repo_id
stringlengths
15
86
file_path
stringlengths
28
180
content
stringlengths
1
1.75M
__index_level_0__
int64
0
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/barthez/tokenization_barthez_fast.py
# coding=utf-8 # Copyright 2020 Ecole Polytechnique and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License """ Tokenization classes for the BARThez model.""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: BarthezTokenizer = None logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json" ), }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "moussaKam/mbarthez": 1024, "moussaKam/barthez": 1024, "moussaKam/barthez-orangesum-title": 1024, } SPIECE_UNDERLINE = "▁" class BarthezTokenizerFast(PreTrainedTokenizerFast): """ Adapted from [`CamembertTokenizer`] and [`BartTokenizer`]. Construct a "fast" BARThez tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece). This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that contains the vocabulary necessary to instantiate a tokenizer. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. additional_special_tokens (`List[str]`, *optional*, defaults to `["<s>NOTUSED", "</s>NOTUSED"]`): Additional special tokens used by the tokenizer. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] slow_tokenizer_class = BarthezTokenizer def __init__( self, vocab_file=None, tokenizer_file=None, bos_token="<s>", eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", **kwargs, ): # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token super().__init__( vocab_file, tokenizer_file=tokenizer_file, bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, cls_token=cls_token, pad_token=pad_token, mask_token=mask_token, **kwargs, ) self.vocab_file = vocab_file self.can_save_slow_tokenizer = False if not self.vocab_file else True def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A BARThez sequence has the following format: - single sequence: `<s> X </s>` - pair of sequences: `<s> A </s></s> B </s>` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + sep + token_ids_1 + sep def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): copyfile(self.vocab_file, out_vocab_file) return (out_vocab_file,)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/flava/modeling_flava.py
# coding=utf-8 # Copyright 2022 Meta Platforms authors and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch FLAVA model.""" import collections import math from collections import OrderedDict from dataclasses import dataclass from typing import Any, Dict, List, Optional, Set, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from ...activations import ACT2FN from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling from ...modeling_utils import PreTrainedModel, find_pruneable_heads_and_indices, prune_linear_layer from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_flava import ( FlavaConfig, FlavaImageCodebookConfig, FlavaImageConfig, FlavaMultimodalConfig, FlavaTextConfig, ) logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "facebook/flava-full" # Codebook docstring _CHECKPOINT_FOR_CODEBOOK_DOC = "facebook/flava-image-codebook" _CONFIG_CLASS_FOR_IMAGE_MODEL_DOC = "FlavaImageConfig" _CONFIG_CLASS_FOR_TEXT_MODEL_DOC = "FlavaTextConfig" _CONFIG_CLASS_FOR_MULTIMODAL_MODEL_DOC = "FlavaMultimodalConfig" _EXPECTED_IMAGE_OUTPUT_SHAPE = [1, 197, 768] FLAVA_PRETRAINED_MODEL_ARCHIVE_LIST = [ "facebook/flava-full", # See all flava models at https://huggingface.co/models?filter=flava ] FLAVA_CODEBOOK_PRETRAINED_MODEL_ARCHIVE_LIST = ["facebook/flava-image-codebook"] LOGIT_SCALE_CLAMP_MIN = 0 LOGIT_SCALE_CLAMP_MAX = 4.6052 FlavaPossibleConfigs = Union[FlavaTextConfig, FlavaImageConfig, FlavaMultimodalConfig] @dataclass class FlavaModelOutput(ModelOutput): """ Output from FlavaModel containing embeddings and outputs from individual encoders. Note that `image_embeddings` and `text_embeddigns` returned are similar to pooled output returned from a transformer. If you want embeddings for contrastive loss or retrieval use a FLAVA model's `image_projection` and `text_projection` layers on `image_embeddings` and `text_embeddings` respectively. Args: image_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `pixel_values` are present): The image embeddings which are basically the pooled output of [`FlavaImageModel`]. image_output (`BaseModelOutputWithPooling`, *optional*, returned when `pixel_values` are present): The output of the [`FlavaImageModel`]. text_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids` are present): The text embeddings which are basically the pooled output of [`FlavaTextModel`]. text_output (`BaseModelOutputWithPooling`, *optional*, returned when `input_ids` are present): The output of the [`FlavaTextModel`]. multimodal_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids` and `pixel_values` are present and `skip_multimodal_encoder` is `None` or `False`): The multimodal embeddings which are basically the pooled output of [`FlavaTextModel`]. multimodal_output (`BaseModelOutputWithPooling`, returned when `input_ids` and `pixel_values` are present and `skip_multimodal_encoder` is `None` or `False`): The output of the [`FlavaMultimodalModel`]. """ image_embeddings: Optional[torch.FloatTensor] = None image_output: Optional[BaseModelOutputWithPooling] = None text_embeddings: Optional[torch.FloatTensor] = None text_output: Optional[BaseModelOutputWithPooling] = None multimodal_embeddings: Optional[torch.FloatTensor] = None multimodal_output: Optional[BaseModelOutputWithPooling] = None def to_tuple(self) -> Tuple[Any]: return tuple( self[k] if k not in ["text_output", "image_output", "multimodal_output"] else getattr(self, k).to_tuple() for k in self.keys() ) @dataclass class FlavaLosses(ModelOutput): """Class representing pretraining losses from FLAVA model Args: mim (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mim_labels` and `pixel_values` are present, `input_ids_masked` is absent and `mim_weight` > 0.: Masked Image Modeling loss as used in BeIT calculated only for unimodal image data. mlm (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mlm_labels` and `input_ids_masked` are present, `pixel_values` is absent and `mlm_weight` > 0.: Masked Language Modeling loss as used in BERT calculated only for unimodal text data. itm (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `itm_labels`, `input_ids_masked`, `pixel_values` are present and `itm_weight` > 0.: Image Text Matching (ITM) loss calculated for paired image-text data. Note that ITM loss is calculated on masked pairs in FLAVA. global_contrastive (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `input_ids` and `pixel_values` are present and `global_contrastive_weight` > 0.: Contrastive loss for image-text similarity similar to CLIP but calculated globally for paired image-text data. This is calculated on unmasked images and texts. mmm_image (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mim_labels`, `pixel_values` and `input_ids_masked` are present and `mmm_image_weight` > 0.: Masked Multimodal Modeling loss's image component calculated on paired image-text data. mmm_text (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mlm_labels`, `pixel_values` and `input_ids_masked` are present and `mmm_text_weight` > 0.: Masked Multimodal Modeling loss's text component calculated on paired image-text data. """ mim: Optional[torch.FloatTensor] = None mlm: Optional[torch.FloatTensor] = None itm: Optional[torch.FloatTensor] = None global_contrastive: Optional[torch.FloatTensor] = None mmm_image: Optional[torch.FloatTensor] = None mmm_text: Optional[torch.FloatTensor] = None def all_none(self) -> bool: all_none = True for v in self.values(): if v is not None: all_none = False break return all_none @dataclass class FlavaForPreTrainingOutput(ModelOutput): """ Output from FlavaForPreTraining containing embeddings, and outputs from individual encoders. Note that `image_embeddings` and `text_embeddings` returned are similar to pooled output returned from a transformer. If you want embeddings for contrastive loss or retrieval use a FLAVA model's `image_projection` and `text_projection` layers on `image_embeddings` and `text_embeddings` respectively. Args: loss (`torch.FloatTensor`, *optional*, returned when `return_loss` is True): Total loss calculated for this model. loss_info (`FlavaLosses`): Detailed info for FLAVA Pretraining losses. Check `FlavaLosses` class description for the information on the keys. image_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `pixel_values` are present): The image embeddings which are basically the pooled output of [`FlavaImageModel`]. image_output (`BaseModelOutputWithPooling`, *optional*, returned when `pixel_values` are present): The output of the [`FlavaImageModel`]. text_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids` are present): The text embeddings which are basically the pooled output of [`FlavaTextModel`]. text_output (`BaseModelOutputWithPooling`, *optional*, returned when `input_ids` are present): The output of the [`FlavaTextModel`]. multimodal_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids` and `pixel_values` are present and `skip_unmasked_multimodal_encoder` is `None` or `False`): The multimodal embeddings which are basically the pooled output of [`FlavaTextModel`]. multimodal_output (`BaseModelOutputWithPooling`, returned when `input_ids` and `pixel_values` are present and `skip_unmasked_multimodal_encoder` is `None` or `False`): The output of the [`FlavaMultimodalModel`]. image_masked_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `pixel_values` are present): The image embeddings which are basically the pooled output of [`FlavaImageModel`]. Uses `bool_masked_pos` to create masked images. image_masked_output (`BaseModelOutputWithPooling`, *optional*, returned when `pixel_values` are present): The output of the [`FlavaImageModel`]. Uses `bool_masked_pos` to create masked images. text_masked_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids_masked` are present): The text embeddings which are basically the pooled output of [`FlavaTextModel`]. text_masked_output (`BaseModelOutputWithPooling`, *optional*, returned when `input_ids_masked` are present): The output of the [`FlavaTextModel`]. multimodal_masked_embeddings (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when `input_ids` and `pixel_values` are present): The multimodal embeddings which are basically the pooled output of [`FlavaTextModel`]. multimodal_masked_output (`BaseModelOutputWithPooling`, returned when `input_ids_masked` and `pixel_values` are present): The output of the [`FlavaMultimodalModel`]. mim_logits (`torch.FloatTensor` of shape `(batch_size, num_image_patches, image_vocab_size)` or of shape `(total_masked_patches, image_vocab_size)` , *optional*, returned when `pixel_values` are present and `input_ids_masked` are not): The logits for MIM unimodal loss. Uses `book_masked_pos` to get masked patches. The flattened output is returned when `bool_masked_pos` has some of the patches masked. mlm_logits (`torch.FloatTensor` of shape `(batch_size, text_seq_length, text_vocab_size)` or of shape `(total_masked_seq_length, text_vocab_size)`, *optional*, returned when `input_ids_masked` are present and `pixel_values` are not): The logits for MLM unimodal loss. The flattened output is returned when `input_ids_masked` has some of the tokens masked. itm_logits (`torch.FloatTensor` of shape `(batch_size, 2)`, *optional*, returned when `input_ids_masked` and `pixel_values` are present): The logits for ITM loss. Note that ITM loss is calculated on masked pairs in FLAVA. mmm_image_logits (`torch.FloatTensor` of shape `(batch_size, num_image_patches, image_vocab_size)` or of shape`(total_masked_patches, image_vocab_size)`, *optional*, returned when `pixel_values` and `input_ids_masked` are present): The logits for MMM image multimodal loss. Uses `book_masked_pos` to get masked patches. The flattened output is returned when `bool_masked_pos` has some of the patches masked. mmm_text_logits (`torch.FloatTensor` of shape `(batch_size, text_seq_length, text_vocab_size)` or of shape `(`(total_masked_seq_length, text_vocab_size)`), *optional*, returned when `pixel_values` and `input_ids_masked` are present): The logits for MMM text multimodal loss. The flattened output is returned when `input_ids_masked` has some of the tokens masked. contrastive_logits_per_image (`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`): The scaled dot product scores between `image_embeddings` and `text_embeddings` but passed through FLAVA's `image_projection` and `text_projection` layers respectively. This represents the image-text similarity scores. This is calculated on unmasked images and texts. contrastive_logits_per_text (`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`): The scaled dot product scores between `text_embeddings` and `image_embeddings` but passed through FLAVA's `text_projection` and `image_projection` layers respectively. This is calculated on unmasked images and texts. """ loss: Optional[torch.FloatTensor] = None loss_info: FlavaLosses = None image_embeddings: Optional[torch.FloatTensor] = None image_output: Optional[BaseModelOutputWithPooling] = None text_embeddings: Optional[torch.FloatTensor] = None text_output: Optional[BaseModelOutputWithPooling] = None multimodal_embeddings: Optional[torch.FloatTensor] = None multimodal_output: Optional[BaseModelOutputWithPooling] = None image_masked_embeddings: Optional[torch.FloatTensor] = None image_masked_output: Optional[BaseModelOutputWithPooling] = None text_masked_embeddings: Optional[torch.FloatTensor] = None text_masked_output: Optional[BaseModelOutputWithPooling] = None multimodal_masked_embeddings: Optional[torch.FloatTensor] = None multimodal_masked_output: Optional[BaseModelOutputWithPooling] = None mim_logits: Optional[torch.FloatTensor] = None mlm_logits: Optional[torch.FloatTensor] = None itm_logits: Optional[torch.FloatTensor] = None contrastive_logits_per_image: Optional[torch.FloatTensor] = None contrastive_logits_per_text: Optional[torch.FloatTensor] = None mmm_image_logits: Optional[torch.FloatTensor] = None mmm_text_logits: Optional[torch.FloatTensor] = None def to_tuple(self) -> Tuple[Any]: transformer_outputs = [ "text_output", "image_output", "multimodal_output", "text_masked_output", "image_masked_output", "multimodal_masked_output", ] return tuple(self[k] if k not in transformer_outputs else getattr(self, k).to_tuple() for k in self.keys()) # Based on timm implementation, which can be found here: # https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/image_transformer.py class FlavaImageEmbeddings(nn.Module): """ Construct the CLS token, position and patch embeddings. Optionally, also the mask token. """ def __init__(self, config: FlavaImageConfig, use_mask_token: bool = False) -> None: super().__init__() use_mask_token = use_mask_token or config.mask_token self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) if use_mask_token else None self.patch_embeddings = PatchEmbeddings( image_size=config.image_size, patch_size=config.patch_size, num_channels=config.num_channels, embed_dim=config.hidden_size, ) num_patches = self.patch_embeddings.num_patches self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.hidden_size)) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.config = config def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor: """ This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution images. Source: https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/image_transformer.py#L174 """ npatch = embeddings.shape[1] - 1 num_pos = self.position_embeddings.shape[1] - 1 if npatch == num_pos and height == width: return self.position_embeddings class_pos_embed = self.position_embeddings[:, 0] patch_pos_embed = self.position_embeddings[:, 1:] dim = embeddings.shape[-1] num_h_patches = height // self.config.patch_size num_w_patches = width // self.config.patch_size # we add a small number to avoid floating point error in the interpolation # see discussion at https://github.com/facebookresearch/dino/issues/8 num_h_patches, num_w_patches = num_h_patches + 0.1, num_w_patches + 0.1 patch_pos_embed = nn.functional.interpolate( patch_pos_embed.reshape(1, int(math.sqrt(num_pos)), int(math.sqrt(num_pos)), dim).permute(0, 3, 1, 2), scale_factor=(num_h_patches / math.sqrt(num_pos), num_w_patches / math.sqrt(num_pos)), mode="bicubic", align_corners=False, ) if int(num_h_patches) != patch_pos_embed.shape[-2] or int(num_w_patches) != patch_pos_embed.shape[-1]: raise ValueError( f"Number of patches for images ({int(num_h_patches), int(num_w_patches)}) don't match the " f"shape of position embedding ({patch_pos_embed.shape[-2], patch_pos_embed.shape[-1]})" ) patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1) def forward( self, pixel_values: torch.Tensor, bool_masked_pos: Optional[torch.BoolTensor] = None, interpolate_pos_encoding: bool = False, ) -> torch.Tensor: batch_size, num_channels, height, width = pixel_values.shape embeddings = self.patch_embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding) batch_size, seq_len, _ = embeddings.size() if bool_masked_pos is not None: mask_tokens = self.mask_token.expand(batch_size, seq_len, -1) # B X H X W = B X HW if bool_masked_pos.dim() == 3: bool_masked_pos = bool_masked_pos.view(bool_masked_pos.size(0), -1) # replace the masked visual tokens by mask_tokens mask = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens) embeddings = embeddings * (1.0 - mask) + mask_tokens * mask # add the [CLS] token to the embedded patch tokens cls_tokens = self.cls_token.expand(batch_size, -1, -1) embeddings = torch.cat((cls_tokens, embeddings), dim=1) # add positional encoding to each token if interpolate_pos_encoding: embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width) else: embeddings = embeddings + self.position_embeddings embeddings = self.dropout(embeddings) return embeddings # Based on timm implementation, which can be found here: # https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/image_transformer.py class PatchEmbeddings(nn.Module): """ Image to Patch Embedding. """ def __init__( self, image_size: int = 224, patch_size: Union[int, Tuple[int, int]] = 16, num_channels: int = 3, embed_dim: int = 768, ): super().__init__() if not isinstance(image_size, collections.abc.Iterable): image_size = (image_size, image_size) if not isinstance(patch_size, collections.abc.Iterable): patch_size = (patch_size, patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.image_size = image_size self.patch_size = patch_size self.num_patches = num_patches self.projection = nn.Conv2d(num_channels, embed_dim, kernel_size=patch_size, stride=patch_size) def forward(self, pixel_values: torch.Tensor, interpolate_pos_encoding: bool = False) -> torch.Tensor: batch_size, num_channels, height, width = pixel_values.shape if not interpolate_pos_encoding: if height != self.image_size[0] or width != self.image_size[1]: raise ValueError( f"Input image size ({height}*{width}) doesn't match model" f" ({self.image_size[0]}*{self.image_size[1]})." ) x = self.projection(pixel_values).flatten(2).transpose(1, 2) return x class FlavaTextEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) self.register_buffer( "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False ) def forward( self, input_ids: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, ): input_shape = input_ids.size() seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[:, :seq_length] # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves # issue #5664 if token_type_ids is None: if hasattr(self, "token_type_ids"): buffered_token_type_ids = self.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) inputs_embeds = self.word_embeddings(input_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class FlavaSelfAttention(nn.Module): def __init__(self, config: FlavaPossibleConfigs) -> None: super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size {config.hidden_size,} is not a multiple of the number of attention " f"heads {config.num_attention_heads}." ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: mixed_query_layer = self.query(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in BertModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs class FlavaSelfOutput(nn.Module): """ The residual connection is defined in FlavaLayer (same as ViTLayer) instead of here (as is the case with other models), due to the layernorm applied before each block. """ def __init__(self, config: FlavaPossibleConfigs) -> None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states class FlavaAttention(nn.Module): def __init__(self, config: FlavaPossibleConfigs) -> None: super().__init__() self.attention = FlavaSelfAttention(config) self.output = FlavaSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads: Set[int]) -> None: if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads ) # Prune linear layers self.attention.query = prune_linear_layer(self.attention.query, index) self.attention.key = prune_linear_layer(self.attention.key, index) self.attention.value = prune_linear_layer(self.attention.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: self_outputs = self.attention( hidden_states, attention_mask=attention_mask, head_mask=head_mask, output_attentions=output_attentions ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs class FlavaIntermediate(nn.Module): def __init__(self, config: FlavaPossibleConfigs) -> None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act # Copied from transformers.models.vit.modeling_vit.ViTIntermediate.forward def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class FlavaOutput(nn.Module): def __init__(self, config: FlavaPossibleConfigs) -> None: super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) # Copied from transformers.models.vit.modeling_vit.ViTOutput.forward def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = hidden_states + input_tensor return hidden_states class FlavaLayer(nn.Module): """This corresponds to the Block class in the timm implementation.""" def __init__(self, config: FlavaPossibleConfigs) -> None: super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = FlavaAttention(config) self.intermediate = FlavaIntermediate(config) self.output = FlavaOutput(config) # TODO: Check fp32 layer norm possiblity self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: self_attention_outputs = self.attention( self.layernorm_before(hidden_states), # in ViT, layernorm is applied before self-attention attention_mask=attention_mask, head_mask=head_mask, output_attentions=output_attentions, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights # first residual connection hidden_states = attention_output + hidden_states # in ViT, layernorm is also applied after self-attention layer_output = self.layernorm_after(hidden_states) layer_output = self.intermediate(layer_output) # second residual connection is done here layer_output = self.output(layer_output, hidden_states) outputs = (layer_output,) + outputs return outputs class FlavaEncoder(nn.Module): def __init__(self, config: FlavaConfig) -> None: super().__init__() self.config = config self.layer = nn.ModuleList([FlavaLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ) -> Union[tuple, BaseModelOutput]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(layer_module), hidden_states, attention_mask, layer_head_mask, ) else: layer_outputs = layer_module(hidden_states, attention_mask, layer_head_mask, output_attentions) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions ) class FlavaPooler(nn.Module): def __init__(self, config: FlavaPossibleConfigs): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states: torch.Tensor): # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output FLAVA_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`{config}`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ FLAVA_INPUTS_DOCSTRING_COMMON = r""" attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ FLAVA_IMAGE_INPUTS_DOCSTRING_BASE = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`FlavaImageProcessor.__call__`] for details. bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, image_num_patches)`): Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). interpolate_pos_encoding (`bool`, *optional*): Whether to interpolate the pre-trained position encodings. """ FLAVA_IMAGE_INPUTS_DOCSTRING = FLAVA_IMAGE_INPUTS_DOCSTRING_BASE + FLAVA_INPUTS_DOCSTRING_COMMON FLAVA_TEXT_INPUTS_DOCSTRING_BASE = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) """ FLAVA_TEXT_INPUTS_DOCSTRING = FLAVA_TEXT_INPUTS_DOCSTRING_BASE + FLAVA_INPUTS_DOCSTRING_COMMON FLAVA_MULTIMODAL_INPUTS_DOCSTRING = ( r""" Args: hidden_states (`torch.FloatTensor` of shape `(batch_size, image_num_patches + text_seq_len, hidden_size)`): The concatenated hidden states of unimodal encoders. """ + FLAVA_INPUTS_DOCSTRING_COMMON ) FLAVA_MODEL_INPUTS_DOCSTRING_BASE = r""" Args: skip_multimodal_encoder (*bool*, *optional*): Skip any calculations for multimodal encoder. Useful if multimodal encoding is not going to be used. """ FLAVA_MODEL_INPUTS_DOCSTRING = ( FLAVA_IMAGE_INPUTS_DOCSTRING_BASE + FLAVA_TEXT_INPUTS_DOCSTRING_BASE + FLAVA_INPUTS_DOCSTRING_COMMON + FLAVA_MODEL_INPUTS_DOCSTRING_BASE ) FLAVA_PRETRAINING_INPUTS_DOCSTRING = ( r""" Args: input_ids_masked (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. These ones are the masked version of the original task to be used with MLM. Indices can be obtained using [`AutoTokenizer`] along with [`DataCollatorForMaskedLanguageModeling`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) """ + FLAVA_TEXT_INPUTS_DOCSTRING_BASE + FLAVA_IMAGE_INPUTS_DOCSTRING_BASE + r""" image_attention_mask (`torch.FloatTensor` of shape `({1})`, *optional*): Mask to avoid performing attention on padding token indices specifically for images. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) skip_unmasked_multimodal_encoder (*bool*, *optional*): Skip any calculations for multimodal encoder for unmasked inputs. FLAVA pretraining doesn't need unmasked multimodal embeddings or outputs as of now. mlm_labels (`torch.LongTensor` of shape `(batch_size, text_seq_len)`, *optional*): Labels for computing the left-to-right language and multimodal masked modeling loss (next word prediction). Indices should be in `[-100, 0, ..., text_config.vocab_size - 1]` (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., text_config.vocab_size - 1]`. mim_labels (`torch.LongTensor` of shape `(batch_size, image_num_patches)`, *optional*): Labels for computing the image and multimodal masked modeling loss. Indices should be in `[-100, 0, ..., image_config.vocab_size - 1]`. Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., image_config.vocab_size - 1]`. If not passed, they are generated automatically using the image codebook assigned to the model. By default, it uses [`FlavaImageCodebook`]. See [`FlavaImageCodebook`] to understand how to generate mim_labels. itm_labels (`torch.LongTensor` of shape `(batch_size, 1)`, *optional*): Labels for computing the image-text matching loss. 0 means the pairs don't match and 1 means they match. The pairs with 0 will be skipped for calculation of MMM and global contrastive losses as well. return_loss (`bool`, *optional*, default to None): Whether to return calculated loss or not. """ + FLAVA_INPUTS_DOCSTRING_COMMON ) FLAVA_PRETRAINING_START_DOCSTRING_EXTRA = r""" Parameters: image_codebook ([`nn.Module`]): If passed, the image codebook will be set to this. Otherwise. it will be initialized using the image_codebook_config defined in the config first as the first parameter. """ class FlavaPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = FlavaConfig base_model_prefix = "flava" supports_gradient_checkpointing = True def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None: """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def _set_gradient_checkpointing(self, module: FlavaEncoder, value: bool = False) -> None: if isinstance(module, FlavaEncoder): module.gradient_checkpointing = value @add_start_docstrings( "The bare FLAVA Image Model transformer outputting raw hidden-states without any specific head on top.", FLAVA_START_DOCSTRING.format(config="FlavaImageConfig"), ) class FlavaImageModel(FlavaPreTrainedModel): config_class = FlavaImageConfig # This override allows us to load FlavaImageModel from FlavaModel/FlavaForPreTraining checkpoints. base_model_prefix = "flava.image_model" main_input_name = "pixel_values" def __init__(self, config: FlavaImageConfig, add_pooling_layer: bool = True): super().__init__(config) self.config = config self.embeddings = FlavaImageEmbeddings(config) self.encoder = FlavaEncoder(config) self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.pooler = FlavaPooler(config) if add_pooling_layer else None self.post_init() def get_input_embeddings(self) -> nn.Module: return self.embeddings.patch_embeddings def set_input_embeddings(self, value: nn.Module): self.embeddings.patch_embeddings = value def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None: """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(FLAVA_IMAGE_INPUTS_DOCSTRING.format("batch_size, image_num_patches")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPooling, config_class=_CONFIG_CLASS_FOR_IMAGE_MODEL_DOC, modality="vision", expected_output=_EXPECTED_IMAGE_OUTPUT_SHAPE, ) def forward( self, pixel_values: Optional[torch.Tensor] = None, bool_masked_pos: Optional[torch.BoolTensor] = None, interpolate_pos_encoding: Optional[bool] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, BaseModelOutputWithPooling]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( pixel_values, bool_masked_pos=bool_masked_pos, interpolate_pos_encoding=interpolate_pos_encoding ) encoder_outputs = self.encoder( embedding_output, attention_mask=attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] sequence_output = self.layernorm(sequence_output) pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings( "The bare FLAVA Text Model transformer outputting raw hidden-states without any specific head on top.", FLAVA_START_DOCSTRING.format(config="FlavaTextConfig"), ) class FlavaTextModel(FlavaPreTrainedModel): config_class = FlavaTextConfig # This override allows us to load FlavaTextModel from FlavaModel/FlavaForPreTraining checkpoints. base_model_prefix = "flava.text_model" def __init__(self, config: FlavaTextConfig, add_pooling_layer: bool = True): super().__init__(config) self.config = config self.embeddings = FlavaTextEmbeddings(config) self.encoder = FlavaEncoder(config) self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.pooler = FlavaPooler(config) if add_pooling_layer else None self.post_init() def get_input_embeddings(self) -> PatchEmbeddings: return self.embeddings.word_embeddings def set_input_embeddings(self, value: nn.Module): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None: """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(FLAVA_TEXT_INPUTS_DOCSTRING.format("batch_size, text_seq_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPooling, config_class=_CONFIG_CLASS_FOR_TEXT_MODEL_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, BaseModelOutputWithPooling]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is None: raise ValueError("You have to specify input_ids") input_shape = input_ids.size() if attention_mask is None: attention_mask = torch.ones(input_shape, device=input_ids.device) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) extended_attention_mask: torch.Tensor = self.get_extended_attention_mask( attention_mask, input_shape, input_ids.device ) embedding_output = self.embeddings( input_ids=input_ids, token_type_ids=token_type_ids, position_ids=position_ids, ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] sequence_output = self.layernorm(sequence_output) pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings( "The bare FLAVA Multimodal Model transformer outputting raw hidden-states without any specific head on top.", FLAVA_START_DOCSTRING.format(config="FlavaMultimodalConfig"), ) class FlavaMultimodalModel(FlavaPreTrainedModel): config_class = FlavaMultimodalConfig # This override allows us to load FlavaMultimodalModel from FlavaModel/FlavaForPreTraining checkpoints. base_model_prefix = "flava.multimodal_model" main_input_name = "hidden_states" def __init__(self, config: FlavaMultimodalConfig, add_pooling_layer=True): super().__init__(config) self.config = config self.use_cls_token = self.config.use_cls_token if self.use_cls_token: self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) self.encoder = FlavaEncoder(config) self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.pooler = FlavaPooler(config) if add_pooling_layer else None self.post_init() def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None: """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward( FLAVA_MULTIMODAL_INPUTS_DOCSTRING.format("batch_size, image_num_patches + text_seq_len") ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPooling, config_class=_CONFIG_CLASS_FOR_MULTIMODAL_MODEL_DOC, ) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, BaseModelOutputWithPooling]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict batch_size, seq_length, _ = hidden_states.size() if self.use_cls_token: cls_tokens = self.cls_token.expand(batch_size, -1, -1) hidden_states = torch.cat((cls_tokens, hidden_states), dim=1) seq_length += 1 if attention_mask is None: attention_mask = torch.ones((batch_size, seq_length), device=hidden_states.device) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) extended_attention_mask: torch.Tensor = self.get_extended_attention_mask( attention_mask, (batch_size, seq_length), hidden_states.device ) encoder_outputs = self.encoder( hidden_states, attention_mask=extended_attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] sequence_output = self.layernorm(sequence_output) pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings( "The bare FLAVA Model transformer outputting raw hidden-states without any specific head on top.", FLAVA_START_DOCSTRING.format(config="FlavaConfig"), ) class FlavaModel(FlavaPreTrainedModel): config_class = FlavaConfig def __init__(self, config: FlavaConfig): super().__init__(config) if not isinstance(config.text_config, FlavaTextConfig): raise ValueError( "config.text_config is expected to be of type FlavaTextConfig but is of type" f" {type(config.text_config)}." ) if not isinstance(config.image_config, FlavaImageConfig): raise ValueError( "config.image_config is expected to be of type FlavaImageConfig but is of type" f" {type(config.image_config)}." ) if not isinstance(config.multimodal_config, FlavaMultimodalConfig): raise ValueError( "config.multimodal_config is expected to be of type FlavaMultimodalConfig but " + f"is of type {type(config.multimodal_config)}." ) text_config = config.text_config image_config = config.image_config multimodal_config = config.multimodal_config self.projection_dim = config.projection_dim self.text_hidden_size = text_config.hidden_size self.image_hidden_size = image_config.hidden_size self.mm_hidden_size = multimodal_config.hidden_size self.text_model = FlavaTextModel(text_config) self.image_model = FlavaImageModel(image_config) self.multimodal_model = FlavaMultimodalModel(multimodal_config) self.image_projection = nn.Linear(self.image_hidden_size, self.projection_dim) self.text_projection = nn.Linear(self.text_hidden_size, self.projection_dim) self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value)) self.image_to_mm_projection = nn.Linear(self.image_hidden_size, self.mm_hidden_size) self.text_to_mm_projection = nn.Linear(self.text_hidden_size, self.mm_hidden_size) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(FLAVA_TEXT_INPUTS_DOCSTRING.format("batch_size, text_seq_length")) def get_text_features( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> torch.FloatTensor: r""" Returns: text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying the projection layer to the pooled output of [`FlavaTextModel`]. Examples: ```python >>> from transformers import AutoProcessor, FlavaModel >>> model = FlavaModel.from_pretrained("{0}") >>> processor = AutoProcessor.from_pretrained("{0}") >>> inputs = processor( ... text=["a photo of a cat", "a photo of a dog"], max_length=77, padding="max_length", return_tensors="pt" ... ) >>> text_features = model.get_text_features(**inputs) ```""".format( _CHECKPOINT_FOR_DOC ) text_outputs = self.text_model( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = text_outputs[0] # last_hidden_state text_features = self.text_projection(pooled_output) return text_features @add_start_docstrings_to_model_forward(FLAVA_IMAGE_INPUTS_DOCSTRING.format("batch_size, image_num_patches")) def get_image_features( self, pixel_values: Optional[torch.Tensor] = None, bool_masked_pos: Optional[torch.BoolTensor] = None, interpolate_pos_encoding: Optional[bool] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> torch.FloatTensor: r""" Returns: image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by applying the projection layer to the pooled output of [`FlavaImageModel`]. Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, FlavaModel >>> model = FlavaModel.from_pretrained("{0}") >>> processor = AutoProcessor.from_pretrained("{0}") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, return_tensors="pt") >>> image_features = model.get_image_features(**inputs) ```""".format( _CHECKPOINT_FOR_DOC ) image_outputs = self.image_model( pixel_values=pixel_values, bool_masked_pos=bool_masked_pos, attention_mask=attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, interpolate_pos_encoding=interpolate_pos_encoding, return_dict=return_dict, ) pooled_output = image_outputs[0] # last_hidden_state image_features = self.image_projection(pooled_output) return image_features @add_start_docstrings_to_model_forward( FLAVA_MODEL_INPUTS_DOCSTRING.format("batch_size, image_num_patches + text_seq_len") ) @replace_return_docstrings(output_type=FlavaModelOutput, config_class=FlavaConfig) def forward( self, input_ids: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, bool_masked_pos: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, image_attention_mask: Optional[torch.Tensor] = None, skip_multimodal_encoder: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: bool = True, return_dict: Optional[bool] = None, ) -> Union[Tuple, FlavaOutput]: r""" Returns: Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, FlavaModel >>> model = FlavaModel.from_pretrained("facebook/flava-full") >>> processor = AutoProcessor.from_pretrained("facebook/flava-full") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(text=["a photo of a cat"], images=image, return_tensors="pt", padding=True) >>> outputs = model(**inputs) >>> logits_per_image = outputs.contrastive_logits_per_image # this is the image-text similarity score >>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities ``` """ return_dict = return_dict if return_dict is not None else self.config.return_dict if not output_hidden_states: raise ValueError("FLAVA model requires hidden states to work. Please set `output_hidden_states=True`") image_embeddings = None image_states = None image_mm_projection = None image_output = None if pixel_values is not None: image_output = self.image_model( pixel_values=pixel_values, bool_masked_pos=bool_masked_pos, attention_mask=image_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) image_embeddings, image_states = image_output[0], image_output[2] # Note that these states don't use final layernorm in the transformer model image_mm_projection = self.image_to_mm_projection(image_states[-1]) text_embeddings = None text_states = None text_mm_projection = None text_output = None if input_ids is not None: text_output = self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, token_type_ids=token_type_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) text_embeddings, text_states = text_output[0], text_output[2] # Note that these states don't use final layernorm in the transformer model text_mm_projection = self.text_to_mm_projection(text_states[-1]) multimodal_embeddings = None multimodal_output = None if image_mm_projection is not None and text_mm_projection is not None and not skip_multimodal_encoder: multimodal_input = torch.cat([image_mm_projection, text_mm_projection], dim=1) multimodal_output = self.multimodal_model(multimodal_input, return_dict=return_dict) multimodal_embeddings = multimodal_output[0] if not return_dict: return ( image_embeddings, image_output, text_embeddings, text_output, multimodal_embeddings, multimodal_output, ) return FlavaModelOutput( image_embeddings=image_embeddings, image_output=image_output, text_embeddings=text_embeddings, text_output=text_output, multimodal_embeddings=multimodal_embeddings, multimodal_output=multimodal_output, ) class FlavaImageCodebookResPath(nn.Module): def __init__(self, in_size: int, out_size: int, **kwargs): super().__init__() hid_size = out_size // 4 path = OrderedDict() path["relu_1"] = nn.ReLU() path["conv_1"] = nn.Conv2d(in_size, hid_size, kernel_size=3, padding=1) path["relu_2"] = nn.ReLU() path["conv_2"] = nn.Conv2d(hid_size, hid_size, kernel_size=3, padding=1) path["relu_3"] = nn.ReLU() path["conv_3"] = nn.Conv2d(hid_size, hid_size, kernel_size=3, padding=1) path["relu_4"] = nn.ReLU() path["conv_4"] = nn.Conv2d(hid_size, out_size, kernel_size=1, padding=0) self.path = nn.Sequential(path) def forward(self, x: torch.Tensor) -> torch.Tensor: return self.path(x) class FlavaImageCodebookBlock(nn.Module): def __init__(self, in_size: int, out_size: int, num_layers: int, **kwargs): super().__init__() self.post_gain = 1 / (num_layers**2) if in_size != out_size: self.id_path = nn.Conv2d(in_size, out_size, kernel_size=1, padding=0) else: self.id_path = nn.Identity() self.res_path = FlavaImageCodebookResPath(in_size, out_size) def forward(self, x: torch.Tensor) -> torch.Tensor: return self.id_path(x) + self.post_gain * self.res_path(x) class FlavaImageCodebookLayerGroup(nn.Module): def __init__(self, num_blocks: int, num_layers: int, in_size: int, out_size: int, use_pool: bool = True): super().__init__() blocks = OrderedDict() for i in range(num_blocks): if i == 0: blocks[f"block_{i+1}"] = FlavaImageCodebookBlock(in_size, out_size, num_layers) else: blocks[f"block_{i+1}"] = FlavaImageCodebookBlock(out_size, out_size, num_layers) if use_pool: blocks["pool"] = nn.MaxPool2d(kernel_size=2) self.group = nn.Sequential(blocks) def forward(self, x: torch.Tensor) -> torch.Tensor: return self.group(x) # Inspired by DALLE Encoder in https://github.com/openai/DALL-E/blob/5be4b236bc3ade6943662354117a0e83752cc322/dall_e/encoder.py#L42 @add_start_docstrings( """ The FLAVA's image codebook model inspired from DALL-E's original encoder. Outputs raw hidden states and can be used to generate image tokens for an image based on DALL-E's vocab. Used to generate labels for MIM. Use `get_codebook_indices` to get image tokens for an image. """, FLAVA_START_DOCSTRING.format(config="FlavaImageCodebookConfig"), ) class FlavaImageCodebook(FlavaPreTrainedModel): base_model_prefix = "" config_class = FlavaImageCodebookConfig main_input_name = "pixel_values" supports_gradient_checkpointing = False def __init__( self, config: FlavaImageCodebookConfig, **kwargs: Any, ): super().__init__(config) self.config = config self.num_groups = config.num_groups self.input_channels = config.input_channels self.num_blocks_per_group = config.num_blocks_per_group self.hidden_size = config.hidden_size self.vocab_size = config.vocab_size num_layers = self.num_groups * self.num_blocks_per_group output_blocks = OrderedDict() output_blocks["relu"] = nn.ReLU() output_blocks["conv"] = nn.Conv2d(8 * self.hidden_size, self.vocab_size, kernel_size=1, padding=0) blocks = OrderedDict() blocks["input"] = nn.Conv2d(self.input_channels, 1 * self.hidden_size, kernel_size=7, padding=3) blocks["group_1"] = FlavaImageCodebookLayerGroup( self.num_blocks_per_group, num_layers, 1 * self.hidden_size, 1 * self.hidden_size ) blocks["group_2"] = FlavaImageCodebookLayerGroup( self.num_blocks_per_group, num_layers, 1 * self.hidden_size, 2 * self.hidden_size ) blocks["group_3"] = FlavaImageCodebookLayerGroup( self.num_blocks_per_group, num_layers, 2 * self.hidden_size, 4 * self.hidden_size ) blocks["group_4"] = FlavaImageCodebookLayerGroup( self.num_blocks_per_group, num_layers, 4 * self.hidden_size, 8 * self.hidden_size, use_pool=False ) blocks["output"] = nn.Sequential(output_blocks) self.blocks = nn.Sequential(blocks) self.post_init() if self.config.freeze: for param in self.parameters(): param.requires_grad = False def get_codebook_indices(self, pixel_values: torch.Tensor) -> torch.Tensor: """ Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Codebook pixel values can be obtained using [`AutoImageProcessor`] by passing `return_codebook_pixels=True`. See [`FlavaImageProcessor.__call__`] for details. Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoImageProcessor, FlavaImageCodebook >>> model = FlavaImageCodebook.from_pretrained("{0}") >>> image_processor = AutoImageProcessor.from_pretrained("{0}") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = image_processor([image], return_codebook_pixels=True, return_tensors="pt") >>> inputs = dict(pixel_values=inputs.codebook_pixel_values) >>> outputs = model.get_codebook_indices(**inputs) ``` """.format( _CHECKPOINT_FOR_CODEBOOK_DOC ) z_logits = self.blocks(pixel_values) return torch.argmax(z_logits, axis=1) def get_codebook_probs(self, pixel_values: torch.Tensor) -> torch.Tensor: z_logits = self.blocks(pixel_values) return nn.Softmax(dim=1)(z_logits) def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: """ Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Codebook pixel values can be obtained using [`AutoImageProcessor`] by passing `return_codebook_pixels=True`. See [`FlavaImageProcessor.__call__`] for details. Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoImageProcessor, FlavaImageCodebook >>> model = FlavaImageCodebook.from_pretrained("{0}") >>> image_processor = AutoImageProcessor.from_pretrained("{0}") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = image_processor([image], return_codebook_pixels=True, return_tensors="pt") >>> inputs = dict(pixel_values=inputs.codebook_pixel_values) >>> outputs = model(**inputs) >>> print(outputs.shape) (1, 196) ``` """.format( _CHECKPOINT_FOR_CODEBOOK_DOC ) if len(pixel_values.shape) != 4: raise ValueError(f"input shape {pixel_values.shape} is not 4d") if pixel_values.shape[1] != self.input_channels: raise ValueError(f"input has {pixel_values.shape[1]} channels but model built for {self.input_channels}") return self.blocks(pixel_values) class FlavaPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states class FlavaMaskedPredictionHead(nn.Module): def __init__(self, config, weight=None): super().__init__() self.config = config self.transform = FlavaPredictionHeadTransform(config) self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) if weight is not None: self.decoder.weight = weight # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, x): x = self.transform(x) x = self.decoder(x) return x class FlavaITMHead(nn.Module): def __init__(self, config): super().__init__() self.config = config self.pooler = FlavaPooler(config) self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, x): x = self.pooler(x) x = self.seq_relationship(x) return x class FlavaGlobalContrastiveHead(nn.Module): def __init__(self, config): super().__init__() self.config = config self.global_backprop_contrastive = config.global_backprop_contrastive def forward(self, image_embeddings, text_embeddings, logit_scale): temperature = torch.exp(logit_scale) if not torch.distributed.is_available() or not torch.distributed.is_initialized(): labels = torch.arange(image_embeddings.size(0), device=image_embeddings.device) image_embeddings_all = [image_embeddings] text_embeddings_all = [text_embeddings] else: local_batch_size = image_embeddings.size(0) world_size = torch.distributed.get_world_size() if self.global_backprop_contrastive: # `torch.distributed.nn.functional.all_gather` does backprop on all active workers # whereas `torch.distributed.all_gather` does only backpropagates on the current worker. image_embeddings_all = torch.distributed.nn.functional.all_gather(image_embeddings) text_embeddings_all = torch.distributed.nn.functional.all_gather(text_embeddings) else: image_embeddings_all = [torch.zeros_like(text_embeddings) for _ in range(world_size)] text_embeddings_all = [torch.zeros_like(image_embeddings) for _ in range(world_size)] torch.distributed.all_gather(image_embeddings_all, image_embeddings) torch.distributed.all_gather(text_embeddings_all, text_embeddings) labels = local_batch_size * torch.distributed.get_rank() + torch.arange( local_batch_size, device=image_embeddings.device ) image_embeddings_all = torch.cat(image_embeddings_all) text_embeddings_all = torch.cat(text_embeddings_all) logits_per_image = torch.matmul(image_embeddings, text_embeddings_all.transpose(0, 1)) * temperature logits_per_text = torch.matmul(text_embeddings, image_embeddings_all.transpose(0, 1)) * temperature return logits_per_image, logits_per_text, labels @add_start_docstrings( """ The FLAVA model for pretraining which outputs losses, embeddings, logits and transformer outputs. """, FLAVA_START_DOCSTRING.format(config="FlavaConfig") + FLAVA_PRETRAINING_START_DOCSTRING_EXTRA, ) class FlavaForPreTraining(FlavaPreTrainedModel): # Those are linked to xxx.bias _tied_weights_keys = [ "mmm_text_head.decoder.bias", "mmm_image_head.decoder.bias", "mlm_head.decoder.bias", "mim_head.decoder.bias", ] def __init__(self, config: FlavaConfig, image_codebook: Optional[nn.Module] = None): super().__init__(config) self.flava = FlavaModel(config) self.image_codebook = image_codebook if self.image_codebook is None and config.init_codebook: self.image_codebook = FlavaImageCodebook(config.image_codebook_config) # Levarage text and image encoder configs to create the masked # head since it has the right vocab self.mim_head = FlavaMaskedPredictionHead(config.image_config) self.mlm_head = FlavaMaskedPredictionHead(config.text_config) self.itm_head = FlavaITMHead(config) self.mmm_image_head = FlavaMaskedPredictionHead(config.image_config) self.mmm_text_head = FlavaMaskedPredictionHead(config.text_config) self.global_contrastive_head = FlavaGlobalContrastiveHead(config) self.image_vocab_size = config.image_config.vocab_size self.text_vocab_size = config.text_config.vocab_size self.mlm_weight = config.mlm_weight self.mim_weight = config.mim_weight self.global_contrastive_weight = config.global_contrastive_weight self.ce_ignore_index = config.ce_ignore_index self.itm_weight = config.itm_weight self.mmm_image_weight = config.mmm_image_weight self.mmm_text_weight = config.mmm_text_weight self.skip_unmasked_multimodal_encoder = config.skip_unmasked_multimodal_encoder self.post_init() def _resize_to_2d(self, x: torch.Tensor): if x.dim() > 2: x = x.view(x.size(0), -1) return x @add_start_docstrings_to_model_forward( FLAVA_PRETRAINING_INPUTS_DOCSTRING.format("batch_size, text_seq_len", "batch_size, image_num_patches") ) @replace_return_docstrings(output_type=FlavaForPreTrainingOutput, config_class=FlavaConfig) def forward( self, input_ids: Optional[torch.LongTensor] = None, input_ids_masked: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, codebook_pixel_values: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, bool_masked_pos: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, image_attention_mask: Optional[torch.Tensor] = None, skip_unmasked_multimodal_encoder: bool = None, mlm_labels: Optional[torch.Tensor] = None, mim_labels: Optional[torch.Tensor] = None, itm_labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: bool = True, return_dict: Optional[bool] = None, return_loss: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], FlavaForPreTrainingOutput]: """ Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import FlavaForPreTraining, AutoProcessor >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> model = FlavaForPreTraining.from_pretrained("facebook/flava-full") >>> processor = AutoProcessor.from_pretrained("facebook/flava-full") >>> text = ["a photo of a cat"] >>> inputs = processor( ... images=[image], ... text=text, ... return_masks=True, ... return_codebook_pixels=True, ... padding=True, ... max_length=77, ... return_tensors="pt", ... ) >>> output = model(**inputs) ``` Return: """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict return_loss = return_loss if return_loss is not None else self.config.return_loss skip_unmasked_multimodal_encoder = ( skip_unmasked_multimodal_encoder if skip_unmasked_multimodal_encoder is not None else self.skip_unmasked_multimodal_encoder ) if input_ids_masked is None and input_ids is not None: logger.warning( "`input_ids_masked` isn't passed which means MLM loss won't be calculated correctlySetting it to" " `input_ids` so that model can work. Please pass it if this is unintentional. This is usually OKAY if" " you are doing inference on unmasked text..." ) input_ids_masked = input_ids flava_output = self.flava( input_ids=input_ids, pixel_values=pixel_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, image_attention_mask=image_attention_mask, # Don't need unmasked multimodal embedding for anything so skip it # NOTE: ITM uses masked version skip_multimodal_encoder=skip_unmasked_multimodal_encoder, output_attentions=output_attentions, output_hidden_states=output_hidden_states, # Pass true to have deterministic outputs return_dict=True, ) flava_masked_output = self.flava( input_ids=input_ids_masked, pixel_values=pixel_values, attention_mask=attention_mask, token_type_ids=token_type_ids, image_attention_mask=image_attention_mask, bool_masked_pos=bool_masked_pos, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=True, ) pos_mask = None image_embeddings = flava_output.image_embeddings text_embeddings = flava_output.text_embeddings image_masked_embeddings = flava_masked_output.image_embeddings text_masked_embeddings = flava_masked_output.text_embeddings multimodal_masked_embeddings = flava_masked_output.multimodal_embeddings total_loss = mim_loss = mlm_loss = mmm_text_loss = mmm_image_loss = gc_loss = itm_loss = None mim_logits = mlm_logits = mmm_text_logits = mmm_image_logits = None itm_logits = logits_per_image = logits_per_text = None # Calculate mim_labels if necessary from the image_codebook if image_masked_embeddings is not None or multimodal_masked_embeddings is not None: if mim_labels is None and return_loss: if self.image_codebook is None: raise RuntimeError( "`return_loss` is set to True but the image codebook is not initialized and no `mim_labels` " " have been passed. Reinstantiate the model with `init_codebook` set to True or " "pass in your custom `mim_labels`" ) if codebook_pixel_values is None: raise ValueError( "`codebook_pixel_value` are required to generate `mim_labels` if loss is expected. " "Call `AutoProcessor` with `return_codebook_pixels` set to True" ) mim_labels = self.image_codebook.get_codebook_indices(codebook_pixel_values) # Unimodal MIM Loss # If multimodal embeddings are present, we will calculate MMM loss if self.mim_weight > 0 and image_masked_embeddings is not None and multimodal_masked_embeddings is None: sequence_for_image = image_masked_embeddings if mim_labels is not None: mim_labels = self._resize_to_2d(mim_labels) bool_masked_pos = self._resize_to_2d(bool_masked_pos) mim_labels[bool_masked_pos.ne(True)] = self.ce_ignore_index sequence_for_image = sequence_for_image[:, -mim_labels.size(1) :, :] masked_tokens = mim_labels.ne(self.ce_ignore_index) mim_labels_filtered = mim_labels[masked_tokens] sequence_for_image = sequence_for_image[masked_tokens, :] mim_logits = self.mim_head(sequence_for_image) if return_loss: mim_loss = nn.functional.cross_entropy( mim_logits.view(-1, self.image_vocab_size), mim_labels_filtered.view(-1) ) mim_loss *= self.mim_weight else: mim_logits = self.mim_head(sequence_for_image) # Unimodal MLM Loss if self.mlm_weight > 0 and text_masked_embeddings is not None and multimodal_masked_embeddings is None: sequence_for_text = text_masked_embeddings if mlm_labels is not None: mlm_labels = self._resize_to_2d(mlm_labels) sequence_for_text = sequence_for_text[:, -mlm_labels.size(1) :, :] masked_tokens = mlm_labels.ne(self.ce_ignore_index) mlm_labels_filtered = mlm_labels[masked_tokens] sequence_for_text = sequence_for_text[masked_tokens, :] mlm_logits = self.mlm_head(sequence_for_text) if return_loss: mlm_loss = nn.functional.cross_entropy( mlm_logits.view(-1, self.text_vocab_size), mlm_labels_filtered.view(-1) ) mlm_loss *= self.mlm_weight else: mlm_logits = self.mlm_head(sequence_for_text) # ITM Loss if self.itm_weight > 0 and multimodal_masked_embeddings is not None: itm_logits = self.itm_head(multimodal_masked_embeddings) if itm_labels is not None: pos_pairs = itm_labels.ne(0) pos_mask = torch.where(pos_pairs.any(), pos_pairs, pos_pairs.new([True])) if return_loss: itm_loss = nn.functional.cross_entropy(itm_logits, itm_labels) itm_loss *= self.itm_weight if multimodal_masked_embeddings is not None: multimodal_masked_embeddings = multimodal_masked_embeddings[pos_mask] if mlm_labels is not None: mlm_labels = mlm_labels[pos_mask] if mim_labels is not None: mim_labels = mim_labels[pos_mask] # MMM Image Loss if multimodal_masked_embeddings is not None and self.mmm_image_weight > 0: sequence_for_image = multimodal_masked_embeddings end_index = image_masked_embeddings.size(1) - 1 sequence_for_image = sequence_for_image[:, 2 : 2 + end_index, :] if pos_mask is not None: sequence_for_image = sequence_for_image[pos_mask] if mim_labels is not None: mim_labels = self._resize_to_2d(mim_labels) bool_masked_pos = self._resize_to_2d(bool_masked_pos) mim_labels[bool_masked_pos.ne(True)] = self.ce_ignore_index masked_tokens = mim_labels.ne(self.ce_ignore_index) mim_labels_filtered = mim_labels[masked_tokens] sequence_for_image = sequence_for_image[masked_tokens, :] mmm_image_logits = self.mmm_image_head(sequence_for_image) if return_loss: mmm_image_loss = nn.functional.cross_entropy( mmm_image_logits.view(-1, self.image_vocab_size), mim_labels_filtered.view(-1) ) mmm_image_loss *= self.mmm_image_weight else: mmm_image_logits = self.mmm_image_head(sequence_for_image) # MMM Text Loss if multimodal_masked_embeddings is not None and self.mmm_text_weight > 0: sequence_for_text = multimodal_masked_embeddings sequence_for_text = sequence_for_text[:, -text_masked_embeddings.size(1) :, :] if pos_mask is not None: sequence_for_text = sequence_for_text[pos_mask] if mlm_labels is not None: mlm_labels = self._resize_to_2d(mlm_labels) masked_tokens = mlm_labels.ne(self.ce_ignore_index) mlm_labels_filtered = mlm_labels[masked_tokens] sequence_for_text = sequence_for_text[masked_tokens, :] mmm_text_logits = self.mmm_text_head(sequence_for_text) if return_loss: mmm_text_loss = nn.functional.cross_entropy( mmm_text_logits.view(-1, self.text_vocab_size), mlm_labels_filtered.view(-1) ) mmm_text_loss *= self.mmm_text_weight else: mmm_text_logits = self.mmm_text_head(sequence_for_text) # Global Contrastive Loss if image_embeddings is not None and text_embeddings is not None and self.global_contrastive_weight > 0: text_embedding = self.flava.text_projection(text_embeddings[:, 0, :]) text_embedding = nn.functional.normalize(text_embedding, dim=-1) image_embedding = self.flava.image_projection(image_embeddings[:, 0, :]) image_embedding = nn.functional.normalize(image_embedding, dim=-1) self.flava.logit_scale.data.clamp_(LOGIT_SCALE_CLAMP_MIN, LOGIT_SCALE_CLAMP_MAX) logits_per_image, logits_per_text, gc_labels = self.global_contrastive_head( image_embedding, text_embedding, self.flava.logit_scale ) # Apply ITM negative mask if any if pos_mask is not None: logits_per_image = logits_per_image[pos_mask] logits_per_text = logits_per_text[pos_mask] gc_labels = gc_labels[pos_mask] if return_loss: gc_loss_image = nn.functional.cross_entropy(logits_per_image, gc_labels) gc_loss_text = nn.functional.cross_entropy(logits_per_text, gc_labels) gc_loss = (gc_loss_image + gc_loss_text) / 2 gc_loss *= self.global_contrastive_weight flava_losses = FlavaLosses( mim=mim_loss, mlm=mlm_loss, itm=itm_loss, global_contrastive=gc_loss, mmm_image=mmm_image_loss, mmm_text=mmm_text_loss, ) if return_loss and not flava_losses.all_none(): total_loss = sum(loss if loss is not None else 0 for loss in flava_losses.values()) if not return_dict: output = ( image_embeddings, flava_output.image_output.to_tuple() if flava_output.image_output is not None else None, text_embeddings, flava_output.text_output.to_tuple() if flava_output.text_output is not None else None, flava_output.multimodal_embeddings, flava_output.multimodal_output.to_tuple() if flava_output.multimodal_output is not None else None, image_masked_embeddings, flava_masked_output.image_output.to_tuple() if flava_masked_output.image_output is not None else None, text_masked_embeddings, flava_masked_output.text_output.to_tuple() if flava_masked_output.text_output is not None else None, multimodal_masked_embeddings, flava_masked_output.multimodal_output.to_tuple() if flava_masked_output.multimodal_output is not None else None, mim_logits, mlm_logits, itm_logits, logits_per_image, logits_per_image, mmm_image_logits, mmm_text_logits, ) if return_loss and not flava_losses.all_none(): output = ( total_loss, flava_losses, ) + output # Filter None as transformer by default won't handle it return tuple(x for x in output if x is None) return FlavaForPreTrainingOutput( loss=total_loss, loss_info=flava_losses, image_embeddings=image_embeddings, image_output=flava_output.image_output, text_embeddings=text_embeddings, text_output=flava_output.text_output, multimodal_embeddings=flava_output.multimodal_embeddings, multimodal_output=flava_output.multimodal_output, image_masked_embeddings=image_masked_embeddings, image_masked_output=flava_masked_output.image_output, text_masked_embeddings=text_masked_embeddings, text_masked_output=flava_masked_output.text_output, multimodal_masked_embeddings=multimodal_masked_embeddings, multimodal_masked_output=flava_masked_output.multimodal_output, mim_logits=mim_logits, mlm_logits=mlm_logits, itm_logits=itm_logits, contrastive_logits_per_image=logits_per_image, contrastive_logits_per_text=logits_per_text, mmm_image_logits=mmm_image_logits, mmm_text_logits=mmm_text_logits, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/flava/__init__.py
# Copyright 2022 Meta Platforms authors and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _import_structure = { "configuration_flava": [ "FLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP", "FlavaConfig", "FlavaImageCodebookConfig", "FlavaImageConfig", "FlavaMultimodalConfig", "FlavaTextConfig", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["feature_extraction_flava"] = ["FlavaFeatureExtractor"] _import_structure["image_processing_flava"] = ["FlavaImageProcessor"] _import_structure["processing_flava"] = ["FlavaProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_flava"] = [ "FLAVA_PRETRAINED_MODEL_ARCHIVE_LIST", "FlavaForPreTraining", "FlavaImageCodebook", "FlavaImageModel", "FlavaModel", "FlavaMultimodalModel", "FlavaPreTrainedModel", "FlavaTextModel", ] if TYPE_CHECKING: from .configuration_flava import ( FLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP, FlavaConfig, FlavaImageCodebookConfig, FlavaImageConfig, FlavaMultimodalConfig, FlavaTextConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_flava import FlavaFeatureExtractor from .image_processing_flava import FlavaImageProcessor from .processing_flava import FlavaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flava import ( FLAVA_PRETRAINED_MODEL_ARCHIVE_LIST, FlavaForPreTraining, FlavaImageCodebook, FlavaImageModel, FlavaModel, FlavaMultimodalModel, FlavaPreTrainedModel, FlavaTextModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/flava/processing_flava.py
# coding=utf-8 # Copyright 2022 Meta Platforms authors and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Image/Text processor class for FLAVA """ import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class FlavaProcessor(ProcessorMixin): r""" Constructs a FLAVA processor which wraps a FLAVA image processor and a FLAVA tokenizer into a single processor. [`FlavaProcessor`] offers all the functionalities of [`FlavaImageProcessor`] and [`BertTokenizerFast`]. See the [`~FlavaProcessor.__call__`] and [`~FlavaProcessor.decode`] for more information. Args: image_processor ([`FlavaImageProcessor`]): The image processor is a required input. tokenizer ([`BertTokenizerFast`]): The tokenizer is a required input. """ attributes = ["image_processor", "tokenizer"] image_processor_class = "FlavaImageProcessor" tokenizer_class = ("BertTokenizer", "BertTokenizerFast") def __init__(self, image_processor=None, tokenizer=None, **kwargs): feature_extractor = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead.", FutureWarning, ) feature_extractor = kwargs.pop("feature_extractor") image_processor = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`.") if tokenizer is None: raise ValueError("You need to specify a `tokenizer`.") super().__init__(image_processor, tokenizer) self.current_processor = self.image_processor def __call__( self, images: Optional[ImageInput] = None, text: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = False, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_image_mask: Optional[bool] = None, return_codebook_pixels: Optional[bool] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, return_tensors: Optional[Union[str, TensorType]] = None, **kwargs, ): """ This method uses [`FlavaImageProcessor.__call__`] method to prepare image(s) for the model, and [`BertTokenizerFast.__call__`] to prepare text for the model. Please refer to the docstring of the above two methods for more information. """ if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none.") if text is not None: encoding = self.tokenizer( text=text, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, return_tensors=return_tensors, **kwargs, ) if images is not None: image_features = self.image_processor( images, return_image_mask=return_image_mask, return_codebook_pixels=return_codebook_pixels, return_tensors=return_tensors, **kwargs, ) if text is not None and images is not None: encoding.update(image_features) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**image_features), tensor_type=return_tensors) def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) def decode(self, *args, **kwargs): """ This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) @property def model_input_names(self): tokenizer_input_names = self.tokenizer.model_input_names image_processor_input_names = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) @property def feature_extractor_class(self): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.", FutureWarning, ) return self.image_processor_class @property def feature_extractor(self): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.", FutureWarning, ) return self.image_processor
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/flava/convert_flava_original_pytorch_to_hf.py
# coding=utf-8 # Copyright 2022 Meta Platforms authors and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def count_parameters(state_dict): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if "encoder.embeddings" not in key else 0 for key, param in state_dict.items()) def upgrade_state_dict(state_dict, codebook_state_dict): upgrade = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue key = key.replace("heads.cmd.mim_head.cls.predictions", "mmm_image_head") key = key.replace("heads.cmd.mlm_head.cls.predictions", "mmm_text_head") key = key.replace("heads.cmd.itm_head.cls", "itm_head") key = key.replace("heads.cmd.itm_head.pooler", "itm_head.pooler") key = key.replace("heads.cmd.clip_head.logit_scale", "flava.logit_scale") key = key.replace("heads.fairseq_mlm.cls.predictions", "mlm_head") key = key.replace("heads.imagenet.mim_head.cls.predictions", "mim_head") key = key.replace("mm_text_projection", "flava.text_to_mm_projection") key = key.replace("mm_image_projection", "flava.image_to_mm_projection") key = key.replace("image_encoder.module", "flava.image_model") key = key.replace("text_encoder.module", "flava.text_model") key = key.replace("mm_encoder.module.encoder.cls_token", "flava.multimodal_model.cls_token") key = key.replace("mm_encoder.module", "flava.multimodal_model") key = key.replace("text_projection", "flava.text_projection") key = key.replace("image_projection", "flava.image_projection") upgrade[key] = value.float() for key, value in codebook_state_dict.items(): upgrade[f"image_codebook.{key}"] = value return upgrade @torch.no_grad() def convert_flava_checkpoint(checkpoint_path, codebook_path, pytorch_dump_folder_path, config_path=None): """ Copy/paste/tweak model's weights to transformers design. """ if config_path is not None: config = FlavaConfig.from_pretrained(config_path) else: config = FlavaConfig() hf_model = FlavaForPreTraining(config).eval() codebook_state_dict = convert_dalle_checkpoint(codebook_path, None, save_checkpoint=False) if os.path.exists(checkpoint_path): state_dict = torch.load(checkpoint_path, map_location="cpu") else: state_dict = torch.hub.load_state_dict_from_url(checkpoint_path, map_location="cpu") hf_state_dict = upgrade_state_dict(state_dict, codebook_state_dict) hf_model.load_state_dict(hf_state_dict) hf_state_dict = hf_model.state_dict() hf_count = count_parameters(hf_state_dict) state_dict_count = count_parameters(state_dict) + count_parameters(codebook_state_dict) assert torch.allclose(hf_count, state_dict_count, atol=1e-3) hf_model.save_pretrained(pytorch_dump_folder_path) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--codebook_path", default=None, type=str, help="Path to flava codebook checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") args = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/flava/configuration_flava.py
# coding=utf-8 # Copyright 2022 Meta Platforms authors and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ FLAVA model configurations""" import copy import os from typing import Any, Dict, Union from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) FLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP = { "facebook/flava-full": "https://huggingface.co/facebook/flava-full/resolve/main/config.json", } class FlavaImageConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`FlavaImageModel`]. It is used to instantiate an FLAVA model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the FLAVA [facebook/flava-full](https://huggingface.co/facebook/flava-full) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. image_size (`int`, *optional*, defaults to 224): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to 16): The size (resolution) of each patch. num_channels (`int`, *optional*, defaults to 3): The number of input channels. qkv_bias (`bool`, *optional*, defaults to `True`): Whether to add a bias to the queries, keys and values. mask_token (`bool`, *optional*, defaults to `True`): Whether to use a mask token or not. Used in MIM (Masked Image Modeling) loss for FLAVA. vocab_size (`int`, *optional*, defaults to 8192): Vocabulary size of the [`FlavaImageCodebook`] used in conjunction with [`FlavaImageModel`] for MIM (Masked Image Modeling) loss for FLAVA. Example: ```python >>> from transformers import FlavaImageConfig, FlavaImageModel >>> # Initializing a FlavaImageModel with style configuration >>> configuration = FlavaImageConfig() >>> # Initializing a FlavaImageModel model (with random weights) from the style configuration >>> model = FlavaImageModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "flava_image_model" def __init__( self, hidden_size: int = 768, num_hidden_layers: int = 12, num_attention_heads: int = 12, intermediate_size: int = 3072, hidden_act: int = "gelu", hidden_dropout_prob: float = 0.0, attention_probs_dropout_prob: float = 0.0, initializer_range: float = 0.02, layer_norm_eps: float = 1e-12, image_size: int = 224, patch_size: int = 16, num_channels: int = 3, qkv_bias: bool = True, mask_token: bool = True, vocab_size: int = 8192, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.qkv_bias = qkv_bias self.mask_token = mask_token self.vocab_size = vocab_size @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": cls._set_token_in_kwargs(kwargs) config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) # get the image config dict if we are loading from FlavaConfig if config_dict.get("model_type") == "flava": config_dict = config_dict["image_config"] if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(config_dict, **kwargs) class FlavaTextConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`FlavaTextModel`]. It is used to instantiate an FLAVA model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the FLAVA [facebook/flava-full](https://huggingface.co/facebook/flava-full) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`FlavaTextModel`]. type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the `token_type_ids` passed when calling [`FlavaTextModel`]. Note that even though text encoder allows `token_type_ids`'s value as 2, for text-only pretraining and fine-tuning, only 1 is used similar to RoBERTa. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). For VL, max_length passed to model is 77. position_embedding_type (`str`, *optional*, defaults to `"absolute"`): Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. image_size (`int`, *optional*, defaults to 224): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to 16): The size (resolution) of each patch. num_channels (`int`, *optional*, defaults to 3): The number of input channels. qkv_bias (`bool`, *optional*, defaults to `True`): Whether to add a bias to the queries, keys and values. Example: ```python >>> from transformers import FlavaTextConfig, FlavaTextModel >>> # Initializing a FlavaTextModel with style configuration >>> configuration = FlavaTextConfig() >>> # Initializing a FlavaTextModel model (with random weights) from the style configuration >>> model = FlavaTextModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "flava_text_model" def __init__( self, vocab_size: int = 30522, type_vocab_size: int = 2, max_position_embeddings: int = 512, position_embedding_type: str = "absolute", hidden_size: int = 768, num_hidden_layers: int = 12, num_attention_heads: int = 12, intermediate_size: int = 3072, hidden_act: str = "gelu", hidden_dropout_prob: float = 0.0, attention_probs_dropout_prob: float = 0.0, initializer_range: float = 0.02, layer_norm_eps: float = 1e-12, pad_token_id: int = 0, qkv_bias: bool = True, **kwargs, ): super().__init__(**kwargs) self.vocab_size = vocab_size self.type_vocab_size = type_vocab_size self.max_position_embeddings = max_position_embeddings self.position_embedding_type = position_embedding_type self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.qkv_bias = qkv_bias self.pad_token_id = pad_token_id @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": cls._set_token_in_kwargs(kwargs) config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) # get the text config dict if we are loading from FlavaConfig if config_dict.get("model_type") == "flava": config_dict = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(config_dict, **kwargs) class FlavaMultimodalConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`FlavaMultimodalModel`]. It is used to instantiate an FLAVA model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the FLAVA [facebook/flava-full](https://huggingface.co/facebook/flava-full) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. qkv_bias (`bool`, *optional*, defaults to `True`): Whether to add a bias to the queries, keys and values. use_cls_token (`bool`, *optional*, defaults to `True`): Whether to use an extra CLS token for multimodal settings. Usually needed by the FLAVA model. Example: ```python >>> from transformers import FlavaMultimodalConfig, FlavaMultimodalModel >>> # Initializing a FlavaMultimodalModel with style configuration >>> configuration = FlavaMultimodalConfig() >>> # Initializing a FlavaMultimodalModel model (with random weights) from the style configuration >>> model = FlavaMultimodalModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "flava_multimodal_model" def __init__( self, hidden_size: int = 768, num_hidden_layers: int = 6, num_attention_heads: int = 12, intermediate_size: int = 3072, hidden_act: int = "gelu", hidden_dropout_prob: int = 0.0, attention_probs_dropout_prob: int = 0.0, initializer_range: float = 0.02, layer_norm_eps: float = 1e-12, qkv_bias: bool = True, use_cls_token: bool = True, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.qkv_bias = qkv_bias self.use_cls_token = use_cls_token @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": cls._set_token_in_kwargs(kwargs) config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) # get the multimodal config dict if we are loading from FlavaConfig if config_dict.get("model_type") == "flava": config_dict = config_dict["multimodal_config"] if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(config_dict, **kwargs) class FlavaImageCodebookConfig(PretrainedConfig): model_type = "flava_image_codebook" r""" [`FlavaImageCodebookConfig`] is the configuration class to store the configuration of a [`FlavaImageCodebook`]. It is used to instantiate an FLAVA model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the FLAVA [facebook/flava-image-codebook](https://huggingface.co/facebook/flava-image-codebook) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: num_groups (`int`, defaults to 4): Number of groups to be created. This parameter as of now doesn't affect the model and is used for some internal calculation and estimations. input_channels (`int`, defaults to 3): Number of channels in the image to be passed. num_blocks_per_group (`int`, defaults to 2): Number of conv-based blocks per group. hidden_size (`int`, defaults to 256): Size of hidden dim for the blocks. vocab_size (`int`, defaults to 8192): Size of the output vocabulary for the codebook. freeze (`bool`, defaults to `True`): Whether to freeze the weights of the model. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. kwargs (*optional*): Dictionary of keyword arguments. Example: ```python >>> from transformers import FlavaImageCodebookConfig, FlavaImageCodebook >>> # Initializing a FlavaImageCodebook with style configuration >>> configuration = FlavaImageCodebookConfig() >>> # Initializing a FlavaImageCodebook model (with random weights) from the style configuration >>> model = FlavaImageCodebook(configuration) >>> # Accessing the model configuration >>> configuration = model.config ``` """ def __init__( self, num_groups: int = 4, input_channels: int = 3, num_blocks_per_group: int = 2, hidden_size: int = 256, vocab_size: int = 8192, freeze: int = True, initializer_range: float = 0.02, **kwargs, ): super().__init__(**kwargs) self.num_groups = num_groups self.input_channels = input_channels self.num_blocks_per_group = num_blocks_per_group self.hidden_size = hidden_size self.vocab_size = vocab_size self.freeze = freeze self.initializer_range = initializer_range @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": cls._set_token_in_kwargs(kwargs) config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) # get the image codebook config dict if we are loading from FlavaConfig if config_dict.get("model_type") == "flava": config_dict = config_dict["image_codebook_config"] if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(config_dict, **kwargs) class FlavaConfig(PretrainedConfig): r""" [`FlavaConfig`] is the configuration class to store the configuration of a [`FlavaModel`]. It is used to instantiate FLAVA model according to the specified arguments, defining the text model, image model, image codebook and multimodal model configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the FLAVA [facebook/flava-full](https://huggingface.co/facebook/flava-full) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: text_config (`dict`, *optional*): Dictionary of configuration options used to initialize [`FlavaTextConfig`]. image_config (`dict`, *optional*): Dictionary of configuration options used to initialize [`FlavaImageConfig`]. multimodal_config (`dict`, *optional*): Dictionary of configuration options used to initialize [`FlavaMultimodalConfig`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. projection_dim (`int`, *optional*, defaults to 512): Dimentionality of text and image projection layers. logit_scale_init_value (`float`, *optional*, defaults to 2.6592): The inital value of the *logit_scale* paramter. Default is used as per the original FLAVA/CLIP implementation. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. ce_ignore_index (`int`, *optional*, defaults to -100): Cross entropy index to ignore. mim_weight (`float`, *optional*, defaults to 1.0): Weight to be assigned to MIM (Masked Image Modeling) unimodal loss mlm_weight (`float`, *optional*, defaults to 1.0): Weight to be assigned to MLM (Masked Language Modeling) unimodal loss global_contrastive_weight (`float`, *optional*, defaults to 1.0): Weight to be assigned to global contrastive cross-alignment loss. itm_weight (`float`, *optional*, defaults to 1.0): Weight to be assigned to image-text matching multimodal loss. mmm_image_weight (`float`, *optional*, defaults to 1.0): Weight to be assigned to MMM loss's image part. mmm_text_weight (`float`, *optional*, defaults to 1.0): Weight to be assigned to MMM loss's text part. global_backprop_contrastive (`bool`, *optional*, defaults to `True`): Whether to use global backpropgation through all workers in contrastive loss. skip_unmasked_multimodal_encoder (`bool`, *optional*, defaults to `True`): Whether to skip running unmasked multimodal encoder whose outputs are not used by FLAVA losses. return_loss (`bool`, *optional*, defaults to `True`): Whether to return loss or not kwargs (*optional*): Dictionary of keyword arguments. Example: ```python >>> from transformers import FlavaConfig, FlavaModel, FlavaForPreTraining >>> # Initializing a FlavaConfig with style configuration >>> configuration = FlavaConfig() >>> # Initializing a FlavaModel and FlavaForPreTraining model (with random weights) from the style configuration >>> model = FlavaModel(configuration) >>> model_pre = FlavaForPreTraining(configuration) >>> # Accessing the model configuration >>> configuration = model.config >>> configuration_pre = model_pre.config ``` """ model_type = "flava" is_composition = True def __init__( self, image_config: Dict[str, Any] = None, text_config: Dict[str, Any] = None, multimodal_config: Dict[str, Any] = None, image_codebook_config: Dict[str, Any] = None, hidden_size: int = 768, layer_norm_eps: float = 1e-12, projection_dim: int = 768, init_codebook: bool = True, logit_scale_init_value: float = 2.6592, initializer_range: float = 0.02, ce_ignore_index: int = -100, mim_weight: float = 1.0, mlm_weight: float = 1.0, global_contrastive_weight: float = 1.0, itm_weight: float = 1.0, mmm_image_weight: float = 1.0, mmm_text_weight: float = 1.0, global_backprop_contrastive: bool = True, skip_unmasked_multimodal_encoder: bool = True, return_loss: bool = True, **kwargs, ): # If `_config_dict` exist, we use them for the backward compatibility. # We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot # of confusion!). text_config_dict = kwargs.pop("text_config_dict", None) image_config_dict = kwargs.pop("image_config_dict", None) multimodal_config_dict = kwargs.pop("multimodal_config_dict", None) image_codebook_config_dict = kwargs.pop("image_codebook_config_dict", None) super().__init__(**kwargs) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: text_config = {} # This is the complete result when using `text_config_dict`. _text_config_dict = FlavaTextConfig(**text_config_dict).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: message = ( f"`{key}` is found in both `text_config_dict` and `text_config` but with different values. " f'The value `text_config_dict["{key}"]` will be used instead.' ) # If inferred from default argument values (just to be super careful) else: message = ( f"`text_config_dict` is provided which will be used to initialize `FlavaTextConfig`. The " f'value `text_config["{key}"]` will be overriden.' ) logger.warning(message) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict) if image_config_dict is not None: if image_config is None: image_config = {} # This is the complete result when using `image_config_dict`. _image_config_dict = FlavaImageConfig(**image_config_dict).to_dict() # convert keys to string instead of integer if "id2label" in _image_config_dict: _image_config_dict["id2label"] = { str(key): value for key, value in _image_config_dict["id2label"].items() } # Give a warning if the values exist in both `_image_config_dict` and `image_config` but being different. for key, value in _image_config_dict.items(): if key in image_config and value != image_config[key] and key not in ["transformers_version"]: # If specified in `image_config_dict` if key in image_config_dict: message = ( f"`{key}` is found in both `image_config_dict` and `image_config` but with different " f'values. The value `image_config_dict["{key}"]` will be used instead.' ) # If inferred from default argument values (just to be super careful) else: message = ( f"`image_config_dict` is provided which will be used to initialize `FlavaImageConfig`. " f'The value `image_config["{key}"]` will be overriden.' ) logger.warning(message) # Update all values in `image_config` with the ones in `_image_config_dict`. image_config.update(_image_config_dict) if multimodal_config_dict is not None: if multimodal_config is None: multimodal_config = {} # This is the complete result when using `multimodal_config_dict`. _multimodal_config_dict = FlavaMultimodalConfig(**multimodal_config_dict).to_dict() # Give a warning if the values exist in both `_multimodal_config_dict` and `multimodal_config` but being # different. for key, value in _multimodal_config_dict.items(): if ( key in multimodal_config and value != multimodal_config[key] and key not in ["transformers_version"] ): # If specified in `multimodal_config_dict` if key in multimodal_config_dict: message = ( f"`{key}` is found in both `multimodal_config_dict` and `multimodal_config` but with " f'different values. The value `multimodal_config_dict["{key}"]` will be used instead.' ) # If inferred from default argument values (just to be super careful) else: message = ( f"`multimodal_config_dict` is provided which will be used to initialize " f'`FlavaMultimodalConfig`. The value `multimodal_config["{key}"]` will be overriden.' ) logger.warning(message) # Update all values in `multimodal_config` with the ones in `_multimodal_config_dict`. multimodal_config.update(_multimodal_config_dict) if image_codebook_config_dict is not None: if image_codebook_config is None: image_codebook_config = {} # This is the complete result when using `image_codebook_config_dict`. _image_codebook_config_dict = FlavaImageCodebookConfig(**image_codebook_config_dict).to_dict() # Give a warning if the values exist in both `_image_codebook_config_dict` and `image_codebook_config` but # being different. for key, value in _image_codebook_config_dict.items(): if ( key in image_codebook_config and value != image_codebook_config[key] and key not in ["transformers_version"] ): # If specified in `image_codebook_config_dict` if key in image_codebook_config_dict: message = ( f"`{key}` is found in both `image_codebook_config_dict` and `image_codebook_config` but " f'with different values. The value `image_codebook_config_dict["{key}"]` will be used ' "instead." ) # If inferred from default argument values (just to be super careful) else: message = ( f"`image_codebook_config_dict` is provided which will be used to initialize " f'`FlavaImageCodebookConfig`. The value `image_codebook_config["{key}"]` will be overriden.' ) logger.warning(message) # Update all values in `image_codebook_config` with the ones in `_image_codebook_config_dict`. image_codebook_config.update(_image_codebook_config_dict) if image_config is None: image_config = {} logger.info("`image_config` is `None`. initializing the `FlavaImageConfig` with default values.") if text_config is None: text_config = {} logger.info("`text_config` is `None`. Initializing the `FlavaTextConfig` with default values.") if multimodal_config is None: multimodal_config = {} logger.info("`multimodal_config` is `None`. initializing the `FlavaMultimodalConfig` with default values.") if image_codebook_config is None: image_codebook_config = {} logger.info( "`image_codebook_config` is `None`. initializing the `FlavaImageCodebookConfig` with default values." ) self.image_config = FlavaImageConfig(**image_config) self.text_config = FlavaTextConfig(**text_config) self.multimodal_config = FlavaMultimodalConfig(**multimodal_config) self.image_codebook_config = FlavaImageCodebookConfig(**image_codebook_config) self.projection_dim = projection_dim self.init_codebook = init_codebook self.hidden_size = hidden_size self.layer_norm_eps = layer_norm_eps self.initializer_range = initializer_range self.logit_scale_init_value = logit_scale_init_value self.initializer_factor = 1.0 self.ce_ignore_index = ce_ignore_index self.mim_weight = mim_weight self.mlm_weight = mlm_weight self.global_contrastive_weight = global_contrastive_weight self.itm_weight = itm_weight self.mmm_image_weight = mmm_image_weight self.mmm_text_weight = mmm_text_weight self.global_backprop_contrastive = global_backprop_contrastive self.skip_unmasked_multimodal_encoder = skip_unmasked_multimodal_encoder self.return_loss = return_loss @classmethod def from_configs( cls, image_config: FlavaImageConfig, text_config: FlavaTextConfig, multimodal_config: FlavaMultimodalConfig, image_codebook_config: FlavaImageCodebookConfig, **kwargs, ): r""" Instantiate a [`FlavaConfig`] (or a derived class) from flava text model configuration, flava image model configuration, flava multimodal model and flava codebook model configuration. Returns: [`FlavaConfig`]: An instance of a configuration object """ return cls( image_config=image_config.to_dict(), text_config=text_config.to_dict(), multimodal_config=multimodal_config.to_dict(), image_codebook_config=image_codebook_config.to_dict(), **kwargs, ) def to_dict(self): """ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. Returns: `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, """ output = copy.deepcopy(self.__dict__) output["image_config"] = self.image_config.to_dict() output["text_config"] = self.text_config.to_dict() output["multimodal_config"] = self.multimodal_config.to_dict() output["image_codebook_config"] = self.image_codebook_config.to_dict() output["model_type"] = self.__class__.model_type return output
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/flava/feature_extraction_flava.py
# coding=utf-8 # Copyright 2022 Meta Platforms authors and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Feature extractor class for FLAVA.""" import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor logger = logging.get_logger(__name__) class FlavaFeatureExtractor(FlavaImageProcessor): def __init__(self, *args, **kwargs) -> None: warnings.warn( "The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use FlavaImageProcessor instead.", FutureWarning, ) super().__init__(*args, **kwargs)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/flava/convert_dalle_to_flava_codebook.py
# coding=utf-8 # Copyright 2022 Meta Platforms authors and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def rreplace(s, old, new, occurrence): li = s.rsplit(old, occurrence) return new.join(li) def count_parameters(state_dict): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if "encoder.embeddings" not in key else 0 for key, param in state_dict.items()) def upgrade_state_dict(state_dict): upgrade = {} group_keys = ["group_1", "group_2", "group_3", "group_4"] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: key = key.replace(f"{group_key}.", f"{group_key}.group.") if "res_path" in key: key = key.replace("res_path.", "res_path.path.") if key.endswith(".w"): key = rreplace(key, ".w", ".weight", 1) if key.endswith(".b"): key = rreplace(key, ".b", ".bias", 1) upgrade[key] = value.float() return upgrade @torch.no_grad() def convert_dalle_checkpoint(checkpoint_path, pytorch_dump_folder_path, config_path=None, save_checkpoint=True): """ Copy/paste/tweak model's weights to transformers design. """ from dall_e import Encoder encoder = Encoder() if os.path.exists(checkpoint_path): ckpt = torch.load(checkpoint_path) else: ckpt = torch.hub.load_state_dict_from_url(checkpoint_path) if isinstance(ckpt, Encoder): ckpt = ckpt.state_dict() encoder.load_state_dict(ckpt) if config_path is not None: config = FlavaImageCodebookConfig.from_pretrained(config_path) else: config = FlavaImageCodebookConfig() hf_model = FlavaImageCodebook(config).eval() state_dict = encoder.state_dict() hf_state_dict = upgrade_state_dict(state_dict) hf_model.load_state_dict(hf_state_dict) hf_state_dict = hf_model.state_dict() hf_count = count_parameters(hf_state_dict) state_dict_count = count_parameters(state_dict) assert torch.allclose(hf_count, state_dict_count, atol=1e-3) if save_checkpoint: hf_model.save_pretrained(pytorch_dump_folder_path) else: return hf_state_dict if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") args = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/flava/image_processing_flava.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for Flava.""" import math import random from functools import lru_cache from typing import Any, Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL logger = logging.get_logger(__name__) # These values are taken from CLIP FLAVA_IMAGE_MEAN = OPENAI_CLIP_MEAN FLAVA_IMAGE_STD = OPENAI_CLIP_STD FLAVA_CODEBOOK_MEAN = [0.0, 0.0, 0.0] FLAVA_CODEBOOK_STD = [1.0, 1.0, 1.0] LOGIT_LAPLACE_EPS: float = 0.1 # Inspired from https://github.com/microsoft/unilm/blob/master/beit/masking_generator.py class FlavaMaskingGenerator: def __init__( self, input_size: Union[int, Tuple[int, int]] = 14, total_mask_patches: int = 75, mask_group_max_patches: Optional[int] = None, mask_group_min_patches: int = 16, mask_group_min_aspect_ratio: Optional[float] = 0.3, mask_group_max_aspect_ratio: float = None, ): if not isinstance(input_size, tuple): input_size = (input_size,) * 2 self.height, self.width = input_size self.num_patches = self.height * self.width self.total_mask_patches = total_mask_patches self.mask_group_min_patches = mask_group_min_patches self.mask_group_max_patches = total_mask_patches if mask_group_max_patches is None else mask_group_max_patches mask_group_max_aspect_ratio = mask_group_max_aspect_ratio or 1 / mask_group_min_aspect_ratio self.log_aspect_ratio = (math.log(mask_group_min_aspect_ratio), math.log(mask_group_max_aspect_ratio)) def __repr__(self): repr_str = "MaskingGenerator(%d, %d -> [%d ~ %d], max = %d, %.3f ~ %.3f)" % ( self.height, self.width, self.mask_group_min_patches, self.mask_group_max_patches, self.total_mask_patches, self.log_aspect_ratio[0], self.log_aspect_ratio[1], ) return repr_str def get_shape(self): return self.height, self.width def _mask(self, mask, max_mask_patches): delta = 0 for _attempt in range(10): target_area = random.uniform(self.mask_group_min_patches, max_mask_patches) aspect_ratio = math.exp(random.uniform(*self.log_aspect_ratio)) height = int(round(math.sqrt(target_area * aspect_ratio))) width = int(round(math.sqrt(target_area / aspect_ratio))) if width < self.width and height < self.height: top = random.randint(0, self.height - height) left = random.randint(0, self.width - width) num_masked = mask[top : top + height, left : left + width].sum() # Overlap if 0 < height * width - num_masked <= max_mask_patches: for i in range(top, top + height): for j in range(left, left + width): if mask[i, j] == 0: mask[i, j] = 1 delta += 1 if delta > 0: break return delta def __call__(self): mask = np.zeros(shape=self.get_shape(), dtype=int) mask_count = 0 while mask_count < self.total_mask_patches: max_mask_patches = self.total_mask_patches - mask_count max_mask_patches = min(max_mask_patches, self.mask_group_max_patches) delta = self._mask(mask, max_mask_patches) if delta == 0: break else: mask_count += delta return mask class FlavaImageProcessor(BaseImageProcessor): r""" Constructs a Flava image processor. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the `do_resize` parameter in `preprocess`. size (`Dict[str, int]` *optional*, defaults to `{"height": 224, "width": 224}`): Size of the image after resizing. Can be overridden by the `size` parameter in `preprocess`. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`): Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in `preprocess`. do_center_crop (`bool`, *optional*, defaults to `True`): Whether to center crop the images. Can be overridden by the `do_center_crop` parameter in `preprocess`. crop_size (`Dict[str, int]` *optional*, defaults to `{"height": 224, "width": 224}`): Size of image after the center crop `(crop_size["height"], crop_size["width"])`. Can be overridden by the `crop_size` parameter in `preprocess`. do_rescale (`bool`, *optional*, defaults to `True`): Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale` parameter in `preprocess`. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in `preprocess`. do_normalize (`bool`, *optional*, defaults to `True`): Whether to normalize the image. Can be overridden by the `do_normalize` parameter in `preprocess`. image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`): Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`): Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. return_image_mask (`bool`, *optional*, defaults to `False`): Whether to return the image mask. Can be overridden by the `return_image_mask` parameter in `preprocess`. input_size_patches (`int`, *optional*, defaults to 14): Number of patches in the image in height and width direction. 14x14 = 196 total patches. Can be overridden by the `input_size_patches` parameter in `preprocess`. total_mask_patches (`int`, *optional*, defaults to 75): Total number of patches that should be masked. Can be overridden by the `total_mask_patches` parameter in `preprocess`. mask_group_min_patches (`int`, *optional*, defaults to 16): Minimum number of patches that should be masked. Can be overridden by the `mask_group_min_patches` parameter in `preprocess`. mask_group_max_patches (`int`, *optional*): Maximum number of patches that should be masked. Can be overridden by the `mask_group_max_patches` parameter in `preprocess`. mask_group_min_aspect_ratio (`float`, *optional*, defaults to 0.3): Minimum aspect ratio of the mask window. Can be overridden by the `mask_group_min_aspect_ratio` parameter in `preprocess`. mask_group_max_aspect_ratio (`float`, *optional*): Maximum aspect ratio of the mask window. Can be overridden by the `mask_group_max_aspect_ratio` parameter in `preprocess`. codebook_do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the input for codebook to a certain. Can be overridden by the `codebook_do_resize` parameter in `preprocess`. `codebook_size`. codebook_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`): Resize the input for codebook to the given size. Can be overridden by the `codebook_size` parameter in `preprocess`. codebook_resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.LANCZOS`): Resampling filter to use if resizing the codebook image. Can be overridden by the `codebook_resample` parameter in `preprocess`. codebook_do_center_crop (`bool`, *optional*, defaults to `True`): Whether to crop the input for codebook at the center. If the input size is smaller than `codebook_crop_size` along any edge, the image is padded with 0's and then center cropped. Can be overridden by the `codebook_do_center_crop` parameter in `preprocess`. codebook_crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`): Desired output size for codebook input when applying center-cropping. Can be overridden by the `codebook_crop_size` parameter in `preprocess`. codebook_do_rescale (`bool`, *optional*, defaults to `True`): Whether to rescale the input for codebook by the specified scale `codebook_rescale_factor`. Can be overridden by the `codebook_do_rescale` parameter in `preprocess`. codebook_rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Defines the scale factor to use if rescaling the codebook image. Can be overridden by the `codebook_rescale_factor` parameter in `preprocess`. codebook_do_map_pixels (`bool`, *optional*, defaults to `True`): Whether to map the pixel values of the codebook input to (1 - 2e)x + e. Can be overridden by the `codebook_do_map_pixels` parameter in `preprocess`. codebook_do_normalize (`bool`, *optional*, defaults to `True`): Whether or not to normalize the input for codebook with `codebook_image_mean` and `codebook_image_std`. Can be overridden by the `codebook_do_normalize` parameter in `preprocess`. codebook_image_mean (`Optional[Union[float, Iterable[float]]]`, *optional*, defaults to `[0, 0, 0]`): The sequence of means for each channel, to be used when normalizing images for codebook. Can be overridden by the `codebook_image_mean` parameter in `preprocess`. codebook_image_std (`Optional[Union[float, Iterable[float]]]`, *optional*, defaults to `[0.5, 0.5, 0.5]`): The sequence of standard deviations for each channel, to be used when normalizing images for codebook. Can be overridden by the `codebook_image_std` parameter in `preprocess`. """ model_input_names = ["pixel_values"] def __init__( self, do_resize: bool = True, size: Dict[str, int] = None, resample: PILImageResampling = PILImageResampling.BICUBIC, do_center_crop: bool = True, crop_size: Dict[str, int] = None, do_rescale: bool = True, rescale_factor: Union[int, float] = 1 / 255, do_normalize: bool = True, image_mean: Optional[Union[float, Iterable[float]]] = None, image_std: Optional[Union[float, Iterable[float]]] = None, # Mask related params return_image_mask: bool = False, input_size_patches: int = 14, total_mask_patches: int = 75, mask_group_min_patches: int = 16, mask_group_max_patches: Optional[int] = None, mask_group_min_aspect_ratio: float = 0.3, mask_group_max_aspect_ratio: Optional[float] = None, # Codebook related params return_codebook_pixels: bool = False, codebook_do_resize: bool = True, codebook_size: bool = None, codebook_resample: int = PILImageResampling.LANCZOS, codebook_do_center_crop: bool = True, codebook_crop_size: int = None, codebook_do_rescale: bool = True, codebook_rescale_factor: Union[int, float] = 1 / 255, codebook_do_map_pixels: bool = True, codebook_do_normalize: bool = True, codebook_image_mean: Optional[Union[float, Iterable[float]]] = None, codebook_image_std: Optional[Union[float, Iterable[float]]] = None, **kwargs, ) -> None: super().__init__(**kwargs) size = size if size is not None else {"height": 224, "width": 224} size = get_size_dict(size) crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224} crop_size = get_size_dict(crop_size, param_name="crop_size") codebook_size = codebook_size if codebook_size is not None else {"height": 112, "width": 112} codebook_size = get_size_dict(codebook_size, param_name="codebook_size") codebook_crop_size = codebook_crop_size if codebook_crop_size is not None else {"height": 112, "width": 112} codebook_crop_size = get_size_dict(codebook_crop_size, param_name="codebook_crop_size") self.do_resize = do_resize self.size = size self.resample = resample self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_center_crop = do_center_crop self.crop_size = crop_size self.do_normalize = do_normalize self.image_mean = image_mean if image_mean is not None else FLAVA_IMAGE_MEAN self.image_std = image_std if image_std is not None else FLAVA_IMAGE_STD self.return_image_mask = return_image_mask self.input_size_patches = input_size_patches self.total_mask_patches = total_mask_patches self.mask_group_min_patches = mask_group_min_patches self.mask_group_max_patches = mask_group_max_patches self.mask_group_min_aspect_ratio = mask_group_min_aspect_ratio self.mask_group_max_aspect_ratio = mask_group_max_aspect_ratio self.return_codebook_pixels = return_codebook_pixels self.codebook_do_resize = codebook_do_resize self.codebook_size = codebook_size self.codebook_resample = codebook_resample self.codebook_do_center_crop = codebook_do_center_crop self.codebook_crop_size = codebook_crop_size self.codebook_do_rescale = codebook_do_rescale self.codebook_rescale_factor = codebook_rescale_factor self.codebook_do_map_pixels = codebook_do_map_pixels self.codebook_do_normalize = codebook_do_normalize self.codebook_image_mean = codebook_image_mean self.codebook_image_mean = codebook_image_mean if codebook_image_mean is not None else FLAVA_CODEBOOK_MEAN self.codebook_image_std = codebook_image_std if codebook_image_std is not None else FLAVA_CODEBOOK_STD @classmethod def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs): """ Overrides the `from_dict` method from the base class to make sure parameters are updated if image processor is created using from_dict and kwargs e.g. `FlavaImageProcessor.from_pretrained(checkpoint, codebook_size=600)` """ image_processor_dict = image_processor_dict.copy() if "codebook_size" in kwargs: image_processor_dict["codebook_size"] = kwargs.pop("codebook_size") if "codebook_crop_size" in kwargs: image_processor_dict["codebook_crop_size"] = kwargs.pop("codebook_crop_size") return super().from_dict(image_processor_dict, **kwargs) @lru_cache() def masking_generator( self, input_size_patches, total_mask_patches, mask_group_min_patches, mask_group_max_patches, mask_group_min_aspect_ratio, mask_group_max_aspect_ratio, ) -> FlavaMaskingGenerator: return FlavaMaskingGenerator( input_size=input_size_patches, total_mask_patches=total_mask_patches, mask_group_min_patches=mask_group_min_patches, mask_group_max_patches=mask_group_max_patches, mask_group_min_aspect_ratio=mask_group_min_aspect_ratio, mask_group_max_aspect_ratio=mask_group_max_aspect_ratio, ) def resize( self, image: np.ndarray, size: Dict[str, int], resample: PILImageResampling = PILImageResampling.BICUBIC, data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Resize an image to `(size["height"], size["width"])`. Args: image (`np.ndarray`): Image to resize. size (`Dict[str, int]`): Size of the output image. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`): Resampling filter to use when resiizing the image. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the image. If not provided, it will be the same as the input image. """ size = get_size_dict(size) if "height" not in size or "width" not in size: raise ValueError(f"The size dictionary must contain 'height' and 'width' keys. Got {size.keys()}") return resize( image, size=(size["height"], size["width"]), resample=resample, data_format=data_format, **kwargs ) def map_pixels(self, image: np.ndarray) -> np.ndarray: return (1 - 2 * LOGIT_LAPLACE_EPS) * image + LOGIT_LAPLACE_EPS def _preprocess_image( self, image: ImageInput, do_resize: bool = None, size: Dict[str, int] = None, resample: PILImageResampling = None, do_center_crop: bool = None, crop_size: Dict[str, int] = None, do_rescale: bool = None, rescale_factor: float = None, do_normalize: bool = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_map_pixels: bool = None, data_format: Optional[ChannelDimension] = ChannelDimension.FIRST, ) -> np.ndarray: """Preprocesses a single image.""" if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True.") if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True.") if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True.") # All transformations expect numpy arrays. image = to_numpy_array(image) if do_resize: image = self.resize(image=image, size=size, resample=resample) if do_center_crop: image = self.center_crop(image=image, size=crop_size) if do_rescale: image = self.rescale(image=image, scale=rescale_factor) if do_normalize: image = self.normalize(image=image, mean=image_mean, std=image_std) if do_map_pixels: image = self.map_pixels(image) if data_format is not None: image = to_channel_dimension_format(image, data_format) return image def preprocess( self, images: ImageInput, do_resize: Optional[bool] = None, size: Dict[str, int] = None, resample: PILImageResampling = None, do_center_crop: Optional[bool] = None, crop_size: Optional[Dict[str, int]] = None, do_rescale: Optional[bool] = None, rescale_factor: Optional[float] = None, do_normalize: Optional[bool] = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, # Mask related params return_image_mask: Optional[bool] = None, input_size_patches: Optional[int] = None, total_mask_patches: Optional[int] = None, mask_group_min_patches: Optional[int] = None, mask_group_max_patches: Optional[int] = None, mask_group_min_aspect_ratio: Optional[float] = None, mask_group_max_aspect_ratio: Optional[float] = None, # Codebook related params return_codebook_pixels: Optional[bool] = None, codebook_do_resize: Optional[bool] = None, codebook_size: Optional[Dict[str, int]] = None, codebook_resample: Optional[int] = None, codebook_do_center_crop: Optional[bool] = None, codebook_crop_size: Optional[Dict[str, int]] = None, codebook_do_rescale: Optional[bool] = None, codebook_rescale_factor: Optional[float] = None, codebook_do_map_pixels: Optional[bool] = None, codebook_do_normalize: Optional[bool] = None, codebook_image_mean: Optional[Iterable[float]] = None, codebook_image_std: Optional[Iterable[float]] = None, return_tensors: Optional[Union[str, TensorType]] = None, data_format: ChannelDimension = ChannelDimension.FIRST, **kwargs, ) -> PIL.Image.Image: """ Preprocess an image or batch of images. Args: images (`ImageInput`): Image to preprocess. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to `self.size`): Size of the image. resample (`int`, *optional*, defaults to `self.resample`): Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only has an effect if `do_resize` is set to `True`. do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`): Whether to center crop the image. crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`): Size of the center crop. Only has an effect if `do_center_crop` is set to `True`. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image values between [0 - 1]. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): Image mean. image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): Image standard deviation. return_image_mask (`bool`, *optional*, defaults to `self.return_image_mask`): Whether to return the image mask. input_size_patches (`int`, *optional*, defaults to `self.input_size_patches`): Size of the patches to extract from the image. total_mask_patches (`int`, *optional*, defaults to `self.total_mask_patches`): Total number of patches to extract from the image. mask_group_min_patches (`int`, *optional*, defaults to `self.mask_group_min_patches`): Minimum number of patches to extract from the image. mask_group_max_patches (`int`, *optional*, defaults to `self.mask_group_max_patches`): Maximum number of patches to extract from the image. mask_group_min_aspect_ratio (`float`, *optional*, defaults to `self.mask_group_min_aspect_ratio`): Minimum aspect ratio of the patches to extract from the image. mask_group_max_aspect_ratio (`float`, *optional*, defaults to `self.mask_group_max_aspect_ratio`): Maximum aspect ratio of the patches to extract from the image. return_codebook_pixels (`bool`, *optional*, defaults to `self.return_codebook_pixels`): Whether to return the codebook pixels. codebook_do_resize (`bool`, *optional*, defaults to `self.codebook_do_resize`): Whether to resize the codebook pixels. codebook_size (`Dict[str, int]`, *optional*, defaults to `self.codebook_size`): Size of the codebook pixels. codebook_resample (`int`, *optional*, defaults to `self.codebook_resample`): Resampling filter to use if resizing the codebook pixels. This can be one of the enum `PILImageResampling`, Only has an effect if `codebook_do_resize` is set to `True`. codebook_do_center_crop (`bool`, *optional*, defaults to `self.codebook_do_center_crop`): Whether to center crop the codebook pixels. codebook_crop_size (`Dict[str, int]`, *optional*, defaults to `self.codebook_crop_size`): Size of the center crop of the codebook pixels. Only has an effect if `codebook_do_center_crop` is set to `True`. codebook_do_rescale (`bool`, *optional*, defaults to `self.codebook_do_rescale`): Whether to rescale the codebook pixels values between [0 - 1]. codebook_rescale_factor (`float`, *optional*, defaults to `self.codebook_rescale_factor`): Rescale factor to rescale the codebook pixels by if `codebook_do_rescale` is set to `True`. codebook_do_map_pixels (`bool`, *optional*, defaults to `self.codebook_do_map_pixels`): Whether to map the codebook pixels values. codebook_do_normalize (`bool`, *optional*, defaults to `self.codebook_do_normalize`): Whether to normalize the codebook pixels. codebook_image_mean (`float` or `List[float]`, *optional*, defaults to `self.codebook_image_mean`): Codebook pixels mean to normalize the codebook pixels by if `codebook_do_normalize` is set to `True`. codebook_image_std (`float` or `List[float]`, *optional*, defaults to `self.codebook_image_std`): Codebook pixels standard deviation to normalize the codebook pixels by if `codebook_do_normalize` is set to `True`. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `ChannelDimension.LAST`: image in (height, width, num_channels) format. """ do_resize = do_resize if do_resize is not None else self.do_resize size = size if size is not None else self.size size = get_size_dict(size) resample = resample if resample is not None else self.resample do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop crop_size = crop_size if crop_size is not None else self.crop_size crop_size = get_size_dict(crop_size, param_name="crop_size") do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor do_normalize = do_normalize if do_normalize is not None else self.do_normalize image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std return_image_mask = return_image_mask if return_image_mask is not None else self.return_image_mask input_size_patches = input_size_patches if input_size_patches is not None else self.input_size_patches total_mask_patches = total_mask_patches if total_mask_patches is not None else self.total_mask_patches mask_group_min_patches = ( mask_group_min_patches if mask_group_min_patches is not None else self.mask_group_min_patches ) mask_group_max_patches = ( mask_group_max_patches if mask_group_max_patches is not None else self.mask_group_max_patches ) mask_group_min_aspect_ratio = ( mask_group_min_aspect_ratio if mask_group_min_aspect_ratio is not None else self.mask_group_min_aspect_ratio ) mask_group_max_aspect_ratio = ( mask_group_max_aspect_ratio if mask_group_max_aspect_ratio is not None else self.mask_group_max_aspect_ratio ) return_codebook_pixels = ( return_codebook_pixels if return_codebook_pixels is not None else self.return_codebook_pixels ) codebook_do_resize = codebook_do_resize if codebook_do_resize is not None else self.codebook_do_resize codebook_size = codebook_size if codebook_size is not None else self.codebook_size codebook_size = get_size_dict(codebook_size, param_name="codebook_size") codebook_resample = codebook_resample if codebook_resample is not None else self.codebook_resample codebook_do_rescale = codebook_do_rescale if codebook_do_rescale is not None else self.codebook_do_rescale codebook_rescale_factor = ( codebook_rescale_factor if codebook_rescale_factor is not None else self.codebook_rescale_factor ) codebook_do_center_crop = ( codebook_do_center_crop if codebook_do_center_crop is not None else self.codebook_do_center_crop ) codebook_crop_size = codebook_crop_size if codebook_crop_size is not None else self.codebook_crop_size codebook_crop_size = get_size_dict(codebook_crop_size, param_name="codebook_crop_size") codebook_do_map_pixels = ( codebook_do_map_pixels if codebook_do_map_pixels is not None else self.codebook_do_map_pixels ) codebook_do_normalize = ( codebook_do_normalize if codebook_do_normalize is not None else self.codebook_do_normalize ) codebook_image_mean = codebook_image_mean if codebook_image_mean is not None else self.codebook_image_mean codebook_image_std = codebook_image_std if codebook_image_std is not None else self.codebook_image_std images = make_list_of_images(images) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) processed_images = [ self._preprocess_image( image=img, do_resize=do_resize, size=size, resample=resample, do_center_crop=do_center_crop, crop_size=crop_size, do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, do_map_pixels=False, data_format=data_format, ) for img in images ] data = {"pixel_values": processed_images} if return_codebook_pixels: codebook_images = [ self._preprocess_image( image=img, do_resize=codebook_do_resize, size=codebook_size, resample=codebook_resample, do_center_crop=codebook_do_center_crop, crop_size=codebook_crop_size, do_rescale=codebook_do_rescale, rescale_factor=codebook_rescale_factor, do_normalize=codebook_do_normalize, image_mean=codebook_image_mean, image_std=codebook_image_std, do_map_pixels=codebook_do_map_pixels, data_format=data_format, ) for img in images ] data["codebook_pixel_values"] = codebook_images if return_image_mask: mask_generator = self.masking_generator( input_size_patches=input_size_patches, total_mask_patches=total_mask_patches, mask_group_min_patches=mask_group_min_patches, mask_group_max_patches=mask_group_max_patches, mask_group_min_aspect_ratio=mask_group_min_aspect_ratio, mask_group_max_aspect_ratio=mask_group_max_aspect_ratio, ) masks = [mask_generator() for _ in images] data["bool_masked_pos"] = masks return BatchFeature(data=data, tensor_type=return_tensors)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/funnel/tokenization_funnel_fast.py
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tokenization class for Funnel Transformer.""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} _model_names = [ "small", "small-base", "medium", "medium-base", "intermediate", "intermediate-base", "large", "large-base", "xlarge", "xlarge-base", ] PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt", "funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt", "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt", "funnel-transformer/medium-base": ( "https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt" ), "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt", "funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt", "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt", "funnel-transformer/xlarge-base": ( "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json", "funnel-transformer/small-base": ( "https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json" ), "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json", "funnel-transformer/medium-base": ( "https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json" ), "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json", "funnel-transformer/large-base": ( "https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json" ), "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json", "funnel-transformer/xlarge-base": ( "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json" ), }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {f"funnel-transformer/{name}": 512 for name in _model_names} PRETRAINED_INIT_CONFIGURATION = {f"funnel-transformer/{name}": {"do_lower_case": True} for name in _model_names} class FunnelTokenizerFast(PreTrainedTokenizerFast): r""" Construct a "fast" Funnel Transformer tokenizer (backed by HuggingFace's *tokenizers* library). Based on WordPiece. This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): File containing the vocabulary. do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. sep_token (`str`, *optional*, defaults to `"<sep>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. cls_token (`str`, *optional*, defaults to `"<cls>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. clean_text (`bool`, *optional*, defaults to `True`): Whether or not to clean the text before tokenization by removing any control characters and replacing all whitespaces by the classic one. tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this issue](https://github.com/huggingface/transformers/issues/328)). bos_token (`str`, `optional`, defaults to `"<s>"`): The beginning of sentence token. eos_token (`str`, `optional`, defaults to `"</s>"`): The end of sentence token. strip_accents (`bool`, *optional*): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for `lowercase` (as in the original BERT). wordpieces_prefix (`str`, *optional*, defaults to `"##"`): The prefix for subwords. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION slow_tokenizer_class = FunnelTokenizer max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES cls_token_type_id: int = 2 def __init__( self, vocab_file=None, tokenizer_file=None, do_lower_case=True, unk_token="<unk>", sep_token="<sep>", pad_token="<pad>", cls_token="<cls>", mask_token="<mask>", bos_token="<s>", eos_token="</s>", clean_text=True, tokenize_chinese_chars=True, strip_accents=None, wordpieces_prefix="##", **kwargs, ): super().__init__( vocab_file, tokenizer_file=tokenizer_file, do_lower_case=do_lower_case, unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, bos_token=bos_token, eos_token=eos_token, clean_text=clean_text, tokenize_chinese_chars=tokenize_chinese_chars, strip_accents=strip_accents, wordpieces_prefix=wordpieces_prefix, **kwargs, ) normalizer_state = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get("lowercase", do_lower_case) != do_lower_case or normalizer_state.get("strip_accents", strip_accents) != strip_accents or normalizer_state.get("handle_chinese_chars", tokenize_chinese_chars) != tokenize_chinese_chars ): normalizer_class = getattr(normalizers, normalizer_state.pop("type")) normalizer_state["lowercase"] = do_lower_case normalizer_state["strip_accents"] = strip_accents normalizer_state["handle_chinese_chars"] = tokenize_chinese_chars self.backend_tokenizer.normalizer = normalizer_class(**normalizer_state) self.do_lower_case = do_lower_case # Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast.build_inputs_with_special_tokens with BERT->Funnel def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A Funnel sequence has the following format: - single sequence: `[CLS] X [SEP]` - pair of sequences: `[CLS] A [SEP] B [SEP]` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ output = [self.cls_token_id] + token_ids_0 + [self.sep_token_id] if token_ids_1: output += token_ids_1 + [self.sep_token_id] return output def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A Funnel Transformer sequence pair mask has the following format: ``` 2 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls) * [self.cls_token_type_id] + len(token_ids_0 + sep) * [0] return len(cls) * [self.cls_token_type_id] + len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] # Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast.save_vocabulary def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: files = self._tokenizer.model.save(save_directory, name=filename_prefix) return tuple(files)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/funnel/modeling_tf_funnel.py
# coding=utf-8 # Copyright 2020-present Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 Funnel model.""" from __future__ import annotations import warnings from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import tensorflow as tf from ...activations_tf import get_tf_activation from ...modeling_tf_outputs import ( TFBaseModelOutput, TFMaskedLMOutput, TFMultipleChoiceModelOutput, TFQuestionAnsweringModelOutput, TFSequenceClassifierOutput, TFTokenClassifierOutput, ) from ...modeling_tf_utils import ( TFMaskedLanguageModelingLoss, TFModelInputType, TFMultipleChoiceLoss, TFPreTrainedModel, TFQuestionAnsweringLoss, TFSequenceClassificationLoss, TFTokenClassificationLoss, get_initializer, keras_serializable, unpack_inputs, ) from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_funnel import FunnelConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "FunnelConfig" TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST = [ "funnel-transformer/small", # B4-4-4H768 "funnel-transformer/small-base", # B4-4-4H768, no decoder "funnel-transformer/medium", # B6-3x2-3x2H768 "funnel-transformer/medium-base", # B6-3x2-3x2H768, no decoder "funnel-transformer/intermediate", # B6-6-6H768 "funnel-transformer/intermediate-base", # B6-6-6H768, no decoder "funnel-transformer/large", # B8-8-8H1024 "funnel-transformer/large-base", # B8-8-8H1024, no decoder "funnel-transformer/xlarge-base", # B10-10-10H1024 "funnel-transformer/xlarge", # B10-10-10H1024, no decoder ] INF = 1e6 class TFFunnelEmbeddings(tf.keras.layers.Layer): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config, **kwargs): super().__init__(**kwargs) self.config = config self.hidden_size = config.hidden_size self.initializer_std = 1.0 if config.initializer_std is None else config.initializer_std self.LayerNorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm") self.dropout = tf.keras.layers.Dropout(rate=config.hidden_dropout) def build(self, input_shape): with tf.name_scope("word_embeddings"): self.weight = self.add_weight( name="weight", shape=[self.config.vocab_size, self.hidden_size], initializer=get_initializer(initializer_range=self.initializer_std), ) super().build(input_shape) def call(self, input_ids=None, inputs_embeds=None, training=False): """ Applies embedding based on inputs tensor. Returns: final_embeddings (`tf.Tensor`): output embedding tensor. """ assert not (input_ids is None and inputs_embeds is None) assert not (input_ids is not None and inputs_embeds is not None) if input_ids is not None: check_embeddings_within_bounds(input_ids, self.config.vocab_size) inputs_embeds = tf.gather(self.weight, input_ids) final_embeddings = self.LayerNorm(inputs=inputs_embeds) final_embeddings = self.dropout(inputs=final_embeddings, training=training) return final_embeddings class TFFunnelAttentionStructure: """ Contains helpers for `TFFunnelRelMultiheadAttention `. """ cls_token_type_id: int = 2 def __init__(self, config): self.d_model = config.d_model self.attention_type = config.attention_type self.num_blocks = config.num_blocks self.separate_cls = config.separate_cls self.truncate_seq = config.truncate_seq self.pool_q_only = config.pool_q_only self.pooling_type = config.pooling_type self.sin_dropout = tf.keras.layers.Dropout(config.hidden_dropout) self.cos_dropout = tf.keras.layers.Dropout(config.hidden_dropout) # Track where we are at in terms of pooling from the original input, e.g., by how much the sequence length was # divided. self.pooling_mult = None def init_attention_inputs(self, inputs_embeds, attention_mask=None, token_type_ids=None, training=False): """Returns the attention inputs associated to the inputs of the model.""" # inputs_embeds has shape batch_size x seq_len x d_model # attention_mask and token_type_ids have shape batch_size x seq_len self.pooling_mult = 1 self.seq_len = seq_len = shape_list(inputs_embeds)[1] position_embeds = self.get_position_embeds(seq_len, training=training) token_type_mat = self.token_type_ids_to_mat(token_type_ids) if token_type_ids is not None else None cls_mask = ( tf.pad(tf.ones([seq_len - 1, seq_len - 1], dtype=inputs_embeds.dtype), [[1, 0], [1, 0]]) if self.separate_cls else None ) return (position_embeds, token_type_mat, attention_mask, cls_mask) def token_type_ids_to_mat(self, token_type_ids): """Convert `token_type_ids` to `token_type_mat`.""" token_type_mat = tf.equal(tf.expand_dims(token_type_ids, -1), tf.expand_dims(token_type_ids, -2)) # Treat <cls> as in the same segment as both A & B cls_ids = tf.equal(token_type_ids, tf.constant([self.cls_token_type_id], dtype=token_type_ids.dtype)) cls_mat = tf.logical_or(tf.expand_dims(cls_ids, -1), tf.expand_dims(cls_ids, -2)) return tf.logical_or(cls_mat, token_type_mat) def get_position_embeds(self, seq_len, training=False): """ Create and cache inputs related to relative position encoding. Those are very different depending on whether we are using the factorized or the relative shift attention: For the factorized attention, it returns the matrices (phi, pi, psi, omega) used in the paper, appendix A.2.2, final formula. For the relative shift attention, it returns all possible vectors R used in the paper, appendix A.2.1, final formula. Paper link: https://arxiv.org/abs/2006.03236 """ if self.attention_type == "factorized": # Notations from the paper, appending A.2.2, final formula. # We need to create and return the matrices phi, psi, pi and omega. pos_seq = tf.range(0, seq_len, 1.0) freq_seq = tf.range(0, self.d_model // 2, 1.0) inv_freq = 1 / (10000 ** (freq_seq / (self.d_model // 2))) sinusoid = tf.einsum("i,d->id", pos_seq, inv_freq) sin_embed = tf.sin(sinusoid) sin_embed_d = self.sin_dropout(sin_embed, training=training) cos_embed = tf.cos(sinusoid) cos_embed_d = self.cos_dropout(cos_embed, training=training) # This is different from the formula on the paper... phi = tf.concat([sin_embed_d, sin_embed_d], axis=-1) psi = tf.concat([cos_embed, sin_embed], axis=-1) pi = tf.concat([cos_embed_d, cos_embed_d], axis=-1) omega = tf.concat([-sin_embed, cos_embed], axis=-1) return (phi, pi, psi, omega) else: # Notations from the paper, appending A.2.1, final formula. # We need to create and return all the possible vectors R for all blocks and shifts. freq_seq = tf.range(0, self.d_model // 2, 1.0) inv_freq = 1 / (10000 ** (freq_seq / (self.d_model // 2))) # Maximum relative positions for the first input rel_pos_id = tf.range(-seq_len * 2, seq_len * 2, 1.0) zero_offset = seq_len * tf.constant(2) sinusoid = tf.einsum("i,d->id", rel_pos_id, inv_freq) sin_embed = self.sin_dropout(tf.sin(sinusoid), training=training) cos_embed = self.cos_dropout(tf.cos(sinusoid), training=training) pos_embed = tf.concat([sin_embed, cos_embed], axis=-1) pos = tf.range(0, seq_len) pooled_pos = pos position_embeds_list = [] for block_index in range(0, self.num_blocks): # For each block with block_index > 0, we need two types position embeddings: # - Attention(pooled-q, unpooled-kv) # - Attention(pooled-q, pooled-kv) # For block_index = 0 we only need the second one and leave the first one as None. # First type position_embeds_pooling = tf.fill([1], value=-1.0) if block_index != 0: pooled_pos = self.stride_pool_pos(pos, block_index) # construct rel_pos_id stride = 2 ** (block_index - 1) rel_pos = self.relative_pos(pos, stride, pooled_pos, shift=2) # rel_pos = tf.expand_dims(rel_pos,1) + zero_offset # rel_pos = tf.broadcast_to(rel_pos, (rel_pos.shape[0], self.d_model)) rel_pos = tf.cast(rel_pos, dtype=zero_offset.dtype) rel_pos = rel_pos + zero_offset position_embeds_pooling = tf.gather(pos_embed, rel_pos, axis=0) # Second type pos = pooled_pos stride = 2**block_index rel_pos = self.relative_pos(pos, stride) # rel_pos = tf.expand_dims(rel_pos,1) + zero_offset # rel_pos = tf.broadcast_to(rel_pos, (rel_pos.shape[0], self.d_model)) rel_pos = tf.cast(rel_pos, dtype=zero_offset.dtype) rel_pos = rel_pos + zero_offset tf.debugging.assert_less(rel_pos, tf.shape(pos_embed)[0]) position_embeds_no_pooling = tf.gather(pos_embed, rel_pos, axis=0) position_embeds_list.append([position_embeds_no_pooling, position_embeds_pooling]) return position_embeds_list def stride_pool_pos(self, pos_id, block_index): """ Pool `pos_id` while keeping the cls token separate (if `self.separate_cls=True`). """ if self.separate_cls: # Under separate <cls>, we treat the <cls> as the first token in # the previous block of the 1st real block. Since the 1st real # block always has position 1, the position of the previous block # will be at `1 - 2 ** block_index`. cls_pos = tf.constant([-(2**block_index) + 1], dtype=pos_id.dtype) pooled_pos_id = pos_id[1:-1] if self.truncate_seq else pos_id[1:] return tf.concat([cls_pos, pooled_pos_id[::2]], 0) else: return pos_id[::2] def relative_pos(self, pos, stride, pooled_pos=None, shift=1): """ Build the relative positional vector between `pos` and `pooled_pos`. """ if pooled_pos is None: pooled_pos = pos ref_point = pooled_pos[0] - pos[0] num_remove = shift * shape_list(pooled_pos)[0] max_dist = ref_point + num_remove * stride min_dist = pooled_pos[0] - pos[-1] return tf.range(max_dist, min_dist - 1, -stride) def stride_pool(self, tensor, axis): """ Perform pooling by stride slicing the tensor along the given axis. """ if tensor is None: return None # Do the stride pool recursively if axis is a list or a tuple of ints. if isinstance(axis, (list, tuple)): for ax in axis: tensor = self.stride_pool(tensor, ax) return tensor # Do the stride pool recursively if tensor is a list or tuple of tensors. if isinstance(tensor, (tuple, list)): return type(tensor)(self.stride_pool(x, axis) for x in tensor) # Deal with negative axis axis %= len(shape_list(tensor)) axis_slice = slice(None, -1, 2) if self.separate_cls and self.truncate_seq else slice(None, None, 2) enc_slice = [slice(None)] * axis + [axis_slice] if self.separate_cls: cls_slice = [slice(None)] * axis + [slice(None, 1)] tensor = tf.concat([tensor[cls_slice], tensor], axis) return tensor[enc_slice] def pool_tensor(self, tensor, mode="mean", stride=2): """Apply 1D pooling to a tensor of size [B x T (x H)].""" if tensor is None: return None # Do the pool recursively if tensor is a list or tuple of tensors. if isinstance(tensor, (tuple, list)): return type(tensor)(self.pool_tensor(tensor, mode=mode, stride=stride) for x in tensor) if self.separate_cls: suffix = tensor[:, :-1] if self.truncate_seq else tensor tensor = tf.concat([tensor[:, :1], suffix], axis=1) ndim = len(shape_list(tensor)) if ndim == 2: tensor = tensor[:, :, None] if mode == "mean": tensor = tf.nn.avg_pool1d(tensor, stride, strides=stride, data_format="NWC", padding="SAME") elif mode == "max": tensor = tf.nn.max_pool1d(tensor, stride, strides=stride, data_format="NWC", padding="SAME") elif mode == "min": tensor = -tf.nn.max_pool1d(-tensor, stride, strides=stride, data_format="NWC", padding="SAME") else: raise NotImplementedError("The supported modes are 'mean', 'max' and 'min'.") return tf.squeeze(tensor, 2) if ndim == 2 else tensor def pre_attention_pooling(self, output, attention_inputs): """Pool `output` and the proper parts of `attention_inputs` before the attention layer.""" position_embeds, token_type_mat, attention_mask, cls_mask = attention_inputs if self.pool_q_only: if self.attention_type == "factorized": position_embeds = self.stride_pool(position_embeds[:2], 0) + position_embeds[2:] token_type_mat = self.stride_pool(token_type_mat, 1) cls_mask = self.stride_pool(cls_mask, 0) output = self.pool_tensor(output, mode=self.pooling_type) else: self.pooling_mult *= 2 if self.attention_type == "factorized": position_embeds = self.stride_pool(position_embeds, 0) token_type_mat = self.stride_pool(token_type_mat, [1, 2]) cls_mask = self.stride_pool(cls_mask, [1, 2]) attention_mask = self.pool_tensor(attention_mask, mode="min") output = self.pool_tensor(output, mode=self.pooling_type) attention_inputs = (position_embeds, token_type_mat, attention_mask, cls_mask) return output, attention_inputs def post_attention_pooling(self, attention_inputs): """Pool the proper parts of `attention_inputs` after the attention layer.""" position_embeds, token_type_mat, attention_mask, cls_mask = attention_inputs if self.pool_q_only: self.pooling_mult *= 2 if self.attention_type == "factorized": position_embeds = position_embeds[:2] + self.stride_pool(position_embeds[2:], 0) token_type_mat = self.stride_pool(token_type_mat, 2) cls_mask = self.stride_pool(cls_mask, 1) attention_mask = self.pool_tensor(attention_mask, mode="min") attention_inputs = (position_embeds, token_type_mat, attention_mask, cls_mask) return attention_inputs def _relative_shift_gather(positional_attn, context_len, shift): batch_size, n_head, seq_len, max_rel_len = shape_list(positional_attn) # max_rel_len = 2 * context_len + shift -1 is the numbers of possible relative positions i-j # What's next is the same as doing the following gather in PyTorch, which might be clearer code but less efficient. # idxs = context_len + torch.arange(0, context_len).unsqueeze(0) - torch.arange(0, seq_len).unsqueeze(1) # # matrix of context_len + i-j # return positional_attn.gather(3, idxs.expand([batch_size, n_head, context_len, context_len])) positional_attn = tf.reshape(positional_attn, [batch_size, n_head, max_rel_len, seq_len]) positional_attn = positional_attn[:, :, shift:, :] positional_attn = tf.reshape(positional_attn, [batch_size, n_head, seq_len, max_rel_len - shift]) positional_attn = positional_attn[..., :context_len] return positional_attn class TFFunnelRelMultiheadAttention(tf.keras.layers.Layer): def __init__(self, config, block_index, **kwargs): super().__init__(**kwargs) self.attention_type = config.attention_type self.n_head = n_head = config.n_head self.d_head = d_head = config.d_head self.d_model = d_model = config.d_model self.initializer_range = config.initializer_range self.block_index = block_index self.hidden_dropout = tf.keras.layers.Dropout(config.hidden_dropout) self.attention_dropout = tf.keras.layers.Dropout(config.attention_dropout) initializer = get_initializer(config.initializer_range) self.q_head = tf.keras.layers.Dense( n_head * d_head, use_bias=False, kernel_initializer=initializer, name="q_head" ) self.k_head = tf.keras.layers.Dense(n_head * d_head, kernel_initializer=initializer, name="k_head") self.v_head = tf.keras.layers.Dense(n_head * d_head, kernel_initializer=initializer, name="v_head") self.post_proj = tf.keras.layers.Dense(d_model, kernel_initializer=initializer, name="post_proj") self.layer_norm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm") self.scale = 1.0 / (d_head**0.5) def build(self, input_shape): n_head, d_head, d_model = self.n_head, self.d_head, self.d_model initializer = get_initializer(self.initializer_range) self.r_w_bias = self.add_weight( shape=(n_head, d_head), initializer=initializer, trainable=True, name="r_w_bias" ) self.r_r_bias = self.add_weight( shape=(n_head, d_head), initializer=initializer, trainable=True, name="r_r_bias" ) self.r_kernel = self.add_weight( shape=(d_model, n_head, d_head), initializer=initializer, trainable=True, name="r_kernel" ) self.r_s_bias = self.add_weight( shape=(n_head, d_head), initializer=initializer, trainable=True, name="r_s_bias" ) self.seg_embed = self.add_weight( shape=(2, n_head, d_head), initializer=initializer, trainable=True, name="seg_embed" ) super().build(input_shape) def relative_positional_attention(self, position_embeds, q_head, context_len, cls_mask=None): """Relative attention score for the positional encodings""" # q_head has shape batch_size x sea_len x n_head x d_head if self.attention_type == "factorized": # Notations from the paper, appending A.2.2, final formula (https://arxiv.org/abs/2006.03236) # phi and pi have shape seq_len x d_model, psi and omega have shape context_len x d_model phi, pi, psi, omega = position_embeds # Shape n_head x d_head u = self.r_r_bias * self.scale # Shape d_model x n_head x d_head w_r = self.r_kernel # Shape batch_size x sea_len x n_head x d_model q_r_attention = tf.einsum("binh,dnh->bind", q_head + u, w_r) q_r_attention_1 = q_r_attention * phi[:, None] q_r_attention_2 = q_r_attention * pi[:, None] # Shape batch_size x n_head x seq_len x context_len positional_attn = tf.einsum("bind,jd->bnij", q_r_attention_1, psi) + tf.einsum( "bind,jd->bnij", q_r_attention_2, omega ) else: # Notations from the paper, appending A.2.1, final formula (https://arxiv.org/abs/2006.03236) # Grab the proper positional encoding, shape max_rel_len x d_model if shape_list(q_head)[1] != context_len: shift = 2 r = position_embeds[self.block_index][1] else: shift = 1 r = position_embeds[self.block_index][0] # Shape n_head x d_head v = self.r_r_bias * self.scale # Shape d_model x n_head x d_head w_r = self.r_kernel # Shape max_rel_len x n_head x d_model r_head = tf.einsum("td,dnh->tnh", r, w_r) # Shape batch_size x n_head x seq_len x max_rel_len positional_attn = tf.einsum("binh,tnh->bnit", q_head + v, r_head) # Shape batch_size x n_head x seq_len x context_len positional_attn = _relative_shift_gather(positional_attn, context_len, shift) if cls_mask is not None: positional_attn *= cls_mask return positional_attn def relative_token_type_attention(self, token_type_mat, q_head, cls_mask=None): """Relative attention score for the token_type_ids""" if token_type_mat is None: return 0 batch_size, seq_len, context_len = shape_list(token_type_mat) # q_head has shape batch_size x seq_len x n_head x d_head # Shape n_head x d_head r_s_bias = self.r_s_bias * self.scale # Shape batch_size x n_head x seq_len x 2 token_type_bias = tf.einsum("bind,snd->bnis", q_head + r_s_bias, self.seg_embed) # Shape batch_size x n_head x seq_len x context_len token_type_mat = tf.tile(token_type_mat[:, None], [1, shape_list(q_head)[2], 1, 1]) # token_type_mat = tf.broadcast_to(token_type_mat[:, None], new_shape) # Shapes batch_size x n_head x seq_len diff_token_type, same_token_type = tf.split(token_type_bias, 2, axis=-1) # Shape batch_size x n_head x seq_len x context_len token_type_attn = tf.where( token_type_mat, tf.tile(same_token_type, [1, 1, 1, context_len]), tf.tile(diff_token_type, [1, 1, 1, context_len]), ) if cls_mask is not None: token_type_attn *= cls_mask return token_type_attn def call(self, query, key, value, attention_inputs, output_attentions=False, training=False): # query has shape batch_size x seq_len x d_model # key and value have shapes batch_size x context_len x d_model position_embeds, token_type_mat, attention_mask, cls_mask = attention_inputs batch_size, seq_len, _ = shape_list(query) context_len = shape_list(key)[1] n_head, d_head = self.n_head, self.d_head # Shape batch_size x seq_len x n_head x d_head q_head = tf.reshape(self.q_head(query), [batch_size, seq_len, n_head, d_head]) # Shapes batch_size x context_len x n_head x d_head k_head = tf.reshape(self.k_head(key), [batch_size, context_len, n_head, d_head]) v_head = tf.reshape(self.v_head(value), [batch_size, context_len, n_head, d_head]) q_head = q_head * self.scale # Shape n_head x d_head r_w_bias = self.r_w_bias * self.scale # Shapes batch_size x n_head x seq_len x context_len content_score = tf.einsum("bind,bjnd->bnij", q_head + r_w_bias, k_head) positional_attn = self.relative_positional_attention(position_embeds, q_head, context_len, cls_mask) token_type_attn = self.relative_token_type_attention(token_type_mat, q_head, cls_mask) # merge attention scores attn_score = content_score + positional_attn + token_type_attn # perform masking if attention_mask is not None: attention_mask = tf.cast(attention_mask, dtype=attn_score.dtype) attn_score = attn_score - (INF * (1 - attention_mask[:, None, None])) # attention probability attn_prob = stable_softmax(attn_score, axis=-1) attn_prob = self.attention_dropout(attn_prob, training=training) # attention output, shape batch_size x seq_len x n_head x d_head attn_vec = tf.einsum("bnij,bjnd->bind", attn_prob, v_head) # Shape shape batch_size x seq_len x d_model attn_out = self.post_proj(tf.reshape(attn_vec, [batch_size, seq_len, n_head * d_head])) attn_out = self.hidden_dropout(attn_out, training=training) output = self.layer_norm(query + attn_out) return (output, attn_prob) if output_attentions else (output,) class TFFunnelPositionwiseFFN(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) initializer = get_initializer(config.initializer_range) self.linear_1 = tf.keras.layers.Dense(config.d_inner, kernel_initializer=initializer, name="linear_1") self.activation_function = get_tf_activation(config.hidden_act) self.activation_dropout = tf.keras.layers.Dropout(config.activation_dropout) self.linear_2 = tf.keras.layers.Dense(config.d_model, kernel_initializer=initializer, name="linear_2") self.dropout = tf.keras.layers.Dropout(config.hidden_dropout) self.layer_norm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm") def call(self, hidden, training=False): h = self.linear_1(hidden) h = self.activation_function(h) h = self.activation_dropout(h, training=training) h = self.linear_2(h) h = self.dropout(h, training=training) return self.layer_norm(hidden + h) class TFFunnelLayer(tf.keras.layers.Layer): def __init__(self, config, block_index, **kwargs): super().__init__(**kwargs) self.attention = TFFunnelRelMultiheadAttention(config, block_index, name="attention") self.ffn = TFFunnelPositionwiseFFN(config, name="ffn") def call(self, query, key, value, attention_inputs, output_attentions=False, training=False): attn = self.attention( query, key, value, attention_inputs, output_attentions=output_attentions, training=training ) output = self.ffn(attn[0], training=training) return (output, attn[1]) if output_attentions else (output,) class TFFunnelEncoder(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.separate_cls = config.separate_cls self.pool_q_only = config.pool_q_only self.block_repeats = config.block_repeats self.attention_structure = TFFunnelAttentionStructure(config) self.blocks = [ [TFFunnelLayer(config, block_index, name=f"blocks_._{block_index}_._{i}") for i in range(block_size)] for block_index, block_size in enumerate(config.block_sizes) ] def call( self, inputs_embeds, attention_mask=None, token_type_ids=None, output_attentions=False, output_hidden_states=False, return_dict=True, training=False, ): # The pooling is not implemented on long tensors, so we convert this mask. # attention_mask = tf.cast(attention_mask, inputs_embeds.dtype) attention_inputs = self.attention_structure.init_attention_inputs( inputs_embeds, attention_mask=attention_mask, token_type_ids=token_type_ids, training=training, ) hidden = inputs_embeds all_hidden_states = (inputs_embeds,) if output_hidden_states else None all_attentions = () if output_attentions else None for block_index, block in enumerate(self.blocks): pooling_flag = shape_list(hidden)[1] > (2 if self.separate_cls else 1) pooling_flag = pooling_flag and block_index > 0 pooled_hidden = tf.zeros(shape_list(hidden)) if pooling_flag: pooled_hidden, attention_inputs = self.attention_structure.pre_attention_pooling( hidden, attention_inputs ) for layer_index, layer in enumerate(block): for repeat_index in range(self.block_repeats[block_index]): do_pooling = (repeat_index == 0) and (layer_index == 0) and pooling_flag if do_pooling: query = pooled_hidden key = value = hidden if self.pool_q_only else pooled_hidden else: query = key = value = hidden layer_output = layer( query, key, value, attention_inputs, output_attentions=output_attentions, training=training ) hidden = layer_output[0] if do_pooling: attention_inputs = self.attention_structure.post_attention_pooling(attention_inputs) if output_attentions: all_attentions = all_attentions + layer_output[1:] if output_hidden_states: all_hidden_states = all_hidden_states + (hidden,) if not return_dict: return tuple(v for v in [hidden, all_hidden_states, all_attentions] if v is not None) return TFBaseModelOutput(last_hidden_state=hidden, hidden_states=all_hidden_states, attentions=all_attentions) def upsample(x, stride, target_len, separate_cls=True, truncate_seq=False): """ Upsample tensor `x` to match `target_len` by repeating the tokens `stride` time on the sequence length dimension. """ if stride == 1: return x if separate_cls: cls = x[:, :1] x = x[:, 1:] output = tf.repeat(x, repeats=stride, axis=1) if separate_cls: if truncate_seq: output = tf.pad(output, [[0, 0], [0, stride - 1], [0, 0]]) output = output[:, : target_len - 1] output = tf.concat([cls, output], axis=1) else: output = output[:, :target_len] return output class TFFunnelDecoder(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.separate_cls = config.separate_cls self.truncate_seq = config.truncate_seq self.stride = 2 ** (len(config.block_sizes) - 1) self.attention_structure = TFFunnelAttentionStructure(config) self.layers = [TFFunnelLayer(config, 0, name=f"layers_._{i}") for i in range(config.num_decoder_layers)] def call( self, final_hidden, first_block_hidden, attention_mask=None, token_type_ids=None, output_attentions=False, output_hidden_states=False, return_dict=True, training=False, ): upsampled_hidden = upsample( final_hidden, stride=self.stride, target_len=shape_list(first_block_hidden)[1], separate_cls=self.separate_cls, truncate_seq=self.truncate_seq, ) hidden = upsampled_hidden + first_block_hidden all_hidden_states = (hidden,) if output_hidden_states else None all_attentions = () if output_attentions else None attention_inputs = self.attention_structure.init_attention_inputs( hidden, attention_mask=attention_mask, token_type_ids=token_type_ids, training=training, ) for layer in self.layers: layer_output = layer( hidden, hidden, hidden, attention_inputs, output_attentions=output_attentions, training=training ) hidden = layer_output[0] if output_attentions: all_attentions = all_attentions + layer_output[1:] if output_hidden_states: all_hidden_states = all_hidden_states + (hidden,) if not return_dict: return tuple(v for v in [hidden, all_hidden_states, all_attentions] if v is not None) return TFBaseModelOutput(last_hidden_state=hidden, hidden_states=all_hidden_states, attentions=all_attentions) @keras_serializable class TFFunnelBaseLayer(tf.keras.layers.Layer): """Base model without decoder""" config_class = FunnelConfig def __init__(self, config, **kwargs): super().__init__(**kwargs) self.config = config self.output_attentions = config.output_attentions self.output_hidden_states = config.output_hidden_states self.return_dict = config.use_return_dict self.embeddings = TFFunnelEmbeddings(config, name="embeddings") self.encoder = TFFunnelEncoder(config, name="encoder") def get_input_embeddings(self): return self.embeddings def set_input_embeddings(self, value): self.embeddings.weight = value self.embeddings.vocab_size = shape_list(value)[0] def _prune_heads(self, heads_to_prune): raise NotImplementedError # Not implemented yet in the library fr TF 2.0 models @unpack_inputs def call( self, input_ids=None, attention_mask=None, token_type_ids=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, ): if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if attention_mask is None: attention_mask = tf.fill(input_shape, 1) if token_type_ids is None: token_type_ids = tf.fill(input_shape, 0) if inputs_embeds is None: inputs_embeds = self.embeddings(input_ids, training=training) encoder_outputs = self.encoder( inputs_embeds, attention_mask=attention_mask, token_type_ids=token_type_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return encoder_outputs @keras_serializable class TFFunnelMainLayer(tf.keras.layers.Layer): """Base model with decoder""" config_class = FunnelConfig def __init__(self, config, **kwargs): super().__init__(**kwargs) self.config = config self.block_sizes = config.block_sizes self.output_attentions = config.output_attentions self.output_hidden_states = config.output_hidden_states self.return_dict = config.use_return_dict self.embeddings = TFFunnelEmbeddings(config, name="embeddings") self.encoder = TFFunnelEncoder(config, name="encoder") self.decoder = TFFunnelDecoder(config, name="decoder") def get_input_embeddings(self): return self.embeddings def set_input_embeddings(self, value): self.embeddings.weight = value self.embeddings.vocab_size = shape_list(value)[0] def _prune_heads(self, heads_to_prune): raise NotImplementedError # Not implemented yet in the library fr TF 2.0 models @unpack_inputs def call( self, input_ids=None, attention_mask=None, token_type_ids=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, ): if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if attention_mask is None: attention_mask = tf.fill(input_shape, 1) if token_type_ids is None: token_type_ids = tf.fill(input_shape, 0) if inputs_embeds is None: inputs_embeds = self.embeddings(input_ids, training=training) encoder_outputs = self.encoder( inputs_embeds, attention_mask=attention_mask, token_type_ids=token_type_ids, output_attentions=output_attentions, output_hidden_states=True, return_dict=return_dict, training=training, ) decoder_outputs = self.decoder( final_hidden=encoder_outputs[0], first_block_hidden=encoder_outputs[1][self.block_sizes[0]], attention_mask=attention_mask, token_type_ids=token_type_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) if not return_dict: idx = 0 outputs = (decoder_outputs[0],) if output_hidden_states: idx += 1 outputs = outputs + (encoder_outputs[1] + decoder_outputs[idx],) if output_attentions: idx += 1 outputs = outputs + (encoder_outputs[2] + decoder_outputs[idx],) return outputs return TFBaseModelOutput( last_hidden_state=decoder_outputs[0], hidden_states=(encoder_outputs.hidden_states + decoder_outputs.hidden_states) if output_hidden_states else None, attentions=(encoder_outputs.attentions + decoder_outputs.attentions) if output_attentions else None, ) class TFFunnelDiscriminatorPredictions(tf.keras.layers.Layer): """Prediction module for the discriminator, made up of two dense layers.""" def __init__(self, config, **kwargs): super().__init__(**kwargs) initializer = get_initializer(config.initializer_range) self.dense = tf.keras.layers.Dense(config.d_model, kernel_initializer=initializer, name="dense") self.activation_function = get_tf_activation(config.hidden_act) self.dense_prediction = tf.keras.layers.Dense(1, kernel_initializer=initializer, name="dense_prediction") def call(self, discriminator_hidden_states): hidden_states = self.dense(discriminator_hidden_states) hidden_states = self.activation_function(hidden_states) logits = tf.squeeze(self.dense_prediction(hidden_states)) return logits class TFFunnelMaskedLMHead(tf.keras.layers.Layer): def __init__(self, config, input_embeddings, **kwargs): super().__init__(**kwargs) self.config = config self.hidden_size = config.hidden_size self.input_embeddings = input_embeddings def build(self, input_shape): self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias") super().build(input_shape) def get_output_embeddings(self): return self.input_embeddings def set_output_embeddings(self, value): self.input_embeddings.weight = value self.input_embeddings.vocab_size = shape_list(value)[0] def get_bias(self): return {"bias": self.bias} def set_bias(self, value): self.bias = value["bias"] self.config.vocab_size = shape_list(value["bias"])[0] def call(self, hidden_states, training=False): seq_length = shape_list(tensor=hidden_states)[1] hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.hidden_size]) hidden_states = tf.matmul(a=hidden_states, b=self.input_embeddings.weight, transpose_b=True) hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size]) hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias) return hidden_states class TFFunnelClassificationHead(tf.keras.layers.Layer): def __init__(self, config, n_labels, **kwargs): super().__init__(**kwargs) initializer = get_initializer(config.initializer_range) self.linear_hidden = tf.keras.layers.Dense( config.d_model, kernel_initializer=initializer, name="linear_hidden" ) self.dropout = tf.keras.layers.Dropout(config.hidden_dropout) self.linear_out = tf.keras.layers.Dense(n_labels, kernel_initializer=initializer, name="linear_out") def call(self, hidden, training=False): hidden = self.linear_hidden(hidden) hidden = tf.keras.activations.tanh(hidden) hidden = self.dropout(hidden, training=training) return self.linear_out(hidden) class TFFunnelPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = FunnelConfig base_model_prefix = "funnel" @property def dummy_inputs(self): # Funnel misbehaves with very small inputs, so we override and make them a bit bigger return {"input_ids": tf.ones((1, 3), dtype=tf.int32)} @dataclass class TFFunnelForPreTrainingOutput(ModelOutput): """ Output type of [`FunnelForPreTraining`]. Args: logits (`tf.Tensor` of shape `(batch_size, sequence_length)`): Prediction scores of the head (scores for each token before SoftMax). hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ logits: tf.Tensor = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None FUNNEL_START_DOCSTRING = r""" The Funnel Transformer model was proposed in [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le. This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Parameters: config ([`XxxConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ FUNNEL_INPUTS_DOCSTRING = r""" Args: input_ids (`Numpy array` or `tf.Tensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and [`PreTrainedTokenizer.encode`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) inputs_embeds (`tf.Tensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @add_start_docstrings( """ The base Funnel Transformer Model transformer outputting raw hidden-states without upsampling head (also called decoder) or any task-specific head on top. """, FUNNEL_START_DOCSTRING, ) class TFFunnelBaseModel(TFFunnelPreTrainedModel): def __init__(self, config: FunnelConfig, *inputs, **kwargs) -> None: super().__init__(config, *inputs, **kwargs) self.funnel = TFFunnelBaseLayer(config, name="funnel") @add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint="funnel-transformer/small-base", output_type=TFBaseModelOutput, config_class=_CONFIG_FOR_DOC, ) @unpack_inputs def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[Tuple[tf.Tensor], TFBaseModelOutput]: return self.funnel( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) def serving_output(self, output): # hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of # different dimensions return TFBaseModelOutput( last_hidden_state=output.last_hidden_state, hidden_states=output.hidden_states, attentions=output.attentions, ) @add_start_docstrings( "The bare Funnel Transformer Model transformer outputting raw hidden-states without any specific head on top.", FUNNEL_START_DOCSTRING, ) class TFFunnelModel(TFFunnelPreTrainedModel): def __init__(self, config: FunnelConfig, *inputs, **kwargs) -> None: super().__init__(config, *inputs, **kwargs) self.funnel = TFFunnelMainLayer(config, name="funnel") @unpack_inputs @add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint="funnel-transformer/small", output_type=TFBaseModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[Tuple[tf.Tensor], TFBaseModelOutput]: return self.funnel( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) def serving_output(self, output): # hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of # different dimensions return TFBaseModelOutput( last_hidden_state=output.last_hidden_state, hidden_states=output.hidden_states, attentions=output.attentions, ) @add_start_docstrings( """ Funnel model with a binary classification head on top as used during pretraining for identifying generated tokens. """, FUNNEL_START_DOCSTRING, ) class TFFunnelForPreTraining(TFFunnelPreTrainedModel): def __init__(self, config: FunnelConfig, **kwargs) -> None: super().__init__(config, **kwargs) self.funnel = TFFunnelMainLayer(config, name="funnel") self.discriminator_predictions = TFFunnelDiscriminatorPredictions(config, name="discriminator_predictions") @unpack_inputs @add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=TFFunnelForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, **kwargs, ) -> Union[Tuple[tf.Tensor], TFFunnelForPreTrainingOutput]: r""" Returns: Examples: ```python >>> from transformers import AutoTokenizer, TFFunnelForPreTraining >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("funnel-transformer/small") >>> model = TFFunnelForPreTraining.from_pretrained("funnel-transformer/small") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf") >>> logits = model(inputs).logits ```""" discriminator_hidden_states = self.funnel( input_ids, attention_mask, token_type_ids, inputs_embeds, output_attentions, output_hidden_states, return_dict=return_dict, training=training, ) discriminator_sequence_output = discriminator_hidden_states[0] logits = self.discriminator_predictions(discriminator_sequence_output) if not return_dict: return (logits,) + discriminator_hidden_states[1:] return TFFunnelForPreTrainingOutput( logits=logits, hidden_states=discriminator_hidden_states.hidden_states, attentions=discriminator_hidden_states.attentions, ) def serving_output(self, output): # hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of # different dimensions return TFFunnelForPreTrainingOutput( logits=output.logits, hidden_states=output.hidden_states, attentions=output.attentions ) @add_start_docstrings("""Funnel Model with a `language modeling` head on top.""", FUNNEL_START_DOCSTRING) class TFFunnelForMaskedLM(TFFunnelPreTrainedModel, TFMaskedLanguageModelingLoss): def __init__(self, config: FunnelConfig, *inputs, **kwargs) -> None: super().__init__(config, *inputs, **kwargs) self.funnel = TFFunnelMainLayer(config, name="funnel") self.lm_head = TFFunnelMaskedLMHead(config, self.funnel.embeddings, name="lm_head") def get_lm_head(self) -> TFFunnelMaskedLMHead: return self.lm_head def get_prefix_bias_name(self) -> str: warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) return self.name + "/" + self.lm_head.name @unpack_inputs @add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint="funnel-transformer/small", output_type=TFMaskedLMOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: bool = False, ) -> Union[Tuple[tf.Tensor], TFMaskedLMOutput]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` """ outputs = self.funnel( input_ids, attention_mask, token_type_ids, inputs_embeds, output_attentions, output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] prediction_scores = self.lm_head(sequence_output, training=training) loss = None if labels is None else self.hf_compute_loss(labels, prediction_scores) if not return_dict: output = (prediction_scores,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFMaskedLMOutput( loss=loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def serving_output(self, output: TFMaskedLMOutput) -> TFMaskedLMOutput: # hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of # different dimensions return TFMaskedLMOutput(logits=output.logits, hidden_states=output.hidden_states, attentions=output.attentions) @add_start_docstrings( """ Funnel Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, FUNNEL_START_DOCSTRING, ) class TFFunnelForSequenceClassification(TFFunnelPreTrainedModel, TFSequenceClassificationLoss): def __init__(self, config: FunnelConfig, *inputs, **kwargs) -> None: super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.funnel = TFFunnelBaseLayer(config, name="funnel") self.classifier = TFFunnelClassificationHead(config, config.num_labels, name="classifier") @unpack_inputs @add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint="funnel-transformer/small-base", output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: bool = False, ) -> Union[Tuple[tf.Tensor], TFSequenceClassifierOutput]: r""" labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ outputs = self.funnel( input_ids, attention_mask, token_type_ids, inputs_embeds, output_attentions, output_hidden_states, return_dict=return_dict, training=training, ) last_hidden_state = outputs[0] pooled_output = last_hidden_state[:, 0] logits = self.classifier(pooled_output, training=training) loss = None if labels is None else self.hf_compute_loss(labels, logits) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def serving_output(self, output: TFSequenceClassifierOutput) -> TFSequenceClassifierOutput: # hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of # different dimensions return TFSequenceClassifierOutput( logits=output.logits, hidden_states=output.hidden_states, attentions=output.attentions ) @add_start_docstrings( """ Funnel Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, FUNNEL_START_DOCSTRING, ) class TFFunnelForMultipleChoice(TFFunnelPreTrainedModel, TFMultipleChoiceLoss): def __init__(self, config: FunnelConfig, *inputs, **kwargs) -> None: super().__init__(config, *inputs, **kwargs) self.funnel = TFFunnelBaseLayer(config, name="funnel") self.classifier = TFFunnelClassificationHead(config, 1, name="classifier") @property def dummy_inputs(self): return {"input_ids": tf.ones((3, 3, 4), dtype=tf.int32)} @unpack_inputs @add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) @add_code_sample_docstrings( checkpoint="funnel-transformer/small-base", output_type=TFMultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: bool = False, ) -> Union[Tuple[tf.Tensor], TFMultipleChoiceModelOutput]: r""" labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ if input_ids is not None: num_choices = shape_list(input_ids)[1] seq_length = shape_list(input_ids)[2] else: num_choices = shape_list(inputs_embeds)[1] seq_length = shape_list(inputs_embeds)[2] flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None flat_inputs_embeds = ( tf.reshape(inputs_embeds, (-1, seq_length, shape_list(inputs_embeds)[3])) if inputs_embeds is not None else None ) outputs = self.funnel( flat_input_ids, attention_mask=flat_attention_mask, token_type_ids=flat_token_type_ids, inputs_embeds=flat_inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) last_hidden_state = outputs[0] pooled_output = last_hidden_state[:, 0] logits = self.classifier(pooled_output, training=training) reshaped_logits = tf.reshape(logits, (-1, num_choices)) loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits) if not return_dict: output = (reshaped_logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFMultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def serving_output(self, output: TFMultipleChoiceModelOutput) -> TFMultipleChoiceModelOutput: # hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of # different dimensions return TFMultipleChoiceModelOutput( logits=output.logits, hidden_states=output.hidden_states, attentions=output.attentions ) @add_start_docstrings( """ Funnel Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, FUNNEL_START_DOCSTRING, ) class TFFunnelForTokenClassification(TFFunnelPreTrainedModel, TFTokenClassificationLoss): def __init__(self, config: FunnelConfig, *inputs, **kwargs) -> None: super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.funnel = TFFunnelMainLayer(config, name="funnel") self.dropout = tf.keras.layers.Dropout(config.hidden_dropout) self.classifier = tf.keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) @unpack_inputs @add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint="funnel-transformer/small", output_type=TFTokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: bool = False, ) -> Union[Tuple[tf.Tensor], TFTokenClassifierOutput]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ outputs = self.funnel( input_ids, attention_mask, token_type_ids, inputs_embeds, output_attentions, output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output, training=training) logits = self.classifier(sequence_output) loss = None if labels is None else self.hf_compute_loss(labels, logits) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFTokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def serving_output(self, output: TFTokenClassifierOutput) -> TFTokenClassifierOutput: # hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of # different dimensions return TFTokenClassifierOutput( logits=output.logits, hidden_states=output.hidden_states, attentions=output.attentions ) @add_start_docstrings( """ Funnel Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, FUNNEL_START_DOCSTRING, ) class TFFunnelForQuestionAnswering(TFFunnelPreTrainedModel, TFQuestionAnsweringLoss): def __init__(self, config: FunnelConfig, *inputs, **kwargs) -> None: super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.funnel = TFFunnelMainLayer(config, name="funnel") self.qa_outputs = tf.keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs" ) @unpack_inputs @add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint="funnel-transformer/small", output_type=TFQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, start_positions: np.ndarray | tf.Tensor | None = None, end_positions: np.ndarray | tf.Tensor | None = None, training: bool = False, ) -> Union[Tuple[tf.Tensor], TFQuestionAnsweringModelOutput]: r""" start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ outputs = self.funnel( input_ids, attention_mask, token_type_ids, inputs_embeds, output_attentions, output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = tf.split(logits, 2, axis=-1) start_logits = tf.squeeze(start_logits, axis=-1) end_logits = tf.squeeze(end_logits, axis=-1) loss = None if start_positions is not None and end_positions is not None: labels = {"start_position": start_positions, "end_position": end_positions} loss = self.hf_compute_loss(labels, (start_logits, end_logits)) if not return_dict: output = (start_logits, end_logits) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFQuestionAnsweringModelOutput( loss=loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def serving_output(self, output: TFQuestionAnsweringModelOutput) -> TFQuestionAnsweringModelOutput: # hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of # different dimensions return TFQuestionAnsweringModelOutput( start_logits=output.start_logits, end_logits=output.end_logits, hidden_states=output.hidden_states, attentions=output.attentions, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/funnel/__init__.py
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _import_structure = { "configuration_funnel": ["FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP", "FunnelConfig"], "convert_funnel_original_tf_checkpoint_to_pytorch": [], "tokenization_funnel": ["FunnelTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_funnel_fast"] = ["FunnelTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_funnel"] = [ "FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "FunnelBaseModel", "FunnelForMaskedLM", "FunnelForMultipleChoice", "FunnelForPreTraining", "FunnelForQuestionAnswering", "FunnelForSequenceClassification", "FunnelForTokenClassification", "FunnelModel", "FunnelPreTrainedModel", "load_tf_weights_in_funnel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_funnel"] = [ "TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFFunnelBaseModel", "TFFunnelForMaskedLM", "TFFunnelForMultipleChoice", "TFFunnelForPreTraining", "TFFunnelForQuestionAnswering", "TFFunnelForSequenceClassification", "TFFunnelForTokenClassification", "TFFunnelModel", "TFFunnelPreTrainedModel", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/funnel/tokenization_funnel.py
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tokenization class for Funnel Transformer.""" import collections import os import unicodedata from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"} _model_names = [ "small", "small-base", "medium", "medium-base", "intermediate", "intermediate-base", "large", "large-base", "xlarge", "xlarge-base", ] PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt", "funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt", "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt", "funnel-transformer/medium-base": ( "https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt" ), "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt", "funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt", "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt", "funnel-transformer/xlarge-base": ( "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt" ), } } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {f"funnel-transformer/{name}": 512 for name in _model_names} PRETRAINED_INIT_CONFIGURATION = {f"funnel-transformer/{name}": {"do_lower_case": True} for name in _model_names} # Copied from transformers.models.bert.tokenization_bert.load_vocab def load_vocab(vocab_file): """Loads a vocabulary file into a dictionary.""" vocab = collections.OrderedDict() with open(vocab_file, "r", encoding="utf-8") as reader: tokens = reader.readlines() for index, token in enumerate(tokens): token = token.rstrip("\n") vocab[token] = index return vocab # Copied from transformers.models.bert.tokenization_bert.whitespace_tokenize def whitespace_tokenize(text): """Runs basic whitespace cleaning and splitting on a piece of text.""" text = text.strip() if not text: return [] tokens = text.split() return tokens class FunnelTokenizer(PreTrainedTokenizer): r""" Construct a Funnel Transformer tokenizer. Based on WordPiece. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): File containing the vocabulary. do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. do_basic_tokenize (`bool`, *optional*, defaults to `True`): Whether or not to do basic tokenization before WordPiece. never_split (`Iterable`, *optional*): Collection of tokens which will never be split during tokenization. Only has an effect when `do_basic_tokenize=True` unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. sep_token (`str`, *optional*, defaults to `"<sep>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. cls_token (`str`, *optional*, defaults to `"<cls>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. bos_token (`str`, `optional`, defaults to `"<s>"`): The beginning of sentence token. eos_token (`str`, `optional`, defaults to `"</s>"`): The end of sentence token. tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this [issue](https://github.com/huggingface/transformers/issues/328)). strip_accents (`bool`, *optional*): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for `lowercase` (as in the original BERT). """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES cls_token_type_id: int = 2 def __init__( self, vocab_file, do_lower_case=True, do_basic_tokenize=True, never_split=None, unk_token="<unk>", sep_token="<sep>", pad_token="<pad>", cls_token="<cls>", mask_token="<mask>", bos_token="<s>", eos_token="</s>", tokenize_chinese_chars=True, strip_accents=None, **kwargs, ): super().__init__( do_lower_case=do_lower_case, do_basic_tokenize=do_basic_tokenize, never_split=never_split, unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, bos_token=bos_token, eos_token=eos_token, tokenize_chinese_chars=tokenize_chinese_chars, strip_accents=strip_accents, **kwargs, ) if not os.path.isfile(vocab_file): raise ValueError( f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained" " model use `tokenizer = FunnelTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) self.vocab = load_vocab(vocab_file) self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()]) self.do_basic_tokenize = do_basic_tokenize if do_basic_tokenize: self.basic_tokenizer = BasicTokenizer( do_lower_case=do_lower_case, never_split=never_split, tokenize_chinese_chars=tokenize_chinese_chars, strip_accents=strip_accents, ) self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=self.unk_token) @property # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.do_lower_case def do_lower_case(self): return self.basic_tokenizer.do_lower_case @property # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.vocab_size def vocab_size(self): return len(self.vocab) # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.get_vocab def get_vocab(self): return dict(self.vocab, **self.added_tokens_encoder) # Copied from transformers.models.bert.tokenization_bert.BertTokenizer._tokenize def _tokenize(self, text): split_tokens = [] if self.do_basic_tokenize: for token in self.basic_tokenizer.tokenize(text, never_split=self.all_special_tokens): # If the token is part of the never_split set if token in self.basic_tokenizer.never_split: split_tokens.append(token) else: split_tokens += self.wordpiece_tokenizer.tokenize(token) else: split_tokens = self.wordpiece_tokenizer.tokenize(text) return split_tokens # Copied from transformers.models.bert.tokenization_bert.BertTokenizer._convert_token_to_id def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.vocab.get(token, self.vocab.get(self.unk_token)) # Copied from transformers.models.bert.tokenization_bert.BertTokenizer._convert_id_to_token def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.ids_to_tokens.get(index, self.unk_token) # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.convert_tokens_to_string def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" out_string = " ".join(tokens).replace(" ##", "").strip() return out_string # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.build_inputs_with_special_tokens def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A BERT sequence has the following format: - single sequence: `[CLS] X [SEP]` - pair of sequences: `[CLS] A [SEP] B [SEP]` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + token_ids_1 + sep # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.get_special_tokens_mask def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is not None: return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] return [1] + ([0] * len(token_ids_0)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A Funnel Transformer sequence pair mask has the following format: ``` 2 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls) * [self.cls_token_type_id] + len(token_ids_0 + sep) * [0] return len(cls) * [self.cls_token_type_id] + len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] # Copied from transformers.models.bert.tokenization_bert.BertTokenizer.save_vocabulary def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: index = 0 if os.path.isdir(save_directory): vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory with open(vocab_file, "w", encoding="utf-8") as writer: for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." " Please check that the vocabulary is not corrupted!" ) index = token_index writer.write(token + "\n") index += 1 return (vocab_file,) # Copied from transformers.models.bert.tokenization_bert.BasicTokenizer class BasicTokenizer(object): """ Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.). Args: do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. never_split (`Iterable`, *optional*): Collection of tokens which will never be split during tokenization. Only has an effect when `do_basic_tokenize=True` tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this [issue](https://github.com/huggingface/transformers/issues/328)). strip_accents (`bool`, *optional*): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for `lowercase` (as in the original BERT). do_split_on_punc (`bool`, *optional*, defaults to `True`): In some instances we want to skip the basic punctuation splitting so that later tokenization can capture the full context of the words, such as contractions. """ def __init__( self, do_lower_case=True, never_split=None, tokenize_chinese_chars=True, strip_accents=None, do_split_on_punc=True, ): if never_split is None: never_split = [] self.do_lower_case = do_lower_case self.never_split = set(never_split) self.tokenize_chinese_chars = tokenize_chinese_chars self.strip_accents = strip_accents self.do_split_on_punc = do_split_on_punc def tokenize(self, text, never_split=None): """ Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer. Args: never_split (`List[str]`, *optional*) Kept for backward compatibility purposes. Now implemented directly at the base class level (see [`PreTrainedTokenizer.tokenize`]) List of token not to split. """ # union() returns a new set by concatenating the two sets. never_split = self.never_split.union(set(never_split)) if never_split else self.never_split text = self._clean_text(text) # This was added on November 1st, 2018 for the multilingual and Chinese # models. This is also applied to the English models now, but it doesn't # matter since the English models were not trained on any Chinese data # and generally don't have any Chinese data in them (there are Chinese # characters in the vocabulary because Wikipedia does have some Chinese # words in the English Wikipedia.). if self.tokenize_chinese_chars: text = self._tokenize_chinese_chars(text) # prevents treating the same character with different unicode codepoints as different characters unicode_normalized_text = unicodedata.normalize("NFC", text) orig_tokens = whitespace_tokenize(unicode_normalized_text) split_tokens = [] for token in orig_tokens: if token not in never_split: if self.do_lower_case: token = token.lower() if self.strip_accents is not False: token = self._run_strip_accents(token) elif self.strip_accents: token = self._run_strip_accents(token) split_tokens.extend(self._run_split_on_punc(token, never_split)) output_tokens = whitespace_tokenize(" ".join(split_tokens)) return output_tokens def _run_strip_accents(self, text): """Strips accents from a piece of text.""" text = unicodedata.normalize("NFD", text) output = [] for char in text: cat = unicodedata.category(char) if cat == "Mn": continue output.append(char) return "".join(output) def _run_split_on_punc(self, text, never_split=None): """Splits punctuation on a piece of text.""" if not self.do_split_on_punc or (never_split is not None and text in never_split): return [text] chars = list(text) i = 0 start_new_word = True output = [] while i < len(chars): char = chars[i] if _is_punctuation(char): output.append([char]) start_new_word = True else: if start_new_word: output.append([]) start_new_word = False output[-1].append(char) i += 1 return ["".join(x) for x in output] def _tokenize_chinese_chars(self, text): """Adds whitespace around any CJK character.""" output = [] for char in text: cp = ord(char) if self._is_chinese_char(cp): output.append(" ") output.append(char) output.append(" ") else: output.append(char) return "".join(output) def _is_chinese_char(self, cp): """Checks whether CP is the codepoint of a CJK character.""" # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x20000 and cp <= 0x2A6DF) # or (cp >= 0x2A700 and cp <= 0x2B73F) # or (cp >= 0x2B740 and cp <= 0x2B81F) # or (cp >= 0x2B820 and cp <= 0x2CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2F800 and cp <= 0x2FA1F) # ): # return True return False def _clean_text(self, text): """Performs invalid character removal and whitespace cleanup on text.""" output = [] for char in text: cp = ord(char) if cp == 0 or cp == 0xFFFD or _is_control(char): continue if _is_whitespace(char): output.append(" ") else: output.append(char) return "".join(output) # Copied from transformers.models.bert.tokenization_bert.WordpieceTokenizer class WordpieceTokenizer(object): """Runs WordPiece tokenization.""" def __init__(self, vocab, unk_token, max_input_chars_per_word=100): self.vocab = vocab self.unk_token = unk_token self.max_input_chars_per_word = max_input_chars_per_word def tokenize(self, text): """ Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform tokenization using the given vocabulary. For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`. Args: text: A single token or whitespace separated tokens. This should have already been passed through *BasicTokenizer*. Returns: A list of wordpiece tokens. """ output_tokens = [] for token in whitespace_tokenize(text): chars = list(token) if len(chars) > self.max_input_chars_per_word: output_tokens.append(self.unk_token) continue is_bad = False start = 0 sub_tokens = [] while start < len(chars): end = len(chars) cur_substr = None while start < end: substr = "".join(chars[start:end]) if start > 0: substr = "##" + substr if substr in self.vocab: cur_substr = substr break end -= 1 if cur_substr is None: is_bad = True break sub_tokens.append(cur_substr) start = end if is_bad: output_tokens.append(self.unk_token) else: output_tokens.extend(sub_tokens) return output_tokens
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/funnel/modeling_funnel.py
# coding=utf-8 # Copyright 2020-present Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch Funnel Transformer model.""" import os from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutput, MaskedLMOutput, MultipleChoiceModelOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_funnel import FunnelConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "FunnelConfig" _CHECKPOINT_FOR_DOC = "funnel-transformer/small" FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST = [ "funnel-transformer/small", # B4-4-4H768 "funnel-transformer/small-base", # B4-4-4H768, no decoder "funnel-transformer/medium", # B6-3x2-3x2H768 "funnel-transformer/medium-base", # B6-3x2-3x2H768, no decoder "funnel-transformer/intermediate", # B6-6-6H768 "funnel-transformer/intermediate-base", # B6-6-6H768, no decoder "funnel-transformer/large", # B8-8-8H1024 "funnel-transformer/large-base", # B8-8-8H1024, no decoder "funnel-transformer/xlarge-base", # B10-10-10H1024 "funnel-transformer/xlarge", # B10-10-10H1024, no decoder ] INF = 1e6 def load_tf_weights_in_funnel(model, config, tf_checkpoint_path): """Load tf checkpoints in a pytorch model.""" try: import re import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise tf_path = os.path.abspath(tf_checkpoint_path) logger.info(f"Converting TensorFlow checkpoint from {tf_path}") # Load weights from TF model init_vars = tf.train.list_variables(tf_path) names = [] arrays = [] for name, shape in init_vars: logger.info(f"Loading TF weight {name} with shape {shape}") array = tf.train.load_variable(tf_path, name) names.append(name) arrays.append(array) _layer_map = { "k": "k_head", "q": "q_head", "v": "v_head", "o": "post_proj", "layer_1": "linear_1", "layer_2": "linear_2", "rel_attn": "attention", "ff": "ffn", "kernel": "weight", "gamma": "weight", "beta": "bias", "lookup_table": "weight", "word_embedding": "word_embeddings", "input": "embeddings", } for name, array in zip(names, arrays): name = name.split("/") # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v # which are not required for using pretrained model if any( n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"] for n in name ): logger.info(f"Skipping {'/'.join(name)}") continue if name[0] == "generator": continue pointer = model skipped = False for m_name in name[1:]: if not isinstance(pointer, FunnelPositionwiseFFN) and re.fullmatch(r"layer_\d+", m_name): layer_index = int(re.search(r"layer_(\d+)", m_name).groups()[0]) if layer_index < config.num_hidden_layers: block_idx = 0 while layer_index >= config.block_sizes[block_idx]: layer_index -= config.block_sizes[block_idx] block_idx += 1 pointer = pointer.blocks[block_idx][layer_index] else: layer_index -= config.num_hidden_layers pointer = pointer.layers[layer_index] elif m_name == "r" and isinstance(pointer, FunnelRelMultiheadAttention): pointer = pointer.r_kernel break elif m_name in _layer_map: pointer = getattr(pointer, _layer_map[m_name]) else: try: pointer = getattr(pointer, m_name) except AttributeError: print(f"Skipping {'/'.join(name)}", array.shape) skipped = True break if not skipped: if len(pointer.shape) != len(array.shape): array = array.reshape(pointer.shape) if m_name == "kernel": array = np.transpose(array) pointer.data = torch.from_numpy(array) return model class FunnelEmbeddings(nn.Module): def __init__(self, config: FunnelConfig) -> None: super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.layer_norm = nn.LayerNorm(config.d_model, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout) def forward( self, input_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None ) -> torch.Tensor: if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) embeddings = self.layer_norm(inputs_embeds) embeddings = self.dropout(embeddings) return embeddings class FunnelAttentionStructure(nn.Module): """ Contains helpers for `FunnelRelMultiheadAttention `. """ cls_token_type_id: int = 2 def __init__(self, config: FunnelConfig) -> None: super().__init__() self.config = config self.sin_dropout = nn.Dropout(config.hidden_dropout) self.cos_dropout = nn.Dropout(config.hidden_dropout) # Track where we are at in terms of pooling from the original input, e.g., by how much the sequence length was # divided. self.pooling_mult = None def init_attention_inputs( self, inputs_embeds: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, ) -> Tuple[torch.Tensor]: """Returns the attention inputs associated to the inputs of the model.""" # inputs_embeds has shape batch_size x seq_len x d_model # attention_mask and token_type_ids have shape batch_size x seq_len self.pooling_mult = 1 self.seq_len = seq_len = inputs_embeds.size(1) position_embeds = self.get_position_embeds(seq_len, inputs_embeds.dtype, inputs_embeds.device) token_type_mat = self.token_type_ids_to_mat(token_type_ids) if token_type_ids is not None else None cls_mask = ( nn.functional.pad(inputs_embeds.new_ones([seq_len - 1, seq_len - 1]), (1, 0, 1, 0)) if self.config.separate_cls else None ) return (position_embeds, token_type_mat, attention_mask, cls_mask) def token_type_ids_to_mat(self, token_type_ids: torch.Tensor) -> torch.Tensor: """Convert `token_type_ids` to `token_type_mat`.""" token_type_mat = token_type_ids[:, :, None] == token_type_ids[:, None] # Treat <cls> as in the same segment as both A & B cls_ids = token_type_ids == self.cls_token_type_id cls_mat = cls_ids[:, :, None] | cls_ids[:, None] return cls_mat | token_type_mat def get_position_embeds( self, seq_len: int, dtype: torch.dtype, device: torch.device ) -> Union[Tuple[torch.Tensor], List[List[torch.Tensor]]]: """ Create and cache inputs related to relative position encoding. Those are very different depending on whether we are using the factorized or the relative shift attention: For the factorized attention, it returns the matrices (phi, pi, psi, omega) used in the paper, appendix A.2.2, final formula. For the relative shift attention, it returns all possible vectors R used in the paper, appendix A.2.1, final formula. Paper link: https://arxiv.org/abs/2006.03236 """ d_model = self.config.d_model if self.config.attention_type == "factorized": # Notations from the paper, appending A.2.2, final formula. # We need to create and return the matrices phi, psi, pi and omega. pos_seq = torch.arange(0, seq_len, 1.0, dtype=dtype, device=device) freq_seq = torch.arange(0, d_model // 2, 1.0, dtype=dtype, device=device) inv_freq = 1 / (10000 ** (freq_seq / (d_model // 2))) sinusoid = pos_seq[:, None] * inv_freq[None] sin_embed = torch.sin(sinusoid) sin_embed_d = self.sin_dropout(sin_embed) cos_embed = torch.cos(sinusoid) cos_embed_d = self.cos_dropout(cos_embed) # This is different from the formula on the paper... phi = torch.cat([sin_embed_d, sin_embed_d], dim=-1) psi = torch.cat([cos_embed, sin_embed], dim=-1) pi = torch.cat([cos_embed_d, cos_embed_d], dim=-1) omega = torch.cat([-sin_embed, cos_embed], dim=-1) return (phi, pi, psi, omega) else: # Notations from the paper, appending A.2.1, final formula. # We need to create and return all the possible vectors R for all blocks and shifts. freq_seq = torch.arange(0, d_model // 2, 1.0, dtype=dtype, device=device) inv_freq = 1 / (10000 ** (freq_seq / (d_model // 2))) # Maximum relative positions for the first input rel_pos_id = torch.arange(-seq_len * 2, seq_len * 2, 1.0, dtype=dtype, device=device) zero_offset = seq_len * 2 sinusoid = rel_pos_id[:, None] * inv_freq[None] sin_embed = self.sin_dropout(torch.sin(sinusoid)) cos_embed = self.cos_dropout(torch.cos(sinusoid)) pos_embed = torch.cat([sin_embed, cos_embed], dim=-1) pos = torch.arange(0, seq_len, dtype=dtype, device=device) pooled_pos = pos position_embeds_list = [] for block_index in range(0, self.config.num_blocks): # For each block with block_index > 0, we need two types position embeddings: # - Attention(pooled-q, unpooled-kv) # - Attention(pooled-q, pooled-kv) # For block_index = 0 we only need the second one and leave the first one as None. # First type if block_index == 0: position_embeds_pooling = None else: pooled_pos = self.stride_pool_pos(pos, block_index) # construct rel_pos_id stride = 2 ** (block_index - 1) rel_pos = self.relative_pos(pos, stride, pooled_pos, shift=2) rel_pos = rel_pos[:, None] + zero_offset rel_pos = rel_pos.expand(rel_pos.size(0), d_model) position_embeds_pooling = torch.gather(pos_embed, 0, rel_pos) # Second type pos = pooled_pos stride = 2**block_index rel_pos = self.relative_pos(pos, stride) rel_pos = rel_pos[:, None] + zero_offset rel_pos = rel_pos.expand(rel_pos.size(0), d_model) position_embeds_no_pooling = torch.gather(pos_embed, 0, rel_pos) position_embeds_list.append([position_embeds_no_pooling, position_embeds_pooling]) return position_embeds_list def stride_pool_pos(self, pos_id: torch.Tensor, block_index: int): """ Pool `pos_id` while keeping the cls token separate (if `config.separate_cls=True`). """ if self.config.separate_cls: # Under separate <cls>, we treat the <cls> as the first token in # the previous block of the 1st real block. Since the 1st real # block always has position 1, the position of the previous block # will be at `1 - 2 ** block_index`. cls_pos = pos_id.new_tensor([-(2**block_index) + 1]) pooled_pos_id = pos_id[1:-1] if self.config.truncate_seq else pos_id[1:] return torch.cat([cls_pos, pooled_pos_id[::2]], 0) else: return pos_id[::2] def relative_pos(self, pos: torch.Tensor, stride: int, pooled_pos=None, shift: int = 1) -> torch.Tensor: """ Build the relative positional vector between `pos` and `pooled_pos`. """ if pooled_pos is None: pooled_pos = pos ref_point = pooled_pos[0] - pos[0] num_remove = shift * len(pooled_pos) max_dist = ref_point + num_remove * stride min_dist = pooled_pos[0] - pos[-1] return torch.arange(max_dist, min_dist - 1, -stride, dtype=torch.long, device=pos.device) def stride_pool( self, tensor: Union[torch.Tensor, Tuple[torch.Tensor], List[torch.Tensor]], axis: Union[int, Tuple[int], List[int]], ) -> torch.Tensor: """ Perform pooling by stride slicing the tensor along the given axis. """ if tensor is None: return None # Do the stride pool recursively if axis is a list or a tuple of ints. if isinstance(axis, (list, tuple)): for ax in axis: tensor = self.stride_pool(tensor, ax) return tensor # Do the stride pool recursively if tensor is a list or tuple of tensors. if isinstance(tensor, (tuple, list)): return type(tensor)(self.stride_pool(x, axis) for x in tensor) # Deal with negative axis axis %= tensor.ndim axis_slice = ( slice(None, -1, 2) if self.config.separate_cls and self.config.truncate_seq else slice(None, None, 2) ) enc_slice = [slice(None)] * axis + [axis_slice] if self.config.separate_cls: cls_slice = [slice(None)] * axis + [slice(None, 1)] tensor = torch.cat([tensor[cls_slice], tensor], axis=axis) return tensor[enc_slice] def pool_tensor( self, tensor: Union[torch.Tensor, Tuple[torch.Tensor], List[torch.Tensor]], mode: str = "mean", stride: int = 2 ) -> torch.Tensor: """Apply 1D pooling to a tensor of size [B x T (x H)].""" if tensor is None: return None # Do the pool recursively if tensor is a list or tuple of tensors. if isinstance(tensor, (tuple, list)): return type(tensor)(self.pool_tensor(tensor, mode=mode, stride=stride) for x in tensor) if self.config.separate_cls: suffix = tensor[:, :-1] if self.config.truncate_seq else tensor tensor = torch.cat([tensor[:, :1], suffix], dim=1) ndim = tensor.ndim if ndim == 2: tensor = tensor[:, None, :, None] elif ndim == 3: tensor = tensor[:, None, :, :] # Stride is applied on the second-to-last dimension. stride = (stride, 1) if mode == "mean": tensor = nn.functional.avg_pool2d(tensor, stride, stride=stride, ceil_mode=True) elif mode == "max": tensor = nn.functional.max_pool2d(tensor, stride, stride=stride, ceil_mode=True) elif mode == "min": tensor = -nn.functional.max_pool2d(-tensor, stride, stride=stride, ceil_mode=True) else: raise NotImplementedError("The supported modes are 'mean', 'max' and 'min'.") if ndim == 2: return tensor[:, 0, :, 0] elif ndim == 3: return tensor[:, 0] return tensor def pre_attention_pooling( self, output, attention_inputs: Tuple[torch.Tensor] ) -> Tuple[torch.Tensor, Tuple[torch.Tensor]]: """Pool `output` and the proper parts of `attention_inputs` before the attention layer.""" position_embeds, token_type_mat, attention_mask, cls_mask = attention_inputs if self.config.pool_q_only: if self.config.attention_type == "factorized": position_embeds = self.stride_pool(position_embeds[:2], 0) + position_embeds[2:] token_type_mat = self.stride_pool(token_type_mat, 1) cls_mask = self.stride_pool(cls_mask, 0) output = self.pool_tensor(output, mode=self.config.pooling_type) else: self.pooling_mult *= 2 if self.config.attention_type == "factorized": position_embeds = self.stride_pool(position_embeds, 0) token_type_mat = self.stride_pool(token_type_mat, [1, 2]) cls_mask = self.stride_pool(cls_mask, [1, 2]) attention_mask = self.pool_tensor(attention_mask, mode="min") output = self.pool_tensor(output, mode=self.config.pooling_type) attention_inputs = (position_embeds, token_type_mat, attention_mask, cls_mask) return output, attention_inputs def post_attention_pooling(self, attention_inputs: Tuple[torch.Tensor]) -> Tuple[torch.Tensor]: """Pool the proper parts of `attention_inputs` after the attention layer.""" position_embeds, token_type_mat, attention_mask, cls_mask = attention_inputs if self.config.pool_q_only: self.pooling_mult *= 2 if self.config.attention_type == "factorized": position_embeds = position_embeds[:2] + self.stride_pool(position_embeds[2:], 0) token_type_mat = self.stride_pool(token_type_mat, 2) cls_mask = self.stride_pool(cls_mask, 1) attention_mask = self.pool_tensor(attention_mask, mode="min") attention_inputs = (position_embeds, token_type_mat, attention_mask, cls_mask) return attention_inputs def _relative_shift_gather(positional_attn: torch.Tensor, context_len: int, shift: int) -> torch.Tensor: batch_size, n_head, seq_len, max_rel_len = positional_attn.shape # max_rel_len = 2 * context_len + shift -1 is the numbers of possible relative positions i-j # What's next is the same as doing the following gather, which might be clearer code but less efficient. # idxs = context_len + torch.arange(0, context_len).unsqueeze(0) - torch.arange(0, seq_len).unsqueeze(1) # # matrix of context_len + i-j # return positional_attn.gather(3, idxs.expand([batch_size, n_head, context_len, context_len])) positional_attn = torch.reshape(positional_attn, [batch_size, n_head, max_rel_len, seq_len]) positional_attn = positional_attn[:, :, shift:, :] positional_attn = torch.reshape(positional_attn, [batch_size, n_head, seq_len, max_rel_len - shift]) positional_attn = positional_attn[..., :context_len] return positional_attn class FunnelRelMultiheadAttention(nn.Module): def __init__(self, config: FunnelConfig, block_index: int) -> None: super().__init__() self.config = config self.block_index = block_index d_model, n_head, d_head = config.d_model, config.n_head, config.d_head self.hidden_dropout = nn.Dropout(config.hidden_dropout) self.attention_dropout = nn.Dropout(config.attention_dropout) self.q_head = nn.Linear(d_model, n_head * d_head, bias=False) self.k_head = nn.Linear(d_model, n_head * d_head) self.v_head = nn.Linear(d_model, n_head * d_head) self.r_w_bias = nn.Parameter(torch.zeros([n_head, d_head])) self.r_r_bias = nn.Parameter(torch.zeros([n_head, d_head])) self.r_kernel = nn.Parameter(torch.zeros([d_model, n_head, d_head])) self.r_s_bias = nn.Parameter(torch.zeros([n_head, d_head])) self.seg_embed = nn.Parameter(torch.zeros([2, n_head, d_head])) self.post_proj = nn.Linear(n_head * d_head, d_model) self.layer_norm = nn.LayerNorm(d_model, eps=config.layer_norm_eps) self.scale = 1.0 / (d_head**0.5) def relative_positional_attention(self, position_embeds, q_head, context_len, cls_mask=None): """Relative attention score for the positional encodings""" # q_head has shape batch_size x sea_len x n_head x d_head if self.config.attention_type == "factorized": # Notations from the paper, appending A.2.2, final formula (https://arxiv.org/abs/2006.03236) # phi and pi have shape seq_len x d_model, psi and omega have shape context_len x d_model phi, pi, psi, omega = position_embeds # Shape n_head x d_head u = self.r_r_bias * self.scale # Shape d_model x n_head x d_head w_r = self.r_kernel # Shape batch_size x sea_len x n_head x d_model q_r_attention = torch.einsum("binh,dnh->bind", q_head + u, w_r) q_r_attention_1 = q_r_attention * phi[:, None] q_r_attention_2 = q_r_attention * pi[:, None] # Shape batch_size x n_head x seq_len x context_len positional_attn = torch.einsum("bind,jd->bnij", q_r_attention_1, psi) + torch.einsum( "bind,jd->bnij", q_r_attention_2, omega ) else: shift = 2 if q_head.shape[1] != context_len else 1 # Notations from the paper, appending A.2.1, final formula (https://arxiv.org/abs/2006.03236) # Grab the proper positional encoding, shape max_rel_len x d_model r = position_embeds[self.block_index][shift - 1] # Shape n_head x d_head v = self.r_r_bias * self.scale # Shape d_model x n_head x d_head w_r = self.r_kernel # Shape max_rel_len x n_head x d_model r_head = torch.einsum("td,dnh->tnh", r, w_r) # Shape batch_size x n_head x seq_len x max_rel_len positional_attn = torch.einsum("binh,tnh->bnit", q_head + v, r_head) # Shape batch_size x n_head x seq_len x context_len positional_attn = _relative_shift_gather(positional_attn, context_len, shift) if cls_mask is not None: positional_attn *= cls_mask return positional_attn def relative_token_type_attention(self, token_type_mat, q_head, cls_mask=None): """Relative attention score for the token_type_ids""" if token_type_mat is None: return 0 batch_size, seq_len, context_len = token_type_mat.shape # q_head has shape batch_size x seq_len x n_head x d_head # Shape n_head x d_head r_s_bias = self.r_s_bias * self.scale # Shape batch_size x n_head x seq_len x 2 token_type_bias = torch.einsum("bind,snd->bnis", q_head + r_s_bias, self.seg_embed) # Shape batch_size x n_head x seq_len x context_len token_type_mat = token_type_mat[:, None].expand([batch_size, q_head.shape[2], seq_len, context_len]) # Shapes batch_size x n_head x seq_len diff_token_type, same_token_type = torch.split(token_type_bias, 1, dim=-1) # Shape batch_size x n_head x seq_len x context_len token_type_attn = torch.where( token_type_mat, same_token_type.expand(token_type_mat.shape), diff_token_type.expand(token_type_mat.shape) ) if cls_mask is not None: token_type_attn *= cls_mask return token_type_attn def forward( self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_inputs: Tuple[torch.Tensor], output_attentions: bool = False, ) -> Tuple[torch.Tensor, ...]: # query has shape batch_size x seq_len x d_model # key and value have shapes batch_size x context_len x d_model position_embeds, token_type_mat, attention_mask, cls_mask = attention_inputs batch_size, seq_len, _ = query.shape context_len = key.shape[1] n_head, d_head = self.config.n_head, self.config.d_head # Shape batch_size x seq_len x n_head x d_head q_head = self.q_head(query).view(batch_size, seq_len, n_head, d_head) # Shapes batch_size x context_len x n_head x d_head k_head = self.k_head(key).view(batch_size, context_len, n_head, d_head) v_head = self.v_head(value).view(batch_size, context_len, n_head, d_head) q_head = q_head * self.scale # Shape n_head x d_head r_w_bias = self.r_w_bias * self.scale # Shapes batch_size x n_head x seq_len x context_len content_score = torch.einsum("bind,bjnd->bnij", q_head + r_w_bias, k_head) positional_attn = self.relative_positional_attention(position_embeds, q_head, context_len, cls_mask) token_type_attn = self.relative_token_type_attention(token_type_mat, q_head, cls_mask) # merge attention scores attn_score = content_score + positional_attn + token_type_attn # precision safe in case of mixed precision training dtype = attn_score.dtype attn_score = attn_score.float() # perform masking if attention_mask is not None: attn_score = attn_score - INF * (1 - attention_mask[:, None, None].float()) # attention probability attn_prob = torch.softmax(attn_score, dim=-1, dtype=dtype) attn_prob = self.attention_dropout(attn_prob) # attention output, shape batch_size x seq_len x n_head x d_head attn_vec = torch.einsum("bnij,bjnd->bind", attn_prob, v_head) # Shape shape batch_size x seq_len x d_model attn_out = self.post_proj(attn_vec.reshape(batch_size, seq_len, n_head * d_head)) attn_out = self.hidden_dropout(attn_out) output = self.layer_norm(query + attn_out) return (output, attn_prob) if output_attentions else (output,) class FunnelPositionwiseFFN(nn.Module): def __init__(self, config: FunnelConfig) -> None: super().__init__() self.linear_1 = nn.Linear(config.d_model, config.d_inner) self.activation_function = ACT2FN[config.hidden_act] self.activation_dropout = nn.Dropout(config.activation_dropout) self.linear_2 = nn.Linear(config.d_inner, config.d_model) self.dropout = nn.Dropout(config.hidden_dropout) self.layer_norm = nn.LayerNorm(config.d_model, config.layer_norm_eps) def forward(self, hidden: torch.Tensor) -> torch.Tensor: h = self.linear_1(hidden) h = self.activation_function(h) h = self.activation_dropout(h) h = self.linear_2(h) h = self.dropout(h) return self.layer_norm(hidden + h) class FunnelLayer(nn.Module): def __init__(self, config: FunnelConfig, block_index: int) -> None: super().__init__() self.attention = FunnelRelMultiheadAttention(config, block_index) self.ffn = FunnelPositionwiseFFN(config) def forward( self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_inputs, output_attentions: bool = False, ) -> Tuple: attn = self.attention(query, key, value, attention_inputs, output_attentions=output_attentions) output = self.ffn(attn[0]) return (output, attn[1]) if output_attentions else (output,) class FunnelEncoder(nn.Module): def __init__(self, config: FunnelConfig) -> None: super().__init__() self.config = config self.attention_structure = FunnelAttentionStructure(config) self.blocks = nn.ModuleList( [ nn.ModuleList([FunnelLayer(config, block_index) for _ in range(block_size)]) for block_index, block_size in enumerate(config.block_sizes) ] ) def forward( self, inputs_embeds: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ) -> Union[Tuple, BaseModelOutput]: # The pooling is not implemented on long tensors, so we convert this mask. attention_mask = attention_mask.type_as(inputs_embeds) attention_inputs = self.attention_structure.init_attention_inputs( inputs_embeds, attention_mask=attention_mask, token_type_ids=token_type_ids, ) hidden = inputs_embeds all_hidden_states = (inputs_embeds,) if output_hidden_states else None all_attentions = () if output_attentions else None for block_index, block in enumerate(self.blocks): pooling_flag = hidden.size(1) > (2 if self.config.separate_cls else 1) pooling_flag = pooling_flag and block_index > 0 if pooling_flag: pooled_hidden, attention_inputs = self.attention_structure.pre_attention_pooling( hidden, attention_inputs ) for layer_index, layer in enumerate(block): for repeat_index in range(self.config.block_repeats[block_index]): do_pooling = (repeat_index == 0) and (layer_index == 0) and pooling_flag if do_pooling: query = pooled_hidden key = value = hidden if self.config.pool_q_only else pooled_hidden else: query = key = value = hidden layer_output = layer(query, key, value, attention_inputs, output_attentions=output_attentions) hidden = layer_output[0] if do_pooling: attention_inputs = self.attention_structure.post_attention_pooling(attention_inputs) if output_attentions: all_attentions = all_attentions + layer_output[1:] if output_hidden_states: all_hidden_states = all_hidden_states + (hidden,) if not return_dict: return tuple(v for v in [hidden, all_hidden_states, all_attentions] if v is not None) return BaseModelOutput(last_hidden_state=hidden, hidden_states=all_hidden_states, attentions=all_attentions) def upsample( x: torch.Tensor, stride: int, target_len: int, separate_cls: bool = True, truncate_seq: bool = False ) -> torch.Tensor: """ Upsample tensor `x` to match `target_len` by repeating the tokens `stride` time on the sequence length dimension. """ if stride == 1: return x if separate_cls: cls = x[:, :1] x = x[:, 1:] output = torch.repeat_interleave(x, repeats=stride, dim=1) if separate_cls: if truncate_seq: output = nn.functional.pad(output, (0, 0, 0, stride - 1, 0, 0)) output = output[:, : target_len - 1] output = torch.cat([cls, output], dim=1) else: output = output[:, :target_len] return output class FunnelDecoder(nn.Module): def __init__(self, config: FunnelConfig) -> None: super().__init__() self.config = config self.attention_structure = FunnelAttentionStructure(config) self.layers = nn.ModuleList([FunnelLayer(config, 0) for _ in range(config.num_decoder_layers)]) def forward( self, final_hidden: torch.Tensor, first_block_hidden: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ) -> Union[Tuple, BaseModelOutput]: upsampled_hidden = upsample( final_hidden, stride=2 ** (len(self.config.block_sizes) - 1), target_len=first_block_hidden.shape[1], separate_cls=self.config.separate_cls, truncate_seq=self.config.truncate_seq, ) hidden = upsampled_hidden + first_block_hidden all_hidden_states = (hidden,) if output_hidden_states else None all_attentions = () if output_attentions else None attention_inputs = self.attention_structure.init_attention_inputs( hidden, attention_mask=attention_mask, token_type_ids=token_type_ids, ) for layer in self.layers: layer_output = layer(hidden, hidden, hidden, attention_inputs, output_attentions=output_attentions) hidden = layer_output[0] if output_attentions: all_attentions = all_attentions + layer_output[1:] if output_hidden_states: all_hidden_states = all_hidden_states + (hidden,) if not return_dict: return tuple(v for v in [hidden, all_hidden_states, all_attentions] if v is not None) return BaseModelOutput(last_hidden_state=hidden, hidden_states=all_hidden_states, attentions=all_attentions) class FunnelDiscriminatorPredictions(nn.Module): """Prediction module for the discriminator, made up of two dense layers.""" def __init__(self, config: FunnelConfig) -> None: super().__init__() self.config = config self.dense = nn.Linear(config.d_model, config.d_model) self.dense_prediction = nn.Linear(config.d_model, 1) def forward(self, discriminator_hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(discriminator_hidden_states) hidden_states = ACT2FN[self.config.hidden_act](hidden_states) logits = self.dense_prediction(hidden_states).squeeze() return logits class FunnelPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = FunnelConfig load_tf_weights = load_tf_weights_in_funnel base_model_prefix = "funnel" def _init_weights(self, module): classname = module.__class__.__name__ if classname.find("Linear") != -1: if getattr(module, "weight", None) is not None: if self.config.initializer_std is None: fan_out, fan_in = module.weight.shape std = np.sqrt(1.0 / float(fan_in + fan_out)) else: std = self.config.initializer_std nn.init.normal_(module.weight, std=std) if getattr(module, "bias", None) is not None: nn.init.constant_(module.bias, 0.0) elif classname == "FunnelRelMultiheadAttention": nn.init.uniform_(module.r_w_bias, b=self.config.initializer_range) nn.init.uniform_(module.r_r_bias, b=self.config.initializer_range) nn.init.uniform_(module.r_kernel, b=self.config.initializer_range) nn.init.uniform_(module.r_s_bias, b=self.config.initializer_range) nn.init.uniform_(module.seg_embed, b=self.config.initializer_range) elif classname == "FunnelEmbeddings": std = 1.0 if self.config.initializer_std is None else self.config.initializer_std nn.init.normal_(module.word_embeddings.weight, std=std) if module.word_embeddings.padding_idx is not None: module.word_embeddings.weight.data[module.padding_idx].zero_() class FunnelClassificationHead(nn.Module): def __init__(self, config: FunnelConfig, n_labels: int) -> None: super().__init__() self.linear_hidden = nn.Linear(config.d_model, config.d_model) self.dropout = nn.Dropout(config.hidden_dropout) self.linear_out = nn.Linear(config.d_model, n_labels) def forward(self, hidden: torch.Tensor) -> torch.Tensor: hidden = self.linear_hidden(hidden) hidden = torch.tanh(hidden) hidden = self.dropout(hidden) return self.linear_out(hidden) @dataclass class FunnelForPreTrainingOutput(ModelOutput): """ Output type of [`FunnelForPreTraining`]. Args: loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): Total loss of the ELECTRA-style objective. logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Prediction scores of the head (scores for each token before SoftMax). hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None FUNNEL_START_DOCSTRING = r""" The Funnel Transformer model was proposed in [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`FunnelConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ FUNNEL_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( """ The base Funnel Transformer Model transformer outputting raw hidden-states without upsampling head (also called decoder) or any task-specific head on top. """, FUNNEL_START_DOCSTRING, ) class FunnelBaseModel(FunnelPreTrainedModel): def __init__(self, config: FunnelConfig) -> None: super().__init__(config) self.embeddings = FunnelEmbeddings(config) self.encoder = FunnelEncoder(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> nn.Embedding: return self.embeddings.word_embeddings def set_input_embeddings(self, new_embeddings: nn.Embedding) -> None: self.embeddings.word_embeddings = new_embeddings @add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint="funnel-transformer/small-base", output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(input_shape, device=device) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # TODO: deal with head_mask if inputs_embeds is None: inputs_embeds = self.embeddings(input_ids) encoder_outputs = self.encoder( inputs_embeds, attention_mask=attention_mask, token_type_ids=token_type_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) return encoder_outputs @add_start_docstrings( "The bare Funnel Transformer Model transformer outputting raw hidden-states without any specific head on top.", FUNNEL_START_DOCSTRING, ) class FunnelModel(FunnelPreTrainedModel): def __init__(self, config: FunnelConfig) -> None: super().__init__(config) self.config = config self.embeddings = FunnelEmbeddings(config) self.encoder = FunnelEncoder(config) self.decoder = FunnelDecoder(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> nn.Embedding: return self.embeddings.word_embeddings def set_input_embeddings(self, new_embeddings: nn.Embedding) -> None: self.embeddings.word_embeddings = new_embeddings @add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(input_shape, device=device) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # TODO: deal with head_mask if inputs_embeds is None: inputs_embeds = self.embeddings(input_ids) encoder_outputs = self.encoder( inputs_embeds, attention_mask=attention_mask, token_type_ids=token_type_ids, output_attentions=output_attentions, output_hidden_states=True, return_dict=return_dict, ) decoder_outputs = self.decoder( final_hidden=encoder_outputs[0], first_block_hidden=encoder_outputs[1][self.config.block_sizes[0]], attention_mask=attention_mask, token_type_ids=token_type_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: idx = 0 outputs = (decoder_outputs[0],) if output_hidden_states: idx += 1 outputs = outputs + (encoder_outputs[1] + decoder_outputs[idx],) if output_attentions: idx += 1 outputs = outputs + (encoder_outputs[2] + decoder_outputs[idx],) return outputs return BaseModelOutput( last_hidden_state=decoder_outputs[0], hidden_states=(encoder_outputs.hidden_states + decoder_outputs.hidden_states) if output_hidden_states else None, attentions=(encoder_outputs.attentions + decoder_outputs.attentions) if output_attentions else None, ) add_start_docstrings( """ Funnel Transformer model with a binary classification head on top as used during pretraining for identifying generated tokens. """, FUNNEL_START_DOCSTRING, ) class FunnelForPreTraining(FunnelPreTrainedModel): def __init__(self, config: FunnelConfig) -> None: super().__init__(config) self.funnel = FunnelModel(config) self.discriminator_predictions = FunnelDiscriminatorPredictions(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=FunnelForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, FunnelForPreTrainingOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the ELECTRA-style loss. Input should be a sequence of tokens (see `input_ids` docstring) Indices should be in `[0, 1]`: - 0 indicates the token is an original token, - 1 indicates the token was replaced. Returns: Examples: ```python >>> from transformers import AutoTokenizer, FunnelForPreTraining >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("funnel-transformer/small") >>> model = FunnelForPreTraining.from_pretrained("funnel-transformer/small") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> logits = model(**inputs).logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict discriminator_hidden_states = self.funnel( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) discriminator_sequence_output = discriminator_hidden_states[0] logits = self.discriminator_predictions(discriminator_sequence_output) loss = None if labels is not None: loss_fct = nn.BCEWithLogitsLoss() if attention_mask is not None: active_loss = attention_mask.view(-1, discriminator_sequence_output.shape[1]) == 1 active_logits = logits.view(-1, discriminator_sequence_output.shape[1])[active_loss] active_labels = labels[active_loss] loss = loss_fct(active_logits, active_labels.float()) else: loss = loss_fct(logits.view(-1, discriminator_sequence_output.shape[1]), labels.float()) if not return_dict: output = (logits,) + discriminator_hidden_states[1:] return ((loss,) + output) if loss is not None else output return FunnelForPreTrainingOutput( loss=loss, logits=logits, hidden_states=discriminator_hidden_states.hidden_states, attentions=discriminator_hidden_states.attentions, ) @add_start_docstrings("""Funnel Transformer Model with a `language modeling` head on top.""", FUNNEL_START_DOCSTRING) class FunnelForMaskedLM(FunnelPreTrainedModel): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config: FunnelConfig) -> None: super().__init__(config) self.funnel = FunnelModel(config) self.lm_head = nn.Linear(config.d_model, config.vocab_size) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self) -> nn.Linear: return self.lm_head def set_output_embeddings(self, new_embeddings: nn.Embedding) -> None: self.lm_head = new_embeddings @add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC, mask="<mask>", ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.funnel( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = outputs[0] prediction_logits = self.lm_head(last_hidden_state) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() # -100 index = padding token masked_lm_loss = loss_fct(prediction_logits.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_logits,) + outputs[1:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Funnel Transformer Model with a sequence classification/regression head on top (two linear layer on top of the first timestep of the last hidden state) e.g. for GLUE tasks. """, FUNNEL_START_DOCSTRING, ) class FunnelForSequenceClassification(FunnelPreTrainedModel): def __init__(self, config: FunnelConfig) -> None: super().__init__(config) self.num_labels = config.num_labels self.config = config self.funnel = FunnelBaseModel(config) self.classifier = FunnelClassificationHead(config, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint="funnel-transformer/small-base", output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.funnel( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = outputs[0] pooled_output = last_hidden_state[:, 0] logits = self.classifier(pooled_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Funnel Transformer Model with a multiple choice classification head on top (two linear layer on top of the first timestep of the last hidden state, and a softmax) e.g. for RocStories/SWAG tasks. """, FUNNEL_START_DOCSTRING, ) class FunnelForMultipleChoice(FunnelPreTrainedModel): def __init__(self, config: FunnelConfig) -> None: super().__init__(config) self.funnel = FunnelBaseModel(config) self.classifier = FunnelClassificationHead(config, 1) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) @add_code_sample_docstrings( checkpoint="funnel-transformer/small-base", output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MultipleChoiceModelOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) outputs = self.funnel( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = outputs[0] pooled_output = last_hidden_state[:, 0] logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Funnel Transformer Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, FUNNEL_START_DOCSTRING, ) class FunnelForTokenClassification(FunnelPreTrainedModel): def __init__(self, config: FunnelConfig) -> None: super().__init__(config) self.num_labels = config.num_labels self.funnel = FunnelModel(config) self.dropout = nn.Dropout(config.hidden_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.funnel( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = outputs[0] last_hidden_state = self.dropout(last_hidden_state) logits = self.classifier(last_hidden_state) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Funnel Transformer Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`). """, FUNNEL_START_DOCSTRING, ) class FunnelForQuestionAnswering(FunnelPreTrainedModel): def __init__(self, config: FunnelConfig) -> None: super().__init__(config) self.num_labels = config.num_labels self.funnel = FunnelModel(config) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, start_positions: Optional[torch.Tensor] = None, end_positions: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.funnel( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = outputs[0] logits = self.qa_outputs(last_hidden_state) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[1:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/funnel/convert_funnel_original_tf_checkpoint_to_pytorch.py
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert Funnel checkpoint.""" import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, config_file, pytorch_dump_path, base_model): # Initialise PyTorch model config = FunnelConfig.from_json_file(config_file) print(f"Building PyTorch model from configuration: {config}") model = FunnelBaseModel(config) if base_model else FunnelModel(config) # Load weights from tf checkpoint load_tf_weights_in_funnel(model, config, tf_checkpoint_path) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}") torch.save(model.state_dict(), pytorch_dump_path) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not." ) args = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/funnel/configuration_funnel.py
# coding=utf-8 # Copyright 2020, Hugging Face # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Funnel Transformer model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP = { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/config.json", "funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json", "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/config.json", "funnel-transformer/medium-base": "https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json", "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/config.json", "funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json", "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json", "funnel-transformer/xlarge-base": "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json", } class FunnelConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`FunnelModel`] or a [`TFBertModel`]. It is used to instantiate a Funnel Transformer model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Funnel Transformer [funnel-transformer/small](https://huggingface.co/funnel-transformer/small) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the Funnel transformer. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`FunnelModel`] or [`TFFunnelModel`]. block_sizes (`List[int]`, *optional*, defaults to `[4, 4, 4]`): The sizes of the blocks used in the model. block_repeats (`List[int]`, *optional*): If passed along, each layer of each block is repeated the number of times indicated. num_decoder_layers (`int`, *optional*, defaults to 2): The number of layers in the decoder (when not using the base model). d_model (`int`, *optional*, defaults to 768): Dimensionality of the model's hidden states. n_head (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. d_head (`int`, *optional*, defaults to 64): Dimensionality of the model's heads. d_inner (`int`, *optional*, defaults to 3072): Inner dimension in the feed-forward blocks. hidden_act (`str` or `callable`, *optional*, defaults to `"gelu_new"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. hidden_dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_dropout (`float`, *optional*, defaults to 0.1): The dropout probability for the attention probabilities. activation_dropout (`float`, *optional*, defaults to 0.0): The dropout probability used between the two layers of the feed-forward blocks. initializer_range (`float`, *optional*, defaults to 0.1): The upper bound of the *uniform initializer* for initializing all weight matrices in attention layers. initializer_std (`float`, *optional*): The standard deviation of the *normal initializer* for initializing the embedding matrix and the weight of linear layers. Will default to 1 for the embedding matrix and the value given by Xavier initialization for linear layers. layer_norm_eps (`float`, *optional*, defaults to 1e-9): The epsilon used by the layer normalization layers. pooling_type (`str`, *optional*, defaults to `"mean"`): Possible values are `"mean"` or `"max"`. The way pooling is performed at the beginning of each block. attention_type (`str`, *optional*, defaults to `"relative_shift"`): Possible values are `"relative_shift"` or `"factorized"`. The former is faster on CPU/GPU while the latter is faster on TPU. separate_cls (`bool`, *optional*, defaults to `True`): Whether or not to separate the cls token when applying pooling. truncate_seq (`bool`, *optional*, defaults to `False`): When using `separate_cls`, whether or not to truncate the last token when pooling, to avoid getting a sequence length that is not a multiple of 2. pool_q_only (`bool`, *optional*, defaults to `False`): Whether or not to apply the pooling only to the query or to query, key and values for the attention layers. """ model_type = "funnel" attribute_map = { "hidden_size": "d_model", "num_attention_heads": "n_head", } def __init__( self, vocab_size=30522, block_sizes=[4, 4, 4], block_repeats=None, num_decoder_layers=2, d_model=768, n_head=12, d_head=64, d_inner=3072, hidden_act="gelu_new", hidden_dropout=0.1, attention_dropout=0.1, activation_dropout=0.0, initializer_range=0.1, initializer_std=None, layer_norm_eps=1e-9, pooling_type="mean", attention_type="relative_shift", separate_cls=True, truncate_seq=True, pool_q_only=True, **kwargs, ): self.vocab_size = vocab_size self.block_sizes = block_sizes self.block_repeats = [1] * len(block_sizes) if block_repeats is None else block_repeats assert len(block_sizes) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." self.num_decoder_layers = num_decoder_layers self.d_model = d_model self.n_head = n_head self.d_head = d_head self.d_inner = d_inner self.hidden_act = hidden_act self.hidden_dropout = hidden_dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.initializer_range = initializer_range self.initializer_std = initializer_std self.layer_norm_eps = layer_norm_eps assert pooling_type in [ "mean", "max", ], f"Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported." self.pooling_type = pooling_type assert attention_type in [ "relative_shift", "factorized", ], f"Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported." self.attention_type = attention_type self.separate_cls = separate_cls self.truncate_seq = truncate_seq self.pool_q_only = pool_q_only super().__init__(**kwargs) @property def num_hidden_layers(self): return sum(self.block_sizes) @num_hidden_layers.setter def num_hidden_layers(self, value): raise NotImplementedError( "This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`." ) @property def num_blocks(self): return len(self.block_sizes) @num_blocks.setter def num_blocks(self, value): raise NotImplementedError("This model does not support the setting of `num_blocks`. Please set `block_sizes`.")
