GPTNeoConfig" _CHECKPOINT_FOR_DOC = "EleutherAI/gpt-neo-1.3B" GPT_NEO_START_DOCSTRING = r""" This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a Flax Linen [flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior. Finally, this model supports inherent JAX features such as: - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) Parameters: config ([`GPTNeoConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and `jax.numpy.bfloat16` (on TPUs). This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given `dtype`. **Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.** If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and [`~FlaxPreTrainedModel.to_bf16`]. """ GPT_NEO_INPUTS_DOCSTRING = r""" Args: input_ids (`numpy.ndarray` of shape `(batch_size, input_ids_length)`): `input_ids_length` = `sequence_length`. Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`): Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ class FlaxGPTNeoSelfAttention(nn.Module): config: GPTNeoConfig attention_type: str dtype: jnp.dtype = jnp.float32 def setup(self): config = self.config self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and " f"`num_heads`: {self.num_heads})." ) self.attn_dropout = nn.Dropout(config.attention_dropout) self.resid_dropout = nn.Dropout(config.resid_dropout) dense = partial( nn.Dense, self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), ) self.q_proj, self.k_proj, self.v_proj = dense(use_bias=False), dense(use_bias=False), dense(use_bias=False) self.out_proj = dense() self.causal_mask = make_causal_mask(jnp.ones((1, config.max_position_embeddings), dtype="bool"), dtype="bool") if self.attention_type == "local": self.causal_mask = self.causal_mask ^ jnp.tril(self.causal_mask, -config.window_size) def _split_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim)) def _merge_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,)) @nn.compact def _concatenate_to_cache(self, key, value, query, attention_mask): """ This function takes projected key, value states from a single input token and concatenates the states to cached states from previous steps. This function is slighly adapted from the official Flax repository: https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252 """ # detect if we're initializing by absence of existing cache data. is_initialized = self.has_variable("cache", "cached_key") cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype) cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype) cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32)) if is_initialized: *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape # update key, value caches with our new 1d spatial slices cur_index = cache_index.value indices = (0,) * len(batch_dims) + (cur_index, 0, 0) key = lax.dynamic_update_slice(cached_key.value, key, indices) value = lax.dynamic_update_slice(cached_value.value, value, indices) cached_key.value = key cached_value.value = value num_updated_cache_vectors = query.shape[1] cache_index.value = cache_index.value + num_updated_cache_vectors # causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements. pad_mask = jnp.broadcast_to( jnp.arange(max_length) < cur_index + num_updated_cache_vectors, tuple(batch_dims) + (1, num_updated_cache_vectors, max_length), ) attention_mask = combine_masks(pad_mask, attention_mask) return key, value, attention_mask def __call__( self, hidden_states, attention_mask=None, deterministic: bool = True, init_cache: bool = False, output_attentions: bool = False, ): query = self.q_proj(hidden_states) * jnp.sqrt(self.head_dim).astype(self.dtype) key = self.k_proj(hidden_states) value = self.v_proj(hidden_states) query = self._split_heads(query) key = self._split_heads(key) value = self._split_heads(value) query_length, key_length = query.shape[1], key.shape[1] if self.has_variable("cache", "cached_key"): mask_shift = self.variables["cache"]["cache_index"] max_decoder_length = self.variables["cache"]["cached_key"].shape[1] causal_mask = lax.dynamic_slice( self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length) ) else: causal_mask = self.causal_mask[:, :, :query_length, :key_length] batch_size = hidden_states.shape[0] causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:]) attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape) attention_mask = combine_masks(attention_mask, causal_mask) dropout_rng = None if not deterministic and self.config.attention_dropout > 0.0: dropout_rng = self.make_rng("dropout") # During fast autoregressive decoding, we feed one position at a time, # and cache the keys and values step by step. if self.has_variable("cache", "cached_key") or init_cache: key, value, attention_mask = self._concatenate_to_cache(key, value, query, attention_mask) # transform boolean mask into float mask attention_bias = lax.select( attention_mask > 0, jnp.full(attention_mask.shape, 0.0).astype(self.dtype), jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype), ) # usual dot product attention attn_weights = dot_product_attention_weights( query, key, bias=attention_bias, dropout_rng=dropout_rng, dropout_rate=self.config.attention_dropout, deterministic=deterministic, dtype=self.dtype, precision=None, ) attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value) attn_output = self._merge_heads(attn_output) attn_output = self.out_proj(attn_output) attn_output = self.resid_dropout(attn_output, deterministic=deterministic) outputs = (attn_output, attn_weights) if output_attentions else (attn_output,) return outputs class FlaxGPTNeoAttention(nn.Module): config: GPTNeoConfig layer_id: int = 0 dtype: jnp.dtype = jnp.float32 def setup(self): attention_type = self.config.attention_layers[self.layer_id] self.attention = FlaxGPTNeoSelfAttention(self.config, attention_type, dtype=self.dtype) def __call__( self, hidden_states, attention_mask=None, deterministic: bool = True, init_cache: bool = False, output_attentions: bool = False, ): return self.attention( hidden_states, attention_mask=attention_mask, deterministic=deterministic, init_cache=init_cache, output_attentions=output_attentions, ) class FlaxGPTNeoMLP(nn.Module): config: GPTNeoConfig intermediate_size: int dtype: jnp.dtype = jnp.float32 def setup(self): embed_dim = self.config.hidden_size kernel_init = jax.nn.initializers.normal(self.config.initializer_range) self.c_fc = nn.Dense(self.intermediate_size, dtype=self.dtype, kernel_init=kernel_init) self.c_proj = nn.Dense(embed_dim, dtype=self.dtype, kernel_init=kernel_init) self.act = ACT2FN[self.config.activation_function] self.dropout = nn.Dropout(rate=self.config.resid_dropout) def __call__(self, hidden_states, deterministic: bool = True): hidden_states = self.c_fc(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.c_proj(hidden_states) hidden_states = self.dropout(hidden_states, deterministic=deterministic) return hidden_states class FlaxGPTNeoBlock(nn.Module): config: GPTNeoConfig layer_id: int = 0 dtype: jnp.dtype = jnp.float32 def setup(self): hidden_size = self.config.hidden_size inner_dim = self.config.intermediate_size if self.config.intermediate_size is not None else 4 * hidden_size self.ln_1 = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype) self.attn = FlaxGPTNeoAttention(self.config, layer_id=self.layer_id, dtype=self.dtype) self.ln_2 = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype) self.mlp = FlaxGPTNeoMLP(self.config, inner_dim, dtype=self.dtype) def __call__( self, hidden_states, attention_mask=None, deterministic: bool = True, init_cache: bool = False, output_attentions: bool = False, ): residual = hidden_states hidden_states = self.ln_1(hidden_states) outputs = self.attn( hidden_states, attention_mask=attention_mask, deterministic=deterministic, init_cache=init_cache, output_attentions=output_attentions, ) # residual connection attn_output = outputs[0] hidden_states = attn_output + residual residual = hidden_states hidden_states = self.ln_2(hidden_states) feed_forward_hidden_states = self.mlp(hidden_states, deterministic=deterministic) # residual connection hidden_states = residual + feed_forward_hidden_states return (hidden_states,) + outputs[1:] class FlaxGPTNeoPreTrainedModel(FlaxPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = GPTNeoConfig base_model_prefix = "transformer" module_class: nn.Module = None def __init__( self, config: GPTNeoConfig, input_shape: Tuple = (1, 1), seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, **kwargs, ): module = self.module_class(config=config, dtype=dtype, **kwargs) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: # init input tensors input_ids = jnp.zeros(input_shape, dtype="i4") attention_mask = jnp.ones_like(input_ids) position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} random_params = self.module.init(rngs, input_ids, attention_mask, position_ids, return_dict=False)["params"] if params is not None: random_params = flatten_dict(unfreeze(random_params)) params = flatten_dict(unfreeze(params)) for missing_key in self._missing_keys: params[missing_key] = random_params[missing_key] self._missing_keys = set() return freeze(unflatten_dict(params)) else: return random_params def init_cache(self, batch_size, max_length): r""" Args: batch_size (`int`): batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache. max_length (`int`): maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized cache. """ # init input variables to retrieve cache input_ids = jnp.ones((batch_size, max_length)) attention_mask = jnp.ones_like(input_ids) position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape) init_variables = self.module.init( jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True ) return unfreeze(init_variables["cache"]) @add_start_docstrings_to_model_forward(GPT_NEO_INPUTS_DOCSTRING) def __call__( self, input_ids, attention_mask=None, position_ids=None, params: dict = None, past_key_values: dict = None, dropout_rng: jax.random.PRNGKey = None, train: bool = False, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict batch_size, sequence_length = input_ids.shape if position_ids is None: if past_key_values is not None: raise ValueError("Make sure to provide `position_ids` when passing `past_key_values`.") position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) if attention_mask is None: attention_mask = jnp.ones((batch_size, sequence_length)) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng inputs = {"params": params or self.params} # if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be changed by FlaxGPTNeoAttention module if past_key_values: inputs["cache"] = past_key_values mutable = ["cache"] else: mutable = False outputs = self.module.apply( inputs, jnp.array(input_ids, dtype="i4"), jnp.array(attention_mask, dtype="i4"), jnp.array(position_ids, dtype="i4"), not train, False, output_attentions, output_hidden_states, return_dict, rngs=rngs, mutable=mutable, ) # add updated cache to model output if past_key_values is not None and return_dict: outputs, past_key_values = outputs outputs["past_key_values"] = unfreeze(past_key_values["cache"]) return outputs elif past_key_values is not None and not return_dict: outputs, past_key_values = outputs outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:] return outputs class FlaxGPTNeoBlockCollection(nn.Module): config: GPTNeoConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.blocks = [ FlaxGPTNeoBlock(self.config, layer_id=i, name=str(i), dtype=self.dtype) for i in range(self.config.num_hidden_layers) ] def __call__( self, hidden_states, attention_mask=None, deterministic: bool = True, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): all_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None for block in self.blocks: if output_hidden_states: all_hidden_states += (hidden_states,) layer_outputs = block( hidden_states, attention_mask, deterministic=deterministic, init_cache=init_cache, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions += (layer_outputs[1],) # this contains possible `None` values - `FlaxGPTNeoModule` will filter them out outputs = (hidden_states, all_hidden_states, all_attentions) return outputs class FlaxGPTNeoModule(nn.Module): config: GPTNeoConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.embed_dim = self.config.hidden_size embedding_init = jax.nn.initializers.normal(stddev=self.config.initializer_range) self.wte = nn.Embed( self.config.vocab_size, self.embed_dim, embedding_init=embedding_init, ) self.wpe = nn.Embed( self.config.max_position_embeddings, self.embed_dim, embedding_init=embedding_init, ) self.dropout = nn.Dropout(rate=self.config.embed_dropout) self.h = FlaxGPTNeoBlockCollection(self.config, dtype=self.dtype) self.ln_f = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype) def __call__( self, input_ids, attention_mask, position_ids, deterministic=True, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): input_embeds = self.wte(input_ids.astype("i4")) position_embeds = self.wpe(position_ids.astype("i4")) hidden_states = input_embeds + position_embeds hidden_states = self.dropout(hidden_states, deterministic=deterministic) outputs = self.h( hidden_states, attention_mask, deterministic=deterministic, init_cache=init_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] hidden_states = self.ln_f(hidden_states) hidden_states = outputs[0] hidden_states = self.ln_f(hidden_states) if output_hidden_states: all_hidden_states = outputs[1] + (hidden_states,) outputs = (hidden_states, all_hidden_states) + outputs[2:] else: outputs = (hidden_states,) + outputs[1:] if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutput( last_hidden_state=hidden_states, hidden_states=outputs[1], attentions=outputs[-1], ) @add_start_docstrings( "The bare GPTNeo Model transformer outputting raw hidden-states without any specific head on top.", GPT_NEO_START_DOCSTRING, ) class FlaxGPTNeoModel(FlaxGPTNeoPreTrainedModel): module_class = FlaxGPTNeoModule append_call_sample_docstring(FlaxGPTNeoModel, _CHECKPOINT_FOR_DOC, FlaxBaseModelOutput, _CONFIG_FOR_DOC) class FlaxGPTNeoForCausalLMModule(nn.Module): config: GPTNeoConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.transformer = FlaxGPTNeoModule(self.config, dtype=self.dtype) self.lm_head = nn.Dense( self.config.vocab_size, use_bias=False, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), ) def __call__( self, input_ids, attention_mask, position_ids, deterministic: bool = True, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): outputs = self.transformer( input_ids, attention_mask, position_ids, deterministic=deterministic, init_cache=init_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] if self.config.tie_word_embeddings: shared_kernel = self.transformer.variables["params"]["wte"]["embedding"].T lm_logits = self.lm_head.apply({"params": {"kernel": shared_kernel}}, hidden_states) else: lm_logits = self.lm_head(hidden_states) if not return_dict: return (lm_logits,) + outputs[1:] return FlaxCausalLMOutput(logits=lm_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions) @add_start_docstrings( """ The GPTNeo Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings). """, GPT_NEO_START_DOCSTRING, ) class FlaxGPTNeoForCausalLM(FlaxGPTNeoPreTrainedModel): module_class = FlaxGPTNeoForCausalLMModule def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jnp.DeviceArray] = None): # initializing the cache batch_size, seq_length = input_ids.shape past_key_values = self.init_cache(batch_size, max_length) # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length. # But since GPTNeo uses a causal mask, those positions are masked anyways. # Thus we can create a single static attention_mask here, which is more efficient for compilation extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4") if attention_mask is not None: position_ids = attention_mask.cumsum(axis=-1) - 1 extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0)) else: position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length)) return { "past_key_values": past_key_values, "attention_mask": extended_attention_mask, "position_ids": position_ids, } def update_inputs_for_generation(self, model_outputs, model_kwargs): model_kwargs["past_key_values"] = model_outputs.past_key_values model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1 return model_kwargs append_call_sample_docstring(FlaxGPTNeoForCausalLM, _CHECKPOINT_FOR_DOC, FlaxCausalLMOutput, _CONFIG_FOR_DOC)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/gpt_neo/modeling_gpt_neo.py
# coding=utf-8 # Copyright 2021 The Eleuther AI and HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch GPT Neo model.""" import os from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutputWithPast, BaseModelOutputWithPastAndCrossAttentions, CausalLMOutputWithCrossAttentions, CausalLMOutputWithPast, QuestionAnsweringModelOutput, SequenceClassifierOutputWithPast, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_gpt_neo import GPTNeoConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "GPTNeoConfig" GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST = [ "EleutherAI/gpt-neo-1.3B", # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo ] _CHECKPOINT_FOR_DOC = "EleutherAI/gpt-neo-1.3B" def load_tf_weights_in_gpt_neo(model, config, gpt_neo_checkpoint_path): """Load tf checkpoints in a pytorch model""" try: import re import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise tf_path = os.path.abspath(gpt_neo_checkpoint_path) logger.info(f"Converting TensorFlow checkpoint from {tf_path}") # Load weights from TF model init_vars = tf.train.list_variables(tf_path) names = [] arrays = [] for name, shape in init_vars: if "global_step" not in name and "adam" not in name: array = tf.train.load_variable(tf_path, name) array = tf.dtypes.cast(array.squeeze(), tf.float32).numpy() name = name.replace("attn/q", "attn/attention/q_proj/w") name = name.replace("attn/k", "attn/attention/k_proj/w") name = name.replace("attn/v", "attn/attention/v_proj/w") name = name.replace("attn/o", "attn/attention/out_proj/w") name = name.replace("norm_1", "ln_1") name = name.replace("norm_2", "ln_2") name = name.replace("attn/compute_output_bias/o_b", "attn/attention/out_proj/b") name = name.replace("conv1d_main/c_fc/kernel", "c_fc/w") name = name.replace("conv1d_main/c_fc/bias", "c_fc/b") name = name.replace("conv1d_main/c_proj/kernel", "c_proj/w") name = name.replace("conv1d_main/c_proj/bias", "c_proj/b") names.append(name) arrays.append(array) for name, array in zip(names, arrays): name = name[5:] # skip "gpt2/" name = name.split("/") pointer = model.transformer for m_name in name: if re.fullmatch(r"[A-Za-z]+\d+", m_name): scope_names = re.split(r"(\d+)", m_name) else: scope_names = [m_name] if scope_names[0] == "w" or scope_names[0] == "g": pointer = getattr(pointer, "weight") elif scope_names[0] == "b": pointer = getattr(pointer, "bias") elif scope_names[0] == "wpe" or scope_names[0] == "wte": pointer = getattr(pointer, scope_names[0]) pointer = getattr(pointer, "weight") else: pointer = getattr(pointer, scope_names[0]) if len(scope_names) >= 2: num = int(scope_names[1]) pointer = pointer[num] if name[-1] == "w" and name[-2] in ["out_proj", "k_proj", "q_proj", "v_proj", "c_proj", "c_fc"]: array = array.transpose() if name == ["wte"]: # if vocab is padded, then trim off the padding embeddings array = array[: config.vocab_size] if pointer.shape != array.shape: raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched {name}") print(f"Initialize PyTorch weight {name}") pointer.data = torch.from_numpy(array) # init the final linear layer using word embeddings embs = model.transformer.wte.weight lin = nn.Linear(embs.size()[1], embs.size()[0], bias=False) lin.weight = embs model.set_output_embeddings(lin) return model class GPTNeoSelfAttention(nn.Module): def __init__(self, config, attention_type): super().__init__() max_positions = config.max_position_embeddings bias = torch.tril(torch.ones((max_positions, max_positions), dtype=bool)).view( 1, 1, max_positions, max_positions ) # local causal self attention is a sliding window where each token can only attend to the previous # window_size tokens. This is implemented by updating the causal mask such that for each token # all other tokens are masked except the previous window_size tokens. if attention_type == "local": bias = torch.bitwise_xor(bias, torch.tril(bias, -config.window_size)) self.register_buffer("bias", bias, persistent=False) self.register_buffer("masked_bias", torch.tensor(-1e9), persistent=False) self.attn_dropout = nn.Dropout(float(config.attention_dropout)) self.resid_dropout = nn.Dropout(float(config.resid_dropout)) self.embed_dim = config.hidden_size self.num_heads = config.num_heads self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {self.num_heads})." ) self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False) self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False) self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False) self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=True) def _split_heads(self, tensor, num_heads, attn_head_size): """ Splits hidden_size dim into attn_head_size and num_heads """ new_shape = tensor.size()[:-1] + (num_heads, attn_head_size) tensor = tensor.view(new_shape) return tensor.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features) def _merge_heads(self, tensor, num_heads, attn_head_size): """ Merges attn_head_size dim and num_attn_heads dim into hidden_size """ tensor = tensor.permute(0, 2, 1, 3).contiguous() new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,) return tensor.view(new_shape) def _attn(self, query, key, value, attention_mask=None, head_mask=None): # Keep the attention weights computation in fp32 to avoid overflow issues query = query.to(torch.float32) key = key.to(torch.float32) attn_weights = torch.matmul(query, key.transpose(-1, -2)) query_length, key_length = query.size(-2), key.size(-2) causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length] mask_value = torch.finfo(attn_weights.dtype).min # Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`. # Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device` mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device) attn_weights = torch.where(causal_mask, attn_weights, mask_value) if attention_mask is not None: # Apply the attention mask attn_weights = attn_weights + attention_mask attn_weights = nn.functional.softmax(attn_weights, dim=-1) attn_weights = attn_weights.to(value.dtype) attn_weights = self.attn_dropout(attn_weights) # Mask heads if we want to if head_mask is not None: attn_weights = attn_weights * head_mask attn_output = torch.matmul(attn_weights, value) return attn_output, attn_weights def forward( self, hidden_states, attention_mask=None, layer_past=None, head_mask=None, use_cache=False, output_attentions=False, ): query = self.q_proj(hidden_states) key = self.k_proj(hidden_states) value = self.v_proj(hidden_states) query = self._split_heads(query, self.num_heads, self.head_dim) key = self._split_heads(key, self.num_heads, self.head_dim) value = self._split_heads(value, self.num_heads, self.head_dim) if layer_past is not None: past_key = layer_past[0] past_value = layer_past[1] key = torch.cat((past_key, key), dim=-2) value = torch.cat((past_value, value), dim=-2) if use_cache is True: present = (key, value) else: present = None attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask) attn_output = self._merge_heads(attn_output, self.num_heads, self.head_dim) attn_output = self.out_proj(attn_output) attn_output = self.resid_dropout(attn_output) outputs = (attn_output, present) if output_attentions: outputs += (attn_weights,) return outputs # a, present, (attentions) class GPTNeoAttention(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.layer_id = layer_id self.attention_layers = config.attention_layers self.attention_type = self.attention_layers[layer_id] if self.attention_type in ["global", "local"]: self.attention = GPTNeoSelfAttention(config, self.attention_type) else: raise NotImplementedError( "Only attn layer types 'global' and 'local' exist, but got `config.attention_layers`: " f"{config.attention_layers}. Select attn layer types from ['global', 'local'] only." ) def forward( self, hidden_states, layer_past=None, attention_mask=None, head_mask=None, use_cache=False, output_attentions=False, ): return self.attention( hidden_states, attention_mask=attention_mask, layer_past=layer_past, head_mask=head_mask, use_cache=use_cache, output_attentions=output_attentions, ) class GPTNeoMLP(nn.Module): def __init__(self, intermediate_size, config): # in MLP: intermediate_size= 4 * hidden_size super().__init__() embed_dim = config.hidden_size self.c_fc = nn.Linear(embed_dim, intermediate_size) self.c_proj = nn.Linear(intermediate_size, embed_dim) self.act = ACT2FN[config.activation_function] self.dropout = nn.Dropout(float(config.resid_dropout)) def forward(self, hidden_states): hidden_states = self.c_fc(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.c_proj(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states class GPTNeoBlock(nn.Module): def __init__(self, config, layer_id): super().__init__() hidden_size = config.hidden_size inner_dim = config.intermediate_size if config.intermediate_size is not None else 4 * hidden_size self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) self.attn = GPTNeoAttention(config, layer_id) self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) self.mlp = GPTNeoMLP(inner_dim, config) def forward( self, hidden_states, layer_past=None, attention_mask=None, head_mask=None, use_cache=False, output_attentions=False, ): residual = hidden_states hidden_states = self.ln_1(hidden_states) attn_outputs = self.attn( hidden_states, layer_past=layer_past, attention_mask=attention_mask, head_mask=head_mask, use_cache=use_cache, output_attentions=output_attentions, ) attn_output = attn_outputs[0] # output_attn: a, present, (attentions) outputs = attn_outputs[1:] # residual connection hidden_states = attn_output + residual residual = hidden_states hidden_states = self.ln_2(hidden_states) feed_forward_hidden_states = self.mlp(hidden_states) # residual connection hidden_states = residual + feed_forward_hidden_states if use_cache: outputs = (hidden_states,) + outputs else: outputs = (hidden_states,) + outputs[1:] return outputs # hidden_states, present, (attentions, cross_attentions) class GPTNeoPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = GPTNeoConfig load_tf_weights = load_tf_weights_in_gpt_neo base_model_prefix = "transformer" supports_gradient_checkpointing = True _no_split_modules = ["GPTNeoBlock"] _skip_keys_device_placement = "past_key_values" def __init__(self, *inputs, **kwargs): super().__init__(*inputs, **kwargs) def _init_weights(self, module): """Initialize the weights.""" if isinstance(module, (nn.Linear,)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, GPTNeoModel): module.gradient_checkpointing = value GPT_NEO_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`GPTNeoConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ GPT_NEO_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`): `input_ids_length` = `sequence_length` if `past_key_values` is `None` else `past_key_values[0][0].shape[-2]` (`sequence_length` of input past key value states). Indices of input sequence tokens in the vocabulary. If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as `input_ids`. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.num_layers`): Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see `past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have their past given to this model should not be passed as `input_ids` as they have already been computed. attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see `past_key_values`). use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare GPT Neo Model transformer outputting raw hidden-states without any specific head on top.", GPT_NEO_START_DOCSTRING, ) class GPTNeoModel(GPTNeoPreTrainedModel): def __init__(self, config): super().__init__(config) self.embed_dim = config.hidden_size self.wte = nn.Embedding(config.vocab_size, self.embed_dim) self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim) self.drop = nn.Dropout(float(config.embed_dropout)) self.h = nn.ModuleList([GPTNeoBlock(config, layer_id=i) for i in range(config.num_layers)]) self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.wte def set_input_embeddings(self, new_embeddings): self.wte = new_embeddings @add_start_docstrings_to_model_forward(GPT_NEO_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPastAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, past_key_values: Optional[Tuple[torch.FloatTensor]] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) batch_size = input_ids.shape[0] elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] batch_size = inputs_embeds.shape[0] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if token_type_ids is not None: token_type_ids = token_type_ids.view(-1, input_shape[-1]) if position_ids is not None: position_ids = position_ids.view(-1, input_shape[-1]) if past_key_values is None: past_length = 0 past_key_values = tuple([None] * len(self.h)) else: past_length = past_key_values[0][0].size(-2) if position_ids is None: position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device) position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1]) # Attention mask. if attention_mask is not None: if batch_size <= 0: raise ValueError("batch_size has to be defined and > 0") attention_mask = attention_mask.view(batch_size, -1) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. attention_mask = attention_mask[:, None, None, :] # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and the dtype's smallest value for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x num_heads x N x N # head_mask has shape n_layer x batch x num_heads x N x N head_mask = self.get_head_mask(head_mask, self.config.num_layers) if inputs_embeds is None: inputs_embeds = self.wte(input_ids) position_embeds = self.wpe(position_ids) hidden_states = inputs_embeds + position_embeds if token_type_ids is not None: token_type_embeds = self.wte(token_type_ids) hidden_states = hidden_states + token_type_embeds hidden_states = self.drop(hidden_states) output_shape = input_shape + (hidden_states.size(-1),) if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False presents = () if use_cache else None all_self_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): # None for past_key_value return module(*inputs, use_cache, output_attentions) return custom_forward outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, None, attention_mask, head_mask[i], ) else: outputs = block( hidden_states, layer_past=layer_past, attention_mask=attention_mask, head_mask=head_mask[i], use_cache=use_cache, output_attentions=output_attentions, ) hidden_states = outputs[0] if use_cache is True: presents = presents + (outputs[1],) if output_attentions: all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) hidden_states = self.ln_f(hidden_states) hidden_states = hidden_states.view(output_shape) # Add last hidden state if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_self_attentions, ) @add_start_docstrings( """ The GPT Neo Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings). """, GPT_NEO_START_DOCSTRING, ) class GPTNeoForCausalLM(GPTNeoPreTrainedModel): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config): super().__init__(config) self.transformer = GPTNeoModel(config) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs): token_type_ids = kwargs.get("token_type_ids", None) # only last token for inputs_ids if past is defined in kwargs if past_key_values: input_ids = input_ids[:, -1].unsqueeze(-1) if token_type_ids is not None: token_type_ids = token_type_ids[:, -1].unsqueeze(-1) attention_mask = kwargs.get("attention_mask", None) position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: position_ids = position_ids[:, -1].unsqueeze(-1) return { "input_ids": input_ids, "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "position_ids": position_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } @add_start_docstrings_to_model_forward(GPT_NEO_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, past_key_values: Optional[Tuple[torch.FloatTensor]] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] lm_logits = self.lm_head(hidden_states) loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(lm_logits.device) # Compute loss in fp32 to match with mesh-tf version # https://github.com/EleutherAI/gpt-neo/blob/89ce74164da2fb16179106f54e2269b5da8db333/models/gpt2/gpt2.py#L179 lm_logits = lm_logits.to(torch.float32) # Shift so that tokens < n predict n shift_logits = lm_logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) lm_logits = lm_logits.to(hidden_states.dtype) loss = loss.to(hidden_states.dtype) if not return_dict: output = (lm_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=lm_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) @staticmethod def _reorder_cache( past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor ) -> Tuple[Tuple[torch.Tensor]]: """ This function is used to re-order the `past_key_values` cache if [`~PretrainedModel.beam_search`] or [`~PretrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct beam_idx at every generation step. """ return tuple( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past) for layer_past in past_key_values ) @add_start_docstrings( """ The GPTNeo Model transformer with a sequence classification head on top (linear layer). [`GPTNeoForSequenceClassification`] uses the last token in order to do the classification, as other causal models (e.g. GPT-1) do. Since it does classification on the last token, it requires to know the position of the last token. If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in each row of the batch). """, GPT_NEO_START_DOCSTRING, ) class GPTNeoForSequenceClassification(GPTNeoPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.transformer = GPTNeoModel(config) self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(GPT_NEO_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=SequenceClassifierOutputWithPast, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, past_key_values: Optional[Tuple[torch.FloatTensor]] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] logits = self.score(hidden_states) if input_ids is not None: batch_size, sequence_length = input_ids.shape[:2] else: batch_size, sequence_length = inputs_embeds.shape[:2] if self.config.pad_token_id is None and batch_size != 1: raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") if self.config.pad_token_id is None: sequence_lengths = -1 else: if input_ids is not None: sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).long().argmax(-1) - 1).to( logits.device ) else: sequence_lengths = -1 logger.warning( f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " "unexpected if using padding tokens in conjunction with `inputs_embeds.`" ) pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) else: loss = loss_fct(pooled_logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(pooled_logits, labels) if not return_dict: output = (pooled_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) @add_start_docstrings( """ GPT Neo model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, GPT_NEO_START_DOCSTRING, ) class GPTNeoForTokenClassification(GPTNeoPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.transformer = GPTNeoModel(config) self.dropout = nn.Dropout(config.classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(GPT_NEO_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint="EleutherAI/gpt-neo-125m", output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_loss=0.25, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] hidden_states = self.dropout(hidden_states) logits = self.classifier(hidden_states) loss = None if labels is not None: labels = labels.to(logits.device) loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + transformer_outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) @add_start_docstrings( """ The GPT-Neo Model transformer with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`). """, GPT_NEO_START_DOCSTRING, ) class GPTNeoForQuestionAnswering(GPTNeoPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.transformer = GPTNeoModel(config) self.qa_outputs = nn.Linear(config.hidden_size, 2) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(GPT_NEO_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, real_checkpoint=_CHECKPOINT_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.transformer( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/gpt_neo/convert_gpt_neo_mesh_tf_to_pytorch.py
# coding=utf-8 # Copyright 2021 The Eleuther AI and HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert GPT Neo checkpoint.""" import argparse import json from transformers import GPTNeoConfig, GPTNeoForCausalLM, load_tf_weights_in_gpt_neo from transformers.utils import logging logging.set_verbosity_info() def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, config_file, pytorch_dump_path): # Initialise PyTorch model config_json = json.load(open(config_file, "r")) config = GPTNeoConfig( hidden_size=config_json["n_embd"], num_layers=config_json["n_layer"], num_heads=config_json["n_head"], attention_types=config_json["attention_types"], max_position_embeddings=config_json["n_positions"], resid_dropout=config_json["res_dropout"], embed_dropout=config_json["embed_dropout"], attention_dropout=config_json["attn_dropout"], ) print(f"Building PyTorch model from configuration: {config}") model = GPTNeoForCausalLM(config) # Load weights from tf checkpoint load_tf_weights_in_gpt_neo(model, config, tf_checkpoint_path) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}") model.save_pretrained(pytorch_dump_path) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained mesh-tf model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) args = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/blenderbot_small/__init__.py
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _import_structure = { "configuration_blenderbot_small": [ "BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotSmallConfig", "BlenderbotSmallOnnxConfig", ], "tokenization_blenderbot_small": ["BlenderbotSmallTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_blenderbot_small_fast"] = ["BlenderbotSmallTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_blenderbot_small"] = [ "BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotSmallForCausalLM", "BlenderbotSmallForConditionalGeneration", "BlenderbotSmallModel", "BlenderbotSmallPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_blenderbot_small"] = [ "TFBlenderbotSmallForConditionalGeneration", "TFBlenderbotSmallModel", "TFBlenderbotSmallPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_flax_blenderbot_small"] = [ "FlaxBlenderbotSmallForConditionalGeneration", "FlaxBlenderbotSmallModel", "FlaxBlenderbotSmallPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/blenderbot_small/tokenization_blenderbot_small_fast.py
# coding=utf-8 # Copyright 2021, The Facebook, Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Fast tokenization class for BlenderbotSmall.""" from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json" }, "merges_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt" }, "tokenizer_config_file": { "facebook/blenderbot_small-90M": ( "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json" ) }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "facebook/blenderbot_small-90M": 512, } class BlenderbotSmallTokenizerFast(PreTrainedTokenizerFast): """ Construct a "fast" BlenderbotSmall tokenizer (backed by HuggingFace's *tokenizers* library). Args: vocab_file (`str`): Path to the vocabulary file. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES slow_tokenizer_class = BlenderbotSmallTokenizer def __init__( self, vocab_file=None, merges_file=None, unk_token="<|endoftext|>", bos_token="<|endoftext|>", eos_token="<|endoftext|>", add_prefix_space=False, trim_offsets=True, **kwargs, ): super().__init__( ByteLevelBPETokenizer( vocab=vocab_file, merges=merges_file, add_prefix_space=add_prefix_space, trim_offsets=trim_offsets, ), bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, **kwargs, ) self.add_prefix_space = add_prefix_space def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): output = [self.bos_token_id] + token_ids_0 + [self.eos_token_id] if token_ids_1 is None: return output return output + [self.eos_token_id] + token_ids_1 + [self.eos_token_id] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. BlenderbotSmall does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/blenderbot_small/modeling_tf_blenderbot_small.py
# coding=utf-8 # Copyright 2021 The Facebook, Inc and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 BlenderbotSmall model.""" from __future__ import annotations import random from typing import List, Optional, Tuple, Union import numpy as np import tensorflow as tf from ...activations_tf import get_tf_activation from ...modeling_tf_outputs import ( TFBaseModelOutput, TFBaseModelOutputWithPastAndCrossAttentions, TFSeq2SeqLMOutput, TFSeq2SeqModelOutput, ) # Public API from ...modeling_tf_utils import ( TFCausalLanguageModelingLoss, TFPreTrainedModel, keras_serializable, unpack_inputs, ) from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax from ...utils import ( ContextManagers, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_blenderbot_small import BlenderbotSmallConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "facebook/blenderbot_small-90M" _CONFIG_FOR_DOC = "BlenderbotSmallConfig" LARGE_NEGATIVE = -1e8 # Copied from transformers.models.bart.modeling_tf_bart.shift_tokens_right def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_token_id: int): pad_token_id = tf.cast(pad_token_id, input_ids.dtype) decoder_start_token_id = tf.cast(decoder_start_token_id, input_ids.dtype) start_tokens = tf.fill( (shape_list(input_ids)[0], 1), tf.convert_to_tensor(decoder_start_token_id, input_ids.dtype) ) shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1) # replace possible -100 values in labels by `pad_token_id` shifted_input_ids = tf.where( shifted_input_ids == -100, tf.fill(shape_list(shifted_input_ids), tf.convert_to_tensor(pad_token_id, input_ids.dtype)), shifted_input_ids, ) # "Verify that `labels` has only positive values and -100" assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype)) # Make sure the assertion op is called by wrapping the result in an identity no-op with tf.control_dependencies([assert_gte0]): shifted_input_ids = tf.identity(shifted_input_ids) return shifted_input_ids # Copied from transformers.models.bart.modeling_tf_bart._make_causal_mask def _make_causal_mask(input_ids_shape: tf.TensorShape, past_key_values_length: int = 0): """ Make causal mask used for bi-directional self-attention. """ bsz = input_ids_shape[0] tgt_len = input_ids_shape[1] mask = tf.ones((tgt_len, tgt_len)) * LARGE_NEGATIVE mask_cond = tf.range(shape_list(mask)[-1]) mask = tf.where(mask_cond < tf.reshape(mask_cond + 1, (shape_list(mask)[-1], 1)), 0.0, mask) if past_key_values_length > 0: mask = tf.concat([tf.zeros((tgt_len, past_key_values_length)), mask], axis=-1) return tf.tile(mask[None, None, :, :], (bsz, 1, 1, 1)) # Copied from transformers.models.bart.modeling_tf_bart._expand_mask def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None): """ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. """ src_len = shape_list(mask)[1] tgt_len = tgt_len if tgt_len is not None else src_len one_cst = tf.constant(1.0) mask = tf.cast(mask, dtype=one_cst.dtype) expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1)) return (one_cst - expanded_mask) * LARGE_NEGATIVE # Copied from transformers.models.blenderbot.modeling_tf_blenderbot.TFBlenderbotLearnedPositionalEmbedding with Blenderbot->BlenderbotSmall class TFBlenderbotSmallLearnedPositionalEmbedding(tf.keras.layers.Embedding): """ This module learns positional embeddings up to a fixed maximum size. """ def __init__(self, num_embeddings: int, embedding_dim: int, **kwargs): super().__init__(num_embeddings, embedding_dim, **kwargs) def call( self, input_shape: tf.TensorShape, past_key_values_length: int = 0, position_ids: tf.Tensor | None = None ): """Input is expected to be of size [bsz x seqlen].""" if position_ids is None: seq_len = input_shape[1] position_ids = tf.range(seq_len, delta=1, name="range") position_ids += past_key_values_length return super().call(tf.cast(position_ids, dtype=tf.int32)) # Copied from transformers.models.bart.modeling_tf_bart.TFBartAttention with Bart->BlenderbotSmall class TFBlenderbotSmallAttention(tf.keras.layers.Layer): """Multi-headed attention from "Attention Is All You Need""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, **kwargs, ): super().__init__(**kwargs) self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = tf.keras.layers.Dropout(dropout) self.head_dim = embed_dim // num_heads if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.k_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="k_proj") self.q_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj") self.v_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj") self.out_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj") def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int): return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3)) def call( self, hidden_states: tf.Tensor, key_value_states: tf.Tensor | None = None, past_key_value: Tuple[Tuple[tf.Tensor]] | None = None, attention_mask: tf.Tensor | None = None, layer_head_mask: tf.Tensor | None = None, training: Optional[bool] = False, ) -> Tuple[tf.Tensor, tf.Tensor | None]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, embed_dim = shape_list(hidden_states) # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = tf.concat([past_key_value[0], key_states], axis=2) value_states = tf.concat([past_key_value[1], value_states], axis=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape) key_states = tf.reshape(key_states, proj_shape) value_states = tf.reshape(value_states, proj_shape) src_len = shape_list(key_states)[1] attn_weights = tf.matmul(query_states, key_states, transpose_b=True) tf.debugging.assert_equal( shape_list(attn_weights), [bsz * self.num_heads, tgt_len, src_len], message=( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {shape_list(attn_weights)}" ), ) if attention_mask is not None: tf.debugging.assert_equal( shape_list(attention_mask), [bsz, 1, tgt_len, src_len], message=( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is" f" {shape_list(attention_mask)}" ), ) attention_mask = tf.cast(attention_mask, dtype=attn_weights.dtype) attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) attn_weights = stable_softmax(attn_weights, axis=-1) if layer_head_mask is not None: tf.debugging.assert_equal( shape_list(layer_head_mask), [self.num_heads], message=( f"Head mask for a single layer should be of size {(self.num_heads)}, but is" f" {shape_list(layer_head_mask)}" ), ) attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape( attn_weights, (bsz, self.num_heads, tgt_len, src_len) ) attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) attn_probs = self.dropout(attn_weights, training=training) attn_output = tf.matmul(attn_probs, value_states) tf.debugging.assert_equal( shape_list(attn_output), [bsz * self.num_heads, tgt_len, self.head_dim], message=( f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" f" {shape_list(attn_output)}" ), ) attn_output = tf.transpose( tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3) ) attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim)) attn_output = self.out_proj(attn_output) attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) return attn_output, attn_weights, past_key_value # Copied from transformers.models.bart.modeling_tf_bart.TFBartEncoderLayer with Bart->BlenderbotSmall class TFBlenderbotSmallEncoderLayer(tf.keras.layers.Layer): def __init__(self, config: BlenderbotSmallConfig, **kwargs): super().__init__(**kwargs) self.embed_dim = config.d_model self.self_attn = TFBlenderbotSmallAttention( self.embed_dim, config.encoder_attention_heads, dropout=config.attention_dropout, name="self_attn" ) self.self_attn_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm") self.dropout = tf.keras.layers.Dropout(config.dropout) self.activation_fn = get_tf_activation(config.activation_function) self.activation_dropout = tf.keras.layers.Dropout(config.activation_dropout) self.fc1 = tf.keras.layers.Dense(config.encoder_ffn_dim, name="fc1") self.fc2 = tf.keras.layers.Dense(self.embed_dim, name="fc2") self.final_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm") def call( self, hidden_states: tf.Tensor, attention_mask: np.ndarray | tf.Tensor | None, layer_head_mask: tf.Tensor | None, training: Optional[bool] = False, ) -> tf.Tensor: """ Args: hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`tf.Tensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size `(encoder_attention_heads,)` """ residual = hidden_states hidden_states, self_attn_weights, _ = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask ) tf.debugging.assert_equal( shape_list(hidden_states), shape_list(residual), message=f"Self attn modified the shape of query {shape_list(residual)} to {shape_list(hidden_states)}", ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout(hidden_states, training=training) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) return hidden_states, self_attn_weights # Copied from transformers.models.bart.modeling_tf_bart.TFBartDecoderLayer with Bart->BlenderbotSmall class TFBlenderbotSmallDecoderLayer(tf.keras.layers.Layer): def __init__(self, config: BlenderbotSmallConfig, **kwargs): super().__init__(**kwargs) self.embed_dim = config.d_model self.self_attn = TFBlenderbotSmallAttention( embed_dim=self.embed_dim, num_heads=config.decoder_attention_heads, dropout=config.attention_dropout, name="self_attn", is_decoder=True, ) self.dropout = tf.keras.layers.Dropout(config.dropout) self.activation_fn = get_tf_activation(config.activation_function) self.activation_dropout = tf.keras.layers.Dropout(config.activation_dropout) self.self_attn_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm") self.encoder_attn = TFBlenderbotSmallAttention( self.embed_dim, config.decoder_attention_heads, dropout=config.attention_dropout, name="encoder_attn", is_decoder=True, ) self.encoder_attn_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="encoder_attn_layer_norm") self.fc1 = tf.keras.layers.Dense(config.decoder_ffn_dim, name="fc1") self.fc2 = tf.keras.layers.Dense(self.embed_dim, name="fc2") self.final_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm") def call( self, hidden_states: tf.Tensor, attention_mask: np.ndarray | tf.Tensor | None = None, encoder_hidden_states: np.ndarray | tf.Tensor | None = None, encoder_attention_mask: np.ndarray | tf.Tensor | None = None, layer_head_mask: tf.Tensor | None = None, cross_attn_layer_head_mask: tf.Tensor | None = None, past_key_value: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, training: Optional[bool] = False, ) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]: """ Args: hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`tf.Tensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. encoder_hidden_states (`tf.Tensor`): cross attention input to the layer of shape `(batch, seq_len, embed_dim)` encoder_attention_mask (`tf.Tensor`): encoder attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size `(decoder_attention_heads,)` cross_attn_layer_head_mask (`tf.Tensor`): mask for heads of the cross-attention module. `(decoder_attention_heads,)` past_key_value (`Tuple(tf.Tensor)`): cached past key and value projection states """ residual = hidden_states # Self Attention # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None # add present self-attn cache to positions 1,2 of present_key_value tuple hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, past_key_value=self_attn_past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Cross-Attention Block cross_attn_present_key_value = None cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, layer_head_mask=cross_attn_layer_head_mask, past_key_value=cross_attn_past_key_value, ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) # add cross-attn to positions 3,4 of present_key_value tuple present_key_value = present_key_value + cross_attn_present_key_value # Fully Connected residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout(hidden_states, training=training) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) return ( hidden_states, self_attn_weights, cross_attn_weights, present_key_value, ) class TFBlenderbotSmallPreTrainedModel(TFPreTrainedModel): config_class = BlenderbotSmallConfig base_model_prefix = "model" BLENDERBOT_SMALL_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Args: config ([`BlenderbotSmallConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ BLENDERBOT_SMALL_GENERATION_EXAMPLE = r""" Conversation example:: ```py >>> from transformers import AutoTokenizer, TFBlenderbotSmallForConditionalGeneration >>> mname = "facebook/blenderbot_small-90M" >>> model = BlenderbotSmallForConditionalGeneration.from_pretrained(mname) >>> tokenizer = AutoTokenizer.from_pretrained(mname) >>> UTTERANCE = "My friends are cool but they eat too many carbs." >>> print("Human: ", UTTERANCE) >>> inputs = tokenizer([UTTERANCE], return_tensors="tf") >>> reply_ids = model.generate(**inputs) >>> print("Bot: ", tokenizer.batch_decode(reply_ids, skip_special_tokens=True)[0]) what kind of carbs do they eat? i don't know much about carbs. >>> REPLY = "I'm not sure" >>> print("Human: ", REPLY) >>> NEXT_UTTERANCE = ( ... "My friends are cool but they eat too many carbs.</s> " ... "<s>what kind of carbs do they eat? i don't know much about carbs.</s> " ... "<s>I'm not sure." ... ) >>> inputs = tokenizer([NEXT_UTTERANCE], return_tensors="tf") >>> inputs.pop("token_type_ids") >>> next_reply_ids = model.generate(**inputs) >>> print("Bot: ", tokenizer.batch_decode(next_reply_ids, skip_special_tokens=True)[0]) ``` """ BLENDERBOT_SMALL_INPUTS_DOCSTRING = r""" Args: input_ids (`tf.Tensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`tf.Tensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) BlenderbotSmall uses the `bos_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). decoder_attention_mask (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): will be made by default and ignore pad tokens. It is not recommended to set this for most use cases. decoder_position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. decoder_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. encoder_outputs (`tf.FloatTensor`, *optional*): hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. of shape `(batch_size, sequence_length, hidden_size)` is a sequence of past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`) contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*, defaults to `True`): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Set to `False` during training, `True` during generation output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @keras_serializable class TFBlenderbotSmallEncoder(tf.keras.layers.Layer): config_class = BlenderbotSmallConfig """ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a [`TFBlenderbotSmallEncoderLayer`]. Args: config: BlenderbotSmallConfig """ def __init__( self, config: BlenderbotSmallConfig, embed_tokens: Optional[tf.keras.layers.Embedding] = None, **kwargs ): super().__init__(**kwargs) self.config = config self.dropout = tf.keras.layers.Dropout(config.dropout) self.layerdrop = config.encoder_layerdrop self.padding_idx = config.pad_token_id self.max_source_positions = config.max_position_embeddings self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0 self.embed_tokens = embed_tokens self.embed_positions = TFBlenderbotSmallLearnedPositionalEmbedding( config.max_position_embeddings, config.d_model, name="embed_positions", ) self.layers = [TFBlenderbotSmallEncoderLayer(config, name=f"layers.{i}") for i in range(config.encoder_layers)] self.layernorm_embedding = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm_embedding") def get_embed_tokens(self): return self.embed_tokens def set_embed_tokens(self, embed_tokens): self.embed_tokens = embed_tokens @unpack_inputs def call( self, input_ids=None, inputs_embeds=None, attention_mask=None, head_mask=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, ): """ Args: input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, `optional): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if inputs_embeds is None: # if `self.embed_tokens.load_weight_prefix` is set, runs the embedding operation with the correct name # scope, so that its weights are registered with the desired name for loading/storing. When `tf.name_scope` # is used with a name ending in `/`, that name replaces the current name scope. # (embeddings with tf.name_scope: self.embed_tokens.load_weight_prefix/self.embed_tokens.name/embeddings:0) context = [] if hasattr(self.embed_tokens, "load_weight_prefix"): context.append(tf.name_scope(self.embed_tokens.load_weight_prefix + "/")) with ContextManagers(context): check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim) inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale embed_pos = self.embed_positions(input_shape) hidden_states = inputs_embeds + embed_pos hidden_states = self.layernorm_embedding(hidden_states) hidden_states = self.dropout(hidden_states, training=training) # check attention mask and invert if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] attention_mask = _expand_mask(attention_mask) else: attention_mask = None encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None # check if head_mask has a correct number of layers specified if desired if head_mask is not None: tf.debugging.assert_equal( shape_list(head_mask)[0], len(self.layers), message=( f"The head_mask should be specified for {len(self.layers)} layers, but it is for" f" {shape_list(head_mask)[0]}." ), ) # encoder layers for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = random.uniform(0, 1) if training and (dropout_probability < self.layerdrop): # skip the layer continue hidden_states, attn = encoder_layer( hidden_states, attention_mask, head_mask[idx] if head_mask is not None else None, ) if output_attentions: all_attentions += (attn,) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) @keras_serializable class TFBlenderbotSmallDecoder(tf.keras.layers.Layer): config_class = BlenderbotSmallConfig """ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`TFBlenderbotSmallDecoderLayer`] Args: config: BlenderbotSmallConfig embed_tokens: output embedding """ def __init__( self, config: BlenderbotSmallConfig, embed_tokens: Optional[tf.keras.layers.Embedding] = None, **kwargs ): super().__init__(**kwargs) self.config = config self.padding_idx = config.pad_token_id self.embed_tokens = embed_tokens self.layerdrop = config.decoder_layerdrop self.embed_positions = TFBlenderbotSmallLearnedPositionalEmbedding( config.max_position_embeddings, config.d_model, name="embed_positions", ) self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0 self.layers = [TFBlenderbotSmallDecoderLayer(config, name=f"layers.{i}") for i in range(config.decoder_layers)] self.layernorm_embedding = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm_embedding") self.dropout = tf.keras.layers.Dropout(config.dropout) def get_embed_tokens(self): return self.embed_tokens def set_embed_tokens(self, embed_tokens): self.embed_tokens = embed_tokens @unpack_inputs def call( self, input_ids=None, inputs_embeds=None, attention_mask=None, position_ids=None, encoder_hidden_states=None, encoder_attention_mask=None, head_mask=None, cross_attn_head_mask=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, ): r""" Args: input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. encoder_hidden_states (`tf.Tensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`tf.Tensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") past_key_values_length = shape_list(past_key_values[0][0])[2] if past_key_values is not None else 0 if inputs_embeds is None: # if `self.embed_tokens.load_weight_prefix` is set, runs the embedding operation with the correct name # scope, so that its weights are registered with the desired name for loading/storing. When `tf.name_scope` # is used with a name ending in `/`, that name replaces the current name scope. # (embeddings with tf.name_scope: self.embed_tokens.load_weight_prefix/self.embed_tokens.name/embeddings:0) context = [] if hasattr(self.embed_tokens, "load_weight_prefix"): context.append(tf.name_scope(self.embed_tokens.load_weight_prefix + "/")) with ContextManagers(context): check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim) inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] if input_shape[-1] > 1: combined_attention_mask = _make_causal_mask(input_shape, past_key_values_length=past_key_values_length) else: combined_attention_mask = _expand_mask( tf.ones((input_shape[0], input_shape[1] + past_key_values_length)), tgt_len=input_shape[-1] ) if attention_mask is not None: combined_attention_mask = combined_attention_mask + _expand_mask(attention_mask, tgt_len=input_shape[-1]) if encoder_hidden_states is not None and encoder_attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] encoder_attention_mask = _expand_mask(encoder_attention_mask, tgt_len=input_shape[-1]) # embed positions if position_ids is None: positions = self.embed_positions(input_shape, past_key_values_length) else: positions = self.embed_positions(input_shape, position_ids=position_ids) hidden_states = self.layernorm_embedding(inputs_embeds) + positions hidden_states = self.dropout(hidden_states, training=training) # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attns = () if (output_attentions and encoder_hidden_states is not None) else None present_key_values = () if use_cache else None # check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired for attn_mask_name, attn_mask in [("head_mask", head_mask), ("cross_attn_head_mask", cross_attn_head_mask)]: if attn_mask is not None: tf.debugging.assert_equal( shape_list(attn_mask)[0], len(self.layers), message=( f"The {attn_mask_name} should be specified for {len(self.layers)} layers, but it is for" f" {shape_list(attn_mask)[0]}." ), ) for idx, decoder_layer in enumerate(self.layers): # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) if output_hidden_states: all_hidden_states += (hidden_states,) dropout_probability = random.uniform(0, 1) if training and (dropout_probability < self.layerdrop): continue past_key_value = past_key_values[idx] if past_key_values is not None else None hidden_states, layer_self_attn, layer_cross_attn, present_key_value = decoder_layer( hidden_states, attention_mask=combined_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, layer_head_mask=head_mask[idx] if head_mask is not None else None, cross_attn_layer_head_mask=cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, past_key_value=past_key_value, ) if use_cache: present_key_values += (present_key_value,) if output_attentions: all_self_attns += (layer_self_attn,) if encoder_hidden_states is not None: all_cross_attns += (layer_cross_attn,) if output_hidden_states: all_hidden_states += (hidden_states,) if not return_dict: return hidden_states, present_key_values, all_hidden_states, all_self_attns, all_cross_attns else: return TFBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=present_key_values, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attns, ) @keras_serializable class TFBlenderbotSmallMainLayer(tf.keras.layers.Layer): config_class = BlenderbotSmallConfig def __init__(self, config: BlenderbotSmallConfig, **kwargs): super().__init__(**kwargs) self.config = config self.shared = tf.keras.layers.Embedding( input_dim=config.vocab_size, output_dim=config.d_model, embeddings_initializer=tf.keras.initializers.TruncatedNormal(stddev=self.config.init_std), name="model.shared", ) # Additional attribute to specify the expected name scope of the layer (for loading/storing weights) self.shared.load_weight_prefix = "model.shared" self.encoder = TFBlenderbotSmallEncoder(config, self.shared, name="encoder") self.decoder = TFBlenderbotSmallDecoder(config, self.shared, name="decoder") def get_input_embeddings(self): return self.shared def set_input_embeddings(self, new_embeddings): self.shared = new_embeddings self.encoder.embed_tokens = self.shared self.decoder.embed_tokens = self.shared @unpack_inputs def call( self, input_ids=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, decoder_position_ids=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None, past_key_values=None, inputs_embeds=None, decoder_inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, **kwargs, ): output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) if encoder_outputs is None: encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) # If the user passed a tuple for encoder_outputs, we wrap it in a TFBaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, TFBaseModelOutput): encoder_outputs = TFBaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) # If the user passed a TFBaseModelOutput for encoder_outputs, we wrap it in a tuple when return_dict=False elif not return_dict and not isinstance(encoder_outputs, tuple): encoder_outputs = encoder_outputs.to_tuple() decoder_outputs = self.decoder( decoder_input_ids, attention_mask=decoder_attention_mask, position_ids=decoder_position_ids, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=attention_mask, head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) if not return_dict: return decoder_outputs + encoder_outputs return TFSeq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) @add_start_docstrings( "The bare BLENDERBOT_SMALL Model outputting raw hidden-states without any specific head on top.", BLENDERBOT_SMALL_START_DOCSTRING, ) class TFBlenderbotSmallModel(TFBlenderbotSmallPreTrainedModel): def __init__(self, config: BlenderbotSmallConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.model = TFBlenderbotSmallMainLayer(config, name="model") def get_encoder(self): return self.model.encoder def get_decoder(self): return self.model.decoder @unpack_inputs @add_start_docstrings_to_model_forward(BLENDERBOT_SMALL_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFSeq2SeqModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: tf.Tensor | None = None, attention_mask: tf.Tensor | None = None, decoder_input_ids: tf.Tensor | None = None, decoder_attention_mask: tf.Tensor | None = None, decoder_position_ids: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, decoder_head_mask: tf.Tensor | None = None, cross_attn_head_mask: tf.Tensor | None = None, encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None, past_key_values: List[tf.Tensor] | None = None, inputs_embeds: tf.Tensor | None = None, decoder_inputs_embeds: tf.Tensor | None = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, **kwargs, ) -> Union[Tuple[tf.Tensor], TFSeq2SeqModelOutput]: outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, decoder_position_ids=decoder_position_ids, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, encoder_outputs=encoder_outputs, past_key_values=past_key_values, inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs # Copied from transformers.models.bart.modeling_tf_bart.TFBartModel.serving_output def serving_output(self, output): pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None return TFSeq2SeqModelOutput( last_hidden_state=output.last_hidden_state, past_key_values=pkv, decoder_hidden_states=dec_hs, decoder_attentions=dec_attns, cross_attentions=cross_attns, encoder_last_hidden_state=output.encoder_last_hidden_state, encoder_hidden_states=enc_hs, encoder_attentions=enc_attns, ) # Copied from transformers.models.bart.modeling_tf_bart.BiasLayer class BiasLayer(tf.keras.layers.Layer): """ Bias as a layer. It is used for serialization purposes: `tf.keras.Model.save_weights` stores on a per-layer basis, so all weights have to be registered in a layer. """ def __init__(self, shape, initializer, trainable, name, **kwargs): super().__init__(name=name, **kwargs) # Note: the name of this variable will NOT be scoped when serialized, i.e. it will not be in the format of # "outer_layer/inner_layer/.../name:0". Instead, it will be "name:0". For further details, see: # https://github.com/huggingface/transformers/pull/18833#issuecomment-1233090214 self.bias = self.add_weight(name=name, shape=shape, initializer=initializer, trainable=trainable) def call(self, x): return x + self.bias @add_start_docstrings( "The BLENDERBOT_SMALL Model with a language modeling head. Can be used for summarization.", BLENDERBOT_SMALL_START_DOCSTRING, ) class TFBlenderbotSmallForConditionalGeneration(TFBlenderbotSmallPreTrainedModel, TFCausalLanguageModelingLoss): _keys_to_ignore_on_load_unexpected = [ r"model.encoder.embed_tokens.weight", r"model.decoder.embed_tokens.weight", ] def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.model = TFBlenderbotSmallMainLayer(config, name="model") self.use_cache = config.use_cache # final_bias_logits is registered as a buffer in pytorch, so not trainable for the sake of consistency. self.bias_layer = BiasLayer( name="final_logits_bias", shape=[1, config.vocab_size], initializer="zeros", trainable=False ) def get_decoder(self): return self.model.decoder def get_encoder(self): return self.model.encoder def get_output_embeddings(self): return self.get_input_embeddings() def set_output_embeddings(self, value): self.set_input_embeddings(value) def get_bias(self): return {"final_logits_bias": self.bias_layer.bias} def set_bias(self, value): # Replaces the existing layers containing bias for correct (de)serialization. vocab_size = value["final_logits_bias"].shape[-1] self.bias_layer = BiasLayer( name="final_logits_bias", shape=[1, vocab_size], initializer="zeros", trainable=False ) self.bias_layer.bias.assign(value["final_logits_bias"]) @unpack_inputs @add_start_docstrings_to_model_forward(BLENDERBOT_SMALL_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) @add_end_docstrings(BLENDERBOT_SMALL_GENERATION_EXAMPLE) def call( self, input_ids: tf.Tensor | None = None, attention_mask: tf.Tensor | None = None, decoder_input_ids: tf.Tensor | None = None, decoder_attention_mask: tf.Tensor | None = None, decoder_position_ids: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, decoder_head_mask: tf.Tensor | None = None, cross_attn_head_mask: tf.Tensor | None = None, encoder_outputs: Optional[TFBaseModelOutput] = None, past_key_values: List[tf.Tensor] | None = None, inputs_embeds: tf.Tensor | None = None, decoder_inputs_embeds: tf.Tensor | None = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[Tuple[tf.Tensor], TFSeq2SeqLMOutput]: r""" labels (`tf.tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: """ if labels is not None: labels = tf.where( labels == self.config.pad_token_id, tf.cast(tf.fill(shape_list(labels), -100), labels.dtype), labels, ) use_cache = False if decoder_input_ids is None and decoder_inputs_embeds is None: decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) outputs = self.model( input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, decoder_position_ids=decoder_position_ids, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, encoder_outputs=encoder_outputs, past_key_values=past_key_values, inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) lm_logits = tf.matmul(outputs[0], self.model.shared.weights, transpose_b=True) lm_logits = self.bias_layer(lm_logits) masked_lm_loss = None if labels is None else self.hf_compute_loss(labels, lm_logits) if not return_dict: output = (lm_logits,) + outputs[1:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return TFSeq2SeqLMOutput( loss=masked_lm_loss, logits=lm_logits, past_key_values=outputs.past_key_values, # index 1 of d outputs decoder_hidden_states=outputs.decoder_hidden_states, # index 2 of d outputs decoder_attentions=outputs.decoder_attentions, # index 3 of d outputs cross_attentions=outputs.cross_attentions, # index 4 of d outputs encoder_last_hidden_state=outputs.encoder_last_hidden_state, # index 0 of encoder outputs encoder_hidden_states=outputs.encoder_hidden_states, # 1 of e out encoder_attentions=outputs.encoder_attentions, # 2 of e out ) # Copied from transformers.models.bart.modeling_tf_bart.TFBartForConditionalGeneration.serving_output def serving_output(self, output): pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None return TFSeq2SeqLMOutput( logits=output.logits, past_key_values=pkv, decoder_hidden_states=dec_hs, decoder_attentions=dec_attns, cross_attentions=cross_attns, encoder_last_hidden_state=output.encoder_last_hidden_state, encoder_hidden_states=enc_hs, encoder_attentions=enc_attns, ) # Copied from transformers.models.bart.modeling_tf_bart.TFBartForConditionalGeneration.prepare_inputs_for_generation def prepare_inputs_for_generation( self, decoder_input_ids, past_key_values=None, attention_mask=None, decoder_attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, use_cache=None, encoder_outputs=None, **kwargs, ): # cut decoder_input_ids if past_key_values is used if past_key_values is not None: decoder_input_ids = decoder_input_ids[:, -1:] if decoder_attention_mask is not None: # xla decoder_position_ids = tf.math.cumsum(decoder_attention_mask, axis=-1, exclusive=True)[:, -1:] elif past_key_values is not None: # no xla + past_key_values decoder_position_ids = past_key_values[0][0].shape[2] else: # no xla + no past_key_values decoder_position_ids = tf.range(decoder_input_ids.shape[1]) return { "input_ids": None, # encoder_outputs is defined. input_ids not needed "encoder_outputs": encoder_outputs, "past_key_values": past_key_values, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "decoder_position_ids": decoder_position_ids, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, "use_cache": use_cache, # change this to avoid caching (presumably for debugging) }
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/blenderbot_small/modeling_flax_blenderbot_small.py
# coding=utf-8 # Copyright 2021 The Facebook, Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Flax BlenderbotSmall model.""" import math import random from functools import partial from typing import Callable, Optional, Tuple import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict, freeze, unfreeze from flax.linen import combine_masks, make_causal_mask from flax.linen.attention import dot_product_attention_weights from flax.traverse_util import flatten_dict, unflatten_dict from jax import lax from jax.random import PRNGKey from ...modeling_flax_outputs import ( FlaxBaseModelOutput, FlaxBaseModelOutputWithPastAndCrossAttentions, FlaxCausalLMOutputWithCrossAttentions, FlaxSeq2SeqLMOutput, FlaxSeq2SeqModelOutput, ) from ...modeling_flax_utils import ( ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring, append_replace_return_docstrings, overwrite_call_docstring, ) from ...utils import add_start_docstrings, logging, replace_return_docstrings from .configuration_blenderbot_small import BlenderbotSmallConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "facebook/blenderbot_small-90M" _CONFIG_FOR_DOC = "BlenderbotSmallConfig" BLENDERBOT_SMALL_START_DOCSTRING = r""" This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a Flax Linen [flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior. Finally, this model supports inherent JAX features such as: - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) Parameters: config ([`BlenderbotSmallConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and `jax.numpy.bfloat16` (on TPUs). This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given `dtype`. **Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.** If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and [`~FlaxPreTrainedModel.to_bf16`]. """ BLENDERBOT_SMALL_INPUTS_DOCSTRING = r""" Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) For translation and summarization training, `decoder_input_ids` should be provided. If no `decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right for denoising pre-training following the paper. decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ BLENDERBOT_SMALL_ENCODE_INPUTS_DOCSTRING = r""" Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ BLENDERBOT_SMALL_DECODE_INPUTS_DOCSTRING = r""" Args: decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) For translation and summarization training, `decoder_input_ids` should be provided. If no `decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right for denoising pre-training following the paper. encoder_outputs (`tuple(tuple(jnp.ndarray)`): Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`): Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ # Copied from transformers.models.bart.modeling_flax_bart.shift_tokens_right def shift_tokens_right(input_ids: jnp.ndarray, pad_token_id: int, decoder_start_token_id: int) -> jnp.ndarray: """ Shift input ids one token to the right. """ shifted_input_ids = jnp.zeros_like(input_ids) shifted_input_ids = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1]) shifted_input_ids = shifted_input_ids.at[:, 0].set(decoder_start_token_id) shifted_input_ids = jnp.where(shifted_input_ids == -100, pad_token_id, shifted_input_ids) return shifted_input_ids # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartAttention with Bart->BlenderbotSmall class FlaxBlenderbotSmallAttention(nn.Module): config: BlenderbotSmallConfig embed_dim: int num_heads: int dropout: float = 0.0 causal: bool = False bias: bool = True dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self) -> None: self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {self.num_heads})." ) dense = partial( nn.Dense, self.embed_dim, use_bias=self.bias, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense() self.out_proj = dense() self.dropout_layer = nn.Dropout(rate=self.dropout) if self.causal: self.causal_mask = make_causal_mask( jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool" ) def _split_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim)) def _merge_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,)) @nn.compact def _concatenate_to_cache(self, key, value, query, attention_mask): """ This function takes projected key, value states from a single input token and concatenates the states to cached states from previous steps. This function is slighly adapted from the official Flax repository: https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252 """ # detect if we're initializing by absence of existing cache data. is_initialized = self.has_variable("cache", "cached_key") cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype) cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype) cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32)) if is_initialized: *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape # update key, value caches with our new 1d spatial slices cur_index = cache_index.value indices = (0,) * len(batch_dims) + (cur_index, 0, 0) key = lax.dynamic_update_slice(cached_key.value, key, indices) value = lax.dynamic_update_slice(cached_value.value, value, indices) cached_key.value = key cached_value.value = value num_updated_cache_vectors = query.shape[1] cache_index.value = cache_index.value + num_updated_cache_vectors # causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements. pad_mask = jnp.broadcast_to( jnp.arange(max_length) < cur_index + num_updated_cache_vectors, tuple(batch_dims) + (1, num_updated_cache_vectors, max_length), ) attention_mask = combine_masks(pad_mask, attention_mask) return key, value, attention_mask def __call__( self, hidden_states: jnp.ndarray, key_value_states: Optional[jnp.ndarray] = None, attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None batch_size = hidden_states.shape[0] # get query proj query_states = self.q_proj(hidden_states) # get key, value proj if is_cross_attention: # cross_attentions key_states = self.k_proj(key_value_states) value_states = self.v_proj(key_value_states) else: # self_attention key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = self._split_heads(query_states) key_states = self._split_heads(key_states) value_states = self._split_heads(value_states) # handle cache prepare causal attention mask if self.causal: query_length, key_length = query_states.shape[1], key_states.shape[1] if self.has_variable("cache", "cached_key"): mask_shift = self.variables["cache"]["cache_index"] max_decoder_length = self.variables["cache"]["cached_key"].shape[1] causal_mask = lax.dynamic_slice( self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length) ) else: causal_mask = self.causal_mask[:, :, :query_length, :key_length] causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:]) # combine masks if needed if attention_mask is not None and self.causal: attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape) attention_mask = combine_masks(attention_mask, causal_mask) elif self.causal: attention_mask = causal_mask elif attention_mask is not None: attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) # During fast autoregressive decoding, we feed one position at a time, # and cache the keys and values step by step. if self.causal and (self.has_variable("cache", "cached_key") or init_cache): key_states, value_states, attention_mask = self._concatenate_to_cache( key_states, value_states, query_states, attention_mask ) # Convert the boolean attention mask to an attention bias. if attention_mask is not None: # attention mask in the form of attention bias attention_bias = lax.select( attention_mask > 0, jnp.full(attention_mask.shape, 0.0).astype(self.dtype), jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype), ) else: attention_bias = None dropout_rng = None if not deterministic and self.dropout > 0.0: dropout_rng = self.make_rng("dropout") attn_weights = dot_product_attention_weights( query_states, key_states, bias=attention_bias, dropout_rng=dropout_rng, dropout_rate=self.dropout, broadcast_dropout=True, deterministic=deterministic, dtype=self.dtype, precision=None, ) attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) attn_output = self._merge_heads(attn_output) attn_output = self.out_proj(attn_output) return attn_output, attn_weights # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartEncoderLayer with Bart->BlenderbotSmall class FlaxBlenderbotSmallEncoderLayer(nn.Module): config: BlenderbotSmallConfig dtype: jnp.dtype = jnp.float32 def setup(self) -> None: self.embed_dim = self.config.d_model self.self_attn = FlaxBlenderbotSmallAttention( config=self.config, embed_dim=self.embed_dim, num_heads=self.config.encoder_attention_heads, dropout=self.config.attention_dropout, dtype=self.dtype, ) self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) self.dropout_layer = nn.Dropout(rate=self.config.dropout) self.activation_fn = ACT2FN[self.config.activation_function] self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout) self.fc1 = nn.Dense( self.config.encoder_ffn_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.fc2 = nn.Dense( self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std) ) self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: residual = hidden_states hidden_states, attn_weights = self.self_attn(hidden_states=hidden_states, attention_mask=attention_mask) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartEncoderLayerCollection with Bart->BlenderbotSmall class FlaxBlenderbotSmallEncoderLayerCollection(nn.Module): config: BlenderbotSmallConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.layers = [ FlaxBlenderbotSmallEncoderLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.encoder_layers) ] self.layerdrop = self.config.encoder_layerdrop def __call__( self, hidden_states, attention_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): all_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None for encoder_layer in self.layers: if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = random.uniform(0, 1) if not deterministic and (dropout_probability < self.layerdrop): # skip the layer layer_outputs = (None, None) else: layer_outputs = encoder_layer( hidden_states, attention_mask, output_attentions, deterministic, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states += (hidden_states,) outputs = (hidden_states, all_hidden_states, all_attentions) if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions ) # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartDecoderLayer with Bart->BlenderbotSmall class FlaxBlenderbotSmallDecoderLayer(nn.Module): config: BlenderbotSmallConfig dtype: jnp.dtype = jnp.float32 def setup(self) -> None: self.embed_dim = self.config.d_model self.self_attn = FlaxBlenderbotSmallAttention( config=self.config, embed_dim=self.embed_dim, num_heads=self.config.decoder_attention_heads, dropout=self.config.attention_dropout, causal=True, dtype=self.dtype, ) self.dropout_layer = nn.Dropout(rate=self.config.dropout) self.activation_fn = ACT2FN[self.config.activation_function] self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout) self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) self.encoder_attn = FlaxBlenderbotSmallAttention( config=self.config, embed_dim=self.embed_dim, num_heads=self.config.decoder_attention_heads, dropout=self.config.attention_dropout, dtype=self.dtype, ) self.encoder_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) self.fc1 = nn.Dense( self.config.decoder_ffn_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.fc2 = nn.Dense( self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std) ) self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: residual = hidden_states # Self Attention hidden_states, self_attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, init_cache=init_cache ) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Cross-Attention Block cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states hidden_states, cross_attn_weights = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, ) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) # Fully Connected residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights, cross_attn_weights) return outputs # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartDecoderLayerCollection with Bart->BlenderbotSmall class FlaxBlenderbotSmallDecoderLayerCollection(nn.Module): config: BlenderbotSmallConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.layers = [ FlaxBlenderbotSmallDecoderLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.decoder_layers) ] self.layerdrop = self.config.decoder_layerdrop def __call__( self, hidden_states, attention_mask, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, deterministic: bool = True, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None for decoder_layer in self.layers: if output_hidden_states: all_hidden_states += (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = random.uniform(0, 1) if not deterministic and (dropout_probability < self.layerdrop): layer_outputs = (None, None, None) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, init_cache=init_cache, output_attentions=output_attentions, deterministic=deterministic, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) outputs = [hidden_states, all_hidden_states, all_self_attns, all_cross_attentions] if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, ) class FlaxBlenderbotSmallEncoder(nn.Module): config: BlenderbotSmallConfig embed_tokens: nn.Embed dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.dropout_layer = nn.Dropout(rate=self.config.dropout) embed_dim = self.config.d_model self.padding_idx = self.config.pad_token_id self.max_source_positions = self.config.max_position_embeddings self.embed_scale = math.sqrt(embed_dim) if self.config.scale_embedding else 1.0 self.embed_positions = nn.Embed( self.config.max_position_embeddings, embed_dim, embedding_init=jax.nn.initializers.normal(self.config.init_std), ) self.layers = FlaxBlenderbotSmallEncoderLayerCollection(self.config, self.dtype) self.layernorm_embedding = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) def __call__( self, input_ids, attention_mask, position_ids, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): input_shape = input_ids.shape input_ids = input_ids.reshape(-1, input_shape[-1]) inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale embed_pos = self.embed_positions(position_ids) hidden_states = inputs_embeds + embed_pos hidden_states = self.layernorm_embedding(hidden_states) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) outputs = self.layers( hidden_states, attention_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: return outputs return FlaxBaseModelOutput( last_hidden_state=outputs.last_hidden_state, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class FlaxBlenderbotSmallDecoder(nn.Module): config: BlenderbotSmallConfig embed_tokens: nn.Embed dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.dropout_layer = nn.Dropout(rate=self.config.dropout) embed_dim = self.config.d_model self.padding_idx = self.config.pad_token_id self.max_target_positions = self.config.max_position_embeddings self.embed_scale = math.sqrt(self.config.d_model) if self.config.scale_embedding else 1.0 self.embed_positions = nn.Embed( self.config.max_position_embeddings, embed_dim, embedding_init=jax.nn.initializers.normal(self.config.init_std), ) self.layers = FlaxBlenderbotSmallDecoderLayerCollection(self.config, self.dtype) self.layernorm_embedding = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) def __call__( self, input_ids, attention_mask, position_ids, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): input_shape = input_ids.shape input_ids = input_ids.reshape(-1, input_shape[-1]) inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale # embed positions positions = self.embed_positions(position_ids) # BlenderbotSmall applies layer norm on inputs_embeds in decoder inputs_embeds = self.layernorm_embedding(inputs_embeds) hidden_states = inputs_embeds + positions hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) outputs = self.layers( hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, deterministic=deterministic, init_cache=init_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: return outputs return FlaxBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=outputs.last_hidden_state, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartModule with Bart->BlenderbotSmall class FlaxBlenderbotSmallModule(nn.Module): config: BlenderbotSmallConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.shared = nn.Embed( self.config.vocab_size, self.config.d_model, embedding_init=jax.nn.initializers.normal(self.config.init_std), dtype=self.dtype, ) self.encoder = FlaxBlenderbotSmallEncoder(self.config, dtype=self.dtype, embed_tokens=self.shared) self.decoder = FlaxBlenderbotSmallDecoder(self.config, dtype=self.dtype, embed_tokens=self.shared) def _get_encoder_module(self): return self.encoder def _get_decoder_module(self): return self.decoder def __call__( self, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, position_ids, decoder_position_ids, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, position_ids=decoder_position_ids, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) if not return_dict: return decoder_outputs + encoder_outputs return FlaxSeq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) class FlaxBlenderbotSmallPreTrainedModel(FlaxPreTrainedModel): config_class = BlenderbotSmallConfig base_model_prefix: str = "model" module_class: nn.Module = None def __init__( self, config: BlenderbotSmallConfig, input_shape: Tuple[int] = (1, 1), seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, **kwargs, ): module = self.module_class(config=config, dtype=dtype, **kwargs) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: # init input tensors input_ids = jnp.zeros(input_shape, dtype="i4") # make sure initialization pass will work for FlaxBlenderbotSmallForSequenceClassificationModule input_ids = input_ids.at[(..., -1)].set(self.config.eos_token_id) attention_mask = jnp.ones_like(input_ids) decoder_input_ids = input_ids decoder_attention_mask = jnp.ones_like(input_ids) batch_size, sequence_length = input_ids.shape position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) decoder_position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} random_params = self.module.init( rngs, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, position_ids, decoder_position_ids, )["params"] if params is not None: random_params = flatten_dict(unfreeze(random_params)) params = flatten_dict(unfreeze(params)) for missing_key in self._missing_keys: params[missing_key] = random_params[missing_key] self._missing_keys = set() return freeze(unflatten_dict(params)) else: return random_params def init_cache(self, batch_size, max_length, encoder_outputs): r""" Args: batch_size (`int`): batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache. max_length (`int`): maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized cache. encoder_outputs (`Union[FlaxBaseModelOutput, tuple(tuple(jnp.ndarray)]`): `encoder_outputs` consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`). `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. """ # init input variables to retrieve cache decoder_input_ids = jnp.ones((batch_size, max_length), dtype="i4") decoder_attention_mask = jnp.ones_like(decoder_input_ids) decoder_position_ids = jnp.broadcast_to( jnp.arange(jnp.atleast_2d(decoder_input_ids).shape[-1]), decoder_input_ids.shape ) def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): decoder_module = module._get_decoder_module() return decoder_module( decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs, ) init_variables = self.module.init( jax.random.PRNGKey(0), decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, decoder_position_ids=decoder_position_ids, encoder_hidden_states=encoder_outputs[0], init_cache=True, method=_decoder_forward, # we only need to call the decoder to init the cache ) return unfreeze(init_variables["cache"]) @add_start_docstrings(BLENDERBOT_SMALL_ENCODE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxBaseModelOutput, config_class=BlenderbotSmallConfig) def encode( self, input_ids: jnp.ndarray, attention_mask: Optional[jnp.ndarray] = None, position_ids: Optional[jnp.ndarray] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Example: ```python >>> from transformers import AutoTokenizer, FlaxBlenderbotSmallForConditionalGeneration >>> model = FlaxBlenderbotSmallForConditionalGeneration.from_pretrained("facebook/blenderbot_small-90M") >>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot_small-90M") >>> text = "My friends are cool but they eat too many carbs." >>> inputs = tokenizer(text, max_length=1024, return_tensors="np") >>> encoder_outputs = model.encode(**inputs) ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict if attention_mask is None: attention_mask = jnp.ones_like(input_ids) if position_ids is None: batch_size, sequence_length = input_ids.shape position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng def _encoder_forward(module, input_ids, attention_mask, position_ids, **kwargs): encode_module = module._get_encoder_module() return encode_module(input_ids, attention_mask, position_ids, **kwargs) return self.module.apply( {"params": params or self.params}, input_ids=jnp.array(input_ids, dtype="i4"), attention_mask=jnp.array(attention_mask, dtype="i4"), position_ids=jnp.array(position_ids, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, method=_encoder_forward, ) @add_start_docstrings(BLENDERBOT_SMALL_DECODE_INPUTS_DOCSTRING) @replace_return_docstrings( output_type=FlaxBaseModelOutputWithPastAndCrossAttentions, config_class=BlenderbotSmallConfig ) def decode( self, decoder_input_ids, encoder_outputs, encoder_attention_mask: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None, past_key_values: dict = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Example: ```python >>> import jax.numpy as jnp >>> from transformers import AutoTokenizer, FlaxBlenderbotSmallForConditionalGeneration >>> model = FlaxBlenderbotSmallForConditionalGeneration.from_pretrained("facebook/blenderbot_small-90M") >>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot_small-90M") >>> text = "My friends are cool but they eat too many carbs." >>> inputs = tokenizer(text, max_length=1024, return_tensors="np") >>> encoder_outputs = model.encode(**inputs) >>> decoder_start_token_id = model.config.decoder_start_token_id >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id >>> outputs = model.decode(decoder_input_ids, encoder_outputs) >>> last_decoder_hidden_states = outputs.last_hidden_state ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict encoder_hidden_states = encoder_outputs[0] if encoder_attention_mask is None: batch_size, sequence_length = encoder_hidden_states.shape[:2] encoder_attention_mask = jnp.ones((batch_size, sequence_length)) batch_size, sequence_length = decoder_input_ids.shape if decoder_attention_mask is None: decoder_attention_mask = jnp.ones((batch_size, sequence_length)) if decoder_position_ids is None: if past_key_values is not None: raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.") decoder_position_ids = jnp.broadcast_to( jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) ) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng inputs = {"params": params or self.params} # if past_key_values are passed then cache is already initialized a private flag init_cache has to be # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that # it can be changed by FlaxBlenderbotSmallAttention module if past_key_values: inputs["cache"] = past_key_values mutable = ["cache"] else: mutable = False def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): decoder_module = module._get_decoder_module() return decoder_module( decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs, ) outputs = self.module.apply( inputs, decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, mutable=mutable, method=_decoder_forward, ) # add updated cache to model output if past_key_values is not None and return_dict: outputs, past = outputs outputs["past_key_values"] = unfreeze(past["cache"]) return outputs elif past_key_values is not None and not return_dict: outputs, past = outputs outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:] return outputs def __call__( self, input_ids: jnp.ndarray, attention_mask: Optional[jnp.ndarray] = None, decoder_input_ids: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None, position_ids: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict # prepare encoder inputs if attention_mask is None: attention_mask = jnp.ones_like(input_ids) if position_ids is None: batch_size, sequence_length = input_ids.shape position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) # prepare decoder inputs if decoder_input_ids is None: decoder_input_ids = shift_tokens_right( input_ids, self.config.pad_token_id, decoder_start_token_id=self.config.decoder_start_token_id ) if decoder_attention_mask is None: decoder_attention_mask = jnp.ones_like(decoder_input_ids) if decoder_position_ids is None: batch_size, sequence_length = decoder_input_ids.shape decoder_position_ids = jnp.broadcast_to( jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) ) # Handle any PRNG if needed rngs = {"dropout": dropout_rng} if dropout_rng is not None else {} return self.module.apply( {"params": params or self.params}, input_ids=jnp.array(input_ids, dtype="i4"), attention_mask=jnp.array(attention_mask, dtype="i4"), position_ids=jnp.array(position_ids, dtype="i4"), decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, ) @add_start_docstrings( "The bare BlenderbotSmall Model transformer outputting raw hidden-states without any specific head on top.", BLENDERBOT_SMALL_START_DOCSTRING, ) class FlaxBlenderbotSmallModel(FlaxBlenderbotSmallPreTrainedModel): config: BlenderbotSmallConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation module_class = FlaxBlenderbotSmallModule append_call_sample_docstring(FlaxBlenderbotSmallModel, _CHECKPOINT_FOR_DOC, FlaxSeq2SeqModelOutput, _CONFIG_FOR_DOC) # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartForConditionalGenerationModule with Bart->BlenderbotSmall class FlaxBlenderbotSmallForConditionalGenerationModule(nn.Module): config: BlenderbotSmallConfig dtype: jnp.dtype = jnp.float32 bias_init: Callable[..., jnp.ndarray] = jax.nn.initializers.zeros def setup(self): self.model = FlaxBlenderbotSmallModule(config=self.config, dtype=self.dtype) self.lm_head = nn.Dense( self.model.shared.num_embeddings, use_bias=False, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.final_logits_bias = self.param("final_logits_bias", self.bias_init, (1, self.model.shared.num_embeddings)) def _get_encoder_module(self): return self.model.encoder def _get_decoder_module(self): return self.model.decoder def __call__( self, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, position_ids, decoder_position_ids, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, position_ids=position_ids, decoder_position_ids=decoder_position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) hidden_states = outputs[0] if self.config.tie_word_embeddings: shared_embedding = self.model.variables["params"]["shared"]["embedding"] lm_logits = self.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states) else: lm_logits = self.lm_head(hidden_states) lm_logits += jax.lax.stop_gradient(self.final_logits_bias.astype(self.dtype)) if not return_dict: output = (lm_logits,) + outputs[1:] return output return FlaxSeq2SeqLMOutput( logits=lm_logits, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, ) @add_start_docstrings( "The BLENDERBOT_SMALL Model with a language modeling head. Can be used for summarization.", BLENDERBOT_SMALL_START_DOCSTRING, ) class FlaxBlenderbotSmallForConditionalGeneration(FlaxBlenderbotSmallPreTrainedModel): module_class = FlaxBlenderbotSmallForConditionalGenerationModule dtype: jnp.dtype = jnp.float32 @add_start_docstrings(BLENDERBOT_SMALL_DECODE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxCausalLMOutputWithCrossAttentions, config_class=BlenderbotSmallConfig) def decode( self, decoder_input_ids, encoder_outputs, encoder_attention_mask: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None, past_key_values: dict = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, deterministic: bool = True, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Example: ```python >>> import jax.numpy as jnp >>> from transformers import AutoTokenizer, FlaxBlenderbotSmallForConditionalGeneration >>> model = FlaxBlenderbotSmallForConditionalGeneration.from_pretrained("facebook/blenderbot_small-90M") >>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot_small-90M") >>> text = "My friends are cool but they eat too many carbs." >>> inputs = tokenizer(text, max_length=1024, return_tensors="np") >>> encoder_outputs = model.encode(**inputs) >>> decoder_start_token_id = model.config.decoder_start_token_id >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id >>> outputs = model.decode(decoder_input_ids, encoder_outputs) >>> logits = outputs.logits ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict encoder_hidden_states = encoder_outputs[0] if encoder_attention_mask is None: batch_size, sequence_length = encoder_hidden_states.shape[:2] encoder_attention_mask = jnp.ones((batch_size, sequence_length)) batch_size, sequence_length = decoder_input_ids.shape if decoder_attention_mask is None: decoder_attention_mask = jnp.ones((batch_size, sequence_length)) if decoder_position_ids is None: if past_key_values is not None: raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.") decoder_position_ids = jnp.broadcast_to( jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) ) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng inputs = {"params": params or self.params} # if past_key_values are passed then cache is already initialized a private flag init_cache has to be # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that # it can be changed by FlaxBlenderbotSmallAttention module if past_key_values: inputs["cache"] = past_key_values mutable = ["cache"] else: mutable = False def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): decoder_module = module._get_decoder_module() outputs = decoder_module( decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs, ) hidden_states = outputs[0] if self.config.tie_word_embeddings: shared_embedding = module.model.variables["params"]["shared"]["embedding"] lm_logits = module.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states) else: lm_logits = module.lm_head(hidden_states) lm_logits += module.final_logits_bias.astype(self.dtype) return lm_logits, outputs outputs = self.module.apply( inputs, decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, rngs=rngs, mutable=mutable, method=_decoder_forward, ) if past_key_values is None: lm_logits, decoder_outputs = outputs else: (lm_logits, decoder_outputs), past = outputs if return_dict: outputs = FlaxCausalLMOutputWithCrossAttentions( logits=lm_logits, hidden_states=decoder_outputs.hidden_states, attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, ) else: outputs = (lm_logits,) + decoder_outputs[1:] # add updated cache to model output if past_key_values is not None and return_dict: outputs["past_key_values"] = unfreeze(past["cache"]) return outputs elif past_key_values is not None and not return_dict: outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:] return outputs def prepare_inputs_for_generation( self, decoder_input_ids, max_length, attention_mask: Optional[jnp.DeviceArray] = None, decoder_attention_mask: Optional[jnp.DeviceArray] = None, encoder_outputs=None, **kwargs, ): # initializing the cache batch_size, seq_length = decoder_input_ids.shape past_key_values = self.init_cache(batch_size, max_length, encoder_outputs) # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length. # But since the decoder uses a causal mask, those positions are masked anyways. # Thus we can create a single static attention_mask here, which is more efficient for compilation extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4") if decoder_attention_mask is not None: position_ids = decoder_attention_mask.cumsum(axis=-1) - 1 extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, decoder_attention_mask, (0, 0)) else: position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length)) return { "past_key_values": past_key_values, "encoder_outputs": encoder_outputs, "encoder_attention_mask": attention_mask, "decoder_attention_mask": extended_attention_mask, "decoder_position_ids": position_ids, } def update_inputs_for_generation(self, model_outputs, model_kwargs): model_kwargs["past_key_values"] = model_outputs.past_key_values model_kwargs["decoder_position_ids"] = model_kwargs["decoder_position_ids"][:, -1:] + 1 return model_kwargs FLAX_BLENDERBOT_SMALL_CONDITIONAL_GENERATION_DOCSTRING = """ Returns: Summarization example: ```py >>> from transformers import AutoTokenizer, FlaxBlenderbotSmallForConditionalGeneration >>> model = FlaxBlenderbotSmallForConditionalGeneration.from_pretrained("facebook/blenderbot_small-90M") >>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot_small-90M") >>> ARTICLE_TO_SUMMARIZE = "My friends are cool but they eat too many carbs." >>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors="np") >>> # Generate Summary >>> summary_ids = model.generate(inputs["input_ids"]).sequences >>> print(tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)) ``` Mask filling example: ```py >>> from transformers import AutoTokenizer, FlaxBlenderbotSmallForConditionalGeneration >>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot_small-90M") >>> TXT = "My friends are <mask> but they eat too many carbs." >>> model = FlaxBlenderbotSmallForConditionalGeneration.from_pretrained("facebook/blenderbot_small-90M") >>> input_ids = tokenizer([TXT], return_tensors="np")["input_ids"] >>> logits = model(input_ids).logits >>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item() >>> probs = jax.nn.softmax(logits[0, masked_index], axis=0) >>> values, predictions = jax.lax.top_k(probs) >>> tokenizer.decode(predictions).split() ``` """ overwrite_call_docstring( FlaxBlenderbotSmallForConditionalGeneration, BLENDERBOT_SMALL_INPUTS_DOCSTRING + FLAX_BLENDERBOT_SMALL_CONDITIONAL_GENERATION_DOCSTRING, ) append_replace_return_docstrings( FlaxBlenderbotSmallForConditionalGeneration, output_type=FlaxSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/blenderbot_small/configuration_blenderbot_small.py
# coding=utf-8 # Copyright 2021 The Facebook, Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ BlenderbotSmall model configuration""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeq2SeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging logger = logging.get_logger(__name__) BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP = { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class BlenderbotSmallConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`BlenderbotSmallModel`]. It is used to instantiate an BlenderbotSmall model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the BlenderbotSmall [facebook/blenderbot_small-90M](https://huggingface.co/facebook/blenderbot_small-90M) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 50265): Vocabulary size of the BlenderbotSmall model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`BlenderbotSmallModel`] or [`TFBlenderbotSmallModel`]. d_model (`int`, *optional*, defaults to 512): Dimensionality of the layers and the pooler layer. encoder_layers (`int`, *optional*, defaults to 8): Number of encoder layers. decoder_layers (`int`, *optional*, defaults to 8): Number of decoder layers. encoder_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. decoder_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer decoder. decoder_ffn_dim (`int`, *optional*, defaults to 2048): Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. encoder_ffn_dim (`int`, *optional*, defaults to 2048): Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. activation_function (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. activation_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for activations inside the fully connected layer. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). init_std (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. encoder_layerdrop (`float`, *optional*, defaults to 0.0): The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. decoder_layerdrop (`float`, *optional*, defaults to 0.0): The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. scale_embedding (`bool`, *optional*, defaults to `False`): Scale embeddings by diving by sqrt(d_model). use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models) forced_eos_token_id (`int`, *optional*, defaults to 2): The id of the token to force as the last generated token when `max_length` is reached. Usually set to `eos_token_id`. Example: ```python >>> from transformers import BlenderbotSmallConfig, BlenderbotSmallModel >>> # Initializing a BlenderbotSmall facebook/blenderbot_small-90M style configuration >>> configuration = BlenderbotSmallConfig() >>> # Initializing a model (with random weights) from the facebook/blenderbot_small-90M style configuration >>> model = BlenderbotSmallModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "blenderbot-small" keys_to_ignore_at_inference = ["past_key_values"] attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self, vocab_size=50265, max_position_embeddings=512, encoder_layers=8, encoder_ffn_dim=2048, encoder_attention_heads=16, decoder_layers=8, decoder_ffn_dim=2048, decoder_attention_heads=16, encoder_layerdrop=0.0, decoder_layerdrop=0.0, use_cache=True, is_encoder_decoder=True, activation_function="gelu", d_model=512, dropout=0.1, attention_dropout=0.0, activation_dropout=0.0, init_std=0.02, decoder_start_token_id=1, scale_embedding=False, pad_token_id=0, bos_token_id=1, eos_token_id=2, forced_eos_token_id=2, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.d_model = d_model self.encoder_ffn_dim = encoder_ffn_dim self.encoder_layers = encoder_layers self.encoder_attention_heads = encoder_attention_heads self.decoder_ffn_dim = decoder_ffn_dim self.decoder_layers = decoder_layers self.decoder_attention_heads = decoder_attention_heads self.dropout = dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.activation_function = activation_function self.init_std = init_std self.encoder_layerdrop = encoder_layerdrop self.decoder_layerdrop = decoder_layerdrop self.use_cache = use_cache self.num_hidden_layers = encoder_layers self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, is_encoder_decoder=is_encoder_decoder, decoder_start_token_id=decoder_start_token_id, forced_eos_token_id=forced_eos_token_id, **kwargs, ) # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig class BlenderbotSmallOnnxConfig(OnnxSeq2SeqConfigWithPast): @property def inputs(self) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: common_inputs = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: common_inputs["decoder_input_ids"] = {0: "batch"} common_inputs["decoder_attention_mask"] = {0: "batch", 1: "past_decoder_sequence + sequence"} else: common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"} common_inputs["decoder_attention_mask"] = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(common_inputs, direction="inputs") elif self.task == "causal-lm": # TODO: figure this case out. common_inputs = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: num_encoder_layers, _ = self.num_layers for i in range(num_encoder_layers): common_inputs[f"past_key_values.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"} common_inputs[f"past_key_values.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"} else: common_inputs = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def outputs(self) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: common_outputs = super().outputs else: common_outputs = super(OnnxConfigWithPast, self).outputs if self.use_past: num_encoder_layers, _ = self.num_layers for i in range(num_encoder_layers): common_outputs[f"present.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"} common_outputs[f"present.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def _generate_dummy_inputs_for_default_and_seq2seq_lm( self, tokenizer: PreTrainedTokenizer, batch_size: int = -1, seq_length: int = -1, is_pair: bool = False, framework: Optional[TensorType] = None, ) -> Mapping[str, Any]: encoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( tokenizer, batch_size, seq_length, is_pair, framework ) # Generate decoder inputs decoder_seq_length = seq_length if not self.use_past else 1 decoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( tokenizer, batch_size, decoder_seq_length, is_pair, framework ) decoder_inputs = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} common_inputs = dict(**encoder_inputs, **decoder_inputs) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") else: import torch batch, encoder_seq_length = common_inputs["input_ids"].shape decoder_seq_length = common_inputs["decoder_input_ids"].shape[1] num_encoder_attention_heads, num_decoder_attention_heads = self.num_attention_heads encoder_shape = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) decoder_past_length = decoder_seq_length + 3 decoder_shape = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) common_inputs["decoder_attention_mask"] = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(batch, decoder_past_length)], dim=1 ) common_inputs["past_key_values"] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered num_encoder_layers, num_decoder_layers = self.num_layers min_num_layers = min(num_encoder_layers, num_decoder_layers) max_num_layers = max(num_encoder_layers, num_decoder_layers) - min_num_layers remaining_side_name = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(min_num_layers): common_inputs["past_key_values"].append( ( torch.zeros(decoder_shape), torch.zeros(decoder_shape), torch.zeros(encoder_shape), torch.zeros(encoder_shape), ) ) # TODO: test this. shape = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(min_num_layers, max_num_layers): common_inputs["past_key_values"].append((torch.zeros(shape), torch.zeros(shape))) return common_inputs def _generate_dummy_inputs_for_causal_lm( self, tokenizer: PreTrainedTokenizer, batch_size: int = -1, seq_length: int = -1, is_pair: bool = False, framework: Optional[TensorType] = None, ) -> Mapping[str, Any]: common_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( tokenizer, batch_size, seq_length, is_pair, framework ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") else: import torch batch, seqlen = common_inputs["input_ids"].shape # Not using the same length for past_key_values past_key_values_length = seqlen + 2 num_encoder_layers, _ = self.num_layers num_encoder_attention_heads, _ = self.num_attention_heads past_shape = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) mask_dtype = common_inputs["attention_mask"].dtype common_inputs["attention_mask"] = torch.cat( [common_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1 ) common_inputs["past_key_values"] = [ (torch.zeros(past_shape), torch.zeros(past_shape)) for _ in range(num_encoder_layers) ] return common_inputs def _generate_dummy_inputs_for_sequence_classification_and_question_answering( self, tokenizer: PreTrainedTokenizer, batch_size: int = -1, seq_length: int = -1, is_pair: bool = False, framework: Optional[TensorType] = None, ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX batch_size = compute_effective_axis_dimension( batch_size, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX token_to_add = tokenizer.num_special_tokens_to_add(is_pair) seq_length = compute_effective_axis_dimension( seq_length, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=token_to_add ) # Generate dummy inputs according to compute batch and sequence dummy_input = [" ".join([tokenizer.unk_token]) * seq_length] * batch_size common_inputs = dict(tokenizer(dummy_input, return_tensors=framework)) return common_inputs def generate_dummy_inputs( self, tokenizer: PreTrainedTokenizer, batch_size: int = -1, seq_length: int = -1, is_pair: bool = False, framework: Optional[TensorType] = None, ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: common_inputs = self._generate_dummy_inputs_for_default_and_seq2seq_lm( tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework ) elif self.task == "causal-lm": common_inputs = self._generate_dummy_inputs_for_causal_lm( tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework ) else: common_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework ) return common_inputs def _flatten_past_key_values_(self, flattened_output, name, idx, t): if self.task in ["default", "seq2seq-lm"]: flattened_output = super()._flatten_past_key_values_(flattened_output, name, idx, t) else: flattened_output = super(OnnxSeq2SeqConfigWithPast, self)._flatten_past_key_values_( flattened_output, name, idx, t )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/blenderbot_small/tokenization_blenderbot_small.py
# coding=utf-8 # Copyright 2021 The Facebook Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization class for BlenderbotSmall.""" import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json" }, "merges_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt" }, "tokenizer_config_file": { "facebook/blenderbot_small-90M": ( "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json" ) }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {"facebook/blenderbot_small-90M": 512} def get_pairs(word): """ Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char pairs = set(pairs) return pairs class BlenderbotSmallTokenizer(PreTrainedTokenizer): """ Constructs a Blenderbot-90M tokenizer based on BPE (Byte-Pair-Encoding) This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to the superclass for more information regarding methods. Args: vocab_file (`str`): File containing the vocabulary. merges_file (`str`): Path to the merges file. bos_token (`str`, *optional*, defaults to `"__start__"`): The beginning of sentence token. eos_token (`str`, *optional*, defaults to `"__end__"`): The end of sentence token. unk_token (`str`, *optional*, defaults to `"__unk__"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"__pad__"`): The token used for padding, for example when batching sequences of different lengths. **kwargs Additional keyword arguments passed along to [`PreTrainedTokenizer`] """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, merges_file, bos_token="__start__", eos_token="__end__", unk_token="__unk__", pad_token="__null__", **kwargs, ): super().__init__(unk_token=unk_token, bos_token=bos_token, eos_token=eos_token, pad_token=pad_token, **kwargs) with open(vocab_file, encoding="utf-8") as vocab_handle: self.encoder = json.load(vocab_handle) self.decoder = {v: k for k, v in self.encoder.items()} with open(merges_file, encoding="utf-8") as merges_handle: merges = merges_handle.read().split("\n")[1:-1] merges = [tuple(merge.split()) for merge in merges] self.bpe_ranks = dict(zip(merges, range(len(merges)))) self.cache = {} @property def vocab_size(self) -> int: return len(self.encoder) def get_vocab(self) -> Dict: return dict(self.encoder, **self.added_tokens_encoder) def bpe(self, token: str) -> str: if token in self.cache: return self.cache[token] token = re.sub("([.,!?()])", r" \1", token) token = re.sub("(')", r" \1 ", token) token = re.sub(r"\s{2,}", " ", token) if "\n" in token: token = token.replace("\n", " __newln__") tokens = token.split(" ") words = [] for token in tokens: if not len(token): continue token = token.lower() word = tuple(token) word = tuple(list(word[:-1]) + [word[-1] + "</w>"]) pairs = get_pairs(word) if not pairs: words.append(token) continue while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) new_word.extend(word[i:j]) i = j except ValueError: new_word.extend(word[i:]) break if word[i] == first and i < len(word) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = "@@ ".join(word) word = word[:-4] self.cache[token] = word words.append(word) return " ".join(words) def _tokenize(self, text: str) -> List[str]: """Split a string into tokens using BPE.""" split_tokens = [] words = re.findall(r"\S+\n?", text) for token in words: split_tokens.extend(list(self.bpe(token).split(" "))) return split_tokens def _convert_token_to_id(self, token: str) -> int: """Converts a token to an id using the vocab.""" token = token.lower() return self.encoder.get(token, self.encoder.get(self.unk_token)) def _convert_id_to_token(self, index: int) -> str: """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index, self.unk_token) def convert_tokens_to_string(self, tokens: List[str]) -> str: """Converts a sequence of tokens in a single string.""" out_string = " ".join(tokens).replace("@@ ", "").strip() return out_string def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) merge_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") index = 0 with open(merge_file, "w", encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) index = token_index writer.write(" ".join(bpe_tokens) + "\n") index += 1 return vocab_file, merge_file
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/blenderbot_small/modeling_blenderbot_small.py