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/xlm_prophetnet/__init__.py
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available _import_structure = { "configuration_xlm_prophetnet": ["XLM_PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMProphetNetConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_xlm_prophetnet"] = ["XLMProphetNetTokenizer"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_xlm_prophetnet"] = [ "XLM_PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMProphetNetDecoder", "XLMProphetNetEncoder", "XLMProphetNetForCausalLM", "XLMProphetNetForConditionalGeneration", "XLMProphetNetModel", "XLMProphetNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlm_prophetnet import XLM_PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMProphetNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_prophetnet import XLMProphetNetTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_prophetnet import ( XLM_PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLMProphetNetDecoder, XLMProphetNetEncoder, XLMProphetNetForCausalLM, XLMProphetNetForConditionalGeneration, XLMProphetNetModel, XLMProphetNetPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/xlm_prophetnet/configuration_xlm_prophetnet.py
# coding=utf-8 # Copyright 2020 The Microsoft Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ XLM-ProphetNet model configuration""" from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) XLM_PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP = { "microsoft/xprophetnet-large-wiki100-cased": ( "https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json" ), } class XLMProphetNetConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`XLMProphetNetModel`]. It is used to instantiate a XLMProphetNet model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the XLMProphetNet [microsoft/xprophetnet-large-wiki100-cased](https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: activation_dropout (`float`, *optional*, defaults to 0.1): The dropout ratio for activations inside the fully connected layer. activation_function (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the ProphetNET model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`XLMProphetNetModel`]. hidden_size (`int`, *optional*, defaults to 1024): Dimensionality of the layers and the pooler layer. encoder_ffn_dim (`int`, *optional*, defaults to 4096): Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. num_encoder_layers (`int`, *optional*, defaults to 12): Number of encoder layers. num_encoder_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. decoder_ffn_dim (`int`, *optional*, defaults to 4096): Dimensionality of the `intermediate` (often named feed-forward) layer in decoder. num_decoder_layers (`int`, *optional*, defaults to 12): Number of decoder layers. num_decoder_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer decoder. attention_dropout (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). init_std (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. add_cross_attention (`bool`, *optional*, defaults to `True`): Whether cross-attention layers should be added to the model. is_encoder_decoder (`bool`, *optional*, defaults to `True`): Whether this is an encoder/decoder model. pad_token_id (`int`, *optional*, defaults to 1) Padding token id. bos_token_id (`int`, *optional*, defaults to 0) Beginning of stream token id. eos_token_id (`int`, *optional*, defaults to 2) End of stream token id. ngram (`int`, *optional*, defaults to 2) Number of future tokens to predict. Set to 1 to be same as traditional Language model to predict next first token. num_buckets (`int`, *optional*, defaults to 32) The number of buckets to use for each attention layer. This is for relative position calculation. See the [T5 paper](see https://arxiv.org/abs/1910.10683) for more details. relative_max_distance (`int`, *optional*, defaults to 128) Relative distances greater than this number will be put into the last same bucket. This is for relative position calculation. See the [T5 paper](see https://arxiv.org/abs/1910.10683) for more details. disable_ngram_loss (`bool`, *optional*, defaults to `False`): Whether be trained predicting only the next first token. eps (`float`, *optional*, defaults to 0.0): Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). """ model_type = "xlm-prophetnet" keys_to_ignore_at_inference = ["past_key_values"] attribute_map = { "num_attention_heads": "num_encoder_attention_heads", } def __init__( self, activation_dropout: Optional[float] = 0.1, activation_function: Optional[Union[str, Callable]] = "gelu", vocab_size: Optional[int] = 30522, hidden_size: Optional[int] = 1024, encoder_ffn_dim: Optional[int] = 4096, num_encoder_layers: Optional[int] = 12, num_encoder_attention_heads: Optional[int] = 16, decoder_ffn_dim: Optional[int] = 4096, num_decoder_layers: Optional[int] = 12, num_decoder_attention_heads: Optional[int] = 16, attention_dropout: Optional[float] = 0.1, dropout: Optional[float] = 0.1, max_position_embeddings: Optional[int] = 512, init_std: Optional[float] = 0.02, is_encoder_decoder: Optional[bool] = True, add_cross_attention: Optional[bool] = True, decoder_start_token_id: Optional[int] = 0, ngram: Optional[int] = 2, num_buckets: Optional[int] = 32, relative_max_distance: Optional[int] = 128, disable_ngram_loss: Optional[bool] = False, eps: Optional[float] = 0.0, use_cache: Optional[bool] = True, pad_token_id: Optional[int] = 0, bos_token_id: Optional[int] = 1, eos_token_id: Optional[int] = 2, **kwargs, ): self.vocab_size = vocab_size self.hidden_size = hidden_size self.encoder_ffn_dim = encoder_ffn_dim self.num_encoder_layers = num_encoder_layers self.num_encoder_attention_heads = num_encoder_attention_heads self.decoder_ffn_dim = decoder_ffn_dim self.num_decoder_layers = num_decoder_layers self.num_decoder_attention_heads = num_decoder_attention_heads self.max_position_embeddings = max_position_embeddings self.init_std = init_std # Normal(0, this parameter) self.activation_function = activation_function # parameters for xlmprophetnet self.ngram = ngram self.num_buckets = num_buckets self.relative_max_distance = relative_max_distance self.disable_ngram_loss = disable_ngram_loss self.eps = eps # 3 Types of Dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.dropout = dropout self.use_cache = use_cache super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, is_encoder_decoder=is_encoder_decoder, add_cross_attention=add_cross_attention, decoder_start_token_id=decoder_start_token_id, **kwargs, ) @property def num_hidden_layers(self) -> int: return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def num_hidden_layers(self, value): raise NotImplementedError( "This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and" " `num_decoder_layers`." )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/xlm_prophetnet/tokenization_xlm_prophetnet.py
# coding=utf-8 # Copyright 2020 The Microsoft Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) SPIECE_UNDERLINE = "▁" VOCAB_FILES_NAMES = {"vocab_file": "prophetnet.tokenizer"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "microsoft/xprophetnet-large-wiki100-cased": ( "https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer" ), } } PRETRAINED_INIT_CONFIGURATION = { "microsoft/xprophetnet-large-wiki100-cased": {"do_lower_case": False}, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "microsoft/xprophetnet-large-wiki100-cased": 512, } def load_vocab(vocab_file): """Loads a vocabulary file into a dictionary.""" vocab = collections.OrderedDict() with open(vocab_file, "r", encoding="utf-8") as reader: tokens = reader.readlines() for index, token in enumerate(tokens): token = token.rstrip("\n") vocab[token] = index return vocab class XLMProphetNetTokenizer(PreTrainedTokenizer): """ Adapted from [`RobertaTokenizer`] and [`XLNetTokenizer`]. Based on [SentencePiece](https://github.com/google/sentencepiece). This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. additional_special_tokens (`List[str]`, *optional*, defaults to `["<s>NOTUSED", "</s>NOTUSED"]`): Additional special tokens used by the tokenizer. sp_model_kwargs (`dict`, *optional*): Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, to set: - `enable_sampling`: Enable subword regularization. - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. - `nbest_size = {0,1}`: No sampling is performed. - `nbest_size > 1`: samples from the nbest_size results. - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm. - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for BPE-dropout. Attributes: sp_model (`SentencePieceProcessor`): The *SentencePiece* processor that is used for every conversion (string, tokens and IDs). """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, bos_token="[SEP]", eos_token="[SEP]", sep_token="[SEP]", unk_token="[UNK]", pad_token="[PAD]", cls_token="[CLS]", mask_token="[MASK]", sp_model_kwargs: Optional[Dict[str, Any]] = None, **kwargs, ) -> None: self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=bos_token, eos_token=eos_token, sep_token=sep_token, unk_token=unk_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, sp_model_kwargs=self.sp_model_kwargs, **kwargs, ) try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(vocab_file)) self.vocab_file = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab self.fairseq_tokens_to_ids = {"[PAD]": 0, "[CLS]": 1, "[SEP]": 2, "[UNK]": 3, "[MASK]": 4} for i in range(10): tok = f"[unused{i}]" self.fairseq_tokens_to_ids[tok] = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab self.fairseq_offset = 12 self.fairseq_ids_to_tokens = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(k) def __getstate__(self): state = self.__dict__.copy() state["sp_model"] = None return state def __setstate__(self, d): self.__dict__ = d try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise # for backward compatibility if not hasattr(self, "sp_model_kwargs"): self.sp_model_kwargs = {} self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is None: return ([0] * len(token_ids_0)) + [1] return ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. XLMProphetNet does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ sep = [self.sep_token_id] if token_ids_1 is None: return len(token_ids_0 + sep) * [0] return len(token_ids_0 + sep + sep + token_ids_1 + sep) * [0] @property def vocab_size(self): return len(self.sp_model) + self.fairseq_offset def get_vocab(self): vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def _tokenize(self, text: str) -> str: return self.sp_model.encode(text, out_type=str) def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] spm_id = self.sp_model.PieceToId(token) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (strings for sub-words) in a single string.""" out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip() return out_string def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, out_vocab_file) elif not os.path.isfile(self.vocab_file): with open(out_vocab_file, "wb") as fi: content_spiece_model = self.sp_model.serialized_model_proto() fi.write(content_spiece_model) return (out_vocab_file,) def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A XLMProphetNet sequence has the following format: - single sequence: `X [SEP]` - pair of sequences: `A [SEP] B [SEP]` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return token_ids_0 + [self.sep_token_id] sep = [self.sep_token_id] return token_ids_0 + sep + token_ids_1 + sep
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/xlm_prophetnet/modeling_xlm_prophetnet.py
# coding=utf-8 # Copyright 2020 The Microsoft Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch XLM-ProphetNet model.""" import copy import math import warnings from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import LayerNorm from ...activations import ACT2FN from ...modeling_outputs import BaseModelOutput from ...modeling_utils import PreTrainedModel from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_xlm_prophetnet import XLMProphetNetConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "XLMProphetNetConfig" XLM_PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST = [ "microsoft/xprophetnet-large-wiki100-cased", # See all XLMProphetNet models at https://huggingface.co/models?filter=xprophetnet ] # Copied from src.transformers.models.prophetnet.modeling_prophetnet.PROPHETNET_START_DOCSTRING with ProphetNetConfig->XLMProphetNetConfig XLM_PROPHETNET_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) Original ProphetNet code can be found [here](https://github.com/microsoft/ProphetNet). Checkpoints were converted from original Fairseq checkpoints. For more information on the checkpoint conversion, please take a look at the file `convert_prophetnet_original_pytorch_checkpoint_to_pytorch.py`. This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matters related to general usage and behavior. Parameters: config ([`XLMProphetNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ # Copied from src.transformers.models.prophetnet.modeling_prophetnet.PROPHETNET_INPUTS_DOCSTRING with ProphetNet->XLMProphetNet XLM_PROPHETNET_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) XLMProphetNet uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ # Copied from src.transformers.models.prophetnet.modeling_prophetnet.PROPHETNET_STANDALONE_INPUTS_DOCSTRING with ProphetNet->XLMProphetNet XLM_PROPHETNET_STANDALONE_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ # Copied from transformers.models.prophetnet.modeling_prophetnet.softmax def softmax(hidden_state, dim, onnx_trace=False): if onnx_trace: return nn.functional.softmax(hidden_state.float(), dim=dim) else: return nn.functional.softmax(hidden_state, dim=dim, dtype=torch.float32) # Copied from transformers.models.prophetnet.modeling_prophetnet.ngram_attention_bias def ngram_attention_bias(sequence_length, ngram, device, dtype): """ This function computes the bias for the predict stream """ left_block = ( torch.ones((ngram, sequence_length, sequence_length), device=device, dtype=dtype) * torch.finfo(dtype).min ) right_block = left_block.detach().clone() # create bias for stream_idx in range(ngram): right_block[stream_idx].fill_diagonal_(0, wrap=False) left_block[stream_idx].triu_(-stream_idx + 1) left_block[:, :, 0] = 0 return torch.cat([left_block, right_block], dim=2) # Copied from transformers.models.prophetnet.modeling_prophetnet.compute_relative_buckets def compute_relative_buckets(num_buckets, max_distance, relative_positions, is_bidirectional=False): """ This function computes individual parts of the relative position buckets. For more detail, see paper. """ inv_relative_positions = -relative_positions rel_positions_bucket = 0 if is_bidirectional: num_buckets = num_buckets // 2 rel_positions_bucket = ( rel_positions_bucket + torch.lt(inv_relative_positions, torch.zeros_like(inv_relative_positions)).int() * num_buckets ) inv_relative_positions = torch.abs(inv_relative_positions) else: inv_relative_positions = torch.max(inv_relative_positions, torch.zeros_like(inv_relative_positions)) max_exact = num_buckets // 2 is_small = torch.lt(inv_relative_positions, max_exact) val_if_large = max_exact + torch.log(inv_relative_positions.float() / max_exact) / math.log( max_distance / max_exact ) * (num_buckets - max_exact) val_if_large = torch.min(val_if_large, torch.ones_like(val_if_large) * (num_buckets - 1)).int() rel_positions_bucket = rel_positions_bucket + torch.where(is_small, inv_relative_positions.int(), val_if_large) return rel_positions_bucket # Copied from transformers.models.prophetnet.modeling_prophetnet.compute_all_stream_relative_buckets def compute_all_stream_relative_buckets(num_buckets, max_distance, position_ids): """ This function computes both main and predict relative position buckets. For more detail, see paper. """ # main stream main_stream_relative_positions = position_ids.unsqueeze(1).repeat(1, position_ids.size(-1), 1) main_stream_relative_positions = main_stream_relative_positions - position_ids.unsqueeze(-1) # predicting stream predicting_stream_relative_positions = torch.cat((position_ids - 1, position_ids), dim=-1).unsqueeze(1) predicting_stream_relative_positions = predicting_stream_relative_positions.repeat(1, position_ids.size(-1), 1) predicting_stream_relative_positions = predicting_stream_relative_positions - position_ids.unsqueeze(-1) # get both position buckets main_relative_position_buckets = compute_relative_buckets( num_buckets, max_distance, main_stream_relative_positions, is_bidirectional=False ) predict_relative_position_buckets = compute_relative_buckets( num_buckets, max_distance, predicting_stream_relative_positions, is_bidirectional=False ) return main_relative_position_buckets, predict_relative_position_buckets @dataclass # Copied from transformers.models.prophetnet.modeling_prophetnet.ProphetNetSeq2SeqLMOutput with ProphetNet->XLMProphetNet all-casing class XLMProphetNetSeq2SeqLMOutput(ModelOutput): """ Base class for sequence-to-sequence language models outputs. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Language modeling loss. logits (`torch.FloatTensor` of shape `(batch_size, decoder_sequence_length, config.vocab_size)`): Prediction scores of the main stream language modeling head (scores for each vocabulary token before SoftMax). logits_ngram (`torch.FloatTensor` of shape `(batch_size, ngram * decoder_sequence_length, config.vocab_size)`): Prediction scores of the predict stream language modeling head (scores for each vocabulary token before SoftMax). past_key_values (`List[torch.FloatTensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): List of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, num_attn_heads, decoder_sequence_length, embed_size_per_head)`). Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be used (see `past_key_values` input) to speed up sequential decoding. decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, decoder_sequence_length, hidden_size)`. Hidden-states of main stream of the decoder at the output of each layer plus the initial embedding outputs. decoder_ngram_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, ngram * decoder_sequence_length, hidden_size)`. Hidden-states of the predict stream of the decoder at the output of each layer plus the initial embedding outputs. decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, decoder_sequence_length, decoder_sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. decoder_ngram_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, decoder_sequence_length, decoder_sequence_length)`. Attentions weights of the predict stream of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, encoder_sequence_length, decoder_sequence_length)`. Attentions weights of the cross-attention layer of the decoder, after the attention softmax, used to compute the weighted average in the encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder of the model. encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, encoder_sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each layer plus the initial embedding outputs. encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, encoder_sequence_length, encoder_sequence_length)`. Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None logits_ngram: Optional[torch.FloatTensor] = None past_key_values: Optional[Tuple[torch.FloatTensor]] = None decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None decoder_ngram_hidden_states: Optional[Tuple[torch.FloatTensor]] = None decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None decoder_ngram_attentions: Optional[Tuple[torch.FloatTensor]] = None cross_attentions: Optional[Tuple[torch.FloatTensor]] = None encoder_last_hidden_state: Optional[torch.FloatTensor] = None encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None @property def decoder_cross_attentions(self): warnings.warn( "`decoder_cross_attentions` is deprecated and will be removed soon. Please use `cross_attentions`" " instead.", FutureWarning, ) return self.cross_attentions @dataclass # Copied from transformers.models.prophetnet.modeling_prophetnet.ProphetNetSeq2SeqModelOutput with ProphetNet->XLMProphetNet all-casing class XLMProphetNetSeq2SeqModelOutput(ModelOutput): """ Base class for model encoder's outputs that also contains : pre-computed hidden states that can speed up sequential decoding. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, decoder_sequence_length, hidden_size)`): Sequence of main stream hidden-states at the output of the last layer of the decoder of the model. If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1, hidden_size)` is output. last_hidden_state_ngram (`torch.FloatTensor` of shape `(batch_size,ngram * decoder_sequence_length, config.vocab_size)`, *optional*): Sequence of predict stream hidden-states at the output of the last layer of the decoder of the model. past_key_values (`List[torch.FloatTensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): List of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, num_attn_heads, decoder_sequence_length, embed_size_per_head)`). Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be used (see `past_key_values` input) to speed up sequential decoding. decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, decoder_sequence_length, hidden_size)`. Hidden-states of main stream of the decoder at the output of each layer plus the initial embedding outputs. decoder_ngram_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, ngram * decoder_sequence_length, hidden_size)`. Hidden-states of the predict stream of the decoder at the output of each layer plus the initial embedding outputs. decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, decoder_sequence_length, decoder_sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. decoder_ngram_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, decoder_sequence_length, decoder_sequence_length)`. Attentions weights of the predict stream of the decoder, after the attention softmax, used to compute the weighted average in the cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, encoder_sequence_length, decoder_sequence_length)`. Attentions weights of the cross-attention layer of the decoder, after the attention softmax, used to compute the weighted average in the encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder of the model. encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, encoder_sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each layer plus the initial embedding outputs. encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, encoder_sequence_length, encoder_sequence_length)`. Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads. """ last_hidden_state: torch.FloatTensor last_hidden_state_ngram: Optional[torch.FloatTensor] = None past_key_values: Optional[Tuple[torch.FloatTensor]] = None decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None decoder_ngram_hidden_states: Optional[Tuple[torch.FloatTensor]] = None decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None decoder_ngram_attentions: Optional[Tuple[torch.FloatTensor]] = None cross_attentions: Optional[Tuple[torch.FloatTensor]] = None encoder_last_hidden_state: Optional[torch.FloatTensor] = None encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None @property def decoder_cross_attentions(self): warnings.warn( "`decoder_cross_attentions` is deprecated and will be removed soon. Please use `cross_attentions`" " instead.", FutureWarning, ) return self.cross_attentions @dataclass # Copied from transformers.models.prophetnet.modeling_prophetnet.ProphetNetDecoderModelOutput with ProphetNet->XLMProphetNet all-casing class XLMProphetNetDecoderModelOutput(ModelOutput): """ Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding). Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, decoder_sequence_length, hidden_size)`): Sequence of main stream hidden-states at the output of the last layer of the decoder of the model. If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1, hidden_size)` is output. last_hidden_state_ngram (`torch.FloatTensor` of shape `(batch_size, ngram * decoder_sequence_length, config.vocab_size)`): Sequence of predict stream hidden-states at the output of the last layer of the decoder of the model. past_key_values (`List[torch.FloatTensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): List of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, num_attn_heads, decoder_sequence_length, embed_size_per_head)`). Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be used (see `past_key_values` input) to speed up sequential decoding. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, decoder_sequence_length, hidden_size)`. Hidden-states of main stream of the decoder at the output of each layer plus the initial embedding outputs. ngram_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, ngram * decoder_sequence_length, hidden_size)`. Hidden-states of the predict stream of the decoder at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, decoder_sequence_length, decoder_sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. ngram_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, decoder_sequence_length, decoder_sequence_length)`. Attentions weights of the predict stream of the decoder, after the attention softmax, used to compute the weighted average in the cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, encoder_sequence_length, decoder_sequence_length)`. Attentions weights of the cross-attention layer of the decoder, after the attention softmax, used to compute the weighted average in the """ last_hidden_state: torch.FloatTensor last_hidden_state_ngram: Optional[torch.FloatTensor] = None past_key_values: Optional[Tuple[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None hidden_states_ngram: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None ngram_attentions: Optional[Tuple[torch.FloatTensor]] = None cross_attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass # Copied from transformers.models.prophetnet.modeling_prophetnet.ProphetNetDecoderLMOutput with ProphetNet->XLMProphetNet all-casing class XLMProphetNetDecoderLMOutput(ModelOutput): """ Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding). Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Language modeling loss. logits (`torch.FloatTensor` of shape `(batch_size, decoder_sequence_length, config.vocab_size)`): Prediction scores of the main stream language modeling head (scores for each vocabulary token before SoftMax). logits_ngram (`torch.FloatTensor` of shape `(batch_size, ngram * decoder_sequence_length, config.vocab_size)`): Prediction scores of the predict stream language modeling head (scores for each vocabulary token before SoftMax). past_key_values (`List[torch.FloatTensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): List of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, num_attn_heads, decoder_sequence_length, embed_size_per_head)`). Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be used (see `past_key_values` input) to speed up sequential decoding. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, decoder_sequence_length, hidden_size)`. Hidden-states of main stream of the decoder at the output of each layer plus the initial embedding outputs. ngram_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, ngram * decoder_sequence_length, hidden_size)`. Hidden-states of the predict stream of the decoder at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, decoder_sequence_length, decoder_sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. ngram_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, decoder_sequence_length, decoder_sequence_length)`. Attentions weights of the predict stream of the decoder, after the attention softmax, used to compute the weighted average in the cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, encoder_sequence_length, decoder_sequence_length)`. Attentions weights of the cross-attention layer of the decoder, after the attention softmax, used to compute the weighted average in the """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None logits_ngram: Optional[torch.FloatTensor] = None past_key_values: Optional[Tuple[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None hidden_states_ngram: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None ngram_attentions: Optional[Tuple[torch.FloatTensor]] = None cross_attentions: Optional[Tuple[torch.FloatTensor]] = None # Copied from transformers.models.prophetnet.modeling_prophetnet.ProphetNetPreTrainedModel with ProphetNet->XLMProphetNet class XLMProphetNetPreTrainedModel(PreTrainedModel): config_class = XLMProphetNetConfig base_model_prefix = "prophetnet" supports_gradient_checkpointing = True def _init_weights(self, module): if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=self.config.init_std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.init_std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, (XLMProphetNetDecoder, XLMProphetNetEncoder)): module.gradient_checkpointing = value def _shift_right(self, input_ids): decoder_start_token_id = self.config.decoder_start_token_id pad_token_id = self.config.pad_token_id assert decoder_start_token_id is not None, ( "self.model.config.decoder_start_token_id has to be defined. In XLMProphetNet it is usually set to the" " pad_token_id. See XLMProphetNet docs for more information" ) # shift inputs to the right shifted_input_ids = input_ids.new_zeros(input_ids.shape) shifted_input_ids[..., 1:] = input_ids[..., :-1].clone() shifted_input_ids[..., 0] = decoder_start_token_id assert pad_token_id is not None, "self.model.config.pad_token_id has to be defined." # replace possible -100 values in labels by `pad_token_id` shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) assert torch.all(shifted_input_ids >= 0).item(), "Verify that `shifted_input_ids` has only positive values" return shifted_input_ids # Copied from transformers.models.prophetnet.modeling_prophetnet.ProphetNetPositionalEmbeddings with ProphetNet->XLMProphetNet class XLMProphetNetPositionalEmbeddings(nn.Embedding): """ This module learns positional embeddings up to a fixed maximum size. Padding ids are ignored by either offsetting based on padding_idx or by setting padding_idx to None and ensuring that the appropriate position ids are passed to the forward function. """ def __init__(self, config: XLMProphetNetConfig) -> None: self.max_length = config.max_position_embeddings super().__init__(config.max_position_embeddings, config.hidden_size, config.pad_token_id) def forward(self, inputs_shape, device, attention_mask=None, past_key_values=None, position_ids=None): assert (position_ids is None) or ( self.padding_idx is None ), "If position_ids is pre-computed then padding_idx should not be set." if position_ids is None: if past_key_values is not None: # position_ids is the same for every token when decoding a single step # Without the int() cast, it doesn't work in some cases when exporting to ONNX prev_num_input_ids = past_key_values[0][0].shape[2] num_input_ids = inputs_shape[1] + prev_num_input_ids position_ids = torch.ones((1, 1), dtype=torch.long, device=device) * ( int(self.padding_idx + num_input_ids) ) else: if attention_mask is None: attention_mask = torch.ones(inputs_shape, dtype=torch.long, device=device) # retrieve position_ids from input_ids / attention_mask position_ids = ( torch.cumsum(attention_mask, dim=1).type_as(attention_mask) * attention_mask ).long() + self.padding_idx # make sure position_ids are not bigger then max_length position_ids = position_ids.clamp(0, self.max_length - 1) return super().forward(position_ids), position_ids def _forward(self, position_ids): return super().forward(position_ids) # Copied from transformers.models.prophetnet.modeling_prophetnet.ProphetNetAttention with ProphetNet->XLMProphetNet class XLMProphetNetAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, config: XLMProphetNetConfig, num_attn_heads: int, ): super().__init__() hidden_size = config.hidden_size self.attention_dropout = config.attention_dropout self.dropout = config.dropout self.num_attn_heads = num_attn_heads self.head_dim = hidden_size // num_attn_heads assert self.head_dim * num_attn_heads == hidden_size, ( "`config.hidden_size` must be divisible by `config.num_encoder_attention_heads` and" " `config.num_decoder_attention_heads`" ) self.key_proj = nn.Linear(hidden_size, hidden_size) self.value_proj = nn.Linear(hidden_size, hidden_size) self.query_proj = nn.Linear(hidden_size, hidden_size) self.out_proj = nn.Linear(hidden_size, hidden_size) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_attn_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states, key_value_states: Optional[Tensor] = None, attention_mask: Optional[Tensor] = None, layer_head_mask: Optional[Tensor] = None, past_key_value: Optional[Tuple[Tensor]] = None, output_attentions: bool = False, ) -> Tuple[Tensor, Optional[Tensor]]: batch_size, tgt_len, hidden_size = hidden_states.size() # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None assert list(hidden_states.size()) == [ batch_size, tgt_len, hidden_size, ], f"Size of hidden states should be {batch_size, tgt_len, hidden_size}, but is {hidden_states.size()}" # previous time steps are cached - no need to recompute key and value if they are static query_states = self.query_proj(hidden_states) / (self.head_dim**0.5) if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.key_proj(key_value_states), -1, batch_size) value_states = self._shape(self.value_proj(key_value_states), -1, batch_size) else: # self_attention key_states = self._shape(self.key_proj(hidden_states), -1, batch_size) value_states = self._shape(self.value_proj(hidden_states), -1, batch_size) if is_cross_attention: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) # project states into the correct shape proj_shape = (batch_size, self.num_attn_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, batch_size).view(*proj_shape) key_states = key_states.view(*proj_shape) value_states = value_states.view(*proj_shape) src_len = key_states.size(2) attn_weights = torch.einsum("bsij,bsjk->bsik", query_states, key_states.transpose(2, 3)) expected_shape = (batch_size, self.num_attn_heads, tgt_len, src_len) if attn_weights.size() != expected_shape: raise ValueError(f"Attention weights should have size {expected_shape}, but is {attn_weights.size()}") # This is part of a workaround to get around fork/join parallelism not supporting Optional types. if attention_mask is not None and attention_mask.dim() == 0: attention_mask = None expected_shape = (batch_size, self.num_attn_heads, 1, src_len) if attention_mask is not None and attention_mask.size() != expected_shape: raise ValueError(f"Attention mask should have size {expected_shape}, but is {attention_mask.size()}") if attention_mask is not None: # don't attend to padding symbols attn_weights = attn_weights + attention_mask if output_attentions: attn_weights_reshaped = attn_weights else: attn_weights_reshaped = None attn_weights = nn.functional.softmax(attn_weights, dim=-1) if layer_head_mask is not None: assert layer_head_mask.size() == (self.num_attn_heads,), ( f"Head mask for a single layer should be of size {(self.num_attn_heads,)}, but is" f" {layer_head_mask.size()}" ) attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view( batch_size, self.num_attn_heads, tgt_len, src_len ) # apply head_mask also on attn_weights_reshaped which is used for n-gram attention inside the model attn_weights_reshaped = layer_head_mask.view(1, -1, 1, 1) * attn_weights_reshaped attn_probs = nn.functional.dropout( attn_weights, p=self.attention_dropout, training=self.training, ) attn_output = torch.einsum("bsij,bsjk->bsik", attn_probs, value_states) expected_shape = (batch_size, self.num_attn_heads, tgt_len, self.head_dim) if attn_output.size() != expected_shape: raise ValueError(f"`attn_output` should have shape {expected_shape}, but is of shape {attn_output.size()}") attn_output = attn_output.transpose(1, 2).reshape(batch_size, tgt_len, hidden_size) attn_output = self.out_proj(attn_output) attn_output = nn.functional.dropout(attn_output, p=self.dropout, training=self.training) return attn_output, attn_weights_reshaped, past_key_value # Copied from transformers.models.prophetnet.modeling_prophetnet.ProphetNetFeedForward with ProphetNet->XLMProphetNet class XLMProphetNetFeedForward(nn.Module): """ This is the residual two feed-forward layer block based on the original Transformer implementation. """ def __init__(self, config: XLMProphetNetConfig, ffn_dim: int): super().__init__() self.activation_fn = ACT2FN[config.activation_function] self.intermediate = nn.Linear(config.hidden_size, ffn_dim) self.output = nn.Linear(ffn_dim, config.hidden_size) self.activation_dropout = config.activation_dropout self.dropout = config.dropout def forward(self, hidden_states): hidden_states = self.intermediate(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.output(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) return hidden_states # Copied from transformers.models.prophetnet.modeling_prophetnet.ProphetNetNgramSelfAttention with ProphetNet->XLMProphetNet class XLMProphetNetNgramSelfAttention(nn.Module): def __init__(self, config: XLMProphetNetConfig): super().__init__() self.hidden_size = config.hidden_size self.num_buckets = config.num_buckets self.relative_max_distance = config.relative_max_distance self.num_attn_heads = config.num_decoder_attention_heads self.dropout = config.dropout self.attention_dropout = config.attention_dropout self.head_dim = config.hidden_size // self.num_attn_heads self.ngram = config.ngram assert ( self.head_dim * self.num_attn_heads == config.hidden_size ), "config.hidden_size must be divisible by num_attn_heads" # key, value, query projection self.key_proj = nn.Linear(config.hidden_size, config.hidden_size) self.value_proj = nn.Linear(config.hidden_size, config.hidden_size) self.query_proj = nn.Linear(config.hidden_size, config.hidden_size) # out projection self.out_proj = nn.Linear(config.hidden_size, config.hidden_size) # rel position embeddings self.relative_pos_embeddings = nn.Linear(config.hidden_size, self.num_buckets * self.num_attn_heads) # for onnx runtime self.onnx_trace = False def _shape(self, tensor, seq_len, batch_size): return tensor.view(batch_size, seq_len, self.num_attn_heads, self.head_dim).transpose(1, 2).contiguous() def prepare_for_onnx_export_(self): self.onnx_trace = True def forward( self, hidden_states, past_key_value: Optional[Tuple[Tensor]] = None, attention_mask=None, layer_head_mask=None, extended_predict_attention_mask=None, main_relative_position_buckets=None, predict_relative_position_buckets=None, position_ids=None, ): batch_size, ngram_sequence_length, hidden_size = hidden_states.size() assert list(hidden_states.size()) == [batch_size, ngram_sequence_length, hidden_size], ( f"`hidden_states` should be of shape {batch_size, ngram_sequence_length, hidden_size}, but is of shape" f" {hidden_states.shape}" ) # project query_states = self.query_proj(hidden_states) key_states = self.key_proj(hidden_states) value_states = self.value_proj(hidden_states) # normalize query_states = query_states / (self.head_dim**0.5) # reshape query_states = self._shape(query_states, ngram_sequence_length, batch_size) key_states = self._shape(key_states, -1, batch_size) value_states = self._shape(value_states, -1, batch_size) proj_shape = (batch_size, self.num_attn_heads, -1, self.head_dim) query_states = query_states.view(*proj_shape) key_states = key_states.view(*proj_shape) value_states = value_states.view(*proj_shape) # chunk into main stream and predict stream hidden_states_list = hidden_states.chunk(1 + self.ngram, dim=1) query_states_list = query_states.chunk(1 + self.ngram, dim=2) key_states_list = key_states.chunk(1 + self.ngram, dim=2) value_states_list = value_states.chunk(1 + self.ngram, dim=2) main_hidden_states, hidden_states_predict_list = hidden_states_list[0], hidden_states_list[1:] main_query_states, predict_query_states_list = query_states_list[0], query_states_list[1:] main_key_states, predict_key_states_list = key_states_list[0], key_states_list[1:] main_value_states, predict_value_states_list = value_states_list[0], value_states_list[1:] # saved states are stored with shape (batch_size, num_attn_heads, seq_len, head_dim) if past_key_value is not None: prev_main_key_states = past_key_value[0] main_key_states = torch.cat((prev_main_key_states, main_key_states), dim=2) prev_main_value_states = past_key_value[1] main_value_states = torch.cat((prev_main_value_states, main_value_states), dim=2) # Update cache past_key_value = (main_key_states, main_value_states) # get seq_length of main stream only sequence_length = ngram_sequence_length // (1 + self.ngram) # MAIN-STREAM # main attn weights # [batch_size, number_heads, sequence_length, head_dimesion] # x [batch_size, number_heads, head_dimesion, sequence_length] # -> [batch_size, number_heads, sequence_length, sequence_length] main_attn_weights = torch.einsum("bntc,bncs->bnts", main_query_states, main_key_states.transpose(2, 3)) # retrieve relative position embeddings for each layer -> see paper for more details main_relative_pos_embeddings = self.get_main_relative_pos_embeddings( main_hidden_states, main_attn_weights, position_ids, main_relative_position_buckets ) main_attn_weights = main_attn_weights + main_relative_pos_embeddings if attention_mask is not None: main_attn_weights = main_attn_weights + attention_mask main_attn_probs = softmax( main_attn_weights, dim=-1, onnx_trace=self.onnx_trace, ).type_as(main_attn_weights) if layer_head_mask is not None: assert layer_head_mask.size() == (self.num_attn_heads,), ( f"Head mask for a single layer should be of size {(self.num_attn_heads,)}, but is" f" {layer_head_mask.size()}" ) main_attn_probs = layer_head_mask.view(1, -1, 1, 1) * main_attn_probs.view( batch_size, self.num_attn_heads, -1, sequence_length ) main_attn_probs = nn.functional.dropout(main_attn_probs, p=self.attention_dropout, training=self.training) # project to attn_output # [batch_size, number_heads, sequence_length, sequence_length] # x [batch_size, number_heads, sequence_length, head_dimesion] # -> [batch_size, number_heads, sequence_length, head_dimesion] main_attn_output = torch.einsum("bntc,bncs->bnts", main_attn_probs, main_value_states) # reshape so that num_heads dim is merged into last `head_dim` axis main_attn_output = main_attn_output.transpose(1, 2).reshape(batch_size, 1, sequence_length, hidden_size) main_attn_output = self.out_proj(main_attn_output) # PREDICT-STREAM # [batch_size, ngram, number_heads, sequence_length, head_dimesion] predict_query_states = torch.stack(predict_query_states_list, 1).view( batch_size, self.ngram, self.num_attn_heads, sequence_length, self.head_dim ) # [batch_size, ngram, number_heads, 2*sequence_length, head_dimesion] predict_key_states = torch.stack([torch.cat([main_key_states, key], 2) for key in predict_key_states_list], 1) # [batch_size, sequence_length, ngram, hidden_size] predict_hidden_states = torch.stack(hidden_states_predict_list, dim=2) # [batch_size, number_heads, ngram, 2*sequence_length, head_dimesion] predict_value_states = torch.cat( [torch.cat([main_value_states, v_p], 2).unsqueeze(2) for v_p in predict_value_states_list], 2 ) # [batch_size, ngram, number_heads, sequence_length, head_dimesion] # x [batch_size, ngram, number_heads, 2*sequence_length, head_dimesion] # -> [batch_size, ngram, number_heads, sequence_length, 2*sequence_length] predict_attn_weights = torch.einsum("bnhtc,bnhsc->bnhts", (predict_query_states, predict_key_states)) # retrieve relative position embeddings for each layer -> see paper for more details # [batch_size, ngram, number_heads, sequence_length, predict_relative_pos_embeddings] predict_relative_pos_embeddings = self.get_predict_relative_pos_embeddings( predict_hidden_states, predict_attn_weights, position_ids, predict_relative_position_buckets ) # [batch_size, ngram, number_heads, sequence_length, 2*sequence_length] predict_attn_weights = predict_attn_weights + predict_relative_pos_embeddings if extended_predict_attention_mask is not None: # Permuting Predict attention mask to [batch_size, ngram, number_heads, sequence_length, 2*sequence_length] extended_predict_attention_mask = extended_predict_attention_mask.permute(0, 2, 1, 3, 4) extended_predict_attention_mask = extended_predict_attention_mask.to(predict_attn_weights.dtype) predict_attn_weights = predict_attn_weights + extended_predict_attention_mask predict_attn_probs = softmax( predict_attn_weights, dim=-1, onnx_trace=self.onnx_trace, ).type_as(predict_attn_weights) if layer_head_mask is not None: assert layer_head_mask.size() == (self.num_attn_heads,), ( f"Head mask for a single layer should be of size {(self.num_attn_heads,)}, but is" f" {layer_head_mask.size()}" ) predict_attn_probs = layer_head_mask.view(1, 1, -1, 1, 1) * predict_attn_probs predict_attn_probs = nn.functional.dropout( predict_attn_probs, p=self.attention_dropout, training=self.training ) # project to attention output # [batch_size, ngram, number_heads, sequence_length, 2*sequence_length] # x [batch_size, ngram, number_heads, 2*sequence_length, head_dimesion] # -> [batch_size, ngram, number_heads, sequence_length, head_dimesion] predict_attn_output = torch.einsum( "bnhts,bnhsc->bnhtc", (predict_attn_probs, predict_value_states.transpose(1, 2)) ) # reshape so that num_heads dim is merged into last `head_dim` axis # [batch_size, ngram, number_heads, sequence_length, head_dimesion] -> [batch_size, ngram, sequence_length, hidden_size] predict_attn_output = predict_attn_output.transpose(2, 3) predict_attn_output = predict_attn_output.reshape(batch_size, self.ngram, sequence_length, hidden_size) predict_attn_output = self.out_proj(predict_attn_output) # concat to single attn output # [batch_size, (1+ngram)*sequence_length, hidden_size] attn_output = torch.cat([main_attn_output, predict_attn_output], 1).view(batch_size, -1, hidden_size) # reshape into better form for `config.output_attentions` main_attn_probs = main_attn_probs.view(batch_size, self.num_attn_heads, sequence_length, -1) attn_output = nn.functional.dropout(attn_output, p=self.dropout, training=self.training) return attn_output, main_attn_probs, predict_attn_probs, past_key_value def get_main_relative_pos_embeddings( self, hidden_states, attn_weights, position_ids, main_relative_position_buckets ): # input hidden_states [batch_size, sequence_length, hidden_size] # input attn_weights [batch_size, num_heads, sequence_length, sequence_length] # input position_ids [batch_size, sequence_length] or [1,1] batch_size, num_attn_heads, tgt_len, src_len = attn_weights.shape attn_weights = attn_weights.view(batch_size, num_attn_heads, tgt_len, src_len) if main_relative_position_buckets is None: batch_size, sequence_length = hidden_states.shape[:2] relative_positions = ( torch.arange(1, attn_weights.shape[-1] + 1) .unsqueeze(0) .unsqueeze(0) .repeat(batch_size, sequence_length, 1) .to(position_ids.device) ) # [batch_size, sequence_length, sequence_length+1] relative_positions = relative_positions - position_ids.unsqueeze(0).repeat(batch_size, sequence_length, 1) main_relative_position_buckets = compute_relative_buckets( self.num_buckets, self.relative_max_distance, relative_positions, False ) # [batch_size, sequence_length, num_buckets * num_heads] rel_pos_embeddings = self.relative_pos_embeddings(hidden_states) rel_pos_embeddings = rel_pos_embeddings.view( rel_pos_embeddings.shape[:2] + (self.num_buckets, self.num_attn_heads) ) rel_pos_embeddings = rel_pos_embeddings.permute(0, 3, 1, 2) # [batch_size, num_heads, sequence_length, num_buckets] rel_pos_embeddings = rel_pos_embeddings.reshape(attn_weights.shape[:3] + (-1,)) main_relative_position_buckets = main_relative_position_buckets.repeat(1, self.num_attn_heads, 1) # [batch_size * num_heads * sequence_length, sequence_length] main_relative_position_buckets = main_relative_position_buckets.view( -1, main_relative_position_buckets.shape[-1] ) main_relative_position_buckets = main_relative_position_buckets.long() # [batch_size * num_heads * sequence_length, sequence_length] rel_pos_embeddings = rel_pos_embeddings.reshape(-1, rel_pos_embeddings.size(-1)) main_relative_pos_embeddings = torch.gather(rel_pos_embeddings, dim=1, index=main_relative_position_buckets) main_relative_pos_embeddings = main_relative_pos_embeddings.view(batch_size, num_attn_heads, tgt_len, -1) return main_relative_pos_embeddings def get_predict_relative_pos_embeddings( self, hidden_states, attn_weights, position_ids, predict_relative_position_buckets ): # input hidden_states [batch_size, sequence_length, ngram, hidden_size] # input attn_weights [batch_size, ngram, num_heads, sequence_length, 2*sequence_length] # input position_ids [batch_size, sequence_length] or [1,1] # input predict_relative_position_buckets [batch_size, sequence_length, 2*sequence_length] or None batch_size, sequence_length = hidden_states.shape[0:2] if predict_relative_position_buckets is None: key_sequence_length = attn_weights.shape[-1] assert ( position_ids[0][0] == key_sequence_length - 1 ), "`position_ids` are incorrect. They should be of the format 1 2 3 4 5 ... (key_sequence_length - 1)" relative_positions = ( torch.arange(0, key_sequence_length) .unsqueeze(0) .unsqueeze(0) .repeat(batch_size, sequence_length, 1) .to(position_ids.device) ) relative_positions = relative_positions - position_ids.unsqueeze(0).repeat(batch_size, sequence_length, 1) predict_relative_position_buckets = compute_relative_buckets( self.num_buckets, self.relative_max_distance, relative_positions, False ) # [batch_size, ngram, sequence_length, hidden_size] hidden_states = hidden_states.transpose(1, 2) rel_pos_embeddings = self.relative_pos_embeddings(hidden_states) # [batch_size, ngram, sequence_length, num_buckets, num_heads] rel_pos_embeddings = rel_pos_embeddings.view( hidden_states.shape[:-1] + (self.num_buckets, self.num_attn_heads) ) rel_pos_embeddings = rel_pos_embeddings.permute(0, 2, 1, 4, 3) # [batch_size * ngram * sequence_length * num_heads, num_buckets] rel_pos_embeddings = rel_pos_embeddings.reshape(-1, self.num_buckets) # [ngram, batch_size, num_heads * sequence_length, -1] predict_relative_position_buckets = predict_relative_position_buckets.unsqueeze(0) predict_relative_position_buckets = predict_relative_position_buckets.repeat( self.ngram, 1, self.num_attn_heads, 1 ) # [ngram * batch_size * num_heads * sequence_length, -1] predict_relative_position_buckets = predict_relative_position_buckets.view( -1, predict_relative_position_buckets.size(-1) ).long() predict_relative_pos_embeddings = torch.gather( rel_pos_embeddings, dim=1, index=predict_relative_position_buckets ) # [batch_size, gram, num_heads, sequence_length, -1] predict_relative_pos_embeddings = predict_relative_pos_embeddings.view( batch_size, self.ngram, self.num_attn_heads, sequence_length, -1 ) return predict_relative_pos_embeddings # Copied from transformers.models.prophetnet.modeling_prophetnet.ProphetNetEncoderLayer with ProphetNet->XLMProphetNet, Prophetnet->XLMProphetnet class XLMProphetNetEncoderLayer(nn.Module): """ Encoder block for XLMProphetnet """ def __init__(self, config: XLMProphetNetConfig): super().__init__() # 1st residual block self.self_attn = XLMProphetNetAttention(config, config.num_encoder_attention_heads) self.self_attn_layer_norm = LayerNorm(config.hidden_size) # 2nd residual block self.feed_forward = XLMProphetNetFeedForward(config, config.encoder_ffn_dim) self.feed_forward_layer_norm = LayerNorm(config.hidden_size) def forward( self, hidden_states, attention_mask, layer_head_mask, output_attentions: bool = False, ): # 1st residual block attention_output, attn_weights, _ = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) hidden_states = self.self_attn_layer_norm(attention_output + hidden_states) # 2nd residual block feed_forward_output = self.feed_forward(hidden_states) hidden_states = self.feed_forward_layer_norm(feed_forward_output + hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs # Copied from transformers.models.prophetnet.modeling_prophetnet.ProphetNetDecoderLayer with Prophetnet->XLMProphetnet, ProphetNet->XLMProphetNet class XLMProphetNetDecoderLayer(nn.Module): """ Decoder block for XLMProphetnet """ def __init__(self, config: XLMProphetNetConfig): super().__init__() # 1st residual block self.self_attn = XLMProphetNetNgramSelfAttention(config) self.self_attn_layer_norm = LayerNorm(config.hidden_size) # 2nd residual block if config.add_cross_attention: self.cross_attn = XLMProphetNetAttention(config, config.num_decoder_attention_heads) self.cross_attn_layer_norm = LayerNorm(config.hidden_size) # 3rd residual block self.feed_forward = XLMProphetNetFeedForward(config, config.decoder_ffn_dim) self.feed_forward_layer_norm = LayerNorm(config.hidden_size) def forward( self, hidden_states, attention_mask=None, encoder_hidden_states=None, encoder_attn_mask=None, layer_head_mask=None, cross_attn_layer_head_mask=None, extended_predict_attention_mask=None, main_relative_position_buckets=None, predict_relative_position_buckets=None, position_ids=None, past_key_value=None, use_cache: bool = True, output_attentions: bool = False, ): # 1st residual block # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None ngram_attention_output, self_attn_weights, self_attn_weights_ngram, present_key_value = self.self_attn( hidden_states=hidden_states, past_key_value=self_attn_past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, extended_predict_attention_mask=extended_predict_attention_mask, main_relative_position_buckets=main_relative_position_buckets, predict_relative_position_buckets=predict_relative_position_buckets, position_ids=position_ids, ) hidden_states = self.self_attn_layer_norm(hidden_states + ngram_attention_output) # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None cross_attn_weights = None if encoder_hidden_states is not None: # 2nd residual block attention_output, cross_attn_weights, cross_attn_present_key_value = self.cross_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attn_mask, layer_head_mask=cross_attn_layer_head_mask, past_key_value=cross_attn_past_key_value, output_attentions=output_attentions, ) hidden_states = self.cross_attn_layer_norm(attention_output + hidden_states) # add cross-attn to positions 3,4 of present_key_value tuple present_key_value = present_key_value + cross_attn_present_key_value # 3rd residual block feed_forward_output = self.feed_forward(hidden_states) hidden_states = self.feed_forward_layer_norm(feed_forward_output + hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights, self_attn_weights_ngram, cross_attn_weights) if use_cache: outputs += (present_key_value,) return outputs @add_start_docstrings( "The standalone encoder part of the XLMProphetNetModel.", XLM_PROPHETNET_START_DOCSTRING, ) # Copied from transformers.models.prophetnet.modeling_prophetnet.ProphetNetEncoder with microsoft/prophetnet-large-uncased->patrickvonplaten/xprophetnet-large-uncased-standalone, ProphetNet->XLMProphetNet, PROPHETNET->XLM_PROPHETNET class XLMProphetNetEncoder(XLMProphetNetPreTrainedModel): r""" word_embeddings (`torch.nn.Embeddings` of shape `(config.vocab_size, config.hidden_size)`, *optional*): The word embedding parameters. This can be used to initialize [`XLMProphetNetEncoder`] with pre-defined word embeddings instead of randomly initialized word embeddings. """ def __init__(self, config: XLMProphetNetConfig, word_embeddings: nn.Embedding = None): super().__init__(config) self.word_embeddings = ( word_embeddings if word_embeddings is not None else nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) ) self.position_embeddings = XLMProphetNetPositionalEmbeddings(config) self.embeddings_layer_norm = LayerNorm(config.hidden_size) self.layers = nn.ModuleList([XLMProphetNetEncoderLayer(config) for _ in range(config.num_encoder_layers)]) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.word_embeddings def set_input_embeddings(self, value): self.word_embeddings = value @add_start_docstrings_to_model_forward(XLM_PROPHETNET_STANDALONE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: r""" Returns: Example: ```python >>> from transformers import AutoTokenizer, XLMProphetNetEncoder >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("patrickvonplaten/xprophetnet-large-uncased-standalone") >>> model = XLMProphetNetEncoder.from_pretrained("patrickvonplaten/prophetnet-large-uncased-standalone") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is None and inputs_embeds is None: raise ValueError("Either input_ids or inputs_embeds has to be passed.") elif input_ids is not None and inputs_embeds is not None: raise ValueError("Make sure to only pass input_ids or inputs_embeds.") elif input_ids is not None and inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) # prepare attention mask if attention_mask is not None: extended_attention_mask = ( 1.0 - attention_mask[:, None, None, :].repeat(1, self.config.num_encoder_attention_heads, 1, 1) ) * torch.finfo(self.dtype).min extended_attention_mask = extended_attention_mask.to(inputs_embeds.dtype) else: extended_attention_mask = None position_embeddings, position_ids = self.position_embeddings(inputs_embeds.shape[:2], inputs_embeds.device) hidden_states = inputs_embeds + position_embeddings hidden_states = self.embeddings_layer_norm(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.config.dropout, training=self.training) encoder_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None # check if head_mask has a correct number of layers specified if desired if head_mask is not None: assert head_mask.size()[0] == ( len(self.layers) ), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}." for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_hidden_states = encoder_hidden_states + (hidden_states,) if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(encoder_layer), hidden_states, extended_attention_mask, (head_mask[idx] if head_mask is not None else None), ) else: layer_outputs = encoder_layer( hidden_states, attention_mask=extended_attention_mask, layer_head_mask=(head_mask[idx] if head_mask is not None else None), output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_hidden_states = encoder_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_hidden_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_hidden_states, attentions=all_attentions ) @add_start_docstrings( "The standalone decoder part of the XLMProphetNetModel.", XLM_PROPHETNET_START_DOCSTRING, ) # Copied from transformers.models.prophetnet.modeling_prophetnet.ProphetNetDecoder with microsoft/prophetnet-large-uncased->patrickvonplaten/xprophetnet-large-uncased-standalone, ProphetNet->XLMProphetNet, PROPHETNET->XLM_PROPHETNET, class XLMProphetNetDecoder(XLMProphetNetPreTrainedModel): r""" word_embeddings (`torch.nn.Embeddings` of shape `(config.vocab_size, config.hidden_size)`, *optional*): The word embedding parameters. This can be used to initialize [`XLMProphetNetEncoder`] with pre-defined word embeddings instead of randomly initialized word embeddings. """ def __init__(self, config: XLMProphetNetConfig, word_embeddings: Optional[nn.Embedding] = None): super().__init__(config) self.ngram = config.ngram self.num_buckets = config.num_buckets self.relative_max_distance = config.relative_max_distance self.dropout = config.dropout self.max_target_positions = config.max_position_embeddings self.word_embeddings = ( word_embeddings if word_embeddings is not None else nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) ) self.position_embeddings = XLMProphetNetPositionalEmbeddings(config) self.ngram_embeddings = nn.Embedding(self.ngram, config.hidden_size, None) self.layers = nn.ModuleList([XLMProphetNetDecoderLayer(config) for _ in range(config.num_decoder_layers)]) self.embeddings_layer_norm = LayerNorm(config.hidden_size) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.word_embeddings def set_input_embeddings(self, value): self.word_embeddings = value @add_start_docstrings_to_model_forward(XLM_PROPHETNET_STANDALONE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=XLMProphetNetDecoderModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, inputs_embeds: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, XLMProphetNetDecoderModelOutput]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. Returns: Example: ```python >>> from transformers import AutoTokenizer, XLMProphetNetDecoder >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("patrickvonplaten/xprophetnet-large-uncased-standalone") >>> model = XLMProphetNetDecoder.from_pretrained( ... "patrickvonplaten/xprophetnet-large-uncased-standalone", add_cross_attention=False ... ) >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state ```""" use_cache = use_cache if use_cache is not None else self.config.use_cache output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is None and inputs_embeds is None: raise ValueError("Either `decoder_input_ids` or `decoder_inputs_embeds` has to be passed.") elif input_ids is not None and inputs_embeds is not None: raise ValueError("Make sure to only pass `decoder_input_ids` or `decoder_inputs_embeds`.") elif input_ids is not None and inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) batch_size, sequence_length = inputs_embeds.shape[:2] main_stream_pos_embed, position_ids = self.position_embeddings( (batch_size, sequence_length), device=inputs_embeds.device, past_key_values=past_key_values, ) if past_key_values is not None: main_relative_position_buckets, predict_relative_position_buckets = None, None else: ( main_relative_position_buckets, predict_relative_position_buckets, ) = self.compute_buffered_relative_buckets(position_ids) predicting_stream_pos_embed = self.position_embeddings._forward(position_ids + 1) # add position embeddings hidden_states = inputs_embeds + main_stream_pos_embed ngram_embeddings = self.ngram_embeddings.weight # prepare attention mask if past_key_values is not None: assert ( hidden_states.size(1) == 1 ), "At the moment `use_cache` is only supported for `decoder_input_ids` of length 1" ngram_hidden_states = [ (ngram_embeddings[ngram - 1] + predicting_stream_pos_embed).repeat(batch_size, 1, 1) for ngram in range(self.ngram) ] extended_attention_mask = None extended_predict_attention_mask = None else: ngram_hidden_states = [ (ngram_embeddings[ngram - 1] + predicting_stream_pos_embed) for ngram in range(self.ngram) ] extended_attention_mask = self.prepare_attention_mask(hidden_states, attention_mask) extended_predict_attention_mask = self.prepare_predict_attention_mask(hidden_states, attention_mask) # prepare encoder attention mask if encoder_attention_mask is not None: extended_encoder_attention_mask = ( 1.0 - encoder_attention_mask[:, None, None, :].repeat(1, self.config.num_decoder_attention_heads, 1, 1) ) * torch.finfo(self.dtype).min extended_encoder_attention_mask = extended_encoder_attention_mask.to(inputs_embeds.dtype) else: extended_encoder_attention_mask = None hidden_states = torch.cat([hidden_states] + ngram_hidden_states, 1) if self.embeddings_layer_norm: hidden_states = self.embeddings_layer_norm(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) # init attentions, hidden_states and cache with empty tuples all_main_stream_hidden_states = () if output_hidden_states else None all_ngram_stream_hidden_states = () if output_hidden_states and self.config.ngram > 0 else None all_main_stream_attns = () if output_attentions else None all_ngram_stream_attns = () if output_attentions else None all_cross_attns = () if output_attentions and self.config.add_cross_attention else None if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False present_key_values = () if use_cache else None # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): if attn_mask is not None: assert attn_mask.size()[0] == (len(self.layers)), ( f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" f" {head_mask.size()[0]}." ) for idx, decoder_layer in enumerate(self.layers): if output_hidden_states: # grad cannot be kept because tensor is sliced all_main_stream_hidden_states += (hidden_states[:, :sequence_length],) if self.config.ngram > 0: all_ngram_stream_hidden_states += (hidden_states[:, sequence_length:],) past_key_value = past_key_values[idx] if past_key_values is not None else None if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): # None for past_key_value return module(*inputs, use_cache, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(decoder_layer), hidden_states, extended_attention_mask, encoder_hidden_states, extended_encoder_attention_mask, (head_mask[idx] if head_mask is not None else None), (cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None), extended_predict_attention_mask, main_relative_position_buckets, predict_relative_position_buckets, position_ids, None, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=extended_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attn_mask=extended_encoder_attention_mask, layer_head_mask=(head_mask[idx] if head_mask is not None else None), cross_attn_layer_head_mask=( cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None ), extended_predict_attention_mask=extended_predict_attention_mask, main_relative_position_buckets=main_relative_position_buckets, predict_relative_position_buckets=predict_relative_position_buckets, position_ids=position_ids, past_key_value=past_key_value, use_cache=use_cache, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if use_cache: present_key_values += (layer_outputs[4 if output_attentions else 1],) if output_attentions: all_main_stream_attns += (layer_outputs[1],) all_ngram_stream_attns += (layer_outputs[2],) if self.config.add_cross_attention: all_cross_attns += (layer_outputs[3],) if output_hidden_states: all_main_stream_hidden_states += (hidden_states[:, :sequence_length],) if self.config.ngram > 0: all_ngram_stream_hidden_states += (hidden_states[:, sequence_length:],) # split last_hidden_state for return last_hidden_state = hidden_states[:, :sequence_length] last_hidden_state_ngram = hidden_states[:, sequence_length:] if self.config.ngram > 0 else None if not return_dict: return tuple( v for v in [ last_hidden_state, last_hidden_state_ngram, present_key_values, all_main_stream_hidden_states, all_ngram_stream_hidden_states, all_main_stream_attns, all_ngram_stream_attns, all_cross_attns, ] if v is not None ) return XLMProphetNetDecoderModelOutput( last_hidden_state=last_hidden_state, last_hidden_state_ngram=last_hidden_state_ngram, past_key_values=present_key_values, hidden_states=all_main_stream_hidden_states, hidden_states_ngram=all_ngram_stream_hidden_states, attentions=all_main_stream_attns, ngram_attentions=all_ngram_stream_attns, cross_attentions=all_cross_attns, ) def compute_buffered_relative_buckets(self, position_ids): batch_size, sequence_length = position_ids.shape position_ids = torch.arange(1, self.max_target_positions).to(position_ids.device).repeat(1, 1) main_relative_buckets, predict_relative_buckets = compute_all_stream_relative_buckets( self.num_buckets, self.relative_max_distance, position_ids ) # buffer relative buckets main_relative_buckets = main_relative_buckets[:, :sequence_length, :sequence_length].repeat(batch_size, 1, 1) predict_relative_buckets = torch.cat( [ predict_relative_buckets[:, :sequence_length, :sequence_length], predict_relative_buckets[ :, :sequence_length, self.max_target_positions : self.max_target_positions + sequence_length ], ], 2, ).repeat(batch_size, 1, 1) return main_relative_buckets, predict_relative_buckets def prepare_attention_mask(self, hidden_states, attention_mask): batch_size, seq_length = hidden_states.shape[:2] # get causal mask causal_mask = torch.full( (seq_length, seq_length), torch.finfo(hidden_states.dtype).min, dtype=hidden_states.dtype, device=hidden_states.device, ) causal_mask = torch.triu(causal_mask, 1) extended_causal_mask = causal_mask[:seq_length, :seq_length][None, None, :, :].expand( (batch_size, self.config.num_decoder_attention_heads) + causal_mask.shape ) # add usual attention mask if attention_mask is not None: extended_attention_mask = (1.0 - attention_mask[:, None, None, :]) * torch.finfo(self.dtype).min extended_attention_mask = extended_causal_mask + extended_attention_mask else: extended_attention_mask = extended_causal_mask return extended_attention_mask.to(hidden_states.dtype) def prepare_predict_attention_mask(self, hidden_states, attention_mask): batch_size, seq_length = hidden_states.shape[:2] # get causal mask predict_causal_mask = ngram_attention_bias( self.max_target_positions, self.ngram, hidden_states.device, hidden_states.dtype ) predict_causal_mask = torch.cat( [ predict_causal_mask[:, :seq_length, :seq_length], predict_causal_mask[ :, :seq_length, self.max_target_positions : self.max_target_positions + seq_length ], ], dim=-1, ) extended_predict_causal_mask = predict_causal_mask[None, None, :, :, :].expand( (batch_size, self.config.num_decoder_attention_heads) + predict_causal_mask.shape ) # add usual attention mask if attention_mask is not None: extended_attention_mask = (1.0 - attention_mask[:, None, None, None, :]) * torch.finfo(self.dtype).min extended_attention_mask = extended_attention_mask.expand( (batch_size, self.config.num_decoder_attention_heads, self.ngram, seq_length, seq_length) ) # predicted stream attention_mask should always be 0 extended_attention_mask = torch.cat( [extended_attention_mask, torch.zeros_like(extended_attention_mask)], dim=-1 ) extended_predict_attention_mask = extended_predict_causal_mask + extended_attention_mask else: extended_predict_attention_mask = extended_predict_causal_mask return extended_predict_attention_mask.to(hidden_states.dtype) @add_start_docstrings( "The bare XLMProphetNet Model outputting raw hidden-states without any specific head on top.", XLM_PROPHETNET_START_DOCSTRING, ) # Copied from transformers.models.prophetnet.modeling_prophetnet.ProphetNetModel with microsoft/prophetnet-large-uncased->patrickvonplaten/xprophetnet-large-uncased-standalone, ProphetNet->XLMProphetNet, PROPHETNET->XLM_PROPHETNET class XLMProphetNetModel(XLMProphetNetPreTrainedModel): _tied_weights_keys = ["encoder.word_embeddings.weight", "decoder.word_embeddings.weight"] def __init__(self, config: XLMProphetNetConfig): super().__init__(config) self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) encoder_config = copy.deepcopy(config) encoder_config.is_encoder_decoder = False encoder_config.use_cache = False self.encoder = XLMProphetNetEncoder(encoder_config, self.word_embeddings) decoder_config = copy.deepcopy(config) decoder_config.is_decoder = True decoder_config.is_encoder_decoder = False self.decoder = XLMProphetNetDecoder(decoder_config, self.word_embeddings) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.word_embeddings def set_input_embeddings(self, value): self.word_embeddings = value self.encoder.word_embeddings = self.word_embeddings self.decoder.word_embeddings = self.word_embeddings def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder @add_start_docstrings_to_model_forward(XLM_PROPHETNET_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=XLMProphetNetSeq2SeqModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, decoder_input_ids: Optional[torch.Tensor] = None, decoder_attention_mask: Optional[torch.BoolTensor] = None, head_mask: Optional[torch.Tensor] = None, decoder_head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Tuple] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, inputs_embeds: Optional[torch.Tensor] = None, decoder_inputs_embeds: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, XLMProphetNetSeq2SeqModelOutput]: r""" Returns: Example: ```python >>> from transformers import AutoTokenizer, XLMProphetNetModel >>> tokenizer = AutoTokenizer.from_pretrained("patrickvonplaten/xprophetnet-large-uncased-standalone") >>> model = XLMProphetNetModel.from_pretrained("patrickvonplaten/xprophetnet-large-uncased-standalone") >>> input_ids = tokenizer( ... "Studies have been shown that owning a dog is good for you", return_tensors="pt" ... ).input_ids # Batch size 1 >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1 >>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) >>> last_hidden_states = outputs.last_hidden_state # main stream hidden states >>> last_hidden_states_ngram = outputs.last_hidden_state_ngram # predict hidden states ```""" use_cache = use_cache if use_cache is not None else self.config.use_cache output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if encoder_outputs is None: encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # decoder outputs consists of (dec_features, past_key_values, dec_hidden, dec_attn) decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=attention_mask, head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=decoder_inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache, return_dict=return_dict, ) if not return_dict: return decoder_outputs + encoder_outputs return XLMProphetNetSeq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, last_hidden_state_ngram=decoder_outputs.last_hidden_state_ngram, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_ngram_hidden_states=decoder_outputs.hidden_states_ngram, decoder_attentions=decoder_outputs.attentions, decoder_ngram_attentions=decoder_outputs.ngram_attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) @add_start_docstrings( "The XLMProphetNet Model with a language modeling head. Can be used for sequence generation tasks.", XLM_PROPHETNET_START_DOCSTRING, ) # Copied from transformers.models.prophetnet.modeling_prophetnet.ProphetNetForConditionalGeneration with microsoft/prophetnet-large-uncased->patrickvonplaten/xprophetnet-large-uncased-standalone, ProphetNet->XLMProphetNet, PROPHETNET->XLM_PROPHETNET class XLMProphetNetForConditionalGeneration(XLMProphetNetPreTrainedModel): _tied_weights_keys = ["encoder.word_embeddings.weight", "decoder.word_embeddings.weight", "lm_head.weight"] def __init__(self, config: XLMProphetNetConfig): super().__init__(config) self.prophetnet = XLMProphetNetModel(config) self.padding_idx = config.pad_token_id self.disable_ngram_loss = config.disable_ngram_loss self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def get_input_embeddings(self): return self.prophetnet.word_embeddings @add_start_docstrings_to_model_forward(XLM_PROPHETNET_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=XLMProphetNetSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, decoder_input_ids: Optional[torch.Tensor] = None, decoder_attention_mask: Optional[torch.BoolTensor] = None, head_mask: Optional[torch.Tensor] = None, decoder_head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[torch.Tensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, inputs_embeds: Optional[torch.Tensor] = None, decoder_inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, XLMProphetNetSeq2SeqLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ..., config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` Returns: Example: ```python >>> from transformers import AutoTokenizer, XLMProphetNetForConditionalGeneration >>> tokenizer = AutoTokenizer.from_pretrained("patrickvonplaten/xprophetnet-large-uncased-standalone") >>> model = XLMProphetNetForConditionalGeneration.from_pretrained( ... "patrickvonplaten/xprophetnet-large-uncased-standalone" ... ) >>> input_ids = tokenizer( ... "Studies have been shown that owning a dog is good for you", return_tensors="pt" ... ).input_ids # Batch size 1 >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1 >>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) >>> logits_next_token = outputs.logits # logits to predict next token as usual >>> logits_ngram_next_tokens = outputs.logits_ngram # logits to predict 2nd, 3rd, ... next tokens ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None: # get decoder inputs from shifting lm labels to the right decoder_input_ids = self._shift_right(labels) outputs = self.prophetnet( input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, encoder_outputs=encoder_outputs, past_key_values=past_key_values, inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) batch_size, sequence_length = ( decoder_input_ids.shape if decoder_input_ids is not None else decoder_inputs_embeds.shape[:2] ) predicting_streams = outputs[1].view(batch_size, self.config.ngram, sequence_length, -1) predict_logits = self.lm_head(predicting_streams) logits = predict_logits[:, 0] logits_ngram = predict_logits[:, 1:] if self.config.ngram > 1 else None # To use .view in loss computation, make sure that logits is contiguous. if not logits.is_contiguous(): logits = logits.contiguous() loss = None if labels is not None: loss = self._compute_loss(predict_logits, labels) if not return_dict: all_logits = tuple(v for v in [logits, logits_ngram] if v is not None) return (loss,) + all_logits + outputs[2:] if loss is not None else all_logits + outputs[2:] else: return XLMProphetNetSeq2SeqLMOutput( loss=loss, logits=logits, logits_ngram=logits_ngram, past_key_values=outputs.past_key_values, decoder_hidden_states=outputs.decoder_hidden_states, decoder_ngram_hidden_states=outputs.decoder_ngram_hidden_states, decoder_attentions=outputs.decoder_attentions, decoder_ngram_attentions=outputs.decoder_ngram_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, ) def _compute_loss(self, logits, labels, ignore_index=-100): expend_targets = labels.new_zeros(self.config.ngram, labels.size(0), labels.size(1)).fill_(ignore_index) for i in range(self.config.ngram): if i > 0 and self.disable_ngram_loss: break expend_targets[i, :, :] = labels logits = logits.transpose(0, 1).contiguous() lprobs = nn.functional.log_softmax( logits.view(-1, logits.size(-1)), dim=-1, dtype=torch.float32, ) loss = nn.functional.nll_loss(lprobs, expend_targets.view(-1), reduction="mean") if self.config.eps > 0.0: smooth_loss = -lprobs.sum(dim=-1, keepdim=True) non_masked_tokens = expend_targets.ne(ignore_index).view(-1) smooth_loss = smooth_loss[non_masked_tokens] smooth_loss = smooth_loss.mean() eps_i = self.config.eps / lprobs.size(-1) loss = (1.0 - self.config.eps) * loss + eps_i * smooth_loss return loss def prepare_inputs_for_generation( self, decoder_input_ids, past_key_values=None, attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, use_cache=None, encoder_outputs=None, **kwargs, ): assert encoder_outputs is not None, "`encoder_outputs` have to be passed for generation." if past_key_values: decoder_input_ids = decoder_input_ids[:, -1:] # first step, decoder_cached_states are empty return { "input_ids": None, # encoder_outputs is defined. input_ids not needed "encoder_outputs": encoder_outputs, "past_key_values": past_key_values, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, "use_cache": use_cache, } def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): return self._shift_right(labels) @staticmethod # Copied from transformers.models.bart.modeling_bart.BartForConditionalGeneration._reorder_cache def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: # cached cross_attention states don't have to be reordered -> they are always the same reordered_past += ( tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:], ) return reordered_past def get_encoder(self): return self.prophetnet.encoder def get_decoder(self): return self.prophetnet.decoder @add_start_docstrings( "The standalone decoder part of the XLMProphetNetModel with a lm head on top. The model can be used for causal" " language modeling.", XLM_PROPHETNET_START_DOCSTRING, ) # Copied from transformers.models.prophetnet.modeling_prophetnet.ProphetNetForCausalLM with microsoft/prophetnet-large-uncased->patrickvonplaten/xprophetnet-large-uncased-standalone, ProphetNet->XLMProphetNet, PROPHETNET->XLM_PROPHETNET class XLMProphetNetForCausalLM(XLMProphetNetPreTrainedModel): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config: XLMProphetNetConfig): # set config for CLM config = copy.deepcopy(config) config.is_decoder = True config.is_encoder_decoder = False super().__init__(config) self.prophetnet = XLMProphetNetDecoderWrapper(config) self.padding_idx = config.pad_token_id self.disable_ngram_loss = config.disable_ngram_loss self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.prophetnet.decoder.word_embeddings def set_input_embeddings(self, value): self.prophetnet.decoder.word_embeddings = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.prophetnet.decoder = decoder def get_decoder(self): return self.prophetnet.decoder @add_start_docstrings_to_model_forward(XLM_PROPHETNET_STANDALONE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=XLMProphetNetDecoderLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, XLMProphetNetDecoderLMOutput]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]` Returns: Example: ```python >>> from transformers import AutoTokenizer, XLMProphetNetForCausalLM >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("patrickvonplaten/xprophetnet-large-uncased-standalone") >>> model = XLMProphetNetForCausalLM.from_pretrained("patrickvonplaten/xprophetnet-large-uncased-standalone") >>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder." >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> logits = outputs.logits >>> # Model can also be used with EncoderDecoder framework >>> from transformers import BertTokenizer, EncoderDecoderModel, AutoTokenizer >>> import torch >>> tokenizer_enc = BertTokenizer.from_pretrained("bert-large-uncased") >>> tokenizer_dec = AutoTokenizer.from_pretrained("patrickvonplaten/xprophetnet-large-uncased-standalone") >>> model = EncoderDecoderModel.from_encoder_decoder_pretrained( ... "bert-large-uncased", "patrickvonplaten/xprophetnet-large-uncased-standalone" ... ) >>> ARTICLE = ( ... "the us state department said wednesday it had received no " ... "formal word from bolivia that it was expelling the us ambassador there " ... "but said the charges made against him are `` baseless ." ... ) >>> input_ids = tokenizer_enc(ARTICLE, return_tensors="pt").input_ids >>> labels = tokenizer_dec( ... "us rejects charges against its ambassador in bolivia", return_tensors="pt" ... ).input_ids >>> outputs = model(input_ids=input_ids, decoder_input_ids=labels[:, :-1], labels=labels[:, 1:]) >>> loss = outputs.loss ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, past_key_values, dec_hidden, dec_attn) outputs = self.prophetnet.decoder( input_ids=input_ids, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, head_mask=head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) batch_size, sequence_length = input_ids.shape if input_ids is not None else inputs_embeds.shape[:2] predicting_streams = outputs[1].view(batch_size, self.config.ngram, sequence_length, -1) predict_logits = self.lm_head(predicting_streams) logits = predict_logits[:, 0] logits_ngram = predict_logits[:, 1:] if self.config.ngram > 1 else None loss = None if labels is not None: loss = self._compute_loss(predict_logits, labels) if not return_dict: all_logits = tuple(v for v in [logits, logits_ngram] if v is not None) return (loss,) + all_logits + outputs[2:] if loss is not None else all_logits + outputs[2:] else: return XLMProphetNetDecoderLMOutput( loss=loss, logits=logits, logits_ngram=logits_ngram, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, hidden_states_ngram=outputs.hidden_states_ngram, attentions=outputs.attentions, ngram_attentions=outputs.ngram_attentions, cross_attentions=outputs.cross_attentions, ) def _compute_loss(self, logits, labels, ignore_index=-100): expend_targets = labels.new_zeros(self.config.ngram, labels.size(0), labels.size(1)).fill_(ignore_index) for i in range(self.config.ngram): if i > 0 and self.disable_ngram_loss: break expend_targets[i, :, :] = labels logits = logits.transpose(0, 1).contiguous() lprobs = nn.functional.log_softmax( logits.view(-1, logits.size(-1)), dim=-1, dtype=torch.float32, ) loss = nn.functional.nll_loss(lprobs, expend_targets.view(-1), reduction="mean") if self.config.eps > 0.0: smooth_loss = -lprobs.sum(dim=-1, keepdim=True) non_masked_tokens = expend_targets.ne(ignore_index).view(-1) smooth_loss = smooth_loss[non_masked_tokens] smooth_loss = smooth_loss.mean() eps_i = self.config.eps / lprobs.size(-1) loss = (1.0 - self.config.eps) * loss + eps_i * smooth_loss return loss def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, head_mask=None, use_cache=None, **kwargs, ): # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly if attention_mask is None: attention_mask = input_ids.new_ones(input_ids.shape) if past_key_values: input_ids = input_ids[:, -1:] # first step, decoder_cached_states are empty return { "input_ids": input_ids, # encoder_outputs is defined. input_ids not needed "attention_mask": attention_mask, "head_mask": head_mask, "past_key_values": past_key_values, "use_cache": use_cache, } @staticmethod # Copied from transformers.models.bart.modeling_bart.BartForCausalLM._reorder_cache def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),) return reordered_past # Copied from transformers.models.prophetnet.modeling_prophetnet.ProphetNetDecoderWrapper with ProphetNet->XLMProphetNet, prophetnet->XLMProphetNet class XLMProphetNetDecoderWrapper(XLMProphetNetPreTrainedModel): """ This is a wrapper class, so that [`XLMProphetNetForCausalLM`] can correctly be loaded from pretrained XLMProphetNet classes. """ def __init__(self, config: XLMProphetNetConfig): super().__init__(config) self.decoder = XLMProphetNetDecoder(config) def forward(self, *args, **kwargs): return self.decoder(*args, **kwargs)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/wav2vec2_phoneme/__init__.py
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import _LazyModule _import_structure = {"tokenization_wav2vec2_phoneme": ["Wav2Vec2PhonemeCTCTokenizer"]} if TYPE_CHECKING: from .tokenization_wav2vec2_phoneme import Wav2Vec2PhonemeCTCTokenizer else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/wav2vec2_phoneme/tokenization_wav2vec2_phoneme.py
# coding=utf-8 # Copyright 2021 The Facebook Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization class for Wav2Vec2Phoneme.""" import json import os import sys from dataclasses import dataclass from itertools import groupby from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import numpy as np from ...tokenization_utils import PreTrainedTokenizer, _insert_one_token_to_ordered_list from ...tokenization_utils_base import AddedToken from ...utils import ( ModelOutput, is_flax_available, is_tf_available, is_torch_available, logging, requires_backends, to_py_obj, ) logger = logging.get_logger(__name__) if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf if is_flax_available(): import jax.numpy as jnp # noqa: F401 VOCAB_FILES_NAMES = { "vocab_file": "vocab.json", "tokenizer_config_file": "tokenizer_config.json", } PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "facebook/wav2vec2-lv-60-espeak-cv-ft": ( "https://huggingface.co/facebook/wav2vec2-lv-60-espeak-cv-ft/resolve/main/vocab.json" ), }, "tokenizer_config_file": { "facebook/wav2vec2-lv-60-espeak-cv-ft": ( "https://huggingface.co/facebook/wav2vec2-lv-60-espeak-cv-ft/resolve/main/tokenizer_config.json" ), }, } # Wav2Vec2Phoneme has no max input length PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {"facebook/wav2vec2-lv-60-espeak-cv-ft": sys.maxsize} ListOfDict = List[Dict[str, Union[int, str]]] @dataclass class Wav2Vec2PhonemeCTCTokenizerOutput(ModelOutput): """ Output type of [` Wav2Vec2PhonemeCTCTokenizer`], with transcription. Args: text (list of `str` or `str`): Decoded logits in text from. Usually the speech transcription. char_offsets (list of `List[Dict[str, Union[int, str]]]` or `List[Dict[str, Union[int, str]]]`): Offsets of the decoded characters. In combination with sampling rate and model downsampling rate char offsets can be used to compute time stamps for each charater. Total logit score of the beam associated with produced text. """ text: Union[List[str], str] char_offsets: Union[List[ListOfDict], ListOfDict] = None class Wav2Vec2PhonemeCTCTokenizer(PreTrainedTokenizer): """ Constructs a Wav2Vec2PhonemeCTC tokenizer. This tokenizer inherits from [`PreTrainedTokenizer`] which contains some of the main methods. Users should refer to the superclass for more information regarding such methods. Args: vocab_file (`str`): File containing the vocabulary. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sentence token. eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sentence token. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. do_phonemize (`bool`, *optional*, defaults to `True`): Whether the tokenizer should phonetize the input or not. Only if a sequence of phonemes is passed to the tokenizer, `do_phonemize` should be set to `False`. phonemizer_lang (`str`, *optional*, defaults to `"en-us"`): The language of the phoneme set to which the tokenizer should phonetize the input text to. phonemizer_backend (`str`, *optional*. defaults to `"espeak"`): The backend phonetization library that shall be used by the phonemizer library. Defaults to `espeak-ng`. See the [phonemizer package](https://github.com/bootphon/phonemizer#readme). for more information. **kwargs Additional keyword arguments passed along to [`PreTrainedTokenizer`] """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, bos_token="<s>", eos_token="</s>", unk_token="<unk>", pad_token="<pad>", phone_delimiter_token=" ", word_delimiter_token=None, do_phonemize=True, phonemizer_lang="en-us", phonemizer_backend="espeak", **kwargs, ): super().__init__( unk_token=unk_token, bos_token=bos_token, eos_token=eos_token, pad_token=pad_token, word_delimiter_token=word_delimiter_token, phone_delimiter_token=phone_delimiter_token, do_phonemize=do_phonemize, phonemizer_lang=phonemizer_lang, phonemizer_backend=phonemizer_backend, **kwargs, ) self._word_delimiter_token = word_delimiter_token self._phone_delimiter_token = phone_delimiter_token self.do_phonemize = do_phonemize self.phonemizer_lang = phonemizer_lang self.phonemizer_backend = phonemizer_backend if do_phonemize: self.init_backend(self.phonemizer_lang) with open(vocab_file, encoding="utf-8") as vocab_handle: self.encoder = json.load(vocab_handle) self.decoder = {v: k for k, v in self.encoder.items()} @property def vocab_size(self) -> int: return len(self.decoder) def get_vocab(self) -> Dict: return dict(self.encoder, **self.added_tokens_encoder) def init_backend(self, phonemizer_lang: str): """ Initializes the backend. Args: phonemizer_lang (`str`): The language to be used. """ requires_backends(self, "phonemizer") from phonemizer.backend import BACKENDS self.backend = BACKENDS[self.phonemizer_backend](phonemizer_lang, language_switch="remove-flags") def prepare_for_tokenization( self, text: str, is_split_into_words: bool = False, phonemizer_lang: Optional[str] = None, do_phonemize: Optional[bool] = None, ) -> Tuple[str, Dict[str, Any]]: """ Performs any necessary transformations before tokenization. This method should pop the arguments from kwargs and return the remaining `kwargs` as well. We test the `kwargs` at the end of the encoding process to be sure all the arguments have been used. Args: text (`str`): The text to prepare. is_split_into_words (`bool`, *optional*, defaults to `False`): Whether or not the input is already pre-tokenized (e.g., split into words). If set to `True`, the tokenizer assumes the input is already split into words (for instance, by splitting it on whitespace) which it will tokenize. This is useful for NER or token classification. phonemizer_lang (`str`, *optional*): The language of the phoneme set to which the tokenizer should phonetize the input text to. do_phonemize (`bool`, *optional*): Whether the tokenizer should phonetize the input text or not. Only if a sequence of phonemes is passed to the tokenizer, `do_phonemize` should be set to `False`. Returns: `Tuple[str, Dict[str, Any]]`: The prepared text and the unused kwargs. """ if is_split_into_words: text = " " + text # set whether tokenizer should phonemize or not if do_phonemize is not None: self.do_phonemize = do_phonemize # set the correct phonemizer language if phonemizer_lang is not None: self.phonemizer_lang = phonemizer_lang self.init_backend(phonemizer_lang) return (text, {}) def _tokenize(self, text, **kwargs): """ Converts a string in a sequence of tokens (string), using the tokenizer. """ # make sure whitespace is stripped to prevent <unk> text = text.strip() # phonemize if self.do_phonemize: text = text.lower() # create list of phonemes text = self.phonemize(text, self.phonemizer_lang) # make sure ' ' is between phonemes tokens = text.split(" ") tokens = list(filter(lambda p: p.strip() != "", tokens)) return tokens def phonemize(self, text: str, phonemizer_lang: Optional[str] = None) -> str: from phonemizer.separator import Separator word_delimiter = self.word_delimiter_token + " " if self.word_delimiter_token is not None else "" if phonemizer_lang is not None and phonemizer_lang != self.phonemizer_lang: self.init_backend(phonemizer_lang) else: phonemizer_lang = self.phonemizer_lang separator = Separator(phone=self.phone_delimiter_token, word=word_delimiter, syllable="") phonemes = self.backend.phonemize( [text], separator=separator, ) phonemes = phonemes[0].strip() return phonemes @property def word_delimiter_token(self) -> str: """ `str`: Word delimiter token. Log an error if used while not having been set. """ if self._word_delimiter_token is None and self.verbose: return None return str(self._word_delimiter_token) @property def word_delimiter_token_id(self) -> Optional[int]: """ `Optional[int]`: Id of the word_delimiter_token in the vocabulary. Returns `None` if the token has not been set. """ if self._word_delimiter_token is None: return None return self.convert_tokens_to_ids(self.word_delimiter_token) @word_delimiter_token.setter def word_delimiter_token(self, value): self._word_delimiter_token = value @word_delimiter_token_id.setter def word_delimiter_token_id(self, value): self._word_delimiter_token = self.convert_tokens_to_ids(value) @property def phone_delimiter_token(self) -> str: """ `str`: Word delimiter token. Log an error if used while not having been set. """ if self._phone_delimiter_token is None and self.verbose: logger.error("Using phone_delimiter_token, but it is not set yet.") return None return str(self._phone_delimiter_token) @property def phone_delimiter_token_id(self) -> Optional[int]: """ `Optional[int]`: Id of the phone_delimiter_token in the vocabulary. Returns `None` if the token has not been set. """ if self._phone_delimiter_token is None: return None return self.convert_tokens_to_ids(self.phone_delimiter_token) @phone_delimiter_token.setter def phone_delimiter_token(self, value): self._phone_delimiter_token = value @phone_delimiter_token_id.setter def phone_delimiter_token_id(self, value): self._phone_delimiter_token = self.convert_tokens_to_ids(value) def _convert_token_to_id(self, token: str) -> int: """Converts a token (str) in an index (integer) using the vocab.""" return self.encoder.get(token, self.encoder.get(self.unk_token)) def _convert_id_to_token(self, index: int) -> str: """Converts an index (integer) in a token (str) using the vocab.""" result = self.decoder.get(index, self.unk_token) return result def convert_tokens_to_string( self, tokens: List[str], group_tokens: bool = True, spaces_between_special_tokens: bool = False, filter_word_delimiter_token: bool = True, output_char_offsets: bool = False, ) -> str: """ Converts a connectionist-temporal-classification (CTC) output tokens into a single string. """ # group same tokens into non-repeating tokens in CTC style decoding if group_tokens: chars, char_repetitions = zip(*((token, len(list(group_iter))) for token, group_iter in groupby(tokens))) else: chars = tokens char_repetitions = len(tokens) * [1] # filter self.pad_token which is used as CTC-blank token processed_chars = list(filter(lambda char: char != self.pad_token, chars)) # also filter self.word_delimiter_token if not not if filter_word_delimiter_token and self.word_delimiter_token is not None: processed_chars = list(filter(lambda token: token != self.word_delimiter_token, processed_chars)) # retrieve offsets char_offsets = None if output_char_offsets: word_delimiter_token_for_offsets = ( self.word_delimiter_token if filter_word_delimiter_token is True else None ) char_offsets = self._compute_offsets( char_repetitions, chars, self.pad_token, word_delimiter_token=word_delimiter_token_for_offsets ) if len(char_offsets) != len(processed_chars): raise ValueError( f"`char_offsets`: {char_offsets} and `processed_tokens`: {processed_chars}" " have to be of the same length, but are: `len(offsets)`: " f"{len(char_offsets)} and `len(processed_tokens)`: {len(processed_chars)}" ) # set tokens to correct processed token for i, char in enumerate(processed_chars): char_offsets[i]["char"] = char string = " ".join(processed_chars).strip() return {"text": string, "char_offsets": char_offsets} @staticmethod def _compute_offsets( char_repetitions: List[int], chars: List[str], ctc_token: int, word_delimiter_token: Optional[int] = None ) -> List[Dict[str, Union[str, int]]]: end_indices = np.asarray(char_repetitions).cumsum() start_indices = np.concatenate(([0], end_indices[:-1])) offsets = [ {"char": t, "start_offset": s, "end_offset": e} for t, s, e in zip(chars, start_indices, end_indices) ] # filter out CTC token offsets = list(filter(lambda offsets: offsets["char"] != ctc_token, offsets)) # filter out word delimiter token if necessary if word_delimiter_token is not None: offsets = list(filter(lambda offsets: offsets["char"] != word_delimiter_token, offsets)) return offsets def _decode( self, token_ids: List[int], skip_special_tokens: bool = False, clean_up_tokenization_spaces: bool = None, group_tokens: bool = True, filter_word_delimiter_token: bool = True, spaces_between_special_tokens: bool = False, output_char_offsets: bool = False, ) -> str: """ special _decode function is needed for Wav2Vec2PhonemeTokenizer because added tokens should be treated exactly the same as tokens of the base vocabulary and therefore the function `convert_tokens_to_string` has to be called on the whole token list and not individually on added tokens """ filtered_tokens = self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens) result = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue result.append(token) string_output = self.convert_tokens_to_string( result, group_tokens=group_tokens, spaces_between_special_tokens=spaces_between_special_tokens, filter_word_delimiter_token=filter_word_delimiter_token, output_char_offsets=output_char_offsets, ) text = string_output["text"] clean_up_tokenization_spaces = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: text = self.clean_up_tokenization(text) if output_char_offsets: return Wav2Vec2PhonemeCTCTokenizerOutput(text=text, char_offsets=string_output["char_offsets"]) else: return text # overwritten from `tokenization_utils_base.py` because we need docs for `output_char_offsets` here def decode( self, token_ids: Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"], skip_special_tokens: bool = False, clean_up_tokenization_spaces: bool = None, output_char_offsets: bool = False, **kwargs, ) -> str: """ Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special tokens and clean up tokenization spaces. Similar to doing `self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))`. Args: token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`): List of tokenized input ids. Can be obtained using the `__call__` method. skip_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not to remove special tokens in the decoding. clean_up_tokenization_spaces (`bool`, *optional*): Whether or not to clean up the tokenization spaces. output_char_offsets (`bool`, *optional*, defaults to `False`): Whether or not to output character offsets. Character offsets can be used in combination with the sampling rate and model downsampling rate to compute the time-stamps of transcribed characters. <Tip> Please take a look at the Example of [`~models.wav2vec2.tokenization_wav2vec2.decode`] to better understand how to make use of `output_word_offsets`. [`~model.wav2vec2_phoneme.tokenization_wav2vec2_phoneme.batch_decode`] works the same way with phonemes. </Tip> kwargs (additional keyword arguments, *optional*): Will be passed to the underlying model specific decode method. Returns: `str` or [`~models.wav2vec2.tokenization_wav2vec2_phoneme.Wav2Vec2PhonemeCTCTokenizerOutput`]: The decoded sentence. Will be a [`~models.wav2vec2.tokenization_wav2vec2_phoneme.Wav2Vec2PhonemeCTCTokenizerOutput`] when `output_char_offsets == True`. """ # Convert inputs to python lists token_ids = to_py_obj(token_ids) return self._decode( token_ids=token_ids, skip_special_tokens=skip_special_tokens, clean_up_tokenization_spaces=clean_up_tokenization_spaces, output_char_offsets=output_char_offsets, **kwargs, ) # overwritten from `tokenization_utils_base.py` because tokenizer can output # `ModelOutput` which should not be a list for batched output and because # we need docs for `output_char_offsets` here def batch_decode( self, sequences: Union[List[int], List[List[int]], "np.ndarray", "torch.Tensor", "tf.Tensor"], skip_special_tokens: bool = False, clean_up_tokenization_spaces: bool = None, output_char_offsets: bool = False, **kwargs, ) -> List[str]: """ Convert a list of lists of token ids into a list of strings by calling decode. Args: sequences (`Union[List[int], List[List[int]], np.ndarray, torch.Tensor, tf.Tensor]`): List of tokenized input ids. Can be obtained using the `__call__` method. skip_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not to remove special tokens in the decoding. clean_up_tokenization_spaces (`bool`, *optional*): Whether or not to clean up the tokenization spaces. output_char_offsets (`bool`, *optional*, defaults to `False`): Whether or not to output character offsets. Character offsets can be used in combination with the sampling rate and model downsampling rate to compute the time-stamps of transcribed characters. <Tip> Please take a look at the Example of [`~models.wav2vec2.tokenization_wav2vec2.decode`] to better understand how to make use of `output_word_offsets`. [`~model.wav2vec2_phoneme.tokenization_wav2vec2_phoneme.batch_decode`] works analogous with phonemes and batched output. </Tip> kwargs (additional keyword arguments, *optional*): Will be passed to the underlying model specific decode method. Returns: `List[str]` or [`~models.wav2vec2.tokenization_wav2vec2_phoneme.Wav2Vec2PhonemeCTCTokenizerOutput`]: The decoded sentence. Will be a [`~models.wav2vec2.tokenization_wav2vec2_phoneme.Wav2Vec2PhonemeCTCTokenizerOutput`] when `output_char_offsets == True`. """ batch_decoded = [ self.decode( seq, skip_special_tokens=skip_special_tokens, clean_up_tokenization_spaces=clean_up_tokenization_spaces, output_char_offsets=output_char_offsets, **kwargs, ) for seq in sequences ] if output_char_offsets: # transform list of dicts to dict of lists return Wav2Vec2PhonemeCTCTokenizerOutput({k: [d[k] for d in batch_decoded] for k in batch_decoded[0]}) return batch_decoded def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) with open(vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") return (vocab_file,) def _add_tokens(self, new_tokens: Union[List[str], List[AddedToken]], special_tokens: bool = False) -> int: """ Add a list of new tokens to the tokenizer class. If the new tokens are not in the vocabulary, they are added to it with indices starting from length of the current vocabulary. Args: new_tokens (`List[str]`or `List[tokenizers.AddedToken]`): Token(s) to add in vocabulary. A token is only added if it's not already in the vocabulary (tested by checking if the tokenizer assign the index of the `unk_token` to them). special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the tokens should be added as special tokens. Returns: `int`: The number of tokens actually added to the vocabulary. Examples: ```python # Let's see how to increase the vocabulary of Bert model and tokenizer tokenizer = Wav2Vec2PhonemeCTCTokenizer.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft") model = Wav2Vec2PhonemeForCTC.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft") num_added_toks = tokenizer.add_tokens(["new_tok1", "my_new-tok2"]) print("We have added", num_added_toks, "tokens") # Note: resize_token_embeddings expects to receive the full size of the new vocabulary, i.e. the length of the tokenizer. model.resize_token_embeddings(len(tokenizer)) ```""" new_tokens = [str(tok) for tok in new_tokens] tokens_to_add = [] for token in new_tokens: if not isinstance(token, str): raise ValueError(f"Token {token} has to be of type string, but is of type {type(token)}.") assert isinstance(token, str) if ( token != self.unk_token and self.convert_tokens_to_ids(token) == self.convert_tokens_to_ids(self.unk_token) and token not in tokens_to_add ): tokens_to_add.append(token) if self.verbose: logger.info(f"Adding {token} to the vocabulary") added_tok_encoder = {tok: len(self) + i for i, tok in enumerate(tokens_to_add)} added_tok_decoder = {v: k for k, v in added_tok_encoder.items()} self.added_tokens_encoder.update(added_tok_encoder) self.added_tokens_decoder.update(added_tok_decoder) # Make sure we don't split on any special tokens (even they were already in the vocab before) for token in tokens_to_add: if len(token) > 1: self._additional_special_tokens.append(AddedToken(token)) _insert_one_token_to_ordered_list(self.unique_no_split_tokens, token) self._create_trie(self.unique_no_split_tokens) return len(tokens_to_add)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/reformer/__init__.py
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _import_structure = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_reformer"] = ["ReformerTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_reformer_fast"] = ["ReformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_reformer"] = [ "REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ReformerAttention", "ReformerForMaskedLM", "ReformerForQuestionAnswering", "ReformerForSequenceClassification", "ReformerLayer", "ReformerModel", "ReformerModelWithLMHead", "ReformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/reformer/modeling_reformer.py
# coding=utf-8 # Copyright 2020 The Trax Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch REFORMER model.""" import sys from collections import namedtuple from dataclasses import dataclass from functools import reduce from operator import mul from typing import List, Optional, Tuple, Union import numpy as np import torch from torch import nn from torch.autograd.function import Function from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import CausalLMOutput, MaskedLMOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput from ...modeling_utils import PreTrainedModel from ...pytorch_utils import apply_chunking_to_forward from ...utils import ( DUMMY_INPUTS, DUMMY_MASK, ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_reformer import ReformerConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "google/reformer-crime-and-punishment" _CONFIG_FOR_DOC = "ReformerConfig" REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [ "google/reformer-crime-and-punishment", "google/reformer-enwik8", # See all Reformer models at https://huggingface.co/models?filter=reformer ] # Define named tuples for nn.Modules here LSHSelfAttentionOutput = namedtuple("LSHSelfAttentionOutput", ["hidden_states", "attention_probs", "buckets"]) LocalSelfAttentionOutput = namedtuple("LocalSelfAttentionOutput", ["hidden_states", "attention_probs"]) AttentionOutput = namedtuple("AttentionOutput", ["hidden_states", "attention_probs", "buckets"]) ReformerOutput = namedtuple("ReformerOutput", ["hidden_states", "attn_output", "attention_probs", "buckets"]) ReformerBackwardOutput = namedtuple( "ReformerBackwardOutput", ["attn_output", "hidden_states", "grad_attn_output", "grad_hidden_states"] ) ReformerEncoderOutput = namedtuple( "ReformerEncoderOutput", ["hidden_states", "all_hidden_states", "all_attentions", "past_buckets_states"], ) def _stable_argsort(vector, dim): # this function scales the vector so that torch.argsort is stable. # torch.argsort is not stable on its own scale_offset = torch.arange(vector.shape[dim], device=vector.device).view(1, 1, -1) scale_offset = scale_offset.expand(vector.shape) scaled_vector = vector.shape[dim] * vector + (scale_offset % vector.shape[dim]) return torch.argsort(scaled_vector, dim=dim) def _get_least_common_mult_chunk_len(config): attn_types = config.attn_layers attn_types_set = set(attn_types) if len(attn_types_set) == 1 and attn_types[0] == "lsh": return config.lsh_attn_chunk_length elif len(attn_types_set) == 1 and attn_types[0] == "local": return config.local_attn_chunk_length elif len(attn_types_set) == 2 and attn_types_set == {"lsh", "local"}: return np.lcm(config.lsh_attn_chunk_length, config.local_attn_chunk_length) else: raise NotImplementedError( f"Only attn layer types 'lsh' and 'local' exist, but `config.attn_layers`: {config.attn_layers}. Select " "attn layer types from ['lsh', 'local'] only." ) def _get_min_chunk_len(config): attn_types = config.attn_layers attn_types_set = set(attn_types) if len(attn_types_set) == 1 and attn_types[0] == "lsh": return config.lsh_attn_chunk_length elif len(attn_types_set) == 1 and attn_types[0] == "local": return config.local_attn_chunk_length elif len(attn_types_set) == 2 and attn_types_set == {"lsh", "local"}: return min(config.lsh_attn_chunk_length, config.local_attn_chunk_length) else: raise NotImplementedError( f"Only attn layer types 'lsh' and 'local' exist, but `config.attn_layers`: {config.attn_layers}. Select " "attn layer types from ['lsh', 'local'] only." ) class AxialPositionEmbeddings(nn.Module): """ Constructs axial position embeddings. Useful for very long input sequences to save memory and time. """ def __init__(self, config): super().__init__() self.axial_pos_shape = config.axial_pos_shape self.axial_pos_embds_dim = config.axial_pos_embds_dim self.dropout = config.hidden_dropout_prob self.least_common_mult_chunk_length = _get_least_common_mult_chunk_len(config) self.weights = nn.ParameterList() if sum(self.axial_pos_embds_dim) != config.hidden_size: raise ValueError( f"Make sure that config.axial_pos_embds factors: {self.axial_pos_embds_dim} sum to " f"config.hidden_size: {config.hidden_size}" ) # create weights for axis, axial_pos_embd_dim in enumerate(self.axial_pos_embds_dim): # create expanded shapes ax_shape = [1] * len(self.axial_pos_shape) ax_shape[axis] = self.axial_pos_shape[axis] ax_shape = tuple(ax_shape) + (axial_pos_embd_dim,) # create tensor and init self.weights.append(nn.Parameter(torch.ones(ax_shape, dtype=torch.float32))) def forward(self, position_ids): # broadcast weights to correct shape batch_size = position_ids.shape[0] sequence_length = position_ids.shape[1] broadcasted_weights = [ weight.expand((batch_size,) + self.axial_pos_shape + weight.shape[-1:]) for weight in self.weights ] if self.training is True: if reduce(mul, self.axial_pos_shape) != sequence_length: raise ValueError( f"If training, make sure that config.axial_pos_shape factors: {self.axial_pos_shape} multiply to " f"sequence length. Got prod({self.axial_pos_shape}) != sequence_length: {sequence_length}. " f"You might want to consider padding your sequence length to {reduce(mul, self.axial_pos_shape)} " "or changing config.axial_pos_shape." ) if self.dropout > 0: weights = torch.cat(broadcasted_weights, dim=-1) # permute weights so that 2D correctly drops dims 1 and 2 transposed_weights = weights.transpose(2, 1) # drop entire matrix of last two dims (prev dims 1 and 2) dropped_transposed_weights = nn.functional.dropout2d( transposed_weights, p=self.dropout, training=self.training ) dropped_weights = dropped_transposed_weights.transpose(2, 1) position_encodings = torch.reshape(dropped_weights, (batch_size, sequence_length, -1)) else: position_encodings = torch.cat( [torch.reshape(weight, (batch_size, sequence_length, -1)) for weight in broadcasted_weights], dim=-1, ) else: if reduce(mul, self.axial_pos_shape) < sequence_length: raise ValueError( f"Make sure that config.axial_pos_shape factors: {self.axial_pos_shape} multiply at least to " f"max(sequence_length, least_common_mult_chunk_length): max({sequence_length}, " f"{self.least_common_mult_chunk_length})." ) # compute how many columns are needed max_position_id = position_ids.max().item() required_pos_encodings_columns = -(-(max_position_id + 1) // self.axial_pos_shape[1]) # cut to columns that are needed position_encodings = torch.cat( [weight[:, :required_pos_encodings_columns] for weight in broadcasted_weights], dim=-1 ) position_encodings = torch.reshape(position_encodings, (batch_size, -1, position_encodings.shape[-1])) # select correct position encodings position_encodings = torch.cat( [ torch.index_select(position_encodings[i], 0, position_ids[i]).unsqueeze(0) for i in range(batch_size) ], dim=0, ) return position_encodings class PositionEmbeddings(nn.Module): """Constructs conventional position embeddings of shape `[max_pos_embeddings, hidden_size]`.""" def __init__(self, config): super().__init__() self.dropout = config.hidden_dropout_prob self.embedding = nn.Embedding(config.max_position_embeddings, config.hidden_size) def forward(self, position_ids): position_embeddings = self.embedding(position_ids) position_embeddings = nn.functional.dropout(position_embeddings, p=self.dropout, training=self.training) return position_embeddings class ReformerEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config): super().__init__() self.max_position_embeddings = config.max_position_embeddings self.dropout = config.hidden_dropout_prob self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size) self.position_embeddings = ( AxialPositionEmbeddings(config) if config.axial_pos_embds else PositionEmbeddings(config) ) def forward(self, input_ids=None, position_ids=None, inputs_embeds=None, start_idx_pos_encodings=0): if input_ids is not None: input_shape = input_ids.size() device = input_ids.device else: input_shape = inputs_embeds.size()[:-1] device = inputs_embeds.device seq_length = input_shape[1] if position_ids is None: position_ids = torch.arange( start_idx_pos_encodings, start_idx_pos_encodings + seq_length, dtype=torch.long, device=device ) position_ids = position_ids.unsqueeze(0).expand(input_shape) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) if position_ids.shape[-1] > self.max_position_embeddings: raise ValueError( f"Sequence Length: {position_ids.shape[-1]} has to be less or equal than " f"config.max_position_embeddings {self.max_position_embeddings}." ) # dropout embeddings = nn.functional.dropout(inputs_embeds, p=self.dropout, training=self.training) # add positional embeddings position_embeddings = self.position_embeddings(position_ids) embeddings = embeddings + position_embeddings return embeddings class EfficientAttentionMixin: """ A few utilities for nn.Modules in Reformer, to be used as a mixin. """ def _look_adjacent(self, vectors, num_chunks_before, num_chunks_after): """ Used to implement attention between consecutive chunks. Args: vectors: array of shape [batch_size, num_attention_heads, n_chunks, chunk_len, ...] num_chunks_before: chunks before current chunk to include in attention num_chunks_after: chunks after current chunk to include in attention Returns: tensor of shape [num_chunks, N * chunk_length, ...], where N = (1 + num_chunks_before + num_chunks_after). """ if num_chunks_before == 0 and num_chunks_after == 0: return vectors slices = [] for i in range(-num_chunks_before, num_chunks_after + 1): if i == 0: slices.append(vectors) else: slices.append(torch.cat([vectors[:, :, i:, ...], vectors[:, :, :i, ...]], dim=2)) return torch.cat(slices, dim=3) def _split_hidden_size_dim(self, x, num_attn_heads, attn_head_size): """ splits hidden_size dim into attn_head_size and num_attn_heads """ new_x_shape = x.size()[:-1] + (num_attn_heads, attn_head_size) x = x.view(*new_x_shape) return x.transpose(2, 1) def _merge_hidden_size_dims(self, x, num_attn_heads, attn_head_size): """ merges attn_head_size dim and num_attn_heads dim into hidden_size """ x = x.permute(0, 2, 1, 3) return torch.reshape(x, (x.size()[0], -1, num_attn_heads * attn_head_size)) def _split_seq_length_dim_to(self, vectors, dim_factor_1, dim_factor_2, num_attn_heads, attn_head_size=None): """ splits sequence length dim of vectors into `dim_factor_1` and `dim_factor_2` dims """ batch_size = vectors.shape[0] split_dim_shape = (batch_size, num_attn_heads, dim_factor_1, dim_factor_2) if len(vectors.shape) == 4: return torch.reshape(vectors, split_dim_shape + (attn_head_size,)) elif len(vectors.shape) == 3: return torch.reshape(vectors, split_dim_shape) else: raise ValueError(f"Input vector rank should be one of [3, 4], but is: {len(vectors.shape)}") class LSHSelfAttention(nn.Module, EfficientAttentionMixin): def __init__(self, config): super().__init__() self.config = config self.chunk_length = config.lsh_attn_chunk_length self.num_hashes = config.num_hashes self.num_buckets = config.num_buckets self.num_chunks_before = config.lsh_num_chunks_before self.num_chunks_after = config.lsh_num_chunks_after self.hash_seed = config.hash_seed self.is_decoder = config.is_decoder self.max_position_embeddings = config.max_position_embeddings self.dropout = config.lsh_attention_probs_dropout_prob self.num_attention_heads = config.num_attention_heads self.attention_head_size = config.attention_head_size self.all_head_size = self.num_attention_heads * self.attention_head_size self.hidden_size = config.hidden_size # projection matrices self.query_key = nn.Linear(self.hidden_size, self.all_head_size, bias=False) self.value = nn.Linear(self.hidden_size, self.all_head_size, bias=False) # save mask value here. Need fp32 and fp16 mask values self.register_buffer("self_mask_value_float16", torch.tensor(-1e3), persistent=False) self.register_buffer("self_mask_value_float32", torch.tensor(-1e5), persistent=False) self.register_buffer("mask_value_float16", torch.tensor(-1e4), persistent=False) self.register_buffer("mask_value_float32", torch.tensor(-1e9), persistent=False) def forward( self, hidden_states, attention_mask=None, head_mask=None, num_hashes=None, buckets=None, past_buckets_states=None, use_cache=False, output_attentions=False, **kwargs, ): sequence_length = hidden_states.shape[1] batch_size = hidden_states.shape[0] # num hashes can optionally be overwritten by user num_hashes = num_hashes if num_hashes is not None else self.num_hashes do_cached_attention = use_cache and past_buckets_states[1] is not None # check if cache shall be used and that hidden states are already cached if do_cached_attention: assert sequence_length == 1, ( "At the moment, auto-regressive language generation is only possible one word at a time. Make sure" f" that input sequence length {sequence_length} equals 1, when `past_buckets_states` is passed." ) past_buckets = past_buckets_states[0] past_states = past_buckets_states[1] # get query vector query_vectors = self.query_key(hidden_states) query_vectors = self._split_hidden_size_dim( query_vectors, self.num_attention_heads, self.attention_head_size ) if past_buckets is not None: key_value_hidden_states, sorted_bucket_idx, buckets = self._get_relevant_hid_states_and_buckets( query_vectors=query_vectors, attention_mask=attention_mask, num_hashes=num_hashes, hidden_states=hidden_states, past_states=past_states, past_buckets=past_buckets, ) query_key_vectors = self._query_per_attn_head(key_value_hidden_states) value_vectors = self._value_per_attn_head(key_value_hidden_states) # split key & value vectors by num hashes to apply # self attention on each separately query_key_vectors = self._split_seq_length_dim_to( query_key_vectors, num_hashes, -1, self.num_attention_heads, self.attention_head_size, ) value_vectors = self._split_seq_length_dim_to( value_vectors, num_hashes, -1, self.num_attention_heads, self.attention_head_size, ) # repeat query vectors across hash dimension query_vectors = query_vectors.unsqueeze(2).repeat(1, 1, num_hashes, 1, 1) else: key_value_hidden_states = torch.cat([past_states, hidden_states], dim=1) query_key_vectors = self.query_key(key_value_hidden_states) value_vectors = self.value(key_value_hidden_states) else: # project hidden_states to query_key and value query_vectors = None query_key_vectors = self.query_key(hidden_states) value_vectors = self.value(hidden_states) # if query key is not already split if not do_cached_attention or past_buckets is None: query_key_vectors = self._split_hidden_size_dim( query_key_vectors, self.num_attention_heads, self.attention_head_size ) value_vectors = self._split_hidden_size_dim( value_vectors, self.num_attention_heads, self.attention_head_size ) # cache buckets for next incremental decoding if do_cached_attention and past_buckets is None and key_value_hidden_states.shape[1] >= self.chunk_length: buckets = self._hash_vectors(query_key_vectors, num_hashes, attention_mask) # free memory del hidden_states assert ( query_key_vectors.shape[-1] == self.attention_head_size ), f"last dim of query_key_vectors is {query_key_vectors.shape[-1]} but should be {self.attention_head_size}." assert ( value_vectors.shape[-1] == self.attention_head_size ), f"last dim of value_vectors is {value_vectors.shape[-1]} but should be {self.attention_head_size}." do_standard_self_attention = (sequence_length <= self.chunk_length) or ( use_cache and past_buckets_states[1] is not None ) # LSH attention only makes sense if chunked attention should be performed if not do_standard_self_attention: # set `num_buckets` on the fly, recommended way to do it if self.num_buckets is None: self._set_num_buckets(sequence_length) # use cached buckets for backprop only if buckets is None: # hash query key vectors into buckets buckets = self._hash_vectors(query_key_vectors, num_hashes, attention_mask) else: # make sure buckets has correct shape for LSH attention buckets = buckets.view(batch_size, self.num_attention_heads, num_hashes * sequence_length) assert ( int(buckets.shape[-1]) == num_hashes * sequence_length ), f"last dim of buckets is {buckets.shape[-1]}, but should be {num_hashes * sequence_length}" sorted_bucket_idx, undo_sorted_bucket_idx = self._get_sorted_bucket_idx_and_undo_sorted_bucket_idx( sequence_length, buckets, num_hashes ) # make sure bucket idx is not longer then sequence length sorted_bucket_idx_per_hash = sorted_bucket_idx % sequence_length # cluster query key value vectors according to hashed buckets query_key_vectors = self._gather_by_expansion(query_key_vectors, sorted_bucket_idx_per_hash, num_hashes) value_vectors = self._gather_by_expansion(value_vectors, sorted_bucket_idx_per_hash, num_hashes) query_key_vectors = self._split_seq_length_dim_to( query_key_vectors, -1, self.chunk_length, self.num_attention_heads, self.attention_head_size, ) value_vectors = self._split_seq_length_dim_to( value_vectors, -1, self.chunk_length, self.num_attention_heads, self.attention_head_size, ) if self.chunk_length is None: assert self.num_chunks_before == 0 and self.num_chunks_after == 0, ( "If `config.chunk_length` is `None`, make sure `config.num_chunks_after` and" " `config.num_chunks_before` are set to 0." ) elif do_cached_attention and past_buckets is not None: # use max sequence length sorted_bucket_idx_per_hash = sorted_bucket_idx else: # get sequence length indices sorted_bucket_idx_per_hash = torch.arange(sequence_length, device=query_key_vectors.device).repeat( batch_size, self.num_attention_heads, 1 ) # scale key vectors sqrt_num = np.sqrt(self.attention_head_size) key_vectors = self._len_and_dim_norm(query_key_vectors, sqrt_num) # set query_vectors to query key vectors if LSH self attention query_vectors = query_vectors if query_vectors is not None else query_key_vectors # free memory del query_key_vectors # get attention probs out_vectors, logits, attention_probs = self._attend( query_vectors=query_vectors, key_vectors=key_vectors, value_vectors=value_vectors, sorted_bucket_idx_per_hash=sorted_bucket_idx_per_hash, attention_mask=attention_mask, head_mask=head_mask, do_standard_self_attention=do_standard_self_attention, do_cached_attention=do_cached_attention, ) # free memory del key_vectors, value_vectors # re-order out_vectors and logits if not do_standard_self_attention: # sort clusters back to correct ordering out_vectors, logits = ReverseSort.apply(out_vectors, logits, sorted_bucket_idx, undo_sorted_bucket_idx) if not do_standard_self_attention or (do_cached_attention and past_buckets is not None): # sum up all hash rounds if num_hashes > 1: out_vectors = self._split_seq_length_dim_to( out_vectors, num_hashes, sequence_length, self.num_attention_heads, self.attention_head_size, ) logits = self._split_seq_length_dim_to( logits, num_hashes, sequence_length, self.num_attention_heads, self.attention_head_size, ).unsqueeze(-1) probs_vectors = torch.exp(logits - torch.logsumexp(logits, dim=2, keepdim=True)) out_vectors = torch.sum(out_vectors * probs_vectors, dim=2) # free memory del probs_vectors # free memory del logits assert out_vectors.shape == ( batch_size, self.num_attention_heads, sequence_length, self.attention_head_size, ), ( "out_vectors have be of shape `[batch_size, config.num_attention_heads, sequence_length," " config.attention_head_size]`." ) out_vectors = self._merge_hidden_size_dims(out_vectors, self.num_attention_heads, self.attention_head_size) if output_attentions is False: attention_probs = () if buckets is not None: buckets = buckets.view(batch_size, self.num_attention_heads, num_hashes, -1) return LSHSelfAttentionOutput(hidden_states=out_vectors, attention_probs=attention_probs, buckets=buckets) def _query_per_attn_head(self, hidden_states): per_head_query_key = self.query_key.weight.reshape( self.num_attention_heads, self.attention_head_size, self.hidden_size ).transpose(-2, -1) # only relevant for inference and no bias => we can use einsum here query_key_vectors = torch.einsum("balh,ahr->balr", hidden_states, per_head_query_key) return query_key_vectors def _value_per_attn_head(self, hidden_states): per_head_value = self.value.weight.reshape( self.num_attention_heads, self.attention_head_size, self.hidden_size ).transpose(-2, -1) # only relevant for inference and no bias => we can use einsum here value_vectors = torch.einsum("balh,ahr->balr", hidden_states, per_head_value) return value_vectors def _hash_vectors(self, vectors, num_hashes, attention_mask, increase_num_buckets=False): batch_size = vectors.shape[0] # See https://arxiv.org/pdf/1509.02897.pdf # We sample a different random rotation for each round of hashing to # decrease the probability of hash misses. if isinstance(self.num_buckets, int): assert ( self.num_buckets % 2 == 0 ), f"There should be an even number of buckets, but `self.num_buckets`: {self.num_buckets}" rotation_size = self.num_buckets num_buckets = self.num_buckets else: # Factorize the hash if self.num_buckets is a list or tuple rotation_size, num_buckets = 0, 1 for bucket_factor in self.num_buckets: assert ( bucket_factor % 2 == 0 ), f"The number of buckets should be even, but `num_bucket`: {bucket_factor}" rotation_size = rotation_size + bucket_factor num_buckets = num_buckets * bucket_factor # remove gradient vectors = vectors.detach() if self.hash_seed is not None: # for determinism torch.manual_seed(self.hash_seed) rotations_shape = (self.num_attention_heads, vectors.shape[-1], num_hashes, rotation_size // 2) # create a random self.attention_head_size x num_hashes x num_buckets/2 random_rotations = torch.randn(rotations_shape, device=vectors.device, dtype=vectors.dtype) # Output dim: Batch_Size x Num_Attn_Heads x Num_Hashes x Seq_Len x Num_Buckets/2 rotated_vectors = torch.einsum("bmtd,mdhr->bmhtr", vectors, random_rotations) if isinstance(self.num_buckets, int) or len(self.num_buckets) == 1: rotated_vectors = torch.cat([rotated_vectors, -rotated_vectors], dim=-1) buckets = torch.argmax(rotated_vectors, dim=-1) else: # Get the buckets for them and combine. buckets, cur_sum, cur_product = None, 0, 1 for bucket_factor in self.num_buckets: rotated_vectors_factor = rotated_vectors[..., cur_sum : cur_sum + (bucket_factor // 2)] cur_sum = cur_sum + bucket_factor // 2 rotated_vectors_factor = torch.cat([rotated_vectors_factor, -rotated_vectors_factor], dim=-1) if buckets is None: buckets = torch.argmax(rotated_vectors_factor, dim=-1) else: buckets = buckets + (cur_product * torch.argmax(rotated_vectors_factor, dim=-1)) cur_product = cur_product * bucket_factor if attention_mask is not None and (attention_mask.sum().item() < batch_size * attention_mask.shape[-1]): # add an extra bucket for padding tokens only num_buckets = num_buckets + 1 # assign padding tokens extra bucket buckets_mask = attention_mask.to(torch.bool)[:, None, None, :].expand(buckets.shape) buckets = torch.where( buckets_mask, buckets, torch.tensor(num_buckets - 1, dtype=torch.long, device=buckets.device) ) elif increase_num_buckets: num_buckets = num_buckets + 1 # buckets is now (Batch_size x Num_Attn_Heads x Num_Hashes x Seq_Len). # Next we add offsets so that bucket numbers from different hashing rounds don't overlap. offsets = torch.arange(num_hashes, device=vectors.device) offsets = (offsets * num_buckets).view((1, 1, -1, 1)) # expand to batch size and num attention heads offsets = offsets.expand((batch_size, self.num_attention_heads) + offsets.shape[-2:]) offset_buckets = (buckets + offsets).flatten(start_dim=2, end_dim=3) return offset_buckets def _get_sorted_bucket_idx_and_undo_sorted_bucket_idx(self, sequence_length, buckets, num_hashes): # no gradients are needed with torch.no_grad(): # hash-based sort sorted_bucket_idx = _stable_argsort(buckets, dim=-1) # create simple indices to scatter to, to have undo sort indices = ( torch.arange(sorted_bucket_idx.shape[-1], device=buckets.device) .view(1, 1, -1) .expand(sorted_bucket_idx.shape) ) # get undo sort undo_sorted_bucket_idx = sorted_bucket_idx.new(*sorted_bucket_idx.size()) undo_sorted_bucket_idx.scatter_(-1, sorted_bucket_idx, indices) return sorted_bucket_idx, undo_sorted_bucket_idx def _set_num_buckets(self, sequence_length): # `num_buckets` should be set to 2 * sequence_length // chunk_length as recommended in paper num_buckets_pow_2 = (2 * (sequence_length // self.chunk_length)).bit_length() - 1 # make sure buckets are power of 2 num_buckets = 2**num_buckets_pow_2 # factorize `num_buckets` if `num_buckets` becomes too large num_buckets_limit = 2 * max( int((self.max_position_embeddings // self.chunk_length) ** (0.5)), self.chunk_length, ) if num_buckets > num_buckets_limit: num_buckets = [2 ** (num_buckets_pow_2 // 2), 2 ** (num_buckets_pow_2 - num_buckets_pow_2 // 2)] logger.warning(f"config.num_buckets is not set. Setting config.num_buckets to {num_buckets}...") # set num buckets in config to be properly saved self.config.num_buckets = num_buckets self.num_buckets = num_buckets def _attend( self, query_vectors, key_vectors, value_vectors, sorted_bucket_idx_per_hash, attention_mask, head_mask, do_standard_self_attention, do_cached_attention, ): # look at previous and following chunks if chunked attention if not do_standard_self_attention: key_vectors = self._look_adjacent(key_vectors, self.num_chunks_before, self.num_chunks_after) value_vectors = self._look_adjacent(value_vectors, self.num_chunks_before, self.num_chunks_after) # get logits and dots # (BS, NumAttn, NumHash x NumChunk, Chunk_L x Hidden),(BS, NumAttn, NumHash x NumChunk, Chunk_L * (Num_bef + Num_aft + 1) x Hidden) -> (BS, NumAttn, NumHash x NumChunk, Chunk_L, Chunk_L * (1 + Num_bef + Num_aft)) query_key_dots = torch.matmul(query_vectors, key_vectors.transpose(-1, -2)) # free memory del query_vectors, key_vectors # if chunked attention split bucket idxs to query and key if not do_standard_self_attention: query_bucket_idx = self._split_seq_length_dim_to( sorted_bucket_idx_per_hash, -1, self.chunk_length, self.num_attention_heads ) key_value_bucket_idx = self._look_adjacent(query_bucket_idx, self.num_chunks_before, self.num_chunks_after) elif do_cached_attention and query_key_dots.ndim > 4: key_value_bucket_idx = sorted_bucket_idx_per_hash query_bucket_idx = ( key_value_bucket_idx.new_ones(key_value_bucket_idx.shape[:-1] + (1,)) * key_value_bucket_idx.max() ) elif do_cached_attention and query_key_dots.ndim <= 4: query_bucket_idx = (query_key_dots.shape[-1] - 1) * torch.ones_like(query_key_dots)[:, :, :, -1] key_value_bucket_idx = torch.arange( query_key_dots.shape[-1], dtype=torch.long, device=query_key_dots.device )[None, None, :].expand(query_bucket_idx.shape[:2] + (-1,)) else: query_bucket_idx = key_value_bucket_idx = sorted_bucket_idx_per_hash # get correct mask values depending on precision if query_key_dots.dtype == torch.float16: self_mask_value = self.self_mask_value_float16.half() mask_value = self.mask_value_float16.half() else: self_mask_value = self.self_mask_value_float32 mask_value = self.mask_value_float32 if not do_cached_attention: mask = self._compute_attn_mask( query_bucket_idx, key_value_bucket_idx, attention_mask, query_key_dots.shape, do_standard_self_attention, ) if mask is not None: query_key_dots = torch.where(mask, query_key_dots, mask_value) # free memory del mask # Self mask is ALWAYS applied. # From the reformer paper (https://arxiv.org/pdf/2001.04451.pdf): # " While attention to the future is not allowed, typical implementations of the # Transformer do allow a position to attend to itself. # Such behavior is undesirable in a shared-QK formulation because the dot-product # of a query vector with itself will almost always be greater than the dot product of a # query vector with a vector at another position. We therefore modify the masking # to forbid a token from attending to itself, except in situations # where a token has no other valid attention targets (e.g. the first token in a sequence) " self_mask = torch.ne(query_bucket_idx.unsqueeze(-1), key_value_bucket_idx.unsqueeze(-2)).to( query_bucket_idx.device ) # apply self_mask query_key_dots = torch.where(self_mask, query_key_dots, self_mask_value) # free memory del self_mask logits = torch.logsumexp(query_key_dots, dim=-1, keepdim=True) # dots shape is `[batch_size, num_attn_heads, num_hashes * seq_len // chunk_length, chunk_length, chunk_length * (1 + num_chunks_before + num_chunks_after)]` attention_probs = torch.exp(query_key_dots - logits) # free memory del query_key_dots # dropout attention_probs = nn.functional.dropout(attention_probs, p=self.dropout, training=self.training) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask # attend values out_vectors = torch.matmul(attention_probs, value_vectors) # free memory del value_vectors # merge chunk length if out_vectors.ndim > 4: logits = logits.flatten(start_dim=2, end_dim=3).squeeze(-1) out_vectors = out_vectors.flatten(start_dim=2, end_dim=3) return out_vectors, logits, attention_probs def _compute_attn_mask( self, query_indices, key_indices, attention_mask, query_key_dot_shape, do_standard_self_attention ): # attention mask for LSH if attention_mask is not None: # if chunked attention, the attention mask has to correspond to LSH order attention_mask = attention_mask.to(torch.bool)[:, None, :] if not do_standard_self_attention: # expand attn_mask to fit with key_value_bucket_idx shape attention_mask = attention_mask[:, None, :] attention_mask = attention_mask.expand(query_indices.shape[:-1] + (-1,)) # extract attention mask from LSH sorted key_indices attention_mask = torch.gather(attention_mask, -1, key_indices) attention_mask = attention_mask.unsqueeze(-2).expand(query_key_dot_shape) # Causal mask if self.is_decoder is True: causal_mask = torch.ge(query_indices.unsqueeze(-1), key_indices.unsqueeze(-2)).to(query_indices.device) # add attention mask if not None if attention_mask is not None: attention_mask = causal_mask * attention_mask else: attention_mask = causal_mask return attention_mask def _get_relevant_hid_states_and_buckets( self, query_vectors, attention_mask, num_hashes, hidden_states, past_states, past_buckets ): # concat hidden states hidden_states = torch.cat([past_states, hidden_states], dim=1) # batch_size hidden batch_size = hidden_states.shape[0] sequence_length = hidden_states.shape[1] # check if cached buckets include pad bucket max_bucket = self.num_buckets if isinstance(self.num_buckets, int) else reduce(mul, self.num_buckets) # if pad bucket was cached => need to increase num buckets for caching increase_num_buckets = past_buckets.max() > num_hashes * max_bucket - 1 # retrieve query buckets query_buckets = self._hash_vectors( query_vectors, num_hashes, attention_mask, increase_num_buckets=increase_num_buckets ) # concat buckets concat_buckets = torch.cat([past_buckets, query_buckets.unsqueeze(-1)], dim=-1) # hash-based sort bucket_idx = _stable_argsort(concat_buckets, dim=-1) # bucket_idx has shape: BatchSize x NumAttnHeads x NumHashes x SequenceLength assert bucket_idx.shape == ( batch_size, self.num_attention_heads, num_hashes, sequence_length, ), ( f"bucket_idx should have shape {(batch_size, self.num_attention_heads, num_hashes, sequence_length)}, but" f" has shape {bucket_idx.shape}." ) # find indices of new bucket indices relevant_bucket_idx = (bucket_idx == (bucket_idx.shape[-1] - 1)).nonzero() # expand relevant bucket indices to its chunks relevant_bucket_idx_chunk = self._expand_to_indices_in_relevant_chunk(relevant_bucket_idx, sequence_length) relevant_bucket_idx_chunk = bucket_idx[tuple(relevant_bucket_idx_chunk.transpose(0, 1))] # adapt bucket_idx for batch and hidden states for index select offset = torch.arange(relevant_bucket_idx_chunk.shape[-1], device=hidden_states.device, dtype=torch.long) bucket_idx_batch_offset = sequence_length * ( batch_size * torch.div(offset, relevant_bucket_idx_chunk.shape[-1], rounding_mode="floor") ) # add batch offset relevant_bucket_idx_chunk_all_batch = relevant_bucket_idx_chunk + bucket_idx_batch_offset hidden_states = hidden_states.reshape((-1, self.hidden_size)) # select all relevant hidden states relevant_hidden_states = hidden_states.index_select(0, relevant_bucket_idx_chunk_all_batch) # reshape hidden states and bucket_idx to correct output relevant_hidden_states = relevant_hidden_states.reshape( batch_size, self.num_attention_heads, -1, self.hidden_size ) relevant_bucket_idx_chunk = relevant_bucket_idx_chunk.reshape( batch_size, self.num_attention_heads, num_hashes, -1 ) assert ( relevant_hidden_states.shape[2] == (self.num_chunks_before + self.num_chunks_after + 1) * self.chunk_length * num_hashes ), ( "There should be" f" {(self.num_chunks_before + self.num_chunks_after + 1) * self.chunk_length * num_hashes} `hidden_states`," f" there are {relevant_hidden_states.shape[2]} `hidden_states`." ) assert ( relevant_bucket_idx_chunk.shape[-1] == (self.num_chunks_before + self.num_chunks_after + 1) * self.chunk_length ), ( "There should be" f" {(self.num_chunks_before + self.num_chunks_after + 1) * self.chunk_length} `hidden_states`, there are" f" {relevant_bucket_idx_chunk.shape[-1]} `bucket_idx`." ) return relevant_hidden_states, relevant_bucket_idx_chunk, query_buckets def _expand_to_indices_in_relevant_chunk(self, indices, sequence_length): # get relevant indices of where chunk starts and its size start_indices_chunk = ((indices[:, -1] // self.chunk_length) - self.num_chunks_before) * self.chunk_length total_chunk_size = self.chunk_length * (1 + self.num_chunks_before + self.num_chunks_after) # expand start indices and add correct chunk offset via arange expanded_start_indices = start_indices_chunk.unsqueeze(-1).expand(indices.shape[0], total_chunk_size) chunk_sequence_indices = expanded_start_indices + torch.arange( total_chunk_size, device=indices.device, dtype=torch.long ).unsqueeze(0).expand(indices.shape[0], total_chunk_size) # make sure that circular logic holds via % seq len chunk_sequence_indices = chunk_sequence_indices.flatten() % sequence_length # expand indices and set indices correctly indices = indices.unsqueeze(1).expand((indices.shape[0], total_chunk_size, -1)).flatten(0, 1).clone() indices[:, -1] = chunk_sequence_indices return indices def _len_and_dim_norm(self, vectors, sqrt_num): """ length and attention head size dim normalization """ vectors = self._len_norm(vectors) vectors = vectors / sqrt_num return vectors def _len_norm(self, x, epsilon=1e-6): """ length normalization """ variance = torch.mean(x**2, -1, keepdim=True) norm_x = x * torch.rsqrt(variance + epsilon) return norm_x def _gather_by_expansion(self, vectors, idxs, num_hashes): """ expand dims of idxs and vectors for all hashes and gather """ expanded_idxs = idxs.unsqueeze(-1).expand(-1, -1, -1, self.attention_head_size) vectors = vectors.repeat(1, 1, num_hashes, 1) return torch.gather(vectors, 2, expanded_idxs) class ReverseSort(Function): """ After chunked attention is applied which sorted clusters, original ordering has to be restored. Since customized backward function is used for Reformer, the gradients of the output vectors have to be explicitly sorted here. """ @staticmethod def forward(ctx, out_vectors, logits, sorted_bucket_idx, undo_sorted_bucket_idx): # save sorted_bucket_idx for backprop with torch.no_grad(): ctx.sorted_bucket_idx = sorted_bucket_idx # undo sort to have correct order for next layer expanded_undo_sort_indices = undo_sorted_bucket_idx.unsqueeze(-1).expand(out_vectors.shape) out_vectors = torch.gather(out_vectors, 2, expanded_undo_sort_indices) logits = torch.gather(logits, 2, undo_sorted_bucket_idx) return out_vectors, logits @staticmethod def backward(ctx, grad_out_vectors, grad_logits): # get parameters saved in ctx sorted_bucket_idx = ctx.sorted_bucket_idx expanded_sort_indices = sorted_bucket_idx.unsqueeze(-1).expand(grad_out_vectors.shape) # reverse sort of forward grad_out_vectors = torch.gather(grad_out_vectors, 2, expanded_sort_indices) grad_logits = torch.gather(grad_logits, 2, sorted_bucket_idx) # return grad and `None` fillers for last 2 forward args return grad_out_vectors, grad_logits, None, None class LocalSelfAttention(nn.Module, EfficientAttentionMixin): def __init__(self, config): super().__init__() self.num_attention_heads = config.num_attention_heads self.chunk_length = config.local_attn_chunk_length self.num_chunks_before = config.local_num_chunks_before self.num_chunks_after = config.local_num_chunks_after self.is_decoder = config.is_decoder self.pad_token_id = config.pad_token_id self.attention_head_size = config.attention_head_size self.all_head_size = self.num_attention_heads * self.attention_head_size self.hidden_size = config.hidden_size # projection matrices self.query = nn.Linear(self.hidden_size, self.all_head_size, bias=False) self.key = nn.Linear(self.hidden_size, self.all_head_size, bias=False) self.value = nn.Linear(self.hidden_size, self.all_head_size, bias=False) self.dropout = config.local_attention_probs_dropout_prob # save mask value here self.register_buffer("mask_value_float16", torch.tensor(-1e4), persistent=False) self.register_buffer("mask_value_float32", torch.tensor(-1e9), persistent=False) def forward( self, hidden_states, attention_mask=None, head_mask=None, past_buckets_states=None, use_cache=False, output_attentions=False, **kwargs, ): sequence_length = hidden_states.shape[1] batch_size = hidden_states.shape[0] # check if cache shall be used and that hidden states are already cached if use_cache and past_buckets_states[1] is not None: assert past_buckets_states[0] is None, ( "LocalSelfAttention should not make use of `buckets`. There seems to be an error when caching" " hidden_states_and_buckets." ) key_value_hidden_states = self._retrieve_relevant_hidden_states( past_buckets_states[1], self.chunk_length, self.num_chunks_before ) key_value_hidden_states = torch.cat([key_value_hidden_states, hidden_states], dim=1) # only query vector for last token query_vectors = self.query(hidden_states) # compute key and value for relevant chunk key_vectors = self.key(key_value_hidden_states) value_vectors = self.value(key_value_hidden_states) # free memory del key_value_hidden_states else: # project hidden_states to query, key and value query_vectors = self.query(hidden_states) key_vectors = self.key(hidden_states) value_vectors = self.value(hidden_states) # split last dim into `config.num_attention_heads` and `config.attention_head_size` query_vectors = self._split_hidden_size_dim(query_vectors, self.num_attention_heads, self.attention_head_size) key_vectors = self._split_hidden_size_dim(key_vectors, self.num_attention_heads, self.attention_head_size) value_vectors = self._split_hidden_size_dim(value_vectors, self.num_attention_heads, self.attention_head_size) assert ( query_vectors.shape[-1] == self.attention_head_size ), f"last dim of query_key_vectors is {query_vectors.shape[-1]} but should be {self.attention_head_size}." assert ( key_vectors.shape[-1] == self.attention_head_size ), f"last dim of query_key_vectors is {key_vectors.shape[-1]} but should be {self.attention_head_size}." assert ( value_vectors.shape[-1] == self.attention_head_size ), f"last dim of query_key_vectors is {value_vectors.shape[-1]} but should be {self.attention_head_size}." if self.chunk_length is None: assert self.num_chunks_before == 0 and self.num_chunks_after == 0, ( "If `config.chunk_length` is `None`, make sure `config.num_chunks_after` and" " `config.num_chunks_before` are set to 0." ) # normalize key vectors key_vectors = key_vectors / np.sqrt(self.attention_head_size) # get sequence length indices indices = torch.arange(sequence_length, device=query_vectors.device).repeat( batch_size, self.num_attention_heads, 1 ) # if one should do normal n^2 self-attention do_standard_self_attention = sequence_length <= self.chunk_length # if input should be chunked if not do_standard_self_attention: # chunk vectors # B x Num_Attn_Head x Seq_Len // chunk_len x chunk_len x attn_head_size query_vectors = self._split_seq_length_dim_to( query_vectors, -1, self.chunk_length, self.num_attention_heads, self.attention_head_size, ) key_vectors = self._split_seq_length_dim_to( key_vectors, -1, self.chunk_length, self.num_attention_heads, self.attention_head_size, ) value_vectors = self._split_seq_length_dim_to( value_vectors, -1, self.chunk_length, self.num_attention_heads, self.attention_head_size, ) # chunk indices query_indices = self._split_seq_length_dim_to(indices, -1, self.chunk_length, self.num_attention_heads) key_indices = self._split_seq_length_dim_to(indices, -1, self.chunk_length, self.num_attention_heads) # append chunks before and after key_vectors = self._look_adjacent(key_vectors, self.num_chunks_before, self.num_chunks_after) value_vectors = self._look_adjacent(value_vectors, self.num_chunks_before, self.num_chunks_after) key_indices = self._look_adjacent(key_indices, self.num_chunks_before, self.num_chunks_after) else: query_indices = key_indices = indices # query-key matmul: QK^T query_key_dots = torch.matmul(query_vectors, key_vectors.transpose(-1, -2)) # free memory del query_vectors, key_vectors mask = self._compute_attn_mask( query_indices, key_indices, attention_mask, query_key_dots.shape, do_standard_self_attention ) if mask is not None: # get mask tensor depending on half precision or not if query_key_dots.dtype == torch.float16: mask_value = self.mask_value_float16.half() else: mask_value = self.mask_value_float32 query_key_dots = torch.where(mask, query_key_dots, mask_value) # free memory del mask # softmax logits = torch.logsumexp(query_key_dots, dim=-1, keepdim=True) attention_probs = torch.exp(query_key_dots - logits) # free memory del logits # dropout attention_probs = nn.functional.dropout(attention_probs, p=self.dropout, training=self.training) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask # attend values out_vectors = torch.matmul(attention_probs, value_vectors) # free memory del value_vectors # merge chunk length if not do_standard_self_attention: out_vectors = out_vectors.flatten(start_dim=2, end_dim=3) assert out_vectors.shape == ( batch_size, self.num_attention_heads, sequence_length, self.attention_head_size, ) out_vectors = self._merge_hidden_size_dims(out_vectors, self.num_attention_heads, self.attention_head_size) if output_attentions is False: attention_probs = () return LocalSelfAttentionOutput(hidden_states=out_vectors, attention_probs=attention_probs) def _compute_attn_mask( self, query_indices, key_indices, attention_mask, query_key_dots_shape, do_standard_self_attention ): # chunk attention mask and look before and after if attention_mask is not None: attention_mask = attention_mask.to(torch.bool)[:, None, :] if not do_standard_self_attention: attention_mask = self._split_seq_length_dim_to(attention_mask, -1, self.chunk_length, 1) attention_mask = self._look_adjacent(attention_mask, self.num_chunks_before, self.num_chunks_after) # create attn_mask attention_mask = attention_mask.unsqueeze(-2).expand(query_key_dots_shape) # Causal mask if self.is_decoder is True: causal_mask = torch.ge(query_indices.unsqueeze(-1), key_indices.unsqueeze(-2)).to(query_indices.device) # add attention mask if not None if attention_mask is not None: attention_mask = causal_mask * attention_mask else: attention_mask = causal_mask return attention_mask @staticmethod def _retrieve_relevant_hidden_states(previous_hidden_states, chunk_length, num_chunks_before): start_position = ((previous_hidden_states.shape[1] // chunk_length) - num_chunks_before) * chunk_length return previous_hidden_states[:, start_position:] class ReformerSelfOutput(nn.Module): def __init__(self, config): super().__init__() all_head_size = config.num_attention_heads * config.attention_head_size self.dropout = config.hidden_dropout_prob self.dense = nn.Linear(all_head_size, config.hidden_size, bias=False) def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) return hidden_states class ReformerAttention(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.layer_id = layer_id self.attn_layers = config.attn_layers self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) if len(set(self.attn_layers)) == 1 and self.attn_layers[0] == "lsh": self.self_attention = LSHSelfAttention(config) elif len(set(self.attn_layers)) == 1 and self.attn_layers[0] == "local": self.self_attention = LocalSelfAttention(config) elif len(set(self.attn_layers)) == 2 and set(self.attn_layers) == {"lsh", "local"}: # get correct attn layers if self.attn_layers[self.layer_id] == "lsh": self.self_attention = LSHSelfAttention(config) else: self.self_attention = LocalSelfAttention(config) else: raise NotImplementedError( f"Only attn layer types 'lsh' and 'local' exist, but got `config.attn_layers`: {self.attn_layers}. " "Select attn layer types from ['lsh', 'local'] only." ) self.output = ReformerSelfOutput(config) def forward( self, hidden_states, attention_mask=None, head_mask=None, num_hashes=None, past_buckets_states=None, use_cache=False, orig_sequence_length=None, output_attentions=False, buckets=None, ): hidden_states = self.layer_norm(hidden_states) # make sure cached hidden states is set to None for backward pass if past_buckets_states is not None: past_buckets_states_layer = past_buckets_states[self.layer_id] else: past_buckets_states_layer = None # use cached buckets for backprob if buckets not None for LSHSelfAttention self_attention_outputs = self.self_attention( hidden_states=hidden_states, head_mask=head_mask, attention_mask=attention_mask, num_hashes=num_hashes, past_buckets_states=past_buckets_states_layer, use_cache=use_cache, output_attentions=output_attentions, buckets=buckets, ) # add buckets if necessary if hasattr(self_attention_outputs, "buckets"): buckets = self_attention_outputs.buckets else: buckets = None # cache hidden states for future use if use_cache: if past_buckets_states[self.layer_id][0] is None: # padded input should not be cached past_buckets = ( buckets[:, :, :, :orig_sequence_length] if (buckets is not None and orig_sequence_length > 1) else buckets ) else: past_buckets = torch.cat([past_buckets_states[self.layer_id][0], buckets], dim=-1) if past_buckets_states[self.layer_id][1] is None: # padded input should not be cached past_states = hidden_states[:, :orig_sequence_length] else: past_states = torch.cat([past_buckets_states[self.layer_id][1], hidden_states], dim=1) past_buckets_states[self.layer_id] = (past_buckets, past_states) # compute attention feed forward output attention_output = self.output(self_attention_outputs.hidden_states) return AttentionOutput( hidden_states=attention_output, attention_probs=self_attention_outputs.attention_probs, buckets=buckets, ) class ReformerFeedForwardDense(nn.Module): def __init__(self, config): super().__init__() self.dropout = config.hidden_dropout_prob if isinstance(config.hidden_act, str): self.act_fn = ACT2FN[config.hidden_act] else: self.act_fn = config.hidden_act self.dense = nn.Linear(config.hidden_size, config.feed_forward_size) def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = self.act_fn(hidden_states) return hidden_states class ReformerFeedForwardOutput(nn.Module): def __init__(self, config): super().__init__() self.dropout = config.hidden_dropout_prob self.dense = nn.Linear(config.feed_forward_size, config.hidden_size) def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) return hidden_states class ChunkReformerFeedForward(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dense = ReformerFeedForwardDense(config) self.output = ReformerFeedForwardOutput(config) def forward(self, attention_output): return apply_chunking_to_forward( self.forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output, ) def forward_chunk(self, hidden_states): hidden_states = self.layer_norm(hidden_states) hidden_states = self.dense(hidden_states) return self.output(hidden_states) class ReformerLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.attention = ReformerAttention(config, layer_id) # dropout requires to have the same # seed for forward and backward pass self.attention_seed = None self.feed_forward_seed = None self.feed_forward = ChunkReformerFeedForward(config) def _init_attention_seed(self): """ This function sets a new seed for the attention layer to make dropout deterministic for both forward calls: 1 normal forward call and 1 forward call in backward to recalculate activations. """ # randomize seeds # use cuda generator if available if hasattr(torch.cuda, "default_generators") and len(torch.cuda.default_generators) > 0: # GPU device_idx = torch.cuda.current_device() self.attention_seed = torch.cuda.default_generators[device_idx].seed() else: # CPU self.attention_seed = int(torch.seed() % sys.maxsize) torch.manual_seed(self.attention_seed) def _init_feed_forward_seed(self): """ This function sets a new seed for the feed forward layer to make dropout deterministic for both forward calls: 1 normal forward call and 1 forward call in backward to recalculate activations. """ # randomize seeds # use cuda generator if available if hasattr(torch.cuda, "default_generators") and len(torch.cuda.default_generators) > 0: # GPU device_idx = torch.cuda.current_device() self.feed_forward_seed = torch.cuda.default_generators[device_idx].seed() else: # CPU self.feed_forward_seed = int(torch.seed() % sys.maxsize) torch.manual_seed(self.feed_forward_seed) def forward( self, prev_attn_output, hidden_states, attention_mask=None, head_mask=None, num_hashes=None, past_buckets_states=None, use_cache=False, orig_sequence_length=None, output_attentions=False, ): with torch.no_grad(): # every forward pass we sample a different seed # for dropout and save for forward fn in backward pass # to have correct dropout if self.training: self._init_attention_seed() attn_outputs = self.attention( hidden_states=hidden_states, head_mask=head_mask, attention_mask=attention_mask, num_hashes=num_hashes, past_buckets_states=past_buckets_states, use_cache=use_cache, orig_sequence_length=orig_sequence_length, output_attentions=output_attentions, ) attn_output = attn_outputs.hidden_states # Implementation of RevNet (see Fig. 6 in https://towardsdatascience.com/illustrating-the-reformer-393575ac6ba0) # Y_1 = X_1 + f(X_2) attn_output = prev_attn_output + attn_output # free memory del prev_attn_output # every forward pass we sample a different seed # for dropout and save seed for forward fn in backward # to have correct dropout if self.training: self._init_feed_forward_seed() # Y_2 = X_2 + g(Y_1) hidden_states = hidden_states + self.feed_forward(attn_output) return ReformerOutput( attn_output=attn_output, hidden_states=hidden_states, attention_probs=attn_outputs.attention_probs, buckets=attn_outputs.buckets, ) def backward_pass( self, next_attn_output, hidden_states, grad_attn_output, grad_hidden_states, attention_mask=None, head_mask=None, buckets=None, ): # Implements the backward pass for reversible ResNets. # A good blog post on how this works can be found here: # Implementation of RevNet (see Fig. 6 in https://towardsdatascience.com/illustrating-the-reformer-393575ac6ba0) # This code is heavily inspired by https://github.com/lucidrains/reformer-pytorch/blob/master/reformer_pytorch/reversible.py assert self.training, ( "If you want to train `ReformerModel` and its variations, make sure to use `model.train()` to put the" " model into training mode." ) with torch.enable_grad(): next_attn_output.requires_grad = True # set seed to have correct dropout torch.manual_seed(self.feed_forward_seed) # g(Y_1) res_hidden_states = self.feed_forward(next_attn_output) res_hidden_states.backward(grad_hidden_states, retain_graph=True) with torch.no_grad(): # X_2 = Y_2 - g(Y_1) hidden_states = hidden_states - res_hidden_states del res_hidden_states grad_attn_output = grad_attn_output + next_attn_output.grad next_attn_output.grad = None with torch.enable_grad(): hidden_states.requires_grad = True # set seed to have correct dropout torch.manual_seed(self.attention_seed) # f(X_2) # use cached buckets for backprob if buckets not None for LSHSelfAttention output = self.attention( hidden_states=hidden_states, head_mask=head_mask, attention_mask=attention_mask, buckets=buckets, ).hidden_states output.backward(grad_attn_output, retain_graph=True) with torch.no_grad(): # X_1 = Y_1 - f(X_2) attn_output = next_attn_output - output del output, next_attn_output grad_hidden_states = grad_hidden_states + hidden_states.grad hidden_states.grad = None hidden_states = hidden_states.detach() return ReformerBackwardOutput( attn_output=attn_output, hidden_states=hidden_states, grad_attn_output=grad_attn_output, grad_hidden_states=grad_hidden_states, ) class _ReversibleFunction(Function): """ To prevent PyTorch from performing the usual backpropagation, a customized backward function is implemented here. This way it is made sure that no memory expensive activations are saved during the forward pass. This function is heavily inspired by https://github.com/lucidrains/reformer-pytorch/blob/master/reformer_pytorch/reversible.py """ @staticmethod def forward( ctx, hidden_states, layers, attention_mask, head_mask, num_hashes, all_hidden_states, all_attentions, past_buckets_states, use_cache, orig_sequence_length, output_hidden_states, output_attentions, ): all_buckets = () # split duplicated tensor hidden_states, attn_output = torch.chunk(hidden_states, 2, dim=-1) for layer_id, (layer, layer_head_mask) in enumerate(zip(layers, head_mask)): if output_hidden_states is True: all_hidden_states.append(hidden_states) layer_outputs = layer( prev_attn_output=attn_output, hidden_states=hidden_states, attention_mask=attention_mask, head_mask=layer_head_mask, num_hashes=num_hashes, past_buckets_states=past_buckets_states, use_cache=use_cache, orig_sequence_length=orig_sequence_length, output_attentions=output_attentions, ) attn_output = layer_outputs.attn_output hidden_states = layer_outputs.hidden_states all_buckets = all_buckets + (layer_outputs.buckets,) if output_attentions: all_attentions.append(layer_outputs.attention_probs) # Add last layer if output_hidden_states is True: all_hidden_states.append(hidden_states) # attach params to ctx for backward ctx.save_for_backward(attn_output.detach(), hidden_states.detach()) ctx.layers = layers ctx.all_buckets = all_buckets ctx.head_mask = head_mask ctx.attention_mask = attention_mask # Concatenate 2 RevNet outputs return torch.cat([attn_output, hidden_states], dim=-1) @staticmethod def backward(ctx, grad_hidden_states): grad_attn_output, grad_hidden_states = torch.chunk(grad_hidden_states, 2, dim=-1) # retrieve params from ctx for backward attn_output, hidden_states = ctx.saved_tensors # create tuple output = ReformerBackwardOutput( attn_output=attn_output, hidden_states=hidden_states, grad_attn_output=grad_attn_output, grad_hidden_states=grad_hidden_states, ) # free memory del grad_attn_output, grad_hidden_states, attn_output, hidden_states layers = ctx.layers all_buckets = ctx.all_buckets head_mask = ctx.head_mask attention_mask = ctx.attention_mask for idx, layer in enumerate(layers[::-1]): # pop last buckets from stack buckets = all_buckets[-1] all_buckets = all_buckets[:-1] # backprop output = layer.backward_pass( next_attn_output=output.attn_output, hidden_states=output.hidden_states, grad_attn_output=output.grad_attn_output, grad_hidden_states=output.grad_hidden_states, head_mask=head_mask[len(layers) - idx - 1], attention_mask=attention_mask, buckets=buckets, ) assert all_buckets == (), "buckets have to be empty after backpropagation" grad_hidden_states = torch.cat([output.grad_attn_output, output.grad_hidden_states], dim=-1) # num of return vars has to match num of forward() args # return gradient for hidden_states arg and None for other args return grad_hidden_states, None, None, None, None, None, None, None, None, None, None, None class ReformerEncoder(nn.Module): def __init__(self, config): super().__init__() self.dropout = config.hidden_dropout_prob self.layers = nn.ModuleList([ReformerLayer(config, i) for i in range(config.num_hidden_layers)]) # Reformer is using Rev Nets, thus last layer outputs are concatenated and # Layer Norm is done over 2 * hidden_size self.layer_norm = nn.LayerNorm(2 * config.hidden_size, eps=config.layer_norm_eps) def forward( self, hidden_states, attention_mask=None, head_mask=None, num_hashes=None, past_buckets_states=None, use_cache=False, orig_sequence_length=None, output_hidden_states=False, output_attentions=False, ): # hidden_states and attention lists to be filled if wished all_hidden_states = [] all_attentions = [] # init cached hidden states if necessary if past_buckets_states is None: past_buckets_states = [((None), (None)) for i in range(len(self.layers))] # concat same tensor for reversible ResNet hidden_states = torch.cat([hidden_states, hidden_states], dim=-1) hidden_states = _ReversibleFunction.apply( hidden_states, self.layers, attention_mask, head_mask, num_hashes, all_hidden_states, all_attentions, past_buckets_states, use_cache, orig_sequence_length, output_hidden_states, output_attentions, ) # Apply layer norm to concatenated hidden states hidden_states = self.layer_norm(hidden_states) # Apply dropout hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) return ReformerEncoderOutput( hidden_states=hidden_states, all_hidden_states=all_hidden_states, all_attentions=all_attentions, past_buckets_states=past_buckets_states, ) class ReformerOnlyLMHead(nn.Module): def __init__(self, config): super().__init__() # Reformer is using Rev Nets, thus last layer outputs are concatenated and # Layer Norm is done over 2 * hidden_size self.seq_len_dim = 1 self.chunk_size_lm_head = config.chunk_size_lm_head self.decoder = nn.Linear(2 * config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) self.decoder.bias = self.bias def forward(self, hidden_states): return apply_chunking_to_forward(self.forward_chunk, self.chunk_size_lm_head, self.seq_len_dim, hidden_states) def forward_chunk(self, hidden_states): hidden_states = self.decoder(hidden_states) return hidden_states def _tie_weights(self): # To tie those two weights if they get disconnected (on TPU or when the bias is resized) self.bias = self.decoder.bias class ReformerPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = ReformerConfig base_model_prefix = "reformer" @property def dummy_inputs(self): input_ids = torch.tensor(DUMMY_INPUTS) input_mask = torch.tensor(DUMMY_MASK) dummy_inputs = { "input_ids": input_ids, "attention_mask": input_mask, } return dummy_inputs def _init_weights(self, module): """Initialize the weights""" if isinstance(module, AxialPositionEmbeddings): for weight in module.weights: nn.init.normal_(weight, std=self.config.axial_norm_std) elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) @dataclass class ReformerModelOutput(ModelOutput): """ Output type of [`ReformerModel`]. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_predict, hidden_size)`): Sequence of hidden-states at the last layer of the model. `num_predict` corresponds to `target_mapping.shape[1]`. If `target_mapping` is `None`, then `num_predict` corresponds to `sequence_length`. past_buckets_states (`List[Tuple(torch.LongTensor, torch.FloatTensor)]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): List of `Tuple(torch.LongTensor, torch.FloatTensor` of length `config.n_layers`, with the first element being the previous *buckets* of shape `(batch_size, num_heads, num_hashes, sequence_length)`) and the second being the previous *hidden_states* of shape `(batch_size, sequence_length, hidden_size)`). Contains precomputed buckets and hidden-states that can be used (see `past_buckets_states` input) to speed up sequential decoding. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ last_hidden_state: torch.FloatTensor past_buckets_states: Optional[List[Tuple[torch.LongTensor, torch.FloatTensor]]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class ReformerModelWithLMHeadOutput(ModelOutput): """ Output type of [`ReformerModelWithLMHead`]. Args: loss (`torch.FloatTensor` of shape *(1,)*, *optional*, returned when `labels` is provided) Language modeling loss (for next-token prediction). logits (`torch.FloatTensor` of shape `(batch_size, num_predict, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). `num_predict` corresponds to `target_mapping.shape[1]`. If `target_mapping` is `None`, then `num_predict` corresponds to `sequence_length`. past_buckets_states (`List[Tuple(torch.LongTensor, torch.FloatTensor)]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): List of `Tuple(torch.LongTensor, torch.FloatTensor` of length `config.n_layers`, with the first element being the previous *buckets* of shape `(batch_size, num_heads, num_hashes, sequence_length)`) and the second being the previous *hidden_states* of shape `(batch_size, sequence_length, hidden_size)`). Contains precomputed buckets and hidden-states that can be used (see `past_buckets_states` input) to speed up sequential decoding. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): TTuple of `torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None past_buckets_states: Optional[List[Tuple[torch.LongTensor, torch.FloatTensor]]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None REFORMER_START_DOCSTRING = r""" Reformer was proposed in [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ReformerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ REFORMER_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. During training the input_ids sequence_length has to be a multiple of the relevant model's chunk lengths (lsh's, local's or both). During evaluation, the indices are automatically padded to be a multiple of the chunk length. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. num_hashes (`int`, *optional*): The number of hashing rounds that should be performed during bucketing. Setting this argument overwrites the default defined in `config.num_hashes`. For more information, see `num_hashes` in [`ReformerConfig`]. past_buckets_states (`List[Tuple(torch.LongTensor, torch.FloatTensor)]`, *optional*): List of `Tuple(torch.LongTensor, torch.FloatTensor` of length `config.n_layers`, with the first element being the previous *buckets* of shape `(batch_size, num_heads, num_hashes, sequence_length)`) and the second being the previous *hidden_states* of shape `(batch_size, sequence_length, hidden_size)`). Contains precomputed hidden-states and buckets (only relevant for LSH Self-Attention). Can be used to speed up sequential decoding. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare Reformer Model transformer outputting raw hidden-stateswithout any specific head on top.", REFORMER_START_DOCSTRING, ) class ReformerModel(ReformerPreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config assert ( self.config.num_hidden_layers > 0 ), "`config.attn_layers` is empty. Select at least one attn layer form ['lsh', 'local']" self.embeddings = ReformerEmbeddings(config) self.encoder = ReformerEncoder(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(REFORMER_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=ReformerModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, num_hashes: Optional[int] = None, past_buckets_states: Optional[List[Tuple[torch.Tensor]]] = None, use_cache: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, ReformerModelOutput]: use_cache = use_cache if use_cache is not None else self.config.use_cache output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() # noqa: F841 device = input_ids.device elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] # noqa: F841 device = inputs_embeds.device else: raise ValueError("You have to specify either input_ids or inputs_embeds") assert ( len(input_shape) == 2 ), f"`input_ids` have be of shape `[batch_size, sequence_length]`, but got shape: {input_shape}" if past_buckets_states is not None: assert not self.training, "`past_buckets_states` can only be used for inference, not for training`." # prepare head mask head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers, is_attention_chunked=True) # original sequence length for padding orig_sequence_length = input_shape[-1] # if needs padding least_common_mult_chunk_length = _get_least_common_mult_chunk_len(self.config) min_chunk_length = _get_min_chunk_len(self.config) must_pad_to_match_chunk_length = ( input_shape[-1] % least_common_mult_chunk_length != 0 and input_shape[-1] > min_chunk_length and past_buckets_states is None ) if must_pad_to_match_chunk_length: padding_length = least_common_mult_chunk_length - input_shape[-1] % least_common_mult_chunk_length if self.training is True: raise ValueError( f"If training, sequence length {input_shape[-1]} has to be a multiple of least common multiple " f"chunk_length {least_common_mult_chunk_length}. Please consider padding the input to a length " f"of {input_shape[-1] + padding_length}." ) # pad input input_ids, inputs_embeds, attention_mask, position_ids, input_shape = self._pad_to_mult_of_chunk_length( input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, position_ids=position_ids, input_shape=input_shape, padding_length=padding_length, padded_seq_length=least_common_mult_chunk_length, device=device, ) # start index for position encoding depends on incremental decoding if past_buckets_states is not None: start_idx_pos_encodings = past_buckets_states[0][1].shape[1] else: start_idx_pos_encodings = 0 embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, start_idx_pos_encodings=start_idx_pos_encodings, ) encoder_outputs = self.encoder( hidden_states=embedding_output, head_mask=head_mask, attention_mask=attention_mask, num_hashes=num_hashes, past_buckets_states=past_buckets_states, use_cache=use_cache, orig_sequence_length=orig_sequence_length, output_hidden_states=output_hidden_states, output_attentions=output_attentions, ) sequence_output = encoder_outputs.hidden_states # if padding was applied if must_pad_to_match_chunk_length: sequence_output = sequence_output[:, :orig_sequence_length] past_buckets_states = encoder_outputs.past_buckets_states if use_cache else None hidden_states = encoder_outputs.all_hidden_states if output_hidden_states else None attentions = encoder_outputs.all_attentions if output_attentions else None if not return_dict: return tuple(v for v in [sequence_output, past_buckets_states, hidden_states, attentions] if v is not None) return ReformerModelOutput( last_hidden_state=sequence_output, past_buckets_states=past_buckets_states, hidden_states=hidden_states, attentions=attentions, ) def _pad_to_mult_of_chunk_length( self, input_ids, inputs_embeds=None, attention_mask=None, position_ids=None, input_shape=None, padding_length=None, padded_seq_length=None, device=None, ): logger.info( f"Input ids are automatically padded from {input_shape[-1]} to {input_shape[-1] + padding_length} to be a " f"multiple of `config.chunk_length`: {padded_seq_length}" ) padded_input_ids = torch.full( (input_shape[0], padding_length), self.config.pad_token_id, device=device, dtype=torch.long, ) # Extend `attention_mask` if attention_mask is not None: pad_attention_mask = torch.zeros(input_shape[0], padding_length, device=device, dtype=attention_mask.dtype) attention_mask = torch.cat([attention_mask, pad_attention_mask], dim=-1) else: attention_mask = torch.cat( [ torch.ones(input_shape, device=device, dtype=torch.bool), torch.zeros((input_shape[0], padding_length), device=device, dtype=torch.bool), ], dim=-1, ) # Extend `input_ids` with padding to match least common multiple chunk_length if input_ids is not None: input_ids = torch.cat([input_ids, padded_input_ids], dim=-1) input_shape = input_ids.size() # Pad position ids if given if position_ids is not None: padded_position_ids = torch.arange(input_shape[-1], padded_seq_length, dtype=torch.long, device=device) padded_position_ids = position_ids.unsqueeze(0).expand(input_shape[0], padding_length) position_ids = torch.cat([position_ids, padded_position_ids], dim=-1) # Extend `inputs_embeds` with padding to match least common multiple chunk_length if inputs_embeds is not None: padded_inputs_embeds = self.embeddings(padded_input_ids, position_ids) inputs_embeds = torch.cat([inputs_embeds, padded_inputs_embeds], dim=-2) input_shape = inputs_embeds.size() return input_ids, inputs_embeds, attention_mask, position_ids, input_shape @add_start_docstrings("""Reformer Model with a `language modeling` head on top.""", REFORMER_START_DOCSTRING) class ReformerModelWithLMHead(ReformerPreTrainedModel): _tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"] def __init__(self, config): super().__init__(config) assert config.is_decoder, "If you want to use `ReformerModelWithLMHead` make sure that `is_decoder=True`." assert "local" not in self.config.attn_layers or config.local_num_chunks_after == 0, ( "If causal mask is enabled, make sure that `config.local_num_chunks_after` is set to 0 and not" f" {config.local_num_chunks_after}." ) assert "lsh" not in self.config.attn_layers or config.lsh_num_chunks_after == 0, ( "If causal mask is enabled, make sure that `config.lsh_num_chunks_after` is set to 1 and not" f" {config.lsh_num_chunks_after}." ) self.reformer = ReformerModel(config) self.lm_head = ReformerOnlyLMHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.lm_head.decoder def set_output_embeddings(self, new_embeddings): self.lm_head.decoder = new_embeddings @add_start_docstrings_to_model_forward(REFORMER_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=CausalLMOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, num_hashes: Optional[int] = None, past_buckets_states: Optional[List[Tuple[torch.Tensor]]] = None, use_cache: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.Tensor] = None, ) -> Union[Tuple, CausalLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ..., config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict reformer_outputs = self.reformer( input_ids, position_ids=position_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, num_hashes=num_hashes, past_buckets_states=past_buckets_states, use_cache=use_cache, output_hidden_states=output_hidden_states, output_attentions=output_attentions, return_dict=return_dict, ) sequence_output = reformer_outputs[0] logits = self.lm_head(sequence_output) loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() loss = loss_fct(shift_logits.view(-1, self.config.vocab_size), shift_labels.view(-1)) if not return_dict: output = (logits,) + reformer_outputs[1:] return ((loss,) + output) if loss is not None else output return ReformerModelWithLMHeadOutput( loss=loss, logits=logits, past_buckets_states=reformer_outputs.past_buckets_states, hidden_states=reformer_outputs.hidden_states, attentions=reformer_outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, use_cache=None, num_hashes=None, **kwargs ): # only last token for inputs_ids if past is defined in kwargs if past_key_values is not None: input_ids = input_ids[:, -1:] inputs_dict = { "input_ids": input_ids, "past_buckets_states": past_key_values, "use_cache": use_cache, "num_hashes": num_hashes, } return inputs_dict def _reorder_cache(self, past_key_values, beam_idx): reord_past_buckets_states = [] for layer_past in past_key_values: # buckets if layer_past[0] is not None: reord_buckets = layer_past[0].index_select(0, beam_idx) else: reord_buckets = None # hidden states reord_hidden_states = layer_past[1].index_select(0, beam_idx) reord_past_buckets_states.append((reord_buckets, reord_hidden_states)) return reord_past_buckets_states @add_start_docstrings("""Reformer Model with a `language modeling` head on top.""", REFORMER_START_DOCSTRING) class ReformerForMaskedLM(ReformerPreTrainedModel): _tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"] def __init__(self, config): super().__init__(config) assert not config.is_decoder, ( "If you want to use `ReformerForMaskedLM` make sure `config.is_decoder=False` for bi-directional" " self-attention." ) self.reformer = ReformerModel(config) self.lm_head = ReformerOnlyLMHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.lm_head.decoder def set_output_embeddings(self, new_embeddings): self.lm_head.decoder = new_embeddings @add_start_docstrings_to_model_forward(REFORMER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, num_hashes: Optional[int] = None, labels: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels Returns: <Tip warning={true}> This example uses a false checkpoint since we don't have any available pretrained model for the masked language modeling task with the Reformer architecture. </Tip> Example: ```python >>> import torch >>> from transformers import AutoTokenizer, ReformerForMaskedLM >>> tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-reformer") >>> model = ReformerForMaskedLM.from_pretrained("hf-internal-testing/tiny-random-reformer") >>> # add mask_token >>> tokenizer.add_special_tokens({"mask_token": "[MASK]"}) # doctest: +IGNORE_RESULT >>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="pt") >>> # resize model's embedding matrix >>> model.resize_token_embeddings(new_num_tokens=model.config.vocab_size + 1) # doctest: +IGNORE_RESULT >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> # retrieve index of [MASK] >>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0] >>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1) >>> predicted_token = tokenizer.decode(predicted_token_id) ``` ```python >>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"] >>> # mask labels of non-[MASK] tokens >>> labels = torch.where( ... inputs.input_ids == tokenizer.mask_token_id, labels[:, : inputs["input_ids"].shape[-1]], -100 ... ) >>> outputs = model(**inputs, labels=labels) >>> loss = round(outputs.loss.item(), 2) ``` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict reformer_outputs = self.reformer( input_ids, position_ids=position_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, num_hashes=num_hashes, use_cache=False, # no causal mask output_hidden_states=output_hidden_states, output_attentions=output_attentions, return_dict=return_dict, ) sequence_output = reformer_outputs[0] logits = self.lm_head(sequence_output) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() # -100 index = padding token masked_lm_loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (logits,) + reformer_outputs[1:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=logits, hidden_states=reformer_outputs.hidden_states, attentions=reformer_outputs.attentions, ) @add_start_docstrings( """ Reformer Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, REFORMER_START_DOCSTRING, ) class ReformerForSequenceClassification(ReformerPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.reformer = ReformerModel(config) self.classifier = ReformerClassificationHead(config) if config.is_decoder is True: logger.warning("You might want to disable causal masking for sequence classification") # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(REFORMER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, num_hashes: Optional[int] = None, labels: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). Returns: Example of single-label classification: ```python >>> import torch >>> from transformers import AutoTokenizer, ReformerForSequenceClassification >>> tokenizer = AutoTokenizer.from_pretrained("google/reformer-crime-and-punishment") >>> model = ReformerForSequenceClassification.from_pretrained("google/reformer-crime-and-punishment") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> predicted_class_id = logits.argmax().item() >>> label = model.config.id2label[predicted_class_id] ``` ```python >>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)` >>> num_labels = len(model.config.id2label) >>> model = ReformerForSequenceClassification.from_pretrained( ... "google/reformer-crime-and-punishment", num_labels=num_labels ... ) >>> labels = torch.tensor(1) >>> loss = model(**inputs, labels=labels).loss ``` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.reformer( input_ids, position_ids=position_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, num_hashes=num_hashes, output_hidden_states=output_hidden_states, output_attentions=output_attentions, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.classifier(sequence_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class ReformerClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(2 * config.hidden_size, config.hidden_size) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.out_proj = nn.Linear(config.hidden_size, config.num_labels) def forward(self, hidden_states, **kwargs): hidden_states = hidden_states[:, 0, :] # take <s> token (equiv. to [CLS]) hidden_states = self.dropout(hidden_states) hidden_states = self.dense(hidden_states) hidden_states = torch.tanh(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.out_proj(hidden_states) return hidden_states @add_start_docstrings( """ Reformer Model with a span classification head on top for extractive question-answering tasks like SQuAD / TriviaQA ( a linear layer on top of hidden-states output to compute `span start logits` and `span end logits`. """, REFORMER_START_DOCSTRING, ) class ReformerForQuestionAnswering(ReformerPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.reformer = ReformerModel(config) # 2 * config.hidden_size because we use reversible residual layers self.qa_outputs = nn.Linear(2 * config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(REFORMER_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, num_hashes: Optional[int] = None, start_positions: Optional[torch.Tensor] = None, end_positions: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict reformer_outputs = self.reformer( input_ids, position_ids=position_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, num_hashes=num_hashes, use_cache=False, # no causal mask output_hidden_states=output_hidden_states, output_attentions=output_attentions, return_dict=return_dict, ) sequence_output = reformer_outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + reformer_outputs[1:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=reformer_outputs.hidden_states, attentions=reformer_outputs.attentions, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/reformer/configuration_reformer.py
# coding=utf-8 # Copyright 2020 The Trax Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Reformer model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = { "google/reformer-crime-and-punishment": ( "https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/config.json" ), "google/reformer-enwik8": "https://huggingface.co/google/reformer-enwik8/resolve/main/config.json", } class ReformerConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`ReformerModel`]. It is used to instantiate a Reformer model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the ReFormer [google/reformer-crime-and-punishment](https://huggingface.co/google/reformer-crime-and-punishment) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: attention_head_size (`int`, *optional*, defaults to 64): Dimensionality of the projected key, query and value vectors attn_layers (`List[str]`, *optional*, defaults to `["local", "lsh", "local", "lsh", "local", "lsh"]`): List of attention layer types in ascending order. It can be chosen between a LSHSelfAttention layer (`"lsh"`) and a LocalSelfAttention layer (`"local"`). For more information on LSHSelfAttention layer, see [LSH Self Attention](reformer#lsh-self-attention). For more information on LocalSelfAttention layer, see [Local Self Attention](reformer#local-self-attention). axial_pos_embds (`bool`, *optional*, defaults to `True`): Whether or not to use axial position embeddings. For more information on how axial position embeddings work, see [Axial Position Encodings](reformer#axial-positional-encodings). axial_norm_std (`float`, *optional*, defaults to 1.0): The standard deviation of the normal_initializer for initializing the weight matrices of the axial positional encodings. axial_pos_shape (`List[int]`, *optional*, defaults to `[64, 64]`): The position dims of the axial position encodings. During training, the product of the position dims has to be equal to the sequence length. For more information on how axial position embeddings work, see [Axial Position Encodings](reformer#axial-positional-encodings). axial_pos_embds_dim (`List[int]`, *optional*, defaults to `[64, 192]`): The embedding dims of the axial position encodings. The sum of the embedding dims has to be equal to the hidden size. For more information on how axial position embeddings work, see [Axial Position Encodings](reformer#axial-positional-encodings). chunk_size_lm_head (`int`, *optional*, defaults to 0): The chunk size of the final language model feed forward head layer. A chunk size of 0 means that the feed forward layer is not chunked. A chunk size of n means that the feed forward layer processes n < sequence_length embeddings at a time. For more information on feed forward chunking, see [How does Feed Forward Chunking work?](../glossary#feed-forward-chunking). eos_token_id (`int`, *optional*, defaults to 2): The token id for the end-of-sentence token. feed_forward_size (`int`, *optional*, defaults to 512): Dimensionality of the feed_forward layer in the residual attention block. hash_seed (`int`, *optional*): Seed that can be used to make local sensitive hashing in `LSHSelfAttention` deterministic. This should only be set for testing purposed. For evaluation and training purposes `hash_seed` should be left as `None` to ensure fully random rotations in local sensitive hashing scheme. hidden_act (`str` or `Callable`, *optional*, defaults to `"relu"`): The non-linear activation function (function or string) in the feed forward layer in the residual attention block. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.05): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. hidden_size (`int`, *optional*, defaults to 256): Dimensionality of the output hidden states of the residual attention blocks. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. is_decoder (`bool`, *optional*, defaults to `False`): Whether or not to use a causal mask in addition to the `attention_mask` passed to [`ReformerModel`]. When using the Reformer for causal language modeling, this argument should be set to `True`. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. local_chunk_length (`int`, *optional*, defaults to 64): Length of chunk which attends to itself in `LocalSelfAttention`. Chunking reduces memory complexity from sequence length x sequence length (self attention) to chunk length x chunk length x sequence length / chunk length (chunked self attention). local_num_chunks_before (`int`, *optional*, defaults to 1): Number of previous neighbouring chunks to attend to in `LocalSelfAttention` layer to itself. local_num_chunks_after (`int`, *optional*, defaults to 0): Number of following neighbouring chunks to attend to in `LocalSelfAttention` layer in addition to itself. local_attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities in `LocalSelfAttention`. lsh_attn_chunk_length (`int`, *optional*, defaults to 64): Length of chunk which attends to itself in `LSHSelfAttention`. Chunking reduces memory complexity from sequence length x sequence length (self attention) to chunk length x chunk length x sequence length / chunk length (chunked self attention). lsh_num_chunks_before (`int`, *optional*, defaults to 1): Number of previous neighbouring chunks to attend to in `LSHSelfAttention` layer to itself. lsh_num_chunks_after (`int`, *optional*, defaults to 0): Number of following neighbouring chunks to attend to in `LSHSelfAttention` layer to itself. lsh_attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities in `LSHSelfAttention`. max_position_embeddings (`int`, *optional*, defaults to 4096): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. num_buckets (`int` or `List[int]`, *optional*): Number of buckets, the key query vectors can be "hashed into" using the locality sensitive hashing scheme. Each query key vector is hashed into a hash in `1, ..., num_buckets`. The number of buckets can also be factorized into a list for improved memory complexity. In this case, each query key vector is hashed into a hash in `1-1, 1-2, ..., num_buckets[0]-1, ..., num_buckets[0]-num_buckets[1]` if `num_buckets` is factorized into two factors. The number of buckets (or the product the factors) should approximately equal sequence length / lsh_chunk_length. If `num_buckets` not set, a good value is calculated on the fly. num_hashes (`int`, *optional*, defaults to 1): Number of hashing rounds (e.g., number of random rotations) in Local Sensitive Hashing scheme. The higher `num_hashes`, the more accurate the `LSHSelfAttention` becomes, but also the more memory and time intensive the hashing becomes. pad_token_id (`int`, *optional*, defaults to 0): The token id for the padding token. vocab_size (`int`, *optional*, defaults to 320):\ Vocabulary size of the Reformer model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`ReformerModel`]. tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether to tie input and output embeddings. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). classifier_dropout (`float`, *optional*): The dropout ratio for the classification head. Examples: ```python >>> from transformers import ReformerConfig, ReformerModel >>> # Initializing a Reformer configuration >>> configuration = ReformerConfig() >>> # Initializing a Reformer model (with random weights) >>> model = ReformerModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ``` """ model_type = "reformer" keys_to_ignore_at_inference = ["past_buckets_states"] attribute_map = {} def __init__( self, attention_head_size=64, attn_layers=["local", "lsh", "local", "lsh", "local", "lsh"], axial_norm_std=1.0, axial_pos_embds=True, axial_pos_shape=[64, 64], axial_pos_embds_dim=[64, 192], chunk_size_lm_head=0, eos_token_id=2, feed_forward_size=512, hash_seed=None, hidden_act="relu", hidden_dropout_prob=0.05, hidden_size=256, initializer_range=0.02, is_decoder=False, layer_norm_eps=1e-12, local_num_chunks_before=1, local_num_chunks_after=0, local_attention_probs_dropout_prob=0.05, local_attn_chunk_length=64, lsh_attn_chunk_length=64, lsh_attention_probs_dropout_prob=0.0, lsh_num_chunks_before=1, lsh_num_chunks_after=0, max_position_embeddings=4096, num_attention_heads=12, num_buckets=None, num_hashes=1, pad_token_id=0, vocab_size=320, tie_word_embeddings=False, use_cache=True, classifier_dropout=None, **kwargs, ): self.hash_seed = hash_seed self.vocab_size = vocab_size self.attention_head_size = attention_head_size self.hidden_size = hidden_size self.num_attention_heads = num_attention_heads self.num_hashes = num_hashes self.num_hidden_layers = len(attn_layers) self.num_buckets = tuple(num_buckets) if isinstance(num_buckets, list) else num_buckets self.lsh_attn_chunk_length = lsh_attn_chunk_length self.local_attn_chunk_length = local_attn_chunk_length self.lsh_num_chunks_after = lsh_num_chunks_after self.lsh_num_chunks_before = lsh_num_chunks_before self.local_num_chunks_after = local_num_chunks_after self.local_num_chunks_before = local_num_chunks_before self.hidden_act = hidden_act self.feed_forward_size = feed_forward_size self.hidden_dropout_prob = hidden_dropout_prob self.lsh_attention_probs_dropout_prob = lsh_attention_probs_dropout_prob self.local_attention_probs_dropout_prob = local_attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.axial_pos_embds = axial_pos_embds self.axial_pos_shape = tuple(axial_pos_shape) self.axial_pos_embds_dim = tuple(axial_pos_embds_dim) self.axial_norm_std = axial_norm_std self.chunk_size_lm_head = chunk_size_lm_head self.attn_layers = attn_layers self.use_cache = use_cache self.classifier_dropout = classifier_dropout super().__init__( pad_token_id=pad_token_id, eos_token_id=eos_token_id, is_decoder=is_decoder, tie_word_embeddings=tie_word_embeddings, **kwargs, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/reformer/convert_reformer_trax_checkpoint_to_pytorch.py
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert Reformer checkpoint.""" import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def set_param(torch_layer, weight, bias=None): # set parameter of one layer assert torch_layer.weight.shape == weight.shape, f"{torch_layer} layer.weight does not match" torch_layer.weight = nn.Parameter(weight) if bias is not None: assert torch_layer.bias.shape == bias.shape, f"{torch_layer} layer.bias does not match" torch_layer.bias = nn.Parameter(bias) def set_layer_weights_in_torch_lsh(weights, torch_layer, hidden_size): # set torch weights for 1-to-1 comparison np_query_key = np.asarray(weights[0]) np_value = np.asarray(weights[1]) np_dense = np.asarray(weights[2]) set_param( torch_layer.self_attention.query_key, torch.tensor(np_query_key).transpose(1, 2).contiguous().view(-1, hidden_size), ) set_param( torch_layer.self_attention.value, torch.tensor(np_value).transpose(1, 2).contiguous().view(-1, hidden_size), ) set_param( torch_layer.output.dense, torch.tensor(np_dense).view(-1, hidden_size).contiguous().transpose(0, 1), ) def set_layer_weights_in_torch_local(weights, torch_layer, hidden_size): # set torch weights for 1-to-1 comparison np_query = np.asarray(weights[0]) np_key = np.asarray(weights[1]) np_value = np.asarray(weights[2]) np_dense = np.asarray(weights[3]) set_param( torch_layer.self_attention.query, torch.tensor(np_query).transpose(1, 2).contiguous().view(-1, hidden_size), ) set_param( torch_layer.self_attention.key, torch.tensor(np_key).transpose(1, 2).contiguous().view(-1, hidden_size), ) set_param( torch_layer.self_attention.value, torch.tensor(np_value).transpose(1, 2).contiguous().view(-1, hidden_size), ) set_param( torch_layer.output.dense, torch.tensor(np_dense).view(-1, hidden_size).contiguous().transpose(0, 1), ) def set_block_weights_in_torch(weights, torch_block, hidden_size): # layernorm 1 layer_norm_1 = weights[0][0][0] layer_norm_1_weight = np.asarray(layer_norm_1[0]) layer_norm_1_bias = np.asarray(layer_norm_1[1]) set_param( torch_block.attention.layer_norm, torch.tensor(layer_norm_1_weight), torch.tensor(layer_norm_1_bias), ) # lsh weights + output attn_weights = weights[0][1] if len(attn_weights) < 4: set_layer_weights_in_torch_lsh(attn_weights, torch_block.attention, hidden_size) else: set_layer_weights_in_torch_local(attn_weights, torch_block.attention, hidden_size) # intermediate weighs intermediate_weights = weights[2][0][1][2] # Chunked Feed Forward if len(intermediate_weights) == 4: intermediate_weights = intermediate_weights[2] # layernorm 2 layer_norm_2_weight = np.asarray(intermediate_weights[0][0]) layer_norm_2_bias = np.asarray(intermediate_weights[0][1]) set_param( torch_block.feed_forward.layer_norm, torch.tensor(layer_norm_2_weight), torch.tensor(layer_norm_2_bias), ) # intermediate dense inter_dense_weight = np.asarray(intermediate_weights[1][0]) inter_dense_bias = np.asarray(intermediate_weights[1][1]) set_param( torch_block.feed_forward.dense.dense, torch.tensor(inter_dense_weight).transpose(0, 1).contiguous(), torch.tensor(inter_dense_bias), ) # intermediate out out_dense_weight = np.asarray(intermediate_weights[4][0]) out_dense_bias = np.asarray(intermediate_weights[4][1]) set_param( torch_block.feed_forward.output.dense, torch.tensor(out_dense_weight).transpose(0, 1).contiguous(), torch.tensor(out_dense_bias), ) def set_model_weights_in_torch(weights, torch_model, hidden_size): # reformer model torch_model_reformer = torch_model.reformer # word embeds word_embeddings = np.asarray(weights[1]) set_param( torch_model_reformer.embeddings.word_embeddings, torch.tensor(word_embeddings), ) if isinstance(weights[3], tuple): position_embeddings = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights)): emb_weights = np.asarray(weights[3][emb_idx][0]) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f"{position_embeddings[emb_idx]} emb does not match" position_embeddings.weights[emb_idx] = nn.Parameter(torch.tensor(emb_weights)) trax_layer_weights = weights[5] assert len(torch_model_reformer.encoder.layers) * 4 == len( trax_layer_weights ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers): block_weights = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(block_weights, layer, hidden_size) # output layer norm layer_norm_out_weight = np.asarray(weights[7][0]) layer_norm_out_bias = np.asarray(weights[7][1]) set_param( torch_model_reformer.encoder.layer_norm, torch.tensor(layer_norm_out_weight), torch.tensor(layer_norm_out_bias), ) # output embeddings output_embed_weights = np.asarray(weights[9][0]) output_embed_bias = np.asarray(weights[9][1]) set_param( torch_model.lm_head.decoder, torch.tensor(output_embed_weights).transpose(0, 1).contiguous(), torch.tensor(output_embed_bias), ) def convert_trax_checkpoint_to_pytorch(trax_model_pkl_path, config_file, pytorch_dump_path): # Initialise PyTorch model config = ReformerConfig.from_json_file(config_file) print(f"Building PyTorch model from configuration: {config}") model = ReformerModelWithLMHead(config) with open(trax_model_pkl_path, "rb") as f: model_weights = pickle.load(f)["weights"] set_model_weights_in_torch(model_weights, model, config.hidden_size) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}") torch.save(model.state_dict(), pytorch_dump_path) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--trax_model_pkl_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained Reformer model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) args = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/reformer/tokenization_reformer_fast.py