# coding=utf-8 # Copyright 2021 The Facebook, Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch BlenderbotSmall model.""" import copy import math from typing import List, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPastAndCrossAttentions, CausalLMOutputWithCrossAttentions, Seq2SeqLMOutput, Seq2SeqModelOutput, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_blenderbot_small import BlenderbotSmallConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "BlenderbotSmallConfig" BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST = [ "facebook/blenderbot_small-90M", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small ] # Copied from transformers.models.bart.modeling_bart.shift_tokens_right def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int): """ Shift input ids one token to the right. """ shifted_input_ids = input_ids.new_zeros(input_ids.shape) shifted_input_ids[:, 1:] = input_ids[:, :-1].clone() shifted_input_ids[:, 0] = decoder_start_token_id if pad_token_id is None: raise ValueError("self.model.config.pad_token_id has to be defined.") # replace possible -100 values in labels by `pad_token_id` shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) return shifted_input_ids # Copied from transformers.models.bart.modeling_bart._make_causal_mask def _make_causal_mask( input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0 ): """ Make causal mask used for bi-directional self-attention. """ bsz, tgt_len = input_ids_shape mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device) mask_cond = torch.arange(mask.size(-1), device=device) mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) mask = mask.to(dtype) if past_key_values_length > 0: mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1) return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length) # Copied from transformers.models.bart.modeling_bart._expand_mask def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): """ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. """ bsz, src_len = mask.size() tgt_len = tgt_len if tgt_len is not None else src_len expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) inverted_mask = 1.0 - expanded_mask return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min) # Copied from transformers.models.blenderbot.modeling_blenderbot.BlenderbotLearnedPositionalEmbedding with Blenderbot->BlenderbotSmall class BlenderbotSmallLearnedPositionalEmbedding(nn.Embedding): """ This module learns positional embeddings up to a fixed maximum size. """ def __init__(self, num_embeddings: int, embedding_dim: int): super().__init__(num_embeddings, embedding_dim) def forward(self, input_ids_shape: torch.Size, past_key_values_length: int = 0): """`input_ids_shape` is expected to be [bsz x seqlen].""" bsz, seq_len = input_ids_shape[:2] positions = torch.arange( past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device ) return super().forward(positions) # Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->BlenderbotSmall class BlenderbotSmallAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj # `past_key_value[0].shape[2] == key_value_states.shape[1]` # is checking that the `sequence_length` of the `past_key_value` is the same as # the provided `key_value_states` to support prefix tuning if ( is_cross_attention and past_key_value is not None and past_key_value[0].shape[2] == key_value_states.shape[1] ): # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.reshape(*proj_shape) value_states = value_states.reshape(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if layer_head_mask is not None: if layer_head_mask.size() != (self.num_heads,): raise ValueError( f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" f" {layer_head_mask.size()}" ) attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to be reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned across GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped, past_key_value # Copied from transformers.models.bart.modeling_bart.BartEncoderLayer with Bart->BlenderbotSmall class BlenderbotSmallEncoderLayer(nn.Module): def __init__(self, config: BlenderbotSmallConfig): super().__init__() self.embed_dim = config.d_model self.self_attn = BlenderbotSmallAttention( embed_dim=self.embed_dim, num_heads=config.encoder_attention_heads, dropout=config.attention_dropout, ) self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim) self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim) self.final_layer_norm = nn.LayerNorm(self.embed_dim) def forward( self, hidden_states: torch.FloatTensor, attention_mask: torch.FloatTensor, layer_head_mask: torch.FloatTensor, output_attentions: Optional[bool] = False, ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size `(encoder_attention_heads,)`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states, attn_weights, _ = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) if hidden_states.dtype == torch.float16 and ( torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any() ): clamp_value = torch.finfo(hidden_states.dtype).max - 1000 hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs # Copied from transformers.models.bart.modeling_bart.BartDecoderLayer with Bart->BlenderbotSmall class BlenderbotSmallDecoderLayer(nn.Module): def __init__(self, config: BlenderbotSmallConfig): super().__init__() self.embed_dim = config.d_model self.self_attn = BlenderbotSmallAttention( embed_dim=self.embed_dim, num_heads=config.decoder_attention_heads, dropout=config.attention_dropout, is_decoder=True, ) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.encoder_attn = BlenderbotSmallAttention( self.embed_dim, config.decoder_attention_heads, dropout=config.attention_dropout, is_decoder=True, ) self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim) self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim) self.final_layer_norm = nn.LayerNorm(self.embed_dim) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, cross_attn_layer_head_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = True, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. encoder_hidden_states (`torch.FloatTensor`): cross attention input to the layer of shape `(batch, seq_len, embed_dim)` encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size `(encoder_attention_heads,)`. cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of size `(decoder_attention_heads,)`. past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states # Self Attention # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None # add present self-attn cache to positions 1,2 of present_key_value tuple hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, past_key_value=self_attn_past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Cross-Attention Block cross_attn_present_key_value = None cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, layer_head_mask=cross_attn_layer_head_mask, past_key_value=cross_attn_past_key_value, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) # add cross-attn to positions 3,4 of present_key_value tuple present_key_value = present_key_value + cross_attn_present_key_value # Fully Connected residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights, cross_attn_weights) if use_cache: outputs += (present_key_value,) return outputs class BlenderbotSmallPreTrainedModel(PreTrainedModel): config_class = BlenderbotSmallConfig base_model_prefix = "model" supports_gradient_checkpointing = True def _init_weights(self, module): std = self.config.init_std if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, (BlenderbotSmallDecoder, BlenderbotSmallEncoder)): module.gradient_checkpointing = value @property def dummy_inputs(self): pad_token = self.config.pad_token_id input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]], device=self.device) dummy_inputs = { "attention_mask": input_ids.ne(pad_token), "input_ids": input_ids, "decoder_input_ids": input_ids, } return dummy_inputs BLENDERBOT_SMALL_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`BlenderbotSmallConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ BLENDERBOT_SMALL_GENERATION_EXAMPLE = r""" Conversation example: ```python >>> from transformers import AutoTokenizer, BlenderbotSmallForConditionalGeneration >>> mname = "facebook/blenderbot_small-90M" >>> model = BlenderbotSmallForConditionalGeneration.from_pretrained(mname) >>> tokenizer = AutoTokenizer.from_pretrained(mname) >>> UTTERANCE = "My friends are cool but they eat too many carbs." >>> print("Human: ", UTTERANCE) Human: My friends are cool but they eat too many carbs. >>> inputs = tokenizer([UTTERANCE], return_tensors="pt") >>> reply_ids = model.generate(**inputs) >>> print("Bot: ", tokenizer.batch_decode(reply_ids, skip_special_tokens=True)[0]) Bot: what kind of carbs do they eat? i don't know much about carbs. >>> REPLY = "I'm not sure" >>> print("Human: ", REPLY) Human: I'm not sure >>> NEXT_UTTERANCE = ( ... "My friends are cool but they eat too many carbs.__end__ __start__what kind of carbs do they eat? " ... "i don't know much about carbs__end__ " ... "__start__ I'm not sure." ... ) >>> inputs = tokenizer([NEXT_UTTERANCE], return_tensors="pt") >>> next_reply_ids = model.generate(**inputs) >>> print("Bot: ", tokenizer.batch_decode(next_reply_ids, skip_special_tokens=True)[0]) Bot: they eat a lot of carbs. carbs are high in fat, protein, and fats. ``` """ BLENDERBOT_SMALL_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) BlenderbotSmall uses the `bos_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be input (see `past_key_values`). This is useful if you want more control over how to convert `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value of `inputs_embeds`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ class BlenderbotSmallEncoder(BlenderbotSmallPreTrainedModel): """ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a [`BlenderbotSmallEncoderLayer`]. Args: config: BlenderbotSmallConfig embed_tokens (nn.Embedding): output embedding """ def __init__(self, config: BlenderbotSmallConfig, embed_tokens: Optional[nn.Embedding] = None): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.encoder_layerdrop embed_dim = config.d_model self.padding_idx = config.pad_token_id self.max_source_positions = config.max_position_embeddings self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0 if embed_tokens is not None: self.embed_tokens = embed_tokens else: self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx) self.embed_positions = BlenderbotSmallLearnedPositionalEmbedding( config.max_position_embeddings, embed_dim, ) self.layers = nn.ModuleList([BlenderbotSmallEncoderLayer(config) for _ in range(config.encoder_layers)]) self.layernorm_embedding = nn.LayerNorm(embed_dim) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def forward( self, input_ids=None, attention_mask=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale embed_pos = self.embed_positions(input_shape) hidden_states = inputs_embeds + embed_pos hidden_states = self.layernorm_embedding(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) # expand attention_mask if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] attention_mask = _expand_mask(attention_mask, inputs_embeds.dtype) encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None # check if head_mask has a correct number of layers specified if desired if head_mask is not None: if head_mask.size()[0] != len(self.layers): raise ValueError( f"The head_mask should be specified for {len(self.layers)} layers, but it is for" f" {head_mask.size()[0]}." ) for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) to_drop = False if self.training: dropout_probability = torch.rand([]) if dropout_probability < self.layerdrop: # skip the layer to_drop = True if to_drop: layer_outputs = (None, None) else: if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(encoder_layer), hidden_states, attention_mask, (head_mask[idx] if head_mask is not None else None), ) else: layer_outputs = encoder_layer( hidden_states, attention_mask, layer_head_mask=(head_mask[idx] if head_mask is not None else None), output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) class BlenderbotSmallDecoder(BlenderbotSmallPreTrainedModel): """ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`BlenderbotSmallDecoderLayer`] Args: config: BlenderbotSmallConfig embed_tokens (nn.Embedding): output embedding """ def __init__(self, config: BlenderbotSmallConfig, embed_tokens: Optional[nn.Embedding] = None): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.decoder_layerdrop self.padding_idx = config.pad_token_id self.max_target_positions = config.max_position_embeddings self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0 if embed_tokens is not None: self.embed_tokens = embed_tokens else: self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx) self.embed_positions = BlenderbotSmallLearnedPositionalEmbedding( config.max_position_embeddings, config.d_model, ) self.layers = nn.ModuleList([BlenderbotSmallDecoderLayer(config) for _ in range(config.decoder_layers)]) self.layernorm_embedding = nn.LayerNorm(config.d_model) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length): # create causal mask # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] combined_attention_mask = None if input_shape[-1] > 1: combined_attention_mask = _make_causal_mask( input_shape, inputs_embeds.dtype, device=inputs_embeds.device, past_key_values_length=past_key_values_length, ) if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to( inputs_embeds.device ) combined_attention_mask = ( expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask ) return combined_attention_mask def forward( self, input_ids=None, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, head_mask=None, cross_attn_head_mask=None, past_key_values=None, inputs_embeds=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing cross-attention on hidden heads. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale attention_mask = self._prepare_decoder_attention_mask( attention_mask, input_shape, inputs_embeds, past_key_values_length ) # expand encoder attention mask if encoder_hidden_states is not None and encoder_attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] encoder_attention_mask = _expand_mask(encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]) # embed positions positions = self.embed_positions(input_shape, past_key_values_length) # BlenderbotSmall applies layer norm on hidden_states inputs_embeds = self.layernorm_embedding(inputs_embeds) hidden_states = inputs_embeds + positions hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None next_decoder_cache = () if use_cache else None # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): if attn_mask is not None: if attn_mask.size()[0] != len(self.layers): raise ValueError( f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" f" {head_mask.size()[0]}." ) for idx, decoder_layer in enumerate(self.layers): # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) if output_hidden_states: all_hidden_states += (hidden_states,) if self.training: dropout_probability = torch.rand([]) if dropout_probability < self.layerdrop: continue past_key_value = past_key_values[idx] if past_key_values is not None else None if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): # None for past_key_value return module(*inputs, output_attentions, use_cache) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(decoder_layer), hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, head_mask[idx] if head_mask is not None else None, cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, None, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, layer_head_mask=(head_mask[idx] if head_mask is not None else None), cross_attn_layer_head_mask=( cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None ), past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[3 if output_attentions else 1],) if output_attentions: all_self_attns += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if not return_dict: return tuple( v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, ) @add_start_docstrings( "The bare BlenderbotSmall Model outputting raw hidden-states without any specific head on top.", BLENDERBOT_SMALL_START_DOCSTRING, ) class BlenderbotSmallModel(BlenderbotSmallPreTrainedModel): _tied_weights_keys = ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight"] def __init__(self, config: BlenderbotSmallConfig): super().__init__(config) padding_idx, vocab_size = config.pad_token_id, config.vocab_size self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx) self.encoder = BlenderbotSmallEncoder(config, self.shared) self.decoder = BlenderbotSmallDecoder(config, self.shared) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.shared def set_input_embeddings(self, value): self.shared = value self.encoder.embed_tokens = self.shared self.decoder.embed_tokens = self.shared def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder @add_start_docstrings_to_model_forward(BLENDERBOT_SMALL_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, decoder_head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Union[Tuple, BaseModelOutput]] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.Tensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]: r""" Returns: Example: ```python >>> from transformers import AutoTokenizer, BlenderbotSmallModel >>> model = BlenderbotSmallModel.from_pretrained("facebook/blenderbot_small-90M") >>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot_small-90M") >>> inputs = tokenizer("Studies have been shown that owning a dog is good for you", return_tensors="pt") >>> decoder_inputs = tokenizer("Studies show that", return_tensors="pt") # Batch size 1 >>> outputs = model(input_ids=inputs.input_ids, decoder_input_ids=decoder_inputs.input_ids) >>> last_hidden_states = outputs.last_hidden_state >>> list(last_hidden_states.shape) [1, 3, 512] ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if encoder_outputs is None: encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=attention_mask, head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: return decoder_outputs + encoder_outputs return Seq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) @add_start_docstrings( "The BlenderbotSmall Model with a language modeling head. Can be used for summarization.", BLENDERBOT_SMALL_START_DOCSTRING, ) class BlenderbotSmallForConditionalGeneration(BlenderbotSmallPreTrainedModel): base_model_prefix = "model" _keys_to_ignore_on_load_missing = ["final_logits_bias"] _tied_weights_keys = ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "lm_head.weight"] def __init__(self, config: BlenderbotSmallConfig): super().__init__(config) self.model = BlenderbotSmallModel(config) self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings))) self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False) # Initialize weights and apply final processing self.post_init() def get_encoder(self): return self.model.get_encoder() def get_decoder(self): return self.model.get_decoder() def resize_token_embeddings(self, new_num_tokens: int) -> nn.Embedding: new_embeddings = super().resize_token_embeddings(new_num_tokens) self._resize_final_logits_bias(new_num_tokens) return new_embeddings def _resize_final_logits_bias(self, new_num_tokens: int) -> None: old_num_tokens = self.final_logits_bias.shape[-1] if new_num_tokens <= old_num_tokens: new_bias = self.final_logits_bias[:, :new_num_tokens] else: extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens), device=self.final_logits_bias.device) new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1) self.register_buffer("final_logits_bias", new_bias) def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings @add_start_docstrings_to_model_forward(BLENDERBOT_SMALL_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) @add_end_docstrings(BLENDERBOT_SMALL_GENERATION_EXAMPLE) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, decoder_head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Union[Tuple, BaseModelOutput]] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.Tensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Returns: """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: if use_cache: logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.") use_cache = False if decoder_input_ids is None and decoder_inputs_embeds is None: decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) outputs = self.model( input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, encoder_outputs=encoder_outputs, decoder_attention_mask=decoder_attention_mask, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) lm_logits = self.lm_head(outputs[0]) + self.final_logits_bias masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (lm_logits,) + outputs[1:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return Seq2SeqLMOutput( loss=masked_lm_loss, logits=lm_logits, past_key_values=outputs.past_key_values, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, ) def prepare_inputs_for_generation( self, decoder_input_ids, past_key_values=None, attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, use_cache=None, encoder_outputs=None, **kwargs, ): # cut decoder_input_ids if past is used if past_key_values is not None: decoder_input_ids = decoder_input_ids[:, -1:] return { "input_ids": None, # encoder_outputs is defined. input_ids not needed "encoder_outputs": encoder_outputs, "past_key_values": past_key_values, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, "use_cache": use_cache, # change this to avoid caching (presumably for debugging) } @staticmethod def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: # cached cross_attention states don't have to be reordered -> they are always the same reordered_past += ( tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:], ) return reordered_past # Copied from transformers.models.bart.modeling_bart.BartDecoderWrapper with Bart->BlenderbotSmall class BlenderbotSmallDecoderWrapper(BlenderbotSmallPreTrainedModel): """ This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is used in combination with the [`EncoderDecoderModel`] framework. """ def __init__(self, config): super().__init__(config) self.decoder = BlenderbotSmallDecoder(config) def forward(self, *args, **kwargs): return self.decoder(*args, **kwargs) # Copied from transformers.models.bart.modeling_bart.BartForCausalLM with Bart->BlenderbotSmall, facebook/bart-base->facebook/blenderbot_small-90M class BlenderbotSmallForCausalLM(BlenderbotSmallPreTrainedModel): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config): config = copy.deepcopy(config) config.is_decoder = True config.is_encoder_decoder = False super().__init__(config) self.model = BlenderbotSmallDecoderWrapper(config) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.decoder.embed_tokens def set_input_embeddings(self, value): self.model.decoder.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model.decoder = decoder def get_decoder(self): return self.model.decoder @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]: r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional tensors are only required when the model is used as a decoder in a Sequence to Sequence model. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. Returns: Example: ```python >>> from transformers import AutoTokenizer, BlenderbotSmallForCausalLM >>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot_small-90M") >>> model = BlenderbotSmallForCausalLM.from_pretrained( ... "facebook/blenderbot_small-90M", add_cross_attention=False ... ) >>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder." >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> logits = outputs.logits >>> expected_shape = [1, inputs.input_ids.shape[-1], model.config.vocab_size] >>> list(logits.shape) == expected_shape True ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model.decoder( input_ids=input_ids, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, head_mask=head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) logits = self.lm_head(outputs[0]) loss = None if labels is not None: labels = labels.to(logits.device) loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithCrossAttentions( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, use_cache=None, **kwargs ): # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly if attention_mask is None: attention_mask = input_ids.new_ones(input_ids.shape) if past_key_values: input_ids = input_ids[:, -1:] # first step, decoder_cached_states are empty return { "input_ids": input_ids, # encoder_outputs is defined. input_ids not needed "attention_mask": attention_mask, "past_key_values": past_key_values, "use_cache": use_cache, } @staticmethod def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),) return reordered_past
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/cvt/configuration_cvt.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ CvT model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) CVT_PRETRAINED_CONFIG_ARCHIVE_MAP = { "microsoft/cvt-13": "https://huggingface.co/microsoft/cvt-13/resolve/main/config.json", # See all Cvt models at https://huggingface.co/models?filter=cvt } class CvtConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`CvtModel`]. It is used to instantiate a CvT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the CvT [microsoft/cvt-13](https://huggingface.co/microsoft/cvt-13) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: num_channels (`int`, *optional*, defaults to 3): The number of input channels. patch_sizes (`List[int]`, *optional*, defaults to `[7, 3, 3]`): The kernel size of each encoder's patch embedding. patch_stride (`List[int]`, *optional*, defaults to `[4, 2, 2]`): The stride size of each encoder's patch embedding. patch_padding (`List[int]`, *optional*, defaults to `[2, 1, 1]`): The padding size of each encoder's patch embedding. embed_dim (`List[int]`, *optional*, defaults to `[64, 192, 384]`): Dimension of each of the encoder blocks. num_heads (`List[int]`, *optional*, defaults to `[1, 3, 6]`): Number of attention heads for each attention layer in each block of the Transformer encoder. depth (`List[int]`, *optional*, defaults to `[1, 2, 10]`): The number of layers in each encoder block. mlp_ratios (`List[float]`, *optional*, defaults to `[4.0, 4.0, 4.0, 4.0]`): Ratio of the size of the hidden layer compared to the size of the input layer of the Mix FFNs in the encoder blocks. attention_drop_rate (`List[float]`, *optional*, defaults to `[0.0, 0.0, 0.0]`): The dropout ratio for the attention probabilities. drop_rate (`List[float]`, *optional*, defaults to `[0.0, 0.0, 0.0]`): The dropout ratio for the patch embeddings probabilities. drop_path_rate (`List[float]`, *optional*, defaults to `[0.0, 0.0, 0.1]`): The dropout probability for stochastic depth, used in the blocks of the Transformer encoder. qkv_bias (`List[bool]`, *optional*, defaults to `[True, True, True]`): The bias bool for query, key and value in attentions cls_token (`List[bool]`, *optional*, defaults to `[False, False, True]`): Whether or not to add a classification token to the output of each of the last 3 stages. qkv_projection_method (`List[string]`, *optional*, defaults to ["dw_bn", "dw_bn", "dw_bn"]`): The projection method for query, key and value Default is depth-wise convolutions with batch norm. For Linear projection use "avg". kernel_qkv (`List[int]`, *optional*, defaults to `[3, 3, 3]`): The kernel size for query, key and value in attention layer padding_kv (`List[int]`, *optional*, defaults to `[1, 1, 1]`): The padding size for key and value in attention layer stride_kv (`List[int]`, *optional*, defaults to `[2, 2, 2]`): The stride size for key and value in attention layer padding_q (`List[int]`, *optional*, defaults to `[1, 1, 1]`): The padding size for query in attention layer stride_q (`List[int]`, *optional*, defaults to `[1, 1, 1]`): The stride size for query in attention layer initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-6): The epsilon used by the layer normalization layers. Example: ```python >>> from transformers import CvtConfig, CvtModel >>> # Initializing a Cvt msft/cvt style configuration >>> configuration = CvtConfig() >>> # Initializing a model (with random weights) from the msft/cvt style configuration >>> model = CvtModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "cvt" def __init__( self, num_channels=3, patch_sizes=[7, 3, 3], patch_stride=[4, 2, 2], patch_padding=[2, 1, 1], embed_dim=[64, 192, 384], num_heads=[1, 3, 6], depth=[1, 2, 10], mlp_ratio=[4.0, 4.0, 4.0], attention_drop_rate=[0.0, 0.0, 0.0], drop_rate=[0.0, 0.0, 0.0], drop_path_rate=[0.0, 0.0, 0.1], qkv_bias=[True, True, True], cls_token=[False, False, True], qkv_projection_method=["dw_bn", "dw_bn", "dw_bn"], kernel_qkv=[3, 3, 3], padding_kv=[1, 1, 1], stride_kv=[2, 2, 2], padding_q=[1, 1, 1], stride_q=[1, 1, 1], initializer_range=0.02, layer_norm_eps=1e-12, **kwargs, ): super().__init__(**kwargs) self.num_channels = num_channels self.patch_sizes = patch_sizes self.patch_stride = patch_stride self.patch_padding = patch_padding self.embed_dim = embed_dim self.num_heads = num_heads self.depth = depth self.mlp_ratio = mlp_ratio self.attention_drop_rate = attention_drop_rate self.drop_rate = drop_rate self.drop_path_rate = drop_path_rate self.qkv_bias = qkv_bias self.cls_token = cls_token self.qkv_projection_method = qkv_projection_method self.kernel_qkv = kernel_qkv self.padding_kv = padding_kv self.stride_kv = stride_kv self.padding_q = padding_q self.stride_q = stride_q self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/cvt/__init__.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _import_structure = {"configuration_cvt": ["CVT_PRETRAINED_CONFIG_ARCHIVE_MAP", "CvtConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_cvt"] = [ "CVT_PRETRAINED_MODEL_ARCHIVE_LIST", "CvtForImageClassification", "CvtModel", "CvtPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_cvt"] = [ "TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCvtForImageClassification", "TFCvtModel", "TFCvtPreTrainedModel", ] if TYPE_CHECKING: from .configuration_cvt import CVT_PRETRAINED_CONFIG_ARCHIVE_MAP, CvtConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cvt import ( CVT_PRETRAINED_MODEL_ARCHIVE_LIST, CvtForImageClassification, CvtModel, CvtPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_cvt import ( TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST, TFCvtForImageClassification, TFCvtModel, TFCvtPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/cvt/modeling_tf_cvt.py
# coding=utf-8 # Copyright 2022 Microsoft Research and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 Cvt model.""" from __future__ import annotations import collections.abc from dataclasses import dataclass from typing import Optional, Tuple, Union import tensorflow as tf from ...modeling_tf_outputs import TFImageClassifierOutputWithNoAttention from ...modeling_tf_utils import ( TFModelInputType, TFPreTrainedModel, TFSequenceClassificationLoss, get_initializer, keras_serializable, unpack_inputs, ) from ...tf_utils import shape_list, stable_softmax from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_cvt import CvtConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "CvtConfig" TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST = [ "microsoft/cvt-13", "microsoft/cvt-13-384", "microsoft/cvt-13-384-22k", "microsoft/cvt-21", "microsoft/cvt-21-384", "microsoft/cvt-21-384-22k", # See all Cvt models at https://huggingface.co/models?filter=cvt ] @dataclass class TFBaseModelOutputWithCLSToken(ModelOutput): """ Base class for model's outputs. Args: last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. cls_token_value (`tf.Tensor` of shape `(batch_size, 1, hidden_size)`): Classification token at the output of the last layer of the model. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. """ last_hidden_state: tf.Tensor = None cls_token_value: tf.Tensor = None hidden_states: Tuple[tf.Tensor] | None = None class TFCvtDropPath(tf.keras.layers.Layer): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). References: (1) github.com:rwightman/pytorch-image-models """ def __init__(self, drop_prob: float, **kwargs): super().__init__(**kwargs) self.drop_prob = drop_prob def call(self, x: tf.Tensor, training=None): if self.drop_prob == 0.0 or not training: return x keep_prob = 1 - self.drop_prob shape = (tf.shape(x)[0],) + (1,) * (len(tf.shape(x)) - 1) random_tensor = keep_prob + tf.random.uniform(shape, 0, 1, dtype=self.compute_dtype) random_tensor = tf.floor(random_tensor) return (x / keep_prob) * random_tensor class TFCvtEmbeddings(tf.keras.layers.Layer): """Construct the Convolutional Token Embeddings.""" def __init__( self, config: CvtConfig, patch_size: int, embed_dim: int, stride: int, padding: int, dropout_rate: float, **kwargs, ): super().__init__(**kwargs) self.convolution_embeddings = TFCvtConvEmbeddings( config, patch_size=patch_size, embed_dim=embed_dim, stride=stride, padding=padding, name="convolution_embeddings", ) self.dropout = tf.keras.layers.Dropout(dropout_rate) def call(self, pixel_values: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_state = self.convolution_embeddings(pixel_values) hidden_state = self.dropout(hidden_state, training=training) return hidden_state class TFCvtConvEmbeddings(tf.keras.layers.Layer): """Image to Convolution Embeddings. This convolutional operation aims to model local spatial contexts.""" def __init__(self, config: CvtConfig, patch_size: int, embed_dim: int, stride: int, padding: int, **kwargs): super().__init__(**kwargs) self.padding = tf.keras.layers.ZeroPadding2D(padding=padding) self.patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) self.projection = tf.keras.layers.Conv2D( filters=embed_dim, kernel_size=patch_size, strides=stride, padding="valid", data_format="channels_last", kernel_initializer=get_initializer(config.initializer_range), name="projection", ) # Using the same default epsilon as PyTorch self.normalization = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="normalization") def call(self, pixel_values: tf.Tensor) -> tf.Tensor: if isinstance(pixel_values, dict): pixel_values = pixel_values["pixel_values"] pixel_values = self.projection(self.padding(pixel_values)) # "batch_size, height, width, num_channels -> batch_size, (height*width), num_channels" batch_size, height, width, num_channels = shape_list(pixel_values) hidden_size = height * width pixel_values = tf.reshape(pixel_values, shape=(batch_size, hidden_size, num_channels)) pixel_values = self.normalization(pixel_values) # "batch_size, (height*width), num_channels -> batch_size, height, width, num_channels" pixel_values = tf.reshape(pixel_values, shape=(batch_size, height, width, num_channels)) return pixel_values class TFCvtSelfAttentionConvProjection(tf.keras.layers.Layer): """Convolutional projection layer.""" def __init__(self, config: CvtConfig, embed_dim: int, kernel_size: int, stride: int, padding: int, **kwargs): super().__init__(**kwargs) self.padding = tf.keras.layers.ZeroPadding2D(padding=padding) self.convolution = tf.keras.layers.Conv2D( filters=embed_dim, kernel_size=kernel_size, kernel_initializer=get_initializer(config.initializer_range), padding="valid", strides=stride, use_bias=False, name="convolution", groups=embed_dim, ) # Using the same default epsilon as PyTorch, TF uses (1 - pytorch momentum) self.normalization = tf.keras.layers.BatchNormalization(epsilon=1e-5, momentum=0.9, name="normalization") def call(self, hidden_state: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_state = self.convolution(self.padding(hidden_state)) hidden_state = self.normalization(hidden_state, training=training) return hidden_state class TFCvtSelfAttentionLinearProjection(tf.keras.layers.Layer): """Linear projection layer used to flatten tokens into 1D.""" def call(self, hidden_state: tf.Tensor) -> tf.Tensor: # "batch_size, height, width, num_channels -> batch_size, (height*width), num_channels" batch_size, height, width, num_channels = shape_list(hidden_state) hidden_size = height * width hidden_state = tf.reshape(hidden_state, shape=(batch_size, hidden_size, num_channels)) return hidden_state class TFCvtSelfAttentionProjection(tf.keras.layers.Layer): """Convolutional Projection for Attention.""" def __init__( self, config: CvtConfig, embed_dim: int, kernel_size: int, stride: int, padding: int, projection_method: str = "dw_bn", **kwargs, ): super().__init__(**kwargs) if projection_method == "dw_bn": self.convolution_projection = TFCvtSelfAttentionConvProjection( config, embed_dim, kernel_size, stride, padding, name="convolution_projection" ) self.linear_projection = TFCvtSelfAttentionLinearProjection() def call(self, hidden_state: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_state = self.convolution_projection(hidden_state, training=training) hidden_state = self.linear_projection(hidden_state) return hidden_state class TFCvtSelfAttention(tf.keras.layers.Layer): """ Self-attention layer. A depth-wise separable convolution operation (Convolutional Projection), is applied for query, key, and value embeddings. """ def __init__( self, config: CvtConfig, num_heads: int, embed_dim: int, kernel_size: int, stride_q: int, stride_kv: int, padding_q: int, padding_kv: int, qkv_projection_method: str, qkv_bias: bool, attention_drop_rate: float, with_cls_token: bool = True, **kwargs, ): super().__init__(**kwargs) self.scale = embed_dim**-0.5 self.with_cls_token = with_cls_token self.embed_dim = embed_dim self.num_heads = num_heads self.convolution_projection_query = TFCvtSelfAttentionProjection( config, embed_dim, kernel_size, stride_q, padding_q, projection_method="linear" if qkv_projection_method == "avg" else qkv_projection_method, name="convolution_projection_query", ) self.convolution_projection_key = TFCvtSelfAttentionProjection( config, embed_dim, kernel_size, stride_kv, padding_kv, projection_method=qkv_projection_method, name="convolution_projection_key", ) self.convolution_projection_value = TFCvtSelfAttentionProjection( config, embed_dim, kernel_size, stride_kv, padding_kv, projection_method=qkv_projection_method, name="convolution_projection_value", ) self.projection_query = tf.keras.layers.Dense( units=embed_dim, kernel_initializer=get_initializer(config.initializer_range), use_bias=qkv_bias, bias_initializer="zeros", name="projection_query", ) self.projection_key = tf.keras.layers.Dense( units=embed_dim, kernel_initializer=get_initializer(config.initializer_range), use_bias=qkv_bias, bias_initializer="zeros", name="projection_key", ) self.projection_value = tf.keras.layers.Dense( units=embed_dim, kernel_initializer=get_initializer(config.initializer_range), use_bias=qkv_bias, bias_initializer="zeros", name="projection_value", ) self.dropout = tf.keras.layers.Dropout(attention_drop_rate) def rearrange_for_multi_head_attention(self, hidden_state: tf.Tensor) -> tf.Tensor: batch_size, hidden_size, _ = shape_list(hidden_state) head_dim = self.embed_dim // self.num_heads hidden_state = tf.reshape(hidden_state, shape=(batch_size, hidden_size, self.num_heads, head_dim)) hidden_state = tf.transpose(hidden_state, perm=(0, 2, 1, 3)) return hidden_state def call(self, hidden_state: tf.Tensor, height: int, width: int, training: bool = False) -> tf.Tensor: if self.with_cls_token: cls_token, hidden_state = tf.split(hidden_state, [1, height * width], 1) # "batch_size, (height*width), num_channels -> batch_size, height, width, num_channels" batch_size, hidden_size, num_channels = shape_list(hidden_state) hidden_state = tf.reshape(hidden_state, shape=(batch_size, height, width, num_channels)) key = self.convolution_projection_key(hidden_state, training=training) query = self.convolution_projection_query(hidden_state, training=training) value = self.convolution_projection_value(hidden_state, training=training) if self.with_cls_token: query = tf.concat((cls_token, query), axis=1) key = tf.concat((cls_token, key), axis=1) value = tf.concat((cls_token, value), axis=1) head_dim = self.embed_dim // self.num_heads query = self.rearrange_for_multi_head_attention(self.projection_query(query)) key = self.rearrange_for_multi_head_attention(self.projection_key(key)) value = self.rearrange_for_multi_head_attention(self.projection_value(value)) attention_score = tf.matmul(query, key, transpose_b=True) * self.scale attention_probs = stable_softmax(logits=attention_score, axis=-1) attention_probs = self.dropout(attention_probs, training=training) context = tf.matmul(attention_probs, value) # "batch_size, num_heads, hidden_size, head_dim -> batch_size, hidden_size, (num_heads*head_dim)" _, _, hidden_size, _ = shape_list(context) context = tf.transpose(context, perm=(0, 2, 1, 3)) context = tf.reshape(context, (batch_size, hidden_size, self.num_heads * head_dim)) return context class TFCvtSelfOutput(tf.keras.layers.Layer): """Output of the Attention layer .""" def __init__(self, config: CvtConfig, embed_dim: int, drop_rate: float, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( units=embed_dim, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.dropout = tf.keras.layers.Dropout(drop_rate) def call(self, hidden_state: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_state = self.dense(inputs=hidden_state) hidden_state = self.dropout(inputs=hidden_state, training=training) return hidden_state class TFCvtAttention(tf.keras.layers.Layer): """Attention layer. First chunk of the convolutional transformer block.""" def __init__( self, config: CvtConfig, num_heads: int, embed_dim: int, kernel_size: int, stride_q: int, stride_kv: int, padding_q: int, padding_kv: int, qkv_projection_method: str, qkv_bias: bool, attention_drop_rate: float, drop_rate: float, with_cls_token: bool = True, **kwargs, ): super().__init__(**kwargs) self.attention = TFCvtSelfAttention( config, num_heads, embed_dim, kernel_size, stride_q, stride_kv, padding_q, padding_kv, qkv_projection_method, qkv_bias, attention_drop_rate, with_cls_token, name="attention", ) self.dense_output = TFCvtSelfOutput(config, embed_dim, drop_rate, name="output") def prune_heads(self, heads): raise NotImplementedError def call(self, hidden_state: tf.Tensor, height: int, width: int, training: bool = False): self_output = self.attention(hidden_state, height, width, training=training) attention_output = self.dense_output(self_output, training=training) return attention_output class TFCvtIntermediate(tf.keras.layers.Layer): """Intermediate dense layer. Second chunk of the convolutional transformer block.""" def __init__(self, config: CvtConfig, embed_dim: int, mlp_ratio: int, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( units=int(embed_dim * mlp_ratio), kernel_initializer=get_initializer(config.initializer_range), activation="gelu", name="dense", ) def call(self, hidden_state: tf.Tensor) -> tf.Tensor: hidden_state = self.dense(hidden_state) return hidden_state class TFCvtOutput(tf.keras.layers.Layer): """ Output of the Convolutional Transformer Block (last chunk). It consists of a MLP and a residual connection. """ def __init__(self, config: CvtConfig, embed_dim: int, drop_rate: int, **kwargs): super().__init__(**kwargs) self.dense = tf.keras.layers.Dense( units=embed_dim, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.dropout = tf.keras.layers.Dropout(drop_rate) def call(self, hidden_state: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_state = self.dense(inputs=hidden_state) hidden_state = self.dropout(inputs=hidden_state, training=training) hidden_state = hidden_state + input_tensor return hidden_state class TFCvtLayer(tf.keras.layers.Layer): """ Convolutional Transformer Block composed by attention layers, normalization and multi-layer perceptrons (mlps). It consists of 3 chunks : an attention layer, an intermediate dense layer and an output layer. This corresponds to the `Block` class in the original implementation. """ def __init__( self, config: CvtConfig, num_heads: int, embed_dim: int, kernel_size: int, stride_q: int, stride_kv: int, padding_q: int, padding_kv: int, qkv_projection_method: str, qkv_bias: bool, attention_drop_rate: float, drop_rate: float, mlp_ratio: float, drop_path_rate: float, with_cls_token: bool = True, **kwargs, ): super().__init__(**kwargs) self.attention = TFCvtAttention( config, num_heads, embed_dim, kernel_size, stride_q, stride_kv, padding_q, padding_kv, qkv_projection_method, qkv_bias, attention_drop_rate, drop_rate, with_cls_token, name="attention", ) self.intermediate = TFCvtIntermediate(config, embed_dim, mlp_ratio, name="intermediate") self.dense_output = TFCvtOutput(config, embed_dim, drop_rate, name="output") # Using `layers.Activation` instead of `tf.identity` to better control `training` behaviour. self.drop_path = ( TFCvtDropPath(drop_path_rate, name="drop_path") if drop_path_rate > 0.0 else tf.keras.layers.Activation("linear", name="drop_path") ) # Using the same default epsilon as PyTorch self.layernorm_before = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm_before") self.layernorm_after = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm_after") def call(self, hidden_state: tf.Tensor, height: int, width: int, training: bool = False) -> tf.Tensor: # in Cvt, layernorm is applied before self-attention attention_output = self.attention(self.layernorm_before(hidden_state), height, width, training=training) attention_output = self.drop_path(attention_output, training=training) # first residual connection hidden_state = attention_output + hidden_state # in Cvt, layernorm is also applied after self-attention layer_output = self.layernorm_after(hidden_state) layer_output = self.intermediate(layer_output) # second residual connection is done here layer_output = self.dense_output(layer_output, hidden_state) layer_output = self.drop_path(layer_output, training=training) return layer_output class TFCvtStage(tf.keras.layers.Layer): """ Cvt stage (encoder block). Each stage has 2 parts : - (1) A Convolutional Token Embedding layer - (2) A Convolutional Transformer Block (layer). The classification token is added only in the last stage. Args: config ([`CvtConfig`]): Model configuration class. stage (`int`): Stage number. """ def __init__(self, config: CvtConfig, stage: int, **kwargs): super().__init__(**kwargs) self.config = config self.stage = stage if self.config.cls_token[self.stage]: self.cls_token = self.add_weight( shape=(1, 1, self.config.embed_dim[-1]), initializer=get_initializer(self.config.initializer_range), trainable=True, name="cvt.encoder.stages.2.cls_token", ) self.embedding = TFCvtEmbeddings( self.config, patch_size=config.patch_sizes[self.stage], stride=config.patch_stride[self.stage], embed_dim=config.embed_dim[self.stage], padding=config.patch_padding[self.stage], dropout_rate=config.drop_rate[self.stage], name="embedding", ) drop_path_rates = tf.linspace(0.0, config.drop_path_rate[self.stage], config.depth[stage]) drop_path_rates = [x.numpy().item() for x in drop_path_rates] self.layers = [ TFCvtLayer( config, num_heads=config.num_heads[self.stage], embed_dim=config.embed_dim[self.stage], kernel_size=config.kernel_qkv[self.stage], stride_q=config.stride_q[self.stage], stride_kv=config.stride_kv[self.stage], padding_q=config.padding_q[self.stage], padding_kv=config.padding_kv[self.stage], qkv_projection_method=config.qkv_projection_method[self.stage], qkv_bias=config.qkv_bias[self.stage], attention_drop_rate=config.attention_drop_rate[self.stage], drop_rate=config.drop_rate[self.stage], mlp_ratio=config.mlp_ratio[self.stage], drop_path_rate=drop_path_rates[self.stage], with_cls_token=config.cls_token[self.stage], name=f"layers.{j}", ) for j in range(config.depth[self.stage]) ] def call(self, hidden_state: tf.Tensor, training: bool = False): cls_token = None hidden_state = self.embedding(hidden_state, training) # "batch_size, height, width, num_channels -> batch_size, (height*width), num_channels" batch_size, height, width, num_channels = shape_list(hidden_state) hidden_size = height * width hidden_state = tf.reshape(hidden_state, shape=(batch_size, hidden_size, num_channels)) if self.config.cls_token[self.stage]: cls_token = tf.repeat(self.cls_token, repeats=batch_size, axis=0) hidden_state = tf.concat((cls_token, hidden_state), axis=1) for layer in self.layers: layer_outputs = layer(hidden_state, height, width, training=training) hidden_state = layer_outputs if self.config.cls_token[self.stage]: cls_token, hidden_state = tf.split(hidden_state, [1, height * width], 1) # "batch_size, (height*width), num_channels -> batch_size, height, width, num_channels" hidden_state = tf.reshape(hidden_state, shape=(batch_size, height, width, num_channels)) return hidden_state, cls_token class TFCvtEncoder(tf.keras.layers.Layer): """ Convolutional Vision Transformer encoder. CVT has 3 stages of encoder blocks with their respective number of layers (depth) being 1, 2 and 10. Args: config ([`CvtConfig`]): Model configuration class. """ config_class = CvtConfig def __init__(self, config: CvtConfig, **kwargs): super().__init__(**kwargs) self.config = config self.stages = [ TFCvtStage(config, stage_idx, name=f"stages.{stage_idx}") for stage_idx in range(len(config.depth)) ] def call( self, pixel_values: TFModelInputType, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, training: Optional[bool] = False, ) -> Union[TFBaseModelOutputWithCLSToken, Tuple[tf.Tensor]]: all_hidden_states = () if output_hidden_states else None hidden_state = pixel_values # When running on CPU, `tf.keras.layers.Conv2D` doesn't support (batch_size, num_channels, height, width) # as input format. So change the input format to (batch_size, height, width, num_channels). hidden_state = tf.transpose(hidden_state, perm=(0, 2, 3, 1)) cls_token = None for _, (stage_module) in enumerate(self.stages): hidden_state, cls_token = stage_module(hidden_state, training=training) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_state,) # Change back to (batch_size, num_channels, height, width) format to have uniformity in the modules hidden_state = tf.transpose(hidden_state, perm=(0, 3, 1, 2)) if output_hidden_states: all_hidden_states = tuple([tf.transpose(hs, perm=(0, 3, 1, 2)) for hs in all_hidden_states]) if not return_dict: return tuple(v for v in [hidden_state, cls_token, all_hidden_states] if v is not None) return TFBaseModelOutputWithCLSToken( last_hidden_state=hidden_state, cls_token_value=cls_token, hidden_states=all_hidden_states, ) @keras_serializable class TFCvtMainLayer(tf.keras.layers.Layer): """Construct the Cvt model.""" config_class = CvtConfig def __init__(self, config: CvtConfig, **kwargs): super().__init__(**kwargs) self.config = config self.encoder = TFCvtEncoder(config, name="encoder") @unpack_inputs def call( self, pixel_values: TFModelInputType | None = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[TFBaseModelOutputWithCLSToken, Tuple[tf.Tensor]]: if pixel_values is None: raise ValueError("You have to specify pixel_values") encoder_outputs = self.encoder( pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = encoder_outputs[0] if not return_dict: return (sequence_output,) + encoder_outputs[1:] return TFBaseModelOutputWithCLSToken( last_hidden_state=sequence_output, cls_token_value=encoder_outputs.cls_token_value, hidden_states=encoder_outputs.hidden_states, ) class TFCvtPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = CvtConfig base_model_prefix = "cvt" main_input_name = "pixel_values" TFCVT_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TF 2.0 models accepts two formats as inputs: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional arguments. This second option is useful when using [`tf.keras.Model.fit`] method which currently requires having all the tensors in the first argument of the model call function: `model(inputs)`. </Tip> Args: config ([`CvtConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ TFCVT_INPUTS_DOCSTRING = r""" Args: pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`CvtImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False``): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @add_start_docstrings( "The bare Cvt Model transformer outputting raw hidden-states without any specific head on top.", TFCVT_START_DOCSTRING, ) class TFCvtModel(TFCvtPreTrainedModel): def __init__(self, config: CvtConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.cvt = TFCvtMainLayer(config, name="cvt") @unpack_inputs @add_start_docstrings_to_model_forward(TFCVT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFBaseModelOutputWithCLSToken, config_class=_CONFIG_FOR_DOC) def call( self, pixel_values: tf.Tensor | None = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[TFBaseModelOutputWithCLSToken, Tuple[tf.Tensor]]: r""" Returns: Examples: ```python >>> from transformers import AutoImageProcessor, TFCvtModel >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("microsoft/cvt-13") >>> model = TFCvtModel.from_pretrained("microsoft/cvt-13") >>> inputs = image_processor(images=image, return_tensors="tf") >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state ```""" if pixel_values is None: raise ValueError("You have to specify pixel_values") outputs = self.cvt( pixel_values=pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithCLSToken( last_hidden_state=outputs.last_hidden_state, cls_token_value=outputs.cls_token_value, hidden_states=outputs.hidden_states, ) @add_start_docstrings( """ Cvt Model transformer with an image classification head on top (a linear layer on top of the final hidden state of the [CLS] token) e.g. for ImageNet. """, TFCVT_START_DOCSTRING, ) class TFCvtForImageClassification(TFCvtPreTrainedModel, TFSequenceClassificationLoss): def __init__(self, config: CvtConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.cvt = TFCvtMainLayer(config, name="cvt") # Using same default epsilon as in the original implementation. self.layernorm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm") # Classifier head self.classifier = tf.keras.layers.Dense( units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), use_bias=True, bias_initializer="zeros", name="classifier", ) @unpack_inputs @add_start_docstrings_to_model_forward(TFCVT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFImageClassifierOutputWithNoAttention, config_class=_CONFIG_FOR_DOC) def call( self, pixel_values: tf.Tensor | None = None, labels: tf.Tensor | None = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[TFImageClassifierOutputWithNoAttention, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> from transformers import AutoImageProcessor, TFCvtForImageClassification >>> import tensorflow as tf >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("microsoft/cvt-13") >>> model = TFCvtForImageClassification.from_pretrained("microsoft/cvt-13") >>> inputs = image_processor(images=image, return_tensors="tf") >>> outputs = model(**inputs) >>> logits = outputs.logits >>> # model predicts one of the 1000 ImageNet classes >>> predicted_class_idx = tf.math.argmax(logits, axis=-1)[0] >>> print("Predicted class:", model.config.id2label[int(predicted_class_idx)]) ```""" outputs = self.cvt( pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] cls_token = outputs[1] if self.config.cls_token[-1]: sequence_output = self.layernorm(cls_token) else: # rearrange "batch_size, num_channels, height, width -> batch_size, (height*width), num_channels" batch_size, num_channels, height, width = shape_list(sequence_output) sequence_output = tf.reshape(sequence_output, shape=(batch_size, num_channels, height * width)) sequence_output = tf.transpose(sequence_output, perm=(0, 2, 1)) sequence_output = self.layernorm(sequence_output) sequence_output_mean = tf.reduce_mean(sequence_output, axis=1) logits = self.classifier(sequence_output_mean) loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFImageClassifierOutputWithNoAttention(loss=loss, logits=logits, hidden_states=outputs.hidden_states)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/cvt/modeling_cvt.py
# coding=utf-8 # Copyright 2022 Microsoft Research and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch CvT model.""" import collections.abc from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ImageClassifierOutputWithNoAttention, ModelOutput from ...modeling_utils import PreTrainedModel, find_pruneable_heads_and_indices, prune_linear_layer from ...utils import logging from .configuration_cvt import CvtConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "CvtConfig" # Base docstring _CHECKPOINT_FOR_DOC = "microsoft/cvt-13" _EXPECTED_OUTPUT_SHAPE = [1, 384, 14, 14] # Image classification docstring _IMAGE_CLASS_CHECKPOINT = "microsoft/cvt-13" _IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" CVT_PRETRAINED_MODEL_ARCHIVE_LIST = [ "microsoft/cvt-13", "microsoft/cvt-13-384", "microsoft/cvt-13-384-22k", "microsoft/cvt-21", "microsoft/cvt-21-384", "microsoft/cvt-21-384-22k", # See all Cvt models at https://huggingface.co/models?filter=cvt ] @dataclass class BaseModelOutputWithCLSToken(ModelOutput): """ Base class for model's outputs, with potential hidden states and attentions. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. cls_token_value (`torch.FloatTensor` of shape `(batch_size, 1, hidden_size)`): Classification token at the output of the last layer of the model. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. """ last_hidden_state: torch.FloatTensor = None cls_token_value: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None # Copied from transformers.models.beit.modeling_beit.drop_path def drop_path(input, drop_prob: float = 0.0, training: bool = False): """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if drop_prob == 0.0 or not training: return input keep_prob = 1 - drop_prob shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device) random_tensor.floor_() # binarize output = input.div(keep_prob) * random_tensor return output # Copied from transformers.models.beit.modeling_beit.BeitDropPath class CvtDropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob: Optional[float] = None) -> None: super().__init__() self.drop_prob = drop_prob def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: return drop_path(hidden_states, self.drop_prob, self.training) def extra_repr(self) -> str: return "p={}".format(self.drop_prob) class CvtEmbeddings(nn.Module): """ Construct the CvT embeddings. """ def __init__(self, patch_size, num_channels, embed_dim, stride, padding, dropout_rate): super().__init__() self.convolution_embeddings = CvtConvEmbeddings( patch_size=patch_size, num_channels=num_channels, embed_dim=embed_dim, stride=stride, padding=padding ) self.dropout = nn.Dropout(dropout_rate) def forward(self, pixel_values): hidden_state = self.convolution_embeddings(pixel_values) hidden_state = self.dropout(hidden_state) return hidden_state class CvtConvEmbeddings(nn.Module): """ Image to Conv Embedding. """ def __init__(self, patch_size, num_channels, embed_dim, stride, padding): super().__init__() patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) self.patch_size = patch_size self.projection = nn.Conv2d(num_channels, embed_dim, kernel_size=patch_size, stride=stride, padding=padding) self.normalization = nn.LayerNorm(embed_dim) def forward(self, pixel_values): pixel_values = self.projection(pixel_values) batch_size, num_channels, height, width = pixel_values.shape hidden_size = height * width # rearrange "b c h w -> b (h w) c" pixel_values = pixel_values.view(batch_size, num_channels, hidden_size).permute(0, 2, 1) if self.normalization: pixel_values = self.normalization(pixel_values) # rearrange "b (h w) c" -> b c h w" pixel_values = pixel_values.permute(0, 2, 1).view(batch_size, num_channels, height, width) return pixel_values class CvtSelfAttentionConvProjection(nn.Module): def __init__(self, embed_dim, kernel_size, padding, stride): super().__init__() self.convolution = nn.Conv2d( embed_dim, embed_dim, kernel_size=kernel_size, padding=padding, stride=stride, bias=False, groups=embed_dim, ) self.normalization = nn.BatchNorm2d(embed_dim) def forward(self, hidden_state): hidden_state = self.convolution(hidden_state) hidden_state = self.normalization(hidden_state) return hidden_state class CvtSelfAttentionLinearProjection(nn.Module): def forward(self, hidden_state): batch_size, num_channels, height, width = hidden_state.shape hidden_size = height * width # rearrange " b c h w -> b (h w) c" hidden_state = hidden_state.view(batch_size, num_channels, hidden_size).permute(0, 2, 1) return hidden_state class CvtSelfAttentionProjection(nn.Module): def __init__(self, embed_dim, kernel_size, padding, stride, projection_method="dw_bn"): super().__init__() if projection_method == "dw_bn": self.convolution_projection = CvtSelfAttentionConvProjection(embed_dim, kernel_size, padding, stride) self.linear_projection = CvtSelfAttentionLinearProjection() def forward(self, hidden_state): hidden_state = self.convolution_projection(hidden_state) hidden_state = self.linear_projection(hidden_state) return hidden_state class CvtSelfAttention(nn.Module): def __init__( self, num_heads, embed_dim, kernel_size, padding_q, padding_kv, stride_q, stride_kv, qkv_projection_method, qkv_bias, attention_drop_rate, with_cls_token=True, **kwargs, ): super().__init__() self.scale = embed_dim**-0.5 self.with_cls_token = with_cls_token self.embed_dim = embed_dim self.num_heads = num_heads self.convolution_projection_query = CvtSelfAttentionProjection( embed_dim, kernel_size, padding_q, stride_q, projection_method="linear" if qkv_projection_method == "avg" else qkv_projection_method, ) self.convolution_projection_key = CvtSelfAttentionProjection( embed_dim, kernel_size, padding_kv, stride_kv, projection_method=qkv_projection_method ) self.convolution_projection_value = CvtSelfAttentionProjection( embed_dim, kernel_size, padding_kv, stride_kv, projection_method=qkv_projection_method ) self.projection_query = nn.Linear(embed_dim, embed_dim, bias=qkv_bias) self.projection_key = nn.Linear(embed_dim, embed_dim, bias=qkv_bias) self.projection_value = nn.Linear(embed_dim, embed_dim, bias=qkv_bias) self.dropout = nn.Dropout(attention_drop_rate) def rearrange_for_multi_head_attention(self, hidden_state): batch_size, hidden_size, _ = hidden_state.shape head_dim = self.embed_dim // self.num_heads # rearrange 'b t (h d) -> b h t d' return hidden_state.view(batch_size, hidden_size, self.num_heads, head_dim).permute(0, 2, 1, 3) def forward(self, hidden_state, height, width): if self.with_cls_token: cls_token, hidden_state = torch.split(hidden_state, [1, height * width], 1) batch_size, hidden_size, num_channels = hidden_state.shape # rearrange "b (h w) c -> b c h w" hidden_state = hidden_state.permute(0, 2, 1).view(batch_size, num_channels, height, width) key = self.convolution_projection_key(hidden_state) query = self.convolution_projection_query(hidden_state) value = self.convolution_projection_value(hidden_state) if self.with_cls_token: query = torch.cat((cls_token, query), dim=1) key = torch.cat((cls_token, key), dim=1) value = torch.cat((cls_token, value), dim=1) head_dim = self.embed_dim // self.num_heads query = self.rearrange_for_multi_head_attention(self.projection_query(query)) key = self.rearrange_for_multi_head_attention(self.projection_key(key)) value = self.rearrange_for_multi_head_attention(self.projection_value(value)) attention_score = torch.einsum("bhlk,bhtk->bhlt", [query, key]) * self.scale attention_probs = torch.nn.functional.softmax(attention_score, dim=-1) attention_probs = self.dropout(attention_probs) context = torch.einsum("bhlt,bhtv->bhlv", [attention_probs, value]) # rearrange"b h t d -> b t (h d)" _, _, hidden_size, _ = context.shape context = context.permute(0, 2, 1, 3).contiguous().view(batch_size, hidden_size, self.num_heads * head_dim) return context class CvtSelfOutput(nn.Module): """ The residual connection is defined in CvtLayer instead of here (as is the case with other models), due to the layernorm applied before each block. """ def __init__(self, embed_dim, drop_rate): super().__init__() self.dense = nn.Linear(embed_dim, embed_dim) self.dropout = nn.Dropout(drop_rate) def forward(self, hidden_state, input_tensor): hidden_state = self.dense(hidden_state) hidden_state = self.dropout(hidden_state) return hidden_state class CvtAttention(nn.Module): def __init__( self, num_heads, embed_dim, kernel_size, padding_q, padding_kv, stride_q, stride_kv, qkv_projection_method, qkv_bias, attention_drop_rate, drop_rate, with_cls_token=True, ): super().__init__() self.attention = CvtSelfAttention( num_heads, embed_dim, kernel_size, padding_q, padding_kv, stride_q, stride_kv, qkv_projection_method, qkv_bias, attention_drop_rate, with_cls_token, ) self.output = CvtSelfOutput(embed_dim, drop_rate) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads ) # Prune linear layers self.attention.query = prune_linear_layer(self.attention.query, index) self.attention.key = prune_linear_layer(self.attention.key, index) self.attention.value = prune_linear_layer(self.attention.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward(self, hidden_state, height, width): self_output = self.attention(hidden_state, height, width) attention_output = self.output(self_output, hidden_state) return attention_output class CvtIntermediate(nn.Module): def __init__(self, embed_dim, mlp_ratio): super().__init__() self.dense = nn.Linear(embed_dim, int(embed_dim * mlp_ratio)) self.activation = nn.GELU() def forward(self, hidden_state): hidden_state = self.dense(hidden_state) hidden_state = self.activation(hidden_state) return hidden_state class CvtOutput(nn.Module): def __init__(self, embed_dim, mlp_ratio, drop_rate): super().__init__() self.dense = nn.Linear(int(embed_dim * mlp_ratio), embed_dim) self.dropout = nn.Dropout(drop_rate) def forward(self, hidden_state, input_tensor): hidden_state = self.dense(hidden_state) hidden_state = self.dropout(hidden_state) hidden_state = hidden_state + input_tensor return hidden_state class CvtLayer(nn.Module): """ CvtLayer composed by attention layers, normalization and multi-layer perceptrons (mlps). """ def __init__( self, num_heads, embed_dim, kernel_size, padding_q, padding_kv, stride_q, stride_kv, qkv_projection_method, qkv_bias, attention_drop_rate, drop_rate, mlp_ratio, drop_path_rate, with_cls_token=True, ): super().__init__() self.attention = CvtAttention( num_heads, embed_dim, kernel_size, padding_q, padding_kv, stride_q, stride_kv, qkv_projection_method, qkv_bias, attention_drop_rate, drop_rate, with_cls_token, ) self.intermediate = CvtIntermediate(embed_dim, mlp_ratio) self.output = CvtOutput(embed_dim, mlp_ratio, drop_rate) self.drop_path = CvtDropPath(drop_prob=drop_path_rate) if drop_path_rate > 0.0 else nn.Identity() self.layernorm_before = nn.LayerNorm(embed_dim) self.layernorm_after = nn.LayerNorm(embed_dim) def forward(self, hidden_state, height, width): self_attention_output = self.attention( self.layernorm_before(hidden_state), # in Cvt, layernorm is applied before self-attention height, width, ) attention_output = self_attention_output attention_output = self.drop_path(attention_output) # first residual connection hidden_state = attention_output + hidden_state # in Cvt, layernorm is also applied after self-attention layer_output = self.layernorm_after(hidden_state) layer_output = self.intermediate(layer_output) # second residual connection is done here layer_output = self.output(layer_output, hidden_state) layer_output = self.drop_path(layer_output) return layer_output class CvtStage(nn.Module): def __init__(self, config, stage): super().__init__() self.config = config self.stage = stage if self.config.cls_token[self.stage]: self.cls_token = nn.Parameter(torch.randn(1, 1, self.config.embed_dim[-1])) self.embedding = CvtEmbeddings( patch_size=config.patch_sizes[self.stage], stride=config.patch_stride[self.stage], num_channels=config.num_channels if self.stage == 0 else config.embed_dim[self.stage - 1], embed_dim=config.embed_dim[self.stage], padding=config.patch_padding[self.stage], dropout_rate=config.drop_rate[self.stage], ) drop_path_rates = [x.item() for x in torch.linspace(0, config.drop_path_rate[self.stage], config.depth[stage])] self.layers = nn.Sequential( *[ CvtLayer( num_heads=config.num_heads[self.stage], embed_dim=config.embed_dim[self.stage], kernel_size=config.kernel_qkv[self.stage], padding_q=config.padding_q[self.stage], padding_kv=config.padding_kv[self.stage], stride_kv=config.stride_kv[self.stage], stride_q=config.stride_q[self.stage], qkv_projection_method=config.qkv_projection_method[self.stage], qkv_bias=config.qkv_bias[self.stage], attention_drop_rate=config.attention_drop_rate[self.stage], drop_rate=config.drop_rate[self.stage], drop_path_rate=drop_path_rates[self.stage], mlp_ratio=config.mlp_ratio[self.stage], with_cls_token=config.cls_token[self.stage], ) for _ in range(config.depth[self.stage]) ] ) def forward(self, hidden_state): cls_token = None hidden_state = self.embedding(hidden_state) batch_size, num_channels, height, width = hidden_state.shape # rearrange b c h w -> b (h w) c" hidden_state = hidden_state.view(batch_size, num_channels, height * width).permute(0, 2, 1) if self.config.cls_token[self.stage]: cls_token = self.cls_token.expand(batch_size, -1, -1) hidden_state = torch.cat((cls_token, hidden_state), dim=1) for layer in self.layers: layer_outputs = layer(hidden_state, height, width) hidden_state = layer_outputs if self.config.cls_token[self.stage]: cls_token, hidden_state = torch.split(hidden_state, [1, height * width], 1) hidden_state = hidden_state.permute(0, 2, 1).view(batch_size, num_channels, height, width) return hidden_state, cls_token class CvtEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.stages = nn.ModuleList([]) for stage_idx in range(len(config.depth)): self.stages.append(CvtStage(config, stage_idx)) def forward(self, pixel_values, output_hidden_states=False, return_dict=True): all_hidden_states = () if output_hidden_states else None hidden_state = pixel_values cls_token = None for _, (stage_module) in enumerate(self.stages): hidden_state, cls_token = stage_module(hidden_state) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, cls_token, all_hidden_states] if v is not None) return BaseModelOutputWithCLSToken( last_hidden_state=hidden_state, cls_token_value=cls_token, hidden_states=all_hidden_states, ) class CvtPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = CvtConfig base_model_prefix = "cvt" main_input_name = "pixel_values" def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): module.weight.data = nn.init.trunc_normal_(module.weight.data, mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, CvtStage): if self.config.cls_token[module.stage]: module.cls_token.data = nn.init.trunc_normal_( torch.zeros(1, 1, self.config.embed_dim[-1]), mean=0.0, std=self.config.initializer_range ) CVT_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`CvtConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ CVT_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`CvtImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare Cvt Model transformer outputting raw hidden-states without any specific head on top.", CVT_START_DOCSTRING, ) class CvtModel(CvtPreTrainedModel): def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.encoder = CvtEncoder(config) self.post_init() def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(CVT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithCLSToken, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, pixel_values: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithCLSToken]: output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") encoder_outputs = self.encoder( pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] if not return_dict: return (sequence_output,) + encoder_outputs[1:] return BaseModelOutputWithCLSToken( last_hidden_state=sequence_output, cls_token_value=encoder_outputs.cls_token_value, hidden_states=encoder_outputs.hidden_states, ) @add_start_docstrings( """ Cvt Model transformer with an image classification head on top (a linear layer on top of the final hidden state of the [CLS] token) e.g. for ImageNet. """, CVT_START_DOCSTRING, ) class CvtForImageClassification(CvtPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.cvt = CvtModel(config, add_pooling_layer=False) self.layernorm = nn.LayerNorm(config.embed_dim[-1]) # Classifier head self.classifier = ( nn.Linear(config.embed_dim[-1], config.num_labels) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(CVT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=ImageClassifierOutputWithNoAttention, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def forward( self, pixel_values: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.cvt( pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] cls_token = outputs[1] if self.config.cls_token[-1]: sequence_output = self.layernorm(cls_token) else: batch_size, num_channels, height, width = sequence_output.shape # rearrange "b c h w -> b (h w) c" sequence_output = sequence_output.view(batch_size, num_channels, height * width).permute(0, 2, 1) sequence_output = self.layernorm(sequence_output) sequence_output_mean = sequence_output.mean(dim=1) logits = self.classifier(sequence_output_mean) loss = None if labels is not None: if self.config.problem_type is None: if self.config.num_labels == 1: self.config.problem_type = "regression" elif self.config.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.config.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=loss, logits=logits, hidden_states=outputs.hidden_states)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/cvt/convert_cvt_original_pytorch_checkpoint_to_pytorch.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert CvT checkpoints from the original repository. URL: https://github.com/microsoft/CvT""" import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def embeddings(idx): """ The function helps in renaming embedding layer weights. Args: idx: stage number in original model """ embed = [] embed.append( ( f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight", f"stage{idx}.patch_embed.proj.weight", ) ) embed.append( ( f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias", f"stage{idx}.patch_embed.proj.bias", ) ) embed.append( ( f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight", f"stage{idx}.patch_embed.norm.weight", ) ) embed.append( ( f"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias", f"stage{idx}.patch_embed.norm.bias", ) ) return embed def attention(idx, cnt): """ The function helps in renaming attention block layers weights. Args: idx: stage number in original model cnt: count of blocks in each stage """ attention_weights = [] attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked", f"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked", f"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked", f"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight", f"stage{idx}.blocks.{cnt}.attn.proj_q.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias", f"stage{idx}.blocks.{cnt}.attn.proj_q.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight", f"stage{idx}.blocks.{cnt}.attn.proj_k.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias", f"stage{idx}.blocks.{cnt}.attn.proj_k.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight", f"stage{idx}.blocks.{cnt}.attn.proj_v.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias", f"stage{idx}.blocks.{cnt}.attn.proj_v.bias", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight", f"stage{idx}.blocks.{cnt}.attn.proj.weight", ) ) attention_weights.append( ( f"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias", f"stage{idx}.blocks.{cnt}.attn.proj.bias", ) ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight", f"stage{idx}.blocks.{cnt}.mlp.fc1.weight") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias", f"stage{idx}.blocks.{cnt}.mlp.fc1.bias") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight", f"stage{idx}.blocks.{cnt}.mlp.fc2.weight") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias", f"stage{idx}.blocks.{cnt}.mlp.fc2.bias") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight", f"stage{idx}.blocks.{cnt}.norm1.weight") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias", f"stage{idx}.blocks.{cnt}.norm1.bias") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight", f"stage{idx}.blocks.{cnt}.norm2.weight") ) attention_weights.append( (f"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias", f"stage{idx}.blocks.{cnt}.norm2.bias") ) return attention_weights def cls_token(idx): """ Function helps in renaming cls_token weights """ token = [] token.append((f"cvt.encoder.stages.{idx}.cls_token", "stage2.cls_token")) return token def final(): """ Function helps in renaming final classification layer """ head = [] head.append(("layernorm.weight", "norm.weight")) head.append(("layernorm.bias", "norm.bias")) head.append(("classifier.weight", "head.weight")) head.append(("classifier.bias", "head.bias")) return head def convert_cvt_checkpoint(cvt_model, image_size, cvt_file_name, pytorch_dump_folder): """ Fucntion to convert the microsoft cvt checkpoint to huggingface checkpoint """ img_labels_file = "imagenet-1k-id2label.json" num_labels = 1000 repo_id = "huggingface/label-files" num_labels = num_labels id2label = json.load(open(cached_download(hf_hub_url(repo_id, img_labels_file, repo_type="dataset")), "r")) id2label = {int(k): v for k, v in id2label.items()} id2label = id2label label2id = {v: k for k, v in id2label.items()} config = config = CvtConfig(num_labels=num_labels, id2label=id2label, label2id=label2id) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("/", 1)[-1][4:6] == "13": config.depth = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("/", 1)[-1][4:6] == "21": config.depth = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: config.depth = [2, 2, 20] config.num_heads = [3, 12, 16] config.embed_dim = [192, 768, 1024] model = CvtForImageClassification(config) image_processor = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k") image_processor.size["shortest_edge"] = image_size original_weights = torch.load(cvt_file_name, map_location=torch.device("cpu")) huggingface_weights = OrderedDict() list_of_state_dict = [] for idx in range(len(config.depth)): if config.cls_token[idx]: list_of_state_dict = list_of_state_dict + cls_token(idx) list_of_state_dict = list_of_state_dict + embeddings(idx) for cnt in range(config.depth[idx]): list_of_state_dict = list_of_state_dict + attention(idx, cnt) list_of_state_dict = list_of_state_dict + final() for gg in list_of_state_dict: print(gg) for i in range(len(list_of_state_dict)): huggingface_weights[list_of_state_dict[i][0]] = original_weights[list_of_state_dict[i][1]] model.load_state_dict(huggingface_weights) model.save_pretrained(pytorch_dump_folder) image_processor.save_pretrained(pytorch_dump_folder) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--cvt_model", default="cvt-w24", type=str, help="Name of the cvt model you'd like to convert.", ) parser.add_argument( "--image_size", default=384, type=int, help="Input Image Size", ) parser.add_argument( "--cvt_file_name", default=r"cvtmodels\CvT-w24-384x384-IN-22k.pth", type=str, help="Input Image Size", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) args = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/vit_hybrid/__init__.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _import_structure = {"configuration_vit_hybrid": ["VIT_HYBRID_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTHybridConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_vit_hybrid"] = [ "VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTHybridForImageClassification", "ViTHybridModel", "ViTHybridPreTrainedModel", ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["image_processing_vit_hybrid"] = ["ViTHybridImageProcessor"] if TYPE_CHECKING: from .configuration_vit_hybrid import VIT_HYBRID_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTHybridConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_hybrid import ( VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST, ViTHybridForImageClassification, ViTHybridModel, ViTHybridPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vit_hybrid import ViTHybridImageProcessor else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/vit_hybrid/configuration_vit_hybrid.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ ViT Hybrid model configuration""" import copy from typing import Dict from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING from ..bit import BitConfig logger = logging.get_logger(__name__) VIT_HYBRID_PRETRAINED_CONFIG_ARCHIVE_MAP = { "google/vit-hybrid-base-bit-384": "https://huggingface.co/vit-hybrid-base-bit-384/resolve/main/config.json", # See all ViT hybrid models at https://huggingface.co/models?filter=vit } class ViTHybridConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`ViTHybridModel`]. It is used to instantiate a ViT Hybrid model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the ViT Hybrid [google/vit-hybrid-base-bit-384](https://huggingface.co/google/vit-hybrid-base-bit-384) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. image_size (`int`, *optional*, defaults to 224): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to 1): The size (resolution) of each patch. num_channels (`int`, *optional*, defaults to 3): The number of input channels. qkv_bias (`bool`, *optional*, defaults to `True`): Whether to add a bias to the queries, keys and values. backbone_config (`Union[Dict[str, Any], PretrainedConfig]`, *optional*, defaults to `None`): The configuration of the backbone in a dictionary or the config object of the backbone. backbone_featmap_shape (`List[int]`, *optional*, defaults to `[1, 1024, 24, 24]`): Used only for the `hybrid` embedding type. The shape of the feature maps of the backbone. Example: ```python >>> from transformers import ViTHybridConfig, ViTHybridModel >>> # Initializing a ViT Hybrid vit-hybrid-base-bit-384 style configuration >>> configuration = ViTHybridConfig() >>> # Initializing a model (with random weights) from the vit-hybrid-base-bit-384 style configuration >>> model = ViTHybridModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "vit-hybrid" def __init__( self, backbone_config=None, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.0, initializer_range=0.02, layer_norm_eps=1e-12, image_size=224, patch_size=1, num_channels=3, backbone_featmap_shape=[1, 1024, 24, 24], qkv_bias=True, **kwargs, ): super().__init__(**kwargs) if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with a `BiT` backbone.") backbone_config = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage3"], "embedding_dynamic_padding": True, } if isinstance(backbone_config, dict): if "model_type" in backbone_config: backbone_config_class = CONFIG_MAPPING[backbone_config["model_type"]] else: logger.info( "`model_type` is not found in `backbone_config`. Use `Bit` as the backbone configuration class." ) backbone_config_class = BitConfig backbone_config = backbone_config_class(**backbone_config) self.backbone_featmap_shape = backbone_featmap_shape self.backbone_config = backbone_config self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.qkv_bias = qkv_bias def to_dict(self) -> Dict[str, any]: """ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. Returns: `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, """ output = copy.deepcopy(self.__dict__) output["backbone_config"] = self.backbone_config.to_dict() output["model_type"] = self.__class__.model_type return output
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/vit_hybrid/modeling_vit_hybrid.py
# coding=utf-8 # Copyright 2022 Google AI, Ross Wightman, The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch ViT Hybrid model.""" import collections.abc import math from typing import Dict, List, Optional, Set, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, ImageClassifierOutput from ...modeling_utils import PreTrainedModel from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from ..auto import AutoBackbone from .configuration_vit_hybrid import ViTHybridConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "ViTHybridConfig" # Base docstring _CHECKPOINT_FOR_DOC = "google/vit-hybrid-base-bit-384" _EXPECTED_OUTPUT_SHAPE = [1, 197, 768] # Image classification docstring _IMAGE_CLASS_CHECKPOINT = "google/vit-hybrid-base-bit-384" _IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST = [ "google/vit-hybrid-base-bit-384", # See all ViT hybrid models at https://huggingface.co/models?filter=vit-hybrid ] class ViTHybridEmbeddings(nn.Module): """ Construct the CLS token, position and patch embeddings. Optionally, also the mask token. """ # Copied from transformers.models.vit.modeling_vit.ViTEmbeddings.__init__ with ViT->ViTHybrid def __init__(self, config: ViTHybridConfig, use_mask_token: bool = False) -> None: super().__init__() self.cls_token = nn.Parameter(torch.randn(1, 1, config.hidden_size)) self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) if use_mask_token else None self.patch_embeddings = ViTHybridPatchEmbeddings(config) num_patches = self.patch_embeddings.num_patches self.position_embeddings = nn.Parameter(torch.randn(1, num_patches + 1, config.hidden_size)) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.config = config def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor: """ This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution images. Source: https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174 """ num_patches = embeddings.shape[1] - 1 num_positions = self.position_embeddings.shape[1] - 1 if num_patches == num_positions and height == width: return self.position_embeddings class_pos_embed = self.position_embeddings[:, 0] patch_pos_embed = self.position_embeddings[:, 1:] dim = embeddings.shape[-1] height = height // self.config.patch_size width = width // self.config.patch_size # we add a small number to avoid floating point error in the interpolation # see discussion at https://github.com/facebookresearch/dino/issues/8 height, width = height + 0.1, width + 0.1 patch_pos_embed = patch_pos_embed.reshape(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim) patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2) patch_pos_embed = nn.functional.interpolate( patch_pos_embed, scale_factor=(height / math.sqrt(num_positions), width / math.sqrt(num_positions)), mode="bicubic", align_corners=False, ) if int(height) != patch_pos_embed.shape[-2] or int(width) != patch_pos_embed.shape[-1]: raise ValueError(f"Invalid height or width: {height}, {width}") patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1) def forward( self, pixel_values: torch.Tensor, bool_masked_pos: Optional[torch.BoolTensor] = None, interpolate_pos_encoding: bool = False, ) -> torch.Tensor: batch_size, num_channels, height, width = pixel_values.shape embeddings = self.patch_embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding) if bool_masked_pos is not None: seq_length = embeddings.shape[1] mask_tokens = self.mask_token.expand(batch_size, seq_length, -1) # replace the masked visual tokens by mask_tokens mask = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens) embeddings = embeddings * (1.0 - mask) + mask_tokens * mask # add the [CLS] token to the embedded patch tokens cls_tokens = self.cls_token.expand(batch_size, -1, -1) embeddings = torch.cat((cls_tokens, embeddings), dim=1) # add positional encoding to each token if interpolate_pos_encoding: embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width) else: embeddings = embeddings + self.position_embeddings embeddings = self.dropout(embeddings) return embeddings class ViTHybridPatchEmbeddings(nn.Module): """ This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a Transformer. """ def __init__(self, config, feature_size=None): super().__init__() image_size, patch_size = config.image_size, config.patch_size num_channels, hidden_size = config.num_channels, config.hidden_size image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) self.backbone = AutoBackbone.from_config(config.backbone_config) if self.backbone.config.model_type != "bit": raise ValueError(f"Backbone model type {self.backbone.model_type} is not supported.") feature_dim = self.backbone.channels[-1] if feature_size is None: feature_map = config.backbone_featmap_shape feature_size = feature_map[-2:] feature_dim = feature_map[1] else: feature_size = ( feature_size if isinstance(feature_size, collections.abc.Iterable) else (feature_size, feature_size) ) feature_dim = self.backbone.channels[-1] self.grid_size = (feature_size[0] // patch_size[0], feature_size[1] // patch_size[1]) self.num_patches = self.grid_size[0] * self.grid_size[1] self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.projection = nn.Conv2d(feature_dim, hidden_size, kernel_size=patch_size, stride=patch_size) def forward(self, pixel_values: torch.Tensor, interpolate_pos_encoding: bool = False) -> torch.Tensor: _, num_channels, height, width = pixel_values.shape if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) if not interpolate_pos_encoding: if height != self.image_size[0] or width != self.image_size[1]: raise ValueError( f"Input image size ({height}*{width}) doesn't match model" f" ({self.image_size[0]}*{self.image_size[1]})." ) features = self.backbone(pixel_values).feature_maps[-1] embeddings = self.projection(features).flatten(2).transpose(1, 2) return embeddings # Copied from transformers.models.vit.modeling_vit.ViTSelfAttention with ViT->ViTHybrid class ViTHybridSelfAttention(nn.Module): def __init__(self, config: ViTHybridConfig) -> None: super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size {config.hidden_size,} is not a multiple of the number of attention " f"heads {config.num_attention_heads}." ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: mixed_query_layer = self.query(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs # Copied from transformers.models.vit.modeling_vit.ViTSelfOutput with ViT->ViTHybrid class ViTHybridSelfOutput(nn.Module): """ The residual connection is defined in ViTHybridLayer instead of here (as is the case with other models), due to the layernorm applied before each block. """ def __init__(self, config: ViTHybridConfig) -> None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states # Copied from transformers.models.vit.modeling_vit.ViTAttention with ViT->ViTHybrid class ViTHybridAttention(nn.Module): def __init__(self, config: ViTHybridConfig) -> None: super().__init__() self.attention = ViTHybridSelfAttention(config) self.output = ViTHybridSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads: Set[int]) -> None: if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads ) # Prune linear layers self.attention.query = prune_linear_layer(self.attention.query, index) self.attention.key = prune_linear_layer(self.attention.key, index) self.attention.value = prune_linear_layer(self.attention.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: self_outputs = self.attention(hidden_states, head_mask, output_attentions) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.vit.modeling_vit.ViTIntermediate with ViT->ViTHybrid class ViTHybridIntermediate(nn.Module): def __init__(self, config: ViTHybridConfig) -> None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.vit.modeling_vit.ViTOutput with ViT->ViTHybrid class ViTHybridOutput(nn.Module): def __init__(self, config: ViTHybridConfig) -> None: super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = hidden_states + input_tensor return hidden_states class ViTHybridLayer(nn.Module): """This corresponds to the Block class in the timm implementation.""" def __init__(self, config: ViTHybridConfig) -> None: super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = ViTHybridAttention(config) self.intermediate = ViTHybridIntermediate(config) self.output = ViTHybridOutput(config) self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: self_attention_outputs = self.attention( self.layernorm_before(hidden_states), # in ViTHybrid, layernorm is applied before self-attention head_mask, output_attentions=output_attentions, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights # first residual connection # We assign to correct device for `accelerate`, check: https://github.com/huggingface/transformers/pull/20705/ hidden_states = attention_output + hidden_states.to(attention_output.device) # in ViTHybrid, layernorm is also applied after self-attention layer_output = self.layernorm_after(hidden_states) layer_output = self.intermediate(layer_output) # second residual connection is done here layer_output = self.output(layer_output, hidden_states) outputs = (layer_output,) + outputs return outputs # Copied from transformers.models.vit.modeling_vit.ViTEncoder with ViT->ViTHybrid class ViTHybridEncoder(nn.Module): def __init__(self, config: ViTHybridConfig) -> None: super().__init__() self.config = config self.layer = nn.ModuleList([ViTHybridLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ) -> Union[tuple, BaseModelOutput]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(layer_module), hidden_states, layer_head_mask, ) else: layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) # Copied from transformers.models.vit.modeling_vit.ViTPreTrainedModel with ViT->ViTHybrid class ViTHybridPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = ViTHybridConfig base_model_prefix = "vit" main_input_name = "pixel_values" supports_gradient_checkpointing = True _no_split_modules = [] def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None: """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): # Upcast the input in `fp32` and cast it back to desired `dtype` to avoid # `trunc_normal_cpu` not implemented in `half` issues module.weight.data = nn.init.trunc_normal_( module.weight.data.to(torch.float32), mean=0.0, std=self.config.initializer_range ).to(module.weight.dtype) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, ViTHybridEmbeddings): module.position_embeddings.data = nn.init.trunc_normal_( module.position_embeddings.data.to(torch.float32), mean=0.0, std=self.config.initializer_range, ).to(module.position_embeddings.dtype) module.cls_token.data = nn.init.trunc_normal_( module.cls_token.data.to(torch.float32), mean=0.0, std=self.config.initializer_range, ).to(module.cls_token.dtype) def _set_gradient_checkpointing(self, module: ViTHybridEncoder, value: bool = False) -> None: if isinstance(module, ViTHybridEncoder): module.gradient_checkpointing = value VIT_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ViTHybridConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ VIT_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViTHybridImageProcessor.__call__`] for details. head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare ViT Hybrid Model transformer outputting raw hidden-states without any specific head on top.", VIT_START_DOCSTRING, ) # Copied from transformers.models.vit.modeling_vit.ViTModel with ViT->ViTHybrid class ViTHybridModel(ViTHybridPreTrainedModel): def __init__(self, config: ViTHybridConfig, add_pooling_layer: bool = True, use_mask_token: bool = False): super().__init__(config) self.config = config self.embeddings = ViTHybridEmbeddings(config, use_mask_token=use_mask_token) self.encoder = ViTHybridEncoder(config) self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.pooler = ViTHybridPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> ViTHybridPatchEmbeddings: return self.embeddings.patch_embeddings def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None: """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(VIT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, pixel_values: Optional[torch.Tensor] = None, bool_masked_pos: Optional[torch.BoolTensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, interpolate_pos_encoding: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*): Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) # TODO: maybe have a cleaner way to cast the input (from `ImageProcessor` side?) expected_dtype = self.embeddings.patch_embeddings.projection.weight.dtype if pixel_values.dtype != expected_dtype: pixel_values = pixel_values.to(expected_dtype) embedding_output = self.embeddings( pixel_values, bool_masked_pos=bool_masked_pos, interpolate_pos_encoding=interpolate_pos_encoding ) encoder_outputs = self.encoder( embedding_output, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] sequence_output = self.layernorm(sequence_output) pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,) return head_outputs + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) # Copied from transformers.models.vit.modeling_vit.ViTPooler with ViT->ViTHybrid class ViTHybridPooler(nn.Module): def __init__(self, config: ViTHybridConfig): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states): # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output @add_start_docstrings( """ ViT Hybrid Model transformer with an image classification head on top (a linear layer on top of the final hidden state of the [CLS] token) e.g. for ImageNet. """, VIT_START_DOCSTRING, ) # Copied from transformers.models.vit.modeling_vit.ViTForImageClassification with ViT->ViTHybrid class ViTHybridForImageClassification(ViTHybridPreTrainedModel): def __init__(self, config: ViTHybridConfig) -> None: super().__init__(config) self.num_labels = config.num_labels self.vit = ViTHybridModel(config, add_pooling_layer=False) # Classifier head self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(VIT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=ImageClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def forward( self, pixel_values: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, interpolate_pos_encoding: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, ImageClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.vit( pixel_values, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, interpolate_pos_encoding=interpolate_pos_encoding, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.classifier(sequence_output[:, 0, :]) loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(logits.device) if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/vit_hybrid/convert_vit_hybrid_timm_to_pytorch.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert ViT hybrid checkpoints from the timm library.""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) def create_rename_keys(config, base_model=False): rename_keys = [] # fmt: off # stem: rename_keys.append(("cls_token", "vit.embeddings.cls_token")) rename_keys.append(("pos_embed", "vit.embeddings.position_embeddings")) rename_keys.append(("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight")) rename_keys.append(("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias")) # backbone rename_keys.append(("patch_embed.backbone.stem.conv.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight")) rename_keys.append(("patch_embed.backbone.stem.norm.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight")) rename_keys.append(("patch_embed.backbone.stem.norm.bias", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias")) for stage_idx in range(len(config.backbone_config.depths)): for layer_idx in range(config.backbone_config.depths[stage_idx]): rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight")) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight")) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias")) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight")) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight")) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias")) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight")) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight")) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias")) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight")) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight")) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias")) # transformer encoder for i in range(config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight")) rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias")) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight")) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias")) rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight")) rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias")) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight")) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias")) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight")) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias")) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" rename_keys = [(pair[0], pair[1][4:]) if pair[1].startswith("vit") else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) # fmt: on return rename_keys # we split up the matrix of each encoder layer into queries, keys and values def read_in_q_k_v(state_dict, config, base_model=False): for i in range(config.num_hidden_layers): if base_model: prefix = "" else: prefix = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) in_proj_weight = state_dict.pop(f"blocks.{i}.attn.qkv.weight") in_proj_bias = state_dict.pop(f"blocks.{i}.attn.qkv.bias") # next, add query, keys and values (in that order) to the state dict state_dict[f"{prefix}encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[ : config.hidden_size, : ] state_dict[f"{prefix}encoder.layer.{i}.attention.attention.query.bias"] = in_proj_bias[: config.hidden_size] state_dict[f"{prefix}encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] state_dict[f"{prefix}encoder.layer.{i}.attention.attention.key.bias"] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] state_dict[f"{prefix}encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[ -config.hidden_size :, : ] state_dict[f"{prefix}encoder.layer.{i}.attention.attention.value.bias"] = in_proj_bias[-config.hidden_size :] def remove_classification_head_(state_dict): ignore_keys = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(k, None) def rename_key(dct, old, new): val = dct.pop(old) dct[new] = val # We will verify our results on an image of cute cats def prepare_img(): url = "http://images.cocodataset.org/val2017/000000039769.jpg" im = Image.open(requests.get(url, stream=True).raw) return im @torch.no_grad() def convert_vit_checkpoint(vit_name, pytorch_dump_folder_path, push_to_hub=False): """ Copy/paste/tweak model's weights to our ViT structure. """ # define default ViT hybrid configuration backbone_config = BitConfig( global_padding="same", layer_type="bottleneck", depths=(3, 4, 9), out_features=["stage3"], embedding_dynamic_padding=True, ) config = ViTHybridConfig(backbone_config=backbone_config, image_size=384, num_labels=1000) base_model = False # load original model from timm timm_model = timm.create_model(vit_name, pretrained=True) timm_model.eval() # load state_dict of original model, remove and rename some keys state_dict = timm_model.state_dict() if base_model: remove_classification_head_(state_dict) rename_keys = create_rename_keys(config, base_model) for src, dest in rename_keys: rename_key(state_dict, src, dest) read_in_q_k_v(state_dict, config, base_model) repo_id = "huggingface/label-files" filename = "imagenet-1k-id2label.json" id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) id2label = {int(k): v for k, v in id2label.items()} config.id2label = id2label config.label2id = {v: k for k, v in id2label.items()} # load HuggingFace model if vit_name[-5:] == "in21k": model = ViTHybridModel(config).eval() else: model = ViTHybridForImageClassification(config).eval() model.load_state_dict(state_dict) # create image processor transform = create_transform(**resolve_data_config({}, model=timm_model)) timm_transforms = transform.transforms pillow_resamplings = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } processor = ViTHybridImageProcessor( do_resize=True, size={"shortest_edge": timm_transforms[0].size}, resample=pillow_resamplings[timm_transforms[0].interpolation.value], do_center_crop=True, crop_size={"height": timm_transforms[1].size[0], "width": timm_transforms[1].size[1]}, do_normalize=True, image_mean=timm_transforms[-1].mean.tolist(), image_std=timm_transforms[-1].std.tolist(), ) image = prepare_img() timm_pixel_values = transform(image).unsqueeze(0) pixel_values = processor(image, return_tensors="pt").pixel_values # verify pixel values assert torch.allclose(timm_pixel_values, pixel_values) # verify logits with torch.no_grad(): outputs = model(pixel_values) logits = outputs.logits print("Predicted class:", logits.argmax(-1).item()) if base_model: timm_pooled_output = timm_model.forward_features(pixel_values) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(timm_pooled_output, outputs.pooler_output, atol=1e-3) else: timm_logits = timm_model(pixel_values) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(timm_logits, outputs.logits, atol=1e-3) print("Looks ok!") if pytorch_dump_folder_path is not None: Path(pytorch_dump_folder_path).mkdir(exist_ok=True) print(f"Saving model {vit_name} to {pytorch_dump_folder_path}") model.save_pretrained(pytorch_dump_folder_path) print(f"Saving processor to {pytorch_dump_folder_path}") processor.save_pretrained(pytorch_dump_folder_path) if push_to_hub: print(f"Pushing model and processor to the hub {vit_name}") model.push_to_hub(f"ybelkada/{vit_name}") processor.push_to_hub(f"ybelkada/{vit_name}") if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--vit_name", default="vit_base_r50_s16_384", type=str, help="Name of the hybrid ViT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to upload the model to the HuggingFace hub." ) args = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/vit_hybrid/image_processing_vit_hybrid.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for ViT hybrid.""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( convert_to_rgb, get_resize_output_image_size, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging logger = logging.get_logger(__name__) if is_vision_available(): import PIL class ViTHybridImageProcessor(BaseImageProcessor): r""" Constructs a ViT Hybrid image processor. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by `do_resize` in the `preprocess` method. size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`): Size of the image after resizing. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge resized to keep the input aspect ratio. Can be overridden by `size` in the `preprocess` method. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`): Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method. do_center_crop (`bool`, *optional*, defaults to `True`): Whether to center crop the image to the specified `crop_size`. Can be overridden by `do_center_crop` in the `preprocess` method. crop_size (`Dict[str, int]` *optional*, defaults to 224): Size of the output image after applying `center_crop`. Can be overridden by `crop_size` in the `preprocess` method. do_rescale (`bool`, *optional*, defaults to `True`): Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in the `preprocess` method. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess` method. do_normalize: Whether to normalize the image. Can be overridden by `do_normalize` in the `preprocess` method. image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`): Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`): Image standard deviation. do_convert_rgb (`bool`, *optional*, defaults to `True`): Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. """ model_input_names = ["pixel_values"] def __init__( self, do_resize: bool = True, size: Dict[str, int] = None, resample: PILImageResampling = PILImageResampling.BICUBIC, do_center_crop: bool = True, crop_size: Dict[str, int] = None, do_rescale: bool = True, rescale_factor: Union[int, float] = 1 / 255, do_normalize: bool = True, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_convert_rgb: bool = True, **kwargs, ) -> None: super().__init__(**kwargs) size = size if size is not None else {"shortest_edge": 224} size = get_size_dict(size, default_to_square=False) crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224} crop_size = get_size_dict(crop_size, default_to_square=True, param_name="crop_size") self.do_resize = do_resize self.size = size self.resample = resample self.do_center_crop = do_center_crop self.crop_size = crop_size self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD self.do_convert_rgb = do_convert_rgb def resize( self, image: np.ndarray, size: Dict[str, int], resample: PILImageResampling = PILImageResampling.BICUBIC, data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Resize an image. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge resized to keep the input aspect ratio. Args: image (`np.ndarray`): Image to resize. size (`Dict[str, int]`): Size of the output image. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`): Resampling filter to use when resiizing the image. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the image. If not provided, it will be the same as the input image. """ size = get_size_dict(size, default_to_square=False) if "shortest_edge" not in size: raise ValueError(f"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}") output_size = get_resize_output_image_size(image, size=size["shortest_edge"], default_to_square=False) return resize(image, size=output_size, resample=resample, data_format=data_format, **kwargs) def preprocess( self, images: ImageInput, do_resize: bool = None, size: Dict[str, int] = None, resample: PILImageResampling = None, do_center_crop: bool = None, crop_size: int = None, do_rescale: bool = None, rescale_factor: float = None, do_normalize: bool = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_convert_rgb: bool = None, return_tensors: Optional[Union[str, TensorType]] = None, data_format: Optional[ChannelDimension] = ChannelDimension.FIRST, **kwargs, ) -> PIL.Image.Image: """ Preprocess an image or batch of images. Args: images (`ImageInput`): Image to preprocess. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to `self.size`): Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with the longest edge resized to keep the input aspect ratio. resample (`int`, *optional*, defaults to `self.resample`): Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only has an effect if `do_resize` is set to `True`. do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`): Whether to center crop the image. crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`): Size of the center crop. Only has an effect if `do_center_crop` is set to `True`. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`. image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to `True`. do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`): Whether to convert the image to RGB. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `ChannelDimension.LAST`: image in (height, width, num_channels) format. - Unset: defaults to the channel dimension format of the input image. """ do_resize = do_resize if do_resize is not None else self.do_resize size = size if size is not None else self.size size = get_size_dict(size, param_name="size", default_to_square=False) resample = resample if resample is not None else self.resample do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop crop_size = crop_size if crop_size is not None else self.crop_size crop_size = get_size_dict(crop_size, param_name="crop_size", default_to_square=True) do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor do_normalize = do_normalize if do_normalize is not None else self.do_normalize image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb images = make_list_of_images(images) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True.") if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True.") if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True.") if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True.") # PIL RGBA images are converted to RGB if do_convert_rgb: images = [convert_to_rgb(image) for image in images] # All transformations expect numpy arrays. images = [to_numpy_array(image) for image in images] if do_resize: images = [self.resize(image=image, size=size, resample=resample) for image in images] if do_center_crop: images = [self.center_crop(image=image, size=crop_size) for image in images] if do_rescale: images = [self.rescale(image=image, scale=rescale_factor) for image in images] if do_normalize: images = [self.normalize(image=image, mean=image_mean, std=image_std) for image in images] images = [to_channel_dimension_format(image, data_format) for image in images] data = {"pixel_values": images} return BatchFeature(data=data, tensor_type=return_tensors)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/bloom/__init__.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _import_structure = { "configuration_bloom": ["BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP", "BloomConfig", "BloomOnnxConfig"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_bloom_fast"] = ["BloomTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_bloom"] = [ "BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST", "BloomForCausalLM", "BloomModel", "BloomPreTrainedModel", "BloomForSequenceClassification", "BloomForTokenClassification", "BloomForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/bloom/tokenization_bloom_fast.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for Bloom.""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"tokenizer_file": "tokenizer.json"} PRETRAINED_VOCAB_FILES_MAP = { "tokenizer_file": { "bigscience/tokenizer": "https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json", "bigscience/bloom-560m": "https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json", "bigscience/bloom-1b1": "https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json", "bigscience/bloom-1b7": "https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json", "bigscience/bloom-3b": "https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json", "bigscience/bloom-7b1": "https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json", "bigscience/bloom": "https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json", }, } class BloomTokenizerFast(PreTrainedTokenizerFast): """ Construct a "fast" Bloom tokenizer (backed by HuggingFace's *tokenizers* library). Based on byte-level Byte-Pair-Encoding. This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will be encoded differently whether it is at the beginning of the sentence (without space) or not: ```python >>> from transformers import BloomTokenizerFast >>> tokenizer = BloomTokenizerFast.from_pretrained("bigscience/bloom") >>> tokenizer("Hello world")["input_ids"] [59414, 8876] >>> tokenizer(" Hello world")["input_ids"] [86153, 8876] ``` You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer, but since the model was not pretrained this way, it might yield a decrease in performance. <Tip> When used with `is_split_into_words=True`, this tokenizer needs to be instantiated with `add_prefix_space=True`. </Tip> This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. merges_file (`str`): Path to the merges file. errors (`str`, *optional*, defaults to `"replace"`): Paradigm to follow when decoding bytes to UTF-8. See [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. unk_token (`str`, *optional*, defaults to `<|endoftext|>`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. bos_token (`str`, *optional*, defaults to `<|endoftext|>`): The beginning of sequence token. eos_token (`str`, *optional*, defaults to `<|endoftext|>`): The end of sequence token. add_prefix_space (`bool`, *optional*, defaults to `False`): Whether or not to add an initial space to the input. This allows to treat the leading word just as any other word. (Bloom tokenizer detect beginning of words by the preceding space). trim_offsets (`bool`, *optional*, defaults to `True`): Whether or not the post-processing step should trim offsets to avoid including whitespaces. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP model_input_names = ["input_ids", "attention_mask"] slow_tokenizer_class = None # No `max_model_input_sizes` as BLOOM uses ALiBi positional embeddings def __init__( self, vocab_file=None, merges_file=None, tokenizer_file=None, unk_token="<unk>", bos_token="<s>", eos_token="</s>", pad_token="<pad>", add_prefix_space=False, clean_up_tokenization_spaces=False, **kwargs, ): super().__init__( vocab_file, merges_file, tokenizer_file=tokenizer_file, unk_token=unk_token, bos_token=bos_token, eos_token=eos_token, pad_token=pad_token, add_prefix_space=add_prefix_space, clean_up_tokenization_spaces=clean_up_tokenization_spaces, **kwargs, ) pre_tok_state = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get("add_prefix_space", add_prefix_space) != add_prefix_space: pre_tok_class = getattr(pre_tokenizers, pre_tok_state.pop("type")) pre_tok_state["add_prefix_space"] = add_prefix_space self.backend_tokenizer.pre_tokenizer = pre_tok_class(**pre_tok_state) self.add_prefix_space = add_prefix_space def _batch_encode_plus(self, *args, **kwargs) -> BatchEncoding: is_split_into_words = kwargs.get("is_split_into_words", False) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with" " pretokenized inputs." ) return super()._batch_encode_plus(*args, **kwargs) def _encode_plus(self, *args, **kwargs) -> BatchEncoding: is_split_into_words = kwargs.get("is_split_into_words", False) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with" " pretokenized inputs." ) return super()._encode_plus(*args, **kwargs) def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: files = self._tokenizer.model.save(save_directory, name=filename_prefix) return tuple(files) def _build_conversation_input_ids(self, conversation: "Conversation") -> List[int]: """This corresponds to DialoGPT variants of models.""" input_ids = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(text, add_special_tokens=False) + [self.eos_token_id]) if len(input_ids) > self.model_max_length: input_ids = input_ids[-self.model_max_length :] return input_ids
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/bloom/convert_bloom_original_checkpoint_to_pytorch.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert BigScience BLOOM checkpoint.""" import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() WEIGHTS_TO_AVERAGE_ENDSWITH = [ "word_embeddings_layernorm.weight", "word_embeddings_layernorm.bias", "input_layernorm.weight", "input_layernorm.bias", "post_attention_layernorm.weight", "post_attention_layernorm.bias", "self_attention.dense.bias", "mlp.dense_4h_to_h.bias", "ln_f.weight", "ln_f.bias", ] WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN = [ "mlp.dense_4h_to_h.weight", "self_attention.dense.weight", ] def layer_name_mapping(key, file): """Convert Megatron-DeepSpeed TP/PP weights mapping in transformers PP only""" # Handle first and last layers layer_rename_map = { "word_embeddings.weight": "word_embeddings.weight", "word_embeddings.norm.weight": "word_embeddings_layernorm.weight", "word_embeddings.norm.bias": "word_embeddings_layernorm.bias", "weight": "ln_f.weight", "bias": "ln_f.bias", } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks layer_number = int(re.match(r".*layer_(\d*).*", file)[1]) layer_number -= 3 return f"h.{layer_number}." + key def get_dtype_size(dtype): if dtype == torch.bool: return 1 / 8 bit_search = re.search(r"[^\d](\d+)$", str(dtype)) if bit_search is None: raise ValueError(f"`dtype` is not a valid dtype: {dtype}.") bit_size = int(bit_search.groups()[0]) return bit_size // 8 def convert_bloom_checkpoint_to_pytorch( bloom_checkpoint_path, bloom_config_file, pytorch_dump_folder_path, shard_model, pretraining_tp ): # Construct model if bloom_config_file == "": config = BloomConfig() else: config = BloomConfig.from_json_file(bloom_config_file) if shard_model: file_names = os.listdir(bloom_checkpoint_path) file_names = sorted(filter(lambda s: s.startswith("layer") and "model_00" in s, file_names)) index_dict = {"weight_map": {}, "metadata": {}} total_size = 0 missing_keys = None config = BloomConfig() for j, file in enumerate(file_names): print("Processing file: {}".format(file)) tensors = None for i in range(pretraining_tp): # load all TP files f_name = file.replace("model_00", f"model_0{i}") temp = torch.load(os.path.join(bloom_checkpoint_path, f_name), map_location="cpu") # Rename keys in the transformers names keys = list(temp.keys()) for key in keys: temp[layer_name_mapping(key, file)] = temp.pop(key) if tensors is None: tensors = temp else: for key in tensors.keys(): if any(key.endswith(end) for end in WEIGHTS_TO_AVERAGE_ENDSWITH): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel cat_dim = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN) else 0 # We concatenate these weights accross TP ranks tensors[key] = torch.cat([tensors[key], temp[key]], dim=cat_dim) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(end) for end in WEIGHTS_TO_AVERAGE_ENDSWITH): tensors[key] = tensors[key] / pretraining_tp torch.save( tensors, os.path.join( pytorch_dump_folder_path, "pytorch_model_{}-of-{}.bin".format(str(j + 1).zfill(5), str(len(file_names)).zfill(5)), ), ) for key in tensors.keys(): value = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype) if key not in index_dict["weight_map"]: index_dict["weight_map"][key] = "pytorch_model_{}-of-{}.bin".format( str(j + 1).zfill(5), str(len(file_names)).zfill(5) ) config = BloomConfig() pytorch_config_dump_path = pytorch_dump_folder_path + "/" + CONFIG_NAME index_dict["metadata"]["total_size"] = total_size with open(pytorch_config_dump_path, "w", encoding="utf-8") as f: f.write(config.to_json_string()) with open(os.path.join(pytorch_dump_folder_path, WEIGHTS_NAME + ".index.json"), "w", encoding="utf-8") as f: json_config = json.dumps(index_dict, indent=2, sort_keys=True) + "\n" f.write(json_config) else: model = BloomModel(config) file_names = os.listdir(bloom_checkpoint_path) file_names = sorted(filter(lambda s: s.startswith("layer") and "model_00" in s, file_names)) missing_keys = None for i, file in enumerate(file_names): tensors = None for i in range(pretraining_tp): # load all TP files f_name = file.replace("model_00", f"model_0{i}") temp = torch.load(os.path.join(bloom_checkpoint_path, f_name), map_location="cpu") # Rename keys in the transformers names keys = list(temp.keys()) for key in keys: temp[layer_name_mapping(key, file)] = temp.pop(key) if tensors is None: tensors = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(end) for end in WEIGHTS_TO_AVERAGE_ENDSWITH): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel cat_dim = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN) else 0 # We concatenate these weights accross TP ranks tensors[key] = torch.cat([tensors[key], temp[key]], dim=cat_dim) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(end) for end in WEIGHTS_TO_AVERAGE_ENDSWITH): tensors[key] = tensors[key] / pretraining_tp other_keys = model.load_state_dict(tensors, strict=False) assert not other_keys.unexpected_keys, f"The keys {other_keys.unexpected_keys} are unexpected" if missing_keys is None: missing_keys = set(other_keys.missing_keys) else: missing_keys = missing_keys.intersection(set(other_keys.missing_keys)) assert not missing_keys, f"The keys {missing_keys} are missing" # Save pytorch-model os.makedirs(pytorch_dump_folder_path, exist_ok=True) pytorch_weights_dump_path = pytorch_dump_folder_path + "/" + WEIGHTS_NAME pytorch_config_dump_path = pytorch_dump_folder_path + "/" + CONFIG_NAME print(f"Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}") if config.torch_dtype is not None: model = model.to(config.torch_dtype) torch.save(model.state_dict(), pytorch_weights_dump_path) print(f"Save configuration file to {pytorch_config_dump_path}") with open(pytorch_config_dump_path, "w", encoding="utf-8") as f: f.write(config.to_json_string()) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bloom_checkpoint_path", default=None, type=str, required=True, help="Path to the Megatron-LM checkpoint path.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--bloom_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--shard_model", action="store_true", help="An optional setting to shard the output model \nThis enables sharding the converted checkpoint", ) parser.add_argument( "--pretraining_tp", default=4, type=int, help="Pretraining TP rank that has been used when training the model in Megatron-LM \n", ) args = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/bloom/modeling_bloom.py
# coding=utf-8 # Copyright 2022 HuggingFace Inc. team and BigScience workshop. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch BLOOM model.""" import math import warnings from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, LayerNorm, MSELoss from torch.nn import functional as F from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithPastAndCrossAttentions, CausalLMOutputWithCrossAttentions, QuestionAnsweringModelOutput, SequenceClassifierOutputWithPast, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_bloom import BloomConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "bigscience/bloom-560m" _CONFIG_FOR_DOC = "BloomConfig" BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST = [ "bigscience/bigscience-small-testing", "bigscience/bloom-560m", "bigscience/bloom-1b1", "bigscience/bloom-1b7", "bigscience/bloom-3b", "bigscience/bloom-7b1", "bigscience/bloom", ] def _make_causal_mask( input_ids_shape: torch.Size, device: torch.device, past_key_values_length: int ) -> torch.BoolTensor: """ Make causal mask used for self-attention. """ batch_size, target_length = input_ids_shape mask = torch.empty((target_length, target_length + past_key_values_length), dtype=torch.bool, device=device) # ONNX doesn't support `torch.Tensor.triu` properly, thus we use this workaround seq_ids = torch.arange(target_length, device=device) mask[:, past_key_values_length:] = seq_ids[:, None] < seq_ids[None, :] if past_key_values_length > 0: mask[:, :past_key_values_length] = False expanded_mask = mask[None, None, :, :].expand(batch_size, 1, target_length, target_length + past_key_values_length) return expanded_mask def _expand_mask(mask: torch.Tensor, tgt_length: int) -> torch.BoolTensor: """ Expands attention_mask from `[batch_size, src_length]` to `[batch_size, 1, tgt_length, src_length]`. """ batch_size, src_length = mask.shape tgt_length = tgt_length if tgt_length is not None else src_length expanded_mask = ~(mask[:, None, None, :].to(torch.bool)) return expanded_mask.expand(batch_size, 1, tgt_length, src_length) def build_alibi_tensor(attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype) -> torch.Tensor: """ Link to paper: https://arxiv.org/abs/2108.12409 Alibi tensor is not causal as the original paper mentions, it relies on a translation invariance of softmax for quick implementation: with l being a tensor, and a fixed value `softmax(l+a) = softmax(l)`. Based on https://github.com/ofirpress/attention_with_linear_biases/blob/a35aaca144e0eb6b789dfcb46784c4b8e31b7983/fairseq/models/transformer.py#L742 TODO @thomasw21 this doesn't work as nicely due to the masking strategy, and so masking varies slightly. Args: Returns tensor shaped (batch_size * num_heads, 1, max_seq_len) attention_mask (`torch.Tensor`): Token-wise attention mask, this should be of shape (batch_size, max_seq_len). num_heads (`int`, *required*): number of heads dtype (`torch.dtype`, *optional*, default=`torch.bfloat16`): dtype of the output tensor """ batch_size, seq_length = attention_mask.shape closest_power_of_2 = 2 ** math.floor(math.log2(num_heads)) base = torch.tensor( 2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32 ) powers = torch.arange(1, 1 + closest_power_of_2, device=attention_mask.device, dtype=torch.int32) slopes = torch.pow(base, powers) if closest_power_of_2 != num_heads: extra_base = torch.tensor( 2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32 ) num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2) extra_powers = torch.arange(1, 1 + 2 * num_remaining_heads, 2, device=attention_mask.device, dtype=torch.int32) slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0) # Note: alibi will added to the attention bias that will be applied to the query, key product of attention # => therefore alibi will have to be of shape (batch_size, num_heads, query_length, key_length) # => here we set (batch_size=1, num_heads=num_heads, query_length=1, key_length=max_length) # => the query_length dimension will then be broadcasted correctly # This is more or less identical to T5's relative position bias: # https://github.com/huggingface/transformers/blob/f681437203baa7671de3174b0fa583c349d9d5e1/src/transformers/models/t5/modeling_t5.py#L527 arange_tensor = ((attention_mask.cumsum(dim=-1) - 1) * attention_mask)[:, None, :] alibi = slopes[..., None] * arange_tensor return alibi.reshape(batch_size * num_heads, 1, seq_length).to(dtype) def dropout_add(x: torch.Tensor, residual: torch.Tensor, prob: float, training: bool) -> torch.Tensor: """ Dropout add function Args: x (`torch.tensor`, *required*): input tensor residual (`torch.tensor`, *required*): residual tensor prob (`float`, *required*): dropout probability training (`bool`, *required*): training mode """ out = F.dropout(x, p=prob, training=training) out = residual + out return out def bloom_gelu_forward(x: torch.Tensor) -> torch.Tensor: """ Custom bias GELU function. Adapted from Megatron-DeepSpeed code. Here we use a simple implementation (inference) to make the model jitable. Args: x (`torch.tensor`, *required*): input hidden states """ return x * 0.5 * (1.0 + torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x))) def bloom_gelu_back(g: torch.Tensor, x: torch.Tensor) -> torch.Tensor: """ gradient of tanh approximation of gelu gradient of actual gelu is: 0.5 * (1. + torch.erf(x * 0.70710678)) + 0.3989423 * x * torch.exp(-0.5 * x * x) Args: g (`torch.tensor`, *required*): gradient output tensor x (`torch.tensor`, *required*): input tensor """ x = x[0] # x is a tuple of 1 element, needs to unpack it first tanh_out = torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x)) # sqrt(2/pi) * 3 * 0.044715 -> 0.1070322243 ff = 0.5 * x * ((1 - tanh_out * tanh_out) * (0.79788456 + 0.1070322243 * x * x)) + 0.5 * (1 + tanh_out) return ff * g class GeLUFunction(torch.autograd.Function): @staticmethod def forward(ctx, input: torch.Tensor) -> torch.Tensor: ctx.save_for_backward(input) return bloom_gelu_forward(input) @staticmethod def backward(ctx, grad_output: torch.Tensor) -> torch.Tensor: input = ctx.saved_tensors tmp = bloom_gelu_back(grad_output, input) return tmp class BloomGelu(nn.Module): """ BloomBiasGelu wrapper function that make use of the simple function on inference mode to make the model torchscriptable and use the autograd function in training mode to get the accurate results of the gradients Partly copied from Megatron-DeepSpeed code and adapted for our needs See here why autograd functions are not torchscriptable: https://github.com/pytorch/pytorch/issues/22329 """ def __init__(self): super().__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: if self.training: return GeLUFunction.apply(x) else: return bloom_gelu_forward(x) class BloomAttention(nn.Module): def __init__(self, config: BloomConfig): super().__init__() self.pretraining_tp = config.pretraining_tp self.slow_but_exact = config.slow_but_exact self.hidden_size = config.hidden_size self.num_heads = config.n_head self.head_dim = self.hidden_size // self.num_heads self.split_size = self.hidden_size self.hidden_dropout = config.hidden_dropout if self.head_dim * self.num_heads != self.hidden_size: raise ValueError( f"`hidden_size` must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:" f" {self.num_heads})." ) # Layer-wise attention scaling self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim) self.beta = 1.0 self.query_key_value = nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=True) self.dense = nn.Linear(self.hidden_size, self.hidden_size) self.attention_dropout = nn.Dropout(config.attention_dropout) def _split_heads(self, fused_qkv: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ Split the last dimension into (num_heads, head_dim) without making any copies, results share same memory storage as `fused_qkv` Args: fused_qkv (`torch.tensor`, *required*): [batch_size, seq_length, num_heads * 3 * head_dim] Returns: query: [batch_size, seq_length, num_heads, head_dim] key: [batch_size, seq_length, num_heads, head_dim] value: [batch_size, seq_length, num_heads, head_dim] """ batch_size, seq_length, three_times_hidden_size = fused_qkv.shape fused_qkv = fused_qkv.view(batch_size, seq_length, self.num_heads, 3, self.head_dim) return fused_qkv[..., 0, :], fused_qkv[..., 1, :], fused_qkv[..., 2, :] def _merge_heads(self, x: torch.Tensor) -> torch.Tensor: """ Merge heads together over the last dimension Args: x (`torch.tensor`, *required*): [batch_size * num_heads, seq_length, head_dim] Returns: torch.tensor: [batch_size, seq_length, num_heads * head_dim] """ # What we want to achieve is: # batch_size * num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads * head_dim batch_size_and_num_heads, seq_length, _ = x.shape batch_size = batch_size_and_num_heads // self.num_heads # First view to decompose the batch size # batch_size * num_heads, seq_length, head_dim -> batch_size, num_heads, seq_length, head_dim x = x.view(batch_size, self.num_heads, seq_length, self.head_dim) # batch_size, num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads, head_dim x = x.permute(0, 2, 1, 3) # batch_size, seq_length, num_heads, head_dim -> batch_size, seq_length, num_heads * head_dim return x.reshape(batch_size, seq_length, self.num_heads * self.head_dim) def forward( self, hidden_states: torch.Tensor, residual: torch.Tensor, alibi: torch.Tensor, attention_mask: torch.Tensor, layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, head_mask: Optional[torch.Tensor] = None, use_cache: bool = False, output_attentions: bool = False, ): fused_qkv = self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size] # 3 x [batch_size, seq_length, num_heads, head_dim] (query_layer, key_layer, value_layer) = self._split_heads(fused_qkv) batch_size, q_length, _, _ = query_layer.shape query_layer = query_layer.transpose(1, 2).reshape(batch_size * self.num_heads, q_length, self.head_dim) key_layer = key_layer.permute(0, 2, 3, 1).reshape(batch_size * self.num_heads, self.head_dim, q_length) value_layer = value_layer.transpose(1, 2).reshape(batch_size * self.num_heads, q_length, self.head_dim) if layer_past is not None: past_key, past_value = layer_past # concatenate along seq_length dimension: # - key: [batch_size * self.num_heads, head_dim, kv_length] # - value: [batch_size * self.num_heads, kv_length, head_dim] key_layer = torch.cat((past_key, key_layer), dim=2) value_layer = torch.cat((past_value, value_layer), dim=1) _, _, kv_length = key_layer.shape if use_cache is True: present = (key_layer, value_layer) else: present = None # [batch_size * num_heads, q_length, kv_length] # we use `torch.Tensor.baddbmm` instead of `torch.baddbmm` as the latter isn't supported by TorchScript v1.11 matmul_result = alibi.baddbmm( batch1=query_layer, batch2=key_layer, beta=self.beta, alpha=self.inv_norm_factor, ) # change view to [batch_size, num_heads, q_length, kv_length] attention_scores = matmul_result.view(batch_size, self.num_heads, q_length, kv_length) # cast attention scores to fp32, compute scaled softmax and cast back to initial dtype - [batch_size, num_heads, q_length, kv_length] input_dtype = attention_scores.dtype # `float16` has a minimum value of -65504.0, whereas `bfloat16` and `float32` have a minimum value of `-3.4e+38` if input_dtype == torch.float16: attention_scores = attention_scores.to(torch.float) attn_weights = torch.masked_fill(attention_scores, attention_mask, torch.finfo(attention_scores.dtype).min) attention_probs = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to(input_dtype) # [batch_size, num_heads, q_length, kv_length] attention_probs = self.attention_dropout(attention_probs) if head_mask is not None: attention_probs = attention_probs * head_mask # change view [batch_size x num_heads, q_length, kv_length] attention_probs_reshaped = attention_probs.view(batch_size * self.num_heads, q_length, kv_length) # matmul: [batch_size * num_heads, q_length, head_dim] context_layer = torch.bmm(attention_probs_reshaped, value_layer) # change view [batch_size, q_length, num_heads * head_dim] context_layer = self._merge_heads(context_layer) # aggregate results across tp ranks. See here: https://github.com/pytorch/pytorch/issues/76232 if self.pretraining_tp > 1 and self.slow_but_exact: slices = self.hidden_size / self.pretraining_tp output_tensor = torch.zeros_like(context_layer) for i in range(self.pretraining_tp): output_tensor = output_tensor + F.linear( context_layer[:, :, int(i * slices) : int((i + 1) * slices)], self.dense.weight[:, int(i * slices) : int((i + 1) * slices)], ) else: output_tensor = self.dense(context_layer) output_tensor = dropout_add(output_tensor, residual, self.hidden_dropout, self.training) outputs = (output_tensor, present) if output_attentions: outputs += (attention_probs,) return outputs class BloomMLP(nn.Module): def __init__(self, config: BloomConfig): super().