# coding=utf-8 # Copyright 2020 The Trax Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tokenization class for model Reformer.""" import os from shutil import copyfile from typing import Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_reformer import ReformerTokenizer else: ReformerTokenizer = None logger = logging.get_logger(__name__) SPIECE_UNDERLINE = "▁" VOCAB_FILES_NAMES = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "google/reformer-crime-and-punishment": ( "https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model" ) }, "tokenizer_file": { "google/reformer-crime-and-punishment": ( "https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/tokenizer.json" ) }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "google/reformer-crime-and-punishment": 524288, } class ReformerTokenizerFast(PreTrainedTokenizerFast): """ Construct a "fast" Reformer tokenizer (backed by HuggingFace's *tokenizers* library). Based on [Unigram](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=unigram#models). This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that contains the vocabulary necessary to instantiate a tokenizer. eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. additional_special_tokens (`List[str]`, *optional*): Additional special tokens used by the tokenizer. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] slow_tokenizer_class = ReformerTokenizer def __init__( self, vocab_file=None, tokenizer_file=None, eos_token="</s>", unk_token="<unk>", additional_special_tokens=[], **kwargs, ): super().__init__( vocab_file, tokenizer_file=tokenizer_file, eos_token=eos_token, unk_token=unk_token, additional_special_tokens=additional_special_tokens, **kwargs, ) self.vocab_file = vocab_file self.can_save_slow_tokenizer = False if not self.vocab_file else True def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): copyfile(self.vocab_file, out_vocab_file) return (out_vocab_file,)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/reformer/tokenization_reformer.py
# coding=utf-8 # Copyright 2020 The Trax Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tokenization class for model Reformer.""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) SPIECE_UNDERLINE = "▁" VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "google/reformer-crime-and-punishment": ( "https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model" ) } } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "google/reformer-crime-and-punishment": 524288, } class ReformerTokenizer(PreTrainedTokenizer): """ Construct a Reformer tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece) . This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that contains the vocabulary necessary to instantiate a tokenizer. eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. additional_special_tokens (`List[str]`, *optional*): Additional special tokens used by the tokenizer. sp_model_kwargs (`dict`, *optional*): Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, to set: - `enable_sampling`: Enable subword regularization. - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. - `nbest_size = {0,1}`: No sampling is performed. - `nbest_size > 1`: samples from the nbest_size results. - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm. - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for BPE-dropout. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, eos_token="</s>", unk_token="<unk>", additional_special_tokens=[], sp_model_kwargs: Optional[Dict[str, Any]] = None, **kwargs, ) -> None: self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=eos_token, unk_token=unk_token, additional_special_tokens=additional_special_tokens, sp_model_kwargs=self.sp_model_kwargs, **kwargs, ) self.vocab_file = vocab_file self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(vocab_file) @property def vocab_size(self): return self.sp_model.get_piece_size() def get_vocab(self) -> Dict[str, int]: vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__(self): state = self.__dict__.copy() state["sp_model"] = None return state def __setstate__(self, d): self.__dict__ = d # for backward compatibility if not hasattr(self, "sp_model_kwargs"): self.sp_model_kwargs = {} self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def _tokenize(self, text: str) -> List[str]: """Take as input a string and return a list of strings (tokens) for words/sub-words""" return self.sp_model.encode(text, out_type=str) def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.sp_model.piece_to_id(token) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" if index < self.sp_model.get_piece_size(): token = self.sp_model.IdToPiece(index) return token def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" current_sub_tokens = [] out_string = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(current_sub_tokens) + token current_sub_tokens = [] else: current_sub_tokens.append(token) out_string += self.sp_model.decode(current_sub_tokens) return out_string.strip() def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, out_vocab_file) elif not os.path.isfile(self.vocab_file): with open(out_vocab_file, "wb") as fi: content_spiece_model = self.sp_model.serialized_model_proto() fi.write(content_spiece_model) return (out_vocab_file,)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/fnet/__init__.py
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _import_structure = {"configuration_fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_fnet"] = ["FNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_fnet_fast"] = ["FNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_fnet"] = [ "FNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FNetForMaskedLM", "FNetForMultipleChoice", "FNetForNextSentencePrediction", "FNetForPreTraining", "FNetForQuestionAnswering", "FNetForSequenceClassification", "FNetForTokenClassification", "FNetLayer", "FNetModel", "FNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/fnet/configuration_fnet.py
# coding=utf-8 # Copyright 2021 Google AI and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ FNet model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) FNET_PRETRAINED_CONFIG_ARCHIVE_MAP = { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/config.json", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/config.json" # See all FNet models at https://huggingface.co/models?filter=fnet } class FNetConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`FNetModel`]. It is used to instantiate an FNet model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the FNet [google/fnet-base](https://huggingface.co/google/fnet-base) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 32000): Vocabulary size of the FNet model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`FNetModel`] or [`TFFNetModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimension of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu_new"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 4): The vocabulary size of the `token_type_ids` passed when calling [`FNetModel`] or [`TFFNetModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. use_tpu_fourier_optimizations (`bool`, *optional*, defaults to `False`): Determines whether to use TPU optimized FFTs. If `True`, the model will favor axis-wise FFTs transforms. Set to `False` for GPU/CPU hardware, in which case n-dimensional FFTs are used. tpu_short_seq_length (`int`, *optional*, defaults to 512): The sequence length that is expected by the model when using TPUs. This will be used to initialize the DFT matrix only when *use_tpu_fourier_optimizations* is set to `True` and the input sequence is shorter than or equal to 4096 tokens. Example: ```python >>> from transformers import FNetConfig, FNetModel >>> # Initializing a FNet fnet-base style configuration >>> configuration = FNetConfig() >>> # Initializing a model (with random weights) from the fnet-base style configuration >>> model = FNetModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "fnet" def __init__( self, vocab_size=32000, hidden_size=768, num_hidden_layers=12, intermediate_size=3072, hidden_act="gelu_new", hidden_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=4, initializer_range=0.02, layer_norm_eps=1e-12, use_tpu_fourier_optimizations=False, tpu_short_seq_length=512, pad_token_id=3, bos_token_id=1, eos_token_id=2, **kwargs, ): super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.initializer_range = initializer_range self.type_vocab_size = type_vocab_size self.layer_norm_eps = layer_norm_eps self.use_tpu_fourier_optimizations = use_tpu_fourier_optimizations self.tpu_short_seq_length = tpu_short_seq_length
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/fnet/modeling_fnet.py
# coding=utf-8 # Copyright 2021 Google Research and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch FNet model.""" import warnings from dataclasses import dataclass from functools import partial from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...utils import is_scipy_available if is_scipy_available(): from scipy import linalg from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPooling, MaskedLMOutput, ModelOutput, MultipleChoiceModelOutput, NextSentencePredictorOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import apply_chunking_to_forward from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_fnet import FNetConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "google/fnet-base" _CONFIG_FOR_DOC = "FNetConfig" FNET_PRETRAINED_MODEL_ARCHIVE_LIST = [ "google/fnet-base", "google/fnet-large" # See all FNet models at https://huggingface.co/models?filter=fnet ] # Adapted from https://github.com/google-research/google-research/blob/master/f_net/fourier.py def _two_dim_matmul(x, matrix_dim_one, matrix_dim_two): """Applies 2D matrix multiplication to 3D input arrays.""" seq_length = x.shape[1] matrix_dim_one = matrix_dim_one[:seq_length, :seq_length] x = x.type(torch.complex64) return torch.einsum("bij,jk,ni->bnk", x, matrix_dim_two, matrix_dim_one) # # Adapted from https://github.com/google-research/google-research/blob/master/f_net/fourier.py def two_dim_matmul(x, matrix_dim_one, matrix_dim_two): return _two_dim_matmul(x, matrix_dim_one, matrix_dim_two) # Adapted from https://github.com/google-research/google-research/blob/master/f_net/fourier.py def fftn(x): """ Applies n-dimensional Fast Fourier Transform (FFT) to input array. Args: x: Input n-dimensional array. Returns: n-dimensional Fourier transform of input n-dimensional array. """ out = x for axis in reversed(range(x.ndim)[1:]): # We don't need to apply FFT to last axis out = torch.fft.fft(out, axis=axis) return out class FNetEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) # NOTE: This is the project layer and will be needed. The original code allows for different embedding and different model dimensions. self.projection = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) self.register_buffer( "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False ) def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None): if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[:, :seq_length] # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves # issue #5664 if token_type_ids is None: if hasattr(self, "token_type_ids"): buffered_token_type_ids = self.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.projection(embeddings) embeddings = self.dropout(embeddings) return embeddings class FNetBasicFourierTransform(nn.Module): def __init__(self, config): super().__init__() self._init_fourier_transform(config) def _init_fourier_transform(self, config): if not config.use_tpu_fourier_optimizations: self.fourier_transform = partial(torch.fft.fftn, dim=(1, 2)) elif config.max_position_embeddings <= 4096: if is_scipy_available(): self.register_buffer( "dft_mat_hidden", torch.tensor(linalg.dft(config.hidden_size), dtype=torch.complex64) ) self.register_buffer( "dft_mat_seq", torch.tensor(linalg.dft(config.tpu_short_seq_length), dtype=torch.complex64) ) self.fourier_transform = partial( two_dim_matmul, matrix_dim_one=self.dft_mat_seq, matrix_dim_two=self.dft_mat_hidden ) else: logging.warning( "SciPy is needed for DFT matrix calculation and is not found. Using TPU optimized fast fourier" " transform instead." ) self.fourier_transform = fftn else: self.fourier_transform = fftn def forward(self, hidden_states): # NOTE: We do not use torch.vmap as it is not integrated into PyTorch stable versions. # Interested users can modify the code to use vmap from the nightly versions, getting the vmap from here: # https://pytorch.org/docs/master/generated/torch.vmap.html. Note that fourier transform methods will need # change accordingly. outputs = self.fourier_transform(hidden_states).real return (outputs,) class FNetBasicOutput(nn.Module): def __init__(self, config): super().__init__() self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states, input_tensor): hidden_states = self.LayerNorm(input_tensor + hidden_states) return hidden_states class FNetFourierTransform(nn.Module): def __init__(self, config): super().__init__() self.self = FNetBasicFourierTransform(config) self.output = FNetBasicOutput(config) def forward(self, hidden_states): self_outputs = self.self(hidden_states) fourier_output = self.output(self_outputs[0], hidden_states) outputs = (fourier_output,) return outputs # Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->FNet class FNetIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->FNet class FNetOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class FNetLayer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 # The dimension which has the sequence length self.fourier = FNetFourierTransform(config) self.intermediate = FNetIntermediate(config) self.output = FNetOutput(config) def forward(self, hidden_states): self_fourier_outputs = self.fourier(hidden_states) fourier_output = self_fourier_outputs[0] layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, fourier_output ) outputs = (layer_output,) return outputs def feed_forward_chunk(self, fourier_output): intermediate_output = self.intermediate(fourier_output) layer_output = self.output(intermediate_output, fourier_output) return layer_output class FNetEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([FNetLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward(self, hidden_states, output_hidden_states=False, return_dict=True): all_hidden_states = () if output_hidden_states else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint(create_custom_forward(layer_module), hidden_states) else: layer_outputs = layer_module(hidden_states) hidden_states = layer_outputs[0] if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None) return BaseModelOutput(last_hidden_state=hidden_states, hidden_states=all_hidden_states) # Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->FNet class FNetPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output # Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform with Bert->FNet class FNetPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states class FNetLMPredictionHead(nn.Module): def __init__(self, config): super().__init__() self.transform = FNetPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states def _tie_weights(self): # To tie those two weights if they get disconnected (on TPU or when the bias is resized) self.bias = self.decoder.bias class FNetOnlyMLMHead(nn.Module): def __init__(self, config): super().__init__() self.predictions = FNetLMPredictionHead(config) def forward(self, sequence_output): prediction_scores = self.predictions(sequence_output) return prediction_scores # Copied from transformers.models.bert.modeling_bert.BertOnlyNSPHead with Bert->FNet class FNetOnlyNSPHead(nn.Module): def __init__(self, config): super().__init__() self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, pooled_output): seq_relationship_score = self.seq_relationship(pooled_output) return seq_relationship_score # Copied from transformers.models.bert.modeling_bert.BertPreTrainingHeads with Bert->FNet class FNetPreTrainingHeads(nn.Module): def __init__(self, config): super().__init__() self.predictions = FNetLMPredictionHead(config) self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, sequence_output, pooled_output): prediction_scores = self.predictions(sequence_output) seq_relationship_score = self.seq_relationship(pooled_output) return prediction_scores, seq_relationship_score class FNetPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = FNetConfig base_model_prefix = "fnet" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) # NOTE: Original code uses same initialization as weights for biases as well. if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, FNetEncoder): module.gradient_checkpointing = value @dataclass class FNetForPreTrainingOutput(ModelOutput): """ Output type of [`FNetForPreTraining`]. Args: loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss. prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`): Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax). hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. """ loss: Optional[torch.FloatTensor] = None prediction_logits: torch.FloatTensor = None seq_relationship_logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None FNET_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`FNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ FNET_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert *input_ids* indices into associated vectors than the model's internal embedding lookup matrix. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare FNet Model transformer outputting raw hidden-states without any specific head on top.", FNET_START_DOCSTRING, ) class FNetModel(FNetPreTrainedModel): """ The model can behave as an encoder, following the architecture described in [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon. """ def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = FNetEmbeddings(config) self.encoder = FNetEncoder(config) self.pooler = FNetPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value @add_start_docstrings_to_model_forward(FNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, BaseModelOutput]: output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() batch_size, seq_length = input_shape elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] batch_size, seq_length = input_shape else: raise ValueError("You have to specify either input_ids or inputs_embeds") if ( self.config.use_tpu_fourier_optimizations and seq_length <= 4096 and self.config.tpu_short_seq_length != seq_length ): raise ValueError( "The `tpu_short_seq_length` in FNetConfig should be set equal to the sequence length being passed to" " the model when using TPU optimizations." ) device = input_ids.device if input_ids is not None else inputs_embeds.device if token_type_ids is None: if hasattr(self.embeddings, "token_type_ids"): buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, ) encoder_outputs = self.encoder( embedding_output, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooler_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooler_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooler_output, hidden_states=encoder_outputs.hidden_states, ) @add_start_docstrings( """ FNet Model with two heads on top as done during the pretraining: a `masked language modeling` head and a `next sentence prediction (classification)` head. """, FNET_START_DOCSTRING, ) class FNetForPreTraining(FNetPreTrainedModel): _tied_weights_keys = ["cls.predictions.decoder.bias", "cls.predictions.decoder.weight"] def __init__(self, config): super().__init__(config) self.fnet = FNetModel(config) self.cls = FNetPreTrainingHeads(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings @add_start_docstrings_to_model_forward(FNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=FNetForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, next_sentence_label: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, FNetForPreTrainingOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` next_sentence_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see `input_ids` docstring) Indices should be in `[0, 1]`: - 0 indicates sequence B is a continuation of sequence A, - 1 indicates sequence B is a random sequence. kwargs (`Dict[str, any]`, optional, defaults to *{}*): Used to hide legacy arguments that have been deprecated. Returns: Example: ```python >>> from transformers import AutoTokenizer, FNetForPreTraining >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("google/fnet-base") >>> model = FNetForPreTraining.from_pretrained("google/fnet-base") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> prediction_logits = outputs.prediction_logits >>> seq_relationship_logits = outputs.seq_relationship_logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.fnet( input_ids, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output, pooled_output = outputs[:2] prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output) total_loss = None if labels is not None and next_sentence_label is not None: loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)) total_loss = masked_lm_loss + next_sentence_loss if not return_dict: output = (prediction_scores, seq_relationship_score) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return FNetForPreTrainingOutput( loss=total_loss, prediction_logits=prediction_scores, seq_relationship_logits=seq_relationship_score, hidden_states=outputs.hidden_states, ) @add_start_docstrings("""FNet Model with a `language modeling` head on top.""", FNET_START_DOCSTRING) class FNetForMaskedLM(FNetPreTrainedModel): _tied_weights_keys = ["cls.predictions.decoder.bias", "cls.predictions.decoder.weight"] def __init__(self, config): super().__init__(config) self.fnet = FNetModel(config) self.cls = FNetOnlyMLMHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings @add_start_docstrings_to_model_forward(FNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.fnet( input_ids, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() # -100 index = padding token masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput(loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states) @add_start_docstrings( """FNet Model with a `next sentence prediction (classification)` head on top.""", FNET_START_DOCSTRING, ) class FNetForNextSentencePrediction(FNetPreTrainedModel): def __init__(self, config): super().__init__(config) self.fnet = FNetModel(config) self.cls = FNetOnlyNSPHead(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(FNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=NextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Tuple, NextSentencePredictorOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see `input_ids` docstring). Indices should be in `[0, 1]`: - 0 indicates sequence B is a continuation of sequence A, - 1 indicates sequence B is a random sequence. Returns: Example: ```python >>> from transformers import AutoTokenizer, FNetForNextSentencePrediction >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("google/fnet-base") >>> model = FNetForNextSentencePrediction.from_pretrained("google/fnet-base") >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." >>> next_sentence = "The sky is blue due to the shorter wavelength of blue light." >>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt") >>> outputs = model(**encoding, labels=torch.LongTensor([1])) >>> logits = outputs.logits >>> assert logits[0, 0] < logits[0, 1] # next sentence was random ```""" if "next_sentence_label" in kwargs: warnings.warn( "The `next_sentence_label` argument is deprecated and will be removed in a future version, use" " `labels` instead.", FutureWarning, ) labels = kwargs.pop("next_sentence_label") return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.fnet( input_ids, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] seq_relationship_scores = self.cls(pooled_output) next_sentence_loss = None if labels is not None: loss_fct = CrossEntropyLoss() next_sentence_loss = loss_fct(seq_relationship_scores.view(-1, 2), labels.view(-1)) if not return_dict: output = (seq_relationship_scores,) + outputs[2:] return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output return NextSentencePredictorOutput( loss=next_sentence_loss, logits=seq_relationship_scores, hidden_states=outputs.hidden_states, ) @add_start_docstrings( """ FNet Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, FNET_START_DOCSTRING, ) class FNetForSequenceClassification(FNetPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.fnet = FNetModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(FNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.fnet( input_ids, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput(loss=loss, logits=logits, hidden_states=outputs.hidden_states) @add_start_docstrings( """ FNet Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, FNET_START_DOCSTRING, ) class FNetForMultipleChoice(FNetPreTrainedModel): def __init__(self, config): super().__init__(config) self.fnet = FNetModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, 1) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(FNET_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MultipleChoiceModelOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) outputs = self.fnet( input_ids, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput(loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states) @add_start_docstrings( """ FNet Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, FNET_START_DOCSTRING, ) class FNetForTokenClassification(FNetPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.fnet = FNetModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(FNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.fnet( input_ids, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() # Only keep active parts of the loss loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput(loss=loss, logits=logits, hidden_states=outputs.hidden_states) @add_start_docstrings( """ FNet Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, FNET_START_DOCSTRING, ) class FNetForQuestionAnswering(FNetPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.fnet = FNetModel(config) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(FNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, start_positions: Optional[torch.Tensor] = None, end_positions: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.fnet( input_ids, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/fnet/tokenization_fnet_fast.py
# coding=utf-8 # Copyright 2021 Google AI, Google Brain and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tokenization classes for FNet model.""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: FNetTokenizer = None logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/spiece.model", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/spiece.model", }, "tokenizer_file": { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json", }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "google/fnet-base": 512, "google/fnet-large": 512, } SPIECE_UNDERLINE = "▁" class FNetTokenizerFast(PreTrainedTokenizerFast): """ Construct a "fast" FNetTokenizer (backed by HuggingFace's *tokenizers* library). Adapted from [`AlbertTokenizerFast`]. Based on [Unigram](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=unigram#models). This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods Args: vocab_file (`str`): [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that contains the vocabulary necessary to instantiate a tokenizer. do_lower_case (`bool`, *optional*, defaults to `False`): Whether or not to lowercase the input when tokenizing. remove_space (`bool`, *optional*, defaults to `True`): Whether or not to strip the text when tokenizing (removing excess spaces before and after the string). keep_accents (`bool`, *optional*, defaults to `True`): Whether or not to keep accents when tokenizing. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. sep_token (`str`, *optional*, defaults to `"[SEP]"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. cls_token (`str`, *optional*, defaults to `"[CLS]"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (`str`, *optional*, defaults to `"[MASK]"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "token_type_ids"] slow_tokenizer_class = FNetTokenizer def __init__( self, vocab_file=None, tokenizer_file=None, do_lower_case=False, remove_space=True, keep_accents=True, unk_token="<unk>", sep_token="[SEP]", pad_token="<pad>", cls_token="[CLS]", mask_token="[MASK]", **kwargs, ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. mask_token = ( AddedToken(mask_token, lstrip=True, rstrip=False, normalized=False) if isinstance(mask_token, str) else mask_token ) super().__init__( vocab_file, tokenizer_file=tokenizer_file, do_lower_case=do_lower_case, remove_space=remove_space, keep_accents=keep_accents, unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, **kwargs, ) self.do_lower_case = do_lower_case self.remove_space = remove_space self.keep_accents = keep_accents self.vocab_file = vocab_file self.can_save_slow_tokenizer = False if not self.vocab_file else True def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. An FNet sequence has the following format: - single sequence: `[CLS] X [SEP]` - pair of sequences: `[CLS] A [SEP] B [SEP]` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return cls + token_ids_0 + sep return cls + token_ids_0 + sep + token_ids_1 + sep def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An FNet sequence pair mask has the following format: ``` 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` if token_ids_1 is None, only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of ids. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): copyfile(self.vocab_file, out_vocab_file) return (out_vocab_file,)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/fnet/convert_fnet_original_flax_checkpoint_to_pytorch.py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert FNet checkpoint.""" import argparse import torch from flax.training.checkpoints import restore_checkpoint from transformers import FNetConfig, FNetForPreTraining from transformers.utils import logging logging.set_verbosity_info() def convert_flax_checkpoint_to_pytorch(flax_checkpoint_path, fnet_config_file, save_path): # Initialise PyTorch model config = FNetConfig.from_json_file(fnet_config_file) print(f"Building PyTorch model from configuration: {config}") fnet_pretraining_model = FNetForPreTraining(config) checkpoint_dict = restore_checkpoint(flax_checkpoint_path, None) pretrained_model_params = checkpoint_dict["target"] # Embeddings # Position IDs state_dict = fnet_pretraining_model.state_dict() position_ids = state_dict["fnet.embeddings.position_ids"] new_state_dict = {"fnet.embeddings.position_ids": position_ids} # Embedding Layers new_state_dict["fnet.embeddings.word_embeddings.weight"] = torch.tensor( pretrained_model_params["encoder"]["embedder"]["word"]["embedding"] ) new_state_dict["fnet.embeddings.position_embeddings.weight"] = torch.tensor( pretrained_model_params["encoder"]["embedder"]["position"]["embedding"][0] ) new_state_dict["fnet.embeddings.token_type_embeddings.weight"] = torch.tensor( pretrained_model_params["encoder"]["embedder"]["type"]["embedding"] ) new_state_dict["fnet.embeddings.projection.weight"] = torch.tensor( pretrained_model_params["encoder"]["embedder"]["hidden_mapping_in"]["kernel"] ).T new_state_dict["fnet.embeddings.projection.bias"] = torch.tensor( pretrained_model_params["encoder"]["embedder"]["hidden_mapping_in"]["bias"] ) new_state_dict["fnet.embeddings.LayerNorm.weight"] = torch.tensor( pretrained_model_params["encoder"]["embedder"]["layer_norm"]["scale"] ) new_state_dict["fnet.embeddings.LayerNorm.bias"] = torch.tensor( pretrained_model_params["encoder"]["embedder"]["layer_norm"]["bias"] ) # Encoder Layers for layer in range(config.num_hidden_layers): new_state_dict[f"fnet.encoder.layer.{layer}.fourier.output.LayerNorm.weight"] = torch.tensor( pretrained_model_params["encoder"][f"encoder_{layer}"]["mixing_layer_norm"]["scale"] ) new_state_dict[f"fnet.encoder.layer.{layer}.fourier.output.LayerNorm.bias"] = torch.tensor( pretrained_model_params["encoder"][f"encoder_{layer}"]["mixing_layer_norm"]["bias"] ) new_state_dict[f"fnet.encoder.layer.{layer}.intermediate.dense.weight"] = torch.tensor( pretrained_model_params["encoder"][f"feed_forward_{layer}"]["intermediate"]["kernel"] ).T new_state_dict[f"fnet.encoder.layer.{layer}.intermediate.dense.bias"] = torch.tensor( pretrained_model_params["encoder"][f"feed_forward_{layer}"]["intermediate"]["bias"] ) new_state_dict[f"fnet.encoder.layer.{layer}.output.dense.weight"] = torch.tensor( pretrained_model_params["encoder"][f"feed_forward_{layer}"]["output"]["kernel"] ).T new_state_dict[f"fnet.encoder.layer.{layer}.output.dense.bias"] = torch.tensor( pretrained_model_params["encoder"][f"feed_forward_{layer}"]["output"]["bias"] ) new_state_dict[f"fnet.encoder.layer.{layer}.output.LayerNorm.weight"] = torch.tensor( pretrained_model_params["encoder"][f"encoder_{layer}"]["output_layer_norm"]["scale"] ) new_state_dict[f"fnet.encoder.layer.{layer}.output.LayerNorm.bias"] = torch.tensor( pretrained_model_params["encoder"][f"encoder_{layer}"]["output_layer_norm"]["bias"] ) # Pooler Layers new_state_dict["fnet.pooler.dense.weight"] = torch.tensor(pretrained_model_params["encoder"]["pooler"]["kernel"]).T new_state_dict["fnet.pooler.dense.bias"] = torch.tensor(pretrained_model_params["encoder"]["pooler"]["bias"]) # Masked LM Layers new_state_dict["cls.predictions.transform.dense.weight"] = torch.tensor( pretrained_model_params["predictions_dense"]["kernel"] ).T new_state_dict["cls.predictions.transform.dense.bias"] = torch.tensor( pretrained_model_params["predictions_dense"]["bias"] ) new_state_dict["cls.predictions.transform.LayerNorm.weight"] = torch.tensor( pretrained_model_params["predictions_layer_norm"]["scale"] ) new_state_dict["cls.predictions.transform.LayerNorm.bias"] = torch.tensor( pretrained_model_params["predictions_layer_norm"]["bias"] ) new_state_dict["cls.predictions.decoder.weight"] = torch.tensor( pretrained_model_params["encoder"]["embedder"]["word"]["embedding"] ) new_state_dict["cls.predictions.decoder.bias"] = torch.tensor( pretrained_model_params["predictions_output"]["output_bias"] ) new_state_dict["cls.predictions.bias"] = torch.tensor(pretrained_model_params["predictions_output"]["output_bias"]) # Seq Relationship Layers new_state_dict["cls.seq_relationship.weight"] = torch.tensor( pretrained_model_params["classification"]["output_kernel"] ) new_state_dict["cls.seq_relationship.bias"] = torch.tensor( pretrained_model_params["classification"]["output_bias"] ) # Load State Dict fnet_pretraining_model.load_state_dict(new_state_dict) # Save PreTrained print(f"Saving pretrained model to {save_path}") fnet_pretraining_model.save_pretrained(save_path) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--flax_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--fnet_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained FNet model. \n" "This specifies the model architecture." ), ) parser.add_argument("--save_path", default=None, type=str, required=True, help="Path to the output model.") args = parser.parse_args() convert_flax_checkpoint_to_pytorch(args.flax_checkpoint_path, args.fnet_config_file, args.save_path)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/fnet/tokenization_fnet.py
# coding=utf-8 # Copyright 2021 Google Research, Google AI, Google Brain and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tokenization classes for FNet model.""" import os import re import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/spiece.model", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/spiece.model", }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "google/fnet-base": 512, "google/fnet-large": 512, } SPIECE_UNDERLINE = "▁" class FNetTokenizer(PreTrainedTokenizer): """ Construct an FNet tokenizer. Adapted from [`AlbertTokenizer`]. Based on [SentencePiece](https://github.com/google/sentencepiece). This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that contains the vocabulary necessary to instantiate a tokenizer. do_lower_case (`bool`, *optional*, defaults to `False`): Whether or not to lowercase the input when tokenizing. remove_space (`bool`, *optional*, defaults to `True`): Whether or not to strip the text when tokenizing (removing excess spaces before and after the string). keep_accents (`bool`, *optional*, defaults to `True`): Whether or not to keep accents when tokenizing. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. sep_token (`str`, *optional*, defaults to `"[SEP]"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. cls_token (`str`, *optional*, defaults to `"[CLS]"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (`str`, *optional*, defaults to `"[MASK]"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. sp_model_kwargs (`dict`, *optional*): Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, to set: - `enable_sampling`: Enable subword regularization. - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. - `nbest_size = {0,1}`: No sampling is performed. - `nbest_size > 1`: samples from the nbest_size results. - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm. - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for BPE-dropout. Attributes: sp_model (`SentencePieceProcessor`): The *SentencePiece* processor that is used for every conversion (string, tokens and IDs). """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "token_type_ids"] def __init__( self, vocab_file, do_lower_case=False, remove_space=True, keep_accents=True, unk_token="<unk>", sep_token="[SEP]", pad_token="<pad>", cls_token="[CLS]", mask_token="[MASK]", sp_model_kwargs: Optional[Dict[str, Any]] = None, **kwargs, ) -> None: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. mask_token = ( AddedToken(mask_token, lstrip=True, rstrip=False, normalized=False) if isinstance(mask_token, str) else mask_token ) self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=do_lower_case, remove_space=remove_space, keep_accents=keep_accents, unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, sp_model_kwargs=self.sp_model_kwargs, **kwargs, ) self.do_lower_case = do_lower_case self.remove_space = remove_space self.keep_accents = keep_accents self.vocab_file = vocab_file self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(vocab_file) @property def vocab_size(self): return len(self.sp_model) def get_vocab(self): vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__(self): state = self.__dict__.copy() state["sp_model"] = None return state def __setstate__(self, d): self.__dict__ = d # for backward compatibility if not hasattr(self, "sp_model_kwargs"): self.sp_model_kwargs = {} self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def preprocess_text(self, inputs): if self.remove_space: outputs = " ".join(inputs.strip().split()) else: outputs = inputs outputs = outputs.replace("``", '"').replace("''", '"') if not self.keep_accents: outputs = unicodedata.normalize("NFKD", outputs) outputs = "".join([c for c in outputs if not unicodedata.combining(c)]) if self.do_lower_case: outputs = outputs.lower() return outputs def _tokenize(self, text: str) -> List[str]: """Tokenize a string.""" text = self.preprocess_text(text) pieces = self.sp_model.encode(text, out_type=str) new_pieces = [] for piece in pieces: if len(piece) > 1 and piece[-1] == str(",") and piece[-2].isdigit(): cur_pieces = self.sp_model.EncodeAsPieces(piece[:-1].replace(SPIECE_UNDERLINE, "")) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: cur_pieces = cur_pieces[1:] else: cur_pieces[0] = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(cur_pieces) else: new_pieces.append(piece) return new_pieces def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.sp_model.PieceToId(token) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.sp_model.IdToPiece(index) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" current_sub_tokens = [] out_string = "" prev_is_special = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(current_sub_tokens) + token prev_is_special = True current_sub_tokens = [] else: current_sub_tokens.append(token) prev_is_special = False out_string += self.sp_model.decode(current_sub_tokens) return out_string.strip() def _decode( self, token_ids: List[int], skip_special_tokens: bool = False, clean_up_tokenization_spaces: bool = None, spaces_between_special_tokens: bool = True, **kwargs, ) -> str: self._decode_use_source_tokenizer = kwargs.pop("use_source_tokenizer", False) filtered_tokens = self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 sub_texts = [] current_sub_text = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(current_sub_text)) current_sub_text = [] sub_texts.append(token) else: current_sub_text.append(token) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(current_sub_text)) # Mimic the behavior of the Rust tokenizer: # No space after <unk> if spaces_between_special_tokens: text = re.sub(r"(<unk>) ", r"\1", " ".join(sub_texts)) else: text = "".join(sub_texts) clean_up_tokenization_spaces = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: clean_text = self.clean_up_tokenization(text) return clean_text else: return text def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. An FNet sequence has the following format: - single sequence: `[CLS] X [SEP]` - pair of sequences: `[CLS] A [SEP] B [SEP]` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return cls + token_ids_0 + sep return cls + token_ids_0 + sep + token_ids_1 + sep def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is not None: return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] return [1] + ([0] * len(token_ids_0)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. An FNet sequence pair mask has the following format: : ``` 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, out_vocab_file) elif not os.path.isfile(self.vocab_file): with open(out_vocab_file, "wb") as fi: content_spiece_model = self.sp_model.serialized_model_proto() fi.write(content_spiece_model) return (out_vocab_file,)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/instructblip/__init__.py
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _import_structure = { "configuration_instructblip": [ "INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "InstructBlipConfig", "InstructBlipQFormerConfig", "InstructBlipVisionConfig", ], "processing_instructblip": ["InstructBlipProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_instructblip"] = [ "INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "InstructBlipQFormerModel", "InstructBlipPreTrainedModel", "InstructBlipForConditionalGeneration", "InstructBlipVisionModel", ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/instructblip/configuration_instructblip.py
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ InstructBLIP model configuration""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING logger = logging.get_logger(__name__) INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP = { "Salesforce/instruct-blip-flan-t5": "https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json", } class InstructBlipVisionConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`InstructBlipVisionModel`]. It is used to instantiate a InstructBLIP vision encoder according to the specified arguments, defining the model architecture. Instantiating a configuration defaults will yield a similar configuration to that of the InstructBLIP [Salesforce/instruct-blip-flan-t5](https://huggingface.co/Salesforce/instruct-blip-flan-t5) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 1408): Dimensionality of the encoder layers and the pooler layer. intermediate_size (`int`, *optional*, defaults to 6144): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. num_hidden_layers (`int`, *optional*, defaults to 39): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. image_size (`int`, *optional*, defaults to 224): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to 14): The size (resolution) of each patch. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported. to 1e-5): The epsilon used by the layer normalization layers. layer_norm_eps (`float`, *optional*, defaults to 1e-6): The epsilon used by the layer normalization layers. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 1e-10): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. qkv_bias (`bool`, *optional*, defaults to `True`): Whether to add a bias to the queries and values in the self-attention layers. Example: ```python >>> from transformers import InstructBlipVisionConfig, InstructBlipVisionModel >>> # Initializing a InstructBlipVisionConfig with Salesforce/instruct-blip-flan-t5 style configuration >>> configuration = InstructBlipVisionConfig() >>> # Initializing a InstructBlipVisionModel (with random weights) from the Salesforce/instruct-blip-flan-t5 style configuration >>> model = InstructBlipVisionModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "instructblip_vision_model" def __init__( self, hidden_size=1408, intermediate_size=6144, num_hidden_layers=39, num_attention_heads=16, image_size=224, patch_size=14, hidden_act="gelu", layer_norm_eps=1e-6, attention_dropout=0.0, initializer_range=1e-10, qkv_bias=True, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.patch_size = patch_size self.image_size = image_size self.initializer_range = initializer_range self.attention_dropout = attention_dropout self.layer_norm_eps = layer_norm_eps self.hidden_act = hidden_act self.qkv_bias = qkv_bias @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": cls._set_token_in_kwargs(kwargs) config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("model_type") == "instructblip": config_dict = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(config_dict, **kwargs) class InstructBlipQFormerConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`InstructBlipQFormerModel`]. It is used to instantiate a InstructBLIP Querying Transformer (Q-Former) model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the InstructBLIP [Salesforce/instruct-blip-flan-t5](https://huggingface.co/Salesforce/instruct-blip-flan-t5) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Note that [`InstructBlipQFormerModel`] is very similar to [`BertLMHeadModel`] with interleaved cross-attention. Args: vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the Q-Former model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling the model. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. position_embedding_type (`str`, *optional*, defaults to `"absolute"`): Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). cross_attention_frequency (`int`, *optional*, defaults to 2): The frequency of adding cross-attention to the Transformer layers. encoder_hidden_size (`int`, *optional*, defaults to 1408): The hidden size of the hidden states for cross-attention. Examples: ```python >>> from transformers import InstructBlipQFormerConfig, InstructBlipQFormerModel >>> # Initializing a InstructBLIP Salesforce/instruct-blip-flan-t5 style configuration >>> configuration = InstructBlipQFormerConfig() >>> # Initializing a model (with random weights) from the Salesforce/instruct-blip-flan-t5 style configuration >>> model = InstructBlipQFormerModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "instructblip_qformer" def __init__( self, vocab_size=30522, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=0, position_embedding_type="absolute", cross_attention_frequency=2, encoder_hidden_size=1408, **kwargs, ): super().__init__(pad_token_id=pad_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.position_embedding_type = position_embedding_type self.cross_attention_frequency = cross_attention_frequency self.encoder_hidden_size = encoder_hidden_size @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": cls._set_token_in_kwargs(kwargs) config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("model_type") == "instructblip": config_dict = config_dict["qformer_config"] if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(config_dict, **kwargs) class InstructBlipConfig(PretrainedConfig): r""" [`InstructBlipConfig`] is the configuration class to store the configuration of a [`InstructBlipForConditionalGeneration`]. It is used to instantiate a InstructBLIP model according to the specified arguments, defining the vision model, Q-Former model and language model configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the InstructBLIP [Salesforce/instruct-blip-flan-t5](https://huggingface.co/Salesforce/instruct-blip-flan-t5) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vision_config (`dict`, *optional*): Dictionary of configuration options used to initialize [`InstructBlipVisionConfig`]. qformer_config (`dict`, *optional*): Dictionary of configuration options used to initialize [`InstructBlipQFormerConfig`]. text_config (`dict`, *optional*): Dictionary of configuration options used to initialize any [`PretrainedConfig`]. num_query_tokens (`int`, *optional*, defaults to 32): The number of query tokens passed through the Transformer. kwargs (*optional*): Dictionary of keyword arguments. Example: ```python >>> from transformers import ( ... InstructBlipVisionConfig, ... InstructBlipQFormerConfig, ... OPTConfig, ... InstructBlipConfig, ... InstructBlipForConditionalGeneration, ... ) >>> # Initializing a InstructBlipConfig with Salesforce/instruct-blip-flan-t5 style configuration >>> configuration = InstructBlipConfig() >>> # Initializing a InstructBlipForConditionalGeneration (with random weights) from the Salesforce/instruct-blip-flan-t5 style configuration >>> model = InstructBlipForConditionalGeneration(configuration) >>> # Accessing the model configuration >>> configuration = model.config >>> # We can also initialize a InstructBlipConfig from a InstructBlipVisionConfig, InstructBlipQFormerConfig and any PretrainedConfig >>> # Initializing InstructBLIP vision, InstructBLIP Q-Former and language model configurations >>> vision_config = InstructBlipVisionConfig() >>> qformer_config = InstructBlipQFormerConfig() >>> text_config = OPTConfig() >>> config = InstructBlipConfig.from_text_vision_configs(vision_config, qformer_config, text_config) ```""" model_type = "instructblip" is_composition = True def __init__(self, vision_config=None, qformer_config=None, text_config=None, num_query_tokens=32, **kwargs): super().__init__(**kwargs) if vision_config is None: vision_config = {} logger.info("vision_config is None. initializing the InstructBlipVisionConfig with default values.") if qformer_config is None: qformer_config = {} logger.info("qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.") if text_config is None: text_config = {} logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`).") self.vision_config = InstructBlipVisionConfig(**vision_config) self.qformer_config = InstructBlipQFormerConfig(**qformer_config) text_model_type = text_config["model_type"] if "model_type" in text_config else "opt" self.text_config = CONFIG_MAPPING[text_model_type](**text_config) self.tie_word_embeddings = self.text_config.tie_word_embeddings self.is_encoder_decoder = self.text_config.is_encoder_decoder self.num_query_tokens = num_query_tokens self.qformer_config.encoder_hidden_size = self.vision_config.hidden_size self.use_decoder_only_language_model = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES self.initializer_factor = 1.0 self.initializer_range = 0.02 @classmethod def from_vision_qformer_text_configs( cls, vision_config: InstructBlipVisionConfig, qformer_config: InstructBlipQFormerConfig, text_config: PretrainedConfig, **kwargs, ): r""" Instantiate a [`InstructBlipConfig`] (or a derived class) from a InstructBLIP vision model, Q-Former and language model configurations. Returns: [`InstructBlipConfig`]: An instance of a configuration object """ return cls( vision_config=vision_config.to_dict(), qformer_config=qformer_config.to_dict(), text_config=text_config.to_dict(), **kwargs, ) def to_dict(self): """ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. Returns: `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, """ output = copy.deepcopy(self.__dict__) output["vision_config"] = self.vision_config.to_dict() output["qformer_config"] = self.qformer_config.to_dict() output["text_config"] = self.text_config.to_dict() output["model_type"] = self.__class__.model_type return output
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/instructblip/modeling_instructblip.py
# coding=utf-8 # Copyright 2023 The Salesforce Authors and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch InstructBLIP model.""" import math from dataclasses import dataclass from typing import Any, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPastAndCrossAttentions, BaseModelOutputWithPooling, BaseModelOutputWithPoolingAndCrossAttentions, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ..auto import AutoModelForCausalLM, AutoModelForSeq2SeqLM from .configuration_instructblip import InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "Salesforce/instructblip-flan-t5-xl" INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [ "Salesforce/instructblip-flan-t5-xl", # See all InstructBLIP models at https://huggingface.co/models?filter=instructblip ] @dataclass # Copied from transformers.models.blip_2.modeling_blip_2.Blip2ForConditionalGenerationModelOutput with Blip2->InstructBlip class InstructBlipForConditionalGenerationModelOutput(ModelOutput): """ Class defining the outputs of [`InstructBlipForConditionalGeneration`]. Args: loss (`torch.FloatTensor`, *optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): Language modeling loss from the language model. logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head of the language model. vision_outputs (`BaseModelOutputWithPooling`): Outputs of the vision encoder. qformer_outputs (`BaseModelOutputWithPoolingAndCrossAttentions`): Outputs of the Q-Former (Querying Transformer). language_model_outputs (`CausalLMOutputWithPast` or `Seq2SeqLMOutput`): Outputs of the language model. """ loss: Optional[Tuple[torch.FloatTensor]] = None logits: Optional[Tuple[torch.FloatTensor]] = None vision_outputs: Optional[torch.FloatTensor] = None qformer_outputs: Optional[Tuple[torch.FloatTensor]] = None language_model_outputs: Optional[Tuple[torch.FloatTensor]] = None def to_tuple(self) -> Tuple[Any]: return tuple( self[k] if k not in ["vision_outputs", "qformer_outputs", "language_model_outputs"] else getattr(self, k).to_tuple() for k in self.keys() ) # Copied from transformers.models.blip.modeling_blip.BlipVisionEmbeddings with Blip->InstructBlip class InstructBlipVisionEmbeddings(nn.Module): def __init__(self, config: InstructBlipVisionConfig): super().__init__() self.config = config self.embed_dim = config.hidden_size self.image_size = config.image_size self.patch_size = config.patch_size self.class_embedding = nn.Parameter(torch.randn(1, 1, self.embed_dim)) self.patch_embedding = nn.Conv2d( in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size ) self.num_patches = (self.image_size // self.patch_size) ** 2 self.num_positions = self.num_patches + 1 self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim)) def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: batch_size = pixel_values.shape[0] target_dtype = self.patch_embedding.weight.dtype patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid] patch_embeds = patch_embeds.flatten(2).transpose(1, 2) class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype) embeddings = torch.cat([class_embeds, patch_embeds], dim=1) embeddings = embeddings + self.position_embedding[:, : embeddings.size(1), :].to(target_dtype) return embeddings # Copied from transformers.models.blip_2.modeling_blip_2.Blip2Attention with Blip2->InstructBlip class InstructBlipAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config): super().__init__() self.config = config self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {self.num_heads})." ) self.scale = self.head_dim**-0.5 self.dropout = nn.Dropout(config.attention_dropout) # small tweak here compared to CLIP, no bias here self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=False) if config.qkv_bias: q_bias = nn.Parameter(torch.zeros(self.embed_dim)) v_bias = nn.Parameter(torch.zeros(self.embed_dim)) else: q_bias = None v_bias = None if q_bias is not None: qkv_bias = torch.cat((q_bias, torch.zeros_like(v_bias, requires_grad=False), v_bias)) self.qkv.bias = nn.Parameter(qkv_bias) self.projection = nn.Linear(self.embed_dim, self.embed_dim) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" bsz, tgt_len, embed_dim = hidden_states.size() mixed_qkv = self.qkv(hidden_states) mixed_qkv = mixed_qkv.reshape(bsz, tgt_len, 3, self.num_heads, embed_dim // self.num_heads).permute( 2, 0, 3, 1, 4 ) query_states, key_states, value_states = mixed_qkv[0], mixed_qkv[1], mixed_qkv[2] # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2)) attention_scores = attention_scores * self.scale # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_states).permute(0, 2, 1, 3) new_context_layer_shape = context_layer.size()[:-2] + (self.embed_dim,) context_layer = context_layer.reshape(new_context_layer_shape) output = self.projection(context_layer) outputs = (output, attention_probs) if output_attentions else (output, None) return outputs # Copied from transformers.models.blip.modeling_blip.BlipMLP class InstructBlipMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.activation_fn = ACT2FN[config.hidden_act] self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = self.fc2(hidden_states) return hidden_states # Copied from transformers.models.blip.modeling_blip.BlipEncoderLayer with Blip->InstructBlip class InstructBlipEncoderLayer(nn.Module): def __init__(self, config: InstructBlipConfig): super().__init__() self.embed_dim = config.hidden_size self.self_attn = InstructBlipAttention(config) self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) self.mlp = InstructBlipMLP(config) self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, output_attentions: Optional[bool] = False, ) -> Tuple[torch.FloatTensor]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. `(config.encoder_attention_heads,)`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.layer_norm1(hidden_states) hidden_states, attn_weights = self.self_attn( hidden_states=hidden_states, head_mask=attention_mask, output_attentions=output_attentions, ) hidden_states = hidden_states + residual residual = hidden_states hidden_states = self.layer_norm2(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = hidden_states + residual outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs class InstructBlipPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = InstructBlipConfig base_model_prefix = "blip" supports_gradient_checkpointing = True _no_split_modules = ["InstructBlipAttention", "InstructBlipQFormerMultiHeadAttention"] _keep_in_fp32_modules = [] # Copied from transformers.models.blip_2.modeling_blip_2.Blip2PreTrainedModel._init_weights with Blip2->InstructBlip def _init_weights(self, module): """Initialize the weights""" factor = self.config.initializer_range if isinstance(module, nn.Conv2d) or isinstance(module, nn.Embedding) or isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=factor) if hasattr(module, "bias") and module.bias is not None: module.bias.data.zero_() if isinstance(module, InstructBlipVisionEmbeddings): if hasattr(self.config, "vision_config"): factor = self.config.vision_config.initializer_range nn.init.trunc_normal_(module.position_embedding, mean=0.0, std=factor) nn.init.trunc_normal_(module.class_embedding, mean=0.0, std=factor) elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, InstructBlipEncoder): module.gradient_checkpointing = value INSTRUCTBLIP_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`InstructBlipConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ INSTRUCTBLIP_VISION_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`InstructBlipProcessor`]. See [`InstructBlipProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ INSTRUCTBLIP_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`InstructBlipProcessor`]. See [`InstructBlipProcessor.__call__`] for details. qformer_input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of input sequence tokens in the vocabulary of the Q-Former. Input tokens can optionally be provided to serve as text prompt, which the Q-Former model will encode. Indices can be obtained using [`InstructBlipProcessor`]. See [`InstructBlipProcessor.__call__`] for details. [What are input IDs?](../glossary#input-ids) qformer_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of input sequence tokens in the vocabulary of the language model. Input tokens can optionally be provided to serve as text prompt, which the language model can continue. Indices can be obtained using [`InstructBlipProcessor`]. See [`InstructBlipProcessor.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary of the language model. Only relevant in case an encoder-decoder language model (like T5) is used. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. Only relevant in case an encoder-decoder language model (like T5) is used. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ # Copied from transformers.models.blip.modeling_blip.BlipEncoder with Blip->InstructBlip class InstructBlipEncoder(nn.Module): """ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a [`InstructBlipEncoderLayer`]. Args: config (`InstructBlipConfig`): The corresponding vision configuration for the `InstructBlipEncoder`. """ def __init__(self, config: InstructBlipConfig): super().__init__() self.config = config self.layers = nn.ModuleList([InstructBlipEncoderLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, inputs_embeds, attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: r""" Args: inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Embedded representation of the inputs. Should be float, not int tokens. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None hidden_states = inputs_embeds for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(encoder_layer), hidden_states, attention_mask, ) else: layer_outputs = encoder_layer( hidden_states, attention_mask, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) # Copied from transformers.models.blip.modeling_blip.BlipVisionModel with Blip->InstructBlip, BLIP->INSTRUCTBLIP class InstructBlipVisionModel(InstructBlipPreTrainedModel): main_input_name = "pixel_values" config_class = InstructBlipVisionConfig def __init__(self, config: InstructBlipVisionConfig): super().__init__(config) self.config = config embed_dim = config.hidden_size self.embeddings = InstructBlipVisionEmbeddings(config) self.encoder = InstructBlipEncoder(config) self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) self.post_init() @add_start_docstrings_to_model_forward(INSTRUCTBLIP_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=InstructBlipVisionConfig) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") hidden_states = self.embeddings(pixel_values) encoder_outputs = self.encoder( inputs_embeds=hidden_states, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = encoder_outputs[0] last_hidden_state = self.post_layernorm(last_hidden_state) pooled_output = last_hidden_state[:, 0, :] pooled_output = self.post_layernorm(pooled_output) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) def get_input_embeddings(self): return self.embeddings class InstructBlipQFormerMultiHeadAttention(nn.Module): def __init__(self, config, is_cross_attention=False): super().__init__() self.config = config if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( "The hidden size (%d) is not a multiple of the number of attention heads (%d)" % (config.hidden_size, config.num_attention_heads) ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) if is_cross_attention: self.key = nn.Linear(config.encoder_hidden_size, self.all_head_size) self.value = nn.Linear(config.encoder_hidden_size, self.all_head_size) else: self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) self.save_attention = False def save_attn_gradients(self, attn_gradients): self.attn_gradients = attn_gradients def get_attn_gradients(self): return self.attn_gradients def save_attention_map(self, attention_map): self.attention_map = attention_map def get_attention_map(self): return self.attention_map def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, ): # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention: key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) key_layer = torch.cat([past_key_value[0], key_layer], dim=2) value_layer = torch.cat([past_key_value[1], value_layer], dim=2) else: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) mixed_query_layer = self.query(hidden_states) query_layer = self.transpose_for_scores(mixed_query_layer) past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": seq_length = hidden_states.size()[1] position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility if self.position_embedding_type == "relative_key": relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == "relative_key_query": relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key attention_scores = attention_scores / math.sqrt(self.attention_head_size) attention_scores_dtype = attention_scores.dtype if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in BertModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.Softmax(dim=-1)(attention_scores).to(attention_scores_dtype) if is_cross_attention and self.save_attention: self.save_attention_map(attention_probs) attention_probs.register_hook(self.save_attn_gradients) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs_dropped = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs_dropped = attention_probs_dropped * head_mask context_layer = torch.matmul(attention_probs_dropped, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) outputs = outputs + (past_key_value,) return outputs # Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->InstructBlipQFormer class InstructBlipQFormerSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states # Copied from transformers.models.blip_2.modeling_blip_2.Blip2QFormerAttention with Blip2->InstructBlip class InstructBlipQFormerAttention(nn.Module): def __init__(self, config, is_cross_attention=False): super().__init__() self.attention = InstructBlipQFormerMultiHeadAttention(config, is_cross_attention) self.output = InstructBlipQFormerSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads ) # Prune linear layers self.attention.query = prune_linear_layer(self.attention.query, index) self.attention.key = prune_linear_layer(self.attention.key, index) self.attention.value = prune_linear_layer(self.attention.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: self_outputs = self.attention( hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->InstructBlipQFormer class InstructBlipQFormerIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->InstructBlipQFormer class InstructBlipQFormerOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class InstructBlipQFormerLayer(nn.Module): def __init__(self, config, layer_idx): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = InstructBlipQFormerAttention(config) self.layer_idx = layer_idx if layer_idx % config.cross_attention_frequency == 0: self.crossattention = InstructBlipQFormerAttention(config, is_cross_attention=True) self.has_cross_attention = True else: self.has_cross_attention = False self.intermediate = InstructBlipQFormerIntermediate(config) self.output = InstructBlipQFormerOutput(config) self.intermediate_query = InstructBlipQFormerIntermediate(config) self.output_query = InstructBlipQFormerOutput(config) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, query_length=0, ): # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, past_key_value=self_attn_past_key_value, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] if query_length > 0: query_attention_output = attention_output[:, :query_length, :] if self.has_cross_attention: if encoder_hidden_states is None: raise ValueError("encoder_hidden_states must be given for cross-attention layers") cross_attention_outputs = self.crossattention( query_attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, output_attentions=output_attentions, ) query_attention_output = cross_attention_outputs[0] # add cross attentions if we output attention weights outputs = outputs + cross_attention_outputs[1:-1] layer_output = apply_chunking_to_forward( self.feed_forward_chunk_query, self.chunk_size_feed_forward, self.seq_len_dim, query_attention_output, ) if attention_output.shape[1] > query_length: layer_output_text = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output[:, query_length:, :], ) layer_output = torch.cat([layer_output, layer_output_text], dim=1) else: layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output, ) outputs = (layer_output,) + outputs outputs = outputs + (present_key_value,) return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output def feed_forward_chunk_query(self, attention_output): intermediate_output = self.intermediate_query(attention_output) layer_output = self.output_query(intermediate_output, attention_output) return layer_output # Copied from transformers.models.blip_2.modeling_blip_2.Blip2QFormerEncoder with Blip2->InstructBlip class InstructBlipQFormerEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList( [InstructBlipQFormerLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self.gradient_checkpointing = False def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, use_cache=None, output_attentions=False, output_hidden_states=False, return_dict=True, query_length=0, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions else None next_decoder_cache = () if use_cache else None for i in range(self.config.num_hidden_layers): layer_module = self.layer[i] if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None past_key_value = past_key_values[i] if past_key_values is not None else None if getattr(self.config, "gradient_checkpointing", False) and self.training: if use_cache: logger.warn( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, past_key_value, output_attentions, query_length) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(layer_module), hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, ) else: layer_outputs = layer_module( hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, query_length, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if layer_module.has_cross_attention: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, next_decoder_cache, all_hidden_states, all_self_attentions, all_cross_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) class InstructBlipQFormerEmbeddings(nn.Module): """Construct the embeddings from word and position embeddings.""" def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") self.config = config def forward( self, input_ids=None, position_ids=None, query_embeds=None, past_key_values_length=0, ): if input_ids is not None: seq_length = input_ids.size()[1] else: seq_length = 0 if position_ids is None: position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length].clone() if input_ids is not None: embeddings = self.word_embeddings(input_ids) if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids.to(embeddings.device)) embeddings = embeddings + position_embeddings if query_embeds is not None: embeddings = torch.cat((query_embeds, embeddings), dim=1) else: embeddings = query_embeds embeddings = embeddings.to(self.layernorm.weight.dtype) embeddings = self.layernorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class InstructBlipQFormerModel(InstructBlipPreTrainedModel): """ Querying Transformer (Q-Former), used in InstructBLIP. Slightly modified from BLIP-2 as it also takes the instruction as input. """ def __init__(self, config: InstructBlipQFormerConfig): super().__init__(config) self.config = config self.embeddings = InstructBlipQFormerEmbeddings(config) self.encoder = InstructBlipQFormerEncoder(config) self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) def get_extended_attention_mask( self, attention_mask: torch.Tensor, input_shape: Tuple[int], device: torch.device, has_query: bool = False, ) -> torch.Tensor: """ Makes broadcastable attention and causal masks so that future and masked tokens are ignored. Arguments: attention_mask (`torch.Tensor`): Mask with ones indicating tokens to attend to, zeros for tokens to ignore. input_shape (`Tuple[int]`): The shape of the input to the model. device: (`torch.device`): The device of the input to the model. Returns: `torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`. """ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. if attention_mask.dim() == 3: extended_attention_mask = attention_mask[:, None, :, :] elif attention_mask.dim() == 2: # Provided a padding mask of dimensions [batch_size, seq_length] # - the model is an encoder, so make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length] extended_attention_mask = attention_mask[:, None, None, :] else: raise ValueError( f"Wrong shape for input_ids (shape {input_shape}) or attention_mask (shape {attention_mask.shape})", ) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 return extended_attention_mask def forward( self, input_ids, attention_mask=None, position_ids=None, query_embeds=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of: shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is None and query_embeds is None: raise ValueError("You have to specify query_embeds when input_ids is None") # past_key_values_length past_key_values_length = ( past_key_values[0][0].shape[2] - self.config.query_length if past_key_values is not None else 0 ) query_length = query_embeds.shape[1] if query_embeds is not None else 0 embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, query_embeds=query_embeds, past_key_values_length=past_key_values_length, ) input_shape = embedding_output.size()[:-1] batch_size, seq_length = input_shape device = embedding_output.device if attention_mask is None: attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape, device) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_hidden_states is not None: if type(encoder_hidden_states) == list: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size() else: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if type(encoder_attention_mask) == list: encoder_extended_attention_mask = [self.invert_attention_mask(mask) for mask in encoder_attention_mask] elif encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, query_length=query_length, ) sequence_output = encoder_outputs[0] pooled_output = sequence_output[:, 0, :] if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) @add_start_docstrings( """ InstructBLIP Model for generating text given an image and an optional text prompt. The model consists of a vision encoder, Querying Transformer (Q-Former) and a language model. One can optionally pass `input_ids` to the model, which serve as a text prompt, to make the language model continue the prompt. Otherwise, the language model starts generating text from the [BOS] (beginning-of-sequence) token. """, INSTRUCTBLIP_START_DOCSTRING, ) class InstructBlipForConditionalGeneration(InstructBlipPreTrainedModel): config_class = InstructBlipConfig main_input_name = "pixel_values" def __init__(self, config: InstructBlipConfig): super().__init__(config) self.vision_model = InstructBlipVisionModel(config.vision_config) self.query_tokens = nn.Parameter(torch.zeros(1, config.num_query_tokens, config.qformer_config.hidden_size)) self.qformer = InstructBlipQFormerModel(config.qformer_config) self.language_projection = nn.Linear(config.qformer_config.hidden_size, config.text_config.hidden_size) if config.use_decoder_only_language_model: language_model = AutoModelForCausalLM.from_config(config.text_config) else: language_model = AutoModelForSeq2SeqLM.from_config(config.text_config) if language_model._no_split_modules is not None: self._no_split_modules.extend(language_model._no_split_modules) if language_model._keep_in_fp32_modules is not None: self._keep_in_fp32_modules.extend(language_model._keep_in_fp32_modules) self.language_model = language_model # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.language_model.get_input_embeddings() def set_input_embeddings(self, value): self.language_model.set_input_embeddings(value) def set_output_embeddings(self, new_embeddings): self.language_model.set_output_embeddings(new_embeddings) def get_output_embeddings(self) -> nn.Module: return self.language_model.get_output_embeddings() def get_encoder(self): return self.language_model.get_encoder() def get_decoder(self): return self.language_model.get_decoder() def _tie_weights(self): if not self.config.use_decoder_only_language_model: self.language_model.encoder.embed_tokens = self.language_model.shared self.language_model.decoder.embed_tokens = self.language_model.shared def _preprocess_accelerate(self): r""" Some pre-processing hacks to make the model `accelerate` compatible. Check https://github.com/huggingface/transformers/pull/21707 for more details. """ hf_device_map = self.hf_device_map if len(hf_device_map) > 1 and "language_model" not in hf_device_map and torch.cuda.device_count() > 1: # warn users about unexpected behavior when using multi-GPU + InstructBLIP + `accelerate`. logger.warning( "The `language_model` is not in the `hf_device_map` dictionary and you are running your script" " in a multi-GPU environment. this may lead to unexpected behavior when using `accelerate`." " Please pass a `device_map` that contains `language_model` to remove this warning." " Please refer to https://github.com/huggingface/blog/blob/main/accelerate-large-models.md for" " more details on creating a `device_map` for large models.", ) if hasattr(self.language_model, "_hf_hook"): self.language_model._hf_hook.io_same_device = True # For `generate` compatibility @add_start_docstrings_to_model_forward(INSTRUCTBLIP_INPUTS_DOCSTRING) @replace_return_docstrings( output_type=InstructBlipForConditionalGenerationModelOutput, config_class=InstructBlipVisionConfig ) def forward( self, pixel_values: torch.FloatTensor, qformer_input_ids: torch.FloatTensor, qformer_attention_mask: Optional[torch.LongTensor] = None, input_ids: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, labels: Optional[torch.LongTensor] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, InstructBlipForConditionalGenerationModelOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` Returns: Examples: ```python >>> from transformers import InstructBlipProcessor, InstructBlipForConditionalGeneration >>> import torch >>> from PIL import Image >>> import requests >>> model = InstructBlipForConditionalGeneration.from_pretrained("Salesforce/instructblip-vicuna-7b") >>> processor = InstructBlipProcessor.from_pretrained("Salesforce/instructblip-vicuna-7b") >>> device = "cuda" if torch.cuda.is_available() else "cpu" >>> model.to(device) # doctest: +IGNORE_RESULT >>> url = "https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg" >>> image = Image.open(requests.get(url, stream=True).raw).convert("RGB") >>> prompt = "What is unusual about this image?" >>> inputs = processor(images=image, text=prompt, return_tensors="pt").to(device) >>> outputs = model.generate( ... **inputs, ... do_sample=False, ... num_beams=5, ... max_length=256, ... min_length=1, ... top_p=0.9, ... repetition_penalty=1.5, ... length_penalty=1.0, ... temperature=1, ... ) >>> generated_text = processor.batch_decode(outputs, skip_special_tokens=True)[0].strip() >>> print(generated_text) The unusual aspect of this image is that a man is ironing clothes on the back of a yellow SUV, which is parked in the middle of a busy city street. This is an unconventional approach to ironing clothes, as it requires the man to balance himself and his ironing equipment on top of the vehicle while navigating through traffic. Additionally, the presence of taxis and other vehicles in the scene further emphasizes the unusual nature of this situation. ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict # step 1: forward the images through the vision encoder, # to get image embeddings of shape (batch_size, seq_len, hidden_size) vision_outputs = self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) image_embeds = vision_outputs[0] # step 2: forward the query tokens through the QFormer, using the image embeddings for cross-attention image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long, device=image_embeds.device) # difference with BLIP-2 here: we also feed the instruction prompt to the Q-Former query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1) query_attention_mask = torch.ones(query_tokens.size()[:-1], dtype=torch.long, device=image_embeds.device) if qformer_attention_mask is None: qformer_attention_mask = torch.ones_like(qformer_input_ids) qformer_attention_mask = torch.cat([query_attention_mask, qformer_attention_mask], dim=1) query_outputs = self.qformer( input_ids=qformer_input_ids, attention_mask=qformer_attention_mask, query_embeds=query_tokens, encoder_hidden_states=image_embeds, encoder_attention_mask=image_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) query_output = query_outputs[0][:, : query_tokens.size(1), :] # step 3: use the language model, conditioned on the query outputs and the prompt language_model_inputs = self.language_projection(query_output) language_model_attention_mask = torch.ones( language_model_inputs.size()[:-1], dtype=torch.long, device=language_model_inputs.device ) inputs_embeds = self.language_model.get_input_embeddings()(input_ids) inputs_embeds = torch.cat([language_model_inputs, inputs_embeds.to(language_model_inputs.device)], dim=1) if attention_mask is None: attention_mask = torch.ones_like(input_ids) attention_mask = torch.cat([language_model_attention_mask.to(attention_mask.device), attention_mask], dim=1) if self.config.use_decoder_only_language_model: outputs = self.language_model( inputs_embeds=inputs_embeds, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) logits = outputs.logits if return_dict else outputs[0] loss = None # we compute the loss here since we need to take into account the sequence length of the query embeds if labels is not None: labels = labels.to(logits.device) logits = logits[:, -labels.size(1) :, :] # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous().to(logits.device) # Flatten the tokens loss_fct = CrossEntropyLoss(reduction="mean") loss = loss_fct(shift_logits.view(-1, self.config.text_config.vocab_size), shift_labels.view(-1)) else: outputs = self.language_model( inputs_embeds=inputs_embeds, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, labels=labels, ) loss = outputs.loss if return_dict else outputs[0] logits = outputs.logits if return_dict else outputs[1] if not return_dict: output = (logits, vision_outputs, query_outputs, outputs) return ((loss,) + output) if loss is not None else output return InstructBlipForConditionalGenerationModelOutput( loss=loss, logits=logits, vision_outputs=vision_outputs, qformer_outputs=query_outputs, language_model_outputs=outputs, ) @torch.no_grad() def generate( self, pixel_values: torch.FloatTensor, qformer_input_ids: Optional[torch.LongTensor] = None, qformer_attention_mask: Optional[torch.LongTensor] = None, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.LongTensor] = None, **generate_kwargs, ) -> torch.LongTensor: """ Overrides `generate` function to be able to use the model as a conditional generator. Args: pixel_values (`torch.FloatTensor` of shape (batch_size, num_channels, height, width)): Input images to be processed. qformer_input_ids (`torch.LongTensor` of shape (batch_size, sequence_length), *optional*): The sequence used as a prompt to be fed to the Q-Former module. qformer_attention_mask (`torch.LongTensor` of shape (batch_size, sequence_length), *optional*): Mask to avoid performing attention on padding token indices. input_ids (`torch.LongTensor` of shape (batch_size, sequence_length), *optional*): The sequence used as a prompt for the generation. attention_mask (`torch.LongTensor` of shape (batch_size, sequence_length), *optional*): Mask to avoid performing attention on padding token indices. Returns: captions (list): A list of strings of length batch_size * num_captions. """ if hasattr(self, "hf_device_map"): # preprocess for `accelerate` self._preprocess_accelerate() batch_size = pixel_values.shape[0] image_embeds = self.vision_model(pixel_values, return_dict=True).last_hidden_state image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long, device=image_embeds.device) query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1) query_attention_mask = torch.ones(query_tokens.size()[:-1], dtype=torch.long, device=image_embeds.device) if qformer_attention_mask is None: qformer_attention_mask = torch.ones_like(qformer_input_ids) qformer_attention_mask = torch.cat([query_attention_mask, qformer_attention_mask], dim=1) query_outputs = self.qformer( input_ids=qformer_input_ids, attention_mask=qformer_attention_mask, query_embeds=query_tokens, encoder_hidden_states=image_embeds, encoder_attention_mask=image_attention_mask, return_dict=True, ) query_output = query_outputs.last_hidden_state[:, : query_tokens.size(1), :] language_model_inputs = self.language_projection(query_output) language_attention_mask = torch.ones( language_model_inputs.size()[:-1], dtype=torch.long, device=language_model_inputs.device ) if input_ids is None: input_ids = ( torch.LongTensor([[self.config.text_config.bos_token_id]]) .repeat(batch_size, 1) .to(image_embeds.device) ) if attention_mask is None: attention_mask = torch.ones_like(input_ids) attention_mask = torch.cat([language_attention_mask, attention_mask.to(language_attention_mask.device)], dim=1) # concatenate query embeddings with prompt embeddings inputs_embeds = self.get_input_embeddings()(input_ids) inputs_embeds = torch.cat([language_model_inputs, inputs_embeds.to(language_model_inputs.device)], dim=1) outputs = self.language_model.generate( inputs_embeds=inputs_embeds, attention_mask=attention_mask, **generate_kwargs, ) # the InstructBLIP authors used inconsistent tokenizer/model files during training, # with the tokenizer's bos token being set to </s> which has ID=2, # whereas the model's text config has bos token id = 0 if self.config.text_config.architectures[0] == "LLaMAForCausalLM": outputs[outputs == 0] = 2 return outputs
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/instructblip/processing_instructblip.py
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Processor class for InstructBLIP. Largely copy of Blip2Processor with addition of a tokenizer for the Q-Former. """ import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class InstructBlipProcessor(ProcessorMixin): r""" Constructs an InstructBLIP processor which wraps a BLIP image processor and a LLaMa/T5 tokenizer into a single processor. [`InstructBlipProcessor`] offers all the functionalities of [`BlipImageProcessor`] and [`AutoTokenizer`]. See the docstring of [`~BlipProcessor.__call__`] and [`~BlipProcessor.decode`] for more information. Args: image_processor (`BlipImageProcessor`): An instance of [`BlipImageProcessor`]. The image processor is a required input. tokenizer (`AutoTokenizer`): An instance of ['PreTrainedTokenizer`]. The tokenizer is a required input. qformer_tokenizer (`AutoTokenizer`): An instance of ['PreTrainedTokenizer`]. The Q-Former tokenizer is a required input. """ attributes = ["image_processor", "tokenizer"] image_processor_class = "BlipImageProcessor" tokenizer_class = "AutoTokenizer" def __init__(self, image_processor, tokenizer, qformer_tokenizer): super().__init__(image_processor, tokenizer) # add QFormer tokenizer self.qformer_tokenizer = qformer_tokenizer def __call__( self, images: ImageInput = None, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_token_type_ids: bool = False, return_length: bool = False, verbose: bool = True, return_tensors: Optional[Union[str, TensorType]] = None, **kwargs, ) -> BatchFeature: """ This method uses [`BlipImageProcessor.__call__`] method to prepare image(s) for the model, and [`BertTokenizerFast.__call__`] to prepare text for the model. Please refer to the docstring of the above two methods for more information. """ if images is None and text is None: raise ValueError("You have to specify at least images or text.") encoding = BatchFeature() if text is not None: text_encoding = self.tokenizer( text=text, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_token_type_ids=return_token_type_ids, return_length=return_length, verbose=verbose, return_tensors=return_tensors, **kwargs, ) encoding.update(text_encoding) qformer_text_encoding = self.qformer_tokenizer( text=text, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_token_type_ids=return_token_type_ids, return_length=return_length, verbose=verbose, return_tensors=return_tensors, **kwargs, ) encoding["qformer_input_ids"] = qformer_text_encoding.pop("input_ids") encoding["qformer_attention_mask"] = qformer_text_encoding.pop("attention_mask") if images is not None: image_encoding = self.image_processor(images, return_tensors=return_tensors) encoding.update(image_encoding) return encoding # Copied from transformers.models.blip.processing_blip.BlipProcessor.batch_decode with BertTokenizerFast->PreTrainedTokenizer def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) # Copied from transformers.models.blip.processing_blip.BlipProcessor.decode with BertTokenizerFast->PreTrainedTokenizer def decode(self, *args, **kwargs): """ This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def model_input_names(self): tokenizer_input_names = self.tokenizer.model_input_names image_processor_input_names = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) # overwrite to save the Q-Former tokenizer in a separate folder def save_pretrained(self, save_directory, **kwargs): if os.path.isfile(save_directory): raise ValueError(f"Provided path ({save_directory}) should be a directory, not a file") os.makedirs(save_directory, exist_ok=True) qformer_tokenizer_path = os.path.join(save_directory, "qformer_tokenizer") self.qformer_tokenizer.save_pretrained(qformer_tokenizer_path) return super().save_pretrained(save_directory, **kwargs) # overwrite to load the Q-Former tokenizer from a separate folder @classmethod def from_pretrained(cls, pretrained_model_name_or_path, **kwargs): qformer_tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder="qformer_tokenizer") args = cls._get_arguments_from_pretrained(pretrained_model_name_or_path, **kwargs) args.append(qformer_tokenizer) return cls(*args)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/instructblip/convert_instructblip_original_to_pytorch.py
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Convert InstructBLIP checkpoints from the original repository. URL: https://github.com/salesforce/LAVIS/tree/main/projects/instructblip """ import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, T5Config, T5TokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def load_demo_image(): url = "https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg" image = Image.open(requests.get(url, stream=True).raw).convert("RGB") return image # here we list all keys to be renamed (original name on the left, our name on the right) def create_rename_keys(config): rename_keys = [] # fmt: off # vision encoder rename_keys.append(("visual_encoder.cls_token", "vision_model.embeddings.class_embedding")) rename_keys.append(("visual_encoder.pos_embed", "vision_model.embeddings.position_embedding")) rename_keys.append(("visual_encoder.patch_embed.proj.weight", "vision_model.embeddings.patch_embedding.weight")) rename_keys.append(("visual_encoder.patch_embed.proj.bias", "vision_model.embeddings.patch_embedding.bias")) rename_keys.append(("ln_vision.weight", "vision_model.post_layernorm.weight")) rename_keys.append(("ln_vision.bias", "vision_model.post_layernorm.bias")) for i in range(config.vision_config.num_hidden_layers): rename_keys.append((f"visual_encoder.blocks.{i}.norm1.weight", f"vision_model.encoder.layers.{i}.layer_norm1.weight")) rename_keys.append((f"visual_encoder.blocks.{i}.norm1.bias", f"vision_model.encoder.layers.{i}.layer_norm1.bias")) rename_keys.append((f"visual_encoder.blocks.{i}.norm2.weight", f"vision_model.encoder.layers.{i}.layer_norm2.weight")) rename_keys.append((f"visual_encoder.blocks.{i}.norm2.bias", f"vision_model.encoder.layers.{i}.layer_norm2.bias")) rename_keys.append((f"visual_encoder.blocks.{i}.attn.qkv.weight", f"vision_model.encoder.layers.{i}.self_attn.qkv.weight")) rename_keys.append((f"visual_encoder.blocks.{i}.attn.proj.weight", f"vision_model.encoder.layers.{i}.self_attn.projection.weight",)) rename_keys.append((f"visual_encoder.blocks.{i}.attn.proj.bias", f"vision_model.encoder.layers.{i}.self_attn.projection.bias")) rename_keys.append((f"visual_encoder.blocks.{i}.mlp.fc1.weight", f"vision_model.encoder.layers.{i}.mlp.fc1.weight")) rename_keys.append((f"visual_encoder.blocks.{i}.mlp.fc1.bias", f"vision_model.encoder.layers.{i}.mlp.fc1.bias")) rename_keys.append((f"visual_encoder.blocks.{i}.mlp.fc2.weight", f"vision_model.encoder.layers.{i}.mlp.fc2.weight")) rename_keys.append((f"visual_encoder.blocks.{i}.mlp.fc2.bias", f"vision_model.encoder.layers.{i}.mlp.fc2.bias")) # QFormer rename_keys.append(("Qformer.bert.embeddings.LayerNorm.weight", "qformer.embeddings.layernorm.weight")) rename_keys.append(("Qformer.bert.embeddings.LayerNorm.bias", "qformer.embeddings.layernorm.bias")) # fmt: on return rename_keys def rename_key(dct, old, new): val = dct.pop(old) dct[new] = val def read_in_q_v_bias(state_dict, config): for i in range(config.vision_config.num_hidden_layers): # read in original q and v biases q_bias = state_dict.pop(f"visual_encoder.blocks.{i}.attn.q_bias") v_bias = state_dict.pop(f"visual_encoder.blocks.{i}.attn.v_bias") # next, set bias in the state dict qkv_bias = torch.cat((q_bias, torch.zeros_like(v_bias, requires_grad=False), v_bias)) state_dict[f"vision_model.encoder.layers.{i}.self_attn.qkv.bias"] = qkv_bias def get_blip2_config(model_name): image_size = 364 if "coco" in model_name else 224 vision_config = InstructBlipVisionConfig(image_size=image_size).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: text_config = T5Config.from_pretrained("google/flan-t5-xl", dense_act_fn="gelu", bos_token_id=1).to_dict() elif "t5-xxl" in model_name: text_config = T5Config.from_pretrained("google/flan-t5-xxl", dense_act_fn="gelu", bos_token_id=1).to_dict() elif "vicuna-7b" in model_name: text_config = LlamaConfig.from_pretrained("decapoda-research/llama-7b-hf", vocab_size=32001).to_dict() elif "vicuna-13b" in model_name: text_config = LlamaConfig.from_pretrained("decapoda-research/llama-13b-hf", vocab_size=32001).to_dict() else: raise ValueError("Model name not supported") # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 qformer_config = InstructBlipQFormerConfig(vocab_size=30523).to_dict() config = InstructBlipConfig(vision_config=vision_config, text_config=text_config, qformer_config=qformer_config) return config, image_size @torch.no_grad() def convert_blip2_checkpoint(model_name, pytorch_dump_folder_path=None, push_to_hub=False): """ Copy/paste/tweak model's weights to Transformers design. """ qformer_tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased", truncation_side="left") qformer_tokenizer.add_special_tokens({"bos_token": "[DEC]"}) if "t5" in model_name: tokenizer = T5TokenizerFast.from_pretrained("google/flan-t5-xl", truncation_side="left") elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) tokenizer = LlamaTokenizerFast.from_pretrained( "huggyllama/llama-7b", truncation_side="left", bos_token="</s>", unk_token="</s>" ) tokenizer.add_special_tokens({"pad_token": "[PAD]"}) config, image_size = get_blip2_config(model_name) hf_model = InstructBlipForConditionalGeneration(config).eval() model_name_to_original = { "instructblip-vicuna-7b": ("blip2_vicuna_instruct", "vicuna7b"), "instructblip-vicuna-13b": ("blip2_vicuna_instruct", "vicuna13b"), "instructblip-flan-t5-xl": ("blip2_t5_instruct", "flant5xl"), "instructblip-flan-t5-xxl": ("blip2_t5_instruct", "flant5xxl"), } name, type = model_name_to_original[model_name] # load original model print("Loading original model...") hf_model_device = "cuda:1" if torch.cuda.is_available() else "cpu" lavis_device = "cuda:2" if torch.cuda.is_available() else "cpu" original_model, vis_processors, _ = load_model_and_preprocess( name=name, model_type=type, is_eval=True, device=lavis_device ) original_model.eval() print("Done!") # update state dict keys state_dict = original_model.state_dict() rename_keys = create_rename_keys(config) for src, dest in rename_keys: rename_key(state_dict, src, dest) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): val = state_dict.pop(key) if key.startswith("Qformer.bert"): key = key.replace("Qformer.bert", "qformer") if "attention.self" in key: key = key.replace("self", "attention") if "llm_proj" in key: key = key.replace("llm_proj", "language_projection") if "t5_proj" in key: key = key.replace("t5_proj", "language_projection") if key.startswith("llm_model"): key = key.replace("llm_model", "language_model") if key.startswith("t5"): key = key.replace("t5", "language") state_dict[key] = val # read in qv biases read_in_q_v_bias(state_dict, config) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(state_dict, strict=True) image = load_demo_image() prompt = "What is unusual about this image?" # create processor image_processor = BlipImageProcessor( size={"height": image_size, "width": image_size}, image_mean=OPENAI_CLIP_MEAN, image_std=OPENAI_CLIP_STD ) processor = InstructBlipProcessor( image_processor=image_processor, tokenizer=tokenizer, qformer_tokenizer=qformer_tokenizer, ) inputs = processor(images=image, text=prompt, return_tensors="pt").to(hf_model_device) # make sure processor creates exact same pixel values original_pixel_values = vis_processors["eval"](image).unsqueeze(0).to(lavis_device) pixel_values = inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device), pixel_values) original_model.to(lavis_device) hf_model.to(hf_model_device) with torch.no_grad(): if "vicuna" in model_name: original_logits = original_model({"image": original_pixel_values, "text_input": [prompt]}).logits logits = hf_model(**inputs).logits else: original_logits = original_model( {"image": original_pixel_values, "text_input": [prompt], "text_output": ["\n"]} ).logits label_input_ids = tokenizer("\n", return_tensors="pt").input_ids.to(hf_model_device) labels = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id, -100) logits = hf_model(**inputs, labels=labels).logits print("First values of original logits:", original_logits[0, :3, :3]) print("First values of HF logits:", logits[0, :3, :3]) # assert values assert original_logits.shape == logits.shape atol = 1e-4 if "vicuna" in model_name else 1e-5 assert torch.allclose(original_logits.to(logits.device), logits, atol=atol) print("Looks ok!") print("Generating with original model...") original_outputs = original_model.generate({"image": original_pixel_values, "prompt": prompt}, num_beams=5) # important: we need to cast the weights of the HF model to the appropriate type print("Generating with HF model...") outputs = hf_model.generate( **inputs, do_sample=False, num_beams=5, max_length=256, min_length=1, top_p=0.9, repetition_penalty=1.5, length_penalty=1.0, temperature=1, ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? outputs[outputs == 0] = 2 print("Original generation:", original_outputs) output_text = processor.batch_decode(outputs, skip_special_tokens=True) output_text = [text.strip() for text in output_text] print("HF generation:", output_text) if pytorch_dump_folder_path is not None: processor.save_pretrained(pytorch_dump_folder_path) hf_model.save_pretrained(pytorch_dump_folder_path) if push_to_hub: processor.push_to_hub(f"Salesforce/{model_name}") hf_model.push_to_hub(f"Salesforce/{model_name}") if __name__ == "__main__": parser = argparse.ArgumentParser() choices = [ "instructblip-vicuna-7b", "instructblip-vicuna-13b", "instructblip-flan-t5-xl", "instructblip-flan-t5-xxl", ] parser.add_argument( "--model_name", default="instructblip-flan-t5-xl", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) args = parser.parse_args() convert_blip2_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/lilt/__init__.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _import_structure = { "configuration_lilt": ["LILT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LiltConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_lilt"] = [ "LILT_PRETRAINED_MODEL_ARCHIVE_LIST", "LiltForQuestionAnswering", "LiltForSequenceClassification", "LiltForTokenClassification", "LiltModel", "LiltPreTrainedModel", ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/lilt/configuration_lilt.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ LiLT configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) LILT_PRETRAINED_CONFIG_ARCHIVE_MAP = { "SCUT-DLVCLab/lilt-roberta-en-base": ( "https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json" ), } class LiltConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`LiltModel`]. It is used to instantiate a LiLT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the LiLT [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the LiLT model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`LiltModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. Should be a multiple of 24. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the `token_type_ids` passed when calling [`LiltModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. position_embedding_type (`str`, *optional*, defaults to `"absolute"`): Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). classifier_dropout (`float`, *optional*): The dropout ratio for the classification head. channel_shrink_ratio (`int`, *optional*, defaults to 4): The shrink ratio compared to the `hidden_size` for the channel dimension of the layout embeddings. max_2d_position_embeddings (`int`, *optional*, defaults to 1024): The maximum value that the 2D position embedding might ever be used with. Typically set this to something large just in case (e.g., 1024). Examples: ```python >>> from transformers import LiltConfig, LiltModel >>> # Initializing a LiLT SCUT-DLVCLab/lilt-roberta-en-base style configuration >>> configuration = LiltConfig() >>> # Randomly initializing a model from the SCUT-DLVCLab/lilt-roberta-en-base style configuration >>> model = LiltModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "lilt" def __init__( self, vocab_size=30522, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=0, position_embedding_type="absolute", classifier_dropout=None, channel_shrink_ratio=4, max_2d_position_embeddings=1024, **kwargs, ): super().__init__(pad_token_id=pad_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.position_embedding_type = position_embedding_type self.classifier_dropout = classifier_dropout self.channel_shrink_ratio = channel_shrink_ratio self.max_2d_position_embeddings = max_2d_position_embeddings
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/lilt/modeling_lilt.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch LiLT model.""" import math from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPooling, QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings from .configuration_lilt import LiltConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "LiltConfig" LILT_PRETRAINED_MODEL_ARCHIVE_LIST = [ "SCUT-DLVCLab/lilt-roberta-en-base", # See all LiLT models at https://huggingface.co/models?filter=lilt ] class LiltTextEmbeddings(nn.Module): def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") # End copy self.padding_idx = config.pad_token_id self.position_embeddings = nn.Embedding( config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx ) def forward( self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, ): if position_ids is None: if input_ids is not None: # Create the position ids from the input token ids. Any padded tokens remain padded. position_ids = self.create_position_ids_from_input_ids(input_ids, self.padding_idx).to( input_ids.device ) else: position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds) if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings, position_ids def create_position_ids_from_input_ids(self, input_ids, padding_idx): """ Args: Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. This is modified from fairseq's `utils.make_positions`. x: torch.Tensor x: Returns: torch.Tensor """ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. mask = input_ids.ne(padding_idx).int() incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask)) * mask return incremental_indices.long() + padding_idx def create_position_ids_from_inputs_embeds(self, inputs_embeds): """ Args: We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.: inputs_embeds: torch.Tensor Returns: torch.Tensor """ input_shape = inputs_embeds.size()[:-1] sequence_length = input_shape[1] position_ids = torch.arange( self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device ) return position_ids.unsqueeze(0).expand(input_shape) class LiltLayoutEmbeddings(nn.Module): def __init__(self, config): super().__init__() # we divide the hidden_size by 6 here as there are 6 different layout embeddings, # namely left_position, upper_position, right_position, lower_position, height, width self.x_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.hidden_size // 6) self.y_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.hidden_size // 6) self.h_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.hidden_size // 6) self.w_position_embeddings = nn.Embedding(config.max_2d_position_embeddings, config.hidden_size // 6) self.padding_idx = config.pad_token_id self.box_position_embeddings = nn.Embedding( config.max_position_embeddings, config.hidden_size // config.channel_shrink_ratio, padding_idx=self.padding_idx, ) self.box_linear_embeddings = nn.Linear( in_features=config.hidden_size, out_features=config.hidden_size // config.channel_shrink_ratio ) self.LayerNorm = nn.LayerNorm(config.hidden_size // config.channel_shrink_ratio, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, bbox=None, position_ids=None): try: left_position_embeddings = self.x_position_embeddings(bbox[:, :, 0]) upper_position_embeddings = self.y_position_embeddings(bbox[:, :, 1]) right_position_embeddings = self.x_position_embeddings(bbox[:, :, 2]) lower_position_embeddings = self.y_position_embeddings(bbox[:, :, 3]) except IndexError as e: raise IndexError("The `bbox` coordinate values should be within 0-1000 range.") from e h_position_embeddings = self.h_position_embeddings(bbox[:, :, 3] - bbox[:, :, 1]) w_position_embeddings = self.w_position_embeddings(bbox[:, :, 2] - bbox[:, :, 0]) spatial_position_embeddings = torch.cat( [ left_position_embeddings, upper_position_embeddings, right_position_embeddings, lower_position_embeddings, h_position_embeddings, w_position_embeddings, ], dim=-1, ) spatial_position_embeddings = self.box_linear_embeddings(spatial_position_embeddings) box_position_embeddings = self.box_position_embeddings(position_ids) spatial_position_embeddings = spatial_position_embeddings + box_position_embeddings spatial_position_embeddings = self.LayerNorm(spatial_position_embeddings) spatial_position_embeddings = self.dropout(spatial_position_embeddings) return spatial_position_embeddings class LiltSelfAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.layout_query = nn.Linear( config.hidden_size // config.channel_shrink_ratio, self.all_head_size // config.channel_shrink_ratio ) self.layout_key = nn.Linear( config.hidden_size // config.channel_shrink_ratio, self.all_head_size // config.channel_shrink_ratio ) self.layout_value = nn.Linear( config.hidden_size // config.channel_shrink_ratio, self.all_head_size // config.channel_shrink_ratio ) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = position_embedding_type or getattr( config, "position_embedding_type", "absolute" ) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) self.channel_shrink_ratio = config.channel_shrink_ratio def transpose_for_scores(self, x, r=1): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size // r) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states, layout_inputs, attention_mask=None, head_mask=None, output_attentions=False, ): layout_value_layer = self.transpose_for_scores(self.layout_value(layout_inputs), r=self.channel_shrink_ratio) layout_key_layer = self.transpose_for_scores(self.layout_key(layout_inputs), r=self.channel_shrink_ratio) layout_query_layer = self.transpose_for_scores(self.layout_query(layout_inputs), r=self.channel_shrink_ratio) mixed_query_layer = self.query(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) layout_attention_scores = torch.matmul(layout_query_layer, layout_key_layer.transpose(-1, -2)) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": seq_length = hidden_states.size()[1] position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility if self.position_embedding_type == "relative_key": relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == "relative_key_query": relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key tmp_attention_scores = attention_scores / math.sqrt(self.attention_head_size) tmp_layout_attention_scores = layout_attention_scores / math.sqrt( self.attention_head_size // self.channel_shrink_ratio ) attention_scores = tmp_attention_scores + tmp_layout_attention_scores layout_attention_scores = tmp_layout_attention_scores + tmp_attention_scores if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in BertModel forward() function) layout_attention_scores = layout_attention_scores + attention_mask # Normalize the attention scores to probabilities. layout_attention_probs = nn.Softmax(dim=-1)(layout_attention_scores) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. layout_attention_probs = self.dropout(layout_attention_probs) # Mask heads if we want to if head_mask is not None: layout_attention_probs = layout_attention_probs * head_mask layout_context_layer = torch.matmul(layout_attention_probs, layout_value_layer) layout_context_layer = layout_context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = layout_context_layer.size()[:-2] + (self.all_head_size // self.channel_shrink_ratio,) layout_context_layer = layout_context_layer.view(*new_context_layer_shape) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in RobertaModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.Softmax(dim=-1)(attention_scores) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = ( ((context_layer, layout_context_layer), attention_probs) if output_attentions else ((context_layer, layout_context_layer),) ) return outputs # Copied from transformers.models.bert.modeling_bert.BertSelfOutput class LiltSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class LiltAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() self.self = LiltSelfAttention(config, position_embedding_type=position_embedding_type) self.output = LiltSelfOutput(config) self.pruned_heads = set() ori_hidden_size = config.hidden_size config.hidden_size = config.hidden_size // config.channel_shrink_ratio self.layout_output = LiltSelfOutput(config) config.hidden_size = ori_hidden_size # Copied from transformers.models.bert.modeling_bert.BertAttention.prune_heads def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, layout_inputs: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: self_outputs = self.self( hidden_states, layout_inputs, attention_mask, head_mask, output_attentions, ) attention_output = self.output(self_outputs[0][0], hidden_states) layout_attention_output = self.layout_output(self_outputs[0][1], layout_inputs) outputs = ((attention_output, layout_attention_output),) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.bert.modeling_bert.BertIntermediate class LiltIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOutput class LiltOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class LiltLayer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = LiltAttention(config) self.intermediate = LiltIntermediate(config) self.output = LiltOutput(config) ori_hidden_size = config.hidden_size ori_intermediate_size = config.intermediate_size config.hidden_size = config.hidden_size // config.channel_shrink_ratio config.intermediate_size = config.intermediate_size // config.channel_shrink_ratio self.layout_intermediate = LiltIntermediate(config) self.layout_output = LiltOutput(config) config.hidden_size = ori_hidden_size config.intermediate_size = ori_intermediate_size def forward( self, hidden_states: torch.Tensor, layout_inputs: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: self_attention_outputs = self.attention( hidden_states, layout_inputs, attention_mask, head_mask, output_attentions=output_attentions, ) attention_output = self_attention_outputs[0][0] layout_attention_output = self_attention_outputs[0][1] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) layout_layer_output = apply_chunking_to_forward( self.layout_feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, layout_attention_output ) outputs = ((layer_output, layout_layer_output),) + outputs return outputs # Copied from transformers.models.bert.modeling_bert.BertLayer.feed_forward_chunk def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output def layout_feed_forward_chunk(self, attention_output): intermediate_output = self.layout_intermediate(attention_output) layer_output = self.layout_output(intermediate_output, attention_output) return layer_output class LiltEncoder(nn.Module): # Copied from transformers.models.bert.modeling_bert.BertEncoder.__init__ with Bert->Lilt def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([LiltLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, layout_inputs: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple[torch.Tensor], BaseModelOutput]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(layer_module), hidden_states, layout_inputs, attention_mask, layer_head_mask, ) else: layer_outputs = layer_module( hidden_states, layout_inputs, attention_mask, layer_head_mask, output_attentions, ) hidden_states = layer_outputs[0][0] layout_inputs = layer_outputs[0][1] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, all_hidden_states, all_self_attentions, ] if v is not None ) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) # Copied from transformers.models.bert.modeling_bert.BertPooler class LiltPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output # Copied from transformers.models.roberta.modeling_roberta.RobertaPreTrainedModel with Roberta->Lilt,roberta->lilt class LiltPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = LiltConfig base_model_prefix = "lilt" supports_gradient_checkpointing = True _no_split_modules = [] # Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, LiltEncoder): module.gradient_checkpointing = value LILT_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`LiltConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ LILT_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) bbox (`torch.LongTensor` of shape `({0}, 4)`, *optional*): Bounding boxes of each input sequence tokens. Selected in the range `[0, config.max_2d_position_embeddings-1]`. Each bounding box should be a normalized version in (x0, y0, x1, y1) format, where (x0, y0) corresponds to the position of the upper left corner in the bounding box, and (x1, y1) represents the position of the lower right corner. See [Overview](#Overview) for normalization. attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare LiLT Model transformer outputting raw hidden-states without any specific head on top.", LILT_START_DOCSTRING, ) class LiltModel(LiltPreTrainedModel): def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = LiltTextEmbeddings(config) self.layout_embeddings = LiltLayoutEmbeddings(config) self.encoder = LiltEncoder(config) self.pooler = LiltPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(LILT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, bbox: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPooling]: r""" Returns: Examples: ```python >>> from transformers import AutoTokenizer, AutoModel >>> from datasets import load_dataset >>> tokenizer = AutoTokenizer.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base") >>> model = AutoModel.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base") >>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train") >>> example = dataset[0] >>> words = example["tokens"] >>> boxes = example["bboxes"] >>> encoding = tokenizer(words, boxes=boxes, return_tensors="pt") >>> outputs = model(**encoding) >>> last_hidden_states = outputs.last_hidden_state ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape device = input_ids.device if input_ids is not None else inputs_embeds.device if bbox is None: bbox = torch.zeros(input_shape + (4,), dtype=torch.long, device=device) if attention_mask is None: attention_mask = torch.ones(((batch_size, seq_length)), device=device) if token_type_ids is None: if hasattr(self.embeddings, "token_type_ids"): buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output, position_ids = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, ) layout_embedding_output = self.layout_embeddings(bbox=bbox, position_ids=position_ids) encoder_outputs = self.encoder( embedding_output, layout_embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings( """ LiLT Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, LILT_START_DOCSTRING, ) class LiltForSequenceClassification(LiltPreTrainedModel): # Copied from transformers.models.roberta.modeling_roberta.RobertaForSequenceClassification.__init__ with Roberta->Lilt, roberta->lilt def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.lilt = LiltModel(config, add_pooling_layer=False) self.classifier = LiltClassificationHead(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(LILT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, bbox: Optional[torch.Tensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> from transformers import AutoTokenizer, AutoModelForSequenceClassification >>> from datasets import load_dataset >>> tokenizer = AutoTokenizer.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base") >>> model = AutoModelForSequenceClassification.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base") >>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train") >>> example = dataset[0] >>> words = example["tokens"] >>> boxes = example["bboxes"] >>> encoding = tokenizer(words, boxes=boxes, return_tensors="pt") >>> outputs = model(**encoding) >>> predicted_class_idx = outputs.logits.argmax(-1).item() >>> predicted_class = model.config.id2label[predicted_class_idx] ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.lilt( input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.classifier(sequence_output) loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(logits.device) if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Lilt Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, LILT_START_DOCSTRING, ) class LiltForTokenClassification(LiltPreTrainedModel): # Copied from transformers.models.roberta.modeling_roberta.RobertaForTokenClassification.__init__ with Roberta->Lilt, roberta->lilt def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.lilt = LiltModel(config, add_pooling_layer=False) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(LILT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, bbox: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. Returns: Examples: ```python >>> from transformers import AutoTokenizer, AutoModelForTokenClassification >>> from datasets import load_dataset >>> tokenizer = AutoTokenizer.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base") >>> model = AutoModelForTokenClassification.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base") >>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train") >>> example = dataset[0] >>> words = example["tokens"] >>> boxes = example["bboxes"] >>> encoding = tokenizer(words, boxes=boxes, return_tensors="pt") >>> outputs = model(**encoding) >>> predicted_class_indices = outputs.logits.argmax(-1) ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.lilt( input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(logits.device) loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) # Copied from transformers.models.roberta.modeling_roberta.RobertaClassificationHead with Roberta->Lilt class LiltClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.out_proj = nn.Linear(config.hidden_size, config.num_labels) def forward(self, features, **kwargs): x = features[:, 0, :] # take <s> token (equiv. to [CLS]) x = self.dropout(x) x = self.dense(x) x = torch.tanh(x) x = self.dropout(x) x = self.out_proj(x) return x @add_start_docstrings( """ Lilt Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, LILT_START_DOCSTRING, ) class LiltForQuestionAnswering(LiltPreTrainedModel): # Copied from transformers.models.roberta.modeling_roberta.RobertaForQuestionAnswering.__init__ with Roberta->Lilt, roberta->lilt def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.lilt = LiltModel(config, add_pooling_layer=False) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(LILT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, bbox: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. Returns: Examples: ```python >>> from transformers import AutoTokenizer, AutoModelForQuestionAnswering >>> from datasets import load_dataset >>> tokenizer = AutoTokenizer.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base") >>> model = AutoModelForQuestionAnswering.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base") >>> dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train") >>> example = dataset[0] >>> words = example["tokens"] >>> boxes = example["bboxes"] >>> encoding = tokenizer(words, boxes=boxes, return_tensors="pt") >>> outputs = model(**encoding) >>> answer_start_index = outputs.start_logits.argmax() >>> answer_end_index = outputs.end_logits.argmax() >>> predict_answer_tokens = encoding.input_ids[0, answer_start_index : answer_end_index + 1] >>> predicted_answer = tokenizer.decode(predict_answer_tokens) ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.lilt( input_ids, bbox=bbox, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/oneformer/__init__.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _import_structure = { "configuration_oneformer": ["ONEFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "OneFormerConfig"], "processing_oneformer": ["OneFormerProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["image_processing_oneformer"] = ["OneFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_oneformer"] = [ "ONEFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "OneFormerForUniversalSegmentation", "OneFormerModel", "OneFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_oneformer import ONEFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, OneFormerConfig from .processing_oneformer import OneFormerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_oneformer import OneFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_oneformer import ( ONEFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, OneFormerForUniversalSegmentation, OneFormerModel, OneFormerPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/oneformer/image_processing_oneformer.py
# coding=utf-8 # Copyright 2022 SHI Labs and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for OneFormer.""" import json import warnings from typing import Any, Dict, Iterable, List, Optional, Set, Tuple, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( PaddingMode, get_resize_output_image_size, pad, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, TensorType, is_torch_available, is_torch_tensor, logging, ) logger = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn # Copied from transformers.models.detr.image_processing_detr.max_across_indices def max_across_indices(values: Iterable[Any]) -> List[Any]: """ Return the maximum value across all indices of an iterable of values. """ return [max(values_i) for values_i in zip(*values)] # Copied from transformers.models.detr.image_processing_detr.get_max_height_width def get_max_height_width(images: List[np.ndarray]) -> List[int]: """ Get the maximum height and width across all images in a batch. """ input_channel_dimension = infer_channel_dimension_format(images[0]) if input_channel_dimension == ChannelDimension.FIRST: _, max_height, max_width = max_across_indices([img.shape for img in images]) elif input_channel_dimension == ChannelDimension.LAST: max_height, max_width, _ = max_across_indices([img.shape for img in images]) else: raise ValueError(f"Invalid channel dimension format: {input_channel_dimension}") return (max_height, max_width) # Copied from transformers.models.detr.image_processing_detr.make_pixel_mask def make_pixel_mask(image: np.ndarray, output_size: Tuple[int, int]) -> np.ndarray: """ Make a pixel mask for the image, where 1 indicates a valid pixel and 0 indicates padding. Args: image (`np.ndarray`): Image to make the pixel mask for. output_size (`Tuple[int, int]`): Output size of the mask. """ input_height, input_width = get_image_size(image) mask = np.zeros(output_size, dtype=np.int64) mask[:input_height, :input_width] = 1 return mask # Copied from transformers.models.detr.image_processing_detr.binary_mask_to_rle def binary_mask_to_rle(mask): """ Converts given binary mask of shape `(height, width)` to the run-length encoding (RLE) format. Args: mask (`torch.Tensor` or `numpy.array`): A binary mask tensor of shape `(height, width)` where 0 denotes background and 1 denotes the target segment_id or class_id. Returns: `List`: Run-length encoded list of the binary mask. Refer to COCO API for more information about the RLE format. """ if is_torch_tensor(mask): mask = mask.numpy() pixels = mask.flatten() pixels = np.concatenate([[0], pixels, [0]]) runs = np.where(pixels[1:] != pixels[:-1])[0] + 1 runs[1::2] -= runs[::2] return list(runs) # Copied from transformers.models.detr.image_processing_detr.convert_segmentation_to_rle def convert_segmentation_to_rle(segmentation): """ Converts given segmentation map of shape `(height, width)` to the run-length encoding (RLE) format. Args: segmentation (`torch.Tensor` or `numpy.array`): A segmentation map of shape `(height, width)` where each value denotes a segment or class id. Returns: `List[List]`: A list of lists, where each list is the run-length encoding of a segment / class id. """ segment_ids = torch.unique(segmentation) run_length_encodings = [] for idx in segment_ids: mask = torch.where(segmentation == idx, 1, 0) rle = binary_mask_to_rle(mask) run_length_encodings.append(rle) return run_length_encodings # Copied from transformers.models.detr.image_processing_detr.remove_low_and_no_objects def remove_low_and_no_objects(masks, scores, labels, object_mask_threshold, num_labels): """ Binarize the given masks using `object_mask_threshold`, it returns the associated values of `masks`, `scores` and `labels`. Args: masks (`torch.Tensor`): A tensor of shape `(num_queries, height, width)`. scores (`torch.Tensor`): A tensor of shape `(num_queries)`. labels (`torch.Tensor`): A tensor of shape `(num_queries)`. object_mask_threshold (`float`): A number between 0 and 1 used to binarize the masks. Raises: `ValueError`: Raised when the first dimension doesn't match in all input tensors. Returns: `Tuple[`torch.Tensor`, `torch.Tensor`, `torch.Tensor`]`: The `masks`, `scores` and `labels` without the region < `object_mask_threshold`. """ if not (masks.shape[0] == scores.shape[0] == labels.shape[0]): raise ValueError("mask, scores and labels must have the same shape!") to_keep = labels.ne(num_labels) & (scores > object_mask_threshold) return masks[to_keep], scores[to_keep], labels[to_keep] # Copied from transformers.models.detr.image_processing_detr.check_segment_validity def check_segment_validity(mask_labels, mask_probs, k, mask_threshold=0.5, overlap_mask_area_threshold=0.8): # Get the mask associated with the k class mask_k = mask_labels == k mask_k_area = mask_k.sum() # Compute the area of all the stuff in query k original_area = (mask_probs[k] >= mask_threshold).sum() mask_exists = mask_k_area > 0 and original_area > 0 # Eliminate disconnected tiny segments if mask_exists: area_ratio = mask_k_area / original_area if not area_ratio.item() > overlap_mask_area_threshold: mask_exists = False return mask_exists, mask_k # Copied from transformers.models.detr.image_processing_detr.compute_segments def compute_segments( mask_probs, pred_scores, pred_labels, mask_threshold: float = 0.5, overlap_mask_area_threshold: float = 0.8, label_ids_to_fuse: Optional[Set[int]] = None, target_size: Tuple[int, int] = None, ): height = mask_probs.shape[1] if target_size is None else target_size[0] width = mask_probs.shape[2] if target_size is None else target_size[1] segmentation = torch.zeros((height, width), dtype=torch.int32, device=mask_probs.device) segments: List[Dict] = [] if target_size is not None: mask_probs = nn.functional.interpolate( mask_probs.unsqueeze(0), size=target_size, mode="bilinear", align_corners=False )[0] current_segment_id = 0 # Weigh each mask by its prediction score mask_probs *= pred_scores.view(-1, 1, 1) mask_labels = mask_probs.argmax(0) # [height, width] # Keep track of instances of each class stuff_memory_list: Dict[str, int] = {} for k in range(pred_labels.shape[0]): pred_class = pred_labels[k].item() should_fuse = pred_class in label_ids_to_fuse # Check if mask exists and large enough to be a segment mask_exists, mask_k = check_segment_validity( mask_labels, mask_probs, k, mask_threshold, overlap_mask_area_threshold ) if mask_exists: if pred_class in stuff_memory_list: current_segment_id = stuff_memory_list[pred_class] else: current_segment_id += 1 # Add current object segment to final segmentation map segmentation[mask_k] = current_segment_id segment_score = round(pred_scores[k].item(), 6) segments.append( { "id": current_segment_id, "label_id": pred_class, "was_fused": should_fuse, "score": segment_score, } ) if should_fuse: stuff_memory_list[pred_class] = current_segment_id return segmentation, segments # Copied from transformers.models.maskformer.image_processing_maskformer.convert_segmentation_map_to_binary_masks def convert_segmentation_map_to_binary_masks( segmentation_map: "np.ndarray", instance_id_to_semantic_id: Optional[Dict[int, int]] = None, ignore_index: Optional[int] = None, reduce_labels: bool = False, ): if reduce_labels and ignore_index is None: raise ValueError("If `reduce_labels` is True, `ignore_index` must be provided.") if reduce_labels: segmentation_map = np.where(segmentation_map == 0, ignore_index, segmentation_map - 1) # Get unique ids (class or instance ids based on input) all_labels = np.unique(segmentation_map) # Drop background label if applicable if ignore_index is not None: all_labels = all_labels[all_labels != ignore_index] # Generate a binary mask for each object instance binary_masks = [(segmentation_map == i) for i in all_labels] binary_masks = np.stack(binary_masks, axis=0) # (num_labels, height, width) # Convert instance ids to class ids if instance_id_to_semantic_id is not None: labels = np.zeros(all_labels.shape[0]) for label in all_labels: class_id = instance_id_to_semantic_id[label + 1 if reduce_labels else label] labels[all_labels == label] = class_id - 1 if reduce_labels else class_id else: labels = all_labels return binary_masks.astype(np.float32), labels.astype(np.int64) def get_oneformer_resize_output_image_size( image: np.ndarray, size: Union[int, Tuple[int, int], List[int], Tuple[int]], max_size: Optional[int] = None, default_to_square: bool = True, ) -> tuple: """ Computes the output size given the desired size. Args: input_image (`np.ndarray`): The input image. size (`int`, `Tuple[int, int]`, `List[int]`, `Tuple[int]`): The size of the output image. default_to_square (`bool`, *optional*, defaults to `True`): Whether to default to square if no size is provided. max_size (`int`, *optional*): The maximum size of the output image. Returns: `Tuple[int, int]`: The output size. """ output_size = get_resize_output_image_size( input_image=image, size=size, default_to_square=default_to_square, max_size=max_size ) return output_size def prepare_metadata(repo_path, class_info_file): with open(hf_hub_download(repo_path, class_info_file, repo_type="dataset"), "r") as f: class_info = json.load(f) metadata = {} class_names = [] thing_ids = [] for key, info in class_info.items(): metadata[key] = info["name"] class_names.append(info["name"]) if info["isthing"]: thing_ids.append(int(key)) metadata["thing_ids"] = thing_ids metadata["class_names"] = class_names return metadata class OneFormerImageProcessor(BaseImageProcessor): r""" Constructs a OneFormer image processor. The image processor can be used to prepare image(s), task input(s) and optional text inputs and targets for the model. This image processor inherits from [`BaseImageProcessor`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the input to a certain `size`. size (`int`, *optional*, defaults to 800): Resize the input to the given size. Only has an effect if `do_resize` is set to `True`. If size is a sequence like `(width, height)`, output size will be matched to this. If size is an int, smaller edge of the image will be matched to this number. i.e, if `height > width`, then image will be rescaled to `(size * height / width, size)`. max_size (`int`, *optional*, defaults to 1333): The largest size an image dimension can have (otherwise it's capped). Only has an effect if `do_resize` is set to `True`. resample (`int`, *optional*, defaults to `PIL.Image.Resampling.BILINEAR`): An optional resampling filter. This can be one of `PIL.Image.Resampling.NEAREST`, `PIL.Image.Resampling.BOX`, `PIL.Image.Resampling.BILINEAR`, `PIL.Image.Resampling.HAMMING`, `PIL.Image.Resampling.BICUBIC` or `PIL.Image.Resampling.LANCZOS`. Only has an effect if `do_resize` is set to `True`. do_rescale (`bool`, *optional*, defaults to `True`): Whether to rescale the input to a certain `scale`. rescale_factor (`float`, *optional*, defaults to 1/ 255): Rescale the input by the given factor. Only has an effect if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `True`): Whether or not to normalize the input with mean and standard deviation. image_mean (`int`, *optional*, defaults to `[0.485, 0.456, 0.406]`): The sequence of means for each channel, to be used when normalizing images. Defaults to the ImageNet mean. image_std (`int`, *optional*, defaults to `[0.229, 0.224, 0.225]`): The sequence of standard deviations for each channel, to be used when normalizing images. Defaults to the ImageNet std. ignore_index (`int`, *optional*): Label to be assigned to background pixels in segmentation maps. If provided, segmentation map pixels denoted with 0 (background) will be replaced with `ignore_index`. do_reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to decrement all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by `ignore_index`. repo_path (`str`, defaults to `shi-labs/oneformer_demo`): Dataset repository on huggingface hub containing the JSON file with class information for the dataset. class_info_file (`str`): JSON file containing class information for the dataset. It is stored inside on the `repo_path` dataset repository. num_text (`int`, *optional*): Number of text entries in the text input list. """ model_input_names = ["pixel_values", "pixel_mask", "task_inputs"] def __init__( self, do_resize: bool = True, size: Dict[str, int] = None, resample: PILImageResampling = PILImageResampling.BILINEAR, do_rescale: bool = True, rescale_factor: float = 1 / 255, do_normalize: bool = True, image_mean: Union[float, List[float]] = None, image_std: Union[float, List[float]] = None, ignore_index: Optional[int] = None, do_reduce_labels: bool = False, repo_path: str = "shi-labs/oneformer_demo", class_info_file: str = None, num_text: Optional[int] = None, **kwargs, ): if "max_size" in kwargs: self._max_size = kwargs.pop("max_size") else: self._max_size = 1333 size = size if size is not None else {"shortest_edge": 800, "longest_edge": self._max_size} size = get_size_dict(size, max_size=self._max_size, default_to_square=False) if "reduce_labels" in kwargs: warnings.warn( "The `reduce_labels` argument is deprecated and will be removed in v4.27. " "Please use `do_reduce_labels` instead.", FutureWarning, ) do_reduce_labels = kwargs.pop("reduce_labels") super().__init__(**kwargs) self.do_resize = do_resize self.size = size self.resample = resample self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD self.ignore_index = ignore_index self.do_reduce_labels = do_reduce_labels self.class_info_file = class_info_file self.repo_path = repo_path self.metadata = prepare_metadata(repo_path, class_info_file) self.num_text = num_text def resize( self, image: np.ndarray, size: Dict[str, int], resample: PILImageResampling = PILImageResampling.BILINEAR, data_format=None, **kwargs, ) -> np.ndarray: """ Resize the image to the given size. Size can be min_size (scalar) or `(height, width)` tuple. If size is an int, smaller edge of the image will be matched to this number. """ if "max_size" in kwargs: warnings.warn( "The `max_size` parameter is deprecated and will be removed in v4.27. " "Please specify in `size['longest_edge'] instead`.", FutureWarning, ) max_size = kwargs.pop("max_size") else: max_size = None size = get_size_dict(size, max_size=max_size, default_to_square=False) if "shortest_edge" in size and "longest_edge" in size: size, max_size = size["shortest_edge"], size["longest_edge"] elif "height" in size and "width" in size: size = (size["height"], size["width"]) max_size = None else: raise ValueError( "Size must contain 'height' and 'width' keys or 'shortest_edge' and 'longest_edge' keys. Got" f" {size.keys()}." ) size = get_oneformer_resize_output_image_size( image=image, size=size, max_size=max_size, default_to_square=False, ) image = resize(image, size=size, resample=resample, data_format=data_format) return image # Copied from transformers.models.maskformer.image_processing_maskformer.MaskFormerImageProcessor.rescale def rescale( self, image: np.ndarray, rescale_factor: float, data_format: Optional[ChannelDimension] = None ) -> np.ndarray: """ Rescale the image by the given factor. """ return rescale(image, rescale_factor, data_format=data_format) # Copied from transformers.models.maskformer.image_processing_maskformer.MaskFormerImageProcessor.convert_segmentation_map_to_binary_masks def convert_segmentation_map_to_binary_masks( self, segmentation_map: "np.ndarray", instance_id_to_semantic_id: Optional[Dict[int, int]] = None, ignore_index: Optional[int] = None, reduce_labels: bool = False, **kwargs, ): reduce_labels = reduce_labels if reduce_labels is not None else self.reduce_labels ignore_index = ignore_index if ignore_index is not None else self.ignore_index return convert_segmentation_map_to_binary_masks( segmentation_map=segmentation_map, instance_id_to_semantic_id=instance_id_to_semantic_id, ignore_index=ignore_index, reduce_labels=reduce_labels, ) def __call__(self, images, task_inputs=None, segmentation_maps=None, **kwargs) -> BatchFeature: return self.preprocess(images, task_inputs=task_inputs, segmentation_maps=segmentation_maps, **kwargs) def _preprocess( self, image: ImageInput, do_resize: bool = None, size: Dict[str, int] = None, resample: PILImageResampling = None, do_rescale: bool = None, rescale_factor: float = None, do_normalize: bool = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, ): if do_resize: image = self.resize(image, size=size, resample=resample) if do_rescale: image = self.rescale(image, rescale_factor=rescale_factor) if do_normalize: image = self.normalize(image, mean=image_mean, std=image_std) return image def _preprocess_image( self, image: ImageInput, do_resize: bool = None, size: Dict[str, int] = None, resample: PILImageResampling = None, do_rescale: bool = None, rescale_factor: float = None, do_normalize: bool = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, data_format: Optional[Union[str, ChannelDimension]] = None, ) -> np.ndarray: """Preprocesses a single image.""" # All transformations expect numpy arrays. image = to_numpy_array(image) image = self._preprocess( image=image, do_resize=do_resize, size=size, resample=resample, do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, ) if data_format is not None: image = to_channel_dimension_format(image, data_format) return image def _preprocess_mask( self, segmentation_map: ImageInput, do_resize: bool = None, size: Dict[str, int] = None, ) -> np.ndarray: """Preprocesses a single mask.""" segmentation_map = to_numpy_array(segmentation_map) # Add channel dimension if missing - needed for certain transformations added_channel_dim = False if segmentation_map.ndim == 2: added_channel_dim = True segmentation_map = segmentation_map[None, ...] # TODO: (Amy) # Remork segmentation map processing to include reducing labels and resizing which doesn't # drop segment IDs > 255. segmentation_map = self._preprocess( image=segmentation_map, do_resize=do_resize, resample=PILImageResampling.NEAREST, size=size, do_rescale=False, do_normalize=False, ) # Remove extra channel dimension if added for processing if added_channel_dim: segmentation_map = segmentation_map.squeeze(0) return segmentation_map def preprocess( self, images: ImageInput, task_inputs: Optional[List[str]] = None, segmentation_maps: Optional[ImageInput] = None, instance_id_to_semantic_id: Optional[Dict[int, int]] = None, do_resize: Optional[bool] = None, size: Optional[Dict[str, int]] = None, resample: PILImageResampling = None, do_rescale: Optional[bool] = None, rescale_factor: Optional[float] = None, do_normalize: Optional[bool] = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, ignore_index: Optional[int] = None, do_reduce_labels: Optional[bool] = None, return_tensors: Optional[Union[str, TensorType]] = None, data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST, **kwargs, ) -> BatchFeature: if "pad_and_return_pixel_mask" in kwargs: warnings.warn( "The `pad_and_return_pixel_mask` argument is deprecated and will be removed in v4.27", FutureWarning, ) if "reduce_labels" in kwargs: warnings.warn( "The `reduce_labels` argument is deprecated and will be removed in a v4.27. Please use" " `do_reduce_labels` instead.", FutureWarning, ) if do_reduce_labels is not None: raise ValueError( "You cannot use both `reduce_labels` and `do_reduce_labels` arguments. Please use" " `do_reduce_labels` instead." ) do_reduce_labels = kwargs.pop("reduce_labels") if task_inputs is None: # Default value task_inputs = ["panoptic"] do_resize = do_resize if do_resize is not None else self.do_resize size = size if size is not None else self.size size = get_size_dict(size, default_to_square=False, max_size=self._max_size) resample = resample if resample is not None else self.resample do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor do_normalize = do_normalize if do_normalize is not None else self.do_normalize image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std ignore_index = ignore_index if ignore_index is not None else self.ignore_index do_reduce_labels = do_reduce_labels if do_reduce_labels is not None else self.do_reduce_labels if do_resize is not None and size is None: raise ValueError("If `do_resize` is True, `size` must be provided.") if do_rescale is not None and rescale_factor is None: raise ValueError("If `do_rescale` is True, `rescale_factor` must be provided.") if do_normalize is not None and (image_mean is None or image_std is None): raise ValueError("If `do_normalize` is True, `image_mean` and `image_std` must be provided.") if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if segmentation_maps is not None and not valid_images(segmentation_maps): raise ValueError( "Invalid segmentation map type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) images = make_list_of_images(images) if segmentation_maps is not None: segmentation_maps = make_list_of_images(segmentation_maps, expected_ndims=2) if segmentation_maps is not None and len(images) != len(segmentation_maps): raise ValueError("Images and segmentation maps must have the same length.") images = [ self._preprocess_image( image, do_resize=do_resize, size=size, resample=resample, do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, data_format=data_format, ) for image in images ] if segmentation_maps is not None: segmentation_maps = [ self._preprocess_mask(segmentation_map, do_resize, size) for segmentation_map in segmentation_maps ] encoded_inputs = self.encode_inputs( images, task_inputs, segmentation_maps, instance_id_to_semantic_id, ignore_index, do_reduce_labels, return_tensors, ) return encoded_inputs # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor._pad_image def _pad_image( self, image: np.ndarray, output_size: Tuple[int, int], constant_values: Union[float, Iterable[float]] = 0, data_format: Optional[ChannelDimension] = None, ) -> np.ndarray: """ Pad an image with zeros to the given size. """ input_height, input_width = get_image_size(image) output_height, output_width = output_size pad_bottom = output_height - input_height pad_right = output_width - input_width padding = ((0, pad_bottom), (0, pad_right)) padded_image = pad( image, padding, mode=PaddingMode.CONSTANT, constant_values=constant_values, data_format=data_format ) return padded_image # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.pad def pad( self, images: List[np.ndarray], constant_values: Union[float, Iterable[float]] = 0, return_pixel_mask: bool = True, return_tensors: Optional[Union[str, TensorType]] = None, data_format: Optional[ChannelDimension] = None, ) -> np.ndarray: """ Pads a batch of images to the bottom and right of the image with zeros to the size of largest height and width in the batch and optionally returns their corresponding pixel mask. Args: image (`np.ndarray`): Image to pad. constant_values (`float` or `Iterable[float]`, *optional*): The value to use for the padding if `mode` is `"constant"`. return_pixel_mask (`bool`, *optional*, defaults to `True`): Whether to return a pixel mask. input_channel_dimension (`ChannelDimension`, *optional*): The channel dimension format of the image. If not provided, it will be inferred from the input image. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the image. If not provided, it will be the same as the input image. """ pad_size = get_max_height_width(images) padded_images = [ self._pad_image(image, pad_size, constant_values=constant_values, data_format=data_format) for image in images ] data = {"pixel_values": padded_images} if return_pixel_mask: masks = [make_pixel_mask(image=image, output_size=pad_size) for image in images] data["pixel_mask"] = masks return BatchFeature(data=data, tensor_type=return_tensors) def get_semantic_annotations(self, label, num_class_obj): annotation_classes = label["classes"] annotation_masks = label["masks"] texts = ["a semantic photo"] * self.num_text classes = [] masks = [] for idx in range(len(annotation_classes)): class_id = annotation_classes[idx] mask = annotation_masks[idx] if not np.all(mask is False): if class_id not in classes: cls_name = self.metadata[str(class_id)] classes.append(class_id) masks.append(mask) num_class_obj[cls_name] += 1 else: idx = classes.index(class_id) masks[idx] += mask masks[idx] = np.clip(masks[idx], 0, 1) num = 0 for i, cls_name in enumerate(self.metadata["class_names"]): if num_class_obj[cls_name] > 0: for _ in range(num_class_obj[cls_name]): if num >= len(texts): break texts[num] = f"a photo with a {cls_name}" num += 1 classes = np.array(classes) masks = np.array(masks) return classes, masks, texts def get_instance_annotations(self, label, num_class_obj): annotation_classes = label["classes"] annotation_masks = label["masks"] texts = ["an instance photo"] * self.num_text classes = [] masks = [] for idx in range(len(annotation_classes)): class_id = annotation_classes[idx] mask = annotation_masks[idx] if class_id in self.metadata["thing_ids"]: if not np.all(mask is False): cls_name = self.metadata[str(class_id)] classes.append(class_id) masks.append(mask) num_class_obj[cls_name] += 1 num = 0 for i, cls_name in enumerate(self.metadata["class_names"]): if num_class_obj[cls_name] > 0: for _ in range(num_class_obj[cls_name]): if num >= len(texts): break texts[num] = f"a photo with a {cls_name}" num += 1 classes = np.array(classes) masks = np.array(masks) return classes, masks, texts def get_panoptic_annotations(self, label, num_class_obj): annotation_classes = label["classes"] annotation_masks = label["masks"] texts = ["an panoptic photo"] * self.num_text classes = [] masks = [] for idx in range(len(annotation_classes)): class_id = annotation_classes[idx] mask = annotation_masks[idx].data if not np.all(mask is False): cls_name = self.metadata[str(class_id)] classes.append(class_id) masks.append(mask) num_class_obj[cls_name] += 1 num = 0 for i, cls_name in enumerate(self.metadata["class_names"]): if num_class_obj[cls_name] > 0: for _ in range(num_class_obj[cls_name]): if num >= len(texts): break texts[num] = f"a photo with a {cls_name}" num += 1 classes = np.array(classes) masks = np.array(masks) return classes, masks, texts def encode_inputs( self, pixel_values_list: List[ImageInput], task_inputs: List[str], segmentation_maps: ImageInput = None, instance_id_to_semantic_id: Optional[Union[List[Dict[int, int]], Dict[int, int]]] = None, ignore_index: Optional[int] = None, reduce_labels: bool = False, return_tensors: Optional[Union[str, TensorType]] = None, ): """ Pad images up to the largest image in a batch and create a corresponding `pixel_mask`. OneFormer addresses semantic segmentation with a mask classification paradigm, thus input segmentation maps will be converted to lists of binary masks and their respective labels. Let's see an example, assuming `segmentation_maps = [[2,6,7,9]]`, the output will contain `mask_labels = [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]` (four binary masks) and `class_labels = [2,6,7,9]`, the labels for each mask. Args: pixel_values_list (`List[ImageInput]`): List of images (pixel values) to be padded. Each image should be a tensor of shape `(channels, height, width)`. task_inputs (`List[str]`): List of task values. segmentation_maps (`ImageInput`, *optional*): The corresponding semantic segmentation maps with the pixel-wise annotations. (`bool`, *optional*, defaults to `True`): Whether or not to pad images up to the largest image in a batch and create a pixel mask. If left to the default, will return a pixel mask that is: - 1 for pixels that are real (i.e. **not masked**), - 0 for pixels that are padding (i.e. **masked**). instance_id_to_semantic_id (`List[Dict[int, int]]` or `Dict[int, int]`, *optional*): A mapping between object instance ids and class ids. If passed, `segmentation_maps` is treated as an instance segmentation map where each pixel represents an instance id. Can be provided as a single dictionary with a global/dataset-level mapping or as a list of dictionaries (one per image), to map instance ids in each image separately. return_tensors (`str` or [`~file_utils.TensorType`], *optional*): If set, will return tensors instead of NumPy arrays. If set to `'pt'`, return PyTorch `torch.Tensor` objects. Returns: [`BatchFeature`]: A [`BatchFeature`] with the following fields: - **pixel_values** -- Pixel values to be fed to a model. - **pixel_mask** -- Pixel mask to be fed to a model (when `=True` or if `pixel_mask` is in `self.model_input_names`). - **mask_labels** -- Optional list of mask labels of shape `(labels, height, width)` to be fed to a model (when `annotations` are provided). - **class_labels** -- Optional list of class labels of shape `(labels)` to be fed to a model (when `annotations` are provided). They identify the labels of `mask_labels`, e.g. the label of `mask_labels[i][j]` if `class_labels[i][j]`. - **text_inputs** -- Optional list of text string entries to be fed to a model (when `annotations` are provided). They identify the binary masks present in the image. """ ignore_index = self.ignore_index if ignore_index is None else ignore_index reduce_labels = self.do_reduce_labels if reduce_labels is None else reduce_labels pixel_values_list = [to_numpy_array(pixel_values) for pixel_values in pixel_values_list] pad_size = get_max_height_width(pixel_values_list) encoded_inputs = self.pad(pixel_values_list, return_tensors=return_tensors) annotations = None if segmentation_maps is not None: segmentation_maps = map(np.array, segmentation_maps) annotations = [] for idx, segmentation_map in enumerate(segmentation_maps): # Use instance2class_id mapping per image if isinstance(instance_id_to_semantic_id, list): instance_id = instance_id_to_semantic_id[idx] else: instance_id = instance_id_to_semantic_id # Use instance2class_id mapping per image masks, classes = self.convert_segmentation_map_to_binary_masks( segmentation_map, instance_id, ignore_index=ignore_index, reduce_labels=reduce_labels ) annotations.append({"masks": masks, "classes": classes}) if annotations is not None: mask_labels = [] class_labels = [] text_inputs = [] num_class_obj = {} for cls_name in self.metadata["class_names"]: num_class_obj[cls_name] = 0 for i, label in enumerate(annotations): task = task_inputs[i] if task == "semantic": classes, masks, texts = self.get_semantic_annotations(label, num_class_obj) elif task == "instance": classes, masks, texts = self.get_instance_annotations(label, num_class_obj) elif task == "panoptic": classes, masks, texts = self.get_panoptic_annotations(label, num_class_obj) else: raise ValueError(f"{task} was not expected, expected `semantic`, `instance` or `panoptic`") # we cannot batch them since they don't share a common class size masks = [mask[None, ...] for mask in masks] masks = [ self._pad_image(image=mask, output_size=pad_size, constant_values=ignore_index) for mask in masks ] masks = np.concatenate(masks, axis=0) mask_labels.append(torch.from_numpy(masks)) class_labels.append(torch.from_numpy(classes).long()) text_inputs.append(texts) encoded_inputs["mask_labels"] = mask_labels encoded_inputs["class_labels"] = class_labels encoded_inputs["text_inputs"] = text_inputs # This needs to be tokenized before sending to the model. encoded_inputs["task_inputs"] = [f"the task is {task_input}" for task_input in task_inputs] return encoded_inputs # Copied from transformers.models.maskformer.image_processing_maskformer.MaskFormerImageProcessor.post_process_semantic_segmentation def post_process_semantic_segmentation( self, outputs, target_sizes: Optional[List[Tuple[int, int]]] = None ) -> "torch.Tensor": """ Converts the output of [`MaskFormerForInstanceSegmentation`] into semantic segmentation maps. Only supports PyTorch. Args: outputs ([`MaskFormerForInstanceSegmentation`]): Raw outputs of the model. target_sizes (`List[Tuple[int, int]]`, *optional*): List of length (batch_size), where each list item (`Tuple[int, int]]`) corresponds to the requested final size (height, width) of each prediction. If left to None, predictions will not be resized. Returns: `List[torch.Tensor]`: A list of length `batch_size`, where each item is a semantic segmentation map of shape (height, width) corresponding to the target_sizes entry (if `target_sizes` is specified). Each entry of each `torch.Tensor` correspond to a semantic class id. """ class_queries_logits = outputs.class_queries_logits # [batch_size, num_queries, num_classes+1] masks_queries_logits = outputs.masks_queries_logits # [batch_size, num_queries, height, width] # Remove the null class `[..., :-1]` masks_classes = class_queries_logits.softmax(dim=-1)[..., :-1] masks_probs = masks_queries_logits.sigmoid() # [batch_size, num_queries, height, width] # Semantic segmentation logits of shape (batch_size, num_classes, height, width) segmentation = torch.einsum("bqc, bqhw -> bchw", masks_classes, masks_probs) batch_size = class_queries_logits.shape[0] # Resize logits and compute semantic segmentation maps if target_sizes is not None: if batch_size != len(target_sizes): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) semantic_segmentation = [] for idx in range(batch_size): resized_logits = torch.nn.functional.interpolate( segmentation[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=False ) semantic_map = resized_logits[0].argmax(dim=0) semantic_segmentation.append(semantic_map) else: semantic_segmentation = segmentation.argmax(dim=1) semantic_segmentation = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation def post_process_instance_segmentation( self, outputs, task_type: str = "instance", is_demo: bool = True, threshold: float = 0.5, mask_threshold: float = 0.5, overlap_mask_area_threshold: float = 0.8, target_sizes: Optional[List[Tuple[int, int]]] = None, return_coco_annotation: Optional[bool] = False, ): """ Converts the output of [`OneFormerForUniversalSegmentationOutput`] into image instance segmentation predictions. Only supports PyTorch. Args: outputs ([`OneFormerForUniversalSegmentationOutput`]): The outputs from [`OneFormerForUniversalSegmentationOutput`]. task_type (`str`, *optional)*, defaults to "instance"): The post processing depends on the task token input. If the `task_type` is "panoptic", we need to ignore the stuff predictions. is_demo (`bool`, *optional)*, defaults to `True`): Whether the model is in demo mode. If true, use threshold to predict final masks. threshold (`float`, *optional*, defaults to 0.5): The probability score threshold to keep predicted instance masks. mask_threshold (`float`, *optional*, defaults to 0.5): Threshold to use when turning the predicted masks into binary values. overlap_mask_area_threshold (`float`, *optional*, defaults to 0.8): The overlap mask area threshold to merge or discard small disconnected parts within each binary instance mask. target_sizes (`List[Tuple]`, *optional*): List of length (batch_size), where each list item (`Tuple[int, int]]`) corresponds to the requested final size (height, width) of each prediction in batch. If left to None, predictions will not be resized. return_coco_annotation (`bool`, *optional)*, defaults to `False`): Whether to return predictions in COCO format. Returns: `List[Dict]`: A list of dictionaries, one per image, each dictionary containing two keys: - **segmentation** -- a tensor of shape `(height, width)` where each pixel represents a `segment_id`, set to `None` if no mask if found above `threshold`. If `target_sizes` is specified, segmentation is resized to the corresponding `target_sizes` entry. - **segments_info** -- A dictionary that contains additional information on each segment. - **id** -- an integer representing the `segment_id`. - **label_id** -- An integer representing the label / semantic class id corresponding to `segment_id`. - **was_fused** -- a boolean, `True` if `label_id` was in `label_ids_to_fuse`, `False` otherwise. Multiple instances of the same class / label were fused and assigned a single `segment_id`. - **score** -- Prediction score of segment with `segment_id`. """ class_queries_logits = outputs.class_queries_logits # [batch_size, num_queries, num_classes+1] masks_queries_logits = outputs.masks_queries_logits # [batch_size, num_queries, height, width] batch_size = class_queries_logits.shape[0] num_queries = class_queries_logits.shape[1] num_classes = class_queries_logits.shape[-1] - 1 # Loop over items in batch size results: List[Dict[str, torch.Tensor]] = [] for i in range(batch_size): # [Q, K] scores = torch.nn.functional.softmax(class_queries_logits[i], dim=-1)[:, :-1] labels = torch.arange(num_classes).unsqueeze(0).repeat(num_queries, 1).flatten(0, 1) # scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.num_queries, sorted=False) scores_per_image, topk_indices = scores.flatten(0, 1).topk(num_queries, sorted=False) labels_per_image = labels[topk_indices] topk_indices = torch.div(topk_indices, num_classes, rounding_mode="floor") # mask_pred = mask_pred.unsqueeze(1).repeat(1, self.sem_seg_head.num_classes, 1).flatten(0, 1) mask_pred = masks_queries_logits[i][topk_indices] # Only consider scores with confidence over [threshold] for demo if is_demo: keep = scores_per_image > threshold scores_per_image = scores_per_image[keep] labels_per_image = labels_per_image[keep] mask_pred = mask_pred[keep] # if this is panoptic segmentation, we only keep the "thing" classes if task_type == "panoptic": keep = torch.zeros_like(scores_per_image).bool() for i, lab in enumerate(labels_per_image): keep[i] = lab in self.metadata["thing_ids"] scores_per_image = scores_per_image[keep] labels_per_image = labels_per_image[keep] mask_pred = mask_pred[keep] if mask_pred.shape[0] <= 0: height, width = target_sizes[i] if target_sizes is not None else mask_pred.shape[1:] segmentation = torch.zeros((height, width)) - 1 results.append({"segmentation": segmentation, "segments_info": []}) continue if "ade20k" in self.class_info_file and not is_demo and "instance" in task_type: for i in range(labels_per_image.shape[0]): labels_per_image[i] = self.metadata["thing_ids"].index(labels_per_image[i].item()) # Get segmentation map and segment information of batch item target_size = target_sizes[i] if target_sizes is not None else None segmentation, segments = compute_segments( mask_pred, scores_per_image, labels_per_image, mask_threshold, overlap_mask_area_threshold, set(), target_size, ) # Return segmentation map in run-length encoding (RLE) format if return_coco_annotation: segmentation = convert_segmentation_to_rle(segmentation) results.append({"segmentation": segmentation, "segments_info": segments}) return results # Copied from transformers.models.maskformer.image_processing_maskformer.MaskFormerImageProcessor.post_process_panoptic_segmentation def post_process_panoptic_segmentation( self, outputs, threshold: float = 0.5, mask_threshold: float = 0.5, overlap_mask_area_threshold: float = 0.8, label_ids_to_fuse: Optional[Set[int]] = None, target_sizes: Optional[List[Tuple[int, int]]] = None, ) -> List[Dict]: """ Converts the output of [`MaskFormerForInstanceSegmentationOutput`] into image panoptic segmentation predictions. Only supports PyTorch. Args: outputs ([`MaskFormerForInstanceSegmentationOutput`]): The outputs from [`MaskFormerForInstanceSegmentation`]. threshold (`float`, *optional*, defaults to 0.5): The probability score threshold to keep predicted instance masks. mask_threshold (`float`, *optional*, defaults to 0.5): Threshold to use when turning the predicted masks into binary values. overlap_mask_area_threshold (`float`, *optional*, defaults to 0.8): The overlap mask area threshold to merge or discard small disconnected parts within each binary instance mask. label_ids_to_fuse (`Set[int]`, *optional*): The labels in this state will have all their instances be fused together. For instance we could say there can only be one sky in an image, but several persons, so the label ID for sky would be in that set, but not the one for person. target_sizes (`List[Tuple]`, *optional*): List of length (batch_size), where each list item (`Tuple[int, int]]`) corresponds to the requested final size (height, width) of each prediction in batch. If left to None, predictions will not be resized. Returns: `List[Dict]`: A list of dictionaries, one per image, each dictionary containing two keys: - **segmentation** -- a tensor of shape `(height, width)` where each pixel represents a `segment_id`, set to `None` if no mask if found above `threshold`. If `target_sizes` is specified, segmentation is resized to the corresponding `target_sizes` entry. - **segments_info** -- A dictionary that contains additional information on each segment. - **id** -- an integer representing the `segment_id`. - **label_id** -- An integer representing the label / semantic class id corresponding to `segment_id`. - **was_fused** -- a boolean, `True` if `label_id` was in `label_ids_to_fuse`, `False` otherwise. Multiple instances of the same class / label were fused and assigned a single `segment_id`. - **score** -- Prediction score of segment with `segment_id`. """ if label_ids_to_fuse is None: logger.warning("`label_ids_to_fuse` unset. No instance will be fused.") label_ids_to_fuse = set() class_queries_logits = outputs.class_queries_logits # [batch_size, num_queries, num_classes+1] masks_queries_logits = outputs.masks_queries_logits # [batch_size, num_queries, height, width] batch_size = class_queries_logits.shape[0] num_labels = class_queries_logits.shape[-1] - 1 mask_probs = masks_queries_logits.sigmoid() # [batch_size, num_queries, height, width] # Predicted label and score of each query (batch_size, num_queries) pred_scores, pred_labels = nn.functional.softmax(class_queries_logits, dim=-1).max(-1) # Loop over items in batch size results: List[Dict[str, TensorType]] = [] for i in range(batch_size): mask_probs_item, pred_scores_item, pred_labels_item = remove_low_and_no_objects( mask_probs[i], pred_scores[i], pred_labels[i], threshold, num_labels ) # No mask found if mask_probs_item.shape[0] <= 0: height, width = target_sizes[i] if target_sizes is not None else mask_probs_item.shape[1:] segmentation = torch.zeros((height, width)) - 1 results.append({"segmentation": segmentation, "segments_info": []}) continue # Get segmentation map and segment information of batch item target_size = target_sizes[i] if target_sizes is not None else None segmentation, segments = compute_segments( mask_probs=mask_probs_item, pred_scores=pred_scores_item, pred_labels=pred_labels_item, mask_threshold=mask_threshold, overlap_mask_area_threshold=overlap_mask_area_threshold, label_ids_to_fuse=label_ids_to_fuse, target_size=target_size, ) results.append({"segmentation": segmentation, "segments_info": segments}) return results
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/oneformer/modeling_oneformer.py