__init__() hidden_size = config.hidden_size self.pretraining_tp = config.pretraining_tp self.slow_but_exact = config.slow_but_exact self.dense_h_to_4h = nn.Linear(hidden_size, 4 * hidden_size) self.gelu_impl = BloomGelu() self.dense_4h_to_h = nn.Linear(4 * hidden_size, hidden_size) self.hidden_dropout = config.hidden_dropout def forward(self, hidden_states: torch.Tensor, residual: torch.Tensor) -> torch.Tensor: hidden_states = self.gelu_impl(self.dense_h_to_4h(hidden_states)) if self.pretraining_tp > 1 and self.slow_but_exact: intermediate_output = torch.zeros_like(residual) slices = self.dense_4h_to_h.weight.shape[-1] / self.pretraining_tp for i in range(self.pretraining_tp): intermediate_output = intermediate_output + F.linear( hidden_states[:, :, int(i * slices) : int((i + 1) * slices)], self.dense_4h_to_h.weight[:, int(i * slices) : int((i + 1) * slices)], ) else: intermediate_output = self.dense_4h_to_h(hidden_states) output = dropout_add(intermediate_output, residual, self.hidden_dropout, self.training) return output class BloomBlock(nn.Module): def __init__(self, config: BloomConfig): super().__init__() hidden_size = config.hidden_size self.input_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon) self.num_heads = config.n_head self.self_attention = BloomAttention(config) self.post_attention_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon) self.mlp = BloomMLP(config) self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm self.hidden_dropout = config.hidden_dropout def forward( self, hidden_states: torch.Tensor, alibi: torch.Tensor, attention_mask: torch.Tensor, layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, head_mask: Optional[torch.Tensor] = None, use_cache: bool = False, output_attentions: bool = False, ): # hidden_states: [batch_size, seq_length, hidden_size] # Layer norm at the beginning of the transformer layer. layernorm_output = self.input_layernorm(hidden_states) # Layer norm post the self attention. if self.apply_residual_connection_post_layernorm: residual = layernorm_output else: residual = hidden_states # Self attention. attn_outputs = self.self_attention( layernorm_output, residual, layer_past=layer_past, attention_mask=attention_mask, alibi=alibi, head_mask=head_mask, use_cache=use_cache, output_attentions=output_attentions, ) attention_output = attn_outputs[0] outputs = attn_outputs[1:] layernorm_output = self.post_attention_layernorm(attention_output) # Get residual if self.apply_residual_connection_post_layernorm: residual = layernorm_output else: residual = attention_output # MLP. output = self.mlp(layernorm_output, residual) if use_cache: outputs = (output,) + outputs else: outputs = (output,) + outputs[1:] return outputs # hidden_states, present, attentions class BloomPreTrainedModel(PreTrainedModel): config_class = BloomConfig base_model_prefix = "transformer" supports_gradient_checkpointing = True _no_split_modules = ["BloomBlock"] _skip_keys_device_placement = "past_key_values" def __init__(self, *inputs, **kwargs): super().__init__(*inputs, **kwargs) def _init_weights(self, module: nn.Module): """Initialize the weights.""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def _set_gradient_checkpointing(self, module: nn.Module, value: bool = False): if isinstance(module, BloomModel): module.gradient_checkpointing = value @staticmethod def _convert_to_standard_cache( past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]], batch_size: int ) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]: """ Standardizes the format of the cache so as to match most implementations, i.e. to tuple(tuple([batch_size, num_heads, ...])) """ batch_size_times_num_heads, head_dim, seq_length = past_key_value[0][0].shape num_heads = batch_size_times_num_heads // batch_size # key: [batch_size * num_heads, head_dim, seq_length] -> [batch_size, num_heads, head_dim, seq_length] # value: [batch_size * num_heads, seq_length, head_dim] -> [batch_size, num_heads, seq_length, head_dim] return tuple( ( layer_past[0].view(batch_size, num_heads, head_dim, seq_length), layer_past[1].view(batch_size, num_heads, seq_length, head_dim), ) for layer_past in past_key_value ) @staticmethod def _convert_to_bloom_cache( past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]] ) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]: """ Converts the cache to the format expected by Bloom, i.e. to tuple(tuple([batch_size * num_heads, ...])) """ batch_size, num_heads, head_dim, seq_length = past_key_value[0][0].shape batch_size_times_num_heads = batch_size * num_heads # key: [batch_size, num_heads, head_dim, seq_length] -> [batch_size * num_heads, head_dim, seq_length] # value: [batch_size, num_heads, seq_length, head_dim] -> [batch_size * num_heads, seq_length, head_dim] return tuple( ( layer_past[0].view(batch_size_times_num_heads, head_dim, seq_length), layer_past[1].view(batch_size_times_num_heads, seq_length, head_dim), ) for layer_past in past_key_value ) BLOOM_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`BloomConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ BLOOM_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`): `input_ids_length` = `sequence_length` if `past_key_values` is `None` else `past_key_values[0][0].shape[2]` (`sequence_length` of input past key value states). Indices of input sequence tokens in the vocabulary. If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as `input_ids`. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.n_layers`): Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see `past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have their past given to this model should not be passed as `input_ids` as they have already been computed. Each element of `past_key_values` is a tuple (past_key, past_value): - past_key: [batch_size * num_heads, head_dim, kv_length] - past_value: [batch_size * num_heads, kv_length, head_dim] attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see `past_key_values`). use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare Bloom Model transformer outputting raw hidden-states without any specific head on top.", BLOOM_START_DOCSTRING, ) class BloomModel(BloomPreTrainedModel): def __init__(self, config: BloomConfig): super().__init__(config) self.embed_dim = config.hidden_size self.num_heads = config.n_head # Embedding + LN Embedding self.word_embeddings = nn.Embedding(config.vocab_size, self.embed_dim) self.word_embeddings_layernorm = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) # Transformer blocks self.h = nn.ModuleList([BloomBlock(config) for _ in range(config.num_hidden_layers)]) # Final Layer Norm self.ln_f = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def build_alibi_tensor(self, attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype) -> torch.Tensor: return build_alibi_tensor(attention_mask, num_heads, dtype) def get_input_embeddings(self): return self.word_embeddings def _prepare_attn_mask( self, attention_mask: torch.Tensor, input_shape: Tuple[int, int], past_key_values_length: int ) -> torch.BoolTensor: # create causal mask # [batch_size, seq_length] -> [batch_size, 1, tgt_length, src_length] combined_attention_mask = None device = attention_mask.device _, src_length = input_shape if src_length > 1: combined_attention_mask = _make_causal_mask( input_shape, device=device, past_key_values_length=past_key_values_length ) # [batch_size, seq_length] -> [batch_size, 1, tgt_length, src_length] expanded_attn_mask = _expand_mask(attention_mask, tgt_length=src_length) combined_attention_mask = ( expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask | combined_attention_mask ) return combined_attention_mask def set_input_embeddings(self, new_embeddings: torch.Tensor): self.word_embeddings = new_embeddings @add_start_docstrings_to_model_forward(BLOOM_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPastAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **deprecated_arguments, ) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]: if deprecated_arguments.pop("position_ids", False) is not False: # `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None` warnings.warn( "`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore" " passing `position_ids`.", FutureWarning, ) if len(deprecated_arguments) > 0: raise ValueError(f"Got unexpected arguments: {deprecated_arguments}") output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: batch_size, seq_length = input_ids.shape elif inputs_embeds is not None: batch_size, seq_length, _ = inputs_embeds.shape else: raise ValueError("You have to specify either input_ids or inputs_embeds") if past_key_values is None: past_key_values = tuple([None] * len(self.h)) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape batch_size x num_heads x N x N # head_mask has shape n_layer x batch x num_heads x N x N head_mask = self.get_head_mask(head_mask, self.config.n_layer) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) hidden_states = self.word_embeddings_layernorm(inputs_embeds) presents = () if use_cache else None all_self_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False # Compute alibi tensor: check build_alibi_tensor documentation seq_length_with_past = seq_length past_key_values_length = 0 if past_key_values[0] is not None: past_key_values_length = past_key_values[0][0].shape[2] seq_length_with_past = seq_length_with_past + past_key_values_length if attention_mask is None: attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device) else: attention_mask = attention_mask.to(hidden_states.device) alibi = self.build_alibi_tensor(attention_mask, self.num_heads, dtype=hidden_states.dtype) causal_mask = self._prepare_attn_mask( attention_mask, input_shape=(batch_size, seq_length), past_key_values_length=past_key_values_length, ) for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): # None for past_key_value return module(*inputs, use_cache=use_cache, output_attentions=output_attentions) return custom_forward outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, alibi, causal_mask, layer_past, head_mask[i], ) else: outputs = block( hidden_states, layer_past=layer_past, attention_mask=causal_mask, head_mask=head_mask[i], use_cache=use_cache, output_attentions=output_attentions, alibi=alibi, ) hidden_states = outputs[0] if use_cache is True: presents = presents + (outputs[1],) if output_attentions: all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) # Add last hidden state hidden_states = self.ln_f(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_self_attentions, ) @add_start_docstrings( """ The Bloom Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings). """, BLOOM_START_DOCSTRING, ) class BloomForCausalLM(BloomPreTrainedModel): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config: BloomConfig): super().__init__(config) self.transformer = BloomModel(config) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings: torch.Tensor): self.lm_head = new_embeddings def prepare_inputs_for_generation( self, input_ids: torch.LongTensor, past_key_values: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, **kwargs, ) -> dict: # only last token for input_ids if past is not None if past_key_values: input_ids = input_ids[:, -1].unsqueeze(-1) # the cache may be in the stardard format (e.g. in contrastive search), convert to bloom's format if needed if past_key_values[0][0].shape[0] == input_ids.shape[0]: past_key_values = self._convert_to_bloom_cache(past_key_values) # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} model_inputs.update( { "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "attention_mask": attention_mask, } ) return model_inputs @add_start_docstrings_to_model_forward(BLOOM_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **deprecated_arguments, ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` """ if deprecated_arguments.pop("position_ids", False) is not False: # `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None` warnings.warn( "`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore" " passing `position_ids`.", FutureWarning, ) if len(deprecated_arguments) > 0: raise ValueError(f"Got unexpected arguments: {deprecated_arguments}") return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] lm_logits = self.lm_head(hidden_states) loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(lm_logits.device) # Shift so that tokens < n predict n shift_logits = lm_logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() batch_size, seq_length, vocab_size = shift_logits.shape # Flatten the tokens loss_fct = CrossEntropyLoss() loss = loss_fct( shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length) ) if not return_dict: output = (lm_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return CausalLMOutputWithCrossAttentions( loss=loss, logits=lm_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) def _reorder_cache( self, past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor ) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]: """ This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct beam_idx at every generation step. Output shares the same memory storage as `past`. """ standardized_past = self._convert_to_standard_cache(past, batch_size=len(beam_idx)) # Get a copy of `beam_idx` on all the devices where we need those indices. device_to_beam_idx = { past_state.device: beam_idx.to(past_state.device) for layer_past in past for past_state in layer_past } reordered_past = tuple( ( layer_past[0].index_select(0, device_to_beam_idx[layer_past[0].device]), layer_past[1].index_select(0, device_to_beam_idx[layer_past[0].device]), ) for layer_past in standardized_past ) return self._convert_to_bloom_cache(reordered_past) @add_start_docstrings( """ The Bloom Model transformer with a sequence classification head on top (linear layer). [`BloomForSequenceClassification`] uses the last token in order to do the classification, as other causal models (e.g. GPT-1) do. Since it does classification on the last token, it requires to know the position of the last token. If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in each row of the batch). """, BLOOM_START_DOCSTRING, ) class BloomForSequenceClassification(BloomPreTrainedModel): def __init__(self, config: BloomConfig): super().__init__(config) self.num_labels = config.num_labels self.transformer = BloomModel(config) self.score = nn.Linear(config.hidden_size, config.num_labels, bias=False) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(BLOOM_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=SequenceClassifierOutputWithPast, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **deprecated_arguments, ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ if deprecated_arguments.pop("position_ids", False) is not False: # `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None` warnings.warn( "`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore" " passing `position_ids`.", FutureWarning, ) if len(deprecated_arguments) > 0: raise ValueError(f"Got unexpected arguments: {deprecated_arguments}") return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] logits = self.score(hidden_states) if input_ids is not None: batch_size = input_ids.shape[0] else: batch_size = inputs_embeds.shape[0] if self.config.pad_token_id is None and batch_size != 1: raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") if self.config.pad_token_id is None: sequence_lengths = -1 else: if input_ids is not None: sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device) else: sequence_lengths = -1 logger.warning( f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " "unexpected if using padding tokens in conjunction with `inputs_embeds.`" ) pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) else: loss = loss_fct(pooled_logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(pooled_logits, labels) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(pooled_logits, labels) if not return_dict: output = (pooled_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) @add_start_docstrings( """ Bloom Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, BLOOM_START_DOCSTRING, ) class BloomForTokenClassification(BloomPreTrainedModel): def __init__(self, config: BloomConfig): super().__init__(config) self.num_labels = config.num_labels self.transformer = BloomModel(config) if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None: classifier_dropout = config.classifier_dropout elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None: classifier_dropout = config.hidden_dropout else: classifier_dropout = 0.1 self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(BLOOM_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **deprecated_arguments, ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ if deprecated_arguments.pop("position_ids", False) is not False: # `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None` warnings.warn( "`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore" " passing `position_ids`.", FutureWarning, ) if len(deprecated_arguments) > 0: raise ValueError(f"Got unexpected arguments: {deprecated_arguments}") return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] hidden_states = self.dropout(hidden_states) logits = self.classifier(hidden_states) loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(logits.device) batch_size, seq_length = labels.shape loss_fct = CrossEntropyLoss() loss = loss_fct( logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length) ) if not return_dict: output = (logits,) + transformer_outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) @add_start_docstrings( """ The BLOOM Model transformer with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, BLOOM_START_DOCSTRING, ) class BloomForQuestionAnswering(BloomPreTrainedModel): def __init__(self, config): super().__init__(config) self.transformer = BloomModel(config) self.qa_outputs = nn.Linear(config.hidden_size, 2) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(BLOOM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.transformer( input_ids, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/bloom/configuration_bloom.py
# coding=utf-8 # Copyright 2022 the Big Science Workshop and HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Bloom configuration""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging logger = logging.get_logger(__name__) BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP = { "bigscience/bloom": "https://huggingface.co/bigscience/bloom/resolve/main/config.json", "bigscience/bloom-560m": "https://huggingface.co/bigscience/bloom-560m/blob/main/config.json", "bigscience/bloom-1b1": "https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json", "bigscience/bloom-1b7": "https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json", "bigscience/bloom-3b": "https://huggingface.co/bigscience/bloom-3b/blob/main/config.json", "bigscience/bloom-7b1": "https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json", } class BloomConfig(PretrainedConfig): """ This is the configuration class to store the configuration of a [`BloomModel`]. It is used to instantiate a Bloom model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to the Bloom architecture [bigscience/bloom](https://huggingface.co/bigscience/bloom). Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 250880): Vocabulary size of the Bloom model. Defines the maximum number of different tokens that can be represented by the `inputs_ids` passed when calling [`BloomModel`]. Check [this discussion](https://huggingface.co/bigscience/bloom/discussions/120#633d28389addb8530b406c2a) on how the `vocab_size` has been defined. hidden_size (`int`, *optional*, defaults to 64): Dimensionality of the embeddings and hidden states. n_layer (`int`, *optional*, defaults to 2): Number of hidden layers in the Transformer encoder. n_head (`int`, *optional*, defaults to 8): Number of attention heads for each attention layer in the Transformer encoder. layer_norm_epsilon (`float`, *optional*, defaults to 1e-5): The epsilon to use in the layer normalization layers. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. apply_residual_connection_post_layernorm (`bool`, *optional*, defaults to `False`): If enabled, use the layer norm of the hidden states as the residual in the transformer blocks hidden_dropout (`float`, *optional*, defaults to 0.1): Dropout rate of the dropout function on the bias dropout. attention_dropout (`float`, *optional*, defaults to 0.1): Dropout rate applied to the attention probs use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). pretraining_tp (`int`, *optional*, defaults to `1`): Experimental feature. Tensor parallelism rank used during pretraining with Megatron. Please refer to [this document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is necessary to ensure exact reproducibility of the pretraining results. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232). Note also that this is enabled only when `slow_but_exact=True`. slow_but_exact (`bool`, *optional*, defaults to `False`): Experimental feature. Whether to use slow but exact implementation of the attention mechanism. While merging the TP rank tensors, due to slicing operations the results may be slightly different between the model trained on Megatron and our model. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232). A solution to obtain more accurate results is to enable this feature. Enabling this will hurt the computational time of the inference. Will be probably resolved in the future once the main model has been fine-tuned with TP_rank=1. Example: ```python >>> from transformers import BloomConfig, BloomModel >>> # Initializing a Bloom configuration >>> configuration = BloomConfig() >>> # Initializing a model (with random weights) from the configuration >>> model = BloomModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "bloom" keys_to_ignore_at_inference = ["past_key_values"] attribute_map = { "num_hidden_layers": "n_layer", "num_attention_heads": "n_head", } def __init__( self, vocab_size=250880, hidden_size=64, n_layer=2, n_head=8, layer_norm_epsilon=1e-5, initializer_range=0.02, use_cache=True, bos_token_id=1, eos_token_id=2, apply_residual_connection_post_layernorm=False, hidden_dropout=0.0, attention_dropout=0.0, pretraining_tp=1, # TP rank used when training with megatron slow_but_exact=False, **kwargs, ): self.vocab_size = vocab_size # Backward compatibility with n_embed kwarg n_embed = kwargs.pop("n_embed", None) self.hidden_size = hidden_size if n_embed is None else n_embed self.n_layer = n_layer self.n_head = n_head self.layer_norm_epsilon = layer_norm_epsilon self.initializer_range = initializer_range self.use_cache = use_cache self.pretraining_tp = pretraining_tp self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm self.hidden_dropout = hidden_dropout self.attention_dropout = attention_dropout self.bos_token_id = bos_token_id self.eos_token_id = eos_token_id self.slow_but_exact = slow_but_exact super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) class BloomOnnxConfig(OnnxConfigWithPast): torch_onnx_minimum_version = version.parse("1.12") def __init__( self, config: PretrainedConfig, task: str = "default", patching_specs: List[PatchingSpec] = None, use_past: bool = False, ): super().__init__(config, task=task, patching_specs=patching_specs, use_past=use_past) if not getattr(self._config, "pad_token_id", None): # TODO: how to do that better? self._config.pad_token_id = 0 @property def inputs(self) -> Mapping[str, Mapping[int, str]]: common_inputs = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}}) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(common_inputs, direction="inputs", inverted_values_shape=True) common_inputs["attention_mask"] = {0: "batch", 1: "past_sequence + sequence"} else: common_inputs["attention_mask"] = {0: "batch", 1: "sequence"} return common_inputs @property def num_layers(self) -> int: return self._config.n_layer @property def num_attention_heads(self) -> int: return self._config.n_head @property def atol_for_validation(self) -> float: return 1e-3 def generate_dummy_inputs( self, tokenizer: "PreTrainedTokenizer", batch_size: int = -1, seq_length: int = -1, is_pair: bool = False, framework: Optional["TensorType"] = None, ) -> Mapping[str, Any]: common_inputs = super(OnnxConfigWithPast, self).generate_dummy_inputs( tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework ) # We need to order the input in the way they appears in the forward() ordered_inputs = OrderedDict({"input_ids": common_inputs["input_ids"]}) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") else: import torch batch, seqlen = common_inputs["input_ids"].shape # Not using the same length for past_key_values past_key_values_length = seqlen + 2 head_dim = self._config.hidden_size // self.num_attention_heads past_key_shape = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) past_value_shape = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) ordered_inputs["past_key_values"] = [ (torch.zeros(past_key_shape), torch.zeros(past_value_shape)) for _ in range(self.num_layers) ] ordered_inputs["attention_mask"] = common_inputs["attention_mask"] if self.use_past: mask_dtype = ordered_inputs["attention_mask"].dtype ordered_inputs["attention_mask"] = torch.cat( [ordered_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1 ) return ordered_inputs @property def default_onnx_opset(self) -> int: return 13
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/mra/modeling_mra.py
# coding=utf-8 # Copyright 2023 University of Wisconsin-Madison and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch MRA model.""" import math from pathlib import Path from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from torch.utils.cpp_extension import load from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutputWithCrossAttentions, MaskedLMOutput, MultipleChoiceModelOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, is_ninja_available, is_torch_cuda_available, logging, ) from .configuration_mra import MraConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "uw-madison/mra-base-512-4" _CONFIG_FOR_DOC = "MraConfig" _TOKENIZER_FOR_DOC = "AutoTokenizer" MRA_PRETRAINED_MODEL_ARCHIVE_LIST = [ "uw-madison/mra-base-512-4", # See all Mra models at https://huggingface.co/models?filter=mra ] def load_cuda_kernels(): global cuda_kernel src_folder = Path(__file__).resolve().parent.parent.parent / "kernels" / "mra" def append_root(files): return [src_folder / file for file in files] src_files = append_root(["cuda_kernel.cu", "cuda_launch.cu", "torch_extension.cpp"]) cuda_kernel = load("cuda_kernel", src_files, verbose=True) import cuda_kernel cuda_kernel = None if is_torch_cuda_available() and is_ninja_available(): logger.info("Loading custom CUDA kernels...") try: load_cuda_kernels() except Exception as e: logger.warning( "Failed to load CUDA kernels. Mra requires custom CUDA kernels. Please verify that compatible versions of" f" PyTorch and CUDA Toolkit are installed: {e}" ) else: pass def sparse_max(sparse_qk_prod, indices, query_num_block, key_num_block): """ Computes maximum values for softmax stability. """ if len(sparse_qk_prod.size()) != 4: raise ValueError("sparse_qk_prod must be a 4-dimensional tensor.") if len(indices.size()) != 2: raise ValueError("indices must be a 2-dimensional tensor.") if sparse_qk_prod.size(2) != 32: raise ValueError("The size of the second dimension of sparse_qk_prod must be 32.") if sparse_qk_prod.size(3) != 32: raise ValueError("The size of the third dimension of sparse_qk_prod must be 32.") index_vals = sparse_qk_prod.max(dim=-2).values.transpose(-1, -2) index_vals = index_vals.contiguous() indices = indices.int() indices = indices.contiguous() max_vals, max_vals_scatter = cuda_kernel.index_max(index_vals, indices, query_num_block, key_num_block) max_vals_scatter = max_vals_scatter.transpose(-1, -2)[:, :, None, :] return max_vals, max_vals_scatter def sparse_mask(mask, indices, block_size=32): """ Converts attention mask to a sparse mask for high resolution logits. """ if len(mask.size()) != 2: raise ValueError("mask must be a 2-dimensional tensor.") if len(indices.size()) != 2: raise ValueError("indices must be a 2-dimensional tensor.") if mask.shape[0] != indices.shape[0]: raise ValueError("mask and indices must have the same size in the zero-th dimension.") batch_size, seq_len = mask.shape num_block = seq_len // block_size batch_idx = torch.arange(indices.size(0), dtype=torch.long, device=indices.device) mask = mask.reshape(batch_size, num_block, block_size) mask = mask[batch_idx[:, None], (indices % num_block).long(), :] return mask def mm_to_sparse(dense_query, dense_key, indices, block_size=32): """ Performs Sampled Dense Matrix Multiplication. """ batch_size, query_size, dim = dense_query.size() _, key_size, dim = dense_key.size() if query_size % block_size != 0: raise ValueError("query_size (size of first dimension of dense_query) must be divisible by block_size.") if key_size % block_size != 0: raise ValueError("key_size (size of first dimension of dense_key) must be divisible by block_size.") dense_query = dense_query.reshape(batch_size, query_size // block_size, block_size, dim).transpose(-1, -2) dense_key = dense_key.reshape(batch_size, key_size // block_size, block_size, dim).transpose(-1, -2) if len(dense_query.size()) != 4: raise ValueError("dense_query must be a 4-dimensional tensor.") if len(dense_key.size()) != 4: raise ValueError("dense_key must be a 4-dimensional tensor.") if len(indices.size()) != 2: raise ValueError("indices must be a 2-dimensional tensor.") if dense_query.size(3) != 32: raise ValueError("The third dimension of dense_query must be 32.") if dense_key.size(3) != 32: raise ValueError("The third dimension of dense_key must be 32.") dense_query = dense_query.contiguous() dense_key = dense_key.contiguous() indices = indices.int() indices = indices.contiguous() return cuda_kernel.mm_to_sparse(dense_query, dense_key, indices.int()) def sparse_dense_mm(sparse_query, indices, dense_key, query_num_block, block_size=32): """ Performs matrix multiplication of a sparse matrix with a dense matrix. """ batch_size, key_size, dim = dense_key.size() if key_size % block_size != 0: raise ValueError("key_size (size of first dimension of dense_key) must be divisible by block_size.") if sparse_query.size(2) != block_size: raise ValueError("The size of the second dimension of sparse_query must be equal to the block_size.") if sparse_query.size(3) != block_size: raise ValueError("The size of the third dimension of sparse_query must be equal to the block_size.") dense_key = dense_key.reshape(batch_size, key_size // block_size, block_size, dim).transpose(-1, -2) if len(sparse_query.size()) != 4: raise ValueError("sparse_query must be a 4-dimensional tensor.") if len(dense_key.size()) != 4: raise ValueError("dense_key must be a 4-dimensional tensor.") if len(indices.size()) != 2: raise ValueError("indices must be a 2-dimensional tensor.") if dense_key.size(3) != 32: raise ValueError("The size of the third dimension of dense_key must be 32.") sparse_query = sparse_query.contiguous() indices = indices.int() indices = indices.contiguous() dense_key = dense_key.contiguous() dense_qk_prod = cuda_kernel.sparse_dense_mm(sparse_query, indices, dense_key, query_num_block) dense_qk_prod = dense_qk_prod.transpose(-1, -2).reshape(batch_size, query_num_block * block_size, dim) return dense_qk_prod def transpose_indices(indices, dim_1_block, dim_2_block): return ((indices % dim_2_block) * dim_1_block + torch.div(indices, dim_2_block, rounding_mode="floor")).long() class MraSampledDenseMatMul(torch.autograd.Function): @staticmethod def forward(ctx, dense_query, dense_key, indices, block_size): sparse_qk_prod = mm_to_sparse(dense_query, dense_key, indices, block_size) ctx.save_for_backward(dense_query, dense_key, indices) ctx.block_size = block_size return sparse_qk_prod @staticmethod def backward(ctx, grad): dense_query, dense_key, indices = ctx.saved_tensors block_size = ctx.block_size query_num_block = dense_query.size(1) // block_size key_num_block = dense_key.size(1) // block_size indices_T = transpose_indices(indices, query_num_block, key_num_block) grad_key = sparse_dense_mm(grad.transpose(-1, -2), indices_T, dense_query, key_num_block) grad_query = sparse_dense_mm(grad, indices, dense_key, query_num_block) return grad_query, grad_key, None, None @staticmethod def operator_call(dense_query, dense_key, indices, block_size=32): return MraSampledDenseMatMul.apply(dense_query, dense_key, indices, block_size) class MraSparseDenseMatMul(torch.autograd.Function): @staticmethod def forward(ctx, sparse_query, indices, dense_key, query_num_block): sparse_qk_prod = sparse_dense_mm(sparse_query, indices, dense_key, query_num_block) ctx.save_for_backward(sparse_query, indices, dense_key) ctx.query_num_block = query_num_block return sparse_qk_prod @staticmethod def backward(ctx, grad): sparse_query, indices, dense_key = ctx.saved_tensors query_num_block = ctx.query_num_block key_num_block = dense_key.size(1) // sparse_query.size(-1) indices_T = transpose_indices(indices, query_num_block, key_num_block) grad_key = sparse_dense_mm(sparse_query.transpose(-1, -2), indices_T, grad, key_num_block) grad_query = mm_to_sparse(grad, dense_key, indices) return grad_query, None, grad_key, None @staticmethod def operator_call(sparse_query, indices, dense_key, query_num_block): return MraSparseDenseMatMul.apply(sparse_query, indices, dense_key, query_num_block) class MraReduceSum: @staticmethod def operator_call(sparse_query, indices, query_num_block, key_num_block): batch_size, num_block, block_size, _ = sparse_query.size() if len(sparse_query.size()) != 4: raise ValueError("sparse_query must be a 4-dimensional tensor.") if len(indices.size()) != 2: raise ValueError("indices must be a 2-dimensional tensor.") _, _, block_size, _ = sparse_query.size() batch_size, num_block = indices.size() sparse_query = sparse_query.sum(dim=2).reshape(batch_size * num_block, block_size) batch_idx = torch.arange(indices.size(0), dtype=torch.long, device=indices.device) global_idxes = ( torch.div(indices, key_num_block, rounding_mode="floor").long() + batch_idx[:, None] * query_num_block ).reshape(batch_size * num_block) temp = torch.zeros( (batch_size * query_num_block, block_size), dtype=sparse_query.dtype, device=sparse_query.device ) output = temp.index_add(0, global_idxes, sparse_query).reshape(batch_size, query_num_block, block_size) output = output.reshape(batch_size, query_num_block * block_size) return output def get_low_resolution_logit(query, key, block_size, mask=None, value=None): """ Compute low resolution approximation. """ batch_size, seq_len, head_dim = query.size() num_block_per_row = seq_len // block_size value_hat = None if mask is not None: token_count = mask.reshape(batch_size, num_block_per_row, block_size).sum(dim=-1) query_hat = query.reshape(batch_size, num_block_per_row, block_size, head_dim).sum(dim=-2) / ( token_count[:, :, None] + 1e-6 ) key_hat = key.reshape(batch_size, num_block_per_row, block_size, head_dim).sum(dim=-2) / ( token_count[:, :, None] + 1e-6 ) if value is not None: value_hat = value.reshape(batch_size, num_block_per_row, block_size, head_dim).sum(dim=-2) / ( token_count[:, :, None] + 1e-6 ) else: token_count = block_size * torch.ones(batch_size, num_block_per_row, dtype=torch.float, device=query.device) query_hat = query.reshape(batch_size, num_block_per_row, block_size, head_dim).mean(dim=-2) key_hat = key.reshape(batch_size, num_block_per_row, block_size, head_dim).mean(dim=-2) if value is not None: value_hat = value.reshape(batch_size, num_block_per_row, block_size, head_dim).mean(dim=-2) low_resolution_logit = torch.matmul(query_hat, key_hat.transpose(-1, -2)) / math.sqrt(head_dim) low_resolution_logit_row_max = low_resolution_logit.max(dim=-1, keepdims=True).values if mask is not None: low_resolution_logit = ( low_resolution_logit - 1e4 * ((token_count[:, None, :] * token_count[:, :, None]) < 0.5).float() ) return low_resolution_logit, token_count, low_resolution_logit_row_max, value_hat def get_block_idxes( low_resolution_logit, num_blocks, approx_mode, initial_prior_first_n_blocks, initial_prior_diagonal_n_blocks ): """ Compute the indices of the subset of components to be used in the approximation. """ batch_size, total_blocks_per_row, _ = low_resolution_logit.shape if initial_prior_diagonal_n_blocks > 0: offset = initial_prior_diagonal_n_blocks // 2 temp_mask = torch.ones(total_blocks_per_row, total_blocks_per_row, device=low_resolution_logit.device) diagonal_mask = torch.tril(torch.triu(temp_mask, diagonal=-offset), diagonal=offset) low_resolution_logit = low_resolution_logit + diagonal_mask[None, :, :] * 5e3 if initial_prior_first_n_blocks > 0: low_resolution_logit[:, :initial_prior_first_n_blocks, :] = ( low_resolution_logit[:, :initial_prior_first_n_blocks, :] + 5e3 ) low_resolution_logit[:, :, :initial_prior_first_n_blocks] = ( low_resolution_logit[:, :, :initial_prior_first_n_blocks] + 5e3 ) top_k_vals = torch.topk( low_resolution_logit.reshape(batch_size, -1), num_blocks, dim=-1, largest=True, sorted=False ) indices = top_k_vals.indices if approx_mode == "full": threshold = top_k_vals.values.min(dim=-1).values high_resolution_mask = (low_resolution_logit >= threshold[:, None, None]).float() elif approx_mode == "sparse": high_resolution_mask = None else: raise ValueError(f"{approx_mode} is not a valid approx_model value.") return indices, high_resolution_mask def mra2_attention( query, key, value, mask, num_blocks, approx_mode, block_size=32, initial_prior_first_n_blocks=0, initial_prior_diagonal_n_blocks=0, ): """ Use Mra to approximate self-attention. """ if cuda_kernel is None: return torch.zeros_like(query).requires_grad_() batch_size, num_head, seq_len, head_dim = query.size() meta_batch = batch_size * num_head if seq_len % block_size != 0: raise ValueError("sequence length must be divisible by the block_size.") num_block_per_row = seq_len // block_size query = query.reshape(meta_batch, seq_len, head_dim) key = key.reshape(meta_batch, seq_len, head_dim) value = value.reshape(meta_batch, seq_len, head_dim) if mask is not None: query = query * mask[:, :, None] key = key * mask[:, :, None] value = value * mask[:, :, None] if approx_mode == "full": low_resolution_logit, token_count, low_resolution_logit_row_max, value_hat = get_low_resolution_logit( query, key, block_size, mask, value ) elif approx_mode == "sparse": with torch.no_grad(): low_resolution_logit, token_count, low_resolution_logit_row_max, _ = get_low_resolution_logit( query, key, block_size, mask ) else: raise Exception('approx_mode must be "full" or "sparse"') with torch.no_grad(): low_resolution_logit_normalized = low_resolution_logit - low_resolution_logit_row_max indices, high_resolution_mask = get_block_idxes( low_resolution_logit_normalized, num_blocks, approx_mode, initial_prior_first_n_blocks, initial_prior_diagonal_n_blocks, ) high_resolution_logit = MraSampledDenseMatMul.operator_call( query, key, indices, block_size=block_size ) / math.sqrt(head_dim) max_vals, max_vals_scatter = sparse_max(high_resolution_logit, indices, num_block_per_row, num_block_per_row) high_resolution_logit = high_resolution_logit - max_vals_scatter if mask is not None: high_resolution_logit = high_resolution_logit - 1e4 * (1 - sparse_mask(mask, indices)[:, :, :, None]) high_resolution_attn = torch.exp(high_resolution_logit) high_resolution_attn_out = MraSparseDenseMatMul.operator_call( high_resolution_attn, indices, value, num_block_per_row ) high_resolution_normalizer = MraReduceSum.operator_call( high_resolution_attn, indices, num_block_per_row, num_block_per_row ) if approx_mode == "full": low_resolution_attn = ( torch.exp(low_resolution_logit - low_resolution_logit_row_max - 1e4 * high_resolution_mask) * token_count[:, None, :] ) low_resolution_attn_out = ( torch.matmul(low_resolution_attn, value_hat)[:, :, None, :] .repeat(1, 1, block_size, 1) .reshape(meta_batch, seq_len, head_dim) ) low_resolution_normalizer = ( low_resolution_attn.sum(dim=-1)[:, :, None].repeat(1, 1, block_size).reshape(meta_batch, seq_len) ) log_correction = low_resolution_logit_row_max.repeat(1, 1, block_size).reshape(meta_batch, seq_len) - max_vals if mask is not None: log_correction = log_correction * mask low_resolution_corr = torch.exp(log_correction * (log_correction <= 0).float()) low_resolution_attn_out = low_resolution_attn_out * low_resolution_corr[:, :, None] low_resolution_normalizer = low_resolution_normalizer * low_resolution_corr high_resolution_corr = torch.exp(-log_correction * (log_correction > 0).float()) high_resolution_attn_out = high_resolution_attn_out * high_resolution_corr[:, :, None] high_resolution_normalizer = high_resolution_normalizer * high_resolution_corr context_layer = (high_resolution_attn_out + low_resolution_attn_out) / ( high_resolution_normalizer[:, :, None] + low_resolution_normalizer[:, :, None] + 1e-6 ) elif approx_mode == "sparse": context_layer = high_resolution_attn_out / (high_resolution_normalizer[:, :, None] + 1e-6) else: raise Exception('config.approx_mode must be "full" or "sparse"') if mask is not None: context_layer = context_layer * mask[:, :, None] context_layer = context_layer.reshape(batch_size, num_head, seq_len, head_dim) return context_layer class MraEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings + 2, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)) + 2) self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") self.register_buffer( "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long, device=self.position_ids.device), persistent=False, ) def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None): if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[:, :seq_length] # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves # issue #5664 if token_type_ids is None: if hasattr(self, "token_type_ids"): buffered_token_type_ids = self.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class MraSelfAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = ( position_embedding_type if position_embedding_type is not None else config.position_embedding_type ) self.num_block = (config.max_position_embeddings // 32) * config.block_per_row self.num_block = min(self.num_block, int((config.max_position_embeddings // 32) ** 2)) self.approx_mode = config.approx_mode self.initial_prior_first_n_blocks = config.initial_prior_first_n_blocks self.initial_prior_diagonal_n_blocks = config.initial_prior_diagonal_n_blocks def transpose_for_scores(self, layer): new_layer_shape = layer.size()[:-1] + (self.num_attention_heads, self.attention_head_size) layer = layer.view(*new_layer_shape) return layer.permute(0, 2, 1, 3) def forward(self, hidden_states, attention_mask=None): mixed_query_layer = self.query(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) batch_size, num_heads, seq_len, head_dim = query_layer.size() # revert changes made by get_extended_attention_mask attention_mask = 1.0 + attention_mask / 10000.0 attention_mask = ( attention_mask.squeeze().repeat(1, num_heads, 1).reshape(batch_size * num_heads, seq_len).int() ) # The CUDA kernels are most efficient with inputs whose size is a multiple of a GPU's warp size (32). Inputs # smaller than this are padded with zeros. gpu_warp_size = 32 if head_dim < gpu_warp_size: pad_size = batch_size, num_heads, seq_len, gpu_warp_size - head_dim query_layer = torch.cat([query_layer, torch.zeros(pad_size, device=query_layer.device)], dim=-1) key_layer = torch.cat([key_layer, torch.zeros(pad_size, device=key_layer.device)], dim=-1) value_layer = torch.cat([value_layer, torch.zeros(pad_size, device=value_layer.device)], dim=-1) context_layer = mra2_attention( query_layer.float(), key_layer.float(), value_layer.float(), attention_mask.float(), self.num_block, approx_mode=self.approx_mode, initial_prior_first_n_blocks=self.initial_prior_first_n_blocks, initial_prior_diagonal_n_blocks=self.initial_prior_diagonal_n_blocks, ) if head_dim < gpu_warp_size: context_layer = context_layer[:, :, :, :head_dim] context_layer = context_layer.reshape(batch_size, num_heads, seq_len, head_dim) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer,) return outputs # Copied from transformers.models.bert.modeling_bert.BertSelfOutput class MraSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class MraAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() self.self = MraSelfAttention(config, position_embedding_type=position_embedding_type) self.output = MraSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward(self, hidden_states, attention_mask=None): self_outputs = self.self(hidden_states, attention_mask) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.bert.modeling_bert.BertIntermediate class MraIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOutput class MraOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class MraLayer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = MraAttention(config) self.add_cross_attention = config.add_cross_attention self.intermediate = MraIntermediate(config) self.output = MraOutput(config) def forward(self, hidden_states, attention_mask=None): self_attention_outputs = self.attention(hidden_states, attention_mask) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) outputs = (layer_output,) + outputs return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output class MraEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([MraLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states, attention_mask=None, head_mask=None, output_hidden_states=False, return_dict=True, ): all_hidden_states = () if output_hidden_states else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(layer_module), hidden_states, attention_mask, ) else: layer_outputs = layer_module(hidden_states, attention_mask) hidden_states = layer_outputs[0] if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None) return BaseModelOutputWithCrossAttentions( last_hidden_state=hidden_states, hidden_states=all_hidden_states, ) # Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform class MraPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->Mra class MraLMPredictionHead(nn.Module): def __init__(self, config): super().__init__() self.transform = MraPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->Mra class MraOnlyMLMHead(nn.Module): def __init__(self, config): super().__init__() self.predictions = MraLMPredictionHead(config) def forward(self, sequence_output: torch.Tensor) -> torch.Tensor: prediction_scores = self.predictions(sequence_output) return prediction_scores # Copied from transformers.models.yoso.modeling_yoso.YosoPreTrainedModel with Yoso->Mra,yoso->mra class MraPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = MraConfig base_model_prefix = "mra" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, MraEncoder): module.gradient_checkpointing = value MRA_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MraConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ MRA_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert *input_ids* indices into associated vectors than the model's internal embedding lookup matrix. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare MRA Model transformer outputting raw hidden-states without any specific head on top.", MRA_START_DOCSTRING, ) class MraModel(MraPreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config self.embeddings = MraEmbeddings(config) self.encoder = MraEncoder(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(MRA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithCrossAttentions]: output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(((batch_size, seq_length)), device=device) if token_type_ids is None: if hasattr(self.embeddings, "token_type_ids"): buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] if not return_dict: return (sequence_output,) + encoder_outputs[1:] return BaseModelOutputWithCrossAttentions( last_hidden_state=sequence_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) @add_start_docstrings("""MRA Model with a `language modeling` head on top.""", MRA_START_DOCSTRING) class MraForMaskedLM(MraPreTrainedModel): _tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"] def __init__(self, config): super().__init__(config) self.mra = MraModel(config) self.cls = MraOnlyMLMHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings @add_start_docstrings_to_model_forward(MRA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mra( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() # -100 index = padding token masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[1:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) # Copied from transformers.models.yoso.modeling_yoso.YosoClassificationHead with Yoso->Mra class MraClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.out_proj = nn.Linear(config.hidden_size, config.num_labels) self.config = config def forward(self, features, **kwargs): x = features[:, 0, :] # take <s> token (equiv. to [CLS]) x = self.dropout(x) x = self.dense(x) x = ACT2FN[self.config.hidden_act](x) x = self.dropout(x) x = self.out_proj(x) return x @add_start_docstrings( """MRA Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks.""", MRA_START_DOCSTRING, ) class MraForSequenceClassification(MraPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.mra = MraModel(config) self.classifier = MraClassificationHead(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MRA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mra( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.classifier(sequence_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """MRA Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks.""", MRA_START_DOCSTRING, ) class MraForMultipleChoice(MraPreTrainedModel): def __init__(self, config): super().__init__(config) self.mra = MraModel(config) self.pre_classifier = nn.Linear(config.hidden_size, config.hidden_size) self.classifier = nn.Linear(config.hidden_size, 1) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MRA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MultipleChoiceModelOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) outputs = self.mra( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_state = outputs[0] # (bs * num_choices, seq_len, dim) pooled_output = hidden_state[:, 0] # (bs * num_choices, dim) pooled_output = self.pre_classifier(pooled_output) # (bs * num_choices, dim) pooled_output = nn.ReLU()(pooled_output) # (bs * num_choices, dim) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """MRA Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks.""", MRA_START_DOCSTRING, ) class MraForTokenClassification(MraPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.mra = MraModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MRA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mra( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() # Only keep active parts of the loss if attention_mask is not None: active_loss = attention_mask.view(-1) == 1 active_logits = logits.view(-1, self.num_labels) active_labels = torch.where( active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels) ) loss = loss_fct(active_logits, active_labels) else: loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """MRA Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).""", MRA_START_DOCSTRING, ) class MraForQuestionAnswering(MraPreTrainedModel): def __init__(self, config): super().__init__(config) config.num_labels = 2 self.num_labels = config.num_labels self.mra = MraModel(config) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MRA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, start_positions: Optional[torch.Tensor] = None, end_positions: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mra( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1) end_logits = end_logits.squeeze(-1) total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[1:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/mra/convert_mra_pytorch_to_pytorch.py
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert MRA checkpoints from the original repository. URL: https://github.com/mlpen/mra-attention""" import argparse import torch from transformers import MraConfig, MraForMaskedLM def rename_key(orig_key): if "model" in orig_key: orig_key = orig_key.replace("model.", "") if "norm1" in orig_key: orig_key = orig_key.replace("norm1", "attention.output.LayerNorm") if "norm2" in orig_key: orig_key = orig_key.replace("norm2", "output.LayerNorm") if "norm" in orig_key: orig_key = orig_key.replace("norm", "LayerNorm") if "transformer" in orig_key: layer_num = orig_key.split(".")[0].split("_")[-1] orig_key = orig_key.replace(f"transformer_{layer_num}", f"encoder.layer.{layer_num}") if "mha.attn" in orig_key: orig_key = orig_key.replace("mha.attn", "attention.self") if "mha" in orig_key: orig_key = orig_key.replace("mha", "attention") if "W_q" in orig_key: orig_key = orig_key.replace("W_q", "self.query") if "W_k" in orig_key: orig_key = orig_key.replace("W_k", "self.key") if "W_v" in orig_key: orig_key = orig_key.replace("W_v", "self.value") if "ff.0" in orig_key: orig_key = orig_key.replace("ff.0", "intermediate.dense") if "ff.2" in orig_key: orig_key = orig_key.replace("ff.2", "output.dense") if "ff" in orig_key: orig_key = orig_key.replace("ff", "output.dense") if "mlm_class" in orig_key: orig_key = orig_key.replace("mlm.mlm_class", "cls.predictions.decoder") if "mlm" in orig_key: orig_key = orig_key.replace("mlm", "cls.predictions.transform") if "backbone.backbone.encoders" in orig_key: orig_key = orig_key.replace("backbone.backbone.encoders", "encoder.layer") if "cls" not in orig_key: orig_key = "mra." + orig_key return orig_key def convert_checkpoint_helper(max_position_embeddings, orig_state_dict): for key in orig_state_dict.copy().keys(): val = orig_state_dict.pop(key) if ("pooler" in key) or ("sen_class" in key): continue else: orig_state_dict[rename_key(key)] = val orig_state_dict["cls.predictions.bias"] = orig_state_dict["cls.predictions.decoder.bias"] orig_state_dict["mra.embeddings.position_ids"] = torch.arange(max_position_embeddings).expand((1, -1)) + 2 return orig_state_dict def convert_mra_checkpoint(checkpoint_path, mra_config_file, pytorch_dump_path): orig_state_dict = torch.load(checkpoint_path, map_location="cpu")["model_state_dict"] config = MraConfig.from_json_file(mra_config_file) model = MraForMaskedLM(config) new_state_dict = convert_checkpoint_helper(config.max_position_embeddings, orig_state_dict) print(model.load_state_dict(new_state_dict)) model.eval() model.save_pretrained(pytorch_dump_path) print(f"Checkpoint successfuly converted. Model saved at {pytorch_dump_path}") if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pytorch_model_path", default=None, type=str, required=True, help="Path to Mra pytorch checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The json file for Mra model config.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) args = parser.parse_args() convert_mra_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/mra/__init__.py
# flake8: noqa # There's no way to ignore "F401 '...' imported but unused" warnings in this # module, but to preserve other warnings. So, don't check this module at all. # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _import_structure = {"configuration_mra": ["MRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "MraConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_mra"] = [ "MRA_PRETRAINED_MODEL_ARCHIVE_LIST", "MraForMaskedLM", "MraForMultipleChoice", "MraForQuestionAnswering", "MraForSequenceClassification", "MraForTokenClassification", "MraLayer", "MraModel", "MraPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/mra/configuration_mra.py
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ MRA model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) MRA_PRETRAINED_CONFIG_ARCHIVE_MAP = { "uw-madison/mra-base-512-4": "https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json", } class MraConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`MraModel`]. It is used to instantiate an MRA model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Mra [uw-madison/mra-base-512-4](https://huggingface.co/uw-madison/mra-base-512-4) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 50265): Vocabulary size of the Mra model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`MraModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimension of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 1): The vocabulary size of the `token_type_ids` passed when calling [`MraModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon used by the layer normalization layers. position_embedding_type (`str`, *optional*, defaults to `"absolute"`): Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. block_per_row (`int`, *optional*, defaults to 4): Used to set the budget for the high resolution scale. approx_mode (`str`, *optional*, defaults to `"full"`): Controls whether both low and high resolution approximations are used. Set to `"full"` for both low and high resolution and `"sparse"` for only low resolution. initial_prior_first_n_blocks (`int`, *optional*, defaults to 0): The initial number of blocks for which high resolution is used. initial_prior_diagonal_n_blocks (`int`, *optional*, defaults to 0): The number of diagonal blocks for which high resolution is used. Example: ```python >>> from transformers import MraConfig, MraModel >>> # Initializing a Mra uw-madison/mra-base-512-4 style configuration >>> configuration = MraConfig() >>> # Initializing a model (with random weights) from the uw-madison/mra-base-512-4 style configuration >>> model = MraModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "mra" def __init__( self, vocab_size=50265, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=1, initializer_range=0.02, layer_norm_eps=1e-5, position_embedding_type="absolute", block_per_row=4, approx_mode="full", initial_prior_first_n_blocks=0, initial_prior_diagonal_n_blocks=0, pad_token_id=1, bos_token_id=0, eos_token_id=2, **kwargs, ): super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.type_vocab_size = type_vocab_size self.layer_norm_eps = layer_norm_eps self.position_embedding_type = position_embedding_type self.block_per_row = block_per_row self.approx_mode = approx_mode self.initial_prior_first_n_blocks = initial_prior_first_n_blocks self.initial_prior_diagonal_n_blocks = initial_prior_diagonal_n_blocks