# coding=utf-8 # Copyright 2022 SHI Labs and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch OneFormer model.""" import copy import math import warnings from dataclasses import dataclass from typing import Dict, List, Optional, Tuple import numpy as np import torch from torch import Tensor, nn from torch.cuda.amp import autocast from ... import AutoBackbone from ...activations import ACT2FN from ...modeling_outputs import BaseModelOutput from ...modeling_utils import PreTrainedModel from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, is_scipy_available, logging, replace_return_docstrings, requires_backends, ) from .configuration_oneformer import OneFormerConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "OneFormerConfig" _CHECKPOINT_FOR_DOC = "shi-labs/oneformer_ade20k_swin_tiny" ONEFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [ "shi-labs/oneformer_ade20k_swin_tiny", # See all OneFormer models at https://huggingface.co/models?filter=oneformer ] if is_scipy_available(): from scipy.optimize import linear_sum_assignment def _get_clones(module, N): return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) # Copied from transformers.models.deformable_detr.modeling_deformable_detr.multi_scale_deformable_attention def multi_scale_deformable_attention( value: Tensor, value_spatial_shapes: Tensor, sampling_locations: Tensor, attention_weights: Tensor ) -> Tensor: batch_size, _, num_heads, hidden_dim = value.shape _, num_queries, num_heads, num_levels, num_points, _ = sampling_locations.shape value_list = value.split([height.item() * width.item() for height, width in value_spatial_shapes], dim=1) sampling_grids = 2 * sampling_locations - 1 sampling_value_list = [] for level_id, (height, width) in enumerate(value_spatial_shapes): # batch_size, height*width, num_heads, hidden_dim # -> batch_size, height*width, num_heads*hidden_dim # -> batch_size, num_heads*hidden_dim, height*width # -> batch_size*num_heads, hidden_dim, height, width value_l_ = ( value_list[level_id].flatten(2).transpose(1, 2).reshape(batch_size * num_heads, hidden_dim, height, width) ) # batch_size, num_queries, num_heads, num_points, 2 # -> batch_size, num_heads, num_queries, num_points, 2 # -> batch_size*num_heads, num_queries, num_points, 2 sampling_grid_l_ = sampling_grids[:, :, :, level_id].transpose(1, 2).flatten(0, 1) # batch_size*num_heads, hidden_dim, num_queries, num_points sampling_value_l_ = nn.functional.grid_sample( value_l_, sampling_grid_l_, mode="bilinear", padding_mode="zeros", align_corners=False ) sampling_value_list.append(sampling_value_l_) # (batch_size, num_queries, num_heads, num_levels, num_points) # -> (batch_size, num_heads, num_queries, num_levels, num_points) # -> (batch_size, num_heads, 1, num_queries, num_levels*num_points) attention_weights = attention_weights.transpose(1, 2).reshape( batch_size * num_heads, 1, num_queries, num_levels * num_points ) output = ( (torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights) .sum(-1) .view(batch_size, num_heads * hidden_dim, num_queries) ) return output.transpose(1, 2).contiguous() # Copied from transformers.models.maskformer.modeling_maskformer.dice_loss def dice_loss(inputs: Tensor, labels: Tensor, num_masks: int) -> Tensor: r""" Compute the DICE loss, similar to generalized IOU for masks as follows: $$ \mathcal{L}_{\text{dice}(x, y) = 1 - \frac{2 * x \cap y }{x \cup y + 1}} $$ In practice, since `labels` is a binary mask, (only 0s and 1s), dice can be computed as follow $$ \mathcal{L}_{\text{dice}(x, y) = 1 - \frac{2 * x * y }{x + y + 1}} $$ Args: inputs (`torch.Tensor`): A tensor representing a mask. labels (`torch.Tensor`): A tensor with the same shape as inputs. Stores the binary classification labels for each element in inputs (0 for the negative class and 1 for the positive class). num_masks (`int`): The number of masks present in the current batch, used for normalization. Returns: `torch.Tensor`: The computed loss. """ probs = inputs.sigmoid().flatten(1) numerator = 2 * (probs * labels).sum(-1) denominator = probs.sum(-1) + labels.sum(-1) loss = 1 - (numerator + 1) / (denominator + 1) loss = loss.sum() / num_masks return loss # Copied from transformers.models.mask2former.modeling_mask2former.sigmoid_cross_entropy_loss def sigmoid_cross_entropy_loss(inputs: torch.Tensor, labels: torch.Tensor, num_masks: int) -> torch.Tensor: r""" Args: inputs (`torch.Tensor`): A float tensor of arbitrary shape. labels (`torch.Tensor`): A tensor with the same shape as inputs. Stores the binary classification labels for each element in inputs (0 for the negative class and 1 for the positive class). Returns: loss (`torch.Tensor`): The computed loss. """ criterion = nn.BCEWithLogitsLoss(reduction="none") cross_entropy_loss = criterion(inputs, labels) loss = cross_entropy_loss.mean(1).sum() / num_masks return loss # Copied from transformers.models.maskformer.modeling_maskformer.pair_wise_dice_loss def pair_wise_dice_loss(inputs: Tensor, labels: Tensor) -> Tensor: """ A pair wise version of the dice loss, see `dice_loss` for usage. Args: inputs (`torch.Tensor`): A tensor representing a mask labels (`torch.Tensor`): A tensor with the same shape as inputs. Stores the binary classification labels for each element in inputs (0 for the negative class and 1 for the positive class). Returns: `torch.Tensor`: The computed loss between each pairs. """ inputs = inputs.sigmoid().flatten(1) numerator = 2 * torch.einsum("nc,mc->nm", inputs, labels) # using broadcasting to get a [num_queries, NUM_CLASSES] matrix denominator = inputs.sum(-1)[:, None] + labels.sum(-1)[None, :] loss = 1 - (numerator + 1) / (denominator + 1) return loss # Copied from transformers.models.mask2former.modeling_mask2former.pair_wise_sigmoid_cross_entropy_loss def pair_wise_sigmoid_cross_entropy_loss(inputs: torch.Tensor, labels: torch.Tensor) -> torch.Tensor: r""" A pair wise version of the cross entropy loss, see `sigmoid_cross_entropy_loss` for usage. Args: inputs (`torch.Tensor`): A tensor representing a mask. labels (`torch.Tensor`): A tensor with the same shape as inputs. Stores the binary classification labels for each element in inputs (0 for the negative class and 1 for the positive class). Returns: loss (`torch.Tensor`): The computed loss between each pairs. """ height_and_width = inputs.shape[1] criterion = nn.BCEWithLogitsLoss(reduction="none") cross_entropy_loss_pos = criterion(inputs, torch.ones_like(inputs)) cross_entropy_loss_neg = criterion(inputs, torch.zeros_like(inputs)) loss = torch.einsum("nc,mc->nm", cross_entropy_loss_pos, labels) + torch.einsum( "nc,mc->nm", cross_entropy_loss_neg, (1 - labels) ) loss = loss / height_and_width return loss # Copied from transformers.models.mask2former.modeling_mask2former.sample_point def sample_point( input_features: torch.Tensor, point_coordinates: torch.Tensor, add_dim=False, **kwargs ) -> torch.Tensor: """ A wrapper around `torch.nn.functional.grid_sample` to support 3D point_coordinates tensors. Args: input_features (`torch.Tensor` of shape (batch_size, channels, height, width)): A tensor that contains features map on a height * width grid point_coordinates (`torch.Tensor` of shape (batch_size, num_points, 2) or (batch_size, grid_height, grid_width,: 2)): A tensor that contains [0, 1] * [0, 1] normalized point coordinates add_dim (`bool`): boolean value to keep track of added dimension Returns: point_features (`torch.Tensor` of shape (batch_size, channels, num_points) or (batch_size, channels, height_grid, width_grid): A tensor that contains features for points in `point_coordinates`. """ if point_coordinates.dim() == 3: add_dim = True point_coordinates = point_coordinates.unsqueeze(2) # use nn.function.grid_sample to get features for points in `point_coordinates` via bilinear interpolation point_features = torch.nn.functional.grid_sample(input_features, 2.0 * point_coordinates - 1.0, **kwargs) if add_dim: point_features = point_features.squeeze(3) return point_features # Refactored from https://github.com/SHI-Labs/OneFormer/blob/33ebb56ed34f970a30ae103e786c0cb64c653d9a/oneformer/modeling/matcher.py#L93 class OneFormerHungarianMatcher(nn.Module): def __init__( self, cost_class: float = 1.0, cost_mask: float = 1.0, cost_dice: float = 1.0, num_points: int = 12544 ): """This class computes an assignment between the labels and the predictions of the network. For efficiency reasons, the labels don't include the no_object. Because of this, in general, there are more predictions than labels. In this case, we do a 1-to-1 matching of the best predictions, while the others are un-matched (and thus treated as non-objects). Params: cost_class (float, *optional*, defaults to 1.0): This is the relative weight of the classification error in the matching cost. cost_mask (float, *optional*, defaults to 1.0): This is the relative weight of the sigmoid ce loss of the binary mask in the matching cost. cost_dice (float, *optional*, defaults to 1.0): This is the relative weight of the dice loss of the binary mask in the matching cost num_points (int, *optional*, defaults to 12544): Number of points to be sampled for dice and mask loss matching cost. """ super().__init__() if cost_class == 0 and cost_mask == 0 and cost_dice == 0: raise ValueError("All costs cant be 0") self.cost_class = cost_class self.cost_mask = cost_mask self.cost_dice = cost_dice self.num_points = num_points @torch.no_grad() def forward(self, masks_queries_logits, class_queries_logits, mask_labels, class_labels) -> List[Tuple[Tensor]]: """Performs the matching Params: masks_queries_logits (`torch.Tensor`): A tensor` of dim `batch_size, num_queries, num_labels` with the classification logits. class_queries_logits (`torch.Tensor`): A tensor` of dim `batch_size, num_queries, height, width` with the predicted masks. class_labels (`torch.Tensor`): A tensor` of dim `num_target_boxes` (where num_target_boxes is the number of ground-truth objects in the target) containing the class labels. mask_labels (`torch.Tensor`): A tensor` of dim `num_target_boxes, height, width` containing the target masks. Returns: `List[Tuple[Tensor]]`: A list of size batch_size, containing tuples of (index_i, index_j) where: - index_i is the indices of the selected predictions (in order) - index_j is the indices of the corresponding selected labels (in order) For each batch element, it holds: len(index_i) = len(index_j) = min(num_queries, num_targets). """ indices: List[Tuple[np.array]] = [] num_queries = class_queries_logits.shape[1] preds_masks = masks_queries_logits preds_probs = class_queries_logits # iterate through batch size for pred_probs, pred_mask, target_mask, labels in zip(preds_probs, preds_masks, mask_labels, class_labels): pred_probs = pred_probs.softmax(-1) # Compute the classification cost. Contrary to the loss, we don't use the NLL, # but approximate it in 1 - proba[target class]. # The 1 is a constant that doesn't change the matching, it can be ommitted. cost_class = -pred_probs[:, labels] pred_mask = pred_mask[:, None] target_mask = target_mask[:, None].to(pred_mask.device) # all masks share the same set of points for efficient matching! point_coords = torch.rand(1, self.num_points, 2, device=pred_mask.device) # get ground truth labels target_mask = sample_point( target_mask, point_coords.repeat(target_mask.shape[0], 1, 1), align_corners=False, ).squeeze(1) pred_mask = sample_point( pred_mask, point_coords.repeat(pred_mask.shape[0], 1, 1), align_corners=False, ).squeeze(1) with autocast(enabled=False): pred_mask = pred_mask.float() target_mask = target_mask.float() # compute the sigmoid ce loss cost_mask = pair_wise_sigmoid_cross_entropy_loss(pred_mask, target_mask) # Compute the dice loss cost_dice = pair_wise_dice_loss(pred_mask, target_mask) # final cost matrix cost_matrix = self.cost_mask * cost_mask + self.cost_class * cost_class + self.cost_dice * cost_dice cost_matrix = cost_matrix.reshape(num_queries, -1).cpu() # do the assigmented using the hungarian algorithm in scipy assigned_indices: Tuple[np.array] = linear_sum_assignment(cost_matrix.cpu()) indices.append(assigned_indices) # It could be stacked in one tensor matched_indices = [ (torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) for i, j in indices ] return matched_indices class OneFormerLoss(nn.Module): def __init__( self, num_classes: int, matcher: OneFormerHungarianMatcher, weight_dict: Dict[str, float], eos_coef: float, num_points: int, oversample_ratio: float, importance_sample_ratio: float, contrastive_temperature: float = None, ): """ This class computes the losses using the class predictions, mask predictions and the contrastive queries. Oneformer calculates the classification CE loss on the class predictions. Mask predictions are used for calculating the binary CE loss and dice loss. The contrastive queries are used for calculating the contrastive loss. Args: num_labels (`int`): The number of classes. matcher (`OneFormerHungarianMatcher`): A torch module that computes the assigments between the predictions and labels. weight_dict (`Dict[str, float]`): A dictionary of weights to be applied to the different losses. eos_coef (`float`): Weight to apply to the null class. num_points (`int`): Number of points to be sampled for dice and mask loss calculations. oversample_ratio (`float`): Required for pointwise loss calculation. importance_sample_ratio (`float`): Required for pointwise loss calculation. contrastive_temperature (`float`): Temperature for scaling the contrastive logits. """ requires_backends(self, ["scipy"]) super().__init__() self.num_classes = num_classes self.matcher = matcher self.weight_dict = weight_dict self.eos_coef = eos_coef empty_weight = torch.ones(self.num_classes + 1) empty_weight[-1] = self.eos_coef self.register_buffer("empty_weight", empty_weight) # pointwise mask loss parameters self.num_points = num_points self.oversample_ratio = oversample_ratio self.importance_sample_ratio = importance_sample_ratio self.contrastive_temperature = contrastive_temperature if self.contrastive_temperature is not None: self.logit_scale = nn.Parameter(torch.tensor(np.log(1 / contrastive_temperature))) def _max_by_axis(self, the_list: List[List[int]]) -> List[int]: maxes = the_list[0] for sublist in the_list[1:]: for index, item in enumerate(sublist): maxes[index] = max(maxes[index], item) return maxes def _pad_images_to_max_in_batch(self, tensors: List[Tensor]) -> Tuple[Tensor, Tensor]: # get the maximum size in the batch max_size = self._max_by_axis([list(tensor.shape) for tensor in tensors]) batch_size = len(tensors) # compute finel size batch_shape = [batch_size] + max_size b, _, h, w = batch_shape # get metadata dtype = tensors[0].dtype device = tensors[0].device padded_tensors = torch.zeros(batch_shape, dtype=dtype, device=device) padding_masks = torch.ones((b, h, w), dtype=torch.bool, device=device) # pad the tensors to the size of the biggest one for tensor, padded_tensor, padding_mask in zip(tensors, padded_tensors, padding_masks): padded_tensor[: tensor.shape[0], : tensor.shape[1], : tensor.shape[2]].copy_(tensor) padding_mask[: tensor.shape[1], : tensor.shape[2]] = False return padded_tensors, padding_masks def loss_contrastive(self, contrastive_queries_logits: Tensor, text_queries: Tensor): """Compute the query-text contrastive loss. Args: contrastive_queries_logits (`torch.Tensor`): A tensor of shape `batch_size, num_queries, hidden_dim` text_queries (`torch.Tensor`): A tensor of shape `batch_size, num_queries, hidden_dim` Returns: `Dict[str, Tensor]`: A dict of `torch.Tensor` containing the following key: - **loss_contrastive** -- The query-text contrastive loss computed using task-guided queries and text queries derived from input text list. """ image_queries = contrastive_queries_logits.float() # [batch_size, hidden_dim] image_queries = nn.functional.normalize(image_queries.flatten(1), dim=-1) text_queries = nn.functional.normalize(text_queries.flatten(1), dim=-1) logit_scale = torch.clamp(self.logit_scale.exp(), max=100) logits_per_text = torch.matmul(text_queries, image_queries.t()) * logit_scale logits_per_img = logits_per_text.t() loss_img = nn.functional.cross_entropy( logits_per_img, torch.arange(len(logits_per_img), device=logits_per_text.device) ) loss_text = nn.functional.cross_entropy( logits_per_text, torch.arange(len(logits_per_text), device=logits_per_text.device) ) loss_contrastive = loss_img + loss_text losses = {"loss_contrastive": loss_contrastive} return losses def loss_labels( self, class_queries_logits: Tensor, class_labels: List[Tensor], indices: Tuple[np.array] ) -> Dict[str, Tensor]: """Compute the losses related to the labels using cross entropy. Args: class_queries_logits (`torch.Tensor`): A tensor of shape `batch_size, num_queries, num_labels` class_labels (`List[torch.Tensor]`): List of class labels of shape `(labels)`. indices (`Tuple[np.array])`: The indices computed by the Hungarian matcher. Returns: `Dict[str, Tensor]`: A dict of `torch.Tensor` containing the following key: - **loss_cross_entropy** -- The loss computed using cross entropy on the predicted and ground truth labels. """ pred_logits = class_queries_logits batch_size, num_queries, _ = pred_logits.shape criterion = nn.CrossEntropyLoss(weight=self.empty_weight) idx = self._get_predictions_permutation_indices(indices) # shape = (batch_size, num_queries) target_classes_o = torch.cat([target[j] for target, (_, j) in zip(class_labels, indices)]) # shape = (batch_size, num_queries) target_classes = torch.full( (batch_size, num_queries), fill_value=self.num_classes, dtype=torch.int64, device=pred_logits.device ) target_classes[idx] = target_classes_o # permute pred_logits (batch_size, num_queries, num_labels) -> (batch_size, num_labels, num_queries) pred_logits_transposed = pred_logits.transpose(1, 2) loss_ce = criterion(pred_logits_transposed, target_classes) losses = {"loss_cross_entropy": loss_ce} return losses def loss_masks( self, masks_queries_logits: Tensor, mask_labels: List[Tensor], indices: Tuple[np.array], num_masks: int ) -> Dict[str, Tensor]: """Compute the losses related to the masks using focal and dice loss. Args: masks_queries_logits (`torch.Tensor`): A tensor of shape `batch_size, num_queries, height, width` mask_labels (`torch.Tensor`): List of mask labels of shape `(labels, height, width)`. indices (`Tuple[np.array])`: The indices computed by the Hungarian matcher. num_masks (`int)`: The number of masks, used for normalization. Returns: `Dict[str, Tensor]`: A dict of `torch.Tensor` containing two keys: - **loss_mask** -- The loss computed using sigmoid ce loss on the predicted and ground truth masks. - **loss_dice** -- The loss computed using dice loss on the predicted on the predicted and ground truth masks. """ src_idx = self._get_predictions_permutation_indices(indices) tgt_idx = self._get_targets_permutation_indices(indices) # shape (batch_size * num_queries, height, width) pred_masks = masks_queries_logits[src_idx] # shape (batch_size, num_queries, height, width) # pad all and stack the targets to the num_labels dimension # upsample predictions to the target size, we have to add one dim to use interpolate target_masks, _ = self._pad_images_to_max_in_batch(mask_labels) target_masks = target_masks[tgt_idx] pred_masks = pred_masks[:, None] target_masks = target_masks[:, None] with torch.no_grad(): # sample point_coords point_coords = self.sample_points_using_uncertainty( pred_masks, self.calculate_uncertainty, self.num_points, self.oversample_ratio, self.importance_sample_ratio, ) # get ground-truth labels point_labels = sample_point(target_masks, point_coords, align_corners=False).squeeze(1) point_logits = sample_point(pred_masks, point_coords, align_corners=False).squeeze(1) losses = { "loss_mask": sigmoid_cross_entropy_loss(point_logits, point_labels, num_masks), "loss_dice": dice_loss(point_logits, point_labels, num_masks), } del pred_masks del target_masks return losses # Copied from transformers.models.mask2former.modeling_mask2former.Mask2FormerLoss.calculate_uncertainty def calculate_uncertainty(self, logits: torch.Tensor) -> torch.Tensor: """ In Mask2Former paper, uncertainty is estimated as L1 distance between 0.0 and the logit prediction in 'logits' for the foreground class in `classes`. Args: logits (`torch.Tensor`): A tensor of shape (R, 1, ...) for class-specific or class-agnostic, where R is the total number of predicted masks in all images and C is: the number of foreground classes. The values are logits. Returns: scores (`torch.Tensor`): A tensor of shape (R, 1, ...) that contains uncertainty scores with the most uncertain locations having the highest uncertainty score. """ uncertainty_scores = -(torch.abs(logits)) return uncertainty_scores # Copied from transformers.models.mask2former.modeling_mask2former.Mask2FormerLoss.sample_points_using_uncertainty def sample_points_using_uncertainty( self, logits: torch.Tensor, uncertainty_function, num_points: int, oversample_ratio: int, importance_sample_ratio: float, ) -> torch.Tensor: """ This function is meant for sampling points in [0, 1] * [0, 1] coordinate space based on their uncertainty. The uncertainty is calculated for each point using the passed `uncertainty function` that takes points logit prediction as input. Args: logits (`float`): Logit predictions for P points. uncertainty_function: A function that takes logit predictions for P points and returns their uncertainties. num_points (`int`): The number of points P to sample. oversample_ratio (`int`): Oversampling parameter. importance_sample_ratio (`float`): Ratio of points that are sampled via importance sampling. Returns: point_coordinates (`torch.Tensor`): Coordinates for P sampled points. """ num_boxes = logits.shape[0] num_points_sampled = int(num_points * oversample_ratio) # Get random point coordinates point_coordinates = torch.rand(num_boxes, num_points_sampled, 2, device=logits.device) # Get sampled prediction value for the point coordinates point_logits = sample_point(logits, point_coordinates, align_corners=False) # Calculate the uncertainties based on the sampled prediction values of the points point_uncertainties = uncertainty_function(point_logits) num_uncertain_points = int(importance_sample_ratio * num_points) num_random_points = num_points - num_uncertain_points idx = torch.topk(point_uncertainties[:, 0, :], k=num_uncertain_points, dim=1)[1] shift = num_points_sampled * torch.arange(num_boxes, dtype=torch.long, device=logits.device) idx += shift[:, None] point_coordinates = point_coordinates.view(-1, 2)[idx.view(-1), :].view(num_boxes, num_uncertain_points, 2) if num_random_points > 0: point_coordinates = torch.cat( [point_coordinates, torch.rand(num_boxes, num_random_points, 2, device=logits.device)], dim=1, ) return point_coordinates def _get_predictions_permutation_indices(self, indices): # permute predictions following indices batch_indices = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)]) predictions_indices = torch.cat([src for (src, _) in indices]) return batch_indices, predictions_indices def _get_targets_permutation_indices(self, indices): # permute labels following indices batch_indices = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)]) target_indices = torch.cat([tgt for (_, tgt) in indices]) return batch_indices, target_indices def forward( self, masks_queries_logits: Tensor, class_queries_logits: Tensor, contrastive_queries_logits: Tensor, mask_labels: List[Tensor], class_labels: List[Tensor], text_queries: Tensor, auxiliary_predictions: Optional[Dict[str, Tensor]] = None, calculate_contrastive_loss: bool = True, ) -> Dict[str, Tensor]: """ This performs the loss computation. Args: masks_queries_logits (`torch.Tensor`): A tensor of shape `batch_size, num_queries, height, width` class_queries_logits (`torch.Tensor`): A tensor of shape `batch_size, num_queries, num_labels` contrastive_queries_logits (`torch.Tensor`): A tensor of shape `batch_size, num_queries, hidden_dim` mask_labels (`torch.Tensor`): List of mask labels of shape `(labels, height, width)`. class_labels (`List[torch.Tensor]`): List of class labels of shape `(labels)`. text_queries (`torch.Tensor`): A tensor of shape `batch_size, num_queries, hidden_dim` auxiliary_predictions (`Dict[str, torch.Tensor]`, *optional*): if `use_auxiliary_loss` was set to `true` in [`OneFormerConfig`], then it contains the logits from the inner layers of the Detr's Decoder. calculate_contrastive_loss (`bool`, *optional*, defaults to `True`): Whether or not to calculate the contrastive loss. Returns: `Dict[str, Tensor]`: A dict of `torch.Tensor` containing two keys: - **loss_cross_entropy** -- The loss computed using cross entropy on the predicted and ground truth labels. - **loss_mask** -- The loss computed using sigmoid ce loss on the predicted and ground truth masks. - **loss_dice** -- The loss computed using dice loss on the predicted on the predicted and ground truth masks. - **loss_contrastive** -- The query-text contrstive loss computed using object and text queries. if `use_auxiliary_loss` was set to `true` in [`OneFormerConfig`], the dictionary contains addional losses for each auxiliary predictions. """ # retrieve the matching between the outputs of the last layer and the labels indices = self.matcher(masks_queries_logits, class_queries_logits, mask_labels, class_labels) # compute the average number of target masks for normalization purposes num_masks = self.get_num_masks(class_labels, device=class_labels[0].device) # get all the losses losses: Dict[str, Tensor] = { **self.loss_masks(masks_queries_logits, mask_labels, indices, num_masks), **self.loss_labels(class_queries_logits, class_labels, indices), } if calculate_contrastive_loss: losses = {**losses, **self.loss_contrastive(contrastive_queries_logits, text_queries)} # in case of auxiliary losses, we repeat this process with the output of each intermediate layer. if auxiliary_predictions is not None: for idx, aux_outputs in enumerate(auxiliary_predictions): masks_queries_logits = aux_outputs["masks_queries_logits"] class_queries_logits = aux_outputs["class_queries_logits"] loss_dict = self.forward( masks_queries_logits, class_queries_logits, None, mask_labels, class_labels, None, calculate_contrastive_loss=False, ) loss_dict = {f"{key}_{idx}": value for key, value in loss_dict.items()} losses.update(loss_dict) return losses def get_num_masks(self, class_labels: torch.Tensor, device: torch.device) -> torch.Tensor: """ Computes the average number of target masks across the batch, for normalization purposes. """ num_masks = sum([len(classes) for classes in class_labels]) num_masks_pt = torch.as_tensor([num_masks], dtype=torch.float, device=device) return num_masks_pt @dataclass class OneFormerTransformerDecoderOutput(BaseModelOutput): """ Base class for outputs of the Transformer decoder. This class adds attributes for class predictions, mask predictions and contrastive logits to BaseModelOutputWithCrossAttentions. Args: object_logits (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_dim)`): Queries representation for the region proposals. contrastive_logits (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_dim)`): Queries representation for the contrastive loss. prediction_masks (`torch.FloatTensor` of shape `(batch_size, num_queries, height, width)`): Mask predictions from last layer of the transformer decoder. prediction_class (`torch.FloatTensor` of shape `(batch_size, num_queries, num_classes+1)`): Class predictions from last layer of the transformer decoder. auxiliary_predictions (Tuple of Dict of `str, torch.FloatTensor`, *optional*): Tuple of class and mask predictions from each layer of the transformer decoder. """ object_queries: torch.FloatTensor = None contrastive_logits: Optional[torch.FloatTensor] = None prediction_masks: torch.FloatTensor = None prediction_class: torch.FloatTensor = None auxiliary_predictions: Optional[Tuple[Dict[str, torch.FloatTensor]]] = None @dataclass # Copied from transformers.models.mask2former.modeling_mask2former.Mask2FormerPixelDecoderOutput with Mask2->One class OneFormerPixelDecoderOutput(ModelOutput): """ OneFormer's pixel decoder module output, practically a Multi-Scale Deformable Attention based decoder. It returns the mask features and the multiscale features. Args: multi_scale_features (`tuple(torch.FloatTensor)`): Tuple of multi-scale features of scales [1/8, 1/16, 1/32] and shape `(batch_size, num_channels, height, width)`from the Multi-Scale Deformable Attenntion based Pixel Decoder. mask_features (`torch.FloatTensor`): Tensor of shape `(batch_size, num_channels, height, width)`, 1/4 scale features from the last Pixel Decoder Layer. attentions (`tuple(torch.FloatTensor)`, *optional*): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights from pixel decoder. Returned when `output_attentions=True` is passed or when `config.output_attentions=True` """ multi_scale_features: Tuple[torch.FloatTensor] = None mask_features: torch.FloatTensor = None attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class OneFormerPixelLevelModuleOutput(ModelOutput): """ OneFormer's pixel level module output. It returns both the last and (optionally) the hidden states from the `encoder` and `decoder`. By default, the `encoder` is a Swin/Dinat Backbone and the `decoder` is a Multi-Scale Deformable Attention based decoder. Args: encoder_features (List of `(torch.FloatTensor)`): List of `torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`. Hidden-states (also called feature maps) of the model at the output of each stage. decoder_features (List of `(torch.FloatTensor)`): List of `torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`. Hidden-states (also called feature maps) of the model at the output of each stage. decoder_last_feature (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)): 1/4 scale features from the last Pixel Decoder Layer. """ encoder_features: List[torch.FloatTensor] = None decoder_features: List[torch.FloatTensor] = None decoder_last_feature: torch.FloatTensor = None @dataclass class OneFormerModelOutput(ModelOutput): """ Class for outputs of [`OneFormerModel`]. This class returns all the needed hidden states to compute the logits. Args: encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, num_channels, height, width)`. Hidden-states (also called feature maps) of the encoder model at the output of each stage. pixel_decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, num_channels, height, width)`. Hidden-states (also called feature maps) of the pixel decoder model at the output of each stage. transformer_decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states (also called feature maps) of the transformer decoder at the output of each stage. transformer_decoder_object_queries (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_dim)`) Output object queries from the last layer in the transformer decoder. transformer_decoder_contrastive_queries (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_dim)`) Contrastive queries from the transformer decoder. transformer_decoder_mask_predictions (`torch.FloatTensor` of shape `(batch_size, num_queries, height, width)`) Mask Predictions from the last layer in the transformer decoder. transformer_decoder_class_predictions (`torch.FloatTensor` of shape `(batch_size, num_queries, num_classes+1)`): Class Predictions from the last layer in the transformer decoder. transformer_decoder_auxiliary_predictions (Tuple of Dict of `str, torch.FloatTensor`, *optional*): Tuple of class and mask predictions from each layer of the transformer decoder. text_queries (`torch.FloatTensor`, *optional* of shape `(batch_size, num_queries, hidden_dim)`) Text queries derived from the input text list used for calculating contrastive loss during training. task_token (`torch.FloatTensor` of shape `(batch_size, hidden_dim)`) 1D task token to condition the queries. attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tuple(torch.FloatTensor)` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Self and Cross Attentions weights from transformer decoder. """ encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None pixel_decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None transformer_decoder_hidden_states: Optional[torch.FloatTensor] = None transformer_decoder_object_queries: torch.FloatTensor = None transformer_decoder_contrastive_queries: Optional[torch.FloatTensor] = None transformer_decoder_mask_predictions: torch.FloatTensor = None transformer_decoder_class_predictions: torch.FloatTensor = None transformer_decoder_auxiliary_predictions: Optional[Tuple[Dict[str, torch.FloatTensor]]] = None text_queries: Optional[torch.FloatTensor] = None task_token: torch.FloatTensor = None attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class OneFormerForUniversalSegmentationOutput(ModelOutput): """ Class for outputs of [`OneFormerForUniversalSegmentationOutput`]. This output can be directly passed to [`~OneFormerImageProcessor.post_process_semantic_segmentation`] or [`~OneFormerImageProcessor.post_process_instance_segmentation`] or [`~OneFormerImageProcessor.post_process_panoptic_segmentation`] depending on the task. Please, see [`~OneFormerImageProcessor] for details regarding usage. Args: loss (`torch.Tensor`, *optional*): The computed loss, returned when labels are present. class_queries_logits (`torch.FloatTensor`): A tensor of shape `(batch_size, num_queries, num_labels + 1)` representing the proposed classes for each query. Note the `+ 1` is needed because we incorporate the null class. masks_queries_logits (`torch.FloatTensor`): A tensor of shape `(batch_size, num_queries, height, width)` representing the proposed masks for each query. auxiliary_predictions (List of Dict of `str, torch.FloatTensor`, *optional*): List of class and mask predictions from each layer of the transformer decoder. encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, num_channels, height, width)`. Hidden-states (also called feature maps) of the encoder model at the output of each stage. pixel_decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, num_channels, height, width)`. Hidden-states (also called feature maps) of the pixel decoder model at the output of each stage. transformer_decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states (also called feature maps) of the transformer decoder at the output of each stage. transformer_decoder_object_queries (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_dim)`) Output object queries from the last layer in the transformer decoder. transformer_decoder_contrastive_queries (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_dim)`) Contrastive queries from the transformer decoder. transformer_decoder_mask_predictions (`torch.FloatTensor` of shape `(batch_size, num_queries, height, width)`) Mask Predictions from the last layer in the transformer decoder. transformer_decoder_class_predictions (`torch.FloatTensor` of shape `(batch_size, num_queries, num_classes+1)`): Class Predictions from the last layer in the transformer decoder. transformer_decoder_auxiliary_predictions (List of Dict of `str, torch.FloatTensor`, *optional*): List of class and mask predictions from each layer of the transformer decoder. text_queries (`torch.FloatTensor`, *optional* of shape `(batch_size, num_queries, hidden_dim)`) Text queries derived from the input text list used for calculating contrastive loss during training. task_token (`torch.FloatTensor` of shape `(batch_size, hidden_dim)`) 1D task token to condition the queries. attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tuple(torch.FloatTensor)` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Self and Cross Attentions weights from transformer decoder. """ loss: Optional[torch.FloatTensor] = None class_queries_logits: torch.FloatTensor = None masks_queries_logits: torch.FloatTensor = None auxiliary_predictions: List[Dict[str, torch.FloatTensor]] = None encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None pixel_decoder_hidden_states: Optional[List[torch.FloatTensor]] = None transformer_decoder_hidden_states: Optional[torch.FloatTensor] = None transformer_decoder_object_queries: torch.FloatTensor = None transformer_decoder_contrastive_queries: Optional[torch.FloatTensor] = None transformer_decoder_mask_predictions: torch.FloatTensor = None transformer_decoder_class_predictions: torch.FloatTensor = None transformer_decoder_auxiliary_predictions: Optional[List[Dict[str, torch.FloatTensor]]] = None text_queries: Optional[torch.FloatTensor] = None task_token: torch.FloatTensor = None attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None # Modified from transformers.models.deformable_detr.modeling_deformable_detr.DeformableDetrFrozenBatchNorm2d with DeformableDetr->OneFormerPixelDecoder class OneFormerPixelDecoderFrozenBatchNorm2d(nn.Module): """ BatchNorm2d where the batch statistics and the affine parameters are fixed. Copy-paste from torchvision.misc.ops with added eps before rqsrt, without which any other models than torchvision.models.resnet[18,34,50,101] produce nans. """ def __init__(self, n): super().__init__() self.register_buffer("weight", torch.ones(n)) self.register_buffer("bias", torch.zeros(n)) self.register_buffer("running_mean", torch.zeros(n)) self.register_buffer("running_var", torch.ones(n)) def _load_from_state_dict( self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs ): num_batches_tracked_key = prefix + "num_batches_tracked" if num_batches_tracked_key in state_dict: del state_dict[num_batches_tracked_key] super()._load_from_state_dict( state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs ) def forward(self, x): weight = self.weight.reshape(1, -1, 1, 1) bias = self.bias.reshape(1, -1, 1, 1) running_var = self.running_var.reshape(1, -1, 1, 1) running_mean = self.running_mean.reshape(1, -1, 1, 1) epsilon = 1e-5 scale = weight * (running_var + epsilon).rsqrt() bias = bias - running_mean * scale return x * scale + bias # Modified from transformers.models.detr.modeling_deformable_detr.DeformableDetrMultiscaleDeformableAttention with DeformableDetr->OneFormerPixelDecoderEncoder class OneFormerPixelDecoderEncoderMultiscaleDeformableAttention(nn.Module): """ Multiscale deformable attention as proposed in Deformable DETR. """ def __init__(self, embed_dim: int, num_heads: int, n_levels: int, n_points: int): super().__init__() if embed_dim % num_heads != 0: raise ValueError( f"embed_dim (d_model) must be divisible by num_heads, but got {embed_dim} and {num_heads}" ) dim_per_head = embed_dim // num_heads # check if dim_per_head is power of 2 if not ((dim_per_head & (dim_per_head - 1) == 0) and dim_per_head != 0): warnings.warn( "You'd better set embed_dim (d_model) in DeformableDetrMultiscaleDeformableAttention to make the" " dimension of each attention head a power of 2 which is more efficient in the authors' CUDA" " implementation." ) self.im2col_step = 128 self.d_model = embed_dim self.n_levels = n_levels self.n_heads = num_heads self.n_points = n_points self.sampling_offsets = nn.Linear(embed_dim, num_heads * n_levels * n_points * 2) self.attention_weights = nn.Linear(embed_dim, num_heads * n_levels * n_points) self.value_proj = nn.Linear(embed_dim, embed_dim) self.output_proj = nn.Linear(embed_dim, embed_dim) def with_pos_embed(self, tensor: torch.Tensor, position_embeddings: Optional[Tensor]): return tensor if position_embeddings is None else tensor + position_embeddings def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states=None, encoder_attention_mask=None, position_embeddings: Optional[torch.Tensor] = None, reference_points=None, spatial_shapes=None, level_start_index=None, output_attentions: bool = False, ): # add position embeddings to the hidden states before projecting to queries and keys if position_embeddings is not None: hidden_states = self.with_pos_embed(hidden_states, position_embeddings) batch_size, num_queries, _ = hidden_states.shape batch_size, sequence_length, _ = encoder_hidden_states.shape if (spatial_shapes[:, 0] * spatial_shapes[:, 1]).sum() != sequence_length: raise ValueError( "Make sure to align the spatial shapes with the sequence length of the encoder hidden states" ) value = self.value_proj(encoder_hidden_states) if attention_mask is not None: # we invert the attention_mask value = value.masked_fill(attention_mask[..., None], float(0)) value = value.view(batch_size, sequence_length, self.n_heads, self.d_model // self.n_heads) sampling_offsets = self.sampling_offsets(hidden_states).view( batch_size, num_queries, self.n_heads, self.n_levels, self.n_points, 2 ) attention_weights = self.attention_weights(hidden_states).view( batch_size, num_queries, self.n_heads, self.n_levels * self.n_points ) attention_weights = nn.functional.softmax(attention_weights, -1).view( batch_size, num_queries, self.n_heads, self.n_levels, self.n_points ) # batch_size, num_queries, n_heads, n_levels, n_points, 2 if reference_points.shape[-1] == 2: offset_normalizer = torch.stack([spatial_shapes[..., 1], spatial_shapes[..., 0]], -1) sampling_locations = ( reference_points[:, :, None, :, None, :] + sampling_offsets / offset_normalizer[None, None, None, :, None, :] ) elif reference_points.shape[-1] == 4: sampling_locations = ( reference_points[:, :, None, :, None, :2] + sampling_offsets / self.n_points * reference_points[:, :, None, :, None, 2:] * 0.5 ) else: raise ValueError(f"Last dim of reference_points must be 2 or 4, but got {reference_points.shape[-1]}") # PyTorch implementation output = multi_scale_deformable_attention(value, spatial_shapes, sampling_locations, attention_weights) output = self.output_proj(output) return output, attention_weights class OneFormerPixelDecoderEncoderLayer(nn.Module): def __init__(self, config: OneFormerConfig): super().__init__() self.embed_dim = config.conv_dim self.self_attn = OneFormerPixelDecoderEncoderMultiscaleDeformableAttention( embed_dim=self.embed_dim, num_heads=config.num_attention_heads, n_levels=3, n_points=4, ) self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) self.dropout = config.dropout self.activation_fn = nn.functional.relu self.activation_dropout = config.dropout self.fc1 = nn.Linear(self.embed_dim, config.encoder_feedforward_dim) self.fc2 = nn.Linear(config.encoder_feedforward_dim, self.embed_dim) self.final_layer_norm = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) self.is_training = config.is_training def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, position_embeddings: torch.Tensor = None, reference_points=None, spatial_shapes=None, level_start_index=None, output_attentions: bool = False, ): """ Args: hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Input to the layer. attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Attention mask. position_embeddings (`torch.FloatTensor`, *optional*): Position embeddings, to be added to `hidden_states`. reference_points (`torch.FloatTensor`, *optional*): Reference points. spatial_shapes (`torch.LongTensor`, *optional*): Spatial shapes of the backbone feature maps. level_start_index (`torch.LongTensor`, *optional*): Level start index. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states # Apply Multi-scale Deformable Attention Module on the multi-scale feature maps. hidden_states, attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, encoder_hidden_states=hidden_states, encoder_attention_mask=attention_mask, position_embeddings=position_embeddings, reference_points=reference_points, spatial_shapes=spatial_shapes, level_start_index=level_start_index, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.is_training) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.is_training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.is_training) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) if self.is_training: if torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any(): clamp_value = torch.finfo(hidden_states.dtype).max - 1000 hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs # Modified from from transformers.models.detr.modeling_deformable_detr.DeformableDetrEncoder with DeformableDetrEncoder->OneFormerPixelDecoderEncoderOnly class OneFormerPixelDecoderEncoderOnly(nn.Module): """ Transformer encoder consisting of *config.encoder_layers* deformable attention layers. Each layer is a [`OneFormerPixelDecoderEncoderLayer`]. The encoder updates the flattened multi-scale feature maps through multiple deformable attention layers. Args: config: OneFormerConfig """ def __init__(self, config: OneFormerConfig): super().__init__() self.config = config self.dropout = config.dropout self.layers = nn.ModuleList([OneFormerPixelDecoderEncoderLayer(config) for _ in range(config.encoder_layers)]) @staticmethod def get_reference_points(spatial_shapes, valid_ratios, device): """ Get reference points for each feature map. Used in decoder. Args: spatial_shapes (`torch.LongTensor` of shape `(num_feature_levels, 2)`): Spatial shapes of each feature map. valid_ratios (`torch.FloatTensor` of shape `(batch_size, num_feature_levels, 2)`): Valid ratios of each feature map. device (`torch.device`): Device on which to create the tensors. Returns: `torch.FloatTensor` of shape `(batch_size, num_queries, num_feature_levels, 2)` """ reference_points_list = [] for lvl, (height, width) in enumerate(spatial_shapes): ref_y, ref_x = torch.meshgrid( torch.linspace(0.5, height - 0.5, height, dtype=torch.float32, device=device), torch.linspace(0.5, width - 0.5, width, dtype=torch.float32, device=device), ) ref_y = ref_y.reshape(-1)[None] / (valid_ratios[:, None, lvl, 1] * height) ref_x = ref_x.reshape(-1)[None] / (valid_ratios[:, None, lvl, 0] * width) ref = torch.stack((ref_x, ref_y), -1) reference_points_list.append(ref) reference_points = torch.cat(reference_points_list, 1) reference_points = reference_points[:, :, None] * valid_ratios[:, None] return reference_points def forward( self, inputs_embeds=None, attention_mask=None, position_embeddings=None, spatial_shapes=None, level_start_index=None, valid_ratios=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" Args: inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Flattened feature map (output of the backbone + projection layer) that is passed to the encoder. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding pixel features. Mask values selected in `[0, 1]`: - 1 for pixel features that are real (i.e. **not masked**), - 0 for pixel features that are padding (i.e. **masked**). [What are attention masks?](../glossary#attention-mask) position_embeddings (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Position embeddings that are added to the queries and keys in each self-attention layer. spatial_shapes (`torch.LongTensor` of shape `(num_feature_levels, 2)`): Spatial shapes of each feature map. level_start_index (`torch.LongTensor` of shape `(num_feature_levels)`): Starting index of each feature map. valid_ratios (`torch.FloatTensor` of shape `(batch_size, num_feature_levels, 2)`): Ratio of valid area in each feature level. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict hidden_states = inputs_embeds reference_points = self.get_reference_points(spatial_shapes, valid_ratios, device=inputs_embeds.device) encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None for i, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) layer_outputs = encoder_layer( hidden_states, attention_mask, position_embeddings=position_embeddings, reference_points=reference_points, spatial_shapes=spatial_shapes, level_start_index=level_start_index, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) # Modified from from transformers.models.mask2former.modeling_mask2former.Mask2FormerPixelDecoder with Mask2->One class OneFormerPixelDecoder(nn.Module): def __init__(self, config: OneFormerConfig, feature_channels): super().__init__() self.config = config # positional encoding self.position_embedding = OneFormerSinePositionEmbedding(num_pos_feats=config.conv_dim // 2, normalize=True) self.num_feature_levels = 3 transformer_in_channels = feature_channels[-self.num_feature_levels :] self.transformer_feature_strides = config.strides[-self.num_feature_levels :] self.feature_channels = feature_channels self.level_embed = nn.Parameter(torch.Tensor(self.num_feature_levels, config.conv_dim)) # Create input projection layers if self.num_feature_levels > 1: input_projections_list = [] for in_channels in transformer_in_channels[::-1]: input_projections_list.append( nn.Sequential( nn.Conv2d(in_channels, config.conv_dim, kernel_size=1), nn.GroupNorm(32, config.conv_dim), ) ) self.input_projections = nn.ModuleList(input_projections_list) else: self.input_projections = nn.ModuleList( [ nn.Sequential( nn.Conv2d(transformer_in_channels[-1], config.conv_dim, kernel_size=1), nn.GroupNorm(32, config.conv_dim), ) ] ) self.encoder = OneFormerPixelDecoderEncoderOnly(config) self.mask_projection = nn.Conv2d( config.conv_dim, config.mask_dim, kernel_size=1, stride=1, padding=0, ) self.common_stride = config.common_stride # extra fpn levels stride = min(self.transformer_feature_strides) self.num_fpn_levels = int(np.log2(stride) - np.log2(self.common_stride)) lateral_convs = [] output_convs = [] for idx, in_channels in enumerate(self.feature_channels[: self.num_fpn_levels]): lateral_conv = nn.Sequential( nn.Conv2d( in_channels, config.conv_dim, kernel_size=1, bias=False, ), nn.GroupNorm(32, config.conv_dim), ) output_conv = nn.Sequential( nn.Conv2d( config.conv_dim, config.conv_dim, kernel_size=3, stride=1, padding=1, bias=False, ), nn.GroupNorm(32, config.conv_dim), nn.ReLU(), ) self.add_module("adapter_{}".format(idx + 1), lateral_conv) self.add_module("layer_{}".format(idx + 1), output_conv) lateral_convs.append(lateral_conv) output_convs.append(output_conv) # Place convs into top-down order (from low to high resolution) # to make the top-down computation in forward clearer. self.lateral_convs = lateral_convs[::-1] self.output_convs = output_convs[::-1] def get_valid_ratio(self, mask): """Get the valid ratio of all feature maps.""" _, height, width = mask.shape valid_height = torch.sum(~mask[:, :, 0], 1) valid_width = torch.sum(~mask[:, 0, :], 1) valid_ratio_heigth = valid_height.float() / height valid_ratio_width = valid_width.float() / width valid_ratio = torch.stack([valid_ratio_width, valid_ratio_heigth], -1) return valid_ratio def forward( self, features, encoder_outputs=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) # Then, apply 1x1 convolution to reduce the channel dimension to d_model (256 by default) sources = [] position_embeddings_list = [] for level, source in enumerate(features[::-1][: self.num_feature_levels]): feats = source.float() sources.append(self.input_projections[level](feats)) position_embeddings_list.append(self.position_embedding(feats)) masks = [torch.zeros((x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool) for x in sources] # Prepare encoder inputs (by flattening) source_flatten = [] mask_flatten = [] lvl_pos_embed_flatten = [] spatial_shapes = [] for level, (source, mask, pos_embed) in enumerate(zip(sources, masks, position_embeddings_list)): batch_size, num_channels, height, width = source.shape spatial_shape = (height, width) spatial_shapes.append(spatial_shape) source = source.flatten(2).transpose(1, 2) mask = mask.flatten(1) pos_embed = pos_embed.flatten(2).transpose(1, 2) lvl_pos_embed = pos_embed + self.level_embed[level].view(1, 1, -1) lvl_pos_embed_flatten.append(lvl_pos_embed) source_flatten.append(source) mask_flatten.append(mask) source_flatten = torch.cat(source_flatten, 1) mask_flatten = torch.cat(mask_flatten, 1) lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1) spatial_shapes = torch.as_tensor(spatial_shapes, dtype=torch.long, device=source_flatten.device) level_start_index = torch.cat((spatial_shapes.new_zeros((1,)), spatial_shapes.prod(1).cumsum(0)[:-1])) valid_ratios = torch.stack([self.get_valid_ratio(m) for m in masks], 1) valid_ratios = valid_ratios.float() # Fourth, sent source_flatten + mask_flatten + lvl_pos_embed_flatten (backbone + proj layer output) through encoder # Also provide spatial_shapes, level_start_index and valid_ratios if encoder_outputs is None: encoder_outputs = self.encoder( inputs_embeds=source_flatten, attention_mask=mask_flatten, position_embeddings=lvl_pos_embed_flatten, spatial_shapes=spatial_shapes, level_start_index=level_start_index, valid_ratios=valid_ratios, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) y = encoder_outputs.last_hidden_state bs = y.shape[0] split_size_or_sections = [None] * self.num_feature_levels for i in range(self.num_feature_levels): if i < self.num_feature_levels - 1: split_size_or_sections[i] = level_start_index[i + 1] - level_start_index[i] else: split_size_or_sections[i] = y.shape[1] - level_start_index[i] y = torch.split(y, split_size_or_sections, dim=1) out = [] multi_scale_features = [] num_cur_levels = 0 for i, z in enumerate(y): out.append(z.transpose(1, 2).view(bs, -1, spatial_shapes[i][0], spatial_shapes[i][1])) # append `out` with extra FPN levels # Reverse feature maps into top-down order (from low to high resolution) for idx, feats in enumerate(features[: self.num_fpn_levels][::-1]): feats = feats.float() lateral_conv = self.lateral_convs[idx] output_conv = self.output_convs[idx] cur_fpn = lateral_conv(feats) # Following FPN implementation, we use nearest upsampling here y = cur_fpn + nn.functional.interpolate( out[-1], size=cur_fpn.shape[-2:], mode="bilinear", align_corners=False ) y = output_conv(y) out.append(y) for o in out: if num_cur_levels < self.num_feature_levels: multi_scale_features.append(o) num_cur_levels += 1 return OneFormerPixelDecoderOutput( mask_features=self.mask_projection(out[-1]), multi_scale_features=multi_scale_features, attentions=encoder_outputs.attentions, ) # Modified from from transformers.models.mask2former.modeling_mask2former.Mask2FormerPixelLevelModule with Mask2->One class OneFormerPixelLevelModule(nn.Module): def __init__(self, config: OneFormerConfig): """ Pixel Level Module proposed in [Masked-attention Mask Transformer for Universal Image Segmentation](https://arxiv.org/abs/2112.01527). It runs the input image through a backbone and a pixel decoder, generating multi-scale feature maps and pixel embeddings. Args: config ([`OneFormerConfig`]): The configuration used to instantiate this model. """ super().__init__() backbone_config = config.backbone_config self.encoder = AutoBackbone.from_config(backbone_config) self.decoder = OneFormerPixelDecoder(config, feature_channels=self.encoder.channels) def forward(self, pixel_values: Tensor, output_hidden_states: bool = False) -> OneFormerPixelLevelModuleOutput: features: List[Tensor] = self.encoder(pixel_values).feature_maps decoder_output: OneFormerPixelDecoderOutput = self.decoder(features, output_hidden_states=output_hidden_states) return OneFormerPixelLevelModuleOutput( encoder_features=tuple(features), decoder_features=decoder_output.multi_scale_features, decoder_last_feature=decoder_output.mask_features, ) # Modified from transformers.models.detr.modeling_detr.DetrAttention with Detr->OneFormer class OneFormerAttention(nn.Module): """ Multi-headed attention from 'Attention Is All You Need' paper. Here, we add position embeddings to the queries and keys (as explained in the DETR paper). """ def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads if self.head_dim * num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {num_heads})." ) self.scaling = self.head_dim**-0.5 self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) def _shape(self, tensor: torch.Tensor, seq_len: int, batch_size: int): return tensor.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def with_pos_embed(self, tensor: torch.Tensor, position_embeddings: Optional[Tensor]): return tensor if position_embeddings is None else tensor + position_embeddings def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_embeddings: Optional[torch.Tensor] = None, key_value_states: Optional[torch.Tensor] = None, key_value_position_embeddings: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" hidden_states = hidden_states.permute(1, 0, 2) if hidden_states is not None else None position_embeddings = position_embeddings.permute(1, 0, 2) if position_embeddings is not None else None key_value_states = key_value_states.permute(1, 0, 2) if key_value_states is not None else None key_value_position_embeddings = ( key_value_position_embeddings.permute(1, 0, 2) if key_value_position_embeddings is not None else None ) # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None batch_size, target_len, embed_dim = hidden_states.size() # add position embeddings to the hidden states before projecting to queries and keys if position_embeddings is not None: hidden_states_original = hidden_states hidden_states = self.with_pos_embed(hidden_states, position_embeddings) # add key-value position embeddings to the key value states if key_value_position_embeddings is not None: key_value_states_original = key_value_states key_value_states = self.with_pos_embed(key_value_states, key_value_position_embeddings) # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj if is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, batch_size) value_states = self._shape(self.v_proj(key_value_states_original), -1, batch_size) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, batch_size) value_states = self._shape(self.v_proj(hidden_states_original), -1, batch_size) proj_shape = (batch_size * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, target_len, batch_size).view(*proj_shape) key_states = key_states.view(*proj_shape) value_states = value_states.view(*proj_shape) source_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (batch_size * self.num_heads, target_len, source_len): raise ValueError( f"Attention weights should be of size {(batch_size * self.num_heads, target_len, source_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (batch_size * self.num_heads, target_len, source_len): raise ValueError( f"Attention mask should be of size {(target_len, batch_size * self.num_heads, source_len)}, but is" f" {attention_mask.size()}" ) attn_weights += attention_mask attn_weights = nn.functional.softmax(attn_weights, dim=-1) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(batch_size, self.num_heads, target_len, source_len) attn_weights = attn_weights_reshaped.view(batch_size * self.num_heads, target_len, source_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (batch_size * self.num_heads, target_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(batch_size, self.num_heads, target_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(batch_size, self.num_heads, target_len, self.head_dim) attn_output = attn_output.transpose(1, 2) attn_output = attn_output.reshape(batch_size, target_len, embed_dim) attn_output = self.out_proj(attn_output).permute(1, 0, 2) return attn_output, attn_weights_reshaped class OneFormerTransformerDecoderSelfAttentionLayer(nn.Module): def __init__( self, embed_dim, num_heads, dropout=0.0, activation="relu", normalize_before=False, layer_norm_eps=1e-05 ): super().__init__() self.self_attn = OneFormerAttention(embed_dim=embed_dim, num_heads=num_heads, dropout=dropout, is_decoder=True) self.norm = nn.LayerNorm(embed_dim, eps=layer_norm_eps) self.dropout = nn.Dropout(dropout) self.activation = ACT2FN[activation] self.normalize_before = normalize_before def with_pos_embed(self, tensor, pos: Optional[Tensor]): return tensor if pos is None else tensor + pos def forward_post( self, output, output_mask: Optional[Tensor] = None, output_key_padding_mask: Optional[Tensor] = None, query_pos: Optional[Tensor] = None, ): output2, attention_weights = self.self_attn( hidden_states=output, position_embeddings=query_pos, attention_mask=output_mask, output_attentions=True ) output = output + self.dropout(output2) output = self.norm(output) return output, attention_weights def forward_pre( self, output, output_mask: Optional[Tensor] = None, output_key_padding_mask: Optional[Tensor] = None, query_pos: Optional[Tensor] = None, ): output2 = self.norm(output) output2, attention_weights = self.self_attn( hidden_states=output2, position_embeddings=query_pos, attention_mask=output_mask, output_attentions=True ) output = output + self.dropout(output2) return output, attention_weights def forward( self, output, output_mask: Optional[Tensor] = None, output_key_padding_mask: Optional[Tensor] = None, query_pos: Optional[Tensor] = None, ): if self.normalize_before: return self.forward_pre(output, output_mask, output_key_padding_mask, query_pos) return self.forward_post(output, output_mask, output_key_padding_mask, query_pos) class OneFormerTransformerDecoderCrossAttentionLayer(nn.Module): def __init__( self, embed_dim, num_heads, dropout=0.0, activation="relu", normalize_before=False, layer_norm_eps=1e-05 ): super().__init__() self.multihead_attn = nn.MultiheadAttention(embed_dim, num_heads, dropout=dropout) self.norm = nn.LayerNorm(embed_dim, eps=layer_norm_eps) self.dropout = nn.Dropout(dropout) self.activation = ACT2FN[activation] self.normalize_before = normalize_before def with_pos_embed(self, tensor, pos: Optional[Tensor]): return tensor if pos is None else tensor + pos def forward_post( self, output, memory, memory_mask: Optional[Tensor] = None, memory_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, query_pos: Optional[Tensor] = None, ): output2, attention_weights = self.multihead_attn( query=self.with_pos_embed(output, query_pos), key=self.with_pos_embed(memory, pos), value=memory, attn_mask=memory_mask, key_padding_mask=memory_key_padding_mask, ) output = output + self.dropout(output2) output = self.norm(output) return output, attention_weights def forward_pre( self, output, memory, memory_mask: Optional[Tensor] = None, memory_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, query_pos: Optional[Tensor] = None, ): output2 = self.norm(output) output2, attention_weights = self.multihead_attn( query=self.with_pos_embed(output2, query_pos), key=self.with_pos_embed(memory, pos), value=memory, attn_mask=memory_mask, key_padding_mask=memory_key_padding_mask, ) output = output + self.dropout(output2) return output, attention_weights def forward( self, output, memory, memory_mask: Optional[Tensor] = None, memory_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, query_pos: Optional[Tensor] = None, ): if self.normalize_before: return self.forward_pre(output, memory, memory_mask, memory_key_padding_mask, pos, query_pos) return self.forward_post(output, memory, memory_mask, memory_key_padding_mask, pos, query_pos) class OneFormerTransformerDecoderFFNLayer(nn.Module): def __init__( self, d_model, dim_feedforward=2048, dropout=0.0, activation="relu", normalize_before=False, layer_norm_eps=1e-05, ): super().__init__() # Implementation of Feedforward model self.linear1 = nn.Linear(d_model, dim_feedforward) self.dropout = nn.Dropout(dropout) self.linear2 = nn.Linear(dim_feedforward, d_model) self.norm = nn.LayerNorm(d_model, eps=layer_norm_eps) self.activation = ACT2FN[activation] self.normalize_before = normalize_before def with_pos_embed(self, tensor, pos: Optional[Tensor]): return tensor if pos is None else tensor + pos def forward_post(self, output): output2 = self.linear2(self.dropout(self.activation(self.linear1(output)))) output = output + self.dropout(output2) output = self.norm(output) return output def forward_pre(self, output): output2 = self.norm(output) output2 = self.linear2(self.dropout(self.activation(self.linear1(output2)))) output = output + self.dropout(output2) return output def forward(self, output): if self.normalize_before: return self.forward_pre(output) return self.forward_post(output) class OneFormerMLPPredictionHead(nn.Module): def __init__(self, input_dim: int, hidden_dim: int, output_dim: int, num_layers: int = 3): """ A classic Multi Layer Perceptron (MLP). Args: input_dim (`int`): The input dimensions. hidden_dim (`int`): The hidden dimensions. output_dim (`int`): The output dimensions. num_layers (int, *optional*, defaults to 3): The number of layers. """ super().__init__() in_dims = [input_dim] + [hidden_dim] * (num_layers - 1) out_dims = [hidden_dim] * (num_layers - 1) + [output_dim] layers = [] for i, (in_dim, out_dim) in enumerate(zip(in_dims, out_dims)): layers.append( PredictionBlock(in_dim, out_dim, activation=nn.ReLU() if i < num_layers - 1 else nn.Identity()) ) self.layers = nn.Sequential(*layers) def forward(self, input: Tensor) -> Tensor: return self.layers(input) # refactored from original implementation class OneFormerTransformerDecoderLayer(nn.Module): def __init__(self, config: OneFormerConfig): super().__init__() self.embed_dim = config.hidden_dim self.num_feature_levels = 3 self.cross_attn = OneFormerTransformerDecoderCrossAttentionLayer( embed_dim=self.embed_dim, num_heads=config.num_attention_heads, dropout=0.0, normalize_before=config.pre_norm, layer_norm_eps=config.layer_norm_eps, ) self.self_attn = OneFormerTransformerDecoderSelfAttentionLayer( embed_dim=self.embed_dim, num_heads=config.num_attention_heads, dropout=0.0, normalize_before=config.pre_norm, layer_norm_eps=config.layer_norm_eps, ) self.ffn = OneFormerTransformerDecoderFFNLayer( d_model=self.embed_dim, dim_feedforward=config.dim_feedforward, dropout=0.0, normalize_before=config.pre_norm, layer_norm_eps=config.layer_norm_eps, ) def forward( self, index: int, output: torch.Tensor, multi_stage_features: List[torch.Tensor], multi_stage_positional_embeddings: List[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, query_embeddings: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = False, ): """ Args: index (`int`): index of the layer in the Transformer decoder. output (`torch.FloatTensor`): the object queries of shape `(N, batch, hidden_dim)` multi_stage_features (`List[torch.Tensor]`): the multi-scale features from the pixel decoder. multi_stage_positional_embeddings (`List[torch.Tensor]`): positional embeddings for the multi_stage_features attention_mask (`torch.FloatTensor`): attention mask for the masked cross attention layer query_embeddings (`torch.FloatTensor`, *optional*): position embeddings that are added to the queries and keys in the self-attention layer. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ level_index = index % self.num_feature_levels attention_mask[torch.where(attention_mask.sum(-1) == attention_mask.shape[-1])] = False # Masked Cross Attention output, cross_attn_weights = self.cross_attn( output, multi_stage_features[level_index], memory_mask=attention_mask, memory_key_padding_mask=None, # here we do not apply masking on padded region pos=multi_stage_positional_embeddings[level_index], query_pos=query_embeddings, ) # Self Attention output, self_attn_weights = self.self_attn( output, output_mask=None, output_key_padding_mask=None, query_pos=query_embeddings, ) # Fully Connected output = self.ffn(output) outputs = (output,) if output_attentions: outputs += (self_attn_weights, cross_attn_weights) return outputs class OneFormerTransformerDecoderQueryTransformerDecoder(nn.Module): def __init__(self, decoder_layer, num_layers, norm=None, return_intermediate=False): super().__init__() self.layers = _get_clones(decoder_layer, num_layers) self.num_layers = num_layers self.norm = norm self.return_intermediate = return_intermediate def forward( self, output, memory, output_mask: Optional[Tensor] = None, memory_mask: Optional[Tensor] = None, output_key_padding_mask: Optional[Tensor] = None, memory_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, query_pos: Optional[Tensor] = None, ): intermediate = [] for layer in self.layers: output = layer( output, memory, output_mask=output_mask, memory_mask=memory_mask, output_key_padding_mask=output_key_padding_mask, memory_key_padding_mask=memory_key_padding_mask, pos=pos, query_pos=query_pos, ) if self.return_intermediate: intermediate.append(self.norm(output)) if self.norm is not None: output = self.norm(output) if self.return_intermediate: intermediate.pop() intermediate.append(output) if self.return_intermediate: return torch.stack(intermediate) return output.unsqueeze(0) class OneFormerTransformerDecoderQueryTransformerDecoderLayer(nn.Module): def __init__( self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation="relu", normalize_before=False, layer_norm_eps=1e-05, ): super().__init__() self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) # Implementation of Feedforward model self.linear1 = nn.Linear(d_model, dim_feedforward) self.dropout = nn.Dropout(dropout) self.linear2 = nn.Linear(dim_feedforward, d_model) self.norm1 = nn.LayerNorm(d_model, eps=layer_norm_eps) self.norm2 = nn.LayerNorm(d_model, eps=layer_norm_eps) self.norm3 = nn.LayerNorm(d_model, eps=layer_norm_eps) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(dropout) self.dropout3 = nn.Dropout(dropout) self.activation = ACT2FN[activation] self.normalize_before = normalize_before def with_pos_embed(self, tensor, pos: Optional[Tensor]): return tensor if pos is None else tensor + pos def forward_post( self, output, memory, output_mask: Optional[Tensor] = None, memory_mask: Optional[Tensor] = None, output_key_padding_mask: Optional[Tensor] = None, memory_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, query_pos: Optional[Tensor] = None, ): q = k = self.with_pos_embed(output, query_pos) output2 = self.self_attn(q, k, value=output, attn_mask=output_mask, key_padding_mask=output_key_padding_mask) output2 = output2[0] output = output + self.dropout1(output2) output = self.norm1(output) output2 = self.multihead_attn( query=self.with_pos_embed(output, query_pos), key=self.with_pos_embed(memory, pos), value=memory, attn_mask=memory_mask, key_padding_mask=memory_key_padding_mask, ) output2 = output2[0] output = output + self.dropout2(output2) output = self.norm2(output) output2 = self.linear2(self.dropout(self.activation(self.linear1(output)))) output = output + self.dropout3(output2) output = self.norm3(output) return output def forward_pre( self, output, memory, output_mask: Optional[Tensor] = None, memory_mask: Optional[Tensor] = None, output_key_padding_mask: Optional[Tensor] = None, memory_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, query_pos: Optional[Tensor] = None, ): output2 = self.norm1(output) q = k = self.with_pos_embed(output2, query_pos) output2 = self.self_attn(q, k, value=output2, attn_mask=output_mask, key_padding_mask=output_key_padding_mask) output2 = output2[0] output = output + self.dropout1(output2) output2 = self.norm2(output) output2 = self.multihead_attn( query=self.with_pos_embed(output2, query_pos), key=self.with_pos_embed(memory, pos), value=memory, attn_mask=memory_mask, key_padding_mask=memory_key_padding_mask, ) output2 = output2[0] output = output + self.dropout2(output2) output2 = self.norm3(output) output2 = self.linear2(self.dropout(self.activation(self.linear1(output2)))) output = output + self.dropout3(output2) return output def forward( self, output, memory, output_mask: Optional[Tensor] = None, memory_mask: Optional[Tensor] = None, output_key_padding_mask: Optional[Tensor] = None, memory_key_padding_mask: Optional[Tensor] = None, pos: Optional[Tensor] = None, query_pos: Optional[Tensor] = None, ): if self.normalize_before: return self.forward_pre( output, memory, output_mask, memory_mask, output_key_padding_mask, memory_key_padding_mask, pos, query_pos, ) return self.forward_post( output, memory, output_mask, memory_mask, output_key_padding_mask, memory_key_padding_mask, pos, query_pos, ) class OneFormerTransformerDecoderQueryTransformer(nn.Module): def __init__( self, d_model=512, nhead=8, num_decoder_layers=6, dim_feedforward=2048, dropout=0.1, activation="relu", normalize_before=False, return_intermediate_dec=False, layer_norm_eps=1e-05, ): super().__init__() decoder_layer = OneFormerTransformerDecoderQueryTransformerDecoderLayer( d_model, nhead, dim_feedforward, dropout, activation, normalize_before, layer_norm_eps ) decoder_norm = nn.LayerNorm(d_model, eps=layer_norm_eps) self.decoder = OneFormerTransformerDecoderQueryTransformerDecoder( decoder_layer, num_decoder_layers, decoder_norm, return_intermediate=return_intermediate_dec, ) self.d_model = d_model self.nhead = nhead def forward(self, src, mask, query_embed, pos_embed, task_token=None): batch_size = src.shape[0] src = src.flatten(2).permute(2, 0, 1) pos_embed = pos_embed.flatten(2).permute(2, 0, 1) query_embed = query_embed.unsqueeze(1).repeat(1, batch_size, 1) if mask is not None: mask = mask.flatten(1) if task_token is None: queries = torch.zeros_like(query_embed) else: queries = task_token.repeat(query_embed.shape[0], 1, 1) queries = self.decoder(queries, src, memory_key_padding_mask=mask, pos=pos_embed, query_pos=query_embed) return queries.transpose(1, 2) class OneFormerTransformerDecoder(nn.Module): """ Transformer decoder """ def __init__(self, in_channels: int, config: OneFormerConfig): super().__init__() self.config = config self.dropout = config.dropout self.num_heads = config.num_attention_heads self.is_training = config.is_training self.use_task_norm = config.use_task_norm self.use_auxiliary_loss = config.use_auxiliary_loss self.query_transformer = OneFormerTransformerDecoderQueryTransformer( d_model=config.hidden_dim, dropout=config.dropout, nhead=config.num_attention_heads, dim_feedforward=config.dim_feedforward, num_decoder_layers=config.query_dec_layers, normalize_before=config.pre_norm, return_intermediate_dec=False, layer_norm_eps=config.layer_norm_eps, ) self.decoder_norm = nn.LayerNorm(config.hidden_dim, eps=config.layer_norm_eps) self.num_feature_levels = 3 self.layers = nn.ModuleList( [OneFormerTransformerDecoderLayer(config) for _ in range(config.decoder_layers - 1)] ) self.query_input_projection = nn.Conv2d(in_channels, config.hidden_dim, kernel_size=1) self.class_embed = nn.Linear(config.hidden_dim, config.num_labels + 1) self.mask_embed = OneFormerMLPPredictionHead( config.hidden_dim, config.hidden_dim, config.mask_dim, 3, ) def forward( self, task_token=None, multi_stage_features=None, multi_stage_positional_embeddings=None, mask_features=None, query_features=None, query_embeddings=None, query_embedder=None, size_list=None, output_attentions=None, ): if self.use_task_norm: task_token = self.decoder_norm(task_token) object_queries = self.query_transformer( query_features, None, query_embedder.weight[:-1], self.query_input_projection(mask_features), task_token if self.use_task_norm else None, ) object_queries = object_queries[0].permute(1, 0, 2) queries = torch.cat([object_queries, task_token], dim=0) output = queries.clone() intermediate_class_predictions = [] intermediate_mask_predictions = [] # prediction heads on learnable query features outputs_class, outputs_mask, attention_mask = self.forward_prediction_heads( output, mask_features, attention_mask_target_size=size_list[0] ) intermediate_class_predictions.append(outputs_class) intermediate_mask_predictions.append(outputs_mask) attentions = () for index, layer in enumerate(self.layers): layer_outputs = layer( index=index, output=output, multi_stage_features=multi_stage_features, multi_stage_positional_embeddings=multi_stage_positional_embeddings, attention_mask=attention_mask, query_embeddings=query_embeddings, output_attentions=output_attentions, ) output = layer_outputs[0] attentions += (layer_outputs[1:],) outputs_class, outputs_mask, attention_mask = self.forward_prediction_heads( output, mask_features, attention_mask_target_size=size_list[(index + 1) % self.num_feature_levels] ) intermediate_class_predictions.append(outputs_class) intermediate_mask_predictions.append(outputs_mask) if not len(intermediate_mask_predictions) == len(self.layers) + 1: raise ValueError( "Intermediate predictions in the transformer decoder must have the same number of elements as number" " of layers" ) object_queries = layer_outputs[0].permute(1, 0, 2) contrastive_logits = queries.permute(1, 0, 2) return OneFormerTransformerDecoderOutput( object_queries=object_queries, contrastive_logits=contrastive_logits, prediction_masks=intermediate_mask_predictions[-1], prediction_class=intermediate_class_predictions[-1], auxiliary_predictions=self._get_aux_predictions( intermediate_class_predictions, intermediate_mask_predictions ) if self.use_auxiliary_loss else None, attentions=attentions, ) def forward_prediction_heads(self, output, mask_features, attention_mask_target_size): decoder_output = self.decoder_norm(output) decoder_output = decoder_output.transpose(0, 1) outputs_class = self.class_embed(decoder_output) mask_embed = self.mask_embed(decoder_output) outputs_mask = torch.einsum("bqc,bchw->bqhw", mask_embed, mask_features) attention_mask = nn.functional.interpolate( outputs_mask, size=attention_mask_target_size, mode="bilinear", align_corners=False ) # must use bool type # If a BoolTensor is provided, positions with ``True`` are not allowed to attend while ``False`` values will be unchanged. attention_mask = ( attention_mask.sigmoid().flatten(2).unsqueeze(1).repeat(1, self.num_heads, 1, 1).flatten(0, 1) < 0.5 ).bool() attention_mask = attention_mask.detach() return outputs_class, outputs_mask, attention_mask @torch.jit.unused def _get_aux_predictions(self, outputs_class, outputs_seg_masks): # this is a workaround to make torchscript happy, as torchscript # doesn't support dictionary with non-homogeneous values, such # as a dict having both a Tensor and a list. aux_list = [ {"class_queries_logits": a, "masks_queries_logits": b} for a, b in zip(outputs_class[:-1], outputs_seg_masks[:-1]) ] return tuple(aux_list) class OneFormerTransformerModule(nn.Module): """ The OneFormer's transformer module. """ def __init__(self, in_features: int, config: OneFormerConfig): super().__init__() hidden_dim = config.hidden_dim self.num_feature_levels = 3 self.position_embedder = OneFormerSinePositionEmbedding(num_pos_feats=hidden_dim // 2, normalize=True) self.queries_embedder = nn.Embedding(config.num_queries, hidden_dim) self.input_projections = [] for _ in range(self.num_feature_levels): if in_features != hidden_dim or config.enforce_input_proj: self.input_projections.append(nn.Conv2d(in_features, hidden_dim, kernel_size=1)) else: self.input_projections.append(nn.Sequential()) self.decoder = OneFormerTransformerDecoder(in_channels=in_features, config=config) self.level_embed = nn.Embedding(self.num_feature_levels, hidden_dim) def forward( self, multi_scale_features: List[Tensor], mask_features: Tensor, task_token: Tensor, output_attentions: bool = False, ) -> OneFormerTransformerDecoderOutput: if not len(multi_scale_features) == self.num_feature_levels: raise ValueError( f"Number of elements in multi_scale_features ({len(multi_scale_features)}) and num_feature_levels" f" ({self.num_feature_levels}) do not match!" ) multi_stage_features = [] multi_stage_positional_embeddings = [] size_list = [] for i in range(self.num_feature_levels): size_list.append(multi_scale_features[i].shape[-2:]) multi_stage_positional_embeddings.append(self.position_embedder(multi_scale_features[i], None).flatten(2)) multi_stage_features.append( self.input_projections[i](multi_scale_features[i]).flatten(2) + self.level_embed.weight[i][None, :, None] ) # flatten NxCxHxW to HWxNxC multi_stage_positional_embeddings[-1] = multi_stage_positional_embeddings[-1].permute(2, 0, 1) multi_stage_features[-1] = multi_stage_features[-1].permute(2, 0, 1) _, batch_size, _ = multi_stage_features[0].shape # QxNxC query_embeddings = self.queries_embedder.weight.unsqueeze(1).repeat(1, batch_size, 1) task_token = task_token.unsqueeze(0) query_features = self.position_embedder(mask_features, None) return self.decoder( task_token=task_token, multi_stage_features=multi_stage_features, multi_stage_positional_embeddings=multi_stage_positional_embeddings, mask_features=mask_features, query_features=query_features, query_embeddings=query_embeddings, query_embedder=self.queries_embedder, size_list=size_list, output_attentions=output_attentions, ) # Copied from transformers.models.maskformer.modeling_maskformer.MaskFormerSinePositionEmbedding with Mask->One class OneFormerSinePositionEmbedding(nn.Module): """ This is a more standard version of the position embedding, very similar to the one used by the Attention is all you need paper, generalized to work on images. """ def __init__( self, num_pos_feats: int = 64, temperature: int = 10000, normalize: bool = False, scale: Optional[float] = None ): super().__init__() if scale is not None and normalize is False: raise ValueError("normalize should be True if scale is passed") self.num_pos_feats = num_pos_feats self.temperature = temperature self.normalize = normalize self.scale = 2 * math.pi if scale is None else scale def forward(self, x: Tensor, mask: Optional[Tensor] = None) -> Tensor: if mask is None: mask = torch.zeros((x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool) not_mask = ~mask y_embed = not_mask.cumsum(1, dtype=torch.float32) x_embed = not_mask.cumsum(2, dtype=torch.float32) if self.normalize: eps = 1e-6 y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) dim_t = self.temperature ** (2 * torch.div(dim_t, 2, rounding_mode="floor") / self.num_pos_feats) pos_x = x_embed[:, :, :, None] / dim_t pos_y = y_embed[:, :, :, None] / dim_t pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3) pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3) pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) return pos # Copied from transformers.models.maskformer.modeling_maskformer.PredictionBlock class PredictionBlock(nn.Module): def __init__(self, in_dim: int, out_dim: int, activation: nn.Module) -> None: super().__init__() self.layers = [nn.Linear(in_dim, out_dim), activation] # Maintain submodule indexing as if part of a Sequential block for i, layer in enumerate(self.layers): self.add_module(str(i), layer) def forward(self, input: Tensor) -> Tensor: hidden_state = input for layer in self.layers: hidden_state = layer(hidden_state) return hidden_state class OneFormerTextMapperAttention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.0, proj_drop=0.0): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights self.scale = qk_scale or head_dim**-0.5 self.q_proj = nn.Linear(dim, dim, bias=qkv_bias) self.k_proj = nn.Linear(dim, dim, bias=qkv_bias) self.v_proj = nn.Linear(dim, dim, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, q, k, v): batch_size, q_sequence_length, num_channels = q.shape if not k.shape == v.shape: raise ValueError(f"keys ({list(k.shape)}) and values ({list(v.shape)}) have different shapes!") batch_size, k_sequence_length, num_channels = k.shape q = self.q_proj(q).reshape(batch_size, q_sequence_length, self.num_heads, num_channels // self.num_heads) k = self.k_proj(k).reshape(batch_size, k_sequence_length, self.num_heads, num_channels // self.num_heads) v = self.v_proj(v).reshape(batch_size, k_sequence_length, self.num_heads, num_channels // self.num_heads) attn = torch.einsum("bnkc,bmkc->bknm", q, k) * self.scale attn = attn.softmax(dim=-1) output = torch.einsum("bknm,bmkc->bnkc", attn, v).reshape(batch_size, q_sequence_length, num_channels) output = self.proj(output) output = self.proj_drop(output) return output class OneFormerTextTransformerDecoderLayer(nn.Module): def __init__( self, d_model, nhead, dropout=0.1, layer_norm_eps=1e-05, ): super().__init__() self.self_attn = OneFormerTextMapperAttention(d_model, nhead, proj_drop=dropout) self.cross_attn = OneFormerTextMapperAttention(d_model, nhead, proj_drop=dropout) self.norm1 = nn.LayerNorm(d_model, eps=layer_norm_eps) self.norm2 = nn.LayerNorm(d_model, eps=layer_norm_eps) self.norm3 = nn.LayerNorm(d_model, eps=layer_norm_eps) self.dropout = nn.Dropout(dropout) self.mlp = nn.Sequential( nn.Linear(d_model, d_model * 4), nn.GELU(), nn.Dropout(dropout), nn.Linear(d_model * 4, d_model) ) def forward(self, hidden_state, mem): q = k = v = self.norm1(hidden_state) hidden_state = hidden_state + self.self_attn(q, k, v) q = self.norm2(hidden_state) hidden_state = hidden_state + self.cross_attn(q, mem, mem) hidden_state = hidden_state + self.dropout(self.mlp(self.norm3(hidden_state))) return hidden_state class OneFormerTextContextDecoder(nn.Module): def __init__( self, transformer_width=256, transformer_heads=4, transformer_layers=6, visual_dim=1024, dropout=0.1, layer_norm_eps=1e-05, **kwargs, ): super().__init__() self.memory_proj = nn.Sequential( nn.LayerNorm(visual_dim, eps=layer_norm_eps), nn.Linear(visual_dim, transformer_width), nn.LayerNorm(transformer_width, eps=layer_norm_eps), ) self.text_proj = nn.Sequential( nn.LayerNorm(visual_dim, eps=layer_norm_eps), nn.Linear(visual_dim, transformer_width), ) self.decoder = nn.ModuleList( [ OneFormerTextTransformerDecoderLayer(transformer_width, transformer_heads, dropout, layer_norm_eps) for _ in range(transformer_layers) ] ) self.out_proj = nn.Sequential( nn.LayerNorm(transformer_width, eps=layer_norm_eps), nn.Linear(transformer_width, visual_dim) ) def forward(self, text, visual): visual = self.memory_proj(visual) hidden_state = self.text_proj(text) for layer in self.decoder: hidden_state = layer(hidden_state, visual) return self.out_proj(hidden_state) class OneFormerTextMLP(nn.Module): def __init__( self, hidden_size: Optional[int] = None, intermediate_size: Optional[int] = None, output_size: Optional[int] = None, ): super().__init__() self.activation_fn = ACT2FN["quick_gelu"] hidden_size = hidden_size intermediate_size = intermediate_size output_size = output_size self.fc1 = nn.Linear(hidden_size, intermediate_size) self.fc2 = nn.Linear(intermediate_size, output_size) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = self.fc2(hidden_states) return hidden_states class OneFormerTextTransformerLayer(nn.Module): def __init__(self, width: int, heads: int, attn_mask: torch.Tensor, layer_norm_eps=1e-05): super().__init__() self.self_attn = nn.MultiheadAttention(width, heads) self.layer_norm1 = nn.LayerNorm(width, eps=layer_norm_eps) self.mlp = OneFormerTextMLP(width, width * 4, width) self.layer_norm2 = nn.LayerNorm(width, eps=layer_norm_eps) self.attn_mask = attn_mask def forward( self, hidden_states: torch.Tensor, key_padding_mask: Optional[torch.Tensor] = None, ) -> torch.FloatTensor: residual = hidden_states hidden_states = self.layer_norm1(hidden_states) hidden_states = self.self_attn( hidden_states, hidden_states, hidden_states, need_weights=False, key_padding_mask=key_padding_mask, )[0] hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.layer_norm2(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states return hidden_states class OneFormerTextTransformer(nn.Module): def __init__( self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None, use_checkpoint=False, layer_norm_eps=1e-05, ): super().__init__() self.width = width self.num_layers = layers self.layers = nn.Sequential( *[OneFormerTextTransformerLayer(width, heads, attn_mask, layer_norm_eps) for _ in range(layers)] ) self.use_checkpoint = use_checkpoint def forward(self, hidden_states: torch.Tensor): for layer in self.layers: if self.use_checkpoint: hidden_states = torch.utils.checkpoint.checkpoint(layer, hidden_states) else: hidden_states = layer(hidden_states) return hidden_states class OneFormerTextEncoder(nn.Module): def __init__( self, context_length: int, width: int, layers: int, vocab_size, use_checkpoint=False, layer_norm_eps=1e-05, ): super().__init__() heads = width // 64 self.context_length = context_length self.width = width self.transformer = OneFormerTextTransformer( width=width, layers=layers, heads=heads, attn_mask=self.build_attention_mask(), use_checkpoint=use_checkpoint, layer_norm_eps=layer_norm_eps, ) self.positional_embedding = nn.Parameter(torch.empty(self.context_length, width)) self.ln_final = nn.LayerNorm(width, eps=layer_norm_eps) self.token_embedding = nn.Embedding(vocab_size, width) def build_attention_mask(self): # lazily create causal attention mask, with full attention between the vision tokens # pytorch uses additive attention mask; fill with -inf mask = torch.empty(self.context_length, self.context_length) mask.fill_(float("-inf")) mask.triu_(1) # zero out the lower diagonal return mask def forward(self, text): hidden_state = self.token_embedding(text) hidden_state = hidden_state + self.positional_embedding hidden_state = hidden_state.permute(1, 0, 2) hidden_state = self.transformer(hidden_state) hidden_state = hidden_state.permute(1, 0, 2) hidden_state = self.ln_final(hidden_state) hidden_state = hidden_state[torch.arange(hidden_state.shape[0]), text.argmax(dim=-1)] return hidden_state class OneFormerTextMapper(nn.Module): def __init__(self, config: OneFormerConfig): super().__init__() self.text_encoder = OneFormerTextEncoder( context_length=config.text_encoder_context_length, width=config.text_encoder_width, layers=config.text_encoder_num_layers, vocab_size=config.text_encoder_vocab_size, layer_norm_eps=config.layer_norm_eps, ) self.text_projector = OneFormerMLPPredictionHead( config.text_encoder_width, config.hidden_dim, config.hidden_dim, config.text_encoder_proj_layers, ) if config.text_encoder_n_ctx > 0: self.prompt_ctx = nn.Embedding( config.text_encoder_n_ctx, config.text_encoder_width, ) else: self.prompt_ctx = None def forward( self, inputs: Tensor, ) -> Tensor: text_queries = self.encode_text(inputs) return text_queries def encode_text(self, text): if text.ndim is None: raise ValueError("text must not be NoneType") if text.ndim not in [2, 3]: raise ValueError("Number of dimensions in text must be 2 or 3") squeeze_dim = False num_text = 1 if text.ndim == 3: num_text = text.shape[1] batch_size, num_text, hidden_dim = text.shape text = text.reshape(batch_size * num_text, hidden_dim) squeeze_dim = True # [batch_size, num_channels] encoded_text = self.text_encoder(text) text_queries = self.text_projector(encoded_text) if squeeze_dim: _, hidden_dim = text_queries.shape text_queries = text_queries.reshape(batch_size, num_text, hidden_dim) if self.prompt_ctx is not None: text_queries_ctx = self.prompt_ctx.weight.unsqueeze(0).repeat(text_queries.shape[0], 1, 1) text_queries = torch.cat([text_queries, text_queries_ctx], dim=1) return text_queries class OneFormerTaskModel(nn.Module): def __init__(self, config: OneFormerConfig): super().__init__() self.task_mlp = OneFormerMLPPredictionHead( config.task_seq_len, config.hidden_dim, config.hidden_dim, 2, ) def forward(self, inputs: Tensor) -> Tensor: task_tokens = self.task_mlp(inputs.float()) return task_tokens ONEFORMER_START_DOCSTRING = r""" This model is a PyTorch [nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`OneFormerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ ONEFORMER_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`OneFormerProcessor`]. See [`OneFormerProcessor.__call__`] for details. task_inputs (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Task inputs. Task inputs can be obtained using [`AutoImageProcessor`]. See [`OneFormerProcessor.__call__`] for details. pixel_mask (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*): Mask to avoid performing attention on padding pixel values. Mask values selected in `[0, 1]`: - 1 for pixels that are real (i.e. **not masked**), - 0 for pixels that are padding (i.e. **masked**). [What are attention masks?](../glossary#attention-mask) output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of Detr's decoder attention layers. return_dict (`bool`, *optional*): Whether or not to return a [`~OneFormerModelOutput`] instead of a plain tuple. """ class OneFormerPreTrainedModel(PreTrainedModel): config_class = OneFormerConfig base_model_prefix = "model" main_input_name = "pixel_values" def _init_weights(self, module: nn.Module): xavier_std = self.config.init_xavier_std std = self.config.init_std if isinstance(module, OneFormerTransformerModule): if module.input_projections is not None: for input_projection in module.input_projections: if not isinstance(input_projection, nn.Sequential): nn.init.xavier_uniform_(input_projection.weight, gain=xavier_std) nn.init.constant_(input_projection.bias, 0) elif isinstance(module, OneFormerTransformerDecoder): nn.init.xavier_uniform_(module.query_input_projection.weight, gain=xavier_std) nn.init.constant_(module.query_input_projection.bias, 0) module.query_input_projection._is_hf_initialized = True elif isinstance(module, OneFormerPixelDecoderEncoderMultiscaleDeformableAttention): nn.init.constant_(module.sampling_offsets.weight.data, 0.0) thetas = torch.arange(module.n_heads, dtype=torch.float32) * (2.0 * math.pi / module.n_heads) grid_init = torch.stack([thetas.cos(), thetas.sin()], -1) grid_init = ( (grid_init / grid_init.abs().max(-1, keepdim=True)[0]) .view(module.n_heads, 1, 1, 2) .repeat(1, module.n_levels, module.n_points, 1) ) for i in range(module.n_points): grid_init[:, :, i, :] *= i + 1 with torch.no_grad(): module.sampling_offsets.bias = nn.Parameter(grid_init.view(-1)) nn.init.constant_(module.attention_weights.weight.data, 0.0) nn.init.constant_(module.attention_weights.bias.data, 0.0) nn.init.xavier_uniform_(module.value_proj.weight.data) nn.init.constant_(module.value_proj.bias.data, 0.0) nn.init.xavier_uniform_(module.output_proj.weight.data) nn.init.constant_(module.output_proj.bias.data, 0.0) elif isinstance(module, OneFormerPixelDecoderEncoderOnly): for p in module.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) elif isinstance(module, OneFormerPixelDecoder): for p in module.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) nn.init.normal_(module.level_embed, std=0) elif isinstance(module, OneFormerTransformerDecoderSelfAttentionLayer): for p in module.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p, gain=xavier_std) elif isinstance(module, OneFormerTransformerDecoderCrossAttentionLayer): for p in module.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p, gain=xavier_std) elif isinstance(module, OneFormerTransformerDecoderFFNLayer): for p in module.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p, gain=xavier_std) elif isinstance(module, OneFormerTransformerDecoderQueryTransformer): for p in module.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p, gain=xavier_std) elif isinstance(module, OneFormerPixelLevelModule): for submodule in module.modules(): if isinstance(submodule, (nn.Conv2d, nn.Linear)): submodule.weight.data.normal_(mean=0.0, std=std) if submodule.bias is not None: submodule.bias.data.zero_() elif isinstance(module, OneFormerTextContextDecoder): for submodule in module.modules(): if isinstance(submodule, nn.Linear): nn.init.trunc_normal_(submodule.weight, std=0.02) if isinstance(submodule, nn.Linear) and submodule.bias is not None: nn.init.constant_(submodule.bias, 0) elif isinstance(submodule, nn.LayerNorm): nn.init.constant_(submodule.bias, 0) nn.init.constant_(submodule.weight, 1.0) elif isinstance(module, OneFormerTextTransformer): proj_std = (module.width**-0.5) * ((2 * module.num_layers) ** -0.5) attn_std = module.width**-0.5 fc_std = (2 * module.width) ** -0.5 for layer in module.layers: nn.init.normal_(layer.self_attn.in_proj_weight, std=attn_std) nn.init.normal_(layer.self_attn.out_proj.weight, std=proj_std) nn.init.normal_(layer.mlp.fc1.weight, std=fc_std) nn.init.normal_(layer.mlp.fc2.weight, std=proj_std) elif isinstance(module, OneFormerTextEncoder): nn.init.normal_(module.token_embedding.weight, std=0.02) nn.init.normal_(module.positional_embedding, std=0.01) if hasattr(module, "reference_points"): nn.init.xavier_uniform_(module.reference_points.weight.data, gain=1.0) nn.init.constant_(module.reference_points.bias.data, 0.0) elif isinstance(module, OneFormerTaskModel): for submodule in module.modules(): if isinstance(module, OneFormerMLPPredictionHead): for submodule in module.modules(): if isinstance(submodule, nn.Linear): nn.init.xavier_uniform_(submodule.weight, gain=xavier_std) nn.init.constant_(submodule.bias, 0) elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, nn.MultiheadAttention): module.in_proj_weight.data.normal_(mean=0.0, std=std) module.in_proj_bias.data.zero_() elif isinstance(module, (nn.Linear, nn.Conv2d, nn.BatchNorm2d)): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() @add_start_docstrings( "The bare OneFormer Model outputting raw hidden-states without any specific head on top.", ONEFORMER_START_DOCSTRING, ) class OneFormerModel(OneFormerPreTrainedModel): main_input_name = ["pixel_values", "task_inputs"] def __init__(self, config: OneFormerConfig): super().__init__(config) self.pixel_level_module = OneFormerPixelLevelModule(config) self.transformer_module = OneFormerTransformerModule(in_features=config.conv_dim, config=config) self.task_encoder = OneFormerTaskModel(config) self.is_training = config.is_training if self.is_training: self.text_mapper = OneFormerTextMapper(config) else: self.text_mapper = None self.post_init() @add_start_docstrings_to_model_forward(ONEFORMER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=OneFormerModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: Tensor, task_inputs: Tensor, text_inputs: Optional[Tensor] = None, pixel_mask: Optional[Tensor] = None, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> OneFormerModelOutput: r""" Returns: `OneFormerModelOutput` Example: ```python >>> import torch >>> from PIL import Image >>> import requests >>> from transformers import OneFormerProcessor, OneFormerModel >>> # download texting image >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> # load processor for preprocessing the inputs >>> processor = OneFormerProcessor.from_pretrained("shi-labs/oneformer_ade20k_swin_tiny") >>> model = OneFormerModel.from_pretrained("shi-labs/oneformer_ade20k_swin_tiny") >>> inputs = processor(image, ["semantic"], return_tensors="pt") >>> with torch.no_grad(): ... outputs = model(**inputs) >>> mask_predictions = outputs.transformer_decoder_mask_predictions >>> class_predictions = outputs.transformer_decoder_class_predictions >>> f"👉 Mask Predictions Shape: {list(mask_predictions.shape)}, Class Predictions Shape: {list(class_predictions.shape)}" '👉 Mask Predictions Shape: [1, 150, 128, 171], Class Predictions Shape: [1, 150, 151]' ```""" if pixel_values is None: raise ValueError("You have to specify pixel_values") output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict batch_size, _, height, width = pixel_values.shape if pixel_mask is None: pixel_mask = torch.ones((batch_size, height, width), device=pixel_values.device) pixel_level_module_output = self.pixel_level_module(pixel_values, output_hidden_states) multi_scale_features = pixel_level_module_output.decoder_features mask_features = pixel_level_module_output.decoder_last_feature task_token = self.task_encoder(task_inputs) if self.is_training: text_queries = self.text_mapper(text_inputs) else: text_queries = None transformer_module_output = self.transformer_module( multi_scale_features=multi_scale_features, mask_features=mask_features, task_token=task_token, output_attentions=output_attentions, ) queries = transformer_module_output.object_queries encoder_hidden_states = None pixel_decoder_hidden_states = None transformer_decoder_hidden_states = None if output_hidden_states: encoder_hidden_states = pixel_level_module_output.encoder_features pixel_decoder_hidden_states = (pixel_level_module_output.decoder_last_feature,) for f in pixel_level_module_output.decoder_features: pixel_decoder_hidden_states += (f,) transformer_decoder_hidden_states = transformer_module_output.auxiliary_predictions output = OneFormerModelOutput( encoder_hidden_states=encoder_hidden_states, pixel_decoder_hidden_states=pixel_decoder_hidden_states, transformer_decoder_hidden_states=transformer_decoder_hidden_states, transformer_decoder_object_queries=queries, transformer_decoder_contrastive_queries=transformer_module_output.contrastive_logits, transformer_decoder_mask_predictions=transformer_module_output.prediction_masks, transformer_decoder_class_predictions=transformer_module_output.prediction_class, transformer_decoder_auxiliary_predictions=transformer_module_output.auxiliary_predictions, text_queries=text_queries, task_token=task_token, attentions=transformer_module_output.attentions, ) if not return_dict: output = tuple(v for v in output.values()) return output @add_start_docstrings( "OneFormer Model for instance, semantic and panoptic image segmentation.", ONEFORMER_START_DOCSTRING, ) class OneFormerForUniversalSegmentation(OneFormerPreTrainedModel): main_input_name = ["pixel_values", "task_inputs"] def __init__(self, config: OneFormerConfig): super().__init__(config) self.model = OneFormerModel(config) self.matcher = OneFormerHungarianMatcher( cost_class=config.class_weight, cost_dice=config.dice_weight, cost_mask=config.mask_weight, num_points=config.train_num_points, ) self.weight_dict: Dict[str, float] = { "loss_cross_entropy": config.class_weight, "loss_mask": config.mask_weight, "loss_dice": config.dice_weight, "loss_contrastive": config.contrastive_weight, } self.criterion = OneFormerLoss( num_classes=config.num_labels, matcher=self.matcher, weight_dict=self.weight_dict, eos_coef=config.no_object_weight, num_points=config.train_num_points, oversample_ratio=config.oversample_ratio, importance_sample_ratio=config.importance_sample_ratio, contrastive_temperature=config.contrastive_temperature, ) self.post_init() def get_loss_dict( self, masks_queries_logits: Tensor, class_queries_logits: Tensor, contrastive_queries_logits: Tensor, mask_labels: Tensor, class_labels: Tensor, text_queries: Tensor, auxiliary_predictions: Dict[str, Tensor], calculate_contrastive_loss: bool, ) -> Dict[str, Tensor]: loss_dict: Dict[str, Tensor] = self.criterion( masks_queries_logits=masks_queries_logits, class_queries_logits=class_queries_logits, contrastive_queries_logits=contrastive_queries_logits, mask_labels=mask_labels, class_labels=class_labels, text_queries=text_queries, auxiliary_predictions=auxiliary_predictions, calculate_contrastive_loss=calculate_contrastive_loss, ) # weight each loss by `self.weight_dict[<LOSS_NAME>]` including auxiliary losses for key, weight in self.weight_dict.items(): for loss_key, loss in loss_dict.items(): if key in loss_key: loss *= weight return loss_dict def get_loss(self, loss_dict: Dict[str, Tensor]) -> Tensor: return sum(loss_dict.values()) @add_start_docstrings_to_model_forward(ONEFORMER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=OneFormerForUniversalSegmentationOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: Tensor, task_inputs: Tensor, text_inputs: Optional[Tensor] = None, mask_labels: Optional[List[Tensor]] = None, class_labels: Optional[List[Tensor]] = None, pixel_mask: Optional[Tensor] = None, output_auxiliary_logits: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> OneFormerForUniversalSegmentationOutput: r""" text_inputs (`List[torch.Tensor]`, *optional*): Tensor fof shape `(num_queries, sequence_length)` to be fed to a model mask_labels (`List[torch.Tensor]`, *optional*): List of mask labels of shape `(num_labels, height, width)` to be fed to a model class_labels (`List[torch.LongTensor]`, *optional*): list of target class labels of shape `(num_labels, height, width)` to be fed to a model. They identify the labels of `mask_labels`, e.g. the label of `mask_labels[i][j]` if `class_labels[i][j]`. Returns: `OneFormerUniversalSegmentationOutput` Example: Universal segmentation example: ```python >>> from transformers import OneFormerProcessor, OneFormerForUniversalSegmentation >>> from PIL import Image >>> import requests >>> import torch >>> # load OneFormer fine-tuned on ADE20k for universal segmentation >>> processor = OneFormerProcessor.from_pretrained("shi-labs/oneformer_ade20k_swin_tiny") >>> model = OneFormerForUniversalSegmentation.from_pretrained("shi-labs/oneformer_ade20k_swin_tiny") >>> url = ( ... "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" ... ) >>> image = Image.open(requests.get(url, stream=True).raw) >>> # Semantic Segmentation >>> inputs = processor(image, ["semantic"], return_tensors="pt") >>> with torch.no_grad(): ... outputs = model(**inputs) >>> # model predicts class_queries_logits of shape `(batch_size, num_queries)` >>> # and masks_queries_logits of shape `(batch_size, num_queries, height, width)` >>> class_queries_logits = outputs.class_queries_logits >>> masks_queries_logits = outputs.masks_queries_logits >>> # you can pass them to processor for semantic postprocessing >>> predicted_semantic_map = processor.post_process_semantic_segmentation( ... outputs, target_sizes=[image.size[::-1]] ... )[0] >>> f"👉 Semantic Predictions Shape: {list(predicted_semantic_map.shape)}" '👉 Semantic Predictions Shape: [512, 683]' >>> # Instance Segmentation >>> inputs = processor(image, ["instance"], return_tensors="pt") >>> with torch.no_grad(): ... outputs = model(**inputs) >>> # model predicts class_queries_logits of shape `(batch_size, num_queries)` >>> # and masks_queries_logits of shape `(batch_size, num_queries, height, width)` >>> class_queries_logits = outputs.class_queries_logits >>> masks_queries_logits = outputs.masks_queries_logits >>> # you can pass them to processor for instance postprocessing >>> predicted_instance_map = processor.post_process_instance_segmentation( ... outputs, target_sizes=[image.size[::-1]] ... )[0]["segmentation"] >>> f"👉 Instance Predictions Shape: {list(predicted_instance_map.shape)}" '👉 Instance Predictions Shape: [512, 683]' >>> # Panoptic Segmentation >>> inputs = processor(image, ["panoptic"], return_tensors="pt") >>> with torch.no_grad(): ... outputs = model(**inputs) >>> # model predicts class_queries_logits of shape `(batch_size, num_queries)` >>> # and masks_queries_logits of shape `(batch_size, num_queries, height, width)` >>> class_queries_logits = outputs.class_queries_logits >>> masks_queries_logits = outputs.masks_queries_logits >>> # you can pass them to processor for panoptic postprocessing >>> predicted_panoptic_map = processor.post_process_panoptic_segmentation( ... outputs, target_sizes=[image.size[::-1]] ... )[0]["segmentation"] >>> f"👉 Panoptic Predictions Shape: {list(predicted_panoptic_map.shape)}" '👉 Panoptic Predictions Shape: [512, 683]' ``` """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.model( pixel_values=pixel_values, task_inputs=task_inputs, text_inputs=text_inputs, pixel_mask=pixel_mask, output_hidden_states=output_hidden_states or self.config.use_auxiliary_loss, output_attentions=output_attentions, return_dict=True, ) loss, loss_dict, auxiliary_predictions = None, None, None class_queries_logits = outputs.transformer_decoder_class_predictions masks_queries_logits = outputs.transformer_decoder_mask_predictions contrastive_queries_logits = outputs.transformer_decoder_contrastive_queries auxiliary_predictions = outputs.transformer_decoder_auxiliary_predictions text_queries = outputs.text_queries if mask_labels is not None and class_labels is not None: loss_dict: Dict[str, Tensor] = self.get_loss_dict( masks_queries_logits=masks_queries_logits, class_queries_logits=class_queries_logits, contrastive_queries_logits=contrastive_queries_logits, mask_labels=mask_labels, class_labels=class_labels, text_queries=text_queries, auxiliary_predictions=auxiliary_predictions, calculate_contrastive_loss=self.config.contrastive_temperature is not None, ) loss = self.get_loss(loss_dict) output_auxiliary_logits = ( self.config.output_auxiliary_logits if output_auxiliary_logits is None else output_auxiliary_logits ) if not output_auxiliary_logits: auxiliary_predictions = None output = OneFormerForUniversalSegmentationOutput( class_queries_logits=class_queries_logits, masks_queries_logits=masks_queries_logits, auxiliary_predictions=auxiliary_predictions, loss=loss, **outputs, ) if not return_dict: output = tuple(v for v in output.values()) if loss is not None: output = ((loss)) + output return output
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/oneformer/processing_oneformer.py
# coding=utf-8 # Copyright 2022 SHI Labs and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Image/Text processor class for OneFormer """ from typing import List from ...processing_utils import ProcessorMixin from ...utils import is_torch_available if is_torch_available(): import torch class OneFormerProcessor(ProcessorMixin): r""" Constructs an OneFormer processor which wraps [`OneFormerImageProcessor`] and [`CLIPTokenizer`]/[`CLIPTokenizerFast`] into a single processor that inherits both the image processor and tokenizer functionalities. Args: image_processor ([`OneFormerImageProcessor`]): The image processor is a required input. tokenizer ([`CLIPTokenizer`, `CLIPTokenizerFast`]): The tokenizer is a required input. max_seq_len (`int`, *optional*, defaults to 77)): Sequence length for input text list. task_seq_len (`int`, *optional*, defaults to 77): Sequence length for input task token. """ attributes = ["image_processor", "tokenizer"] image_processor_class = "OneFormerImageProcessor" tokenizer_class = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self, image_processor=None, tokenizer=None, max_seq_length: int = 77, task_seq_length: int = 77, **kwargs ): if image_processor is None: raise ValueError("You need to specify an `image_processor`.") if tokenizer is None: raise ValueError("You need to specify a `tokenizer`.") self.max_seq_length = max_seq_length self.task_seq_length = task_seq_length super().__init__(image_processor, tokenizer) def _preprocess_text(self, text_list=None, max_length=77): if text_list is None: raise ValueError("tokens cannot be None.") tokens = self.tokenizer(text_list, padding="max_length", max_length=max_length, truncation=True) attention_masks, input_ids = tokens["attention_mask"], tokens["input_ids"] token_inputs = [] for attn_mask, input_id in zip(attention_masks, input_ids): token = torch.tensor(attn_mask) * torch.tensor(input_id) token_inputs.append(token.unsqueeze(0)) token_inputs = torch.cat(token_inputs, dim=0) return token_inputs def __call__(self, images=None, task_inputs=None, segmentation_maps=None, **kwargs): """ Main method to prepare for the model one or several task input(s) and image(s). This method forwards the `task_inputs` and `kwargs` arguments to CLIPTokenizer's [`~CLIPTokenizer.__call__`] if `task_inputs` is not `None` to encode. To prepare the image(s), this method forwards the `images` and `kwargs` arguments to OneFormerImageProcessor's [`~OneFormerImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring of the above two methods for more information. Args: task_inputs (`str`, `List[str]`): The sequence or batch of task_inputs sequences to be encoded. Each sequence can be a string or a list of strings of the template "the task is {task}". images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a number of channels, H and W are image height and width. segmentation_maps (`ImageInput`, *optional*): The corresponding semantic segmentation maps with the pixel-wise annotations. (`bool`, *optional*, defaults to `True`): Whether or not to pad images up to the largest image in a batch and create a pixel mask. If left to the default, will return a pixel mask that is: - 1 for pixels that are real (i.e. **not masked**), - 0 for pixels that are padding (i.e. **masked**). Returns: [`BatchFeature`]: A [`BatchFeature`] with the following fields: - **task_inputs** -- List of token ids to be fed to a model. Returned when `text` is not `None`. - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. """ if task_inputs is None: raise ValueError("You have to specify the task_input. Found None.") elif images is None: raise ValueError("You have to specify the image. Found None.") if not all(task in ["semantic", "instance", "panoptic"] for task in task_inputs): raise ValueError("task_inputs must be semantic, instance, or panoptic.") encoded_inputs = self.image_processor(images, task_inputs, segmentation_maps, **kwargs) if isinstance(task_inputs, str): task_inputs = [task_inputs] if isinstance(task_inputs, List) and all(isinstance(task_input, str) for task_input in task_inputs): task_token_inputs = [] for task in task_inputs: task_input = f"the task is {task}" task_token_inputs.append(task_input) encoded_inputs["task_inputs"] = self._preprocess_text(task_token_inputs, max_length=self.task_seq_length) else: raise TypeError("Task Inputs should be a string or a list of strings.") if hasattr(encoded_inputs, "text_inputs"): texts_list = encoded_inputs.text_inputs text_inputs = [] for texts in texts_list: text_input_list = self._preprocess_text(texts, max_length=self.max_seq_length) text_inputs.append(text_input_list.unsqueeze(0)) encoded_inputs["text_inputs"] = torch.cat(text_inputs, dim=0) return encoded_inputs def encode_inputs(self, images=None, task_inputs=None, segmentation_maps=None, **kwargs): """ This method forwards all its arguments to [`OneFormerImageProcessor.encode_inputs`] and then tokenizes the task_inputs. Please refer to the docstring of this method for more information. """ if task_inputs is None: raise ValueError("You have to specify the task_input. Found None.") elif images is None: raise ValueError("You have to specify the image. Found None.") if not all(task in ["semantic", "instance", "panoptic"] for task in task_inputs): raise ValueError("task_inputs must be semantic, instance, or panoptic.") encoded_inputs = self.image_processor.encode_inputs(images, task_inputs, segmentation_maps, **kwargs) if isinstance(task_inputs, str): task_inputs = [task_inputs] if isinstance(task_inputs, List) and all(isinstance(task_input, str) for task_input in task_inputs): task_token_inputs = [] for task in task_inputs: task_input = f"the task is {task}" task_token_inputs.append(task_input) encoded_inputs["task_inputs"] = self._preprocess_text(task_token_inputs, max_length=self.task_seq_length) else: raise TypeError("Task Inputs should be a string or a list of strings.") if hasattr(encoded_inputs, "text_inputs"): texts_list = encoded_inputs.text_inputs text_inputs = [] for texts in texts_list: text_input_list = self._preprocess_text(texts, max_length=self.max_seq_length) text_inputs.append(text_input_list.unsqueeze(0)) encoded_inputs["text_inputs"] = torch.cat(text_inputs, dim=0) return encoded_inputs def post_process_semantic_segmentation(self, *args, **kwargs): """ This method forwards all its arguments to [`OneFormerImageProcessor.post_process_semantic_segmentation`]. Please refer to the docstring of this method for more information. """ return self.image_processor.post_process_semantic_segmentation(*args, **kwargs) def post_process_instance_segmentation(self, *args, **kwargs): """ This method forwards all its arguments to [`OneFormerImageProcessor.post_process_instance_segmentation`]. Please refer to the docstring of this method for more information. """ return self.image_processor.post_process_instance_segmentation(*args, **kwargs) def post_process_panoptic_segmentation(self, *args, **kwargs): """ This method forwards all its arguments to [`OneFormerImageProcessor.post_process_panoptic_segmentation`]. Please refer to the docstring of this method for more information. """ return self.image_processor.post_process_panoptic_segmentation(*args, **kwargs)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/oneformer/convert_to_hf_oneformer.py
# coding=utf-8 # Copyright 2022 SHI Labs and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert OneFormer checkpoints from the original repository. URL: https://github.com/SHI-Labs/OneFormer""" import os import sys from argparse import ArgumentParser from dataclasses import dataclass from pathlib import Path from pprint import pformat from typing import Any, Dict, Iterator, List, Set, Tuple import requests import torch import torchvision.transforms as T from PIL import Image from torch import Tensor, nn try: from detectron2.checkpoint import DetectionCheckpointer from detectron2.config import get_cfg from detectron2.data import MetadataCatalog from detectron2.projects.deeplab import add_deeplab_config except ImportError: pass from transformers import CLIPTokenizer, DinatConfig, SwinConfig from transformers.models.oneformer.image_processing_oneformer import OneFormerImageProcessor from transformers.models.oneformer.modeling_oneformer import ( OneFormerConfig, OneFormerForUniversalSegmentation, OneFormerForUniversalSegmentationOutput, OneFormerModel, OneFormerModelOutput, ) from transformers.models.oneformer.processing_oneformer import OneFormerProcessor from transformers.utils import logging StateDict = Dict[str, Tensor] logging.set_verbosity_info() logger = logging.get_logger() torch.manual_seed(0) class TrackedStateDict: def __init__(self, to_track: Dict): """This class "tracks" a python dictionary by keeping track of which item is accessed. Args: to_track (Dict): The dictionary we wish to track """ self.to_track = to_track self._seen: Set[str] = set() def __getitem__(self, key: str) -> Any: return self.to_track[key] def __setitem__(self, key: str, item: Any): self._seen.add(key) self.to_track[key] = item def diff(self) -> List[str]: """This method returns a set difference between the keys in the tracked state dict and the one we have access so far. This is an effective method to check if we have update all the keys Returns: List[str]: List of keys not yet updated """ return set(self.to_track.keys()) - self._seen def copy(self) -> Dict: # proxy the call to the internal dictionary return self.to_track.copy() # Image to verify the result def prepare_img(): url = "https://praeclarumjj3.github.io/files/coco.jpeg" img_data = requests.get(url, stream=True).raw im = Image.open(img_data) return im @dataclass class Args: """Fake command line arguments needed by oneformer/detectron2 implementation""" config_file: str def setup_cfg(args: Args): # load config from file and command-line arguments cfg = get_cfg() add_deeplab_config(cfg) add_common_config(cfg) add_oneformer_config(cfg) add_swin_config(cfg) add_dinat_config(cfg) cfg.merge_from_file(args.config_file) cfg.freeze() return cfg class OriginalOneFormerConfigToOursConverter: def __call__(self, original_config: object, is_swin: bool) -> OneFormerConfig: model = original_config.MODEL dataset_catalog = MetadataCatalog.get(original_config.DATASETS.TEST_PANOPTIC[0]) id2label = dict(enumerate(dataset_catalog.stuff_classes)) label2id = {label: idx for idx, label in id2label.items()} if is_swin: if model.SWIN.EMBED_DIM == 96: backbone_config = SwinConfig.from_pretrained( "microsoft/swin-tiny-patch4-window7-224", drop_path_rate=model.SWIN.DROP_PATH_RATE, out_features=["stage1", "stage2", "stage3", "stage4"], ) elif model.SWIN.EMBED_DIM == 192: backbone_config = SwinConfig.from_pretrained( "microsoft/swin-large-patch4-window12-384", drop_path_rate=model.SWIN.DROP_PATH_RATE, out_features=["stage1", "stage2", "stage3", "stage4"], ) else: raise ValueError(f"embed dim {model.SWIN.EMBED_DIM} not supported for Swin!") else: backbone_config = DinatConfig.from_pretrained( "shi-labs/dinat-large-11x11-in22k-in1k-384", dilations=model.DiNAT.DILATIONS, kernel_size=model.DiNAT.KERNEL_SIZE, out_features=["stage1", "stage2", "stage3", "stage4"], ) config: OneFormerConfig = OneFormerConfig( backbone_config=backbone_config, output_attentions=True, output_hidden_states=True, return_dict=True, ignore_value=model.SEM_SEG_HEAD.IGNORE_VALUE, num_classes=model.SEM_SEG_HEAD.NUM_CLASSES, num_queries=model.ONE_FORMER.NUM_OBJECT_QUERIES, no_object_weight=model.ONE_FORMER.NO_OBJECT_WEIGHT, class_weight=model.ONE_FORMER.CLASS_WEIGHT, mask_weight=model.ONE_FORMER.MASK_WEIGHT, dice_weight=model.ONE_FORMER.DICE_WEIGHT, contrastive_weight=model.ONE_FORMER.CONTRASTIVE_WEIGHT, contrastive_temperature=model.ONE_FORMER.CONTRASTIVE_TEMPERATURE, train_num_points=model.ONE_FORMER.TRAIN_NUM_POINTS, oversample_ratio=model.ONE_FORMER.OVERSAMPLE_RATIO, importance_sample_ratio=model.ONE_FORMER.IMPORTANCE_SAMPLE_RATIO, init_std=0.02, init_xavier_std=1.0, layer_norm_eps=1e-05, is_training=False, use_auxiliary_loss=model.ONE_FORMER.DEEP_SUPERVISION, output_auxiliary_logits=True, strides=[4, 8, 16, 32], task_seq_len=original_config.INPUT.TASK_SEQ_LEN, max_seq_len=original_config.INPUT.MAX_SEQ_LEN, text_encoder_width=model.TEXT_ENCODER.WIDTH, text_encoder_context_length=model.TEXT_ENCODER.CONTEXT_LENGTH, text_encoder_num_layers=model.TEXT_ENCODER.NUM_LAYERS, text_encoder_vocab_size=model.TEXT_ENCODER.VOCAB_SIZE, text_encoder_proj_layers=model.TEXT_ENCODER.PROJ_NUM_LAYERS, text_encoder_n_ctx=model.TEXT_ENCODER.N_CTX, conv_dim=model.SEM_SEG_HEAD.CONVS_DIM, mask_dim=model.SEM_SEG_HEAD.MASK_DIM, hidden_dim=model.ONE_FORMER.HIDDEN_DIM, norm=model.SEM_SEG_HEAD.NORM, encoder_layers=model.SEM_SEG_HEAD.TRANSFORMER_ENC_LAYERS, encoder_feedforward_dim=1024, decoder_layers=model.ONE_FORMER.DEC_LAYERS, use_task_norm=model.ONE_FORMER.USE_TASK_NORM, num_attention_heads=model.ONE_FORMER.NHEADS, dropout=model.ONE_FORMER.DROPOUT, dim_feedforward=model.ONE_FORMER.DIM_FEEDFORWARD, pre_norm=model.ONE_FORMER.PRE_NORM, enforce_input_proj=model.ONE_FORMER.ENFORCE_INPUT_PROJ, query_dec_layers=model.ONE_FORMER.CLASS_DEC_LAYERS, common_stride=model.SEM_SEG_HEAD.COMMON_STRIDE, id2label=id2label, label2id=label2id, ) return config class OriginalOneFormerConfigToProcessorConverter: def __call__(self, original_config: object, model_repo: str) -> OneFormerProcessor: model = original_config.MODEL model_input = original_config.INPUT dataset_catalog = MetadataCatalog.get(original_config.DATASETS.TEST_PANOPTIC[0]) if "ade20k" in model_repo: class_info_file = "ade20k_panoptic.json" elif "coco" in model_repo: class_info_file = "coco_panoptic.json" elif "cityscapes" in model_repo: class_info_file = "cityscapes_panoptic.json" else: raise ValueError("Invalid Dataset!") image_processor = OneFormerImageProcessor( image_mean=(torch.tensor(model.PIXEL_MEAN) / 255).tolist(), image_std=(torch.tensor(model.PIXEL_STD) / 255).tolist(), size=model_input.MIN_SIZE_TEST, max_size=model_input.MAX_SIZE_TEST, num_labels=model.SEM_SEG_HEAD.NUM_CLASSES, ignore_index=dataset_catalog.ignore_label, class_info_file=class_info_file, ) tokenizer = CLIPTokenizer.from_pretrained(model_repo) return OneFormerProcessor( image_processor=image_processor, tokenizer=tokenizer, task_seq_length=original_config.INPUT.TASK_SEQ_LEN, max_seq_length=original_config.INPUT.MAX_SEQ_LEN, ) class OriginalOneFormerCheckpointToOursConverter: def __init__(self, original_model: nn.Module, config: OneFormerConfig): self.original_model = original_model self.config = config def pop_all(self, renamed_keys: List[Tuple[str, str]], dst_state_dict: StateDict, src_state_dict: StateDict): for src_key, dst_key in renamed_keys: dst_state_dict[dst_key] = src_state_dict.pop(src_key) # Swin Backbone def replace_swin_backbone(self, dst_state_dict: StateDict, src_state_dict: StateDict, config: OneFormerConfig): dst_prefix: str = "pixel_level_module.encoder" src_prefix: str = "backbone" renamed_keys = [ ( f"{src_prefix}.patch_embed.proj.weight", f"{dst_prefix}.embeddings.patch_embeddings.projection.weight", ), (f"{src_prefix}.patch_embed.proj.bias", f"{dst_prefix}.embeddings.patch_embeddings.projection.bias"), (f"{src_prefix}.patch_embed.norm.weight", f"{dst_prefix}.embeddings.norm.weight"), (f"{src_prefix}.patch_embed.norm.bias", f"{dst_prefix}.embeddings.norm.bias"), ] num_layers = len(config.backbone_config.depths) for layer_idx in range(num_layers): for block_idx in range(config.backbone_config.depths[layer_idx]): renamed_keys.extend( [ # src, dst ( f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.norm1.weight", f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.layernorm_before.weight", ), ( f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.norm1.bias", f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.layernorm_before.bias", ), ( f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.relative_position_bias_table", f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.relative_position_bias_table", ), ] ) # now we need to handle the attentions # read in weights + bias of input projection layer of cross-attention src_att_weight = src_state_dict[f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.qkv.weight"] src_att_bias = src_state_dict[f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.qkv.bias"] size = src_att_weight.shape[0] offset = size // 3 dst_state_dict[ f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.query.weight" ] = src_att_weight[:offset, :] dst_state_dict[ f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.query.bias" ] = src_att_bias[:offset] dst_state_dict[ f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.key.weight" ] = src_att_weight[offset : offset * 2, :] dst_state_dict[ f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.key.bias" ] = src_att_bias[offset : offset * 2] dst_state_dict[ f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.value.weight" ] = src_att_weight[-offset:, :] dst_state_dict[ f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.value.bias" ] = src_att_bias[-offset:] # let's pop them src_state_dict.pop(f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.qkv.weight") src_state_dict.pop(f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.qkv.bias") # proj renamed_keys.extend( [ ( f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.proj.weight", f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.output.dense.weight", ), ( f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.proj.bias", f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.output.dense.bias", ), ] ) # second norm renamed_keys.extend( [ ( f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.norm2.weight", f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.layernorm_after.weight", ), ( f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.norm2.bias", f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.layernorm_after.bias", ), ] ) # mlp renamed_keys.extend( [ ( f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.mlp.fc1.weight", f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.intermediate.dense.weight", ), ( f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.mlp.fc1.bias", f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.intermediate.dense.bias", ), ( f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.mlp.fc2.weight", f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.output.dense.weight", ), ( f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.mlp.fc2.bias", f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.output.dense.bias", ), ] ) renamed_keys.extend( [ ( f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.relative_position_index", f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.relative_position_index", ) ] ) if layer_idx < num_layers - 1: # patch merging renamed_keys.extend( [ ( f"{src_prefix}.layers.{layer_idx}.downsample.reduction.weight", f"{dst_prefix}.encoder.layers.{layer_idx}.downsample.reduction.weight", ), ( f"{src_prefix}.layers.{layer_idx}.downsample.norm.weight", f"{dst_prefix}.encoder.layers.{layer_idx}.downsample.norm.weight", ), ( f"{src_prefix}.layers.{layer_idx}.downsample.norm.bias", f"{dst_prefix}.encoder.layers.{layer_idx}.downsample.norm.bias", ), ] ) # hidden states norms renamed_keys.extend( [ ( f"{src_prefix}.norm{layer_idx}.weight", f"{dst_prefix}.hidden_states_norms.stage{layer_idx+1}.weight", ), ( f"{src_prefix}.norm{layer_idx}.bias", f"{dst_prefix}.hidden_states_norms.stage{layer_idx+1}.bias", ), ] ) self.pop_all(renamed_keys, dst_state_dict, src_state_dict) # Dinat Backbone def replace_dinat_backbone(self, dst_state_dict: StateDict, src_state_dict: StateDict, config: OneFormerConfig): dst_prefix: str = "pixel_level_module.encoder" src_prefix: str = "backbone" def rename_keys_for_weight_bias(src_prefix: str, dst_prefix: str): return [ (f"{src_prefix}.weight", f"{dst_prefix}.weight"), (f"{src_prefix}.bias", f"{dst_prefix}.bias"), ] renamed_keys = rename_keys_for_weight_bias(f"{src_prefix}.patch_embed.norm", f"{dst_prefix}.embeddings.norm") for i in range(2): renamed_keys.extend( rename_keys_for_weight_bias( f"{src_prefix}.patch_embed.proj.{i}", f"{dst_prefix}.embeddings.patch_embeddings.projection.{i}", ) ) num_layers = len(config.backbone_config.depths) for layer_idx in range(num_layers): for block_idx in range(config.backbone_config.depths[layer_idx]): renamed_keys.extend( rename_keys_for_weight_bias( f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.norm1", f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.layernorm_before", ) ) renamed_keys.extend( rename_keys_for_weight_bias( f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.norm2", f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.layernorm_after", ) ) renamed_keys.extend( [ # src, dst ( f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.attn.rpb", f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.attention.self.rpb", ), ] ) # now we need to handle the attentions # read in weights + bias of input projection layer of cross-attention src_att_weight = src_state_dict[f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.attn.qkv.weight"] src_att_bias = src_state_dict[f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.attn.qkv.bias"] size = src_att_weight.shape[0] offset = size // 3 dst_state_dict[ f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.attention.self.query.weight" ] = src_att_weight[:offset, :] dst_state_dict[ f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.attention.self.query.bias" ] = src_att_bias[:offset] dst_state_dict[ f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.attention.self.key.weight" ] = src_att_weight[offset : offset * 2, :] dst_state_dict[ f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.attention.self.key.bias" ] = src_att_bias[offset : offset * 2] dst_state_dict[ f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.attention.self.value.weight" ] = src_att_weight[-offset:, :] dst_state_dict[ f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.attention.self.value.bias" ] = src_att_bias[-offset:] # let's pop them src_state_dict.pop(f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.attn.qkv.weight") src_state_dict.pop(f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.attn.qkv.bias") # proj renamed_keys.extend( rename_keys_for_weight_bias( f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.attn.proj", f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.attention.output.dense", ) ) # mlp renamed_keys.extend( rename_keys_for_weight_bias( f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.mlp.fc1", f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.intermediate.dense", ) ) renamed_keys.extend( rename_keys_for_weight_bias( f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.mlp.fc2", f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.output.dense", ) ) if layer_idx < num_layers - 1: # patch merging renamed_keys.extend( [ ( f"{src_prefix}.levels.{layer_idx}.downsample.reduction.weight", f"{dst_prefix}.encoder.levels.{layer_idx}.downsample.reduction.weight", ), ( f"{src_prefix}.levels.{layer_idx}.downsample.norm.weight", f"{dst_prefix}.encoder.levels.{layer_idx}.downsample.norm.weight", ), ( f"{src_prefix}.levels.{layer_idx}.downsample.norm.bias", f"{dst_prefix}.encoder.levels.{layer_idx}.downsample.norm.bias", ), ] ) # hidden states norms renamed_keys.extend( [ ( f"{src_prefix}.norm{layer_idx}.weight", f"{dst_prefix}.hidden_states_norms.stage{layer_idx+1}.weight", ), ( f"{src_prefix}.norm{layer_idx}.bias", f"{dst_prefix}.hidden_states_norms.stage{layer_idx+1}.bias", ), ] ) self.pop_all(renamed_keys, dst_state_dict, src_state_dict) # Backbone + Pixel Decoder def replace_pixel_module(self, dst_state_dict: StateDict, src_state_dict: StateDict, is_swin: bool): dst_prefix: str = "pixel_level_module.decoder" src_prefix: str = "sem_seg_head.pixel_decoder" if is_swin: self.replace_swin_backbone(dst_state_dict, src_state_dict, self.config) else: self.replace_dinat_backbone(dst_state_dict, src_state_dict, self.config) def rename_keys_for_weight_bias(src_prefix: str, dst_prefix: str): return [ (f"{src_prefix}.weight", f"{dst_prefix}.weight"), (f"{src_prefix}.bias", f"{dst_prefix}.bias"), ] def rename_keys_for_self_attn(src_prefix: str, dst_prefix: str): self_attn_keys = [] self_attn_keys.extend( rename_keys_for_weight_bias(f"{src_prefix}.attention_weights", f"{dst_prefix}.attention_weights") ) self_attn_keys.extend( rename_keys_for_weight_bias(f"{src_prefix}.output_proj", f"{dst_prefix}.output_proj") ) self_attn_keys.extend( rename_keys_for_weight_bias(f"{src_prefix}.sampling_offsets", f"{dst_prefix}.sampling_offsets") ) self_attn_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.value_proj", f"{dst_prefix}.value_proj")) return self_attn_keys def rename_keys_for_encoder_layer(src_prefix: str, dst_prefix: str): encoder_keys = [] encoder_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.linear1", f"{dst_prefix}.fc1")) encoder_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.linear2", f"{dst_prefix}.fc2")) encoder_keys.extend( rename_keys_for_weight_bias(f"{src_prefix}.norm1", f"{dst_prefix}.self_attn_layer_norm") ) encoder_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.norm2", f"{dst_prefix}.final_layer_norm")) encoder_keys.extend(rename_keys_for_self_attn(f"{src_prefix}.self_attn", f"{dst_prefix}.self_attn")) return encoder_keys # convolution layer for final features renamed_keys = [ (f"{src_prefix}.adapter_1.weight", f"{dst_prefix}.adapter_1.0.weight"), (f"{src_prefix}.adapter_1.norm.weight", f"{dst_prefix}.adapter_1.1.weight"), (f"{src_prefix}.adapter_1.norm.bias", f"{dst_prefix}.adapter_1.1.bias"), ] renamed_keys.extend( [ (f"{src_prefix}.layer_1.weight", f"{dst_prefix}.layer_1.0.weight"), (f"{src_prefix}.layer_1.norm.weight", f"{dst_prefix}.layer_1.1.weight"), (f"{src_prefix}.layer_1.norm.bias", f"{dst_prefix}.layer_1.1.bias"), ] ) # proj layers for i in range(3): for j in range(2): renamed_keys.extend( [ (f"{src_prefix}.input_proj.{i}.{j}.weight", f"{dst_prefix}.input_projections.{i}.{j}.weight"), (f"{src_prefix}.input_proj.{i}.{j}.bias", f"{dst_prefix}.input_projections.{i}.{j}.bias"), ] ) renamed_keys.extend([(f"{src_prefix}.transformer.level_embed", f"{dst_prefix}.level_embed")]) # layers for layer_idx in range(self.config.encoder_layers): renamed_keys.extend( rename_keys_for_encoder_layer( f"{src_prefix}.transformer.encoder.layers.{layer_idx}", f"{dst_prefix}.encoder.layers.{layer_idx}" ) ) # proj renamed_keys.extend( [ (f"{src_prefix}.mask_features.weight", f"{dst_prefix}.mask_projection.weight"), (f"{src_prefix}.mask_features.bias", f"{dst_prefix}.mask_projection.bias"), ] ) self.pop_all(renamed_keys, dst_state_dict, src_state_dict) # Transformer Decoder def replace_keys_qkv_transformer_decoder(self, dst_state_dict: StateDict, src_state_dict: StateDict): dst_prefix: str = "transformer_module.decoder.layers" src_prefix: str = "sem_seg_head.predictor" for i in range(self.config.decoder_layers - 1): # read in weights + bias of input projection layer of self-attention in_proj_weight = src_state_dict.pop( f"{src_prefix}.transformer_self_attention_layers.{i}.self_attn.in_proj_weight" ) in_proj_bias = src_state_dict.pop( f"{src_prefix}.transformer_self_attention_layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict dst_state_dict[f"{dst_prefix}.{i}.self_attn.self_attn.q_proj.weight"] = in_proj_weight[:256, :] dst_state_dict[f"{dst_prefix}.{i}.self_attn.self_attn.q_proj.bias"] = in_proj_bias[:256] dst_state_dict[f"{dst_prefix}.{i}.self_attn.self_attn.k_proj.weight"] = in_proj_weight[256:512, :] dst_state_dict[f"{dst_prefix}.{i}.self_attn.self_attn.k_proj.bias"] = in_proj_bias[256:512] dst_state_dict[f"{dst_prefix}.{i}.self_attn.self_attn.v_proj.weight"] = in_proj_weight[-256:, :] dst_state_dict[f"{dst_prefix}.{i}.self_attn.self_attn.v_proj.bias"] = in_proj_bias[-256:] def replace_transformer_module(self, dst_state_dict: StateDict, src_state_dict: StateDict): dst_prefix: str = "transformer_module" src_prefix: str = "sem_seg_head.predictor" def rename_keys_for_weight_bias(src_prefix: str, dst_prefix: str): return [ (f"{src_prefix}.weight", f"{dst_prefix}.weight"), (f"{src_prefix}.bias", f"{dst_prefix}.bias"), ] def rename_keys_for_attn(src_prefix: str, dst_prefix: str): attn_keys = [ (f"{src_prefix}.in_proj_bias", f"{dst_prefix}.in_proj_bias"), (f"{src_prefix}.in_proj_weight", f"{dst_prefix}.in_proj_weight"), ] attn_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.out_proj", f"{dst_prefix}.out_proj")) return attn_keys def rename_keys_for_self_attn(src_prefix: str, dst_prefix: str): attn_keys = [] attn_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.out_proj", f"{dst_prefix}.out_proj")) return attn_keys def rename_keys_for_query_transformer_layer(src_prefix: str, dst_prefix: str): query_transformer_layer_keys = [] query_transformer_layer_keys.extend( rename_keys_for_weight_bias(f"{src_prefix}.linear1", f"{dst_prefix}.linear1") ) query_transformer_layer_keys.extend( rename_keys_for_weight_bias(f"{src_prefix}.linear2", f"{dst_prefix}.linear2") ) query_transformer_layer_keys.extend( rename_keys_for_weight_bias(f"{src_prefix}.norm1", f"{dst_prefix}.norm1") ) query_transformer_layer_keys.extend( rename_keys_for_weight_bias(f"{src_prefix}.norm2", f"{dst_prefix}.norm2") ) query_transformer_layer_keys.extend( rename_keys_for_weight_bias(f"{src_prefix}.norm3", f"{dst_prefix}.norm3") ) query_transformer_layer_keys.extend( rename_keys_for_attn(f"{src_prefix}.self_attn", f"{dst_prefix}.self_attn") ) query_transformer_layer_keys.extend( rename_keys_for_attn(f"{src_prefix}.multihead_attn", f"{dst_prefix}.multihead_attn") ) return query_transformer_layer_keys def rename_keys_for_cross_attn_layer(src_prefix: str, dst_prefix: str): cross_attn_layer_keys = [] cross_attn_layer_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.norm", f"{dst_prefix}.norm")) cross_attn_layer_keys.extend( rename_keys_for_attn(f"{src_prefix}.multihead_attn", f"{dst_prefix}.multihead_attn") ) return cross_attn_layer_keys def rename_keys_for_self_attn_layer(src_prefix: str, dst_prefix: str): self_attn_layer_keys = [] self_attn_layer_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.norm", f"{dst_prefix}.norm")) self_attn_layer_keys.extend( rename_keys_for_self_attn(f"{src_prefix}.self_attn", f"{dst_prefix}.self_attn") ) return self_attn_layer_keys def rename_keys_for_ffn_layer(src_prefix: str, dst_prefix: str): ffn_layer_keys = [] ffn_layer_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.linear1", f"{dst_prefix}.linear1")) ffn_layer_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.linear2", f"{dst_prefix}.linear2")) ffn_layer_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.norm", f"{dst_prefix}.norm")) return ffn_layer_keys def rename_keys_for_transformer_decoder_layer(src_prefix: str, dst_prefix: str, idx: int): transformer_decoder_layer_keys = [] transformer_decoder_layer_keys.extend( rename_keys_for_cross_attn_layer( f"{src_prefix}.transformer_cross_attention_layers.{idx}", f"{dst_prefix}.{idx}.cross_attn" ) ) transformer_decoder_layer_keys.extend( rename_keys_for_self_attn_layer( f"{src_prefix}.transformer_self_attention_layers.{idx}", f"{dst_prefix}.{idx}.self_attn" ) ) transformer_decoder_layer_keys.extend( rename_keys_for_ffn_layer(f"{src_prefix}.transformer_ffn_layers.{idx}", f"{dst_prefix}.{idx}.ffn") ) return transformer_decoder_layer_keys # positional embedding for object queries renamed_keys = [ (f"{src_prefix}.query_embed.weight", f"{dst_prefix}.queries_embedder.weight"), (f"{src_prefix}.level_embed.weight", f"{dst_prefix}.level_embed.weight"), ] # norm renamed_keys.extend( rename_keys_for_weight_bias(f"{src_prefix}.decoder_norm", f"{dst_prefix}.decoder.decoder_norm") ) # proj renamed_keys.extend( rename_keys_for_weight_bias( f"{src_prefix}.class_input_proj", f"{dst_prefix}.decoder.query_input_projection" ) ) renamed_keys.extend( rename_keys_for_weight_bias(f"{src_prefix}.class_embed", f"{dst_prefix}.decoder.class_embed") ) for i in range(3): renamed_keys.extend( rename_keys_for_weight_bias( f"{src_prefix}.mask_embed.layers.{i}", f"{dst_prefix}.decoder.mask_embed.layers.{i}.0" ) ) # norm renamed_keys.extend( rename_keys_for_weight_bias( f"{src_prefix}.class_transformer.decoder.norm", f"{dst_prefix}.decoder.query_transformer.decoder.norm" ) ) # transformer to update queries with task tokens for i in range(self.config.query_dec_layers): renamed_keys.extend( rename_keys_for_query_transformer_layer( f"{src_prefix}.class_transformer.decoder.layers.{i}", f"{dst_prefix}.decoder.query_transformer.decoder.layers.{i}", ) ) # decoder layers for i in range(self.config.decoder_layers - 1): renamed_keys.extend( rename_keys_for_transformer_decoder_layer( f"{src_prefix}", f"{dst_prefix}.decoder.layers", i, ) ) self.pop_all(renamed_keys, dst_state_dict, src_state_dict) self.replace_keys_qkv_transformer_decoder(dst_state_dict, src_state_dict) def replace_task_mlp(self, dst_state_dict: StateDict, src_state_dict: StateDict): dst_prefix: str = "task_encoder" src_prefix: str = "task_mlp" def rename_keys_for_weight_bias(src_prefix: str, dst_prefix: str): return [ (f"{src_prefix}.weight", f"{dst_prefix}.weight"), (f"{src_prefix}.bias", f"{dst_prefix}.bias"), ] renamed_keys = [] for i in range(2): renamed_keys.extend( rename_keys_for_weight_bias(f"{src_prefix}.layers.{i}", f"{dst_prefix}.task_mlp.layers.{i}.0") ) self.pop_all(renamed_keys, dst_state_dict, src_state_dict) def replace_text_projector(self, dst_state_dict: StateDict, src_state_dict: StateDict): dst_prefix: str = "text_mapper.text_projector" src_prefix: str = "text_projector" def rename_keys_for_weight_bias(src_prefix: str, dst_prefix: str): return [ (f"{src_prefix}.weight", f"{dst_prefix}.weight"), (f"{src_prefix}.bias", f"{dst_prefix}.bias"), ] renamed_keys = [] for i in range(self.config.text_encoder_config["text_encoder_proj_layers"]): renamed_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.layers.{i}", f"{dst_prefix}.{i}.0")) self.pop_all(renamed_keys, dst_state_dict, src_state_dict) def replace_text_mapper(self, dst_state_dict: StateDict, src_state_dict: StateDict): dst_prefix: str = "text_mapper.text_encoder" src_prefix: str = "text_encoder" self.replace_text_projector(dst_state_dict, src_state_dict) def rename_keys_for_weight_bias(src_prefix: str, dst_prefix: str): return [ (f"{src_prefix}.weight", f"{dst_prefix}.weight"), (f"{src_prefix}.bias", f"{dst_prefix}.bias"), ] def rename_keys_for_attn(src_prefix: str, dst_prefix: str): attn_keys = [ (f"{src_prefix}.in_proj_bias", f"{dst_prefix}.in_proj_bias"), (f"{src_prefix}.in_proj_weight", f"{dst_prefix}.in_proj_weight"), ] attn_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.out_proj", f"{dst_prefix}.out_proj")) return attn_keys def rename_keys_for_layer(src_prefix: str, dst_prefix: str): resblock_keys = [] resblock_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.mlp.c_fc", f"{dst_prefix}.mlp.fc1")) resblock_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.mlp.c_proj", f"{dst_prefix}.mlp.fc2")) resblock_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.ln_1", f"{dst_prefix}.layer_norm1")) resblock_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.ln_2", f"{dst_prefix}.layer_norm2")) resblock_keys.extend(rename_keys_for_attn(f"{src_prefix}.attn", f"{dst_prefix}.self_attn")) return resblock_keys renamed_keys = [ ("prompt_ctx.weight", "text_mapper.prompt_ctx.weight"), ] renamed_keys.extend( [ (f"{src_prefix}.positional_embedding", f"{dst_prefix}.positional_embedding"), (f"{src_prefix}.token_embedding.weight", f"{dst_prefix}.token_embedding.weight"), ] ) renamed_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.ln_final", f"{dst_prefix}.ln_final")) for i in range(self.config.text_encoder_config["text_encoder_num_layers"]): renamed_keys.extend( rename_keys_for_layer( f"{src_prefix}.transformer.resblocks.{i}", f"{dst_prefix}.transformer.layers.{i}" ) ) self.pop_all(renamed_keys, dst_state_dict, src_state_dict) def convert(self, oneformer: OneFormerModel, is_swin: bool) -> OneFormerModel: dst_state_dict = TrackedStateDict(oneformer.state_dict()) src_state_dict = self.original_model.state_dict() self.replace_pixel_module(dst_state_dict, src_state_dict, is_swin) self.replace_transformer_module(dst_state_dict, src_state_dict) self.replace_task_mlp(dst_state_dict, src_state_dict) if self.config.is_training: self.replace_text_mapper(dst_state_dict, src_state_dict) logger.info(f"Missed keys are {pformat(dst_state_dict.diff())}") logger.info(f"Not copied keys are {pformat(src_state_dict.keys())}") logger.info("🙌 Done") oneformer.load_state_dict(dst_state_dict) return oneformer @staticmethod def using_dirs(checkpoints_dir: Path, config_dir: Path) -> Iterator[Tuple[object, Path, Path]]: checkpoints: List[Path] = checkpoints_dir.glob("**/*.pth") for checkpoint in checkpoints: logger.info(f"💪 Converting {checkpoint.stem}") # find associated config file config: Path = config_dir / f"{checkpoint.stem}.yaml" yield config, checkpoint def post_process_sem_seg_output(outputs: OneFormerForUniversalSegmentationOutput, target_size: Tuple[int, int]): # class_queries_logits has shape [BATCH, QUERIES, CLASSES + 1] class_queries_logits = outputs.class_queries_logits # masks_queries_logits has shape [BATCH, QUERIES, HEIGHT, WIDTH] masks_queries_logits = outputs.masks_queries_logits if target_size is not None: masks_queries_logits = torch.nn.functional.interpolate( masks_queries_logits, size=target_size, mode="bilinear", align_corners=False, ) # remove the null class `[..., :-1]` masks_classes = class_queries_logits.softmax(dim=-1)[..., :-1] # mask probs has shape [BATCH, QUERIES, HEIGHT, WIDTH] masks_probs = masks_queries_logits.sigmoid() # now we want to sum over the queries, # $ out_{c,h,w} = \sum_q p_{q,c} * m_{q,h,w} $ # where $ softmax(p) \in R^{q, c} $ is the mask classes # and $ sigmoid(m) \in R^{q, h, w}$ is the mask probabilities # b(atch)q(uery)c(lasses), b(atch)q(uery)h(eight)w(idth) segmentation = torch.einsum("bqc, bqhw -> bchw", masks_classes, masks_probs) return segmentation def test( original_model, our_model: OneFormerForUniversalSegmentation, processor: OneFormerProcessor, model_repo: str, ): def _preprocess_text(text_list=None, max_length=77): if text_list is None: raise ValueError("tokens cannot be None.") tokens = tokenizer(text_list, padding="max_length", max_length=max_length, truncation=True) attention_masks, input_ids = tokens["attention_mask"], tokens["input_ids"] token_inputs = [] for attn_mask, input_id in zip(attention_masks, input_ids): token = torch.tensor(attn_mask) * torch.tensor(input_id) token_inputs.append(token.unsqueeze(0)) token_inputs = torch.cat(token_inputs, dim=0) return token_inputs with torch.no_grad(): tokenizer = CLIPTokenizer.from_pretrained(model_repo) original_model = original_model.eval() our_model = our_model.eval() im = prepare_img() tr = T.Compose( [ T.Resize((640, 640)), T.ToTensor(), T.Normalize( mean=torch.tensor([123.675, 116.280, 103.530]) / 255.0, std=torch.tensor([58.395, 57.120, 57.375]) / 255.0, ), ], ) x = tr(im).unsqueeze(0) task_input = ["the task is semantic"] task_token = _preprocess_text(task_input, max_length=processor.task_seq_length) original_model_backbone_features = original_model.backbone(x.clone()) our_model_output: OneFormerModelOutput = our_model.model(x.clone(), task_token, output_hidden_states=True) for original_model_feature, our_model_feature in zip( original_model_backbone_features.values(), our_model_output.encoder_hidden_states ): assert torch.allclose( original_model_feature, our_model_feature, atol=3e-3 ), "The backbone features are not the same." mask_features, _, multi_scale_features, _, _ = original_model.sem_seg_head.pixel_decoder.forward_features( original_model_backbone_features ) original_pixel_decoder_features = [] original_pixel_decoder_features.append(mask_features) for i in range(len(multi_scale_features)): original_pixel_decoder_features.append(multi_scale_features[i]) for original_model_feature, our_model_feature in zip( original_pixel_decoder_features, our_model_output.pixel_decoder_hidden_states ): assert torch.allclose( original_model_feature, our_model_feature, atol=3e-4 ), "The pixel decoder feature are not the same" tr_complete = T.Compose( [ T.Resize((640, 640)), T.ToTensor(), ], ) y = (tr_complete(im) * 255.0).to(torch.int).float() # let's test the full model original_model_out = original_model([{"image": y.clone(), "task": "The task is semantic"}]) original_segmentation = original_model_out[0]["sem_seg"] our_model_out: OneFormerForUniversalSegmentationOutput = our_model( x.clone(), task_token, output_hidden_states=True ) our_segmentation = post_process_sem_seg_output(our_model_out, target_size=(640, 640))[0] assert torch.allclose( original_segmentation, our_segmentation, atol=1e-3 ), "The segmentation image is not the same." logger.info("✅ Test passed!") def get_name(checkpoint_file: Path): model_name_raw: str = checkpoint_file.stem backbone = "swin" if "swin" in model_name_raw else "dinat" dataset = "" if "coco" in model_name_raw: dataset = "coco" elif "ade20k" in model_name_raw: dataset = "ade20k" elif "cityscapes" in model_name_raw: dataset = "cityscapes" else: raise ValueError( f"{model_name_raw} must be wrong since we didn't find 'coco' or 'ade20k' or 'cityscapes' in it " ) backbone_types = ["tiny", "large"] backbone_type = list(filter(lambda x: x in model_name_raw, backbone_types))[0] model_name = f"oneformer_{dataset}_{backbone}_{backbone_type}" return model_name if __name__ == "__main__": parser = ArgumentParser( description=( "Command line to convert the original oneformer models (with swin backbone) to transformers" " implementation." ) ) parser.add_argument( "--checkpoints_dir", type=Path, help=( "A directory containing the model's checkpoints. The directory has to have the following structure:" " structure: <DIR_NAME>/<DATASET_NAME>/<CONFIG_NAME>.pth; where <CONFIG_NAME> name must follow the" " following nomenclature nomenclature: oneformer_<DATASET_NAME>_<BACKBONE>_<BACKBONE_TYPE>" ), ) parser.add_argument( "--configs_dir", type=Path, help=( "A directory containing the model's configs, see detectron2 doc. The directory has to have the following" " structure: <DIR_NAME>/<DATASET_NAME>/<CONFIG_NAME>.yaml; where <CONFIG_NAME> name must follow the" " following nomenclature nomenclature: oneformer_<DATASET_NAME>_<BACKBONE>_<BACKBONE_TYPE>" ), ) parser.add_argument( "--pytorch_dump_folder_path", required=True, type=Path, help="Path to the folder to output PyTorch models.", ) parser.add_argument( "--oneformer_dir", required=True, type=Path, help=( "A path to OneFormer's original implementation directory. You can download from here:" "https://github.com/SHI-Labs/OneFormer" ), ) args = parser.parse_args() checkpoints_dir: Path = args.checkpoints_dir config_dir: Path = args.configs_dir save_directory: Path = args.pytorch_dump_folder_path oneformer_dir: Path = args.oneformer_dir # append the path to the parents to oneformer dir sys.path.append(str(oneformer_dir.parent)) # and import what's needed from OneFormer.oneformer import add_common_config, add_dinat_config, add_oneformer_config, add_swin_config from OneFormer.oneformer.oneformer_model import OneFormer as OriginalOneFormer if not save_directory.exists(): save_directory.mkdir(parents=True) for config_file, checkpoint_file in OriginalOneFormerCheckpointToOursConverter.using_dirs( checkpoints_dir, config_dir ): processor = OriginalOneFormerConfigToProcessorConverter()( setup_cfg(Args(config_file=config_file)), os.path.join("shi-labs", config_file.stem) ) original_config = setup_cfg(Args(config_file=config_file)) oneformer_kwargs = OriginalOneFormer.from_config(original_config) original_model = OriginalOneFormer(**oneformer_kwargs).eval() DetectionCheckpointer(original_model).load(str(checkpoint_file)) is_swin = "swin" in config_file.stem config: OneFormerConfig = OriginalOneFormerConfigToOursConverter()(original_config, is_swin) oneformer = OneFormerModel(config=config).eval() converter = OriginalOneFormerCheckpointToOursConverter(original_model, config) oneformer = converter.convert(oneformer, is_swin) oneformer_for_universal_segmentation = OneFormerForUniversalSegmentation(config=config).eval() oneformer_for_universal_segmentation.model = oneformer test( original_model, oneformer_for_universal_segmentation, processor, os.path.join("shi-labs", config_file.stem), ) model_name = get_name(checkpoint_file) logger.info(f"🪄 Saving {model_name}") processor.save_pretrained(save_directory / model_name) oneformer_for_universal_segmentation.save_pretrained(save_directory / model_name) processor.push_to_hub( repo_id=os.path.join("shi-labs", config_file.stem), commit_message="Add configs", use_temp_dir=True, ) oneformer_for_universal_segmentation.push_to_hub( repo_id=os.path.join("shi-labs", config_file.stem), commit_message="Add model", use_temp_dir=True, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/oneformer/configuration_oneformer.py
# coding=utf-8 # Copyright 2022 SHI Labs and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """OneFormer model configuration""" import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING logger = logging.get_logger(__name__) ONEFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = { "shi-labs/oneformer_ade20k_swin_tiny": ( "https://huggingface.co/shi-labs/oneformer_ade20k_swin_tiny/blob/main/config.json" ), # See all OneFormer models at https://huggingface.co/models?filter=oneformer } class OneFormerConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`OneFormerModel`]. It is used to instantiate a OneFormer model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the OneFormer [shi-labs/oneformer_ade20k_swin_tiny](https://huggingface.co/shi-labs/oneformer_ade20k_swin_tiny) architecture trained on [ADE20k-150](https://huggingface.co/datasets/scene_parse_150). Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: backbone_config (`PretrainedConfig`, *optional*, defaults to `SwinConfig`) The configuration of the backbone model. ignore_value (`int`, *optional*, defaults to 255) Values to be ignored in GT label while calculating loss. num_queries (`int`, *optional*, defaults to 150) Number of object queries. no_object_weight (`float`, *optional*, defaults to 0.1) Weight for no-object class predictions. class_weight (`float`, *optional*, defaults to 2.0) Weight for Classification CE loss. mask_weight (`float`, *optional*, defaults to 5.0) Weight for binary CE loss. dice_weight (`float`, *optional*, defaults to 5.0) Weight for dice loss. contrastive_weight (`float`, *optional*, defaults to 0.5) Weight for contrastive loss. contrastive_temperature (`float`, *optional*, defaults to 0.07) Initial value for scaling the contrastive logits. train_num_points (`int`, *optional*, defaults to 12544) Number of points to sample while calculating losses on mask predictions. oversample_ratio (`float`, *optional*, defaults to 3.0) Ratio to decide how many points to oversample. importance_sample_ratio (`float`, *optional*, defaults to 0.75) Ratio of points that are sampled via importance sampling. init_std (`float`, *optional*, defaults to 0.02) Standard deviation for normal intialization. init_xavier_std (`float`, *optional*, defaults to 0.02) Standard deviation for xavier uniform initialization. layer_norm_eps (`float`, *optional*, defaults to 1e-05) Epsilon for layer normalization. is_training (`bool`, *optional*, defaults to False) Whether to run in training or inference mode. use_auxiliary_loss (`bool`, *optional*, defaults to True) Whether to calculate loss using intermediate predictions from transformer decoder. output_auxiliary_logits (`bool`, *optional*, defaults to True) Whether to return intermediate predictions from transformer decoder. strides (`list`, *optional*, defaults to [4, 8, 16, 32]) List containing the strides for feature maps in the encoder. task_seq_len (`int`, *optional*, defaults to 77) Sequence length for tokenizing text list input. text_encoder_width (`int`, *optional*, defaults to 256) Hidden size for text encoder. text_encoder_context_length (`int`, *optional*, defaults to 77): Input sequence length for text encoder. text_encoder_num_layers (`int`, *optional*, defaults to 6) Number of layers for transformer in text encoder. text_encoder_vocab_size (`int`, *optional*, defaults to 49408) Vocabulary size for tokenizer. text_encoder_proj_layers (`int`, *optional*, defaults to 2) Number of layers in MLP for project text queries. text_encoder_n_ctx (`int`, *optional*, defaults to 16) Number of learnable text context queries. conv_dim (`int`, *optional*, defaults to 256) Feature map dimension to map outputs from the backbone. mask_dim (`int`, *optional*, defaults to 256) Dimension for feature maps in pixel decoder. hidden_dim (`int`, *optional*, defaults to 256) Dimension for hidden states in transformer decoder. encoder_feedforward_dim (`int`, *optional*, defaults to 1024) Dimension for FFN layer in pixel decoder. norm (`str`, *optional*, defaults to `GN`) Type of normalization. encoder_layers (`int`, *optional*, defaults to 6) Number of layers in pixel decoder. decoder_layers (`int`, *optional*, defaults to 10) Number of layers in transformer decoder. use_task_norm (`bool`, *optional*, defaults to `True`) Whether to normalize the task token. num_attention_heads (`int`, *optional*, defaults to 8) Number of attention heads in transformer layers in the pixel and transformer decoders. dropout (`float`, *optional*, defaults to 0.1) Dropout probability for pixel and transformer decoders. dim_feedforward (`int`, *optional*, defaults to 2048) Dimension for FFN layer in transformer decoder. pre_norm (`bool`, *optional*, defaults to `False`) Whether to normalize hidden states before attention layers in transformer decoder. enforce_input_proj (`bool`, *optional*, defaults to `False`) Whether to project hidden states in transformer decoder. query_dec_layers (`int`, *optional*, defaults to 2) Number of layers in query transformer. common_stride (`int`, *optional*, defaults to 4) Common stride used for features in pixel decoder. Examples: ```python >>> from transformers import OneFormerConfig, OneFormerModel >>> # Initializing a OneFormer shi-labs/oneformer_ade20k_swin_tiny configuration >>> configuration = OneFormerConfig() >>> # Initializing a model (with random weights) from the shi-labs/oneformer_ade20k_swin_tiny style configuration >>> model = OneFormerModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ``` """ model_type = "oneformer" attribute_map = {"hidden_size": "hidden_dim"} def __init__( self, backbone_config: Optional[Dict] = None, ignore_value: int = 255, num_queries: int = 150, no_object_weight: int = 0.1, class_weight: float = 2.0, mask_weight: float = 5.0, dice_weight: float = 5.0, contrastive_weight: float = 0.5, contrastive_temperature: float = 0.07, train_num_points: int = 12544, oversample_ratio: float = 3.0, importance_sample_ratio: float = 0.75, init_std: float = 0.02, init_xavier_std: float = 1.0, layer_norm_eps: float = 1e-05, is_training: bool = False, use_auxiliary_loss: bool = True, output_auxiliary_logits: bool = True, strides: Optional[list] = [4, 8, 16, 32], task_seq_len: int = 77, text_encoder_width: int = 256, text_encoder_context_length: int = 77, text_encoder_num_layers: int = 6, text_encoder_vocab_size: int = 49408, text_encoder_proj_layers: int = 2, text_encoder_n_ctx: int = 16, conv_dim: int = 256, mask_dim: int = 256, hidden_dim: int = 256, encoder_feedforward_dim: int = 1024, norm: str = "GN", encoder_layers: int = 6, decoder_layers: int = 10, use_task_norm: bool = True, num_attention_heads: int = 8, dropout: float = 0.1, dim_feedforward: int = 2048, pre_norm: bool = False, enforce_input_proj: bool = False, query_dec_layers: int = 2, common_stride: int = 4, **kwargs, ): if backbone_config is None: logger.info("`backbone_config` is unset. Initializing the config with the default `Swin` backbone.") backbone_config = CONFIG_MAPPING["swin"]( image_size=224, in_channels=3, patch_size=4, embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7, drop_path_rate=0.3, use_absolute_embeddings=False, out_features=["stage1", "stage2", "stage3", "stage4"], ) elif isinstance(backbone_config, dict): backbone_model_type = backbone_config.get("model_type") config_class = CONFIG_MAPPING[backbone_model_type] backbone_config = config_class.from_dict(backbone_config) self.backbone_config = backbone_config self.ignore_value = ignore_value self.num_queries = num_queries self.no_object_weight = no_object_weight self.class_weight = class_weight self.mask_weight = mask_weight self.dice_weight = dice_weight self.contrastive_weight = contrastive_weight self.contrastive_temperature = contrastive_temperature self.train_num_points = train_num_points self.oversample_ratio = oversample_ratio self.importance_sample_ratio = importance_sample_ratio self.init_std = init_std self.init_xavier_std = init_xavier_std self.layer_norm_eps = layer_norm_eps self.is_training = is_training self.use_auxiliary_loss = use_auxiliary_loss self.output_auxiliary_logits = output_auxiliary_logits self.strides = strides self.task_seq_len = task_seq_len self.text_encoder_width = text_encoder_width self.text_encoder_context_length = text_encoder_context_length self.text_encoder_num_layers = text_encoder_num_layers self.text_encoder_vocab_size = text_encoder_vocab_size self.text_encoder_proj_layers = text_encoder_proj_layers self.text_encoder_n_ctx = text_encoder_n_ctx self.conv_dim = conv_dim self.mask_dim = mask_dim self.hidden_dim = hidden_dim self.encoder_feedforward_dim = encoder_feedforward_dim self.norm = norm self.encoder_layers = encoder_layers self.decoder_layers = decoder_layers self.use_task_norm = use_task_norm self.num_attention_heads = num_attention_heads self.dropout = dropout self.dim_feedforward = dim_feedforward self.pre_norm = pre_norm self.enforce_input_proj = enforce_input_proj self.query_dec_layers = query_dec_layers self.common_stride = common_stride self.num_hidden_layers = decoder_layers super().__init__(**kwargs) def to_dict(self) -> Dict[str, any]: """ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. Returns: `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, """ output = copy.deepcopy(self.__dict__) output["backbone_config"] = self.backbone_config.to_dict() output["model_type"] = self.__class__.model_type return output
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/x_clip/configuration_x_clip.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ X-CLIP model configuration""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP = { "microsoft/xclip-base-patch32": "https://huggingface.co/microsoft/xclip-base-patch32/resolve/main/config.json", } class XCLIPTextConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`XCLIPModel`]. It is used to instantiate an X-CLIP model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the X-CLIP [microsoft/xclip-base-patch32](https://huggingface.co/microsoft/xclip-base-patch32) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 49408): Vocabulary size of the X-CLIP text model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`XCLIPModel`]. hidden_size (`int`, *optional*, defaults to 512): Dimensionality of the encoder layers and the pooler layer. intermediate_size (`int`, *optional*, defaults to 2048): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 8): Number of attention heads for each attention layer in the Transformer encoder. max_position_embeddings (`int`, *optional*, defaults to 77): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported. layer_norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon used by the layer normalization layers. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. initializer_factor (`float``, *optional*, defaults to 1): A factor for initializing all weight matrices (should be kept to 1, used internally for initialization testing). Example: ```python >>> from transformers import XCLIPTextModel, XCLIPTextConfig >>> # Initializing a XCLIPTextModel with microsoft/xclip-base-patch32 style configuration >>> configuration = XCLIPTextConfig() >>> # Initializing a XCLIPTextConfig from the microsoft/xclip-base-patch32 style configuration >>> model = XCLIPTextModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "xclip_text_model" def __init__( self, vocab_size=49408, hidden_size=512, intermediate_size=2048, num_hidden_layers=12, num_attention_heads=8, max_position_embeddings=77, hidden_act="quick_gelu", layer_norm_eps=1e-5, attention_dropout=0.0, initializer_range=0.02, initializer_factor=1.0, pad_token_id=1, bos_token_id=0, eos_token_id=2, **kwargs, ): super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.max_position_embeddings = max_position_embeddings self.layer_norm_eps = layer_norm_eps self.hidden_act = hidden_act self.initializer_range = initializer_range self.initializer_factor = initializer_factor self.attention_dropout = attention_dropout @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": cls._set_token_in_kwargs(kwargs) config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) # get the text config dict if we are loading from XCLIPConfig if config_dict.get("model_type") == "xclip": config_dict = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(config_dict, **kwargs) class XCLIPVisionConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`XCLIPModel`]. It is used to instantiate an X-CLIP model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the X-CLIP [microsoft/xclip-base-patch32](https://huggingface.co/microsoft/xclip-base-patch32) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. mit_hidden_size (`int`, *optional*, defaults to 512): Dimensionality of the encoder layers of the Multiframe Integration Transformer (MIT). mit_intermediate_size (`int`, *optional*, defaults to 2048): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Multiframe Integration Transformer (MIT). mit_num_hidden_layers (`int`, *optional*, defaults to 1): Number of hidden layers in the Multiframe Integration Transformer (MIT). mit_num_attention_heads (`int`, *optional*, defaults to 8): Number of attention heads for each attention layer in the Multiframe Integration Transformer (MIT). image_size (`int`, *optional*, defaults to 224): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to 32): The size (resolution) of each patch. hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"`, `"gelu_new"` and ``"quick_gelu"` are supported. layer_norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon used by the layer normalization layers. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. initializer_factor (`float``, *optional*, defaults to 1): A factor for initializing all weight matrices (should be kept to 1, used internally for initialization testing). drop_path_rate (`float`, *optional*, defaults to 0.0): Stochastic depth rate. Example: ```python >>> from transformers import XCLIPVisionModel, XCLIPVisionConfig >>> # Initializing a XCLIPVisionModel with microsoft/xclip-base-patch32 style configuration >>> configuration = XCLIPVisionConfig() >>> # Initializing a XCLIPVisionModel model from the microsoft/xclip-base-patch32 style configuration >>> model = XCLIPVisionModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "xclip_vision_model" def __init__( self, hidden_size=768, intermediate_size=3072, num_hidden_layers=12, num_attention_heads=12, mit_hidden_size=512, mit_intermediate_size=2048, mit_num_hidden_layers=1, mit_num_attention_heads=8, num_channels=3, image_size=224, patch_size=32, num_frames=8, hidden_act="quick_gelu", layer_norm_eps=1e-5, attention_dropout=0.0, initializer_range=0.02, initializer_factor=1.0, drop_path_rate=0.0, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.mit_hidden_size = mit_hidden_size self.mit_intermediate_size = mit_intermediate_size self.mit_num_hidden_layers = mit_num_hidden_layers self.mit_num_attention_heads = mit_num_attention_heads self.num_channels = num_channels self.patch_size = patch_size self.num_frames = num_frames self.image_size = image_size self.initializer_range = initializer_range self.initializer_factor = initializer_factor self.attention_dropout = attention_dropout self.layer_norm_eps = layer_norm_eps self.hidden_act = hidden_act self.drop_path_rate = drop_path_rate @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": cls._set_token_in_kwargs(kwargs) config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) # get the vision config dict if we are loading from XCLIPConfig if config_dict.get("model_type") == "xclip": config_dict = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(config_dict, **kwargs) class XCLIPConfig(PretrainedConfig): r""" [`XCLIPConfig`] is the configuration class to store the configuration of a [`XCLIPModel`]. It is used to instantiate X-CLIP model according to the specified arguments, defining the text model and vision model configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the X-CLIP [microsoft/xclip-base-patch32](https://huggingface.co/microsoft/xclip-base-patch32) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: text_config (`dict`, *optional*): Dictionary of configuration options used to initialize [`XCLIPTextConfig`]. vision_config (`dict`, *optional*): Dictionary of configuration options used to initialize [`XCLIPVisionConfig`]. projection_dim (`int`, *optional*, defaults to 512): Dimentionality of text and vision projection layers. prompt_layers (`int`, *optional*, defaults to 2): Number of layers in the video specific prompt generator. prompt_alpha (`float`, *optional*, defaults to 0.1): Alpha value to use in the video specific prompt generator. prompt_hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`): The non-linear activation function (function or string) in the video specific prompt generator. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported. prompt_num_attention_heads (`int`, *optional*, defaults to 8): Number of attention heads in the cross-attention of the video specific prompt generator. prompt_attention_dropout (`float`, *optional*, defaults to 0.0): The dropout probability for the attention layers in the video specific prompt generator. prompt_projection_dropout (`float`, *optional*, defaults to 0.0): The dropout probability for the projection layers in the video specific prompt generator. logit_scale_init_value (`float`, *optional*, defaults to 2.6592): The inital value of the *logit_scale* parameter. Default is used as per the original XCLIP implementation. kwargs (*optional*): Dictionary of keyword arguments. """ model_type = "xclip" is_composition = True def __init__( self, text_config=None, vision_config=None, projection_dim=512, prompt_layers=2, prompt_alpha=0.1, prompt_hidden_act="quick_gelu", prompt_num_attention_heads=8, prompt_attention_dropout=0.0, prompt_projection_dropout=0.0, logit_scale_init_value=2.6592, **kwargs, ): # If `_config_dict` exist, we use them for the backward compatibility. # We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot # of confusion!). text_config_dict = kwargs.pop("text_config_dict", None) vision_config_dict = kwargs.pop("vision_config_dict", None) super().__init__(**kwargs) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: text_config = {} # This is the complete result when using `text_config_dict`. _text_config_dict = XCLIPTextConfig(**text_config_dict).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: message = ( f"`{key}` is found in both `text_config_dict` and `text_config` but with different values. " f'The value `text_config_dict["{key}"]` will be used instead.' ) # If inferred from default argument values (just to be super careful) else: message = ( f"`text_config_dict` is provided which will be used to initialize `XCLIPTextConfig`. The " f'value `text_config["{key}"]` will be overriden.' ) logger.warning(message) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict) if vision_config_dict is not None: if vision_config is None: vision_config = {} # This is the complete result when using `vision_config_dict`. _vision_config_dict = XCLIPVisionConfig(**vision_config_dict).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: _vision_config_dict["id2label"] = { str(key): value for key, value in _vision_config_dict["id2label"].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: message = ( f"`{key}` is found in both `vision_config_dict` and `vision_config` but with different " f'values. The value `vision_config_dict["{key}"]` will be used instead.' ) # If inferred from default argument values (just to be super careful) else: message = ( f"`vision_config_dict` is provided which will be used to initialize `XCLIPVisionConfig`. " f'The value `vision_config["{key}"]` will be overriden.' ) logger.warning(message) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict) if text_config is None: text_config = {} logger.info("`text_config` is `None`. Initializing the `XCLIPTextConfig` with default values.") if vision_config is None: vision_config = {} logger.info("`vision_config` is `None`. initializing the `XCLIPVisionConfig` with default values.") self.text_config = XCLIPTextConfig(**text_config) self.vision_config = XCLIPVisionConfig(**vision_config) self.projection_dim = projection_dim self.prompt_layers = prompt_layers self.prompt_alpha = prompt_alpha self.prompt_hidden_act = prompt_hidden_act self.prompt_num_attention_heads = prompt_num_attention_heads self.prompt_attention_dropout = prompt_attention_dropout self.prompt_projection_dropout = prompt_projection_dropout self.logit_scale_init_value = logit_scale_init_value self.initializer_factor = 1.0 @classmethod def from_text_vision_configs(cls, text_config: XCLIPTextConfig, vision_config: XCLIPVisionConfig, **kwargs): r""" Instantiate a [`XCLIPConfig`] (or a derived class) from xclip text model configuration and xclip vision model configuration. Returns: [`XCLIPConfig`]: An instance of a configuration object """ return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs) def to_dict(self): """ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. Returns: `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, """ output = copy.deepcopy(self.__dict__) output["text_config"] = self.text_config.to_dict() output["vision_config"] = self.vision_config.to_dict() output["model_type"] = self.__class__.model_type return output
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/x_clip/__init__.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _import_structure = { "configuration_x_clip": [ "XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "XCLIPConfig", "XCLIPTextConfig", "XCLIPVisionConfig", ], "processing_x_clip": ["XCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_x_clip"] = [ "XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "XCLIPModel", "XCLIPPreTrainedModel", "XCLIPTextModel", "XCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/x_clip/convert_x_clip_original_pytorch_to_hf.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def get_xclip_config(model_name, num_frames): text_config = XCLIPTextConfig() # derive patch size from model name start_idx = model_name.find("patch") patch_size = int(model_name[start_idx + len("patch") : start_idx + len("patch") + 2]) vision_config = XCLIPVisionConfig(patch_size=patch_size, num_frames=num_frames) if "large" in model_name: text_config.hidden_size = 768 text_config.intermediate_size = 3072 text_config.num_attention_heads = 12 vision_config.hidden_size = 1024 vision_config.intermediate_size = 4096 vision_config.num_attention_heads = 16 vision_config.num_hidden_layers = 24 vision_config.mit_hidden_size = 768 vision_config.mit_intermediate_size = 3072 if model_name == "xclip-large-patch14-16-frames": vision_config.image_size = 336 config = XCLIPConfig.from_text_vision_configs(text_config, vision_config) if "large" in model_name: config.projection_dim = 768 return config def rename_key(name): # text encoder if name == "token_embedding.weight": name = name.replace("token_embedding.weight", "text_model.embeddings.token_embedding.weight") if name == "positional_embedding": name = name.replace("positional_embedding", "text_model.embeddings.position_embedding.weight") if "ln_1" in name: name = name.replace("ln_1", "layer_norm1") if "ln_2" in name: name = name.replace("ln_2", "layer_norm2") if "c_fc" in name: name = name.replace("c_fc", "fc1") if "c_proj" in name: name = name.replace("c_proj", "fc2") if name.startswith("transformer.resblocks"): name = name.replace("transformer.resblocks", "text_model.encoder.layers") if "attn.out_proj" in name and "message" not in name: name = name.replace("attn.out_proj", "self_attn.out_proj") if "ln_final" in name: name = name.replace("ln_final", "text_model.final_layer_norm") # visual encoder if name == "visual.class_embedding": name = name.replace("visual.class_embedding", "vision_model.embeddings.class_embedding") if name == "visual.positional_embedding": name = name.replace("visual.positional_embedding", "vision_model.embeddings.position_embedding.weight") if name.startswith("visual.transformer.resblocks"): name = name.replace("visual.transformer.resblocks", "vision_model.encoder.layers") if "visual.conv1" in name: name = name.replace("visual.conv1", "vision_model.embeddings.patch_embedding") if "visual.ln_pre" in name: name = name.replace("visual.ln_pre", "vision_model.pre_layernorm") if "visual.ln_post" in name: name = name.replace("visual.ln_post", "vision_model.post_layernorm") if "visual.proj" in name: name = name.replace("visual.proj", "visual_projection.weight") if "text_projection" in name: name = name.replace("text_projection", "text_projection.weight") # things on top if "prompts_visual_proj" in name: name = name.replace("prompts_visual_proj", "prompts_visual_projection") if "prompts_visual_ln" in name: name = name.replace("prompts_visual_ln", "prompts_visual_layernorm") # mit if name == "mit.positional_embedding": name = name.replace("positional", "position") if name.startswith("mit.resblocks"): name = name.replace("mit.resblocks", "mit.encoder.layers") # prompts generator if name.startswith("prompts_generator.norm"): name = name.replace("prompts_generator.norm", "prompts_generator.layernorm") return name def convert_state_dict(orig_state_dict, config): for key in orig_state_dict.copy().keys(): val = orig_state_dict.pop(key) if "attn.in_proj" in key: key_split = key.split(".") if key.startswith("visual"): layer_num = key_split[3] dim = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: orig_state_dict[f"vision_model.encoder.layers.{layer_num}.message_attn.q_proj.weight"] = val[ :dim, : ] orig_state_dict[f"vision_model.encoder.layers.{layer_num}.message_attn.k_proj.weight"] = val[ dim : dim * 2, : ] orig_state_dict[f"vision_model.encoder.layers.{layer_num}.message_attn.v_proj.weight"] = val[ -dim:, : ] else: orig_state_dict[f"vision_model.encoder.layers.{layer_num}.message_attn.q_proj.bias"] = val[ :dim ] orig_state_dict[f"vision_model.encoder.layers.{layer_num}.message_attn.k_proj.bias"] = val[ dim : dim * 2 ] orig_state_dict[f"vision_model.encoder.layers.{layer_num}.message_attn.v_proj.bias"] = val[ -dim: ] else: if "weight" in key: orig_state_dict[f"vision_model.encoder.layers.{layer_num}.self_attn.q_proj.weight"] = val[ :dim, : ] orig_state_dict[f"vision_model.encoder.layers.{layer_num}.self_attn.k_proj.weight"] = val[ dim : dim * 2, : ] orig_state_dict[f"vision_model.encoder.layers.{layer_num}.self_attn.v_proj.weight"] = val[ -dim:, : ] else: orig_state_dict[f"vision_model.encoder.layers.{layer_num}.self_attn.q_proj.bias"] = val[:dim] orig_state_dict[f"vision_model.encoder.layers.{layer_num}.self_attn.k_proj.bias"] = val[ dim : dim * 2 ] orig_state_dict[f"vision_model.encoder.layers.{layer_num}.self_attn.v_proj.bias"] = val[-dim:] elif key.startswith("mit"): layer_num = key_split[2] dim = config.vision_config.mit_hidden_size if "weight" in key: orig_state_dict[f"mit.encoder.layers.{layer_num}.self_attn.q_proj.weight"] = val[:dim, :] orig_state_dict[f"mit.encoder.layers.{layer_num}.self_attn.k_proj.weight"] = val[dim : dim * 2, :] orig_state_dict[f"mit.encoder.layers.{layer_num}.self_attn.v_proj.weight"] = val[-dim:, :] else: orig_state_dict[f"mit.encoder.layers.{layer_num}.self_attn.q_proj.bias"] = val[:dim] orig_state_dict[f"mit.encoder.layers.{layer_num}.self_attn.k_proj.bias"] = val[dim : dim * 2] orig_state_dict[f"mit.encoder.layers.{layer_num}.self_attn.v_proj.bias"] = val[-dim:] else: layer_num = key_split[2] dim = config.text_config.hidden_size if "weight" in key: orig_state_dict[f"text_model.encoder.layers.{layer_num}.self_attn.q_proj.weight"] = val[:dim, :] orig_state_dict[f"text_model.encoder.layers.{layer_num}.self_attn.k_proj.weight"] = val[ dim : dim * 2, : ] orig_state_dict[f"text_model.encoder.layers.{layer_num}.self_attn.v_proj.weight"] = val[-dim:, :] else: orig_state_dict[f"text_model.encoder.layers.{layer_num}.self_attn.q_proj.bias"] = val[:dim] orig_state_dict[f"text_model.encoder.layers.{layer_num}.self_attn.k_proj.bias"] = val[ dim : dim * 2 ] orig_state_dict[f"text_model.encoder.layers.{layer_num}.self_attn.v_proj.bias"] = val[-dim:] else: new_key_name = rename_key(key) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: val = val.T orig_state_dict[new_key_name] = val return orig_state_dict def prepare_video(num_frames): if num_frames == 8: filename = "eating_spaghetti_8_frames.npy" elif num_frames == 16: filename = "eating_spaghetti.npy" elif num_frames == 32: filename = "eating_spaghetti_32_frames.npy" file = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video", filename=filename, repo_type="dataset", ) video = np.load(file) return list(video) def convert_xclip_checkpoint(model_name, pytorch_dump_folder_path=None, push_to_hub=False): model_to_url = { # fully supervised kinetics-400 checkpoints "xclip-base-patch32": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth", "xclip-base-patch32-16-frames": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth" ), "xclip-base-patch16": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth", "xclip-base-patch16-16-frames": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth" ), "xclip-large-patch14": "https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb", "xclip-large-patch14-16-frames": "https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f", # fully supervised kinetics-600 checkpoints "xclip-base-patch16-kinetics-600": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth" ), "xclip-base-patch16-kinetics-600-16-frames": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth" ), "xclip-large-patch14-kinetics-600": "https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be", # few shot "xclip-base-patch16-hmdb-2-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth" ), "xclip-base-patch16-hmdb-4-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth" ), "xclip-base-patch16-hmdb-8-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth" ), "xclip-base-patch16-hmdb-16-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth" ), "xclip-base-patch16-ucf-2-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth" ), "xclip-base-patch16-ucf-4-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth" ), "xclip-base-patch16-ucf-8-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth" ), "xclip-base-patch16-ucf-16-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth" ), # zero shot "xclip-base-patch16-zero-shot": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth", } checkpoint_url = model_to_url[model_name] num_frames = 8 if "16-frames" in model_name: num_frames = 16 elif "shot" in model_name: num_frames = 32 config = get_xclip_config(model_name, num_frames) model = XCLIPModel(config) model.eval() if "drive" in checkpoint_url: output = "pytorch_model.bin" gdown.cached_download(checkpoint_url, output, quiet=False) state_dict = torch.load(output, map_location="cpu")["model"] else: state_dict = torch.hub.load_state_dict_from_url(checkpoint_url)["model"] state_dict = convert_state_dict(state_dict, config) model = XCLIPModel(config) missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() size = 336 if model_name == "xclip-large-patch14-16-frames" else 224 image_processor = VideoMAEImageProcessor(size=size) slow_tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32") fast_tokenizer = CLIPTokenizerFast.from_pretrained("openai/clip-vit-base-patch32") processor = XCLIPProcessor(image_processor=image_processor, tokenizer=fast_tokenizer) video = prepare_video(num_frames) inputs = processor( text=["playing sports", "eating spaghetti", "go shopping"], videos=video, return_tensors="pt", padding=True ) print("Shape of pixel values:", inputs.pixel_values.shape) with torch.no_grad(): outputs = model(**inputs) # Verify outputs logits_per_video = outputs.logits_per_video probs = logits_per_video.softmax(dim=1) print("Probs:", probs) # kinetics-400 if model_name == "xclip-base-patch32": expected_probs = torch.tensor([[0.0019, 0.9951, 0.0030]]) elif model_name == "xclip-base-patch32-16-frames": expected_probs = torch.tensor([[7.0999e-04, 9.9883e-01, 4.5580e-04]]) elif model_name == "xclip-base-patch16": expected_probs = torch.tensor([[0.0083, 0.9681, 0.0236]]) elif model_name == "xclip-base-patch16-16-frames": expected_probs = torch.tensor([[7.6937e-04, 9.9728e-01, 1.9473e-03]]) elif model_name == "xclip-large-patch14": expected_probs = torch.tensor([[0.0062, 0.9864, 0.0075]]) elif model_name == "xclip-large-patch14-16-frames": expected_probs = torch.tensor([[3.3877e-04, 9.9937e-01, 2.8888e-04]]) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": expected_probs = torch.tensor([[0.0555, 0.8914, 0.0531]]) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": expected_probs = torch.tensor([[3.8554e-04, 9.9929e-01, 3.2754e-04]]) elif model_name == "xclip-large-patch14-kinetics-600": expected_probs = torch.tensor([[0.0036, 0.9920, 0.0045]]) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": expected_probs = torch.tensor([[7.1890e-06, 9.9994e-01, 5.6559e-05]]) elif model_name == "xclip-base-patch16-hmdb-4-shot": expected_probs = torch.tensor([[1.0320e-05, 9.9993e-01, 6.2435e-05]]) elif model_name == "xclip-base-patch16-hmdb-8-shot": expected_probs = torch.tensor([[4.1377e-06, 9.9990e-01, 9.8386e-05]]) elif model_name == "xclip-base-patch16-hmdb-16-shot": expected_probs = torch.tensor([[4.1347e-05, 9.9962e-01, 3.3411e-04]]) elif model_name == "xclip-base-patch16-ucf-2-shot": expected_probs = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]]) elif model_name == "xclip-base-patch16-ucf-4-shot": expected_probs = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]]) elif model_name == "xclip-base-patch16-ucf-8-shot": expected_probs = torch.tensor([[0.0027, 0.9904, 0.0070]]) elif model_name == "xclip-base-patch16-ucf-16-shot": expected_probs = torch.tensor([[9.8219e-04, 9.9593e-01, 3.0863e-03]]) # zero shot elif model_name == "xclip-base-patch16-zero-shot": expected_probs = torch.tensor([[3.5082e-04, 9.9785e-01, 1.7966e-03]]) else: raise ValueError(f"Model name {model_name} not supported") assert torch.allclose(probs, expected_probs, atol=1e-3) print("Looks ok!") if pytorch_dump_folder_path is not None: print(f"Saving model {model_name} to {pytorch_dump_folder_path}") model.save_pretrained(pytorch_dump_folder_path) if push_to_hub: print("Pushing model, processor and slow tokenizer files to the hub...") model.push_to_hub(model_name, organization="nielsr") processor.push_to_hub(model_name, organization="nielsr") slow_tokenizer.push_to_hub(model_name, organization="nielsr") if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="xclip-base-patch32", type=str, help="Name of the model.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) args = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/x_clip/modeling_x_clip.py
# coding=utf-8 # Copyright 2022 Microsoft Research and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch X-CLIP model.""" from copy import copy from dataclasses import dataclass from typing import Any, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from ...activations import ACT2FN from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling from ...modeling_utils import PreTrainedModel from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_x_clip import XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "microsoft/xclip-base-patch32" XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [ "microsoft/xclip-base-patch32", # See all X-CLIP models at https://huggingface.co/models?filter=x-clip ] # Copied from transformers.models.bart.modeling_bart._expand_mask def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): """ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. """ bsz, src_len = mask.size() tgt_len = tgt_len if tgt_len is not None else src_len expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) inverted_mask = 1.0 - expanded_mask return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min) # contrastive loss function, adapted from # https://sachinruk.github.io/blog/pytorch/pytorch%20lightning/loss%20function/gpu/2021/03/07/CLIP.html def contrastive_loss(logits: torch.Tensor) -> torch.Tensor: return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device)) # Copied from transformers.models.clip.modeling_clip.clip_loss with clip->x_clip def x_clip_loss(similarity: torch.Tensor) -> torch.Tensor: caption_loss = contrastive_loss(similarity) image_loss = contrastive_loss(similarity.t()) return (caption_loss + image_loss) / 2.0 @dataclass class XCLIPOutput(ModelOutput): """ Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`): Contrastive loss for video-text similarity. logits_per_video (`torch.FloatTensor` of shape `(video_batch_size, text_batch_size)`): The scaled dot product scores between `video_embeds` and `text_embeds`. This represents the video-text similarity scores. logits_per_text (`torch.FloatTensor` of shape `(text_batch_size, video_batch_size)`): The scaled dot product scores between `text_embeds` and `video_embeds`. This represents the text-video similarity scores. text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying the projection layer to the pooled output of [`XCLIPTextModel`]. video_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`): The video embeddings obtained by applying the projection layer to the pooled output of [`XCLIPVisionModel`]. text_model_output (`BaseModelOutputWithPooling`): The output of the [`XCLIPTextModel`]. vision_model_output (`BaseModelOutputWithPooling`): The output of the [`XCLIPVisionModel`]. mit_output (`BaseModelOutputWithPooling`): The output of `XCLIPMultiframeIntegrationTransformer` (MIT for short). """ loss: Optional[torch.FloatTensor] = None logits_per_video: torch.FloatTensor = None logits_per_text: torch.FloatTensor = None text_embeds: torch.FloatTensor = None video_embeds: torch.FloatTensor = None text_model_output: BaseModelOutputWithPooling = None vision_model_output: BaseModelOutputWithPooling = None mit_output: BaseModelOutputWithPooling = None def to_tuple(self) -> Tuple[Any]: return tuple( self[k] if k not in ["text_model_output", "vision_model_output", "mit_output"] else getattr(self, k).to_tuple() for k in self.keys() ) # Copied from transformers.models.clip.modeling_clip.CLIPVisionEmbeddings with CLIP->XCLIP class XCLIPVisionEmbeddings(nn.Module): def __init__(self, config: XCLIPVisionConfig): super().__init__() self.config = config self.embed_dim = config.hidden_size self.image_size = config.image_size self.patch_size = config.patch_size self.class_embedding = nn.Parameter(torch.randn(self.embed_dim)) self.patch_embedding = nn.Conv2d( in_channels=config.num_channels, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size, bias=False, ) self.num_patches = (self.image_size // self.patch_size) ** 2 self.num_positions = self.num_patches + 1 self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim) self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False) def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: batch_size = pixel_values.shape[0] target_dtype = self.patch_embedding.weight.dtype patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid] patch_embeds = patch_embeds.flatten(2).transpose(1, 2) class_embeds = self.class_embedding.expand(batch_size, 1, -1) embeddings = torch.cat([class_embeds, patch_embeds], dim=1) embeddings = embeddings + self.position_embedding(self.position_ids) return embeddings # Copied from transformers.models.clip.modeling_clip.CLIPTextEmbeddings with CLIP->XCLIP class XCLIPTextEmbeddings(nn.Module): def __init__(self, config: XCLIPTextConfig): super().__init__() embed_dim = config.hidden_size self.token_embedding = nn.Embedding(config.vocab_size, embed_dim) self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) def forward( self, input_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, ) -> torch.Tensor: seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2] if position_ids is None: position_ids = self.position_ids[:, :seq_length] if inputs_embeds is None: inputs_embeds = self.token_embedding(input_ids) position_embeddings = self.position_embedding(position_ids) embeddings = inputs_embeds + position_embeddings return embeddings # Copied from transformers.models.clip.modeling_clip.CLIPAttention with CLIP->XCLIP class XCLIPAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config): super().__init__() self.config = config self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {self.num_heads})." ) self.scale = self.head_dim**-0.5 self.dropout = config.attention_dropout self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, causal_attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" bsz, tgt_len, embed_dim = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scale key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.view(*proj_shape) value_states = value_states.view(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) # apply the causal_attention_mask first if causal_attention_mask is not None: if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is" f" {causal_attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if output_attentions: # this operation is a bit akward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) attn_output = attn_output.reshape(bsz, tgt_len, embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped # Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->XCLIP class XCLIPMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.activation_fn = ACT2FN[config.hidden_act] self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = self.fc2(hidden_states) return hidden_states # Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer with CLIP->XCLIP class XCLIPEncoderLayer(nn.Module): def __init__(self, config: XCLIPConfig): super().__init__() self.embed_dim = config.hidden_size self.self_attn = XCLIPAttention(config) self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) self.mlp = XCLIPMLP(config) self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, causal_attention_mask: torch.Tensor, output_attentions: Optional[bool] = False, ) -> Tuple[torch.FloatTensor]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. `(config.encoder_attention_heads,)`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.layer_norm1(hidden_states) hidden_states, attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, causal_attention_mask=causal_attention_mask, output_attentions=output_attentions, ) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.layer_norm2(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs # Copied from transformers.models.beit.modeling_beit.drop_path def drop_path(input, drop_prob: float = 0.0, training: bool = False): """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if drop_prob == 0.0 or not training: return input keep_prob = 1 - drop_prob shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device) random_tensor.floor_() # binarize output = input.div(keep_prob) * random_tensor return output # Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->XCLIP class XCLIPDropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" def __init__(self, drop_prob: Optional[float] = None) -> None: super().__init__() self.drop_prob = drop_prob def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: return drop_path(hidden_states, self.drop_prob, self.training) def extra_repr(self) -> str: return "p={}".format(self.drop_prob) class XCLIPVisionEncoderLayer(nn.Module): """ This corresponds to the `CrossFramelAttentionBlock` class in the original implementation. """ def __init__(self, config: XCLIPConfig): super().__init__() self.num_frames = config.num_frames self.embed_dim = config.hidden_size self.message_fc = nn.Linear(self.embed_dim, self.embed_dim) self.message_ln = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) self.message_attn = XCLIPAttention(config) self.drop_path = XCLIPDropPath(config.drop_path_rate) if config.drop_path_rate > 0.0 else nn.Identity() self.self_attn = XCLIPAttention(config) self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) self.mlp = XCLIPMLP(config) self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, causal_attention_mask: torch.Tensor, output_attentions: Optional[bool] = False, ) -> Tuple[torch.FloatTensor]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. `(config.encoder_attention_heads,)`. causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Causal mask for the text model. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ batch_time, seq_length, hidden_size = hidden_states.size() batch_size = batch_time // self.num_frames msg_token = self.message_fc(hidden_states[:, 0, :]) msg_token = msg_token.view(batch_size, self.num_frames, hidden_size) msg_token = msg_token + self.drop_path(self.message_attn(self.message_ln(msg_token))[0]) # add dummy sequence dimension msg_token = msg_token.view(-1, 1, hidden_size) hidden_states = torch.cat([hidden_states, msg_token], dim=1) residual = hidden_states hidden_states = self.layer_norm1(hidden_states) hidden_states, attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, causal_attention_mask=causal_attention_mask, output_attentions=output_attentions, ) hidden_states = residual + hidden_states hidden_states = hidden_states[:, :seq_length, :] residual = hidden_states hidden_states = self.layer_norm2(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs class XCLIPPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = XCLIPConfig base_model_prefix = "x_clip" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" factor = self.config.initializer_factor if isinstance(module, XCLIPTextEmbeddings): module.token_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02) module.position_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02) elif isinstance(module, XCLIPVisionEmbeddings): factor = self.config.initializer_factor nn.init.normal_(module.class_embedding, mean=0.0, std=module.embed_dim**-0.5 * factor) nn.init.normal_(module.patch_embedding.weight, std=module.config.initializer_range * factor) nn.init.normal_(module.position_embedding.weight, std=module.config.initializer_range * factor) elif isinstance(module, XCLIPAttention): factor = self.config.initializer_factor in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor out_proj_std = (module.embed_dim**-0.5) * factor nn.init.normal_(module.q_proj.weight, std=in_proj_std) nn.init.normal_(module.k_proj.weight, std=in_proj_std) nn.init.normal_(module.v_proj.weight, std=in_proj_std) nn.init.normal_(module.out_proj.weight, std=out_proj_std) elif isinstance(module, XCLIPMLP): factor = self.config.initializer_factor in_proj_std = ( (module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor ) fc_std = (2 * module.config.hidden_size) ** -0.5 * factor nn.init.normal_(module.fc1.weight, std=fc_std) nn.init.normal_(module.fc2.weight, std=in_proj_std) elif isinstance(module, XCLIPModel): factor = self.config.initializer_factor nn.init.normal_( module.text_projection.weight, std=module.text_embed_dim**-0.5 * factor, ) nn.init.normal_( module.visual_projection.weight, std=module.vision_embed_dim**-0.5 * factor, ) nn.init.normal_(module.prompts_visual_projection, mean=0.0, std=module.vision_embed_dim**-0.5 * factor) elif isinstance(module, XCLIPMultiframeIntegrationTransformer): nn.init.normal_(module.position_embedding, std=self.config.initializer_factor) if isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=self.config.initializer_factor) if module.bias is not None: module.bias.data.zero_() def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, (XCLIPEncoder, XCLIPVisionEncoder)): module.gradient_checkpointing = value X_CLIP_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`XCLIPConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ X_CLIP_TEXT_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ X_CLIP_VISION_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ X_CLIP_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. return_loss (`bool`, *optional*): Whether or not to return the contrastive loss. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ # Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->XCLIP class XCLIPEncoder(nn.Module): """ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a [`XCLIPEncoderLayer`]. Args: config: XCLIPConfig """ def __init__(self, config: XCLIPConfig): super().__init__() self.config = config self.layers = nn.ModuleList([XCLIPEncoderLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, inputs_embeds, attention_mask: Optional[torch.Tensor] = None, causal_attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: r""" Args: inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Causal mask for the text model. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None hidden_states = inputs_embeds for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(encoder_layer), hidden_states, attention_mask, causal_attention_mask, ) else: layer_outputs = encoder_layer( hidden_states, attention_mask, causal_attention_mask, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) # Copied from transformers.models.bart.modeling_bart._make_causal_mask def _make_causal_mask( input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0 ): """ Make causal mask used for bi-directional self-attention. """ bsz, tgt_len = input_ids_shape mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device) mask_cond = torch.arange(mask.size(-1), device=device) mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) mask = mask.to(dtype) if past_key_values_length > 0: mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1) return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length) class XCLIPTextTransformer(nn.Module): def __init__(self, config: XCLIPTextConfig): super().__init__() self.config = config embed_dim = config.hidden_size self.embeddings = XCLIPTextEmbeddings(config) self.encoder = XCLIPEncoder(config) self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) @add_start_docstrings_to_model_forward(X_CLIP_TEXT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=XCLIPTextConfig) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is None: raise ValueError("You have to specify either input_ids") input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids) # X_CLIP's text model uses causal mask, prepare it here. # https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324 causal_attention_mask = _make_causal_mask(input_shape, hidden_states.dtype, device=hidden_states.device) # expand attention_mask if attention_mask is not None: # [batch_size, seq_len] -> [batch_size, 1, tgt_seq_len, src_seq_len] attention_mask = _expand_mask(attention_mask, hidden_states.dtype) encoder_outputs = self.encoder( inputs_embeds=hidden_states, attention_mask=attention_mask, causal_attention_mask=causal_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = encoder_outputs[0] last_hidden_state = self.final_layer_norm(last_hidden_state) # text_embeds.shape = [batch_size, sequence_length, transformer.width] # take features from the eot embedding (eot_token is the highest number in each sequence) pooled_output = last_hidden_state[torch.arange(last_hidden_state.shape[0]), input_ids.argmax(dim=-1)] if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class XCLIPTextModel(XCLIPPreTrainedModel): config_class = XCLIPTextConfig def __init__(self, config: XCLIPTextConfig): super().__init__(config) self.text_model = XCLIPTextTransformer(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> nn.Module: return self.text_model.embeddings.token_embedding def set_input_embeddings(self, value): self.text_model.embeddings.token_embedding = value @add_start_docstrings_to_model_forward(X_CLIP_TEXT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=XCLIPTextConfig) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: Examples: ```python >>> from transformers import AutoTokenizer, XCLIPTextModel >>> model = XCLIPTextModel.from_pretrained("microsoft/xclip-base-patch32") >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/xclip-base-patch32") >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_state = outputs.last_hidden_state >>> pooled_output = outputs.pooler_output # pooled (EOS token) states ```""" return self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) class XCLIPVisionEncoder(nn.Module): """ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a [`XCLIPVisionEncoderLayer`]. Args: config: XCLIPConfig """ def __init__(self, config: XCLIPConfig): super().__init__() self.config = config self.layers = nn.ModuleList([XCLIPVisionEncoderLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, inputs_embeds, attention_mask: Optional[torch.Tensor] = None, causal_attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: r""" Args: inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Causal mask for the text model. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None hidden_states = inputs_embeds for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(encoder_layer), hidden_states, attention_mask, causal_attention_mask, ) else: layer_outputs = encoder_layer( hidden_states, attention_mask, causal_attention_mask, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) class XCLIPVisionTransformer(nn.Module): """ This corresponds to the `CrossFrameCommunicationTransformer` class in the original implementation. """ def __init__(self, config: XCLIPVisionConfig): super().__init__() self.config = config embed_dim = config.hidden_size self.embeddings = XCLIPVisionEmbeddings(config) self.pre_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) self.encoder = XCLIPVisionEncoder(config) self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) @add_start_docstrings_to_model_forward(X_CLIP_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=XCLIPVisionConfig) def forward( self, pixel_values: torch.FloatTensor, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict hidden_states = self.embeddings(pixel_values) hidden_states = self.pre_layernorm(hidden_states) encoder_outputs = self.encoder( inputs_embeds=hidden_states, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = encoder_outputs[0] pooled_output = last_hidden_state[:, 0, :] pooled_output = self.post_layernorm(pooled_output) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class XCLIPVisionModel(XCLIPPreTrainedModel): config_class = XCLIPVisionConfig main_input_name = "pixel_values" def __init__(self, config: XCLIPVisionConfig): super().__init__(config) self.vision_model = XCLIPVisionTransformer(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> nn.Module: return self.vision_model.embeddings.patch_embedding @add_start_docstrings_to_model_forward(X_CLIP_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=XCLIPVisionConfig) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: Examples: ```python >>> import av >>> import torch >>> import numpy as np >>> from transformers import AutoProcessor, XCLIPVisionModel >>> from huggingface_hub import hf_hub_download >>> np.random.seed(0) >>> def read_video_pyav(container, indices): ... ''' ... Decode the video with PyAV decoder. ... Args: ... container (`av.container.input.InputContainer`): PyAV container. ... indices (`List[int]`): List of frame indices to decode. ... Returns: ... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3). ... ''' ... frames = [] ... container.seek(0) ... start_index = indices[0] ... end_index = indices[-1] ... for i, frame in enumerate(container.decode(video=0)): ... if i > end_index: ... break ... if i >= start_index and i in indices: ... frames.append(frame) ... return np.stack([x.to_ndarray(format="rgb24") for x in frames]) >>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len): ... converted_len = int(clip_len * frame_sample_rate) ... end_idx = np.random.randint(converted_len, seg_len) ... start_idx = end_idx - converted_len ... indices = np.linspace(start_idx, end_idx, num=clip_len) ... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64) ... return indices >>> # video clip consists of 300 frames (10 seconds at 30 FPS) >>> file_path = hf_hub_download( ... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset" ... ) >>> container = av.open(file_path) >>> # sample 16 frames >>> indices = sample_frame_indices(clip_len=8, frame_sample_rate=1, seg_len=container.streams.video[0].frames) >>> video = read_video_pyav(container, indices) >>> processor = AutoProcessor.from_pretrained("microsoft/xclip-base-patch32") >>> model = XCLIPVisionModel.from_pretrained("microsoft/xclip-base-patch32") >>> pixel_values = processor(videos=list(video), return_tensors="pt").pixel_values >>> batch_size, num_frames, num_channels, height, width = pixel_values.shape >>> pixel_values = pixel_values.reshape(-1, num_channels, height, width) >>> outputs = model(pixel_values) >>> last_hidden_state = outputs.last_hidden_state ```""" return self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) class XCLIPMultiframeIntegrationTransformer(nn.Module): """ This corresponds to the `MultiframeIntegrationTransformer` class in the original implementation. """ def __init__(self, config: XCLIPVisionConfig): super().__init__() self.position_embedding = nn.Parameter(torch.empty(1, config.num_frames, config.hidden_size)) self.encoder = XCLIPEncoder(config) def forward( self, hidden_states, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: residual = hidden_states # add position embeddings hidden_states = hidden_states + self.position_embedding encoder_outputs = self.encoder( inputs_embeds=hidden_states, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = encoder_outputs[0] last_hidden_state = last_hidden_state.type(hidden_states.dtype) + residual pooled_output = last_hidden_state.mean(dim=1, keepdim=False) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class XCLIPCrossAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config): super().__init__() self.num_heads = config.prompt_num_attention_heads dim = config.projection_dim head_dim = dim // self.num_heads self.scale = head_dim**-0.5 self.q_proj = nn.Linear(dim, dim, bias=False) self.k_proj = nn.Linear(dim, dim, bias=False) self.v_proj = nn.Linear(dim, dim, bias=False) self.attn_drop = nn.Dropout(config.prompt_attention_dropout) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(config.prompt_projection_dropout) def _shape(self, tensor: torch.Tensor, seq_len: int, batch_size: int): return tensor.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward(self, queries, keys, values): """Input shape: Batch x Time x Channel""" batch_size, query_seq_len, hidden_size = queries.shape batch_size, key_seq_len, hidden_size = keys.shape queries = ( self.q_proj(queries) .reshape(batch_size, query_seq_len, self.num_heads, hidden_size // self.num_heads) .permute(0, 2, 1, 3) ) keys = ( self.k_proj(keys) .reshape(batch_size, key_seq_len, self.num_heads, hidden_size // self.num_heads) .permute(0, 2, 1, 3) ) values = ( self.v_proj(values) .reshape(batch_size, key_seq_len, self.num_heads, hidden_size // self.num_heads) .permute(0, 2, 1, 3) ) attn = (queries @ keys.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ values).transpose(1, 2).reshape(batch_size, query_seq_len, hidden_size) x = self.proj(x) x = self.proj_drop(x) return x class PromptGeneratorLayer(nn.Module): def __init__(self, config): super().__init__() embed_dim = config.projection_dim self.cross_attn = XCLIPCrossAttention(config) self.norm1 = nn.LayerNorm(embed_dim, eps=config.text_config.layer_norm_eps) self.norm3 = nn.LayerNorm(embed_dim, eps=config.text_config.layer_norm_eps) self.mlp = nn.Sequential( nn.Linear(embed_dim, embed_dim * 4), ACT2FN[config.prompt_hidden_act], nn.Dropout(config.prompt_attention_dropout), nn.Linear(embed_dim * 4, embed_dim), ) def forward(self, x, visual): x = x + self.cross_attn(self.norm1(x), visual, visual) x = x + self.mlp(self.norm3(x)) return x class XCLIPPromptGenerator(nn.Module): """This corresponds to the `VideoSpecificPrompt` class in the original implementation.""" def __init__(self, config): super().__init__() embed_dim = config.projection_dim self.layernorm = nn.LayerNorm(embed_dim, eps=config.vision_config.layer_norm_eps) self.decoder = nn.ModuleList([PromptGeneratorLayer(config) for _ in range(config.prompt_layers)]) self.alpha = nn.Parameter(torch.ones(embed_dim) * config.prompt_alpha) def forward(self, text, visual): visual = self.layernorm(visual) for layer in self.decoder: text = layer(text, visual) return self.alpha * text @add_start_docstrings(X_CLIP_START_DOCSTRING) class XCLIPModel(XCLIPPreTrainedModel): config_class = XCLIPConfig def __init__(self, config: XCLIPConfig): super().__init__(config) if not isinstance(config.text_config, XCLIPTextConfig): raise ValueError( "config.text_config is expected to be of type XCLIPTextConfig but is of type" f" {type(config.text_config)}." ) if not isinstance(config.vision_config, XCLIPVisionConfig): raise ValueError( "config.vision_config is expected to be of type XCLIPVisionConfig but is of type" f" {type(config.vision_config)}." ) text_config = config.text_config vision_config = config.vision_config self.projection_dim = config.projection_dim self.text_embed_dim = text_config.hidden_size self.vision_embed_dim = vision_config.hidden_size self.text_model = XCLIPTextTransformer(text_config) self.vision_model = XCLIPVisionTransformer(vision_config) self.visual_projection = nn.Linear(self.vision_embed_dim, self.projection_dim, bias=False) self.text_projection = nn.Linear(self.text_embed_dim, self.projection_dim, bias=False) self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value)) self.prompts_visual_layernorm = nn.LayerNorm(self.vision_embed_dim, eps=config.vision_config.layer_norm_eps) self.prompts_visual_projection = nn.Parameter(torch.randn(self.vision_embed_dim, self.projection_dim)) mit_config = copy(vision_config) mit_config.hidden_size = vision_config.mit_hidden_size mit_config.intermediate_size = vision_config.mit_intermediate_size mit_config.num_hidden_layers = vision_config.mit_num_hidden_layers mit_config.num_attention_heads = vision_config.mit_num_attention_heads self.mit = XCLIPMultiframeIntegrationTransformer(mit_config) self.prompts_generator = XCLIPPromptGenerator(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(X_CLIP_TEXT_INPUTS_DOCSTRING) def get_text_features( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> torch.FloatTensor: r""" Returns: text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying the projection layer to the pooled output of [`XCLIPTextModel`]. Examples: ```python >>> from transformers import AutoTokenizer, AutoModel >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/xclip-base-patch32") >>> model = AutoModel.from_pretrained("microsoft/xclip-base-patch32") >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt") >>> text_features = model.get_text_features(**inputs) ```""" # Use X_CLIP model's config for some fields (if specified) instead of those of vision & text components. output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict text_outputs = self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) text_embeds = text_outputs[1] text_embeds = self.text_projection(text_embeds) return text_embeds @add_start_docstrings_to_model_forward(X_CLIP_VISION_INPUTS_DOCSTRING) def get_video_features( self, pixel_values: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> torch.FloatTensor: r""" Returns: video_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The video embeddings obtained by applying the projection layer to the pooled output of [`XCLIPVisionModel`] and [`XCLIPMultiframeIntegrationTransformer`]. Examples: ```python >>> import av >>> import torch >>> import numpy as np >>> from transformers import AutoProcessor, AutoModel >>> from huggingface_hub import hf_hub_download >>> np.random.seed(0) >>> def read_video_pyav(container, indices): ... ''' ... Decode the video with PyAV decoder. ... Args: ... container (`av.container.input.InputContainer`): PyAV container. ... indices (`List[int]`): List of frame indices to decode. ... Returns: ... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3). ... ''' ... frames = [] ... container.seek(0) ... start_index = indices[0] ... end_index = indices[-1] ... for i, frame in enumerate(container.decode(video=0)): ... if i > end_index: ... break ... if i >= start_index and i in indices: ... frames.append(frame) ... return np.stack([x.to_ndarray(format="rgb24") for x in frames]) >>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len): ... converted_len = int(clip_len * frame_sample_rate) ... end_idx = np.random.randint(converted_len, seg_len) ... start_idx = end_idx - converted_len ... indices = np.linspace(start_idx, end_idx, num=clip_len) ... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64) ... return indices >>> # video clip consists of 300 frames (10 seconds at 30 FPS) >>> file_path = hf_hub_download( ... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset" ... ) >>> container = av.open(file_path) >>> # sample 8 frames >>> indices = sample_frame_indices(clip_len=8, frame_sample_rate=1, seg_len=container.streams.video[0].frames) >>> video = read_video_pyav(container, indices) >>> processor = AutoProcessor.from_pretrained("microsoft/xclip-base-patch32") >>> model = AutoModel.from_pretrained("microsoft/xclip-base-patch32") >>> inputs = processor(videos=list(video), return_tensors="pt") >>> video_features = model.get_video_features(**inputs) ```""" # Use X_CLIP model's config for some fields (if specified) instead of those of vision & text components. output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict batch_size, num_frames, num_channels, height, width = pixel_values.shape pixel_values = pixel_values.reshape(-1, num_channels, height, width) vision_outputs = self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) video_embeds = vision_outputs[1] video_embeds = self.visual_projection(video_embeds) cls_features = video_embeds.view(batch_size, num_frames, -1) mit_outputs = self.mit( cls_features, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) video_embeds = mit_outputs[1] return video_embeds @add_start_docstrings_to_model_forward(X_CLIP_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=XCLIPOutput, config_class=XCLIPConfig) def forward( self, input_ids: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, return_loss: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, XCLIPOutput]: r""" Returns: Examples: ```python >>> import av >>> import torch >>> import numpy as np >>> from transformers import AutoProcessor, AutoModel >>> from huggingface_hub import hf_hub_download >>> np.random.seed(0) >>> def read_video_pyav(container, indices): ... ''' ... Decode the video with PyAV decoder. ... Args: ... container (`av.container.input.InputContainer`): PyAV container. ... indices (`List[int]`): List of frame indices to decode. ... Returns: ... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3). ... ''' ... frames = [] ... container.seek(0) ... start_index = indices[0] ... end_index = indices[-1] ... for i, frame in enumerate(container.decode(video=0)): ... if i > end_index: ... break ... if i >= start_index and i in indices: ... frames.append(frame) ... return np.stack([x.to_ndarray(format="rgb24") for x in frames]) >>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len): ... converted_len = int(clip_len * frame_sample_rate) ... end_idx = np.random.randint(converted_len, seg_len) ... start_idx = end_idx - converted_len ... indices = np.linspace(start_idx, end_idx, num=clip_len) ... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64) ... return indices >>> # video clip consists of 300 frames (10 seconds at 30 FPS) >>> file_path = hf_hub_download( ... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset" ... ) >>> container = av.open(file_path) >>> # sample 8 frames >>> indices = sample_frame_indices(clip_len=8, frame_sample_rate=1, seg_len=container.streams.video[0].frames) >>> video = read_video_pyav(container, indices) >>> processor = AutoProcessor.from_pretrained("microsoft/xclip-base-patch32") >>> model = AutoModel.from_pretrained("microsoft/xclip-base-patch32") >>> inputs = processor( ... text=["playing sports", "eating spaghetti", "go shopping"], ... videos=list(video), ... return_tensors="pt", ... padding=True, ... ) >>> # forward pass >>> with torch.no_grad(): ... outputs = model(**inputs) >>> logits_per_video = outputs.logits_per_video # this is the video-text similarity score >>> probs = logits_per_video.softmax(dim=1) # we can take the softmax to get the label probabilities >>> print(probs) tensor([[1.9496e-04, 9.9960e-01, 2.0825e-04]]) ```""" # Use X_CLIP model's config for some fields (if specified) instead of those of vision & text components. output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict batch_size, num_frames, num_channels, height, width = pixel_values.shape pixel_values = pixel_values.reshape(-1, num_channels, height, width) vision_outputs = self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) video_embeds = vision_outputs[1] video_embeds = self.visual_projection(video_embeds) cls_features = video_embeds.view(batch_size, num_frames, -1) mit_outputs = self.mit( cls_features, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) video_embeds = mit_outputs[1] img_features = vision_outputs[0][:, 1:, :] img_features = self.prompts_visual_layernorm(img_features) img_features = img_features @ self.prompts_visual_projection img_features = img_features.view(batch_size, num_frames, -1, video_embeds.shape[-1]) img_features = img_features.mean(dim=1, keepdim=False) text_outputs = self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) text_embeds = text_outputs[1] text_embeds = self.text_projection(text_embeds) text_embeds = text_embeds.unsqueeze(0).expand(batch_size, -1, -1) text_embeds = text_embeds + self.prompts_generator(text_embeds, img_features) # normalized features video_embeds = video_embeds / video_embeds.norm(p=2, dim=-1, keepdim=True) text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True) # cosine similarity as logits logit_scale = self.logit_scale.exp() logits_per_video = torch.einsum("bd,bkd->bk", video_embeds, logit_scale * text_embeds) logits_per_text = logits_per_video.T loss = None if return_loss: loss = x_clip_loss(logits_per_text) if not return_dict: output = (logits_per_video, logits_per_text, text_embeds, video_embeds, text_outputs, vision_outputs) return ((loss,) + output) if loss is not None else output return XCLIPOutput( loss=loss, logits_per_video=logits_per_video, logits_per_text=logits_per_text, text_embeds=text_embeds, video_embeds=video_embeds, text_model_output=text_outputs, vision_model_output=vision_outputs, mit_output=mit_outputs, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/x_clip/processing_x_clip.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Image/Text processor class for XCLIP """ import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class XCLIPProcessor(ProcessorMixin): r""" Constructs an X-CLIP processor which wraps a VideoMAE image processor and a CLIP tokenizer into a single processor. [`XCLIPProcessor`] offers all the functionalities of [`VideoMAEImageProcessor`] and [`CLIPTokenizerFast`]. See the [`~XCLIPProcessor.__call__`] and [`~XCLIPProcessor.decode`] for more information. Args: image_processor ([`VideoMAEImageProcessor`]): The image processor is a required input. tokenizer ([`CLIPTokenizerFast`]): The tokenizer is a required input. """ attributes = ["image_processor", "tokenizer"] image_processor_class = "VideoMAEImageProcessor" tokenizer_class = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__(self, image_processor=None, tokenizer=None, **kwargs): feature_extractor = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead.", FutureWarning, ) feature_extractor = kwargs.pop("feature_extractor") image_processor = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`.") if tokenizer is None: raise ValueError("You need to specify a `tokenizer`.") super().__init__(image_processor, tokenizer) self.current_processor = self.image_processor def __call__(self, text=None, videos=None, return_tensors=None, **kwargs): """ Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text` and `kwargs` arguments to CLIPTokenizerFast's [`~CLIPTokenizerFast.__call__`] if `text` is not `None` to encode the text. To prepare the image(s), this method forwards the `videos` and `kwargs` arguments to VideoMAEImageProcessor's [`~VideoMAEImageProcessor.__call__`] if `videos` is not `None`. Please refer to the doctsring of the above two methods for more information. Args: text (`str`, `List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). videos (`List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`, `List[List[PIL.Image.Image]]`, `List[List[np.ndarrray]]`,: `List[List[torch.Tensor]]`): The video or batch of videos to be prepared. Each video should be a list of frames, which can be either PIL images or NumPy arrays. In case of NumPy arrays/PyTorch tensors, each frame should be of shape (H, W, C), where H and W are frame height and width, and C is a number of channels. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors of a particular framework. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return NumPy `np.ndarray` objects. - `'jax'`: Return JAX `jnp.ndarray` objects. Returns: [`BatchEncoding`]: A [`BatchEncoding`] with the following fields: - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not `None`). - **pixel_values** -- Pixel values to be fed to a model. Returned when `videos` is not `None`. """ if text is None and videos is None: raise ValueError("You have to specify either text or videos. Both cannot be none.") if text is not None: encoding = self.tokenizer(text, return_tensors=return_tensors, **kwargs) if videos is not None: image_features = self.image_processor(videos, return_tensors=return_tensors, **kwargs) if text is not None and videos is not None: encoding["pixel_values"] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**image_features), tensor_type=return_tensors) def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) def decode(self, *args, **kwargs): """ This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) @property def model_input_names(self): return ["input_ids", "attention_mask", "position_ids", "pixel_values"] @property def feature_extractor_class(self): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.", FutureWarning, ) return self.image_processor_class @property def feature_extractor(self): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.", FutureWarning, ) return self.image_processor
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/regnet/convert_regnet_seer_10b_to_pytorch.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert RegNet 10B checkpoints vissl.""" # You need to install a specific version of classy vision # pip install git+https://github.com/FrancescoSaverioZuppichini/ClassyVision.git@convert_weights import argparse import json import os import re from collections import OrderedDict from dataclasses import dataclass, field from functools import partial from pathlib import Path from pprint import pprint from typing import Dict, List, Tuple import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.modeling_utils import PreTrainedModel from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger() @dataclass class Tracker: module: nn.Module traced: List[nn.Module] = field(default_factory=list) handles: list = field(default_factory=list) name2module: Dict[str, nn.Module] = field(default_factory=OrderedDict) def _forward_hook(self, m, inputs: Tensor, outputs: Tensor, name: str): has_not_submodules = len(list(m.modules())) == 1 or isinstance(m, nn.Conv2d) or isinstance(m, nn.BatchNorm2d) if has_not_submodules: self.traced.append(m) self.name2module[name] = m def __call__(self, x: Tensor): for name, m in self.module.named_modules(): self.handles.append(m.register_forward_hook(partial(self._forward_hook, name=name))) self.module(x) [x.remove() for x in self.handles] return self @property def parametrized(self): # check the len of the state_dict keys to see if we have learnable params return {k: v for k, v in self.name2module.items() if len(list(v.state_dict().keys())) > 0} class FakeRegNetVisslWrapper(nn.Module): """ Fake wrapper for RegNet that mimics what vissl does without the need to pass a config file. """ def __init__(self, model: nn.Module): super().__init__() feature_blocks: List[Tuple[str, nn.Module]] = [] # - get the stem feature_blocks.append(("conv1", model.stem)) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith("block"), f"Unexpected layer name {k}" block_index = len(feature_blocks) + 1 feature_blocks.append((f"res{block_index}", v)) self._feature_blocks = nn.ModuleDict(feature_blocks) def forward(self, x: Tensor): return get_trunk_forward_outputs( x, out_feat_keys=None, feature_blocks=self._feature_blocks, ) class FakeRegNetParams(RegNetParams): """ Used to instantiace a RegNet model from classy vision with the same depth as the 10B one but with super small parameters, so we can trace it in memory. """ def get_expanded_params(self): return [(8, 2, 2, 8, 1.0), (8, 2, 7, 8, 1.0), (8, 2, 17, 8, 1.0), (8, 2, 1, 8, 1.0)] def get_from_to_our_keys(model_name: str) -> Dict[str, str]: """ Returns a dictionary that maps from original model's key -> our implementation's keys """ # create our model (with small weights) our_config = RegNetConfig(depths=[2, 7, 17, 1], hidden_sizes=[8, 8, 8, 8], groups_width=8) if "in1k" in model_name: our_model = RegNetForImageClassification(our_config) else: our_model = RegNetModel(our_config) # create from model (with small weights) from_model = FakeRegNetVisslWrapper( RegNet(FakeRegNetParams(depth=27, group_width=1010, w_0=1744, w_a=620.83, w_m=2.52)) ) with torch.no_grad(): from_model = from_model.eval() our_model = our_model.eval() x = torch.randn((1, 3, 32, 32)) # trace both dest_tracker = Tracker(our_model) dest_traced = dest_tracker(x).parametrized pprint(dest_tracker.name2module) src_tracker = Tracker(from_model) src_traced = src_tracker(x).parametrized # convert the keys -> module dict to keys -> params def to_params_dict(dict_with_modules): params_dict = OrderedDict() for name, module in dict_with_modules.items(): for param_name, param in module.state_dict().items(): params_dict[f"{name}.{param_name}"] = param return params_dict from_to_ours_keys = {} src_state_dict = to_params_dict(src_traced) dst_state_dict = to_params_dict(dest_traced) for (src_key, src_param), (dest_key, dest_param) in zip(src_state_dict.items(), dst_state_dict.items()): from_to_ours_keys[src_key] = dest_key logger.info(f"{src_key} -> {dest_key}") # if "in1k" was in the model_name it means it must have a classification head (was finetuned) if "in1k" in model_name: from_to_ours_keys["0.clf.0.weight"] = "classifier.1.weight" from_to_ours_keys["0.clf.0.bias"] = "classifier.1.bias" return from_to_ours_keys def convert_weights_and_push(save_directory: Path, model_name: str = None, push_to_hub: bool = True): filename = "imagenet-1k-id2label.json" num_labels = 1000 repo_id = "huggingface/label-files" num_labels = num_labels id2label = json.load(open(cached_download(hf_hub_url(repo_id, filename, repo_type="dataset")), "r")) id2label = {int(k): v for k, v in id2label.items()} id2label = id2label label2id = {v: k for k, v in id2label.items()} ImageNetPreTrainedConfig = partial(RegNetConfig, num_labels=num_labels, id2label=id2label, label2id=label2id) names_to_config = { "regnet-y-10b-seer": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1], hidden_sizes=[2020, 4040, 11110, 28280], groups_width=1010 ), # finetuned on imagenet "regnet-y-10b-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1], hidden_sizes=[2020, 4040, 11110, 28280], groups_width=1010 ), } # add seer weights logic def load_using_classy_vision(checkpoint_url: str) -> Tuple[Dict, Dict]: files = torch.hub.load_state_dict_from_url(checkpoint_url, model_dir=str(save_directory), map_location="cpu") # check if we have a head, if yes add it model_state_dict = files["classy_state_dict"]["base_model"]["model"] return model_state_dict["trunk"], model_state_dict["heads"] names_to_from_model = { "regnet-y-10b-seer": partial( load_using_classy_vision, "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch", ), "regnet-y-10b-seer-in1k": partial( load_using_classy_vision, "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch", ), } from_to_ours_keys = get_from_to_our_keys(model_name) if not (save_directory / f"{model_name}.pth").exists(): logger.info("Loading original state_dict.") from_state_dict_trunk, from_state_dict_head = names_to_from_model[model_name]() from_state_dict = from_state_dict_trunk if "in1k" in model_name: # add the head from_state_dict = {**from_state_dict_trunk, **from_state_dict_head} logger.info("Done!") converted_state_dict = {} not_used_keys = list(from_state_dict.keys()) regex = r"\.block.-part." # this is "interesting", so the original checkpoints have `block[0,1]-part` in each key name, we remove it for key in from_state_dict.keys(): # remove the weird "block[0,1]-part" from the key src_key = re.sub(regex, "", key) # now src_key from the model checkpoints is the one we got from the original model after tracing, so use it to get the correct destination key dest_key = from_to_ours_keys[src_key] # store the parameter with our key converted_state_dict[dest_key] = from_state_dict[key] not_used_keys.remove(key) # check that all keys have been updated assert len(not_used_keys) == 0, f"Some keys where not used {','.join(not_used_keys)}" logger.info(f"The following keys were not used: {','.join(not_used_keys)}") # save our state dict to disk torch.save(converted_state_dict, save_directory / f"{model_name}.pth") del converted_state_dict else: logger.info("The state_dict was already stored on disk.") if push_to_hub: logger.info(f"Token is {os.environ['HF_TOKEN']}") logger.info("Loading our model.") # create our model our_config = names_to_config[model_name] our_model_func = RegNetModel if "in1k" in model_name: our_model_func = RegNetForImageClassification our_model = our_model_func(our_config) # place our model to the meta device (so remove all the weights) our_model.to(torch.device("meta")) logger.info("Loading state_dict in our model.") # load state dict state_dict_keys = our_model.state_dict().keys() PreTrainedModel._load_pretrained_model_low_mem( our_model, state_dict_keys, [save_directory / f"{model_name}.pth"] ) logger.info("Finally, pushing!") # push it to hub our_model.push_to_hub( repo_path_or_name=save_directory / model_name, commit_message="Add model", output_dir=save_directory / model_name, ) size = 384 # we can use the convnext one image_processor = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k", size=size) image_processor.push_to_hub( repo_path_or_name=save_directory / model_name, commit_message="Add image processor", output_dir=save_directory / model_name, ) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported regnet* architecture," " currently: regnetx-*, regnety-*. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) args = parser.parse_args() pytorch_dump_folder_path: Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/regnet/configuration_regnet.py
# coding=utf-8 # Copyright 2022 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ RegNet model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) REGNET_PRETRAINED_CONFIG_ARCHIVE_MAP = { "facebook/regnet-y-040": "https://huggingface.co/facebook/regnet-y-040/blob/main/config.json", } class RegNetConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`RegNetModel`]. It is used to instantiate a RegNet model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the RegNet [facebook/regnet-y-040](https://huggingface.co/facebook/regnet-y-040) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: num_channels (`int`, *optional*, defaults to 3): The number of input channels. embedding_size (`int`, *optional*, defaults to 64): Dimensionality (hidden size) for the embedding layer. hidden_sizes (`List[int]`, *optional*, defaults to `[256, 512, 1024, 2048]`): Dimensionality (hidden size) at each stage. depths (`List[int]`, *optional*, defaults to `[3, 4, 6, 3]`): Depth (number of layers) for each stage. layer_type (`str`, *optional*, defaults to `"y"`): The layer to use, it can be either `"x" or `"y"`. An `x` layer is a ResNet's BottleNeck layer with `reduction` fixed to `1`. While a `y` layer is a `x` but with squeeze and excitation. Please refer to the paper for a detailed explanation of how these layers were constructed. hidden_act (`str`, *optional*, defaults to `"relu"`): The non-linear activation function in each block. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. downsample_in_first_stage (`bool`, *optional*, defaults to `False`): If `True`, the first stage will downsample the inputs using a `stride` of 2. Example: ```python >>> from transformers import RegNetConfig, RegNetModel >>> # Initializing a RegNet regnet-y-40 style configuration >>> configuration = RegNetConfig() >>> # Initializing a model from the regnet-y-40 style configuration >>> model = RegNetModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ``` """ model_type = "regnet" layer_types = ["x", "y"] def __init__( self, num_channels=3, embedding_size=32, hidden_sizes=[128, 192, 512, 1088], depths=[2, 6, 12, 2], groups_width=64, layer_type="y", hidden_act="relu", **kwargs, ): super().__init__(**kwargs) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types)}") self.num_channels = num_channels self.embedding_size = embedding_size self.hidden_sizes = hidden_sizes self.depths = depths self.groups_width = groups_width self.layer_type = layer_type self.hidden_act = hidden_act # always downsample in the first stage self.downsample_in_first_stage = True
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/regnet/__init__.py
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _import_structure = {"configuration_regnet": ["REGNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "RegNetConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_regnet"] = [ "REGNET_PRETRAINED_MODEL_ARCHIVE_LIST", "RegNetForImageClassification", "RegNetModel", "RegNetPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_regnet"] = [ "TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRegNetForImageClassification", "TFRegNetModel", "TFRegNetPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_flax_regnet"] = [ "FlaxRegNetForImageClassification", "FlaxRegNetModel", "FlaxRegNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_regnet import REGNET_PRETRAINED_CONFIG_ARCHIVE_MAP, RegNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_regnet import ( REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, RegNetForImageClassification, RegNetModel, RegNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_regnet import ( TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel, TFRegNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_regnet import ( FlaxRegNetForImageClassification, FlaxRegNetModel, FlaxRegNetPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/regnet/modeling_regnet.py
# coding=utf-8 # Copyright 2022 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch RegNet model.""" from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "RegNetConfig" # Base docstring _CHECKPOINT_FOR_DOC = "facebook/regnet-y-040" _EXPECTED_OUTPUT_SHAPE = [1, 1088, 7, 7] # Image classification docstring _IMAGE_CLASS_CHECKPOINT = "facebook/regnet-y-040" _IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" REGNET_PRETRAINED_MODEL_ARCHIVE_LIST = [ "facebook/regnet-y-040", # See all regnet models at https://huggingface.co/models?filter=regnet ] class RegNetConvLayer(nn.Module): def __init__( self, in_channels: int, out_channels: int, kernel_size: int = 3, stride: int = 1, groups: int = 1, activation: Optional[str] = "relu", ): super().__init__() self.convolution = nn.Conv2d( in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=kernel_size // 2, groups=groups, bias=False, ) self.normalization = nn.BatchNorm2d(out_channels) self.activation = ACT2FN[activation] if activation is not None else nn.Identity() def forward(self, hidden_state): hidden_state = self.convolution(hidden_state) hidden_state = self.normalization(hidden_state) hidden_state = self.activation(hidden_state) return hidden_state class RegNetEmbeddings(nn.Module): """ RegNet Embedddings (stem) composed of a single aggressive convolution. """ def __init__(self, config: RegNetConfig): super().__init__() self.embedder = RegNetConvLayer( config.num_channels, config.embedding_size, kernel_size=3, stride=2, activation=config.hidden_act ) self.num_channels = config.num_channels def forward(self, pixel_values): num_channels = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) hidden_state = self.embedder(pixel_values) return hidden_state # Copied from transformers.models.resnet.modeling_resnet.ResNetShortCut with ResNet->RegNet class RegNetShortCut(nn.Module): """ RegNet shortcut, used to project the residual features to the correct size. If needed, it is also used to downsample the input using `stride=2`. """ def __init__(self, in_channels: int, out_channels: int, stride: int = 2): super().__init__() self.convolution = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False) self.normalization = nn.BatchNorm2d(out_channels) def forward(self, input: Tensor) -> Tensor: hidden_state = self.convolution(input) hidden_state = self.normalization(hidden_state) return hidden_state class RegNetSELayer(nn.Module): """ Squeeze and Excitation layer (SE) proposed in [Squeeze-and-Excitation Networks](https://arxiv.org/abs/1709.01507). """ def __init__(self, in_channels: int, reduced_channels: int): super().__init__() self.pooler = nn.AdaptiveAvgPool2d((1, 1)) self.attention = nn.Sequential( nn.Conv2d(in_channels, reduced_channels, kernel_size=1), nn.ReLU(), nn.Conv2d(reduced_channels, in_channels, kernel_size=1), nn.Sigmoid(), ) def forward(self, hidden_state): # b c h w -> b c 1 1 pooled = self.pooler(hidden_state) attention = self.attention(pooled) hidden_state = hidden_state * attention return hidden_state class RegNetXLayer(nn.Module): """ RegNet's layer composed by three `3x3` convolutions, same as a ResNet bottleneck layer with reduction = 1. """ def __init__(self, config: RegNetConfig, in_channels: int, out_channels: int, stride: int = 1): super().__init__() should_apply_shortcut = in_channels != out_channels or stride != 1 groups = max(1, out_channels // config.groups_width) self.shortcut = ( RegNetShortCut(in_channels, out_channels, stride=stride) if should_apply_shortcut else nn.Identity() ) self.layer = nn.Sequential( RegNetConvLayer(in_channels, out_channels, kernel_size=1, activation=config.hidden_act), RegNetConvLayer(out_channels, out_channels, stride=stride, groups=groups, activation=config.hidden_act), RegNetConvLayer(out_channels, out_channels, kernel_size=1, activation=None), ) self.activation = ACT2FN[config.hidden_act] def forward(self, hidden_state): residual = hidden_state hidden_state = self.layer(hidden_state) residual = self.shortcut(residual) hidden_state += residual hidden_state = self.activation(hidden_state) return hidden_state class RegNetYLayer(nn.Module): """ RegNet's Y layer: an X layer with Squeeze and Excitation. """ def __init__(self, config: RegNetConfig, in_channels: int, out_channels: int, stride: int = 1): super().__init__() should_apply_shortcut = in_channels != out_channels or stride != 1 groups = max(1, out_channels // config.groups_width) self.shortcut = ( RegNetShortCut(in_channels, out_channels, stride=stride) if should_apply_shortcut else nn.Identity() ) self.layer = nn.Sequential( RegNetConvLayer(in_channels, out_channels, kernel_size=1, activation=config.hidden_act), RegNetConvLayer(out_channels, out_channels, stride=stride, groups=groups, activation=config.hidden_act), RegNetSELayer(out_channels, reduced_channels=int(round(in_channels / 4))), RegNetConvLayer(out_channels, out_channels, kernel_size=1, activation=None), ) self.activation = ACT2FN[config.hidden_act] def forward(self, hidden_state): residual = hidden_state hidden_state = self.layer(hidden_state) residual = self.shortcut(residual) hidden_state += residual hidden_state = self.activation(hidden_state) return hidden_state class RegNetStage(nn.Module): """ A RegNet stage composed by stacked layers. """ def __init__( self, config: RegNetConfig, in_channels: int, out_channels: int, stride: int = 2, depth: int = 2, ): super().__init__() layer = RegNetXLayer if config.layer_type == "x" else RegNetYLayer self.layers = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( config, in_channels, out_channels, stride=stride, ), *[layer(config, out_channels, out_channels) for _ in range(depth - 1)], ) def forward(self, hidden_state): hidden_state = self.layers(hidden_state) return hidden_state class RegNetEncoder(nn.Module): def __init__(self, config: RegNetConfig): super().__init__() self.stages = nn.ModuleList([]) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( config, config.embedding_size, config.hidden_sizes[0], stride=2 if config.downsample_in_first_stage else 1, depth=config.depths[0], ) ) in_out_channels = zip(config.hidden_sizes, config.hidden_sizes[1:]) for (in_channels, out_channels), depth in zip(in_out_channels, config.depths[1:]): self.stages.append(RegNetStage(config, in_channels, out_channels, depth=depth)) def forward( self, hidden_state: Tensor, output_hidden_states: bool = False, return_dict: bool = True ) -> BaseModelOutputWithNoAttention: hidden_states = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: hidden_states = hidden_states + (hidden_state,) hidden_state = stage_module(hidden_state) if output_hidden_states: hidden_states = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None) return BaseModelOutputWithNoAttention(last_hidden_state=hidden_state, hidden_states=hidden_states) class RegNetPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = RegNetConfig base_model_prefix = "regnet" main_input_name = "pixel_values" supports_gradient_checkpointing = True # Copied from transformers.models.resnet.modeling_resnet.ResNetPreTrainedModel._init_weights def _init_weights(self, module): if isinstance(module, nn.Conv2d): nn.init.kaiming_normal_(module.weight, mode="fan_out", nonlinearity="relu") elif isinstance(module, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.constant_(module.weight, 1) nn.init.constant_(module.bias, 0) def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, RegNetModel): module.gradient_checkpointing = value REGNET_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ REGNET_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top.", REGNET_START_DOCSTRING, ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class RegNetModel(RegNetPreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config self.embedder = RegNetEmbeddings(config) self.encoder = RegNetEncoder(config) self.pooler = nn.AdaptiveAvgPool2d((1, 1)) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(REGNET_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPoolingAndNoAttention, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, pixel_values: Tensor, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention: output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict embedding_output = self.embedder(pixel_values) encoder_outputs = self.encoder( embedding_output, output_hidden_states=output_hidden_states, return_dict=return_dict ) last_hidden_state = encoder_outputs[0] pooled_output = self.pooler(last_hidden_state) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, ) @add_start_docstrings( """ RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """, REGNET_START_DOCSTRING, ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class RegNetForImageClassification(RegNetPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.regnet = RegNetModel(config) # classification head self.classifier = nn.Sequential( nn.Flatten(), nn.Linear(config.hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity(), ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(REGNET_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=ImageClassifierOutputWithNoAttention, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> ImageClassifierOutputWithNoAttention: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.regnet(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict) pooled_output = outputs.pooler_output if return_dict else outputs[1] logits = self.classifier(pooled_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=loss, logits=logits, hidden_states=outputs.hidden_states)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/regnet/modeling_tf_regnet.py
# coding=utf-8 # Copyright 2022 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TensorFlow RegNet model.""" from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACT2FN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "RegNetConfig" # Base docstring _CHECKPOINT_FOR_DOC = "facebook/regnet-y-040" _EXPECTED_OUTPUT_SHAPE = [1, 1088, 7, 7] # Image classification docstring _IMAGE_CLASS_CHECKPOINT = "facebook/regnet-y-040" _IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST = [ "facebook/regnet-y-040", # See all regnet models at https://huggingface.co/models?filter=regnet ] class TFRegNetConvLayer(tf.keras.layers.Layer): def __init__( self, out_channels: int, kernel_size: int = 3, stride: int = 1, groups: int = 1, activation: Optional[str] = "relu", **kwargs, ): super().__init__(**kwargs) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb self.padding = tf.keras.layers.ZeroPadding2D(padding=kernel_size // 2) self.convolution = tf.keras.layers.Conv2D( filters=out_channels, kernel_size=kernel_size, strides=stride, padding="VALID", groups=groups, use_bias=False, name="convolution", ) self.normalization = tf.keras.layers.BatchNormalization(epsilon=1e-5, momentum=0.9, name="normalization") self.activation = ACT2FN[activation] if activation is not None else tf.identity def call(self, hidden_state): hidden_state = self.convolution(self.padding(hidden_state)) hidden_state = self.normalization(hidden_state) hidden_state = self.activation(hidden_state) return hidden_state class TFRegNetEmbeddings(tf.keras.layers.Layer): """ RegNet Embeddings (stem) composed of a single aggressive convolution. """ def __init__(self, config: RegNetConfig, **kwargs): super().__init__(**kwargs) self.num_channels = config.num_channels self.embedder = TFRegNetConvLayer( out_channels=config.embedding_size, kernel_size=3, stride=2, activation=config.hidden_act, name="embedder", ) def call(self, pixel_values): num_channels = shape_list(pixel_values)[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1)) hidden_state = self.embedder(pixel_values) return hidden_state class TFRegNetShortCut(tf.keras.layers.Layer): """ RegNet shortcut, used to project the residual features to the correct size. If needed, it is also used to downsample the input using `stride=2`. """ def __init__(self, out_channels: int, stride: int = 2, **kwargs): super().__init__(**kwargs) self.convolution = tf.keras.layers.Conv2D( filters=out_channels, kernel_size=1, strides=stride, use_bias=False, name="convolution" ) self.normalization = tf.keras.layers.BatchNormalization(epsilon=1e-5, momentum=0.9, name="normalization") def call(self, inputs: tf.Tensor, training: bool = False) -> tf.Tensor: return self.normalization(self.convolution(inputs), training=training) class TFRegNetSELayer(tf.keras.layers.Layer): """ Squeeze and Excitation layer (SE) proposed in [Squeeze-and-Excitation Networks](https://arxiv.org/abs/1709.01507). """ def __init__(self, in_channels: int, reduced_channels: int, **kwargs): super().__init__(**kwargs) self.pooler = tf.keras.layers.GlobalAveragePooling2D(keepdims=True, name="pooler") self.attention = [ tf.keras.layers.Conv2D(filters=reduced_channels, kernel_size=1, activation="relu", name="attention.0"), tf.keras.layers.Conv2D(filters=in_channels, kernel_size=1, activation="sigmoid", name="attention.2"), ] def call(self, hidden_state): # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] pooled = self.pooler(hidden_state) for layer_module in self.attention: pooled = layer_module(pooled) hidden_state = hidden_state * pooled return hidden_state class TFRegNetXLayer(tf.keras.layers.Layer): """ RegNet's layer composed by three `3x3` convolutions, same as a ResNet bottleneck layer with reduction = 1. """ def __init__(self, config: RegNetConfig, in_channels: int, out_channels: int, stride: int = 1, **kwargs): super().__init__(**kwargs) should_apply_shortcut = in_channels != out_channels or stride != 1 groups = max(1, out_channels // config.groups_width) self.shortcut = ( TFRegNetShortCut(out_channels, stride=stride, name="shortcut") if should_apply_shortcut else tf.keras.layers.Activation("linear", name="shortcut") ) # `self.layers` instead of `self.layer` because that is a reserved argument. self.layers = [ TFRegNetConvLayer(out_channels, kernel_size=1, activation=config.hidden_act, name="layer.0"), TFRegNetConvLayer( out_channels, stride=stride, groups=groups, activation=config.hidden_act, name="layer.1" ), TFRegNetConvLayer(out_channels, kernel_size=1, activation=None, name="layer.2"), ] self.activation = ACT2FN[config.hidden_act] def call(self, hidden_state): residual = hidden_state for layer_module in self.layers: hidden_state = layer_module(hidden_state) residual = self.shortcut(residual) hidden_state += residual hidden_state = self.activation(hidden_state) return hidden_state class TFRegNetYLayer(tf.keras.layers.Layer): """ RegNet's Y layer: an X layer with Squeeze and Excitation. """ def __init__(self, config: RegNetConfig, in_channels: int, out_channels: int, stride: int = 1, **kwargs): super().__init__(**kwargs) should_apply_shortcut = in_channels != out_channels or stride != 1 groups = max(1, out_channels // config.groups_width) self.shortcut = ( TFRegNetShortCut(out_channels, stride=stride, name="shortcut") if should_apply_shortcut else tf.keras.layers.Activation("linear", name="shortcut") ) self.layers = [ TFRegNetConvLayer(out_channels, kernel_size=1, activation=config.hidden_act, name="layer.0"), TFRegNetConvLayer( out_channels, stride=stride, groups=groups, activation=config.hidden_act, name="layer.1" ), TFRegNetSELayer(out_channels, reduced_channels=int(round(in_channels / 4)), name="layer.2"), TFRegNetConvLayer(out_channels, kernel_size=1, activation=None, name="layer.3"), ] self.activation = ACT2FN[config.hidden_act] def call(self, hidden_state): residual = hidden_state for layer_module in self.layers: hidden_state = layer_module(hidden_state) residual = self.shortcut(residual) hidden_state += residual hidden_state = self.activation(hidden_state) return hidden_state class TFRegNetStage(tf.keras.layers.Layer): """ A RegNet stage composed by stacked layers. """ def __init__( self, config: RegNetConfig, in_channels: int, out_channels: int, stride: int = 2, depth: int = 2, **kwargs ): super().__init__(**kwargs) layer = TFRegNetXLayer if config.layer_type == "x" else TFRegNetYLayer self.layers = [ # downsampling is done in the first layer with stride of 2 layer(config, in_channels, out_channels, stride=stride, name="layers.0"), *[layer(config, out_channels, out_channels, name=f"layers.{i+1}") for i in range(depth - 1)], ] def call(self, hidden_state): for layer_module in self.layers: hidden_state = layer_module(hidden_state) return hidden_state class TFRegNetEncoder(tf.keras.layers.Layer): def __init__(self, config: RegNetConfig, **kwargs): super().__init__(**kwargs) self.stages = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( config, config.embedding_size, config.hidden_sizes[0], stride=2 if config.downsample_in_first_stage else 1, depth=config.depths[0], name="stages.0", ) ) in_out_channels = zip(config.hidden_sizes, config.hidden_sizes[1:]) for i, ((in_channels, out_channels), depth) in enumerate(zip(in_out_channels, config.depths[1:])): self.stages.append(TFRegNetStage(config, in_channels, out_channels, depth=depth, name=f"stages.{i+1}")) def call( self, hidden_state: tf.Tensor, output_hidden_states: bool = False, return_dict: bool = True ) -> TFBaseModelOutputWithNoAttention: hidden_states = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: hidden_states = hidden_states + (hidden_state,) hidden_state = stage_module(hidden_state) if output_hidden_states: hidden_states = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None) return TFBaseModelOutputWithNoAttention(last_hidden_state=hidden_state, hidden_states=hidden_states) @keras_serializable class TFRegNetMainLayer(tf.keras.layers.Layer): config_class = RegNetConfig def __init__(self, config, **kwargs): super().__init__(**kwargs) self.config = config self.embedder = TFRegNetEmbeddings(config, name="embedder") self.encoder = TFRegNetEncoder(config, name="encoder") self.pooler = tf.keras.layers.GlobalAveragePooling2D(keepdims=True, name="pooler") @unpack_inputs def call( self, pixel_values: tf.Tensor, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> TFBaseModelOutputWithPoolingAndNoAttention: output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict embedding_output = self.embedder(pixel_values, training=training) encoder_outputs = self.encoder( embedding_output, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training ) last_hidden_state = encoder_outputs[0] pooled_output = self.pooler(last_hidden_state) # Change to NCHW output format have uniformity in the modules pooled_output = tf.transpose(pooled_output, perm=(0, 3, 1, 2)) last_hidden_state = tf.transpose(last_hidden_state, perm=(0, 3, 1, 2)) # Change the other hidden state outputs to NCHW as well if output_hidden_states: hidden_states = tuple([tf.transpose(h, perm=(0, 3, 1, 2)) for h in encoder_outputs[1]]) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states, ) class TFRegNetPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = RegNetConfig base_model_prefix = "regnet" main_input_name = "pixel_values" @property def input_signature(self): return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224), dtype=tf.float32)} REGNET_START_DOCSTRING = r""" Parameters: This model is a Tensorflow [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior. config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ REGNET_INPUTS_DOCSTRING = r""" Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConveNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top.", REGNET_START_DOCSTRING, ) class TFRegNetModel(TFRegNetPreTrainedModel): def __init__(self, config: RegNetConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.regnet = TFRegNetMainLayer(config, name="regnet") @unpack_inputs @add_start_docstrings_to_model_forward(REGNET_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFBaseModelOutputWithPoolingAndNoAttention, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def call( self, pixel_values: tf.Tensor, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training=False, ) -> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.regnet( pixel_values=pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state, pooler_output=outputs.pooler_output, hidden_states=outputs.hidden_states, ) @add_start_docstrings( """ RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """, REGNET_START_DOCSTRING, ) class TFRegNetForImageClassification(TFRegNetPreTrainedModel, TFSequenceClassificationLoss): def __init__(self, config: RegNetConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.regnet = TFRegNetMainLayer(config, name="regnet") # classification head self.classifier = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels, name="classifier.1") if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(REGNET_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def call( self, pixel_values: tf.Tensor = None, labels: tf.Tensor = None, output_hidden_states: bool = None, return_dict: bool = None, training=False, ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.regnet( pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training ) pooled_output = outputs.pooler_output if return_dict else outputs[1] flattened_output = self.classifier[0](pooled_output) logits = self.classifier[1](flattened_output) loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=loss, logits=logits, hidden_states=outputs.hidden_states)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/regnet/convert_regnet_to_pytorch.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert RegNet checkpoints from timm and vissl.""" import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetY32gf, RegNetY64gf, RegNetY128gf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger() @dataclass class Tracker: module: nn.Module traced: List[nn.Module] = field(default_factory=list) handles: list = field(default_factory=list) def _forward_hook(self, m, inputs: Tensor, outputs: Tensor): has_not_submodules = len(list(m.modules())) == 1 or isinstance(m, nn.Conv2d) or isinstance(m, nn.BatchNorm2d) if has_not_submodules: self.traced.append(m) def __call__(self, x: Tensor): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook)) self.module(x) [x.remove() for x in self.handles] return self @property def parametrized(self): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda x: len(list(x.state_dict().keys())) > 0, self.traced)) @dataclass class ModuleTransfer: src: nn.Module dest: nn.Module verbose: int = 1 src_skip: List = field(default_factory=list) dest_skip: List = field(default_factory=list) raise_if_mismatch: bool = True def __call__(self, x: Tensor): """ Transfer the weights of `self.src` to `self.dest` by performing a forward pass using `x` as input. Under the hood we tracked all the operations in both modules. """ dest_traced = Tracker(self.dest)(x).parametrized src_traced = Tracker(self.src)(x).parametrized src_traced = list(filter(lambda x: type(x) not in self.src_skip, src_traced)) dest_traced = list(filter(lambda x: type(x) not in self.dest_skip, dest_traced)) if len(dest_traced) != len(src_traced) and self.raise_if_mismatch: raise Exception( f"Numbers of operations are different. Source module has {len(src_traced)} operations while" f" destination module has {len(dest_traced)}." ) for dest_m, src_m in zip(dest_traced, src_traced): dest_m.load_state_dict(src_m.state_dict()) if self.verbose == 1: print(f"Transfered from={src_m} to={dest_m}") class FakeRegNetVisslWrapper(nn.Module): """ Fake wrapper for RegNet that mimics what vissl does without the need to pass a config file. """ def __init__(self, model: nn.Module): super().__init__() feature_blocks: List[Tuple[str, nn.Module]] = [] # - get the stem feature_blocks.append(("conv1", model.stem)) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith("block"), f"Unexpected layer name {k}" block_index = len(feature_blocks) + 1 feature_blocks.append((f"res{block_index}", v)) self._feature_blocks = nn.ModuleDict(feature_blocks) def forward(self, x: Tensor): return get_trunk_forward_outputs( x, out_feat_keys=None, feature_blocks=self._feature_blocks, ) class NameToFromModelFuncMap(dict): """ A Dictionary with some additional logic to return a function that creates the correct original model. """ def convert_name_to_timm(self, x: str) -> str: x_split = x.split("-") return x_split[0] + x_split[1] + "_" + "".join(x_split[2:]) def __getitem__(self, x: str) -> Callable[[], Tuple[nn.Module, Dict]]: # default to timm! if x not in self: x = self.convert_name_to_timm(x) val = partial(lambda: (timm.create_model(x, pretrained=True).eval(), None)) else: val = super().__getitem__(x) return val class NameToOurModelFuncMap(dict): """ A Dictionary with some additional logic to return the correct hugging face RegNet class reference. """ def __getitem__(self, x: str) -> Callable[[], nn.Module]: if "seer" in x and "in1k" not in x: val = RegNetModel else: val = RegNetForImageClassification return val def manually_copy_vissl_head(from_state_dict, to_state_dict, keys: List[Tuple[str, str]]): for from_key, to_key in keys: to_state_dict[to_key] = from_state_dict[from_key].clone() print(f"Copied key={from_key} to={to_key}") return to_state_dict def convert_weight_and_push( name: str, from_model_func: Callable[[], nn.Module], our_model_func: Callable[[], nn.Module], config: RegNetConfig, save_directory: Path, push_to_hub: bool = True, ): print(f"Converting {name}...") with torch.no_grad(): from_model, from_state_dict = from_model_func() our_model = our_model_func(config).eval() module_transfer = ModuleTransfer(src=from_model, dest=our_model, raise_if_mismatch=False) x = torch.randn((1, 3, 224, 224)) module_transfer(x) if from_state_dict is not None: keys = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: keys = [("0.clf.0.weight", "classifier.1.weight"), ("0.clf.0.bias", "classifier.1.bias")] to_state_dict = manually_copy_vissl_head(from_state_dict, our_model.state_dict(), keys) our_model.load_state_dict(to_state_dict) our_outputs = our_model(x, output_hidden_states=True) our_output = ( our_outputs.logits if isinstance(our_model, RegNetForImageClassification) else our_outputs.last_hidden_state ) from_output = from_model(x) from_output = from_output[-1] if type(from_output) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: our_output = our_outputs.hidden_states[-1] assert torch.allclose(from_output, our_output), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name, commit_message="Add model", use_temp_dir=True, ) size = 224 if "seer" not in name else 384 # we can use the convnext one image_processor = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k", size=size) image_processor.push_to_hub( repo_path_or_name=save_directory / name, commit_message="Add image processor", use_temp_dir=True, ) print(f"Pushed {name}") def convert_weights_and_push(save_directory: Path, model_name: str = None, push_to_hub: bool = True): filename = "imagenet-1k-id2label.json" num_labels = 1000 expected_shape = (1, num_labels) repo_id = "huggingface/label-files" num_labels = num_labels id2label = json.load(open(cached_download(hf_hub_url(repo_id, filename, repo_type="dataset")), "r")) id2label = {int(k): v for k, v in id2label.items()} id2label = id2label label2id = {v: k for k, v in id2label.items()} ImageNetPreTrainedConfig = partial(RegNetConfig, num_labels=num_labels, id2label=id2label, label2id=label2id) names_to_config = { "regnet-x-002": ImageNetPreTrainedConfig( depths=[1, 1, 4, 7], hidden_sizes=[24, 56, 152, 368], groups_width=8, layer_type="x" ), "regnet-x-004": ImageNetPreTrainedConfig( depths=[1, 2, 7, 12], hidden_sizes=[32, 64, 160, 384], groups_width=16, layer_type="x" ), "regnet-x-006": ImageNetPreTrainedConfig( depths=[1, 3, 5, 7], hidden_sizes=[48, 96, 240, 528], groups_width=24, layer_type="x" ), "regnet-x-008": ImageNetPreTrainedConfig( depths=[1, 3, 7, 5], hidden_sizes=[64, 128, 288, 672], groups_width=16, layer_type="x" ), "regnet-x-016": ImageNetPreTrainedConfig( depths=[2, 4, 10, 2], hidden_sizes=[72, 168, 408, 912], groups_width=24, layer_type="x" ), "regnet-x-032": ImageNetPreTrainedConfig( depths=[2, 6, 15, 2], hidden_sizes=[96, 192, 432, 1008], groups_width=48, layer_type="x" ), "regnet-x-040": ImageNetPreTrainedConfig( depths=[2, 5, 14, 2], hidden_sizes=[80, 240, 560, 1360], groups_width=40, layer_type="x" ), "regnet-x-064": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1], hidden_sizes=[168, 392, 784, 1624], groups_width=56, layer_type="x" ), "regnet-x-080": ImageNetPreTrainedConfig( depths=[2, 5, 15, 1], hidden_sizes=[80, 240, 720, 1920], groups_width=120, layer_type="x" ), "regnet-x-120": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1], hidden_sizes=[224, 448, 896, 2240], groups_width=112, layer_type="x" ), "regnet-x-160": ImageNetPreTrainedConfig( depths=[2, 6, 13, 1], hidden_sizes=[256, 512, 896, 2048], groups_width=128, layer_type="x" ), "regnet-x-320": ImageNetPreTrainedConfig( depths=[2, 7, 13, 1], hidden_sizes=[336, 672, 1344, 2520], groups_width=168, layer_type="x" ), # y variant "regnet-y-002": ImageNetPreTrainedConfig(depths=[1, 1, 4, 7], hidden_sizes=[24, 56, 152, 368], groups_width=8), "regnet-y-004": ImageNetPreTrainedConfig( depths=[1, 3, 6, 6], hidden_sizes=[48, 104, 208, 440], groups_width=8 ), "regnet-y-006": ImageNetPreTrainedConfig( depths=[1, 3, 7, 4], hidden_sizes=[48, 112, 256, 608], groups_width=16 ), "regnet-y-008": ImageNetPreTrainedConfig( depths=[1, 3, 8, 2], hidden_sizes=[64, 128, 320, 768], groups_width=16 ), "regnet-y-016": ImageNetPreTrainedConfig( depths=[2, 6, 17, 2], hidden_sizes=[48, 120, 336, 888], groups_width=24 ), "regnet-y-032": ImageNetPreTrainedConfig( depths=[2, 5, 13, 1], hidden_sizes=[72, 216, 576, 1512], groups_width=24 ), "regnet-y-040": ImageNetPreTrainedConfig( depths=[2, 6, 12, 2], hidden_sizes=[128, 192, 512, 1088], groups_width=64 ), "regnet-y-064": ImageNetPreTrainedConfig( depths=[2, 7, 14, 2], hidden_sizes=[144, 288, 576, 1296], groups_width=72 ), "regnet-y-080": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1], hidden_sizes=[168, 448, 896, 2016], groups_width=56 ), "regnet-y-120": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1], hidden_sizes=[224, 448, 896, 2240], groups_width=112 ), "regnet-y-160": ImageNetPreTrainedConfig( depths=[2, 4, 11, 1], hidden_sizes=[224, 448, 1232, 3024], groups_width=112 ), "regnet-y-320": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 "regnet-y-320-seer": RegNetConfig(depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232), "regnet-y-640-seer": RegNetConfig(depths=[2, 5, 12, 1], hidden_sizes=[328, 984, 1968, 4920], groups_width=328), "regnet-y-1280-seer": RegNetConfig( depths=[2, 7, 17, 1], hidden_sizes=[528, 1056, 2904, 7392], groups_width=264 ), "regnet-y-2560-seer": RegNetConfig( depths=[3, 7, 16, 1], hidden_sizes=[640, 1696, 2544, 5088], groups_width=640 ), "regnet-y-10b-seer": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1], hidden_sizes=[2020, 4040, 11110, 28280], groups_width=1010 ), # finetuned on imagenet "regnet-y-320-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1], hidden_sizes=[232, 696, 1392, 3712], groups_width=232 ), "regnet-y-640-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1], hidden_sizes=[328, 984, 1968, 4920], groups_width=328 ), "regnet-y-1280-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1], hidden_sizes=[528, 1056, 2904, 7392], groups_width=264 ), "regnet-y-2560-seer-in1k": ImageNetPreTrainedConfig( depths=[3, 7, 16, 1], hidden_sizes=[640, 1696, 2544, 5088], groups_width=640 ), "regnet-y-10b-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1], hidden_sizes=[2020, 4040, 11110, 28280], groups_width=1010 ), } names_to_ours_model_map = NameToOurModelFuncMap() names_to_from_model_map = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(checkpoint_url: str, model_func: Callable[[], nn.Module]) -> Tuple[nn.Module, Dict]: files = torch.hub.load_state_dict_from_url(checkpoint_url, model_dir=str(save_directory), map_location="cpu") model = model_func() # check if we have a head, if yes add it model_state_dict = files["classy_state_dict"]["base_model"]["model"] state_dict = model_state_dict["trunk"] model.load_state_dict(state_dict) return model.eval(), model_state_dict["heads"] # pretrained names_to_from_model_map["regnet-y-320-seer"] = partial( load_using_classy_vision, "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch", lambda: FakeRegNetVisslWrapper(RegNetY32gf()), ) names_to_from_model_map["regnet-y-640-seer"] = partial( load_using_classy_vision, "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch", lambda: FakeRegNetVisslWrapper(RegNetY64gf()), ) names_to_from_model_map["regnet-y-1280-seer"] = partial( load_using_classy_vision, "https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch", lambda: FakeRegNetVisslWrapper(RegNetY128gf()), ) names_to_from_model_map["regnet-y-10b-seer"] = partial( load_using_classy_vision, "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch", lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27, group_width=1010, w_0=1744, w_a=620.83, w_m=2.52)) ), ) # IN1K finetuned names_to_from_model_map["regnet-y-320-seer-in1k"] = partial( load_using_classy_vision, "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch", lambda: FakeRegNetVisslWrapper(RegNetY32gf()), ) names_to_from_model_map["regnet-y-640-seer-in1k"] = partial( load_using_classy_vision, "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch", lambda: FakeRegNetVisslWrapper(RegNetY64gf()), ) names_to_from_model_map["regnet-y-1280-seer-in1k"] = partial( load_using_classy_vision, "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch", lambda: FakeRegNetVisslWrapper(RegNetY128gf()), ) names_to_from_model_map["regnet-y-10b-seer-in1k"] = partial( load_using_classy_vision, "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch", lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27, group_width=1010, w_0=1744, w_a=620.83, w_m=2.52)) ), ) if model_name: convert_weight_and_push( model_name, names_to_from_model_map[model_name], names_to_ours_model_map[model_name], names_to_config[model_name], save_directory, push_to_hub, ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( model_name, names_to_from_model_map[model_name], names_to_ours_model_map[model_name], config, save_directory, push_to_hub, ) return config, expected_shape if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported regnet* architecture," " currently: regnetx-*, regnety-*. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) args = parser.parse_args() pytorch_dump_folder_path: Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/regnet/modeling_flax_regnet.py
# coding=utf-8 # Copyright 2023 The Google Flax Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial from typing import Optional, Tuple import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict, freeze, unfreeze from flax.traverse_util import flatten_dict, unflatten_dict from transformers import RegNetConfig from transformers.modeling_flax_outputs import ( FlaxBaseModelOutputWithNoAttention, FlaxBaseModelOutputWithPooling, FlaxBaseModelOutputWithPoolingAndNoAttention, FlaxImageClassifierOutputWithNoAttention, ) from transformers.modeling_flax_utils import ( ACT2FN, FlaxPreTrainedModel, append_replace_return_docstrings, overwrite_call_docstring, ) from transformers.utils import ( add_start_docstrings, add_start_docstrings_to_model_forward, ) REGNET_START_DOCSTRING = r""" This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models) This model is also a Flax Linen [flax.linen.Module](https://flax.readthedocs.io/en/latest/flax.linen.html#module) subclass. Use it as a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and behavior. Finally, this model supports inherent JAX features such as: - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and `jax.numpy.bfloat16` (on TPUs). This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given `dtype`. **Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.** If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and [`~FlaxPreTrainedModel.to_bf16`]. """ REGNET_INPUTS_DOCSTRING = r""" Args: pixel_values (`numpy.ndarray` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`RegNetImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ # Copied from transformers.models.resnet.modeling_flax_resnet.Identity class Identity(nn.Module): """Identity function.""" @nn.compact def __call__(self, x, **kwargs): return x class FlaxRegNetConvLayer(nn.Module): out_channels: int kernel_size: int = 3 stride: int = 1 groups: int = 1 activation: Optional[str] = "relu" dtype: jnp.dtype = jnp.float32 def setup(self): self.convolution = nn.Conv( self.out_channels, kernel_size=(self.kernel_size, self.kernel_size), strides=self.stride, padding=self.kernel_size // 2, feature_group_count=self.groups, use_bias=False, kernel_init=nn.initializers.variance_scaling(2.0, mode="fan_out", distribution="truncated_normal"), dtype=self.dtype, ) self.normalization = nn.BatchNorm(momentum=0.9, epsilon=1e-05, dtype=self.dtype) self.activation_func = ACT2FN[self.activation] if self.activation is not None else Identity() def __call__(self, hidden_state: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: hidden_state = self.convolution(hidden_state) hidden_state = self.normalization(hidden_state, use_running_average=deterministic) hidden_state = self.activation_func(hidden_state) return hidden_state class FlaxRegNetEmbeddings(nn.Module): config: RegNetConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.embedder = FlaxRegNetConvLayer( self.config.embedding_size, kernel_size=3, stride=2, activation=self.config.hidden_act, dtype=self.dtype, ) def __call__(self, pixel_values: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: num_channels = pixel_values.shape[-1] if num_channels != self.config.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) hidden_state = self.embedder(pixel_values, deterministic=deterministic) return hidden_state # Copied from transformers.models.resnet.modeling_flax_resnet.FlaxResNetShortCut with ResNet->RegNet class FlaxRegNetShortCut(nn.Module): """ RegNet shortcut, used to project the residual features to the correct size. If needed, it is also used to downsample the input using `stride=2`. """ out_channels: int stride: int = 2 dtype: jnp.dtype = jnp.float32 def setup(self): self.convolution = nn.Conv( self.out_channels, kernel_size=(1, 1), strides=self.stride, use_bias=False, kernel_init=nn.initializers.variance_scaling(2.0, mode="fan_out", distribution="truncated_normal"), dtype=self.dtype, ) self.normalization = nn.BatchNorm(momentum=0.9, epsilon=1e-05, dtype=self.dtype) def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: hidden_state = self.convolution(x) hidden_state = self.normalization(hidden_state, use_running_average=deterministic) return hidden_state class FlaxRegNetSELayerCollection(nn.Module): in_channels: int reduced_channels: int dtype: jnp.dtype = jnp.float32 def setup(self): self.conv_1 = nn.Conv( self.reduced_channels, kernel_size=(1, 1), kernel_init=nn.initializers.variance_scaling(2.0, mode="fan_out", distribution="truncated_normal"), dtype=self.dtype, name="0", ) # 0 is the name used in corresponding pytorch implementation self.conv_2 = nn.Conv( self.in_channels, kernel_size=(1, 1), kernel_init=nn.initializers.variance_scaling(2.0, mode="fan_out", distribution="truncated_normal"), dtype=self.dtype, name="2", ) # 2 is the name used in corresponding pytorch implementation def __call__(self, hidden_state: jnp.ndarray) -> jnp.ndarray: hidden_state = self.conv_1(hidden_state) hidden_state = nn.relu(hidden_state) hidden_state = self.conv_2(hidden_state) attention = nn.sigmoid(hidden_state) return attention class FlaxRegNetSELayer(nn.Module): """ Squeeze and Excitation layer (SE) proposed in [Squeeze-and-Excitation Networks](https://arxiv.org/abs/1709.01507). """ in_channels: int reduced_channels: int dtype: jnp.dtype = jnp.float32 def setup(self): self.pooler = partial(nn.avg_pool, padding=((0, 0), (0, 0))) self.attention = FlaxRegNetSELayerCollection(self.in_channels, self.reduced_channels, dtype=self.dtype) def __call__(self, hidden_state: jnp.ndarray) -> jnp.ndarray: pooled = self.pooler( hidden_state, window_shape=(hidden_state.shape[1], hidden_state.shape[2]), strides=(hidden_state.shape[1], hidden_state.shape[2]), ) attention = self.attention(pooled) hidden_state = hidden_state * attention return hidden_state class FlaxRegNetXLayerCollection(nn.Module): config: RegNetConfig out_channels: int stride: int = 1 dtype: jnp.dtype = jnp.float32 def setup(self): groups = max(1, self.out_channels // self.config.groups_width) self.layer = [ FlaxRegNetConvLayer( self.out_channels, kernel_size=1, activation=self.config.hidden_act, dtype=self.dtype, name="0", ), FlaxRegNetConvLayer( self.out_channels, stride=self.stride, groups=groups, activation=self.config.hidden_act, dtype=self.dtype, name="1", ), FlaxRegNetConvLayer( self.out_channels, kernel_size=1, activation=None, dtype=self.dtype, name="2", ), ] def __call__(self, hidden_state: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: for layer in self.layer: hidden_state = layer(hidden_state, deterministic=deterministic) return hidden_state class FlaxRegNetXLayer(nn.Module): """ RegNet's layer composed by three `3x3` convolutions, same as a ResNet bottleneck layer with reduction = 1. """ config: RegNetConfig in_channels: int out_channels: int stride: int = 1 dtype: jnp.dtype = jnp.float32 def setup(self): should_apply_shortcut = self.in_channels != self.out_channels or self.stride != 1 self.shortcut = ( FlaxRegNetShortCut( self.out_channels, stride=self.stride, dtype=self.dtype, ) if should_apply_shortcut else Identity() ) self.layer = FlaxRegNetXLayerCollection( self.config, in_channels=self.in_channels, out_channels=self.out_channels, stride=self.stride, dtype=self.dtype, ) self.activation_func = ACT2FN[self.config.hidden_act] def __call__(self, hidden_state: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: residual = hidden_state hidden_state = self.layer(hidden_state) residual = self.shortcut(residual, deterministic=deterministic) hidden_state += residual hidden_state = self.activation_func(hidden_state) return hidden_state class FlaxRegNetYLayerCollection(nn.Module): config: RegNetConfig in_channels: int out_channels: int stride: int = 1 dtype: jnp.dtype = jnp.float32 def setup(self): groups = max(1, self.out_channels // self.config.groups_width) self.layer = [ FlaxRegNetConvLayer( self.out_channels, kernel_size=1, activation=self.config.hidden_act, dtype=self.dtype, name="0", ), FlaxRegNetConvLayer( self.out_channels, stride=self.stride, groups=groups, activation=self.config.hidden_act, dtype=self.dtype, name="1", ), FlaxRegNetSELayer( self.out_channels, reduced_channels=int(round(self.in_channels / 4)), dtype=self.dtype, name="2", ), FlaxRegNetConvLayer( self.out_channels, kernel_size=1, activation=None, dtype=self.dtype, name="3", ), ] def __call__(self, hidden_state: jnp.ndarray) -> jnp.ndarray: for layer in self.layer: hidden_state = layer(hidden_state) return hidden_state class FlaxRegNetYLayer(nn.Module): """ RegNet's Y layer: an X layer with Squeeze and Excitation. """ config: RegNetConfig in_channels: int out_channels: int stride: int = 1 dtype: jnp.dtype = jnp.float32 def setup(self): should_apply_shortcut = self.in_channels != self.out_channels or self.stride != 1 self.shortcut = ( FlaxRegNetShortCut( self.out_channels, stride=self.stride, dtype=self.dtype, ) if should_apply_shortcut else Identity() ) self.layer = FlaxRegNetYLayerCollection( self.config, in_channels=self.in_channels, out_channels=self.out_channels, stride=self.stride, dtype=self.dtype, ) self.activation_func = ACT2FN[self.config.hidden_act] def __call__(self, hidden_state: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: residual = hidden_state hidden_state = self.layer(hidden_state) residual = self.shortcut(residual, deterministic=deterministic) hidden_state += residual hidden_state = self.activation_func(hidden_state) return hidden_state class FlaxRegNetStageLayersCollection(nn.Module): """ A RegNet stage composed by stacked layers. """ config: RegNetConfig in_channels: int out_channels: int stride: int = 2 depth: int = 2 dtype: jnp.dtype = jnp.float32 def setup(self): layer = FlaxRegNetXLayer if self.config.layer_type == "x" else FlaxRegNetYLayer layers = [ # downsampling is done in the first layer with stride of 2 layer( self.config, self.in_channels, self.out_channels, stride=self.stride, dtype=self.dtype, name="0", ) ] for i in range(self.depth - 1): layers.append( layer( self.config, self.out_channels, self.out_channels, dtype=self.dtype, name=str(i + 1), ) ) self.layers = layers def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: hidden_state = x for layer in self.layers: hidden_state = layer(hidden_state, deterministic=deterministic) return hidden_state # Copied from transformers.models.resnet.modeling_flax_resnet.FlaxResNetStage with ResNet->RegNet class FlaxRegNetStage(nn.Module): """ A RegNet stage composed by stacked layers. """ config: RegNetConfig in_channels: int out_channels: int stride: int = 2 depth: int = 2 dtype: jnp.dtype = jnp.float32 def setup(self): self.layers = FlaxRegNetStageLayersCollection( self.config, in_channels=self.in_channels, out_channels=self.out_channels, stride=self.stride, depth=self.depth, dtype=self.dtype, ) def __call__(self, x: jnp.ndarray, deterministic: bool = True) -> jnp.ndarray: return self.layers(x, deterministic=deterministic) # Copied from transformers.models.resnet.modeling_flax_resnet.FlaxResNetStageCollection with ResNet->RegNet class FlaxRegNetStageCollection(nn.Module): config: RegNetConfig dtype: jnp.dtype = jnp.float32 def setup(self): in_out_channels = zip(self.config.hidden_sizes, self.config.hidden_sizes[1:]) stages = [ FlaxRegNetStage( self.config, self.config.embedding_size, self.config.hidden_sizes[0], stride=2 if self.config.downsample_in_first_stage else 1, depth=self.config.depths[0], dtype=self.dtype, name="0", ) ] for i, ((in_channels, out_channels), depth) in enumerate(zip(in_out_channels, self.config.depths[1:])): stages.append( FlaxRegNetStage(self.config, in_channels, out_channels, depth=depth, dtype=self.dtype, name=str(i + 1)) ) self.stages = stages def __call__( self, hidden_state: jnp.ndarray, output_hidden_states: bool = False, deterministic: bool = True, ) -> FlaxBaseModelOutputWithNoAttention: hidden_states = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: hidden_states = hidden_states + (hidden_state.transpose(0, 3, 1, 2),) hidden_state = stage_module(hidden_state, deterministic=deterministic) return hidden_state, hidden_states # Copied from transformers.models.resnet.modeling_flax_resnet.FlaxResNetEncoder with ResNet->RegNet class FlaxRegNetEncoder(nn.Module): config: RegNetConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.stages = FlaxRegNetStageCollection(self.config, dtype=self.dtype) def __call__( self, hidden_state: jnp.ndarray, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ) -> FlaxBaseModelOutputWithNoAttention: hidden_state, hidden_states = self.stages( hidden_state, output_hidden_states=output_hidden_states, deterministic=deterministic ) if output_hidden_states: hidden_states = hidden_states + (hidden_state.transpose(0, 3, 1, 2),) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None) return FlaxBaseModelOutputWithNoAttention( last_hidden_state=hidden_state, hidden_states=hidden_states, ) # Copied from transformers.models.resnet.modeling_flax_resnet.FlaxResNetPreTrainedModel with ResNet->RegNet,resnet->regnet,RESNET->REGNET class FlaxRegNetPreTrainedModel(FlaxPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = RegNetConfig base_model_prefix = "regnet" main_input_name = "pixel_values" module_class: nn.Module = None def __init__( self, config: RegNetConfig, input_shape=(1, 224, 224, 3), seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, **kwargs, ): module = self.module_class(config=config, dtype=dtype, **kwargs) if input_shape is None: input_shape = (1, config.image_size, config.image_size, config.num_channels) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: # init input tensors pixel_values = jnp.zeros(input_shape, dtype=self.dtype) rngs = {"params": rng} random_params = self.module.init(rngs, pixel_values, return_dict=False) if params is not None: random_params = flatten_dict(unfreeze(random_params)) params = flatten_dict(unfreeze(params)) for missing_key in self._missing_keys: params[missing_key] = random_params[missing_key] self._missing_keys = set() return freeze(unflatten_dict(params)) else: return random_params @add_start_docstrings_to_model_forward(REGNET_INPUTS_DOCSTRING) def __call__( self, pixel_values, params: dict = None, train: bool = False, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ): output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict pixel_values = jnp.transpose(pixel_values, (0, 2, 3, 1)) # Handle any PRNG if needed rngs = {} return self.module.apply( { "params": params["params"] if params is not None else self.params["params"], "batch_stats": params["batch_stats"] if params is not None else self.params["batch_stats"], }, jnp.array(pixel_values, dtype=jnp.float32), not train, output_hidden_states, return_dict, rngs=rngs, mutable=["batch_stats"] if train else False, # Returing tuple with batch_stats only when train is True ) # Copied from transformers.models.resnet.modeling_flax_resnet.FlaxResNetModule with ResNet->RegNet class FlaxRegNetModule(nn.Module): config: RegNetConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.embedder = FlaxRegNetEmbeddings(self.config, dtype=self.dtype) self.encoder = FlaxRegNetEncoder(self.config, dtype=self.dtype) # Adaptive average pooling used in resnet self.pooler = partial( nn.avg_pool, padding=((0, 0), (0, 0)), ) def __call__( self, pixel_values, deterministic: bool = True, output_hidden_states: bool = False, return_dict: bool = True, ) -> FlaxBaseModelOutputWithPoolingAndNoAttention: output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict embedding_output = self.embedder(pixel_values, deterministic=deterministic) encoder_outputs = self.encoder( embedding_output, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) last_hidden_state = encoder_outputs[0] pooled_output = self.pooler( last_hidden_state, window_shape=(last_hidden_state.shape[1], last_hidden_state.shape[2]), strides=(last_hidden_state.shape[1], last_hidden_state.shape[2]), ).transpose(0, 3, 1, 2) last_hidden_state = last_hidden_state.transpose(0, 3, 1, 2) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return FlaxBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, ) @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top.", REGNET_START_DOCSTRING, ) class FlaxRegNetModel(FlaxRegNetPreTrainedModel): module_class = FlaxRegNetModule FLAX_VISION_MODEL_DOCSTRING = """ Returns: Examples: ```python >>> from transformers import AutoImageProcessor, FlaxRegNetModel >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("facebook/regnet-y-040") >>> model = FlaxRegNetModel.from_pretrained("facebook/regnet-y-040") >>> inputs = image_processor(images=image, return_tensors="np") >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state ``` """ overwrite_call_docstring(FlaxRegNetModel, FLAX_VISION_MODEL_DOCSTRING) append_replace_return_docstrings( FlaxRegNetModel, output_type=FlaxBaseModelOutputWithPooling, config_class=RegNetConfig, ) # Copied from transformers.models.resnet.modeling_flax_resnet.FlaxResNetClassifierCollection with ResNet->RegNet class FlaxRegNetClassifierCollection(nn.Module): config: RegNetConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.classifier = nn.Dense(self.config.num_labels, dtype=self.dtype, name="1") def __call__(self, x: jnp.ndarray) -> jnp.ndarray: return self.classifier(x) # Copied from transformers.models.resnet.modeling_flax_resnet.FlaxResNetForImageClassificationModule with ResNet->RegNet,resnet->regnet,RESNET->REGNET class FlaxRegNetForImageClassificationModule(nn.Module): config: RegNetConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.regnet = FlaxRegNetModule(config=self.config, dtype=self.dtype) if self.config.num_labels > 0: self.classifier = FlaxRegNetClassifierCollection(self.config, dtype=self.dtype) else: self.classifier = Identity() def __call__( self, pixel_values=None, deterministic: bool = True, output_hidden_states=None, return_dict=None, ): return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.regnet( pixel_values, deterministic=deterministic, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs.pooler_output if return_dict else outputs[1] logits = self.classifier(pooled_output[:, :, 0, 0]) if not return_dict: output = (logits,) + outputs[2:] return output return FlaxImageClassifierOutputWithNoAttention(logits=logits, hidden_states=outputs.hidden_states) @add_start_docstrings( """ RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """, REGNET_START_DOCSTRING, ) class FlaxRegNetForImageClassification(FlaxRegNetPreTrainedModel): module_class = FlaxRegNetForImageClassificationModule FLAX_VISION_CLASSIF_DOCSTRING = """ Returns: Example: ```python >>> from transformers import AutoImageProcessor, FlaxRegNetForImageClassification >>> from PIL import Image >>> import jax >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("facebook/regnet-y-040") >>> model = FlaxRegNetForImageClassification.from_pretrained("facebook/regnet-y-040") >>> inputs = image_processor(images=image, return_tensors="np") >>> outputs = model(**inputs) >>> logits = outputs.logits >>> # model predicts one of the 1000 ImageNet classes >>> predicted_class_idx = jax.numpy.argmax(logits, axis=-1) >>> print("Predicted class:", model.config.id2label[predicted_class_idx.item()]) ``` """ overwrite_call_docstring(FlaxRegNetForImageClassification, FLAX_VISION_CLASSIF_DOCSTRING) append_replace_return_docstrings( FlaxRegNetForImageClassification, output_type=FlaxImageClassifierOutputWithNoAttention, config_class=RegNetConfig, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/encoder_decoder/configuration_encoder_decoder.py
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) class EncoderDecoderConfig(PretrainedConfig): r""" [`EncoderDecoderConfig`] is the configuration class to store the configuration of a [`EncoderDecoderModel`]. It is used to instantiate an Encoder Decoder model according to the specified arguments, defining the encoder and decoder configs. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: kwargs (*optional*): Dictionary of keyword arguments. Notably: - **encoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that defines the encoder config. - **decoder** ([`PretrainedConfig`], *optional*) -- An instance of a configuration object that defines the decoder config. Examples: ```python >>> from transformers import BertConfig, EncoderDecoderConfig, EncoderDecoderModel >>> # Initializing a BERT bert-base-uncased style configuration >>> config_encoder = BertConfig() >>> config_decoder = BertConfig() >>> config = EncoderDecoderConfig.from_encoder_decoder_configs(config_encoder, config_decoder) >>> # Initializing a Bert2Bert model from the bert-base-uncased style configurations >>> model = EncoderDecoderModel(config=config) >>> # Accessing the model configuration >>> config_encoder = model.config.encoder >>> config_decoder = model.config.decoder >>> # set decoder config to causal lm >>> config_decoder.is_decoder = True >>> config_decoder.add_cross_attention = True >>> # Saving the model, including its configuration >>> model.save_pretrained("my-model") >>> # loading model and config from pretrained folder >>> encoder_decoder_config = EncoderDecoderConfig.from_pretrained("my-model") >>> model = EncoderDecoderModel.from_pretrained("my-model", config=encoder_decoder_config) ```""" model_type = "encoder-decoder" is_composition = True def __init__(self, **kwargs): super().__init__(**kwargs) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" encoder_config = kwargs.pop("encoder") encoder_model_type = encoder_config.pop("model_type") decoder_config = kwargs.pop("decoder") decoder_model_type = decoder_config.pop("model_type") from ..auto.configuration_auto import AutoConfig self.encoder = AutoConfig.for_model(encoder_model_type, **encoder_config) self.decoder = AutoConfig.for_model(decoder_model_type, **decoder_config) self.is_encoder_decoder = True @classmethod def from_encoder_decoder_configs( cls, encoder_config: PretrainedConfig, decoder_config: PretrainedConfig, **kwargs ) -> PretrainedConfig: r""" Instantiate a [`EncoderDecoderConfig`] (or a derived class) from a pre-trained encoder model configuration and decoder model configuration. Returns: [`EncoderDecoderConfig`]: An instance of a configuration object """ logger.info("Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config") decoder_config.is_decoder = True decoder_config.add_cross_attention = True return cls(encoder=encoder_config.to_dict(), decoder=decoder_config.to_dict(), **kwargs) def to_dict(self): """ Serializes this instance to a Python dictionary. Override the default *to_dict()* from *PretrainedConfig*. Returns: `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, """ output = copy.deepcopy(self.__dict__) output["encoder"] = self.encoder.to_dict() output["decoder"] = self.decoder.to_dict() output["model_type"] = self.__class__.model_type return output
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/encoder_decoder/__init__.py
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _import_structure = {"configuration_encoder_decoder": ["EncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_encoder_decoder"] = ["EncoderDecoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_encoder_decoder"] = ["TFEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_flax_encoder_decoder"] = ["FlaxEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/encoder_decoder/modeling_flax_encoder_decoder.py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Classes to support Flax Encoder-Decoder architectures""" import os from typing import Optional, Tuple, Union import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict, freeze, unfreeze from flax.traverse_util import flatten_dict, unflatten_dict from jax import lax from jax.random import PRNGKey from ...modeling_flax_outputs import FlaxBaseModelOutput, FlaxCausalLMOutputWithCrossAttentions, FlaxSeq2SeqLMOutput from ...modeling_flax_utils import FlaxPreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings from ..auto.configuration_auto import AutoConfig from ..auto.modeling_flax_auto import FlaxAutoModel, FlaxAutoModelForCausalLM from .configuration_encoder_decoder import EncoderDecoderConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "EncoderDecoderConfig" ENCODER_DECODER_START_DOCSTRING = r""" This class can be used to initialize a sequence-to-sequence model with any pretrained autoencoding model as the encoder and any pretrained autoregressive model as the decoder. The encoder is loaded via [`~AutoModel.from_pretrained`] function and the decoder is loaded via [`~AutoModelForCausalLM.from_pretrained`] function. Cross-attention layers are automatically added to the decoder and should be fine-tuned on a downstream generative task, like summarization. The effectiveness of initializing sequence-to-sequence models with pretrained checkpoints for sequence generation tasks was shown in [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. After such an Encoder Decoder model has been trained/fine-tuned, it can be saved/loaded just like any other models (see the examples for more information). This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a Flax Linen [flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior. Parameters: config ([`EncoderDecoderConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and `jax.numpy.bfloat16` (on TPUs). This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given `dtype`. **Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.** If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and [`~FlaxPreTrainedModel.to_bf16`]. """ ENCODER_DECODER_INPUTS_DOCSTRING = r""" Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) For sequence to sequence training, `decoder_input_ids` should be provided. `decoder_input_ids` should be created outside of the model by shifting the `labels` to the right, replacing -100 by the `pad_token_id` and prepending them with the `decoder_start_token_id`. decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.encoder.max_position_embeddings - 1]`. decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range `[0, config.decoder.max_position_embeddings - 1]`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): If set to `True`, the model will return a [`~utils.FlaxSeq2SeqLMOutput`] instead of a plain tuple. """ ENCODER_DECODER_ENCODE_INPUTS_DOCSTRING = r""" Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.encoder.max_position_embeddings - 1]`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): If set to `True`, the model will return a [`~utils.FlaxBaseModelOutput`] instead of a plain tuple. """ ENCODER_DECODER_DECODE_INPUTS_DOCSTRING = r""" Args: decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). For sequence to sequence training, `decoder_input_ids` should be provided. `decoder_input_ids` should be created outside of the model by shifting the `labels` to the right, replacing -100 by the `pad_token_id` and prepending them with the `decoder_start_token_id`. encoder_outputs (`tuple(tuple(jnp.ndarray)`): Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range `[0, config.decoder.max_position_embeddings - 1]`. past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`): Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): If set to `True`, the model will return a [`~utils.FlaxCausalLMOutputWithCrossAttentions`] instead of a plain tuple. """ class FlaxEncoderDecoderModule(nn.Module): config: EncoderDecoderConfig dtype: jnp.dtype = jnp.float32 def setup(self): encoder_config = self.config.encoder decoder_config = self.config.decoder # Copied from `modeling_hybrid_clip.py` with modifications. from ...models.auto.modeling_flax_auto import FLAX_MODEL_FOR_CAUSAL_LM_MAPPING, FLAX_MODEL_MAPPING encoder_module = FLAX_MODEL_MAPPING[encoder_config.__class__].module_class decoder_module = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING[decoder_config.__class__].module_class self.encoder = encoder_module(encoder_config, dtype=self.dtype) self.decoder = decoder_module(decoder_config, dtype=self.dtype) # encoder outputs might need to be projected to different dimension for decoder if ( self.encoder.config.hidden_size != self.decoder.config.hidden_size and self.decoder.config.cross_attention_hidden_size is None ): self.enc_to_dec_proj = nn.Dense( self.decoder.config.hidden_size, kernel_init=jax.nn.initializers.normal(self.decoder.config.initializer_range), dtype=self.dtype, ) else: self.enc_to_dec_proj = None def _get_encoder_module(self): return self.encoder def _get_projection_module(self): return self.enc_to_dec_proj def _get_decoder_module(self): return self.decoder def __call__( self, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, position_ids, decoder_position_ids, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) encoder_hidden_states = encoder_outputs[0] # optionally project encoder_hidden_states if self.enc_to_dec_proj is not None: encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states) decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, position_ids=decoder_position_ids, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) if not return_dict: return decoder_outputs + encoder_outputs return FlaxSeq2SeqLMOutput( logits=decoder_outputs.logits, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) @add_start_docstrings(ENCODER_DECODER_START_DOCSTRING) class FlaxEncoderDecoderModel(FlaxPreTrainedModel): r""" [`FlaxEncoderDecoderModel`] is a generic model class that will be instantiated as a transformer architecture with the module (flax.nn.Module) of one of the base model classes of the library as encoder module and another one as decoder module when created with the :meth*~transformers.FlaxAutoModel.from_pretrained* class method for the encoder and :meth*~transformers.FlaxAutoModelForCausalLM.from_pretrained* class method for the decoder. """ config_class = EncoderDecoderConfig base_model_prefix = "encoder_decoder" module_class = FlaxEncoderDecoderModule def __init__( self, config: EncoderDecoderConfig, input_shape: Optional[Tuple] = None, seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, **kwargs, ): if input_shape is None: input_shape = ((1, 1), (1, 1)) if not _do_init: raise ValueError( "`FlaxEncoderDecoderModel` cannot be created without initializing, `_do_init` must be `True`." ) if config.decoder.cross_attention_hidden_size is not None: if config.decoder.cross_attention_hidden_size != config.encoder.hidden_size: raise ValueError( "If `cross_attention_hidden_size` is specified in the decoder's configuration, it has to be equal" f" to the encoder's `hidden_size`. Got {config.decoder.cross_attention_hidden_size} for" f" `config.decoder.cross_attention_hidden_size` and {config.encoder.hidden_size} for" " `config.encoder.hidden_size`." ) module = self.module_class(config=config, dtype=dtype, **kwargs) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: encoder_input_shape, decoder_input_shape = input_shape # init input tensors input_ids = jnp.zeros(encoder_input_shape, dtype="i4") attention_mask = jnp.ones_like(input_ids) decoder_input_ids = jnp.zeros(decoder_input_shape, dtype="i4") decoder_attention_mask = jnp.ones_like(decoder_input_ids) batch_size, sequence_length = input_ids.shape position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) decoder_batch_size, decoder_sequence_length = decoder_input_ids.shape if not decoder_batch_size == batch_size: raise ValueError( f"The inputs of encoder and decoder should have the same batch size, but got {batch_size} for encoder" f" and {decoder_batch_size} for decoder." ) decoder_position_ids = jnp.broadcast_to( jnp.arange(decoder_sequence_length)[None, :], (decoder_batch_size, decoder_sequence_length) ) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} random_params = self.module.init( rngs, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, position_ids, decoder_position_ids, )["params"] if params is not None: random_params = flatten_dict(unfreeze(random_params)) params = flatten_dict(unfreeze(params)) for missing_key in self._missing_keys: params[missing_key] = random_params[missing_key] self._missing_keys = set() return freeze(unflatten_dict(params)) else: return random_params def init_cache(self, batch_size, max_length, encoder_outputs): r""" Args: batch_size (`int`): batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache. max_length (`int`): maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized cache. encoder_outputs (`Union[FlaxBaseModelOutput, tuple(tuple(jnp.ndarray)]`): `encoder_outputs` consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`). `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. """ # init input variables to retrieve cache decoder_input_ids = jnp.ones((batch_size, max_length), dtype="i4") decoder_attention_mask = jnp.ones_like(decoder_input_ids) decoder_position_ids = jnp.broadcast_to( jnp.arange(jnp.atleast_2d(decoder_input_ids).shape[-1]), decoder_input_ids.shape ) def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): decoder_module = module._get_decoder_module() return decoder_module( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, position_ids=decoder_position_ids, **kwargs, ) init_variables = self.module.init( jax.random.PRNGKey(0), decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, decoder_position_ids=decoder_position_ids, encoder_hidden_states=encoder_outputs[0], init_cache=True, method=_decoder_forward, # we only need to call the decoder to init the cache ) return unfreeze(init_variables["cache"]) @add_start_docstrings(ENCODER_DECODER_ENCODE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxBaseModelOutput, config_class=_CONFIG_FOR_DOC) def encode( self, input_ids: jnp.ndarray, attention_mask: Optional[jnp.ndarray] = None, position_ids: Optional[jnp.ndarray] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Example: ```python >>> from transformers import FlaxEncoderDecoderModel, BertTokenizer >>> # initialize a bert2gpt2 from pretrained BERT and GPT2 models. Note that the cross-attention layers will be randomly initialized >>> model = FlaxEncoderDecoderModel.from_encoder_decoder_pretrained("bert-base-cased", "gpt2") >>> tokenizer = BertTokenizer.from_pretrained("bert-base-cased") >>> text = "My friends are cool but they eat too many carbs." >>> input_ids = tokenizer.encode(text, return_tensors="np") >>> encoder_outputs = model.encode(input_ids) ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict if attention_mask is None: attention_mask = jnp.ones_like(input_ids) if position_ids is None: batch_size, sequence_length = input_ids.shape position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng def _encoder_forward(module, input_ids, attention_mask, position_ids, **kwargs): encode_module = module._get_encoder_module() return encode_module(input_ids, attention_mask, position_ids, **kwargs) outputs = self.module.apply( {"params": params or self.params}, input_ids=jnp.array(input_ids, dtype="i4"), attention_mask=jnp.array(attention_mask, dtype="i4"), position_ids=jnp.array(position_ids, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, method=_encoder_forward, ) if return_dict: outputs = FlaxBaseModelOutput( last_hidden_state=outputs.last_hidden_state, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) return outputs @add_start_docstrings(ENCODER_DECODER_DECODE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxCausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) def decode( self, decoder_input_ids, encoder_outputs, encoder_attention_mask: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None, past_key_values: dict = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Example: ```python >>> from transformers import FlaxEncoderDecoderModel, BertTokenizer >>> import jax.numpy as jnp >>> # initialize a bert2gpt2 from pretrained BERT and GPT2 models. Note that the cross-attention layers will be randomly initialized >>> model = FlaxEncoderDecoderModel.from_encoder_decoder_pretrained("bert-base-cased", "gpt2") >>> tokenizer = BertTokenizer.from_pretrained("bert-base-cased") >>> text = "My friends are cool but they eat too many carbs." >>> input_ids = tokenizer.encode(text, max_length=1024, return_tensors="np") >>> encoder_outputs = model.encode(input_ids) >>> decoder_start_token_id = model.config.decoder.bos_token_id >>> decoder_input_ids = jnp.ones((input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id >>> outputs = model.decode(decoder_input_ids, encoder_outputs) >>> logits = outputs.logits ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict encoder_hidden_states = encoder_outputs[0] if encoder_attention_mask is None: batch_size, sequence_length = encoder_hidden_states.shape[:2] encoder_attention_mask = jnp.ones((batch_size, sequence_length)) batch_size, sequence_length = decoder_input_ids.shape if decoder_attention_mask is None: decoder_attention_mask = jnp.ones((batch_size, sequence_length)) if decoder_position_ids is None: if past_key_values is not None: raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.") decoder_position_ids = jnp.broadcast_to( jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) ) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng inputs = {"params": params or self.params} # if past_key_values are passed then cache is already initialized a private flag init_cache has to be # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that # it can be changed by FlaxBartAttention module if past_key_values: inputs["cache"] = past_key_values mutable = ["cache"] else: mutable = False def _decoder_forward( module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, encoder_hidden_states, **kwargs ): projection_module = module._get_projection_module() decoder_module = module._get_decoder_module() # optionally project encoder_hidden_states if projection_module is not None: encoder_hidden_states = projection_module(encoder_hidden_states) return decoder_module( decoder_input_ids, decoder_attention_mask, decoder_position_ids, encoder_hidden_states=encoder_hidden_states, **kwargs, ) outputs = self.module.apply( inputs, decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, mutable=mutable, method=_decoder_forward, ) # add updated cache to model output if past_key_values is not None and return_dict: outputs, past = outputs outputs["past_key_values"] = unfreeze(past["cache"]) return outputs elif past_key_values is not None and not return_dict: outputs, past = outputs outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:] return outputs @add_start_docstrings_to_model_forward(ENCODER_DECODER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) def __call__( self, input_ids: jnp.ndarray, attention_mask: Optional[jnp.ndarray] = None, decoder_input_ids: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None, position_ids: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Examples: ```python >>> from transformers import FlaxEncoderDecoderModel, BertTokenizer, GPT2Tokenizer >>> # load a fine-tuned bert2gpt2 model >>> model = FlaxEncoderDecoderModel.from_pretrained("patrickvonplaten/bert2gpt2-cnn_dailymail-fp16") >>> # load input & output tokenizer >>> tokenizer_input = BertTokenizer.from_pretrained("bert-base-cased") >>> tokenizer_output = GPT2Tokenizer.from_pretrained("gpt2") >>> article = '''Sigma Alpha Epsilon is under fire for a video showing party-bound fraternity members >>> singing a racist chant. SAE's national chapter suspended the students, >>> but University of Oklahoma President David Boren took it a step further, >>> saying the university's affiliation with the fraternity is permanently done.''' >>> input_ids = tokenizer_input(article, add_special_tokens=True, return_tensors="np").input_ids >>> # use GPT2's eos_token as the pad as well as eos token >>> model.config.eos_token_id = model.config.decoder.eos_token_id >>> model.config.pad_token_id = model.config.eos_token_id >>> sequences = model.generate(input_ids, num_beams=4, max_length=12).sequences >>> summary = tokenizer_output.batch_decode(sequences, skip_special_tokens=True)[0] >>> assert summary == "SAS Alpha Epsilon suspended Sigma Alpha Epsilon members" ``` """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict # prepare encoder inputs if attention_mask is None: attention_mask = jnp.ones_like(input_ids) if position_ids is None: batch_size, sequence_length = input_ids.shape position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) # prepare decoder inputs if decoder_input_ids is None: raise ValueError( "`decoder_input_ids` cannot be `None`. For sequence to sequence training, `decoder_position_ids` must" " be specified as an input argument." ) if decoder_attention_mask is None: decoder_attention_mask = jnp.ones_like(decoder_input_ids) if decoder_position_ids is None: batch_size, sequence_length = decoder_input_ids.shape decoder_position_ids = jnp.broadcast_to( jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) ) # Handle any PRNG if needed rngs = {"dropout": dropout_rng} if dropout_rng is not None else {} return self.module.apply( {"params": params or self.params}, input_ids=jnp.array(input_ids, dtype="i4"), attention_mask=jnp.array(attention_mask, dtype="i4"), decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), position_ids=jnp.array(position_ids, dtype="i4"), decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, ) def prepare_inputs_for_generation( self, decoder_input_ids, max_length, attention_mask: Optional[jnp.DeviceArray] = None, decoder_attention_mask: Optional[jnp.DeviceArray] = None, encoder_outputs=None, **kwargs, ): # initializing the cache batch_size, seq_length = decoder_input_ids.shape past_key_values = self.init_cache(batch_size, max_length, encoder_outputs) # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length. # But since the decoder uses a causal mask, those positions are masked anyways. # Thus we can create a single static attention_mask here, which is more efficient for compilation extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4") if decoder_attention_mask is not None: decoder_position_ids = decoder_attention_mask.cumsum(axis=-1) - 1 extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, decoder_attention_mask, (0, 0)) else: decoder_position_ids = jnp.broadcast_to( jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length) ) return { "past_key_values": past_key_values, "encoder_outputs": encoder_outputs, "encoder_attention_mask": attention_mask, "decoder_attention_mask": extended_attention_mask, "decoder_position_ids": decoder_position_ids, } def update_inputs_for_generation(self, model_outputs, model_kwargs): model_kwargs["past_key_values"] = model_outputs.past_key_values model_kwargs["decoder_position_ids"] = model_kwargs["decoder_position_ids"][:, -1:] + 1 return model_kwargs @classmethod def from_encoder_decoder_pretrained( cls, encoder_pretrained_model_name_or_path: Optional[Union[str, os.PathLike]] = None, decoder_pretrained_model_name_or_path: Optional[Union[str, os.PathLike]] = None, *model_args, **kwargs, ) -> FlaxPreTrainedModel: r""" Instantiate an encoder and a decoder from one or two base classes of the library from pretrained model checkpoints. Params: encoder_pretrained_model_name_or_path (`Union[str, os.PathLike]`, *optional*): Information necessary to initiate the encoder. Can be either: - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a user or organization name, like `dbmdz/bert-base-german-cased`. - A path to a *directory* containing model weights saved using [`~FlaxPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. decoder_pretrained_model_name_or_path (`Union[str, os.PathLike]`, *optional*, defaults to `None`): Information necessary to initiate the decoder. Can be either: - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a user or organization name, like `dbmdz/bert-base-german-cased`. - A path to a *directory* containing model weights saved using [`~FlaxPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. model_args (remaining positional arguments, *optional*): All remaning positional arguments will be passed to the underlying model's `__init__` method. kwargs (remaining dictionary of keyword arguments, *optional*): Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., `output_attentions=True`). - To update the encoder configuration, use the prefix *encoder_* for each configuration parameter. - To update the decoder configuration, use the prefix *decoder_* for each configuration parameter. - To update the parent model configuration, do not use a prefix for each configuration parameter. Behaves differently depending on whether a `config` is provided or automatically loaded. Example: ```python >>> from transformers import FlaxEncoderDecoderModel >>> # initialize a bert2gpt2 from pretrained BERT and GPT2 models. Note that the cross-attention layers will be randomly initialized >>> model = FlaxEncoderDecoderModel.from_encoder_decoder_pretrained("bert-base-cased", "gpt2") >>> # saving model after fine-tuning >>> model.save_pretrained("./bert2gpt2") >>> # load fine-tuned model >>> model = FlaxEncoderDecoderModel.from_pretrained("./bert2gpt2") ```""" kwargs_encoder = { argument[len("encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("encoder_") } kwargs_decoder = { argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_") } # remove encoder, decoder kwargs from kwargs for key in kwargs_encoder.keys(): del kwargs["encoder_" + key] for key in kwargs_decoder.keys(): del kwargs["decoder_" + key] # Load and initialize the encoder and decoder # The distinction between encoder and decoder at the model level is made # by the value of the flag `is_decoder` that we need to set correctly. encoder = kwargs_encoder.pop("model", None) if encoder is None: if encoder_pretrained_model_name_or_path is None: raise ValueError( "If `encoder_model` is not defined as an argument, a `encoder_pretrained_model_name_or_path` has " "to be defined." ) if "config" not in kwargs_encoder: encoder_config, kwargs_encoder = AutoConfig.from_pretrained( encoder_pretrained_model_name_or_path, **kwargs_encoder, return_unused_kwargs=True ) if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True: logger.info( f"Initializing {encoder_pretrained_model_name_or_path} as a encoder model " "from a decoder model. Cross-attention and casual mask are disabled." ) encoder_config.is_decoder = False encoder_config.add_cross_attention = False kwargs_encoder["config"] = encoder_config encoder = FlaxAutoModel.from_pretrained( encoder_pretrained_model_name_or_path, *model_args, **kwargs_encoder ) decoder = kwargs_decoder.pop("model", None) if decoder is None: if decoder_pretrained_model_name_or_path is None: raise ValueError( "If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has " "to be defined." ) if "config" not in kwargs_decoder: decoder_config, kwargs_decoder = AutoConfig.from_pretrained( decoder_pretrained_model_name_or_path, **kwargs_decoder, return_unused_kwargs=True ) if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False: logger.info( f"Initializing {decoder_pretrained_model_name_or_path} as a decoder model. Cross attention" f" layers are added to {decoder_pretrained_model_name_or_path} and randomly initialized if" f" {decoder_pretrained_model_name_or_path}'s architecture allows for cross attention layers." ) decoder_config.is_decoder = True decoder_config.add_cross_attention = True kwargs_decoder["config"] = decoder_config if kwargs_decoder["config"].is_decoder is False or kwargs_decoder["config"].add_cross_attention is False: logger.warning( f"Decoder model {decoder_pretrained_model_name_or_path} is not initialized as a decoder. " f"In order to initialize {decoder_pretrained_model_name_or_path} as a decoder, " "make sure that the attributes `is_decoder` and `add_cross_attention` of `decoder_config` " "passed to `.from_encoder_decoder_pretrained(...)` are set to `True` or do not pass a " "`decoder_config` to `.from_encoder_decoder_pretrained(...)`" ) decoder = FlaxAutoModelForCausalLM.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs_decoder) # instantiate config with corresponding kwargs dtype = kwargs.pop("dtype", jnp.float32) config = EncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config, **kwargs) # init model model = cls(config, dtype=dtype) model.params["encoder"] = encoder.params model.params["decoder"] = decoder.params return model
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/encoder_decoder/modeling_encoder_decoder.py
# coding=utf-8 # Copyright 2018 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Classes to support Encoder-Decoder architectures""" import gc import inspect import os import tempfile import warnings from typing import Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ...configuration_utils import PretrainedConfig from ...modeling_outputs import BaseModelOutput, Seq2SeqLMOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings from ..auto.configuration_auto import AutoConfig from ..auto.modeling_auto import AutoModel, AutoModelForCausalLM from .configuration_encoder_decoder import EncoderDecoderConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "EncoderDecoderConfig" DEPRECATION_WARNING = ( "Version v4.12.0 introduces a better way to train encoder-decoder models by computing the loss inside the" " encoder-decoder framework rather than in the decoder itself. You may observe training discrepancies if" " fine-tuning a model trained with versions anterior to 4.12.0. The decoder_input_ids are now created based on the" " labels, no need to pass them yourself anymore." ) ENCODER_DECODER_START_DOCSTRING = r""" This class can be used to initialize a sequence-to-sequence model with any pretrained autoencoding model as the encoder and any pretrained autoregressive model as the decoder. The encoder is loaded via [`~AutoModel.from_pretrained`] function and the decoder is loaded via [`~AutoModelForCausalLM.from_pretrained`] function. Cross-attention layers are automatically added to the decoder and should be fine-tuned on a downstream generative task, like summarization. The effectiveness of initializing sequence-to-sequence models with pretrained checkpoints for sequence generation tasks was shown in [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. After such an Encoder Decoder model has been trained/fine-tuned, it can be saved/loaded just like any other models (see the examples for more information). This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`EncoderDecoderConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ ENCODER_DECODER_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). For training, `decoder_input_ids` are automatically created by the model by shifting the `labels` to the right, replacing -100 by the `pad_token_id` and prepending them with the `decoder_start_token_id`. decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. encoder_outputs (`tuple(torch.FloatTensor)`, *optional*): This tuple must consist of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) `last_hidden_state` (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`) is a tensor of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss for the decoder. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): If set to `True`, the model will return a [`~utils.Seq2SeqLMOutput`] instead of a plain tuple. kwargs (*optional*): Remaining dictionary of keyword arguments. Keyword arguments come in two flavors: - Without a prefix which will be input as `**encoder_kwargs` for the encoder forward function. - With a *decoder_* prefix which will be input as `**decoder_kwargs` for the decoder forward function. """ def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int): """ Shift input ids one token to the right. """ shifted_input_ids = input_ids.new_zeros(input_ids.shape) shifted_input_ids[:, 1:] = input_ids[:, :-1].clone() if decoder_start_token_id is None: raise ValueError("Make sure to set the decoder_start_token_id attribute of the model's configuration.") shifted_input_ids[:, 0] = decoder_start_token_id if pad_token_id is None: raise ValueError("Make sure to set the pad_token_id attribute of the model's configuration.") # replace possible -100 values in labels by `pad_token_id` shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) return shifted_input_ids @add_start_docstrings(ENCODER_DECODER_START_DOCSTRING) class EncoderDecoderModel(PreTrainedModel): r""" [`EncoderDecoderModel`] is a generic model class that will be instantiated as a transformer architecture with one of the base model classes of the library as encoder and another one as decoder when created with the :meth*~transformers.AutoModel.from_pretrained* class method for the encoder and :meth*~transformers.AutoModelForCausalLM.from_pretrained* class method for the decoder. """ config_class = EncoderDecoderConfig base_model_prefix = "encoder_decoder" main_input_name = "input_ids" supports_gradient_checkpointing = True def __init__( self, config: Optional[PretrainedConfig] = None, encoder: Optional[PreTrainedModel] = None, decoder: Optional[PreTrainedModel] = None, ): if config is None and (encoder is None or decoder is None): raise ValueError("Either a configuration or an encoder and a decoder has to be provided.") if config is None: config = EncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config) else: if not isinstance(config, self.config_class): raise ValueError(f"Config: {config} has to be of type {self.config_class}") if config.decoder.cross_attention_hidden_size is not None: if config.decoder.cross_attention_hidden_size != config.encoder.hidden_size: raise ValueError( "If `cross_attention_hidden_size` is specified in the decoder's configuration, it has to be equal" f" to the encoder's `hidden_size`. Got {config.decoder.cross_attention_hidden_size} for" f" `config.decoder.cross_attention_hidden_size` and {config.encoder.hidden_size} for" " `config.encoder.hidden_size`." ) # initialize with config super().__init__(config) if encoder is None: from ..auto.modeling_auto import AutoModel encoder = AutoModel.from_config(config.encoder) if decoder is None: from ..auto.modeling_auto import AutoModelForCausalLM decoder = AutoModelForCausalLM.from_config(config.decoder) self.encoder = encoder self.decoder = decoder if self.encoder.config.to_dict() != self.config.encoder.to_dict(): logger.warning( f"Config of the encoder: {self.encoder.__class__} is overwritten by shared encoder config:" f" {self.config.encoder}" ) if self.decoder.config.to_dict() != self.config.decoder.to_dict(): logger.warning( f"Config of the decoder: {self.decoder.__class__} is overwritten by shared decoder config:" f" {self.config.decoder}" ) # make sure that the individual model's config refers to the shared config # so that the updates to the config will be synced self.encoder.config = self.config.encoder self.decoder.config = self.config.decoder # encoder outputs might need to be projected to different dimension for decoder if ( self.encoder.config.hidden_size != self.decoder.config.hidden_size and self.decoder.config.cross_attention_hidden_size is None ): self.enc_to_dec_proj = nn.Linear(self.encoder.config.hidden_size, self.decoder.config.hidden_size) if self.encoder.get_output_embeddings() is not None: raise ValueError( f"The encoder {self.encoder} should not have a LM Head. Please use a model without LM Head" ) decoder_signature = set(inspect.signature(self.decoder.forward).parameters.keys()) if "encoder_hidden_states" not in decoder_signature: raise ValueError( "The selected decoder is not prepared for the encoder hidden states to be passed. Please see the " "following discussion on GitHub: https://github.com/huggingface/transformers/issues/23350" ) # tie encoder, decoder weights if config set accordingly self.tie_weights() def tie_weights(self): # tie encoder & decoder if needed if self.config.tie_encoder_decoder: # tie encoder and decoder base model decoder_base_model_prefix = self.decoder.base_model_prefix self._tie_encoder_decoder_weights( self.encoder, self.decoder._modules[decoder_base_model_prefix], self.decoder.base_model_prefix ) def _set_gradient_checkpointing(self, module, value=False): # call both encoder and decoder function on gradient checkpointing self.encoder._set_gradient_checkpointing(module, value=value) self.decoder._set_gradient_checkpointing(module, value=value) def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder def get_input_embeddings(self): return self.encoder.get_input_embeddings() def get_output_embeddings(self): return self.decoder.get_output_embeddings() def set_output_embeddings(self, new_embeddings): return self.decoder.set_output_embeddings(new_embeddings) @classmethod def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): r""" Example: ```python >>> from transformers import EncoderDecoderModel >>> model = EncoderDecoderModel.from_pretrained("patrickvonplaten/bert2bert-cnn_dailymail-fp16") ```""" from_tf = kwargs.pop("from_tf", False) if from_tf: from transformers import TFEncoderDecoderModel # a workaround to load from tensorflow checkpoint # Using `_tf_model` won't work, because the weight names in the encoder/decoder of `_tf_model` get # extended before saving those components. For example, The name of `_tf_model.encoder.vit` is # `[top model name]/encoder/vit`, but the name of `tf_model.encoder.vit` is `[top model name]/vit`. The # [top model name] is handled (stripped) by the conversion method, and the former case gets extra `encoder`, # which should not occur when we want to save the components alone. # There was a (very) ugly potential fix, which wasn't integrated to `transformers`: see # https://github.com/huggingface/transformers/pull/13222/commits/dbb3c9de76eee235791d2064094654637c99f36d#r697304245 # (the change in `src/transformers/modeling_tf_utils.py`) _tf_model = TFEncoderDecoderModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) config = _tf_model.config # Using `tf_model` instead encoder = _tf_model.encoder.__class__(_tf_model.config.encoder) decoder = _tf_model.decoder.__class__(_tf_model.config.decoder) # Make sure models are built encoder(encoder.dummy_inputs) decoder(decoder.dummy_inputs) # Get the variable correspondence between `_tf_model` and `encoder` and `decoder` encoder_variables = {} for v in encoder.trainable_variables + encoder.non_trainable_variables: encoder_variables["/".join(v.name.split("/")[1:])] = v decoder_variables = {} for v in decoder.trainable_variables + decoder.non_trainable_variables: decoder_variables["/".join(v.name.split("/")[1:])] = v _encoder_variables = {} for v in _tf_model.encoder.trainable_variables + _tf_model.encoder.non_trainable_variables: _encoder_variables["/".join(v.name.split("/")[2:])] = v _decoder_variables = {} for v in _tf_model.decoder.trainable_variables + _tf_model.decoder.non_trainable_variables: _decoder_variables["/".join(v.name.split("/")[2:])] = v # assign weight values to `encoder` and `decoder` from `_tf_model` for name, v in encoder_variables.items(): v.assign(_encoder_variables[name]) for name, v in decoder_variables.items(): v.assign(_decoder_variables[name]) tf_model = TFEncoderDecoderModel(encoder=encoder, decoder=decoder) # Deal with `enc_to_dec_proj` if hasattr(_tf_model, "enc_to_dec_proj"): tf_model(tf_model.dummy_inputs) tf_model.enc_to_dec_proj.kernel.assign(_tf_model.enc_to_dec_proj.kernel) tf_model.enc_to_dec_proj.bias.assign(_tf_model.enc_to_dec_proj.bias) with tempfile.TemporaryDirectory() as tmpdirname: encoder_dir = os.path.join(tmpdirname, "encoder") decoder_dir = os.path.join(tmpdirname, "decoder") tf_model.encoder.save_pretrained(encoder_dir) tf_model.decoder.save_pretrained(decoder_dir) if hasattr(tf_model, "enc_to_dec_proj"): enc_to_dec_proj_weight = torch.transpose( torch.from_numpy(tf_model.enc_to_dec_proj.kernel.numpy()), 1, 0 ) enc_to_dec_proj_bias = torch.from_numpy(tf_model.enc_to_dec_proj.bias.numpy()) del _tf_model del tf_model gc.collect() model = EncoderDecoderModel.from_encoder_decoder_pretrained( encoder_dir, decoder_dir, encoder_from_tf=True, decoder_from_tf=True ) # This is only for copying some specific attributes of this particular model. model.config = config if hasattr(model, "enc_to_dec_proj"): model.enc_to_dec_proj.weight.data = enc_to_dec_proj_weight model.enc_to_dec_proj.bias.data = enc_to_dec_proj_bias return model # At the moment fast initialization is not supported for composite models if kwargs.get("_fast_init", False): logger.warning( "Fast initialization is currently not supported for EncoderDecoderModel. " "Falling back to slow initialization..." ) kwargs["_fast_init"] = False return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) @classmethod def from_encoder_decoder_pretrained( cls, encoder_pretrained_model_name_or_path: str = None, decoder_pretrained_model_name_or_path: str = None, *model_args, **kwargs, ) -> PreTrainedModel: r""" Instantiate an encoder and a decoder from one or two base classes of the library from pretrained model checkpoints. The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train the model, you need to first set it back in training mode with `model.train()`. Params: encoder_pretrained_model_name_or_path (`str`, *optional*): Information necessary to initiate the encoder. Can be either: - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a user or organization name, like `dbmdz/bert-base-german-cased`. - A path to a *directory* containing model weights saved using [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. - A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In this case, `from_tf` should be set to `True` and a configuration object should be provided as `config` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards. decoder_pretrained_model_name_or_path (`str`, *optional*, defaults to `None`): Information necessary to initiate the decoder. Can be either: - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a user or organization name, like `dbmdz/bert-base-german-cased`. - A path to a *directory* containing model weights saved using [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. - A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In this case, `from_tf` should be set to `True` and a configuration object should be provided as `config` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards. model_args (remaining positional arguments, *optional*): All remaining positional arguments will be passed to the underlying model's `__init__` method. kwargs (remaining dictionary of keyword arguments, *optional*): Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., `output_attentions=True`). - To update the encoder configuration, use the prefix *encoder_* for each configuration parameter. - To update the decoder configuration, use the prefix *decoder_* for each configuration parameter. - To update the parent model configuration, do not use a prefix for each configuration parameter. Behaves differently depending on whether a `config` is provided or automatically loaded. Example: ```python >>> from transformers import EncoderDecoderModel >>> # initialize a bert2bert from two pretrained BERT models. Note that the cross-attention layers will be randomly initialized >>> model = EncoderDecoderModel.from_encoder_decoder_pretrained("bert-base-uncased", "bert-base-uncased") >>> # saving model after fine-tuning >>> model.save_pretrained("./bert2bert") >>> # load fine-tuned model >>> model = EncoderDecoderModel.from_pretrained("./bert2bert") ```""" kwargs_encoder = { argument[len("encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("encoder_") } kwargs_decoder = { argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_") } # remove encoder, decoder kwargs from kwargs for key in kwargs_encoder.keys(): del kwargs["encoder_" + key] for key in kwargs_decoder.keys(): del kwargs["decoder_" + key] # Load and initialize the encoder and decoder # The distinction between encoder and decoder at the model level is made # by the value of the flag `is_decoder` that we need to set correctly. encoder = kwargs_encoder.pop("model", None) if encoder is None: if encoder_pretrained_model_name_or_path is None: raise ValueError( "If `encoder_model` is not defined as an argument, a `encoder_pretrained_model_name_or_path` has " "to be defined." ) if "config" not in kwargs_encoder: encoder_config, kwargs_encoder = AutoConfig.from_pretrained( encoder_pretrained_model_name_or_path, **kwargs_encoder, return_unused_kwargs=True ) if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True: logger.info( f"Initializing {encoder_pretrained_model_name_or_path} as a encoder model " "from a decoder model. Cross-attention and casual mask are disabled." ) encoder_config.is_decoder = False encoder_config.add_cross_attention = False kwargs_encoder["config"] = encoder_config encoder = AutoModel.from_pretrained(encoder_pretrained_model_name_or_path, *model_args, **kwargs_encoder) decoder = kwargs_decoder.pop("model", None) if decoder is None: if decoder_pretrained_model_name_or_path is None: raise ValueError( "If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has " "to be defined." ) if "config" not in kwargs_decoder: decoder_config, kwargs_decoder = AutoConfig.from_pretrained( decoder_pretrained_model_name_or_path, **kwargs_decoder, return_unused_kwargs=True ) if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False: logger.info( f"Initializing {decoder_pretrained_model_name_or_path} as a decoder model. Cross attention" f" layers are added to {decoder_pretrained_model_name_or_path} and randomly initialized if" f" {decoder_pretrained_model_name_or_path}'s architecture allows for cross attention layers." ) decoder_config.is_decoder = True decoder_config.add_cross_attention = True kwargs_decoder["config"] = decoder_config if kwargs_decoder["config"].is_decoder is False or kwargs_decoder["config"].add_cross_attention is False: logger.warning( f"Decoder model {decoder_pretrained_model_name_or_path} is not initialized as a decoder. " f"In order to initialize {decoder_pretrained_model_name_or_path} as a decoder, " "make sure that the attributes `is_decoder` and `add_cross_attention` of `decoder_config` " "passed to `.from_encoder_decoder_pretrained(...)` are set to `True` or do not pass a " "`decoder_config` to `.from_encoder_decoder_pretrained(...)`" ) decoder = AutoModelForCausalLM.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs_decoder) # instantiate config with corresponding kwargs config = EncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config, **kwargs) return cls(encoder=encoder, decoder=decoder, config=config) @add_start_docstrings_to_model_forward(ENCODER_DECODER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.BoolTensor] = None, encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None, past_key_values: Tuple[Tuple[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Tuple, Seq2SeqLMOutput]: r""" Returns: Examples: ```python >>> from transformers import EncoderDecoderModel, BertTokenizer >>> import torch >>> tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") >>> model = EncoderDecoderModel.from_encoder_decoder_pretrained( ... "bert-base-uncased", "bert-base-uncased" ... ) # initialize Bert2Bert from pre-trained checkpoints >>> # training >>> model.config.decoder_start_token_id = tokenizer.cls_token_id >>> model.config.pad_token_id = tokenizer.pad_token_id >>> model.config.vocab_size = model.config.decoder.vocab_size >>> input_ids = tokenizer("This is a really long text", return_tensors="pt").input_ids >>> labels = tokenizer("This is the corresponding summary", return_tensors="pt").input_ids >>> outputs = model(input_ids=input_ids, labels=labels) >>> loss, logits = outputs.loss, outputs.logits >>> # save and load from pretrained >>> model.save_pretrained("bert2bert") >>> model = EncoderDecoderModel.from_pretrained("bert2bert") >>> # generation >>> generated = model.generate(input_ids) ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict kwargs_encoder = {argument: value for argument, value in kwargs.items() if not argument.startswith("decoder_")} kwargs_decoder = { argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_") } if encoder_outputs is None: encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, **kwargs_encoder, ) elif isinstance(encoder_outputs, tuple): encoder_outputs = BaseModelOutput(*encoder_outputs) encoder_hidden_states = encoder_outputs[0] # optionally project encoder_hidden_states if ( self.encoder.config.hidden_size != self.decoder.config.hidden_size and self.decoder.config.cross_attention_hidden_size is None ): encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states) if (labels is not None) and (decoder_input_ids is None and decoder_inputs_embeds is None): decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) # Decode decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=attention_mask, inputs_embeds=decoder_inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache, past_key_values=past_key_values, return_dict=return_dict, **kwargs_decoder, ) # Compute loss independent from decoder (as some shift the logits inside them) loss = None if labels is not None: warnings.warn(DEPRECATION_WARNING, FutureWarning) logits = decoder_outputs.logits if return_dict else decoder_outputs[0] loss_fct = CrossEntropyLoss() loss = loss_fct(logits.reshape(-1, self.decoder.config.vocab_size), labels.view(-1)) if not return_dict: if loss is not None: return (loss,) + decoder_outputs + encoder_outputs else: return decoder_outputs + encoder_outputs return Seq2SeqLMOutput( loss=loss, logits=decoder_outputs.logits, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, use_cache=None, encoder_outputs=None, **kwargs ): decoder_inputs = self.decoder.prepare_inputs_for_generation(input_ids, past_key_values=past_key_values) decoder_attention_mask = decoder_inputs["attention_mask"] if "attention_mask" in decoder_inputs else None input_dict = { "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "decoder_input_ids": decoder_inputs["input_ids"], "encoder_outputs": encoder_outputs, "past_key_values": decoder_inputs["past_key_values"], "use_cache": use_cache, } return input_dict def resize_token_embeddings(self, *args, **kwargs): raise NotImplementedError( "Resizing the embedding layers via the EncoderDecoderModel directly is not supported. Please use the" " respective methods of the wrapped objects (model.encoder.resize_token_embeddings(...) or" " model.decoder.resize_token_embeddings(...))" ) def _reorder_cache(self, past_key_values, beam_idx): # apply decoder cache reordering here return self.decoder._reorder_cache(past_key_values, beam_idx)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/encoder_decoder/modeling_tf_encoder_decoder.py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Classes to support TF Encoder-Decoder architectures""" from __future__ import annotations import inspect import re import warnings from typing import Optional, Tuple, Union import numpy as np import tensorflow as tf from ...configuration_utils import PretrainedConfig from ...modeling_tf_outputs import TFBaseModelOutput, TFSeq2SeqLMOutput from ...modeling_tf_utils import ( TFCausalLanguageModelingLoss, TFModelInputType, TFPreTrainedModel, get_initializer, unpack_inputs, ) from ...tf_utils import shape_list from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ..auto.configuration_auto import AutoConfig from ..auto.modeling_tf_auto import TFAutoModel, TFAutoModelForCausalLM from .configuration_encoder_decoder import EncoderDecoderConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "EncoderDecoderConfig" DEPRECATION_WARNING = ( "Version v4.17.0 introduces a better way to train encoder-decoder models by computing the loss inside the" " encoder-decoder framework rather than in the decoder itself. You may observe training discrepancies if" " fine-tuning a model trained with versions anterior to 4.17.0. The decoder_input_ids are now created based on the" " labels, no need to pass them yourself anymore." ) ENCODER_DECODER_START_DOCSTRING = r""" This class can be used to initialize a sequence-to-sequence model with any pretrained autoencoding model as the encoder and any pretrained autoregressive model as the decoder. The encoder is loaded via [`~TFAutoModel.from_pretrained`] function and the decoder is loaded via [`~TFAutoModelForCausalLM.from_pretrained`] function. Cross-attention layers are automatically added to the decoder and should be fine-tuned on a downstream generative task, like summarization. The effectiveness of initializing sequence-to-sequence models with pretrained checkpoints for sequence generation tasks was shown in [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. After such an Encoder Decoder model has been trained/fine-tuned, it can be saved/loaded just like any other models (see the examples for more information). This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. Parameters: config ([`EncoderDecoderConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ ENCODER_DECODER_INPUTS_DOCSTRING = r""" Args: input_ids (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`np.ndarray` or `tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). Provide for sequence to sequence training to the decoder. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. decoder_attention_mask (`np.ndarray` or `tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. encoder_outputs (`tuple(tuple(tf.Tensor)`, *optional*): This tuple must consist of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) `last_hidden_state` (`tf.Tensor` of shape `({0}, hidden_size)`) is a tensor of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. past_key_values (`tuple(tuple(tf.Tensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `({0})`. inputs_embeds (`np.ndarray` or `tf.Tensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. decoder_inputs_embeds (`np.ndarray` or `tf.Tensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. labels (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): Labels for computing the masked language modeling loss for the decoder. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): If set to `True`, the model will return a [`~utils.Seq2SeqLMOutput`] instead of a plain tuple. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). kwargs (*optional*): Remaining dictionary of keyword arguments. Keyword arguments come in two flavors: - Without a prefix which will be input as `**encoder_kwargs` for the encoder forward function. - With a *decoder_* prefix which will be input as `**decoder_kwargs`` for the decoder forward function. """ def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_token_id: int): if pad_token_id is None: raise ValueError("Make sure to set the pad_token_id attribute of the model's configuration.") pad_token_id = tf.cast(pad_token_id, input_ids.dtype) if decoder_start_token_id is None: raise ValueError("Make sure to set the decoder_start_token_id attribute of the model's configuration.") decoder_start_token_id = tf.cast(decoder_start_token_id, input_ids.dtype) start_tokens = tf.fill((shape_list(input_ids)[0], 1), decoder_start_token_id) shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1) # replace possible -100 values in labels by `pad_token_id` shifted_input_ids = tf.where( shifted_input_ids == -100, tf.fill(shape_list(shifted_input_ids), pad_token_id), shifted_input_ids ) # "Verify that `labels` has only positive values and -100" assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype)) # Make sure the assertion op is called by wrapping the result in an identity no-op with tf.control_dependencies([assert_gte0]): shifted_input_ids = tf.identity(shifted_input_ids) return shifted_input_ids @add_start_docstrings(ENCODER_DECODER_START_DOCSTRING) class TFEncoderDecoderModel(TFPreTrainedModel, TFCausalLanguageModelingLoss): r""" [`TFEncoderDecoderModel`] is a generic model class that will be instantiated as a transformer architecture with one of the base model classes of the library as encoder and another one as decoder when created with the [`~TFAutoModel.from_pretrained`] class method for the encoder and [`~TFAutoModelForCausalLM.from_pretrained`] class method for the decoder. """ config_class = EncoderDecoderConfig base_model_prefix = "encoder_decoder" load_weight_prefix = "tf_encoder_decoder_model" def __init__( self, config: Optional[PretrainedConfig] = None, encoder: Optional[TFPreTrainedModel] = None, decoder: Optional[TFPreTrainedModel] = None, ): if config is None and (encoder is None or decoder is None): raise ValueError("Either a configuration or an encoder and a decoder has to be provided.") if config is None: config = EncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config) else: if not isinstance(config, self.config_class): raise ValueError(f"config: {config} has to be of type {self.config_class}") if config.decoder.cross_attention_hidden_size is not None: if config.decoder.cross_attention_hidden_size != config.encoder.hidden_size: raise ValueError( "If `cross_attention_hidden_size` is specified in the decoder's configuration, it has to be equal" f" to the encoder's `hidden_size`. Got {config.decoder.cross_attention_hidden_size} for" f" `config.decoder.cross_attention_hidden_size` and {config.encoder.hidden_size} for" " `config.encoder.hidden_size`." ) # initialize with config super().__init__(config) if encoder is None: encoder = TFAutoModel.from_config(config.encoder, name="encoder") if decoder is None: decoder = TFAutoModelForCausalLM.from_config(config.decoder, name="decoder") self.encoder = encoder self.decoder = decoder if self.encoder.config.to_dict() != self.config.encoder.to_dict(): logger.warning( f"Config of the encoder: {self.encoder.__class__} is overwritten by shared encoder config:" f" {self.config.encoder}" ) if self.decoder.config.to_dict() != self.config.decoder.to_dict(): logger.warning( f"Config of the decoder: {self.decoder.__class__} is overwritten by shared decoder config:" f" {self.config.decoder}" ) # make sure that the individual model's config refers to the shared config # so that the updates to the config will be synced self.encoder.config = self.config.encoder self.decoder.config = self.config.decoder # encoder outputs might need to be projected to different dimension for decoder if ( self.encoder.config.hidden_size != self.decoder.config.hidden_size and self.decoder.config.cross_attention_hidden_size is None ): self.enc_to_dec_proj = tf.keras.layers.Dense( units=self.decoder.config.hidden_size, kernel_initializer=get_initializer(config.encoder.initializer_range), name="enc_to_dec_proj", ) if self.encoder.get_output_embeddings() is not None: raise ValueError( f"The encoder {self.encoder} should not have a LM Head. Please use a model without LM Head" ) decoder_signature = set(inspect.signature(self.decoder.call).parameters.keys()) if "encoder_hidden_states" not in decoder_signature: raise ValueError( "The selected decoder is not prepared for the encoder hidden states to be passed. Please see the " "following discussion on GitHub: https://github.com/huggingface/transformers/issues/23350" ) def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder def get_input_embeddings(self): return self.encoder.get_input_embeddings() def get_output_embeddings(self): return self.decoder.get_output_embeddings() def set_output_embeddings(self, new_embeddings): return self.decoder.set_output_embeddings(new_embeddings) @classmethod def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): r""" Example: ```python >>> from transformers import TFEncoderDecoderModel >>> model = TFEncoderDecoderModel.from_pretrained("ydshieh/bert2bert-cnn_dailymail-fp16") ```""" # Matt: The TF and PT weights don't align because our TF base classes have an extra layer compared to PT models # (the main model stem is in the MainLayer class). If we remove that layer, then weight names sync up as normal. # However, the name of that extra layer is the name of the MainLayer in the base model. We make the assumption # here that the config model_type is the same as the name of the MainLayer. I don't know of anywhere that's # not the case, and I wasn't sure how else to go from the config to the correct MainLayer name! if kwargs.get("from_pt", False): config = AutoConfig.from_pretrained(pretrained_model_name_or_path) encoder_model_type = config.encoder.model_type def tf_to_pt_weight_rename(tf_weight): if "encoder" in tf_weight and "decoder" not in tf_weight: return re.sub(rf"encoder\.{encoder_model_type}\.", "encoder.", tf_weight) else: return tf_weight kwargs["tf_to_pt_weight_rename"] = tf_to_pt_weight_rename return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) @classmethod def from_encoder_decoder_pretrained( cls, encoder_pretrained_model_name_or_path: str = None, decoder_pretrained_model_name_or_path: str = None, *model_args, **kwargs, ) -> TFPreTrainedModel: r""" Instantiate an encoder and a decoder from one or two base classes of the library from pretrained model checkpoints. Params: encoder_pretrained_model_name_or_path (`str`, *optional*): Information necessary to initiate the encoder. Can be either: - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a user or organization name, like `dbmdz/bert-base-german-cased`. - A path to a *directory* containing model weights saved using [`~TFPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. - A path or url to a *pytorch index checkpoint file* (e.g, `./pt_model/`). In this case, `encoder_from_pt` should be set to `True`. decoder_pretrained_model_name_or_path (`str`, *optional*, defaults to `None`): Information necessary to initiate the decoder. Can be either: - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a user or organization name, like `dbmdz/bert-base-german-cased`. - A path to a *directory* containing model weights saved using [`~TFPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. - A path or url to a *pytorch checkpoint file* (e.g, `./pt_model/`). In this case, `decoder_from_pt` should be set to `True`. model_args (remaining positional arguments, *optional*): All remaning positional arguments will be passed to the underlying model's `__init__` method. kwargs (remaining dictionary of keyword arguments, *optional*): Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., `output_attentions=True`). - To update the encoder configuration, use the prefix *encoder_* for each configuration parameter. - To update the decoder configuration, use the prefix *decoder_* for each configuration parameter. - To update the parent model configuration, do not use a prefix for each configuration parameter. Behaves differently depending on whether a `config` is provided or automatically loaded. Example: ```python >>> from transformers import TFEncoderDecoderModel >>> # initialize a bert2gpt2 from two pretrained BERT models. Note that the cross-attention layers will be randomly initialized >>> model = TFEncoderDecoderModel.from_encoder_decoder_pretrained("bert-base-uncased", "gpt2") >>> # saving model after fine-tuning >>> model.save_pretrained("./bert2gpt2") >>> # load fine-tuned model >>> model = TFEncoderDecoderModel.from_pretrained("./bert2gpt2") ```""" kwargs_encoder = { argument[len("encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("encoder_") } kwargs_decoder = { argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_") } # remove encoder, decoder kwargs from kwargs for key in kwargs_encoder.keys(): del kwargs["encoder_" + key] for key in kwargs_decoder.keys(): del kwargs["decoder_" + key] # Load and initialize the encoder and decoder # The distinction between encoder and decoder at the model level is made # by the value of the flag `is_decoder` that we need to set correctly. encoder = kwargs_encoder.pop("model", None) if encoder is None: if encoder_pretrained_model_name_or_path is None: raise ValueError( "If `encoder_model` is not defined as an argument, a `encoder_pretrained_model_name_or_path` has " "to be defined." ) if "config" not in kwargs_encoder: encoder_config = AutoConfig.from_pretrained(encoder_pretrained_model_name_or_path) if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True: logger.info( f"Initializing {encoder_pretrained_model_name_or_path} as a encoder model " "from a decoder model. Cross-attention and casual mask are disabled." ) encoder_config.is_decoder = False encoder_config.add_cross_attention = False kwargs_encoder["config"] = encoder_config kwargs_encoder["name"] = "encoder" kwargs_encoder["load_weight_prefix"] = cls.load_weight_prefix encoder = TFAutoModel.from_pretrained(encoder_pretrained_model_name_or_path, *model_args, **kwargs_encoder) decoder = kwargs_decoder.pop("model", None) if decoder is None: if decoder_pretrained_model_name_or_path is None: raise ValueError( "If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has " "to be defined." ) if "config" not in kwargs_decoder: decoder_config = AutoConfig.from_pretrained(decoder_pretrained_model_name_or_path) if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False: logger.info( f"Initializing {decoder_pretrained_model_name_or_path} as a decoder model. Cross attention" f" layers are added to {decoder_pretrained_model_name_or_path} and randomly initialized if" f" {decoder_pretrained_model_name_or_path}'s architecture allows for cross attention layers." ) decoder_config.is_decoder = True decoder_config.add_cross_attention = True kwargs_decoder["config"] = decoder_config if kwargs_decoder["config"].is_decoder is False or kwargs_decoder["config"].add_cross_attention is False: logger.warning( f"Decoder model {decoder_pretrained_model_name_or_path} is not initialized as a decoder. " f"In order to initialize {decoder_pretrained_model_name_or_path} as a decoder, " "make sure that the attributes `is_decoder` and `add_cross_attention` of `decoder_config` " "passed to `.from_encoder_decoder_pretrained(...)` are set to `True` or do not pass a " "`decoder_config` to `.from_encoder_decoder_pretrained(...)`" ) kwargs_decoder["name"] = "decoder" kwargs_decoder["load_weight_prefix"] = cls.load_weight_prefix decoder = TFAutoModelForCausalLM.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs_decoder) # Make sure these 2 `tf.keras.Model` have fixed names so `from_pretrained` could load model weights correctly. if encoder.name != "encoder": raise ValueError("encoder model must be created with the name `encoder`.") if decoder.name != "decoder": raise ValueError("decoder model must be created with the name `decoder`.") # instantiate config with corresponding kwargs config = EncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config, **kwargs) return cls(encoder=encoder, decoder=decoder, config=config) @unpack_inputs @add_start_docstrings_to_model_forward(ENCODER_DECODER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, decoder_input_ids: np.ndarray | tf.Tensor | None = None, decoder_attention_mask: np.ndarray | tf.Tensor | None = None, encoder_outputs: np.ndarray | tf.Tensor | None = None, past_key_values: Tuple[Tuple[tf.Tensor]] | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None, labels: np.ndarray | tf.Tensor | None = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, **kwargs, ) -> Union[TFSeq2SeqLMOutput, Tuple[tf.Tensor]]: r""" Returns: Examples: ```python >>> from transformers import TFEncoderDecoderModel, BertTokenizer >>> # initialize a bert2gpt2 from a pretrained BERT and GPT2 models. Note that the cross-attention layers will be randomly initialized >>> model = TFEncoderDecoderModel.from_encoder_decoder_pretrained("bert-base-cased", "gpt2") >>> tokenizer = BertTokenizer.from_pretrained("bert-base-cased") >>> # forward >>> input_ids = tokenizer.encode( ... "Hello, my dog is cute", add_special_tokens=True, return_tensors="tf" ... ) # Batch size 1 >>> outputs = model(input_ids=input_ids, decoder_input_ids=input_ids) >>> # training >>> outputs = model(input_ids=input_ids, decoder_input_ids=input_ids, labels=input_ids) >>> loss, logits = outputs.loss, outputs.logits >>> # save and load from pretrained >>> model.save_pretrained("bert2gpt2") >>> model = TFEncoderDecoderModel.from_pretrained("bert2gpt2") >>> # generation >>> generated = model.generate(input_ids, decoder_start_token_id=model.config.decoder.bos_token_id) ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict kwargs_encoder = {argument: value for argument, value in kwargs.items() if not argument.startswith("decoder_")} kwargs_decoder = { argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_") } # Let the user be responsible for the expected format. if encoder_outputs is not None: if return_dict and not isinstance(encoder_outputs, ModelOutput): raise ValueError( "If `return_dict=True` and `encoder_outputs` is provided, it should be an instance of " f"`ModelOutput`. Got an instance {type(encoder_outputs)} for `encoder_outputs`." ) if encoder_outputs is None: encoder_inputs = { "input_ids": input_ids, "attention_mask": attention_mask, "inputs_embeds": inputs_embeds, "output_attentions": output_attentions, "output_hidden_states": output_hidden_states, "return_dict": return_dict, "training": training, } # Add arguments to encoder from `kwargs_encoder` encoder_inputs.update(kwargs_encoder) # Handle the case where the inputs are passed as a single dict which contains `labels`. # The `labels` shouldn't be passed to `self.encoder` below, because it is a based model without this # parameter (otherwise, an error occurs when `input_processing` is called inside `self.encoder.call()`). if "labels" in encoder_inputs: labels = encoder_inputs.pop("labels") # handle the init case where `dummy_inputs` returns a dict containing `decoder_input_ids`. if "decoder_input_ids" in encoder_inputs: decoder_input_ids = encoder_inputs.pop("decoder_input_ids") # handle the init case where `dummy_inputs` returns a dict containing `decoder_input_ids`. if "decoder_attention_mask" in encoder_inputs: decoder_attention_mask = encoder_inputs.pop("decoder_attention_mask") encoder_outputs = self.encoder(**encoder_inputs) encoder_hidden_states = encoder_outputs[0] # optionally project encoder_hidden_states if ( self.encoder.config.hidden_size != self.decoder.config.hidden_size and self.decoder.config.cross_attention_hidden_size is None ): encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states) if (labels is not None) and (decoder_input_ids is None and decoder_inputs_embeds is None): decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) decoder_inputs = { "input_ids": decoder_input_ids, "attention_mask": decoder_attention_mask, "encoder_hidden_states": encoder_hidden_states, "encoder_attention_mask": attention_mask, "inputs_embeds": decoder_inputs_embeds, "output_attentions": output_attentions, "output_hidden_states": output_hidden_states, "use_cache": use_cache, "past_key_values": past_key_values, "return_dict": return_dict, "training": training, } # Add arguments to decoder from `kwargs_decoder` decoder_inputs.update(kwargs_decoder) decoder_outputs = self.decoder(**decoder_inputs) logits = decoder_outputs[0] # Compute loss independent from decoder (as some shift the logits inside them) loss = None if labels is not None: warnings.warn(DEPRECATION_WARNING, FutureWarning) loss = self.hf_compute_loss(labels, logits) if not return_dict: past_key_values = None if use_cache: past_key_values = decoder_outputs[1] # The starting index of the remaining elements in `decoder_outputs` start_index = sum([1 if x is not None else 0 for x in (loss, logits, past_key_values)]) if not isinstance(encoder_outputs, tuple): encoder_outputs = encoder_outputs.to_tuple() output = (loss, logits, past_key_values) + decoder_outputs[start_index:] + encoder_outputs output = tuple([x for x in output if x is not None]) return output return TFSeq2SeqLMOutput( loss=loss, logits=decoder_outputs.logits, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, use_cache=None, encoder_outputs=None, **kwargs ): decoder_inputs = self.decoder.prepare_inputs_for_generation(input_ids, past_key_values=past_key_values) decoder_attention_mask = decoder_inputs["attention_mask"] if "attention_mask" in decoder_inputs else None past_key_values = decoder_inputs.get("past_key_values") if past_key_values is None: past_key_values = decoder_inputs.get("past") # e.g. on TF GPT2 input_dict = { "input_ids": None, # needs to be passed to make Keras.layer.__call__ happy "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "decoder_input_ids": decoder_inputs["input_ids"], # TODO (joao): the `TFBaseModelOutput` wrapper should not be needed after the generate refactor is complete "encoder_outputs": TFBaseModelOutput(last_hidden_state=encoder_outputs[0]), "past_key_values": past_key_values, "use_cache": use_cache, } return input_dict def prepare_decoder_input_ids_from_labels(self, labels: tf.Tensor): return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id) def resize_token_embeddings(self, *args, **kwargs): raise NotImplementedError( "Resizing the embedding layers via the TFEncoderDecoderModel directly is not supported.Please use the" " respective methods of the wrapped objects (model.encoder.resize_token_embeddings(...) or" " model.decoder.resize_token_embeddings(...))" ) def _reorder_cache(self, past, beam_idx): # apply decoder cache reordering here return self.decoder._reorder_cache(past, beam_idx)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/flaubert/__init__.py
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _import_structure = { "configuration_flaubert": ["FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "FlaubertConfig", "FlaubertOnnxConfig"], "tokenization_flaubert": ["FlaubertTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_flaubert"] = [ "FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaubertForMultipleChoice", "FlaubertForQuestionAnswering", "FlaubertForQuestionAnsweringSimple", "FlaubertForSequenceClassification", "FlaubertForTokenClassification", "FlaubertModel", "FlaubertWithLMHeadModel", "FlaubertPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_flaubert"] = [ "TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFFlaubertForMultipleChoice", "TFFlaubertForQuestionAnsweringSimple", "TFFlaubertForSequenceClassification", "TFFlaubertForTokenClassification", "TFFlaubertModel", "TFFlaubertPreTrainedModel", "TFFlaubertWithLMHeadModel", ] if TYPE_CHECKING: from .configuration_flaubert import FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, FlaubertConfig, FlaubertOnnxConfig from .tokenization_flaubert import FlaubertTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flaubert import ( FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertPreTrainedModel, FlaubertWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_flaubert import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertPreTrainedModel, TFFlaubertWithLMHeadModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/flaubert/modeling_tf_flaubert.py