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/deta/__init__.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _import_structure = { "configuration_deta": ["DETA_PRETRAINED_CONFIG_ARCHIVE_MAP", "DetaConfig"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["image_processing_deta"] = ["DetaImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_deta"] = [ "DETA_PRETRAINED_MODEL_ARCHIVE_LIST", "DetaForObjectDetection", "DetaModel", "DetaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deta import DETA_PRETRAINED_CONFIG_ARCHIVE_MAP, DetaConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_deta import DetaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deta import ( DETA_PRETRAINED_MODEL_ARCHIVE_LIST, DetaForObjectDetection, DetaModel, DetaPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/deta/convert_deta_swin_to_pytorch.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert DETA checkpoints from the original repository. URL: https://github.com/jozhang97/DETA/tree/master""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) def get_deta_config(model_name): backbone_config = SwinConfig( embed_dim=192, depths=(2, 2, 18, 2), num_heads=(6, 12, 24, 48), window_size=12, out_features=["stage2", "stage3", "stage4"], ) config = DetaConfig( backbone_config=backbone_config, num_queries=900, encoder_ffn_dim=2048, decoder_ffn_dim=2048, num_feature_levels=5, assign_first_stage=True, with_box_refine=True, two_stage=True, ) # set labels repo_id = "huggingface/label-files" if "o365" in model_name: num_labels = 366 filename = "object365-id2label.json" else: num_labels = 91 filename = "coco-detection-id2label.json" config.num_labels = num_labels id2label = json.load(open(cached_download(hf_hub_url(repo_id, filename, repo_type="dataset")), "r")) id2label = {int(k): v for k, v in id2label.items()} config.id2label = id2label config.label2id = {v: k for k, v in id2label.items()} return config # here we list all keys to be renamed (original name on the left, our name on the right) def create_rename_keys(config): rename_keys = [] # stem # fmt: off rename_keys.append(("backbone.0.body.patch_embed.proj.weight", "model.backbone.model.embeddings.patch_embeddings.projection.weight")) rename_keys.append(("backbone.0.body.patch_embed.proj.bias", "model.backbone.model.embeddings.patch_embeddings.projection.bias")) rename_keys.append(("backbone.0.body.patch_embed.norm.weight", "model.backbone.model.embeddings.norm.weight")) rename_keys.append(("backbone.0.body.patch_embed.norm.bias", "model.backbone.model.embeddings.norm.bias")) # stages for i in range(len(config.backbone_config.depths)): for j in range(config.backbone_config.depths[i]): rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.norm1.weight", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight")) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.norm1.bias", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias")) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table")) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index")) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight")) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias")) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.norm2.weight", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight")) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.norm2.bias", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias")) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight")) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias")) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight")) rename_keys.append((f"backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias", f"model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias")) if i < 3: rename_keys.append((f"backbone.0.body.layers.{i}.downsample.reduction.weight", f"model.backbone.model.encoder.layers.{i}.downsample.reduction.weight")) rename_keys.append((f"backbone.0.body.layers.{i}.downsample.norm.weight", f"model.backbone.model.encoder.layers.{i}.downsample.norm.weight")) rename_keys.append((f"backbone.0.body.layers.{i}.downsample.norm.bias", f"model.backbone.model.encoder.layers.{i}.downsample.norm.bias")) rename_keys.append(("backbone.0.body.norm1.weight", "model.backbone.model.hidden_states_norms.stage2.weight")) rename_keys.append(("backbone.0.body.norm1.bias", "model.backbone.model.hidden_states_norms.stage2.bias")) rename_keys.append(("backbone.0.body.norm2.weight", "model.backbone.model.hidden_states_norms.stage3.weight")) rename_keys.append(("backbone.0.body.norm2.bias", "model.backbone.model.hidden_states_norms.stage3.bias")) rename_keys.append(("backbone.0.body.norm3.weight", "model.backbone.model.hidden_states_norms.stage4.weight")) rename_keys.append(("backbone.0.body.norm3.bias", "model.backbone.model.hidden_states_norms.stage4.bias")) # transformer encoder for i in range(config.encoder_layers): rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight", f"model.encoder.layers.{i}.self_attn.sampling_offsets.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias", f"model.encoder.layers.{i}.self_attn.sampling_offsets.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.attention_weights.weight", f"model.encoder.layers.{i}.self_attn.attention_weights.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.attention_weights.bias", f"model.encoder.layers.{i}.self_attn.attention_weights.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.value_proj.weight", f"model.encoder.layers.{i}.self_attn.value_proj.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.value_proj.bias", f"model.encoder.layers.{i}.self_attn.value_proj.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.output_proj.weight", f"model.encoder.layers.{i}.self_attn.output_proj.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.output_proj.bias", f"model.encoder.layers.{i}.self_attn.output_proj.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.norm1.weight", f"model.encoder.layers.{i}.self_attn_layer_norm.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.norm1.bias", f"model.encoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.weight", f"model.encoder.layers.{i}.fc1.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.bias", f"model.encoder.layers.{i}.fc1.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.weight", f"model.encoder.layers.{i}.fc2.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.bias", f"model.encoder.layers.{i}.fc2.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.norm2.weight", f"model.encoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.norm2.bias", f"model.encoder.layers.{i}.final_layer_norm.bias")) # transformer decoder for i in range(config.decoder_layers): rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight", f"model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias", f"model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.attention_weights.weight", f"model.decoder.layers.{i}.encoder_attn.attention_weights.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.attention_weights.bias", f"model.decoder.layers.{i}.encoder_attn.attention_weights.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.value_proj.weight", f"model.decoder.layers.{i}.encoder_attn.value_proj.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.value_proj.bias", f"model.decoder.layers.{i}.encoder_attn.value_proj.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.output_proj.weight", f"model.decoder.layers.{i}.encoder_attn.output_proj.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.output_proj.bias", f"model.decoder.layers.{i}.encoder_attn.output_proj.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.norm1.weight", f"model.decoder.layers.{i}.encoder_attn_layer_norm.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.norm1.bias", f"model.decoder.layers.{i}.encoder_attn_layer_norm.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.self_attn.out_proj.weight", f"model.decoder.layers.{i}.self_attn.out_proj.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.self_attn.out_proj.bias", f"model.decoder.layers.{i}.self_attn.out_proj.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.norm2.weight", f"model.decoder.layers.{i}.self_attn_layer_norm.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.norm2.bias", f"model.decoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.weight", f"model.decoder.layers.{i}.fc1.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.bias", f"model.decoder.layers.{i}.fc1.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.weight", f"model.decoder.layers.{i}.fc2.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.bias", f"model.decoder.layers.{i}.fc2.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.norm3.weight", f"model.decoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.norm3.bias", f"model.decoder.layers.{i}.final_layer_norm.bias")) # fmt: on return rename_keys def rename_key(dct, old, new): val = dct.pop(old) dct[new] = val # we split up the matrix of each encoder layer into queries, keys and values def read_in_swin_q_k_v(state_dict, backbone_config): num_features = [int(backbone_config.embed_dim * 2**i) for i in range(len(backbone_config.depths))] for i in range(len(backbone_config.depths)): dim = num_features[i] for j in range(backbone_config.depths[i]): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) in_proj_weight = state_dict.pop(f"backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight") in_proj_bias = state_dict.pop(f"backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias") # next, add query, keys and values (in that order) to the state dict state_dict[f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.query.weight"] = in_proj_weight[:dim, :] state_dict[f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.query.bias"] = in_proj_bias[: dim] state_dict[f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.key.weight"] = in_proj_weight[ dim : dim * 2, : ] state_dict[f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.key.bias"] = in_proj_bias[ dim : dim * 2 ] state_dict[f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.value.weight"] = in_proj_weight[ -dim :, : ] state_dict[f"model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.value.bias"] = in_proj_bias[-dim :] # fmt: on def read_in_decoder_q_k_v(state_dict, config): # transformer decoder self-attention layers hidden_size = config.d_model for i in range(config.decoder_layers): # read in weights + bias of input projection layer of self-attention in_proj_weight = state_dict.pop(f"transformer.decoder.layers.{i}.self_attn.in_proj_weight") in_proj_bias = state_dict.pop(f"transformer.decoder.layers.{i}.self_attn.in_proj_bias") # next, add query, keys and values (in that order) to the state dict state_dict[f"model.decoder.layers.{i}.self_attn.q_proj.weight"] = in_proj_weight[:hidden_size, :] state_dict[f"model.decoder.layers.{i}.self_attn.q_proj.bias"] = in_proj_bias[:hidden_size] state_dict[f"model.decoder.layers.{i}.self_attn.k_proj.weight"] = in_proj_weight[ hidden_size : hidden_size * 2, : ] state_dict[f"model.decoder.layers.{i}.self_attn.k_proj.bias"] = in_proj_bias[hidden_size : hidden_size * 2] state_dict[f"model.decoder.layers.{i}.self_attn.v_proj.weight"] = in_proj_weight[-hidden_size:, :] state_dict[f"model.decoder.layers.{i}.self_attn.v_proj.bias"] = in_proj_bias[-hidden_size:] # We will verify our results on an image of cute cats def prepare_img(): url = "http://images.cocodataset.org/val2017/000000039769.jpg" im = Image.open(requests.get(url, stream=True).raw) return im @torch.no_grad() def convert_deta_checkpoint(model_name, pytorch_dump_folder_path, push_to_hub): """ Copy/paste/tweak model's weights to our DETA structure. """ # load config config = get_deta_config(model_name) # load original state dict if model_name == "deta-swin-large": checkpoint_path = hf_hub_download(repo_id="nielsr/deta-checkpoints", filename="adet_swin_ft.pth") elif model_name == "deta-swin-large-o365": checkpoint_path = hf_hub_download(repo_id="jozhang97/deta-swin-l-o365", filename="deta_swin_pt_o365.pth") else: raise ValueError(f"Model name {model_name} not supported") state_dict = torch.load(checkpoint_path, map_location="cpu")["model"] # original state dict for name, param in state_dict.items(): print(name, param.shape) # rename keys rename_keys = create_rename_keys(config) for src, dest in rename_keys: rename_key(state_dict, src, dest) read_in_swin_q_k_v(state_dict, config.backbone_config) read_in_decoder_q_k_v(state_dict, config) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: val = state_dict.pop(key) state_dict[key.replace("transformer.decoder", "model.decoder")] = val if "input_proj" in key: val = state_dict.pop(key) state_dict["model." + key] = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: val = state_dict.pop(key) state_dict[key.replace("transformer", "model")] = val # finally, create HuggingFace model and load state dict model = DetaForObjectDetection(config) model.load_state_dict(state_dict) model.eval() device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) # load image processor processor = DetaImageProcessor(format="coco_detection") # verify our conversion on image img = prepare_img() encoding = processor(images=img, return_tensors="pt") pixel_values = encoding["pixel_values"] outputs = model(pixel_values.to(device)) # verify logits print("Logits:", outputs.logits[0, :3, :3]) print("Boxes:", outputs.pred_boxes[0, :3, :3]) if model_name == "deta-swin-large": expected_logits = torch.tensor( [[-7.6308, -2.8485, -5.3737], [-7.2037, -4.5505, -4.8027], [-7.2943, -4.2611, -4.6617]] ) expected_boxes = torch.tensor([[0.4987, 0.4969, 0.9999], [0.2549, 0.5498, 0.4805], [0.5498, 0.2757, 0.0569]]) elif model_name == "deta-swin-large-o365": expected_logits = torch.tensor( [[-8.0122, -3.5720, -4.9717], [-8.1547, -3.6886, -4.6389], [-7.6610, -3.6194, -5.0134]] ) expected_boxes = torch.tensor([[0.2523, 0.5549, 0.4881], [0.7715, 0.4149, 0.4601], [0.5503, 0.2753, 0.0575]]) assert torch.allclose(outputs.logits[0, :3, :3], expected_logits.to(device), atol=1e-4) assert torch.allclose(outputs.pred_boxes[0, :3, :3], expected_boxes.to(device), atol=1e-4) print("Everything ok!") if pytorch_dump_folder_path: # Save model and processor logger.info(f"Saving PyTorch model and processor to {pytorch_dump_folder_path}...") Path(pytorch_dump_folder_path).mkdir(exist_ok=True) model.save_pretrained(pytorch_dump_folder_path) processor.save_pretrained(pytorch_dump_folder_path) # Push to hub if push_to_hub: print("Pushing model and processor to hub...") model.push_to_hub(f"jozhang97/{model_name}") processor.push_to_hub(f"jozhang97/{model_name}") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--model_name", type=str, default="deta-swin-large", choices=["deta-swin-large", "deta-swin-large-o365"], help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) args = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/deta/configuration_deta.py
# coding=utf-8 # Copyright 2022 SenseTime and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ DETA model configuration""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING logger = logging.get_logger(__name__) DETA_PRETRAINED_CONFIG_ARCHIVE_MAP = { "ut/deta": "https://huggingface.co/ut/deta/resolve/main/config.json", } class DetaConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`DetaModel`]. It is used to instantiate a DETA model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the DETA [SenseTime/deformable-detr](https://huggingface.co/SenseTime/deformable-detr) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: backbone_config (`PretrainedConfig` or `dict`, *optional*, defaults to `ResNetConfig()`): The configuration of the backbone model. num_queries (`int`, *optional*, defaults to 900): Number of object queries, i.e. detection slots. This is the maximal number of objects [`DetaModel`] can detect in a single image. In case `two_stage` is set to `True`, we use `two_stage_num_proposals` instead. d_model (`int`, *optional*, defaults to 256): Dimension of the layers. encoder_layers (`int`, *optional*, defaults to 6): Number of encoder layers. decoder_layers (`int`, *optional*, defaults to 6): Number of decoder layers. encoder_attention_heads (`int`, *optional*, defaults to 8): Number of attention heads for each attention layer in the Transformer encoder. decoder_attention_heads (`int`, *optional*, defaults to 8): Number of attention heads for each attention layer in the Transformer decoder. decoder_ffn_dim (`int`, *optional*, defaults to 2048): Dimension of the "intermediate" (often named feed-forward) layer in decoder. encoder_ffn_dim (`int`, *optional*, defaults to 2048): Dimension of the "intermediate" (often named feed-forward) layer in decoder. activation_function (`str` or `function`, *optional*, defaults to `"relu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. activation_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for activations inside the fully connected layer. init_std (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. init_xavier_std (`float`, *optional*, defaults to 1): The scaling factor used for the Xavier initialization gain in the HM Attention map module. encoder_layerdrop (`float`, *optional*, defaults to 0.0): The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. auxiliary_loss (`bool`, *optional*, defaults to `False`): Whether auxiliary decoding losses (loss at each decoder layer) are to be used. position_embedding_type (`str`, *optional*, defaults to `"sine"`): Type of position embeddings to be used on top of the image features. One of `"sine"` or `"learned"`. class_cost (`float`, *optional*, defaults to 1): Relative weight of the classification error in the Hungarian matching cost. bbox_cost (`float`, *optional*, defaults to 5): Relative weight of the L1 error of the bounding box coordinates in the Hungarian matching cost. giou_cost (`float`, *optional*, defaults to 2): Relative weight of the generalized IoU loss of the bounding box in the Hungarian matching cost. mask_loss_coefficient (`float`, *optional*, defaults to 1): Relative weight of the Focal loss in the panoptic segmentation loss. dice_loss_coefficient (`float`, *optional*, defaults to 1): Relative weight of the DICE/F-1 loss in the panoptic segmentation loss. bbox_loss_coefficient (`float`, *optional*, defaults to 5): Relative weight of the L1 bounding box loss in the object detection loss. giou_loss_coefficient (`float`, *optional*, defaults to 2): Relative weight of the generalized IoU loss in the object detection loss. eos_coefficient (`float`, *optional*, defaults to 0.1): Relative classification weight of the 'no-object' class in the object detection loss. num_feature_levels (`int`, *optional*, defaults to 5): The number of input feature levels. encoder_n_points (`int`, *optional*, defaults to 4): The number of sampled keys in each feature level for each attention head in the encoder. decoder_n_points (`int`, *optional*, defaults to 4): The number of sampled keys in each feature level for each attention head in the decoder. two_stage (`bool`, *optional*, defaults to `True`): Whether to apply a two-stage deformable DETR, where the region proposals are also generated by a variant of DETA, which are further fed into the decoder for iterative bounding box refinement. two_stage_num_proposals (`int`, *optional*, defaults to 300): The number of region proposals to be generated, in case `two_stage` is set to `True`. with_box_refine (`bool`, *optional*, defaults to `True`): Whether to apply iterative bounding box refinement, where each decoder layer refines the bounding boxes based on the predictions from the previous layer. focal_alpha (`float`, *optional*, defaults to 0.25): Alpha parameter in the focal loss. Examples: ```python >>> from transformers import DetaConfig, DetaModel >>> # Initializing a DETA SenseTime/deformable-detr style configuration >>> configuration = DetaConfig() >>> # Initializing a model (with random weights) from the SenseTime/deformable-detr style configuration >>> model = DetaModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "deta" attribute_map = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self, backbone_config=None, num_queries=900, max_position_embeddings=2048, encoder_layers=6, encoder_ffn_dim=2048, encoder_attention_heads=8, decoder_layers=6, decoder_ffn_dim=1024, decoder_attention_heads=8, encoder_layerdrop=0.0, is_encoder_decoder=True, activation_function="relu", d_model=256, dropout=0.1, attention_dropout=0.0, activation_dropout=0.0, init_std=0.02, init_xavier_std=1.0, return_intermediate=True, auxiliary_loss=False, position_embedding_type="sine", num_feature_levels=5, encoder_n_points=4, decoder_n_points=4, two_stage=True, two_stage_num_proposals=300, with_box_refine=True, assign_first_stage=True, class_cost=1, bbox_cost=5, giou_cost=2, mask_loss_coefficient=1, dice_loss_coefficient=1, bbox_loss_coefficient=5, giou_loss_coefficient=2, eos_coefficient=0.1, focal_alpha=0.25, **kwargs, ): if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.") backbone_config = CONFIG_MAPPING["resnet"](out_features=["stage2", "stage3", "stage4"]) else: if isinstance(backbone_config, dict): backbone_model_type = backbone_config.pop("model_type") config_class = CONFIG_MAPPING[backbone_model_type] backbone_config = config_class.from_dict(backbone_config) self.backbone_config = backbone_config self.num_queries = num_queries self.max_position_embeddings = max_position_embeddings self.d_model = d_model self.encoder_ffn_dim = encoder_ffn_dim self.encoder_layers = encoder_layers self.encoder_attention_heads = encoder_attention_heads self.decoder_ffn_dim = decoder_ffn_dim self.decoder_layers = decoder_layers self.decoder_attention_heads = decoder_attention_heads self.dropout = dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.activation_function = activation_function self.init_std = init_std self.init_xavier_std = init_xavier_std self.encoder_layerdrop = encoder_layerdrop self.auxiliary_loss = auxiliary_loss self.position_embedding_type = position_embedding_type # deformable attributes self.num_feature_levels = num_feature_levels self.encoder_n_points = encoder_n_points self.decoder_n_points = decoder_n_points self.two_stage = two_stage self.two_stage_num_proposals = two_stage_num_proposals self.with_box_refine = with_box_refine self.assign_first_stage = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError("If two_stage is True, with_box_refine must be True.") # Hungarian matcher self.class_cost = class_cost self.bbox_cost = bbox_cost self.giou_cost = giou_cost # Loss coefficients self.mask_loss_coefficient = mask_loss_coefficient self.dice_loss_coefficient = dice_loss_coefficient self.bbox_loss_coefficient = bbox_loss_coefficient self.giou_loss_coefficient = giou_loss_coefficient self.eos_coefficient = eos_coefficient self.focal_alpha = focal_alpha super().__init__(is_encoder_decoder=is_encoder_decoder, **kwargs) @property def num_attention_heads(self) -> int: return self.encoder_attention_heads @property def hidden_size(self) -> int: return self.d_model def to_dict(self): """ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. Returns: `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, """ output = copy.deepcopy(self.__dict__) output["backbone_config"] = self.backbone_config.to_dict() output["model_type"] = self.__class__.model_type return output
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/deta/image_processing_deta.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for Deformable DETR.""" import pathlib from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...feature_extraction_utils import BatchFeature from ...image_processing_utils import BaseImageProcessor, get_size_dict from ...image_transforms import ( PaddingMode, center_to_corners_format, corners_to_center_format, pad, rescale, resize, rgb_to_id, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, infer_channel_dimension_format, is_batched, to_numpy_array, valid_coco_detection_annotations, valid_coco_panoptic_annotations, valid_images, ) from ...utils import ( is_flax_available, is_jax_tensor, is_tf_available, is_tf_tensor, is_torch_available, is_torch_tensor, is_torchvision_available, is_vision_available, logging, ) from ...utils.generic import ExplicitEnum, TensorType if is_torch_available(): import torch if is_torchvision_available(): from torchvision.ops.boxes import batched_nms if is_vision_available(): import PIL logger = logging.get_logger(__name__) # pylint: disable=invalid-name class AnnotionFormat(ExplicitEnum): COCO_DETECTION = "coco_detection" COCO_PANOPTIC = "coco_panoptic" SUPPORTED_ANNOTATION_FORMATS = (AnnotionFormat.COCO_DETECTION, AnnotionFormat.COCO_PANOPTIC) # Copied from transformers.models.detr.image_processing_detr.get_size_with_aspect_ratio def get_size_with_aspect_ratio(image_size, size, max_size=None) -> Tuple[int, int]: """ Computes the output image size given the input image size and the desired output size. Args: image_size (`Tuple[int, int]`): The input image size. size (`int`): The desired output size. max_size (`int`, *optional*): The maximum allowed output size. """ height, width = image_size if max_size is not None: min_original_size = float(min((height, width))) max_original_size = float(max((height, width))) if max_original_size / min_original_size * size > max_size: size = int(round(max_size * min_original_size / max_original_size)) if (height <= width and height == size) or (width <= height and width == size): return height, width if width < height: ow = size oh = int(size * height / width) else: oh = size ow = int(size * width / height) return (oh, ow) # Copied from transformers.models.detr.image_processing_detr.get_resize_output_image_size def get_resize_output_image_size( input_image: np.ndarray, size: Union[int, Tuple[int, int], List[int]], max_size: Optional[int] = None ) -> Tuple[int, int]: """ Computes the output image size given the input image size and the desired output size. If the desired output size is a tuple or list, the output image size is returned as is. If the desired output size is an integer, the output image size is computed by keeping the aspect ratio of the input image size. Args: image_size (`Tuple[int, int]`): The input image size. size (`int`): The desired output size. max_size (`int`, *optional*): The maximum allowed output size. """ image_size = get_image_size(input_image) if isinstance(size, (list, tuple)): return size return get_size_with_aspect_ratio(image_size, size, max_size) # Copied from transformers.models.detr.image_processing_detr.get_numpy_to_framework_fn def get_numpy_to_framework_fn(arr) -> Callable: """ Returns a function that converts a numpy array to the framework of the input array. Args: arr (`np.ndarray`): The array to convert. """ if isinstance(arr, np.ndarray): return np.array if is_tf_available() and is_tf_tensor(arr): import tensorflow as tf return tf.convert_to_tensor if is_torch_available() and is_torch_tensor(arr): import torch return torch.tensor if is_flax_available() and is_jax_tensor(arr): import jax.numpy as jnp return jnp.array raise ValueError(f"Cannot convert arrays of type {type(arr)}") # Copied from transformers.models.detr.image_processing_detr.safe_squeeze def safe_squeeze(arr: np.ndarray, axis: Optional[int] = None) -> np.ndarray: """ Squeezes an array, but only if the axis specified has dim 1. """ if axis is None: return arr.squeeze() try: return arr.squeeze(axis=axis) except ValueError: return arr # Copied from transformers.models.detr.image_processing_detr.normalize_annotation def normalize_annotation(annotation: Dict, image_size: Tuple[int, int]) -> Dict: image_height, image_width = image_size norm_annotation = {} for key, value in annotation.items(): if key == "boxes": boxes = value boxes = corners_to_center_format(boxes) boxes /= np.asarray([image_width, image_height, image_width, image_height], dtype=np.float32) norm_annotation[key] = boxes else: norm_annotation[key] = value return norm_annotation # Copied from transformers.models.detr.image_processing_detr.max_across_indices def max_across_indices(values: Iterable[Any]) -> List[Any]: """ Return the maximum value across all indices of an iterable of values. """ return [max(values_i) for values_i in zip(*values)] # Copied from transformers.models.detr.image_processing_detr.get_max_height_width def get_max_height_width(images: List[np.ndarray]) -> List[int]: """ Get the maximum height and width across all images in a batch. """ input_channel_dimension = infer_channel_dimension_format(images[0]) if input_channel_dimension == ChannelDimension.FIRST: _, max_height, max_width = max_across_indices([img.shape for img in images]) elif input_channel_dimension == ChannelDimension.LAST: max_height, max_width, _ = max_across_indices([img.shape for img in images]) else: raise ValueError(f"Invalid channel dimension format: {input_channel_dimension}") return (max_height, max_width) # Copied from transformers.models.detr.image_processing_detr.make_pixel_mask def make_pixel_mask(image: np.ndarray, output_size: Tuple[int, int]) -> np.ndarray: """ Make a pixel mask for the image, where 1 indicates a valid pixel and 0 indicates padding. Args: image (`np.ndarray`): Image to make the pixel mask for. output_size (`Tuple[int, int]`): Output size of the mask. """ input_height, input_width = get_image_size(image) mask = np.zeros(output_size, dtype=np.int64) mask[:input_height, :input_width] = 1 return mask # Copied from transformers.models.detr.image_processing_detr.convert_coco_poly_to_mask def convert_coco_poly_to_mask(segmentations, height: int, width: int) -> np.ndarray: """ Convert a COCO polygon annotation to a mask. Args: segmentations (`List[List[float]]`): List of polygons, each polygon represented by a list of x-y coordinates. height (`int`): Height of the mask. width (`int`): Width of the mask. """ try: from pycocotools import mask as coco_mask except ImportError: raise ImportError("Pycocotools is not installed in your environment.") masks = [] for polygons in segmentations: rles = coco_mask.frPyObjects(polygons, height, width) mask = coco_mask.decode(rles) if len(mask.shape) < 3: mask = mask[..., None] mask = np.asarray(mask, dtype=np.uint8) mask = np.any(mask, axis=2) masks.append(mask) if masks: masks = np.stack(masks, axis=0) else: masks = np.zeros((0, height, width), dtype=np.uint8) return masks # Copied from transformers.models.detr.image_processing_detr.prepare_coco_detection_annotation with DETR->DETA def prepare_coco_detection_annotation(image, target, return_segmentation_masks: bool = False): """ Convert the target in COCO format into the format expected by DETA. """ image_height, image_width = get_image_size(image) image_id = target["image_id"] image_id = np.asarray([image_id], dtype=np.int64) # Get all COCO annotations for the given image. annotations = target["annotations"] annotations = [obj for obj in annotations if "iscrowd" not in obj or obj["iscrowd"] == 0] classes = [obj["category_id"] for obj in annotations] classes = np.asarray(classes, dtype=np.int64) # for conversion to coco api area = np.asarray([obj["area"] for obj in annotations], dtype=np.float32) iscrowd = np.asarray([obj["iscrowd"] if "iscrowd" in obj else 0 for obj in annotations], dtype=np.int64) boxes = [obj["bbox"] for obj in annotations] # guard against no boxes via resizing boxes = np.asarray(boxes, dtype=np.float32).reshape(-1, 4) boxes[:, 2:] += boxes[:, :2] boxes[:, 0::2] = boxes[:, 0::2].clip(min=0, max=image_width) boxes[:, 1::2] = boxes[:, 1::2].clip(min=0, max=image_height) keep = (boxes[:, 3] > boxes[:, 1]) & (boxes[:, 2] > boxes[:, 0]) new_target = {} new_target["image_id"] = image_id new_target["class_labels"] = classes[keep] new_target["boxes"] = boxes[keep] new_target["area"] = area[keep] new_target["iscrowd"] = iscrowd[keep] new_target["orig_size"] = np.asarray([int(image_height), int(image_width)], dtype=np.int64) if annotations and "keypoints" in annotations[0]: keypoints = [obj["keypoints"] for obj in annotations] keypoints = np.asarray(keypoints, dtype=np.float32) num_keypoints = keypoints.shape[0] keypoints = keypoints.reshape((-1, 3)) if num_keypoints else keypoints new_target["keypoints"] = keypoints[keep] if return_segmentation_masks: segmentation_masks = [obj["segmentation"] for obj in annotations] masks = convert_coco_poly_to_mask(segmentation_masks, image_height, image_width) new_target["masks"] = masks[keep] return new_target # Copied from transformers.models.detr.image_processing_detr.masks_to_boxes def masks_to_boxes(masks: np.ndarray) -> np.ndarray: """ Compute the bounding boxes around the provided panoptic segmentation masks. Args: masks: masks in format `[number_masks, height, width]` where N is the number of masks Returns: boxes: bounding boxes in format `[number_masks, 4]` in xyxy format """ if masks.size == 0: return np.zeros((0, 4)) h, w = masks.shape[-2:] y = np.arange(0, h, dtype=np.float32) x = np.arange(0, w, dtype=np.float32) # see https://github.com/pytorch/pytorch/issues/50276 y, x = np.meshgrid(y, x, indexing="ij") x_mask = masks * np.expand_dims(x, axis=0) x_max = x_mask.reshape(x_mask.shape[0], -1).max(-1) x = np.ma.array(x_mask, mask=~(np.array(masks, dtype=bool))) x_min = x.filled(fill_value=1e8) x_min = x_min.reshape(x_min.shape[0], -1).min(-1) y_mask = masks * np.expand_dims(y, axis=0) y_max = y_mask.reshape(x_mask.shape[0], -1).max(-1) y = np.ma.array(y_mask, mask=~(np.array(masks, dtype=bool))) y_min = y.filled(fill_value=1e8) y_min = y_min.reshape(y_min.shape[0], -1).min(-1) return np.stack([x_min, y_min, x_max, y_max], 1) # Copied from transformers.models.detr.image_processing_detr.prepare_coco_panoptic_annotation with DETR->DETA def prepare_coco_panoptic_annotation( image: np.ndarray, target: Dict, masks_path: Union[str, pathlib.Path], return_masks: bool = True ) -> Dict: """ Prepare a coco panoptic annotation for DETA. """ image_height, image_width = get_image_size(image) annotation_path = pathlib.Path(masks_path) / target["file_name"] new_target = {} new_target["image_id"] = np.asarray([target["image_id"] if "image_id" in target else target["id"]], dtype=np.int64) new_target["size"] = np.asarray([image_height, image_width], dtype=np.int64) new_target["orig_size"] = np.asarray([image_height, image_width], dtype=np.int64) if "segments_info" in target: masks = np.asarray(PIL.Image.open(annotation_path), dtype=np.uint32) masks = rgb_to_id(masks) ids = np.array([segment_info["id"] for segment_info in target["segments_info"]]) masks = masks == ids[:, None, None] masks = masks.astype(np.uint8) if return_masks: new_target["masks"] = masks new_target["boxes"] = masks_to_boxes(masks) new_target["class_labels"] = np.array( [segment_info["category_id"] for segment_info in target["segments_info"]], dtype=np.int64 ) new_target["iscrowd"] = np.asarray( [segment_info["iscrowd"] for segment_info in target["segments_info"]], dtype=np.int64 ) new_target["area"] = np.asarray( [segment_info["area"] for segment_info in target["segments_info"]], dtype=np.float32 ) return new_target # Copied from transformers.models.detr.image_processing_detr.resize_annotation def resize_annotation( annotation: Dict[str, Any], orig_size: Tuple[int, int], target_size: Tuple[int, int], threshold: float = 0.5, resample: PILImageResampling = PILImageResampling.NEAREST, ): """ Resizes an annotation to a target size. Args: annotation (`Dict[str, Any]`): The annotation dictionary. orig_size (`Tuple[int, int]`): The original size of the input image. target_size (`Tuple[int, int]`): The target size of the image, as returned by the preprocessing `resize` step. threshold (`float`, *optional*, defaults to 0.5): The threshold used to binarize the segmentation masks. resample (`PILImageResampling`, defaults to `PILImageResampling.NEAREST`): The resampling filter to use when resizing the masks. """ ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(target_size, orig_size)) ratio_height, ratio_width = ratios new_annotation = {} new_annotation["size"] = target_size for key, value in annotation.items(): if key == "boxes": boxes = value scaled_boxes = boxes * np.asarray([ratio_width, ratio_height, ratio_width, ratio_height], dtype=np.float32) new_annotation["boxes"] = scaled_boxes elif key == "area": area = value scaled_area = area * (ratio_width * ratio_height) new_annotation["area"] = scaled_area elif key == "masks": masks = value[:, None] masks = np.array([resize(mask, target_size, resample=resample) for mask in masks]) masks = masks.astype(np.float32) masks = masks[:, 0] > threshold new_annotation["masks"] = masks elif key == "size": new_annotation["size"] = target_size else: new_annotation[key] = value return new_annotation class DetaImageProcessor(BaseImageProcessor): r""" Constructs a Deformable DETR image processor. Args: format (`str`, *optional*, defaults to `"coco_detection"`): Data format of the annotations. One of "coco_detection" or "coco_panoptic". do_resize (`bool`, *optional*, defaults to `True`): Controls whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the `do_resize` parameter in the `preprocess` method. size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 800, "longest_edge": 1333}`): Size of the image's (height, width) dimensions after resizing. Can be overridden by the `size` parameter in the `preprocess` method. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`): Resampling filter to use if resizing the image. do_rescale (`bool`, *optional*, defaults to `True`): Controls whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale` parameter in the `preprocess` method. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the `preprocess` method. do_normalize: Controls whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` method. image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_MEAN`): Mean values to use when normalizing the image. Can be a single value or a list of values, one for each channel. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_STD`): Standard deviation values to use when normalizing the image. Can be a single value or a list of values, one for each channel. Can be overridden by the `image_std` parameter in the `preprocess` method. do_pad (`bool`, *optional*, defaults to `True`): Controls whether to pad the image to the largest image in a batch and create a pixel mask. Can be overridden by the `do_pad` parameter in the `preprocess` method. """ model_input_names = ["pixel_values", "pixel_mask"] def __init__( self, format: Union[str, AnnotionFormat] = AnnotionFormat.COCO_DETECTION, do_resize: bool = True, size: Dict[str, int] = None, resample: PILImageResampling = PILImageResampling.BILINEAR, do_rescale: bool = True, rescale_factor: Union[int, float] = 1 / 255, do_normalize: bool = True, image_mean: Union[float, List[float]] = None, image_std: Union[float, List[float]] = None, do_pad: bool = True, **kwargs, ) -> None: if "pad_and_return_pixel_mask" in kwargs: do_pad = kwargs.pop("pad_and_return_pixel_mask") size = size if size is not None else {"shortest_edge": 800, "longest_edge": 1333} size = get_size_dict(size, default_to_square=False) super().__init__(**kwargs) self.format = format self.do_resize = do_resize self.size = size self.resample = resample self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD self.do_pad = do_pad # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.prepare_annotation with DETR->DETA def prepare_annotation( self, image: np.ndarray, target: Dict, format: Optional[AnnotionFormat] = None, return_segmentation_masks: bool = None, masks_path: Optional[Union[str, pathlib.Path]] = None, ) -> Dict: """ Prepare an annotation for feeding into DETA model. """ format = format if format is not None else self.format if format == AnnotionFormat.COCO_DETECTION: return_segmentation_masks = False if return_segmentation_masks is None else return_segmentation_masks target = prepare_coco_detection_annotation(image, target, return_segmentation_masks) elif format == AnnotionFormat.COCO_PANOPTIC: return_segmentation_masks = True if return_segmentation_masks is None else return_segmentation_masks target = prepare_coco_panoptic_annotation( image, target, masks_path=masks_path, return_masks=return_segmentation_masks ) else: raise ValueError(f"Format {format} is not supported.") return target # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.prepare def prepare(self, image, target, return_segmentation_masks=None, masks_path=None): logger.warning_once( "The `prepare` method is deprecated and will be removed in a v4.33. " "Please use `prepare_annotation` instead. Note: the `prepare_annotation` method " "does not return the image anymore.", ) target = self.prepare_annotation(image, target, return_segmentation_masks, masks_path, self.format) return image, target # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.convert_coco_poly_to_mask def convert_coco_poly_to_mask(self, *args, **kwargs): logger.warning_once("The `convert_coco_poly_to_mask` method is deprecated and will be removed in v4.33. ") return convert_coco_poly_to_mask(*args, **kwargs) # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.prepare_coco_detection def prepare_coco_detection(self, *args, **kwargs): logger.warning_once("The `prepare_coco_detection` method is deprecated and will be removed in v4.33. ") return prepare_coco_detection_annotation(*args, **kwargs) # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.prepare_coco_panoptic def prepare_coco_panoptic(self, *args, **kwargs): logger.warning_once("The `prepare_coco_panoptic` method is deprecated and will be removed in v4.33. ") return prepare_coco_panoptic_annotation(*args, **kwargs) def resize( self, image: np.ndarray, size: Dict[str, int], resample: PILImageResampling = PILImageResampling.BILINEAR, data_format: Optional[ChannelDimension] = None, **kwargs, ) -> np.ndarray: """ Resize the image to the given size. Size can be `min_size` (scalar) or `(height, width)` tuple. If size is an int, smaller edge of the image will be matched to this number. """ size = get_size_dict(size, default_to_square=False) if "shortest_edge" in size and "longest_edge" in size: size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: size = (size["height"], size["width"]) else: raise ValueError( "Size must contain 'height' and 'width' keys or 'shortest_edge' and 'longest_edge' keys. Got" f" {size.keys()}." ) image = resize(image, size=size, resample=resample, data_format=data_format) return image # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.resize_annotation def resize_annotation( self, annotation, orig_size, size, resample: PILImageResampling = PILImageResampling.NEAREST, ) -> Dict: """ Resize the annotation to match the resized image. If size is an int, smaller edge of the mask will be matched to this number. """ return resize_annotation(annotation, orig_size=orig_size, target_size=size, resample=resample) # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.rescale def rescale( self, image: np.ndarray, rescale_factor: Union[float, int], data_format: Optional[ChannelDimension] = None ) -> np.ndarray: """ Rescale the image by the given factor. """ return rescale(image, rescale_factor, data_format=data_format) # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.normalize_annotation def normalize_annotation(self, annotation: Dict, image_size: Tuple[int, int]) -> Dict: """ Normalize the boxes in the annotation from `[top_left_x, top_left_y, bottom_right_x, bottom_right_y]` to `[center_x, center_y, width, height]` format. """ return normalize_annotation(annotation, image_size=image_size) # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor._pad_image def _pad_image( self, image: np.ndarray, output_size: Tuple[int, int], constant_values: Union[float, Iterable[float]] = 0, data_format: Optional[ChannelDimension] = None, ) -> np.ndarray: """ Pad an image with zeros to the given size. """ input_height, input_width = get_image_size(image) output_height, output_width = output_size pad_bottom = output_height - input_height pad_right = output_width - input_width padding = ((0, pad_bottom), (0, pad_right)) padded_image = pad( image, padding, mode=PaddingMode.CONSTANT, constant_values=constant_values, data_format=data_format ) return padded_image # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.pad def pad( self, images: List[np.ndarray], constant_values: Union[float, Iterable[float]] = 0, return_pixel_mask: bool = True, return_tensors: Optional[Union[str, TensorType]] = None, data_format: Optional[ChannelDimension] = None, ) -> np.ndarray: """ Pads a batch of images to the bottom and right of the image with zeros to the size of largest height and width in the batch and optionally returns their corresponding pixel mask. Args: image (`np.ndarray`): Image to pad. constant_values (`float` or `Iterable[float]`, *optional*): The value to use for the padding if `mode` is `"constant"`. return_pixel_mask (`bool`, *optional*, defaults to `True`): Whether to return a pixel mask. input_channel_dimension (`ChannelDimension`, *optional*): The channel dimension format of the image. If not provided, it will be inferred from the input image. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the image. If not provided, it will be the same as the input image. """ pad_size = get_max_height_width(images) padded_images = [ self._pad_image(image, pad_size, constant_values=constant_values, data_format=data_format) for image in images ] data = {"pixel_values": padded_images} if return_pixel_mask: masks = [make_pixel_mask(image=image, output_size=pad_size) for image in images] data["pixel_mask"] = masks return BatchFeature(data=data, tensor_type=return_tensors) def preprocess( self, images: ImageInput, annotations: Optional[Union[List[Dict], List[List[Dict]]]] = None, return_segmentation_masks: bool = None, masks_path: Optional[Union[str, pathlib.Path]] = None, do_resize: Optional[bool] = None, size: Optional[Dict[str, int]] = None, resample=None, # PILImageResampling do_rescale: Optional[bool] = None, rescale_factor: Optional[Union[int, float]] = None, do_normalize: Optional[bool] = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_pad: Optional[bool] = None, format: Optional[Union[str, AnnotionFormat]] = None, return_tensors: Optional[Union[TensorType, str]] = None, data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST, **kwargs, ) -> BatchFeature: """ Preprocess an image or a batch of images so that it can be used by the model. Args: images (`ImageInput`): Image or batch of images to preprocess. annotations (`List[Dict]` or `List[List[Dict]]`, *optional*): List of annotations associated with the image or batch of images. If annotionation is for object detection, the annotations should be a dictionary with the following keys: - "image_id" (`int`): The image id. - "annotations" (`List[Dict]`): List of annotations for an image. Each annotation should be a dictionary. An image can have no annotations, in which case the list should be empty. If annotionation is for segmentation, the annotations should be a dictionary with the following keys: - "image_id" (`int`): The image id. - "segments_info" (`List[Dict]`): List of segments for an image. Each segment should be a dictionary. An image can have no segments, in which case the list should be empty. - "file_name" (`str`): The file name of the image. return_segmentation_masks (`bool`, *optional*, defaults to self.return_segmentation_masks): Whether to return segmentation masks. masks_path (`str` or `pathlib.Path`, *optional*): Path to the directory containing the segmentation masks. do_resize (`bool`, *optional*, defaults to self.do_resize): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to self.size): Size of the image after resizing. resample (`PILImageResampling`, *optional*, defaults to self.resample): Resampling filter to use when resizing the image. do_rescale (`bool`, *optional*, defaults to self.do_rescale): Whether to rescale the image. rescale_factor (`float`, *optional*, defaults to self.rescale_factor): Rescale factor to use when rescaling the image. do_normalize (`bool`, *optional*, defaults to self.do_normalize): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to self.image_mean): Mean to use when normalizing the image. image_std (`float` or `List[float]`, *optional*, defaults to self.image_std): Standard deviation to use when normalizing the image. do_pad (`bool`, *optional*, defaults to self.do_pad): Whether to pad the image. format (`str` or `AnnotionFormat`, *optional*, defaults to self.format): Format of the annotations. return_tensors (`str` or `TensorType`, *optional*, defaults to self.return_tensors): Type of tensors to return. If `None`, will return the list of images. data_format (`str` or `ChannelDimension`, *optional*, defaults to self.data_format): The channel dimension format of the image. If not provided, it will be the same as the input image. """ if "pad_and_return_pixel_mask" in kwargs: logger.warning_once( "The `pad_and_return_pixel_mask` argument is deprecated and will be removed in a future version, " "use `do_pad` instead.", ) do_pad = kwargs.pop("pad_and_return_pixel_mask") do_resize = self.do_resize if do_resize is None else do_resize size = self.size if size is None else size size = get_size_dict(size=size, default_to_square=False) resample = self.resample if resample is None else resample do_rescale = self.do_rescale if do_rescale is None else do_rescale rescale_factor = self.rescale_factor if rescale_factor is None else rescale_factor do_normalize = self.do_normalize if do_normalize is None else do_normalize image_mean = self.image_mean if image_mean is None else image_mean image_std = self.image_std if image_std is None else image_std do_pad = self.do_pad if do_pad is None else do_pad format = self.format if format is None else format if do_resize is not None and size is None: raise ValueError("Size and max_size must be specified if do_resize is True.") if do_rescale is not None and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True.") if do_normalize is not None and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True.") if not is_batched(images): images = [images] annotations = [annotations] if annotations is not None else None if annotations is not None and len(images) != len(annotations): raise ValueError( f"The number of images ({len(images)}) and annotations ({len(annotations)}) do not match." ) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) format = AnnotionFormat(format) if annotations is not None: if format == AnnotionFormat.COCO_DETECTION and not valid_coco_detection_annotations(annotations): raise ValueError( "Invalid COCO detection annotations. Annotations must a dict (single image) of list of dicts" "(batch of images) with the following keys: `image_id` and `annotations`, with the latter " "being a list of annotations in the COCO format." ) elif format == AnnotionFormat.COCO_PANOPTIC and not valid_coco_panoptic_annotations(annotations): raise ValueError( "Invalid COCO panoptic annotations. Annotations must a dict (single image) of list of dicts " "(batch of images) with the following keys: `image_id`, `file_name` and `segments_info`, with " "the latter being a list of annotations in the COCO format." ) elif format not in SUPPORTED_ANNOTATION_FORMATS: raise ValueError( f"Unsupported annotation format: {format} must be one of {SUPPORTED_ANNOTATION_FORMATS}" ) if ( masks_path is not None and format == AnnotionFormat.COCO_PANOPTIC and not isinstance(masks_path, (pathlib.Path, str)) ): raise ValueError( "The path to the directory containing the mask PNG files should be provided as a" f" `pathlib.Path` or string object, but is {type(masks_path)} instead." ) # All transformations expect numpy arrays images = [to_numpy_array(image) for image in images] # prepare (COCO annotations as a list of Dict -> DETR target as a single Dict per image) if annotations is not None: prepared_images = [] prepared_annotations = [] for image, target in zip(images, annotations): target = self.prepare_annotation( image, target, format, return_segmentation_masks=return_segmentation_masks, masks_path=masks_path ) prepared_images.append(image) prepared_annotations.append(target) images = prepared_images annotations = prepared_annotations del prepared_images, prepared_annotations # transformations if do_resize: if annotations is not None: resized_images, resized_annotations = [], [] for image, target in zip(images, annotations): orig_size = get_image_size(image) resized_image = self.resize(image, size=size, resample=resample) resized_annotation = self.resize_annotation(target, orig_size, get_image_size(resized_image)) resized_images.append(resized_image) resized_annotations.append(resized_annotation) images = resized_images annotations = resized_annotations del resized_images, resized_annotations else: images = [self.resize(image, size=size, resample=resample) for image in images] if do_rescale: images = [self.rescale(image, rescale_factor) for image in images] if do_normalize: images = [self.normalize(image, image_mean, image_std) for image in images] if annotations is not None: annotations = [ self.normalize_annotation(annotation, get_image_size(image)) for annotation, image in zip(annotations, images) ] if do_pad: # Pads images and returns their mask: {'pixel_values': ..., 'pixel_mask': ...} data = self.pad(images, return_pixel_mask=True, data_format=data_format) else: images = [to_channel_dimension_format(image, data_format) for image in images] data = {"pixel_values": images} encoded_inputs = BatchFeature(data=data, tensor_type=return_tensors) if annotations is not None: encoded_inputs["labels"] = [ BatchFeature(annotation, tensor_type=return_tensors) for annotation in annotations ] return encoded_inputs def post_process_object_detection( self, outputs, threshold: float = 0.5, target_sizes: Union[TensorType, List[Tuple]] = None, nms_threshold: float = 0.7, ): """ Converts the output of [`DetaForObjectDetection`] into final bounding boxes in (top_left_x, top_left_y, bottom_right_x, bottom_right_y) format. Only supports PyTorch. Args: outputs ([`DetrObjectDetectionOutput`]): Raw outputs of the model. threshold (`float`, *optional*, defaults to 0.5): Score threshold to keep object detection predictions. target_sizes (`torch.Tensor` or `List[Tuple[int, int]]`, *optional*): Tensor of shape `(batch_size, 2)` or list of tuples (`Tuple[int, int]`) containing the target size (height, width) of each image in the batch. If left to None, predictions will not be resized. nms_threshold (`float`, *optional*, defaults to 0.7): NMS threshold. Returns: `List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image in the batch as predicted by the model. """ out_logits, out_bbox = outputs.logits, outputs.pred_boxes batch_size, num_queries, num_labels = out_logits.shape if target_sizes is not None: if len(out_logits) != len(target_sizes): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) prob = out_logits.sigmoid() all_scores = prob.view(batch_size, num_queries * num_labels).to(out_logits.device) all_indexes = torch.arange(num_queries * num_labels)[None].repeat(batch_size, 1).to(out_logits.device) all_boxes = torch.div(all_indexes, out_logits.shape[2], rounding_mode="floor") all_labels = all_indexes % out_logits.shape[2] boxes = center_to_corners_format(out_bbox) boxes = torch.gather(boxes, 1, all_boxes.unsqueeze(-1).repeat(1, 1, 4)) # and from relative [0, 1] to absolute [0, height] coordinates if target_sizes is not None: if isinstance(target_sizes, List): img_h = torch.Tensor([i[0] for i in target_sizes]) img_w = torch.Tensor([i[1] for i in target_sizes]) else: img_h, img_w = target_sizes.unbind(1) scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1).to(boxes.device) boxes = boxes * scale_fct[:, None, :] results = [] for b in range(batch_size): box = boxes[b] score = all_scores[b] lbls = all_labels[b] pre_topk = score.topk(min(10000, len(score))).indices box = box[pre_topk] score = score[pre_topk] lbls = lbls[pre_topk] # apply NMS keep_inds = batched_nms(box, score, lbls, nms_threshold)[:100] score = score[keep_inds] lbls = lbls[keep_inds] box = box[keep_inds] results.append( { "scores": score[score > threshold], "labels": lbls[score > threshold], "boxes": box[score > threshold], } ) return results
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/deta/modeling_deta.py
# coding=utf-8 # Copyright 2022 SenseTime and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch DETA model.""" import copy import math import warnings from dataclasses import dataclass from typing import Dict, List, Optional, Tuple import torch import torch.nn.functional as F from torch import Tensor, nn from ...activations import ACT2FN from ...file_utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, is_scipy_available, is_vision_available, replace_return_docstrings, ) from ...modeling_outputs import BaseModelOutput from ...modeling_utils import PreTrainedModel from ...pytorch_utils import meshgrid from ...utils import is_torchvision_available, logging, requires_backends from ..auto import AutoBackbone from .configuration_deta import DetaConfig logger = logging.get_logger(__name__) if is_vision_available(): from transformers.image_transforms import center_to_corners_format if is_torchvision_available(): from torchvision.ops.boxes import batched_nms if is_scipy_available(): from scipy.optimize import linear_sum_assignment logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "DetaConfig" _CHECKPOINT_FOR_DOC = "jozhang97/deta-swin-large-o365" DETA_PRETRAINED_MODEL_ARCHIVE_LIST = [ "jozhang97/deta-swin-large-o365", # See all DETA models at https://huggingface.co/models?filter=deta ] @dataclass # Copied from transformers.models.deformable_detr.modeling_deformable_detr.DeformableDetrDecoderOutput with DeformableDetr->Deta class DetaDecoderOutput(ModelOutput): """ Base class for outputs of the DetaDecoder. This class adds two attributes to BaseModelOutputWithCrossAttentions, namely: - a stacked tensor of intermediate decoder hidden states (i.e. the output of each decoder layer) - a stacked tensor of intermediate reference points. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. intermediate_hidden_states (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, hidden_size)`): Stacked intermediate hidden states (output of each layer of the decoder). intermediate_reference_points (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, sequence_length, hidden_size)`): Stacked intermediate reference points (reference points of each layer of the decoder). hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` and `config.add_cross_attention=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads. """ last_hidden_state: torch.FloatTensor = None intermediate_hidden_states: torch.FloatTensor = None intermediate_reference_points: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None cross_attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass # Copied from transformers.models.deformable_detr.modeling_deformable_detr.DeformableDetrModelOutput with DeformableDetr->Deta,Deformable DETR->DETA class DetaModelOutput(ModelOutput): """ Base class for outputs of the Deformable DETR encoder-decoder model. Args: init_reference_points (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`): Initial reference points sent through the Transformer decoder. last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`): Sequence of hidden-states at the output of the last layer of the decoder of the model. intermediate_hidden_states (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, hidden_size)`): Stacked intermediate hidden states (output of each layer of the decoder). intermediate_reference_points (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, 4)`): Stacked intermediate reference points (reference points of each layer of the decoder). decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, num_queries, hidden_size)`. Hidden-states of the decoder at the output of each layer plus the initial embedding outputs. decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, num_queries, num_queries)`. Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_queries, num_heads, 4, 4)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads. encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder of the model. encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each layer plus the initial embedding outputs. encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_queries, num_heads, 4, 4)`. Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads. enc_outputs_class (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`, *optional*, returned when `config.with_box_refine=True` and `config.two_stage=True`): Predicted bounding boxes scores where the top `config.two_stage_num_proposals` scoring bounding boxes are picked as region proposals in the first stage. Output of bounding box binary classification (i.e. foreground and background). enc_outputs_coord_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, 4)`, *optional*, returned when `config.with_box_refine=True` and `config.two_stage=True`): Logits of predicted bounding boxes coordinates in the first stage. """ init_reference_points: torch.FloatTensor = None last_hidden_state: torch.FloatTensor = None intermediate_hidden_states: torch.FloatTensor = None intermediate_reference_points: torch.FloatTensor = None decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None cross_attentions: Optional[Tuple[torch.FloatTensor]] = None encoder_last_hidden_state: Optional[torch.FloatTensor] = None encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None enc_outputs_class: Optional[torch.FloatTensor] = None enc_outputs_coord_logits: Optional[torch.FloatTensor] = None @dataclass # Copied from transformers.models.deformable_detr.modeling_deformable_detr.DeformableDetrObjectDetectionOutput with DeformableDetr->Deta class DetaObjectDetectionOutput(ModelOutput): """ Output type of [`DetaForObjectDetection`]. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` are provided)): Total loss as a linear combination of a negative log-likehood (cross-entropy) for class prediction and a bounding box loss. The latter is defined as a linear combination of the L1 loss and the generalized scale-invariant IoU loss. loss_dict (`Dict`, *optional*): A dictionary containing the individual losses. Useful for logging. logits (`torch.FloatTensor` of shape `(batch_size, num_queries, num_classes + 1)`): Classification logits (including no-object) for all queries. pred_boxes (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`): Normalized boxes coordinates for all queries, represented as (center_x, center_y, width, height). These values are normalized in [0, 1], relative to the size of each individual image in the batch (disregarding possible padding). You can use [`~DetaProcessor.post_process_object_detection`] to retrieve the unnormalized bounding boxes. auxiliary_outputs (`list[Dict]`, *optional*): Optional, only returned when auxilary losses are activated (i.e. `config.auxiliary_loss` is set to `True`) and labels are provided. It is a list of dictionaries containing the two above keys (`logits` and `pred_boxes`) for each decoder layer. last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the decoder of the model. decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, num_queries, hidden_size)`. Hidden-states of the decoder at the output of each layer plus the initial embedding outputs. decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, num_queries, num_queries)`. Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_queries, num_heads, 4, 4)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads. encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder of the model. encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each layer plus the initial embedding outputs. encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, sequence_length, num_heads, 4, 4)`. Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads. intermediate_hidden_states (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, hidden_size)`): Stacked intermediate hidden states (output of each layer of the decoder). intermediate_reference_points (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, 4)`): Stacked intermediate reference points (reference points of each layer of the decoder). init_reference_points (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`): Initial reference points sent through the Transformer decoder. enc_outputs_class (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`, *optional*, returned when `config.with_box_refine=True` and `config.two_stage=True`): Predicted bounding boxes scores where the top `config.two_stage_num_proposals` scoring bounding boxes are picked as region proposals in the first stage. Output of bounding box binary classification (i.e. foreground and background). enc_outputs_coord_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, 4)`, *optional*, returned when `config.with_box_refine=True` and `config.two_stage=True`): Logits of predicted bounding boxes coordinates in the first stage. """ loss: Optional[torch.FloatTensor] = None loss_dict: Optional[Dict] = None logits: torch.FloatTensor = None pred_boxes: torch.FloatTensor = None auxiliary_outputs: Optional[List[Dict]] = None init_reference_points: Optional[torch.FloatTensor] = None last_hidden_state: Optional[torch.FloatTensor] = None intermediate_hidden_states: Optional[torch.FloatTensor] = None intermediate_reference_points: Optional[torch.FloatTensor] = None decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None cross_attentions: Optional[Tuple[torch.FloatTensor]] = None encoder_last_hidden_state: Optional[torch.FloatTensor] = None encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None enc_outputs_class: Optional = None enc_outputs_coord_logits: Optional = None def _get_clones(module, N): return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) def inverse_sigmoid(x, eps=1e-5): x = x.clamp(min=0, max=1) x1 = x.clamp(min=eps) x2 = (1 - x).clamp(min=eps) return torch.log(x1 / x2) # Copied from transformers.models.detr.modeling_detr.DetrFrozenBatchNorm2d with Detr->Deta class DetaFrozenBatchNorm2d(nn.Module): """ BatchNorm2d where the batch statistics and the affine parameters are fixed. Copy-paste from torchvision.misc.ops with added eps before rqsrt, without which any other models than torchvision.models.resnet[18,34,50,101] produce nans. """ def __init__(self, n): super().__init__() self.register_buffer("weight", torch.ones(n)) self.register_buffer("bias", torch.zeros(n)) self.register_buffer("running_mean", torch.zeros(n)) self.register_buffer("running_var", torch.ones(n)) def _load_from_state_dict( self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs ): num_batches_tracked_key = prefix + "num_batches_tracked" if num_batches_tracked_key in state_dict: del state_dict[num_batches_tracked_key] super()._load_from_state_dict( state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs ) def forward(self, x): # move reshapes to the beginning # to make it user-friendly weight = self.weight.reshape(1, -1, 1, 1) bias = self.bias.reshape(1, -1, 1, 1) running_var = self.running_var.reshape(1, -1, 1, 1) running_mean = self.running_mean.reshape(1, -1, 1, 1) epsilon = 1e-5 scale = weight * (running_var + epsilon).rsqrt() bias = bias - running_mean * scale return x * scale + bias # Copied from transformers.models.detr.modeling_detr.replace_batch_norm with Detr->Deta def replace_batch_norm(m, name=""): for attr_str in dir(m): target_attr = getattr(m, attr_str) if isinstance(target_attr, nn.BatchNorm2d): frozen = DetaFrozenBatchNorm2d(target_attr.num_features) bn = getattr(m, attr_str) frozen.weight.data.copy_(bn.weight) frozen.bias.data.copy_(bn.bias) frozen.running_mean.data.copy_(bn.running_mean) frozen.running_var.data.copy_(bn.running_var) setattr(m, attr_str, frozen) for n, ch in m.named_children(): replace_batch_norm(ch, n) class DetaBackboneWithPositionalEncodings(nn.Module): """ Backbone model with positional embeddings. nn.BatchNorm2d layers are replaced by DetaFrozenBatchNorm2d as defined above. """ def __init__(self, config): super().