# coding=utf-8 # Copyright 2019-present, Facebook, Inc and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 Flaubert model. """ from __future__ import annotations import itertools import random import warnings from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import numpy as np import tensorflow as tf from ...activations_tf import get_tf_activation from ...modeling_tf_outputs import ( TFBaseModelOutput, TFMultipleChoiceModelOutput, TFQuestionAnsweringModelOutput, TFSequenceClassifierOutput, TFTokenClassifierOutput, ) from ...modeling_tf_utils import ( TFModelInputType, TFMultipleChoiceLoss, TFPreTrainedModel, TFQuestionAnsweringLoss, TFSequenceClassificationLoss, TFSequenceSummary, TFSharedEmbeddings, TFTokenClassificationLoss, get_initializer, keras_serializable, unpack_inputs, ) from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax from ...utils import ( MULTIPLE_CHOICE_DUMMY_INPUTS, ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, ) from .configuration_flaubert import FlaubertConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "flaubert/flaubert_base_cased" _CONFIG_FOR_DOC = "FlaubertConfig" TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST = [ # See all Flaubert models at https://huggingface.co/models?filter=flaubert ] FLAUBERT_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Parameters: config ([`FlaubertConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ FLAUBERT_INPUTS_DOCSTRING = r""" Args: input_ids (`Numpy array` or `tf.Tensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and [`PreTrainedTokenizer.encode`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`Numpy array` or `tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - `1` for tokens that are **not masked**, - `0` for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) langs (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`, *optional*): A parallel sequence of tokens to be used to indicate the language of each token in the input. Indices are languages ids which can be obtained from the language names by using two conversion mappings provided in the configuration of the model (only provided for multilingual models). More precisely, the *language name to language id* mapping is in `model.config.lang2id` (which is a dictionary string to int) and the *language id to language name* mapping is in `model.config.id2lang` (dictionary int to string). See usage examples detailed in the [multilingual documentation](../multilingual). token_type_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - `0` corresponds to a *sentence A* token, - `1` corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) lengths (`tf.Tensor` or `Numpy array` of shape `(batch_size,)`, *optional*): Length of each sentence that can be used to avoid performing attention on padding token indices. You can also use *attention_mask* for the same result (see above), kept here for compatibility Indices selected in `[0, ..., input_ids.size(-1)]`: cache (`Dict[str, tf.Tensor]`, *optional*): Dictionary string to `tf.FloatTensor` that contains precomputed hidden states (key and values in the attention blocks) as computed by the model (see `cache` output below). Can be used to speed up sequential decoding. The dictionary object will be modified in-place during the forward pass to add newly computed hidden-states. head_mask (`Numpy array` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - `1` indicates the head is **not masked**, - `0` indicates the head is **masked**. inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ def get_masks(slen, lengths, causal, padding_mask=None): """ Generate hidden states mask, and optionally an attention mask. """ bs = shape_list(lengths)[0] if padding_mask is not None: mask = padding_mask else: # assert lengths.max().item() <= slen alen = tf.range(slen, dtype=lengths.dtype) mask = alen < tf.expand_dims(lengths, axis=1) # attention mask is the same as mask, or triangular inferior attention (causal) if causal: attn_mask = tf.less_equal( tf.tile(tf.reshape(alen, (1, 1, slen)), (bs, slen, 1)), tf.reshape(alen, (1, slen, 1)) ) else: attn_mask = mask # sanity check # assert shape_list(mask) == [bs, slen] tf.debugging.assert_equal(shape_list(mask), [bs, slen]) if causal: tf.debugging.assert_equal(shape_list(attn_mask), [bs, slen, slen]) return mask, attn_mask class TFFlaubertPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = FlaubertConfig base_model_prefix = "transformer" @property def dummy_inputs(self): # Sometimes Flaubert has language embeddings so don't forget to build them as well if needed inputs_list = tf.constant([[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]], dtype=tf.int32) attns_list = tf.constant([[1, 1, 0, 0, 1], [1, 1, 1, 0, 0], [1, 0, 0, 1, 1]], dtype=tf.int32) if self.config.use_lang_emb and self.config.n_langs > 1: return { "input_ids": inputs_list, "attention_mask": attns_list, "langs": tf.constant([[1, 1, 0, 0, 1], [1, 1, 1, 0, 0], [1, 0, 0, 1, 1]], dtype=tf.int32), } else: return {"input_ids": inputs_list, "attention_mask": attns_list} @add_start_docstrings( "The bare Flaubert Model transformer outputting raw hidden-states without any specific head on top.", FLAUBERT_START_DOCSTRING, ) class TFFlaubertModel(TFFlaubertPreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.transformer = TFFlaubertMainLayer(config, name="transformer") @unpack_inputs @add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFBaseModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: np.ndarray | tf.Tensor | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, langs: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, lengths: np.ndarray | tf.Tensor | None = None, cache: Optional[Dict[str, tf.Tensor]] = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[Tuple, TFBaseModelOutput]: outputs = self.transformer( input_ids=input_ids, attention_mask=attention_mask, langs=langs, token_type_ids=token_type_ids, position_ids=position_ids, lengths=lengths, cache=cache, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs # Copied from transformers.models.xlm.modeling_tf_xlm.TFXLMMultiHeadAttention with XLM->Flaubert class TFFlaubertMultiHeadAttention(tf.keras.layers.Layer): NEW_ID = itertools.count() def __init__(self, n_heads, dim, config, **kwargs): super().__init__(**kwargs) self.layer_id = next(TFFlaubertMultiHeadAttention.NEW_ID) self.dim = dim self.n_heads = n_heads self.output_attentions = config.output_attentions assert self.dim % self.n_heads == 0 self.q_lin = tf.keras.layers.Dense(dim, kernel_initializer=get_initializer(config.init_std), name="q_lin") self.k_lin = tf.keras.layers.Dense(dim, kernel_initializer=get_initializer(config.init_std), name="k_lin") self.v_lin = tf.keras.layers.Dense(dim, kernel_initializer=get_initializer(config.init_std), name="v_lin") self.out_lin = tf.keras.layers.Dense(dim, kernel_initializer=get_initializer(config.init_std), name="out_lin") self.dropout = tf.keras.layers.Dropout(config.attention_dropout) self.pruned_heads = set() def prune_heads(self, heads): raise NotImplementedError def call(self, input, mask, kv, cache, head_mask, output_attentions, training=False): """ Self-attention (if kv is None) or attention over source sentence (provided by kv). """ # Input is (bs, qlen, dim) # Mask is (bs, klen) (non-causal) or (bs, klen, klen) bs, qlen, dim = shape_list(input) if kv is None: klen = qlen if cache is None else cache["slen"] + qlen else: klen = shape_list(kv)[1] # assert dim == self.dim, f'Dimensions do not match: {dim} input vs {self.dim} configured' dim_per_head = self.dim // self.n_heads mask_reshape = (bs, 1, qlen, klen) if len(shape_list(mask)) == 3 else (bs, 1, 1, klen) def shape(x): """projection""" return tf.transpose(tf.reshape(x, (bs, -1, self.n_heads, dim_per_head)), perm=(0, 2, 1, 3)) def unshape(x): """compute context""" return tf.reshape(tf.transpose(x, perm=(0, 2, 1, 3)), (bs, -1, self.n_heads * dim_per_head)) q = shape(self.q_lin(input)) # (bs, n_heads, qlen, dim_per_head) if kv is None: k = shape(self.k_lin(input)) # (bs, n_heads, qlen, dim_per_head) v = shape(self.v_lin(input)) # (bs, n_heads, qlen, dim_per_head) elif cache is None or self.layer_id not in cache: k = v = kv k = shape(self.k_lin(k)) # (bs, n_heads, qlen, dim_per_head) v = shape(self.v_lin(v)) # (bs, n_heads, qlen, dim_per_head) if cache is not None: if self.layer_id in cache: if kv is None: k_, v_ = cache[self.layer_id] k = tf.concat([k_, k], axis=2) # (bs, n_heads, klen, dim_per_head) v = tf.concat([v_, v], axis=2) # (bs, n_heads, klen, dim_per_head) else: k, v = cache[self.layer_id] cache[self.layer_id] = (k, v) f_dim_per_head = tf.cast(dim_per_head, dtype=q.dtype) q = tf.multiply(q, tf.math.rsqrt(f_dim_per_head)) # (bs, n_heads, qlen, dim_per_head) k = tf.cast(k, dtype=q.dtype) scores = tf.matmul(q, k, transpose_b=True) # (bs, n_heads, qlen, klen) mask = tf.reshape(mask, mask_reshape) # (bs, n_heads, qlen, klen) # scores.masked_fill_(mask, -float('inf')) # (bs, n_heads, qlen, klen) mask = tf.cast(mask, dtype=scores.dtype) scores = scores - 1e30 * (1.0 - mask) weights = stable_softmax(scores, axis=-1) # (bs, n_heads, qlen, klen) weights = self.dropout(weights, training=training) # (bs, n_heads, qlen, klen) # Mask heads if we want to if head_mask is not None: weights = weights * head_mask context = tf.matmul(weights, v) # (bs, n_heads, qlen, dim_per_head) context = unshape(context) # (bs, qlen, dim) outputs = (self.out_lin(context),) if output_attentions: outputs = outputs + (weights,) return outputs # Copied from transformers.models.xlm.modeling_tf_xlm.TFXLMTransformerFFN class TFFlaubertTransformerFFN(tf.keras.layers.Layer): def __init__(self, in_dim, dim_hidden, out_dim, config, **kwargs): super().__init__(**kwargs) self.lin1 = tf.keras.layers.Dense(dim_hidden, kernel_initializer=get_initializer(config.init_std), name="lin1") self.lin2 = tf.keras.layers.Dense(out_dim, kernel_initializer=get_initializer(config.init_std), name="lin2") self.act = get_tf_activation("gelu") if config.gelu_activation else get_tf_activation("relu") self.dropout = tf.keras.layers.Dropout(config.dropout) def call(self, input, training=False): x = self.lin1(input) x = self.act(x) x = self.lin2(x) x = self.dropout(x, training=training) return x @keras_serializable class TFFlaubertMainLayer(tf.keras.layers.Layer): config_class = FlaubertConfig def __init__(self, config, **kwargs): super().__init__(**kwargs) self.config = config self.n_heads = config.n_heads self.n_langs = config.n_langs self.dim = config.emb_dim self.hidden_dim = self.dim * 4 self.n_words = config.n_words self.pad_index = config.pad_index self.causal = config.causal self.n_layers = config.n_layers self.use_lang_emb = config.use_lang_emb self.layerdrop = getattr(config, "layerdrop", 0.0) self.pre_norm = getattr(config, "pre_norm", False) self.output_attentions = config.output_attentions self.output_hidden_states = config.output_hidden_states self.return_dict = config.use_return_dict self.max_position_embeddings = config.max_position_embeddings self.embed_init_std = config.embed_init_std self.dropout = tf.keras.layers.Dropout(config.dropout) self.embeddings = TFSharedEmbeddings( self.n_words, self.dim, initializer_range=config.embed_init_std, name="embeddings" ) self.layer_norm_emb = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm_emb") self.attentions = [] self.layer_norm1 = [] self.ffns = [] self.layer_norm2 = [] for i in range(self.n_layers): self.attentions.append( TFFlaubertMultiHeadAttention(self.n_heads, self.dim, config=config, name=f"attentions_._{i}") ) self.layer_norm1.append( tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name=f"layer_norm1_._{i}") ) # if self.is_decoder: # self.layer_norm15.append(nn.LayerNorm(self.dim, eps=config.layer_norm_eps)) # self.encoder_attn.append(MultiHeadAttention(self.n_heads, self.dim, dropout=self.attention_dropout)) self.ffns.append( TFFlaubertTransformerFFN(self.dim, self.hidden_dim, self.dim, config=config, name=f"ffns_._{i}") ) self.layer_norm2.append( tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name=f"layer_norm2_._{i}") ) def build(self, input_shape): with tf.name_scope("position_embeddings"): self.position_embeddings = self.add_weight( name="embeddings", shape=[self.max_position_embeddings, self.dim], initializer=get_initializer(self.embed_init_std), ) if self.n_langs > 1 and self.use_lang_emb: with tf.name_scope("lang_embeddings"): self.lang_embeddings = self.add_weight( name="embeddings", shape=[self.n_langs, self.dim], initializer=get_initializer(self.embed_init_std), ) super().build(input_shape) def get_input_embeddings(self): return self.embeddings def set_input_embeddings(self, value): self.embeddings.weight = value self.embeddings.vocab_size = shape_list(value)[0] @unpack_inputs def call( self, input_ids: np.ndarray | tf.Tensor | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, langs: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, lengths: np.ndarray | tf.Tensor | None = None, cache: Optional[Dict[str, tf.Tensor]] = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[Tuple, TFBaseModelOutput]: # removed: src_enc=None, src_len=None if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: bs, slen = shape_list(input_ids) elif inputs_embeds is not None: bs, slen = shape_list(inputs_embeds)[:2] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if lengths is None: if input_ids is not None: lengths = tf.reduce_sum( tf.cast(tf.not_equal(input_ids, self.pad_index), dtype=input_ids.dtype), axis=1 ) else: lengths = tf.convert_to_tensor([slen] * bs) # mask = input_ids != self.pad_index # check inputs # assert shape_list(lengths)[0] == bs tf.debugging.assert_equal( shape_list(lengths)[0], bs ), f"Expected batch size {shape_list(lengths)[0]} and received batch size {bs} mismatched" # assert lengths.max().item() <= slen # input_ids = input_ids.transpose(0, 1) # batch size as dimension 0 # assert (src_enc is None) == (src_len is None) # if src_enc is not None: # assert self.is_decoder # assert src_enc.size(0) == bs # generate masks mask, attn_mask = get_masks(slen, lengths, self.causal, padding_mask=attention_mask) # if self.is_decoder and src_enc is not None: # src_mask = torch.arange(src_len.max(), dtype=torch.long, device=lengths.device) < src_len[:, None] # position_ids if position_ids is None: position_ids = tf.expand_dims(tf.range(slen), axis=0) position_ids = tf.tile(position_ids, (bs, 1)) # assert shape_list(position_ids) == [bs, slen] # (slen, bs) tf.debugging.assert_equal( shape_list(position_ids), [bs, slen] ), f"Position id shape {shape_list(position_ids)} and input shape {[bs, slen]} mismatched" # position_ids = position_ids.transpose(0, 1) # langs if langs is not None: # assert shape_list(langs) == [bs, slen] # (slen, bs) tf.debugging.assert_equal( shape_list(langs), [bs, slen] ), f"Lang shape {shape_list(langs)} and input shape {[bs, slen]} mismatched" # langs = langs.transpose(0, 1) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x qlen x klen] if head_mask is not None: raise NotImplementedError else: head_mask = [None] * self.n_layers # do not recompute cached elements if cache is not None and input_ids is not None: _slen = slen - cache["slen"] input_ids = input_ids[:, -_slen:] position_ids = position_ids[:, -_slen:] if langs is not None: langs = langs[:, -_slen:] mask = mask[:, -_slen:] attn_mask = attn_mask[:, -_slen:] # embeddings if inputs_embeds is None: check_embeddings_within_bounds(input_ids, self.embeddings.vocab_size) inputs_embeds = self.embeddings(input_ids) tensor = inputs_embeds + tf.gather(self.position_embeddings, position_ids) if langs is not None and self.use_lang_emb: tensor = tensor + tf.gather(self.lang_embeddings, langs) if token_type_ids is not None: tensor = tensor + self.embeddings(token_type_ids) tensor = self.layer_norm_emb(tensor) tensor = self.dropout(tensor, training=training) mask = tf.cast(mask, dtype=tensor.dtype) tensor = tensor * tf.expand_dims(mask, axis=-1) # hidden_states and attentions cannot be None in graph mode. hidden_states = () if output_hidden_states else None attentions = () if output_attentions else None # transformer layers for i in range(self.n_layers): # LayerDrop dropout_probability = random.uniform(0, 1) if training and (dropout_probability < self.layerdrop): continue if output_hidden_states: hidden_states = hidden_states + (tensor,) # self attention if not self.pre_norm: attn_outputs = self.attentions[i]( tensor, attn_mask, None, cache, head_mask[i], output_attentions, training=training, ) attn = attn_outputs[0] if output_attentions: attentions = attentions + (attn_outputs[1],) attn = self.dropout(attn, training=training) tensor = tensor + attn tensor = self.layer_norm1[i](tensor) else: tensor_normalized = self.layer_norm1[i](tensor) attn_outputs = self.attentions[i]( tensor_normalized, attn_mask, None, cache, head_mask[i], output_attentions, training=training, ) attn = attn_outputs[0] if output_attentions: attentions = attentions + (attn_outputs[1],) attn = self.dropout(attn, training=training) tensor = tensor + attn # encoder attention (for decoder only) # if self.is_decoder and src_enc is not None: # attn = self.encoder_attn[i](tensor, src_mask, kv=src_enc, cache=cache) # attn = nn.functional.dropout(attn, p=self.dropout, training=self.training) # tensor = tensor + attn # tensor = self.layer_norm15[i](tensor) # FFN if not self.pre_norm: tensor = tensor + self.ffns[i](tensor) tensor = self.layer_norm2[i](tensor) else: tensor_normalized = self.layer_norm2[i](tensor) tensor = tensor + self.ffns[i](tensor_normalized) tensor = tensor * tf.expand_dims(mask, axis=-1) # Add last hidden state if output_hidden_states: hidden_states = hidden_states + (tensor,) # update cache length if cache is not None: cache["slen"] += tensor.size(1) # move back sequence length to dimension 0 # tensor = tensor.transpose(0, 1) if not return_dict: return tuple(v for v in [tensor, hidden_states, attentions] if v is not None) return TFBaseModelOutput(last_hidden_state=tensor, hidden_states=hidden_states, attentions=attentions) # Copied from transformers.models.xlm.modeling_tf_xlm.TFXLMPredLayer class TFFlaubertPredLayer(tf.keras.layers.Layer): """ Prediction layer (cross_entropy or adaptive_softmax). """ def __init__(self, config, input_embeddings, **kwargs): super().__init__(**kwargs) self.asm = config.asm self.n_words = config.n_words self.pad_index = config.pad_index if config.asm is False: self.input_embeddings = input_embeddings else: raise NotImplementedError # self.proj = nn.AdaptiveLogSoftmaxWithLoss( # in_features=dim, # n_classes=config.n_words, # cutoffs=config.asm_cutoffs, # div_value=config.asm_div_value, # head_bias=True, # default is False # ) def build(self, input_shape): # The output weights are the same as the input embeddings, but there is an output-only bias for each token. self.bias = self.add_weight(shape=(self.n_words,), initializer="zeros", trainable=True, name="bias") super().build(input_shape) def get_output_embeddings(self): return self.input_embeddings def set_output_embeddings(self, value): self.input_embeddings.weight = value self.input_embeddings.vocab_size = shape_list(value)[0] def get_bias(self): return {"bias": self.bias} def set_bias(self, value): self.bias = value["bias"] self.vocab_size = shape_list(value["bias"])[0] def call(self, hidden_states): hidden_states = self.input_embeddings(hidden_states, mode="linear") hidden_states = hidden_states + self.bias return hidden_states @dataclass class TFFlaubertWithLMHeadModelOutput(ModelOutput): """ Base class for [`TFFlaubertWithLMHeadModel`] outputs. Args: logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ logits: tf.Tensor = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None @add_start_docstrings( """ The Flaubert Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings). """, FLAUBERT_START_DOCSTRING, ) class TFFlaubertWithLMHeadModel(TFFlaubertPreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.transformer = TFFlaubertMainLayer(config, name="transformer") self.pred_layer = TFFlaubertPredLayer(config, self.transformer.embeddings, name="pred_layer_._proj") # Flaubert does not have past caching features self.supports_xla_generation = False def get_lm_head(self): return self.pred_layer def get_prefix_bias_name(self): warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) return self.name + "/" + self.pred_layer.name def prepare_inputs_for_generation(self, inputs, **kwargs): mask_token_id = self.config.mask_token_id lang_id = self.config.lang_id effective_batch_size = inputs.shape[0] mask_token = tf.fill((effective_batch_size, 1), 1) * mask_token_id inputs = tf.concat([inputs, mask_token], axis=1) if lang_id is not None: langs = tf.ones_like(inputs) * lang_id else: langs = None return {"input_ids": inputs, "langs": langs} @unpack_inputs @add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFFlaubertWithLMHeadModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: np.ndarray | tf.Tensor | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, langs: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, lengths: np.ndarray | tf.Tensor | None = None, cache: Optional[Dict[str, tf.Tensor]] = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[Tuple, TFFlaubertWithLMHeadModelOutput]: transformer_outputs = self.transformer( input_ids=input_ids, attention_mask=attention_mask, langs=langs, token_type_ids=token_type_ids, position_ids=position_ids, lengths=lengths, cache=cache, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) output = transformer_outputs[0] outputs = self.pred_layer(output) if not return_dict: return (outputs,) + transformer_outputs[1:] return TFFlaubertWithLMHeadModelOutput( logits=outputs, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions ) @add_start_docstrings( """ Flaubert Model with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, FLAUBERT_START_DOCSTRING, ) # Copied from transformers.models.xlm.modeling_tf_xlm.TFXLMForSequenceClassification with XLM_INPUTS->FLAUBERT_INPUTS,XLM->Flaubert class TFFlaubertForSequenceClassification(TFFlaubertPreTrainedModel, TFSequenceClassificationLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.transformer = TFFlaubertMainLayer(config, name="transformer") self.sequence_summary = TFSequenceSummary(config, initializer_range=config.init_std, name="sequence_summary") @unpack_inputs @add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, langs: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, lengths: np.ndarray | tf.Tensor | None = None, cache: Optional[Dict[str, tf.Tensor]] = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: bool = False, ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ transformer_outputs = self.transformer( input_ids=input_ids, attention_mask=attention_mask, langs=langs, token_type_ids=token_type_ids, position_ids=position_ids, lengths=lengths, cache=cache, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) output = transformer_outputs[0] logits = self.sequence_summary(output) loss = None if labels is None else self.hf_compute_loss(labels, logits) if not return_dict: output = (logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput( loss=loss, logits=logits, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) @add_start_docstrings( """ Flaubert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`). """, FLAUBERT_START_DOCSTRING, ) # Copied from transformers.models.xlm.modeling_tf_xlm.TFXLMForQuestionAnsweringSimple with XLM_INPUTS->FLAUBERT_INPUTS,XLM->Flaubert class TFFlaubertForQuestionAnsweringSimple(TFFlaubertPreTrainedModel, TFQuestionAnsweringLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.transformer = TFFlaubertMainLayer(config, name="transformer") self.qa_outputs = tf.keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.init_std), name="qa_outputs" ) @unpack_inputs @add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, langs: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, lengths: np.ndarray | tf.Tensor | None = None, cache: Optional[Dict[str, tf.Tensor]] = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, start_positions: np.ndarray | tf.Tensor | None = None, end_positions: np.ndarray | tf.Tensor | None = None, training: bool = False, ) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]: r""" start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ transformer_outputs = self.transformer( input_ids=input_ids, attention_mask=attention_mask, langs=langs, token_type_ids=token_type_ids, position_ids=position_ids, lengths=lengths, cache=cache, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = transformer_outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = tf.split(logits, 2, axis=-1) start_logits = tf.squeeze(start_logits, axis=-1) end_logits = tf.squeeze(end_logits, axis=-1) loss = None if start_positions is not None and end_positions is not None: labels = {"start_position": start_positions} labels["end_position"] = end_positions loss = self.hf_compute_loss(labels, (start_logits, end_logits)) if not return_dict: output = (start_logits, end_logits) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return TFQuestionAnsweringModelOutput( loss=loss, start_logits=start_logits, end_logits=end_logits, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) @add_start_docstrings( """ Flaubert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, FLAUBERT_START_DOCSTRING, ) # Copied from transformers.models.xlm.modeling_tf_xlm.TFXLMForTokenClassification with XLM_INPUTS->FLAUBERT_INPUTS,XLM->Flaubert class TFFlaubertForTokenClassification(TFFlaubertPreTrainedModel, TFTokenClassificationLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.transformer = TFFlaubertMainLayer(config, name="transformer") self.dropout = tf.keras.layers.Dropout(config.dropout) self.classifier = tf.keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.init_std), name="classifier" ) @unpack_inputs @add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFTokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, langs: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, lengths: np.ndarray | tf.Tensor | None = None, cache: Optional[Dict[str, tf.Tensor]] = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: bool = False, ) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ transformer_outputs = self.transformer( input_ids=input_ids, attention_mask=attention_mask, langs=langs, token_type_ids=token_type_ids, position_ids=position_ids, lengths=lengths, cache=cache, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = transformer_outputs[0] sequence_output = self.dropout(sequence_output, training=training) logits = self.classifier(sequence_output) loss = None if labels is None else self.hf_compute_loss(labels, logits) if not return_dict: output = (logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return TFTokenClassifierOutput( loss=loss, logits=logits, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) @add_start_docstrings( """ Flaubert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, FLAUBERT_START_DOCSTRING, ) # Copied from transformers.models.xlm.modeling_tf_xlm.TFXLMForMultipleChoice with XLM_INPUTS->FLAUBERT_INPUTS,XLM->Flaubert class TFFlaubertForMultipleChoice(TFFlaubertPreTrainedModel, TFMultipleChoiceLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.transformer = TFFlaubertMainLayer(config, name="transformer") self.sequence_summary = TFSequenceSummary(config, initializer_range=config.init_std, name="sequence_summary") self.logits_proj = tf.keras.layers.Dense( 1, kernel_initializer=get_initializer(config.initializer_range), name="logits_proj" ) @property def dummy_inputs(self): """ Dummy inputs to build the network. Returns: tf.Tensor with dummy inputs """ # Sometimes Flaubert has language embeddings so don't forget to build them as well if needed if self.config.use_lang_emb and self.config.n_langs > 1: return { "input_ids": tf.constant(MULTIPLE_CHOICE_DUMMY_INPUTS, dtype=tf.int32), "langs": tf.constant(MULTIPLE_CHOICE_DUMMY_INPUTS, dtype=tf.int32), } else: return { "input_ids": tf.constant(MULTIPLE_CHOICE_DUMMY_INPUTS, dtype=tf.int32), } @unpack_inputs @add_start_docstrings_to_model_forward( FLAUBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFMultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, langs: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, lengths: np.ndarray | tf.Tensor | None = None, cache: Optional[Dict[str, tf.Tensor]] = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: bool = False, ) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]: if input_ids is not None: num_choices = shape_list(input_ids)[1] seq_length = shape_list(input_ids)[2] else: num_choices = shape_list(inputs_embeds)[1] seq_length = shape_list(inputs_embeds)[2] flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None flat_langs = tf.reshape(langs, (-1, seq_length)) if langs is not None else None flat_inputs_embeds = ( tf.reshape(inputs_embeds, (-1, seq_length, shape_list(inputs_embeds)[3])) if inputs_embeds is not None else None ) if lengths is not None: logger.warning( "The `lengths` parameter cannot be used with the Flaubert multiple choice models. Please use the " "attention mask instead.", ) lengths = None transformer_outputs = self.transformer( flat_input_ids, flat_attention_mask, flat_langs, flat_token_type_ids, flat_position_ids, lengths, cache, head_mask, flat_inputs_embeds, output_attentions, output_hidden_states, return_dict=return_dict, training=training, ) output = transformer_outputs[0] logits = self.sequence_summary(output) logits = self.logits_proj(logits) reshaped_logits = tf.reshape(logits, (-1, num_choices)) loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits) if not return_dict: output = (reshaped_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return TFMultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/flaubert/configuration_flaubert.py
# coding=utf-8 # Copyright 2019-present CNRS, Facebook Inc. and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Flaubert configuration""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging logger = logging.get_logger(__name__) FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = { "flaubert/flaubert_small_cased": "https://huggingface.co/flaubert/flaubert_small_cased/resolve/main/config.json", "flaubert/flaubert_base_uncased": "https://huggingface.co/flaubert/flaubert_base_uncased/resolve/main/config.json", "flaubert/flaubert_base_cased": "https://huggingface.co/flaubert/flaubert_base_cased/resolve/main/config.json", "flaubert/flaubert_large_cased": "https://huggingface.co/flaubert/flaubert_large_cased/resolve/main/config.json", } class FlaubertConfig(PretrainedConfig): """ This is the configuration class to store the configuration of a [`FlaubertModel`] or a [`TFFlaubertModel`]. It is used to instantiate a FlauBERT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the FlauBERT [flaubert/flaubert_base_uncased](https://huggingface.co/flaubert/flaubert_base_uncased) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: pre_norm (`bool`, *optional*, defaults to `False`): Whether to apply the layer normalization before or after the feed forward layer following the attention in each layer (Vaswani et al., Tensor2Tensor for Neural Machine Translation. 2018) layerdrop (`float`, *optional*, defaults to 0.0): Probability to drop layers during training (Fan et al., Reducing Transformer Depth on Demand with Structured Dropout. ICLR 2020) vocab_size (`int`, *optional*, defaults to 30145): Vocabulary size of the FlauBERT model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`FlaubertModel`] or [`TFFlaubertModel`]. emb_dim (`int`, *optional*, defaults to 2048): Dimensionality of the encoder layers and the pooler layer. n_layer (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. n_head (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_dropout (`float`, *optional*, defaults to 0.1): The dropout probability for the attention mechanism gelu_activation (`bool`, *optional*, defaults to `True`): Whether or not to use a *gelu* activation instead of *relu*. sinusoidal_embeddings (`bool`, *optional*, defaults to `False`): Whether or not to use sinusoidal positional embeddings instead of absolute positional embeddings. causal (`bool`, *optional*, defaults to `False`): Whether or not the model should behave in a causal manner. Causal models use a triangular attention mask in order to only attend to the left-side context instead if a bidirectional context. asm (`bool`, *optional*, defaults to `False`): Whether or not to use an adaptive log softmax projection layer instead of a linear layer for the prediction layer. n_langs (`int`, *optional*, defaults to 1): The number of languages the model handles. Set to 1 for monolingual models. use_lang_emb (`bool`, *optional*, defaults to `True`) Whether to use language embeddings. Some models use additional language embeddings, see [the multilingual models page](http://huggingface.co/transformers/multilingual.html#xlm-language-embeddings) for information on how to use them. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). embed_init_std (`float`, *optional*, defaults to 2048^-0.5): The standard deviation of the truncated_normal_initializer for initializing the embedding matrices. init_std (`int`, *optional*, defaults to 50257): The standard deviation of the truncated_normal_initializer for initializing all weight matrices except the embedding matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. bos_index (`int`, *optional*, defaults to 0): The index of the beginning of sentence token in the vocabulary. eos_index (`int`, *optional*, defaults to 1): The index of the end of sentence token in the vocabulary. pad_index (`int`, *optional*, defaults to 2): The index of the padding token in the vocabulary. unk_index (`int`, *optional*, defaults to 3): The index of the unknown token in the vocabulary. mask_index (`int`, *optional*, defaults to 5): The index of the masking token in the vocabulary. is_encoder(`bool`, *optional*, defaults to `True`): Whether or not the initialized model should be a transformer encoder or decoder as seen in Vaswani et al. summary_type (`string`, *optional*, defaults to "first"): Argument used when doing sequence summary. Used in the sequence classification and multiple choice models. Has to be one of the following options: - `"last"`: Take the last token hidden state (like XLNet). - `"first"`: Take the first token hidden state (like BERT). - `"mean"`: Take the mean of all tokens hidden states. - `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2). - `"attn"`: Not implemented now, use multi-head attention. summary_use_proj (`bool`, *optional*, defaults to `True`): Argument used when doing sequence summary. Used in the sequence classification and multiple choice models. Whether or not to add a projection after the vector extraction. summary_activation (`str`, *optional*): Argument used when doing sequence summary. Used in the sequence classification and multiple choice models. Pass `"tanh"` for a tanh activation to the output, any other value will result in no activation. summary_proj_to_labels (`bool`, *optional*, defaults to `True`): Used in the sequence classification and multiple choice models. Whether the projection outputs should have `config.num_labels` or `config.hidden_size` classes. summary_first_dropout (`float`, *optional*, defaults to 0.1): Used in the sequence classification and multiple choice models. The dropout ratio to be used after the projection and activation. start_n_top (`int`, *optional*, defaults to 5): Used in the SQuAD evaluation script. end_n_top (`int`, *optional*, defaults to 5): Used in the SQuAD evaluation script. mask_token_id (`int`, *optional*, defaults to 0): Model agnostic parameter to identify masked tokens when generating text in an MLM context. lang_id (`int`, *optional*, defaults to 1): The ID of the language used by the model. This parameter is used when generating text in a given language. """ model_type = "flaubert" attribute_map = { "hidden_size": "emb_dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", "n_words": "vocab_size", # For backward compatibility } def __init__( self, pre_norm=False, layerdrop=0.0, vocab_size=30145, emb_dim=2048, n_layers=12, n_heads=16, dropout=0.1, attention_dropout=0.1, gelu_activation=True, sinusoidal_embeddings=False, causal=False, asm=False, n_langs=1, use_lang_emb=True, max_position_embeddings=512, embed_init_std=2048**-0.5, layer_norm_eps=1e-12, init_std=0.02, bos_index=0, eos_index=1, pad_index=2, unk_index=3, mask_index=5, is_encoder=True, summary_type="first", summary_use_proj=True, summary_activation=None, summary_proj_to_labels=True, summary_first_dropout=0.1, start_n_top=5, end_n_top=5, mask_token_id=0, lang_id=0, pad_token_id=2, bos_token_id=0, **kwargs, ): """Constructs FlaubertConfig.""" self.pre_norm = pre_norm self.layerdrop = layerdrop self.vocab_size = vocab_size self.emb_dim = emb_dim self.n_layers = n_layers self.n_heads = n_heads self.dropout = dropout self.attention_dropout = attention_dropout self.gelu_activation = gelu_activation self.sinusoidal_embeddings = sinusoidal_embeddings self.causal = causal self.asm = asm self.n_langs = n_langs self.use_lang_emb = use_lang_emb self.layer_norm_eps = layer_norm_eps self.bos_index = bos_index self.eos_index = eos_index self.pad_index = pad_index self.unk_index = unk_index self.mask_index = mask_index self.is_encoder = is_encoder self.max_position_embeddings = max_position_embeddings self.embed_init_std = embed_init_std self.init_std = init_std self.summary_type = summary_type self.summary_use_proj = summary_use_proj self.summary_activation = summary_activation self.summary_proj_to_labels = summary_proj_to_labels self.summary_first_dropout = summary_first_dropout self.start_n_top = start_n_top self.end_n_top = end_n_top self.mask_token_id = mask_token_id self.lang_id = lang_id if "n_words" in kwargs: self.n_words = kwargs["n_words"] super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, **kwargs) class FlaubertOnnxConfig(OnnxConfig): @property def inputs(self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"} else: dynamic_axis = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/flaubert/modeling_flaubert.py
# coding=utf-8 # Copyright 2019-present CNRS, Facebook Inc. and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch Flaubert model, based on XLM.""" import itertools import math from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import numpy as np import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import gelu from ...modeling_outputs import ( BaseModelOutput, MaskedLMOutput, MultipleChoiceModelOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel, SequenceSummary, SQuADHead from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_flaubert import FlaubertConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "flaubert/flaubert_base_cased" _CONFIG_FOR_DOC = "FlaubertConfig" FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST = [ "flaubert/flaubert_small_cased", "flaubert/flaubert_base_uncased", "flaubert/flaubert_base_cased", "flaubert/flaubert_large_cased", # See all Flaubert models at https://huggingface.co/models?filter=flaubert ] # Copied from transformers.models.xlm.modeling_xlm.create_sinusoidal_embeddings def create_sinusoidal_embeddings(n_pos, dim, out): position_enc = np.array([[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)]) out[:, 0::2] = torch.FloatTensor(np.sin(position_enc[:, 0::2])) out[:, 1::2] = torch.FloatTensor(np.cos(position_enc[:, 1::2])) out.detach_() out.requires_grad = False # Copied from transformers.models.xlm.modeling_xlm.get_masks def get_masks(slen, lengths, causal, padding_mask=None): """ Generate hidden states mask, and optionally an attention mask. """ alen = torch.arange(slen, dtype=torch.long, device=lengths.device) if padding_mask is not None: mask = padding_mask else: assert lengths.max().item() <= slen mask = alen < lengths[:, None] # attention mask is the same as mask, or triangular inferior attention (causal) bs = lengths.size(0) if causal: attn_mask = alen[None, None, :].repeat(bs, slen, 1) <= alen[None, :, None] else: attn_mask = mask # sanity check assert mask.size() == (bs, slen) assert causal is False or attn_mask.size() == (bs, slen, slen) return mask, attn_mask # Copied from transformers.models.xlm.modeling_xlm.MultiHeadAttention class MultiHeadAttention(nn.Module): NEW_ID = itertools.count() def __init__(self, n_heads, dim, config): super().__init__() self.layer_id = next(MultiHeadAttention.NEW_ID) self.dim = dim self.n_heads = n_heads self.dropout = config.attention_dropout assert self.dim % self.n_heads == 0 self.q_lin = nn.Linear(dim, dim) self.k_lin = nn.Linear(dim, dim) self.v_lin = nn.Linear(dim, dim) self.out_lin = nn.Linear(dim, dim) self.pruned_heads = set() def prune_heads(self, heads): attention_head_size = self.dim // self.n_heads if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices(heads, self.n_heads, attention_head_size, self.pruned_heads) # Prune linear layers self.q_lin = prune_linear_layer(self.q_lin, index) self.k_lin = prune_linear_layer(self.k_lin, index) self.v_lin = prune_linear_layer(self.v_lin, index) self.out_lin = prune_linear_layer(self.out_lin, index, dim=1) # Update hyper params self.n_heads = self.n_heads - len(heads) self.dim = attention_head_size * self.n_heads self.pruned_heads = self.pruned_heads.union(heads) def forward(self, input, mask, kv=None, cache=None, head_mask=None, output_attentions=False): """ Self-attention (if kv is None) or attention over source sentence (provided by kv). """ # Input is (bs, qlen, dim) # Mask is (bs, klen) (non-causal) or (bs, klen, klen) bs, qlen, dim = input.size() if kv is None: klen = qlen if cache is None else cache["slen"] + qlen else: klen = kv.size(1) # assert dim == self.dim, f'Dimensions do not match: {dim} input vs {self.dim} configured' n_heads = self.n_heads dim_per_head = self.dim // n_heads mask_reshape = (bs, 1, qlen, klen) if mask.dim() == 3 else (bs, 1, 1, klen) def shape(x): """projection""" return x.view(bs, -1, self.n_heads, dim_per_head).transpose(1, 2) def unshape(x): """compute context""" return x.transpose(1, 2).contiguous().view(bs, -1, self.n_heads * dim_per_head) q = shape(self.q_lin(input)) # (bs, n_heads, qlen, dim_per_head) if kv is None: k = shape(self.k_lin(input)) # (bs, n_heads, qlen, dim_per_head) v = shape(self.v_lin(input)) # (bs, n_heads, qlen, dim_per_head) elif cache is None or self.layer_id not in cache: k = v = kv k = shape(self.k_lin(k)) # (bs, n_heads, qlen, dim_per_head) v = shape(self.v_lin(v)) # (bs, n_heads, qlen, dim_per_head) if cache is not None: if self.layer_id in cache: if kv is None: k_, v_ = cache[self.layer_id] k = torch.cat([k_, k], dim=2) # (bs, n_heads, klen, dim_per_head) v = torch.cat([v_, v], dim=2) # (bs, n_heads, klen, dim_per_head) else: k, v = cache[self.layer_id] cache[self.layer_id] = (k, v) q = q / math.sqrt(dim_per_head) # (bs, n_heads, qlen, dim_per_head) scores = torch.matmul(q, k.transpose(2, 3)) # (bs, n_heads, qlen, klen) mask = (mask == 0).view(mask_reshape).expand_as(scores) # (bs, n_heads, qlen, klen) scores.masked_fill_(mask, torch.finfo(scores.dtype).min) # (bs, n_heads, qlen, klen) weights = nn.functional.softmax(scores.float(), dim=-1).type_as(scores) # (bs, n_heads, qlen, klen) weights = nn.functional.dropout(weights, p=self.dropout, training=self.training) # (bs, n_heads, qlen, klen) # Mask heads if we want to if head_mask is not None: weights = weights * head_mask context = torch.matmul(weights, v) # (bs, n_heads, qlen, dim_per_head) context = unshape(context) # (bs, qlen, dim) outputs = (self.out_lin(context),) if output_attentions: outputs = outputs + (weights,) return outputs # Copied from transformers.models.xlm.modeling_xlm.TransformerFFN class TransformerFFN(nn.Module): def __init__(self, in_dim, dim_hidden, out_dim, config): super().__init__() self.dropout = config.dropout self.lin1 = nn.Linear(in_dim, dim_hidden) self.lin2 = nn.Linear(dim_hidden, out_dim) self.act = gelu if config.gelu_activation else nn.functional.relu self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 def forward(self, input): return apply_chunking_to_forward(self.ff_chunk, self.chunk_size_feed_forward, self.seq_len_dim, input) def ff_chunk(self, input): x = self.lin1(input) x = self.act(x) x = self.lin2(x) x = nn.functional.dropout(x, p=self.dropout, training=self.training) return x FLAUBERT_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`FlaubertConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ FLAUBERT_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) lengths (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Length of each sentence that can be used to avoid performing attention on padding token indices. You can also use `attention_mask` for the same result (see above), kept here for compatibility. Indices selected in `[0, ..., input_ids.size(-1)]`: cache (`Dict[str, torch.FloatTensor]`, *optional*): Dictionary strings to `torch.FloatTensor` that contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see `cache` output below). Can be used to speed up sequential decoding. The dictionary object will be modified in-place during the forward pass to add newly computed hidden-states. head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare Flaubert Model transformer outputting raw hidden-states without any specific head on top.", FLAUBERT_START_DOCSTRING, ) # Copied from transformers.models.xlm.modeling_xlm.XLMPredLayer with XLM->Flaubert class FlaubertPredLayer(nn.Module): """ Prediction layer (cross_entropy or adaptive_softmax). """ def __init__(self, config): super().__init__() self.asm = config.asm self.n_words = config.n_words self.pad_index = config.pad_index dim = config.emb_dim if config.asm is False: self.proj = nn.Linear(dim, config.n_words, bias=True) else: self.proj = nn.AdaptiveLogSoftmaxWithLoss( in_features=dim, n_classes=config.n_words, cutoffs=config.asm_cutoffs, div_value=config.asm_div_value, head_bias=True, # default is False ) def forward(self, x, y=None): """Compute the loss, and optionally the scores.""" outputs = () if self.asm is False: scores = self.proj(x) outputs = (scores,) + outputs if y is not None: loss = nn.functional.cross_entropy(scores.view(-1, self.n_words), y.view(-1), reduction="mean") outputs = (loss,) + outputs else: scores = self.proj.log_prob(x) outputs = (scores,) + outputs if y is not None: _, loss = self.proj(x, y) outputs = (loss,) + outputs return outputs # Copied from transformers.models.xlm.modeling_xlm.XLMPreTrainedModel with XLM->Flaubert class FlaubertPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = FlaubertConfig load_tf_weights = None base_model_prefix = "transformer" def __init__(self, *inputs, **kwargs): super().__init__(*inputs, **kwargs) @property def dummy_inputs(self): inputs_list = torch.tensor([[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]]) attns_list = torch.tensor([[1, 1, 0, 0, 1], [1, 1, 1, 0, 0], [1, 0, 0, 1, 1]]) if self.config.use_lang_emb and self.config.n_langs > 1: langs_list = torch.tensor([[1, 1, 0, 0, 1], [1, 1, 1, 0, 0], [1, 0, 0, 1, 1]]) else: langs_list = None return {"input_ids": inputs_list, "attention_mask": attns_list, "langs": langs_list} def _init_weights(self, module): """Initialize the weights.""" if isinstance(module, nn.Embedding): if self.config is not None and self.config.embed_init_std is not None: nn.init.normal_(module.weight, mean=0, std=self.config.embed_init_std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() if isinstance(module, nn.Linear): if self.config is not None and self.config.init_std is not None: nn.init.normal_(module.weight, mean=0, std=self.config.init_std) if module.bias is not None: nn.init.constant_(module.bias, 0.0) if isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) class FlaubertModel(FlaubertPreTrainedModel): def __init__(self, config): # , dico, is_encoder, with_output): super().__init__(config) # encoder / decoder, output layer self.is_encoder = config.is_encoder self.is_decoder = not config.is_encoder if self.is_decoder: raise NotImplementedError("Currently Flaubert can only be used as an encoder") # self.with_output = with_output self.causal = config.causal # dictionary / languages self.n_langs = config.n_langs self.use_lang_emb = config.use_lang_emb self.n_words = config.n_words self.eos_index = config.eos_index self.pad_index = config.pad_index # self.dico = dico # self.id2lang = config.id2lang # self.lang2id = config.lang2id # assert len(self.dico) == self.n_words # assert len(self.id2lang) == len(self.lang2id) == self.n_langs # model parameters self.dim = config.emb_dim # 512 by default self.hidden_dim = self.dim * 4 # 2048 by default self.n_heads = config.n_heads # 8 by default self.n_layers = config.n_layers self.dropout = config.dropout self.attention_dropout = config.attention_dropout assert self.dim % self.n_heads == 0, "transformer dim must be a multiple of n_heads" # embeddings self.position_embeddings = nn.Embedding(config.max_position_embeddings, self.dim) if config.sinusoidal_embeddings: create_sinusoidal_embeddings(config.max_position_embeddings, self.dim, out=self.position_embeddings.weight) if config.n_langs > 1 and config.use_lang_emb: self.lang_embeddings = nn.Embedding(self.n_langs, self.dim) self.embeddings = nn.Embedding(self.n_words, self.dim, padding_idx=self.pad_index) self.layer_norm_emb = nn.LayerNorm(self.dim, eps=config.layer_norm_eps) # transformer layers self.attentions = nn.ModuleList() self.layer_norm1 = nn.ModuleList() self.ffns = nn.ModuleList() self.layer_norm2 = nn.ModuleList() # if self.is_decoder: # self.layer_norm15 = nn.ModuleList() # self.encoder_attn = nn.ModuleList() for _ in range(self.n_layers): self.attentions.append(MultiHeadAttention(self.n_heads, self.dim, config=config)) self.layer_norm1.append(nn.LayerNorm(self.dim, eps=config.layer_norm_eps)) # if self.is_decoder: # self.layer_norm15.append(nn.LayerNorm(self.dim, eps=config.layer_norm_eps)) # self.encoder_attn.append(MultiHeadAttention(self.n_heads, self.dim, dropout=self.attention_dropout)) self.ffns.append(TransformerFFN(self.dim, self.hidden_dim, self.dim, config=config)) self.layer_norm2.append(nn.LayerNorm(self.dim, eps=config.layer_norm_eps)) if hasattr(config, "pruned_heads"): pruned_heads = config.pruned_heads.copy().items() config.pruned_heads = {} for layer, heads in pruned_heads: if self.attentions[int(layer)].n_heads == config.n_heads: self.prune_heads({int(layer): list(map(int, heads))}) # Initialize weights and apply final processing self.post_init() self.layerdrop = getattr(config, "layerdrop", 0.0) self.pre_norm = getattr(config, "pre_norm", False) self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) # Copied from transformers.models.xlm.modeling_xlm.XLMModel.get_input_embeddings def get_input_embeddings(self): return self.embeddings # Copied from transformers.models.xlm.modeling_xlm.XLMModel.set_input_embeddings def set_input_embeddings(self, new_embeddings): self.embeddings = new_embeddings # Copied from transformers.models.xlm.modeling_xlm.XLMModel._prune_heads def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.attentions[layer].prune_heads(heads) @add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, langs: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, lengths: Optional[torch.LongTensor] = None, cache: Optional[Dict[str, torch.FloatTensor]] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # removed: src_enc=None, src_len=None if input_ids is not None: bs, slen = input_ids.size() else: bs, slen = inputs_embeds.size()[:-1] device = input_ids.device if input_ids is not None else inputs_embeds.device if lengths is None: if input_ids is not None: lengths = (input_ids != self.pad_index).sum(dim=1).long() else: lengths = torch.tensor([slen] * bs, device=device) # mask = input_ids != self.pad_index # check inputs assert lengths.size(0) == bs assert lengths.max().item() <= slen # input_ids = input_ids.transpose(0, 1) # batch size as dimension 0 # assert (src_enc is None) == (src_len is None) # if src_enc is not None: # assert self.is_decoder # assert src_enc.size(0) == bs # generate masks mask, attn_mask = get_masks(slen, lengths, self.causal, padding_mask=attention_mask) # if self.is_decoder and src_enc is not None: # src_mask = torch.arange(src_len.max(), dtype=torch.long, device=lengths.device) < src_len[:, None] # Setting the position-ids to the registered buffer in constructor, it helps # when tracing the model without passing position-ids, solves # isues similar to issue #5664 if position_ids is None: if hasattr(self, "position_ids"): position_ids = self.position_ids[:, :slen] position_ids = position_ids.expand((bs, slen)) else: position_ids = torch.arange(slen, dtype=torch.long, device=device) position_ids = position_ids.unsqueeze(0).expand((bs, slen)) else: assert position_ids.size() == (bs, slen) # (slen, bs) # position_ids = position_ids.transpose(0, 1) # langs if langs is not None: assert langs.size() == (bs, slen) # (slen, bs) # langs = langs.transpose(0, 1) # Prepare head mask if needed head_mask = self.get_head_mask(head_mask, self.config.n_layers) # do not recompute cached elements if cache is not None and input_ids is not None: _slen = slen - cache["slen"] input_ids = input_ids[:, -_slen:] position_ids = position_ids[:, -_slen:] if langs is not None: langs = langs[:, -_slen:] mask = mask[:, -_slen:] attn_mask = attn_mask[:, -_slen:] # embeddings if inputs_embeds is None: inputs_embeds = self.embeddings(input_ids) tensor = inputs_embeds + self.position_embeddings(position_ids).expand_as(inputs_embeds) if langs is not None and self.use_lang_emb and self.config.n_langs > 1: tensor = tensor + self.lang_embeddings(langs) if token_type_ids is not None: tensor = tensor + self.embeddings(token_type_ids) tensor = self.layer_norm_emb(tensor) tensor = nn.functional.dropout(tensor, p=self.dropout, training=self.training) tensor *= mask.unsqueeze(-1).to(tensor.dtype) # transformer layers hidden_states = () if output_hidden_states else None attentions = () if output_attentions else None for i in range(self.n_layers): # LayerDrop if self.training: dropout_probability = torch.rand([]) if dropout_probability < self.layerdrop: continue if output_hidden_states: hidden_states = hidden_states + (tensor,) # self attention if not self.pre_norm: attn_outputs = self.attentions[i]( tensor, attn_mask, cache=cache, head_mask=head_mask[i], output_attentions=output_attentions, ) attn = attn_outputs[0] if output_attentions: attentions = attentions + (attn_outputs[1],) attn = nn.functional.dropout(attn, p=self.dropout, training=self.training) tensor = tensor + attn tensor = self.layer_norm1[i](tensor) else: tensor_normalized = self.layer_norm1[i](tensor) attn_outputs = self.attentions[i](tensor_normalized, attn_mask, cache=cache, head_mask=head_mask[i]) attn = attn_outputs[0] if output_attentions: attentions = attentions + (attn_outputs[1],) attn = nn.functional.dropout(attn, p=self.dropout, training=self.training) tensor = tensor + attn # encoder attention (for decoder only) # if self.is_decoder and src_enc is not None: # attn = self.encoder_attn[i](tensor, src_mask, kv=src_enc, cache=cache) # attn = nn.functional.dropout(attn, p=self.dropout, training=self.training) # tensor = tensor + attn # tensor = self.layer_norm15[i](tensor) # FFN if not self.pre_norm: tensor = tensor + self.ffns[i](tensor) tensor = self.layer_norm2[i](tensor) else: tensor_normalized = self.layer_norm2[i](tensor) tensor = tensor + self.ffns[i](tensor_normalized) tensor *= mask.unsqueeze(-1).to(tensor.dtype) # Add last hidden state if output_hidden_states: hidden_states = hidden_states + (tensor,) # update cache length if cache is not None: cache["slen"] += tensor.size(1) # move back sequence length to dimension 0 # tensor = tensor.transpose(0, 1) if not return_dict: return tuple(v for v in [tensor, hidden_states, attentions] if v is not None) return BaseModelOutput(last_hidden_state=tensor, hidden_states=hidden_states, attentions=attentions) @add_start_docstrings( """ The Flaubert Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings). """, FLAUBERT_START_DOCSTRING, ) # Copied transformers.models.xlm.modeling_xlm.XLMWithLMHeadModel with XLM_INPUTS->FLAUBERT_INPUTS,XLM->Flaubert class FlaubertWithLMHeadModel(FlaubertPreTrainedModel): _tied_weights_keys = ["pred_layer.proj.weight"] def __init__(self, config): super().__init__(config) self.transformer = FlaubertModel(config) self.pred_layer = FlaubertPredLayer(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.pred_layer.proj def set_output_embeddings(self, new_embeddings): self.pred_layer.proj = new_embeddings def prepare_inputs_for_generation(self, input_ids, **kwargs): mask_token_id = self.config.mask_token_id lang_id = self.config.lang_id effective_batch_size = input_ids.shape[0] mask_token = torch.full((effective_batch_size, 1), mask_token_id, dtype=torch.long, device=input_ids.device) input_ids = torch.cat([input_ids, mask_token], dim=1) if lang_id is not None: langs = torch.full_like(input_ids, lang_id) else: langs = None return {"input_ids": input_ids, "langs": langs} @add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC, mask="<special1>", ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, langs: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, lengths: Optional[torch.Tensor] = None, cache: Optional[Dict[str, torch.Tensor]] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, attention_mask=attention_mask, langs=langs, token_type_ids=token_type_ids, position_ids=position_ids, lengths=lengths, cache=cache, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) output = transformer_outputs[0] outputs = self.pred_layer(output, labels) # (loss, logits) or (logits,) depending on if labels are provided. if not return_dict: return outputs + transformer_outputs[1:] return MaskedLMOutput( loss=outputs[0] if labels is not None else None, logits=outputs[0] if labels is None else outputs[1], hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) @add_start_docstrings( """ Flaubert Model with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, FLAUBERT_START_DOCSTRING, ) # Copied transformers.models.xlm.modeling_xlm.XLMForSequenceClassification with XLM_INPUTS->FLAUBERT_INPUTS,XLM->Flaubert class FlaubertForSequenceClassification(FlaubertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.transformer = FlaubertModel(config) self.sequence_summary = SequenceSummary(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, langs: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, lengths: Optional[torch.Tensor] = None, cache: Optional[Dict[str, torch.Tensor]] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, attention_mask=attention_mask, langs=langs, token_type_ids=token_type_ids, position_ids=position_ids, lengths=lengths, cache=cache, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) output = transformer_outputs[0] logits = self.sequence_summary(output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) @add_start_docstrings( """ Flaubert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, FLAUBERT_START_DOCSTRING, ) # Copied from transformers.models.xlm.modeling_xlm.XLMForTokenClassification with XLM_INPUTS->FLAUBERT_INPUTS,XLM->Flaubert class FlaubertForTokenClassification(FlaubertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.transformer = FlaubertModel(config) self.dropout = nn.Dropout(config.dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, langs: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, lengths: Optional[torch.Tensor] = None, cache: Optional[Dict[str, torch.Tensor]] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.transformer( input_ids, attention_mask=attention_mask, langs=langs, token_type_ids=token_type_ids, position_ids=position_ids, lengths=lengths, cache=cache, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Flaubert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, FLAUBERT_START_DOCSTRING, ) # Copied from transformers.models.xlm.modeling_xlm.XLMForQuestionAnsweringSimple with XLM_INPUTS->FLAUBERT_INPUTS,XLM->Flaubert class FlaubertForQuestionAnsweringSimple(FlaubertPreTrainedModel): def __init__(self, config): super().__init__(config) self.transformer = FlaubertModel(config) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, langs: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, lengths: Optional[torch.Tensor] = None, cache: Optional[Dict[str, torch.Tensor]] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, start_positions: Optional[torch.Tensor] = None, end_positions: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, attention_mask=attention_mask, langs=langs, token_type_ids=token_type_ids, position_ids=position_ids, lengths=lengths, cache=cache, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = transformer_outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + transformer_outputs[1:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) @add_start_docstrings( """ Flaubert Model with a beam-search span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, FLAUBERT_START_DOCSTRING, ) @dataclass # Copied from transformer.models.xlm.modeling_xlm.XLMForQuestionAnsweringOutput with XLM->Flaubert class FlaubertForQuestionAnsweringOutput(ModelOutput): """ Base class for outputs of question answering models using a `SquadHead`. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned if both `start_positions` and `end_positions` are provided): Classification loss as the sum of start token, end token (and is_impossible if provided) classification losses. start_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided): Log probabilities for the top config.start_n_top start token possibilities (beam-search). start_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided): Indices for the top config.start_n_top start token possibilities (beam-search). end_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided): Log probabilities for the top `config.start_n_top * config.end_n_top` end token possibilities (beam-search). end_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided): Indices for the top `config.start_n_top * config.end_n_top` end token possibilities (beam-search). cls_logits (`torch.FloatTensor` of shape `(batch_size,)`, *optional*, returned if `start_positions` or `end_positions` is not provided): Log probabilities for the `is_impossible` label of the answers. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None start_top_log_probs: Optional[torch.FloatTensor] = None start_top_index: Optional[torch.LongTensor] = None end_top_log_probs: Optional[torch.FloatTensor] = None end_top_index: Optional[torch.LongTensor] = None cls_logits: Optional[torch.FloatTensor] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None # Copied from transformer.models.xlm.modeling_xlm.XLMForQuestionAnswering with XLM_INPUTS->FLAUBERT_INPUTS,XLM->Flaubert class FlaubertForQuestionAnswering(FlaubertPreTrainedModel): def __init__(self, config): super().__init__(config) self.transformer = FlaubertModel(config) self.qa_outputs = SQuADHead(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=FlaubertForQuestionAnsweringOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, langs: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, lengths: Optional[torch.Tensor] = None, cache: Optional[Dict[str, torch.Tensor]] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, start_positions: Optional[torch.Tensor] = None, end_positions: Optional[torch.Tensor] = None, is_impossible: Optional[torch.Tensor] = None, cls_index: Optional[torch.Tensor] = None, p_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, FlaubertForQuestionAnsweringOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. is_impossible (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels whether a question has an answer or no answer (SQuAD 2.0) cls_index (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the classification token to use as input for computing plausibility of the answer. p_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Optional mask of tokens which can't be in answers (e.g. [CLS], [PAD], ...). 1.0 means token should be masked. 0.0 mean token is not masked. Returns: Example: ```python >>> from transformers import XLMTokenizer, XLMForQuestionAnswering >>> import torch >>> tokenizer = XLMTokenizer.from_pretrained("xlm-mlm-en-2048") >>> model = XLMForQuestionAnswering.from_pretrained("xlm-mlm-en-2048") >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze( ... 0 ... ) # Batch size 1 >>> start_positions = torch.tensor([1]) >>> end_positions = torch.tensor([3]) >>> outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions) >>> loss = outputs.loss ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, attention_mask=attention_mask, langs=langs, token_type_ids=token_type_ids, position_ids=position_ids, lengths=lengths, cache=cache, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) output = transformer_outputs[0] outputs = self.qa_outputs( output, start_positions=start_positions, end_positions=end_positions, cls_index=cls_index, is_impossible=is_impossible, p_mask=p_mask, return_dict=return_dict, ) if not return_dict: return outputs + transformer_outputs[1:] return FlaubertForQuestionAnsweringOutput( loss=outputs.loss, start_top_log_probs=outputs.start_top_log_probs, start_top_index=outputs.start_top_index, end_top_log_probs=outputs.end_top_log_probs, end_top_index=outputs.end_top_index, cls_logits=outputs.cls_logits, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) @add_start_docstrings( """ Flaubert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, FLAUBERT_START_DOCSTRING, ) # Copied from transformer.models.xlm.modeling_xlm.XLMForMultipleChoice with XLM_INPUTS->FLAUBERT_INPUTS,XLM->Flaubert class FlaubertForMultipleChoice(FlaubertPreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.transformer = FlaubertModel(config) self.sequence_summary = SequenceSummary(config) self.logits_proj = nn.Linear(config.num_labels, 1) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward( FLAUBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, langs: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, lengths: Optional[torch.Tensor] = None, cache: Optional[Dict[str, torch.Tensor]] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MultipleChoiceModelOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None langs = langs.view(-1, langs.size(-1)) if langs is not None else None inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) if lengths is not None: logger.warning( "The `lengths` parameter cannot be used with the Flaubert multiple choice models. Please use the " "attention mask instead." ) lengths = None transformer_outputs = self.transformer( input_ids=input_ids, attention_mask=attention_mask, langs=langs, token_type_ids=token_type_ids, position_ids=position_ids, lengths=lengths, cache=cache, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) output = transformer_outputs[0] logits = self.sequence_summary(output) logits = self.logits_proj(logits) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/flaubert/tokenization_flaubert.py
# coding=utf-8 # Copyright 2019-present CNRS, Facebook Inc. and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for Flaubert.""" import json import os import re import unicodedata from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = { "vocab_file": "vocab.json", "merges_file": "merges.txt", } PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "flaubert/flaubert_small_cased": ( "https://huggingface.co/flaubert/flaubert_small_cased/resolve/main/vocab.json" ), "flaubert/flaubert_base_uncased": ( "https://huggingface.co/flaubert/flaubert_base_uncased/resolve/main/vocab.json" ), "flaubert/flaubert_base_cased": "https://huggingface.co/flaubert/flaubert_base_cased/resolve/main/vocab.json", "flaubert/flaubert_large_cased": ( "https://huggingface.co/flaubert/flaubert_large_cased/resolve/main/vocab.json" ), }, "merges_file": { "flaubert/flaubert_small_cased": ( "https://huggingface.co/flaubert/flaubert_small_cased/resolve/main/merges.txt" ), "flaubert/flaubert_base_uncased": ( "https://huggingface.co/flaubert/flaubert_base_uncased/resolve/main/merges.txt" ), "flaubert/flaubert_base_cased": "https://huggingface.co/flaubert/flaubert_base_cased/resolve/main/merges.txt", "flaubert/flaubert_large_cased": ( "https://huggingface.co/flaubert/flaubert_large_cased/resolve/main/merges.txt" ), }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "flaubert/flaubert_small_cased": 512, "flaubert/flaubert_base_uncased": 512, "flaubert/flaubert_base_cased": 512, "flaubert/flaubert_large_cased": 512, } PRETRAINED_INIT_CONFIGURATION = { "flaubert/flaubert_small_cased": {"do_lowercase": False}, "flaubert/flaubert_base_uncased": {"do_lowercase": True}, "flaubert/flaubert_base_cased": {"do_lowercase": False}, "flaubert/flaubert_large_cased": {"do_lowercase": False}, } def convert_to_unicode(text): """ Converts `text` to Unicode (if it's not already), assuming UTF-8 input. """ def ensure_text(s, encoding="utf-8", errors="strict"): if isinstance(s, bytes): return s.decode(encoding, errors) elif isinstance(s, str): return s else: raise TypeError(f"not expecting type '{type(s)}'") return ensure_text(text, encoding="utf-8", errors="ignore") # Copied from transformers.models.xlm.tokenization_xlm.get_pairs def get_pairs(word): """ Return set of symbol pairs in a word. word is represented as tuple of symbols (symbols being variable-length strings) """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs # Copied from transformers.models.xlm.tokenization_xlm.replace_unicode_punct def replace_unicode_punct(text): """ Port of https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/replace-unicode-punctuation.perl """ text = text.replace(",", ",") text = re.sub(r"。\s*", ". ", text) text = text.replace("、", ",") text = text.replace("”", '"') text = text.replace("“", '"') text = text.replace("∶", ":") text = text.replace(":", ":") text = text.replace("?", "?") text = text.replace("《", '"') text = text.replace("》", '"') text = text.replace(")", ")") text = text.replace("!", "!") text = text.replace("(", "(") text = text.replace(";", ";") text = text.replace("1", "1") text = text.replace("」", '"') text = text.replace("「", '"') text = text.replace("0", "0") text = text.replace("3", "3") text = text.replace("2", "2") text = text.replace("5", "5") text = text.replace("6", "6") text = text.replace("9", "9") text = text.replace("7", "7") text = text.replace("8", "8") text = text.replace("4", "4") text = re.sub(r".\s*", ". ", text) text = text.replace("~", "~") text = text.replace("’", "'") text = text.replace("…", "...") text = text.replace("━", "-") text = text.replace("〈", "<") text = text.replace("〉", ">") text = text.replace("【", "[") text = text.replace("】", "]") text = text.replace("%", "%") return text # Copied from transformers.models.xlm.tokenization_xlm.remove_non_printing_char def remove_non_printing_char(text): """ Port of https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/remove-non-printing-char.perl """ output = [] for char in text: cat = unicodedata.category(char) if cat.startswith("C"): continue output.append(char) return "".join(output) class FlaubertTokenizer(PreTrainedTokenizer): """ Construct a Flaubert tokenizer. Based on Byte-Pair Encoding. The tokenization process is the following: - Moses preprocessing and tokenization. - Normalizing all inputs text. - The arguments `special_tokens` and the function `set_special_tokens`, can be used to add additional symbols (like "__classify__") to a vocabulary. - The argument `do_lowercase` controls lower casing (automatically set for pretrained vocabularies). This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Vocabulary file. merges_file (`str`): Merges file. do_lowercase (`bool`, *optional*, defaults to `False`): Controls lower casing. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. cls_token (`str`, *optional*, defaults to `"</s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (`str`, *optional*, defaults to `"<special1>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. additional_special_tokens (`List[str]`, *optional*, defaults to `["<special0>","<special1>","<special2>","<special3>","<special4>","<special5>","<special6>","<special7>","<special8>","<special9>"]`): List of additional special tokens. lang2id (`Dict[str, int]`, *optional*): Dictionary mapping languages string identifiers to their IDs. id2lang (`Dict[int, str]`, *optional*): Dictionary mapping language IDs to their string identifiers. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self, vocab_file, merges_file, do_lowercase=False, unk_token="<unk>", bos_token="<s>", sep_token="</s>", pad_token="<pad>", cls_token="</s>", mask_token="<special1>", additional_special_tokens=[ "<special0>", "<special1>", "<special2>", "<special3>", "<special4>", "<special5>", "<special6>", "<special7>", "<special8>", "<special9>", ], lang2id=None, id2lang=None, **kwargs, ): do_lowercase_and_remove_accent = kwargs.pop("do_lowercase_and_remove_accent", None) if do_lowercase_and_remove_accent is not None: logger.warning( "`do_lowercase_and_remove_accent` is passed as a keyword argument, but this won't do anything." " `FlaubertTokenizer` will always set it to `False`." ) # always `False` self.do_lowercase_and_remove_accent = False self.do_lowercase = do_lowercase super().__init__( unk_token=unk_token, bos_token=bos_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, additional_special_tokens=additional_special_tokens, lang2id=lang2id, id2lang=id2lang, **kwargs, ) try: import sacremoses except ImportError: raise ImportError( "You need to install sacremoses to use FlaubertTokenizer. " "See https://pypi.org/project/sacremoses/ for installation." ) self.sm = sacremoses # cache of sm.MosesPunctNormalizer instance self.cache_moses_punct_normalizer = {} # cache of sm.MosesTokenizer instance self.cache_moses_tokenizer = {} self.lang_with_custom_tokenizer = {"zh", "th", "ja"} self.lang2id = lang2id self.id2lang = id2lang if lang2id is not None and id2lang is not None: assert len(lang2id) == len(id2lang) self.ja_word_tokenizer = None self.zh_word_tokenizer = None with open(vocab_file, encoding="utf-8") as vocab_handle: self.encoder = json.load(vocab_handle) self.decoder = {v: k for k, v in self.encoder.items()} with open(merges_file, encoding="utf-8") as merges_handle: merges = merges_handle.read().split("\n")[:-1] merges = [tuple(merge.split()[:2]) for merge in merges] self.bpe_ranks = dict(zip(merges, range(len(merges)))) self.cache = {} @property # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.do_lower_case def do_lower_case(self): return self.do_lowercase_and_remove_accent # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.moses_punct_norm def moses_punct_norm(self, text, lang): if lang not in self.cache_moses_punct_normalizer: punct_normalizer = self.sm.MosesPunctNormalizer(lang=lang) self.cache_moses_punct_normalizer[lang] = punct_normalizer else: punct_normalizer = self.cache_moses_punct_normalizer[lang] return punct_normalizer.normalize(text) # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.moses_tokenize def moses_tokenize(self, text, lang): if lang not in self.cache_moses_tokenizer: moses_tokenizer = self.sm.MosesTokenizer(lang=lang) self.cache_moses_tokenizer[lang] = moses_tokenizer else: moses_tokenizer = self.cache_moses_tokenizer[lang] return moses_tokenizer.tokenize(text, return_str=False, escape=False) # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.moses_pipeline def moses_pipeline(self, text, lang): text = replace_unicode_punct(text) text = self.moses_punct_norm(text, lang) text = remove_non_printing_char(text) return text # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.ja_tokenize def ja_tokenize(self, text): if self.ja_word_tokenizer is None: try: import Mykytea self.ja_word_tokenizer = Mykytea.Mykytea( f"-model {os.path.expanduser('~')}/local/share/kytea/model.bin" ) except (AttributeError, ImportError): logger.error( "Make sure you install KyTea (https://github.com/neubig/kytea) and it's python wrapper" " (https://github.com/chezou/Mykytea-python) with the following steps" ) logger.error("1. git clone [email protected]:neubig/kytea.git && cd kytea") logger.error("2. autoreconf -i") logger.error("3. ./configure --prefix=$HOME/local") logger.error("4. make && make install") logger.error("5. pip install kytea") raise return list(self.ja_word_tokenizer.getWS(text)) @property # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.vocab_size def vocab_size(self): return len(self.encoder) # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.get_vocab def get_vocab(self): return dict(self.encoder, **self.added_tokens_encoder) # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.bpe def bpe(self, token): word = tuple(token[:-1]) + (token[-1] + "</w>",) if token in self.cache: return self.cache[token] pairs = get_pairs(word) if not pairs: return token + "</w>" while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) i = j if word[i] == first and i < len(word) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = " ".join(word) if word == "\n </w>": word = "\n</w>" self.cache[token] = word return word def preprocess_text(self, text): text = text.replace("``", '"').replace("''", '"') text = convert_to_unicode(text) text = unicodedata.normalize("NFC", text) if self.do_lowercase: text = text.lower() return text def _tokenize(self, text, bypass_tokenizer=False): """ Tokenize a string given language code using Moses. Details of tokenization: - [sacremoses](https://github.com/alvations/sacremoses): port of Moses - Install with `pip install sacremoses` Args: - bypass_tokenizer: Allow users to preprocess and tokenize the sentences externally (default = False) (bool). If True, we only apply BPE. Returns: List of tokens. """ lang = "fr" if lang and self.lang2id and lang not in self.lang2id: logger.error( "Supplied language code not found in lang2id mapping. Please check that your language is supported by" " the loaded pretrained model." ) if bypass_tokenizer: text = text.split() else: text = self.preprocess_text(text) text = self.moses_pipeline(text, lang=lang) text = self.moses_tokenize(text, lang=lang) split_tokens = [] for token in text: if token: split_tokens.extend(list(self.bpe(token).split(" "))) return split_tokens # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer._convert_token_to_id def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.encoder.get(token, self.encoder.get(self.unk_token)) # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer._convert_id_to_token def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index, self.unk_token) # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.convert_tokens_to_string def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" out_string = "".join(tokens).replace("</w>", " ").strip() return out_string # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.build_inputs_with_special_tokens def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. An XLM sequence has the following format: - single sequence: `<s> X </s>` - pair of sequences: `<s> A </s> B </s>` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ bos = [self.bos_token_id] sep = [self.sep_token_id] if token_ids_1 is None: return bos + token_ids_0 + sep return bos + token_ids_0 + sep + token_ids_1 + sep # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.get_special_tokens_mask def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is not None: return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] return [1] + ([0] * len(token_ids_0)) + [1] # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.create_token_type_ids_from_sequences def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. An XLM sequence pair mask has the following format: ``` 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.save_vocabulary def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) merge_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") index = 0 with open(merge_file, "w", encoding="utf-8") as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) index = token_index writer.write(" ".join(bpe_tokens) + "\n") index += 1 return vocab_file, merge_file # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.__getstate__ def __getstate__(self): state = self.__dict__.copy() state["sm"] = None return state # Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.__setstate__ def __setstate__(self, d): self.__dict__ = d try: import sacremoses except ImportError: raise ImportError( "You need to install sacremoses to use XLMTokenizer. " "See https://pypi.org/project/sacremoses/ for installation." ) self.sm = sacremoses
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/mluke/__init__.py
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _import_structure = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_mluke"] = ["MLukeTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/mluke/convert_mluke_original_pytorch_checkpoint_to_pytorch.py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert mLUKE checkpoint.""" import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def convert_luke_checkpoint(checkpoint_path, metadata_path, entity_vocab_path, pytorch_dump_folder_path, model_size): # Load configuration defined in the metadata file with open(metadata_path) as metadata_file: metadata = json.load(metadata_file) config = LukeConfig(use_entity_aware_attention=True, **metadata["model_config"]) # Load in the weights from the checkpoint_path state_dict = torch.load(checkpoint_path, map_location="cpu")["module"] # Load the entity vocab file entity_vocab = load_original_entity_vocab(entity_vocab_path) # add an entry for [MASK2] entity_vocab["[MASK2]"] = max(entity_vocab.values()) + 1 config.entity_vocab_size += 1 tokenizer = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"]) # Add special tokens to the token vocabulary for downstream tasks entity_token_1 = AddedToken("<ent>", lstrip=False, rstrip=False) entity_token_2 = AddedToken("<ent2>", lstrip=False, rstrip=False) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_1, entity_token_2]}) config.vocab_size += 2 print(f"Saving tokenizer to {pytorch_dump_folder_path}") tokenizer.save_pretrained(pytorch_dump_folder_path) with open(os.path.join(pytorch_dump_folder_path, "tokenizer_config.json"), "r") as f: tokenizer_config = json.load(f) tokenizer_config["tokenizer_class"] = "MLukeTokenizer" with open(os.path.join(pytorch_dump_folder_path, "tokenizer_config.json"), "w") as f: json.dump(tokenizer_config, f) with open(os.path.join(pytorch_dump_folder_path, MLukeTokenizer.vocab_files_names["entity_vocab_file"]), "w") as f: json.dump(entity_vocab, f) tokenizer = MLukeTokenizer.from_pretrained(pytorch_dump_folder_path) # Initialize the embeddings of the special tokens ent_init_index = tokenizer.convert_tokens_to_ids(["@"])[0] ent2_init_index = tokenizer.convert_tokens_to_ids(["#"])[0] word_emb = state_dict["embeddings.word_embeddings.weight"] ent_emb = word_emb[ent_init_index].unsqueeze(0) ent2_emb = word_emb[ent2_init_index].unsqueeze(0) state_dict["embeddings.word_embeddings.weight"] = torch.cat([word_emb, ent_emb, ent2_emb]) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: decoder_bias = state_dict[bias_name] ent_decoder_bias = decoder_bias[ent_init_index].unsqueeze(0) ent2_decoder_bias = decoder_bias[ent2_init_index].unsqueeze(0) state_dict[bias_name] = torch.cat([decoder_bias, ent_decoder_bias, ent2_decoder_bias]) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers): for matrix_name in ["query.weight", "query.bias"]: prefix = f"encoder.layer.{layer_index}.attention.self." state_dict[prefix + "w2e_" + matrix_name] = state_dict[prefix + matrix_name] state_dict[prefix + "e2w_" + matrix_name] = state_dict[prefix + matrix_name] state_dict[prefix + "e2e_" + matrix_name] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks entity_emb = state_dict["entity_embeddings.entity_embeddings.weight"] entity_mask_emb = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0) state_dict["entity_embeddings.entity_embeddings.weight"] = torch.cat([entity_emb, entity_mask_emb]) # add [MASK2] for 'entity_predictions.bias' entity_prediction_bias = state_dict["entity_predictions.bias"] entity_mask_bias = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0) state_dict["entity_predictions.bias"] = torch.cat([entity_prediction_bias, entity_mask_bias]) model = LukeForMaskedLM(config=config).eval() state_dict.pop("entity_predictions.decoder.weight") state_dict.pop("lm_head.decoder.weight") state_dict.pop("lm_head.decoder.bias") state_dict_for_hugging_face = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("lm_head") or key.startswith("entity_predictions")): state_dict_for_hugging_face[f"luke.{key}"] = state_dict[key] else: state_dict_for_hugging_face[key] = state_dict[key] missing_keys, unexpected_keys = model.load_state_dict(state_dict_for_hugging_face, strict=False) if set(unexpected_keys) != {"luke.embeddings.position_ids"}: raise ValueError(f"Unexpected unexpected_keys: {unexpected_keys}") if set(missing_keys) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f"Unexpected missing_keys: {missing_keys}") model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs tokenizer = MLukeTokenizer.from_pretrained(pytorch_dump_folder_path, task="entity_classification") text = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)." span = (0, 9) encoding = tokenizer(text, entity_spans=[span], return_tensors="pt") outputs = model(**encoding) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base expected_shape = torch.Size((1, 33, 768)) expected_slice = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]]) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f"Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3], expected_slice, atol=1e-4): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base expected_shape = torch.Size((1, 1, 768)) expected_slice = torch.tensor([[-0.1482, 0.0609, 0.0322]]) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f"Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is" f" {expected_shape}" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3], expected_slice, atol=1e-4): raise ValueError # Verify masked word/entity prediction tokenizer = MLukeTokenizer.from_pretrained(pytorch_dump_folder_path) text = "Tokyo is the capital of <mask>." span = (24, 30) encoding = tokenizer(text, entity_spans=[span], return_tensors="pt") outputs = model(**encoding) input_ids = encoding["input_ids"][0].tolist() mask_position_id = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>")) predicted_id = outputs.logits[0][mask_position_id].argmax(dim=-1) assert "Japan" == tokenizer.decode(predicted_id) predicted_entity_id = outputs.entity_logits[0][0].argmax().item() multilingual_predicted_entities = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("en:")][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(pytorch_dump_folder_path)) model.save_pretrained(pytorch_dump_folder_path) def load_original_entity_vocab(entity_vocab_path): SPECIAL_TOKENS = ["[MASK]", "[PAD]", "[UNK]"] data = [json.loads(line) for line in open(entity_vocab_path)] new_mapping = {} for entry in data: entity_id = entry["id"] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: new_mapping[entity_name] = entity_id break new_entity_name = f"{language}:{entity_name}" new_mapping[new_entity_name] = entity_id return new_mapping if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) args = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/mluke/tokenization_mluke.py
# coding=utf-8 # Copyright 2021 Studio Ousia and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License """ Tokenization classes for mLUKE.""" import itertools import json import os from collections.abc import Mapping from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import ( ENCODE_KWARGS_DOCSTRING, AddedToken, BatchEncoding, EncodedInput, PaddingStrategy, TensorType, TextInput, TextInputPair, TruncationStrategy, to_py_obj, ) from ...utils import add_end_docstrings, is_tf_tensor, is_torch_tensor, logging logger = logging.get_logger(__name__) EntitySpan = Tuple[int, int] EntitySpanInput = List[EntitySpan] Entity = str EntityInput = List[Entity] SPIECE_UNDERLINE = "▁" VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model", "entity_vocab_file": "entity_vocab.json"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "studio-ousia/mluke-base": "https://huggingface.co/studio-ousia/mluke-base/resolve/main/vocab.json", }, "merges_file": { "studio-ousia/mluke-base": "https://huggingface.co/studio-ousia/mluke-base/resolve/main/merges.txt", }, "entity_vocab_file": { "studio-ousia/mluke-base": "https://huggingface.co/studio-ousia/mluke-base/resolve/main/entity_vocab.json", }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "studio-ousia/mluke-base": 512, } ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING = r""" return_token_type_ids (`bool`, *optional*): Whether to return token type IDs. If left to the default, will return the token type IDs according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are token type IDs?](../glossary#token-type-ids) return_attention_mask (`bool`, *optional*): Whether to return the attention mask. If left to the default, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) return_overflowing_tokens (`bool`, *optional*, defaults to `False`): Whether or not to return overflowing token sequences. If a pair of sequences of input ids (or a batch of pairs) is provided with `truncation_strategy = longest_first` or `True`, an error is raised instead of returning overflowing tokens. return_special_tokens_mask (`bool`, *optional*, defaults to `False`): Whether or not to return special tokens mask information. return_offsets_mapping (`bool`, *optional*, defaults to `False`): Whether or not to return `(char_start, char_end)` for each token. This is only available on fast tokenizers inheriting from [`PreTrainedTokenizerFast`], if using Python's tokenizer, this method will raise `NotImplementedError`. return_length (`bool`, *optional*, defaults to `False`): Whether or not to return the lengths of the encoded inputs. verbose (`bool`, *optional*, defaults to `True`): Whether or not to print more information and warnings. **kwargs: passed to the `self.tokenize()` method Return: [`BatchEncoding`]: A [`BatchEncoding`] with the following fields: - **input_ids** -- List of token ids to be fed to a model. [What are input IDs?](../glossary#input-ids) - **token_type_ids** -- List of token type ids to be fed to a model (when `return_token_type_ids=True` or if *"token_type_ids"* is in `self.model_input_names`). [What are token type IDs?](../glossary#token-type-ids) - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names`). [What are attention masks?](../glossary#attention-mask) - **entity_ids** -- List of entity ids to be fed to a model. [What are input IDs?](../glossary#input-ids) - **entity_position_ids** -- List of entity positions in the input sequence to be fed to a model. - **entity_token_type_ids** -- List of entity token type ids to be fed to a model (when `return_token_type_ids=True` or if *"entity_token_type_ids"* is in `self.model_input_names`). [What are token type IDs?](../glossary#token-type-ids) - **entity_attention_mask** -- List of indices specifying which entities should be attended to by the model (when `return_attention_mask=True` or if *"entity_attention_mask"* is in `self.model_input_names`). [What are attention masks?](../glossary#attention-mask) - **entity_start_positions** -- List of the start positions of entities in the word token sequence (when `task="entity_span_classification"`). - **entity_end_positions** -- List of the end positions of entities in the word token sequence (when `task="entity_span_classification"`). - **overflowing_tokens** -- List of overflowing tokens sequences (when a `max_length` is specified and `return_overflowing_tokens=True`). - **num_truncated_tokens** -- Number of tokens truncated (when a `max_length` is specified and `return_overflowing_tokens=True`). - **special_tokens_mask** -- List of 0s and 1s, with 1 specifying added special tokens and 0 specifying regular sequence tokens (when `add_special_tokens=True` and `return_special_tokens_mask=True`). - **length** -- The length of the inputs (when `return_length=True`) """ class MLukeTokenizer(PreTrainedTokenizer): """ Adapted from [`XLMRobertaTokenizer`] and [`LukeTokenizer`]. Based on [SentencePiece](https://github.com/google/sentencepiece). This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. entity_vocab_file (`str`): Path to the entity vocabulary file. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. task (`str`, *optional*): Task for which you want to prepare sequences. One of `"entity_classification"`, `"entity_pair_classification"`, or `"entity_span_classification"`. If you specify this argument, the entity sequence is automatically created based on the given entity span(s). max_entity_length (`int`, *optional*, defaults to 32): The maximum length of `entity_ids`. max_mention_length (`int`, *optional*, defaults to 30): The maximum number of tokens inside an entity span. entity_token_1 (`str`, *optional*, defaults to `<ent>`): The special token used to represent an entity span in a word token sequence. This token is only used when `task` is set to `"entity_classification"` or `"entity_pair_classification"`. entity_token_2 (`str`, *optional*, defaults to `<ent2>`): The special token used to represent an entity span in a word token sequence. This token is only used when `task` is set to `"entity_pair_classification"`. additional_special_tokens (`List[str]`, *optional*, defaults to `["<s>NOTUSED", "</s>NOTUSED"]`): Additional special tokens used by the tokenizer. sp_model_kwargs (`dict`, *optional*): Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, to set: - `enable_sampling`: Enable subword regularization. - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. - `nbest_size = {0,1}`: No sampling is performed. - `nbest_size > 1`: samples from the nbest_size results. - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm. - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for BPE-dropout. Attributes: sp_model (`SentencePieceProcessor`): The *SentencePiece* processor that is used for every conversion (string, tokens and IDs). """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, entity_vocab_file, bos_token="<s>", eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", task=None, max_entity_length=32, max_mention_length=30, entity_token_1="<ent>", entity_token_2="<ent2>", entity_unk_token="[UNK]", entity_pad_token="[PAD]", entity_mask_token="[MASK]", entity_mask2_token="[MASK2]", sp_model_kwargs: Optional[Dict[str, Any]] = None, **kwargs, ) -> None: # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token # we add 2 special tokens for downstream tasks # for more information about lstrip and rstrip, see https://github.com/huggingface/transformers/pull/2778 entity_token_1 = ( AddedToken(entity_token_1, lstrip=False, rstrip=False) if isinstance(entity_token_1, str) else entity_token_1 ) entity_token_2 = ( AddedToken(entity_token_2, lstrip=False, rstrip=False) if isinstance(entity_token_2, str) else entity_token_2 ) kwargs["additional_special_tokens"] = kwargs.get("additional_special_tokens", []) kwargs["additional_special_tokens"] += [entity_token_1, entity_token_2] self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, cls_token=cls_token, pad_token=pad_token, mask_token=mask_token, sp_model_kwargs=self.sp_model_kwargs, task=task, max_entity_length=max_entity_length, max_mention_length=max_mention_length, entity_token_1=entity_token_1, entity_token_2=entity_token_2, entity_unk_token=entity_unk_token, entity_pad_token=entity_pad_token, entity_mask_token=entity_mask_token, entity_mask2_token=entity_mask2_token, **kwargs, ) self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(vocab_file)) self.vocab_file = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token self.fairseq_tokens_to_ids = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab self.fairseq_offset = 1 self.fairseq_tokens_to_ids["<mask>"] = len(self.sp_model) + self.fairseq_offset self.fairseq_ids_to_tokens = {v: k for k, v in self.fairseq_tokens_to_ids.items()} with open(entity_vocab_file, encoding="utf-8") as entity_vocab_handle: self.entity_vocab = json.load(entity_vocab_handle) for entity_special_token in [entity_unk_token, entity_pad_token, entity_mask_token, entity_mask2_token]: if entity_special_token not in self.entity_vocab: raise ValueError( f"Specified entity special token ``{entity_special_token}`` is not found in entity_vocab. " f"Probably an incorrect entity vocab file is loaded: {entity_vocab_file}." ) self.entity_unk_token_id = self.entity_vocab[entity_unk_token] self.entity_pad_token_id = self.entity_vocab[entity_pad_token] self.entity_mask_token_id = self.entity_vocab[entity_mask_token] self.entity_mask2_token_id = self.entity_vocab[entity_mask2_token] self.task = task if task is None or task == "entity_span_classification": self.max_entity_length = max_entity_length elif task == "entity_classification": self.max_entity_length = 1 elif task == "entity_pair_classification": self.max_entity_length = 2 else: raise ValueError( f"Task {task} not supported. Select task from ['entity_classification', 'entity_pair_classification'," " 'entity_span_classification'] only." ) self.max_mention_length = max_mention_length def __getstate__(self): state = self.__dict__.copy() state["sp_model"] = None state["sp_model_proto"] = self.sp_model.serialized_model_proto() return state def __setstate__(self, d): self.__dict__ = d # for backward compatibility if not hasattr(self, "sp_model_kwargs"): self.sp_model_kwargs = {} self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.LoadFromSerializedProto(self.sp_model_proto) @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) # Copied from transformers.models.luke.tokenization_luke.LukeTokenizer.__call__ def __call__( self, text: Union[TextInput, List[TextInput]], text_pair: Optional[Union[TextInput, List[TextInput]]] = None, entity_spans: Optional[Union[EntitySpanInput, List[EntitySpanInput]]] = None, entity_spans_pair: Optional[Union[EntitySpanInput, List[EntitySpanInput]]] = None, entities: Optional[Union[EntityInput, List[EntityInput]]] = None, entities_pair: Optional[Union[EntityInput, List[EntityInput]]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, max_entity_length: Optional[int] = None, stride: int = 0, is_split_into_words: Optional[bool] = False, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: """ Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of sequences, depending on the task you want to prepare them for. Args: text (`str`, `List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence must be a string. Note that this tokenizer does not support tokenization based on pretokenized strings. text_pair (`str`, `List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence must be a string. Note that this tokenizer does not support tokenization based on pretokenized strings. entity_spans (`List[Tuple[int, int]]`, `List[List[Tuple[int, int]]]`, *optional*): The sequence or batch of sequences of entity spans to be encoded. Each sequence consists of tuples each with two integers denoting character-based start and end positions of entities. If you specify `"entity_classification"` or `"entity_pair_classification"` as the `task` argument in the constructor, the length of each sequence must be 1 or 2, respectively. If you specify `entities`, the length of each sequence must be equal to the length of each sequence of `entities`. entity_spans_pair (`List[Tuple[int, int]]`, `List[List[Tuple[int, int]]]`, *optional*): The sequence or batch of sequences of entity spans to be encoded. Each sequence consists of tuples each with two integers denoting character-based start and end positions of entities. If you specify the `task` argument in the constructor, this argument is ignored. If you specify `entities_pair`, the length of each sequence must be equal to the length of each sequence of `entities_pair`. entities (`List[str]`, `List[List[str]]`, *optional*): The sequence or batch of sequences of entities to be encoded. Each sequence consists of strings representing entities, i.e., special entities (e.g., [MASK]) or entity titles of Wikipedia (e.g., Los Angeles). This argument is ignored if you specify the `task` argument in the constructor. The length of each sequence must be equal to the length of each sequence of `entity_spans`. If you specify `entity_spans` without specifying this argument, the entity sequence or the batch of entity sequences is automatically constructed by filling it with the [MASK] entity. entities_pair (`List[str]`, `List[List[str]]`, *optional*): The sequence or batch of sequences of entities to be encoded. Each sequence consists of strings representing entities, i.e., special entities (e.g., [MASK]) or entity titles of Wikipedia (e.g., Los Angeles). This argument is ignored if you specify the `task` argument in the constructor. The length of each sequence must be equal to the length of each sequence of `entity_spans_pair`. If you specify `entity_spans_pair` without specifying this argument, the entity sequence or the batch of entity sequences is automatically constructed by filling it with the [MASK] entity. max_entity_length (`int`, *optional*): The maximum length of `entity_ids`. """ # Input type checking for clearer error is_valid_single_text = isinstance(text, str) is_valid_batch_text = isinstance(text, (list, tuple)) and (len(text) == 0 or (isinstance(text[0], str))) if not (is_valid_single_text or is_valid_batch_text): raise ValueError("text input must be of type `str` (single example) or `List[str]` (batch).") is_valid_single_text_pair = isinstance(text_pair, str) is_valid_batch_text_pair = isinstance(text_pair, (list, tuple)) and ( len(text_pair) == 0 or isinstance(text_pair[0], str) ) if not (text_pair is None or is_valid_single_text_pair or is_valid_batch_text_pair): raise ValueError("text_pair input must be of type `str` (single example) or `List[str]` (batch).") is_batched = bool(isinstance(text, (list, tuple))) if is_batched: batch_text_or_text_pairs = list(zip(text, text_pair)) if text_pair is not None else text if entities is None: batch_entities_or_entities_pairs = None else: batch_entities_or_entities_pairs = ( list(zip(entities, entities_pair)) if entities_pair is not None else entities ) if entity_spans is None: batch_entity_spans_or_entity_spans_pairs = None else: batch_entity_spans_or_entity_spans_pairs = ( list(zip(entity_spans, entity_spans_pair)) if entity_spans_pair is not None else entity_spans ) return self.batch_encode_plus( batch_text_or_text_pairs=batch_text_or_text_pairs, batch_entity_spans_or_entity_spans_pairs=batch_entity_spans_or_entity_spans_pairs, batch_entities_or_entities_pairs=batch_entities_or_entities_pairs, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, max_entity_length=max_entity_length, stride=stride, is_split_into_words=is_split_into_words, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) else: return self.encode_plus( text=text, text_pair=text_pair, entity_spans=entity_spans, entity_spans_pair=entity_spans_pair, entities=entities, entities_pair=entities_pair, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, max_entity_length=max_entity_length, stride=stride, is_split_into_words=is_split_into_words, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) # Copied from transformers.models.luke.tokenization_luke.LukeTokenizer._encode_plus def _encode_plus( self, text: Union[TextInput], text_pair: Optional[Union[TextInput]] = None, entity_spans: Optional[EntitySpanInput] = None, entity_spans_pair: Optional[EntitySpanInput] = None, entities: Optional[EntityInput] = None, entities_pair: Optional[EntityInput] = None, add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, max_entity_length: Optional[int] = None, stride: int = 0, is_split_into_words: Optional[bool] = False, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: if return_offsets_mapping: raise NotImplementedError( "return_offset_mapping is not available when using Python tokenizers. " "To use this feature, change your tokenizer to one deriving from " "transformers.PreTrainedTokenizerFast. " "More information on available tokenizers at " "https://github.com/huggingface/transformers/pull/2674" ) if is_split_into_words: raise NotImplementedError("is_split_into_words is not supported in this tokenizer.") ( first_ids, second_ids, first_entity_ids, second_entity_ids, first_entity_token_spans, second_entity_token_spans, ) = self._create_input_sequence( text=text, text_pair=text_pair, entities=entities, entities_pair=entities_pair, entity_spans=entity_spans, entity_spans_pair=entity_spans_pair, **kwargs, ) # prepare_for_model will create the attention_mask and token_type_ids return self.prepare_for_model( first_ids, pair_ids=second_ids, entity_ids=first_entity_ids, pair_entity_ids=second_entity_ids, entity_token_spans=first_entity_token_spans, pair_entity_token_spans=second_entity_token_spans, add_special_tokens=add_special_tokens, padding=padding_strategy.value, truncation=truncation_strategy.value, max_length=max_length, max_entity_length=max_entity_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, prepend_batch_axis=True, return_attention_mask=return_attention_mask, return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, verbose=verbose, ) # Copied from transformers.models.luke.tokenization_luke.LukeTokenizer._batch_encode_plus def _batch_encode_plus( self, batch_text_or_text_pairs: Union[List[TextInput], List[TextInputPair]], batch_entity_spans_or_entity_spans_pairs: Optional[ Union[List[EntitySpanInput], List[Tuple[EntitySpanInput, EntitySpanInput]]] ] = None, batch_entities_or_entities_pairs: Optional[ Union[List[EntityInput], List[Tuple[EntityInput, EntityInput]]] ] = None, add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, max_entity_length: Optional[int] = None, stride: int = 0, is_split_into_words: Optional[bool] = False, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: if return_offsets_mapping: raise NotImplementedError( "return_offset_mapping is not available when using Python tokenizers. " "To use this feature, change your tokenizer to one deriving from " "transformers.PreTrainedTokenizerFast." ) if is_split_into_words: raise NotImplementedError("is_split_into_words is not supported in this tokenizer.") # input_ids is a list of tuples (one for each example in the batch) input_ids = [] entity_ids = [] entity_token_spans = [] for index, text_or_text_pair in enumerate(batch_text_or_text_pairs): if not isinstance(text_or_text_pair, (list, tuple)): text, text_pair = text_or_text_pair, None else: text, text_pair = text_or_text_pair entities, entities_pair = None, None if batch_entities_or_entities_pairs is not None: entities_or_entities_pairs = batch_entities_or_entities_pairs[index] if entities_or_entities_pairs: if isinstance(entities_or_entities_pairs[0], str): entities, entities_pair = entities_or_entities_pairs, None else: entities, entities_pair = entities_or_entities_pairs entity_spans, entity_spans_pair = None, None if batch_entity_spans_or_entity_spans_pairs is not None: entity_spans_or_entity_spans_pairs = batch_entity_spans_or_entity_spans_pairs[index] if len(entity_spans_or_entity_spans_pairs) > 0 and isinstance( entity_spans_or_entity_spans_pairs[0], list ): entity_spans, entity_spans_pair = entity_spans_or_entity_spans_pairs else: entity_spans, entity_spans_pair = entity_spans_or_entity_spans_pairs, None ( first_ids, second_ids, first_entity_ids, second_entity_ids, first_entity_token_spans, second_entity_token_spans, ) = self._create_input_sequence( text=text, text_pair=text_pair, entities=entities, entities_pair=entities_pair, entity_spans=entity_spans, entity_spans_pair=entity_spans_pair, **kwargs, ) input_ids.append((first_ids, second_ids)) entity_ids.append((first_entity_ids, second_entity_ids)) entity_token_spans.append((first_entity_token_spans, second_entity_token_spans)) batch_outputs = self._batch_prepare_for_model( input_ids, batch_entity_ids_pairs=entity_ids, batch_entity_token_spans_pairs=entity_token_spans, add_special_tokens=add_special_tokens, padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, max_entity_length=max_entity_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, return_tensors=return_tensors, verbose=verbose, ) return BatchEncoding(batch_outputs) # Copied from transformers.models.luke.tokenization_luke.LukeTokenizer._check_entity_input_format def _check_entity_input_format(self, entities: Optional[EntityInput], entity_spans: Optional[EntitySpanInput]): if not isinstance(entity_spans, list): raise ValueError("entity_spans should be given as a list") elif len(entity_spans) > 0 and not isinstance(entity_spans[0], tuple): raise ValueError( "entity_spans should be given as a list of tuples containing the start and end character indices" ) if entities is not None: if not isinstance(entities, list): raise ValueError("If you specify entities, they should be given as a list") if len(entities) > 0 and not isinstance(entities[0], str): raise ValueError("If you specify entities, they should be given as a list of entity names") if len(entities) != len(entity_spans): raise ValueError("If you specify entities, entities and entity_spans must be the same length") # Copied from transformers.models.luke.tokenization_luke.LukeTokenizer._create_input_sequence def _create_input_sequence( self, text: Union[TextInput], text_pair: Optional[Union[TextInput]] = None, entities: Optional[EntityInput] = None, entities_pair: Optional[EntityInput] = None, entity_spans: Optional[EntitySpanInput] = None, entity_spans_pair: Optional[EntitySpanInput] = None, **kwargs, ) -> Tuple[list, list, list, list, list, list]: def get_input_ids(text): tokens = self.tokenize(text, **kwargs) return self.convert_tokens_to_ids(tokens) def get_input_ids_and_entity_token_spans(text, entity_spans): if entity_spans is None: return get_input_ids(text), None cur = 0 input_ids = [] entity_token_spans = [None] * len(entity_spans) split_char_positions = sorted(frozenset(itertools.chain(*entity_spans))) char_pos2token_pos = {} for split_char_position in split_char_positions: orig_split_char_position = split_char_position if ( split_char_position > 0 and text[split_char_position - 1] == " " ): # whitespace should be prepended to the following token split_char_position -= 1 if cur != split_char_position: input_ids += get_input_ids(text[cur:split_char_position]) cur = split_char_position char_pos2token_pos[orig_split_char_position] = len(input_ids) input_ids += get_input_ids(text[cur:]) entity_token_spans = [ (char_pos2token_pos[char_start], char_pos2token_pos[char_end]) for char_start, char_end in entity_spans ] return input_ids, entity_token_spans first_ids, second_ids = None, None first_entity_ids, second_entity_ids = None, None first_entity_token_spans, second_entity_token_spans = None, None if self.task is None: if entity_spans is None: first_ids = get_input_ids(text) else: self._check_entity_input_format(entities, entity_spans) first_ids, first_entity_token_spans = get_input_ids_and_entity_token_spans(text, entity_spans) if entities is None: first_entity_ids = [self.entity_mask_token_id] * len(entity_spans) else: first_entity_ids = [self.entity_vocab.get(entity, self.entity_unk_token_id) for entity in entities] if text_pair is not None: if entity_spans_pair is None: second_ids = get_input_ids(text_pair) else: self._check_entity_input_format(entities_pair, entity_spans_pair) second_ids, second_entity_token_spans = get_input_ids_and_entity_token_spans( text_pair, entity_spans_pair ) if entities_pair is None: second_entity_ids = [self.entity_mask_token_id] * len(entity_spans_pair) else: second_entity_ids = [ self.entity_vocab.get(entity, self.entity_unk_token_id) for entity in entities_pair ] elif self.task == "entity_classification": if not (isinstance(entity_spans, list) and len(entity_spans) == 1 and isinstance(entity_spans[0], tuple)): raise ValueError( "Entity spans should be a list containing a single tuple " "containing the start and end character indices of an entity" ) first_entity_ids = [self.entity_mask_token_id] first_ids, first_entity_token_spans = get_input_ids_and_entity_token_spans(text, entity_spans) # add special tokens to input ids entity_token_start, entity_token_end = first_entity_token_spans[0] first_ids = ( first_ids[:entity_token_end] + [self.additional_special_tokens_ids[0]] + first_ids[entity_token_end:] ) first_ids = ( first_ids[:entity_token_start] + [self.additional_special_tokens_ids[0]] + first_ids[entity_token_start:] ) first_entity_token_spans = [(entity_token_start, entity_token_end + 2)] elif self.task == "entity_pair_classification": if not ( isinstance(entity_spans, list) and len(entity_spans) == 2 and isinstance(entity_spans[0], tuple) and isinstance(entity_spans[1], tuple) ): raise ValueError( "Entity spans should be provided as a list of two tuples, " "each tuple containing the start and end character indices of an entity" ) head_span, tail_span = entity_spans first_entity_ids = [self.entity_mask_token_id, self.entity_mask2_token_id] first_ids, first_entity_token_spans = get_input_ids_and_entity_token_spans(text, entity_spans) head_token_span, tail_token_span = first_entity_token_spans token_span_with_special_token_ids = [ (head_token_span, self.additional_special_tokens_ids[0]), (tail_token_span, self.additional_special_tokens_ids[1]), ] if head_token_span[0] < tail_token_span[0]: first_entity_token_spans[0] = (head_token_span[0], head_token_span[1] + 2) first_entity_token_spans[1] = (tail_token_span[0] + 2, tail_token_span[1] + 4) token_span_with_special_token_ids = reversed(token_span_with_special_token_ids) else: first_entity_token_spans[0] = (head_token_span[0] + 2, head_token_span[1] + 4) first_entity_token_spans[1] = (tail_token_span[0], tail_token_span[1] + 2) for (entity_token_start, entity_token_end), special_token_id in token_span_with_special_token_ids: first_ids = first_ids[:entity_token_end] + [special_token_id] + first_ids[entity_token_end:] first_ids = first_ids[:entity_token_start] + [special_token_id] + first_ids[entity_token_start:] elif self.task == "entity_span_classification": if not (isinstance(entity_spans, list) and len(entity_spans) > 0 and isinstance(entity_spans[0], tuple)): raise ValueError( "Entity spans should be provided as a list of tuples, " "each tuple containing the start and end character indices of an entity" ) first_ids, first_entity_token_spans = get_input_ids_and_entity_token_spans(text, entity_spans) first_entity_ids = [self.entity_mask_token_id] * len(entity_spans) else: raise ValueError(f"Task {self.task} not supported") return ( first_ids, second_ids, first_entity_ids, second_entity_ids, first_entity_token_spans, second_entity_token_spans, ) @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) # Copied from transformers.models.luke.tokenization_luke.LukeTokenizer._batch_prepare_for_model def _batch_prepare_for_model( self, batch_ids_pairs: List[Tuple[List[int], None]], batch_entity_ids_pairs: List[Tuple[Optional[List[int]], Optional[List[int]]]], batch_entity_token_spans_pairs: List[Tuple[Optional[List[Tuple[int, int]]], Optional[List[Tuple[int, int]]]]], add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, max_entity_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[str] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_length: bool = False, verbose: bool = True, ) -> BatchEncoding: """ Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It adds special tokens, truncates sequences if overflowing while taking into account the special tokens and manages a moving window (with user defined stride) for overflowing tokens Args: batch_ids_pairs: list of tokenized input ids or input ids pairs batch_entity_ids_pairs: list of entity ids or entity ids pairs batch_entity_token_spans_pairs: list of entity spans or entity spans pairs max_entity_length: The maximum length of the entity sequence. """ batch_outputs = {} for input_ids, entity_ids, entity_token_span_pairs in zip( batch_ids_pairs, batch_entity_ids_pairs, batch_entity_token_spans_pairs ): first_ids, second_ids = input_ids first_entity_ids, second_entity_ids = entity_ids first_entity_token_spans, second_entity_token_spans = entity_token_span_pairs outputs = self.prepare_for_model( first_ids, second_ids, entity_ids=first_entity_ids, pair_entity_ids=second_entity_ids, entity_token_spans=first_entity_token_spans, pair_entity_token_spans=second_entity_token_spans, add_special_tokens=add_special_tokens, padding=PaddingStrategy.DO_NOT_PAD.value, # we pad in batch afterward truncation=truncation_strategy.value, max_length=max_length, max_entity_length=max_entity_length, stride=stride, pad_to_multiple_of=None, # we pad in batch afterward return_attention_mask=False, # we pad in batch afterward return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, return_tensors=None, # We convert the whole batch to tensors at the end prepend_batch_axis=False, verbose=verbose, ) for key, value in outputs.items(): if key not in batch_outputs: batch_outputs[key] = [] batch_outputs[key].append(value) batch_outputs = self.pad( batch_outputs, padding=padding_strategy.value, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, ) batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors) return batch_outputs @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) # Copied from transformers.models.luke.tokenization_luke.LukeTokenizer.prepare_for_model def prepare_for_model( self, ids: List[int], pair_ids: Optional[List[int]] = None, entity_ids: Optional[List[int]] = None, pair_entity_ids: Optional[List[int]] = None, entity_token_spans: Optional[List[Tuple[int, int]]] = None, pair_entity_token_spans: Optional[List[Tuple[int, int]]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, max_entity_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, prepend_batch_axis: bool = False, **kwargs, ) -> BatchEncoding: """ Prepares a sequence of input id, entity id and entity span, or a pair of sequences of inputs ids, entity ids, entity spans so that it can be used by the model. It adds special tokens, truncates sequences if overflowing while taking into account the special tokens and manages a moving window (with user defined stride) for overflowing tokens. Please Note, for *pair_ids* different than `None` and *truncation_strategy = longest_first* or `True`, it is not possible to return overflowing tokens. Such a combination of arguments will raise an error. Args: ids (`List[int]`): Tokenized input ids of the first sequence. pair_ids (`List[int]`, *optional*): Tokenized input ids of the second sequence. entity_ids (`List[int]`, *optional*): Entity ids of the first sequence. pair_entity_ids (`List[int]`, *optional*): Entity ids of the second sequence. entity_token_spans (`List[Tuple[int, int]]`, *optional*): Entity spans of the first sequence. pair_entity_token_spans (`List[Tuple[int, int]]`, *optional*): Entity spans of the second sequence. max_entity_length (`int`, *optional*): The maximum length of the entity sequence. """ # Backward compatibility for 'truncation_strategy', 'pad_to_max_length' padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, verbose=verbose, **kwargs, ) # Compute lengths pair = bool(pair_ids is not None) len_ids = len(ids) len_pair_ids = len(pair_ids) if pair else 0 if return_token_type_ids and not add_special_tokens: raise ValueError( "Asking to return token_type_ids while setting add_special_tokens to False " "results in an undefined behavior. Please set add_special_tokens to True or " "set return_token_type_ids to None." ) if ( return_overflowing_tokens and truncation_strategy == TruncationStrategy.LONGEST_FIRST and pair_ids is not None ): raise ValueError( "Not possible to return overflowing tokens for pair of sequences with the " "`longest_first`. Please select another truncation strategy than `longest_first`, " "for instance `only_second` or `only_first`." ) # Load from model defaults if return_token_type_ids is None: return_token_type_ids = "token_type_ids" in self.model_input_names if return_attention_mask is None: return_attention_mask = "attention_mask" in self.model_input_names encoded_inputs = {} # Compute the total size of the returned word encodings total_len = len_ids + len_pair_ids + (self.num_special_tokens_to_add(pair=pair) if add_special_tokens else 0) # Truncation: Handle max sequence length and max_entity_length overflowing_tokens = [] if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and max_length and total_len > max_length: # truncate words up to max_length ids, pair_ids, overflowing_tokens = self.truncate_sequences( ids, pair_ids=pair_ids, num_tokens_to_remove=total_len - max_length, truncation_strategy=truncation_strategy, stride=stride, ) if return_overflowing_tokens: encoded_inputs["overflowing_tokens"] = overflowing_tokens encoded_inputs["num_truncated_tokens"] = total_len - max_length # Add special tokens if add_special_tokens: sequence = self.build_inputs_with_special_tokens(ids, pair_ids) token_type_ids = self.create_token_type_ids_from_sequences(ids, pair_ids) entity_token_offset = 1 # 1 * <s> token pair_entity_token_offset = len(ids) + 3 # 1 * <s> token & 2 * <sep> tokens else: sequence = ids + pair_ids if pair else ids token_type_ids = [0] * len(ids) + ([0] * len(pair_ids) if pair else []) entity_token_offset = 0 pair_entity_token_offset = len(ids) # Build output dictionary encoded_inputs["input_ids"] = sequence if return_token_type_ids: encoded_inputs["token_type_ids"] = token_type_ids if return_special_tokens_mask: if add_special_tokens: encoded_inputs["special_tokens_mask"] = self.get_special_tokens_mask(ids, pair_ids) else: encoded_inputs["special_tokens_mask"] = [0] * len(sequence) # Set max entity length if not max_entity_length: max_entity_length = self.max_entity_length if entity_ids is not None: total_entity_len = 0 num_invalid_entities = 0 valid_entity_ids = [ent_id for ent_id, span in zip(entity_ids, entity_token_spans) if span[1] <= len(ids)] valid_entity_token_spans = [span for span in entity_token_spans if span[1] <= len(ids)] total_entity_len += len(valid_entity_ids) num_invalid_entities += len(entity_ids) - len(valid_entity_ids) valid_pair_entity_ids, valid_pair_entity_token_spans = None, None if pair_entity_ids is not None: valid_pair_entity_ids = [ ent_id for ent_id, span in zip(pair_entity_ids, pair_entity_token_spans) if span[1] <= len(pair_ids) ] valid_pair_entity_token_spans = [span for span in pair_entity_token_spans if span[1] <= len(pair_ids)] total_entity_len += len(valid_pair_entity_ids) num_invalid_entities += len(pair_entity_ids) - len(valid_pair_entity_ids) if num_invalid_entities != 0: logger.warning( f"{num_invalid_entities} entities are ignored because their entity spans are invalid due to the" " truncation of input tokens" ) if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and total_entity_len > max_entity_length: # truncate entities up to max_entity_length valid_entity_ids, valid_pair_entity_ids, overflowing_entities = self.truncate_sequences( valid_entity_ids, pair_ids=valid_pair_entity_ids, num_tokens_to_remove=total_entity_len - max_entity_length, truncation_strategy=truncation_strategy, stride=stride, ) valid_entity_token_spans = valid_entity_token_spans[: len(valid_entity_ids)] if valid_pair_entity_token_spans is not None: valid_pair_entity_token_spans = valid_pair_entity_token_spans[: len(valid_pair_entity_ids)] if return_overflowing_tokens: encoded_inputs["overflowing_entities"] = overflowing_entities encoded_inputs["num_truncated_entities"] = total_entity_len - max_entity_length final_entity_ids = valid_entity_ids + valid_pair_entity_ids if valid_pair_entity_ids else valid_entity_ids encoded_inputs["entity_ids"] = list(final_entity_ids) entity_position_ids = [] entity_start_positions = [] entity_end_positions = [] for token_spans, offset in ( (valid_entity_token_spans, entity_token_offset), (valid_pair_entity_token_spans, pair_entity_token_offset), ): if token_spans is not None: for start, end in token_spans: start += offset end += offset position_ids = list(range(start, end))[: self.max_mention_length] position_ids += [-1] * (self.max_mention_length - end + start) entity_position_ids.append(position_ids) entity_start_positions.append(start) entity_end_positions.append(end - 1) encoded_inputs["entity_position_ids"] = entity_position_ids if self.task == "entity_span_classification": encoded_inputs["entity_start_positions"] = entity_start_positions encoded_inputs["entity_end_positions"] = entity_end_positions if return_token_type_ids: encoded_inputs["entity_token_type_ids"] = [0] * len(encoded_inputs["entity_ids"]) # Check lengths self._eventual_warn_about_too_long_sequence(encoded_inputs["input_ids"], max_length, verbose) # Padding if padding_strategy != PaddingStrategy.DO_NOT_PAD or return_attention_mask: encoded_inputs = self.pad( encoded_inputs, max_length=max_length, max_entity_length=max_entity_length, padding=padding_strategy.value, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, ) if return_length: encoded_inputs["length"] = len(encoded_inputs["input_ids"]) batch_outputs = BatchEncoding( encoded_inputs, tensor_type=return_tensors, prepend_batch_axis=prepend_batch_axis ) return batch_outputs # Copied from transformers.models.luke.tokenization_luke.LukeTokenizer.pad def pad( self, encoded_inputs: Union[ BatchEncoding, List[BatchEncoding], Dict[str, EncodedInput], Dict[str, List[EncodedInput]], List[Dict[str, EncodedInput]], ], padding: Union[bool, str, PaddingStrategy] = True, max_length: Optional[int] = None, max_entity_length: Optional[int] = None, pad_to_multiple_of: Optional[int] = None, return_attention_mask: Optional[bool] = None, return_tensors: Optional[Union[str, TensorType]] = None, verbose: bool = True, ) -> BatchEncoding: """ Pad a single encoded input or a batch of encoded inputs up to predefined length or to the max sequence length in the batch. Padding side (left/right) padding token ids are defined at the tokenizer level (with `self.padding_side`, `self.pad_token_id` and `self.pad_token_type_id`) .. note:: If the `encoded_inputs` passed are dictionary of numpy arrays, PyTorch tensors or TensorFlow tensors, the result will use the same type unless you provide a different tensor type with `return_tensors`. In the case of PyTorch tensors, you will lose the specific device of your tensors however. Args: encoded_inputs ([`BatchEncoding`], list of [`BatchEncoding`], `Dict[str, List[int]]`, `Dict[str, List[List[int]]` or `List[Dict[str, List[int]]]`): Tokenized inputs. Can represent one input ([`BatchEncoding`] or `Dict[str, List[int]]`) or a batch of tokenized inputs (list of [`BatchEncoding`], *Dict[str, List[List[int]]]* or *List[Dict[str, List[int]]]*) so you can use this method during preprocessing as well as in a PyTorch Dataloader collate function. Instead of `List[int]` you can have tensors (numpy arrays, PyTorch tensors or TensorFlow tensors), see the note above for the return type. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`): Select a strategy to pad the returned sequences (according to the model's padding side and padding index) among: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). max_length (`int`, *optional*): Maximum length of the returned list and optionally padding length (see above). max_entity_length (`int`, *optional*): The maximum length of the entity sequence. pad_to_multiple_of (`int`, *optional*): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta). return_attention_mask (`bool`, *optional*): Whether to return the attention mask. If left to the default, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. verbose (`bool`, *optional*, defaults to `True`): Whether or not to print more information and warnings. """ # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(encoded_inputs, (list, tuple)) and isinstance(encoded_inputs[0], Mapping): encoded_inputs = {key: [example[key] for example in encoded_inputs] for key in encoded_inputs[0].keys()} # The model's main input name, usually `input_ids`, has be passed for padding if self.model_input_names[0] not in encoded_inputs: raise ValueError( "You should supply an encoding or a list of encodings to this method " f"that includes {self.model_input_names[0]}, but you provided {list(encoded_inputs.keys())}" ) required_input = encoded_inputs[self.model_input_names[0]] if not required_input: if return_attention_mask: encoded_inputs["attention_mask"] = [] return encoded_inputs # If we have PyTorch/TF/NumPy tensors/arrays as inputs, we cast them as python objects # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch first_element = required_input[0] if isinstance(first_element, (list, tuple)): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. index = 0 while len(required_input[index]) == 0: index += 1 if index < len(required_input): first_element = required_input[index][0] # At this state, if `first_element` is still a list/tuple, it's an empty one so there is nothing to do. if not isinstance(first_element, (int, list, tuple)): if is_tf_tensor(first_element): return_tensors = "tf" if return_tensors is None else return_tensors elif is_torch_tensor(first_element): return_tensors = "pt" if return_tensors is None else return_tensors elif isinstance(first_element, np.ndarray): return_tensors = "np" if return_tensors is None else return_tensors else: raise ValueError( f"type of {first_element} unknown: {type(first_element)}. " "Should be one of a python, numpy, pytorch or tensorflow object." ) for key, value in encoded_inputs.items(): encoded_inputs[key] = to_py_obj(value) # Convert padding_strategy in PaddingStrategy padding_strategy, _, max_length, _ = self._get_padding_truncation_strategies( padding=padding, max_length=max_length, verbose=verbose ) if max_entity_length is None: max_entity_length = self.max_entity_length required_input = encoded_inputs[self.model_input_names[0]] if required_input and not isinstance(required_input[0], (list, tuple)): encoded_inputs = self._pad( encoded_inputs, max_length=max_length, max_entity_length=max_entity_length, padding_strategy=padding_strategy, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, ) return BatchEncoding(encoded_inputs, tensor_type=return_tensors) batch_size = len(required_input) if any(len(v) != batch_size for v in encoded_inputs.values()): raise ValueError("Some items in the output dictionary have a different batch size than others.") if padding_strategy == PaddingStrategy.LONGEST: max_length = max(len(inputs) for inputs in required_input) max_entity_length = ( max(len(inputs) for inputs in encoded_inputs["entity_ids"]) if "entity_ids" in encoded_inputs else 0 ) padding_strategy = PaddingStrategy.MAX_LENGTH batch_outputs = {} for i in range(batch_size): inputs = {k: v[i] for k, v in encoded_inputs.items()} outputs = self._pad( inputs, max_length=max_length, max_entity_length=max_entity_length, padding_strategy=padding_strategy, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, ) for key, value in outputs.items(): if key not in batch_outputs: batch_outputs[key] = [] batch_outputs[key].append(value) return BatchEncoding(batch_outputs, tensor_type=return_tensors) # Copied from transformers.models.luke.tokenization_luke.LukeTokenizer._pad def _pad( self, encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding], max_length: Optional[int] = None, max_entity_length: Optional[int] = None, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, pad_to_multiple_of: Optional[int] = None, return_attention_mask: Optional[bool] = None, ) -> dict: """ Pad encoded inputs (on left/right and up to predefined length or max length in the batch) Args: encoded_inputs: Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`). max_length: maximum length of the returned list and optionally padding length (see below). Will truncate by taking into account the special tokens. max_entity_length: The maximum length of the entity sequence. padding_strategy: PaddingStrategy to use for padding. - PaddingStrategy.LONGEST Pad to the longest sequence in the batch - PaddingStrategy.MAX_LENGTH: Pad to the max length (default) - PaddingStrategy.DO_NOT_PAD: Do not pad The tokenizer padding sides are defined in self.padding_side: - 'left': pads on the left of the sequences - 'right': pads on the right of the sequences pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability `>= 7.5` (Volta). return_attention_mask: (optional) Set to False to avoid returning attention mask (default: set to model specifics) """ entities_provided = bool("entity_ids" in encoded_inputs) # Load from model defaults if return_attention_mask is None: return_attention_mask = "attention_mask" in self.model_input_names if padding_strategy == PaddingStrategy.LONGEST: max_length = len(encoded_inputs["input_ids"]) if entities_provided: max_entity_length = len(encoded_inputs["entity_ids"]) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of if ( entities_provided and max_entity_length is not None and pad_to_multiple_of is not None and (max_entity_length % pad_to_multiple_of != 0) ): max_entity_length = ((max_entity_length // pad_to_multiple_of) + 1) * pad_to_multiple_of needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and ( len(encoded_inputs["input_ids"]) != max_length or (entities_provided and len(encoded_inputs["entity_ids"]) != max_entity_length) ) # Initialize attention mask if not present. if return_attention_mask and "attention_mask" not in encoded_inputs: encoded_inputs["attention_mask"] = [1] * len(encoded_inputs["input_ids"]) if entities_provided and return_attention_mask and "entity_attention_mask" not in encoded_inputs: encoded_inputs["entity_attention_mask"] = [1] * len(encoded_inputs["entity_ids"]) if needs_to_be_padded: difference = max_length - len(encoded_inputs["input_ids"]) if entities_provided: entity_difference = max_entity_length - len(encoded_inputs["entity_ids"]) if self.padding_side == "right": if return_attention_mask: encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference if entities_provided: encoded_inputs["entity_attention_mask"] = ( encoded_inputs["entity_attention_mask"] + [0] * entity_difference ) if "token_type_ids" in encoded_inputs: encoded_inputs["token_type_ids"] = encoded_inputs["token_type_ids"] + [0] * difference if entities_provided: encoded_inputs["entity_token_type_ids"] = ( encoded_inputs["entity_token_type_ids"] + [0] * entity_difference ) if "special_tokens_mask" in encoded_inputs: encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference encoded_inputs["input_ids"] = encoded_inputs["input_ids"] + [self.pad_token_id] * difference if entities_provided: encoded_inputs["entity_ids"] = ( encoded_inputs["entity_ids"] + [self.entity_pad_token_id] * entity_difference ) encoded_inputs["entity_position_ids"] = ( encoded_inputs["entity_position_ids"] + [[-1] * self.max_mention_length] * entity_difference ) if self.task == "entity_span_classification": encoded_inputs["entity_start_positions"] = ( encoded_inputs["entity_start_positions"] + [0] * entity_difference ) encoded_inputs["entity_end_positions"] = ( encoded_inputs["entity_end_positions"] + [0] * entity_difference ) elif self.padding_side == "left": if return_attention_mask: encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"] if entities_provided: encoded_inputs["entity_attention_mask"] = [0] * entity_difference + encoded_inputs[ "entity_attention_mask" ] if "token_type_ids" in encoded_inputs: encoded_inputs["token_type_ids"] = [0] * difference + encoded_inputs["token_type_ids"] if entities_provided: encoded_inputs["entity_token_type_ids"] = [0] * entity_difference + encoded_inputs[ "entity_token_type_ids" ] if "special_tokens_mask" in encoded_inputs: encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"] encoded_inputs["input_ids"] = [self.pad_token_id] * difference + encoded_inputs["input_ids"] if entities_provided: encoded_inputs["entity_ids"] = [self.entity_pad_token_id] * entity_difference + encoded_inputs[ "entity_ids" ] encoded_inputs["entity_position_ids"] = [ [-1] * self.max_mention_length ] * entity_difference + encoded_inputs["entity_position_ids"] if self.task == "entity_span_classification": encoded_inputs["entity_start_positions"] = [0] * entity_difference + encoded_inputs[ "entity_start_positions" ] encoded_inputs["entity_end_positions"] = [0] * entity_difference + encoded_inputs[ "entity_end_positions" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side)) return encoded_inputs def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str, str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): copyfile(self.vocab_file, out_vocab_file) entity_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["entity_vocab_file"] ) with open(entity_vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.entity_vocab, indent=2, sort_keys=True, ensure_ascii=False) + "\n") return out_vocab_file, entity_vocab_file # Copied from transformers.models.xlm_roberta.tokenization_xlm_roberta.XLMRobertaTokenizer.build_inputs_with_special_tokens def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. An XLM-RoBERTa sequence has the following format: - single sequence: `<s> X </s>` - pair of sequences: `<s> A </s></s> B </s>` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + sep + token_ids_1 + sep # Copied from transformers.models.xlm_roberta.tokenization_xlm_roberta.XLMRobertaTokenizer.get_special_tokens_mask def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is None: return [1] + ([0] * len(token_ids_0)) + [1] return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1] # Copied from transformers.models.xlm_roberta.tokenization_xlm_roberta.XLMRobertaTokenizer.create_token_type_ids_from_sequences def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. XLM-RoBERTa does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] @property # Copied from transformers.models.xlm_roberta.tokenization_xlm_roberta.XLMRobertaTokenizer.vocab_size def vocab_size(self): return len(self.sp_model) + self.fairseq_offset + 1 # Add the <mask> token # Copied from transformers.models.xlm_roberta.tokenization_xlm_roberta.XLMRobertaTokenizer.get_vocab def get_vocab(self): vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab # Copied from transformers.models.xlm_roberta.tokenization_xlm_roberta.XLMRobertaTokenizer._tokenize def _tokenize(self, text: str) -> List[str]: return self.sp_model.encode(text, out_type=str) # Copied from transformers.models.xlm_roberta.tokenization_xlm_roberta.XLMRobertaTokenizer._convert_token_to_id def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] spm_id = self.sp_model.PieceToId(token) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (strings for sub-words) in a single string.""" out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip() return out_string
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/prophetnet/configuration_prophetnet.py
# coding=utf-8 # Copyright 2020 The Microsoft Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ ProphetNet model configuration""" from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP = { "microsoft/prophetnet-large-uncased": ( "https://huggingface.co/microsoft/prophetnet-large-uncased/resolve/main/config.json" ), } class ProphetNetConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`ProphetNetModel`]. It is used to instantiate a ProphetNet model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the ProphetNet [microsoft/prophetnet-large-uncased](https://huggingface.co/microsoft/prophetnet-large-uncased) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: activation_dropout (`float`, *optional*, defaults to 0.1): The dropout ratio for activations inside the fully connected layer. activation_function (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the ProphetNET model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`ProphetNetModel`]. hidden_size (`int`, *optional*, defaults to 1024): Dimensionality of the layers and the pooler layer. encoder_ffn_dim (`int`, *optional*, defaults to 4096): Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. num_encoder_layers (`int`, *optional*, defaults to 12): Number of encoder layers. num_encoder_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. decoder_ffn_dim (`int`, *optional*, defaults to 4096): Dimensionality of the `intermediate` (often named feed-forward) layer in decoder. num_decoder_layers (`int`, *optional*, defaults to 12): Number of decoder layers. num_decoder_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer decoder. attention_dropout (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). init_std (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. add_cross_attention (`bool`, *optional*, defaults to `True`): Whether cross-attention layers should be added to the model. is_encoder_decoder (`bool`, *optional*, defaults to `True`): Whether this is an encoder/decoder model. pad_token_id (`int`, *optional*, defaults to 1) Padding token id. bos_token_id (`int`, *optional*, defaults to 0) Beginning of stream token id. eos_token_id (`int`, *optional*, defaults to 2) End of stream token id. ngram (`int`, *optional*, defaults to 2) Number of future tokens to predict. Set to 1 to be same as traditional Language model to predict next first token. num_buckets (`int`, *optional*, defaults to 32) The number of buckets to use for each attention layer. This is for relative position calculation. See the [T5 paper](see https://arxiv.org/abs/1910.10683) for more details. relative_max_distance (`int`, *optional*, defaults to 128) Relative distances greater than this number will be put into the last same bucket. This is for relative position calculation. See the [T5 paper](see https://arxiv.org/abs/1910.10683) for more details. disable_ngram_loss (`bool`, *optional*, defaults to `False`): Whether be trained predicting only the next first token. eps (`float`, *optional*, defaults to 0.0): Controls the `epsilon` parameter value for label smoothing in the loss calculation. If set to 0, no label smoothing is performed. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). """ model_type = "prophetnet" keys_to_ignore_at_inference = ["past_key_values"] attribute_map = { "num_attention_heads": "num_encoder_attention_heads", } def __init__( self, activation_dropout: Optional[float] = 0.1, activation_function: Optional[Union[str, Callable]] = "gelu", vocab_size: Optional[int] = 30522, hidden_size: Optional[int] = 1024, encoder_ffn_dim: Optional[int] = 4096, num_encoder_layers: Optional[int] = 12, num_encoder_attention_heads: Optional[int] = 16, decoder_ffn_dim: Optional[int] = 4096, num_decoder_layers: Optional[int] = 12, num_decoder_attention_heads: Optional[int] = 16, attention_dropout: Optional[float] = 0.1, dropout: Optional[float] = 0.1, max_position_embeddings: Optional[int] = 512, init_std: Optional[float] = 0.02, is_encoder_decoder: Optional[bool] = True, add_cross_attention: Optional[bool] = True, decoder_start_token_id: Optional[int] = 0, ngram: Optional[int] = 2, num_buckets: Optional[int] = 32, relative_max_distance: Optional[int] = 128, disable_ngram_loss: Optional[bool] = False, eps: Optional[float] = 0.0, use_cache: Optional[bool] = True, pad_token_id: Optional[int] = 0, bos_token_id: Optional[int] = 1, eos_token_id: Optional[int] = 2, **kwargs, ): self.vocab_size = vocab_size self.hidden_size = hidden_size self.encoder_ffn_dim = encoder_ffn_dim self.num_encoder_layers = num_encoder_layers self.num_encoder_attention_heads = num_encoder_attention_heads self.decoder_ffn_dim = decoder_ffn_dim self.num_decoder_layers = num_decoder_layers self.num_decoder_attention_heads = num_decoder_attention_heads self.max_position_embeddings = max_position_embeddings self.init_std = init_std # Normal(0, this parameter) self.activation_function = activation_function # parameters for prophetnet self.ngram = ngram self.num_buckets = num_buckets self.relative_max_distance = relative_max_distance self.disable_ngram_loss = disable_ngram_loss self.eps = eps # 3 Types of Dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.dropout = dropout self.use_cache = use_cache super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, is_encoder_decoder=is_encoder_decoder, add_cross_attention=add_cross_attention, decoder_start_token_id=decoder_start_token_id, **kwargs, ) @property def num_hidden_layers(self) -> int: return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def num_hidden_layers(self, value): raise NotImplementedError( "This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and" " `num_decoder_layers`." )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/prophetnet/__init__.py
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _import_structure = { "configuration_prophetnet": ["PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "ProphetNetConfig"], "tokenization_prophetnet": ["ProphetNetTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_prophetnet"] = [ "PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST", "ProphetNetDecoder", "ProphetNetEncoder", "ProphetNetForCausalLM", "ProphetNetForConditionalGeneration", "ProphetNetModel", "ProphetNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_prophetnet import PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ProphetNetConfig from .tokenization_prophetnet import ProphetNetTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_prophetnet import ( PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST, ProphetNetDecoder, ProphetNetEncoder, ProphetNetForCausalLM, ProphetNetForConditionalGeneration, ProphetNetModel, ProphetNetPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/prophetnet/tokenization_prophetnet.py
# coding=utf-8 # Copyright 2020 The Microsoft Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections import os import unicodedata from typing import Iterable, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "prophetnet.tokenizer"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "microsoft/prophetnet-large-uncased": ( "https://huggingface.co/microsoft/prophetnet-large-uncased/resolve/main/prophetnet.tokenizer" ), } } PRETRAINED_INIT_CONFIGURATION = { "microsoft/prophetnet-large-uncased": {"do_lower_case": True}, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "microsoft/prophetnet-large-uncased": 512, } # Copied from transformers.models.bert.tokenization_bert.whitespace_tokenize def whitespace_tokenize(text): """Runs basic whitespace cleaning and splitting on a piece of text.""" text = text.strip() if not text: return [] tokens = text.split() return tokens # Copied from transformers.models.bert.tokenization_bert.BasicTokenizer class BasicTokenizer(object): """ Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.). Args: do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. never_split (`Iterable`, *optional*): Collection of tokens which will never be split during tokenization. Only has an effect when `do_basic_tokenize=True` tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this [issue](https://github.com/huggingface/transformers/issues/328)). strip_accents (`bool`, *optional*): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for `lowercase` (as in the original BERT). do_split_on_punc (`bool`, *optional*, defaults to `True`): In some instances we want to skip the basic punctuation splitting so that later tokenization can capture the full context of the words, such as contractions. """ def __init__( self, do_lower_case=True, never_split=None, tokenize_chinese_chars=True, strip_accents=None, do_split_on_punc=True, ): if never_split is None: never_split = [] self.do_lower_case = do_lower_case self.never_split = set(never_split) self.tokenize_chinese_chars = tokenize_chinese_chars self.strip_accents = strip_accents self.do_split_on_punc = do_split_on_punc def tokenize(self, text, never_split=None): """ Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer. Args: never_split (`List[str]`, *optional*) Kept for backward compatibility purposes. Now implemented directly at the base class level (see [`PreTrainedTokenizer.tokenize`]) List of token not to split. """ # union() returns a new set by concatenating the two sets. never_split = self.never_split.union(set(never_split)) if never_split else self.never_split text = self._clean_text(text) # This was added on November 1st, 2018 for the multilingual and Chinese # models. This is also applied to the English models now, but it doesn't # matter since the English models were not trained on any Chinese data # and generally don't have any Chinese data in them (there are Chinese # characters in the vocabulary because Wikipedia does have some Chinese # words in the English Wikipedia.). if self.tokenize_chinese_chars: text = self._tokenize_chinese_chars(text) # prevents treating the same character with different unicode codepoints as different characters unicode_normalized_text = unicodedata.normalize("NFC", text) orig_tokens = whitespace_tokenize(unicode_normalized_text) split_tokens = [] for token in orig_tokens: if token not in never_split: if self.do_lower_case: token = token.lower() if self.strip_accents is not False: token = self._run_strip_accents(token) elif self.strip_accents: token = self._run_strip_accents(token) split_tokens.extend(self._run_split_on_punc(token, never_split)) output_tokens = whitespace_tokenize(" ".join(split_tokens)) return output_tokens def _run_strip_accents(self, text): """Strips accents from a piece of text.""" text = unicodedata.normalize("NFD", text) output = [] for char in text: cat = unicodedata.category(char) if cat == "Mn": continue output.append(char) return "".join(output) def _run_split_on_punc(self, text, never_split=None): """Splits punctuation on a piece of text.""" if not self.do_split_on_punc or (never_split is not None and text in never_split): return [text] chars = list(text) i = 0 start_new_word = True output = [] while i < len(chars): char = chars[i] if _is_punctuation(char): output.append([char]) start_new_word = True else: if start_new_word: output.append([]) start_new_word = False output[-1].append(char) i += 1 return ["".join(x) for x in output] def _tokenize_chinese_chars(self, text): """Adds whitespace around any CJK character.""" output = [] for char in text: cp = ord(char) if self._is_chinese_char(cp): output.append(" ") output.append(char) output.append(" ") else: output.append(char) return "".join(output) def _is_chinese_char(self, cp): """Checks whether CP is the codepoint of a CJK character.""" # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x20000 and cp <= 0x2A6DF) # or (cp >= 0x2A700 and cp <= 0x2B73F) # or (cp >= 0x2B740 and cp <= 0x2B81F) # or (cp >= 0x2B820 and cp <= 0x2CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2F800 and cp <= 0x2FA1F) # ): # return True return False def _clean_text(self, text): """Performs invalid character removal and whitespace cleanup on text.""" output = [] for char in text: cp = ord(char) if cp == 0 or cp == 0xFFFD or _is_control(char): continue if _is_whitespace(char): output.append(" ") else: output.append(char) return "".join(output) # Copied from transformers.models.bert.tokenization_bert.WordpieceTokenizer class WordpieceTokenizer(object): """Runs WordPiece tokenization.""" def __init__(self, vocab, unk_token, max_input_chars_per_word=100): self.vocab = vocab self.unk_token = unk_token self.max_input_chars_per_word = max_input_chars_per_word def tokenize(self, text): """ Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform tokenization using the given vocabulary. For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`. Args: text: A single token or whitespace separated tokens. This should have already been passed through *BasicTokenizer*. Returns: A list of wordpiece tokens. """ output_tokens = [] for token in whitespace_tokenize(text): chars = list(token) if len(chars) > self.max_input_chars_per_word: output_tokens.append(self.unk_token) continue is_bad = False start = 0 sub_tokens = [] while start < len(chars): end = len(chars) cur_substr = None while start < end: substr = "".join(chars[start:end]) if start > 0: substr = "##" + substr if substr in self.vocab: cur_substr = substr break end -= 1 if cur_substr is None: is_bad = True break sub_tokens.append(cur_substr) start = end if is_bad: output_tokens.append(self.unk_token) else: output_tokens.extend(sub_tokens) return output_tokens def load_vocab(vocab_file): """Loads a vocabulary file into a dictionary.""" vocab = collections.OrderedDict() with open(vocab_file, "r", encoding="utf-8") as reader: tokens = reader.readlines() for index, token in enumerate(tokens): token = token.rstrip("\n") vocab[token] = index return vocab class ProphetNetTokenizer(PreTrainedTokenizer): r""" Construct a ProphetNetTokenizer. Based on WordPiece. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): File containing the vocabulary. do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. do_basic_tokenize (`bool`, *optional*, defaults to `True`): Whether or not to do basic tokenization before WordPiece. never_split (`Iterable`, *optional*): Collection of tokens which will never be split during tokenization. Only has an effect when `do_basic_tokenize=True` unk_token (`str`, *optional*, defaults to `"[UNK]"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. sep_token (`str`, *optional*, defaults to `"[SEP]"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. x_sep_token (`str`, *optional*, defaults to `"[X_SEP]"`): Special second separator token, which can be generated by [`ProphetNetForConditionalGeneration`]. It is used to separate bullet-point like sentences in summarization, *e.g.*. pad_token (`str`, *optional*, defaults to `"[PAD]"`): The token used for padding, for example when batching sequences of different lengths. cls_token (`str`, *optional*, defaults to `"[CLS]"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (`str`, *optional*, defaults to `"[MASK]"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this [issue](https://github.com/huggingface/transformers/issues/328)). strip_accents (`bool`, *optional*): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for `lowercase` (as in the original BERT). """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES # first name has to correspond to main model input name # to make sure `tokenizer.pad(...)` works correctly # `ProphetNet` doesn't have `token_type_ids` as argument. model_input_names: List[str] = ["input_ids", "attention_mask"] def __init__( self, vocab_file: str, do_lower_case: Optional[bool] = True, do_basic_tokenize: Optional[bool] = True, never_split: Optional[Iterable] = None, unk_token: Optional[str] = "[UNK]", sep_token: Optional[str] = "[SEP]", x_sep_token: Optional[str] = "[X_SEP]", pad_token: Optional[str] = "[PAD]", mask_token: Optional[str] = "[MASK]", tokenize_chinese_chars: Optional[bool] = True, strip_accents: Optional[bool] = None, **kwargs, ): super().__init__( do_lower_case=do_lower_case, do_basic_tokenize=do_basic_tokenize, never_split=never_split, unk_token=unk_token, sep_token=sep_token, x_sep_token=x_sep_token, pad_token=pad_token, mask_token=mask_token, tokenize_chinese_chars=tokenize_chinese_chars, strip_accents=strip_accents, **kwargs, ) self.unique_no_split_tokens.append(x_sep_token) if not os.path.isfile(vocab_file): raise ValueError( f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained" " model use `tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) self.vocab = load_vocab(vocab_file) self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()]) self.do_basic_tokenize = do_basic_tokenize if do_basic_tokenize: self.basic_tokenizer = BasicTokenizer( do_lower_case=do_lower_case, never_split=never_split, tokenize_chinese_chars=tokenize_chinese_chars, strip_accents=strip_accents, ) self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=self.unk_token) @property def vocab_size(self): return len(self.vocab) def get_vocab(self): return dict(self.vocab, **self.added_tokens_encoder) def _tokenize(self, text): split_tokens = [] if self.do_basic_tokenize: for token in self.basic_tokenizer.tokenize(text, never_split=self.all_special_tokens): # If the token is part of the never_split set if token in self.basic_tokenizer.never_split: split_tokens.append(token) else: split_tokens += self.wordpiece_tokenizer.tokenize(token) else: split_tokens = self.wordpiece_tokenizer.tokenize(text) return split_tokens def _convert_token_to_id(self, token: str): """Converts a token (str) in an id using the vocab.""" return self.vocab.get(token, self.vocab.get(self.unk_token)) def _convert_id_to_token(self, index: int): """Converts an index (integer) in a token (str) using the vocab.""" return self.ids_to_tokens.get(index, self.unk_token) def convert_tokens_to_string(self, tokens: str): """Converts a sequence of tokens (string) in a single string.""" out_string = " ".join(tokens).replace(" ##", "").strip() return out_string def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: Optional[bool] = False, ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is None: return ([0] * len(token_ids_0)) + [1] return ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A ProphetNet sequence pair mask has the following format: ``` 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] if token_ids_1 is None: return len(token_ids_0 + sep) * [0] return len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: index = 0 if os.path.isdir(save_directory): vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory with open(vocab_file, "w", encoding="utf-8") as writer: for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." " Please check that the vocabulary is not corrupted!" ) index = token_index writer.write(token + "\n") index += 1 return (vocab_file,) def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A BERT sequence has the following format: - single sequence: `[CLS] X [SEP]` - pair of sequences: `[CLS] A [SEP] B [SEP]` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return token_ids_0 + [self.sep_token_id] sep = [self.sep_token_id] return token_ids_0 + sep + token_ids_1 + sep
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/prophetnet/convert_prophetnet_original_pytorch_checkpoint_to_pytorch.py
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert ProphetNet checkpoint.""" import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging logger = logging.get_logger(__name__) logging.set_verbosity_info() def convert_prophetnet_checkpoint_to_pytorch(prophetnet_checkpoint_path: str, pytorch_dump_folder_path: str): """ Copy/paste/tweak prohpetnet's weights to our prophetnet structure. """ if "xprophetnet" in prophetnet_checkpoint_path: prophet_old = XLMProphetNetForConditionalGenerationOld.from_pretrained(prophetnet_checkpoint_path) prophet, loading_info = XLMProphetNetForConditionalGeneration.from_pretrained( prophetnet_checkpoint_path, output_loading_info=True ) else: prophet_old = ProphetNetForConditionalGenerationOld.from_pretrained(prophetnet_checkpoint_path) prophet, loading_info = ProphetNetForConditionalGeneration.from_pretrained( prophetnet_checkpoint_path, output_loading_info=True ) special_keys = ["key_proj", "value_proj", "query_proj"] mapping = { "self_attn": "ngram_self_attn", "cross_attn": "encoder_attn", "cross_attn_layer_norm": "encoder_attn_layer_norm", "feed_forward_layer_norm": "final_layer_norm", "feed_forward": "", "intermediate": "fc1", "output": "fc2", "key_proj": "k_proj", "query_proj": "q_proj", "value_proj": "v_proj", "word_embeddings": "embed_tokens", "embeddings_layer_norm": "emb_layer_norm", "relative_pos_embeddings": "relative_linear", "ngram_embeddings": "ngram_input_embed", "position_embeddings": "embed_positions", } for key in loading_info["missing_keys"]: attributes = key.split(".") if attributes[0] == "lm_head": model = prophet old_model = prophet_old else: model = prophet.prophetnet old_model = prophet_old.model is_key_init = False for attribute in attributes: if attribute in mapping: old_attribute = mapping[attribute] if not hasattr(old_model, old_attribute) and len(old_attribute) > 0: old_attribute = attribute elif hasattr(old_model, attribute): old_attribute = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" model.weight = old_model.weight logger.info(f"{attribute} is initialized.") is_key_init = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" model.bias = old_model.bias logger.info(f"{attribute} is initialized") is_key_init = True break elif attribute in special_keys and hasattr(old_model, "in_proj_weight"): embed_dim = old_model.in_proj_weight.shape[0] // 3 param = getattr(model, attribute) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": model.query_proj.weight = nn.Parameter(old_model.in_proj_weight[:embed_dim, :]) model.query_proj.bias = nn.Parameter(old_model.in_proj_bias[:embed_dim]) elif attribute == "key_proj": model.key_proj.weight = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :]) model.key_proj.bias = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim]) elif attribute == "value_proj": model.value_proj.weight = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :]) model.value_proj.bias = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :]) is_key_init = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." model.position_embeddings.weight = nn.Parameter(old_model.embed_positions.weight[:512, :]) is_key_init = True break if attribute.isdigit(): model = model[int(attribute)] old_model = old_model[int(old_attribute)] else: model = getattr(model, attribute) if old_attribute == "": old_model = old_model else: if not hasattr(old_model, old_attribute): raise ValueError(f"{old_model} does not have {old_attribute}") old_model = getattr(old_model, old_attribute) if not is_key_init: raise ValueError(f"{key} was not correctly initialized!") print(f"Saving model to {pytorch_dump_folder_path}") prophet.save_pretrained(pytorch_dump_folder_path) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--prophetnet_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) args = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/prophetnet/modeling_prophetnet.py