__init__() backbone = AutoBackbone.from_config(config.backbone_config) with torch.no_grad(): replace_batch_norm(backbone) self.model = backbone self.intermediate_channel_sizes = self.model.channels # TODO fix this if config.backbone_config.model_type == "resnet": for name, parameter in self.model.named_parameters(): if "stages.1" not in name and "stages.2" not in name and "stages.3" not in name: parameter.requires_grad_(False) self.position_embedding = build_position_encoding(config) def forward(self, pixel_values: torch.Tensor, pixel_mask: torch.Tensor): """ Outputs feature maps of latter stages C_3 through C_5 in ResNet if `config.num_feature_levels > 1`, otherwise outputs feature maps of C_5. """ # first, send pixel_values through the backbone to get list of feature maps features = self.model(pixel_values).feature_maps # next, create position embeddings out = [] pos = [] for feature_map in features: # downsample pixel_mask to match shape of corresponding feature_map mask = nn.functional.interpolate(pixel_mask[None].float(), size=feature_map.shape[-2:]).to(torch.bool)[0] position_embeddings = self.position_embedding(feature_map, mask).to(feature_map.dtype) out.append((feature_map, mask)) pos.append(position_embeddings) return out, pos # Copied from transformers.models.detr.modeling_detr._expand_mask def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, target_len: Optional[int] = None): """ Expands attention_mask from `[batch_size, seq_len]` to `[batch_size, 1, target_seq_len, source_seq_len]`. """ batch_size, source_len = mask.size() target_len = target_len if target_len is not None else source_len expanded_mask = mask[:, None, None, :].expand(batch_size, 1, target_len, source_len).to(dtype) inverted_mask = 1.0 - expanded_mask return inverted_mask.masked_fill(inverted_mask.bool(), torch.finfo(dtype).min) # Copied from transformers.models.deformable_detr.modeling_deformable_detr.DeformableDetrSinePositionEmbedding with DeformableDetr->Deta class DetaSinePositionEmbedding(nn.Module): """ This is a more standard version of the position embedding, very similar to the one used by the Attention is all you need paper, generalized to work on images. """ def __init__(self, embedding_dim=64, temperature=10000, normalize=False, scale=None): super().__init__() self.embedding_dim = embedding_dim self.temperature = temperature self.normalize = normalize if scale is not None and normalize is False: raise ValueError("normalize should be True if scale is passed") if scale is None: scale = 2 * math.pi self.scale = scale def forward(self, pixel_values, pixel_mask): if pixel_mask is None: raise ValueError("No pixel mask provided") y_embed = pixel_mask.cumsum(1, dtype=torch.float32) x_embed = pixel_mask.cumsum(2, dtype=torch.float32) if self.normalize: eps = 1e-6 y_embed = (y_embed - 0.5) / (y_embed[:, -1:, :] + eps) * self.scale x_embed = (x_embed - 0.5) / (x_embed[:, :, -1:] + eps) * self.scale dim_t = torch.arange(self.embedding_dim, dtype=torch.float32, device=pixel_values.device) dim_t = self.temperature ** (2 * torch.div(dim_t, 2, rounding_mode="floor") / self.embedding_dim) pos_x = x_embed[:, :, :, None] / dim_t pos_y = y_embed[:, :, :, None] / dim_t pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3) pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3) pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) return pos # Copied from transformers.models.detr.modeling_detr.DetrLearnedPositionEmbedding class DetaLearnedPositionEmbedding(nn.Module): """ This module learns positional embeddings up to a fixed maximum size. """ def __init__(self, embedding_dim=256): super().__init__() self.row_embeddings = nn.Embedding(50, embedding_dim) self.column_embeddings = nn.Embedding(50, embedding_dim) def forward(self, pixel_values, pixel_mask=None): height, width = pixel_values.shape[-2:] width_values = torch.arange(width, device=pixel_values.device) height_values = torch.arange(height, device=pixel_values.device) x_emb = self.column_embeddings(width_values) y_emb = self.row_embeddings(height_values) pos = torch.cat([x_emb.unsqueeze(0).repeat(height, 1, 1), y_emb.unsqueeze(1).repeat(1, width, 1)], dim=-1) pos = pos.permute(2, 0, 1) pos = pos.unsqueeze(0) pos = pos.repeat(pixel_values.shape[0], 1, 1, 1) return pos # Copied from transformers.models.detr.modeling_detr.build_position_encoding with Detr->Deta def build_position_encoding(config): n_steps = config.d_model // 2 if config.position_embedding_type == "sine": # TODO find a better way of exposing other arguments position_embedding = DetaSinePositionEmbedding(n_steps, normalize=True) elif config.position_embedding_type == "learned": position_embedding = DetaLearnedPositionEmbedding(n_steps) else: raise ValueError(f"Not supported {config.position_embedding_type}") return position_embedding # Copied from transformers.models.deformable_detr.modeling_deformable_detr.multi_scale_deformable_attention def multi_scale_deformable_attention( value: Tensor, value_spatial_shapes: Tensor, sampling_locations: Tensor, attention_weights: Tensor ) -> Tensor: batch_size, _, num_heads, hidden_dim = value.shape _, num_queries, num_heads, num_levels, num_points, _ = sampling_locations.shape value_list = value.split([height.item() * width.item() for height, width in value_spatial_shapes], dim=1) sampling_grids = 2 * sampling_locations - 1 sampling_value_list = [] for level_id, (height, width) in enumerate(value_spatial_shapes): # batch_size, height*width, num_heads, hidden_dim # -> batch_size, height*width, num_heads*hidden_dim # -> batch_size, num_heads*hidden_dim, height*width # -> batch_size*num_heads, hidden_dim, height, width value_l_ = ( value_list[level_id].flatten(2).transpose(1, 2).reshape(batch_size * num_heads, hidden_dim, height, width) ) # batch_size, num_queries, num_heads, num_points, 2 # -> batch_size, num_heads, num_queries, num_points, 2 # -> batch_size*num_heads, num_queries, num_points, 2 sampling_grid_l_ = sampling_grids[:, :, :, level_id].transpose(1, 2).flatten(0, 1) # batch_size*num_heads, hidden_dim, num_queries, num_points sampling_value_l_ = nn.functional.grid_sample( value_l_, sampling_grid_l_, mode="bilinear", padding_mode="zeros", align_corners=False ) sampling_value_list.append(sampling_value_l_) # (batch_size, num_queries, num_heads, num_levels, num_points) # -> (batch_size, num_heads, num_queries, num_levels, num_points) # -> (batch_size, num_heads, 1, num_queries, num_levels*num_points) attention_weights = attention_weights.transpose(1, 2).reshape( batch_size * num_heads, 1, num_queries, num_levels * num_points ) output = ( (torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights) .sum(-1) .view(batch_size, num_heads * hidden_dim, num_queries) ) return output.transpose(1, 2).contiguous() class DetaMultiscaleDeformableAttention(nn.Module): """ Multiscale deformable attention as proposed in Deformable DETR. """ def __init__(self, embed_dim: int, num_heads: int, n_levels: int, n_points: int): super().__init__() if embed_dim % num_heads != 0: raise ValueError( f"embed_dim (d_model) must be divisible by num_heads, but got {embed_dim} and {num_heads}" ) dim_per_head = embed_dim // num_heads # check if dim_per_head is power of 2 if not ((dim_per_head & (dim_per_head - 1) == 0) and dim_per_head != 0): warnings.warn( "You'd better set embed_dim (d_model) in DetaMultiscaleDeformableAttention to make the" " dimension of each attention head a power of 2 which is more efficient in the authors' CUDA" " implementation." ) self.im2col_step = 64 self.d_model = embed_dim self.n_levels = n_levels self.n_heads = num_heads self.n_points = n_points self.sampling_offsets = nn.Linear(embed_dim, num_heads * n_levels * n_points * 2) self.attention_weights = nn.Linear(embed_dim, num_heads * n_levels * n_points) self.value_proj = nn.Linear(embed_dim, embed_dim) self.output_proj = nn.Linear(embed_dim, embed_dim) self._reset_parameters() def _reset_parameters(self): nn.init.constant_(self.sampling_offsets.weight.data, 0.0) thetas = torch.arange(self.n_heads, dtype=torch.float32) * (2.0 * math.pi / self.n_heads) grid_init = torch.stack([thetas.cos(), thetas.sin()], -1) grid_init = ( (grid_init / grid_init.abs().max(-1, keepdim=True)[0]) .view(self.n_heads, 1, 1, 2) .repeat(1, self.n_levels, self.n_points, 1) ) for i in range(self.n_points): grid_init[:, :, i, :] *= i + 1 with torch.no_grad(): self.sampling_offsets.bias = nn.Parameter(grid_init.view(-1)) nn.init.constant_(self.attention_weights.weight.data, 0.0) nn.init.constant_(self.attention_weights.bias.data, 0.0) nn.init.xavier_uniform_(self.value_proj.weight.data) nn.init.constant_(self.value_proj.bias.data, 0.0) nn.init.xavier_uniform_(self.output_proj.weight.data) nn.init.constant_(self.output_proj.bias.data, 0.0) def with_pos_embed(self, tensor: torch.Tensor, position_embeddings: Optional[Tensor]): return tensor if position_embeddings is None else tensor + position_embeddings def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states=None, encoder_attention_mask=None, position_embeddings: Optional[torch.Tensor] = None, reference_points=None, spatial_shapes=None, level_start_index=None, output_attentions: bool = False, ): # add position embeddings to the hidden states before projecting to queries and keys if position_embeddings is not None: hidden_states = self.with_pos_embed(hidden_states, position_embeddings) batch_size, num_queries, _ = hidden_states.shape batch_size, sequence_length, _ = encoder_hidden_states.shape if (spatial_shapes[:, 0] * spatial_shapes[:, 1]).sum() != sequence_length: raise ValueError( "Make sure to align the spatial shapes with the sequence length of the encoder hidden states" ) value = self.value_proj(encoder_hidden_states) if attention_mask is not None: # we invert the attention_mask value = value.masked_fill(~attention_mask[..., None], float(0)) value = value.view(batch_size, sequence_length, self.n_heads, self.d_model // self.n_heads) sampling_offsets = self.sampling_offsets(hidden_states).view( batch_size, num_queries, self.n_heads, self.n_levels, self.n_points, 2 ) attention_weights = self.attention_weights(hidden_states).view( batch_size, num_queries, self.n_heads, self.n_levels * self.n_points ) attention_weights = F.softmax(attention_weights, -1).view( batch_size, num_queries, self.n_heads, self.n_levels, self.n_points ) # batch_size, num_queries, n_heads, n_levels, n_points, 2 if reference_points.shape[-1] == 2: offset_normalizer = torch.stack([spatial_shapes[..., 1], spatial_shapes[..., 0]], -1) sampling_locations = ( reference_points[:, :, None, :, None, :] + sampling_offsets / offset_normalizer[None, None, None, :, None, :] ) elif reference_points.shape[-1] == 4: sampling_locations = ( reference_points[:, :, None, :, None, :2] + sampling_offsets / self.n_points * reference_points[:, :, None, :, None, 2:] * 0.5 ) else: raise ValueError(f"Last dim of reference_points must be 2 or 4, but got {reference_points.shape[-1]}") # PyTorch implementation (for now) output = multi_scale_deformable_attention(value, spatial_shapes, sampling_locations, attention_weights) output = self.output_proj(output) return output, attention_weights # Copied from transformers.models.deformable_detr.modeling_deformable_detr.DeformableDetrMultiheadAttention with DeformableDetr->Deta,Deformable DETR->DETA class DetaMultiheadAttention(nn.Module): """ Multi-headed attention from 'Attention Is All You Need' paper. Here, we add position embeddings to the queries and keys (as explained in the Deformable DETR paper). """ def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, bias: bool = True, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads if self.head_dim * num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {num_heads})." ) self.scaling = self.head_dim**-0.5 self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) def _shape(self, tensor: torch.Tensor, seq_len: int, batch_size: int): return tensor.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def with_pos_embed(self, tensor: torch.Tensor, position_embeddings: Optional[Tensor]): return tensor if position_embeddings is None else tensor + position_embeddings def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_embeddings: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" batch_size, target_len, embed_dim = hidden_states.size() # add position embeddings to the hidden states before projecting to queries and keys if position_embeddings is not None: hidden_states_original = hidden_states hidden_states = self.with_pos_embed(hidden_states, position_embeddings) # get queries, keys and values query_states = self.q_proj(hidden_states) * self.scaling key_states = self._shape(self.k_proj(hidden_states), -1, batch_size) value_states = self._shape(self.v_proj(hidden_states_original), -1, batch_size) proj_shape = (batch_size * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, target_len, batch_size).view(*proj_shape) key_states = key_states.view(*proj_shape) value_states = value_states.view(*proj_shape) source_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (batch_size * self.num_heads, target_len, source_len): raise ValueError( f"Attention weights should be of size {(batch_size * self.num_heads, target_len, source_len)}, but is" f" {attn_weights.size()}" ) # expand attention_mask if attention_mask is not None: # [batch_size, seq_len] -> [batch_size, 1, target_seq_len, source_seq_len] attention_mask = _expand_mask(attention_mask, hidden_states.dtype) if attention_mask is not None: if attention_mask.size() != (batch_size, 1, target_len, source_len): raise ValueError( f"Attention mask should be of size {(batch_size, 1, target_len, source_len)}, but is" f" {attention_mask.size()}" ) attn_weights = attn_weights.view(batch_size, self.num_heads, target_len, source_len) + attention_mask attn_weights = attn_weights.view(batch_size * self.num_heads, target_len, source_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(batch_size, self.num_heads, target_len, source_len) attn_weights = attn_weights_reshaped.view(batch_size * self.num_heads, target_len, source_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (batch_size * self.num_heads, target_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(batch_size, self.num_heads, target_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(batch_size, self.num_heads, target_len, self.head_dim) attn_output = attn_output.transpose(1, 2) attn_output = attn_output.reshape(batch_size, target_len, embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped class DetaEncoderLayer(nn.Module): def __init__(self, config: DetaConfig): super().__init__() self.embed_dim = config.d_model self.self_attn = DetaMultiscaleDeformableAttention( embed_dim=self.embed_dim, num_heads=config.encoder_attention_heads, n_levels=config.num_feature_levels, n_points=config.encoder_n_points, ) self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim) self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim) self.final_layer_norm = nn.LayerNorm(self.embed_dim) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, position_embeddings: torch.Tensor = None, reference_points=None, spatial_shapes=None, level_start_index=None, output_attentions: bool = False, ): """ Args: hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Input to the layer. attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Attention mask. position_embeddings (`torch.FloatTensor`, *optional*): Position embeddings, to be added to `hidden_states`. reference_points (`torch.FloatTensor`, *optional*): Reference points. spatial_shapes (`torch.LongTensor`, *optional*): Spatial shapes of the backbone feature maps. level_start_index (`torch.LongTensor`, *optional*): Level start index. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states # Apply Multi-scale Deformable Attention Module on the multi-scale feature maps. hidden_states, attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, encoder_hidden_states=hidden_states, encoder_attention_mask=attention_mask, position_embeddings=position_embeddings, reference_points=reference_points, spatial_shapes=spatial_shapes, level_start_index=level_start_index, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) if self.training: if torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any(): clamp_value = torch.finfo(hidden_states.dtype).max - 1000 hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs class DetaDecoderLayer(nn.Module): def __init__(self, config: DetaConfig): super().__init__() self.embed_dim = config.d_model # self-attention self.self_attn = DetaMultiheadAttention( embed_dim=self.embed_dim, num_heads=config.decoder_attention_heads, dropout=config.attention_dropout, ) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) # cross-attention self.encoder_attn = DetaMultiscaleDeformableAttention( embed_dim=self.embed_dim, num_heads=config.decoder_attention_heads, n_levels=config.num_feature_levels, n_points=config.decoder_n_points, ) self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim) # feedforward neural networks self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim) self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim) self.final_layer_norm = nn.LayerNorm(self.embed_dim) def forward( self, hidden_states: torch.Tensor, position_embeddings: Optional[torch.Tensor] = None, reference_points=None, spatial_shapes=None, level_start_index=None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = False, ): """ Args: hidden_states (`torch.FloatTensor`): Input to the layer of shape `(batch, seq_len, embed_dim)`. position_embeddings (`torch.FloatTensor`, *optional*): Position embeddings that are added to the queries and keys in the self-attention layer. reference_points (`torch.FloatTensor`, *optional*): Reference points. spatial_shapes (`torch.LongTensor`, *optional*): Spatial shapes. level_start_index (`torch.LongTensor`, *optional*): Level start index. encoder_hidden_states (`torch.FloatTensor`): cross attention input to the layer of shape `(batch, seq_len, embed_dim)` encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size `(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative values. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states # Self Attention hidden_states, self_attn_weights = self.self_attn( hidden_states=hidden_states, position_embeddings=position_embeddings, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) second_residual = hidden_states # Cross-Attention cross_attn_weights = None hidden_states, cross_attn_weights = self.encoder_attn( hidden_states=hidden_states, attention_mask=encoder_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, position_embeddings=position_embeddings, reference_points=reference_points, spatial_shapes=spatial_shapes, level_start_index=level_start_index, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = second_residual + hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) # Fully Connected residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights, cross_attn_weights) return outputs # Copied from transformers.models.detr.modeling_detr.DetrClassificationHead class DetaClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, input_dim: int, inner_dim: int, num_classes: int, pooler_dropout: float): super().__init__() self.dense = nn.Linear(input_dim, inner_dim) self.dropout = nn.Dropout(p=pooler_dropout) self.out_proj = nn.Linear(inner_dim, num_classes) def forward(self, hidden_states: torch.Tensor): hidden_states = self.dropout(hidden_states) hidden_states = self.dense(hidden_states) hidden_states = torch.tanh(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.out_proj(hidden_states) return hidden_states # Copied from transformers.models.deformable_detr.modeling_deformable_detr.DeformableDetrPreTrainedModel with DeformableDetr->Deta class DetaPreTrainedModel(PreTrainedModel): config_class = DetaConfig base_model_prefix = "model" main_input_name = "pixel_values" def _init_weights(self, module): std = self.config.init_std if isinstance(module, DetaLearnedPositionEmbedding): nn.init.uniform_(module.row_embeddings.weight) nn.init.uniform_(module.column_embeddings.weight) elif isinstance(module, DetaMultiscaleDeformableAttention): module._reset_parameters() elif isinstance(module, (nn.Linear, nn.Conv2d, nn.BatchNorm2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() if hasattr(module, "reference_points") and not self.config.two_stage: nn.init.xavier_uniform_(module.reference_points.weight.data, gain=1.0) nn.init.constant_(module.reference_points.bias.data, 0.0) if hasattr(module, "level_embed"): nn.init.normal_(module.level_embed) def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, DetaDecoder): module.gradient_checkpointing = value DETA_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`DetaConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ DETA_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`AutoImageProcessor.__call__`] for details. pixel_mask (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*): Mask to avoid performing attention on padding pixel values. Mask values selected in `[0, 1]`: - 1 for pixels that are real (i.e. **not masked**), - 0 for pixels that are padding (i.e. **masked**). [What are attention masks?](../glossary#attention-mask) decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, num_queries)`, *optional*): Not used by default. Can be used to mask object queries. encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing the flattened feature map (output of the backbone + projection layer), you can choose to directly pass a flattened representation of an image. decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`, *optional*): Optionally, instead of initializing the queries with a tensor of zeros, you can choose to directly pass an embedded representation. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ # Copied from transformers.models.deformable_detr.modeling_deformable_detr.DeformableDetrEncoder with DeformableDetr->Deta class DetaEncoder(DetaPreTrainedModel): """ Transformer encoder consisting of *config.encoder_layers* deformable attention layers. Each layer is a [`DetaEncoderLayer`]. The encoder updates the flattened multi-scale feature maps through multiple deformable attention layers. Args: config: DetaConfig """ def __init__(self, config: DetaConfig): super().__init__(config) self.dropout = config.dropout self.layers = nn.ModuleList([DetaEncoderLayer(config) for _ in range(config.encoder_layers)]) # Initialize weights and apply final processing self.post_init() @staticmethod def get_reference_points(spatial_shapes, valid_ratios, device): """ Get reference points for each feature map. Used in decoder. Args: spatial_shapes (`torch.LongTensor` of shape `(num_feature_levels, 2)`): Spatial shapes of each feature map. valid_ratios (`torch.FloatTensor` of shape `(batch_size, num_feature_levels, 2)`): Valid ratios of each feature map. device (`torch.device`): Device on which to create the tensors. Returns: `torch.FloatTensor` of shape `(batch_size, num_queries, num_feature_levels, 2)` """ reference_points_list = [] for level, (height, width) in enumerate(spatial_shapes): ref_y, ref_x = meshgrid( torch.linspace(0.5, height - 0.5, height, dtype=torch.float32, device=device), torch.linspace(0.5, width - 0.5, width, dtype=torch.float32, device=device), indexing="ij", ) # TODO: valid_ratios could be useless here. check https://github.com/fundamentalvision/Deformable-DETR/issues/36 ref_y = ref_y.reshape(-1)[None] / (valid_ratios[:, None, level, 1] * height) ref_x = ref_x.reshape(-1)[None] / (valid_ratios[:, None, level, 0] * width) ref = torch.stack((ref_x, ref_y), -1) reference_points_list.append(ref) reference_points = torch.cat(reference_points_list, 1) reference_points = reference_points[:, :, None] * valid_ratios[:, None] return reference_points def forward( self, inputs_embeds=None, attention_mask=None, position_embeddings=None, spatial_shapes=None, level_start_index=None, valid_ratios=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" Args: inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Flattened feature map (output of the backbone + projection layer) that is passed to the encoder. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding pixel features. Mask values selected in `[0, 1]`: - 1 for pixel features that are real (i.e. **not masked**), - 0 for pixel features that are padding (i.e. **masked**). [What are attention masks?](../glossary#attention-mask) position_embeddings (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Position embeddings that are added to the queries and keys in each self-attention layer. spatial_shapes (`torch.LongTensor` of shape `(num_feature_levels, 2)`): Spatial shapes of each feature map. level_start_index (`torch.LongTensor` of shape `(num_feature_levels)`): Starting index of each feature map. valid_ratios (`torch.FloatTensor` of shape `(batch_size, num_feature_levels, 2)`): Ratio of valid area in each feature level. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict hidden_states = inputs_embeds hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) reference_points = self.get_reference_points(spatial_shapes, valid_ratios, device=inputs_embeds.device) encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None for i, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) layer_outputs = encoder_layer( hidden_states, attention_mask, position_embeddings=position_embeddings, reference_points=reference_points, spatial_shapes=spatial_shapes, level_start_index=level_start_index, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) # Copied from transformers.models.deformable_detr.modeling_deformable_detr.DeformableDetrDecoder with DeformableDetr->Deta,Deformable DETR->DETA class DetaDecoder(DetaPreTrainedModel): """ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`DetaDecoderLayer`]. The decoder updates the query embeddings through multiple self-attention and cross-attention layers. Some tweaks for Deformable DETR: - `position_embeddings`, `reference_points`, `spatial_shapes` and `valid_ratios` are added to the forward pass. - it also returns a stack of intermediate outputs and reference points from all decoding layers. Args: config: DetaConfig """ def __init__(self, config: DetaConfig): super().__init__(config) self.dropout = config.dropout self.layers = nn.ModuleList([DetaDecoderLayer(config) for _ in range(config.decoder_layers)]) self.gradient_checkpointing = False # hack implementation for iterative bounding box refinement and two-stage Deformable DETR self.bbox_embed = None self.class_embed = None # Initialize weights and apply final processing self.post_init() def forward( self, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, position_embeddings=None, reference_points=None, spatial_shapes=None, level_start_index=None, valid_ratios=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" Args: inputs_embeds (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`): The query embeddings that are passed into the decoder. encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing cross-attention on padding pixel_values of the encoder. Mask values selected in `[0, 1]`: - 1 for pixels that are real (i.e. **not masked**), - 0 for pixels that are padding (i.e. **masked**). position_embeddings (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`, *optional*): Position embeddings that are added to the queries and keys in each self-attention layer. reference_points (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)` is `as_two_stage` else `(batch_size, num_queries, 2)` or , *optional*): Reference point in range `[0, 1]`, top-left (0,0), bottom-right (1, 1), including padding area. spatial_shapes (`torch.FloatTensor` of shape `(num_feature_levels, 2)`): Spatial shapes of the feature maps. level_start_index (`torch.LongTensor` of shape `(num_feature_levels)`, *optional*): Indexes for the start of each feature level. In range `[0, sequence_length]`. valid_ratios (`torch.FloatTensor` of shape `(batch_size, num_feature_levels, 2)`, *optional*): Ratio of valid area in each feature level. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if inputs_embeds is not None: hidden_states = inputs_embeds # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None intermediate = () intermediate_reference_points = () for idx, decoder_layer in enumerate(self.layers): if reference_points.shape[-1] == 4: reference_points_input = ( reference_points[:, :, None] * torch.cat([valid_ratios, valid_ratios], -1)[:, None] ) else: if reference_points.shape[-1] != 2: raise ValueError("Reference points' last dimension must be of size 2") reference_points_input = reference_points[:, :, None] * valid_ratios[:, None] if output_hidden_states: all_hidden_states += (hidden_states,) if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(decoder_layer), hidden_states, encoder_hidden_states, encoder_attention_mask, None, ) else: layer_outputs = decoder_layer( hidden_states, position_embeddings=position_embeddings, encoder_hidden_states=encoder_hidden_states, reference_points=reference_points_input, spatial_shapes=spatial_shapes, level_start_index=level_start_index, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] # hack implementation for iterative bounding box refinement if self.bbox_embed is not None: tmp = self.bbox_embed[idx](hidden_states) if reference_points.shape[-1] == 4: new_reference_points = tmp + inverse_sigmoid(reference_points) new_reference_points = new_reference_points.sigmoid() else: if reference_points.shape[-1] != 2: raise ValueError( f"Reference points' last dimension must be of size 2, but is {reference_points.shape[-1]}" ) new_reference_points = tmp new_reference_points[..., :2] = tmp[..., :2] + inverse_sigmoid(reference_points) new_reference_points = new_reference_points.sigmoid() reference_points = new_reference_points.detach() intermediate += (hidden_states,) intermediate_reference_points += (reference_points,) if output_attentions: all_self_attns += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) # Keep batch_size as first dimension intermediate = torch.stack(intermediate, dim=1) intermediate_reference_points = torch.stack(intermediate_reference_points, dim=1) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, intermediate, intermediate_reference_points, all_hidden_states, all_self_attns, all_cross_attentions, ] if v is not None ) return DetaDecoderOutput( last_hidden_state=hidden_states, intermediate_hidden_states=intermediate, intermediate_reference_points=intermediate_reference_points, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, ) @add_start_docstrings( """ The bare DETA Model (consisting of a backbone and encoder-decoder Transformer) outputting raw hidden-states without any specific head on top. """, DETA_START_DOCSTRING, ) class DetaModel(DetaPreTrainedModel): def __init__(self, config: DetaConfig): super().__init__(config) if config.two_stage: requires_backends(self, ["torchvision"]) # Create backbone with positional encoding self.backbone = DetaBackboneWithPositionalEncodings(config) intermediate_channel_sizes = self.backbone.intermediate_channel_sizes # Create input projection layers if config.num_feature_levels > 1: num_backbone_outs = len(intermediate_channel_sizes) input_proj_list = [] for _ in range(num_backbone_outs): in_channels = intermediate_channel_sizes[_] input_proj_list.append( nn.Sequential( nn.Conv2d(in_channels, config.d_model, kernel_size=1), nn.GroupNorm(32, config.d_model), ) ) for _ in range(config.num_feature_levels - num_backbone_outs): input_proj_list.append( nn.Sequential( nn.Conv2d(in_channels, config.d_model, kernel_size=3, stride=2, padding=1), nn.GroupNorm(32, config.d_model), ) ) in_channels = config.d_model self.input_proj = nn.ModuleList(input_proj_list) else: self.input_proj = nn.ModuleList( [ nn.Sequential( nn.Conv2d(intermediate_channel_sizes[-1], config.d_model, kernel_size=1), nn.GroupNorm(32, config.d_model), ) ] ) if not config.two_stage: self.query_position_embeddings = nn.Embedding(config.num_queries, config.d_model * 2) self.encoder = DetaEncoder(config) self.decoder = DetaDecoder(config) self.level_embed = nn.Parameter(torch.Tensor(config.num_feature_levels, config.d_model)) if config.two_stage: self.enc_output = nn.Linear(config.d_model, config.d_model) self.enc_output_norm = nn.LayerNorm(config.d_model) self.pos_trans = nn.Linear(config.d_model * 2, config.d_model * 2) self.pos_trans_norm = nn.LayerNorm(config.d_model * 2) self.pix_trans = nn.Linear(config.d_model, config.d_model) self.pix_trans_norm = nn.LayerNorm(config.d_model) else: self.reference_points = nn.Linear(config.d_model, 2) self.assign_first_stage = config.assign_first_stage self.two_stage_num_proposals = config.two_stage_num_proposals self.post_init() # Copied from transformers.models.deformable_detr.modeling_deformable_detr.DeformableDetrModel.get_encoder def get_encoder(self): return self.encoder # Copied from transformers.models.deformable_detr.modeling_deformable_detr.DeformableDetrModel.get_decoder def get_decoder(self): return self.decoder # Copied from transformers.models.deformable_detr.modeling_deformable_detr.DeformableDetrModel.freeze_backbone def freeze_backbone(self): for name, param in self.backbone.conv_encoder.model.named_parameters(): param.requires_grad_(False) # Copied from transformers.models.deformable_detr.modeling_deformable_detr.DeformableDetrModel.unfreeze_backbone def unfreeze_backbone(self): for name, param in self.backbone.conv_encoder.model.named_parameters(): param.requires_grad_(True) # Copied from transformers.models.deformable_detr.modeling_deformable_detr.DeformableDetrModel.get_valid_ratio def get_valid_ratio(self, mask): """Get the valid ratio of all feature maps.""" _, height, width = mask.shape valid_height = torch.sum(mask[:, :, 0], 1) valid_width = torch.sum(mask[:, 0, :], 1) valid_ratio_heigth = valid_height.float() / height valid_ratio_width = valid_width.float() / width valid_ratio = torch.stack([valid_ratio_width, valid_ratio_heigth], -1) return valid_ratio # Copied from transformers.models.deformable_detr.modeling_deformable_detr.DeformableDetrModel.get_proposal_pos_embed def get_proposal_pos_embed(self, proposals): """Get the position embedding of the proposals.""" num_pos_feats = 128 temperature = 10000 scale = 2 * math.pi dim_t = torch.arange(num_pos_feats, dtype=torch.float32, device=proposals.device) dim_t = temperature ** (2 * torch.div(dim_t, 2, rounding_mode="floor") / num_pos_feats) # batch_size, num_queries, 4 proposals = proposals.sigmoid() * scale # batch_size, num_queries, 4, 128 pos = proposals[:, :, :, None] / dim_t # batch_size, num_queries, 4, 64, 2 -> batch_size, num_queries, 512 pos = torch.stack((pos[:, :, :, 0::2].sin(), pos[:, :, :, 1::2].cos()), dim=4).flatten(2) return pos def gen_encoder_output_proposals(self, enc_output, padding_mask, spatial_shapes): """Generate the encoder output proposals from encoded enc_output. Args: enc_output (Tensor[batch_size, sequence_length, hidden_size]): Output of the encoder. padding_mask (Tensor[batch_size, sequence_length]): Padding mask for `enc_output`. spatial_shapes (Tensor[num_feature_levels, 2]): Spatial shapes of the feature maps. Returns: `tuple(torch.FloatTensor)`: A tuple of feature map and bbox prediction. - object_query (Tensor[batch_size, sequence_length, hidden_size]): Object query features. Later used to directly predict a bounding box. (without the need of a decoder) - output_proposals (Tensor[batch_size, sequence_length, 4]): Normalized proposals, after an inverse sigmoid. """ batch_size = enc_output.shape[0] proposals = [] _cur = 0 level_ids = [] for level, (height, width) in enumerate(spatial_shapes): mask_flatten_ = padding_mask[:, _cur : (_cur + height * width)].view(batch_size, height, width, 1) valid_height = torch.sum(~mask_flatten_[:, :, 0, 0], 1) valid_width = torch.sum(~mask_flatten_[:, 0, :, 0], 1) grid_y, grid_x = meshgrid( torch.linspace(0, height - 1, height, dtype=torch.float32, device=enc_output.device), torch.linspace(0, width - 1, width, dtype=torch.float32, device=enc_output.device), indexing="ij", ) grid = torch.cat([grid_x.unsqueeze(-1), grid_y.unsqueeze(-1)], -1) scale = torch.cat([valid_width.unsqueeze(-1), valid_height.unsqueeze(-1)], 1).view(batch_size, 1, 1, 2) grid = (grid.unsqueeze(0).expand(batch_size, -1, -1, -1) + 0.5) / scale width_heigth = torch.ones_like(grid) * 0.05 * (2.0**level) proposal = torch.cat((grid, width_heigth), -1).view(batch_size, -1, 4) proposals.append(proposal) _cur += height * width level_ids.append(grid.new_ones(height * width, dtype=torch.long) * level) output_proposals = torch.cat(proposals, 1) output_proposals_valid = ((output_proposals > 0.01) & (output_proposals < 0.99)).all(-1, keepdim=True) output_proposals = torch.log(output_proposals / (1 - output_proposals)) # inverse sigmoid output_proposals = output_proposals.masked_fill(padding_mask.unsqueeze(-1), float("inf")) output_proposals = output_proposals.masked_fill(~output_proposals_valid, float("inf")) # assign each pixel as an object query object_query = enc_output object_query = object_query.masked_fill(padding_mask.unsqueeze(-1), float(0)) object_query = object_query.masked_fill(~output_proposals_valid, float(0)) object_query = self.enc_output_norm(self.enc_output(object_query)) level_ids = torch.cat(level_ids) return object_query, output_proposals, level_ids @add_start_docstrings_to_model_forward(DETA_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=DetaModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values, pixel_mask=None, decoder_attention_mask=None, encoder_outputs=None, inputs_embeds=None, decoder_inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" Returns: Examples: ```python >>> from transformers import AutoImageProcessor, DetaModel >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("jozhang97/deta-swin-large-o365") >>> model = DetaModel.from_pretrained("jozhang97/deta-swin-large-o365", two_stage=False) >>> inputs = image_processor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state >>> list(last_hidden_states.shape) [1, 900, 256] ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict batch_size, num_channels, height, width = pixel_values.shape device = pixel_values.device if pixel_mask is None: pixel_mask = torch.ones(((batch_size, height, width)), dtype=torch.long, device=device) # Extract multi-scale feature maps of same resolution `config.d_model` (cf Figure 4 in paper) # First, sent pixel_values + pixel_mask through Backbone to obtain the features # which is a list of tuples features, position_embeddings_list = self.backbone(pixel_values, pixel_mask) # Then, apply 1x1 convolution to reduce the channel dimension to d_model (256 by default) sources = [] masks = [] for level, (source, mask) in enumerate(features): sources.append(self.input_proj[level](source)) masks.append(mask) if mask is None: raise ValueError("No attention mask was provided") # Lowest resolution feature maps are obtained via 3x3 stride 2 convolutions on the final stage if self.config.num_feature_levels > len(sources): _len_sources = len(sources) for level in range(_len_sources, self.config.num_feature_levels): if level == _len_sources: source = self.input_proj[level](features[-1][0]) else: source = self.input_proj[level](sources[-1]) mask = nn.functional.interpolate(pixel_mask[None].float(), size=source.shape[-2:]).to(torch.bool)[0] pos_l = self.backbone.position_embedding(source, mask).to(source.dtype) sources.append(source) masks.append(mask) position_embeddings_list.append(pos_l) # Create queries query_embeds = None if not self.config.two_stage: query_embeds = self.query_position_embeddings.weight # Prepare encoder inputs (by flattening) spatial_shapes = [(source.shape[2:]) for source in sources] source_flatten = [source.flatten(2).transpose(1, 2) for source in sources] mask_flatten = [mask.flatten(1) for mask in masks] lvl_pos_embed_flatten = [] for level, pos_embed in enumerate(position_embeddings_list): pos_embed = pos_embed.flatten(2).transpose(1, 2) lvl_pos_embed = pos_embed + self.level_embed[level].view(1, 1, -1) lvl_pos_embed_flatten.append(lvl_pos_embed) source_flatten = torch.cat(source_flatten, 1) mask_flatten = torch.cat(mask_flatten, 1) lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1) spatial_shapes = torch.as_tensor(spatial_shapes, dtype=torch.long, device=source_flatten.device) level_start_index = torch.cat((spatial_shapes.new_zeros((1,)), spatial_shapes.prod(1).cumsum(0)[:-1])) valid_ratios = torch.stack([self.get_valid_ratio(m) for m in masks], 1) valid_ratios = valid_ratios.float() # Fourth, sent source_flatten + mask_flatten + lvl_pos_embed_flatten (backbone + proj layer output) through encoder # Also provide spatial_shapes, level_start_index and valid_ratios if encoder_outputs is None: encoder_outputs = self.encoder( inputs_embeds=source_flatten, attention_mask=mask_flatten, position_embeddings=lvl_pos_embed_flatten, spatial_shapes=spatial_shapes, level_start_index=level_start_index, valid_ratios=valid_ratios, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) # Fifth, prepare decoder inputs batch_size, _, num_channels = encoder_outputs[0].shape enc_outputs_class = None enc_outputs_coord_logits = None if self.config.two_stage: object_query_embedding, output_proposals, level_ids = self.gen_encoder_output_proposals( encoder_outputs[0], ~mask_flatten, spatial_shapes ) # hack implementation for two-stage DETA # apply a detection head to each pixel (A.4 in paper) # linear projection for bounding box binary classification (i.e. foreground and background) enc_outputs_class = self.decoder.class_embed[-1](object_query_embedding) # 3-layer FFN to predict bounding boxes coordinates (bbox regression branch) delta_bbox = self.decoder.bbox_embed[-1](object_query_embedding) enc_outputs_coord_logits = delta_bbox + output_proposals # only keep top scoring `config.two_stage_num_proposals` proposals topk = self.two_stage_num_proposals proposal_logit = enc_outputs_class[..., 0] if self.assign_first_stage: proposal_boxes = center_to_corners_format(enc_outputs_coord_logits.sigmoid().float()).clamp(0, 1) topk_proposals = [] for b in range(batch_size): prop_boxes_b = proposal_boxes[b] prop_logits_b = proposal_logit[b] # pre-nms per-level topk pre_nms_topk = 1000 pre_nms_inds = [] for lvl in range(len(spatial_shapes)): lvl_mask = level_ids == lvl pre_nms_inds.append(torch.topk(prop_logits_b.sigmoid() * lvl_mask, pre_nms_topk)[1]) pre_nms_inds = torch.cat(pre_nms_inds) # nms on topk indices post_nms_inds = batched_nms( prop_boxes_b[pre_nms_inds], prop_logits_b[pre_nms_inds], level_ids[pre_nms_inds], 0.9 ) keep_inds = pre_nms_inds[post_nms_inds] if len(keep_inds) < self.two_stage_num_proposals: print( f"[WARNING] nms proposals ({len(keep_inds)}) < {self.two_stage_num_proposals}, running" " naive topk" ) keep_inds = torch.topk(proposal_logit[b], topk)[1] # keep top Q/L indices for L levels q_per_l = topk // len(spatial_shapes) is_level_ordered = ( level_ids[keep_inds][None] == torch.arange(len(spatial_shapes), device=level_ids.device)[:, None] ) keep_inds_mask = is_level_ordered & (is_level_ordered.cumsum(1) <= q_per_l) # LS keep_inds_mask = keep_inds_mask.any(0) # S # pad to Q indices (might let ones filtered from pre-nms sneak by... unlikely because we pick high conf anyways) if keep_inds_mask.sum() < topk: num_to_add = topk - keep_inds_mask.sum() pad_inds = (~keep_inds_mask).nonzero()[:num_to_add] keep_inds_mask[pad_inds] = True keep_inds_topk = keep_inds[keep_inds_mask] topk_proposals.append(keep_inds_topk) topk_proposals = torch.stack(topk_proposals) else: topk_proposals = torch.topk(enc_outputs_class[..., 0], topk, dim=1)[1] topk_coords_logits = torch.gather( enc_outputs_coord_logits, 1, topk_proposals.unsqueeze(-1).repeat(1, 1, 4) ) topk_coords_logits = topk_coords_logits.detach() reference_points = topk_coords_logits.sigmoid() init_reference_points = reference_points pos_trans_out = self.pos_trans_norm(self.pos_trans(self.get_proposal_pos_embed(topk_coords_logits))) query_embed, target = torch.split(pos_trans_out, num_channels, dim=2) else: query_embed, target = torch.split(query_embeds, num_channels, dim=1) query_embed = query_embed.unsqueeze(0).expand(batch_size, -1, -1) target = target.unsqueeze(0).expand(batch_size, -1, -1) reference_points = self.reference_points(query_embed).sigmoid() init_reference_points = reference_points decoder_outputs = self.decoder( inputs_embeds=target, position_embeddings=query_embed, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=mask_flatten, reference_points=reference_points, spatial_shapes=spatial_shapes, level_start_index=level_start_index, valid_ratios=valid_ratios, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: enc_outputs = tuple(value for value in [enc_outputs_class, enc_outputs_coord_logits] if value is not None) tuple_outputs = (init_reference_points,) + decoder_outputs + encoder_outputs + enc_outputs return tuple_outputs return DetaModelOutput( init_reference_points=init_reference_points, last_hidden_state=decoder_outputs.last_hidden_state, intermediate_hidden_states=decoder_outputs.intermediate_hidden_states, intermediate_reference_points=decoder_outputs.intermediate_reference_points, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, enc_outputs_class=enc_outputs_class, enc_outputs_coord_logits=enc_outputs_coord_logits, ) @add_start_docstrings( """ DETA Model (consisting of a backbone and encoder-decoder Transformer) with object detection heads on top, for tasks such as COCO detection. """, DETA_START_DOCSTRING, ) class DetaForObjectDetection(DetaPreTrainedModel): # When using clones, all layers > 0 will be clones, but layer 0 *is* required _tied_weights_keys = [r"bbox_embed\.\d+"] # Copied from transformers.models.deformable_detr.modeling_deformable_detr.DeformableDetrForObjectDetection.__init__ with DeformableDetr->Deta def __init__(self, config: DetaConfig): super().__init__(config) # Deformable DETR encoder-decoder model self.model = DetaModel(config) # Detection heads on top self.class_embed = nn.Linear(config.d_model, config.num_labels) self.bbox_embed = DetaMLPPredictionHead( input_dim=config.d_model, hidden_dim=config.d_model, output_dim=4, num_layers=3 ) prior_prob = 0.01 bias_value = -math.log((1 - prior_prob) / prior_prob) self.class_embed.bias.data = torch.ones(config.num_labels) * bias_value nn.init.constant_(self.bbox_embed.layers[-1].weight.data, 0) nn.init.constant_(self.bbox_embed.layers[-1].bias.data, 0) # if two-stage, the last class_embed and bbox_embed is for region proposal generation num_pred = (config.decoder_layers + 1) if config.two_stage else config.decoder_layers if config.with_box_refine: self.class_embed = _get_clones(self.class_embed, num_pred) self.bbox_embed = _get_clones(self.bbox_embed, num_pred) nn.init.constant_(self.bbox_embed[0].layers[-1].bias.data[2:], -2.0) # hack implementation for iterative bounding box refinement self.model.decoder.bbox_embed = self.bbox_embed else: nn.init.constant_(self.bbox_embed.layers[-1].bias.data[2:], -2.0) self.class_embed = nn.ModuleList([self.class_embed for _ in range(num_pred)]) self.bbox_embed = nn.ModuleList([self.bbox_embed for _ in range(num_pred)]) self.model.decoder.bbox_embed = None if config.two_stage: # hack implementation for two-stage self.model.decoder.class_embed = self.class_embed for box_embed in self.bbox_embed: nn.init.constant_(box_embed.layers[-1].bias.data[2:], 0.0) # Initialize weights and apply final processing self.post_init() @torch.jit.unused # Copied from transformers.models.deformable_detr.modeling_deformable_detr.DeformableDetrForObjectDetection._set_aux_loss def _set_aux_loss(self, outputs_class, outputs_coord): # this is a workaround to make torchscript happy, as torchscript # doesn't support dictionary with non-homogeneous values, such # as a dict having both a Tensor and a list. return [{"logits": a, "pred_boxes": b} for a, b in zip(outputs_class[:-1], outputs_coord[:-1])] @add_start_docstrings_to_model_forward(DETA_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=DetaObjectDetectionOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values, pixel_mask=None, decoder_attention_mask=None, encoder_outputs=None, inputs_embeds=None, decoder_inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" labels (`List[Dict]` of len `(batch_size,)`, *optional*): Labels for computing the bipartite matching loss. List of dicts, each dictionary containing at least the following 2 keys: 'class_labels' and 'boxes' (the class labels and bounding boxes of an image in the batch respectively). The class labels themselves should be a `torch.LongTensor` of len `(number of bounding boxes in the image,)` and the boxes a `torch.FloatTensor` of shape `(number of bounding boxes in the image, 4)`. Returns: Examples: ```python >>> from transformers import AutoImageProcessor, DetaForObjectDetection >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("jozhang97/deta-swin-large") >>> model = DetaForObjectDetection.from_pretrained("jozhang97/deta-swin-large") >>> inputs = image_processor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> # convert outputs (bounding boxes and class logits) to COCO API >>> target_sizes = torch.tensor([image.size[::-1]]) >>> results = image_processor.post_process_object_detection(outputs, threshold=0.5, target_sizes=target_sizes)[ ... 0 ... ] >>> for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): ... box = [round(i, 2) for i in box.tolist()] ... print( ... f"Detected {model.config.id2label[label.item()]} with confidence " ... f"{round(score.item(), 3)} at location {box}" ... ) Detected cat with confidence 0.683 at location [345.85, 23.68, 639.86, 372.83] Detected cat with confidence 0.683 at location [8.8, 52.49, 316.93, 473.45] Detected remote with confidence 0.568 at location [40.02, 73.75, 175.96, 117.33] Detected remote with confidence 0.546 at location [333.68, 77.13, 370.12, 187.51] ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict # First, sent images through DETR base model to obtain encoder + decoder outputs outputs = self.model( pixel_values, pixel_mask=pixel_mask, decoder_attention_mask=decoder_attention_mask, encoder_outputs=encoder_outputs, inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs.intermediate_hidden_states if return_dict else outputs[2] init_reference = outputs.init_reference_points if return_dict else outputs[0] inter_references = outputs.intermediate_reference_points if return_dict else outputs[3] # class logits + predicted bounding boxes outputs_classes = [] outputs_coords = [] for level in range(hidden_states.shape[1]): if level == 0: reference = init_reference else: reference = inter_references[:, level - 1] reference = inverse_sigmoid(reference) outputs_class = self.class_embed[level](hidden_states[:, level]) delta_bbox = self.bbox_embed[level](hidden_states[:, level]) if reference.shape[-1] == 4: outputs_coord_logits = delta_bbox + reference elif reference.shape[-1] == 2: delta_bbox[..., :2] += reference outputs_coord_logits = delta_bbox else: raise ValueError(f"reference.shape[-1] should be 4 or 2, but got {reference.shape[-1]}") outputs_coord = outputs_coord_logits.sigmoid() outputs_classes.append(outputs_class) outputs_coords.append(outputs_coord) # Keep batch_size as first dimension outputs_class = torch.stack(outputs_classes, dim=1) outputs_coord = torch.stack(outputs_coords, dim=1) logits = outputs_class[:, -1] pred_boxes = outputs_coord[:, -1] loss, loss_dict, auxiliary_outputs = None, None, None if labels is not None: # First: create the matcher matcher = DetaHungarianMatcher( class_cost=self.config.class_cost, bbox_cost=self.config.bbox_cost, giou_cost=self.config.giou_cost ) # Second: create the criterion losses = ["labels", "boxes", "cardinality"] criterion = DetaLoss( matcher=matcher, num_classes=self.config.num_labels, focal_alpha=self.config.focal_alpha, losses=losses, num_queries=self.config.num_queries, ) criterion.to(logits.device) # Third: compute the losses, based on outputs and labels outputs_loss = {} outputs_loss["logits"] = logits outputs_loss["pred_boxes"] = pred_boxes if self.config.auxiliary_loss: intermediate = outputs.intermediate_hidden_states if return_dict else outputs[4] outputs_class = self.class_embed(intermediate) outputs_coord = self.bbox_embed(intermediate).sigmoid() auxiliary_outputs = self._set_aux_loss(outputs_class, outputs_coord) outputs_loss["auxiliary_outputs"] = auxiliary_outputs if self.config.two_stage: enc_outputs_coord = outputs.enc_outputs_coord_logits.sigmoid() outputs["enc_outputs"] = {"pred_logits": outputs.enc_outputs_class, "pred_boxes": enc_outputs_coord} loss_dict = criterion(outputs_loss, labels) # Fourth: compute total loss, as a weighted sum of the various losses weight_dict = {"loss_ce": 1, "loss_bbox": self.config.bbox_loss_coefficient} weight_dict["loss_giou"] = self.config.giou_loss_coefficient if self.config.auxiliary_loss: aux_weight_dict = {} for i in range(self.config.decoder_layers - 1): aux_weight_dict.update({k + f"_{i}": v for k, v in weight_dict.items()}) weight_dict.update(aux_weight_dict) loss = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict) if not return_dict: if auxiliary_outputs is not None: output = (logits, pred_boxes) + auxiliary_outputs + outputs else: output = (logits, pred_boxes) + outputs tuple_outputs = ((loss, loss_dict) + output) if loss is not None else output return tuple_outputs dict_outputs = DetaObjectDetectionOutput( loss=loss, loss_dict=loss_dict, logits=logits, pred_boxes=pred_boxes, auxiliary_outputs=auxiliary_outputs, last_hidden_state=outputs.last_hidden_state, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, intermediate_hidden_states=outputs.intermediate_hidden_states, intermediate_reference_points=outputs.intermediate_reference_points, init_reference_points=outputs.init_reference_points, enc_outputs_class=outputs.enc_outputs_class, enc_outputs_coord_logits=outputs.enc_outputs_coord_logits, ) return dict_outputs # Copied from transformers.models.detr.modeling_detr.dice_loss def dice_loss(inputs, targets, num_boxes): """ Compute the DICE loss, similar to generalized IOU for masks Args: inputs: A float tensor of arbitrary shape. The predictions for each example. targets: A float tensor with the same shape as inputs. Stores the binary classification label for each element in inputs (0 for the negative class and 1 for the positive class). """ inputs = inputs.sigmoid() inputs = inputs.flatten(1) numerator = 2 * (inputs * targets).sum(1) denominator = inputs.sum(-1) + targets.sum(-1) loss = 1 - (numerator + 1) / (denominator + 1) return loss.sum() / num_boxes # Copied from transformers.models.detr.modeling_detr.sigmoid_focal_loss def sigmoid_focal_loss(inputs, targets, num_boxes, alpha: float = 0.25, gamma: float = 2): """ Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002. Args: inputs (`torch.FloatTensor` of arbitrary shape): The predictions for each example. targets (`torch.FloatTensor` with the same shape as `inputs`) A tensor storing the binary classification label for each element in the `inputs` (0 for the negative class and 1 for the positive class). alpha (`float`, *optional*, defaults to `0.25`): Optional weighting factor in the range (0,1) to balance positive vs. negative examples. gamma (`int`, *optional*, defaults to `2`): Exponent of the modulating factor (1 - p_t) to balance easy vs hard examples. Returns: Loss tensor """ prob = inputs.sigmoid() ce_loss = nn.functional.binary_cross_entropy_with_logits(inputs, targets, reduction="none") # add modulating factor p_t = prob * targets + (1 - prob) * (1 - targets) loss = ce_loss * ((1 - p_t) ** gamma) if alpha >= 0: alpha_t = alpha * targets + (1 - alpha) * (1 - targets) loss = alpha_t * loss return loss.mean(1).sum() / num_boxes class DetaLoss(nn.Module): """ This class computes the losses for `DetaForObjectDetection`. The process happens in two steps: 1) we compute hungarian assignment between ground truth boxes and the outputs of the model 2) we supervise each pair of matched ground-truth / prediction (supervised class and box). Args: matcher (`DetaHungarianMatcher`): Module able to compute a matching between targets and proposals. num_classes (`int`): Number of object categories, omitting the special no-object category. focal_alpha (`float`): Alpha parameter in focal loss. losses (`List[str]`): List of all the losses to be applied. See `get_loss` for a list of all available losses. """ def __init__( self, matcher, num_classes, focal_alpha, losses, num_queries, assign_first_stage=False, assign_second_stage=False, ): super().__init__() self.matcher = matcher self.num_classes = num_classes self.focal_alpha = focal_alpha self.losses = losses self.assign_first_stage = assign_first_stage self.assign_second_stage = assign_second_stage if self.assign_first_stage: self.stg1_assigner = DetaStage1Assigner() if self.assign_second_stage: self.stg2_assigner = DetaStage2Assigner(num_queries) # Copied from transformers.models.deformable_detr.modeling_deformable_detr.DeformableDetrLoss.loss_labels def loss_labels(self, outputs, targets, indices, num_boxes): """ Classification loss (Binary focal loss) targets dicts must contain the key "class_labels" containing a tensor of dim [nb_target_boxes] """ if "logits" not in outputs: raise KeyError("No logits were found in the outputs") source_logits = outputs["logits"] idx = self._get_source_permutation_idx(indices) target_classes_o = torch.cat([t["class_labels"][J] for t, (_, J) in zip(targets, indices)]) target_classes = torch.full( source_logits.shape[:2], self.num_classes, dtype=torch.int64, device=source_logits.device ) target_classes[idx] = target_classes_o target_classes_onehot = torch.zeros( [source_logits.shape[0], source_logits.shape[1], source_logits.shape[2] + 1], dtype=source_logits.dtype, layout=source_logits.layout, device=source_logits.device, ) target_classes_onehot.scatter_(2, target_classes.unsqueeze(-1), 1) target_classes_onehot = target_classes_onehot[:, :, :-1] loss_ce = ( sigmoid_focal_loss(source_logits, target_classes_onehot, num_boxes, alpha=self.focal_alpha, gamma=2) * source_logits.shape[1] ) losses = {"loss_ce": loss_ce} return losses @torch.no_grad() # Copied from transformers.models.deformable_detr.modeling_deformable_detr.DeformableDetrLoss.loss_cardinality def loss_cardinality(self, outputs, targets, indices, num_boxes): """ Compute the cardinality error, i.e. the absolute error in the number of predicted non-empty boxes. This is not really a loss, it is intended for logging purposes only. It doesn't propagate gradients. """ logits = outputs["logits"] device = logits.device target_lengths = torch.as_tensor([len(v["class_labels"]) for v in targets], device=device) # Count the number of predictions that are NOT "no-object" (which is the last class) card_pred = (logits.argmax(-1) != logits.shape[-1] - 1).sum(1) card_err = nn.functional.l1_loss(card_pred.float(), target_lengths.float()) losses = {"cardinality_error": card_err} return losses # Copied from transformers.models.deformable_detr.modeling_deformable_detr.DeformableDetrLoss.loss_boxes def loss_boxes(self, outputs, targets, indices, num_boxes): """ Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss. Targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4]. The target boxes are expected in format (center_x, center_y, w, h), normalized by the image size. """ if "pred_boxes" not in outputs: raise KeyError("No predicted boxes found in outputs") idx = self._get_source_permutation_idx(indices) source_boxes = outputs["pred_boxes"][idx] target_boxes = torch.cat([t["boxes"][i] for t, (_, i) in zip(targets, indices)], dim=0) loss_bbox = nn.functional.l1_loss(source_boxes, target_boxes, reduction="none") losses = {} losses["loss_bbox"] = loss_bbox.sum() / num_boxes loss_giou = 1 - torch.diag( generalized_box_iou(center_to_corners_format(source_boxes), center_to_corners_format(target_boxes)) ) losses["loss_giou"] = loss_giou.sum() / num_boxes return losses # Copied from transformers.models.deformable_detr.modeling_deformable_detr.DeformableDetrLoss._get_source_permutation_idx def _get_source_permutation_idx(self, indices): # permute predictions following indices batch_idx = torch.cat([torch.full_like(source, i) for i, (source, _) in enumerate(indices)]) source_idx = torch.cat([source for (source, _) in indices]) return batch_idx, source_idx # Copied from transformers.models.deformable_detr.modeling_deformable_detr.DeformableDetrLoss._get_target_permutation_idx def _get_target_permutation_idx(self, indices): # permute targets following indices batch_idx = torch.cat([torch.full_like(target, i) for i, (_, target) in enumerate(indices)]) target_idx = torch.cat([target for (_, target) in indices]) return batch_idx, target_idx # Copied from transformers.models.deformable_detr.modeling_deformable_detr.DeformableDetrLoss.get_loss def get_loss(self, loss, outputs, targets, indices, num_boxes): loss_map = { "labels": self.loss_labels, "cardinality": self.loss_cardinality, "boxes": self.loss_boxes, } if loss not in loss_map: raise ValueError(f"Loss {loss} not supported") return loss_map[loss](outputs, targets, indices, num_boxes) def forward(self, outputs, targets): """ This performs the loss computation. Args: outputs (`dict`, *optional*): Dictionary of tensors, see the output specification of the model for the format. targets (`List[dict]`, *optional*): List of dicts, such that `len(targets) == batch_size`. The expected keys in each dict depends on the losses applied, see each loss' doc. """ outputs_without_aux = {k: v for k, v in outputs.items() if k != "auxiliary_outputs"} # Retrieve the matching between the outputs of the last layer and the targets if self.assign_second_stage: indices = self.stg2_assigner(outputs_without_aux, targets) else: indices = self.matcher(outputs_without_aux, targets) # Compute the average number of target boxes accross all nodes, for normalization purposes num_boxes = sum(len(t["class_labels"]) for t in targets) num_boxes = torch.as_tensor([num_boxes], dtype=torch.float, device=next(iter(outputs.values())).device) # (Niels): comment out function below, distributed training to be added # if is_dist_avail_and_initialized(): # torch.distributed.all_reduce(num_boxes) # (Niels) in original implementation, num_boxes is divided by get_world_size() num_boxes = torch.clamp(num_boxes, min=1).item() # Compute all the requested losses losses = {} for loss in self.losses: losses.update(self.get_loss(loss, outputs, targets, indices, num_boxes)) # In case of auxiliary losses, we repeat this process with the output of each intermediate layer. if "auxiliary_outputs" in outputs: for i, auxiliary_outputs in enumerate(outputs["auxiliary_outputs"]): if not self.assign_second_stage: indices = self.matcher(auxiliary_outputs, targets) for loss in self.losses: l_dict = self.get_loss(loss, auxiliary_outputs, targets, indices, num_boxes) l_dict = {k + f"_{i}": v for k, v in l_dict.items()} losses.update(l_dict) if "enc_outputs" in outputs: enc_outputs = outputs["enc_outputs"] bin_targets = copy.deepcopy(targets) for bt in bin_targets: bt["labels"] = torch.zeros_like(bt["labels"]) if self.assign_first_stage: indices = self.stg1_assigner(enc_outputs, bin_targets) else: indices = self.matcher(enc_outputs, bin_targets) for loss in self.losses: kwargs = {} if loss == "labels": # Logging is enabled only for the last layer kwargs["log"] = False l_dict = self.get_loss(loss, enc_outputs, bin_targets, indices, num_boxes, **kwargs) l_dict = {k + "_enc": v for k, v in l_dict.items()} losses.update(l_dict) return losses # Copied from transformers.models.detr.modeling_detr.DetrMLPPredictionHead class DetaMLPPredictionHead(nn.Module): """ Very simple multi-layer perceptron (MLP, also called FFN), used to predict the normalized center coordinates, height and width of a bounding box w.r.t. an image. Copied from https://github.com/facebookresearch/detr/blob/master/models/detr.py """ def __init__(self, input_dim, hidden_dim, output_dim, num_layers): super().__init__() self.num_layers = num_layers h = [hidden_dim] * (num_layers - 1) self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])) def forward(self, x): for i, layer in enumerate(self.layers): x = nn.functional.relu(layer(x)) if i < self.num_layers - 1 else layer(x) return x # Copied from transformers.models.deformable_detr.modeling_deformable_detr.DeformableDetrHungarianMatcher with DeformableDetr->Deta class DetaHungarianMatcher(nn.Module): """ This class computes an assignment between the targets and the predictions of the network. For efficiency reasons, the targets don't include the no_object. Because of this, in general, there are more predictions than targets. In this case, we do a 1-to-1 matching of the best predictions, while the others are un-matched (and thus treated as non-objects). Args: class_cost: The relative weight of the classification error in the matching cost. bbox_cost: The relative weight of the L1 error of the bounding box coordinates in the matching cost. giou_cost: The relative weight of the giou loss of the bounding box in the matching cost. """ def __init__(self, class_cost: float = 1, bbox_cost: float = 1, giou_cost: float = 1): super().__init__() requires_backends(self, ["scipy"]) self.class_cost = class_cost self.bbox_cost = bbox_cost self.giou_cost = giou_cost if class_cost == 0 and bbox_cost == 0 and giou_cost == 0: raise ValueError("All costs of the Matcher can't be 0") @torch.no_grad() def forward(self, outputs, targets): """ Args: outputs (`dict`): A dictionary that contains at least these entries: * "logits": Tensor of dim [batch_size, num_queries, num_classes] with the classification logits * "pred_boxes": Tensor of dim [batch_size, num_queries, 4] with the predicted box coordinates. targets (`List[dict]`): A list of targets (len(targets) = batch_size), where each target is a dict containing: * "class_labels": Tensor of dim [num_target_boxes] (where num_target_boxes is the number of ground-truth objects in the target) containing the class labels * "boxes": Tensor of dim [num_target_boxes, 4] containing the target box coordinates. Returns: `List[Tuple]`: A list of size `batch_size`, containing tuples of (index_i, index_j) where: - index_i is the indices of the selected predictions (in order) - index_j is the indices of the corresponding selected targets (in order) For each batch element, it holds: len(index_i) = len(index_j) = min(num_queries, num_target_boxes) """ batch_size, num_queries = outputs["logits"].shape[:2] # We flatten to compute the cost matrices in a batch out_prob = outputs["logits"].flatten(0, 1).sigmoid() # [batch_size * num_queries, num_classes] out_bbox = outputs["pred_boxes"].flatten(0, 1) # [batch_size * num_queries, 4] # Also concat the target labels and boxes target_ids = torch.cat([v["class_labels"] for v in targets]) target_bbox = torch.cat([v["boxes"] for v in targets]) # Compute the classification cost. alpha = 0.25 gamma = 2.0 neg_cost_class = (1 - alpha) * (out_prob**gamma) * (-(1 - out_prob + 1e-8).log()) pos_cost_class = alpha * ((1 - out_prob) ** gamma) * (-(out_prob + 1e-8).log()) class_cost = pos_cost_class[:, target_ids] - neg_cost_class[:, target_ids] # Compute the L1 cost between boxes bbox_cost = torch.cdist(out_bbox, target_bbox, p=1) # Compute the giou cost between boxes giou_cost = -generalized_box_iou(center_to_corners_format(out_bbox), center_to_corners_format(target_bbox)) # Final cost matrix cost_matrix = self.bbox_cost * bbox_cost + self.class_cost * class_cost + self.giou_cost * giou_cost cost_matrix = cost_matrix.view(batch_size, num_queries, -1).cpu() sizes = [len(v["boxes"]) for v in targets] indices = [linear_sum_assignment(c[i]) for i, c in enumerate(cost_matrix.split(sizes, -1))] return [(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) for i, j in indices] # Copied from transformers.models.detr.modeling_detr._upcast def _upcast(t: Tensor) -> Tensor: # Protects from numerical overflows in multiplications by upcasting to the equivalent higher type if t.is_floating_point(): return t if t.dtype in (torch.float32, torch.float64) else t.float() else: return t if t.dtype in (torch.int32, torch.int64) else t.int() # Copied from transformers.models.detr.modeling_detr.box_area def box_area(boxes: Tensor) -> Tensor: """ Computes the area of a set of bounding boxes, which are specified by its (x1, y1, x2, y2) coordinates. Args: boxes (`torch.FloatTensor` of shape `(number_of_boxes, 4)`): Boxes for which the area will be computed. They are expected to be in (x1, y1, x2, y2) format with `0 <= x1 < x2` and `0 <= y1 < y2`. Returns: `torch.FloatTensor`: a tensor containing the area for each box. """ boxes = _upcast(boxes) return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]) # Copied from transformers.models.detr.modeling_detr.box_iou def box_iou(boxes1, boxes2): area1 = box_area(boxes1) area2 = box_area(boxes2) left_top = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2] right_bottom = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2] width_height = (right_bottom - left_top).clamp(min=0) # [N,M,2] inter = width_height[:, :, 0] * width_height[:, :, 1] # [N,M] union = area1[:, None] + area2 - inter iou = inter / union return iou, union # Copied from transformers.models.detr.modeling_detr.generalized_box_iou def generalized_box_iou(boxes1, boxes2): """ Generalized IoU from https://giou.stanford.edu/. The boxes should be in [x0, y0, x1, y1] (corner) format. Returns: `torch.FloatTensor`: a [N, M] pairwise matrix, where N = len(boxes1) and M = len(boxes2) """ # degenerate boxes gives inf / nan results # so do an early check if not (boxes1[:, 2:] >= boxes1[:, :2]).all(): raise ValueError(f"boxes1 must be in [x0, y0, x1, y1] (corner) format, but got {boxes1}") if not (boxes2[:, 2:] >= boxes2[:, :2]).all(): raise ValueError(f"boxes2 must be in [x0, y0, x1, y1] (corner) format, but got {boxes2}") iou, union = box_iou(boxes1, boxes2) top_left = torch.min(boxes1[:, None, :2], boxes2[:, :2]) bottom_right = torch.max(boxes1[:, None, 2:], boxes2[:, 2:]) width_height = (bottom_right - top_left).clamp(min=0) # [N,M,2] area = width_height[:, :, 0] * width_height[:, :, 1] return iou - (area - union) / area # from https://github.com/facebookresearch/detectron2/blob/cbbc1ce26473cb2a5cc8f58e8ada9ae14cb41052/detectron2/layers/wrappers.py#L100 def nonzero_tuple(x): """ A 'as_tuple=True' version of torch.nonzero to support torchscript. because of https://github.com/pytorch/pytorch/issues/38718 """ if torch.jit.is_scripting(): if x.dim() == 0: return x.unsqueeze(0).nonzero().unbind(1) return x.nonzero().unbind(1) else: return x.nonzero(as_tuple=True) # from https://github.com/facebookresearch/detectron2/blob/9921a2caa585d4fa66c4b534b6fab6e74d89b582/detectron2/modeling/matcher.py#L9 class DetaMatcher(object): """ This class assigns to each predicted "element" (e.g., a box) a ground-truth element. Each predicted element will have exactly zero or one matches; each ground-truth element may be matched to zero or more predicted elements. The matching is determined by the MxN match_quality_matrix, that characterizes how well each (ground-truth, prediction)-pair match each other. For example, if the elements are boxes, this matrix may contain box intersection-over-union overlap values. The matcher returns (a) a vector of length N containing the index of the ground-truth element m in [0, M) that matches to prediction n in [0, N). (b) a vector of length N containing the labels for each prediction. """ def __init__(self, thresholds: List[float], labels: List[int], allow_low_quality_matches: bool = False): """ Args: thresholds (`list[float]`): A list of thresholds used to stratify predictions into levels. labels (`list[int`): A list of values to label predictions belonging at each level. A label can be one of {-1, 0, 1} signifying {ignore, negative class, positive class}, respectively. allow_low_quality_matches (`bool`, *optional*, defaults to `False`): If `True`, produce additional matches for predictions with maximum match quality lower than high_threshold. See `set_low_quality_matches_` for more details. For example, thresholds = [0.3, 0.5] labels = [0, -1, 1] All predictions with iou < 0.3 will be marked with 0 and thus will be considered as false positives while training. All predictions with 0.3 <= iou < 0.5 will be marked with -1 and thus will be ignored. All predictions with 0.5 <= iou will be marked with 1 and thus will be considered as true positives. """ # Add -inf and +inf to first and last position in thresholds thresholds = thresholds[:] if thresholds[0] < 0: raise ValueError("Thresholds should be positive") thresholds.insert(0, -float("inf")) thresholds.append(float("inf")) # Currently torchscript does not support all + generator if not all(low <= high for (low, high) in zip(thresholds[:-1], thresholds[1:])): raise ValueError("Thresholds should be sorted.") if not all(l in [-1, 0, 1] for l in labels): raise ValueError("All labels should be either -1, 0 or 1") if len(labels) != len(thresholds) - 1: raise ValueError("Number of labels should be equal to number of thresholds - 1") self.thresholds = thresholds self.labels = labels self.allow_low_quality_matches = allow_low_quality_matches def __call__(self, match_quality_matrix): """ Args: match_quality_matrix (Tensor[float]): an MxN tensor, containing the pairwise quality between M ground-truth elements and N predicted elements. All elements must be >= 0 (due to the us of `torch.nonzero` for selecting indices in `set_low_quality_matches_`). Returns: matches (Tensor[int64]): a vector of length N, where matches[i] is a matched ground-truth index in [0, M) match_labels (Tensor[int8]): a vector of length N, where pred_labels[i] indicates whether a prediction is a true or false positive or ignored """ assert match_quality_matrix.dim() == 2 if match_quality_matrix.numel() == 0: default_matches = match_quality_matrix.new_full((match_quality_matrix.size(1),), 0, dtype=torch.int64) # When no gt boxes exist, we define IOU = 0 and therefore set labels # to `self.labels[0]`, which usually defaults to background class 0 # To choose to ignore instead, can make labels=[-1,0,-1,1] + set appropriate thresholds default_match_labels = match_quality_matrix.new_full( (match_quality_matrix.size(1),), self.labels[0], dtype=torch.int8 ) return default_matches, default_match_labels assert torch.all(match_quality_matrix >= 0) # match_quality_matrix is M (gt) x N (predicted) # Max over gt elements (dim 0) to find best gt candidate for each prediction matched_vals, matches = match_quality_matrix.max(dim=0) match_labels = matches.new_full(matches.size(), 1, dtype=torch.int8) for l, low, high in zip(self.labels, self.thresholds[:-1], self.thresholds[1:]): low_high = (matched_vals >= low) & (matched_vals < high) match_labels[low_high] = l if self.allow_low_quality_matches: self.set_low_quality_matches_(match_labels, match_quality_matrix) return matches, match_labels def set_low_quality_matches_(self, match_labels, match_quality_matrix): """ Produce additional matches for predictions that have only low-quality matches. Specifically, for each ground-truth G find the set of predictions that have maximum overlap with it (including ties); for each prediction in that set, if it is unmatched, then match it to the ground-truth G. This function implements the RPN assignment case (i) in Sec. 3.1.2 of :paper:`Faster R-CNN`. """ # For each gt, find the prediction with which it has highest quality highest_quality_foreach_gt, _ = match_quality_matrix.max(dim=1) # Find the highest quality match available, even if it is low, including ties. # Note that the matches qualities must be positive due to the use of # `torch.nonzero`. _, pred_inds_with_highest_quality = nonzero_tuple(match_quality_matrix == highest_quality_foreach_gt[:, None]) # If an anchor was labeled positive only due to a low-quality match # with gt_A, but it has larger overlap with gt_B, it's matched index will still be gt_B. # This follows the implementation in Detectron, and is found to have no significant impact. match_labels[pred_inds_with_highest_quality] = 1 # from https://github.com/facebookresearch/detectron2/blob/cbbc1ce26473cb2a5cc8f58e8ada9ae14cb41052/detectron2/modeling/sampling.py#L9 def subsample_labels(labels: torch.Tensor, num_samples: int, positive_fraction: float, bg_label: int): """ Return `num_samples` (or fewer, if not enough found) random samples from `labels` which is a mixture of positives & negatives. It will try to return as many positives as possible without exceeding `positive_fraction * num_samples`, and then try to fill the remaining slots with negatives. Args: labels (Tensor): (N, ) label vector with values: * -1: ignore * bg_label: background ("negative") class * otherwise: one or more foreground ("positive") classes num_samples (int): The total number of labels with value >= 0 to return. Values that are not sampled will be filled with -1 (ignore). positive_fraction (float): The number of subsampled labels with values > 0 is `min(num_positives, int(positive_fraction * num_samples))`. The number of negatives sampled is `min(num_negatives, num_samples - num_positives_sampled)`. In order words, if there are not enough positives, the sample is filled with negatives. If there are also not enough negatives, then as many elements are sampled as is possible. bg_label (int): label index of background ("negative") class. Returns: pos_idx, neg_idx (Tensor): 1D vector of indices. The total length of both is `num_samples` or fewer. """ positive = nonzero_tuple((labels != -1) & (labels != bg_label))[0] negative = nonzero_tuple(labels == bg_label)[0] num_pos = int(num_samples * positive_fraction) # protect against not enough positive examples num_pos = min(positive.numel(), num_pos) num_neg = num_samples - num_pos # protect against not enough negative examples num_neg = min(negative.numel(), num_neg) # randomly select positive and negative examples perm1 = torch.randperm(positive.numel(), device=positive.device)[:num_pos] perm2 = torch.randperm(negative.numel(), device=negative.device)[:num_neg] pos_idx = positive[perm1] neg_idx = negative[perm2] return pos_idx, neg_idx def sample_topk_per_gt(pr_inds, gt_inds, iou, k): if len(gt_inds) == 0: return pr_inds, gt_inds # find topk matches for each gt gt_inds2, counts = gt_inds.unique(return_counts=True) scores, pr_inds2 = iou[gt_inds2].topk(k, dim=1) gt_inds2 = gt_inds2[:, None].repeat(1, k) # filter to as many matches that gt has pr_inds3 = torch.cat([pr[:c] for c, pr in zip(counts, pr_inds2)]) gt_inds3 = torch.cat([gt[:c] for c, gt in zip(counts, gt_inds2)]) return pr_inds3, gt_inds3 # modified from https://github.com/facebookresearch/detectron2/blob/cbbc1ce26473cb2a5cc8f58e8ada9ae14cb41052/detectron2/modeling/roi_heads/roi_heads.py#L123 class DetaStage2Assigner(nn.Module): def __init__(self, num_queries, max_k=4): super().__init__() self.positive_fraction = 0.25 self.bg_label = 400 # number > 91 to filter out later self.batch_size_per_image = num_queries self.proposal_matcher = DetaMatcher(thresholds=[0.6], labels=[0, 1], allow_low_quality_matches=True) self.k = max_k def _sample_proposals(self, matched_idxs: torch.Tensor, matched_labels: torch.Tensor, gt_classes: torch.Tensor): """ Based on the matching between N proposals and M groundtruth, sample the proposals and set their classification labels. Args: matched_idxs (Tensor): a vector of length N, each is the best-matched gt index in [0, M) for each proposal. matched_labels (Tensor): a vector of length N, the matcher's label (one of cfg.MODEL.ROI_HEADS.IOU_LABELS) for each proposal. gt_classes (Tensor): a vector of length M. Returns: Tensor: a vector of indices of sampled proposals. Each is in [0, N). Tensor: a vector of the same length, the classification label for each sampled proposal. Each sample is labeled as either a category in [0, num_classes) or the background (num_classes). """ has_gt = gt_classes.numel() > 0 # Get the corresponding GT for each proposal if has_gt: gt_classes = gt_classes[matched_idxs] # Label unmatched proposals (0 label from matcher) as background (label=num_classes) gt_classes[matched_labels == 0] = self.bg_label # Label ignore proposals (-1 label) gt_classes[matched_labels == -1] = -1 else: gt_classes = torch.zeros_like(matched_idxs) + self.bg_label sampled_fg_idxs, sampled_bg_idxs = subsample_labels( gt_classes, self.batch_size_per_image, self.positive_fraction, self.bg_label ) sampled_idxs = torch.cat([sampled_fg_idxs, sampled_bg_idxs], dim=0) return sampled_idxs, gt_classes[sampled_idxs] def forward(self, outputs, targets, return_cost_matrix=False): # COCO categories are from 1 to 90. They set num_classes=91 and apply sigmoid. bs = len(targets) indices = [] ious = [] for b in range(bs): iou, _ = box_iou( center_to_corners_format(targets[b]["boxes"]), center_to_corners_format(outputs["init_reference"][b].detach()), ) matched_idxs, matched_labels = self.proposal_matcher( iou ) # proposal_id -> highest_iou_gt_id, proposal_id -> [1 if iou > 0.6, 0 ow] ( sampled_idxs, sampled_gt_classes, ) = self._sample_proposals( # list of sampled proposal_ids, sampled_id -> [0, num_classes)+[bg_label] matched_idxs, matched_labels, targets[b]["labels"] ) pos_pr_inds = sampled_idxs[sampled_gt_classes != self.bg_label] pos_gt_inds = matched_idxs[pos_pr_inds] pos_pr_inds, pos_gt_inds = self.postprocess_indices(pos_pr_inds, pos_gt_inds, iou) indices.append((pos_pr_inds, pos_gt_inds)) ious.append(iou) if return_cost_matrix: return indices, ious return indices def postprocess_indices(self, pr_inds, gt_inds, iou): return sample_topk_per_gt(pr_inds, gt_inds, iou, self.k) # modified from https://github.com/facebookresearch/detectron2/blob/cbbc1ce26473cb2a5cc8f58e8ada9ae14cb41052/detectron2/modeling/proposal_generator/rpn.py#L181 class DetaStage1Assigner(nn.Module): def __init__(self, t_low=0.3, t_high=0.7, max_k=4): super().__init__() self.positive_fraction = 0.5 self.batch_size_per_image = 256 self.k = max_k self.t_low = t_low self.t_high = t_high self.anchor_matcher = DetaMatcher( thresholds=[t_low, t_high], labels=[0, -1, 1], allow_low_quality_matches=True ) def _subsample_labels(self, label): """ Randomly sample a subset of positive and negative examples, and overwrite the label vector to the ignore value (-1) for all elements that are not included in the sample. Args: labels (Tensor): a vector of -1, 0, 1. Will be modified in-place and returned. """ pos_idx, neg_idx = subsample_labels(label, self.batch_size_per_image, self.positive_fraction, 0) # Fill with the ignore label (-1), then set positive and negative labels label.fill_(-1) label.scatter_(0, pos_idx, 1) label.scatter_(0, neg_idx, 0) return label def forward(self, outputs, targets): bs = len(targets) indices = [] for b in range(bs): anchors = outputs["anchors"][b] if len(targets[b]["boxes"]) == 0: indices.append( ( torch.tensor([], dtype=torch.long, device=anchors.device), torch.tensor([], dtype=torch.long, device=anchors.device), ) ) continue iou, _ = box_iou( center_to_corners_format(targets[b]["boxes"]), center_to_corners_format(anchors), ) matched_idxs, matched_labels = self.anchor_matcher( iou ) # proposal_id -> highest_iou_gt_id, proposal_id -> [1 if iou > 0.7, 0 if iou < 0.3, -1 ow] matched_labels = self._subsample_labels(matched_labels) all_pr_inds = torch.arange(len(anchors)) pos_pr_inds = all_pr_inds[matched_labels == 1] pos_gt_inds = matched_idxs[pos_pr_inds] pos_pr_inds, pos_gt_inds = self.postprocess_indices(pos_pr_inds, pos_gt_inds, iou) pos_pr_inds, pos_gt_inds = pos_pr_inds.to(anchors.device), pos_gt_inds.to(anchors.device) indices.append((pos_pr_inds, pos_gt_inds)) return indices def postprocess_indices(self, pr_inds, gt_inds, iou): return sample_topk_per_gt(pr_inds, gt_inds, iou, self.k)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/deta/convert_deta_resnet_to_pytorch.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert DETA checkpoints from the original repository. URL: https://github.com/jozhang97/DETA/tree/master""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) def get_deta_config(): config = DetaConfig( num_queries=900, encoder_ffn_dim=2048, decoder_ffn_dim=2048, num_feature_levels=5, assign_first_stage=True, with_box_refine=True, two_stage=True, ) # set labels config.num_labels = 91 repo_id = "huggingface/label-files" filename = "coco-detection-id2label.json" id2label = json.load(open(cached_download(hf_hub_url(repo_id, filename, repo_type="dataset")), "r")) id2label = {int(k): v for k, v in id2label.items()} config.id2label = id2label config.label2id = {v: k for k, v in id2label.items()} return config # here we list all keys to be renamed (original name on the left, our name on the right) def create_rename_keys(config): rename_keys = [] # stem # fmt: off rename_keys.append(("backbone.0.body.conv1.weight", "model.backbone.model.embedder.embedder.convolution.weight")) rename_keys.append(("backbone.0.body.bn1.weight", "model.backbone.model.embedder.embedder.normalization.weight")) rename_keys.append(("backbone.0.body.bn1.bias", "model.backbone.model.embedder.embedder.normalization.bias")) rename_keys.append(("backbone.0.body.bn1.running_mean", "model.backbone.model.embedder.embedder.normalization.running_mean")) rename_keys.append(("backbone.0.body.bn1.running_var", "model.backbone.model.embedder.embedder.normalization.running_var")) # stages for stage_idx in range(len(config.backbone_config.depths)): for layer_idx in range(config.backbone_config.depths[stage_idx]): # shortcut if layer_idx == 0: rename_keys.append( ( f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight", f"model.backbone.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight", ) ) rename_keys.append( ( f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight", f"model.backbone.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight", ) ) rename_keys.append( ( f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias", f"model.backbone.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias", ) ) rename_keys.append( ( f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean", f"model.backbone.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean", ) ) rename_keys.append( ( f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var", f"model.backbone.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var", ) ) # 3 convs for i in range(3): rename_keys.append( ( f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight", f"model.backbone.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight", ) ) rename_keys.append( ( f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight", f"model.backbone.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight", ) ) rename_keys.append( ( f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias", f"model.backbone.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias", ) ) rename_keys.append( ( f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean", f"model.backbone.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean", ) ) rename_keys.append( ( f"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var", f"model.backbone.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var", ) ) # transformer encoder for i in range(config.encoder_layers): rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight", f"model.encoder.layers.{i}.self_attn.sampling_offsets.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias", f"model.encoder.layers.{i}.self_attn.sampling_offsets.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.attention_weights.weight", f"model.encoder.layers.{i}.self_attn.attention_weights.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.attention_weights.bias", f"model.encoder.layers.{i}.self_attn.attention_weights.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.value_proj.weight", f"model.encoder.layers.{i}.self_attn.value_proj.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.value_proj.bias", f"model.encoder.layers.{i}.self_attn.value_proj.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.output_proj.weight", f"model.encoder.layers.{i}.self_attn.output_proj.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.self_attn.output_proj.bias", f"model.encoder.layers.{i}.self_attn.output_proj.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.norm1.weight", f"model.encoder.layers.{i}.self_attn_layer_norm.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.norm1.bias", f"model.encoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.weight", f"model.encoder.layers.{i}.fc1.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.linear1.bias", f"model.encoder.layers.{i}.fc1.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.weight", f"model.encoder.layers.{i}.fc2.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.linear2.bias", f"model.encoder.layers.{i}.fc2.bias")) rename_keys.append((f"transformer.encoder.layers.{i}.norm2.weight", f"model.encoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((f"transformer.encoder.layers.{i}.norm2.bias", f"model.encoder.layers.{i}.final_layer_norm.bias")) # transformer decoder for i in range(config.decoder_layers): rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight", f"model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias", f"model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.attention_weights.weight", f"model.decoder.layers.{i}.encoder_attn.attention_weights.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.attention_weights.bias", f"model.decoder.layers.{i}.encoder_attn.attention_weights.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.value_proj.weight", f"model.decoder.layers.{i}.encoder_attn.value_proj.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.value_proj.bias", f"model.decoder.layers.{i}.encoder_attn.value_proj.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.output_proj.weight", f"model.decoder.layers.{i}.encoder_attn.output_proj.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.cross_attn.output_proj.bias", f"model.decoder.layers.{i}.encoder_attn.output_proj.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.norm1.weight", f"model.decoder.layers.{i}.encoder_attn_layer_norm.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.norm1.bias", f"model.decoder.layers.{i}.encoder_attn_layer_norm.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.self_attn.out_proj.weight", f"model.decoder.layers.{i}.self_attn.out_proj.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.self_attn.out_proj.bias", f"model.decoder.layers.{i}.self_attn.out_proj.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.norm2.weight", f"model.decoder.layers.{i}.self_attn_layer_norm.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.norm2.bias", f"model.decoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.weight", f"model.decoder.layers.{i}.fc1.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.linear1.bias", f"model.decoder.layers.{i}.fc1.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.weight", f"model.decoder.layers.{i}.fc2.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.linear2.bias", f"model.decoder.layers.{i}.fc2.bias")) rename_keys.append((f"transformer.decoder.layers.{i}.norm3.weight", f"model.decoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((f"transformer.decoder.layers.{i}.norm3.bias", f"model.decoder.layers.{i}.final_layer_norm.bias")) # fmt: on return rename_keys def rename_key(dct, old, new): val = dct.pop(old) dct[new] = val def read_in_decoder_q_k_v(state_dict, config): # transformer decoder self-attention layers hidden_size = config.d_model for i in range(config.decoder_layers): # read in weights + bias of input projection layer of self-attention in_proj_weight = state_dict.pop(f"transformer.decoder.layers.{i}.self_attn.in_proj_weight") in_proj_bias = state_dict.pop(f"transformer.decoder.layers.{i}.self_attn.in_proj_bias") # next, add query, keys and values (in that order) to the state dict state_dict[f"model.decoder.layers.{i}.self_attn.q_proj.weight"] = in_proj_weight[:hidden_size, :] state_dict[f"model.decoder.layers.{i}.self_attn.q_proj.bias"] = in_proj_bias[:hidden_size] state_dict[f"model.decoder.layers.{i}.self_attn.k_proj.weight"] = in_proj_weight[ hidden_size : hidden_size * 2, : ] state_dict[f"model.decoder.layers.{i}.self_attn.k_proj.bias"] = in_proj_bias[hidden_size : hidden_size * 2] state_dict[f"model.decoder.layers.{i}.self_attn.v_proj.weight"] = in_proj_weight[-hidden_size:, :] state_dict[f"model.decoder.layers.{i}.self_attn.v_proj.bias"] = in_proj_bias[-hidden_size:] # We will verify our results on an image of cute cats def prepare_img(): url = "http://images.cocodataset.org/val2017/000000039769.jpg" im = Image.open(requests.get(url, stream=True).raw) return im @torch.no_grad() def convert_deta_checkpoint(model_name, pytorch_dump_folder_path, push_to_hub): """ Copy/paste/tweak model's weights to our DETA structure. """ # load config config = get_deta_config() # load original state dict if model_name == "deta-resnet-50": filename = "adet_checkpoint0011.pth" elif model_name == "deta-resnet-50-24-epochs": filename = "adet_2x_checkpoint0023.pth" else: raise ValueError(f"Model name {model_name} not supported") checkpoint_path = hf_hub_download(repo_id="nielsr/deta-checkpoints", filename=filename) state_dict = torch.load(checkpoint_path, map_location="cpu")["model"] # rename keys rename_keys = create_rename_keys(config) for src, dest in rename_keys: rename_key(state_dict, src, dest) read_in_decoder_q_k_v(state_dict, config) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: val = state_dict.pop(key) state_dict[key.replace("transformer.decoder", "model.decoder")] = val if "input_proj" in key: val = state_dict.pop(key) state_dict["model." + key] = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: val = state_dict.pop(key) state_dict[key.replace("transformer", "model")] = val # finally, create HuggingFace model and load state dict model = DetaForObjectDetection(config) model.load_state_dict(state_dict) model.eval() device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) # load image processor processor = DetaImageProcessor(format="coco_detection") # verify our conversion on image img = prepare_img() encoding = processor(images=img, return_tensors="pt") pixel_values = encoding["pixel_values"] outputs = model(pixel_values.to(device)) # verify logits if model_name == "deta-resnet-50": expected_logits = torch.tensor( [[-7.3978, -2.5406, -4.1668], [-8.2684, -3.9933, -3.8096], [-7.0515, -3.7973, -5.8516]] ) expected_boxes = torch.tensor([[0.5043, 0.4973, 0.9998], [0.2542, 0.5489, 0.4748], [0.5490, 0.2765, 0.0570]]) elif model_name == "deta-resnet-50-24-epochs": expected_logits = torch.tensor( [[-7.1688, -2.4857, -4.8669], [-7.8630, -3.8154, -4.2674], [-7.2730, -4.1865, -5.5323]] ) expected_boxes = torch.tensor([[0.5021, 0.4971, 0.9994], [0.2546, 0.5486, 0.4731], [0.1686, 0.1986, 0.2142]]) assert torch.allclose(outputs.logits[0, :3, :3], expected_logits.to(device), atol=1e-4) assert torch.allclose(outputs.pred_boxes[0, :3, :3], expected_boxes.to(device), atol=1e-4) print("Everything ok!") if pytorch_dump_folder_path: # Save model and processor logger.info(f"Saving PyTorch model and processor to {pytorch_dump_folder_path}...") Path(pytorch_dump_folder_path).mkdir(exist_ok=True) model.save_pretrained(pytorch_dump_folder_path) processor.save_pretrained(pytorch_dump_folder_path) # Push to hub if push_to_hub: print("Pushing model and processor to hub...") model.push_to_hub(f"jozhang97/{model_name}") processor.push_to_hub(f"jozhang97/{model_name}") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--model_name", type=str, default="deta-resnet-50", choices=["deta-resnet-50", "deta-resnet-50-24-epochs"], help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) args = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/poolformer/configuration_poolformer.py
# coding=utf-8 # Copyright 2022 Sea AI Labs and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PoolFormer model configuration""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging logger = logging.get_logger(__name__) POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = { "sail/poolformer_s12": "https://huggingface.co/sail/poolformer_s12/resolve/main/config.json", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class PoolFormerConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of [`PoolFormerModel`]. It is used to instantiate a PoolFormer model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the PoolFormer [sail/poolformer_s12](https://huggingface.co/sail/poolformer_s12) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: num_channels (`int`, *optional*, defaults to 3): The number of channels in the input image. patch_size (`int`, *optional*, defaults to 16): The size of the input patch. stride (`int`, *optional*, defaults to 16): The stride of the input patch. pool_size (`int`, *optional*, defaults to 3): The size of the pooling window. mlp_ratio (`float`, *optional*, defaults to 4.0): The ratio of the number of channels in the output of the MLP to the number of channels in the input. depths (`list`, *optional*, defaults to `[2, 2, 6, 2]`): The depth of each encoder block. hidden_sizes (`list`, *optional*, defaults to `[64, 128, 320, 512]`): The hidden sizes of each encoder block. patch_sizes (`list`, *optional*, defaults to `[7, 3, 3, 3]`): The size of the input patch for each encoder block. strides (`list`, *optional*, defaults to `[4, 2, 2, 2]`): The stride of the input patch for each encoder block. padding (`list`, *optional*, defaults to `[2, 1, 1, 1]`): The padding of the input patch for each encoder block. num_encoder_blocks (`int`, *optional*, defaults to 4): The number of encoder blocks. drop_path_rate (`float`, *optional*, defaults to 0.0): The dropout rate for the dropout layers. hidden_act (`str`, *optional*, defaults to `"gelu"`): The activation function for the hidden layers. use_layer_scale (`bool`, *optional*, defaults to `True`): Whether to use layer scale. layer_scale_init_value (`float`, *optional*, defaults to 1e-5): The initial value for the layer scale. initializer_range (`float`, *optional*, defaults to 0.02): The initializer range for the weights. Example: ```python >>> from transformers import PoolFormerConfig, PoolFormerModel >>> # Initializing a PoolFormer sail/poolformer_s12 style configuration >>> configuration = PoolFormerConfig() >>> # Initializing a model (with random weights) from the sail/poolformer_s12 style configuration >>> model = PoolFormerModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ``` """ model_type = "poolformer" def __init__( self, num_channels=3, patch_size=16, stride=16, pool_size=3, mlp_ratio=4.0, depths=[2, 2, 6, 2], hidden_sizes=[64, 128, 320, 512], patch_sizes=[7, 3, 3, 3], strides=[4, 2, 2, 2], padding=[2, 1, 1, 1], num_encoder_blocks=4, drop_path_rate=0.0, hidden_act="gelu", use_layer_scale=True, layer_scale_init_value=1e-5, initializer_range=0.02, **kwargs, ): self.num_channels = num_channels self.patch_size = patch_size self.stride = stride self.padding = padding self.pool_size = pool_size self.hidden_sizes = hidden_sizes self.mlp_ratio = mlp_ratio self.depths = depths self.patch_sizes = patch_sizes self.strides = strides self.num_encoder_blocks = num_encoder_blocks self.drop_path_rate = drop_path_rate self.hidden_act = hidden_act self.use_layer_scale = use_layer_scale self.layer_scale_init_value = layer_scale_init_value self.initializer_range = initializer_range super().__init__(**kwargs) class PoolFormerOnnxConfig(OnnxConfig): torch_onnx_minimum_version = version.parse("1.11") @property def inputs(self) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def atol_for_validation(self) -> float: return 2e-3
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/poolformer/__init__.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _import_structure = { "configuration_poolformer": [ "POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "PoolFormerConfig", "PoolFormerOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["feature_extraction_poolformer"] = ["PoolFormerFeatureExtractor"] _import_structure["image_processing_poolformer"] = ["PoolFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_poolformer"] = [ "POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "PoolFormerForImageClassification", "PoolFormerModel", "PoolFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/poolformer/modeling_poolformer.py
# coding=utf-8 # Copyright 2022 Sea AI Lab and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch PoolFormer model.""" import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "PoolFormerConfig" # Base docstring _CHECKPOINT_FOR_DOC = "sail/poolformer_s12" _EXPECTED_OUTPUT_SHAPE = [1, 512, 7, 7] # Image classification docstring _IMAGE_CLASS_CHECKPOINT = "sail/poolformer_s12" _IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [ "sail/poolformer_s12", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] # Copied from transformers.models.beit.modeling_beit.drop_path def drop_path(input, drop_prob: float = 0.0, training: bool = False): """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if drop_prob == 0.0 or not training: return input keep_prob = 1 - drop_prob shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device) random_tensor.floor_() # binarize output = input.div(keep_prob) * random_tensor return output # Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->PoolFormer class PoolFormerDropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob: Optional[float] = None) -> None: super().__init__() self.drop_prob = drop_prob def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: return drop_path(hidden_states, self.drop_prob, self.training) def extra_repr(self) -> str: return "p={}".format(self.drop_prob) class PoolFormerEmbeddings(nn.Module): """ Construct Patch Embeddings. """ def __init__(self, hidden_size, num_channels, patch_size, stride, padding, norm_layer=None): super().__init__() patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) stride = stride if isinstance(stride, collections.abc.Iterable) else (stride, stride) padding = padding if isinstance(padding, collections.abc.Iterable) else (padding, padding) self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=stride, padding=padding) self.norm = norm_layer(hidden_size) if norm_layer else nn.Identity() def forward(self, pixel_values): embeddings = self.projection(pixel_values) embeddings = self.norm(embeddings) return embeddings class PoolFormerGroupNorm(nn.GroupNorm): """ Group Normalization with 1 group. Input: tensor in shape [B, C, H, W] """ def __init__(self, num_channels, **kwargs): super().__init__(1, num_channels, **kwargs) class PoolFormerPooling(nn.Module): def __init__(self, pool_size): super().__init__() self.pool = nn.AvgPool2d(pool_size, stride=1, padding=pool_size // 2, count_include_pad=False) def forward(self, hidden_states): return self.pool(hidden_states) - hidden_states class PoolFormerOutput(nn.Module): def __init__(self, config, dropout_prob, hidden_size, intermediate_size): super().__init__() self.conv1 = nn.Conv2d(hidden_size, intermediate_size, 1) self.conv2 = nn.Conv2d(intermediate_size, hidden_size, 1) self.drop = PoolFormerDropPath(dropout_prob) if isinstance(config.hidden_act, str): self.act_fn = ACT2FN[config.hidden_act] else: self.act_fn = config.hidden_act def forward(self, hidden_states): hidden_states = self.conv1(hidden_states) hidden_states = self.act_fn(hidden_states) hidden_states = self.drop(hidden_states) hidden_states = self.conv2(hidden_states) hidden_states = self.drop(hidden_states) return hidden_states class PoolFormerLayer(nn.Module): """This corresponds to the 'PoolFormerBlock' class in the original implementation.""" def __init__(self, config, num_channels, pool_size, hidden_size, intermediate_size, drop_path): super().__init__() self.pooling = PoolFormerPooling(pool_size) self.output = PoolFormerOutput(config, drop_path, hidden_size, intermediate_size) self.before_norm = PoolFormerGroupNorm(num_channels) self.after_norm = PoolFormerGroupNorm(num_channels) # Useful for training neural nets self.drop_path = PoolFormerDropPath(drop_path) if drop_path > 0.0 else nn.Identity() self.use_layer_scale = config.use_layer_scale if config.use_layer_scale: self.layer_scale_1 = nn.Parameter( config.layer_scale_init_value * torch.ones((num_channels)), requires_grad=True ) self.layer_scale_2 = nn.Parameter( config.layer_scale_init_value * torch.ones((num_channels)), requires_grad=True ) def forward(self, hidden_states): if self.use_layer_scale: pooling_output = self.pooling(self.before_norm(hidden_states)) scaled_op = self.layer_scale_1.unsqueeze(-1).unsqueeze(-1) * pooling_output # First residual connection hidden_states = hidden_states + self.drop_path(scaled_op) outputs = () layer_output = self.output(self.after_norm(hidden_states)) scaled_op = self.layer_scale_2.unsqueeze(-1).unsqueeze(-1) * layer_output # Second residual connection output = hidden_states + self.drop_path(scaled_op) outputs = (output,) + outputs return outputs else: pooling_output = self.drop_path(self.pooling(self.before_norm(hidden_states))) # First residual connection hidden_states = pooling_output + hidden_states outputs = () # Second residual connection inside the PoolFormerOutput block layer_output = self.drop_path(self.output(self.after_norm(hidden_states))) output = hidden_states + layer_output outputs = (output,) + outputs return outputs class PoolFormerEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config # stochastic depth decay rule dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))] # patch embeddings embeddings = [] for i in range(config.num_encoder_blocks): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i], stride=config.strides[i], padding=config.padding[i], num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1], hidden_size=config.hidden_sizes[i], ) ) self.patch_embeddings = nn.ModuleList(embeddings) # Transformer blocks blocks = [] cur = 0 for i in range(config.num_encoder_blocks): # each block consists of layers layers = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i]): layers.append( PoolFormerLayer( config, num_channels=config.hidden_sizes[i], pool_size=config.pool_size, hidden_size=config.hidden_sizes[i], intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio), drop_path=dpr[cur + j], ) ) blocks.append(nn.ModuleList(layers)) self.block = nn.ModuleList(blocks) def forward(self, pixel_values, output_hidden_states=False, return_dict=True): all_hidden_states = () if output_hidden_states else None hidden_states = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings, self.block)): embedding_layer, block_layer = layers # Get patch embeddings from hidden_states hidden_states = embedding_layer(hidden_states) # Send the embeddings through the blocks for _, blk in enumerate(block_layer): layer_outputs = blk(hidden_states) hidden_states = layer_outputs[0] if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None) return BaseModelOutputWithNoAttention(last_hidden_state=hidden_states, hidden_states=all_hidden_states) class PoolFormerPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = PoolFormerConfig base_model_prefix = "poolformer" main_input_name = "pixel_values" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, PoolFormerEncoder): module.gradient_checkpointing = value POOLFORMER_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ POOLFORMER_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`PoolFormerImageProcessor.__call__`] for details. """ @add_start_docstrings( "The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.", POOLFORMER_START_DOCSTRING, ) class PoolFormerModel(PoolFormerPreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config self.encoder = PoolFormerEncoder(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(POOLFORMER_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithNoAttention, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithNoAttention]: output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") encoder_outputs = self.encoder( pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=sequence_output, hidden_states=encoder_outputs.hidden_states, ) class PoolFormerFinalPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) def forward(self, hidden_states): output = self.dense(hidden_states) return output @add_start_docstrings( """ PoolFormer Model transformer with an image classification head on top """, POOLFORMER_START_DOCSTRING, ) class PoolFormerForImageClassification(PoolFormerPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.poolformer = PoolFormerModel(config) # Final norm self.norm = PoolFormerGroupNorm(config.hidden_sizes[-1]) # Classifier head self.classifier = ( nn.Linear(config.hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(POOLFORMER_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=ImageClassifierOutputWithNoAttention, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.poolformer( pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.classifier(self.norm(sequence_output).mean([-2, -1])) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=loss, logits=logits, hidden_states=outputs.hidden_states)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/poolformer/feature_extraction_poolformer.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Feature extractor class for PoolFormer.""" import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor logger = logging.get_logger(__name__) class PoolFormerFeatureExtractor(PoolFormerImageProcessor): def __init__(self, *args, **kwargs) -> None: warnings.warn( "The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use PoolFormerImageProcessor instead.", FutureWarning, ) super().__init__(*args, **kwargs)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/poolformer/convert_poolformer_original_to_pytorch.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert PoolFormer checkpoints from the original repository. URL: https://github.com/sail-sg/poolformer""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) def replace_key_with_offset(key, offset, original_name, new_name): """ Replaces the key by subtracting the offset from the original layer number """ to_find = original_name.split(".")[0] key_list = key.split(".") orig_block_num = int(key_list[key_list.index(to_find) - 2]) layer_num = int(key_list[key_list.index(to_find) - 1]) new_block_num = orig_block_num - offset key = key.replace(f"{orig_block_num}.{layer_num}.{original_name}", f"block.{new_block_num}.{layer_num}.{new_name}") return key def rename_keys(state_dict): new_state_dict = OrderedDict() total_embed_found, patch_emb_offset = 0, 0 for key, value in state_dict.items(): if key.startswith("network"): key = key.replace("network", "poolformer.encoder") if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith("bias") and "patch_embed" not in key: patch_emb_offset += 1 to_replace = key[: key.find("proj")] key = key.replace(to_replace, f"patch_embeddings.{total_embed_found}.") key = key.replace("proj", "projection") if key.endswith("bias"): total_embed_found += 1 if "patch_embeddings" in key: key = "poolformer.encoder." + key if "mlp.fc1" in key: key = replace_key_with_offset(key, patch_emb_offset, "mlp.fc1", "output.conv1") if "mlp.fc2" in key: key = replace_key_with_offset(key, patch_emb_offset, "mlp.fc2", "output.conv2") if "norm1" in key: key = replace_key_with_offset(key, patch_emb_offset, "norm1", "before_norm") if "norm2" in key: key = replace_key_with_offset(key, patch_emb_offset, "norm2", "after_norm") if "layer_scale_1" in key: key = replace_key_with_offset(key, patch_emb_offset, "layer_scale_1", "layer_scale_1") if "layer_scale_2" in key: key = replace_key_with_offset(key, patch_emb_offset, "layer_scale_2", "layer_scale_2") if "head" in key: key = key.replace("head", "classifier") new_state_dict[key] = value return new_state_dict # We will verify our results on a COCO image def prepare_img(): url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) return image @torch.no_grad() def convert_poolformer_checkpoint(model_name, checkpoint_path, pytorch_dump_folder_path): """ Copy/paste/tweak model's weights to our PoolFormer structure. """ # load default PoolFormer configuration config = PoolFormerConfig() # set attributes based on model_name repo_id = "huggingface/label-files" size = model_name[-3:] config.num_labels = 1000 filename = "imagenet-1k-id2label.json" expected_shape = (1, 1000) # set config attributes id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) id2label = {int(k): v for k, v in id2label.items()} config.id2label = id2label config.label2id = {v: k for k, v in id2label.items()} if size == "s12": config.depths = [2, 2, 6, 2] config.hidden_sizes = [64, 128, 320, 512] config.mlp_ratio = 4.0 crop_pct = 0.9 elif size == "s24": config.depths = [4, 4, 12, 4] config.hidden_sizes = [64, 128, 320, 512] config.mlp_ratio = 4.0 crop_pct = 0.9 elif size == "s36": config.depths = [6, 6, 18, 6] config.hidden_sizes = [64, 128, 320, 512] config.mlp_ratio = 4.0 config.layer_scale_init_value = 1e-6 crop_pct = 0.9 elif size == "m36": config.depths = [6, 6, 18, 6] config.hidden_sizes = [96, 192, 384, 768] config.mlp_ratio = 4.0 config.layer_scale_init_value = 1e-6 crop_pct = 0.95 elif size == "m48": config.depths = [8, 8, 24, 8] config.hidden_sizes = [96, 192, 384, 768] config.mlp_ratio = 4.0 config.layer_scale_init_value = 1e-6 crop_pct = 0.95 else: raise ValueError(f"Size {size} not supported") # load image processor image_processor = PoolFormerImageProcessor(crop_pct=crop_pct) # Prepare image image = prepare_img() pixel_values = image_processor(images=image, return_tensors="pt").pixel_values logger.info(f"Converting model {model_name}...") # load original state dict state_dict = torch.load(checkpoint_path, map_location=torch.device("cpu")) # rename keys state_dict = rename_keys(state_dict) # create HuggingFace model and load state dict model = PoolFormerForImageClassification(config) model.load_state_dict(state_dict) model.eval() # Define image processor image_processor = PoolFormerImageProcessor(crop_pct=crop_pct) pixel_values = image_processor(images=prepare_img(), return_tensors="pt").pixel_values # forward pass outputs = model(pixel_values) logits = outputs.logits # define expected logit slices for different models if size == "s12": expected_slice = torch.tensor([-0.3045, -0.6758, -0.4869]) elif size == "s24": expected_slice = torch.tensor([0.4402, -0.1374, -0.8045]) elif size == "s36": expected_slice = torch.tensor([-0.6080, -0.5133, -0.5898]) elif size == "m36": expected_slice = torch.tensor([0.3952, 0.2263, -1.2668]) elif size == "m48": expected_slice = torch.tensor([0.1167, -0.0656, -0.3423]) else: raise ValueError(f"Size {size} not supported") # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3], expected_slice, atol=1e-2) # finally, save model and image processor logger.info(f"Saving PyTorch model and image processor to {pytorch_dump_folder_path}...") Path(pytorch_dump_folder_path).mkdir(exist_ok=True) model.save_pretrained(pytorch_dump_folder_path) print(f"Saving image processor to {pytorch_dump_folder_path}") image_processor.save_pretrained(pytorch_dump_folder_path) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--model_name", default="poolformer_s12", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) args = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/poolformer/image_processing_poolformer.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for PoolFormer.""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( get_resize_output_image_size, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL logger = logging.get_logger(__name__) class PoolFormerImageProcessor(BaseImageProcessor): r""" Constructs a PoolFormer image processor. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by `do_resize` in the `preprocess` method. size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`): Size of the image after resizing. Can be overridden by `size` in the `preprocess` method. If crop_pct is unset: - size is `{"height": h, "width": w}`: the image is resized to `(h, w)`. - size is `{"shortest_edge": s}`: the shortest edge of the image is resized to s whilst maintaining the aspect ratio. If crop_pct is set: - size is `{"height": h, "width": w}`: the image is resized to `(int(floor(h/crop_pct)), int(floor(w/crop_pct)))` - size is `{"height": c, "width": c}`: the shortest edge of the image is resized to `int(floor(c/crop_pct)` whilst maintaining the aspect ratio. - size is `{"shortest_edge": c}`: the shortest edge of the image is resized to `int(floor(c/crop_pct)` whilst maintaining the aspect ratio. crop_pct (`float`, *optional*, defaults to `0.9`): Percentage of the image to crop from the center. Can be overridden by `crop_pct` in the `preprocess` method. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`): Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method. do_center_crop (`bool`, *optional*, defaults to `True`): Whether to center crop the image. If the input size is smaller than `crop_size` along any edge, the image is padded with 0's and then center cropped. Can be overridden by `do_center_crop` in the `preprocess` method. crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`): Size of the image after applying center crop. Only has an effect if `do_center_crop` is set to `True`. Can be overridden by the `crop_size` parameter in the `preprocess` method. do_rescale (`bool`, *optional*, defaults to `True`): Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale` parameter in the `preprocess` method. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the `preprocess` method. do_normalize (`bool`, *optional*, defaults to `True`): Controls whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` method. image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`): Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`): Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. """ model_input_names = ["pixel_values"] def __init__( self, do_resize: bool = True, size: Dict[str, int] = None, crop_pct: int = 0.9, resample: PILImageResampling = PILImageResampling.BICUBIC, do_center_crop: bool = True, crop_size: Dict[str, int] = None, rescale_factor: Union[int, float] = 1 / 255, do_rescale: bool = True, do_normalize: bool = True, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, **kwargs, ) -> None: super().__init__(**kwargs) size = size if size is not None else {"shortest_edge": 224} size = get_size_dict(size, default_to_square=False) crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224} crop_size = get_size_dict(crop_size, param_name="crop_size") self.do_resize = do_resize self.size = size self.crop_pct = crop_pct self.resample = resample self.do_center_crop = do_center_crop self.crop_size = crop_size self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD def resize( self, image: np.ndarray, size: Dict[str, int], crop_pct: Optional[float] = None, resample: PILImageResampling = PILImageResampling.BICUBIC, data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Resize an image. If crop_pct is unset: - size is `{"height": h, "width": w}`: the image is resized to `(h, w)`. - size is `{"shortest_edge": s}`: the shortest edge of the image is resized to s whilst maintaining the aspect ratio. if crop_pct is set: - size is `{"height": h, "width": w}`: the image is resized to `(int(floor(h/crop_pct)), int(floor(w/crop_pct)))` - size is `{"height": c, "width": c}`: the shortest edge of the image is resized to `int(floor(c/crop_pct)` whilst maintaining the aspect ratio. - size is `{"shortest_edge": c}`: the shortest edge of the image is resized to `int(floor(c/crop_pct)` whilst maintaining the aspect ratio. Args: image (`np.ndarray`): Image to resize. size (`Dict[str, int]`): Size of the output image. crop_pct (`float`, *optional*): Percentage of the image that will be cropped from the center. If set, the image is resized resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`): Resampling filter to use when resizing the image. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the image. If not provided, it will be the same as the input image. """ size = get_size_dict(size, default_to_square=False) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(f"size must contain 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}") if crop_pct is not None: if "shortest_edge" in size: scale_size = int(size["shortest_edge"] / crop_pct) elif "height" in size and "width" in size: if size["height"] == size["width"]: scale_size = int(size["height"] / crop_pct) else: scale_size = (int(size["height"] / crop_pct), int(size["width"] / crop_pct)) else: raise ValueError("Invalid size for resize: {}".format(size)) output_size = get_resize_output_image_size(image, size=scale_size, default_to_square=False) else: if "shortest_edge" in size: output_size = get_resize_output_image_size(image, size=size["shortest_edge"], default_to_square=False) elif "height" in size and "width" in size: output_size = (size["height"], size["width"]) else: raise ValueError("Invalid size for resize: {}".format(size)) return resize(image, size=output_size, resample=resample, data_format=data_format, **kwargs) def preprocess( self, images: ImageInput, do_resize: bool = None, size: Dict[str, int] = None, crop_pct: int = None, resample: PILImageResampling = None, do_center_crop: bool = None, crop_size: Dict[str, int] = None, do_rescale: bool = None, rescale_factor: float = None, do_normalize: bool = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, return_tensors: Optional[Union[str, TensorType]] = None, data_format: ChannelDimension = ChannelDimension.FIRST, **kwargs, ) -> PIL.Image.Image: """ Preprocess an image or batch of images. Args: images (`ImageInput`): Image to preprocess. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to `self.size`): Size of the image after applying resize. crop_pct (`float`, *optional*, defaults to `self.crop_pct`): Percentage of the image to crop. Only has an effect if `do_resize` is set to `True`. resample (`int`, *optional*, defaults to `self.resample`): Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only has an effect if `do_resize` is set to `True`. do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`): Whether to center crop the image. crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`): Size of the image after applying center crop. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image values between [0 - 1]. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): Image mean. image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): Image standard deviation. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `ChannelDimension.LAST`: image in (height, width, num_channels) format. """ do_resize = do_resize if do_resize is not None else self.do_resize crop_pct = crop_pct if crop_pct is not None else self.crop_pct resample = resample if resample is not None else self.resample do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor do_normalize = do_normalize if do_normalize is not None else self.do_normalize image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std size = size if size is not None else self.size size = get_size_dict(size, default_to_square=False) crop_size = crop_size if crop_size is not None else self.crop_size crop_size = get_size_dict(crop_size, param_name="crop_size") images = make_list_of_images(images) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True.") if do_center_crop and crop_pct is None: raise ValueError("Crop_pct must be specified if do_center_crop is True.") if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True.") if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True.") # All transformations expect numpy arrays. images = [to_numpy_array(image) for image in images] if do_resize: images = [self.resize(image=image, size=size, crop_pct=crop_pct, resample=resample) for image in images] if do_center_crop: images = [self.center_crop(image=image, size=crop_size) for image in images] if do_rescale: images = [self.rescale(image=image, scale=rescale_factor) for image in images] if do_normalize: images = [self.normalize(image=image, mean=image_mean, std=image_std) for image in images] images = [to_channel_dimension_format(image, data_format) for image in images] data = {"pixel_values": images} return BatchFeature(data=data, tensor_type=return_tensors)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/barthez/__init__.py
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available _import_structure = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_barthez"] = ["BarthezTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_barthez_fast"] = ["BarthezTokenizerFast"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_barthez import BarthezTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_barthez_fast import BarthezTokenizerFast else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/barthez/tokenization_barthez.py
# coding=utf-8 # Copyright 2020 Ecole Polytechnique and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License """ Tokenization classes for the BARThez model.""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model" ), }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "moussaKam/mbarthez": 1024, "moussaKam/barthez": 1024, "moussaKam/barthez-orangesum-title": 1024, } SPIECE_UNDERLINE = "▁" class BarthezTokenizer(PreTrainedTokenizer): """ Adapted from [`CamembertTokenizer`] and [`BartTokenizer`]. Construct a BARThez tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece). This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that contains the vocabulary necessary to instantiate a tokenizer. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. additional_special_tokens (`List[str]`, *optional*, defaults to `["<s>NOTUSED", "</s>NOTUSED"]`): Additional special tokens used by the tokenizer. sp_model_kwargs (`dict`, *optional*): Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, to set: - `enable_sampling`: Enable subword regularization. - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. - `nbest_size = {0,1}`: No sampling is performed. - `nbest_size > 1`: samples from the nbest_size results. - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm. - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for BPE-dropout. Attributes: sp_model (`SentencePieceProcessor`): The *SentencePiece* processor that is used for every conversion (string, tokens and IDs). """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, bos_token="<s>", eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", sp_model_kwargs: Optional[Dict[str, Any]] = None, **kwargs, ) -> None: # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, cls_token=cls_token, pad_token=pad_token, mask_token=mask_token, sp_model_kwargs=self.sp_model_kwargs, **kwargs, ) self.vocab_file = vocab_file self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(vocab_file)) self.fairseq_tokens_to_ids = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} self.fairseq_tokens_to_ids["<mask>"] = len(self.sp_model) - 1 self.fairseq_ids_to_tokens = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A BARThez sequence has the following format: - single sequence: `<s> X </s>` - pair of sequences: `<s> A </s></s> B </s>` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + sep + token_ids_1 + sep def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is None: return [1] + ([0] * len(token_ids_0)) + [1] return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] @property def vocab_size(self): return len(self.sp_model) def get_vocab(self): vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def _tokenize(self, text: str) -> List[str]: return self.sp_model.encode(text, out_type=str) def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] spm_id = self.sp_model.PieceToId(token) return spm_id if spm_id else self.unk_token_id def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" current_sub_tokens = [] out_string = "" prev_is_special = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(current_sub_tokens) + token prev_is_special = True current_sub_tokens = [] else: current_sub_tokens.append(token) prev_is_special = False out_string += self.sp_model.decode(current_sub_tokens) return out_string.strip() def __getstate__(self): state = self.__dict__.copy() state["sp_model"] = None return state def __setstate__(self, d): self.__dict__ = d # for backward compatibility if not hasattr(self, "sp_model_kwargs"): self.sp_model_kwargs = {} self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, out_vocab_file) elif not os.path.isfile(self.vocab_file): with open(out_vocab_file, "wb") as fi: content_spiece_model = self.sp_model.serialized_model_proto() fi.write(content_spiece_model) return (out_vocab_file,)
0