# coding=utf-8 # Copyright 2020 The Microsoft Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch ProphetNet model, ported from ProphetNet repo(fairsequery_states version).""" import copy import math import warnings from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import LayerNorm from ...activations import ACT2FN from ...modeling_outputs import BaseModelOutput from ...modeling_utils import PreTrainedModel from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_prophetnet import ProphetNetConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "ProphenetConfig" _CHECKPOINT_FOR_DOC = "microsoft/prophetnet-large-uncased" PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST = [ "microsoft/prophetnet-large-uncased", # See all ProphetNet models at https://huggingface.co/models?filter=prophetnet ] PROPHETNET_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) Original ProphetNet code can be found [here](https://github.com/microsoft/ProphetNet). Checkpoints were converted from original Fairseq checkpoints. For more information on the checkpoint conversion, please take a look at the file `convert_prophetnet_original_pytorch_checkpoint_to_pytorch.py`. This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matters related to general usage and behavior. Parameters: config ([`ProphetNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ PROPHETNET_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) ProphetNet uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ PROPHETNET_STANDALONE_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ def softmax(hidden_state, dim, onnx_trace=False): if onnx_trace: return nn.functional.softmax(hidden_state.float(), dim=dim) else: return nn.functional.softmax(hidden_state, dim=dim, dtype=torch.float32) def ngram_attention_bias(sequence_length, ngram, device, dtype): """ This function computes the bias for the predict stream """ left_block = ( torch.ones((ngram, sequence_length, sequence_length), device=device, dtype=dtype) * torch.finfo(dtype).min ) right_block = left_block.detach().clone() # create bias for stream_idx in range(ngram): right_block[stream_idx].fill_diagonal_(0, wrap=False) left_block[stream_idx].triu_(-stream_idx + 1) left_block[:, :, 0] = 0 return torch.cat([left_block, right_block], dim=2) def compute_relative_buckets(num_buckets, max_distance, relative_positions, is_bidirectional=False): """ This function computes individual parts of the relative position buckets. For more detail, see paper. """ inv_relative_positions = -relative_positions rel_positions_bucket = 0 if is_bidirectional: num_buckets = num_buckets // 2 rel_positions_bucket = ( rel_positions_bucket + torch.lt(inv_relative_positions, torch.zeros_like(inv_relative_positions)).int() * num_buckets ) inv_relative_positions = torch.abs(inv_relative_positions) else: inv_relative_positions = torch.max(inv_relative_positions, torch.zeros_like(inv_relative_positions)) max_exact = num_buckets // 2 is_small = torch.lt(inv_relative_positions, max_exact) val_if_large = max_exact + torch.log(inv_relative_positions.float() / max_exact) / math.log( max_distance / max_exact ) * (num_buckets - max_exact) val_if_large = torch.min(val_if_large, torch.ones_like(val_if_large) * (num_buckets - 1)).int() rel_positions_bucket = rel_positions_bucket + torch.where(is_small, inv_relative_positions.int(), val_if_large) return rel_positions_bucket def compute_all_stream_relative_buckets(num_buckets, max_distance, position_ids): """ This function computes both main and predict relative position buckets. For more detail, see paper. """ # main stream main_stream_relative_positions = position_ids.unsqueeze(1).repeat(1, position_ids.size(-1), 1) main_stream_relative_positions = main_stream_relative_positions - position_ids.unsqueeze(-1) # predicting stream predicting_stream_relative_positions = torch.cat((position_ids - 1, position_ids), dim=-1).unsqueeze(1) predicting_stream_relative_positions = predicting_stream_relative_positions.repeat(1, position_ids.size(-1), 1) predicting_stream_relative_positions = predicting_stream_relative_positions - position_ids.unsqueeze(-1) # get both position buckets main_relative_position_buckets = compute_relative_buckets( num_buckets, max_distance, main_stream_relative_positions, is_bidirectional=False ) predict_relative_position_buckets = compute_relative_buckets( num_buckets, max_distance, predicting_stream_relative_positions, is_bidirectional=False ) return main_relative_position_buckets, predict_relative_position_buckets @dataclass class ProphetNetSeq2SeqLMOutput(ModelOutput): """ Base class for sequence-to-sequence language models outputs. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Language modeling loss. logits (`torch.FloatTensor` of shape `(batch_size, decoder_sequence_length, config.vocab_size)`): Prediction scores of the main stream language modeling head (scores for each vocabulary token before SoftMax). logits_ngram (`torch.FloatTensor` of shape `(batch_size, ngram * decoder_sequence_length, config.vocab_size)`): Prediction scores of the predict stream language modeling head (scores for each vocabulary token before SoftMax). past_key_values (`List[torch.FloatTensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): List of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, num_attn_heads, decoder_sequence_length, embed_size_per_head)`). Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be used (see `past_key_values` input) to speed up sequential decoding. decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, decoder_sequence_length, hidden_size)`. Hidden-states of main stream of the decoder at the output of each layer plus the initial embedding outputs. decoder_ngram_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, ngram * decoder_sequence_length, hidden_size)`. Hidden-states of the predict stream of the decoder at the output of each layer plus the initial embedding outputs. decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, decoder_sequence_length, decoder_sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. decoder_ngram_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, decoder_sequence_length, decoder_sequence_length)`. Attentions weights of the predict stream of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, encoder_sequence_length, decoder_sequence_length)`. Attentions weights of the cross-attention layer of the decoder, after the attention softmax, used to compute the weighted average in the encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder of the model. encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, encoder_sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each layer plus the initial embedding outputs. encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, encoder_sequence_length, encoder_sequence_length)`. Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None logits_ngram: Optional[torch.FloatTensor] = None past_key_values: Optional[Tuple[torch.FloatTensor]] = None decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None decoder_ngram_hidden_states: Optional[Tuple[torch.FloatTensor]] = None decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None decoder_ngram_attentions: Optional[Tuple[torch.FloatTensor]] = None cross_attentions: Optional[Tuple[torch.FloatTensor]] = None encoder_last_hidden_state: Optional[torch.FloatTensor] = None encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None @property def decoder_cross_attentions(self): warnings.warn( "`decoder_cross_attentions` is deprecated and will be removed soon. Please use `cross_attentions`" " instead.", FutureWarning, ) return self.cross_attentions @dataclass class ProphetNetSeq2SeqModelOutput(ModelOutput): """ Base class for model encoder's outputs that also contains : pre-computed hidden states that can speed up sequential decoding. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, decoder_sequence_length, hidden_size)`): Sequence of main stream hidden-states at the output of the last layer of the decoder of the model. If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1, hidden_size)` is output. last_hidden_state_ngram (`torch.FloatTensor` of shape `(batch_size,ngram * decoder_sequence_length, config.vocab_size)`, *optional*): Sequence of predict stream hidden-states at the output of the last layer of the decoder of the model. past_key_values (`List[torch.FloatTensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): List of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, num_attn_heads, decoder_sequence_length, embed_size_per_head)`). Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be used (see `past_key_values` input) to speed up sequential decoding. decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, decoder_sequence_length, hidden_size)`. Hidden-states of main stream of the decoder at the output of each layer plus the initial embedding outputs. decoder_ngram_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, ngram * decoder_sequence_length, hidden_size)`. Hidden-states of the predict stream of the decoder at the output of each layer plus the initial embedding outputs. decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, decoder_sequence_length, decoder_sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. decoder_ngram_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, decoder_sequence_length, decoder_sequence_length)`. Attentions weights of the predict stream of the decoder, after the attention softmax, used to compute the weighted average in the cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, encoder_sequence_length, decoder_sequence_length)`. Attentions weights of the cross-attention layer of the decoder, after the attention softmax, used to compute the weighted average in the encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder of the model. encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, encoder_sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each layer plus the initial embedding outputs. encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, encoder_sequence_length, encoder_sequence_length)`. Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads. """ last_hidden_state: torch.FloatTensor last_hidden_state_ngram: Optional[torch.FloatTensor] = None past_key_values: Optional[Tuple[torch.FloatTensor]] = None decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None decoder_ngram_hidden_states: Optional[Tuple[torch.FloatTensor]] = None decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None decoder_ngram_attentions: Optional[Tuple[torch.FloatTensor]] = None cross_attentions: Optional[Tuple[torch.FloatTensor]] = None encoder_last_hidden_state: Optional[torch.FloatTensor] = None encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None @property def decoder_cross_attentions(self): warnings.warn( "`decoder_cross_attentions` is deprecated and will be removed soon. Please use `cross_attentions`" " instead.", FutureWarning, ) return self.cross_attentions @dataclass class ProphetNetDecoderModelOutput(ModelOutput): """ Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding). Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, decoder_sequence_length, hidden_size)`): Sequence of main stream hidden-states at the output of the last layer of the decoder of the model. If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1, hidden_size)` is output. last_hidden_state_ngram (`torch.FloatTensor` of shape `(batch_size, ngram * decoder_sequence_length, config.vocab_size)`): Sequence of predict stream hidden-states at the output of the last layer of the decoder of the model. past_key_values (`List[torch.FloatTensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): List of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, num_attn_heads, decoder_sequence_length, embed_size_per_head)`). Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be used (see `past_key_values` input) to speed up sequential decoding. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, decoder_sequence_length, hidden_size)`. Hidden-states of main stream of the decoder at the output of each layer plus the initial embedding outputs. ngram_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, ngram * decoder_sequence_length, hidden_size)`. Hidden-states of the predict stream of the decoder at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, decoder_sequence_length, decoder_sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. ngram_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, decoder_sequence_length, decoder_sequence_length)`. Attentions weights of the predict stream of the decoder, after the attention softmax, used to compute the weighted average in the cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, encoder_sequence_length, decoder_sequence_length)`. Attentions weights of the cross-attention layer of the decoder, after the attention softmax, used to compute the weighted average in the """ last_hidden_state: torch.FloatTensor last_hidden_state_ngram: Optional[torch.FloatTensor] = None past_key_values: Optional[Tuple[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None hidden_states_ngram: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None ngram_attentions: Optional[Tuple[torch.FloatTensor]] = None cross_attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class ProphetNetDecoderLMOutput(ModelOutput): """ Base class for model's outputs that may also contain a past key/values (to speed up sequential decoding). Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Language modeling loss. logits (`torch.FloatTensor` of shape `(batch_size, decoder_sequence_length, config.vocab_size)`): Prediction scores of the main stream language modeling head (scores for each vocabulary token before SoftMax). logits_ngram (`torch.FloatTensor` of shape `(batch_size, ngram * decoder_sequence_length, config.vocab_size)`): Prediction scores of the predict stream language modeling head (scores for each vocabulary token before SoftMax). past_key_values (`List[torch.FloatTensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): List of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, num_attn_heads, decoder_sequence_length, embed_size_per_head)`). Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be used (see `past_key_values` input) to speed up sequential decoding. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, decoder_sequence_length, hidden_size)`. Hidden-states of main stream of the decoder at the output of each layer plus the initial embedding outputs. ngram_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, ngram * decoder_sequence_length, hidden_size)`. Hidden-states of the predict stream of the decoder at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, decoder_sequence_length, decoder_sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. ngram_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, decoder_sequence_length, decoder_sequence_length)`. Attentions weights of the predict stream of the decoder, after the attention softmax, used to compute the weighted average in the cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_attn_heads, encoder_sequence_length, decoder_sequence_length)`. Attentions weights of the cross-attention layer of the decoder, after the attention softmax, used to compute the weighted average in the """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None logits_ngram: Optional[torch.FloatTensor] = None past_key_values: Optional[Tuple[torch.FloatTensor]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None hidden_states_ngram: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None ngram_attentions: Optional[Tuple[torch.FloatTensor]] = None cross_attentions: Optional[Tuple[torch.FloatTensor]] = None class ProphetNetPreTrainedModel(PreTrainedModel): config_class = ProphetNetConfig base_model_prefix = "prophetnet" supports_gradient_checkpointing = True def _init_weights(self, module): if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=self.config.init_std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.init_std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, (ProphetNetDecoder, ProphetNetEncoder)): module.gradient_checkpointing = value def _shift_right(self, input_ids): decoder_start_token_id = self.config.decoder_start_token_id pad_token_id = self.config.pad_token_id assert decoder_start_token_id is not None, ( "self.model.config.decoder_start_token_id has to be defined. In ProphetNet it is usually set to the" " pad_token_id. See ProphetNet docs for more information" ) # shift inputs to the right shifted_input_ids = input_ids.new_zeros(input_ids.shape) shifted_input_ids[..., 1:] = input_ids[..., :-1].clone() shifted_input_ids[..., 0] = decoder_start_token_id assert pad_token_id is not None, "self.model.config.pad_token_id has to be defined." # replace possible -100 values in labels by `pad_token_id` shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) assert torch.all(shifted_input_ids >= 0).item(), "Verify that `shifted_input_ids` has only positive values" return shifted_input_ids class ProphetNetPositionalEmbeddings(nn.Embedding): """ This module learns positional embeddings up to a fixed maximum size. Padding ids are ignored by either offsetting based on padding_idx or by setting padding_idx to None and ensuring that the appropriate position ids are passed to the forward function. """ def __init__(self, config: ProphetNetConfig) -> None: self.max_length = config.max_position_embeddings super().__init__(config.max_position_embeddings, config.hidden_size, config.pad_token_id) def forward(self, inputs_shape, device, attention_mask=None, past_key_values=None, position_ids=None): assert (position_ids is None) or ( self.padding_idx is None ), "If position_ids is pre-computed then padding_idx should not be set." if position_ids is None: if past_key_values is not None: # position_ids is the same for every token when decoding a single step # Without the int() cast, it doesn't work in some cases when exporting to ONNX prev_num_input_ids = past_key_values[0][0].shape[2] num_input_ids = inputs_shape[1] + prev_num_input_ids position_ids = torch.ones((1, 1), dtype=torch.long, device=device) * ( int(self.padding_idx + num_input_ids) ) else: if attention_mask is None: attention_mask = torch.ones(inputs_shape, dtype=torch.long, device=device) # retrieve position_ids from input_ids / attention_mask position_ids = ( torch.cumsum(attention_mask, dim=1).type_as(attention_mask) * attention_mask ).long() + self.padding_idx # make sure position_ids are not bigger then max_length position_ids = position_ids.clamp(0, self.max_length - 1) return super().forward(position_ids), position_ids def _forward(self, position_ids): return super().forward(position_ids) class ProphetNetAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, config: ProphetNetConfig, num_attn_heads: int, ): super().__init__() hidden_size = config.hidden_size self.attention_dropout = config.attention_dropout self.dropout = config.dropout self.num_attn_heads = num_attn_heads self.head_dim = hidden_size // num_attn_heads assert self.head_dim * num_attn_heads == hidden_size, ( "`config.hidden_size` must be divisible by `config.num_encoder_attention_heads` and" " `config.num_decoder_attention_heads`" ) self.key_proj = nn.Linear(hidden_size, hidden_size) self.value_proj = nn.Linear(hidden_size, hidden_size) self.query_proj = nn.Linear(hidden_size, hidden_size) self.out_proj = nn.Linear(hidden_size, hidden_size) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_attn_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states, key_value_states: Optional[Tensor] = None, attention_mask: Optional[Tensor] = None, layer_head_mask: Optional[Tensor] = None, past_key_value: Optional[Tuple[Tensor]] = None, output_attentions: bool = False, ) -> Tuple[Tensor, Optional[Tensor]]: batch_size, tgt_len, hidden_size = hidden_states.size() # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None assert list(hidden_states.size()) == [ batch_size, tgt_len, hidden_size, ], f"Size of hidden states should be {batch_size, tgt_len, hidden_size}, but is {hidden_states.size()}" # previous time steps are cached - no need to recompute key and value if they are static query_states = self.query_proj(hidden_states) / (self.head_dim**0.5) if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.key_proj(key_value_states), -1, batch_size) value_states = self._shape(self.value_proj(key_value_states), -1, batch_size) else: # self_attention key_states = self._shape(self.key_proj(hidden_states), -1, batch_size) value_states = self._shape(self.value_proj(hidden_states), -1, batch_size) if is_cross_attention: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) # project states into the correct shape proj_shape = (batch_size, self.num_attn_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, batch_size).view(*proj_shape) key_states = key_states.view(*proj_shape) value_states = value_states.view(*proj_shape) src_len = key_states.size(2) attn_weights = torch.einsum("bsij,bsjk->bsik", query_states, key_states.transpose(2, 3)) expected_shape = (batch_size, self.num_attn_heads, tgt_len, src_len) if attn_weights.size() != expected_shape: raise ValueError(f"Attention weights should have size {expected_shape}, but is {attn_weights.size()}") # This is part of a workaround to get around fork/join parallelism not supporting Optional types. if attention_mask is not None and attention_mask.dim() == 0: attention_mask = None expected_shape = (batch_size, self.num_attn_heads, 1, src_len) if attention_mask is not None and attention_mask.size() != expected_shape: raise ValueError(f"Attention mask should have size {expected_shape}, but is {attention_mask.size()}") if attention_mask is not None: # don't attend to padding symbols attn_weights = attn_weights + attention_mask if output_attentions: attn_weights_reshaped = attn_weights else: attn_weights_reshaped = None attn_weights = nn.functional.softmax(attn_weights, dim=-1) if layer_head_mask is not None: assert layer_head_mask.size() == (self.num_attn_heads,), ( f"Head mask for a single layer should be of size {(self.num_attn_heads,)}, but is" f" {layer_head_mask.size()}" ) attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view( batch_size, self.num_attn_heads, tgt_len, src_len ) # apply head_mask also on attn_weights_reshaped which is used for n-gram attention inside the model attn_weights_reshaped = layer_head_mask.view(1, -1, 1, 1) * attn_weights_reshaped attn_probs = nn.functional.dropout( attn_weights, p=self.attention_dropout, training=self.training, ) attn_output = torch.einsum("bsij,bsjk->bsik", attn_probs, value_states) expected_shape = (batch_size, self.num_attn_heads, tgt_len, self.head_dim) if attn_output.size() != expected_shape: raise ValueError(f"`attn_output` should have shape {expected_shape}, but is of shape {attn_output.size()}") attn_output = attn_output.transpose(1, 2).reshape(batch_size, tgt_len, hidden_size) attn_output = self.out_proj(attn_output) attn_output = nn.functional.dropout(attn_output, p=self.dropout, training=self.training) return attn_output, attn_weights_reshaped, past_key_value class ProphetNetFeedForward(nn.Module): """ This is the residual two feed-forward layer block based on the original Transformer implementation. """ def __init__(self, config: ProphetNetConfig, ffn_dim: int): super().__init__() self.activation_fn = ACT2FN[config.activation_function] self.intermediate = nn.Linear(config.hidden_size, ffn_dim) self.output = nn.Linear(ffn_dim, config.hidden_size) self.activation_dropout = config.activation_dropout self.dropout = config.dropout def forward(self, hidden_states): hidden_states = self.intermediate(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.output(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) return hidden_states class ProphetNetNgramSelfAttention(nn.Module): def __init__(self, config: ProphetNetConfig): super().__init__() self.hidden_size = config.hidden_size self.num_buckets = config.num_buckets self.relative_max_distance = config.relative_max_distance self.num_attn_heads = config.num_decoder_attention_heads self.dropout = config.dropout self.attention_dropout = config.attention_dropout self.head_dim = config.hidden_size // self.num_attn_heads self.ngram = config.ngram assert ( self.head_dim * self.num_attn_heads == config.hidden_size ), "config.hidden_size must be divisible by num_attn_heads" # key, value, query projection self.key_proj = nn.Linear(config.hidden_size, config.hidden_size) self.value_proj = nn.Linear(config.hidden_size, config.hidden_size) self.query_proj = nn.Linear(config.hidden_size, config.hidden_size) # out projection self.out_proj = nn.Linear(config.hidden_size, config.hidden_size) # rel position embeddings self.relative_pos_embeddings = nn.Linear(config.hidden_size, self.num_buckets * self.num_attn_heads) # for onnx runtime self.onnx_trace = False def _shape(self, tensor, seq_len, batch_size): return tensor.view(batch_size, seq_len, self.num_attn_heads, self.head_dim).transpose(1, 2).contiguous() def prepare_for_onnx_export_(self): self.onnx_trace = True def forward( self, hidden_states, past_key_value: Optional[Tuple[Tensor]] = None, attention_mask=None, layer_head_mask=None, extended_predict_attention_mask=None, main_relative_position_buckets=None, predict_relative_position_buckets=None, position_ids=None, ): batch_size, ngram_sequence_length, hidden_size = hidden_states.size() assert list(hidden_states.size()) == [batch_size, ngram_sequence_length, hidden_size], ( f"`hidden_states` should be of shape {batch_size, ngram_sequence_length, hidden_size}, but is of shape" f" {hidden_states.shape}" ) # project query_states = self.query_proj(hidden_states) key_states = self.key_proj(hidden_states) value_states = self.value_proj(hidden_states) # normalize query_states = query_states / (self.head_dim**0.5) # reshape query_states = self._shape(query_states, ngram_sequence_length, batch_size) key_states = self._shape(key_states, -1, batch_size) value_states = self._shape(value_states, -1, batch_size) proj_shape = (batch_size, self.num_attn_heads, -1, self.head_dim) query_states = query_states.view(*proj_shape) key_states = key_states.view(*proj_shape) value_states = value_states.view(*proj_shape) # chunk into main stream and predict stream hidden_states_list = hidden_states.chunk(1 + self.ngram, dim=1) query_states_list = query_states.chunk(1 + self.ngram, dim=2) key_states_list = key_states.chunk(1 + self.ngram, dim=2) value_states_list = value_states.chunk(1 + self.ngram, dim=2) main_hidden_states, hidden_states_predict_list = hidden_states_list[0], hidden_states_list[1:] main_query_states, predict_query_states_list = query_states_list[0], query_states_list[1:] main_key_states, predict_key_states_list = key_states_list[0], key_states_list[1:] main_value_states, predict_value_states_list = value_states_list[0], value_states_list[1:] # saved states are stored with shape (batch_size, num_attn_heads, seq_len, head_dim) if past_key_value is not None: prev_main_key_states = past_key_value[0] main_key_states = torch.cat((prev_main_key_states, main_key_states), dim=2) prev_main_value_states = past_key_value[1] main_value_states = torch.cat((prev_main_value_states, main_value_states), dim=2) # Update cache past_key_value = (main_key_states, main_value_states) # get seq_length of main stream only sequence_length = ngram_sequence_length // (1 + self.ngram) # MAIN-STREAM # main attn weights # [batch_size, number_heads, sequence_length, head_dimesion] # x [batch_size, number_heads, head_dimesion, sequence_length] # -> [batch_size, number_heads, sequence_length, sequence_length] main_attn_weights = torch.einsum("bntc,bncs->bnts", main_query_states, main_key_states.transpose(2, 3)) # retrieve relative position embeddings for each layer -> see paper for more details main_relative_pos_embeddings = self.get_main_relative_pos_embeddings( main_hidden_states, main_attn_weights, position_ids, main_relative_position_buckets ) main_attn_weights = main_attn_weights + main_relative_pos_embeddings if attention_mask is not None: main_attn_weights = main_attn_weights + attention_mask main_attn_probs = softmax( main_attn_weights, dim=-1, onnx_trace=self.onnx_trace, ).type_as(main_attn_weights) if layer_head_mask is not None: assert layer_head_mask.size() == (self.num_attn_heads,), ( f"Head mask for a single layer should be of size {(self.num_attn_heads,)}, but is" f" {layer_head_mask.size()}" ) main_attn_probs = layer_head_mask.view(1, -1, 1, 1) * main_attn_probs.view( batch_size, self.num_attn_heads, -1, sequence_length ) main_attn_probs = nn.functional.dropout(main_attn_probs, p=self.attention_dropout, training=self.training) # project to attn_output # [batch_size, number_heads, sequence_length, sequence_length] # x [batch_size, number_heads, sequence_length, head_dimesion] # -> [batch_size, number_heads, sequence_length, head_dimesion] main_attn_output = torch.einsum("bntc,bncs->bnts", main_attn_probs, main_value_states) # reshape so that num_heads dim is merged into last `head_dim` axis main_attn_output = main_attn_output.transpose(1, 2).reshape(batch_size, 1, sequence_length, hidden_size) main_attn_output = self.out_proj(main_attn_output) # PREDICT-STREAM # [batch_size, ngram, number_heads, sequence_length, head_dimesion] predict_query_states = torch.stack(predict_query_states_list, 1).view( batch_size, self.ngram, self.num_attn_heads, sequence_length, self.head_dim ) # [batch_size, ngram, number_heads, 2*sequence_length, head_dimesion] predict_key_states = torch.stack([torch.cat([main_key_states, key], 2) for key in predict_key_states_list], 1) # [batch_size, sequence_length, ngram, hidden_size] predict_hidden_states = torch.stack(hidden_states_predict_list, dim=2) # [batch_size, number_heads, ngram, 2*sequence_length, head_dimesion] predict_value_states = torch.cat( [torch.cat([main_value_states, v_p], 2).unsqueeze(2) for v_p in predict_value_states_list], 2 ) # [batch_size, ngram, number_heads, sequence_length, head_dimesion] # x [batch_size, ngram, number_heads, 2*sequence_length, head_dimesion] # -> [batch_size, ngram, number_heads, sequence_length, 2*sequence_length] predict_attn_weights = torch.einsum("bnhtc,bnhsc->bnhts", (predict_query_states, predict_key_states)) # retrieve relative position embeddings for each layer -> see paper for more details # [batch_size, ngram, number_heads, sequence_length, predict_relative_pos_embeddings] predict_relative_pos_embeddings = self.get_predict_relative_pos_embeddings( predict_hidden_states, predict_attn_weights, position_ids, predict_relative_position_buckets ) # [batch_size, ngram, number_heads, sequence_length, 2*sequence_length] predict_attn_weights = predict_attn_weights + predict_relative_pos_embeddings if extended_predict_attention_mask is not None: # Permuting Predict attention mask to [batch_size, ngram, number_heads, sequence_length, 2*sequence_length] extended_predict_attention_mask = extended_predict_attention_mask.permute(0, 2, 1, 3, 4) extended_predict_attention_mask = extended_predict_attention_mask.to(predict_attn_weights.dtype) predict_attn_weights = predict_attn_weights + extended_predict_attention_mask predict_attn_probs = softmax( predict_attn_weights, dim=-1, onnx_trace=self.onnx_trace, ).type_as(predict_attn_weights) if layer_head_mask is not None: assert layer_head_mask.size() == (self.num_attn_heads,), ( f"Head mask for a single layer should be of size {(self.num_attn_heads,)}, but is" f" {layer_head_mask.size()}" ) predict_attn_probs = layer_head_mask.view(1, 1, -1, 1, 1) * predict_attn_probs predict_attn_probs = nn.functional.dropout( predict_attn_probs, p=self.attention_dropout, training=self.training ) # project to attention output # [batch_size, ngram, number_heads, sequence_length, 2*sequence_length] # x [batch_size, ngram, number_heads, 2*sequence_length, head_dimesion] # -> [batch_size, ngram, number_heads, sequence_length, head_dimesion] predict_attn_output = torch.einsum( "bnhts,bnhsc->bnhtc", (predict_attn_probs, predict_value_states.transpose(1, 2)) ) # reshape so that num_heads dim is merged into last `head_dim` axis # [batch_size, ngram, number_heads, sequence_length, head_dimesion] -> [batch_size, ngram, sequence_length, hidden_size] predict_attn_output = predict_attn_output.transpose(2, 3) predict_attn_output = predict_attn_output.reshape(batch_size, self.ngram, sequence_length, hidden_size) predict_attn_output = self.out_proj(predict_attn_output) # concat to single attn output # [batch_size, (1+ngram)*sequence_length, hidden_size] attn_output = torch.cat([main_attn_output, predict_attn_output], 1).view(batch_size, -1, hidden_size) # reshape into better form for `config.output_attentions` main_attn_probs = main_attn_probs.view(batch_size, self.num_attn_heads, sequence_length, -1) attn_output = nn.functional.dropout(attn_output, p=self.dropout, training=self.training) return attn_output, main_attn_probs, predict_attn_probs, past_key_value def get_main_relative_pos_embeddings( self, hidden_states, attn_weights, position_ids, main_relative_position_buckets ): # input hidden_states [batch_size, sequence_length, hidden_size] # input attn_weights [batch_size, num_heads, sequence_length, sequence_length] # input position_ids [batch_size, sequence_length] or [1,1] batch_size, num_attn_heads, tgt_len, src_len = attn_weights.shape attn_weights = attn_weights.view(batch_size, num_attn_heads, tgt_len, src_len) if main_relative_position_buckets is None: batch_size, sequence_length = hidden_states.shape[:2] relative_positions = ( torch.arange(1, attn_weights.shape[-1] + 1) .unsqueeze(0) .unsqueeze(0) .repeat(batch_size, sequence_length, 1) .to(position_ids.device) ) # [batch_size, sequence_length, sequence_length+1] relative_positions = relative_positions - position_ids.unsqueeze(0).repeat(batch_size, sequence_length, 1) main_relative_position_buckets = compute_relative_buckets( self.num_buckets, self.relative_max_distance, relative_positions, False ) # [batch_size, sequence_length, num_buckets * num_heads] rel_pos_embeddings = self.relative_pos_embeddings(hidden_states) rel_pos_embeddings = rel_pos_embeddings.view( rel_pos_embeddings.shape[:2] + (self.num_buckets, self.num_attn_heads) ) rel_pos_embeddings = rel_pos_embeddings.permute(0, 3, 1, 2) # [batch_size, num_heads, sequence_length, num_buckets] rel_pos_embeddings = rel_pos_embeddings.reshape(attn_weights.shape[:3] + (-1,)) main_relative_position_buckets = main_relative_position_buckets.repeat(1, self.num_attn_heads, 1) # [batch_size * num_heads * sequence_length, sequence_length] main_relative_position_buckets = main_relative_position_buckets.view( -1, main_relative_position_buckets.shape[-1] ) main_relative_position_buckets = main_relative_position_buckets.long() # [batch_size * num_heads * sequence_length, sequence_length] rel_pos_embeddings = rel_pos_embeddings.reshape(-1, rel_pos_embeddings.size(-1)) main_relative_pos_embeddings = torch.gather(rel_pos_embeddings, dim=1, index=main_relative_position_buckets) main_relative_pos_embeddings = main_relative_pos_embeddings.view(batch_size, num_attn_heads, tgt_len, -1) return main_relative_pos_embeddings def get_predict_relative_pos_embeddings( self, hidden_states, attn_weights, position_ids, predict_relative_position_buckets ): # input hidden_states [batch_size, sequence_length, ngram, hidden_size] # input attn_weights [batch_size, ngram, num_heads, sequence_length, 2*sequence_length] # input position_ids [batch_size, sequence_length] or [1,1] # input predict_relative_position_buckets [batch_size, sequence_length, 2*sequence_length] or None batch_size, sequence_length = hidden_states.shape[0:2] if predict_relative_position_buckets is None: key_sequence_length = attn_weights.shape[-1] assert ( position_ids[0][0] == key_sequence_length - 1 ), "`position_ids` are incorrect. They should be of the format 1 2 3 4 5 ... (key_sequence_length - 1)" relative_positions = ( torch.arange(0, key_sequence_length) .unsqueeze(0) .unsqueeze(0) .repeat(batch_size, sequence_length, 1) .to(position_ids.device) ) relative_positions = relative_positions - position_ids.unsqueeze(0).repeat(batch_size, sequence_length, 1) predict_relative_position_buckets = compute_relative_buckets( self.num_buckets, self.relative_max_distance, relative_positions, False ) # [batch_size, ngram, sequence_length, hidden_size] hidden_states = hidden_states.transpose(1, 2) rel_pos_embeddings = self.relative_pos_embeddings(hidden_states) # [batch_size, ngram, sequence_length, num_buckets, num_heads] rel_pos_embeddings = rel_pos_embeddings.view( hidden_states.shape[:-1] + (self.num_buckets, self.num_attn_heads) ) rel_pos_embeddings = rel_pos_embeddings.permute(0, 2, 1, 4, 3) # [batch_size * ngram * sequence_length * num_heads, num_buckets] rel_pos_embeddings = rel_pos_embeddings.reshape(-1, self.num_buckets) # [ngram, batch_size, num_heads * sequence_length, -1] predict_relative_position_buckets = predict_relative_position_buckets.unsqueeze(0) predict_relative_position_buckets = predict_relative_position_buckets.repeat( self.ngram, 1, self.num_attn_heads, 1 ) # [ngram * batch_size * num_heads * sequence_length, -1] predict_relative_position_buckets = predict_relative_position_buckets.view( -1, predict_relative_position_buckets.size(-1) ).long() predict_relative_pos_embeddings = torch.gather( rel_pos_embeddings, dim=1, index=predict_relative_position_buckets ) # [batch_size, gram, num_heads, sequence_length, -1] predict_relative_pos_embeddings = predict_relative_pos_embeddings.view( batch_size, self.ngram, self.num_attn_heads, sequence_length, -1 ) return predict_relative_pos_embeddings class ProphetNetEncoderLayer(nn.Module): """ Encoder block for Prophetnet """ def __init__(self, config: ProphetNetConfig): super().__init__() # 1st residual block self.self_attn = ProphetNetAttention(config, config.num_encoder_attention_heads) self.self_attn_layer_norm = LayerNorm(config.hidden_size) # 2nd residual block self.feed_forward = ProphetNetFeedForward(config, config.encoder_ffn_dim) self.feed_forward_layer_norm = LayerNorm(config.hidden_size) def forward( self, hidden_states, attention_mask, layer_head_mask, output_attentions: bool = False, ): # 1st residual block attention_output, attn_weights, _ = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) hidden_states = self.self_attn_layer_norm(attention_output + hidden_states) # 2nd residual block feed_forward_output = self.feed_forward(hidden_states) hidden_states = self.feed_forward_layer_norm(feed_forward_output + hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs class ProphetNetDecoderLayer(nn.Module): """ Decoder block for Prophetnet """ def __init__(self, config: ProphetNetConfig): super().__init__() # 1st residual block self.self_attn = ProphetNetNgramSelfAttention(config) self.self_attn_layer_norm = LayerNorm(config.hidden_size) # 2nd residual block if config.add_cross_attention: self.cross_attn = ProphetNetAttention(config, config.num_decoder_attention_heads) self.cross_attn_layer_norm = LayerNorm(config.hidden_size) # 3rd residual block self.feed_forward = ProphetNetFeedForward(config, config.decoder_ffn_dim) self.feed_forward_layer_norm = LayerNorm(config.hidden_size) def forward( self, hidden_states, attention_mask=None, encoder_hidden_states=None, encoder_attn_mask=None, layer_head_mask=None, cross_attn_layer_head_mask=None, extended_predict_attention_mask=None, main_relative_position_buckets=None, predict_relative_position_buckets=None, position_ids=None, past_key_value=None, use_cache: bool = True, output_attentions: bool = False, ): # 1st residual block # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None ngram_attention_output, self_attn_weights, self_attn_weights_ngram, present_key_value = self.self_attn( hidden_states=hidden_states, past_key_value=self_attn_past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, extended_predict_attention_mask=extended_predict_attention_mask, main_relative_position_buckets=main_relative_position_buckets, predict_relative_position_buckets=predict_relative_position_buckets, position_ids=position_ids, ) hidden_states = self.self_attn_layer_norm(hidden_states + ngram_attention_output) # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None cross_attn_weights = None if encoder_hidden_states is not None: # 2nd residual block attention_output, cross_attn_weights, cross_attn_present_key_value = self.cross_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attn_mask, layer_head_mask=cross_attn_layer_head_mask, past_key_value=cross_attn_past_key_value, output_attentions=output_attentions, ) hidden_states = self.cross_attn_layer_norm(attention_output + hidden_states) # add cross-attn to positions 3,4 of present_key_value tuple present_key_value = present_key_value + cross_attn_present_key_value # 3rd residual block feed_forward_output = self.feed_forward(hidden_states) hidden_states = self.feed_forward_layer_norm(feed_forward_output + hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights, self_attn_weights_ngram, cross_attn_weights) if use_cache: outputs += (present_key_value,) return outputs @add_start_docstrings( "The standalone encoder part of the ProphetNetModel.", PROPHETNET_START_DOCSTRING, ) class ProphetNetEncoder(ProphetNetPreTrainedModel): r""" word_embeddings (`torch.nn.Embeddings` of shape `(config.vocab_size, config.hidden_size)`, *optional*): The word embedding parameters. This can be used to initialize [`ProphetNetEncoder`] with pre-defined word embeddings instead of randomly initialized word embeddings. """ def __init__(self, config: ProphetNetConfig, word_embeddings: nn.Embedding = None): super().__init__(config) self.word_embeddings = ( word_embeddings if word_embeddings is not None else nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) ) self.position_embeddings = ProphetNetPositionalEmbeddings(config) self.embeddings_layer_norm = LayerNorm(config.hidden_size) self.layers = nn.ModuleList([ProphetNetEncoderLayer(config) for _ in range(config.num_encoder_layers)]) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.word_embeddings def set_input_embeddings(self, value): self.word_embeddings = value @add_start_docstrings_to_model_forward(PROPHETNET_STANDALONE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: r""" Returns: Example: ```python >>> from transformers import AutoTokenizer, ProphetNetEncoder >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/prophetnet-large-uncased") >>> model = ProphetNetEncoder.from_pretrained("patrickvonplaten/prophetnet-large-uncased-standalone") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is None and inputs_embeds is None: raise ValueError("Either input_ids or inputs_embeds has to be passed.") elif input_ids is not None and inputs_embeds is not None: raise ValueError("Make sure to only pass input_ids or inputs_embeds.") elif input_ids is not None and inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) # prepare attention mask if attention_mask is not None: extended_attention_mask = ( 1.0 - attention_mask[:, None, None, :].repeat(1, self.config.num_encoder_attention_heads, 1, 1) ) * torch.finfo(self.dtype).min extended_attention_mask = extended_attention_mask.to(inputs_embeds.dtype) else: extended_attention_mask = None position_embeddings, position_ids = self.position_embeddings(inputs_embeds.shape[:2], inputs_embeds.device) hidden_states = inputs_embeds + position_embeddings hidden_states = self.embeddings_layer_norm(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.config.dropout, training=self.training) encoder_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None # check if head_mask has a correct number of layers specified if desired if head_mask is not None: assert head_mask.size()[0] == ( len(self.layers) ), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}." for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_hidden_states = encoder_hidden_states + (hidden_states,) if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(encoder_layer), hidden_states, extended_attention_mask, (head_mask[idx] if head_mask is not None else None), ) else: layer_outputs = encoder_layer( hidden_states, attention_mask=extended_attention_mask, layer_head_mask=(head_mask[idx] if head_mask is not None else None), output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_hidden_states = encoder_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_hidden_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_hidden_states, attentions=all_attentions ) @add_start_docstrings( "The standalone decoder part of the ProphetNetModel.", PROPHETNET_START_DOCSTRING, ) class ProphetNetDecoder(ProphetNetPreTrainedModel): r""" word_embeddings (`torch.nn.Embeddings` of shape `(config.vocab_size, config.hidden_size)`, *optional*): The word embedding parameters. This can be used to initialize [`ProphetNetEncoder`] with pre-defined word embeddings instead of randomly initialized word embeddings. """ def __init__(self, config: ProphetNetConfig, word_embeddings: Optional[nn.Embedding] = None): super().__init__(config) self.ngram = config.ngram self.num_buckets = config.num_buckets self.relative_max_distance = config.relative_max_distance self.dropout = config.dropout self.max_target_positions = config.max_position_embeddings self.word_embeddings = ( word_embeddings if word_embeddings is not None else nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) ) self.position_embeddings = ProphetNetPositionalEmbeddings(config) self.ngram_embeddings = nn.Embedding(self.ngram, config.hidden_size, None) self.layers = nn.ModuleList([ProphetNetDecoderLayer(config) for _ in range(config.num_decoder_layers)]) self.embeddings_layer_norm = LayerNorm(config.hidden_size) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.word_embeddings def set_input_embeddings(self, value): self.word_embeddings = value @add_start_docstrings_to_model_forward(PROPHETNET_STANDALONE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=ProphetNetDecoderModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, inputs_embeds: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, ProphetNetDecoderModelOutput]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. Returns: Example: ```python >>> from transformers import AutoTokenizer, ProphetNetDecoder >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/prophetnet-large-uncased") >>> model = ProphetNetDecoder.from_pretrained("microsoft/prophetnet-large-uncased", add_cross_attention=False) >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state ```""" use_cache = use_cache if use_cache is not None else self.config.use_cache output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is None and inputs_embeds is None: raise ValueError("Either `decoder_input_ids` or `decoder_inputs_embeds` has to be passed.") elif input_ids is not None and inputs_embeds is not None: raise ValueError("Make sure to only pass `decoder_input_ids` or `decoder_inputs_embeds`.") elif input_ids is not None and inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) batch_size, sequence_length = inputs_embeds.shape[:2] main_stream_pos_embed, position_ids = self.position_embeddings( (batch_size, sequence_length), device=inputs_embeds.device, past_key_values=past_key_values, ) if past_key_values is not None: main_relative_position_buckets, predict_relative_position_buckets = None, None else: ( main_relative_position_buckets, predict_relative_position_buckets, ) = self.compute_buffered_relative_buckets(position_ids) predicting_stream_pos_embed = self.position_embeddings._forward(position_ids + 1) # add position embeddings hidden_states = inputs_embeds + main_stream_pos_embed ngram_embeddings = self.ngram_embeddings.weight # prepare attention mask if past_key_values is not None: assert ( hidden_states.size(1) == 1 ), "At the moment `use_cache` is only supported for `decoder_input_ids` of length 1" ngram_hidden_states = [ (ngram_embeddings[ngram - 1] + predicting_stream_pos_embed).repeat(batch_size, 1, 1) for ngram in range(self.ngram) ] extended_attention_mask = None extended_predict_attention_mask = None else: ngram_hidden_states = [ (ngram_embeddings[ngram - 1] + predicting_stream_pos_embed) for ngram in range(self.ngram) ] extended_attention_mask = self.prepare_attention_mask(hidden_states, attention_mask) extended_predict_attention_mask = self.prepare_predict_attention_mask(hidden_states, attention_mask) # prepare encoder attention mask if encoder_attention_mask is not None: extended_encoder_attention_mask = ( 1.0 - encoder_attention_mask[:, None, None, :].repeat(1, self.config.num_decoder_attention_heads, 1, 1) ) * torch.finfo(self.dtype).min extended_encoder_attention_mask = extended_encoder_attention_mask.to(inputs_embeds.dtype) else: extended_encoder_attention_mask = None hidden_states = torch.cat([hidden_states] + ngram_hidden_states, 1) if self.embeddings_layer_norm: hidden_states = self.embeddings_layer_norm(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) # init attentions, hidden_states and cache with empty tuples all_main_stream_hidden_states = () if output_hidden_states else None all_ngram_stream_hidden_states = () if output_hidden_states and self.config.ngram > 0 else None all_main_stream_attns = () if output_attentions else None all_ngram_stream_attns = () if output_attentions else None all_cross_attns = () if output_attentions and self.config.add_cross_attention else None if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False present_key_values = () if use_cache else None # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): if attn_mask is not None: assert attn_mask.size()[0] == (len(self.layers)), ( f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" f" {head_mask.size()[0]}." ) for idx, decoder_layer in enumerate(self.layers): if output_hidden_states: # grad cannot be kept because tensor is sliced all_main_stream_hidden_states += (hidden_states[:, :sequence_length],) if self.config.ngram > 0: all_ngram_stream_hidden_states += (hidden_states[:, sequence_length:],) past_key_value = past_key_values[idx] if past_key_values is not None else None if self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): # None for past_key_value return module(*inputs, use_cache, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(decoder_layer), hidden_states, extended_attention_mask, encoder_hidden_states, extended_encoder_attention_mask, (head_mask[idx] if head_mask is not None else None), (cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None), extended_predict_attention_mask, main_relative_position_buckets, predict_relative_position_buckets, position_ids, None, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=extended_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attn_mask=extended_encoder_attention_mask, layer_head_mask=(head_mask[idx] if head_mask is not None else None), cross_attn_layer_head_mask=( cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None ), extended_predict_attention_mask=extended_predict_attention_mask, main_relative_position_buckets=main_relative_position_buckets, predict_relative_position_buckets=predict_relative_position_buckets, position_ids=position_ids, past_key_value=past_key_value, use_cache=use_cache, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if use_cache: present_key_values += (layer_outputs[4 if output_attentions else 1],) if output_attentions: all_main_stream_attns += (layer_outputs[1],) all_ngram_stream_attns += (layer_outputs[2],) if self.config.add_cross_attention: all_cross_attns += (layer_outputs[3],) if output_hidden_states: all_main_stream_hidden_states += (hidden_states[:, :sequence_length],) if self.config.ngram > 0: all_ngram_stream_hidden_states += (hidden_states[:, sequence_length:],) # split last_hidden_state for return last_hidden_state = hidden_states[:, :sequence_length] last_hidden_state_ngram = hidden_states[:, sequence_length:] if self.config.ngram > 0 else None if not return_dict: return tuple( v for v in [ last_hidden_state, last_hidden_state_ngram, present_key_values, all_main_stream_hidden_states, all_ngram_stream_hidden_states, all_main_stream_attns, all_ngram_stream_attns, all_cross_attns, ] if v is not None ) return ProphetNetDecoderModelOutput( last_hidden_state=last_hidden_state, last_hidden_state_ngram=last_hidden_state_ngram, past_key_values=present_key_values, hidden_states=all_main_stream_hidden_states, hidden_states_ngram=all_ngram_stream_hidden_states, attentions=all_main_stream_attns, ngram_attentions=all_ngram_stream_attns, cross_attentions=all_cross_attns, ) def compute_buffered_relative_buckets(self, position_ids): batch_size, sequence_length = position_ids.shape position_ids = torch.arange(1, self.max_target_positions).to(position_ids.device).repeat(1, 1) main_relative_buckets, predict_relative_buckets = compute_all_stream_relative_buckets( self.num_buckets, self.relative_max_distance, position_ids ) # buffer relative buckets main_relative_buckets = main_relative_buckets[:, :sequence_length, :sequence_length].repeat(batch_size, 1, 1) predict_relative_buckets = torch.cat( [ predict_relative_buckets[:, :sequence_length, :sequence_length], predict_relative_buckets[ :, :sequence_length, self.max_target_positions : self.max_target_positions + sequence_length ], ], 2, ).repeat(batch_size, 1, 1) return main_relative_buckets, predict_relative_buckets def prepare_attention_mask(self, hidden_states, attention_mask): batch_size, seq_length = hidden_states.shape[:2] # get causal mask causal_mask = torch.full( (seq_length, seq_length), torch.finfo(hidden_states.dtype).min, dtype=hidden_states.dtype, device=hidden_states.device, ) causal_mask = torch.triu(causal_mask, 1) extended_causal_mask = causal_mask[:seq_length, :seq_length][None, None, :, :].expand( (batch_size, self.config.num_decoder_attention_heads) + causal_mask.shape ) # add usual attention mask if attention_mask is not None: extended_attention_mask = (1.0 - attention_mask[:, None, None, :]) * torch.finfo(self.dtype).min extended_attention_mask = extended_causal_mask + extended_attention_mask else: extended_attention_mask = extended_causal_mask return extended_attention_mask.to(hidden_states.dtype) def prepare_predict_attention_mask(self, hidden_states, attention_mask): batch_size, seq_length = hidden_states.shape[:2] # get causal mask predict_causal_mask = ngram_attention_bias( self.max_target_positions, self.ngram, hidden_states.device, hidden_states.dtype ) predict_causal_mask = torch.cat( [ predict_causal_mask[:, :seq_length, :seq_length], predict_causal_mask[ :, :seq_length, self.max_target_positions : self.max_target_positions + seq_length ], ], dim=-1, ) extended_predict_causal_mask = predict_causal_mask[None, None, :, :, :].expand( (batch_size, self.config.num_decoder_attention_heads) + predict_causal_mask.shape ) # add usual attention mask if attention_mask is not None: extended_attention_mask = (1.0 - attention_mask[:, None, None, None, :]) * torch.finfo(self.dtype).min extended_attention_mask = extended_attention_mask.expand( (batch_size, self.config.num_decoder_attention_heads, self.ngram, seq_length, seq_length) ) # predicted stream attention_mask should always be 0 extended_attention_mask = torch.cat( [extended_attention_mask, torch.zeros_like(extended_attention_mask)], dim=-1 ) extended_predict_attention_mask = extended_predict_causal_mask + extended_attention_mask else: extended_predict_attention_mask = extended_predict_causal_mask return extended_predict_attention_mask.to(hidden_states.dtype) @add_start_docstrings( "The bare ProphetNet Model outputting raw hidden-states without any specific head on top.", PROPHETNET_START_DOCSTRING, ) class ProphetNetModel(ProphetNetPreTrainedModel): _tied_weights_keys = ["encoder.word_embeddings.weight", "decoder.word_embeddings.weight"] def __init__(self, config: ProphetNetConfig): super().__init__(config) self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) encoder_config = copy.deepcopy(config) encoder_config.is_encoder_decoder = False encoder_config.use_cache = False self.encoder = ProphetNetEncoder(encoder_config, self.word_embeddings) decoder_config = copy.deepcopy(config) decoder_config.is_decoder = True decoder_config.is_encoder_decoder = False self.decoder = ProphetNetDecoder(decoder_config, self.word_embeddings) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.word_embeddings def set_input_embeddings(self, value): self.word_embeddings = value self.encoder.word_embeddings = self.word_embeddings self.decoder.word_embeddings = self.word_embeddings def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder @add_start_docstrings_to_model_forward(PROPHETNET_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=ProphetNetSeq2SeqModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, decoder_input_ids: Optional[torch.Tensor] = None, decoder_attention_mask: Optional[torch.BoolTensor] = None, head_mask: Optional[torch.Tensor] = None, decoder_head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Tuple] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, inputs_embeds: Optional[torch.Tensor] = None, decoder_inputs_embeds: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, ProphetNetSeq2SeqModelOutput]: r""" Returns: Example: ```python >>> from transformers import AutoTokenizer, ProphetNetModel >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/prophetnet-large-uncased") >>> model = ProphetNetModel.from_pretrained("microsoft/prophetnet-large-uncased") >>> input_ids = tokenizer( ... "Studies have been shown that owning a dog is good for you", return_tensors="pt" ... ).input_ids # Batch size 1 >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1 >>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) >>> last_hidden_states = outputs.last_hidden_state # main stream hidden states >>> last_hidden_states_ngram = outputs.last_hidden_state_ngram # predict hidden states ```""" use_cache = use_cache if use_cache is not None else self.config.use_cache output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if encoder_outputs is None: encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # decoder outputs consists of (dec_features, past_key_values, dec_hidden, dec_attn) decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=attention_mask, head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=decoder_inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache, return_dict=return_dict, ) if not return_dict: return decoder_outputs + encoder_outputs return ProphetNetSeq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, last_hidden_state_ngram=decoder_outputs.last_hidden_state_ngram, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_ngram_hidden_states=decoder_outputs.hidden_states_ngram, decoder_attentions=decoder_outputs.attentions, decoder_ngram_attentions=decoder_outputs.ngram_attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) @add_start_docstrings( "The ProphetNet Model with a language modeling head. Can be used for sequence generation tasks.", PROPHETNET_START_DOCSTRING, ) class ProphetNetForConditionalGeneration(ProphetNetPreTrainedModel): _tied_weights_keys = ["encoder.word_embeddings.weight", "decoder.word_embeddings.weight", "lm_head.weight"] def __init__(self, config: ProphetNetConfig): super().__init__(config) self.prophetnet = ProphetNetModel(config) self.padding_idx = config.pad_token_id self.disable_ngram_loss = config.disable_ngram_loss self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def get_input_embeddings(self): return self.prophetnet.word_embeddings @add_start_docstrings_to_model_forward(PROPHETNET_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=ProphetNetSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, decoder_input_ids: Optional[torch.Tensor] = None, decoder_attention_mask: Optional[torch.BoolTensor] = None, head_mask: Optional[torch.Tensor] = None, decoder_head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[torch.Tensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, inputs_embeds: Optional[torch.Tensor] = None, decoder_inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, ProphetNetSeq2SeqLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ..., config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` Returns: Example: ```python >>> from transformers import AutoTokenizer, ProphetNetForConditionalGeneration >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/prophetnet-large-uncased") >>> model = ProphetNetForConditionalGeneration.from_pretrained("microsoft/prophetnet-large-uncased") >>> input_ids = tokenizer( ... "Studies have been shown that owning a dog is good for you", return_tensors="pt" ... ).input_ids # Batch size 1 >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1 >>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) >>> logits_next_token = outputs.logits # logits to predict next token as usual >>> logits_ngram_next_tokens = outputs.logits_ngram # logits to predict 2nd, 3rd, ... next tokens ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None: # get decoder inputs from shifting lm labels to the right decoder_input_ids = self._shift_right(labels) outputs = self.prophetnet( input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, encoder_outputs=encoder_outputs, past_key_values=past_key_values, inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) batch_size, sequence_length = ( decoder_input_ids.shape if decoder_input_ids is not None else decoder_inputs_embeds.shape[:2] ) predicting_streams = outputs[1].view(batch_size, self.config.ngram, sequence_length, -1) predict_logits = self.lm_head(predicting_streams) logits = predict_logits[:, 0] logits_ngram = predict_logits[:, 1:] if self.config.ngram > 1 else None # To use .view in loss computation, make sure that logits is contiguous. if not logits.is_contiguous(): logits = logits.contiguous() loss = None if labels is not None: loss = self._compute_loss(predict_logits, labels) if not return_dict: all_logits = tuple(v for v in [logits, logits_ngram] if v is not None) return (loss,) + all_logits + outputs[2:] if loss is not None else all_logits + outputs[2:] else: return ProphetNetSeq2SeqLMOutput( loss=loss, logits=logits, logits_ngram=logits_ngram, past_key_values=outputs.past_key_values, decoder_hidden_states=outputs.decoder_hidden_states, decoder_ngram_hidden_states=outputs.decoder_ngram_hidden_states, decoder_attentions=outputs.decoder_attentions, decoder_ngram_attentions=outputs.decoder_ngram_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, ) def _compute_loss(self, logits, labels, ignore_index=-100): expend_targets = labels.new_zeros(self.config.ngram, labels.size(0), labels.size(1)).fill_(ignore_index) for i in range(self.config.ngram): if i > 0 and self.disable_ngram_loss: break expend_targets[i, :, :] = labels logits = logits.transpose(0, 1).contiguous() lprobs = nn.functional.log_softmax( logits.view(-1, logits.size(-1)), dim=-1, dtype=torch.float32, ) loss = nn.functional.nll_loss(lprobs, expend_targets.view(-1), reduction="mean") if self.config.eps > 0.0: smooth_loss = -lprobs.sum(dim=-1, keepdim=True) non_masked_tokens = expend_targets.ne(ignore_index).view(-1) smooth_loss = smooth_loss[non_masked_tokens] smooth_loss = smooth_loss.mean() eps_i = self.config.eps / lprobs.size(-1) loss = (1.0 - self.config.eps) * loss + eps_i * smooth_loss return loss def prepare_inputs_for_generation( self, decoder_input_ids, past_key_values=None, attention_mask=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, use_cache=None, encoder_outputs=None, **kwargs, ): assert encoder_outputs is not None, "`encoder_outputs` have to be passed for generation." if past_key_values: decoder_input_ids = decoder_input_ids[:, -1:] # first step, decoder_cached_states are empty return { "input_ids": None, # encoder_outputs is defined. input_ids not needed "encoder_outputs": encoder_outputs, "past_key_values": past_key_values, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, "use_cache": use_cache, } def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): return self._shift_right(labels) @staticmethod # Copied from transformers.models.bart.modeling_bart.BartForConditionalGeneration._reorder_cache def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: # cached cross_attention states don't have to be reordered -> they are always the same reordered_past += ( tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:], ) return reordered_past def get_encoder(self): return self.prophetnet.encoder def get_decoder(self): return self.prophetnet.decoder @add_start_docstrings( "The standalone decoder part of the ProphetNetModel with a lm head on top. The model can be used for causal" " language modeling.", PROPHETNET_START_DOCSTRING, ) class ProphetNetForCausalLM(ProphetNetPreTrainedModel): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config: ProphetNetConfig): # set config for CLM config = copy.deepcopy(config) config.is_decoder = True config.is_encoder_decoder = False super().__init__(config) self.prophetnet = ProphetNetDecoderWrapper(config) self.padding_idx = config.pad_token_id self.disable_ngram_loss = config.disable_ngram_loss self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.prophetnet.decoder.word_embeddings def set_input_embeddings(self, value): self.prophetnet.decoder.word_embeddings = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.prophetnet.decoder = decoder def get_decoder(self): return self.prophetnet.decoder @add_start_docstrings_to_model_forward(PROPHETNET_STANDALONE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=ProphetNetDecoderLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, ProphetNetDecoderLMOutput]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]` Returns: Example: ```python >>> from transformers import AutoTokenizer, ProphetNetForCausalLM >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/prophetnet-large-uncased") >>> model = ProphetNetForCausalLM.from_pretrained("microsoft/prophetnet-large-uncased") >>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder." >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> logits = outputs.logits >>> # Model can also be used with EncoderDecoder framework >>> from transformers import BertTokenizer, EncoderDecoderModel, AutoTokenizer >>> import torch >>> tokenizer_enc = BertTokenizer.from_pretrained("bert-large-uncased") >>> tokenizer_dec = AutoTokenizer.from_pretrained("microsoft/prophetnet-large-uncased") >>> model = EncoderDecoderModel.from_encoder_decoder_pretrained( ... "bert-large-uncased", "microsoft/prophetnet-large-uncased" ... ) >>> ARTICLE = ( ... "the us state department said wednesday it had received no " ... "formal word from bolivia that it was expelling the us ambassador there " ... "but said the charges made against him are `` baseless ." ... ) >>> input_ids = tokenizer_enc(ARTICLE, return_tensors="pt").input_ids >>> labels = tokenizer_dec( ... "us rejects charges against its ambassador in bolivia", return_tensors="pt" ... ).input_ids >>> outputs = model(input_ids=input_ids, decoder_input_ids=labels[:, :-1], labels=labels[:, 1:]) >>> loss = outputs.loss ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, past_key_values, dec_hidden, dec_attn) outputs = self.prophetnet.decoder( input_ids=input_ids, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, head_mask=head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) batch_size, sequence_length = input_ids.shape if input_ids is not None else inputs_embeds.shape[:2] predicting_streams = outputs[1].view(batch_size, self.config.ngram, sequence_length, -1) predict_logits = self.lm_head(predicting_streams) logits = predict_logits[:, 0] logits_ngram = predict_logits[:, 1:] if self.config.ngram > 1 else None loss = None if labels is not None: loss = self._compute_loss(predict_logits, labels) if not return_dict: all_logits = tuple(v for v in [logits, logits_ngram] if v is not None) return (loss,) + all_logits + outputs[2:] if loss is not None else all_logits + outputs[2:] else: return ProphetNetDecoderLMOutput( loss=loss, logits=logits, logits_ngram=logits_ngram, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, hidden_states_ngram=outputs.hidden_states_ngram, attentions=outputs.attentions, ngram_attentions=outputs.ngram_attentions, cross_attentions=outputs.cross_attentions, ) def _compute_loss(self, logits, labels, ignore_index=-100): expend_targets = labels.new_zeros(self.config.ngram, labels.size(0), labels.size(1)).fill_(ignore_index) for i in range(self.config.ngram): if i > 0 and self.disable_ngram_loss: break expend_targets[i, :, :] = labels logits = logits.transpose(0, 1).contiguous() lprobs = nn.functional.log_softmax( logits.view(-1, logits.size(-1)), dim=-1, dtype=torch.float32, ) loss = nn.functional.nll_loss(lprobs, expend_targets.view(-1), reduction="mean") if self.config.eps > 0.0: smooth_loss = -lprobs.sum(dim=-1, keepdim=True) non_masked_tokens = expend_targets.ne(ignore_index).view(-1) smooth_loss = smooth_loss[non_masked_tokens] smooth_loss = smooth_loss.mean() eps_i = self.config.eps / lprobs.size(-1) loss = (1.0 - self.config.eps) * loss + eps_i * smooth_loss return loss def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, head_mask=None, use_cache=None, **kwargs, ): # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly if attention_mask is None: attention_mask = input_ids.new_ones(input_ids.shape) if past_key_values: input_ids = input_ids[:, -1:] # first step, decoder_cached_states are empty return { "input_ids": input_ids, # encoder_outputs is defined. input_ids not needed "attention_mask": attention_mask, "head_mask": head_mask, "past_key_values": past_key_values, "use_cache": use_cache, } @staticmethod # Copied from transformers.models.bart.modeling_bart.BartForCausalLM._reorder_cache def _reorder_cache(past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),) return reordered_past class ProphetNetDecoderWrapper(ProphetNetPreTrainedModel): """ This is a wrapper class, so that [`ProphetNetForCausalLM`] can correctly be loaded from pretrained prophetnet classes. """ def __init__(self, config: ProphetNetConfig): super().__init__(config) self.decoder = ProphetNetDecoder(config) def forward(self, *args, **kwargs): return self.decoder(*args, **kwargs)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/unispeech/__init__.py
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _import_structure = {"configuration_unispeech": ["UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP", "UniSpeechConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_unispeech"] = [ "UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST", "UniSpeechForCTC", "UniSpeechForPreTraining", "UniSpeechForSequenceClassification", "UniSpeechModel", "UniSpeechPreTrainedModel", ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/unispeech/configuration_unispeech.py
# coding=utf-8 # Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ UniSpeech model configuration""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP = { "microsoft/unispeech-large-1500h-cv": ( "https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class UniSpeechConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`UniSpeechModel`]. It is used to instantiate an UniSpeech model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the UniSpeech [microsoft/unispeech-large-1500h-cv](https://huggingface.co/microsoft/unispeech-large-1500h-cv) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 32): Vocabulary size of the UniSpeech model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`UniSpeechModel`]. Vocabulary size of the model. Defines the different tokens that can be represented by the *inputs_ids* passed to the forward method of [`UniSpeechModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_dropout (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. final_dropout (`float`, *optional*, defaults to 0.1): The dropout probability for the final projection layer of [`UniSpeechForCTC`]. layerdrop (`float`, *optional*, defaults to 0.1): The LayerDrop probability. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. feat_extract_norm (`str`, *optional*, defaults to `"group"`): The norm to be applied to 1D convolutional layers in feature encoder. One of `"group"` for group normalization of only the first 1D convolutional layer or `"layer"` for layer normalization of all 1D convolutional layers. feat_proj_dropout (`float`, *optional*, defaults to 0.0): The dropout probability for output of the feature encoder. feat_extract_activation (`str, `optional`, defaults to `"gelu"`): The non-linear activation function (function or string) in the 1D convolutional layers of the feature extractor. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. feat_quantizer_dropout (`float`, *optional*, defaults to 0.0): The dropout probabilitiy for quantized feature encoder states. conv_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 512, 512, 512)`): A tuple of integers defining the number of input and output channels of each 1D convolutional layer in the feature encoder. The length of *conv_dim* defines the number of 1D convolutional layers. conv_stride (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 2, 2, 2, 2, 2, 2)`): A tuple of integers defining the stride of each 1D convolutional layer in the feature encoder. The length of *conv_stride* defines the number of convolutional layers and has to match the length of *conv_dim*. conv_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(10, 3, 3, 3, 3, 3, 3)`): A tuple of integers defining the kernel size of each 1D convolutional layer in the feature encoder. The length of *conv_kernel* defines the number of convolutional layers and has to match the length of *conv_dim*. conv_bias (`bool`, *optional*, defaults to `False`): Whether the 1D convolutional layers have a bias. num_conv_pos_embeddings (`int`, *optional*, defaults to 128): Number of convolutional positional embeddings. Defines the kernel size of 1D convolutional positional embeddings layer. num_conv_pos_embedding_groups (`int`, *optional*, defaults to 16): Number of groups of 1D convolutional positional embeddings layer. do_stable_layer_norm (`bool`, *optional*, defaults to `False`): Whether to apply *stable* layer norm architecture of the Transformer encoder. `do_stable_layer_norm is True` corresponds to applying layer norm before the attention layer, whereas `do_stable_layer_norm is False` corresponds to applying layer norm after the attention layer. apply_spec_augment (`bool`, *optional*, defaults to `True`): Whether to apply *SpecAugment* data augmentation to the outputs of the feature encoder. For reference see [SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition](https://arxiv.org/abs/1904.08779). mask_time_prob (`float`, *optional*, defaults to 0.05): Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked. The masking procecure generates ''mask_time_prob*len(time_axis)/mask_time_length'' independent masks over the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector span to be masked, *mask_time_prob* should be `prob_vector_start*mask_time_length`. Note that overlap may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is True`. mask_time_length (`int`, *optional*, defaults to 10): Length of vector span along the time axis. mask_time_min_masks (`int`, *optional*, defaults to 2),: The minimum number of masks of length `mask_feature_length` generated along the time axis, each time step, irrespectively of `mask_feature_prob`. Only relevant if ''mask_time_prob*len(time_axis)/mask_time_length < mask_time_min_masks'' mask_feature_prob (`float`, *optional*, defaults to 0.0): Percentage (between 0 and 1) of all feature vectors along the feature axis which will be masked. The masking procecure generates ''mask_feature_prob*len(feature_axis)/mask_time_length'' independent masks over the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector span to be masked, *mask_feature_prob* should be `prob_vector_start*mask_feature_length`. Note that overlap may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is True`. mask_feature_length (`int`, *optional*, defaults to 10): Length of vector span along the feature axis. mask_feature_min_masks (`int`, *optional*, defaults to 0),: The minimum number of masks of length `mask_feature_length` generated along the feature axis, each time step, irrespectively of `mask_feature_prob`. Only relevant if ''mask_feature_prob*len(feature_axis)/mask_feature_length < mask_feature_min_masks'' num_codevectors_per_group (`int`, *optional*, defaults to 320): Number of entries in each quantization codebook (group). num_codevector_groups (`int`, *optional*, defaults to 2): Number of codevector groups for product codevector quantization. contrastive_logits_temperature (`float`, *optional*, defaults to 0.1): The temperature *kappa* in the contrastive loss. feat_quantizer_dropout (`float`, *optional*, defaults to 0.0): The dropout probabilitiy for the output of the feature encoder that's used by the quantizer. num_negatives (`int`, *optional*, defaults to 100): Number of negative samples for the contrastive loss. codevector_dim (`int`, *optional*, defaults to 256): Dimensionality of the quantized feature vectors. proj_codevector_dim (`int`, *optional*, defaults to 256): Dimensionality of the final projection of both the quantized and the transformer features. diversity_loss_weight (`int`, *optional*, defaults to 0.1): The weight of the codebook diversity loss component. ctc_loss_reduction (`str`, *optional*, defaults to `"mean"`): Specifies the reduction to apply to the output of `torch.nn.CTCLoss`. Only relevant when training an instance of [`UniSpeechForCTC`]. ctc_zero_infinity (`bool`, *optional*, defaults to `False`): Whether to zero infinite losses and the associated gradients of `torch.nn.CTCLoss`. Infinite losses mainly occur when the inputs are too short to be aligned to the targets. Only relevant when training an instance of [`UniSpeechForCTC`]. use_weighted_layer_sum (`bool`, *optional*, defaults to `False`): Whether to use a weighted average of layer outputs with learned weights. Only relevant when using an instance of [`UniSpeechForSequenceClassification`]. classifier_proj_size (`int`, *optional*, defaults to 256): Dimensionality of the projection before token mean-pooling for classification. replace_prob (`float`, *optional*, defaults to 0.5): Propability that transformer feature is replaced by quantized feature for pretraining. Example: ```python >>> from transformers import UniSpeechConfig, UniSpeechModel >>> # Initializing a UniSpeech facebook/unispeech-base-960h style configuration >>> configuration = UniSpeechConfig() >>> # Initializing a model (with random weights) from the facebook/unispeech-base-960h style configuration >>> model = UniSpeechModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "unispeech" def __init__( self, vocab_size=32, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout=0.1, activation_dropout=0.1, attention_dropout=0.1, feat_proj_dropout=0.0, feat_quantizer_dropout=0.0, final_dropout=0.1, layerdrop=0.1, initializer_range=0.02, layer_norm_eps=1e-5, feat_extract_norm="group", feat_extract_activation="gelu", conv_dim=(512, 512, 512, 512, 512, 512, 512), conv_stride=(5, 2, 2, 2, 2, 2, 2), conv_kernel=(10, 3, 3, 3, 3, 2, 2), conv_bias=False, num_conv_pos_embeddings=128, num_conv_pos_embedding_groups=16, do_stable_layer_norm=False, apply_spec_augment=True, mask_time_prob=0.05, mask_time_length=10, mask_time_min_masks=2, mask_feature_prob=0.0, mask_feature_length=10, mask_feature_min_masks=0, num_codevectors_per_group=320, num_codevector_groups=2, contrastive_logits_temperature=0.1, num_negatives=100, codevector_dim=256, proj_codevector_dim=256, diversity_loss_weight=0.1, ctc_loss_reduction="mean", ctc_zero_infinity=False, use_weighted_layer_sum=False, classifier_proj_size=256, num_ctc_classes=80, pad_token_id=0, bos_token_id=1, eos_token_id=2, replace_prob=0.5, **kwargs, ): super().__init__(**kwargs, pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id) self.hidden_size = hidden_size self.feat_extract_norm = feat_extract_norm self.feat_extract_activation = feat_extract_activation self.conv_dim = list(conv_dim) self.conv_stride = list(conv_stride) self.conv_kernel = list(conv_kernel) self.conv_bias = conv_bias self.num_conv_pos_embeddings = num_conv_pos_embeddings self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups self.num_feat_extract_layers = len(self.conv_dim) self.num_hidden_layers = num_hidden_layers self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.num_attention_heads = num_attention_heads self.hidden_dropout = hidden_dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.feat_proj_dropout = feat_proj_dropout self.final_dropout = final_dropout self.layerdrop = layerdrop self.layer_norm_eps = layer_norm_eps self.initializer_range = initializer_range self.num_ctc_classes = num_ctc_classes self.vocab_size = vocab_size self.do_stable_layer_norm = do_stable_layer_norm self.use_weighted_layer_sum = use_weighted_layer_sum self.classifier_proj_size = classifier_proj_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`," f" `len(config.conv_kernel) = {len(self.conv_kernel)}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 self.apply_spec_augment = apply_spec_augment self.mask_time_prob = mask_time_prob self.mask_time_length = mask_time_length self.mask_time_min_masks = mask_time_min_masks self.mask_feature_prob = mask_feature_prob self.mask_feature_length = mask_feature_length self.mask_feature_min_masks = mask_feature_min_masks # parameters for pretraining with codevector quantized representations self.num_codevectors_per_group = num_codevectors_per_group self.num_codevector_groups = num_codevector_groups self.contrastive_logits_temperature = contrastive_logits_temperature self.feat_quantizer_dropout = feat_quantizer_dropout self.num_negatives = num_negatives self.codevector_dim = codevector_dim self.proj_codevector_dim = proj_codevector_dim self.diversity_loss_weight = diversity_loss_weight # ctc loss self.ctc_loss_reduction = ctc_loss_reduction self.ctc_zero_infinity = ctc_zero_infinity # pretraining loss self.replace_prob = replace_prob @property def inputs_to_logits_ratio(self): return functools.reduce(operator.mul, self.conv_stride, 1)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/unispeech/convert_unispeech_original_pytorch_checkpoint_to_pytorch.py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert UniSpeech checkpoint.""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, Wav2Vec2FeatureExtractor, Wav2Vec2PhonemeCTCTokenizer, Wav2Vec2Processor, logging, ) logging.set_verbosity_info() logger = logging.get_logger(__name__) MAPPING = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "ctc_proj", "mask_emb": "masked_spec_embed", } TOP_LEVEL_KEYS = [ "ctc_proj", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def set_recursively(hf_pointer, key, value, full_name, weight_type, is_finetuned): for attribute in key.split("."): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models attribute = "lm_head" hf_pointer = getattr(hf_pointer, attribute) if weight_type is not None: hf_shape = getattr(hf_pointer, weight_type).shape else: hf_shape = hf_pointer.shape assert hf_shape == value.shape, ( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": hf_pointer.weight.data = value elif weight_type == "weight_g": hf_pointer.weight_g.data = value elif weight_type == "weight_v": hf_pointer.weight_v.data = value elif weight_type == "bias": hf_pointer.bias.data = value else: hf_pointer.data = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.") def recursively_load_weights(fairseq_model, hf_model, is_finetuned): unused_weights = [] fairseq_dict = fairseq_model.state_dict() feature_extractor = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): is_used = False if "conv_layers" in name: load_conv_layer( name, value, feature_extractor, unused_weights, hf_model.config.feat_extract_norm == "group", ) is_used = True else: for key, mapped_key in MAPPING.items(): mapped_key = "unispeech." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: is_used = True if "*" in mapped_key: layer_index = name.split(key)[0].split(".")[-2] mapped_key = mapped_key.replace("*", layer_index) if "weight_g" in name: weight_type = "weight_g" elif "weight_v" in name: weight_type = "weight_v" elif "bias" in name: weight_type = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj weight_type = "weight" else: weight_type = None set_recursively(hf_model, mapped_key, value, name, weight_type, is_finetuned) continue if not is_used: unused_weights.append(name) logger.warning(f"Unused weights: {unused_weights}") def load_conv_layer(full_name, value, feature_extractor, unused_weights, use_group_norm): name = full_name.split("conv_layers.")[-1] items = name.split(".") layer_id = int(items[0]) type_id = int(items[1]) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) feature_extractor.conv_layers[layer_id].conv.bias.data = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}.") elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) feature_extractor.conv_layers[layer_id].conv.weight.data = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}.") elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) feature_extractor.conv_layers[layer_id].layer_norm.bias.data = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.") elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) feature_extractor.conv_layers[layer_id].layer_norm.weight.data = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.") else: unused_weights.append(full_name) @torch.no_grad() def convert_unispeech_checkpoint( checkpoint_path, pytorch_dump_folder_path, config_path=None, dict_path=None, is_finetuned=True ): """ Copy/paste/tweak model's weights to transformers design. """ if config_path is not None: config = UniSpeechConfig.from_pretrained(config_path) else: config = UniSpeechConfig() if is_finetuned: if dict_path: target_dict = Dictionary.load_from_json(dict_path) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq config.bos_token_id = target_dict.pad_index config.pad_token_id = target_dict.bos_index config.eos_token_id = target_dict.eos_index config.vocab_size = len(target_dict.symbols) vocab_path = os.path.join(pytorch_dump_folder_path, "vocab.json") if not os.path.isdir(pytorch_dump_folder_path): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(pytorch_dump_folder_path)) return os.makedirs(pytorch_dump_folder_path, exist_ok=True) vocab_dict = target_dict.indices # fairseq has the <pad> and <s> switched vocab_dict["<pad>"] = 42 vocab_dict["<s>"] = 43 with open(vocab_path, "w", encoding="utf-8") as vocab_handle: json.dump(vocab_dict, vocab_handle) tokenizer = Wav2Vec2PhonemeCTCTokenizer( vocab_path, unk_token=target_dict.unk_word, pad_token=target_dict.pad_word, bos_token=target_dict.bos_word, eos_token=target_dict.eos_word, word_delimiter_token="|", do_lower_case=False, ) return_attention_mask = True if config.feat_extract_norm == "layer" else False feature_extractor = Wav2Vec2FeatureExtractor( feature_size=1, sampling_rate=16000, padding_value=0, do_normalize=True, return_attention_mask=return_attention_mask, ) processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer) processor.save_pretrained(pytorch_dump_folder_path) hf_unispeech = UniSpeechForCTC(config) else: hf_unispeech = UniSpeechForPreTraining(config) if is_finetuned: model, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={"data": "/".join(dict_path.split("/")[:-1]), "w2v_path": checkpoint_path} ) else: model, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path]) model = model[0].eval() recursively_load_weights(model, hf_unispeech, is_finetuned) hf_unispeech.save_pretrained(pytorch_dump_folder_path) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) args = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/unispeech/modeling_unispeech.py
# coding=utf-8 # Copyright 2021 The Fairseq Authors and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch UniSpeech model.""" import math import warnings from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...deepspeed import is_deepspeed_zero3_enabled from ...modeling_outputs import BaseModelOutput, CausalLMOutput, SequenceClassifierOutput, Wav2Vec2BaseModelOutput from ...modeling_utils import PreTrainedModel from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_unispeech import UniSpeechConfig logger = logging.get_logger(__name__) _HIDDEN_STATES_START_POSITION = 2 # General docstring _CONFIG_FOR_DOC = "UniSpeechConfig" # Base docstring _CHECKPOINT_FOR_DOC = "patrickvonplaten/unispeech-large-1500h-cv-timit" _EXPECTED_OUTPUT_SHAPE = [1, 292, 1024] # CTC docstring _CTC_EXPECTED_OUTPUT = "'mister quilter is the apposl of the midle classes and weare glad to welcom his gosepl'" _CTC_EXPECTED_LOSS = 17.17 UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST = [ "microsoft/unispeech-large-1500h-cv", "microsoft/unispeech-large-multi-lingual-1500h-cv", # See all UniSpeech models at https://huggingface.co/models?filter=unispeech ] @dataclass class UniSpeechForPreTrainingOutput(ModelOutput): """ Output type of [`UniSpeechForPreTrainingOutput`], with potential hidden states and attentions. Args: loss (*optional*, returned when model is in train mode, `torch.FloatTensor` of shape `(1,)`): Total loss as the sum of the contrastive loss (L_m) and the diversity loss (L_d) as stated in the [official paper](https://arxiv.org/pdf/2006.11477.pdf) . (classification) loss. projected_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.proj_codevector_dim)`): Hidden-states of the model projected to *config.proj_codevector_dim* that can be used to predict the masked projected quantized states. projected_quantized_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.proj_codevector_dim)`): Quantized extracted feature vectors projected to *config.proj_codevector_dim* representing the positive target vectors for contrastive loss. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None projected_states: torch.FloatTensor = None projected_quantized_states: torch.FloatTensor = None codevector_perplexity: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None # Copied from transformers.models.wav2vec2.modeling_wav2vec2._compute_mask_indices def _compute_mask_indices( shape: Tuple[int, int], mask_prob: float, mask_length: int, attention_mask: Optional[torch.LongTensor] = None, min_masks: int = 0, ) -> np.ndarray: """ Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on CPU as part of the preprocessing during training. Args: shape: The shape for which to compute masks. This should be of a tuple of size 2 where the first element is the batch size and the second element is the length of the axis to span. mask_prob: The percentage of the whole axis (between 0 and 1) which will be masked. The number of independently generated mask spans of length `mask_length` is computed by `mask_prob*shape[1]/mask_length`. Note that due to overlaps, `mask_prob` is an upper bound and the actual percentage will be smaller. mask_length: size of the mask min_masks: minimum number of masked spans attention_mask: A (right-padded) attention mask which independently shortens the feature axis of each batch dimension. """ batch_size, sequence_length = shape if mask_length < 1: raise ValueError("`mask_length` has to be bigger than 0.") if mask_length > sequence_length: raise ValueError( f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length}" f" and `sequence_length`: {sequence_length}`" ) # epsilon is used for probabilistic rounding epsilon = np.random.rand(1).item() def compute_num_masked_span(input_length): """Given input length, compute how many spans should be masked""" num_masked_span = int(mask_prob * input_length / mask_length + epsilon) num_masked_span = max(num_masked_span, min_masks) # make sure num masked span <= sequence_length if num_masked_span * mask_length > sequence_length: num_masked_span = sequence_length // mask_length # make sure num_masked span is also <= input_length - (mask_length - 1) if input_length - (mask_length - 1) < num_masked_span: num_masked_span = max(input_length - (mask_length - 1), 0) return num_masked_span # compute number of masked spans in batch input_lengths = ( attention_mask.sum(-1).detach().tolist() if attention_mask is not None else [sequence_length for _ in range(batch_size)] ) # SpecAugment mask to fill spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=bool) spec_aug_mask_idxs = [] max_num_masked_span = compute_num_masked_span(sequence_length) if max_num_masked_span == 0: return spec_aug_mask for input_length in input_lengths: # compute num of masked spans for this input num_masked_span = compute_num_masked_span(input_length) # get random indices to mask spec_aug_mask_idx = np.random.choice( np.arange(input_length - (mask_length - 1)), num_masked_span, replace=False ) # pick first sampled index that will serve as a dummy index to pad vector # to ensure same dimension for all batches due to probabilistic rounding # Picking first sample just pads those vectors twice. if len(spec_aug_mask_idx) == 0: # this case can only happen if `input_length` is strictly smaller then # `sequence_length` in which case the last token has to be a padding # token which we can use as a dummy mask id dummy_mask_idx = sequence_length - 1 else: dummy_mask_idx = spec_aug_mask_idx[0] spec_aug_mask_idx = np.concatenate( [spec_aug_mask_idx, np.ones(max_num_masked_span - num_masked_span, dtype=np.int32) * dummy_mask_idx] ) spec_aug_mask_idxs.append(spec_aug_mask_idx) spec_aug_mask_idxs = np.array(spec_aug_mask_idxs) # expand masked indices to masked spans spec_aug_mask_idxs = np.broadcast_to( spec_aug_mask_idxs[:, :, None], (batch_size, max_num_masked_span, mask_length) ) spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(batch_size, max_num_masked_span * mask_length) # add offset to the starting indexes so that indexes now create a span offsets = np.arange(mask_length)[None, None, :] offsets = np.broadcast_to(offsets, (batch_size, max_num_masked_span, mask_length)).reshape( batch_size, max_num_masked_span * mask_length ) spec_aug_mask_idxs = spec_aug_mask_idxs + offsets # ensure that we cannot have indices larger than sequence_length if spec_aug_mask_idxs.max() > sequence_length - 1: spec_aug_mask_idxs[spec_aug_mask_idxs > sequence_length - 1] = sequence_length - 1 # scatter indices to mask np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1) return spec_aug_mask # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2NoLayerNormConvLayer with Wav2Vec2->UniSpeech class UniSpeechNoLayerNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = nn.Conv1d( self.in_conv_dim, self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], stride=config.conv_stride[layer_id], bias=config.conv_bias, ) self.activation = ACT2FN[config.feat_extract_activation] def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2LayerNormConvLayer with Wav2Vec2->UniSpeech class UniSpeechLayerNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = nn.Conv1d( self.in_conv_dim, self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], stride=config.conv_stride[layer_id], bias=config.conv_bias, ) self.layer_norm = nn.LayerNorm(self.out_conv_dim, elementwise_affine=True) self.activation = ACT2FN[config.feat_extract_activation] def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = hidden_states.transpose(-2, -1) hidden_states = self.layer_norm(hidden_states) hidden_states = hidden_states.transpose(-2, -1) hidden_states = self.activation(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2GroupNormConvLayer with Wav2Vec2->UniSpeech class UniSpeechGroupNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = nn.Conv1d( self.in_conv_dim, self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], stride=config.conv_stride[layer_id], bias=config.conv_bias, ) self.activation = ACT2FN[config.feat_extract_activation] self.layer_norm = nn.GroupNorm(num_groups=self.out_conv_dim, num_channels=self.out_conv_dim, affine=True) def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = self.layer_norm(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2PositionalConvEmbedding with Wav2Vec2->UniSpeech class UniSpeechPositionalConvEmbedding(nn.Module): def __init__(self, config): super().__init__() self.conv = nn.Conv1d( config.hidden_size, config.hidden_size, kernel_size=config.num_conv_pos_embeddings, padding=config.num_conv_pos_embeddings // 2, groups=config.num_conv_pos_embedding_groups, ) weight_norm = nn.utils.weight_norm if hasattr(nn.utils.parametrizations, "weight_norm"): weight_norm = nn.utils.parametrizations.weight_norm if is_deepspeed_zero3_enabled(): import deepspeed with deepspeed.zero.GatheredParameters(self.conv.weight, modifier_rank=0): self.conv = weight_norm(self.conv, name="weight", dim=2) deepspeed.zero.register_external_parameter(self, self.conv.weight_v) deepspeed.zero.register_external_parameter(self, self.conv.weight_g) else: self.conv = weight_norm(self.conv, name="weight", dim=2) self.padding = UniSpeechSamePadLayer(config.num_conv_pos_embeddings) self.activation = ACT2FN[config.feat_extract_activation] def forward(self, hidden_states): hidden_states = hidden_states.transpose(1, 2) hidden_states = self.conv(hidden_states) hidden_states = self.padding(hidden_states) hidden_states = self.activation(hidden_states) hidden_states = hidden_states.transpose(1, 2) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2SamePadLayer with Wav2Vec2->UniSpeech class UniSpeechSamePadLayer(nn.Module): def __init__(self, num_conv_pos_embeddings): super().__init__() self.num_pad_remove = 1 if num_conv_pos_embeddings % 2 == 0 else 0 def forward(self, hidden_states): if self.num_pad_remove > 0: hidden_states = hidden_states[:, :, : -self.num_pad_remove] return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureEncoder with Wav2Vec2->UniSpeech class UniSpeechFeatureEncoder(nn.Module): """Construct the features from raw audio waveform""" def __init__(self, config): super().__init__() if config.feat_extract_norm == "group": conv_layers = [UniSpeechGroupNormConvLayer(config, layer_id=0)] + [ UniSpeechNoLayerNormConvLayer(config, layer_id=i + 1) for i in range(config.num_feat_extract_layers - 1) ] elif config.feat_extract_norm == "layer": conv_layers = [ UniSpeechLayerNormConvLayer(config, layer_id=i) for i in range(config.num_feat_extract_layers) ] else: raise ValueError( f"`config.feat_extract_norm` is {config.feat_extract_norm}, but has to be one of ['group', 'layer']" ) self.conv_layers = nn.ModuleList(conv_layers) self.gradient_checkpointing = False self._requires_grad = True def _freeze_parameters(self): for param in self.parameters(): param.requires_grad = False self._requires_grad = False def forward(self, input_values): hidden_states = input_values[:, None] # make sure hidden_states require grad for gradient_checkpointing if self._requires_grad and self.training: hidden_states.requires_grad = True for conv_layer in self.conv_layers: if self._requires_grad and self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs) return custom_forward hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(conv_layer), hidden_states, ) else: hidden_states = conv_layer(hidden_states) return hidden_states class UniSpeechFeatureExtractor(UniSpeechFeatureEncoder): def __init__(self, config): super().__init__(config) warnings.warn( f"The class `{self.__class__.__name__}` has been depreciated " "and will be removed in Transformers v5. " f"Use `{self.__class__.__bases__[0].__name__}` instead.", FutureWarning, ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureProjection with Wav2Vec2->UniSpeech class UniSpeechFeatureProjection(nn.Module): def __init__(self, config): super().__init__() self.layer_norm = nn.LayerNorm(config.conv_dim[-1], eps=config.layer_norm_eps) self.projection = nn.Linear(config.conv_dim[-1], config.hidden_size) self.dropout = nn.Dropout(config.feat_proj_dropout) def forward(self, hidden_states): # non-projected hidden states are needed for quantization norm_hidden_states = self.layer_norm(hidden_states) hidden_states = self.projection(norm_hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states, norm_hidden_states # Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->UniSpeech class UniSpeechAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj # `past_key_value[0].shape[2] == key_value_states.shape[1]` # is checking that the `sequence_length` of the `past_key_value` is the same as # the provided `key_value_states` to support prefix tuning if ( is_cross_attention and past_key_value is not None and past_key_value[0].shape[2] == key_value_states.shape[1] ): # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.reshape(*proj_shape) value_states = value_states.reshape(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if layer_head_mask is not None: if layer_head_mask.size() != (self.num_heads,): raise ValueError( f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" f" {layer_head_mask.size()}" ) attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to be reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned across GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped, past_key_value # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeedForward with Wav2Vec2->UniSpeech class UniSpeechFeedForward(nn.Module): def __init__(self, config): super().__init__() self.intermediate_dropout = nn.Dropout(config.activation_dropout) self.intermediate_dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act self.output_dense = nn.Linear(config.intermediate_size, config.hidden_size) self.output_dropout = nn.Dropout(config.hidden_dropout) def forward(self, hidden_states): hidden_states = self.intermediate_dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) hidden_states = self.intermediate_dropout(hidden_states) hidden_states = self.output_dense(hidden_states) hidden_states = self.output_dropout(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2EncoderLayer with Wav2Vec2->UniSpeech class UniSpeechEncoderLayer(nn.Module): def __init__(self, config): super().__init__() self.attention = UniSpeechAttention( embed_dim=config.hidden_size, num_heads=config.num_attention_heads, dropout=config.attention_dropout, is_decoder=False, ) self.dropout = nn.Dropout(config.hidden_dropout) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.feed_forward = UniSpeechFeedForward(config) self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states, attention_mask=None, output_attentions=False): attn_residual = hidden_states hidden_states, attn_weights, _ = self.attention( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions ) hidden_states = self.dropout(hidden_states) hidden_states = attn_residual + hidden_states hidden_states = self.layer_norm(hidden_states) hidden_states = hidden_states + self.feed_forward(hidden_states) hidden_states = self.final_layer_norm(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2AttnAdapterLayer with Wav2Vec2->UniSpeech class UniSpeechAttnAdapterLayer(nn.Module): def __init__(self, config): """ Implements adapter modules directly with 3D tensor weight as parameters and without using ModuleList to speed up training throughput. """ super().__init__() self.input_dim = config.adapter_attn_dim self.hidden_dim = config.hidden_size self.norm = nn.LayerNorm(self.hidden_dim) self.linear_1 = nn.Linear(self.hidden_dim, self.input_dim) self.act_fn = nn.ReLU() self.linear_2 = nn.Linear(self.input_dim, self.hidden_dim) def forward(self, hidden_states: torch.FloatTensor): hidden_states = self.norm(hidden_states) hidden_states = self.linear_1(hidden_states) hidden_states = self.act_fn(hidden_states) hidden_states = self.linear_2(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2EncoderLayerStableLayerNorm with Wav2Vec2->UniSpeech class UniSpeechEncoderLayerStableLayerNorm(nn.Module): def __init__(self, config): super().__init__() self.attention = UniSpeechAttention( embed_dim=config.hidden_size, num_heads=config.num_attention_heads, dropout=config.attention_dropout, is_decoder=False, ) self.dropout = nn.Dropout(config.hidden_dropout) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.feed_forward = UniSpeechFeedForward(config) self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) if getattr(config, "adapter_attn_dim", None) is not None: self.adapter_layer = UniSpeechAttnAdapterLayer(config) else: self.adapter_layer = None def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ): attn_residual = hidden_states hidden_states = self.layer_norm(hidden_states) hidden_states, attn_weights, _ = self.attention( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions ) hidden_states = self.dropout(hidden_states) hidden_states = attn_residual + hidden_states hidden_states = hidden_states + self.feed_forward(self.final_layer_norm(hidden_states)) if self.adapter_layer is not None: hidden_states = hidden_states + self.adapter_layer(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Encoder with Wav2Vec2->UniSpeech class UniSpeechEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.pos_conv_embed = UniSpeechPositionalConvEmbedding(config) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout) self.layers = nn.ModuleList([UniSpeechEncoderLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.tensor, attention_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None if attention_mask is not None: # make sure padded tokens output 0 expand_attention_mask = attention_mask.unsqueeze(-1).repeat(1, 1, hidden_states.shape[2]) hidden_states[~expand_attention_mask] = 0 # extend attention_mask attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype) attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min attention_mask = attention_mask.expand( attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1] ) position_embeddings = self.pos_conv_embed(hidden_states) hidden_states = hidden_states + position_embeddings hidden_states = self.layer_norm(hidden_states) hidden_states = self.dropout(hidden_states) deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled() for layer in self.layers: if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = torch.rand([]) skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False if not skip_the_layer or deepspeed_zero3_is_enabled: # under deepspeed zero3 all gpus must run in sync if self.gradient_checkpointing and self.training: # create gradient checkpointing function def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(layer), hidden_states, attention_mask, ) else: layer_outputs = layer( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions ) hidden_states = layer_outputs[0] if skip_the_layer: layer_outputs = (None, None) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2EncoderStableLayerNorm with Wav2Vec2->UniSpeech class UniSpeechEncoderStableLayerNorm(nn.Module): def __init__(self, config): super().__init__() self.config = config self.pos_conv_embed = UniSpeechPositionalConvEmbedding(config) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout) self.layers = nn.ModuleList( [UniSpeechEncoderLayerStableLayerNorm(config) for _ in range(config.num_hidden_layers)] ) self.gradient_checkpointing = False def forward( self, hidden_states, attention_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None if attention_mask is not None: # make sure padded tokens are not attended to expand_attention_mask = attention_mask.unsqueeze(-1).repeat(1, 1, hidden_states.shape[2]) hidden_states[~expand_attention_mask] = 0 # extend attention_mask attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype) attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min attention_mask = attention_mask.expand( attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1] ) position_embeddings = self.pos_conv_embed(hidden_states) hidden_states = hidden_states + position_embeddings hidden_states = self.dropout(hidden_states) deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled() for layer in self.layers: if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = torch.rand([]) skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False if not skip_the_layer or deepspeed_zero3_is_enabled: # under deepspeed zero3 all gpus must run in sync # XXX: could optimize this like synced_gpus in generate_utils but not sure if it's worth the code complication if self.gradient_checkpointing and self.training: # create gradient checkpointing function def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(layer), hidden_states, attention_mask, ) else: layer_outputs = layer( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions ) hidden_states = layer_outputs[0] if skip_the_layer: layer_outputs = (None, None) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) hidden_states = self.layer_norm(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) class UniSpeechGumbelVectorQuantizer(nn.Module): """ Vector quantization using gumbel softmax. See [CATEGORICAL REPARAMETERIZATION WITH GUMBEL-SOFTMAX](https://arxiv.org/pdf/1611.01144.pdf) for more information. """ def __init__(self, config): super().__init__() self.num_groups = config.num_codevector_groups self.num_vars = config.num_codevectors_per_group if config.codevector_dim % self.num_groups != 0: raise ValueError( f"`config.codevector_dim {config.codevector_dim} must be divisible by `config.num_codevector_groups`" f" {self.num_groups} for concatenation" ) # storage for codebook variables (codewords) self.codevectors = nn.Parameter( torch.FloatTensor(1, self.num_groups * self.num_vars, config.codevector_dim // self.num_groups) ) self.weight_proj = nn.Linear(config.conv_dim[-1], self.num_groups * self.num_vars) # can be decayed for training self.temperature = 2 @staticmethod def _compute_perplexity(probs): marginal_probs = probs.mean(dim=0) perplexity = torch.exp(-torch.sum(marginal_probs * torch.log(marginal_probs + 1e-7), dim=-1)).sum() return perplexity def forward(self, hidden_states): batch_size, sequence_length, hidden_size = hidden_states.shape # project to codevector dim hidden_states = self.weight_proj(hidden_states) hidden_states = hidden_states.view(batch_size * sequence_length * self.num_groups, -1) if self.training: # sample code vector probs via gumbel in differentiateable way codevector_probs = nn.functional.gumbel_softmax( hidden_states.float(), tau=self.temperature, hard=True ).type_as(hidden_states) # compute perplexity codevector_soft_dist = torch.softmax( hidden_states.view(batch_size * sequence_length, self.num_groups, -1).float(), dim=-1 ) perplexity = self._compute_perplexity(codevector_soft_dist) else: # take argmax in non-differentiable way # comptute hard codevector distribution (one hot) codevector_idx = hidden_states.argmax(dim=-1) codevector_probs = hidden_states.new_zeros(*hidden_states.shape).scatter_( -1, codevector_idx.view(-1, 1), 1.0 ) codevector_probs = codevector_probs.view(batch_size * sequence_length, self.num_groups, -1) perplexity = self._compute_perplexity(codevector_probs) codevector_probs = codevector_probs.view(batch_size * sequence_length, -1) # use probs to retrieve codevectors codevectors_per_group = codevector_probs.unsqueeze(-1) * self.codevectors codevectors = codevectors_per_group.view(batch_size * sequence_length, self.num_groups, self.num_vars, -1) codevectors = codevectors.sum(-2).view(batch_size, sequence_length, -1) return codevectors, perplexity class UniSpeechPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = UniSpeechConfig base_model_prefix = "unispeech" main_input_name = "input_values" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" # gumbel softmax requires special init if isinstance(module, UniSpeechGumbelVectorQuantizer): module.weight_proj.weight.data.normal_(mean=0.0, std=1) module.weight_proj.bias.data.zero_() nn.init.uniform_(module.codevectors) elif isinstance(module, UniSpeechPositionalConvEmbedding): nn.init.normal_( module.conv.weight, mean=0, std=2 * math.sqrt(1 / (module.conv.kernel_size[0] * module.conv.in_channels)), ) nn.init.constant_(module.conv.bias, 0) elif isinstance(module, UniSpeechFeatureProjection): k = math.sqrt(1 / module.projection.in_features) nn.init.uniform_(module.projection.weight, a=-k, b=k) nn.init.uniform_(module.projection.bias, a=-k, b=k) elif isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, nn.Conv1d): nn.init.kaiming_normal_(module.weight) if module.bias is not None: k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0])) nn.init.uniform_(module.bias, a=-k, b=k) def _get_feat_extract_output_lengths(self, input_lengths: Union[torch.LongTensor, int]): """ Computes the output length of the convolutional layers """ def _conv_out_length(input_length, kernel_size, stride): # 1D convolutional layer output length formula taken # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html return torch.div(input_length - kernel_size, stride, rounding_mode="floor") + 1 for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride): input_lengths = _conv_out_length(input_lengths, kernel_size, stride) return input_lengths def _get_feature_vector_attention_mask(self, feature_vector_length: int, attention_mask: torch.LongTensor): # Effectively attention_mask.sum(-1), but not inplace to be able to run # on inference mode. non_padded_lengths = attention_mask.cumsum(dim=-1)[:, -1] output_lengths = self._get_feat_extract_output_lengths(non_padded_lengths).to(torch.long) batch_size = attention_mask.shape[0] attention_mask = torch.zeros( (batch_size, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device ) # these two operations makes sure that all values before the output lengths idxs are attended to attention_mask[(torch.arange(attention_mask.shape[0], device=attention_mask.device), output_lengths - 1)] = 1 attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() return attention_mask def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, (UniSpeechEncoder, UniSpeechEncoderStableLayerNorm, UniSpeechFeatureEncoder)): module.gradient_checkpointing = value UNISPEECH_START_DOCSTRING = r""" UniSpeech was proposed in [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving etc.). This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`UniSpeechConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ UNISPEECH_INPUTS_DOCSTRING = r""" Args: input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into `input_values`, the [`AutoProcessor`] should be used for padding and conversion into a tensor of type `torch.FloatTensor`. See [`Wav2Vec2Processor.__call__`] for details. attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) <Tip warning={true}> `attention_mask` should only be passed if the corresponding processor has `config.return_attention_mask == True`. For all models whose processor has `config.return_attention_mask == False`, `attention_mask` should **not** be passed to avoid degraded performance when doing batched inference. For such models `input_values` should simply be padded with 0 and passed without `attention_mask`. Be aware that these models also yield slightly different results depending on whether `input_values` is padded or not. </Tip> output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare UniSpeech Model transformer outputting raw hidden-states without any specific head on top.", UNISPEECH_START_DOCSTRING, ) class UniSpeechModel(UniSpeechPreTrainedModel): def __init__(self, config: UniSpeechConfig): super().__init__(config) self.config = config self.feature_extractor = UniSpeechFeatureEncoder(config) self.feature_projection = UniSpeechFeatureProjection(config) if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0: self.masked_spec_embed = nn.Parameter(torch.FloatTensor(config.hidden_size).uniform_()) if config.do_stable_layer_norm: self.encoder = UniSpeechEncoderStableLayerNorm(config) else: self.encoder = UniSpeechEncoder(config) # Initialize weights and apply final processing self.post_init() # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Model._mask_hidden_states def _mask_hidden_states( self, hidden_states: torch.FloatTensor, mask_time_indices: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, ): """ Masks extracted features along time axis and/or along feature axis according to [SpecAugment](https://arxiv.org/abs/1904.08779). """ # `config.apply_spec_augment` can set masking to False if not getattr(self.config, "apply_spec_augment", True): return hidden_states # generate indices & apply SpecAugment along time axis batch_size, sequence_length, hidden_size = hidden_states.size() if mask_time_indices is not None: # apply SpecAugment along time axis with given mask_time_indices hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) elif self.config.mask_time_prob > 0 and self.training: mask_time_indices = _compute_mask_indices( (batch_size, sequence_length), mask_prob=self.config.mask_time_prob, mask_length=self.config.mask_time_length, attention_mask=attention_mask, min_masks=self.config.mask_time_min_masks, ) mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool) hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) if self.config.mask_feature_prob > 0 and self.training: # generate indices & apply SpecAugment along feature axis mask_feature_indices = _compute_mask_indices( (batch_size, hidden_size), mask_prob=self.config.mask_feature_prob, mask_length=self.config.mask_feature_length, min_masks=self.config.mask_feature_min_masks, ) mask_feature_indices = torch.tensor(mask_feature_indices, device=hidden_states.device, dtype=torch.bool) mask_feature_indices = mask_feature_indices[:, None].expand(-1, sequence_length, -1) hidden_states[mask_feature_indices] = 0 return hidden_states @add_start_docstrings_to_model_forward(UNISPEECH_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=Wav2Vec2BaseModelOutput, config_class=_CONFIG_FOR_DOC, modality="audio", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, mask_time_indices: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, Wav2Vec2BaseModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict extract_features = self.feature_extractor(input_values) extract_features = extract_features.transpose(1, 2) if attention_mask is not None: # compute reduced attention_mask corresponding to feature vectors attention_mask = self._get_feature_vector_attention_mask(extract_features.shape[1], attention_mask) hidden_states, extract_features = self.feature_projection(extract_features) hidden_states = self._mask_hidden_states( hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask ) encoder_outputs = self.encoder( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = encoder_outputs[0] if not return_dict: return (hidden_states, extract_features) + encoder_outputs[1:] return Wav2Vec2BaseModelOutput( last_hidden_state=hidden_states, extract_features=extract_features, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings( """UniSpeech Model with a vector-quantization module and ctc loss for pre-training.""", UNISPEECH_START_DOCSTRING ) class UniSpeechForPreTraining(UniSpeechPreTrainedModel): def __init__(self, config: UniSpeechConfig): super().__init__(config) self.unispeech = UniSpeechModel(config) self.dropout_features = nn.Dropout(config.feat_quantizer_dropout) self.quantizer = UniSpeechGumbelVectorQuantizer(config) self.project_q = nn.Linear(config.codevector_dim, config.proj_codevector_dim) self.project_hid = nn.Linear(config.proj_codevector_dim, config.hidden_size) self.ctc_proj = nn.Linear(config.hidden_size, config.num_ctc_classes) self.dropout = nn.Dropout(config.final_dropout) # Initialize weights and apply final processing self.post_init() def set_gumbel_temperature(self, temperature: int): """ Set the Gumbel softmax temperature to a given value. Only necessary for training """ self.quantizer.temperature = temperature def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameters will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5." "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.unispeech.feature_extractor._freeze_parameters() @staticmethod def compute_contrastive_logits( target_features: torch.FloatTensor, negative_features: torch.FloatTensor, predicted_features: torch.FloatTensor, temperature: int = 1, ): """ Compute logits for contrastive loss based using cosine similarity as the distance measure between `[positive_feature, negative_features]` and `[predicted_features]`. Additionally, temperature can be applied. """ target_features = torch.cat([target_features, negative_features], dim=0) logits = torch.cosine_similarity(predicted_features.float(), target_features.float(), dim=-1) logits = logits.type_as(target_features) # apply temperature logits = logits / temperature return logits @add_start_docstrings_to_model_forward(UNISPEECH_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=UniSpeechForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, UniSpeechForPreTrainingOutput]: r""" mask_time_indices (`torch.BoolTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices to mask extracted features for contrastive loss. When in training mode, model learns to predict masked extracted features in *config.proj_codevector_dim* space. sampled_negative_indices (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_negatives)`, *optional*): Indices indicating which quantized target vectors are used as negative sampled vectors in contrastive loss. Required input for pre-training. Returns: Example: ```python >>> import torch >>> from transformers import AutoFeatureExtractor, UniSpeechForPreTraining >>> feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/unispeech-large-1500h-cv") >>> model = UniSpeechForPreTraining.from_pretrained("microsoft/unispeech-large-1500h-cv") >>> # TODO: Add full pretraining example ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.unispeech( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) transformer_features = outputs[0] # quantize all (unmasked) extracted features and project to final vq dim extract_features = self.dropout_features(outputs[1]) quantized_features, codevector_perplexity = self.quantizer(extract_features) # project quantized features twice quantized_features = self.project_q(quantized_features) quantized_features = self.project_hid(quantized_features) prob_replace_matrix = torch.empty(transformer_features.size(0), transformer_features.size(1)).fill_( self.config.replace_prob ) prob_replace_matrix = prob_replace_matrix.transpose(0, 1) sampled_replace_matrix = torch.bernoulli(prob_replace_matrix).bool().to(transformer_features.device) sampled_replace_matrix = sampled_replace_matrix.transpose(0, 1) sampled_replace_matrix = sampled_replace_matrix.unsqueeze(-1) logits = transformer_features.masked_fill(sampled_replace_matrix, 0.0) + ( quantized_features.masked_fill(~sampled_replace_matrix, 0.0) ) # project to ctc units logits = self.dropout(logits) logits = self.ctc_proj(logits) # TODO(PVP) - add negative sampling & loss computation loss = None if not return_dict: if loss is not None: return (loss, transformer_features, quantized_features, codevector_perplexity) + outputs[2:] return (transformer_features, quantized_features, codevector_perplexity) + outputs[2:] return UniSpeechForPreTrainingOutput( loss=loss, projected_states=transformer_features, projected_quantized_states=quantized_features, codevector_perplexity=codevector_perplexity, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """UniSpeech Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).""", UNISPEECH_START_DOCSTRING, ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForCTC with Wav2Vec2->UniSpeech, wav2vec2->unispeech, WAV_2_VEC_2->UNISPEECH class UniSpeechForCTC(UniSpeechPreTrainedModel): def __init__(self, config, target_lang: Optional[str] = None): super().__init__(config) self.unispeech = UniSpeechModel(config) self.dropout = nn.Dropout(config.final_dropout) self.target_lang = target_lang if config.vocab_size is None: raise ValueError( f"You are trying to instantiate {self.__class__} with a configuration that " "does not define the vocabulary size of the language model head. Please " "instantiate the model as follows: `UniSpeechForCTC.from_pretrained(..., vocab_size=vocab_size)`. " "or define `vocab_size` of your model's configuration." ) output_hidden_size = ( config.output_hidden_size if hasattr(config, "add_adapter") and config.add_adapter else config.hidden_size ) self.lm_head = nn.Linear(output_hidden_size, config.vocab_size) # Initialize weights and apply final processing self.post_init() def tie_weights(self): """ This method overwrites [`~PreTrainedModel.tie_weights`] so that adapter weights can be correctly loaded when passing `target_lang=...` to `from_pretrained(...)`. This method is **not** supposed to be called by the user and is prone to be changed in the future. """ # Note that `tie_weights` is usually used to tie input and output embedding weights. The method is re-purposed to # correctly load adapter layers for UniSpeech so that we do not have to introduce a new API to # [`PreTrainedModel`]. While slightly hacky, UniSpeech never has to tie input and output embeddings, so that it is # ok to repurpose this function here. target_lang = self.target_lang if target_lang is not None and getattr(self.config, "adapter_attn_dim", None) is None: raise ValueError(f"Cannot pass `target_lang`: {target_lang} if `config.adapter_attn_dim` is not defined.") elif target_lang is None and getattr(self.config, "adapter_attn_dim", None) is not None: logger.info("By default `target_lang` is set to 'eng'.") elif target_lang is not None: self.load_adapter(target_lang, force_load=True) def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5." "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.unispeech.feature_extractor._freeze_parameters() def freeze_base_model(self): """ Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated. """ for param in self.unispeech.parameters(): param.requires_grad = False @add_start_docstrings_to_model_forward(UNISPEECH_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=CausalLMOutput, config_class=_CONFIG_FOR_DOC, expected_output=_CTC_EXPECTED_OUTPUT, expected_loss=_CTC_EXPECTED_LOSS, ) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.Tensor] = None, ) -> Union[Tuple, CausalLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*): Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to the sequence length of the output logits. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.unispeech( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] hidden_states = self.dropout(hidden_states) logits = self.lm_head(hidden_states) loss = None if labels is not None: if labels.max() >= self.config.vocab_size: raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}") # retrieve loss input_lengths from attention_mask attention_mask = ( attention_mask if attention_mask is not None else torch.ones_like(input_values, dtype=torch.long) ) input_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long) # assuming that padded tokens are filled with -100 # when not being attended to labels_mask = labels >= 0 target_lengths = labels_mask.sum(-1) flattened_targets = labels.masked_select(labels_mask) # ctc_loss doesn't support fp16 log_probs = nn.functional.log_softmax(logits, dim=-1, dtype=torch.float32).transpose(0, 1) with torch.backends.cudnn.flags(enabled=False): loss = nn.functional.ctc_loss( log_probs, flattened_targets, input_lengths, target_lengths, blank=self.config.pad_token_id, reduction=self.config.ctc_loss_reduction, zero_infinity=self.config.ctc_zero_infinity, ) if not return_dict: output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] return ((loss,) + output) if loss is not None else output return CausalLMOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions ) @add_start_docstrings( """ UniSpeech Model with a sequence classification head on top (a linear layer over the pooled output) for tasks like SUPERB Keyword Spotting. """, UNISPEECH_START_DOCSTRING, ) class UniSpeechForSequenceClassification(UniSpeechPreTrainedModel): def __init__(self, config): super().__init__(config) if hasattr(config, "add_adapter") and config.add_adapter: raise ValueError( "Sequence classification does not support the use of UniSpeech adapters (config.add_adapter=True)" ) self.unispeech = UniSpeechModel(config) num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings if config.use_weighted_layer_sum: self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size) self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels) # Initialize weights and apply final processing self.post_init() # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.freeze_feature_extractor def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameters will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5." "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.freeze_feature_encoder with wav2vec2->unispeech def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.unispeech.feature_extractor._freeze_parameters() # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.freeze_base_model with wav2vec2->unispeech def freeze_base_model(self): """ Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated. """ for param in self.unispeech.parameters(): param.requires_grad = False @add_start_docstrings_to_model_forward(UNISPEECH_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, modality="audio", ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.forward with Wav2Vec2->UniSpeech, wav2vec2->unispeech def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.Tensor] = None, ) -> Union[Tuple, SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states outputs = self.unispeech( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if self.config.use_weighted_layer_sum: hidden_states = outputs[_HIDDEN_STATES_START_POSITION] hidden_states = torch.stack(hidden_states, dim=1) norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) else: hidden_states = outputs[0] hidden_states = self.projector(hidden_states) if attention_mask is None: pooled_output = hidden_states.mean(dim=1) else: padding_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask) hidden_states[~padding_mask] = 0.0 pooled_output = hidden_states.sum(dim=1) / padding_mask.sum(dim=1).view(-1, 1) logits = self.classifier(pooled_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/hubert/__init__.py
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _import_structure = {"configuration_hubert": ["HUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "HubertConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_hubert"] = [ "HUBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "HubertForCTC", "HubertForSequenceClassification", "HubertModel", "HubertPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_hubert"] = [ "TF_HUBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFHubertForCTC", "TFHubertModel", "TFHubertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_hubert import HUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, HubertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_hubert import ( HUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, HubertForCTC, HubertForSequenceClassification, HubertModel, HubertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_hubert import ( TF_HUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFHubertForCTC, TFHubertModel, TFHubertPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/hubert/configuration_hubert.py
# coding=utf-8 # Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Hubert model configuration""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) HUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP = { "facebook/hubert-base-ls960": "https://huggingface.co/facebook/hubert-base-ls960/resolve/main/config.json", # See all Hubert models at https://huggingface.co/models?filter=hubert } class HubertConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`HubertModel`]. It is used to instantiate an Hubert model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Hubert [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 32): Vocabulary size of the Hubert model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`HubertModel`]. Vocabulary size of the model. Defines the different tokens that can be represented by the *inputs_ids* passed to the forward method of [`HubertModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout(`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_dropout(`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. final_dropout (`float`, *optional*, defaults to 0.1): The dropout probabilitiy for the final projection layer of [`Wav2Vec2ForCTC`]. layerdrop (`float`, *optional*, defaults to 0.1): The LayerDrop probability. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. feat_extract_norm (`str`, *optional*, defaults to `"group"`): The norm to be applied to 1D convolutional layers in feature encoder. One of `"group"` for group normalization of only the first 1D convolutional layer or `"layer"` for layer normalization of all 1D convolutional layers. feat_proj_dropout (`float`, *optional*, defaults to 0.0): The dropout probability for output of the feature encoder. feat_proj_layer_norm (`bool`, *optional*, defaults to `True`): Whether to apply LayerNorm to the output of the feature encoder. feat_extract_activation (`str, `optional`, defaults to `"gelu"`): The non-linear activation function (function or string) in the 1D convolutional layers of the feature extractor. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. conv_dim (`Tuple[int]`, *optional*, defaults to `(512, 512, 512, 512, 512, 512, 512)`): A tuple of integers defining the number of input and output channels of each 1D convolutional layer in the feature encoder. The length of *conv_dim* defines the number of 1D convolutional layers. conv_stride (`Tuple[int]`, *optional*, defaults to `(5, 2, 2, 2, 2, 2, 2)`): A tuple of integers defining the stride of each 1D convolutional layer in the feature encoder. The length of *conv_stride* defines the number of convolutional layers and has to match the length of *conv_dim*. conv_kernel (`Tuple[int]`, *optional*, defaults to `(10, 3, 3, 3, 3, 3, 3)`): A tuple of integers defining the kernel size of each 1D convolutional layer in the feature encoder. The length of *conv_kernel* defines the number of convolutional layers and has to match the length of *conv_dim*. conv_bias (`bool`, *optional*, defaults to `False`): Whether the 1D convolutional layers have a bias. num_conv_pos_embeddings (`int`, *optional*, defaults to 128): Number of convolutional positional embeddings. Defines the kernel size of 1D convolutional positional embeddings layer. num_conv_pos_embedding_groups (`int`, *optional*, defaults to 16): Number of groups of 1D convolutional positional embeddings layer. do_stable_layer_norm (`bool`, *optional*, defaults to `False`): Whether do apply *stable* layer norm architecture of the Transformer encoder. `do_stable_layer_norm is True` corresponds to applying layer norm before the attention layer, whereas `do_stable_layer_norm is False` corresponds to applying layer norm after the attention layer. apply_spec_augment (`bool`, *optional*, defaults to `True`): Whether to apply *SpecAugment* data augmentation to the outputs of the feature encoder. For reference see [SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition](https://arxiv.org/abs/1904.08779). mask_time_prob (`float`, *optional*, defaults to 0.05): Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked. The masking procecure generates ''mask_time_prob*len(time_axis)/mask_time_length'' independent masks over the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector span to be masked, *mask_time_prob* should be `prob_vector_start*mask_time_length`. Note that overlap may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is True`. mask_time_length (`int`, *optional*, defaults to 10): Length of vector span along the time axis. mask_time_min_masks (`int`, *optional*, defaults to 2),: The minimum number of masks of length `mask_feature_length` generated along the time axis, each time step, irrespectively of `mask_feature_prob`. Only relevant if ''mask_time_prob*len(time_axis)/mask_time_length < mask_time_min_masks'' mask_feature_prob (`float`, *optional*, defaults to 0.0): Percentage (between 0 and 1) of all feature vectors along the feature axis which will be masked. The masking procecure generates ''mask_feature_prob*len(feature_axis)/mask_time_length'' independent masks over the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector span to be masked, *mask_feature_prob* should be `prob_vector_start*mask_feature_length`. Note that overlap may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is True`. mask_feature_length (`int`, *optional*, defaults to 10): Length of vector span along the feature axis. mask_feature_min_masks (`int`, *optional*, defaults to 0),: The minimum number of masks of length `mask_feature_length` generated along the feature axis, each time step, irrespectively of `mask_feature_prob`. Only relevant if ''mask_feature_prob*len(feature_axis)/mask_feature_length < mask_feature_min_masks'' ctc_loss_reduction (`str`, *optional*, defaults to `"sum"`): Specifies the reduction to apply to the output of `torch.nn.CTCLoss`. Only relevant when training an instance of [`HubertForCTC`]. ctc_zero_infinity (`bool`, *optional*, defaults to `False`): Whether to zero infinite losses and the associated gradients of `torch.nn.CTCLoss`. Infinite losses mainly occur when the inputs are too short to be aligned to the targets. Only relevant when training an instance of [`HubertForCTC`]. use_weighted_layer_sum (`bool`, *optional*, defaults to `False`): Whether to use a weighted average of layer outputs with learned weights. Only relevant when using an instance of [`HubertForSequenceClassification`]. classifier_proj_size (`int`, *optional*, defaults to 256): Dimensionality of the projection before token mean-pooling for classification. Example: ```python >>> from transformers import HubertModel, HubertConfig >>> # Initializing a Hubert facebook/hubert-base-ls960 style configuration >>> configuration = HubertConfig() >>> # Initializing a model from the facebook/hubert-base-ls960 style configuration >>> model = HubertModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "hubert" def __init__( self, vocab_size=32, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout=0.1, activation_dropout=0.1, attention_dropout=0.1, feat_proj_layer_norm=True, feat_proj_dropout=0.0, final_dropout=0.1, layerdrop=0.1, initializer_range=0.02, layer_norm_eps=1e-5, feat_extract_norm="group", feat_extract_activation="gelu", conv_dim=(512, 512, 512, 512, 512, 512, 512), conv_stride=(5, 2, 2, 2, 2, 2, 2), conv_kernel=(10, 3, 3, 3, 3, 2, 2), conv_bias=False, num_conv_pos_embeddings=128, num_conv_pos_embedding_groups=16, do_stable_layer_norm=False, apply_spec_augment=True, mask_time_prob=0.05, mask_time_length=10, mask_time_min_masks=2, mask_feature_prob=0.0, mask_feature_length=10, mask_feature_min_masks=0, ctc_loss_reduction="sum", ctc_zero_infinity=False, use_weighted_layer_sum=False, classifier_proj_size=256, pad_token_id=0, bos_token_id=1, eos_token_id=2, **kwargs, ): super().__init__(**kwargs, pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id) self.hidden_size = hidden_size self.feat_extract_norm = feat_extract_norm self.feat_extract_activation = feat_extract_activation self.conv_dim = list(conv_dim) self.conv_stride = list(conv_stride) self.conv_kernel = list(conv_kernel) self.conv_bias = conv_bias self.num_conv_pos_embeddings = num_conv_pos_embeddings self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups self.num_feat_extract_layers = len(self.conv_dim) self.num_hidden_layers = num_hidden_layers self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.num_attention_heads = num_attention_heads self.hidden_dropout = hidden_dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.feat_proj_layer_norm = feat_proj_layer_norm self.feat_proj_dropout = feat_proj_dropout self.final_dropout = final_dropout self.layerdrop = layerdrop self.layer_norm_eps = layer_norm_eps self.initializer_range = initializer_range self.vocab_size = vocab_size self.do_stable_layer_norm = do_stable_layer_norm self.use_weighted_layer_sum = use_weighted_layer_sum self.classifier_proj_size = classifier_proj_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`," f" `len(config.conv_kernel) = {len(self.conv_kernel)}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 self.apply_spec_augment = apply_spec_augment self.mask_time_prob = mask_time_prob self.mask_time_length = mask_time_length self.mask_time_min_masks = mask_time_min_masks self.mask_feature_prob = mask_feature_prob self.mask_feature_length = mask_feature_length self.mask_feature_min_masks = mask_feature_min_masks # ctc loss self.ctc_loss_reduction = ctc_loss_reduction self.ctc_zero_infinity = ctc_zero_infinity @property def inputs_to_logits_ratio(self): return functools.reduce(operator.mul, self.conv_stride, 1)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/hubert/modeling_tf_hubert.py
# coding=utf-8 # Copyright 2021 The Fairseq Authors and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TensorFlow Hubert model.""" from __future__ import annotations import warnings from typing import Any, Optional, Tuple, Union import numpy as np import tensorflow as tf from ...activations_tf import get_tf_activation from ...modeling_tf_outputs import TFBaseModelOutput, TFCausalLMOutput from ...modeling_tf_utils import ( TFPreTrainedModel, get_initializer, keras_serializable, unpack_inputs, ) from ...tf_utils import shape_list, stable_softmax from ...utils import ( add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_hubert import HubertConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "HubertConfig" TF_HUBERT_PRETRAINED_MODEL_ARCHIVE_LIST = [ "facebook/hubert-base-ls960", # See all Hubert models at https://huggingface.co/models?filter=hubert ] LARGE_NEGATIVE = -1e8 # Copied from transformers.models.wav2vec2.modeling_tf_wav2vec2._sample_without_replacement def _sample_without_replacement(distribution, num_samples): """ Categorical sampling without replacement is currently not implemented. The gumbel-max trick will do for now - see https://github.com/tensorflow/tensorflow/issues/9260 for more info """ z = -tf.math.log(tf.random.uniform(shape_list(distribution), 0, 1)) _, indices = tf.nn.top_k(distribution + z, num_samples) return indices # Copied from transformers.models.wav2vec2.modeling_tf_wav2vec2._scatter_values_on_batch_indices def _scatter_values_on_batch_indices(values, batch_indices, output_shape): """ Scatter function as in PyTorch with indices in format (batch_dim, indixes) """ indices_shape = shape_list(batch_indices) # broadcast batch dim to indices_shape broad_casted_batch_dims = tf.reshape( tf.broadcast_to(tf.expand_dims(tf.range(indices_shape[0]), axis=-1), indices_shape), [1, -1] ) # transform batch_indices to pair_indices pair_indices = tf.transpose(tf.concat([broad_casted_batch_dims, tf.reshape(batch_indices, [1, -1])], 0)) # scatter values to pair indices return tf.scatter_nd(pair_indices, tf.reshape(values, [-1]), output_shape) # Copied from transformers.models.wav2vec2.modeling_tf_wav2vec2._compute_mask_indices def _compute_mask_indices( shape: Tuple[int, int], mask_prob: float, mask_length: int, min_masks: int = 0, ) -> tf.Tensor: """ Computes random mask spans for a given shape Args: shape: the shape for which to compute masks. should be of size 2 where first element is batch size and 2nd is timesteps attention_mask: optional padding mask of the same size as shape, which will prevent masking padded elements mask_prob: probability for each token to be chosen as start of the span to be masked. this will be multiplied by number of timesteps divided by length of mask span to mask approximately this percentage of all elements. however due to overlaps, the actual number will be smaller (unless no_overlap is True) mask_length: size of the mask min_masks: minimum number of masked spans Adapted from [fairseq's data_utils.py](https://github.com/pytorch/fairseq/blob/e0788f7007a8473a76db573985031f3c94201e79/fairseq/data/data_utils.py#L376). """ batch_size, sequence_length = shape if mask_length < 1: raise ValueError("`mask_length` has to be bigger than 0.") tf.debugging.assert_less( mask_length, sequence_length, message=( f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length} and" f" `sequence_length`: {sequence_length}`" ), ) # compute number of masked spans in batch num_masked_spans = mask_prob * tf.cast(sequence_length, tf.float32) / mask_length + tf.random.uniform((1,)) num_masked_spans = tf.maximum(num_masked_spans, min_masks) num_masked_spans = tf.cast(num_masked_spans, tf.int32) # make sure num masked indices <= sequence_length num_masked_spans = tf.math.minimum(sequence_length // mask_length, num_masked_spans) num_masked_spans = tf.squeeze(num_masked_spans) # SpecAugment mask to fill spec_aug_mask = tf.zeros((batch_size, sequence_length), dtype=tf.int32) # uniform distribution to sample from, make sure that offset samples are < sequence_length uniform_dist = tf.ones((batch_size, sequence_length - (mask_length - 1))) # get random indices to mask spec_aug_mask_idxs = _sample_without_replacement(uniform_dist, num_masked_spans) # expand masked indices to masked spans spec_aug_mask_idxs = tf.expand_dims(spec_aug_mask_idxs, -1) spec_aug_mask_idxs = tf.tile(spec_aug_mask_idxs, (1, 1, mask_length)) spec_aug_mask_idxs = tf.reshape(spec_aug_mask_idxs, (batch_size, num_masked_spans * mask_length)) offsets = tf.range(mask_length)[tf.newaxis, tf.newaxis, :] offsets = tf.tile(offsets, (batch_size, num_masked_spans, 1)) offsets = tf.reshape(offsets, (batch_size, num_masked_spans * mask_length)) spec_aug_mask_idxs = spec_aug_mask_idxs + offsets # scatter indices to mask spec_aug_mask = _scatter_values_on_batch_indices( tf.ones_like(spec_aug_mask_idxs), spec_aug_mask_idxs, tf.shape(spec_aug_mask) ) return spec_aug_mask # Copied from transformers.models.bart.modeling_tf_bart._expand_mask def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None): """ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. """ src_len = shape_list(mask)[1] tgt_len = tgt_len if tgt_len is not None else src_len one_cst = tf.constant(1.0) mask = tf.cast(mask, dtype=one_cst.dtype) expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1)) return (one_cst - expanded_mask) * LARGE_NEGATIVE # Copied from transformers.models.wav2vec2.modeling_tf_wav2vec2.TFWav2Vec2GroupNorm with Wav2Vec2->Hubert class TFHubertGroupNorm(tf.keras.layers.Layer): """ From tensorflow-addons https://www.tensorflow.org/addons/api_docs/python/tfa/layers/GroupNormalization """ def __init__( self, groups: int = 32, axis: int = -1, epsilon: float = 1e-3, center: bool = True, scale: bool = True, beta_initializer: tf.keras.initializers.Initializer = "zeros", gamma_initializer: tf.keras.initializers.Initializer = "ones", beta_regularizer: tf.keras.regularizers.Regularizer = None, gamma_regularizer: tf.keras.regularizers.Regularizer = None, beta_constraint: tf.keras.constraints.Constraint = None, gamma_constraint: tf.keras.constraints.Constraint = None, **kwargs, ): super().__init__(**kwargs) self.supports_masking = True self.groups = groups self.axis = axis self.epsilon = epsilon self.center = center self.scale = scale self.beta_initializer = tf.keras.initializers.get(beta_initializer) self.gamma_initializer = tf.keras.initializers.get(gamma_initializer) self.beta_regularizer = tf.keras.regularizers.get(beta_regularizer) self.gamma_regularizer = tf.keras.regularizers.get(gamma_regularizer) self.beta_constraint = tf.keras.constraints.get(beta_constraint) self.gamma_constraint = tf.keras.constraints.get(gamma_constraint) self._check_axis() def build(self, input_shape): self._check_if_input_shape_is_none(input_shape) self._set_number_of_groups_for_instance_norm(input_shape) self._check_size_of_dimensions(input_shape) self._create_input_spec(input_shape) self._add_gamma_weight(input_shape) self._add_beta_weight(input_shape) self.built = True super().build(input_shape) def call(self, inputs): input_shape = tf.keras.backend.int_shape(inputs) tensor_input_shape = tf.shape(inputs) reshaped_inputs, group_shape = self._reshape_into_groups(inputs, input_shape, tensor_input_shape) normalized_inputs = self._apply_normalization(reshaped_inputs, input_shape) is_instance_norm = (input_shape[self.axis] // self.groups) == 1 if not is_instance_norm: outputs = tf.reshape(normalized_inputs, tensor_input_shape) else: outputs = normalized_inputs return outputs def get_config(self): config = { "groups": self.groups, "axis": self.axis, "epsilon": self.epsilon, "center": self.center, "scale": self.scale, "beta_initializer": tf.keras.initializers.serialize(self.beta_initializer), "gamma_initializer": tf.keras.initializers.serialize(self.gamma_initializer), "beta_regularizer": tf.keras.regularizers.serialize(self.beta_regularizer), "gamma_regularizer": tf.keras.regularizers.serialize(self.gamma_regularizer), "beta_constraint": tf.keras.constraints.serialize(self.beta_constraint), "gamma_constraint": tf.keras.constraints.serialize(self.gamma_constraint), } base_config = super().get_config() return {**base_config, **config} def compute_output_shape(self, input_shape): return input_shape def _reshape_into_groups(self, inputs, input_shape, tensor_input_shape): group_shape = [tensor_input_shape[i] for i in range(len(input_shape))] is_instance_norm = (input_shape[self.axis] // self.groups) == 1 if not is_instance_norm: group_shape[self.axis] = input_shape[self.axis] // self.groups group_shape.insert(self.axis, self.groups) group_shape = tf.stack(group_shape) reshaped_inputs = tf.reshape(inputs, group_shape) return reshaped_inputs, group_shape else: return inputs, group_shape def _apply_normalization(self, reshaped_inputs, input_shape): group_shape = tf.keras.backend.int_shape(reshaped_inputs) group_reduction_axes = list(range(1, len(group_shape))) is_instance_norm = (input_shape[self.axis] // self.groups) == 1 if not is_instance_norm: axis = -2 if self.axis == -1 else self.axis - 1 else: axis = -1 if self.axis == -1 else self.axis - 1 group_reduction_axes.pop(axis) mean, variance = tf.nn.moments(reshaped_inputs, group_reduction_axes, keepdims=True) gamma, beta = self._get_reshaped_weights(input_shape) normalized_inputs = tf.nn.batch_normalization( reshaped_inputs, mean=mean, variance=variance, scale=gamma, offset=beta, variance_epsilon=self.epsilon, ) return normalized_inputs def _get_reshaped_weights(self, input_shape): broadcast_shape = self._create_broadcast_shape(input_shape) gamma = None beta = None if self.scale: gamma = tf.reshape(self.gamma, broadcast_shape) if self.center: beta = tf.reshape(self.beta, broadcast_shape) return gamma, beta def _check_if_input_shape_is_none(self, input_shape): dim = input_shape[self.axis] if dim is None: raise ValueError( "Axis " + str(self.axis) + " of input tensor should have a defined dimension but the layer received an input with shape " + str(input_shape) + "." ) def _set_number_of_groups_for_instance_norm(self, input_shape): dim = input_shape[self.axis] if self.groups == -1: self.groups = dim def _check_size_of_dimensions(self, input_shape): dim = input_shape[self.axis] if dim < self.groups: raise ValueError( "Number of groups (" + str(self.groups) + ") cannot be more than the number of channels (" + str(dim) + ")." ) if dim % self.groups != 0: raise ValueError( "Number of groups (" + str(self.groups) + ") must be a multiple of the number of channels (" + str(dim) + ")." ) def _check_axis(self): if self.axis == 0: raise ValueError( "You are trying to normalize your batch axis. Do you want to use tf.layer.batch_normalization instead" ) def _create_input_spec(self, input_shape): dim = input_shape[self.axis] self.input_spec = tf.keras.layers.InputSpec(ndim=len(input_shape), axes={self.axis: dim}) def _add_gamma_weight(self, input_shape): dim = input_shape[self.axis] shape = (dim,) if self.scale: self.gamma = self.add_weight( shape=shape, name="gamma", initializer=self.gamma_initializer, regularizer=self.gamma_regularizer, constraint=self.gamma_constraint, ) else: self.gamma = None def _add_beta_weight(self, input_shape): dim = input_shape[self.axis] shape = (dim,) if self.center: self.beta = self.add_weight( shape=shape, name="beta", initializer=self.beta_initializer, regularizer=self.beta_regularizer, constraint=self.beta_constraint, ) else: self.beta = None def _create_broadcast_shape(self, input_shape): broadcast_shape = [1] * len(input_shape) is_instance_norm = (input_shape[self.axis] // self.groups) == 1 if not is_instance_norm: broadcast_shape[self.axis] = input_shape[self.axis] // self.groups broadcast_shape.insert(self.axis, self.groups) else: broadcast_shape[self.axis] = self.groups return broadcast_shape # Copied from transformers.models.wav2vec2.modeling_tf_wav2vec2.TFWav2Vec2WeightNormConv1D with Wav2Vec2->Hubert class TFHubertWeightNormConv1D(tf.keras.layers.Conv1D): """Adapted from https://www.tensorflow.org/probability/api_docs/python/tfp/layers/weight_norm/WeightNorm""" def __init__(self, filters, kernel_size, groups, explicit_padding, **kwargs): super().__init__( filters=filters, kernel_size=kernel_size, groups=groups, padding="valid", use_bias=True, bias_initializer="he_normal", **kwargs, ) self.explicit_padding = explicit_padding self.filter_axis = 2 self.initialized = False self.kernel_norm_axes = tf.constant([0, 1]) def _init_norm(self): """Set the norm of the weight vector.""" kernel_norm = tf.sqrt(tf.reduce_sum(tf.square(self.weight_v), axis=self.kernel_norm_axes)) self.weight_g.assign(kernel_norm[:, tf.newaxis, tf.newaxis]) def _normalize_kernel(self): """Generate normalized weights.""" kernel = tf.nn.l2_normalize(self.weight_v, axis=self.kernel_norm_axes) * tf.transpose(self.weight_g) self.kernel = tf.transpose(kernel) def build(self, input_shape): if not self.built: input_shape = input_shape.as_list() # If a specific input shape is passed in, we need to modify it to account for padding # Not necessary if those portions of the shape are None if input_shape[-2] is not None: input_shape[-2] += self.explicit_padding * 2 super().build(input_shape) self.kernel = tf.Variable(tf.transpose(self.kernel), name="weight_v", trainable=True) self.weight_v = self.kernel self.weight_g = self.add_weight( name="weight_g", shape=(int(self.weight_v.shape[self.filter_axis]), 1, 1), initializer="ones", dtype=self.weight_v.dtype, trainable=True, ) self.bias = self.add_weight(name="bias", shape=(self.filters,), initializer="zeros", trainable=True) def call(self, inputs): if not self.initialized: self._init_norm() self.initialized = True self._normalize_kernel() padded_inputs = tf.pad(inputs, ((0, 0), (self.explicit_padding, self.explicit_padding), (0, 0))) output = super().call(padded_inputs) return output # Copied from transformers.models.wav2vec2.modeling_tf_wav2vec2.TFWav2Vec2NoLayerNormConvLayer with Wav2Vec2->Hubert class TFHubertNoLayerNormConvLayer(tf.keras.layers.Layer): def __init__(self, config: HubertConfig, layer_id: int = 0, **kwargs: Any) -> None: super().__init__(**kwargs) self.in_conv_dim = config.conv_dim[layer_id] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = tf.keras.layers.Conv1D( filters=self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], strides=config.conv_stride[layer_id], use_bias=config.conv_bias, name="conv", ) self.activation = get_tf_activation(config.feat_extract_activation) def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.conv(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_tf_wav2vec2.TFWav2Vec2LayerNormConvLayer with Wav2Vec2->Hubert class TFHubertLayerNormConvLayer(tf.keras.layers.Layer): def __init__(self, config: HubertConfig, layer_id: int = 0, **kwargs: Any) -> None: super().__init__(**kwargs) self.in_conv_dim = config.conv_dim[layer_id] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = tf.keras.layers.Conv1D( filters=self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], strides=config.conv_stride[layer_id], use_bias=config.conv_bias, name="conv", ) self.layer_norm = tf.keras.layers.LayerNormalization(name="layer_norm", epsilon=config.layer_norm_eps) self.activation = get_tf_activation(config.feat_extract_activation) def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.conv(hidden_states) hidden_states = self.layer_norm(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_tf_wav2vec2.TFWav2Vec2GroupNormConvLayer with Wav2Vec2->Hubert class TFHubertGroupNormConvLayer(tf.keras.layers.Layer): def __init__(self, config: HubertConfig, layer_id: int = 0, **kwargs: Any) -> None: super().__init__(**kwargs) self.in_conv_dim = config.conv_dim[layer_id] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = tf.keras.layers.Conv1D( filters=self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], strides=config.conv_stride[layer_id], use_bias=config.conv_bias, name="conv", ) self.activation = get_tf_activation(config.feat_extract_activation) self.layer_norm = TFHubertGroupNorm(groups=self.out_conv_dim, epsilon=config.layer_norm_eps, name="layer_norm") def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.conv(hidden_states) hidden_states = self.layer_norm(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_tf_wav2vec2.TFWav2Vec2PositionalConvEmbedding with Wav2Vec2->Hubert class TFHubertPositionalConvEmbedding(tf.keras.layers.Layer): def __init__(self, config: HubertConfig, **kwargs: Any) -> None: super().__init__(**kwargs) self.conv = TFHubertWeightNormConv1D( filters=config.hidden_size, kernel_size=config.num_conv_pos_embeddings, groups=config.num_conv_pos_embedding_groups, explicit_padding=config.num_conv_pos_embeddings // 2, name="conv", ) self.padding = TFHubertSamePadLayer(config.num_conv_pos_embeddings) self.activation = get_tf_activation(config.feat_extract_activation) def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.conv(hidden_states) hidden_states = self.padding(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_tf_wav2vec2.TFWav2Vec2SamePadLayer with Wav2Vec2->Hubert class TFHubertSamePadLayer(tf.keras.layers.Layer): def __init__(self, num_conv_pos_embeddings, **kwargs): super().__init__(**kwargs) self.num_pad_remove = 1 if num_conv_pos_embeddings % 2 == 0 else 0 def call(self, hidden_states): if self.num_pad_remove > 0: hidden_states = hidden_states[:, : -self.num_pad_remove, :] return hidden_states class TFHubertFeatureEncoder(tf.keras.layers.Layer): def __init__(self, config: HubertConfig, **kwargs: Any) -> None: super().__init__(**kwargs) if config.feat_extract_norm == "group": conv_layers = [TFHubertGroupNormConvLayer(config, layer_id=0, name=f"conv_layers.{0}")] + [ TFHubertNoLayerNormConvLayer(config, layer_id=i + 1, name=f"conv_layers.{i+1}") for i in range(config.num_feat_extract_layers - 1) ] elif config.feat_extract_norm == "layer": conv_layers = [ TFHubertLayerNormConvLayer(config, layer_id=i, name=f"conv_layers.{i}") for i in range(config.num_feat_extract_layers) ] else: raise ValueError( f"`config.feat_extract_norm` is {config.feat_extract_norm}, but has to be one of ['group', 'layer']" ) self.conv_layers = conv_layers def call(self, input_values): hidden_states = tf.expand_dims(input_values, -1) for conv_layer in self.conv_layers: hidden_states = conv_layer(hidden_states) return hidden_states class TFHubertFeatureExtractor(TFHubertFeatureEncoder): def __init__(self, config, **kwargs): super().__init__(config, **kwargs) warnings.warn( f"The class `{self.__class__.__name__}` has been depreciated " "and will be removed in Transformers v5. " f"Use `{self.__class__.__bases__[0].__name__}` instead.", FutureWarning, ) class TFHubertFeatureProjection(tf.keras.layers.Layer): def __init__(self, config: HubertConfig, **kwargs): super().__init__(**kwargs) self.layer_norm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm") self.projection = tf.keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), bias_initializer="zeros", name="projection", ) self.dropout = tf.keras.layers.Dropout(rate=config.feat_proj_dropout) def call(self, hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.layer_norm(hidden_states) hidden_states = self.projection(hidden_states) hidden_states = self.dropout(hidden_states, training=training) return hidden_states # Copied from transformers.models.bart.modeling_tf_bart.TFBartAttention with TFBart->TFHubert class TFHubertAttention(tf.keras.layers.Layer): """Multi-headed attention from "Attention Is All You Need""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, **kwargs, ): super().__init__(**kwargs) self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = tf.keras.layers.Dropout(dropout) self.head_dim = embed_dim // num_heads if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.k_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="k_proj") self.q_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj") self.v_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj") self.out_proj = tf.keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj") def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int): return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3)) def call( self, hidden_states: tf.Tensor, key_value_states: tf.Tensor | None = None, past_key_value: Tuple[Tuple[tf.Tensor]] | None = None, attention_mask: tf.Tensor | None = None, layer_head_mask: tf.Tensor | None = None, training: Optional[bool] = False, ) -> Tuple[tf.Tensor, tf.Tensor | None]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, embed_dim = shape_list(hidden_states) # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = tf.concat([past_key_value[0], key_states], axis=2) value_states = tf.concat([past_key_value[1], value_states], axis=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape) key_states = tf.reshape(key_states, proj_shape) value_states = tf.reshape(value_states, proj_shape) src_len = shape_list(key_states)[1] attn_weights = tf.matmul(query_states, key_states, transpose_b=True) tf.debugging.assert_equal( shape_list(attn_weights), [bsz * self.num_heads, tgt_len, src_len], message=( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {shape_list(attn_weights)}" ), ) if attention_mask is not None: tf.debugging.assert_equal( shape_list(attention_mask), [bsz, 1, tgt_len, src_len], message=( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is" f" {shape_list(attention_mask)}" ), ) attention_mask = tf.cast(attention_mask, dtype=attn_weights.dtype) attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) attn_weights = stable_softmax(attn_weights, axis=-1) if layer_head_mask is not None: tf.debugging.assert_equal( shape_list(layer_head_mask), [self.num_heads], message=( f"Head mask for a single layer should be of size {(self.num_heads)}, but is" f" {shape_list(layer_head_mask)}" ), ) attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape( attn_weights, (bsz, self.num_heads, tgt_len, src_len) ) attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) attn_probs = self.dropout(attn_weights, training=training) attn_output = tf.matmul(attn_probs, value_states) tf.debugging.assert_equal( shape_list(attn_output), [bsz * self.num_heads, tgt_len, self.head_dim], message=( f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" f" {shape_list(attn_output)}" ), ) attn_output = tf.transpose( tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3) ) attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim)) attn_output = self.out_proj(attn_output) attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) return attn_output, attn_weights, past_key_value # Copied from transformers.models.wav2vec2.modeling_tf_wav2vec2.TFWav2Vec2FeedForward with Wav2Vec2->Hubert class TFHubertFeedForward(tf.keras.layers.Layer): def __init__(self, config: HubertConfig, **kwargs): super().__init__(**kwargs) self.intermediate_dropout = tf.keras.layers.Dropout(config.activation_dropout) self.intermediate_dense = tf.keras.layers.Dense( units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), bias_initializer="zeros", name="intermediate_dense", ) self.intermediate_act_fn = get_tf_activation(config.hidden_act) self.output_dense = tf.keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), bias_initializer="zeros", name="output_dense", ) self.output_dropout = tf.keras.layers.Dropout(config.hidden_dropout) def call(self, hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.intermediate_dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) hidden_states = self.intermediate_dropout(hidden_states, training=training) hidden_states = self.output_dense(hidden_states) hidden_states = self.output_dropout(hidden_states, training=training) return hidden_states # Copied from transformers.models.wav2vec2.modeling_tf_wav2vec2.TFWav2Vec2EncoderLayer with Wav2Vec2->Hubert class TFHubertEncoderLayer(tf.keras.layers.Layer): def __init__(self, config: HubertConfig, **kwargs): super().__init__(**kwargs) self.attention = TFHubertAttention( embed_dim=config.hidden_size, num_heads=config.num_attention_heads, dropout=config.attention_dropout, is_decoder=False, name="attention", ) self.dropout = tf.keras.layers.Dropout(config.hidden_dropout) self.layer_norm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm") self.feed_forward = TFHubertFeedForward(config, name="feed_forward") self.final_layer_norm = tf.keras.layers.LayerNormalization( epsilon=config.layer_norm_eps, name="final_layer_norm" ) def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor | None = None, output_attentions: Optional[bool] = False, training: bool = False, ) -> Tuple[tf.Tensor]: attn_residual = hidden_states hidden_states, attn_weights, _ = self.attention( hidden_states, attention_mask=attention_mask, training=training ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = attn_residual + hidden_states hidden_states = self.layer_norm(hidden_states) hidden_states = hidden_states + self.feed_forward(hidden_states) hidden_states = self.final_layer_norm(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs # Copied from transformers.models.wav2vec2.modeling_tf_wav2vec2.TFWav2Vec2EncoderLayerStableLayerNorm with Wav2Vec2->Hubert class TFHubertEncoderLayerStableLayerNorm(tf.keras.layers.Layer): def __init__(self, config: HubertConfig, **kwargs): super().__init__(**kwargs) self.attention = TFHubertAttention( embed_dim=config.hidden_size, num_heads=config.num_attention_heads, dropout=config.attention_dropout, is_decoder=False, name="attention", ) self.dropout = tf.keras.layers.Dropout(config.hidden_dropout) self.layer_norm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm") self.feed_forward = TFHubertFeedForward(config, name="feed_forward") self.final_layer_norm = tf.keras.layers.LayerNormalization( epsilon=config.layer_norm_eps, name="final_layer_norm" ) def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor | None = None, output_attentions: Optional[bool] = False, training: bool = False, ) -> Tuple[tf.Tensor]: attn_residual = hidden_states hidden_states = self.layer_norm(hidden_states) hidden_states, attn_weights, _ = self.attention( hidden_states, attention_mask=attention_mask, training=training ) hidden_states = self.dropout(hidden_states, training=training) hidden_states = attn_residual + hidden_states hidden_states = hidden_states + self.feed_forward(self.final_layer_norm(hidden_states)) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs # Copied from transformers.models.wav2vec2.modeling_tf_wav2vec2.TFWav2Vec2Encoder with Wav2Vec2->Hubert class TFHubertEncoder(tf.keras.layers.Layer): def __init__(self, config: HubertConfig, **kwargs): super().__init__(**kwargs) self.config = config self.pos_conv_embed = TFHubertPositionalConvEmbedding(config, name="pos_conv_embed") self.layer_norm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm") self.dropout = tf.keras.layers.Dropout(config.hidden_dropout) self.layer = [TFHubertEncoderLayer(config, name=f"layers.{i}") for i in range(config.num_hidden_layers)] def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor | None = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, training: Optional[bool] = False, ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None if attention_mask is not None: hidden_states = hidden_states * tf.expand_dims(attention_mask, -1) attention_mask = _expand_mask(attention_mask) else: attention_mask = None position_embeddings = self.pos_conv_embed(hidden_states) hidden_states = hidden_states + position_embeddings hidden_states = self.layer_norm(hidden_states) hidden_states = self.dropout(hidden_states, training=training) for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = np.random.uniform(0, 1) if training and (dropout_probability < self.config.layerdrop): # skip the layer continue layer_outputs = layer_module( hidden_states=hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, training=training, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) # Copied from transformers.models.wav2vec2.modeling_tf_wav2vec2.TFWav2Vec2EncoderStableLayerNorm with Wav2Vec2->Hubert class TFHubertEncoderStableLayerNorm(tf.keras.layers.Layer): def __init__(self, config: HubertConfig, **kwargs): super().__init__(**kwargs) self.config = config self.pos_conv_embed = TFHubertPositionalConvEmbedding(config, name="pos_conv_embed") self.layer_norm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm") self.dropout = tf.keras.layers.Dropout(config.hidden_dropout) self.layer = [ TFHubertEncoderLayerStableLayerNorm(config, name=f"layers.{i}") for i in range(config.num_hidden_layers) ] def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor | None = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, training: Optional[bool] = False, ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None if attention_mask is not None: hidden_states = hidden_states * tf.expand_dims(attention_mask, -1) attention_mask = _expand_mask(attention_mask) else: attention_mask = None position_embeddings = self.pos_conv_embed(hidden_states) hidden_states = hidden_states + position_embeddings hidden_states = self.dropout(hidden_states, training=training) for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = np.random.uniform(0, 1) if training and (dropout_probability < self.config.layerdrop): # skip the layer continue layer_outputs = layer_module( hidden_states=hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, training=training, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) hidden_states = self.layer_norm(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) @keras_serializable class TFHubertMainLayer(tf.keras.layers.Layer): config_class = HubertConfig def __init__(self, config: HubertConfig, **kwargs): super().__init__(**kwargs) self.config = config self.feature_extractor = TFHubertFeatureEncoder(config, name="feature_extractor") self.feature_projection = TFHubertFeatureProjection(config, name="feature_projection") if config.do_stable_layer_norm: self.encoder = TFHubertEncoderStableLayerNorm(config, name="encoder") else: self.encoder = TFHubertEncoder(config, name="encoder") def build(self, input_shape: tf.TensorShape): self.masked_spec_embed = self.add_weight( shape=(self.config.hidden_size,), initializer="uniform", trainable=True, name="masked_spec_embed" ) super().build(input_shape) def _get_feat_extract_output_lengths(self, input_lengths: tf.Tensor): """ Computes the output length of the convolutional layers """ def _conv_out_length(input_length, kernel_size, stride): # 1D convolutional layer output length formula taken # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html return (input_length - kernel_size) // stride + 1 for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride): input_lengths = _conv_out_length(input_lengths, kernel_size, stride) return input_lengths def _mask_hidden_states(self, hidden_states: tf.Tensor, mask_time_indices: tf.Tensor | None = None): """ Masks extracted features along time axis and/or along feature axis according to [SpecAugment](https://arxiv.org/abs/1904.08779). """ batch_size, sequence_length, hidden_size = shape_list(hidden_states) # `config.apply_spec_augment` can set masking to False if not getattr(self.config, "apply_spec_augment", True): return hidden_states if mask_time_indices is not None: # apply SpecAugment along time axis with given mask_time_indices hidden_states = tf.where( tf.cast(mask_time_indices[:, :, tf.newaxis], tf.bool), self.masked_spec_embed[tf.newaxis, tf.newaxis, :], hidden_states, ) elif self.config.mask_time_prob > 0: # generate indices & apply SpecAugment along time axis mask_time_indices = _compute_mask_indices( (batch_size, sequence_length), mask_prob=self.config.mask_time_prob, mask_length=self.config.mask_time_length, min_masks=2, ) hidden_states = tf.where( tf.cast(mask_time_indices[:, :, tf.newaxis], tf.bool), self.masked_spec_embed[tf.newaxis, tf.newaxis, :], hidden_states, ) # apply SpecAugment along feature axis if self.config.mask_feature_prob > 0: mask_feature_indices = _compute_mask_indices( (batch_size, hidden_size), mask_prob=self.config.mask_feature_prob, mask_length=self.config.mask_feature_length, ) hidden_states = tf.where(mask_feature_indices[:, tf.newaxis, :], hidden_states, 0) return hidden_states @unpack_inputs def call( self, input_values: tf.Tensor, attention_mask: tf.Tensor | None = None, token_type_ids: tf.Tensor | None = None, position_ids: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, inputs_embeds: tf.Tensor | None = None, output_attentions: tf.Tensor | None = None, output_hidden_states: tf.Tensor | None = None, return_dict: Optional[bool] = None, training: bool = False, **kwargs: Any, ): hidden_states = self.feature_extractor(tf.cast(input_values, tf.float32), training=training) if attention_mask is not None: # compute real output lengths according to convolution formula output_lengths = self._get_feat_extract_output_lengths(tf.reduce_sum(attention_mask, -1)) attention_mask = tf.sequence_mask( output_lengths, maxlen=shape_list(hidden_states)[1], dtype=hidden_states.dtype ) hidden_states = self.feature_projection(hidden_states, training=training) mask_time_indices = kwargs.get("mask_time_indices", None) if training: hidden_states = self._mask_hidden_states(hidden_states, mask_time_indices=mask_time_indices) encoder_outputs = self.encoder( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) hidden_states = encoder_outputs[0] if not return_dict: return (hidden_states,) + encoder_outputs[1:] return TFBaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class TFHubertPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = HubertConfig base_model_prefix = "hubert" main_input_name = "input_values" @property def input_signature(self): return { "input_values": tf.TensorSpec((None, 16000), tf.float32, name="input_values"), "attention_mask": tf.TensorSpec((None, None), tf.int32, name="attention_mask"), "token_type_ids": tf.TensorSpec((None, None), tf.int32, name="token_type_ids"), } def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) logger.warning( f"\n{self.__class__.__name__} has backpropagation operations that are NOT supported on CPU. If you wish " "to train/fine-tune this model, you need a GPU or a TPU" ) HUBERT_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `input_values` only and nothing else: `model(input_values)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_values, attention_mask])` or `model([input_values, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_values": input_values, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Args: config ([`HubertConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ HUBERT_INPUTS_DOCSTRING = r""" Args: input_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` `Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and [`PreTrainedTokenizer.encode`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`np.ndarray` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`np.ndarray` or `tf.Tensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_values` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_values` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False``): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @add_start_docstrings( "The bare TFHubert Model transformer outputing raw hidden-states without any specific head on top.", HUBERT_START_DOCSTRING, ) class TFHubertModel(TFHubertPreTrainedModel): def __init__(self, config: HubertConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.config = config self.hubert = TFHubertMainLayer(config, name="hubert") @add_start_docstrings_to_model_forward(HUBERT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFBaseModelOutput, config_class=_CONFIG_FOR_DOC) @unpack_inputs def call( self, input_values: tf.Tensor, attention_mask: tf.Tensor | None = None, token_type_ids: tf.Tensor | None = None, position_ids: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, inputs_embeds: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]: """ Returns: Example: ```python >>> from transformers import AutoProcessor, TFHubertModel >>> from datasets import load_dataset >>> import soundfile as sf >>> processor = AutoProcessor.from_pretrained("facebook/hubert-large-ls960-ft") >>> model = TFHubertModel.from_pretrained("facebook/hubert-large-ls960-ft") >>> def map_to_array(batch): ... speech, _ = sf.read(batch["file"]) ... batch["speech"] = speech ... return batch >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> ds = ds.map(map_to_array) >>> input_values = processor(ds["speech"][0], return_tensors="tf").input_values # Batch size 1 >>> hidden_states = model(input_values).last_hidden_state ```""" output_hidden_states = output_hidden_states if output_hidden_states else self.config.output_hidden_states output_attentions = output_attentions if output_attentions else self.config.output_attentions return_dict = return_dict if return_dict else self.config.return_dict outputs = self.hubert( input_values=input_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs @add_start_docstrings( """TFHubert Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).""", HUBERT_START_DOCSTRING, ) class TFHubertForCTC(TFHubertPreTrainedModel): def __init__(self, config: HubertConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.hubert = TFHubertMainLayer(config, name="hubert") self.dropout = tf.keras.layers.Dropout(config.final_dropout) self.lm_head = tf.keras.layers.Dense(config.vocab_size, name="lm_head") def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameters will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5." "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.hubert.feature_extractor.trainable = False @add_start_docstrings_to_model_forward(HUBERT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFCausalLMOutput, config_class=_CONFIG_FOR_DOC) @unpack_inputs def call( self, input_values: tf.Tensor, attention_mask: tf.Tensor | None = None, token_type_ids: tf.Tensor | None = None, position_ids: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, inputs_embeds: tf.Tensor | None = None, output_attentions: Optional[bool] = None, labels: tf.Tensor | None = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[TFCausalLMOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_values` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` Returns: Example: ```python >>> import tensorflow as tf >>> from transformers import AutoProcessor, TFHubertForCTC >>> from datasets import load_dataset >>> import soundfile as sf >>> processor = AutoProcessor.from_pretrained("facebook/hubert-large-ls960-ft") >>> model = TFHubertForCTC.from_pretrained("facebook/hubert-large-ls960-ft") >>> def map_to_array(batch): ... speech, _ = sf.read(batch["file"]) ... batch["speech"] = speech ... return batch >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> ds = ds.map(map_to_array) >>> input_values = processor(ds["speech"][0], return_tensors="tf").input_values # Batch size 1 >>> logits = model(input_values).logits >>> predicted_ids = tf.argmax(logits, axis=-1) >>> transcription = processor.decode(predicted_ids[0]) >>> # compute loss >>> target_transcription = "A MAN SAID TO THE UNIVERSE SIR I EXIST" >>> # Pass the transcription as text to encode labels >>> labels = processor(text=transcription, return_tensors="tf").input_values >>> loss = model(input_values, labels=labels).loss ```""" outputs = self.hubert( input_values=input_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) hidden_states = outputs[0] hidden_states = self.dropout(hidden_states, training=training) logits = self.lm_head(hidden_states) if labels is not None: if tf.reduce_max(labels) >= self.config.vocab_size: raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}") attention_mask = ( attention_mask if attention_mask is not None else tf.ones_like(input_values, dtype=tf.float32) ) input_lengths = self.hubert._get_feat_extract_output_lengths(tf.reduce_sum(attention_mask, axis=-1)) # assuming that padded tokens are filled with -100 # when not being attended to labels_mask = tf.cast(labels >= 0, tf.int32) target_lengths = tf.reduce_sum(labels_mask, axis=-1) loss = tf.nn.ctc_loss( logits=logits, labels=labels, logit_length=input_lengths, label_length=target_lengths, blank_index=self.config.pad_token_id, logits_time_major=False, ) if self.config.ctc_loss_reduction == "sum": loss = tf.reduce_sum(loss) loss = tf.reshape(loss, (1,)) if self.config.ctc_loss_reduction == "mean": loss = tf.reduce_mean(loss) loss = tf.reshape(loss, (1,)) else: loss = None if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFCausalLMOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/hubert/modeling_hubert.py
# coding=utf-8 # Copyright 2021 The Fairseq Authors and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch Hubert model.""" import warnings from typing import Optional, Tuple, Union import numpy as np import torch import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...deepspeed import is_deepspeed_zero3_enabled from ...modeling_outputs import BaseModelOutput, CausalLMOutput, SequenceClassifierOutput from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_hubert import HubertConfig logger = logging.get_logger(__name__) _HIDDEN_STATES_START_POSITION = 1 # General docstring _CONFIG_FOR_DOC = "HubertConfig" # Base docstring _CHECKPOINT_FOR_DOC = "facebook/hubert-large-ls960-ft" _EXPECTED_OUTPUT_SHAPE = [1, 292, 768] # CTC docstring _CTC_EXPECTED_OUTPUT = "'MISTER QUILTER IS THE APOSTLE OF THE MIDDLE CLASSES AND WE ARE GLAD TO WELCOME HIS GOSPEL'" _CTC_EXPECTED_LOSS = 22.68 # Audio class docstring _SEQ_CLASS_CHECKPOINT = "superb/hubert-base-superb-ks" _SEQ_CLASS_EXPECTED_OUTPUT = "'_unknown_'" _SEQ_CLASS_EXPECTED_LOSS = 8.53 HUBERT_PRETRAINED_MODEL_ARCHIVE_LIST = [ "facebook/hubert-base-ls960", # See all Hubert models at https://huggingface.co/models?filter=hubert ] # Copied from transformers.models.wav2vec2.modeling_wav2vec2._compute_mask_indices def _compute_mask_indices( shape: Tuple[int, int], mask_prob: float, mask_length: int, attention_mask: Optional[torch.LongTensor] = None, min_masks: int = 0, ) -> np.ndarray: """ Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on CPU as part of the preprocessing during training. Args: shape: The shape for which to compute masks. This should be of a tuple of size 2 where the first element is the batch size and the second element is the length of the axis to span. mask_prob: The percentage of the whole axis (between 0 and 1) which will be masked. The number of independently generated mask spans of length `mask_length` is computed by `mask_prob*shape[1]/mask_length`. Note that due to overlaps, `mask_prob` is an upper bound and the actual percentage will be smaller. mask_length: size of the mask min_masks: minimum number of masked spans attention_mask: A (right-padded) attention mask which independently shortens the feature axis of each batch dimension. """ batch_size, sequence_length = shape if mask_length < 1: raise ValueError("`mask_length` has to be bigger than 0.") if mask_length > sequence_length: raise ValueError( f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length}" f" and `sequence_length`: {sequence_length}`" ) # epsilon is used for probabilistic rounding epsilon = np.random.rand(1).item() def compute_num_masked_span(input_length): """Given input length, compute how many spans should be masked""" num_masked_span = int(mask_prob * input_length / mask_length + epsilon) num_masked_span = max(num_masked_span, min_masks) # make sure num masked span <= sequence_length if num_masked_span * mask_length > sequence_length: num_masked_span = sequence_length // mask_length # make sure num_masked span is also <= input_length - (mask_length - 1) if input_length - (mask_length - 1) < num_masked_span: num_masked_span = max(input_length - (mask_length - 1), 0) return num_masked_span # compute number of masked spans in batch input_lengths = ( attention_mask.sum(-1).detach().tolist() if attention_mask is not None else [sequence_length for _ in range(batch_size)] ) # SpecAugment mask to fill spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=bool) spec_aug_mask_idxs = [] max_num_masked_span = compute_num_masked_span(sequence_length) if max_num_masked_span == 0: return spec_aug_mask for input_length in input_lengths: # compute num of masked spans for this input num_masked_span = compute_num_masked_span(input_length) # get random indices to mask spec_aug_mask_idx = np.random.choice( np.arange(input_length - (mask_length - 1)), num_masked_span, replace=False ) # pick first sampled index that will serve as a dummy index to pad vector # to ensure same dimension for all batches due to probabilistic rounding # Picking first sample just pads those vectors twice. if len(spec_aug_mask_idx) == 0: # this case can only happen if `input_length` is strictly smaller then # `sequence_length` in which case the last token has to be a padding # token which we can use as a dummy mask id dummy_mask_idx = sequence_length - 1 else: dummy_mask_idx = spec_aug_mask_idx[0] spec_aug_mask_idx = np.concatenate( [spec_aug_mask_idx, np.ones(max_num_masked_span - num_masked_span, dtype=np.int32) * dummy_mask_idx] ) spec_aug_mask_idxs.append(spec_aug_mask_idx) spec_aug_mask_idxs = np.array(spec_aug_mask_idxs) # expand masked indices to masked spans spec_aug_mask_idxs = np.broadcast_to( spec_aug_mask_idxs[:, :, None], (batch_size, max_num_masked_span, mask_length) ) spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(batch_size, max_num_masked_span * mask_length) # add offset to the starting indexes so that indexes now create a span offsets = np.arange(mask_length)[None, None, :] offsets = np.broadcast_to(offsets, (batch_size, max_num_masked_span, mask_length)).reshape( batch_size, max_num_masked_span * mask_length ) spec_aug_mask_idxs = spec_aug_mask_idxs + offsets # ensure that we cannot have indices larger than sequence_length if spec_aug_mask_idxs.max() > sequence_length - 1: spec_aug_mask_idxs[spec_aug_mask_idxs > sequence_length - 1] = sequence_length - 1 # scatter indices to mask np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1) return spec_aug_mask # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2NoLayerNormConvLayer with Wav2Vec2->Hubert class HubertNoLayerNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = nn.Conv1d( self.in_conv_dim, self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], stride=config.conv_stride[layer_id], bias=config.conv_bias, ) self.activation = ACT2FN[config.feat_extract_activation] def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2LayerNormConvLayer with Wav2Vec2->Hubert class HubertLayerNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = nn.Conv1d( self.in_conv_dim, self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], stride=config.conv_stride[layer_id], bias=config.conv_bias, ) self.layer_norm = nn.LayerNorm(self.out_conv_dim, elementwise_affine=True) self.activation = ACT2FN[config.feat_extract_activation] def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = hidden_states.transpose(-2, -1) hidden_states = self.layer_norm(hidden_states) hidden_states = hidden_states.transpose(-2, -1) hidden_states = self.activation(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2GroupNormConvLayer with Wav2Vec2->Hubert class HubertGroupNormConvLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1 self.out_conv_dim = config.conv_dim[layer_id] self.conv = nn.Conv1d( self.in_conv_dim, self.out_conv_dim, kernel_size=config.conv_kernel[layer_id], stride=config.conv_stride[layer_id], bias=config.conv_bias, ) self.activation = ACT2FN[config.feat_extract_activation] self.layer_norm = nn.GroupNorm(num_groups=self.out_conv_dim, num_channels=self.out_conv_dim, affine=True) def forward(self, hidden_states): hidden_states = self.conv(hidden_states) hidden_states = self.layer_norm(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2PositionalConvEmbedding with Wav2Vec2->Hubert class HubertPositionalConvEmbedding(nn.Module): def __init__(self, config): super().__init__() self.conv = nn.Conv1d( config.hidden_size, config.hidden_size, kernel_size=config.num_conv_pos_embeddings, padding=config.num_conv_pos_embeddings // 2, groups=config.num_conv_pos_embedding_groups, ) weight_norm = nn.utils.weight_norm if hasattr(nn.utils.parametrizations, "weight_norm"): weight_norm = nn.utils.parametrizations.weight_norm if is_deepspeed_zero3_enabled(): import deepspeed with deepspeed.zero.GatheredParameters(self.conv.weight, modifier_rank=0): self.conv = weight_norm(self.conv, name="weight", dim=2) deepspeed.zero.register_external_parameter(self, self.conv.weight_v) deepspeed.zero.register_external_parameter(self, self.conv.weight_g) else: self.conv = weight_norm(self.conv, name="weight", dim=2) self.padding = HubertSamePadLayer(config.num_conv_pos_embeddings) self.activation = ACT2FN[config.feat_extract_activation] def forward(self, hidden_states): hidden_states = hidden_states.transpose(1, 2) hidden_states = self.conv(hidden_states) hidden_states = self.padding(hidden_states) hidden_states = self.activation(hidden_states) hidden_states = hidden_states.transpose(1, 2) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2SamePadLayer with Wav2Vec2->Hubert class HubertSamePadLayer(nn.Module): def __init__(self, num_conv_pos_embeddings): super().__init__() self.num_pad_remove = 1 if num_conv_pos_embeddings % 2 == 0 else 0 def forward(self, hidden_states): if self.num_pad_remove > 0: hidden_states = hidden_states[:, :, : -self.num_pad_remove] return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureEncoder with Wav2Vec2->Hubert class HubertFeatureEncoder(nn.Module): """Construct the features from raw audio waveform""" def __init__(self, config): super().__init__() if config.feat_extract_norm == "group": conv_layers = [HubertGroupNormConvLayer(config, layer_id=0)] + [ HubertNoLayerNormConvLayer(config, layer_id=i + 1) for i in range(config.num_feat_extract_layers - 1) ] elif config.feat_extract_norm == "layer": conv_layers = [HubertLayerNormConvLayer(config, layer_id=i) for i in range(config.num_feat_extract_layers)] else: raise ValueError( f"`config.feat_extract_norm` is {config.feat_extract_norm}, but has to be one of ['group', 'layer']" ) self.conv_layers = nn.ModuleList(conv_layers) self.gradient_checkpointing = False self._requires_grad = True def _freeze_parameters(self): for param in self.parameters(): param.requires_grad = False self._requires_grad = False def forward(self, input_values): hidden_states = input_values[:, None] # make sure hidden_states require grad for gradient_checkpointing if self._requires_grad and self.training: hidden_states.requires_grad = True for conv_layer in self.conv_layers: if self._requires_grad and self.gradient_checkpointing and self.training: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs) return custom_forward hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(conv_layer), hidden_states, ) else: hidden_states = conv_layer(hidden_states) return hidden_states class HubertFeatureExtractor(HubertFeatureEncoder): def __init__(self, config): super().__init__(config) warnings.warn( f"The class `{self.__class__.__name__}` has been depreciated " "and will be removed in Transformers v5. " f"Use `{self.__class__.__bases__[0].__name__}` instead.", FutureWarning, ) class HubertFeatureProjection(nn.Module): def __init__(self, config): super().__init__() self.feat_proj_layer_norm = config.feat_proj_layer_norm if self.feat_proj_layer_norm: self.layer_norm = nn.LayerNorm(config.conv_dim[-1], eps=config.layer_norm_eps) self.projection = nn.Linear(config.conv_dim[-1], config.hidden_size) self.dropout = nn.Dropout(config.feat_proj_dropout) def forward(self, hidden_states): # non-projected hidden states are needed for quantization if self.feat_proj_layer_norm: hidden_states = self.layer_norm(hidden_states) hidden_states = self.projection(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states # Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->Hubert class HubertAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj # `past_key_value[0].shape[2] == key_value_states.shape[1]` # is checking that the `sequence_length` of the `past_key_value` is the same as # the provided `key_value_states` to support prefix tuning if ( is_cross_attention and past_key_value is not None and past_key_value[0].shape[2] == key_value_states.shape[1] ): # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.reshape(*proj_shape) value_states = value_states.reshape(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if layer_head_mask is not None: if layer_head_mask.size() != (self.num_heads,): raise ValueError( f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" f" {layer_head_mask.size()}" ) attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to be reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned across GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped, past_key_value # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeedForward with Wav2Vec2->Hubert class HubertFeedForward(nn.Module): def __init__(self, config): super().__init__() self.intermediate_dropout = nn.Dropout(config.activation_dropout) self.intermediate_dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act self.output_dense = nn.Linear(config.intermediate_size, config.hidden_size) self.output_dropout = nn.Dropout(config.hidden_dropout) def forward(self, hidden_states): hidden_states = self.intermediate_dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) hidden_states = self.intermediate_dropout(hidden_states) hidden_states = self.output_dense(hidden_states) hidden_states = self.output_dropout(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2EncoderLayer with Wav2Vec2->Hubert class HubertEncoderLayer(nn.Module): def __init__(self, config): super().__init__() self.attention = HubertAttention( embed_dim=config.hidden_size, num_heads=config.num_attention_heads, dropout=config.attention_dropout, is_decoder=False, ) self.dropout = nn.Dropout(config.hidden_dropout) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.feed_forward = HubertFeedForward(config) self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states, attention_mask=None, output_attentions=False): attn_residual = hidden_states hidden_states, attn_weights, _ = self.attention( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions ) hidden_states = self.dropout(hidden_states) hidden_states = attn_residual + hidden_states hidden_states = self.layer_norm(hidden_states) hidden_states = hidden_states + self.feed_forward(hidden_states) hidden_states = self.final_layer_norm(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2AttnAdapterLayer with Wav2Vec2->Hubert class HubertAttnAdapterLayer(nn.Module): def __init__(self, config): """ Implements adapter modules directly with 3D tensor weight as parameters and without using ModuleList to speed up training throughput. """ super().__init__() self.input_dim = config.adapter_attn_dim self.hidden_dim = config.hidden_size self.norm = nn.LayerNorm(self.hidden_dim) self.linear_1 = nn.Linear(self.hidden_dim, self.input_dim) self.act_fn = nn.ReLU() self.linear_2 = nn.Linear(self.input_dim, self.hidden_dim) def forward(self, hidden_states: torch.FloatTensor): hidden_states = self.norm(hidden_states) hidden_states = self.linear_1(hidden_states) hidden_states = self.act_fn(hidden_states) hidden_states = self.linear_2(hidden_states) return hidden_states # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2EncoderLayerStableLayerNorm with Wav2Vec2->Hubert class HubertEncoderLayerStableLayerNorm(nn.Module): def __init__(self, config): super().__init__() self.attention = HubertAttention( embed_dim=config.hidden_size, num_heads=config.num_attention_heads, dropout=config.attention_dropout, is_decoder=False, ) self.dropout = nn.Dropout(config.hidden_dropout) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.feed_forward = HubertFeedForward(config) self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) if getattr(config, "adapter_attn_dim", None) is not None: self.adapter_layer = HubertAttnAdapterLayer(config) else: self.adapter_layer = None def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ): attn_residual = hidden_states hidden_states = self.layer_norm(hidden_states) hidden_states, attn_weights, _ = self.attention( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions ) hidden_states = self.dropout(hidden_states) hidden_states = attn_residual + hidden_states hidden_states = hidden_states + self.feed_forward(self.final_layer_norm(hidden_states)) if self.adapter_layer is not None: hidden_states = hidden_states + self.adapter_layer(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Encoder with Wav2Vec2->Hubert class HubertEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.pos_conv_embed = HubertPositionalConvEmbedding(config) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout) self.layers = nn.ModuleList([HubertEncoderLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.tensor, attention_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None if attention_mask is not None: # make sure padded tokens output 0 expand_attention_mask = attention_mask.unsqueeze(-1).repeat(1, 1, hidden_states.shape[2]) hidden_states[~expand_attention_mask] = 0 # extend attention_mask attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype) attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min attention_mask = attention_mask.expand( attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1] ) position_embeddings = self.pos_conv_embed(hidden_states) hidden_states = hidden_states + position_embeddings hidden_states = self.layer_norm(hidden_states) hidden_states = self.dropout(hidden_states) deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled() for layer in self.layers: if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = torch.rand([]) skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False if not skip_the_layer or deepspeed_zero3_is_enabled: # under deepspeed zero3 all gpus must run in sync if self.gradient_checkpointing and self.training: # create gradient checkpointing function def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(layer), hidden_states, attention_mask, ) else: layer_outputs = layer( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions ) hidden_states = layer_outputs[0] if skip_the_layer: layer_outputs = (None, None) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2EncoderStableLayerNorm with Wav2Vec2->Hubert class HubertEncoderStableLayerNorm(nn.Module): def __init__(self, config): super().__init__() self.config = config self.pos_conv_embed = HubertPositionalConvEmbedding(config) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout) self.layers = nn.ModuleList( [HubertEncoderLayerStableLayerNorm(config) for _ in range(config.num_hidden_layers)] ) self.gradient_checkpointing = False def forward( self, hidden_states, attention_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None if attention_mask is not None: # make sure padded tokens are not attended to expand_attention_mask = attention_mask.unsqueeze(-1).repeat(1, 1, hidden_states.shape[2]) hidden_states[~expand_attention_mask] = 0 # extend attention_mask attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype) attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min attention_mask = attention_mask.expand( attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1] ) position_embeddings = self.pos_conv_embed(hidden_states) hidden_states = hidden_states + position_embeddings hidden_states = self.dropout(hidden_states) deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled() for layer in self.layers: if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = torch.rand([]) skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False if not skip_the_layer or deepspeed_zero3_is_enabled: # under deepspeed zero3 all gpus must run in sync # XXX: could optimize this like synced_gpus in generate_utils but not sure if it's worth the code complication if self.gradient_checkpointing and self.training: # create gradient checkpointing function def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(layer), hidden_states, attention_mask, ) else: layer_outputs = layer( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions ) hidden_states = layer_outputs[0] if skip_the_layer: layer_outputs = (None, None) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) hidden_states = self.layer_norm(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) class HubertPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = HubertConfig base_model_prefix = "hubert" main_input_name = "input_values" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, nn.Conv1d): if is_deepspeed_zero3_enabled(): import deepspeed if hasattr(module, "weight_v") and hasattr(module, "weight_g"): with deepspeed.zero.GatheredParameters([module.weight_v, module.weight_g], modifier_rank=0): nn.init.kaiming_normal_(module.weight.data) else: with deepspeed.zero.GatheredParameters(module.weight, modifier_rank=0): nn.init.kaiming_normal_(module.weight.data) else: nn.init.kaiming_normal_(module.weight.data) if isinstance(module, (nn.Linear, nn.Conv1d)) and module.bias is not None: module.bias.data.zero_() def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, (HubertEncoder, HubertEncoderStableLayerNorm)): module.gradient_checkpointing = value def _get_feat_extract_output_lengths(self, input_lengths: Union[torch.LongTensor, int]): """ Computes the output length of the convolutional layers """ def _conv_out_length(input_length, kernel_size, stride): # 1D convolutional layer output length formula taken # from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html return torch.div(input_length - kernel_size, stride, rounding_mode="floor") + 1 for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride): input_lengths = _conv_out_length(input_lengths, kernel_size, stride) return input_lengths def _get_feature_vector_attention_mask(self, feature_vector_length: int, attention_mask: torch.LongTensor): output_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long) batch_size = attention_mask.shape[0] attention_mask = torch.zeros( (batch_size, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device ) # these two operations makes sure that all values before the output lengths idxs are attended to attention_mask[(torch.arange(attention_mask.shape[0], device=attention_mask.device), output_lengths - 1)] = 1 attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() return attention_mask HUBERT_START_DOCSTRING = r""" Hubert was proposed in [HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units](https://arxiv.org/abs/2106.07447) by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving etc.). This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`HubertConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ HUBERT_INPUTS_DOCSTRING = r""" Args: input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into `input_values`, the [`AutoProcessor`] should be used for padding and conversion into a tensor of type `torch.FloatTensor`. See [`Wav2Vec2Processor.__call__`] for details. attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) <Tip warning={true}> `attention_mask` should only be passed if the corresponding processor has `config.return_attention_mask == True`. For all models whose processor has `config.return_attention_mask == False`, such as [hubert-base](https://huggingface.co/facebook/hubert-base-ls960), `attention_mask` should **not** be passed to avoid degraded performance when doing batched inference. For such models `input_values` should simply be padded with 0 and passed without `attention_mask`. Be aware that these models also yield slightly different results depending on whether `input_values` is padded or not. </Tip> output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare Hubert Model transformer outputting raw hidden-states without any specific head on top.", HUBERT_START_DOCSTRING, ) class HubertModel(HubertPreTrainedModel): def __init__(self, config: HubertConfig): super().__init__(config) self.config = config self.feature_extractor = HubertFeatureEncoder(config) self.feature_projection = HubertFeatureProjection(config) if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0: self.masked_spec_embed = nn.Parameter(torch.FloatTensor(config.hidden_size).uniform_()) if config.do_stable_layer_norm: self.encoder = HubertEncoderStableLayerNorm(config) else: self.encoder = HubertEncoder(config) # Initialize weights and apply final processing self.post_init() # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Model._mask_hidden_states def _mask_hidden_states( self, hidden_states: torch.FloatTensor, mask_time_indices: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, ): """ Masks extracted features along time axis and/or along feature axis according to [SpecAugment](https://arxiv.org/abs/1904.08779). """ # `config.apply_spec_augment` can set masking to False if not getattr(self.config, "apply_spec_augment", True): return hidden_states # generate indices & apply SpecAugment along time axis batch_size, sequence_length, hidden_size = hidden_states.size() if mask_time_indices is not None: # apply SpecAugment along time axis with given mask_time_indices hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) elif self.config.mask_time_prob > 0 and self.training: mask_time_indices = _compute_mask_indices( (batch_size, sequence_length), mask_prob=self.config.mask_time_prob, mask_length=self.config.mask_time_length, attention_mask=attention_mask, min_masks=self.config.mask_time_min_masks, ) mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool) hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype) if self.config.mask_feature_prob > 0 and self.training: # generate indices & apply SpecAugment along feature axis mask_feature_indices = _compute_mask_indices( (batch_size, hidden_size), mask_prob=self.config.mask_feature_prob, mask_length=self.config.mask_feature_length, min_masks=self.config.mask_feature_min_masks, ) mask_feature_indices = torch.tensor(mask_feature_indices, device=hidden_states.device, dtype=torch.bool) mask_feature_indices = mask_feature_indices[:, None].expand(-1, sequence_length, -1) hidden_states[mask_feature_indices] = 0 return hidden_states @add_start_docstrings_to_model_forward(HUBERT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, mask_time_indices: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: """ Returns: Example: ```python >>> from transformers import AutoProcessor, HubertModel >>> from datasets import load_dataset >>> import soundfile as sf >>> processor = AutoProcessor.from_pretrained("facebook/hubert-large-ls960-ft") >>> model = HubertModel.from_pretrained("facebook/hubert-large-ls960-ft") >>> def map_to_array(batch): ... speech, _ = sf.read(batch["file"]) ... batch["speech"] = speech ... return batch >>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") >>> ds = ds.map(map_to_array) >>> input_values = processor(ds["speech"][0], return_tensors="pt").input_values # Batch size 1 >>> hidden_states = model(input_values).last_hidden_state ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict extract_features = self.feature_extractor(input_values) extract_features = extract_features.transpose(1, 2) if attention_mask is not None: # compute reduced attention_mask corresponding to feature vectors attention_mask = self._get_feature_vector_attention_mask(extract_features.shape[1], attention_mask) hidden_states = self.feature_projection(extract_features) hidden_states = self._mask_hidden_states(hidden_states, mask_time_indices=mask_time_indices) encoder_outputs = self.encoder( hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = encoder_outputs[0] if not return_dict: return (hidden_states,) + encoder_outputs[1:] return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings( """Hubert Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).""", HUBERT_START_DOCSTRING, ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForCTC with Wav2Vec2->Hubert, wav2vec2->hubert, WAV_2_VEC_2->HUBERT class HubertForCTC(HubertPreTrainedModel): def __init__(self, config, target_lang: Optional[str] = None): super().__init__(config) self.hubert = HubertModel(config) self.dropout = nn.Dropout(config.final_dropout) self.target_lang = target_lang if config.vocab_size is None: raise ValueError( f"You are trying to instantiate {self.__class__} with a configuration that " "does not define the vocabulary size of the language model head. Please " "instantiate the model as follows: `HubertForCTC.from_pretrained(..., vocab_size=vocab_size)`. " "or define `vocab_size` of your model's configuration." ) output_hidden_size = ( config.output_hidden_size if hasattr(config, "add_adapter") and config.add_adapter else config.hidden_size ) self.lm_head = nn.Linear(output_hidden_size, config.vocab_size) # Initialize weights and apply final processing self.post_init() def tie_weights(self): """ This method overwrites [`~PreTrainedModel.tie_weights`] so that adapter weights can be correctly loaded when passing `target_lang=...` to `from_pretrained(...)`. This method is **not** supposed to be called by the user and is prone to be changed in the future. """ # Note that `tie_weights` is usually used to tie input and output embedding weights. The method is re-purposed to # correctly load adapter layers for Hubert so that we do not have to introduce a new API to # [`PreTrainedModel`]. While slightly hacky, Hubert never has to tie input and output embeddings, so that it is # ok to repurpose this function here. target_lang = self.target_lang if target_lang is not None and getattr(self.config, "adapter_attn_dim", None) is None: raise ValueError(f"Cannot pass `target_lang`: {target_lang} if `config.adapter_attn_dim` is not defined.") elif target_lang is None and getattr(self.config, "adapter_attn_dim", None) is not None: logger.info("By default `target_lang` is set to 'eng'.") elif target_lang is not None: self.load_adapter(target_lang, force_load=True) def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5." "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.hubert.feature_extractor._freeze_parameters() def freeze_base_model(self): """ Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated. """ for param in self.hubert.parameters(): param.requires_grad = False @add_start_docstrings_to_model_forward(HUBERT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=CausalLMOutput, config_class=_CONFIG_FOR_DOC, expected_output=_CTC_EXPECTED_OUTPUT, expected_loss=_CTC_EXPECTED_LOSS, ) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.Tensor] = None, ) -> Union[Tuple, CausalLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*): Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to the sequence length of the output logits. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.hubert( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] hidden_states = self.dropout(hidden_states) logits = self.lm_head(hidden_states) loss = None if labels is not None: if labels.max() >= self.config.vocab_size: raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}") # retrieve loss input_lengths from attention_mask attention_mask = ( attention_mask if attention_mask is not None else torch.ones_like(input_values, dtype=torch.long) ) input_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long) # assuming that padded tokens are filled with -100 # when not being attended to labels_mask = labels >= 0 target_lengths = labels_mask.sum(-1) flattened_targets = labels.masked_select(labels_mask) # ctc_loss doesn't support fp16 log_probs = nn.functional.log_softmax(logits, dim=-1, dtype=torch.float32).transpose(0, 1) with torch.backends.cudnn.flags(enabled=False): loss = nn.functional.ctc_loss( log_probs, flattened_targets, input_lengths, target_lengths, blank=self.config.pad_token_id, reduction=self.config.ctc_loss_reduction, zero_infinity=self.config.ctc_zero_infinity, ) if not return_dict: output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] return ((loss,) + output) if loss is not None else output return CausalLMOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions ) @add_start_docstrings( """ Hubert Model with a sequence classification head on top (a linear layer over the pooled output) for tasks like SUPERB Keyword Spotting. """, HUBERT_START_DOCSTRING, ) # Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification with Wav2Vec2->Hubert, wav2vec2->hubert, WAV_2_VEC_2->HUBERT class HubertForSequenceClassification(HubertPreTrainedModel): def __init__(self, config): super().__init__(config) if hasattr(config, "add_adapter") and config.add_adapter: raise ValueError( "Sequence classification does not support the use of Hubert adapters (config.add_adapter=True)" ) self.hubert = HubertModel(config) num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings if config.use_weighted_layer_sum: self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers) self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size) self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels) # Initialize weights and apply final processing self.post_init() def freeze_feature_extractor(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameters will not be updated during training. """ warnings.warn( "The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5." "Please use the equivalent `freeze_feature_encoder` method instead.", FutureWarning, ) self.freeze_feature_encoder() def freeze_feature_encoder(self): """ Calling this function will disable the gradient computation for the feature encoder so that its parameter will not be updated during training. """ self.hubert.feature_extractor._freeze_parameters() def freeze_base_model(self): """ Calling this function will disable the gradient computation for the base model so that its parameters will not be updated during training. Only the classification head will be updated. """ for param in self.hubert.parameters(): param.requires_grad = False @add_start_docstrings_to_model_forward(HUBERT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_SEQ_CLASS_CHECKPOINT, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, modality="audio", expected_output=_SEQ_CLASS_EXPECTED_OUTPUT, expected_loss=_SEQ_CLASS_EXPECTED_LOSS, ) def forward( self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.Tensor] = None, ) -> Union[Tuple, SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states outputs = self.hubert( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if self.config.use_weighted_layer_sum: hidden_states = outputs[_HIDDEN_STATES_START_POSITION] hidden_states = torch.stack(hidden_states, dim=1) norm_weights = nn.functional.softmax(self.layer_weights, dim=-1) hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1) else: hidden_states = outputs[0] hidden_states = self.projector(hidden_states) if attention_mask is None: pooled_output = hidden_states.mean(dim=1) else: padding_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask) hidden_states[~padding_mask] = 0.0 pooled_output = hidden_states.sum(dim=1) / padding_mask.sum(dim=1).view(-1, 1) logits = self.classifier(pooled_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/hubert/convert_distilhubert_original_s3prl_checkpoint_to_pytorch.py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert Hubert checkpoint.""" import argparse import torch from s3prl.hub import distilhubert from transformers import HubertConfig, HubertModel, Wav2Vec2FeatureExtractor, logging logging.set_verbosity_info() logger = logging.get_logger(__name__) MAPPING = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "mask_emb": "masked_spec_embed", } def set_recursively(hf_pointer, key, value, full_name, weight_type): for attribute in key.split("."): hf_pointer = getattr(hf_pointer, attribute) if weight_type is not None: hf_shape = getattr(hf_pointer, weight_type).shape else: hf_shape = hf_pointer.shape assert hf_shape == value.shape, ( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": hf_pointer.weight.data = value elif weight_type == "weight_g": hf_pointer.weight_g.data = value elif weight_type == "weight_v": hf_pointer.weight_v.data = value elif weight_type == "bias": hf_pointer.bias.data = value else: hf_pointer.data = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.") def recursively_load_weights(fairseq_model, hf_model): unused_weights = [] fairseq_dict = fairseq_model.state_dict() feature_extractor = hf_model.feature_extractor for name, value in fairseq_dict.items(): is_used = False if "conv_layers" in name: load_conv_layer( name, value, feature_extractor, unused_weights, hf_model.config.feat_extract_norm == "group", ) is_used = True else: for key, mapped_key in MAPPING.items(): mapped_key = mapped_key if key in name: is_used = True if "*" in mapped_key: layer_index = name.split(key)[0].split(".")[-2] mapped_key = mapped_key.replace("*", layer_index) if "weight_g" in name: weight_type = "weight_g" elif "weight_v" in name: weight_type = "weight_v" elif "weight" in name: weight_type = "weight" elif "bias" in name: weight_type = "bias" else: weight_type = None set_recursively(hf_model, mapped_key, value, name, weight_type) continue if not is_used: unused_weights.append(name) logger.warning(f"Unused weights: {unused_weights}") def load_conv_layer(full_name, value, feature_extractor, unused_weights, use_group_norm): name = full_name.split("conv_layers.")[-1] items = name.split(".") layer_id = int(items[0]) type_id = int(items[1]) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) feature_extractor.conv_layers[layer_id].conv.bias.data = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}.") elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) feature_extractor.conv_layers[layer_id].conv.weight.data = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}.") elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) feature_extractor.conv_layers[layer_id].layer_norm.bias.data = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.") elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) feature_extractor.conv_layers[layer_id].layer_norm.weight.data = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.") else: unused_weights.append(full_name) def convert_config(model): config = HubertConfig() fs_config = model.config config.activation_dropout = fs_config.activation_dropout config.apply_spec_augment = False config.attention_dropout = fs_config.attention_dropout config.conv_bias = False conv_layers = eval(fs_config.extractor_conv_feature_layers) config.conv_dim = [x[0] for x in conv_layers] config.conv_kernel = [x[1] for x in conv_layers] config.conv_stride = [x[2] for x in conv_layers] config.feat_extract_activation = "gelu" config.feat_extract_norm = "layer" if fs_config.extractor_mode == "layer_norm" else "group" config.feat_proj_layer_norm = False config.feat_proj_dropout = 0.0 config.final_dropout = 0.0 config.hidden_act = fs_config.activation_fn config.hidden_dropout = fs_config.dropout config.hidden_size = fs_config.encoder_embed_dim config.initializer_range = 0.02 config.intermediate_size = fs_config.encoder_ffn_embed_dim config.layer_norm_eps = 1e-5 config.layerdrop = 0.0 config.num_attention_heads = fs_config.encoder_attention_heads config.num_conv_pos_embedding_groups = fs_config.conv_pos_groups config.num_conv_pos_embeddings = fs_config.conv_pos config.num_feat_extract_layers = len(conv_layers) config.num_hidden_layers = fs_config.encoder_layers return config @torch.no_grad() def convert_hubert_checkpoint(pytorch_dump_folder_path, config_path=None): """ Copy/paste/tweak model's weights to transformers design. """ model = distilhubert().model.model if config_path is not None: config = HubertConfig.from_pretrained(config_path) else: config = convert_config(model) model = model.eval() feature_extractor = Wav2Vec2FeatureExtractor( feature_size=1, sampling_rate=16000, padding_value=0, do_normalize=False, return_attention_mask=False, ) hf_model = HubertModel(config) recursively_load_weights(model, hf_model) feature_extractor.save_pretrained(pytorch_dump_folder_path) hf_model.save_pretrained(pytorch_dump_folder_path) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") args = parser.parse_args() convert_hubert_checkpoint(args.pytorch_dump_folder_path, args.config_path)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/hubert/convert_hubert_original_pytorch_checkpoint_to_pytorch.py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert Hubert checkpoint.""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, Wav2Vec2CTCTokenizer, Wav2Vec2FeatureExtractor, Wav2Vec2Processor, logging, ) logging.set_verbosity_info() logger = logging.get_logger(__name__) MAPPING = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def set_recursively(hf_pointer, key, value, full_name, weight_type): for attribute in key.split("."): hf_pointer = getattr(hf_pointer, attribute) if weight_type is not None: hf_shape = getattr(hf_pointer, weight_type).shape else: hf_shape = hf_pointer.shape assert hf_shape == value.shape, ( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": hf_pointer.weight.data = value elif weight_type == "weight_g": hf_pointer.weight_g.data = value elif weight_type == "weight_v": hf_pointer.weight_v.data = value elif weight_type == "bias": hf_pointer.bias.data = value else: hf_pointer.data = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.") def recursively_load_weights(fairseq_model, hf_model, is_finetuned): unused_weights = [] fairseq_dict = fairseq_model.state_dict() feature_extractor = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): is_used = False if "conv_layers" in name: load_conv_layer( name, value, feature_extractor, unused_weights, hf_model.config.feat_extract_norm == "group", ) is_used = True else: for key, mapped_key in MAPPING.items(): mapped_key = "hubert." + mapped_key if (is_finetuned and mapped_key != "lm_head") else mapped_key if key in name or (key.split("w2v_model.")[-1] == name.split(".")[0] and not is_finetuned): is_used = True if "*" in mapped_key: layer_index = name.split(key)[0].split(".")[-2] mapped_key = mapped_key.replace("*", layer_index) if "weight_g" in name: weight_type = "weight_g" elif "weight_v" in name: weight_type = "weight_v" elif "weight" in name: weight_type = "weight" elif "bias" in name: weight_type = "bias" else: weight_type = None set_recursively(hf_model, mapped_key, value, name, weight_type) continue if not is_used: unused_weights.append(name) logger.warning(f"Unused weights: {unused_weights}") def load_conv_layer(full_name, value, feature_extractor, unused_weights, use_group_norm): name = full_name.split("conv_layers.")[-1] items = name.split(".") layer_id = int(items[0]) type_id = int(items[1]) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) feature_extractor.conv_layers[layer_id].conv.bias.data = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}.") elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) feature_extractor.conv_layers[layer_id].conv.weight.data = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}.") elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) feature_extractor.conv_layers[layer_id].layer_norm.bias.data = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.") elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) feature_extractor.conv_layers[layer_id].layer_norm.weight.data = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.") else: unused_weights.append(full_name) @torch.no_grad() def convert_hubert_checkpoint( checkpoint_path, pytorch_dump_folder_path, config_path=None, dict_path=None, is_finetuned=True ): """ Copy/paste/tweak model's weights to transformers design. """ if config_path is not None: config = HubertConfig.from_pretrained(config_path) else: config = HubertConfig() if is_finetuned: if dict_path: target_dict = Dictionary.load(dict_path) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq config.bos_token_id = target_dict.pad_index config.pad_token_id = target_dict.bos_index config.eos_token_id = target_dict.eos_index config.vocab_size = len(target_dict.symbols) vocab_path = os.path.join(pytorch_dump_folder_path, "vocab.json") if not os.path.isdir(pytorch_dump_folder_path): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(pytorch_dump_folder_path)) return os.makedirs(pytorch_dump_folder_path, exist_ok=True) with open(vocab_path, "w", encoding="utf-8") as vocab_handle: json.dump(target_dict.indices, vocab_handle) tokenizer = Wav2Vec2CTCTokenizer( vocab_path, unk_token=target_dict.unk_word, pad_token=target_dict.pad_word, bos_token=target_dict.bos_word, eos_token=target_dict.eos_word, word_delimiter_token="|", do_lower_case=False, ) return_attention_mask = True if config.feat_extract_norm == "layer" else False feature_extractor = Wav2Vec2FeatureExtractor( feature_size=1, sampling_rate=16000, padding_value=0, do_normalize=True, return_attention_mask=return_attention_mask, ) processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer) processor.save_pretrained(pytorch_dump_folder_path) hf_wav2vec = HubertForCTC(config) else: hf_wav2vec = HubertModel(config) if is_finetuned: model, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={"data": "/".join(dict_path.split("/")[:-1])} ) else: model, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path]) model = model[0].eval() recursively_load_weights(model, hf_wav2vec, is_finetuned) hf_wav2vec.save_pretrained(pytorch_dump_folder_path) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) args = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/hubert/convert_hubert_original_s3prl_checkpoint_to_pytorch.py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert Hubert checkpoint.""" import argparse import torch from transformers import HubertConfig, HubertForSequenceClassification, Wav2Vec2FeatureExtractor, logging logging.set_verbosity_info() logger = logging.get_logger(__name__) SUPPORTED_MODELS = ["UtteranceLevel"] @torch.no_grad() def convert_s3prl_checkpoint(base_model_name, config_path, checkpoint_path, model_dump_path): """ Copy/paste/tweak model's weights to transformers design. """ checkpoint = torch.load(checkpoint_path, map_location="cpu") if checkpoint["Config"]["downstream_expert"]["modelrc"]["select"] not in SUPPORTED_MODELS: raise NotImplementedError(f"The supported s3prl models are {SUPPORTED_MODELS}") downstream_dict = checkpoint["Downstream"] hf_congfig = HubertConfig.from_pretrained(config_path) hf_model = HubertForSequenceClassification.from_pretrained(base_model_name, config=hf_congfig) hf_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained( base_model_name, return_attention_mask=True, do_normalize=False ) if hf_congfig.use_weighted_layer_sum: hf_model.layer_weights.data = checkpoint["Featurizer"]["weights"] hf_model.projector.weight.data = downstream_dict["projector.weight"] hf_model.projector.bias.data = downstream_dict["projector.bias"] hf_model.classifier.weight.data = downstream_dict["model.post_net.linear.weight"] hf_model.classifier.bias.data = downstream_dict["model.post_net.linear.bias"] hf_feature_extractor.save_pretrained(model_dump_path) hf_model.save_pretrained(model_dump_path) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model." ) parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.") parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.") args = parser.parse_args() convert_s3prl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/perceiver/__init__.py
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) _import_structure = { "configuration_perceiver": ["PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP", "PerceiverConfig", "PerceiverOnnxConfig"], "tokenization_perceiver": ["PerceiverTokenizer"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["feature_extraction_perceiver"] = ["PerceiverFeatureExtractor"] _import_structure["image_processing_perceiver"] = ["PerceiverImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_perceiver"] = [ "PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST", "PerceiverForImageClassificationConvProcessing", "PerceiverForImageClassificationFourier", "PerceiverForImageClassificationLearned", "PerceiverForMaskedLM", "PerceiverForMultimodalAutoencoding", "PerceiverForOpticalFlow", "PerceiverForSequenceClassification", "PerceiverLayer", "PerceiverModel", "PerceiverPreTrainedModel", ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/perceiver/modeling_perceiver.py
# coding=utf-8 # Copyright 2021 Deepmind and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch Perceiver model.""" import abc import math from dataclasses import dataclass from functools import reduce from operator import __add__ from typing import Any, Callable, Dict, List, Mapping, Optional, Tuple, Union import numpy as np import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import BaseModelOutputWithCrossAttentions from ...modeling_utils import PreTrainedModel from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, meshgrid, prune_linear_layer from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_perceiver import PerceiverConfig ModalitySizeType = Mapping[str, int] PreprocessorOutputType = Tuple[torch.Tensor, Optional[torch.Tensor], torch.Tensor] PreprocessorType = Callable[..., PreprocessorOutputType] PostprocessorType = Callable[..., Any] logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "deepmind/language-perceiver" _CONFIG_FOR_DOC = "PerceiverConfig" PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST = [ "deepmind/language-perceiver", # See all Perceiver models at https://huggingface.co/models?filter=perceiver ] @dataclass class PerceiverModelOutput(ModelOutput): """ Base class for Perceiver base model's outputs, with potential hidden states, attentions and cross-attentions. Args: logits (`torch.FloatTensor` of shape `(batch_size, num_labels)`): Classification (or regression if config.num_labels==1) scores (before SoftMax). last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads. """ logits: torch.FloatTensor = None last_hidden_state: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None cross_attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class PerceiverDecoderOutput(ModelOutput): """ Base class for Perceiver decoder outputs, with potential cross-attentions. Args: logits (`torch.FloatTensor` of shape `(batch_size, num_labels)`): Output of the basic decoder. cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads. """ logits: torch.FloatTensor = None cross_attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class PerceiverMaskedLMOutput(ModelOutput): """ Base class for Perceiver's masked language model outputs. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Masked language modeling (MLM) loss. logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, num_latents, num_latents)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None cross_attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class PerceiverClassifierOutput(ModelOutput): """ Base class for Perceiver's outputs of sequence/image classification models, optical flow and multimodal autoencoding. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Classification (or regression if config.num_labels==1) loss. logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`): Classification (or regression if config.num_labels==1) scores (before SoftMax). hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None cross_attentions: Optional[Tuple[torch.FloatTensor]] = None class PerceiverEmbeddings(nn.Module): """Construct the latent embeddings.""" def __init__(self, config): super().__init__() self.latents = nn.Parameter(torch.randn(config.num_latents, config.d_latents)) def forward(self, batch_size: int): return self.latents.expand(batch_size, -1, -1) # Thanks, Phil Wang class PerceiverSelfAttention(nn.Module): """Multi-headed {cross, self}-attention. Can be used both in the encoder as well as in the decoder.""" def __init__( self, config, is_cross_attention=False, qk_channels=None, v_channels=None, num_heads=1, q_dim=None, kv_dim=None, ): super().__init__() self.num_heads = num_heads # Q and K must have the same number of channels. # Default to preserving Q's input's shape. if qk_channels is None: qk_channels = q_dim # V's num_channels determines the shape of the output of QKV-attention. # Default to the same number of channels used in the key-query operation. if v_channels is None: v_channels = qk_channels if qk_channels % num_heads != 0: raise ValueError(f"qk_channels ({qk_channels}) must be divisible by num_heads ({num_heads}).") if v_channels % num_heads != 0: raise ValueError(f"v_channels ({v_channels}) must be divisible by num_heads ({num_heads}).") self.qk_channels = qk_channels self.v_channels = v_channels self.qk_channels_per_head = self.qk_channels // num_heads self.v_channels_per_head = self.v_channels // num_heads # Layer normalization self.layernorm1 = nn.LayerNorm(q_dim) self.layernorm2 = nn.LayerNorm(kv_dim) if is_cross_attention else nn.Identity() # Projection matrices self.query = nn.Linear(q_dim, qk_channels) self.key = nn.Linear(kv_dim, qk_channels) self.value = nn.Linear(kv_dim, v_channels) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x, channels_per_head): new_x_shape = x.size()[:-1] + (self.num_heads, channels_per_head) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs: Optional[torch.FloatTensor] = None, inputs_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: hidden_states = self.layernorm1(hidden_states) inputs = self.layernorm2(inputs) # Project queries, keys and values to a common feature dimension. If this is instantiated as a cross-attention module, # the keys and values come from the inputs; the attention mask needs to be such that the inputs's non-relevant tokens are not attended to. is_cross_attention = inputs is not None queries = self.query(hidden_states) if is_cross_attention: keys = self.key(inputs) values = self.value(inputs) attention_mask = inputs_mask else: keys = self.key(hidden_states) values = self.value(hidden_states) # Reshape channels for multi-head attention. # We reshape from (batch_size, time, channels) to (batch_size, num_heads, time, channels per head) queries = self.transpose_for_scores(queries, self.qk_channels_per_head) keys = self.transpose_for_scores(keys, self.qk_channels_per_head) values = self.transpose_for_scores(values, self.v_channels_per_head) # Take the dot product between the queries and keys to get the raw attention scores. attention_scores = torch.matmul(queries, keys.transpose(-1, -2)) batch_size, num_heads, seq_len, q_head_dim = queries.shape _, _, _, v_head_dim = values.shape hiddens = self.num_heads * v_head_dim attention_scores = attention_scores / math.sqrt(q_head_dim) if attention_mask is not None: # Apply the attention mask (precomputed for all layers in PerceiverModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.Softmax(dim=-1)(attention_scores) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, values) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (hiddens,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs class PerceiverSelfOutput(nn.Module): def __init__(self, config, input_channels, output_channels): super().__init__() self.dense = nn.Linear(input_channels, output_channels) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) return hidden_states class PerceiverAttention(nn.Module): """Attention module, including a dense block.""" def __init__( self, config, is_cross_attention=False, qk_channels=None, v_channels=None, num_heads=1, q_dim=None, kv_dim=None, use_query_residual=True, ): super().__init__() # MultiHead attention if is_cross_attention and qk_channels is None: if config.cross_attention_shape_for_attention == "q": qk_channels = q_dim elif config.cross_attention_shape_for_attention == "kv": qk_channels = kv_dim else: raise ValueError( f"Unknown value {config.cross_attention_shape_for_attention} for " "cross_attention_shape_for_attention." ) else: if qk_channels is None: qk_channels = q_dim if v_channels is None: v_channels = qk_channels self.self = PerceiverSelfAttention( config, is_cross_attention=is_cross_attention, qk_channels=qk_channels, v_channels=v_channels, num_heads=num_heads, q_dim=q_dim, kv_dim=kv_dim, ) # dense block output_channels = None if is_cross_attention: output_channels = q_dim else: if output_channels is None: output_channels = v_channels self.output = PerceiverSelfOutput(config, input_channels=self.self.v_channels, output_channels=output_channels) self.use_query_residual = use_query_residual self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs: Optional[torch.FloatTensor] = None, inputs_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: self_outputs = self.self( hidden_states, attention_mask, head_mask, inputs, inputs_mask, output_attentions, ) # Output projection attention_output = self.output(self_outputs[0]) # Optionally include a residual to the original queries. # Consider omitting the residual if the semantics of query and output # are different, e.g. if queries are positions and outputs are pixels. if self.use_query_residual: attention_output = attention_output + hidden_states outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs class PerceiverMLP(nn.Module): """A Transformer-style dense module to follow attention.""" def __init__(self, config, input_size, widening_factor): super().__init__() self.dense1 = nn.Linear(input_size, widening_factor * input_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act self.dense2 = nn.Linear(widening_factor * input_size, input_size) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense1(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) hidden_states = self.dense2(hidden_states) return hidden_states class PerceiverLayer(nn.Module): def __init__( self, config, is_cross_attention=False, qk_channels=None, v_channels=None, num_heads=1, q_dim=None, kv_dim=None, widening_factor=4, use_query_residual=True, ): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = PerceiverAttention( config, is_cross_attention=is_cross_attention, qk_channels=qk_channels, v_channels=v_channels, num_heads=num_heads, q_dim=q_dim, kv_dim=kv_dim, use_query_residual=use_query_residual, ) self.layernorm = nn.LayerNorm(q_dim) self.mlp = PerceiverMLP(config, input_size=q_dim, widening_factor=widening_factor) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs: Optional[torch.FloatTensor] = None, inputs_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: attention_outputs = self.attention( hidden_states, attention_mask, head_mask, inputs, inputs_mask, output_attentions, ) attention_output = attention_outputs[0] outputs = attention_outputs[1:] # add attentions if we output attention weights layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) layer_output = layer_output + attention_output # residual connection outputs = (layer_output,) + outputs return outputs def feed_forward_chunk(self, attention_output): layer_output = self.layernorm(attention_output) layer_output = self.mlp(layer_output) return layer_output class PerceiverEncoder(nn.Module): """The Perceiver Encoder: a scalable, fully attentional encoder.""" def __init__(self, config, kv_dim=None): super().__init__() self.config = config # Check that we can use multihead-attention with these shapes. if config.d_latents % config.num_self_attention_heads != 0: raise ValueError( f"num_z_channels ({config.d_latents}) must be divisible by" f" num_self_attend_heads ({config.num_self_attention_heads})." ) if config.d_latents % config.num_cross_attention_heads != 0: raise ValueError( f"num_z_channels ({config.d_latents}) must be divisible by" f" num_cross_attend_heads ({config.num_cross_attention_heads})." ) # Construct the cross attention layer. self.cross_attention = PerceiverLayer( config, is_cross_attention=True, qk_channels=config.qk_channels, v_channels=config.v_channels, num_heads=config.num_cross_attention_heads, q_dim=config.d_latents, kv_dim=kv_dim, widening_factor=config.cross_attention_widening_factor, use_query_residual=config.use_query_residual, ) # Construct a single block of self-attention layers. # We get deeper architectures by applying this block more than once. self_attention_layers = [] for _ in range(config.num_self_attends_per_block): layer = PerceiverLayer( config, is_cross_attention=False, qk_channels=config.qk_channels, v_channels=config.v_channels, num_heads=config.num_self_attention_heads, q_dim=config.d_latents, kv_dim=config.d_latents, widening_factor=config.self_attention_widening_factor, ) self_attention_layers.append(layer) self.self_attends = nn.ModuleList(self_attention_layers) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs: Optional[torch.FloatTensor] = None, inputs_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple, BaseModelOutputWithCrossAttentions]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions else None # Apply the cross-attention between the latents (hidden_states) and inputs: layer_outputs = self.cross_attention( hidden_states, attention_mask=attention_mask, head_mask=None, inputs=inputs, inputs_mask=inputs_mask, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_cross_attentions = all_cross_attentions + (layer_outputs[1],) # Apply the block of self-attention layers more than once: for _ in range(self.config.num_blocks): for i, layer_module in enumerate(self.self_attends): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None layer_outputs = layer_module( hidden_states, attention_mask=attention_mask, head_mask=layer_head_mask, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [hidden_states, all_hidden_states, all_self_attentions, all_cross_attentions] if v is not None ) return BaseModelOutputWithCrossAttentions( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) class PerceiverPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = PerceiverConfig base_model_prefix = "perceiver" main_input_name = "inputs" def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif hasattr(module, "latents"): module.latents.data.normal_(mean=0.0, std=self.config.initializer_range) elif hasattr(module, "position_embeddings") and isinstance(module, PerceiverTrainablePositionEncoding): module.position_embeddings.data.normal_(mean=0.0, std=self.config.initializer_range) elif isinstance(module, nn.ParameterDict): for modality in module.keys(): module[modality].data.normal_(mean=0.0, std=self.config.initializer_range) elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) PERCEIVER_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`PerceiverConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ PERCEIVER_MODEL_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`PerceiverConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. decoder (*DecoderType*, *optional*): Optional decoder to use to decode the latent representation of the encoder. Examples include *transformers.models.perceiver.modeling_perceiver.PerceiverBasicDecoder*, *transformers.models.perceiver.modeling_perceiver.PerceiverClassificationDecoder*, *transformers.models.perceiver.modeling_perceiver.PerceiverMultimodalDecoder*. input_preprocessor (*PreprocessorType*, *optional*): Optional input preprocessor to use. Examples include *transformers.models.perceiver.modeling_perceiver.PerceiverImagePreprocessor*, *transformers.models.perceiver.modeling_perceiver.PerceiverAudioPreprocessor*, *transformers.models.perceiver.modeling_perceiver.PerceiverTextPreprocessor*, *transformers.models.perceiver.modeling_perceiver.PerceiverMultimodalPreprocessor*. output_postprocessor (*PostprocessorType*, *optional*): Optional output postprocessor to use. Examples include *transformers.models.perceiver.modeling_perceiver.PerceiverImagePostprocessor*, *transformers.models.perceiver.modeling_perceiver.PerceiverAudioPostprocessor*, *transformers.models.perceiver.modeling_perceiver.PerceiverClassificationPostprocessor*, *transformers.models.perceiver.modeling_perceiver.PerceiverProjectionPostprocessor*, *transformers.models.perceiver.modeling_perceiver.PerceiverMultimodalPostprocessor*. Note that you can define your own decoders, preprocessors and/or postprocessors to fit your use-case. """ PERCEIVER_INPUTS_DOCSTRING = r""" Args: inputs (`torch.FloatTensor`): Inputs to the perceiver. Can be anything: images, text, audio, video, etc. attention_mask (`torch.FloatTensor` of shape `{0}`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( """The Perceiver: a scalable, fully attentional architecture.""", PERCEIVER_MODEL_START_DOCSTRING, ) class PerceiverModel(PerceiverPreTrainedModel): def __init__( self, config, decoder=None, input_preprocessor: PreprocessorType = None, output_postprocessor: PostprocessorType = None, ): super().__init__(config) self.config = config self.input_preprocessor = input_preprocessor self.output_postprocessor = output_postprocessor self.embeddings = PerceiverEmbeddings(config) self.encoder = PerceiverEncoder( config, kv_dim=input_preprocessor.num_channels if input_preprocessor is not None else config.d_model ) self.decoder = decoder # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.latents def set_input_embeddings(self, value): self.embeddings.latents = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(PERCEIVER_INPUTS_DOCSTRING.format("(batch_size, sequence_length)")) @replace_return_docstrings(output_type=PerceiverModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, inputs: torch.FloatTensor, attention_mask: Optional[torch.FloatTensor] = None, subsampled_output_points: Optional[Dict[str, torch.Tensor]] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, PerceiverModelOutput]: r""" Returns: Examples: ```python >>> from transformers import PerceiverConfig, PerceiverTokenizer, PerceiverImageProcessor, PerceiverModel >>> from transformers.models.perceiver.modeling_perceiver import ( ... PerceiverTextPreprocessor, ... PerceiverImagePreprocessor, ... PerceiverClassificationDecoder, ... ) >>> import torch >>> import requests >>> from PIL import Image >>> # EXAMPLE 1: using the Perceiver to classify texts >>> # - we define a TextPreprocessor, which can be used to embed tokens >>> # - we define a ClassificationDecoder, which can be used to decode the >>> # final hidden states of the latents to classification logits >>> # using trainable position embeddings >>> config = PerceiverConfig() >>> preprocessor = PerceiverTextPreprocessor(config) >>> decoder = PerceiverClassificationDecoder( ... config, ... num_channels=config.d_latents, ... trainable_position_encoding_kwargs=dict(num_channels=config.d_latents, index_dims=1), ... use_query_residual=True, ... ) >>> model = PerceiverModel(config, input_preprocessor=preprocessor, decoder=decoder) >>> # you can then do a forward pass as follows: >>> tokenizer = PerceiverTokenizer() >>> text = "hello world" >>> inputs = tokenizer(text, return_tensors="pt").input_ids >>> with torch.no_grad(): ... outputs = model(inputs=inputs) >>> logits = outputs.logits >>> list(logits.shape) [1, 2] >>> # to train, one can train the model using standard cross-entropy: >>> criterion = torch.nn.CrossEntropyLoss() >>> labels = torch.tensor([1]) >>> loss = criterion(logits, labels) >>> # EXAMPLE 2: using the Perceiver to classify images >>> # - we define an ImagePreprocessor, which can be used to embed images >>> config = PerceiverConfig(image_size=224) >>> preprocessor = PerceiverImagePreprocessor( ... config, ... prep_type="conv1x1", ... spatial_downsample=1, ... out_channels=256, ... position_encoding_type="trainable", ... concat_or_add_pos="concat", ... project_pos_dim=256, ... trainable_position_encoding_kwargs=dict( ... num_channels=256, ... index_dims=config.image_size**2, ... ), ... ) >>> model = PerceiverModel( ... config, ... input_preprocessor=preprocessor, ... decoder=PerceiverClassificationDecoder( ... config, ... num_channels=config.d_latents, ... trainable_position_encoding_kwargs=dict(num_channels=config.d_latents, index_dims=1), ... use_query_residual=True, ... ), ... ) >>> # you can then do a forward pass as follows: >>> image_processor = PerceiverImageProcessor() >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = image_processor(image, return_tensors="pt").pixel_values >>> with torch.no_grad(): ... outputs = model(inputs=inputs) >>> logits = outputs.logits >>> list(logits.shape) [1, 2] >>> # to train, one can train the model using standard cross-entropy: >>> criterion = torch.nn.CrossEntropyLoss() >>> labels = torch.tensor([1]) >>> loss = criterion(logits, labels) ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if self.input_preprocessor is not None: inputs, modality_sizes, inputs_without_pos = self.input_preprocessor(inputs) else: modality_sizes = None inputs_without_pos = None if inputs.size()[-1] != self.config.d_model: raise ValueError( f"Last dimension of the inputs: {inputs.size()[-1]} doesn't correspond to config.d_model:" f" {self.config.d_model}. Make sure to set config.d_model appropriately." ) batch_size, seq_length, _ = inputs.size() device = inputs.device # If no attention mask is provided, make them all ones if attention_mask is None: attention_mask = torch.ones((batch_size, seq_length), device=device) # Make the attention mask broadcastable to [batch_size, num_heads, seq_length, seq_length] extended_attention_mask = self.invert_attention_mask(attention_mask) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_blocks x num_heads] # and head_mask is converted to shape [num_blocks x batch x num_heads x N x N] head_mask = self.get_head_mask(head_mask, self.config.num_blocks * self.config.num_self_attends_per_block) embedding_output = self.embeddings(batch_size=batch_size) encoder_outputs = self.encoder( embedding_output, attention_mask=None, head_mask=head_mask, inputs=inputs, inputs_mask=extended_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] logits = None if self.decoder: if subsampled_output_points is not None: output_modality_sizes = { "audio": subsampled_output_points["audio"].shape[0], "image": subsampled_output_points["image"].shape[0], "label": 1, } else: output_modality_sizes = modality_sizes decoder_query = self.decoder.decoder_query( inputs, modality_sizes, inputs_without_pos, subsampled_points=subsampled_output_points ) decoder_outputs = self.decoder( decoder_query, z=sequence_output, query_mask=extended_attention_mask, output_attentions=output_attentions, ) logits = decoder_outputs.logits # add cross-attentions of decoder if output_attentions and decoder_outputs.cross_attentions is not None: if return_dict: encoder_outputs.cross_attentions = ( encoder_outputs.cross_attentions + decoder_outputs.cross_attentions ) else: encoder_outputs = encoder_outputs + decoder_outputs.cross_attentions if self.output_postprocessor: logits = self.output_postprocessor(logits, modality_sizes=output_modality_sizes) if not return_dict: if logits is not None: return (logits, sequence_output) + encoder_outputs[1:] else: return (sequence_output,) + encoder_outputs[1:] return PerceiverModelOutput( logits=logits, last_hidden_state=sequence_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) @add_start_docstrings("""Example use of Perceiver for masked language modeling.""", PERCEIVER_START_DOCSTRING) class PerceiverForMaskedLM(PerceiverPreTrainedModel): def __init__(self, config: PerceiverConfig): super().__init__(config) text_preprocessor = PerceiverTextPreprocessor(config) trainable_position_encoding_kwargs_decoder = { "num_channels": text_preprocessor.num_channels, "index_dims": config.max_position_embeddings, } self.perceiver = PerceiverModel( config, input_preprocessor=text_preprocessor, decoder=PerceiverBasicDecoder( config, output_num_channels=config.d_latents, output_index_dims=config.max_position_embeddings, # we need to define the seq_len of the inputs beforehand num_channels=text_preprocessor.num_channels, qk_channels=8 * 32, v_channels=text_preprocessor.num_channels, num_heads=8, use_query_residual=False, final_project=False, trainable_position_encoding_kwargs=trainable_position_encoding_kwargs_decoder, ), ) self.embedding_decoder = PerceiverEmbeddingDecoder(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(PERCEIVER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=PerceiverMaskedLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, inputs: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, labels: Optional[torch.Tensor] = None, return_dict: Optional[bool] = None, input_ids: Optional[torch.Tensor] = None, ) -> Union[Tuple, PerceiverMaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` Returns: Examples: ```python >>> from transformers import AutoTokenizer, PerceiverForMaskedLM >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("deepmind/language-perceiver") >>> model = PerceiverForMaskedLM.from_pretrained("deepmind/language-perceiver") >>> # training >>> text = "This is an incomplete sentence where some words are missing." >>> inputs = tokenizer(text, padding="max_length", return_tensors="pt") >>> # mask " missing." >>> inputs["input_ids"][0, 52:61] = tokenizer.mask_token_id >>> labels = tokenizer(text, padding="max_length", return_tensors="pt").input_ids >>> outputs = model(**inputs, labels=labels) >>> loss = outputs.loss >>> round(loss.item(), 2) 19.87 >>> logits = outputs.logits >>> list(logits.shape) [1, 2048, 262] >>> # inference >>> text = "This is an incomplete sentence where some words are missing." >>> encoding = tokenizer(text, padding="max_length", return_tensors="pt") >>> # mask bytes corresponding to " missing.". Note that the model performs much better if the masked span starts with a space. >>> encoding["input_ids"][0, 52:61] = tokenizer.mask_token_id >>> # forward pass >>> with torch.no_grad(): ... outputs = model(**encoding) >>> logits = outputs.logits >>> list(logits.shape) [1, 2048, 262] >>> masked_tokens_predictions = logits[0, 52:61].argmax(dim=-1).tolist() >>> tokenizer.decode(masked_tokens_predictions) ' missing.' ```""" if inputs is not None and input_ids is not None: raise ValueError("You cannot use both `inputs` and `input_ids`") elif inputs is None and input_ids is not None: inputs = input_ids return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.perceiver( inputs=inputs, attention_mask=attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) logits = self.embedding_decoder( outputs.logits if return_dict else outputs[0], embedding_layer=self.perceiver.input_preprocessor.embeddings ) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() # -100 index = padding token masked_lm_loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return PerceiverMaskedLMOutput( loss=masked_lm_loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) @add_start_docstrings("""Example use of Perceiver for text classification.""", PERCEIVER_START_DOCSTRING) class PerceiverForSequenceClassification(PerceiverPreTrainedModel): def __init__(self, config): super().__init__(config) trainable_position_encoding_kwargs_decoder = {"num_channels": config.d_latents, "index_dims": 1} self.num_labels = config.num_labels self.perceiver = PerceiverModel( config, input_preprocessor=PerceiverTextPreprocessor(config), decoder=PerceiverClassificationDecoder( config, num_channels=config.d_latents, trainable_position_encoding_kwargs=trainable_position_encoding_kwargs_decoder, use_query_residual=True, ), ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(PERCEIVER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=PerceiverClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, inputs: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, labels: Optional[torch.Tensor] = None, return_dict: Optional[bool] = None, input_ids: Optional[torch.Tensor] = None, ) -> Union[Tuple, PerceiverClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> from transformers import AutoTokenizer, PerceiverForSequenceClassification >>> tokenizer = AutoTokenizer.from_pretrained("deepmind/language-perceiver") >>> model = PerceiverForSequenceClassification.from_pretrained("deepmind/language-perceiver") >>> text = "hello world" >>> inputs = tokenizer(text, return_tensors="pt").input_ids >>> outputs = model(inputs=inputs) >>> logits = outputs.logits >>> list(logits.shape) [1, 2] ```""" if inputs is not None and input_ids is not None: raise ValueError("You cannot use both `inputs` and `input_ids`") elif inputs is None and input_ids is not None: inputs = input_ids return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.perceiver( inputs=inputs, attention_mask=attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) logits = outputs.logits if return_dict else outputs[0] loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return PerceiverClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) @add_start_docstrings( """ Example use of Perceiver for image classification, for tasks such as ImageNet. This model uses learned position embeddings. In other words, this model is not given any privileged information about the structure of images. As shown in the paper, this model can achieve a top-1 accuracy of 72.7 on ImageNet. [`PerceiverForImageClassificationLearned`] uses [`~models.perceiver.modeling_perceiver.PerceiverImagePreprocessor`] (with `prep_type="conv1x1"`) to preprocess the input images, and [`~models.perceiver.modeling_perceiver.PerceiverClassificationDecoder`] to decode the latent representation of [`PerceiverModel`] into classification logits. """, PERCEIVER_START_DOCSTRING, ) class PerceiverForImageClassificationLearned(PerceiverPreTrainedModel): def __init__(self, config): super().__init__(config) trainable_position_encoding_kwargs_preprocessor = {"num_channels": 256, "index_dims": config.image_size**2} trainable_position_encoding_kwargs_decoder = {"num_channels": config.d_latents, "index_dims": 1} self.num_labels = config.num_labels self.perceiver = PerceiverModel( config, input_preprocessor=PerceiverImagePreprocessor( config, prep_type="conv1x1", spatial_downsample=1, out_channels=256, position_encoding_type="trainable", concat_or_add_pos="concat", project_pos_dim=256, trainable_position_encoding_kwargs=trainable_position_encoding_kwargs_preprocessor, ), decoder=PerceiverClassificationDecoder( config, num_channels=config.d_latents, trainable_position_encoding_kwargs=trainable_position_encoding_kwargs_decoder, use_query_residual=True, ), ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(PERCEIVER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=PerceiverClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, inputs: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, labels: Optional[torch.Tensor] = None, return_dict: Optional[bool] = None, pixel_values: Optional[torch.Tensor] = None, ) -> Union[Tuple, PerceiverClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> from transformers import AutoImageProcessor, PerceiverForImageClassificationLearned >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("deepmind/vision-perceiver-learned") >>> model = PerceiverForImageClassificationLearned.from_pretrained("deepmind/vision-perceiver-learned") >>> inputs = image_processor(images=image, return_tensors="pt").pixel_values >>> outputs = model(inputs=inputs) >>> logits = outputs.logits >>> list(logits.shape) [1, 1000] >>> # model predicts one of the 1000 ImageNet classes >>> predicted_class_idx = logits.argmax(-1).item() >>> print("Predicted class:", model.config.id2label[predicted_class_idx]) Predicted class: tabby, tabby cat ```""" if inputs is not None and pixel_values is not None: raise ValueError("You cannot use both `inputs` and `pixel_values`") elif inputs is None and pixel_values is not None: inputs = pixel_values return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.perceiver( inputs=inputs, attention_mask=attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) logits = outputs.logits if return_dict else outputs[0] loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return PerceiverClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) @add_start_docstrings( """ Example use of Perceiver for image classification, for tasks such as ImageNet. This model uses fixed 2D Fourier position embeddings. As shown in the paper, this model can achieve a top-1 accuracy of 79.0 on ImageNet, and 84.5 when pre-trained on a large-scale dataset (i.e. JFT). [`PerceiverForImageClassificationLearned`] uses [`~models.perceiver.modeling_perceiver.PerceiverImagePreprocessor`] (with `prep_type="pixels"`) to preprocess the input images, and [`~models.perceiver.modeling_perceiver.PerceiverClassificationDecoder`] to decode the latent representation of [`PerceiverModel`] into classification logits. """, PERCEIVER_START_DOCSTRING, ) class PerceiverForImageClassificationFourier(PerceiverPreTrainedModel): def __init__(self, config): super().__init__(config) fourier_position_encoding_kwargs_preprocessor = { "concat_pos": True, "max_resolution": (224, 224), "num_bands": 64, "sine_only": False, } trainable_position_encoding_kwargs_decoder = {"num_channels": config.d_latents, "index_dims": 1} self.num_labels = config.num_labels self.perceiver = PerceiverModel( config, input_preprocessor=PerceiverImagePreprocessor( config, prep_type="pixels", spatial_downsample=1, fourier_position_encoding_kwargs=fourier_position_encoding_kwargs_preprocessor, ), decoder=PerceiverClassificationDecoder( config, num_channels=config.d_latents, trainable_position_encoding_kwargs=trainable_position_encoding_kwargs_decoder, use_query_residual=True, ), ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(PERCEIVER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=PerceiverClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, inputs: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, labels: Optional[torch.Tensor] = None, return_dict: Optional[bool] = None, pixel_values: Optional[torch.Tensor] = None, ) -> Union[Tuple, PerceiverClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> from transformers import AutoImageProcessor, PerceiverForImageClassificationFourier >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("deepmind/vision-perceiver-fourier") >>> model = PerceiverForImageClassificationFourier.from_pretrained("deepmind/vision-perceiver-fourier") >>> inputs = image_processor(images=image, return_tensors="pt").pixel_values >>> outputs = model(inputs=inputs) >>> logits = outputs.logits >>> list(logits.shape) [1, 1000] >>> # model predicts one of the 1000 ImageNet classes >>> predicted_class_idx = logits.argmax(-1).item() >>> print("Predicted class:", model.config.id2label[predicted_class_idx]) Predicted class: tabby, tabby cat ```""" if inputs is not None and pixel_values is not None: raise ValueError("You cannot use both `inputs` and `pixel_values`") elif inputs is None and pixel_values is not None: inputs = pixel_values return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.perceiver( inputs=inputs, attention_mask=attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) logits = outputs.logits if return_dict else outputs[0] loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return PerceiverClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) @add_start_docstrings( """ Example use of Perceiver for image classification, for tasks such as ImageNet. This model uses a 2D conv+maxpool preprocessing network. As shown in the paper, this model can achieve a top-1 accuracy of 82.1 on ImageNet. [`PerceiverForImageClassificationLearned`] uses [`~models.perceiver.modeling_perceiver.PerceiverImagePreprocessor`] (with `prep_type="conv"`) to preprocess the input images, and [`~models.perceiver.modeling_perceiver.PerceiverClassificationDecoder`] to decode the latent representation of [`PerceiverModel`] into classification logits. """, PERCEIVER_START_DOCSTRING, ) class PerceiverForImageClassificationConvProcessing(PerceiverPreTrainedModel): def __init__(self, config): super().__init__(config) fourier_position_encoding_kwargs_preprocessor = { "concat_pos": True, "max_resolution": (56, 56), "num_bands": 64, "sine_only": False, } trainable_position_encoding_kwargs_decoder = {"num_channels": config.d_latents, "index_dims": 1} self.num_labels = config.num_labels self.perceiver = PerceiverModel( config, input_preprocessor=PerceiverImagePreprocessor( config, prep_type="conv", spatial_downsample=1, position_encoding_type="fourier", fourier_position_encoding_kwargs=fourier_position_encoding_kwargs_preprocessor, ), decoder=PerceiverClassificationDecoder( config, num_channels=config.d_latents, trainable_position_encoding_kwargs=trainable_position_encoding_kwargs_decoder, use_query_residual=True, ), ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(PERCEIVER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=PerceiverClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, inputs: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, labels: Optional[torch.Tensor] = None, return_dict: Optional[bool] = None, pixel_values: Optional[torch.Tensor] = None, ) -> Union[Tuple, PerceiverClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> from transformers import AutoImageProcessor, PerceiverForImageClassificationConvProcessing >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("deepmind/vision-perceiver-conv") >>> model = PerceiverForImageClassificationConvProcessing.from_pretrained("deepmind/vision-perceiver-conv") >>> inputs = image_processor(images=image, return_tensors="pt").pixel_values >>> outputs = model(inputs=inputs) >>> logits = outputs.logits >>> list(logits.shape) [1, 1000] >>> # model predicts one of the 1000 ImageNet classes >>> predicted_class_idx = logits.argmax(-1).item() >>> print("Predicted class:", model.config.id2label[predicted_class_idx]) Predicted class: tabby, tabby cat ```""" if inputs is not None and pixel_values is not None: raise ValueError("You cannot use both `inputs` and `pixel_values`") elif inputs is None and pixel_values is not None: inputs = pixel_values return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.perceiver( inputs=inputs, attention_mask=attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) logits = outputs.logits if return_dict else outputs[0] loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return PerceiverClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) @add_start_docstrings( """ Example use of Perceiver for optical flow, for tasks such as Sintel and KITTI. [`PerceiverForOpticalFlow`] uses [`~models.perceiver.modeling_perceiver.PerceiverImagePreprocessor`] (with *prep_type="patches"*) to preprocess the input images, and [`~models.perceiver.modeling_perceiver.PerceiverOpticalFlowDecoder`] to decode the latent representation of [`PerceiverModel`]. As input, one concatenates 2 subsequent frames along the channel dimension and extract a 3 x 3 patch around each pixel (leading to 3 x 3 x 3 x 2 = 54 values for each pixel). Fixed Fourier position encodings are used to encode the position of each pixel in the patch. Next, one applies the Perceiver encoder. To decode, one queries the latent representation using the same encoding used for the input. """, PERCEIVER_START_DOCSTRING, ) class PerceiverForOpticalFlow(PerceiverPreTrainedModel): def __init__(self, config): super().__init__(config) fourier_position_encoding_kwargs_preprocessor = { "num_bands": 64, "max_resolution": config.train_size, "sine_only": False, "concat_pos": True, } fourier_position_encoding_kwargs_decoder = { "concat_pos": True, "max_resolution": config.train_size, "num_bands": 64, "sine_only": False, } image_preprocessor = PerceiverImagePreprocessor( config, prep_type="patches", spatial_downsample=1, conv_after_patching=True, conv_after_patching_in_channels=54, temporal_downsample=2, position_encoding_type="fourier", # position_encoding_kwargs fourier_position_encoding_kwargs=fourier_position_encoding_kwargs_preprocessor, ) self.perceiver = PerceiverModel( config, input_preprocessor=image_preprocessor, decoder=PerceiverOpticalFlowDecoder( config, num_channels=image_preprocessor.num_channels, output_image_shape=config.train_size, rescale_factor=100.0, # decoder kwargs use_query_residual=False, output_num_channels=2, # We query the decoder using the first frame features # rather than a standard decoder position encoding. position_encoding_type="fourier", fourier_position_encoding_kwargs=fourier_position_encoding_kwargs_decoder, ), ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(PERCEIVER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=PerceiverClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, inputs: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, labels: Optional[torch.Tensor] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, PerceiverClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the optical flow loss. Indices should be in `[0, ..., config.num_labels - 1]`. Returns: Examples: ```python >>> from transformers import PerceiverForOpticalFlow >>> import torch >>> model = PerceiverForOpticalFlow.from_pretrained("deepmind/optical-flow-perceiver") >>> # in the Perceiver IO paper, the authors extract a 3 x 3 patch around each pixel, >>> # leading to 3 x 3 x 3 = 27 values for each pixel (as each pixel also has 3 color channels) >>> # patches have shape (batch_size, num_frames, num_channels, height, width) >>> # the authors train on resolutions of 368 x 496 >>> patches = torch.randn(1, 2, 27, 368, 496) >>> outputs = model(inputs=patches) >>> logits = outputs.logits >>> list(logits.shape) [1, 368, 496, 2] ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.perceiver( inputs=inputs, attention_mask=attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) logits = outputs.logits if return_dict else outputs[0] loss = None if labels is not None: raise NotImplementedError("Optical flow training is not yet supported") if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return PerceiverClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) @add_start_docstrings( """ Example use of Perceiver for multimodal (video) autoencoding, for tasks such as Kinetics-700. [`PerceiverForMultimodalAutoencoding`] uses [`~models.perceiver.modeling_perceiver.PerceiverMultimodalPreprocessor`] to preprocess the 3 modalities: images, audio and class labels. This preprocessor uses modality-specific preprocessors to preprocess every modality separately, after which they are concatenated. Trainable position embeddings are used to pad each modality to the same number of channels to make concatenation along the time dimension possible. Next, one applies the Perceiver encoder. [`~models.perceiver.modeling_perceiver.PerceiverMultimodalDecoder`] is used to decode the latent representation of [`PerceiverModel`]. This decoder uses each modality-specific decoder to construct queries. The decoder queries are created based on the inputs after preprocessing. However, autoencoding an entire video in a single forward pass is computationally infeasible, hence one only uses parts of the decoder queries to do cross-attention with the latent representation. This is determined by the subsampled indices for each modality, which can be provided as additional input to the forward pass of [`PerceiverForMultimodalAutoencoding`]. [`~models.perceiver.modeling_perceiver.PerceiverMultimodalDecoder`] also pads the decoder queries of the different modalities to the same number of channels, in order to concatenate them along the time dimension. Next, cross-attention is performed with the latent representation of [`PerceiverModel`]. Finally, [`~models.perceiver.modeling_perceiver.PerceiverMultiModalPostprocessor`] is used to turn this tensor into an actual video. It first splits up the output into the different modalities, and then applies the respective postprocessor for each modality. Note that, by masking the classification label during evaluation (i.e. simply providing a tensor of zeros for the "label" modality), this auto-encoding model becomes a Kinetics 700 video classifier. """, PERCEIVER_START_DOCSTRING, ) class PerceiverForMultimodalAutoencoding(PerceiverPreTrainedModel): def __init__(self, config: PerceiverConfig): super().__init__(config) n_audio_samples = config.num_frames * config.audio_samples_per_frame input_preprocessor = PerceiverMultimodalPreprocessor( min_padding_size=4, modalities={ "audio": PerceiverAudioPreprocessor( config, position_encoding_type="fourier", fourier_position_encoding_kwargs={ "num_bands": 192, "max_resolution": (n_audio_samples,), "sine_only": False, "concat_pos": True, }, prep_type="patches", samples_per_patch=config.samples_per_patch, ), "image": PerceiverImagePreprocessor( config, position_encoding_type="fourier", fourier_position_encoding_kwargs={ "num_bands": 32, "max_resolution": (config.num_frames, config.image_size, config.image_size), "sine_only": False, "concat_pos": True, }, prep_type="patches", spatial_downsample=4, temporal_downsample=1, ), "label": PerceiverOneHotPreprocessor(config), }, mask_probs={"image": 0.0, "audio": 0.0, "label": 1.0}, ) image_decoder = PerceiverBasicVideoAutoencodingDecoder( config, # Autoencoding, don't pass inputs to the queries. concat_preprocessed_input=False, output_shape=config.output_shape, output_num_channels=config.output_num_channels, use_query_residual=False, position_encoding_only=True, position_encoding_type="fourier", fourier_position_encoding_kwargs={ "num_bands": 32, "max_resolution": (config.num_frames, config.image_size, config.image_size), "sine_only": False, "concat_pos": True, }, ) decoder = PerceiverMultimodalDecoder( config, # Autoencoding, don't pass inputs to the queries. concat_preprocessed_input=False, # Modality specific decoders are used ONLY to generate queries. # All modalties are decoded together using a unified decoder. modalities={ "audio": PerceiverBasicDecoder( config, # Autoencoding, don't pass inputs to the queries. concat_preprocessed_input=False, output_index_dims=(n_audio_samples // config.samples_per_patch,), output_num_channels=config.output_num_channels, use_query_residual=False, position_encoding_only=True, position_encoding_type="fourier", fourier_position_encoding_kwargs={ "num_bands": 192, "max_resolution": (n_audio_samples,), "sine_only": False, "concat_pos": True, }, ), "image": image_decoder, "label": PerceiverClassificationDecoder( config, # Autoencoding, don't pass inputs to the queries. concat_preprocessed_input=False, use_query_residual=False, position_encoding_only=True, position_encoding_type="trainable", trainable_position_encoding_kwargs={ "num_channels": config._label_trainable_num_channels, "index_dims": 1, }, ), }, num_outputs=None, output_num_channels=config.output_num_channels, use_query_residual=False, ) output_postprocessor = PerceiverMultimodalPostprocessor( modalities={ "audio": PerceiverAudioPostprocessor(config, in_channels=config.output_num_channels), "image": PerceiverProjectionPostprocessor(in_channels=config.output_num_channels, out_channels=3), "label": PerceiverClassificationPostprocessor(config, in_channels=config.output_num_channels), } ) self.perceiver = PerceiverModel( config, input_preprocessor=input_preprocessor, decoder=decoder, output_postprocessor=output_postprocessor, ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(PERCEIVER_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=PerceiverClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, inputs: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, subsampled_output_points: Optional[Dict[str, torch.Tensor]] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, labels: Optional[torch.Tensor] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, PerceiverClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> from transformers import PerceiverForMultimodalAutoencoding >>> import torch >>> import numpy as np >>> # create multimodal inputs >>> images = torch.randn((1, 16, 3, 224, 224)) >>> audio = torch.randn((1, 30720, 1)) >>> inputs = dict(image=images, audio=audio, label=torch.zeros((images.shape[0], 700))) >>> model = PerceiverForMultimodalAutoencoding.from_pretrained("deepmind/multimodal-perceiver") >>> # in the Perceiver IO paper, videos are auto-encoded in chunks >>> # each chunk subsamples different index dimensions of the image and audio modality decoder queries >>> nchunks = 128 >>> image_chunk_size = np.prod((16, 224, 224)) // nchunks >>> audio_chunk_size = audio.shape[1] // model.config.samples_per_patch // nchunks >>> # process the first chunk >>> chunk_idx = 0 >>> subsampling = { ... "image": torch.arange(image_chunk_size * chunk_idx, image_chunk_size * (chunk_idx + 1)), ... "audio": torch.arange(audio_chunk_size * chunk_idx, audio_chunk_size * (chunk_idx + 1)), ... "label": None, ... } >>> outputs = model(inputs=inputs, subsampled_output_points=subsampling) >>> logits = outputs.logits >>> list(logits["audio"].shape) [1, 240] >>> list(logits["image"].shape) [1, 6272, 3] >>> list(logits["label"].shape) [1, 700] ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.perceiver( inputs=inputs, attention_mask=attention_mask, subsampled_output_points=subsampled_output_points, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) logits = outputs.logits if return_dict else outputs[0] loss = None if labels is not None: raise NotImplementedError("Multimodal autoencoding training is not yet supported") if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return PerceiverClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) # Below: position encodings def build_position_encoding( position_encoding_type, out_channels=None, project_pos_dim=-1, trainable_position_encoding_kwargs=None, fourier_position_encoding_kwargs=None, ): """ Builds the position encoding. Args: - out_channels: refers to the number of channels of the position encodings. - project_pos_dim: if specified, will project the position encodings to this dimension. """ if position_encoding_type == "trainable": if not trainable_position_encoding_kwargs: raise ValueError("Make sure to pass trainable_position_encoding_kwargs") output_pos_enc = PerceiverTrainablePositionEncoding(**trainable_position_encoding_kwargs) elif position_encoding_type == "fourier": # We don't use the index_dims argument, as this is only known during the forward pass if not fourier_position_encoding_kwargs: raise ValueError("Make sure to pass fourier_position_encoding_kwargs") output_pos_enc = PerceiverFourierPositionEncoding(**fourier_position_encoding_kwargs) else: raise ValueError(f"Unknown position encoding type: {position_encoding_type}.") # Optionally, project the position encoding to a target dimension: positions_projection = nn.Linear(out_channels, project_pos_dim) if project_pos_dim > 0 else nn.Identity() return output_pos_enc, positions_projection # Below: Perceiver decoders class PerceiverAbstractDecoder(nn.Module, metaclass=abc.ABCMeta): """Perceiver abstract decoder.""" @abc.abstractmethod def decoder_query(self, inputs, modality_sizes=None, inputs_without_pos=None, subsampled_points=None): raise NotImplementedError @property @abc.abstractmethod def num_query_channels(self): raise NotImplementedError @abc.abstractmethod def forward(self, query, z, query_mask=None): raise NotImplementedError class PerceiverProjectionDecoder(PerceiverAbstractDecoder): """ Baseline projection decoder (no cross-attention). Args: config ([`PerceiverConfig`]): Model configuration. """ def __init__(self, config): super().__init__() self.classifier = nn.Linear(config.d_latents, config.num_labels) def decoder_query(self, inputs, modality_sizes=None, inputs_without_pos=None, subsampled_points=None): return None def forward( self, query: torch.Tensor, z: torch.FloatTensor, query_mask: Optional[torch.FloatTensor] = None ) -> torch.FloatTensor: # (batch_size, num_latents, d_latents) -> (batch_size, d_latents) z = torch.mean(z, dim=1) # (batch_size, d_latents) -> (batch_size, config.num_labels) logits = self.classifier(z) return logits class PerceiverBasicDecoder(PerceiverAbstractDecoder): """ Cross-attention-based decoder. This class can be used to decode the final hidden states of the latents using a cross-attention operation, in which the latents produce keys and values. The shape of the output of this class depends on how one defines the output queries (also called decoder queries). Args: config ([*PerceiverConfig*]): Model configuration. output_num_channels (`int`, *optional*): The number of channels in the output. Will only be used in case *final_project* is set to `True`. position_encoding_type (`str`, *optional*, defaults to "trainable"): The type of position encoding to use. Can be either "trainable", "fourier", or "none". output_index_dims (`int`, *optional*): The number of dimensions of the output queries. Ignored if 'position_encoding_type' == 'none'. num_channels (`int`, *optional*, defaults to 128): The number of channels of the decoder queries. Ignored if 'position_encoding_type' == 'none'. qk_channels (`int`, *optional*): The number of channels of the queries and keys in the cross-attention layer. v_channels (`int`, *optional*): The number of channels of the values in the cross-attention layer. num_heads (`int`, *optional*, defaults to 1): The number of attention heads in the cross-attention layer. widening_factor (`int`, *optional*, defaults to 1): The widening factor of the cross-attention layer. use_query_residual (`bool`, *optional*, defaults to `False`): Whether to use a residual connection between the query and the output of the cross-attention layer. concat_preprocessed_input (`bool`, *optional*, defaults to `False`): Whether to concatenate the preprocessed input to the query. final_project (`bool`, *optional*, defaults to `True`): Whether to project the output of the cross-attention layer to a target dimension. position_encoding_only (`bool`, *optional*, defaults to `False`): Whether to only use this class to define output queries. """ def __init__( self, config: PerceiverConfig, output_num_channels: int, position_encoding_type: Optional[str] = "trainable", # The following 2 arguments are ignored if position_encoding_type == 'none': output_index_dims: Optional[int] = None, num_channels: Optional[int] = 128, subsampled_index_dims: Optional[int] = None, qk_channels: Optional[int] = None, v_channels: Optional[int] = None, num_heads: Optional[int] = 1, widening_factor: Optional[int] = 1, use_query_residual: Optional[bool] = False, concat_preprocessed_input: Optional[bool] = False, final_project: Optional[bool] = True, position_encoding_only: Optional[bool] = False, **position_encoding_kwargs, ) -> None: super().__init__() self.output_num_channels = output_num_channels # If `none`, the decoder will not construct any position encodings. # You should construct your own when querying the decoder. self.output_position_encodings = None self.position_encoding_type = position_encoding_type self.position_encoding_kwargs = position_encoding_kwargs if position_encoding_type != "none": self.output_position_encodings, self.positions_projection = build_position_encoding( position_encoding_type=position_encoding_type, **position_encoding_kwargs ) self.output_index_dims = output_index_dims self.num_channels = num_channels if subsampled_index_dims is None: subsampled_index_dims = output_index_dims self.subsampled_index_dims = subsampled_index_dims self.concat_preprocessed_input = concat_preprocessed_input self.final_project = final_project self.position_encoding_only = position_encoding_only # for multimodal autoencoding, we don't need the decoder cross-attention and final layer # so then we will set position_encoding_only to True if not self.position_encoding_only: self.decoding_cross_attention = PerceiverLayer( config, is_cross_attention=True, qk_channels=qk_channels, v_channels=v_channels, num_heads=num_heads, q_dim=num_channels, kv_dim=config.d_latents, widening_factor=widening_factor, use_query_residual=use_query_residual, ) self.final_layer = nn.Linear(num_channels, output_num_channels) if final_project else nn.Identity() @property def num_query_channels(self) -> int: if self.position_encoding_type == "none": # Queries come from elsewhere raise ValueError( "You cannot calculate number of decoder query channels when position_encoding_type is set to none" ) if self.position_encoding_only: if "project_pos_dim" in self.position_encoding_kwargs: return self.position_encoding_kwargs["project_pos_dim"] return self.output_position_encodings.output_size() if self.final_project: return self.output_num_channels return self.num_channels def decoder_query(self, inputs, modality_sizes=None, inputs_without_pos=None, subsampled_points=None): if self.position_encoding_type == "none": # Queries come from elsewhere raise ValueError("You cannot construct decoder queries when position_encoding_type is set to none") if subsampled_points is not None: # subsampled_points are the indices if the inputs would be flattened # however, the inputs aren't flattened, that's why we use unravel_index # to get the indices for the unflattened array # unravel_index returns a tuple (x_idx, y_idx, ...) # stack to get the [n, d] tensor of coordinates indices = [torch.from_numpy(x) for x in np.unravel_index(subsampled_points.cpu(), self.output_index_dims)] pos = torch.stack(indices, dim=1) batch_size = inputs.shape[0] # Map these coordinates to [-1, 1] pos = -1 + 2 * pos / torch.tensor(self.output_index_dims)[None, :] pos = torch.broadcast_to(pos[None], [batch_size, pos.shape[0], pos.shape[1]]) # Construct the position encoding. if self.position_encoding_type == "trainable": pos_emb = self.output_position_encodings(batch_size) elif self.position_encoding_type == "fourier": pos_emb = self.output_position_encodings( self.output_index_dims, batch_size=batch_size, device=inputs.device, dtype=inputs.dtype, pos=pos ) # Optionally project them to a target dimension. pos_emb = self.positions_projection(pos_emb) pos_emb = torch.reshape(pos_emb, [pos_emb.shape[0], -1, pos_emb.shape[-1]]) else: batch_size = inputs.shape[0] index_dims = inputs.shape[2:] # Construct the position encoding. if self.position_encoding_type == "trainable": pos_emb = self.output_position_encodings(batch_size) elif self.position_encoding_type == "fourier": pos_emb = self.output_position_encodings( index_dims, batch_size, device=inputs.device, dtype=inputs.dtype ) # Optionally project them to a target dimension. pos_emb = self.positions_projection(pos_emb) if self.concat_preprocessed_input: if inputs_without_pos is None: raise ValueError("Value is required for inputs_without_pos if concat_preprocessed_input is True") pos_emb = torch.cat([inputs_without_pos, pos_emb], dim=-1) return pos_emb def forward( self, query: torch.Tensor, z: torch.FloatTensor, query_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, ) -> PerceiverDecoderOutput: # Cross-attention decoding. # key, value: B x N x K; query: B x M x K # Attention maps -> B x N x M # Output -> B x M x K cross_attentions = () if output_attentions else None layer_outputs = self.decoding_cross_attention( query, attention_mask=query_mask, head_mask=None, inputs=z, inputs_mask=None, output_attentions=output_attentions, ) output = layer_outputs[0] if output_attentions: cross_attentions = cross_attentions + (layer_outputs[1],) logits = self.final_layer(output) return PerceiverDecoderOutput(logits=logits, cross_attentions=cross_attentions) class PerceiverClassificationDecoder(PerceiverAbstractDecoder): """ Cross-attention based classification decoder. Light-weight wrapper of [`PerceiverBasicDecoder`] for logit output. Will turn the output of the Perceiver encoder which is of shape (batch_size, num_latents, d_latents) to a tensor of shape (batch_size, num_labels). The queries are of shape (batch_size, 1, num_labels). Args: config ([`PerceiverConfig`]): Model configuration. """ def __init__(self, config, **decoder_kwargs): super().__init__() self.num_labels = config.num_labels self.decoder = PerceiverBasicDecoder( config, output_num_channels=self.num_labels, output_index_dims=1, # Predict a single logit array. **decoder_kwargs, ) @property def num_query_channels(self) -> int: return self.decoder.num_query_channels def decoder_query(self, inputs, modality_sizes=None, inputs_without_pos=None, subsampled_points=None): return self.decoder.decoder_query( inputs, modality_sizes, inputs_without_pos, subsampled_points=subsampled_points ) def forward( self, query: torch.Tensor, z: torch.FloatTensor, query_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, ) -> PerceiverDecoderOutput: decoder_outputs = self.decoder(query, z, output_attentions=output_attentions) # B x 1 x num_classes -> B x num_classes logits = decoder_outputs.logits[:, 0, :] return PerceiverDecoderOutput(logits=logits, cross_attentions=decoder_outputs.cross_attentions) class PerceiverOpticalFlowDecoder(PerceiverAbstractDecoder): """Cross-attention based optical flow decoder.""" def __init__(self, config, output_image_shape, output_num_channels=2, rescale_factor=100.0, **decoder_kwargs): super().__init__() self.output_image_shape = output_image_shape self.output_num_channels = output_num_channels self.rescale_factor = rescale_factor self.decoder = PerceiverBasicDecoder(config, output_num_channels=output_num_channels, **decoder_kwargs) @property def num_query_channels(self) -> int: return self.decoder.num_query_channels def decoder_query(self, inputs, modality_sizes=None, inputs_without_pos=None, subsampled_points=None): if subsampled_points is not None: raise ValueError("FlowDecoder doesn't support subsampling yet.") return inputs def forward( self, query: torch.Tensor, z: torch.FloatTensor, query_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, ) -> PerceiverDecoderOutput: decoder_outputs = self.decoder(query, z, output_attentions=output_attentions) preds = decoder_outputs.logits # Output flow and rescale. preds /= self.rescale_factor preds = preds.reshape([preds.shape[0]] + list(self.output_image_shape) + [preds.shape[-1]]) return PerceiverDecoderOutput(logits=preds, cross_attentions=decoder_outputs.cross_attentions) class PerceiverBasicVideoAutoencodingDecoder(PerceiverAbstractDecoder): """ Cross-attention based video-autoencoding decoder. Light-weight wrapper of [*PerceiverBasicDecoder*] with video reshaping logic. Args: config ([*PerceiverConfig*]): Model configuration. output_shape (`List[int]`): Shape of the output as (batch_size, num_frames, height, width), excluding the channel dimension. position_encoding_type (`str`): The type of position encoding to use. Can be either "trainable", "fourier", or "none". """ def __init__( self, config: PerceiverConfig, output_shape: List[int], position_encoding_type: str, **decoder_kwargs ) -> None: super().__init__() if len(output_shape) != 4: # B, T, H, W raise ValueError(f"Expected rank 4 output_shape, got {output_shape}.") # Build the decoder components: self.output_shape = output_shape self.output_num_channels = decoder_kwargs["output_num_channels"] self.decoder = PerceiverBasicDecoder( config, output_index_dims=self.output_shape[1:4], # T*H*W position_encoding_type=position_encoding_type, **decoder_kwargs, ) @property def num_query_channels(self) -> int: return self.decoder.num_query_channels def decoder_query(self, inputs, modality_sizes=None, inputs_without_pos=None, subsampled_points=None): return self.decoder.decoder_query( inputs, modality_sizes=modality_sizes, inputs_without_pos=inputs_without_pos, subsampled_points=subsampled_points, ) def forward( self, query: torch.Tensor, z: torch.FloatTensor, query_mask: Optional[torch.FloatTensor] = None ) -> PerceiverDecoderOutput: decoder_outputs = self.decoder(query, z) logits = decoder_outputs.logits logits = torch.reshape(logits, self.output_shape + [logits.shape[-1]]) return PerceiverDecoderOutput(logits=logits, cross_attentions=decoder_outputs.cross_attentions) def restructure(modality_sizes: ModalitySizeType, inputs: torch.Tensor) -> Mapping[str, torch.Tensor]: """ Partitions a [B, N, C] tensor into tensors for each modality. Args: modality_sizes dict specifying the size of the modality inputs: input tensor Returns: dict mapping name of modality to its associated tensor. """ outputs = {} index = 0 # Apply a predictable ordering to the modalities for modality in sorted(modality_sizes.keys()): size = modality_sizes[modality] inp = inputs[:, index : index + size] index += size outputs[modality] = inp return outputs class PerceiverMultimodalDecoder(PerceiverAbstractDecoder): """ Multimodal decoding by composing uni-modal decoders. The *modalities* argument of the constructor is a dictionary mapping modality name to the decoder of that modality. That decoder will be used to construct queries for that modality. Modality-specific queries are padded with trainable modality-specific parameters, after which they are concatenated along the time dimension. Next, there is a shared cross attention operation across all modalities. Args: config ([*PerceiverConfig*]): Model configuration. modalities (`Dict[str, PerceiverAbstractDecoder]`): Dictionary mapping modality name to the decoder of that modality. num_outputs (`int`): The number of outputs of the decoder. output_num_channels (`int`): The number of channels in the output. min_padding_size (`int`, *optional*, defaults to 2): The minimum padding size for all modalities. The final output will have num_channels equal to the maximum channels across all modalities plus min_padding_size. subsampled_index_dims (`Dict[str, PerceiverAbstractDecoder]`, *optional*): Dictionary mapping modality name to the subsampled index dimensions to use for the decoder query of that modality. """ def __init__( self, config: PerceiverConfig, modalities: Dict[str, PerceiverAbstractDecoder], num_outputs: int, output_num_channels: int, min_padding_size: Optional[int] = 2, subsampled_index_dims: Optional[Dict[str, PerceiverAbstractDecoder]] = None, **decoder_kwargs, ) -> None: super().__init__() self.modalities = nn.ModuleDict(modalities) self.subsampled_index_dims = subsampled_index_dims self.min_padding_size = min_padding_size self.output_num_channels = output_num_channels self.num_outputs = num_outputs self.decoder = PerceiverBasicDecoder( config, output_index_dims=(num_outputs,), output_num_channels=output_num_channels, position_encoding_type="none", num_channels=self.num_query_channels, **decoder_kwargs, ) self.padding = nn.ParameterDict( { modality: nn.Parameter(torch.randn(1, self.num_query_channels - decoder.num_query_channels)) for modality, decoder in modalities.items() } ) @property def num_query_channels(self) -> int: max_channel_size = max(decoder.num_query_channels for _, decoder in self.modalities.items()) common_channel_size = max_channel_size + self.min_padding_size return common_channel_size def decoder_query(self, inputs, modality_sizes, inputs_without_pos=None, subsampled_points=None): # Partition the flat inputs among the different modalities inputs = restructure(modality_sizes, inputs) # Obtain modality-specific decoders' queries subsampled_points = subsampled_points or {} decoder_queries = {} for modality, decoder in self.modalities.items(): # Get input_without_pos for this modality if it exists. input_without_pos = None if inputs_without_pos is not None: input_without_pos = inputs_without_pos.get(modality, None) query = decoder.decoder_query( inputs=inputs[modality], modality_sizes=None, inputs_without_pos=input_without_pos, subsampled_points=subsampled_points.get(modality, None), ) decoder_queries[modality] = query # Pad all queries with trainable position encodings to make them have the same channels def embed(modality, x): x = torch.reshape(x, [x.shape[0], np.prod(x.shape[1:-1]), x.shape[-1]]) pos = self.padding[modality] pos = torch.broadcast_to(pos, [x.shape[0], x.shape[1], self.num_query_channels - x.shape[2]]) return torch.cat([x, pos], dim=2) # Apply a predictable ordering to the modalities return torch.cat( [embed(modality, decoder_queries[modality]) for modality in sorted(self.modalities.keys())], dim=1 ) def forward( self, query: torch.Tensor, z: torch.FloatTensor, query_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, ) -> torch.Tensor: # B x 1 x num_classes -> B x num_classes decoder_outputs = self.decoder(query, z, output_attentions=output_attentions) return decoder_outputs # Below: IO pre- and post-processor classes for Perceiver. def space_to_depth(frames: torch.Tensor, temporal_block_size: int = 1, spatial_block_size: int = 1) -> torch.Tensor: """ Space to depth transform. Rearranges blocks of spatial data, into depth. This function assumes the channels to be first, but will place the channels last after transformation. Based on https://discuss.pytorch.org/t/is-there-any-layer-like-tensorflows-space-to-depth-function/3487/15. """ if len(frames.shape) == 4: batch_size, num_channels, height, width = frames.shape # split up dimensions (height by spatial_block_size, width by spatial_block_size) frames = frames.view( batch_size, num_channels, height // spatial_block_size, spatial_block_size, width // spatial_block_size, spatial_block_size, ) # move blocks to last dimension: (batch_size, H//bs, W//bs, bs, bs, C) frames = frames.permute(0, 2, 4, 3, 5, 1).contiguous() # concatenate blocks along channel dimension: (batch_size, H//bs, W//bs, bs*bs*C) frames = frames.view( batch_size, height // spatial_block_size, width // spatial_block_size, (spatial_block_size**2) * num_channels, ) return frames elif len(frames.shape) == 5: batch_size, time, num_channels, height, width = frames.shape # split up dimensions (time by temporal_block_size, height by spatial_block_size, width by spatial_block_size) frames = frames.view( batch_size, time // temporal_block_size, temporal_block_size, num_channels, height // spatial_block_size, spatial_block_size, width // spatial_block_size, spatial_block_size, ) # move blocks to last dimension: (batch_size, T//ts, H//bs, W//bs, ts, bs, bs, C) frames = frames.permute(0, 1, 4, 6, 2, 5, 7, 3).contiguous() # concatenate blocks along channel dimension: (batch_size, T//ts, H//bs, W//bs, ts*bs*bs*C) frames = frames.view( batch_size, time // temporal_block_size, height // spatial_block_size, width // spatial_block_size, temporal_block_size * (spatial_block_size**2) * num_channels, ) return frames else: raise ValueError( "Frames should be of rank 4 (batch, channels, height, width)" " or rank 5 (batch, time, channels, height, width)" ) class Conv2dSamePadding(nn.Conv2d): """ Conv2d layer with padding="same" support. Source: https://gist.github.com/sumanmichael/4de9dee93f972d47c80c4ade8e149ea6 """ def __init__(self, *args, **kwargs): super(Conv2dSamePadding, self).__init__(*args, **kwargs) self.zero_pad_2d = nn.ZeroPad2d( reduce(__add__, [(k // 2 + (k - 2 * (k // 2)) - 1, k // 2) for k in self.kernel_size[::-1]]) ) def forward(self, input): return self._conv_forward(self.zero_pad_2d(input), self.weight, self.bias) class Conv2DDownsample(nn.Module): """Downsamples 4x by applying a 2D convolution and doing max pooling.""" def __init__( self, num_layers: int = 1, in_channels: int = 3, out_channels: int = 64, use_batchnorm: bool = True, ): """ Constructs a Conv2DDownsample model. Args: in_channels (`int`, *optional*, defaults to 3): The number of input channels. out_channels (`int`, *optional*, defaults to 64): The number of conv output channels. use_batchnorm (`bool`, *optional*, defaults to `True`): Whether to use batchnorm. """ super().__init__() self.conv = Conv2dSamePadding( in_channels=in_channels, out_channels=out_channels, kernel_size=7, stride=2, bias=False ) self.batchnorm = nn.BatchNorm2d(num_features=out_channels) if use_batchnorm else nn.Identity() self.relu = nn.ReLU() self.max_pool = nn.MaxPool2d(kernel_size=3, stride=2) def forward(self, inputs: torch.Tensor) -> torch.Tensor: out = self.conv(inputs) out = self.batchnorm(out) out = self.relu(out) out = self.max_pool(out) return out def generate_fourier_features(pos, num_bands, max_resolution=(224, 224), concat_pos=True, sine_only=False): """ Generate a Fourier frequency position encoding with linear spacing. Args: pos (`torch.LongTensor` of shape `(batch_size, sequence_length, dim)`): The Tensor containing the position of n points in d dimensional space. num_bands (`int`): The number of frequency bands (K) to use. max_resolution (`Tuple[int]`, *optional*, defaults to (224, 224)): The maximum resolution (i.e. the number of pixels per dim). A tuple representing resolution for each dimension. concat_pos (`bool`, *optional*, defaults to `True`): Whether to concatenate the input position encoding to the Fourier features. sine_only (`bool`, *optional*, defaults to `False`): Whether to use a single phase (sin) or two (sin/cos) for each frequency band. Returns: `torch.FloatTensor` of shape `(batch_size, sequence_length, n_channels)`: The Fourier position embeddings. If `concat_pos` is `True` and `sine_only` is `False`, output dimensions are ordered as: [dim_1, dim_2, ..., dim_d, sin(pi*f_1*dim_1), ..., sin(pi*f_K*dim_1), ..., sin(pi*f_1*dim_d), ..., sin(pi*f_K*dim_d), cos(pi*f_1*dim_1), ..., cos(pi*f_K*dim_1), ..., cos(pi*f_1*dim_d), ..., cos(pi*f_K*dim_d)], where dim_i is pos[:, i] and f_k is the kth frequency band. """ batch_size = pos.shape[0] min_freq = 1.0 # Nyquist frequency at the target resolution: freq_bands = torch.stack( [torch.linspace(start=min_freq, end=res / 2, steps=num_bands) for res in max_resolution], dim=0 ) # Get frequency bands for each spatial dimension. # Output is size [n, d * num_bands] per_pos_features = pos[0, :, :][:, :, None] * freq_bands[None, :, :] per_pos_features = torch.reshape(per_pos_features, [-1, np.prod(per_pos_features.shape[1:])]) if sine_only: # Output is size [n, d * num_bands] per_pos_features = torch.sin(np.pi * (per_pos_features)) else: # Output is size [n, 2 * d * num_bands] per_pos_features = torch.cat( [torch.sin(np.pi * per_pos_features), torch.cos(np.pi * per_pos_features)], dim=-1 ) # Concatenate the raw input positions. if concat_pos: # Adds d bands to the encoding. per_pos_features = torch.cat([pos, per_pos_features.expand(batch_size, -1, -1)], dim=-1) return per_pos_features def build_linear_positions(index_dims, output_range=(-1.0, 1.0)): """ Generate an array of position indices for an N-D input array. Args: index_dims (`List[int]`): The shape of the index dimensions of the input array. output_range (`Tuple[float]`, *optional*, defaults to `(-1.0, 1.0)`): The min and max values taken by each input index dimension. Returns: `torch.FloatTensor` of shape `(index_dims[0], index_dims[1], .., index_dims[-1], N)`. """ def _linspace(n_xels_per_dim): return torch.linspace(start=output_range[0], end=output_range[1], steps=n_xels_per_dim, dtype=torch.float32) dim_ranges = [_linspace(n_xels_per_dim) for n_xels_per_dim in index_dims] array_index_grid = meshgrid(*dim_ranges, indexing="ij") return torch.stack(array_index_grid, dim=-1) class PerceiverAbstractPositionEncoding(nn.Module, metaclass=abc.ABCMeta): """Perceiver abstract position encoding.""" @property @abc.abstractmethod def num_dimensions(self) -> int: raise NotImplementedError @abc.abstractmethod def output_size(self, *args, **kwargs) -> int: raise NotImplementedError @abc.abstractmethod def forward(self, batch_size, pos): raise NotImplementedError class PerceiverTrainablePositionEncoding(PerceiverAbstractPositionEncoding): """Trainable position encoding.""" def __init__(self, index_dims, num_channels=128): super().__init__() self._num_channels = num_channels self._index_dims = index_dims index_dim = np.prod(index_dims) self.position_embeddings = nn.Parameter(torch.randn(index_dim, num_channels)) @property def num_dimensions(self) -> int: if isinstance(self._index_dims, int): return 1 return len(self._index_dims) def output_size(self, *args, **kwargs) -> int: return self._num_channels def forward(self, batch_size: int) -> torch.Tensor: position_embeddings = self.position_embeddings if batch_size is not None: position_embeddings = position_embeddings.expand(batch_size, -1, -1) return position_embeddings def _check_or_build_spatial_positions(pos, index_dims, batch_size): """ Checks or builds spatial position features (x, y, ...). Args: pos (`torch.FloatTensor`): None, or an array of position features. If None, position features are built. Otherwise, their size is checked. index_dims (`List[int]`): An iterable giving the spatial/index size of the data to be featurized. batch_size (`int`): The batch size of the data to be featurized. Returns: `torch.FloatTensor` of shape `(batch_size, prod(index_dims))` an array of position features. """ if pos is None: pos = build_linear_positions(index_dims) # equivalent to `torch.broadcast_to(pos[None], (batch_size,) + pos.shape)` # but `torch.broadcast_to` cannot be converted to ONNX pos = pos[None].expand((batch_size,) + pos.shape) pos = torch.reshape(pos, [batch_size, np.prod(index_dims), -1]) else: # Just a warning label: you probably don't want your spatial features to # have a different spatial layout than your pos coordinate system. # But feel free to override if you think it'll work! if pos.shape[-1] != len(index_dims): raise ValueError("Spatial features have the wrong number of dimensions.") return pos class PerceiverFourierPositionEncoding(PerceiverAbstractPositionEncoding): """Fourier (Sinusoidal) position encoding.""" def __init__(self, num_bands, max_resolution, concat_pos=True, sine_only=False): super().__init__() self.num_bands = num_bands self.max_resolution = max_resolution self.concat_pos = concat_pos self.sine_only = sine_only @property def num_dimensions(self) -> int: return len(self.max_resolution) def output_size(self): """Returns size of positional encodings last dimension.""" num_dims = len(self.max_resolution) encoding_size = self.num_bands * num_dims if not self.sine_only: encoding_size *= 2 if self.concat_pos: encoding_size += self.num_dimensions return encoding_size def forward( self, index_dims: List[int], batch_size: int, device: torch.device, dtype: torch.dtype, pos: torch.FloatTensor = None, ) -> torch.FloatTensor: pos = _check_or_build_spatial_positions(pos, index_dims, batch_size) fourier_pos_enc = generate_fourier_features( pos, num_bands=self.num_bands, max_resolution=self.max_resolution, concat_pos=self.concat_pos, sine_only=self.sine_only, ).to(device=device, dtype=dtype) return fourier_pos_enc class AbstractPreprocessor(nn.Module): @property def num_channels(self) -> int: """Returns size of preprocessor output.""" raise NotImplementedError() class PerceiverTextPreprocessor(AbstractPreprocessor): """ Text preprocessing for Perceiver Encoder. Can be used to embed `inputs` and add positional encodings. The dimensionality of the embeddings is determined by the `d_model` attribute of the configuration. Args: config ([`PerceiverConfig`]): Model configuration. """ def __init__(self, config: PerceiverConfig) -> None: super().__init__() self.config = config self.embeddings = nn.Embedding(num_embeddings=config.vocab_size, embedding_dim=config.d_model) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.d_model) @property def num_channels(self) -> int: return self.config.d_model def forward(self, inputs: torch.LongTensor, pos: Optional[torch.Tensor] = None, network_input_is_1d: bool = True): embeddings_without_pos = self.embeddings(inputs) seq_length = inputs.shape[1] position_ids = torch.arange(0, seq_length, device=inputs.device) embeddings = embeddings_without_pos + self.position_embeddings(position_ids) return embeddings, None, embeddings_without_pos class PerceiverEmbeddingDecoder(nn.Module): """ Module to decode embeddings (for masked language modeling). Args: config ([`PerceiverConfig`]): Model configuration. """ def __init__(self, config: PerceiverConfig) -> None: super().__init__() self.config = config self.vocab_size = config.vocab_size self.bias = nn.Parameter(torch.zeros(self.vocab_size)) def forward(self, hidden_states: torch.Tensor, embedding_layer: torch.Tensor) -> torch.Tensor: batch_size, seq_len, d_model = hidden_states.shape # Flatten batch dim output = torch.matmul(hidden_states.reshape([-1, d_model]), embedding_layer.weight.transpose(0, 1)) output = output + self.bias return output.reshape([batch_size, seq_len, self.vocab_size]) class PerceiverMultimodalPostprocessor(nn.Module): """ Multimodal postprocessing for Perceiver. Can be used to combine modality-specific postprocessors into a single postprocessor. Args: modalities (`Mapping[str, PostprocessorType]`): Dictionary mapping modality name to postprocessor class for that modality. input_is_dict (`bool`, *optional*, defaults to `False`): If True, input is assumed to be dictionary structured, and outputs keep the same dictionary shape. If False, input is a tensor which is sliced up during postprocessing by *modality_sizes*. """ def __init__(self, modalities: Mapping[str, PostprocessorType], input_is_dict: bool = False): super().__init__() self.modalities = nn.ModuleDict(modalities) self.input_is_dict = input_is_dict def forward( self, inputs: torch.Tensor, pos: Optional[torch.Tensor] = None, modality_sizes=None ) -> Mapping[str, torch.Tensor]: if not self.input_is_dict: # Slice up modalities by their sizes. if modality_sizes is None: raise ValueError("Modality sizes should be specified if input is not a dictionary.") inputs = restructure(modality_sizes=modality_sizes, inputs=inputs) outputs = { modality: postprocessor(inputs[modality], pos=pos, modality_sizes=None) for modality, postprocessor in self.modalities.items() } return outputs class PerceiverClassificationPostprocessor(nn.Module): """ Classification postprocessing for Perceiver. Can be used to convert the decoder output to classification logits. Args: config ([*PerceiverConfig*]): Model configuration. in_channels (`int`): Number of channels in the input. """ def __init__(self, config: PerceiverConfig, in_channels: int) -> None: super().__init__() self.classifier = nn.Linear(in_channels, config.num_labels) def forward(self, inputs, pos: Optional[torch.Tensor] = None, modality_sizes=None) -> torch.Tensor: logits = self.classifier(inputs) return logits[:, 0, :] class PerceiverAudioPostprocessor(nn.Module): """ Audio postprocessing for Perceiver. Can be used to convert the decoder output to audio features. Args: config ([*PerceiverConfig*]): Model configuration. in_channels (`int`): Number of channels in the input. postproc_type (`str`, *optional*, defaults to `"patches"`): Postprocessor type to use. Currently, only "patches" is supported. """ def __init__(self, config: PerceiverConfig, in_channels: int, postproc_type: str = "patches") -> None: super().__init__() if postproc_type not in ("patches",): # to be supported: 'conv', 'patches', 'pixels' raise ValueError("Invalid postproc_type!") # Architecture parameters: self.classifier = nn.Linear(in_channels, config.samples_per_patch) def forward(self, inputs: torch.Tensor, pos: Optional[torch.Tensor] = None, modality_sizes=None) -> torch.Tensor: logits = self.classifier(inputs) return torch.reshape(logits, [inputs.shape[0], -1]) class PerceiverProjectionPostprocessor(nn.Module): """ Projection postprocessing for Perceiver. Can be used to project the channels of the decoder output to a lower dimension. Args: in_channels (`int`): Number of channels in the input. out_channels (`int`): Number of channels in the output. """ def __init__(self, in_channels: int, out_channels: int) -> None: super().__init__() self.classifier = nn.Linear(in_channels, out_channels) def forward(self, inputs: torch.Tensor, pos: Optional[torch.Tensor] = None, modality_sizes=None) -> torch.Tensor: logits = self.classifier(inputs) return logits class PerceiverImagePreprocessor(AbstractPreprocessor): """ Image preprocessing for Perceiver Encoder. Note: the *out_channels* argument refers to the output channels of a convolutional layer, if *prep_type* is set to "conv1x1" or "conv". If one adds absolute position embeddings, one must make sure the *num_channels* of the position encoding kwargs are set equal to the *out_channels*. Args: config ([*PerceiverConfig*]): Model configuration. prep_type (`str`, *optional*, defaults to `"conv"`): Preprocessing type. Can be "conv1x1", "conv", "patches", "pixels". spatial_downsample (`int`, *optional*, defaults to 4): Spatial downsampling factor. temporal_downsample (`int`, *optional*, defaults to 1): Temporal downsampling factor (only relevant in case a time dimension is present). position_encoding_type (`str`, *optional*, defaults to `"fourier"`): Position encoding type. Can be "fourier" or "trainable". in_channels (`int`, *optional*, defaults to 3): Number of channels in the input. out_channels (`int`, *optional*, defaults to 64): Number of channels in the output. conv_after_patching (`bool`, *optional*, defaults to `False`): Whether to apply a convolutional layer after patching. conv_after_patching_in_channels (`int`, *optional*, defaults to 54): Number of channels in the input of the convolutional layer after patching. conv2d_use_batchnorm (`bool`, *optional*, defaults to `True`): Whether to use batch normalization in the convolutional layer. concat_or_add_pos (`str`, *optional*, defaults to `"concat"`): How to concatenate the position encoding to the input. Can be "concat" or "add". project_pos_dim (`int`, *optional*, defaults to -1): Dimension of the position encoding to project to. If -1, no projection is applied. **position_encoding_kwargs (`Dict`, *optional*): Keyword arguments for the position encoding. """ def __init__( self, config, prep_type="conv", spatial_downsample: int = 4, temporal_downsample: int = 1, position_encoding_type: str = "fourier", in_channels: int = 3, out_channels: int = 64, conv_after_patching: bool = False, conv_after_patching_in_channels: int = 54, # only relevant when conv_after_patching = True conv2d_use_batchnorm: bool = True, concat_or_add_pos: str = "concat", project_pos_dim: int = -1, **position_encoding_kwargs, ): super().__init__() self.config = config if prep_type not in ("conv", "patches", "pixels", "conv1x1"): raise ValueError(f"Prep_type {prep_type} is invalid") if concat_or_add_pos not in ["concat", "add"]: raise ValueError(f"Invalid value {concat_or_add_pos} for concat_or_add_pos.") self.in_channels = in_channels self.prep_type = prep_type self.spatial_downsample = spatial_downsample self.temporal_downsample = temporal_downsample self.position_encoding_type = position_encoding_type self.concat_or_add_pos = concat_or_add_pos self.conv_after_patching = conv_after_patching self.out_channels = out_channels if self.prep_type == "conv": # Downsampling with conv is currently restricted convnet_num_layers = math.log(spatial_downsample, 4) convnet_num_layers_is_int = convnet_num_layers == np.round(convnet_num_layers) if not convnet_num_layers_is_int or temporal_downsample != 1: raise ValueError( "Only powers of 4 expected for spatial and 1 expected for temporal downsampling with conv." ) self.convnet = Conv2DDownsample( in_channels=in_channels, num_layers=int(convnet_num_layers), out_channels=out_channels, use_batchnorm=conv2d_use_batchnorm, ) elif self.prep_type == "conv1x1": if temporal_downsample != 1: raise ValueError("Conv1x1 does not downsample in time.") self.convnet_1x1 = nn.Conv2d( in_channels=in_channels, out_channels=out_channels, kernel_size=(1, 1), # spatial_downsample is unconstrained for 1x1 convolutions. stride=(spatial_downsample, spatial_downsample), ) # Position embeddings self.project_pos_dim = project_pos_dim self.position_embeddings, self.positions_projection = build_position_encoding( position_encoding_type=position_encoding_type, out_channels=out_channels, project_pos_dim=project_pos_dim, **position_encoding_kwargs, ) # Optional convolutional layer after patches. self.conv_after_patches = ( nn.Linear(conv_after_patching_in_channels, self.out_channels) if conv_after_patching else nn.Identity() ) @property def num_channels(self) -> int: # Let's assume that the number of resolutions (in the context of image preprocessing) # of the input data is 2 or 3 depending on whether we are processing image or video respectively. # In this case, for convenience, we will declare is_temporal variable, # which will show whether the data has a temporal dimension or not. is_temporal = self.position_embeddings.num_dimensions > 2 # position embedding if self.project_pos_dim > 0: pos_dim = self.project_pos_dim else: pos_dim = self.position_embeddings.output_size() if self.concat_or_add_pos == "add": return pos_dim # inputs if self.conv_after_patching or self.prep_type in ("conv1x1", "conv"): inp_dim = self.out_channels elif self.prep_type == "pixels": inp_dim = self.in_channels if not is_temporal: inp_dim = math.ceil(inp_dim / self.spatial_downsample) elif self.prep_type == "patches": if self.conv_after_patching: inp_dim = self.out_channels else: inp_dim = self.in_channels * self.spatial_downsample**2 if is_temporal: inp_dim *= self.temporal_downsample return inp_dim + pos_dim def _build_network_inputs(self, inputs: torch.Tensor, network_input_is_1d: bool = True): """ Construct the final input, including position encoding. This method expects the inputs to always have channels as last dimension. """ batch_size = inputs.shape[0] index_dims = inputs.shape[1:-1] indices = np.prod(index_dims) # Flatten input features to a 1D index dimension if necessary. if len(inputs.shape) > 3 and network_input_is_1d: inputs = torch.reshape(inputs, [batch_size, indices, -1]) # Construct the position encoding. if self.position_encoding_type == "trainable": pos_enc = self.position_embeddings(batch_size) elif self.position_encoding_type == "fourier": pos_enc = self.position_embeddings(index_dims, batch_size, device=inputs.device, dtype=inputs.dtype) # Optionally project them to a target dimension. pos_enc = self.positions_projection(pos_enc) if not network_input_is_1d: # Reshape pos to match the input feature shape # if the network takes non-1D inputs sh = inputs.shape pos_enc = torch.reshape(pos_enc, list(sh)[:-1] + [-1]) if self.concat_or_add_pos == "concat": inputs_with_pos = torch.cat([inputs, pos_enc], dim=-1) elif self.concat_or_add_pos == "add": inputs_with_pos = inputs + pos_enc return inputs_with_pos, inputs def forward(self, inputs: torch.Tensor, pos: Optional[torch.Tensor] = None, network_input_is_1d: bool = True): if self.prep_type == "conv": # Convnet image featurization. # Downsamples spatially by a factor of 4 inputs = self.convnet(inputs) elif self.prep_type == "conv1x1": # map inputs to self.out_channels inputs = self.convnet_1x1(inputs) elif self.prep_type == "pixels": # if requested, downsamples in the crudest way if inputs.ndim == 4: inputs = inputs[:: self.spatial_downsample, :: self.spatial_downsample] elif inputs.ndim == 5: inputs = inputs[ :, :: self.temporal_downsample, :, :: self.spatial_downsample, :: self.spatial_downsample ] else: raise ValueError("Unsupported data format for pixels.") elif self.prep_type == "patches": # Space2depth featurization. # Video: B x T x C x H x W inputs = space_to_depth( inputs, temporal_block_size=self.temporal_downsample, spatial_block_size=self.spatial_downsample ) if inputs.ndim == 5 and inputs.shape[1] == 1: # for flow inputs = inputs.squeeze(dim=1) # Optionally apply conv layer. inputs = self.conv_after_patches(inputs) if self.prep_type != "patches": # move channels to last dimension, as the _build_network_inputs method below expects this if inputs.ndim == 4: inputs = inputs.permute(0, 2, 3, 1) elif inputs.ndim == 5: inputs = inputs.permute(0, 1, 3, 4, 2) else: raise ValueError("Unsupported data format for conv1x1.") inputs, inputs_without_pos = self._build_network_inputs(inputs, network_input_is_1d) modality_sizes = None # Size for each modality, only needed for multimodal return inputs, modality_sizes, inputs_without_pos class PerceiverOneHotPreprocessor(AbstractPreprocessor): """ One-hot preprocessor for Perceiver Encoder. Can be used to add a dummy index dimension to the input. Args: config ([`PerceiverConfig`]): Model configuration. """ def __init__(self, config: PerceiverConfig) -> None: super().__init__() self.config: PerceiverConfig = config @property def num_channels(self) -> int: return self.config.num_labels def forward(self, inputs: torch.Tensor, pos: Optional[torch.Tensor] = None, network_input_is_1d: bool = True): # Add a dummy index dimension. inputs = inputs[:, None, :] # No position encodings, so the 1st (input) and 3rd (inputs_without_pos) # outputs are identical. return inputs, None, inputs class PerceiverAudioPreprocessor(AbstractPreprocessor): """ Audio preprocessing for Perceiver Encoder. Args: config ([*PerceiverConfig*]): Model configuration. prep_type (`str`, *optional*, defaults to `"patches"`): Preprocessor type to use. Only "patches" is supported. samples_per_patch (`int`, *optional*, defaults to 96): Number of samples per patch. position_encoding_type (`str`, *optional*, defaults to `"fourier"`): Type of position encoding to use. Can be "trainable" or "fourier". concat_or_add_pos (`str`, *optional*, defaults to `"concat"`): How to concatenate the position encoding to the input. Can be "concat" or "add". out_channels (`int`, *optional*, defaults to 64): Number of channels in the output. project_pos_dim (`int`, *optional*, defaults to -1): Dimension of the position encoding to project to. If -1, no projection is applied. **position_encoding_kwargs (`Dict`, *optional*): Keyword arguments for the position encoding. """ def __init__( self, config, prep_type: str = "patches", samples_per_patch: int = 96, position_encoding_type: str = "fourier", concat_or_add_pos: str = "concat", out_channels=64, project_pos_dim=-1, **position_encoding_kwargs, ): super().__init__() self.config = config if prep_type not in ("patches",): raise ValueError(f"Prep_type {prep_type} is invalid, can only be 'patches'.") if concat_or_add_pos not in ["concat", "add"]: raise ValueError(f"Concat_or_pos {concat_or_add_pos} is invalid, can only be 'concat' or 'add'.") self.samples_per_patch = samples_per_patch self.position_encoding_type = position_encoding_type self.concat_or_add_pos = concat_or_add_pos self.project_pos_dim = project_pos_dim # Position embeddings self.position_embeddings, self.positions_projection = build_position_encoding( position_encoding_type=position_encoding_type, out_channels=out_channels, project_pos_dim=project_pos_dim, **position_encoding_kwargs, ) @property def num_channels(self) -> int: # position embedding if self.project_pos_dim > 0: pos_dim = self.project_pos_dim else: pos_dim = self.position_embeddings.output_size() if self.concat_or_add_pos == "add": return pos_dim return self.samples_per_patch + pos_dim def _build_network_inputs(self, inputs): """Construct the final input, including position encoding.""" batch_size = inputs.shape[0] index_dims = inputs.shape[1:-1] # Construct the position encoding. if self.position_encoding_type == "trainable": pos_enc = self.position_embeddings(batch_size) elif self.position_encoding_type == "fourier": pos_enc = self.position_embeddings(index_dims, batch_size, device=inputs.device, dtype=inputs.dtype) # Optionally project them to a target dimension. pos_enc = self.positions_projection(pos_enc) if self.concat_or_add_pos == "concat": inputs_with_pos = torch.cat([inputs, pos_enc], dim=-1) elif self.concat_or_add_pos == "add": inputs_with_pos = inputs + pos_enc return inputs_with_pos, inputs def forward(self, inputs: torch.Tensor, pos: Optional[torch.Tensor] = None, network_input_is_1d: bool = True): inputs = torch.reshape(inputs, [inputs.shape[0], -1, self.samples_per_patch]) inputs, inputs_without_pos = self._build_network_inputs(inputs) modality_sizes = None # Size for each modality, only needed for multimodal return inputs, modality_sizes, inputs_without_pos class PerceiverMultimodalPreprocessor(AbstractPreprocessor): """ Multimodal preprocessing for Perceiver Encoder. Inputs for each modality are preprocessed, then padded with trainable position embeddings to have the same number of channels. Args: modalities (`Mapping[str, PreprocessorType]`): Dict mapping modality name to preprocessor. mask_probs (`Dict[str, float]`): Dict mapping modality name to masking probability of that modality. min_padding_size (`int`, *optional*, defaults to 2): The minimum padding size for all modalities. The final output will have num_channels equal to the maximum channels across all modalities plus min_padding_size. """ def __init__( self, modalities: Mapping[str, PreprocessorType], mask_probs: Optional[Mapping[str, float]] = None, min_padding_size: int = 2, ): super().__init__() self.modalities = nn.ModuleDict(modalities) self.min_padding_size = min_padding_size self.mask_probs = mask_probs if mask_probs is not None else {} self.padding = nn.ParameterDict( { modality: nn.Parameter(torch.randn(1, self.num_channels - preprocessor.num_channels)) for modality, preprocessor in modalities.items() } ) self.mask = nn.ParameterDict( {modality: nn.Parameter(torch.randn(1, self.num_channels)) for modality, _ in self.mask_probs.items()} ) @property def num_channels(self) -> int: max_channel_size = max(processor.num_channels for _, processor in self.modalities.items()) common_channel_size = max_channel_size + self.min_padding_size return common_channel_size def forward( self, inputs: Mapping[str, torch.Tensor], pos: Optional[torch.Tensor] = None, network_input_is_1d: bool = True ) -> PreprocessorOutputType: padded = {} modality_sizes = {} inputs_without_pos = {} for modality, preprocessor in self.modalities.items(): # preprocess each modality using the respective preprocessor. output, _, inputs_without_pos[modality] = preprocessor( inputs[modality], pos=pos, network_input_is_1d=network_input_is_1d ) # pad to the same common_channel_size. batch_size, num_samples, num_channels = output.shape pos_enc = self.padding[modality].expand(batch_size, -1, -1) padding = torch.broadcast_to( pos_enc, [batch_size, num_samples, self.num_channels - num_channels], ) output_padded = torch.cat([output, padding], dim=2) # mask if required if modality in self.mask_probs: mask_token = self.mask[modality].expand(batch_size, -1, -1) mask_prob = self.mask_probs[modality] mask = torch.bernoulli(torch.full([batch_size, num_samples], mask_prob)) mask = torch.unsqueeze(mask, dim=2).to(mask_token.device) output_padded = (1 - mask) * output_padded + mask * mask_token padded[modality] = output_padded modality_sizes[modality] = output_padded.shape[1] # Apply a predictable ordering to the modalities padded_ls = [padded[k] for k in sorted(padded.keys())] # Finally, concatenate along the time dimension final_inputs = torch.cat(padded_ls, dim=1) return final_inputs, modality_sizes, inputs_without_pos
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/perceiver/tokenization_perceiver.py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tokenization class for Perceiver.""" from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) class PerceiverTokenizer(PreTrainedTokenizer): """ Construct a Perceiver tokenizer. The Perceiver simply uses raw bytes utf-8 encoding. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: pad_token (`str`, *optional*, defaults to `"[PAD]"`): The token used for padding, for example when batching sequences of different lengths. bos_token (`str`, *optional*, defaults to `"[BOS]"`): The BOS token (reserved in the vocab, but not actually used). eos_token (`str`, *optional*, defaults to `"[EOS]"`): The end of sequence token (reserved in the vocab, but not actually used). <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> mask_token (`str`, *optional*, defaults to `"[MASK]"`): The MASK token, useful for masked language modeling. cls_token (`str`, *optional*, defaults to `"[CLS]"`): The CLS token (reserved in the vocab, but not actually used). sep_token (`str`, *optional*, defaults to `"[SEP]"`): The separator token, which is used when building a sequence from two sequences. """ model_input_names = ["input_ids", "attention_mask"] def __init__( self, pad_token="[PAD]", bos_token="[BOS]", eos_token="[EOS]", mask_token="[MASK]", cls_token="[CLS]", sep_token="[SEP]", model_max_length=2048, **kwargs, ) -> None: pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token mask_token = AddedToken(mask_token, lstrip=False, rstrip=False) if isinstance(mask_token, str) else mask_token cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token super().__init__( pad_token=pad_token, bos_token=bos_token, eos_token=eos_token, mask_token=mask_token, cls_token=cls_token, sep_token=sep_token, model_max_length=model_max_length, **kwargs, ) self._utf_vocab_size = 2**8 # utf is 8 bits # define special tokens dict self.special_tokens_encoder: Dict[str, int] = { self.pad_token: 0, self.bos_token: 1, self.eos_token: 2, self.mask_token: 3, self.cls_token: 4, self.sep_token: 5, } self._num_special_tokens = len(self.special_tokens_encoder) self.special_tokens_decoder: Dict[int, str] = {v: k for k, v in self.special_tokens_encoder.items()} def get_vocab(self) -> Dict[str, int]: vocab = self.special_tokens_encoder.copy() vocab.update(self.added_tokens_encoder) for i in range(self._utf_vocab_size): token = chr(i) vocab[token] = i + len(self.special_tokens_encoder) return vocab @property def vocab_size(self): return self._utf_vocab_size + self._num_special_tokens def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) # normal case: some special tokens if token_ids_1 is None: return [1] + [0] * len(token_ids_0) + [1] return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks. A sequence has the following format: - single sequence: `[CLS] X [SEP]` - pair of sequences: `[CLS] A [SEP] B [SEP]` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] else: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] + token_ids_1 + [self.sep_token_id] def _tokenize(self, text: str) -> List[str]: """Take as input a string and return a list of strings (tokens) for words/sub-words""" tokens = [chr(i) for i in text.encode("utf-8")] return tokens def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" if token in self.special_tokens_encoder: token_id = self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: token_id = self.added_tokens_encoder[token] elif len(token) != 1: token_id = self.unk_token_id else: token_id = ord(token) + self._num_special_tokens return token_id def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" if index in self.special_tokens_decoder: token = self.special_tokens_decoder[index] elif index in self.added_tokens_decoder: token = self.added_tokens_decoder[index] else: token = chr(index - self._num_special_tokens) return token def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" bstring = b"" for token in tokens: if token in self.special_tokens_decoder: tok_string = self.special_tokens_decoder[token].encode("utf-8") elif token in self.added_tokens_decoder: tok_string = self.special_tokens_decoder[token].encode("utf-8") elif token in self.special_tokens_encoder: tok_string = token.encode("utf-8") elif token in self.added_tokens_encoder: tok_string = token.encode("utf-8") else: tok_string = bytes([ord(token)]) bstring += tok_string string = bstring.decode("utf-8", errors="replace") return string # PerceiverTokenizer has no vocab file def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: return ()
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/perceiver/convert_perceiver_haiku_to_pytorch.py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert Perceiver checkpoints originally implemented in Haiku.""" import argparse import json import pickle from pathlib import Path import haiku as hk import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( PerceiverConfig, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverImageProcessor, PerceiverTokenizer, ) from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) def prepare_img(): # We will verify our results on an image of a dog url = "https://storage.googleapis.com/perceiver_io/dalmation.jpg" im = Image.open(requests.get(url, stream=True).raw) return im def rename_keys(state_dict, architecture): for name in list(state_dict): param = state_dict.pop(name) # PREPROCESSORS # rename text preprocessor embeddings (for MLM model) name = name.replace("embed/embeddings", "input_preprocessor.embeddings.weight") if name.startswith("trainable_position_encoding/pos_embs"): name = name.replace( "trainable_position_encoding/pos_embs", "input_preprocessor.position_embeddings.weight" ) # rename image preprocessor embeddings (for image classification model with learned position embeddings) name = name.replace("image_preprocessor/~/conv2_d/w", "input_preprocessor.convnet_1x1.weight") name = name.replace("image_preprocessor/~/conv2_d/b", "input_preprocessor.convnet_1x1.bias") name = name.replace( "image_preprocessor/~_build_network_inputs/trainable_position_encoding/pos_embs", "input_preprocessor.position_embeddings.position_embeddings", ) name = name.replace( "image_preprocessor/~_build_network_inputs/position_encoding_projector/linear/w", "input_preprocessor.positions_projection.weight", ) name = name.replace( "image_preprocessor/~_build_network_inputs/position_encoding_projector/linear/b", "input_preprocessor.positions_projection.bias", ) # rename image preprocessor embeddings (for image classification model with conv processing) if "counter" in name or "hidden" in name: continue name = name.replace( "image_preprocessor/~/conv2_d_downsample/~/conv/w", "input_preprocessor.convnet.conv.weight" ) name = name.replace( "image_preprocessor/~/conv2_d_downsample/~/batchnorm/offset", "input_preprocessor.convnet.batchnorm.bias" ) name = name.replace( "image_preprocessor/~/conv2_d_downsample/~/batchnorm/scale", "input_preprocessor.convnet.batchnorm.weight" ) name = name.replace( "image_preprocessor/~/conv2_d_downsample/~/batchnorm/~/mean_ema/average", "input_preprocessor.convnet.batchnorm.running_mean", ) name = name.replace( "image_preprocessor/~/conv2_d_downsample/~/batchnorm/~/var_ema/average", "input_preprocessor.convnet.batchnorm.running_var", ) # rename image preprocessor embeddings (for optical flow model) name = name.replace("image_preprocessor/patches_linear/b", "input_preprocessor.conv_after_patches.bias") name = name.replace("image_preprocessor/patches_linear/w", "input_preprocessor.conv_after_patches.weight") # rename multimodal preprocessor embeddings name = name.replace("multimodal_preprocessor/audio_mask_token/pos_embs", "input_preprocessor.mask.audio") name = name.replace("multimodal_preprocessor/audio_padding/pos_embs", "input_preprocessor.padding.audio") name = name.replace("multimodal_preprocessor/image_mask_token/pos_embs", "input_preprocessor.mask.image") name = name.replace("multimodal_preprocessor/image_padding/pos_embs", "input_preprocessor.padding.image") name = name.replace("multimodal_preprocessor/label_mask_token/pos_embs", "input_preprocessor.mask.label") name = name.replace("multimodal_preprocessor/label_padding/pos_embs", "input_preprocessor.padding.label") # DECODERS # rename prefix of decoders # multimodal autoencoding model name = name.replace( "multimodal_decoder/~/basic_decoder/cross_attention/", "decoder.decoder.decoding_cross_attention." ) name = name.replace("multimodal_decoder/~decoder_query/audio_padding/pos_embs", "decoder.padding.audio") name = name.replace("multimodal_decoder/~decoder_query/image_padding/pos_embs", "decoder.padding.image") name = name.replace("multimodal_decoder/~decoder_query/label_padding/pos_embs", "decoder.padding.label") name = name.replace("multimodal_decoder/~/basic_decoder/output/b", "decoder.decoder.final_layer.bias") name = name.replace("multimodal_decoder/~/basic_decoder/output/w", "decoder.decoder.final_layer.weight") if architecture == "multimodal_autoencoding": name = name.replace( "classification_decoder/~/basic_decoder/~/trainable_position_encoding/pos_embs", "decoder.modalities.label.decoder.output_position_encodings.position_embeddings", ) # flow model name = name.replace( "flow_decoder/~/basic_decoder/cross_attention/", "decoder.decoder.decoding_cross_attention." ) name = name.replace("flow_decoder/~/basic_decoder/output/w", "decoder.decoder.final_layer.weight") name = name.replace("flow_decoder/~/basic_decoder/output/b", "decoder.decoder.final_layer.bias") # image models name = name.replace( "classification_decoder/~/basic_decoder/~/trainable_position_encoding/pos_embs", "decoder.decoder.output_position_encodings.position_embeddings", ) name = name.replace( "basic_decoder/~/trainable_position_encoding/pos_embs", "decoder.output_position_encodings.position_embeddings", ) name = name.replace( "classification_decoder/~/basic_decoder/cross_attention/", "decoder.decoder.decoding_cross_attention." ) name = name.replace("classification_decoder/~/basic_decoder/output/b", "decoder.decoder.final_layer.bias") name = name.replace("classification_decoder/~/basic_decoder/output/w", "decoder.decoder.final_layer.weight") name = name = name.replace("classification_decoder/~/basic_decoder/~/", "decoder.decoder.") name = name.replace("basic_decoder/cross_attention/", "decoder.decoding_cross_attention.") name = name.replace("basic_decoder/~/", "decoder.") # POSTPROCESSORS name = name.replace( "projection_postprocessor/linear/b", "output_postprocessor.modalities.image.classifier.bias" ) name = name.replace( "projection_postprocessor/linear/w", "output_postprocessor.modalities.image.classifier.weight" ) name = name.replace( "classification_postprocessor/linear/b", "output_postprocessor.modalities.label.classifier.bias" ) name = name.replace( "classification_postprocessor/linear/w", "output_postprocessor.modalities.label.classifier.weight" ) name = name.replace("audio_postprocessor/linear/b", "output_postprocessor.modalities.audio.classifier.bias") name = name.replace("audio_postprocessor/linear/w", "output_postprocessor.modalities.audio.classifier.weight") # PERCEIVER MODEL # rename latent embeddings name = name.replace("perceiver_encoder/~/trainable_position_encoding/pos_embs", "embeddings.latents") # rename latent embeddings (for multimodal model) name = name.replace("encoder/~/trainable_position_encoding/pos_embs", "embeddings.latents") # rename prefixes if name.startswith("perceiver_encoder/~/"): if "self_attention" in name: suffix = "self_attends." else: suffix = "" name = name.replace("perceiver_encoder/~/", "encoder." + suffix) if name.startswith("encoder/~/"): if "self_attention" in name: suffix = "self_attends." else: suffix = "" name = name.replace("encoder/~/", "encoder." + suffix) # rename layernorm parameters if "offset" in name: name = name.replace("offset", "bias") if "scale" in name: name = name.replace("scale", "weight") # in HuggingFace, the layernorm in between attention + MLP is just called "layernorm" # rename layernorm in between attention + MLP of cross-attention if "cross_attention" in name and "layer_norm_2" in name: name = name.replace("layer_norm_2", "layernorm") # rename layernorm in between attention + MLP of self-attention if "self_attention" in name and "layer_norm_1" in name: name = name.replace("layer_norm_1", "layernorm") # in HuggingFace, the layernorms for queries + keys are called "layernorm1" and "layernorm2" if "cross_attention" in name and "layer_norm_1" in name: name = name.replace("layer_norm_1", "attention.self.layernorm2") if "cross_attention" in name and "layer_norm" in name: name = name.replace("layer_norm", "attention.self.layernorm1") if "self_attention" in name and "layer_norm" in name: name = name.replace("layer_norm", "attention.self.layernorm1") # rename special characters by dots name = name.replace("-", ".") name = name.replace("/", ".") # rename keys, queries, values and output of attention layers if ("cross_attention" in name or "self_attention" in name) and "mlp" not in name: if "linear.b" in name: name = name.replace("linear.b", "self.query.bias") if "linear.w" in name: name = name.replace("linear.w", "self.query.weight") if "linear_1.b" in name: name = name.replace("linear_1.b", "self.key.bias") if "linear_1.w" in name: name = name.replace("linear_1.w", "self.key.weight") if "linear_2.b" in name: name = name.replace("linear_2.b", "self.value.bias") if "linear_2.w" in name: name = name.replace("linear_2.w", "self.value.weight") if "linear_3.b" in name: name = name.replace("linear_3.b", "output.dense.bias") if "linear_3.w" in name: name = name.replace("linear_3.w", "output.dense.weight") if "self_attention_" in name: name = name.replace("self_attention_", "") if "self_attention" in name: name = name.replace("self_attention", "0") # rename dense layers of 2-layer MLP if "mlp" in name: if "linear.b" in name: name = name.replace("linear.b", "dense1.bias") if "linear.w" in name: name = name.replace("linear.w", "dense1.weight") if "linear_1.b" in name: name = name.replace("linear_1.b", "dense2.bias") if "linear_1.w" in name: name = name.replace("linear_1.w", "dense2.weight") # finally, TRANSPOSE if kernel and not embedding layer, and set value if name[-6:] == "weight" and "embeddings" not in name: param = np.transpose(param) # if batchnorm, we need to squeeze it if "batchnorm" in name: param = np.squeeze(param) if "embedding_decoder" not in name: state_dict["perceiver." + name] = torch.from_numpy(param) else: state_dict[name] = torch.from_numpy(param) @torch.no_grad() def convert_perceiver_checkpoint(pickle_file, pytorch_dump_folder_path, architecture="MLM"): """ Copy/paste/tweak model's weights to our Perceiver structure. """ # load parameters as FlatMapping data structure with open(pickle_file, "rb") as f: checkpoint = pickle.loads(f.read()) state = None if isinstance(checkpoint, dict) and architecture in [ "image_classification", "image_classification_fourier", "image_classification_conv", ]: # the image classification_conv checkpoint also has batchnorm states (running_mean and running_var) params = checkpoint["params"] state = checkpoint["state"] else: params = checkpoint # turn into initial state dict state_dict = {} for scope_name, parameters in hk.data_structures.to_mutable_dict(params).items(): for param_name, param in parameters.items(): state_dict[scope_name + "/" + param_name] = param if state is not None: # add state variables for scope_name, parameters in hk.data_structures.to_mutable_dict(state).items(): for param_name, param in parameters.items(): state_dict[scope_name + "/" + param_name] = param # rename keys rename_keys(state_dict, architecture=architecture) # load HuggingFace model config = PerceiverConfig() subsampling = None repo_id = "huggingface/label-files" if architecture == "MLM": config.qk_channels = 8 * 32 config.v_channels = 1280 model = PerceiverForMaskedLM(config) elif "image_classification" in architecture: config.num_latents = 512 config.d_latents = 1024 config.d_model = 512 config.num_blocks = 8 config.num_self_attends_per_block = 6 config.num_cross_attention_heads = 1 config.num_self_attention_heads = 8 config.qk_channels = None config.v_channels = None # set labels config.num_labels = 1000 filename = "imagenet-1k-id2label.json" id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) id2label = {int(k): v for k, v in id2label.items()} config.id2label = id2label config.label2id = {v: k for k, v in id2label.items()} if architecture == "image_classification": config.image_size = 224 model = PerceiverForImageClassificationLearned(config) elif architecture == "image_classification_fourier": config.d_model = 261 model = PerceiverForImageClassificationFourier(config) elif architecture == "image_classification_conv": config.d_model = 322 model = PerceiverForImageClassificationConvProcessing(config) else: raise ValueError(f"Architecture {architecture} not supported") elif architecture == "optical_flow": config.num_latents = 2048 config.d_latents = 512 config.d_model = 322 config.num_blocks = 1 config.num_self_attends_per_block = 24 config.num_self_attention_heads = 16 config.num_cross_attention_heads = 1 model = PerceiverForOpticalFlow(config) elif architecture == "multimodal_autoencoding": config.num_latents = 28 * 28 * 1 config.d_latents = 512 config.d_model = 704 config.num_blocks = 1 config.num_self_attends_per_block = 8 config.num_self_attention_heads = 8 config.num_cross_attention_heads = 1 config.num_labels = 700 # define dummy inputs + subsampling (as each forward pass is only on a chunk of image + audio data) images = torch.randn((1, 16, 3, 224, 224)) audio = torch.randn((1, 30720, 1)) nchunks = 128 image_chunk_size = np.prod((16, 224, 224)) // nchunks audio_chunk_size = audio.shape[1] // config.samples_per_patch // nchunks # process the first chunk chunk_idx = 0 subsampling = { "image": torch.arange(image_chunk_size * chunk_idx, image_chunk_size * (chunk_idx + 1)), "audio": torch.arange(audio_chunk_size * chunk_idx, audio_chunk_size * (chunk_idx + 1)), "label": None, } model = PerceiverForMultimodalAutoencoding(config) # set labels filename = "kinetics700-id2label.json" id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) id2label = {int(k): v for k, v in id2label.items()} config.id2label = id2label config.label2id = {v: k for k, v in id2label.items()} else: raise ValueError(f"Architecture {architecture} not supported") model.eval() # load weights model.load_state_dict(state_dict) # prepare dummy input input_mask = None if architecture == "MLM": tokenizer = PerceiverTokenizer.from_pretrained("/Users/NielsRogge/Documents/Perceiver/Tokenizer files") text = "This is an incomplete sentence where some words are missing." encoding = tokenizer(text, padding="max_length", return_tensors="pt") # mask " missing.". Note that the model performs much better if the masked chunk starts with a space. encoding.input_ids[0, 51:60] = tokenizer.mask_token_id inputs = encoding.input_ids input_mask = encoding.attention_mask elif architecture in ["image_classification", "image_classification_fourier", "image_classification_conv"]: image_processor = PerceiverImageProcessor() image = prepare_img() encoding = image_processor(image, return_tensors="pt") inputs = encoding.pixel_values elif architecture == "optical_flow": inputs = torch.randn(1, 2, 27, 368, 496) elif architecture == "multimodal_autoencoding": images = torch.randn((1, 16, 3, 224, 224)) audio = torch.randn((1, 30720, 1)) inputs = {"image": images, "audio": audio, "label": torch.zeros((images.shape[0], 700))} # forward pass if architecture == "multimodal_autoencoding": outputs = model(inputs=inputs, attention_mask=input_mask, subsampled_output_points=subsampling) else: outputs = model(inputs=inputs, attention_mask=input_mask) logits = outputs.logits # verify logits if not isinstance(logits, dict): print("Shape of logits:", logits.shape) else: for k, v in logits.items(): print(f"Shape of logits of modality {k}", v.shape) if architecture == "MLM": expected_slice = torch.tensor( [[-11.8336, -11.6850, -11.8483], [-12.8149, -12.5863, -12.7904], [-12.8440, -12.6410, -12.8646]] ) assert torch.allclose(logits[0, :3, :3], expected_slice) masked_tokens_predictions = logits[0, 51:60].argmax(dim=-1).tolist() expected_list = [38, 115, 111, 121, 121, 111, 116, 109, 52] assert masked_tokens_predictions == expected_list print("Greedy predictions:") print(masked_tokens_predictions) print() print("Predicted string:") print(tokenizer.decode(masked_tokens_predictions)) elif architecture in ["image_classification", "image_classification_fourier", "image_classification_conv"]: print("Predicted class:", model.config.id2label[logits.argmax(-1).item()]) # Finally, save files Path(pytorch_dump_folder_path).mkdir(exist_ok=True) print(f"Saving model to {pytorch_dump_folder_path}") model.save_pretrained(pytorch_dump_folder_path) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pickle_file", type=str, default=None, required=True, help="Path to local pickle file of a Perceiver checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model directory, provided as a string.", ) parser.add_argument( "--architecture", default="MLM", type=str, help=""" Architecture, provided as a string. One of 'MLM', 'image_classification', image_classification_fourier', image_classification_fourier', 'optical_flow' or 'multimodal_autoencoding'. """, ) args = parser.parse_args() convert_perceiver_checkpoint(args.pickle_file, args.pytorch_dump_folder_path, args.architecture)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/perceiver/feature_extraction_perceiver.py
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Feature extractor class for Perceiver.""" import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor logger = logging.get_logger(__name__) class PerceiverFeatureExtractor(PerceiverImageProcessor): def __init__(self, *args, **kwargs) -> None: warnings.warn( "The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use PerceiverImageProcessor instead.", FutureWarning, ) super().__init__(*args, **kwargs)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/perceiver/image_processing_perceiver.py
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for Perceiver.""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL logger = logging.get_logger(__name__) class PerceiverImageProcessor(BaseImageProcessor): r""" Constructs a Perceiver image processor. Args: do_center_crop (`bool`, `optional`, defaults to `True`): Whether or not to center crop the image. If the input size if smaller than `crop_size` along any edge, the image will be padded with zeros and then center cropped. Can be overridden by the `do_center_crop` parameter in the `preprocess` method. crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 256, "width": 256}`): Desired output size when applying center-cropping. Can be overridden by the `crop_size` parameter in the `preprocess` method. do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the image to `(size["height"], size["width"])`. Can be overridden by the `do_resize` parameter in the `preprocess` method. size (`Dict[str, int]` *optional*, defaults to `{"height": 224, "width": 224}`): Size of the image after resizing. Can be overridden by the `size` parameter in the `preprocess` method. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`): Defines the resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the `preprocess` method. do_rescale (`bool`, *optional*, defaults to `True`): Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale` parameter in the `preprocess` method. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Defines the scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the `preprocess` method. do_normalize: Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` method. image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`): Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`): Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. """ model_input_names = ["pixel_values"] def __init__( self, do_center_crop: bool = True, crop_size: Dict[str, int] = None, do_resize: bool = True, size: Dict[str, int] = None, resample: PILImageResampling = PILImageResampling.BICUBIC, do_rescale: bool = True, rescale_factor: Union[int, float] = 1 / 255, do_normalize: bool = True, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, **kwargs, ) -> None: super().__init__(**kwargs) crop_size = crop_size if crop_size is not None else {"height": 256, "width": 256} crop_size = get_size_dict(crop_size, param_name="crop_size") size = size if size is not None else {"height": 224, "width": 224} size = get_size_dict(size) self.do_center_crop = do_center_crop self.crop_size = crop_size self.do_resize = do_resize self.size = size self.resample = resample self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD def center_crop( self, image: np.ndarray, crop_size: Dict[str, int], size: Optional[int] = None, data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Center crop an image to `(size["height"] / crop_size["height"] * min_dim, size["width"] / crop_size["width"] * min_dim)`. Where `min_dim = min(size["height"], size["width"])`. If the input size is smaller than `crop_size` along any edge, the image will be padded with zeros and then center cropped. Args: image (`np.ndarray`): Image to center crop. crop_size (`Dict[str, int]`): Desired output size after applying the center crop. size (`Dict[str, int]`, *optional*): Size of the image after resizing. If not provided, the self.size attribute will be used. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the image. If not provided, it will be the same as the input image. """ size = self.size if size is None else size size = get_size_dict(size) crop_size = get_size_dict(crop_size, param_name="crop_size") height, width = get_image_size(image) min_dim = min(height, width) cropped_height = (size["height"] / crop_size["height"]) * min_dim cropped_width = (size["width"] / crop_size["width"]) * min_dim return center_crop(image, size=(cropped_height, cropped_width), data_format=data_format, **kwargs) def resize( self, image: np.ndarray, size: Dict[str, int], resample: PILImageResampling = PIL.Image.BICUBIC, data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Resize an image to `(size["height"], size["width"])`. Args: image (`np.ndarray`): Image to resize. size (`Dict[str, int]`): Size of the output image. resample (`PILImageResampling`, *optional*, defaults to `PIL.Image.BICUBIC`): Resampling filter to use when resizing the image. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the image. If not provided, it will be the same as the input image. """ size = get_size_dict(size) if "height" not in size or "width" not in size: raise ValueError(f"The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}") return resize( image, size=(size["height"], size["width"]), resample=resample, data_format=data_format, **kwargs ) def preprocess( self, images: ImageInput, do_center_crop: Optional[bool] = None, crop_size: Optional[Dict[str, int]] = None, do_resize: Optional[bool] = None, size: Optional[Dict[str, int]] = None, resample: PILImageResampling = None, do_rescale: Optional[bool] = None, rescale_factor: Optional[float] = None, do_normalize: Optional[bool] = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, return_tensors: Optional[Union[str, TensorType]] = None, data_format: ChannelDimension = ChannelDimension.FIRST, **kwargs, ) -> PIL.Image.Image: """ Preprocess an image or batch of images. Args: images (`ImageInput`): Image to preprocess. do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`): Whether to center crop the image to `crop_size`. crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`): Desired output size after applying the center crop. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to `self.size`): Size of the image after resizing. resample (`int`, *optional*, defaults to `self.resample`): Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`, Only has an effect if `do_resize` is set to `True`. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): Image mean. image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): Image standard deviation. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `ChannelDimension.LAST`: image in (height, width, num_channels) format. """ do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop crop_size = crop_size if crop_size is not None else self.crop_size crop_size = get_size_dict(crop_size, param_name="crop_size") do_resize = do_resize if do_resize is not None else self.do_resize size = size if size is not None else self.size size = get_size_dict(size) resample = resample if resample is not None else self.resample do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor do_normalize = do_normalize if do_normalize is not None else self.do_normalize image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std images = make_list_of_images(images) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_center_crop and crop_size is None: raise ValueError("If `do_center_crop` is set to `True`, `crop_size` must be provided.") if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True.") if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True.") if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and image standard deviation must be specified if do_normalize is True.") # All transformations expect numpy arrays. images = [to_numpy_array(image) for image in images] if do_center_crop: images = [self.center_crop(image, crop_size, size=size) for image in images] if do_resize: images = [self.resize(image=image, size=size, resample=resample) for image in images] if do_rescale: images = [self.rescale(image=image, scale=rescale_factor) for image in images] if do_normalize: images = [self.normalize(image=image, mean=image_mean, std=image_std) for image in images] images = [to_channel_dimension_format(image, data_format) for image in images] data = {"pixel_values": images} return BatchFeature(data=data, tensor_type=return_tensors)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/perceiver/configuration_perceiver.py
# coding=utf-8 # Copyright Deepmind and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Perceiver model configuration""" from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging logger = logging.get_logger(__name__) PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP = { "deepmind/language-perceiver": "https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json", # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class PerceiverConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`PerceiverModel`]. It is used to instantiate an Perceiver model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Perceiver [deepmind/language-perceiver](https://huggingface.co/deepmind/language-perceiver) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: num_latents (`int`, *optional*, defaults to 256): The number of latents. d_latents (`int`, *optional*, defaults to 1280): Dimension of the latent embeddings. d_model (`int`, *optional*, defaults to 768): Dimension of the inputs. Should only be provided in case [*PerceiverTextPreprocessor*] is used or no preprocessor is provided. num_blocks (`int`, *optional*, defaults to 1): Number of blocks in the Transformer encoder. num_self_attends_per_block (`int`, *optional*, defaults to 26): The number of self-attention layers per block. num_self_attention_heads (`int`, *optional*, defaults to 8): Number of attention heads for each self-attention layer in the Transformer encoder. num_cross_attention_heads (`int`, *optional*, defaults to 8): Number of attention heads for each cross-attention layer in the Transformer encoder. qk_channels (`int`, *optional*): Dimension to project the queries + keys before applying attention in the cross-attention and self-attention layers of the encoder. Will default to preserving the dimension of the queries if not specified. v_channels (`int`, *optional*): Dimension to project the values before applying attention in the cross-attention and self-attention layers of the encoder. Will default to preserving the dimension of the queries if not specified. cross_attention_shape_for_attention (`str`, *optional*, defaults to `'kv'`): Dimension to use when downsampling the queries and keys in the cross-attention layer of the encoder. self_attention_widening_factor (`int`, *optional*, defaults to 1): Dimension of the feed-forward layer in the cross-attention layer of the Transformer encoder. cross_attention_widening_factor (`int`, *optional*, defaults to 1): Dimension of the feed-forward layer in the self-attention layers of the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. use_query_residual (`float`, *optional*, defaults to `True`): Whether to add a query residual in the cross-attention layer of the encoder. vocab_size (`int`, *optional*, defaults to 262): Vocabulary size for the masked language modeling model. max_position_embeddings (`int`, *optional*, defaults to 2048): The maximum sequence length that the masked language modeling model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). image_size (`int`, *optional*, defaults to 56): Size of the images after preprocessing, for [`PerceiverForImageClassificationLearned`]. train_size (`List[int]`, *optional*, defaults to [368, 496]): Training size of the images for the optical flow model. num_frames (`int`, *optional*, defaults to 16): Number of video frames used for the multimodal autoencoding model. audio_samples_per_frame (`int`, *optional*, defaults to 1920): Number of audio samples per frame for the multimodal autoencoding model. samples_per_patch (`int`, *optional*, defaults to 16): Number of audio samples per patch when preprocessing the audio for the multimodal autoencoding model. output_num_channels (`int`, *optional*, defaults to 512): Number of output channels for each modalitiy decoder. output_shape (`List[int]`, *optional*, defaults to `[1, 16, 224, 224]`): Shape of the output (batch_size, num_frames, height, width) for the video decoder queries of the multimodal autoencoding model. This excludes the channel dimension. Example: ```python >>> from transformers import PerceiverModel, PerceiverConfig >>> # Initializing a Perceiver deepmind/language-perceiver style configuration >>> configuration = PerceiverConfig() >>> # Initializing a model from the deepmind/language-perceiver style configuration >>> model = PerceiverModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "perceiver" def __init__( self, num_latents=256, d_latents=1280, d_model=768, num_blocks=1, num_self_attends_per_block=26, num_self_attention_heads=8, num_cross_attention_heads=8, qk_channels=None, v_channels=None, cross_attention_shape_for_attention="kv", self_attention_widening_factor=1, cross_attention_widening_factor=1, hidden_act="gelu", attention_probs_dropout_prob=0.1, initializer_range=0.02, layer_norm_eps=1e-12, use_query_residual=True, vocab_size=262, max_position_embeddings=2048, image_size=56, train_size=[368, 496], num_frames=16, audio_samples_per_frame=1920, samples_per_patch=16, output_shape=[1, 16, 224, 224], output_num_channels=512, _label_trainable_num_channels=1024, **kwargs, ): super().__init__(**kwargs) self.num_latents = num_latents self.d_latents = d_latents self.d_model = d_model self.num_blocks = num_blocks self.num_self_attends_per_block = num_self_attends_per_block self.num_self_attention_heads = num_self_attention_heads self.num_cross_attention_heads = num_cross_attention_heads self.qk_channels = qk_channels self.v_channels = v_channels self.cross_attention_shape_for_attention = cross_attention_shape_for_attention self.self_attention_widening_factor = self_attention_widening_factor self.cross_attention_widening_factor = cross_attention_widening_factor self.hidden_act = hidden_act self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.use_query_residual = use_query_residual # masked language modeling attributes self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings # image classification attributes self.image_size = image_size # flow attributes self.train_size = train_size # multimodal autoencoding attributes self.num_frames = num_frames self.audio_samples_per_frame = audio_samples_per_frame self.samples_per_patch = samples_per_patch self.output_shape = output_shape self.output_num_channels = output_num_channels self._label_trainable_num_channels = _label_trainable_num_channels class PerceiverOnnxConfig(OnnxConfig): @property def inputs(self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"} else: dynamic_axis = {0: "batch", 1: "sequence"} return OrderedDict( [ ("inputs", dynamic_axis), ("attention_mask", dynamic_axis), ] ) @property def atol_for_validation(self) -> float: return 1e-4 def generate_dummy_inputs( self, preprocessor: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"], batch_size: int = -1, seq_length: int = -1, num_choices: int = -1, is_pair: bool = False, framework: Optional[TensorType] = None, num_channels: int = 3, image_width: int = 40, image_height: int = 40, ) -> Mapping[str, Any]: # copied from `transformers.onnx.config.OnnxConfig` and slightly altered/simplified if isinstance(preprocessor, PreTrainedTokenizerBase): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX batch_size = compute_effective_axis_dimension( batch_size, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX token_to_add = preprocessor.num_special_tokens_to_add(is_pair) seq_length = compute_effective_axis_dimension( seq_length, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=token_to_add ) # Generate dummy inputs according to compute batch and sequence dummy_input = [" ".join(["a"]) * seq_length] * batch_size inputs = dict(preprocessor(dummy_input, return_tensors=framework)) inputs["inputs"] = inputs.pop("input_ids") return inputs elif isinstance(preprocessor, FeatureExtractionMixin) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) dummy_input = self._generate_dummy_images(batch_size, num_channels, image_height, image_width) inputs = dict(preprocessor(images=dummy_input, return_tensors=framework)) inputs["inputs"] = inputs.pop("pixel_values") return inputs else: raise ValueError( "Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor." )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/xglm/configuration_xglm.py
# coding=utf-8 # Copyright The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ XGLM model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP = { "facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/config.json", # See all XGLM models at https://huggingface.co/models?filter=xglm } class XGLMConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`XGLMModel`]. It is used to instantiate an XGLM model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the XGLM [facebook/xglm-564M](https://huggingface.co/facebook/xglm-564M) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 256008): Vocabulary size of the XGLM model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`XGLMModel`] or [`FlaxXGLMModel`]. max_position_embeddings (`int`, *optional*, defaults to 2048): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). d_model (`int`, *optional*, defaults to 1024): Dimension of the layers and the pooler layer. ffn_dim (`int`, *optional*, defaults to 4096): Dimension of the "intermediate" (often named feed-forward) layer in decoder. num_layers (`int`, *optional*, defaults to 24): Number of hidden layers Transformer decoder. attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer decoder. activation_function (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, dencoder, and pooler. attention_dropout (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. activation_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for activations inside the fully connected layer. layerdrop (`float`, *optional*, defaults to 0.0): The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. init_std (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. scale_embedding (`bool`, *optional*, defaults to `True`): Scale embeddings by diving by sqrt(d_model). use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Example: ```python >>> from transformers import XGLMModel, XGLMConfig >>> # Initializing a XGLM facebook/xglm-564M style configuration >>> configuration = XGLMConfig() >>> # Initializing a model from the facebook/xglm-564M style configuration >>> model = XGLMModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "xglm" keys_to_ignore_at_inference = ["past_key_values"] attribute_map = { "num_attention_heads": "attention_heads", "hidden_size": "d_model", "num_hidden_layers": "num_layers", } def __init__( self, vocab_size=256008, max_position_embeddings=2048, d_model=1024, ffn_dim=4096, num_layers=24, attention_heads=16, activation_function="gelu", dropout=0.1, attention_dropout=0.1, activation_dropout=0.0, layerdrop=0.0, init_std=0.02, scale_embedding=True, use_cache=True, decoder_start_token_id=2, pad_token_id=1, bos_token_id=0, eos_token_id=2, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.d_model = d_model self.ffn_dim = ffn_dim self.num_layers = num_layers self.attention_heads = attention_heads self.activation_function = activation_function self.dropout = dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.layerdrop = layerdrop self.init_std = init_std self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True self.use_cache = use_cache super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, decoder_start_token_id=decoder_start_token_id, **kwargs, )
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/xglm/__init__.py
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _import_structure = {"configuration_xglm": ["XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XGLMConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_xglm"] = ["XGLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_xglm_fast"] = ["XGLMTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_xglm"] = [ "XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XGLMForCausalLM", "XGLMModel", "XGLMPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_flax_xglm"] = [ "FlaxXGLMForCausalLM", "FlaxXGLMModel", "FlaxXGLMPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_xglm"] = [ "TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXGLMForCausalLM", "TFXGLMModel", "TFXGLMPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/xglm/convert_xglm_original_ckpt_to_trfms.py
import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def remove_ignore_keys_(state_dict): ignore_keys = [ "decoder.version", "decoder.output_projection.weight", "_float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(k, None) def make_linear_from_emb(emb): vocab_size, emb_size = emb.weight.shape lin_layer = nn.Linear(vocab_size, emb_size, bias=False) lin_layer.weight.data = emb.weight.data return lin_layer def convert_fairseq_xglm_checkpoint_from_disk(checkpoint_path): checkpoint = torch.load(checkpoint_path, map_location="cpu") args = Namespace(**checkpoint["cfg"]["model"]) state_dict = checkpoint["model"] remove_ignore_keys_(state_dict) vocab_size = state_dict["decoder.embed_tokens.weight"].shape[0] state_dict = {key.replace("decoder", "model"): val for key, val in state_dict.items()} config = XGLMConfig( vocab_size=vocab_size, max_position_embeddings=args.max_target_positions, num_layers=args.decoder_layers, attention_heads=args.decoder_attention_heads, ffn_dim=args.decoder_ffn_embed_dim, d_model=args.decoder_embed_dim, layerdrop=args.decoder_layerdrop, dropout=args.dropout, attention_dropout=args.attention_dropout, activation_dropout=args.activation_dropout, activation_function="gelu", scale_embedding=not args.no_scale_embedding, tie_word_embeddings=args.share_decoder_input_output_embed, ) model = XGLMForCausalLM(config) missing = model.load_state_dict(state_dict, strict=False) print(missing) model.lm_head = make_linear_from_emb(model.model.embed_tokens) return model if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument("fairseq_path", type=str, help="path to a model.pt on local filesystem.") parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") args = parser.parse_args() model = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
0
hf_public_repos/transformers/src/transformers/models
hf_public_repos/transformers/src/transformers/models/xglm/tokenization_xglm_fast.py
# coding=utf-8 # Copyright The HuggingFace Team and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for XGLM.""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xglm import XGLMTokenizer else: XGLMTokenizer = None logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model", }, "tokenizer_file": { "facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/tokenizer.json", }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "facebook/xglm-564M": 2048, } class XGLMTokenizerFast(PreTrainedTokenizerFast): """ Construct a "fast" XGLM tokenizer (backed by HuggingFace's *tokenizers* library). Adapted from [`RobertaTokenizer`] and [`XLNetTokenizer`]. Based on [BPE](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=BPE#models). This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. additional_special_tokens (`List[str]`, *optional*, defaults to `["<s>NOTUSED", "</s>NOTUSED"]`): Additional special tokens used by the tokenizer. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] slow_tokenizer_class = XGLMTokenizer def __init__( self, vocab_file=None, tokenizer_file=None, bos_token="<s>", eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", **kwargs, ): # Compatibility with the original tokenizer self.num_madeup_words = 7 madeup_words = [f"<madeupword{i}>" for i in range(self.num_madeup_words)] kwargs["additional_special_tokens"] = kwargs.get("additional_special_tokens", []) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( vocab_file, tokenizer_file=tokenizer_file, bos_token=bos_token, eos_token=eos_token, sep_token=sep_token, cls_token=cls_token, unk_token=unk_token, pad_token=pad_token, **kwargs, ) self.vocab_file = vocab_file self.can_save_slow_tokenizer = False if not self.vocab_file else True def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. An XLM-RoBERTa sequence has the following format: - single sequence: `<s> X </s>` - pair of sequences: `<s> A </s></s> B </s>` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.sep_token_id] + token_ids_0 sep = [self.sep_token_id] return sep + token_ids_0 + sep + sep + token_ids_1 def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. XLM-RoBERTa does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ sep = [self.sep_token_id] if token_ids_1 is None: return len(sep + token_ids_0) * [0] return len(sep + token_ids_0 + sep + sep + token_ids_1) * [0] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory.") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): copyfile(self.vocab_file, out_vocab_file) return (out_vocab_file,)
0